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Preface

This book deals with properties of some special classes of matrices that are useful
in economics and decision making problems.

In various fields of evaluation, selection, and prioritization processes decision
maker(s) try to find the best alternative(s) from a feasible set of alternatives. In
many cases, comparison of different alternatives according to their desirability in
decision problems cannot be done using only a single criterion or one person. In
many decision making problems, procedures have been established to combine
opinions about alternatives related to different points of view. These procedures
are often based on pairwise comparisons, in the sense that processes are linked to
some degree of preference of one alternative over another. According to the nature
of the information expressed by the decision maker, for every pair of alternatives
different representation formats can be used to express preferences, e.g., multiplica-
tive preference relations, additive preference relations, fuzzy preference relations,
interval-valued preference relations, and also linguistic preference relations.

Many important optimization problems use objective functions and constraints
that are characterized by extremal operators such as maximum, minimum, or
various fuzzy triangular norms (t-norms). These problems can be solved using
special classes of matrices, in which matrix operations are derived from the binary
scalar operations of maximum and minimum instead of classical addition and
multiplication. We shortly say that the computation is performed in max-min
algebra. In a more general approach, the minimum operation, which itself is a
specific t-norm, is substituted by any other t-norm T , and the computations are
made in max-T algebra.

Matrices in max-min algebra, or in general max-T algebra, are useful in
applications such as automata theory, design of switching circuits, logic of binary
relations, medical diagnosis, Markov chains, social choice, models of organizations,
information systems, political systems, and clustering. In these applications, the
steady states of systems working in discrete time correspond to eigenvectors of
matrices in max-min algebra (max-T algebra). The input data in real problems
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vi Preface

are usually not exact and can be rather characterized by interval values. For
systems described by interval coefficients the investigation of steady states leads
to computing various types of interval eigenvectors.

In Chap. 1 basic preliminary concepts and results are presented which will be
used in the following chapters: t-norms and t-conorms, fuzzy sets, fuzzy relations,
fuzzy numbers, triangular fuzzy numbers, fuzzy matrices, alo-groups, and others.

Chapter 2 deals with pairwise comparison matrices. In a multicriteria decision
making context, a pairwise comparison matrix is a helpful tool to determine the
weighted ranking on a set of alternatives or criteria. The entry of the matrix can
assume different meanings: it can be a preference ratio (multiplicative case) or a
preference difference (additive case), or, it belongs to the unit interval and measures
the distance from the indifference that is expressed by 0.5 (fuzzy case). When
comparing two elements, the decision maker assigns the value from a scale to any
pair of alternatives representing the element of the pairwise preference matrix. Here,
we investigate transitivity and consistency of preference matrices being understood
differently with respect to the type of preference matrix. By various methods and
from various types of preference matrices we obtain corresponding priority vectors
for final ranking of alternatives. The obtained results are also applied to situations
where some elements of the fuzzy preference matrix are missing. Finally, a unified
framework for pairwise comparison matrices based on abelian linearly ordered
groups is presented. Illustrative numerical examples are supplemented.

Chapter 3 is aimed on pairwise comparison matrices with fuzzy elements. Fuzzy
elements of the pairwise comparison matrix are applied whenever the decision
maker is not sure about the value of his/her evaluation of the relative importance
of elements in question. We particularly deal with pairwise comparison matrices
with fuzzy number components and investigate some properties of such matrices. In
comparison with pairwise comparison matrices with crisp components investigated
in the previous chapter, here we investigate pairwise comparison matrices with
elements from alo-group over a real interval. Such an approach allows for gener-
alization of additive, multiplicative, and fuzzy pairwise comparison matrices with
fuzzy elements. Moreover, we deal with the problem of measuring the inconsistency
of fuzzy pairwise comparison matrices by defining corresponding inconsistency
indexes. Numerical examples are presented to illustrate the concepts and derived
properties.

Chapter 4 considers the properties of equation/inequality optimization systems
with max-min separable functions on one or both sides of the relations, as well
as optimization problems under max-min separable equation/inequality constraints.
For the optimization problems with one-sided max-min separable constraints an
explicit solution formula is derived, a duality theory is developed, and some
optimization problems on the set of points attainable by the functions occurring
in the constraints are solved. Solution methods for some classes of optimization
problems with two-sided equation and inequality constraints are proposed in the
last part of the chapter.

In Chap. 5 the steady states of systems with imprecise input data in max-min
algebra are investigated. Six possible types of an interval eigenvector of an interval
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matrix are introduced, using various combination of quantifiers in the definition.
The previously known characterizations of the interval eigenvectors that were
restricted to the increasing eigenvectors are extended here to the non-decreasing
eigenvectors, and further to all possible interval eigenvectors of a given max-
min matrix. Classification types of general interval eigenvectors are studied and
characterization of all possible six types is presented. The relations between various
types are shown by several examples.

Chapter 6 describes the structure of the eigenspace of a given fuzzy matrix in
two specific max-T algebras: the so-called max-drast algebra, in which the least
t-norm T (often called the drastic norm) is used, and max-Łukasiewicz algebra
with Łukasiewicz t-norm L. For both of these max-T algebras the necessary and
sufficient conditions are presented under which the monotone eigenspace (the set of
all non-decreasing eigenvectors) of a given matrix is nonempty and, in the positive
case, the structure of the monotone eigenspace is described. Using permutations of
matrix rows and columns, the results are extended to the whole eigenspace.

Hradec Kralove, Czech Republic Martin Gavalec
Karvina, Czech Republic Jaroslav Ramík
Prague, Czech Republic Karel Zimmermann
December 2013
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Chapter 1
Preliminaries

Abstract In this chapter basic preliminary concepts and results are presented which
will be used in the following chapters: t-norms and t-conorms, fuzzy sets, fuzzy
relations, fuzzy numbers, triangular fuzzy numbers, fuzzy matrices, abelian linearly
ordered groups and others.

1.1 Triangular Norms and Conorms

The notion of a triangular norm was introduced by Schweizer and Sklar in their
development of a probabilistic generalization of the theory of metric spaces. This
development was initiated by K. Menger [9], who proposed to replace the distance
d.x; y/ between points x and y of a metric space by a real-valued function Fxy
of a real variable whose value Fxy.˛/ is interpreted as the probability that the
distance between x and y is less than ˛. This interpretation leads to straightforward
generalizations of all requirements of the standard definition of a metric except
for that of the triangular inequality. Elaborating Menger’s idea, Schweizer and
Sklar [14] proposed to replace the triangular inequality by the inequality

Fxy.˛ C ˇ/ � T .Fxy.˛/; Fyz.ˇ// (1.1)

where T is a function from Œ0; 1�2 into Œ0; 1� satisfying the following conditions
(1.2)–(1.5).

Definition 1.1. Let T W Œ0; 1�2 ! Œ0; 1� be a function satisfying the following
properties:

T .a; b/ D T .b; a/ for all a; b 2 Œ0; 1�, (1.2)

T .T .a; b/; c/ D T .a; T .b; c// for all a; b; c 2 Œ0; 1�, (1.3)

T .a; b/ � T .c; d/ for a; b; c; d 2 Œ0; 1� with a � c, b � d , (1.4)

T .a; 1/ D a for all a 2 Œ0; 1�. (1.5)

The chapter was written by “Jaroslav Ramík”

© Springer International Publishing Switzerland 2015
M. Gavalec et al., Decision Making and Optimization, Lecture Notes in Economics
and Mathematical Systems 677, DOI 10.1007/978-3-319-08323-0__1
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4 1 Preliminaries

A function T W Œ0; 1�2 ! Œ0; 1� that satisfies all these properties is called the
triangular norm or t-norm. A t-norm T is called strictly monotone if T is a strictly
increasing function in the sense that

T .a; b/ < T .a0; b/ whenever a; a0; b 2�0; 1Œ and a < a0.

Triangular norms play an important role also in many-valued logics and in the
theory of fuzzy sets. In many-valued logics, they serve as truth degree functions of
conjunction connectives. In the fuzzy set theory, they provide a tool for defining
various types of the intersection of fuzzy subsets of a given set. For a detailed
treatment we refer to [7].

The axioms (1.2), (1.3), (1.4) and (1.5) are called commutativity, associativity,
monotonicity and boundary condition, respectively. From the algebraic point of
view, a triangular norm is a commutative ordered semigroup with unit element 1
on the unit interval Œ0; 1� of real numbers. Therefore the class of all triangular norms
is quite large. Let us consider some important examples.

In connection with a problem on functional equations, Frank [6] introduced the
following family fTs j s 2�0;C1Œ; s ¤ 1g of t-norms:

Ts.a; b/ D logs

�
1C .sa � 1/.sb � 1/

s � 1

�
: (1.6)

The limit cases TM , TP and TL defined by

TM.a; b/ D lim
s!0

Ts.a; b/ D minfa; bg;
TP .a; b/ D lim

s!1
Ts.a; b/ D a � b;

TL.a; b/ D lim
s!1Ts.a; b/ D maxf0; aC b � 1g

are also t-norms. In the literature on many-valued logics, the t-norms TM , TP
and TL are often called the minimum (or Gödel), product and Łukasiewicz t-norm,
respectively. Two other interesting examples are

TF .a; b/ D
(

minfa; bg if a C b > 1

0 otherwise,

introduced by Fodor [32], and the so-called drastic product

TD.a; b/ D
(

minfa; bg if maxfa; bg D 1

0 otherwise.
(1.7)

It can easily be seen that the minimum t-norm TM is the maximal t-norm and the
drastic product TD is the minimal t-norm in the pointwise ordering, that is, for every
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t-norm T ,

TD.a; b/ � T .a; b/ � TM.a; b/ whenever a; b 2 Œ0; 1�. (1.8)

However, the class of t-norms is not linearly ordered by this pointwise relation. For
example, the product t-norm TP and the Fodor t-norm TF are not comparable.

A class of functions closely related to the class of t-norms are functions S W
Œ0; 1�2 ! Œ0; 1� such that

S.a; b/ D S.b; a/ for all a; b 2 Œ0; 1�,
S.S.a; b/; c/ D S.a; S.b; c// for all a; b; c 2 Œ0; 1�,

S.a; b/ � S.c; d/ for a; b; c; d 2 Œ0; 1� with a � c, b � d ,

S.a; 0/ D a for all a 2 Œ0; 1�.

The functions that satisfy all these properties are called the triangular conorms or
t-conorms.

It can easily be verified, see for example [7], that for each t-norm T , the function
T � W Œ0; 1�2 ! Œ0; 1� defined for all a; b 2 Œ0; 1� by

T �.a; b/ D 1� T .1 � a; 1 � b/ (1.9)

is a t-conorm. The converse statement is also true. Namely, if S is a t-conorm, then
the function S� W Œ0; 1�2 ! Œ0; 1� defined for all a; b 2 Œ0; 1� by

S�.a; b/ D 1 � S.1 � a; 1 � b/ (1.10)

is a t-norm. The t-conorm T � and t-norm S�, are called dual to the t-norm T and
t-conorm S , respectively. For example, the functions SM , SP , SL and SD defined
for a; b 2 Œ0; 1� by

SM.a; b/ D maxfa; bg;
SP .a; b/ D a C b � a:b;
SL.a; b/ D minf1; aC bg;

SD.a; b/ D
(

maxfa; bg if minfa; bg D 0;

1 otherwise.

are t-conorms. In the literature, the t-conorms SM , SP ; SL and SD are often called
the maximum, probabilistic sum, bounded sum and drastic sum, respectively. It may
easily be verified that

T �
M D SM ; T

�
P D SP ; T

�
L D SL; T

�
D D SD:
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The following proposition answers the question whether a triangular norm and
triangular conorm are determined uniquely by their values on the diagonal of the
unit square. In general, this is not the case, but the extremal t-norms and t-conorms
TM , SM , TD , SD are completely determined by their values on the diagonal of the
unit square.

1.2 Properties of Triangular Norms and Triangular Conorms

For some important properties of triangular norms and triangular conorms, see also
[7, 12].

Proposition 1.1.

(i) The only t-norm T satisfying T .x; x/ D x for all x 2 Œ0; 1� is the minimum
t-norm TM .

(ii) The only t-conorm S satisfying S.x; x/ D x for all x 2 Œ0; 1� is the maximum
t-conorm SM .

(iii) The only t-norm T satisfying T .x; x/ D 0 for all x 2 Œ0; 1� is the drastic
product TD .

(iv) The only t-conorm S satisfying S.x; x/ D 0 for all x 2 Œ0; 1� is the drastic
sum SD.

The commutativity and associativity properties allow to extend t-norms and
t-conorms, introduced as binary operations, to n-ary operations. Let T be a t-norm.
We define its extension to more than two arguments by the formula

T iC1.a1; a2; : : : ; aiC2/ D T .T i.a1; a2; : : : ; aiC1/; aiC2/; (1.11)

where T 1.a1; a2/ D T .a1; a2/.
For example, the extensions of TM , TP , TL and TD to m arguments are

T m�1
M .a1; a2; : : : ; am/ D minfa1; a2; : : : ; amg;

T m�1
P .a1; a2; : : : ; am/ D

mY
iD1

ai ;

T m�1
L .a1; a2; : : : ; am/ D maxf0;

mX
iD1

ai � .m � 1/g;

T m�1
D .a1; a2; : : : ; am/ D

(
ai if aj D 1 for all j ¤ i;

0 otherwise.

Given a t-conorm S , we can, in a complete analogy, extend this binary operation
to m-tuples .a1; a2; : : : ; am/ 2 Œ0; 1�m by the formula
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SiC1.a1; a2; : : : ; aiC2/ D S.Si.a1; a2; : : : ; aiC1/; aiC2/;

where S1.a1; a2/ D S.a1; a2/.
For example, the extensions of SM , SP , SL and SD to m arguments are

Sm�1
M .a1; a2; : : : ; am/ D maxfa1; a2; : : : ; amg;

Sm�1
P .a1; a2; : : : ; am/ D 1�

mY
iD1
.1 � ai /;

Sm�1
L .a1; a2; : : : ; am/ D minf1;

mX
iD1

ai g;

Sm�1
D .a1; a2; : : : ; am/ D

(
ai if aj D 1 for all j ¤ i;

1 otherwise.

If there is no danger of misunderstanding, the upper indexm�1 of T or S is omitted.
Now we turn our attention to some algebraic aspects of t-norms and t-conorms,

which will be useful later on when T -quasiconcave and T -quasiconvex functions are
investigated. Notice that these properties are well-known from the general theory of
semigroups.

Definition 1.2. Let T be a t-norm.

(i) An element a 2 Œ0; 1� is called an idempotent element of T if T .a; a/ D a.
(ii) An element a 2�0; 1Œ is called a nilpotent element of T if there exists some

positive integer n 2 N such that T n�1.a; : : : ; a/ D 0.
(iii) An element a 2�0; 1Œ is called a zero divisor of T if there exists some b 2�0; 1Œ

such that T n�1.a; b/ D 0.

By definitions and properties of t-norms we obtain the following proposition
summarizing the properties of TM , TP , TL and TD introduced in Definition 1.2.

Proposition 1.2. Each a 2 Œ0; 1� is an idempotent element of TM . Each a 2 .0; 1/ is
both a nilpotent element and zero divisor of TL, as well as of TD . The minimum TM
has neither nilpotent elements nor zero divisors, and TL, as well as TD possesses
only trivial idempotent elements 0 and 1. The product norm TP has neither non-
trivial idempotent elements nor nilpotent elements nor zero divisors.

Now we add some other usual definitions concerning the properties of triangular
norms.

Definition 1.3. A triangular norm T is said to be

(i) strict if it is continuous and strictly monotone,
(ii) Archimedian if for all x; y 2�0; 1Œ there exists a positive integer n such that

T n�1.x; : : : ; x/ < y,



8 1 Preliminaries

(iii) nilpotent if it is continuous and if each a 2�0; 1Œ is a nilpotent element of T ,
(iv) idempotent if each a 2�0; 1Œ is an idempotent element of T .

Notice that if T is strict, then T is Archimedian. The following proposition
summarizes the properties of the most popular t-norms in context to the previous
definition; see [7].

Proposition 1.3. The minimum TM is neither strict, nor Archimedian, nor nilpo-
tent. The product norm TP is both strict and Archimedian, but not nilpotent.
Łukasiewicz t-norm TL is both strict and Archimedian and nilpotent. The drastic
product TD is Archimedian and nilpotent, but not continuous, thus not strict.

Strict monotonicity of t-conorms as well as strict, Archimedian and nilpotent
t-conorms can be introduced using the duality (1.9), (1.10). Without presenting all
technical details, we only mention that it suffices to interchange the words t-norm
and t-conorm and the roles of 0 and 1, respectively, in order to obtain the proper
definitions and results for t-conorms.

It is obvious that each strict t-norm T is Archimedian since

T .x; x/ < T .x; 1/ D x

for each x 2�0; 1Œ/. The following result can be found in [58].

Proposition 1.4. A continuous t-norm T is strict if and only if there exists an
automorphism ' of the unit interval Œ0; 1� such that

T .x; y/ D '�1.'.x/'.y//:

1.3 Representations of Triangular Norms and Triangular
Conorms

Now we show how real-valued functions of one real variable can be used to
construct new t-norms and t-conorms, and how new t-norms can be generated from
given ones. The construction requires an inverse operation and in order to relax the
strong requirement of bijectivity and to replace it by the weaker monotonicity, we
first recall some general properties of monotone functions. The following result is
crucial for the proper definition of pseudoinverse; see [7].

Proposition 1.5. Let f W Œa; b� ! Œc; d � be a non-constant monotone function,
where Œa; b� and Œc; d � are subintervals of the extended real line NR D Œ�1;C1�.
Then for each y 2 Œc; d � n Ran.f / we have

supfx 2 Œa; b� j .f .x/ � y/ � .f .b/� f .a// < 0g
D inffx 2 Œa; b� j .f .x/ � y/ � .f .b/� f .a// > 0g:
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This result allows us to introduce the following generalization of an inverse func-
tion, where we restrict ourselves to the case of non-constant monotone functions.

Definition 1.4. Let Œa; b� and Œc; d � be subintervals of the extended real line NR.
Let f W Œa; b� ! Œc; d � be a non-constant monotone function. The pseudo-inverse
f .�1/ W Œc; d � ! Œa; b� is defined by

f .�1/.y/ D supfx 2 Œa; b� j .f .x/ � y/ � .f .b/� f .a// < 0g:

The following proposition summarizes some evident consequences of Defini-
tion 1.4.

Proposition 1.6. Let Œa; b� and Œc; d � be subintervals of the extended real line NR,
and let f be a non-constant function mapping Œa; b� into Œc; d �.

(i) If f is non-decreasing, then for all y 2 Œc; d � we have

f .�1/.y/ D supfx 2 Œa; b� j f .x/ < y/g:

(ii) If f is non-increasing, then for all y 2 Œc; d � we have

f .�1/.y/ D supfx 2 Œa; b� j f .x/ > y/g:

(iii) If f is a bijection, then the pseudoinverse f .�1/ of f coincides with the inverse
function f �1 of f .

(iv) If f is a strictly increasing function, then the pseudoinverse f .�1/ of f is
continuous.

To construct t-norms with the help of functions we start with the best known
operations, the usual addition and multiplication of real numbers. The following
proposition gives the result known for nearly 200 years and published by N. H.
Abel in 1826. We state it here in a bit simplified version.

Proposition 1.7. Let f W Œa; b� ! Œc; d � be a continuous strictly monotone
function, where Œa; b� and Œc; d � are subintervals of the extended real line NR.
Suppose that Ran.f / D Œc; d � and ' W Œc; d � ! Œa; b� is an inverse function to
f . Then the function F W Œa; b� � Œa; b� ! Œa; b� defined for every x; y 2 Œa; b� by

F.x; y/ D '.f .x/C f .y// (1.12)

is associative.

If we want to obtain a t-norm by means of (1.12), it is obvious that some
additional requirements for f are necessary.

Definition 1.5. An additive generator of a t-norm T is a strictly decreasing
function g W Œ0; 1� ! Œ0;C1� which is right continuous at 0, satisfies g.1/ D 0,
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and is such that for all x; y 2 Œ0; 1� we have

g.x/C g.y/ 2 Ran.g/ [ Œg.0/;C1�; (1.13)

T .x; y/ D g.�1/.g.x/C g.y//: (1.14)

A multiplicative generator of a t-norm T is a strictly increasing function
� W Œ0; 1� ! Œ0; 1� which is right continuous at 0, satisfies �.1/ D 1, and is
such that for all x; y 2 Œ0; 1� we have

�.x/ � �.y/ 2 Ran.�/[ Œ0; �.0/�; (1.15)

T .x; y/ D �.�1/.�.x/:�.y//: (1.16)

An additive generator of a t-conorm S is a strictly increasing function
h W Œ0; 1� ! Œ0;C1� which is left continuous at 1, satisfies h.0/ D 0, and is
such that for all x; y 2 Œ0; 1� we have

h.x/C h.y/ 2 Ran.g/[ Œh.1/;C1�; (1.17)

S.x; y/ D h.�1/.h.x/C h.y//: (1.18)

A multiplicative generator of a t-conorm S is a strictly decreasing function � W
Œ0; 1� ! Œ0; 1� which is left continuous at 1, satisfies �.0/ D 1, and is such that for
all x; y 2 Œ0; 1� we have

�.x/:�.y/ 2 Ran.�/ [ Œ0; �.1/�; (1.19)

S.x; y/ D �.�1/.�.x/:�.y//: (1.20)

Triangular norms (t-conorms) constructed by means of additive (multiplicative)
generators are always Archimedian. This property and some other properties of such
t-norms are summarized in the following proposition.

Proposition 1.8. Let g W Œ0; 1� ! Œ0;C1� be an additive generator of a t-norm T .
Then T is an Archimedian t-norm. Moreover, we have:

(i) The t-norm T is strictly monotone if and only if g.0/ D C1.
(ii) Each element of .0; 1/ is a nilpotent element of T if and only if g.0/ < C1.

(iii) T is continuous if and only if g is continuous.

It was mentioned in Example 1.2 that minimum TM has no nilpotent elements.
Since TM is not strictly monotone it follows from the preceding theorem that it has
no additive generator. If a t-norm T is generated by a continuous generator, then by
Proposition 1.8, T is an Archimedian t-norm. The following theorem says that the
converse statement is also true; see [7].

Proposition 1.9. A t-norm T is Archimedian and continuous if and only if there
exists a continuous additive generator of T .
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The analogical propositions can be formulated and proved for multiplicative
generators and also for t-conorms.

Proposition 1.10. A t-norm T is Archimedian and continuous if and only if there
exists a continuous multiplicative generator � of T .

Proposition 1.11. A t-conorm S is Archimedian and continuous if and only if there
exist both a continuous additive generator h of S , and a multiplicative generator �
of S .

Example 1.1 (The Yager t-norms). One of the most popular families in operations
research and particularly in fuzzy linear programming is the family of Yager
t-norms; see [15]. The results presented here can be found in [7].

Let � 2 Œ0;C1�. The Yager t-norm T Y� is defined for all x; y 2 Œ0; 1� as follows:

T Y� .x; y/ D

8̂
<̂
ˆ̂:
TD.x; y/ if � D 0;

TM .x; y/ if � D C1;

max
n
0; 1 � �

.1 � x/� C .1 � y/��1=�o otherwise.

The Yager t-conorm SY� is defined for all x; y 2 Œ0; 1� as:

SY� .x; y/ D

8̂̂
<
ˆ̂:
SD.x; y/ if � D 0;

SM .x; y/ if � D C1;

min
n
1;
�
x� C y�

�1=�o
otherwise.

(i) Obviously, T Y1 D TL and SY1 D SL.
(ii) For each � 2�0;C1Œ, T Y� and T Y� are dual to each other.

(iii) A Yager t-norm T Y� is nilpotent if and only if � 2�0;C1Œ.
(iv) A Yager t-conorm SY� is nilpotent if and only if � 2�0;C1Œ.
(v) If � 2�0;C1Œ, then the corresponding continuous additive generator

f Y
� W Œ0; 1� ! Œ0; 1� of the Yager t-norm T Y� is given for all x 2 Œ0; 1� by

f Y
� .x/ D .1� x/� :

(vi) The corresponding continuous additive generator gY� W Œ0; 1� ! Œ0; 1� of the
Yager t-conorm SY� is given for all x 2 Œ0; 1� by

gY� .x/ D x�:

Yager t-norms have been used in several applications of fuzzy set theory.
In particular, it was used in extended addition of linear functions with fuzzy
parameters. In this context, in [8], it was shown that the sum of piecewise linear
function is again piecewise linear, when using Yager t-norm, see also [7].
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1.4 Negations and De Morgan Triples

Supplementing t-norms and t-conorms by a special unary function we obtain a triplet
which is useful in many-valued logics, fuzzy set theory and their applications.

Definition 1.6. A function N W Œ0; 1� ! Œ0; 1� is called a negation if it is non-
increasing and satisfies the following conditions:

N.0/ D 1; N.1/ D 0: (1.21)

Moreover, it is called strict negation, if it is strictly decreasing and continuous and
it is called strong negation if it is strict and the following condition of involution
holds:

N.N.x// D x for all x 2 Œ0; 1�. (1.22)

Since a strict negation N is a strictly decreasing and continuous function, its
inverseN�1 is also a strict negation, generally different fromN . Obviously,N�1 D
N if and only if (1.22) holds.

Definition 1.7. An intuitionistic negationNI is defined as follows

NI .x/ D
(
1 if x D 0;

0 otherwise.

A weak negationNW is defined as follows

NW .x/ D
(
1 if x < 1;

0 if x D 1:

A standard negationN is defined by

N.x/ D 1 � x: (1.23)

Strong negations (including the standard one) defined by

N�.x/ D 1� x

1C �x
;

where � > �1, are called �-complements.

Notice that NI is not a strict negation, NW is a dual operation to NI , i.e., for all
x 2 Œ0; 1�, it holds NW .x/ D 1 � NI .1 � x/. The standard negation is a strong
negation. An example of strict but not strong negation is the negationN 0 defined by
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the formula

N 0.x/ D 1 � x2:

The following proposition characterizing strong negations comes from [38].

Proposition 1.12. A function N W Œ0; 1� ! Œ0; 1� is a strong negation if
and only if there exists a strictly increasing continuous surjective function
' W Œ0; 1� ! Œ0; 1� such that

N.x/ D '�1.1 � '.x//:

Definition 1.8. Let T be a t-norm, S be a t-conorm, andN be a strict negation. We
say that .T; S;N / is a De Morgan triple if

N.S.x; y// D T .N.x/;N.y//:

The following proposition is a simple consequence of the above definitions.

Proposition 1.13. Let N be a strict negation, T be a t-norm. Let S be defined for
all x; y 2 Œ0; 1� as follows:

S.x; y/ D N�1.T .N.x/; T .y///:

Then .T; S;N / is a De Morgan triple. Moreover, if T is continuous, then S is
continuous. In addition, if T is Archimedian with an additive generator f , then
S is Archimedian with additive generator g D f ıN and g.1/ D f .0/.

Example 1.2. A Łukasiewicz-like De Morgan triple .T; S;N / is defined as follows:

T .x; y/ D '�1.maxf'.x/C '.y/� 1; 0g/;
S.x; y/ D '�1.minf'.x/C '.y/; 1g/;
N.x/ D '�1.1� '.x//;

where ' W Œ0; 1� ! Œ0; 1� is a strictly increasing continuous surjective function.

1.5 Fuzzy Sets

In order to define the concept of a fuzzy subset of a given set X within the
framework of standard set theory we are motivated by the concept of upper level
set of a function, see also [10]. Throughout this chapter, X is a nonempty set. All
propositions are stated without proofs, the reader can find them e.g. in [12].
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Definition 1.9. Let X be a nonempty set. A fuzzy subset A of X is the family of
subsets A˛ � X , where ˛ 2 Œ0; 1�; satisfying the following properties:

A0 D X; (1.24)

Aˇ � A˛ whenever 0 � ˛ < ˇ � 1; (1.25)

Aˇ D
\

0�˛<ˇ
A˛: (1.26)

A fuzzy subset A of X will be also called a fuzzy set. The class of all fuzzy subsets
of X is denoted by F .X/.

Definition 1.10. Let A D fA˛g˛2Œ0;1� be a fuzzy subset of X . The �A W X ! Œ0; 1�

defined by

�A.x/ D supf˛ j ˛ 2 Œ0; 1�; x 2 A˛g (1.27)

is called the membership function of A, and the value �A.x/ is called membership
degree of x in the fuzzy set A.

Definition 1.11. Let A be a fuzzy subset of X . The core of A, Core.A/, is
defined by

Core.A/ D fx 2 X j �A.x/ D 1g:

If the core of A is nonempty, then A is said to be normalized. The support of A,
Supp.A/, is defined by

Supp.A/ D Cl.fx 2 X j �A.x/ > 0g/:

The height of A, Hgt.A/, is defined by

Hgt.A/ D supf�A.x/ j x 2 Xg:

The upper-level set of the membership function �A of A at ˛ 2 Œ0; 1� is denoted by
ŒA�˛ and called the ˛-cut of A, that is,

ŒA�˛ D fx 2 X j �A.x/ � ˛g: (1.28)

Note that if A is normalized, then Hgt.A/ D 1, but not vice versa.
In the following two propositions, we show that the family generated by the upper

level sets of a function � W X ! Œ0; 1�, satisfies conditions (1.24)-(1.26), thus, it
generates a fuzzy subset of X and the membership function �A defined by (1.27)
coincides with �. Moreover, for a given fuzzy set A D fA˛g˛2Œ0;1�, every ˛-cut ŒA�˛
given by (1.28) coincides with the correspondingA˛ .
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Proposition 1.14. Let � W X ! Œ0; 1� be a function and let A D fA˛g˛2Œ0;1� be a
family of its upper-level sets, i.e. A˛ D U.�; ˛/ for all ˛ 2 Œ0; 1�. Then A is a fuzzy
subset of X and � is the membership function of A.

Proposition 1.15. Let A D fA˛g˛2Œ0;1� be a fuzzy subset of X and let �A W X !
Œ0; 1� be the membership function of A. Then for each ˛ 2 Œ0; 1� the ˛-cut ŒA�˛ is
equal to A˛ .

These results allow for introducing a natural one-to-one correspondence between
fuzzy subsets ofX and real-valued functions mappingX to Œ0; 1�. Any fuzzy subset
A of X is given by its membership function �A and vice-versa, any function � W
X ! Œ0; 1� uniquely determines a fuzzy subset A of X , with the property that the
membership function �A of A is �.

The notions of inclusion and equality extend to fuzzy subsets as follows. Let
A D fA˛g˛2Œ0;1�, B D fB˛g˛2Œ0;1� be fuzzy subsets of X . Then

A � B if A˛ � B˛ for each ˛ 2 Œ0; 1�, (1.29)

A D B if A˛ D B˛ for each ˛ 2 Œ0; 1�. (1.30)

Proposition 1.16. Let A D fA˛g˛2Œ0;1� and B D fB˛g˛2Œ0;1� be fuzzy subsets of X .
Then the following holds:

A � B if and only if �A.x/ � �B.x/ for all x 2 X , (1.31)

A D B if and only if �A.x/ D �B.x/ for all x 2 X . (1.32)

A subset of X can be considered as a special fuzzy subset of X where all
members of its defining a family consist of the same elements. This is formalized in
the following definition.

Definition 1.12. Let A be a subset of X . The fuzzy subset fA˛g˛2Œ0;1� of X defined
by A˛ D A for all ˛ 2 .0; 1� is called a crisp fuzzy subset of X generated by A. A
fuzzy subset of X generated by some A � X is called a crisp fuzzy subset of X or
briefly a crisp subset of X .

Proposition 1.17. Let fAg˛2Œ0;1� be a crisp subset of X generated by A. Then the
membership function of fAg˛2Œ0;1� is equal to the characteristic function of A.

By Definition 1.12, the set P.X/ of all subsets of X can naturally be embedded
into the set of all fuzzy subsets ofX and we can write A D fA˛g˛2Œ0;1� if fA˛g˛2Œ0;1�
is generated by A � X . According to Proposition 1.17, we have in this case �A D
�A. In particular, if A contains only one element a of X , that is, A D fag, then we
write a 2 F .X/ instead of fag 2 F .X/ and �a instead of �fag.
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Example 1.3. Let � W R ! Œ0; 1� be defined by �.x/ D e�x2 . Let A0 D fA0̨ g˛2Œ0;1�,
A00 D fA00̨g˛2Œ0;1� be two families of subsets in R defined as follows:

A0̨ D fx j x 2 R; �.x/ > ˛g;
A00̨ D fx j x 2 R; �.x/ � ˛g:

Clearly, A00 is a fuzzy subset of R and A0 ¤ A00. Observe that (1.24) and (1.25) are
satisfied for A0 and A00. However, A0

1 D ; and
T
0�˛<1 A0̨ D f0g, thus (1.26) is not

satisfied. Hence A0 is not a fuzzy subset of R.

1.6 Operations with Fuzzy Sets

In order to generalize the set operations of intersection, union and complement to
fuzzy set operations, it is natural to use triangular norms, triangular conorms and
fuzzy negations introduced in Sect. 1.2.

Given a De Morgan triple .T; S;N /, i.e., a t-norm T , a t-conorm S and a fuzzy
negationN , introduced in Definition 1.8, we define the operations intersection \T ,
union [S and complementCN on F .X/ as follows: LetA andB be fuzzy subsets of
X , and �A and �B be their membership functions. Then the membership functions
of the fuzzy subsets A\T B , A [S B and CNA of X are defined by

�A\T B.x/ D T .�A.x/; �B.x//;

�A[SB.x/ D S.�A.x/; �B.x//;

�CN A.x/ D N.�A.x//:

The operations introduced by L. Zadeh in [7] have been originally based on T D
TM D min, S D SM D max and standard negation N defined in (1.23). The
properties of the operations intersection \T , union [S and complement CN can be
derived directly from the corresponding properties of t-norm T , t-conorm S and
fuzzy negation N . For brevity, in case of T D min and S D max, we write only \
and [, instead of \T and [S .

Notice that for A 2 F .X/ we do not necessarily obtain properties which hold
for subsets of X . For example,

A \T CNA D ;; (1.33)

A[S CNA D X; (1.34)

may not hold. If the t-norm T in the De Morgan triple .T; S;N / does not have zero
divisors, e.g., T D min, then these properties never hold unless A is a crisp set. On
the other hand, for the De Morgan triple .TL; SL;N / based on Łukaszewicz t-norm
T D TL, properties (1.33) and (1.34) are satisfied.
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Given a t-norm T and fuzzy subsets A and B of X and Y , respectively, the
Cartesian product A �T B is the fuzzy subset of X � Y with the following
membership function:

�A�T B.x; y/ D T .�A.x/; �B.y// for .x; y/ 2 X � Y . (1.35)

An interesting and natural question arises, whether the ˛-cuts of the intersection
A\T B , unionA[SB and Cartesian productA�T B ofA;B 2 F .X/, coincide with
the intersection, union and Cartesian product, respectively, of the corresponding
˛-cuts ŒA�˛ and ŒB�˛ .

1.7 Extension Principle

The purpose of the following definition called the extension principle (proposed
by L. Zadeh in [16] and [17]) is to extend functions or operations having crisp
arguments to functions or operations with fuzzy set arguments. Zadeh’s methodol-
ogy can be cast in a more general setting of carrying a membership function via
a mapping, see, e.g., [5]. There exist other generalizations for set-to-set mappings;
see, e.g., [5, 13]. From now on, X and Y are nonempty sets.

Definition 1.13 (Extension Principle). Let X; Y be sets, f W X ! Y be a
mapping. The mapping Qf W F .X/ ! F .Y / defined for all A 2 F .X/ with
�A W X ! Œ0; 1� and all y 2 Y by

� Qf .A/.y/ D
(

supf�A.x/ j x 2 X; f .x/ D yg if f �1.y/ ¤ ;;
0 otherwise,

(1.36)

is called a fuzzy extension of f .

By formula (1.36) we define the membership function of the image of the fuzzy
set A by fuzzy extension Qf . A justification of this concept is given in the following
theorem stating that the mapping Qf is a true extension of the mapping f when
considering the natural embedding of P.X/ into F .X/ and P.Y / into F .Y /.

Proposition 1.18. Let X , Y be sets, f W X ! Y be a mapping, x0 2 X , y0 D
f .x0/. If Qf W F .X/ ! F .Y / is defined by (1.36), then

Qf .x0/ D y0;

and the membership function � Qf .x0/ of the fuzzy set Qf .x0/ is a characteristic
function of y0, i.e.

� Qf .x0/ D �y0 : (1.37)
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A more general form of Proposition 1.18 says that the image of a crisp set by a
fuzzy extension of a function is again crisp.

Proposition 1.19. Let X; Y be sets, f W X ! Y be a mapping, A � X . Then

Qf .A/ D f .A/

and the membership function � Qf .A/ of Qf .A/ is a characteristic function of the set
f .A/, i.e.

� Qf .A/ D �f.A/: (1.38)

In the following sections the extension principle will be used in different settings
for various sets X and Y , and also for different classes of mappings and relations.

1.8 Binary and Valued Relations

In the classical set theory, a binary relation R between the elements of sets X and
Y is defined as a subset of the Cartesian product X � Y , that is, R � X � Y . A
valued relation on X � Y will be a fuzzy subset of X � Y .

Definition 1.14. A valued relation R onX �Y is a fuzzy subset of X �Y . The set
of all valued relations on X � Y is denoted by F .X � Y /.

The valued relations are sometimes called fuzzy relations, however, we reserve
this name for valued relations defined on F .X/ � F .Y /, which will be defined
later.

Every binary relation R, where R � X � Y , is embedded into the class of
valued relations on X � Y by its characteristic function �R being understood as
its membership function �R. In this sense, any binary relation is valued.

Particularly, any function f W X ! Y is considered as a binary relation, that is,
as a subset Rf of X � Y , where

Rf D f.x; y/ 2 X � Y j y D f .x/g: (1.39)

Here, Rf may be identified with the valued relation by its characteristic function

�Rf .x; y/ D �Rf .x; y/ (1.40)

for all .x; y/ 2 X � Y , where

�Rf .x; y/ D �f.x/.y/: (1.41)

In particular, if Y D X , then each valued relation R on X �X is a fuzzy subset
of X �X , and it is called a valued relation on X instead of on X �X .
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Definition 1.15. Let T be a triangular norm. A valued relation R on X is

(i) reflexive if for each x 2 X

�R.x; x/ D 1I

(ii) symmetric if for each x; y 2 X

�R.x; y/ D �R.y; x/I

(iii) T -transitive if for each x; y; z 2 X

T .�R.x; y/; �R.y; z// � �R.x; z/I

(iv) separable if

�R.x; y/ D 1 if and only if x D yI

(v) T -equivalence if R is reflexive, symmetric and T -transitive;
(vi) T -equality if R is reflexive, symmetric, T -transitive and separable.

Definition 1.16. Let R be a valued relation onX � Y and let N W Œ0; 1� ! Œ0; 1� be
a negation.

(i) A valued relation R�1 on Y �X is the inverse of R if �R�1 .y; x/ D �R.x; y/

for each x 2 X and y 2 Y .
(ii) A valued relation CNR on X � Y is the complement of R if �CN R.x; y/ D

N.�R.x; y// for each x 2 X and y 2 Y . If N is the standard negation, then
the index N is omitted.

(iii) If �R is upper semicontinuous on X � Y , then R is called closed.

For more information about valued relations, see [38].

Example 1.4. Let ' W R ! Œ0; 1� be a function. Then R defined by the membership
function �R for all x; y 2 R by

�R.x; y/ D '.x � y/ (1.42)

is a valued relation on R. If

'.t/ D
(
1 if t � 0;

0 otherwise,

then R defined by (1.42) is the usual binary relation � on R. If

'.t/ D
(
1 if t � 0;

0 otherwise,
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then R defined by (1.42) is the usual binary relation � on R. If

'.t/ D
(
1 if t D 0;

0 otherwise,

then R defined by (1.42) is the usual binary relation D on R.

1.9 Fuzzy Relations

Let X; Y be nonempty sets. Consider a valued relation R on X � Y given by
the membership function �R W X � Y ! Œ0; 1�. In order to extend this function
with crisp arguments to function with fuzzy arguments, we apply the extension
principle (1.36) in Definition 1.13. Then we obtain a mapping Q�R W F .X � Y / !
F .Œ0; 1�/, that is, values of Q�R are fuzzy subsets of Œ0; 1�.

Definition 1.17. A fuzzy subset of F .X/ � F .Y / is called a fuzzy relation on
F .X/ � F .Y /. The set of all fuzzy relations on F .X/ � F .Y / is denoted by
F .F .X/ � F .Y //.

Further on, we shall investigate mappings � assigning to each valued relation R
from F .X � Y / a fuzzy relation from F .F .X/ � F .Y //, that is,

� W F .X � Y / ! F .F .X/ � F .Y //:

Definition 1.18. Let R be a valued relation on X � Y . A fuzzy relation QR on
F .X/�F .Y / given by the membership function � QR W F .X/�F .Y / ! Œ0; 1� is
called a fuzzy extension of relation R, if, for each x 2 X , y 2 Y , it holds

� QR.x; y/ D �R.x; y/: (1.43)

Definition 1.19. Let � W F .X � Y / ! F .F .X/� F .Y // be a mapping. Let for
all R 2 F .X � Y /, �.R/ be a fuzzy extension of relation R. Then the mapping �
is called a fuzzy extension of valued relations.

Definition 1.20. Let ˚;� W F .X � Y / ! F .F .X/ � F .Y // be mappings. We
say that the mapping ˚ is dual to � , if

˚.CR/ D C�.R/ (1.44)

holds for all R 2 F .X � Y /. For ˚ dual to � , R 2 F .X � Y /, the fuzzy relation
˚.R/ is called dual to fuzzy relation �.R/.
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Notice that a mapping ˚ is dual to � , if and only if the mapping � is dual to ˚ .
This fact follows from (1.44) and from the identity

CCR D R:

The analogical statement holds for the dual fuzzy relations ˚.R/ and �.R/.

1.10 Fuzzy Quantities and Fuzzy Numbers

In this section, we are concerned with fuzzy subsets of the real line. Therefore we
have X D R and F .X/ D F .R/.

Definition 1.21.

(i) A fuzzy subset A D fA˛g˛2Œ0;1� of R is called a fuzzy quantity. The set of all
fuzzy quantities will be denoted by F .R/.

(ii) A fuzzy quantity A D fA˛g˛2Œ0;1� is called a fuzzy interval if A˛ is
nonempty, convex and closed subset of R for all ˛ 2 Œ0; 1�. The set of all
fuzzy intervals will be denoted by FI .R/.

(iii) A fuzzy interval A is called a fuzzy number if its core is a singleton. The set of
all fuzzy numbers will be denoted by FN .R/.

Notice that the membership function �A W R ! Œ0; 1� of a fuzzy interval A
is quasiconcave on R, that is, for all x; y 2 R, x ¤ y, � 2�0; 1Œ, the following
inequality holds:

�A.�x C .1 � �/y/ � minf�A.x/; �A.y/g:

By Definition 1.21, each fuzzy interval is normalized, since Core.A/ D ŒA�1 is
nonempty, that is, there exists an element x0 2 R with �A.x0/ D 1. Then Hgt.A/ D
1. Moreover, the restriction of the membership function �A to � � 1; x0� is non-
decreasing and the restriction of �A to Œx0;C1Œ is a non-increasing function.

A fuzzy interval A has an upper semicontinuous membership function �A or,
equivalently, for each ˛ 2�0; 1� the ˛-cut ŒA�˛ is a closed subinterval in R. Such
a membership function �A, and the corresponding fuzzy interval A, can be fully
described by a quadruple .l I r IF IG/, where l; r;2 R with l � r , and F;G are
non-increasing left continuous functions mapping �0;C1Œ into Œ0; 1Œ, by setting

�A.x/ D

8̂̂
<
ˆ̂:
F.l � x/ if x 2� � 1; l Œ;

1 if x 2 Œl; r�;
G.x � r/ if x 2�r;C1Œ:

(1.45)

We shall briefly write A D .l I r IF IG/. As the ranges of F and G are included
in Œ0; 1Œ, we have Core.A/ D Œl; r�. We can see that the functions F;G describe
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the left and right ”shape” of �A, respectively. Observe also that each crisp number
x0 2 R and each crisp interval Œa; b� � R belongs to FI .R/, as they may be
equivalently expressed by the characteristic functions �fx0g and �Œa;b�, respectively.
These characteristic functions can be also described in the form (1.45) with F.x/ D
G.x/ D 0 for all x 2�0;C1Œ.

Example 1.5 (Gaussian fuzzy number). Let a 2 R, 	 2�0;C1Œ, and let A D
.a; a;G;G/ where

G.x/ D e
� x2

	 :

Then the membership function �A of A is given by

�A.x/ D G.x � a/ D e
� .x�a/2

	 :

A class of more specific fuzzy intervals of FI .R/ is obtained, if the ˛-cuts are
required to be bounded intervals. Let l; r;2 R with l � r , let 	; ı 2 Œ0;C1Œ and
let L;R be continuous and strictly decreasing functions mapping interval Œ0; 1� into
Œ0;C1Œ, i.e., L;R W Œ0; 1� ! Œ0;C1Œ. Moreover, assume that L.1/ D R.1/ D 0,
and for each x 2 R let

�A.x/ D

8̂̂
ˆ̂<
ˆ̂̂̂
:

L.�1/
�
l�x
	

�
if x 2�l � 	; lŒ; 	 > 0;

1 if x 2 Œl; r�;
R.�1/

�
x�r
ı

�
if x 2�r; r C ıŒ; ı > 0;

0 otherwise,

where L�1, R�1 are inverse functions of L;R, respectively. We shall write A D
.l I r I 	 I ı/LR, and say that A is an .L;R/-fuzzy interval. The set of all .L;R/-fuzzy
intervals will be denoted by FLRI .R/. The values of 	 , ı are called the left and the
right spread of A, respectively. Observe that Supp.A/ D Œl � 	; r C ı�, Core.A/ D
Œl; r� and ŒA�˛ is a compact interval for every ˛ 2�0; 1�. If r D l , thenA is an .L;R/-
fuzzy number. The set of all .L;R/-fuzzy numbers will be denoted by FLRN .R/.

Particularly important fuzzy intervals are so called trapezoidal fuzzy intervals
where L.x/ D R.x/ D 1 � x for all x 2 Œ0; 1�. In this case, the subscript LR will
be omitted in the notation. If l D r , then A D .r I r I 	 I ı/ is called a triangular
fuzzy number and the notation is simplified to: A D .r I 	 I ı/, or, equivalently, A D
.aLI aM I aR/, see bellow.

In the following section we shall introduce the concept of matrices with fuzzy
elements, particularly, with .L;R/-fuzzy numbers.
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1.11 Matrices with Fuzzy Elements

From now on, we shall denote any fuzzy set A by the symbol with tilde, i.e. QA. An
m � n matrix QA D fQaij g, where Qaij , i D 1; 2; : : : ; m, j D 1; 2; : : : ; n are fuzzy
quantities, is called a matrix with fuzzy elements, i.e.

QA D

2
6664

Qa11 Qa12 � � � Qa1n
Qa21 Qa22 � � � Qa2n
:::

:::
: : :

:::

Qam1 Qam2 � � � Qamn

3
7775 : (1.46)

In practice, triangular fuzzy numbers introduced in Sect. 1.10 are suitable for
modeling fuzzy quantities by DMs. A triangular fuzzy number Qa 2 FLRN .R/
can be equivalently expressed by a triple of real numbers, i.e. Qa D .aLI aM I aU /
where aL is the Lower number, aM is the Middle number, and aU is the Upper
number, aL � aM � aU . If aL D aM D aU , then Qa is the crisp number (non-
fuzzy number). Evidently, the set of all crisp numbers is isomorphic to the set
of real numbers. If aL ¤ aM ¤ aU , then the membership function �Qa of Qa is
supposed to be continuous, strictly increasing in the interval ŒaL; aM � and strictly
decreasing in ŒaM ; aU �. Moreover, the membership grade �Qa.x/ is equal to zero for
x … ŒaL; aU � and equal to one for x D aM . As usual, the membership function
�Qa is assumed to be piece-wise linear, see Fig. 1.1. If aL D aM and/or aM D aU ,
then the membership function �Qa is discontinuous. The triangular fuzzy numbers
Qa D .aLij I aMij I aUij / is fuzzy positive, if aLij > 0.

The arithmetic operations C;�; � and / can be extended to fuzzy numbers by the
Extension principle, Sect. 1.6, see also e.g. [4].

Fig. 1.1 Membership functions of Qa and Q1
a
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Arithmetic operation with fuzzy numbers are defined as follows, see [3], or [15].
Let Qa D .aLI aM I aU / and Qb D .bLI bM I bU /, where aL > 0, bL > 0, be positive
triangular fuzzy numbers.

Addition: Qa QC Qb D .aL C bLI aM C bM I aU C bU / ,
Subtraction: Qa Q� Qb D .aL � bU I aM � bM I aU � bL/ ,
Multiplication: QaQ� Qb D .aL � bLI aM � bM I aU � bU / ,
Division: Qa Q= Qb D .aL=bU I aM=bM I aU =bL/ .

Particularly: Q1
a

D
� Q1
aU

I Q1
aM

I Q1
aL

�
.

For using matrices with triangular fuzzy elements there exist at least following
reasons:

• The membership functions of triangular fuzzy elements are usually piece-wise
linear, i.e. easy to understand.

• Triangular fuzzy numbers can be easily manipulated, e.g. added, multiplied, see
[11].

• Crisp (non-fuzzy) numbers are special cases of triangular fuzzy numbers.
• The reciprocal matrix with triangular fuzzy elements can be considered by the

DM as a model for his/her fuzzy pair-wise preference representations concerning
n elements (e.g. alternatives). In this model, it is assumed that only n(n-1)/2
judgments are needed, the rest is given by reciprocity condition.

• In practice, when interval-valued matrices are employed, the DM often gives
ranges narrower than his or her actual perception would authorize, because
he/she might be afraid of expressing information which is too imprecise. On the
other hand, triangular fuzzy numbers express rich information because the DM
provides both the support set of the fuzzy number as the range that the DM
believes to surely contain the unknown ratio of relative importance, and the
grades of possibility of occurrence (i.e. membership function) within this range.

• Triangular fuzzy numbers are appropriate in group decision making where aL

can be interpreted as the minimum possible value of DMs judgements, aU is
interpreted as the maximum possible value of DMs judgements, and aM—the
geometric mean of the DMs judgements is interpreted as the mean value, or, the
most possible value of DMs judgements, see [10].

1.12 Abelian Linearly Ordered Groups

In this section, we recall some notions and properties related to abelian linearly
ordered groups. The matter of this section is based on [1–3], and [4].

Definition 1.22. An abelian group is a set, G, together with an operation ˇ
(read: operation odot) that combines any two elements a; b 2 G to form another
element denoted a ˇ b. The symbol ˇ is a general placeholder for a concretely
given operation. The set and operation, .G;ˇ/, satisfies the following requirements
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known as the abelian group axioms:

• If a; b 2 G, then a ˇ b 2 G. (Closure axiom.)
• If a; b; c 2 G, then .aˇ b/ˇ c D a ˇ .b ˇ c/ holds. (Associativity axiom.)
• There exists an element e 2 G called the identity element, such that for all

elements a 2 G, the equation e ˇ a D a ˇ e D a holds. (Identity element
axiom.)

• For each a 2 G, there exists an element a.�1/ 2 G called the inverse element to
a such that aˇ a.�1/ D a.�1/ ˇ a D e, where e is the identity element. (Inverse
element axiom.)

• For all a; b 2 G, aˇ b D b ˇ a. (Commutativity axiom.)

The inverse operation � to ˇ is defined for all a; b 2 G as follows

a � b D aˇ b.�1/:

In other words, an abelian group is a commutative group. A group in which
the group operation is not commutative is called a “non-abelian group” or “non-
commutative group”.

Definition 1.23. A nonempty set G is linearly (totally) ordered under the order
relation �, if the following statements hold for all a; b and c in G:

• Antisymmetry:
If a � b and b � a then a D b;

• Transitivity:
If a � b and b � c then a � c;

• Totality (linearity):
a � b or b � a.
The strict order relation < is defined for a; b 2 G as

a < b if a � b and a ¤ b:

Antisymmetry eliminates cases when both a precedes b and b precedes a, and
a ¤ b. A relation having the property of “totality” means that any pair of elements in
the set of the relation are comparable under the relation. This also means that the set
can be diagrammed as a line of elements, giving it the name “linear”. Totality also
implies reflexivity, i.e., a � a. Therefore, a total order is also a partial order. The
partial order has a weaker form of the third condition (it only requires reflexivity,
not totality). An extension of a given partial order to a total order is called a linear
extension of that partial order.

Definition 1.24. Let .G;ˇ/ be an abelian group, G be linearly ordered under �.
.G;ˇ;�/ is said to be an abelian linearly ordered group, alo-group for short, if for
all c 2 G

a � b implies aˇ c � b ˇ c: (1.47)
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It is easy to show that for a 2 G

a < e if and only if a�1 > e; (1.48)

a > e if and only if a�1 < e; (1.49)

a ˇ a > a for all a > e; (1.50)

aˇ a < a for all a < e: (1.51)

If G D .G;ˇ;�/ is an alo-group, then G is naturally equipped with the order
topology induced by � and G � G is equipped with the related product topology.
We say that G is a continuous alo-group if ˇ is continuous on G �G.

By Definition 1.23, an alo-group G is a lattice ordered group, see [9]. Hence,
there exists maxfa; bg, for each pair .a; b/ 2 G � G . Nevertheless, by (1.50),
(1.51), a nontrivial alo-group G D .G;ˇ;�/ has neither the greatest element nor
the least element.

Because of the associative property, the operation ˇ can be extended by
induction to n-ary operation, n > 2, by setting

nK
iD1

ai D
 
n�1K
iD1

ai

!
ˇ an: (1.52)

Then, for a positive integer n, the .n/-power a.n/ of a 2 G is defined by

a.1/ D a;

a.n/ D ˇn
iD1ai ; ai D a for all i D 1; 2; : : : ; n; n � 2;

and verifies the following properties for a; b 2 G; n � 2 W

a < b if and only if a.n/ < b.n/ , (1.53)

a.n/ > a for all a > e , (1.54)

a.n/ < a for all a < e . (1.55)

We can extend the meaning of power a.s/ to the case that s is a negative integer by
setting

a.0/ D e and a.�n/ D �
a.n/

�.�1/ D �
a.�1/

�.n/
. (1.56)

We obtain also

.a � b/.n/ D a.n/ � b.n/ . (1.57)
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An isomorphism between two alo-groups G D .G;ˇ;�/ and GK D .GK; ı;	/
is a bijection h W G ! GK that is both a lattice isomorphism and a group
isomorphism, i.e.

a < b if and only if h.a/ 	 h.b/ and h.aˇ b/ D h.a/ ı h.b/: (1.58)

By the associativity of the operations ˇ and ı, the equality in (1.58) can be
extended by induction to the n-operation.

Definition 1.25. Let G D .G;ˇ;�/ be an alo-group. Then G is divisible if for
each positive integer n and each a 2 G there exists the (n)-th root of a denoted by

a.1=n/, i.e.
�
a.1=n/

�.n/ D a.

The (n)-th root verifies the following property:

if a < b then a.1=n/ < b.1=n/ . (1.59)

Definition 1.26. Let G D .G;ˇ;�/ be a divisible alo-group,n is a positive integer.
Then the ˇ-mean mˇ.a1; a2; : : : ; an/ of elements a1; a2; : : : ; an 2 G is defined as

mˇ.a1; a2; : : : ; an/ D
(

a1 for n D 1;�ˇn
iD1ai

�.1=n/
for n > 1:

Definition 1.27. Let G D .G;ˇ;�/ be an alo-group. Then the function k:k W
G ! G defined by kak D maxfa; a.�1/g for each a 2 G is called a G -norm.

The G -norm satisfies the following evident properties, a; b 2 G, e is the identity
element:

(i) kak D ��a.�1/�� I
(ii) a � kak I

(iii) kak � eI
(iv) kak D e if and only if a D eI
(v)

��a.n/�� D kak.n/ I
(vi) ka ˇ bk � kak ˇ kbk (triangle inequality).

Definition 1.28. Let G D .G;ˇ;�/ be an alo-group. Then the operation d W G �
G ! G defined by d.a; b/ D ka� bk for all a; b 2 G is called a G -distance.

The G -distance d satisfies the following evident properties; a; b; c 2 G:

(i) d.a; b/ � eI
(ii) d.a; b/ D e if and only if a D bI

(iii) d.a; b/ D d.b; a/I
(iv) d.a; b/ � d.a; c/ˇ d.c; b/ (triangle inequality).

The proof of the following proposition is a straightforward application of the
definitions.
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Proposition 1.20. Let G D .G;ˇ;�/ and GK D .GK; ı;	/ be alo-groups and h W
G ! GKbe an isomorphism between G and GK, a; b 2 G, aK; bK2 GK. Then

dGK.aK; bK/ D h.dG .h
�1.aK/; h�1.bK//; (1.60)

dG .a; b/ D h�1.dGK.h.a/; h.b// (1.61)

More definitions and properties of alo-groups of the real line R will be presented
in Chaps. 2 and 3.
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Chapter 2
Pairwise Comparison Matrices in Decision
Making

Abstract In multicriteria decision making context, a pairwise comparison matrix
is a helpful tool to determine the weighted ranking of alternatives or criteria. The
entry of the matrix can assume different meanings: it can be a preference ratio
(multiplicative case) or a preference difference (additive case), or, it belongs to the
unit interval and measures the distance from the indifference that is expressed by 0.5
(fuzzy case). When comparing two elements, the decision maker assigns the value
from a scale to any pair of alternatives representing the element of the pairwise
preference matrix. Here, we investigate particularly relations between transitivity
and consistency of preference matrices being understood differently with respect
to the type of preference matrix. By various methods for deriving priorities from
various types of preference matrices we obtain the corresponding priority vectors
for final ranking of alternatives. The obtained results are also applied to situations
where some elements of the fuzzy preference matrix are missing. Finally, a unified
framework for pairwise comparison matrices based on abelian linearly ordered
groups is presented. Illustrative numerical examples are supplemented.

2.1 Introduction

In various fields of evaluation, selection, and prioritization processes decision
maker(s) (DM) try to find the best alternative(s) from a feasible set of alternatives.
In many cases, comparison of different alternatives according to their desirability
in decision problems cannot be done using only a single criterion or one person.
In many decision making problems, procedures have been established to combine
opinions about alternatives related to different points of view. These procedures
are often based on pairwise comparisons, in the sense that processes are linked to
some degree of preference of one alternative over another. According to the nature
of the information expressed by the DM, for every pair of alternatives different
representation formats can be used to express preferences, e.g. multiplicative prefer-
ence relations, [39], additive preference relations, [4], fuzzy preference relations, see
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[19,38,52], interval-valued preference relations, [70], and also linguistic preference
relations, [3].

The decision-making models have been studied for a long time by many authors.
A detailed bibliography can be found in the website of the International Society
on Multiple Criteria Decision Making, [81]. Many well known methods have been
reviewed in [31]: Preference Modeling, Conjoint Measurement, Multi- Attribute
Utility Theory (MAUT), Outranking Methods, ELECTRE, PROMETHEE, MAC-
BETH, Fuzzy Multiple Criterion Decision Aid, Multi-objective Programming,
Analytic Hierarchy/Network Process (AHP/ANP), and many others.

Usually, experts are characterized by their own personal background and expe-
rience of the problem to be solved. Expert opinions may differ substantially, some
of them would not be able to efficiently express a preference degree between two or
more of the available options, [57]. This may be true due to an expert not possessing
a precise or sufficient level of knowledge of part of the problem, or because these
experts are unable to discriminate the degree to which some options are better
than others. In these situations such an expert will provide an incomplete fuzzy
preference matrix, see [3, 40, 45, 70].

Usual procedures for DM problems correct this lack of knowledge of a par-
ticular expert using the information provided by the rest of the experts together
with aggregation procedures, see [59]. Estimation of missing values in an expert
incomplete preference matrix is done using only the preference values provided
by these particular experts. By doing this, we assume that the reconstruction of the
incomplete preference matrix is compatible with the rest of the information provided
by the experts. In this chapter we summarize various approaches to incomplete
preference matrix based on different type of degree of preference of one alternative
over another, e.g. multiplicative preference relations, additive preference relations,
and fuzzy preference relations, see [3, 4, 20, 41, 45, 46, 52, 55].

The chapter is organized as follows. Definition of the decision making problem
is formulated and multiplicative preference relations and their properties are
introduced in Sects. 2.2 and 2.3. In Sect. 2.4. the most popular methods for
deriving priorities from multiplicative pairwise comparison matrices are presented.
Section 2.5 deals with additive pairwise comparison matrices and in Sect. 2.6
some methods for deriving priorities from additive pairwise comparison matrices
are discussed. In Sects. 2.7 and 2.8 we investigate two types of fuzzy pairwise
comparison matrices: fuzzy multiplicative and fuzzy additive. We also deal with
the problem of deriving priorities for ranking the alternatives. In Sect. 2.9 fuzzy
pairwise comparison matrices with missing elements are investigated. Here we
deal with the problem of finding the values of missing elements of a given fuzzy
pairwise comparison matrix so that the extended matrix is as much fm-consistent
or fa-consistent as possible. We consider two important particular cases of fuzzy
preference matrix with missing elements where the expert will evaluate only n � 1

pairwise comparisons of alternatives. Here, we present several yet unpublished
results concerning this problem. In Sect. 2.10 we consider pairwise comparison
matrices over an abelian linearly (totally) ordered group and, in this way, we provide
a general framework for all the above mentioned cases. This section is composed of
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4 subsections. By introducing this general setting, we provide a consistency measure
that has a natural meaning, it corresponds to the consistency indexes presented in
the previous sections and it is easy to calculate it in the additive, multiplicative and
fuzzy cases. In some sense we unify a major part of the theory presented in the
previous sections. In the last section some concluding considerations and remarks
are presented.

2.2 Problem Definition

The decision making problem (DM problem) can be formulated as follows. Let
X D fx1; x2; : : : ; xng be a finite set of alternatives (n > 2). These alternatives
have to be ranked from best to worst, using information given by the decision maker
(DM) in the form of n � n pairwise comparison matrix (PC matrix) A D faijg,
where aij are elements (components, entries) of the matrix A.

Usually, an ordinal ranking of alternatives is required to obtain the best alterna-
tive(s), however, it often occurs that the ordinal ranking among alternatives is not a
sufficient result and a cardinal ranking called here the rating is required.

Some well known limits to our capacity to handle several alternatives at a time
(so called cognitive overload, [60]) make it impossible to obtain the rating by a
priority weighting vector directly, for instance asking the DM to provide the utility
values for the alternatives. Therefore, it is more suitable and also easier to ask the
DM for his opinion over the pairs of alternatives and then, once all the necessary
information over the pairs is acquired, to derive the rating for the alternatives. The
most popular way of eliciting the experts’ preferences by pairwise comparisons
between the alternatives is the pairwise comparison matrix – a mathematical tool
associated with the more general concept: preference relation.

The pairwise comparison method was proposed by L. Thurstone in Psychological
Review as early as 1927, see [68]. Later on, pairwise comparison matrices have
been widely used in many well-known decision making approaches, such as the
Analytic Hierarchy Process (AHP), [60], PROMETHEE method, see [31] and many
others. A large number of methods deriving a ranking/rating of the alternatives have
been proposed in the framework of pairwise comparison matrices in the literature.
Two well-known examples are the eigenvector method (EVM) in AHP, [60,61], and
the geometric mean method (GMM), being in fact the Logarithmic Least Squares
Method (LLSM), see [22].

In one of the most popular MCDM method – the above mentioned Analytic
Hierarchy Process (AHP), [59], the decision problem is structured hierarchically
at different levels, each level consisting of a finite number of elements. The AHP
searches for the priorities representing the relative importance of the decision
elements at each particular level. By suitable aggregation it finally calculates the
priorities of the alternatives at the bottom level of the hierarchy. Their priorities are
interpreted with respect to overall goal at the top of the hierarchy, and elements
at upper levels such as criteria, sub-criteria, etc. are used to mediate comparison
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process. The elicitation process at given level is performed by pairwise comparisons
of all elements at given level of the hierarchy with respect to the elements of the
upper level. If he/she prefers so, the DM may directly use a numerical value from the
scale to express the ratio of elements’ relative importance. By inserting numerical
values into proper positions a PC matrix is created, and the role of prioritization
method is to extract the relative priorities – weights of all compared alternatives, i.e.
the rating of alternatives.

The values representing the preferences of the decision elements – alternatives
can be also considered as the results of aggregation of pairwise comparisons of
a group of decision makers and/or experts. Then the DM problem becomes the
group DM problem (GDM). The tournament ranking problem is another well known
application of pairwise comparisons, see e.g. [21].

A crucial step in a DM process is the determination of a weighted ranking, i.e.
rating, on a set X D fx1; x2; : : : ; xng of alternatives with respect to criteria or
experts. A way to determine the rating is to start from a relation represented by
the n � n PC matrix A D faijg; each element of this matrix aij is a nonnegative real
number which expresses how much xi is preferred to xj .

The properties of the PC matrix depend on the various meaning given to the
number aij, particularly, the preference matrix A D faijg becomes: multiplicative,
additive or fuzzy. In the following sections we shall deal with these cases separately.

2.3 Multiplicative Pairwise Comparison Matrices

In this section, the preferences over the set of alternatives, X D fx1; x2; : : : ; xng,
will be represented in the following way. Let us assume that the intensities of DM’s
preferences are given by an n � n matrix A D faijg with positive elements in such
a way that, for all i and j , the entry aij indicates the ratio of preference intensity
for alternative xi to that of xj . In other words, aij indicates that “xi is aij times
as good as xj ”. T. Saaty in [60] suggests to represent the preference intensities on
the absolute scale f1=9; 1=8; : : : ; 1=2; 1; 2; : : : ; 8; 9g where aij D 1 indicates equal
intensity of preference, whereas aij D 9 indicates extreme intensity of preference
for xi over xj . Moreover, aij 2 f2; 3; : : : ; 8g indicates intermediate evaluations, and
the elements of A satisfy the reciprocity condition

aji D 1

aij
for all i; j 2 f1; 2; : : : ; ng :

If, for example, xi is 3 times better than xj , then the goodness of xj is 1=3 with
respect to the goodness of xi . The elements of A D faij} satisfy the following
reciprocity condition [60].

A positive n � n matrix A D faij} is multiplicative-reciprocal (m-reciprocal), if

aij:aji D 1 for all i; j 2 f1; 2; : : : ; ng ; (2.1)
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or, equivalently:

aji D 1

aij
for all i; j 2 f1; 2; : : : ; ng : (2.2)

Reciprocity condition (2.1) seems to be natural in many decision situations,
however, in some situations the assumption of reciprocity may be too restrictive. For
example, in the case when elements under exchange are currencies, a coefficient aij

is a rate of exchange of currency i in relation to currency j , then the presence
of transaction costs makes the considered matrix A D faij} non-reciprocal,
and, in particular, (2.1) no longer holds. However, in this chapter, we restrict
our consideration only to the most popular reciprocal (particularly, m-reciprocal)
preference matrices. The non-reciprocal case has been investigated e.g. in [43].

To establish more important properties to be verified by preference relations is
very important for designing good decision making models. One of these properties
is the so called consistency property. The lack of consistency in decision making can
lead to incompatible conclusions; that is why it is important, if not crucial, to study
conditions under which consistency is satisfied, see e.g. [24, 32, 38], or [17]. On
the other hand, perfect consistency is difficult to obtain in practice, specially when
measuring preferences on a set with a large number of alternatives, e.g. n > 10.
Clearly, the problem of consistency itself includes two problems: when an expert,
considered individually, is said to be consistent and, when the whole group of
experts are considered consistent. In this section we will mainly focus on the first
problem, assuming that experts’ preferences are expressed by means of a preference
relation defined over a finite and fixed set of alternatives, expressed appropriately by
a square matrix.

A positive n � n matrix A D faij} is multiplicative-consistent (or, m-consistent)
[32, 60], if

aik D aij:ajk for all i; j; k 2 f1; 2; : : : ; ng : (2.3)

or, equivalently

aij:ajk:aki D 1 for all i; j; k 2 f1; 2; : : : ; ng : (2.4)

Here, aii D 1 for all i , and also (2.3) implies (2.1), i.e. an m-consistent matrix is
m-reciprocal (however, not vice-versa).

Notice that aij > 0 and m-consistency is not restricted to the Saaty’s scale
f1=9; 1=8; : : : ; 1=2; 1; 2; : : : ; 8; 9g. Here, we extend this scale to the closed interval
Œ1=
; 
�, where 
 > 1. If 
 goes to infinity, we obtain the scale �0;C1Œ, i.e. the
interval of all positive numbers.

Transitivity is another important property concerning preferences. It represents
the idea that the preference intensity obtained by comparing directly two alternatives
should be equal to or greater than the preference intensity between those two
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alternatives x and y obtained using an indirect chain of alternatives x and z, z and y
for each z 2 X .

We say that a positive n � n matrix A D faijg is multiplicative-transitive (m-
transitive),20, if

aik

aki
D aij

aji
:
ajk

akj
for all i; j; k 2 f1; 2; : : : ; ng ; (2.5)

or, equivalently:

aij

aji
:
ajk

akj
:
aki

aik
D 1 for all i; j; k 2 f1; 2; : : : ; ng : (2.6)

Remark 2.1. Notice that if A is m-consistent, then A is m-transitive. On the other
hand, if A D faijg is m-reciprocal, then A is m-transitive if and only if A is m-
consistent. This is not true if A is not m-reciprocal as the following example shows.

Example 2.1. Let A D faijg be defined as

A D
0
@1 2 16 1 2

9 6 1

1
A :

Here, it is easy to verify that A is m-transitive and it is NOT m-consistent (NOT
m-reciprocal), as

a13 D 1 ¤ 2:2 D a12:a23 :

In practice, perfect consistency/transitivity is difficult to obtain, particularly
when evaluating preferences on a set with a large number of alternatives. If for
some positive n � n matrix A D faijg and for some i; j; k D 1; 2; : : : ; n,
m-consistency condition (2.3) does not hold, then A is said to be multiplicative-
inconsistent (or, m-inconsistent). Moreover, if for some n � n positive matrix
A D faijg and for some triple of indexes i; j; k, (2.5) does not hold, then A is
said to be multiplicative-intransitive (m-intransitive). In order to measure the grade
of inconsistency/ intransitivity of a given matrix several instruments have been
proposed in the literature, see [60].

The following results give a characterization of m-consistent matrix, see
also [60].

Proposition 2.1. Let A D faijg be a positive n � n matrix. A is m-consistent if
and only if there exists a vector w D .w1;w2; : : : ;wn/ with wi > 0 for all i 2
f1; 2; : : : ; ng, and

Pn
jD1 wj D 1 such that

aij D wi
wj

for all i; j 2 f1; 2; : : : ; ng : (2.7)
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Proof. (i) A D faijg be m-consistent. For i 2 f1; 2; : : : ; ng, set

vi D .ai1ai2 : : : ::ain/
1
n : (2.8)

Moreover, set

S D
nX
iD1

vi

and, finally, define

wi D vi
S

for i 2 f1; 2; : : : ; ng : (2.9)

Then, for i; j D 1; 2; : : : ; n, by m-reciprocity (2.1) and m-consistency (2.3) we
obtain

wi
wj

D .
ai1ai2 : : : ain

aj1aj 2 : : : ajn
/
1
n D ..ai1a1j /.ai2a2j / : : : .ainanj //

1
n

D .aij:aij : : : aij/
1
n D aij:

Moreover,
nP
iD1

wi D 1, consequently, (2.7) is true.

(ii) If (2.7) holds, then evidently (2.3) is satisfied, hence,A D faijg is m-consistent.
ut

The following result follows from Remark 2.1.

Proposition 2.2. Let A D faijg be a positive m-reciprocal n � n matrix. A D faijg
is m-consistent if and only if there exists a vector w D .w1;w2; : : : ;wn/ with wi > 0
for all i D 1; 2; : : : ; n, and

nY
jD1

wj D 1 ; (2.10)

such that

aij D wi
wj

for all i; j 2 f1; 2; : : : ; ng : (2.11)

Proof. (i) Let A D faijg be m-consistent, for i 2 f1; 2; : : : ; ng, set

wi D .ai1ai2 : : : ::ain/
1
n : (2.12)
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Then, for i; j 2 f1; 2; : : : ; ng, by m-reciprocity (2.1) and m-consistency (2.3)
we obtain

wi
wj

D
�
ai1ai2 : : : ain

aj1aj 2 : : : ajn

� 1
n

D �
.ai1a1j /.ai2a2j / : : : .ainanj /

� 1
n

D .aij:aij : : : aij/
1
n D aij:

Moreover,

nY
iD1

wi D ..a11a12 : : : a1n/.a21a22 : : : a2n/ : : : .an1an2 : : : ann//
1
n D

D ..a12a21/.a13a31/ : : : .a1nan1/ : : : .a2nan2/ : : : .a13a31/

: : : .an�1;n/.an;n�1//
1
n D 1 :

Consequently, (2.10) is true.
(ii) If (2.11) holds, then evidently (2.5) is satisfied, hence, A D faijg is m-

consistent. ut
Proposition 2.3. Let A D faijg be a positive m-reciprocal n � n matrix. A D faijg
is m-transitive if and only if there exists a vector w D .w1;w2; : : : ;wn/ with wi > 0
for all i 2 f1; 2; : : : ; ng, and

Pn
jD1 wj D 1 such that

aij D wi
wj

for all i; j 2 f1; 2; : : : ; ng : (2.13)

Proof. (i) Let A D faijg be m-transitive and m-reciprocal, then by (2.5) and (2.2)

.aij/
2 D .aik/

2:.akj/
2 for all i; j; k 2 f1; 2; : : : ; ng ;

hence A D faijg is m-consistent. By Proposition 2.1 there exists a vector w D
.w1;w2; : : : ;wn/ satisfying (2.13).

(ii) If (2.13) holds, then evidently (2.5) is satisfied, hence,A D faijg is m-transitive.
ut

2.4 Methods for Deriving Priorities from Multiplicative
Pairwise Comparison Matrices

In this section, all matrices are n�n-matrices with positive elements and all vectors
are n-dimensional vectors with positive elements.

Let M� be the set of all m-reciprocal matrices. Then M� is a multiplicative
group under component-wise multiplication. If A D faijg 2 M� and B D fbijg 2
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M�, then C D A�B D faij:bijg 2 M�. Here, by � we denote the group operation,
i.e. the component-wise multiplication of matrices (in contrast to the usual matrix
multiplication). Similarly, let C� be the set of all m-consistent matrices and w�
be the set of all vectors w D .w1;w2; : : : ;wn/ with positive elements such thatQn
jD1 wj D 1. Both C� and w� are multiplicative groups under component-wise

multiplication. Moreover, C� is a subgroup of M� and by Proposition 2.2, C� is
isomorphic to w�.

Let F � be the set of all mappings from M� into w�, f 2 F �. Vector w D
.w1;w2; : : : ;wn/ 2 w� is called the m-priority vector of A D faijg with respect to
f , if w D f .A/.

If w D .w1;w2; : : : ;wn/ is the m-priority vector of m-consistent matrixA D faijg
with respect to f satisfying the following condition:

aij D wi =wj for all i; j 2 f1; 2; : : : ; ng ; (2.14)

then w is called the m-consistency vector.
Here, the mapping f defines how the m-priority vector is calculated from the

elements aij of A. If f is defined by (2.12), then (2.14) is satisfied if and only if A
is m-consistent.

In the DM problem given by X D fx1; x2; : : : ; xng and A D faijg, the rating of
the alternatives in X is determined by the priority vector w D .w1;w2; : : : ;wn/ of
A. This vector, if normalized, is called the vector of weights. Hence, each element
wi of the m-priority vector w is interpreted as the relative importance of alternative
xi . The ranking of alternatives is defined as follows:

xi 
 xj if wi > wj for all i; j 2 f1; 2; : : : ; ng :

Therefore, the alternatives x1; x2; : : : ; xn in X can be ranked/rated by their relative
importance.

Generally, the PC matrix A D faijg is not m-consistent, hence the priority vector
cannot be an m-consistency vector. We face the problem of how to measure the
inconsistency of the PC matrix. In order to solve this problem we shall define special
consistency indexes based on the corresponding priority vectors.

In the next section, six popular methods for deriving priority vector are discussed.
Our choice of methods is based on [20], where 18 different methods for deriving
priority vectors from PC matrices under a common framework of effectiveness have
been discussed. Later on, in [50], C.-C. Lin published a revised framework for
deriving preference values from pairwise comparison matrices together with some
new simulation. In [64] B. Srdjevic combined different prioritization methods in
AHP. Here, the concept of minimizing aggregated deviation and so called correct-
ness in error free cases are presented. Some comparison calculations demonstrate
corresponding results of the presented methods. For each method we also derive an
associated consistency index – a tool for measuring the grade of inconsistency of
the given PC matrix.
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2.4.1 Eigenvector Method (EVM)

Historically, one of the oldest method for deriving priorities from multiplicative
preference matrix is the eigenvector method (EVM), [15]. This method has an
intuitive background but now it is based on Perron-Frobenius theory which is
known in several versions, see e.g. [30], where you can find the proof, which
is nontrivial. The Perron-Frobenius theorem describes some of the remarkable
properties enjoyed by the eigenvalues and eigenvectors of irreducible nonnegative
matrices (e.g. positive matrices).

Theorem 2.1 (Perron-Frobenius). Let A D faijg be an irreducible nonnegative
n � n matrix. Then the spectral radius of A, �.A/, is a real eigenvalue, which has
a positive (real) eigenvector w D .w1;w2; : : : ;wn/. This eigenvalue which is called
the principal eigenvalue of A is simple (it is not a multiple root of the characteristic
equation), and its eigenvector, called the principal eigenvector of A is unique up to
a multiplicative constant.

By EVM the priority vector of a positive n�n matrix A D faijg is defined as the
normalized principal eigenvector w D F.A/ given by Perron-Frobenius theorem.
Hence, the rating of the alternatives in X is determined by the priority vector w D
.w1;w2; : : : ;wn/, with wi > 0, for all i 2 f1; 2; : : : ; ng, such that

nP
iD1

wi D 1,

satisfying Aw D �.A/w. Since the element of the priority vector wi is interpreted
as the relative importance of alternative xi , the alternatives x1; x2; : : : ; xn in X are
rated by their relative importance.

An m-inconsistency grade of a positive m-reciprocal n � n matrix A can be
measured by the m-EV-consistency index ImEV .A/ defined in e.g. [60] as

ImEV .A/ D �.A/ � n

n � 1
; (2.15)

where �.A/ is the spectral radius ofA (i.e. the principal eigenvalue of A). The proof
of the following result can be found in [60].

Proposition 2.4. If A D faijg is an n � n positive m-reciprocal matrix, then
ImEV � 0. Moreover, A is m-consistent if and only if ImEV .A/ D 0.

To provide an m-inconsistency measure independently of the dimension n of
the matrix A, T. Saaty in [60] proposed the consistency ratio CRmEV . In order
to distinguish it here from the other inconsistency measures, we shall call it m-
EV-consistency ratio. This is obtained by taking the consistency index ImEV to its
mean valueRmEV , i.e. the mean value of ImEV .A/ of positive m-reciprocal matrices
of dimension n, whose entries are uniformly distributed random variables on the
interval Œ1=9; 9�, i.e.

CRmEV D ImEV

RmEV
: (2.16)
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The following table relates the dimension n of the positive m-reciprocal matrix
in the first row to its corresponding mean value RmEV .n/, n D 3; 4; : : : ; 10 in the
second row.

n 3 4 5 6 7 8 9 10

RmEV .n/ 0:58 0:90 1:12 1:24 1:32 1:41 1:45 1:49

For this consistency measure it was proposed an estimation of 10% threshold of
CRmEV . In other words, a pairwise comparison matrix could be acceptable (in a
DM process) if its m-consistency ratio does not exceed 0.1, see [60].

The following theorem is useful for practical computations of the priority vector
and also for calculating m-consistency index (2.15), and/or m-consistency ratio
(2.16). The proof can be found in [60].

Theorem 2.2. (Wielandt) LetA D faijg be a positive n�nmatrix, e D .1; 1; : : : ; 1/

be n-vector. Then the principal eigenvector w D .w1;w2; : : : ;wn/ corresponding to
principal eigenvalue of A is as follows

w D lim
k!1

Ake

eT Ake
: (2.17)

Notice that Ake is the vector of row sums of the k-powered matrix Ak , whereas
eT Ake is the sum of all elements of Ak . Applying Theorem 2.2 we can easily
calculate the priority vector of the matrix A (consequently, the principal eigenvalue
and the consistency ratio) by formula (2.17), simply by calculating 2k-th powers
of A, i.e. A; A2; .A2/2; : : :. Here, we apply the usual matrix multiplication, not
a component-wise one, as before. Such calculations can be easily performed in a
worksheet, e.g. Excel.

It was shown by various researchers, see e.g. [5], that for small deviations of
aij around the consistent ratios wi =wj , i.e. for small deviations aij � wi =wj , EVM
gives reasonably good approximation of the priority vector. However, when the
deviations are large, it is generally accepted that the corresponding priority vector
is not satisfactory. This is the main reason why we look for another methods for
deriving priority vectors.

2.4.2 Additive Normalization Method (ANM)

The Additive Normalization Method (ANM) is a heuristic method which is based
on Theorem 2.2. To obtain the priority vector w D .w1;w2; : : : ;wn/ by this method
it is enough to divide the elements of each column of matrixA D faijg by the sum of
that column (i.e. to normalize the column), then add the elements in each resulting
row and finally divide this sum by n, the number of elements in the row. ANM gives
the first element of the succession (2.17), i.e. for k D 1, generated in Theorem 2.2.
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The element of the priority vector is given by

wi D 1

n

nX
jD1

aij
nP

kD1
akj

; for all i D 1; 2; : : : ; n : (2.18)

Example 2.2. Let X D fx1; x2; x3g be the set of alternatives and assume that the
intensities of DM’s preferences are given by an 3 � 3 matrix A D faijg 2 M�
defined as

A D
0
@ 1 2 1

16
1
2
1 8

16 1
8
1

1
A :

We can compute the priority vector w� by (2.18) as follows:

w� D .w�
1 ;w

�
2 ;w

�
3 / D .0:23; 0:41; 0:35/ :

According to the priority vector w� we obtain the ranking: x2 
 x3 
 x1.

In [60] T. Saaty suggested ANM as a simplified and tractable version of EVM.
In [50], this method is ranked among the three best ones in simulation experiments,
together with EVM and LLSM, see below. Popularity and wide use in practice
ANM owes to its extreme simplicity. Although considered inferior it significantly
outperforms more sophisticated methods, as is demonstrated in [29, 64] and [50].

2.4.3 Least Squares Method (LSM)

The Least Squares (LS) method minimizes L2 distance function defined for
elements of the unknown priority vector w D .w1;w2; : : : ;wn/ and known elements
aij of the matrix A by solving the following constrained non-linear optimization
problem:

nX
i;jD1

�
aij � wi

wj

�2
�! min (2.19)

subject to

nX
jD1

wj D 1;wi � � > 0 for all i 2 f1; 2; : : : ; ng :

(� is a preselected sufficiently small positive number.)
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As the above nonlinear optimization problem may have multiple solutions it is
advantageous to convert this problem to the following one

X
1�i<j�n

�
aijwj � wi

�2 �! min (2.20)

subject to

nX
jD1

wj D 1;wi � � > 0 for all i 2 f1; 2; : : : ; ng : (2.21)

Optimization problem (2.20), (2.21) which is referred to as weighted LSM is
transformed into a system of linear equations by differentiating the Lagrangian of
(2.20) and equalizing it to zero. It is shown in [8] that in this way the WLSM
provides a unique and strictly positive solution w� D .w�

1 ;w
�
2 ; : : : ;w

�
n/. This

solution is set as the priority vector of A. If A is m-consistent then it is clear that
A D fw�

i =w�
j g, hence, w� is a consistent vector, see also [23].

An m-inconsistency measure of a positive m-reciprocal n � n matrix A with
respect to LSM is given by the m-LS-consistency index ImLS.A/ defined as

ImLS.A/ D
X

1�i<j�n

�
aijw

�
j � w�

i

�2
; (2.22)

where w� D .w�
1 ;w

�
2 ; : : : ;w

�
n/ is the optimal solution of (2.20), (2.21). The proof of

the following proposition which is parallel to Proposition 2.4 is straightforward.

Proposition 2.5. IfA D faijg is a positive m-reciprocal matrix, then ImLS.A/� 0.
Moreover, A is m-consistent if and only if ImLS.A/ D 0.

Example 2.3. Let X D fx1; x2; x3g be the set of alternatives and assume that the
intensities of DM’s preferences are given by an 3 � 3 matrix A D faijg 2 M�
defined as

A D
0
@ 1 2 1

16
1
2
1 8

16 1
8
1

1
A :

We can compute the priority vector w� by solving optimization problem (2.20),
(2.21) as follows:

w� D .w�
1 ;w

�
2 ;w

�
3 / D .0:2; 0:1; 0:7/ :

By (2.22) we calculate ImLS.A/ D 0:57. According to the priority vector w� we
obtain the ranking: x3 
 x1 
 x2.
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2.4.4 Logarithmic Least Squares Method (LLSM)/Geometric
Mean Method (GMM)

The Logarithmic Least Squares Method (LLSM), presented in [5–7, 22], makes use
of the multiplicative properties of the PC matrix A D faijg 2 M�. LLSM assumes
the minimization of sum of the logarithmic squared deviations from given elements
of A, i.e.

X
1�i<j�n

�
ln aij � ln

wi
wj

�2
�! min (2.23)

subject to

nY
jD1

wj D 1;wi � 0 for all i D 1; 2; : : : ; n : (2.24)

As can be demonstrated, see e.g. [22], the optimal solution of problem (2.23),
(2.24) is always unique and can be found simply as the geometric mean of the rows
of the reciprocal PC matrix, provided that the set of given pairwise comparisons is
complete, i.e. the number of judgments is n.n � 1/=2. The elements of the priority
vector – the optimal solution of problem (2.23), (2.24) w� D .w�

1 ;w
�
2 ; : : : ;w

�
n/ – are

defined as the geometric mean of the row elements of A:

w�
i D

0
@ nY
jD1

aij

1
A
1=n

for all i 2 f1; 2; : : : ; ng : (2.25)

That is why LLSM is also referred to as the Geometric Mean Method (GMM).
Notice that constraint (2.24) can be substituted by the usual normalization

constraint as follows:

nX
jD1

wj D 1;wi � 0 for all i 2 f1; 2; : : : ; ng : (2.26)

Clearly, if the vector w� is an optimal solution of problem (2.23), (2.24), then v� D
c:w� is an optimal solution of problem (2.23), (2.26), for a suitable c > 0. The
opposite assertion is also true: The vector v� is an optimal solution of problem
(2.23), (2.26) if w� D d:v� is an optimal solution of problem (2.23), (2.24) for a
suitable d > 0.

An m-consistency measure of a positive m-reciprocal n�nmatrixA D faijg with
respect to LLSM (GMM) is given by the m-consistency index ImGM.A/ defined as
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the minimal value of the objective function (2.23):

ImGM.A/ D
X

1�i<j�n
ln2.eij/ ; (2.27)

where w� D .w�
1 ;w

�
2 ; : : : ;w

�
n/ given by (2.25) is the optimal solution of (2.23), and

eij D aij

w�
j

w�
i

for all i 2 f1; 2; : : : ; ng :

We denote

EA D feijg D faij

w�
j

w�
i

g;WA D fw�
i

w�
j

g :

Here, EA D feijg is called the error matrix of A D faijg. By (2.25) we obtain

eij D
 

nY
kD1

aijajkaki

!1=n
:

Notice that WA D f w�

i

w�

j
g 2 C�, i.e. WA is m-consistent. Let us denote W .�1/

A D
f w�

j

w�

i
g, then evidently

A D EA �W .�1/
A : (2.28)

The proof of the following proposition which is parallel to Proposition 2.5 is
straightforward.

Proposition 2.6. IfA D faijg is a positive m-reciprocal matrix, then ImGM.A/� 0.
Moreover, A is m-consistent if and only if ImGM.A/ D 0.

Proposition 2.6 enables us to distinguish between m-consistent and m-
inconsistent matrices but it is insufficient to determine the degree of m-consistency
of m-inconsistent matrices. In fact, a statement of the type: A is less m-consistent
than B if ImGM.A/ > ImGM.B/ is not meaningful when A and B are of different
dimensions. Moreover, a cut-off rule of the type: A is close enough to being m-
consistent if ImGM.A/ � ˛ for some fixed positive constant ˛, independent of the
dimension n, does not appear to be meaningful.

A natural way to construct a better measure than the above defined m-consistency
index ImGM that would preserve the above mentioned properties and addresses its
deficiencies is to consider the relative m-error REm.A/ of A D faijg defined as the
normalized ImGM , see [5]:

REm.A/ D
P

1�i<j�n ln2.eij/P
1�i<j�n ln2.aij/

; (2.29)
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Proposition 2.7. If A D faijg is a positive m-reciprocal matrix, then

0 � REm.A/ � 1: (2.30)

Proof. As the error component minimizes the sum of squares (2.23) we obtain

X
1�i<j�n

ln2.aij

w�
j

w�
i

/ �
X

1�i<j�n
ln2.aij

1

1
/ D

X
1�i<j�n

ln2.aij/ :

Hence, (2.30) is satisfied. ut
By Proposition 2.7 the values of the relative error belong to the unit interval
Œ0; 1� regardless of n, the dimension of A. Using this measure, we may compare
consistency of matrices of different dimensions and justify the use of cut/off rules
accepting A as sufficiently consistent if, for example, its relative error satisfies
REm.A/ � 0:1.

A matrix A is called totally m-inconsistent if its relative m-error is maximal, i.e.
REm.A/ D 1.

The relative error measures the relative grade of inconsistency of A. Now, we
define a new index which will measure the relative grade of consistency of a matrix
A by the matrixWA.

The relative m-consistency indexRCm.A/ of A D faijg is defined as follows, see
[5]:

RCm.A/ D
P

1�i<j�n ln2.w�

i

w�

j
/P

1�i<j�n ln2.aij/
; (2.31)

where w� D .w�
1 ;w

�
2 ; : : : ;w

�
n/ is given by (2.25), the optimal solution of (2.23),

(2.24).

Proposition 2.8. If A D faijg is a positive m-reciprocal matrix, then

RCm.A/CREm.A/ D 1 : (2.32)

The proof of this proposition will be given later in Sect. 2.5 in connection with
additive preference matrices and the logarithmic/exponential isomorphism between
multiplicative and additive PC matrices.

Proposition 2.9. A D faijg 2 M� is totally m-inconsistent if and only if the row
products of A are all ones, i.e.

nY
jD1

aij D 1 for all i 2 f1; 2; : : : ; ng : (2.33)
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Proof. (i) Let A D faijg be totally m-inconsistent, i.e. REm.A/ D 1, hence, by
Proposition 2.8 we obtain:

RCm.A/ D
P

1�i<j�n ln2.w�

i

w�

j
/P

1�i<j�n ln2.aij/
D 0 :

Therefore, w�
i D w�

j for all i; j D 1; 2; : : : ; n and

X
1�i<j�n

ln2.
w�
i

w�
j

/ D 0 ;

consequently, (2.33) holds.
(ii) Let (2.33) be satisfied. Then by (2.25) w�

i D w�
j D 1 for all i; j 2 f1; 2; : : : ; ng

and then

X
1�i<j�n

ln2.aij:
w�
j

w�
i

/ D
X

1�i<j�n
ln2.aij/ ;

hence, REm.A/ D 1. ut
Example 2.4. Let X D fx1; x2; x3g be the set of alternatives and assume that the
intensities of preferences are given by an 3 � 3 matrix A D faijg 2 M� defined as
(see also Example 2.2 and Example 2.3):

A D
0
@ 1 2 1

16
1
2
1 8

16 1
8
1

1
A :

We compute w� D .w�
1 ;w

�
2 ;w

�
3 / as the row geometric averages of A, then we

compute B D fln2.w�

i

w�

j
/g and C D fln2.aij/g as follows:

w� D .w�
1 ;w

�
2 ;w

�
3 / D ..1 � 2 � 1

16
/
1
3 ; .
1

2
� 1 � 8/ 13 ; .16 � 1

8
� 1/ 13 / D .0:50; 1:59; 1:26/ ;

the normalized priority vector v� D 1
3:35
:w� D .0:15; 0:47; 0:38/,

B D
0
@ 0 1:33 0:85

0:48 0 0:05

0:85 0:05 0

1
A ;

C D
0
@ 0 0:48 7:69

0:48 0 4:32

7:69 4:32 0

1
A :
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Then we calculate

RCm.A/ D
P

1�i<j�3 ln2.w�

i

w�

j
/P

1�i<j�3 ln2.aij/
D 2:24

12:49
D 0:18 :

Moreover, by (2.32) we have REm.A/ D 1 � RCm.A/ D 1 � 0:18 D 0:82. We
conclude that the relative m-consistency of A is 18 percent and relative m-error of
A is 82 percent. Hence, the m-inconsistency of A is relatively high.

According to the priority vector v� we obtain the ranking: x2 
 x3 
 x1. When
comparing this result with Example 2.3 we obtain a different ranking of the variants.

2.4.5 Fuzzy Programming Method (FPM) and Other Methods
for Deriving Priorities

The FP method proposed by Mikhailov in [53] firstly states that if reciprocal matrix
A D faijg is m-consistent, then the system of m D n.n � 1/=2 linear equations:

aijwj � wi D 0 for all i; j 2 f1; 2; : : : ; ng; i < j ;

can be represented as follows:

Cjw D 0; j 2 f1; 2; : : : ; mg ; (2.34)

where byCj we denote the j-th row vector of coefficients of the matrix of the system
(2.34).

If A is inconsistent, it is desirable to find such values of vector w, so that (2.34)
is approximately satisfied, i.e. Cw � 0.

The FPM represents (2.34) geometrically as an intersection of fuzzy hyperlines
and transforms the prioritization problem to optimization one, determining the
values of the priorities that correspond to the point with the highest measure
of intersection. In this way the prioritization problem is reduced to a fuzzy
programming problem that can be solved as a standard linear program:

� �! max

subject to

�:dC
j C Cj :w � dC

j ; j 2 f1; : : : ; mg ;

�:d�
j � Cj :w � d�

j ; j 2 f1; : : : ; mg ;
nX
iD1

wi D 1;wi � 0 for all i 2 f1; 2; : : : ; ng :
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Here, the positive values of the left and right tolerance parameters dC
j and d�

j repre-
sent the admissible interval of approximate satisfaction of the crisp equality (2.34).

Other methods for deriving priorities from multiplicative PC matrices can be
found in the literature, see e.g. [2, 20, 64, 74–80], or [50].

2.5 Additive Pairwise Comparison Matrices

The above mentioned interpretation of preferences on the set of alternatives X D
fx1; x2; : : : ; xng described by a multiplicative pairwise comparison matrix A (e.g.
in AHP, see e.g. [59, 62]) is, however, not always appropriate for a DM. Evaluating
the preference of two elements of a pair, say, xi and xj with respect to e.g. “design
of products”, or “hight of persons” might cause a problem. Here, saying e.g. that
product xi is 3 times nicer than xj , or, John is 5 times higher than Peter, might
be peculiar. It appears that Saaty’s ratio scale for pairwise comparisons do not
represent reality and often produces an exaggerated results beyond our common
sense, although mathematically the operation of the m-reciprocal matrix seems to
be useful. The perception of interval, or difference, of two alternatives is relatively
much simpler than the perception of the ratio of both.

In this section, the preferences over the set of alternatives X will be represented
in the following way. Let us assume that the intensities of DM’s preferences are
given by an n � n matrix A D faij} with real number elements in such a way
that, for all i and j , the entry aij indicates the difference of preference intensity for
alternative xi to that of xj . In other words, aij means that the difference between
intensities “xi and xj is aij”. Hence the element aij can be positive, zero or negative.
The perception of interval (or difference) of two objects is relatively much simpler
than the perception of the ratio of both. The reasons are that operations of addition
and subtraction are easier than the operations of multiplication and division, which,
in fact, are based on addition and subtraction, respectively. Therefore, addition and
subtraction are straightforward for the comparison of two objects.

K.T.F. Yuen in [9] suggests to represent the preference intensities by the relative
scale f�;�7=8;�6=8; : : : ;�=8; 0; =8; 2=8; : : : ; 7=8; g in contrast to the
Saaty’s absolute scale f1=9; 1=8; : : : ; 1=2; 1; 2; : : : ; 8; 9g.

Here, aij D 0 indicates equal intensity of both alternatives and aij D ; is the
maximal difference (i.e. utility) of intensities of the compared alternatives, [9]. Here,
 indicates how people perceive the value of the difference of paired objects in
different scenarios. Here, 2:8 C 1 D 17 is the number of the intervals of the scale
schema which corresponds to 7 ˙ 2 stages in a single rating process. In general,
the scale for measuring preference intensities is the interval of all real numbers, i.e.
R D� � 1;C1Œ.

The elements of A D faij} satisfy the following reciprocity condition. A real
n � n matrix A D faij} is additive-reciprocal (a-reciprocal), if

aji D �aij for all i; j 2 f1; 2; : : : ; ng : (2.35)
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A real n � n matrix A D faij} is additive-consistent (or, a-consistent) [32, 60], if

aik D aij C ajk for all i; j; k 2 f1; 2; : : : ; ng : (2.36)

From (2.36) we obtain aii D 0 for all i , and also (2.36) implies (2.35), i.e. an a-
consistent matrix is a-reciprocal (however, not vice-versa).

Here, all matrices are n � n-matrices with real number elements and all vectors
are n-dimensional vectors with real number elements.

Let MC be the set of all a-reciprocal matrices. Then MC is an additive group
under component-wise addition. If A D faijg 2 MC and B D fbijg 2 MC, then
C D A C B D faij C bijg 2 MC. Here, by “C” we denote the group operation,
i.e. the component-wise addition of matrices. Similarly, let CC be the set of all a-
consistent matrices and vC be the set of all vectors v D .v1; v2; : : : ; vn/ with real
number elements such that

Pn
jD1 vj D 0. Both CC and vC are additive groups

under component-wise addition. Moreover, CC is a subgroup of MC and, as we
will see by Proposition 2.10, CC is isomorphic to vC.

Let FC be the set of all mappings from MC into vC, f 2 FC. Vector v D
.v1; v2; : : : ; vn/ 2 vC is called the a-priority vector of A D faijg with respect to f ,
if v D f .A/.

If v D .v1; v2; : : : ; vn/ is the a-priority vector of a-consistent matrix A D faijg
with respect to f satisfying the following condition:

aij D vi � vj for all i; j 2 f1; 2; : : : ; ng ; (2.37)

then v is called the a-consistency vector of A.
Here, the mapping f defines how the a-priority vector is calculated from the

elements aij of A.

Proposition 2.10. An matrix A D faijg is a-consistent if and only if there exists a
vector v D .v1; v2; : : : ; vn/ with

Pn
jD1 vj D 0 such that

aij D vi � vj for all i; j 2 f1; 2; : : : ; ng : (2.38)

Proof. (i) Let let A D faijg be a-consistent, then by setting

vi D 1

n

nX
kD1

aik for all i 2 f1; 2; : : : ; ng ;

we obtain

vi � vj D 1

n

nX
kD1

.aik � ajk/ D aij for all i 2 f1; 2; : : : ; ng :
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Considering a-reciprocity (2.36) we obtain

nX
iD1

vi D 1

n

nX
iD1

nX
kD1

aik D 0 for all i 2 f1; 2; : : : ; ng :

(ii) Let (2.38) be true, then easily (2.35) is satisfied. ut
In the DM problem given by X D fx1; x2; : : : ; xng and A D faijg, the rating of

the alternatives in X is determined by the a-priority vector v D .v1; v2; : : : ; vn/ of
A. The ranking of alternatives is defined as follows:

xi 
 xj if vi > vj for all i; j 2 f1; 2; : : : ; ng :

Therefore, the alternatives x1; x2; : : : ; xn in X can be ranked by the natural ranking
of the components of the corresponding a-priority vector.

Generally, the PC matrixA D faijg is not a-consistent, hence the a-priority vector
cannot be an a-consistency vector. We face the problem of how to measure the
inconsistency of the PC matrix. To solve this problem we shall define special a-
consistency indexes based on the corresponding a-priority vectors.

2.6 Methods for Deriving Priorities from Additive Pairwise
Comparison Matrices

The Least Squares Method (LSM), presented in Sect. 2.4.3 makes use also of the
additive properties of the PC matrixA D faijg 2 MC, see [35]. Here, LSM assumes
the minimization of sum of the squared deviations from given elements of A, i.e.

X
1�i<j�n

�
aij � .vi � vj /

�2 �! min (2.39)

subject to

nX
jD1

vj D 0 : (2.40)

As is demonstrated e.g. in [22] the optimal solution of problem (2.39), (2.40) can
be found simply as the arithmetic mean of the rows of an a-reciprocal PC matrix.
The elements of the a-priority vector – the optimal solution of problem (2.39), (2.40)
v� D .v�

1 ; v
�
2 ; : : : ; v

�
n/ are defined as the arithmetic mean of the row elements of A:

v�
i D 1

n

nX
jD1

aij for all i 2 f1; 2; : : : ; ng : (2.41)
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An a-consistency measure of a matrix A D faijg with respect to LSM is given by
the a-consistency index of A, Ia.A/, defined as the minimal value of the objective
function (2.39):

IaLS .A/ D
X

1�i<j�n
e2ij ; (2.42)

where v� D .v�
1 ; v

�
2 ; : : : ; v

�
n/ is given by (2.41), the optimal solution of (2.39), (2.40),

moreover,Ea
A D feijg D faij � .v�

j � v�
i /g, VA D fv�

i � v�
j g.

Here, Ea
A D feijg is called the a-error matrix of A D faijg. By (2.41) we obtain

eij D 1
n

Pn
kD1.aij C ajk C aki/.

Notice that VA D fv�
i � v�

j g 2 CC, i.e. the matrix VA is a-consistent. Then
evidently

A D Ea
A � VA : (2.43)

The proof of the following proposition which is parallel to Proposition 2.6 is
straightforward.

Proposition 2.11. If A D faijg is an a-reciprocal matrix, then IaLS .A/ � 0.
Moreover, A is a-consistent if and only if IaLS .A/ D 0.

Proposition 2.11 enables us to distinguish between a-consistent and a-
inconsistent matrices but it is insufficient to determine the degree of a-consistency
from a-inconsistent matrices. In fact, a statement of the type: A is less a-consistent
than B if IaLS .A/ > IaLS .B/ is not meaningful when A and B are of different
dimensions. Moreover, a cut-off rule of the type: A is close enough to being a-
consistent if IaLS .A/ � ˛ for some fixed positive constant ˛, independent of the
dimension n, does not appear to be meaningful.

We want to construct a better measure than the above defined a-consistency index
Ia. A natural way that would preserve the above mentioned properties and addresses
its deficiencies is to consider the relative a-error REa.A/ of A D faijg defined as
the “normalized”, IaLS , see [5]:

REa.A/ D
P

1�i<j�n e2ijP
1�i<j�n a2ij

; (2.44)

Proposition 2.12. If A D faijg is an a-reciprocal matrix, then

0 � REa.A/ � 1 : (2.45)

Proof. Since the error component minimizes the sum of squares (2.39) we have

X
1�i<j�n

.aij � .v�
i � v�

j //
2 �

X
1�i<j�n

.aij � .vi � vj //
2 �

X
1�i<j�n

a2ij :

Hence, (2.45) is satisfied. ut
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By Proposition 2.12 the values of the relative a-error belong to the unit interval
Œ0; 1� regardless of n, the dimension of A. Using this measure, we may compare
consistency of matrices of different dimensions and justify the use of cut/off rules
accepting A as sufficiently consistent if, for example, its relative a-error satisfies
REa.A/ � 0:1.

A matrix A is called totally a-inconsistent if its relative a-error is maximal, i.e.
REa.A/ D 1.

The relative a-error measures the relative grade of a-inconsistency of A. Now,
we define a new index which will measure the relative grade of a-consistency of a
matrix A by the matrix VA.

The relative a-consistency index RCa.A/ of A D faijg is defined as follows,
see [5]:

RCa.A/ D
P

1�i<j�n.v�
i � v�

j /
2

P
1�i<j�n a2ij

; (2.46)

where v� D .v�
1 ; v

�
2 ; : : : ; v

�
n/ is given by (2.41), the optimal solution of (2.39), (2.40).

The main result of this subsection is based on the classical projection theorem,
see [33]:

Theorem 2.3. Let A be a vector in RN and S be a subspace of RN . The vector A
can be uniquely represented in the form:

A D C C E ; (2.47)

where C 2 S and E ? S . Moreover, C is a unique vector satisfying:

kA� Ck � kA� Xk for all X 2 S ; (2.48)

where kAk is the Euclidean norm of A.

Now, we formulate the main result:

Proposition 2.13. If A D faijg is an a-reciprocal matrix, then

RCa.A/CREa.A/ D 1 : (2.49)

Proof. We may rewrite the n � n matrix A as an N D n2-dimensional vector
by ordering its elements by rows. In the N -dimensional Euclidean space RN the
vectors corresponding to the a-consistent matrices form a subspace S . Combining
the projection theorem with the solution of the minimization problem which is
characterized by the arithmetic mean, we see that the decomposition of A into
its a-consistent and a-inconsistent components is an orthogonal decomposition, i.e.
C ? E , or,

X
1�i<j�n

cijeij D 0 :
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Using this equation with aij D cij C eij, we obtain

X
1�i<j�n

a2ij D
X

1�i<j�n
c2ij C 2

X
1�i<j�n

cijeij C
X

1�i<j�n
e2ij ;

and therefore

X
1�i<j�n

a2ij D
X

1�i<j�n
c2ij C

X
1�i<j�n

e2ij :

Hence, for A ¤ 0 we obtain (2.49). ut
Now, we derive the parallel result to Proposition 2.9.

Proposition 2.14. A D faijg 2 MC is totally a-inconsistent if and only if the row
sums of A are all zeros, i.e.

nX
jD1

aij D 0 for all i 2 f1; 2; : : : ; ng : (2.50)

Proof. (i) Let A D faijg be totally a-inconsistent, i.e. REa.A/ D 1, hence, by
Proposition 2.13 we obtain:

RCa.A/ D
P

1�i<j�n.v�
i � v�

j /
2P

1�i<j�n a2ij
D 0 :

Therefore, v�
i D v�

j for all i; j D 1; 2; : : : ; n and by (2.40) we have v�
i D 0 for

all i 2 f1; 2; : : : ; ng. Then by (2.41) we obtain

1

n

nX
jD1

aij D v�
i D 0 for all i 2 f1; 2; : : : ; ng :

Hence, (2.50) holds.
(ii) Let (2.50) be satisfied. Then by (2.41) v�

i D 1
n

Pn
jD1 aij D 0 for all i; j 2

f1; 2; : : : ; ng. Consequently, eij D aij for all i; j 2 f1; 2; : : : ; ng and

X
1�i<j�n

e2ij D
X

1�i<j�n
a2ij ;

hence, REa.A/ D 1, i.e. A is totally a-inconsistent. ut
We illustrate the theory by a simple example.

Example 2.5. Let X D fx1; x2; x3g be the set of alternatives and assume that the
intensities of preferences are given by an 3 � 3 matrix A D faijg 2 MC defined as,
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see [5]:

A D
0
@ 0 1 �4

�1 0 7

4 �7 0

1
A :

We can now compute the priority vector v� as follows:

v� D .v�
1 ; v

�
2 ; v

�
3 / D .

1

3
.0C 1� 4/; 1

3
.�1C 0C 7/;

1

3
.4� 7C 0// D .�1; 2;�1/ :

Then

VA D fv�
i � v�

j g D
0
@0 �3 0
3 0 3

0 �3 0

1
A ;

RCa.A/ D
P

1�i<j�3.v�
i � v�

j /
2

P
1�i<j�3 a2ij

D 36

132
D 0:27:

Moreover, by (2.32) we have REa.A/ D 1 � RCa.A/ D 1 � 0:27 D 0:73. We
conclude that the relative a-consistency of A is 27 percent and relative a-error of A
is 73 percent. Hence, the a-inconsistency of A is relatively high.

According to the priority vector v� we obtain the ranking: x2 
 x3 D x1.

2.7 Fuzzy Pairwise Comparison Matrices

Sometimes it is more natural, when comparing xi to xj , that the decision maker
assigns the positive value bij to xi and bji to xj , where bij C bji D 1. Here,
the preferences on X D fx1; x2; : : : ; xng can be understood as a fuzzy preference
relation, or, valued relation, with membership function � W X � X ! Œ0; 1�, and
�.xi ; xj / D bij denotes the preference of the alternative xi over xj [32,47,55,60,65,
66, 72]. Therefore, the fuzzy preference relation on X can be represented as a fuzzy
pairwise comparison matrix (FPC matrix). Here, bij D 1

2
indicates indifference

between xi and xj , bij >
1
2

indicates that xi is preferred to xj , bij D 1 indicates
that xi is absolutely preferred to xj , bij D 0 indicates that xj is absolutely preferred
to xi , [18, 25–27]. Other important properties of fuzzy pairwise comparison matrix
B D fbijg; can be presented as follows.

An n � n FPC matrix B D fbijg with 0 � bij � 1 for all i; j 2 f1; 2; : : : ; ng is
fuzzy-reciprocal (f -reciprocal) [17], if

bij C bji D 1 for all i; j 2 f1; 2; : : : ; ng ; (2.51)
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or, equivalently

bji D 1 � bij for all i; j 2 f1; 2; : : : ; ng : (2.52)

Evidently, if (2.51) holds, then bii D 1
2

for all i 2 f1; 2; : : : ; ng.
For making a “coherent” choice (when assuming FPC matrices) some properties

have been suggested in the literature [32, 67].
The nomenclature of properties of fuzzy PC matrices has, however, not been

stabilized yet, compare e.g. [17, 52, 67, 71]. Here, we use the usual nomenclature
which is as close as possible to the one used in the literature.

We say that FPC matrix B D fbijg is fuzzy-additive-consistent (fa-consistent)
[17], if

bik � 1

2
D .bij � 1

2
/C .bjk � 1

2
/ for all i; j; k 2 f1; 2; : : : ; ng : (2.53)

Equation (2.53) can be equivalently rewritten as (see [67]):

bik D 1

2
C bij � bkj for all i; j; k 2 f1; 2; : : : ; ng : (2.54)

or, see [17],

bij C bjk C bki D 3

2
for all i; j; k 2 f1; 2; : : : ; ng : (2.55)

Notice that if B D fbijg is fa-consistent, then B is f-reciprocal.
Let FPC matrix B D fbijg be fuzzy reciprocal according to (2.51). We say

that B D fbijg is fuzzy-multiplicative-consistent (fm-consistent), [13], if B is
multiplicatively transitive by (2.5), i.e. if

bik

bki
D bij

bji
:
bjk

bkj
for all i; j; k 2 f1; 2; : : : ; ng: (2.56)

This property is sometimes called “transitivity”, see e.g. [52], however, here we
reserve this name for different concept, see below.

It is not difficult to prove some relationships among individual consistency
properties of FPC matrices. In Fig. 2.1 a scheme of properties of PC matrices
is depicted. Moreover, we present some examples of matrices with particular
properties showing that the corresponding inclusions depicted in Fig. 2.1 are strict.

(1) Let A1 D fa1ij g be defined as

A1 D
0
@0:5 0:6 0:50:4 0:5 0:4

0:5 0:6 0:5

1
A :
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A-m-reciprocal A-f-reciprocal

A-m-transitive

A-m-consltent

fm-consistent

A-fa-consistent

A<1

A>0

4 3 1 2

Fig. 2.1 The scheme of properties

Here, A1 is f-reciprocal and m-transitive defined by (2.5), i.e. fm-consistent,
and fa-consistent.

(2) Let A2 D fa2ij g be defined as

A2 D
0
@0:5 0:3 0:20:7 0:5 0:4

0:8 0:6 0:5

1
A :

Here, A2 is fa-consistent and NOT fm-consistent.
(3) Let A3 D fa3ij g be defined as

A3 D
0
@ 0:5 0:25 0:1

0:75 0:5 0:25

0:9 0:75 0:5

1
A :

Here, A3 is fm-consistent and NOT fa-consistent.
(4) Let A4 D fa4ij g be defined as

A4 D
0
@0:5 0:9 0:20:9 0:5 0:3

0:2 0:3 0:5

1
A :

Here, A4 is m-transitive and NOT f-reciprocal.
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In what follows, we shall investigate some relationships between f-reciprocal and
m-reciprocal pairwise comparison matrices. We start with extension of the result
published by E. Herrera-Viedma et al. [17]. For this purpose, given 
 > 1, we
define the following function '
 and its inverse function '�1


 as

'
.t/ D 1

2
.1C ln t

ln 

/ for t 2 Œ 1



; 
� ; (2.57)

'�1

 .t/ D 
2t�1 for t 2 Œ0; 1� : (2.58)

We obtain the following results, characterizing fa-consistent and m-consistent
matrices, see [17, 55]. By 
 > 1 evaluation scale Œ1=
 I 
� is defined.

Proposition 2.15. Let 
 > 1, A D faijg be an n�n matrix with 1



� aij � 
 for all
i; j 2 f1; 2; : : : ; ng. IfA D faijg is m-consistent thenB D f'
.aij/g is fa-consistent.

Proof. Let let A D faijg be an n � n matrix with 1



� aij � 
 for all i and j .
Suppose that A is m-consistent and set bij D '
.aij/ for all i and j . Then by (2.55)
and (2.57)

bij C bjk C bki D 1

2
.3C ln aijajkaki

ln 

/ for all i; j; k 2 f1; 2; : : : ; ng :

Hence, by (2.3) we have aijajkaki D 1 for all i; j; k 2 f1; 2; : : : ; ng and then

bij C bjk C bki D 3

2
for all i; j; k 2 f1; 2; : : : ; ng :

and B D f'
.aij/g is fa-consistent. ut
Proposition 2.16. Let 
 > 1, B D fbijg be an n � n matrix with 0 � bij � 1

for all i; j 2 f1; 2; : : : ; ng. If B D fbijg is fa-consistent then A D f'�1

 .bij/g is

m-consistent.

Proof. Let B D fbijg be fa-consistent. Then, by setting aij D '�1

 .bij/, we obtain

aijajkaki D 
2bij�1
2bjk�1
2bki�1 D 
2.bijCbjkCbki/�3 D 
2.
3
2 /�3 D 1

for all i; j; k 2 f1; 2; : : : ; ng. Therefore, A D faijg is m-consistent. ut
Now, let us define the function � and its inverse function ��1 as follows

�.t/ D t

1C t
for t > 0 ; (2.59)

��1.t/ D t

1 � t for 0 < t < 1 : (2.60)
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We obtain the following results, characterizing fm-consistent and m-consistent
matrices, see [55].

Proposition 2.17. Let A D faijg be an n � n matrix with 0 < aij for all i and j . If
A D faijg is m-consistent then B D fbijg D f�.aij/g is fm-consistent.

Proof. By (2.59) and m-reciprocity (2.1) we obtain for all i , j :

bij D aij

1C aij
D

1
aji

1C 1
aji

D 1

1C aji
D aji

1C aji
aij D bjiaij :

Then bijbjkbki D bjibkjbikaijajkaki; for all i , j and k. Hence, by (2.3) and by (2.6), B
is m-transitive. Moreover,

bij C bji D 1

1C aji
C aji

1C aji
D 1 for all i; j :

Hence, by (2.51), B is f-reciprocal, consequently,B is fm-consistent. ut
Proposition 2.18. Let B D fbijg be an fm-reciprocal n� n matrix with 0 < bij < 1

for all i and j . If B D fbijg is fm-consistent then A D faijg D f��1.bij/g is m-
consistent.

Proof. Let B be f-reciprocal. Then

aij D bij

1 � bij
D bij

bji
;

Then by m-transitivity (2.5), we obtain

aijajkaki D bij

bji

bjk

bkj

bki

bik
D 1 ;

hence, A D faijg is m-consistent. ut
From Proposition 2.16 it is clear that the concept of m-transitivity plays a similar

role for f-reciprocal fuzzy preference matrices as the concept of m-consistency does
for m-reciprocal matrices.

2.8 Methods for Deriving Priorities from Fuzzy Pairwise
Comparison Matrices

A parallel result to Proposition 2.1 can be derived for f-reciprocal matrices.

Proposition 2.19. Let A D faijg be an f-reciprocal n � n matrix with 0 < aij <

1 for all i and j . A D faijg is fm-consistent if and only if there exists a vector
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v D .v1; v2; : : : ; vn/ with vi > 0 for all i D 1; 2; : : : ; n, and
Pn

jD1 vj D 1 such that

aij D vi
vi C vj

for all i; j D 1; 2; : : : ; n : (2.61)

Proof. By Proposition 2.18, B D fbijg is fm-consistent if and only if A D faijg D
f bij

1�bij
g is m-consistent. By Proposition 2.4, this result is equivalent to the existence

of a vector v D .v1; v2; : : : ; vn/ with vi > 0 for all i 2 f1; 2; : : : ; ng, such that
bij

1�bij
D vi

vj
for all i; j 2 f1; 2; : : : ; ng, or, equivalently, bij D vi

viCvj
for all i; j 2

f1; 2; : : : ; ng, i.e. (2.61) is true. ut
Here, the vector v D .v1; v2; : : : ; vn/ with vi > 0 for all i D 1; 2; : : : ; n, andPn

jD1 vj D 1 is called the fm-priority vector of A.
The previous result is a representation theorem for fm-consistent matrices, the

next two results concern fa-consistent matrices.

Proposition 2.20. Let A D faijg be an n � n matrix with 0 < aij < 1 for all
i; j 2 f1; 2; : : : ; ng. A D faijg is fa-consistent if and only if

aij D 1

2
.1C nui � nuj / for all i; j 2 f1; 2; : : : ; ng ; (2.62)

where

ui D 2

n2

nX
kD1

aik for all i 2 f1; 2; : : : ; ng ; (2.63)

and

nX
iD1

ui D 1 : (2.64)

Proof. (i) Let let A D faijg be fa-consistent, then A is f-reciprocal and by (2.51)
we obtain

nX
i;jD1

aij D 1

2
n2 : (2.65)

From (2.63), (2.65) we obtain

nX
iD1

ui D 2

n2

nX
i;jD1

aij D 1 : (2.66)
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From (2.63), (2.66) we also have

1

2
C n

2
.ui � uj / D 1

2
C 1

n

nX
kD1
.aik � ajk/ for all i; j 2 f1; 2; : : : ; ng :

By fa-consistency of B , (2.54), we obtain

aij � 1

2
D aik � ajk for all i; j 2 f1; 2; : : : ; ng :

If (2.9) is satisfied for all i; j 2 f1; 2; : : : ; ng, then

aij D 1

2
.1C nui � nuj / for all i; j 2 f1; 2; : : : ; ng :

(ii) Let (2.62) be true, then easily (2.53) is satisfied. ut
Here, the vector u D .u1; u2; : : : ; un/ with ui > 0 for all i=1,2,. . . ,n, andPn
jD1 uj D 1 is called the fa-priority vector of A.
By the symbol ImY we denote the m-consistency index that has been defined

for various methods for deriving priorities of multiplicative pairwise comparison
matrices, where Y 2 fEV;LS;GM g, i.e. ImEV , ImLS , ImGM .

Now, we shall investigate inconsistency property also for f-reciprocal matrices.
For this purpose we use relations between m-consistent and fm-consistent/fa-
consistent matrices derived in Propositions 2.15 - 2.18.

Let B D fbijg be an f-reciprocal n � n matrix with 0 < bij < 1 for all i; j 2
f1; 2; : : : ; ng, and let Y 2 fEV;LS;GM g. We define the faY-consistency index
IfaY .B/ of B D fbijg as

IfaY .B/ D �.ImY .A//;where A D f��1.bij/g : (2.67)

From (2.67) we obtain the following result which is parallel to Proposition 2.4.

Proposition 2.21. IfB D fbijg is an f-reciprocal n�n fuzzy matrix with 0 < bij < 1

for all i; j D 1; 2; : : : ; n, Y 2 fEV;LS;MGg. Then IfaY .B/ � 0. Moreover, B is
fa-consistent if and only if IfaY .B/ D 0.

Proof. The proof follows from the corresponding proofs of the propositions in
Sect. 2.4. ut

Further, we shall be dealing with inconsistency of f-multiplicative matrices.
Recall transformation functions '
 and '�1


 defined by (2.57), (2.58), where 
 > 1
is a given scale value. Let B D fbijg be an f-reciprocal n�n matrix with 0 < bij < 1

for all i; j D 1; 2; : : : ; n; Y 2 fEV;LS;MGg. We define the fmY-consistency index
I 
fmY .B/ of B D fbijg as

I 
f mY .B/ D '
.ImY .A
//;where A
 D f'�1

 .bij/g : (2.68)
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From (2.58), (2.68) we obtain the following result which is parallel to Proposi-
tions 2.4 and 2.21.

Proposition 2.22. If B D fbijg is an f-reciprocal n � n matrix with 0 < bij < 1 for
all i; j 2 f1; 2; : : : ; ng; Y 2 fEV;LS;MGg, then I 
fmY .B/ � 0. Moreover, B is
fm-consistent if and only if I 
f mY .B/ D 0.

Proof. The proof follows from the corresponding proofs of the propositions in
Sect. 2.4. ut
Example 2.6. Let X D fx1; x2; x3; x4g be the set of 4 alternatives. The preferences
on X are described by the PC matrix B D fbijg, where

B D

0
BB@
0:5 0:6 0:6 0:9

0:4 0:5 0:6 0:7

0:4 0:4 0:5 0:5

0:1 0:3 0:5 0:5

1
CCA : (2.69)

Here, B D fbijg is f-reciprocal and fm-inconsistent, as it may be directly verified
by (2.5), e.g. b12:b23:b31 ¤ b32:b21:b13. At the same time, B is fa-inconsistent as
b12Cb23Cb31 D 1:9 ¤ 1:5. Now, we consider the scale Œ1=
; 
� with 
 D 9. Then
we calculate

E D f��1.bij/g D

0
BB@

1 1:50 1:50 9:00

0:67 1 1:5 2:33

0:67 0:67 1 1

0:11 0:43 1 1

1
CCA ;

F D f'�1
9 .bij/g D

0
BB@

1 1:55 1:55 5:80

0:64 1 1:55 2:41

0:64 0:64 1 1

0:17 0:42 1 1

1
CCA :

Further, we calculate the maximal eigenvalues �.E/ D 4:29 and �.F / D 4:15.
By (2.15), (2.68) we obtain If mEV .B/ D 0:11with the priority vector wfmEV D

.0:47; 0:25; 0:18; 0:10/, which gives the ranking of the alternatives as x1 
 x2 

x3 
 x4. Similarly, I 9faEV .B/ D 0:056 with the priority vector wfaEV D
.0:44; 0:27; 0:18; 0:12/, giving the same ranking of alternatives x1 
 x2 
 x3 
 x4.

In order to investigate a relationship between the fa-consistency and fm-
consistency indexes of f-reciprocal matrices, we performed a simulation experiment
with randomly generated 1000 f-reciprocal matrices, (n D 4 and n D 10), then we
calculated corresponding indexes IfaEV and I 
fmEV , with 
 D 9.

Example 2.7. Case study
In the previous example we could see that the values of IfaEV .A/ and If mEV .A/

are different for a f-reciprocal matrix A. In order to investigate a relationship
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Fig. 2.2 n D 4
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Fig. 2.3 n D 10

between the fa-inconsistency and fm-inconsistency of A, we randomly generated
1000 f-reciprocal matrices, (with n D 4 and n D 10), then we calculated
corresponding indexes IfaEV .A/ and I 
f mEV .A/, with 
 D 9, and depicted
the points .If mEV .A/; I 
faEV .A// in Figs. 2.2 and 2.3, respectively. Here, each
simulated matrix is represented by unique point in the plane given by two indexes.

Numerical experiments have shown that there is no particular relationship
between fm-consistency and fa-consistency.

2.9 Fuzzy Pairwise Comparison Matrices with Missing
Elements

In many decision-making processes we assume that experts are capable of providing
preference degrees between any pair of possible alternatives. However, this may not
be always true, which makes a missing information problem. A missing value in
the fuzzy pairwise comparison matrix is not equivalent to a lack of preference of
one alternative over another. A missing value can be the result of the incapacity of
an expert to quantify the degree of preference of one alternative over another, see
[48, 49, 51, 69]. In this case he/she may decide not to guess the preference degree
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between some pairs of alternatives. It must be clear that when an expert is not able
to express a particular value bij, because he/she does not have a clear idea of how
the alternative xi is better than alternative xj , this does not mean that he/she prefers
both options with the same intensity. To model these situations, in the following we
introduce the incomplete fuzzy pairwise comparison matrix, or, in other words, the
fuzzy pairwise comparison matrix with missing elements, [34].

For the sake of simplicity of presentation, from now on we identify the
alternatives x1; x2; : : : ; xn with integers 1; 2; : : : ; n, i.e. X D f1; 2; : : : ; ng is the
set of alternatives, n > 1. Moreover, let, X �X=X2 be the Cartesian product of X ,
i.e. X2 D f.i; j /ji; j 2 Xg. Let K � X2, K ¤ X2 and B be the fuzzy preference
relation on K given by the membership function �B W K ! Œ0; 1�. The fuzzy
preference relation B is represented by the n� n fuzzy pairwise comparison matrix
(FPC matrix) B.K/ D fbijgK with missing elements depending onK as follows

bij D
	
�B.i; j / if .i; j / 2 K ;

� if .i; j / 62 K :

In what follows we shall assume that each FPC matrix B.K/ D fbijgK with
missing elements is f-reciprocal with respect to K , i.e.

bij C bji D 1 for all .i; j / 2 K :

Let L � X2, and L D f.i1; j1/; .i2; j2/; : : : ; .iq; jq/g be a set of couples .i; j / of
alternatives such that there exist bij, with 0 � bij � 1 for all .i; j / 2 L. We assume
that the symmetric subset L0 to L, i.e. L0 D f.j1; i1/; .j2; i2/; : : : ; .jq; iq/g also
belongs to the subset ofK , i.e. L0 � K . Each subsetK of X2 can be represented as
follows:K D L[L0 [D, where L is the set of couples of alternatives .i; j / given
by the DM/expert, L0 is given by the reciprocity property and D is the diagonal of
this matrix, i.e. D D f.1; 1/; .2; 2/; : : : ; .n; n/g, where bii D 0:5 for all i 2 X . The
reciprocity property means that if the expert is able to quantify bij, then he/she is
able to quantify bji for some i; j . The elements bij with .i; j / 2 X2 - K are called
the missing elements of matrix B.K/. The missing elements ofB.K/ are denoted by
symbol “-” (“dash”). On the other hand, the preference degrees given by the experts
are denoted by bij where .i; j / 2 K . By f-reciprocity it is sufficient that the expert
will quantify only the elements bij, where .i; j / 2 L, such that K D L [ L0 [D.

The problem of missing elements in a FPC matrix is well known and has been
solved differently by many authors, e.g. Alonso, S. et al. [3], Herrera-Viedma,
E. et al. [19, 41], Chiclana, F. et al. [42], Fedrizzi, M. and Giove, S. [28], or
Ramik, J. [56].

The first approach, [3], is based on calculating the missing values of an
incomplete fuzzy additive PC matrix. This calculation is done by using only the
known elements of the matrix by reconstruction of the incomplete matrix being
compatible with the rest of the information provided by the DM/expert. The
primary purpose of this method is to maintain or maximize the global measure
of fa-consistency. The drawback of this approach is that it does not allow to deal
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with non-fuzzy PC matrices. The other approaches to the problem of missing
elements in fuzzy PC matrices are based on optimization procedures associated with
calculating the priority vectors. These approaches are not limited to FPC matrices,
they can be applied also to non-fuzzy PC matrices, see Sects. 2.4 and 2.6. In the
next two subsections we shall study the second approach based on the optimization
procedures, then, in the next subsection we shall deal with the first method.

2.9.1 Problem of Missing Elements in FPC Matrices Based
on Optimization

Now, we shall deal with the problem of finding the values of missing elements of
a given fuzzy pairwise comparison matrix so that the extended matrix is as much
fm-consistent/fa-consistent as possible. In the ideal case the extended matrix would
become fm-consistent/fa-consistent.

Let K � X2, let B.K/ D fbijgK be a fuzzy pairwise comparison matrix with
missing elements, let K D L[L0 [D, L D f.i1; j1/; .i2; j2/; : : : ; .iq; jq/g be a set
of couples given by the DM. We assume that

f1; 2; : : : ; ng � fi1; j1; i2; j2; : : : ; iq; jqg : (2.70)

Remark 2.2. In the terminology of graph theory condition (2.70) means that K is
the covering of f1; 2; : : : ; ng.

The matrixB fm.K/ D fbfm
ij gK called the fm-extension of B.K/ is defined as follows

b
fm
ij D

(
bij if .i; j / 2 K;

v�

i

v�

i Cv�

j
if .i; j / 62 K :

(2.71)

Here, v� D .v�
1 ; v

�
2 ; : : : ; v

�
n/ called the fm-priority vector with respect to K is the

optimal solution of the following problem

.Pfm/ dfm.v; K/ D
X

.i;j /2K

�
bij � vi

vi C vj

�2
�! min

subject to

nX
jD1

vj D 1; vi � � > 0 for all i 2 f1; 2; : : : ; ng :

(� is a preselected sufficiently small positive number)
Notice, that fm-consistency index of the matrix B fm.K/ D fbfm

ij gK is defined by
(2.67) as If mY .B fm.K//, where Y 2 fEV;LS;GM g.
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Assumption (2.70) is natural as otherwise, if e.g. k 2 f1; 2; : : : ; ng does not
belong to fi1; j1; i2; j2; : : : ; iq; jqg, then v�

k is not defined by problem .Pfm/ and
therefore the fm-extension of B.K/ cannot be defined by (2.71).

The proof of the following proposition follows directly from Proposition 2.2.

Proposition 2.23. B fm.K/ D fbfm
ij gK is fm-consistent, (i.e. Ifm.B

fm.K// D 0) if
and only if dfm.v�; K/ D 0:

Now, we would like to find the values of missing elements of a given fuzzy
pairwise comparison matrix so that the extended matrix is as much fa-consistent as
possible. In the ideal case the extended matrix would become fa-consistent.

Again, let K � I 2, let B.K/ D fbijgK be a fuzzy pairwise comparison matrix
with missing elements with (2.70), K D L [ L0 [ D as before. The matrix
Bfa.K/ D fbfaij gK called an fa-extension of B.K/ with respect to K is defined
as follows

b
fa
ij D

(
bij if .i; j / 2 K ;

maxf0;minf1; 1
2
.1C nu�

i � nu�
j /gg if .i; j / 62 K :

Here, u� D .u�
1 ; u

�
2 ; : : : ; u

�
n/ called the fa-priority vector with respect to K is the

optimal solution of the following problem

.Pfa/ dfa.v; K/ D
X

.i;j /2K

�
bij � 1

2
.1C nui � nuj /

�2
�! min

subject to Pn
jD1 uj D 1, ui � � > 0 for all i=1,2,. . . ,n.

Now, let fa-consistency index I 
faLS .B
f t .K// of the matrix Bf t .K/ D fbfaij gK

be defined by (2.68) with a given 
 > 0. The next proposition follows directly from
Proposition 2.3.

Proposition 2.24. IfBfa.K/ D fbfaij gK is fa-consistent (i.e. I 
faLS .B
fa.K// D 0),

then dfa.u�; K/ D 0:

2.9.2 Particular Cases of FPC Matrices with Missing Elements
Based on Optimization

For a complete definition of an n � n reciprocal fuzzy pairwise comparison matrix
we need N D n.n � 1/=2 pairs of elements to be evaluated by an expert. For
example, if n D 10, then N D 45, which is a considerable amount of pairwise
comparisons. We ask that the expert would evaluate only ‘around n’ pairwise
comparisons of alternatives which seems to be a reasonable amount. In this section
we shall deal with two important particular cases of fuzzy preference matrix with
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missing elements where the expert will evaluate only n�1 pairwise comparisons of
alternatives so that condition (2.70) is satisfied. LetK � I 2 be a set of indexes given
by an expert, B.K/ D fbijgK be a fuzzy preference matrix with missing elements.
Moreover, let K D L[L0 [D. In fact, it is sufficient to assume that the expert will
evaluate for instance the matrix elements of L: b12; b23; b34; : : : ; bn�1;n.

2.9.3 Case L D f.1; 2/; .2 ; 3/; : : : ; .n � 1; n/g

Here, we assume that the expert evaluates n � 1 elements of the fuzzy preference
matrix B.K/, b12; b23; b34; : : : ; bn�1;n. First, we investigate the fm-extension of
B fm.K/. We derive the following result.

Proposition 2.25. Let L D f.1; 2/; .2; 3/; : : : ; .n � 1; n/g, 0 < bij < 1 with
bijCbji D 1 for all .i; j / 2 K ,K D L[L0[D, andL0 D f.2; 1/; .3; 2/; : : : ; .n; n�
1/g;D D f.1; 1/; : : : ; .n; n/g. Then fm-priority vector v� =.v�

1 ; v
�
2 ; : : : ; v

�
n/ with

respect to K is given as

v�
1 D 1

S
and v�

iC1 D ai;iC1v�
i for i D 1; 2; : : : ; n � 1; (2.72)

where

S D 1C
n�1X
iD1

ai;iC1aiC1;iC2 : : : an�1;n and aij D 1 � bij

bij
for all .i; j / 2 K : (2.73)

Proof. If (2.72) and (2.73) is satisfied, then

v�
iC1 D ai;iC1ai�1;i : : : a1;2v�

1 for i 2 f1; 2; : : : ; n � 1g ;

hence

nX
jD1

v�
j D 1; v�

j > 0 for all j 2 f1; 2; : : : ; ng ;

and also

bi;iC1 D v�
i

v�
i C v�

iC1
for i 2 f1; 2; : : : ; n � 1g :

Then v D .v�
1 ; : : : ; v

�
1 / is an optimal solution of .Pfm/. ut

By (2.67) it follows that B fm.K/ D fbfm
ij gK is fm-consistent.
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Now, we investigate the fa-extension Bfa.K/ of B.K/. We obtain the following
result.

Proposition 2.26. Let L D f.1; 2/; .2; 3/; : : : ; .n � 1; n/g, 0 < bij < 1 with bij C
bji D 1 for all .i; j / 2 K , K D L [ L0 [D, and L0 D f.2; 1/; .3; 2/; : : : ; .n; n �
1/g;D D f.1; 1/; : : : ; .n; n/g. Let u� =.u�

1 ; u
�
2 ; : : : ; u

�
n/ be defined as

u�
i D 2

n2

n�1X
jD1

˛j � 2

n
˛i�1 � n � i � 1

n
for i 2 f1; 2; : : : ; ng ; (2.74)

where

˛0 D 0; ˛j D
jX
iD1

bi;iC1 for j 2 f1; 2; : : : ; ng : (2.75)

If u� D .u�
1 ; : : : ; u

�
n/ is a vector with positive elements, then u� is an fa-priority

vector with respect to K .

Proof. If (2.74) and (2.75) is satisfied, then

nX
jD1

u�
j D nu�

1 C 2

n

nX
jD2

˛j�1 C n � 1 D 1;

and

u�
j > 0 for all j 2 f1; 2; : : : ; ng :

We get also

1

2
.1C nu�

i � nu�
iC1/ D bi;iC1 for i 2 f1; 2; : : : ; n � 1g :

Then u� D .u�
1 ; : : : ; u

�
n/ is an optimal solution of .Pfa/. ut

Remark 2.3. In general, the optimal solution u� =.u�
1 ; u

�
2 ; : : : ; u

�
n/ of .Pfa/ does not

satisfy condition

0 � 1

2
.1C nu�

i � nu�
j / � 1; for all i; j 2 f1; 2; : : : ; ng ; (2.76)

i.e. B D fbijg D f 1
2
.1 C nu�

i � nu�
j /g is not a fuzzy preference matrix. We can

easily prove the necessary and sufficient condition for satisfying (2.76) based on
evaluations bi;iC1.

Proposition 2.27. Let L D f.1; 2/; .2; 3/; : : : ; .n � 1; n/g, 0 � bij � 1 with
bij C bji D 1 for all .i; j / 2 K , K D L [ L0 [ D, and L0 D f.2; 1/; .3; 2/; : : : ;
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.n; n � 1/g;D D f.1; 1/; : : : ; .n; n/g. Then the fa-extension Bat .K/ D fbatij gK is
fa-consistent if and only if

ˇ̌
ˇ̌̌j�1X
kDi

bk;kC1 � j � i

2

ˇ̌
ˇ̌̌ � 1

2
for all i; j; k 2 f1; 2; : : : ; ng : (2.77)

Proof. By Proposition 2.3 and Proposition 2.26 it is sufficient to show that
Bfa.K/ D fbfaij gK is fa-consistent if and only if

0 � 1

2
.1C nu�

i � nu�
iC1/ � 1; for all i 2 f1; 2; : : : ; n � 1g : (2.78)

where u� D .u�
1 ; : : : ; u

�
n/ is defined by (2.74) and (2.75).

By (2.74) and (2.75) we get

1

2
.1C nu�

i � nu�
j / D ˛j�1 � ˛i�1 C i � j C 1

2
D

j�1X
kDi

bk;kC1 � j � i � 1

2
:

(2.79)

Hence, (2.78) is equivalent to

0 �
j�1X
kDi

bk;kC1 � j � i � 1
2

� 1 for i 2 f1; 2; : : : ; n � 1g; j 2 fi C 1; : : : ; ng ;

which, after some rearrangement, is the same as in (2.77). ut
Example 2.8. Let L D f.1; 2/; .2; 3/; .3; 4/g, the expert evaluations be b12 D
0:9; b23 D 0:8; b34 D 0:6, with bij C bji D 1 for all .i; j / 2 L, letK D L[L0 [D.
HenceB.K/ D fbijgK is a fuzzy preference matrix with missing elements as follows

B.K/ D

0
BB@
0:5 0:9 � �
0:1 0:5 0:8 �
� 0:2 0:5 0:5

� � 0:4 0:5

1
CCA : (2.80)

Solving .Pfm/ we obtain ac-priority vector v� with respect to K , particularly, v� D
.0:864; 0:096; 0:024; 0:016/. By (2.74) we obtain B fm.K/ - fm-extension of B.K/
as follows

B fm.K/ D

0
BB@
0:5 0:9 0:97 0:98

0:1 0:5 0:8 0:86

0:03 0:2 0:5 0:6

0:02 0:14 0:4 0:5

1
CCA ; (2.81)
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where, B fm.K/ is fm-consistent, as dfm.v; B.K// D 0, hence IfmLS.B fm.K// D 0.
Solving .Pfa/ we obtain fa-priority vector u� with respect to K ,
u� D .0:487; 0:287; 0:137; 0:088/. Moreover, Bfa.K/ is an fa-extension of

B.K/ as

Bfa.K/ D

0
BB@
0:5 0:9 1:0 1:0

0:1 0:5 0:8 0:9

0:0 0:2 0:5 0:6

0:0 0:1 0:4 0:5

1
CCA ; (2.82)

where, Bfa.K/ is not fa-consistent, as dfa.v; B.K// > 0: This fact can be easily
verified as I 9faLS .B

fa.K// D 0:057.

2.9.4 Case L D f.1; 2/; .1; 3/; : : : ; .1; n/g

Now, we assume that the expert evaluates the pairs of a fixed element x 2 X with
the remaining n � 1 elements, i.e. the fuzzy preference matrix B.K/ is given by
b12; b13; : : : ; b1n. We investigate the fm-extension of B.K/ and obtain the following
result.

Proposition 2.28. LetL D f.1; 2/; .1; 3/; : : : ; .1; n/g, 0 < bij < 1with bijCbji D 1

for all .i; j / 2 K ,K D L[L0 [D, and L0 D f.2; 1/; .3; 2/; : : : ; .n; n� 1/g;D D
f.1; 1/; : : : ; .n; n/g. Then fm-priority vector v� =.v�

1 ; v
�
2 ; : : : ; v

�
n/ with respect to K

is given as

v�
1 D 1

V
and v�

iC1 D a1;iC1v�
i for i D 1; 2; : : : ; n � 1 ; (2.83)

where

V D 1C
n�1X
iD1

a1;iC1 and aij D 1 � bij

bij
for all .i; j / 2 K : (2.84)

Proof. If (2.82) and (2.84) is satisfied, then

v�
iC1 D 1 � b1;iC1

b1;iC1
v�
1 for i 2 f1; 2; : : : ; n � 1g ;

hence

b1;iC1 D v�
i

v�
i C v�

iC1
for i 2 f1; 2; : : : ; n � 1g :
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and also

nX
jD1

v�
j D v�

1 C a1;2v
�
1 C : : :C a1;nv�

1 D 1; v�
j > 0 for all j 2 f1; 2; : : : ; ng :

Consequently, v D .v�
1 ; : : : ; v

�
n/ is an optimal solution of .Pfm/. ut

We conclude that the fm-extension of B.K/, i.e. matrix B fm.K/ D fbfm
ij gK is

fm-consistent.
Now, we investigate the fa-extension matrix Bfa.K/ of B.K/. We derive the

following result.

Proposition 2.29. LetL D f.1; 2/; .1; 3/; : : : ; .1; n/g, 0 < bij < 1with bijCbji D 1

for all .i; j / 2 K ,K D L[L0 [D, and L0 D f.2; 1/; .3; 2/; : : : ; .n; n� 1/g;D D
f.1; 1/; : : : ; .n; n/g. Let u� =.u�

1 ; u
�
2 ; : : : ; u

�
n/ be defined as follows

u�
1 D 2

n2

n�1X
jD1

b1;jC1 C 1

n2
and u�

iC1 D u�
1 C 1 � 2b1;iC1

n
for i D 1; 2; : : : ; n � 1 :

(2.85)
If u� D .u�

1 ; : : : ; u
�
n/ is a vector with positive elements, then u� is an fa-priority

vector with respect to K .

Proof. If (2.85) is satisfied, then

nX
jD1

u�
j D nu�

1 C 2

n

nX
jD2

b1;iC1 C n � 1

n
C 1

n
D 1 ;

and

u�
j > 0 for all j 2 f1; 2; : : : ; ng :

We get also

1

2
.1C nu�

i � nu�
iC1/ D 0:5C bi;1 � biC1;1 D bi;iC1 for i 2 f1; 2; : : : ; n � 1g :

Hence, u� D .u�
1 ; : : : ; u

�
n/ is an optimal solution of .Pfa/. ut

Remark 2.4. In general, the optimal solution u� =.u�
1 ; u

�
2 ; : : : ; u

�
n/ of .Pfa/ does not

satisfy condition (2.76), i.e. B D fb�
ij g D f 1

2
.1 C nu�

i � nu�
j /g is not a fuzzy PC

matrix. By a similar way we can prove the result parallel to Proposition 2.27.

Proposition 2.30. Let L D f.1; 2/; .2; 3/; : : : ; .n � 1; n/g, 0 � bij � 1 with
bijCbji D 1 for all .i; j / 2 K ,K D L[L0[D, andL0 D f.2; 1/; .3; 2/; : : : ; .n; n�
1/g;D D f.1; 1/; : : : ; .n; n/g. Then the fa-extension Bfa.K/ D fbfaij gK is
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fa-consistent if and only if

ˇ̌
b1j � b1i

ˇ̌ � 1

2
for all i; j 2 f1; 2; : : : ; ng : (2.86)

Proof. By Proposition 2.3 and Proposition 2.26 it is sufficient to show that
Bfa.K/ D fbfaij gK is fa-consistent if and only if

0 � 1

2
.1C nu�

i � nu�
iC1/ � 1; for all i 2 f1; 2; : : : ; n � 1g : (2.87)

where u� D .u�
1 ; : : : ; u

�
n/ is defined by (2.85).

However, by (2.85) we obtain

1

2
.1C nu�

i � nu�
j / D 0:5C bi1 � bj1 for i; j 2 f1; 2; : : : ; ng : (2.88)

Hence, (2.87) is equivalent to

0 � 1

2
.1C nu�

i � nu�
j / D 0:5C bi1 � bj1 � 1 for i; j 2 f1; 2; : : : ; ng ;

which, after some rearrangements, is equal to (2.86). ut
Example 2.9. Let L D f.1; 2/; .1; 3/; .1; 4/g, the expert evaluations be b12 D
0:9; b13 D 0:8; b14 D 0:3, with bij C bji D 1 for all .i; j / 2 L, letK D L[L0 [D.
HenceB.K/ D fbijgK is a fuzzy preference matrix with missing elements as follows

B.K/ D

0
BB@
0:5 0:9 0:8 0:3

0:1 0:5 � �
0:2 � 0:5 �
0:7 � � 0:5

1
CCA : (2.89)

Solving .Pfm/ we obtain fm-priority vector v� with respect to K , particularly, v� D
.0:271; 0:030; 0:068; 0:632/. Then we obtain B fm.K/ – fm-extension of B.K/ as

B fm.K/ D

0
BB@
0:5 0:9 0:80 0:30

0:10 0:5 0:30 0:04

0:20 0:70 0:5 0:10

0:70 0:96 0:90 0:5

1
CCA ; (2.90)

where, B fm.K/ is fm-consistent, as dfm.v; B.K// D 0, hence IfmLS.B fm.K// D 0:

Moreover, solving .Pfa/ we obtain fa-priority vector u� with respect to K ,
u� D .0:312; 0:113; 0:162; 0:412/. Then Bfa.K/ is an fa-extension of B.K/ as
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Bfa.K/ D

0
BB@
0:5 0:90 0:80 0:30

0:10 0:5 0:40 0:00

0:20 1:00 0:5 0:00

0:70 1:00 1:00 0:5

1
CCA ; (2.91)

where Bfa.K/ is not fa-consistent, as jb12 � b14j > 0:6 > 1
2
:

2.9.5 Problem of Missing Elements in FPC Matrices: Other
Methods

The problem of missing elements in a FPC matrix has been solved by many authors,
e.g. Alonso, S. et al. [3], Herrera-Viedma, E. et al. [19, 41], Chiclana, F. et al. [42],
or Fedrizzi, M. and Giove, S. [28].

The first approach, see [3, 19, 41, 42], is based on calculating the missing values
of an incomplete fuzzy additive PC matrix. This calculation is done by using only
the known elements of the matrix, therefore by assuring that the reconstruction of
the incomplete matrix is compatible with the rest of the information provided by
the DM/expert. The primary purpose of this method is to maintain or maximize
the global fa-consistency. The drawback is that it does not allow to deal with fuzzy
multiplicative PC matrices and non-fuzzy PC matrices.

Let us now assume that one or more comparisons are missing. As a consequence,
the PC matrix is incomplete and it is no longer possible to derive the priorities for
the alternatives using the well known methods of the EV, or GM, to mention only
the most popular ones. Some methods have been proposed in the literature to solve
the incomplete comparison problem. Most of these methods are formulated in the
multiplicative framework [16, 36, 37, 54, 63], some other in the additive framework
[70,73]. Let us very briefly describe the most important ideas presented in the above
mentioned literature.

Two methods have been proposed by P.T. Harker. The first one [36], based on
GM method, is based on the concept of ‘connecting path’. If alternatives xi and xj
are not compared with each other, let us denote by .xi I xj / the missing comparison
(MC) and let xij be the corresponding numerical value to be estimated; a connecting
path of size r has the following form

xij D aik1 :ak1k2 : : : akr j ; (2.92)

where the comparison values at the right hand side of (2.92) are known. The
connecting path of size two, also called elementary connecting path, corresponds
to the more familiar expression

xij D aikakj : (2.93)
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Note that each connecting path corresponds to an indirect comparison between
xi and xj . Harker proposes that the value xij of the MC should be equal to the
geometric mean of all connecting paths related to this MC. The drawback of this
method is that the number of connecting paths grows with the number n of the
alternatives in such a way that the method becomes computationally intractable for
many real world problems.

The second Harker’s method [37] is based on the following idea. The missing
element .xi I xj / is set to be equal to wi =wj , where the components of the vector
w are not known and are to be calculated. In other words, the missing entries are
completed by setting them equal to the value they should approximate. The matrix
obtained with the described substitution is denoted by C . An auxiliary nonnegative
matrix A is then associated to C satisfying Aw D Cw. The matrix A is nonnegative
and quasi reciprocal, in the sense that all its positive entries are reciprocal, but it
contains entries equal to zero. In this way, Harker transforms the original problem
in that of computing the principal eigenvector of a nonnegative quasi reciprocal
matrix. In order to justify his method, Harker develops a theory for such type of
matrices, following the Saaty’s one for positive reciprocal matrices.

Shiraishi et al. in [63] propose a heuristic method which is based on a property
of a coefficient of the characteristic polynomial of a PC matrix A. More precisely,
the coefficient c3 of �n�3 is viewed as an index of consistency for A. Therefore,
in order to maximize the consistency of the PC matrix, the authors consider the
missing entries in the PC matrix as variables z1; : : : ; zm and propose to maximize
c3.z1; : : : ; zm/ as a function of these variables. In [16] a Least Squares type method is
proposed. Instead of first calculating the missing entries of a PC matrix, the priority
vector w is directly calculated as the solution of a constrained optimization problem.
Here the variables are the n components wi of w and only the known entries aij are
approximated by wi =wj . The corresponding error is minimized as a function of
w1; : : : ;wn. In [70], Xu proposes to calculate the priority vector w of incomplete
fuzzy preference matrix by a goal programming approach. This method minimizes
the errors

�ij D jaij � 0:5C 0:5.ui � uj /j (2.94)

for all missing elements .xi I xj /. He also proposes his goal programming approach
with another type of consistency.

In his second proposal, Xu in [73] develops a method, for incomplete fuzzy
preference relations, similar to that introduced by Harker [36] for incomplete
multiplicative PC matrix. In [73] the priority vector w is calculated by solving a
system of equations which corresponds to the Harker’s auxiliary eigenproblem.

In [28], Fedrizzi and Giove proposed a method which is based on the resolution
of an optimization problem with an objective function measuring the additive
consistency of the incomplete fuzzy preference matrix. Indeed, for each triplet
of alternatives .xi ; xj ; xk/, Fedrizzi and Giove define its associated inconsistency
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contribution as

Lijk D .aik C akj � aij � 0:5/2 : (2.95)

It is worth noting that the error between a value aij and its local estimated one
obtained by using the intermediate alternative xk , denoted as epij

k , is the square root
of Lijk. The global inconsistency index of a fuzzy PC matrix A is defined as follows:

� D 6
X
i<j<k

Lijk : (2.96)

The missing values in an incomplete fuzzy PC matrix are treated as variables
in the global consistency index. The stationary vector that minimizes the global
inconsistency function is taken as the estimated values for the unknown preference
values. Obviously, these estimated values are the most consistent with the available
preference values.

Under reciprocity, if a value aij is missing, then the value aji is also missing.
Therefore, it makes sense in this context to denote these two missing preference
values as the missing comparison .xi I xj /. When a single comparison .xi I xj / is
missing, Fedrizzi–Giove’s method produces the following linear equation:

.n� 2/aij �
nX

kD1;k¤j
aki �

nX
kD1;k¤i

akj � n

2
D 0 : (2.97)

Example 2.10. Let us assume the following incomplete PC matrix, (see [28])

A D

0
BB@
0:5 0:2 0:6 0:4

0:8 0:5 x y

0:4 1 � x 0:5 z
0:6 1 � y 1 � z 0:5

1
CCA ; (2.98)

where a23 D x, a24 D y, and a34 D z. The global inconsistency index of A is

� D 6.0:9 � x/2 C .0:7 � y/2 C .0:3� z/2 C .0:5 � x C y � z/2 : (2.99)

The optimal solution corresponds to x D 0:9; y D 0:7; z D 0:3. These values
coincide with the estimated values obtained by Herrera–Viedma in [19].

To establish the condition under which this method can guarantee the successful
reconstruction of an incomplete fuzzy preference relation, the authors introduce the
concept of an independent/dependent set of missing comparisons.

(1) A set of missing comparisons is called independent when no alternative is
shared between any two of their missing comparisons.

(2) A set of missing comparisons is called dependent when for every partition of it
into two subsets, there exists at least one alternative belongs to the both subsets.
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Each set of missing comparisons can be expressed as a disjoint union of
independent and/or dependent sets of missing comparisons.

The maximum cardinality of an independent set of missing comparisons is
calculated for an even or odd number of alternatives, respectively. Fedrizzi and
Giove show that the optimal values of an independent set of missing comparisons
exist and are computed by solving each one of the corresponding linear equations
independently of the rest. However, in the case of a dependent set of missing
comparisons, the optimal values exist and are unique if its cardinality is lower than
n�1. When this is not the case, i.e. if the cardinality of a set of missing comparisons
is greater than or equal to n � 1, Fedrizzi–Giove’s method does not guarantee the
existence nor the uniqueness of estimated values for the missing comparisons.

2.10 Unified Framework for Pairwise Comparison Matrices
over ALO Groups

2.10.1 Unified Framework

As it was mentioned before, a pairwise comparison matrix A D faijg is a helpful
tool to determine the ranking on a set X D fx1; x2; : : : ; xng of alternatives (or,
criteria). The entry aij of the matrix assumes three different meanings: aij can be a
preference ratio (multiplicative case), or a preference difference (additive case), or
aij belongs to the unit interval Œ0; 1� and measures the distance from the indifference
that is expressed by 0.5 (fuzzy case).

In this section we consider pairwise comparison matrices over anabelian linearly
(totally) ordered group and, in this way, we provide a general framework for all
the above mentioned cases. By introducing this more general setting, we provide a
consistency measure that has a natural meaning, it corresponds to the consistency
indices presented in the previous sections and it is easy to compute it in the additive,
multiplicative and fuzzy cases. In some sense we unify major part of the theory
presented in the previous sections. The matter of this section is based on the textbook
by N. Bourbaki [9] and works of B. Cavallo and L. D’Apuzzo [11–14]. Some
elements of abelian linearly (totally) ordered groups are summarized in Chap. 1,
Sect. 1.12.

2.10.2 Continuous Alo-Groups over a Real Interval

Let G be a subset of the real line R, � be the total order on G inherited from the
usual order on R and G D .G;ˇ;�/ be a real alo-group. Let G be a proper interval
of R. By (1.50) and (1.51),G is an open interval.
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By Q we denote the set of the rational numbers, QC is the set of all positive
rational numbers, operation C is the usual addition and � is the usual multiplication
on R. We obtain the following examples of real alo-groups, see [11, 13].

Example 2.11. Let R D .R;C;�/ and Q D .Q;C;�/ be two alo-groups. Both
alo-groups are continuous with: e D 0; a.�1/ D �a; a.n/ D na; a�b D a�bI the
norm kak D jaj D a_.�a/ generates the usual distance over R (resp. Q): ja�bj D
.a�b/_.b�a/. Both R and Q are divisible, the .n/-root of x.n/ D a is the solution
of nx D a, usually indicated by the symbol a=n. The mean mˇ.a1; a2; : : : ; an/ is
the usual arithmetic average 1

n

P
ai .

Example 2.12. RC D .�0;C1Œ; �;�/ and QC D .QC; �;�/ are two continuous
alo-groups with: e D 1; x.�1/ D x�1 D 1=x; x.n/ D xn; x � y D x

y
, kak D

a _ a�1; and both dRC

.a; b/ and dQC

.a; b/ are given by ka � bk D k a
b
k D

a
b

_ b
a

2 Œ1;C1Œ. The alo-group RC is divisible and the .n/-root of a is x D a1=n.

The meanm�.a1; a2; : : : ; an/ is the geometric mean

�
nQ
iD1

ai

�1=n
. The alo-group QC

is not divisible as e.g. x2 D 2 has no solution in QC.

Example 2.13. �0; 1Œm=.�0; 1Œ; �f ; �/ is fuzzy-multiplicative alo-group with:

a �f b D ab

ab C .1 � a/.1 � b/ ; e D 0; 5; a.�1/ D 1 � a ;

kak D maxfa; 1 � ag :
Here,

ka �f bk D maxf a.1 � b/

a.1 � b/C .1 � a/b
;

.1 � a/b
a.1 � b/C .1 � a/b g 2�0; 1Œ :

(2.100)

We obtain also the mean

m�f .ai I i 2 f1; : : : ; ng/ D
.
nQ
iD1

ai /
1=n

.
nQ
iD1

ai /1=n C .
nQ
iD1
.1 � ai //1=n

: (2.101)

Fuzzy multiplicative alo-group �0; 1Œm is divisible and continuous. For more details
and properties, see [14].

Example 2.14. Fuzzy additive alo-group Ra D .�� 1;C1Œ;Cf ;�/ is a continu-
ous alo-group with:

a Cf b D a C b � 0:5; e D 0:5; a.�1/ D 1 � a;

a.n/ D n:a � n � 1

2
; a �f b D a � b C 0:5; kak D maxfa; 1 � ag ;
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and

dRa .a; b/ D ka �f bk D maxfa � b C 0:5; b � a � 0:5g :

The fuzzy additive alo-group Ra is divisible and the .n/-root of a is x D a=n.

The mean mCf
.a1; a2; : : : ; an/= 1

n

nP
iD1

ai . The entries of a PC matrix A D faijg are

taken from the unit interval Œ0; 1� with a fuzzy interpretation. A is fa-consistent if

aik D aij Cf ajk D aij C ajk � 0:5 for all i; j; k 2 f1; 2; : : : ; ng :

The following result by Aczel [1] will be helpful. It shows that if G is a proper
open interval of R and � is the total order on G inherited from the usual order on
R, then a continuous real alo-group can be built based on the real alo-group R, or
the real alo-group RC. For the proof of the following theorem, see [1].

Theorem 2.4. Let G be a proper open interval of R and � the total order on G
inherited from the usual order on R, let ˇ be a binary operation on G. Then ˇ
is a continuous, associative and cancellative operation if and only if there exists a
continuous and strictly monotonic function � W J ! G such that or each x; y 2 J :

x ˇ y D �.��1.x/C ��1.y// . (2.102)

and J is R or one of the real intervals ��1; 	Œ, ��1; 	�, �ı;C1Œ, Œı;C1Œ, where
	 and ı are suitable constants. The function � in (2.102) is unique up to a linear
transformation of the variable x.

Notice that by (2.102) ˇ is commutative and strictly increasing in both variables.
By Theorem 2.4 we obtain the following consequence, see [11].

Theorem 2.5. Let G be a proper open interval of R and � the total order on G
inherited from the usual order on R. The following assertions are equivalent:

(i) G D .G;ˇ;�/ is a continuous alo-group;
(ii) there exists a continuous and strictly increasing function � W R ! G verifying

the equality in (2.102);
(iii) there exists a continuous and strictly increasing function  W�0;C1Œ! G

verifying the equality

x ˇ y D  . �1.x/ �  �1.y// for each x; y 2�0;C1Œ : (2.103)

Proof. First, we prove the equivalence of (i) and (ii). By Theorem 2.4 and (1.47),
G is a continuous alo-group if and only if there exists a continuous and strictly
monotonic function � W J ! G defined on a proper interval J of R and verifying
(2.102). This function can be chosen strictly increasing as it is unique up to the
linear transformation of the variable x. In order to prove the required equivalence it
is enough to prove that J , the domain of �, coincides with R. By (2.102) observe
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that for x 2 J W

x D x ˇ e , ��1.x/C ��1.e/ D 0 ;

hence 0 2 J and

xˇx.�1/ D e , ��1.x/C��1.x.�1// D ��1.e/ D 0 , ��1.x.�1// D ���1.x/ :

Therefore, if a D ��1.x/ 2 J then �a D ��1.x/ 2 J . The rest follows by
Theorem 2.4.

Second, we prove the equivalence of (ii) and (iii). Let (ii) be true. Setting  as
a composition of � and logarithmic function log, i.e.  .x/ D �.logx/ for x 2
�0;C1Œ, we obtain

 �1.y/ D exp.��1.y// and  . �1.x/ �1.y// D

D �.log.exp.��1.x// exp.��1.y//// D x ˇ y :

Therefore, (iii) is true. The reverse implication can be proven by an analogous way.
ut

Applying Theorem 2.5, we provide, in the following propositions, two examples
of continuous real alo-groups over a limited interval of R.

Proposition 2.31. Let Cf be the binary operation defined for all x; y 2��1;C1Œ

by

x Cf y D x C y � 0:5 for all x; y 2� � 1;C1Œ : (2.104)

and � be the order inherited by the usual order in R. Then �0; 1Œa D .� �
1;C1Œ;Cf ;� / is a continuous alo-group with e D 0:5; x.�1/ D 1 � x for
each x 2� � 1;C1Œ.

Proof. The function g W�0;C1Œ! � � 1;C1Œ defined by

g.t/ D 0:5.1C log t/ for each t 2�0;C1Œ ; (2.105)

is a bijection between �0;C1Œ and � � 1;C1Œ being continuous and strictly
increasing. For a; b 2�0;C1Œ and x D g.a/; y D g.b/, applying (2.104) we get

g.a/Cf g.b/ D 0:5.1C log a/C 0:5.1C logb/� 0:5

D 0:5.1C log a:b/ D g.a � b/ : (2.106)

Hence, x Cf y D g.g�1.x/ � g�1.y//, and (2.103) is verified with  D g. Finally,
it is easy to verify that x Cf 0:5 D x and x Cf .1 � x/ D 0:5. ut
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Proposition 2.32. Let �f W�0; 1Œ2!�0; 1Œ be the operation defined for all x; y 2�0; 1Œ
by

x �f y D xy

xy C .1 � x/.1 � y/ (2.107)

and � be the order inherited by the usual order in R. Then �0; 1Œm D .�0; 1Œ; �f ;�/
is a continuous alo-group with e D 0; 5 and x.�1/ D 1 � x for each x 2�0; 1Œ.
Proof. The function v W�0;C1Œ!�0; 1Œ defined for all t 2�0;C1Œ by

v.t/ D t

t C 1

is a bijection between �0;C1Œ and �0; 1Œ being continuous and strictly increasing.
For a; b 2�0;C1Œ and x D v.a/; y D v.b/, we get

v.a/ �f v.b/ D ab

ab C 1
D v.a � b/ : (2.108)

Hence, x �f y D v.v�1.x/ � v�1.y//, and (2.102) is verified with  D v. Finally, it
is easy to verify that x �f 0; 5 D x and x �f .1 � x/ D 0; 5. ut

By Examples 2.11 and 2.12 and Proposition 2.32, we shall call:

• R D .R;C;�/ the additive alo-group, or, a-alo-group;
• RC D .�0;C1Œ; �;�/ the multiplicative alo-group, or, m-alo-group;
• Ra D .R;Cf ;�/ the fuzzy-additive alo-group, or, fa-alo-group;
• �0; 1Œm D .�0; 1Œ; �f ;�/ the fuzzy-multiplicative alo-group, or, fm-alo-group.

The isomorphism between RC and R is

h W x 2�0;C1Œ! logx 2 R; h�1 W y 2 R ! exp.y/ 2�0;C1Œ : (2.109)

The isomorphism between RC and Ra is the function g in (2.105) and its inverse,
i.e.

g W x 2�0;C1Œ! 0:5.1C logx/ 2 R; g�1 W y 2 R ! exp.2y � 1/ 2�0;C1Œ :

(2.110)

The isomorphism between RC and �0; 1Œm is the function v in (2.102) and its
inverse, i.e.

v W x 2�0;C1Œ! 1 � x
1C x

2�0; 1Œ; v�1 W y 2�0; 1Œ! y

1 � y
2�0;C1Œ : (2.111)
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2.10.3 Pairwise Comparison Matrices over a Divisible
Alo-Group

Let G D .G;ˇ;�/ be a divisible alo-group. A pairwise comparison system over
G is a pair .X;A / constituted by a set X D fx1; x2; : : : ; xng and a relation A
W X2 ! G, where A .xi ; xj / D aij 2 G, and A D faijg is a pairwise comparison
matrix (PC matrix). In the context of an evaluation problem, the element aij can
be interpreted as a measure on G of the preference of xi over xj . Here, aij > e

implies that xi is strictly preferred to xj , whereas aij < e expresses the opposite and
aij D e means that xi and xj are indifferent. Moreover, A D faijg is assumed to be
reciprocal with respect to the operation ˇ, that is,

aji D a
.�1/
ij for all i; j 2 f1; 2; : : : ; ng : ˇ -reciprocity (2.112)

Hence, by definition aii D e for all i 2 f1; 2; : : : ; ng, and aij ˇ aji D e for all
i; j 2 f1; 2; : : : ; ng.

In the sequel, byPCn.G /, the set of all ˇ�reciprocal PC matrices of order n � 3

over G will be denoted. Particularly, a matrix of PCn.R/ is an additive PC matrix,
a matrix of PCn.RC/ is a multiplicative PC matrix, whereas a matrix of PCn.Ra/,
or, PCn.�0; 1Œm/, is a fuzzy PC matrix.

Let A D faijg 2 PCn.G /. The following notation will be used.

• Ai is the i -th row of A, i.e. Ai D .ai1; ai2; : : : ; ain/I
• Aj is the j -th column of A, i.e. Aj D .a1j ; a2j ; : : : ; anj /I
• mˇ.Ai / is the ˇ-mean of row Ai D .ai1; ai2; : : : ; ain/I
• wm

ˇ

.A/ D .mˇ.A1/;mˇ.A2/; : : : ; mˇ.An// is the vector of ˇ-means of rows
of AI

• �ijk D aik � .aij ˇ ajk/ is the element of G.

By the definition of G -distance, see Chap. 1, Sect. 1.12, we obtain

dG .aik � .aij ˇ ajk// D k�ijkk. (2.113)

Because of the assumption ˇ-reciprocity the equality aik D aij ˇ ajk does not
depend on the considered order of the indexes i; j; k, that is,

aik D aij ˇ ajk , aij D aik ˇ akj , ajk D aji ˇ aik , (2.114)

ajk D aji ˇ aik , aji D ajk ˇ aki , : : : . (2.115)

Definition 2.1. Let A D faijg 2 PCn.G /.
• Let xi ; xj ; xk 2 X . A PC matrix A D faijg is ˇ-consistent with respect to the

3-subsetfxi ; xj ; xkg of X if aik D aij ˇ ajk;
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• A PC matrix A D faijg is ˇ-consistent if it is ˇ-consistent with respect to each
3 – subset of X , i.e.

aik D aij ˇ ajk for all i; j; k 2 f1; 2; : : : ; ng - ˇ -consistency . (2.116)

In the above mentioned context, a fuzzy PC matrix is defined over �0; 1Œm and the
condition of �-consistency becomes �f -consistency, i.e. by (2.107) we obtain:

aik D aij �f ajk D aijajk

aijajk C .1 � aij/.1� ajk/
for all i; j; k 2 f1; 2; : : : ; ng .

(2.117)

It is clear that for each A D faijg 2 PCn.G / the property of ˇ-consistency is
equivalent to the one of the following conditions:

aij D aik � ajk for all i; j; k 2 f1; 2; : : : ; ng ; (2.118)

�ijk D e for all i; j; k 2 f1; 2; : : : ; ng , (2.119)

dG .aik � .aij ˇ ajk// D e for all i; j; k 2 f1; 2; : : : ; ng . (2.120)

Because of the equivalences in (2.115), when checking equations (2.118)–
(2.120) we may restrict only to the cases i < j < k; i; j; k 2 f1; 2; : : : ; ng.

Definition 2.2. A vector w D .w1;w2; : : : ;wn/, with wi 2 G for all i 2
f1; 2; : : : ; ng is a ˇ-consistent vector with respect to A D faijg 2 PCn.G / if

wi � wj D aij for all i; j 2 f1; 2; : : : ; ng . (2.121)

By (2.121) and the equivalences in changing the indexes (2.115) we obtain for
i; j 2 f1; 2; : : : ; ng:

wi > wj ” aij > e and wi D wj ” aij D e : (2.122)

Thus, the elements of the ˇ-consistent vector of A D faijg correspond with the
preferences expressed by the entries aij of the PC matrix.

Proposition 2.33. A D faijg 2 PCn.G / is ˇ-consistent if and only if there exists
a ˇ-consistent vector w D .w1;w2; : : : ;wn/;wi 2 G:
Proof. Let A D faijg be consistent. Then by (2.118), aik � ajk D aij for all i; j; k 2
f1; 2; : : : ; ng. Hence, the equalities (2.121) are verified for each column vector w D
Ak , k 2 f1; 2; : : : ; ng. On the other hand, if w is an ˇ-consistent vector, then
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aij ˇ ajk D .wi � wj /ˇ .wj � wk/ D wi ˇ w.�1/j ˇ wj ˇ w.�1/k

D wi ˇ w.�1/k D aik : ut

Proposition 2.34. Let A D faijg 2 PCn.G /. The following assertions are
equivalent:

(i) A D faijg is ˇ-consistentI
(ii) each column Ak is an ˇ-consistent vector;

(iii) wm
ˇ

.A/ D .mˇ.A1/;mˇ.A2/; : : : ; mˇ.An// - the vector of ˇ-means of rows
of A is an ˇ-consistent vector.

Proof. The equivalence of (i) and (ii) follows directly from Proposition 2.32.
Let (ii) be true, then by (1.57) we get

.mˇ.Ai /�mˇ.Aj //.n/ D .mˇ.Ai//.n/ � .mˇ.Aj //.n/ D

D .ai1 ˇ ai2 ˇ : : :ˇ ain/ˇ .aj1 ˇ aj2 ˇ : : :ˇ ajn/
.�1/ D

D .ai1 ˇ aj1/ˇ : : :ˇ .ain ˇ ajn/ D a
.n/
ij :

Therefore, (2.121) is verified and (iii) is true. The opposite implication is similar.
ut

Proposition 2.35. Let G D .G;ˇ;�/ and GK D .GK; ı;	/ be divisible alo-groups
and h W G ! GKbe an isomorphism between G and GK, a; b 2 G, aK; bK2 GK. Then

H W A D faijg 2 PCn.G / ! H.A/ D fh.aij/g 2 PCn.GK/

is a bijection between PCn.G / and PCn.GK/ that preserves the ˇ-consistency, that
is A is ˇ-consistent if and only if AKis ı-consistent.

Proof. The mapping H is an injection because h is an injective function. By
applying h to the entries of the matrix A D faijg, we get the matrix A D fh.aij/g,
that is reciprocal too. Therefore,H.A/ D fh.aij/g 2 PCn.GK/. The rest of the proof
is straightforward. ut

2.10.4 Consistency Index in Alo-Groups

Let G D .G;ˇ;�/ be a divisible alo-group and A D faijg 2 PCn.G /.
By Definition 2.2, A is ˇ-inconsistent if at least one triple fxi ; xj ; xkg is ˇ-
inconsistent. The closeness to the consistency depends on the degree of consistency
with respect to each 3 – subset fxi ; xj ; xkg and it can be measured by an average of
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these degrees. In order to define a consistency index for A D faijg, we first consider
the case that X has only 3 elements.

Let X D fx1; x2; x3g be the set of 3 elements and A be a PC matrix

A D
0
@a11 a12 a13a21 a22 a23
a31 a32 a33

1
A 2 PC3.G /: (2.123)

By (2.120), A D faijg is inconsistent if and only if dG .a13; a12 ˇ a23/ > e. It
is natural to say that the more A is inconsistent the more dG .a13; a12 ˇ a23/ is far
from e. We formulate the following definition.

Definition 2.3. The ˇ-consistency index of the matrix in (2.123) is given by

IG .A/ D k�123k D dG .a13; a12 ˇ a23/ : (2.124)

As particular cases, we obtain:

• If A 2 PC3.RC/ then

IRC
.A/ D a13

a12 � a23 _ a12 � a23
a13

2 Œ1;C1Œ ; (2.125)

and A is �-consistent if and only if IRC
.A/ D 1;

• If A 2 PC3.R/, then

IR.A/ D ja13 � a12 � a23j D .a13 � a12 � a23/_ .a12 C a23 � a13/ 2 Œ0;C1Œ ;

and A is C-consistent if and only if IR.A/ D 0;
• If A 2 PC3.Ra/, then

I�0;1Œm .A/ D a13.1 � a12/.1 � a23/
a13.1 � a12/.1 � a23/C a12.1 � a13/a23

_ a12.1 � a13/a23

.1 � a13/a12a23 C .1 � a12/.1 � a23/a13
: (2.126)

and A is an �f -consistent if and only if I�0;1Œm .A/ D 0:5.
• If A 2 PC3.Ra/, then

I�0;1Œa.A/ D .a13 � a12 � a23 C 0:5/ _ .a12 C a23 � a13 C 0:5/ (2.127)

and A is Cf -consistent if and only if IRa .A/ D 0:5.

The following proposition shows that the more IG .A/ is close to e the more the
mean vector wm

ˇ

is close to be an ˇ-consistent vector.
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Proposition 2.36. Let wm
ˇ

D .w1;w2;w3/ be the mean vector associated to the
matrix in (2.123) and � D �123. Then

dG .wi � wj ; aij/ D k�k 1
3 for all i ¤ j .

Proof. By definition of � we obtain a13 D �ˇ a12 ˇ a23, a21 D �ˇ a23 ˇ a31 and
a32 D �ˇ a12 ˇ a31. By the above equalities and the equality aii D e, we get

• w1 D .a11 ˇ a12 ˇ a13/
. 13 / D .a

.2/
12 ˇ �ˇ a23/

. 13 /I
• w2 D .a21 ˇ a22 ˇ a23/

. 13 / D .a
.2/
23 ˇ �ˇ a31/

. 13 /I
• w3 D .a31 ˇ a32 ˇ a33/

. 13 / D .a
.2/
31 ˇ �ˇ a12/

. 13 /:

Then, we get .w1 � w2/ � a12 D �.
1
3 / and a12 � .w1 � w2/ D .�.�1//. 13 /, thus

dG .w1 � w2; a12/ D jj�jj 13 .
Similarly, we obtain dG .w2 � w3; a23/ D k�k 1

3 and dG .w3 � w1; a31/ D k�k 1
3 .

ut
Proposition 2.37. Let G D .G;ˇ;�/ and GKD .G0; ı;	/ be divisible alo-groups,
h W G ! G0 be an isomorphism between G and GKand A0 D fh.aij/g 2 PC3.G 0/.
Then IG 0.A0/ D h.IG .A//.

Proof. By the equality h.a12/ˇ h.a23/ D h.a12 ˇ a23/, we obtain
IG 0.A0/ D dG 0.h.a13/; h.a12/ˇ h.a23// D h.dG .a13; a12 ˇ a23// D h.IG .A//.

ut
Finally, let G be a proper open interval of R and � the total order on G inherited

from the usual order on R, G D .G;ˇ;�/ be a continuous alo-group and � W
R ! G and W�0;C1Œ! G the continuous strictly monotonic functions satisfying
(2.102) and (2.103), respectively. Then the ˇ-consistency index of the matrix A in
(2.123) is given by

IG .A/ D �.IR.�
�1.A/// D  .IRC

. �1.A///. (2.128)

Let v W �0;C1Œ!�0; 1Œ; v.t/ D t
1Ct for all t 2�0;C1Œ be the isomorphism,

v�1 W �0; 1Œ!�0;C1Œ, v�1.s/ D s
1�s for all s 2�0; 1Œ; the inverse isomorphism.

Then

A0 D fv�1.aij/g D f aij

1 � aij
g; (2.129)

and

I�0;1Œm .A/ D v.IRC
.v�1.A/// D

IRC

.f aij

1�aij
g/

1C IRC
.f aij

1�aij
g/ : (2.130)

Now, let g W �0;C1Œ!� � 1;C1Œ; g.t/ D 0:5.1C log t/ for all t 2�0;C1Œ

be the isomorphism, g�1 W � � 1;C1Œ!�0;C1Œ , g�1.s/ D exp.2s � 1/ for all
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s 2� � 1;C1Œ; the inverse isomorphism. Then

A00 D fg�1.aij/g D fexp.2aij � 1/g; (2.131)

and

I�0;1Œa.A/ D g.IRC

.g�1.A/// D 0:5.1C log IRC

.fexp.2aij � 1/g/: (2.132)

Example 2.15. Consider the matrix

A D
0
@ 0:5 0:3 0:20:7 0:5 0:1

0:8 0:9 0:5

1
A 2 PC3.�0; 1Œm/ :

Then by (2.126) we obtain

I�0;1Œm .A/ D 0:2 � 0:7 � 0:9
0:2 � 0:7 � 0:9C 0:3 � 0:1 � 0:8 _ 0:3 � 0:8 � 0:9

0:2 � 0:7 � 0:9C 0:3 � 0:1 � 0:8 D

D 0:84 _ 0:16 D 0:84 :

Applying v�1 by (2.129) we obtain

A0 D
0
@ 1

3
7
1
4

7
3
1 1
9

4 9 1

1
A 2 PC3.RC/ :

By (2.125), the �-consistency index is IRC

.A0/ D 21
4

_ 4
21

D 21
4
:

In accordance with (2.130) we obtain I�0;1Œm.A/ D v.IRC
.A0// D 21

4

1C 21
4

D 0:84.

Now, we extend our approach to the n � n PC matrices with n > 3. Let G D
.G;ˇ;�/, A D faijg 2 PCn.G /. By T .A/ we denote the set of 3-element subsets
faij; ajk; aikg of A with i < j < k. Clearly, nT D nŠ

3Š.n�3/Š is the cardinality of the set
T .A/. Denote

Aijk D
0
@ aii aij aik

aji ajj ajk

aki akj akk

1
A : (2.133)

Here,Aijk is a submatrix ofA related to the 3 – subset fxi ; xj ; xkg and IG .Aijk/ D
jj�ijkjj D dG .aik; aij ˇ ajk/ is its ˇ-consistency index. By definition (2.116), a ˇ-
consistency index of A should be expressed in terms of the ˇ-consistency indexes
IG .Aijk/. Hence, we formulate the following definition.
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Definition 2.4. Let G D .G;ˇ;�/ be an alo-group, n � 3. The ˇ-consistency
index of A D faijg 2 PCn.G / is given by

IG .A/ D
0
@K
i<j<k

IG .Aijk/

1
A
.1=nT /

D
0
@K
i<j<k

dG .aik; aij ˇ ajk/

1
A
.1=nT /

. (2.134)

By the above definition (2.134) it follows that IG .Aijk/ � e for all 1 � i <

j < k � n and A D faijg is ˇ-consistent if and only if IG .Aijk/ D e for all
1 � i < j < k � n.

As particular cases, we have

• if A 2 PCn.RC/, then IRC

.A/ D
 Q
i<j<k

IRC

.Aijk/

! 1
nT

� 1 and A is m

-consistent if and only if IRC
.A/ D 1;

• if A 2 PCn.R/, then IR.A/ D 1
nT

P
i<j<k

IR.Aijk/ � 0, and A is a-consistent if

and only if IR.Aijk/ D 0 for all 1 � i < j < k � n;
• if A 2 PCn.�0; 1Œm/, then I�0;1Œm.A/ D m:f .I�0;1Œm.Aijk/I i < j < k/ 2 Œ0:5; 1Œ

and A is fm-consistent if and only if I�0;1Œm.A/ D 0:5.
• if A 2 PCn.Ra/, then IRa .A/ D 1

nT
.
P

i<j<k

IRa .Aijk// 2 Œ0:5; 1Œ and A is fa-

consistent if and only if I�0;1Œa .A/ D 0:5.

Proposition 2.36 holds also for n > 3 as follows:
Let G D .G;ˇ;�/ and GKD .G0; ı;	/be divisible alo-groups, h W G ! G0 be

an isomorphism between G and GKand A0 D fh.aij// 2 PCn.G 0/. Then

IG 0.A0/ D h.IG .A// :

Therefore, (2.128) and (2.129) are also valid for G D .G;ˇ;�/, and A D faijg 2
PCn.G /. Particularly, if A0 D flogaijg, A D fexpa0

ijg, then

IR.A
0/ D log.IRC

.A//, IRC
.A/ D exp.IR.A

0// : (2.135)

Example 2.16. [11] Consider the matrix

A D

0
BB@
1 1
7
1
7
1
5

7 1 1
2
1
3

7 2 1 1
9

5 3 9 1

1
CCA 2 PC4.RC/ I

then

IRC

.A/ D 4
p
IRC

.A234/ � IRC

.A134/ � IRC

.A124/ � IRC

.A123/ D
D 4

p
6 � 12:6 � 4:2 � 2 D 5:02 .
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Let h.t/ D log t be the isomorphism between RC and R. By applying h to the
entries of A, we get

A0 D

0
BB@

0 � log 7 � log 7 � log 5
log 7 0 � log 2 � log 3
log 7 log 2 0 � log 9
log 5 log 3 log 9 0

1
CCA 2 PC4.R/ I

and the a-consistency index is

IR.A
0/ D IR.A

0
234/C IR.A

0
134/C IR.A

0
124/C IR.A

0
123/

4
D

D 1:792C 2:534C 1:435C 0:693

4
D 1:613 .

In accordance with (2.128), we obtain

IR.A
0/ D log.IRC

.A// D log.5:02/ D 1:613 :

2.11 Conclusions

In this chapter we investigated PC matrices where relations among the entries
are treated in four ways depending on a particular interpretation: multiplicatively,
additively, fuzzy multiplicatively and fuzzy additively. By various methods for
deriving priorities from various types of preference matrices we obtained the
corresponding priority vectors for a final ranking of alternatives. Moreover, we
derived some new results for situations where some elements of the fuzzy preference
matrix are missing. Finally, a unified framework for pairwise comparison matrices
based on abelian linearly ordered groups were presented. Four basic particular
cases of PC matrices were discussed and illustrative numerical examples were
presented.
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Chapter 3
Preference Matrices with Fuzzy Elements
in Decision Making

Abstract This chapter is aimed on pairwise comparison matrices with fuzzy
elements. Fuzzy elements of the pairwise comparison matrix are applied whenever
the decision maker is not sure about the value of his/her evaluation of the relative
importance of elements in question. We particularly deal with pairwise comparison
matrices with fuzzy number elements and investigate some properties of such
matrices. In comparison with pairwise comparison matrices with crisp elements
investigated in the previous chapter, here we investigate pairwise comparison
matrices with elements from alo-group over a real interval. In some sense, this
chapter is a continuation of the second part of the previous chapter. Such an
approach allows for a generalization dealing with additive, multiplicative and fuzzy
pairwise comparison matrices with fuzzy elements. Moreover, we deal with the
problem of measuring the inconsistency of fuzzy pairwise comparison matrices by
defining corresponding inconsistency indexes. Numerical examples are presented to
illustrate the concepts and derived properties.

3.1 Introduction

In this chapter we again deal with pairwise comparison matrices that we have
already investigated in Chap. 2. However, when comparing this chapter to Chap. 2,
we deal with pairwise comparison matrices with fuzzy elements, or, shortly, PCF
matrices. Fuzzy elements of the pairwise comparison matrix could be applied
whenever the decision maker is not sure about the preference degree of his/her
evaluation of elements in question.

A decision making problem (DM problem) is formulated as follows, see also
Sect. 2.2 in Chap. 2: Let X D fx1; x2; : : : ; xng be a finite set of alternatives (n > 2).
The aim is to rank the alternatives from the best to the worst (or, vice versa), using
the information given by a DM in the form of n � n PCF matrix QA D fQaijg.

An ordinal ranking of alternatives is required to obtain the best alternative(s),
however, it often occurs that the DM is not satisfied with the ordinal ranking among
alternatives and therefore a cardinal ranking i.e. rating is required.

The chapter was written by “Jaroslav Ramík”.
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In the recent literature we can find papers dealing with applications of pairwise
comparison method where evaluations require fuzzy quantities, for instance when
evaluating regional projects, web pages, e-commerce proposals etc., see e.g.
[1, 5, 7, 8, 11, 19]. In the paper [4] the author proposed a method for measuring
inconsistency of fuzzy pair-wise comparison matrix based on Saaty’s principal
eigenvector method. However, this method is rather cumbersome and numerically
difficult. The earliest work in AHP using fuzzy quantities as data was published
by van Laarhoven and Pedrycz [18]. They compared fuzzy ratios described by
triangular membership functions. The method of logarithmic least squares was used
to derive local fuzzy priorities. Later on, using a geometric mean, Buckley et al. [3]
determined fuzzy priorities of comparison ratios whose membership functions were
assumed trapezoidal. The issue of consistency in AHP using fuzzy sets as elements
of the matrix was first tackled by Salo in [17]. Departing from the fuzzy arithmetic
approach, fuzzy weights using an auxiliary mathematical programming formulation
describing relative fuzzy ratios as constraints on the membership values of local
priorities were derived. Leung and Cao, see [9], proposed a notion of tolerance
deviation of fuzzy relative importance that is strongly related to Saaty’s consistency
ratio.

The former works that solved the problem of finding a rank of the given alterna-
tives based on some PCF matrix are [2, 6, 9–13, 16, 20]. In [20] some simple linear
programming models for deriving the priority vectors from various interval fuzzy
preference relations are proposed. Leung and Cao [9] proposed a new definition
of the PCF reciprocal matrix by setting deviation tolerances based on an idea
of allowing inconsistent information. Mahmoudzadeh and Bafandeh [10] further
discussed Leung and Cao’s work and proposed a new method of fuzzy consistency
test by direct fuzzification of QR (Quick Response) algorithm which is one of
the numerical methods for calculating eigenvalues of an arbitrary matrix. Ramik
and Korviny in [15] investigated inconsistency of pairwise comparison matrix with
fuzzy elements based on geometric mean. They proposed an inconsistency index
which, however, does not measure inconsistency as well as uncertainty ideally.

In what follows we shall investigate pairwise comparison matrices with elements
being fuzzy quantities of the alo-group over an interval of the real line R. Such
an approach allows for unifying the theory dealing with additive, multiplicative
and fuzzy pairwise comparison matrices, see also Chap. 2, Examples 2.11, 2.12.
Particularly, we shall deal with PC matrices where the elements are fuzzy numbers
of the alo-group over a real interval, we shall call them shortly PCFN matrices.
Moreover, for PCFN matrices we assume that all diagonal elements are crisp,
particularly they are equal to the identity element of G , i.e. Qaii D e for all
i 2 f1; 2; : : : ; ng:

QA D

2
6664
e Qa12 � � � Qa1n
Qa21 e � � � Qa2n
:::

:::
: : :

:::

Qan1 Qan2 � � � e

3
7775 : (3.1)
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We shall derive some properties of such matrices, see also Chap. 1, Sects. 1.11
and 1.12. To avoid misunderstanding we shall strictly distinguish: On one side, a
fuzzy PC matrix where the matrix elements are crisp numbers from the unit interval
Œ0; 1� we have already investigated in Chap. 2. On the other side, we consider a PC
matrix with fuzzy elements, where the elements are fuzzy numbers on R, see also
Chap. 1, Sect. 1.10. In the former case, a fuzzy PC matrix is a valued relation on X
in the sense of Definition 1.14, in other words, a fuzzy relation on X in the sense of
Definition 1.17. The latter case will be investigated here in this chapter.

In Sect. 3.2 we present some basic concepts and ideas of PC matrices with
elements being fuzzy numbers of the alo-group over a real interval. In Sect. 3.3 some
methods for deriving priorities from PCFN matrices are proposed. The material and
the results presented in these two sections are completely new and have not been
published yet. Moreover, Sect. 3.3 consists of four subsections dealing with the
particular character of the alo-groups of the real line: additive, multiplicative, fuzzy
additive and fuzzy multiplicative one. In Sect. 3.4, illustrative numerical examples
are presented and discussed.

3.2 PC Matrices with Elements Being Fuzzy Sets
of Alo-Group over a Real Interval

Let G be a proper interval of the real line R and � is the total order on G inherited
from the usual order on R, G D .G;ˇ;�/ be a real alo-group. We also assume that
G is a divisible and continuous alo-group. Then G is an open interval, see e.g. [11].

A pairwise comparison system over G is a pair .X; QA/ constituted by a set X D
fx1; x2; : : : ; xng and a fuzzy relation QA W X � X ! FLRN.G/, where QA.xi ; xj / D
Qaij 2 FLRN.G/, FLRN.G/ is the set of all triangular .L;R/-fuzzy numbers onG and
QA D fQaijg is an n � n PCF matrix. In the context of a DM problem, the element Qaij

can be interpreted as an uncertain measure on G of the preference of xi over xj .
In most of the literature on fuzzy sets a triangular fuzzy number is defined by

means of linear .L;R/ functions, here we consider a more general case: strictly
monotone functions or constant functions.

Let QA D fQaijg be an n�n PCF matrix where each element Qaij of QA is a triangular
.L;R/-fuzzy number with the membership function �Qaij ; i; j 2 f1; 2; : : : ; ng; i ¤
j , given as follows:

�Qaij .x/ D

8̂
<̂
ˆ̂:
L�1

ij .x/ if x 2 ŒLij.0/; Lij.1/�;

R�1
ij .x/ if x 2 ŒRij.1/; Rij.0/�;

0 otherwise;

(3.2)

where Lij is either an increasing continuous function, Lij W Œ0; 1� ! R, or Lij is a
constant function mapping interval Œ0; 1� into a given point y 2 R. Similarly, Rij
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is either a decreasing continuous function, Rij W Œ0; 1� ! R, or Rij is a constant
function mapping interval Œ0; 1� into a given point y 2 R. We assume that Lij.1/ D
Rij.1/. By L�1

ij , or R�1
ij , we denote the inverse functions of the increasing function

Lij, or, decreasing functionRij, respectively. IfLij, orRij is a constant function, then
for y 2 R we define L�1

ij .y/ D R�1
ij .y/ D 1. The functions Lij and Rij are called

the left and right membership generating functions of Qaij, respectively.
Moreover, for all i 2 f1; : : : ; ng we assume that

�Qaii.x/ D
(
1 if x D e;

0 otherwise;
(3.3)

where e is the identity element of G . Then the matrix QA D fQaijg is called the PCFN
matrix on G , shortly, PCFN matrix.

It is clear that each entry Qaij of the PCFN matrix QA D fQaijg can be identified with a
triple .aLij I aMij I aRij /Lij;Rij , whereLij andRij are the membership generating functions
with the properties (3.2), (3.3), and aLij D Lij.0/; a

M
ij D Lij.1/ D Rij.1/; a

R
ij D

Rij.0/. For the sake of simplicity, if there is no danger of misunderstanding,
we shall omit the subscripts referring to functions Lij; Rij, i.e. we simply write
Qaij D .aLij I aMij I aRij /. The elements of the PCFN matrix with the above mentioned
properties will be called simply the triangular fuzzy numbers.

Remark 3.1. Notice that the crisp numbers (non-fuzzy numbers) are special cases
of triangular fuzzy numbers. If for some i; j 2 f1; 2; : : : ; ng, Qaij is a crisp number,
then the corresponding functions Lij and Rij are constant and Qaij D .aLij I aMij I aRij /
with aLij D aMij D aRij . Moreover, the elements on the main diagonal of the matrix
are crisp. On the other hand, if Qaij is a proper fuzzy number (non-crisp one), then the
correspondingLij and/orRij are strictly monotone functions and Qaij D .aLij I aMij I aRij /
with aLij < aMij D aRij , or aLij D aMij < aRij , eventually aLij < aMij < aRij . Notice that
here the superscripts L;M and R mean “Left value”, “Middle value” and “Right
value”, respectively.

Remark 3.2. The triangular fuzzy numbers Qa D .aLI aM I aR/ are also appropriate
in group decision making (GDM), where aL can be interpreted as the minimum
possible value of DMs judgments, aR is interpreted as the maximum possible value
of DMs judgments, and aM—the mean value of the DMs judgments—is interpreted
as the mean value, or, the most possible value of DMs judgments, see e.g. [5].

Let QA D fQaijg be a PCFN matrix, ˛ 2�0; 1�; i; j 2 f1; 2; : : : ; ng. We define the
˛-cut, Œ Qaij�˛ , of Qaij as:

Œ Qaij�˛ D fx 2 Rj�Qaij.x/ � ˛g: (3.4)

Then we obtain

Œ Qaij�˛ D ŒLij.˛/; Rij.˛/�; (3.5)
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where Lij; Rij are the membership generating functions of Qaij.
For ˛ D 0, we define the zero-cut, Œ Qaij�0, as:

Œ Qaij�0 D ŒLij.0/; Rij.0/�: (3.6)

By the well known representation theorem, each fuzzy number can be repre-
sented by a family of its ˛-cuts, hence, each entry Qaij of the PCFN matrix QA D fQaijg
can be equivalently represented as a family of ˛-cuts of Qaij, particularly, a family of
the closed intervals

ŒLij.˛/; Rij.˛/�; ˛ 2 Œ0; 1�: (3.7)

With respect to the notation introduced in Remark 3.1, we denote for ˛ 2 Œ0; 1�:

aLij .˛/ D Lij.˛/; (3.8)

aRij .˛/ D Rij.˛/: (3.9)

Now, we introduce a reciprocity property for PCFN matrices. Our definition is
based on ˛-cuts and extends the definitions of reciprocity presented in the literature,
e.g. [14].

Let QA D fQaijg be an n � n PCFN matrix on G D .G;ˇ;�/, ˛ 2 Œ0; 1�. QA is said
to be ˛-ˇ-reciprocal, if the following condition (C1) holds:

(C1)

For every i; j 2 f1; 2; : : : ; ng and every aij 2 Œ Qaij�˛ there exists aji 2 Œ Qaji�˛ such that

aij ˇ aji D e: (3.10)

QA is said to be ˇ-reciprocal, if condition (C1) holds for all ˛ 2 Œ0; 1�.
Remark 3.3. If QA D fQaijg is a PCFN matrix with crisp elements then condition (C1)
coincides with the classical definitions of reciprocity, see e.g. [11]:

• A D faijg is additive-reciprocal if aij D �aji for all i and j ; here aij 2� �
1;C1Œ.

• A D faijg is multiplicative-reciprocal if aij D 1
aji

for all i and j ; here aij 2
�0;C1Œ.

• A D faijg is fuzzy-reciprocal if aij D 1 � aji for all i and j ; here aij 2�0; 1Œ.
Proposition 3.1. Let QA D fQaijg be a PCFN matrix, ˛ 2 Œ0; 1�. QA is ˛-ˇ-reciprocal,
if and only if

(i)

aLij .˛/ˇ aRji .˛/ D e and aRij .˛/ˇ aLji .˛/ D e: (3.11)
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(ii)

ŒaLji .˛/; a
R
ji .˛/� D Œ.Rij.˛//

.�1/; .Lij.˛//
.�1/�: (3.12)

(iii)

ŒaLji .˛/; a
R
ji .˛/� D Œ.aRij .˛//

.�1/; .aLij .˛//.�1/�: (3.13)

Proof. Let (iii) be satisfied, then aLij .˛/ � aij � aRij .˛/ if and only if

.aRij .˛//
.�1/ � .aij/

.�1/ � .aLij .˛//
.�1/:

Setting aji D .aij/
.�1/ we obtain the required (i).

(ii) follows directly from (i) and (3.7).
(iii) follows directly from (ii), (3.8) and (3.9). The equivalence of the three

conditions is proven.

Proposition 3.1 extends the known result on interval reciprocal comparison
matrices, see [14, 20]. Particularly, if Lij and Rij are the membership generating
functions of elements Qaij, where QA D fQaijg is an ˇ-reciprocal PCFN matrix, then

R
.�1/
ij andL.�1/ij are the membership generating functions of the symmetric elements

Qaji.

Example 3.1. Consider ˇ D C, let QA D f.aLij I aMij I aRij /LijRijg be a PCFN matrix
with the non-linear membership generating functions for elements Qaij: Lij.t/ D
.aMij �aLij /

p
tCaLij ,Rij.t/ D aRij �.aRij �aMij /t2, where t 2 Œ0; 1� and 1 � i < j � 3.

Particularly, let QA be as follows:

QA D
0
@ 0 .1I 2I 4/L12R12 .4I 6I 7/L13R13
.�4I �2I �1/L21R21 0 .3I 4I 4/L23L23
.�7I �6I �4/L31R31 .�4I �4I 3/L32R32 0

1
A ;

Here, for the symmetric elements, we have Lji.t/ D .Rij.t//
.�1/ D �aRij C .aRij �

aMij /t
2, Rji.t/ D .Lij.t//

.�1/ D �.aMij � aLij /
p
t � aLij , where t 2 Œ0; 1� and 1 � i <

j � 3. By Proposition 3.1, QA is C-reciprocal, i.e. ˛-C-reciprocal for all ˛ 2 Œ0; 1Œ.
Now, consider a similar PCFN matrix QB given as follows:

QB D
0
@ 0 .1I 2I 4/ .4I 6I 7/
.�3I �2I �1/ 0 .3I 4I 4/
.�7I �6I �4/ .�4I �4I 3/ 0

1
A :
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Here, all membership generating functionsLij andRij are linear, i.e.Lij.t/ D .aMij �
aLij /t C aLij , Rij.t/ D aRij � .aRij � aMij /t , where t 2 Œ0; 1� and 1 � i; j � 3; i ¤ j .

Clearly, QB is not +-reciprocal as (3.11) is not satisfied for Qa12 D .1I 2I 4/ and
Qa21 D .�3I �2I �1/ for all ˛ 2 Œ0; 1Œ.

Considering an ˇ-reciprocal matrix, we shall be interested in a consistency
property of the PCFN matrix. Our definition shall satisfy definitions of consistency
presented in the literature, e.g. [14]. We start with the crisp case.

Let the PCFN matrix A D faijg be crisp. Then we have he following definition,
see e.g. [12, 13].
A D faijg is ˇ-consistent if for all i; j; k 2 f1; 2; : : : ; ng

aij D aik ˇ akj: (3.14)

We obtain the following result, the proof of which is easy, see e.g. [12].

Proposition 3.2. A D faijg is ˇ-consistent if and only if there exists a vector w D
.w1;w2; : : : ;wn/, wi 2 G such that

wi � wj D aij for all i; j 2 f1; 2; : : : ; ng. (3.15)

Let ˛ 2 Œ0; 1�, a PCFN matrix QA D fQaijg is said to be ˛-ˇ-consistent, if the
following condition (C2) holds:

(C2)

For every i; j; k 2 f1; 2; : : : ; ng, there exist aij 2 Œ Qaij�˛ , aik 2 Œ Qaik�˛ and akj 2 Œ Qakj�˛
such that

aij D aik ˇ akj:

QA is said to be ˇ-consistent, if condition (C2) holds for all ˛ 2 Œ0; 1�.
Remark 3.4. Let ˛; ˇ 2 Œ0; 1�; ˛ � ˇ. If QA D fQaijg is ˛-ˇ-consistent, then QA is
ˇ-ˇ-consistent.

Let ˛ 2 Œ0; 1�, a vector w D .w1;w2; : : : ;wn/ with wi 2 G for all i 2 f1; 2; : : : ; ng,
is an ˛-ˇ-consistent vector with respect to QA D fQaijg if for every i; j 2 f1; 2; : : : ; ng
there exist aij 2 Œ Qaij�˛ such that

wi � wj D aij: (3.16)

Example 3.2. Consider ˇ D �, let QC D fQcijg be a PCFN matrix with the
membership generating functions for elements Qcij: Lij, Rij, where 1 � i < j � 3.
Here, for the symmetric elements, we assume that Lji.t/ D .Rij.t//

�1 and Rji.t/ D
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.Lij.t//
�1, where t 2 Œ0; 1� and 1 � i < j � 3. Matrix QC is given as follows:

QC D

0
BB@

1 .1I 2I 2/ .2I 6I 8/
. 1
2
I 1
2
I 1/ 1 .2I 3I 4/

. 1
8
I 1
6
I 1
2
/ . 1

4
I 1
3
I 1
2
/ 1

1
CCA ;

By Proposition 3.1, QC is �-reciprocal, i.e. ˛-�-reciprocal for all ˛ 2 Œ0; 1�. Moreover,
QC is �-consistent, i.e. ˛-�-consistent for all ˛ 2 Œ0; 1�.

Moreover, let QD D f Qdijg be a PCFN matrix with the membership generating
functions for elements Qdij: Lij, Rij, where 1 � i < j � 3. Again, for the symmetric
elements, we assume that Lji.t/ D .Rij.t//

�1 and Rji.t/ D .Lij.t//
�1, where t 2

Œ0; 1� and 1 � i < j � 3. Matrix QD is given as follows:

QD D

0
BB@

1 .1I 2I 2/ .7I 8I 9/
. 1
2
I 1
2
I 1/ 1 .2I 3I 3/

. 1
9
I 1
8
I 1
7
/ . 1

3
I 1
3
I 1
2
/ 1

1
CCA :

Here, QD is a 3 � 3 PCFN matrix with triangular fuzzy numbers as elements. Again,
QD is �-reciprocal, however, QD is not ˛��-consistent as evidently (C2) is not satisfied

for any ˛ 2 Œ0; 1�.
Remark 3.5. If QA is a PCFN matrix with crisp elements, i.e. QA D A and QA is ˇ-
consistent, then A is ˇ-consistent in the sense of definition (3.14).

Proposition 3.3. Let QA D fQaijg be an ˇ-reciprocal PCFN matrix, ˛ 2 Œ0; 1�. QA
is ˛-ˇ-consistent if and only if there exists a vector w˛ D .w˛1 ;w

˛
2 ; : : : ;w

˛
n/ with

w˛i 2 G for all i 2 f1; 2; : : : ; ng such that

w˛i � w˛j 2 Œ Qaij�˛ for all i; j 2 f1; 2; : : : ; ng; (3.17)

or, equivalently

aLij .˛/ � w˛i � w˛j � aRij .˛/ for all i; j 2 f1; 2; : : : ; ng: (3.18)

Proof. The proof follows directly from (C2), Proposition 3.2 and from (3.5).

Clearly, if QA is ˛-ˇ-consistent, ˛ 2 Œ0; 1�, then QA is ˇ-ˇ-consistent for all ˇ,
0 � ˇ � ˛. Hence, if QA is 1-ˇ-consistent, then QA is ˇ-consistent.

If, at least for one triple of elements and some ˛ 2 Œ0; 1�, the condition (C2)
is not satisfied, then the matrix QA is ˇ-inconsistent. It is important to measure an
intensity of ˇ-inconsistency as in some cases the PCFN matrix can be “close” to an
ˇ-consistent matrix, or, in the other cases ˇ-inconsistency can be strong, meaning
that the PCFN matrix can be “far” from any ˇ-consistent matrix.
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3.3 Methods for Deriving Priorities from PCFN Matrices

In this section, we assume that all matrices are n � nˇ-reciprocal PCFN matrices
on G D .G;ˇ;�/, where G is an open interval in � � 1;C1Œ. We define the
priority vector for ranking the alternatives which will be based on Proposition 3.3,
particularly on the optimal solution of the following optimization problem:

(P1ˇ)

˛ �! max; (3.19)

subject to

aLij .˛/ � wi � wj � aRij .˛/ for all i; j 2 f1; 2; : : : ; ng; i < j; (3.20)

nK
kD1

wk D e; (3.21)

0 � ˛ � 1;wk 2 G; for all k 2 f1; 2; : : : ; ng: (3.22)

If optimization problem (P1ˇ) has a feasible solution, i.e. system of con-
straints (3.20)–(3.22) has a solution, then (P1ˇ) has also an optimal solution. Let ˛�
and w� D .w�

1 ; : : : ;w
�
n/ be an optimal solution of problem (P1ˇ). Then ˛� 2 Œ0; 1�

and ˛� is called the ˇ-consistency grade of QA, denoted by Gˇ. QA/, i.e.

Gˇ. QA/ D ˛�: (3.23)

Here, w� D .w�
1 ; : : : ;w

�
n/ is an ˛�-ˇ-consistent vector with respect to QA called the

ˇ-priority vector of QA.
If optimization problem (P1ˇ) has no feasible solution, then we define

Gˇ. QA/ D 0: (3.24)

Generally, problem (P1ˇ) is a nonlinear optimization problem that can be
efficiently solved e.g. by the dichotomy method, which is a sequence of optimization
problems, with optimal solutions converging to the optimal solution of problem
(P1ˇ), see e.g. [14]. For instance, given ˛ 2 Œ0; 1�, ˇ D C, then problem of
finding a feasible solution of (P1ˇ) can be solved as an LP problem (with variables
w1; : : : ;wn).

Notice that the definition of ˇ-consistency grade of a PCFN matrix is an
extension of the definition given in [14], where the operation ˇ is multiplication.

Proposition 3.4. If w� D .w�
1 ; : : : ;w

�
n/ is an ˇ-priority vector of a PCFN matrix

QA D fQaijg, then w� is unique.
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Proof. We have to prove that the optimal solution ˛� and w� D .w�
1 ; : : : ;w

�
n/ of

problem (P1ˇ) is unique. Let wC D .wC
1 ; : : : ;w

C
n / be another optimal solution of

problem (P1ˇ) such that w� ¤ wC. Then w0 D .w01; : : : ;w
0
n/ with w0i D .w�

i ˇ
wC
i /

. 12 / for all i 2 f1; : : : ; ng is also an optimal solution of problem (P1ˇ) with the
value ˛0 of the objective function (3.19). By strict monotonicity of Lij and Rij we
obtain ˛0 > ˛�, which is a contradiction. Therefore, w� D wC.

Remark 3.6. If QA is an ˇ-consistent PCFN matrix, then Gˇ. QA/ D 1 and,
particularly, the crisp matrix AM D faMij g is ˇ-consistent. By Proposition 3.2 there
exists an ˇ-consistent vector wM D .wM1 ; : : : ;w

M
n / with respect to AM . Therefore,

wM is also a priority vector of QA. If QA is crisp, then the concept of ˇ-priority vector
of QA coincides with the same concept for crisp matrices, see [12].

Remark 3.7. The optimal solution ˛� and w� D .w�
1 ; : : : ;w

�
n/ of problem (P1ˇ)

should be unique as decision makers ask for unique decision, i.e. unique ranking of
the alternatives in X . The sufficient condition for uniqueness of the priority vector
w� D .w�

1 ; : : : ;w
�
n/ is that all elements Qaij of the PCFN matrix QA are triangular

.L;R/-fuzzy numbers and, particularly, that the core of each Qaij,

Core. Qaij/ D ft 2 Gj�aij .t/ D 1g;

is a singleton. This is the reason why it has no sense to extend the fuzzy elements of
PC matrix to .L;R/-fuzzy intervals (i.e. to trapezoidal fuzzy numbers).

If optimization problem (P1ˇ) has no feasible solution, then QA is inconsistent
and the ˇ-consistency grade of QA is zero, i.e. Gˇ. QA/ D 0. The inconsistency of
QA will be measured by the minimum of the ˇ-mean distance of the ratio matrix
W D fwi � wj g to matrix fŒ Qaij�0g where the elements are zero-cuts of Qaij, i.e.
intervals Œ Qaij�0.

Let w D .w1; : : : ;wn/;wi 2 G for all i 2 f1; : : : ; ng. Denote

Iˇ. QA;w/ D min
˚�K

i<j

kaij � .wi � wj /k
�. 2

n.n�1/ /
ˇ̌
aij 2 Œ Qaij�0 for all 1 � i<j�n
:

(3.25)

where k : : : k is the G -norm.

Proposition 3.5. (i) If w D .w1; : : : ;wn/ 2 Gn, then

Iˇ. QA;w/ � e; (3.26)

where e is the identity element of G .
(ii) ˛ 2 Œ0; 1�;w D .w1; : : : ;wn/ is a feasible solution of (P1ˇ), if and only if

Iˇ. QA;w/ D e: (3.27)
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Proof. (i) Inequality (3.26) follows directly from definition (1.57) and from the
fact that kak D maxfa; a.�1/g � e for each a 2 G.

(ii) 1. As conditions (3.20)–(3.22) are satisfied, setting aij D wi � wj , by (3.20)
we obtain aij 2 Œ Qaij�0, hence aij � .wi � wj / D e for all i; j 2 f1; 2; : : : ; ng,
consequently, (3.27) is true.

2. Suppose that

Iˇ. QA;w�/ D e;

for some w� D .w�
1 ; : : : ;w

�
n/ 2 Gn. Without loss of generality we may

assume that
nJ

kD1
w�
k D e, i.e. (3.21) holds. Then there exist a�

ij 2 Œ Qaij�0 for all

i; j 2 f1; 2; : : : ; ng; i < j , such that

Iˇ. QA;w�/ D �K
i<j

ka�
ij � .w�

i � w�
j /k
�. 2

n.n�1/ / D e:

Now, for all i; j 2 f1; 2; : : : ; ng; i < j we have ka�
ij � .w�

i � w�
j /k D e, hence

a�
ij � .w�

i � w�
j / D e, which is equivalent to a�

ij D w�
i � w�

j . Therefore, aLij .0/ �
w�
i � w�

j � aRij .0/, i.e. (3.20) is satisfied. We conclude that ˛� D 0 and w� D
.w�

1 ; : : : ;w
�
n/ is a feasible solution of (P1ˇ).

Now, we define a priority vector in case there is no feasible solution of (P1ˇ).
Clearly, such priority vector cannot become an ˛-ˇ-consistency vector of QA for
some ˛ > 0.

Consider the following optimization problem (P2ˇ).

(P2ˇ)

Iˇ. QA;w/ �! min; (3.28)

subject to

nK
kD1

wk D e; (3.29)

wk 2 G; for all k 2 f1; 2; : : : ; ng: (3.30)

We define the ˇ-consistency index of QA, Iˇ. QA/, as

Iˇ. QA/ D Iˇ. QA;w�/; (3.31)

where w� D .w�
1 ; : : : ;w

�
n/ is the optimal solution of (P2ˇ).

Notice that optimization problem (P2ˇ) has always an optimal solution as
constraints (3.29), (3.30) are always solvable and (3.25) is continuous on G and



102 3 Preference Matrices with Fuzzy Elements in Decision Making

bounded from below by the value e. If (P1ˇ) has no feasible solution, then the
optimal solution w� D .w�

1 ; : : : ;w
�
n/ of (P2ˇ) is called the ˇ-priority vector of QA.

Remark 3.8. In particular, assume that QA is crisp, i.e. QA D A. If A is ˇ-consistent,
then by (3.23) we obtain Gˇ.A/ D 1 and Iˇ.A/ D e. However, if A is ˇ-
inconsistent, then Gˇ.A/ D 0 and by the properties of the distance function (3.25),
we obtain Iˇ.A/ > e.

Remark 3.9. If ˇ-consistency grade Gˇ. QA/ > 0, then by Proposition 3.4 the ˇ-
priority vector of QA is unique. However, if Gˇ. QA/ D 0, then the uniqueness of opti-
mal solution of (P2ˇ) is not sure. Depending on the particular operation ˇ, problem
(P2ˇ) may have multiple optimal solutions—priority vectors. This is an unfavorable
situation from the point of view of the DM. An appropriate modification of (3.25)
so that the unique optimal solution of (P2ˇ) is achieved is an open problem.

In the following subsections we investigate four particular cases of the alo-group:
additive, multiplicative, fuzzy additive, and fuzzy multiplicative.

3.3.1 PCFN Matrix on Additive Alo-Group

Additive alo-group R D .� � 1;C1Œ;C;�/ is a continuous alo-group with: e D
0; x.�1/ D �x; x � y D x � y, kak D maxfa; a�1g D jaj; and dR.a; b/ D
ka� bk D ja� bj 2 Œ0;C1Œ. The alo-group R is divisible and the .n/-root of a is
denoted as x D a=n. The mean mC.a1; a2; : : : ; an/ is the arithmetic mean denoted

as 1
n

nP
iD1

ai .

Let QA D fQaijg be an n� n PCFN matrix on G , G D�� 1;C1Œ. An appropriate
priority vector based on the PCFN matrix QA for ranking the given alternatives can
be defined by the optimal solution of the following optimization problem (P1C).

(P1C)

˛ �! max; (3.32)

subject to

aLij .˛/ � wi � wj � aRij .˛/ for all i; j 2 f1; 2; : : : ; ng; i < j; (3.33)

nX
kD1

wk D 0; (3.34)

0 � ˛ � 1: (3.35)

If optimization problem (P1C) has a feasible solution, i.e. system of con-
straints (3.33)–(3.35) is solvable, then (P1C) has also an optimal solution. Let ˛�
and w� D .w�

1 ; : : : ;w
�
n/ be an optimal solution of problem (P1C). Then ˛� � 0 and
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˛� is called the C-consistency grade of QA, denoted by GC. QA/, i.e.

GC. QA/ D ˛�: (3.36)

If optimization problem (P1C) has no feasible solution, then we define

GC. QA/ D 0: (3.37)

This nonlinear optimization problem can be solved using the dichotomy method
mentioned before, for more details, see [14]. The optimal solution of problem
(P1C), w� D .w�

1 ; : : : ;w
�
n/, is an ˛�-C-consistent vector with respect to QA called

the C-priority vector of QA. In case GC. QA/ D 0, and no feasible solution of (P1C)
exists, then we define the C-priority vector of QA as an optimal solution of the
following optimization problem.

(P2C)

IC. QA;w/ �! min; (3.38)

subject to

nX
kD1

wk D 0; (3.39)

where

IC. QA;w/ D min
˚ 2

n.n � 1/

X
i<j

jaij � wi C wj j ˇ̌ aij 2 Œ Qaij�0 for all 1 � i < j � n


:

(3.40)

It is clear that the optimization problem (P2C) has always an optimal solution.
We obtain the C-consistency index of QA, IC. QA/, by

IC. QA/ D IC. QA;w�/; (3.41)

where w� D .w�
1 ; : : : ;w

�
n/ is the optimal solution of (P2C). If there is no feasible

solution of (P1C), then w� D .w�
1 ; : : : ;w

�
n/ is called the C-priority vector of QA.

Remark 3.10. In particular, assume that QA is crisp, i.e. QA D A. If A is C-consistent,
then by (3.23) we obtain GC.A/ D 1 and IC.A/ D 0. However, if A is C-
inconsistent, then GC.A/ D 0 and IC.A/ > 0.

Some numerical examples can be found in Sect. 3.4.
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3.3.2 PCFN Matrix on Multiplicative Alo-Group

Multiplicative alo-group RC D .�0;C1Œ; �;�/ is a continuous alo-group with:
e D 1; x.�1/ D x�1 D 1=x; x.n/ D xn; x � y D x

y
, kak D maxfa; a�1g; and

dRC
.a; b/ is given by ka � bk D k a

b
k D maxf a

b
; b
a
g 2 Œ1;C1Œ. The alo-group

RC is divisible and the .n/-root of a is x D a1=n. The mean m�.a1; a2; : : : ; an/

is the geometric mean

�
nQ
iD1

ai

�1=n
. Here, for the sake of clarity, instead of usual

multiplication symbol � we use the symbol �.
An appropriate priority vector based on the PCFN matrix QA D fQaijg for

ranking the given alternatives is defined by the optimal solution of the following
optimization problem (P1�).

(P1�)

˛ �! max; (3.42)

subject to

aLij .˛/ � wi
wj

� aRij .˛/ for all i; j 2 f1; 2; : : : ; ng; i < j; (3.43)

nY
kD1

wk D 1; (3.44)

0 � ˛ � 1;wk > 0; for all k 2 f1; 2; : : : ; ng: (3.45)

If optimization problem (P1�) has a feasible solution, i.e. system of con-
straints (3.43)–(3.45) is solvable, then (P1�) has also an optimal solution.

Let ˛� and w� D .w�
1 ; : : : ;w

�
n/ be an optimal solution of problem (P1�). Then

˛� � 0 and ˛� is called the �-consistency grade of QA, denoted by G�. QA/, i.e.

G�. QA/ D ˛�: (3.46)

Here, w� D .w�
1 ; : : : ;w

�
n/ is an ˛�-�-consistent vector with respect to QA called the

�-priority vector of QA.
If optimization problem (P1�) has no feasible solution, then we define

G�. QA/ D 0: (3.47)

Problem (P1�) is an optimization problem that can be efficiently solved by the
dichotomy method described in the previous subsection, see also [14]. Then, for
given ˛ 2 Œ0; 1�, problem (P1�) can be solved as an LP problem (with variables
w1; : : : ;wn).
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Let w D .w1; : : : ;wn/;wi 2�0;C1Œ for all i 2 f1; : : : ; ng. Similarly to (3.25)
and (3.40) denote

I�. QA;w/ D min
˚�Y
i<j

k aij
wi
wj

k� 2
n.n�1/

ˇ̌
aij 2 Œ Qaij�0 for all 1 � i < j � n



: (3.48)

Now, we define a suitable priority vector also in case if no feasible solution of
(P1�) exists. In contrast to the case of G�. QA/ > 0, this priority vector cannot be
an ˛-�-consistency vector of QA for some ˛ > 0. However, it can be defined as an
optimal solution of the following optimization problem.

(P2�)

I�. QA;w/ �! min; (3.49)

subject to

nY
kD1

wk D 1; (3.50)

wk > 0; for all k 2 f1; 2; : : : ; ng: (3.51)

It is clear that the optimization problem (P2�) has always an optimal solution. We
obtain the �-consistency index of QA, I�. QA/, by

I�. QA/ D I�. QA;w�/; (3.52)

where w� D .w�
1 ; : : : ;w

�
n/ is the optimal solution of (P2�). If there is no feasible

solution of (P1�), then w� D .w�
1 ; : : : ;w

�
n/ is called the �-priority vector of QA.

Remark 3.11. In particular, assume that QA is crisp, i.e. QA D A. If A is �-consistent,
then by (3.23) we obtain G�.A/ D 1 and also I�.A/ D 1. However, if A is �-
inconsistent, then G�.A/ D 0 and I�.A/ > 1.

Remark 3.12. The same consistency index I�. QA/, can be achieved when solving
problem (P2�), where instead of constraint (3.50) we use

nX
kD1

wk D 1: (3.53)

Then the �-priority vector of QA is calculated as .w1
c
; : : : ; wn

c
/, where c D

.
Qn
kD1 wk/

1
n .

Some illustrative examples can be found in Sect. 3.4.



106 3 Preference Matrices with Fuzzy Elements in Decision Making

3.3.3 PCFN Matrix on Fuzzy Additive Alo-Group

Fuzzy additive alo-group Ra D .� � 1;C1Œ;Cf ;�/ is a continuous alo-group
with:

a Cf b D a C b � 0:5; e D 0:5; a.�1/ D 1 � a;

a.n/ D n:a � n � 1

2
; a �f b D a � b C 0:5; kak D maxfa; 1 � ag;

(3.54)

and

dRa .a; b/ D ka �f bk D maxfa � b C 0:5; b � a C 0:5g:

The fuzzy additive alo-group Ra is divisible and the .n/-root of a is x D a
n

C n�1
2n

.
The product a1ˇa2ˇ : : :ˇan D Pn

kD1 ak � n�1
2

and meanmCf
.a1; a2; : : : ; an/

D 1
n

nP
iD1

ai .

The entry aij of a crisp pairwise comparison matrix A D faijg assumes different
meanings: In additive PC matrices, it is a preference difference; in multiplicative PC
matrices, it represents a preference ratio. PCFN matrices can be defined on additive
or multiplicative alo-groups investigated already in the previous subsections. In
fuzzy PC matrices, each entry aij quantifies in Œ0; 1� the distance from the value 0.5
expressing the indifference. Here, the fuzzy entries of PCFN matrices can be defined
(by nonzero membership grades) on the unit interval Œ0; 1� and their membership
functions can be defined as zero outside the unit interval. An appropriate group
operation Cf is defined in (3.54). By formula (3.14), the matrix A D faijg is
Cf -consistent if

aij D aik Cf akj D aik C akj � 0:5: (3.55)

In the literature, this type of consistency is called fuzzy additive consistency, see e.g.
[13], or, additive transitivity, see e.g. [20]. Here, we call the appropriate alo-group
Ra, the fuzzy additive alo-group. As the group operation Cf is not closed on the
interval Œ0; 1�, the basic set where this operation is closed is � � 1;C1Œ.

Let QA D fQaijg be an n � n PCFN matrix with the entries Qaij being triangular
.L;R/-fuzzy numbers on Œ0; 1�. An appropriate priority vector based on the PCFN
matrix QA for ranking the given alternatives can be defined by the optimal solution
of the following optimization problem (P1Cf ).

(P1Cf )

˛ �! max; (3.56)

subject to
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aLij .˛/ � wi � wj C 0:5 � aRij .˛/ for all i; j 2 f1; 2; : : : ; ng; i < j; (3.57)

nX
kD1

wk D n

2
; (3.58)

0 � ˛ � 1: (3.59)

If optimization problem (P1Cf ) has a feasible solution, i.e. system of con-
straints (3.57)–(3.59) is solvable, then (P1Cf ) has also an optimal solution. Let ˛�
and w� D .w�

1 ; : : : ;w
�
n/ be an optimal solution of problem (P1Cf ). Then ˛� � 0

and ˛� is called the Cf -consistency grade of QA, denoted by GCf
. QA/, i.e.

GCf
. QA/ D ˛�: (3.60)

If optimization problem (P1Cf ) has no feasible solution, then we define

GCf
. QA/ D 0: (3.61)

This optimization problem can be solved using the dichotomy method mentioned
before, see [14]. The optimal solution of problem (P1Cf ), w� D .w�

1 ; : : : ;w
�
n/, is

an ˛�-Cf -consistent vector with respect to QA called the Cf -priority vector of QA.
If no feasible solution of (P1Cf ) exists, then we define the Cf -priority vector of QA
as an optimal solution of the following optimization problem.

(P2Cf )

ICf
. QA;w/ �! min; (3.62)

subject to

nX
kD1

wk D n

2
: (3.63)

Here,

ICf
. QA;w/D min

˚ 2

n.n � 1/

X
i<j

kaij � wiCwj k ˇ̌ aij 2 Œ Qaij�0 for all 1�i<j � n


:

(3.64)

It is clear that the optimization problem (P2Cf ) has always an optimal solution. We
define the Cf -consistency index of QA, ICf

. QA/, as

ICf
. QA/ D ICf

. QA;w�/; (3.65)
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where w� D .w�
1 ; : : : ;w

�
n/ is the optimal solution of (P2Cf ). If there is no feasible

solution of (P1Cf ), then w� D .w�
1 ; : : : ;w

�
n/ is called the Cf -priority vector of QA.

Some illustrative examples can be found in Sect. 3.4.

3.3.4 PCFN Matrix on Fuzzy Multiplicative Alo-Group

Fuzzy multiplicative alo-group �0; 1Œm=.�0; 1Œ; �f ;�/, see also [11–13], is a contin-
uous alo-group with:

a �f b D ab

ab C .1 � a/.1 � b/
; e D 0; 5; a.�1/ D 1 � a;

kak D maxfa; 1 � ag;
(3.66)

hence

ka �f bk D maxf a.1 � b/
a.1� b/C .1 � a/b ;

.1 � a/b

a.1 � b/C .1 � a/b
g 2�0; 1Œ: (3.67)

We have also the product

a1 �f : : : �f an D

nQ
iD1

ai

nQ
iD1

ai C
nQ
iD1
.1 � ai /

; (3.68)

and mean

m�f .a1; : : : ; an/ D
.
nQ
iD1

ai /
1=n

.
nQ
iD1

ai /1=n C .
nQ
iD1
.1 � ai //1=n

: (3.69)

Fuzzy multiplicative alo-group �0; 1Œm is divisible and continuous. For more details
and properties, see [14].

In fuzzy PC matrices, each entry aij quantifies in Œ0; 1� the distance from the value
0.5 expressing the indifference. Here, PCFN matrices is defined on the unit interval
�0; 1Œ. An appropriate group operation �f is defined in (3.66). By formula (3.14),
the matrix A D faijg is �f -consistent if

aij D aik �f akj D aikakj

aikakj C .1 � aik/.1 � akj/
: (3.70)
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In the literature, this type of consistency is called fuzzy multiplicative consistency,
see e.g. [13], or, multiplicative transitivity, see e.g. [20]. Here, we call the appro-
priate alo-group �0; 1Œm, the fuzzy multiplicative alo-group. Notice that the group
operation �f is closed on the interval �0; 1Œ.

Let QA D fQaijg be a PCFN matrix on �0; 1Œ. By problem (P1ˇ) an appropriate
priority vector for ranking the alternatives can be defined by the optimal solution of
the following optimization problem (P1�f ).

(P1�f )

˛ �! max; (3.71)

subject to

aLij .˛/ � wi .1 � wj /

wi .1 � wj /C .1 � wi /wj
� aRij .˛/ for all i; j 2 f1; 2; : : : ; ng; i < j;

(3.72)

nQ
iD1

wi

nQ
iD1

wi C
nQ
iD1
.1 � wi /

D 0:5; (3.73)

0 � ˛ � 1; 0 � wk � 1; for all k 2 f1; 2; : : : ; ng: (3.74)

If optimization problem (P1�f ) has a feasible solution, i.e. system of
constraints (3.72)–(3.74) has a solution, then (P1�f ) has also an optimal solution.

Let ˛� and w� D .w�
1 ; : : : ;w

�
n/ be an optimal solution of problem (P1�f ). Then

˛� � 0 and ˛� is called the �f -consistency grade of QA, denoted by G�f . QA/, i.e.

G�f . QA/ D ˛�: (3.75)

Here, w� D .w�
1 ; : : : ;w

�
n/ is an ˛�-�f -consistent vector with respect to QA called the

�f -priority vector of QA.
If optimization problem (P1�f ) has no feasible solution, then we define

G�f . QA/ D 0: (3.76)

Problem (P1�f ) is an optimization problem that can be solved by the dichotomy
method mentioned in the previous subsection, see also [14], or other nonlinear
optimization SW, e.g. Solver in Excel.

Let w D .w1; : : : ;wn/;wi 2�0; 1Œ for all i 2 f1; : : : ; ng. Similarly to (3.64) we
denote
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I�f . QA;w/ D min
˚ .

Q
i<j

bij/
2

n.n�1/

.
Q
i<j

bij/
2

n.n�1/ C .
Q
i<j

.1 � bij//
2

n.n�1/

ˇ̌
aij 2 Œ Qaij�0

for all 1 � i < j � n


; (3.77)

where

bij D k aij.1 � wi /wj
aij.1 � wi /wj C .1 � aij/wi .1 � wj /

k: (3.78)

Here k : : : k is the G -norm.
Now, we shall derive a suitable priority vector also in case there is no feasible

solution of (P1�f ) exists. Consider the following optimization problem.

(P2�f )

I�f . QA;w/ �! min; (3.79)

subject to

nQ
iD1

wi

nQ
iD1

wi C
nQ
iD1
.1 � wi /

D 0:5; (3.80)

0 � ˛ � 1; 0 � wk � 1; for all k 2 f1; 2; : : : ; ng: (3.81)

We define the �f -consistency index of QA, I�f . QA/, as

I�f . QA/ D I�f . QA;w�/ (3.82)

where w� D .w�
1 ; : : : ;w

�
n/ is the optimal solution of (P2�f ).

If there is no feasible solution of (P1�f ), then w� D .w�
1 ; : : : ;w

�
n/ is called the

�f -priority vector of QA.

Remark 3.13. In particular, assume that QA is crisp, i.e. QA D A. IfA is �f -consistent,
then we obtain G�f .A/ D 1 and also I�f .A/ D 0:5. On the other hand, if A is �f -
inconsistent, then G�f .A/ D 0 and I�f .A/ > 0:5.

Remark 3.14. Instead of problem (P1�f ) we can solve the equivalent problem
(P1�f *) in a simpler form:

(P1�f *)
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˛ �! max; (3.83)

subject to

aLij .˛/ � vi
vi C vj

� aRij .˛/ for all i; j 2 f1; 2; : : : ; ng; i < j; (3.84)

nY
iD1

vi D 1; (3.85)

0 � ˛ � 1; 0 � vk; for all k 2 f1; 2; : : : ; ng: (3.86)

The equivalence of (P1�f ) and (P1�f *) can be shown by substitution vk D wk
1�wk

,
or, eventually, wk D vk

1Cvk
for all k 2 f1; 2; : : : ; ng.

Remark 3.15. Instead of problem (P1�f *) we can solve the equivalent problem
(P1�f **) in a more convenient form:

(P1�f **)

˛ �! max; (3.87)

subject to

aLij .˛/ � ui
ui C uj

� aRij .˛/ for all i; j 2 f1; 2; : : : ; ng; i < j; (3.88)

nX
iD1

ui D 1; (3.89)

0 � ˛ � 1; 0 � uk; for all k 2 f1; 2; : : : ; ng: (3.90)

In order to show the equivalence, we apply substitution uk D 1
c
vk , where c D

nP
iD1

vi ,

or, eventually, vk D 1
d

uk , and d D
nQ
iD1

ui for all k 2 f1; 2; : : : ; ng.

All three problems (P1�f ), (P1�f *) and (P1�f **) are equivalent.

Remark 3.16. The same substitutions as those applied in problem (P1�f ) can
be used also in problem (P2�f ), to obtain the equivalent problems (P2�f *) and
(P2�f ** ) in a simpler form. Here, in formula (3.77) for calculating I�f . QA; v/,
formula (3.78) is simplified to

bij D k aijvi
aijvi C .1 � aij/vj

k:

Some numerical examples can be found in the following section.
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3.4 Illustrative Numerical Examples

In this section we present 8 numerical examples of 3� 3 PCFN matrices illustrating
the particular cases of the above presented concepts. The first matrix in each exam-
ple is the crisp (i.e. nonfuzzy) matrix, the second matrix is the fuzzy one. All PCFN
matrices are reciprocal which means that the membership generating functions
(either linear, or nonlinear) for matrix elements:Lij,Rij, satisfy condition (3.12), i.e.
Lji.t/ D .Rij.t//

.�1/ andRji.t/ D .Lij.t//
.�1/, where t 2 Œ0; 1� and 1 � i ¤ j � 3.

In both cases the corresponding consistency grade and consistency index as well as
the priority vector is calculated.

Example 3.3. Let QA1 and QB1 be PCFN matrices on the additive alo-group R:

QA1 D
0
@ .0I 0I 0/ .2I 2I 2/ .8I 8I 8/
.�2I �2I �2/ .0I 0I 0/ .6I 6I 6/
.�8I �8I �8/ .�6I �6I �6/ .0I 0I 0/

1
A D

0
@ 0 2 8

�2 0 6

�8 �6 0

1
A ;

QB1 D
0
@ 0 .1I 2I 2/ .7I 8I 9/
.�2I �2I �1/ 0 .3I 4I 4/
.�9I �8I �7/ .�4I �4I �3/ 0

1
A :

Here, QA1, QB1 are 3 � 3 PCFN matrices, particularly, PCFN matrices with triangular
fuzzy number elements. QA1 is a crisp matrix (nonfuzzy), C-reciprocal and C-
consistent, hence the consistency grade GC. QA1/ D 1 and the C-priority vector
of QA1 is w� D .3:333; 1:333;�4:666/. The consistency index IC. QA1/ D 0.

QB1 is a C-reciprocal PCFN matrix (noncrisp). As there is no feasible solution
of the corresponding problem (P1C), the consistency grade GC. QB1/ D 0. The
consistency index IC. QB1/ D 0:333, hence, QB1 is C-inconsistent and the C-priority
vector of QB1 is w� D .2:964; 0:922;�3:886/.
Example 3.4. Let QA2 and QB2 be PCFN matrices on the multiplicative alo-group
RC:

QA2 D
0
@ .1I 1I 1/ .2I 2I 2/ .8I 8I 8/. 1

2
I 1
2
I 1
2
/ .1I 1I 1/ .4I 4I 4/

. 1
8
I 1
8
I 1
8
/ . 1

4
I 1
4
I 1
4
/ .1I 1I 1/

1
A D

0
@ 1 2 81

2
1 4

1
8
1
4
1

1
A ;

QB2 D
0
@ 1 .1I 2I 2/ .7I 8I 9/
. 1
2
I 1
2
I 1/ 1 .2I 3I 3/

. 1
9
I 1
8
I 1
7
/ . 1

3
I 1
3
I 1
2
/ 1

1
A :

Here, QA2 is a crisp matrix (nonfuzzy), �-reciprocal and �-consistent. Hence,
the consistency grade G�. QA2/ D 1 and the �-priority vector of QA2 is w� D
.2:520; 1:260; 0:315/. The consistency index I�. QA2/ D 1. Therefore, PCFN matrix
QA2 is �-reciprocal as well as �-consistent in the classical sense.
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QB2 is a �-reciprocal PCFN matrix (noncrisp). As there is no feasible solution
of the corresponding problem (P1�), the consistency grade G�. QB2/ D 0. The
consistency index I�. QB2/ D 1:053, hence, QB2 is �-inconsistent. The �-priority
vector of QB2 is w� D .2:377; 1:182; 0:356/.

Example 3.5. Let QA3 and QB3 be PCFN matrices on the fuzzy additive alo-groupRa,
i.e. we set ˇ D Cf . The entries of matrix QB3 are triangular fuzzy numbers defined
on interval �0; 1Œ:

QA3 D
0
@

1
2

2
3
11
12

1
3

1
2

3
4

1
12

1
4

1
2

1
A ;

QB3 D
0
@ 0:5 .0:5I 0:55I 0:6/ .0:8I 0:85I 0:9/
.0:4I 0:45I 0:5/ 0:5 .0:4I 0:5I 0:6/
.0:1I 0:15I 0:2/ .0:4I 0:5I 0:6/ 0:5

1
A :

Here, QA3, QB3 are 3 � 3 PCFN matrices, particularly, PCFN matrices with triangular
fuzzy number elements on �0; 1Œ. QA3 is a crisp matrix (nonfuzzy), Cf -reciprocal and
Cf -consistent. Hence, the consistency grade GCf

. QA3/ D 1 and the Cf -priority

vector of QA3 is w� D .0:694; 0:528; 0:278/. The consistency index ICf
. QA3/ D 0:5.

We can conclude that QA3 is Cf -reciprocal as well as Cf -consistent in a “classical
sense”.

QB3 is a Cf -reciprocal PCFN matrix (noncrisp). The elements of QB3 are triangular
fuzzy numbers. The consistency grade GCf

. QB3/ D 0. The consistency index

ICf
. QB3/ D 0:533 > 0:5, hence, QB3 is Cf -inconsistent. The Cf -priority vector

of QB3 is w� D .0:654; 0:479; 0:367/.

Example 3.6. Let QA4 and QB4 be PCFN matrices on the fuzzy multiplicative alo-
group �0; 1Œm, i.e. ˇ D �f . The following PCFNs are defined on interval �0; 1Œ:

QA4 D
0
@

1
2
2
3
6
7

1
3
1
2
3
4

1
7
1
4
1
2

1
A ;

QB4 D
0
@ 0:5 .0:6I 0:7I 0:8/ .0:75I 0:8I 0:9/
.0:2I 0:3I 0:4// 0:5 .0:7I 0:75I 0:8/
.0:1I 0:2I 0:25/ .0:2I 0:25I 0:3/ 0:5

1
A :

Here, QA4, QB4 are 3 � 3 PCFN matrices, particularly, PCFN matrices with triangular
fuzzy number elements on �0; 1Œ. QA4 is a crisp, �f -reciprocal and �f -consistent.
Hence, the consistency gradeG�f . QA4/ D 1 and the �f -priority vector of QA4 is w� D
.2:289; 1:145; 0:382/. The consistency index I�f . QA4/ D 0:5. We can conclude that
QA4 is �f -reciprocal as well as �f -consistent in a “classical sense”.
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QB4 is a �f -reciprocal PCFN matrix (noncrisp). The elements of QB4 are triangular
fuzzy numbers. As there is no feasible solution of the corresponding problem
(P1�f ), the consistency grade G�f . QB4/ D 0. The consistency index I�f . QB4/ D
0:548 > 0:5, hence, QB4 is �f -inconsistent. The �f -priority vector of QB4 is w� D
.0:570; 0:881; 1:990/.

3.5 Conclusion

This chapter investigated pairwise comparison matrices with fuzzy elements. Fuzzy
elements of the pairwise comparison matrix are applied whenever the decision
maker is not sure about the value of his/her evaluation of the relative importance of
elements in question. In comparison with pairwise comparison matrices with crisp
elements investigated in the literature, here we investigated pairwise comparison
matrices with elements from abelian linearly ordered group (alo-group) over a real
interval. We generalized the concept of reciprocity and consistency of pairwise
comparison matrices with triangular fuzzy numbers (PCFN matrices). Moreover,
we introduced the concept of priority vector which is a generalization of the crisp
concept. Such an approach allows for a generalization dealing both with the PCFN
matrices on the additive, multiplicative and also fuzzy alo-groups. It also unifies
several approaches known from the literature, see e.g. [3,11,14,15,17,20]. We also
dealt with the problem of measuring the inconsistency of PCFN matrices by defining
corresponding indexes. The first index called the consistency gradeG is the maximal
˛ of the ˛-cut, such that the corresponding PCFN matrix is ˛-consistent. On the
other hand, the consistency index I of the PCFN matrix measures the distance of
the zero-cut of the PCFN matrix to the closest priority vector. If the PCFN matrix
is crisp, then G is equal to 1 and the consistency index I is equal to the identity
element e. Eight numerical examples were presented to illustrate the concepts and
derived properties.
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Part II
Special Matrices in Max-Min Algebra



Chapter 4
Optimization Problems Under Max-Min
Separable Equation and Inequality Constraints

Abstract Equation and inequality systems, in which functions of the form

max
j2J .min.aj ; rj .xj ///

occur are studied (J is a finite index set, aj are real numbers, rj .xj / are strictly
increasing functions). The functions occur either on one side of the relations or
on both sides of them. In the former case we call the relations one-sided, in the
latter case two-sided. Properties of equation and inequality systems with max;min-
separable functions on one or both sides of the relations, as well as optimization
problems under .max;min/-separable equation and inequality constraints are stud-
ied. For the optimization problems with one-sided .max;min/-separable constraints
an explicit solution formula is derived, a duality theory is developed and some
optimization problems on the set of points attainable by the functions occurring
in the constraints are solved. Solution methods for some classes of optimization
problems with two-sided equation and inequality constraints are proposed in the
last part of this chapter.

4.1 Introduction

Under the concept of extremally linear functions we understand functions f W Rn !
R of the form

f .x/ D f .x1; : : : ; xn/ D c1 ˝ x1 ˚ : : : ˚ cn ˝ xn;

where ˚ is one of the extremal operations “max” or “min” and ˝ is an appropriate
group or semigroup operation chosen in such a way that the pair .˚;˝/ behaves like
the pair of addition and multiplication in classic linear algebra. We will consider
pairs .max;C/ and .max;min/ and will speak accordingly about .max;C/-linear
or .max;min/-linear functions. Let us note that the operations max; min; C are
special cases of the T -norms introduced in Chap. 1. Algebraic structures with such
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© Springer International Publishing Switzerland 2015
M. Gavalec et al., Decision Making and Optimization, Lecture Notes in Economics
and Mathematical Systems 677, DOI 10.1007/978-3-319-08323-0__4

119



120 4 Optimization Problems Under Max-Min Separable Equation and Inequality. . .

pairs of operations appeared in the literature under different names as e.g. “extremal
algebra” ([18, 19]), “path algebra” ([8]), “minimax algebra” ([7]), “max-algebra”
([2, 14]), “incline algebra” ([3]), “idempotent algebra” ([9, 10, 12, 13]), “tropical
algebra” ([11,12]), “fuzzy algebra” ([5]). They are applied to solving some problems
concerning synchronization of events, network capacity problems, problems in the
fuzzy set theory and others ([1, 2, 15, 16]). The optimization problems we are going
to investigate consist in minimizing objective functions having the form

f .x/ D f .x1; : : : ; xn/ D max.f1.x1/; f2.x2/; : : : fn.xn//;

where fj .xj /; j D 1; : : : ; n are real continuous functions. Such functions f
will be called max-separable functions. In the optimization problems considered
in this text functions fj are as a rule monotone or unimodal (e.g. strictly convex
or concave) functions, which allow to find effectively maximum or minimum on a
closed finite interval. The sets of feasible solutions of the optimization problems are
described by finite systems of equations and inequalities, in which either max-plus
linear functions or max-min linear functions occur. If such functions occur only
on one side of the equations or inequalities with a constant on the other side, we
speak about “one-sided” equation or inequality constraints, otherwise we speak
about “two-sided” equation or inequality constraints. Let us remark that since the
operation ˚ D max is a semigroup operation, it is not possible to transfer variables
from one side of the relations to the other side so easily like in the usual linear
algebra and methods for solving problems with one-sided constraints and two-sided
constraints are as a rule substantially different.

We will bring some examples showing the motivation for the research mentioned
above and possible areas of its applications.

Example 4.1. Let us assume that passengers are to be transported from n given
places Pj ; j 2 J D f1; : : : ; ng to m destinations Di; i 2 I D f1; : : : ; mg by
n transportation units (e.g. trains) Tj ; j 2 J , the departure time of which is equal
to xj . The transportation time from place Pj to destinationDi is equal to a positive
number tij. The passengers travelling fromPj to destinationDi reach therefore their
destination at time xj C tij. It follows that last passengers from all places Pj , which
have to be transported to destination Di will arrive at Di at time maxj2J .tij C xj /.
Let us assume that we require that the arrival time of the last passengers travelling
to Di must be equal to Obi . We require further that the departure times xj ; j 2 J

must lie within given finite bounds i.e. xj 2 Œxj ; xj �; j 2 J . To satisfy these
requirements, we have to find xj ; j 2 J , which satisfy the system of equations

max
j2J .tij C xj / D Obi ; i 2 I; xj � xj � xj ; j 2 J:

This system is a system of one-sided .max;C/-linear equations and inequalities.
Let us denote the set of solution of the system by M. Ob/. Let Oxj ; j 2 J be
recommended departure times from Pj , and fj .xj / D ˇ̌

xj � Oxj
ˇ̌
; j 2 J ,

f .x/ D maxj2J fj .xj /. Let us consider the optimization problem
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f .x/ �! min

subject to

x 2 M. Ob/:

The optimal solution xopt of this optimization problem is a feasible vector of
departure times, which is as close as possible to the recommended vector of
departure times Ox in the sense of the Tshebyshev norm kx � Oxk D f .x/.

If M. Ob/ D ;, then we will try to find a vector bopt, which solves another
optimization problem:

���b � Ob
��� D max

i2I

ˇ̌
ˇbi � Obi

ˇ̌
ˇ �! min

subject to

M.b/ ¤ ;:

In other words the optimal solution bopt of this problem is the nearest vector of
arrival times to destinations Di ; i 2 I , for which there exist feasible departure
times from Pj ; j 2 J .

Example 4.2. Let us assume thatm placesPi ; i 2 I D f1; 2; : : : ; mg are connected
with n places Rj ; j 2 J D f1; 2 : : : ; ng by roads of given capacities aij � 0; i 2
I; j 2 J . We have to connect places Rj ; j 2 J with place T and choose the
capacities xj of the road connecting the two placesRj and T in such a way that xj 2
Œ xj ; xj �. The capacity of the road connecting Pi with T via place Rj is therefore
equal to min.aij; xj /. We will require further to find such capacities xj ; j 2 J that
for each i 2 I the maximum capacity of the roads PiRjT over all j 2 J is equal
to a given positive value Obi , i.e.

max
j2J .min.aij; xj // D Obi ; i 2 I ./

Let us set

M.b/ D fx j max
j2J .min.aij; xj // D bi ; i 2 I; xj 2 Œ xj ; xj �; j 2 J g:

Let us assume that M. Ob/ D ;. In such a case we want to find b 2 Rm, which is
the nearest to Ob and M.b/ ¤ ; holds. In other words, we will solve the following
minimization problem:

���b � Ob
��� D max

i2I

ˇ̌
ˇbi � Obi

ˇ̌
ˇ �! min
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subject to

M.b/ ¤ ;:

Let bopt denote the optimal solution of this problem. Then M.bopt/ ¤ ;. If set
M.bopt/ contains more than one elements x and we may continue the calculations
and find in some sense the most appropriate feasible capacity vector in M.bopt/. For
instance, we can be given some required capacities Ox D . Ox1; : : : ; Oxn/. Let us set
in this case fj .xj / D ˛j

ˇ̌
xj � Oxj

ˇ̌
; for all j 2 J , f .x/ D maxj2J fj .xj /, where

coefficients ˛j > 0 express the importance of the recommendation that xj should
be equal to Oxj . Functions fj .xj / can be interpreted as penalties for the violation of
the recommendation “xj should be equal to Oxj ”. To find a feasible capacity vector,
for which the maximum penalty fj .xj / is minimal means to solve the following
optimization problem:

f .x/ �! min

subject to

x 2 M.bopt/

Example 4.3. Let us assume that we have m pairs of fuzzy sets Ai ; Bi , i 2
I D f1; : : : ; mg with a finite support J D f1; : : : ; ng and membership functions
�i W J ! Œ0; 1�; �i W J ! Œ0; 1� respectively. We have to find fuzzy set X
with membership function �X W J ! Œ0; 1�. Let functions �iX W J ! Œ0; 1�,
�iX W J ! Œ0; 1� be defined as follows:

�iX.j / D �i.j / ^ �X.j /; �iX.j / D �i .j / ^ �X.j /; j 2 J;

where symbol ^ is used to denote the minimum of two numbers, i.e. ˛ ^ ˇ D
min.˛; ˇ/ for any real numbers ˛; ˇ. Then for each i 2 I function �iX is the
membership function of the intersection of fuzzy sets Ai and X , and function �iX is
the membership function of the intersection of fuzzy setsBi andX . The expressions

H
.1/
i .X/ D max

j2J .�iX.j //; H
.2/
i .X/ D max

j2J .�iX.j //

are the heights of the intersections of fuzzy sets Ai ;X and Bi ;X respectively. The
heights H.1/

i .x/; H
.2/
i .x/ express the maximal achievable membership value of

intersections of sets Ai ;X and Bi ;X respectively. We will interpret the sets Ai ; Bi
as fuzzy goals and will find set X , or in other words values �X.j /; j 2 J , which
are bounded by given bounds xj 2 Œ0; 1�; xj 2 Œ0; 1�; j 2 J and satisfy the system
of equalities

H
.1/
i .X/ D H

.2/
i .X/; i 2 I:
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This requirement means that for each i 2 I the maximal achievable membership of
the intersections of setX withAi andBi should be the same (i.e. in some sense goals
Ai ; Bi are equally important). The required relations can be interpreted as special
fuzzy constraints. Let us introduce the following notations for all i 2 I; j 2 J :

aij D �i.j /; bij D �i .j /; xj D �.j /:

We will consider now the following set of feasible solutions �X.j /; j 2 J (i.e.
feasible values of membership function �X ):

QM.x; x/ D fx 2 Œ0; 1�n jH.1/
i .X/ D H

.2/
i .X/; i 2 I; x � x � xg:

By making use of the introduced notations we obtain:

QM.x; x/ D fx 2 Œ0; 1�n j max
j2J .aij ^ xj / D max

j2J .bij ^ xj /; i 2 I; x � x � xg:

Set QM.x; x/ is therefore described by a system of .max;min/-linear equations and
the given upper and lower bounds of the variables.

4.2 Systems of One-Sided Max-Separable Equations
and Inequalities: Unified Approach

The aim of this section is to present a unified approach to solving optimization
problems under the constraints, which are described by systems of one-sided
max �separable equations and inequalities the special case of which are the systems
of one-sided .max;C/� and .max;min/�linear equations and inequalities. For this
purpose we will introduce the following notations:
I D f1; : : : ; mg; J D f1; : : : ; ng, let R denote the set of real numbers, A D faijg
real m � n matrix i 2 I; j 2 J , ˛ ^ ˇ D min.˛; ˇ/ for any ˛; ˇ 2 R. We assume
that rij W R �! R are for all i 2 I; j 2 J continuous strictly increasing functions,
R.x/ D frij.xj /g is the matrix of functions rij.xj /. We will consider in the sequel
systems having the form

max
j2J .aij ^ rij.xj / � bi ; i 2 I1; (4.1)

max
j2J .aij ^ rij.xj / � bi ; i 2 I2; (4.2)

where I D I1 [ I2 and b D .b1; : : : ; bm/ 2 Rm is given.
The set of all solutions of system (4.1), (4.2) will be denotedM.b/.
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Lemma 4.1. System of inequalities (4.2) can be replaced by system

xj � xj .b/; j 2 J; (4.3)

where

xj .b/ D min
k2Ij .b/

r�1
kj .bk/; j 2 J; (4.4)

where Ij .b/ D fk 2 I2 j akj > bkg and we set xj .b/ D 1 if Ij .b/ D ;.

Proof. Let x satisfy (4.2). Then

aij ^ rij.xj / � bi ; i 2 I2; j 2 J:

It must be therefore rkj.xj / � bk for those k 2 I2, for which akj > bk . Since the
inverse function r�1

kj is according to our assumptions strictly increasing, it follows
that (4.4) must hold for all j 2 J . ut
Lemma 4.2. Let for all i 2 I1; j 2 J

Tij.bi / D fxj j aij ^ rij.xj / � bi ; xj � xj .b/g:

Then

M.b/ ¤ ; ” for all i 2 I1 there exists j.i/ 2 J such that Tij.i/.bi / ¤ ;:

Proof. Let there exists an index i 2 I1 such that for all j 2 J

Tij.bi / D ;:

Let us consider a fixed j 2 J and find out under which conditions set Tij.bi / can be
empty. Let us first assume that aij � bi . Then Tij.bi / D ; if rij.xj / � bi implies that
xj > xj .b/, i.e. if xj > r�1

ij .x.b// > xj .b/. Let us assume now that aij < bi . Then
we have evidently aij ^ rij.xj / < bi for an arbitrary xj and therefore Tij.bi / D ;.

Summarizing we obtain that Tij.bi / D ; if and only if either

aij � bi and at the same time rij.xj / � bi H) xj > xj .b/

or

aij < bi :

If now the former possibility takes place and for some index j 2 J inequality
xj > xj .b/ holds, then x 62 M.b/ according to Lemma 4.1. If only the latter case
occurs, then for any xj inequalities aij^rij.xj / < bi for all j 2 J hold and therefore
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maxj2J .aij ^ rij.xj // < bi so that (4.1) is not fulfilled and x 62 M.b/. This proves
the implication H).

Let us assume now that 8i 2 I1 there exists an index j.i/ 2 J such that
Tij.i/.bi / ¤ ;. We have to prove that M.b/ ¤ ;. Let Kj D fi 2 I1 j Tij.bi / ¤ ;g
for all j 2 J , Tj .b/ D T

i2Kj Tij.bi / if Kj ¤ ;, Tj .b/ D fxj 2 R j xj �
xj .b/g otherwise. Let us note that if Kj ¤ ;, then Tj .b/ ¤ ; and Tj .b/ D
Œmaxi2Kj r�1

ij .bi /; xj .b/�. Let us choose Qxj 2 Tj .b/ for all j 2 J . Then Qxj �
xj .b/ for all j 2 J . Let i 2 I1 be arbitrarily chosen so that Tij.i/.bi / ¤ ; and
i 2 Kj.i/. We have Qxj.i/ 2 Tj.i/.b/ � Tij.i/.bi /. Therefore aij.i/ ^ rij.i/. Qxj.i// � bi
so that maxj2J .aij ^rij. Qxj // � bi . Since i 2 I1 was arbitrarily chosen, we conclude
that Qx satisfies relations (4.1), (4.2) so that Qx 2 M.b/ and M.b/ ¤ ;. Therefore we
proved also the implication (H and the lemma is proved. ut
Remark 4.1. Let us note that since xj .b/ 2 Tj .b/; j 2 J , we obtain as a
consequence of Lemma 4.2 that M.b/ ¤ ; if and only if x.b/ 2 M.b/.

4.3 Optimization Problems with Feasible Set M.b/

In this section we will consider optimization problems of the form

f .x/ D max
j2J fj .xj / (4.5)

subject to

x 2 M.b/; (4.6)

where fj W R �! R are continuous functions for all j 2 J . Let us introduce the
following notations:

min
xj2Tij.bi /

fj .xj / D fj .x
.i/
j / (4.7)

for all i 2 I1; j 2 J such that Tij.bi / ¤ ;,

min
j2J; Tij.bi /¤;

fj .x
.i/
j // D fk.i/.x

.i/

k.i///; i 2 I1; (4.8)

Ps D fi 2 I1 j k.i/ D sg; s 2 J; (4.9)

T �
s .b/ D

\
i2Ps

Tis.bi / for s 2 J such that Ps ¤ ;; (4.10)

T �
s .b/ D fxs j xs � xs.b/g for s 2 J such that Ps D ;: (4.11)
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Theorem 4.1. Let M.b/ ¤ ; and let

fs.x
�
s / D min

xs2T �

s .b/
fs.xs/; s 2 J: (4.12)

Then x� D .x�
1 ; : : : ; x�

n / is the optimal solution of optimization prob-
lem (4.5), (4.6).

Proof. First we will prove that x� is a feasible solution. It follows immediately
from the definition of x� that x� � x.b/ so that x� satisfies relations (4.2). To
prove that x� is a feasible solution, it remains to prove that x� satisfies (4.1). Let
i 2 I be arbitrary. Let k.i/ D s be the index from formula (4.8). Then we have
x�
s 2 T �

s .b/ � T �
is .bi / D Tik.i/.bi / and thus ais ^ ris.x

�
s / � bi and we obtain

maxj2J .aij ^ rij.x
�
j // � ais ^ ris.x

�
s / � bi . Since i 2 I1 was arbitrary, we obtain

that x� satisfies (4.1) and therefore x� 2 M.b/.
It remains to prove that x� is the optimal solution, i.e. that f .x/ � f .x�/ for any

x 2 M.b/. Let us assume that Qx is an element of M.b/ such that f . Qx/ < f .x�/.
Let f .x�/ D fs.x

�
s /; s 2 J . Then fs. Qxs/ < f .x�/ D fs.x

�
s / and it must hold that

Qxs 62 T �
s .b/.

Since we assumed that rij’s are increasing functions, it holds for any nonempty
sets Ti1j ; Ti2j either Ti1j � Ti2j or Ti2j � Ti1j . It follows that if Ps is
nonempty, then there exists index h 2 Ps such that T �

s .b/ D Ths.bh/ and it
holds minj2J fj .x.h/j / D fs.x

.h/
s / D fs.x

�
s / D f .x�/. Since fs. Qxs/ < fs.x

�
s / D

fs.x
.h/
s /, Qxs 62 Ths.bh/. Since Qx 2 M.b/, there must exist an index v 2 J; v 6D s

such that Qxv 2 Thv.bh/. We have then

f . Qx/ � fv. Qxv/ � min
xv2Thv.bh/

fv.xv/ D fv.x
.h/
v / � fs.x

.h/
s / D fs.x

�
s / D f .x�/;

which is in contradiction with the assumption that f . Qx/ < f .x�/. This contradic-
tion completes the proof. ut
Remark 4.2. Let us note that it is possible to prove that Theorem 4.1 follows as
a special case immediately from the results in [18] but we preferred to present a
separate direct proof here for completeness of this publication.

Remark 4.3. The optimization problem

f .x/ �! min

subject to

x 2 M. Ob/

considered in Example 4.1 is a special case of problem (4.5), (4.6) above if we set
rij.xj / D tij C xj and choose aij sufficiently large or formally equal to 1 assuming
that we set ˛ ^ 1 D ˛ for any real ˛. Such systems of equations and inequalities
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were called .max;C/-linear systems and their properties were extensively studied
e.g. in [2, 6, 17].

Similarly the problem considered in Example 4.2 is a special case of prob-
lem (4.5), (4.6) if we set rij.xj / D xj . Such problems were mentioned probably
for the first time in [17].

4.4 Duality Theory

Explicit solution of the optimization problems derived in the preceding section
makes possible to develop a duality theory for max-separable optimization
problems. We will formulate two max-separable optimization problems, which are
interconnected in a similar way as the dual optimization problems in the classical
linear or convex optimization.

Let us consider the optimization problem

f .x/ D max
j2J fj .xj / �! max (4.13)

subject to

max
j2J .aij ^ rij.xj // � 0; i 2 I; (4.14)

where we assume that I D f1; : : : ; mg; J D f1; : : : ; ng, fj W R �! R are
continuous strictly increasing functions. We assume further that aij are given real
numbers and similarly as above rij W R �! R are continuous strictly increasing
functions for all i 2 I; j 2 J . The optimal solution of this problem will be denoted
xopt.

Let us define sets Ij for all j 2 J as follows: Ij D fi 2 I j aij > 0g and set

xj D min
i2Ij

r�1
ij .0/; j 2 J (4.15)

We will assume that for all j 2 J set Ij is non-empty so that xj < 1; j 2 J .
Taking into account that fj ; j 2 J are strictly increasing functions, we obtain that
xopt D x. The optimal value of the objective function is

f .xopt/ D max
j2J fj .xj / D max

j2J fj .min
i2Ij

r�1
ij .0//: (4.16)

Let us consider further the optimization problem

g.u/ D max
i2I ui �! min (4.17)
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subject to

max
i2I .aij ^ rij.f

�1
j .ui // � 0; j 2 J: (4.18)

We will find the optimal solution of this problem using the explicit method described
in the preceding section.

Let sets Tij for i 2 I; j 2 J be defined as follows:

Tij D fui j aij ^ rij.f
�1
j .ui // � 0g: (4.19)

Let us note that Tij ¤ ; if and only if aij � 0 so that for each j 2 J we have Vj D
fi 2 I j Tij ¤ ;g D fi 2 I j aij � 0g. If Tij ¤ ;, then Tij D fui j ui � fj .r

�1
ij .0//g.

Therefore if Tij is nonempty, then Tij D Œu.j /i ;1/, where u.j /i D minfui j ui 2
Tijg D fj .r

�1
ij .0//.

We will find the optimal solution of optimization problem (4.17)–(4.18) using
Theorem 4.1. Since we assumed that Vj ¤ ;, the set of feasible solutions of the
optimization problem is nonempty and the objective function g.u/ is on the set
of feasible solutions bounded from below and continuous. Therefore there exists a
finite optimal value of the objective function. Let us set

min
i2Vj

u.i/j D u.j /i.j /; j 2 J:

If there are more indices i.j / 2 I satisfying this equation, we will choose an
arbitrary one. Let us note that since Vj ¤ ; for all j 2 J , we obtain for each

j 2 J a finite value u.j /i.j / D fj .r
�1
i.j /j .0//.

Let

Ps D fj 2 J j i.j / D sg; s 2 I;
Ts D

\
j2Ps

Tsj if Ps ¤ ;;

Ts D R if Ps D ;:

Let us note that if Ps ¤ ;, we have :

Ts D Œmax
j2Ps

u.j /s ;1/ D Œuj.s/s ;1/ D Tsj.s/

for some j.s/ 2 Ps � J .
Let us define u� 2 Rm as follows:

u�
s D max

j2Ps
u.j /s if Ps ¤ ;;

u�
s D �1 if Ps D ;:
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Then according to Theorem 4.1 u� is the optimal solution of optimization
problem (4.17)–(4.18). The corresponding optimal value of the objective function is

g.u�/ D max
s2I u�

s D max
s2I;Ps¤;

u�
s :

We will prove now the following strong duality theorem:

Theorem 4.2. Let Ij ¤ ; for all j 2 J and let aij ¤ 0 8i 2 I; j 2 J . Then the
optimal values of optimization problems (4.13)–(4.14) and (4.17)–(4.18) are equal,
i.e. it holds that

max
j2J fj .xj / D max

s2I u�
s : (4.20)

Proof. Note that according to the assumption that aij ¤ 0 8i 2 I; j 2 J it is
Ij D Vj and therefore

f .x/ D max
j2J fj .xj / D max

j2J fj .min
i2Ij

r�1
ij .0// D max

j2J fj .min
i2Vj

r�1
ij .0//: (4.21)

Let us assume that

g.u�/ D max
s2I u�

i D u�
h

Then we have:

g.u�/ D u�
h D max

j2Ph
min
i2Vj

fj .r
�1
ij .0// D max

j2Ph
fj .min

i2Vj
r�1

ij .0//: (4.22)

Note that the last equality in (4.22) follows from the assumption that fj ; j 2 J are
increasing functions.

If we compare formulas (4.21) and (4.22), we see that it remains to prove that

max
j2Ph

fj .min
i2Vj

r�1
ij .0// D max

j2J fj .min
i2Vj

r�1
ij .0//:

In other words we have to prove that the terms fj .mini2Vj r�1
ij .0// for j 2 J n Ph

do not influence the value u�
h , i.e. that

fj .min
i2Vj

r�1
ij .0// � u�

h ; j 2 .J n Ph/: (4.23)

To prove (4.23), let us assume that q 2 J nPh is arbitrarily chosen and consider the
value

fq.min
i2Vq

r�1
iq .0// D fq.r

�1
i.q/q.0//:
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It follows that q 2 Pi.q/ and therefore

fq.min
i2Vq

r�1
iq .0// D fq.r

�1
i.q/q.0// � max

j2Pi.q/
fj .r

�1
i.q/j .0// D u�

i.q/ � max
i2I u�

i D u�
h :

(4.24)

Since q 2 .J nPh/ was arbitrarily chosen, the inequality (4.24) completes the proof.
ut

Remark 4.4. (a) Note that system of inequality constraints with arbitrary right
hand sides

max
j2J . Qaij ^ Qrij.xj // � bi ; i 2 I;

can be easily transformed to form (4.14) if we set

aij D Qaij � bi ; rij.xj / D Qrij.xj /� bi :

(b) If we want to avoid infinite components in u�, we can set u�
i D ˛ if Pi D ;,

where ˛ is any number such that ˛ � maxs2I;Ps¤; u�
s .

(c) Let us remark that for any feasible solution x of problem (4.13)–(4.14) and any
feasible solution u of problem (4.17)–(4.18) the following inequalities hold:

f .x/ � f .x/ D g.u�/ � g.u/:

These inequalities are an analogue of the weak duality theorem from the classic
optimization theory.

In what follows we will illustrate the theoretical results by small numerical
examples.

Example 4.4. Let m D 2; n D 3; I D f1; 2g; j 2 J D f1; 2; 3g. Let

R.t/ D frij.t/g D
�

7t 4t � 1 1t

5t � 1 6t � 1 8t � 1

�

Let

A D faijg D
��1; 3; �1
4; 7; 2

�

Let us consider the maximization problem

f .x/ D max.x1; x2; x3/ �! max
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subject to

max.�1 ^ 7x1; 3 ^ 4x2 � 1; � 1 ^ x3/ � 0

max.4 ^ 5x1 � 1; 7 ^ 6x2 � 1; 2 ^ 8x3 � 1/ � 0

The optimal solution is x D .1=5; 1=6; 1=8/,
the optimal value of the objective function is f .x/ D max.1=5; 1=6; 1=8/D 1=5.
The corresponding dual minimization problem has the following form:

g.u/ D max.u1; u2/ �! min

subject to

max.�1 ^ 7u1; 4 ^ 5u2 � 1/ � 0

max.3 ^ 4u1 � 1; 7 ^ 6u2 � 1/ � 0

max.�1 ^ u1; 2 ^ 8u2 � 1/ � 0

The optimal solution is u� D .�1; 1=5/.
The optimal value of the objective function is g.u�/max.�1; 1=5/ D 1=5.
Other optimal solutions with finite components are u�.˛/ D .˛; 1=5/, where

˛ � 1=5.

The next example illustrates the importance of the assumption that aij ¤ 0 in
Theorem 4.2.

Example 4.5. Let m D 2; n D 1 and let us consider the maximization problem

f .x/ D x1 �! max

subject to

0 ^ .8x1 � 1/ � 0

1 ^ .6x1 � 1/ � 0

The optimal solution is x D .1=6/, the optimal value of the objective function is
f .x/ D 1=6.

The corresponding dual minimization problem has the following form:

g.u/ D max.u1; u2/ �! min

subject to

max.0 ^ .8u1 � 1/; 1 ^ .6u2 � 1// � 0:
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The optimal solution is u� D .1=8;�1/, the optimal value of the objective function
is g.u�/ D 1=8. We see that since the condition aij ¤ 0 is not fulfilled, it may arise
a duality gap. We have in this case a11 D 0 and it is f .x/ D 1=6 > g.u�/ D 1=8.

The next example shows what can happen if the condition Ij ¤ ;; j 2 J is not
fulfilled.

Example 4.6. Let us consider the minimization problem

f .x/ D max.x1; x2; x3/ �! max

subject to

max.�1 ^ 7x1; 3 ^ 4x2 � 1; � 1 ^ x3/ � 0;

max.�4 ^ 5x1 � 1; 7 ^ 6x2 � 1; 2 ^ 8x3 � 1/ � 0:

In this case we have I1 D ; and therefore x D .1; 1=6; 1=8/ so that f .x/ D 1.
The corresponding dual minimization problem has the following form:

g.u/ D max.u1; u2/ �! min

subject to

max.�1 ^ 7u1;�4 ^ 5u2 � 1/ � 0;

max.3 ^ 4u1 � 1; 7 ^ 6u2 � 1/ � 0;

max.�1 ^ u1; 2 ^ 8u2 � 1/ � 0:

Since it is in the first line �1 < 0 and �4 < 0, it is for any u1; u2 always max.�1^
7u1;�4 ^ 5u2/ < 0, so that the set of the feasible solutions of the dual optimization
problem is empty.

Let us note that the result of the last example can be generalized as follows.
If the condition aij ¤ 0; i 2 I; j 2 J is fulfilled and there exists an index j0 2 J

such that Ij0 D ;, then f .x/ D fj0.xj0/ D 1 and the j0-th inequality of the dual
minimization problem is not fulfilled, i.e. maxi2I .aij0 ^ rij0 .f

�1
j0
.ui /// < 0 and

therefore the set of feasible solutions of the dual minimization problem is empty.
This result is similar like in the classic duality theory.

We will present further examples of dual pairs for some special subclasses of
max-separable optimization problems.

Example 4.7. Let us consider maximization problem of the form

f .x/ D max
j2J fj .xj / D max.cj C xj / �! max

subject to

max
j2J .dij C xj / � 0; i 2 I:
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In this case we have in the general formulation (4.13) - (4.14): fj .xj / D cj C
xj , rij.xj / D dij C xj and aij D 1. Such problems are called in the literature
.max;C/-linear.

Taking into account that in this case f �1
j .t/ D t � cj for all j 2 J , we obtain

the following form of the left hand sides of the constraints in the dual minimization
problem (4.18):

max
i2I .aij ^ rij.f

�1
j .ui /// D max

i2I .rij.f
�1
j .ui /// D max

i2I .dij C ui � cj /

Therefore the corresponding dual minimization problem has in this case the
following form:

g.u/ D max
i2I ui �! min

subject to

max
i2I .dij C ui � cj / � 0; j 2 J:

The components of the optimal solutions of the maximization problem are

xj D min
i2I .�dij/; j 2 J;

the components of the optimal solution of the dual minimization problem are

u�
i D max

j2Pi
min
i2I .fj .r

�1
ij .0/// D max

j2Pi
min
i2I .cj � dij/; i 2 I:

If conditions Ij ¤ ; 8j 2 J and aij ¤ 0 8i 2 I; j 2 J are fulfilled, the equality
of the optimal values of the objective functions maxj2J .cj C xj // D maxi2I u�

i

holds.

Example 4.8. Let us consider maximization problem of the form

f .x/ D max
j2J fj .xj / D max.xj / �! max

subject to

max
j2J .dij ^ xj / � bi ; i 2 I:

Such inequality systems are referred in the literature as .max;min/-linear. Subtract-
ing bi from the both sides of the inequalities we obtain:

max
j2J .dij � bi/ ^ .xj � bi / � 0; i 2 I:
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In this way we transformed the constraints to the standard form (4.14), where
fj .xj / D xj , aij D dij � bi and rij.xj / D xj � bi .

The dual minimization problem has the form:

g.u/ D max
i2I ui �! min

subject to

max
i2I ..dij � bi / ^ .ui � bi // � 0; i 2 I:

If Ij ¤ ; and dij � bi ¤ 0 for all i 2 I; j 2 J , the optimal values of the objective
functions are equal.

We will bring two more numerical problems illustrating the theoretical results of the
two last examples.

Example 4.9. Let us consider the .max;C/-linear maximization problem

f .x/ D max.x1; x2; x3/ �! max

subject to

max.5C x1; 3C x2; 5C x3/ � 0;

max.6C x1; 7C x2; 1C x3/ � 0;

max.8C x1; 4C x2; 6C x3/ � 0:

We have in this case m D n D 3, aij D 1 for all i 2 I; j 2 J , the optimal solution
of the problem is x D .�8;�7;�6/, the optimal value of the objective function is

f .x/ D max.�8;�7;�6/ D �6:
The dual minimization problem is

g.u/ D max
i2I ui �! min

subject to

max.5C u1; 6C u2; 8C u3/ � 0;

max.3C u1; 7C u2; 4C u3/ � 0;

max.5C u1; 1C u2; 6C u3/ � 0:

The optimal solution is u� D .�1;�6;�6/. The optimal value of the objective
function is

g.u�/ D max.�1;�6;�6/ D �6:
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Example 4.10. Let us consider the following .max;C/-linear maximization
problem, in which m D n D 3:

f .x/ D max.x1; x2; x3/ �! max

subject to

max.5 ^ x1; 3 ^ x2; 5 ^ x3/ � 4;

max.6 ^ x1; 7 ^ x2; 1 ^ x3/ � 2;

max.8 ^ x1; 4 ^ x2; 6 ^ x3/ � 5:

The constraints can be transformed to the standard form (4.14) by subtracting bi
from the left hand side of the i -th inequality:

max.1 ^ x1 � 4;�1 ^ x2 � 4; 1 ^ x3 � 4/ � 0;

max.4 ^ x1 � 2; 5 ^ x2 � 2;�1 ^ x3 � 2/ � 0;

max.3 ^ x1 � 5;�1 ^ x2 � 5; 1 ^ x3 � 5/ � 0:

The optimal solution is x D .2; 2; 4/, the optimal value of the objective function is

f .x/ D max.2; 2; 4/ D 4:

The dual minimization problem has the form

g.u/ D max.u1; u2; u3/ �! min

subject to

max.1 ^ u1 � 4; 4 ^ u2 � 2; 3 ^ u3 � 5/ � 0;

max.�1 ^ u1 � 4; 5 ^ u2 � 2;�1 ^ u3 � 5/ � 0;

max.1 ^ u1 � 4;�1 ^ u2 � 2; 1 ^ u3 � 5/ � 0:

The optimal solution is u� D .2; 2; 4/, the optimal value of the objective function is

g.u�/ D max.2; 2; 4/ D 4:

Remark 4.5. Let us note that we did not consider purely .max;min/-linear objective
function f .x/ D maxj2J .cj ^ xj / in Example 4.8 and Example 4.10. In this case
functions fj .xj / D cj ^ xj would not satisfy the assumption of Theorem 4.2 that
fj ; j 2 J must be strictly increasing functions of xj .
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4.5 Optimization Problems on Attainable Sets of Equation
Systems

Let us consider now systems of equations

max
j2J .aij ^ rij.xj // D Obi ; i 2 I; (4.25)

where I D f1; : : : ; mg; J D f1; : : : ; ng, rij W R �! R are for all i; j again
continuous and strictly increasing functions. The set of all solutions of such systems
will be denoted by MD. Ob/. If MD. Ob/ D ;, it arises a question which is the next to
Ob right hand side of system (4.25), for which the system of equations is solvable.

Definition 4.1. Let A D faijg. Let us define set R.A/ as follows:

R.A/ D fb 2 Rm j there exists x 2 Rn such that max
j2J .aij ^ rij.xj // D bi ; 8i 2 I g

(4.26)

Set R.A/ will be called attainable set of equation system (4.25) and points b 2
R.A/ will be called attainable points or attainable right hand sides of equation
system with the left hand sides like in (4.25).

We will solve the following optimization problem on the attainable set R.A/ :

���b � Ob
��� D max

i2I

ˇ̌
ˇbi � Obi

ˇ̌
ˇ �! min (4.27)

subject to

b 2 R.A/:

The optimal solution of this problem will be denoted bopt. Let us note that if Ob 2
R.A/, then the optimal value of the objective function of problem (4.27) is equal to
zero. Otherwise this optimal value is always positive.

Note that optimization problem (4.27) can be reformulated as follows:

���b � Ob
��� �! min (4.28)

subject to

M.b/ ¤ ;;

or

t �! min
���b � Ob

��� � t (4.29)
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subject to

b 2 R.A/:

Taking into account the definition of the norm
���b � Ob

���, we can conclude that

problem (4.29) is equivalent to

t �! min (4.30)

subject to

ˇ̌
ˇbi � Obi

ˇ̌
ˇ � t; i 2 I; b 2 R.A/;

or

t �! min (4.31)

Obi � t � bi � Obi C t; i 2 I; b 2 R.A/:

and since we assume that b 2 R.A/, we can reformulate (4.31) as

t �! min (4.32)

subject to

Obi � t � max
j2J .aij ^ rij.xj // � Obi C t; i 2 I; x 2 Rn:

Let us note that the requirement

max
j2J .aij ^ rij.xj // � Obi C t; i 2 I (4.33)

following from (4.32) means that it must be aij ^ rij.xj / � Obi C t; i 2 I; j 2 J ,
which is equivalent to xj � r�1

ij .
Obi C t/; i 2 Ij .t/, where for all j 2 J we set

Ij .t/ D fi j aij > Obi C tg. It means that it must be

xj � Oxj . Ob C t/ D min
i2Ij .t/

.r�1
ij .

Obi C t//; (4.34)

where Ob C t D . Ob1 C t; : : : ; Obm C t/.
Taking into account these considerations we can reformulate optimization

problem (4.32) as follows:

t �! min (4.35)
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subject to

max
j2J .aij ^ rij.xj // � Obi � t; xj � Oxj . Ob C t/; i 2 I; j 2 J:

We will denote the set of feasible solutions of optimization problem (4.35) by
M.t/ and the corresponding optimal value of t will be denoted by topt. Let us note
that if Ob 2 R.A/, we have topt D 0, otherwise it always topt > 0. Since M.t/ ¤ ;
for a sufficiently large t , a nonnegative and finite topt of optimization problem (4.35)
always exists. Our next aim is to propose a method for determining topt and bopt.

First we will prove the following lemma

Lemma 4.3. Let Tij.t/ D fxj j aij^rij.xj / � Obi�t; xj � Oxj . ObCt/g; i 2 I; j 2 J .
Then

M.t/ ¤ ; if and only if for all i 2 I exists j.i/ 2 J such that Tij.i/.t/ ¤ ;:
(4.36)

Proof. Let Tij.t/ D ; for all j 2 J for some i 2 I . Then for any j 2 J either

xj > Oxj . ObC t/ or aij ^rij.xj / < Obi � t . We will show that in this situation x 62 M.t/
for any x 2 Rn. If xj > Oxj . Ob C t/, then it follows from (4.34) that there exists an

index k 2 Ij .t/ such that akj^rkj.xj / > ObkCt so that maxj2J .akj^rkj.xj / > ObkCt/
and therefore x 62 M.t/. Let now x � Ox. Ob C t/ so that the assumption Tij.t/ D ;
for all j 2 J for some i 2 I implies that aij ^ rij.xj / < Obi � t; j 2 J and therefore
maxj2J .aij ^ rij.xj // < Obi � t and therefore x 62 M.t/. It follows that under our
assumption that Tij.t/ D ;; j 2 J no element of M.t/ can exist and M.t/ D ;.

Let now for any i 2 I there exists j.i/ 2 J such that Tij.i/.t/ ¤ ;. We will show
that M.t/ ¤ ;. Let Pj D fi j j.i/ D j g; j 2 J and Tj .t/ D T

i2Pj Tij.i/ 8j 2 J
such that Pj ¤ ;. Let us set further Tj .t/ D Œ�1; Oxj . ObCt/� if Pj D ;. Let us note

that Tj .t/ D Œmaxi2Pj . Obi � t/; Oxj . Ob C t/� if Pj ¤ ;. It follows that Oxj . Ob C t/ 2
Tj .t/; j 2 J . Let i 2 I be arbitrarily chosen. Since Tij.i/.t/ ¤ ; and we have
Oxj.i/. Ob C t/ 2 Tj.i/.t/ � Tij.i/.t/, we obtain that aij.i/ ^ rij.i/. Oxj.i// > Obi � t and
therefore

max
j2J .aij ^ rij. Oxj . Ob C t/// � aij.i/ ^ rij.i/. Oxj.i// � Obi � t:

Since i 2 I was arbitrarily chosen, we obtain eventually that Ox. Ob C t/ 2 M.t/ so
that M.t/ ¤ ;, which we wanted to prove. Therefore (4.36) is fulfilled. ut

Let us note that xj . Ob C t/ for a j 2 J is in general not continuous function in t .

Figure 4.1 below shows a graph of xj . Ob C t/ in case that rij.xj / D xj .

Lemma 4.4. Let i 2 I; j 2 J be arbitrarily chosen. There exists �ij such that
Tij.t/ ¤ ; if and only if t � �ij.
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Fig. 4.1 A graph of xj . Ob C t /

Proof. We will show that for any of the sets Tij.t/ there exists �ij such that Tij.t/ ¤ ;
if and only if t � �ij.

Note that Tij.t/ ¤ ; if and only if Obi � t � aij ^ rij. Oxj . Ob C t// � Obi C t . It must

be therefore aij � Obi � t and rij. Oxj . Ob C t// � Obi � t . It follows that if Tij.t/ ¤ ;, it

must be t � Obi � aij and at the same time Oxj . Ob C t/ � r�1
ij .

Obi � t/. Let us note that

Oxj . Ob C t/ is in general a partially continuous (more exactly upper-semicontinuous)

function in t (compare Fig. 4.1), r�1
ij .

Obi � t/ is a strictly decreasing function of t and

aij ^ rij. Oxj . Ob C t// is equal to a constant aij if rij. Oxj . Ob C t/ � aij.

First, it follows if set Tij.t/ is nonempty then t � �
.1/
ij , where �.1/ij solves the

equation Obi � t D aij, i.e. �.1/ij D Obi � aij.

Further, it remains to investigate the case when aij � rij. Oxj . Ob/C t/ � Obi � t . In

this case we have to find the minimum value of t , for which the inequality Oxj . Ob C
t/ � r�1

ij .
Ob� t/ holds. Since Oxj . ObC t/ is not in general continuous in t , the equation

Oxj . Ob C t/ D r�1
ij .

Ob � t/ may not be solvable with respect to t , but it is possible to
find the minimum value of t , at which the inequality holds. If we denote this value
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Fig. 4.2 �
.2/
ij is an intersection of xj . Ob C t / and Obi .t � 1/

�
.2/
ij , it will be Oxj . Ob C �

.2/
ij / � r�1

ij .
Ob � �

.2/
ij / and Oxj . Ob C t/ < r�1

ij .
Ob � t/ for all

t < �
.2/
ij : We will find �.2/ij as follows.

Let ak1j > ak2j > � � � > aks � aij. Then we have Oxj . ObCt/ D 1 if t � ak1j�bk1
and Oxj . ObC t/ D r�1

khj
. Obkh C t/ if akhj �bkh � t < akh�1j �bkh�1

for h D 2; : : : ; s.
Let us set th D akhj � bkh ; h D 1; : : : ; s. Let

p D maxfh j th � r�1
ij .

Obi � th/; 1 � h � sg:

Then there exists the unique value �.2/ij 2 Œtp; tpC1� such that Oxj . ObC�.2/ij / � r�1
ij .

Ob�
�
.2/
ij / and either Oxj . Ob C �

.2/
ij / D r�1

ij .
Obkp C �

.2/
ij / or Oxj . Ob C �

.2/
ij / > r�1

ij .
Obkp C �

.2/
ij /

and r�1
ij .

Obkp C t/ < Obi � t for all t < �.2/ij . Let us note that in the former case we can

find an approximate value �.2/ij numerically by making use of an appropriate search

method and in the latter case we have �.2/ D tp . The former case is shown in Fig. 4.2,
the latter case is depicted in Fig. 4.3 below. Let us note that the existence and
uniqueness of �.1/ij ; �

.2/
ij follows from the monotonicity and continuity of functions

rij.

Let us set �ij D max.�.1/ij ; �
.2/
ij /. We have:

If t < �ij D �
.1/
ij , then aij ^ rij. Oxj . Ob// � aij < Obi � t so that Tij.t/ D ;;

If t < �ij D �
.2/
ij , then Obi � t > aij � so that aij ^rij. Oxj . Ob// < Obi � t and therefore

Tij.t/ D ;;
We obtain that Tij.t/ ¤ ; if and only if t � �ij, which completes the proof. ut

Theorem 4.3. There exists a value � � 0 such that M.t/ ¤ ; if and only if t � � .
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Fig. 4.3 The case � .2/ij D tp

Proof. Let �ij; i 2 I; j 2 J be defined as in Lemma 4.4. Let us set

� D max
i2I min

j2J �ij:

Let us set �i D minj2J �ij; i 2 I . Let index i0 2 I be defined as follows: �i0 D
maxi2I �i . Then �i0 D � and if t < � , then Ti0j .t/ D ; for all j 2 J and therefore
according to Lemma 4.1 we obtain thatM.t/ D ;. If on the other hand t � �i0 D � ,
then Ox. Ob C t/ 2 M.t/ so that M.t/ ¤ ;. This completes the proof. ut

As a consequence of Theorem 4.3 we obtain that

topt D � ; b
opt
i D max

j2J .aij ^ rij. Oxj . Ob C �/// ; i 2 I;

where topt, bopt are the optimal solutions of problems (4.29), (4.27) respectively.
The optimal value of the objective function of optimization problems (4.27), (4.28)

is
���bopt � Ob

��� D � and Ox. Ob C �/ is the maximum element of set M.�/.

Remark 4.6. The computational complexity depends in general on functions rij.

Values �.2/ij can be in general obtained only by making use of an approximate search

method, values �.1/ij can be expressed explicitly. This fact leads to the idea to propose
an approximate search method directly to find an approximate value of topt. We
can first check whether topt D 0 by checking whether M.0/ ¤ ; (i.e. whether
Ox. Ob/ 2 M.0/). If the answer is positive, the problem is solved. Otherwise we can
easily find a positive value t such that M.t/ ¤ ;. It can be easily verified that we
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can choose as t e.g. any value greater than maxi;j .
ˇ̌
aij

ˇ̌
;
ˇ̌
ˇr�1

ij .
Obi /
ˇ̌
ˇ/. In this case we

have topt 2 .0; t � and therefore we can make use of the usual search procedure on
this interval.

Taking into account Remark 4.6 we will propose in the sequel an algorithm for
finding an approximate �-optimal value topt.�/ of optimisation problem (4.29) with
the properties: M.topt.�// ¤ ; and jtopt � topt.�/j < � for a given positive �. We
will assume that Ob 62 R.A/ and t > 0 has been chosen.

ALGORITHM I.

1 Inputm; n; aij; rij; Obi ; t ; �, t WD 0;

2 If
ˇ̌
t � t

ˇ̌
< �, go to 6 ;

3 Set t 1 WD .t � t /=2C t ;

4 If M.t1/ ¤ ;, set t WD t 1, go to 2 ;

5 Set t WD .t1/=2C t 1 , go to 2 ;

6 topt.�/ WD t , STOP.

Let us note that the verification ofM.t1/ ¤ ; in step 4 can be done by verifying

whether Ox. Ob C t 1/ 2 M.t1/.
Remark 4.7. In what follows we will consider some special cases of systems (4.25)
for which explicit expressions for �ij’s exist. In these cases explicit formulas for
� can be derived. Especially we will consider the case rij.xj / D pij C xj , where
pij 2 R and aij D 1 8i 2 I; j 2 J , which was used in Example 4.1 and the case
rij.xj / D xj ; aij 2 R; i 2 I; j 2 J , which was applied in Example 4.2.

Let us first consider a special case from Example 4.1. We will assume therefore that
for all i 2 I; j 2 J we have rij.xj / D pij C xj and aij D 1. System (4.25) can be
reformulated in this case as follows:

max
j2J .pij C xj / D Obi ; i 2 I: (4.37)

The maximum element Ox. Ob C t/ can be expressed as follows:

Oxj . Ob C t/ D min
k2I .

Obk � pkj/C t D Obk.j / � pk.j /j C t; j 2 J: (4.38)

We have further r�1
ij .

Obi � t/ D Obi � pij � t; i 2 I; j 2 J . Therefore �.2/ij solves in
this case the equation

Obi � pij � t D Obk.j / � pk.j /j C t; i 2 I; j 2 J: (4.39)

and we obtain the following explicit formulas for �.1/ij :



4.5 Optimization Problems on Attainable Sets of Equation Systems 143

�
.2/
ij D .. Obi � pij/ � . Obk.j / � pk.j /j //=2; i 2 I; j 2 J: (4.40)

Since aij D 1, �.1/ij D �1 does not take part in determining of � and we obtain
eventually the following explicit formula for � :

� D max
i2I min

j2J ..
Obi � pij/ � . Obk.j / � pk.j /j //=2; i 2 I; j 2 J: (4.41)

We will illustrate this case by a small numerical example.

Example 4.11. Let m D n D 3, Ob D .0; 0; 0/T ,

P D fpijg D
0
@ 3; 1; 54; 4; 6

7; 7; 3

1
A

We will consider the system

max.3C x1; 1C x2; 5C x3/ D 0;

max.4C x1; 4C x2; 6C x3/ D 0;

max.7C x1; 7C x2; 3C x3/ D 0:

In this case we have rij.xj / D aij C xj for all i 2 I; j 2 J . It can be easily
verified that Ob 62 R. Ob/, further we have

Tij.t/ D Œ0 � pij � t; min
k2I .�pkj C t/�; i 2 I; j 2 J:

It follows that

T D f�ijg D 1=2

�
�pij � min

k2I .�pkj/

�
;

and therefore

T D f�ijg D
0
@ 2; 3; 1=2

3=2; 3=2; 0

0; 0; 3=2

1
A :

Using the formula derived above we obtain � D 1=2, x. Ob C �/ D
.�6:5;�6:5;�5:5/T , bopt D .�1=2; 1=2; 1=2/T . It can be easily verified that

���bopt � Ob
��� D max.1=2; 1=2; 1=2/D 1=2 D topt D �:
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Remark 4.8. Let us note that formula (4.41) for the special case of .max;C/- linear
systems was derived in a different way in [10]. In [10] was derived for topt the
formula

topt D 1=2.A. Ob�A/�/� Ob; (4.42)

where we use the notation introduced in [10], i.e. we set c� D �c for any c 2 Rm,
Ax 2 Rm with .Ax/i D maxj2J .aij C xj /; i 2 I for any .m; n/-matrix A with
elements aij and x 2 Rn, A� D �AT (AT denotes the transposed matrix to A).

Using our notation we have

. Ob�A/�j D
�

max
k2I

.� Obk C akj/

��
D � max

k2I
.� Obk C akj/ D min

k2I .
Obk � akj/; j 2 J;

.A. Ob�A/�/�i D � max
j2J .aij C . Ob�A/�j // D min

j2J .�aij � . Ob�A/�j /; 2 I:

It follows that for all i 2 I

.A. Ob�A/�/�i D min
j2J .�aij � . Ob�A/�j / D min

j2J .�aij � min
k2I .

Obk � akj//;

and

A.. Ob�A/�/� Ob D max
i2I .A..

Ob�A/�/�i C Obi/ D max
i2I .

Obi �aij �min
k2I .

Obk �akj// D 2topt;

If we replace aij by pij, we see that equality (4.42) is identical with (4.41).

Further we derive similarly a simplified formula for � also in the second special
case from Example 4.2, i.e. the case rij.xj / D xj and aij 2 R. In this case we
consider the system

max
j2J .aij ^ xj / D Obi ; i 2 I: (4.43)

for the maximum element Ox. Ob C t/ holds:

Oxj . Ob C t/ D min
k2Ij .t/

Obk C t D Obkp C t; j 2 J; (4.44)

where Ij .t/ D fk 2 I j akj > Obk C tg and indexes p and kp are defined like in the
proof of Lemma 4.4. We have further

�
.1/
ij D Obi � aij:
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�
.2/
ij solves the equation r�1

ij .
Obi � t/ D Oxj . ObC t/ with respect to t . Since in our case

r�1
ij .

Obi � t/ D Obi � t , we obtain that either �.2/ij D akpj � Obkp or �.2/ij solves the

equation Obi � t D Obkp C t , i.e. �.2/ij D . Obi � Obkp/=2. We obtain

�ij D max. Obi � aij; �
.2/
ij ; 0/; (4.45)

where �.2/ij can be obtained explicitly by the procedure described above.
The formula for � is then the following:

� D max
i2I min

j2J .max. Obi � aij; �
.2/
ij ; 0/: (4.46)

We will illustrate determining values �.2/ij for the case when rij.xj / D xj by the
following numerical example.

Example 4.12. Let us have m D 5; I D f1; 2; 3; 4; 5g; j 2 J , let a.j / D
.a1j ; : : : ; a5j /

T D .7; 3; 5; 10:5; 1/T ( i.e. a.j / is the j � th column of a matrix

with elements aij; i 2 I; j 2 J ), Ob D .4; 1; 2; 4:5; 10/T . Then Ij .t/; Oxj . Ob C t/ are
defined as follows:

If t � 6, then Ij .t/ D ;, Oxj . Ob/C t D 1;

If t 2 Œ3; 6/, then Ij .t/ D f4g, Oxj . Ob C t/ D Ob4 C t D 4:5C t ;
If t 2 Œ2; 3/, then Ij .t/ D f1; 3; 4g, Oxj . Ob C t/ D Ob3 C t D 2C t ;

If t 2 Œ�9; 2/, then Ij .t/ D f1; 2; 3; 4g, Oxj . Ob C t/ D Ob2 C t D 1C t ;
If t 2 .�1;�9/, then Ij .t/ D f1; 2; 3; 4; 5g, Oxj . Ob C t/ D Ob5 C t D 1C t .

Let us choose e.g. i D 4 so that we should solve the equation 4:5�t D Oxj . ObCt/.
It can be easily verified that 4:5� t < Oxj . ObC t/ if t � 2 and 4:5� t > Oxj . ObC t/ D
1C t for all t < 2 so that in this case no solution of the equation 4:5� t D Oxj . ObC t/
because of the discontinuity of function Oxj . Ob C t/ and we set �.2/4j D 2. Further we

have Ob4 � a4j D 4:5 � 10:5 D �6 so that according to (4.45) we obtain

�4j D max. Ob4 � a4j ; �
.2/
4j / D max.�6; 2/ D 2:

Another situation will arise if we choose i D 3 so that a3j D 5 and Ob3 � t D 2 � t .
For determining value �.2/3j consider the equation 2 � t D Oxj . Ob C t/. In this case

2 � t < Oxj . Ob C t/ D 1 C t if t � 2 and 2 � t > Oxj . Ob C t/ D 1 C t if t is
sufficiently small (e.g. t D 0 ). Therefore there exists a solution of the equation
2 � t D Oxj . Ob C t/ D 1 C t on the interval .0; 2/ and we obtain �.2/3j D 0:5. Since
Ob3 � a3j D 2 � 5 D �3, we obtain in accordance with (4.45)

�3j D max. Ob3 � a3j ; �
.2/
3j / D max.�3; 0:5/ D 0:5:
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Let us consider further index i D 5. Then a5j D 1, Ob5 � t D 10 � t , �.1/5j D �
.2/
5j D

Ob5 � a5j D 10 � 1 D 9. Further equation Ob5 � t D Ox. Ob C t/ has no solution since
for t � 3 it is 10 � t < Ox. Ob C t/ and for t < 3 we have 10 � t > Ox. Ob C t/ so that
�
.2/
5j D 3 Therefore finally we obtain

�5j D max. Ob5 � a5j ; �
.2/
5j / D max.9; 3/ D 9:

We considered above optimization problems on attainable sets, in which we
searched the nearest element of the attainable set R.A/, to a given “target point”
Ob 2 Rm. In the sequel, we will consider a generalization of the optimization
problems, in which instead of the “target point” a “target set” OB � Rm occurs.
For this purpose we have to change appropriately the definition of the concept of
attainable set in accordance with the chosen definition of a solution of such systems.
The systems we will consider can be described as

max
j2J .aij ^ rij.xj / D bi ; i 2 I; b D .b1; : : : ; bm/ 2 OB: (4.47)

We will define further the corresponding attainable set as follows.

Definition 4.2. Set QR.A; OB/ D fb 2 OB j there exists x 2 Rn such that maxj2J .aij^
rij.xj / D bi ; i 2 I g will be called attainable set of system (4.47).

We will consider optimization problems of the form

�.b; OB/ �! min (4.48)

subject to

b 2 QR.A; OB/;
where �.b; OB/ D minc2 OB kb � ck and OB is a compact subset of Rm. We will
consider the simplest special case, in which OB D Œb; b� D fb I b � b � bg, where
b � b are given elements of Rm. In this case, problem (4.48) can be reformulated
as follows:

t �! min (4.49)

subject to

bi � t � max
j2J .aij ^ rij.xj // � bi C t; i 2 I:

Problem (4.49) can be reformulated as

t �! min (4.50)
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subject to

bi � t � max
j2J .aij ^ rij.xj //; i 2 I; x � Ox.b C t/;

where for all j 2 J
Oxj .b C t/ D min

k2Ij .t/
r�1

kj .bk C t/; Ij .t/ D fk 2 I j akj � bk C tg

Let us note that topt D 0 if and only if QR.A; OB/ \ OB ¤ ;.
Further we can proceed like in the case of problem (4.35) replacing for all i 2 I

term Obi � t by bi � t and Obi C t by bi C t . For the special cases (4.37) and (4.43)
we can obtain explicit formulas for topt.

Remark 4.9. The set of feasible solutions of the optimization problem (4.27) was
equal to R.A/. Let us note that we could require that b satisfies simple additional
constraints. For instance we can require that bi D Obi ; i 2 QI , or that bi D ˛; i 2 QI ,
where QI is a nonempty proper subset of I and ˛ is a given real number. The
procedures proposed above can be easily adjusted for such simple modification
problems of (4.27).

Remark 4.10. In real world applications described in Examples 4.1, 4.2 solving
optimization problem (4.48) can be interpreted as a situation, in which no feasible
solution with the right hand side b 2 OB exists, and we find the nearest right hand side
generating a non-empty feasible set. We assume at the same time that the elements
pij in Example 4.1 and aij in Example 4.2 remain unchanged, i.e. the travelling
times in Example 4.1 and the capacities in Example 4.2 cannot be changed. Another
situation which can be investigated arises if we can change the traveling times and
capacities, but the right hand sides Ob (i.e. the prescribed arrival times in Example 4.1
and prescribed maximal capacities in Example 4.2) are fixed.

We will analyze now in more detail the situation mentioned in Remark 4.10 for
system (4.37), which is a special case of (4.27) of the form

max
j2J . Opij C xj / D bi ; i 2 I; (4.51)

where matrix OP with elements Opij is given and b 2 Rm.

Definition 4.3. Let for any fixed b 2 Rm set OR.b) be defined as follows:

OR.b) D fP D ��pij

�� j max
j2J .pij C xj / D bi ; i 2 I:g

The set OR.b) will be called attaining set of system (4.51) at point b.

Set OR.b) can be characterized as a set of .m; n/-matrices P with elements pij, from
which the given vector b can be attained (i.e. for which there exists a solution x
satisfying (4.51)).
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Let us consider the optimization problem

���P � OP
��� �! min (4.52)

subject to

P 2 OR.b):

We can reformulate (4.52) as follows:

t �! min subject to (4.53)

���P � OP
��� � t; P 2 OR.b);

or alternatively

t �! min (4.54)

Opij � t � pij � Opij C t � t; i 2 I; j 2 J; P 2 OR.b/:

Let us note that if t; P satisfy (4.53), then there exists x 2 Rn such that
maxj2J .pij C xj / D bi ; i 2 I so that inequalities maxj2J . Opij C t C xj / � bi �
maxj2J . Opij � t C xj /; i 2 I hold for any t � 0. It follows that problem (4.51) is
equivalent with

t �! min (4.55)

subject to

max
j2J . Opij � t C xj / � bi � max

j2J . Opij C t C xj /; i 2 I:

Transferring t to the opposite sides of inequalities we obtain eventually equivalent
problem

t �! min (4.56)

subject to

max
j2J . Opij C xj / � bi C t and max

j2J . Opij C xj / � bi � t; i 2 I:

Problem (4.56) can be solved by the same way as problem (4.32) if we assume that
the original system has the special form (4.37) and replace Ob by b.
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4.6 Two-Sided max-Separable Equation and Inequality
Systems: Some Special Cases

Under two-sided max-separable equations and inequality systems we will
understand systems of the form

max
j2J .aij ^ rij.xj / � max

j2J .bij ^ qij.xj /; i 2 I1; (4.57)

max
j2J .aij ^ rij.xj / � max

j2J .bij ^ qij.xj /; i 2 I2; (4.58)

where I D I1[I2, rij W R �! R; qij W R �! R are strictly increasing continuous
functions, aij; bij 2 R [ f�1g, A D faijg; B D fbijg, we set ˛ ^ �1 D �1 for
all ˛ 2 R, and we assume that the equations have already been replaced by two
inequalities. We will investigate in this section properties of some special cases of
such systems.

Remark 4.11. Let us note that according to our knowledge, no effective method for
solving two-sided systems in the general form mentioned above has been published.
In this work we will present results concerning special cases of the systems,
which are connected with polynomial or at least pseudopolynomial computation
procedures and may have applications similar to those considered in the examples in
Introduction. Let us remark that an appropriate choice of elements aij; bij of matrices
A; B makes possible to include in the inequalities also upper bounds on variables
of the considered inequality system. In the sequel, we will sometimes write the
lower and upper bound constraints of variables xj separately in their explicit form
xj � xj � xj ; where xj ; xj are given finite bounds. Let us note that the lower
and upper bounds occur practically always in the applications, since the variables
represent as a rule amounts of resources or capacities of certain objects, which are
always bounded.

The first special case of system (4.57), (4.58) we will consider in this section is the
case, in which the right hand side variables are different from the left hand side
variables and finite lower and upper bounds on variables are given, i.e. the system
has the form:

max
j2J .aij ^ rij.xj / � max

j2J .bij ^ qij.yj /; i 2 I1; (4.59)

max
j2J .aij ^ rij.xj / � max

j2J .bij ^ qij.yj /; i 2 I2; (4.60)

x � x � x; y � y � y; (4.61)

where x � x; y � y are given finite elements of Rn.
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To simplify the notation we will use where necessary for the left and right hand
sides of the inequalities the notations

ri .x/ D max
j2J .aij ^ rij.xj /; qi .y/ D max

j2J .bij ^ qij.yj /; i 2 I: (4.62)

Note that the solutions x must satisfy the inequalities

xj � xj .y/ D min
k2I�

2

.r�1
kj .qk.y///; yj � yj .x/ D min

k2I�

1

.q�1
kj .rk.x/// j 2 J;

where I�
2 D fk 2 I2 j akj > qk.y/g, I�

1 D fk j bkj > rk.x/g.
If either xj0.y/ < xj0 or yj0.x/ < yj0

for some j0 2 J , then the set of solutions

and of system (4.59)–(4.61) is empty.
We will assume further that the set of all solutions satisfying (4.59), (4.61) will be

denotedM1, set of all solutions satisfying (4.60), (4.61) will be denotedM2 so that if
M denotes the set of solutions satisfying (4.59), (4.60), (4.61), thenM D M1\M2.

Let us note that if M ¤ ;, then it must hold

ri .x.y// � qi .y/; i 2 I1; ri .x/ � qi .y.x//; i 2 I2 (4.63)

and

x � x.y/; y � y.x/: (4.64)

In what follows, we will investigate some special cases.
As the first special case we will consider two-sided systems (4.53)–(4.55), in

which I2 D ;. We consider therefore a system having the form

max
j2J .rij.xj / � qi .y/; i 2 I; x � x � x; y � y � y; (4.65)

where I D I1 and qi .y/; i 2 I are defined as in (4.62). If y is fixed, the system
can be considered as a one-sided system of the form (4.1)–(4.2), in which we set
bi D qi .y/ for all i 2 I with a fixed y. Such system with a fixed y satisfies
all assumptions of Lemma 4.1–4.2 and Theorem 4.1. Therefore we can verify for
any fixed y whether the set of solutions of (4.65) is nonempty by making use of
Lemma 4.2 and relations (4.63), (4.64). If system (4.65) has a nonempty set of
solutions, we can solve for any fixed y optimization problem of the form (4.5)–
(4.6) with bi D qi.y/; i 2 I . Adjusting formulas (4.7)–(4.11), we can obtain using
Theorem 4.1 an explicit formula of the optimal solution x�.y/ of the optimization
problem

f .x/ �! min (4.66)

subject to

max
j2J .rij.xj / � qi .y/; i 2 I; x � x � x; y � y � y:
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Note that this optimal solution of the problem (4.66) as well as the corresponding
optimal value f .x�.y// of the objective function depends on the chosen fixed y.

Remark 4.12. Let us note that if system (4.65) has a nonempty set of solutions for
y D y.1/ and y D y.2/ and inequality y.1/ � y.2/ holds, then it follows under the
monotonicity assumptions about the functions rij; qij and fj that f .x�.y.1/// �
f .x�.y.2///. Therefore we have f .x�.y// � f .x�.y// for any y, for which the set
of solutions of (4.65) is nonempty. In other words if we interpret y as parameters in
the right hand sides of (4.65), we can call y “the optimal choice of parameters y” in
the sense of [19].

We will illustrate the theoretical considerations above by small numerical examples:

Example 4.13. Let us consider the special case, in which aij D bij D 1, rij.xj / D
cij C xj ; qij.yj / D dij C yj , where cij; dij 2 R, i.e. we consider system of two-
sided .max;C/-linear inequalities. Let us have further m D n D 3, so that I D
f1; 2; 3g; J D f1; 2; 3g. Let us consider the optimization problem:

f .x/ D max.x1; x2; x3/ �! min

subject to

c1.x/ D max.4C x1; 5C x2; 2C x3/ � d1.y/ D max.3C y1; 4C y2; 8C y3/;

c2.x/ D max.7C x1; 2C x2; 3C x3/ � d2.y/ D max.7C y1; 8C y2; 9C y3/;

c3.x/ D max.8C x1; 3C x2; 1C x3/ � d3.y/ D max.0C y1; 1C y2; 3C y3/;

x � .�10;�10;�10/; y � .0; 0; 0/:

Using the method from Theorem 4.1 we obtain:
x
.i/
j .y/ D di .y/� cij for all i 2 I; j 2 J ,

min
j2J fj .x

.1/
j / D min

j2J .d1.y/� c1j /D min.d1.y/� 4; d1.y/� 5; d1.y/� 2/

D d1.y/� 5;

and similarly we obtain

min
j2J fj .x

.2/
j / D min

j2J .d2.y/ � c2j / D d2.y/ � 7;

min
j2J fj .x

.3/
j / D min

j2J .d3.y/� c3j / D d3.y/ � 8:

Using the notation from Theorem 4.1, we obtained: k.1/ D 2; k.2/ D 1; k.3/ D 1

so that P1 D f2; 3g; P2 D f1g; P3 D ; and therefore the optimal solution x�.y/
has the components
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x�
1 .y/ D max.d2.y/� 7; d3.y/ � 8/ D max.0C y1; 1C y2; 3C y3/;

x�
2 .y/ D d1.y/ � 5 D max.�2C y1;�1C y2; 3C y3/;

x�
3 .y/ D �10:

The optimal value of the objective function is

f .x�.y// D max
j2J .x

�
j .y//;

so that

f .x�.y//D max.max.0C y1; 1C y2; 3C y3/; max.�2C y1;�1C y2; 3C y3/; � 10/
D max.0C y1; 1C y2; 3C y3/ :

The optimal choice of y generating the smallest attainable optimal value (the
optimal choice of parameter y in the sense of Remark 4.12) is y D 0 with
x�.0/ D .2; 3;�10/, f .x�.0/ D max.2; 3;�10/ D 3.

In the next part of this section we will study the special case of two-sided
.max;min/-linear equation system having the form

max
j2J .aij ^ xj / D max

j2J .bij ^ yj / i 2 I; xj � xj ; yj � yj j 2 J; (4.67)

where aij; bij; xj ; yj are finite. System (4.67) is a special case of system (4.59)–
(4.61) with rij.xj / D xj ; qij.yj / D yj ; i 2 I; j 2 J , I1 D I2 D I , and
xj D y

j
D �1 for all j 2 J . Such equation system was investigated in

[7]. It follows from the results of this paper that the solution set M of (4.61) is
always nonempty and possesses the maximum element .xmax; ymax/, i.e. element
.xmax; ymax/ 2 M for which the implication .x; y/ 2 M H) Œx � xmax and y �
ymax� holds. A polynomial algorithm for finding the maximum solution .xmax; ymax/

of system (4.67) having the complexity O.mn:.m ^ n// was proposed in [7]. If we
include in system (4.67) also finite lower bounds x; y, it follows that

M ¤ ; ” x � xmax and y � ymax:

Remark 4.13. Let us note that a system with the same variables on both sides of the
equations, i.e. a system

max
j2J .aij ^ xj / D max

j2J .bij ^ xj /; i 2 I

can be transformed to the form

max
j2J .aij ^ xj / D max

j2J .bij ^ yj /; i 2 I; xj D yj ; j 2 J:
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By introducing appropriate coefficients this last system will have the form (4.67).
Therefore the system with non-separated variables has the same properties as
system (4.67), especially the set of its solutions has the maximum element xmax,
for which it holds x � xmax for all solutions x of the equation system.

Taking into account Remark 4.13, we can consider in the sequel systems with
variables xj ; j 2 J on both sides of the equations.

We will solve the following optimization problem:

f .x/ D max
j2J fj .xj / �! min (4.68)

subject to

max
j2J .aij ^ xj / D max

j2J .bij ^ xj /; i 2 I; xj � xj � xj ; j 2 J; (4.69)

where fj .xj /; j 2 J are continuous convex functions. Let Oxj ; j 2 J be points at
which functions fj ; j 2 J attain minimum on interval Œxj ; x

max
j �. Let xopt be the

optimal solution of problem (4.68)–(4.69) and let M denote the set of solutions of
system (4.69).

Lemma 4.5. Let M.˛/ D fx 2 M j f .x/ � ˛g, ˛ 2 R, let functions fj ; j 2 J

be convex. If M.˛/ ¤ ;, there exist x.˛/; x.˛/ such that M.˛/ D M \ fx 2
Rn j x.˛/ � x � x.˛/g. If ˛ < f .xopt/, then M.˛/ D ;.

Proof. Let j 2 J be arbitrarily chosen. For any x 2 M.˛/ we have f .x/ D
maxj2J fj .xj / � ˛ and therefore it is fj .xj / � ˛. Since function fj is convex,
there exist Qx1j .˛/; Qx2j .˛/ 2 R such that fj .xj / � ˛ if and only if Qx1j .˛/ � xj �
Qx2j .˛/. Using the algorithm of [7] we will find the maximum element of the set
M \ fx 2 Rn j xj � Qx2j .˛/ ^ xj ; j 2 J g.
Let xmax denote the maximum element.
If max.xj ; Qx1j .˛// � xmax

j ; j 2 J , we will set for all j 2 J :

xj .˛/ D max.xj ; Qx1j .˛//; xj .˛/ D xmax
j

.
Then vectors x.˛/ D .x1.˛/; : : : ; xn.˛//; x.˛/ D .x1.˛/; : : : ; xn.˛// form

the lower and upper bounds for the elements of M.˛/.
If there exists an index j0 2 J such that max.xj0; Qx1j0 .˛// > xmax

j0
,

then M.˛/ D ;.
The implication ˛ < f .xopt/ H) M.˛/ D ; is evident. The proof is

completed. ut
Remark 4.14. Lemma 4.5 can be extended to unimodal continuous functions
fj ; j 2 J , i.e. functions, for which there exists a point x0

j 2 Œxj .˛/; x
max
j � such

that function fj is strictly decreasing for xj 2 Œxj .˛/; x
0
j � and strictly increasing

for xj 2 Œx0
j ; x

max
j �.
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Lemma 4.5 can be used to construct a search algorithm, which finds an �-
optimal solution xopt.�/ of optimization problem (4.68) - (4.69), i.e. an element
xopt.�/ 2 M such that jf .xopt.�// � f .xopt/j < �. The algorithm will proceed
similarly as the ALGORITHM I for finding � described in Sect. 4.5 above. We will
describe this algorithm in what follows. We will assume that there exists a value
˛ such that M.˛/ ¤ ; and we have at our disposal a lower bound ˛ such that
f .x/ � ˛ 8x 2 M.˛/
ALGORITHM II.

1 Input m; n; I; J , aij; bij; fj ; i 2 I; j 2 J , �; x; x, ˛� such that M.˛/ ¤ ;,
˛;
2 Set ˛� WD ˛ C 1=2.˛ � ˛/;

3 If M.˛�/ ¤ ;, set ˛ WD ˛� and go to 5 ;

4 Set ˛ WD ˛� and go to 2 ;

5 If j˛ � ˛j < �, then any element of M.˛/ is an �-optimal solution, STOP;

6 Go to 2

We will illustrate ALGORITHM II by a small numerical example. In this example
we use for finding xmax the algorithm proposed in [7].

Example 4.14.

f .x/ D max.jx1 � 6:5j ; jx2 � 8j ; jx3 � 6j ; jx4 � 5j/ �! min

subject to

max.1 ^ x1; 7 ^ x2; 15 ^ x3; 18 ^ x4/ D max.3 ^ x1; 2 ^ x2; 5 ^ x3; 10 ^ x4/
max.0 ^ x1; 9 ^ x2; 1 ^ x3; 0 ^ x4/ D max.4 ^ x1; 6 ^ x2; 7 ^ x3; 3 ^ x4/
max.9 ^ x1; 6 ^ x2; 7 ^ x3; 0 ^ x4/ D max.7 ^ x1; 3 ^ x2; 2 ^ x3; 2 ^ x4/

We have therefore in this case m D 3; n D 4; ˛ D 0. Let us have further
� D 0:2, x D .5; 1; 5; 6/, x D .7; 7; 10; 9/ and choose ˛ D 4. Then M.˛/ D
M.4/ ¤ ; since we have x.˛/ D x.4/ D xmax D .7; 7; 9; 9/, x.˛/ D x.4/ D
.5; 4; 5; 6/, so that x.4/ � x.4/ D xmax, and f .xmax/ D 4.
Calculations according to ALGORITHM II run as follows:

2 ˛� WD 2;

3 M.˛�/ ¤ ;, ˛ WD 2;

5 j˛ � ˛j D 2 > �;

2 ˛� WD 1;

4 M.˛�/ D ;, ˛ WD 1

since we have in this case

x.˛�/ D x.1/ D .5:5; 7; 5; 6/ 6� xmax.˛�/ D xmax.1/ D .7; 6; 6; 6/I
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5 j˛ � ˛j D 2 � 1 D 1 > � 2 ˛� WD 3=2;

3 M.˛�/ ¤ ;, ˛ WD 1:25;

5 j˛ � ˛j D 0:25 > �;

2 ˛� WD 1:125;

3 M.˛�/ D ;, ˛ WD 1:125

since x.1:25/ D .5:25; 6:75; 5; 6/ 6� xmax.1:25/ D .7; 6:25; 6:25; 6:25/

5 j˛ � ˛j D 0:125 < � D 0:2

the �-optimal solution is any element of M.˛/ D M.3=2/, e.g. its maximum
element xmax.3=2/ D .7; 6:5; 6:5; 6:5/ with the value f .xmax.3=2// D 3=2,

STOP

Let us note that we could choose another element of M.3=2/ in the last step
of the algorithm with possibly a smaller value of the objective function. For
instance, we could choose Qx D .7; 6:75; 6:75; 6:75/ 2 M.3=2/, for which f . Qx/ D
max.0:5; 1:25; 0:75; 1:25/D 1:25 < f .xmax.3=2// D 3=2.

The third special case investigated in this section is the .max;min/-linear
inequality system of the form

max
j2J .aij ^ xj / � max

j2J .bij ^ xj /; i 2 I; xj � xj ; j 2 J; (4.70)

which is the special case of system (4.57)–(4.58) with I1 D I D f1; 2; : : : ; mg,
I2 D ; and with finite upper bounds of the variables xj ; j 2 J . We will assume
thatM� denotes the set of all solutions of system (4.70). Let us note that set M� is
always nonempty, because e.g. element Qx with components

Qxj D min
k2I min

s2J .aks ^ bks/; j 2 J

belongs to M�.
By appropriately chosen m slack variables on the right hand sides, we can

transform system (4.70) to an equality system (4.69) with mC n variables and use
the method of [7] to find the maximum element of M�.

In what follows, we will present a direct method for finding the maximum
element of M�. To simplify the notations we will set for any x 2 Rn

ai .x/ D max
j2J .aij ^ xj /; bi .x/ D max

j2J .bij ^ xj /; i 2 I

and introduce the following notations:

I .1/.x/ D fi 2 I j ai .x/ < bi .x/g;
˛.x/ D min

i2I ai .x/;

I .2/.x/ D fi 2 I .1/.x/ j ai .x/ D ˛.x/g;
Ji .x/ D fj 2 J j bij ^ xj > ˛.x/g; i 2 I .2/:
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Note that if I .1/.x/ D ;, then evidently xmax D x. If I .1/.x/ ¤ ;, then x 62 M�
and we define x.1/ 2 Rn as follows:

x
.1/
j D ˛.x/; j 2 QJ ; x.1/j D xj ; j 2 J n QJ ; (4.71)

where

QJ D
[

i2I .2/.x/
Ji .x/:

The following lemmas establish some properties of x.1/j .

Lemma 4.6. If I .1/.x/ ¤ ;, then

ai .x
.1// D bi.x

.1//; i 2 I .2/.x/

Proof. Let i be arbitrary index of I .2/.x/ and j 2 Ji . We have further:

˛.x/ D ai .x/ D ai .x
.1// D bij ^ x.1/j ; j 2 Ji :

and

bij ^ x.1/j D bij ^ xj ; j 2 J n Ji ;
so that

bi .x
.1// D ˛.x/

and therefore

ai .x
.1// D bi.x

.1// D ˛.x/:

Since i was an arbitrary index of I .2/.x/, the proof is completed. ut
Lemma 4.7. If ˛.x/ � ai .x/ � bi .x/, then ai .x

.1// � bi .x
.1//.

Proof. Let i be an arbitrary index such that ˛.x/ � ai .x/ � bi.x/. If ˛.x/ D ai .x/,
then it follows from the proof of Lemma 4.6 that

ai .x
.1// D ai .x/ � bi.x/ � bi .x

.1//;

where the last inequality follows from (4.71) (it is namely x � x.1/).
Let us assume further that ˛.x/ > ai .x/ and let j0 2 J be any index such that

ai .x/ D aij0 ^ xj0 . Then j0 62 QJ , since if index j0 belonged to QJ , it would exist an
index i0 2 I .1/.x/ such that j0 2 Ji0 and it would be
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ai0.x/ < ˛.x/ D min
i2I .1/.x/

ai .x/;

which is a contradiction. Since j0 62 QJ , it is according to (4.71) x.1/j0 D xj0 . Since j0
was an arbitrary “active” index determining the value ai .x/, it is ai .x.1// D ai .x/.
Further since, as we have already mentioned above, x � x.1/, we obtain:

˛.x/ > ai .x
.1// D ai .x/ � bi .x/ � bi .x

.1//;

which completes the proof. ut
Remark 4.15. Summarizing Lemma 4.7, we can say that if we replace x by x.1/, all
inequalities ai .x/ � bi.x/, which were satisfied for x D x and for which ˛.x/ �
ai .x/ remain satisfied also for x D x.1/.

Lemma 4.8. Let x� 6� x.1/. Then x� 62 M�.

Proof. Let j0 2 J be an arbitrary index, for which the inequality x�
j0
> x

.1/
j0

holds.

If j0 62 QJ , then it is x�
j0
> x

.1/
j0

D xj0 and therefore x� 62 M�. Let us assume further

that j0 2 QJ and x� 2 M�.
Then there exists an index i0 2 I .2/.x/ such that j0 2 Ji0 and it is

˛.x/ D ai0.x/ D ai0 .x
.1//;

where the last equality follows from the proof of Lemma 4.7. It follows further from
the definition of x.1/ that bi0.x

.1// D ˛.x/ D ai0 .x
.1// (see (4.71)). Since j0 2 Ji0 ,

we have

bi0.x
.1// D bi0j0 ^ x.1/j0 D bi0j0 ^ ˛.x/ D ˛.x/

since bi0j0 > ˛.x/. We have further according to our assumptions x�
j0
> x

.1/
j0

so that

bi0.x
�/ � bi0j0 ^ x�

j0
> bi0j0 ^ x.1/j0 D bi0j0 ^ ˛.x/:

Since we assumed that x� 2 M�, it must be x� � x and therefore ai0.x
�/ �

ai0.x/ D ˛.x/. Summarizing the previous inequalities we obtain:

ai0 .x
�/ � ai0 .x/ D ˛.x/ D bi0j0 ^ x.1/j0 < bi0j0 ^ x�

j0
� bi0.x

�/;

so that ai0 .x
�/ < bi0.x�/ and therefore x� 62 M�. This contradiction completes the

proof. ut
It follows from Lemmas 4.6–4.8 that any element of M� must be smaller or

equal to x.1/, and it is x.1/ � x, x.1/ ¤ x. Therefore x.1/ can be accepted as a new
upper bound for elements of M� and if x.1/ 62 M� we can repeat the calculations
with this new upper bound. If x.1/ 2 M�, then x.1/ is the maximum element of
M�.
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In the sequel, we will describe this procedure in an algorithmic form.
ALGORITHM III.

1 Inputm; n; I; J; aij; bij; x.

2 Find I .1/.x/.

3 If I .1/.x/ D ;, then xmax WD x, STOP.

4 Find ˛.x/, I .2/.x/.

5 Find Ji for i 2 I .2/.x/ and set QJ WD S
i2I .2/.x/ Ji .

6 xj WD ˛.x/; j 2 QJ , go to 2 .

Remark 4.16. Let us note that in each iteration at least one inequality, which was
unsatisfied in the preceding step becomes satisfied and for any i 2 I such that
ai .x/ � ˛.x/ the inequality ai .x/ � bi.x/ holds. Therefore we need at most
m ^ n iterations to get xmax. In case we have rational or integer coefficients aij; bij,
the complexity of each iteration is equal to O.m:n/ so that we obtain the total
complexity equal to O..m ^ n/mn/.

We will illustrate the theoretical results by a small numerical example.

Example 4.15. Let matrices A; B be given as follows:

A D
0
@6; 4; 2; 18; 5; 7; 3

3; 0; 1; 0

1
A

B D
0
@ 8; 5; 6; 2

4; 7; 7; 5

10; 2; 10; 2

1
A

We have in this case m D 3; n D 4; I D f1; 2; 3g; J D f1; 2; 3; 4g. Let x D
.50; 50; 50; 50/.

ALGORITHM III. proceeds as follows:

1 Inputm; n; I; J; A;B; x.
————————————————————————————- Iteration 1
2 x D .50; 50; 50; 50/, I .1/.x/ WD f1; 3g
3 I .1/.x/ ¤ ;.

4 ˛.x/ WD 3; I .2/.x/ D f3g.

5 J3 WD f1; 3g, QJ WD J3 D f1; 3g.

6 xj WD 3; j 2 QJ , go to 2 .

————————————————————————————- Iteration 2
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2 x D .3; 50; 3; 50/, I .1/.x/ WD f1; 2g
3 I .1/.x/ ¤ ;.

4 ˛.x/ WD 4; I .2/.x/ D f1g.

5 J1 WD f2g, QJ WD J1 D f2g.

6 xj WD 4 for all j 2 QJ , go to 2 .
————————————————————————————- Iteration 3
2 x D .3; 4; 3; 50/, I .1/.x/ WD f2g
3 I .1/.x/ ¤ ;.

4 ˛.x/ WD 4; I .2/.x/ D f2g.

5 J2 WD f4g, QJ WD J2 D f4g.

6 xj WD 4 for all j 2 QJ , go to 2 .
————————————————————————————- Iteration 4
2 x D .3; 4; 3; 4/, I .1/.x/ D ;
3 I .1/.x/ D ;, xmax WD x D .3; 4; 3; 4/, STOP.

Remark 4.17. Since we have an effective method for finding the maximum element
of set M�, we can use an iteration algorithm similar to ALGORITHM II. to get an
�-optimal solution of the optimization problem

f .x/ D max
j2J fj .xj / �! min

subject to

x 2 M�; x � x;

where fj .x/; j 2 J are continuous unimodal functions and x is a given lower
bound of x.

Remark 4.18. Let us note that since each equation can be replaced by two
symmetric inequalities, any system of m .max;min/-linear equations can be
replaced by an equivalent system of 2m .max;min/-linear inequalities. Therefore
ALGORITHM II and ALGORITHM III can be used also to solve .max;min/-linear
equations and minimization problems solved by ALGORITHM I.

Remark 4.19. Let us note that another special system of .max;min/-linear
inequalities with binary entries was solved by a polynomial algorithm in [4].

Remark 4.20. By interchanging the operations max; min we can consider in a
similar way .min;max/-linear systems and inequalities of the form

min
j2J max.aij; xj / D; �; � min

j2J max.bij; xj /; i 2 I:
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Let us note further that the proposed procedures remain unchanged, if we assume
that the constraint coefficients aij; bij and components of solution x are elements of
any set QR; QR � R, which is closed with respect to operations max and min. Besides
QR D R as in the theory presented above, we can consider also for instance that QR is

the set of rational numbers, integer numbers or any finite subset of R.

4.7 Conclusions

The chapter provides a unified approach to studying systems of one- and two-sided
.max;min/-separable equation and inequality systems. Further we solve optimiza-
tion problems, in which the set of feasible solutions is described by such systems
and the objective function is a .max/-separable function. While for the one-sided
system an explicit formula for solving the optimization problems was presented,
for the two-sided systems an effective solution method is presented only for some
types of the problems. The unified approach presented in this chapter encompasses
so called .max;min/- linear and .max;C/-linear equation and inequality systems
as well as optimization problems with a max-separable objective function and
.max;min/- linear or .max;C/-linear equation and inequality constraints, which
were studied in the literature. Since the max-operation is only a semigroup
operation, the transfer of variables from one side of equations or inequalities to
the other side is not possible without changing the structure of the relations so
that the one-sided systems and two-sided systems have to be studied using different
approaches and problems with two-sided equations and/or inequalities could be up
to now solved effectively only for some classes of the problems considered in the
last part of this chapter.
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Chapter 5
Interval Eigenproblem in Max-Min Algebra

Abstract The eigenvectors of square matrices in max-min algebra correspond
to steady states in discrete events system in various application areas, such as
design of switching circuits, medical diagnosis, models of organizations and
information systems. Imprecise input data lead to considering interval version of
the eigenproblem, in which interval eigenvectors of interval matrices in max-min
algebra are investigated. Six possible types of an interval eigenvector of an interval
matrix are introduced, using various combination of quantifiers in the definition.
The previously known characterizations of the interval eigenvectors were restricted
to the increasing eigenvectors, see [11]. In this chapter, the results are extended to
the non-decreasing eigenvectors, and further to all possible interval eigenvectors of
a given max-min matrix. Classification types of general interval eigenvectors are
studied and characterization of all possible six types is presented.

5.1 Introduction

The input data in real problems are usually not exact and can be rather characterized
by interval values. Considering matrices and vectors with interval coefficients is
therefore of great practical importance, see [3–9, 12, 16, 19, 22, 23]. For systems
described by interval coefficients the investigation of steady states leads to comput-
ing interval eigenvectors. The eigenspace structure of a given interval matrix A in
max-min algebra is studied in this chapter.

By max-min algebra we understand a triple .B;˚;˝/, where B is a linearly
ordered set, and ˚ D max, ˝ D min are binary operations onB. We assume that B
contains the minimal elementO and the maximal element I . The notation B.m; n/
.B.n// denotes the set of all matrices (vectors) of dimension m � n (dimension n)
over B. Operations ˚; ˝ are extended to addition and multiplication of matrices
and vectors in the standard way. That is, for matrices A;B;C 2 B.m; n/ we write
C D A ˚ B , if cij D aij ˚ bij for every i 2 M D f1; 2; : : : ; mg and j 2 N D
f1; 2; : : : ; ng. Similarly, for matrices A 2 B.m; p/; B 2 B.p; n/; C 2 B.m; n/
we write C D A ˝ B , if cij D Lp

kD1 aik ˝ bkj for every i 2 M and j 2 N . It is
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164 5 Interval Eigenproblem in Max-Min Algebra

easy to verify that the usual arithmetic rules, such as commutativity, associativity
and distributivity, hold for computation with matrices over .B;˚;˝/.

The linear order on B extends componentwise to partial ordering on B.m; n/
and B.n/ and the notation _ (^) is used for the binary join (meet) in these sets.
In more detail, for A;B 2 B.m; n/ (x; y 2 B.n/) we write A � B (x � y), if
aij � bij (xj � yj ) for every i 2 M , j 2 N . Analogously, we have .A _ B/ij D
max.aij; bij/ . .x _ y/j D max.xj ; yj / / and .A^B/ij D min.aij; bij/ . .x ^ y/j D
min.xj ; yj / / for every i 2 M , j 2 N . Operators _ (^) may also be quantified over
a set S , as

W
i2S xi .

V
i2S xi / whenever the upper (resp. lower) bound exists. The

Boolean notation [ and \ respectively will be used for union and intersection of
sets.

The eigenproblem for a given matrix A 2 B.n; n/ in max-min algebra consists
of finding a value � 2 B (called the eigenvalue) and a vector x 2 B.n/ (called
the eigenvector) such that the equation A ˝ x D � ˝ x holds true. It is well-
known that the above problem in max-min algebra can be in principle reduced to
solving the equation A ˝ x D x. Namely, if x 2 B.n/ fulfills the equation A ˝
x D � ˝ x, then an easy computation shows that y D � ˝ x fulfills the equation
A ˝ y D y. The eigenproblem in max-min algebra has been studied by many
authors. Interesting results were found in describing the structure of the eigenspace
(the set of all eigenvectors), and algorithms for computing the greatest eigenvector
of a given matrix were suggested, see e.g. [1, 2, 13–15, 17, 18, 20, 21].

The complete structure of the eigenspace has been described in [10], where
the eigenspace of a given matrix is presented as a union of intervals of permuted
monotone (increasing or non-decreasing) eigenvectors. Explicit formulas are shown
for the lower and upper bounds of the intervals of monotone eigenvectors for any
given monotonicity type. By permutation of indices, the formulas are then used for
description of the whole eigenspace of a given matrix. The monotonicity approach
from [10] has been applied to the interval eigenproblem in [11], where a classi-
fication consisting of six different types of interval eigenvectors is presented, and
detailed characterization of these types is given for increasing interval eigenvectors
(which are called ‘strictly increasing’ in both papers [10, 11]).

The aim of this chapter is to extend the results from [11] to all types of
non-decreasing interval eigenvectors (which are simply called ‘increasing’ in [10]
and [11]). Furthermore, permutations of indices are used in the paper for finding
characterizations of all six classification types without any restriction. By this, the
interval eigenproblem is completely solved.

The content of the chapter is organized as follows. Section 5.1.1 presents
applications of max-min eigenvectors and a simple example. In Sect. 5.1.2 the basic
results from [10] and the necessary notions are described, which will be used later
in Sect. 5.2.1. In Sect. 5.2 we define interval matrices and six basic types of interval
eigenvectors, according to [11]. Section 5.2.1 is the main part of the chapter: for
a given interval partition D, all six types of D-increasing interval eigenvectors
are described. The results are generalized for arbitrary interval eigenvectors in
Sect. 5.2.2. Finally, Sect. 5.3 shows all relations between the considered six general
types of interval eigenvectors and several examples.
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5.1.1 Max-Min Eigenvectors in Applications

Eigenvectors of matrices in max-min algebra are useful in applications such as
automata theory, design of switching circuits, logic of binary relations, medical
diagnosis, Markov chains, social choice, models of organizations, information
systems, political systems and clustering.

As an example of a business application we consider evaluation of projects
adopted by a company. Position of a project is characterized by several components,
such as its importance for the future of the company, the assigned investments, the
intensity of the project, or its impact on market. The level of each component i is
described by some value xi , which is influenced by the levels of all components xj .
The influence is expressed by a constant factor aij, and the position vector x at time
t C 1 is given by equalities xi .t C 1/ D maxj

�
min.aij; xj .t//

� D L
j

�
aij ˝ xj .t/

�
for every i , or shortly x.tC1/ D A˝x.t/, in matrix notation. The steady position of
the project is then described by the equation x.t C 1/ D x.t/, i.e. A˝x.t/ D x.t/.
In other words, x.t/ is then an eigenvector of matrix A, which means that the
steady states exactly correspond to eigenvectors. In reality, interval eigenvectors
and interval matrices should be considered.

Further examples are related to business applications describing other activities,
e.g. planning different forms of advertisement. Similar applications can also be
found in social science, biology, medicine, computer nets, and many other areas.

5.1.2 Basics on the Eigenspace Structure of a Max-Min Matrix

Notation N D f1; 2; : : : ; ng with a given natural number n will be used in Chaps. 5
and 6. For a fixed matrix A 2 B.n; n/ we denote analogously as in [10] the set of
all increasing vectors of dimension n

B<.n/ D f x 2 B.n/j .8i; j 2 N/Œi < j ) xi < xj � g ;

and the set of all non-decreasing vectors

B�.n/ D f x 2 B.n/j .8i; j 2 N/Œi < j ) xi � xj � g :

Clearly, every increasing vector is non-decreasing, i.e. B<.n/ � B�.n/ (the
converse inclusion does not hold). Further we denote the eigenspace of a matrix
A 2 B.n; n/

F .A/ D f x 2 B.n/jA˝ x D x g ;

and the eigenspaces of all increasing eigenvectors (non-decreasing eigenvectors)

F<.A/ D F .A/ \ B<.n/ ; F�.A/ D F .A/ \ B�.n/ :
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Let Pn denote the set of all permutations on N . It is clear that any vector x 2
B.n/ can be permuted to a non-decreasing vector x' by some permutation ' 2 Pn.
If we denote by A'' the matrix created from a given n � n max-min matrix A by
permuting its rows and columns by ', then the structure of the eigenspace F .A/

of A can be described by investigating the structure of non-decreasing eigenspaces
F�.A''/ for all possible permutations ', in view of the following theorem.

Theorem 5.1 ([10]). Let A 2 B.n; n/, x 2 B.n/ and let ' 2 Pn. Then x 2 F .A/

if and only if x' 2 F .A''/.

For the convenience of the reader we present a simple proof of the theorem (see
[10]).

Proof. Assume that x 2 F .A/, i.e. A˝ x D x. By definition, for every i 2 N we
have

L
j2N .aij ˝ xj / D xi . As ' is a permutation on N , we have

L
j2N .ai'.j / ˝

x'.j // D xi . By the same argument,
L

j2N .a'.i/'.j / ˝ x'.j // D x'.i/ for every
i 2 N . Hence, A'' ˝ x' D x' , i.e. x' 2 F .A''/. The converse implication is
analogous. ut

We shall use notation B<
' .n/ D ˚

x 2 B.n/j x' 2 B<.n/


, B�

' .n/ D ˚
x 2

B.n/j x' 2 B�.n/


, F<

' .A/ D ˚
x 2 F .A/j x' 2 B<.n/



and F�

' .A/ D ˚
x 2

F .A/j x' 2 B�.n/


.

In this notation, the assertions of Theorem 5.1 can be expressed as F<
' .A/ D˚

x 2 B.n/j x' 2 F<.A''/



and F�
' .A/ D ˚

x 2 B.n/j x' 2 F�.A''/


.

For A 2 B.n; n/, the structure of the increasing eigenspace F<.A/ (which is
a proper subset of F�.A/) has been described in [10] as an interval of increasing
vectors. The lower and upper bound vectors m?.A/, M?.A/ 2 B.n/ are defined
componentwise for every i 2 N by formulas

m?
i .A/ D max

j�i max
k>j

ajk ; M?
i .A/ D min

j�i max
k�j

ajk : (5.1)

Theorem 5.2 ([10]). Let A 2 B.n; n/ and let x 2 B.n/ be an increasing vector.
Then x 2 F .A/ if and only if m?.A/ � x � M?.A/. In formal notation,

F<.A/ D Œm?.A/;M?.A/� \ B<.n/ :

The structure of the whole non-decreasing eigenspace F�.A/ is described
analogously using interval partitions of the index set N . By interval partition we
understand a partition of N consisting of integer subintervals of N . The set of all
interval partitions on N will be denoted as Dn.

For every interval partitionD 2 Dn and for every i 2 N , we denote by DŒi� the
integer interval of the partition containing i . In other words, DŒi� is the (uniquely
determined) integer interval I 2 D with i 2 I . For i; j 2 N we write DŒi� < DŒj �
if i 0 < j 0 holds for any i 0 2 DŒi�, j 0 2 DŒj �, and DŒi� � DŒj � if DŒi� < DŒj � or
DŒi� D DŒj � hold.
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For a given partition D 2 Dn and for a vector x 2 B.n/ we say that x is D-
increasing if for any indices i; j 2 N

xi D xj if and only if DŒi� D DŒj � ;

xi < xj if and only if DŒi� < DŒj � :

The set of all D-increasing vectors in B.n/ will be denoted as B<.D; n/). If A 2
B.n; n/, then the set of allD-increasing eigenvectors ofA is denoted byF<.D;A/.

It is easy to see that for every non-decreasing vector x 2 B�.n/, there is exactly
one interval partition D 2 Dn such that x is D-increasing. In particular, if vector x
is increasing on N , then the corresponding partition is equal to the (finest possible)
partition consisting of all singletons D D ˚figj i 2 N



. On the other hand, if x is

constant, then the partitionD consists of a single class N , i.e. D D fN g.
Hence, the non-decreasing eigenspace F�.A/ can be expressed as the union

of D-increasing eigenspaces
S
D2Dn

F<.D;A/. For any fixed interval partition
D 2 Dn, the bounds given in Theorem 5.2 for increasing eigenvectors, have
been generalized in [10] for D-increasing eigenvectors. The bounds m?.D;A/,
M?.D;A/ 2 B.n/ were defined and the following theorem has been proved. For
every i 2 N

m?
i .D;A/ D max

j2N;DŒj ��DŒi� max
k2N;DŒk�>DŒj � ajk ; (5.2)

M?
i .D;A/ D min

j2N;DŒj ��DŒi� max
k2N;DŒk��DŒj � ajk : (5.3)

Theorem 5.3 ([10]). Let A 2 B.n; n/, D 2 Dn and let x 2 B.n/ be a D-
increasing vector. Then x 2 F .A/ if and only if m?.D;A/ � x � M?.D;A/.
In formal notation,

F<.D;A/ D Œm?.D;A/;M?.D;A/� \ B<.D; n/ :

The theorem allows to describe the structure of the non-decreasing eigenspace
F�.A/ of a given matrix A. In view of Theorem 5.1, the above characterization
can be further extended to the whole eigenspace F .A/ using permutations on N .
Theorem 5.3 will be used in this paper as an important tool for characterization of
interval eigenvectors.

5.2 Interval Eigenvectors Classification

Similarly as in [4, 9, 11, 12], we define interval matrix with bounds A;A 2 B.n; n/
and interval vector with bounds x; x 2 B.n/

ŒA;A� D ˚
A 2 B.n; n/jA � A � A



; Œx; x� D fx 2 B.n/j x � x � x g :
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We assume that an interval matrix A D ŒA;A� and an interval vector X D Œx; x�

are fixed. The interval eigenproblem for A and X consists in recognizing whether
A˝ x D x holds true for A 2 A; x 2 X. In dependence on the applied quantifiers,
six types of interval eigenvectors are distinguished (see [11]).

Definition 5.1. For given interval matrix A, the interval vector X is called

• strong eigenvector of A if .8A 2 A/.8x 2 X/Œ A˝ x D x � ;

• strongly universal eigenvector of A if .9x 2 X/.8A 2 A/ ŒA˝ x D x � ;

• universal eigenvector of A if .8A 2 A/.9x 2 X/Œ A˝ x D x � ;

• strongly tolerable eigenvector of A if .9A 2 A/.8x 2 X/Œ A˝ x D x � ;

• tolerable eigenvector of A if .8x 2 X/.9A 2 A/Œ A˝ x D x � ;

• weak eigenvector of A if .9A 2 A/.9x 2 X/Œ A˝ x D x � :

The above six types will be referred to as GT1, GT2, : : : , GT6 for general interval
eigenvectors, and T1, T2, : : : , T6 for non-decreasing interval eigenvectors. In the
case of increasing eigenvectors x 2 X, all six types have been characterized in [11]
and relations between them have been described. ForD-increasing eigenvectors and
for arbitrary eigenvectors x 2 X the characterization of all interval eigenvector types
is presented in the following two sections.

5.2.1 Non-decreasing Interval Eigenvectors

We assume that D 2 Dn is a fixed interval partition on N . We define the
D-increasing interval eigenvectorsof types T1, T2, : : : , T6 by restricting the
corresponding quantifiers with x 2 X to x 2 X \ B<.D; n/. Types T1, T2,
T5, T6 are characterized below for arbitrary interval matrix A, types T3, T4 are
characterized for a single matrix A (formally: interval matrix A D ŒA;A�).

Definition 5.2. Let X D Œx; x� be an interval vector with bounds x and x. The set
X \ B<.D; n/ will be denoted as X<.D/. Further we denote

xD D
^

fx 2 Xj x 2 B<.D; n/g D
^

X<.D/ ; (5.4)

xD D
_

fx 2 Xj x 2 B<.D; n/g D
_

X<.D/ : (5.5)

Proposition 5.1. For given X D Œx; x�, the following statements hold true

(i) xD 2 B�.D; n/ , xD 2 B�.D; n/ ,
(ii) x � xD , xD � x ,

(iii) if x 2 B<.D; n/ , then x 2 X<.D/ if and only if xD � x � xD ,
(iv) if X<.D/ ¤ ; , then xD � xD ,
(v) if X<.D/ D ; , then xD D fI; I; : : : ; I g; xD D fO;O; : : : ; Og .
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Proof. (i) Let i; k 2 N;DŒi� � DŒk�. Then xi � xk for every x 2 B<.D; n/.
Hence

.xD/i D
^

fxi j x 2 X<.D/g �
^

fxkj x 2 X<.D/g D .xD/k ;

which implies xD 2 B�.D; n/, and analogously for xD .
(ii), (iii) The inequalities follow directly from the definition.
(iv) Let X<.D/ ¤ ;. Then there is x such that x 2 X, x 2 B<.D; n/, and

assertion (iii) directly implies xD � xD .
(v) Let X<.D/ D ;. Then xD is infimum of the empty set, which is the constant

vector with the maximum value I , and dually, xD is supremum of the empty set,
which is the constant vector with the minimum valueO . ut
Theorem 5.4 (T1). Let interval matrix A D ŒA;A� and interval vector X D Œx; x�

be given. Then X is strong D-increasing eigenvector of A if and only if

m?.D;A/ � xD ; xD � M?.D;A/ : (5.6)

Proof. Let X be a strong D-increasing eigenvector of A i.e. A ˝ x D x for every
x 2 X<.D/;A 2 A. In view of Theorem 5.3 we have

m?.D;A/ � x � M?.D;A/ : (5.7)

Applying (5.7) to particular matrices A, A we get

m?.D;A/ � x � M?.D;A/ : (5.8)

In view of Definition 5.2, conditions (5.6) follow directly.
For the converse implication, let us assume, that conditions (5.6) are satisfied.

Let x 2 X<.D/;A 2 A. Then we have

m?.D;A/ � m?.D;A/ � xD � x ;

and

x � xD � M?.D;A/ � M?.D;A/ :

Therefore,m?.D;A/ � x � M?.D;A/, which implies A˝ x D x. Hence, X is a
strongD-increasing eigenvector of A. ut
Theorem 5.5 (T2). Let interval matrix A D ŒA;A� and interval vector X D Œx; x�

be given. Then X is strongly universal D-increasing eigenvector of A if and only if

��
m?.D;A/ _ xD

�
; .M?.D;A/ ^ xD/

� \ B<.D; n/ ¤ ; : (5.9)
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Proof. Let X be strongly universal D-increasing eigenvector of A i.e. there is x 2
X<.D/ such that A˝ x D x holds for every A 2 A. By Theorem 5.3 we then have

m?.D;A/ � x � M?.D;A/ : (5.10)

For particular matrices A, A we get

m?.D;A/ � x � M?.D;A/ : (5.11)

By assumption x 2 X<.D/ we have

xD � x � xD; x 2 B<.D; n/ : (5.12)

Condition (5.9) then follows from (5.11) and (5.12) by an easy computation.
Conversely, let us assume that condition (5.9) is satisfied, and vector x 2

B<.D; n/ belongs to the interval
��
m?.D;A/ _ xD

�
; .M?.D;A/ ^ xD/

�
. Then

xD � x � xD , i.e. x 2 X<.D/, in view of Proposition 5.1(iii). Moreover we
have, for every A 2 A,

m?.D;A/ � m?.D;A/ � x � M?.D;A/ � M?.D;A/ ; (5.13)

which implies A˝x D x. Hence, X is strongly universalD-increasing eigenvector
of A. ut
Theorem 5.6 (T3). Let interval matrix A D ŒA;A� with A D A D A and interval
vector X D Œx; x� be given. Then X is universal D-increasing eigenvector of A if
and only if

Œ.m?.D;A/ _ xD/ ; .M?.D;A/ ^ xD/� \ B<.D; n/ ¤ ; : (5.14)

Proof. As A D ŒA;A� contains a single matrix A, the following assertions are
equivalent

(i) X is universalD-increasing eigenvector of ŒA;A� ,
(ii) X is strongly universalD-increasing eigenvector of ŒA;A� .

Assertion of the theorem follows immediately, because formula (5.14) is a particular
case of formula (5.9) in Theorem 5.5. ut
Theorem 5.7 (T4). Let interval matrix A D ŒA;A� with A D A D A and interval
vector X D Œx; x� be given. Then X is a strongly tolerableD-increasing eigenvector
of ŒA;A� if and only if

m?.D;A/ � xD ; xD � M?.D;A/ : (5.15)

Proof. Similarly as in the proof above, we use the fact that interval matrix A D
ŒA;A� contains a single matrix A. Then the following assertions are equivalent
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(i) X is strongly tolerableD-increasing eigenvector of ŒA;A� ,
(ii) X is strongD-increasing eigenvector of ŒA;A� .

Assertion of the theorem now follows, because formula (5.15) is a particular case of
formula (5.6) in Theorem 5.4. ut
Theorem 5.8 (T5). Let interval matrix A D ŒA;A� and interval vector X D Œx; x�

be given. Then X is tolerableD-increasing eigenvector of A if and only if

m?.D;A/ � xD ; xD � M?.D;A/ : (5.16)

Proof. Let X be tolerableD-increasing eigenvector of A i.e. for every x 2 X<.D/,
there is a matrix A 2 A such that A˝ x D x. Using Theorem 5.3 we get

m?.D;A/ � m?.D;A/ � x � M?.D;A/ � M?.D;A/ : (5.17)

Conditions (5.16) then follow from (5.17), in view of Definition 5.2.
For the converse implication, let us assume that conditions (5.16) are satisfied.

Let x 2 X<.D/ be arbitrary, but fixed. Then we have

m?.D;A/ � xD � x � xD � M?.D;A/ : (5.18)

We define matrix A.x/ 2 B.n; n/ by putting, for every j; k 2 N ,

a
.x/
jk D

	
ajk ^ xj DŒj � < DŒk� ;
ajk DŒj � � DŒk� :

(5.19)

For any j; k 2 N with DŒj � < DŒk� we have ajk � m?
j .D;A/ � xj , in view

of (5.2) and (5.17). Further we have ajk � ajk, which implies ajk � a
.x/
jk . Clearly,

ajk � ajk D a
.x/
jk for j; k 2 N with DŒj � � DŒk�. Thus, A � A.x/. The inequality

A.x/ � A follows directly from definition (5.19), therefore A.x/ 2 A.
By definition (5.2), we have for every i 2 N

m?
i

�
D;A.x/

� D max
j2N;DŒj ��DŒi� max

k2N;DŒk�>DŒj � a
.x/
jk

D max
j2N;DŒj ��DŒi� max

k2N;DŒk�>DŒj �
�
ajk ^ xj

�

� max
j2N;DŒj ��DŒi� max

k2N;DŒk�>DŒj �
�
ajk ^ xi

�

D
�

max
j2N;DŒj ��DŒi� max

k2N;DŒk�>DŒj � ajk

�
^ xi

D m?
i

�
D;A

� ^ xi : (5.20)
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Hence m?
�
D;A.x/

� � m?.A/ ^ x � x. Further we have

M?
i

�
D;A.x/

� D min
j2N;DŒj ��DŒi� max

k2N;DŒk��DŒj �
a
.x/
jk

D min
j2N;DŒj ��DŒi�

�
max

k2N;DŒk�DDŒj � a
.x/
jk _ max

k2N;DŒk�>DŒj � a
.x/
jk

�

D min
j2N;DŒj ��DŒi�

�
max

k2N;DŒk�DDŒj � ajk _ max
k2N;DŒk�>DŒj �

�
ajk ^ xj

��

� min
j2N;DŒj ��DŒi�

�
max

k2N;DŒk�DDŒj � ajk _ max
k2N;DŒk�>DŒj �

�
ajk ^ xi

��

� min
j2N;DŒj ��DŒi� max

k2N;DŒk��DŒj �
�
ajk ^ xi

�

D
�

min
j2N;DŒj ��DŒi� max

k2N;DŒk��DŒj � ajk

�
^ xi

D M?
i

�
D;A

� ^ xi : (5.21)

By (5.21) we get M?
�
D;A.x/

� � M?.D;A/ ^ x � x. Therefore, m?
�
D;A.x/

� �
x � M?

�
D;A.x/

�
, which impliesA.x/˝x D x. Hence, X is tolerableD-increasing

eigenvector of A. ut
Theorem 5.9 (T6). Let interval matrix A D ŒA;A� and interval vector X D Œx; x�

be given. Then X is weak D-increasing eigenvector of A if and only if

�
.m?.D;A/ _ xD/ ;

�
M?.D;A/ ^ xD

�� \ B<.D; n/ ¤ ; : (5.22)

Proof. Let X be weak D-increasing eigenvector of A, i.e. there are A 2 A, x 2
X<.D/ such that A˝ x D x. By Theorem 5.3 we get

m?.D;A/ � m?.D;A/ � x � M?.D;A/ � M?.D;A/ : (5.23)

By assumption x 2 X<.D/ we have

xD � x � xD ; x 2 B<.D; n/ : (5.24)

Condition (5.22) then easily follows from (5.23) and (5.24).
Conversely, let us assume that condition (5.22) is satisfied, and vector x 2

B<.D; n/ belongs to the interval
�
.m?.D;A/ _ xD/ ;

�
M?.D;A/ ^ xD

��
. Then

xD � x � xD , i.e. x 2 X<.D/, in view of Proposition 5.1(iii). Moreover we have

m?.D;A/ � x � M?.D;A/ : (5.25)
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Let us considerD-increasing interval vector X0 D Œx0; x0� with x0 D x0 D x, which
reduces to a single vector. Then inequalities in (5.25) correspond to conditions
in (5.16), therefore X0 is tolerableD-increasing vector of A, in view of Theorem 5.8.
As a consequence, there exists matrix A 2 A, such that A ˝ x D x. Hence, X is
weak D-increasing eigenvector of A. ut

5.2.2 General Interval Eigenvectors

For given permutation ' 2 Pn and partitionD 2 Dn we denote

B<
' .D; n/ D ˚

x 2 B.n/j x' 2 B<.D; n/


:

Further we denote, for any interval matrix A D ŒA;A� and interval vector X D
Œx; x�

A'' D ŒA''; A''� ; X' D Œx'; x'� :

Proposition 5.2. Let x; x 2 B.n/, X D Œx; x�. Then

(i) B.n/ D S
'2Pn

S
D2Dn

B<
' .D; n/ ,

(ii) X D S
'2Pn

S
D2Dn

X \ B<
' .D; n/ .

Proof. Assertion (i) is a consequence of Theorem 5.1, and assertion (ii) follows
from (i). ut

It is shown in the following six theorems that the general structure of the interval
eigenvectors of types GT1, GT2, GT5 and GT6 can be described by considering
D-increasing interval vectors X' of interval matrix A'' D ŒA''; A''� for ' 2 Pn,
D 2 Dn. For types GT3 and GT4 the characterization uses D-increasing interval
vectors X' of single matrix A'' (formally: interval matrix A'' D ŒA''; A''�) with
A 2 A and ' 2 Pn, D 2 Dn.

Theorem 5.10 (GT1). Let A D ŒA;A� and X D Œx; x� be given. Then X is strong
eigenvector of A if and only if, for every ' 2 Pn, D 2 Dn, interval vector X' D
Œx'; x'� is strong D-increasing eigenvector of interval matrix A'' D ŒA''; A''�.

Proof. It is easy to verify using Proposition 5.2(ii) that the following assertions are
equivalent

X is strong eigenvector of A ,
.8x 2 X/.8A 2 A/ x 2 F .A/ ,
.8' 2 Pn/.8D 2 Dn/.8x 2 X \ B<

' .D; n//.8A 2 A/ x 2 F .A/ ,
.8' 2 Pn/.8D 2 Dn/.8x' 2 X' \ B<.D; n//.8A'' 2 A''/ x' 2 F .A''/

for every ' 2 Pn, D 2 Dn, X' is strongD-increasing eigenvector of A'' .
ut
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Theorem 5.11 (GT2). Let A D ŒA;A� and X D Œx; x� be given. Then X is strongly
universal eigenvector of A if and only if there exist ' 2 Pn, D 2 Dn such that
interval vector X' D Œx'; x'� is strongly universal D-increasing eigenvector of

interval matrix A'' D ŒA''; A''�.

Proof. The following assertions are equivalent

X is strongly universal eigenvector of A ,
.9x 2 X/.8A 2 A/ x 2 F .A/ ,
.9' 2 Pn/.9D 2 Dn/.9x 2 X \ B<

' .D; n//.8A 2 A/ x 2 F .A/ ,
.9' 2 Pn/.9D 2 Dn/.9x' 2 X' \ B<.D; n//.8A'' 2 A''/ x' 2 F
.A''/ ,
there exist ' 2 Pn, D 2 Dn such that X' is strongly universal D-increasing
eigenvector of A'' .

ut
Theorem 5.12 (GT3). Let A D ŒA;A� and X D Œx; x� be given. Then X is
universal eigenvector of A if and only if for everyA 2 A there exist ' 2 Pn,D 2 Dn

such that interval vector X' D Œx'; x'� is universal D-increasing eigenvector of
interval matrix ŒA''; A''�.

Proof. The following assertions are equivalent

X is universal eigenvector of A ,
.8A 2 A/.9x 2 X/ x 2 F .A/ ,
.8A 2 A/.9' 2 Pn/.9D 2 Dn/.9x 2 X \ B<

' .D; n// x 2 F .A/ ,
.8A 2 A/.9' 2 Pn/.9D 2 Dn/.9x' 2 X' \ B<.D; n// x' 2 F .A''/ ,
for every A 2 A there exist ' 2 Pn and D 2 Dn such that X' is universal
D-increasing eigenvector of ŒA''; A''� .

ut
Theorem 5.13 (GT4). Let A D ŒA;A� and X D Œx; x� be given. Then X is
strongly tolerable eigenvector of A if and only if there exists A 2 A such that,
for every ' 2 Pn and D 2 Dn, interval vector X' D Œx'; x'� is strongly tolerable
D-increasing eigenvector of interval matrix ŒA''; A''�.

Proof. The following assertions are equivalent

X is strongly tolerable eigenvector of A ,
.9A 2 A/.8x 2 X/ x 2 F .A/ ,
.9A 2 A/.8' 2 Pn/.8D 2 Dn/.8x 2 X \ B<

' .D; n// x 2 F .A/ ,
.9A 2 A/.8' 2 Pn/.8D 2 Dn/.8x' 2 X' \ B<.D; n// x' 2 F .A''/ ,
there exists A 2 A such that, for every ' 2 Pn and D 2 Dn, X' is strongly
tolerable D-increasing eigenvector of ŒA''; A''� .

ut
Theorem 5.14 (GT5). Let A D ŒA;A� and X D Œx; x� be given. Then X is
tolerable eigenvector of A if and only if, for every ' 2 Pn and D 2 Dn, interval
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vector X' D Œx'; x'� is tolerable D-increasing eigenvector of interval matrix

A'' D ŒA''; A''�.

Proof. The following assertions are equivalent

X is tolerable eigenvector of A ,
.8x 2 X/.9A 2 A/ x 2 F .A/ ,
.8' 2 Pn/.8D 2 Dn/.8x 2 X \ B<

' .D; n//.9A 2 A/ x 2 F .A/ ,
.8' 2 Pn/.8D 2 Dn/.8x' 2 X' \ B<.D; n//.9A'' 2 A''/ x' 2 F
.A''/ ,
for every ' 2 Pn andD 2 Dn, X' is tolerableD-increasing eigenvector of A'' .

ut
Theorem 5.15 (GT6). Let A D ŒA;A� and X D Œx; x� be given. Then X is weak
eigenvector of A if and only if there exist ' 2 Pn and D 2 Dn such that interval
vector X' D Œx'; x'� is weak D-increasing eigenvector of interval matrix A'' D
ŒA''; A''�.

Proof. The following assertions are equivalent

X is weak eigenvector of A ,
.9x 2 X/.9A 2 A/ x 2 F .A/ ,
.9' 2 Pn/.9D 2 Dn/.9x 2 X \ B<

' .D; n//.9A 2 A/ x 2 F .A/ ,
.9' 2 Pn/.9D 2 Dn/.9x' 2 X' \B<.D; n//.9A'' 2 A''/ x' 2 F .A''/ ,
there exist ' 2 Pn and D 2 Dn such that X' is weak D-increasing eigenvector
of A'' .

ut

5.3 Relations Between Types of Interval Eigenvectors

Relations between the general types GT1, GT2, : : : , GT6 are basically the same as
the relations between the increasing versions T1, T2, : : : , T6, shown in [11]. That
is, the implications

GT1 ) GT2 ) GT3 ) GT6 ; (5.26)

GT1 ) GT4 ) GT5 ) GT6 (5.27)

hold, but the converse implications are not valid

GT6 6) GT3 6) GT2 6) GT1 ; (5.28)

GT6 6) GT5 6) GT4 6) GT1 : (5.29)
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Fig. 5.1 Hasse diagram of the relations between different types of interval eigenvectors

Moreover, neither of the ‘cross implications’ hold. That is

GT2 6) .GT4 _ GT5/ ; (5.30)

GT3 6) .GT4 _ GT5/ ; (5.31)

GT4 6) .GT2 _ GT3/ ; (5.32)

GT5 6) .GT2 _ GT3/ : (5.33)

The implications in (5.26) and (5.27) follow directly from definition. On the other
hand, the counterexamples in Sect. 5.3.1 below show that the converse implications
and the cross implications (5.28)–(5.33) do not hold.

The directed graph of all relations between GT1, GT2, : : : , GT6 can be visualized
by Hasse diagram in Fig. 5.1 where every arrow indicates an implication, and a non-
existing arrow indicates that there is no implication between corresponding types of
interval eigenvectors.

5.3.1 Examples and Counterexamples

The first example shows that the converse implication to GT1 ) GT2 does not
hold. That is, if an interval vector X is strongly universal eigenvector of an interval
matrix A, then X need not be strong eigenvector of A.
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Example 5.1 (GT2 6) GT1). Take A D ŒA;A� and X D Œx; x� as follows

A D
�
1 2

2 2

�
; A D

�
1 3

3 3

�
; x D

�
1

1

�
; x D

�
2

2

�
:

It is easy to see that A˝ x D x for every matrix A with A � A � A, that is, X is
strongly universal eigenvector of A. On the other hand, X is not strong eigenvector
of A, because A˝ x D x does not necessarily hold for every A 2 A, x 2 X. E.g.
for vector x D .1; 1:5/T we have A˝ x D .1:5; 1:5/T ¤ x.

The second example shows that .GT3 6) GT2/. In other words, if X is universal
eigenvector of A, then X need not be strongly universal eigenvector of A.

Example 5.2 (GT3 6) GT2). Take A D ŒA;A� and X D Œx; x� as follows

A D
�
2 2

3 4

�
; A D

�
2 3

3 5

�
; x D

�
2

4

�
; x D

�
3

4

�
:

Then for every A 2 A, x 2 X there exist values r; s; k such that

A D
�
2 r

3 s

�
;

2 � r � 3

4 � s � 5
; x D

�
k

4

�
; 2 � k � 3 :

By easy computation we get A˝ x D .r; 4/T . That is, x is eigenvector of A if and
only if r D k. This condition is fulfilled for every A 2 A by some x 2 X, which
means that X is universal eigenvector of A. On the other hand, it is obvious that the
condition cannot be fulfilled by one single vector for all matrices in ŒA;A�. Hence,
X is not strongly universal eigenvector for interval matrix A.

The third example shows that .GT6 6) GT3/. In other words, if X is weak
eigenvector of A, then X need not be universal eigenvector of A.

Example 5.3 (GT6 6) GT3). Take A D ŒA;A� and X D Œx; x� as follows

A D
�
1 1

1 1

�
; A D

�
1 2

3 4

�
; x D

�
2

3

�
; x D

�
2

4

�
:

By easy computation we verify that A ˝ x D x. Hence, X is weak eigenvector of
A. On the other hand, for matrix A and for any x 2 X we have A˝ x D .1; 1/T <

x � x. Therefore, X is not universal eigenvector of A.

By examples 5.1–5.3 we have proved the non-implications in (5.28). In the next
three examples we demonstrate the non-implications in (5.29). First we show that if
an interval vector X is strongly tolerable eigenvector of an interval matrix A, then X
need not be strong eigenvector of A.
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Example 5.4 (GT4 6) GT1). Take A D ŒA;A� and X D Œx; x� as follows

A D
�
2 1

1 3

�
; A D

�
2 2

2 3

�
; x D

�
1

3

�
; x D

�
2

3

�
:

Every vector x 2 X has the form

x D
�
k

3

�
; 1 � k � 2 :

It is easy to see that A ˝ x D x for every x D .k; 3/T . That is, X is strongly
tolerable eigenvector of A. On the other hand, X is not strong eigenvector of A,
because A˝x D x does not necessarily hold for everyA 2 A, x 2 X. E.g. we have
A˝ x D .2; 3/T ¤ x.

The following example demonstrates that if X is tolerable eigenvector of A, then
X need not be strongly tolerable eigenvector of A.

Example 5.5 (GT5 6) GT4). Take A D ŒA;A� and X D Œx; x� as follows

A D
�
2 3

3 4

�
; A D

�
2 4

3 4

�
; x D

�
3

4

�
; x D

�
4

4

�
;

For every A 2 A, x 2 X there exist values r; k such that

A D
�
2 r

3 4

�
; 3 � r � 4 ; x D

�
k

4

�
; 3 � k � 4 :

It is easy to verify that A˝ x D .r; 4/T . That is, x is eigenvector of A if and only if
r D k. This condition is fulfilled for every x 2 X by some A 2 A, which means that
X is tolerable eigenvector of A. On the other hand, the condition cannot be fulfilled
by one single matrix for all vectors in Œx; x�. Hence, X is not strongly tolerable
eigenvector of interval matrix A.

The next example shows that a weak interval eigenvector need not be tolerable
eigenvector of interval matrix A.

Example 5.6 (GT 6 6) GT 5). Take A D ŒA;A� and X D Œx; x� as follows

A D
�
1 1

2 1

�
; A D

�
1 1

2 2

�
; x D

�
1

1

�
; x D

�
2

1

�
:

By easy computation we verify that A ˝ x D x. Hence, X is weak eigenvector of
A. On the other hand, A ˝ x D .1; 2/T ¤ x for every A 2 A. Therefore, X is not
tolerable eigenvector of A.
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The last two examples contain the key arguments for the cross non-implications
in (5.30)–(5.33). First we show that a strongly universal interval eigenvector need
not be tolerable eigenvector of interval matrix A.

Example 5.7 (T 2 6) T 5). Take A D ŒA;A� and X D Œx; x� as follows

A D
�
2 3

3 4

�
; A D

�
2 3

3 5

�
; x D

�
3

4

�
; x D

�
4

5

�
:

For every A 2 A there exists value r such that

A D
�
2 3

3 r

�
; 4 � r � 5 :

Clearly, A ˝ x D x for all A 2 A, which means that X is strongly universal
eigenvector of A. On the other hand,A˝x D .3; r/T ¤ x for allA 2 A. Therefore,
X is not tolerable eigenvector of interval matrix A.

The second key non-implication says that a strongly tolerable interval eigenvec-
tor need not be universal eigenvector of interval matrix A.

Example 5.8 (T 4 6) T 3). Take A D ŒA;A� and X D Œx; x� as follows

A D
�
3 2

3 3

�
; A D

�
3 3

3 5

�
; x D

�
3

4

�
; x D

�
3

5

�
:

Every vector x 2 X has the form

x D
�
3

k

�
; 4 � k � 5 :

Then we have A˝x D x for every x 2 X, which means that X is strongly tolerable
eigenvector of A. On the other hand, X is not universal eigenvector of A, because
A˝ x ¤ x for every x 2 X.

Remark 5.1. Examples 5.7 and 5.8, in combination with implications GT2 ) GT3
and GT4 ) GT5 from (5.26) and (5.27), also imply all six remaining non-
implications contained in (5.30), (5.31), (5.32) and (5.33).

E.g., assuming GT2 ) GT4 we get GT2 ) GT5, because of GT4 ) GT5, a
contradiction with Example 5.7. Hence, GT2 6) GT4. The proofs of the remaining
non-implications are analogous.
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5.4 Conclusions

The results in this section come from the systematic investigation of the interval
version of the eigenproblem in max-min algebra. Interval eigenvectors of interval
matrices are motivated by the fact that most of the inputs in real applications are not
exact numbers, and the interval approach is one of the possible ways of treating the
problems with inexact data. In dependence of the quantifiers used in the definition
of an interval eigenvector of an interval matrix, six types of interval eigenvectors can
by defined in max-min algebra. The eigenspace structure differs from one type to
another, and there are relations between some types. On the other hand, some pairs
of eigenvector types are independent. These questions are systematically answered
by the presented results.

The interval eigenvectors have been studied in previous paper [11]. The investi-
gation was based on the characterization of increasing eigenvectors of a max-min
matrix presented in [10], and the results were restricted to increasing eigenvectors.
This section extends the results to non-decreasing eigenvectors, and subsequently
to the general case of arbitrary interval eigenvectors. Thus, the basic six types of
interval eigenvectors of a given interval matrix in max-min algebra are completely
described. Moreover, all relations between interval eigenvectors of various types are
shown, and it is demonstrated by examples that no further implications exist. Further
research in the area will be oriented to decreasing the computational complexity of
the results.
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Chapter 6
Eigenproblem in Max-Drast
and Max-Łukasiewicz Algebra

Abstract When the max-min operations on the unit real interval are considered
as a particular case of fuzzy logic operations (Gödel operations), then the max-
min algebra can be viewed as a specific case of more general fuzzy algebra with
operations max and T, where T is a triangular norm (in short: t-norm). Such max-T
algebras are useful in various applications of the fuzzy set theory. In this chapter we
investigate the structure of the eigenspace of a given fuzzy matrix in two specific
max-T algebras: the so-called max-drast algebra, in which the least t-norm T (often
called the drastic norm) is used, and max-Lukasiewicz algebra with Łukasiewicz
t-norm L. For both of these max-T algebras the necessary and sufficient conditions
are presented under which the monotone eigenspace (the set of all non-decreasing
eigenvectors) of a given matrix is non-empty and, in the positive case, the structure
of the monotone eigenspace is described. Using permutations of matrix rows and
columns, the results are extended to the whole eigenspace.

6.1 Introduction

Eigenvectors of a fuzzy matrix correspond to steady states of a complex discrete-
events system, characterized by the transition matrix and the fuzzy state vectors.
In this chapter we investigate the eigenspace structure of a given fuzzy matrix in
max-T algebra for two specific triangular norms T : the so-called max-drast algebra,
where T is the least t-norm (often called drastic), and max-Łukasiewicz algebra with
Łukasiewicz t-norm. The results presented in this chapter have been found within
the framework of research aimed at investigating the steady states of systems with a
fuzzy transition matrix in max-T algebras with various t-norms T .

Investigation of the eigenspace structure in fuzzy algebras is important for
applications. The eigenproblem has been studied by many authors in the case
of a max–min algebra (one of the basic fuzzy algebras), see e.g. [4, 5, 15, 18].
Many interesting results were found in describing the structure of the eigenspace.
Algorithms have been suggested for computing the maximal eigenvector of a given
max–min matrix, see [2,3,6,7]. The problem has also been studied in more general

The chapter was written by “Martin Gavalec”
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structures such as semi-modules or distributive lattices [11–14,19–21]. The structure
of the eigenspace in a max–min algebra, as a union of intervals of monotone
eigenvectors, was described in [8]. The approach of [8] can be used for other max-
T algebras. It has been applied to the drastic t-norm in [9], where the structure
of the space of all increasing eigenvectors of a given max-drast fuzzy matrix was
presented.

This chapter starts with investigation of the complete eigenspace structure for
matrices in a max-drast algebra without any restriction on the monotonicity. First,
necessary and sufficient conditions are presented under which the increasing or
non-decreasing eigenspace of a given matrix is non-empty, in other words, that
the corresponding system has a stable state. The structure of the corresponding
eigenspace is then fully described. Further, using simultaneous row and column
permutations of the matrix, a characterization of the general eigenspace structure
of a given max-drast fuzzy matrix is presented. In this way all stable states of
the corresponding fuzzy system are described, see also [10]. The investigation of
stable states in max-drast algebra is useful in the fuzzy systems where the extreme
reliability is required, in the sense that any considered sequence of events must not
contain two events with the reliability values less than one.

In the rest of the chapter we investigate the eigenspace structure for matrices
in max-Łukasiewicz algebra, see [17]. As the eigenspace structure for matrices of
higher dimensions is rather complex, we only describe in full the eigenproblem
for three-dimensional fuzzy matrices. Similarly as in max-drast case, necessary and
sufficient conditions are proved under which the monotone eigenspace of a given
matrix is non-empty. Further, the structure of the monotone eigenspace is described
and finally, simultaneous row and column permutations of the matrix are used to
obtain a complete characterization of the general eigenspace structure.

6.2 Eigenvectors in Max-T Algebra

Let us denote the real unit interval by I D h0; 1i, let T be one of the triangular
norms used in fuzzy theory. By a max-T algebra we understand a triple .I ;˚;˝T /

with ˚ D max and ˝T D T , binary operations on I . Further, notation I .n; n/
.I .n// denotes the set of all square matrices (all vectors) of a given dimension n
over I . The operations ˚; ˝T are analogously extended to matrices and vectors
in a formal way. The subscript T is often omitted, when the operation ˝ D ˝T is
clear from the context.

The eigenproblem for a given matrix A 2 I .n; n/ in a max-T algebra consists
in finding an eigenvector x 2 I .n/ such that A ˝ x D x. The eigenspace of
A 2 I .n; n/ is denoted by FT .A/ D ˚

x 2 I .n/jA˝T x D x


. Similarly, as in

the case of operation ˝T , the subscript is often omitted and we write simply F .A/

instead of FT .A/.
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Analogously as in Chap. 5, the eigenspace structure will be investigated by
permuting any vector x 2 I .n/ to a non-decreasing form. We shall also use further
notions and notation form the previous chapter, with the difference that the abstract
linearly ordered set B is replaced here by the unit interval I .

E.g., the increasing eigenspace of a matrix A 2 I .n; n/ is denoted as

F<.A/ D ˚
x 2 I .n/jA˝ x D x; .8i; j /Œ i < j ) xi < xj �



:

and the non-decreasing eigenspace as

F�.A/ D ˚
x 2 I .n/jA˝ x D x; .8i; j /Œ i < j ) xi � xj �



;

Similarly, we use notation I <.n/, I �.n/, I <
' .n/ D ˚

x 2 I .n/j x' 2 I <.n/


,

I �
' .n/ D ˚

x 2 I .n/j x' 2 I �.n/


, F<

' .A/ D ˚
x 2 F .A/j x' 2 I <.n/



and F�

' .A/ D ˚
x 2 F .A/j x' 2 I �.n/



. Again, in this notation the assertions

of Theorem 5.1 are expressed as F<
' .A/ D ˚

x 2 I .n/j x' 2 F<.A''/



and
F�
' .A/ D ˚

x 2 I .n/j x' 2 F�.A''/


.

It has been proved in [8] that if the binary operation ˝ coincides with the
minimum operation, then the increasing eigenspace F<.A/ can be described as
an interval of increasing eigenvectors, see Theorem 5.2.

Remark 6.1. Theorem 5.1 and Theorem 5.2 are presented in a slightly different
formulation, namely for a max–min algebra .B;˚;˝/ with an arbitrary bounded
linearly ordered set B and with the operations ˚ D max, ˝ D min. Moreover,
an analogous description is also given for the non-decreasing eigenspace F�.A/,
and for constant eigenvectors. That is, in [8] the structure of F .A/ in a max–min
algebra B is completely described for any matrix A 2 B.n; n/.

In fuzzy sets theory, various triangular norms are used (see Chap. 1). The most
frequent of them are (see also the notation in Chap. 1):

Gödel norm TM D G.x; y/ D min.x; y/ ,
product norm TP D prod.x; y/ D .x � y/ ,
drastic norm

TD D drast.x; y/ D
	

min.x; y/ if max.x; y/ D 1 ;

0 if max.x; y/ < 1 ;
Łukasiewicz norm TL D L.x; y/ D max.x C y � 1; 0/ :

The max-T fuzzy algebra with the Gödel norm is a special case of the max-
min algebra, and by Remark 6.1 the eigenspace for this case is described in [8].
The eigenspace for the max-prod fuzzy algebra with the product norm has been
discussed in [16].
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6.3 Eigenvectors in Max-Drast Algebra

In this section, the above considerations will be transferred to the case of a max-
drast algebra, which is a special case of a max-T fuzzy algebra with the so-called
drastic triangular norm. The drastic norm is the basic example of a non-divisible
t-norm on any partially ordered set, see [1]. In Sect. 6.2 we work with the max-drast
fuzzy algebra .I ;˚;˝/ with binary operations ˚ D max and ˝ D drast D TD .

Hence, for x; y 2 I .n/ we have

.x ˚ y/i D max.xi ; yi / ;

.x ˝ y/i D
	

min.xi ; yi / if max.xi ; yi / D 1 ;

0 if max.xi ; yi / < 1 ;

for every i 2 N .

Proposition 6.1. Let A 2 I .n; n/ and x 2 I .n/. Then x 2 F .A/ if and only if
for every i 2 N the following hold

drast.aij; xj / � xi for every j 2 N ; (6.1)

drast.aij; xj / D xi for some j 2 N : (6.2)

Proof. Conditions (6.1), (6.2) are equivalent to the equality
Ln

jD1 .aij ˝ xj / D xi .
Thus, the proposition follows from the definition of the eigenspace F .A/. ut
Proposition 6.2. Let A 2 I .n; n/, x 2 I <.n/: Then x 2 F<.A/ if and only if
for every i 2 N the following hold

drast.aij; xj / � xi for every j 2 N; j � i ; (6.3)

drast.aij; xj / D xi for some j 2 N; j � i : (6.4)

Proof. For j < i we have xj < xi � 1, in view of the strict monotonicity of x.
Hence drast.aij; xj / � xj < xi . The proposition then follows from Proposition 6.1.

ut
Proposition 6.3. Let A 2 I .n; n/, x 2 I <.n/: Then x 2 F<.A/ if and only if
for every i 2 N the following hold

aij < 1 for every j 2 N; j > i ; (6.5)

ain � xi if xn D 1 ; (6.6)

drast.aij; xj / D xi for some j 2 fi; ng : (6.7)

Proof. Suppose x 2 F<.A/ and aij D 1 for some j > i . Then drast.aij; xj / D
drast.1; xj / D xj > xi , which is a contradiction with (6.3). Hence, condition (6.5)
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is necessarily fulfilled. Suppose xn D 1 and aij > xi , then we get drast.ain; xn/ D
drast.ain; 1/ D ain > xi , which again is a contradiction with (6.3). Therefore, condi-
tion (6.6) must hold. As a consequence of condition (6.5), we have drast.aij; xj / D 0

for every j 2 N , i < j < n. Then condition (6.7) follows from (6.4). On the other
hand, it is easy to see that conditions (6.5), (6.6), and (6.7) imply (6.3) and (6.4),
hence they are also sufficient for x 2 F<.A/. ut

The following theorem describes necessary and sufficient conditions under which
a square matrix possesses an increasing eigenvector.

Theorem 6.1. Let A 2 I .n; n/. Then F<.A/ ¤ ; if and only if the following
conditions are satisfied

(i) aij < 1 for all i; j 2 N; i < j ;

(ii) 0 < ain for all i 2 N n f1g with aii < 1 ;

(iii) akn < ain for all i; k 2 N; k < i with aii < 1 ;

(iv) ann D 1 :

Proof. First we prove that conditions (i)–(iv) are necessary. If F<.A/ ¤ ;, then
there exists x 2 F<.A/ such that conditions (6.5) and (6.7) are satisfied for every
i 2 N . Condition (i) is in fact equivalent to condition (6.5).

To prove condition (ii), let us assume that i 2 N n f1g with aii < 1. Then
drast.aii; xi / < xi , and by (6.7) we get drast.ain; xn/ D xi , which cannot hold, if
ain D 0. Hence ain > 0.

Now, suppose i; k 2 N; k < i with aii < 1. Similarly to the above, we get
drast.ain; xn/ D xi , which implies xn D 1, in view of condition (i). Then, by (6.3),
we have

akn D drast.akn; 1/ D drast.akn; xn/ � xk < xi D drast.ain; xn/ D
D drast.ain; 1/ D ain ;

which proves condition (iii).
Condition (iv) follows from the fact that, by (6.7), the equality drast.ann; xn/ D

xn must be satisfied, which is impossible if ann < 1.
For the proof of the converse implication, let us assume that the matrix satisfies

conditions (i)–(iv). Then we define an increasing vector x 2 I .n/ by recursion
using the following rules.

Rule 1. If i < n, aii < 1, then put xi D ain .
Rule 2. If i < n, aii D 1, then choose xi 2 I such that

(a) xi�1 < xi (not applied for i D 1) ,
(b) ain � xi < 1 ,
(c) xi < akn for every k 2 N; k > i with akk < 1 (not applied if akk D 1 for

all k > i ) .

Rule 3. For i D n, choose xn 2 I such that
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(a) xn�1 < xn ,
(b) if a11 < 1; 0 < a1n, then xn D 1 ,
(c) if akk < 1 for some k 2 N; k > 1, then xn D 1 .

It follows from condition (iii) that the recursion according to the above rules
always gives an output x 2 I <.n/. Further, it can be easily verified that
condition (6.7) holds true, while (6.5) follows directly from condition (i). Hence,
we have proved that conditions (i)–(iv) are also sufficient. ut

The next theorem characterizes all the eigenvectors of a given matrix. In other
words, the theorem completely describes the eigenspace structure.

Theorem 6.2. Suppose A 2 I .n; n/ fulfills the conditions (i)–(iv) from Theo-
rem 6.1, and let x 2 I <.n/. Then x 2 F<.A/ if and only if the following conditions
are satisfied

(v) xi D ain for all i 2 N with aii < 1 ;

(vi) if xn D 1, then xi � ain for all i 2 N n fng with aii D 1 ;

(vii) xn D 1 if a11 < 1, 0 < a1n ;
(viii) xn D 1 if aii < 1 for some i 2 N n f1g :
Proof. The assertion of the theorem follows from Proposition 6.3 and from the
arguments in the proof of Theorem 6.1. ut

In contrast to the above investigation of increasing eigenvectors, the next two
theorems characterize the existence and description of all the constant eigenvectors
of a given matrix in a max-drast algebra.

Theorem 6.3. If A 2 I .n; n/, then there is a non-zero constant eigenvector x 2
F .A/ if and only if

(ix) maxf aijj j 2 N g D 1 for every i 2 N :

Proof. Let x D .c; c; : : : ; c/ 2 I .n/ with c > 0 be a constant eigenvector of A.
From Proposition 6.1 we get for every i 2 N

drast.aij; c/ � c for every j 2 N ; (6.8)

drast.aij; c/ D c for some j 2 N : (6.9)

By the assumption that c > 0, the condition (6.9) holds for fixed i 2 N if and only if
aij D 1 for some j 2 N , in other words, if maxf aijj j 2 N g D 1. Hence, condition
(ix) is necessary. On the other hand, it is easy to see that (ix) is also sufficient for
the existence of a non-zero constant eigenvector. An even stronger formulation is
contained in theorem below. ut
Theorem 6.4. Suppose that A 2 I .n; n/ fulfills condition (ix) from Theorem 6.3.
Then the constant vector x D .c; c; : : : ; c/ 2 I .n/ belongs to F .A/ for every
c 2 I
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Proof. For c D 0, the constant vector fulfills conditions (6.8) and (6.9) for
an arbitrary matrix. For c > 0, the assertion of the theorem follows from
Theorem 6.3. ut
Example 6.1. The utility of the theorems of this section will be demonstrated by
computing the increasing eigenspace of

A D
�
0:7 0:3

0:2 1

�
;

and its permuted counterpart,

A'' D
�
1 0:2

0:3 0:7

�
:

The permuted matrix is used to compute the decreasing eigenvectors of A. As a
result of the computation, we get that the eigenspace F .A/ contains

• exactly one increasing eigenvector x D .0:3; 1/ ,
• no decreasing eigenvectors ,
• the constant vector x D .0; 0/ .

Example 6.2. In this example, we compute the increasing eigenspace of

B D
�
1 0:3

0:2 1

�
;

and its permuted counterpart

B'' D
�
1 0:2

0:3 1

�
:

The eigenspace F .B/ consists of

• increasing vectors with 0 � x1 < x2 < 1 ,
• increasing vectors with 0:3 � x1 < x2 D 1 ,
• decreasing vectors with 0 � x2 < x1 < 1 ,
• decreasing vectors with 0:2 � x2 < x1 D 1 ,
• constant vectors x D .c; c/ with 0 � c � 1 .

The eigenspaces of A and B are shown in Fig. 6.1.

Remark 6.2. The description of the non-decreasing eigenvectors is necessary for
computing the eigenspace when the dimension is n > 2. This extension of the
presented theory is done in the next subsection by an analogous method to that for
max–min matrices in [8].
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Fig. 6.1 Eigenspaces of A and B from Examples 6.1 and 6.2

6.3.1 Non-decreasing Eigenvectors

In this subsection, the max-drast eigenproblem is investigated for non-decreasing
eigenvectors. We use the notation introduced in [8]. The structure of the
non-decreasing eigenspace F�.A/ is described by considering every non-
decreasing eigenvector as increasing, with respect to some interval partition, D,
of the index set N ., i.e., a set of disjoint integer intervals in N , whose union isS
D D N . The set of all interval partitions of N will be denoted by Dn. For every

interval partition D 2 Dn and for every i 2 N , we denote by DŒi� the partition
class containing i , in other words, DŒi� is an integer interval I 2 D with i 2 I .
For i; j 2 N we write DŒi� < DŒj � if i 0 < j 0 for any i 0 2 DŒi� and j 0 2 DŒj �. If
DŒi� < DŒj � or DŒi� D DŒj �, then we write DŒi� � DŒj �.

For a given partition D 2 Dn, we say that vector x 2 I .n/ is D-increasing,
D-increasing vector if for any indices i; j 2 N

xi D xj if and only if DŒi� D DŒj � ;

xi < xj if and only if DŒi� < DŒj � :

The set of all D-increasing vectors in I .n/ will be denoted by I <.D; n/. If
A 2 I .n; n/, then the set of all D-increasing eigenvectors of A is denoted by
F<.D;A/.

Remark 6.3. It is easy to see that for every non-decreasing vector x 2 I �.n/
there is exactly one interval partition D 2 Dn such that x is D-increasing. If x
is increasing on N , then the corresponding partition is equal to the finest partition
consisting of all singletons D D ˚figj i 2 N



. On the other hand, if x is constant,

then D D N .
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Proposition 6.4. LetA 2 I .n; n/ and x 2 I <.D; n/: Then x 2 F<.D;A/ if and
only if for every i 2 N the following hold

drast.aij; xj / � xi for every j 2 N; DŒj � � DŒi� ; (6.10)

drast.aij; xj / D xi for some j 2 N; DŒj � � DŒi� : (6.11)

Proof. For DŒj � < DŒi� we have xj < xi � 1, in view of the D-monotonicity of
x. Hence drast.aij; xj / � xj < xi . The assertion of the proposition then follows
from Proposition 6.1. ut
Proposition 6.5. LetA 2 I .n; n/ and x 2 I <.D; n/: Then x 2 F<.D;A/ if and
only if for every i 2 N the following hold

aij < 1 for every j 2 N; DŒj � > DŒi� ; (6.12)

aij � xi for every j 2 N; xj D 1 ; (6.13)

drast.aij; xj / D xi for some j 2 DŒi� [DŒn� : (6.14)

Proof. If x 2 F<.D;A/, aij D 1, and DŒj � > DŒi� for some i; j 2 N , then
drast.aij; xj / D drast.1; xj / D xj > xi , which is a contradiction with (6.10).
Hence condition (6.12) is necessarily fulfilled. If xj D 1 and aij > xi , then we
get drast.aij; xj / D drast.aij; 1/ D aij > xi , which is in contradiction with (6.1).
Thus, condition (6.13) must hold true. As a consequence of condition (6.12), we
have drast.aij; xj / D 0 for every j 2 N with DŒi� < DŒj � < DŒn�. Therefore,
condition (6.14) follows from (6.11).

For the proof of the converse implication, assume first that i; j 2 N , DŒj � �
DŒi�. If DŒj � D DŒi�, then xj D xi and drast.aij; xj / D drast.aij; xi / � xi .
If DŒj � > DŒi� and xj < 1, then drast.aij; xj / D 0 � xi in view of (6.12).
Finally, if DŒj � > DŒi� and xj D 1, then drast.aij; xj / � xi in view of (6.13).
Hence the condition (6.10) holds true. Second, the condition (6.11) follows directly
from (6.14). Now x 2 F<.D;A/ by Proposition 6.4. ut
Proposition 6.6. Suppose A 2 I .n; n/ and x 2 F<.D;A/. Then

(i) if x1 D 0, xn D 1, then max
k2DŒn� aik D 0 for every i 2 DŒ1� ,

(ii) if max
j2DŒi� aij < 1 for some i 2 N; xi > 0; DŒi � < DŒn�, then max

k2DŒn� aik D xi

and xn D 1 ,
(iii) if max

j2DŒi� aij < 1 and max
k2DŒn� aik D 0 for some i 2 DŒ1� < DŒn�, then x1 D 0 .

Proof. Let x 2 F<.D;A/.

(i) If x1 D 0 and xn D 1, then for every i 2 DŒ1�, k 2 DŒn� we have xi D 0,
xk D 1. In view of (6.10) we then have aik � xi D 0, i.e. maxk2DŒn� aik D 0.

(ii) Assume that maxj2DŒi� aij < 1, i 2 N; xi > 0; DŒi � < DŒn�. Then aij < 1,
xj D xi < 1, and drast.aij; xj / D 0 < xi for every j 2 DŒi�. By (6.9), there
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exists k 2 DŒn� such that drast.aik; xk/ D xi > 0, which is only possible if
xk D xn D 1 and aik D xi , i.e. maxk2DŒn� aik D xi , in view of (6.10).

(iii) Suppose maxj2DŒi� aij < 1 and maxk2DŒn� aik D 0 for some i 2 DŒ1� < DŒn�.
Assume that x1 D xi > 0. By (ii), we then get 0 D maxk2DŒn� aik D xi , which
is a contradiction.

ut
The following theorem describes necessary and sufficient conditions under which

a square matrix possesses a D-increasing eigenvector.

Theorem 6.5. Let A 2 I .n; n/. Then F<.D;A/ ¤ ; if and only if the following
conditions are satisfied

(i) aij < 1 for all i; j 2 N; DŒi� < DŒj � ,
(ii) 0 < max

k2DŒn� aik for all i 2 N nDŒ1� with max
j2DŒi� aij < 1 ,

(iii) max
k2DŒn� ahk < max

k2DŒn� aik for all i; h 2 N; DŒh� < DŒi� with max
j2DŒi� aij < 1 ,

(iv) max
k2DŒn�

ahk D max
k2DŒn�

aik for all i; h 2 N; DŒh� D DŒi�

with max
j2DŒh� ahj < 1; max

j2DŒi� aij < 1 ,

(v) max
k2DŒn�

ahk � max
k2DŒn�

aik for all i; h 2 N; DŒh� D DŒi�

with max
j2DŒh� ahj D 1; max

j2DŒi� aij < 1 ,

(vi) max
k2DŒn�

aik D 1 for all i 2 N; DŒi� D DŒn� .

Proof. First we prove that conditions (i)–(vi) are necessary. If F<.A/ ¤ ;, then
there exists x 2 F<.A/ such that conditions (6.8)–(6.9) are satisfied for every i 2
N . Condition (i) is in fact equivalent to condition (6.8). For the proof of condition
(ii), fix an index i 2 N nDŒ1� such that maxj2DŒi� aij < 1. By this assumption, we
get drast.aij; xj / < xj D xi for every j 2 DŒi�. Therefore, in view of (6.9), there
exists k 2 DŒn� such that drast.aik ; xk/ D xi � x1 > 0, which is only possible if
aik > 0. Hence 0 < maxk2DŒn� aik .

Condition (vi) follows from the fact that for every i 2 N; DŒi� D DŒn�

we have xi D xn and so, in view of (6.9), there is a k 2 DŒn� such that
drast.aik; xk/ D drast.aik; xn/ D xi D xn. This is only possible when aik D 1.
Therefore, maxk2DŒn� aik D 1.

To prove condition (iii), we consider fixed indices i; h 2 N such that DŒh� <
DŒi� and maxj2DŒi� aij < 1. Then we have, in view of condition (vi), DŒi� < DŒn�,
i.e. xh < xi < xn. It follows from (6.9) and from the assumption maxj2DŒi� aij < 1

that there is an l 2 DŒn� such that drast.ail ; xl / D drast.ail ; xn/ D xi < xn. This is
only possible if ail D xi and xl D xn D 1. Therefore, maxk2DŒn� aik D xi . On the
other hand, drast.ahk; xk/ D drast.ahk; xn/ D drast.ahk; 1/ D ahk � xh < xi for
every k 2 DŒn�, which implies that maxk2DŒn� ahk < xi .

For the proof of conditions (iv) and (v), fix indices i; h 2 N such that DŒ1� <
DŒh� D DŒi� and maxj2DŒi� aij < 1. By this assumption and by (vi) and (6.9) we
get, similarly to the above, maxk2DŒn� aik D xi . If, moreover, maxj2DŒh� ahj < 1,
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then also maxk2DŒn� aik D xh D xi , which proves condition (iv). Finally, if
maxj2DŒh� ahj D 1, then we only have the inequality maxk2DŒn� aik � xh D xi ,
implying condition (v).

For the proof of the converse implication, we assume that the matrix satisfies
conditions (i)–(vi) and write S D fi 2 N j maxj2DŒi� aij < 1g. We shall consider
two disjoint cases.

Case 1. Suppose S D ;, i.e. maxj2DŒi� aij D 1 for every i 2 N . We choose a
vector x 2 I <.D; n/ with xn < 1 and show that x 2 F<.D;A/. It is sufficient to
verify that conditions (6.12)–(6.14) are satisfied for every i 2 N . Condition (6.12)
is equivalent to (i), condition (6.13) is trivially fulfilled because xj � xn < 1 for
every j 2 N . Finally, by assumption maxj2DŒi� aij D 1, there is a j 2 DŒi� such
that aij D 1, i.e. drast.aij; xj / D drast.1; xj / D drast.1; xi / D xi for every i 2 N .
Hence, condition (6.14) holds true as well.

Case 2. Let S ¤ ;, i.e. maxj2DŒi� aij < 1 for some i 2 N . In this case we choose
an x 2 I <.D; n/ such that xn D 1. Moreover, we assume that maxk2DŒn� ahk � xh
for every h 2 N and maxk2DŒn� aik D xi for every i 2 S . Such a vector x always
exists in view of conditions (ii)–(v). Namely, x can be defined by putting xn D 1

(this value follows from statement (ii) in Proposition 6.5), and then by decreasing
recursion on h 2 N where we put

xh D xi D max
k2DŒn� aik ;

if there is an index i 2 DŒh� \ S , and we choose any value xh 2 I such that

max
i2S;DŒi ��DŒh� max

k2DŒn� aik � xh � min
i2N;DŒi �>DŒh� xi ;

if DŒh� \ S D ;. ut
Remark 6.4. In fact, allD-increasing eigenvectors with one exception are described
in the second part of the above proof. The exception is when maxj2DŒi� aij D 1 for
every i 2 N and xn D 1.

The next theorem characterizes all eigenvectors of a given matrix. In other words,
the theorem completely describes the eigenspace structure.

Theorem 6.6. Suppose A 2 I .n; n/ fulfills conditions (i)–(vi) from Theorem 6.5.
Then F<.D;A/ consists exactly of all vectors x 2 I <.D; n/ fulfilling the
conditions

(i) if max
j2DŒi�

aij D 1 for every i 2 N , then either xn < 1, or

xn D 1 and max
h2S;DŒh��DŒi� max

k2DŒn� ahk � xi for every i 2 N ;

(ii) if max
j2DŒi� aij < 1 for some i 2 N , then for every h 2 N
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xh D xi D max
k2DŒn�

aik ; if max
j2DŒi�

aij < 1 for some i 2 DŒh� ;

max
i2S;DŒi ��DŒh� max

k2DŒn� aik � xh ; if max
j2DŒi� aij D 1 for every i 2 DŒh� :

Proof. The assertion of the theorem follows from Proposition 6.5 and from
arguments in the proof of Theorem 6.5. ut

6.3.2 General Eigenvectors in Max-Drast Algebra

The results of our investigation made in Sect. 6.3.1 for non-decreasing eigenvectors
can be easily extended for the general eigenproblem in max-drast fuzzy algebra.
As we mentioned in Sect. 6.2, every vector x 2 I .n/ can be permuted to a non-
decreasing vector x' by some permutation ' 2 Pn. That is, x' 2 I �.n/ and
x 2 I �

' .n/ in the notation introduced in Sect. 6.2.
By Remark 6.3.1, for every non-decreasing vector x' 2 I � there is an interval

partition D 2 Dn such that x' is D-increasing. As a consequence, for every vector
x 2 I .n/ there is a permutation ' 2 Pn and an interval partitionD 2 Dn such that
x 2 I <

' .D; n/. Hence, in the notation introduced in Sect. 6.3.1,

I .n/ D
[
'2Pn

I �
' .n/ D

[
'2Pn

[
D2Dn

I <
' .D; n/ ; (6.15)

and

Fdrast.A/ D F .A/ D
[
'2Pn

F�
' .A/ D

[
'2Pn

[
D2Dn

F<
' .D;A/ : (6.16)

We recall that x 2 F�
' .A/ is by definition equivalent to x' 2 F�.A''/.

Therefore, formula (6.16) together with Theorem 6.5 and Theorem 6.6 describe the
whole eigenspace of A in max-drast algebra. The computation of F .A/ is shown
below in Example 6.3 and Example 6.4 and illustrated by pictures.

6.3.3 Examples

The examples presented in this subsection have dimension n D 3. In this case,
the above general results can be expressed in simpler way. Theorems 6.1 and 6.5
for increasing and for non-decreasing eigenvectors have in the particular cases with
interval partitionsD12 D ˚f1; 2g; f3g
 andD23 D ˚f1g; f2; 3g
 the following form.
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Theorem 6.7. Let A 2 I .3; 3/. Then F<.A/ ¤ ; if and only if the following
conditions are satisfied

(i) a12 < 1, a13 < 1, a23 < 1 ;
(ii) a22 D 1, or a13 < a23 ;

(iii) a33 D 1 :

Theorem 6.8. Let A 2 I .3; 3/. Then F<.D12; A/ ¤ ; if and only if the following
conditions are satisfied

(i) a13 < 1, a23 < 1 ;
(ii) max.a11; a12/ D 1, or a13 � a23 ;

(iii) max.a21; a22/ D 1, or a13 � a23 ;

(iv) a33 D 1 :

Theorem 6.9. Let A 2 I .3; 3/. Then F<.D23; A/ ¤ ; if and only if the following
conditions are satisfied

(i) a12 < 1, a13 < 1 ;
(ii) max.a22; a23/ D 1 ;

(iii) max.a32; a33/ D 1 :

The forms taken by Theorems 6.2 and 6.6 for dimension three are presented in
the following three theorems.

Theorem 6.10. Suppose A 2 I .3; 3/ and (i)–(iii) of Theorem 6.7 are satisfied.
Then F<.A/ consists exactly of all vectors x 2 I <.3/ satisfying the conditions

if a11 D 1; a22 D 1; then x3 < 1; or x3 D 1; x1 � a13; x2 � a23 ; (6.17)

if a11 < 1; a22 D 1; then x3 D 1; x1 D a13; x2 � a23 ; (6.18)

if a11 D 1; a22 < 1; then x3 D 1; x1 � a13; x2 D a23 ; (6.19)

if a11 < 1; a22 < 1; then x3 D 1; x1 D a13; x2 D a23 : (6.20)

Theorem 6.11. SupposeA 2 I .3; 3/ and that (i)–(iv) of Theorem 6.8 are satisfied.
Then F<.D12; A/ consists exactly of all vectors x 2 I <.D12; 3/ satisfying the
conditions

if max.a11; a12/ D 1; max.a21; a22/ D 1; then

x3 < 1; or x3 D 1; x1 D x2 � max.a13; a23/ ; (6.21)

if max.a11; a12/ < 1; or max.a21; a22/ < 1; then

x3 D 1; x1 D x2 D max.a13; a23/ : (6.22)

Theorem 6.12. IfA 2 I .3; 3/ and (i)–(iii) of Theorem 6.9 hold, then F<.D23; A/

consists exactly of all vectors x 2 I <.D23; 3/ satisfying the conditions
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if a11 D 1; then x2 D x3 < 1; or x2 D x3 D 1; x1 � max.a12; a13/ ; (6.23)

if a11 < 1; then x2 D x3 D 1; x1 D max.a12; a13/ : (6.24)

The computation of the complete eigenspace in a max-drast fuzzy algebra will
now be illustrated for two three-dimensional matrices.

Example 6.3. Consider the matrix

A D
0
@0:6 0:8 0:30:5 0:9 0:4

0:3 0:7 1

1
A :

It satisfies conditions (i), (ii) and (iii) of Theorem 6.7, hence F<.A/ ¤ ;.
Condition (6.20) in Theorem 6.10 implies that there is exactly one increasing
eigenvector of A, the vector .0:3; 0:4; 1/.

Condition (ii) in Theorem 6.8 and condition (ii) in Theorem 6.9 are not satisfied,
which implies that F<.D12; A/ D ; and F<.D23; A/ D ;, i.e. A has no
non-decreasing eigenvectors. By Theorem 6.3, we have that A has only one
constant eigenvector .0; 0; 0/. By analogous considerations of all matrices A''
for permutations ' 2 P3 we find, in view of Theorem 5.1, that A has no further
eigenvectors. Summarizing these results, we have

F .A/ D F�.A/ D ˚
.0; 0; 0/; .0:3; 0:4; 1/



:

The eigenspace F .A/ is shown in Fig. 6.2.

Fig. 6.2 Eigenspace of A from Example 6.3
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Example 6.4. In this example we change the entry a22 D 0:9 to b22 D 1, and leave
the other entries unchanged. First we compute the increasing eigenspace F�.B/ D
F<.B/ [ F<.D12; B/ [ F<.D23; B/[ FD.B/ of

B D
0
@0:6 0:8 0:30:5 1 0:4

0:3 0:7 1

1
A :

Similarly to the above, conditions (i), (ii) and (iii) of Theorem 6.7 are satisfied byB ,
hence F<.B/ ¤ ;. Condition (6.18) in Theorem 6.10 implies that the increasing
eigenvectors of B are exactly the increasing vectors with x3 D 1; x1 D a13; x2 �
a23. Thus,

F<.B/ D ˚
.0:3; x2; 1/j 0:4 � x2 < 1



:

Condition (ii) in Theorem 6.8 is not satisfied, hence F<.D12; B/ D ;. On the other
hand, all three conditions (i), (ii), (iii) in Theorem 6.9 hold true, i.e. F<.D23; B/ ¤
; and by condition (6.49) in Theorem 6.12, we get

F<.D23; B/ D ˚
.0:8; 1; 1/g :

Finally, Theorem 6.3 implies that FD.B/ D ˚
.0; 0; 0/



. Summarizing, we have

F�.B/ D ˚
.0:3; x2; 1/j 0:4 � x2 < 1


[ ˚
.0; 0; 0/; .0:8; 1; 1/



:

Further eigenvectors of matrix B can be found using Theorem 5.1. Applying the

permutation ' D
�
1 2 3

1 3 2

�
to the rows and columns of B , we get the matrix B'' ,

which satisfies conditions (i), (ii) and (iii) of Theorem 6.7:

B'' D
0
@0:6 0:3 0:80:3 1 0:7

0:5 0:4 1

1
A :

For simplicity, we use the notation in which the permuted vector x' is denoted by
y D .y1; y2; y3/ D .x'.1/; x'.2/; x'.3// D .x1; x3; x2/.

Using Theorems 6.10–6.12 and Theorem 6.3, we find, analogously as with B ,
that

F<.B''/ D ˚
.y1; y2; y3/ 2 I <.3/jy1 D 0:8 < y2 < 1 D y3



;

F<.D12; B''/ D ˚
.y1; y2; y3/ 2 I <.D12; 3/jy1 D y2 D 0:8; y3 D 1



;

F<.D23; B''/ D ˚
.y1; y2; y3/ 2 I <.D23; 3/jy1 D 0:8; y2 D y3 D 1



;
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Fig. 6.3 Partial eigenspaces F�.B/ and F�

' .B/ from Example 6.4

FD.B''/ D ˚
.0; 0; 0/



;

F�.B''/ D ˚
.y1; y2; y3/ 2 I �.3/jy1 D 0:8 � y2 � 1 D y3


 [ ˚
.0; 0; 0/



:

In the original notation, x' D .x1; x3; x2/ D .y1; y2; y3/, we have

F�
' .B/ D ˚

.0:8; 1; x3/ 2 I �
' .3/j0:8 � x3 � 1


 [ ˚
.0; 0; 0/



:

The eigenspaces F�.B/ and F�
' .B/ are shown in Fig. 6.3.

If the permutation  D
�
1 2 3

3 1 2

�
is applied to the rows and columns of B , then

conditions (i), (ii) and (iii) of Theorem 6.7 are satisfied by the resulting matrix

B  D
0
@ 1 0:3 0:7

0:3 0:6 0:8

0:4 0:5 1

1
A :

Analogously to the above, we use the notation in which the permuted vector x 
is denoted by z D .z1; z2; z3/ D �

x .1/; x .2/; x .3/
� D .x3; x1; x2/. Here, B  

does not satisfy condition (ii) in Theorem 6.9, therefore F<.D23; B  / D ;.
Furthermore, we obtain, using Theorems 6.10–6.11 and Theorem 6.3, that

F<.B  / D ˚
.z1; z2; z3/ 2 I <.3/j0:7 � z1 < z2 D 0:8; z3 D 1



;

F<.D12; B  / D ˚
.z1; z2; z3/ 2 I <.D12; 3/jz1 D z2 D 0:8; z3 D 1



;

FD.B  / D ˚
.0; 0; 0/



;
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which implies

F�.B  / D ˚
.z1; z2; z3/ 2 I �.3/j0:7 � z1 � 0:8 D z2; z3 D 1


[ ˚
.0; 0; 0/



:

In the original notation, x D .x3; x1; x2/ D .z1; z2; z3/, we get

F�
 .B/ D ˚

.0:8; 1; x3/ 2 I �
 .3/j0:7 � x3 � 0:8


 [ ˚
.0; 0; 0/



:

It is easy to verify that none of the remaining permutations

�
1 2 3

2 3 1

�
;

�
1 2 3

3 2 1

�
;

�
1 2 3

2 1 3

�

fulfills the conditions in Theorems 6.7–6.9. Therefore no further non-zero eigenvec-
tors can be found using these permutations. As a consequence, the eigenspace of B
in the max-drast fuzzy algebra is equal to

F .B/ D F�.B/ [ F�
' .B/ [ F�

 .B/ : (6.25)

The eigenspace F�
 .B/ and the complete eigenspace F .B/ are shown in Fig. 6.4.

In addition, several particular max-drast fuzzy eigenvectors of matrix B are listed
below as an illustration of the final formula (6.25)

F�.B/
x1 � x2 � x3

.0; 0; 0/

.0:3; 0:4; 1/

.0:3; 0:99; 1/

.0:8; 1; 1/

F�
' .B/

x1 � x3 � x2

.0; 0; 0/

.0:8; 1; 0:8/

.0:8; 1; 0:99/

.0:8; 1; 1/

F�
 .B/

x3 � x1 � x2

.0; 0; 0/

.0:8; 1; 0:7/

.0:8; 1; 0:79/

.0:8; 1; 0:8/

Fig. 6.4 Partial eigenspace F
�

 .B/ and complete eigenspace F .B/ from Example 6.4
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6.4 Eigenvectors in Max-Łukasiewicz Algebra

In this section, the above considerations will be transferred to the case of max-
Łukasiewicz algebra, which is a special case of max-T fuzzy algebra with Łukasie-
wicz triangular norm. Thus, in Sect. 6.4 we work with the max-L fuzzy algebra
.I ;˚;˝l/ with binary operation ˚ D max and ˝l D L D TL. That is, for every
x; y 2 I .n/ and for every i 2 N we have

.x ˚ y/i D max.xi ; yi / ;

.x ˝l y/i D L.xi ; yi / D
	
xi C yi � 1 if min.xi C yi � 1; 0/ D 0 ;

0 otherwise :

The following proposition contains several logical consequences of the definition
of Łukasiewicz triangular norm which will be used in development of the further
theory.

Proposition 6.7. Let a; b; c 2 Œ0; 1�. Then

(i) a ˝l b D b if and only if a D 1 or b D 0 ,
(ii) a ˝l c D b if and only if a D 1C b � c or (a � 1 � c and b D 0) ,

(iii) a ˝l c � b if and only if a � 1C b � c ,
(iv) a ˝l c > b if and only if a > 1C b � c ,
(v) If c < b then a˝l c < b .

Proof. (i) Let a˝l b D b. We have either 0 � aCb�1 or aCb�1 � 0. That is,
by definition of Łukasiewicz triangular norm, either a D 1 or b D 0. For the
converse implication, first consider that a D 1. Then aC b� 1 D 1C b� 1 D
b � 0 implies that a ˝l b D b. If b D 0, then a C b � 1 D a � 1 � 0. Hence
a ˝l b D b follows again from the definition.

(ii) Let a˝l c D b. By definition, either 0 � aCc�1 D b or aCc�1 � 0.D b/.
That is, either a D 1 C b � c or (a � 1 � c and b D 0). Conversely, let
a D 1 C b � c or (a � 1 � c and b D 0). Then either a C c � 1 D b � 0

or (a C c � 1 � 0 and b D 0). It follows directly from the definition that in
either case a ˝l c D b.

(iii) By definition a ˝l c � b implies that, either a C c � 1 � 0.� b/ or 0 �
aC c�1 � b. It follows directly that in either case a � 1Cb� c. Conversely,
a � 1Cb�c implies aCb�1 � b. Also, 0 � b. Then by definition a˝lc � b.

(iv) The proof is analogous to (iii).
(v) Let 0 � c < b. That is b > 0. As a � 1 then a C c < 1 C b implies that

a C c � 1 < b. Hence, a˝l c < b follows from the definition.
ut

Proposition 6.8. Let A 2 I .n; n/, x 2 I .n/: Then x 2 F .A/ if and only if for
every i 2 N the following hold
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aij ˝l xj � xi for every j 2 N ; (6.26)

aij ˝l xj D xi for some j 2 N : (6.27)

Proof. By definition, x 2 F .A/ is equivalent with the condition max
j2N aij ˝l xj � xi

for every i 2 N , which is equivalent to .1/ and .2/. ut
Proposition 6.9. Let A 2 I .n; n/, x 2 I <.n/: Then x 2 F<.A/ if and only if
for every i 2 N the following hold

aij ˝l xj � xi for every j 2 N; j � i ; (6.28)

aij ˝l xj D xi for some j 2 N; j � i : (6.29)

Proof. By Proposition 6.7(v), aij ˝l xj < xi for every j < i , xj < xi . Hence the
terms with j < i in .1/ and .2/ of Proposition 6.8 can be left out. ut
Theorem 6.13. Let A 2 I .n; n/ and x 2 I <.n/: Then x 2 F<.A/ if and only if
for every i 2 N the following hold

(i) aij � 1C xi � xj for every j 2 N; j � i ,
(ii) if i D 1, then x1 D 0 and a1j � 1 � xj , or there exists j 2 N such that

a1j D 1C x1 � xj ,
(iii) if i > 1, then aij D 1C xi � xj for some j 2 N; j � i .

Proof. Suppose that x 2 F<.A/, that is A ˝l x D x. Then aij ˝l xj � xi , for
every j 2 N; j � i by Proposition 6.7(iii) gives aij � 1 C xi � xj . If i D 1 then
a1j ˝l xj D x1, for some j 2 N . Then by Proposition 6.7(ii), we have x1 D 0

and a1j � 1 � xj , or a1j D 1 C x1 � xj , for some j 2 N . To prove (iii),
consider aij ˝l xj D xi for some j 2 N , j � i > 1. By definition we have, either
aij Cxj � 1 � 0 or 0 � aij Cxj � 1. The case aij ˝l xj D 0 D xi is not possible, as
for i > 1, xi > 0. Then we must have 0 � aij Cxj �1 D xi , that is aij D 1Cxi�xj .

Conversely, suppose that conditions (i), (ii), (iii) hold true. We show that x 2
F<.A/, that is A ˝l x D x. In other words, maxj2N aij ˝l xj D xi for every
i 2 N . Let i 2 N be fixed. By (i) and Proposition 6.7(iii), aij ˝l xj � xi , for every
j 2 N; j � i . If i D 1 then by (ii) and Proposition 6.7(ii), a1j ˝l xj D x1 for
some j 2 N . If i > 1 then by (iii) aij D 1Cxi �xj , for some j 2 N , j � i > 1,
we have aijCxj�1 D xi > 0, because i > 1. This implies max.0; aijCxj�1/ D xi ,
that is aij ˝l xj D xi . Hence maxj2N aij ˝l xj D xi for every i 2 N , that is
A˝l x D x or x 2 F<.A/. ut

The following theorem describes necessary conditions under which a given
square matrix can have a increasing eigenvector.

Theorem 6.14. Let A 2 I .n; n/. If F<.A/ ¤ ;, then the following conditions
are satisfied
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(i) aij < 1 for all i; j 2 N , i < j ,
(ii) ann D 1 .

Proof. Let F<.A/ ¤ ;. That is, there exists x 2 F<.A/ such that conditions of
Theorem 6.13 hold true. Condition aij < 1 follows directly from (i) and ann D 1

from (iii) of Theorem 6.13. ut
Remark 6.5. Generally speaking, the conditions in Theorem 6.14 are only neces-
sary. It can be easily seen that in the case n D 2 the necessary conditions in
Theorem 6.14 are also sufficient. Namely, if n D 2, then we have two conditions:
a12 < 1 and a22 D 1. Then, arbitrary vector with x1 D 0 and 0 < x2 � 1 � a12
fulfills the conditions of Theorem 6.13. Further increasing eigenvectors in the case
a11 < 1 are of the form .x1; x2/ with 0 < x1 � a12 and x2 D x1 C 1 � a12. In
the case when a11 D 1, variable x1 can take arbitrary values from the interval .0; 1/
and x1 < x2 � min.1; 1 C x1 � a12/. The result is completely formulated in the
following theorem.

Theorem 6.15. Let A 2 I .2; 2/. Then F<.A/ ¤ ; if and only if the a12 < 1 and
a22 D 1. If this is the case, then either

(i) a11 < 1 and F<.A/ D ˚
.x1; x2/ 2 I .2; 2/j x1 D 0; x2 2 .0; 1� a12�



[ ˚ .x1; x2/ 2 I .2; 2/j x1 2 .0; a12�; x2 D 1 C x1 � a12



,

or
(ii) a11 D 1 and F<.A/ D ˚

.x1; x2/ 2 I .2; 2/j x1 D 0; x2 2 .0; 1 � a12�



[ ˚.x1; x2/ 2 I .2; 2/j x1 2 .0; 1�; x1 < x2 � min.1; 1C x1 � a12/



.

Proof. The statement follows from the arguments in Remark 6.5. ut
In the next theorem, a necessary and sufficient condition for the existence of a

non-zero constant eigenvector is presented. The set of all constant eigenvectors of a
matrix A is denoted by FD.A/.

Theorem 6.16. Let A 2 I .n; n/, then there is a non-zero constant eigenvector
x 2 FD.A/ if and only if

(i) maxf aijj j 2 N g D 1 for every i 2 N .

Proof. Let x D .c; c; : : : ; c/ 2 I .n/ with c > 0 be a constant eigenvector of A.
Then (i) follows from the conditions (6.26), (6.27) in Proposition 6.8. Conversely,
if (i) is satisfied, then clearly the conditions (6.26), (6.27) hold true for the unit
constant vector u D .1; 1; : : : ; 1/ 2 I .n/. Hence u 2 FD.a/. ut
Theorem 6.17. Let A 2 I .n; n/. If the condition (i) of Theorem 6.16 is satisfied,
then FD.A/ D ˚

.c; c; ; : : : ; c/j c 2 I


. If A does not satisfy the condition (i), then

FD.A/ D ˚
.0; 0; ; : : : ; 0/



.

Proof. It is easy to verify that if A satisfies the condition (i), then the condi-
tions (6.26), (6.27) hold true for an arbitrary constant vector .c; c; : : : ; c/ with
c 2 I , hence FD.A/ D ˚

.c; c; ; : : : ; c/j c 2 I


.
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On the other hand, let us assume that the condition (i) is not satisfied. Clearly,
the zero constant vector .0; 0; ; : : : ; 0/ fulfills the conditions (6.26), (6.27). Hence we
have

˚
.0; 0; ; : : : ; 0/


 � FD.A/. The equality FD.A/ D ˚
.0; 0; ; : : : ; 0/



follows

from Theorem 6.16. ut
Example 6.5. An application of Theorems 6.15 and Theorem 6.17 is presented by
computing the increasing eigenspace of

A D
�
0:7 0:3

0:2 1

�
;

and its permuted counterpart,

A'' D
�
1 0:2

0:3 0:7

�
:

The permuted matrix A'' is used to compute the decreasing eigenvectors of A. As
a result of the computation, we get that the eigenspace F .A/ contains

• increasing vectors with 0 D x1 < x2 � 0:7 ,
• increasing vectors with 0 < x1 � 0:3, x2 D 0:7C x1 ,
• no decreasing vectors ,
• the constant vector x D .0; 0/ .

Example 6.6. In this example, we compute the increasing eigenspace of

B D
�
1 0:3

0:2 1

�
;

and its permuted counterpart

B'' D
�
1 0:2

0:3 1

�
:

The eigenspace F .B/ consists of

• increasing vectors with 0 D x1 < x2 � 0:7 ,
• increasing vectors with 0 < x1 � 1, x1 < x2 � min.1; 0:7C x1/ ,
• decreasing vectors with 0 D x2 < x1 � 0:8 ,
• decreasing vectors with 0 < x2 � 1, x2 < x1 � min.1; 0:8C x2/ ,
• constant vectors x D .c; c/ with 0 � c � 1 .

The eigenspaces of A and B are shown in Fig. 6.5.

Remark 6.6. Description of non-decreasing eigenvectors is necessary for comput-
ing of the general eigenspace of dimension n D 3 and higher. This extension of the
presented theory is given in the next two sections for three-dimensional matrices.
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Fig. 6.5 Eigenspaces of A and B from Example 6.5 and 6.6

Moreover, the necessary conditions from Theorem 6.14 are extended to necessary
and sufficient ones.

Remark 6.7. The max-L fuzzy algebra is closely related to the max-plus algebra
(also called: tropical algebra) with operations ˚ D max and ˝ D C defined on the
set of all real numbers. If we denote by E the n�n matrix with all inputs equal to 1,
and symbols FC (Fl ) denote the eigenspace of a given matrix in max-plus (max-L)
algebra, then the following theorem holds true.

Theorem 6.18. Let A 2 I .n; n/. If a vector x 2 I .n/ is max-plus eigenvector
of the matrix A� E , then x is max-L eigenvector of A. In formal notation,

FC.A� E/\ I .n/ � FL.A/ :

Proof. Assume that x 2 I .n/ satisfies the equation .A � E/ ˝ x D x, i.e. the
max-plus equality

M
j2N

.aij � 1/˝ xj D xi

holds for every i 2 N . Adding the expression ˚ 0 to both sides, and expressing the
operation ˝ explicitly as addition, we get by easy computation

M
j2N

.aij � 1C xj /˚ 0 D
M
j2N

�
.aij � 1C xj /˚ 0

� D
M
j2N

aij ˝l xj D xi ˚ 0 D xi :

Hence, A˝L x D x . ut
Now we consider increasing eigenvectors in the three-dimensional eigenproblem

in the max-Łukasiewicz fuzzy algebra. In other words, we assume n D 3 and
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we work with matrices in I .3; 3/ and vectors in I .3/. The previous results are
extended and a complete description of the increasing eigenspace is given.

The following theorem describes the necessary and sufficient conditions under
which a three-dimensional fuzzy matrix has an increasing eigenvector.

Theorem 6.19. Let A 2 I .3; 3/. Then F<.A/ ¤ ; if and only if the following
conditions are satisfied

(i) a12 < 1 ; a13 < 1 ; a23 < 1 ;

(ii) a22 D 1 ; or a13 < a23 ;

(iii) a33 D 1 :

Proof. Let F<.A/ ¤ ;, i.e. there exists x 2 F<.A/. The conditions (i) and (iii)
follow directly from Theorem 6.13. To prove the condition (ii), let us assume that
a22 < 1. Then by (iii) of Theorem 6.13 we get a22 D 1Cx2�x2 or a23 D 1Cx2�x3.
The first equation implies a22 D 1, which is a contradiction. Therefore we must have
a23 D 1 C x2 � x3 < 1. By (i) of Theorem 6.13, we have a13 � 1 C x1 � x3 D
1C .x1 � x2/C .x2 � x3/ D .1C x2 � x3/C .x1 � x2/ < 1C x2 � x3 D a23. This
implies a13 < a23.

Conversely, suppose that conditions (i), (ii) and (iii) are satisfied. To show that
F<.A/ ¤ ;, we consider two cases.

Case 1. If a22 < 1, then put x1 D 0 and choose x2 � min.1 � a12; a23 �
a13/ and 0 < x2 < 1 � a13, and put x3 D x2 C .1 � a23/. By our assumption,
1�a12 > 0, a23�a13 > 0 and 1�a13 > 0. Therefore the choice of x2 fulfilling the
conditions x2 � min.1�a12; a23�a13/ and 0 < x2 < 1�a13 is always possible. Also
by assumption, a23 < 1 implies that 1�a23 > 0. Therefore x3 D x2C.1�a23/ > x2.
Moreover, x2 � min.1� a12; a23 � a13/ � a23 � a13 � a23, i.e. x2 � a23. From this
we have x3 D x2C .1�a23/ � 1, i.e. x3 � 1. This shows that x 2 I <.3/. To show
that x 2 F<.A/, consider x2 � min.1 � a12; a23 � a13/ and 0 < x2 < 1 � a13.
This implies that x2 � 1 � a12 and 0 < x2 < 1 � a13, or equivalently, a12 �
1 � x2 and a13 < 1 � x2, which implies condition (i) of Theorem 6.13. Choice of
x1 D 0 satisfies the condition (ii) of Theorem 6.13. Also, x3 D x2 C .1 � a23/,
a23 D 1C x2 � x3 imply condition (iii) of Theorem 6.13. Hence F<.A/ ¤ ;.

Case 2. If a22 D 1, then put x1 D 0, choose 0 < x2 < min.1 � a12; 1 � a13/

and choose x3 such that x2 < x3 � min.1 � a13; x2 C .1 � a23//. The choice
0 < x2 < min.1 � a12; 1 � a13/ is always possible because by our assumption
1� a12 > 0 and 1� a13 > 0. Also 1� a23 > 0 by the same argument and therefore
x 2 I <.3/. Consider x2 < min.1�a12; 1�a13/ � 1�a12. Then x2 < 1�a12 implies
that a12 < 1� x2. Similarly a13 < 1� x2 and by x3 � min.1� a13; x2 C .1� a23//
we have a23 � 1C x2 � x3, showing that condition (i) of Theorem 6.13 is satisfied.
Conditions (ii) and (iii) of Theorem 6.13 are satisfied by the choice of x1 D 0 and
assumption a22 D 1, respectively. Hence F<.A/ ¤ ;. ut
Theorem 6.20. Let A 2 I .3; 3/ satisfy conditions (i), (ii) and (iii) of Theo-
rem 6.19. Then x 2 F<.A/ if and only if x 2 I <.3/ and either x1 D 0 and
conditions
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if a22 < 1; then

0 < x2 � min.1 � a12; a23 � a13/; x2 < 1 � a13; x3 D x2 C .1� a23/ ;

(6.30)

if a22 D 1; then

0 < x2 < min.1 � a12; 1 � a13/; x2 < x3 � min
�
1 � a13; x2 C .1 � a23/

�
;

(6.31)

are satisfied, or x1 > 0 and conditions

if a11 D 1; a22 D 1; then x1 < x2 < 1 ;

x2 � x1 C .1 � a12/; x3 � min
�
x1 C .1 � a13/; x2 C .1 � a23/; 1

�
; (6.32)

if a11 D 1; a22 < 1; then x1 < a23 ;

x2 � min
�
a23; x1 C .1 � a12/; x1 C .a23 � a13/

�
; x3 D x2 C .1 � a23/ ;

(6.33)

if a11 < 1; a22 D 1; then

0 < x1 < a12; x2 D x1 C .1 � a12/ ;
x3 � min

�
x1 C 2 � .a12 C a23/; x1 C .1� a13/; 1

�
; or

0 < x1 � a13; x1 C .a23 � a13/ � x2 < x1 C .1 � a12/ ;

x3 D x1 C .1 � a13/ ; (6.34)

if a11 < 1; a22 < 1; then

a12 � a13 C a23 � 1; 0 < x1 � a12 C a23 � 1; x2 D x1 C .1 � a12/ ;

x3 D x1 C 2 � .a12 C a23/; or

a12 � a13 C a23 � 1; 0 < x1 � a13; x2 D x1 C .a23 � a13/ ;
x3 D x1 C .1 � a13/ (6.35)

are satisfied.

Proof. Let A 2 I .3; 3/ satisfy conditions of Theorem 6.19. For convenience, we
shall use notation F<

0 .A/ D fx 2 F<.A/j x1 D 0g, F<
1 .A/ D fx 2 F<.A/j x1 >

0g. Thus, we have F<.A/ D F<
0 .A/ [ F<

1 .A/. The assertions of the theorem for
x 2 F<

0 .A/ and for x 2 F<
1 .A/ will be considered separately.

CASE 1 (x1 D 0)
Let x D .0; x2; x3/ 2 I <.3/ satisfy conditions (6.30) and (6.31). Using the same
arguments as in the converse part of Theorem 6.19 we can easily show that x 2
F<
0 .A/.
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For the proof of the converse implication, suppose that x 2 F<
0 .A/. This implies

that conditions of Theorem 6.13 are fulfilled. We consider two subcases a22 < 1 and
a22 D 1.

Subcase 1a. If a22 < 1, condition (i) of Theorem 6.13 gives a12 � 1C x1 � x2,
a13 � 1Cx1�x3 and a23 � 1Cx2�x3. Since x1 D 0 by our assumption, therefore
we have x2 � 1 � a12, x3 � 1 � a13 and x3 � 1 C x2 � a23. Condition (iii) of
Theorem 6.13 gives a23 D 1C x2 � x3, which implies that x3 D x2 C 1 � a23. By
x3 D x2C1�a23 and x3 � 1�a13, we have x2 � a23�a13. Also, x2 < x3 � 1�a13
implies that x2 < 1�a13. Therefore we have 0 < x2 � min.1�a12; a23�a13/; x2 <
1 � a13; x3 D x2 C 1 � a23.

Subcase 1b. If a22 D 1, condition (i) of Theorem 6.13 gives x2 � 1 � a12,
x3 � 1 � a13 and x3 � 1 C x2 � a23. Since 0 < x2 < 1, then we must have
x2 < 1� a12. Also x2 < x3 � 1� a13 implies that x2 < 1� a13. Therefore we have
0 < x2 < min.1 � a12; 1 � a13/; x2 < x3 � min.1 � a13; x2 C 1 � a23/.

CASE 2 (x1 > 0)
Let us assume that vector x D .x1; x2; x3/ 2 I <.3/ with x1 > 0 satisfies
conditions (6.32)–(6.35). There are four possible subcases and we show that the
conditions (i), (ii) and (iii) of Theorem 6.13 in each subcase are satisfied. In other
words, we show that x 2 F<

1 .A/.
Subcase 2a. Let a11 D 1; a22 D 1. Then from x2 � x1 C 1 � a12 we have

a12 � 1C x1 � x2. Also, x3 � min.x1 C 1 � a13; x2 C 1 � a23; 1/ � x1 C 1 � a13
implies a13 � 1Cx1�x3, and x3 � min.x1C1�a13; x2C1�a23; 1/ � x2C1�a23
implies a23 � 1C x2 � x3. That is, (i) of Theorem 6.13 is satisfied. Conditions (ii)
and (iii) of Theorem 6.13 are satisfied by the assumption a11 D 1 and a22 D 1,
respectively.

Subcase 2b. Let a11 D 1; a22 < 1. Then from x3 D x2 C 1 � a23 we have
a23 D 1Cx2�x3. Also, x2 � min.a23; x1C1�a12; x1C .a23 �a13// implies x2 �
x1C1�a12 and x2 � x1C .a23 �a13/. The first inequality gives a12 � 1Cx1 �x2.
By the second inequality x2 � x1 C .a23 � a13/ and x3 D x2 C 1 � a23, we have
a13 � 1C x1 � x3. That is, (i) of Theorem 6.13 is satisfied. Conditions (ii) and (iii)
of Theorem 6.13 are satisfied by the assumption a11 D 1 and by x3 D x2 C 1� a23,
respectively.

Subcase 2c. Let a11 < 1; a22 D 1. If the first part of the disjunction in (6.34)
is satisfied, then x2 D x1 C 1 � a12 implies a12 D 1 C x1 � x2. Also, x3 �
min.x1 C 2 � .a12 C a23/; x1 C 1 � a13; 1/ implies that x3 � x1 C 1 � a13 and
x3 � x1 C 2 � .a12 C a23/. The first inequality implies a13 � 1 C x1 � x3. By
x2 D x1 C 1 � a12 and x3 � x1 C 2 � .a12 C a23/, we have a23 � 1 C x2 � x3.
That is, (i) of Theorem 6.13 is satisfied. Conditions (ii) and (iii) of Theorem 6.13
are satisfied by x2 D x1 C 1 � a12 and by the assumption a22 D 1, respectively.

If the second part of the disjunction in (6.34) is satisfied, then x3 D x1 C 1� a13
implies a13 D 1C x1 � x3. Also, x1 C .a23 � a13/ � x2 < x1 C 1� a12 implies the
inequalities x1 C .a23 � a13/ � x2 and x2 < x1 C 1� a12. Using x3 D x1 C 1� a13
in the first inequality we have a23 � 1 C x2 � x3, the second inequality gives
a12 � 1C x1 � x2. That is, (i) of Theorem 6.13 is satisfied. Conditions (ii) and (iii)
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of Theorem 6.13 are satisfied by x3 D x1 C 1� a13 and by the assumption a22 D 1,
respectively.

Subcase 2d. Let a11 < 1; a22 < 1. If the first part of the disjunction in (6.35) is
satisfied, then a12�a13Ca23 � 1, and x2 D x1C1�a12 implies a12 D 1Cx1�x2.
By substituting in x3 D x1 C 2 � .a12 C a23/, we get a23 D 1 C x2 � x3. Also,
x3 D x1 C 2� .a12 C a23/ D x1 C 1� .a12 C a23 � 1/ � x1 C 1� a13. This implies
that x3 � x1C1�a13, or a13 � 1Cx1�x3. That is, (i) of Theorem 6.13 is satisfied.
Conditions (ii) and (iii) of Theorem 6.13 are satisfied by x2 D x1 C 1 � a12 and
a23 D 1C x2 � x3, respectively.

If the second part of the disjunction in (6.35) is satisfied, then a12�a13Ca23 � 1,
and x3 D x1 C 1� a13 gives a13 D 1C x1 � x3. We have, x2 D x1 C .a23 � a13/ �
x1 C 1 � a12, that is a12 � 1C x1 � x2. Also, x2 D x1 C .a23 � a13/ D .x1 C 1 �
a13/ � .1 � a23/ D x3 � .1 � a23/ implies that a23 D 1 C x2 � x3. That is, (i) of
Theorem 6.13 is satisfied. Conditions (ii) and (iii) of Theorem 6.13 are satisfied by
x3 D x1 C 1 � a13 and a23 D 1C x2 � x3, respectively.

For the proof of the converse implication, suppose that x 2 F<
1 .A/. Then

conditions (i), (ii) and (iii) of Theorem 6.13 hold true and we show that condi-
tions (6.32)–(6.35) are satisfied. We start with an easy observation condition (i) of
Theorem 6.13 implies x2 � x1 C 1�a12, x3 � x1 C 1�a13 and x3 � x2 C 1�a23.

Subcase 2a’. When a11 D 1; a22 D 1, then the inequalities in condition (6.32)
follow directly from the assumption x 2 I <.3/ and from the above observation.

Subcase 2b’. When a11 D 1; a22 < 1, then condition (iii) of Theorem 6.13 gives
x3 D x2C1�a23. Since x 2 I <.3/ then x3 D x2C1�a23 � 1 implies x1 < x2 �
a23. Using x3 D x2 C 1 � a23 in x3 � x1 C 1 � a13 we get x2 � x1 C .a23 � a13/.
Thus, we have verified all relations in condition (6.33).

Subcase 2c’. When a11 < 1; a22 D 1, then by condition (ii) of Theorem 6.13
either x2 D x1 C 1 � a12, x3 � x1 C 1 � a13 and x3 � x2 C 1 � a23, or x2 <

x1 C 1 � a12, x3 D x1 C 1 � a13 and x3 � x2 C 1 � a23 hold true.
Let us consider the first possibility. Since x 2 I <.3/ then x2 D x1C1�a12 < 1,

which implies x1 < a12. By x2 D x1 C 1 � a12 and x3 � x2 C 1 � a23 we have
x3 � x1C2� .a12Ca23/. The remaining relations in the first part of the disjunction
in (6.34) follow from the starting observation.

In the second possibility, we have x3 D x1 C 1 � a13 � 1 that is, x1 � a13. By
x3 D x1 C 1� a13 and x3 � x2 C 1� a23, we have x2 � x1 C .a23 � a13/. We have
verified all relations in the second part of the disjunction in (6.34) .

Subcase 2d’. When a11 < 1; a22 < 1, then condition (ii) of Theorem 6.13 implies
x2 D x1 C 1�a12, or x3 D x1 C 1�a13. Moreover, condition (iii) of Theorem 6.13
gives x3 D x2 C 1 � a23. We shall consider two possibilities.

In the first possibility we assume x2 D x1 C 1 � a12, x3 � x1 C 1 � a13 and
x3 D x2 C 1�a23. Combining the two equalities we get x3 D x1 C 2� .a12 Ca23/,
and using this value in the inequality assumption we get 1 � a12 � a13 C a23. Thus,
all relations in the first part of the disjunction in condition (6.35) must hold true.

In the second possibility we assume x2 � x1 C 1 � a12, x3 D x1 C 1 � a13 and
x3 D x2 C 1 � a23. The two equalities imply x2 D x1 C .a23 � a13/. Inserting this
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value into the inequality assumption we get a12 � a13 C a23 � 1. Thus, all relations
in the second part of the disjunction in condition (6.35) have been verified. ut

6.4.1 Non-decreasing Eigenvectors

In this subsection the three-dimensional eigenproblem is investigated for non-
decreasing eigenvectors. Analogously to the notation introduced in [8] and [16] we
denote

I <.D12; 3/ D ˚
x 2 I .3/j x1 D x2 < x3



; (6.36)

I <.D23; 3/ D ˚
x 2 I .3/j x1 < x2 D x3



; (6.37)

and

F<.D12; A/ D ˚
x 2 I <.D12; 3/jA˝l x D x



; (6.38)

F<.D23; A/ D ˚
x 2 I <.D23; 3/jA˝l x D x



; (6.39)

for a given matrix A 2 I .3; 3/.
It is easy to see that any non-decreasing vector x 2 I .3/ is either increasing or

constant, or belongs to one of the sets (6.36), (6.37). Hence,

I �.3/ D I <.3/[ I <.D12; 3/[ I <.D21; 3/[ I D.3/ ; (6.40)

F�.A/ D F<.A/[ F<.D12; A/[ F<.D21; A/ [ FD.A/ : (6.41)

Proposition 6.10. Let A 2 I .3; 3/, x 2 I <.D12; 3/. Then x 2 F<.D12; A/

if and only if the following hold

1 � a13 � x3 � x1 ; (6.42)

1 � a23 � x3 � x1 ; (6.43)

x1 D 0 or max.a11; a12/ D 1 or 1 � a13 D x3 � x1 ; (6.44)

x1 D 0 or max.a21; a22/ D 1 or 1 � a23 D x3 � x1 ; (6.45)

a33 D 1 : (6.46)

Proof. Let x 2 F<.D12; A/, then 0 � x1 D x2 < x3 � x3. By (6.26) in
Proposition 6.8, a13 ˝l x3 � x1. Then by definition 0 � a13 C x3 � 1 � x1 or
a13Cx3�1 � 0 � x1, implies that 1�a13 � x3�x1 holds in either case. Similarly,
1� a23 � x3 � x2 D x3 � x1. By (6.27) in Proposition 6.8 we have, a11 ˝l x1 D x1
or a12 ˝l x2 D x1 or a13 ˝l x3 D x1. The first two of the equalities are trivially
fulfilled if x1 D x2 D 0. On the other hand, if x1 D x2 > 0, then we get a11 D 1 or
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a12 D 1 or a13 C x3 � 1 D x1. That is, max.a11; a12/ D 1 or 1� a13 D x3 � x1.
By the same argument we get x1 D 0 or max.a21; a22/ D 1 or 1� a23 D x3 � x1.
In view of the assumption x1 D x2 < x3, equation (6.46) follows from (6.27) in
Proposition 6.8.

Conversely, conditions (6.42) and (6.43), in view of Proposition 6.7 are equiv-
alent to a13 ˝l x3 � x1 and a23 ˝l x3 � x1 respectively. Three condi-
tions (6.44), (6.45) and (6.46) together imply condition (6.27) in Proposition 6.8.
Hence x 2 F<.D12; A/. ut
Proposition 6.11. Let A 2 I .3; 3/, x 2 I <.D23; 3/: Then x 2 F<.D23; A/ if
and only if the following hold

1 � max.a12; a13/ � x2 � x1 ; (6.47)

x1 D 0 or a11 D 1 or 1 � max.a12; a13/ D x2 � x1 ; (6.48)

max.a22; a23/ D 1 ; (6.49)

max.a32; a33/ D 1 : (6.50)

Proof. Let x 2 I <.D23; 3/ then, 0 � x1 < x2 D x3 � 1. Similarly as in previous
proof, it is easy to show that conditions (6.47), (6.48), (6.49), (6.50) are equivalent
to conditions in Proposition 6.8. ut
Theorem 6.21. Let A 2 I .3; 3/. Then F<.D12; A/ ¤ ; if and only if the
following conditions are satisfied

(i) a13 < 1 ; a23 < 1 ;

(ii) a33 D 1 :

Proof. Let there exist x 2 F<.D12; A/. In view of (6.42) of Proposition 6.10,
a13 � 1 � x1 � x3 < 0 implies that a13 < 1. Similarly we have a23 < 1. Condition
(ii) is the same as condition (6.46).

Conversely, suppose that conditions (i), (ii) hold true. We show that there exists
x D .x1; x2; x3/ 2 F<.D12; A/. The choice of x1 D x2 D 0 and x3 D
min.1 � a13; 1 � a23/ satisfies conditions (6.42)–(6.46) of Proposition 6.10. Hence
F<.D12; A/ ¤ ;. ut
Theorem 6.22. Let A 2 I .3; 3/. Then F<.D23; A/ ¤ ; if and only if the
following conditions are satisfied

(i) a12 < 1 ; a13 < 1 ;

(ii) max.a22; a23/ D 1 ;

(iii) max.a32; a33/ D 1 :

Proof. The proof is analogous to the proof of Theorem 6.21. In the converse part we
put x1 D 0, and take an arbitrary value x2 D x3 in the interval h1�max.a12; a13/; 1i.

ut
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Theorem 6.23. Let A 2 I .3; 3/ and let conditions (i)–(ii) of Theorem 6.21 be
satisfied. Denoting F<

0 .D12; A/ D fx 2 F<.D12; A/j x1 D 0g, F<
1 .D12; A/ D

fx 2 F<.D12; A/j x1 > 0g we have F<.D12; A/ D F<
0 .D12; A/ [ F<

1 .D12; A/,
where F<

0 .D12; A/ consists exactly of all vectors x D .x1; x2; x3/ 2 I .3/
satisfying

0 D x1 D x2 < x3 � 1 � max.a13; a23/ ; (6.51)

and F<
1 .D12; A/ consists exactly of all vectors x D .x1; x2; x3/ 2 I .3/ satisfying

0 < x1 D x2 < x3 and conditions

if max.a11; a12/ D 1; max.a21; a22/ D 1; then 1 � max.a13; a23/ � x3 � x1 ;

(6.52)

if max.a11; a12/ < 1; max.a21; a22/ D 1; then 1 � a23 � 1 � a13 D x3 � x1 ;

(6.53)

if max.a11; a12/ D 1; max.a21; a22/ < 1; then 1 � a13 � 1 � a23 D x3 � x1 ;

(6.54)

if max.a11; a12/ < 1; max.a21; a22/ < 1; then 1� a13 D 1 � a23 D x3 � x1 :

(6.55)

Proof. Let A 2 I .3; 3/ satisfy conditions (i)–(ii) of Theorem 6.21 and let
x D .0; 0; x3/ 2 I <.D12; 3/ satisfy condition (6.51). It is easy to see that
conditions in Proposition 6.10 are fulfilled, i.e. x 2 F<.D12; A/. Conversely, if
x 2 F<

0 .D12; A/, then condition (6.51) follows from conditions (6.42) and (6.43) .
Let us assume now that a vector x D .x1; x2; x3/ 2 I .3/ satisfies 0 < x1 D

x2 < x3 and conditions (6.52)–(6.55). Then x 2 I <.D12; 3/ and conditions (6.52)–
(6.55) imply conditions (6.42)–(6.45) in Proposition 6.10. The condition (6.46) of
Proposition 6.10 is identical with (ii) in Theorem 6.21. Hence x D .x1; x2; x3/ 2
F<.D12; A/, in view of Proposition 6.10.

Conversely, let x 2 F<
1 .D12; A/. Then x1 > 0 and conditions (6.42)–(6.46) of

Proposition 6.10 are satisfied. Conditions (6.52)–(6.55) then follow immediately.
ut

Theorem 6.24. Let A 2 I .3; 3/ and let conditions (i)–(ii) of Theorem 6.22 be
satisfied. Denoting F<

0 .D23; A/ D fx 2 F<.D23; A/j x1 D 0g, F<
1 .D23; A/ D

fx 2 F<.D23; A/j x1 > 0g we have F<.D23; A/ D F<
0 .D23; A/ [ F<

1 .D23; A/,
where F<

0 .D23; A/ consists exactly of all vectors x D .x1; x2; x3/ 2 I .3/
satisfying

0 D x1 < x2 D x3 � 1 � max.a12; a13/ ; (6.56)

and F<
1 .D23; A/ consists exactly of all vectors x D .x1; x2; x3/ 2 I .3/ satisfying

0 < x1 < x2 D x3 and conditions
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if a11 D 1; then 1 � max.a12; a13/ � x2 � x1 ; (6.57)

if a11 < 1; then 1 � max.a12; a13/ D x2 � x1 : (6.58)

Proof. The proof is analogous to the proof of Theorem 6.23. ut

6.4.2 General Eigenvectors in Max-Łukasiewicz Algebra

Similarly as it was done in Sect. 6.3.2 for the max-prod algebra, the results
derived in Sect. 6.4.1 for the non-decreasing eigenvectors in max-L algebra will
be extended for the general eigenproblem in this subsection. To keep the text easily
understandable, the explanation is restricted to three-dimensional matrices.

Using the idea from Sect. 6.3.2, we get

FL.A/ D F .A/ D
[
'2Pn

F�
' .A/ D

[
'2Pn

[
D2Dn

F<
' .D;A/ ; (6.59)

which is formally almost identical with (6.16). However, in the former equation the
eigenspaces F<

' .D;A/ are computed in (max, prod) algebra, while here we work
in (max-L) algebra, using Theorem 6.23 and Theorem 6.24. The computation of
FL.A/ D F .A/ is shown below in Example 6.7 and Example 6.8.

6.4.3 Examples

In this section the above considerations will be illustrated by computing the com-
plete eigenspace in max-L fuzzy algebra of two given three-dimensional matrices.

Example 6.7. Let us consider the matrix

A D
0
@0:6 0:8 0:30:5 0:9 0:4

0:3 0:7 1

1
A :

Matrix A satisfies the conditions (i), (ii) and (iii) of Theorem 6.19, hence F<.A/ ¤
;. By Theorem 6.20, the increasing eigenspace ofA is F<.A/ D F<

0 .A/[F<
1 .A/.

Since a22 D 0:9 < 1, then by condition (6.30) of Theorem 6.20, F<
0 .A/ consists

exactly of the vectors .0; x2; x3/ 2 I .3/ fulfilling the conditions

0 < x2 � min.1 � a12; a23 � a13/; x2 < 1 � a13; x3 D x2 C .1 � a23/ ;

i.e.
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0 < x2 � min.1� 0:8; 0:4 � 0:3/; x2 < 1 � 0:3; x3 D x2 C .1 � 0:4/ :

Hence,

F<
0 .A/ D ˚

.0; x2; x3/ 2 I .3/j0 < x2 � 0:1; x3 D x2 C 0:6


:

Since a11 D 0:6 < 1; a22 D 0:9 < 1, and a12 � a13 C a23 D 0:8 � 0:3 C 0:4 D
0:9 � 1, then we get in a similar way by the condition (6.35) of Theorem 6.20

F<
1 .A/ D ˚

.x1; x2; x3/ 2 I .3/j0 < x1 � 0:3; x2 D x1 C 0:1; x3 D x1 C 0:7


:

Further, Theorem 6.23 implies that

F<.D12; A/ D F<
0 .D12; A/ D ˚

.0; 0; x3/ 2 I .3/ W 0 < x3 � 0:6


:

By Theorem 6.22 we get F<.D23; A/ D ; and according to Theorem 6.17, A
has exactly one constant eigenvector .0; 0; 0/. By analogous considerations of all
matrices A'' for permutations ' 2 P3, we get that, in view of Theorem 5.1, A has
no other eigenvectors. Summarizing we get

F .A/ D F�.A/ D FD.A/[ F<.D12; A/[ F<
0 .A/[ F<

1 .A/

D ˚
.0; 0; 0/


[ ˚
.0; 0; x3/ 2 I .3/j0 < x3 � 0:6



[ ˚

.0; x2; x3/ 2 I .3/j0 < x2 � 0:1; x3 D x2 C 0:6



[ ˚
.x1; x2; x3/ 2 I .3/j0 < x1 � 0:3; x2 D x1 C 0:1; x3 D x1 C 0:7



:

Example 6.8. In this example we change the entry a22 D 0:9 to b22 D 1, and leave
the remaining entries unchanged. We start with computing the increasing eigenspace
of matrix B

B D
0
@0:6 0:8 0:30:5 1 0:4

0:3 0:7 1

1
A :

Matrix B satisfies conditions (i), (ii), (iii) in Theorem 6.19, hence F<.B/ ¤ ;.
By Theorem 6.20, the increasing eigenspace of B is F<.B/ D F<

0 .B/[ F<
1 .B/.

Since b22 D 1, then by condition (6.31) in Theorem 6.20, F<
0 .B/ consists exactly

of the vectors .0; x2; x3/ 2 I .3/ fulfilling the conditions

0 < x2 < min.1 � b12; 1 � b13/; x2 < x3 � min
�
1 � b13; x2 C .1 � b23/

�
;

i.e.

0 < x2 � min.1 � 0:8; 1 � 0:3/; x2 < x3 � min
�
1 � 0:3; x2 C .1 � 0:4/� :
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Hence,

F<
0 .B/ D ˚

.0; x2; x3/ 2 I .3/ W 0 < x2 � 0:2; x2 < x3 � min
�
0:7; x2 C 0:6/



:

Since b11 D 0:6 < 1; b22 D 1, then we get in a similar way by the
condition (6.34) of Theorem 6.20 that F<

1 .B/ consists exactly of the vectors
.0; x2; x3/ 2 I <.3/ fulfilling the conditions

0 < x1 < b12; x2 D x1 C .1 � b12/ ;
x3 � min

�
x1 C 2 � .b12 C b23/; x1 C .1 � b13/; 1

�
; or

0 < x1 � b13; x1 C .b23 � b13/ � x2 < x1 C .1 � b12/; x3 D x1 C .1 � b13/ :

Thus, F<
1 .B/ D

˚
.x1; x2; x3/2I .3/j0<x1 < 0:8; x2 Dx1 C 0:2; x2 < x3 � min.x1 C 0:7; 1/



[ ˚

.x1; x2; x3/2I .3/j0<x1 � 0:3; x1 C 0:1 � x2 <x1 C 0:2; x3 Dx1 C 0:7


:

By Theorem 6.17, B has exactly one constant eigenvector .0; 0; 0/, by Theo-
rem 6.23 and Theorem 6.24 we get F<.D12; B/ D F<

0 .D12; B/, F<.D23; B/ D
F<
0 .D12; B/[ F<

1 .D23; B/, where

F<
0 .D12; B/ D ˚

.0; 0; x3/ 2 I .3/j0 < x3 � 0:6


;

F<
0 .D23; B/ D ˚

.0; x2; x3/ 2 I .3/j0 < x2 D x3 � 0:2


;

F<
1 .D23; B/ D ˚

.x1; x2; x3/ 2 I .3/j0 < x1 � 0:8; x2 D x3 D x1 C 0:2


:

Summarizing we get the increasing eigenspace of B in the following form

F�.B/ D FD.B/ [ F<
0 .D12;B/ [ F<

0 .D23; B/ [ F<
1 .D23;B/ [ F<

0 .B/[ F<
1 .B/

D ˚
.0; 0; 0/


 [ ˚
.0; 0; x3/ 2 I .3/j0 < x3 � 0:6



[ ˚

.0; x2; x3/ 2 I .3/j0 < x2 D x3 � 0:2



[ ˚
.x1; x2; x3/ 2 I .3/j0 < x1 � 0:8; x2 D x3 D x1 C 0:2



[ ˚

.0; x2; x3/ 2 I .3/j0 < x2 � 0:2; x2 < x3 � min
�
0:7; x2 C 0:6/



[ ˚

.x1; x2; x3/ 2 I .3/j0 < x1 < 0:8; x2 D x1 C 0:2; x2 < x3 � min.x1 C 0:7; 1/



[ ˚
.x1; x2; x3/ 2 I .3/ W 0 < x1 � 0:3; x1 C 0:1 � x2 < x1 C 0:2; x3 D x1 C 0:7



:

Further eigenvectors of matrix B will be found using Theorem 5.1 with all

possible permutations in P3. E.g., applying permutation ' D
�
1 2 3

1 3 2

�
to rows
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and columns of B we get matrix B'' which satisfies conditions (i), (ii) and (iii) of
Theorem 6.19

B'' D
0
@0:6 0:3 0:80:3 1 0:7

0:5 0:4 1

1
A :

For simplicity, we use the notation in which the permuted vector x' is denoted as
y D .y1; y2; y3/ D .x'.1/; x'.2/; x'.3// D .x1; x3; x2/. Analogously as above we
compute

F<
0 .B''/ D ˚

.0; y2; y3/ 2 I .3/j0 < y2 < min.1� a12; 1� a13/;

y2 < y3 � min
�
1� a13; y2 C .1� a23/

�

;

F<
1 .B''/ D ˚

.y1; y2; y3/ 2 I .3/j0 < y1 < a12; y2 D y1 C .1� a12/;

y3 � min
�
y1 C 2� .a12 C a23/; y1 C .1� a13/; 1

�

[ ˚

.y1; y2; y3/ 2 I .3/j0 < y1 � a13; y1 C .a23 � a13/ � y2 < y1 C .1� a12/;

y3 D y1 C .1� a13/


;

F<
0 .D12; B''/ D ˚

.0; 0; y3/ 2 I .3/j0 D y1 D y2 < y3 � 1� max.a13; a23/


;

F<
1 .D12; B''/ D ˚

.y1; y2; y3/ 2 I .3/j0 < y1 D y2 < y3; 1� a23 � 1� a13 D y3 � y1


;

F<
0 .D23; B''/ D ˚

.0; y2; y3/ 2 I .3/j0 D y1 < y2 D y3 � 1� max.a12; a13/


;

F<
1 .D23; B''/ D ˚

.y1; y2; y3/ 2 I .3/j0 < y1 < y2 D y3; 1� max.a12; a13/ D y2 � y1


;

FD.B''/ D ˚
.0; 0; 0/



:

Putting the entries of matrix B'' into the above formulas we get

F<
0 .B''/ D ˚

.0; y2; y3/ 2 I .3/j0 < y2 < min.1� 0:3; 1� 0:8/;

y2 < y3 � min
�
1� 0:8; y2 C .1� 0:7/

�

;

F<
1 .B''/ D ˚

.y1; y2; y3/ 2 I .3/j0 < y1 < 0:3; y2 D y1 C .1� 0:3/;

y3 � min
�
y1 C 2� .0:3C 0:7/; y1 C .1� 0:8/; 1

�

[ ˚

.y1; y2; y3/ 2 I .3/j0 < y1 � 0:8; y1 C .0:7� 0:8/ � y2 < y1 C .1� 0:3/;

y3 D y1 C .1� 0:8/


;

F<
0 .D12; B''/ D ˚

.0; 0; y3/ 2 I .3/j0 D y1 D y2 < y3 � 1� max.0:8; 0:7/


;

F<
1 .D12; B''/ D ˚

.y1; y2; y3/ 2 I .3/j0 < y1 D y2 < y3; 1� 0:7 � 1� 0:8 D y3 � y1


;

F<
0 .D23; B''/ D ˚

.0; y2; y3/ 2 I .3/j0 D y1 < y2 D y3 � 1� max.0:3; 0:8/


;

F<
1 .D23; B''/ D ˚

.y1; y2; y3/ 2 I .3/j0 < y1 < y2 D y3; 1� max.0:3; 0:8/ D y2 � y1


;

FD.B''/ D ˚
.0; 0; 0/



:
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The formulas can be simplified by easy commutation as follows

F<
0 .B''/D ˚

.0; y2; y3/2I .3/j0 < y2 < 0:2; y2 < y3 � min
�
0:2; y2 C 0:3/

�

;

F<
1 .B''/D ˚

.y1; y2; y3/ 2 I .3/j0 < y1 < 0:3; y2 D y1 C 0:7;

y3 � min
�
y1 C 1; y1 C 0:2; 1

�

[ ˚

.y1; y2; y3/ 2 I .3/j0 < y1 � 0:8; y1 C .�0:1/ � y2 < y1 C 0:7;

y3 D y1 C 0:2/


;

F<
0 .D12; B''/D ˚

.0; 0; y3/ 2 I .3/j0Dy1 D y2 < y3 � 0:2


;

F<
1 .D12; B''/D ˚

.y1; y2; y3/ 2 I .3/j0 < y1 D y2 < y3; 0:3 � 0:2 D y3 � y1


;

F<
0 .D23; B''/D ˚

.0; y2; y3/ 2 I .3/j0Dy1 < y2 D y3 � 0:2


;

F<
1 .D23; B''/D ˚

.y1; y2; y3/ 2 I .3/j0 < y1 < y2 D y3; 0:2 D y2 � y1


;

FD.B''/ D ˚
.0; 0; 0/



:

The results in the final form are

F<
0 .B''/ D ˚

.0; y2; y3/ 2 I .3/j0 < y2 < y3 � 0:2
�

;

F<
1 .B''/ D ˚

.y1; y2; y3/ 2 I .3/j0 < y1 � 0:8; y1 < y2 < y3 D y1 C 0:2/


;

F<
0 .D12; B''/ D ˚

.0; 0; y3/ 2 I .3/j0 < y3 � 0:2


;

F<
1 .D12; B''/ D ˚

.y1; y2; y3/ 2 I .3/j0 < y1 D y2 � 0:8; y3 D y1 C 0:2


;

F<
0 .D23; B''/ D ˚

.0; y2; y3/ 2 I .3/j0 < y2 D y3 � 0:2


;

F<
1 .D23; B''/ D ˚

.y1; y2; y3/ 2 I .3/j0 < y1 � 0:8; y2 D y3 D y1 C 0:2


;

FD.B''/ D ˚
.0; 0; 0/



:

Coming back to the original notation x' D .x1; x3; x2/ D .y1; y2; y3/ we get
the permuted increasing eigenspace F�

' .B/ of matrix B with x1 � x3 � x2, in the
form

F�
' .B/ D F<

0'.B''/[ F<
1'.B''/[ F<

0'.D12; B''/ [ F<
1'.D12; B''/

[ F<
0'.D23; B''/[ F<

1'.D23; B''/ [ FD
' .B''/ ;

where

F<
0'.B''/ D ˚

.0; x2; x3/ 2 I .3/j0 < x3 < x2 � 0:2
�

;

F<
1'.B''/ D ˚

.x1; x2; x3/ 2 I .3/j0 < x1 � 0:8; x1 < x3 < x2 D x1 C 0:2/


;
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F<
0'.D12; B''/ D ˚

.0; x2; 0/ 2 I .3/j0 < x2 � 0:2


;

F<
1'.D12; B''/ D ˚

.x1; x2; x3/ 2 I .3/j0 < x1 D x3 � 0:8; x2 D x1 C 0:2


;

F<
0'.D23; B''/ D ˚

.0; x2; x3/ 2 I .3/j0 < x3 D x2 � 0:2


;

F<
1'.D23; B''/ D ˚

.x1; x2; x3/ 2 I .3/j0 < x1 � 0:8; x3 D x2 D x1 C 0:2


;

FD
' .B''/ D ˚

.0; 0; 0/


:

If another permutation D
�
1 2 3

3 1 2

�
is applied to rows and columns of B , then

conditions (i), (ii) and (iii) of Theorem 6.19 are satisfied by the obtained matrix

B  D
0
@ 1 0:3 0:7

0:3 0:6 0:8

0:4 0:5 1

1
A :

Analogously we compute in notation z D .z1; z2; z3/ D .x .1/; x .2/; x .3// D
.x3; x1; x2/

F<
0 .B  / D ˚

.0; z2; z3/ 2 I .3/j0 < z2 � min.1 � a12; a23 � a13/; z2 < 1 � a13;
z3 D z2 C .1� a23/



;

F<
1 .B  / D ˚

.z1; z2; z3/ 2 I .3/jz1 < a23 ;
z2 � min

�
a23; z1 C .1 � a12/; z1 C .a23 � a13/

�
;

z3 D z2 C .1� a23/


;

F<
0 .D12; B  / D ˚

.0; 0; z3/ 2 I .3/j0 D z1 D z2 < z3 � 1 � max.a13; a23/


;

F<
1 .D12; B  / D ˚

.z1; z2; z3/ 2 I .3/j0 < z1 D z2 < z3;

1 � a13 � 1 � a23 D z3 � z1


;

F<
0 .D23; B  / D ˚

.0; z2; z3/ 2 I .3/j0 D z1 < z2 D z3 � 1 � max.a12; a13/


;

F<
1 .D23; B  / D ˚

.z1; z2; z3/ 2 I .3/j0 < z1 < z2 D z3;

1 � max.a12; a13/ � z2 � z1


;

FD.B  / D ˚
.0; 0; 0/



:

Putting the entries of matrix B  we get

F<
0 .B  / D ˚

.0; z2; z3/ 2 I .3/j0 < z2 � min.1 � 0:3; 0:8� 0:7/; z2 < 1 � 0:7;

z3 D z2 C .1 � 0:8/
 ;
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F<
1 .B  / D ˚

.z1; z2; z3/ 2 I .3/jz1 < 0:8 ;
z2 � min

�
0:8; z1 C .1 � 0:3/; z1 C .0:8 � 0:7/�;

z3 D z2 C .1 � 0:8/
 ;
F<
0 .D12; B  / D ˚

.0; 0; z3/ 2 I .3/j0 D z1 D z2 < z3 � 1 � max.0:7; 0:8/


;

F<
1 .D12; B  / D ˚

.z1; z2; z3/ 2 I .3/j0 < z1 D z2 < z3;

1 � 0:7 � 1 � 0:8 D z3 � z1


;

F<
0 .D23; B  / D ˚

.0; z2; z3/ 2 I .3/j0 D z1 < z2 D z3 �
1 � max.0:3; 0:7/



;

F<
1 .D23; B  / D ˚

.z1; z2; z3/ 2 I .3/j0 < z1 < z2 D z3;

1 � max.0:3; 0:7/ � z2 � z1


;

FD.B  / D ˚
.0; 0; 0/



:

Simple computation gives

F<
0 .B  / D ˚

.0; z2; z3/ 2 I .3/j0 < z2 � 0:1; z2 < 0:3; z3 D z2 C 0:2/


;

F<
1 .B  / D ˚

.z1; z2; z3/ 2 I .3/jz1 < 0:8; z2 � min
�
0:8; z1 C 0:7; z1 C 0:1

�
;

z3 D z2 C 0:2/


;

F<
0 .D12; B  / D ˚

.0; 0; z3/ 2 I .3/j0 D z1 D z2 < z3 � 0:2


;

F<
1 .D12; B  / D ˚

.z1; z2; z3/ 2 I .3/j0 < z1 D z2 < z3; 0:3 � 0:2 D z3 � z1


;

F<
0 .D23; B  / D ˚

.0; z2; z3/ 2 I .3/j0 D z1 < z2 D z3 � 0:3


;

F<
1 .D23; B  / D ˚

.z1; z2; z3/ 2 I .3/j0 < z1 < z2 D z3; 0:3 � z2 � z1


;

FD.B  / D ˚
.0; 0; 0/



:

The final form is

F<
0 .B  / D ˚

.0; z2; z3/ 2 I .3/j0 < z2 � 0:1; z3 D z2 C 0:2/


;

F<
1 .B  / D ˚

.z1; z2; z3/ 2 I .3/j0 < z1 < z2 � min
�
0:8; z1 C 0:1

�
;

z3 D z2 C 0:2/


;

F<
0 .D12; B  / D ˚

.0; 0; z3/ 2 I .3/j0 < z3 � 0:2


;

F<
1 .D12; B  / D ˚

.z1; z2; z3/ 2 I .3/j0 < z1 D z2 < z3 D z1 C 0:2


;

F<
0 .D23; B  / D ˚

.0; z2; z3/ 2 I .3/j0 < z2 D z3 � 0:3


;
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F<
1 .D23; B  / D ˚

.z1; z2; z3/ 2 I .3/j0 < z1 < z2 D z3 � z1 C 0:3


;

FD.B  / D ˚
.0; 0; 0/



:

Coming back to the original notation x D .x3; x1; x2/ D .z1; z2; z3/ we get the
permuted increasing eigenspace F�

 .B/ of matrix B with x2 � x3 � x1, in the
form

F�
 .B/ D F<

0 .B  /[ F<
1 .B  /[ F<

0 .D12; B  /[ F<
1 .D12; B  /

[ F<
0 .D23; B  / [ F<

1 .D23; B  / [ FD
 .B  / ;

where

F<
0 .B  / D ˚

.x1; x2; 0/ 2 I .3/j0 < x1 � 0:1; x2 D x1 C 0:2/


;

F<
1 .B  / D ˚

.x3; x1; x2/ 2 I .3/j0 < x3 < x1 � min
�
0:8; x3 C 0:1

�
;

x2 D x1 C 0:2/


;

F<
0 .D12; B  / D ˚

.0; x2; 0/ 2 I .3/j0 < x2 � 0:2


;

F<
1 .D12; B  / D ˚

.x1; x2; x3/ 2 I .3/j0 < x3 D x1 < x2 D x3 C 0:2


;

F<
0 .D23; B  / D ˚

.x1; x2; 0/ 2 I .3/j0 < x1 D x2 � 0:3


;

F<
1 .D23; B  / D ˚

.x1; x2; x3/ 2 I .3/j0 < x3 < x1 D x2 � x3 C 0:3


;

FD.B  / D ˚
.0; 0; 0/



:

It is easy to verify that, of all six possible permutations in P3, only the identical
permutation and permutations ',  have the property that the permuted matrix
satisfies conditions (i), (ii) and (iii) of Theorem 6.19, hence there are no further
permuted increasing eigenvectors of B . By Theorem 6.21 and Theorem 6.22 we
can also verify that no further permuted non-decreasing eigenvectors exist. As a
consequence, the eigenspace of matrix B in max-L fuzzy algebra is equal to

F .B/ D F�.B/ [ F�
' .B/ [ F�

 .B/ :

6.5 Conclusions

Presented results are part of the research aimed on investigation of steady states
of systems with fuzzy transition matrix in max-T fuzzy algebras with various
triangular norm T . Steady states correspond to eigenvectors of the transition fuzzy
matrix. For matrices in max-min algebra the eigenvectors were described in [8]. The
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investigation in this chapter has been oriented to drastic t-norm and to Łukasiewicz
t-norm, i.e. to matrices in max-drast algebra and in max-Łukasiewicz algebra.

The structure of the eigenspace of a given fuzzy matrix in max-drast algebra has
been completely described. The importance of the result follows from the fact that
the eigenvectors in max-drast algebra correspond to steady states of such discrete-
events systems in which extreme reliability is required. The eigenspaces of fuzzy
matrices in max-Łukasiewicz algebra have been described for the dimensions � 3.

By the fact that every eigenvector can be permuted to a non-decreasing eigenvec-
tor of some permuted fuzzy matrix, the investigation of the complete eigenspace
structure has been reduced to sets of all non-decreasing eigenvectors, called
monotone eigenspaces. Necessary and sufficient conditions were formulated under
which the monotone eigenspace of a given matrix is non-empty. Using these
conditions, the structure of the monotone eigenspace has been described in detail.
Examples of how the knowledge of the monotone eigenspace structure is used to
describe the complete eigenspace of a given matrix are presented and illustrated by
figures and examples.
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Abelian group axioms, 25
Abelian linearly ordered group (alo-group),

25
a-consistency index of A, 50
a-consistency vector of A, 48
Additive alo-group, 78
Algebra

max-drast, 183
max-Lukasiewicz, 183
max-min, 163
max-T, 183

Antisymmetry, 25
a-priority vector of A, 48
Associativity, 4
Associativity axiom, 25
Attainable

right hand sides, 136
set, 136

Attaining set, 147

Cartesian product, 17
Closure axiom, 25
Commutativity, 4
Commutativity axiom, 25
Complement, 16
Continuous alo-group, 26
ˇ-consistency grade of QA, 99
Crisp fuzzy subset, 15
Crisp set, 15

Decision making problem, 31
Distance, 27
Divisible alo-group, 27

Eigenproblem, 164
Eigenspace, 164
Eigenvalue, 164
Eigenvector, 164

D-increasing, 168
increasing, 165
non-decreasing, 165
strong, 168
strongly tolerable, 168
strongly universal, 168
tolerable, 168
universal, 168
weak, 168

Element idempotent, nilpotent, 7
Error matrix of A, 43
Extension principle, 17

fa-extension of B(K) with respect to K,
64

fa-priority vector with respect to K,
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faY-consistency index of B, 59
fm-extension of B(K), 63
fm-priority vector with respect to K, 63
fmY-consistency index, 59
Function

max-min linear, 120
max-plus linear, 120
max-separable, 120
pseudo-inverse, 9
strictly monotone, 4
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Fuzzy interval, 21
.L;R/-, 22
trapezoidal, 22

Fuzzy-multiplicative alo-group, 78
Fuzzy number, 21

Gaussian, 22
.L;R/-, 22
triangular, 22

Fuzzy pairwise comparison matrix (FPC
matrix), 53

Fuzzy quantity, 21
Fuzzy relation, dual, 20
Fuzzy set, 14
Fuzzy subset, 14

Generator, additive, multiplicative, 9
Geometric mean method (GMM), 42
Global inconsistency index of a fuzzy PC

matrix A, 73
Group DM problem (GDM), 32

Identity element axiom, 25
Identity element of, 94
Intersection, 16
Interval eigenproblem, 164
Interval partition, 166
Inverse element axiom, 25
Inverse operation, 25
Isomorphism between two alo-groups, 27

Lower number, 23

Mapping
dual to mapping, 20

Matrix
additive-consistent (a-consistent), 48
additive-reciprocal (a-reciprocal), 47
fuzzy-additive-consistent (fa-consistent),

54
with fuzzy elements, 23
fuzzy-multiplicative-consistent (fm-

consistent), 54
fuzzy pairwise comparison (FPC matrix),

62
fuzzy-reciprocal (f-reciprocal), 53
multiplicative-consistent (m-consistent), 33
multiplicative-inconsistent (m-

inconsistent), 34
multiplicative-intransitive (m-intransitive),
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multiplicative-reciprocal (m-reciprocal),
32

PCFN, 92
˛-ˇ-reciprocal, 95
ˇ-reciprocal, 95
quasi reciprocal, 72
totally a-inconsistent, 51
totally m-inconsistent, 44

m-consistency index, 42
m-consistency vector, 37
Mean of elements, 27
m-EV-consistency index, 38
m-EV-consistency ratio, 38
Middle number, 23
Missing comparison (MC), 71
Missing elements of matrix B(K), 62
m-LS-consistency index, 41
Monotone eigenspace, 183
Monotone eigenvector, 164
Monotonicity, 4
m-priority vector of A, 37
Multiplicative alo-group, 78
Multiplicative-transitive (m-transitive), 34

Negation
intuitionistic, 12
lambda-complement, 12
standard, 12
strict, strong, 12
weak, 12

Norm, 27

“One-sided” equation or inequality constraints,
120

Pairwise comparison matrix (PC matrix), 31
Pairwise comparison system over G, 93
Partial order, 25
PC matrix with fuzzy elements, 93
Preference relation, 31
Principal eigenvalue, 38
Principal eigenvector, 38
ˇ-priority vector of QA, 99

Ranking, 31
Rating, 31
Reflexivity, 25
Relation

fuzzy, 20
valued, 18



Index 225

Relative a-consistency index of A, 51
Relative a-error of A, 50
Relative importance of alternative, 37
Relative m-consistency index of A, 44
Relative m-error of A, 43

Set
fuzzy, 14
linearly (totally) ordered, 25

Spread, left, right, 22
Strict order relation, 25

t-conorm, 5
bounded sum, drastic sum, 5
maximum, probabilistic sum, 5

t-norm, 4
Archimedian, strict, nilpotent,idempotent, 7
dual, 5
minimum, product, Łukasiewicz, drastic, 4
Yager’s, 11

Totality, 25

Transitivity, 25
Triangle inequality, 27
Triangular conorm, 5
Triangular fuzzy number, 23
Triangular norm, 4
“Two-sided” equation or inequality constraints,

120

Union, 16
Upper number, 23

Vector
D-increasing, 167
increasing, 165
non-decreasing, 165

Weighted LSM, 41

Zero divisor, 7
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