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Preface

Reviewing the non-associative part of a monograph
by Irving Kaplansky

In 1970, Irving Kaplansky published his small monograph [762] on Algebraic and
analytic aspects of operator algebras, and devoted its last section to providing the
reader with his impressions concerning non-associative normed algebras. Actually,
he began the section by saying:

I predict that when the time is ripe there is going to be quite a flurry of activity concerning
nonassociative Banach algebras in general, and nonassociative C*-algebras in particular.
Let me take the space to speculate a little on what we may see some day.

Many years have passed since the publication of [762] and, as a matter of fact,
most of Kaplansky’s predictions have come true, some even exceeding the original
expectations. The diverse results corroborating the accuracy of Kaplansky’s predic-
tions will be used to illustrate the content of the book we are introducing. Therefore,
let us continue reproducing Kaplansky’s words in short excerpts, and insert some
clarifying comments.

The speculation can start encouragingly, with a fact. The (complex) Gelfand—Mazur
Theorem works fine: a normed division algebra must be the complex numbers. Of course,
we must agree on what a division algebra A is to be. We take it to mean that for any nonzero
x, both R and L, are one-to-one and onto, where R, (L) denotes right (left) multiplication
by x. (Actually, for the proof all we need is Ry.)

With the words ‘for the proof all we need is R,’, Kaplansky is suggesting the
notion of a right-division algebra.

Suppose then that A is a normed division algebra. We claim that A is one-dimensional,
and by way of contradiction we assume that x and y are linearly independent. Then for
every complex scalar A, R, Ay =Rx —ARyisa bounded operator on A which is one-to-one

and onto. The same is true of R, R‘ — Al But Ry Ry ! must have something in its spectrum.

It seems obvious to us that Kaplansky implicitly assumes that the (possibly non-
associative) normed algebra A above is complete, to be sure that ‘the same is true
of RyRy I~ AP concerning boundedness. Under this assumption, Kaplansky’s claim
(that complete normed one-sided division complex algebras are isomorphic to C) is
stated in Corollary 2.7.3, whereas the non-complete case is raised as Problem 2.7.4
(see also Theorem 4.1.63 for a partial affirmative answer). Actually, a result better
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than Kaplansky’s claim holds. Indeed, if A is a complete normed complex algebra,
and if it is a quasi-division algebra (which means that, for every nonzero x € A, at
least one of the operators Ly,R, is one-to-one and onto), then dim(A) < 2 (The-
orem 2.7.7) and, in general, no more can be said (Example 2.5.36). Moreover, if in
addition A is unital or nearly associative, then A is isomorphic to C (Corollaries 2.7.9
and 2.7.10). It is also worth mentioning that, for associative (and even alternative)
algebras, the notions of division, one-sided division, and quasi-division coincide,
and also coincide with the classical notion of a division algebra in this setting —
namely that the algebra is unital and each nonzero element has an inverse (Propos-
ition 2.5.38).
Let us continue with Kaplansky’s words:

On the other hand, the real Gelfand—Mazur theorem does not seem to have received any
attention. The conjecture is that any real normed division algebra is finite-dimensional, after
which the topologists would teach us that the dimension is 1, 2, 4, or 8.

The conjecture that normed division real algebras are finite-dimensional was first
formulated by Wright [640], after proving it in the particular case of absolute-valued
algebras (Corollary 2.6.24). The general case of the conjecture, even with the addi-
tional requirement of completeness, remains open (Problem 2.7.45). Nevertheless,
normed one-sided division real algebras need not be finite-dimensional, even if they
are absolute-valued and complete (Theorem 2.7.38). The enormous theorem of ‘the
topologists’ (that finite-dimensional division real algebras are of dimension 1, 2, 4,
or 8) is stated without proof in Theorem 2.6.51, referring the reader to the whole of
Chapter 11 of [727] for a complete proof. The particularization to absolute-valued
algebras is much more elementary, and is stated in Fact 2.6.50.

Kaplansky continues as follows:

There is a related circle of ideas which has received a good deal of attention. In [337],
Inglestam proved the following pretty theorem: if an associative real Banach algebra A
is built on a Hilbert space and has a unit of norm 1, then in the first place A is finite-
dimensional; moreover A must be the reals, complexes, or quaternions in their ordinary
norm. An alternative account was given by Smiley [590]. The crucial point here is the
behaviour of the unit element relative to convexity, and nonassociative generalizations
have been given by Strzelecki [605, 606] and Inglestam [338]. (One should note the dif-
ference between this problem and that of Urbanik and Wright [620], who do not assume a
Hilbert space but deduce it from the equality [|xy|| = ||x|| ||l¥]].)

Ingelstam’s theorem (that R, C, H, and O are the unique norm-unital normed
alternative real algebras whose norm comes from an inner product) is stated in Cor-
ollary 2.6.22. Here H and O stand for the algebra of Hamilton’s quaternions and the
algebra of Cayley numbers, respectively. Strzelecki’s generalization (that R, C, H,
and O are the unique norm-unital normed alternative real algebras whose closed unit
ball has a unique tangent hyperplane at the unit) is stated as the equivalence (ii)<>(iii)
in Theorem 2.6.21.

In our opinion, the non-commutative Urbanik—Wright theorem (that R, C, H, and
O are the unique unital absolute-valued real algebras) becomes one of the jew-
els of the theory of non-associative normed algebras. Therefore, we devote special
attention to it. We state it as the equivalence (i)<>(iii) in Theorem 2.6.21, and provide
a second proof in §2.7.67. The non-commutative Urbanik—Wright theorem had also
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been predicted by Kaplansky in [377], who, by means of a general theorem on the
so-called unital composition algebras, reduced the proof to the case that the norm
comes from an inner product. The two proofs we have given of the non-commutative
Urbanik—Wright theorem follow Kaplansky’s indication. We also state the commuta-
tive Urbanik—Wright theorem, proved in [620] as well, that R, C, and another natural
two-dimensional algebra, are the unique absolute-valued commutative real algebras
(Theorem 2.6.41).

Now let us go beyond Gelfand—Mazur considerations to general theory. I divide the
remarks under three headings, corresponding to the three classes of nonassociative algebras
that have withstood the test of time.

(1) Lie algebras. Let me be honest. I have nothing to say, even by way of the wildest
speculation, about a possible theory of Banach Lie algebras.

Banach Lie algebras will be discussed in our book only in an incidental way.
Nevertheless, let us say that a complete structure theory for Lie H*-algebras has been
developed (cf. Remark 2.6.54 for references), and that different aspects of general or
particular Banach Lie algebras have been considered in [47, 96, 97, 98, 99, 130,
175, 188, 253,254,452, 453, 569, 604, 615, 627]. For a comprehensive account, the
reader is referred to the books [687, 688, 740].

(2) Alternative. Alternative rings are only a slight generalization of associative rings. It
is therefore a reasonable presumption that most standard associative results will survive,
perhaps in a suitably altered form, and perhaps with a lot of extra proof.

The ‘reasonable presumption’ above is indeed correct. As a relevant sample,
Kaplansky’s celebrated theorem [375], that normed associative real algebras with no
nonzero topological divisor of zero are isomorphic to R, C, or H, has its ‘suitably
altered form’ for alternative algebras (Theorem 2.5.50).

Alternative C*-algebras look like a plausible topic. Over the complex numbers the essen-
tially new algebra — the Cayley matrix algebra — has every right to be called a C*-algebra.
But the subject should be developed in real style, so as to allow the Cayley division algebra
to survive.

We feel that Kaplansky assumes the current Gelfand—Naimark characterization
of closed *-invariant subalgebras of operators on complex Hilbert spaces and that
consequently, by an ‘alternative C*-algebra’, he means a complete normed alternative
complex algebra A endowed with a conjugate-linear algebra involution * satisfying
la*a|| = ||a||* for every a € A. If this is so, then the complex Cayley matrix alge-
bra C(C) is indeed an alternative C*-algebra (Proposition 2.6.8). Moreover, C(C)
becomes the unique ‘essentially new’ alternative C*-algebra. Indeed, C(C) is the
unique prime alternative C*-algebra which is not associative and, by a standard
C*-argument, the theory of general alternative C*-algebras reduces to the cases of
prime associative C*-algebras and that of C(C) [125, 481]. It is also worth men-
tioning that, in the case of unital algebras, there are relevant redundancies in the
definition of an alternative C*-algebra suggested above. The redundances are so
severe that, as we prove in Theorem 3.2.5, the alternative identities xzy = x(xy) and
yx? = (yx)x follow from the remaining requirements (see also Theorem 3.5.53 for a
non-unital variant).
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As far as we know, a systematic treatment of real alternative C*-algebras has
not been done to date. Anyway, real alternative C*-algebras can be introduced as
closed x-invariant real subalgebras of complex ones (see Definition 4.2.45). With
this convention, clearly, the algebra O of Cayley numbers ‘survives’.

Alternative AW *-algebras probably have a decisive structure theory. (I feel sure that sub-
ject will be developed in AW * rather than in W* style — unless somebody cares to work up
the theory of Cayley Hilbert space.) There ought to be a unique direct sum decomposition
into four homogeneous pieces: (a) real Cayley matrix, (b) Cayley division, (c) complex
Cayley matrix, (d) associative.

As a matter of fact, concerning ‘AW* style’, no progress has been made on the
above prediction, even in the complex case. However, the ‘W* style’ has become
extremely successful. Indeed, as shown by G. Horn [331], every (complex) alter-
native W*-algebra has a unique direct sum decomposition into two pieces: (a) the
algebra of all continuous functions from a suitable compact Hausdorff hyper-Stonean
space to C(C); (b) an associative von Neumann algebra. It can be derived from
Horn’s theorem that every real alternative W*-algebra has ‘a unique direct sum
decomposition into four pieces’: (a) the algebra of all continuous functions from a
suitable compact Hausdorff hyper-Stonean space to the real Cayley matrix algebra
C(R); (b) the same with @ instead of C(R); (c) the same with C(C) instead of
C(R); (d) a real associative von Neumann algebra. Thus, ‘in W* style’, Kaplansky’s
prediction is right.

(3) Jordan. In saying that Jordan Banach algebras ought to be studied we have the
blessing of the Master himself [461]. In recent years Topping [813, 614], Effros and Stgrmer
[228] and Stgrmer [601, 602, 603] have made significant progress. In one way, however,
they made an undesirable retreat from [461]. By assuming from the start that they were
dealing with operators on a Hilbert space, they ruled out the exceptional Jordan algebra,
and left to the future the possibility of a theorem asserting that suitable infinite-dimensional
Jordan Banach algebras are special. Admittedly I am prejudiced, but perhaps the AW* point
of view is a good one here.

Eight years after the above paragraph was written, Alfsen, Shultz, and Stgrmer
[15] removed the ‘undesirable retreat from [461]" by introducing the so-called
JB-algebras. JB-algebras are complete normed Jordan real algebras which include
both Jordan algebras of self-adjoint ‘operators on a Hilbert space’ (Corollary 3.1.2)
and ‘the exceptional Jordan algebra’ (Example 3.1.56). JB-algebras enjoy a deep and
complete structure theory which has been comprehensively developed in Hanche-
Olsen and Stgrmer [738], and has been revisited recently in Alfsen and Shultz
[673]. Different approaches to JB-algebras can be found in Ayupov, Rakhimov,
and Usmanov [684], and Tochum [748]. Since we are unable to organize the basic
theory of JB-algebras in a better way than that of [738], we have limited ourselves
to state without proof those results which are needed for our actual purposes, and to
complement the theory in some aspects (originated by the papers of Wright [641]
and Wright and Youngson [643]) which are not covered by the Hanche-Olsen
and Stgrmer book. This is done from Section 3.1. Among the results taken from
[738], we emphasize the one asserting that JB-algebras generated by two elements
are (isometrically isomorphic to) Jordan algebras of self-adjoint operators on a
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Hilbert space (Proposition 3.1.3). Thus, ‘suitable infinite-dimensional Jordan Banach
algebras are special’.
Kaplansky concludes with the following comment:

Kadison’s beautiful results [358, 359] on isometries of C*-algebras deserve to be gener-
alized to Jordan C*-algebras if only to encompass the exceptional Jordan algebra.

What Kaplansky means by a ‘Jordan C*-algebra’ is not in doubt because he
himself later introduced this notion in detail in his final lecture to the 1976
St. Andrews Colloquium of the Edinburgh Mathematical Society, and pointed out its
potential importance. Jordan C*-algebras (called JB*-algebras since Youngson’s
paper [652]) were first studied by Wright [641], who proved that the passing
from each JB*-algebra to its self-adjoint part establishes a bijective categorical
correspondence between JB*-algebras and JB-algebras (see Corollary 3.4.3 and
Theorem 3.4.8).

Kadison’s celebrated Theorem A of [358] is fully discussed in Section 2.2. Actu-
ally, we prove the unit-free Paterson—Sinclair generalization [480] of Kadison’s result
(Theorem 2.2.19), starting from a non-associative germ (Theorem 2.2.9). An appro-
priate version for JB-algebras of the Kadison—Paterson—Sinclair theorem, following
the arguments in [643, 223, 342], is stated in Theorem 3.1.21. Therefore, as first
proved in [643], for isometries preserving units of unital JB*-algebras, Kadison’s
theorem survives (see Proposition 3.4.25) ‘encompassing the exceptional Jordan
algebra’. Nevertheless, Kadison’s theorem does not survive for general isometries,
nor even in the case of closed *-invariant unital Jordan subalgebras of operators on
Hilbert spaces. The reason is that, as shown by Braun, Kaup, and Upmeier [126],
two such algebras can be linearly isometric without being *-isomorphic (see Anti-
theorem 3.4.34). Anyway, the Kadison—Paterson—Sinclair theorem survives verbatim
in the case of alternative C*-algebras and also, in a suitably altered form, in the case
of JB*-algebras which are dual Banach spaces [366].

About the core of the book

Now that we have concluded our review of the non-associative part of Kaplansky’s
monograph [762], let us comment about the leitmotiv of the present book. (To
this end, we found the Introduction of [366] useful.) Our aim is to deal with
non-associative generalizations of C*-algebras. To this end, we realize that most
generalizations appearing in the literature, like JB*-algebras, JB-algebras (both
had already been discussed when we reviewed [762]), and JB*-triples, contain
C*-algebras, but only after suitable manipulations. Thus C*-algebras become
JB*-algebras after replacing the associative product xy with the Jordan product

1
xey:= 5 (xy+yx).

They are JB-algebras after the same replacement and then passing to the self-adjoint
part, and they are also JB*-triples after replacing the product with the triple product

1 * *
{xyz} = E(xy 7+ 2v"x).
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As a matter of fact, many years ago we tried to approach the non-associative gener-
alizations of C*-algebras in a somewhat more ingenuous way. Indeed, we removed
associativity in the abstract characterizations of unital (associative) C*-algebras
given either by the Gelfand—Naimark theorem or by the Vidav—Palmer theorem, and
studied (possibly non-unital) closed %-invariant subalgebras of the Gelfand—Naimark
or Vidav—Palmer algebras born after removing associativity.

To be more precise, for a norm-unital complete normed (possibly non-associative)
complex algebra A, we considered the following conditions:

(GN) (Gelfand—Naimark axiom). There is a conjugate-linear vector space involu-
tion * on A satisfying 1 = 1 and ||a*a|| = ||a||* for every a in A.

(VP) (Vidav—Palmer axiom). A = H(A,1) +iH(A,1).

In both conditions, 1 denotes the unit of A, whereas, in (VP), H(A,1) stands for the
closed real subspace of A consisting of those elements 7 in A such that (/) belongs
to R for every bounded linear functional f on A satisfying || f|| = f(1) = 1.

As we said before, if the norm-unital complete normed complex algebra A
above is associative, then (GN) and (VP) are equivalent conditions, both providing
nice characterizations of unital C*-algebras (see Lemma 2.2.5 and Theorems 1.2.3
and 2.3.32). In the general non-associative case we were considering, things began
to be more amusing. Indeed, it is easily seen that (GN) implies (VP) (refer again to
Lemma 2.2.5), but the converse implication is not true (see Example 2.3.65).

The amusing aspect of the non-associative consideration of the Vidav—Palmer
and the Gelfand—Naimark axioms greatly increased thanks to the fact (explained
in what follows) that Condition (VP) (respectively, (GN)) on a norm-unital complete
normed complex algebra A implies that A is ‘nearly’ (respectively, ‘very nearly’)
associative. To specify our last assertion, let us recall some elementary concepts of
non-associative algebra. Alternative algebras are defined as those algebras A satis-
fying a’b = a(ab) and ba*> = (ba)a for all a,b in A. By Artin’s theorem (stated in
Theorem 2.3.61), an algebra A is alternative (if and) only if, for all a,b in A, the
subalgebra of A generated by {a,b} is associative. According to Definition 2.4.9
and Proposition 3.2.1, non-commutative Jordan algebras can be introduced as those
algebras A satisfying the Jordan identity (ab)a* = a(ba®) and the flexibility con-
dition (ab)a = a(ba). As shown in Proposition 2.4.19, non-commutative Jordan
algebras are power-associative (i.e. all subalgebras generated by a single element
are associative) and, as a consequence of Artin’s theorem, alternative algebras are
non-commutative Jordan algebras. For an element a in an algebra A, we denote by
U, the mapping b — a(ab + ba) — a*b from A to A. By means of Definitions I and II
below, we provide the algebraic notions just introduced with analytic robes. We note
that the notion of an alternative C*-algebra, emphasized in Definition I, had already
appeared when we reviewed the monograph [762].

Definition I By an alternative C*-algebra we mean a complete normed alternative
complex algebra (say A) endowed with a conjugate-linear algebra involution * satis-
fying ||a*a|| = ||a||* for every a in A.
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Definition II By a non-commutative JB*-algebra we mean a complete normed
non-commutative Jordan complex algebra (say A) endowed with a conjugate-linear
algebra involution * satisfying ||U,(a*)|| = ||a||® for every a in A.

Since the equality U, (b) = aba holds for all elements a, b in an alternative algebra,
it is not difficult to realize that alternative C*-algebras become particular examples
of non-commutative JB*-algebras. Actually, alternative C*-algebras are precisely
those non-commutative JB*-algebras which are alternative (see Fact 3.3.2). Now, by
means of Theorems GN and VP which follow, we can specify how the behaviour of
the Gelfand—Naimark and Vidav—Palmer axioms in the non-associative setting were
clarified.

Theorem GN Norm-unital complete normed complex algebras fulfilling the
Gelfand-Naimark axiom are nothing other than unital alternative C*-algebras.

Theorem VP  Norm-unital complete normed complex algebras fulfilling the Vidav—
Palmer axiom are nothing other than unital non-commutative JB*-algebras.

Now, keeping in mind Theorems GN and VP above, together with the obvious
fact that closed x-invariant subalgebras of an alternative C*-algebra (respectively,
of a non-commutative JB*-algebra) are alternative C*-algebras (respectively, non-
commutative JB*-algebras), there is no doubt that, even in the non-unital case,
both alternative C*-algebras and non-commutative JB*-algebras become reason-
able non-associative generalizations (the latter containing the former) of classical
C*-algebras. Therefore the main goal of our book will be to prove Theorems GN
and VP (see Theorems 3.2.5 and 3.3.11), together with their non-unital variants
(see Theorem 3.5.53 and [365]), and to describe alternative C*-algebras and non-
commutative JB*-algebras by means of the so-called representation theory.

It is worth mentioning that although our approach to the non-associative gen-
eralizations of C*-algebras is different from those of JB*-algebras, JB-algebras,
and JB*-triples, in the end all approaches give rise essentially to the same math-
ematical creature. Indeed, Kaplansky’s JB*-algebras are nothing other than those
non-commutative JB*-algebras which are commutative. On the other hand, every
non-commutative JB*-algebra becomes a JB*-algebra after symmetrizing its product
(see Fact 3.3.4); JB*-algebras and JB-algebras coincide after a categorical corres-
pondence (a fact already noted when we reviewed [762]); non-commutative JB*-
algebras become JB*-triples in a natural way (see Theorem 4.1.45); and every
JB*-triple can be seen as a closed subtriple of a suitable JB*-algebra (a fact
collected without proof in Theorem 4.1.113). Therefore most basic results in the
classical theory of JB*-algebras, JB-algebras, and JB*-triples will be involved in our
development.

Since JB*-triples had not appeared when we reviewed [762], let us comment about
them briefly. Roughly speaking, JB*-triples become a functional-analytic solution
to the problem of the classification of all ‘bounded symmetric domains’ in com-
plex Banach spaces. Partial solutions to this problem in the same line are due to
Loos [772], who settled the finite-dimensional case, and to Harris [313], who proved
that the open unit ball of each norm-closed subspace of any C*-algebra, which is
also closed under the triple product {xyz} = %(xy*z +2zy*x), is a bounded symmetric
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domain. The definitive solution, due to Kaup [380, 381], asserts that every bounded
symmetric domain in a complex Banach space is biholomorphically equivalent to the
open unit ball of a suitable complex Banach space, and that if the open unit ball of a
complex Banach space is a bounded symmetric domain, then the Banach space itself
is almost a C*-algebra, and there is an intrinsically defined triple product {---} on it
which behaves algebraically and geometrically like the one obtained from the binary
product of a C*-algebra by taking {xyz} = J (xy*z+zy"x). The precise formulation of
this last fact gives rise to the definition of a JB*-triple (see §2.2.27 and Fact 4.1.41).

JB*-triples have been intensively studied in recent years and their basic theory can
be found in the monographs of Chu [710], Dineen [721], Friedman and Scarr [732],
Tordanescu [750], Isidro and Stach6 [751], and Upmeier [814, 815], as well as in the
survey papers of Chu and Mellon [173], Kaup [384], Rodriguez [525], and Russo
[547]. The initial binary approach of our book complements these works.

About the organization of the book

The work we are introducing is covered in two volumes. Roughly speaking, the
dividing line between the two can be drawn between what can be done before and
after involving the holomorphic theory of JB*-triples and the structure theory of non-
commutative JB*-algebras. Volume 1 is now concluded, whereas Volume 2 exists
today only in the authors’ minds. Therefore we are going to describe in detail the
content of the first volume (Chapters 1-4), and announce in a less precise form what
we intend to do in the second (Chapters 5-8).

Volume 1

In Chapter 1, we develop the basic theory of normed algebras, putting special em-
phasis on the cases of complete normed unital associative complex algebras and
of (associative) C*-algebras. Non-associative normed algebras are considered here
only when they do not offer special difficulties, or difficulties can be overcome in an
elementary way. Thus, the first three sections of the chapter are mainly devoted to
attracting the attention of the non-expert reader. The chapter is complemented with
a fourth section where some selected topics in the theory of compact and weakly
compact operators (including recent developments [44 1, 596]) are discussed.
Chapter 2 is essentially devoted to settling the two first steps in the proof of
the ‘non-associative Vidav—Palmer theorem’ (Theorem VP), namely that the natural
involution of any Vidav—Palmer algebra is an algebra involution (see Theorem 2.3.8)
and that Vidav—Palmer algebras are non-commutative Jordan algebras (see The-
orem 2.4.11). Among the applications of these results, we emphasize the Kadison—
Paterson—Sinclair theorem on isometries of C*-algebras [358, 480] proved in
Theorem 2.2.19, the Blecher—Ruan-Sinclair non-associative characterization of
(associative) C*-algebras [106] proved in Theorem 2.4.27, and the non-commutative
Urbanik—Wright theorem (already discussed when we reviewed [762]) proved in
Theorem 2.6.21. (We missed the formulation and a proof of this last theorem in the
delightful book Numbers [727].) Applications of the study of contractive projections
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on C*-algebras are also made (see Theorems 2.3.68 and 2.4.24). As absolute-valued
algebras arise naturally in the Urbanik—Wright theorem, we devote special attention
to them (see Sections 2.6, 2.7, and 2.8). Since the Vidav—Palmer axiom depends only
on the normed space of the algebra and on the unit, we follow [22, 425] to develop,
where possible, the theory of numerical ranges of elements of norm-unital normed
algebras in the more general setting of a normed space, in which a norm-one element
has been distinguished (see Sections 2.1 and 2.9). This approach (which involves
relevant results of pure geometry of normed spaces [56, 268, 287, 291, 293, 299])
complements those of Bonsall-Duncan [694, 695, 696], Doran-Belfi [725], and
Palmer [786, 787] in their books.

In Chapter 3 our development depends heavily on the basic theory of JB-
algebras, which is taken without proof from Hanche-Olsen and Stgrmer [738],
and is complemented in some aspects not covered by that book (see Section 3.1
and Subsection 3.4.1). In particular, surjective linear isometries between JB-
algebras are described in detail (see Theorem 3.1.21), and Wright’s categorical
correspondence between JB-algebras and JB*-algebras [641] is established (see
Fact 3.4.9). Chapter 3 is essentially devoted to proving Theorem GN (see The-
orem 3.2.5), concluding the proof of Theorem VP (see Theorem 3.3.11), developing
the theory of alternative C*-algebras and of non-commutative JB*-algebras in
those aspects which do not involve the so-called ‘Jordan spectral theory’ (see
Subsections 3.4.2, 3.4.4, 3.5.1, 3.5.3, and 3.6.2), and proving the unit-free variant
of Theorem GN (see Theorem 3.5.53). The behaviour of the original Gelfand—
Naimark axiom ||a*a|| = ||a*||||a|| in the non-associative setting is fully discussed,
generalizing the associative forerunners due to Glimm and Kadison [290] and
Vowden [629] (see Subsections 3.5.2, 3.5.4, and 3.5.6). Some auxiliary results,
taken from the non-geometric theory of non-associative normed algebras, are
also included. Thus Dixmier’s fundamental theorem [723] on continuous auto-
morphisms, which are exponentials of continuous derivations, is proved (see
Theorem 3.4.49).

In Chapter 4, the Jacobson—McCrimmon notion of the Jordan inverse [754, 433,
436] is involved to derive a spectral theory for normed non-commutative Jordan
algebras, which generalizes the one developed in Sections 1.1 and 1.3 for normed
associative algebras. This is done in Subsections 4.1.1, 4.1.2, 4.1.4, and 4.1.5.
Jordan spectral theory is applied to continue the development of the basic theory
of alternative C*-algebras and of non-commutative JB*-algebras. In particular,
the relationship between non-commutative JB*-algebras and JB*-triples is settled
(see Theorems 4.1.45 and 4.1.55). The functional-analytic treatment of JB*-triples
is continued in Section 4.2, where Kaup’s commutative Gelfand—Naimark type
theorems for JB*-triples [380, 381] are proved (see Theorems 4.2.7 and 4.2.9)
and then, following [126, 269, 385, 655], the convexity properties of the closed
unit balls of JB*-triples and of non-commutative JB*-algebras are established (see
Theorems 4.2.24, 4.2.28, 4.2.34, and 4.2.36). Following [77, 78], we describe C*-
algebras and JB*-algebras generated by a non-self-adjoint idempotent (see Theor-
ems 4.3.11, 4.3.16, 4.3.29, and 4.3.32), and derive Spitkovsky’s theorem [595], that
C*-algebras generated by a non-self-adjoint idempotent are generated by two self-
adjoint idempotents (see Corollary 4.3.17); we also discuss the appropriate variant
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of Spitkovsky’s theorem for JB*-algebras (see Corollary 4.3.34). We prove that non-
commutative JB*-algebras have minimum norm topology (see Theorem 4.4.29) and
minimality of norm (see Proposition 4.4.34). These results generalize associative
forerunners by Cleveland [176] and Bonsall [111], respectively.

We state Behncke’s theory of complete normed hermitian Jordan complex
x-algebras [82], which is proved following the Aupetit—Youngson arguments [48],
and is presented in a somewhat new way involving the so-called /B*-representations
(see Theorem 4.5.29 and Corollary 4.5.30). Then a theory of complete normed
hermitian alternative complex x-algebras is derived (see Theorem 4.5.37 and
Corollary 4.5.39) in such a way that it contains the classical associative forerunners
[493, 565] as stated in Bonsall-Duncan [696, Section 41]. Generalizing Sakai’s
theorem [807], we prove that domains of closed densely defined derivations of
any unital non-commutative JB*-algebra are closed under the functional calcu-
lus of class C? at self-adjoint elements (see Theorem 4.6.63). The chapter also
includes some auxiliary results taken from the general theory of non-associative
normed algebras. Thus the non-associative generalization [516] of Johnson’s
uniqueness-of-norm theorem [353] (see also [696, 715, 786]), as well as Aupetit’s
celebrated forerunner for non-commutative Jordan algebras [40], are settled (see
Section 4.4). Along the same lines, a non-associative version of [522], as well as non-
associative applications of Bollobas’ extremal algebra [110, 182], are discussed (see
Section 4.6).

Volume 2

Chapter 5 will be devoted to proving what can be seen as a unit-free version of the
non-associative Vidav—Palmer theorem, namely that non-commutative JB*-algebras
are precisely those complete normed complex algebras having an approximate unit
bounded by one, and whose open unit ball is a bounded symmetric domain [365].
Some ingredients in the long proof of this result have been already established in
Volume 1. This is the case of the Bohnenblust—Karlin Corollary 2.1.13, the non-
associative Vidav—Palmer theorem (Theorem 3.3.11) as well as its dual version (Cor-
ollary 3.3.26), Proposition 3.5.23, Theorem 4.1.45, and the equivalence (ii)<(vii)
in the Braun—Kaup—Upmeier Theorem 4.2.24. The new relevant ingredients to be
proved in the chapter are: (i) the Chu—Iochum-Loupias result that bounded linear
operators from a JB*-triple to its dual are weakly compact [172] (equivalently, via
[717, Corollary on p. 12], that all continuous products on the Banach space of a
JB*-triple are Arens regular); (ii) Kaup’s theorem that JB*-triples are precisely those
complex Banach spaces whose open unit ball is a bounded symmetric domain [381];
(iii) the contractive projection theorem for JB*-triples collected without proof in
Theorem 2.3.74; and (iv) Dineen’s celebrated result that the bidual of a JB*-triple
is a JB*-triple [213].

Chapter 6 will contain the representation theory for alternative C*-algebras,
already sketched when we reviewed [762], and the representation theory for
non-commutative JB*-algebras, following [19, 124, 222, 481, 482, 641]. In these
papers a precise classification of certain prime non-commutative JB*-algebras (the
so-called ‘non-commutative JBW *-factors’) is obtained, and the fact that every
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non-commutative JB*-algebra has a faithful family of the so-called “Type I’ factor
representations is proven. When these results specialize for classical C*-algebras,
Type I non-commutative JBW*-factors are nothing other than the (associative)
W*-factors consisting of all bounded linear operators on some complex Hilbert
space [738, Proposition 7.5.2], and, consequently, Type I factor representations are
precisely irreducible representations on Hilbert spaces. The chapter will contain also
a classification of all prime non-commutative JB*-algebras, obtained in [255, 363]
by applying Zel’manov’s purely algebraic techniques in [437, 662, 663]. Many
applications of the representation theory will be discussed. Among them, we
emphasize the generalization to non-commutative JB*-algebras [340] of Kaplansky’s
characterization of commutativity of C*-algebras by means of the absence of
isotropic elements [761, Theorem B in Appendix III].

In Chapters 7 and 8, we will discuss selected topics in the theory of non-associative
normed algebras, which need not be directly related to the non-associative generaliz-
ations of C*-algebras. Chapter 7 will deal with the analytic treatment of Zel’manov’s
prime theorems for Jordan structures, already sketched in Chapter 6. Thus several
direct contributions of Zel’manov to the theory of normed Jordan algebras [147, 538]
(one of which was refined later in [447]) and the binary results in [146, 151, 152,
539] will be included with proofs. The ternary results in [448, 449] will be simply
surveyed. The survey papers [145, 450, 532] could provide the reader with a more
detailed overview of the intended content of the whole of Chapter 7.

The concluding Chapter 8 will deal with miscellany in the theory of non-
associative normed algebras. We will complement our knowledge on non-associative
generalizations of Rickart’s dense-range-homomorphism theorem (see Theorem
4.1.19 and Proposition 4.1.108) with those obtained in [165, 529]. Complement-
ing Corollary 4.4.55, some automatic continuity theorems for homomorphisms
‘into’, taken from [165, 462, 529], will also be included. Automatic continuity
of Lie homomorphisms, culminating in [130] through the papers of Berenguer—
Villena [97, 98] and Aupetit—Mathieu [47] already discussed in Subsection 4.4.5,
will also receive special attention. As an auxiliary tool for the proof of the main
result in [130], we will incorporate the discussion in [91] about normed Jordan
algebras ‘with finite spectrum’. Actually, the theory of normed Jordan struc-
tures subjected to ‘finiteness conditions’ would merit being systematically or-
ganized. Nevertheless, we will not be doing this, and will limit ourselves to
surveying this matter by reviewing results from Aupetit [43, 44], Aupetit—Baribeau
[45], Aupetit—-Maouche [46], Benslimane—Boudi [87, 88], Benslimane—Fernandez—
Kaidi [89], Benslimane-Jaa—Kaidi [90], Benslimane-Kaidi [91], Benslimane—
Rodriguez [95], Boudi [119], Boudi-Marhnine—Zarhouti—-Fernandez—Garcia [120],
Bouhya—Ferndndez [121], Fernandez [250, 251, 252], Fernandez—Garcia—Sanchez
[256], Ferndndez—Rodriguez [258], Hessenberger [322, 323, 324, 325], Hessen-
berger—Maouche [326], Loos [402, 404, 405], Maouche [413, 412], Pérez—Rico-
Rodriguez—Villena [489], and Wilkins [636]. Another favourite topic to be included
in this chapter is that of the general theory of non-associative H*-algebras, which
incidentally appears in Remark 2.6.54, Lemma 2.7.50, Subsection 2.8.2, and
Corollary 4.1.104 of this volume. This will be done by taking the appropri-
ate material from the papers [142, 144, 148, 149, 198, 199, 259, 526, 624]
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(see also [687, Chapters 7 and 8] and [525, Section E]). The chapter will conclude
with the non-associative discussion of the Rota—Strang paper [544] covered in
[452, 453].
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Foundations

1.1 Rudiments on normed algebras

Introduction In this section we develop the basic theory of normed algebras,
putting special emphasis on the case of complete normed unital associative complex
algebras. Non-associative normed algebras are considered only when they do not
offer special difficulties, or when the difficulties can be overcome in an elementary
way. Thus, this section is mainly devoted to attracting the attention of the non-
expert reader, although the expert reader should browse through it in order to become
familiar with the definitions and symbols introduced here, which need to be kept in
mind throughout the whole book.

Subsection 1.1.1 deals with the basic spectral theory, and culminates with the proof
in Theorem 1.1.46 of the celebrated Gelfand-Beurling formula. In Subsection 1.1.2,
we prove Rickart’s dense-range-homomorphism theorem. Subsection 1.1.3 deals
with the Gelfand theory for complete normed unital associative and commutative
complex algebras, as stated in Theorem 1.1.73, and some applications are discussed.
In Subsection 1.1.4, we introduce topological divisors of zero in a normed algebra,
and involve this notion to prove in Corollary 1.1.95 that (bounded linear) operators
on a Banach space are neither bounded below nor surjective whenever they lie in
the boundary of the set of all bijective operators. Subsections 1.1.5 and 1.1.6 discuss
the complexification, the unital extension, and the completion of a normed algebra.
These tools allow us to show how many results, proved originally for complete
normed unital associative complex algebras, remain true (sometimes in a suitably
altered form) for general normed associative algebras. This section, and throughout,
concludes with a subsection of historical notes and comments.

1.1.1 Basic spectral theory

Throughout this work, K will stand for the field of real or complex numbers. Given
vector spaces X, Y over K, we denote by L(X,Y) the vector space over K of all linear
mappings from X to ¥, and we set L(X) := L(X,X).

By an algebra over K we mean a vector space A over K endowed with a bilinear
mapping (a,b) — ab from A x A to A, which is called the product or the multiplic-
ation of A. An algebra is said to be associative (respectively, commutative) if its
product is associative (respectively, commutative). An element e of an algebra A is
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said to be a unit for A if ea = ae = a for every a € A. Clearly, an algebra has at
most a unit. The algebra A is said to be unital if it has a nonzero unit (equivalently,
if A has a unit and A # 0). The unit of a given unital algebra will be denoted by
1 unless otherwise stated. Given subsets B, C of an algebra A, we set

BC := {xy: (x,y) € BxC}.

Exceptionally, but never in Chapter 1, we will consider algebras over an arbitrary
field F. These are defined as above with [ instead of K.

Example 1.1.1 (a) Let E be a non-empty set. Then the set FX(E) (of all functions
from E to K), with operations defined pointwise, becomes a unital associative and
commutative algebra over K.

(b) Let X be a nonzero vector space over K. Then the vector space L(X), with the
product defined as the composition of mappings, becomes a unital associative algebra
over K. It is easily realized that L(X) is commutative if and only if dim(X) = 1. We
denote by Ix the unit of L(X), namely the identity mapping on X.

(c) By a subalgebra of an algebra A over K we mean a (vector) subspace (say B)
of A such that BB C B. In this way, subalgebras of algebras become new examples of
algebras.

Let A and B be algebras over K. By an algebra homomorphism from A to B we
mean a linear mapping F : A — B satisfying F(xy) = F(x)F(y) for all x,y € A.
We say that A and B are (algebra) isomorphic if there exists a bijective algebra
homomorphism from A to B.

Exercise 1.1.2 Prove that every one-dimensional algebra over K with nonzero
product is isomorphic to K.

A norm || - || on (the vector space of) an algebra A over K is said to be an algebra
norm if the inequality ||ab|| < ||a]|||b|| holds for all a,b € A. By a normed algebra
we mean an algebra A over K endowed with an algebra norm. A normed algebra
A is said to be complete if it becomes a complete metric space under the distance
d(a,b) := ||a—D||, i.e. if the normed space underlying A is a Banach space.

§1.1.3 It is clear that the product of any normed algebra is continuous. Actually,
the axiom ||ab|| < ||al|||b|| of normed algebras does not give much more. Indeed, if
[l -]l is a norm on an algebra A over K making the product of A continuous (say
llab|| < M||a||||b|| for all a,b € A and some positive number M), then by setting
II- |l := M]| - ||, we are provided with an equivalent norm on A converting A into a
normed algebra.

Given a normed space X over K, we denote by
By :={xeX:|x| <1}
the closed unit ball of X, by
Sx:={xeX:|x|=1}

the unit sphere of X, and by X’ the (topological) dual of X. When necessary, every
normed space X will be seen as a subspace of its bidual X”. Given normed spaces
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X,Y over K, we denote by BL(X,Y) the normed space over K of all bounded linear
mappings from X to ¥, and we set BL(X) := BL(X,X).

Example 1.1.4 (a) Let E be a locally compact Hausdorff topological space. Then
the subalgebra Ci (E) of F¥(E) (consisting of all K-valued continuous functions on
E vanishing at infinity), endowed with the norm

[l := max{|x(¢)] : 1 € E},

becomes a complete normed associative and commutative algebra over K. This alge-
bra is unital if and only if E is compact. When this is the case, we also write C¥(E)
instead of Cg<(E ). We note that, by taking E equal to N endowed with the discrete
topology, we obtain that the real or complex Banach space c¢( (of all null sequences
in K) naturally becomes a complete normed associative and commutative algebra
over K.

(b) Let X be a nonzero normed space over K. Then BL(X) is a subalgebra of
L(X), and, endowed with the operator norm

1F]:= sup{[[F(x)] : x € Bx },

becomes a normed unital associative algebra over K. Moreover, the normed algebra
BL(X) is complete if and only if X is a Banach space. Involving the Hahn-Banach
theorem, it is easily realized that BL(X) is commutative if and only if dim(X) = 1.

(c) By restricting the norm, any subalgebra of a normed algebra will be seen
without notice as a new normed algebra.

(d) Let E be a topological space, and let A be a normed algebra over K. Then, by
the continuity of the product of A, the vector space C(E,A) of all continuous func-
tions from E to A becomes an algebra over K under the product defined pointwise.
The subalgebra C,(E,A) of C(E,A), consisting of all bounded continuous functions
from E to A, becomes a normed algebra over K under the sup norm.

§1.1.5 An element e of an algebra is said to be an idempotent if ¢* = e. If e is a
nonzero idempotent in a normed algebra, then we clearly have ||¢|| > 1. In particular,
the unit 1 of a normed unital algebra satisfies ||1]| > 1. Moreover, no more can be said.
Indeed, if M is any real number with M > 1, and if for A € K we set ||A]| := M|A|,
where | - | stands for the usual module on K, then || - || becomes an algebra norm on
K satisfying ||1|| = M.

Fact 1.1.6 Let E be a connected topological space, let A be a normed algebra over
K, let ty be in E, and let B stand for the subalgebra of C(E,A) consisting of those
continuous functions from E to A vanishing at ty. Then B has no nonzero idempotent.

Proof Assume to the contrary that there is a nonzero idempotent ¢ € B. Then e(t)
is an idempotent in A for every 7 € E, and e(t) is nonzero for some ¢ € E. Therefore,
since e(tp) = 0, the continuous mapping ¢ — ||e(7)|| from E to R would have a
disconnected range (cf. §1.1.5 above), contradicting the connectedness of E. ]

As an application of §1.1.3, we have the following.

Proposition 1.1.7 Let A be a finite-dimensional algebra over K. Then A can be
provided with an algebra norm.
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Proof Let {uy,...,u,} be a basis of A. Then, for j,k =1,...,n, we have uju; =
7 pi*u;, for suitable p/*, ... pi* € K. Now, fora = Y, A, set [|af| := 37, il
Then, for a as above and b = Y| p;u;, we have

_ : — Jjk
ab = er":l Tu;, with 7;:= E.r;,kzl lj/,tkpi s
and hence

n n
llabll = 1wl <M Y, ]|l = Mllalll|2]l,
i=1 jk=1

where M := nmax{|pijk| i,j,k=1,...,n} does not depend on the couple (a,b).
Finally, apply §1.1.3. O

Lemma 1.1.8 Let X be a Banach space over K, let Y,Z be normed spaces over
K, and let f : X XY — Z be a separately continuous bilinear mapping. Then f is
(jointly) continuous.

Proof For u € X (respectively, v € Y), let us denote by f, (respectively, f,) the
bounded linear mapping from Y to Z (respectively, from X to Z) defined by f,(y) :=
f(u,y) for every y € Y (respectively, f,(x) := f(x,v) for every x € X). Then .% :=
{fy : v €By} is a pointwise bounded family of bounded linear mappings from the
Banach space X to the normed space Z. Indeed, for each x € X and every v € By
we have

LA = 117G T = LM< (1l

It follows from the uniform boundedness principle that .%# is uniformly bounded on
Byx. This implies the existence of a positive number M satisfying

1£Gew)I| < Ml 1y for every (x.y) € X x . O
By combining §1.1.3 and Lemma 1.1.8, we obtain the following.

Proposition 1.1.9  Let A be an algebra over K endowed with a complete norm || - ||
making the product of A separately continuous. Then, up to the multiplication of || - ||
by a suitable positive number, A becomes a complete normed algebra.

Definition 1.1.10 Let A be an algebra over K. The annihilator, Ann(A), of A is
defined by

Amn(A) :={a€A:aA =Aa=0}.
By a centralizer on A we mean a linear mapping (say f) from A to A satisfying
flab) = f(a)b = af(b) for all a,b € A. The set 'y of all centralizers on A is a

subalgebra of L(A) containing I4. This subalgebra is called the centroid of A. The
algebra A is said to be central over K whenever I'y = Kly.

The next proposition contains an easy ‘automatic continuity theorem’.
Proposition 1.1.11  Ler A be an algebra over K with Ann(A) = 0. We have:

(1) T4 is a commutative algebra.
(ii) IfA is complete normed, then Ty C BL(A).
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Proof Given f,g €4 and a,b € A, we see that

(fog)la)b=f(g(a))b=g(a)f(b) = g(af(h))
=g(fa)b) = g(f(a))b= (g0 f)(a)b
and
b(fog)(a) =bf(g(a)) = f(b)g(a) = g(f(b)a)
= g(bf(a)) = bg(f(a)) = b(go f)(a).
It follows from the arbitrariness of b in A that (fog— go f)(a) belongs to Ann(A).
Therefore (fog—go f)(a) =0. Now, since a is arbitrary in A, we conclude that
fog=go f. Thus I’y is a commutative algebra.

Assume that A is complete normed. Let f be in ['4, and let @, be a sequence in A
with a, — 0 and f(a,) — b € A. Then, for every a € A we have

0+« f(a)ay=af(a,) —ab and 0+« a,f(a)= f(ay)a — ba,

hence ab = ba = 0. Since a is arbitrary in A, and A has zero annihilator, we get that
b = 0. Thus the continuity of f follows from the closed graph theorem. O

Let A be a unital associative algebra. An element x € A is said to be invertible in A
if there exists y € A such that xy = yx = 1. If x is invertible, then the element y above
is unique, is called the inverse of x, and is denoted by x~!. We denote by Inv(A) the
set of all invertible elements of A.

Example 1.1.12 (a) Let E be a non-empty set, let F*(E) be as in Example 1.1.1(a),
and let x be in F(E). Then x € Inv(F (E)) if and only if x(t) # 0 for every t € E.

(b) Let X be a nonzero vector space over K, and let F be in L(X). Then F €
Inv(L(X)) if and only if F is bijective.

(c) Let E be a compact Hausdorff topological space, let CX(E) be as in Ex-
ample 1.1.4(a), and let x be in C¥(E). Then x € Inv(C*(E)) if and only if x(¢) # 0
for every t € E. Therefore x € Inv(C¥(E)) if and only if x € Inv(F*(E)).

(d) Let X be a nonzero normed space over K, and let F be in BL(X). Then F €
Inv(BL(X)) if and only if F is bijective and F~! is continuous. Therefore, in the
case that X is in fact a Banach space, the Banach isomorphism theorem gives that
F € Inv(BL(X)) if and only if F is bijective, and hence F' € Inv(BL(X)) if and only
if F € Inv(L(X)).

Lemma 1.1.13  Let A be a normed unital associative algebra over K, and let a and
b be inInv(A). Then we have:

) ||6f1 b < la 1Bl fla — bl
@) |~ 1\\’ < lla =8l
(iii) If ||a—b|| < then ||b~!|| < I*HHH’#IIIHHWM\'
Proof We have
la=t =67 = lla~ ' (b—a)b | < fla” (|15~ " | lla—b]|,

fla~ ‘H

which proves assertion (i). Now, keeping in mind that

o=t =l < fla™" =571,
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it follows from assertion (i) that

1 1
lla=tll 1o~

The proof of assertion (ii) is concluded by combining the inequality (1.1.1) with the
one obtained by interchanging the roles of a and b. On the other hand, it follows from
the inequality (1.1.1) that

1—fla”|[lla—b] 1 1
= = =7 —le=bl < o=
[la="1l la="] 15~
1

Since the condition |la — b|| < T leads to 1 — [la™!||||la — b|| > 0, assertion (iii)
follows from (1.1.2). ]

(1.1.2)

Corollary 1.1.14 Let A be a normed unital associative algebra over K, let a be in
A, and let z be in K such that a — z1 € Inv(A) and |z| > ||1]| ||a|. Then

- 1]
S [ L
=20 S B
1
Proof We have ||—z1—(a—z1)|=|al <m, and hence, by Lemma
1.1.13(ii),
- D)~ 1]
Ia—21)7)| < O

L=l llall [zl = 1] fall

Let A be a unital associative algebra over K. It is straightforward that ab and a~!
belong to Inv(A) whenever a,b are in Inv(A). As a consequence, the set Inv(A) is a
group with respect to the product of A. We recall that a topological group is a group
G endowed with a topology making the mappings (x,y) — xy from G x G to G, and
x — x~ ! from G to G, continuous.

Proposition 1.1.15  Let A be a normed unital associative algebra over K. Then
Inv(A) is a topological group in the induced topology from A.

Proof Keeping in mind the continuity of the product of A, it only remains to verify
the continuity of the mapping x — x~! from Inv(A) to A. By Lemma 1.1.13(ii), the
mapping x — m from Inv(A) to R is continuous, and hence so is the mapping

x — ||x~1||. Now, the proof concludes by invoking Lemma 1.1.13(i). O

§1.1.16 Let A be a normed associative algebra over K, and let a be in A. We define
powers of a by a' :=a and a"*! := aa". It is easily realized that a" ™" = a"a™ for all
n,m € N. Now assume that A is normed. Then we define the spectral radius v(a) of
a by

t(a) = inf{||a"||% ‘ne N} .
Obviously, t(a) < ||a|| and v(Aa) = |A|t(a) for A € K. It is also clear that, as the

infimum of a family of continuous functions, t(-) becomes an upper semicontinuous
function on A.



1.1 Rudiments on normed algebras 7
Lemma 1.1.17 Let o, be a sequence of non-negative real numbers satisfying

O ym < OOy, forall n,m € N,
1 1
Then the limit lim o, exists and is equal to inf{oy : n € N}.

1 1
Proof Write o = inf{o;; : n € N} and let € > 0. Fix k such that o' < o+ €. Any
natural number n > k can be written uniquely in the form n = g(n)k + r(n), where
g(n) € Nand 0 < r(n) < k— 1, and hence, setting o equal to 1, we obtain

o < ocr<n>oc,f(") <max{l,01,00,...,04_1} (ot 4)7k,

Since ™ — 0, we have 2% 5 1 as n — oo, and hence

r(n) a(nk

1 gk
o <max{l, o, 00,...,00 1} (a+€) " —a+e

1 1
as n — oo. Thus limsup o, < o+ € and, since € was arbitrary and o < o) for every
1

n, we conclude that lim o) = o. O

Corollary 1.1.18 Let A be a normed associative algebra over K, and let a be in A.
We have:

(i) t(a) = lim ||a"||7.

(i) Ift(a) < 1, then the sequence a" converges to zero.
Proof Assertion (i) follows from Lemma 1.1.17 above and the fact that

[la™*™| < ||a"|| |[@™| forall n,m e N.

Assume that t(a) < 1. Choose t(a) < 1 < 1. By assertion (i), we have Ha”||% <n
for n € N large enough, and hence ||a"|| < n” — 0. Thus assertion (ii) has been
proved. O

Corollary 1.1.19 Let A and B be normed associative algebras over K, let F : A — B
be a continuous algebra homomorphism, and let a be in A. Then v(F (a)) < t(a). As
a consequence, every equivalent algebra norm on A gives rise to the same spectral
radius on A.

Proof Forn € N, we have
[F(a)"|| = IF(a")|| < [|F|[lla"]]-

Therefore, by taking nth roots, and letting n — oo, Corollary 1.1.18(i) gives
t(F(a)) <t(a). ]

Lemma 1.1.20 (von Neumann) Let A be a complete normed unital associative
algebra over K, and let a be in A with t(a) < 1. Then 1 —a € Inv(A) and

(1—a) ' = > d,

where a° 1= 1.
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Proof Choose n with t(a) < n < 1. By Corollary 1.1.18(i), we have ||a"|| < n"
for n large enough, and therefore the series Y. ||a"|| converges. It follows from the
completeness of A that the series Y,a” is convergent in A. Since for each n we have

1—a)14a+---+d")=A+a+---+d)Y1—a)=1-ad""",

(1-a) (i a”) = (ia") (1-a)=1.
n=0 n=0

oo

Thus 1 — a is an invertible element of A, and its inverse is 2 a. O
n=0

it follows that

Corollary 1.1.21 Let A be a complete normed unital associative algebra over K.
We have:

(i) If a € A satisfies |1 —a| < 1, then a € Inv(A).

(i) Ifa € Inv(A), and if b € A satisfies ||a—b|| < ﬁ then b € Inv(A).

Proof Assertion (i) follows by writing a = 1 — (1 — ) and by applying Lemma
1.1.20. Given a € Inv(A) and b € A such that ||a — b|| < L, we see that

fla=t11
1—a'b| = lla " (a=b)| < lla[lla—b] <1.
Therefore, by assertion (i), a~'b € Inv(A), and so b = a(a~'b) € Inv(A). O

Lemma 1.1.22 Let A be a unital associative algebra over K, and let x and y be in
Inv(A). Then

Proof We have

1 1 1

=x'y—x)y =y y—x)y
==y Hy—xy!

=y y—x)x'y—xy " O

x ey ey —x)y”

Let X,Y be normed spaces over K, let Q be a non-empty open subset of X, let
Xxo be in Q, and let f : Q — Y be a function. We recall that f is said to be (Fréchet)
differentiable at x if there exists T € BL(X,Y) such that

_ —T(x—
o @ =) = Ta—x0)|

= _
O\ %) b= o]

In this case, the operator T is unique, and is called the (Fréchet) derivative of f at xy.
When X = K, the natural identification BL(K,Y) =Y allows us to see the derivative
of f at xg as the element f’(xy) € Y given by

Floao) = lim 1 =S

X—X( X — X0
x€Q\{xo}
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Theorem 1.1.23 Let A be a complete normed unital associative algebra over K.
Then Inv(A) is open in A. Moreover, the mapping x — x~' from Inv(A) to A
is differentiable at any point a € Inv(A), with derivative equal to the mapping
x— —a'xa™! from A 10 A.

Proof The first conclusion follows from Corollary 1.1.21(ii). Let us fix a € Inv(A).
Then, by Lemma 1.1.22, for each x € Inv(A) we have

x'—a ' —[—a ' x—a)a | =a ' (x—a)x (x—a)a !,

and hence

1 ~1 -1 12,1 2

X —a™ —[-a (x—a)a” [ < [la 7 [ lx = all”
Since the mapping x — ||x~!|| is continuous (by Lemma 1.1.13(ii)), we derive

|t —at —[—a" (x—a)a ]|

=0.
lx—a

lim
x—a
xelnv(A)\{a}

Therefore, the mapping x — x~! is differentiable at @ with derivative the mapping
T € BL(A) given by T'(x) = —a 'xa™'. O

§1.1.24 Let A be an algebra over K, and let S be a non-empty subset of A. Since the
intersection of any family of subalgebras of A is again a subalgebra of A, it follows
that the intersection of all subalgebras of A containing S is the smallest subalgebra
of A containing S. This subalgebra is called the subalgebra of A generated by S, and
is denoted by A(S).

Exercise 1.1.25 Let A be a unital algebra over K, and let S be a non-empty subset
of A. Prove that A(SU {1}) = K14+ A(S).

Now, let A be a normed algebra, and let S be a non-empty subset of A. Since the
intersection of any family of closed subalgebras of A is again a closed subalgebra of
A, it follows that the intersection of all closed subalgebras of A containing S is the
smallest closed subalgebra of A containing S. This subalgebra is called the closed
subalgebra of A generated by S, and is denoted by A(S).

Exercise 1.1.26 Let A be a normed algebra over K, and let S be a non-empty subset
of A. Prove that:

(i) If S is a subalgebra of A, then so is S.
(i) A(S) =A(S).
(iii) If A is unital, then A(SU{1}) = K1 +A(S).

§1.1.27  As usual, we denote by K[x| the algebra of all polynomials in the inde-
terminate x with coefficients in K. Let A be a unital associative algebra over K, and
let a € A. Given a polynomial p(x) = X7_, ogx* with coefficients oy € K, we denote
by p(a) the element of A given by p(a) = ¥}_,o4a*. It is clear that the mapping
p — p(a) is a unit-preserving algebra homomorphism from K[x] onto the subalgebra
of A generated by 1 and a.
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If A is a unital associative algebra and if B is a subalgebra of A containing the
unit of A, then it is clear that Inv(B) C BNInv(A). The next example shows that the
reverse inclusion may not, in general, be true, even in a complete normed context.

Example 1.1.28 Consider the complete normed unital associative and commutative
algebra C®(T), where T = {z € C: |z| = 1}. Let u be the element of C®(T) given by
u(z) = z for every z € T. It is clear that u is invertible in C®(T) and that the inverse of
u is the function defined by u~!(z) = % forevery z € T. Let B (respectively, C) denote
the subalgebra (respectively, closed subalgebra) of C®(T) generated by {1,u}. Note
that B is nothing other than the subalgebra of C®(T) consisting of all complex poly-
nomial functions, and that C = B because of Exercise 1.1.26(ii). If u were invertible
in C, then we would have u~! € C, and therefore there would be a polynomial
function p satisfying ||u~! — p|| < 1. Thus, for z € T we would have |% —-p@)| <1,
and hence |1 —zp(z)| < 1. Then, by the maximum modulus principle, the inequality
[1—2zp(z)| < 1 would be true for every z € B¢, and in particular 1 = |1 —0p(0)| < 1.
This contradiction shows that u is not invertible in C.

§1.1.29 Given an element a in a complete normed unital associative algebra A,
exp(a) is defined as the element of A given by

0 n

exp(a) = 2 %a

n=0

where a° := 1.

Exercise 1.1.30 Let @ and b be commuting elements of a complete normed unital
associative algebra A. Prove that

exp(a+b) = exp(a)exp(b), exp(a) € Inv(A), and exp(a)~' =exp(—a).

Let A be a unital associative algebra over K. By a one-parameter semigroup in A
we mean a mapping S : Rj — A satisfying

i) S(0)=1.
(ii) S(l1 +l2) = S(ll)S(tz) forall t;,1, € R(J)r.

If A is complete normed, and if a is any element of A, then it is clear that the
mapping S : R — A defined by S(z) := exp(ta) becomes a continuous one-parameter
semigroup in A. Conversely, we have the following.

Theorem 1.1.31 Let A be a complete normed unital associative algebra over K,
and let S : Rg — A be a continuous one-parameter semigroup in A. Then there exists
an element a in A such that S(t) = exp(ta) for every t € R. Moreover, this element
is given by the formula
S(t)—1
a=lim (t) .

t—0 t

Proof Since S is continuous, the integral f(f S(t)dt exists for all o, € R and is
an element of A. Further, by the fundamental theorem of calculus, we have

. 1 B
;}l_rgcﬁ—a/a S(t)dt =S(a)
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for each o € Rg . In particular, since S(0) = 1, it follows that there exists a 6 > 0

such that
1 (B
H/ S(t)dt—1H<1
B Jo

for every B with 0 < B < §. By Corollary 1.1.21(i), we realize that

% /O ¥ Sydr € v(a)

for every B with 0 < 8 < §. On the other hand, it is clear that

/St+rdr—/S dr—/S dr—/S
_1)/0 S(r)dr,

/OB S(t+r) dr—/ S(r dr—/BH ()dr—/OBS(r)dr

ﬂ+z
- / P dr— / S(r)dr.
Therefore, we have

B B+t '
l(s(z)—l)/o S(r)drzl/ﬁ ’ S(r)dr—%/o s(rdr (1.13)

t t

and

For f3 €]0, 0[ we obtain

- [} 500} [s0a][su]

When ¢ — 0 the right-hand side tends to a limit since the first factor tends to S() — 1.
It follows that

a:=lim S -1

t—0 t

(1.1.4)

exists and is an element of A. Keeping in mind (1.1.4), and again taking the limit as
t —0in (1.1.3), we obtain

S(B) 1+a/0ﬁS(r)dr (1.15)

for every B € R} . Note that, for each € R we have
S(t+r)—S(t) S()S(r)—S(t)

! — 1' = 1. =aS(t
§ (t) rgr(l) r rgl(l) r “ ( )7
and hence, for every k € NU{0} we have
d (t o r)k+l B ' (t _ r)k+]
dr{_lﬂ—ls(r) =(r=r) S(r)—HilaS(r),

and consequently

t X tk+1 k+1
- Ty 11
/O(t S dr = k+1/ S(r (1.1.6)
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Iterated substitution of (1.1.6) (withk=0,...,n—1)in (1.1.5) leads to

2 " an+l
()—1+fa+§a +-- +fa + /O(t—r)"S(r)dr

for every n € N. Therefore

an+1

/ (= rS(r)dr

HS() <1+a+2'a+ —|—a> prll

]!

~

/Ot(t —r)"S(r)dr

n!

[l

n!

< " max{|[S(r)|| : 0 < r <1}

Letting n — oo we obtain that

S(t) = i ;—n!a = exp(ta),

n=0

which concludes the proof. O

Let A be a unital associative algebra over K, and let a be in A. We define the
spectrum of a relative to A (denoted by sp(A,a), or simply sp(a) when the algebra A
is without doubt) as the subset of K given by

sp(A,a):={ueK:a—ul ¢Inv(A)}.

Example 1.1.32 (a) Let E be a non-empty set, and let x be in F¥(E). As a con-
sequence of Example 1.1.12(a), we have sp(F(E),x) = {x(¢t) :t € E}.

(b) Let X be a nonzero vector space over K, and let F be in L(X). As a con-
sequence of Example 1.1.12(b), we have

sp(L(X),F)={u € K: F — ulx is not bijective}.

(c) Let E be a compact Hausdorff topological space, and let x be in C*(E). As a
consequence of Example 1.1.12(c), we have

sp(C*(E),x) = {x(r) :1 € E},
and hence sp(C¥(E),x) = sp(FX(E),x).
(d) Let X be a nonzero normed space over K, and let F be in BL(X). As a
consequence of Example 1.1.12(d), we have
sp(BL(X),F) ={u € K: F — ulx has not a continuous inverse}.
In the case that X is in fact a Banach space, we actually have

sp(BL(X),F) = {u € K: F — uly is not bijective},

and hence sp(BL(X),F) = sp(L(X),F).
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Fact 1.1.33  Let A be a unital associative algebra over K, and let a and b be in A.
Then we have:

(i) 1—abenv(A) ifand only if 1 —ba € Inv(A).
(ii) sp(A,ab)\{0} = sp(A,ba)\{0}.

Proof Assertion (i) follows from the observation that if 1 — ab has inverse c, then
1 — ba has inverse 1+ bca. Assertion (ii) follows from assertion (i). ]

The following lemma is straightforward.

Lemma 1.1.34 Let A and B be unital associative algebras over K, and let ¢ :A — B
be a unit-preserving algebra homomorphism. Then

(i) ¢(Inv(A)) C Inv(B). More precisely, if a € Inv(A), then ¢(a) € Inv(B) with
o(@) ' =g
(ii) Foreachac A, sp(B,9(a)) C sp(A,a).

Lemma 1.1.35 Let A be a unital associative algebra over K, and let a be in A.
Then a is invertible in A if (and only if) there exists a unique b € A such that ab = 1.

Proof Assume that there exists a unique b € A such that ab = 1. Then aba = a, so
a(b+ba—1) =1. It follows from the uniqueness of b that b = b+ ba — 1, and hence
ba=1. O

§1.1.36 Let A be an algebra over K. We define the opposite algebra of A as the
algebra over K consisting of the vector space of A and the product (a,b) — ba, and
denote it by A Given another algebra B over K, algebra homomorphisms from A
to B are called algebra antihomomorphisms from A to B. Given an element a in an
algebra A, we denote by L, (respectively, R,) the operator of left (respectively, right)
multiplication by a on A. The mappings L:a — L, and R : a — R, from A to L(A) are
linear, with Ly = Ry = I4 whenever A is unital. Moreover A is associative if and only
if L is an algebra homomorphism, if and only if R is an algebra antihomomorphism.
If A is normed, then L, and R, lie in BL(A) for every a € A and, as mappings from A
to BL(A), L and R are contractive.

Lemma 1.1.37 Let A be a unital associative algebra over K, and let a € A. We
have:

(i) a € Inv(A) if and only if L, € Inv(L(A)). Moreover, if a € Inv(A), then
[f1 L,

(i) sp(A,a) = sp(L(A), La)-

Proof Since the mapping x — L, is a unit-preserving algebra homomorphism from

A to L(A), it follows from Lemma 1.1.34(i) that a € Inv(A) leads to L, € Inv(L(A))

and L' = L,1. Conversely, if L, € Inv(L(A)), then, by Lemma 1.1.35, a € Inv(A).

O

Invoking Example 1.1.32(d), we get the following.
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Corollary 1.1.38 Let A be a normed unital associative algebra over K, and let
a € A. The following conditions are equivalent:
(i) a € Inv(A).
(i) L, € Inv(BL(A)).
(iii) L, € Inv(L(A)).
As a consequence, sp(A,a) = sp(BL(A),L,) = sp(L(A),L,).

Lemma 1.1.39 Ler A be a normed unital associative algebra over K, let a be in
A, and let W be an open subset of K contained in K\sp(A,a). Then the mapping
f:W — A given by f(A) = (a— A1)~ is differentiable at any point A € W with
derivative f'(1) = (a—A1)72.
Proof Letus fix A € W. Then, for 4 € W we have
fw) = fA)=(a—p1)"' —(a—21)"
=(a—p1) [(a= A1)~ (a—pu1)](a=21)""
=(u—=2A)(a—pu1) Ha—-21)"",
and, keeping Proposition 1.1.15 in mind, we derive that
f(A)=1lim@—pul) Ya—A1)""=(a—A1)"% O
n—A
Proposition 1.1.40 Let A be a complete normed unital associative algebra over

K, and let a be in A. Then sp(A,a) is a compact subset of K contained in tv(a)Bg.
Moreover, the mapping A — (a — A1)~" from K\sp(A,a) to A is differentiable.

Proof Let A € K with |A| > t(a). Then t(2~'a) < 1, and so, by Lemma 1.1.20,
a—2A1=—A(1-2"'a) € Inv(A), i.e. A & sp(A,a). This proves that sp(A,a) is a
subset of t(a)Bx, and consequently that sp(A,a) is bounded in K. Now, in view of
Lemma 1.1.39, to conclude the proof it is enough to show that K\sp(A, a) is an open
subset of K. But this follows from the fact that Inv(A) is an open subset of A (by
Theorem 1.1.23) and the equality

K\SP(A> a) = h_l (IHV(A))v
where /1 denotes the continuous function A — a — A1 from K to A. O

Now we prove one of the fundamental results in the theory of normed algebras.

Theorem 1.1.41 Let A be a normed unital associative complex algebra, and let a
be in A. Then sp(A,a) # 0.

Proof To derive a contradiction, suppose that sp(A,a) = 0. Then, by Lemma 1.1.39,
the mapping f : C — A given by f(z) = (a—z1)"! is an entire function. On
the other hand, by Corollary 1.1.14, for each z € C with |z| > ||1]|||a||, we have
If()| < %, and as a consequence

lim f(z) = 0.
It follows from Liouville’s theorem that f(z) = O for each z € C. In particular,
a'=f0)=0,

a contradiction. O]
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Definition 1.1.42 Let A be an associative algebra over K. We say that A is a division
algebra if A is unital and Inv(A) = A\ {0}.

The next corollary is known as the complex Gelfand—Mazur theorem.

Corollary 1.1.43 Let A be a normed division associative complex algebra. Then A
is isomorphic to C.

Proof For every a € A there exists A € sp(A,a), hence
a—2A1¢Inv(A) = A\ {0},

and so a = A1. Now, it is clear that the mapping A — A1 is a bijective algebra
homomorphism from C to A. O

Combining Proposition 1.1.40 and Theorem 1.1.41 we have the following.

Corollary 1.1.44 Let A be a complete normed unital associative complex algebra,
and let a € A. Then sp(A, a) is a non-empty compact subset of C contained in v(a)Bc.

Let K be a non-empty compact subset of K. Then there exists a complete normed
unital associative and commutative algebra A over K, and an element a € A, such
that sp(A,a) = K. Indeed, according to Example 1.1.32(c), it is enough to take A :=
CX(K), and a equal to the element of C¥(K) defined by a(t) :=t for every ¢ € K. If
we dispense the commutativity, then the algebra A can be chosen independent of K.
This is realized by means of the following.

Exercise 1.1.45 Let K be a non-empty compact subset of K, and let A stand for
the infinite-dimensional separable Hilbert space over K. Prove that there exists 7' €
BL(H) such that sp(BL(H),T) =K.

Solution We may take H = ¢,. Note that each bounded sequence o, in K gives
rise to a bounded linear operator on H, just the one {u,} — {o,u,}. Now, let
n — A, be a mapping from N onto a dense subset of K, and consider the operator
T € BL(H) defined by T ({t,}) := {Aully }. Then, since T — A,Iy is not injective
for each n, we have {A, : n € N} C sp(BL(H),T), and hence, by Proposition 1.1.40,
also K C sp(BL(H),T). To prove the converse inclusion, note that, if A € K\ K,
then the sequence ﬁ is bounded, and hence we can consider the operator
T) € BL(H) defined by T) ({t,}) := {/l,flﬁ/l }, which satisfies Ty (T — Aly) =
(T —Ay)T, =1Iy. O

Theorem 1.1.46 (Gelfand-Beurling) Let A be a complete normed unital associat-
ive complex algebra, and let a be in A. Then we have

t(a) =max{|A|: X € sp(A,a)}.
Proof Tt follows from Corollary 1.1.44 that
p(a) :=max{|A]|: A €sp(4,a)} <t(a).
In order to prove the converse inequality, consider the set

W:={zeC:1-zac(A)}.
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Note that, for z € C\{0}, we have that z € W if and only if 7! € C\sp(4,a).
Therefore, it follows from Corollary 1.1.44 that W is an open subset of C containing
{z€C:|z] < p(a)~'}. Now, consider the mapping i : W — A given by h(z) :=
(1 —za)~'. Note that h(z) = —z '(a—z'1)"! for every z € W\{0}, and hence,
by Proposition 1.1.40, h is differentiable in W\{0}. Since, by Proposition 1.1.15,
h is continuous in W, it follows that & is differentiable in W. [Alternatively, by
Theorem 1.1.23, h is differentiable in W.] Keeping in mind Lemma 1.1.20, for each
z € C with |z] < v(a)~! we can write

— i anzn
n=0
Therefore, for each f € A’, the mapping f o & is analytic in W and
(foh)( 2 fa")

is the power series expansion of foh at z= 0. By Taylor’s theorem, this power series
expansion converges for z € C with |z| < p(a)~!. Therefore, for each z € C with
|lz| < p(a)~!, the sequence f(a")z" converges to 0, and therefore is bounded. Since
this is true for each f € A’, it follows from the principle of uniform boundedness that
a"7" is a bounded sequence. Hence, there is a positive number M (depending of z, of
course) such that ||a"Z"|| < M for all n, and therefore ||a”|| " < M ﬁ Consequently,

t(a) < \%I Finally, by letting |z| — p(a)~', we conclude that t(a) < p(a). O

Theorem 1.1.46, together with Example 1.1.32(d), provides us with the following
purely algebraic characterization of the spectral radius of a bounded linear operator
on a complex Banach space.

Corollary 1.1.47 Let X be a complex Banach space, and let F be in BL(X). Then
e(F) = max{|u| : 1 € sp(L(X), F)}.

1.1.2 Rickart’s dense-range-homomorphism theorem

Let A be an algebra over K. A subset I of A is called a left (respectively, right) ideal
of A if I is a subspace of A and Al C I (respectively, IA C I). The subset [ is said to
be a (two-sided) ideal of A if it is both a left and right ideal of A.

two-sided

left
Exercise 1.1.48 Let A be a normed algebra over K, and let / be a { right } ideal

left
of A. Prove that the closure of / in A is a { right } ideal of A.

two-sided
A left, right or two-sided ideal / of an algebra A is called proper if I # A. In the

case that A has a unit 1, it is clear that / is proper if and only if 1 & 1. §1.1.36 should
be kept in mind for the proof of the next proposition.

Proposition 1.1.49 Let A be a complete normed unital algebra over K. Then the
left left
closure of a proper { right } ideal of A is a proper { right } ideal of A.

two-sided two-sided
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Proof Assume for example that / is a left ideal of A, and suppose that / = A. Then,
choose b € I such that ||1—b|| < 1, and note that

s =Ryl = [[Ry = Ry || = [|[Ry || < [T =Bl < 1.

By Corollary 1.1.21(i), we find that the element Ry, is invertible in BL(A), hence R,
is bijective, and so A = R,(A) = Ab C I. O

The assumption in the above proposition that A is unital cannot be removed,
even if A is associative and commutative. A first counterexample is given by any
infinite-dimensional Banach space, endowed with the zero product, by taking a dense
proper subspace. A less trivial counterexample is obtained by taking A equal to cg
(cf. Example 1.1.4(a)), and thinking about the ideal cgg of all quasi-null sequences.
Another counterexample is the following.

Example 1.1.50 Let A stand for the closed subalgebra of C¥([0,1]) consisting
of those x € C¥([0,1]) such that x(0) = 0, and let I denote the proper ideal of A
consisting of those y € C*([0, 1]) for which there is 0 < §, < 1 such that y([0, §,]) =
0. We are going to show that 7 is dense in A. To this end, for n € N, let y, be the
element of I defined by

0 if 1e(0,47]
() =q nn+1) (=) if 1€ [H 0]
1 it re[l].

Then, for all x € A and n € N we have

|lxyn — x|| < max{|x(t)| e [0,’11] }

Since x is a continuous function with x(0) = 0, it follows that xy, — x. Finally, since
xyp € I for every n, and x is arbitrary in A, we deduce that / is dense in A.

left
Definition 1.1.51 Let A be an algebra over K, and let / be a { right } ideal of

two-sided
left
A. We say that [ is a maximal right ideal of A if I is proper and if the only
two-sided

left
proper { right } ideal of A containing 7 is [ itself.

two-sided

As an easy application of Zorn’s lemma, one derives the following.

left
Fact 1.1.52 Let A be a unital algebra over K. Then there are maximal { right }

two-sided
left
ideals of A. More precisely, every proper right ideal of A is contained in a
two-sided
left
maximal right ideal of A.
two-sided

As a straightforward consequence of Proposition 1.1.49, we get the following.
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Corollary 1.1.53 Let A be a complete normed unital algebra over K. Then every

left
maximal right ideal of A is closed.

two-sided

Let A be an algebra over K, and let / be an ideal of A. Then the quotient vector
space A/I becomes an algebra over K, called the quotient algebra, for the (well-
defined) product given by

(a+1I)(b+1):=ab+1 forall a+I,b+I1cA/l

The mapping 7 : A — A/I defined by 7(a) := a + 1 becomes an algebra homo-
morphism, called the quotient mapping or canonical homomorphism. If A is unital,
and if I is proper, then the quotient algebra A/I is unital, and the canonical homo-
morphism preserves units.

An algebra A is said to be simple if A has nonzero product and 0 is the only proper
ideal of A.

Lemma 1.1.54 Let A be a unital algebra over K, and let M be a maximal ideal of
A. Then the quotient algebra A/M is simple.

Proof Clearly A/M has nonzero product. Let I be a proper ideal of A/M. Then
7~ !(I) is a proper ideal of A containing M, so we have 7~ !(I) = M by maximality
of M, and so I = 0. O

§1.1.55 Let A be a normed algebra, and let / be a closed ideal of A. Then the
quotient algebra A /I becomes a normed algebra for the quotient norm

la+1]| :=inf{|ja+x| :x €I} forevery a+I€ A/l
Indeed, for a,b € A and x,y € I, we have
lab+1|| < [|lab+xb+ay +xy|| = [[(a+x)(b+ )| < la+x[[|b+ ],

and it is enough to take infimum in x,y to get ||(a+1)(b+1)|| < ||a+1]|||b+1||. The
quotient mapping 7 : A — A/I is a continuous open mapping with || 7| < 1.

A relevant notion in the automatic continuity theory is that of the separating space
S (@) of a linear mapping ® from a normed space X into a normed space Y, which
is defined by

S(®) :={y €Y : there exists x, — 0 in X with ®(x,) — y}.
With this notion in mind, the closed graph theorem reads as follows.

Fact 1.1.56 Let X and Y be Banach spaces over K, and let ® : X — Y be a linear
mapping. Then ® is continuous if (and only if) S(®) = 0.

Lemma 1.1.57 Let X and Y be normed spaces over K, and let ® : X — Y be a
linear mapping. Then &(®) is a closed subspace of Y.

Proof Clearly G(®) is a subspace of Y. Assume that y € Y is such that there exists
a sequence y, in &(®) converging to y. Then, for each n € N, we can choose x;, in
X such that ||x,|| < % and [|®(x,) —yull < % Therefore x,, — 0 and ®(x,) —y, — 0.



1.1 Rudiments on normed algebras 19

Since y, — y, we obtain that x, — 0 and ®(x,) — y, and we conclude that y € S(®P).
Thus S(®) is a closed subspace of Y. O

Lemma 1.1.58 Ler A and B be normed algebras over K, and let ® : A — B be an
algebra homomorphism with dense range. Then &(®) is an ideal of B.

Proof Let b be in &(®P), so that there is a sequence x, in A such that x, — 0 and
®(x,) — b. Then, for each a € A we see that ax, — 0, x,a — 0,
D(ax,) = DP(a)®(x,) — P(a)b, and ®(x,a) = D(x,)P(a) — bD(a).

Therefore ®(a)b and b®(a) lie in &(P). Now, given ¢ € B, choose a sequence a, in
A such that ®(a,) — ¢, and note that by the above ®(a, )b and bD(a,) lie in S(D).
Since ®(a,)b — cb and b®d(a,) — be, and S(P) is closed in B (by Lemma 1.1.57),
we realize that cb and bc lie in S(®). It follows from the arbitrariness of ¢ in B that
S(®) is an ideal of B. O

Lemma 1.1.59 and Proposition 1.1.60 immediately below could have been proved
much earlier.

Lemma 1.1.59 Let A be a unital associative algebra over K, and let a in A. If there
exist b,c € A such that ab = ca = 1, then a is invertible in A.

Proof Assume the existence of b, c € A satisfying ab = ca = 1. Then,
b=1b= (ca)b = c(ab) = cl =c,
and hence a € Inv(A). O

Proposition 1.1.60 Ler A be a complete normed complex algebra, let B be a com-
plete normed unital associative complex algebra, let ® : A — B be an algebra homo-
morphism, and let a be in A. Then

t(P(a)) < [al|. (1.1.7)
As a consequence,
1< Jla]|+ | 1—D(a)]. (1.1.8)

Proof We claim that 1 — ®(x) is invertible in B whenever x is in A and satisfies
|lx[| < 1. Let x be in A with ||x|| < 1. Then we have ||L.|| < 1 and ||Ry|| < 1, so that
by Lemma 1.1.20 and Example 1.1.12(d), Iy — L, and I4 — R, are bijective operators
on A. Therefore there exist y,z € A satisfying xy =y —x and zx = z—x. Now we have

(1-@(x)(1+®(y)) = (1+P(2))(1-@x)) =1,

and hence, by Lemma 1.1.59, 1 — ®(x) is invertible in B, as desired. Now, taking
A € C with |A] > ||al|, and applying the claim just proved to x := ¢, we derive that
sp(B,®@(a)) C ||a||Bc, so that the inequality (1.1.7) follows from Theorem 1.1.46.

By Theorem 1.1.41, we can choose A € sp(B,®(a)), and then clearly 1 — A €
sp(B,1— ®(a)). It follows from Corollary 1.1.44 and the inequality (1.1.7) already
proved that

L<SA[+H =4 <te(®(a) + (1= D(a)) < la + [[1 - D(a)]],

and the proof of the proposition is complete. L]



20 Foundations

Definition 1.1.61 Let A be a unital algebra over K. The strong radical, or the
Brown-McCoy radical, of A, denoted by s-Rad(A), is defined as the intersection of
all maximal ideals of A. The algebra A is called strongly semisimple if s-Rad(A) = 0.

Theorem 1.1.62 (Rickart’s dense-range-homomorphism theorem) Let A be a com-
plete normed complex algebra, let B be a complete normed unital associative com-
plex algebra, and let ® : A — B be an algebra homomorphism with dense range.
Assume that B is strongly semisimple. Then ® is continuous.

Proof Assume at first that B is actually simple. By Lemma 1.1.58, &(®) is an ideal
of B, and hence G(®) = 0 or B because of the simplicity of B. Suppose that & (D) =
B. Then we can choose a sequence a,, in A such that a, — 0 and ®(a,) — 1, so that,
by the inequality (1.1.8) in Proposition 1.1.60, we have 1 < ||a,|| + ||[1 —®(a,)| — 0,
a contradiction. Therefore &(®) = 0, and ® is continuous in view of Fact 1.1.56.
Now assume that B is strongly semisimple but not necessarily simple. Let a,
be a sequence in A with a, — 0 and ®(a,) — b € B. In view of the closed graph
theorem, to prove that @ is continuous it is enough to show that b = 0. Let M be a
maximal ideal of B. By Lemma 1.1.54, the quotient algebra B/M is a simple unital
associative complex algebra. Moreover, by Corollary 1.1.53, M is closed in B, and
hence, by §1.1.55, B/M is a complete normed algebra. Since the quotient mapping
A — A/M is a continuous unit-preserving surjective algebra homomorphism, it
follows that 7 o ® is a unit-preserving algebra homomorphism from A to B/M with
dense range. Therefore, by the first paragraph in the proof, 7 o @ is continuous. As
a consequence, we have (7o ®)(a,) — 0. But, on the other hand, we deduce from
the continuity of 7 that (7o ®)(a,) = n(®(a,)) — n(b). Therefore n(b) = 0, and
so b € M. Now, keeping in mind the arbitrariness of the maximal ideal M, and the
strong semisimplicity of B, we conclude that b = 0, as desired. O

Corollary 1.1.63 Let A be a strongly semisimple unital associative complex alge-
bra. Then A has at most one complete algebra norm topology.

Proof Let ||| and ||-|| be two complete algebra norms on A. Then, by The-
orem 1.1.62 applied to the identity mapping I4 : (A, ] - ||) — (A,[|-|]) and to its
inverse mapping, we obtain that both norms are equivalent. O

1.1.3 Gelfand’s theory

By a character on an algebra A over K we mean a nonzero algebra homomorphism
from A to K.

Corollary 1.1.64 Let A be a complete normed unital algebra over K, and let ¢ be
a character on A. Then @ is continuous with || @|| < 1.

Proof  Since ker(¢) is both an ideal and a maximal subspace, it is a maximal ideal of
A. Therefore, by Corollary 1.1.53, ker(¢) is closed in A, and hence ¢ is continuous.
Given a € A and n € N, we have

p(a)l" = |p(@)"| = oLz~ (@) < llo] lall",
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and hence |@(a)| < ||(p||%Ha|| By letting n — oo, we obtain that |@(a)| < ||a||. Thus
loll < 1. O

Proposition 1.1.65 Let A be a unital associative and commutative algebra over K.
We have:

(1) If A is simple, then A is a field extension of K.
(il) If M is a maximal ideal of A, then A/M is a field extension of K.

Proof Assume that A is simple. Let a be a nonzero element of A. Then aA is a
nonzero ideal of A, and hence A = aA by simplicity. By taking b € A such that 1 = ab,
we realize that a is invertible in A with inverse b. This shows that A is a field, and
the proof of assertion (i) is complete. Assertion (ii) follows from assertion (i) by
invoking Lemma 1.1.54. O

Combining Corollaries 1.1.43 and 1.1.53 and Proposition 1.1.65, we derive the
following.

Corollary 1.1.66 Let A be a complete normed unital associative and commutative
complex algebra, and let M be a maximal ideal of A. Then A/M is isomorphic to C.

On the other hand, as a consequence of Lemma 1.1.34(ii), we have the following.

Corollary 1.1.67 Let A be unital associative algebra over K, and let ¢ be a
character on A. Then @(a) € sp(A,a), for every a € A.

In what follows, for any unital associative and commutative complex algebra A,
we denote by A = A4 the set of all characters on A.

Proposition 1.1.68 Let A be a complete normed unital associative and commuta-
tive complex algebra. We have:

(i) The mapping ¢ — ker(@) defines a bijection from A onto the set of all maximal
ideals of A.
(il) Foreverya € A, sp(A,a) ={o(a): @ € A}.
(i) For every a € A, v(a) = max{|p(a)|: ¢ € A}.

Proof We already know that ker(¢) is a maximal ideal of A whenever ¢ is in A.
Let M be a maximal ideal of A. Then, by Corollary 1.1.66, there exists an algebra
isomorphism ¢ : A/M — C. If 7 : A — A/M denotes the quotient mapping, then it
is clear that @ = ¢ o 7t is a character on A with ker(¢) = M. On the other hand, if
@1, @2 are characters on A such that ker(¢@;) = ker(¢), then there exists A € C such
that @; = A ¢s. Since @;(1) = @2(1) = 1, it follows that A = 1, and hence ¢@; = ¢,.
Thus, assertion (i) has been proved.

In order to prove assertion (ii), let us fix an element @ in A. If A € sp(4,a),
then A(a — A1) is a proper ideal of A, and hence, by Fact 1.1.52, there exists a
maximal ideal of A containing a — A1. Therefore, by assertion (i), there exists a
character @ on A such that ¢(a — A1) = 0, and hence @(a) = A. This shows that
the inclusion sp(A,a) C {@(a) : ¢ € A} holds. The reverse inclusion follows from
Corollary 1.1.67.

Finally, keeping in mind Theorem 1.1.46, assertion (iii) is a consequence of
assertion (ii). ]
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Corollaries 1.1.69 and 1.1.70 (immediately below) follow from Fact 1.1.52 and
assertion (i) in Proposition 1.1.68.

Corollary 1.1.69 If A is a complete normed unital associative and commutative
complex algebra, then A is not empty.

Corollary 1.1.70 If A is a complete normed unital associative and commutative
complex algebra, then s-Rad(A) = yep ker(@).

If A is a complete normed unital associative and commutative complex algebra, it
follows from Corollary 1.1.64 that A is contained in A”. Thus, we can endow A with
the relative w*-topology. This topology on A is called the Gelfand topology, and A,
equipped with the Gelfand topology, is called the carrier space or Gelfand space
of A.

Proposition 1.1.71 If A is a complete normed unital associative and commutative
complex algebra, then the carrier space A of A is a non-empty compact Hausdorff
topological space.

Proof Aisnot empty by Corollary 1.1.69, and is Hausdorff by definition. It follows
from Corollary 1.1.64 that A is in fact contained in the closed unit ball B, of A’.
Since, by the Banach—Alaoglu theorem, B, is compact in the w*-topology, it
suffices to show that A is w*-closed in A’. Note that, for each a,b € A, the mapping
hap = f — f(ab) — f(a)f(b) from A’ to C is w*-continuous, and hence the set
Hyp = {f € A" hyp(f) = 0} is w'-closed. Since AU {0} = N p)caxa Haps it
follows that AU {0} is w*-closed. Moreover, the mapping & : f — f(1) from A’ to C
is w*-continuous, and hence the set

H:={feA :h(f)=1}
is w*-closed. Therefore, A= H N (AU{0}) is w*-closed in A’. O

Definition 1.1.72 Let A be a unital associative algebra over K, and let B be a
subalgebra of A. It is clear that, if B contains the unit of A, then the inclusion
Inv(B) € BNInv(A) holds. We say that B is a full subalgebra of A if B contains the
unit of A and the equality Inv(B) = BNInv(A) actually holds. It is clear that B is a full
subalgebra of A if and only if it contains the unit of A and we have sp(A,x) = sp(B, x)
for every x € B.

Let A be a complete normed unital associative and commutative complex algebra.
It is clear from the definition of the Gelfand topology that, for each a € A, the
mapping G(a) : A — C defined by

G(a)(@) := @(a) forevery ¢ €A,

is continuous. The element G(a) of the complete normed algebra C(A) is called the
Gelfand transform of a. The mapping G : a — G(a) of A into C*(A) is called the
Gelfand representation of A. Now, we summarize the so-called ‘Gelfand theory’ in
Theorem 1.1.73 below. We recall that a family .% of mappings from a set E to a set
F is said to separate the points of E whenever for all x;,x, € E with x| # x, there
exists f € F such that f(x1) # f(x2).
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Theorem 1.1.73 Let A be a complete normed unital associative and commutative
complex algebra, with carrier space A and Gelfand representation G : A — CC(A).
Then

(1) Ais a non-empty compact Hausdorff topological space.
(i) The Gelfand representation G is a contractive unit-preserving algebra homo-
morphism whose range is a full subalgebra of C© (A) separating the points of A.
(iii) G(a)(A) =sp(A,a) for every a € A.
@iv) ||G(a)|| = t(a) for every a € A.
(v) ker(G) =s-Rad(A) ={a € A :t(a) =0}

Proof Assertion (i) was proved in Proposition 1.1.71, whereas assertions (iii)
and (iv) were proved in Proposition 1.1.68(ii)—(iii). On the other hand, it is clear
that assertion (iv) implies that G is contractive. The remaining conclusions in asser-
tion (ii) can be easily checked. Finally, assertion (v) follows from Corollary 1.1.70
and assertion (iv). ]

Corollary 1.1.74 Let A be a complete normed strongly semisimple unital associa-
tive and commutative complex algebra, and let B be any subalgebra of A containing
the unit of A. Then B is strongly semisimple.

Proof By Theorem 1.1.73, B is isomorphic to a subalgebra of CC(E) (for some
compact Hausdorff topological space E) containing the unit. But such a subalgebra
(say C) is always strongly semisimple. Indeed, the valuations of elements of C at
points of E are characters, and kernels of characters are maximal ideals. O

Theorem 1.1.75 (Gelfand homomorphism theorem) Let A be a complete normed
complex algebra, let B be a complete normed strongly semisimple unital associative
and commutative complex algebra, and let ® : A — B be an algebra homomorphism.
Then ® is continuous.

Proof Regarding @ as a mapping from A to ®(A), and keeping in mind Corol-
lary 1.1.74, we may additionally assume that @ has dense range. Then the result
follows from Theorem 1.1.62. O

Given a compact Hausdorff topological space E and a point ¢ € E, we denote by
@ : C®(E) — C the valuation mapping at ¢, i.e. the mapping f — f(t) from C®(E)
to C.

Proposition 1.1.76 Let E be a compact Hausdorff topological space. Then the
mapping t — ¢y is a homeomorphism from E onto ACC(E)-

Proof The mapping is injective, because if #,#, are distinct points of E, then by
Urysohn’s lemma there is a function f € C®(E) such that f(¢;) = 0 and f(12) = I,
and therefore ¢, # ¢, .

Now we show the surjectivity of the mapping. For each f € C®(E), we will
consider the function f* € CC(E) defined by f*(r) := f(z), and the closed subset

Z(f) of E givenby Z(f) :={t € E: f(t) =0}. Let ¢ € Acc (), and let i
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be a finite subset of ker(¢). If (;_; Z(fx) = 0, then g := Y7 _, f;’ fi is strictly positive
on E, hence g € Inv(C®(E)), and so

n

0#¢(g) = kZ o(f)e(f) =0.
=1

This contradiction shows that every finite subset of ker(¢) has a common zero. Since
E is compact, all the functions in ker(¢) have a common zero, say %, and thus
ker(¢) C ker(¢y,). Since ¢(1) = ¢, (1) = 1, it follows that ¢ = ¢,.

Therefore, the mapping ¢ — ¢, is a bijection from £ onto Ac (E)- Since it is clearly
continuous, and both E and Acc g are compact Hausdorff topological spaces, we
conclude that it is a homeomorphism. O

Let E be a compact Hausdorff topological space, and set A := C*(E). It is straight-
forward that, up to the identification C(E) = C®(A4) (as normed algebras) induced
by the identification E = A4 (as topological spaces) given by Proposition 1.1.76 (see
§1.2.27 below for details), the Gelfand representation of A becomes the identity.
Another relevant consequence of Proposition 1.1.76 is the following.

Corollary 1.1.77 Let E and F be locally compact Hausdorff topological spaces,
and let ® : C§ (E) — C§ (F) be a bijective algebra homomorphism. Then there exists
a homeomorphism n : F — E such that

@(f)(t)=f(n(t)) forall feCS(E) and tE€F. (1.1.9)

Proof  First note that since the algebras Cj (E) and C§ (F) are isomorphic, they are
either unital or not at the same time, so £ and F are either compact or not at the
same time.

Assume that E and F are compact. Then, clearly, ¢ o ® lies in Acc(g) whenever
@ is in Acc(p)s and the mapping 7: ¢ — @ o ® from Accp) to Acc ) is a homeo-
morphism. Now, let o : E — Acc( E) and o : F' — Acc(p) be the homeomorphisms
given by Proposition 1.1.76, and set 1 := oy o 70 0p. Then 1 is a homeomorphism
from F onto E satisfying (1.1.9).

Now assume that E and F are not compact. Let £ and F' stand for their respective
one-point compactifications, and regard C (E) and C§ (F) as ideals of C*(E) and
CC(F ), respectively, in the natural way. Then ® extends uniquely to a bijective
algebra homomorphism @ : C¢(E) — C(F). By the above paragraph, there exists a
homeomorphism 1] : F — E such that &( ) () = f(f(¢)) forall f € C°(E) andt € F.
Moreover, since ®(CS (E)) = C§ (F), we have fj(F) = E, so that, by restricting A to
F, we are provided with a homeomorphism 1 from F onto E satisfying (1.1.9). [

Let A be an algebra over K, and let S be a non-empty subset of A. The commutant
of S is defined as the set

S¢:={a€A:ax=xa forevery x € S}.

We write S instead of (S)¢ for the second commutant or bicommutant of S. The
subset S is called commutative if it consists of pairwise commuting elements (equiva-
lently, if S C §¢). The following result, whose proof is left to the reader, contains
elementary properties of commutants in associative algebras.
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Proposition 1.1.78 Let A be an associative algebra over K, and let S,S1,S> non-
empty subsets of A. We have:

(1) S€is a subalgebra of A, containing 1 if A is unital. Moreover, if in addition A is
a normed algebra, then S is a closed subalgebra of A.
(i) S5 C S{ whenever S; C 5.
(iii) § C 8 and S° = S,

(iv) S is commutative if and only if S is commutative.

Corollary 1.1.79 Let A be a (normed) associative algebra over K, and let S be a
non-empty commutative subset of A. Then the (closed) subalgebra of A generated by
S is commutative.

Proof By Proposition 1.1.78, S is a (closed) commutative subalgebra of A con-
taining S. U

We recall that commutants of subsets in unital associative algebras are subalgebras
containing the unit.

Lemma 1.1.80 Let A be a unital associative algebra over K, and let S be a non-
empty subset of A. Then S€ is a full subalgebra of A.

Proof Letxbe in S°NInv(A). For each b € S, by multiplying the equality xb = bx
on both sides by x !, we get bx~! =x~!b. Thus x~! € 5, and x € Inv(S°). Therefore
S¢NInv(A) C Inv(S). O

Corollary 1.1.81 Let A be a complete normed unital associative complex algebra,
and let a,b be commuting elements of A. Then we have

(i) sp(a+b) C sp(a) +sp(b) and sp(ab) C sp(a)sp(b).
(ii) v(a+0b) <t(a)+rt(b) and t(ab) < t(a) (D).

Proof Keeping in mind Theorem 1.1.46, assertion (ii) is a consequence of asser-
tion (i). In order to prove assertion (i), consider the commutative set S := {a,b}, and
set B := 5. By Proposition 1.1.78, B is a closed unital commutative subalgebra of
A containing S. Let A stand for the carrier space of B, and let G : B— C®(A) denote
the Gelfand representation. By Theorem 1.1.73(ii)—(iii), we see that

sp(B,a+b) = Ga+b)(A) = (G(a) + G(b))(A)
C G(a)(A) +G(b)(A) = sp(B,a) +sp(B,b).

In the same way, sp(B,ab) C sp(B,a)sp(B,b). Now, the result follows by invoking
Lemma 1.1.80. O

To conclude the present subsection, let us specialize Gelfand’s theory to the case
of algebras ‘generated’ by a single element. Given a (normed) algebra A over K and
a subset S of A, we say that A is generated by S as a (normed) algebra if the (closed)
subalgebra of A generated by S is the whole algebra A. The following lemma will
often be applied.
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Lemma 1.1.82 Let A and B be (normed) algebras over K, let S be a subset of A,
and assume that A is generated by S as a (normed) algebra. We have:

(1) If ¢, v : A — B are (continuous) algebra homomorphisms such that ¢ (s) = y(s)
foreverys €S, then ¢ = .

(ii) If ¢ : A — B is a (continuous) algebra homomorphism, then ¢ (A) is contained
in the (closed) subalgebra of B generated by ¢ (S).

Proof Let ¢ and v be as in assertion (i). Then ker(¢ — y) is a (closed) subalgebra
of A containing S, and hence ker(¢ — y) = A, which proves assertion (i).

Now let ¢ : A — B be a (continuous) algebra homomorphism. Let C stand for
the (closed) subalgebra of B generated by ¢(S). Then ¢~!(C) is a (closed) sub-
algebra of A containing S, and hence ¢ ~'(C) = A. Thus ¢(A) C C, which proves
assertion (ii). ]

Theorem 1.1.83 Let A be a complete normed unital associative complex algebra,
let a be in A such that A is generated by {1,a} as a normed algebra, and denote
by u the inclusion mapping sp(A,a) — C. Then there exists a unique continuous
unit-preserving algebra homomorphism ® : A — C(sp(A,a)) such that ®(a) = u.
Moreover we have:

(i) D is contractive.

(ii) ker(®) =s-Rad(A).
(iii) The range of ® is a full subalgebra of C(sp(A,a)).
(iv) sp(A,x) = ®(x)(sp(A,a)) for every x € A.

Proof Since A is commutative, we may consider the carrier space A of A, and
the Gelfand representation G : A — C®(A). By Theorem 1.1.73, the Gelfand
transform G(a) of a is a continuous mapping from A onto sp(A,a). Moreover, if
©1, 02 € A satisfy @ (a) = @2(a), then, since @ (1) = ¢2(1), we have @; = @, (by
Lemma 1.1.82(i)). Therefore, G(a) is injective, and consequently a homeomorphism.
Now, the homeomorphism G(a) : A — sp(A,a) induces an isometric surjective
algebra homomorphism G(a)' : C®(sp(A,a)) — CE(A) (see §1.2.27 below for
details). By setting

®:=(G(a)) oG, (1.1.10)

we realize that @ is a continuous unit-preserving algebra homomorphism from A to
CC(sp(A,a)) satisfying ®(a) = u. On the other hand, the uniqueness of such a homo-
morphism follows by again invoking Lemma 1.1.82(i). Thus the first conclusion in
the theorem has been proved. Finally, since the algebras C®(sp(A,a)) and C®(A) are
isomorphic via G(a)’, and G(a)' is an isometry, the second conclusion follows from
(1.1.10) and Theorem 1.1.73. O

Remark 1.1.84 Let A and a be as in Theorem 1.1.83. Then the linear hull of the
set E := {exp(za) : z € C} is dense in A. Indeed, the linear hull of E is a subalgebra
of A containing 1, and its closure contains a because

o = tim ZPE) =1
z—0 Z
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1.1.4 Topological divisors of zero

Definition 1.1.85 Let A be an algebra over K. An element a of A is said to be a left
(respectively, right) divisor of zero in A if there exists b € A\ {0} such that ab =0
(respectively, ba = 0). Elements of A which are left or right (respectively, left and
right) divisors of zero are called one-sided divisors of zero (respectively, two-sided
divisors of zero) in A. We say that an element a € A is a joint divisor of zero in A if
there is b € A\ {0} such that ab = 0 and ba = 0. We note that A has no nonzero left
divisor of zero if and only if A has no nonzero right divisor of zero. When this is the
case, we simply say that A has no nonzero divisor of zero.

Exercise 1.1.86 Let A be a nonzero finite-dimensional complex algebra with no
nonzero divisor of zero. Prove that A is isomorphic to C.

Solution Fix y € A\ {0}, and let x be in A. Then the characteristic polynomial
of the operator L 'L, must have a complex root (say A), and hence there exists
z € A\ {0} such that (L; 'L, — A14)(z) = 0. This implies that (x — Ay)z = 0, and
hence that x = Ay. Since x is arbitrary in A, we have A = Cy. Now, A is a one-
dimensional complex algebra with nonzero product, so the proof is concluded by
applying Exercise 1.1.2. O

Let us recall that a linear mapping F' between normed spaces X and Y is called
bounded below if there is m > 0 such that ||F (x)|| > m||x]|| for every x € X.

Definition 1.1.87 Let A be a normed algebra over K. An element a of A is said to
be a left (respectively, right) topological divisor of zero in A if there exists a sequence
an of norm-one elements of A satisfying limaa, = 0 (respectively, lima,a = 0).
Hence left (respectively, right) topological divisors of zero in A are nothing other
than those elements a of A such that the operator L, (respectively R,) is not bounded
below. Elements of A which are left or right (respectively, left and right) topological
divisors of zero are called one-sided topological divisors of zero (respectively, two-
sided topological divisors of zero) in A. We say that an element a € A is a joint
topological divisor of zero in A if there is a sequence a, of norm-one elements of
A satisfying aa,, — 0 and a,a — 0. In the case that A is commutative, all notions
introduced above coincide, and therefore we will simply speak about fopological
divisors of zero.

Exercise 1.1.88 Let a be an element in a normed algebra A. We have:

(1) If ais aleft (respectively, joint) divisor of zero in A, then a is a left (respectively,
joint) topological divisor of zero in A. Moreover the converse is true when A is
finite-dimensional.

(i) The element a is not a joint topological divisor of zero in A if and only if there
exists a positive number m satisfying m||b|| < ||ab|| + ||bal| for every b € A.

(iii) If A is unital and associative, and if a is a one-sided topological divisor of zero
in A, then a ¢ Inv(A).

Hint for assertion (ii) ~Assume that there is no m > 0 satisfying

m||b|| < ||ab|| + ||ba|| for every b€ A.
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Then, for each n € N, there exists b, € A such that 1||b,|| > ||ab,|| + ||baal. By
setting a,, := ”Z—"”, we have ||a,|| = 1 for every n € N, and the sequences aa, and a,a
converge to zero in A. Therefore a is a joint topological divisor of zero in A. O

Exercise 1.1.89 Let A be a normed associative algebra over K, and let x be in A
with t(x) = 0, then x is a joint topological divisor of zero in A.

Solution If x* =0 for some n € N, then x is a joint divisor of zero. Otherwise, for

n € N we set x,, 1= ”;,z“, so that we have ||x,|| = 1 and
+1
0 < liminf ||xx, || = liminf||x,x|| = liminf ”” n”” < 1im||x”||% =1t(x) =0,
X
and therefore x is a joint topological divisor of zero in A. O

Proposition 1.1.90 Let A be a complete normed unital associative algebra over K,
and let a be in the boundary of Tnv(A) relative to A. Then a is a joint topological
divisor of zero in A.

Proof Since a lies in the boundary of Inv(A) relative to A, it follows from The-
orem 1.1.23 that a ¢ Inv(A) and there exists a sequence a, in Inv(A) with a, — a.
By Lemma 1.1.13(ii), for n,m € N we have

! ] .
—_— —d
Tl T mln < ljon =

1

llan ”n

A # 0. Then ||a, || converges to A~!, and hence is bounded. Let M € R such
that ||, || < M for every n € N. By Lemma 1.1.13(i), for all n,m € N we have
la,' —a,t| < M2||an — a,|, and hence a,! is a Cauchy sequence in A. If
a,! —>b€A,thenanan —aband a,; an—>ba soab=ba=1, andsanInv(A) a

Therefore T is a Cauchy sequence in R. Put A = lim Tk Assume that

contradiction. Therefore A =0, i.e. — 0. Now, setting b, and writing

= =
Hnll HnH

ab, = (a—ay)b, 1 and bpa=by(a—a,)+

1
laz T

IIn I

we realize that ab,, — 0 and b,a — 0. Thus a is a joint topological divisor of zero
inA. O

Corollary 1.1.91 Let A be a complete normed unital associative algebra over K,
let a be an element of A, and let A lie in the boundary of sp(A,a) relative to K. Then
a— Al is a joint topological divisor of zero in A.

For a subset S of a vector space X over K, co(S) will denote the convex hull of S.

Lemma 1.1.92 Let X be a nonzero normed space over K, let K be a compact subset
of X, and let K denote the boundary of K relative to X. We have:

(i) K C co(dK).
(ii) IfL is a compact subset of X satisfying K C L and dL C dK, then co(K) = co(L).
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Proof We may assume that K # (. Fix a nonzero element u in X. For each x € K,
the set S:= {r € R:x+tu € K} is a compact subset of R with 0 € S. If & = min S and
B =maxS, then x+ o, x+ fu € dK and x € [x+ o, x+ Bu]. Therefore x € co(dK).
Thus assertion (i) is proved.

In order to prove assertion (ii), assume that L is a compact set in X such that K C L
and dL C dK. Keeping in mind assertion (i), we have

co(K) C  co(L)

|l 1
co(dK) 2 co(dL),

and the proof concludes. O

Let K be a non-empty compact set in K. Recall that the bounded connected com-
ponents of K\ K are called the holes of K (in K).

Proposition 1.1.93  Let A be a complete normed unital associative algebra over K,
and let B be a closed subalgebra of A containing the unit of A. We have:

(i) Inv(B) is a clopen subset of Inv(A) N B, and the boundary of Inv(B) relative to
B is contained in the boundary of Inv(A) relative to A.

(ii) For each b € B, we have sp(A,b) C sp(B,b), and the boundary of sp(B,b)
relative to K is contained in the boundary of sp(A,b) relative to K. As a con-
sequence, co(sp(A,b)) = co(sp(B,b)).

(iil) If b is in B and if sp(A,b) has no hole in K, then sp(A,b) = sp(B,b).

Proof Keeping in mind Theorem 1.1.23, it is clear that Inv(B) is an open set in
Inv(A) N B. To see that it is also closed, let b, be a sequence in Inv(B) converging to a
point b € Inv(A) N B. Then b, ' converges to b~ ! in A, so b~! € B, which implies that
b € Inv(B). Hence, Inv(B) is a clopen subset of Inv(A) N B. Moreover, if b is in the
boundary of Inv(B) relative to B, then, by Proposition 1.1.90, b is a joint topological
divisor of zero in B, so b is a joint topological divisor of zero in A, and so b ¢ Inv(A)
(by Exercise 1.1.88(iii)). Since there exists a sequence b, in Inv(B) C Inv(A) such
that b, converges to b, it follows that b lies in the boundary of Inv(A) relative to A.

The inclusion Inv(B) C Inv(A), and its consequence that sp(A,b) C sp(B,b) for
every b € B, are well-known facts to us. Moreover, if b is in B, and if A4 is in the
boundary of sp(B,b) relative to K, then b — A1 is in the boundary of Inv(B) relative
to B. Therefore, by assertion (i), b — A1 is in the boundary of Inv(A) relative to A,
hence A € sp(A,b), and so A lies in the boundary of sp(A, b) relative to K. Now, by
Lemma 1.1.92, we get co(sp(A, b)) = co(sp(B,b)).

Finally, let b be in B such that sp(A,b) has no hole in K. If K = R, then sp(A,b)
is connected, and hence, by assertion (ii), we have sp(A,b) = sp(B,b). If K = C,
then C\ sp(A, D) is connected. Since C\ sp(B,b) is a clopen subset of C\ sp(A,b) by
assertions (i) and (ii), it follows that C\ sp(A,b) = C\ sp(B,b), and hence sp(A,b) =
sp(B,b). O

Let X, Y be normed spaces over K. Given F € BL(X,Y), we denote by F' : Y’ — X'
the transpose operator of F. We recall that the mapping F — F’ from BL(X,Y) to
BL(Y',X") becomes a linear isometry, and that, in the case that Y = X, this isometry
is an algebra antihomomorphism from BL(X) to BL(X").
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Proposition 1.1.94 Let X be a normed space over K, and let F be in BL(X).
We have:

(i) F is a left topological divisor of zero in BL(X) if and only if F is not bounded
below.

(ii) If F is a right topological divisor of zero in BL(X), then F is not an open
mapping.

Proof Assume that F is a left topological divisor of zero in BL(X). Then there
exists a sequence F, of norm-one elements of BL(X) such that FF, — 0. Forn € N,
choose a norm-one element y, € X such that ||F,(y,)|| > ;7. and set x, := %
Then x,, becomes a sequence of norm-one elements of X satisfying F(x,) — 0, and
hence F is not bounded below.

Now assume that F' is not bounded below. Then there is a sequence x,, of norm-
one elements of X such that F(x,) — 0. Take a norm-one element f € X’ and, for
n € N, consider the bounded linear operator F,, on X defined by F,(x) := f(x)x, for
every x € X. Then F, becomes a sequence of norm-one elements of BL(X) satisfying
FF, — 0, and hence F is a left topological divisor of zero in BL(X).

Finally assume that F is a right topological divisor of zero in BL(X). Then F’ is
a left topological divisor of zero in BL(X"). Therefore, by the first paragraph in the
proof, there exists a sequence f, of norm-one elements of X’ satisfying F'(f,) — 0.
If F were an open mapping (say F (Bx) D 0By for a suitable 0 > 0), then, for every
n € N, we would have

[F'(f)ll = sup{[fu(F (x))] : x € Bx} > dsup{|fu(x)| : x € Bx} = 8| /ul| = 6,
a contradiction. O]

The following corollary follows straightforwardly from the open mapping theorem
and Propositions 1.1.90 and 1.1.94.

Corollary 1.1.95 Let X be a Banach space over K, and let F be in the boundary of
Inv(BL(X)) relative to BL(X). Then F is neither bounded below nor surjective.

Corollary 1.1.96 Letr X be a complex normed space, and let T be in BL(X). Then
there exists A € C with |A| =(T) and such that T — Alx is not bounded below.

Proof Let X stand for the completion of X, and let T be the unique bounded
linear operator on X which extends T. According to Theorem 1.1.46, there is A €
sp(BL(X),T) with |A| = ¢(T), and such a A lies in the boundary of sp(BL(X),T)
relative to C. Then, since t(7) = v(T), we have |A| = t(T). On the other hand,
by Corollary 1.1.95, T— AIX is not bounded below, i.e. there is a sequence y, in
Sg such that 7'(y,) — Ay, — 0. For n € N, take x, € Sy with [x, — y,|| < 1. Then
T (xn) — Ax, — 0. It follows that T — AIx is not bounded below. O

1.1.5 The complexification of a normed real algebra

Let X,Y,Z,U be vector spaces over K, and let F: X — Z and G:Y — U be
linear mappings. We denote by F ® G the linear mapping from X ® Y to Z®@ U
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determined by
(FRG)(x®y) =F(x)®G(y) forevery (x,y) €X XY.

Now, let X, Y be normed spaces over K. We recall that the projective tensor norm
|| |lz on X ®Y is defined by
n n
ol = inf{z1 il o = zlxl@y,}.
= =
The normed space (X ®Y, || - ||z) will be called the projective tensor product of X and
Y, and will be denoted by X ®, Y. It is well known and easy to see that the equality
llx@yllz = ||x||||y]| holds for every (x,y) € X x Y. Moreover, if Z and U are normed
spaces over K, andif F : X — Z and G:Y — U are bounded linear mappings, then the
linear mapping F @ G from X @, Y to Z ®, U is bounded with |F @ G|| = ||F|||G]|.
Let X be a real vector space. Then the complexification of X is defined as the
real vector space C ® X, endowed with its natural structure of complex vector space
deriving from the multiplication of vectors by complex numbers determined by
Al ®x) = (Au) @ x. The space X will be regarded as a real subspace of its
complexification via the imbedding x — 1 ® x, and then the clear equality C® X =
X @ iX gives rise to a unique conjugate-linear involutive mapping § on C ® X such
that X becomes the set of fixed points for f. This involutive mapping will be called
the canonical involution of the complexification of X .

Lemma 1.1.97 Let X be a real normed space. Then C @7 X becomes a complex
normed space. Moreover, both the natural imbedding X — C®7 X and the canonical
involution t of C @7 X are isometries. Therefore, the direct sum C®RpX =X ®iX is
topological, and hence C ®5 X is complete if and only if so is X.

Proof To prove the first conclusion it is enough to show that, for A € C with |A| =1,
the mapping ¢ : o« — A from C®; X to C®; X is an isometry. But, for such
al, wehave 9 =L, ®Iy and ¢! =L; ®Ix, so ||¢| =1 and [[¢~!|| = 1, and
so ¢ is an isometry, as required. That the natural imbedding X — C ®; X is an
isometry becomes obvious. On the other hand, since § = 7 ® Iy (where 7 stands for
the conjugation of C), we derive that { is isometric. Finally, for x,y € X we have
x = 3[(x+1iy) + (x+iy)?], and hence ||x|| < [|x+iy||, which shows that the direct
sum C®7; X = X @ iX is topological. O

In view of the above lemma, the complexification of a real normed space X,
endowed with the projective tensor norm, will be called the (projective) normed
complexification of X, and will be denoted by X¢.

Let A,B be algebras over K. As usual, the vector space A ® B will be con-
sidered without notice as a new algebra over K with product determined by
(a1 @ by)(az ® by) = (ajaz) @ (b1by). Now, assume that A and B are normed.
Then it is straightforward that the projective tensor norm on A ® B is an algebra
norm, so that A ®, B will be seen without notice as a normed algebra.

Now, let A be a real algebra. Then C ® A is both a complex vector space and a
real algebra, and it is straightforward that both structures behave smoothly, so the
complexification of A becomes naturally a complex algebra containing A as a real
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subalgebra via the natural imbedding A — C ® A, and the canonical involution of
C ® A becomes a conjugate-linear algebra automorphism. Moreover, C ® A is
associative, commutative, or unital, if and only if so is A.

Keeping in mind the above ideas and Lemma 1.1.97, we derive the following.

Proposition 1.1.98 Let A be a normed real algebra. Then its normed complexi-
fication Ac := C ®z A becomes naturally a normed complex algebra containing
isometrically A as a real subalgebra. Moreover, the direct sum Ac = A®iA is topolo-
gical, and hence Ac is complete if and only if so is A. In addition, Ac is associative,
commutative, or unital, if and only if so is A.

Lemma 1.1.99 Let A be a unital associative algebra over K, and let a and b be in
A. We have:

(1) a and b are invertible in A if (and only if) so are ab and ba.
(i) When a and b commute, a and b are invertible in A if (and only if) so is ab.

Proof Assume that ab and ba lie in Inv(A). Then
alb(ab)~"] = (ab)(ab)~' =1 and [(ba)~'bla = (ba)~'(ba) = 1.
Therefore, by Lemma 1.1.59, a € Inv(A). Analogously, b € Inv(A). O

Proposition 1.1.100 Let A be a unital associative real algebra, and let a be in A.
Then

sp(C®A,a) ={o+if: «,B €R suchthat (a—al)*+B>1 ¢ Inv(A)}.

Proof Using that the canonical involution £ of C ® A is a conjugate-linear algebra
automorphism, we realize that an element x € C® A is invertible in C ® A if and
only if so is x*, and that, if this is the case, then we have (x*)~! = (x~!)*. Then we
deduce that A becomes a full real subalgebra of C®A, and that for x € C® A we have
sp(C®A,x") = {1 : 1 € sp(C®A,x)} (which implies that sp(C ®A,a) is invariant
under the conjugation of C). Now, keeping in mind that for o, B € R we have

[a—(a+ip)l]ja—(o—iB)1] = (a—al)* + %1 € A,
it follows from Lemma 1.1.99(ii) that
a+if esp(CRA,a) < a—if €sp(CRA,a) < (a—ol)?+ B*1 ¢ Inv(A).
O
Now we can prove the real variant of Theorem 1.1.46.

Corollary 1.1.101 Let A be a complete normed unital associative real algebra, and
let a be in A. Then

t(a) = max{|a+iB|: o,B €R with (a—ol)>+B>1 ¢ Inv(A)}.  (1.1.11)
Proof By Proposition 1.1.98 and Theorem 1.1.46, we have
t(a) = max{|u| : 4 € sp(Ac.a)},
and (1.1.11) follows from Proposition 1.1.100. L]
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Now, invoking Corollary 1.1.101 and Example 1.1.12(d), we get the following real
variant of Corollary 1.1.47.

Corollary 1.1.102  Let X be a real Banach space, and let F be in BL(X). Then
t(F) = max{|a+iB|: o, € R with (F— aly)>+ B%Ix ¢ Inv(L(X))}.
We conclude the present subsection with the following.

Exercise 1.1.103  Apply Proposition 1.1.98 to show that Proposition 1.1.60 remains
true when we replace ‘complex algebras’ with ‘real algebras’. Then look at the
proof of Theorem 1.1.62 to realize that this theorem also remains true with the same
replacement.

1.1.6 The unital extension and the completion of a normed algebra

§1.1.104 Let A be an algebra over K. The unital extension of A is defined as the
algebra over K whose vector space is K x A and whose product is given by

(A,x)(1,y) = (Ap, Ay + px +xy).

We will denote by A; the unital extension of A. Ay is always a unital algebra, whose
unit is 1 := (1,0). Moreover, the mapping a — (0,a) from A to Ay identifies A with
an ideal of A;. With this identification in mind, we have

A; =K1®A.

Up to an algebra isomorphism, the unital extension of A is the unique unital algebra
over K containing A as a subalgebra and enjoying the following universal property:
every algebra homomorphism from A to any unital algebra B over K extends in a
unique way to a unit-preserving algebra homomorphism from Ay to B. It is straight-
forward that A; is associative or commutative, if and only if so is A.

Let B,C be algebras over K. The (algebra) direct product of B and C is defined
as the algebra over K whose vector space is B x C, and whose product is defined
coordinate-wise. Set A := B x C. Regarding B and C as subsets of A by means of the
natural imbeddings B < A and C < A, they become ideals of A such that A =B&C
(which implies BC = CB = 0).

§1.1.105 Conversely, let A be an algebra over K, and let B, C be ideals of A such that
A =B®C. Then the mapping (b,c) — b+ ¢ from the algebra direct product B x C to
A becomes a bijective algebra homomorphism taking B onto B and C onto C.

Now, let B,C be associative algebras over K. Then B x C is an associative algebra.
Assume additionally that B and C are unital. Then B x C is a unital associative
algebra, and an element (b,c) € B x C is invertible in B x C if and only if b is
invertible in B and c is invertible in C. As a consequence, for (b,c) € B x C we have

sp(Bx C,(b,c)) =sp(B,b)Usp(C,c). (1.1.12)

Proposition 1.1.106 Let A be a unital associative algebra over K, and let a be in
A. Then sp(A,a) U{0} = sp(Ay,a).
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Proof Noticing that A and K(1 — 1) are ideals of A; such that
A =ABK(1-1),

and that A and K(1 — 1) are unital algebras, the result follows from §1.1.105 and the
equality (1.1.12). O

By a norm-unital normed algebra we mean a normed unital algebra A such that
I1]] = 1. Now, the following proposition is straightforward.

Proposition 1.1.107 Let A be a (complete) normed algebra over K. Then its unital
extension Ay = K1 D A, endowed with the norm

1AL +al| == |A| + [lal, (1.1.13)

becomes a norm-unital (complete) normed algebra over K containing isometrically
A as a closed proper ideal.

Keeping in mind the universal property of the unital extension, the next unit-free
version of Corollary 1.1.64 follows straightforwardly from Corollary 1.1.64 itself
and Proposition 1.1.107.

Corollary 1.1.108 Let A be a complete normed algebra over K, and let ¢ be a
character on A. Then @ is continuous with ||@|| < 1.

Another relevant consequence of Proposition 1.1.107 is the following.

Corollary 1.1.109 Two complete algebra norms on an associative algebra A over
K give rise to the same spectral radius on A.

Proof 1In view of Proposition 1.1.98, we may assume that K = C. Let || - || and ||| - |
be complete algebra norms on A, and denote by the same symbols the corresponding
complete algebra norms on A; given by Proposition 1.1.107. By Theorem 1.1.46, for
a € A we have

tH.H(a) =max{|A|: X €sp(A1,a)} = tm.m(a). O]

§1.1.110 Let A be a norm-unital normed algebra over K, and let M be a closed
proper ideal of A. Then the normed algebra A/M is norm-unital. Indeed, A/M is
unital with unit 1+ M, and, by §1.1.5, we have

I<r+Mm| <) =1.

Proposition 1.1.111 Ler A be a normed unital algebra over K. Then there exists an

equivalent norm ||| -|| on A converting A into a norm-unital normed algebra over K.
A choice of such a norm ||| - ||| is given by
[[al| =inf{|A|+ |a—A1|: A € K} (1.1.14)

for every a € A.

Proof Set M := K(1 —1) C A;. Then A and M are ideals of Ay such that
Ay =A®M. Let t: Ay — Ay /M be the quotient homomorphism. It follows that
my is a bijective algebra homomorphism from A to Ay /M. Everything asserted
until now made no use of the fact that the algebra A is normed. Now, consider
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Aj; as a normed algebra under the norm given by Proposition 1.1.107, so that,
by §1.1.110, Ay /M becomes a norm-unital normed algebra. Since A is closed in
Ay, and M is finite-dimensional, the direct sum A; = A @ M is topological, and
hence the bijective algebra isomorphism 74 is a homeomorphism. It follows that

[la|ll := [[m4(a)| defines an equivalent norm on A converting A into a norm-unital
normed algebra over K. Finally, the equality (1.1.14) follows from the ones
lla|l =inf{lla+A(1—1)||: A € K} and (1.1.13). O

Lemma 1.1.112  Let X,Y,Z be normed spaces over K, with completions X,Y . Z,
respectively, and let f : X XY — Z be a continuous bilinear mapping. Then there
exists a unique continuous mapping f : X x Y — Z extending f. Moreover f is
bilinear with || f|| = || f|-

Proof For each x € X, the mapping f, : ¥ — Z defined by f.(y) = f(x,y) is
a continuous linear mapping. Therefore, there exists a unique continuous linear
mapping fy : ¥ — Z such that fxly = f, and ||f+|| = ||f:||. Consider the mapping
g:X x¥ — Z defined by g(x,y) = f«(y). It is routine to verify that g is a continuous
bilinear mapping such that gx .y = f and ||g|| = || f||. Now, for each y € Y, consider
de mapping g, : X — Z defined by gy(x) = g(x,y) for every x € X. Since g is
a continuous linear mapping, there exists a unique continuous linear mapping
8y : X — Z such that 8yjx = 8 and &yl = llgy|l- Again, the mapping f: X x ¥ — Z,
defined by f(x,y) = g,(x) for all x € X,y € ¥, is a continuous bilinear mapping
such that f\Xxf/ = gand || f|| = ||g||. Therefore, f extends f and satisfies || f]| = || f]-
Finally, the fact that f is the only continuous mapping from X x ¥ to Z extending f
follows from the fact that X x Y is dense in X x Y. O

Definition 1.1.113 Let A be a normed algebra over K. The (algebra) completion of
A is defined as the complete normed algebra whose Banach space is the completion
of the normed space of A, and whose product is the unique continuous extension
of that of A given by Lemma 1.1.112. Clearly, if A is associative, commutative, or
unital, then so is the completion of A.

Corollary 1.1.114 Let A be a complete normed associative algebra over K, let B
be a normed associative algebra over K, and let F : A — B be an algebra homo-
morphism. Then

t(F(a)) <t(a) forevery a€A.

Proof Regarding F' as a mapping from A to the completion of B, F remains an
algebra homomorphism, and hence we may assume that B is complete. Moreover,
we may additionally assume that K = C. Indeed, if K = R, then it is enough to
replace A and B with their normed complexifications (see Proposition 1.1.98), and F
with I ® F. Now, consider the unital extensions Ay and By of A and B, respectively
(which, by Proposition 1.1.107, are complete normed associative complex algebras),
and the unique unit-preserving algebra homomorphism G : A; — By extending F.
Then, invoking Lemma 1.1.34(ii) and Theorem 1.1.46, for a € A we have

t(F(a)) = v(G(a)) = max{|u| : u € sp(B1,G(a))}
<max{|A|: A €sp(A1,a)} =t(a). O
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We note that Corollary 1.1.109 follows straightforwardly from Corollary 1.1.114
above.

Arguments such as those in the proof of Corollary 1.1.114 also allow us to derive
the following from Corollary 1.1.81(ii).

Corollary 1.1.115  Let A be an associative normed algebra over K, and let a,b be
commuting elements of A. Then

t(a+Db) <t(a)+t(b) and v(ab) < t(a)r(b).

1.1.7 Historical notes and comments

The material in this section has been elaborated mainly from the books of Berberian
[689], Bonsall and Duncan [696], Bourbaki [697], Conway [711], Helemskii [742],
Hille and Phillips [746], Miiller [780], Murphy [781], Rickart [795], Rudin [804],
and Sinclair [810]. Other sources are quoted in what follows.

For functional analysts, Proposition 1.1.7 is folklore because of the elementary
observation in §1.1.3 and the fact that bilinear mappings starting from a product of
two finite-dimensional normed spaces and valued into a normed space are automatic-
ally continuous. However, for people working only in pure algebra, Proposition 1.1.7
‘needs a proof’. The elementary one given here is close to that of Albert’s paper [9].

For the roots of Theorem 1.1.31, the reader is referred to the beginning of Notes
and Remarks VIII.10 in Dunford—Schwartz [726]. The proof given here is taken from
Theorem 9.4.2 in Hille—Phillips [746]. According to the authors of [746], the main
points in this proof are due to Nagumo [457], who, according to [804, p. 373], initi-
ated the abstract study of normed algebras. Another proof of Theorem 1.1.31 will be
discussed in Subsection 1.3.3. Besides Theorem 1.1.31, the exponential function on
complete normed unital associative algebras has relevant applications. A sample, also
due to Nagumo [457] (see also [820, Theorem 7.3]), is formulated in the following.

Theorem 1.1.116 Let A be a complete normed unital associative algebra. Then the
connected component of the unit in the topological group Inv(A) coincides with the
subgroup of Inv(A) generated by the set {exp(a) :a € A}.

According to the preface of Zelazko’s book [820], the foundations of the theory of
normed associative algebras are due to Gelfand [284]. In particular, Theorem 1.1.41
and the proof given here are due to him. A proof, avoiding complex function theory,
was later given by Rickart [503], and is included in [795, Theorem 1.6.3] and [696,
Theorem 5.7]. In fact, Rickart’s proof gives additional information, formulated as
follows.

Theorem 1.1.117 Let A be a normed unital associative complex algebra, and let a
be in A. Then there exists A € sp(A,a) with |A| > t(a).

According to [795, p. 38], the ‘spectral radius formula’ of Theorem 1.1.46, which
was proved by Gelfand [284] in the general case of a complete normed unital
associative complex algebra, was proved for the algebra of absolutely convergent
trigonometric series by Beurling [101]. With Theorem 1.1.117 in mind, the Gelfand—
Beurling formula follows straightforwardly from Proposition 1.1.40. After the
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Gelfand-Beurling formula is proved in one or other manner, Theorem 1.1.117 can
be refined by replacing in its formulation |A| > v(a) with || = t(a). Indeed, this
follows by applying Theorem 1.1.46, with the completion of A (say A) instead of A,
and by noticing that sp(A,a) C sp(A, a).

A direct proof of Corollary 1.1.43, avoiding both Theorem 1.1.41 and complex
function theory, can be found in Mazet’s paper [430].

Example 1.1.50 contains the solution of the undergraduate student A. Molino to
an exercise raised in the class.

§1.1.118 Theorem 1.1.62 (in the particular case that the algebra A is associative)
and Corollary 1.1.63 are due to Rickart [S01]. The actual version of Theorem 1.1.62
is taken from [540]. We do not know whether Theorem 1.1.62 remains true when
associativity of the algebra B is removed altogether. By looking at the proof, this
would be the case whenever the inequality (1.1.8) in Proposition 1.1.60 could be
proved without involving the associativity of B. But this last problem remains open
to date.

§1.1.119  According to [804, p.373], ‘what really got the subject of associative
normed algebras was Gelfand’s discovery of the important role played by the
maximal ideals of a [complete normed associative and] commutative algebra [284]
and his construction of what is now known as the Gelfand transform’. In particular,
Theorem 1.1.73 and the associative forerunner of Theorem 1.1.75 are due to
Gelfand [284].

According to [790, p. 111], Corollary 1.1.77 is due to Gelfand and Kolmogorov
[286].

The notion of a topological divisor of zero was introduced by Shilov [564].
Propositions 1.1.90 and 1.1.93 are due to Rickart [500].

In relation to Proposition 1.1.93, it is worth mentioning the following.

Proposition 1.1.120 Ler A be a complete normed unital associative algebra over K,
let B be a closed subalgebra of A containing the unit of A, and let b be in B. We have:

(1) sp(B,b) is the union of sp(A,b) and a (possibly empty) collection of holes of
sp(A, D).

(ii) If K=C, and if B is generated by {1,b} as a normed algebra, then sp(B,b) has
no hole in C.

Assertion (i) in the above proposition follows easily from the first assertion in
Proposition 1.1.93(ii) and the purely topological fact that, if V and W are open sets
in some topological space, if V. C W, and if W contains no boundary point of V,
then'V is a union of connected components of W [804, Lemma 10.16]. For a proof of
assertion (ii) in Proposition 1.1.120, the reader is referred to [696, Theorem 19.5]. As
a straightforward consequence of Proposition 1.1.120(i), we deduce the following.

Corollary 1.1.121 Let A be a complete normed unital associative algebra over K,
and let a be in Inv(A). If 0 does not belong to any hole of sp(A,a), then a~" lies in
the closed subalgebra of A generated by {1,a}.
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Corollaries 1.1.95 and 1.1.96 become the rudiments of the so-called operator
theory. Additional basic information on this topic can be found in Section 1.4 below,
as well as in [689, 726, 795]. For deeper developments, the reader is referred to
[767, 780].

Due to the power of complex methods, the possibility (assured by Proposition
1.1.98) of regarding (isometrically) any real normed algebra A as a real subalgebra
of a normed complex algebra becomes a relevant fact. Our method of converting
the algebraic complexification of A into a complex normed algebra by means of
the projective tensor norm, is no other than that of Bonsall and Duncan in [696,
Proposition 13.3]. This method has the advantage that it works without problems in
the non-associative setting. It is worth mentioning that other earlier methods, like the
one in Theorem 1.3.2 of Rickart’s book [795], only work in the associative setting.
All facts about the projective tensor product stated without proof in our development
are straightforward. Anyway, the reader can consult Section 3 of the Defant—Floret
book [717] for details and complements.

Proposition 1.1.111 was proved first by Ocana in his PhD thesis [784] with a proof
different from ours. Ocafia’s proof was included in [452].

§1.1.122 In the associative case, the existence of a norm-unital equivalent renorm-
ing of a normed unital algebra can be proved as follows:

Let A be a normed unital algebra, and, for a € A, set ||a|| := ||Lq||. Then we
have || 1] = 1 and

llall = 1Zall < llall = [IZa(W < [ILal[[A]] =[]/l I

for every a € A, so that || - ||| is an equivalent norm on A. Finally, if A is associative,
then, as pointed out in §1.1.36, the mapping a — L, is an algebra homomorphism,
which implies that ||| - || is an algebra norm. O

1.2 Introducing C*-algebras

Introduction We introduce C*-algebras, and develop their basic theory, focussing
on the unital commutative case. Some applications to the non-commutative case, like
the continuous functional calculus in a normal element, are considered. The passing
from a C*-algebra to its C*-algebra unital extension is also discussed in order to profit
from the non-unital case. As in the case of Section 1.1, the present section is mainly
devoted to attracting the attention of the non-expert reader. Deeper developments
will be discussed later.

1.2.1 The results

We begin this section by introducing the adjoint of a bounded linear operator between
Hilbert spaces.

Proposition 1.2.1 Let H, K, L be Hilbert spaces over K.
(i) IfF € BL(H,K), then there is a unique element F* € BL(K,H) such that
(F(x)|y) = (x|F*(y)) forall x€ H and y € K.
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(ii) The mapping F — F* from BL(H,K) to BL(K,H) is conjugate-linear. Moreover,
for F € BL(H,K) we have F** = F and
* * 1
[l =[lF* = [F*F[]>.
(iii) IfF € BL(H,K), and if G € BL(K, L), then (GF)* = F*G".

Proof If F € BL(H,K) and y € K, then the function x — (F(x)|y) is a continu-
ous linear functional on H, so, by Riesz’ representation theorem, there is a unique
element F*(y) € H such that (F(x)|y) = (x|F*(y)) for every x € H. Moreover,

IE= W) = sup{[(F()|y)| : x € B} < [[Fl[Iyl]-

It is routine that the map F* : K — H is linear, and from the above we realize that F*
is bounded with ||F*|| < ||F||. Thus, F* satisfies the condition in assertion (i), which
yields the uniqueness of F*.

Let F be in BL(H,K). Then, for x € By we have

(FO)IF(x)) = (F*F(x)) < [|F7FI,

SO

IE )1 = sup {[[F ()| : x € B } < |[F*F|| < |IF||*.
Hence, ||F|| = ||[F*F ||% The other properties in assertion (ii) have routine verifica-
tions.

Assertion (iii) follows from the fact that, for F € BL(H,K) and G € BL(K,L) we
have

(GF (x)|z) = (F(x)|G"(2)) = (x|F*G"(2))
forall x € H and z € L. ]

Let H and K be Hilbert spaces over K. For each F € BL(H,K), the operator F* €
BL(K,H) is called the adjoint of F.

By an involution on a set E, we mean a mapping x — x* from E to E satisfying
x** = x for every x € E. Given a linear or conjugate-linear involution * on a vector
space X over K, we denote by H(X,x*) the real subspace of X consisting of all
x-invariant elements of X. In the case K = C and * is conjugate-linear, we have
X =H(X,*)®iH(X,*). Given two sets E and F, each of which is endowed with an
involution * and a mapping f : E — F, we say that f is a x-mapping if the equality
f(x*) = f(x)* holds for every x € E.

A linear or conjugate-linear involution * on an algebra A over K is said to be an
algebra involution if the equality (ab)* = b*a* holds for all a,b € A.

§1.2.2 By a x-algebra over K we mean an algebra over K endowed with a
conjugate-linear algebra involution *. The =x-invariant subalgebras of a given
x-algebra will be called *-subalgebras. As usual, by a C*-algebra we mean a
complete normed associative complex x-algebra A satisfying ||a*al| = |a||* for
every a € A. The straightforward fact that the involution of any C*-algebra is
an isometry will be applied without notice. On the other hand, it is clear that
closed *-subalgebras of C*-algebras are C*-algebras. Moreover, it follows from



40 Foundations

Proposition 1.2.1 that, given a complex Hilbert space H, the passing from each
element F € BL(H) to its adjoint F* becomes a conjugate-linear algebra involution
on BL(H), and that, endowed with this involution and the operator norm, BL(H)
turns out to be a C*-algebra.

The celebrated non-commutative Gelfand—Naimark theorem establishes the
reciprocal.

Theorem 1.2.3 Every C*-algebra is isometric and algebra x-isomorphic to a
closed x-subalgebra of BL(H) for some complex Hilbert space H.

For the moment, we will not discuss the proof of Theorem 1.2.3.

Let E be a non-empty set, and let FC(E) stand for the algebra of all complex-
valued functions on E (see Example 1.1.1(a)). For each x € F c (E), we denote by
x* the element in FC(E) defined by x*(¢) = x(r) for every ¢ € E. It is clear that the
mapping x — x* is a conjugate-linear algebra involution on FC€ (E). In the case that
E is endowed with a locally compact Hausdorff topology, the subalgebra Cg:(E ) of
FC (E) (see Example 1.1.4(a)) is *-invariant, and, endowed with the involution * and
its canonical norm ||x|| := max{|x(z)| : r € E'}, becomes a commutative C*-algebra.

According to the celebrated commutative Gelfand—Naimark theorem, there are no
more examples of commutative C*-algebras. Indeed, we have the following.

Theorem 1.2.4 Every commutative C*-algebra is isometric and algebra -
isomorphic to Cg (E) for some locally compact Hausdor{f topological space E.

Theorem 1.2.4 above follows easily from Theorem 1.2.23 and Proposition 1.2.44
below. In the commutative case, the proof of the non-commutative Gelfand—Naimark
theorem (Theorem 1.2.3) is very easy. Indeed, we have the following.

Exercise 1.2.5 Let E be a locally compact Hausdorff topological space. Then there
exists a complex Hilbert space H such that the C*-algebra Cg (E) is isometrically
algebra x-isomorphic to a closed *-subalgebra of BL(H).

Solution Take H equal to the complex Hilbert space /> (E), and for x € C§ (E) let
®(x) € BL(H) be defined by ®(x)({A }reg) := {x(t) A }rer for every {A }rer € H.
Then the mapping x — ®(x) becomes an isometric algebra *-homomorphism from
CS(E) to BL(H). O

One of the ingredients in the proof of Theorem 1.2.4 is the so-called Stone—
Weierstrass theorem (Theorem 1.2.10), which is proved in what follows.

§1.2.6 Let E be a compact Hausdorff topological space, and let f and g be in
CR(E). As usual, we say that f < g whenever f(r) < g(t) for every t € E. Then < is
a partial order on C®(E), and in fact (C®(E), <) is a lattice for the operations V and
A given by

(fve)(t) =max{f(t),g(t)} and (fAg)(t) =min{f(z),g(t)}.

Lemma 1.2.7 Let E be a compact Hausdorff topological space and let X be a
subset of CR(E). If fV g and f A g belong to X for all f and g in X, then every
continuous function on E that can be approximated from X in every pair of points in
E can in fact be approximated uniformly from X.
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Proof Let f be a function that can be approximated as described above. For every
€ > 0and u,vin E there is thus an f, , in X such that both « and v are in the sets

VI = {t€E: (1) < funlt) + €} and Vi = {1 € E: funlt) < £(1) +€).

For fixed u and variable v the open sets V*" cover E. Since E is compact, we can
therefore find vy,...,v, € E such that E = |JV*". By the assumption on X, we have
fu:=Vfuy, €X,and we see that f(r) < f,(t) + € for every  in E. At the same time
fut) < f(t) + € for every ¢ in W, = (\V,,,, which is an open neighbourhood of u.
Varying now u, we find uy,...,u, such that E = (JW,,, and we have

fe = Nfu, € X with fe(t) —e < f(r) < fe(r) +¢€ forevery r in E. O

Lemma 1.2.8 Let E be a compact Hausdorff topological space. If A is a closed
subalgebra of C® (E), then A is stable under the lattice operations fV g and f N\ g in
CR(E).

Proof For & > 0 consider the function 4 : R — R given by h(x) = £2 + x2. Note that
for every x € R we have

h(x) =1+ +(* = 1) = (1+&*)(1 +u(x)),

. . . 21
where u : R — R is the function given by u(x) = )f 2

we have |u(x)| < Hlj < 1, it follows that the power series expansion of h(x)%
at 0 converges uniformly on [—1,1]. We can thus find a polynomial p such that
(&2 —I—xz)% — p(x)| < € for every x in [—1,1], in particular, p(0) < 2&. Set
q(x) = p(x) — p(0). Note that for every x € R we have 0 < (&2 —|—x2)% — |x| <&, and
consequently |g(x) — |x|| < € +2¢e + € =4e. Since ¢(0) = 0, we know that ¢(f) € A
for every f in A. Now take f in A with || f|| < 1. Then

. Since, for each x € [—1,1]

1a(f) = f]1] < 4e.

Since ¢ is arbitrary and A is closed in C®(E), it follows that |f| € A for every f
inA. As

fve=3(f+g+|f—gl) and fAg=3(f+g—|f gl
we immediately have the desired conclusions. O

§1.2.9 Let A= CC(E), where E is a compact Hausdorff topological space. Then
H(A,*) is a closed real subalgebra of A isomorphic to C®(E). Therefore, we can
write CC(E) = CR(E) @ iCR(E).

Theorem 1.2.10 (Stone—Weierstrass) Let E be a compact Hausdorff topological
space and let A be a %-subalgebra of C© (E) containing the constant functions and
separating the points of E. Then A is dense in C®(E).
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Proof The closure A of A in C(E) is still a x-subalgebra of C®(E), so the set
H (A, %) of real-valued functions from A is a closed subalgebra of C®(E). By Lemma
1.2.8 it is therefore stable under the lattice operations £V g and f A g in C® (E).Lett
and 1, be in E with 1] # t,. By assumption, there is g € A such that g(¢1) # g(#2). Since
the real and imaginary parts of g belong to H(A,*) we see that H(A,x) separates
points in E and contains the constant real-valued functions. Given ¢, 3 real numbers,
we note that there exists & € H(A, *) such that h(¢;) = o and h(t;) = B. Indeed, there
exists g € H(A, *) such that g(¢;) # g(t2), and then the function

o«—B o—B
h=——"—"—g+ (Ot—g f ) 1
&)~ 8(0) i) —s) 4
lies in H(A,*) and satisfies A(t;) = o and h(ty) = B. Given f € CR(E) we can
therefore choose h in H(A, x) such that h(t;) = f(t;) and h(t;) = f(t). Thus H(A, *)
fulfills the assumptions in Lemma 1.2.7, whence f € H(A,x*). Consequently,
CY(E)=H(A, %) +iH(A,*) = A. O

Definition 1.2.11 Let A be a C*-algebra. An element a € A is said to be self-adjoint
(respectively, normal) if a* = a (respectively, a*a = aa*). We note that self-adjoint
elements are normal, and that, for a € A, a*a is self-adjoint.

Lemma 1.2.12 Let A be a C*-algebra, and let a be a normal element of A. Then
t(a) = [lal.

Proof We have

la®|[* = ||(a*)*a’|| = ||a*a" aal| = ||a*aa"al|
= ||(a*a)*(a"a)|| = [|a"al* = ||al|*,
and hence ||a?| = ||a||. Since, for n € N, a" is also a normal element of A, the last

equality becomes the starting point for an induction argument showing that

|a*'|| = ||a||*" for every n € N.
Therefore, by Corollary 1.1.18(i), we have

— 1 T 2

(@) = lim [}a" ||+ = lim [l ]| = |al]. O
Proposition 1.2.13  Let A be a C*-algebra, and let a be in A. Then
lall = /x(a*a).

Proof By Lemma 1.2.12 applied to the self-adjoint element a*a, we have

2
t(a*a) = [la"al| = [|a]|”. O

Corollary 1.2.14 Let A and B be C*-algebras, and let ® : A — B be an algebra
x-homomorphism. Then @ is contractive. As a consequence, if ® is bijective, then ®
is an isometry.

Proof Letabein A. By Proposition 1.2.13 and Corollary 1.1.114, we have
1©(a)|* = ¢(®(a) ®(a)) = ¢(P(a"a)) < t(a"a) = |a]*. O
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Exercise 1.2.15 Let a be an element in the C*-algebra M, (C) of all 2 x 2 complex
matrices. Prove that

2)lal| = (t+28) + (1—28)2, 1.2.1)
where T = trace(a*a) and 6 = |det(a)|.

r

. . . . z .
Solution Given a self-adjoint matrix h = ( ) where r,s are real and z is
s

complex, it is enough to compute the roots of the characteristic polynomial of A,
and apply Theorem 1.1.46 and Proposition 1.2.13, to get

1
20l = lr+sl+[(r—s)* + 4[]
Now (1.2.1) follows by taking & = a*a after elementary arrangements. L]

Lemma 1.2.16 Let A be a unital associative algebra over K, and let a be in Tnv(A).
Then

sp(A,a” ') = {)fl 1A €sp(A,a)}.

Proof Tt is enough to show that, for A € K\{0}, the condition a — A1 € Inv(A)
implies that a=! — A2 ~'1 € Inv(A). But this follows from the fact that

a'—2"M=-2"ta Y a—211). O

Exercise 1.2.17 Let A be a complete normed unital associative x-algebra over K
whose involution is continuous. Prove that exp(a)* = exp(a*) for every a € A.

§1.2.18 Let A be a unital C*-algebra. Then A is norm-unital. Indeed, we have 1* =

1,50 ||1]| = ||1%1]| = ||1]|>. An element u in A is said to be unitary if u*u = uu* = 1,
i.e. if u € Inv(A) and u~! = u*. If u is a unitary element of A, then ||u|| = 1, since
||u||? = ||u*u| = ||1]| = 1. As a consequence of Exercises 1.1.30 and 1.2.17, exp(ih)

is unitary for every self-adjoint element 4 in A.

Exercise 1.2.19 Let H be a complex Hilbert space. Use the polarization law to
realize that linear isometries from H to itself are precisely those operators u € BL(H)
such that u*u = Iy. Conclude then that surjective linear isometries from H to itself
are nothing other than unitary elements of BL(H).

Proposition 1.2.20 Let A be a unital C*-algebra. Then
(1) sp(A,u) C Sc, for every unitary element u of A.
(ii) sp(A,h) C R, for every self-adjoint element h of A.

Proof Let u be a unitary element of A, and let A be in sp(A,u). Since |ju|| =1, it
follows from Proposition 1.1.40 that |A| < 1. By Lemma 1.2.16, A~! € sp(A,u*).
Since u* is also unitary, it follows that |[A~!| < 1, and so we conclude that |1 = 1.

Let /& be a self-adjoint element of A, and let o2+ if3 be in sp(A, ), where o, B € R.
Thus, for any ¥ € R we have o+ (8 + ¥) € sp(A,h+iyl). By Proposition 1.1.40 we
have |ot +i(B +7)| < ||k +iy1]], and hence

o +(B+7)° = lo+i(B+ ) <|lh+i|]* = || (h+iy1)* (h+iy1))|
= [(h—iy)(h+iy)| = W + 1] < [|h]]* + 7.
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Subtracting ¥*> on both sides we are left with o> 4+ B2 +2B7v < ||A|*. Since this is
satisfied for all y € R we conclude 8 = 0. O

Exercise 1.2.21 Let X and Y be complex vector spaces endowed with conjugate-
linear involutions *, and let ® : X — Y be a linear mapping. Prove that @ is a
«-mapping if and only if ®(H (X, x)) C H(Y,*).

Combining Proposition 1.2.20(ii) with Corollary 1.1.67, we deduce the following
consequence of Exercise 1.2.21.

Corollary 1.2.22 Let A be a unital C*-algebra, and let ¢ be a character on A. Then
¢ is a x-mapping.

Now we prove the unital version of Theorem 1.2.4.

Theorem 1.2.23 Let A be a unital commutative C*-algebra. Then the Gelfand
representation is an isometric algebra x-isomorphism from A onto CC(A), where
A stands for the carrier space of A.

Proof By Theorem 1.1.73, the Gelfand representation G : A — C®(A) is a contract-
ive unit-preserving algebra homomorphism whose range separates the points of A,
and the equality ||G(a)|| = t(a) holds for every a € A. This equality, together with
Lemma 1.2.12, gives us that G is an isometry. On the other hand, by Corollary 1.2.22,
we have that

G(a*)(9) = ¢(a”) = ¢(a) = G(a) () = G(a)"(9)

for all a € A and ¢ € A. Thus G is a x-mapping. It follows that G(A) is a closed
x-subalgebra of CC(A) containing the constant functions and separating the points of
A. The Stone—Weierstrass theorem implies, therefore, that G(A) = CC(A). O

Now we are going to take advantage, in the non-commutative case, of the commu-
tative Gelfand—Naimark theorem just proved. In relation to the next result, we note
that, in view of Example 1.1.28, unital closed subalgebras of unital C*-algebras need
not be full subalgebras.

Proposition 1.2.24 Let A be a unital C*-algebra. Then we have:

(i) Each non-invertible element of A is a one-sided topological divisor of zero in A.
(i1) Each closed x-subalgebra of A containing 1 is a full subalgebra of A.

Proof LetxbeinA\Inv(A). Then, by Lemma 1.1.99(i), x*x or xx* is not invertible
in A. Assume that x*x is not invertible. Then, by Proposition 1.2.20(ii), x*x lies in
the boundary of Inv(A) relative to A (indeed, x*x = lim(x*x — £1)). Therefore, by
Proposition 1.1.90, there exists a sequence x, of norm-one elements of A such that
x*xx, — 0. Since

x| = [l x| < flexal],

we conclude that xx,, — 0, which shows that x is a left topological divisor of zero in
A. Now assume that xx* is not invertible. Then a similar argument gives that x is a
right topological divisor of zero in A. Thus, in any case, x is a one-sided topological
divisor of zero in A, which concludes the proof of assertion (i).
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Now, let B be any closed *-subalgebra of A containing 1, and let b be an element
of B\ Inv(B). By assertion (i) just proved (with B instead of A), b is a one-sided
topological divisor of zero in B, so it is a one-sided topological divisor of zero in A,
and so, by Exercise 1.1.88(iii), b is not invertible in A. Thus B is a full subalgebra of
A, and the proof of assertion (ii) is concluded. ]

Proposition 1.2.25 Let A be a x-algebra over K, and let S be a non-empty
x-invariant subset of A. Then the subalgebra of A generated by S is x-invariant. If in
addition A is a normed algebra, and if x is continuous, then the closed subalgebra
of A generated by S is x-invariant.

Proof Let B denote the subalgebra of A generated by S. Since S C B, we have
S = 8" C B*, and hence B* is a subalgebra of A containing S. Therefore B C B,
and as a result B = B*. Now assume that in addition A is a normed algebra, and * is
continuous. Then B* C B* = B, and hence B* = B. The proof concludes by invoking
Exercise 1.1.26(ii). L]

Combining Corollary 1.1.79 and Proposition 1.2.25 above, we find the following.

Corollary 1.2.26 Let A be a unital C*-algebra, and let a be a normal element
of A. Then the closed subalgebra of A generated by {1,a,a*} is a commutative
x-subalgebra of A.

§1.2.27 Let E,F be compact Hausdorff topological spaces, andlet 7: E — F be a
continuous mapping. Then the transpose mapping t' : C¢(F) — C®(E), defined by
T'(f) = f ot for every f € CC(F), becomes a unit-preserving contractive algebra
*-homomorphism. Moreover, if T is surjective, T’ is isometric, and if 7 is bijective,
then 7’ is bijective.

Theorem 1.2.28 Let A be a unital C*-algebra, let a be a normal element of A,
and denote by u the inclusion mapping sp(A,a) < C. Then there exists a unique
unit-preserving algebra x-homomorphism ® : CC(sp(A,a)) — A such that ®(u) = a.
Moreover, @ is isometric, and its range coincides with the closed subalgebra of A
generated by {1,a,a*}.

Proof Denote by B the closed subalgebra of A generated by {1,a,a*}. By Corol-
lary 1.2.26, B is a commutative *x-subalgebra of A. Consider the carrier space A of B,
and the Gelfand representation G : B— C(A). By Theorem 1.2.23, G is an isometric
surjective algebra *-homomorphism. On the other hand, by Proposition 1.2.24(ii),
we have sp(A,a) = sp(B,a). By Theorem 1.1.73, the Gelfand transform G(a) of a
is a continuous mapping from A onto sp(a). Moreover, if @;, @, are in A and satisfy
01 (a) = @2(a), then we have @;(a*) = @2(a*) (by Corollary 1.2.22) and ¢;(1) =
(1), and hence @; = @ (by Lemma 1.1.82(i)). Therefore, G(a) is injective, and
consequently a homeomorphism. Now, as noticed in §1.2.27, the homeomorphism
G(a) : A — sp(a) induces an isometric surjective algebra x-homomorphism
G(a)' : C®(sp(a)) — C%(A). Now, set @ :=J o G~ 0 G(a)’, where J stands for the
inclusion mapping B — A. Then, clearly, @ is a unit-preserving isometric algebra
s-homomorphism from CC(sp(a)) to A with ®(CC(sp(a))) = B. Moreover,
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®(u) = G '(G(a)'(u)) = G"'(G(a)) = a. This concludes the proof concerning
the existence, and also proves the last conclusion in the theorem.

Let ¥ : C%(sp(A,a)) — A be any unit-preserving algebra *-homomorphism
with W(u) = a. Then ¥ and @ coincide on {1,u,u*}. Therefore, since ¥ is
automatically continuous (by Corollary 1.2.14), and C®(sp(a)) is generated by
{1,u,u*} as a normed algebra (by the Stone—Weierstrass theorem), it follows from
Lemma 1.1.82(i) that ¥ = ®. ]

§1.2.29 Asin Theorem 1.2.28, let a be a normal element of a unital C*-algebra A,
and let u be the inclusion mapping sp(A,a) < C. The unique unit-preserving algebra
x-homomorphism @ from C®(sp(A,a)) into A such that ®(u) = a will be called the
continuous functional calculus at a. If p is a complex polynomial (regarded as a
complex-valued continuous function on sp(A,«)), then we have ®(p) = p(a) in the
sense of §1.1.27. This is one of the reasons why, for f € C®(sp(A,a)), the symbol
®(f) is usually replaced with f(a). Note that, since f(a) lies in a commutative
x-subalgebra, f(a) is a normal element of A.

Corollary 1.2.30 Let E be a compact Hausdorff topological space, and let a be in
CC(E). Then

() f(a) = foaandsp(f(a)) = f(sp(a)) for every f € C*(sp(a)).
(ii) (g0f)(a)=g(f(a)) forall f € C%(sp(a)) and g € C*(sp(f(a))).

Proof We begin by noticing that, by Example 1.1.32(c),
sp(CE(E),a) = a(E),

and hence we can consider the mapping f — f oa from C®(sp(a)) to C®(E), which
becomes an isometric unit-preserving algebra x-homomorphism taking u to a. Now,
by Theorem 1.2.28, we find that f(a) = foa for every f € C®(sp(a)). As a con-
sequence, for each f € C®(sp(a)) we see that

sp(f(a)) = (foa)(E) = f(a(E)) = f(sp(a)).

Thus assertion (i) is proved.

Let f be in C(sp(a)), and let g be in CC(sp(f(a))). It follows from assertion (i)
that (go f)(a) = (gof)oa=go(foa) =g(f(a)), and the proof of assertion (ii) is
complete. O

Corollary 1.2.31 Let A be a unital C*-algebra, and let a be in A. Then we have:

(1) a is unitary if and only if a is normal and sp(A,a) C Sc.
(i) a is self-adjoint if and only if a is normal and sp(A,a) C R.

Proof The ‘only if” parts were proved in Proposition 1.2.20. In order to prove the
‘if” parts, suppose that a is normal, and consider the continuous functional calculus
at a. If sp(A,a) C Sc, then u is a unitary element in C®(sp(A,a)), and hence a =
®(u) is a unitary element in A. If sp(A,a) C R, then u is a self-adjoint element in
C®(sp(A,a)), and hence a = ®(u) is a self-adjoint element in A. O
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Proposition 1.2.32 Let A and B be unital C*-algebras, let a be a normal element
of A, and let ¢ : A — B be a unit-preserving algebra x-homomorphism. Then ¢ (a) is
a normal element of B, sp(B,¢(a)) C sp(A,a), and we have ¢ (f(a)) = f(¢(a)) for
every f € CC(sp(A,a)).

Proof The fact that ¢ (a) is a normal element of B is clear, whereas the inclusion
sp(B,¢(a)) C sp(A,a) follows from Lemma 1.1.34(ii). Now the mapping f —
fisp(B.o(a)) from CC(sp(A,a)) to CC(sp(B,¢(a))) becomes a contractive unit-
preserving algebra x-homomorphism. Since ¢ is also contractive (by Corollary
1.2.14), it follows from Theorem 1.2.28 that the mappings f — ¢(f(a)) and
f — f(¢(a)) become contractive unit-preserving algebra x-homomorphisms from
CC(sp(A,a)) to B taking u to ¢ (a). Since C®(sp(A,a)) is generated by {1,u,u*} as a
normed algebra (by the Stone—Weierstrass theorem), it follows from Lemma 1.1.82(i)
that ¢ (f(a)) = f(¢(a)) for every f € CC(sp(A,a)). O

Corollary 1.2.33 Let A be unital C*-algebra, let a be a normal element of A, and
let B be any closed *-subalgebra of A containing {1,a}. Then we have sp(A,a) =
sp(B,a), and the continuous functional calculuses at a, relative to A and B, coincide.

Proof The equality sp(A,a) = sp(B,a) follows from Proposition 1.2.24(ii). Now,
keeping in mind that the inclusion B — A becomes a unit-preserving algebra
x-homomorphism, the remaining part of the conclusion follows by invoking Propos-
ition 1.2.32. O

Proposition 1.2.34 Let a be a normal element of a unital C*-algebra A, and let
f € CC(sp(a)). Then sp(f(a)) = f(sp(a)) (‘spectral mapping theorem’). Moreover,
if § € C(sp(f(a))). then (g0 f)(a) = g(f(a)).

Proof Let B stand for the closed subalgebra of A generated by {1,a,a*}. By Cor-
ollary 1.2.26, B is a commutative *-subalgebra of A, so that, by the commutative
Gelfand—Naimark theorem (Theorem 1.2.23), the Gelfand representation is an iso-
metric algebra *-isomorphism from B onto C(A), where A stands for the carrier
space of B. Now, the result follows from Corollaries 1.2.30 and 1.2.33. O

Let A be a unital C*-algebra. An element a of A is said to be positive if a is self-
adjoint and sp(a) C R(’; . We write a > 0 to mean that a is positive, and denote by
AT the set of positive elements of A. We note that, as a consequence of Propos-
ition 1.2.24(ii), if B is a closed *-subalgebra of A containing the unit of A, then BT =
AT N B. In the case that A = CC(E), where E is a compact Hausdorff topological
space, A" consists precisely of those functions f € A such that f(E) C R(J)r . Recall
that each real-valued continuous function 4 on E can be written in a unique way as a
difference of two positive continuous functions 4 = h™ —h~ such that A"h~ = 0.

As a first application of the continuous functional calculus we have the following
result.

Corollary 1.2.35 If a is a self-adjoint element in a unital C*-algebra A, then there
are unique positive elements u,v in A such that a = u—v and uv =vu = Q.

Proof Recall that sp(a) C R by Proposition 1.2.20(ii). If we consider the real-
valued continuous functions f and g defined on R by f(z) := 1(|t| +) and



48 Foundations

g(t) :== 3(|t| —1), then fg =0 and f(r) —g(t) =t for every t € R. It follows
that u = f(a) and v = g(a) have the asserted properties.
To show the uniqueness, let u#;, v be positive elements in A such that
a=u;—vyand ujvy =viu; =0.

Let C be the closed subalgebra of A generated by the set {1,u,v;}. It follows
from Corollary 1.1.79 and Proposition 1.2.25 that C is a commutative s-subalgebra
of A. Since a € C, it follows that the closed subalgebra of A (say B) generated
by {1,a} is contained in C, and hence u,v € C by Theorem 1.2.28. On the other
hand, by Theorem 1.2.23, the Gelfand representation G : C — CT(A¢) is an alge-
bra x-isomorphism. The uniqueness now follows from the uniqueness statement for

C*(Ac). O

The decomposition @ = u — v of a self-adjoint element a given in Corollary 1.2.35
is sometimes called the orthogonal decomposition of a. The elements u and v are
called the positive and negative parts of a and, according to §1.2.29, are denoted by
a™ and a™, respectively. Note that |a| = at +a™.

Let A = C®(E), where E is a compact Hausdorff topological space. If f € A is
positive, and if n is a natural number, then f has a unique positive nth root in A,

namely the function r — {/f(1).

Corollary 1.2.36 If a is a positive element in a unital C*-algebra A, and if n € N,
then there is a unique positive element b in A such that a = b".

Proof If we consider the real-valued continuous function f defined on Rg by
f(t) ==/, then f(t)" =1 for every t € R}. It follows from Proposition 1.2.34
that b = f(a) is positive and " = a. To show the uniqueness, assume that ¢
is a positive element in A such that a = ¢", and consider the closed subalgebra
(say C) of A generated by the set {1,c}. It follows from Corollary 1.2.26 that C
is a x-invariant commutative subalgebra of A. Since a = ¢"* € C, it follows that the
closed subalgebra of A (say B) generated by {1,a} is contained in C, and hence
b € C by Theorem 1.2.28. Finally, keeping in mind that the Gelfand representation
G : C — C®(A¢) is an algebra *-isomorphism (by Theorem 1.2.23), the uniqueness
now follows from the uniqueness statement for C©(Ac). O

If a is a positive element in a unital C*-algebra A, then the unique element b
obtained in Corollary 1.2.36 is called the positive nth root of a and, according to
§1.2.29, is denoted by an.

§1.2.37 If h is a self-adjoint element of the closed unit ball of a unital C*-algebra
A, then1—h%isa positive element of A, and the element u = h+iv/1 — h? is unitary
and satisfies h = %(u + u*). Therefore, the unitaries linearly span A, a result that is
frequently useful.

Let A = C®(E), where E is a compact Hausdorff topological space. The positive
condition for a real-valued function f € A can also be expressed in terms of the norm.
Indeed, given ¢ € R with || f|| < 7, we have that

f is positive if and only if || f—1| <1.

Proposition 1.2.38 Let A be a unital C*-algebra, let a be a self-adjoint element in
A, and let t be a real number such that ||a|| <t. Then a > 0 if and only if |la—t1|| < 1.
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Proof By considering the closed subalgebra of A generated by the set {1,a}, and
keeping in mind Corollary 1.2.26, we may suppose that A = CC(E), for a suitable
compact Hausdorff topological space. The result now follows from the comment
immediately before the statement of the present proposition. O

§1.2.39 Let X be a real vector space, and let C be a non-empty subset of X. We
say that C is a cone in X if Ax € C whenever x € C and A > 0. If moreover x,y € C
implies x+y € C, then we say that C is a convex cone. If C is a cone, and if it contains
no entire straight line (i.e. CN(—C) = 0), then C is said to be a proper cone. When
a proper convex cone C is given in X, we make X a partially ordered set by defining
x <ytomean y—x € C. The relation < is translation-invariant; that is, x < y implies
x4z < y+zforevery z € X. Also, x < yimplies tx <ty forevery t € RY, and x <y
if and only if —y < —x. Moreover, if:

X is in fact a normed space;
the proper convex cone C is closed in X;
X, and y, are sequences in X converging to x and y, respectively; and

x, <y, forevery n € N;
then x < y.

Proposition 1.2.40 If A is a unital C*-algebra, then A" is a closed proper convex
cone in H(A, ).

Proof That A" is a closed subset of A follows immediately from the continuity of
the involution and Proposition 1.2.38. It is obvious that if a € AT and 4 > 0, then
Aa € A'.Leta,b € AT. By Proposition 1.2.38,

[la—lal[1]] < [la]| and [|b— |[p[[]] < |1,
SO

lla+b = (llall + |6l < lla = lalI L]+ {16 = [[6][A]] < fla]l + |5

By Proposition 1.2.38 again, a+b > 0. Finally if a € A" N (—A"), then sp(a) C R
and —sp(a) C R, hence sp(a) = 0. Since a is self-adjoint, Lemma 1.2.12 applies,
so that ||a]| = t(a) = 0, and hence a = 0. O

§1.2.41 According to the above proposition and §1.2.39, if A is a unital C*-algebra,
then H (A, *) will be seen without notice as a partially ordered set.

As pointed out in §1.1.36, if A is an associative algebra over K, then the mapping
a — L, from A to L(A) becomes an algebra homomorphism. In the case of C*-
algebras, we have the following additional information.

Lemma 1.2.42 Let A be a C*-algebra. Then the mapping a — L, from A to BL(A)
becomes an isometry. As a consequence, the set

B={AMy+L;: A eC,acA}
is a closed subalgebra of BL(A).
Proof Fora € A, we have

2
lall” = llaa™|| = ILa(a®) || < [IZalllla™[| = | Lallllall,
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and hence ||a|| = ||L,||. Now 2 is the sum of the closed subspace {L,:a € A} of
BL(A) and the finite-dimensional subspace Cly, and therefore it is closed in BL(A).
O

§1.2.43 Let B,C be C*-algebras. Then the algebra direct product B x C be-
comes a C*-algebra under the involution defined coordinate-wise, and the norm
1B, )| := max{||bl], | }-

Proposition 1.2.44 Let A be a C*-algebra. Then there are a unique involution and
a unique norm on the unital extension Ay of A extending the involution and the norm
of A and converting Ay into a C*-algebra.

Proof 1t is clear that the unique conjugate-linear algebra involution * on
A; = C1 @ A extending that of A is given by

(Al+a) :=A1+a".

Then the uniqueness of the desired norm on A; follows from Corollary 1.2.14. To
prove the existence of the desired norm on A;, we distinguish two cases depending
on whether or not A has a unit.

First assume that A has a unit 1. Then A and C(1 — 1) are ideals of A; such that
A; =A®C(1—1), and therefore, since

(@+A(1-1))"=a"+2(1-1),
it is enough to apply §§1.1.105 and 1.2.43 to realize that the desired extended norm
on Aj is given by

lla+2A (1 =1 := max{]|all, [A[}.

As a result, the unique C*-algebra structure on Ay extending that of A is given by the
involution in the first paragraph of the proof and the norm

AL +al| := max{||a+ A1]|,|A|}.

Now assume that A does not have a unit. Then the mapping A1 +a — Al + L,
from Ay to BL(A) becomes an injective algebra homomorphism, and hence, applying
Lemma 1.2.42, we realize that

AL +al == | ALy + La|| (12.2)

defines a complete algebra norm on A; extending the norm on A. Moreover, given
Al+a€ Ay, andsetting T := Ay + L, and T* := Ay + L+, for every x € A we have

ITC)? = [[(Ax+ax)* (Ax+ax) || = [ (T*T) ()| < [T T[],
so ||T||> < ||T*T|, and so, invoking (1.2.2),
M +a? < |(A1+a)* (A1 +a)|. 0

From now on, given a C*-algebra A, the unital extension A; of A will be seen
without notice as a C*-algebra containing A as a closed *-subalgebra, as shown by
Proposition 1.2.44.

Now, we prove that complex associative and commutative algebras have at most
one C*-algebra structure.
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Proposition 1.2.45 Let A and B be commutative C*-algebras, and let ® : A — B be
a bijective algebra homomorphism. Then ® preserves involutions and norms.

Proof By passing to C*-algebra unital extensions if necessary, we may assume that
A and B are unital. Moreover, by Theorem 1.2.23, we may also assume that A =
CC(E) and B = CC(F) for suitable compact Hausdorff topological spaces E and F.
Then the result follows straightforwardly from Corollary 1.1.77. O

Given an associative algebra A and a € A, we know that 0 € sp(Ay,a).

Lemma 1.2.46 Let A be a C*-algebra, let a be a normal element of A, let f be in
CC(sp(Ay1,a)), and let f(a) be the element of Ay given by the continuous functional
calculus (see §1.2.29). Then f(a) lies in A if and only if f(0) = 0.

Proof Thinking about the unit-preserving algebra s-homomorphism ¢ from A; =
C1®A to C defined by ¢ (A1 +x) := A, the result follows from Proposition 1.2.32.
O

§1.2.47 Let A be a non-unital C*-algebra. Then H (A, *) will be seen without notice
as a partially ordered set relative to the order induced by that of the C*-algebra
unital extension of A (cf. §1.2.41). Now, with Lemma 1.2.46 in mind, the following
proposition follows from Corollaries 1.2.35 and 1.2.36.

Proposition 1.2.48 Let A be a C*-algebra. We have:

(1) If a is a self-adjoint element of A, then there are unique positive elements u,v in
A such that a = u—v and uv = vu = 0.

(i) Ifais a positive element of A, and if n € N, then there is a unique positive element
b in A such that a = b".

Proposition 1.2.49 Let A be a C*-algebra, and let e be a non-self-adjoint idem-
potent in A. Then sp(Ay,i(e — e*)) is a symmetric subset of R, and the mapping A —
1+ A? becomes a surjection from sp(Ay,i(e —e*))\ {0} onto sp(Ay,e*e)\ {0,1}.
Consequently, we have:

@ el =1+ le—e*||.
(i) {0,]le[*}  sp(Az,ee) S {O}U[L, [le]].
Proof A straightforward computation shows that, for A € C, we have
A1+ 22)[i(e—e*) — A1) = (¢ —idl)[e*e — (1+A>)1](e+iAl).  (1.2.3)

Now, let A be in C\ {0,i,—i}. Then we have A (1 + A?) # 0. Moreover, since
0 and 1 are the unique possible numbers in the spectrum of an idempotent, both
e*—il1l and e +iA1 are invertible in Ay . It follows from (1.2.3) that i(e — ¢*) — 11
is invertible in A; if and only if so is e*e — (1 + A?)1. Therefore, since

sp(A1,i(e—e*)) CR

(by Proposition 1.2.20(ii)), e*e — (1 — p)1 is invertible in A; for every p € R\ {1}.
Now, keeping in mind that sp(Ay,e*e) C R, we easily derive that sp(Ay,i(e —e*)) is
symmetric (relative to zero), and that the mapping A — 1+ A? is a surjection from
sp(Ay,i(e—e*))\{0} onto sp(Ay,e*e)\ {0, 1}. The consequences, listed in the state-
ment of the present proposition, follow from Lemma 1.2.12 and Theorem 1.1.46. [
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As a straightforward consequence, we get the following.

Corollary 1.2.50 A nonzero idempotent e in a C*-algebra is self-adjoint if (and
only if) |le = 1.

Proposition 1.2.51 Let A be a commutative C*-algebra. Then for every algebra
norm || - || on A we have || - | < |- -

Proof By Propositions 1.1.107 and 1.2.44, we may assume that A is unital. Let
[I-1ll be an algebra norm on A. Let A stand for the carrier space of A (cf. Propos-
ition 1.1.71), let A} denote the subset of A consisting of all ||| - ||-continuous charac-
ters on A, let B stand for the completion of (A, || -|||), and let Ag denote the carrier
space of B. We note that, by Corollary 1.1.64, the mapping y — |, becomes a bijec-
tion from Ag to Ay, and that, since A = cC (A) in a natural way (cf. Theorem 1.2.23),
complex-valued continuous functions on A can be seen as elements of B.

We claim that A; is dense in A. Assume, to derive a contradiction, that A; g A.
Then there is an open subset Q of A such that Q C A\ A, together with real-valued
continuous functions x,y on A such that x(¢) = 1 if ¢ € A, x(¢) =0 if ¢ € Q,
y#0,and y(¢) =0if ¢ € A\ Q. Since xy =0, and y # 0, x cannot be invertible in
B. Therefore, by Proposition 1.1.68(ii), there exists 11 € Ag such that 11(x) = 0, and
hence ¢ := 1|4 lies in Ay and satisfies x(¢o) = 0, which is a contradiction.

Now that the claim has been proved, it is enough to apply Proposition 1.1.68(iii)
to realize that for every a € A we have

llall = ). (a) = sup |y(a)| = sup |a(¢)| = supla(9)| = a]| O
YEAR OEA

PEA

Now we can refine Corollary 1.2.14 as follows.

Corollary 1.2.52 Let A and B be C*-algebras, and let ® : A — B be an algebra
x-homomorphism. Then ® is contractive. Moreover, if @ is injective, then @ is an
isometry.

Proof The first conclusion follows from Corollary 1.2.14. Assume that @ is inject-
ive, and let a be in A. Then ||®(-)|| is an algebra norm on the closed subalgebra
of A generated by a*a, which is a commutative C*-algebra. Therefore, by Propos-
ition 1.2.51, we have

lal|* = lla*a]| < [®@(a"a)|| = [|@(a)*P(a)|| = [|®(a)||*.

Hence ||®(a)|| = ||a|| because of the first conclusion. O

1.2.2 Historical notes and comments

The material in this section has been elaborated mainly from the books of Berberian
[689], Bonsall and Duncan [696], Bourbaki [697], Choquet [709], Dixmier [724],
Helemskii [742], Murphy [781], and Pedersen [789]. Other sources are quoted as
appropriate.

The original abstract characterization of closed self-adjoint subalgebras of
bounded linear operators on complex Hilbert spaces, given by Gelfand and Naimark
[285], has been refined with time, giving rise to the current notion of a C*-algebra,



1.3 The holomorphic functional calculus 53

as defined in §1.2.2. The reader is referred to Chapter 1 of Doran—Belfi [725] for a
detailed account of how the Gelfand—Naimark axioms were successively weakened,
and of the several authors who contributed to this process.

Theorem 1.2.10 becomes the unital version of the Stone—Weierstrass theorem.
A unit-free version follows almost straightforwardly. Indeed, we have the following.

Corollary 1.2.53 Let E be a locally compact Hausdorff topological space, and let
A be a x-subalgebra of Cg: (E) satisfying

(i) for eacht € E there is f € A such that f(t) # 0;
(i) A separates the points of E.

Then A is dense in C§ (E).

Proof Let E. be the one point compactification of E and identify Cg (E) with
{fe CE(E.) : f(o) :o}.

Then A 4 C1 is a s-subalgebra of CC (E.) and separates points not only in E but
in E.. Indeed, if ¢ € E, there is by assumption a g in A with g(r) # 0, whereas
g(s0) = 0 since g € C®(E..). By Theorem 1.2.10, for each f € CS(E) and € > 0,
there are g € A and A € C such that ||f — (g+A1)|| < §. As f(e0) = g(e0) =0, we
see that [A| < §, whence || f —g|| < €. O

Exercise 1.2.15 is taken from the Duncan—Taylor paper [218].

Proposition 1.2.49 is taken from the Becerra—Rodriguez paper [77], where some
previous ideas on p. 28 of [798] are exploited. Corollary 1.2.50 is folklore. Indeed,
it follows easily from the non-commutative Gelfand—Naimark theorem, stated in
Theorem 1.2.3 (see for example [711, Proposition I1.3.3]).

Proposition 1.2.51 is due to Kaplansky [375] and is included in several books (see
for example [806, Theorem 1.2.4] and [810, Theorem 10.1]). A full generalization
of Kaplansky’s result was later proved by Rickart [502], who incorporated it in his
book [795, Corollary 3.7.7].

1.3 The holomorphic functional calculus

Introduction The holomorphic functional calculus in a single element of a com-
plete normed unital associative complex algebra is one of the most useful tools in
spectral theory. After developing the algebraic forerunners in Subsection 1.3.1, Sub-
section 1.3.2 provides a detailed exposition of the holomorphic functional calculus,
and indicates some applications. Deeper applications will be discussed later (see, for
example, Subsection 3.4.3).

1.3.1 The polynomial and rational functional calculuses
As stated in §1.1.27, given an element a of a unital associative algebra A over K, the

mapping

n n
p(x) = z opxt — pla) = z od®
k=0 k=0
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is a unit-preserving algebra homomorphism from K[x] onto the subalgebra of A gen-
erated by 1 and a. This homomorphism is called the polynomial functional calculus
at a. As a first outstanding application of this functional calculus, we are going to
prove Theorem 1.3.2 below.

Two idempotents u, v in an algebra are said to be orthogonal if uv = vu = 0.

Lemma 1.3.1 Let A be a unital associative algebra over K, let o, ..., 0, be in K,
let ey, ... e, be pairwise orthogonal idempotents in A such that 1 =Y} _, ey, and set
a=:Y}_, oger. Then for every q € K[x| we have q(a) = X}_, g(oy)ex.

Proof The assumptions become the cases m = 0, 1 of the equality
a"=3Yr_oq'ex (meNU{0}),

which is then proved by an easy induction. Now the result follows straightforwardly.
O

Theorem 1.3.2 Let A be a unital associative algebra over K, and let a be in A.
Then the following conditions are equivalent:

(1) a is a linear combination of pairwise orthogonal idempotents.

(i1) There exist pairwise different numbers o, ..., 0, € K such that
n
H (a - OCkl) =0.
k=1
Moreover, if oy, ..., oy are in K in such a way that TT;_, (a — og1) = 0, then:
(iii) There are unique pairwise orthogonal idempotents ey, ... e, € A such that

1=3)_ e and a=3}_| ogey.
(iv) The idempotents ey can be explicitly computed by means of the equality
_ [T (a — o1)
Iz (04 — 1))
Proof (1)=-(ii) Assume that a is a linear combination of pairwise orthogonal idem-
potents ey, ..., ey, say a = Y | oke; for suitable oy, ..., 0, € K. By setting

€k

Opt1:=0 and e,p1:=1-37" | e,
e1,...,em,enm+1 become pairwise orthogonal idempotents such that
_ +1 _ +1
1= z;:lzl e, and a = 221:1 O €.

Let n be the minimum natural number such that there are o1, ..., ¢, € K and pairwise
orthogonal idempotents ey, ..., e, in A such that

1:222161( and a:zzzl O €.

Then «y,...,q, are pairwise different. Indeed, if for example the equality oy = o
were true, then a would be a linear combination of the n — 1 pairwise orthogonal
idempotents e; + e2,e3,...,¢e,, the sum of which is 1, contrarily to the choice of n.
Now let p be in K[x] defined by p(x) :=IT;_, (X — o). Then, by Lemma 1.3.1, we
have p(a) =0.
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(i1))=-(i) The proof of this implication is contained in the next paragraph.
Suppose that o, ..., o, are in K in such a way that [T;_, (a — ox1) = 0. To prove

. o o l'[j%k(xfocj)
(iii) and (iv), we may assume that n > 2. For k = 1,...,n, set pi(x) := T o—a)”
Then

ko1 pe(x) =1 and 3 ogpr(x) —X

are polynomials of degree < n — 1 which vanish at n different points, namely
O1,...,0, so Y pr(x) =1 and Y}, oxpr(x) = X, hence ¥}, pr(a) = 1 and
i 1 04pr(a) = a. On the other hand, we clearly have (a — og1)pi(a) = 0, so
api(a) = ogpy(a), and so a"pi(a) = o' pr(a) for every non-negative integer m,
hence g(a)pi(a) = q(o4)pi(a) for every g € K[x]. Therefore, by taking g = py, we
obtain that pi(a)?> = pi(a), and hence pi(a) is an idempotent in A. Moreover, for
J # k we clearly have p;(a)pi(a) = 0. Now, by setting e := pi(a), assertion (iii)
has been proved in what concerns the existence, and assertion (iv) becomes clear
by the definition of the polynomials p;. Now it only remains to prove assertion (iii)
in what concerns the uniqueness. Let u1,...,u, be pairwise orthogonal idempotents
in A such that 1 = ¥}, u and a = ¥, oguy. It follows from Lemma 1.3.1 that
q(a) =X}, q(og)ui for every g € K[x]. By taking g = py, we get that e; = uy, as
desired. U

The next proposition becomes the version for operators of Theorem 1.3.2 above.

Proposition 1.3.3  Let X be a vector space over K, and let T be in L(X) such that
ITi_ (T — oy Ix ) = O for pairwise different numbers o.1,. .., 0y € K. Then

X =@®F_ Xy, where X :={xeX :T(x)=oyx} for k=1,...,n. (1.3.1)

Moreover, if for each k we denote by Py the projection from X onto Xy corresponding
to the decomposition (1.3.1), then P, can be explicitly computed by means of the
equality

_ ILa(T - ajlx)

P, = .
Ik (04 — 1))

T2 (T -0l )

Proof Fork=1,...,n,set P, := . Then, according to Theorem 1.3.2,

IT k(0 —atj)
{P. : k=1,...,n} is a family of pairwise orthogonal linear projections on X
satisfying
n
Iy = Z P, (1.3.2)
k=1

and consequently we have X = @j_, P.(X). Therefore, to conclude the proof it is
enough to show that P.(X) = X for every k = 1,...,n. Let k be in {1,...,n}. Since
(T — oylx )P, = 0, we have TP, = o4 P, which implies P, (X) C X;. Conversely, if x
is in X, then (T — o4l )(x) = 0, so Pj(x) = 0 whenever j # k, and so x = P(x) (by
(1.3.2)), hence x € P(X). O

Now we deal with the spectral behaviour of the polynomial functional calculus.
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Proposition 1.3.4 Let A be a unital associative algebra over K, let a be in A, and
let p be in K[x]. We have:

(i) p(sp(A,a)) Csp(A, p(a)).
(ii) If K=Cand if sp(A,a) # 0, then

sp(A, p(a)) = p(sp(A,a)). (1.3.3)

Proof First of all, note that the result holds in the case in which p is constant.
Assume that p is non-constant. Then, for each 4 € K, there exists ¢ € K[x] such that
p(x) —p(A) = (x — A)g(x), and hence

p(a) = p(A)1 = (a—2A1)gq(a) = g(a)(a—A1).

Therefore, if p(A) & sp(A, p(a)), then, by Lemma 1.1.99(ii), we have thata — A1 €
Inv(A), and so A & sp(A,a). Thus assertion (i) follows. Now, assume that K = C and
that sp(A,a) # 0. Let A be in C. Then we can write

p(X)—A =B(x—ou) - (x— )
for some B,04,...,0, € C, B # 0, n € N. Hence
pla)—A1l=Ba—oyl)---(a—oy1).

By Lemma 1.1.99(ii), we find that p(a) — A1 & Inv(A) if and only if at least one of
the factors a — o1 is non-invertible. Thus A € sp(A, p(a)) if and only if p(z) —A =0
for some z € sp(A,a). Hence p(sp(A,a)) = sp(A, p(a)). O

Corollary 1.3.5 Let A be a unital associative algebra over K, and let a be in A
such that there exists a non-constant polynomial p € K[x] with p(a) = 0. Then

sp(A,a) C{A €K:p(A)=0}.
If in addition p is of the minimum possible degree, then
sp(A,a) ={A € K: p(A) =0}.
Proof Since p(a) =0, it follows from Proposition 1.3.4(i) that
p(sp(A,a)) € sp(A, p(a)) = sp(A,0) = {0},

and hence sp(A,a) C {A € K: p(1) = 0}. Let A4,...,A, be the roots of p in K of
multiplicities my,...,m,, and write

P(x) = q(x)(x = A1)"" -+ (x = Aa)™
for some nonzero ¢ € K[x] with no root in K. Then we have
0=pla) =qgla)(a=11)" - (a—A,1)™.

Therefore, if p is of the minimum possible degree, then none of the factors a — A;1
can be invertible, and hence A; € sp(A,a) forevery i € {1,--- ,n}. O

Corollary 1.3.6 Every element in a finite-dimensional unital associative algebra
over K has finite spectrum.
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As usual, we denote by K(x) the field of fractions of the integral domain K[x]. Let
A be a unital associative algebra over KK, and let a be in A. Consider the subset 2, of
K(x) consisting of those fractions which can be written as

p(x) with p,q € K[x] and g(a) € Inv(A).

q(x)
Then, clearly, 2, is a subalgebra of K(x) containing K[x]. Moreover, using the
commutativity of the set {1,a}, together with Proposition 1.1.78 and Lemma 1.1.80,
it is routine to verify that the correspondence

f= § — f(a) := p(a)q(a)”"

becomes a well-defined algebra homomorphism from 2, to A, extending the poly-
nomial functional calculus at a. This extended algebra homomorphism is called the
rational functional calculus at a. We note that the range of the rational functional
calculus at @ becomes a commutative subalgebra of A. We also note that, if f = 2 is
in 2, the fact that g(a) € Inv(A) implies that g(ct) # O for every o € sp(A,a) (by
Proposition 1.3.4(i)), and hence that, for such an o, the symbol f(o) := % has a
sense as an element of K.

Exercise 1.3.7 Let A be a unital associative algebra over K, and let a be in A
such that [T;_, (a — o41) = 0 for pairwise different numbers ..., o, € K. Apply
Lemma 1.3.1 and Theorem 1.3.2 to show that there are unique pairwise orthogonal
idempotents e,...,e, € A such that f(a) =X} _, f(og)ex for every f € K(x) with
poles outside {¢, ..., 0}

Now we prove the so-called spectral mapping theorem for the rational functional
calculus.

Proposition 1.3.8 Let A be a unital associative complex algebra, let a € A with
sp(A,a) # 0, and let f be in 2,. Then

sp(A, f(a)) = f(sp(A,a)).

Proof Write f = g with p,q € C[x] and ¢(a) € Inv(A). Note that, for each z € C
we have

fla)—z1=p(a)g(a)"" —z1 = (p(a) —zq(a))q(a) " = (p—zq)(a)g(a) ",

and hence, by Lemma 1.1.99(ii), f(a) —z1 is invertible in A if and only if so is
(p—zq)(a). Therefore, A € sp(A, f(a)) if and only if 0 € sp(A, (p — A1g)(a)). Now
note that by Proposition 1.3.4 we have

sp(A, (p—Ag)(a)) = (p—Aq)(sp(A,a)) = {p(a) — Aq(a) : & € sp(A,a)},

and that, as we already know, g(o;) # 0 for every o € sp(A,a). As aresult, A belongs
to sp(A, f(a)) if and only if there exists & € sp(A,a) such that 0 = p(a) — Ag(or),
that is to say A = %:f(a). O

Now, invoking Theorem 1.1.41, we get the following.
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Corollary 1.3.9 Let A be a normed unital associative complex algebra, and let
ac€A If fisin 2, then

sp(A, f(a)) = f(sp(A,a)).

In particular, if p is in C[x|, then

sp(A,p(a)) = p(sp(A,a)).

1.3.2 The main results

In a purely algebraic setting, besides the rational functional calculus, little or nothing
can be done. However, if A is a complete normed unital associative complex algebra,
the possibility of introducing convergence processes opens new trails that we will
now explore. For example, if a € A, and if f is an entire function represented by the
power series f(z) = Y, g, 2" (z € C), then the series ¥~ 0, a” is absolutely
convergent, a fact that enables the definition

fla):= i oy d.
n=0

In this way we obtain an algebra homomorphism from the algebra of all entire
functions to A, called the entire functional calculus at a. A more general ap-
proach can be made keeping in mind that, if f is a function analytic on a disc
{z€C:|z—z20| <R} Dsp(A,a), and if f(z) =7 0n(z—20)" is the Taylor expan-
sion of f, then, by Theorem 1.1.46 and Corollary 1.1.18(i), the series
Yo o 0n(a—zol)" converges in A, and its sum is naturally denoted by f(a). The
functional calculus obtained in this way extends the polynomial functional calculus,
but not the rational functional calculus. Indeed, if A = C®(T), and if a(z) := z
for every z € T, then the fraction f(x) := % lies in Z,. Nevertheless, as shown in
Example 1.1.28, f(a) = a~' (in the sense of the rational functional calculus) does
not lie in the closed subalgebra of A generated by {1,a}, and hence cannot be of the
form X5 oty (a —z01)".

Recall that a curve in C is a continuous mapping 7 : [0, 1] — C. Sometimes, when
there is no risk of confusion, we will identify a given curve y with its range ([0, 1]).
The curve 7 is closed if y(0) = y(1). A contour T in C consists of the union of a
finite family {T'y,...,T,} of pairwise disjoint, piecewise continuously differentiable,
closed curves in C. For a contour I' in C and zyp € C\ T, we define the index of z

with respect to I to be
1 dz
Ind Z = — / .
r(z) 27i Jrz—20

Let K be a compact set in C, and let Q be an open set in C containing K. A contour
I surrounds K in Q whenever I' C Q\ K and

1 if zek
Indr(z)_{o if zeC\Q.

The existence of contours surrounding K in € is well known (see, for example [680),
Lemma 3.4.5]).
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For a non-empty open subset Q of C, we denote by 57 (Q) the algebra (under
pointwise operations) of all complex-valued holomorphic functions on €, endowed
with the topology of the uniform convergence on compact sets.

Lemma 1.3.10 Let A be a complete normed unital associative complex algebra, let
a be in A, and let Q be an open set in C containing sp(A,a). We have:

(i) For each f € 5 (Q), and for each contour T surrounding sp(A,a) in Q, the
integral

%/rf(Z)(zl —a)”'dz

is well defined and does not depend on the choice of T.

(ii) If Q1,Q; are open sets in C such that sp(A,a) CQ C Q1 NQy, if fi € H(Q)
and fr € H(Qy) satisfy fijq = faj and if T'1,Ty are contours surrounding
sp(A,a) in Q1,Qy, respectively, then

1
2mi

[ @@ -0t o [ pee-a) -

Proof Let f be in 37 ( ), and let T be a contour surrounding sp(A,a) in Q. By
Proposition 1.1.15, the function f(z)(z1—a)~" is continuous on T, so that the integral

% /Ff(z)(zl —a)dz

exists and defines an element of A. Moreover, the integrand is actually a holomorphic
A-valued function in Q\ sp(A,a) (by Proposition 1.1.40). The Cauchy theorem
implies therefore that the integral is independent of the choice of I', provided only
that T surrounds sp(A, a) in Q.

Now, assume that €,€, are open sets in C such that

sp(A,a) CQC Q1 NQy,

that f; € J2(Qy) and f, € J(Q,) satisfy fi io = f2jq, and that I';, I, are contours
surrounding sp(A, a) in Q;,Q,, respectively. Fix a contour I' surrounding sp(A,a) in
Q. Then, by assertion (i), we have

[ A -a) ldzfz l/f (zl—a)'dz

27i
-] PR ) O

Let A be a complete normed unital associative complex algebra, and let a be
in A. According to the above lemma, if f is a holomorphic function on an open
neighbourhood  of sp(A,a), then we can define f(a) by means of the following
Cauchy integral

ot o
fla) =5 /F £l —a) \dz, (134)

where T is any contour surrounding sp(A,a) in Q.
The definition (1.3.4) coincides with the previous definition for polynomials.
Indeed, we have the following.
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Proposition 1.3.11 Let a be an element of a complete normed unital associative
complex algebra A, and let T be a contour surrounding sp(A,a) in C. If p(x) =

Si_oouxt is in C[x], then
1 / -1 S
— | p)(2l—a) 'dz =Y ayd".
2mi Jr fr)

In particular
1
2mi

/(zl —a) ldz=1.
r
Proof 1Tt is sufficient to show that
1 k —1 k
— 1- dz =
27 /rz (d—a)"dz=a

for every k > 0. Fix R > t(a). By Lemma 1.3.10(i), we have

L7y -1 1 / k -1
— [ Z(z1 — dz=— 1— dz.
2mi ./rz (1 —a)"dz 2mi . \Z\ZRZ (&1 —a)"dz

On the other hand, by Lemma 1.1.20, for each z with |z| > t(a) we have
1 a\' & a

d-—a)y'=-(1-=) =Y —.
i) SE

Since this series converges uniformly on {z € C : |z| = R}, it follows that

o

L/ Kl —a)ldz = D (1/ andz)
27i J|z=r S\ 2mi Jjp=g 2R
-y (1 / d}fl> o
im0 \270 Jjg=r 2T

L/ dz (1 if n=k
2mi Ji=r 2% 0 if n#k,

Since

the result follows.

O

The definition (1.3.4) coincides with the previous definition for fractions. Indeed,

we have the following.

Proposition 1.3.12 Let A be a complete normed unital associative complex alge-
bra, letabe in A, let f be in 2, (say [ = g with p,q € C[x| and q(a) € Inv(A)), and
let T be a contour surrounding sp(A,a) in the open set C\ {z € C: q(z) = 0}. Then

o [ -0 e = plag(a)

Proof Let Aq,...,A, be the roots of g of multiplicities mj, .. .,m,. Then 5 .

expressed as

can be
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for some polynomial p; and complex numbers c; , and as a consequence

mj

pla)gla)™ = pi(a) + 21 Y ciula— A,

k=1
Since pj(a) = %m Jrp1(z)(z1—a)~dz (by Proposition 1.3.11), to conclude the proof
it is enough to show that, for k € Nand A ¢ sp(A,a), we have

1 1
-1 7k:—/7 1—a)'d
(a ) 2mi Jr (z—A)k (1 -a)"dz,
where T is any contour surrounding sp(A,a) in C\ {1 }.
Let A and I be as above. We claim that the function

(Z_lwg(au)—k} (21 —a)!

is (the restriction to C\ (sp(A,a) U{A}) of) a holomorphic function on C\ {1}.
Indeed, by writing

|

{(ZIW‘I - (a_“)k} (z1—a)!

_ ﬁ(a—ll)’k (@21}~ e~ )] (1 —a) ",
and by keeping in mind that
oy = (=) (T A Ty f T
for all commuting x,y € A, we realize that
b
(z=A)*

= (Z_lw(a—xl)*" [(a—u)"— (z—/l)kl} (z1—a)”!

1(a/11)—k} (d—a)™!

1
S
+"'+(a—ll)(z—l)kd—i—(z—l)k’ll} (Zl—a)”
= —(Z_l/l)k (a—2A1)7* [(a—/’Ll)k_l +(a— A1) 2(z=2)

ot (a= AL (= A (= )M

a— 1) *a—z1) [(a—u)k*l +a—A1F2(z-1)

Therefore, the function z — {ﬁl —(a— Al)_k} (z1 —a)~ " is the product of the

holomorphic function in C\ {1} given by

7 — (a—A1)~*

1
(z=A)

by the polynomial function

2= (@A) '+ (@=21) 2 (z—A)+ -+ (@a— A1) (z—A) T+ (- A) L,
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and hence the function
z— {(ll)kl —(a— ll)_k} (z1 —a)~" is holomorphic in C\ {1}.
7—

Now that the claim has been proved, the Cauchy theorem implies that

/r[(z_lk)kl—(a—ll)—k] (Zl—a)_ldzzo

and hence, by Proposition 1.3.11,

o Ryl EUREE Y (R RN

27 Jr
k l

—,/(zl—a)*'dz =(a—A1)7*

=(a—A1) e

and the proof is complete. O
Now, we formulate and prove the main result in this section.

Theorem 1.3.13 Let A be a complete normed unital associative complex algebra,
let a be in A, let Q be an open subset of C containing sp(A,a), and let u stand for
the inclusion mapping Q — C. Then there is a unique continuous unit-preserving
algebra homomorphism f — f(a) from 7 (Q) into A taking u to a. Furthermore, we
have:

i) f(a) = 50 /f )(z1—a) 'dz forevery f € #(Q), where T is any contour
surroundmg sp(A,a) in Q.

(i) f(a 2 cn(a—1z01)" when Q is the open disc of centre 7o and radius R <
n=0

o

and f € A (Q) is represented by the power series z cn(z—20)"

(i) f(a) € {a}* for each f € 7 (Q). "
(iv) sp(A, f(a)) = f(sp(A,a)) for each f € H(Q).
V) If f € (Q) and if Q| is an open set in C such that f(Q) C Qy, then

(g0 f)(a) = g(f(a)) for every g € H ().

Proof According to (1.3.4) and to validate assertion (i), we define

fla) = 5 [ree-a e

where T is a contour surrounding sp(A,a) in Q. The linearity of the mapping f —
f(a) is clear. Moreover, 1 — 1 and u — a, by Proposition 1.3.11. Assume that f;, is
a sequence of holomorphic functions on Q converging uniformly to f on compact
subsets of Q. Then f is a holomorphic function on €2, and f,, converges uniformly
on I'. Therefore we have

2 @) = £ @) | = || [ 1s(@) = £ =) dz]| <MD fu=fr =0,

as n — oo, where M = max{||(z1 —a)~'|| : z € T'}, (T") denotes the length of T" and
|l fu = flir = sup{|f1(z) — f(2)| : z € T}. Since the topology of uniform convergence
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on compact sets of Q is metrizable, we conclude that the mapping f — f(a) is
continuous. It remains to be proved that f — f(a) is multiplicative. Explicitly, if
f,g € 7(Q), and h(z) = f(z)g(z) for every z € Q, it has to be shown that

h(a) = f(a)g(a). (1.3.5)

If f and g are rational functions with poles outside €2, then (1.3.5) holds because of
Proposition 1.3.12. In the general case, by Runge’s theorem, there are sequences f,
and g, of rational functions, with poles outside €2, converging uniformly on compact
subsets of Q to f and g, respectively. Then f,g, converges to / in the same manner,
and (1.3.5) follows from the continuity of the mapping f — f(a).

Assume that @ is a continuous unit-preserving algebra homomorphism from
£ (Q) into A such that ®(u) = a. Then, it is clear that ®(p) = p(a) for every
polynomial p, and that CD(%) = g(a)~! if ¢ is a polynomial without zeros in Q.
Hence @(f) = f(a) for every rational function f with poles outside Q. Now, from
the continuity and the Runge theorem, we obtain ®(f) = f(a) for every f € 5 (Q).

Assume that Q is a disc of centre zo € C and radius R < e and that f € J7(Q)

is represented by the power series 2 cn(z—120)". For each n € N, consider the
n=0

n
polynomial p,(z) = z cx(z—2z0)k. Since p, converges uniformly to f on compact
k=0

subsets of Q, it follows from the first paragraph in the proof and Proposition 1.3.11
that
n =
f(a) =limpa(a) = lim ¥ cx(a—z01) = ¥ eula—z01)",
k=0 n=0
and assertion (ii) is proved.

Assertion (iii) follows directly from the definition since {a} is a closed sub-
algebra of A containing (z1 —a)~! for every z € T (by Proposition 1.1.78(i) and
Lemma 1.1.80).

Now, we will prove assertion (iv). If A ¢ f(sp(A,a)), then

g(x)=(f@-A)"

is a holomorphic function on an open neighbourhood of sp(A,a) contained in Q.
Keeping in mind Lemma 1.3.10(ii1), we see that

(f(a) =A1)g(a) = g(a)(f(a) = A1) =1,

and hence A ¢ sp(A, f(a)). Conversely, if A € f(sp(A,a)), then there exists zo €
sp(A,a) with f(z9) = A, and consequently f(z) — A = (z—z0)g(z) for some function
g € A (Q). Then f(a) — Al = (a—z01)g(a) = g(a)(a —zo01) and, since a — zp1 ¢
Inv(A), Lemma 1.1.99(ii) applies to conclude that f(a) — A1 ¢ Inv(A). Hence 4 €
p(A, f(a).

Finally, in order to prove assertion (v), assume that f € 7 (Q), and that Q; is an
open set in C such that f(Q) C Q. Consider the mapping

d):jf«§20<—>A

defined by ®(g) = (go f)(a). It can immediately be verified that @ is a continuous
unit-preserving algebra homomorphism such that ®(u;) = f(a), where u; stands for
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the inclusion mapping of Q; in C. Note that, by assertion (iv), we have sp(A, f(a)) =
f(sp(A,a)) C Q. Therefore, it follows from the uniqueness of the functional calcu-
lus that @(g) = g(f(a)) for every g € 7(Q), that is to say (go f)(a) = g(f(a)) for
every g € 7 (Q)). O

The algebra homomorphism f — f(a) in Theorem 1.3.13 is called the holo-
morphic functional calculus at a. Assertion (iv) in Theorem 1.3.13 is called the
spectral mapping theorem (for the holomorphic functional calculus).

Exercise 1.3.14 Let A be a complete normed unital associative complex alge-
bra, and let a be in A such that [T}_,(a — o4 1) = 0 for pairwise different numbers
ay,. .., 0, € C. Note that, by Corollary 1.3.5, sp(A4,a) C {ay,..., o, }, and then apply
Exercise 1.3.7, Theorem 1.3.13, and Runge’s theorem to show that there are unique
pairwise orthogonal idempotents ey, ...,e, € A such that f(a) = Y}_, f(ox)ex for
every complex-valued holomorphic function f on some open subset of C containing
{OC],...,OC,,}.

The Cauchy integral formulae for derivatives also hold for the holomorphic func-
tional calculus. Indeed, we have the following.

Proposition 1.3.15 Let A be a complete normed unital associative complex alge-
bra, let a € A, let Q be an open subset of C containing sp(A,a), and let f be in
H(Q). Then, for each natural number k we have

0 = 5 [ @) -0 s

where T is any contour surrounding sp(A,a) in Q.

Proof LetT be a contour surrounding sp(A,a) in Q, and let k € N. Then, since

9@ =5 [P0 w1 —a)

and

(Zl—a) ' = %ﬂ_/(z—w)*k*l(wl—a)*ldw,
1Jr

Fubini’s rule gives

f(k)(a) ! /r[k! /r.f(z)(z—w)kldz} (wl—a)~tdw

~ 2mi Jr | 2mi
k! 1
= 20i [zm/r@—w)"“l(wl—a)‘ldw} f(2)dz
_ R R
- Zm'/rf(z)(Zl a) dz. L

Other consequences of Theorem 1.3.13 are compiled in what follows.

Corollary 1.3.16 Let A, B be complete normed unital associative complex algebras,
let ¢ : A — B be a continuous unit-preserving algebra homomorphism, let a € A, let
Q be an open set in C, and suppose that sp(A,a) C Q. Then sp(B,¢(a)) C Q, and

¢(f(a)) = f(9(a)) for every f € H(Q).
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Proof By Lemma 1.1.34(ii), sp(B, ¢(a)) Csp(A,a), hence sp(B, ¢ (a)) C Q and any
contour surrounding sp(A,a) in Q is a contour surrounding sp(B, ¢ (a)) in Q. Let f
be in 77 (), and let T be a contour surrounding sp(A, a) in Q. By Theorem 1.3.13(i),
we have

0U@) = 5 [0 —a) )z

1 -
— o [ F@ 1= 6(a) "z = f(0(a). =
miJr
The following result is easily deduced from Theorems 1.3.13 and 1.2.28.

Fact 1.3.17 Let a be a normal element of a unital C*-algebra A, let L be an open
subset of C such that sp(A,a) C Q, and let f be in 7 (Q). Then f(a) has the same
meaning in both continuous functional calculus and holomorphic functional calculus
at a.

Proof  Since the mappings f — fisp(a,q)» from J(Q) to CC(sp(A,a)), and g —
g(a), from CC(sp(A,a)) to A, are continuous unit-preserving algebra homo-
morphisms, we realize that the mapping f — fispa.q)(@) from JZ(Q) to A is a
continuous unit-preserving algebra homomorphism taking u to a. L]

As a consequence of Corollary 1.2.30 and Fact 1.3.17 we have the following.

Corollary 1.3.18 Let E be a compact Hausdorff topological space, let a € C© (E),
let Q be an open set in C, and suppose that a(E) C Q. Then f(a) = foa for every
fent(Q).

Applying Corollaries 1.3.16 and 1.3.18, we obtain the next result.

Corollary 1.3.19 Let A be a complete normed unital associative and commutative
complex algebra, with carrier space A and Gelfand representation G : A — CC(A),
let a € A, let Q be an open set in C, and suppose that sp(A,a) C Q. Then G(f(a)) =

foG(a) for every f € 7 (Q).

Proposition 1.3.20 Let A be a complete normed unital associative complex alge-
bra, let a be in A, and let Q be an open subset of C containing sp(A,a). Then there
exists € > 0 such that sp(A,b) C Q forevery b € Awith ||b—a|| < €.

Proof Suppose on the contrary that for every n there exist x, € A and A, €
sp(A,x,) \ Q such that ||x, —al| < % Then |A,| < ||xq]| < ||la|| + 1, and so there
exists a subsequence of A4, converging to some A € C\ Q. Since x, — 4,1 ¢ Inv(A),
we have a — A1 ¢ Inv(A) by Theorem 1.1.23. Thus A € sp(A,a) and A ¢ Q, which
is a contradiction with the assumption that sp(A,a) is contained in Q. O

§1.1.36 should be kept in mind for the formulation and proof of the next theorem.

Theorem 1.3.21 Let A be a complete normed unital associative complex algebra,
let Q be a non-empty open set in C, and let f be in 7€ (Q). Then

Ag:={x€A:sp(A,x) CQ}
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is a non-empty open subset of A, and the mapping f : x — f(x) from Ag to A
is holomorphic. Moreover, for each a € Aq, the Fréchet derivative of f at a is
represented by the following BL(A)-valued integral

Df( 27Il/f (z1—a)~ 'R(zl a)~ le,

where T is any contour that surrounds sp(A,a) in Q.

Proof Clearly Q1 C Ag, and hence Ag is not empty. Moreover, by Proposition
1.3.20, Ag is an open subset of A. Let a be in A, and let I" be a contour surrounding
sp(A,a) in Q. Since the mapping x — x~! is continuous on Inv(A), the integrand
J(@)L(;1_4)-1R(;1_q)-1 is continuous on ', so that the integral

1

exists and defines an element (say T) of BL(A). Moreover, the integrand is actually
a holomorphic BL(A)-valued function on Q\ sp(A,a) (by Proposition 1.1.40). The
Cauchy theorem implies therefore that the integral is independent of the choice of T,
provided that T surrounds sp(A, a) in Q. For each £ € A, the valuation of elements of
BL(A) at h becomes a continuous linear mapping from BL(A) to A, and hence

1
T(h) = <27Tl /l_f(Z)L(zl—a)lR(zl—a)le) (l’l)
27-”/f (z1—a) zl a)~! (h)dz

— 2Tri/rf(z)(zl—a)’lh(zl—a)fldz.

Since T is a compact subset of C\ sp(A,a), there exists a positive number M such
that ||(z1—a)~'|| < M forevery z€ I". Let zbe in T and let /2 be in A with ||| < 5.
Then we have

1 1 1

I =a) =@ =a=hl =kl < 337 < 37 < JazaT

Therefore, by Corollary 1.1.21(ii), zZ1 —a — Ak is invertible in A, and then, by Lemma
1.1.13(iii),

I(z1—a)""] M

Iz —a—h)""|| < = <
L= [lz1=a)~"[[lIn] = 13

=2M.

Since
(Zl—a—h)"'—(21—a) ' = (z1—a) 'h(zl —a)!
=(zl—a) "Wzl —a—h)""h(z1 —a)™!
(by Lemma 1.1.22), we derive that
[(zZl—a—h) "' —(z1—a)"' = (z1 —a) 'h(zl —a) ||
< =a) PP —a— k)~ < 2M3 A,
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Since T surrounds sp(A,a) in €, the set W := {z € C : Indr(z) = 1} is open in C
and satisfies sp(A,a) C W C Q. By Proposition 1.3.20, there exists € > 0 such that
sp(A,b) C W for every b € A with ||b —al| < €. Therefore, if in addition we assume
that ||| < &, then sp(A,a+h) C W, hence T is a contour surrounding sp(A,a + h)
in Q, and so

fla+h)—f(a)=T(h)
- %m/rf(z) [(l—a—h) "' —(—a) ' = (1 —a) 'h(z1 —a) "] dz.
It follows that
If(a+ )~ fla) ~ T < 5Ty max{( ()] € Ty2m* ],

where ¢(T") denotes the length of T'. Hence

Lt k) — (@)~ T(h)]

=0. O
h—0 Il

Corollary 1.3.22 Let A be a complete normed unital associative complex algebra,
let Q be a non-empty open set in C, and let f be a biholomorphic function from £
onto f(Q). Then the mapping f : a — f(a) is biholomorphic from Ag onto Af@)-

Proof Let g: f(Q) — Q be the inverse of f. Since go f and f o g are the identity
mappings on Q and f(Q), respectively, Theorem 1.3.13(v) shows that go f and fo g
are the identity mappings on Ag and Ay (q), respectively. Now f and its inverse g are
holomorphic (by Theorem 1.3.21), and the proof is complete. O

This section closes with two typical applications of the holomorphic functional
calculus. If A is a unital associative algebra over K, and if e is an idempotent in A
different from 0 and 1, then, by Corollary 1.3.5, we have sp(A,e) = {0, 1}, and hence
A has some element whose spectrum is disconnected, provided such an idempotent
e does exist. Conversely, we have the following.

Proposition 1.3.23 Let A be a complete normed unital associative complex alge-
bra. If the spectrum of some element of A is not connected, then A contains an
idempotent different from 0 and 1. More precisely, if a € A is such that sp(A,a) =
F UG for some disjoint non-empty closed subsets F,G of sp(A,a), then there is an
idempotent e # 0,1 in {a}° satisfying:

(i) Ifa) :==ae and ap := a(1—e), then a = a; +ay and ayay = axa; = 0.

(i) sp(A,a;) = FU{0} and sp(A,a;) = GU{0}.

Proof Let a be in A such that sp(A,a) = F UG, where F and G are disjoint non-
empty closed subsets of sp(A,a). Let Q;,Q, be disjoint open subsets of C such
that F C Q; and G C Q. Set Q = Q| ULy, and consider the function f: Q — C

defined by
1 it zey
f(z)_{o if ze.

Then f € 27 (Q) and satisfies that f> = f. Therefore, by Theorem 1.3.13, e := f(a) is
an idempotent in {a}“ with sp(A,e) = {0, 1} (which implies e # 0,1). Now, noticing
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that e(1 —e) =0 = (1 — e)e, assertion (i) follows. Consider the functions fi(z) =
7f(z) and f>(z) = z(1 — f(z)). It follows from Theorem 1.3.13 that a; = fi(a) and
ay = f>(a). Hence

sp(A,a1) = fi(sp(A,a)) = FU{0} and sp(A,az) = fa(sp(A,a)) = GU{0},
which concludes the proof. O

Definition 1.3.24 Let A be an associative algebra, and let a,b be in A. We say that
b is an nth root of a in A if a = b". If in addition A is complete normed and unital,
and if a = exp(b), then we say that b is a logarithm of a in A. We note that the
two meanings of exp(b), given by §1.1.29 and Theorem 1.3.13, do agree (in view of
Theorem 1.3.13(i1)).

Proposition 1.3.25 Let A be a complete normed unital associative complex alge-
bra, and let a be an element of A. If zero lies in the unbounded connected component
of C\'sp(A,a), then

(1) a has roots of all orders in A.
(i1) a has a logarithm in A.

Moreover, if a satisfies the condition sp(A,a) C R™, then the roots in assertion (i)
can be chosen so as to satisfy the same condition.

Proof Assume that zero lies in the unbounded connected component of C\ sp(4, a).
Then there is a function f, holomorphic in a simply connected open set £ containing
sp(A,a), which satisfies exp(f(z)) = z. It follows from Theorem 1.3.13(v) that b =
f(a) is a logarithm of a. If sp(A,a) C R™, then f can be chosen so as to be real on
sp(A, a), so that sp(A, b) lies in R, by the spectral mapping theorem. If ¢ = exp(%b),
then ¢" = a, and another application of the spectral mapping theorem shows that
sp(A,c) CRT if sp(A,b) CR. O

Remark 1.3.26 Let A be a complete normed non-unital associative complex alge-
bra, let @ be in A, let Q be an open set in C, containing sp(Ay,a) (so that, 0 €
Q), let f be in J7(Q), and, keeping in mind Proposition 1.1.107, let f(a) be the
element of A; given by the holomorphic functional calculus. It is easily realized that
f(a) € A if and only if f(0) = 0. Indeed, consider the continuous unit-preserving
algebra homomorphism ¢ : A; = C1®A — C defined by ¢ (A1 +x) := A, and apply
Corollary 1.3.16.

1.3.3 Historical notes and comments

The material in this section has been elaborated mainly from the books of
Conway [711], Dales [715], Doran and Belfi [725], Miiller [780], Palmer [786],
and Rudin [804]. Other sources are quoted in what follows.

Theorem 1.3.2 and Proposition 1.3.3 are folklore. Proposition 1.3.3 can be found
in [792, Corollary 5.1], where it is derived from a more general result [792, Theorem
5.11.

According to [780, C.1.18], ‘the [holomorphic] functional calculus for one
[bounded linear] operator [on a complex Banach space] was first used by Riesz
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[504] for construction of the spectral projection of a compact operator [cf. Prop-
osition 1.3.23]. The general spectral mapping theorem [Theorem 1.3.13(iv)] was
proved by Dunford [219]’. For a more detailed history, the reader is referred to [786,
pp- 343-4].

In relation to Proposition 1.3.23, it is worth mentioning the following theorem,
which is due to Koliha [391].

Theorem 1.3.27 Let A be a complete normed unital associative complex algebra,
let a be in A, and let 1 be in C. Then W is an isolated point of sp(A,a) if (and only
if) there exists a nonzero idempotent e € A satisfying ae = ea, t((a — ul)e) =0, and
e+a—pul elnv(A).

Now let us conclude this subsection by taking the following short proof of The-
orem 1.1.31 from [726], which relies on the holomorphic functional calculus.

Proof LetA and S be as in Theorem 1.1.31. In view of Proposition 1.1.98, to prove
the conclusion in that theorem, we may assume that the complete normed unital
associative algebra A is complex. Set Q := {z € C\ {0} : |arg(z)| < J}. Since S is
continuous and S(0) = 1, there exists € > 0 such that ||S(r) —1|| < 1 for0 <t < €
Therefore
sp(4,8(1)) C{zeC:z—1| < 1} CQ,

and L(r) :=logS(z) is defined and continuous for 0 <t < €. Here, arg and log stand
for the principal values of the argument and logarithmic functions, respectively, and,
for x € A with sp(A,x) C Q, logx has to be understood in the sense of the holomorphic
functional calculus.

Let7 be in R} and let n be in N such that nt < €. Note that for every k € {1,...,n}
we have

sp(4,5(1))* = sp(A,S(1)") = sp(A, S(kr)) C

Noticing that |arg( )| < 2 k+1) whenever k € N and A € C satisfy |arg(1)| < 5;
and |arg(A*™1)| < Z, a finite induction gives that

T
sp(A,S(t)) CQ, := {z e C\{0}: |arg(z)| < —n}
Since logz" = nlogz on Q,, it follows that log(S(¢)") = nlog S(z

);
L(nt) =logS(nt) =log(S(¢)") = nlogS(t) = nL(t).

As a consequence of the above paragraph, we have L(r) = nL(;, Lr)forall 0 <7<
and n € N. Now, for each rational number % with 0 <2 m <1, and each ¢ in the
interval [0, €], we have 2L(t) = mL(1t) = L(%t), and in particular "L(e)=L(%e).
From the continuity of L it follows that sL(g) = L(s¢e) for 0 < s < 1, and in particular
LL(e) =L(t) for0 <t < e.Seta:= LL(¢). Then L(t) =tafor 0 <t < ¢, and hence

S(t) = exp(ta) (1.3.6)

and hence

for 0 <t < &.Ift € RT is arbitrary then %t < ¢ for some sufficiently large n € N, and

so we have
1\” 1 "
St)=S81| -t = —t = ta).
(1) (n ) exp <n a) exp(ta)

Thus (1.3.6) holds for every t € R(J{. O]
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1.4 Compact and weakly compact operators

Introduction We introduce compact and weakly compact operators between (pos-
sibly non-complete) normed spaces, and discuss both old and recent selected topics
in their theory. As far as possible, results on compact operators are obtained from
those on weakly compact operators.

1.4.1 Operators from a normed space to another

Let X and Y be normed spaces over K. By a compact (respectively, weakly compact)
operator from X to Y we mean a linear mapping 7 : X — Y such that the closure
of T(By) in Y is a compact (respectively, weakly compact) subset of Y. We denote
by R(X,Y) (respectively, 2(X,Y)) the set of all compact (respectively, weakly com-
pact) operators from X to Y.

The following fact is straightforward.

Fact 1.4.1 Let X andY be normed spaces over K. We have:
(i) R(X,Y) and W(X,Y) are subspaces of L(X,Y) satisfying
/(X,Y) CW(X,Y) C BL(X,Y).

(i) If T is in R(X,Y) (respectively, 23(X,Y)), if U and V are normed spaces over
K, if F is in BL(Y,V), and if G is in BL(U,X), then F o T o G belongs to R(U,V)
(respectively, 20(U,V)).

(iii) If T is a compact (respectively, weakly compact) operator from X to Y, then
the restriction of T to any subspace of X is a compact (respectively, weakly
compact) operator.

@v) If T is a compact (respectively, weakly compact) operator from X toY, and if Z
is any subspace of Y containing the closure of T(Byx) in Y (for example, if Z is
a closed subspace of Y containing T (X)), then T, regarded as a mapping from
X to Z, is a compact (respectively, weakly compact) operator.

An easy, but not so straightforward result, is the following.

Proposition 1.4.2 Let X and Y be normed spaces over K, and let T be a compact
(respectively, weakly compact) operator from X to Y. If Y is infinite-dimensional
(respectively, non-reflexive), then T (X) is of the first category in'Y.

Proof Assume that T(X) is of the second category in Y. Then it follows from the
equality
T(X)= | nT(Bx)
neN
that the closure of 7 (By) in ¥ (say C) contains a closed ball in Y. Since C is compact
(respectively, weakly compact), such a ball also becomes compact (respectively,

weakly compact), so that, by the Riesz sphere theorem (respectively, by Goldstine’s
theorem), Y is finite-dimensional (respectively, reflexive). ]
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It follows from Proposition 1.4.2 that, if Y is a normed space of the second cat-
egory in itself, and if there exists a surjective compact (respectively, weakly compact)
operator from some normed space to Y, then Y is finite-dimensional (respectively,
reflexive). As a consequence, we have the following.

Corollary 1.4.3 LetY be a Banach space such that there exists a surjective compact
(respectively, weakly compact) operator from some normed space to Y. Then Y is
finite-dimensional (respectively, reflexive).

Both compact and weakly compact versions of Corollary 1.4.3 do not remain true
if the assumption that ¥ is a Banach space is relaxed to the assumption that ¥ is
an arbitrary normed space. Actually, as we are going to show in Proposition 1.4.4
immediately below, there are abundant examples of infinite-dimensional normed
spaces X and Y such that we can find a bijective compact (hence weakly compact)
operator from X to Y. Of course, the space Y in these examples cannot be complete
(much less reflexive).

Proposition 1.4.4 Let X be a separable Banach space, and let Y be an infinite-
dimensional Banach space. Then there exists a bijective compact operator from X'
to some subspace of Y.

Proof Take a normalized basic sequence (y,)men in Y, as well as a sequence
(%0 )nen in Sy whose linear hull is dense in X. Then the mapping

T:x' =) nl—zx/(x,,)y,l
n=1
becomes an injective linear operator from X’ to Y. Moreover, since T is the uniform
limit on By of a sequence of weak*-to-norm continuous functions, the restriction
of T to By is weak™*-to-norm continuous, and hence 7 (By-) is (norm-)compact. It
follows from Fact 1.4.1(iv) that T, regarded as an operator from X’ to T'(X'), becomes
a bijective compact operator. ]

The bijective compact operators given by the above proposition start from Banach
spaces. Now, the existence of bijective compact operators starting from non-complete
normed spaces follows from the following.

Proposition 1.4.5 Let (X, ||-||) be a normed space, and let f be a || - ||-discontinuous
linear funcional on X. Then the norm || - || on X defined by

el == flell =+ £ ()

is not complete. Moreover, compact (respectively, weakly compact) operators start-
ing from (X,| -||) remain compact (respectively, weakly compact) when they are
regarded as operators starting from (X, || - |||)-

Proof  Since By .)) € B(x,||.|), the last conclusion in the statement becomes clear.
Assume that the norm || - ||| is complete. Then, since f is ||| - ||-continuous, ker(f) is
I - ||-complete. Keeping in mind that || - || and || - ||| coincide on ker(f), we deduce
that ker(f) is closed in (X, || - ||), an hence that f is || - ||-continuous, contrary to the
assumption. L]
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Now we deal with useful characterizations of compact and weakly compact
operators.

Proposition 1.4.6 Ler X andY be normed spaces over K, and let T be in BL(X,Y).
Then T is a weakly compact operator if and only if T"(X") C Y.

Proof Let C stand for the closure of T(Byx ) in Y.

Assume that 7" is weakly compact, so that C is a weakly compact subset of Y. Since
the weak topology of Y is the restriction to Y of the weak* topology of Y”, it follows
that C is weak*-closed in Y”. Therefore, since T” is weak*-to-weak® continuous
and By is weak® dense in By», we derive that 7”(Bys) C C C Y, and hence that
" (X//) cy.

Now assume that 77 (X"”) C Y. Then, since By is a weak*-compact subset of X",
we see that 7" (Byn) is a weak*-compact subset of Y contained in Y, and hence it
is a weakly compact subset of ¥ containing T (By). It follows that C is a weakly
compact subset of Y. O

Remark 1.4.7 LetX,Y,and 7T be as in Proposition 1.4.6. Although not emphasized
in the statement, the above proof shows that 7' is weakly compact if and only if
T"(By») is contained in the closure of T (By) in Y. As a consequence, if T is weakly
compact, then so is T”. As a partial converse, if Y is in fact a Banach space, and if
T" is weakly compact, then, since Y is closed in Y”, and T” coincides with T on X,
it follows from Fact 1.4.1(iii)—(iv) that T is weakly compact.

Again, let X, Y, and T be as in Proposition 1.4.6. One can wonder what has to be
added to the condition 7 (X"”) C Y in order to characterize the compactness of 7.
An answer is provided by the following.

Theorem 1.4.8 Let X and Y be normed spaces over K, and let T be in BL(X,Y).
Then the following conditions are equivalent:

(i) T is a compact operator. T"(X") CY, and the restriction of T" to Byn is weak*-
to-norm continuous.

(i) For every sequence x, in By, the sequence T (x,) has a convergent subsequence
inY.

Proof Again, let C stand for the closure of 7(By) in Y.

(1)=-(i1) Assume that 7" is compact. Since C is norm-compact, and the restriction
to C of the weak* topology of Y” is Hausdorff and weaker than the norm topology, we
derive that the norm and weak* topologies of Y coincide on C. On the other hand,
according to Remark 1.4.7 immediately above, we have T"(By») C C. Since T" is
weak*-to-weak* continuous, it follows that the restriction of 77 to By~ is weak*-to-
norm continuous. Finally, the inclusion 7" (X”) C Y follows from the one 7" (By») C
C just pointed out (or directly from Proposition 1.4.6).

(ii)=-(iii) Let x, be a sequence in By, and take a weak*-cluster point x” to the
sequence x, in By Then by assumption (ii), 7”(x”) lies in ¥ and becomes a norm-
cluster point to the sequence 7' (x;) in Y. Since the norm topology of Y is metrizable,
it follows that 7”(x”) is the limit in ¥ of a suitable subsequence of the sequence
T (x,).
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(iii)=>(@) Let y, be any sequence in C. For each n, choose x,, € By such that
[yn — T (x4)|| < 1. By assumption (iii), some subsequence of T (x,) (say T (x,,)) has
a limit in ¥, which clearly lies in C. It follows that y,, has a limit in C. Thus every
sequence in C has a convergent subsequence in C, hence C is compact. O

§1.4.9 LetX,Y,and T be as in the above theorem. It follows from the implication
(i)=-(ii) that, if T is compact, then 7" is compact and T is completely continuous
(meaning that the restriction of 7" to By is weak-to-norm continuous). By the way, it
is clear that, if X is reflexive, and if T is completely continuous, then 7" is compact.
The verification of this last result shows that actually, if X is reflexive, and if 7 is
completely continuous, then 7' (By) is compact. Hence, in light of Fact 1.4.1(iv),
we realize that T, regarded as a mapping from X to T'(X), is a (surjective) compact
operator. To convert it into a bijective compact operator it is enough to think about
the induced mapping X / ker(T') — T'(X).

Corollary 1.4.10 Let X be a normed space over K, let Y be a Banach space over
K, and let T be in BL(X,Y). Then the following conditions are equivalent:

(i) T is a compact operator.
(ii) The restriction of T" to Byn is weak*-to-norm continuous.
X
(iii) T" is a compact operator.

Proof (1)=(ii) By the implication (i)=>(ii) in Theorem 1.4.8.

(ii)=-(iii) As suggested in §1.4.9 immediately above, this implication follows
from the weak*-compactness of By.

(iii)=-(1) Since Y is closed in Y”, and T"” coincides with T on X, this implication
follows from Fact 1.4.1(iii)—(iv). L]

Keeping in mind that every Banach space is closed in its bidual (respectively, that
the uniform limit of any sequence of continuous functions is a continuous function),
Proposition 1.4.6 (respectively, the equivalence (i)« (ii) in Corollary 1.4.10) yields
the following.

Corollary 1.4.11 Let X be a normed space over K, and let Y be a Banach space
over K. Then both R(X.,Y) and 2(X,Y) are closed in BL(X,Y).

§1.4.12 Let X and Y be normed spaces over K. By a finite-rank operator from X
to Y we mean a bounded linear mapping 7 : X — Y such that 7(X) is a finite-
dimensional subspace of Y. We denote by F(X,Y) the set of all finite-rank operators
from X to Y, and note that F(X,Y) is a subspace of BL(X,Y). It is also worth
remarking that, for y € Y and f € X', the mapping y® f : x — f(x)y from X to ¥
is a finite-rank operator. Actually, as we show in Fact 1.4.13 immediately below,
there are not many more finite-rank operators.

Fact 1.4.13 Let X and Y be normed spaces over K, and let T be in §(X,Y). Then
there are yy,....y, €Y and fi,...,fn € X' suchthat T =3 | y; ® f.

Proof We may assume that 7 # 0. Let {y,...,y,} abasis of T(X), let {g1,...,8n}
stand for the corresponding dual basis of the algebraic dual of 7(X) (equal to T(X)’
by Tihonov’s theorem), and, for 1 <i < n, set f; := g;oT. Then f; belongs to X’ for
every i, and we straightforwardly realize that 7 =Y | y; ® f;. L]
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Let X be anormed space over K, let M be a nonzero finite-dimensional subspace of
X, and let T be a continuous linear projection on X with 7(X) = M. The above proof
shows that T = Y7 | y; ® fi, where {y1,...,yn} is any basis of M, {g1,...,8,} stands
for the corresponding dual basis, and, for 1 < i < n, f; is an element of X’ which
extends g;. Thanks to the Hahn—Banach theorem, this argument can be reverted to
get the well-known fact which follows.

Fact 1.4.14 Let X be a normed space over K, and let M be a finite-dimensional
subspace of X. Then M is complemented in X (i.e. there exists a continuous linear
projection on X whose range equals M).

Given normed spaces X and Y over K, we denote by F(X,Y) the closure of
F(X,Y) in BL(X,Y). As a straightforward consequence of Fact 1.4.13 (or directly
by Tihonov’s theorem), we get that finite-rank operators are compact operators.
Therefore, invoking Corollary 1.4.11, we derive the following.

Corollary 1.4.15 Let X be a normed space over K, and let Y be a Banach space
over K. Then

F(X,Y) CR(X,Y).

The next proposition becomes a refinement of the so-called Banach—Steinhaus
closure theorem [817, Theorem 3.3.13].

Proposition 1.4.16 Let X be a Banach space over K, let Y be a normed space
over K, and let F,, be a sequence in BL(X,Y) converging pointwise to a mapping
F:X —Y.ThenF liesin BL(X,Y), and F, converges to F uniformly in each compact
subset of X.

Proof By the uniform boundedness principle, there exists M > 0 such that
IFy(x)]| < M|jx|| for all x € X and n € N. Therefore, since F is clearly lineal, F
lies in BL(X,Y) and ||F|| < M. Now, let C be a compact subset of X, and let € > 0.
Then there exists a finite subset D of X such that C C D+ 3LMIB%X. Moreover, since F;,
converges pointwise to F, there is m € N such that ||F(d) — F,(d)|| < § whenever d
is in D and n > m. Therefore, for ¢ € C and n > m, it is enough to choose d € D and
y € 3By with ¢ = d +y, to get

IF(e) = E()]l < IIF(c—a) |+ IF(d) — E()]] + | Fuld — <)
<IF Iyl +11E (@)~ @)+ [y

<2M|\y|| +||F (d) — Fa(d) ||
2£ €
3

N

— 0
+3=¢

Exercise 1.4.17 Let X and Y be normed spaces over K, and let T be in £(X,Y).
Prove that the closure of 7(X) in Y is separable.

Hint Recall that every compact metric space is separable, and keep in mind that the
closure of 7 (By) in Y is a compact metric space. O

The inclusion F(X,Y) C &(X,Y) in Corollary 1.4.15 is often an equality. Indeed,
we have the following.
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Proposition 1.4.18 Let X be a normed space over K, and let Y be a Banach space
over K. Then the equality §(X,Y) = R(X,Y) holds if Y has a Schauder basis, or if Y
is a Hilbert space.

Proof Assume that Y has a Schauder basis (y,)nen, let (¥, )nen stand for the
sequence of biorthogonal functionals on Y associated to (y,),en, and for n € N set

n

B, = zyl‘®y; egF(,Y).
i=1

Then the sequence P, converges pointwise to Iy. Let T be in £(X,Y). It follows from

Proposition 1.4.16 that P, converges uniformly to Iy on 7' (By ). But this means that

P, oT converges to T in the norm topology of BL(X,Y). Since P,oT € §(X,Y), it

follows that T € F(X,Y).

Now assume that Y is a Hilbert space, let 7 be in £(X,Y)\ F(X,Y), and let
Z stand for the closure of T(X) in Y. Then, by Exercise 1.4.17, Z is an infinite-
dimensional separable Hilbert space, and hence has a Schauder basis. It follows from
Fact 1.4.1(iv) and the above paragraph that 7', regarded as an operator from X to Z,
is the limit in BL(X,Z) of a suitable sequence F;, in §(X,Z). Therefore, denoting by
1 the inclusion Z < Y, 1 o F;, becomes a sequence in §(X,Y) converging to T in the
norm topology of BL(X,Y). Hence T € §(X,Y). O

1.4.2 Operators from a normed space to itself
Given a normed space X, we set F(X) := §(X,X), R(X) := 8(X,X), and W(X) :=
W(X,X), and note that, in view of Fact 1.4.1(1)-(ii), F(X), R(X), and 20(X) are
ideals of the algebra BL(X).

Proposition 1.4.19 Ler X be a normed space over K, let T be in 00(X), and let A
be in K\ {0}. We have:

(i) ker(T — Alx) is a reflexive Banach space, and the equality
ker(T — Aly) = ker(T" — Alyn)

holds.

(ii) The following conditions are equivalent:

(a) T — Al is surjective.
(b) T" — Alyr is surjective.
(¢) T —Alx is open.

(i) If T — Aly is bijective, then (T — Alx) ™" is continuous.

Proof We can assume that A = 1.

Set M :=ker(T — Ix ). Then T becomes the identity on M, which implies (since M
is closed in X and T is weakly compact) that By, is weakly compact or, equivalently,
that the normed space M is reflexive. On the other hand, the equality ker(7T — Ix) =
ker(T” — Iyn) follows from the inclusion T”(X") C X (cf. Proposition 1.4.6). Thus
assertion (i) has been proved.
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Now we proceed to prove assertion (ii).
(a)=(b) Letx” bein X". Sety” := (T"” — Ixn)(x"). Then we have
= T”(x”) _y// X+ (T// _[X”)(XN)-
On the other hand, by assumption (a), we have
X = (T—I0)(X) C (T" = Iyn)(X").

It follows that x” lies in (T — Ix»)(X").

(b)=-(c) By assumption (b) and the open mapping theorem, there exists a positive
number k such that kBy» C (T" — Ixn)(By#). Thus, for x in kBy, there is some x” €
By such that T"(x”) —x" = x, which implies that x” lies in X, and hence that x
belongs to (T — Ix ) (Bx ). Therefore we have kBy C (T —Ix)(By ), and T — Iy indeed
becomes open.

(c)=(a) This is clear.

Finally, assertion (iii) follows from the implication (a)=-(c) in (ii). ]

Somehow, the next theorem complements the above proposition, since the case
A = 0 has been not discussed there.

Theorem 1.4.20 Let X be a normed space, and let T be a surjective weakly com-
pact operator from X to X. Then X / ker(T) is a reflexive Banach space.

Proof For any normed space Y, let Ay stand for the open unit ball of Y. Let K denote
the closure in X of T'(Ax). Then K is weakly compact and we have X = |, ey 7K.
Since

KCX=TX)=|JT(xK),

neN

and for every n € N the set T(nK) is weakly compact, it follows from the Baire
category theorem for compact spaces that there exists m € N such that KN T (mK)
has non-empty interior in K, when K is endowed with the weak topology. This means
that there exists a weakly open (so norm-open) subset U of X satisfying

0£KNU CT(mK). (1.4.1)
Since K is the closure of 7(Ay) in X, we can find y € T(Ax) and r € R™ such that
y+rAx CU. (1.4.2)
Now, take x € Ay with T'(x) =y, and use the continuity of 7 to find s € R such that
x+sAx CAx and T(sAy) C rAx. (1.4.3)
It follows from (1.4.1), (1.4.2), and (1.4.3) that
T(x+sAx) CT(Ax)N(y+rAx) C T(mK),
which reads as

x+sAx C mK +ker(T). (1.4.4)
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Now, set X := X /ker(T), and let 7 : X — X stand for the natural quotient mapping.
It follows from (1.4.4) that

nt(x)+sAy C m(mK).

Keeping in mind that (mK) is weakly compact, it follows from the above inclusion
that By is weakly compact or, equivalently, that X is reflexive. L]

We already know that there are examples of non-complete (hence non-reflexive)
normed spaces X and Y such that we can find a bijective compact (so weakly com-
pact) operator from X to Y (cf. Corollary 1.4.3 and Propositions 1.4.4 and 1.4.5). As
an outstanding consequence of the above theorem, we are going to realize that the
equality X =Y cannot happen in these examples. Indeed, we have the following.

Corollary 1.4.21 Let X be a normed space over K. We have:

(1) If there exists a bijective weakly compact operator from X to X, then X is
reflexive.

(i1) If there exists a surjective compact operator from X to X, then X is finite-
dimensional.

Proof Assertion (i) follows straightforwardly from Theorem 1.4.20.

Assume that there exists a surjective compact operator 7 : X — X. Then, by
Theorem 1.4.20, X /ker(T) is a Banach space. On the other hand, denoting by
7 : X — X /ker(T) the natural quotient mapping, 7o T becomes a surjective compact
operator (cf. Fact 1.4.1(ii)). It follows from Corollary 1.4.3 that X /ker(T') is finite-
dimensional. Since T induces a linear bijection from X /ker(T) to X, we conclude
that X is finite-dimensional. O

The next proposition shows that assertion (i) in Corollary 1.4.21 does not remain
true when surjectivity replaces bijectivity.

Proposition 1.4.22 Let X be a reflexive Banach space over K containing closed
subspaces Y and Z such that Y has a Schauder basis, Z is isomorphic to X, and
X =Y ®Z. Then there exists a couple (M,T), where M is a dense proper subspace
of X, and T is a surjective weakly compact operator from M to M.

Proof Let (yn)nen be the Schauder basis of ¥ whose existence is assumed, and
let (y},)nen be the sequence of biorthogonal functionals on Y associated to (y,)nen-
Then, since the sequence y, ® y,, converges pointwise (to zero), it follows from
the uniform boundedness principle that there exists a positive number k such that
v llllya]l = [lyn @5, || < k for every n € N, so that we can consider the linear mapping

o 1
F:y— 2 ﬁy;(y))’n
n=1

from Y to Y, whose range is a dense subspace of Y. Moreover, since F is compact
(by Corollary 1.4.15), it follows from Corollary 1.4.3 that F(Y) # Y. Therefore,
G := F @1z is a bounded linear operator on X such that M := G(X) is a dense proper
subspace of X. Now, let ® be the isomorphism from Z onto X whose existence
is assumed, and let T : M — M be the linear operator defined by T := Go®or,
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where 7 stands for the restriction to M of the projection from X onto Z corres-
ponding to the decomposition X =Y @ Z. Then, since M = F(Y) ® Z, we have
n(M)=Z,so (Pom)(M)=®(Z) =X, and so T(M) = G(X) = M. This shows that T
is surjective. Moreover T is weakly compact because it factors through a reflexive
Banach space. O

We note that all requirements on the space X in the above proposition are fulfilled
in the case X = ¢,(I), where [ is any infinite set, and 1 < p < . Therefore we are
provided with surjective weakly compact operators on non-complete normed spaces
of arbitrary density character.

§1.4.23 LetX be a nonzero vector space over K, and let 7 be in L(X ). We denote by
sp(T) the spectrum of T relative to L(X), i.e. the set of those A € K such that
T — Alx is not bijective (cf. Example 1.1.32(b)). We will apply without notice the
fact that, if X is a Banach space, then sp(T') coincides with the spectrum of T relative
to BL(X) (cf. Example 1.1.32(d)).

Fact 1.4.24 Let X be a nonzero Banach space over K, and let T be in BL(X). Then

sp(T') = sp(T").

Proof 1t suffices to show that T is bijective if and only if so is 7”.

Since the mapping F — F’ from BL(X) to BL(X') is a unit-preserving algebra
antihomomorphism, it follows that 7" is bijective whenever T is.

Now, assume that T’ is bijective. By the above paragraph, T” is bijective, and
hence, by the Banach isomorphism theorem, 7" (and hence T) is bounded below.
This implies that T is injective and that T(X) is closed in X. On the other hand,
T(X) is dense in X because, if f is in X’ with f(T(X)) = 0, then T'(f)(X) =0, so
T'(f) =0, hence f = 0 (by the injectivity of 7”), and the Hahn-Banach theorem
applies. It follows that T is bijective. U

The next corollary shows that, concerning spectrum, weakly compact operators on
a (possibly non-complete) normed space become like bounded linear operators on a
Banach space.

Corollary 1.4.25 Let X be a nonzero normed space over K, and let T be in 20(X).
Then

sp(BL(X),T) = sp(T) = sp(T").

As a consequence, sp(T) is a compact subset of K, and is non-empty whenever

K=C.

Proof In view of Fact 1.4.24, to prove the equality sp(T) = sp(T’) it is enough to
show that sp(T) = sp(T”). The equality sp(T)\ {0} = sp(T") \ {0} follows from
Proposition 1.4.19(1)—(ii). On the other hand, in view of the inclusion T”(X") C X,
we have that 0 ¢ sp(T") if and only if X is reflexive and O ¢ sp(T). But Corol-
lary 1.4.21(i) asserts that X is reflexive whenever 0 ¢ sp(7T).

Now we proceed to prove that sp(BL(X),T) = sp(T). The equality

sp(BL(X),T)\ {0} = sp(T) \ {0}
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follows from Proposition 1.4.19(iii). On the other hand, 0 ¢ sp(BL(X),T) if and
only if 0 ¢ sp(T) and T~ is continuous. But, if 0 ¢ sp(7'), then, as a by-product of
Corollary 1.4.21(i), X is a Banach space, and hence 7! is continuous.

The consequence follows from the equality sp(7T) = sp(7’) already proved, by
keeping in mind Proposition 1.1.40 and Theorem 1.1.41. O

For the notion of a full subalgebra of a unital associative algebra, the reader is
referred to Definition 1.1.72.

Corollary 1.4.26 Let X be a nonzero normed space over K. Then both R(X )+ Klx
and W (X) + Klx are full subalgebras of the algebra of all (possibly discontinuous)
linear operators on X.

Proof Let B stand indistinctly for £(X) 4+ Klx or 20(X) + Klx, and let F € B be
a bijective operator. We must show that F~! lies in B. Write F = T + Aly with
T € 25(X) (occasionally, T € £(X)) and A € K. First assume that A # 0. Then, by
Proposition 1.4.19(iii), F~! is continuous, and hence 7 o F~! is weakly compact
(occasionally, compact). Therefore we have

Fl=—-2A""ToF'4+21'IxeB,

as desired. Now assume that A = 0. Then, by Corollary 1.4.21, X is reflexive (occa-
sionally, finite-dimensional), so that, clearly, F' 1 weakly compact (occasionally,
compact), and hence belongs to B. O

The information about weakly compact operators stated in Proposition 1.4.19 and
Corollary 1.4.25 can be complemented and refined in the particular case of compact
operators. This is done in Theorem 1.4.27 and Corollary 1.4.29 below.

Theorem 1.4.27 Let X be a nonzero normed space over K, let T be in R(X), and
let 2 be in K\ {0}. We have:

(i) ker(T — Alx) is finite-dimensional.
(i) IfY is any closed subspace of X, then (T — AIx)(Y) is closed in X, in particular,
T — Alx has closed range.
(iii) T — Alx is injective if and only if T — AlIx is surjective.

Proof We may assume that A = 1. Denote by N and R the kernel and the range,
respectively, of the operator T — I .

Note that 7 becomes the identity on N, which implies (since N is closed in X and
T is compact) that By is compact or, equivalently, that N is finite-dimensional. This
proves assertion (i).

Now we proceed to prove assertion (ii). Let ¥ be a closed subspace of X. Suppose
first that the restriction to Y of T — Iy is injective. Let z be in (T — Ix ) (Y ), so that there
is a sequence y, in Y such that the sequence (T — Ix)(y,) converges to z. Suppose,
to derive a contradiction, that ||y,|| — e-. Then we may assume that y, # 0 for every
n € N, and we have m — 0, so that (T — Ix) (72;) — 0. Since ﬁ lies in Sy and

[yl
T € R(X), by passing to a subsequence if necessary, we may assume that T(”;—Z”)
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converges to some x € X. Then

Yn =T< Yn )—(T—Ix)( Yn )_)x’
[yl llynll [[ynll

and hence x € Sy. It follows from the continuity of T that T (m) — T(x), hence
T(x) = x, and so x € ker(T — Ix))y, which contradicts that (T — Ix)y is injective.
Thus ||y, || - e, and hence, passing again to a suitable subsequence, we may assume
that the sequence ||y,|| is bounded. By the compactness of T, we may assume in
addition that T'(y,) converges to some u € X. Then, we see that

Yn=T(yn) = (T —Ix)(yn) — u—z,

hence u —z €Y, since Y is closed, and (T —Ix)(yy) — (T — Ix)(u—z), since T —Ix
is continuous. Therefore z = (T — Ix)(u —z) € (T — Ix)(Y). It follows from the
arbitrariness of z in (T —Ix)(Y) that (T — Ix)(Y) is closed in X. Now, remove the
additional assumption that (7' — Ix ) y is injective, and set Z:= NNY. It follows from
assertion (i) and Fact 1.4.14 that Y = Z @ M for some closed subspace M of Y. Note
that M is a closed subspace of X and (T —Ix)\M is a injective. Therefore, by the
previously studied case, (T — Ix)(M) is a closed subspace of X. By noticing that
(T —Ix)(Y) = (T — Ix) (M), we conclude that (T — Ix)(Y) is a closed subspace of X.

Finally, we proceed to prove assertion (iii). Suppose that N =0 and R| := R # X.
Then, according to assertion (ii), Ry := (T — Ix)(R;) is a closed subspace of Ry and
Ry # Ry, since T — Ix is injective. In this way, by denoting R, := (T — Ix)"(X), we
obtain a strictly decreasing sequence of closed subspaces. As a consequence of the
Riesz lemma, we choose u, € R, such that d(u,,R,+1) > % and ||u,|| = 1. Then, if

pP>4q,
T(up) —T(ug) = (T —Ix)(up) — (T —Ix)(ug) +tp — g = 2— g

with z € Rp11 + Rgs1 + Ry C Ryq1, so that ||T(u,) — T(ug)|| > 5. which is im-
possible, since T is compact. This shows that R = X if N = 0. Conversely, suppose
that R =X and Nj := N # 0. Then N, := ker(T — Ix)? is a closed subspace of X and
N, # Ny, since T — Iy is surjective. In this way, by denoting N,, := ker(T — Ix)", we
obtain a strictly increasing sequence of closed subspaces. As a consequence of the
Riesz lemma, we choose v, € N,y such that d(v,,N,) > % and ||v,|| = 1. Then, if

P<4q
T(vp) =T(vg) = (T = Ix)(vp) = (T = Ix)(vg) +vp —vg =2— 4

with z € N, + Ny + Npi1 € N, so that || T(v,) — T(vg)|| > %, which is impossible,
since T is compact. This shows that N =0if R = X. O

Let X be a vector space over K, and let 7 : X — X be a linear mapping. A
number A € K is said to be an eigenvalue of T if T — Alx is not injective. If A is
an eigenvalue of 7', then the elements of ker(7 — Alx) are called the eigenvectors of
T corresponding to A.

Lemma 1.4.28 Let X be a vector space over K, and let T : X — X be a linear
mapping. If A1, ..., A, are pairwise different eigenvalues of T, and if, for 1 <i < n,
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x; is a nonzero eigenvector of T corresponding to A;, then the vectors x1,...,x, are
linearly independent.

Proof We proceed by induction. The result is clearly true if n = 1; assume the
result holds for n — 1, let Ay,..., A, be pairwise different eigenvalues of T, and, for
1 < i< n,letx; be anonzero eigenvector of T corresponding to A;. If ¢,..., 0, € K
satisfy that ¥ | o;x; = 0, then we have

n—1
0= T A IX <z a,x,) = 2 O(i(ﬁ,i —ln)xi,
i=1
therefore o; = 0 (1 <i < n—1), hence oy,x,, = 0, and so we also have ¢, = 0. Thus
X1,...,%, are linearly 1ndependent vectors. O

Corollary 1.4.29 Ler X be a nonzero normed space over K, and let T be in £(X).
Then we have:

(i) sp(T)\ {0} coincides with the set of all nonzero eigenvalues of T.
(i) sp(T) is either finite (possibly empty) or countably infinite.
(iii) if sp(T) is empty, then K = R and X is finite-dimensional.
(iv) If sp(T) is countably infinite, then O € sp(T) and, for each bijection n — Ay,
from N to sp(T) \ {0}, the sequence A, converges to zero.

Proof Assertion (i) follows from Theorem 1.4.27(iii), whereas assertion (iii) fol-
lows from Corollaries 1.4.21(ii) and 1.4.25.
In order to prove assertions (ii) and (iv) we claim that, for each § € R, the set

={A € K: A is an eigenvalue of T with |A| > &}

is finite. To derive a contradiction, suppose the existence of & € R such that the
set A, is infinite. There is then a sequence 4, of pairwise different elements in Ag,.
For each natural number n, choose a nonzero eigenvector x, of 7 corresponding to
A, and consider the subspace M, of X generated by xi,...,x,. By Lemma 1.4.28,
M, becomes a strictly increasing sequence of finite-dimensional subspaces which are
invariant under 7. As a consequence of the Riesz lemma, we choose y, € M, ;| such
that d(y,,M,) > % and ||y,| = 1. Let p,q be in N. Then

T(p) =TOg) = Ap1Yp + (T = Ap1lx)(vp) = T (vg) = Ap1(yp +2),
where

7= lplll (T = Aps1lx) (vp) — T (yq)]-

Note that y, = ijll o;x; for suitable ¢, ..., 01 € K, and consequently
p
(T = Apax) (vp) = X 0i(Ai = Api1)xi € M.
i=1

Since T (yq) € My41, it follows that, for ¢ < p, we have z € M,,, and hence

1
1T Gp) =T Gg)ll = 12palllyp +2ll > 5 b0,
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which is impossible, since 7' is compact. Now that the claim is proved, keeping in
mind that sp(7) \ {0} = U,enA1 (by assertion (i)), assertion (ii) follows. Assume
from now on that sp(7') is count;bly infinite. Let n — A, be any bijection from N to
sp(T)\ {0}. Then, according to assertion (i) and the claim, the set {n € N: |4,| > €}
is finite for every € > 0, and so the sequence A, converges to zero. Moreover, since
sp(T) is closed in K (by Corollary 1.4.25), we derive that 0 € sp(T'), and the proof
is complete. U

The next exercise complements assertion (iv) in Corollary 1.4.29 above.

Exercise 1.4.30 Let 4, be any sequence in K\ {0} converging to zero, and let H
stand for the infinite-dimensional separable Hilbert space over K. Prove that there
exists an injective compact operator 7 : H — H such that

sp(T) ={0}U{A, :n e N}.

Solution We may take H = ¢,. Then, according to the solution of Exercise 1.1.45,
the mapping 7 : H — H defined by T'({t,}) := {A.lly } becomes a bounded linear
operator on H such that sp(7) = {0} U{A4, : n € N}. Moreover, clearly, T is injective.
For n,m € N, define p,,, € K by pum = A, if n < m, and p,,, = 0 otherwise, and let
T,, stand for the finite-rank operator on H given by T,,({us}) := {pumlls}- Then
we easily realize that, for m € N, we have ||T — T,,|| = max{|A| : k > m+ 1}.
Since the right-hand side of this equality tends to zero as m — oo, it follows from
Corollary 1.4.15 that T is a compact operator. O

Definition 1.4.31 A normed algebra A is said to be topologically simple if A has
nonzero product and has no nonzero closed proper ideal.

Proposition 1.4.32 Let X be a nonzero normed space over K, and let A be a
subalgebra of BL(X) containing §(X). Then §(X) is contained in any nonzero ideal
of A. As a consequence, §(X) is a simple algebra, and the closure in BL(X) of §(X)
is a topologically simple normed algebra.

Proof Let I be a nonzero ideal of A. Take F € I and xo € X such that F(x) # 0,
and invoke the Hahn—Banach theorem to find fy € X’ with fo(F(xo)) = 1. Then, for
every (x, f) € X x X' we have

x@f=(x®@fo)oFo(xo®f)€l,

so that it is enough to apply Fact 1.4.13 to conclude that §(X) C I. By taking A equal
to F(X) or F(X), the consequence follows straightforwardly. O

By combining Corollary 1.4.11 and Propositions 1.4.18 and 1.4.32, we get the
following.

Corollary 1.4.33 Let X # 0 be a Hilbert space, or a Banach space having a
Schauder basis. Then R(X) is a topologically simple complete normed algebra, as
well as the smallest nonzero closed proper ideal of BL(X).
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1.4.3 Discussing the inclusion §(X,Y) C R(X,Y) in the
non-complete setting

In this subsection, we are going to show that the completeness of the space Y in
Corollaries 1.4.11 and 1.4.15 is very far from being removable. To this end, we begin
by realizing that the limit of a sequence of finite-rank operators need not be a compact
operator, even if the operator starts from a Banach space and its range lives in a pre-
Hilbert space. Indeed, we have the following.

Example 1.4.34 Set X := g, and let T : X — /¢, stand for the bounded linear
operator defined by T({t,}) := {1u,} for every {i,} € X. For natural numbers
n,m, define p,, € Kby p,m = % if n <m, and p,,, = 0 otherwise, and let 7;,, : X — {5
stand for the finite-rank operator given by T, ({ttx }) := {Pumtl, } for every {1, } € X.
Then we easily realize that, for m € N, we have

|
k=m+1

so that T is the limit in BL(X, ¢,) of the sequence 7,,. Now set Y := T(X), and note
that 7,,(X) C Y for every m € N. It follows that T, regarded as a mapping from X to Y,
lies in §(X,Y). However T, regarded as a mapping from X to Y, is not a compact
operator. Indeed, for m € N, let x,,, be the element of Bx having 1 in its first m entries
and 0 otherwise. If 7', regarded as a mapping from X to Y, were compact, then the
sequence T (x,,,) would have a subsequence converging to some y € Y. But, since the
sequence T (x,,) converges to {1} in ¢, we would have {1} =y €Y = T(X), and
this would imply the existence of some {1, } € X = ¢y with % Up = % foreveryn e N,
which is impossible.

The above example shows that Corollary 1.4.15, and consequently the compact
version of Corollary 1.4.11, do not remain true if the completeness of the space Y
is removed. Indeed, if X,Y,T are as in Example 1.4.34, then T lies in §(X,Y), and
hence in the closure of (X,Y) in BL(X,Y),but T ¢ R(X,Y).

Given normed spaces X and Y over K, we denote by £(X,Y) (respectively,
2(X,Y)) the closure in BL(X,Y) of R(X,Y) (respectively, 20(X,Y)). The inclusion
R(X,Y) CW(X,Y) being clear, we have also the following.

Fact 1.4.35 Let X and Y be normed spaces over K. We have:

(i) IfT isin R(X,Y), then the restriction of T" to By is weak*-to-norm continuous,
and hence T" € R(X",Y").

() R(X,Y)\ R(X,Y) C W(X,Y) \ W(X,Y), and hence R(X,Y) is closed in
BL(X,Y) whenever so is 0(X,Y).

Proof SetS:={T € BL(X,Y): (T"),, is weak"-to-norm continuous} and note
that S is closed in BL(X,Y) and that, by Proposition 1.4.6 and the equivalence
(i) (i) in Theorem 1.4.8, we have &(X,Y) =SNW(X,Y). O

By combining Example 1.4.34 and Fact 1.4.35, we realize that both Corollary
1.4.10 and the weakly compact version of Corollary 1.4.15 do not remain true if the
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completeness of the space Y is removed. Indeed, if X,Y, T are as in Example 1.4.34,
then

T ¢ A(X,Y), T" € R(X",Y"), and T € W(X,¥)\ W(X,Y).

Our discussion centres now in showing that Example 1.4.34 is not anecdotic.
Indeed, as a consequence of Theorem 1.4.39 and Remark 1.4.40 below, given an
arbitrary non-reflexive Banach space X, we can find a pre-Hilbert space Y and a
non-compact operator 7' € F(X,Y). Of course, the construction is more involved,
and begins with the following refinement of the part of Proposition 1.4.18 involving
Hilbert spaces.

Proposition 1.4.36 Let X be a normed space over K, let H be a Hilbert space
over K, and let T be in R(X,H). Then T, regarded as an operator from X to T (X),
lies in §(X,T(X)).

Proof We may assume that T ¢ §(X,H). Set Z := T'(X). Then, by Exercise 1.4.17,
Z is an infinite-dimensional separable pre-Hilbert space, and hence has a countably
infinite orthonormal basis (say {z, : n € N}). For each n € N, let m, stand for the
orthogonal projection from A onto the linear hull of {z;,...,z,}, and set S, := m, o T.
Then for n € N we have S,(X) C Z, and hence S, will be seen as an element of
(X, Z). Moreover, since {z, : n € N} remains an orthonormal basis for the closure
of Z in H (say Z), for each y € Z we have

= =

(IH—nn)(y):Z (vlzi) zi i (Vlzi)zi = 2 (vlzi)zi =0

i=1 i=1 i=n+1
as n — oo. Therefore, by Proposition 1.4.16, the sequence Iy — T, converges to zero
uniformly on compact subsets of Z, so in particular on the closure of T(By) in H.
Noticing that for x € By and n € N we have

1T (x) = Sa ()| = (1T (x) = (T () | = | (g = 70) (T (X)),

it follows that S,, converges to T (regarded as an operator from X to Z) in BL(X,Z).
O

Lemma 1.4.37 Let X andY be normed spaces over K, let T be in BL(X,Y ), and let
Z be a subspace of Y containing T (X). Then the following conditions are equivalent:

(1) T, regarded as a mapping from X to Z, is weakly compact.
() T"(X") CZ

Proof Let F stand for T regarded as a mapping from X to Z, and let i denote the
inclusion Z < Y. Then we have T = io F and i = jo ®, where Z°° denotes the
bipolar of Z in Y”, ® : Z” — Z°° is the natural identification, and j stands for
the inclusion Z°° < Y”. Therefore T" = jo® o F”. On the other hand, by Propos-
ition 1.4.6, condition (i) is equivalent to F”'(X") C Z. Since both Z” and Z°° contain Z
in a natural way, and @ becomes the identity on Z, it follows that condition (i) is
equivalent to condition (ii). ]

Proposition 1.4.38 Let X be a non-reflexive Banach space over K, and let Y be an
infinite-dimensional Banach space over K. Then there exists T € §(X,Y) suchthat T,

regarded as an operator from X to T (X), is not compact.
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Proof Since X is non-reflexive, neither is X/, and hence By is not weakly compact.
By the Eberlein-Smulyan Theorem (see for example [729, Theorem 3.109]), there
exists a sequence 7, in By, with no cluster point in the weak topology of X’. But
certainly z), has a cluster point (say z’) in the weak® topology of X’. Therefore x, :=
7, —z is a bounded sequence in X’ which has zero as a cluster point in the weak*
topology but not in the weak topology. Since zero is not a cluster point to x}, in the
weak topology, there exist x7,...,x), € X" and p € N such that

max {[x}/(x],)] : 1 <k <m} >1 forevery n> p. (1.4.5)
Now, take a normalized basic sequence (y,),en in Y, and consider the operator
T € §(X,Y) defined by

/
n

< 1
=5
To obtain a contradiction, suppose that T', regarded as an operator from X onto 7'(X),

is compact. Then, by Lemma 1.4.37, T"(X") C T(X), hence for each k € {1,...,m}
there exists x; € X such that 7" (x}/) = T'(x¢), and so

= o
P Z

Therefore x}/(x),) = x),(x) for all k € {1,...,m} and n € N, and consequently, by

(1.4.5), max{|x,(x¢)| : 1 <k < m} > 1 for all n > p, which is impossible because

zero is a cluster point to x, in the weak* topology of X’. O

Theorem 1.4.39 Let X be a Banach space over K. Then the following conditions
are equivalent:

(1) X is reflexive.
(il) W(X,Y) = BL(X,Y) for every normed space Y over K.
(iii) W(X,Y) is closed in BL(X,Y) for every normed space Y over K.
(iv) R(X,Y) is closed in BL(X,Y) for every normed space Y over K.
(v) §(X,Y) C R(X,Y) for every normed space Y over K.

Proof The implications (i)=-(ii)=-(iii), and (iv)=-(v) are clear, whereas the implic-
ation (iii)=-(iv) follows from Fact 1.4.35(ii).

(v)=(@) Assume that X is not reflexive. Then, by Proposition 1.4.38, there exists
T € R(X,¢,) such that T, regarded as an operator from X to Y := T (X), does not
belong to R(X,Y). But, by Proposition 1.4.36, T, regarded as an operator from X to
Y, liesin §(X,Y). O

Remark 1.4.40 Looking at the above proof, we realize that Theorem 1.4.39
remains true if in conditions (ii) to (v) we replace ‘for every normed space Y over K’
with ‘for every separable pre-Hilbert space Y over K’.

Corollary 1.4.21(ii) could be a sample of how results concerning compact oper-
ators between normed spaces X and Y, which are true when Y is complete but need
not be true in general (cf. Corollary 1.4.3 and Proposition 1.4.4), are indeed true
when X =Y. Therefore, thinking about Corollary 1.4.15 and Example 1.4.34, one
can wonder whether the inclusion §(X) C £(X) holds for every normed space X. As
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a matter of fact, the answer to this question is negative, even if X is a pre-Hilbert
space. Indeed, we have the following.

Example 1.4.41 Set X := ¢g regarded as a subspace of ¢, and consider the
bounded linear operator 7 : X — X defined by 7'({t,}) := {1, } forevery {u,} € X.
For n,m € N, define p,,, € K by p,;, = % if n < m, and p,,, = 0 otherwise, and let
T, : X — X stand for the finite-rank operator given by T,,({tn}) := {pumitn} for
every {U,} € X. Then for m € N we have ||[T —T,| = m%rl, so that 7' is the limit
in BL(X) of the sequence T,,, and hence T € §(X). However T ¢ R(X) because
T is bijective and Corollary 1.4.21(ii) applies. (An elementary verification of the
non-compactness of 7', avoiding Corollary 1.4.21(ii), is left to the reader.)

Let X and T € §(X) \ R(X) be as in the above example. Then, clearly, we have
T € £(X)\ &(X). Moreover, invoking Fact 1.4.35, we realize that 7" € &(X”) and

that 7 € 20(X) \ 20(X). Therefore, in the absence of completeness of the space Y,
neither Corollary 1.4.10 nor Corollary 1.4.11 remain true even if X =Y.

1.4.4 Historical notes and comments
According to Taylor and Lay [811, p.293],

The essential notion of a compact mapping was introduced by David Hilbert in 1906;
eleven years later F. Riesz [505] published a thorough study of compact operators. In 1930,
J. Schauder [555] added some refinements to the theory by proving that the conjugate of a
compact operator is itself compact.

For a much more detailed history of the so-called Riesz—Schauder theory for compact
operators, the reader is referred to Pietsch’s book [790, Section 2.6]. We completely
agree with Pietsch’s words in this section that ‘The theory of compact operators is a
convincing example that deep and important mathematics can be — or should I say
must be — elegant’.

The theory of compact operators is often developed in the setting of possibly non-
complete normed spaces (the books [805, 811] are samples of such an approach).
This is so because most important results in that theory can be proved without
requiring completeness, and such results become widely useful in the study of rel-
evant integral equations of mathematical physics and theoretical mechanics, whose
solutions are modelled through non-complete normed spaces (see [811, p.306] for
details). Thus for example, Schauder’s theorem, quoted in the above Taylor-Lay
review, does not require completeness. We will not discuss the proof of Schauder’s
theorem here, but include it as the first assertion in Theorem 1.4.42 below.

Theorem 1.4.42 Let X and Y be normed spaces over K, and let T be in BL(X).
We have:

() If T is compact, then so is T'.
(ii) IfY is complete and if T' is compact, then T is compact.

Proof For the proof of assertion (i), the reader is referred to [811, Theorem V.7.3].
Assertion (ii) follows from the implication (iii)=-(i) in Corollary 1.4.10 by apply-
ing assertion (i) with 7’ instead of 7. O
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To realize that the completeness of Y in assertion (ii) of the above theorem cannot
be removed altogether, Fact 1.4.43 immediately below will be useful. Given normed
spaces X,Y,Z over K, and T € BL(X,Y), we say that T factors through Z if there
exist F € BL(X,Z) and G € BL(Z,Y) such that T = GoF.

Fact 1.4.43 Let X and Y be normed spaces over K, and let T be in BL(X,Y).
We have:

(i) T lies in F(X,Y) if and only if it factors through a finite-dimensional space
over K.
(i) If T belongs to §(X,Y), then T' lies in F(Y', X").
(iil) If T belongs to §(X,Y), then T' lies in F(Y',X').
(iv) If T belongs to §(X,Y), then T' lies in K(Y',X’).

Proof Assertion (i) is straightforward.

Assume that T € §(X,Y). Then, by assertion (i), there is a finite-dimensional
space Z over K, together with F € BL(X,Z) and G € BL(Z,Y ), such that T =GoF.
Therefore T’ = F' o G’ factors through the finite-dimensional space Z’, and lies
indeed in F(Y’,X’).

Keeping in mind that the mapping F — F’ from BL(X,Y) to BL(Y’,X’) is con-
tinuous, assertion (iii) follows from assertion (ii).

Assertion (iv) follows from assertion (iii) and Corollary 1.4.15. ]

Let X and Y be normed spaces over K, and let T be in BL(X,Y). According to
Examples 1.4.34 and 1.4.41 and Fact 1.4.43(iv), there are choices of X, Y, T such that
T’ is compact but T is not, and either X is complete or X = Y. Moreover, invoking
Theorem 1.4.42(i), Fact 1.4.43(iv), and the implication (v)=-(i) in Theorem 1.4.39,
we get the following.

Corollary 1.4.44 A Banach space X over K is reflexive if and only if, for every
normed space Y over K and every operator T € BL(X,Y) such that T' € R(Y',X’),
we have T € R(X,Y).

According to [790, Subsection 4.8.5], weakly compact (referred to as weakly
completely continuous) operators on Banach spaces were introduced by Kakutani
and Yosida for the purpose of the so-called ergodic theory (see [790, §5.3.5.4] and
references therein).

Our starting approach to compact operators through weakly compact ones between
(possibly non-complete) normed spaces follows the lines of the Mena and Rodriguez
paper [441]. This paper was motivated by Spurny’s recent theorem [596] (stated in
Corollary 1.4.21(i1)) that compact operators from an infinite-dimensional normed
space to itself cannot be surjective. We note that Spurny’s theorem implies that
zero belongs to the ‘algebraic’ spectrum (cf. §1.4.23) of any compact operator on an
infinite-dimensional normed space, a fact that concludes the classical spectral theory
of compact operators in the non-complete setting. Concerning classical results, we
have taken guidance from the books of Cerda [706], Conway [711], Dunford and
Schwartz [726], Hille and Phillips [746], Rynne and Youngson [805], and Taylor
and Lay [811].
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Results from Proposition 1.4.2 to Proposition 1.4.5 are taken almost verbatim
from [441]. Some of them are classical. Thus, for example, the compact version
of Corollary 1.4.3 can be found in [811, Theorem V.7.4]. The existence of bijective
compact operators between infinite-dimensional normed spaces is implicitly known
in the classical literature. (Indeed, according to §1.4.9, every compact non-finite-rank
operator starting from a reflexive space gives rise naturally to a bijective compact
operator between infinite-dimensional spaces.) Nevertheless, we did not seen this
fact emphasized until Spurny’s paper [596]. Although strangely introduced, the start-
ing space in Spurny’s example is (isometrically isomorphic to) ¢,. Proposition 1.4.4
provides us with many more similar examples, where again the starting space is
complete. Note that, if every surjective compact operator had to start from a Banach
space, then Spurny’s theorem reviewed in the preceding paragraph would follow
straightforwardly from the compact version of Corollary 1.4.3. As a matter of fact,
adding Proposition 1.4.5 to Proposition 1.4.4, we are provided with bijective compact
operators starting from a non-complete space.

According to [726, p.539], in the complete normed setting, Proposition 1.4.6 is
due to Nakamura [458]. Nevertheless, its proof, which can be seen for example in
[726, Theorem VI.4.2], requires no changes when the non-complete normed case is
considered.

A Schauder type theorem also holds for weakly compact operators. Indeed, we
have the following.

Theorem 1.4.45 Let X and Y be normed spaces over K, and let T be in BL(X,Y).
We have

(i) If T is weakly compact, then T' is weak*-to-weak continuous.
(i) If T' is weak*-to-weak continuous, then T' is weakly compact.
(iii) IfY is complete, and if T' is weakly compact, then T is weakly compact.

Proof Assume that T is weakly compact, let y’x be a net in Y’ convergent to zero
in the weak*-topology of Y’, and let x” be in X”. In order to prove assertion (i),
we must show that x”(77(y})) — 0. But, in view of Proposition 1.4.6, we have
y:=T"(x")€Y, hence

(T =T"(")04) =y, () =0,
as desired.
Since By is weak*-compact, assertion (ii) becomes clear.
Finally assume that 7’ is weakly compact. Then, by assertions (i) and (ii) (with T’
instead of T), T” is weakly compact, so that, if in addition Y is complete, the weak
compactness of T follows from Remark 1.4.7. O

Let X,Y, and T be as in the above theorem. According to [726, p.539], the
consequence that, when Y is complete, T is weakly compact if and only if so is T’
(respectively, that, when Y is complete, T is weakly compact if and only
if T' is weak*-to-weak continuous) is due to Gantmacher [279] (respectively, to
Nakamura [458]).

A later characterization of weakly compact operators, due to Davis, Figiel,
Johnson, and Pelczynski [209] (see also [711, Theorem VI.5.4] or [729, Theorem
13.33]), reads as follows.
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Theorem 1.4.46 Let X and Y be Banach spaces over K, and let T : X — Y be
a bounded linear operator. Then T is a weakly compact operator (if and) only if it
factors through a reflexive Banach space over K.

We will not discuss the proof of the above theorem here, but note that it remains
true in the non-complete setting. Indeed, if X and Y are normed spaces over K, and if
T :X — Y is a weakly compact operator, then it follows from Proposition 1.4.6
and Remark 1.4.7 that T7”(X"”) C Y and that 7" is weakly compact, so that, by
considering the inclusion mapping X — X”, and applying Theorem 1.4.46 (with
X", Y",T" instead of X,Y,T), we realize that T factors through a reflexive Banach
space.

Results from Theorem 1.4.8 to Corollary 1.4.15 are classical, although the equi-
valence (i)<>(ii) in Theorem 1.4.8 could not be explicitly recorded anywhere. Ac-
tually, Schauder’s theorem, together with arguments like those in the proof of the
implication (i)=-(ii) in Theorem 1.4.8, allow us to prove the following refinement of
Corollary 1.4.10.

Theorem 1.4.47 Let X and Y be normed spaces over K, and let T be in BL(X,Y).
We have:

(1) If T is compact, then the restriction of T to By is weak*-to-norm continuous.
(ii) IfY is complete, and if the restriction of T' to By is weak*-to-norm continuous,
then T is compact.

Proof Assume that T is compact. Then, by Schauder’s theorem (Theorem 1.4.42(1)),
T’ is compact. Let C stand for the norm-closure of 7/(By/) in X’. Since C is norm-
compact, and the restriction to C of the weak* topology of X’ is Hausdorff and
weaker than the norm topology, we derive that the norm and weak* topologies of X’
coincide on C. Since T is weak*-to-weak* continuous and 7' (By/) C C, it follows
that the restriction of 7’ to By is weak*-to-norm continuous.

Now assume that the restriction of 7”7 to By is weak*-to-norm continuous. Then,
since By is weak*-compact, T’'(By-) is a norm-compact subset of X', and hence T’
is a compact operator. Therefore, if in addition Y is complete, then, by the converse
of Schauder’s theorem (Theorem 1.4.42(ii)), T is compact. O

We have derived the above theorem from Schauder’s theorem, but, conversely,
Schauder’s theorem follows straightforwardly from assertion (i) in the above the-
orem. Although straightforward, we emphasize the following.

Corollary 1.4.48 Let X be a normed space over K, let Y be a Banach space over K,
and let T be in BL(X,Y). Then T is compact if and only if the restriction of T' to By
is weak*-to-norm continuous.

If the space Y above is separable, then By is metrizable, and hence we have the
following.

Corollary 1.4.49 Let X be a normed space over K, let Y be a separable Banach
space over K, and let T be in BL(X,Y). Then T is compact if and only if, whenever
v, is a sequence in'Y' converging to some y € Y' in the weak*-topology of Y', the
sequence T'(y,) converges to T'(y') in the norm topology of X'.
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Corollary 1.4.48 seems to be due to Dunford and Schwartz [726, Theorem VI.5.6].
According to them [726, p.539], Corollary 1.4.49 had been proved earlier by
Gelfand [283].

Results from Propositions 1.4.16—1.4.18 are classical. Thus, for example, Propos-
ition 1.4.16 can be found in [729, Corollary 3.87].

The question of whether the equality F(X,Y) = K(X,Y) holds for all normed
spaces X and all Banach spaces Y remained an open problem for many years. This

question, known as the approximation problem, goes back to the Polish School
in Lwoéw, and appeared in Banach’s book in 1932 (see [685, pp. 146 and 179]).
According to the comments by Pelczynski and Bessaga in [685, pp. 179-88], Banach,
Mazur, and Schauder had already observed that the approximation problem was
related to the problem of the existence of a basis, as well as to some questions
regarding the approximation of continuous functions. The relation between the
approximation problem and the problem of the existence of a basis becomes clear.
Indeed, if the approximation problem had a negative answer with ¥ separable,
then, by Proposition 1.4.18, there would exist a separable Banach space without a
Schauder basis. Concerning the relation between the approximation problem and
questions on the approximation of continuous functions, we follow Pietsch [790,
p- 285] according to whom Mazur knew that a negative answer to the approximation
problem would imply a negative response to the following question:

§1.4.50 Given a real-valued continuous function f = f(s,t) defined on the square
[0,1] x [0,1] and a number € > 0, do there exist numbers ay,...,a,, by,...,b, in
[0,1] and cy,...,c, in R with the property that

n

‘f(S,f) — > cf (ar,1) f(s,br)| < &

k=1
Sforalls,t €[0,1]?

On November 6, 1936, Mazur, offering an exceptional prize (a live goose), had
entered his question in the famous ‘Scottish book’ of open problems kept at the
Scottish Coffee House in Lwéw by Banach, Mazur, Ulam, and other mathematicians
in their circle (see [776, Problem 153]).

A first systematic study of the approximation problem was initiated by Grothen-
dieck [736] in 1955. Let Y be a Banach space over K, and let us say that Y has the
approximation property if for every compact subset K of ¥ and every € > 0O there
is an operator T € §(Y') such that ||7'(y) —y|| < € for every y € K. The outstanding
result of Grothendieck (which can also be seen in [729, Theorem 16.35] or [717,
Proposition 5.3(1)]) asserts that Y has the approximation property if (and only if) the
equality §(X,Y) = R(X,Y) holds for all normed spaces X .

The approximation problem (equivalently, whether every Banach space has the
approximation property) had been considered as one of the central open problems of
Functional Analysis, and it was not until 1972 that Enflo [245], using a very compli-
cated and delicate construction, produced the first example of a Banach space which
fails the approximation property. Since Enflo’s space is separable, he also provided
the mathematical community with the first example of a separable Banach space
without a Schauder basis. About a year after solving the problem, Enflo travelled to
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Warsaw to give a lecture on his solution, after which, since Enflo’s example answered
Mazur’s question 1.4.50 negatively, Mazur handed him a white goose in a basket.
Soon after some other ‘artificial” examples were constructed. However, Szankowski
[608] showed that nature provides its own examples when he demonstrated that the
space BL(H) of all bounded linear operators on any infinite-dimensional Hilbert
space H fails the approximation property. He also pointed out that his argument
allowed him to construct the first example of a separable C*-algebra failing the
approximation property, which consequently had no Schauder basis.

For the state-of-the-art on the approximation problem, we refer the reader to the
fine surveys written by Casazza [161] and Oja [465], and to the books written
by Lindenstrauss and Tzafriri [769, 770], Diestel and Uhl [720], Defant and
Floret [717], Megginson [778], Pietsch [790], and Diestel, Fourie, and Swart [719].
These sources have been widely used in our text.

Most results from Proposition 1.4.19 to Corollary 1.4.26 are taken from [441].
Nevertheless, we must say that, as acknowledged in [441], the argument in the proof
of Theorem 1.4.20, as well as the one to derive Corollary 1.4.21(ii) from that the-
orem, involve only slight changes in Spurny’s original proof of Corollary 1.4.21(ii)
[596]. Fact 1.4.24 is well known (see for example [711, Proposition VI.1.9]).
Although easily derivable from the results of [441], the equality sp(BL(X),T) =
sp(T) in Corollary 1.4.25 went unnoticed there. We note that, before [596], this
equality was unknown even if the weakly compact operator 7" was actually compact.
Results from Theorem 1.4.27 to Exercise 1.4.30 (with sp(BL(X), T) instead of sp(T')
when sp(T') appears) are classical.

The scarcity of the spectrum of a compact operator 7 from a normed space
X to itself, assured by Corollary 1.4.29(ii), is complemented by the fact that, for
0 # A € sp(T), the non-bijectivity of T — AlIx centres in a finite-dimensional
subspace. Indeed, we have the following theorem, which culminates the Riesz—
Schauder theory.

Theorem 1.4.51 Let X be a normed space over K, let T be in R(X), and let A be
in K\ {0}. Then X becomes the topological direct sum of two T-invariant subspaces
Y and Z such that Y is finite-dimensional, T — Alx is nilpotent on'Y, and T — Alx is
bijective on Z.

Sketch of proof A fundamental step in the argument is of a purely algebraic nature.
So let us forget for the moment that X is endowed with a norm, and let F' : X — X be
any linear mapping. The descent d(F) of F is defined by the equality

d(F) ;= min {n € NU{0} : R(F") = R(F"*1)},

with the convention that min® = . Analogously, the ascent a(F) of F is defined by
the equality

a(F) = min {T’l eNU {0} :ker(F”) — ker(FmH)})

with the same convention. The outstanding fact is that, if both d(F) and a(F) are
finite, then these two numbers coincide, and that, denoting by m their common value,
we have X = ker(F™) @ F™(X) (see for example [811, Theorems V.6.2 and V.7.9]).
If this is the case, then clearly both ker(F™) and F™(X) are F-invariant subspaces,
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and moreover F' is nilpotent on ker(F™) (since m = a(F')) and bijective on F™(X)
(since m = d(F)).

Now, recall that X is a normed space, let T and A be as in the statement, and set
F :=T — Alx. Then minor changes to the proof of assertion (iii) in Theorem 1.4.27
show that both d(F) and a(F) are finite. It follows that, setting ¥ := ker(F™) and
Z := F™(X) with m as above, Y becomes a finite-dimensional subspace (by The-
orem 1.4.27(i)) and we have X =Y & Z, the sum being topological because Z is
closed (by Theorem 1.4.27(ii)) and finite-codimensional in X. ]

It is easily realized that the injective compact operators on the complex Hilbert
space ¢, constructed in the solution of Exercise 1.4.30 are normal (cf. §1.2.2 and
Definition 1.2.11). Actually, there are not much more normal compact operators on
complex Hilbert spaces. Indeed, if K is any complex Hilbert space, and if F : K — K
is a normal compact operator which is not a finite-rank operator, then there is a copy
of {5 (say H) in K such that both H and its orthogonal H are F-invariant subspaces,
F=0onH", and F =T on H, where T is an injective compact operator like those
in the solution of Exercise 1.4.30 (see for example [711, Theorem IL.7.6]).

Exercise 1.4.30 also raises the question of characterizing those Banach spaces X
such that there exists an injective compact operator from X to itself. Separability of X
is a sufficient condition, but not a necessary one. Indeed the mapping {t,, } — {% Uat
from /.. to itself is an injective compact operator. More generally, if X is the dual
of any separable Banach space, then, by Proposition 1.4.4, there exists an injective
compact operator from X to itself. A natural class of Banach spaces containing both
separable ones and their duals is that of Banach spaces with w*-separable duals.
We note that, thanks to the bipolar theorem, the w*-separability of the dual X’ of a
Banach space X can be characterized by the existence of a sequence (f;),en in X’
such that ,cy ker(f,) = 0. Now we follow [304] to provide us with a reasonable
answer to the question we are dealing with. Indeed, we have the following.

Proposition 1.4.52 For a Banach space X, the following conditions are equivalent:

(i) X' is w*-separable.

(ii) For every infinite-dimensional Banach space Y, there exists an injective com-
pact operator from X to'Y.

(iii) There exists an injective compact operator from X to X.
(iv) There exists an injective compact operator from X to some Banach space.

(v) There exists an injective bounded linear operator from X to some separable
Banach space.

(vi) There exists an injective bounded linear operator from X to {..

(vii) There exists an injective bounded linear operator from X to some Banach space
whose dual is w*-separable.

Proof (1)=(ii) LetY be any infinite-dimensional Banach space. Take a normalized
basic sequence (v, )qen in Y, and invoke assumption (i) to find a sequence ( f, ) en in
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By such that (e ker(f;;) = 0. Then the mapping
o 1
T:x— 2‘1 n—zf,,(x)y,,
n—=

becomes an injective compact operator from X to Y.

(i))=-(iii) Keeping in mind that condition (iii) is automatically fulfilled if X is
finite-dimensional, this implication becomes clear.

(iii)=-(iv) This is clear.

(iv)=-(v) Since the closure of the range of a compact operator is separable
(cf. Exercise 1.4.17).

(v)=(vi) Since separable Banach spaces imbed (isometrically) into /., (see for
example [671, Theorem 2.5.7]).

(vi)=-(vii) Since the dual of /.. is w*-separable.

(vii)=(i) By assumption (vii), there exists an injective bounded linear operator
T from X to a Banach space Y such that Y’ is w*-separable. By taking a sequence
(gn)nen in Y’ such that N,cyker(gy) = 0, and setting f, := g,T, the sequence
(fu)nen C X' satisfies N,y ker(f,) = 0. O

By keeping in mind the compact version of Corollary 1.4.3, the implication
(i)=>(iii) in the above proposition yields the following.

Corollary 1.4.53 A Banach space X is finite-dimensional if (and only if) X' is
w*-separable and every injective bounded linear operator from X to X is surjective.

§1.4.54 1t is conjectured in [304] that the w*-separability of the dual in the above
corollary cannot be altogether removed. This conjecture has been proved recently by
Avilés and Koszmider [49]. Indeed, they have built an infinite compact Hausdorff
topological space E such that every injective bounded linear operator from C*(E) to
itself is surjective. For additional information about Banach spaces with w*-separable
duals, the reader is referred to [729, Subsection 3.11.5].

§1.4.55 Set X := ¢ or £, (1 < p < o). According to Corollary 1.4.33, R(X) is
the smallest nonzero closed ideal of BL(X). It is worth mentioning that, as proved
by Gohberg, Markus, and Fel’dman [294] (see also [715, Theorem 2.5.9] or [703,
Section 5.4]), £(X) is also the largest proper ideal of BL(X). In the case that X is
equal to the complex space /¢;, this result had been proved earlier by Calkin [157],
and, since then, the complete normed simple complex algebra BL(¢,)/£({2) has been
known as the Calkin algebra. We will see later (cf. Proposition 2.3.43) that the Calkin
algebra is a C*-algebra in a natural way.

Most results in Subsection 1.4.3 are new. We thank J. F. Mena for his collaboration
in the writing of this subsection. In particular, Example 1.4.41 is due to him.
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Beginning the proof of the non-associative
Vidav—Palmer theorem

2.1 Basic results on numerical ranges

Introduction In this section, we begin to enter the fascinating world of the
geometry of norm-unital normed algebras around their units, which originated in
the Bohnenblust—Karlin paper [108]. To this end, we develop the basic theory of
numerical ranges of elements in a pointed normed space, of elements in a norm-
unital normed algebra, and, in particular, of bounded linear operators on a normed
space. One of the star results in this section is Theorem 2.1.27, which states a
celebrated Banach space characterization, also proved in [108], of unitary elements
in unital C*-algebras.

2.1.1 Algebra numerical ranges

By a numerical-range space over K we mean a couple (X,u), where X is a normed
space over K, and u is a fixed norm-one element in X (called the distinguished
element of X). Let (X,u) be a numerical-range space. By a state of X relative to
u we mean an element f € By, satisfying f(u«) = 1. We denote by D(X,u) the set
of all states of X relative to u, and remark that, by the Hahn—Banach and Banach-
Alaoglu theorems, D(X,u) becomes a non-empty w*-compact convex subset of X’
Given x € X, we define the numerical range of x (denoted by V (X, u,x), or simply
V(x) when the couple (X,u) is without doubt) as the non-empty compact convex
subset of K given by

V(X,u,x):={f(x): feDX,u)}.

Given A € K and r > 0, we denote by Bg (A, r) the closed ball in K with centre A
and radius r.

Proposition 2.1.1  Let (X, u) be a numerical-range space over K, and let x be in X.
Then we have

V(X,u,x)= ﬂ B (A, ||x—Aul).
AeK

Proof Forall f € D(X,u) and A € K, we see that

If) = A =1f(x) = Af ()] = |f (e = Au)| < ([ f[[1e = Aul| = [loc — A,
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and hence f(x) € Bg(A,||lx — Aul). Thus V(X,u,x) C Nex Bx(A,[]x — Aul|). In
order to prove the converse inclusion, assume first that x € Ku. If x = ou, then
|lx — Au|| =|oe — A| for every A € K, and hence

() Bx (A, |lx—Aul]) = () Bx(A,]a—A|) € Bx(a,0) = {a} = V(X,u,x).

AeK AeK
Now, assume that x ¢ Ku. Let z be in () cx Bk (A, ||x — Aul|). Consider the linear
mapping g : Ku+Kx — K given by g(ou+ Bx) := o+ Bz. Since, for all o € K and
B € K\{0} we have

lg(ou)| = |er| = [|ouf
and
|g(ou+Bx)| = o+ Bz| = |Bl| 5 +2 < Blll Fu+x]| = [low+ B,
we get ||g]| < 1. Now, if f is a Hahn—Banach extension of g, then we realize that
f € D(X,u) and, consequently, that z = g(x) = f(x) € V(X,u,x). O
A straightforward consequence of Proposition 2.1.1 is the following.

Corollary 2.1.2  Let (X,u) and (Y,v) be numerical-range spaces over K, and let T
be a linear operator from X to Y such that T (u) = v. We have:

() If T is contractive, then V(Y,v,T (x)) C V(X,u,x) for every x € X.
(ii) If T is an isometry, then V (Y, v,T (x)) =V (X, u,x) for every x € X.
As a consequence, if Z is a subspace of X with u € Z, then

V(Z,u,z) =V(X,u,z) forevery z€Z.

Corollary 2.1.3 Let X be a nonzero normed space, and let T be in BL(X). Then
we have

V(BL(X"),Ix, T") = V(BL(X),Ix,T).
Proof Since the mapping F — F’ form BL(X) to BL(X’) is a linear isometry send-
ing Iy to Ixs, the result follows from Corollary 2.1.2(ii). O

For a complex (normed) vector space X, we will denote by Xg the real (normed)
vector space obtained when multiplication of vectors by scalars is restricted to R x X.
Given a complex number z, we denote by JR(z) the real part of z.

Proposition 2.1.4 Ler (X,u) be a complex numerical-range space, and let x be in
X. Then we have

V(Xg,u,x) = R(V(X,u,x)). (2.1.1)

Proof Since the mapping f — o f is a surjective linear isometry from (X')gr
to (Xg), we have D(Xg,u) = {Ro f : f € D(X,u)}, and the equality (2.1.1)
follows. D

Proposition 2.1.5 Let (X, u) be a numerical-range space over K, and let x be in X.
Then we have

r r—0t r

max RV (X, u,x)) = inf{”er” > 0} T Cha iy
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Proof In view of Proposition 2.1.4, we may assume that K = R. Since, by Propos-
ition 2.1.1, we have

V(X u,x) = ([t = e —tull,r + llx —rul],
teR

it follows that
maxV (X,u,x) =inf{t + ||x —ru|| : t € R}. (2.1.2)
Note that, for 71,7, € R such that #; < 1p, we have
llx = trul| = |lx = r2u+ (22 — t)ul] < [|x — 2wl + [| (2 = t1)ul| = |lx — t2u|| +12 — 11,

hence ] + ||x —tju|| < tp + ||x — rou/|, and so the mapping ¢ — 7+ ||x — tu| from R to
R is increasing. Therefore, by (2.1.2), we derive

—1
maxV (X,u,x) =inf{t + ||[x—rtul| : t e R™} inf{m : r€R+},
r
and

—1
maxV (X, u,x) = hm (t—i—Hx—tuH) = lim Jurefj =1

r—0" r

O

Corollary 2.1.6 Let (X,u) be a numerical-range space, let I be an interval of R
such that 0 € I and INRT # 0, and let f : I — X be a mapping having a right
derivative at 0 and satisfying f(0) = u. Then we have

[FA0]

r%OJr r

maxR(V (X, u, £(0))) =

Proof Considering the mapping f : INR* — X defined by

folr) == m’

r

and noticing that, for r € I'N RT we have
f(r) =u+rfi(0)+r(fo(r) = £1(0)),
we get
[u+rfL0)]| =l fo(r) = £ O < NF () < [JutrfL0) ]|+l fo(r) = £(0)]].
Therefore we have
"(0)]] -1 [FGIE

r r

L(0)]]—1
< Mﬂlfo(r)—fi(o)ll

for every r € INR™. By keeping in mind Proposition 2.1.5 and the fact that
lim || fo(r) = f1.(0)[ =0
r—0t

the conclusion follows by letting r — 0. L]
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Every norm-unital normed algebra will be considered without notice as a
numerical-range space with 1 as its distinguished element. The next proposition
becomes a basic result for the development of the theory of numerical ranges in

norm-unital normed algebras.

Proposition 2.1.7 Let A be a norm-unital complete normed associative algebra,

and let a be in A. Then we have

1 1
maxR(V(A,1,a)) = sup{rlog |lexp(ra)|| : r> O} = 111(1)1+ ;logHexp(m)H.
r—

Proof By Corollary 2.1.6, we have

el ~ 1
r—0t r

=maxR(V(A,1,a)).
Therefore, by the chain rule for right derivatives, we also have
1
lim —log||exp(ra)| = maxR(V(A,1,qa)).
r—0t r

Let r be in RT. Since

er exp(a) = exp <11> exp(a) = exp (11+a> ,
r r

we have
o [ exp(a)|| = ||exp (il —I—a) H < lit+all
Therefore
lexp(a)| < ital-L _ ew’
and hence

L+ ra|| -1

log [lexp(a)] < =

Keeping in mind Proposition 2.1.5, and letting r — 0, we get

log||exp(a)| < maxR(V(4,1,)).

Now, given r € R™, the above inequality, with ra instead of a, reads as

log||exp(ra)|| < maxR(V(A,1,ra)) = rmaxR(V(A,1,a)),

and hence
1
— log||exp(ra)|| < maxR(V(A,1,a)).
-

By combining (2.1.3) and (2.1.4), the result follows.

(2.1.3)

(2.1.4)

O

Definition 2.1.8 Let (X,u«) be a numerical-range space over K. An element x of X
is said to be dissipative if max R(V(X,u,x)) < 0. Assume in addition that K = C.

An element x € X is said to be hermitian if V(X,u,x) C R.

For a complex (normed) algebra A, we will denote by A the real (normed) algebra
obtained when the multiplication of elements of A by scalars is restricted to R x A.
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Corollary 2.1.9 Let A be a norm-unital complete normed associative algebra, and
let a be in A. We have:

() a is dissipative if and only if || exp(ra)|| < 1 for every r € R,

(i) If K=TR, then V(A,1,a) =0 if and only if ||exp(ra)|| = 1 for every r € R.
(iii) If K=C, then a is hermitian if and only if || exp(ira)|| = 1 for every r € R.
Proof Assertion (i) is a straightforward consequence of Proposition 2.1.7. Asser-
tion (ii) follows from (i) by keeping in mind that, for r € R, we have [exp(ra)]~! =
exp(—ra). Assertion (iii) follows from (ii) because, by Proposition 2.1.4, a is her-
mitian if and only if V(Ag,1,ia) = 0. O

The following lemma specifies §1.1.36 in the case of norm-unital normed algebras,
and becomes the key tool for transferring results on algebra numerical ranges from
the associative case to the non-associative one.

Lemma 2.1.10 Let A be a norm-unital normed algebra. Then the mappings
a— Lyand a — R,

from A to BL(A) become lineal isometries preserving distinguished elements. As a
consequence, for a € A we have

V(A,1,a) = V(BL(A),Ir,La) =V (BL(A),Ix, Ra).-

Proof The first conclusion is straightforward, whereas the consequence follows
from Corollary 2.1.2(ii). ]

Let (X,u) be a numerical-range space. For x € X we define the numerical radius,
v(x) = v(X,u,x), of x by

v(x) :=max{|z] :z€ V(x)}.

The numerical index, n(X,u), of X at u, is defined as the maximum non-negative
real number £ satisfying k||x|| < v(x) for every x € X. We note that v(-) becomes a

seminorm on X such that v(-) < || - ||, and that, if Z is a subspace of X with u € Z,
then, by Corollary 2.1.2, we have

n(Z,u) = n(X,u). (2.1.5)

Proposition 2.1.11 Let A be a norm-unital normed complex algebra. Then
1
Al) > —.
n(A,1) >

Proof In view of the above comments, we may assume that A is complete.
First assume that A is associative. Let a be in A. We must show that

lla| < ev(a). (2.1.6)

By Proposition 2.1.7, we have log || exp(a)|| < maxR(V(A,1,a)) < v(a). Replacing
a with za, for z € C, we get

lexp(za) | < €M,

Consider the entire function f : C — A given by f(z) = exp(za). Then, for r € RT,
the first Cauchy estimate gives
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1 1 rvia
lall = 17" O)] < ~max{[lexp(za)|| = |z| = r} < —e .

If v(a) = 0, then letting r — +oo we get a = 0, and hence (2.1.6) holds. Otherwise,
taking r := % (2.1.6) is obtained.

Now assume that A is not associative. Then, by Lemma 2.1.10, we can see A as a
subspace of BL(A) containing I4. Therefore, by the above paragraph and (2.1.5), we
obtain n(A,1) > n(BL(A),Ix) > L. O

Definition 2.1.12 Let X be a normed space over K, and let « be in X. We say that
u is a vertex of By if |ju|| = 1 and D(X,u) separates the points of X. Assume that
|lu|| = 1. We note that the condition n(X,u) > 0 implies that u is a vertex of By.
Assume in addition that K = C. We denote by H (X, u) the closed real subspace of X
consisting of all hermitian elements of X. It is easily realized that « is a vertex of By
if and only if H(X,u) NiH (X,u) = 0. Therefore we have the following.

Corollary 2.1.13 Let A be a norm-unital normed complex algebra. Then 1 is a
vertex of B (equivalently, H(A,1)NiH(A,1) =0).

§2.1.14 Let X be a normed space, and let Y be a subspace of X’. We say that Y is
almost norming if there exists m > 0 such that

m||x][ < sup{|f(x)| : f € By} (2.1.7)

for every x € X. When the number m above is equal to 1, we say that Y is norming.
Now, let u be a norm-one element in X, and set

DY (X,u) :=D(X,u)NY.
If DY (X,u) = 0, then we set n' (X,u) := 0. Otherwise, we define n' (X,u) as the
largest non-negative real number k satisfying
Kllxll < v"(x) := sup {| f(x)| : f € D" (X,u) }
for every x € X. We note that
nY (X,u) <n(X,u), (2.1.8)

and that, if n¥(X,u) > 0 (respectively, n' (X,u) = 1), then Y is almost norming
(respectively, norming).

Given a subset S of a vector space X over K, |co|(S) will stand for the absolutely
convex hull of S in X. If X is normed, then ¢o6(S) and |col|(S) will denote the closed
convex and closed absolutely convex hull of S in X, respectively.

Lemma 2.1.15 Let X be a normed space, let u be a norm-one element in X, and let
Y be an almost norming closed subspace of X' such that the linear hull of DY (X ,u)
is equal to Y. Then n¥ (X, u) > 0.

Proof  Since the linear hull of D (X, u) is equal to ¥, we realize that [co|(D" (X, u))
is a barrel in Y. Therefore, since barrels in a Banach space are neighbourhoods of
zero, there exists k > 0 such that kBy C [co|(D (X, u)). On the other hand, since Y is
almost norming, the inequality (2.1.7) holds for some m > 0 and all x € X. It follows
that mk||x|| <Y (x) for every x € X, and hence that n¥ (X,u) > 0. O
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Definition 2.1.16 Let X be a normed space. An element u € X is said to be a
geometrically unitary element of X if ||u|| = 1 and the linear hull of D(X,u) equals
the whole space X'. Clearly, geometrically unitary elements of X are vertices of By.

Theorem 2.1.17 Let u be a norm-one element in a normed space X over K. We
have:

(i) u is a geometrically unitary element of X if and only if n(X,u) > 0.
(ii) Ifn(X,u) > 0, then we have
1

int(By:) C X0

|co|(D(X,u)), (2.1.9)

and hence

1
By C ————
= (X u)

(iii) If K=TR, and if n(X,u) > 0, then we have in fact

[col(D(X,u)).

1
By C —
X (X, u)

and hence, for each f € X', there are 0,00 > 0 and fi, f» € D(X,u) such that

f=ofi—af and o+ on < n(“){}‘w

|co|(D(X,u)), (2.1.10)

(iv) If K=C, and if n(X,u) > 0, then, for each f €X', there are oy,0p,03,04 > 0
and f1, f2, 3, fa € D(X,u) such that

f=oafi—mph+ilozfs—oafs) and oy +on+ o3+ oy < ,\l/g(”ﬁ) .

v) n(X" u) =n(X,u).
(vi) u is a geometrically unitary element of X" if and only if it is a geometrically

unitary element of X.

Proof Assume that u is a geometrically unitary element of X. Then, by Lemma
2.1.15, we have n(X,u) > 0.
To prove the converse, note that, in the duality (X', X), the set

B:={xeX:v(x)<1}

is the absolute polar of D(X,u) in X, and that the inclusion n(X,u)B C By holds. It
follows from the bipolar theorem that

n(X,u)By is contained in the w*-closure of |co|(D(X,u)). (2.1.11)

Assume that K = R and that n(X,u) > 0. Then, |co|(D(X,u)) is w*-compact in X’
because

[co|(D(X,u)) = co(D(X,u)U—D(X,u)) (2.1.12)

and D(X,u) is w*-compact, and hence (2.1.10) follows from (2.1.11). Now the proof
of assertion (iii) is concluded by noticing that for f € X"\ {0} we have ﬁ feBy,
and applying (2.1.10) and (2.1.12). On the other hand, noticing that (2.1.10) implies
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(2.1.9), and that (2.1.9) implies that u is a geometrically unitary element of X, asser-
tion (ii) and the ‘if” part of assertion (i) are proved in the case K = R.

Now, assume that K = C and that n(X,u) > 0. Let € > 0, and take n € N such
that Be C (14 ¢€)co({z1,..-,2n}), Where zi,...,z, are the nth roots of 1 in C. Then
we have

|co|(D(X,u)) = co(BeD(X,u)) C (1+¢)co(UL,zD(X,u)).
Since co(U_,z;D(X,u)) is w*-compact, it follows from (2.1.11) that
n(X,u)Bxs C (14 ¢)co(UiLzD(X,u)).
Since co(U_,z:D(X,u)) C |co|(D(X,u)), we derive that
n(X,u)Byx C (14 ¢€)|co|(D(X,u)).
Therefore, since int(By/) C Ug=o ﬁ]B%X/, we have
n(X,u)int(By:) C |co|(D(X,u)).

This proves assertion (ii) and the ‘if” part of assertion (i) in the case K = C. On the
other hand, since
lco|(D(X,u)) € v2co (D(X,u) U—D(X,u) UiD(X,u)U—iD(X,u))
because
|co|(D(X,u)) = co(BeD(X,u)) and Be C v2co({1,—1,i,—i}),
and
co(D(X,u)U—D(X,u) UiD(X,u)U—iD(X,u))

is w*-compact, it follows from (2.1.11) that

By C n(\szu)co(D(X, 1) U—D(X,u) UiD(X,u) U—iD(X,u)),

which, after straightforward computations, proves assertion (iv).
By (2.1.5), we have n(X",u) < n(X,u). To prove the converse inequality, we may
assume that n(X,u) > 0. Let x” be in X”. Then we have

(X" ux") = max{|f(x")| : f € DX",u)} > sup{|f (x")| : f € D(X,u)}
= sup{|f(")| : f € [co[(D(X,u))} = n(X,u)sup{|f(x")| : f € By}
= n(X,u) ]|,

the last inequality being true because of assertion (ii). Since x” is arbitrary in X", we
derive n(X",u) > n(X,u), as desired.
Finally, assertion (vi) follows from assertions (i) and (v). ]

The next example shows that, when K = C, the inclusion

1
By C ———
X = n(X,u)
cannot be expected in assertion (i) of Theorem 2.1.17, even if n(X,u) = 1. In the
example, X is in fact a unital commutative C*-algebra and u is the unit of X.

|co| (D(X, u))
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Example 2.1.18 Let X stand for the complex Banach space of all convergent
sequences (ay)en of complex numbers, and let u € Sy be the sequence constantly
equal to 1. Then, since the coordinate projections on X are elements of D(X,u),
we have n(X,u) = 1. Moreover, thanks to the natural identification of X’ with the
complex Banach space ¢;(NU{0}), D(X,u) becomes the set of those sequences
(bn)nenugoy € Se,(nujoy) such that by, > 0 for every n € NU{0}. Now set

)
f5—<n e’”*') € Sy, (nufob)-
T ) ey € St

We are going to realize that f does not belong to |co|(D(X,u)). Assume to the
contrary that f € |co|(D(X,u)), so that f = Y, Afx for suitable m € N,
fi € D(X,u), and A € C\ {0} with X' | |A4] < 1. For k = 1,...,m, write
Sk = (bnk)neNU{O} € Sﬁl(Nu{O}) with by > 0 for every n € NU{0}. Then, since

o

I=|fl=X

n=0 |k

m

Z Aibni | <

Z Z | Ak|bak = Z z | Ak| bk = Z 1Ak <

n=0k=1

we deduce that | X" | 4buk| = 21 | Ak|buk for every n € NU{0}. Therefore for each
n € NU{0} there exists p, € Sc such that

Aicbnk = Pn| Ak |bni forevery k=1,...,m. (2.1.13)

Let n be in NU{0}. Since

]; ‘A’k|bnk - Z A’kbnk ni gin+l ,

i1

we deduce that p, = e'#+T and that there is k(n) € {1,...,m} such that b,y > 0. It

Ak(n
follows from (2.1.13) that e‘ﬁ = x ‘ But this is a contradiction because the set

{e w1 neNU {0}} is infinite and the set {M (=) jin€ Nu {0}} is finite.

Thinking about positive results for norm-unital normed algebras, it is enough to
combine Proposition 2.1.11 and Theorem 2.1.17 to achieve the following.

Corollary 2.1.19 Let A be a norm-unital normed complex algebra. Then 1 is a
geometrically unitary element of A. More precisely, we have

int(Ba/) C e|co|(D(A,1)).

Moreover, for each [ €A’, there are oy, 00, 03,04 >0 and fi, f2, f3, f4 € D(A,1) such
that

f=ofi—mfr+i(onfs—oufs) and oq+on+o5+ o4 <eV2|f|.

§2.1.20 Let A be a norm-unital normed associative algebra. An element u € A is
said to be algebraically unitary if u is invertible in A with |[u||=||u~"||=1.If u is an
algebraically unitary element of A, then L, is a surjective linear isometry taking 1 to
u. Therefore we have the following.
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Corollary 2.1.21 Let A be a norm-unital normed associative complex algebra,
and let u be an algebraically unitary element of A. Then all conclusions in Corol-
lary 2.1.19 remain true when we replace 1 with u.

By combining Lemma 2.1.15, the inequality (2.1.8), and Theorem 2.1.17(i), we
find the following.

Corollary 2.1.22 Let X,u, andY be as in Lemma 2.1.15. Then u is a geometrically
unitary element of X.

Lemma 2.1.23 Let (X,u) and (Y,v) be numerical-range spaces over K. Assume
that v is a geometrically unitary element of Y, and that there exists a bounded below
linear contraction T from X to Y such that T (u) = v. Then u is a geometrically
unitary element of X.

Proof By Corollary 2.1.2(i), we have v(T (x)) < v(x) for every x € X. Let k > 0 be
such that ||7(x)|| > k||x|| for every x € X. Then, for each x € X we have

kn(Y,v)|xl] < n(Y, )T ()] < v(T (x)) < v(x)-
Thus kn(Y,v) < n(X,u). Now, the result follows from Theorem 2.1.17(i). O

Corollary 2.1.24 Let X be a normed space, and let F be in BL(X). If F' is a
geometrically unitary element of BL(X'), then F is a geometrically unitary element
of BL(X).

Proof The mapping T : G — G’ from BL(X) to BL(X') is a linear isometry with
T(F) = F'. Now, apply Lemma 2.1.23. O

Lemma 2.1.25 Let X be a normed space over K, and let u be a vertex of Bx. Then
u is an extreme point of By.

Proof Let x,y be in By such that u = §(x+7), and let f be in D(X,u). Then we
have 1 = f(u) = 3(f(x)+ f(y)) with f(x),f(y) € Bk. Since 1 is an extreme point
of Bk, we get f(u—x) = 0. Finally, since f is arbitrary in D(X,u), and u is a vertex
of By, we derive x = u. O

Lemma 2.1.26 [806, Proposition 1.6.1 and Theorem 1.6.4] The closed unit ball of
a nonzero C*-algebra A has extreme points if and only if A is unital. In this case, the
extreme points of By are precisely the elements u € A such that

(1—uu)A(1—u'u) =0.
A proof of the above lemma will be given much later (see §4.2.37).

Theorem 2.1.27 Let A be a unital C*-algebra, and let u be in A. Then the following
conditions are equivalent:

(1) wis unitary (i.e. w*u = uu* =1).
(i1) u is algebraically unitary.
(ii1) u is geometrically unitary.
(iv) u is a vertex of the closed unit ball of A.



104 Beginning the proof of the non-associative Vidav—Palmer theorem

Proof The implications (i)=>(ii) and (iii)=>(iv) are clear, whereas the implication
(i1)=-(iii) follows from Corollary 2.1.21.

(iv)=(1) Assume that u is a vertex of B4. By Lemmas 2.1.25 and 2.1.26, we have
(1 —uu*)A(1 —u*u) = 0. Therefore u* (1 — uu* )u(1 — u*u) = 0. Since

[w(1—v'u)]" =1 —uu®)u* = u* (1 —uu*),

using the C*-identity we get u(1—u*u) = 0. Note that, forany A € Cand f € D(A, u),
we have

LA S (=) P = | f (a2 (L= )P < et A (1 —wad”) |2
= e+ A1 — )] [+ A (1 =) ]
= | [" + A1 — )] [+ A (1 — ") |
= |l u+ At (1 —wa*) + A (1 — wad* Yu+ AP (1 — )|
= Jlutu+ AP =) || < T+[AP

For A = f(1 —uu*), this implies |f(1 — ux*)| = 0. Since u is a vertex of B4 and
f € D(A,u) was arbitrary, this shows that 1 — uu* = 0. Similarly we get 1 —u*u =0,
SO u is unitary. ]

2.1.2 Operator numerical ranges

Now we are going to construct a norm-unital complete normed associative (neces-
sarily real) algebra such that its unit is a vertex of the closed unit ball but is not a
geometrically unitary element. Since such an algebra will be of the form BL(X) for
some real Banach space X, we are pleasantly obliged to do a quick incursion into the
world of numerical ranges of operators.

Lemma 2.1.28 Let A be a norm-unital normed real algebra, and let a be in A
with V(A,1,a) = 0 and such that a* lies in the linear hull of {a,1}. Then we have
= —||a||*1 and ||a+ s1||> = ||a||* + s* for every s € R.

Proof The assumption that a lies in the linear hull of {a,1} implies that this linear
hull is an associative subalgebra of A, so that we may assume that A is associative and
complete. Moreover, by the same assumption, there are real numbers ¢, it such that

(a—od)? = pul. (2.1.14)
On the other hand, since V(A,1,a) = 0, Corollary 2.1.9(ii) applies, so that we have
e* ||exp[r(a—od)]|| = ||exp(ra)|| =1 forevery r € R. (2.1.15)

If a € R1, then a = 0 because V(A,1,a) = 0, and the result follows. Therefore, in
what follows we will assume that a ¢ R1, and hence that there exists M > 0 such that

M|s| < ||s1+1(a—od)|| forall s,z €R. (2.1.16)
Suppose that 4 = 0. Then, since by (2.1.14) we have

exp[r(a—ol)]=1+r(a—ol),
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it follows from (2.1.15) that
e |1+r(a—al)||=1 forevery reR,

which, in view of (2.1.16), implies o = 0. Therefore we have |1+ ra|| = 1 for every
r € R, so a = 0, contradicting our previous assumption that a ¢ R1.

Now, suppose that g > 0 (say g = A? with A > 0). Then, since by (2.1.14) we
have

exp[r(a—o1)] = (coshrA)1+ %(sinhr?u)(a —ol),

it follows from (2.1.15) that

e(Xr

1
(coshrd)1+ Z(sinhrl)(a - Ocl)H =1 forevery reR,

which, in view of (2.1.16), implies Me®* coshrA < 1 for every r € R, another con-
tradiction.
It follows from the two preceding paragraphs that u < 0 (say g = —A? with
A > 0). Then, since by (2.1.14) we have
1
exp[r(a—ol)] = (cosrA)1+ x(sin rA)(a—al),
it follows from (2.1.15) that

e(Xr

1
(cosrA)1+ x(sinrl)(a —ol) H =1 forevery reR,
which, in view of (2.1.16), implies @ = 0. Therefore we have

1
(cosrA)1+ x(sinrl)a)
and taking r := 57, we derive that ||lal| = A, which together with (2.1.17) implies
easily that ||a +s1||> = ||a||*> + s? for every s € R, and also, by (2.1.14), that a*> =
—||a||*1, as required. O

=1 forevery r € R, (2.1.17)

Let X be a normed space. We define the spatial numerical index, N(X), of X by
N(X) :=n(BL(X),Ix). Since BL(X) can be seen as a subspace of BL(X’) containing
Iy (via the mapping T — T’ form BL(X) to BL(X')), the inequality (2.1.5) applies,
so that we have

N(X) = N(X"). (2.1.18)

Corollary 2.1.29 Let X be a normed two-dimensional real space. Then X is a
Hilbert space if and only if N(X) = 0.

Proof Assume that X is a Hilbert space. Then X = Cg, and hence the oper-
ator T of multiplication by the imaginary unit becomes an element of BL(X) with
V(BL(X),Ix,T) = 0. Indeed, we have

 |x+rT| -1 . V142 —1
lim = lim =0,
r—0 r r—0 r

and Proposition 2.1.5 applies. Now, we have v(T) = 0 and T # 0, which implies
N(X)=0.
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Assume that N(X) = 0. Then, since BL(X) is finite-dimensional, there exists
a norm-one element 7 € BL(X) such that v(7T') = 0. Moreover, since X is two-
dimensional, T belongs to the linear hull of {Ix, T'}. It follows from Lemma 2.1.28
that 72 = —Ix and that

[[(cos @)Ix + (sin@)T|| =1 forevery ¢ € R. (2.1.19)

As a consequence, for ¢ € R, the operator T, := (cos @)Iy + (sin)T is bijective
with T(p_1 =T ¢ and [Ty = ||T(p_1|\ = 1. Now, since T, is a surjective lin-
ear isometry on X, it is enough to take a norm-one element u# € X, to have
l|(cos@)u+ (sin@)T (u)|| = ||Tp(u)|| = 1 for every ¢ € R, which, again by the two-
dimensionality of X, shows ostensibly that X is a copy of the Euclidean plane. [

§2.1.30 Given a normed space X, we denote by I1(X) the subset of X x X’
defined by

I(X) :={(x,f) : x €Sy, f € D(X,x)}.
For any subset " of IT1(X), we set 7 (T") := {x: (x, f) € T for some f}.

Proposition 2.1.31 Let X be a normed space, let T be a subset of T1(X) such that
its natural projection m; (') is dense in Sx, and let T be in BL(X). Then we have

V(BL(X),Ix,T) = co{ f(T (x)) : (x,f) € T}.
Proof Let u =supR({f(T(x)): (x,f) € T}). Since, for (x,f) € T, the mapping
F — f(F(x)) belongs to D(BL(X),Ix ), Proposition 2.1.5 applies, so that we have

u ginf{”b‘”T”l;wo}. (2.1.20)

r

The case T = 0 is obvious; so assume that T # 0. Let 0 < r < ||T|| ™!, &€ > 0, x € Sx.
Since m; (") is dense in Sy, there exists (y,g) € I such that ||x —y|| < €. We have
R(g(T(y)) <u < (T, and so

[(lx = rT))] = R(e(Ux —rT)(y)) = 1=rR(g(T(y))) =1 —ri > 0.

Therefore

(I —rT) @) > 1 ra— i — 1T e.
Since ¢ is arbitrary, this gives ||(Ix —rT)(x)|| > 1 — ru, and therefore
[(Ix = rT)(x)|| = (1 —ru)|jx|| forevery x € X.
If we replace x by (Ix +rT)(x), this gives
(I + 7)) < (1= )| (Ix — PT2)(6)| for every x € X,

and so
1+ 72|72
[Ix + 7T < M
1—ru
Therefore
[Ix +rT][ =1 _ p+r|T?
r = 1—ru

)
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and this, together with (2.1.20), proves that
[ T||—1
u:inf{HX—H”:r>O}.
r
Now, again by Proposition 2.1.5, we have

maxR(V(BL(X),Ix,T)) = supR({f (T (x)) : (x,f) €T}).

The proof is easily completed by replacing 7" with appropriate scalar multiples of T
and using the fact that V(BL(X),Ix,T) is a closed convex set. O

§2.1.32 Given a normed space X, and a bounded linear operator 7 on X, we define
the spatial numerical range, W (T), of T by

W(T) = {f(T(x)) : (x.f) € TIX)}.
Corollary 2.1.33  Let X be a normed space, and let T be in BL(X). Then we have
V(BL(X),Ix,T) = coW(T).
Proof By the Hahn—Banach theorem, we have 7; (TT(X)) = Sx. Therefore the result
follows by applying Proposition 2.1.31 with I' = TI(X). O
The next corollary has its own interest.
Corollary 2.1.34 Let X be a Banach space, and let F be in BL(X'). Then we have
V(BL(X'),Ix1,F) = o{F (f)(x) : (x,f) € I(X)}.

Proof ThesetT” :={(f,x): (x,f) € TI(X)} is a subset of [1(X") whose projection
into the first coordinate is dense in Sys (thanks to the Bishop—Phelps theorem).
Therefore the result follows by applying Proposition 2.1.31 with (X’,T”, F) instead
of (X,I,T). O

For a convex subset S of a vector space X, we denote by ext(S) the set of all
extreme points of S.

Corollary 2.1.35 Let X be a Banach space, and let T be in BL(X). Then we have
v(BL(X),Ix,T) = sup{|x”"(T" ()| : ' € ext(Bx),x" € ext(Byn),x"(x') = 1}.
Proof As a consequence of Corollary 2.1.33, we have
v(T):=v(BL(X),Ix,T) = sup{¢(x) : x € Sx }, (2.1.21)
where, for x € Sy, ¢(x) is defined by
6(x) == sup{W(T(x))] : ¥ € D(X,x)}.

Now recall that D(X,x) is a w*-compact convex subset of X’, and note that, for
x € Sy, the mapping X' — |x'(T(x))| from X’ to R is convex and w*-continuous,
and that consequently the set {x’ € D(X,u) : |/(T(x))| = ¢(x)} is a w*-closed face
of D(X,u). It follows from the Krein—-Milman theorem that, for each x € S, there
exists X’ € ext(D(X,u)) such that [x'(T'(x))| = ¢(x). Since D(X,u) is a face of By,
we derive from (2.1.21) that

v(T) = sup{|«' (T (x))| : ¥ € ext(By),x € Sx,x'(x) = 1}.
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As a consequence, we have
v(T) < sup{|X"(T'(x))| : ¥ € ext(By),x" € D(X",x')} <v(T") =v(T),
the equality at the end being true because of Corollary 2.1.3. Therefore we can write
W(T) = sup{y(x') : ¥ € ext(By)},
where now, for X’ € ext(By/), y(x') is defined by
Y(') = sup{[¥"(T"(x'))| : " € D(X', )}
The proof is concluded by applying to y the same argument as that used for ¢. [

Fact 2.1.36 Let n be a positive integer greater than or equal to 2, and let m be in 7.

Then we have
joos (5 3 [ <05 (3;)
cos|—+— )| <cos(—].
n 2n 2n

If in addition n is even, then we also have

‘sin (m—n+£)’ < cos (£>
n 2n/1 2n/’

Proof We observe that the inequality

joos (5 3) [ <05 (3;)
cos|—+— | < —
n 2n 2n

is equivalent to the fact that

mm T T T
ot
which is equivalent to 2m+ 1 ¢ | — 1, 1] + 2nZ, and this last statement is obviously
true. Analogously, we note that the inequality

(24 2 <en(3)
sin({ — 4+ — )| <cos(—
n 2n 2n

— 7
n 2n [ * ’

is equivalent to

mg T } T T . T [ 4z

n 2n 2 2n’2 2n ’
which is equivalent to 2m+1 ¢ |n— 1,n+ 1| 4+ 2nZ, a statement which is true when
n is even. O
Let n be a positive integer greater than or equal to 2. For k =1,2,...,2n, we write

(=(5) ()
Xg:=|cos| — |,sin| — | ],
n n
X) = ! cos kn + ) sin kn +
£ cos (£) n o 2n)’ no 2n))’
and we define X, to be the two-dimensional real Banach space such that

ext(By,) = {x¢ : k=1,2,....2n}. (2.1.22)

Lemma 2.1.37 Let n be an even positive integer, and let X, be defined as above.
T
Then N(X,) < tan (2-).
en N(X,) < tan o
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Proof For j,ke€{1,2,...,2n} we have

kr w jr . (kn m\ . (&
cos| —+—|cos|{— | +smn|{ —-+—|sin|{ —
n 2n n n 2n n

1

0s (3;)
_ 1

~ cos (%)

so, the preceding fact tells us that |x; (x;)| < 1. Moreover, for k € {1,2,...,2n} we
have x} (x¢) = 1 and x (xx11) = 1 (with the identification x,41 = x1). Therefore,

/!
X\ X5 =
)| = =

ext(By/) = {x; : k=1,2,...,2n}. (2.1.23)
It follows from (2.1.22) and (2.1.23) that, for every T € BL(X) we have
I T|ln = max{|x,(T (x;))| : j.k=1,2,...,2n}, (2.1.24)
and, by applying Corollary 2.1.35, that

vu(T) = max{|x, (T (x;))] : k=1,2,....2n; j=k,k+1}. (2.1.25)

-1
Now, consider the operator U € BL(X,,) represented by the matrix <(1) 0) . In order

to compute the norm || - ||, and the numerical radius v, () of U we need an explicit
formula for x; (U (x;)). For j,k € {1,2,...,2n} we have

% (U(x)))
1

ke m\ . (& . (knr & jm
=———( —cos( —+4 = |sin == ) +sin{ — + = )cos [ — ] |,
cos (&) n o 2n n n 2n n

and hence, we deduce

1 k—j
x;C(U(x,)):COS(ﬂ) sin(( n’)”+2’;>. (2.1.26)
2n

As a consequence, for every k € {1,...,2n} we have
T
(U ()| = (U ()] = tan (5.

and hence, by (2.1.25), we get v,(U) = tan (£ ). On the other hand, using the equal-
ity (2.1.26) and Fact 2.1.36, we have

I k—j
sin(( J)”+”)‘<1 jkell,... 2n},

O = 7
2n

n 2n

and the equality holds for k = 5 and j = 2n, so that, by (2.1.24), we have ||U||, = 1.
Now that we know v,(U) and [|U|,, the inequality N(X,) < tan () becomes
obvious. O

Given an arbitrary family {X, : A € A} of normed spaces over K, we denote by

@il caXo, the £1-sum of the family. In the case that the family has just two elements

(say X,Y), we use the simpler notation X &1 Y.
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Lemma 2.1.38 Let {X; : A € A} be a family of normed spaces over K, and let Z
stand for @i‘e AXa- Then we have

N(Z) =inf N(X;).

Moreover, if N(X),) > 0 for every A € A, then I is a vertex of the closed unit ball of
BL(Z).

Proof For any normed spaces X and Y, let E stand for X ¢ Y. We first check that
N(E) < N(X) by showing that N(E) < v(S) for any S € BL(X) with ||S|| = 1. For
such an operator S, let T € BL(E) be given by T'(x,y) = (S(x),0). Then ||T|| = 1
and hence N(E) < v(T), so that, by Corollary 2.1.33, for every € > 0 we may find
z=(x,y) € Sg and 7 = (¥,y’) € Sgs such that

X (x)+' () = Il + [yl =1 (2.1.27)

X (S(nnm

(we may assume that N(E) > 0) implying that N(E) — & < v(S), and therefore
N(E) < v(S), because x'(x) = ||x'||||x]| by (2.1.27).
For fixed A € A we clearly have

and

N(E)—e <[ (T(2))] = W (5())| <

Z= {@QI#A{)XA] @1X7(0a
s0, by the above paragraph, we get N(Z) < N(X, ) and it follows that

N(Z) <infN(X).

Now, let us prove the reverse inequality. Let T be in BL(Z). Then T can be seen as
a family (7)), ca where T) € BL(X,,Z) for every A € A, and ||T|| =sup, ||7,]. Let
£>0. Then we can find Ag € A such that || T, || > [|T'|| — €, and we write Z =X ©17Y,

where Y := @?#%X;L, and T, = (A,B) where A € BL(X), ) and B € BL(X;,,,Y ). Now
we choose xg € SXAO such that

173 (x0) || = [|A(x0) [| + 1B(x0) | > IT']| — €,
find ag € Sx; . y' € Sy satisfying
|A(x0)llao = A(xo) and y'(B(x0)) = [|B(x0)],

and define an operator § € BL(X},) by S(x) = A(x) +y'(B(x))ag for every x € X .
Then

ISI > 115} | = ||Axo) + 1Bxo)llao | = 1A o)+ 1Bxo) | > 17|~ e,
so we may find x € X, ¥’ € X)’LO such that

lxll =[] =x'(x) =1 and [¥'(S(x))| = N(Xp)[IT| - &].
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For z = (x,0) € Sz and ' = («',x'(a0)y’) € Sz we clearly have Z'(z) = 1 and
(T (2))] = ¥ (A(x)) +(a0)y (B(x))|

= [(S(x))]
>NX)IT) - el (2.1.28)

The desired inequality N(Z) > infy N(X,) follows. Moreover, if T # 0, and if
N(X,,) > 0 for every A € A, then the inequality (2.1.28) shows that v(T') > 0. Since
T is arbitrary in BL(Z), it follows that Iz is a vertex of the closed unit ball of
BL(Z). O

Proposition 2.1.39  There exists a real Banach space Z such that Iz is a vertex of
the closed unit ball of BL(Z), but is not a geometrically unitary element of BL(Z).

Proof By Corollary 2.1.29 and Lemma 2.1.37, for each n € 2N, we can find a two-
dimensional real normed space X, with N(X,) > 0, in such a way that the sequence
N(X,) converges to zero. Now, set Z := @f,‘GZNXn. It follows from Lemma 2.1.38
that I is a vertex of the closed unit ball of BL(Z) and that N(Z) = 0. But, by
Theorem 2.1.17(i), the equality N(Z) = 0 is equivalent to the fact that Iz is not a

geometrically unitary element of BL(Z). O

Let X be a normed space, and let u be in X. The element u € X is said to be a
strongly extreme point of By if ||lu| = 1 and, whenever x,, and y, are sequences in By
with r}grolo 3 (xa +yn) = u, we have ’!grolo (x, —yn) = 0. Clearly, strongly extreme points
of By are extreme points of By. Assume that ||u|| = 1. We define the modulus of
midpoint local convexity of X at u as the function &y (u,-) : RT™ — R given by

Ox (u,€) := inf{ max lutx||—1:x€ SSX}.
It is clear that, if Y is a subspace of X containing u, then we have

Sx (u,-) < 8 (u,-). (2.1.29)

Lemma 2.1.40 Let X be a normed space, and let u be a norm-one element of X.
Then u is a strongly extreme point of By if and only if 8x (u,€) > 0 for every € € RT.

Proof If for some € € R we have 8x(u,&) = 0, then for each n € N there exists
zn € €Sy such that |lu=z,[| — 1 < 1. For each n € N, define

1\ ! 1!
xn::<1+n> (u+2z,) and yn::(l—i—n) (u—2zp).

It is clear that x,,y, € Bx and that %(x,, +yn) = (14 %)_lu converges to u, but
Xn—yn =2(1+ %)’1zn does not converge to 0. Thus u is not a strongly extreme
point of By.

Conversely, assume that u is not a strongly extreme point of By, so that there are
sequences x, and y, in By satisfying

1
lim *(xn +.Vn) =u and lim (x, _yn) #0.
2 n—roo

n—yeo
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By passing to subsequences if necessary, we may assume that ||x, — y,|| > 0 for every
n € Nand lim ||x, — y,|| = € > 0. Note that, for each n € N, we have
n—yoo

H E Xn—Yn ’
2w —ull
1 1 E Xp—Yn
= p——— — ifi
=gt + gl
1 1 Fot 1 &
<lu— = (xn+y —l—H(lﬁ:)x +(1:F)y
2| 3 M ) 2 U =l )
1 1 € 1 &
<lu—=(xn+y +‘1j: +’11F
ARl I Ll P} ) L e
1( ) +1‘1+ e +l’ e
= |lu— =(x - _ -,
2T T =l on — vl
and hence
hmmax uj: y"‘—l:O.
n—reo 2Hxn Yn”
As aresult, 6y (u,5) =0. O

Proposition 2.1.41 Let X be a normed space over K, and let u be a norm-one
element of X. Then we have

Sx(u,€) = \/1+n(X,u)2e - 1. (2.1.30)

As a consequence, if u is a geometrically unitary element of X, then u is a strongly
extreme point of By.

Proof Lete >0, let x be in €Sy, and let f be in D(X,u). Then we have

max Jux]* > max| f(ux)* > (If(u+X)|2+|f(u X)) =1+ ()

Taking supremum over f € D(X,u), we get

maxg |ludx|? = 1+ v(X,u,x)|* = 1 +n(X,u)*e?

maxy |lutx||—1>/1+n(X,u)?e? -1,

and (2.1.30) follows by taking infimum in x € €Sy. The consequence in the statement
of the proposition follows from (2.1.30) by keeping in mind Theorem 2.1.17(i) and
Lemma 2.1.40. O

SO

Corollary 2.1.42 Let A be a norm-unital normed algebra over K. Then the unit of
A is a strongly extreme point of Bs. More precisely, we have

oa(l,e) =2V 1+e2e2—1. (2.1.31)

Proof 1If K = C, then the result follows from Corollary 2.1.19 and Propos-
itions 2.1.11 and 2.1.41. In the case K = R, the result follows from the complex
case, keeping in mind that: (i) both the notion of strongly extreme point and the
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definition of modulus of midpoint local convexity involve only real scalars; (ii) Ac is
a norm-unital normed algebra (by Proposition 1.1.98); and (iii) 84(1,€) > 0. (1,€)
(by (2.1.29)). O

The next example shows that, in general, a vertex of the closed unit ball of a
Banach space X need not be a strongly extreme point of By.

Example 2.1.43 Let X be the space of all sequences in K converging to zero, with
norm defined by

1 1
l(an)nen| == sup{n(|a1|—|— |an|) + (1 - n> max{|ai|,|an|} :n= 2,3,...}.
Notice that
1
Esup{|an\ n=2,3,...} <|[(an)nen]| < |a1]|+2sup{|a,| :n=2,3,...},

so X is isomorphic to co and X’ is isomorphic to £!. Let {e, } be the standard Schauder
basis of X and {¢],} the standard Schauder basis of X'; that is, €}, ((a,);_;) = am. It
is easy to check that the following functionals are in D(X, e ):

1 1
/ / / / /
el,el+§€2,...,€]+;€n,...

and the linear hull of these functionals is w*-dense in X', so e; is a vertex. The point
e1 is however not strongly extreme. Indeed, since

2 1
|61:|:en||+<1—> — 1 while [lea] = 1,
n n

e|+e,
ller+enll

—ep

= A=% {0 realize that
Hel 79}1”

it is enough to take x;, :=

and yj, :

1 .
r}gr(}oE(xn +yr1) =e; but r}grgo“xn_Yi1|| =1

Now, we are going to summarize and clarify several results in the current section
by discussing the diagram in §2.1.44 immediately below.

§2.1.44 Let X be a nonzero normed space over K, and let u be in X. Then, keeping
in mind Lemma 2.1.25 and Proposition 2.1.41, the implications in the following
diagram hold.

u geometrically unitary — u vertex of By
4 I
u strongly extreme point of By — u extreme point of By

If X is a norm-unital normed complex algebra, and if u is the unit of X, then, by
Corollary 2.1.19, the strongest condition in the diagram is automatically true. On the
other hand, by Proposition 2.1.39 and Corollary 2.1.42, there exists a norm-unital
normed (necessarily real) algebra X whose unit u is both a vertex and a strongly
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extreme point of By, but not a geometrically unitary element of X. Thus the hori-
zontal implication in the top row and the vertical implication in the left column of
the above diagram are simultaneously non-reversible, even in the setting of norm-
unital normed real algebras.

According to Corollary 2.1.42 and Example 2.1.43, there is a choice of (X,u)
(necessarily outside the setting of norm-unital normed algebras) such that u is a
vertex of By but not a strongly extreme point of By. As a consequence, the horizontal
implication in the bottom row is not reversible.

To conclude the discussion of the above diagram, note that, by taking X = Cg,
and u = 1, we are provided with an example where u is a strongly extreme point of
Bx but not a vertex of By. As a consequence, the vertical implication in the right
column is not reversible, even in the setting of (necessarily real) norm-unital normed
algebras.

2.1.3 Historical notes and comments

This section, as well as a great part of the present work, is tributary to the codi-
fication of the theory of numerical ranges done in the Bonsall and Duncan books
[694, 695, 696]. Most results from Proposition 2.1.1 to Corollary 2.1.13, including
their proofs, are taken almost verbatim from those books. The material just quoted
is originally due to Bohnenblust and Karlin [108], who seem to have been the first
authors to consider algebra numerical ranges. Proposition 2.1.5 is folklore. It follows,
for example, from [726, Theorem V.9.5].

Let X be a complex Banach space. As a consequence of Corollary 2.1.13, Iy is a
vertex of the closed unit ball of BL(X). Actually, Iy remains a vertex of the closed
unit ball of a much larger Banach space. More precisely, by passing to restrictions
to By, the space BL(X) can be identified with a closed subspace of the sup-normed
Banach space Ag(X) of all bounded continuous functions from By to X which are
holomorphic in the open unit ball of X and vanish at zero, and it follows straight-
forwardly from Proposition 2 in Harris’ paper [312] that Iy becomes a vertex of
By, (x)- In fact, minor changes to the proof of [312, Proposition 2] allow us to realize
that Iy is a vertex of B, x), where A(X) stands for the Banach space of all bounded
continuous functions from By to X which are holomorphic in the open unit ball of
X. A sketch of the proof could be the following:

Let F be in A(X) such that V(A(X),Ix,F) = 0. We must show that F = 0.
To this end, we take a norm-one element x € X and ¢ € D(X,x), and consider
the function f : S¢ — C defined by f(4) := A~ '¢(F(Ax)). Since, for A € Sc,
the mapping G — A~ '¢(G(Ax)) from A(X) to C is an element of D(A(X),Ix),
we have f(4) =0 (and hence ¢(F(Ax)) = 0) for every A € S¢. By the Cauchy
formula for the circumference, we have in fact /(F(Ax)) = 0 for every A € Bc.
With the notation in [312, pp. 1006-7], the above implies that

W (F) :={l(Fy(x)) : ||x]| = 1,£ € D(X,x)} =0 forevery s€]0,1].

Finally, by [312, Theorem 1], we have F = 0, as required. O]
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Lemma 2.1.15 is taken from the Bandyopadhyay-Jarosz—Rao paper [56].
Theorem 2.1.17 is due to Martinez, Mena, Paya, and Rodriguez [425], and was
partially rediscovered in [56]. Theorem 2.1.17 is derived in [425] from the following
result, also proved there.

Theorem 2.1.45 Let (X,u) be a numerical-range space over K, let C be a
convex closed subset of K with non-empty interior, and let X' be in X" with
{X'(f) : f € D(X,u)} C C (which happens for example if X" is in X" with
V(X" u,x") C C). Then there exists a net x; in X such that V(X,u,x;) C C for
every A, and X’ = w*—1im, x;.

This generalizes a similar result previously proved by Smith [592] for norm-unital
complete normed associative complex algebras. Theorem 2.1.17 is nothing other
than an abstract version of Corollary 2.1.19, proved previously and independently
by Moore [446] and Sinclair [579], and shows that the Moore—Sinclair theorem and
Proposition 2.1.11 are ‘equivalent’.

Example 2.1.18 has been pointed out to us by M. Martin (recent private com-
munication). Corollaries 2.1.21-2.1.24 are taken from [56]. Lemma 2.1.23 is taken
from [332].

Lemma 2.1.26 is due to Kadison [358]. Theorem 2.1.27 is originally due to
Bohnenblust and Karlin [108] (1955). At that time, neither Theorem 2.1.17 nor even
its Corollary 2.1.21 (a straightforward consequence of the earlier Moore—Sinclair
Corollary 2.1.19) were known. However, the particularization of Corollary 2.1.21 to
unital C*-algebras (applied in our proof) was always C*-folklore. Although included
in Palmer’s book [787] (2001), Theorem 2.1.27 remained forgotten by many people
until its rediscovery by Akemann and Weaver [5] (2002). However, the Akemann—
Weaver paper actually contains new relevant results along the lines of characterizing
in Banach space terms the elements in certain distinguished subsets of C*-algebras.
As a sample, we have the following.

Theorem 2.1.46 A norm-one element u of a C*-algebra A is a partial isometry (i.e.
uuu = u) if and only if the sets

{x €A there exists o0 >0 with |u+ ox|| = |lu—ax|| =1}
and
{x € A:|ju+Bx|| =max{l,||px||} forall B cC}
coincide.

The Akemann—Weaver paper [5] has had the additional merit of encouraging
the study of geometrically unitary elements in normed spaces, started earlier in
[425], giving rise to a large series of papers, such as [56], already quoted, and [293]
and [399], which will be discussed later in some detail (see Sections 2.9 and 3.1,
respectively).

§2.1.47 It was an open problem for many years whether the inequality (2.1.18)
(that N(X) > N(X') for every nonzero normed space X) is in fact an equality. An
affirmative answer was even claimed without proof in [216] (1987). As a matter of
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fact, Boyko, Kadets, Martin, and Werner [122] (2007) found an example of a nonzero
Banach space X with N(X) > N(X’). Namely, the Banach space

X ={(x,9,2) € cPeo ¢ Peoc : limx+1limy+1limz =0}

satisfies that N(X) = 1 and N(X') < 1 in both the real and the complex case. Actu-
ally, essentially with the same techniques, it is shown in [122] that there are examples
of a real Banach space Y, and of a complex Banach space Z, both isomorphic to c,

such that
1

N{Y)=1,NY")=0, and N(Z)=1,N(Z") = 2

Keeping in mind Theorem 2.1.17(i), the real Banach space Y above satisfies that Iy
is a geometrically unitary element of BL(Y), but Iys is not a geometrically unitary
element of BL(Y'). (As a consequence, the converse of Corollary 2.1.24 does not
hold.) In fact, there is a real Banach space X such that Iy is a geometrically unitary
element of BL(X) (with N(X) = 1), whereas Ix: is not even a vertex of By x). This
follows from Theorem 3.3 in Martin’s paper [417] by taking E equal to the two-
dimensional Euclidean real space, and X equal to the space X (E) in that theorem.

Corollary 2.1.29 is nothing other than the particularization to the case n = 2
of the following theorem of Rosenthal [542]. For any real normed space X, set
Z(X):={T € BL(X):V(T) =0}.

Theorem 2.1.48 A real normed space X of dimension n € N is a Hilbert space

provided dim(Z(X)) > % in which case dim(Z(X)) = @

A rediscovery of Rosenthal’s theorem, and related results, can be found in [420].
Corollary 2.1.29 can be also derived from [731, Proposition 9.4.5] (a result also
due to Rosenthal [543]). The proof given here, based on the rather technical
Lemma 2.1.28, could be new.

The spacial numerical range of a bounded linear operator on a normed space was
introduced by Bauer [61], extending Toeplitz’ numerical range of matrices [613],
and, concerning most applications, it is equivalent to Lumer’s numerical range [407].
This is so because of Proposition 2.1.31, essentially proved in [407]. The actual
formulation of Proposition 2.1.31, as well as Corollaries 2.1.33 and 2.1.34 and their
proofs, are taken from [694, Section 9].

§2.1.49 Let X be a normed space over K, and let Y be a (possibly non-closed)
subspace of X. We write I1(Y,X) to denote the subset of Sy x Sy given by

H(Y,X) = {(yax,) € Sy x SX/ Y GD(Xay)}a

so that, in the case Y = X, we have I1(X,X) = I1(X) in the sense of §2.1.30. Given a
function f : Sy — X, we define the spatial numerical range, W (f), of f by

W(f)={(f(): () €Y, X)}.

This notion applies in particular to (possibly unbounded) linear operators 7 from Y to
X by simply considering the restriction of T to Sy, and consequently setting W (T') :=
W (Tjs, ). Applying this convention in the case that ¥ = X and the linear operator T is
bounded, we re-encounter the particular notion introduced in §2.1.32. From now on,
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assume that X is a Banach space. In the case that Y is dense in X, spatial numerical
ranges of (possibly unbounded) linear operators from Y to X have been successfully
considered by Lumer and Phillips [409] and Arendt, Chernoff, and Kato [27]. The
case that Y is a closed proper subspace of X and that the linear operator 7 : ¥ — X
is bounded has been considered by Harris [315], and more recently by Martin, Meri,
and Paya [419], in order to discuss whether Corollary 2.1.33 remains true in this more
general context. Denote by I the inclusion mapping ¥ < X. It is proved in [315]
that the equality

co(W(T)) = V(BL(Y,X),I¥,T) (2.1.32)

holds for every T € BL(X,Y) if either Y is finite-dimensional or X is uniformly
smooth. (For the notion of a uniformly smooth normed space, see Definition 2.9.45
below.) In turn, the authors of [419] prove that, fixing Y arbitrarily in the class of all
infinite-dimensional Banach spaces, there is a choice of X in such a way that there
exists T € BL(Y,X) such that the equality (2.1.32) fails, and that, fixing X arbitrarily
in the class of all non-reflexive Banach spaces, up to equivalent renorming, there is
a choice of Y in such a way that there exists T € BL(Y,X) such that the equality
(2.1.32) fails. Moreover, they introduce a sufficient condition on the couple (¥,X)
(weaker than the uniform smoothness of X or the finite dimensionality of Y) assuring
that the equality (2.1.32) holds for every T € BL(Y,X).

Now, let X be a Banach space. Denote by B(Sx,X) the Banach space of all
bounded functions from Sy to X, endowed with the natural sup norm, and by Iy, the
inclusion mapping Sy < X. Then, for every f € B(Sx,X), we clearly have

©(W(f)) S V(B(Sx.X).Ix. f). (2.1.33)

In general, the above inclusion cannot be expected to be an equality. Indeed, as we
will prove in Theorem 2.9.56, the inclusion (2.1.33) becomes an equality for every
f € B(Sx,X) if and only if X is uniformly smooth. The inclusion (2.1.33) is known
to be an equality when X is complex and f is (the restriction to Sy of) a uniformly
continuous function from By to X which is holomorphic on the interior of By [312].
More generally, the inclusion (2.1.33) becomes an equality whenever f : Sy — X is
any uniformly continuous bounded function [315]. In fact, as shown later in [534],
we are provided with the following generalization of Proposition 2.1.31.

Theorem 2.1.50 Let X be a Banach space, and let f be any uniformly continuous
bounded function f : Sy — X. Then we have

V(B(Sx.X),Ix, f) =co{x'(f(x)) : (x,') € T},
where T is any subset of TI(X) such that its natural projection 1) (T') is dense in Sx.

Corollary 2.1.35 can be derived from a result of Lima (see [400, Theorem 8]). The
proof given here is taken from Martin’s PhD thesis [774].

Fact 2.1.36 and Lemma 2.1.37 are due to Martin and Meri [418], who actually
prove the following.
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Theorem 2.1.51 Let n be a positive integer greater than or equal to 2. For k =

1,2,...,2n, set
(s (7))
xpi=|(cos| — ), sin| — ||,
n n

and let X, stand for the two-dimensional real Banach space such that
ext(By,) = {xx : k=1,2,...,2n}.
Then N(X,) = tan (3%) if n is even, and N(X,) = sin (%) if n is odd.

Lemma 2.1.38 and Proposition 2.1.39 are due to Martin and Paya [421], who, con-
cerning Lemma 2.1.38, take some ideas from the proof of Wojtaszczyk’s Theorem 1
in [637]. The original proof of Proposition 2.1.39 does not invoke Corollary 2.1.29
and Lemma 2.1.37 (as we have done in our proof), but the real part of the following
theorem of Duncan, McGregor, Pryce, and White [217].

Theorem 2.1.52  For eacht € [0, 1] in the real case (respectively, t € [1/e, 1] in the
complex case) there is a two-dimensional Banach space X with N(X) =t.

The notion of a strongly extreme point seems to have been introduced by
Lumer [407], who proved the non-quantitative complex version of Corollary 2.1.42.
Lumer’s result is included in [694, Theorem 4.5]. The non-quantitative real version
of Corollary 2.1.42, although straightforwardly deducible from the complex one
by passing to normed complexification, seems to appear first in the Harmand—
Rao paper [311]. The modulus of midpoint local convexity was introduced by
Milman [444]. Lemma 2.1.40 seems to be folklore. The quantitative version of
Corollary 2.1.42 is due to Kadets, Katkova, Martin, and Vishnyakova [357] in both
the real and complex cases. The non-quantitative version of Proposition 2.1.41, as
well as Example 2.1.43, is due to Bandyopadhyay, Jarosz, and Rao [56]. As far as
we know, the quantitative version of Proposition 2.1.41 does not appear formulated
anywhere, although it is nothing other than the core of the argument in [357] to
prove Corollary 2.1.42. For additional information about strongly extreme points, the
reader is referred to the papers of Kunen and Rosenthal [395] and McGuigan [438].

Let X be a normed space, and let u be in Sy. The element u is said to be a strongly
exposed point of By if there exists g € Sy, with the property that, whenever x, is a
sequence in By such that g(x,) — 1, we have x,, — u. It is well known that, if u is a
strongly exposed point, then u is a denting point of By, which means that there are
slices of By of arbitrarily small diameter which contain u. On the other hand, if u is
a denting point of By, then u is a strongly extreme point of By [438, Theorem 2.4].
Now, recall that, by Corollary 2.1.42, the unit of any norm-unital normed algebra A
is a strongly extreme point of B4. Under renorming, a better result holds. Indeed, as
shown in the Moreno—Rodriguez paper [452], we have the following.

Theorem 2.1.53 Let A be a norm-unital normed algebra. Then there exists an
equivalent algebra norm ||| - || on A arbitrarily close to || - ||, satisfying ||1]| = 1,
and such that 1 becomes a strongly exposed point of B4 |-

We note that, even if the norm-unital normed algebra A is associative, 1 need not
be a denting point (much less a strongly exposed point) of B4. Indeed, the Banach
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algebra of all bounded linear operators on any infinite-dimensional complex Hilbert
space has no denting point in its closed unit ball [301]. More generally, the closed
unit ball of a C*-algebra A is dentable (i.e. there are slices of B, of arbitrarily small
diameter) if and only if A is finite-dimensional [67].

§2.1.54 By a unitary normed algebra we mean a norm-unital normed associative
algebra A such that B4 equals the closed convex hull of the set of all algebraically
unitary elements of A (in the sense of §2.1.20). Unital C*-algebras (see Lemma 2.3.28
below), as well as real or complex discrete group algebras /1 (G) for every group G,
are relevant examples of unitary Banach algebras. According to the Becerra—Cowell—
Rodriguez—Wood paper [65], we have the following.

Theorem 2.1.55 Let A be a unitary Banach algebra over K such that By is dent-
able, and let u be a norm-one element of A. Then the following conditions are
equivalent:

(1) u is an algebraically unitary element of A.
(1) u is a denting point of By.
(i) By equals the closed convex hull of the orbit of u under the group of all surject-
ive linear isometries on A.

We do not know if Theorem 2.1.27 remains true whenever ‘unital C*-algebra’ is
replaced with ‘unitary complex Banach algebra’” and condition (i) is erased, nor even
if a Banach space characterization of algebraic unitaries in unitary complex Banach
algebras can be found.

Unitary Banach algebras were first considered in Cowie’s PhD thesis [713], but
most of her results were not published elsewhere. Indeed, in her paper [181] we only
find some incidental references to unitary Banach algebras. More recently, unitary
Banach algebras have been reconsidered by Hansen and Kadison [309] without no-
ticing Cowie’s forerunner. One of the main goals in both [713] and [309] is to obtain
characterizations of unital C*-algebras among unitary Banach algebras by some extra
conditions (a question raised by Gorin [296]). An example along these lines is the
following proposition, proved in the works of both Cowie and Hansen—Kadison.

Proposition 2.1.56 Let A be a unitary closed subalgebra of a C*-algebra B. Then
A is x-invariant, and hence it is a C*-algebra.

Proof The unit 1 of A is a norm-one idempotent in B, and hence, by Corol-
lary 1.2.50, it is self-adjoint. Therefore, replacing B with the C*-algebra 1B1 if
necessary, we may assume that B is unital with the same unit as that of A. Let u
be an algebraically unitary element of A. Then « remains algebraically unitary in B
with the same inverse, and hence, by the implication (ii)=-(i) in Theorem 2.1.27,
we have u*u = uu™ = 1, which implies that u* = u~! € A. Since B, is the closed
convex hull of the set of all algebraically unitary elements of A, it follows that A is
*-invariant. U

For a survey of the more relevant results in [181, 309, 713] the reader is referred
to [639]. Incidentally, unitary normed algebras will be considered again in Corol-
lary 2.4.31, Remark 2.4.33, and Theorem 3.5.70. For further developments of the
theory, see [62, 63, 64, 65, 80].
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2.2 An application to Kadison’s isometry theorem

Introduction We prove in Theorem 2.2.9(1) a non-associative germ of the cele-
brated Kadison theorem [358] on surjective linear isometries between unital C*-
algebras, and state in Theorem 2.2.19 the non-unital version of Kadison’s theorem,
due to Paterson and Sinclair [480]. Hermitian operators on C*-algebras, as well as
on non-associative algebras close to them, are also described (see Theorem 2.2.9(ii)
and Proposition 2.2.20).

2.2.1 Non-associative results
We begin with the following easy but useful result.

Proposition 2.2.1 Let (X,u) be a complex numerical-range space, and let T be a
dissipative element in the numerical-range space (BL(X),Ix) such that T (u) = 0.
Then

T(H(X,u)) C H(X,u).

Proof First assume that X is a Banach space. Let r > 0. Since T is dissipative in
(BL(X),Ix), Corollary 2.1.9(i) applies, so that we have ||exp(rT)|| < 1. On the other
hand, since T'(«) = 0, we have exp(rT)(u) = u. It follows from Corollary 2.1.2 that
V(X,u,exp(rT)(x)) C V(X,u,x) for every x € X. As a consequence, we derive that
exp(rT)(H(X,u)) C H(X,u). Keeping in mind that H (X, u) is a closed real subspace
of X, and that

T(x) = lim 1[(exp(rT))(x) —x]

r=0t r
for every x € X, we obtain T'(H(X,u)) C H(X,u), as required.

Now remove the assumption of completeness of X. Let X stand for the completion
of X. Then, by Corollary 2.1.2, we have V(X,u,x) = V(X ,u,x) for every x € X,
and hence H(X,u) = X NH(X,u). On the other hand, if for F € BL(X) we consider
the unique operator £ € BL(X) extending F, then the mapping F — F becomes a
linear isometry from BL(X) to BL(X) preserving distinguished elements. Therefore,
again by Corollary 2.1.2, we have V(BL(X),Ix,F) = V(BL(X),I¢,F) for every F €
BL(X). As a consequence, since T is dissipative in BL(X), so is T in BL(X), and
moreover, since T'(u) = 0, T'(u) = 0 also. The proof is now concluded by applying
the above paragraph with (X,7") instead of (X,T). O

Corollary 2.2.2 Let (X,u) be a complex numerical-range space, and let T be in
H(BL(X),Ix) such that T (u) = 0. Then iT (H(X,u)) C H(X,u).

Proof The assumption that 7' is hermitian implies that 7 is dissipative. Now, apply
Proposition 2.2.1. O

Lemma 2.2.3 Let A be a norm-unital normed complex algebra, and let h,k be in
H(A,1). We have:

(1) If B is any norm-unital normed complex algebra, and if F : A — B is a surjective
linear isometry such that F (1) =1, then

i(F (hk) — F(h)F (k) € H(B,1).
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(ii) If T belongs to H(BL(A),I) with T(1) =0, then
—T(hk)+T(h)k+hT(k) € H(A,1).

Proof Let B and F be as in assertion (i). Keeping in mind Corollary 2.1.2 and
Lemma 2.1.10, we have

F(h) € H(B,1), L € H(BL(A),I,), and Lg, € H(BL(B),Ip).

Moreover, since the mapping G — F~!GF from BL(B) to BL(A) is a linear isometry
preserving distinguished elements, we also have

F~'LpgyF € H(BL(A),I).
Therefore S := L;, — F‘lLF(h)F € H(BL(A),I4). Since S(1) =0, Corollary 2.2.2
applies, so that we have
i(hk—F~Y(F(h)F (k)) =iS(k) € H(A,1).

Finally, again by Corollary 2.1.2, we geti(F (hk) — F (h)F (k)) € H(B,1), as required.

To prove assertion (ii), as in the proof of Proposition 2.2.1, we may assume that
A is complete. Let 7 be as in assertion (ii). Let r be in R\ {0}. Then, by Corol-
lary 2.1.9(ii), exp(irT) is a unit-preserving surjective linear isometry on A. There-
fore, by assertion (i), we have

ilexp(irT)(hk) —exp(irT)(h)exp(irT) (k)] € H(A,1),
and hence

exp(irT)(hk) —exp(irT ) (h) exp(irT) (k)

r

—T(hk)+T(h)k+hT (k) = i}%
lies in H(A,1). O
§2.2.4 Given an element a in an algebra A, we denote by U, the mapping
b — a(ab+ ba) —a°b
from A to A. Thus U, = L,(Ls+Rs) — L.

Lemma 2.2.5 Let A be a normed unital complex algebra, and let x be a conjugate-
linear vector space involution on A such that 1* = 1. Assume that at least one of the
Jfollowing conditions holds:

() |la*all = ||a||? for every a € A,
(i) ||Ua(a®)|| = ||a|]? for every a € A.

Then we have ||1|| = 1 and H(A,*) = H(A,1). Therefore
A=H(A1)&iH(A,1).

Proof That ||1]| = 1 is straightforward. Assume that (i) holds. Let & and r be in
H(A,x) and R\ {0}, respectively. Then we have

|1+ irh|? = ||(1 = irk) (1 +irh)|| = |14 2R,
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and hence

|l14irh|* —1 _r||1+r2h2H -1
- - ]

r r

Therefore, by Proposition 2.1.5, we get max R(V (A,1,ik)) = 0. Applying this last
equality with —A instead of &, we conclude that R(V (A,1,ih)) =0, thatishe HA, 1).
By the arbitrariness of 7€ H (A, *), we derive that H(A, x) CH(A,1). In order to prove
the converse inclusion, assume that 4 € H(A,1), and write h = hj + ihy with hy, hy €
H(A,x). Then, h—hy = ih, € H(A,1)NiH(A,1), and therefore, by Corollary 2.1.13,
we have h = h) € H(A,%).

Assume that (ii) holds. Let  and r be in H(A,*) and R\ {0}, respectively. Then
we have

|1+ irh|® = |Urpin (1 —irh)|| = |1+ irh+ r*h® +ir’ (2hh* — h*h) ||,

and hence

[1+irh|P =1 |[14irh+ 2k +ir} (2hR* — ?h)|| — 1

r r

Therefore, by Corollary 2.1.6, we get
3maxR(V(A,1,ih)) = max R(V(A,1,ih)),
whence max R(V (A,1,ih)) = 0. The rest of the proof runs as above. O

Remark 2.2.6 Let A be a normed unital complex algebra, and let * be a conjugate-
linear vector space involution on A such that 1* = 1. We will see much later (cf.
Corollary 3.2.7) that condition (i) in Lemma 2.2.5 implies condition (ii) in the same
lemma. Indeed, as we will prove in Theorem 3.2.5, condition (i) implies that A is
‘very nearly’ associative, and that % is an algebra involution on A. By the way,
according to Corollary 2.4.12 below, condition (ii) implies that A is ‘nearly’ asso-
ciative, and that  is an algebra involution on A.

Let A be an algebra over K. We denote by AY™ the algebra consisting of the vector
space of A and the product a e b := §(ab+ ba), and remark that, if A is normed, then
s0 is AY™ under the given norm on A. By a derivation of A we mean a linear operator
D on A satisfying D(ab) = aD(b) + D(a)b for all a,b € A. By a Jordan derivation of
A we mean a derivation of A%Y™. We note that Jordan derivations of A are precisely
those linear mappings D : A — A such that D(a?) = 2a  D(a) for every a € A. Now,
let A and B be algebras over K. By a Jordan homomorphism from A to B we mean
an algebra homomorphism from ASY™ to BY™. We note that Jordan homomorphisms
from A to B are precisely those linear mappings F : A — B such that F (a?) = F(a)?
for every a € A.

Definition 2.2.7 By a nice algebra we mean a normed unital complex algebra
endowed with a conjugate-linear vector space involution * satisfying

(a®)* = (a*)? forevery ac A (2.2.1)
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and some of the following conditions:
() |la*a| = ||a||?* for every a € A,
(i) |Uq(a®)|| = ||a|]® for every a € A.

According to Remark 2.2.6, the requirement (2.2.1) in the definition of a nice algebra
is superfluous, but this is a deep fact which does not matter for the moment.

Lemma 2.2.8 Let A be a nice algebra. Then we have:

(i) (xey)" =x*ey* forall x,y € A.

G 1"=1.
(iii) A is norm-unital and H(A,*) = H(A,1).
(iv) If h,k are in H(A,1), then he k lies in H(A,1).
Proof Assertion (i) is a straightforward consequence of the requirement (a?)* =
(a*)? for every a € A. Since the unit 1 of A becomes a unit for AY™, it follows
from assertion (i) that 1*=1, which proves assertion (ii). Therefore, by the remaining

requirements on nice algebras, and Lemma 2.2.5, we have ||1]|=1 and H(A,x*) =
H(A,1), which proves (iii). Finally, (iv) follows from (i) and (iii). O

The above lemma must be kept in mind throughout the proof of Theorem 2.2.9
immediately below, and will not be explicitly invoked in that proof.

Theorem 2.2.9 Let A be a nice algebra. We have:

(i) If B is a nice algebra, and if F : A — B is a unit-preserving surjective linear
isometry, then F is a Jordan-*-homomorphism.

(i) If T is in H(BL(A),I4), then there are h € H(A,*) and a continuous Jordan
derivation D of A such that T =L, + D and D(a*)=—D(a)* for every a € A.

Proof Let B be a nice algebra, and let F : A — B be a unit-preserving surjective
linear isometry. By Corollary 2.1.2, we have F(H(A,1)) C H(B,1), and hence F is
x-mapping. Let i,k be in H(A,*). Again by Corollary 2.1.2, we have

F(hek)—F(h)eF (k)€ H(B,1).
On the other hand, keeping in mind that
H(A,1) =H(A%Y™,1) and H(B,1) = H(B%™ 1),
Lemma 2.2.3(i) applies, so that we have
i(F(hek)—F(h)eF(k)) € H(B,1).
It follows from Corollary 2.1.13 that
F(hek)—F(h)eF(k)=0.

Since h, k are arbitrary elements of H(A, %), and A = H(A, x) +iH (A, *), the proof of
assertion (1) is concluded.

Now, let T be in H(BL(A),I4). Since the mapping G — G(1) from BL(A) to A is a
linear contraction preserving distinguished elements, Corollary 2.1.2 applies, so that
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h:=T(1)liesin H(A,1). Set D :=T — L. Then D(1) = 0 and, by Lemma 2.1.10, D
belongs to H(BL(A),I4). By Proposition 2.2.1, we have

iD(k) € H(A,x) forevery k € H(A,x),

which implies that iD is a x-mapping (equivalently, D(a*) = —D(a)* for every a € A).
As a consequence, for ki, k, € H(A,*), we see that

i(—D(ky #ky) +D(ki) @ka+ ki e D(kz)) € H(A,1),
and on the other hand, by Lemma 2.2.3(ii), we have
—D(ky oky)+D(ki) ek + ki @ D(ky) € H(A,1).
It follows from Corollary 2.1.13 that
—D(kyoky)+D(ky) ek, +kj eD(ky) =0.

Since k,k; are arbitrary elements of H(A,*), and A = H(A, x) + iH(A, *), the proof
of assertion (ii) is concluded. ]

2.2.2 The Kadison—-Paterson-Sinclair theorem

Now, we are going to apply Theorem 2.2.9 to derive the Paterson—Sinclair results
concerning isometries and hermitian operators on C*-algebras.

Lemma 2.2.10 Let A be a C*-algebra, let a be in A, and let T, stand for the bounded
linear operator on A defined by T,(b) := %(aa*b+ba*a). Then we have t(T,) = ||a||.

Proof Forn €N, we have T} (a) = a(a*a)", so

1721 llall* > 173 (a)|* = lla(a"a)"||* = ||(a"a)"a"a(a"a)"||

= @@+ = a2,
and so || T"|| > ||a||*". Therefore we have t(7,) > ||a||*. On the other hand, we clearly
have ©(7,) < || T.|| < |lall. O

§2.2.11 Let X,Y,Z be normed spaces over K, and let m : X x Y — Z be a bounded
bilinear mapping. The adjoint operation m' : Z' x X — Y’ is defined, for (7,x) €
7' x X, by

m'(Z,x)(y) := 2 (m(x,y)) forevery yeY. (2.2.2)
It is straightforward that m’ just defined becomes a bounded bilinear mapping with
||m'|] = ||m||. The construction of m’ from m can be iterated to get bounded bilinear
mappings

m":Y"xZ — X' and m' :=m" : X" xY" = Z"

satisfying ||m”|| = ||m'|| = ||m||. It is easily realized that m' extends m.
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Indeed, given (x,y,7') € X x Y x Z, and regarding x,y,m(x,y) as elements of
X",Y" 7", respectively, we have

m" (x,y)(d) = x(m" (y,2')) = m" (y,2) (x) = y(m' (<, x))
=m'(Z,x)(y) = 7 (m(x,y)) = m(x,y) (),
and hence m"” (x,y) = m(x,y).

The extension m' of m is called the (first) Arens extension of m. In the case that m
is the product of a given normed algebra A, the product m' on A” will be called the
(first) Arens product of A”, A” will be considered without notice as a normed algebra
(relative to its Arens product) containing A as a subalgebra, and the product of A”
will be denoted by juxtaposition.

Lemma 2.2.12 Let X,Y,Z be normed spaces over K, and let m : X XY — Z be a
bounded bilinear mapping. We have:

(1) The adjoint m' : Z' x X — Y’ is w*-continuous in its first variable.
(ii) The second adjoint m" : Y" x Z' — X' is w*-continuous in its second variable
whenever the first one is fixed in Y.
(iii) The Arens extension m' is the unique mapping from X" x Y" to Z" satisfying the
following properties:

(a) m' extends m.

(b) m' is w*-continuous in its first variable.

(¢) m' is w*-continuous in its second variable whenever the first one is fixed
inX.

Proof Let xbe in X. By the definition (2.2.2) of m’, the composition of the mapping
m'(+,x) : Z' — Y’ with any w*-continuous linear functional on Y’ is a w*-continuous
linear functional on Z’. This proves assertion (i).

According again to the definitions, for (x,y,7) € X x Y x Z' we have

m" (3,2) (x) = y(m' (',x)) = m' (', x) (y) = ' (m(x.y)),

and hence the composition of the mapping m” (y,-) : Z' — X’ with any w*-continuous
linear functional on X’ is a w*-continuous linear functional on Z'. This proves
assertion (ii).

Property (iii)(a) is already known. Property (iii)(b) follows by applying
assertion (i), with m” instead of m, whereas property (iii)(c) follows by applying
assertion (ii), with m’ instead of m. Now that we know that properties (iii)(a—c) are
fulfilled, let g be any mapping from X” x Y” to Z" satisfying these properties with g
instead of m’. Then, for x € X, the set

" eY”g(xy") =m'(x,y")}
is w*-closed in Y and contains Y. Since Y is w*-dense in Y”, we deduce
g(x,y") = m' (x,y") for every (x,y") € X x Y".
Now, for y” € Y”, the set

{xl/ EX” . g(x//,y//) — mt(x//’yll)}
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is w*-closed in X" and contains X. Since X is w*-dense in X", we deduce

Z

gy =m'(x",y") for every (x",y") e X" x Y". O

Corollary 2.2.13 Let A be a normed unital algebra over K. Then the unit of A
remains a unit for A”.

Proof By Lemma 2.2.12, the sets
{d"€eA":d"1=d"} and {d" €A”:1d" =d"}

are w*-closed in A”. Since they contain A, and A is w*-dense in A”, they are the whole
algebra A”. O

Definition 2.2.14 Let X,Y,Z be vector spaces over K, and letm: X XY — Z be a
bilinear mapping. We shall denote by m" the mapping (y,x) — m(x,y) from ¥ x X
into Z. Now, assume in addition that X, Y, Z are normed, and that m is bounded, and,
according to §2.2.11, let m’ : X" x Y — Z” stand for the Arens extension of m. We
will say that m is Arens regular if m™ = m'". Note that m""" extends m because m'
" of m is called the second Arens extension of m. Thus,
the Arens regularity of m is equivalent to the coincidence of its first and second Arens
extensions. In the case that m is the product of a given normed algebra A, the product
m""" on A” will be called the second Arens product of A”, and A is said to be Arens
regular if m is Arens regular (equivalently, if the first and second Arens products
of A” coincide).

extends m”. The extension m

The following theorem will be proved later (see §2.3.53). For the moment, the
reader is referred to [806, Theorem 1.17.2].

Theorem 2.2.15 Let A be a nonzero C*-algebra. Then A", endowed with the Arens
product and the bitranspose of the involution of A, becomes a unital C*-algebra. As
a consequence, A is Arens regular.

§2.2.16 Let A be a nonzero C*-algebra. It follows from Theorem 2.2.15 above that
the set

{d"€A”:d"ACA and Ad" C A}
becomes a closed *-subalgebra of A” containing the unit of A”, and containing A as
an ideal. This subalgebra of A” is called the C*-algebra of multipliers of A, and will

be denoted by M(A). We note that, by Corollary 2.2.13, if A has a unit, then M(A) =
A. More information about M(A) will be given in Propositions 2.3.56 and 2.3.57.

Given elements a,b in an algebra, we define the commutator [a,b] of a,b by
[a,b] := ab — ba.

Lemma 2.2.17 Let A be a C*-algebra. We have:

(i) M(A)={d" € A" :d"eA CA}.
(i) If u is a unitary element of A” such that au*a € A and ua*u € A for every a € A,
then u lies in M(A).

Proof Leta” bein A” such that a” e A C A. Then, for b € A we have
[a",b%] =2[d" eb,b] € [A,A] C A.
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Since A is the linear hull of the set {b? : b € A}, we derive [a”,A] C A. This inclusion,
together with the assumed one a” e A C A, leads to a’A C A and Aa” C A. This proves
the inclusion {a@” € A” : a" «A C A} C M(A). Since the converse inclusion is clear,
the proof of assertion (i) is concluded.

Let u be a unitary element of A” such that au*a € A and ua*u € A for every a €
A. Then, for every x-invariant element b € A we have that ¢ := ubu lies in A, so
1 (cu*b+bu*c) also lies in A, and so

1 1 1
uebh? = i(ubz—l—bzu) = 5((ubu)u*b—|—bu*(ubu)) = E(cu*b—&—bu*c‘) €A.

Since A is the linear hull of the set {b? : b* = b € A} (by Proposition 1.2.48), we
derive that ue A C A. Now, applying assertion (ii), we get u € M(A), concluding the
proof of assertion (ii). ]

Remark 2.2.18 As a matter of fact, the first requirement in assertion (ii) of
Lemma 2.2.17 (that au®a € A for every a € A) implies the second (that ua*u € A
for every a € A). Indeed, this is a consequence of [3, Proposition 4.4] or [366, 7.7],
which will be proved in Volume 2 of our work.

For elements a,b, ¢ in a C*-algebra, we set {abc} := 1(ab*c +cb*a).

Theorem 2.2.19 (Kadison—Paterson—Sinclair) Let A and B be C*-algebras, and
let F : A — B be a bijective linear mapping. Then the following conditions are
equivalent:

(1) F is an isometry.
(i) There exists a unitary element u € M(B), and a bijective Jordan-x-homo-
morphism G : A — B, satisfying F(a) = uG(a) for every a € A.

(iil) F({xyz}) ={F(x)F(y)F(z)} for all x,y,z € A.
Proof (1)=-(ii) Assume that condition (i) holds. Then the bitranspose mapping F” :
A" — B" is a surjective linear isometry. Therefore, by Theorem 2.1.27, u :=F"(1) is
a unitary element of B”. Now, consider the unit-preserving surjective linear isometry
H:d"— u*F"(d") from A” to B”. Then, by Theorem 2.2.9(i), H is a bijective Jordan-
«-homomorphism, and we have clearly F”(a”) = uH (da") for every a” € A”. For an
arbitrary element b € B, we can write b = F(a) for a suitable a € A, so that

bu*b = F(a)u*F(a) = uH (a)u*uH (a) = uH (a)* = uH (a*) = F (a*) € B.
On the other hand, for a” € A” we have
uF//(a//)*u — MH(a//)* — MH(a//*) — F//(a//*)’

which implies uF (a)*u = F(a*) for every a € A, and hence uBu C B. It follows

from Lemma 2.2.17(ii) that u belongs to M (B). Therefore H maps A onto B, and the

mapping G : a — H(a) from A onto B is a bijective Jordan-+-homomorphism.
(i1)=-(iii) Assume that (ii) holds. Let x,y,z be in A. Then since

{xyz} :=xe(y ez)+z0(y" ox)—(xez)ey",

and G is a Jordan-x-homomorphism, we have G({xyz}) = {G(x)G(y)G(z)}. On
the other hand, since u is a unitary element of M(B), for by,by,b3 € B, the
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equality u{b1bb3} = {(uby)(uby)(ubs)} is straightforwardly verified. It follows
that F({xyz}) = {F (x)F(y)F(z)}, as required.

(iii)=-(1) Assume that (iii) holds. Let a be in A, and let T, be as in Lemma 2.2.10.
Then, since for x € A we have T,(x) = {aax}, we get Tp(,) = FT,F ~1. According
to Example 1.1.1(b), for every vector space X over K, let L(X) stand for the asso-
ciative algebra over K consisting of all linear operators on X. Since the mapping
T — FTF~! is a bijective algebra homomorphism from L(A) onto L(B), we have
sp(L(A),T.) = sp(L(B),Tr(q)), and hence, by Corollary 1.1.47, v(T,) = t(Tp(q))-
Therefore, by Lemma 2.2.10, we have ||a|| = ||F (a)||. O

Corollary 2.2.20 Let A and B be C*-algebras, and let F : A — B be a surjective
linear isometry. Then F" (M(A)) = M(B).

Proof By the proof of the implication (i)=-(ii) in Theorem 2.2.19, there exists u €
M(B), together with a bijective Jordan-*-homomorphism H : A” — B”, such that
F"(d")=uH (a") forevery a’ € A”. Since, by Lemma 2.2.17(i), we have H(M(A)) =
M(B), we derive F”(M(A)) = M(B), as required. O

Lemma 2.2.21 Let A be a complete normed algebra, and let D be a continuous
derivation of A. Then exp(D) is a bijective algebra endomorphism on A.

Proof Leta,bbein A. By the Leibnitz rule, for n € N we have
D*ab) =Y ( " ) Di(a)D" " (b).
i=0 \ !
Therefore

exp(D)(ab) = 2 2

n=0i=
- (i .I,D"<a>) (i ﬂDJ(b)) —exp(D)(@exp(D)(B). O
par 81l =

§2.2.22 We recall that an algebra A is said to be semiprime if, for every nonzero
ideal I of A, there are x,y € I such that xy # 0. Note that C*-algebras are semiprime.

(@D (b) = Y, --Di(a)Di(b)

i1(n — i
4 il(n—1i) im0 i

Lemma 2.2.23 [678, Theorem 6.3.11] Jordan derivations of semiprime associative
algebras are derivations.

Lemma 2.2.24 Let X be a normed space, let S be in BL(X), and let M be an S-
invariant subspace of X, then we have

V(BL(M), Iy, Su) € V (BL(X). Ix.S),
where Sy stands for the restriction of S to M, regarded as an operator on M.

Proof The set A of those operators T € BL(X) such that 7 (M) C M is a subspace
of BL(X) containing Ix, and the mapping T — Ty from A to BL(M) is a linear
contraction taking Ix to Ijs. Therefore, by Corollary 2.1.2, we have

V(BL(M),I1,S) C V(A,Ix,S) = V(BL(X),Ix, ). O
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Lemma 2.2.25 immediately below will be proved later, as a consequence of a more
general result (see §3.1.52). For the moment, the reader is referred to the original
proof which can be seen in [806, Lemma 4.1.3].

Lemma 2.2.25 Derivations of C*-algebras are continuous.

Proposition 2.2.26 Let A be a C*-algebra, and let T : A — A be a mapping. Then
the following conditions are equivalent:

(i) T belongs to H(BL(A),I,).
(ii) There are h€ H(M(A),*) and a derivation D of A such that D(a*)=—D(a)" and
T(a) = ha+ D(a) for every a € A.

Proof (1)=-(i1) Assume that (i) holds. Then, by Corollary 2.1.9(ii), forr € R, F :=
exp(irT) is a surjective linear isometry on A, and hence, by Corollary 2.2.20,

exp(irT")(M(A)) = F"(M(A)) C M(A).
Therefore, since for a”” € A” we have

iT"(d") = lim ! [(exp(irT"))(a") —d"],

r—0t 1

we obtain 7"(M(A)) C M(A). On the other hand, since the mapping G — G” from
BL(A) to BL(A") is a linear isometry preserving distinguished elements, Corol-
lary 2.1.2 applies, so that 7" € H(BL(A"),1»). It follows from Lemma 2.2.24 that
(T")m(a) € H(BL(M(A)), Iy(a))- Applying Theorem 2.2.9, we find h € H(M(A), *)
and a Jordan derivation D of M(A) such that

T"(d") = hd" +D(d") and D(a"*) = —D(d")* forevery a’ € M(A).
As a consequence,
T(a) =T"(a) =ha+D(a) and D(a*)=—D(a)* forevery a € A.
Finally, by Lemma 2.2.23, D is a derivation of M(A), and, since
D(a)=T(a)—ha €A forevery acA,

we can see D as a derivation of A.

(ii)=-(1) Assume that condition (ii) holds. By Lemma 2.2.8, h belongs to
H(M(A),1), where 1 stands for the unit of M(A). Therefore, by Lemma 2.1.10,
the mapping Lj, : x — hx from M(A) to M(A) belongs to H(BL(M(A)),lj4)), and
hence (Lj)a : a — ha belongs to H(BL(A),I4). Now, to conclude the proof, it is
enough to show that D lies in H(BL(A),I4). By Lemmas 2.2.21 and 2.2.25, for
r € R, exp(irD) is a bijective *-homomorphism on A. Therefore, by the implication
(i1)=-(i) in Theorem 2.2.19, we have

|lexp(irD)|| =1 forevery r € R,

and hence, by Corollary 2.1.9(ii), D € H(BL(A),I,), as required. O
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2.2.3 Historical notes and comments

Proposition 2.2.1 seems to us to be new. As far as we know, it has been never
published before the present work, and helps in a relevant way to simplify the proofs
of several published results.

Theorem 2.2.9 is due to Kaidi, Martinez, and Rodriguez [362]. The proof we have
given, taken from [362], is close to Paterson’s proof [479] of Kadison’s isometry
theorem [358]. A forerunner of Theorem 2.2.9(1) (respectively, Theorem 2.2.9(ii))
is due to Wright and Youngson [643] (respectively, Youngson [654]), and will be
discussed in detail as a part of Proposition 3.4.25 (respectively, Proposition 3.4.28).
For a ‘x-free’ generalization of the Wright—Youngson result just quoted, the reader
is referred to the Arazy—Soler paper [26].

The notion and elementary results concerning the adjoint of a bounded bilinear
mapping between normed spaces are taken from Arens’ memorable papers [28, 29].

Lemma 2.2.25 is due to Sakai [549], and is included in several books (see for
example [678, 723, 806]). As we said, a proof following the ideas of [678] will be
given in §3.1.52. A more general result, asserting the automatic continuity of deriv-
ations of complete normed semisimple associative algebras, is due to Johnson and
Sinclair [355], and is included in several books (see for example [715, 786]). (For the
meaning of a semisimple algebra, the reader is referred to Definition 3.6.12 below.)

Theorem 2.2.19 and Proposition 2.2.26 are due to Paterson and Sinclair [480], al-
though the equivalence (i)<>(iii) in Theorem 2.2.19 is not explicitly formulated there.
The most relevant generalization of the equivalence (i)<>(iii) in Theorem 2.2.19 is
due to Kaup [381].

§2.2.27 To provide the reader with a precise formulation of Kaup’s result, let us
recall that JB*-triples are defined as those complex Banach spaces X endowed with
a continuous triple product {---} : X x X x X — X which is linear and symmetric in
the outer variables, and conjugate-linear in the middle variable, and satisfies:

(i) For all x in X, the mapping y — {xxy} from X to X is a hermitian operator on X
and has non-negative spectrum.
(i) The equality
{ab{xyz}} = {{abx}yz} — {x{bay}z} + {xy{abz}}
holds for all a,b,x,y,z in X.

(iii) [[{xxx}|| = ||x||? for every x in X.
JB*-triples generalize C*-algebras because, as we will prove in Fact 4.1.41, each
C*-algebra becomes a JB*-triple under the triple product
1
w2} = S (y"z+27x).

Now, Kaup’s generalization of the equivalence (i)<>(iii) in Theorem 2.2.19 reads as
follows.

Theorem 2.2.28 Surjective linear isometries between JB*-triples are precisely
those bijective linear mappings which preserve triple products.

A forerunner of Kaup’s theorem (generalizing as well the equivalence (i)<>(iii) in
Theorem 2.2.19) is due to Harris [314]. The particularization of Theorem 2.2.19 to
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the unital case is the celebrated Kadison isometry theorem [358]. We formulate it
here for the sake of completeness.

Theorem 2.2.29  Surjective linear isometries between unital C*-algebras A and B
are precisely the mappings of the form a — uF (a), where F : A — B is a bijective
Jordan-x-homomorphism, and u is a unitary element of B.

Kadison’s theorem is included, with two different proofs, in Fleming and
Jamison (see [730, Theorem 6.2.5 and p. 156]), who also include the Paterson—
Sinclair Theorem 2.2.19, without any proof in this case (see [730, Theorem 6.2.6]).
The proofs we have given of Theorem 2.2.19 and Proposition 2.2.26 are essentially
the original ones in [480]. For an alternative proof of Theorem 2.2.19, see Sherman’s
paper [563]. For a ‘x-free’ generalization of Theorem 2.2.29, the reader is referred
to Arazy’s paper [25]. For another generalization, see Proposition 2.3.20 below.
For more generalizations of Theorem 2.2.29, and precise formulations of some of
those quoted here, the reader is referred to [730, pp. 171-9]. The unital forerunner
of Proposition 2.2.26 is due to Sinclair [578].

Lemma 2.2.23 is originally due to Cusack [202], and, as we pointed out in its
formulation, is included with proof in Ara and Mathieu [678]. Cusack’s result gen-
eralizes Herstein’s forerunner [321] for prime algebras (see §2.5.41 below for the
definition of a prime algebra). Actually, for our purposes, the later and much weaker
result of Sinclair [578] (that Jordan derivations of complete normed semisimple
associative algebras are derivations) would have been enough.

2.3 The associative Vidav—Palmer theorem, starting from a
non-associative germ

Introduction In this section, we continue developing the theory of algebra numer-
ical ranges, to be applied to the study of the so-called Vidav algebras (also known
as V-algebras). These algebras are defined as norm-unital normed complex algebras
satisfying a certain condition, which depends only on their normed spaces and their
units, and are automatically endowed with a natural conjugate-linear vector space
involution. As the main result, we prove in Theorem 2.3.8 that the natural involution
of a V-algebra is an algebra involution. Then, we complete the proof of the so-called
associative Vidav—Palmer theorem, which identifies complete associative V-algebras
with unital C*-algebras. The associative Vidav—Palmer theorem and the technology
in its proof are applied to complement the general theory of C*-algebras begun in
Section 1.2 and continued in Theorem 2.1.27 and Section 2.2. Among the applica-
tions of the associative Vidav—Palmer theorem, we emphasize the one asserting that
closed ideals of C*-algebras are x-invariant (see Proposition 2.3.43), as well as the
one involved in the proof of Theorem 2.2.15 (that biduals of nonzero C*-algebras
are unital C*-algebras in a natural way) given in §2.3.53. Then we deduce from
Theorem 2.2.19 the Banach—Stone theorem on isometries of C(()C (E)-spaces. Finally,
we introduce alternative algebras, derive the Vidav—Palmer type theorem for unital
alternative C*-algebras, and prove a result on ranges of unit-preserving contractive
linear projections on alternative C*-algebras (see Theorem 2.3.68), which, even in
the particular associative case, generalizes the classical one by Hamana [305].
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2.3.1 Natural involutions of V-algebras are algebra involutions
Lemma 2.3.1 Let A be a norm-unital normed complex algebra, and let h,k be in

H(A,1). Then i[h,k| lies in H(A,1).

Proof By Lemma 2.1.10, the operator L, — Rj, is hermitian, and clearly vanishes at
1. Therefore, by Corollary 2.2.2 we have

ilh,K] = i(Ly — Ry) (k) € H(A,1). O

Given a complex number z, we denote by 3(z) the imaginary part of z. The next
result is proved in [695, Lemma 26.3] for the case X = C. The general case follows
from the particular one just quoted, and the Hahn—Banach theorem.

Lemma 2.3.2 Let X be a complex Banach space, let f: C — X be an entire
function, and let ¢ be in R\nZ. Assume that ||f(z)| < eS@)! for every z € C. Then

—1)"sin?
cos(¢) f(0) +sin(¢) f'(0) = %an(nﬂ+ P), where Y, := W-

Lemma 2.3.3 Let A be a norm-unital complete normed associative complex alge-
bra, and let h be in H(A,1). Then | exp(zh)|| < e/R@MH"),

Proof By Proposition 2.1.7, for z € C we have
Jexp(eh) | < TRV 1A,
Since
maxR(V(A,1,zh)) = max{R(z€) : £ € V(A,1,h)}
<max{R(z8) : ¢ € [—v(h),v(h)]} = [R(z)v(h),
it follows that || exp(zh)|| < elF@MM), O

Proposition 2.3.4 Let A be a norm-unital normed complex algebra, let h be in
H(A,1), and let A, be complex numbers. Then

v(A1+ ph) = A1+ phl.

Proof In view of Corollary 2.1.2, we may assume that A is complete.

First assume that A is associative. We can also assume that y is nonzero and that
1 and £ are linearly independent, since otherwise the conclusion is clear. Moreover,
after multiplying by a complex number of modulus 1, we can assume that A = r+is
and u = it for suitable r,s,r € R, so that t # 0. By Proposition 2.1.11, we have
v(s14th) > 0, and so we can consider

_ sl+th
©ov(sl+th)
Clearly k € H(A,1) and v(k) < 1. Consider the entire function f: C — A given by

f(z) = exp(izk). By Lemma 2.3.3 we have || f(z)|| < ¢/>)! for every z € C. Therefore,
by Lemma 2.3.2, for ¢ € R\nZ, we have

cos(@)1+isin(@)k = Y wf(nw+ @),

nez
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where

(=1)"sin (‘P).

"= Tt )

Since, by Corollary 2.1.9(iii), we have || f(nm + ¢)|| = 1 for every n € Z, we deduce

that
|| cos(@)1+isin(@)k[| < Y |1l

nez

But,
1

)
ne%|7n| = sin (‘P)ném =1,
and consequently || cos(@)1+isin(¢)k|| < 1. Now, a continuity argument gives that
[[cos(@)1+isin(@)k|| < 1 forevery ¢ €R. (2.3.1)
Note that
Al+ph=r1+4i(s1+th) =rl1+iv(s1+th)k = p(cos(@)1+isin(p)k),
where p = |r+iv(s1+th)| and ¢ is an argument of r + iv(s1+th). Therefore
|21+ ] = [p(cos(@)1 + isin(@)K)| < p = [+ v(s1+ 1))
= max{r2+ (s+1a)? : ¢ € V(A,1,h)}?
= max{|r+i(s+ta))® : o € V(A,l,h)}%
=max{|[A+ua|: o€ V(A 1 h)} =v(A1+ uh),

and hence ||A1+ ph|| < v(A1+ wh). But the converse inequality is clear.
Now assume that A is not associative. Then, by Lemma 2.1.10 and the above
paragraph, we have

V(AL4ph) = v(As + puLy) = ALy + uLp|| = A1+ ph. 0

Corollary 2.3.5 Let A be a norm-unital normed complex algebra, let h, k be her-
mitian elements in A, and let A be a real number. Then

(@) &[] < [[72+ k]|

(i) ||+ iA1|? = ||h[]* + A2
(i) [|h+ik]| < 2v(h+ ik).
iv) ||h—ik| < 2||h+ ik

Proof Assertions (i) and (ii) are straightforward consequences of Proposition 2.3.4.
But Proposition 2.3.4 also gives

1A+ k|| < [All + [[k]| = v(h) +v(k) < 2v(h+ ik) = 2v(h — ik) < 2[|h — k]|,

which proves assertions (iii) and (iv). ]
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Definition 2.3.6 By a V-algebra we mean a norm-unital normed complex algebra
A satisfying A = H(A,1)+iH(A,1). Let A be a V-algebra. Then, by Corollary 2.1.13,
we have in fact A = H(A,1) ®iH(A, 1), so there is a unique conjugate-linear vector
space involution * on A such that H(A,*) = H(A,1). This involution will be called
the natural involution of A.

Without enjoying their name, V-algebras have already appeared in our develop-
ment (see the last conclusion in Lemma 2.2.5). Assertions (iii) and (iv) in
Corollary 2.3.5 lead straightforwardly to assertions (i) and (ii), respectively, in
the following.

Lemma 2.3.7 Let A be a V-algebra. Then we have:

(i) n(A,1) > 3.
(il) The natural involution x of A satisfies ||a*|| < 2||a|| for every a € A, and hence
is continuous.

The main result in this section is the following.
Theorem 2.3.8 The natural involution of any V-algebra is an algebra involution.

The strategy for the proof of this theorem will consist of the consideration of the
bilinear mappings A, k from H(A,1) x H(A,1) into H(A,1) (A is the V-algebra under
consideration) defined by

xy = h(x,y) +ik(x,y) forall x,y € H(A,1). (2.3.2)

It is not difficult to show (see the end of the proof) that the assertion of Theorem 2.3.8
is equivalent to the following relations:

h(x,y) = h(y,x) forall x,y in H(A,1); (2.3.3)
k(x,y) = —k(y,x) forall x,y in H(A,1). (2.3.4)
The relation (2.3.3) is easy. Indeed, we have the following.

Lemma 2.3.9 Ler A be a V-algebra, and let h be defined by (2.3.2). Then we have
h(x,y) = h(y,x) for all x,y in H(A,1).

Proof Letx,ybein H(A,1). From the equality
ife,y] = i(h(x,y) = h(y,x)) = (k(x,y) = k(y,x))
and Lemma 2.3.1, we obtain
h(x,y) —h(y,x) € H(A,1)NiH(A,1) =0. O

In view of this lemma and the above comments we concentrate our attention on the
function k. We first obtain, from the theory of numerical ranges, enough information
about this function to reduce the proof of (2.3.4) to normed space results.

Lemma 2.3.10 Let A be a V-algebra. Then
Ik, ) + A yl? < (Il +12) (12 +A2)
forall x,yin HA,1) and A, in R.
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Proof Letx,ybein H(A,1). The equality
(2 i) (y+iA1) = (h(x,y) = Aud) +i(k(x,y) +Ax+ py),
together with Corollary 2.3.5(1), gives
(e, ) 4+ Ax+ ]l < | e+ i)+ A1) < [+ iged |y + A1,
and Corollary 2.3.5(ii) concludes the proof. ]

As mentioned above, the information about the function £ given by Lemma 2.3.10
will allow us to reduce the proof of the statement (2.3.4) to the context of normed
space theory. So we begin the second (and final) step in the proof of Theorem 2.3.8.
We shall show that any bilinear mapping on a real normed space satisfying the
property asserted for k in Lemma 2.3.10 must be antisymmetric.

Notation 2.3.11 Let X be a real normed space, and let f : X x X — X be a bilinear
mapping. We shall say that the pair (X, f) satisfies the a-property whenever the
inequality

17 (e 3) + Ax 4y < (Iell® + ) Iy lIP +242) (c)

holds for all x,y € X and A, u € R. It is clear that, if f satisfies the a-property, then f
is continuous (take A = y = 0). With the terminology just introduced, Lemma 2.3.10
reads as follows: if A is a V-algebra, then the pair (H(A,1),k) satisfies the
a-property.

From now until the conclusion of the proof of Corollary 2.3.18, X will denote a
real Banach space, f will be a bilinear mapping from X x X into X, and we shall
assume that the pair (X, f) satisfies the o-property. For x in X, f, will denote the
bounded linear operator on X defined by fy(y) = f(x,y) for every y € X.

Lemma 2.3.12 Let x be an extreme point in the closed unit ball of X. Then
F(x,x) =0,

Proof Takey=xand A = y = =+1 in the inequality (o). O
Lemma 2.3.13 V(BL(X),Ix, fx) = 0 for every x € X.

Proof Let r be a positive real number, let x be in X, and let us take A = 0 and
u= r~!in (o) to obtain

1
(I +rf) O < (1472 [x]) 2 [ly]| forevery y € X,
and so ||Ix +rf]] < (1 —|—r2\|x||2)%. By Proposition 2.1.5, we have

(142 [|x]|?)2 — 1

I —1
maxV(f) = fim WXFAIZL ~0.
r—0t r r—0t r
The proof is concluded by using —x instead of x. O

In agreement with the notation in Definition 2.2.14, f" will stand for the mapping
(x,y) = f(y,x) from X x X to X.

Lemma 2.3.14 Assume that X is complete, and that f = ", and let x be an extreme
point of Bx. Then f, = 0.
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Proof Letrandybein R and X, respectively. By Lemma 2.3.13, we have V(f;) =
0, so, applying Corollary 2.1.9(ii), we obtain ||exp(rfy)|| < 1, and so exp(rfy) is a
surjective linear isometry on X. Therefore, since x is an extreme point of By, so is
exp(rfy)(x), and hence, by Lemma 2.3.12 we have

f(exp(rfy)(x), exp(rfy)(x)) = 0.

Taking derivatives at r = 0, and keeping in mind that f = f”, we obtain f(x, f(x)) =
0, that is f(x, fi(y)) = 0, whence f? = 0. On the other hand, by Lemma 2.3.13, we
have V(f;) = 0. It follows from Lemma 2.1.28 that f, = 0, as required. O

In agreement with the notation in §2.2.11, f* : X” x X" — X" will stand for the
Arens extension of f.

Lemma 2.3.15  The pair (X", f') satisfies the oi-property.

Proof Let x and y” be arbitrarily fixed elements in X and X", respectively,
and let A,u be fixed real numbers. Since the norm of X” is w*-lower semi-
continuous, and the mapping 7/ — f'(x,z”) from X" to X" is w*-continuous (by
Lemma 2.2.12(iii)(c)), the function

= || (") + Ax 4 p ||
from X” to R is w*-lower semicontinuous. Therefore, the set
L={"eX": | f'(x2")+Ax+u"|> < (x> + ) (IY"]I* +2A%)}

is w*-closed. Since (X, f) satisfies the a-property, we have ||y”||Bx C L, and hence
[Iv"||Bx» C L (because Byn is the w*-closure of By in X”). In particular, y” € L, and
we have proved that

Gy Aoy 12 < (el + 1) (1112 +22) (o)

holds forall A, in R, xin X, and y” in X"’
Now we fix x”,y"” in X” and A, u in R. Since the mapping 7" — f*(z”,y") from
X" to X" is w*-continuous (by Lemma 2.2.12(iii)(b)), the function

=l AL+ W
from X" to R is w*-lower semicontinuous. Therefore, the set
M= {2 X ") + 22+ I < (WP + ) (11 + 49}

is w*-closed. Since ||x”||[Bx C M (by (o)), it follows that ||x”||By» C M. Therefore
x" € M, which completes the proof. O

Lemma 2.3.16 The pair (X, %( [+ f7)) satisfies the o-property.

Proof Interchange x with y and A with y in the inequality (o), and sum up the
resulting inequality with the previous one. O

Proposition 2.3.17  For all x and y in X we have
f(xvy) = _f(yax)‘
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Proof Write g = %(ft + ). By Lemmas 2.3.15 and 2.3.16 the pair (X", g) satis-
fies the o-property. On the other hand, the equality g = g" is clear. Therefore, by
Lemma 2.3.14, we have g,» = 0 for every extreme point x” of By». In particular, we
have g(x”,y) =0, that is f'(x",y) = —f"(y,x”) for every y € X. For any fixed y the
last equality holds by linearity for all x” in the linear hull of the set of all extreme
points of By», and by w*-continuity (thanks to Lemma 2.2.12) it also holds in the
w*-closure of this linear hull, that is for all x” in X”. In particular, f(x,y) = —f(y,x)
for all x,y in X. ]

Corollary 2.3.18 The mapping f is Arens regular.

Proof By Lemma 2.3.15 and Proposition 2.3.17 we have f" = —f and f"" = —f',
so f" = f'", which is the Arens regularity of f. O

With Proposition 2.3.17 above, the proof of Theorem 2.3.8 is essentially com-
pleted. However, a brief summary might be useful.

End of the proof of Theorem 2.3.8 Let A be the V-algebra under consideration so
that, by Lemma 2.3.10, the pair (H(A,1),k) satisfies the o-property. Let x,y be in
H(A,1). By Lemma 2.3.9 (respectively, Proposition 2.3.17), we have h(x,y) = h(y,x)
(respectively, k(x,y) = —k(y,x)). Therefore, we get

(xy)* = h(xvy) - ik(x7y) = h(yvx) +ik(yvx) =YX,

where * stands for the natural involution of A. Now, let a,b be arbitrary elements in
A, and write a = x+ iy and b = z+ it with x,y,z,t € H(A,1). Then we have

(ab)* = (xz—yt +i(xt +yz))" = zx —ty —i(tx+zy) = b*a". O

From now on, every V-algebra will be seen endowed with its natural involution.
Now note that, if A is a V-algebra, and if * stands for its natural involution, then,
by Theorem 2.3.8, the conclusion in Lemma 2.2.8 holds. Therefore, repeating the
arguments in the proof of Theorem 2.2.9, we obtain the following.

Corollary 2.3.19 Let A be a V-algebra. We have:

(i) If B is a V-algebra, and if F : A — B is a unit-preserving surjective linear
isometry, then F is a Jordan-+-homomorphism.

(i) If T is in H(BL(A),I,), then there are h € H(A,*) and a continuous Jordan
derivation D of A such that T = L, + D and D(a*) = —D(a)* for every a € A.

Proposition 2.3.20 Let A be a norm-unital normed complex algebra, let B be
a C*-algebra, and let F : A — B be a surjective linear isometry. Then B has a
unit, and there exists a unitary element u € B, and a surjective isometric Jordan
homomorphism G : A — B, satisfying F(a) = uG(a) for every a € A.

Proof By Corollary 2.1.13, the unit 1 of A is a vertex of By, and hence u := F (1) is
a vertex of Bp. As a first consequence, by Lemma 2.1.25, Bp has extreme points, and
therefore, by Lemma 2.1.26, B has a unit. Now, by Theorem 2.1.27, u is a unitary
element of B, and hence the mapping G : @ — u*F(a) from A to B becomes a unit-
preserving surjective linear isometry. Since B is a V-algebra (by Lemma 2.2.5), and A
is unit-preserving linearly isometric to B, we see that B is also a V-algebra. Therefore,
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by Corollary 2.3.19, G is a surjective isometric Jordan-*-homomorphism, and we
clearly have F(a) = uG(a) for every a € A. O

2.3.2 The associative Vidav—Palmer theorem

In what follows, we are going to complete the proof of the associative Vidav—Palmer
theorem.

Lemma 2.3.21 Let A be a norm-unital complete normed associative algebra over
K, and let a be in A. Then sp(a) C V(a).

Proof Let u be in sp(a). Then, for every A € K, u — A lies in sp(a — A1), and
hence, by Proposition 1.1.40, we have |4 — A| < |la — A1||. Therefore we obtain
U € Ny exBr(A,]la—A1]|), and Proposition 2.1.1 applies. O

From now on, we assume that the reader is familiarized with the holomorphic
functional calculus in a single element of a unital complete normed associative com-
plex algebra A, as stated in Section 1.3. We recall that, roughly speaking, the holo-
morphic functional calculus assigns to each element a € A, to each open subset €
of C containing sp(a), and to each holomorphic mapping f : Q — C, an element
f(a) € A, in such a way that, when the triple (a,Q, f) moves, things behave rea-
sonably. The holomorphic functional calculus will be involved without notice in the
proofs of Proposition 2.3.22 and Lemma 2.3.28 below.

Proposition 2.3.22 Let A be a norm-unital normed associative complex algebra,
and let h be in H(A,1). Then v(h) = ||h]|.

Proof We may assume that A is complete, and that (k) < 7. Then, by Lemma

2.3.21, we have sp(h) €] — %, 7[, and hence

h = arcsin(sinh) = Y, (sinh)***!,

n=0
where o, := % On the other hand, by Corollary 2.1.9(iii), we have
|| sink|| < 1. It follows that ||A|| < X g0, = 5. O

Proposition 2.3.23 Let A be a norm-unital complete normed associative complex
algebra, and let h be in H(A,1). Then V (h) = co(sp(h)).

Proof Clearly, V(h) = [s,t] for suitable s, € R. Therefore, by Lemma 2.3.21 and
Proposition 2.3.22, we derive

t(th—s1)=v(h—s1)=t—s=v(h—11) =t(h—11).
Since sp(h—s1) C [0, —s] and sp(h — 1) C [s —1¢,0], it follows that
t—sesp(h—sl) and s—t € sp(h—rl),

that is, both 7 and s lie in sp(h). Thus we have shown that V(&) C co(sp(h)). The
converse inclusion follows by a new application of Lemma 2.3.21. U
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Lemma 2.3.24 Let A be a complete associative and commutative V-algebra, let
denote the natural involution of A, and let A stand for the carrier space of A. Then
the Gelfand transform a — G(a) from A to CC(A) becomes a continuous bijective
algebra x-homomorphism. Moreover, for h € H(A,1) we have V (h) = co(G(h)(A)).

Proof The last conclusion follows from Proposition 2.3.23 and Theorem 1.1.73(iii).
As a consequence, we have G(H(A,*)) C H(C®(A),*), which implies that the
Gelfand transform is an algebra x-homomorphism. Now, by Theorem 1.1.73(ii),
G(A) becomes a *-subalgebra of C®(A) containing the constant functions and separ-
ating the points of A, so that, by the Stone—Weierstrass theorem (cf. Theorem 1.2.10),
G(A) is dense in C®(A). On the other hand, for a = h+ik € A, with h,k € H(A,1), we
have G(a) = G(h) +iG(k) with G(h),G(k) € H(C®(A),*), and therefore, invoking
Proposition 2.3.22 and Theorem 1.1.73(iv), we get

lall < Al + [|k]| = e(h) +e(k) = [[G(W) | + |G(K)[| < 2[[G(a)|| = 2¢(a) < 2]al],

so the Gelfand transform is a linear homeomorphism from A onto G(A), and so G(A)
is closed in CC(A). It follows that G(A) = CC(A). O

Remark 2.3.25 We note that the above proof does not involve Theorem 2.3.8.
Therefore, it becomes an autonomous proof of that theorem in the particular asso-
ciative and commutative case.

Lemma 2.3.26 Let A be a complete associative V-algebra, let x stand for the
natural involution of A, and let a be in A. Then V (a*a) consists only of non-negative
real numbers.

Proof First of all, note that, since = is an algebra involution (by Theorem 2.3.8),
x*x is a hermitian element of A whenever x is in A. Let us denote by K(A) the set
of those elements p € A such that V(p) C RJ. Let b be in A. Write b = h+ ik with
h,k € H(A,1). Then we have

b*b = 2h* +2k* — bb*. (2.3.5)

Now let B stand for the closed subalgebra of A generated by {h,1}. Then, B is
associative and commutative. Moreover, since * is a continuous algebra involution
(by Lemma 2.3.7), B is *-invariant. Therefore, keeping in mind Corollary 2.1.2, it
is easily realized that B is a complete V-algebra whose natural involution is the
restriction of  to B. Since both 4 and 42 are hermitian elements of B, Lemma 2.3.24
applies (with B instead of A), so that we have

V(A,1,h*) =V (B,1,h*) C R,

that is h> € K(A). Analogously, we get k> € K(A). Assume that —b*b € K(A). Then,
since sp(b*b) \ {0} = sp(bb*) \ {0} (by Fact 1.1.33), it follows from
Proposition 2.3.23 that —bb* € K(A), and hence, by (2.3.5), that b*b € K(A).
But —b*b € K(A) by assumption, so V(b*b) = 0. Analogously, V(bb*) = 0, so
V (h? +k?) = 0. Therefore V (h*) = V (k?) = 0, and, by Corollary 2.1.13, > = k> = 0.
By Proposition 2.3.22, we finally have 4 = k = 0, and hence b = 0.

Now, let a be the arbitrary element of A in the statement. Then, keeping in mind
that a*a € H(A,1), and thinking about the closed subalgebra of A generated by
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{a*a,1}, we can apply Lemma 2.3.24 (with this subalgebra instead of A) to get
the existence of p,q € K(A) such that a*a = p — g and pg = gp = 0. Set b:=agq.
Then —b*h = —qga*aq = ¢> € K(A), and hence b = 0 by the above paragraph.
Consequently, we have a*ag = a*b = 0, so ¢> = 0, and so ¢ = 0. Thus we get
a‘a=p € K(A), as required. O

Lemma 2.3.27 Let A be a C*-algebra, and let |- | be an algebra norm on A such
that | -[ < |-l Then | -| = || - ||

Proof LetabeinA. Then the closed subalgebra of A generated by a*a is a commu-
tative C*-algebra, and hence, by Proposition 1.2.51, we have

2
lall? = [laall < |a*al < |a*|lal < lla*[la] = la]a],
and hence ||a|| < |a]. O
The above lemma will be generalized later in Proposition 4.4.34.

Lemma 2.3.28 (Russo—Dye theorem) Let A be a unital C*-algebra. Then By =
co(U), where U stands for the set of all unitary elements of A.

Proof Let x be in A such that 0 < ||x|| < I. Then v(x*) = v(x) < 1, and t(xx*) =
t(x*x) = ||x||*> < 1. Let D stand for the open disc in C with centre 0 and radius
|lx|[~!. Then we may define F : D — A by

F(A)=(1—xx*)"2(A1+x)(1+Ax*)"1(1—x"x)Z forevery A € D.

It is routine that F' is holomorphic on D. Let A be in Sc. The following equalities are
elementary:

A+ Ax) T A4 x) =x+ A (14 Ax") 11 —x"x), (2.3.6)
A1+ x) (1 +2Ax) T =x+ A (1 — ™) (14 Ax*) 7. (2.3.7)

Since t(x) < 1, F(A) is invertible, and by (2.3.6) and (2.3.7),

1

(FAO)™ ) =1 —xx")2(A1+x") 114+ 2Ax) (1 —x"x) "2
(1—xx*)2(1+Ax") "N (A1 +x) (1 —x"x)~
(1—xx")" la(l xx)%

Bf—

where
a:=(1—-xx)1+Ax") A1+ x)(1—x"x)"!
=(1—xx") [+ A1+ 2Ax") " (1 —x"x)] (1 —x*x) !
=x4+A(1—xx")(1+Ax*) 7!
= (A1 +x) (14 Ax*)"!

This shows that F (1) is unitary for each A € Sc. Since F is holomorphic, we have

2 .
F(0) = %/0 F(e®)de.
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Consideration of the series expansion of (1 — y)% for ||y|| <1 gives
(1 —xx*)%x =x(1 —x*x)%.
Therefore x = F(0) € co(U). O

Proposition 2.3.29 (Russo—Dye—Palmer theorem) Let A be a unital C*-algebra.
Then B4 =Co(E), where

E :={exp(ih) :h € H(A,*)}.

Proof We retain the notation in the proof of Lemma 2.3.28. Let u be in U. By
that lemma, it is enough to show that u € co(E). Since u lies in a commutative C*-
subalgebra of A containing 1, we may assume that A is commutative. Let A stand for
the carrier space of A. By Lemmas 2.2.5 and 2.3.24, the Gelfand transform a — G(a)
becomes a continuous bijective algebra x-homomorphism from A to CC(A). Given
0<r<1,setx:=tu. Let A be in Sc. Then we have

(A1+F (L)1 +Ax") = [A1+ (A1+x)(1+Ax") '] (1 +Ax%)
=AM+ A% A1 +x =24 [l—l—;(lx* +ix)] :

Since ||x|| < 1, it follows that A1+ F(A) is invertible, and hence, since F(1) is a
unitary element of A, we derive that sp(F (1)) C S¢\ {—A}. Now, take a continuous
logarithm log : S¢ \ {—A} — C. Then g := —ilogoG(F(A)) is a real-valued con-
tinuous function on A satisfying exp(ig) = G(F(1)). Now, if i denotes the unique
element in A such that G(h) =g, then we have h € H(A,*) and exp(ih) = F(A).
Therefore F(A) lies in E and, as in Lemma 2.3.28, x € ¢o(E). Finally, lett — 1. O

Definition 2.3.30 Let A be a complex *-algebra, and let f be a linear functional
on A. We say that f is positive if, for every a € A, we have f(a*) = f(a) and
f(a*a)>0. By a C*-seminorm (respectively, a C*-norm) on A we mean a submulti-
plicative seminorm (respectively, norm) || - ||| on A satisfying

lla*alll = llall* for every a € A.

Lemma 2.3.31 Let A be a normed unital associative complex x-algebra whose
involution is continuous, let P stand for the set of those continuous positive linear
Sunctionals f on A satisfying f(1) = 1, and for a € A set

llall := sup{\/f(a*a) : f € P}
Then ||| - ||| is a continuous C*-seminorm on A.

Proof Let f be a positive linear functional on A. Then (a,b) — f(b*a) becomes a
non-negative hermitian sesquilinear form on A, and hence the mapping a — +/ f (a*a)
is a seminorm on A, and moreover, by the Cauchy—Schwartz inequality, for a € A
we have

f(@)]? = |f(1"a)? < f(D)f(a"a). (238)

Therefore, if in addition f is continuous, then we have

(@ < F@)fla* lall < SO ]al?
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for every a € A, which implies

[FAIRSACSIIE P (2.3.9)
$0
flaa) < | flllla*all < F)I* | lal?,
and so || - || < ||*]||| - || on A, which shows that || - || is indeed a continuous seminorm.

Let a,b be in A, and let f be in P. We claim that
f((ab)*ab) < ||al|>f (6°). (23.10)

To prove the claim, consider the mapping g : x — f(b*xb) from A to C, and note that
g is a continuous positive linear functional on A. If g = 0, then the assertion in the
claim holds in an obvious way. Otherwise, by (2.3.9), we have f(b*b) = g(1) # 0,
and consequently % g is an element of P. Therefore
f((ab)*ab) _ g(a*a) < |||Cl|||2
fwb) forp) T
which concludes the proof of the claim. Now that the claim is proved, it is enough to
take suprema in (2.3.10), when f runs over P, to get that || - || is a submultiplicative
seminorm on A.
Now, let a be in A, and let f be in P. Writing (2.3.8) with a*a instead of a, we get
f(a*a)? < f(a*aa*a), which implies ||a|> < ||a*a]||. Since || - || is a submultiplica-
tive seminorm, the above implies in its turn that [|a[[|? = ||a*a]|. O

Theorem 2.3.32 (Vidav—Palmer) Let A be a complete associative V-algebra. Then
A, endowed with its natural involution and its own norm, becomes a C*-algebra.

Proof Let % stand for the natural involution of A. Then, by Lemma 2.3.7(ii) and
Theorem 2.3.8, * is a continuous algebra involution, a fact that must be kept in mind
throughout the remaining part of the proof. Let P and || - || be as in Lemma 2.3.31.
Then, by Lemma 2.3.26, we have D(A,1) C P, and hence, by Lemma 2.3.7(i) and
(2.3.8), for a € A we get

2 llall < via) = sup{|f(@)] - f € (A, 1)}

<sup{y/f(a*a): f € D(A, 1)} < [al].

It follows from Lemma 2.3.31 that ||| - || is an equivalent C*-norm on A. Therefore
(A, %, ]| - |II) is a C*-algebra, and hence, by Proposition 2.3.29 and Corollary 2.1.9(iii),
we have

Ba, . = co{exp(ih) : h € H(A,*)} = co{exp(ih) :h € H(A,1)} C By.

As a result, we have || - || < || ||, and the proof is concluded by applying Lemma
2.3.27. O

Remark 2.3.33 The application of Lemma 2.3.27, just done at the end of the above
proof, can be avoided. Indeed, by Lemma 2.2.5, we have

H((A[I-1N,1)) = H(A, %) = H(A,1),
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and hence, by Proposition 2.3.22, we get || k| = ||k|| for every h € H(A, *). Therefore,
if for some a € A we had ||a|| < ||«[|, then we would have

lla”all < lla”[[llall < lla"[llall = lla*all| = [la"all,

a contradiction.

2.3.3 Complements on C*-algebras

§2.3.34 Let (X,u) be a real numerical-range space such that u is a vertex of By.
Then, clearly, the set C := {x € X : V(X,u,x) C R } is a closed proper convex cone
in X. Therefore, according to §1.2.39, X naturally becomes an ordered set in such
a way that C = {x € X : x > 0}. The order of X just reviewed will be called the
numerical-range order.

The following facts follow straightforwardly.

Fact 2.3.35 Let (X,u) and (Y,v) be real numerical-range spaces such that u and v
are vertices of Bx and By, respectively, and let T : X — Y be a linear mapping with
T(u) =v. We have:

(1) If T is contractive, then T preserves numerical-range orders.
(ii) If in fact n(Y,v) = 1, and if T preserves numerical-range orders, then T is
contractive.

Fact 2.3.36 Let (X,u) be a real numerical-range space with n(X,u) = 1. Then
0 < x <y in the numerical-range order of X implies ||x|| < ||y||-

§2.3.37 Now, let A be a norm-unital normed complex algebra. Then (H(4,1),1) is a
real numerical-range space, and, by Corollary 2.1.2 and Propositions 2.1.4 and 2.3 .4,
we have n(H(A,1)) = 1. Therefore, §2.3.34 and Fact 2.3.35 apply appropriately. We
also note that if A is in fact a unital C*-algebra, then, by Lemma 2.2.5, we have
H(A,x) =H(A,1).

Keeping in mind Lemma 2.2.5 and Proposition 2.3.23, we get the following.

Proposition 2.3.38 Let A be a unital C*-algebra. Then the usual order of H(A,x)
(cf. §1.2.41) coincides with the numerical-range order.

Now, we summarize some facts about the order in the self-adjoint part of a (pos-
sibly non-unital) C*-algebra (cf. §1.2.47).

Proposition 2.3.39 Let A be a C*-algebra. We have:

(i) For h € H(A,x), the following conditions are equivalent:
(a) h>0.
(b) h =Kk for some k € H(A, ).
(¢c) h=a"a for some a € A.
(ii) Ifa,b € H(A,*) witha < b, and if c is in A, then c*ac < c*bc.
(iff) If0 <a <b, then ||a]| < [b].
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(v) If A is unital, and if a,b are positive invertible elements with a < b, then
0<bh ! <al.
V) If0 < a < b, then a? < b>.

Proof By Proposition 1.2.48(ii), every positive element of A is of the form k> for
some k € H(A,*), and hence of the form a*a for some a € A. Conversely, by consid-
ering the C*-algebra unital extension of A if necessary, and applying Lemma 2.3.26
and Proposition 2.3.38, we obtain a*a > 0 for every a € A. This proves assertion (i).

Leta,bin H(A,*) such that a < b, and let ¢ be in A. Keeping in mind assertion (i),
we realize that there exists x € A such that b — a = x*x, hence

c¢*be—c*ac = c*(b—a)c = c¢*x*xc = (xc)"xc = 0.
This proves assertion (ii).
Passing to the C*-algebra unital extension of A if necessary, assertion (iii) follows
from Proposition 2.3.38 and Fact 2.3.36.

Assume that A is unital. To prove assertion (iv) we first observe that if ¢ > 1, then
¢ is invertible and ¢! < 1. This follows from assertion (ii) since

_ 11 1 1
cl=c21c 2 2¢cc”2=1.

Now, suppose that a, b are invertible and 0 < a < b. Then, we have

1

_ _ _1 1
a 2ba 2.

2

N

1=a 2aa

. I 1 .
It follows from the above particular case that (a~2ba~2)~! < 1, that is
1 1
azb a2 <1.

Hence b~! < (a%)’l(a%)’l =al.

Finally, in order to prove assertion (v), note that it suffices to show that for positive
elements a,b € A, the condition a® < b? implies a < b. Moreover, by considering the
C*-algebra unital extension of A if necessary, we may assume that A is unital. Let
t >0, and write (t1+b+a)(t1+b—a) = h+ ik with h,k € H(A, ). Then

1
h= §[t1+b+a)(t1+bfa)+(t1+bfa)(t1+b+a)]
=1+ 2tb+b* —a* > 1*1.
Consequently, £ is both invertible and positive. Since
NI 1 1
1+ih 2kh 2 =h™ 2(h+ik)h™ 2,

and 1 —|—ih’%kh’% is invertible (by Proposition 1.2.20(ii)), we get that h + ik is
invertible. It follows that ¢(rf1+b—a) =1 = (11 + b — a)c* for some ¢ € A,
and therefore (¢1+ b — a) is invertible because of Lemma 1.1.59. Consequently,
—t ¢ sp(b—a). Hence sp(b—a) C R, so b —a is positive, that is, a < b. O

Exercise 2.3.40 Prove that, for elements a,b in an arbitrary C*-algebra, the
implication

0<a<b = a*<b®

is not true.
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Solution  For example, consider the C*-algebra A = M, (C), and take the self-adjoint

. 1 0 2 1
matncesa-(o O>andb—<1 1). O]

Now we are going to study closed ideals of C*-algebras.

Lemma 2.3.41 Let A be a V-algebra, let B be a norm-unital normed complex
algebra, and let T : A — B be a unit-preserving surjective linear contraction. Then
BisaV-algebra, and T preserves natural involutions.

Proof Since A = H(A,1) +iH(A,1), and T(H(A,1)) C H(B,1) (by Corollary
2.1.2(i)), we have B=T(A) C H(B,1) +iH(B,1) C B, and hence B is a V-algebra.
Since H(A,*) = H(A,1) and H(B, *) = H(B, 1), it follows from Exercise 1.2.21 that
T is a *x-mapping. O

If X is a vector space over K, if * is a conjugate-linear involution on X, and if
M is a x-invariant subspace of X, then the mapping x + M — x* + M becomes a
conjugate-linear involution on X /M, which will be called the quotient involution.

Corollary 2.3.42 Let A be a V-algebra, and let M be a closed proper ideal of A.
Then M is invariant under the natural involution of A, and A/M is a V -algebra whose
natural involution is the quotient involution of that of A.

Proof Set B:=A/M. By §1.1.110, B is a norm-unital normed complex algebra.
Now, the result follows from Lemma 2.3.41 by taking 7 : A — B equal to the quotient
algebra homomorphism, and noticing that M = ker(T). O

Proposition 2.3.43 Let A be a C*-algebra, and let M be a closed ideal of A. Then
M is x-invariant, and A/M is a C*-algebra for the quotient norm and the quotient
involution.

Proof We may assume that M is proper. If A is unital, then the result follows from
Lemma 2.2.5, Corollary 2.3.42, and Theorem 2.3.32.

Assume that A is not unital. Then the C*-algebra unital extension A; of A is a unital
C*-algebra containing A (isometrically) as a x-subalgebra (by Proposition 1.2.44),
and M becomes a closed proper ideal of A; . By the above paragraph, M is x-invariant,
and Ay /M is a C*-algebra in the natural way. Moreover, since A/M can be seen
isometrically as a x-subalgebra of Ay /M, A/M is a C*-algebra in the natural way. [J

Now, we are going to prove Theorem 2.2.15 (that biduals of C*-algebras are C*-
algebras in a natural way). To this end, the reader should recall the definition of the
adjoint of a bounded bilinear mapping (see §2.2.11) and, in particular, should regard
the bidual of any normed algebra as a new normed algebra (relative to the Arens
product). Moreover, the consequence of Corollary 2.2.13, that the bidual of a norm-
unital normed algebra A is a norm-unital normed algebra with the same unit as that
of A, should be kept in mind.

Lemma 2.3.44 Let A be a norm-unital normed algebra over K, and let a” be in A”.
Then V(A" 1,a") equals the closure in K of the set

VYA 1,d") = {d"(f) : f € D(A, 1)},
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Proof Let m denote the product of A. For (b,b") € A x A’, we have
m'(b',1)(b) = b'(m(1,b)) = b/ (b),
and hence m’'(b',1) = b’. Therefore, for (b',0") € TI(A") we have
m" (b".b)(1) =b"(m' (V1)) =0"(V) =1,

som”(b",b') € D(A,1).
On the other hand, invoking Lemma 2.1.10, and applying Corollary 2.1.34 with
X:=Aand F := L : A” — A", we have

V(A" 1,d") =V (BL(A"),Iyn, L)
— %{m’"(a”,b'/)(b') . (b/,b”) e H(A/)}
=co{d"(m"(b" b)) : (' ,b") € TI(A")}.

Since the set V"' (A”,1,d") is convex, it follows from the first paragraph in the proof
that V(A" 1,a") is contained in the closure in K of V" (A”,1,a"). The converse
inclusion is also true because V(A”,1,a”) is closed in K and, for f € D(A,1), the
mapping b” — b"(f) from A” to K is an element of D(A”,1). O

§2.3.45 Let X be a normed space over K endowed with a continuous conjugate-
linear involution *. For f € X" we define f* € X’ by f*(x) = f(x*) for every x € X.
Then f — f* is a continuous conjugate-linear involution on X’ which we shall call
the transpose of the one on X. In what follows, X’ and X" will be seen without
notice endowed with the transpose and bitranspose involutions, respectively, and the
fact that the bitranspose involution on X” extends the one given on X should be kept
in mind.

Let X,Y,Z be normed spaces over K, each of which is endowed with a continuous
conjugate-linear involution *, and let m : X X Y — Z be a continuous bilinear map-
ping. Then m* will stand for the continuous bilinear mapping (x,y) — (m(x*,y*))*
from X x Y into Z.

Lemma2.3.46 LetX,Y,Z be normed spaces over K, each of which is endowed with
a continuous conjugate-linear involution x, and let m : X XY — Z be a continuous
bilinear mapping. Then m'* = m*'. As a consequence, m"* = m*'.

Proof The fist conclusion follows from the fact that, forallx € X,y € Y,and 7 € Z/,
we have

m'*(Z,x)(y) = (' (27, x7))" (v) = m (Z*,x%) () = 2 (m(x*,y*))
=2 ((m(x",y"))") = 2 (m" (x,y)) = m""(Z, ) ().
As a consequence, we have

ml* — m///* — m//*/ — ml* " — m* " — m*t. D
Corollary 2.3.47 Let A be a normed x-algebra over K whose involution is continu-
ous. Then the bitranspose involution on A" is an algebra involution if and only if A
is Arens regular.
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Proof Let m denote the product of A. Since * is an algebra involution on A, we have
m* =m’". Then, by Lemma 2.3.46, the equality m'"* = m"" holds, and so m"" = m'"
(the Arens regularity of A) is equivalent to m™ = m'" (i.e. the bitranspose involution
is an algebra involution on A”). O

Proposition 2.3.48 Let A be a V-algebra. Then the bidual of A is a V-algebra
whose natural involution coincides with the bitranspose of the natural involution of
A. As a consequence, A is Arens regular.

Proof Let * denote indistinctly the natural involution of A and the first and second
transpose ones. Let (a”, f) be in H(A”,*) x D(A,1). Then clearly f € H(A',*), so
d’(f) €R,and so a” € H(A” 1) (by Lemma 2.3.44). Therefore we have H(A”,x) C
H(A” 1), which proves the first conclusion. Now, the Arens regularity of A fol-
lows from the fact that x is an algebra involution on A” (by Theorem 2.3.8) and
Lemma 2.3.47. U

Lemma 2.3.49 Let A be a normed associative algebra over K. Then the normed
algebra A" is associative.

Proof Let m denote the product of A. Since A is associative, for all a,b,c € A
we have

m(m(a,b),c) =m(a,m(b,c)).
Therefore, for every a’ € A’ we see that
m'(d' ;m(a,b))(c) = d (m(m(a,b),c)) = d (m(a,m(b,c)))
=m'(d ;a)(m(b,c)) =m'(m'(d',a),b)(c),
and hence
m'(a',m(a,b)) =m'(m'(d ,a),b). (2.3.11)
Applying (2.3.11), for every ¢’ € A” we get
m' (m" (", d'),a)(b) =m" (" ,d)(m(a,b)) =" (W (d',m(a,b)))
=c"(m(m'(d',a),b)) =m" (" ,m'(d',a))(b),
and hence
m' (m"(",d"),a) =m"(",m'(d ,a)). (2.3.12)
Using (2.3.12), for every b” € A” we obtain
m" (B"m" (" ,d"))(a) =b" (m' (m"(",d"),a)) =b"(m" (" ,m(d,a)))
= () () = o (),
and hence

m" (b m" (" ,d")) =m" (m" (b","),d). (2.3.13)
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Finally, applying (2.3.13), for every a” € A” we conclude that
o (" 7)) el ) = () () = (o ()
= a1 ), ) = i a8 ) (),
and hence
m' (m' (", b"),c") =m' (d",m' (b",")),
i.e. A” is associative. O

Lemma 2.3.50 Ler X be a normed space over K endowed with a continuous
conjugate-linear involution *, and let Y be a x-invariant subspace of X. Then the
bipolar Y°° of Y in X" is invariant under the bitranspose involution, and the natural
Banach space identification of Y°° with Y" preserves bitranspose involutions.

Proof  For the sake of convenience, let us take different symbols for the w*-topology
of X" (say 6(X”,X")) and the w*-topology of Y” (say analogously o (Y”,Y")). Let
* also stand for the bitranspose involution on X”. Since x is (X", X’)-continuous
on X”, and Y is *-invariant, the set {x € Y°° : x* € Y*°} is o(X",X")-closed in X"
and contains Y. Therefore, since Y is o(X"”,X’)-dense in Y°°, we deduce that Y°° is
x-invariant. Now, denote also by * the bitranspose involution on Y” of the involution
of Y (as a *-invariant subspace of X), and recall that it is o (Y”,¥’)-continuous. Since
the natural identification @ : Y°° — Y" is 6(X",X") yec-to-c(Y",Y") continuous and
becomes the identity on Y, the set {x € Y°° : ®(x*) = ®(x)*} is 0(X”,X’)-closed in
X" and contains Y. The o(X”,X")-density of Y in Y °° gives ®(x*) = ®(x)* for every
xeye. O

Lemma 2.3.51 Let X,Y,Z be normed spaces over K, and let m: X XY — Z be a
bounded bilinear mapping. The following conditions are equivalent:

(i) The Arens extension m' : X" xY" — Z" is w*-continuous in its second variable.
(ii) The Arens extension m' is separately w*-continuous.
(iii) There exists a separately w*-continuous mapping from X" x Y" to Z" which
extends m.
(iv) m is Arens regular.

Proof (i)=(ii) By Lemma 2.2.12(iii)(b).

(ii)=-(iii) This is clear.

(ili))=-(iv) Assume that there exists a separately w*-continuous mapping
g: X" xY" — Z" which extends m. Then, by Lemma 2.2.12(iii), we have g = m’
and g" = m'". Since the first equality implies g" = m'”, we deduce m'" = m'", i.e. m is
Arens regular.

(iv)=(i) By Lemma 2.2.12(iii)(b), m'" is w*-continuous in its first variable. There-
fore, if m is Arens regular (i.e. m'" = m'"), then m' is w*-continuous in its second
variable. O

Lemma 2.3.52 Let B be a normed algebra over K, and let A be a subalgebra of
B. Then the bipolar A°° of A in B" is a subalgebra of B", and the natural Banach
space identification of A°® with A" becomes a bijective algebra homomorphism. As
a consequence A is Arens regular whenever so is B.
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Proof The set {y € A°° : Ay C A°°} contains A and, by Lemma 2.2.12(iii)(c), is
o(B",B')-closed in B”. Therefore, since A is 6(B”,B’)-dense in A°°, we deduce
that AA°® C A°°. Now, the set {z € A°° : zZA°° C A°°} contains A and, by Lemma
2.2.12(iii)(b), is o(B",B")-closed in B”. The o(B”,B’)-density of A in A°® gives that
A®°A®° C A°°, i.e. A is a subalgebra of B”. Assume that B is Arens regular. Then,
by Lemma 2.3.51, the product of B” is separately ¢ (B”,B’)-continuous. Now, since
the natural identification @ : A°® — A" is 6(B", B') s -to-0/(A” ,A’) bicontinuous and
becomes the identity on A, the mapping (u,v) — ®(®~ ! (u)®~!(v)) from A” x A” to
A" is separately o(A”,A")-continuous and extends the product of A. It follows from
Lemma 2.3.51 that A is Arens regular. ]

§2.3.53 Proof of Theorem 2.2.15 Let A be a nonzero C*-algebra.

Assume at first that A is unital. Then, by Lemma 2.2.5, A is a V-algebra. Therefore,
by Proposition 2.3.48, Lemma 2.3.49, and Theorem 2.3.32, A”, endowed with the
Arens product and the bitranspose of the involution of A, becomes a unital C*-
algebra, and moreover A is Arens regular.

To conclude the proof, we must show that the same conclusion holds if A is
not unital. In this case, we consider the C*-algebra unital extension A; of A (see
Proposition 1.2.44), so that, by the above paragraph, the desired conclusion holds
with Aj instead of A. Therefore, since A is a x-subalgebra of A;, Lemmas 2.3.50
and 2.3.52 apply to get that the bipolar A°° of A in (A1 )" is a *-subalgebra of the C*-
algebra (Ay)”, that the natural Banach space identification @ : A°° — A” becomes a
bijective algebra x-homomorphism, and that A is Arens regular. Now, since @ is an
isometry which becomes the identity on A, it turns out clear that A” is a C*-algebra in
the natural way. Finally, since B4~ has extreme points (by the Banach—Alaoglu and
Krein—-Milman theorems), it follows from Lemma 2.1.26 that A” is unital. O

Now that Theorem 2.2.15 has been proved, we are going to provide some comple-
ments on the C*-algebra of multipliers of a given C*-algebra in order to derive the
Banach—Stone theorem, on isometries of Cg (E)-spaces, from the Kadison—Paterson—
Sinclair theorem (cf. Theorem 2.2.19).

Definition 2.3.54 Flexible algebras are defined as those algebras satisfying the
‘flexibility’ condition (ab)a = a(ba).

Fact 2.3.55 Let A be a flexible algebra over K, let a be in A, and let I be an ideal
of A having a unit element e. Then ae = ea.

Proof Since ae and ea lie in I, and e is the unit of /, we have
ae = e(ae) = (ea)e = ea. O

An ideal 7 of an algebra A over K is said to be essential if INJ # 0 for every
nonzero ideal J of A. Now, let A be a C*-algebra. We recall that closed ideals of A
are x-invariant (cf. Proposition 2.3.43) (and hence are C*-algebras), and that the
C*-algebra M(A) of multipliers of A was defined as the closed x-subalgebra of A”
given by

{d"€A":d"ACA and Ad" CA}

(cf. §2.2.16).
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Proposition 2.3.56 Let A be a C*-algebra. We have:

(i) Every closed x-subalgebra of M(A) containing A becomes a C*-algebra con-
taining A as an essential ideal.

(ii) Conversely, any C*-algebra containing A as an essential ideal can be seen in a
natural way as a closed x-subalgebra of M(A) containing A. More precisely, if B
is a C*-algebra, if ¢ : A — B is an isometric algebra x-homomorphism such that
@ (A) is an essential ideal of B, then there is a unique algebra x-homomorphism
N : B — M(A) satisfying 1o ¢ = 1, where 1 denotes the inclusion A — M(A),
and moreover M is an isometry.

Proof Let C be any closed x-subalgebra of M(A) containing A. Clearly A is an ideal
of C. Now let / be an ideal of C with /N A = 0. Then we have Al =0, so A" =0
because the product of A” is w*-continuous in its first variable and A is w*-dense in
A" Therefore I*I = 0, hence I = 0. This proves assertion (i).

Let B be a C*-algebra, and let ¢ : A — B be an isometric algebra *-homomorphism
such that ¢ (A) is an essential ideal of B. Since A” and B” are C*-algebras with sep-
arately w*-continuous products and w*-continuous involutions (cf. Theorem 2.2.15
and the implication (iv)=-(ii) in Lemma 2.3.51), ¢” becomes an isometric algebra
«-homomorphism from A” to B” whose range is a w*-closed ideal of B”. Keep-
ing in mind the Banach—Alaoglu and Krein—Milman theorems, it follows from
Lemma 2.1.26 that ¢”(A”) has a unit (say e), which becomes clearly an idempotent
of B” satisfying ¢”(A”) = B"e. From now on, Fact 2.3.55 should be omnipresent
in the remaining part of the proof. Thus (B”(1 —e¢))NB is an ideal of B with
zero intersection with ¢(A) so, since ¢(A) is an essential ideal of B, we have
(B"(1—¢))NB =0 and therefore, by Corollary 1.2.52, the mapping ¥ : x — xe
from B into ¢”(A”) is an isometric algebra x-homomorphism. Then the mapping
N = (¢")~' oy is an isometric algebra *-homomorphism from B to A” whose range
is contained in M(A), and routinely we see that n o ¢ = 1, where t denotes the
inclusion A < M(A). Assume that  : B — M(A) is an algebra *-homomorphism
satisfying { o = 1. Since ¢(A) is an ideal of B, givena € A and b € B thereis c € A
such that ¢ (a)b = ¢(c), and we have

an(b) =1(a)n(b) =n(¢(a))n(b) =n(¢(a)b) =n(¢(c)) =1(c)
=L(9(c)) = C(9(a)b) = {(9(a))L(b) = 1(a)C(b) = al(b).

It follows from the arbitrariness of @ € A that A(n(b) — {(b)) = 0. Now, keeping in
mind that the product of A” is w*-continuous in its first variable and that A is w*-
dense in A”, we see that A”(n(b) — (b)) = 0, and hence 1 (b) — § (b) = 0. It follows
from the arbitrariness of b € B that { = 1, and the proof is complete. O

Given a topological space E, we denote by Cg: (E) the C*-algebra of all complex-
valued bounded continuous functions on E.

Proposition 2.3.57 Let E be a locally compact Hausdorff topological space. Then
the C*-algebra CI;C(E) identifies naturally with the C*-algebra of multipliers of
CS(E).
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Proof Set A := C§(E) and B := CS(E). Then it easily realized that A is an
essential ideal of B. Therefore, by Proposition 2.3.56, there is a unique isometric
«-homomorphism 7 : B — M(A) satisfying 1 o ¢ = 1, where ¢ and 1 denote the
inclusions A < B and A < M(A), respectively. Thus, to conclude the proof it is
enough to show that 1 is surjective. By Goldstine’s theorem, there is a net u) in
B4 converging to 1 in the weak* topology of A”. Then u a” converges to a” in the
weak* topology of A” for every a’ € A”, so uja converges to a in the weak topology
of A for every a € A; hence

ujpa convergesto a pointwise for every a € A. (2.3.14)

Now letx be in M(A). Then, for each A, u, x is a function from E to ||x||Bc, i.e. uyx €
(/|x||Bc)E. Therefore, since (||x||Bc ) is compact for the topology of the pointwise
convergence, the net u; x has a cluster point 4 in (||x||Bc)E relative to that topology.
Let a be in A. It follows that ha is a cluster point to the net (u;.x)a in the topology of
the pointwise convergence of CE. But, by (2.3.14), u;, (xa) converges to xa pointwise.
Since (ujx)a = uy (xa) in M(A), it follows that ha = xa in CE. Now we claim that
h is continuous. Let 7, be a net in E converging to some ¢ € E. We must show that
h(ty) converges to h(t) in C. Take a compact neighbourhood K of ¢ in E, so that we
may assume that #,; lies in K for every u, and use Urysohn’s lemma to find a € A
such that a = 1 on K. Then we have

lim(,) = lim (s, )a(ty) = lim(xa) () = (x) (1) = h(1)alt) = h(r),

as desired. Now that the claim has been proved, we have that 4 lies in B. Finally,
the equality 11(h) = x is easily realized. Indeed, keeping in mind that 11 becomes the
identity on A, for an arbitrary function a € A we have

n(k)a=n(n(a) = n(ha) = ha = xa,
so (n(h) —x)A =0, hence 1 (h) = x, as desired. O

Combining Corollary 1.1.77, Theorem 2.2.19, and Proposition 2.3.57, we get the
following.

Theorem 2.3.58 (Banach-Stone) Let E and F be locally compact Hausdorff
topological spaces, and let ¥ : Cg (E) — Cg(F ) be a surjective linear isometry.
Then there exist a continuous function g : F — S¢ and a homeomorphismn : F — E
such that

W(f)(t) =g(t)f(n(t)) forall f€CS(E) andt € F.

Corollary 2.3.59 Two locally compact Hausdorff topological spaces E and F are
homeomorphic if (and only if) the Banach spaces Cg (E) and Cg (F) are linearly
isometric.

2.3.4 Introducing alternative C*-algebras

Let A be an algebra over K. Given elements a,b,c € A, we define the associator
[a,b,c] of a,b,c by

[a,b,c] := (ab)c—a(bc).
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We say that A is alternative if the equalities a’b = a(ab) and ba® = (ba)a hold for
all a,b € A. These identities can be written in the form

[a,a,b] =0 and [b,a,a] =0.

The first of these identities is called the left alternative identity, and the second is the
right alternative identity.
Linearizing the left and right alternative identities, we obtain the identities

[a,c,b]+[c,a,b] =0 and [b,c,a]+[b,a,c] =0,

from which it follows that in an alternative algebra, the associator is an alternating
function of its arguments. In particular, every alternative algebra is flexible (cf. Defin-
ition 2.3.54). In view of flexibility, in an alternative algebra we can (and shall) sub-
sequently write the product aba without indicating an arrangement of parentheses.

Lemma 2.3.60 In every alternative algebra A over K the following identities are
valid:

x(yzy) = [(xy)z]y, the right Moufang identity,

(yzy)x = y[z(yx)], the left Moufang identity,
(xy)(zx) = x(yz)x,  the middle Moufang identity.

Proof We shall first prove that the algebra A satisfies the identity
W, y,2] = 0. (2.3.15)
By the flexible and left alternative identities we have
(F?y)x = [uley)]x = x(xyx) = 2% (),
that is, (2.3.15) is proved. Now by (2.3.15)
= )y = [y )] = (2)y = [(w)yly.
Linearizing the identity xy* — [(xy)y]y = 0 we find that
0 =x(2y%) +x(vzy) +x(r*2) = (x2)y* — [(w)zly — ()2
= x(yzy) = [()zy = [v,y%,2] = [, 2,5%] = x(vzy) = [(x)2ly,

and so the right Moufang identity is proved. Left Moufang identity is the reciprocal
relationship (obtained by passing to the opposite algebra, which is alternative since
the defining identities are reciprocal). Finally,

(xy) (zx) —x(yz)x = —[xy,z,x] + [x,y,2]x = [z,x9,x] + [z, x,y]x
= [20)]x = 2(0x) + [(2)ylx = [z(xy) e = 0. O
The right Moufand identity is equivalent to
[, vz, 5] = =[x, 3,2]y, (2.3.16)

since [x,yz,y] = [x(yz)]y — x(yzy) = [x(v2)ly — [(xy)z]y = —[x,,2]y. The lincarized
form of (2.3.16) is

[x, vz, u] + [x, uz,y] = —[x,,zJu — [x,u,2]y. (2.3.17)
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Now we prove the so-called ‘Artin’s theorem’.

Theorem 2.3.61 An algebra A over K is alternative (if and) only if the subalgebra
of A generated by any two elements of A is associative.

Proof The ‘if’ part is clear. If a, b are two elements of A, we denote by p = p(a,b)
any non-associative product cic; - --¢; (with some distribution of parentheses) of ¢
factors ¢y, each of which is equal to a or b. Also we denote the length ¢ of such a
product by deg(p). In order to prove the ‘only if” part it clearly suffices to show that
[p,q,r] = 0 for all non-associative products p = p(a,b), ¢ = g(a,b), and r = r(a,b).
We shall prove this assertion by induction on the number

n =deg(p) +deg(q) + deg(r).

If n = 3, then everything follows from the left and right alternative and flex-
ible identities. Now let n > 3, and assume inductively that [u,v,w] = O for all non-
associative products u = u(a,b), v = v(a,b), and w = w(a,b) such that
deg(u)+deg(v) 4+ deg(w) < n. Since max{deg(p),deg(g),deg(r)} < n, the induction
hypothesis implies, by the usual argument which yields the generalized associative
law from the associative law, that parentheses are not necessary in the writing of the
products p = p(a,b), g = q(a,b), and r = r(a,b).

Now two of the products p, g, r must begin with the same letter, say a. Moreover,
since associators alternate in A, we may assume that ¢ and r begin with a. If
deg(q) > 1 and deg(r) > 1, then ¢ = aqo and r = ary, where deg(qo) = deg(q) — 1
and deg(rp) = deg(r) — 1. Setting x = ary, z = qo, and u = p in (2.3.17), we have

[p,q,r] = [p,aqo,ary] = —|ary,aqo, p)
= [aro, pqo,a] + |aro,a,qo]p + [aro, p,qola
= _[pq()aaraaa] = [PCIOJJ’O}CI =0

by (2.3.16) and the assumption of the induction. If only one of the products g, has
degree > 1 (say g = aqo), then (2.3.16) implies that

[p7('Iar] = [paaq()aa] = 7[pva7q0]a:0

by the assumption of the induction. The easiest case deg(q) = deg(r) = 1 is given by
the right alternative law: [p,q,r] = [p,a,a] = 0. [

§2.3.62 By an alternative C*-algebra we mean a complete normed alternative
complex x-algebra A satisfying ||a*a|| = ||a/|* for every a € A.

Now, the generalization of the associative Vidav—Palmer theorem to the alternative
case is easy. Indeed, we have the following.

Corollary 2.3.63 Let A be a complete alternative V-algebra. Then A, equipped
with its natural involution x, becomes an alternative C*-algebra.

Proof That * is an algebra involution follows from Theorem 2.3.8. Let a be an
element of A, and let B stand for the closed subalgebra of A generated by {a,a*,1}.
Then, by Theorem 2.3.61, B is associative. Moreover, since * is a continuous algebra
involution (by Lemma 2.3.7), B is *-invariant. Now, keeping in mind Corollary 2.1.2,
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it is easily realized that B is a complete V-algebra whose natural involution is the
restriction of * to B. Therefore, since B is associative, Theorem 2.3.32 applies, so
that we have ||x*x|| = ||x||? for every x € B. Consequently, ||a*a|| = ||a||?. O

Let A be an algebra over KK, and let 7 : A — A be a linear projection. Then 7(A)
becomes naturally an algebra over K under the product ®" defined by

xO"y = m(xy)

for all x,y € w(A). If A has a unit 1 and if 7#(1) = 1, then 1 remains a unit for
(m(A),®"). If A is normed, and if 7 is contractive, then (7w(A),®") becomes a
normed algebra (under the restriction of the norm of A). Therefore, if in addition A
is norm-unital and 7 is unit-preserving, then (7(A),®”) is a norm-unital normed
algebra. Moreover, invoking Corollary 2.1.2(i), we straightforwardly derive the
following.

Proposition 2.3.64 Let A be a V-algebra, and let w: A — A be a unit-preserving
contractive linear projection. Then (w(A),®") is a V-algebra whose natural involu-
tion coincides with the restriction to T(A) of the natural involution of A.

Since unital alternative C*-algebras are V-algebras (by Lemma 2.2.5), and com-
plete alternative V-algebras are alternative C*-algebras (by Corollary 2.3.63), Prop-
osition 2.3.64 above could lead to expect that ranges of unit-preserving contractive
linear projections on unital alternative C*-algebras are alternative C*-algebras. As
the following example shows, this is no longer true, even in the case of (associative)
C*-algebras.

Example 2.3.65 Let A stand for the unital C*-algebra M (C), and let 7 be the
unit-preserving linear projection on A defined by

o+
n(a“ 0612) . <”2 2 o2 )
= oy to | -
o1 022 o A2

With the help of Exercise 1.2.15, it is easily realized that 7 is contractive. Let x,y
be the elements of w(A) given by x := <8 (1)> and y := (? 8) Then we have
x@"x=0and y®"x = 11, and hence y®" (x ®"x) = 0 and (y ®"x) ®" x = 1x.
Therefore (m(A),®") is not associative, nor even alternative. Moreover, noticing
that y = x*, we have ||x* ®" x|| = §, whereas [x||> = 1. Thus, in view of Propos-
ition 2.3.64, (w(A),®™) becomes an example of a V-algebra whose norm is not a
C*-norm for the natural involution. The last reason of this pathology will be found
later in Theorem 3.2.5.

§2.3.66 We note that, as in the associative case, if A is a unital alternative C*-
algebra, then, by Lemma 2.2.5, we have H(A,*) = H(A,1), and hence, by §52.3.37
and 2.3.34, H(A, «) is canonically endowed with the numerical-range order.

Corollary 2.3.67 Let A be a unital alternative C*-algebra and let a be in A. Then
we have a*a > 0 in the numerical-range order of H(A, x).
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Proof By Theorem 2.3.61, the closed subalgebra of A (say B) generated by
{1,a,a*} is a C*-algebra. Therefore, by Corollary 2.1.2 and Propositions 2.3.38
and 2.3.39(i), we have V(A,1,a*a) = V(B,1,a*a) C RJ. It follows that a*a > 0 in
H(A,x*). O

Theorem 2.3.68 Let A be a unital alternative C*-algebra, and let w: A — A be a
unit-preserving contractive linear projection such that

n(n(a)'n(a)) < m(a*a) (2.3.18)

for every a € A. Then w(A) is a x-invariant subspace of A, and m(A) becomes a
unital alternative C*-algebra under the norm and the involution of A, and the product
x©O"y = m(xy). Moreover, if A is associative, then so is the algebra (n(A),®").

Proof We note at first that, by Lemma 2.2.5, Corollary 2.1.2(i1), and Exercise 1.2.21,
7 becomes a x-mapping. Let f be in D(A,1). Then g := fx lies in D(A,1), so, by
Corollary 2.3.67, the mapping (a,b) — g(b*a) becomes a non-negative hermitian
sesquilinear form on (the vector space of) A, and so, by passing to quotient by the
subspace M :={a € A: g(a*a) =0}, we get a complex pre-Hilbert space X with well-
defined inner product (a|b) := g(b*a), where, for ¢ € A, ¢ stands for the canonical
image of ¢ in X. Since g = g, it follows from (2.3.18) that, for a € A, we have

|7(a)|2 = g(m(a) x(a)) = gn(m(a) x(a))] < g(x(a"a)) = g(a"a) = |al|*

—

Therefore & — m(a) becomes a well-defined contractive linear projection on X,
whose continuous extension to the Hilbert space completion of X (say H) will be
denoted by P. By Corollary 1.2.50, P is a self-adjoint operator on H, and hence, for
a,b € A we have

g(n(a)b) = g(n(a")"b) = (b|n(a")) = (b|P(a*))
= (P(b)|a*) = (m(B)|a*) = glam(b)).

Since f is an arbitrary element of D(A,1), and g = fm, it follows from Corol-
lary 2.1.13 that

n(n(a)b) = w(an(b)) (2.3.19)

for all a,b € A. Now, invoking that A is an alternative algebra and (2.3.19), for x,y €
m(A), we get that

xOT (yory) = n(xn(y?)) = n(n(x)y*) = n(xy*)
= n((xy)y) = n((xy)r(y)) = n(xw(xy)y) = (x©"y) Oy,

and similarly (y ©"y) ®"x = y ®" (y ©" x). This shows that (7(A),®") is an
alternative algebra. Since (7(A),®") is a complete V-algebra (by Lemma 2.2.5 and
Proposition 2.3.64), it follows from Corollary 2.3.63 that ((A), ®™) is an alternative
C*-algebra.
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Assume that A is actually associative. Then, invoking again (2.3.19), for x,y,z €
m(A) we obtain that

x@" (yo'z) = n(xn(yz)) = m(m(x)yz) = w(xyz)
= n(xyn(z)) = m(w(xy)z) = (xO"y) Oz,
and hence the alternative C*-algebra (7(A), ®™) is associative. O

Keeping in mind Fact 2.3.35(i), Theorem 2.3.68 implies the following.

Corollary 2.3.69 Let A be a unital C*-algebra, and let m : A — A be a unit-
preserving contractive linear projection such that

n(a)*n(a) < w(a*a) (2.3.20)

forevery a € A. Then 1(A) is a x-invariant subspace of A, and 1t(A) becomes a unital
C*-algebra under the norm and the involution of A, and the product x ®" y := m(xy).

2.3.5 Historical notes and comments

Proposition 2.3.4 is a light non-associative version of the following theorem due to
Sinclair [580].

Theorem 2.3.70 Let A be a norm-unital normed associative complex algebra, let
k be a hermitian element of A, and let A, L be complex numbers. Then v(A1+ pk) =
A1+ k]

The argument given here is taken from [695, Section 26], where techniques in
Browder’s paper [133] are incorporated. The conclusion of the proof of The-
orem 2.3.70, following the lines just quoted, goes as follows.

Proof We may assume that A is complete. Moreover, a normalization process, like
the one in the proof of Proposition 2.3.4, allows us to assume in addition that ||k|| = 1
and that (A, 1) = (cos(@),isin(¢)) for some ¢ in R. Then, by Proposition 2.3.22,
we have t(k) = 1, and hence, since sp(k) C R (by Lemma 2.3.21), we also have
t(cos(@)1+isin(@)k) > 1. Therefore, invoking the inequality (2.3.1) in the proof of
Proposition 2.3.4, we deduce

t(cos(p)1+isin(@)k) = ||cos(p)1+isin(@)k]|. O
Complete associative V-algebras were first considered by Vidav [623]. Let A be a

complete associative V-algebra such that

(V) for every hermitian element 7 € A we have h> = x + iy with x,y commuting
hermitian elements of A.

Vidav proved that the natural involution * of A is an algebra involution, and that there
is an equivalent algebra norm || - ||| on A satisfying ||a*al|| = ||||* for every a € A,
and ||k|| = ||A|| for every h € H(A,1). According to [694, p.57], ‘E. Berkson [100]
and B. W. Glickfeld [289] showed independently (and by different methods) that
actually we have

(BG) ||all = ||a]| for every a € A.
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Finally, T. W. Palmer [474] showed that condition (V) is unnecessary and he also
gave the simplest proof of assertion (BG).” The whole result just reviewed (called
the associative Vidav—Palmer theorem, and stated in Theorem 2.3.32), together with
Lemma 2.2.5, can be read as that unital C*-algebras and complete associative V -
algebras are the same.

As we have just said, the associative case of Theorem 2.3.8 (that natural involu-
tions of V-algebras are algebra involutions) is due to Vidav [623] and Palmer [474].
The general non-associative version stated here is due to Rodriguez [515], whose
proof has been reproduced almost verbatim. Particular non-associative forerunners
had been obtained earlier in [113, 362, 422, 514].

Proposition 2.3.20 is taken from [528]. A non-unital version, also established
in [528], will be proved in Volume 2 of our work.

The consequence of Theorem 2.3.70, given by Proposition 2.3.22, was proved
independently by Sinclair and Browder in the already cited papers [580] and [133],
respectively. The proof given here is that of Bonsall and Crabb [115], as modified
in [695, Section 26]. Proposition 2.3.23 is due to Vidav [623]. Lemma 2.3.26
is an adaptation of Kaplansky’s argument to show that a certain requirement in
the Gelfand—Naimark abstract characterization of C*-algebras [285] is redundant.
Indeed, the fact given by Proposition 2.3.39(i) that a*a > 0 for every element a
in a C*-algebra, was taken by Gelfand and Naimark as an axiom. Kaplansky’s
result, based on previous ideas of Fukamiya [273] and Kelley and Vaught [387],
was recorded in Schatz’ review [554] of Fukamiya’s paper. Lemma 2.3.27 is
due to Bonsall [111]. Lemma 2.3.28 is due to Russo and Dye [548], whereas
the refinement given by Proposition 2.3.29 is due to Palmer [475]. The commutative
forerunner of the Russo—Dye theorem is due to Phelps [491]. The elementary proof
included here (as well as in the books [695, 696, 725, 787]) of the Russo-Dye—
Palmer result is due to Harris [313], who works in a more general setting. The
whole proof of the associative Vidav—Palmer theorem given here (based on the
results already quoted in the current paragraph) is essentially Palmer’s original
proof, as included in the books [694, 695, 696, 725, 786, 787]. Nevertheless,
we have introduced some simplifications, like the one given by Lemma 2.3.24
(an adaptation of the commutative Gelfand—Naimark Theorem 1.2.23) and the
construction of the equivalent C*-norm in the conclusion of proof of Theorem 2.3.32,
which, through Lemma 2.3.31, is taken from [510]. For a wide generalization of
Lemma 2.3.26 the reader is referred to the Shirali—-Ford theorem [565], and the
alternative proofs of this theorem given by Harris [313] and Ptak [494] (see also
[696, Theorem 41.5]). This generalization will be discussed later in detail (see
Corollary 4.5.39(i1)).

The Russo—Dye theorem, stated in Lemma 2.3.28, has been refined by Robertson
[506], Popa [492], Gardner [281], and Kadison and Pedersen [360], among others.
Some of these refinements will be discussed later in a non-associative setting (see
Subsection 4.2.3). The Russo—Dye theorem does not remain true for real C*-algebras
(i.e. closed real *-subalgebras of C*-algebras). Indeed, C®([0,1]) is a unital real
C*-algebra with no unitary elements other than +1. Nevertheless, the Russo-Dye
theorem survives for finite-dimensional real C*-algebras [62], and, more generally,
for von Neumann real algebras [459].
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To conclude our historical review of the associative Vidav—Palmer theorem, let us
comment on the Vidav—Palmer original proof that the natural involution of a com-
plete associative V-algebra is an algebra involution. The break point in the Vidav—
Palmer argument is the following generalization of Vidav’s Proposition 2.3.23, also
proved in [623].

Lemma 2.3.71 Let A be a norm-unital complete normed associative complex alge-
bra, and let a be in A such that a = h+ ik for commuting elements h,k € H(A,1).
Then V(a) = co(sp(a)).

Proof  Since both sp(h) and sp(k) consist only of real numbers (by Lemma 2.3.21),

and the inclusions sp(a) C sp(h) +isp(k) and sp(h) C sp(a) —isp(k) hold (by Corol-
lary 1.1.81(1)), we get

maxsp(h) = maxR(sp(a)).
On the other hand, by Corollary 2.1.9(iii), for r € R we have

lexp(ra)|| = [|exp(rh) exp(irk)|| = [ exp(rh)|.

It follows from Propositions 2.1.7 and 2.3.23 that
1
maxR(V(a)) = sup{ log ||exp(ra)|| : r > 0}
r

= sup{ilog llexp(rh)|| : r > 0}
=maxV (h) = maxsp(h) = max R(sp(a)).
By replacing a with za for z € B¢, the result follows. O
Now, the Vidav—Palmer argument concludes as follows.

§2.3.72 (First of all, we note that the associative versions of Corollary 2.1.13 and
Lemma 2.3.1, which will be applied here, were known by Vidav in [623].) Let A
be a complete associative V-algebra. To prove that the natural involution of A is an
algebra involution it is enough to realize that

(i) i[h,k] lies in H(A,1) whenever h,k are in H(A,1).
(ii) o lies in H(A,1) whenever a is in H(A,1).

Since we know that assertion (i) holds (cf. Lemma 2.3.1), it only remains to show that
assertion (ii) also holds. Let @ be in H (A, 1), and write a*> =h+ ik with h,k € H(A,1).
Then, according to Palmer’s notice in [474], we have 0 = [a,a’] = [a,h] + i[a, k],
which, together with assertion (i) and Corollary 2.1.13, yields [a, k] = 0, and hence
[h,k] = [a* — ik,k] = 0. Therefore Lemma 2.3.71 applies, so that we have V (a?) =
co(sp(a?)). On the other hand, we know that sp(a) C R (by Lemma 2.3.21), which
implies that sp(a®) C R} It follows that V(a?) C R, and hence that a* lies in
H(A,1), as desired.

Now results from Lemma 2.3.21 to Theorem 2.3.32, Lemma 2.3.71, and §2.3.72
provide the reader with a complete autonomous proof of the associative Vidav—
Palmer theorem, avoiding the non-associative germ stated in Theorem 2.3.8.
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For later reference, we include here the following straightforward consequence of
Lemmas 2.2.5 and 2.3.71.

Corollary 2.3.73 Let A be a unital C*-algebra, and let a be a normal element of A.
Then V(a) = co(sp(a)).

Today, Proposition 2.3.39 is folklore in the theory of C*-algebras. Our approach
follows that of Conway [711] and Murphy [781]. In relation to Proposition 2.3.39, we
reproduce with minor changes a paragraph from pp. 250-1 of the Kadison—-Ringrose
book [758]:

Suppose that f is a continuous real-valued function defined on a subset S of the real
line. We say that f is operator-monotonic increasing on S if f(a) < f(b) whenever a
and b are self-adjoint elements of a C*-algebra, a < b and sp(A4,a) Usp(A,b) C S. With
g(t) = 12 (r>0)and h(t) = —% (r > 0), g and h are operator-monotonic increasing on
their respective domains of definition, by assertions (v) and (iv) in Proposition 2.3.39. It is
clear that an operator-monotonic increasing function on S is monotonic increasing (in the
elementary sense) on S. However, as shown by Exercise 2.3.40, the converse is false. For
further information on this subject, see [310, 616].

Proposition 2.3.43 is also folklore. The proof given here (through Lemma 2.3.41,
Corollary 2.3.42, and the associative Vidav—Palmer theorem) is due to Palmer [476]
and is included in [694, Theorem 7.7]. For the classical proof, the reader is referred
to [724].

The proof of Theorem 2.2.15 given here (which consists of results from Lemma
2.3.44 to §2.3.53, plus the associative Vidav—Palmer theorem) is built from [476,
Proposition 3.9] (see also [694, Section 12]), [514, Section 3], [786, Corol-
lary 1.4.12] (see also [715, Corollary 2.6.18]), [787, Proposition 9.140], [365,
Lemma 2.3], and folklore results about the Arens adjoint of a bounded bilinear
mapping, already contained in Arens’ pioneering paper [29]. As a whole, it could be
new. Although straightforward, Lemma 2.3.46 (that biduals of associative normed
algebras are associative) is relevant. Indeed, as proved by Arens [29], biduals of
associative and commutative normed algebras need not be commutative. A simpler
counterexample has been provided by Zalduendo [658] (see also [786, 1.4.9]). We
note that the bidual of a commutative normed algebra A is commutative if and only
if A is Arens regular (see Lemma 3.5.24(i) below for details).

Proposition 2.3.56 is originally due to Busby [138]. Our proof becomes an
adaptation of an argument of Edwards [223]. Proposition 2.3.57 is due to John-
son [352]. With minor changes, our proof is that of Murphy [781, Example 3.1.3].
Theorem 2.3.58 goes back to Banach [685, Theorem IX.4.3] and Stone [600].

Artin’s theorem, stated in Theorem 2.3.61, tells us that alternative algebras are
very close to associative algebras. Our proof has been taken from [808, pp.29-30]. A
similar (maybe better formalized) proof, involving the notions in §§2.8.17 and 2.8.26
below, can be found in [822, pp. 36-37]. The first known non-associative alternative
algebra is the so-called algebra of Cayley numbers. This algebra will be introduced
in Section 2.5, and its history can be seen in Subsection 2.5.4 below.

Corollary 2.3.63 is due to Rodriguez [514] (see also Braun [125]). Despite the
application of this corollary to prove Theorem 2.3.68 of the current section, another
nontrivial application will be done in the proof of Proposition 2.6.8 below, asserting



160 Beginning the proof of the non-associative Vidav—Palmer theorem

that the complexification of the algebra of Cayley numbers can be converted into an
alternative C*-algebra.

Looking at Proposition 2.3.64 and Example 2.3.65, we realize that, concerning
ranges of contractive projections, the class of complete V-algebras is more stable
than the subclass consisting of unital C*-algebras. The most relevant result in this dir-
ection is the following one, proved independently by Kaup [382] and Staché [597].

Theorem 2.3.74 Let X be a JB*-triple, and let m : X — X be a contractive
linear projection. Then n(X) becomes a JB*-triple under the triple product

{xyz} ™ i= w({xyz}).

We remark that, as we reviewed in Subsection 2.2.3, C*-algebras are JB*-triples in
anatural way, and that, as we will prove much later (see Theorems 3.3.11 and 4.1.45),
every complete V-algebra becomes a JB*-triple under a suitable triple product.

Corollary 2.3.69 is due to Hamana [305]. The refinement, given by Theorem
2.3.68, is new (even in the associative setting), although the core of the argument
is taken from Hamana’s original proof of Corollary 2.3.69. Since the assumption
(2.3.20) in Corollary 2.3.69 is stronger than the one (2.3.18) in Theorem 2.3.68
(by Fact 2.3.35(1)), the application of the associative Vidav—Palmer theorem (via
Corollary 2.3.63) done in the proof of Theorem 2.3.68 can be avoided if one is
interested only in Corollary 2.3.69. Indeed, following Hamana’s original argument
again, we have the following.

Proof of Corollary 2.3.69  Let A and 7 be as in Corollary 2.3.69. Then, for x € m(A)
we have

Xx=m(x) n(x) < T(x*x) =x" O x,

so0, invoking Fact 2.3.36, we derive

2 % * * * 2

[l = [l xl] < [l % xl| = | (") | < [l"xl} = []x]]7,
and so ||x* ®% x|| = ||x||?. Since the product ®” is associative (by the last paragraph
in the proof of Theorem 2.3.68), we see that (1(A), ®") is a C*-algebra. O

The argument above works verbatim if ‘alternative C*-algebra’ replaces ‘C*-
algebra’ in Corollary 2.3.69. In this case, the appropriate conclusion (that ((A), ®™)
is an alternative algebra) can be obtained without any resource to the proof of
Theorem 2.3.68. Indeed, it follows directly from Theorem 3.2.5 below.

2.4 V-algebras are non-commutative Jordan algebras

Introduction = We introduce non-commutative Jordan algebras, and prove as
the main result that V-algebras are non-commutative Jordan algebras (see The-
orem 2.4.11). Then we apply this result to prove a theorem (originally due to Choi
and Effros [169]) asserting that ranges of unit-preserving 2-contractive linear projec-
tions on unital C*-algebras naturally become C*-algebras (see Theorem 2.4.24), as
well as a refined version of a non-associative characterization of unital C*-algebras,
originally due to Blecher, Ruan, and Sinclair [106] (see Theorem 2.4.27).
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2.4.1 The main result
We begin this subsection with the following.

Lemma 2.4.1 Let A be a norm-unital normed complex algebra, and let a,b,c be in
H(A,1). Then [a,b,c] lies in H(A,1).

Proof ByLemma?2.1.10, L,, R, belong to H(BL(A),14), and hence, by Lemma 2.3.1,
we have —i[R.,L,] € H(BL(A),I4). Therefore, since —i[R.,L,|(1) = 0, Corol-
lary 2.2.2 applies, so that

la,b,c] = —i*[Re, L] (b) € H(A,1). O

Proposition 2.4.2 Let X be a complex normed space, and let T be in BL(X). We
have:

(i) If T is a dissipative element in (BL(X),Ix), then
1T @)1 < 8IA(IT>()]] for every x € X.

(i) If T is a hermitian element in (BL(X),Ix), then
1T @)I? < 4lll[[IT> ()] for every x € X.

Proof Assume that T is dissipative. Let x be in X, and let 6 > 0. We claim that
IT2@)I| = 8(|8x+T (x)]| = 8Ix[1)-

To this end, we set u := dx+ T(x). If u = 0, the required inequality is obvious.
Assume that u # 0, take v := mu, and choose f € D(X,v). Then

[lul| = Nl f(v) = f(u) = 6. (x) + F(T (x)),

and so

el £(T(v)) = F(T(w)) = 8f (T (x)) + f(T?(x)) = 8|uell = 82 (x) + f(T*(x)).
Therefore, since Rf(T(v)) < 0 (because the mapping F — f(F(v)) belongs to
D(BL(X),Ix)), we have

IT* ()Nl = 1A(T2(0))| = —RAT*(x)) > 8lu| — 8°Rf(x)
> 8||ul| - 8% |lx|| = 8(| 6x+T (x)[| — 8]xI)),

which proves the claim. Now, if x # 0, assertion (i) follows from the claim by taking

S = HZII(XI)IH'
X
Now, assume that 7" is hermitian. Then the claim is applicable to both i7" and —iT,

so that we have

|72 = 8(IiT (x) + 8x]| — 8]x])),
and
|72 ()| = 8(IT (x) — 8xl| — 8]x])).
Since ||iT (x) + 6x|| + ||iT (x) — 6x|| = 2||T (x)||, this gives
1720l = 8(IT ()| - 8lx])-

Therefore, if x # 0, assertion (ii) follows by taking 6 := HzTH(;‘)‘H . L]
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Corollary 2.4.3 Let A be a norm-unital normed complex algebra, let a be in A, and
let h be in H(A,1). Then ||[h,d]||* < 4||a]|||[k, [1,a]]|-

Proof SetT :=Lj,—Ry. Then, by Lemma2.1.10, T lies in H(BL(A), I4). Therefore,
by Proposition 2.4.2(ii), we have

12, a)ll* = 1T (a) > < 4llal| |2 (a) || = 4llal|| [~ [2 all]l 0

Lemma 2.4.4 Let A be a commutative algebra, let D be a derivation of A, and let
a be an element of A. If L,D is a derivation of A, then, for every b € A, we have
[a,D(b),b] = 0.

Proof For b € A, we have
2(aD(b))b = 2(LaD) (b)b = (LaD) (b*) = La(D(b%))
= L,(2D(b)b) = 2a(D(b)b). O
Lemma 2.4.5 Let A be a commutative algebra such that, for all a,b € A, [Ly,Lyp) is
a derivation of A. Then, for all a,b € A, we have [a,[a*,b,a],b] = 0.
Proof Leta,cbeinA. Since [L.,L,] is a derivation of A, we have
[Le,Lo](a*) = 2alLc, Ld)(a),
that is
ca® — (ca®)a=2(ca*)a—2((ca)a)a,
and hence
Ly +2L =3L,L,.
Since [L3,L,] = 0, we derive
[Le3sLa] = 3[LaLy2; La] = 3LalLy2, La].

Therefore [L,,L,] is a derivation such that L,[L,L,] is a new derivation, and

Lemma 2.4.4 applies. O

Lemma 2.4.6 Let A be a commutative V-algebra and let a,b be in A. Then [Lg, L)
is a derivation of A.

Proof We may assume that a and b are hermitian. Then, by Lemmas 2.1.10
and 2.3.1, i [Lg, Lp) is a hermitian operator. On the other hand, since A is commutative,
we have i[Ls,Lp](1) = 0. It follows from Corollary 2.3.19(ii) that [L,,Lp] is a
derivation of A. O

Although straightforward, the following fact is very useful.

Fact 2.4.7 Let A be an algebra, and let D : A — A be a linear mapping. Then D is
a derivation of A if and only if the equality [D,L,| = Lpa) holds for every a € A.

Jordan algebras over K are defined as those commutative algebras over K satis-
fying the so-called ‘Jordan identity’, namely (ab)a” = a(ba?).

We note that, if A is a V-algebra, then ASY™ is a commutative V-algebra. In this
way, the following result becomes a cornerstone in our present development.



2.4 V-algebras are non-commutative Jordan algebras 163
Lemma 2.4.8 Let A be a commutative V-algebra. Then A is a Jordan algebra.
Proof Leta,bbeinA. By Lemmas 2.4.5 and 2.4.6, we have
la,[a®,b,a],b] =0,
that is [Lp, L] [La,L2](b) = 0. It follows from Lemma 2.4.6 and Fact 2.4.7 that
([Lo, Lal, [[Las Lo2), Lo]) = [[Lo, La)s Lir, 1. 5)6)) = Lizy 1)[La .k, ) 0) = O-

Now, suppose that a € H(A, 1), take b := a?, and set T := i[L2,L,). Then we have
[T,[T,L,]] = 0. Note that, by Theorem 2.3.8, a*> € H(A,1), and hence, by Lem-
mas 2.1.10 and 2.3.1, L,, L, and T belong to H(BL(A),14). Therefore, by Corol-
lary 2.4.3, we get [T,L,] =0, that is [L,[L2,L,]] = 0. Applying Corollary 2.4.3
again, we conclude that [L ,L,] = 0, and hence [a,b,a?] = 0 for every b € A. Now,
a standard linearization argument, such as that in [808, p.91], will show that A is a
Jordan algebra. Indeed, replacing a in this equality by a +c (t € R), the coefficient
of ¢ is 0, and we have

2[a,b,ca) +[c,b,a*] =0 forall a,c in H(A,1) and b in A.

Replacing again a by a +1td (t € R), we have similarly (after dividing by 2) the
multilinear identity

[a,b,cd]+[d,b,ca]+ [c,b,ad] =0 forall a,c,d in H(A,1) and b in A.

Since A = H(A,1) +iH(A,1), and the product and the associator are C-multilinear,
we see that

[a,b,cd] +[d,b,ca]+ [c,b,ad) =0 forall a,b,c,d in A.

Finally, by taking a = ¢ = d, we conclude that A satisfies the Jordan identity, as
required. O

Definition 2.4.9 By a Jordan-admissible algebra we mean an algebra A such that
ASY™ is a Jordan algebra. We define non-commutative Jordan algebras as those alge-
bras which are both flexible (cf. Definition 2.3.54) and Jordan-admissible.

As a consequence of Theorem 2.3.61, we have the following.
Corollary 2.4.10 Alternative algebras are non-commutative Jordan algebras.
Theorem 2.4.11 Every V-algebra is a non-commutative Jordan algebra.

Proof Let A be a V-algebra. Then, by Lemma 2.4.8, ASY™ is a Jordan algebra, i.e.
A is Jordan-admissible. Therefore, to conclude the proof it is enough to show that
A is flexible. Let * stand for the natural involution of A, and let a,b be in A. Since

* 18 an algebra involution (by Theorem 2.3.8), we have [a*,b*,a*]* = —[a,b,a]. On
the other hand, by Corollary 2.4.1 we also have [a*,b*,a*]* = [a, b, a]. It follows that
[a,b,a] = 0. O

By combining Lemma 2.2.5 and Theorems 2.3.8 and 2.4.11, we derive the
following.
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Corollary 2.4.12 Let A be a normed unital complex algebra endowed with a
conjugate-linear vector space involution x satisfying

1" =1 and |Uy(a*)|| = ||a|?® forevery a € A.
Then A is a non-commutative Jordan algebra, and * is an algebra involution on A.

The same conclusion holds (with the same argument) if we replace the requirement
that |U,(a*)|| = ||a||? for every a € A with the one that ||a*a|| = ||a||* for every a € A.
We have not emphasized this fact here because, as we will see in Theorem 3.2.5
below, a better result holds.

Power-associative algebras are defined as those algebras A such that the subalge-
bra of A generated by each element of A is associative.

Proposition 2.4.13 Let A be a Jordan algebra. Then:

(i) A is power-associative.
(ii) Fora € A and n,m € N we have [Lgn,Lyn] = 0.
(iii) Fora€ Aandn €N, Ly lies in the subalgebra of L(A) generated by {L,,L }.

Proof Since [a,b,a’] = 0 for all a,b € A, we can argue as in the proof of
Lemma 2.4.8 to obtain

2la,b,ca] + [c,b,a*] =0 forall a,b,c €A (2.4.1)
and
[a,b,cd]+[d,b,ca] + [c,b,ad] =0 for all a,b,c,d € A. (24.2)
But the identity (2.4.2) is equivalent to

LopLe — LoLpLe + LegLp — Lb(ca) +Leply —LeLpL, =0 (2.4.3)

for all a,b,c € A. Now let a be in A, define powers of a by a' := a and ¢! := d"a,

let B stand for the subalgebra of L(A) generated by {L,,L,.}, and note that, thanks
to the Jordan identity, B is commutative. Forn > 2, set b =a and ¢ = a" in (2.4.3)
to obtain

Ly =LpLp 1 —LILyp 1 —L

a

n—1 LZ + 2L L. (2.4.4)

By induction on n we see that L, lies in B for every n € N, and hence that [Lyn, Lyn] =
0. Thus assertions (ii) and (iii) have been proved.

To prove assertion (i) it is enough to show that @™ = g"a™ for all n,m € N
(for then the linear hull of the powers of a becomes an associative subalgebra of A
containing a). For m = 1 this holds by definition of a". Now assume that a"t" =
a"a™. Then

an+m+1 _ an+ma _ (anam)a _ LaLa” (am) _ LanLa(am) _ an(aam) _ anam+1'
Hence a"™ = a"a™ for all n,m € N, as desired. O

Lemma 2.4.14 An algebra A over K is flexible if and only if, for all a,b € A, the
equality [aeb,b] = bea,b] holds.
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Proof Decodifying the equality [aeb,b] = be[a, b], according to the meaning of the
commutator [-,-] and that of the symmetrized product e, we realize that it is nothing
other than a rewriting of the flexibility condition (ab)a = a(ba). O

Lemma 2.4.15 Let A be an algebra over K. Then the following conditions are
equivalent:

(1) A is flexible.
(il) For each a € A, the mapping b — [a,b] is a Jordan derivation of A.

Proof (i)=-(ii) Assume that A is flexible. Then, linearizing the flexibility condition
(ab)a = a(ba) in the variable a, we get

(ab)c+ (cb)a = a(bc) + c(ba),
and, taking ¢ = b, we obtain
[a,b®] = (ab)b — b(ba) = (ab+ ba)b — b(ba + ab) = 2[aeb,b].

It follows from Lemma 2.4.14 that [a,b?] = 2b e [a,b], and hence that condition (ii)
holds.
(i1)=-(i) Assume that condition (ii) holds. Then, for a,b € A, we have

[aeb,b] =ae[b,b]+ [a,bleb=Dbe][a,b],
so that, by Lemma 2.4.14, A is flexible. O

An algebra A is said to be power-commutative if the subalgebra of A generated by
each element of A is commutative.

Corollary 2.4.16 Let A be a flexible algebra. Then maximal commutative subsets
of A are subalgebras of A. As a consequence, the subalgebra of A generated by any
commutative subset of A is commutative. In particular, A is power-commutative.

Proof Let S be a maximal commutative subset of A. Then, as happens for any
maximal commutative subset of any algebra, S is a subspace of A. Let x,y be in
S. Then, by Lemma 2.4.15, for every z € S we have

[2,x9] = [z,xey] =x o [z,y] + [z,x] 0y =0,

so that SU {xy} is a commutative subset of A. It follows from the maximality of S
that xy lies in S. Thus S is a subalgebra of A.

Let T be a commutative subset of A. Then, by Zorn’s lemma, there exists a
maximal commutative subset S of A containing 7. Since S is a subalgebra of A
(by the above paragraph), it follows that the subalgebra of A generated by T is
commutative. U

Lemma 2.4.17 Let A be a power-commutative algebra over K, and let a be in
A. Then the subalgebra of A generated by a coincides, as an algebra, with the
subalgebra of A¥™ generated by a.

Proof Let A(a) (respectively, AY™(a)) stand for the subalgebra of A (respectively,
of A®Y™) generated by a. Since all subalgebras of A are subalgebras of A%Y™, we have
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A®™(a) C A(a) as subsets. But, since A is power-commutative, A(a) is a commuta-
tive subset of A, so, by the above inclusion, A%Y™(a) is also a commutative subset of
A, and so it is in fact a subalgebra of A, and therefore A(a) C AY™(a). It follows that
A(a) = A%Y™(a) as algebras. O

Corollary 2.4.18 Let A be an algebra over K. Then the following conditions are
equivalent:

(1) A is power-associative.
(ii) A is power-commutative, and AY™ is power-associative.

Proof Assume that A is power-associative. Then, since associative algebras gen-
erated by a single element are commutative, A is power-commutative, and then, by
Lemma 2.4.17, A%Y™ is power-associative.

Now, assume that A is power-commutative and that AY™ is power-associative.
Then, by Lemma 2.4.17, A is power-associative. O

Proposition 2.4.19 Non-commutative Jordan algebras are power-associative.

Proof Let A be a non-commutative Jordan algebra. Since AY™ is a Jordan algebra,
ASY™ is a power-associative algebra (by Proposition 2.4.13(i)). On the other hand,
since A is flexible, Corollary 2.4.16 applies, so that A is power-commutative. It
follows from Corollary 2.4.18 that A is power-associative. O

Corollary 2.4.20 Let A be a complete V-algebra, let x stand for the natural invo-
lution of A, and let h be a hermitian element in A. Then the closed subalgebra of A
generated by h and 1 is x-invariant, and, endowed with the restriction of x, becomes
a commutative C*-algebra.

Proof Let B stand for the closed subalgebra of A generated by {h,1}. Then, by
Theorem 2.4.11 and Proposition 2.4.19, B is associative and commutative. Moreover,
since * is a continuous algebra involution (by Lemma 2.3.7 and Theorem 2.3.8), B
is *-invariant. Now, keeping in mind Corollary 2.1.2, it is easily realized that B is a
complete V-algebra whose natural involution is the restriction of * to B. Therefore,
since B is associative, Theorem 2.3.32 applies, so that B is a C*-algebra. O

2.4.2 Applications to C*-algebras

Let X be a vector space over K, and let n be a natural number. Then the vector
space M,(X) of all n x n matrices with entries in X becomes an M, (K)-bimodule
by denoting ox and xor (for oo € M, (K) and x € M,(X)) the elements of M,(X)
formed by left and right multiplication of x by ¢ in the obvious sense of matrix
multiplication. Given p,q € N with p+g=n,y € M,(X), and z € M,(X), we denote
by y @ z the element of M,,(X) whose principal diagonal blocks (from top to bottom)
are y and z, and whose off-diagonal blocks have 0 (in X) at each entry. Now let Y be
another vector space over K, and let 7 : X — Y be a linear mapping. We denote by
F,, the linear mapping from M,(X) to M,(Y) which consists of applying F to each
entry of the matrix in M, (X). In what follows, M, (C) will be seen endowed with the
involution and the corresponding C*-norm |- |, deriving from its natural identification
with the algebra of all linear operators on the complex Hilbert space C”.
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Lemma 2.4.21 Let X be a complex normed space, let n be in N, and let || - ||, be a
norm on M, (X) satisfying the following conditions:

() |loxBlln < |et|nl|x||n|Bn for every x € My, (X) and all o, B € M, (C).
Gi) [[diag(y,0,...,0}|u = [y for every y € X.

Then, the natural vector space identification M,(X) = X " becomes bicontinuous
when M,(X) is endowed with the topology of the norm || - ||,, and X" is endowed
with the product topology.

Proof Fori,j=1,...,n,andy € X, let y[ij] stand for the element of M,,(X) having
y in the ij entry and O otherwise, and let u;; := 1[ij] be the usual ij matrix unit in
M,(C). Note that u;; (y[11])u;; = y[ij] and that, by condition (ii), ||y[11]||, = ||y
Now, let x = (x;;) be in M, (X). Then we have

[l < ZHxl] ifllln —ZH“H xl] [11]) ulj”n ZHXU (1]l —ZHXUH

the last inequality being true thanks to condition (i). On the other hand, since
upixuji = xij[11], we have

il = flei (U111 = llwrixujulln < [lxlln,

and hence
PALTIES 72| - O
irj

Let A be an algebra over K, and let n be in N. We already know that M, (A) =
M, (K) ® A naturally becomes an algebra over K. When A is in fact a unital algebra,
then the algebra structure of M,,(A) overlaps its M, (K)-bimodule structure. Indeed,
in this case M, (K) can be seen as a subalgebra of M,(A), by means of the embedding
o — ol, = 1,0 (where 1,, stands for the unit of M, (A)), and then the left and right
module operations on M, (A) coincide with the operators of left and right multipli-
cation by elements of M,,(K) on the algebra M, (A).

Now, let A be a x-algebra over K, and let n be in N. Then M,,(A) has a canonical
conjugate-linear algebra involution (also denoted by *), namely the one consisting of
transposing the matrix and applying the involution of A to each entry. Thus, M, (A)
will be considered without notice as a new x-algebra.

We recall that an associative complex x-algebra has at most a complete C*-norm.

Proposition 2.4.22 Let A be a C*-algebra. Then, for each n € N, M,,(A) becomes
a C*-algebra for a suitable (unique) norm || - ||,. Moreover, for n,m € N, we have:

() ||aaB||x < |alqllall|Bl. for every a € M, (A) and all o, B € M,(C).
(1) ||b® c|lny-m = max{||b||n, ||c|lm} for all b € M,,(A) and ¢ € M,,(A).

Proof By Proposition 1.2.44, we may assume that A is unital.
Let n be in N. For a = (a;)1<i j<n € Ma(A), set |lal|:= Y, |la;j|. Then |||
1<i,j<n
becomes a complete algebra norm on M,(A) making the involution * of M,(A)
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isometric. Let P, stand for the set of all || - ||-continuous positive linear functionals g
on M, (A) satisfying g(1,) = 1, and, for a € M,,(A), set

lalln := sup{v/g(a*a) : g € F,}.

becomes a || - H—continuous C*-seminorm on M,(A). Now,

for a = (aij)1<i,j<n € Mu(A), set T(a) Za,,, so that we have
l 1

Z a;jaij,

1<1 J<n

T(a*)=T(a)*,and T(1,) = 1. Let f be in D(A,1). It follows from Lemmas 2.2.5(i)
and 2.3.26 that the mapping fr := fT is an element of B,. Moreover, for each
a € M,(A) as above, and all i, j = 1,...,n, we have

0< f( z]alj z fal]al] fT(a*a)'

1
n 1<l J<n

Since f is arbitrary in D(A, 1), it follows from Proposition 2.3.4 that, for a € M,,(A)
as above, we have

1 1
2 2
laifll” = llaijaisl| = v(A,1,ajai5) < lall,

forall 1 < < n, and hence that

\fllall < llalln

Therefore, || - ||, is in fact a complete C*-norm on M, (A). Now, since || - ||, is an alge-
bra norm, and the natural embedding (M,,(C), |- |,) < (M,(A),||-]|») is an isometry
(because it is a *-mapping), assertion (i) follows.

To realize assertion (ii), note that, for n,m € N, M,,(A) x M,,(A) is a C*-algebra
under the norm max{||b||,, ||c|| }, and that the mapping (b,c) — b E ¢ is an algebra
*-isomorphism from M,,(A) x M,,(A) onto the closed subalgebra M, (A) ®M,,(A) of
Myim(A). O

Let A be a C*-algebra, and let n be in N. After Proposition 2.4.22, M, (A) will be
seen without notice as a new C*-algebra relative to its canonical involution and the
norm |||, By Lemma 2.4.21, if B is another C*-algebra, and if F is in BL(A, B), then
F, lies in BL(M,(A),M,(B)) and moreover, by assertion (ii) in Proposition 2.4.22,
we have ||F|| < ||F]|.

According to Example 2.3.65, ranges of unit-preserving contractive linear projec-
tions on unital C*-algebras need not be C*-algebras. Now, we are going to show in
Theorem 2.4.24 below that such ranges are C*-algebras whenever the projections are
a little more than contractive.

Lemma 2.4.23 Let A be an algebra over K. Then A is associative if (and only if)
M, (A) is flexible.
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Proof Leta,b,cbein A. Then we have
a c\ (b 0 a c\ _((ab)a (ab)c
0 0/\0 O 0 0/ 0 0
and
a c b 0\ [(a c\| _[a(ba) a(bc)
0 0 0 0/\0 0/] 0 (U
Therefore, if M(A) is flexible, then (ab)c = a(bc). O

Let A be a C*-algebra, let F be in BL(A), and let n be in N. We say that F is
n-contractive if F,, : M, (A) — M, (A) is contractive.

Theorem 2.4.24 Let A be a unital C*-algebra, and let m: A — A be a unit-
preserving 2-contractive linear projection. Then (n(A),®%) is a C*-algebra.

Proof Note at first that 7 is contractive and that 7, (12) = 1,. Then, by Lemma 2.2.5
and Proposition 2.3.64, both ((A),®") and (m(M2(A)), ®™) are V-algebras, and
hence, by Theorem 2.4.11, they are flexible. Since

(m(M2(A)), ©™) = Ma((7(A), ©F)),

and (m(M>(A)), ®™) is flexible, it follows from Lemma 2.4.23 that (m(A),®") is
associative. Finally, since ((A),®") is a complete associative V-algebra, it follows
form Theorem 2.3.32 that (n(A),®") is a C*-algebra. O

Now we are going to get a geometric characterization of unital C*-algebras among
all non-associative normed algebras.

Lemma 2.4.25 Let (X,u) be a complex numerical-range space such that
X = H(X,u)+iH(X,u),
and let || - ||2 be a norm on M»(X) satisfying:

() ||axBll2 < |oallx||l2|B ]2 for every x € Ma(X) and all o, B € M>(C).
(i) |ly®zlla = max{|ly[|, |z||} for all y,z € X.

Then, in the numerical-range space (My(X),|| - ||l2),u ® u), we have
My(X)=H(M(X),u®u)+iHM>(X),u®u).
Proof Lethbein H(X,u). It is enough to show that
h 0O 0 0 0 h 0 ih
(o 0)’ (o h> (h o)’ and (—ih 0)
lie in H(M»(X),u®u).
By condition (ii) and Proposition 2.1.5, we have
max R(V(Mz(X),udu,i(h0)))
lim lu@u+ir(h@0)]2—1 _ lim ||(u+irh) ®ull,—1

r—0t r r—0+ r

irh||,1} —1 irh|| —1
= i PP L f iy Lt

:07

r—0%t r r—0+ r
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. . h 0
so that, replacing & with —h, we get that 0 o)~ h®0 e H(M(X),u@u). Analo-

gously, (8 2) € H(My(X),u®u).

Let o be in M(C), and let Ly, and Ry, stand for the operators of left and right
multiplication by o on the M, (C)-bimodule M>(X). By condition (i), the mappings
o — Ly and a@ — Ry, from M>(C) to BL(M»(A)) are linear contractions taking the
unit 1 of M (C) to Iy, (a)> and hence, by Corollary 2.1.2(i), we have

V(BL(M2(X)), Iry(x)> Le) €V (M2(C), 1, )
and
V(BL(M2(X)), Iry(x),Ra) €V (M2(C), 1, ).

Therefore Ly, — R lies in H(BL(M(X)), Iy, x)) whenever a is in H(M(C),1). Note
also that (Ly, — Rg)(u@u) = 0. It follows from Corollary 2.2.2 that i(ox — xa) lies
in H(M»(X),u @ u) whenever a is in H(M>(C),1) and x is in H(M>(X),u S u). By
taking

o= (f’i (’)) € H(M(C),1) and x:— (g 8) € H(M>(X),u u)

. {0 1 (0 0 . 0 h
<success1vely, o= < 1 O> and x := < 0 h))’ the above gives that both ( n 0)

and (—Olh lg) lie in H(M>(X),u % u), as desired.
§2.4.26 In§1.2.2, we introduced C*-algebras as those complete normed associative
complex x-algebras A satisfying ||a*a|| = ||a||> for every a € A. Later, in §2.3.62,
we introduced alternative C*-algebras by simply relaxing associativity to alternativ-
ity in the above notion. Moreover, as we will see in Proposition 2.6.8, alternative
C*-algebras need not be associative. Now, we define non-associative C*-algebras by
altogether removing in the definition of C*-algebras any requirement of associativity
or alternativity. We note that, by Lemma 2.2.5, a normed unital complex algebra has
at most one involution converting it into a non-associative C*-algebra.

Theorem 2.4.27 Let A= (A,]|-||) be a complete normed complex algebra. Then
the following conditions are equivalent:

(1) A is a wunital non-associative C*-algebra, and the following ‘matricial

Le.-property’ holds:
For each n € N, M,(A) is equipped with an algebra norm || - ||,, such that the
family of norms satisfies
@ [[- [ =1l on M (A) = A,
(b) [JaaB|ln < |alnlall.| Bl for every a € M, (A) and all o, B € M, (C),
©) |b® c||lnpm = max{||b||n, ||c|ln} for all b € M, (A) and ¢ € M, (A).

(ii) A is a V-algebra satisfying the matricial L..-property above.

(iii) A is a unital non-associative C*-algebra, and the following ‘matricial
L2 -property’ holds:
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There exists an algebra norm || - ||2 on My (A) satisfying

@ [aaBl < | |lalls|Bla for every a € M(A) and all &, B € My(C),
®) [|b@ |l = max{||],||c||} for all b,c € A.

(iv) A is a V-algebra satisfying the matricial L2,-property above.
(v) A is a unital C*-algebra.

Moreover, if the above conditions are fulfilled, and if, for n € N, M, (A) is endowed
with the canonical involution corresponding to the involution of the C*-algebra A,
then the norm || - ||, provided by the matricial L.-property coincides with the unique
complete C*-norm on M, (A) given by Proposition 2.4.22.

Proof The implications (i)=-(iii) and (ii)=-(iv) are clear, whereas the ones (i)=-(ii)
and (iii)=-(iv) follow from Lemma 2.2.5. On the other hand, the implication (v)=>(i)
follows from Proposition 2.4.22.

(iv)=(v) Assume that condition (iv) is fulfilled. Then, by Lemma 2.4.25,
(Ma(A), || - ||2) is a V-algebra. Therefore, by Theorem 2.4.11 and Lemma 2.4.23,
A is associative, and condition (v) holds by invoking Theorem 2.3.32.

Now that we know that conditions (i)—(v) are equivalent, assume that they hold.
By condition (v), A is a C*-algebra. Let n be in N, endow M,,(A) with the canonical
involution corresponding to the involution of A, and note that, by condition (i)(c) and
Lemma 2.4.21, the norm || - ||, in condition (i) is complete. We claim that || - ||,n1 is
a C*-norm on M, 1(A). Since, by conditions (i)(a) and (v), the claim is true when
n =1, assume that it is true when n equals a given natural number m. Then, keeping
in mind condition (i)(c), and invoking the clear equality My (A) = Ma(Mym-1(A)),
we can apply Lemmas 2.2.5 and 2.4.25, and Theorem 2.3.32, to realize that the claim
remains true when n equals m + 1. Now that the claim has been proved, note that, by
condition (i)(c), the mapping y — y® 0 from (M,(A), || - ||n) to (Myn-1(A), || - ||on-1)
becomes an isometric algebra x-homomorphism. It follows from the claim that || - ||,
is a C*-norm. O

2.4.3 Historical notes and comments

Proposition 2.4.2, as well as its proof, are taken almost verbatim from [694, Lemma
10.9 and Theorem 10.13].
According to [782, pp. 2-3],

Jordan algebras, named by A. A. Albert in 1946, were first introduced by physicist
Pascual Jordan to attempt to introduce an infinite-dimensional algebraic setting for quantum
mechanics essentially different from the standard setting of hermitian matrices. A half
century after the inception of Jordan theory by Jordan, von Neumann and Wigner [356],
there have been remarkable successes in mathematical studies of Jordan algebras.

Today, the theory of Jordan algebras, including a part of its analytic aspect, is nicely
contained in several books, for example those of Schafer [808], Braun and Koecher
[700], Jacobson [754], Zhevlakov, Slinko, Shestakov, and Shirshov [822], Hanche-
Olsen and Stgrmer [738], Myung [782], Elduque and Myung [728], and McCrimmon
[777].
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Flexible algebras and Jordan-admissible algebras first appeared in Albert’s 1948
paper [12]. Algebras which are both flexible and Jordan-admissible were later called
non-commutative Jordan algebras by Schafer [552].

Theorem 2.4.11 is due to Kaidi, Martinez, and Rodriguez [362], who proved it
under the assumption (which would be unnecessary today in view of Theorem 2.3.8)
that the natural involution of the V-algebra under consideration is an algebra invo-
lution. The proof of Theorem 2.4.11 given here, which actually started with The-
orem 2.2.9(ii) (cf. the comments immediately before Corollary 2.3.19), is essentially
the original one in [362]. As a novelty, we apply Corollary 2.4.3 instead of the
Kleinecke—Shirokov theorem (see Proposition 3.6.49 below) and Theorem 2.3.70,
as the authors of [362] did.

According to Albert [10], Proposition 2.4.13 is due to Jordan, von Neumann, and
Wigner [356]. The nice characterization of flexible algebras, given by Lemma 2.4.15,
was first proved in Kaidi’s PhD [759], where it is said that the lemma is implicitly
contained in [12, 700, 808]. An explicit formulation and proof appeared later in
Lemma 1.5(i) of Myung’s book [782], where Kaidi’s forerunner goes unnoticed. Our
proof is essentially that of [782], although the passing through the straightforward but
useful Lemma 2.4.14 is emphasized for the first time here.

Power-commutative algebras were introduced by Raffin [497], who proved the
most part of Corollary 2.4.16. The actual formulation and proof of Corollary 2.4.16
are taken from [759]. Lemma 2.4.17 and Corollary 2.4.18 are surely folklore, al-
though, with the exception of the implication (i)=-(ii) of Corollary 2.4.18, we have
not found them anywhere. Proposition 2.4.19 is due to Schafer [552].

Proposition 2.4.22 is folklore in the theory of C*-algebras. The proof given here,
avoiding the non-commutative Gelfand—Naimark theorem, could have some meth-
odological interest. The matricial treatment of C*-algebras originated early in Stine-
spring’s paper [599], where, as the main result, the following theorem is proved.

Theorem 2.4.28 Let A be a unital C*-algebra, let H be a complex Hilbert space,
and let F be a linear mapping from A to BL(H). Then the following conditions are
equivalent:

(i) There are a complex Hilbert space K, an operator V € BL(H,K), and an algebra
x-homomorphism p : A — BL(K) such that

F(a) =V*p(a)V forevery acA.
(ii) For every n € N, the mapping F, : M,,(A) — M,,(BL(H)) takes positive elements
of My, (A) into positive elements of M,(BL(H)).

Theorem 2.4.24 is originally due to Choi and Effros [169]. The proof given here,
through Theorems 2.3.32 and 2.4.11, Proposition 2.3.64, and Lemma 2.4.23, is taken
from [515]. Theorem 2.4.24 can be also derived from Hamana’s Corollary 2.3.69, by
keeping in mind the following ‘Schwarz inequality’, whose proof can be seen, for
example, in [788, Proposition 3.3].

Proposition 2.4.29 Let A,B be unital C*-algebras, and let ¢ : A — B be a unit-
preserving 2-contractive linear mapping. Then

d(a)* ¢(a) < ¢(a*a) forevery a € A.
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The Choi-Effros Theorem 2.4.24 is included in [690, Theorem 1.3.13] and [788,
Theorem 15.2]. More results concerning unit-preserving contractive linear projec-
tions will be discussed later in Corollaries 3.3.18 and 3.3.19.

The equivalence (ii)<(v) and the last conclusion in Theorem 2.4.27 are originally
due to Blecher, Ruan, and Sinclair [106], who could in fact have also proved the
equivalence (i)<>(v) with minor additional effort. The refinement given by the equi-
valences (iii)<>(v) and (iv)<(v), as well as the whole proof given here (including
Lemma 2.4.25), are new. The Blecher—Ruan-Sinclair proof consists of a straightfor-
ward application of the associative Vidav—Palmer theorem (Theorem 2.3.32) and
of the main result in their paper [106], stated without proof in Theorem 2.4.30
immediately below. Actually, for the sake of convenience, both the formulation and
the proof in [106] of the Blecher—Ruan—Sinclair part of Theorem 2.4.27 involve a
dual version of the associative Vidav—Palmer theorem, due to Moore [446], which
will be discussed much later (see Corollary 3.3.27 below). Now let us formulate the
main result in [106].

Theorem 2.4.30 Let A be a norm-unital normed complex algebra. Then the follow-
ing conditions are equivalent:

(1) A satisfies the matricial L..-property introduced in Theorem 2.4.27.

(ii) A is isometrically isomorphic to a unital subalgebra of some C*-algebra.

Moreover, if the above conditions are fulfilled, then actually A can be seen as a
unital subalgebra of a suitable C*-algebra B in such a way that, for n € N, the
abstract norm || - ||, on M, (A) provided by the matricial L..-property coincides with
the restriction to My, (A) of the unique complete C*-norm on M,(B).

We recall that unitary normed algebras were introduced in §2.1.54. As pointed
out by Hansen and Kadison [309], it is enough to combine Theorem 2.4.30 and
Proposition 2.1.56 to get the following.

Corollary 2.4.31 Let A be a unitary complete normed complex algebra satisfying
the matricial Le.-property. Then A is a C*-algebra, and, for n € N, the abstract norm
Il - |l on M, (A) provided by the matricial Le-property coincides with the unique
complete C*-norm on M,(A).

Through Theorem 2.4.30 above, we have entered the field of so-called operator
algebras, namely (possibly non-self-adjoint) subalgebras of C*-algebras. The-
orem 2.4.30 remains interesting if the norm-unital normed complex algebra A is
assumed to be associative and complete, and even if in addition the last conclusion
in the theorem is erased. This is so because of the following two reasons:

(1) Such a restricted version of Theorem 2.4.30 provides us with an abstract char-
acterization of norm-unital complete operator algebras among all norm-unital
complete normed associative complex algebras.

(i) As a matter of fact, ‘most’ norm-unital complete normed associative complex
algebras are not (isometrically isomorphic to) operator algebras.



174 Beginning the proof of the non-associative Vidav—Palmer theorem

To realize the second reason, we recall that a norm-unital normed power-associative
complex algebra A is said fo satisfy the von Neumann inequality if, for every a € By
and every complex polynomial P, we have

[P(a)]] < max{|P(z)] : z € B}

According to the celebrated von Neumann theorem (see for example [796, Section
153]), we have the following.

Theorem 2.4.32  Unital C*-algebras satisfy the von Neumann inequality.

Then, keeping in mind Corollary 1.2.50, we realize that every norm-unital oper-
ator algebra satisfies the von Neumann inequality. On the other hand, as proved by
Foias [264], if X is a complex Banach space, and if BL(X) satisfies the von Neumann
inequality, then X is a Hilbert space. It follows that, given a complex non-Hilbert
Banach space X, BL(X) is never an operator algebra.

Remark 2.4.33 For a norm-unital complete normed associative complex algebra
A, consider the following conditions:

(i) A is unitary.

(i1) A satisfies the von Neumann inequality.

As shown implicitly by Arazy [25] (see [65, Theorem 5.2 and Remark 5.3(a)] for
an explicit formulation and proof), (i) + (ii) is equivalent to the fact that A is a C*-
algebra. On the other hand, clearly, neither (i) nor (ii) implies that A is a C*-algebra.
In the case A = BL(X) for some complex Banach space X, condition (ii) alone is equi-
valent to the fact that A is a C*-algebra (by Foias’ theorem [264] reviewed above),
whereas the same conclusion, with (i) instead of (ii), remains an open problem. Some
partial answers to this problem can be found in [80, 63].

Let X be a complex Banach space. A holomorphic vector field on int(By) is
nothing other than a holomorphic mapping from int(By) to X. A holomorphic vector
field A on int(By) is said to be complete if, for each x € int(By), there exists a
differentiable function ¢ : R — int(By) satisfying

d
¢©(0) =x and E(p(t) =A(o(r)) forevery r € R.
The following theorem is due to Arazy [25].

Theorem 2.4.34 Let A be a norm-unital complete normed power-associative com-
plex algebra. Then the following conditions are equivalent:

(1) A satisfies the von Neumann inequality.

(ii) The holomorphic vector field a — 1 —a* on int(B,) is complete.

Since condition (ii) in the above theorem has a meaning without requiring the
associativity of powers for A, it seems reasonable to us to raise the following.
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Problem 2.4.35 Let A be a norm-unital complete normed complex algebra such
that the holomorphic vector field @ — 1 —a® on int(B,) is complete. Is A a power-
associative algebra?

If the answer to Problem 2.4.35 were affirmative, then Theorem 2.4.34 would
assert that, given a norm-unital complete normed complex algebra A, the holo-
morphic vector field @ — 1 —a” on int(B4) is complete if and only if A is power-
associative and satisfies the von Neumann inequality. Anyway, the study of those
norm-unital complete normed complex algebras A such that the holomorphic vector
field @ — 1 —a” on int(B4) is complete would merit special attention because, by
Theorem 2.4.34, such a study would become a general non-associative view of the
von Neumann inequality.

Looking back to Theorem 2.4.30, let us comment about its roots. The most direct
forerunner is the following abstract characterization of the matricial structure of the
so-called operator spaces (i.e. subspaces of C*-algebras), due to Ruan [546].

Theorem 2.4.36 Let X be a complex normed space such that, for each n € N,
M, (X) is equipped with a norm || - ||, in such a way that the family of norms satisfies

@ |- [h =11 on M1 (X) =X,
(i) [oxB|ln < |ct)nllxlln]Bla for every x € My (X) and all ., B € M,,(C),
(i) [y ®zllwrm = max{[|yln, |zllm}, for all y € Mu(X) and z € My (X).

Then X can be seen as a subspace of a suitable C*-algebra A in such a way that, for
n €N, the abstract norm || - ||, on M, (X) coincides with the restriction to M,(X) of
the unique complete C*-norm on M,,(A).

In relation to the above theorem, it must be remarked that every complex normed
space is linearly isometric to an operator space. Indeed, given a complex normed
space X, and taking E equal to the compact Hausdorff topological space (By:,w*), X
is linearly isometric to a subspace of the commutative C*-algebra C*(E). Therefore,
to avoid triviality, the theory of operator spaces involves essentially the C*-algebras
where they are imbedded, and, most precisely, the normed matricial structure that
they inherit from those C*-algebras. To formalize the above idea, consider two
C*-algebras A and B, subspaces X C A and Y C B, and a bounded linear mapping
F : X — Y. Then, running n over N, regarding M,(X) and M,(Y) as normed spaces
under the restrictions of the unique complete C*-norms of M,(A) and M, (B),
respectively, and considering the bounded linear mapping F, : M, (X) — M,(Y), we
are provided with an increasing sequence (||Fy||),en of non-negative real numbers.
When this sequence is bounded, F is called completely bounded. Now, the theory
of operator spaces is nothing other than the study of the category whose objects
are the subspaces of C*-algebras and whose morphisms are the completely bounded
mappings. In particular, Theorem 2.4.36 becomes an abstract characterization of
operator spaces up to a ‘complete isometry’.

For an abstract characterization of the matricial structure of self-adjoint subspaces
of C*-algebras (operator systems), in the spirit of Theorem 2.4.36, the reader is
referred to the paper of Choi and Effros [169]. Finally, we refer the reader to the
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books of Blecher and Le Merdy [690], Paulsen [788], and Pisier [791] for a broad
view of the theory of operator spaces and operator algebras.

2.5 The Frobenius—Zorn theorem, and the generalized
Gelfand—Mazur—Kaplansky theorem

Introduction In this section, we introduce the algebra H of Hamilton quaternions,
and the algebra O of Cayley numbers. As main results, we prove the Frobenius—
Zorn theorem (that R, C,H and O are the unique nonzero alternative algebraic real
algebras with no nonzero joint divisor of zero) and the generalized Gelfand—Mazur—
Kaplansky theorem (that R,C,H and O are the unique nonzero normed alternative
real algebras with no nonzero joint topological divisor of zero).

2.5.1 Introducing quaternions and octonions

By a Cayley algebra over K we mean a unital algebra A over K endowed with a
linear algebra involution x (called the standard involution of A) satisfying

a+a* €K1 and aa® € K1 forevery a € A. (2.5.1)

Let A be a Cayley algebra over K. Then we can consider the algebra over K consist-
ing of the vector space A x A and the product given by

(ay,az)(az,as) := (ajaz — asay,ajas + azay) .

This algebra will be called the Cayley—Dickson doubling of A, and will be denoted by
E2(A). As a matter of fact, ¥ Z(A) is unital (with 1 = (1,0)), and actually becomes
a new Cayley algebra whose standard involution is given by (aj,a2)* := (a}, —az).
The passing from A to € Z(A) is known as the Cayley—Dickson doubling process.

Now, let us pay attention to the case K = R, and consider R as a real Cayley
algebra (with standard involution equal to the identity mapping). Then, clearly, the
Cayley algebra ¥ Z(R) becomes a copy of (the real algebra underlying) C, with
standard involution equal to the usual conjugation. By iterating the Cayley—Dickson
doubling process twice more, we get the algebra H of Hamilton’s quaternions, and
the algebra O of octonions (also called Cayley numbers). Indeed, they are the Cayley
algebras ¥ 2(C) and ¢ 2(H), respectively. It is of straightforward verification that
the algebra H is associative but not commutative, whereas the algebra O is alternative
but not associative.

By an absolute value on an algebra A over K we mean a norm || - || on the vector
space of A satisfying ||xy|| = ||x||||y|| for all x,y € A. By an absolute-valued algebra
we mean a nonzero algebra over K endowed with an absolute value. It is not difficult
to realize that, if we see C, H, and O as € Z(A), for A =R, C, and H, respectively,
and if, for aj,a; € A we set

I(ar, )l == 1/ llar > + [laz]1?, (2.5.2)

then || - || becomes an absolute value on €’ Z(A). Thus, R,C,H and O become the
basic examples of absolute-valued algebras. It follows from (2.5.2) that the absolute
values of R, C, H, and O come from inner products.
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§2.5.1 The introduction of H and O above is surely the quickest possible one.
However, concerning H, there is another more natural approach. Indeed, in the same
way as C can be rediscovered as the subalgebra of the algebra M, (R) (of all 2 x 2

matrices over R) given by
a b
a,beR
U o) oven

H can be rediscovered as the real subalgebra of M, (C) given by

(5 ) evec)

(see for example [727, p. 195]). Regarding H in this new way, the standard involution
of H corresponds with the operation consisting of the transposition of matrices and
taking standard involution in their entries, and the absolute value of an element of H
is nothing other than the non-negative square root of its (automatically non-negative)
determinant.

In its turn, O can be described in terms of 2 x 2 matrices of scalars and vectors,
via the so-called Zorn’s vector matrices. To be precise, O can be re-encountered as
the real algebra whose vector space is

{( Z* v:) :ZEC,WEC3},
-w" oz

where, for a vector w = (w1, wa,w3) € C3, w* := (w},w},w}), and whose product is
defined ‘in a natural way’ by

< 2 W1>( 2 Wz)
* * * *
W /W &
_ 2122 — (W1, W5) ZIW2 + Z5W1 + W] X W)
—ZiWh — W] — Wi X W 125 — (Wi, w2) ’
where, for vectors u = (uy,u2,u3),v = (vi,v2,v3) € C3,
(u,v) :=uvy +upvo +usvy (the ‘scalar product’)
and
u X v:= (upv3 —uzvo,uzvy —uv3,ujvo —upvy) (the ‘vector product’)

(see for example [822, p.46]). Regarding O in this new way, the standard involution
of O corresponds with the operation consisting of transposing the matrix and taking
standard involution in its entries. Moreover, the absolute value of an element of O is
nothing other than the non-negative square root of its (automatically non-negative)
‘determinant’ zz* + (W*, w).

2.5.2 The Frobenius—Zorn theorem

Now, let us go for a long walk which will lead us to the so-called Frobenius—Zorn
theorem, providing us with a first relevant characterization of the algebras R, C,H
and O (see Theorem 2.5.29 below).
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§2.5.2 Let A be a power-associative algebra over K. Then the obvious identities
[*>,a)=0 and [a?,a,a] =0
can be linearized to get
2laeb,a]+[a®,b] =0 (2.5.3)
and
2[a0b,a,a]+[az,b,a]+[a27a,b] =0. (2.5.4)
Again linearizing (2.5.3) and (2.5.4), we find the identities
[aeb,c]+[aec,b]+[bec,a] =0 (2.5.5)
and
2laeb,c,al+2[aeb,a,c]+2[aec,b,a]+2]aec,a,b)
+2[bec,a,al+ [a*,b,c] + [a*,c,b] = 0. (2.5.6)

Lemma 2.5.3 Let A be a power-associative algebra over K, and let e be an idem-
potent in A. Then we have:

(i) A=Ai(e) EBA% (e) @ Ao(e), where Ay(e) :={x EA: eox=kx} fork=1,1,0.
(i) Ax(e) ={x€A:ex=xe=kx} fork=1,0.
(iii) Ag(e)@Ax(e) C Ax(e) fork=1,0, and Ap(e) @ Ai(e) = 0.
(iv) A%(e) OA%(e) CAj(e)+Ao(e).
(V) The projections P(e) from A onto Ai(e) (k = 1,%,0) corresponding to the
decomposition A = A (e) @A% (e) DAo(e) are given by

Pi(e) = L(2LE — Iy), P% (e) =4L3(Iy —L?),
and
Po(e) = (Lg —1a) (2L — 1),
where L denotes the multiplication operator by e in the algebra A™.

Proof Since ASY™ is power-associative (cf. Corollary 2.4.18), to prove assertions (i),
(iii), (iv), and (v) we may assume in addition that A is commutative. Then, setting
a=ein (2.5.4), we obtain

203 312 +L,=0, (2.5.7)

that is p(L,) = 0, where p(x) = x(x — 1)(x — %) Therefore assertions (i) and (v)
follow from Proposition 1.3.3. In order to prove assertions (iii) and (iv), set a = e,
b e Ai(e),and c € Aj(e) in (2.5.6). This yields

2ele(be)] + (2k +2j —4)e(bc) 4 (2k* + 2% — 8kj +k + j)bc = 0.

When k= j=1 we obtain 0= (L2 — I)(bc) = (L, + Ix)(L. — I4)(bc), and keep-
ing in mind that L, + I4 belongs to Inv(L(A)), we get (L, — I4)(bc) =0, that is,
bc € Aj(e), and as a result Aj(e) is a subalgebra of A. Similarly k= j =0 yields
0= (L2—2L,)(bc) = (L, —2I4)L,(bc), and keeping in mind that L, — 21, belongs to



2.5 The Frobenius—Zorn and Gelfand—Mazur—Kaplansky theorems 179

Inv(L(A)), we get L,(bc) = 0. That is, bc € Ag(e), and as a result Ap(e) is a subalgebra
of A. The values k = 1, j = 0 yield

0= (212 — 2L, +31I4)(bc), (2.5.8)
and so 0 = (2L} — 212+ 3L,)(bc). By (2.5.7),
0= (L2 +2L,)(bc) = (L, +2I4)L,(bc),

and keeping in mind that L, + 2I4 belongs to Inv(L(A)), we deduce that 0 =
L.(bc), and hence, by (2.5.8), bc = 0, and the proof of assertion (iii) is complete.
For k=j=1, we obtain 0 = 2(L2 — L,)(bc) = f%P% (e)(bc). That is, bc lies in
Aj(e)+Ao(e), and the proof of assertion (iv) is complete.

Finally, in order to prove assertion (ii), remove the assumption that A is commu-
tative. Applying the identity (2.5.5) with a € Ai(e) and b = ¢ = ¢, we obtain
(2k—1)[a,e] =0, so [a,e] =0 for k = 1,0, hence ea = ae = eea = ka for k = 1,0.
This concludes the proof. U

The decomposition in Lemma 2.5.3(i) is called the Peirce decomposition of A
relative to e.

Lemma 2.5.4 Let A be a power-associative algebra over K, and let e be an idem-
potent in A such that Ag(e) = 0. Then fory in A% (e) we have y* = 0.

Proof Letybe inA% (e). Then 2e ey = ey+ye = y. Moreover, sinceA% (e) OA% (e) C
Aj(e) (by Lemma 2.5.3(iv)), we get that y> = yey € A;(e). Now, keeping in mind
the identity (2.5.4), we have

0=2[eey,y, )]+ ex]+ 17 y.el = (FPely =y (ey) +y e =y (ye)
= (Pe)y+ye—y(yetey) =y +ye—y =ye,

and hence ye = 0. Replacing A with the opposite algebra of A, we also obtain that
ey’ = 0. Therefore y* € Ag(e), and hence y* = 0. O

Lemma 2.5.5 Let A be a power-associative algebra over K with no nonzero joint
divisor of zero, and let e be a nonzero idempotent in A. Then e is a unit for A.

Proof By Lemma 2.5.3(ii), our assumptions clearly imply that Ay(e) = 0, and then,
by Lemma 2.5.4, that A% (e) = 0 also. Therefore, by Lemma 2.5.3(i), we have A =

Aj(e), and hence, again by Lemma 2.5.3(ii), e is a unit for A. O

left
Definition 2.5.6 Let A be an algebra over K, and let / be a { right } ideal of A.

two-sided
. left — .
We say that I is a minimal right ideal of A if I is nonzero and if the only
two-sided

left
nonzero right ideal of A contained in [/ is [ itself.
two-sided

§2.5.7 An element a of an algebra is said to be isotropic whenever a # 0 = a>. We
note that isotropic elements are nonzero joint divisors of zero.
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Lemma 2.5.8 Let A be a nonzero finite-dimensional associative algebra over K
without isotropic elements. Then A contains a nonzero idempotent.

Proof Take a minimal left ideal / of A, and a nonzero element a € I. Then we
have 0 # a®>€laC1, sola=1I, and so there is b € I such that ba = a. Consider
the set J = {x € A : xa = 0}. It is clear that J is a left ideal of A containing the set
{x—xb:x € A}. Since INJ is a left ideal contained in / and [ is not contained in J,
the minimality of 7 gives /NJ = 0. Since b € I, we have b — brel. Alsob—b* e J,
and so b — b = 0. O

§2.5.9 Let A be an algebra over K. An element a € A is said to be algebraic if
the subalgebra of A generated by a is finite-dimensional. We say that A is algebraic
if all its elements are algebraic. If A is unital and power-associative, and if a is an
algebraic element of A, then we can consider the so-called minimum polynomial of
a, namely the unique non-constant monic polynomial p(x) € K[x] such that

{q(x) € K[x] : g(a) = 0} = p(x)K[x].

The algebra A is called quadratic if it is unital and, for every a € A, a? lies in the
linear hull of {1,a}. Some authors also require that A # K1, but this is not suitable
for our present purpose. If A is quadratic, then, for each a € A, the linear hull of {1,a}
is a subalgebra of A containing a, and hence A is algebraic and power-associative.
A relevant partial converse is given by the next proposition.

Proposition 2.5.10 Let A be a nonzero power-associative algebraic algebra over
K with no nonzero joint divisor of zero. We have:

(1) If K=C, then A is isomorphic to C.
(i) If K =T, then A is quadratic.

Proof Take a nonzero element b € A. Then the subalgebra of A generated by b
is a finite-dimensional associative algebra with no isotropic element, and hence, by
Lemma 2.5.8, has a nonzero idempotent. Therefore, by Lemma 2.5.5, A is unital.
Now, let a be any nonzero element of a, and let p stand for the minimum polynomial
of A. If p were decomposable (say p = ¢s with g, s non-constant monic polynomials),
then we would have g(a)s(a) = s(a)g(a) = 0, and hence g(a) = 0 or s(a) =0 (by
the absence of nonzero joint divisors of zero), a fact which is not possible because
max{deg(q),deg(s)} < deg(p), and p is the minimum polynomial of a. Therefore
p is indecomposable. Now, if K = C, then a lies in C1, and hence, since a is an
arbitrary nonzero element of A, we conclude that A is isomorphic to C. Assume that
K = R. Then we have that either a € R1 or (a — a:1)? + 321 = 0 for suitable o, € R.
In both cases, a” belongs to the linear hull of {1,a}, and, again by the arbitrariness
of a € A\ {0}, A is quadratic. O

For a variant of assertion (i) in the above proposition, see Lemma 2.6.30 below.
Concerning assertion (ii), note that the proof gives more precise information. Indeed,
if A is a nonzero power-associative algebraic real algebra with no nonzero joint
divisor of zero, then A is unital, and the subalgebra of A generated by each element
and the unit is isomorphic to R or C.
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§2.5.11 Let A be a quadratic algebra over K. By definition, for each a € A, there
are elements #(a) and n(a) of K such that

a® —t(a)a+n(a)l = 0. (2.5.9)

If a belongs to A\ (K1), then the scalars #(a) and n(a) in (2.5.9) are uniquely
determined. Otherwise, we have a = 1 for a unique o € K, and we set 7(a) := 2o
and n(a) := a?, so that (2.5.9) is fulfilled. The mappings a — #(a) and a — n(a),
from A to K, defined in this way are called the trace function and the algebraic norm
function on A, respectively.

Proposition 2.5.12 Let A be a quadratic algebra over K. Then the trace function
is a linear form on A, and the algebraic norm function is a quadratic form on A.

Proof First we prove that 1(Aa) = At(a) for all A € Kand a € A. If A = 0, this is
clear. Assume that A # 0. If a = o1, then we have

t(Aa) =t(Aal) =210 = At(a).
Assume that a ¢ K1. Then we have

0= (Aa)> —t(Aa)Aa+n(ra)l
= 22[t(a)a — n(a)1] — t(Aa)Aa+n(Aa)l
= [A%(a) — At(Aa))a — [A%n(a) +n(Aa)]1,
hence A2¢(a) — Af(Aa) = 0, and so t(Aa) = At(a).

Now we prove that (a4 b) = t(a) +1t(b) for all a,b € A. If a,b are linearly
dependent (say b = Aa), then

t(a+b) =t((1+A)a) = (1+A)t(a) = t(a) +1(b).

Assume that a,b are linearly independent. If one of them lies in K1 (say b = 1),
then we have

0=(a+B1)>—t(a+B1)(a+B1)+n(a+B1)1

=a*+2Ba+B*1—t(a+Bl)a—Bt(a+B1)1+n(a+B1)1

=t(a)a—n(a)1+2Ba+B*1—t(a+Pl)a—Pt(a+B1)1+n(a+ 1)1

= [t(a) +2B —t(a+PpD]a+[-n(a) + B> — Bt(a+ B1) +n(a+BL)L,
hence t(a) +2B —t(a+ 1) =0, and so t(a+ B1) =t(a) + 2B = t(a) +1(b). Now,
assume additionally that a,b ¢ K1. If a, b, 1 are linearly dependent (say b = cca+ 1),
then we have

tla+b)=t((1+a)a+pl)=(1+a)t(a)+2p =t(a)+ ot(a)+2B

=t(a)+t(aa+B1) =t(a)+1(b).
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If a,b,1 are linearly independent, then we have
0= (a—b)>—t(a—b)(a—b)+n(a—b)1+ (a+b)* —t(a+b)(a+b)
+n(a+b)1=2d+2b* —[t(a—b) +t(a+b)lat[t(a—b)—t(a+b)b
+[n(a—Db)+n(a+b)]1=2[t(a)a—n(a)l]+2[t(b)b —n(b)1]
—[t(a—b)+t(a+b)la+[t(a—b) —t(a+b)|b+[n(a—b)+n(a+b)]1

=[2t(a) —t(a—b) —t(a+Db)la+ [2t(b) +1(a—b) —t(a+D)]b
+[—2n(a) —2n(b) +n(a—b) +n(a+b)]1,

hence
2t(a)—t(a—b)—t(a+b) =0 and 2¢(b)+t(a—D)—t(a+b) =0,

and adding these equalities we obtain t(a+b) = t(a) +1(b).
Finally, now that we know that ¢ is linear, it is enough to apply ¢ to both members
of the equality (2.5.9) to derive

(@) = 3 [1(@)? ~1(a)],

which shows ostensibly that n is a quadratic form. U

Let A be a quadratic algebra over K. It follows from the above proposition that
A=K1®V, where V := ker(r). Thus, each element a € A, can be uniquely written
in the form a = a1 +x for ¢ € K and x € V. As usual, « is called the ‘scalar part’ of
a, and x is called the ‘vector part’ of a. If for x,y € V, we denote by —(x,y) and x X y
the scalar and vector parts of xy, respectively, that is to say, if we write

xy=—(x,y)14+xxy with (x,y) €K and xxy€eV,

then we are provided with a bilinear form (-,-) : V x V — K and a bilinear map-
ping x : V x V — V. Note that, for x € V, we have x> € K1 (by (2.5.9)) and also
x? = —(x,x)1+x x x, so that, since x x x lies in V, we get x x x = 0. Therefore (V, x )
is an anticommutative algebra. Keeping in mind these remarks, the following result

follows straightforwardly.

Proposition 2.5.13 The quadratic algebras over K are the algebras whose vector
space is K1 &V, for some vector space V over K endowed with an anticommutative
product x and a bilinear form (-,-), and whose product is defined by

(a1+x)(B1+y):= (aff — (x,y))1+ (ay+ PBx+xXy).
Moreover, when a quadratic algebra A is regarded in the above manner, then
V={acA:d* cKl,a¢ K1\{0}}. (2.5.10)

§2.5.14 Given a vector space V over K endowed with an anticommutative product
x and a bilinear form (-,-), we will denote by <7 (V, X, (-,-)) the quadratic algebra
over K which arises in the manner pointed out in the above proposition.

Lemma 2.5.15 Let A=/ (V, x,(-,-)) be a quadratic real algebra with no nonzero
Jjoint divisor of zero. Then n(x) = (x,x) > 0 for every x € V\{0}.
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Proof Letx be an element in V. If n(x) < 0, then, setting o := /—n(x), we have
(a1 4x)(od —x) = (ol —x) (ol +x) = —(n(x)14+x*) =0,
and hence either or1+x = 0 or &1 —x = 0. In any case, we conclude that x =0. [J

Corollary 2.5.16 Let A be a commutative quadratic real algebra with no nonzero
divisor of zero. Then A is isomorphic to R or C.

Proof According to Proposition 2.5.13 and the notation in §2.5.14, we can write
A=/ (V,x,(,-)). Since A is commutative, for x,y € V we have

0=[x,y] = [(x) = (x,y)[1+xxy—yxx,

which implies that the bilinear form (-,-) on V is symmetric, and that the anti-
commutative product x on V is identically zero. Assume that dim(V') > 2. Then there
exist nonzero elements x,y € V such that (x,y) = 0, so that we have xy = —(x,y)1 =0,
contradicting the assumption that A has no nonzero divisor of zero. Therefore we
have dim(V) < 1. If dim(V) = 0, then, clearly, A is isomorphic to R. Otherwise,
again by the absence of nonzero divisors of zero in A, Lemma 2.5.15 applies so that
there exists x € V with x> = —1, and hence the mapping r + is — r1 + sx (r,s € R)
becomes a bijective algebra homomorphism from C to A. ]

Applying Proposition 2.5.10(ii) and Corollary 2.5.16, we get the following.

Proposition 2.5.17 Let A be a nonzero power-associative commutative algebraic
real algebra with no nonzero divisor of zero. Then A is isomorphic to R or C.

A quadratic form N on an algebra A is said to admit composition if the equality
N(ab) = N(a)N(b) holds for all a,b € A.

Proposition 2.5.18 Let A= o/ (V, x,(+,-)) be a quadratic algebra over K. Then we
have:

(i) Foreverya= al+x €A, t(a) =2a and n(a) = o> + (x,x).
(i) A is flexible if and only if (-,-) is symmetric and

(xxy,2) = (x,yxz) forall x,y,zeV.
(iii) n admits composition if and only if A is flexible and
(x x y,xxy) = (x,x)(y,y) — (x,¥)> forall x,y€V.
(iv) A is alternative if and only if A is flexible and
xX (xxy)=(x,y)x— (x,x)y forall x,y€V.
Proof Assertion (i) follows from the fact that, for every a = a1 +x € A, we have
a® = [0? — (x,x)|]1+ 20x = —[a* + (x,x)]1 4 20a.
Now, note that, for all x,y € V we have
[,y x] = (xy)x —x(yx) = [—(x, )1 +x x ylx —x[— (3, x)1 +y x A]
=—(xxy,x)1—(x,y)x+ (x X y) X x+ (x,y X x)1+ (y,x)x —x X (y X x)

= [=(0xy2) + (6 y x0T+ [~ (x,y) + (%),
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Therefore [x,y,x] = 0 if and only if
(x,y) = (%) and (xxy,x) = (x,y X x),

and assertion (ii) follows by linearization of the last equality with respect to x.
Leta= al+xand b= 31+ ybe in A. By assertion (i) we have

n(ab) = [af — (x,y)]> + (oy + Bx+x X y, 00y + Bx+x X y)
= 0B =208 (x,y) + (x,3)” + & (3,y) + 4B (,%) + &1y, x X y)
+ o (x,y) + B2 (x,x) + B x,x X y) + at(x X ,y) + B (x X y, %)
+(xxy,xxy)

n(@)n(b) = [ + (x,0)][B* + ()] = &7 B + 0 (3,y) + B (x,0) + (x,%) (3,¥)-
Therefore
n(ab) —n(a)n(b) = oB[(y,x) — (x,y)] + t[(y,x X y) 4 (x X y,y)]
+ Bl x X y) + (X y )] + (4,3)% + (¥ X 3,2 x )
— (,x)(%y)-
Now, assertion (iii) follows from assertion (ii), by taking o, B € {0,1} for the ‘only

if” part.
Let x,y be in V. Then we have

e,x, 3] =y = x(xy) = = (x,0)y =2 (x,) 1 +x % ]
= —(x,x)y+ (,x x )1+ (x,y)x —x X (x X y),
and hence [x,x,y] = 0 if and only if
(1) (xyxxy)=0 and (2) xx (xxy) = (x,y)x— (x,x)y.
Analogously, we have
) = ()= ya? = [= (v, 1y x e+ (x,x)y
=—(yxx,x)1—(y,x)x+ (y xx) X x+ (x,x)y,
and hence [y,x,x] = 0 if and only if
(1) (yxx,x)=0 and (2") (yxx)xx=(y,x)x— (x,x)y.

Since x x (x X y) = (y X x) X x, it follows that (2) and (2) occur simultaneously if
and only if (-,-) is symmetric and (2) occurs. Moreover, in this case, conditions (1)
and (1) agree. Now, assertion (iv) follows from assertion (ii). ]

For the proof of the next corollary, assertions (ii), (iii), and (iv) in Propos-
ition 2.5.18 must be kept in mind.



2.5 The Frobenius—Zorn and Gelfand—Mazur—Kaplansky theorems 185

Corollary 2.5.19 Let A= 7/ (V, X, (-,+)) be a quadratic algebra over K. We have:

(1) If A is alternative, then the algebraic norm function n on A admits composition.
(ii) If n admits composition and if (-,-) is nondegenerate, then A is alternative.

Proof Assume that A is alternative. Then A is flexible, and hence (-,-) is symmetric
and satisfies

(xxy,z) = (x,yxz) forall x,y,z€V.
Therefore, for all x,y € V, we have
(xxy,xxy)=—(yxx,xxy)=—(nxx(xxy))
= —(n (x,y)x = (x,2)y) = (%) (0,y) = (x,)°,

hence n admits composition. Thus assertion (i) is proved.
Now, assume that n admits composition, and that (-, -) is nondegenerate. Lineariz-
ing the condition

(xx 320 % y) = (x,2) (15) = (x,)?
with respect to y, we obtain that
(0 y,x % 2) = (6,x) (3,2) = (x,)(x,2)
for all x,y,z € V. Hence
(20 (e x y) + (5, x)y = (x,9)x,2) = =(x X 3,2 X 2) + (%) (3,2) = (%,3) (x,2) =0

for all x,y,z € V, and consequently x X (x X y) + (x,x)y — (x,y)x =0 for all x,y € V.
Thus A is alternative. O

Proposition 2.5.20 Let A be an algebra over K. Then the following conditions are
equivalent:

(i) A isa Cayley algebra.
(i) A is a quadratic algebra, say A = </ (V, X, (-,-)), and the bilinear form (-,-) is
symmetric.

Moreover, if A is a Cayley algebra, then we have
a+a* =t(a)l and a*a=aa* =n(a)l forevery a €A,
and a* = ol —x whenever a=ol+xwitha € Kandx V.

Proof Assume that A is a Cayley algebra. Since for every a € A we have
a’> —a(a+a*) +aa* = 0, it follows that A is quadratic and ¢(a)l = a + a* and
n(a)l = aa* for every a € A. As a consequence of the equality 7(a)1 = a+a* we
get that H(A, ) = K1, and that the space V of the vectors of A is precisely the set of
those elements a € A such that a* = —a. Therefore we have

(0l14+x)*=0l1l—x forall ¢ €K1 and x€V,

which implies a*a = aa® = n(a)1 for every a € A. On the other hand, since * is an
algebra involution, for all x,y € V we see that

0= (xy)" =y x" = —(x,y)1 =x X y+ (y,0)1 =y x x = [(y,x) — (x,)]1,
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and hence (x,y) = (y,x). Thus we have proved the implication (i)=-(ii) in the first
conclusion of the proposition, as well as the whole of the second conclusion.

Now, assume that A = &7 (V, X, (+,-)), where the bilinear form (-, -) is symmetric.
Consider the mapping * : A — A defined by

(al14+x)*=0l1—x forall ¢ €K and x€V.

Clearly, * is a vector space involution on A satisfying a +a* € K1 and aa* € K1
for every a € A. Moreover, keeping in mind that the form (-,-) is symmetric, we
straightforwardly realize that x is in fact an algebra involution. O

By a composition algebra over K we mean a nonzero algebra over K endowed
with a nondegenerate quadratic form admitting composition. Given a vector space
X over K and a quadratic form ¢ on X, we denote by ¢(-,-) the unique symmetric
bilinear form on X such that ¢(x,x) = g(x) for every x € X.

Proposition 2.5.21 Let A be a unital algebra over K. Then there is at most one
nondegenerate quadratic form on A admitting composition. Moreover, the following
conditions are equivalent:

(i) A is a composition algebra.

(i) A is a quadratic algebra, say A = o/ (V,x,(-,-)), the bilinear form (-,-) is
symmetric and nondegenerate, and the quadratic algebraic norm form n on A
admits composition.

(iii) A is an alternative Cayley algebra, and the quadratic form N on A determined
by N(a)l = aa* is nondegenerate.

Proof The first conclusion will follow as a by-product of the proof of the implica-
tion (i)=-(ii).

(1)=-(i1) Assume that A is a composition algebra. Let N be the nondegenerate
quadratic form on A admitting composition. Then

N(ab,ab) = N(a,a)N(b,b) forall a,b e A. (2.5.11)
Linearize this relative to a to obtain
N(ab,cb) = N(a,c)N(b,b) forall a,b,c € A.
Linearizing this relative to b, we have
N(ab,cd)+ N(ad,cb) =2N(a,c)N(b,d) forall a,b,c,d € A. (2.5.12)

Define T'(a) := 2N(a,1) for every a € A. Note that N(1) = 1 by (2.5.11) since
N(a)#0 for some a in A. Then

N(al) = o and T (o) =20 forevery o in K. (2.5.13)
Now (2.5.12) implies
N(ab,c)+N(a,cb) =N(a,c)T(b) forall a,b,c € A (2.5.14)
and

N(ab,d)+N(b,ad) = T(a)N(b,d) forall a,b,d € A. (2.5.15)
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Now N(a?,c) +N(a,ac) = T(a)N(a,c) by (2.5.15) and N(a,ac) = N(a)N(1,c) by
(2.5.14). Hence N(a® — T (a)a+N(a)1,c) = 0 for every c in A. Since N is nondegen-
erate, we have

a®> —T(a)a+N(a)l =0 forevery a € A.

Therefore A is a quadratic algebra. By the uniqueness of the algebraic norm in
the ‘vector part’ V of a quadratic algebra, we have (x,x) = N(x) for every x € V.
Moreover, by the first equality in (2.5.13) and Proposition 2.5.18(i), we obtain that
n(a) = N(a) for every a in A. Thus n, and hence (-, -), is nondegenerate, and n admits
composition. Finally, by Proposition 2.5.18(ii)—(iii), (+,-) is symmetric.

(ii)=(iii) Assume that (ii) holds. Then, by Corollary 2.5.19, A is alternative.
Moreover, by Proposition 2.5.20, A is a Cayley algebra and n(a)1l = aa* for every
a € A. Therefore 2n(a,b)1 = ab* + ba* for all a,b € A. Since (-,-) is symmetric and
nondegenerate, it follows from Proposition 2.5.18(i) that n is nondegenerate.

(iii))=-(1) Assume that (iii) holds. Then, by Proposition 2.5.20, A is a quadratic
algebra, say A = o/ (V, X, (+,-)), the bilinear form (-, -) is symmetric, and

n(a)l = aa* for every a € A.

Therefore n(a,b)1 = 1(ab* + ba*) for all a,b € A, and hence, by assumption, 7 is
nondegenerate. Finally, by Corollary 2.5.19, n admits composition. O

Definition 2.5.22 If V is a real vector space endowed with a product x and an inner
product (+|-) satisfying

(xxylz) = (x|y x z) forall x,y,z€V, (2.5.16)
and

lx % y[I* = [|x]*[[y]]* = (xly)* forall x,y eV, (2.5.17)

then we will say that (V, x, (+|-)) is a cross-product algebra. Note that, if (V, X, (-|))
is a cross-product algebra, then, by (2.5.17), we have x x x = 0 for every x € V, and
hence the product x is anticommutative.

Definition 2.5.23 Let A be a unital alternative algebra, and let @ be in A. As in
the associative case, we say that a is invertible in A if there exists b € A such that
ab = ba = 1. Such an element b is called an inverse of a.

For elements x, y, z, w in a given algebra, the following equality is straightforwardly
realized:

[y, 2w+ x[y, z,w] = [xy,z,w] — [x,yz,w] + [x,y,2w]. (2.5.18)

Now let A be a unital alternative algebra, let a be an invertible element of A with
inverse b, and let ¢ be in A. Then, setting (x,y,z,w) = (b,a,a,bc) in (2.5.18), we
obtain

0= —[b,a® bc] + [b,a,a(bc)].
On the other hand, by the right Moufang identity (2.3.16), we have
[b,a,bc] = [a*,be,b) = —[a®,b,c]b = [c,b,a’|b = —[c,ba*,b]
= [b,ba*,c] = [b, (ba)a,c] = [b,1a,c] = [b,a,c]
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and
[b,a,a(bc)] = —[b,a(bc),a] = [b,a,bcla = —[bc,a,bla
= [bc,ab,a] = [bc,1,a] = 0.
It follows that
[b,a,c] =0 forevery c € A. (2.5.19)

Proposition 2.5.24 Let A be a unital alternative algebra, and let a be an invertible
element in A. We have:

(1) a has a unique inverse.
(ii) L, (respectively, R,) is a bijective operator on A with L' = L, (respectively,
R = R,-1), where a~! denotes the unique inverse of a.

Proof Suppose that b and c are inverses of a in A. Then, keeping in mind (2.5.19),
we see that

¢ =1c = (ba)c = [b,a,c]+b(ac) = b(ac) = b1 = b.

Thus a has a unique inverse. Moreover, if we denote by a~! the unique inverse of
a, then (2.5.19) gives that [a~!',a,x] = 0 for every x € A. Since the associator is
an alternating function of its arguments, we obtain that L 1L, = L,L,~1 = I4 and
R,~1R; = R4R -1 = I4, and the proof is complete. L]

Definition 2.5.25 Now we can consider the classical notion of a division altern-
ative algebra, namely a unital alternative algebra A whose nonzero elements are
invertible in A.

Proposition 2.5.26 Letr A be a unital real algebra. Then the following conditions
are equivalent:

(1) A is both a quadratic algebra and a division alternative algebra in the classical
sense.
(i1) A is an alternative quadratic algebra with no nonzero divisor of zero.
(iii) A is an alternative quadratic algebra with no nonzero joint divisor of zero.
(iv) A= (V,x,(:|")), where (V,x,(+|)) is a cross-product algebra.
(v) A is a composition algebra whose nondegenerate quadratic form n admitting
composition satisfies in fact n(a) # 0 for every a € A\{0}.

Proof (i)=-(ii) Let a,b be in A such that ab = 0. If a # 0, then, by the assump-
tion (i), we have b = L ' (L, (b)) = a~ ! (ab) = 0.

(i1)=-(iii) This implication is clear.

(i1i)=-(iv) Assume that condition (iii) holds. Then, by Proposition 2.5.13, A =
o (V,x,(+,-)), where (V, x, (-,-)) is an anticommutative algebra with a bilinear form.
Moreover, since A is alternative, Corollary 2.5.19 applies, so that n admits composi-
tion. Finally, by Proposition 2.5.18 and Lemma 2.5.15, we conclude that (V, x, (+,))
is a cross-product algebra.

(iv)=(v) Assume that (iv) holds. Then, by Proposition 2.5.18, n admits composi-
tion, and n(a) = & + ||x||> > 0 for every nonzero element a = or1 + x in A.
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(v)=-(1) Assume that (v) holds. Then, by Propositions 2.5.21 and 2.5.20, A is an
alternative quadratic algebra with an algebra involution * satisfying

aa* = a*a = n(a)l for every a € A.
Therefore, if a # 0, then a is invertible in A with ¢~ = ﬁa*. O

Let (V,x,(:]-)) be a cross-product algebra. Then, by Propositions 2.5.26 and
2.5.18, we have

xx (xxy) = (x|]y)x— ||x||>y forall x,y€V. (2.5.20)
Linearizing with respect to x we obtain
xx (yxz)—zx (xxy)=2(x|z)y— (x|y)z— (y|z)x forall x,y,z€V, (2.5.21)
and as a consequence we have
xXx (yxz)=zx (xxy) forall pairwise orthogonal x,y,z€ V. (2.5.22)

Lemma 2.5.27 Let (V,x,(-|)) be a cross-product algebra. Assume that x,y,z are
elements of V and v is a norm-one element of V such that each one of the sets
{x,9,2,v} and {x x v,v,y X z} consists of pairwise orthogonal elements. Then

(xxv)x (yx(zxv))=xx(yXx2z).
Proof By applying (2.5.22) twice we have
(xxv)x (yx(zxv))=(xxv)x (vx(yxz))=(yxz)x((xxv)XV).

Keeping in mind the anticommutativity of x, by (2.5.20) we realize that (x X v) X v =
v % (v X x) = —x, and we conclude that

(xxv)x (yx(zxv))=xx(yX2z). O

Now recall that, if (V,x,(:|-)) is a cross-product algebra, then, by Propos-
ition 2.5.20, «7(V,%,(:|-)) is a Cayley algebra, and hence the Cayley—Dickson
doubling process is applicable to <7 (V, x, (+|-)).

Proposition 2.5.28 Let (V, X, (+|)) be a cross-product algebra, let U be a subalge-
bra of (V, x) such that U+ # 0, and let v be a norm-one element in U*. We have:

() UxvC (UaRy)™.
(i) IfU ) denotes the subalgebra of (V, x) generated by U and v, then

U =UaRva® (U xv),

and the mapping o1 +uy + Bv+u, x v — (ol +uy,—B1+up) is an alge-
bra isomorphism from </ (UY),x(-|-)) onto the Cayley-Dickson doubling,
CHAU, %, (1), of S (U, %, (1),

(i) If (UYL £0, then dim(U) < 1.

Proof Assertion (i) follows from the fact that, for all u,u;,u, € U we have

(uxvv)=(ulvxv)=0 and (u; x vjuz) = (ua]u; xv) = (uz x uy [v) = 0.
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The equality U") = U @Rv@ U x v in assertion (ii) follows from the fact that, for
all u,uy,up € U, by applying (2.5.20) and (2.5.21), we have

up X (ug xv) = —(uy|uz)v — (uy X uz) x v,
vX (uxv)=—-vXx(vXu)=u,
and
(g xv) X (up xv) =vx ((ug xv) xup) =vx [(ur|uz)v— (u1 X uz) Xv)
= —vx [(u; Xup) X v] = —uy X up.

Now that we know that U") = U @ Rv@® (U x v), it is a routine matter to show that
the mapping

ol+ui+Bv+uy xv— (al+up,—Pl+up)
is an algebra isomorphism from <7 (U™, x, (-]-)) onto € 2(<7 (U, x, (-]-))).

In order to prove assertion (iii), suppose, to derive a contradiction, that (U o) )E#£0
and dim(U) > 2. Fix norm-one elements w € (U") and u;,us € U such that
(ur|uz) = 0. Set p := v x w. Since p € U™ x w, it follows from assertion (i) that
p € (UY) @Rw)*, and then that U™ x p € (UM)L. Therefore each one of the

sets {uy,uz,p,v} and {u; X v,v,up X p} consists of pairwise orthogonal elements.
Therefore, by Lemma 2.5.27, we have

(11 X v) X (ug x (pxv)) =uy X (uz X p).
On the other hand, by (2.5.20), we have
pxv=((pxw)xv=—vx[Vxw)=w,

and consequently (11 x v) X (2 x w) = (u1 X v) x (u2 X (p X v)). Hence, we can
conclude that

(1 X v) X (ug X w) = uy X (up X p). (2.5.23)

Analogously, since p = —wxv e U W) % v, it follows from assertion (i) that
p e (U™ @Rv)t, and then that U™ x p C (U™)L. Therefore each one of the
sets {up,ur,p,w} and {up X w,w,u; x p} consists of pairwise orthogonal elements.
Therefore, by Lemma 2.5.27, we get that

(ug xw) X (ug X (pxw)) =up X (u; X p).

On the other hand, by (2.5.20), we have w X p = —w X (w X v) = v, and con-
sequently (up X w) X (u1 X v) = —(up X w) x (u; X (p x w)). Hence, we obtain that
(g x w) x (up x v) = —up X (uy X p) = up X (p X uy). Since, by (2.5.22),
up X (pxuy) =uy x (uz x p), we conclude that

(g X w) X (up X v) =uy X (up X p). (2.5.24)
Now (2.5.23) together with (2.5.24) give that

(g X v) X (ug Xxw) =uy X (up X p) = (up x w) X (1 X v). (2.5.25)
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Since v,w are orthogonal, u;,p are orthogonal, and u;,uy X p are orthogonal, we
see, by (2.5.17), that ||p|| = 1, ||uz x p|| = 1, and ||u; X (uz X p)|| = 1. Therefore
u; X (up X p) # 0, and consequently (2.5.25) contradicts the anticommutativity
of x. O

Theorem 2.5.29 (Frobenius—Zorn) Let A be a nonzero alternative algebraic real
algebra with no nonzero joint divisor of zero. Then A is isomorphic to R, C,H, or Q.

Proof By Proposition 2.5.10, A is quadratic, and then, by Proposition 2.5.26, A =
o (V,x,(:]")), where (V,x,(-|-)) is a cross-product algebra. Suppose that A is not
isomorphic to R. Then Uy := 0 is a subalgebra of V with UOl =V # 0. Choose a
norm-one element v; € V, set Uy := Uévl), and let A; denote the subalgebra of A
generated by 1 and Uj. It follows from Proposition 2.5.28(ii) that U; = Rv; and that
Ay is isomorphic to C. Therefore, if Aj = A, then A is isomorphic to C. Suppose
that Aj # A, hence U # V, and consequently U;- # 0. Choose a norm-one element
v elU ll and consider U, := U1(V2>. By Proposition 2.5.28(ii), the subalgebra A, of A
generated by 1 and U; is isomorphic to H. Therefore, if A = A, then A is isomorphic
to H. Suppose that Ay # A, hence U, # V, and consequently U;- # 0. Arguing as
above, choose a norm-one element v3 € Uzl, set Uz := Uz(v3), and let A3 denote the
subalgebra of A generated by 1 and Usz. By Proposition 2.5.28(ii), Az is isomorphic
to @. Since dim(U,) = 3, it follows from Proposition 2.5.28(iii) that U3L =0, and
hence A = A3 is isomorphic to O. O

Corollary 2.5.30 Ler (V,x,(:|-)) be a nonzero cross-product algebra. Then
(V, x, (")) is isomorphic to one of the following cross-product algebras:

(1) The Euclidean vector space R with trivial cross product.
(ii) The Euclidean vector space R3 with cross product equal to the usual vector
product.

(iii) The Euclidean vector space R’ (regarded as R? x R x R3) with cross product
defined by

(x1,00,y1) X (x2,00,¥2) 1 = (—0uy2 + 0y1 +x1 X X2 —y1 X ¥2,(x1[y2)
— (V1]x2), xy — opxp —x1 X y2 —y1 X x2),

where for x,y € R? we have denoted by (x|y) and x x y the usual inner product
and vector product in R3, respectively.

Proof By Proposition 2.5.26 and Theorem 2.5.29, &7 (V, x,(+|-)) is isomorphic to
C,H, or O, and hence (V, x,(+|-)) is isomorphic to one of the cross-product alge-
bras which appear by considering the vector part of C,H, or Q. By keeping in
mind the matricial representations of C,H], and O given in §2.5.1, it turns out that
these algebras are nothing other than the cross-product algebras specified in the
statement. O

We conclude this subsection with a by-product of Propositions 2.5.10(i) and
2.5.17.
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Definition 2.5.31 Let A be an algebra over K. The centre of A is defined as the
subset of A consisting of those elements a € A such that

[(l,A] = [avAaA} = [AvavA] = [A’Ava] =0,

and is denoted by Z(A). Elements in Z(A) are called central elements of A. We note
that Z(A) becomes an associative and commutative subalgebra of A.

Lemma 2.5.32 Let A be an algebra over K with no nonzero joint divisor of zero.
Then A is unital if (and only if) so is Z(A).

Proof Assume that Z(A) is unital. Let e denote the unit of Z(A). Then, noticing that
e is a central idempotent in A, for every a € A we have

e(ae —a) = (ae —a)e = ae® —ae =0
and

(ea—a)e =e(ea—a) = e*a—ea =0,
so0 ae = ea = a because A has no nonzero joint divisor of zero, hence e is a unit
for A. O]

Proposition 2.5.33 Let A be an algebraic algebra over K with no nonzero joint
divisor of zero. Then A is unital if (and only if) Z(A) # 0.

Proof Assume that Z(A) # 0. Then, by Propositions 2.5.10(1) and 2.5.17, Z(A) is
unital. Now apply Lemma 2.5.32. ]

Remark 2.5.34 Let A be an algebra over K. The centre of A is closely related to
the centroid, T4, of A (cf. Definition 1.1.10). Indeed, by assigning to each z € Z(A)
the operator of multiplication by z on A, we are provided with a natural algebra
homomorphism ® : Z(A) — T4 such that ker(®) = Ann(A) (cf. Definition 1.1.10
again). Moreover @ is surjective if and only if A has a unit, if and only if ® is
bijective. Thus, when A is unital, A is central if and only if Z(4) = KI1.

2.5.3 The generalized Gelfand—Mazur-Kaplansky theorem

In Definition 1.1.42 we introduced the notion of a division associative algebra in the
classical sense, and later, in Definition 2.5.25, we extended this notion to the setting
of alternative algebras. Now we will develop other division notions for general non-
associative algebras which have appeared in the literature.

Definition 2.5.35 Let A be an algebra. We say that A is a left- (respectively, right-)
division algebra if A # 0 and, for every nonzero element a of A, the operator L,
(respectively, R,) is bijective. Algebras which are left and right (respectively, left or
right) division algebras are called division algebras (respectively, one-sided division
algebras). The algebra A is said to be a quasi-division algebra if A # 0 and, for
every nonzero element a of A, at least one of the operators L,, R, is bijective. If A
is commutative, then, clearly, all the above notions coincide. We note that one-sided
division algebras have no nonzero divisor of zero, and that quasi-division algebras
have no nonzero two-sided divisor of zero. If A is finite-dimensional, then it is easily
realized that A is a division algebra if and only if A is a left-division algebra, if
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and only if A is a right-division algebra, if and only if A has no nonzero divisor of
zero, and that A is a quasi-division algebra if and only if A has no nonzero two-sided
divisor of zero. However, even in the finite-dimensional case, quasi-division does not
imply one-sided division. Indeed, we have the following.

Example 2.5.36 Let A denote the algebra over K whose vector space is K? and
whose product is defined by

(A1, A2) (1, 2) i= (Ao, Ay + Ao i)

Then A is a quasi-division algebra but not a one-sided division algebra. The verifi-
cation of this assertion is straightforward.

In the infinite-dimensional setting, one-sided division algebras need not be divi-
sion algebras. Indeed, we have the following.

Example 2.5.37 Let K(x) be the algebra of all rational fractions on one indeter-
minate x over K. Since K(x) is infinite-dimensional, there exists an injective non-
surjective linear mapping F : K(x) — K(x). Define a new product ® on K(x) by
a® b := F(a)b. With this new product, K(x) becomes a non-division left-division
algebra over K.

It follows from Proposition 2.5.24 that a division alternative algebra in the clas-
sical sense (see Definition 2.5.25) becomes a division algebra in the meaning of
Definition 2.5.35. As a matter of fact, we have the following.

Proposition 2.5.38 Let A be an alternative algebra. Then the following conditions
are equivalent:

(1) A is a quasi-division algebra.
(i1) A is a left-division algebra.
(iii) A is a right-division algebra.
(iv) A is a division algebra.
(v) A is a division alternative algebra in the classical sense.

Proof We already know that condition (v) implies (iv). On the other hand, the
implications (iv)=-(ii)=-(i) and (iv)=-(iii)=(i) are clear.

(1)=-(v) Assume that A is a quasi-division algebra. Let b be a nonzero element of
A. Then L, or Ry, is a bijective operator (say L, is bijective). Setting e := L;l (b),
we have be = b, and hence be = (be)e = be?, which implies e = &2, Therefore, e
becomes a nonzero idempotent of A, so that, by Lemma 2.5.5, 1 := e is a unit for A.
Now, let a be in A\{0}. Then L, or R, is bijective (say L, is bijective), so that there
is a unique ¢ in A with ac = 1. Since a(ca — 1) = 0 (by Theorem 2.3.61), we have
also ca = 1. It follows that a is invertible in A with a~! = c. ]

Proposition 2.5.39 Let A be a normed quasi-division alternative complex algebra.
Then A is isomorphic to C.

Proof By Proposition 2.5.38, A is a division alternative algebra in the classical
sense. Let a be in A. By Theorem 1.1.41, there is A € sp(BL(A),L,), which means
that L, »; = L, — A1 is not invertible in BL(A). If a — A1 were not zero, then
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it would be invertible in A, so, by Proposition 2.5.24, L, 57 would be a bijective
operator on A with L;l a1 = La-a1)-1 € BL(A), and L;l 41 Would be an inverse of
L, ;1 in BL(A), a contradiction. Therefore a € C1. O

Now we prove the so-called real Gelfand—Mazur theorem.

Proposition 2.5.40 Let A be a normed quasi-division associative real algebra.
Then A is isomorphic to R,C or H.

Proof First of all, note that by Proposition 2.5.38, A is a division associative algebra
in the classical sense, and hence A has a unit. Let a be in A. By Proposition 1.1.98
and Theorem 1.1.41, there are o, 3 € R such that ot + if3 € sp(Ac,a). Then, by
Proposition 1.1.100, we have that

(a—al)* +B*1 ¢ Inv(A).

Since A is a division algebra, we deduce that (a — oc1)? + 321 = 0. Therefore, by
the arbitrariness of a € A, we see that A is a quadratic algebra, and Theorem 2.5.29
applies. O

§2.5.41 Let A be an algebra over K. By a partially defined centralizer on A we
mean a linear mapping (say f) from a nonzero ideal of A (say dom()) to A satisfying
f(xa) = f(x)a and f(ax) = af(x) for all x € dom(f) and a € A. If f is a partially
defined centralizer on A, then it is clear that

ker(f) :={x €dom(f): f(x) =0} and im(f):={f(x):x € dom(f)}

are ideals of A, and that ker(f)im(f) = 0. The algebra A is said to be prime if A £ 0
and the product of two arbitrary nonzero ideals of A is nonzero. If A is prime, then,
since IJ C INJ for all ideals I and J of A, it follows that the intersection of two
nonzero ideals of A is a nonzero ideal of A.

Lemma 2.5.42 Let A be a prime algebra over K, and let € denote the set of all
partially defined centralizers on A. Then we have:

(i) Every nonzero element f in € is injective.

(i) If f,g are elements in € such that f(xo) = g(xo) for some nonzero element x
in dom(f)Ndom(g), then f(x) = g(x) for every x € dom(f) Ndom(g).

(iii) The relation = defined on € by f = g if and only if f and g coincide on
dom(f) Ndom(g) is an equivalence relation.

(iv) If for f,g € € we define f+ g :dom(f)Ndom(g) = A by (f+g)(x) =
f(x)+g(x), then f+g€€, and f+g= f'+¢ forall f,g €€ with f = f’
and g= ¢

() If for f,g € € we define fg: g ' (dom(f)) — A by (f8)(x) := f(g(x)), then
fe€€, and fg= f'g forall f',g' € € with f =~ f and g= ¢

Proof For every f € €, we know that ker(f) and im(f) are ideals of A such that
ker(f)im(f) = 0. Since A is prime, it follows that either f =0 or f is injective. Thus
assertion (i) is proved. Now, assume that f, g are elements in ¢ such that f(xy) =
g(xo) for some nonzero element xy in dom(f) N dom(g). Consider the nonzero
ideal of A given by I := dom(f) Ndom(g), and the mapping % : I — A defined by
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h(x):= f(x)—g(x). Itis clear that i € € and h(xo) = 0. By assertion (i), we conclude
that f(x) = g(x) for every x € I, and so assertion (ii) is proved. In order to prove
assertion (iii), we note that reflexivity and symmetry being obvious, only transitivity
needs proof. To this end, suppose that f, g, h € € satisfy f = g = h. Then

f(x) =g(x) =h(x) forevery x € dom(f)Nndom(g)Ndom(h),

and hence, by assertion (ii), f = h. In order to prove assertions (iv) and (v), suppose
that f,g € €. Since

dom(f)Ndom(g) and g~'(dom(f)):= {x € dom(g) : g(x) € dom(f)}

are ideals of A containing dom(f)dom(g), it follows that both are nonzero ideals.
It is a routine matter to show that f + g and fg (as defined in the statement) are
elements of 4. Moreover, if f',g € € satisfy f = ' and g = g/, then, for all x €
dom(f) Ndom(f’) and y € dom(g) Ndom(g’), we see that

(f+8)(y) = (f'+&)(xy) and (fg)(xy) = (f'g")(x).
Therefore, by assertion (ii), we conclude that f 4 g = '+ ¢’ and fg = f'g'. O

Definition 2.5.43 Let A be a prime algebra over K. By the above lemma, on the
set ¢ of all partially defined centralizers on A, an equivalence relation 2 is defined,
as well as a sum and a composition. Moreover, these operations are compatible with
2. The extended centroid C4 of A is defined as the quotient set with the induced
operations.

Proposition 2.5.44 Let A be a prime algebra over K. Then the extended centroid
of A is a field extension of K.

Proof It is straightforward to check that C4 is an associative ring with a unit. We
first show that C4 is commutative. Let o, 3 be in C4. For f € o and g € B3, set
W := g~ (dom(f)) N f~'(dom(g)), and choose x,y € W. Then

felxy) = f(g(x)y) = g(x) f(y) = g(xf () = &f (xy).

It follows from Lemma 2.5.42 that fg = gf, and so o8 = Bo. Next let o be in
C4\{0}. Note that, for f € a, we have f # 0 but ker(f) = 0. Define g : im(f) — A
by g(f(x)) = x for every x € dom(f). The mapping g is well-defined since f is an
injection and in fact g is a partially defined centralizer on A. Clearly the equivalent
class determined by g is the inverse of «, and hence Cy is a field. Note that for each
A € K, the mapping x — Ax is in fact an everywhere defined centralizer on A, and
hence A determines an element A in Cy. Finally, the mapping A — 2 becomes a field
embedding of K into Cy. O

Remark 2.5.45 Let A be a prime algebra. Thinking about the mapping taking each
element f of the centroid of A (cf. Definition 1.1.10) to the equivalence class of ¢
containing f, we realize that the centroid of A, I'4, becomes a subalgebra of Cy.
Moreover, if A is actually simple, then, clearly, we have I'y = Cy4, and hence, by
Proposition 2.5.44, T'4 is a field extension of K.
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Lemma 2.5.46 Let A be a normed prime complex (respectively, real) algebra, and
assume that every partially defined centralizer on A is continuous. Then the extended
centroid of A is isomorphic to C (respectively, to R or C).

Proof In view of Corollary 1.1.43 (respectively, Proposition 2.5.40) and Propos-
ition 2.5.44, it is enough to provide C4 with an algebra norm. In fact we will see that,
if for o in C4 we define

o]} == inf{[Lf] : f € e},

then || - || becomes an algebra norm on Cy4. The property ||Aa|| = |A]||e||, for 2 in C
(respectively, in R) and o in Cy, is clear. Let a, 3 be in Cy4. For arbitrary f € o and
g € B, consider the partially defined centralizers f + g and fg on A, and note that
frgea+p, fecaf, [l f+ell <|fIl+gll, and [ fgll < [ f]lllg]]- It follows that

loe+ Bl < [leefl + [IB]] and [l < [le][[IB]-

Now || - || is an algebra seminorm on Cy satisfying ||1|] = 1 (where 1 denotes the unit
of Cy), hence an algebra norm because Cy is a field. O

Proposition 2.5.47 Let A be a nonzero normed complex (respectively, real) alge-
bra, and assume that every nonzero ideal of A contains an element which is not a
Jjoint topological divisor of zero in A. Then A is prime, and the extended centroid of
A is isomorphic to C (respectively, to R or C).

Proof Elements x in A satisfying x*> = 0 are joint topological divisors of zero; hence
from the assumption on A it follows that, if P is an ideal of A and if PP = 0, then
P = 0. For P and Q ideals of A, from the inclusions

QP C PNQand (PNQ)(PNQ) C PO

and the above observation it follows that QP = 0 whenever PQ = 0. Therefore, if
PQ =0 and if P # 0, then every element of Q is a joint topological divisor of
zero in A, and so Q = 0. Now that we have shown that A is prime, the proof will
be concluded by invoking Lemma 2.5.46 and proving that every partially defined
centralizer on A is continuous. But, if f is such a partially defined centralizer, then,
by Exercise 1.1.88(ii), there exist x in dom(f) and a positive number m such that

ml[y|| < [yl + [|yx]| for every y € A.
Now, for every y in dom(f), we have

ml| f DI < [bef O 1 G)xl = 17 Gyl + s Gl < 217 Gyl

Hence f is continuous. U

Corollary 2.5.48 Let A be a nonzero normed complex (respectively, real) algebra
with no nonzero joint topological divisor of zero. Then A is prime, and Cy is iso-
morphic to C (respectively, to R or C).

Proposition 2.5.49 Let A be a nonzero normed power-associative algebra over K
with no nonzero joint topological divisor of zero. We have:

(1) If K=C, then A is isomorphic to C.
(1) If K=R, then A is quadratic.
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Proof First assume in addition that A is associative and commutative. Then, identi-
fying each element a € A with its multiplication operator L,, elements of A can
be regarded as (everywhere defined) centralizers on A. Then the quotient mapping
6 — C4 induces a natural embedding A — Ca. By Corollary 2.5.48, A is finite-
dimensional over K.

Now, remove the additional assumption that A is associative and commutative.
By the above paragraph, A is algebraic, so the result follows by applying Propos-
ition 2.5.10. O

Since alternative algebras are power-associative (by Theorem 2.3.61), it is enough
to combine Proposition 2.5.49(ii) immediately above and Theorem 2.5.29 to derive
the following.

Theorem 2.5.50 Let A be a nonzero normed alternative real algebra with no
nonzero joint topological divisor of zero. Then A is isomorphic to R, C,H, or Q.

The associative particularization of Theorem 2.5.50 above is known as the
Gelfand-Mazur—Kaplansky theorem.

Now, we prove the generalization of the real Gelfand—Mazur theorem (Propos-
ition 2.5.40) to alternative algebras.

Corollary 2.5.51 Let A be a normed quasi-division alternative real algebra. Then
A is isomorphic to R,C,H, or Q.

Proof In view of Theorem 2.5.50, it is enough to show that A has no nonzero joint
topological divisor of zero. Let a be in A\ {0}, and let b, be a sequence in A such
that ab, — 0. Then, by Propositions 2.5.24 and 2.5.38, we have b, = a~!(ab,) — 0.
Therefore a is not a joint topological divisor of zero. O

Now that the main results in the section have been proved, we deal with some by-
products of the arguments applied in their proofs. Applying Proposition 2.5.49(ii)
and Corollary 2.5.16, we get the following.

Proposition 2.5.52 Let A be a nonzero normed power-associative commutative real
algebra with no nonzero topological divisor of zero. Then A is isomorphic to R or C.

§2.5.53 Form now on, the following consequence of the Banach isomorphism the-
orem should be kept in mind: if A is a nonzero complete normed algebra, and if a is
an element of A such that L, is bijective, then a is not a left topological divisor of zero.

Noticing that, as a consequence of §2.5.53 above, complete normed quasi-
division algebras have no nonzero two-sided topological divisor of zero, Corollar-
ies 2.5.54 and 2.5.55 immediately below follow from Propositions 2.5.49 and 2.5.52,
respectively.

Corollary 2.5.54 Let A be a nonzero complete normed power-associative quasi-
division algebra over K. We have:

(1) If K= C, then A is isomorphic to C.
(i) If K=R, then A is quadratic.

Assertion (i) in the above corollary will be proved in Corollary 2.7.11 by other
methods.
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Corollary 2.5.55 Let A be a nonzero complete normed power-associative division
commutative real algebra. Then A is isomorphic to R or C.

By a nearly absolute-valued algebra we mean a nonzero normed algebra A
such that there exists r > 0 satisfying r||al|||b|| < ||ab|| for all a,b € A. Corollar-
ies 2.5.56, 2.5.57, and 2.5.58 immediately below follow straightforwardly from
Proposition 2.5.49, Theorem 2.5.50, and Proposition 2.5.52, respectively.

Corollary 2.5.56 Let A be a nearly absolute-valued power-associative algebra
over K. We have:

(1) If K=C, then A is isomorphic to C.
(i) If K=R, then A is quadratic.

Corollary 2.5.57 Let A be a nearly absolute-valued alternative real algebra. Then
A is isomorphic to R, C, H, or Q.

Corollary 2.5.58 Let A be a nearly absolute-valued power-associative commuta-
tive real algebra. Then A is isomorphic to R or C.

Finally we prove the following.

Proposition 2.5.59 Let A be a normed algebra over K with no nonzero joint topo-
logical divisor of zero. Then A is unital if (and only if) it has nonzero centre.

Proof Assume that Z(A) # 0. Then, by Propositions 2.5.49(i) and 2.5.52, Z(A) is
unital. Now apply Lemma 2.5.32. O

2.5.4 Historical notes and comments

Quaternions and octonions are widely treated in the books [712], [727], [760], [785],
and [801, Chapter 7], as well as in the survey papers [51] and [587]. These works
and references therein will provide the reader with a relatively complete panoramic
view of the topic. (Other relevant facts concerning quaternions and octonions, not
included in the works just quoted, will be covered in Section 2.6 below.) Anyway, let
us emphasize the abundance of historical notes and mathematical remarks assembled
in [727], and take some excerpts from it. Thus, in a note written for the occasion of
the fifteenth birthday of the quaternions, Hamilton says:

They [the quaternions] started into life, or light, full grown, on the 16th of October, 1843,
as I was walking with Lady Hamilton to Dublin, and came up to Brougham Bridge.

(see p. 191 of [727]). After the discovery of quaternions, Hamilton devoted the re-
mainder of his life exclusively to their further exploration. An excellent revised
version of Hamilton’s papers is today available in [737]. It turns out curious to
know that Hamilton tried for many years to build a three-dimensional associative
real algebra with no nonzero divisors of zero. In fact, shortly before his death in
1865 he wrote to his son:

Every morning, on my coming down to breakfast, you used to ask me: ‘Well, Papa, can
you multiply triplets?” Whereto I was always obliged to reply, with a sad shake of the head:
‘No, I can only add and subtract them’.
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(see p. 189 of [727]). It is not less curious how, in a very elemental way, one can
realize that Hamilton’s attempt just quoted could not be successful. Indeed, keeping
in mind that every real polynomial of odd degree must have a real root, and arguing
as in the solution of Exercise 1.1.86, we realize that if A is a real algebra of odd finite
dimension with no nonzero divisor of zero, then A has dimension 1, and hence it is
isomorphic to R.

According to the information included on p.249 of [727], the octonions were
discovered by Graves in December 1843, only two months after the birth of the qua-
ternions. Graves communicated his results to Hamilton in a letter dated 4th January
1844, but they were not published until 1848 [306]. In the meantime, in 1845, the
octonions were rediscovered by Cayley, who published his result immediately [164].
For a more detailed history of the discovery of octonions the reader is referred to
pp. 146-7 of [51].

According to [765, p.509] and [104], the description of octonions as pairs of
quaternions (the Cayley—Dickson doubling process) can be found in Dickson’s
paper [211] (1912). The description of octonions as ‘vector matrices’, as well as
the abstract Cayley—Dickson process, are given in a later paper [669] (1933) of
Zorn, whereas it was actually Albert (a student of Dickson) who first iterated this
construction to produce an infinite family of algebras [7] (1942).

The algebras A, (n € NU{0}) which appear by applying inductively the Cayley—
Dickson doubling process to Ag = R are called Cayley—Dickson algebras. As
shown by Shafer [551], for each n > 1, A, is a 2"-dimensional central simple non-
commutative Jordan algebra. But, the fact that the Cayley—Dickson process tends
to destroy desirable algebra properties is already visible for the first four Cayley—
Dickson algebras: R, C,H and O. So, for example, R is the unique Cayley—Dickson
algebra with trivial involution, R and C are the unique commutative Cayley—Dickson
algebras, R,C and H are the unique associative Cayley—Dickson algebras, and
R,C,H and O are the unique alternative ones. These first four Cayley—Dickson
algebras are classically well-behaved, whereas the larger Cayley—Dickson algebras
are considered pathological. Actually, one of the most relevant pathologies is the one
given by the following result, due to Moreno [454].

Proposition 2.5.60 Let n > 4. Then A, has nonzero joint divisors of zero. More
precisely, A, has nonzero divisors of zero, and, for x,y € A,, xy = 0 if and only if
yx =0.

Over the years, general Cayley—Dickson algebras (with emphasis on the algebra
S := A4 of sedenions) have been considered in several papers by algebraists, as well
as by mathematical physicists. Additional references for this matter are [51, 102,
103, 129, 131, 134, 156, 167, 221, 335, 397, 455].

The specialization of Theorem 2.5.29 to the associative setting (that R, C, and H
are the unique nonzero associative algebraic real algebras with no nonzero joint
divisor of zero) is the celebrated Frobenius’ theorem [271] (1878). A new proof
of Frobenius’ theorem, due to Palais [473] (1968) has attained a certain celebrity,
and can be found in Lam [766]. A recent alternative proof of (a generalized version
of) Frobenius’ theorem has been given by Cuenca [195]. The actual formulation of
Theorem 2.5.29 for alternative algebras (called the Frobenius—Zorn theorem) is due
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to Zorn [668] (1930). A complete proof of the Frobenius—Zorn theorem — where
the requirement that the algebra is algebraic is replaced with the apparently stronger
one that the algebra is quadratic (see Proposition 2.5.10(ii)) — can be found in [727].
Another complete proof of the Frobenius—Zorn theorem is given in the recent
paper by Bregar, Semrl, and Spenko [131], where a joint abstract characterization of
R,C,H, O, and S is also proved.

Our proof of the Frobenius—Zorn theorem consists of the results from Lemma 2.5.3
to the end of the proof of Theorem 2.5.29. Lemma 2.5.3 is due to Albert [12], and
is included in Schafer’s book [808, pp. 130-1], whereas, as pointed out in [165],
Lemma 2.5.4 is implicitly contained in the proof of [808, Lemma 5.3]. Lemma 2.5.5
is taken from the paper of El-Mallah and Micali [243]. Lemma 2.5.8 is the starting
point of Wedderburn’s theory (see for example [670, p.23]). It is far from being
trivial that Lemma 2.5.8 remains true if the associativity of the algebra A is altogether
removed. Indeed, we have the following theorem, due to Segre [561].

Theorem 2.5.61 Let A be a nonzero finite-dimensional algebra over K without
isotropic elements. Then A contains a nonzero idempotent.

Proposition 2.5.10 must be folklore. Its first conclusion, that C is the unique
nonzero power-associative algebraic complex algebra with no nonzero joint divisor
of zero, can be seen as a refined Frobenius—Zorn type theorem for complex alge-
bras. Proposition 2.5.12 is originally due Dickson [212], and is included in several
books. The proof given here is taken from [822]. Proposition 2.5.13 (crucial in
the treatment of quadratic algebras) and most of the results from Lemma 2.5.15
to Proposition 2.5.20 are due to Osborn [470]. The remaining part of the results
just quoted, as well as Propositions 2.5.21 and 2.5.24, are taken from the books
[754, 808, 822]. The core of our proof of the Frobenius—Zorn theorem (consisting
of the results from Proposition 2.5.26 to the end of the proof of Theorem 2.5.29), as
well as Corollary 2.5.30, is due to Walsh [630] (1967).

When in the definition of cross-product algebras we dispense the requirement
that (x X y|z) = (x|y x z) for all x,y,z in the algebra, we find the so-called trigono-
metric algebras. Thus, trigonometric algebras are those pre-Hilbert real spaces H
endowed with a product x satisfying ||x x y||> = ||x||?|[¥]|*> — (x|y)? (or, equivalently,
|lx x y[| = ||x|||l¥[| sin &, where o is the angle between x and y) for all x,y € H \ {0}.
Trigonometric algebras were introduced by Terekhin [610], who showed that the
dimensions of nonzero finite-dimensional trigonometric algebras are precisely 1, 2,
3, 4,7, and 8. As pointed out in [76, Example 1.1] and [533, p. 143], the existence
of complete trigonometric algebras of arbitrary infinite Hilbertian dimension is im-
plicitly known in Remark 1.6 of the Kaidi—Ramirez—Rodriguez paper [369]. Indeed,
we have the following.

Example 2.5.62 Let H be an arbitrary infinite-dimensional real Hilbert space (with
orthonormal basis {u; : i € I}, say), and let x stand for the product on H deter-
mined by

1
\ﬁ(“wm — Ug(ji));

Ui Xuj =
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where ¢ is any prefixed injective mapping from 7 x I to I. Then, for x = Y; A;u; and
y=Y,;Miu; in H, we have

1
Y= 2 (Ribt = Hidi)ugi )
iJ

and hence

1
e yl1? = 5 2 (Aatty = i) = [l Pl ]2 = (xly)?,

ij
so that (H, X ) becomes a trigonometric algebra.

In the Becerra—Rodriguez paper [76], the so-called super-trigonometric algebras
are considered. These are those real pre-Hilbert spaces H endowed with a product x
satisfying

(x x yluxv) = (x|u)(y|v) — (x|v)(y|u) forall x,y,u,veH.

Taking (u,v) = (x,y) in the above equality, we realize that super-trigonometric
algebras are trigonometric. Although never previously noticed, it is straightfor-
ward to realize that the trigonometric algebra in Example 2.5.62 is in fact super-
trigonometric. Therefore every infinite-dimensional real Hilbert space can be
converted into a super-trigonometric algebra under a suitable product. This fact
is derived in [76] from a more general result (see [76, Proposition 2.1]) implying
also that the dimensions of nonzero finite-dimensional super-trigonometric algebras
are precisely 1, 2, and 3. As a consequence, by Corollary 2.5.30, cross-product
algebras need not be super-trigonometric, and super-trigonometric algebras need not
be cross-product algebras. As the main result, it is proved in [76] that all infinite-
dimensional trigonometric algebras can be constructed in a transparent way from
the absolute-valued real algebras with involution considered in Urbanik’s early
paper [617].

The notion of a division algebra given in Definition 2.5.35 is an old concept in
the theory of general non-associative algebras. It appears for example in Wright’s
paper [640]. The same happens with the notion of a one-sided division algebra,
which appears for example in Kaplansky’s paper [377]. On the contrary, the notion
of a quasi-division algebra is quite recent. Indeed, we believe it appeared for the
first time in [529], where Example 2.5.36 is pointed out. Example 2.5.37 is due
to A. Kaidi (recent private communication). Proposition 2.5.38 assures us that, for
alternative algebras, all the notions above coincide and, in addition, even coincide
with that of a division alternative algebra in the classical sense, previously given in
Definition 2.5.25. The equivalences (ii)<>(iii)<(iv)<(v) in Proposition 2.5.38 must
be folklore, although we have not found them anywhere. In the particular associative
case, these equivalences are proved in [521, p. 936]. Even in the associative case, the
crucial implication (i)=-(v) in Proposition 2.5.38 seems to us to be new.

§2.5.63 The so-called Gelfand—Mazur theorem consists of Corollary 1.1.43 (that C
is the unique normed division associative complex algebra) and Proposition 2.5.40
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(that R, C, and H are the unique normed division associative real algebras). Accord-
ing to Zelazko’s book [820, p. 18],

[Proposition 2.5.40] was first announced by S. Mazur in [432]. The first published proof
for complex scalars [(the result stated in Corollary 1.1.43)] has been given by I. M. Gelfand
in the paper [284] which also contains further basic facts of the theory of commutative
Banach algebras.

Between the two above sentences, Zelazko inserts a footnote saying that

The original manuscript of Mazur’s paper contained a complete proof. However, this
made the paper too voluminous and the editors of Comptes Rendues required a more
concise form. The only sensible way of a shortening was to leave out all the proofs, and the
paper was finally so published.

Then, Zelazko reproduces Mazur’s original proof in [820, pp. 19-22]. Mazur’s proof
is also presented by Mazet [430], who took it from the original submission filed in
the archives of the Academy of Science in Paris. Mazur’s paper [432] contains two
other important results (see §§2.6.52 and 2.8.72 below), whose original proofs do not
seem to be available, as far as we know.

Remark 2.5.64 We note that the real algebras H and O have a one-dimensional
centre (namely R1), and that, consequently, they cannot underlie any complex alge-
bra. Therefore, if & is a class of real and complex algebras which contains the
realifications of its complex members, and whose real members reduce to copies of
R,C,H, or O, then complex members of & have to be copies of C. In this way,
thinking about the class &7 of all normed associative quasi-division real and com-
plex algebras, we realize that the real Gelfand—Mazur theorem (Proposition 2.5.40)
contains the complex one (Corollary 1.1.43). Analogously, Corollary 2.5.51 contains
Proposition 2.5.39. Similar situations will appear later. Focusing on the most relevant
ones, we emphasize that Theorem 2.6.21 contains both Proposition 2.6.17 and the
particularization to alternative algebras of Proposition 2.6.2, and that the real parts
of Propositions 2.6.25 and 2.6.27 contain their respective complex parts.

The generalization of the Gelfand—Mazur theorem to the case of alternative
algebras, given by Proposition 2.5.39 and Corollary 2.5.51, is originally due to
Nieto [463] (see also Kaidi [361]).

The specialization of Theorem 2.5.50 to the associative setting (that R, C, and H
are the unique nonzero normed associative real algebras with no nonzero joint topo-
logical divisor of zero) is due to Kaplansky [375] (1949). In fact, Kaplansky proves
the result under the formally stronger requirement of absence of nonzero one-sided
topological divisors of zero. The generalization of Kaplansky’s theorem to alternative
algebras is due to El-Mallah and Micali [243] (1980). The actual formulation of
Theorem 2.5.50 is taken from [153]. As far as we know, neither Kaplansky’s theorem
nor its generalization to alternative algebras have previously been included with a
proof in any book. The complex case of Kaplansky’s theorem (i.e. the particular-
ization of Proposition 2.5.49 to associative algebras) appears as Theorem 14.4 of
Zelazko [820], with a proof taken from [659], whereas the real case is immediately
proposed as an exercise. Nevertheless, in both cases, completeness is required, and
no reference made to Kaplansky’s work.
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Our proof of Kaplansky’s generalized theorem consists of the Gelfand—Mazur
theorem, and the results from Lemma 2.5.42 to the formulation of Theorem 2.5.50
itself. Lemma 2.5.42 and Proposition 2.5.44 are due to Erickson, Martindale III, and
Osborn [246], and are included as Theorem 9.2.1 of Beidar—-Martindale-Mikhalev
[686]. The core of our proof of Kaplansky’s generalized theorem (consisting of the
results from Lemma 2.5.46 to the formulation of Theorem 2.5.50) is essentially
due to Cabrera and Rodriguez [153] (1995). Lemma 2.5.46 follows, with minor
variants, some previous ideas of Mathieu [428], later developed in [149]. It is worth
mentioning that, although we have invoked the notion introduced in [246] of extend-
ed centroid for (possibly non-associative) prime algebras, to arrive at Kaplansky’s
generalized theorem (and even in germinally more general results, such as Propos-
ition 2.5.49) it is enough to consider extended centroid of associative and commuta-
tive prime algebras. Indeed, the proof of Proposition 2.5.49 only involves extended
centroid in the associative, commutative and prime setting. We note that the extended
centroid of a (possibly non-prime) semiprime associative algebra A is nothing other
than the centre of the symmetric Martindale algebra of quotients of A (a topic to be
discussed in Volume 2 of this work), and that the extended centroid of a (possibly
non-associative non-prime) semiprime algebra is also considered in the literature.
The standard references for these topics are the books [702, 686, 794, 819].

The actual organization of the proof of Kaplansky’s generalized theorem produced
here has generated some new results. These are Propositions 2.5.49, 2.5.52, and
2.5.59, and Corollaries 2.5.54, 2.5.55, 2.5.56, and 2.5.58. The associative forerunner
of Corollary 2.5.56(i) (that C is the unique nearly absolute-valued associative com-
plex algebra) is an old result of Shilov [564] (1940). Results related to Propos-
itions 2.5.49 and 2.5.52 will be discussed later (see Theorem 4.1.115).

2.6 Smooth-normed algebras, and absolute-valued
unital algebras

Introduction The star result in this section is the so-called non-commutative
Urbanik—Wright theorem (a part of Theorem 2.6.21) asserting that R, C, H, and O are
the unique absolute-valued unital real algebras. We arrive at this result by introducing
and describing (in Theorem 2.6.9) smooth-normed algebras, by observing that
absolute-valued unital algebras are smooth-normed algebras, and then by selecting
from the smooth-normed algebras those which are in fact absolute-valued. As a
consequence, we derive Strzelecki’s theorem (the remaining part of Theorem 2.6.21)
asserting that R, C, H], and O are the unique smooth-normed alternative real algebras.
Unit-free characterizations of smooth-normed algebras and of absolute-valued unital
algebras are also discussed.

2.6.1 Determining smooth-normed algebras and absolute-valued
unital algebras

§2.6.1 Let X be a normed space, and let u be a norm-one element of X. We say
that X is smooth at u if D(X,u) reduces to a singleton. As an easy consequence
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of Proposition 2.1.5, X is smooth at u if and only if, for each x € X, there exists
lim, g w (the value at x of the Gdteaux derivative of the norm of X at u), and,
if this is the case, then
. lutrx] =1
lim —— =

r—0 r

RX);

where f is the unique element of D(X,u).

By a smooth-normed algebra we mean a norm-unital normed algebra which is
smooth at its unit. As a straightforward consequence of Corollary 2.1.13, we have
the following.

Proposition 2.6.2 C is the unique smooth-normed complex algebra.

The determination of smooth-normed real algebras is much more difficult, and
will culminate in Theorem 2.6.9 below.

Lemma 2.6.3 Quadratic algebras are Jordan-admissible. Therefore, flexible quad-
ratic algebras are non-commutative Jordan algebras.

Proof Let A be a quadratic algebra, and let a,b be in A. Since
a® =1t(a)a—n(a)l,

we straightforwardly derive that (aeb) ea®> = ae (bea?), i.e. A is Jordan-admissible.
O

Definition 2.6.4 By a pre-H-algebra we mean a real pre-Hilbert space E endowed
with a bilinear mapping (x,y) — x Ay from E X E into E (called the product of E)
satisfying

xAy==yAx, [|xAy|l <|[lx[llyll, and (xAy|z)=(x[yAz) forall x,y,z€E.

As an example, every real pre-Hilbert space becomes a pre-H-algebra as soon as we
endow it with the zero product.

Let E be an arbitrary pre-H-algebra, consider the real vector space R & E, and
define a product on R @ E by

(A, %) (1,y) == (A — (x[y), Ay + ux+x Ay).

In view of Proposition 2.5.18, we obtain in this way a flexible quadratic algebra,
which is called the flexible quadratic algebra of the pre-H-algebra E, denoted by
</ (E). In the application of Proposition 2.5.18, the reader must have noticed that
&/ (E) is nothing other than &7 (E, A, (-|-)) in the sense of §2.5.14. In what follows
o/ (E) = R®E will be seen endowed with the ¢, norm.

Proposition 2.6.5 Let E be a pre-H-algebra. Then the flexible quadratic algebra
of E is a smooth-normed algebra.

Proof Clearly (1,0) is a unit for </ (E) and ||(1,0)|| = 1. Therefore, since pre-
Hilbert spaces are smooth at any norm-one point, it suffices to show that

[1(A52) (s ) [ < 1A ) [ e ) -
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Ix||?|[¥]|*> — (x|y)? for all x,y in E. Let x be a nonzero

ﬁ (x[y). We have x Ay = x A (y — oux) by the anticom-

First, we claim that [[x Ay|* <
element of E, and write o¢ =
mutativity of A, and hence

e AYIP =l A (v = o) |2 < [l ly — ox]® = [l [ly]]> = (xly)?,
as claimed.
Now let (4,x) and (u,y) be arbitrary elements in <7 (E). Then
(22) ()12 = (A= (xly), Ay + px+xAy)|2
= (Ap = (x[y)* + Ay + px+x Ay)>
= A202 4 () + A2y [P + 2 e + e Ay,

where the third equality is true because (x|x Ay) = (x Ax|y) = (0]y) = 0 and analo-
gously (y|x Ay) = 0. Finally, by the claim, we have

1(22) () 12 < 220 A+ (ely)® 4 2211 A 2 [l PP = (el)?)
= (A2 el (e + I12) = 10 1P (e ) 1 0
Lemma 2.6.6 Let (X,u) be a real numerical-range space, and let x be in X. Then
we have
V(X,u,x) =R(V(Xc,u,x)).
Proof By Lemma 1.1.97, X is a real subspace of the complex normed space Xc.

Therefore, by Corollary 2.1.2, we have V(X,u,x) = V((Xc¢)r, u,x). It follows from
Proposition 2.1.4 that V(X,u,x) = R(V (Xc,u,x)). O

Lemma 2.6.7 Let A be a smooth-normed real algebra. Then its projective normed
complexification Ac is a V-algebra. More precisely, denoting by f the unique element
in D(A,1), we have

H(Ac,1) =R1®iker(f).
Proof By Proposition 1.1.98, Ac is a norm-unital normed complex algebra. Let f
be the unique element in D(A, 1), and let x be an arbitrary element in ker(f). Then we

have V(A,1,x) = 0, and hence, by Lemma 2.6.6, R(V (Ac, 1,x)) = 0 or, equivalently,
ix € H(Ac,1). Therefore

Rl1@iker(f) C H(Ac,1).
Now, since every element z € Ac can be written as
z=Al+x+i(ul+y) = A1+iy+i(ul—ix),

with A, ¢t in R and x,y in ker(f), and A1+ iy and u1— ix belong to H(Ac,1), we get
Ac =H(Ac,1)+iH(Ac,1), and Ac is indeed a V-algebra. Moreover, if z belongs to
H(Ac,1), then we have z — A1 —iy € H(Ac,1) NiH(Ac,1) = 0, which proves that
H(Ac,1) =R1®iker(f). O

The algebra of complex octonions, denoted by C(C), can be introduced as the
algebra complexification, C ® O, of Q. Since the identities defining the variety of
alternative algebras are linearizable, C(C) is an alternative complex algebra which is
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not associative. Although incidental in relation to the main line of the current section,
Proposition 2.6.8 immediately below becomes one of the fundamental results in the
theory of alternative C*-algebras.

Proposition 2.6.8 The algebra of complex octonions C(C), endowed with a suit-
able norm and a suitable involution, becomes an alternative C*-algebra.

Proof Since the absolute value of @ derives from an inner product, @ becomes
a smooth-normed real algebra. Therefore, as a by-product of Lemma 2.6.7, Q¢ :=
C®5 O is a V-algebra. Finally, apply Corollary 2.3.63. O

Now, we retake the main line of the section by proving the following.

Theorem 2.6.9 Let A be a smooth-normed real algebra. Then there are a pre-H-
algebra E and an isometric algebra homomorphism from A onto the flexible quad-
ratic algebra of E.

Proof Let f be as in Lemma 2.6.7, and let x be in ker(f). Then, by Lemma 2.6.7,
ix is a hermitian element of the V-algebra Ac, and, by Theorem 2.3.8, —x* = (ix)? is
also a hermitian element of Ac. Therefore, a new application of Lemma 2.6.7 gives
—x? = ul+iy with u in R and y in ker(f). Thus x> + ul € ANiA = 0, and hence

x?> = —ul. Keeping in mind Lemma 2.1.28, and the facts that V(A,1,x) = 0 and

x*> = —pu1, we conclude that

¥ = —|]x|*1, (2.6.1)
and that
[A1+x|?> =A%+ ||x||> forevery A €R. (2.6.2)

It follows clearly from (2.6.1) that ker(f), endowed with the restriction of the norm
of A, is a pre-Hilbert space, the inner product of which will be denoted by (-|-).
Moreover, it follows from (2.6.1) and (2.6.2) that

a® —2f(a)a+ ||lal|*1 =0 forevery a € A.

Therefore A is a quadratic algebra with #(a) = 2f(a) and n(a) = ||a||? for every a € A.
Thus, by Proposition 2.5.13, we have A = o7 (E, A, (+|-)), where E := ker(f), and A
is an anticommutative product on E satisfying

xy=—(x|y)14+xAy forall x,y€E. (2.6.3)
Since A is flexible (by Theorem 2.4.11), it follows from Proposition 2.5.18(ii) that
(xAy|z) = (x[yAz) forall x,y,z€E. (2.6.4)
Moreover, since x \y = %(xy —yx) (by (2.6.3)), we have
[l Ayl < ]yl (2.6.5)

From (2.6.4) and (2.6.5) it is clear that the pre-Hilbert space E, endowed with the
product A is a pre-H-algebra, and that the mapping A1 +x — (4,x), from A (=
R1®E) to the flexible quadratic algebra <7 (E) of the pre-H-algebra E, is a bijective
algebra homomorphism (by also using (2.6.3)). Therefore, to conclude the proof, it
suffices to show that this mapping is an isometry. But this follows from (2.6.2). [
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The following corollary exhibits the strength of Theorem 2.6.9.
Corollary 2.6.10 Let A be a smooth-normed real algebra. Then we have:

(i) A is a non-commutative Jordan algebra.
(ii) The norm of A comes from an inner product (-

-), and the equality
@ —2(a|l)a+|a|*1=0

holds for every a € A.
(iii) foreacha € A\ (R1), the linear hull of {1,a} is a subalgebra of A isometrically
isomorphic to C.
(iv) A is a Cayley algebra whose standard involution x becomes isometric.
(v) For each norm-one element u € A, the operator U, is a surjective linear isometry
withU, ! = U,

Proof Keeping in mind Theorem 2.6.9, we can write A = &7 (E) for some pre-H-
algebra E, so the proof of the present corollary becomes almost straightforward.
However, we will supply some indications. For example, Lemma 2.6.3 (respectively,
Proposition 2.5.20) should be applied in the verification of assertion (i) (respectively,
assertion (iv)). Assertion (ii) follows by writing a = pl1+y withp € Rand y € E,
whereas assertion (iii) follows by writing a = Ag1 + Lox with Ay, tp € R and x € Sg,
and then by realizing that the mapping A +iu — A1+ px becomes an isometric
algebra homomorphism from C to A whose range is the linear hull of {1,a}. The
verification of assertion (v) becomes easier if one knows that, since A is flexible, for
each a € A the operator U, has the same meaning in both A and AY™ (cf. Fact 3.3.3
below for details). Then we can assume that A is commutative, and hence that E is a
real pre-Hilbert space endowed with the zero product. In this case, it is routine that
U,(b) = 2(a|b*)a — ||a||*b* for all a,b € A, a fact from which assertion (v) follows
straightforwardly. O

Now we prove a Kadison-type theorem for isometries of smooth-normed algebras.
Proposition 2.6.11 Let A and B be smooth-normed real algebras. We have:

(1) The unit-preserving (possibly non-surjective) linear isometries from A to B are
precisely the nonzero Jordan homomorphisms.

(ii) If B # R1, then the surjective linear isometries from A to B are precisely the
mappings of the form U, o F, where u is a norm-one element of Band F : A — B
is a bijective Jordan homomorphism.

Proof Let F : A — B be any mapping, and let @ be in A. Then, by Corol-
lary 2.6.10(ii), A and B are pre-Hilbert spaces, and we have

a® —2(all)a+|al*1=0 (2.6.6)
and
F(a)? —2(F(a)1)F(a) +||F(a)|*1=0. (2.6.7)
As a consequence of (2.6.6), if F is linear and preserves units, then

F(a®) = 2(a|1)F () + [lalPL = .
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Now note that, in the case that F is actually a unit-preserving linear isometry, the last
equality reads as

F(a®) = 2(F(a)[1)F (a) + |[F (a)[*1=0.

It follows from (2.6.7) that, in this last case, we have F(a®) = F(a)?, and hence
F is a (nonzero) Jordan homomorphism. Conversely, assume that F' is a nonzero
Jordan homomorphism. Then, F (1) is a nonzero idempotent in B, so that, by Corol-
lary 2.6.10(iii), we have F(1) = 1, and hence ||F(a)|| = ||a|]| whenever a belongs to
R1.If a ¢ R1, then, by (2.6.6), we have

F(a)* =2(a|1)F (a) +|la|*1 =0,

which, together with (2.6.7), also yields ||F(a)|| = ||a||. Therefore F is a unit-
preserving linear isometry, and the proof of assertion (i) is complete.

If u is a norm-one element of B, and if F : A — B is a bijective Jordan homo-
morphism, then, by assertion (i) just proved and Corollary 2.6.10(v), U, o F is a
surjective linear isometry. Assume that B # R1, and let G : A — B be any surjective
linear isometry. Then v := G(1) is a norm-one element of B, so that, by Corol-
lary 2.6.10(iii), there exists an isometric copy of C (say C) in B containing v. Take u €
C such that u? = v, note that u is a norm-one element of B, and set F := U, o G. Then
we clearly have F(1) = 1. Moreover, by Corollary 2.6.10(v), F is a surjective linear
isometry from A to B and the equality G = U,, o F holds. Finally, by assertion (i), F
is a bijective Jordan homomorphism. This concludes the proof of assertion (ii). [

Corollary 2.6.12 Let A stand for either R,C,H, or Q. Then the linear isometries
from A to A are precisely the mappings of the form L, o F, where u is a norm-one
element of A and F : A — A is a bijective Jordan homomorphism.

Proof First of all, we recall that A is an alternative Cayley real algebra, as well as
an absolute-valued algebra whose norm derives from an inner product, and that these
facts imply that A is a smooth-normed algebra. If u is a norm-one element of B, and
if F: A — B is a bijective Jordan homomorphism, then, by Proposition 2.6.11(i),
L, oF is a linear isometry. Conversely, let G : A — A be a linear isometry. Set
u:= G(1). Then u is a norm-one element of A, so that, by setting F := L« oG, F
becomes a surjective linear isometry. Therefore, since F (1) = 1, Proposition 2.6.11(i)
applies, so F' is a bijective Jordan homomorphism. Finally, the equality G =L, o F
is clear. O

Complete pre-H-algebras will be called H-algebras. As a straightforward con-
sequence of Proposition 2.6.5 and Theorem 2.6.9, we obtain the following.

Corollary 2.6.13 Complete smooth-normed real algebras are precisely the flexible
quadratic algebras of H-algebras.

We recall that every real pre-Hilbert space with zero product is a pre-H-algebra.
Therefore, by Proposition 2.6.5, every nonzero real pre-Hilbert space X can be struc-
tured as a norm-unital normed algebra with arbitrary prefixed unit # in X such that
|lu|| = 1. (Indeed, take E equal to the orthogonal complement of Ru in X, endow E
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with the zero product, and see X as < (E).) Moreover, the smoothness of the pre-
Hilbert space X at u is well known. Conversely, by Corollary 2.6.10(ii), the normed
space of a smooth-normed algebra is a pre-Hilbert space. In this way, we get the
following characterization of real pre-Hilbert spaces. (For verification of the last
sentence, the linearization of Corollary 2.6.10(ii) could be useful.)

Corollary 2.6.14 Let X be a nonzero real normed space. Then the following con-
ditions are equivalent:

(1) X is a pre-Hilbert space.

(1) If u is any norm-one element in X, then X is smooth at u and the set of con-
tinuous bilinear mappings f : X x X — X, satisfying ||f|| = 1 and f(x,u) =
f(u,x) =x for every x in X, is not empty.

(iii) There is a norm-one element u in X such that X is smooth at u, and the set of
continuous bilinear mappings f : X x X — X, satisfying || f|| = 1 and f(x,u) =
fu,x) = x for every x in X, is not empty.

Moreover, if X is in fact a pre-Hilbert space, and if u is a norm-one element in X,
then the mapping

(06,y) = (xl)y + (yle)x = (x]y)u

is the unique commutative product on X converting X into a norm-unital normed
algebra with unit u.

Corollary 2.6.15 Let A be a norm-unital normed algebra over K. Then the follow-
ing conditions are equivalent:

(i) A is a smooth-normed algebra.
(i) |[1+all||1—al = ||1—a?|| for every a in A.
(iii) [|Ua(b)[| = l|all?||B]| for all a,b in A.

Proof 1f K = C, then conditions (ii) and (iii) follow from condition (i) by applying
Proposition 2.6.2. If K = R, then conditions (ii) and (iii) follow from condition (i)
by applying Corollary 2.6.10(iii)—(v).
Assume that condition (ii) holds. Let a and r be in A and R\ {0}, respectively.
Then we have
1—-r2a|—1 ||14ral|[1—ra||—1

r r
1+ra||—1 1—ral|—1
B | S )
r r
Therefore, by Proposition 2.1.5, we get
0=maxR(V(A,1,a)) —minR(V(A,1,a)). (2.6.8)

Thus V(A,1,a) is reduced to a point (in the case K = C, apply (2.6.8) to both a and
ia). By the arbitrariness of a € A, we derive that D(A,1) is reduced to a singleton,
and hence that A is smooth.
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Now assume that (iii) holds. Let a and r be in A and R \ {0}, respectively. Since
Ur_o(14+a) =1—a—a*+d’a, we have

11— ra—r*a®+r*a*al| — 1 B 11— ra|?||1+ra| — 1
r r

B I11—ra|>—1 1+ ra||—1
- r r '

114 ral| +
Therefore, by Corollary 2.1.6, we get

—minR(V(A,1,a) = 2minR(V(A,1,a)) + maxR(V(4,1,a)),
sominR(V(A,1,a)) = maxR(V(A4,1,a)), and so A is smooth. O

As a consequence of the implication (ii)=-(i) in the above corollary, we get the
following.

Fact 2.6.16 Absolute-valued unital algebras are smooth-normed algebras.
By combining Fact 2.6.16 above and Proposition 2.6.2, we derive the following.
Proposition 2.6.17 C is the unique absolute-valued unital complex algebra.

A better result will be proved later (see Corollary 2.7.17).
The following corollary is contained in both Theorems 2.6.21 and 2.6.41 below.
Its placement here has only a methodological interest.

Corollary 2.6.18 R and C are the unique absolute-valued unital commutative real
algebras.

Proof Let A be a unital absolute-valued real algebra. By Fact 2.6.16 and The-
orem 2.6.9, A is quadratic. Therefore, if in addition A is commutative, then, by
Corollary 2.5.16, A is isomorphic to R or C. The isomorphism has to be an isometry
in view of Proposition 2.6.19 immediately below. O

Proposition 2.6.19 Let A be an algebra over K endowed with a norm satisfying
|a?|| < ||al|? for every a € A, let B be an algebra over K endowed with a norm
satisfying ||b*|| = ||b||> for every b € B, and let ¢ : A — B be a continuous Jordan
homomorphism. Then ¢ is in fact contractive.

Proof Assume to the contrary that ¢ is not contractive. Then we can choose a norm-
one element x in A such that ||¢ (x)|| > 1. Therefore, defining inductively x; := x* and
X1 := X2, we have [|¢ (x,)|| > [|¢ (x)||*" — o . Since ||x,|| < 1, this contradicts the
assumed continuity of ¢. O

Lemma 2.6.20 Let E be a pre-H-algebra. Then the following conditions are
equivalent:

(i) ' (E) is an absolute-valued algebra.
(ii) 7 (E) is alternative.

Proof Assume that <7 (E) is an absolute-valued algebra. Then, since the norm of
2/ (E) comes from an inner product, the mapping n : @ — ||a||*> becomes a non-
degenerate quadratic form on <7 (E) admitting composition, and satisfying n(a) > 0
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for every a € <7 (E). Therefore, by the implication (v)=-(iii) in Proposition 2.5.26,
&/ (E) is alternative.
Now, assume that <7 (E) is alternative. Then, noticing that

A (E) = (E, A, (])

in the sense of §2.5.14, Corollary 2.5.19(i) applies, so that the algebraic norm
function n on &7 (E) admits composition. Since, by Proposition 2.5.18(i), we have
n(a) = ||a||* for every a € & (E), it follows that <7 (E) is indeed an absolute-valued
algebra. O

Now we prove the main result in this section.

Theorem 2.6.21 Let A be a real algebra. Then the following statements are equi-
valent:

(1) A is an absolute-valued unital algebra.
(i1) A is an alternative smooth-normed algebra.
(iii) A =R,C,H, or O with its usual modulus as norm.

Proof The implication (iii)=-(i) is clear.

The implication (i)=-(ii) in the present theorem follows from Fact 2.6.16, The-
orem 2.6.9, and the implication (i)=-(ii) in Lemma 2.6.20, whereas the implication
(ii)=>(1) in the present theorem follows from Theorem 2.6.9 and the implication
(i1)=-(1) in Lemma 2.6.20.

Now that we know that statements (i) and (ii) are equivalent, assume that they
hold. Then, by (i), A has no nonzero joint divisor of zero and, by (ii) and The-
orem 2.6.9, A is alternative and quadratic. Therefore, by the Frobenius—Zorn theorem
(Theorem 2.5.29), A is isomorphic to R, C,H, or O. Finally, by Proposition 2.6.19,
the isomorphism has to be an isometry. O

As a straightforward consequence of the implication (ii)=-(iii) in Theorem 2.6.21,
we derive the following.

Corollary 2.6.22 R,C,H, and O are the unique norm-unital normed alternative
real algebras whose norm comes from an inner product.

Definition 2.6.23 Two absolute-valued algebras A and B over K are said to be
Albert isotopic if there exist linear isometries @1, ¢, 3 from A onto B satisfying

¢1(xy) = ¢2(x)¢3(y) for all x,y in A.

Corollary 2.6.24 Let A be an absolute-valued real algebra. Then the following
conditions are equivalent:

(1) A is finite-dimensional.

(i1) A is a division algebra.

(iii) There exist a,b € A such that aA = Ab = A.

(iv) There exist a,b € A such that aA and Ab are dense in A.
(v) Ais Albert isotopic to R,C H, or Q.
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Proof The implications (i)=-(ii)=-(iii)=-(iv), as well as (v)=-(i), are clear.
(iv)=(v) Assume that condition (iv) holds. Replacing A with its completion
(which is clearly an absolute-valued algebra), we may assume that A is complete.
Moreover, we may also assume that ||a|| = ||b|| = 1. Then the operators L, and R,
are linear isometries with dense range on the Banach space of A, and hence they
are surjective. Now, defining a new product ® on A by x®y := R, ' (x)L; ' (y), we
obtain an absolute-valued real algebra, which is Albert isotopic to A, and has a unit
(namely, ab). Finally, apply Theorem 2.6.21. O

2.6.2 Unit-free characterizations of smooth-normed algebras, and of
absolute-valued unital algebras

Now, we are going to prove unit-free characterizations of smooth-normed algebras,
and of absolute-valued unital algebras. The next result follows straightforwardly
from Propositions 2.5.59 and 2.6.17, and Theorem 2.6.21.

Proposition 2.6.25  C is the unique absolute-valued complex algebra with nonzero
centre, whereas R, C, H, and O are the unique absolute-valued real algebras with
nonzero centre.

The following lemma follows straightforwardly from Proposition 2.6.25. Never-
theless, the elementary proof we give here has its own interest.

Lemma 2.6.26 Let A be an absolute-valued, associative, and commutative algebra
over R. Then A is equal to R or C.

Proof Since A is an integral domain, we can consider the field of fractions of A
(say F), and extend (in the unique possible way) the absolute value of A to an
absolute value on F. Now F is an absolute-valued field extension of R, and hence
it is isometrically isomorphic to R or C (as a by-product of Corollary 2.6.18). Since
A is a subalgebra of F, the result follows. O

Proposition 2.6.27 Let A be an absolute-valued power-associative real (respect-
ively, complex) algebra. Then A is equal to R, C, H, or O (respectively, to C).

Proof Let A be an absolute-valued power-associative algebra over K. By Lemma
2.6.26, there exists a nonzero idempotent in A. Then, by Lemma 2.5.5, A has a unit.
Finally, by Theorem 2.6.21 (respectively, by Proposition 2.6.17), A is equal to R, C,
H, or O (respectively, to C). O]

§2.6.28 Let A be an algebra over K. We say that A is algebraic of bounded degree if
there exists a non-negative integer number m such that the subalgebra of A generated
by any element of A has dimension < m. If this is the case, then the smallest such
number m is called the degree of A, and is denoted by deg(A). Otherwise, we write
deg(A) = oco.

Lemma 2.6.29 Let A be an algebraic algebra over K of degree 1 and having no
isotropic element. Then A is isomorphic to K.
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Proof Since A is of degree 1, for each a € A we have a* €Ka. Asa consequence, the
unital extension K1 & A of A is a quadratic algebra, so that by Proposition 2.5.12 its
trace function 7 is linear. Since for a € A we have a®> = t(a)a, and A is a nonzero
algebra without isotropic elements, we deduce that the restriction of 7 to A is a
nonzero linear functional with zero kernel. Therefore A is a one-dimensional algebra
over K with nonzero product, and Exercise 1.1.2 applies. O

Lemma 2.6.30 Let A be a nonzero algebraic complex algebra with no nonzero
divisor of zero. Then A is isomorphic to C.

Proof By Exercise 1.1.86, for each a € A we have a* € Ca. Therefore A is of
degree 1, and Lemma 2.6.29 applies. O

By invoking Proposition 2.6.19, we straightforwardly deduce the following.

Corollary 2.6.31 Let A be a nearly absolute-valued algebraic complex algebra.
Then A is isomorphic to C. If A is in fact absolute-valued, then A = C.

Lemma 2.6.32 Let A be an algebraic algebra over K of bounded degree. Then
every family of pairwise orthogonal nonzero idempotents in A is finite, with cardinal
< deg(A).

Proof Let {ejy,...,e,} be a finite family of pairwise orthogonal nonzero idem-
potents in A. Choose pairwise different nonzero elements Ay,...,4, in K, and set
x:=Y" | Aie;. Then for j € N we have x/ := ¥ | A/¢;. Therefore {x!,....x"} is a
linearly independent system of elements of A. Since this system is contained in the
subalgebra of A generated by x, we deduce n < deg(A). O

Lemma 2.6.33 Let A be a power-associative algebraic algebra over K of bounded
degree and having no isotropic element. Then A has a unit.

Proof We may assume A # 0. Then A has nonzero idempotents. Indeed, the sub-
algebra of A generated by any nonzero element is a finite-dimensional associative
algebra without isotropic elements, and hence, by Lemma 2.5.8, has a nonzero idem-
potent. Choose a maximal family .% of pairwise orthogonal nonzero idempotents in
A. By Lemma 2.6.32 we have .% = {ey,...,e,} forsome n € N. Sete :=>" , ¢;, and
note that e; belongs to A (e) fori=1,...,n.

Now, assume that A is commutative. Then, by Lemma 2.5.3(iii), A;(e) and Ag(e)
are orthogonal subalgebras of A. If Ag(e) # 0, then, as happened to A, Ag(e) has a
nonzero idempotent, which is orthogonal to ¢; fori = 1,...,n, leading to a contradic-
tion. Now that we know that Ap(e) = 0, the absence of isotropic elements in A and
Lemma 2.5.4 give thatA% (e) =0,30 A =A/(e), and so e is a unit for A.

Now, remove the assumption that A is commutative. Then, since A%™ is a power-
associative commutative algebraic algebra over K of bounded degree and having
no isotropic element, the above paragraph applies, so that ASY™ has a unit (say
1), which becomes an idempotent of A. Therefore, since (A%™);(1) = A;(1) (by
Lemma 2.5.3(1)), we have A = A; (1), that is, 1 is a unit for A. O

Lemma 2.6.34 Let A be a nonzero commutative real algebra endowed with a norm
| - || which comes from an inner product and satisfies |x*|| = ||x||> for every x € A.
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Then, for x,y € A, we have
| Gely) < eyl < Tl (2.6.9)

and hence A is a normed algebra. Moreover, if in addition A is associative, then A is
isometrically isomorphic to R or C.

Proof Let x,y be in A. Then, from
e+ y11? = 1 + 5%+ 22y ]| < (131> + 1y 1% + 2 eyl

we obtain (x]y) < |lxy||, and, replacing x with —x, we get | (x|y)| < [|xy||, which proves
the first inequality in (2.6.9). To prove the second one, we may assume that ||x|| =
ly]| = L. Then we have

Ayl = e+ = (e =3)2 1 < 112+ e =112 = 2(1 el + [1y]1%) = 4,

so ||xy|| < 1, as desired. Assume additionally that A is associative. Then, in view
of Theorem 2.5.50 and Proposition 2.6.19, to conclude the proof of our lemma it is
enough to show that A has no nonzero (joint) topological divisor of zero. Assume to
the contrary that there exists a norm-one element @ € A, and a sequence x,, in A with
|lx.|l = 1 and ax, — 0. Then, by (2.6.9), we have

|(alxa)| < [laxa|| = O, (2.6.10)
and, since A is associative, we also have
(@ )| < [la”x ]| = [laxa]|* = 0. (2.6.11)
Therefore, from (2.6.10) and (2.6.11), we derive
lla+2x]|* = (1+2(alx,) +1)* — 4

and
la+2xu]|* = [|a® + 2ax, -+
= 1 4+4jax,||> + 1+ 2(a?[x2) + 4(a*|ax,) +4(x2|ax,) — 2,
respectively, which becomes a contradiction. O

Proposition 2.6.35 Let A be a nonzero alternative real algebra endowed with a
norm which derives from an inner product and satisfies ||x*|| = ||x||* for every x € A.
Then A is equal to R, C, H, or Q.

Proof LetabeinA\ {0}. By the last conclusion in Lemma 2.6.34, the subalgebra
of A generated by a (say A,) is isomorphic to R or C. As a first consequence, by the
arbitrariness of a € A\ {0}, and Lemma 2.6.33, A has a unit 1. Let ¢, stand for the
unit of A,. Then ¢, and 1 — ¢, are mutually orthogonal idempotents in A, so their
linear hull is a commutative subalgebra of A, and so by (2.6.9) in Lemma 2.6.34,
we have (4|1 —e,) = 0, and hence ||1]|> = ||e,||*> 4 ||1 — e4||*. Noticing that nonzero
idempotents in A have to be norm-one elements, the above implies e, = 1. Again,
by the arbitrariness of a € A\ {0}, we realize that A is both a quadratic algebra and
a division alternative algebra in the classical sense. Therefore, by Proposition 2.5.38
and Theorem 2.5.29, A is isomorphic to R, C, H], or Q. Finally, the isomorphism is
isometric thanks to Proposition 2.6.19. U
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Corollary 2.6.36 Let A be a nonzero normed algebra such that there exists a norm-
one unit 1 for AY™. Then 1 is a unit for A.

Proof By our assumptions, both Ly and Rj lie in the closed unit ball of the norm-
unital normed algebra BL(A), and the equality 1 (Ly +Ry) = I4 holds. It follows from
Corollary 2.1.42 that Ly = Ry = I, that is, 1 is a unit element for A. O]

Lemma 2.6.37 Let A be a nonzero normed algebra satisfying ||x*|| = ||x||* for every
x € A, and such that A™™ is power-associative and algebraic of bounded degree.
Then A has a norm-one unit.

Proof By Lemma 2.6.33, ASY™ has a unit element (say 1). Moreover, since |[1|| =
112 = ||11]|?, we have ||1]| = 1. Now, apply Corollary 2.6.36. O

Proposition 2.6.38 Let A be a nonzero normed real algebra. Then the following
conditions are equivalent:

(1) A is a smooth-normed algebra.
(ii) A is power-associative, and the equality ||Uy(y)|| = ||x||?||y|| holds for all x,y € A.

Proof The implication (i)=-(ii) follows from Corollary 2.6.10 and the implication
(1)=-(iii) in Corollary 2.6.15. Assume that condition (ii) is fulfilled. Then for x,y in
any subalgebra of A generated by a single element, we have

2
Iyl = U= lleyell < fley -

Therefore, all subalgebras of A generated by a single element are absolute-valued
algebras, and, as a by-product, the equality ||x?|| = ||x||> holds for every x € A . Now,
by Lemma 2.6.26, A is algebraic of bounded degree. It follows from Lemma 2.6.37
that A has a norm-one unit. Finally, by the implication (iii)=-(i) in Corollary 2.6.15,
A is a smooth-normed algebra. O

Proposition 2.6.39 Let A be a nonzero normed real algebra. Then the following
conditions are equivalent:

(1) A is a smooth-normed algebra.
(i1) A is power-associative, the norm of A derives from an inner product, and the
equality ||x*|| = ||x||? holds for every x € A.
(iii) AS™ s power-associative, the norm of A derives from an inner product, and the
equality ||x*|| = ||x||> holds for every x € A.

Proof The implication (i)=-(ii) follows straightforwardly from Theorem 2.6.9 (see
also Corollary 2.6.10), whereas the one (ii)=-(iii) follows from Corollary 2.4.18.
Assume that condition (iii) is fulfilled. Then, by Lemma 2.6.34, the algebra ASY™ is
algebraic of bounded degree. Therefore, by Lemma 2.6.37, A has a norm-one unit.
Since pre-Hilbert spaces are smooth at all their norm-one elements, it follows that A
is a smooth-normed algebra. O

The next corollary follows straightforwardly from the implication (iii)=-(i) in
Proposition 2.6.39 above, and the implication (i)=-(iii) in Theorem 2.6.21.
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Corollary 2.6.40 Let A be an absolute-valued real algebra whose norm derives

from an inner product, and such that AY™ is power-associative. Then A is equal to
R, C, H, or O.

2.6.3 Historical notes and comments

As mentioned in §2.6.1, the fact that the norm of a normed space is Gateaux differen-
tiable at a norm-one element if and only if there is a unique state of that point, goes
back to Mazur [431].

As a consequence of Proposition 2.6.2, C is the unique norm-unital normed com-
plex algebra whose norm comes from an inner product. The associative forerunner
of this result is pointed out in Ingelstam’s paper [336], where the vertex property for
the unit of norm-unital normed associative real algebras is also explored.

Proposition 2.6.5, Lemma 2.6.7, Theorem 2.6.9, Corollary 2.6.15, and the multi-
plicative characterization of pre-Hilbert spaces given by Corollary 2.6.14 are due to
Rodriguez [515]. For other multiplicative characterizations of pre-Hilbert spaces, see
Theorems 2.9.40 and 2.9.70 below, [527], and [73, Section 4]. A slightly less precise
version of Theorem 2.6.9 was proved by Strzelecki [606] (see also Nieto [464]) under
the additional assumption (unnecessary today, in view of Corollary 2.6.10) of power-
associativity. For a proof of Theorem 2.6.9 avoiding Theorem 2.3.8, the reader is
referred to [520, Section 2].

Proposition 2.6.8 was predicted by Kaplansky in [762, p.14] (see also the
review of [762] in the preface, p.xiii.), and was proved by Kaidi, Martinez,
and Rodriguez [362] (see also Braun [125]). Proposition 2.6.11 is new, whereas
Corollary 2.6.12 could be folklore.

The implication (i)=-(iii) in Theorem 2.6.21 (that R, C,H and O are the unique
absolute-valued unital real algebras) is the celebrated ‘non-commutative Urbanik—
Wright theorem’ [620]. In this memorable paper, whose results were announced in
[619], the authors also prove the so-called ‘commutative Urbanik—Wright theorem’,
which reads as follows.

Theorem 2.6.41 R, C, and (é are the unique absolute-valued commutative real
algebras.

Here ((*3 stands for the so-called McClay algebra (see [14]), namely the real absolute-
valued algebra obtained by replacing the usual product of C by the one (A, ) — A 4.
The proof is based on Schoenberg’s theorem [556] (see also Characterization (6.1)
in [676, p.47]) asserting that a normed space X is a pre-Hilbert space if (and only
if) the inequality 4 < ||x +y||> + ||x — y||* holds for all norm-one elements x,y € X.
The following proof of Theorem 2.6.41 is essentially the original one in [620], but
avoids unnecessary complications.

Proof Let A be an absolute-valued commutative real algebra. Since for all norm-
one elements x,y € A we have

4=4ay] = [1e+)? = (=) < eyl + =y,

Schoenberg’s theorem applies giving that A is a pre-Hilbert space. On the other
hand, since R, C, and C are the unique absolute-valued commutative real algebras of
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dimension < 2 (an easy consequence of the implication (i)=>(v) in Corollary 2.6.24),
it is enough to show that the dimension of A is <2. Assume to the contrary that
we can find pairwise orthogonal norm-one elements u,v,w in A. Then we have

lu* —v?|| = |Ju+v||||u—v| = 2. Since [[u?|| = ||v?|| = 1, the parallelogram law
implies that u”> 4+ v> = 0. Analogously, we obtain u> +w? = v* +w? = 0. It follows
u? = 0, and hence also u = 0, a contradiction. O

The Urbanik—Wright paper [620] also contains a refinement of Proposition 2.6.25
(whose formulation will be stated at the appropriate place in the current subsection),
and concludes by exhibiting the first known example of an infinite-dimensional
absolute-valued algebra, namely the one corresponding to the case p = 2 in
Remark 2.7.44 below.

Before continuing our historical review, let us formulate the following con-
sequence of the commutative Urbanik—Wright theorem.

Corollary 2.6.42 C is the unique absolute-valued power-commutative complex
algebra.

Proof Let A be an absolute-valued power-commutative complex algebra. Applying
Theorem 2.6.41 to the real algebra underlying each subalgebra of A generated by a
single element, we see that A is algebraic. Now apply Corollary 2.6.31. L]

§2.6.43 The earliest forerunner of the non-commutative Urbanik—Wright theorem
is Hurwitz’ classical theorem [334] asserting that R,C,H and O are the unique
absolute-valued unital finite-dimensional real algebras whose norms derive from
inner products. Much later, Albert [9] (1949) was able to remove the requirement
in Hurwitz’ theorem that the norm comes from an inner product. Actually, Albert
could have derived his result quickly from Hurwitz’ theorem if he had been aware of
a result of Auerbach [36] (1935) (see also [800, Theorem 9.5.1]) implying that finite-
dimensional transitive normed spaces are Hilbert spaces. We recall that a normed
space X is said to be transitive if, whenever u,v are norm-one elements in X, there
is a surjective linear isometry F : X — X such that F(u) = v. The proof of Albert’s
refinement of Hurwitz’ theorem could have been the following.

Let A be an absolute-valued algebra over K. If A is a division algebra, then the
normed space of A is transitive because for all norm-one elements x,y € A we have
T(x) =y, where T := LR;I y is a surjective linear isometry on A. Therefore, when
A is finite-dimensional, Auerbach’s result applies, giving that the norm of A comes
from an inner product. Finally, if K = R, if A is finite-dimensional, and if A has a
unit, then, by Hurwitz’ theorem, A is equal to R, C, H, or Q. O

The argument in the above proof is taken from p. 156 of [51], where no refer-
ence is made to the works of Albert and Auerbach. In fact, Albert’s refinement of
Hurwitz’ theorem appears as Theorem 1 of [51] and is directly attributed there to
Hurwitz [334], including the above argument as a part of the complete proof of
such Hurwitz’ theorem. We do not agree with this attribution. Indeed, as far as we
know, the observation that absolute-valued division algebras have transitive normed
spaces first appears in the proof of Lemma 4 of Wright’s paper [640] (55 years
after Hurwitz’ paper). On the other hand, Auerbach’s result, published 36 years after
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Hurwitz’ paper, seems to us non-obvious. We note that non-separable transitive
Banach spaces need not be Hilbert spaces [800, Proposition 9.6.7], and that whether
infinite-dimensional separable transitive Banach spaces are Hilbert spaces remains
as one of the main open problems in Banach space theory.

The more recent forerunner of the non-commutative Urbanik—Wright theorem is
also due to Albert [13], who showed the following.

Fact 2.6.44 R, C.H and O are the unique absolute-valued unital algebraic real
algebras.

The original proof in [620] of the non-commutative Urbanik—Wright theorem
consists precisely of the verification that absolute-valued unital real algebras are
automatically algebraic. The proof we have given here (as any other proof which
merits being given today) is close to Kaplansky’s prophetic one in [377]. Indeed, the
main aim in [377] is to reduce the proof of the non-commutative Urbanik—Wright
theorem to the verification of the following.

Fact 2.6.45 Absolute-valued unital real algebras are pre-Hilbert spaces.

To clarity Kaplansky’s approach, we note at first that, if A is an absolute-valued
real algebra, and if the norm of A comes from an inner product, then A is a
composition algebra (indeed, the mapping a — ||al|> becomes a nondegenerate
quadratic form on A admitting composition). On the other hand, Kaplansky’s main
theorem in [377] (see also [822, Theorem 2.1]) implies that the unique unital
composition real algebras are R, C, R? (with coordinate-wise multiplication), Hi,
M, (R), Q, and the Cayley—Dickson doubling of My (R) (say C(R)). Since R?, M(R),
and C(R) cannot be absolute-valued algebras because they have nonzero divisors of
zero, the reduction of the proof of the non-commutative Urbanik—Wright theorem to
Fact 2.6.45 above is achieved. In the paper [377] just quoted, which was published
seven years before that of Urbanik and Wright [620], Kaplansky prophesies both
the non-commutative Urbanik—Wright theorem and a proof similar to the one we
have just sketched. Even, it seems that he thinks that the non-commutative Urbanik—
Wright theorem had already been proved at that time. Thus, he says that:

Wright [640] succeeded in removing the assumption [in Albert’s Fact 2.6.44 above] that
the algebra is algebraic.

Since we know that the above assertion is not right, we continue reproducing
Kaplansky’s words with the appropriate corrections and explanations:

Wright proceeds by proving that the norm [of a unital absolute-valued division algebra]
springs from an inner product, and then that the algebra is algebraic. . .. Thus Albert’s finite-
dimensional theorem [i.e. Fact 2.6.44] can be proved by combining Wright’s result with
Hurwitz’ classical theorem on quadratic forms admitting composition.

Immediately, Kaplansky motivates his work by saying that:

The main purpose of this paper is to make a similar method possible in the infinite-
dimensional case by providing a suitable generalization of Hurwitz’ theorem.

After the proof of Fact 2.6.45 given in [515] (which is precisely the one which
follows from Corollaries 2.6.15 and 2.6.10), other interesting results implying the
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same fact have arisen in the literature. This is the case, for example, of El-Mallah’s
theorem [239] which follows.

Theorem 2.6.46 Let A be an absolute-valued real algebra containing a nonzero
idempotent e which commutes with all elements of A. Then the absolute value of A
derives from an inner product (-|), and the mapping

x—=x":=2(xle)e—x
becomes an algebra involution on A satisfying x*x = xx* = ||x||e for every x € A.

Let us say that an element e of an algebra A is a left unit for A if ea = a for every
a € A. We note that Fact 2.6.45 follows straightforwardly from Corollary 2.7.29 or
Proposition 2.7.33 (that absolute-valued real algebras with a left unit are pre-Hilbert
spaces) below. Proposition 2.7.33 and Theorem 2.6.46, reviewed above, have been
unified in the recent paper of Chandid and Rochdi [168], where its authors show that
both results are closely related. Indeed, they point out the following for the first time.

Fact 2.6.47 Let A be an absolute-valued real algebra with a left unit e. Then the
normed space of A, endowed with the product x ®y := x(ye), becomes an absolute-
valued algebra (say B), and e becomes an idempotent in B commuting with all
elements of B.

Proof Straightforward. O

It is worth mentioning that all proofs of Fact 2.6.45, quoted until now, simul-
taneously give rich algebraic information which superimposes the argument in the
main result of Kaplansky’s paper [377]. In fact, as remarked in [515] and [521], with
such additional information in mind, the proof of the non-commutative Urbanik—
Wright theorem can be concluded by applying the Frobenius—Zorn theorem (The-
orem 2.5.29) instead of Kaplansky’s. This already happened in the proof given here
(see the formal proof of Theorem 2.6.21). For an additional example, see the alterna-
tive proof of the non-commutative Urbanik—Wright theorem given in Subsec-
tion 2.7.4 below.

The implication (ii)=(iii) in Theorem 2.6.21 (that R, C,H and O are the unique
smooth-normed alternative real algebras) is due to Strzelecki [606] (1966). A new
and simpler proof was provided later by Nieto [464]. Strzelecki’s original proof
is based on his previous result that R, C,H and O are the unique smooth-normed
algebraic alternative real algebras [605]. As a consequence of Strzelecki’s theorem,
R,C, and H are the unique smooth-normed associative real algebras. This result
is attributed by the associative Banach algebraists to Bonsall and Duncan [116],
although the Bonsall-Duncan paper was published two years after Strzelecki’s. A
slight refinement of the Bonsall-Duncan result, due to Spatz [594], is included in
[694, Theorem 5.16].

Corollary 2.6.22 is originally due to Ingelstam [338] (1964). Due to the nice
simplicity of its formulation, Ingelstam’s corollary (and even its associative spe-
cialization [337] that R,C and H are the unique norm-unital normed associative
real algebras whose norm comes from an inner product) has attained considerably
more celebrity status than Strzelecki’s more general theorem. Thus, Ingelstam’s
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associative result has been re-proved several times (see Smiley [590], Froelich [272],
and Kulkarni [394]). Today, results like those of Zalar and Cuenca, formulated in
Theorems 2.6.48 and 2.6.49 immediately below, seem more interesting to us than
Ingelstam’s Corollary 2.6.22.

Theorem 2.6.48 [657] R,C,H, and O are the unique unital alternative real alge-
bras A which are pre-Hilbertian spaces satisfying |1|| = 1 and ||x*|| < ||x||? for every
x €A

Theorem 2.6.49 [192, 193] Let A be a normed real algebra whose norm derives
from an inner product. Assume that the equality

(x((xy)x)x = (Py)a?

holds for all x,y € A, and that there exists a norm-one idempotent e € A satisfying
|lex|| = ||x|| for every x € A. Then A is equal to R, C, C H I, 0, O, or P. If in
addition the idempotent e above commutes with all elements of A, then A is equal to
R, C, ((*j Hi, ﬁ O, or (6)

Here, for A equal to H or O, the symbol A stands for the absolute-valued real
algebra obtained by endowing the normed space of A with the product x®y :=
x*y*, where * means the standard involution, whereas the symbol P stands for the
absolute-valued real algebra of pseudo-octonions. Such an algebra was discovered
by Okubo [467] (see also [782, pp.65-71]), and can be described as follows. The
vector space of PP is the eight-dimensional real subspace of M3(C) of those trace-
zero elements which remain fixed under the operation consisting of transposing the
matrices and of taking conjugates of their entries. The product ® of PP is defined by
choosing a complex number u satisfying 3¢ (1 — p) = 1, and then by setting

x@y = pxy+ (1 —p)yx — %t(xy)l,
where ¢ denotes the trace function on M3(C), 1 stands for the unit of the associative
algebra M3(C), and, for x,y € P, xy means the product of x and y as elements of
the associative algebra M3(C). If for x,y € P we define (x[y) := £¢(xy), then (.|.)
becomes an inner product on P whose associated norm is an absolute value.

For a new proof of the obvious associative specialization of Theorem 2.6.48,
see [394]. Other results of a similar flavour to that of Theorem 2.6.49 can be found in
[192, 193, 194]. To conclude our review of Ingelstam’s paper [338], let us say that,
according to [338, Remark on p.234], Ingelstam seems to be aware of Strzelecki’s
theorem, published two years later.

The implication (i)=-(v) in Corollary 2.6.24 is due to Albert [9], and has the
following as a consequence.

Fact 2.6.50 Let A be a finite-dimensional absolute-valued real algebra. Then A has
dimension 1,2, 4, or 8, and the norm of A derives from an inner product.

It is worth mentioning that, some years after Albert’s paper [9] (1958), the follow-
ing more general theorem was proven.
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Theorem 2.6.51 Every nonzero finite-dimensional real algebra with no nonzero
divisor of zero has dimension 1, 2, 4, or 8.

The paternity of Theorem 2.6.51 above seems to be in doubt. Indeed, according
to [727], [249], and [51], such a theorem was first proved by Kervaire [388] and
Milnor [445], Adams [2], and Kervaire [388] and Bott—Milnor [117], respectively.
Anyway, in contrast to the case of Albert’s result, all known proofs of this theorem
are extremely deep (see [727, Chapter 11]).

In relation to Fact 2.6.50, it is also worth citing a recent paper by Garibaldi and
Petersson [282], where its authors construct analogues of absolute-valued algebras
in all dimensions 2" (n € NU {0}) over arbitrary 2-Henselian fields. We will not
give the definition of a 2-Henselian field here. Suffice to say that fields which are
complete under a discrete valuation, e.g. formal Laurent series fields over any field
of constants, fall into this category, so there are many nontrivial examples.

The implication (ii)=>(i) in Corollary 2.6.24 (that absolute-valued division real
algebras are finite-dimensional) is the main result in Wright’s paper [640]. The
refinement given by the implication (iii)=-(i) is originally due to Rodriguez [521].
The key tool in the whole proof of Corollary 2.6.24 that we have given (namely, the
spectacularly easy deduction of the implication (iii)=-(v) from the non-commutative
Urbanik—Wright theorem) is due to Elduque and Pérez [232]. For the history of the
classification of finite-dimensional real algebras and the present status of this topic
the reader is referred to [155] and references therein.

As we have already commented, Proposition 2.6.25 is due to Urbanik and Wright
[620]. Actually, they prove a finer result, namely that R, C,H and O are the unique
absolute-valued real algebras A containing some nonzero element a satisfying

2

ax = xa,a(ax) = a*x, and (xa)a = xa® for every x € A.

According to the information given in pp. 243, 245 of [727], Lemma 2.6.26 and its
proof are due to Ostrowski [472] (1918), who seems to have been the first math-
ematician who considered absolute-valued algebras as abstract objects which were
worth studying. Of course, Corollary 2.6.18, invoked in our proof, was not known to
him, but he was able to prove what actually he needed to, namely that every absolute-
valued field extension of R is isometrically isomorphic to R or C.

§2.6.52 Proposition 2.6.27 is due to El-Mallah and Micali [243]. An early fore-
runner is the one of Mazur [432] asserting that R, C and H are the unique absolute-
valued associative real algebras, although, as we commented in §2.5.63, Mazur’s
proof is not available.

Lemmas 2.6.32 and 2.6.33 are taken from the Cedilnik—Rodriguez paper [165].
Lemma 2.6.34, Proposition 2.6.35, and Corollary 2.6.40 are due to Zalar [656]. The
last conclusion in Lemma 2.6.34 has the following non-associative variant, due to
Cuenca [194].

Proposition 2.6.53  Let A be a commutative real algebra endowed with a norm || - ||

which comes from an inner product and satisfies | x* || = ||x||? for every x € A. Assume

additionally that A has no nonzero divisor of zero, and that there exists a norm-one

idempotent e € A satisfying |lex|| = ||x|| for every x € A. Then A is equal to R, C,
x

or C.
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The proof of Proposition 2.6.35 given here has relevant variants on Zalar’s ori-
ginal one. For variants and refinements of Proposition 2.6.35, see Theorem 2 in the
Cedilnik—Zalar paper [166], Theorem 3.14 in the Moutassim—Rochdi paper [456],
and Theorem 2.8 in Cuenca’s paper [194]. The unit-free characterizations of smooth-
normed real algebras, given by Propositions 2.6.38 and 2.6.39, are due to Benslimane
and Merrachi [93] and Rodriguez [533], respectively. Other characterizations of
smooth-normed real algebras will be proved later (see Corollary 2.9.41 and The-
orems 4.1.96 and 4.2.48). We note that, thanks to Strzelecki’s theorem (namely the
implication (ii)=-(iii) in Theorem 2.6.21), each characterization of smooth-normed
real algebras yields, when restricted to alternative algebras, a characterization of
R,C,H, and O (see Corollaries 2.9.42 and 4.1.100).

Remark 2.6.54 In view of Corollary 2.6.13, a perfect knowledge of complete
smooth-normed real algebras depends on the determination of all H-algebras.
H-algebras are particular examples of the so-called H*-algebras. By definition,
an H*-algebra over K is a x-algebra A over K, which is a Hilbert space relative to
an inner product (-|-) satisfying (xy|z) = (x|zy*) = (y|x*z) for all x,y,z € A. Let A
be an H*-algebra. Since it is easily realized that the product of A is continuous
(see Lemma 2.8.12(i) below), up to multiplication of the inner product by a
suitable positive number, A becomes a (complete) normed algebra. However, the
requirement

llab|| < ||alll[b]| (a,b € A) (2.6.12)

is not assumed in the theory because most natural examples of H*-algebras do
not satisfy it. Now, clearly, H-algebras are precisely those anticommutative real
H*-algebras A satisfying (2.6.12), and whose H*-algebra involution is —1I,.

H*-algebras were first studied in the associative complex case [598, 20], and
they were introduced by abstracting the properties of the normed x-algebra of all
Hilbert—Schmidt operators on a complex Hilbert space [809]. The corresponding
study of associative real H*-algebras was done by Kaplansky [374], and has
been rediscovered several times (see [55, 143, 163]). General non-associative
real and complex H*-algebras were first considered in [198, 199, 142] (see also
[144, 148, 149, 200, 259, 424, 526, 624]). As a consequence of this general theory,
every H-algebra is the Hilbert sum of closed ideals, one of which is an H-algebra
with zero product (so a suitable real Hilbert space equipped with the zero product),
and the others are topologically simple H-algebras (cf. Definition 1.4.31). Moreover,
by [142], if A is a topologically simple H-algebra, then there exists a topologically
simple anticommutative complex H*-algebra B such that A = {x € B : x* = —x}.
Unfortunately, as far as we know, there is no description or classification of
topologically simple anticommutative complex H*-algebras. Precise descriptions
of topologically simple Lie (and even Malcev) complex H*-algebras are, however,
known (see [557, 558, 53, 197, 141, 148, 460, 140]).

The theory of associative complex H*-algebras can be found in [696, Section 34].
Real and complex (possibly non-associative) H*-algebras are fully surveyed in [525,
Section E] (see also [687, Section 7.2]).
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2.7 Other Gelfand—-Mazur type non-associative theorems

Introduction In this section we prove, as main results, that complete normed quasi-
division complex algebras have dimension < 2, and that there are complete absolute-
valued left-division infinite-dimensional real algebras.

2.7.1 Focusing on complex algebras

We begin this section by discussing some Gelfand—Mazur type results for general
non-associative normed complex algebras.

The fact that elements of normed unital associative complex algebras have non-
empty spectra can be reformulated as follows.

Lemma 2.7.1 Let by, by be elements of a normed unital associative complex alge-
bra B. Then there exists (A1, A2) € C*\{(0,0)} such that

0 € sp(B,A1b1 + A2b»).

Proof If 0 € sp(B, b)), then the result holds with (4;,4,) = (1,0). Otherwise, we
can choose € sp(B,b; 'by), and consider the equality

by — by = by (by 'by — u),
to obtain that the result is true with (4;,42) = (—pu, 1). O
Proposition 2.7.2 Let A be a nonzero normed complex algebra such that, whenever

a is any nonzero element of A, L, is an invertible element of the completion of BL(A).
Then A is isomorphic to C.

Proof Let B denote the completion of BL(A). According to Lemma 2.7.1, whenever
x1 and x, are in A we can find (1;,4;) € C?\{(0,0)} such that

0e Sp(B’ )‘1LX1 + )’ZLXZ) = sp(B7L11X1 +7sz2)ﬂ

so we have A;x] 4+ A2x, = 0, and so the system {x,x,} is linearly dependent. Now
apply Exercise 1.1.2. O

We recall that, given a bounded linear operator F on a Banach space X, the fact that
F is bijective means that F is an invertible element of BL(X) (cf. Example 1.1.12(d)).
Therefore the next corollary follows by applying Proposition 2.7.2 to A or to the
opposite algebra of A.

Corollary 2.7.3 Let A be a complete normed one-sided division complex algebra.
Then A is isomorphic to C.

We do not know if the requirement of completeness in Corollary 2.7.3 above can
be removed. Actually, even the following more critical problem remains open.

Problem 2.7.4 Is every normed division complex algebra isomorphic to C?

According to Example 2.5.36 and Proposition 1.1.7, Corollary 2.7.3 does not
remain true if the assumption that A is a one-sided division algebra is relaxed to
the assumption that A is a quasi-division algebra. Nevertheless, we are going to
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show in Theorem 2.7.7 below that, under this relaxation, Corollary 2.7.3 remains
‘almost true’.

If x,y are elements of a complete normed unital associative complex algebra B,
then the inclusion

sp(BL(B),Lx —Ry) C sp(B,x) —sp(B,y) (2.7.1)

holds. Indeed, since L, and R, are commuting elements of the complete normed
unital associative complex algebra BL(B), we can apply Corollary 1.1.81(i) to
get sp(BL(B),Ly — Ry) C sp(BL(B),L,) — sp(BL(B),R,), and the result follows
by keeping in mind that the mapping z — L, (respectively, z — R;) from B to
BL(B) is a unit-preserving algebra homomorphism (respectively, algebra antihomo-
morphism), and consequently the inclusion sp(BL(B),Ly) C sp(B,x) (respectively,
sp(BL(B),Ry) C sp(B,y)) holds.

Lemma 2.7.5 Let B be a complete normed unital associative complex algebra, and
let ay,an,by,by be elements in B. Then there exists a couple (A1,4) € (Cz\{((),O)}
such that

sp(B,A1a; + Axaz) Nisp(B,A1b) + Axby) # 0.
Proof By Lemma 2.7.1, there is a couple (41,42) € C*\{(0,0)} such that
0 € sp(BL(B),A1(Lay —Rp,) +A2(Lay — Ry, ))-
But, by (2.7.1), we have
sp(BL(B), M (La; — Ry, ) +A2(Lay — Rp,))
= Sp(BL(B), Ly, 4, +20a, = Ry +250,)
C sp(B,Aa; + Apaz) —sp(B, Aiby + A2D3).
It follows that, for such a couple (A;,4;) € C?\{(0,0)}, we have
sp(B,A1a; + Axaz) Nsp(B,A1by + Aybr) £ 0. O

Proposition 2.7.6 Let A be a normed complex algebra such that, whenever a is any
nonzero element of A, at least one of the operators L,, R, is an invertible element of
the completion of BL(A). Then dim(A) < 2.

Proof Assume that 3 < dim(A). Let B stand for the completion of BL(A), and
denote by Q; (respectively, €2,) the set of those elements a € A such that L, (re-
spectively, R,;) is an invertible element of B. By Proposition 2.7.2, Q; and €, are
proper subsets of A\ {0}. Since A\ {0} = Q UQ;, and Q,,Q; are open, and A\ {0}
is connected, there must exist some x € Q) N Q. Take x1,x, € A such that the
system {xi,x2,x} is linearly independent. Applying Lemma 2.7.5, we find (11, 4;) €
C?\{(0,0)} and A € C such that

A € sp(B, MLy, Lyt + ML, L) Nsp(B, ARy Ry ' + AR R ).

Then, setting y := A;x; + A2xo — Ax, y becomes a nonzero element of A such that
neither Ly nor R, are invertible elements of B, a contradiction. O

As a consequence, we have the following.
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Theorem 2.7.7 Every complete normed quasi-division complex algebra has dimen-
sion < 2.

As a straightforward consequence of Proposition 1.1.7 and Theorem 2.7.7, we
derive the following.

Corollary 2.7.8 Every finite-dimensional quasi-division complex algebra has
dimension < 2.

Since unital algebras of dimension < 2 are (associative and) commutative, the
following corollary follows from Theorem 2.7.7 and Corollary 2.7.3.

Corollary 2.7.9 Complete normed unital quasi-division complex algebras are iso-
morphic to C.

Corollary 2.7.10 Let A be a complete normed power-commutative quasi-division
complex algebra. Then A is isomorphic to C.

Proof 1If A is algebraic of degree 1, then the result follows from Lemma 2.6.29.
Assume that A is not algebraic of degree 1. Then, since dim(A) < 2 (by The-
orem 2.7.7), A is algebraic of degree 2, and is generated as an algebra by a single
element. Therefore, since A is power-commutative, A is commutative, so A is a
division algebra, and so, by Corollary 2.7.3, A is isomorphic to C, contradicting that
deg(A) = 2. O

By Corollaries 2.4.16 and 2.4.18, both flexible algebras and power-associative
algebras are power-commutative. Therefore, Corollary 2.7.10 immediately above
gives rise to the following.

Corollary 2.7.11 Let A be a complete normed quasi-division complex algebra. If
A is flexible or power-associative, then A is isomorphic to C.

The part of the above corollary corresponding to power-associativity has already
been proved in Corollary 2.5.54(i) by other methods.

Now, we are going to discuss completeness-free non-associative versions of the
Gelfand—Mazur complex theorem.

Lemma 2.7.12 Let X be a complex normed space, let F,G be in BL(X), and assume
that G is bounded below and has dense range. Then there exists A € C such that
F — AG is not bounded below.

Proof Let X stand for the completion of X. For T € BL(X), let T denote the unique
bounded linear operator on X which extends 7', and note that, if T is bounded below,
then so is 7. By the assumptions on G, we have that G € Inv(BL(X)). Therefore,
keeping in mind Corollary 1.1.44, we can find A in the boundary of sp(BL(X),G~'F)
relative to C. Then, by Corollary 1.1.95, G~'F — Al is not bounded below, and
hence

F-2G=F—AG=0G(G"F—Aly)

is not bounded below. It follows that ' — A G is not bounded below. O]



226 Beginning the proof of the non-associative Vidav—Palmer theorem

Proposition 2.7.13 Let A be a nonzero normed complex algebra with no nonzero
left topological divisor of zero, and assume that there is x € A such that Ly has dense
range. Then A is isomorphic to C.

Proof Letybein A. Noticing that L, is bounded below and has dense range, we can
apply Lemma 2.7.12 to find A € C such that L, , = L, — AL, is not bounded below.
Since A has no nonzero left topological divisor of zero, we deduce y = Ax. Thus, A
is one-dimensional, and the proof is concluded by applying Exercise 1.1.2. O

Theorem 2.7.14 Let A be a normed complex algebra, and assume that at least one
of the following conditions holds:

(i) A is a division algebra, and has no nonzero two-sided topological divisor of
zero.
(i1) Aisa {ri;’;tl t}-division algebra, and has no nonzero {
of zero.
(>iii) A is a quasi-division algebra, and has no nonzero one-sided topological divisor

of zero.

left

righ t} topological divisor

Then A is isomorphic to C.

Proof Assume that condition (i) is fulfilled. Then, for every a € A\ {0}, the
operators L, and R, are surjective, and some of them are bounded below. Therefore,
whenever a is any nonzero element of A, at least one of the operators L,,R, is
an invertible element of BL(A), so a fortiori at least one of the operators L,,R,
is an invertible element of the completion of BL(A). By Proposition 2.7.6, A is
finite-dimensional, so that the result follows from Exercise 1.1.86.

Now assume that A is a left-division algebra with no nonzero left topological
divisor of zero. Then, for every a € A\ {0}, the operator L, is surjective and bounded
below. Therefore, whenever a is any nonzero element of A, L, is an invertible element
of BL(A), hence a fortiori it is an invertible element of the completion of BL(A), so
that the result follows from Proposition 2.7.2.

Finally, if condition (iii) is fulfilled, then the result follows by applying Propos-
ition 2.7.13 to A or to the opposite algebra of A. O

Noticing that complete normed { feft }—division algebras have no nonzero { feft }

right right
topological divisor of zero (courtesy of the Banach isomorphism theorem), we realize
that the part of Theorem 2.7.14 above corresponding to assumption (ii) generalizes
Corollary 2.7.3.

Combining Propositions 2.5.59 and 2.7.13, we get the following.

Corollary 2.7.15 Let A be a nonzero normed complex algebra with nonzero centre

left

and with no nonzero {right

} topological divisor of zero. Then A is isomorphic to C.

Proposition 2.7.16 Let A be a nearly absolute-valued complex algebra. Then the
following conditions are equivalent:

(1) A has nonzero centre.
(ii) A is finite-dimensional.
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(iii) A is a division algebra.
(iv) A is a one-sided division algebra.
(v) A is a quasi-division algebra.
(vi) There exists a € A such that L, or R, is surjective.
(vii) There exists a € A such that L, or R, has dense range in A.
(viii) A is isomorphic to C.

Proof Thinking about the circle of implications (i)=(ii)=>(iii))=(iv)=(v)=
(vi)=(vii)=(viii)=(i), only (i)=-(ii) and (vii)=-(viii) merit some explanation;
but these implications follow from Corollary 2.7.15 and Proposition 2.7.13,
respectively. O

We note that the implication (i)=-(viii) in Proposition 2.7.16 above refines the
complex part of Proposition 2.6.25.

Corollary 2.7.17 Nearly absolute-valued complex algebras with a one-sided unit
are isomorphic to C.

2.7.2 Involving real scalars

Now, we involve connectedness arguments in our development in order to discuss
Gelfand—Mazur—Kaplansky-type results for both real and complex algebras.

Lemma 2.7.18 Let X be a nonzero Banach space over K, and let P be a connected
subset of BL(X). Assume that every element of P is either bounded below or surject-
ive. Then either all elements of P are bijective or all elements of P are non-bijective.

Proof Suppose that the conclusion in the lemma is not true. Then
Q:={F € P F is bijective}

is a non-empty proper subset of the connected set P, and therefore there must exist
some Fp in the boundary of Q relative to P. Since such a Fp lies in the boundary
of Inv(BL(X)) relative to BL(X), it follows from Corollary 1.1.95 that F; is neither
bounded below nor surjective, contradicting our assumption. O

Proposition 2.7.19 Let A be a nonzero complete normed algebra over K such that
L, is bijective for some a € A. Assume that some of the following conditions hold:

(i) A has no nonzero left topological divisor of zero.
(i) Foreveryx € A\ {0}, L, is surjective.

Then A is a left-division algebra.

Proof By Exercise 1.1.2, we can assume that dim(A) > 2. Then apply Lemma
2.7.18 withX =Aand P={L,: x € A\ {0}}. O

Combining Propositions 2.5.59 and 2.7.19, we get the next result which, in view
of Corollary 2.7.15, has interest only in the case K = R.

Corollary 2.7.20 Let A be a nonzero complete normed algebra over K with nonzero
centre and with no nonzero left topological divisor of zero. Then A is a left-division
algebra.
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Somehow, the study of complete normed left-division algebras reduces to that
of complete normed left-division algebras with a left unit. For, if A is a complete
normed left-division algebra over K, and if a is any nonzero element of A, then the
vector space of A, endowed with the product x ®y := L, ! (xy) and a suitable positive
multiple of the norm of A, becomes a complete normed left-division algebra over K
with a as a left unit. Now, keeping in mind §2.5.53, and the fact that the absence
of nonzero left topological divisors of zero in a normed algebra is inherited by all
subalgebras, Proposition 2.7.19 implies the following.

Corollary 2.7.21 Let A be a complete normed left-division algebra over K with a
left unit e. Then every closed subalgebra of A containing e is a left-division algebra.

We note that, in view of Corollary 2.7.3, Corollary 2.7.21 above has interest only
ifK=R.

Corollary 2.7.22 Let A be a complete normed quasi-division algebra over K which
is not a one-sided division algebra. Then A has nonzero left topological divisors of
zero as well as nonzero right topological divisors of zero. Moreover, there exists a € A
such that L, and R, are bijective.

Proof By applying Proposition 2.7.19 to A and to the opposite algebra of A, the
first conclusion follows. Assume that, for each a € A, one of the operators L,, R, is
not bijective. Then the sets

Q; :={a € A\{0} : L, is bijective} and Q,:= {a € A\{0} : R, is bijective}

are disjoint non-empty open subsets of A\{0} such that A\{0} = Q; UQ,. Since
A\{0} is connected (by Exercise 1.1.2), we reach a contradiction. O

We recall that, by §2.5.53, complete normed left-division algebras have no nonzero
left topological divisor of zero. A partial relevant converse is given by the following.

Corollary 2.7.23 Let A be a nonzero complete normed power-associative real
algebra with no nonzero left topological divisor of zero. Then A is both a quadratic
algebra and a left-division algebra.

Proof By Proposition 2.5.49(ii), A is quadratic. As a consequence, A has a unit, and
hence, by Proposition 2.7.19, A is a left-division algebra. O

Assertions (i) and (ii) in the next corollary follow straightforwardly from Corol-
laries 2.7.22 and 2.7.23, respectively.

Corollary 2.7.24 Let A be a complete nearly absolute-valued real algebra.
We have:

(1) A is a quasi-division algebra (if and) only if it is a one-sided division algebra.
(i) If A is power-associative, then A is both a quadratic algebra and a division
algebra.

Corollary 2.7.25 Let A be a complete normed algebra over K with no nonzero
left topological divisor of zero and whose norm derives from an inner product (+|-).
Assume that there exist a,a* € A\ {0} such that the equality (ax|y) = (x|a*y) holds
forall x,y € A. Then A is a left-division algebra.
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Proof 1In view of Proposition 2.7.19, it is enough to show that L, is bijective.
Assume to the contrary that L, is not bijective. Then, since L, is bounded below,
its range is a proper closed subspace of A. Therefore, by the orthogonal projection
theorem, there exists y € A\ {0} such that (ax|y) = 0 for every x € A. Now we have
(x|a*y) = (ax|y) = 0 for every x € A, so a*y = 0, and so (since A has no nonzero
divisor of zero) either a* = 0 or y = 0, a contradiction. O

Combining Proposition 2.7.19 with Corollaries 2.7.3,2.7.22, and 2.7.25, we derive
the following.

Corollary 2.7.26 Let A be a nonzero complete normed complex algebra, and
assume that at least one of the following conditions holds:

(i) L, is injective for some a € A, and L, is surjective for every x € A\ {0}.
(i1) A is a quasi-division algebra, and either A has no nonzero left topological
divisor of zero or A has no nonzero right topological divisor of zero.
(iii) A has no nonzero left topological divisor of zero, the norm of A derives from
an inner product (-|-), and there exist a,a* € A\ {0} such that the equality
(ax|y) = (x|a*y) holds for all x,y € A.

Then A is isomorphic to C.

The part of the above corollary corresponding to assumption (ii) can also be
derived from Theorem 2.7.7 and Exercises 1.1.88(i) and 1.1.86.

As a consequence of Theorem 2.7.7 and Proposition 2.7.16, both complete normed
quasi-division complex algebras and absolute-valued quasi-division complex alge-
bras are finite-dimensional. As a matter of fact, a similar result does not hold for
real algebras. Indeed, we are going to construct complete absolute-valued one-sided
division infinite-dimensional real algebras (see Theorem 2.7.38 below). On the way,
we will discover a substantial amount of information about the structure of such
algebras.

Lemma 2.7.27 Let A be a normed real algebra with a left unit e and such that
there exists p > 0 satisfying ||xy|| = pllx||||y|| for all x,y in A. Then, for each two-
dimensional subspace M of A with e € M, there is a linear mapping ¢ from M to the
two-dimensional Euclidean real space satisfying

pllmll < lle(m)|| < [lm|| for every m € M.

Proof By passing to the completion of A if necessary, we may assume that A is
complete. Then, since L, = Iy, it follows from Proposition 2.7.19 that A is a left-
division algebra. According to Proposition 1.1.98, let us take a complete normed
unital associative complex algebra B containing isometrically BL(A) as a closed real
subalgebra and whose unit is the same as that of BL(A) (namely, the identity mapping
I4 on A). Now, for x in A\{0}, L, is an invertible element of B satisfying ||L; || <
(p|lx[|)~". Therefore, for every xin A\ {0} and every complex number z in sp(B, L),
we have that z~! € sp(B,L; '), and hence that

pllxll < Jzf < [lx]|-
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Finally, for x in A\Re and o, 8 in R, we may choose z in sp(B, L), so that o + 3z
belongs to sp(B, Ly py), and we have

plloe+ Bl < o+ Bz| < [lere + Bx]|. 0
Proposition 2.7.28 Let A be a normed real algebra satisfying the following

conditions:

(1) There is an element a in A such that aA is dense in A.
(i) There exists p > 0 such that the inequality ||xy|| = pllx||||y|| holds for all x,y
inA.

Then, for each two-dimensional subspace M of A, there is a linear mapping @ from
M to the two-dimensional Euclidean real space satisfying

p*lml < llo(m)|| < |lml for every me M.

Proof We may assume that A is complete. Then the operator L, is bijective because
it is bounded below and has dense range. Therefore, by Proposition 2.7.19, A is a
left-division algebra. Let M be a two-dimensional subspace of A. Take a basis {u, v}
of M such that ||u|| = p~!. Then, for every x in A, we have

—1
pllxll < 1Ly (o)l < [l -

Now, consider the real algebra B consisting of the vector space of A and the product
x0y := L, ! (xy). Then, for x,y in B, we have

oyl = 1L Gl < vl < Dyl

so that ||.|| becomes an algebra norm on B. On the other hand, again for x,y in B,
we have

eyl = 1L )l = pllxvll = p*[Ixll ]l

Now, since u is a left unit for B, the existence of a linear mapping ¢ from M to the
two-dimensional Euclidean real space satisfying p?||m|| < ||@(m)]|| < ||m|| for every
m in M follows from Lemma 2.7.27. O

Taking p = 1 in the above proposition, we obtain the following.

Corollary 2.7.29 Let A be an absolute-valued real algebra, and assume that there
exists a € A such that aA is dense in A. Then A is a pre-Hilbert space.

We recall that a normed space X is said to be uniformly non-square if there exists
0 < o < 1 such that the inequality

min{|[x+y|, [x—y[l} <20

holds for all x,y in the closed unit ball of X. The main significance of this notion
relies on the fact that the completion of a uniformly non-square normed space is a
superreflexive Banach space [716, Theorem VII.4.4].

As the next example shows, not all nearly absolute-valued real algebras with a left
unit are uniformly non-square.
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Example 2.7.30 Take A equal to C (regarded as a real algebra) endowed with the
algebra norm ||.|| defined by || +if || :=|oc| +|B]. Since ||1]| = ||i|]| = 1 and ||1 +i|| =
Il —i]| =2, certainly A is not uniformly non-square. On the other hand, denoting
by |- | the usual module function on C, for x in A we have |x| < ||x|| < 2!/2|x|. It
follows that

eyl = eyl = el |yl = 27 lxll[lyl] for all x,y € A.

Corollary 2.7.31 Let A be a normed real algebra satisfying the following condi-
tions:

(1) There is an element a in A such that aA is dense in A.

(ii) There exists p > 2~'/* such that the inequality ||xy|| > p||x||||y|| kolds for all x,y
inA.

Then A is uniformly non-square.

Proof Choose 6 with271/2p=2 < ¢ < 1, and let x, y be in the closed unit ball of A.
By Proposition 2.7.28, there exists a linear mapping ¢ from the linear hull of {x,y}
(say M) to an Euclidean real space satisfying

p*lm|l < llp(m)]| < [lm|

for every m in M. It follows that

[min{ -+, = y[[})?
<27 (bl + e = yI1%)

<27 oGNP+l =P =p *lle@)* + o)1)
<p (P + IvIP) < 2p* < do?. 0

Lemma 2.7.32 Let A be an absolute-valued algebra over K such that the absolute
value of A comes from an inner product (-|-), and let x be in A such that there exists
x* € A satisfying (xy|z) = (y|x*z) for all y,z € A. Then we have x*(xy) = ||x||?y for
everyy € A.

Proof Fory € A, we have (xy|xy) = ||x||*(y[y). Then, by linearization, we obtain
that the equality (xz|xy) = [|x[|>(z]y) holds for all y, z € A. Since (xz|xy) = (z]x* (xy)),
we deduce (zx*(xy)) = ||x[|*(z|y), which, in view of the arbitrariness of z, yields
x (xy) = [x]%y. O

Proposition 2.7.33 Let A be an absolute-valued real algebra with a left unit e.
-), and, setting

Then the absolute value of A derives from an inner product (-
x* 1= 2(x|e)e —x, we have (xy|z) = (y|x*z) and x*(xy) = ||x||>y for all x,y,z € A.

Proof By Corollary 2.7.29, the absolute value of A derives from an inner product
(+|-)- For y,u in A with (e|u) = 0, we have

(L [l )1y 1% = e+ ul* 1> = li(e+u)yl?
= |y +uy[? = (L4 ull) Iy 1? +2(uyly),
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and hence (uy|y) = 0. By linearization, we deduce (uy|z) = —(y|uz) for all u,y,z € A
with (e|u) = 0, or, equivalently, (xy|z) = (y|x*z) for all x,y,z € A. Finally, apply
Lemma 2.7.32. O

Corollary 2.7.34 Let A be an absolute-valued real algebra. Then A is a left-division
algebra if (and only if) there exists e € A such that eA = A.

Proof Assume that there exists e € A such that eA = A. Then the normed space
of A becomes an absolute-valued algebra (say B) with left unit e under the product
x®y:= L, ' (xy). Therefore, by Proposition 2.7.33, we have x® (x* ®y) = ||x||%y for
all x,y € A and a suitable involution * on A. This implies that B (and hence A) is a
left-division algebra. O

We do not know if the condition eA = A in Corollary 2.7.34 above can be relaxed
to the one that eA is dense in A. Anyway, we have the following consequence.

Corollary 2.7.35 Let A be an absolute-valued real algebra. We have:

(1) A is a quasi-division algebra (if and) only if it is a one-sided division algebra.
(ii) If A is a left-division algebra, then so is its completion.

Proof Assertion (i) follows from Corollary 2.7.34 applied to A or to the opposite
algebra of A. Assume that A is a left-division algebra. Take a norm-one element e € A,
so that we have eA = A. Then, since L, is an isometry, this equality remains true when
the completion of A replaces A. Therefore, by Corollary 2.7.34, the completion of A
is a left-division algebra. U

We introduced transitive normed spaces in Subsection 2.6.3. The most classical
example of a transitive normed space is given by the following.

Lemma 2.7.36  Every pre-Hilbert space over K is transitive.

Proof Let X be a pre-Hilbert space over K. Let u,v be in Sx. If u,v are linearly
dependent, then the existence of a surjective linear isometry F : X — X such that
F(u) = v is obvious. Otherwise, we denote by Y the linear hull of {u,v}, we denote
by Z the orthogonal complement of ¥ in X, we write X = Ku ®Ku/ ®Z and X =
Kv &Ky & Z, where v/ and V' are norm-one elements of Y orthogonal to u and
v, respectively, and we consider the unique linear mapping F' : X — X satisfying
F(u)=v, F(u') =V, and F(z) = z for every z € Z. Then, clearly, F is a surjective
linear isometry such that F(u) = v. O

Let H be a nonzero real pre-Hilbert space. Fix a norm-one element 1 € H, and
define a product on H by

xy = (x[1)y + (y[1)x — (x|y)1. (2.7.2)

In this way H becomes a quadratic commutative real algebra (say A), which will
be called the quadratic commutative algebra of H. The algebra A above becomes a
Cayley algebra relative to the standard algebra involution

x—x"=2(x[1)1—x. (2.7.3)
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The notion of the quadratic commutative algebra of a nonzero real pre-Hilbert space
is nothing other than a simplification of that of the quadratic flexible algebra of a
pre-H-algebra (see Definition 2.6.4) in the particular case where the product of the
pre-H-algebra is identically zero. Indeed, denoting by E the orthogonal complement
of R1 in H, and endowing E with the zero product, E becomes a pre-H-algebra,
and the quadratic commutative algebra of H, as defined above, coincides with the
quadratic flexible algebra of E. Consequently, by Proposition 2.6.5, the quadratic
commutative algebra of H is a normed algebra, but this fact does not matter for the
current development. We note that, in view of Lemma 2.7.36, the choice of the norm-
one element 1 above is structurally irrelevant. It follows that quadratic commutative
algebras of nonzero real pre-Hilbert spaces, and nonzero real pre-Hilbert spaces
themselves, are in a bijective categorical correspondence.

Now, let A be the quadratic commutative algebra of a nonzero real pre-Hilbert
space, and let K be a nonzero real pre-Hilbert space (possibly different from the one
underlying A). By a unital x-representation of A on K we mean any unit-preserving
Jordan homomorphism ¢ : A — BL(K) satisfying

(0(x)(M)[E) = (nfo(x")(5)) (2.7.4)

for every x € A and all n,{ € K. Let ¢ be a unital *-representation of A on K, and
let x be in A. Then, by (2.7.3), we have ¢ (x*) = 2(x|1)Ix — ¢(x), and hence, since

x? = 2(x|1)x — ||x||*1 (as a consequence of (2.7.2)), we get

O(r)9(x) =2(x[1)9 (x) = 9(x)* = 2(x[1)$ (x) — 9 (+*) = |lx]*I«.
Therefore, by (2.7.4), for n € K we have

o) (MI* = (mloG")e(x)(m)) = [lx*[n . (2.7.5)

Now, the first assertion in Proposition 2.7.37 immediately below is a straightfor-
ward consequence of the equality (2.7.5) above, whereas the second one is simply a
reformulation of Proposition 2.7.33.

Proposition 2.7.37 If A is the quadratic commutative algebra of a nonzero
real pre-Hilbert space, and if ¢ is a unital x-representation of A on its own pre-
Hilbert space, then the normed space of A with the new product © defined by
x@y:= ¢ (x)(y) becomes an absolute-valued real algebra with a left unit. Moreover,
there are no absolute-valued real algebras with a left unit other than those given by
the construction method just described.

Theorem 2.7.38 Let H denote the linear hull of the canonical Hilbertian basis of
the real Hilbert space {5. Then, under their own norms and suitable products, both
H and 03 become absolute-valued left-division algebras with left units.

Proof Let {ug,uj,ua,...,uy,...} be the canonical Hilbertian basis of ¢5. Let us
consider the quadratic commutative algebra of H (say A) by choosing 1 := u( and
defining the product according to (2.7.2). Now, for n > 0, let us denote by H, the
subspace of H generated by {uo,...,u, }. Then the quadratic commutative algebra of
H, (say A,) is a subalgebra of A, and the standard involution of A, is nothing other
than the restriction to A,, of the standard involution of A. For n > 0, let G,, stand for
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the subspace of H generated by {uo,...,uzn_; }. We will prove by induction that, for
each n > 0, there exists a unital x-representation ¢, of A, on G, satisfying

On(a)(b) = ¢(a)(b) forall m<n,a€A,, and b € Gy,. (2.7.6)

Starting from the unique possible unital *-representation ¢y from Ay on Gg, assume
that, for a certain n > 0, we have been able to find a unital *-representation ¢, of A,
on G, satisfying (2.7.6). Trying to define ¢, 1, first observe that, since the dimension
of G4 is twice that of G,, we can choose a linear isometry o, from G, onto the
orthogonal complement of G,, in G, 1, so that every element of G,,4; can be uniquely
written as b + o, (c) for suitable b, ¢ € G,,. Note also that every element of A, | can
be uniquely written as a + Au, | for suitable a € A, and A € R. We can then define

¢n+] by
On1(a+ Auni)(b+ an(c)) := du(a)(b) — Ac+ an(Pn(a”)(c) + Ab),

and straightforwardly realize that ¢,,+; becomes a unital *-representation of A, | on
G4 satisfying (2.7.6) with n+ 1 instead of n, concluding in this way the induction
argument. Now, for a € A and b € H, we can choose n > 0 such that a € A, and
b € Gy, and realize that ¢,(a)(b) does not depend on the chosen n. Therefore we
can define ¢ (a)(b) := ¢,(a)(b) € H, and verify without problems that ¢ becomes a
unital *x-representation of A on H. By Proposition 2.7.37, H (= A as a pre-Hilbert
space) becomes an absolute-valued algebra with a left unit, for a suitable product.
By Corollaries 2.7.34 and 2.7.35(ii), this absolute-valued algebra and its completion
are left-division algebras with a left unit. O

As a consequence of Proposition 2.6.25, infinite-dimensional absolute-valued
algebras have zero centre. Nevertheless, invoking Fact 2.6.47, Theorem 2.7.38 above
has the following remarkable consequence.

Corollary 2.7.39 Let H denote the linear hull of the canonical Hilbertian basis of
the real Hilbert space (5. Then, under their own norms and suitable products, both
H and 0y become absolute-valued algebras containing a nonzero idempotent which
commutes with all elements in these algebras.

In view of Corollary 2.7.39 and/or Theorem 2.7.38, results from Proposition 2.7.40
to Corollary 2.7.43 below have their own interests.

Proposition 2.7.40 Let A be an absolute-valued real algebra containing elements
e and a such that eA = A, a # 0, and [a,A] = 0. Then A is finite-dimensional.

Proof Since eA = A and a # 0, Corollary 2.7.34 applies to obtain that aA = A.
But then, since [a,A] = 0, we have Aa = A. Therefore the result follows from the
implication (iii)=-(i) in Corollary 2.6.24. ]

Although straightforward, we emphasize the following.

Corollary 2.7.41 Let A be an absolute-valued real algebra containing both a left
unit and a nonzero element commuting with all elements of A. Then A is finite-
dimensional.
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Proposition 2.7.42 Let A be an absolute-valued real algebra with a left unit, and
let ||| - || be an algebra norm on A. Then we have || - || < ||| - ||l

Proof Let e denote the left unit of A, and let x be in A. According to Propos-
ition 2.7.33, we have L+ o L, = ||x||*I4, where x* := 2(x|e)e — x. It follows that

2
(el < Mo Lo < " T < C2 el e =+ el el

50 (1+lell*)l1x[I* < (lllx/l + [lx]| lell)?, and so (/1 +le[I> = llell) lx]| < [I}x]|. Now

apply Proposition 2.6.19, with ¢ equal to the identity mapping from (A,]|| - ||) to
(A, 111D .

We do not know if Proposition 2.7.42 remains true whenever the requirement
of the existence of a left unit in A is relaxed to the one that A is a left-division
algebra. Now note that, as a consequence of Proposition 2.6.19, finite-dimensional
algebras over K have at most one absolute value. Since finite-dimensional absolute-
valued algebras are of course left-division algebras, the following corollary becomes
a generalization of the fact just pointed out.

Corollary 2.7.43 Let A be a left-division real algebra. Then there exists at most
one absolute value on A.

Proof Let ||| and || - || be absolute values on A. Fix e € A with |le| = 1, and
consider the absolute-valued real algebra B consisting of the vector space of A, the
norm || - ||, and the product x ®y := L, ! (xy). Since B has a left unit, and ||e]|~"|| - |
is an algebra norm on B, Proposition 2.7.42 applies giving that || - || < [e/| "] - ||l
Then, keeping in mind that || - ||| is an algebra norm on A, and that || - || is an absolute
value on A, we deduce from Proposition 2.6.19 that || - || < ||| - [||- By symmetry, we
have also || - ||| < || - |- O

Remark 2.7.44 Absolute-valued algebras need not have uniqueness of the absolute
value. Indeed, the real or complex Banach space £, (1 < p < ) can be converted into
an absolute-valued algebra, by simply taking an injective mapping ¢ : N x N — N,
by defining the product of basic vectors e;,e; € £, by the rule e;e; := ey ; ), and then
by extending the product by bilinearity and continuity. Now, let 1 < p < g < o, and
consider ¢, and {, as absolute-valued algebras by means of the above construction
(with the same injective mapping ¢ : N x N — N). Then ¢, is a complete absolute-
valued algebra which, algebraically, can be seen as a subalgebra of ¢,. However the
restriction of the natural absolute value of ¢, to £, does not coincide with (nor even
is equivalent to) the natural absolute value of £,,. As a consequence, the requirement
of the existence of a left unit in Proposition 2.7.42 cannot be altogether removed.

After Theorem 2.7.38, the following problem becomes relevant.
Problem 2.7.45 Is every normed division real algebra finite-dimensional?

In contrast to Problem 2.7.4 (which, thanks to Corollary 2.7.3, only remains open
in the non-complete case), a general answer to Problem 2.7.45 is unknown even in
the complete case. In this case, the problem reduces to the setting of unital algebras.
For, if A is a complete normed division real algebra, and if a is any nonzero element
of A, then the vector space of A, endowed with the product x ®y := R, ' (x)L; ' (y)

a
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and a suitable positive multiple of the norm of A, becomes a complete normed unital
division real algebra (whose unit is precisely a®). Now the next result has its own
interest.

Proposition 2.7.46 Let A be a complete normed unital division real algebra, and
let B be any nonzero closed subalgebra of A. Then B contains the unit of A, and is a
division algebra.

Proof Take a nonzero element b € B. Since R1+ B is a closed subalgebra of A
containing 1, Corollary 2.7.21 applies to find r € R and ¢ € B such that 5(r1+c¢) = 1.
Therefore 1 = rb+ bc € B. Now it is enough to apply Corollary 2.7.21 to both A and
A to conclude that B is a division algebra. O

We do not know whether there are complete normed infinite-dimensional divi-
sion real algebras. Anyway, we are going to construct complete normed infinite-
dimensional real algebras such that the operators of left and right multiplication by
any nonzero element are surjective. Before beginning this construction, let us realize
that it is prohibited in the associative setting. Indeed, we have the following.

Proposition 2.7.47 Let A be a nonzero associative algebra over K such that R, is
surjective for every nonzero element a € A. Then A is a division algebra. Therefore,
if in addition A is a normed algebra, then A is finite-dimensional.

Proof In view of Proposition 2.5.38, to prove the first conclusion it is enough to
show that R, is injective for every nonzero element a € A. Let a be in A such that
there exists b € A\ {0} satisfying ba = 0. Then, since A = Ab, we have Aa = Aba =0,
and hence a = 0 (since, otherwise, we would have Aa = A # 0, a contradiction). Now
that we know that A is a right-division algebra, the finite dimensionality of A in the
normed case follows from Propositions 2.5.39 and 2.5.40. O

As usual, given a bounded linear operator ' on a Hilbert space H, we denote by
F* the adjoint of F'.

Lemma 2.7.48 Let A be a complete absolute-valued algebra over K whose Banach
space is a Hilbert space, let x be a conjugate-linear vector space involution on A,
and define a new product © on A by a® b := (Rp+)*(a). Then, for every b € A\ {0},
the operator R,?, of right multiplication by b relative to the product ©, is surjective.

Proof Note that, for b € A, we have R = (Ry+)*, so that it is enough to show that
(Rp)* is surjective for every norm-one element b € A. But, since A is an absolute-
valued algebra, for such an element b, R}, is a linear isometry, and hence, since A is a
Hilbert space, we have (R,)*Rj, = I4, which implies that (R,)* is indeed surjective.

O

By Corollary 2.7.26, if A is a nonzero complete normed complex algebra such that
R, is bijective for some a € A and Ry is surjective for every x € A\ {0}, then A is
isomorphic to C. Nevertheless, we have the following.

Corollary 2.7.49 There exists a complete normed infinite-dimensional complex
algebra A such that, for every x € A\ {0}, the operator R, is surjective.
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Proof According to Remark 2.7.44, the complex Hilbert space ¢, can be converted
into an absolute-valued algebra (say A) under a suitable product. Defining * on the
linear hull of the basic vectors of ¢, as the unique conjugate-linear operator on
¢, fixing all basic vectors, and extending * by continuity, * becomes an isometric
conjugate-linear vector space involution on A. Now apply Lemma 2.7.48, noticing
that, since * is isometric, (A, ®) is indeed a normed algebra. O]

Our next lemma involves standard terminology of H*-algebras. Following [199,
200, 589], by a left semi-H*-algebra over K we mean an algebra A over K which is
also a Hilbert space in such a way that the product of A becomes continuous, and is
endowed with a conjugate-linear vector space involution satisfying (ab|c) = (b|a*c)
for all a,b,c € A.

Lemma 2.7.50 Let A be a left semi-H*-algebra over K whose involution x is
isometric, and define a new product ©® on A by a® b := (Rp)*(a). Then * is an
algebra involution on (A, ®).

Proof Let a,b,c be in A. By the definition of the product ®, we have
(a ® blc) = (alch*). Using this fact, together with the axiom of left semi-H*-
algebras (ab|c) = (bla*c) and the assumption that the involution * is isometric
(a|b) = (b*|a*), we obtain

(b*©d"|e) = (b7[ca) = (c"b7|a) = (a|c*b¥)
= (@Ob|c*) = (c"la®b) = ((a©b)"[c),
and hence (a©b)* =b* ®a*. O

We recall that, by Proposition 2.7.33, absolute-valued real algebras with a left unit
are pre-Hilbert spaces.

Proposition 2.7.51 Let A be a complete absolute-valued real algebra with a
left unit e, let x stand for the isometric vector space involution on A given by
a* :=2(ale)e — a, and define a new product ® on A by a® b := (Rp)*(a). Then we
have:

(1) (A,®) is a complete normed real algebra, and * becomes an algebra involution
on (A,®).
(ii) The operators of left and right multiplication by any nonzero element on (A, ®)
are surjective.
(iii) For every a € A, the equalities a ® a* = a* ® a = ||a||?>e hold.

Proof By Proposition 2.7.33, A, endowed with the involution *, becomes a left
semi-H *-algebra. Therefore, by Lemma 2.7.50, * is an algebra involution on (4, ®).
The remaining part of assertion (i) is straightforward.

Assertion (ii) follows from assertion (i) and Lemma 2.7.48.

To prove assertion (iii), note that, for every a € A, we have (R,)*R, = ||a||*Ix
(see the proof of Lemma 2.7.48). When applied to e, the above equality gives
a®a* = ||a||%e. Finally, the equality a* ®a = ||a||*e follows from the one just proved
because * is an isometry. U
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By combining Theorem 2.7.38 and Proposition 2.7.51, we get the following.

Corollary 2.7.52 There exists a complete normed infinite-dimensional real algebra
A such that, for every a € A\ {0}, the operators L, and R, are surjective.

We do not know if the above corollary remains true for complex algebras.

2.7.3 Discussing the results

Now, we are going to summarize and clarify several results in the current section by
discussing the diagram in §2.7.53 immediately below.

§2.7.53 Let A be a nonzero complete normed algebra over K. Then, keeping in
mind §2.5.53, the implications in the following diagram hold. In the diagram, the
abbreviation t.d.z. stands for topological divisor of zero.

Aldsa . left A is a quasi-
division algebra = Alsa right - division algebra
division algebra
U 03 03
A has no nonzero A has no nonzero A has no nonzero
one-sided t.d.z. - { left } = two-sided t.d.z.
. t.d.z.

right

We note that the conditions and implications in the top row of the above diagram
are of a purely algebraic nature, and hence do not need the algebra A to be normed.
On the other hand, conditions and implications in the bottom row of the diagram
only need the algebra A to be normed, but not to be complete. However, in general,
vertical implications in the diagram need the algebra A to be complete normed (see
Example 2.7.54 below). Nevertheless, if the algebra A is alternative, then, in view of
Propositions 2.5.24 and 2.5.38, completeness of A can be dispensed for the validity
of those vertical implications. Moreover, if the algebra A above is alternative, then,
by Theorem 2.5.50 and Proposition 2.5.49(i), the requirement that A has no nonzero
joint topological divisor of zero (a condition weaker than the weakest one in the
diagram above) implies that A is a division algebra (the strongest condition in the
diagram), and hence all conditions in the diagram are equivalent.

The following example shows that the vertical implication in the centre column of
this diagram need not be true when completeness of A is removed.

Example 2.7.54 Let H denote the linear hull of the canonical Hilbertian basis
{en : n € N} of the real Hilbert space ¢,, and, according to Theorem 2.7.38, endow
H with a suitable product (denoted by juxtaposition) converting it into an absolute-
valued left-division algebra. Let T be the linear operator on H determined by 7'(e,) =
Le,. Then T is bijective and continuous with || 7| = 1. Now, let A be the normed real
algebra consisting of the normed space of H and the product x ®y := x7T (y). For
x € A we have L;? = L,T, and hence A is a left division algebra. However, for x € A
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we also have x O e, = %xen — 0, so that all elements in A are left topological divisors
of zero.

If A is finite-dimensional, then, by Exercise 1.1.88(i), the six conditions in the
diagram in §2.7.53 reduce to two. Indeed, in such a setting, all vertical implications
in the diagram are reversible, and one-sided division implies division, whereas, by
Example 2.5.36, quasi-division does not imply division. It is worth mentioning that,
even in the finite-dimensional case, the weaker condition in the diagram is strictly
stronger than the one where A has no nonzero joint topological divisor of zero.
Indeed, we have the following.

Example 2.7.55 Let A be the two-dimensional algebra over K with basis {u,v} and
multiplication table given by

wW=uw=—vu=v and V*=u.
Then uA = Au = Kv # A, and hence, since A is finite-dimensional, u becomes a
nonzero two-sided divisor of zero. Nevertheless, A has no nonzero joint (topological)
divisor of zero. For, if a = ot + Bv is a nonzero element of A, and if ab = ba = 0 for
some b = Au+ Wv, then we have

Bu=0, al+ou—PBA=0, and oA —ou+pA =0,
or, equivalently,
Bu=0, oA =0, and ou—pA =0,
which implies, since (¢, 3) # (0,0), that A = y = 0, and hence b = 0.

The discussion of the diagram (in §2.7.53) in the general (possibly non-alternative
and infinite-dimensional) case is more complicated. The above finite-dimensional
discussion already shows that none of the two horizontal implications on the right
of the diagram is reversible. On the other hand, the next example shows that the
strongest condition in the bottom row of the diagram does not imply the weakest one
in the top row, and hence that none of the vertical implications is reversible.

Example 2.7.56 Let | < p < oo, and let A stand for the complete absolute-valued
algebra whose Banach space is the real or complex /,-space, and whose product is
constructed according to Remark 2.7.44. As any absolute-valued algebra, A has no
nonzero one-sided topological divisor of zero. However, a straightforward calcula-
tion shows that, for any basic vector ¢, € A, both L,, and R,, are not surjective on A,
so that A is not a quasi-division algebra.

To continue our discussion, let us consider the following claim, whose proof is
straightforward.

Claim 2.7.57 Let A be a normed algebra over K with no nonzero left topological
divisor of zero, and let F be a norm-one bounded linear operator on A which is
injective but not bounded below. Denote by © the product of A, and by B= B(A,F)
the algebra whose vector space is that of A and whose product is defined by
xy := F(x) ®y. Then B (with the same norm as that of A) is a normed algebra
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over K with no nonzero left topological divisor of zero, but every element in B is a
right topological divisor of zero in B.

Now, the following example shows that the horizontal implication on the left of
the bottom row of the diagram in §2.7.53 is not reversible.

Example 2.7.58 Let 1 < p < oo. Then certainly we may find a norm-one bounded
linear operator F', on the classical Banach space £, over K, which is injective but
not bounded below. Moreover, by Remark 2.7.44, we can choose a product on the
Banach space ¢, converting it into an absolute-valued algebra. We denote by A the
absolute-valued algebra just constructed, and consider the complete normed algebra
B = B(A,F) given by Claim 2.7.57, so that B has no nonzero left topological divisor
of zero but every element in B is a right topological divisor of zero in B.

Remark 2.7.59 Taking in the above example p = 2 and K = R, and replacing
Remark 2.7.44 with Theorem 2.7.38, we find a complete normed left-division real
algebra B (necessarily without nonzero left topological divisors of zero), all elements
of which are right topological divisors of zero in B.

It follows from the information collected to this point that the unique implication
in the diagram in §2.7.53 that could be reversible is the horizontal one on the left
of the top row. If K = C, then, by Corollary 2.7.3, such an implication is indeed
reversible. On the contrary, if K = R, then, by Theorem 2.7.38 and the implication
(i))=-() in Corollary 2.6.24, we are provided with a complete normed left-division
real algebra which is not a division algebra. Summarizing, we have the following.

Proposition 2.7.60 If K = C, then none of the implications in the diagram in
§2.7.53 is reversible, except the horizontal one on the left of the top row, which is
indeed reversible. If K =R, then, without any exception, none of the implications in
the diagram is reversible.

Now that the discussion of the diagram in §2.7.53 has been formally concluded,
we provide the reader with some complementary details. To this end, we consider
the following.

Claim 2.7.61 Let A be a nonzero algebra over K, and let B = B(A) denote the
algebra over K whose vector space is A X A and whose product is defined by

(x1,x2) (¥1,¥2) == (x1y2, 2191 +x2y2) -

Then B has nonzero divisors of zero. Moreover we have:

(1) B is a quasi-division algebra if and only if A is a division algebra.

(i1) IfAisin fact a normed algebra, and if we consider B as a normed algebra under
the norm || (x1,x2) || := ||x1 || + ||x2]], then B has no nonzero two-sided topological
divisor of zero if and only if A has no nonzero one-sided topological divisor
of zero.

Proof Since for x; and y; in A the equality (0,x,)(y1,0) = 0 holds, the existence in
B of nonzero divisors of zero is not in doubt.
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Assume that B is a quasi-division algebra. Let a be in A\{0}. Since L(g ) is not
bijective on B, the operator R g ,) must be bijective on B. This means that the mapping
(x1,%2) — (x1a,x2a) from B to B is bijective. Equivalently, the operator R, is bijective
on A. Analogously, the fact that R(, ¢ is not bijective on B allows us to obtain that
L, is bijective on A. Since a is arbitrary in A\{0}, we get that A is a division algebra.
Now assume that A is a division algebra. Let x = (x1,x;) be in B\{0}. If x; # 0, then
the operator L, .,) is bijective on B with inverse mapping given by

(v132) = (L 02 = Ly Ly (1)), L ().

Otherwise, the operator Ry, ,,) is bijective on B with inverse mapping given by

(1,32) — (R 1), Ry, (32)).

Since x is arbitrary in B\{0}, B is a quasi-division algebra.
In this last paragraph of the proof we suppose that A is actually a normed algebra,
and consider B as a normed algebra under the norm

[[Ger, x2)[| = [ber [ + ezl

Assume that B has no nonzero two-sided topological divisor of zero. Then, for
each nonzero element a in A we have that (0,a) (respectively, («,0)) is not a right
(respectively, left) topological divisor of zero in B. This implies that such an a is
not a one-sided topological divisor of zero in A. Therefore A has no nonz