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the Office of Computing Activities of the National Science Foundation (grants GJ-174 

and GJ-7l0); we are grateful to Dr. John Lehmann of this Office for his interest and 

encouragement. Professors Donald McClure and Richard Vitale of the Division of 
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Dr. J.F. Blackburn, Director of the Institute, for his invitation, and to him and 
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INTRODUCTION 

The purpose of this book is to present an attitude. It has been designed with 

the aim of making students and perhaps also faculty aware of some of the consequences 

of modern computing technology for probability theory and mathematical statistics. 

Not only the increased speed and memory of modern computers are relevant here; of at 

least equal importance to our subject are the versatile input-output devices and the 

existence of interactive time-sharing systems and of powerful programming languages. 

Of the last-mentioned, we have found APL most useful for our purposes. 

The work described in these notes was initiated because we felt the time was 

ripe for a systematic exploitation of modern computing techniques in mathematical 

statistics and applied probability. Model building, for instance in applied probabil

ity, is very different today from what it was in pre-computer days, although this 

change has not yet fully penetrated to the textbook level. This course is being pre

sented to remedy this situation to some degree; through it, we hope, students will 

become aware of how computers have increased their freedom of choice of mathematical 

models and liberated them from the restraints imposed by traditional mathematical 

techniques. 

The project which led to this set of lecture notes is a continuation, although 

in different form, of an activity organized several years ago at the University of 

Stockholm. The activity was intended as a complement to the already existing program 

for training graduate students in mathematical statistics and operations research. 

It was felt that the students received a well-balanced education in mathematical 

theory but that something else was lacking: they were not trained for solving real

life problems in raw and unpolished form (in which they usually appear), far removed 

from that of pure and idealized textbook problems. In particular, little attention 

was given to the first, difficult stages of problem solving, namely the building of 

models, the collection of data, and the crucial relation between the mathematical, 

formal apparatus and the real-life phenomena under study. 

To give students an opportunity for acquiring a more realistic orientation and 

critical attitude towards data, they were exposed to real problems chosen from many 

fields in industry, government and research. With the help of advice from a teacher 
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or from older and more experienced students, they were asked tQ study a problem, for

mulate their own model, scrutinize data and present an analysis to the person or 

agency from whom the problem had originated. The results were later discussed in 

laboratory sessions, often before the analysis was completed, in order to get sug

gestions and ideas. 

It became obvious in the course of this experiment that a major defect in the 

conventional training of graduate students was the lack of attention paid to the role 

of computers in the applications of mathematical statistics. Students have often to 

pass through a more or less painful stage in which they reorient themselves in order 

to learn what is computationally feasible as distinct from analytically possible. It 

is desirable that this transition be made easier, quicker and more complete. Although 

most students will have had some exposure to the computer, they may be inexperienced 

in its use in, say, applied probability. This will affect their ability to formulate 

realistic models, forcing them to choose analytically tractable models rather than 

those which best fit the problem. 

The purpose of the present project is to equip students in probability and stat

istics better for work on real problems. The emphasis in the latter effort is on 

model building as influenced by computer science. 

A growing number of practicing statisticians are today aware of the need to ex

ploit more fully the capability of computers in statistics. This is particularly 

true in applied statistics, for instance in data analysis, where some research workers 

have emphasized this for several years. Less attention has been paid to the computa

tional side of probability theory, although the need for a computational reorientation 

also exists in this subject. We therefore chose to concentrate our efforts on 

probability theory and applied probability as well as on statistics. 

We divided our work into several chapters. Each chapter represents some concept 

or technique or relation for which a sufficiently rich mathematical structure has been 

developed and in which, at the same time, the impact of computer science can be ex

pected to be substantial. The chapters together will cover only a part of mathemat

ical statistics, although, we hope, an important one. We are particularly interested 

in areas in which the interaction between the analytical and computational approach 
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is strong. This will usually only be the case where the analytical technique has 

been extended so far that further extension seems possible or worthwhile only through 

computer llse, and makes it necessary that students possess a certain degree of math

ematical sophistication. A course designed in such a way should be distinguished 

from one aiming only at teaching the computer implementation of standard statistical 

techniques and the writing of statistical programs. A course of the latter type is 

certainly useful and necessary, but the present project is more ambitious in scope 

and perhaps also more difficult to accomplish in the classroom. Little, in fact, 

seems to have been done in the direction described here. We had originally hoped to 

be able to use some already developed material, but there is disappointingly little 

available. 

The prerequisites for the course are familiarity with the elements of probability 

and statistics, calculus and linear algebra. It will be assumed that 

students have some programming experience; most computing in the course will be based 

on APL which is, from the point of view of our computing tasks, by far the most suit

able currently available interactive programming language. 

The APL programs in the book should not be interpreted as forming a comprehen

sive, debugged program library (see section 7.1 in this context). They are presented 

only to illustrate our approach to computational probability and statistics and un

doubtedly contain several mistakes. 

Since the degree of mathematical sophistication is expected to vary a good deal 

among students, more advanced sections are starred, and it is suggested that they be 

read only by those who feel they have sufficient mathematical background. These sec

tions should be discussed in class, without detailed proofs being given; instead, 

their interpretation and practical consequences should be discussed by the lecturer. 

We strongly recommend that students be encouraged to complete the assignments 

to help them in the development of a real understanding of the material. The extent 

and size of the assignments will depend in part upon the computational facilities 

available during the course. 

For further reading, and to find more advanced developments of some of the sub

jects covered here, we recommend the series of reports published under the NSF-
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sponsored "Computational Probability and Statistics" project at Brown University, 

the titles of which are listed in the References. 

The curves in the book were produced by a TSP plotting system on-line with a 

DATEL terminal, operating under APL/360. 
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CHAPTER 1: 

RANDOMNESS 

1.1 Fundamentals. 

The concept of randomness is fundamental in probability theory and statistics, 

but also most controversial. Among the many interpretations of terms like probabil

ity, likelihood, etc., we shall consider two in this course: the usual frequency 

approach (in this chapter) and the Bayesian one (in chapter 6: "Decision problems"). 

One should actually not speak of a single frequency approach, since there are 

several variations of it. That most commonly adopted in the textbook literature is 

to start from the idea of a random experiment and carry out the mathematical formal

ization as follows. 

Starting from a sample space X that may be completely unstructured, one views 

the outcome of the random experiment E as a realization of a stochastic variable x 

described by a probability measure P given on X. The pure mathematician is wont to 

phrase this as follows: the value of the probability peS) should be defined for any 

subset SC X belonging to a well-defined a-algebra of subsets of the sample space. 

(We shall not, however, go into the measure-theoretical aspects in this course.) 

This is the mathematical model: the transition to phenomena of the real world is 

effected through a heuristic principle: the frequency interpretation of probabilities. 

If the experiment E is repeated n times independently and under equal conditions, 

then the relative frequency fin should be close to peS), where f is the absolute 

frequency (number of times we get a value xtS), if the sample size, n, is large 

enough. 

While the idea behind this ancient principle is quite appealing, the above for-

mulation is not quite clear on three points: 

a) what is meant by "independently"? 

b) how should one interpret the phrase "under equal conditions"? 

c) how large is "large enough"? 

It has often been argued that this sort of vagueness must always be expected 

when any mathematical model is interpreted in terms of the physical world. For 

example, when we use Euclidean plane geometry to describe and analyze measurements 
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of length, angles and areas, we meet the same sort of difficulty when trying to 

relate notions like points, lines and areas to physical data. We continue to use the 

model only as long as no logical inconsistency is found or no serious discrepancy 

between model and data has been established empirically. This pragmatic attitude has 

been widely accepted, but doubts have been voiced by critics who claim that a more 

profound analysis is possible. To understand better how this can be done we shall 

take a look at the manner in which we actually use the model. 

Simplifying drastically, we could say that from the above point of view prob

ability and mathematical statistics are the study of bounded measures. While such a 

statement would undoubtedly describe much research activity in these fields quite 

accurately, it is a superficial point of view and of little help when we want to dis

cuss the relation between theory and its application. 

Randomness enters on three different levels. The first can be exemplified by a 

set of measurements of some physical constant like the speed of light. Here we would 

think of the variation encountered among the data as caused by imperfections in the 

experimental arrangement, imperfections which could, at least in principle, be elim

inated or reduced by building better equipment or using a more efficient Design for 

the experiment. We describe this variation in probabilistic terms, but probability 

plays here only a marginal role. On the second level randomness plays a more funda

mental role. Assume that we measure the toxicity of a drug and use guinea pigs in 

the experiment. We would have to consider the apparent randomness caused by the 

biological variation in the population of animals used. We would always expect such 

variation, although its form and extent might vary between different populations. In 

a well-designed experiment we would like to be able to make precise statements about 

this variation; to eliminate it entirely does not seem possible. Most of experimental 

statistics falls into this category. To illustrate the third level, let us think of 

a Monte Carlo experiment in which we try to find the properties of a statistical 

technique by applying it to artificial data and studying the result, or in which a 

probabilistic limit theorem is examined by simulating it for large samples. Here we 

need randomness, and try to generate data in some way so that they have properties we 

would expect from random sequences. Another example bringing out this feature perhaps 

even more clearly occurs in the design of experiments when we inject randomness 
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intentionally into the experimental arrangement. Here randomness is desirable 

and necessary. 

In recent years simulation of probabilistic phenomena has become a useful and 

often-applied tool, especially in the area of operations research. Almost all of 

this work is being done on computers and it is obvious that this fact has greatly 

influenced our interest in computer generation of random sequences. There is a close 

relation between certain results in analytical probability theory, some of which have 

been known for many years, and the more algorithmically-oriented computer studies 

carried out recently. This relation will be examined in the following sections. 

1.2 Random Number Generation. 

Let us now turn to the question of how one could generate randomness on a 

computer. 

We shall try to construct an algorithm that generates numbers xl ,x2 ,x3 ' ••• in 

the interval (0,1) such that the sequence {x.} behaves as one would expect from a 
]. 

sample from the rectangular (uniform) distribution over the same interval (0,1). 

What properties should we ask for? Let us mention a few. We know from the law 

of large numbers that the average 

(1.2.1) x = ~~ l. x. 
n 1 ]. 

should tend in probability to 1/2 and we would require x to be close to 1/2 in some 

sense that has to be left somewhat vague at present. Similarly, the empirical 

variance 

(1.2.2) 2 
s 

n 

should tend to 1/12 in probability. We can think of other similar properties; let us 

mention some others. We certainly want the sample (xl ,x2 ' ••. ,xn ) to have an approx

imately uniform distribution over (0,1), e.g. in the following sense. We divide the 

interval into the m intervals \) = (V~l, ~), v = 1,2, •.• ,m, where m «n, and call Nv 

the number of Xi that fall in Iv; then we would expect Nv/n to be close to lIm for 

v = 1,2, ... ,m. 

If we want the algorithm to have a simple form and still generate long (or even 
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infinite) sequences, it is almost necessary that it be recursive. The simplest would 

be to set 

(1.2.3) i 1,2, .•. 

where f is a predetermined function taking values in (0,1) (one could also let f 

depend on more than one of the x's preceding xi +l ). It must also be simple to com-

pute, since (1.2.3) will be repeated many times. Starting from a value x.E(O,l) and 
~ 

applying (1.2.3) recursively, we get a sequence of unlimited length. 

To start with, let us choose f as 

(1.2.4) f(x) 11 3 
~ + 4(x - ~) ; 

it will soon become obvious why we have chosen a function of this form (which is 

graphed in figure 1). 

Figure 1. 

Assignment: Write a program in APL to generate a series of length n. Calculate x, 

s~ and the values of Nv/n fo~some suitable value of n. Work with small values of 

n, say 20. 

Let us run the program and note what happens. 

To avoid the clearly non-random clustering observed in the above example, let 

us use 

(1.2.5) f(x) = {x + a} , 

starting with Xl = 0, where a is some fixed number in (0,1). Here {x} stands for 

the fractional part of x or, in APL, x-Lx. 

Let us now write the same program as before and execute it at the terminal. 

What behavior do we observe? What about special values of a? 
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Let us now do the same with 

(1.2.6) f(x) {2x} 

Let us also try larger values of n, say 100, and see what happens then. We may also 

be interested in replacing (1.2.6) by f(x) = {Mx}, M = any natural number, or by more 

"chaotic" functions, such as 

r 
° < x < ! - -3 

(1.2.7) f(x) 2 - 3x 1 2 -<x<-
3- -3 

3x - 2 ~ < x < 1 
3- -

There may be other suitable choices of f with which to run your program. What can we 

say about the behavior of the sequence generated? 

Figure 2 

The reason why (1.2.4) failed is obvious. Indeed, by looking at the graph of 

the function plotted in figure 2, it is clear that if 1/2 < xi < 1 then 1/2 < xi +l < 

Xi' and that the sequence converges to 1/2; the same is true if ° < Xi < 1/2. The 

three values x = 0, 1/2, 1 play the role of fixed points: the middle one is stable 

and the other two are unstable. We would, of course, like to avoid fixed points. 

The function is not sufficiently irregular to generate the chaotic behavior we want. 

Actually, for any f that is continuous and maps [0,1] onto itself there is at least 

one fixed point. This leads us to introduce discontinuous functions. 

Consider instead the function (1.2.5); it has a discontinuity at x = l-a (plot 

the function!). The following beautiful result due to Herman Weyl illustrates the 

si tuation well. 
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Theorem. For any irrational a E (0,1) the sequence xl ,x2 ,x3 ' ..• with xi = {ia} is 

equidistributed over (0,1) (this relates to additive congruence generators; see 

below) . 

Note: by equidistribution in this context - for sequences of numbers and not for sto-

chastic variables - is meant the fOllowing. For any a,b with 0 < a < b < 1 we should 

have 

(1.2.8) lim [~x number {xi: a~xi~; i=1,2, .•• ,n}] 
n""*"" 

b - a 

*Proof of theorem (asterisks denote the beginning and end of an advanced section). 

Consider the trigonometric sums 

(1.2.9) 

We have TO 

(1. 2 .10) 

1 I e21Tikja 
n j=l 

1 and for k i 0 by summing the geometric series 

IT I <! 1 
k - n sin 1Tka 

Since a is irrational, the value ka is not an integer, so that sin 1Tka i o. We get 

from (1.2.10) 

(1.2.11) lim Tk = 0 
n""*"" 

This implies that for any trigonometric polynomial P(x) 21Tikx 
~ ~e we have 

(1. 2 .12) 
1 n 

lim - L P(x.) 
n""*"" n j=l ] 

1 

J p(x) dx 

o 
Since any continuous function on (0,1) can be uniformly approximated by trigonometric 

polynomials, (1.2.12) holds when P is an arbitrary continuous function. Introduce, 

for E > 0, the two stepwise linear functions f+ and f- (see figure 3). They are con-

1 /, I~ I 
0 a-E a b b+E 1 

-f 

I /. I~' I 
0 a a+E b-E b 1 

Figure 3 
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tinuous so that (1.2.12) holds for them. But the quantity in (1.2.8) is included 

between the two limits we just got; this proves the theorem.* 

Note: this theorem does not tell us for which values of xl we get equidistribution, 

only that equidistribution is the typical case. 

There is also the following result: 

Theorem. For almost all initial values xl € (0,1), the sequence generated by (1.2.6) 

is equidistributed (this relates to multiplicative congruence generators; see below). 

*Proof. The mapping Tx, where 

(1.2.13) T: x + {2x} 

of (0,1) onto itself preserves Lebesgue measure. Indeed, let f(x) be an arbitrary 

periodic (with period 1) bounded and measurable function. Then 

1 1 1 1 

(1.2.14) I f(Tx)dx = I f(2x)dx = ~ I f(y)dy = I f(y)dy 

o 0 0 0 

Taking f as the indicator function of an arbitrary subinterval of (0,1) proves that 

T is measure-preserving in the sense that m(T-1S) = m(S) for any Borel set SE[O,l]. 

This implies that if xl is given a uniform distribution over (0,1) the sequence xi 

(now consisting of stochastic variables) forms a stationary stochastic process and 

we can apply Birkhoff's individual ergodic theorem (see ref. 13, p. 105) and find 

(1. 2 .l5) 
A • 1 n 
g = llm - L g(x) 

n-- n j=l n 

exists for almost all choices of xl' It remains only to prove that the limit g 

is essentially constant; it must then be equal to 

(1. 2 .16) 

1 

g = I g(x)dx 

o 
(almost certainly) 

which would prove the equidistribution. To prove that g is constant it is enough to 

prove metric transitivity (ergodicity) of T (see ref. 13, p. 105). Let I be an in-

variant set with the indicator function I(x): 

(1.2.17) I(Tx) I({2x}) I (x), all xdO,l) 
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Form the kth Fourier coefficient ~ of I(x): 

1 

(1.2.18) J 2TTikx 
~ = e 

o 
I(x) dx 

Then we get from (1.2.17) and the periodicity of the trigonometric function 

1 1 1 

(1. 2 .19) J 
4TTikx I(x)dx J 

2TTikx 
I( {2x} )dx }J 2TTikx I( {x} )dx a2k e e e 

0 0 0 

1 

= I e2TTikx I(x)dx = ~ 
0 

Therefore ~ = a2k a4k , etc. According to the Riemann-Lebesgue lemma (see ref. 14, 

p. 469), the Fourier coefficients ~ + 0 as h + 00 so that a±l = a±2 = ... = 0 and I 

is identically constant almost certainly, which completes the proof.* 

While these considerations help to understand what happened computationally, it 

is clear that they leave out one aspect: we work, on a digital machine, not with all 

real numbers but with only a finite subset of them. Let us look into some consequen-

ces of this consideration. 

We noticed that there were certain initial values Xl that led to degeneracy when 

we generated the sequence. If f stands for the mapping used, it is clear that solu-

tions of the equation 

(1.2.20) f(x) = x, 

the fixed points of f, used as initial values, will give Xl = x2 = x3 = Sim-

ilarly, if ~ stands for the pth iterate of f, then the fixed points of ~ will give 

a periodic sequence with period at most p. 

On the other hand, the values of x at our disposal in the machine are only 

finite in number and our results depend upon the representation they are given in the 

computer. Assume they are represented as binary fractions with d digits. If f(x) = 

{2x}, for example, this means that when x > 1/2, we will lose one digit when comput-

ing f(x) in floating-point arithmetic. This will, when repeated several times, 

lead to degeneracy of the sequence. 

Note that, if we have access to integer arithmetic, we can always work with x as 

the natural numbers (in the integer mode). When performing a multiplication M'x we 
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will sometimes encounter overflow, but this will lead to a loss of the first few 

digits only; we actually do the reduction modulo K where K-l is the largest integer 

the machine accepts. This saves us from some of the troubles observed above. The 

numbers generated would then be of the form X/K, i.e. multiples of 11K. 

Returning to the fixed points of TP , we note that they will be critical computa-

tionally; or, more precisely, those numbers will be so which the machine can handle 

and to which the fixed points are rounded off (with a wide interpretation of this 

term). This explains some peculiarities we may have encountered computing at the 

terminal. 

Obviously all methods of the type described above will be periodic because of 

the digital nature of the computations and the finite memory size. There are ways of 

ensuring that this period is very large; more about this later. 

At this point it is natural to ask the following question. We have studied some 

deterministic sequences and shown that some do exhibit some of the properties one 

would expect of a truly random sequence. The mathematical explanation of this beha-

vior is not very hard to follow. On the other hand we know, or believe, that some 

sequences found in nature really should be described as random. This fact has often 

been used to get random sequences, for instance by using radioactive decay or cosmic 

radiation, or by mechanical devices such as dice or roulette wheels. Is it possible 

to give a mathematical "explanation" of this often-observed randomness? 

This is one of the fundamental problems in statistical mechanics. We shall take 

a look at it for the case of a conservative mechanical system. 

To a reader familiar with rational mechanics it is well known that such a system 

can be described in canonical coordinates ql,q2, ... ,qf and the corresponding canonical 

moments Pl,P2"'.,Pf by using a function, the Hamiltonian H = H(ql, ... ,qf,Pl, .•. ,Pf)' 

Here f is the number of degrees of freedom. The equations of motion are 

(1.2.21) v = 1,2, ... ,f 

f . . h h R2f d' . f Denote by Tt the trans ormat10n ln t e p ase space correspon lng to a motlon 0 

t units of time. The group {Tt } of such transformations has the very important 
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property that it leaves Lebesgue volume invariant (Liouville's theorem), which has 

direct consequences for the apparent randomness. 

To prove this, it is enough to show that the Jacobian J is constant and equal to 

1. Differentiate J with respect to time: 

(1.2.22) 
dJ d a(xl ···x2f ) 

dt - dt a(Yl" 'Y2f) 

2f 
L Jk 

k=l 

say, where we have used the notation xl = ql' x2 = Q2"",xf +l = Pl' xf+2 = P2' etc., 

for the final position and y for the initial position in phase space. Then, using 

(1.2.21) and simple properties of determinants, we get 

(1.2.23) 

and 

(1.2.24) 
dJ _ 2faxk f 2f aXk f aqk f apk 
dt - J L - J[ L + L ] - = J[ L - + L -J 

k=l aXk - k=l f+l a~ k=l aqk k=l apk 

This proves that Lebesgue volume is invariant. We can now apply ergodic theory 

to any integrable function defined in phase space and can make statements like those 

made about some pseudo-random sequences earlier in this section. We can certainly 

do this if we have ergodicity, and this condition may be difficult to guarantee. At 

least, however, this approach helps us to understand why the apparent randomness is 

found so often in mechanical and other physical systems.* 

We should note that this is not a general proof of randomness for mechanical 

systems; we would first have to look for invariants like energy, total moments, etc., 

and then establish ergodicity for the motion restricted to a manifold characterized 

by these invariants. It would be dangerous to treat series obtained in this way as 

random without a detailed analysis, and the same holds ~priori for other physically 

generated "random" sequences. 

To look into this question computationally, let us consider a mass point moving 

without friction inside a square with elastic collisions with the walls. Denoting 

the coordinates at time t by x(t), yet), we can consider the motion as a modification 

of rectilinear motion (with no walls). 
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Let 

~(t ) = x(O) + t·v 
(1.2.25) 

x 

yet) y(O) + t·v y 

and describe the motion by 

x(t) per(~(t» 
(1. 2.26) 

yet) per(y(t» 

, A/ 
-5 -4 -3 -2 -1 o 1 2 3 5 

Figure 4 

where the function per is periodic and looks as is shown in figure 4. Let us count 

how many times the point passes through a little square 

(1.2.27) s .. 
1J 

{ih < x < (i+l)h; jh ~y < (j+l)h}, i,j=0,1,2, ..• N-l, h lin 

during a given duration. Call this number N. .• An APL program called MOTION is 
1J 

given in Appendix 1 (figure 1.1), together with results displaying the numbers N .. in 
1J 

a table with the convention that if N .. = 0 this is represented by a blank and if 
1J 

N .. > 9 an asterisk is printed. 
1J 

Using 300 time steps we get figure 1.2, with velocity components XVEL = .05 and 

YVEL = .1; this shows a very uneven distribution over the unit square. Changing 

XVEL to 1/30, we get the trajectory in figure 1.3, ratijer more spread out. Finally, 

XVEL = .11 results in figure 1.4, where the density displays a coarse-grained uniform-

ity. Note that the ratios of the velocity components were 2, 3 and 10/11 respect-

ively. It is possible to explain the behavior observed above by the following theorem. 

*Theorem. Call the ratio YVEL/XVEL = p. Then a sum of the form 

1 A 
- L I(x(t),y(t» 
A t=l 

where I is the indicator function of some rectangle R 

tends to the area of R if p is irrational. 
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Proof. Let f(x,y) be an arbitrary continuous function in the unit square and con-

sider the sums 

We shall show that 

1 A 
- \ f(x(t),y(t)) 
A t~l 

1 1 

J J f(x,y) dx dy 

o 0 

Note that, using (1.2.26), we can write f(x,y) = g(x,y) where g is periodic in both 

variables with period 2. Let us look at the special case 

where k and ~ are integers. Then the sums can be written as 

A 

I L 
t=l 

exp[ni(kx(O)+ktv + ~y(O)+£tv )] 
x Y 

1 - exp[iAn(kv +£v ) 
-Al exp[ni(kx(O)+kvx + ~y(O)+~v )] x y + 0 as A + 00 

Y 1 - exp[i(kv +~v )] x y 

if kv + ~v t 0 mod 2 and with the limit 
x y 

exp[ni(kx(O)+~y(O))] 

if kv + £v = 0 mod 2. But if p is irrational the congruence is true only if k = 
x Y 

~ = 0 so that the limit is then equal to 1. In both cases the limit can be written as 

2 2 . 1 1 

~~ f f g(x,y) dx dy = f f f(x,y) dx dy 
o 0 0 0 

Hence the theorem is true in this particular case as well as when g is any trigono-

metric polynomial with periods 2. The result now follows by the same approximation 

as was used in the proof of Weyl's theorem above.* 

It is clear that the measure-preserving nature of our chaos-increasing trans for-

mations is fundamental. When we operate digitally, as in the computer, measure = 

counting measure, in that measure-preserving is equivalent to the transformation 

being one-one. Consider a mixed congruence generator with the mapping T: x + y 

(1.2.28) y - a·x+b(mod N) 
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In order that this transformation be one-one we must have 

(1.2.29) y - a·x'+b(mod N) 

imply that x = x'(mod N). We achieve this by asking that N and the multiplier a be 

relatively prime. 

A perhaps more informative way to proceed is to consider the set of points 

{x. ,x. l} in the unit square. 
~ ~+ 

2 We divide the unit square into p squares with sides 

l/p and denote the number of points in the square (v,~) by N • We want N /n to be 
v~ v~ 

2 close to l/p. We compute these values and discuss the result, taking n at least 

equal to 200. We also calculate the covariance and correlation. (Formal statistical 

tests can be designed, but we must be careful at this point, and note that successive 

vectors zi = (xi,xi +l ) should be independent.) One may want to modify the algorithm 

to get better results. We shall find it helpful to start by choosing n small, typing 

out the sequence and plotting it in the unit square, remembering the form of the 

algorithm we have used (see Appendix 1). 

Assignment. Do the same thing for the sequence of points {x. ,x. 2} and discuss your 
~ ~+ 

results, either for the FORTRAN subroutine RANDU (ref. 15) or one of the random num-

ber generators discussed above. 

We can get an analytic complement to this computational study as follows; we 

shall do it for x. 
~ 

{ix}, x = irrational. If we put y = {ix}, z = {(i+l)x}, then 

if Y ~ l-x we have z = y+x while if y > l-x we have z = y+x-l. This means that the 

covariance between x and y gets contributions of these two types and since the y are 

equidistributed, the limit is, for h = 1, 

l-x 1 

(1.2.30) E(x - 1 !) R(l) lim R*(l) 
f y(y+x)dy + f y(y+x-l)dy 

1 
:r)(y 2 -4 

n~ 
0 l-x 

1 1 - x) 12- 21 x(l 

where R(l) and R*(l) are the theoretical and empirical covariances of lag one, res

pectively (see chapter 4). Since this does not vanish unless x = ~ ± 1/(21:3), we do 

not get covariance zero. Similarly, we can calculate the covariances for lag h > 1 

and find that for no value of x do we get all covariances R(h) = 0, where R(h) is 

the covariance of lag h. 
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There are other iterative schemes for generating pseudo-random numbers with 

R(h) = 0, all h I- 0. Indeed, let x. = 
~ 

{.2} . ~ x ; ~t can be shown that this sequence has 

the above property. On the other hand, form the second difference of x.: 
~ 

(1.2.31) 

It is clear that {Yi} = x = constant, so that plotting the triplets zi = (xi,xi +l ' 

xi +2 ) in the three-dimensional unit cube yields all the z lying on the parallel sur

faces {x. 2 - 2x. 1 + x.} = x; this dependence exists although the covariances van-
~+ ~+ ~ 

ish. Higher-order polynomials to generate xi can be dealt with similarly. 

This reasoning is more general than it may appear. Indeed, consider an arbitrary 

rule of generation of the type xi+l 

square. If we are not satisfied with R(l) = 0, the property of no correlation of lag 

1, but want (two-dimensional) equidistribution in the unit square, we must let the 

graph of f be everywhere dense in the square; a continuous f would not suffice. 

While this is computationally not very meaningful if interpreted literally, it leads 

us to the conclusion that a high-quality random number generator of this type must 

be built on an f with a very complicated graph. The algorithm must be sufficiently 

complex to generate the sort of pseudo-random behavior we need. 

If it were asked that we have equidistribution of dimension 1 and 2, etc., it 

would be possible to write down generation rules of somewhat different form. One 

possibility is to take 

(1.2.32) x. 
~ 

which has this property for almost all x > 1. It seems doubtful that such a rule 

could be used computationally and directly with a particular value of x, but its dis-

crete analogue, the multiplicative congruence method, is used extensively in practice. 

Assignments. 1. Use some statistical table, say on population size, income data, 

or some similar real data, to simulate randomness (see ref. 22). Assume that the 

data are given as decimal numbers with 6 digits. Take out the middle 4 digits and 

use them to form a decimal fraction between 0 and 1. These numbers will now play 

the role of xl ,x2 , ••• ,xn ' Watch for pitfalls. 

Treat them as in earlier sessions at the terminal. Calculate means, variances, 
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covariances, etc. Do they seem to be equidistributed and reasonably independent? 

You may wish to expose them to some formal statistical test, such as chi-square, 

Kolmogorov's test or some run test in order to draw conclusions about the randomness 

of their generation. 

If you have a table of numbers that seem fairly random but you would like to 

make them even "more random", can you suggest some scheme for doing this? You may 

think of some way of "mixing" the data even more to make them appear more chaotic. 

2. Collect a set of physical constants such as the speed of light, the gravita-

tional constant and other measurements (chemical tables may be useful) that are ex-

pressed in some unit (not necessarily the same unit throughout). Do not use absolute 

constants such as IT and e. In this way you get a set xl ,x2 , ••. ,xn , say, written in 

decimal form as 

(1.2.33) x = m . lOY 

where y is an integer and the mantissa m satisfies 1/10 ~ m < 1. From your set {x } 
\I 

form the set of mantissas ml ,m2 , •.• ,mn • Does this set appear to have the properties 

one would expect a random sample from the uniform distribution over (1/10,1) to have? 

Discuss the result. See eq. (1.2.45). 

3. Look up the FORTRAN subroutine RANDU in ref. 15. How is the algorithm con-

structed? Compare with earlier sections. Form a large sample (it may not be nec-

essary to print the values) and expose it to reasonable tests of randomness. Sum-

marize the results. 

This is, of course, a deterministic procedure and we know the rule of genera-

tion. We could therefore use this knowledge to design a test that would establish 

the lack of randomness. Suggest such a test; its performance will be discussed in 

class. 

Another rule of generation believed to have good properties is 

(1. 2.34) 

with 

(1. 2.35) 

M • x 
n 

M = 477,211,307 
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Look into its properties, as above. 

4. We return from the discrete to the continuous. Assume that we have an ab-

solutely continuous probability distribution on the real line with a distribution 

function F whose density is f. We denote the stochastic variable by X and represent 

it as a decimal fraction. Move the decimal point p steps to the right and reduce the 

resulting number modulo 1 to the interval (0,1); call the result Xp • What are the 

probabilistic properties of XP? 

To explore this we pick a smooth but quite skew probability distribution for X 

with the frequency function 

(1. 2.36 ) f(x) 3 
2/ (1 +x) , x > 0 

and hence the distribution function 

(1.2.37) F(x) I f(x) dx 

o 

2 1 - l/(l+x) , x > 0 

Let us form the fractional part Y {LX} and derive its probability distribution on 

the discrete level: 

(1.2.38) 

We get 

(1. 2.39) 

L 
k=O 

MAX 
L 

k=O 

q. = p{i-l < Y < ~} 
l m - m' i 1,2, ... ,m 

[F(k+[i/m] ) 
L 

L 
k=O 

[ ( 1 )2 ( 
k+(i-l)/m -

1 + L 

P{k + i-l < LX < k + ~} 
m - m 

1 2 
k+i/m) ] 

1 +-L-

The program ALIAS (see Appendix 1, figure 1.5) computes the q's and displays them. 

Figures 1.6 - 1.8 show the behavior for M = 10 and L = 1, 4, 10. Note that the ver-

tical scale is different in the different graphs. 

The graphs show clearly that when L increases the q's tend to become closer to 

each other: a tendency toward a uniform distribution. 

Let us interpret it in terms of the roulette wheel. If X means the total angle 
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the wheel will turn. which will normally be through many revolutions. we can let the 

classes corresponding to qi's represent the numbers on the wheel. If there are many 

classes (L large). we can expect a fairly uniform probability distribution qi ~ 11m 

although f was a fairly arbitrary frequency function. Let us extend this experimen-

tal result analytically. 

*Since xP is contained in the interval (0.1) we can do Fourier analysis on it 

2TTikx using the set of characters {e ; k=0.±1.±2 •••• }. We therefore form 

(1.2.40) 

where we have used the periodic property of the characters. But this expression is 

the same as $(2TTklOP ) if we introduce the characteristic function. as usual. by 

(1.2.41) $(t) = I itx e f(x)dx 

Appealing to the Riemann-Lebesgue lemma (ref. ]'4. p. 469). we see that 

(1.2.42) lim ~ = 0 
p--

for k ¢ 0; when k = 0 the limit is. of course. 1. The distributions tend to the 

uniform distribution. which proves the 

*Theorem. If X has an absolutely continuous distribution. then {lOPX} converges in 

distribution to R(O.l) as p + 00.* 

Note that the original form of the distribution does not matter as long as it is 

absolutely continuous. 

The practical interpretation of this result requires some care. since the sto-

chastic variables with which we deal are always given with a finite number of digits. 

We must. therefore. not take p too large. but we can hope that a moderate value of p 

will result in an approximately uniform distribution. This was studied numerically 

on page 15. 

Let us now analyze the second problem on page 15. We can write the mantissa 

m(x) of x as 

(1.2.43) m(x) 
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Let us assume that we have drawn our sample from a population of universal constants 

where a probability distribution of m is given. Note that this innocuous-looking 

assumption - that such a distribution exists - is not necessarily satisfied ~ priori. 

(One of the several arguments which can be raised against existence is that the pop-

ulation of universal constants is not defined.) Let us assume, as may seem natural, 

that the distribution should not depend on the units of measurement chosen. Then a 

change of scale should not result in any change of distribution, so that {loglOx} and 

{loglOcx} = {loglOx + 10glOc} should have the same distribution. We now again use 

Fourier analysis and find that {loglOx} must have a uniform distribution over (0,1). 

*Indeed, if the Fourier coefficients with respect to the distribution are ~k' k 

0,±1,±2, •.. , then the Fourier coefficients of the distribution corresponding to the 

expression {loglOx + 10glOc} are, for any integer k, 

(1.2.44) ~k . exp(2rrik 10glOc) 

which should be equal to ~k for all k. But this implies that ~k = 0 except for k 

0, which means that the distribution (of 10glOx) must be uniform, as asserted.* 

Hence the mantissa m must be distributed according to the rule 

(1.2.45) P(m<u) y-l 
P(lO ~u) = P(y~l+loglOu) 1 + 10glOu, 1/10 < u < 1 

and frequency function = l/u ln 10. This reasoning is not quite watertight (why 

not?) but it throws some light on the departure from uniform mantissa distribution 

that has repeatedly been observed in practice for numbers generated in this partic-

ular fashion. 

Assume that we have been able to produce, in one way or another, a sequence {xn } 

of binary variables, and that the sequence behaves reasonably well as far as indepen-

dence is concerned. There is, however, a certain element of bias: the value P(xn=l) 

= p deviates too much from 1/2, so that E = P - 1/2 is not negligible. We can then 

do better by introducing the new sequence {y} where 

1 
(1.2.46) 

o 

Indeed, 

if x2n = x2n- l 

otherwise 
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(1.2.47) P(y =1) = p2 + (1_p)2 
n 

which is closer to the ideal value 1/2 than p. Note, however, that in this way we 

get a new sequence which is only half as long as the original one. The procedure can 

be iterated, now starting, instead, from {Yn}' and we get as close to 1/2 as we wish 

but at the cost of getting shorter and shorter sequences. 

Another way of reducing bias is the following, which has been applied a great 

deal. Group a sequence {X} by twos: (xl'x2)'(x3'x4)'(x5'x6)' .... Throwaway all 

pairs of the form (0,0) and (1,1). In the remaining sequence of pairs replace an 

appearance of (0,1) by 0 and of (1,0) by 1. Call the derived sequence {y}. Then 

(1.2.48) P(y=O) 

(l-p)p 1 
(l-p)p + p(l-p) 2 

so that the sequence {y} has no bias in its (marginal) distribution. Note that this 

reasoning relies on the xn being independent of each other. 

Related ideas have been used to reduce dependence between successive numbers 

when such a dependence is suspected. Simply by picking out a sub-sequence, say of 

th every r number, one may sometimes reduce the dependence. If the original sequence 

is from a Markov chain with transition probability matrix P, then the derived 

sequence will instead have the transition probability matrix pr. Assume that the 

original sequence has been generated by some physical device and that one suspects 

the existence of some weak dependence. pr will be better if, say, the eigenvalues of 

P are less than one in absolute value except for the single eigenvalue 1. (Discuss 

this in class and ask for other suggestions in this direction.) 

Assignment. Let xl ,x2 ,x3' ... be a Markov chain with the four-state probability 

transition 

.80 .1 .05 .05 

.2 .7 .05 .05 
(1.2.49) P 

.1 .6 .1 .1 

.05 .05 .1 .5 

Calculate empirical estimates of the covariances 
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from a simulation experiment, assuming that we start from the equilibrium distribution 

(1.2.50) pP p 

th If we take only every r value of x, how does the covariance (of lag 1 fer the new 

sequence) behave? 

The following direct solution of (1.2.50) has been proposed by Mr. John F. 

Pieper, a student at Brown University. 

When (P-I) is non-singular, (1.2.50) can be reduced to 

p o 

Thus, the only cases of interest are those where (P-I) is non-singular. Eq. (1.2.50) 

is normally solved by iteration rather than by direct solution of 

(1.2.50a) pA o (A _ P-I) 

That is, p is found to be lim p , where p = PIP, PO = initial guess. The follow-
n~ n n n-

ing discussion shows how one can solve (1.2.50a) directly for the vector p, obtaining 

an exact answer with less effort than would normally be used for an approximation. 

Consider the matrix A; if it were non-singular, we could reduce it, via row or 

column reduction methods, to the identity matrix. Here this is not possible as A is 

singular; however, row or column reduction methods applied to A would, in effect, 

isolate and expose the singularity(ies) inherent in A. 

Let {El ,E2 , ... ,En , ... } be matrices corresponding to elementary operations (mUl

tiply a row (column) by a scalar; add a row (column) to another; interchange two 

rows (columns)). Multiplying a matrix from the left by one of these Ei matrices per-

forms a row reduction and from the right a column reduction operation. Thus, were 

we to form the matrix Q = the column reduction of A, we would form Q = A·El ·E2· •.. 

Now, all elementary matrices are non-singular; the product of two non-singular 

matrices is also non-singular; thus E = El ·E2· ... ·En · •.. has an inverse. Then we 
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may write A = Q'E-l , where Q is singular and represents the furthest possible reduc-

tion of A. Note that we have, in effect, separated the singular matrix A into two 

-1 portions: one, Q, containing the basic singularity(ies) of A, and one, E ,represen-

ting non-singularities that serve only to hide the basic nature of A. As all the 

-1 useful information about A is contained in Q, we throw E away: 

pA = 0 

-1 pQE = 0 
or pQ o 

Due to the simple form of Q, this can readily be solved. 

Column reduction of A will eventually result in a column of all-zero entries; 

by suitable manipulation, this should be made the last column. A "double" singularity 

in A will result in two all-zero columns in Q, etc. In most cases Q will be of the 

form 

1 o o 

o 1 o 

o o o 

in which case the answer is 

o 

o 

1 

-).. 
n-l 

n 

o 

o 

o 

o 

Then, if the P; represent probabilities such that L p. = 1, or if some other con-
~ i=l ~ 

dition on the Pi is known, an exact solution can be achieved. 

Occasionally Q will be of such a form that an infinite number of solutions 

exists; for example, 

[ -: : :] 
2l 



or 

solution 

Comparative Example. Let P be a matrix of transition probabilities and p be the 

equilibrium distribution vector associated with a given state system. 

Let 

3 
L P .• 

j=l 1.J 

P 

1 for all i 

[ 

.5 

.2 

.4 

.2 

.2 

.2 

3 
L p. = 1 

i=l 1. 

.3 ] 

.6 

.4 

By iteration: 

PO = 1 0 o 

Pl = .5 .2 .3 

P2 = .41 .2 39 h n+l. . • t e -2- 1.terat1.on 

P3 .401 .2 .399 

------

P [.4 .2 .4] 

Direct solution: 

[ -.5 
.2 .3 

] A = P-I = .2 -.8 .6 

.4 .2 -.6 

Pl P3 
1 

P2 2" P3 

P3 P3 

I:Pi = 2.5P3 1 so P [.4 .2 .4] 

Processing time required: if P is of size nxn, then 

i) for each level of iteration we require n2 multiplications and (n2_n) addi-

tions; 

3 2 ii) for completely column reducing an nxn matrix we reguire (n +n -2n)/2 

multiplications and (n3-n)/2 additions and n divisions; 
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iii) for (n+l)/2 levels of iteration, the exact solution requires n fewer mul-

tiplications, the same number of additions and n additional divisions com-

pared to iteration; 

iv) for greater than (n+l)/2 levels of iteration, the exact solution is faster 

as far as processing is concerned. Also, it gives the exact answer and is 

independent of an initial estimate of p. 

*To a reader familiar with measure theory, the following remarks may help clarify 

the situation. The computational approach is helpful when comparing our intuitive 

idea of randomness with the mathematical model we use. The latter, expressed in the 

language of measure theory, does not tell the whole story of how these two notions, 

the intuitive and the formal, are related. 

To be concrete, let us think of a sequence of trials in each of which we throw 

an unbiased coin and record the outcome x = (xl ,x2 ,x3 ' ••• ) when Xi = 1 for heads and 

° otherwise. The formalization of this consists in introducing a probability measure 

P in the sample space X = BOO, where B = {O,l}. The measure is given as a product of 

marginal measures assigning the probability 1/2 to each of the values ° and 1. It 

is well known how the classical results from probability theory can be expressed in 

terms of P. The strong law of large numbers, to mention just one of many results, 

says that 

(1.2.51) 

almost certainly. In other words, the limit exists and is equal to one-half except 

for a subset NCX which is small in the sense that peN) = O. Here X is the set of 

all (infinite) x-sequences.* 

To get closer to the behavior of the individual sequences, one could try to 

define a particular sequence x as random if it has the limit indicated above. This 

does not really make much sense, since we would then have to aceept a sequence like 

(0,1,0,1,0,1, ••• ) as random. Its behavior is too simple. We would have to supplement 

the definition by some selection invariance requirement: for instance, we should 

require to get the same limit for sub-sequences. We must now rule out the possibility 

that we select certain sub-sequences with no apparent randomness, for example the 

sub-sequences consisting of all l's. In the early development of this approach, the 
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theory of "Kollektive" of von Mises, this was sometimes expressed by saying that the 

selection should be made without looking at the values of the components of x. Since 

x is just any fixed binary sequence, it is not quite clear exactly what this restric

tion should mean. 

Let us look at the notion of randomness. from the point of view of a computer 

programmer. He wants to write a program for his machine to generate a binary sequence 

exhibiting such properties as we would expect of a random sequence. We turn the prob

lem around, in that he is given a fixed and finite sequence and asks for the shortest 

program that will generate x; call the length of the program heX). This length will 

depend on the machine he uses. On the other hand, with two machines Ml and M2 , if x 

is a long vector, we can expect that the two values of heX) will be asymptotically 

close to each other; the instructions needed for a translator from Ml to M2 are fixed 

and will be asymptotically negligible. The complexity heX) is therefore asymptotic

ally machine-independent when the length of the sequence increases. 

A suggestion has been made by Kolmogorov and explored by Per Martin-L8f (ref. 

17) that one introduce the notion of randomness via the complexity heX). A sequence 

will be called random if its complexity is close to the largest possible value. To 

make this precise, we replace the real computer by a Turing machine and the formal 

definitions will be introduced in the spirit of recursive function theory. It can 

be shown not only that this is possible in a logically consistent way, but that 

sequences accepted as random in this approach possess all the standard limit proper

ties of classical probability theory such as the law of large numbers, the law of the 

iterated logarithm and the central limit theory. 

If one accepts this way of introducing randomness, it is clear that the usual 

deterministic generators of random numbers do not seem very attractive; they are al

most antithetic to random sequences. Indeed, the usual mUltiplicative-additive con

gruence generators can be programmed with just a few FORTRAN statements. And not only 

that; it is practically impossible to generate randomness by arithmetic means since, 

by definition, the program must be very long to lead to random sequences. 

It is too early to try to judge this approach and it is not yet clear what 

practical consequences it will have. Almost all practitioners of the Monte Carlo 

method and artificial sampling employ arithmetic random number generators, and it 
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may appear questionable, in the light of what has been said above, that these really 

simulate randomness. We shall examine the basic problem of the rationale of the Monte 

Carlo technique in another section. There we shall see that it is possible to moti-

vate this technique, but in a different way from the usual one. 

We now turn to generators of pseudo-random sequences used in practice. For 

computational economy it is desirable that the sequence be computed by a recurrence 

relation 

(1.2.52) xn+l = f(x ,x l'x 2'···'x ) n n- n- n-r 

where f is a function that is easy to compute on the available machine. In partic-

ular, linear functions come to mind, and also the fact that the reduction modulo m is 

easily carried out if m is chosen as the largest integer representable in the machine, 

plus one. Taking the order r as low as possible, r = 0, (1.2.52) then reduces to 

(1.2.53) 

(where A and ~ are integers), which specifies the pseudo-random sequence {xn } if we 

decide on the starting value xO. 
w 

In a binary machine it is natural to choose m = 2 , 

where w is the word length. We can achieve some computational simplicity by asking 

k that A be of the form 2 +1, since this corresponds simply to one shift and one add 

operation. 

It is important to choose the parameters A,~ in such a way that {x } exhibits 
n 

some of the features of randomness we want. Any congruence method of order r must 

obviously be periodic: looking at the vectors ~n = (xn'xn_l ,··. 'xn_r ) taking values 

in a discrete hypercube of dimension r+l, we see that this cube contains mP+l dis

p+l tinct points, implying that the period cannot be greater than m 

The congruence generator (1.2.53) is called mixed if both A and ~ are different 

from zero. If ~ = 0 we speak of a multiplicative generator, and if A = 0 we call it 

additive (see the discussion above). The maximal period is m. If the maximal per-

iod is attained it follows that the xn's run through all the residue classes exactly 

once during a period. We need to know when the maximum period is attained and, when 

it is not, how large a period we get and what residue classes are generated. The 

latter question is related to the degree of the (discrete) one-dimensional 
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equidistribution which has been generated. 

It should be pointed out here that answers to these questions are not sufficient 

to enable us to judge the performance of the generator. In addition we must know how 

good higher-dimensional equidistributions we get and how much dependence we have in 

the sequence. Dependence, as well as other similar notions, is meant in the sense 

of asymptotic distribution: because of the periodic nature of the sequences the limits 

exist. 

This is not the proper place to go into a detailed discussion of the periods and 

distribution properties of the congruence generators. Relevant papers for informa

tion on this topic are those by Jansson (ref. 1) and Coveyou and MacPherson (ref. 2). 

We give, in figure 1.9 of Appendix 1, a program to generate the bivariate dis

tribution of the multiplicative congruence generator mod N, with multiplier N. Illus

trations of graphic output from this program are given in figures 1.10, 1.11 and 

1.12. In figure 1.10, M (= 3) and N (= 20) are relatively prime and the results are 

quite good. In figure 1.11, the value of M (= 19) is obviously too large. The mul

tiplier M should neither be very small nor very large compared to the module N, and 

in addition M and N should be relatively prime. Figure 1.12 (M = 7, N = 20) also 

shows reasonably good results. 
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Figure 1.1 
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871 
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8 81 
881 

1 8 1 

1--------------------1 
Figure 1.2 

The above program MOTION generates S .• of eq. (1.2.27). 
~J . 

The parameters XINIT and YINIT are the coordinates of the initial position of 

the point at time T = O. RUN is the number of time-points during the run. 

Figure 1.2 gives the results of MOTION for the stated parameters XVEL = 1/20, 

RUN = 300. The numerals indicate the number of times the mass point passes through 

a certain point within the square. 

27 



XINIT XVEL+t 30 
0.1 XINIT XVEL+.11 
YINIT YVEL+.1 0.1 

1 UNIT YVEL+.1 
MOTION 300 1 

MOTION 300 
1-------------------- --------------------1 
I 5 5 5 2 3 3 3 3 2 I 
I 5 5 5 5 3 3 3 3 21 
I 5 5 4 3 3 3 2 I 
I 5 5 5 5 3 3 3 3 3 I 
15 5 4 3 3 2 3 I 
I 5 5 5 5 3 3 3 3 31 
I * 3 4 3 2 3 I 
I 5 5 5 5 3 3 3 3 3 I 
15 5 3 4 2 3 3 I 
I 5 5 5 5 3 3 3 3 31 
I 5 5 3 3 4 3 3 I 
I 5 5 5 5 3 3 2 3 3 I 
I 5 5 3 3 3 3 3 I 
I 5 * 5 3 2 4 3 31 
I 5 5 3 3 3 3 3 I 
I 5 5 5 5 3 2 3 4 3 I 
I 5 5 3 3 3 3 3 I 
155 5 5 2 3 3 4 41 
I 5 5 3 3 3 3 3 I 
I 5 5 5 11 3 3 3 4 I 
1-------------------- 1--------------------1 

Figure 1. 3 

'V ALIAS[OJ'V 
'V M ALIAS L 

[1 J Q+MpO 
[2J K+O 

Figure 1.4 
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[4J Q+Q-t(1+(tL)xK+(tM)X1M)*2 
[5J K+K+l 
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[7J AL2:30 PLOT Q 
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Figure 1. 5 

The program ALIAS computes eq. (1.2.39). 
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CHAPTER 2: 

SIMULATION 

2.1 Simple Monte Carlo. 

In this chapter we shall look into one particular computational technique that 

is being used (and misused) extensively in analyzing stochastic systems: the method. 

of Monte Carlo. The material is closely related to that presented in chapter 1, but 

is of a more technical nature. In later chapters the method will be applied to many 

special cases of practical interest, but here the attitude is methodological, with 

some emphasis on computational efficiency. 

Most of the quantities we compute in mathematical statistics are either integrals 

(mean values, moments, characteristic functions) or derived from integrals (central 

moments, quantiles). It is very often not possible to evaluate the integral in 

closed form and it may be difficult or at least uneconomical to appeal to the stan-

dard methods of numerical quadrature. We can then try a Monte Carlo approach. 

The idea of Monte Carlo is simple enough. Say that we want to find the value of 

the integral 

(2.1.1) I = f f(x) dx 

X 

where dx denotes a bounded measure over the space X and f is real and integrable with 

respect to dx. The domain of integration X could be an interval on the real line 

and dx some probability distribution on it, or we could consider more complicated 

spaces. Generate a sample xl ,x2 , ... ,xn of values from X drawn according to the prob

ability measure ~ where M is the total dx-measure of X; assume, to simplify nota-

tion, that M = 1. It then follows from the law of large numbers that 

(2.1.2) 
1 n 

l'~ = - L f(x.) 
n n l 

converges almost certainly to I as n tends to infinity. If f is quadratically 

integrable, so that the formal "variance" a2(f), namely 

(2.1.3) 

exists, we know that I* has standard deviation (1/10) a(f). If n is large, we can 
n 
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state that the value I of our integral is covered by the interval (I*-A[a(f)/I:n], 
n 

I*+A[a(f)/InJ with probability approximately equal to 2W(A)-1, where W is the distri
n 

bution function of the normed, normal distribution W = N(O,l). If we do not know 

a(f), and we seldom do, we will have to use the sample estimate of it. 

We get in this manner an approximation for the value of the integral as well as 

a confidence interval around this value. This is one version of the Monte Carlo 

method; it is completely straightforward and we shall see in section 2.3 that we can 

often do a great deal better than this. 

This example does not explain, however, why we use simulation rather than one of 

the many classical methods of numerical quadrature. To bring this out more clearly, 

we turn to higher-dimensional situations where the power of simulation becomes clearer. 

Let us look, for illustration, at the following problem. We have a continuous 

probability distribution F in the (x,y) plane and we want to test independence 

between the x and y coordinates. To do this we collect a sample (xl 'Yl),(x2 'Y2)"'" 

(xN'YN) and form the empirical medians M~ and M~ (assume that N is odd). Introduce 

the numbers 

Nl number of points in the first quadrant; x > M* Y > M* 
(2.1.3a) 

x' y 

N3 number of points in the third quadrant; x < M~,y < M* 
Y 

and form the statistic 

(2.1.3b) t 

In order to construct a test of independence built on t we need the probability dis-

tribution of t, at least approximately, for various F. 

h · . h' " . . 2N T lS lS, owever, equlvalent to evaluatlng certaln lntegrals In R . If we had 

access to a closed-form solution, and this were amenable to computing, we would use 

it; otherwise we have to choose between two alternative actions. 

The first is to use a large sample approximation, which is simple in principle 

although possibly tedious. The trouble is that we may need the result for such a 

small sample size N that we do not trust an approximation which assumes the sample 

size to be large. 

The other way out is to use Monte Carlo to give us an idea of the approximate 

distribution of t for various distributions F. We take n samples of length N from 
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the population F and form the empirical distribution function for the n values of t 

computed from the samples obtained. We use this distribution as an approximation to 

the true distribution of t. 

The Monte Carlo method is used very frequently, often in an uncritical and in-

efficient way. It has some obvious advantages: 

a) It requires no regularity assumptions on f except square integrability. 

(Compare it with the traditional error estimates of numerical integration in 

terms of derivatives or other smoothness requirements!) This may be of help 

since f is often a very complicated function whose regularity properties are 

difficult to find. 

b) It is feasible even in high-dimensional spaces for which numerical integra

tion fails, say dimension ~ 10. In the present context this is relevant since 

we can very well run into lOa-dimensional problems or larger in computational 

probability studies. 

c) It is easy to apply, requires little or no analysis of the problem (but 

this is not true of the better designs we shall look into later). 

It has, however, some disadvantages also: 

a) The error bound is not a certain one but involves some randomness; this 

is more nearly a psychological difficulty than a real one. 

b) The statistical precision is often very low; more about this later. 

c) We need random numbers and we already know that the generation of reasonably 

"random" sequences is not trivial (in section 2.2 we shall indicate that this 

observation may be less relevant than one would think at first sight). 

We shall below use Monte Carlo only to study problems presented in a stochastic 

form. It should be mentioned, however, that the method can be applicable in situa

tions where no randomness appears in the original presentation of the problem. We 

shall not deal with such cases in what follows. 

Before going ahead to a more detailed discussion of some Monte Carlo refinements, 

let us point out the following. Say that we have decided upon a way of generating 

pseudo-random numbers simulating the population R(O,l). It is then an easy matter 

to get other distributions, for instance one with some given distribution function F. 

Indeed, if F is discrete, with the probabilities Pl,P2"" associated with the values 
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(2.1.4) z = X. 
l 

if 
i-l 
I 
1 

P. < x 
J 

i 
< I P. 

1 J 

where x is the pseudo-random number from R(O,l). It is clear that z will be dis-

tributed according to F. This can be directly modified for the case when F is 

continuous. We put 

(2.1.5) z = 

where F- l is the inverse function of F. In both cases z will have the distribution 

function F. 

As an example, assume that we want to generate exponentially distributed numbers 

such as, say, in simulation of a Markovian queueing problem. For F(x) = l_e-x we get 

z = -log(l-x), which has the same distribution as z' = -log x, x = R(O,l). By adding 

k such z's we can simulate the Erlang distribution with frequency function 

(2.1.6) -x 
e x > ° 

This procedure is simple enough and if only a moderate-size Monte Carlo exper-

iment is planned it will be acceptable. If many random numbers are needed we may 

want higher computational efficiency by applying some special trick for simulating 

just F. To give an idea of what can be achieved in this way, let us say that we 

have for some natural number r 

(2.1.7) F(x) 1 - (l-x)r, 0 < x < 1 

Then, rather than inverting F, it may (depending upon the properties of the computing 

facilities to which we have access) be more economical to generate r values of x 

from R(O,l) and define 

(2.1.8) 

Direct calculation shows that z obeys the law in (2.1.7). An example in a slightly 

different spirit is to generate normally distributed pseudo-random numbers starting 

from a pair (u,v) independently drawn from R(O,l). Putting 

34 



Zl R cos ~ 
(2.1.9) 

z2 R sin ~ 

with 

~ 21TU 
(2.1.10 ) 

R 1-2 log v 

makes zl and z2 independent and N(O,l), as can be shown by a straightforward argument. 

Many variations on this theme are possible. 

The most common method of simulating the normal distribution is probably via the 

FORTRAN subroutine GAUSS with 

(2.1.11) Z = Xl + X2 + ••• + X12 - 6. ° 
Here the X's are independent R(O,l), for example from RANDU, and we put our trust in 

the central limit theorem with sample size 12: Z ~ N(O,l). 

Multivariate distributions are in principle not difficult to handle. Assume 

that we want to generate a stochastic vector z = (zl,z2, ... ,zn) with normal distribu

tion and the parameters 

i 1,2, ... ,n 
(2.1.12 ) 

i,j = 1,2, ... ,n 

Since the covariance matrix 

(2.1.13 ) {M = i ,j 1,2, ... ,n} 

is non-negative definite we can form the square root (or rather one of the square 

roots) S = Ml/2. Start from the stochastic vector x = (xl ,x2 , .•• ,xn ) with components 

normally distributed, means zero, standard deviations one and all independent. Put 

(2.1.14) 

so that Ez' 

(2.1.15 ) 

as desired. 

m' 

Z' m' + Sx' 

column vector with entries m. and 
~ 

covariance matrix E(z-m)'(z-m) = SEx'xS' = SS' 

35 

R 



Simulation of stochastic processes is not much more difficult if their structure 

is not too complex. Indeed, let us generate a Gaussian stationary stochastic process 

xt ' t = 1,2, ••• ,n, with mean value function identically zero and covariance function 

r t corresponding to a spectral density f(A). We could apply the procedure in (2.1.14), 

but if n is large there are computationally better ways of doing this, avoiding opera-

tions on the large matrices appearing in (2.1.13) - (2.1.15). Approximate l/f by a 

non-negative trigonometric polynomial; according to a classical theorem of Fejer such 

a polynomial can be written as the absolute square Ipl2 of some other trigonometric 

polynomial: 

(2.1.16) eipA + i(p-l)A P = aO al e + •.• + ap 

(Fejer's theorem reads: any non-negative trigonometric polynomial, say in complex 

form, can be written as the squared absolute value of a trigonometric polynomial.) 

But the spectral density 1/lp1 2 is that of the autoregressive stochastic difference 

equation 

(2.1.17) 

where Et is white, Gaussian noise. 

We can use (2.1.17) in two ways. We can either start with p-l arbitrary values 

for xN+p_l,xN+p_2, ••• ,xN (N some negative integer) and solve (2.1.17) successively 

from t = N on after generating the E-sequence in the standard manner. If N is large 

enough the process should be close to its equilibrium distribution for t = 1; we dis-

card, of course, the values xN,xN+l' •.• ,xo. The speed of convergence is geometric 

and is good if the solutions of the characteristic equation 

(2.1.18) a zP + a zp-l + + a = 0 o 1 ... P 

are sufficiently different from 1 in absolute value (be careful with what "square 

root" P you form l/f! This is related to the location of the zeroes of (2.1.18) and 

should be discussed in class.) 

The other method consists of first generating a sample xl ,x2 , •.• ,xp_l with the 

right equilibrium distribution by the method of (2.1.14) and for t ~ P solving the 

stochastic difference equation as before. This is safer but more time-consuming. 
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Markov processes, with or without linear structure, can be generated computa-

tionally by just simulating the behavior inherent in the definition of the transition 

kernel. If this is done by solving a stochastic differential equation some thought 

must be given to the question of what numerical procedure to use; more about this 

later. 

2.2 Assignments. 

1. Consider the integral 

1 

(2.2.1) I = f e-l / x dx· , 

° it is a value of an incomplete r-function. Determine the value of I by three Monte 

Carlo experiments with samples of size n = 10, 50, 100 respectively. Replicate this 

procedure 10 times and give an estimate for I as well as a confidence interval. ·Use 

one of the multiplicative congruence methods for generating the random numbers. Look 

up the value of I in a table of the incomplete r-function. 

Do the same but using the sequence x. = {i/i:2} of pseudo-random numbers generated 
1. 

by an additive congruence rule. 

Discuss the results and the accuracy you get and compare with numerical quad-

rature. 

2. Simulate a three-state Markov chain with a transition probability matrix 

M [ :~: 
l/l2 

1/2 
1/4 ] 
5/9 

5/6 

(2.2.2) 1/9 

l/l2 

Start the chain in the state 1 and get sequences of length 3, 5, 15 and sample size 

n = 100. Use the result to study the convergence to the equilibrium distribution. 

How is the speed of convergence related to the eigenvalues of M? Find them. 

*2.3 Randomness and Monte Carlo. 

How serious is it that we do not use truly random sequences in a Monte Carlo 

experiment, but just the pseudo-random numbers? 

Let us look at a special case. Say that we use the additive congruence method 

with x. = {ia}, where a is an irrational number in (0,1) (discuss the results of 
1. 

(2.2) at this point). Say also that, just as an example of no practical interest, 
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we want to integrate the function x - 1/2 over (0,1); we form the sums 

(2.3.1) 
n 

S = L [{ia} - 1/2J 
N 1 

We already know (see chapter 1) that 

1 

(2.3.2) SN = N J(x - 1/2)dx + o(N) 

o 
o(N) 

We want to get a more precise bound for SN/N than just 0(1). To succeed with this 

we must use better analytical tools than before; we need some diophantine analysis 

to study how well irrational numbers can be approximated by rationals. 

First, let us remind ourselves of some elementary properties of continued frac-

tions; we write the irrational number a as a continued fraction: 

1 
(2.3.3) 

1 

1 
a2 + ----

The truncated continued fractions are denoted by 

(2.3.4) 

with relatively prime numerator and denominator. Let us note some elementary prop-

erties of continued fractions and then develop the tool that is needed. If a is 

irrational the continued fraction (2.3.3) does not terminate. 

The denominators qi are positive integers and form an increasing sequence. 

The sequence of principal convergents Pn/qn is strictly increasing for even n 

and strictly decreasing for odd n with the same limiting value a. 

The best rational approximations to a are the principal convergents (a fraction 

p/q is called a best approximation to a if: 

(2.3.5) Iq'a-p'l > Iqa-pl 

One of the basic problems in diophantine analysis is to find how small we can 

make I qa-p I if q ~ Q, where Q is some given natural number. It is clear that we can 
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make it smaller than l/Q. Indeed. split (0.1) into Q subintervals of equal length. 

If we introduce the Q+l numbers {nal. n = 0.1.2 ••••• Q. it is clear that two of them 

must fall in the same subinterval. so that {val and {~al are in one of them. say in 

(~.k~l). But this implies that IAa-il < l/Q for some integer i. where A = Iv-~I ~ Q. 

The following will be expressed in terms of the type of an irrational number. 

Definition. Let g be a positive non-decreasing function at least equal to 1. The 

irrational a is said to be of type ~g if for all sufficiently large B there exists 

a solution to 

(2.3.6) I qa-p I < l/q and 

where p and q are relatively prime integers. 

The reason why the notion of type will be helpful is that it makes it possible 

to limit the accuracy with which an irrational number can be approximated by rationals. 

Theorem. Expand a in continued fractions and let f be a non-decreasing function at 

least equal to 1. Assume that the principal convergents Pn/~ satisfY 

for all sufficiently large n. Then a must be of type < f. 

Proof: The proof is almost immediate since I~a-Pnl < l/~+l' so that 

(2.3.8) ~+l < ~f(~) 

For any large B we can find an n such that 

(2.3.9) ~ < B ~ ~+l 

which implies 

(2.3.10) 

so that a's type is at most f. 

The determination of the type of a given a is seldom easy. One of the many 

beautiful results in this direction is the following. A number a is of constant type 
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c if and only if the ai in the continued fraction expansion a = [aO,al ,a2 , ••• ] are 

bounded by c. If a is a quadratic irrational (that is, if it satisfies a quadratic 

equation with integer coefficients), then it has a periodic expansion in continued 

fractions so that a i are uniformly bounded; it is therefore of constant type. 

Another sort of result is the metric one where we make statements not about an 

individual irrational but about almost all. 

Theorem. Let h be a positive function with 

(2.3.11) L hen) < '" 
n=l 

The inequality 

(2.3.12) 

has then only a finite number of solutions for almost all a. 

Proof: Choose a positive E and find an N such that E hen) < E; this is possible 
N 

because of (2.3.11). If a is such that there are infinitely many solutions to 

(2.3.12), so that q > N, then 

(2.3.13) la _ £.1 < h(q) 
q q 

and a is contained in at least one of the intervals 

(2.3.14) I 
v 

(v-h(q) v+h(q)) 
q , q v = O,l, •.• ,q-l 

But the union of these intervals has a measure dominated by 

N 

L q . 2h(q) < 2E 
q 

(2.3.15) 

1+6 As a corollary we can choose hen) = l/[n(log n) ] with 6 > o. This implies, 

using (2.3.7), that almost every irrational a is of type f = (log n)l+o. 

Return to the study of (2.3.1). We shall assume, to begin with, that a is of 

type ~ f with an unspecified f. Approximate a by a rational p/q (where we of course 

choose p and q relatively prime to each other). We can then satisfy the inequalities 

(however large N is) 
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!qa-p! < l/q 

(2.3.16 ) 

so that 

(2.3.17) 

Write the partial sums as 

(2.3.18) 8N = 8 N-q 
N 1 q-l me 1 L [{na1 - 2] = L [{Na-m E.. - 2} - -] 

n=N-q+l m=O q q 2 

2 To bound this expression, consider first the influence of the error term me/q. The 

function {x+b}, a < b < 1, of x has a discontinuity at x = l-b; otherwise it is con-

tinuous with the derivative equal to 1. The influence of the error term is therefore 

bounded by q(me/q2) ~ 1 plus a finite number of bounded terms corresponding to the 

jump of the function. The q points imp}, m = O,1,2, •.. ,q-l, take all the values v/q, 
q 

v = Q,1,2, ••• ,q-l except possibly for a reordering. mp m'p Indeed, assume that {-} ={-} 
q q 

with m # m'. Then (m-m')p = q is an integer. But p and q are relatively prime and 

!m-m'! < q, so that m = m'. The expression in (2.3.18) is therefore bounded by 

(2.3.19 ) 
q-l 

0(1) + L [is - ~} - ~] 
v=O 

An elementary calculation shows that the sum is also 0(1). If we assume that f(x)/x 

is non-increasing, then 

N 

(2.3.20) J f(x) dx > q f(N) > 1 
x - N -

N-q 

so that we can find an absolute constant K such that 

N 

(2.3.21) 8 - 8 < K I f(x) dx 
N N-q - x 

N-q 

or, repeating the same argument, 

(2.3.22) 

This proves 

N 

8N = O(If~X) dx) 

1 

Theorem. If the irrational number a is of type ~ f and if f(x)/x is decreasing, 
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then (2.3.22) holds. 

Corollary. 
1+0 

Almost all a are of type ~ (log x) . Let instead a be a quadratic 

irrational so that it is of constant type f = c. Then (2.3.22) gives us the bound 

(2.3.24) 

Now let us replace the special function {x} - 1/2 by a function f that is assumed 

to satisfy some regularity conditions but otherwise is general (see ref. 3). 

Theorem. Assume that f is periodic on [O,lJ and has three continuous derivatives. 

If a is a quadratic irrational then 

(2.3.25) 

with 

I 

(2.3.26) 

I'~ - I 
N 

1 

O(~) 
N 

J f(x) dx 

o 
N 

W L f({na}) 
n=l 

Proof: Because of the regularity assumptions we can write 

(2.3.27) f(x) L f e 
2rrivx = v v=-oo 

with f o( Ivl- 3). This bound on the Fourier coefficients v 

1 

(2.3.28) f J f(x) -2rrivx 
dx e v 

0 

is directly obtained by integrating (2.3.28) by parts three times and applying the 

Riemann-Lebesgue lemma. We have, since the Fourier series is uniformly convergent, 

by rearrangement 

(2.3.29) 
N 

W L 
n=l 

f({na} ) 2rriva 
e 

with the obvious interpretation of the term with the v = O. Hence 

(2.3.30) I Ii, - I I < ~ \" 
N - N L 

I f II s~n Nva I 
v Sln rrva v=-oo 
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where the prime denotes that the term with v o has been left out. To bound the 

trigonometric expression we note that sinx/x < 2 in 0 < x < 1/2 and sinx!(l-x) > 2 

in 1/2 ~ x ~ 1, so that 

(2. 3.31) Isin xl> 2 
TfxlT -

if I Ixl I denote~ th~ distance from x to the nearest integer. Therefore (Q.g.gO) 

leads to the bound 

(2.3.32) II* - II < ~ " 
N - 2N L 

\)=-00 

To bound I Ivai I away from zero we could appeal to what has been said about diophantine 

approximation. What we need can easily be derived directly, however. Indeed, say 

that a = (k+~IJTI)/j, with m not a square, and introduce the conjugate quadratic irra-

tional a' = (k-~IJTI)/j. Assume that there are infinitely many integer solutions 

(2.3.33) 

But 

(~a-Pn)(~a'-Pn) 

(2. 3.34) 

so that 

(~k-jpn)2-~~2m 
.2 
] 

which shows that we must have 

(2.3.35) 

for large values of n. 

non-zero integer 
.2 
] 

Choose a value of c that violates (2.3.35); then (2.3.33) is false except pos-

sibly for a finite number of q's. Hence there is a c' > 0 such that 

(2.3.36 ) Iqa-pl > c'/q , q 1,2, ... 
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Applying this to (2.3.32), we get 

(2.3.37) 

using the bound o(lvl- 3) for the Fourier coefficients; this completes the proof.* 

The last two theorems indicate that the pseudo-random sequence obtained from the 

additive congruence rule, although giving a poor approximation to randomness, may 

nevertheless be acceptable for Monte Carlo. The resulting error is smaller than the 

one for truly random sequences. In statistical terminology this means: systematic 

sampling can be better than random sampling. There are several open questions that 

should be examined: 

a) What happens when we integrate in higher-dimensional space? 

b) How about the other methods for generating pseudo-random numbers, espec-

ially the mUltiplicative and mixed congruence methods? 

c) Can we get "optimal" pseudo-random sequences for integrating "arbitrary" 

functions? (This will be reformulated in two different ways later on.) 

d) In the computer we work with discrete arithmetic, not with real numbers as 

in the last theorems. How can we translate the results to discrete form? 

This opens up a promising area of research in which our knowledge is at present 

insufficient. 

2.4 Improved Monte Carlo. 

The straightforward application of Monte Carlo is sometimes not good enough 

because of its low accuracy, and can be a waste of computing power. Simple Monte 

Carlo may be adequate, however, if we do a small-scale exploratory study and do not 

care very much about high precision. It is different when we go to production runs 

and have to be concerned about computational economy. Then it usually pays to plan 

the experiment more carefully, using the ideas discussed below or other refinements. 

There are several ways of increasing the computational accuracy based on a few simple 

ideas. 

a) Try to do as much as possible (or, rather, as much as is economically defen-

sible) by closed-form or numerical integration; supplement it by Monte Carlo 

to get the desired integral. 
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b) Distribute your computing effort with some thought; certain parts of the 

region of integration may be more important than others. 

c) Try to balance your design so that the random elements you introduce are 

counteracted by other random elements. 

Let us now apply this in a concrete way to the problem of evaluating I: 

1 

(2.4.1) I(f) = J f(x) dx 

o 
The straightforward estimate (2.1.2) gives us a mean square error a(f)/IO. Suppose 

that it is possible to get I(f ) with high accuracy for some function f. We could 
a a 

then use the unbiased estimate 

(2.4.2) I(f ) + I*(f-f ) 
a n a 

and get the mean square error 

(2.4.3) 
a2(f-f ) 

E[I**(f) - 1(f)J2 = ___ a_ 
n 

so that we have achieved a reduction in error if a(f-f ) < a(f). a .-

A typical case is obtained when we use a linear parametric form 

(2.4.4) 

where a and S are constants to be determined and g is a function whose integral we 

know. Then 

(2.4.5) min 
a,S 

where p(f,g) is the formal correlation coefficient 

(2.4.6) p (f ,g) = I(fg) - I(f)I(g) 
a (f)a (g) 

If we can find a g that is well correlated with f, then (2.4.5) indicates that 

we have achieved a reduction of variance. It might seem tempting to achieve the min-

imum of (2.4.5) but this is usually computationally unsound. Indeed, the determina-

tion of the corresponding values of a and S requires the computation of integrals at 

least as complicated as I(f). There are at least two possible ways out of this 

45 



dilemma. One is to use the same sequences {x.; i=1,2, ..• ,n} also to estimate the 
~ 

latter integrals. We would then use 

(2.4.7) I(fg) Jl 1 n 
= f(x)g(x)dx ~ - L f(x. )g(x.) 

n 1 ~ ~ 

° 
and so on for the other integrals needed to solve (2.4.5). The other way out is to 

be satisfied with a choice a,S that is not optimal but may be good enough to lower 

the error a good deal. (Pick values that seem intuitively reasonable!) 

Assignments. 1. Look at the integral (2.2.1). Take fa as a piecewise linear func

tion (two or three pieces may be enough) and program the procedure of the last sec-

tion. Study what gain in accuracy you get for the same sample size n. 

We may be able to see ~ priori that an integral like (2.4.1) gets more important 

contributions from some part of the integration region than from some other part. 

Even though our ~ priori knowledge is not given in precise form it may payoff to use 

it in the design of the Monte Carlo experiment. 

Stratify the interval (0,1) into the union of the intervals (a ,a 1)' v 
v v+ 

O,1,2, ... ,r where aO = ° and ar +l = 1. Introduce the integrals 

av+l 

(2.4.8) 1 J f(x)dx, v = O,l, ... ,r 

av 

Now use nv random numbers from the distribution R(av,av+l ) and get a straightforward 

Monte Carlo estimate I* of I. The estimate 
v v 

(2.4.9) I'" 
strat 

is then unbiased with variance 

r 
(2.4.10) Var( I>~ ) = 

strat L 
v=O 

where (j~ stands for the conditional "variance" of f over (av,av+l )' If the total 

number n = nO+nl+ •.. +nr is fixed we ought to distribute the nv so that we have 

appr.oximately 

(2.4.11) 
(aV+l-a) 

n = n v r 
L (j (a I-a) 

v=O v v+ v 

t;.6 



where we have treated the integers nv as continuous quantities. It is usually im

practical to use (2.4.11) directly, since the av's are not available. Indeed, 

(2.4.11) will serve only as an indication of the manner in which we can guess good 

(but not optimal) values for nv 

This supposes that we have fixed the subdivision points avo How to make this 

choice is a good deal more difficult, and will not be dealt with here. 

2. Return to the integral (2.2.1). Stratify the region of integration into a 

few intervals. Apply the above method to the evaluation of the integral. Compare 

the result and efficiency of computation with what you have done in earlier assign-

ments. One should also try to exploit qualitative properties of the integrand. To 

be concrete, assume that the integrand f in (2.1.1) is monotonically increasing or 

monotonically decreasing. Then it seems promising to use the fact that of the two 

functions f(x) and f(l-x) one increases and the other decreases so that they are 

negatively correlated (prove that they are). Therefore, put 

(2.4.12) 
1 n 

p" = - I [f(x.) + f(l-x.)J 
2N 1 l l 

which is an unbiased estimate of I(f) with the variance 

(2.4.13) Var( P',) 122 
4n [2a (f) + 2pa (OJ 

where p is the formal coefficient of correlation between f(x) and f(x-l). Since 

p < 0 the expression in (2. l f.13) is less in value than that in (2.1.3). 

This is the simplest version of another fairly general method of increasing the 

computational efficiency of Monte Carlo experiments; antithetic variables. 

To understand the idea behind the technique of antithetic variables better (see 

ref. 4), let us look at the stochastic variable 

(2.4.14) 

To simplify the discussion it will be carried on for the discrete version of the inte-

gral. Assuming that both xl and x2 have a uniform discrete distribution over the 

values x = 1/n,2/n, .•. ,n/n (condition c), the expression in (2.4.14) is an unbiased 

1 n v 
estimate of the quantity F = - ~ f(-). Now let us make its variance as small as 

n 1 n 

possible without violating condition c, which only makes a statement about marginal 
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distributions but not about the form of dependence between xl and x2 . It is not dif

ficult to see from (2.4.13) that this leads us to the extremum problem 

(2.4.15 ) inf 
c 

n . j 
I f(~) f(-) p .. 

i,j=l n n lJ 

where the p .. are varied subject to the condition c (the reader will recognize this 
lJ 

as the discrete analogue to the integration problem discussed earlier). Condition c 

means that 

n 
(2.4.16) L 

:i'=l 

n 
p .. = L p .. = lin 
lJ j=l lJ 

all i,j. 

2 This implies that if we consider the numbers p .. as coordinates in n -space we will 
lJ 

be in a region where these coordinates satisfy (2.4.16) and p .. > O. This means that 
lJ 

c is a convex, closed polyhedron whose vertices correspond to p .. = 0 or lin; the p .. 
lJ lJ 

then form, because of (2.4.16), a permutation matrix up to a multiplicative constant. 

For a given P = {p .. } we can write 
lJ 

(2.4.17) P 
n! I w P (k) 

k=l k 

(k) 
where the P are the n! permutation matrices and the weights wk are non-negative. 

This is geometrically equivalent to representing the convex polyhedron as the convex 

hull of its vertices. Because of (2.4.17) the problem (2.4.15) reduces to 

(2.4.18) min I 
p(k) 

h .. h . f 1 2 d' h . . p(k) were Ji lS t e permutatlon 0 " ••• ,n correspon lng to t e permutatlon matrlx . 

This is a familiar problem: rearrangement of series. We look for that rearrangement 
. j. 

making the two sequences {f(~)} and {f(~)} monotonic in opposite order (see ref. 5, 
n n 

chapter 10). 

Note that the stochastic dependence of the probability distribution described 

by {P .. } actually degenerates into functional dependence in the solution given above. 
lJ 

Now this was for a very special case, but qualitatively the same holds in more gen-

eral situations (see ref. 4). 

It is this sort of functional dependence which we use in the technique of anti-

thetic variables in order to reduce the variance of the estimate. 
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Assignments. 1. Using antithetic variables, evaluate the integral in (2.2.1) by 

Monte Carlo. Compare the computational efficiency with that of other methods. Dis-

cuss combinations of the basic ideas we have considered. 

2. Compare the computational efficiency of the various ways of estimating the 

integral (2.2.1) by counting the number of elementary arithmetic operations needed for 

each method. Compare this with the resulting variance to judge their relative merits. 

When using simulation in an operations research problem we are usually confronted 

by a system, say S(a), whose complexity is so considerable that a purely analytic 

treatment is impossible or uneconomical. Here a represents a controlled parameter, 

a real number or vector, upon whose value we decide. The parameter may, for example, 

describe some variable in a production process, or a capacity in a network. We would 

like to know how a given criterion C(a), expressing the overall performance of S(a), 

varies with a. To find this out we pick some values for the parameter, say al ,a2 , ••• , 

ap ' and make a Monte Carlo experiment for each avo We get, in this way, p estimates 

Cf'C~"",C~ of the quantities C(al ),C(a2), ••• ,C(ap )' Let us assume that the esti-

b · d . h' 2 2 2 mates are un ~ase w~t var~ances 01,o2""'op, 

After having done this, we plot the values Cr against a to study the relation 

between the parameter and the output. Note that we can write 

(2.4.19) C*(a) C(a) + N(O,o ) 
a 

if the sample size of the simulation experiment is large enough; 0a is inversely 

proportional to ~where n is the sample size used for the value a. In particular, 
a a 

if C(a) has some simple form, such as the linear one C(a) = a + ba, we can use the 

Cr first to estimate a and b and then C(a) for other values than the a, or for a 

particular one of them. In the latter case we get a reduced variance that can be 

considerably smaller than Ga' We just use ordinary linear regression analysis (see, 

for instance, the last chapter of ref. 7). Similarly, if C(a) is a quadratic poly-

nomial in a we can estimate for instance the location of a maximum or minimum of C(a). 

Assignment. Consider the integral 

1 

C(a) a I -a/x 
e dx, a > ° 

° 
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and design a Monte Carlo experiment to find the approximate location of the value aO 

maximizing C(a). 

2. 5 Quadrature • 

For simplicity the assignments in this section have been given on the real line 

but the real advantages of the Monte Carlo method become appal~nt only when the di-

mensionality is high, say 10 or more. In later chapters we shall apply the method 

extensively to such cases. 

Recalling the theoretical discussion in section 2.3, it is at this point natural 

to ask how we should judge the performance of the method when pseudo-random numbers 

are used, for instance when one of the congruence generators discussed in chapter 1 

is applied. 

The natural attitude is to look at Monte Carlo as a method of numerical quadra-. 

ture. Assume that the integration is performed in the r-dimensional unit cube C so 

that X = (Xl ,x2 , ..• ,Xr ) with 0 ~ Xv < 1; v = 1,2, ... ,r. We would write a quadrature 

formula quite generally as 

n 
(2.5.1) L 

11=1 

so that the problem consists in choosing the points X11C Rr and the coefficients C 
11 

in such a manner that the error of approximation 1-1* becomes small. The set of X11 

determines the type of quadrature design. The simplest design consists of choosing 

a set of m points ~1'~2' ... '~m in (0,1) and using all the points of the form (~il' 

~. , ... ,~. ) for the x11 ,s. This is a factorial design with the number of Xll,s equal 
12 1r 

to mr. In such a design the problem has been reduced to the choice of a one-dimen-

sional array of numbers together with their coefficients. Already for moderate values 

of n the number mr becomes prohibitively large, and we must turn to non-factorial 

designs. 

It seems reasonable to ask that the X11 ,s be uniformly spaced throughout C (which 

could be given a meaning for a factorial integration design), but to give this a 

precise meaning presents some difficulty when we cannot make asymptotic statements; 

the latter are meaningless when the number n of points X is so small that ! In n is 
v r' 

say, less than one. 
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An ambitious attack on this problem would start as follows. Assume that we are 

looking for an integration design and a quadrature expression for some class F of 

integrands f. The class F is usually given to us in a qualitative way by presenting 

smoothness through a continuity modulus, perhaps a Lipschitz condition or by pres crib-

ing the existence and continuity of a number of derivatives. We may also have direct 

restrictions on the size of the integrand at various points of the domain of integra-

tion, occasionally supplemented by conditions like positivity or convexity. 

One way of expressing such restrictions is to give a probability measure over 

our function space indicating the likelihood (possibly interpreted in a Bayesian 

manner) of various integrands. It goes without saying that such a probability measure 

m should not be taken too literally: it only serves as a qualitative indication of 

what smoothness properties to expect of the integrand. 

The quadrature problem can then be formulated as follows: find X~ and C such -- ~ 

that 

(2.5.2) min min E[I(f) - I*(f)J2 
X~ C 

~ 

is realized, at least approximately. 

To make the discussion more concrete consider the following special case of 

(2.5.2); actually, it has some general consequences which will help us in the further 

study of the problem. It is also of direct interest for the computational treatment 

of stochastic integrals and stochastic differential equations dealt with in later 

chapters. 

Choose m as the probability measure in function space corresponding to the 

Wiener process so that 

(2.5.3) 

We can then write 

(2.5.4) 

1 

I(f) = J f(x)dx 

o 

E f(x) = 0 

E f(x) fey) 

1 

J (l-x)f(dx) 

o 

min(x,y) 

I'~(f) 
n 
L c f(x ) 
1 v v 

1 

= J ~(x) f(dx) 

o 
where ~ is a step function, constant except for the abscissa x where it has a jump 

v 

-c . 
v 

Before dealing with (2.5.2) we shall compare the performance of some of the 
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standard quadrature formulae, starting with Simpson's rule 

(2.5.5) I*(f) 
s 

1 412 2 4 3 
3n f(O) + 3n f(il) + 3n f(il) + 3n f(il) + •• , 

(the first term vanishes identically in our case). Hence ~ is given by 

(2.5.6) cp(x) 

Using (2.5.5) and (2.5.6) 

(2.5.7) E[I(f) - I*(f)]2 
s 

~ = 1 1 0 1 
- 3n < x < -

1 n 
5 1 2 

~2 = 1 - 3n -< x<-n 

CP3 1 7 2 
- 3n -<x n 

~ = 1 11 3 
- 3n -<x 4 n 

~ = 1 13 4 
- 3n -<x 5 n 

etc. 

gives us 

1 

I 2 [l-x-Hx)] dx 

0 

1 n 3 = - L [(1 - ~ + ~ )' 
3 v=l n v 

n 
3 <-n 
4 < -n 
5 < -n 

v/n 
n 

L 
v=l 

I [1-X_~)2dx 
(v-l)/n 

(1 v 
n 

Because of (2.5.4), this reduces to 

so that Simpson's rule performs as described by its mean square error 

(2.5.9) 

(How good is this?) To find the minimum (but so far keeping the X~ = ~), we see 
n 

from (2.5.7) (leaving out details) that we should put 

(2.5.10) 

This gives us the quadratic error 

(2.5.11) E[I(f) - I*(f)]2 

We thus have the slightly paradoxical result that Simpson's rule is 33% worse than 

the crude quadrature formula with the weights (2.5.10). It is also possible to ver

ify that, in the present case, equidistant X~'s are best. 
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This case is more general than it may appear. First, the assumption that f(x) 

form a Wiener process was used only as far as second-order properties are concerned, 

not the fact that this assumption implies normality. It is therefore enough to assume 

that f(x) is an orthogonal process with homogeneous differential variance. Secondly, 

if f(x) has some other probabilistic structure it is often possible to reduce its 

integration to a problem similar to the one we have just dealt with. Indeed, let us 

recall the manner in which we approach the question of model building for random 

phenomena. 

We are governed by two principles in order to simplify or even make possible 

specification of the whole simultaneous probability distribution. The first is to 

reduce the complexity of the phenomenon by breaking it up into pieces all of which 

can be treated as independent of each other. In this way we have only to specify the 

marginal distributions. The second guiding principle is to look for invariances, in 

time or space or with respect to transformations of the phenomenon, which leave the 

probabilities of the system unchanged. We try in this way to limit the form of the 

marginal distributions as much as possible. Successful application of these two prin-

ciples requires good intuitive understanding of the qualitative functioning of the 

system. 

A typical example of this procedure is the study of the distribution properties 

of some noise source. We try to approximate the source by regarding it as the output 

of an RC-filter with white noise as input, which means that the output is an exponen-

tial average over the input. Behind this assumption lies the hypothesis that the 

input exhibits complete independence between the events over disjoint time intervalS, 

and the hypothesis that the distributions of the white noise are invariant over time. 

We thus get the noise represented as 

t 

(2.5.12) n(t) = ex I e-S(t-s) w(ds) 

_00 

and are left with the determination of three parameters, ex, S, and the variance per 

unit time of w(t). These parameters have to be estimated from data. We get similar 

although more complicated expressions than (2.5.12) if we assume other passive fil-

ters, but the important assumption is the linear structure. The quadrature problem 

for n(t) can then be reformulated as the numerical determination of the integral 

53 



(integrating by parts) 

(2.5.13) j = I g(x) W(dx) = I G(x) W(x) dx 

over some domain. Our approximations can now be written as 

where y is a step function with the steps at x~ and the previous integrand f(x) is 

now replaced by G(x) W(x). The mean square error is then, in the same manner as 

before, found as 

(2.5.15) E[j-j*] = const. I [G(x) - y(x)]2 dx 

(Compare with (2.5.7)!) The best choice of coefficients corresponds to giving y the 

value 

(2.5.16) 1 
~+l ~ x -x 

x~+l 

I G(x) dx 

x~ 

in the interval (x~,x~+l), and (2.5.15) then reduces to 

(2.5.17) E[j-j*] 

where y~ is the "conditional variance" over (x~ ,x~+l). This is no longer uniform so 

that the best spacing is not uniform. One should, in a chapter on sample surveys, 

return to the determination of the x~, the integration design, because of the formal 

similarity of the present problem to that of optimum stratification. It is enough 

just now to realize that the choice of weights is fairly simple (see ref. 18). 

To summarize, we have found that for this type of fairly chaotic integrand we 

should stay away from the more sophisticated quadrature methods, since we actually 

lose by using them and, moreover, they often require more computing time than the 

cruder methods. 

This study should be extended to high-dimensional cases since it is these in 

which we are interested for Monte Carlo (but not necessarily for stochastic differen-

tial equations). This has not yet been done but presents a promising area of research. 

A discussion of this problem is illuminated by supplementing the above approach 
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by another, less Bayesian one, where F is given by conditions of the Lipschitz type: 

(2.5.18) If(x) - f(x')I'::'Kllx - x'll, 

We can reformulate the problem by replacing (2.5.2) by 

(2.5.19 ) min max II(f) - Ic f(x~)1 
C x~ f£F ~ 
v' 

(Discuss (2.5.19) at least in the one-dimensional case and compare with the earlier 

discussion! ) 

2.6 Conclusions. 

We have seen how to apply the Monte Carlo method not only in its simplest form 

but also in refined versions. It was observed that we can achieve considerable sav-

ings in computation time by applying some rather simple ideas for variance reduction. 

This will be useful to us in some of the later chapters of this book. 

We have also seen that the use of pseudo-random numbers in stochastic simula-

tion may be more advantageous than may appear likely at first glance. A few special 

techniques of generating pseudo-random sequences tailored to particular distributions 

were examined. 

Our discussion led us naturally to consider the performance of Monte Carlo from 

the point of view of numerical quadrature. Our knowledge of this subject is still 

very incomplete but we found as a side result how to deal with computational problems 

arising in the evaluation of stochastic integrals and in the solution of stochastic 

integral equations, as we shall be led to do repeatedly later on. 
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CHAPTER 3: 

LIMIT THEOREMS 

3.1 Limits of C'onvo1utions. 

Among the most useful results of probability theory are the probabilistic limit 

theorems, and we shall devote this chapter to the examination of a few of them from 

the computational viewpoint. 

Consider a sample xl ,x2 , .•. ,xn drawn from a probability distribution with cum

ulative distribution function F(x). Form the sum 

(3.1.1) S S 
n 

and study its behavior when n takes large values. Assume that the x's are stochas-

tically independent. 

To get some feeling for the concrete nature of the problem, we shall start from 

some special cases that are intended to illustrate the general situation. 

Assignments. 1. Let F be the distribution function corresponding to a Bernoulli 

variable 
if x < 0 

(3.1.2) if 0 < x < 1 

if 1 < x 

so that 

(3.1.3) and 

Simulate the sample on the machine for n 5,10,15, ... ,50; calculate the empir-

ical distribution function 

(3.1.4) F~(x) = (number of times that T~x)/N 

where N is the number of replications in each simulation and T is the standardized 

sum 

(3.1.5) T 
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Plot the empirical distribution functions, for instance by using the APL plotting 

routine. Choose values of p in the interval (0.2,0.8). 

2. Do the same assignment using values of p from the interval (0,0.2) or (0.8, 

1.0). Compute F~(x) not from T but from the non-standardized sum S (for the first 

interval) or n-S (for the second interval). Plot the results. 

As we know already, both assignments will result in convergence of F~(x), in 

the first case to the normal distribution function 

(3.1.6) 

x 2 
F*(x) -+-~ I e -t /2 dt 

N I2ii 
-00 

and in the second case to the Poisson distribution function 

(3.1. 7) A np 

Seeing the output from the assignment will help us to get a more concrete feeling 

for the situation and for the speed of convergence. 

If n is not large we can still compute the (theoretical) distribution function 

for S (analytically, for any F) in the following way. 
n 

Assume, first, that Xl has a discrete probability distribution with probabilities 

Pl,P2, ••• ,Pa and x2 has a (possibly different) discrete distribution with probabil

ities Ql,Q2, ••• ,qa; we assume in both cases that the values taken by Xl and x2 are 

the a and a first natural numbers, so that 

(3.1..8) 

We thus get 

(3.1.9) 

P(xl=k) = Pk; 

P(x2=k) = qk; 
a (3 

00 

LP=LQ=l 
1 k 1 k 

k = 1,2, ••• ,a 

k 1,2, ..• ,8 

P(Xl +X2 = ~) = L p(x =k)·P(x =t-k) = L p q 
k=-oo 12k ~-k 

summed over the appropriate range, where both factors of the terms are positive. It 

is clear that the possible values of xl +x2 will range from 2 to f3+a so that they are 

a+f3-l in number. The program could be organized in terms of inner products of the 

two vectors Ql and Pl, both in (a+(3)-space, 
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(3.1.10 ) 

or, in APL notation, 

(3.1.11) 

Ql = (QS.QS-l.QS-2' ••.• Q2,Ql' ~) 
a 

Pl = ~O, 0, 0, 

S 
.•• , O. 0 " Pl.P2 •••• Pa) 

Ql + (~Q). (pp)pO 

Pl + «pQ)pO). P 

Now let R be some vector with a+S-l components. e.g. 

(3.1.12) R + (-1 + (pP) + pQ) pO 

and put 

(3.1.13) R[I] + +/«-I)~Ql) x Pl 

for I = 1,2, ••• ,a+S-l; then the entries in the R-array are the desired probabilities 

in (3.1.9). or symbolically R = P * Q. the convolution between P and Q. (Note. 

however, that the values of xl +x2 have been shifted one step compared to the index 

of the R-vector.) 

In this case it seems wise not to exploit the array-handling capabilities of APL 

to their full extent, since space limitations may arise if we want to convolve prob-

ability distributions with many points. 

If we have several terms xl ,x2 ,x3 ' ••• and want to find the distribution of their 

sum, we just call in our program by a loop. In particular, we can find convolution 

If the x's have continuous probability distributions we first have to discretize 

and replace the integrals corresponding to (3.1.9) by sums. 

Assignment. Let us go back to the random number routine GAUSS discussed in chap-

ter 1. We take xl .x2 , .•• ,x12 to be uniformly distributed over the interval (0,1). 

Compute, using an APL program for convolutions, the distribution function of 

Compare it with a table of the normal distribution function. What conclusions can we 

draw concerning the accuracy of the subroutine GAUSS? 
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To get some feeling for the role played by the assumption that the x's are in-

dependent, we shall relax the condition and see what happens. 

Let xl ,x2 ,x3 ' ... be generated by a Markov chain with the I' x I' probability 

transition matrix 

.E.tl-p .E. .E. .E. 
I' ' I' I' I' 

E. .E.tl-p E. E. 
M I' I' ' I' I' {E. + (l-p)o .. ; i,j=1,2,3, ... ,I'} 

I' ~J 

E. E. E. .E.t l-p 
r r 

, 
r r 

where I' is some small integer, say 3 or 4. 

Assignment. Write a simulation program which generates the x-sequence. Pick Xl each 

time uniformly distributed over the discrete interval 1,2,3, ... ,I', and form the sum 

xl +x2+ ..• +xn for n = 5, la, 15, 20. Iterate the procedure, as described in chapter 

2, and compare the convergence of the empirical distribution functions F*(x) for the 
n 

values p = 1, .8, .6, .4, .2, o. What conclusions do you draw about the influence 

of the value of p on the behavior of F*? What does the parameter p signify in terms 
n 

of dependence between the x's? 

3.2 An Insurance Model. 

The following model has been used to describe one aspect of the business of an 

insurance company. Let time t take values 1,2,3, ..• , where we could think of the 

time unit as a fraction of one day, and associate with this time unit a probability 

p for the occurrence of exactly one claim for a particular policy out of the portfolio 

of M policies (we disregard the possibility of more than one claim per time unit). 

If a claim occurs we denote the distribution function of its size (in some monetary 

unit) by F. 

At the same time the company receives an amount, say P, in premiums paid over a 

period of one year which should be added to the initial reserve fund U available at 

the beginning of the year. 

Now we will try to get some idea of what the probability of ruin (at the end of 

the year) is; that is, the value of 

(3.2.1) p{U + P < total sum of claims} p{U + P < T} 
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where T stands for the total sum paid out. 

To get an approximation to the probability we can reason as follows. Write 

(3.2.2~ T 

where r is the number of claims and Cl ,C2 , etc., are the individual claims. The 

probability distribution of r is binomial so that, with N = 365·M, 

(3.2.3) P(r=k) k=O ,1,2, ... ,N 

(note that this assumes that claims occur independently of each other). IfN»l 
p 

and N «N, we know that this probability distribution can be approximated by the 
r 

normal one. On the other hand, if r is fixed and large, then T also has an approx-

imately normal distribution, due to the central limit theorem. 

To make this precise we note that 

N 
(3.2.4) ET I P(r=k) E(Tlr k) 

r=O 

N 
I P(r=k) • r . m rNp 

r=O 

where we have introduced the average claim 

(3.2.5) 

In a similar way 

(3.2.6) 

w:ith 

(3.2.7) 

We get 

(3.2.8) 

m ECi = I x F(dx) 

N 
I P(r=k) E(T2 Ir = k) = 

N 
I P(r=k) [ra2 + r 2m2] 

r=O r=O 

2 
(j Var(C.) 

~ 

Var(T) 

I (x_m)2 F(dx) 

o 

2 2 N[pa + m p(l-p)] 

where the variability has been split into two parts: the first due to the variation 

of the size of the claims and the other to the fluctuation of the number of claims. 

The desired approximation would then be 
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(3.2.9) P(ruin) 1 - P{T < U + P} 

(See ref. 19.) 

Before discussing the merits of the approximation, let us simulate on the com-

puter this model (due to Filip Lundberg) of the risk process of an insurance activity. 

It is enough for the present purpose to do this on a small scale, but we should try 

to represent the result as intuitively as possible. The program LUNDBERG (see 

Appendix 3, figure 3.1) corresponds to the model above with 

FUND = U 

LAM = p 

T = time parameter 

PREMIUM = P 

Three realizations are given in Appendix 3 (see figures 3.2 - 3.4). In the 

last one, ruin is seen to have occurred; in the others, ruin did not occur during 

the time interval displayed in the plots. 

Returning to (3.2.9), let us ask how reliable the approximation is. One way of 

finding out would be to use the program LUNDBERG (but without the graphical display) 

for a Monte Carlo experiment and to count the frequency of ruin out of a certain 

number of trials. 

Alternatively, we can approach the problem from the analytical and numerical 

side. Since 

(3.2.10) peT ~ x) 
N 
L P(r=k) . P{Cl +C2+ ... +Ck ~ x} 

k=O 

and since sums of independent stochastic variables give rise to convolution powers 

(note the independence assumption), we get 

N 
(3.2.11) peT ~ x) L 

k=O 

We can now use one of our programs to calculate the convolution powers for values of 

k such that the probability of occurrence is appreciable. 

Assignment. Carry this out on the computer and compare it with the approximation 

(3.2.9). Discuss the result and, possibly, alternative approaches. Use small values 

of N to keep the computing work moderate. 
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3.3 Approximations. 

We have looked into some numerical aspects of convergence to the normal and 

Poisson distributions. To deepen our understanding of how this convergence takes 

place we shall look at the behavior of normed partial sums St of the form 

(3.3.1) 

where the terms xi are independent stochastic variables with some frequency function 

f. For reasons that will be clear later on it will be illuminating to choose the 

frequency function as 

(3.3.2) f(x) ( 1 1 
2A l+l/A 

x 

o 

where A is a positive parameter. 

Ixl < 1 

Ixl > 1 

We generate a sample from f, form Mt and display it graphically. If u stands 

for a uniformly distributed stochastic variable, then v = u-a has a distribution 

function G 

(3.3.3) G(x) P{v<x} P{uA > l/x} 1 
P{u.::. l/A} 

x 

if x .::. 1, so that the frequency function is 

(3.3.4) g(x) G' (x) 
1 1 
A l+l/A 

x 

1 - l/xl/A 

Therefore w = ±u-a , with its sign randomized, has the desired frequency function. A 

possible program is the program TAIL (figure 3.5 of Appendix 3). Since the behavior 

of the tail is important, one has to discretize the stochastic variable u by small 

steps, say .0001. 

Now it is easy to generate and display the stochastic process M(t), t 1,2, ... , 

n; see the program CONTPL (figure 3.6 of Appendix 3). 

Execute CONTPL for A=1/5 and N=30. The result is shown in figure 3.7 of 

Appendix 3. For small values of t the function is a bit variable but it tends 

fairly quickly toward the value m = O. For A = 1/3 (see figure 3.8) the behavior is 

similar although less pronounced. 

When we go to larger values of A the behavior changes. For A 1/2 (figure 
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3.9) the departure is not as drastic, however, as for A 1.0 (figure 3.10) and it 

is even more obvious for A 2 (figure 3.11). 

It is easy to explain this change of behavior. Indeed, let us calculate the 

moments 

(3.3.7) ~f 
1 

={ l/(l-ap ) 
xp- l - l / a dx 

00 

if p < l/a 

if p > l/a 

Hence for A = 1/5, moments exist up to (integral) order 4; for A = 1/3 moments up to 

2. For the value A = 1/2 the mean exists, which is not the case for the remaining 

cases. The lack of convergence in these later cases simply corresponds to the law 

of large numbers not being applicable. 

The practical consequences of this simple observation are not always realized. 

An argument often heard goes as follows. In practical situations the variables en-

countered are always bounded so that moments of all orders exist and we can therefore 

put our trust in the law of large numbers. 

The argument is only superficially correct and is based on a misunderstanding of 

the question how to interpret mathematical conditions (like "moments should exist") 

in practical terms. Actually, while there may be an upper bound for the values of 

our variables, the decrease of the frequency function may be so slow that the math-

ematical notion of divergence is a better approximation to reality than convergence 

to a large value. This is the reason for the behavior we have observed; the practical 

consequences of this should be borne in mind when analyzing real data: we should not 

believe in the law of large numbers automatically, but should examine critically the 

validity of conditions necessary to guarantee its applicability. Similar statements 

hold for other probabilistic limit theorems. 

There is another, slightly more sophisticated, conclusion we can draw from our 

simulation experiment. In figures 3.7 and 3.8 of Appendix 3 the curve M looks con-

tinuous, but this is not so for figures 3.9 to 3.11. 

In the first two cases the second-order moments exist and we can apply the 

central limit theorem. Therefore the stochastic function M(t) can be approximated 

with the Wiener process (to be discussed in chapter 4), which is known to have con-
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tinuous sample functions. If the variance does not exist the approximation is in 

terms of some other stochastic process with independent increments. Thus one can 

have discontinuities; actually the probability of at least one discontinuity tends 

to 1 if the length of the time interval tends to infinity. This explains the dis

continuous behavior in the second three cases. 
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APPENDIX 3: FIGURES 
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Figure 3.1 

As initial values one could choose 

FUND + 25 

PREMIUM + 1 

LAM + .4 

M +- 5 

and obtain as output figure 3.2. 
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Figure 3.2 

66 



FUND+25 
LAM+.2 
LUNDBERG 

o 25 50 
----------1------------------------0-------------------------

1 0 
1 0 
1 0 
1 0 

1 0 
1 0 
1 0 

1 0 
1 0 

1 0 
1 0 
1 0 

1 0 
1 0 

I 0 
1 0 
1 0 

1 0 
1 0 
1 0 

1 0 

I 0 
1 0 

I 0 

I 0 
I 0 
I 0 
I 0 
I 0 
I 0 
I 0 
I 0 
I 0 
1 0 
I 0 
I 0 
1 0 
1 0 
1 0 
1 0 
I 0 

I 0 
1 0 

Figure 3.3 
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Figure 3.4 
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CHAPTER 4: 

STOCHASTIC PROCESSES 

4.1 General Properties. 

We have until now been concerned mainly with sequerices of independent and iden-

tically distributed stochastic variables. When we turn to situations in which we 

believe that either the variables are dependent upon each other or their probability 

distributions change with time, or both, the mathematical tools take. on a quite dif-

ferent appearance. The relevant tool for studying such situations is the theory of 

random functions, that is, the theory of stochastic processes. 

The formal definition of a stochastic process is simple: it is a family of indexed 

stochastic variables {xt ; te:T}. The subscript "t" can here be of quite general type 

and range over some set T of values. We shall usually take T to be the set of in-

tegers, or a subset of it. This definition may be misleading because of its general-

ity; the theory of stochastic processes becomes useful only when we specialize the 

definition in a more precise manner. 

How do we describe the probability properties of a stochastic process Xt ? A 

minimal, and seldom sufficient, description is obtained by giving the (first-order 

marginal) distribution functions 

(4.1.1) 

Knowing Ft we can calculate other quantities that will help in clarifying the struc

ture of xt ' One such quantity is the mean value function 

(4.1.2) m(t) 

(if the integral exists). 

Knowing Ft alone does not help us in understanding the stochastic dependence 

between, say, Xs and xt ' This can be done by specifying the (second-order marginal) 

distribution functions 

(4.1.3) 

An important derived quantity is the covariance function 
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00 00 

(4.1.4) 
_00 _00 

and the corresponding correlation function 

(4.1.5) (s, t) = r(s,t) 

Ir(s,s) r(t,t) 

We can of course go ahead and specify higher-order marginal distributions of 

order 3, 4 and so on. We shall for the moment, however, be satisfied with those of 

the first and second order and thus discuss second-order theory of stochastic pro-

cesses. 

It will be illuminating at this point to take a look at data generated on the 

computer, but first without knowing what the underlying program is. The curve in 

figure 4.2 of Appendix 4 is supposed to represent (simulated) temperature data over 

a period of 5 years of monthly averages at one location. Here t = 1 means January 

of the first year, t = 2 means February of that year, and so on. The data were ob-

tained by the program TEMP (figure 4.1). 

Looking at this realization of the stochastic process, we get some idea of the 

seasonal variation over the year. This periodic fluctuation is of course hidden by 

random changes for the individual months. To eliminate these random changes at least 

to some extent, we shall take 10 independent realizations x~i) (i = 1,2, ••• ,10) of 

the same stochastic process and form the estimate m~ (APL program AVERAGE, fig. 4.3): 

(4.1.6) m* t 
1 10 (i) 

= - L x 
10 i=l t 

of mt ; m~ is plotted in figure 4.4. It illustrates the effect of the law of large 

numbers (large here meaning 10) and gives a good idea of the mean value function: 

the time average (4.1.6) has got closer to the mean value function which is a theor-

etical concept, not an empirical one. 

What we have done here is to form an approximation to the ensemble average 

(4.1.2) by using (4.1.6) and repeated independent realizations. Could we not have 

tried to use a time average (program TIMEAVERAGE, figure 4.5) from one realization 

(4.1. 7) 
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Doing this we get the plot in figure 4.6, which also clearly brings out the 

seasonal variation over the year. Notice, however, that (4.1.7) is based on the ass-

umption that the 5 sections of xl ,x2 ' ... ,x60 ' consisting of one year each, have the 

same stochastic properties (at least as far as the mean value function is concerned). 

If we suspect that a secular variation, a trend, is present, we would have to be more 

careful about averaging over time. 

The model generating xt was in this case simply 

(4.1. 8) 
27r(t-7) 

const + a . cos 12 + nt 

where nt was white noise; that is, nt were independent and identically distributed 

stochastic variables (in the present case nt had, in particular, a uniform distribu

tion over the interval (0,3». 

Note that we can speak of two types of dependence for stochastic processes: 

(i) dependence of XIS upon time 

(ii) dependence between XIS 

In the model (4.1.8) we had only type (i) dependence. This implies that r(s,t) = 

p(s,t) = 0 if s # t. Let us now look at dependence of type (ii), which is rather 

more difficult to handle. We shall illustrate it by an example. 

4.2 An Investment Example. 

Consider an investment company where the incoming stream of capital to be inves-

ted is described by a Poisson process (see chapter 5) with intensity A per unit time 

and where the size of a particular contribution has a distribution function F. The 

durations have a distribution function G. The interest rate is denoted by a and we 

will be using a continuous-time model so that the value of $1 after t time units is 

$ at 
e • 

Assume that we start with total capital zero and study how the buildup occurs. 

The program INVEST (figure 4.7 of Appendix 4) simulates this and we present two graphs 

of output. In figure 4.8 A is small; in figure 4.9 it is larger. In both cases the 

behavior seems to settle down to statistical equilibrium, slowly in the first case and 

more rapidly in the second. We can derive the mean value function m(t) as follows. 

The total investment xt at time t gets contributions from intervals (s,s+ds) 
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with 0 < s < t. The expected value of xt is made up additively from these contribu

tions and gives ~~ the expression (4.2.2) by the following reasoning. An investment 

° (t-s) . made in the time interval (s,s+ds) will have the value e at t1me t if it is 

still there. The probability of this being the case is the same as the probability 

that the duration is at least equal to t-s: 

(4.2.1) P(duration > t-s) = 1 - G(t-s) 

If m is the mean value of the investment at the time when it is made, we get 

t 

(4.2.2) m(t) = Am I eo(t-s) [1 - G(t-s)] ds 

o 
When t tends to infinity we have 

(4.2.3) lim m(t) 
t--

if the integral is finite. 

= Am I eOS [L - G(s)] ds 

o 

By a similar but more complicated argument we can find the covariance function 

r(s,t). It can be shown that if s and t + 00 with t-s = h > 0, the limiting covar-

iance is 

00 

(4.2.4) r(h) = (m2 + 0 2 ) A I e(2s+h)o [1 - F(s+h)] ds 

o 
if the expression for r(O) is finite; here 0 2 stands for the variance of F. 

This behavior is typical of many cases encountered in applied probability: there 

is first a transient stage where development occurs, then a stationary stage charac-

terized by statistical equilibrium. The two stages are of course not separated by a 

clear dividing line. The transient is usually difficult to treat analytically, but 

for the stationary stage we have some well-developed mathematical techniques avail-

able; this leads us to the concept of a stationary stochastic process. 

4.3 Stationary Stochastic Processes. 

We shall say that a stochastic process xt ' with marginal distribution functions 

F , is stationary if 
t l ,t2 ,···,tn 

(4.3.1) 
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This implies in particular that Ft does not depend on t so that m(t) is just some con

stant, say ~, and that F t depends only upon the time difference t-s; thus the co-s, 

variance function r(s,t) can be written as a function of a single argument t-s, viz. 

r(t-s) • 

Let us assume that the mean m = 0; if not, we can always subtract the constant 

m from all the observations xt (assuming, of course, that m is knoWQ; otherwise see 

chapter 8). Introduce the covariance matrix 

(4.3.2) R = {r .. ; i,j = 1,2, ••. ,n} 
1J 

where elements are constant along diagonals i-j = h. Such a matrix is called a 

Toeplitz matrix and plays an important role in the theory of stationary stochastic 

processes; see ref. 20. 

The matrix (4.3.2) is non-negative definite; that is, for any vector z ¥ 0 in 

Rn we have 

(4.3.3) 

since 

(4.3.4) 

n 
z*Rz = L z.z.r .. > 0 

i,j=l 1 J 1-J 

z*Rz 

A consequence of this property is the theorem of Herglotz that asserts that there is 

a uniquely determined bounded measure F, the spectral distribution function, such that 

(4.3.5) 

1T 

r t = 2 I cos tA F(dA); t 

o 
o ,±l ,±2, ... 

The program HERGLOTZ effecting this Fourier inversion will be given in chapter 8. We 

shall often deal with the case where F is absolutely continuous with a density f = F', 

so that 

(4.3.6) 

21T 

r t = 2 J cos tA f(A) dA; t = 0,±1,±2, .•• 

o 
Of course, when F is represented in the machine it will often be practical to approx-

imate it discretely, so that f is then really a vector with a finite number of com-

ponents. In the special ease of a constant spectral density (white noise) r t vanishes 

except for t = 0, so that R is simply a diagonal matrix. Otherwise the behavior of 
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the non-diagonal elements characterizes the dependence between the x's. The impor-

tance of the stationary process consists in its providing a very simple way of model-

ling dependence, but it is of course limited to situations where we believe that 

statistical equilibrium is a good approximation to reality. 

The second-order moments do not specify the probability distributions uniquely. 

One possible and certainly the most frequently used specification is the assumption 

that the joint probability distribution is normal with a frequency function 

(4.3.7) p(x) 

where R has been assumed non-singular (a fact which actually follows from the repre

sentation (4.3.6)). We note the appearance of the inverse R- l which is typical of 

many problems in stationary stochastic processes. If the inversion cannot be done in 

closed form it has to be done numerically, and it is then useful to take advantage of 

the Toeplitz character of the covariance matrix to save space and computing time (see 

the APL function TINV, figure 4.10 of Appendix 4). 

Assignment. Let xt be a stochastic process with a known covariance sequence r O,rl ,r2 , 

In order to predict xn+l when xl ,x2 , ... ,xn have been observed, we use a linear 

function 

(4.3.8) x~'; 
n+l 

n 

L 
v=l 

c x v v 

where the c's are chosen so that the mean square error is minimized: 

MSE 

This gives us, for k 1,2, ... ,n 

(4.3.9) 

or, in matrix notation, 

(4.3.10) Rc p, c 
-1 

R P 

min 

o 

where c is the column vector (cl,cl' •.• ,cn ) and p the column vector (rl ,r2 , ... ,rn ). 

This gives 
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(4.3.11) MSE . 
m~n 

-1 
= r O - c*R p 

First, choose a covariance sequence and compute MSEmin for different values of n; 

what do you observe? 

Secondly, assume that the r's are not known but that we use our observations 

(4.3.l2) r* v 

n-h 
=! L 

n v=l 
x x . 
v v+h' h=O,1,2, ... ,R, 

To use the last R, observed values, we replace R by the R, x R, matrix R* with entries 

as in (4.3.l2), and similarly for p. Study how the resulting prediction error varies 

with R, and try to explain the somewhat paradoxical result in an intuitive way. 

4.4 Markov Chains. 

The two main classes of stochastic processes are the stationary ones and the 

Markov processes. We now turn to the simplest type of Markov process, the Markov 

chain. We shall examine a particular case which brings out some of the computational 

problems arising in the study of Markov chains. 

Consider a paged computing system; that is, one in which the program to be ex-

ecuted does not reside totally in high-speed store during execution but is brought in 

"page" by "page" as instructions in a certain page are referenced. Enumerate the 

pages available in some secondary memory by 1,2,3, ••• ,n and assume that core (also 

organized in pages of the same size) can contain c pages, where c is considerably less 

than n. Assume that the pages being referenced successively are n(1},n(2},n(3}, .... 

If a referenced page is not already in core it has to be pulled in and some other page 

pushed out. The decision which page to push out is determined by some rule, the pag-

ing algorithm, whose purpose it is to reduce the paging rate, that is the probability 

that a page fault occurs at a given time. 

If a page fault occurred at a certain time t, and if we knew what the future of 

the sequence n(t+l},n(t+2},n(t+3}, ••• was, we could reduce the paging to a minimum 

(assuming here that the resulting overhead computing is acceptable). This is, how-

ever, not the case, so we have to use probabilistic considerations. 

Let us try the following model. The sequence {n(t}; t = 1,2,3, ••• } forms a 

Markov process with transition probabilities 
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(4.4.1) P{n(t+l) jln(t)=i} 

forming an n x n matrix P. For a given initial load in core and with the knowledge 

of Pwe can, at least in principle, get the expected paging rate for a particular 

paging algorithm. In this way we can compare competing algorithms and should be able 

to make a rational choice. 

There are, however, several obstacles in the way. An obvious one is that the 

problem may be analytically untractable; we have therefore to take recourse to sim-

ulation. This may not be a serious drawback. 

We meet a difficulty of a different order of magnitude when we try to specify P. 

Little is known empirically about the statistical properties of {net)} and even if we 

had access to good data there would be nothing making it plausible that P will not 

change in time, between users, and between installations. This forces us to look for 

algorithms that are not based on ~ priori knowledge of P, although we can of course 

gain some insight into the problem by studying how well we could do if we postulated 

the values of P. 

We shall below assume the following block structure for P, which seems motivated 

by the modular form of many programs and which has also received some empirical 

support. The values 1,2,3, ... ,n are separated into blocks 

Bl : 1,2, ... ,b2-1 

B2 : b2 ,b2+1, ... ,b 3-1 

(4.4.2) B3: b3 ,b 3+1, ... ,b4-1 

A stochastic r x r matrix 

(4.4.3) IT = {ITk~; k,~ = 1,2, ... ,r} 

describes the frequency of transitions between blocks of pages. Between blocks we 

assume a uniform distribution over pages and inside blocks a cyclic behavior, so that 

if i and j belong to different blocks k and ~ 

(4.4.4) p .. 
lJ 

ITk~ . (l/number of pages in block ~) 
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and if i and j belong to the same block k 

(4.4.5) p .• 
~J { ~k if j = 1 + i modulo the length of block k 

o otherwise 

Consider the following paging algorithms. 

RANDOM: The page to be pushed out is selected at random from the ones in 

core. Computationally simple. 

FIFO (first in, first out): The "oldest" page in core is pushed out. This is 

also easy to compute. 

LIFO (last in, first out): The last page is always pushed out (or a simplifi-

cation of this). 

PROBl: The page j in core for which Pj 

the equilibrium probability. 

min is pushed out, where p. stands for 
] 

PROB2: Push out the page j for which Pij min, where i is the page being 

brought into core. 

PROB3: Push out the page j for which m .. = max, where m .. is expected time 
~J ~J 

until j is referenced for the first time after i. 

The last three algorithms may require a bit more overhead computing. Unfortun-

ately, they also require knowledge of P. A more adaptive approach is via 

EXPl: Keep track of the frequencies f. with which the various pages are being 
] 

referenced and push out j where f. = min. 
] 

To find the m .. for the algorithm PROB3 we can reason as follows. Assume that 
~J 

we are referencing page i and look one step further ahead. Then (assuming that the 

mean values exist) 

(4.4.6) m .. = L P·k(m.· + 1) + p .. = 1 + L P·km.· 
~J kij ~ KJ ~J kij ~ KJ 

so that the column vecto.r m. = (mI' ,m2 . , ••• ,m .) satisfies 
] ] ] nJ 

(4.4.7) {I-A.)m.=e 
] ] 

e being the column vector (1,1, .•• ,1) and Ai the P matrix with the elements in the 

jth column replaced by zeroes. Hence 

(4.4.8) 
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Assignments. 1. Simulate the behavior of at least two paging algorithms for given 

n (say 20) and IT. Note that the approach to equilibrium may take a long time if the 

initial load of pages in core is unfavorable for some algorithms. 

Do this for different values of c between 1 and n and plot the observed paging 

rule against c. 

2. A program consists of n blocks Bl ,B2 ,B3 , ... ,Bn of sizes sl,s2,s3, .•• ,sn; the 

sizes are expressed in terms of some mUltiple of a byte. The blocks call each other 

in an order that depends on the input data; some calls Bi + Bj occur often, others 

are less frequent. Assume that these transition probabilities p .. are (at least ap-
1J 

proximately) known and that the calls can be regarded as a stationary Markov chain. 

We want to combine the calls into an arbitrary number r of modules Ml ,M2 ,··· ,Mr , 

where the only restriction is that the size of any module must be less than some given 

constant c (bytes); c may be thought of as the page size. We could write 

with the restriction that 

B. ,B. , ••• 
11 12 

B. ,B. , ••• 
J 1 J 2 

s. + s. + ... < c 
11 12 

s. + s. + ••• < c 
Jl J2 

into mutually exclusive modules and be exhaustive. This rearrangement has the aim 

that any module should call any other module as seldom as possible. More precisely, 

for the complementary probability IT of calling the same module we want 

IT IT .. 
1J 

max 

where IT .. is the absolute probability of the transition B. + B.. Hence, if 
1J 1 J 

TRANS = {p .. } 
1J 

we first have to find the equilibrium distribution ITl ,IT2 , ... ,ITn of the Markov chains 

satisfying 
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or, in matrix form, 

IT. 
~ 

EQ = EQ . TRANS 

where EQ = ITl ,IT 2 , ••• ,ITn • Computationally it may be better to get EQ by forming 

248 TRANS, TRANS, TRANS, etc., and take EQ = first row of the limit. This will also 

give some idea of how long it takes to reach statistical equilibrium. Once we have 

obtained EQ, by one method or another, we get IT .. = IT.p ... 
~J ~ ~J 

Try this for the matrix: 

.4 .1 .1 .3 .1 

.1 .5 .3 .05 .05 

TRANS = .05 .4 .5 .05 0 

.4 .1 .1 .35 .05 

.05 .4 .1 .05 .4 

and with c = 8, sl = 2, s2 = 2, s3 = 6, s4 = 5, Ss = 3. Try different partitions 

including the improper one with Bl = Ml , B2 = M2 , B3 = M3, B4 = M4 , BS = MS' 

The APL programs for this are given in Appendix 4 as figures 4.11 and 4.12. 
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APPENDIX 4: FIGURES 

VTEMP[mV 
V TEMP 

[1] X+1S+(10x202xo(-7+160)+12)+O.03 x ?60p100 
[2] M+(60 2)pO 
[ 3] M[ ; 1]+ 160 
[4] M[ ;2]+X 

V 

Figure 4.1 

o 
(!) 

--------------------------------------------------------~o 0 

Lf) 
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VAVf,'RAG!(OJV • AVf,'RA GE 
[1 J 1-0 
[21 X-o 
[ ,J , - 0 
[' J n ... N+1 
[5 J rP,MP 
[' J 1 ... 1+X 
[ 7J . ( .. (N S 1 0){14 
[' J /</+ ( +1 0 )"Y • 

Figure 14. 3 

0 

• 0 

~ 

, 
~ • , 
~ 0 

M 
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V TIMEA VERA GE[ OJ V 
V TIMEAVERAGE 

[1] TEMP 
[2J Y+(fS)XX[112J+X[12+112]+X[24+112J+X[36+112J+X[48+112J 

V 

Figure 4.5 

________________________________________________________ ~o 

o 
(f) 
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[1] 
[2] 
[ 3] 
[ 4J 
[5] 
[6J 
[ 7] 
[ 8J 
[9] 
[10 J 
[ 11J 
[12J 
[13J 
[14] 
[15] 
[16J 
[17 ] 
[18J 
[19] 
[20] 
[21J 
[22] 
[23J 

VINVEST[DJv 
V INVEST 

STATE+DUR+tO 
T+1 
TOTAL+RUNpO 
R+pF 

V 

L+pMU 
TRI+(tR)o.:nR 
CUMF+TRI +. xF 

BANKLO:+«p.STATE»0)/BANKL1 
TOTAL[TJ+O 
+BANKL2 

BANKL1:TOTAL[TJ++/STATE 
PDROP+MU[LlDURJ 
DROP+(0.001x?(pSTATE)p1000)~PDROP 
DUR+( 1-DROP)/DUR 
STATE+( 1-DROP) /STATE 

BANKL2:E+P~0.001x?1000 

DUR+DUR+1 
+(1-E)/EANKL4 
STATE+STATE.1++/CUMF<0.001x?1000 
DUR+DUR.1 

EANKL4: T+T+1 
STATE+STATEx1+INTERESTxTSTEP 
+(T~RUNJ /EANKLO 

Figure 4.7 
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VEQUIL[OJV 
v EQUIL TRANS 

[1 J I+l 
[2J EL:TRANS+TRANS+.xTRANS 
[3J E+r/(r/[lJ TRANS)-L/[lJ TRANS 
[4J I+I+l 
[S] ~(R>ERROR)/EL 
[6J EQ+TRANS[l;J 

[1J 
[2J 
[3J 
[4 J 
[ s J 
[6 J 
[7J 
[ 8 J 
[ 9J 
[10J 
[11J 
[12] 
[13] 
[14J 
[lSJ 
[ 16] 
[17J 
[18 J 
[19] 
[20J 

V 

Figure 4.11 

VREARR[ OJ V 
V REARR TRANS 

N+ (pTRANS) [1 J 
I+l 

V 

B+(N,N)pO 
RL1:'TYPE BLOCK NO. ';I 

V+,D 
B[I;tpVJ+V 
I+I+l 
~«+/+/B[tI-l;J>O)<N)/RLl 
NBLOCKS+I-l 
~«r/+/(L[B+B=OJxB>0»~PAGRSIZR)/RL2 
'IMPOSSIBLE REARRANGEMENT' 
~O 

RL2:TRANS+(~(N,N)pRQ)xTRANS 
I+l 
SUM+O 

RL3:V+(B[I;]>0)/B[I;] 
SUM+SUM++/+/TRANS[V;VJ 
I+I+l 
~(I~NBLOCKS)/RL3 
'PAGING RATR WILL BE ';l-SUM 

Figure 4.12 
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CHAPTER 5: 

PARTICULAR STOCHASTIC PROCESSES 

5.1 A Growth Model. 

We now turn to special types of stochastic processes met in applications. Con-

sider the following problem involving a growth model. 

A population is described as follows. The number net) of individuals at a cer-

tain time t can fluctuate between the values 0 and N. We shall use a birth and death 

process such that if net) = n then the conditional distribution at t+h is given by 

( P[n(t+h) n-lJ = )l h + o(h) 
n 

(5.1.1) P[n(t+h) nJ = 1 - )l h - A h + o(h) n n 

P[n(t+h) n+lJ A h + o(h) 
n 

for 0 < n < N, and with obvious modifications if n = 0 or n = N. This means that )In 

plays the role of the death intensity and An of the birth intensity. Introducing the 

probability functions 

(5.1.2) 

we get 

(5.1.3) 

p (t) = P[n(t) = nJ 
n 

p (t+h) = p let) A Ih + p (t)[l-A h-)l hJ + p l(t»)l Ih + o(h) n n- n- n n n n+ n+ 

and modified relations for n = 0 and n N. This leads to the classical differential 

equation for a birth and death process 

o < n < N 

If the popUlation is of size i at time t = 0 we have to solve the differential equa-

tions in (5.1.4) together with the initial conditions 

lifn=i 
(5.1.5) 

o otherwise 
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We shall be interested in what happens as t grows and shall look at the partic-

ular case of constant mortality ~n = ~ and a birthrate intensity of the form 

(5.1.6) A 
n 

It is obvious that {Pn(t)} will approach an equilibrium distribution ITO,IT1, .•• ,ITN 

satisfying 

(5.1. 7) o 

o 

An_1ITn_l 

AN_1ITN_l 

(A +~)IT + ~ p n n n n+l n+l 
o < n < N 

This is just (5.1.4) with the time derivatives equal to zero. 

It is less easy to get some idea of the speed of convergence: how fast does the 

transient die out? It is true that (5.1.4) looks simple enough, since it is just a 

finite system of first-order differential equations with constant coefficients, so 

that the solutions are combinations of exponential functions (with possible degener-

acies). This would make an analytic treatment possible. In a practical situation a 

numerical integration of (5.1.4) may, however, be preferable and represent a wiser 

allocation of human resources. We also rule out the simulation approach here since 

we can, with a computing effort of about the same size, get a more definitive answer 

from the numerical integration. We shall later on meet a case where the opposite 

holds true. 

Let us now make a comment on the scheme of numerical integration. We shall start 

from (5.1.3), leaving out the o(h) term. When we approximate a continuous-time model 

with a discrete one we have to make sure that the solution possesses the qualitative 

features asked of it ~ priori. In the present case {Pn(t)} should be a probability 

distribution, so 

summing to one. 

vex combinations 

equation (5.1.3) 

(5.1.8) 

that the features needed are 1) non-negative values 

We can guarantee this here since in 

(if hI. +h~ < 1) 
n n- so that positivity 

we get 

N N 

L 
n=O 

p (t + h) = 
n L 

n=O 
p (t) 
n 

going from t to 

is preserved. 

and 2) values 

t+h we form con-

Summing the 

so that the total sum is preserved: if we started with the value one in the initial 
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distribution {p (O)}, {p (t)} would be a probability distribution for all t. 
n n 

As an illustration we display the graphs representing the transient behavior in 

figures 5.2 through 5.5, of Appendix 5. Look also at the program GROW given in figure 

5.1. We have used N = 20, ~ = 1, a = 2 and b = 1, i = 4. 

5.2 The Random Phase Model. 

The following stochastic process is sometimes a realistic model. It is defined 

for integral values of t, and its value xt is assumed to be made up additively from 

individual harmonic contributions of the type A COS(At+$). Here A is the amplitude, 

A the period and $ the phase. We get 

(5.2.1) x = 
t I 

v=l 
A cosCA t + $ ) 

V V V 

To specify the probabilistic properties of the process we shall ask that 

(5.2.2) 
(i) Av's and AV'S are given numbers 

(ii) $v's are given stochastic variables, independent and R(0,2TI) 

The mean value function is 

(5.2.3) 

and the 

(5.2.4) 

mt = I A E COS(A t + $ ) = I v v v v=l 

covariance 

r( s, t) 

function 

Ex x 
s t 

= ~ I 
v=l 

v-I 

is obtained as 

I 
v=l 

2 'IT I {COS 2(A)t-S» 

$=0 

2TI 

A ~TI I COS(Avt + $)d$ v ° 
$=0 

Hence, in terms of (4.3.5), we have a discrete spectral distribution with jumps at 

the frequencies A and of size A2/4 = F . 
V V V 

Note that r(s,t) depends only upon the time difference t-s. It can also be shown 

that (4.3.1) holds so that the stochastic process is actually stationary. The reader 

is advised to try to prove that this is so. 

This model is, for obvious reasons, called the random phase mode; we shall 
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have occasion to return to it in chapter 8. 

Assignment. For a given vector F of length M with positive components, write a pro-

gram to generate a stochastic process for t = 1,2,3, ... ,N according to (5.2.1) where 

we have for the frequencies AV th ITv/m the spectral mass Fv = the v component above. 

Use the result to study the mean value and covariance functions. Take N = 20, M = 

30. Note the fOllowing. When we form the time average 

(5.2.5) m* 

we cannot be quite sure that the law of large numbers will operate to our advantage: 

the x's are not independent (also, of course, the sample size N is rather small here). 

Does the estimate m* behave in a stable manner when you iterate the procedure in 

(5.2.5)? 

5.3 Renewal Processes. 

An important extension of the Poisson process is the renewal process, which is 

defined as follows. 

On the real line events occur at certain time points ..• t_ l ,tO,tl ,t2 , ..• defined 

through the random mechanism 

(5.3.1) 

(i) all time differences Sv = tv+l-tv are distributed 

according to one and the same probability distribution F. 

(ii) all time differences sv are stochastically independent 

of each other. 

We also need some kind of critical condition to start the process. Here we shall 

do this by assuming that to = 0 and only consider positive values of v. Another pos

sibility would be to assume that statistical equilibrium has been reached, so that 

the probability of finding one event in an interval (t,t+h) will depend only upon h, 

not upon t. 

A sort of mean value function m(t) is introduced as 

(5.3.2) m(t) = E{number of events in (O,t)} 

and we shall now get an analytical expression for it. 
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(5.3.3) Pn = P{exactly n events in (O,t)} 

p{t < t and t +1 > t} n - n 

Notice that tn can be regarded as the sum of n independent stochastic variables, each 

with the distribution function P. Hence 

(5.3.4) 

Therefore 

(5.3.5) 

Pn = p{t < t} - p{t 1 < t} n - n+ -
= pn*(t) _ p(n+l)*(t) 

met) = r n p 
n=l n 

= P(t) - p2*(t) 

+ 2 p2*(t) - 2p3*(t) 

+ 3p3*(t) - 3p4*(t) 

which, assuming that the series converges, can be rearranged as 

(5.3.6) met) = r pn*(t) 
n=l 

Also note the following relation, obtained by convolving (5.3.6) with P: 

(5.3.7) m * P = r ~* = m - P 
2 

which is the integral equation 

t 

(5.3.8) met) = p(t) + f P(t-s) m(ds) 

° a classical relation known as the renewal equation. Numerically it may be easier to 

get m by solving (5.3.8) since the system of linear equations which is its discrete 

counterpart can be solved directly with no explicit matrix inversion. 

The program RENE~AL (see figure 5.B of Appendix 5) does this. It seems plausible 

that as t becomes large met) should grow linearly in the asymptotic sense. Indeed, 

the law of large numbers tells us that, if the mean value ~ of P is finite, then 

tn/n ~~. This in turn makes the above statement seem reasonable. To see whether 

we can get some experimental support for this conjecture, we run RENEWAL with the 

probabilities .2, .1, .3, .4 at the values t = 1, 2, 3, 4. We get the result shown 
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in figure 5.7,. It demonstrates a convergent behavior for m(t)/t, although a rather 

slow one, to l/~, which is in this case .3448. 

For an analytic discussion of the renewal problem, see ref. 16, Chapter XI. 
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CHAPTER 6: 

DECISION PROBLEMS 

6.1 Generalities. 

One formulation of the general decision problem starts from a set of possible 

stochastic models specifying the resulting probability distributions P on some sam
a 

ple space X. Here a is a general parameter in some parameter space A. Both X and A 

can, of course, be high-dimensional vector spaces or function spaces. 

Using an observation XgX we want to select a decision d from the set D of avail-

able decisions, and we want to do it in such a manner that the expected cost is made 

small. This assumes a cost function c(d,a), which is the cost associated with the 

decision d if P is the true probability distribution; the parameter is assumed to be 
a 

unknown to the decision-maker. In other words, we compute the risk associated with 

a particular decision function 

(6.1.1) 

as 

(6.1.2) 

o :X ~ D 

R(o,a) = I c(o(x),a) Pa(dx) 

X 

The problem is then reduced to finding that (or those) 0 that give 

(6.1.3) 

if such functions 0 exist. 

min R(o,a) 
o 

But here we meet what has been called the uniformity problem in decision theory. 

It may be that (6.1.3) cannot be solved because of its dependence upon a. To illus-

trate this, assume that we have access to only two decision functions, 01 and O2, 

and that their risk functions look as in figure 1. Here it is obvious that none of 

the o's achieve the desired minimum uniformly in a, and this is not to be considered 

an atypical case, but on the contrary the usual one. 

Many approaches have been suggested to avoid this difficulty, and we shall men-

tion two here. 
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R(o,a.) 

a. 

Figure 1 

The first is the Bayes approach, in which one assumes that a. can be treated as 

a stochastic variable with some (known) ~ priori probability distribution TI(a.). We 

can then ask for a Bayes solution 0B such that 

(6.1.4) Err R(oB'a.) = I R(OB'a.) 
A 

rr(da.) = min 
a. 

It does not, sometimes, even make sense to speak of a probability distribution 

over the state space A; at other times it may make sense but the distribution may be 

unknown. The computational difficulties associated with the Bayes approach have in 

recent years come to be realized. These, rather than philosophical difficulties, are 

the main stumbling block, and they are due to the frequent high dimensionality of the 

state space. It should be remembered that the state space is the ~posteriori prob-

ability function, and is thus a function space rather than a low-dimensional vector 

space. The quest for higher computational efficiency - for "fast Bayes methods" -

deserves more study. 

Another approach is to appeal to the mini-max criterion and ask for a solution 

OM solving the extremum problem 

(6.1.5) max R(o,a.) = min 
a. a. 

This is quite conservative: we look at the worst possible value of a. for a given 

decision function ° and then try to make this maximum as small as possible. 

In order to make the preceding discussion more concrete we shall consider the 
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following problem, belonging to the area called stochastic approximation. 

6.2 A Stochastic Approximation Problem. 

A stochastic process y(a), where a takes discrete and equidistant values in (0,1), 

is made up of two parts, a systematic component m(a) and a noise term E(a): 

(6.2.1) y(a) m(a) + da) 

Having access to p observations y(al ),y(a2 ), ..• ,y(ap )' we want to estimate m(a) by 

some linear estimate m*(a) so that 

(6.2.2) 

1 

E J [m(a) - m*(a)]2 da min 

o 
The term E(a) represents white noise, with EE(a) - O. This makes it reasonable to 

use as a cost function c = -I where 

(6.2.3) 

1 

I = J [m(a) - m*(a)]2 da 

o 
We now add the assumption that m is generated by some stochastic mechanism, so 

that we can deal with m(a) as a stochastic process. To be more specific, the ~ 

priori distribution of m is specified by the relation m(a) = k'a(l-a)+n(a), where 

n(a) has mean zero and is formed as a moving average 

(6.2.3a) n(a) = a L w n 
\i a+\i 

\i 

in white noise n. Both nand E are assumed to have jointly normal probability dis-

tributions, n independent of E, En = 0, En 2 = 1. 

It is possible to show that, whatever the probability distributions are, to 

minimize (6.2.2) we should use the conditional expected value (or regression) 

(6.2.4) 

But since regression functions for normal distributions are known to be linear, 

(6.2.4) is equivalent to finding the best linear approximation (regression) of the form 

(6.2.5) ca(l-a) + L c [n(a) + E(a )] 
\i \i \i 

so that 
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(6.2.6) 

Expanding Q, we get 

Q = E(n(a) - L c [n(a ) + e(av)]2 = 
v v 

min 
c 

v 

Q = R(O) + L c c [R(a -a ) + a cr2] - 2 L Cv R(av-a) v ~ v ~ v~ 

where R is the covariance function of the n-process, so that to achieve the minimum 

in (6.2.6) the column vector c = (cl ,c2 , ••• ,cp ) should be 

(6.2.7) 2 -1 c = (R + cr I) p 
a 

where Pa stands for the column vector R(a-al ),R(a-a2), ..• ,R(a-ap )' The resulting 

form of Q is then 

(6.2.8) 

and m* is given by (6.2.5). 

This solution has been coded (see the programs in Appendix 6) and can conven-

iently be used together with a graphical representation routine. 

A similar problem of considerable interest is obtained when we have access to 

experimental data as above and want to use them in order to plan a further experiment 

designed for the purpose of locating the maximum of m(a). The reader is advised to 

experiment with different strategies: locate the a's in such a way that as much in for-

mati on as possible is obtained concerning that portion of the m-function that is of 

interest, say the region where m takes its largest values. A set of programs is given 

in Appendix 6, together with descriptions of them and the output of a run. Most of 

the programming for this section was done by Mr. R. Lepping, a graduat,e student at 

Brown University. 

6.3 An Insurance Game. 

Two insurance companies compete for portfolios of policies. In each portfolio 

claims are generated as follows during one time period (see also section 3.1). The 

number of claims has a Poisson distribution with parameter a, the size of a claim 

has a Pareto frequency function 
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(6.3.1) f(x) { const 

o 

x -s x > y 

x < y 

and we assume independence between all these stochastic variables. 

Now we take a Bayesian point of view and assume some probabilistic mechanism that 

gives rise to the values a, 8, y and appeal to this ~priori probability mechanism 

once for each portfolio. 

For each time-period each player (company) bids on each portfolio using his pre

vious experience, except in the first period when no experience is available. The 

bid has the form of a premium. The lowest bid wins the portfolio. 

Now we see what happens during the following period. If the total claim for one 

portfolio exceeded the premium this would result in a loss for the player who won 

the contract, and vice versa. The other players would not be affected. 

Going through several time periods, the players try to adjust their bids in order 

to maximize profit. At present it is intended that they do their risk-taking intuit

ively, but the interested reader is advised to look into algorithmic-analytic alter

natives. 

The game could be played by two (or more) companies, each company being made 

up of 5-10 persons. A referee sits at the terminal and presents each company's 

data to that company but not to the others. 

6.4 Design of Experiments. 

There are indications that interactive computing will be a potent tool for the 

design of experiments. To get some feeling for the way in which this may develop, 

we shall study a special case. 

Assume that we can observe a stochastic variable y(x) depending upon a design 

parameter x, 0 < x ~ 1, such that 

(6.4.1) y(x) f(x) + n(x) 

where the stochastic term, the statistical noise n(x), will be assumed to be N(0,a2 ), 

105 



known cr, independent observations and with some deterministic component that is not 

completely known to us. Our resources allow us to take a sample of size S but we 

can allocate them to different values of x. 

Assume that we use the r+l values x = 0,1/r,2/r, .•• ,(r-l)/r,1. At each of these 

values of x we allocate n observations, so that n = [S/(r+l]. Let us assume that 

f(x) is a polynomial of order p but we are not sure that the term of order p is nec-

essary. Hence we want to test the value of p. 

First, it is clear that an argument based on the concept of sufficient statistics 

would show that the data are equivalent to having just one observation at each x but 

with cr 2 replaced by cr 2/n. It is convenient to use the orthogonal polynomials up to 

order p over the set of x's; i.e. 

(6.4.2) 

and 

u (x) v 

L u (x) u (x) = { 
X v 1.1 

1 if v = 1.1 

o otherwise 

To get these polynomials we use the classical Gram-Schmidt orthonormalization pro-

cedure. Initialize 

and proceed recursively. If we have defined uO(x),ul(x), ••• ,uv_l(x) so that they 

satisfy (6.4.2), we can write 

(6.4.4) 

To make p(x) orthogonal to uO,ul' ••• ,uv_l ' we must have 

(6.4.5) L x 
v 

u)x) = 0,1,2, ... ,v-l c 1.1 
x 1.1 

v-I 
p(x) v L L v u (z) u (x) = x x 

1.1=0 z 1.1 1.1 
(6.4.6) 

so that we can take 

(6.4.7) u (x) = 
v -( r.p2(x) 

p(x) 
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This has been coded as the APL program GRAM (see Appendix 6). 

Let us write 

(6.4.8) f(x) f 2 f xV fO + flx + 2x + ..• + v 

gouO(x) + glul(x) + '" + gvuv(x) 

so that a linear estimate of fv can be expressed as 

(6.4.9) 

In order that f* be unbiased, we must have, identically for all fO,fl ,··· ,fv' 

(6.4.10) 

and the variance is 

(6.4.11) 

Ef* :::: L 

VarCf"') 

e f(x):::: f 
x 

From (6.4.10) it follows, using the orthogonality of the u's, 

form 

(6.4.12) 

with 

(6.4.13) 

and 

(6.4.14) 

0; 
v 

VarCf"') 
2 
~ [0;2 + 0;2 + •.. ] 
n v v+l 

that e must have the 
x 

The design problem is thus reduced to making the denominator in (6.4.13) as large as 

possible. 

Let us do this numerically; see the APL program DESIGN in Appendix 6. 

Assignment. Investigate, for different choices of v and n, the efficiency of dif-

ferent designs. 

How can the above be modified if other functions than powers xn are used in the 

function f? 
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Note that in a case like this direct computing of the efficiency is preferable 

to simulation. This may not be true if the model is more complex. 

6.5 A Search Problem. 

Consider the following decision problem. An object is contained in one of N 

boxes numbered 1,2, •.. ,N. To find out in which box it is we are allowed to ask ques-

tions of the type: is it contained in one of the L+l adjacent boxes A,A+l,A+2, ••. ,B? 

The answer we will get is, however, not wholly reliable, and is true with some prob-

ability W(L) which depends on the "length" L = B-A. If we ask for only one box, L = 

0, the probability W(O) is close to one. If we ask for more boxes simultaneously we 

assume W(L) to decrease toward 50% (which is the least informative case). Since we 

know that there is exactly one object in the boxes it is realistic to assume a sym-

metric property for W(L): W(L) = W(N-l-L) for L = 0,1,2, ... ,N-l. To see this, we 

think of asking for A=l, B=L and compare this with asking for A=N-l-L, B=N. 

When we begin our search we have only some imprecise knowledge where the object 

is most likely to be. We formalize this knowledge in the form of an ~priori dis-

(We shall assume that all P. > 0; otherwise we could 
1 

just remove some boxes from consideration.) Assume that we select values A, B and 

get the answer that the object is inside one of the selected boxes ("answer I"). 

What is the ~ posteriori distribution Q = Ql,Q2"" ,QN? 

(6.5.1) 

But we find that 

Qi = P{object in ilanswer I} 

P{object in i and answer I} 
P(answer I) 

= Pi'P{answer I object in i} 
P(answer I) 

(6.5.2) P{answer Ilobject in i} P{"answer I" 

if ie:[A,B] and 

(6.5.3) P{answer Ilobject in i} P{"answer I" 

if i¢[A,B]. This can also be used to compute 
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(6.5.4) P(answer I) 
N 

= I p .. P(answer I!object in i) 
1 ~ 

so that we now have Q. The case when we get the answer that the object is not in 

one of the selected boxes (llanswer 0") can be treated in a similar way. 

The next step would be to look at Q and make a decision. If Q is well concen-

trated, say in j, we may decide to state: the object is in j. If Q is concentrated 

over jl,j2 so that most of the probability mass is in jl and j2 together we may state: 

the object is either in jl or in j2' and so on. 

So far the procedure is quite straightforward, but we have left out the impor-

tant question how to decide on A, B in the first place. Can knowledge of P guide 

us in this decision? 

What is it we want to achieve? We want, after getting the answer, to be able 

to make as precise a statement as possible; that is, to point to as small as possible 

a set jl'j2' •••• In other words, we want to make Q as concentrated as possible. 

Let us measure concentration by the criterion 

(6.5.5) CRIT 

Note that concentration, in the present context, should not necessarily mean that 

the jl,j2' •.. are close together, but only that they are few in number. CRIT does 

this: if CRIT is large Q is concentrated. 

CRIT is, however, a stochastic variable, so that we had better use its expected 

value ECRIT. We now compute ECRIT for different values of A, B and pick that pair 

AMAX, BMAX for which ECRIT is as large as possible. 

The programs LENGTH, SEARCH and DECIDE have been written for the above purpose 

(see Appendix 6). LENGTH just specifies W(L) in a certain way. 

Assignment. Use SEARCH to find the object, using your judgment only: do not use 

DECIDE. Go on with repeated questions until you are reasonably sure where the ob-

ject is. Then stop the program and ask for the value of the variable I which is 

the true position of the object. Can you develop some feeling for what decision 

strategy you have found useful? 

Now use also DECIDE for picking good values of A, B in the first trial (or 

question). It is advantageous to use it in one trial after another if P is replaced 
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each time by the successively updated ~ posteriori distribution, which is called PI 

(llanswer I") or PO (llanswer a") (see the program). To be able to point out the 

values of PI, PO corresponding to the choice A = AMAX, B = BMAX, a small modification 

is needed in the program DECIDE, inserting two statements between statements 15 and 

16. 

Discuss the results and suggest alternative decision procedures such as basing 

the choice of A, B on some other criterion, for instance the information content 

(entropy) 

N 
(6.5.6) - I P. 

I ]. 
In P. 

]. 
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APPENDIX 6: FIGURES 

To experiment with the problem discussed in section 6.2 we use the following 
programs. 

Normally distributed stochastic variables are generated by GAUSS, sample size 
N, mean value PARAM[l], standard deviation PARAM[2]. 

VGAUSS[OJV 
V RESULT+PARAM GAUSS N 

[1] RESULT+PARAM[1]+PARAM[2]x-6+0.001x+/-l+?(N,12)pl00l 
V 

.Figure 6.1 

These variables are used in RLSERIES which computes the moving average process 
of (6.2.3a). 

VRLSERIES[ OJ V 
V X+A RLSERIES LEN;AL;EL;K;SDEV;E 

[1] AL+pA 
[2] EL+LEN+AL+5 
[3] X+LENpO 
[4] E+(O 1) GAUSS EL 
[5] K+O 
[6] LOPP:K+K+l 
[7] X[K]+A+.xALtK+E 
[8] +LOPpxt) KSLEN-l) 

V 

Figure 6.2 

To do the matrix inversion in (6.2.7) we use INVP from the public library. A 
more efficient program for this purpose would be TINV (figure 4.10). 

VINVP[DJV 

[1J 
[2] 
[ 3] 
[ 4] 
[5 ] 
[6 ] 
[ 7] 
[8] 
[ 9] 
[10] 
[11] 
[12] 
[13] 

V Z+INVP M;I;J;K;P;S 

V 

M+/st( 1 0 +pM) p ( ,/stM). -J+1 <P+1I+1 'pM 
SHr / 1M 

L:Z+IM[lI;l]xI'S 
K+ZtrlZ 
M[K,l;tpP]+M[l.K;tpP] 
S[K,l]+S[l,K] 
P[K,l]+P[l,K] 
P+l~P 
S+l~S 
M[l;]+M[l;].M[l;l] 
M+l~(J,l)eM-(JxM[;l])o.xM[l;] 
+L x tO;oI+I-l 
z+M[;iP] 

Figure 6.3 
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RLMATRIX forms the matrix G which will be used for displaying the estimate 
and true values of m by calling PLOT. 

VRLMATRIX[OJV 
V RLMATRIX 

[lJ G+~(3.N)p(\N).M.EMA2 
V 

Figure 6.4 

Now the main part of the program is RLBEST, which lets us do the decision 
making. N is the number of points into which the interval (0,1) is reduced for 
the discretization (50 is a reasonable value). W is the weight vector in the 
moving average process, the choice of which will influence the regularity of 
the function m. One can start with something like 1,2,3,4,3,2,1. SIGN is the 
standard deviation and C is the constant in m = C·a·(l-a) + n. The program 
asks for the indices al,a2, .••. The vector EMAl is the vector that estimates 
m using the optimal form given in the text. EQ is the mean square error. 

RLBEST is shown in figure 6.5. 
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To go ahead and ask for more observations RLREST is called in. 

v 
[1] 
[2] 
[3 ] 
[4] 
[5] 
[6] 
[7] 
[8J 

[9] 
[10] 
[11] 
[12] 
[13J 
[14] 
[15] 
[16] 
[17] 
[18J 

[19] 

[20] 
V 

VRLREST[mV 
RLREST;NOISE2;CA;J 
'SET ADDITIONAL OBS. POINTS' 
TA+( .0> 
Q+pTA 
OBS2+M[TA]+NOISE2+(0 1) GAUSS Q 
T+T,TA 
P+pT 
OBS+OBS,OBS2 
EMA2+F+R[1+I(lN(o.-T]+.xCA+(OBS-F[T])+.xRHA+INVP(R[1+ 
ITo.-TJ+( 1P)O·.=(lP» 
SUM+O 
J+1 
SUM+SUM+R[1+IT-J]+.xRHA+.xR[1+IT-J] 
"11x1N~J+J+1 

EQ2+(SIGN*2)-«1fN)xSUM) 
'NUMBER OF OBS. NOW MADE: ';P 
'OBSERV. WERE MADE AT INDICES:' 
O+T 
TOP2+EUA 21 r /EMA2 
'MAX. VALUE OF LATEST ESTIMATE OCCURRED AT INDEX: '; 
TOP2 
'MEASURE OF DEVIATION OF ESTIM. VECTOR SHOWS PREVIOUS 
VALUES AND LATEST:' 

O+EQ+EQ,EQ2 

Figure 6.6 

The reader should use his subjective judgment to pick the a's wisely. He 
can also call RLSEL. 

VRLSEL[OJV 
V TA+RLSEL;PROB;1;TA 

[1] PROB+50 
[2] 1+1 ?100 
[3] "5x\1~(100-PROB) 
[4] "7x\Y>(100-PROB) 
[5J TA+TOP2 
[6] "8x\1~(100-PROB) 
[ 7] TA+1?N 
[8] 'SELECTED OBS.PT. ' ;TA 

V 

Figure 6.7 

It chooses the observation point with a given probability PROB at the maximum 
of the last estimate and with the complementary probability picks a value at 
random from the whole interval. 
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RLSUM picks a point that maximizes EMA2 + B x DEV, where B is a given constant 
and DEV is the vector of variances of the estimate. EMA2 is the conditional 
expe~ted value of the latest estimate. 

VRLSUM[DJV 
V TA+RLSUM;8;J;TA 

[1] B+2 
[2] DEV+\O 
[3] J+l 
[4] DEV+DEV.R[l+IT-J]+.xRHA+.xR[l+IT_J] 
[5] +4x\N~J+J+l 

[6] VEC+EMA2+BxDEV+«SIGN*2)-DEV)* 
0.5 

[7] TA+VECtr!VEC 
[8] 'SELECTED 08S. PT. ';TA 

V 

Figure 6.8 
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RLBEST 
SPECIFY INTERVAL SUBDIVISION 
[1: 

50 
SET WEIGHT VECTOR 
[1: 

1 2 345 432 1 
SET STANDARD DEVIATION 
[1 • 

" . 
1 

SET C FOR M=CxA(l-A) 
[1: 

20 
SET OBS. POINT INDICES 
Il: 

1?50 
NUMBER OF OBS. MADE 1 
OBSERVATIONS WERE MADE AT INDICES: 
49 
MAX. OF MEAN VALUE PUNCTION OCCURRED AT: 32 
MAX. OF FIRST ESTIMATE OCCURRED AT: 25 

MEASURE OF DEVIATION OP PRF:SENT ESTIMATE FROM TRUE VALUES M 
IS: 

0.9597 

RLREST 
SET ADDITIONAL OBSERVATION POINTS 
D: 

1?50 
NUMBER OF OBSERVATIONS Nml MADE: 2 
OBSERVATIONS WERE MADE AT INDICES: 
49 36 
MAX. VALUE OF LATEST ESTIMATE OCCURRED AT INDEX: 

25 
MEASURE OF DEVIATION OF ESTIMATE VECTOR SHmlS PREVIOUS VALUES 

AND LATEST: 
0.9597 0.9069 

RLREST 
SET ADDITIONAL OBSERVATION POINTS 
D: 

RLSUM 
SELECTED OBS. POINT 25 
NUMBER OF OBSERVATIONS NOW MADE: 3 
OBSERVATIONS WERE MADE AT INDICES: 
49 36 25 
MAX. VALUE OF LATEST ESTIMATE OCCURRED AT INDEX: 

25 
MEASURE OF DEVIATION OF ESTIMATE VECTOR SHOWS PREVIOUS VALUES 

AND LATEST: 
0.9597 0.9069 0.8541 

Figure 6.9 
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RLREST 
SET ADDITIONAL OBSERVATION POINTS 
[1: 

RLSUM 
SELECTED OBS. POINT 29 
NUMBER OF OBSERVATIONS NOW MADE: ~ 
OBSERVATIONS WERE MADE AT INDICES: 
~9 36 25 29 
MAX. VALUE OF LATEST ESTIMATE OCCURRED AT INDEX: 

23 
MEASURE OF DEVIATION OF ESTIMATE VECTOR SHOWS PREVIOUS VALUES 

AND LATEST: 
0.9597 0.9069 0.85~1 0.811~ 

RLREST 
SET ADDITIONAL OBSERVATION POINTS 
0: 

RLSUM 
SELECTED OBS. POINT 22 
NUMBER OF OBSERVATIONS NOW MADE: 5 
OBSERVATIONS WF:RF: MADE AT INDICES: 
~9 36 25 29 22 
MAX. VALUE OF LATEST ESTIMATE OCCURRED AT INDEX: 

26 
MEASURF: OF DEVIATION OF ESTIMATE VF:CTOR SHOWS PREVIOUS VALUES 

AND LATEST: 
0.9597 0.9069 0.85~1 0.811~ 0.7752 

RLREST 
SET ADDITIONAL OBSERVATION POINTS 
0: 

RLSUM 
SELECTED OBS. POINT 16 
NUMBER OF OBSERVATIONS NOW MADE: 6 
OBSERVATIONS WERE MADE AT INDICES: 
~9 36 25 29 22 16 
MAX. VALUE OF LATEST ESTIMATE OCCURRED AT INDEX: 

26 
MEASURE OF DEVIATION OF ESTIMATE VECTOR SHOWS PREVIOUS VALUES 

AND LATEST: 
0.9597 0.9069 0.8541 O.811~ 0.7752 0.72~3 

RLREST 
SET ADDITIONAL OBSERVATION POINTS 
0: 

RLSUM 
SELECTED OBS. POINT 27 
NUMBER OF OBSERVATIONS NOW MADE: 7 
OBSERVATIONS WERE MADE AT INDICES: 
~9 36 25 29 22 16 27 
MAX. VALUE OF LATF:ST ESTIMAT/!,' OCCURRED AT INDEX: 

26 
MEASURE OF DF:VIATION OF ESTIMATE VECTOR SHOWS PREVIOUS VALUES 

AND LATEST: 
0.9597 0.9069 0.85~1 0.811~ 0.7752 O.72~3 0.7117 

Figure 6.9 (continued) 
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RLREST 
SET ADDITIONAL OBSERVATION POINTS 
0: 

RLSUM 
SELECTED OBS. POINT 33 
NUMBER OF OBSERVATIONS NOW MADE: 8 
OBSERVATIONS WERE MADE AT INDIC'F.S: 
49 36 25 29 22 16 27 33 
MAX. VALUr. OF LATEST ESTIMATE OCCURRED AT INDEX: 

26 
MEASURE OF DEVIATION OF ESTIMATE VECTOR SHOWS PREVIOUS VALUES 

AND LATEST: 
0.9597 0.9069 0.8541 0.8114 0.7752 0.7243 0.7117 

0.6847 

Figure 6.9 {continued} 

Figures 6.10 - 6.13 show the output of the above terminal session in 
graphical form. 
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v DESIGN[ OJ v 
V NUMBER DESIGN SS 

[1] 1+1 
[2] DL:R+NUMBER[I]-1 
[3] (POWER+1) GRAM R 
[4] R+1 
[5] F+«-1+1H+1)tR)*POWER 
[6] (SStR+1)x(+/FxU[POWER+1;])*2 
[7] 10 
[8] 1+1+1 
[9] +(ISpNUMBER)/DL 

V 

VGRAM[OJV 
V P GRAM R:R:I:V:M 

[1] 1+2 
[2] U+(P.R+1)pO 
[3] U[1:]+(R+1)pt(R+1)*I-1 
[4] GRAML:V+(-1+1R+1)*O.5 
[5] M+U[lI-1i] 
[6] U[I:]+V-«~M)+.xM)+.xV 
[7] U[I:]+U[Ii]t(+/U[I:]*2)*O.5 
[8] 1+1+1 
[9] +(ISP)/GRAML 

V 

Figure 6.14 
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VLENGTH[DJv 
V Z+LENGTH L 

[1] +(Ls(N-l)t2)/3 
[2J L+-l+N-L 
[3] Z+0.5+0.5xO.9xOrl-LtLO 

V 

VSEARCH[nJV 
V SEARCH P 

N+pP [1J 
[2J 
[3J 
[4J 

CUMULATIVE+ ( (IN) o. ~ IN)+. xp 
1+1++ / CUMULAT1VE<O. 00 lx? 1000 

SSl: 'TYPE A' 
A+[l 
'TYPE H' 
H+[l 

[ 5 ] 
[6J 
[7J 
[8 J 
[9] 
[10J 
[11 J 
[12J 
[13J 

TRUE+(0.001x?1000)~LENGTH B-A 
REL+(I~A ) I\ISR 
('IO')[2-(TRUEAREL)v(1-TRUE)A(1-REL)] 
'TO CONTINUE TYPE l' 
CONT+[l 
+CONT=l )/SSl 

v 

VDECIDE[O]V 
V DECIDE P;A;R;Vl;VO;CRIT 

[lJ N+pP 
[2J CRIT+O 
[3J AMAX+BMAX+A+B+l 
[4J SD1:IN+(AslN)AB~lN 
[5J Vl+(1NxLENGTH B-A)+(l-1N)xl-LENGTH H-A 
[6J Ql+VlxP 
[7J Pl++/01 
[8J Ql+QHPl 
[9J VO+(INxl-LENGTH B-A)+(l-1N)xLENGTH B-A 
[10] QO+VOxp 
[11] PO++/QO 
[12J QO+QOtPO 
[13J DISPL+(Pl xQl*2)+POxQO*2 
[14] CR1TN++/D1SPL 
[15] +( CR1TNSCRIT) /SD2 
[16J CRIT+CRITN 
[17J AMAX+A 
[lSJ BMAX+H 
[19J SD2:H+B+l 
[20J +(BSN)/SDl 
[21J B+A+A+l 
[22J +(ASN)/SDl 

V 

Figure 6.15 
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CHAPTER 7: 

A COMPUTATIONAL APPROACH TO STATISTICS 

7.1 Statistical Computing. 

There has been much controversy over the question what computational arrange

ments are best suited to statistical computing. Many packages have been offered for 

this purpose, with the developers sometimes advocating their exclusive use. Opponents, 

in turn, have argued that the idea of a statistical package is unsound per se since it 

encourages routine application of standard analyses for hypothesis testing, estimat

ing, and so on. 

The controversy actually goes back to pre-computer days when calculating schemes 

were playing the role of programs. Such schemes can be found in many and particularly 

in old textbooks; some of these may still be useful if one takes into account that 

present computing devices have affected questions of numerical efficiency. 

Let us look somewhat more closely into the question of packages versus tailor

made programs, and let us start with a quite common and standard example. Assume 

that we have performed a factorial design with a few factors, the same number of re

plications in all cells, and no missing values. We want to assume the usual linear 

hypotheses, such as in (7.2.1), taking normal distributions with equal variances. 

Our task is to test for significance of the A-factor; how should we organize the 

computing effort? 

One path is that taken in the next section: to write our own program suited to 

the problem at hand. This is relatively easy and if we are going to do the analysis 

only a few times we do not have to worry much about programming efficiency. On the 

other hand, if we plan to use the program in large-scale production we must devote 

more attention to such efficiency. We will then almost automatically be led to write 

the program in a somewhat more general form so that it can also be used in some other 

typical situations likely to arise. We would then get programs of the sort illus

trated by ANOVA in figure 7.4 of Appendix 7 (figure 7.3 gives a description of 

ANOVA). It comes from a fairly recent package written in APL, viz. STATPACK, devel

oped by Professor Smillie at the University of Alberta and his coworkers (ref. 9). For 
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situations of this type packages seem well motivated. 

We shall not discuss here the merits of the different packages being offered at 

present. Their number is increasing and we mention only that the one most widely 

used is probably the FORTRAN-based BMD, developed by Professor Dixon and his co

workers at UCLA (ref. 11). 

When we turn from statistical situations of a type met fairly often in practice 

the perspective changes gradually. If the set-up is close (but not identical) to a 

standard one it may still be worthwhile to take a package and make the modifications 

called for by the application. This assumes that the package is sufficiently open

ended so that changes are simple enough to make. If this is not the case we may pre

fer to write our own program in a high-level language to be chosen. 

One could use a statistical programming language especially designed to do the 

sort of operations that are common in statistics. Two such languages are COSMOS 

(Console Oriented Statistical Matrix Operator System, ref. 10) and PSTAT (Princeton 

Statistical System, ref. 12). The basic entity in COSMOS is the matrix together 

with operators on matrices e.g. SWEEP (Gaussian elimination). The usual arithmetic/ 

logical operations, as well as I/O commands and a number of statistical utilities, 

are available in it. 

Alternatively one could use APL, interactive FORTRAN, PL/I, etc., depending 

upon availability in the computer installation. It also depends, of course, upon the 

implementation of the language. As far as APL is concerned, the versions used in 

this course have been APL/360 and, only occasionally, APL/1130. In the first of 

these the work-spaces had sizes 32K or 64K bytes, which was seldom a serious limita

tion for the type of computing done. For larger statistical jobs larger work-spaces 

would have to be provided, especially since our APL implementation did not allow 

file manipulations on disk. Bulk I/O was not possible in our environment, and ano

ther drawback was the impossibility of communicating, in APL, with graphical display 

devices such as the 2250. Some of these defects are likely to be overcome in the 

near future. 
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The choice of the statistical computing set-up will depend entirely on the ques-

tion how standard the problem is, whether it is a one-shot job or will be repeated a 

great number of times. Much of what is discussed in this course is aimed at making 

the reader familiar with the attitude of using the computer to do exploratory math-

ematics. It is then natural to base the computing effort on an interactive system. 

7.2 Analysis of Variance 

Let us first look at a case of traditional statistical analysis; later on we 

shall turn to situations in which the standard approaches are not valid. 

Assume that we can observe the stochastic variables y .. , i = 1,2, •.• ,r and j 
lJ 

1,2,3, ..• ,s. The y's represent data from a two-factor experiment where the first 

factor, A, appears on r levels and the second factor, B, appears on s levels. A 

represents treatments while B represents subjects. We are mainly interested in the 

effect of A: is it significant? Each combination i,j is replicated A times. The 

total number of observations is thus n = r+s. 

To begin with, we shall try the usual model: 

(7.2.1) Y"k = m + a. + b. + c .. + x. 'k' lJ l J lJ lJ 
k 1,2 

with 2 
La. = Lb. = Lc .. = Lc .. = ° and where we assume that x" k = N(O,a ) and that 
i l j ] i lJ j lJ lJ 

x ijk are independent of each other. This is the analysis of variance model which 

be found in most textbooks on statistics. 

The standard procedure is as follows. Decompose the total sum of squares 

(7.2.2) Q \' - 2 
L(y"k - y ... ) lJ 

into a number of terms, as follows. First form the total mean 

(7.2.3) y ... 
1 

L YiJ'k; 
n i,j,k 

form the s·um of squares for the A effect, with y. 
l •• 

(7.2.4) QA = st L <y. _y )2 
i l.. • •• 

form the sum of squares for the B effect, with y . 
• J. 

(7.2.5) QB rt L <Y . -y )2 
j .J. ... 
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form the interaction between A and B, with y, , 
1J' = ! ,Lk Yijk' namely 

1, 

(7,2.6) t L <Y .. _y, _y. +y )2 
, , 1J. 1 ... J . ... 
1,J 

finally, form the residual 

(7.2.7) QR = L <Y, 'k - y,. )2 
i,j,k 1J 1J. 

so that 

(7.2.8) Q 

(Verify this identity!) We get the analysis 

factor sum of squares degrees of freedom ratio 

A effect QA r-l Q/(r-l) 

B effect QB s-l QB!(s-l) 

AB effect QAB (r-l)(s-l) QAB!(r-l)(s-l) 

residual QR rs(t-l) QR!rs(t-l) 

total Q n-l Q!(n-l) 

From this table we can form the F ratios to test the significance of the various 

effects (see figure 7.1, which uses the array capabilities of APL). 

We shall take Y as generated from another program, namely MODEL (see figure 7.2). 

Discuss numerical results, especially the influence of the interaction term when AB 

is not zero, and how this is related to the generation of Y; is it consistent with 

the assumptions? 

7.3 Non-Standard Situations. 

What do we do when the standard assumptions break down, for instance when we 

do not trust the assumptions of linearity, normality, independence, etc.? We shall 

look briefly at this important problem area in this section. 
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Two questions have to be looked into. First, validity. Assume we use a test, 

confidence interval, or some other statistical decision function based on the usual 

assumptions of the linear hypothesis. If departures from these assumptions occur, 

how valid are the probabilistic statements we usually make? The departures from 

standard assumptions could affect, for instance, the level of significance of a test, 

the confidence level, or the standard deviation of an estimate. The second question 

concerns efficiency. In the usual set-up we have access to tests or estimates which 

are "best" in some precise sense. If the assumptions do not apply, how much effic-

iency do we lose? 

If the decision function of interest to us has a simple form, we may be able to 

calculate its probabilistic properties analytically in closed form or we may at least 

be able to develop approximations (for example large sample approximations). We will 

otherwise have to use simulation, with the notoriously low accuracy to which this 

procedure usually leads (see chapter 2 for methods of getting higher accuracy). We 

will in the present context seldom need high accuracy, so that simulation may be 

acceptable. 

Assignment. Assume that we want to deal with the null hypothesis Ho:m=o against the 

one-sided alternative hypothesis Hl:m>O when we have a sample of observations from 

N(m,a) and use Student's t. This is perhaps the most discussed case of all in stat-

istical testing. We know how to get the best test on the level a. 

Now assume that HO is replaced by a distribution which is still symmetric around 

x = 0 but has non-zero kurtosis. Take the frequency function 

(7.3.1) f(x) = 1 

2h1la 

2 2 
[e-(x+a )/2a 

Design and carry out a simulation experiment to find the true level of the usual test 

when f(x) is given as above. Do this for different combinations of a and a and pre-

sent the result in a compact form. What conclusions do you draw concerning the 

change in validity? 

Do the same but for an f that exhibits ske~ness. Choose a model where f is given 

as a mixture of normal frequency functions. Design the simulation scheme and analyze 

the result. 

This leads naturally to consideration of the validity and efficiency of non-
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parametric competitors to the standard statistical techniques. Using the same ap-

proach as above we could study, say, the sign test, Wilcoxon's test and the Wallis-

Kruskal test. Note, however, that at least for the sign test this approach is quite 

unnecessary. We could instead work analytically, which is quite simple in this 

case: when the analytical approach is feasible it should, of course, be used in pre-

ference to simulation. 

Assume instead that we want to estimate m in N(m,a). We know that the arith-

metic mean x is an efficient estimate. On the other hand, we also know that if the 

distribution is not normal (but still symmetric, say) and has long tails x may be a 

poor estimate. Instead we could introduce the ordered sample (x(l)<x(2)<x(3)< 

<x(n» and use a trimmed mean 

x 
a 

where we have trimmed away a portion a = (2i-2)/n. Find, by simulation, what the 

relative efficiency of x and x are for the normal and non-normal distributions. 
a 

Analyze the results; what conclusions do you draw? 

In the chapter on time series we shall study the loss of efficiency in linear 

estimation due to dependence. 

7.4 Bayesian Estimation. 

Let a be a real-valued parameter which should be estimated and for which we have 

an ~priori frequency function pea). We observe a sample xl ,x2 , ••• ,xn from a fre-

quency function f(x;a) and ask for the ~posteriori frequency function ~ of a, or. 

in other words, the conditional frequency function of a given the values xl ,x2 ' ••• , 

xn • We then get 

(7.4.1) ~ 

This is Bayes' theorem. 

00 

fp(a) ~ f(x ;a)da 
1 v 

_00 

Assignment. To get some intuitive feeling for the behavior of ~ as n increases, 

pick a function p and a statistical model f(x;aO)' where aO is some given value, and 

discretize a on a sufficiently fine level. Simulate the values xl ,x2 , ••• ,xn from 
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this model, calculate the discrete analogue of (7.4.1) and display it using a plotter 

or APL plots. 

Note that (7.4.1) defines a stochastic mapping from the function space appropriate 

to P to the function space of q. As n increases it will be "observed that Pn tends to 

become more concentrated around the "true value" cv.o of the parameter cv.. This proper

ty of the stochastic mapping shows up quite dramatically in the plots. 

What is the analytic reason for this behavior? Try to outline a proof for it 

using the observation that 

n 
In a = const + ln p + L ln f(x ;cv.) 

11 1 \I 

so that we have to deal with a sum of independent stochastic variables ln f(x ;cv.). 
\I 

As an example of how the plots can appear see the photograph below which was 

obtained by taking Polaroid pictures of a Tektronix display tube connected to the 

DATEL terminal by a TSP control unit. 
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APPENDIX 7: FIGURES 

v ANOVA[[1]V 
V ANOVA U 

[1] N+RxSxT 
[ 2 ] MA + ( + / + / U) f S T 
[3J MB+(+/[1J+/U)fRT 
[4J MAB+(+/U)fT 
[sJ M+(+/+/+/U)fN 
[6J Q++/+/+/(U-M)*2 
[7J QA+SxTx+/(MA-f.1)*2 
[8J QB+RxTx+/(MB-M)*2 
[9J QAB+Tx+/+/(MAB-(MAo.xSpl)+«Rpl)o.xMB)-M)*2 
[10J QR+Q-QA+QB+QAB 
[llJ 'A RATIO IS I iQAfR-l 
[12J IB RATIO IS I;QBfS-l 
[13J lAB RATIO IS ';QABf(R-l)x(S-l) 
[14J I RES RATIO IS I ;QRfRxSxT-l 
[lSJ 'TOTAL RATIO IS I;QfN-l 

V 

Figure 7.1 

V MODEL[[]JV 
V NODEL 

[lJ Y+Ao.+(SpO)o.+TpO 
[2J Y+Y+SIGMA xO.00l x?(R,S,T)pl000 
[3J Y+*Y 

V 

Figure 7.2 

130 



ANOVAHOW 

COMPLETE FACTORIAL ANOVA 
T+ANOVA D 
ENTERED:25/10/67 

THIS PROGRAM DOES AN ANALYSIS OF VARIANCE ON A COMPLETE 
FACTORIAL DESIGN WITH ARBITRARY NUMBERS OF REPLICATIONS AND 
FACTORS. WITH ARBITRARY NUMBERS OF LEVELS. WITH THE RESTRICTION 
THAT THERE ARE NO MISSING OBSERVATIONS. 

T IS A MATRIX WITH 1+ COLUMNS FOR IDENTIFICATION. DEGREES OF 
FREEDOM. SUMS OF SQUARES. AND MEAN SQUARES. THE ROWS OF T 
REPRESENT REPLICATIONS. MAIN EFFECTS AND INTERACTIONS, ERROR 
AND TOTAL. 

AS AN EXAMPLE. CONSIDER THE FOLLO~lING 2x2 DESIGN ~lITH 3 
REPLICATIONS: 

1 2 5 6 9 10 
3 1+ 7 8 11 12 

WHERE THE COLUMNS WITHIN EACH SQUARE REFER TO THE FIRST FACTOR 
A AND THE ROWS TO THE SECOND FACTOR B. THE DATA SHOULD BE 
PREPARED AS A VECTOR 1.2 ••••.• 12. AND THEN RESTRUCTURED INTO 
D WITH DIMENSIONS (3.2.2). T WILL HAVE 6 ROWS FOR REPLICATIONS 
A,B AND AB EFFECTS, ERROR AND TOTAL. THE IDENTIFICATION IN THE 
FIRST COLUMN WILL BE 1,10 AND 11 FOR A,B AND AB, RESPECTIVELY. 
AND 0' S FOR THE REMAINING ROWS. IF IT IS DESIRED TO TREAT THE 
DESIGN AS A 3x2x2 FACTORIAL WITH A SINGLE REPLICATION. THEN D 
MUST BE RESTRUCTURED TO HAVE DIMENSIONS (1.3,2.2). T WILL THEN 
HAVE B ROWS FOR A.B.C. AB,AC,BC, ABC AND TOTAL. THE ROWS FOR 
REPLICATIONS AND ERROR WILL BE OMITTED. 

REQUIRES SS. 

Figure 7.3 

Description of ANOVA (figure 7.9). 
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V'ANOVA[OJV' 
V' T+ANOVA D;DIM;N;REPS;K;R;CT;V:I;S 

[1] N+(pDIM+pD)-1 
[2] T+«R+(2*N)+2xK+(REPS+DIM[1])~2).4)pO 
[3] CT+«N+1)pO) SS D 
[4] T[R: 2 3]+«x/DIM)-1).«N+1)p1) SS D 
[S] ~(REPS=1)/7 
[6] T[1; 2 3]+(REPS-1).«t(N+1»$1) SS D 
[7] D++/[1] D 
[8] DIM+HDIM 
[9] V+L«2*(N+1)-tN)o,ltS)+(2*N-tN)o,x(S+(2*N)-1)p1 
[10] V[;t(2*N)-1]+V[;(+/(Xo.>X)+«tpX)o,~tpX)AXo,=X)ttPX++/[1] VJ 
[11J I+1 
[12J T[I+K; 2 3J+(x/«V[;IJ=1)/DIM-1».(V[;IJ SS D)+RF.PS 
[13J ~«2*N»I+I+1)/12 
[14] T[;3]+T[;3]-CT 
[1sJ ~(N=1 )/20 
[16J I+2 
[17J DV+(KpO).(X+(-(-CT)v,AS)A(CT+V[;IJ)V,AS+V[;tI-1J).(R-(I+K-1»pO 
[18J T[I+K:3]+T[I+K;3J-+/T[;3JxDV 
[19] ~«2*N»I+I+1)/17 
[20J ~(REPS=1)/23 
[21] T[R-1;2]+T[R;2]-+/[1] T[t(R-2);2] 
[22J T[R-1:3J+T[R:3J-+/[1J T[t(R-2);3J 
[23J T[t(R-1);4J+T[t(R-1):3]+T[t(R-1);2J 
[24] I+1 
[2S] T[I+K;1]+101V[;IJ 
[26] ~«2*N»I+I+1)/2S 

V' 

Figure 7.4 

From STATPACK (ref. 9). 
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CHAPTER B: 

TIME-SERIES ANALYSIS 

B.l Estimation of the Spectral Density. 

A time series is a series of observations on a stochastic process. To analyze 

such a series it is necessary, first of all, to have a mathematical model - more or 

less well specified - which is thought to be appropriate for a description of the 

random process causing or underlying this sequence of observations. 

Let us start with the model of random phase which we already discussed in sec-

tion 5.2 and of which a simple form is 

(B.1.1) A cos (At + ~) 

here \ is a known constant and ~ is a random variable with rectangular distribution 

over (O,2~). We are presented with a series of n observations xt and wish to est-

2 imate the value of the unknown parameter A, or, rather, of A , the "power". To do 

this by Fourier analysis we form 

(B.1.2) 

(B.1.3) 

n 

n 
L xt cos At 

t=l 

.
n 
I x t sin At 

t=l 

n 
A L cos At COS(At + ~) 

t=l 
A n 

= "2 t~l {cos(2\t + ~) + cos ~} 

n 
A L sin At cos (At + ~) 

t=l 

A n 
- L {sin(2At + ~) - sin ~} 
2 t=l 

n 
The quanti ties L COS(2At + ~) and 

t=l 
L sin(2At + ~) are each bounded as n 

t=l 
can be seen by writing 

n n 
L COS(2At + ~) + i L sin(2At + ~) 

t=l t=l 

! i(2A+~) l_einA ! 
e ------ < 

l_eU 
n 

1 

!l_eU! 

n L ei(2At+~) 
t=l 

n 
Also, L cos~ 

t=l 
n cos~ and L sin~ 

t=l 
n sin~, so that 
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(8.1.4) 
n 2 L xt cosH) + 

t=l 

and if we call 

(8.1.5) 
n 

~( L cosAt)2 + 
211n t=l xt 

n -+ 00 

n 

L xt sinH)2] 
t=l 

I (A) 
n 

the "periodogram" of the series of observations xl ,x2 , •.• ,xn ' it is clear that a 

reasonable way of estimating A2, at least for large n, would be by means of the 

"statistic" 

(8.1.6) 811 I (A) 
n n 

A2 can be looked upon as a measure of the "power" of the process 

211 211 

(8.1. 7) f 22 2f 2 112 A cos (At+~)dt = A cos (At+~)dt = r A 

o 0 

Let us now look at some numerical properties of this estimate. We shall first 

generate a time series on the computer; next, we shall use the periodogram to estim-

2 ate its spectrum (which is proportional to A ) and demonstrate some of the properties 

of this estimate, which will turn out to be rather undesirable. To get a better est-

imate, we shall "smooth" (in a sense to be defined) the periodogram estimate and dis-

play the improved performance numerically. Finally, after having acquired some feel-

ing for their numerical properties, we shall treat these estimates analytically. 

The sequence of observations will be generated by the model of random phase 

(8.1. 8) m j4 k k xt = L ~ f(~) cos(~t + ~k) 
k=l m m m 

for t 1,2, ... ,n 

which is a sum of m terms of the form (8.1.1). To relate this to the notation of 

section 5.2 we observe that there we defined the spectral mass of the process xt as 

(8.1.9) 

In this chapter we use instead the spectral density f(x) defined as the derivative 

of the spectral mass 

(8.1.10 ) f(x) dF(x)/dx 
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or, in the discretized case, 

(8.1.11) F ::2:.f(2:. x ) 
k m m 

since then dx :: 111m, x :: (lI/m)k. The "phases" ~k are k random variables taken to be 

rectangularly distributed over the interval (0,211). 

The APL program to generate the process xt is the defined function RPHASE (see 

figure 8.1 of Appendix 8). This function will produce the n-component vector X. For 

sample size n (Le. N) :: 20, the following realization is an example of X produced: 

0.04869987688 0.1647130654 1.034269864 0.2664539086 

1.010349986 0.5016076709 0.0855910226 0.3912632526 

0.3229693862 0.5665805442 0.07185708918 0.4651755559 

0.1170016198 0.4749518966 0.2097731811 0.8531030046 

0.3905699227 0.2788443918 0.0005277712274 

0.09340216699 

k RPHASE requires as input a specific spectral density f(~), denoted by F in the pro-

gram. Several special cases of F were considered: a triangular spectral density, 

produced by the APL program SPECTRUM (figure 8.2) and the density corresponding to 

an autoregressive scheme 

(8.1.12 ) 

where £t are normally distributed random variables, N(O,cr), with spectral density 

(8.1.13 ) 2 
f (A) :: cr 1211 

E: 

so that the spectral density of the xt process is 

f (A) 
(8.1.14) _.,..:E:c----,;- :: 

1 iA 12 e -p 

2 cr 

the latter is produced by the APL program AUTOSPECT (figure 8.3). 

A realization of xt with N :: 30, M 

shown in figure 8.10 (F + (10pl),40pO). 

50 and rectangular spectral density F is 

We now take these computer-generated values of the process xt ' pretend we do not 

know the spectral density of xt ' and attempt to estimate it by various methods. 
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The most straightforward method is periodogram analysis. The program PERIODOGRAM 

(figure 8.5) computes EST, the vector of values of the periodogram estimate 

(8.1.15 ) 1 {( ~ sin TIkt)2 + 2 TIN . L. xt M 
t=l 

Figure 8.12 shows the results of one such computation. The plotting program TIMEPL 

is shown in figure 8.11. The true spectral density F in this case corresponds to an 

autoregressive scheme and is produced by AUTOSPECT. It is clear from figure 8.12 

that the periodogram is not a good estimate of the spectral density since it fluc-

tuates wildly. We therefore proceed to "smooth" the periodogram by a weight-function 

("window") W(k), which means using the estimate 

m 
(8.1.16 ) L 

k=-m 
I(kTI) W(k) 

m 

This is done by the APL program SMOOTH (figure 8.4) which produces the smoothed spec-

tral estimate vector EST; lines [2J and [3J of that program require input of W(k) in 

the form of a function WINDOW which may, for instance, have rectangular shape 

WINDOW + 3p 6 

Figure 8.13 presents a realization of this smoothing procedure, with the true spec-

tral density F again shown. It should be remembered in observing these examples 

that the sample size used is unrealistically small. With the fast Fourier transform, 

to be discussed in section 8.2, more realistic examples could easily be handled. 

Let us now turn to the analytic treatment of this smoothing process. 

The smoothed periodogram can be represented by a quadratic form 

(8.1.17) 

where the Xv are random variables which, for simplicity, we later take to be nor

mally distributed. We wish to find statistical properties such as the mean and the 

variance of this estimate Q. 

136 



In the following APL programs we denote the covariance matrix of the ~ by COY 

and (without danger of confusion) the matrix {q } by Q •• 
VII 1 

The mean value of the estimate Q is given by 

V,ll 
cov a = L (cov Q) = tr cov Q 

llV ~ll II 1111 
(8.1.18 ) EQ 

and the corresponding APL program by 

A -+- COy + • x Q 
(8.1.19) 

+/+/(A+.xA) x «tN)o .=tN 

The variance of Q is given by 

(8.1. 20) Var Q = L cov(x x ,x xQ)·q q Q = L (r r +r r )q q 
Q V II a ~ VII a~ Q va liB vB lla VII aB 

v,ll,a,~ v,ll,a,~ 

= (COV·Q) (COV·Q) + (COV·Q)o (COV·Q) Q 
all lla ~ll ll~ 

where A = COV·Q. 

The APL program HERGLOTZ (figure 8.$) produces the output COY. 

We now turn to the computation of the coefficients qVll in the quadratic form. 

The periodogram r(A) for A = k~/m was given by 

(8.1.21) 

so that the smoothed spectral estimate can be written 

(8.1.22) f* = L I(k~)[TW(m+k) + TW(m+l-k)] 
k m 

here TW stands for "translated window". To relate this notation for our expression 

for the smoothed spectral estimate to our expression for it in quadratic form, we 

note, by comparing coefficients of xVxll ' that 

(8.1.23) qst L {TW(m+k) + TW(m+l-k)} ~ cos ~ • cos ~ 
k 2~n m m 

= L {TW(m+k) + TW(m+l-k)} ---21 cos ~t-s) 
k ~n m 
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The APL program to compute the matrix {qst} is given by COMPQ' (see figure 8.6), 

where the index I takes the place of the index k above. 

The complete analysis is now given by the APL program ANALYSIS, which produces 

the mean MEAN and the standard deviation SD of the smoothed spectral estimate. This 

program is exhibited in figure 8.7. 

Assignment. Using the above programs or modifications of them, experiment with dif-

ferent windows and compare the estimatesobtained with the true spectral density. 

In particular, investigate how the bandwidth (which is the opposite to resolution) 

affects bias and variance of the spectral density. 

8.2 The Fast Fourier Transform. 

The fast Fourier transform (FFT) is a computational algorithm which calculates 

the finite Fourier transform of a series of n data points in approximately n log2 n 

operations, rather than in n2 operations as required by traditional methods. It has 

made computation of spectral densities in terms of covariance functions of time 

series, and vice versa, feasible and economical in situations which were previously 

inaccessible. 

The finite Fourier transform of x. is defined as 
] 

1 m-l 2 " 
f(k) = - I x. exp( 1nJ k) 

m j=O ] m 
(8.2.1) 

where i = /:1, j = O,l, ••• ,m-l, and x. are a sequence of complex numbers. In this 
] 

notation, the periodogram of these observations is given by 

(8.2.2) 

The observations x. can be expressed as the inverse finite Fourier transform of f(k): 
] 

(8.2.3) x. = 
] 

m-l 
I f(k) exp(2:i j k) 

k=O 

We shall discuss the computation of this latter complex Fourier series; the equiva-

lence with sine-cosine series is easily established. Direct computation of this 

series will clearly involve n operations, where each such operation consists of a 

complex multiplication and addition: n2 elementary operations in all. The fast 

Fourier transform algorithm, which reduces the number of elementary operations to 
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n log2 n, will now be described. 

Let x. be a sampled (complex) variable and let us include the midpoints of our 
] 

sampling intervals so as to get 2n points j = 0,1,2, ••. ,2n-1. Let the Fourier 

series of the even-indexed points be written 

(8.2.4) 
n-1 

\ f (k) (2~ij k) x2 · = l.. 1 exp -n- , 
] k=O 

j = O,l, ... ,n-l 

and of the odd-indexed points be written 

(8.2.5) 
n-l 

\ f (1<) (2~ij k) x2j +l = l.. 2 exp -n- , 
k=O 

j = 0,1, ... ,n-l 

Then the series for the full 2n points becomes 

(8.2.6) 
2n-l \ 2~ij x. = l.. f(k) exp (2il k) , 

] k=O 
j = 0,1,2, ••• ,2n-1 

The idea of the algorithm is to compute f(k) from fl(k) and f 2(k). 

Note that 

2~i 2 2~i [exp (-2 -)] = exp (-) 
n n 

We can write (8.2.6) separately for even and odd indices and get 

(8.2.7) 

and 

(8.2.8) 

2n-l 
= L f(k) exp(2~ij k) 

k=O n 

2n-1 
x2j +1 = L f(k) exp(2:i j k) exp(;:i k), j = 0,1,2, ... ,n-l 

k=O 

. 2~in 2~in If we separate the terms w1th k > n and use exp(--) = 1 and exp(--) = -1, we get 
- n n 

and 

2n-1 
L f(k) exp(2:i j k) = 

k=n 

n-1 
L f(n+k) exp(2:i j k) 

k=O 

2n-1 2 .. 2~i L f(k) exp( :1J k) exp(2rj k) 
k=n 

n-1 2 .• 2 • 
= - L f(n+k) exp( TIl.] k) exp(~ k) 

k=O n 2n 

Substituting these in (8.2.7) and (8.2.8) and equating coefficients of like powers of 

exp(2:i) with the coefficients of fl(k) and f 2(k) in (8.2.4) and (8.2.5), we get 

fl (k) = f(k) = f(n+k) ; 

which, solved for f(k), gives 

2~i = [f(k) - f(n+k)] exp(- k 
n 
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(8.2.9) f(k) 

(8.2.10) f(n+k) k O,l, ••• ,n-l 

Eq. (8.2.9) states that the f(k) for the first half of the frequency range for samp

ling with interval ~t are the averages of the results of the two samplings on the 

odd and even indices. The effect of the multiplication by exp(- ~:i k) is to shift 

1 the sample on the odd indices by an amount ~t to the left. The new set of frequen-

cies for k = n,n+l, ••• ,2n-l is the set of differences between the coefficients for 

the samplings on the even and odd indices. 

It can be shown from (8.2.9) and (8.2.10) that the algorithm does indeed 

require (conservatively) n log2 n operations (or complex multiply-adds). 

The advantages of the FFT algorithm lie not only in the fact that it requires 

only n log2 n instead of n2 operations but also in that one can, during the calcula

tion, observe whether the frequency amplitudes at the n- and 2n-point samplings 

agree. This gives a check that the sampling density is sufficient and that the cal-

culations are correct. 

The APL program in ;E:igure 8.8 performs the FFT algorithm. The following corres-

pondences between the names of variables in the program and the above notation should 

be noted: 

M corresponds to 2n 

Al corresponds to fl(k) 

A2 corresponds to f 2(k) 

C and S are respectively the real and complex parts of the complex exponential. Z 

is the output of the program and X is the input vector. 

8.3 Regression Analysis of Time Series 

Consider the time series 

(8.3.1) 

where 'we now have a deterministic component a$t added to bur stationary random 
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process xt • ~t is the sequence of regression functions - they may be trigonometric 

functions, or given powers of t, for example. The problem is to estimate the regres-

sion parameter a in terms of observed values of Yt. We assume the spectrum (or covar

iance matrix) of xt to be known. In general, the deterministic component will depend 

on more than one parameter, but this simple case suffices to illuminate the problem, 

which is, essentially, to determine the "best" estimate for the regression parameters 

and investigate its properties. 

The analysis is much facilitated by carrying it out in vector and matrix nota-

tion. Let Y be the (column) vector of observed {Yt}' t = l, ••• ,n, x of the {xt } and 

~ of the {~t}; then (8.3.1) can be written 

(8.3.2) y = a~ + x 

Let R be the (known) covariance matrix of the random n-vector x. 

The straightforward way of estimating a would be by the method of least squares. 

This is obtained by minimizing the sum of the squares of the components of x, i.e. 

minimizing x'x, where x' is the transpose of x: 

x = y - a~ 

x' = y' - a~' 

x'x = (y'-a~')(y-a~) 2 y'y - a(~'y+y'~) + a ~'~ 

The value a of a minimizing this expression is the one for which 

Le. 

(8.3.3) 

d 
~x'x) 

a = ~'y + y'~ 
2~' 

o 2~~'~ - ~'y - y'~ 

= IT _ ~'(a~+x) ~'x 
~'~ - ~'~ = a + ~'~ 

a is, of course, a random variable with its own distribution. If we assume the com-

ponents of x all have mean zero, we have 

Ea = a 

so that a is an unbiased estimate of a. Its variance is 
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(8.3.4) 2 -""x '''' 1 1 Var a = E[(a-a) ] = E[~ ;,;J = (cj>'cj»- cj>'Rcj>(cj>'cj»-

since R = E(xx'). It can be shown that the unbiased estimator of a which is best in 

the sense that it minimizes the variance of the estimate is that given by 

(8.3.5) - -1 -1 -1 -1-1 
a = (cj>'R cj» cj>'R Y = a + (cj>'R" cj»cj>'R x 

The variance of a is easily seen to be 

(8.3.6) 

Comparing the least-squares estimate a (8.3.3) and the "Markov" estimate a 

(8.3.5), we observe that even when the structure, i.e. the covariance matrix R, of 

the x-process is known (which is by no means always the case), the computation of a 

may present numerical difficulties since it involves the inversion of the large 

matrix R. 

Assignment. Assume that xt is generated by 

where gt is N(O,l) and the spectral density of xt is, therefore, 

If the regression relation is 

Yt = at + xt 

find the least-squares and the Markov estimates for several values of 0 < p < 1 and 

sample size n. For the inversion of R use the Toeplitz matrix inversion routine 

TINV (figure 4.10); see eq. (4.3.2) for the definition of a Toeplitz matrix. 

8.4 Signal Detection. 

Signal detection can be looked upon as a problem of hypothesis testing on sto-

chastic processes. 

Let Yt be an observation at time t of a random process; we wish to decide 

whether or not a signal St is present in that observation or whether we are observing 

noise, nt' only. If the observations are made at time points t = 1,2, ••• ,n, these 

hypotheses may be written 
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t=1,2, ... ,n 

Let us assume that the noise is Gaussian with spectral density f (A) and that 
n 

the signal is also Gaussian, with spectral density fs(A). The above hypotheses can 

be written, if f(A) is the spectral density of Yt' 

f(A) fo(A) = 

f(A) = fl (A) = 

f (A) 
n 

f(A)+f(A) n s 

The spectral densities are additive since we assume nt and St to be independent 

processes. 

One can now define a critical region W in the sample space Q of all possible 

realizations w of Yt in the sense that 

if W E W, HO is rejected 

if w i w, HO is accepted 

The probability that HO be rejected though true is denoted by Po(W) and that it be 

accepted though false by Pl(W*); the power of the test, i.e. the probability of 

rejection of HO when false, is therefore 

P (W) = 1 - P (W*) 
1 1 

It can be shown that the most powerful critical region WMP is given by the 

Neymann-Pearson test 

WMP = {yIL(y) > c} 

where we denote by y the vector of observations Yl'Y2""'Yn and by L(y) the likeli

hood function 

L(y) 
Pl(Yl···Yn) 

PO(Yl" 'Yn) 

Here PO (x) and Pl (x) are the probability distributions induced on Q by HO and Hl , 

respectively, and are given by 

1 1 T -1 
(21T)n/2 exp(- "2 x RO x) 

v'det RO 
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1 1 T -1 
Pl(x) = n/2 exp(- 2 x Rl x) 

(21f) ,Idet Rl 

RO is the covariance matrix of the noise and Rl that of the signal plus noise; these 

matrices are given by 

1f 

R = 1 f i(v-~) f (') d' o 21f e 0 1\ 1\ 

-1f 

and similarly for Rl . Hence 

L(x) 

v ,~ = 1,2, ••• ,n 

The likelihood function is a monotonically increasing function of the quadratic form 

T 
x Qx , 

say; hence 

WMP = I T -1 {x x (RO - -1 
Rl )x > c} 

For white noise, RO = I, the unit matrix, and f (A) 
n - 1· , also 

WMP = {xlxT(I - -1 
Rl )x > c} 

the covariance matrix of the signal will be denoted by 

Let us take, for the elements s of the covariance matrix S of the signal 
Vll 

which corresponds to the spectral density 

f (A) 
s 

2 I-p 

the "Poisson kernel" (see ref. 21). 

Assignment. Using the white noise process and the Poisson kernel process (with p = 

.8) for noise and signal, respectively, design a large sample test for presence and 

absence of a signal. 
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Hint: use the test statistic 

I w x x 
V].l v ].l 

say; find the expected value and variance of T under the null hypothesis: 

EaT = I w r = tr W Ra 
V].l V].l 

Var T \ w w (r r + r r ) a L V].l as v-s ].l-a v-a ].l-S 

The normalized test statistic is 

2 tr(I - R- l R )2 
1 a 
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APPENDIX 8: FIGURES 

VRPHASE[mV 
V RPHASE 

[1] FI+OO.02 x ?Mp100 
[2] MAT+(fM)xo(tN)o.xtM 
[3] MAT+20MAT+(Np1)o.xFI 
[4] X+(2*O.5)xMAT+.x(02xFfM)*O.5 

Figure 8.1 

VAUTO[mV 
V AUTO 

[1] X+(TRANS+N)pO 
[2] X[1]+O 
[3J I+1 
[4] AUL:I+I+1 
[5J GAUSS 
[6] X[IJ+(ROxX] I-1J)+SIGMAxEPSILON 
[ 7] -+- (I <N ) / AU L 
[8J X+(-N)tX 

V 

VSPECTRUM[mV 
V SPECTRUM 

VGAUSS[mV 
V GAUSS 

[1J F+1-(fM)XtM [1J EPSILON+-6+0.01 x+/?12p100 

Figure 8.2 

VAUTOSPECT[mV 
V AUTOSPECT 

[1] F+(SIGMA*2)f02x(1+RO*2)-2xROx20(fM)xOtM 
V 

Figure 8.3 

VSMOOTH[OJV 
V SMOOTH 

[1] EST+(~EST),EST 
[2] WINDOW+WINDOW,(M-pWINDOW)pO 
[3] WINDOW+(~WINDOW),WINDOW 
[4J I+1 
[5] POWER+MpO 
[6] SML:POWER[I]++/ (I~WINDOW) xEST 
[7] I+I+1 
[8J -+-(ISM)/SML 
[9] EST+POWER 

V 

Figure 8.4 
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v PERIODOGRAM[ OJ v 
V PERIODOGRAM 

[1] MAT+10( tM)xo( 1M) o. x1M 
[2] Vl+MAT+.xX 
[3] MAT+20(tM)xO(lM)o.X1N 
[4] V2+MAT+.xX 
[5] EST+«V1*2)+V2*2)t2 xON 

V 

V COMPQ;I 
[1] COL+NpO 
[2] I+1 

Figure 8.5 

VCOMPQ[OJV 

[3] COMPQL:COL+COL+(t02xN)x(TW[M+I]+TW[M+1-I])X20(tM)xOIX-1+1N 
[4] I+I+1 
[5] +(ISM)/COMPQL 
[6] Q+COL[l+l(lN)o.-lN] 

V 

[1] 
C2J 
[3] 
[ 4] 
[5] 
[6] 
[ 7] 
[ 8] 
[9] 
[10] 
[11] 
[12] 
[ 13] 

Figure 8.6 

VANALYSIS[mV 
V ANALYSIS 

V 

SD+MEAN+MpO 
X+1 
WINDOW+WINDOW.(M-pWINDOW)pO 
WINDOW+(~WINDOW).WINDOW 
ANALYSISL;TW+K~WINDOW 
COMPQ 
A+Q+.xCOV 
MEAN[K]++/+/Ax«lN)o.=lN) 
A+Q+. xCOV 
SD[K]+2x+/+/A*2 
SD[K]+SD[K]*O.5 
K+K+1 
+(KSM)/ANALYSISL 

Figure 8.7 
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VFFT[mV 
v Z+FFP X;M;N;Z;P;A1;A2;C;S;VV 

[1] +KEEPx\2<M+pX 
[2] Z+(2 2)p(0.5 xX[1]+X[2]).0.(0.5 xX[1]-X[2]).0 
[3] +0 
[4] KEEP:A1+0.5xFFP X[-1+P+2 X1N+M+2] 
[5] A2+0.5xFFP X[P] 
[6] C+2oVV+o(1-1N)+N 
[7] S+10VV 
[8] A2+~(2.N)p«A2[;1]xC)-(A2[;2]xS».(A2[;2]xC)+A2[;1]XS 
[9] Z+«M.2)pA1)+(M.2)p(.A2) •• -A2 

V 

Figure 8.8 

VHERGLOPZ[mV 
V HERGLOn 

[1] COVSEQ+o2 x(fM)x(2o(+M)xo1x(-1+1N)o.X1M)+.xF 
[2] COV+COVSEQ[1+I(lN)o.-lN] 

V 

Figure 8.9 
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Ajne, 151 

antithetic variables, 47, 48, 49 

APL programs: 
ALIAS, 16, 28 
ANALYSIS, 138, 146 
&~OVA, 123, 130, 131, 132 
AUTO, 146 
AUTOSPECT, 135, 136, 146 
AVERAGE, 74, 85 
BIVARIATE, 26, 30 
COMPQ, 138, 146 
CONTPL, 62, 69 
CRIT, 109 
DECIDE, 109, 122 
DESIGN, 107, 121 
EQUIL, 91 
FFT, 140, 148 
GAUSS, 111, 146 
GRAM, 107, 121 
GROW, 94, 98 
HERGLOTZ, 77, 137, 148 
INVEST, 75, 87 
INVP, 111 
LENGTH, 109, 122 
LUNDBERG, 61, 65 
MODEL, 126, 130 
MOTION, 11, 27 
PERIODOGRAM, 136, 146 
REARR, 91 
RENEWAL, 96, 100 
RLBEST, 113 
RLMATRIX, 112 
RLREST, 114 
RLSEL, 114 
RLSERIES, 111 
RLSUM, 115 
SEARCH, 109, 122 
SMOOTH, 136, 147 
SPECTRUM, 135, 146 
TAIL, 62, 69 
TEMP, 74, 84 
TlMEAVERAGE, 74, 86 
TIMEPL, 136, 149 
TINV, 78, 90, 142 

Bayes, 51, 102, 128 

Beard, 151 

Bernoulli variable, 56 

bias, 18, 19 

binary sequence, 24 

binary variables, 18 

INDEX 

birth and death process, 93 

BMD, 124 

Buhler, 151 

Burhoe, 151 

central limit theorem, 24, 35, 63 

chi-square, 15 

complexity :I.(x), 24 

congruence generator, 12, 14, 24-26, 44 

conjugate quadratic irrational, 43 

continued fractions, 38 

controlled parameter, 49 

COSMOS, 124 

cost function, 101 

Couveyou, 26, 151 

covariance matrix, 35 

Cramer, 151 

critical region, 143 

Dalenius, 151 

Davis, 151 

design of experiments, 105 

diophantine analysis, 38 

diophantine approximation, 43 

Dixon, 124, 151 

eigenvalue, 19 

entropy, 110 

equidistribution, 6, 7, 13-15, 26 

equilibrium distribution (see also stat
istical equilibrium), 20, 22, 36, 37 

ergodicity, 7, 10 

Erlang distribution, 34 

Birkhoff's individual ergodic theorem, 7 exponential distribution, 34 
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factorial design, 50 

fast Fourier transform, 138 

Feller, 151 

Fejer's theorem, 36 

floating point arithmetic, 8 

Freiberger, 152 

Gram-Schmidt orthonormalization, 106 

Grenander, 151 

Hamiltonian, 8 

Hammersley, 151 

Hands comb , 151 

Hardy, 151 

Herglotz's theorem, 77 

Jacobian, 10 

Jansson, 25, 151 

kollective, 24 

Kolmogorov's test, 15 

kurtosis, 127 

law of large numbers, 3, 23, 24, 31, 63, 
74, 97 

law of the iterated logarithm, 24 

likelihood function, 143, 144 

linear regression, 49 

Liouville's theorem, 10 

Littlewood, 151 

Lundberg, 61 

MacPherson, 26, 151 

Markov chain, 19, 37, 59, 79, 82 

Markov estimate, 142 

Markov process, 34 

Martin-L8f, 24, 151 
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Monte Carlo method, 2, 24, 25, 31-34, 37, 
44,46,47,49, 50, 54, 55, 61 

Neyman-Pearson test, 143 

normal distribution, 35 

optimum stratification, 54 

orthogonal process, 53 

paging algorithm, 79, 80, 81, 82 

Pareto frequency function, 104 

Pentikainen, 151 

periodogram, 134, 136, 137 

permutation matrix, 48 

Personen, 151 

Poisson distribution, 57, 62, 104 

Poisson kernel, 144 

Poisson process, 75, 96 

principal convergents, 38, 39 

pseudo-random number(s), 14, 34, 37, 50 

pseudo-random sequence(s), 10, 25, 44 

PSTAT, 124 

quadratic irrational, 40, 42 

Rabinowitz, 151 

random experiment, 1 

randomness, 1, 2, 14, 15, 23, 24, 37 

random phase model, 95, 134 

random sequence(s), 2, 3, 9, 24 

RC-filter, 53 

regression parameter, 141 

renewal process, 96 

renewal equation, 97 

residue classes, 25 

Riemann-Lebesgue lemma, 8,17,42 

Rosenblatt, 151 
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sample space, 1, 23, 101, 143 
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Schatzoff., 151 
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sign test, 127 

Simpson's rule, 52 

skewness, 127 

Smillie, 123, 151 

spectral density, 36, 133 ff., 143 

stationary stochastic process, 7, 36, 
76, 78 

statistical equilibrium (see also 
equilibrium distribution), 75, 78, 
83, 96, 103 

statistical mechanics, 9 

STATPACK, 123, 132, 151 

stochastic process (see also stationary 
stochastic process), definition, 73, 
93, 95, 133, 142 

Student's t-test, 127 

Szeg5, 151 

time series, 133 

Tippett, 151 

Toeplitz matrix, 77, 78, 142 

transition kernel, 37 

transition probability (matrix), 19, 22, 
37, 79, 82 

Tsao, 151 

TSP (Time-Share Peripherals) plotting 
system, xii 

Turing machine, 24 

type (of an irrational number), 39-41 

uniform (rectangular) distribution, 3, 7, 
15-18, 47, 58, 62, 75, 135 

uniformity problem, 101 

von Mises, 24 

Wallis-Kruskal test, 128 

Weyl's theorem, 6, 12 

Wiener process, 51, 53, 63 

Wilcoxon's test, 128 
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