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Preface

Reviewing the non-associative part of a monograph
by Irving Kaplansky

In 1970, Irving Kaplansky published his small monograph [762] on Algebraic and
analytic aspects of operator algebras, and devoted its last section to providing the
reader with his impressions concerning non-associative normed algebras. Actually,
he began the section by saying:

I predict that when the time is ripe there is going to be quite a flurry of activity concerning
nonassociative Banach algebras in general, and nonassociative C∗-algebras in particular.
Let me take the space to speculate a little on what we may see some day.

Many years have passed since the publication of [762] and, as a matter of fact,
most of Kaplansky’s predictions have come true, some even exceeding the original
expectations. The diverse results corroborating the accuracy of Kaplansky’s predic-
tions will be used to illustrate the content of the book we are introducing. Therefore,
let us continue reproducing Kaplansky’s words in short excerpts, and insert some
clarifying comments.

The speculation can start encouragingly, with a fact. The (complex) Gelfand–Mazur
Theorem works fine: a normed division algebra must be the complex numbers. Of course,
we must agree on what a division algebra A is to be. We take it to mean that for any nonzero
x, both Rx and Lx are one-to-one and onto, where Rx (Lx) denotes right (left) multiplication
by x. (Actually, for the proof all we need is Rx.)

With the words ‘for the proof all we need is Rx’, Kaplansky is suggesting the
notion of a right-division algebra.

Suppose then that A is a normed division algebra. We claim that A is one-dimensional,
and by way of contradiction we assume that x and y are linearly independent. Then for
every complex scalar λ , Rx−λy = Rx −λRy is a bounded operator on A which is one-to-one
and onto. The same is true of RxR−1

y −λ I. But RxR−1
y must have something in its spectrum.

It seems obvious to us that Kaplansky implicitly assumes that the (possibly non-
associative) normed algebra A above is complete, to be sure that ‘the same is true
of RxR−1

y −λ I’ concerning boundedness. Under this assumption, Kaplansky’s claim
(that complete normed one-sided division complex algebras are isomorphic to C) is
stated in Corollary 2.7.3, whereas the non-complete case is raised as Problem 2.7.4
(see also Theorem 4.1.63 for a partial affirmative answer). Actually, a result better
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than Kaplansky’s claim holds. Indeed, if A is a complete normed complex algebra,
and if it is a quasi-division algebra (which means that, for every nonzero x ∈ A, at
least one of the operators Lx,Rx is one-to-one and onto), then dim(A) � 2 (The-
orem 2.7.7) and, in general, no more can be said (Example 2.5.36). Moreover, if in
addition A is unital or nearly associative, then A is isomorphic to C (Corollaries 2.7.9
and 2.7.10). It is also worth mentioning that, for associative (and even alternative)
algebras, the notions of division, one-sided division, and quasi-division coincide,
and also coincide with the classical notion of a division algebra in this setting –
namely that the algebra is unital and each nonzero element has an inverse (Propos-
ition 2.5.38).

Let us continue with Kaplansky’s words:

On the other hand, the real Gelfand–Mazur theorem does not seem to have received any
attention. The conjecture is that any real normed division algebra is finite-dimensional, after
which the topologists would teach us that the dimension is 1, 2, 4, or 8.

The conjecture that normed division real algebras are finite-dimensional was first
formulated by Wright [640], after proving it in the particular case of absolute-valued
algebras (Corollary 2.6.24). The general case of the conjecture, even with the addi-
tional requirement of completeness, remains open (Problem 2.7.45). Nevertheless,
normed one-sided division real algebras need not be finite-dimensional, even if they
are absolute-valued and complete (Theorem 2.7.38). The enormous theorem of ‘the
topologists’ (that finite-dimensional division real algebras are of dimension 1, 2, 4,
or 8) is stated without proof in Theorem 2.6.51, referring the reader to the whole of
Chapter 11 of [727] for a complete proof. The particularization to absolute-valued
algebras is much more elementary, and is stated in Fact 2.6.50.

Kaplansky continues as follows:

There is a related circle of ideas which has received a good deal of attention. In [337],
Inglestam proved the following pretty theorem: if an associative real Banach algebra A
is built on a Hilbert space and has a unit of norm 1, then in the first place A is finite-
dimensional; moreover A must be the reals, complexes, or quaternions in their ordinary
norm. An alternative account was given by Smiley [590]. The crucial point here is the
behaviour of the unit element relative to convexity, and nonassociative generalizations
have been given by Strzelecki [605, 606] and Inglestam [338]. (One should note the dif-
ference between this problem and that of Urbanik and Wright [620], who do not assume a
Hilbert space but deduce it from the equality ‖xy‖= ‖x‖‖y‖.)

Ingelstam’s theorem (that R, C,H, and O are the unique norm-unital normed
alternative real algebras whose norm comes from an inner product) is stated in Cor-
ollary 2.6.22. Here H and O stand for the algebra of Hamilton’s quaternions and the
algebra of Cayley numbers, respectively. Strzelecki’s generalization (that R, C,H,
and O are the unique norm-unital normed alternative real algebras whose closed unit
ball has a unique tangent hyperplane at the unit) is stated as the equivalence (ii)⇔(iii)
in Theorem 2.6.21.

In our opinion, the non-commutative Urbanik–Wright theorem (that R, C,H, and
O are the unique unital absolute-valued real algebras) becomes one of the jew-
els of the theory of non-associative normed algebras. Therefore, we devote special
attention to it. We state it as the equivalence (i)⇔(iii) in Theorem 2.6.21, and provide
a second proof in §2.7.67. The non-commutative Urbanik–Wright theorem had also
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been predicted by Kaplansky in [377], who, by means of a general theorem on the
so-called unital composition algebras, reduced the proof to the case that the norm
comes from an inner product. The two proofs we have given of the non-commutative
Urbanik–Wright theorem follow Kaplansky’s indication. We also state the commuta-
tive Urbanik–Wright theorem, proved in [620] as well, that R, C, and another natural
two-dimensional algebra, are the unique absolute-valued commutative real algebras
(Theorem 2.6.41).

Now let us go beyond Gelfand–Mazur considerations to general theory. I divide the
remarks under three headings, corresponding to the three classes of nonassociative algebras
that have withstood the test of time.

(1) Lie algebras. Let me be honest. I have nothing to say, even by way of the wildest
speculation, about a possible theory of Banach Lie algebras.

Banach Lie algebras will be discussed in our book only in an incidental way.
Nevertheless, let us say that a complete structure theory for Lie H∗-algebras has been
developed (cf. Remark 2.6.54 for references), and that different aspects of general or
particular Banach Lie algebras have been considered in [47, 96, 97, 98, 99, 130,
175, 188, 253, 254, 452, 453, 569, 604, 615, 627]. For a comprehensive account, the
reader is referred to the books [687, 688, 740].

(2) Alternative. Alternative rings are only a slight generalization of associative rings. It
is therefore a reasonable presumption that most standard associative results will survive,
perhaps in a suitably altered form, and perhaps with a lot of extra proof.

The ‘reasonable presumption’ above is indeed correct. As a relevant sample,
Kaplansky’s celebrated theorem [375], that normed associative real algebras with no
nonzero topological divisor of zero are isomorphic to R, C, or H, has its ‘suitably
altered form’ for alternative algebras (Theorem 2.5.50).

Alternative C∗-algebras look like a plausible topic. Over the complex numbers the essen-
tially new algebra – the Cayley matrix algebra – has every right to be called a C∗-algebra.
But the subject should be developed in real style, so as to allow the Cayley division algebra
to survive.

We feel that Kaplansky assumes the current Gelfand–Naimark characterization
of closed ∗-invariant subalgebras of operators on complex Hilbert spaces and that
consequently, by an ‘alternative C∗-algebra’, he means a complete normed alternative
complex algebra A endowed with a conjugate-linear algebra involution ∗ satisfying
‖a∗a‖ = ‖a‖2 for every a ∈ A. If this is so, then the complex Cayley matrix alge-
bra C(C) is indeed an alternative C∗-algebra (Proposition 2.6.8). Moreover, C(C)
becomes the unique ‘essentially new’ alternative C∗-algebra. Indeed, C(C) is the
unique prime alternative C∗-algebra which is not associative and, by a standard
C∗-argument, the theory of general alternative C∗-algebras reduces to the cases of
prime associative C∗-algebras and that of C(C) [125, 481]. It is also worth men-
tioning that, in the case of unital algebras, there are relevant redundancies in the
definition of an alternative C∗-algebra suggested above. The redundances are so
severe that, as we prove in Theorem 3.2.5, the alternative identities x2y = x(xy) and
yx2 = (yx)x follow from the remaining requirements (see also Theorem 3.5.53 for a
non-unital variant).
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As far as we know, a systematic treatment of real alternative C∗-algebras has
not been done to date. Anyway, real alternative C∗-algebras can be introduced as
closed ∗-invariant real subalgebras of complex ones (see Definition 4.2.45). With
this convention, clearly, the algebra O of Cayley numbers ‘survives’.

Alternative AW ∗-algebras probably have a decisive structure theory. (I feel sure that sub-
ject will be developed in AW ∗ rather than in W ∗ style – unless somebody cares to work up
the theory of Cayley Hilbert space.) There ought to be a unique direct sum decomposition
into four homogeneous pieces: (a) real Cayley matrix, (b) Cayley division, (c) complex
Cayley matrix, (d) associative.

As a matter of fact, concerning ‘AW ∗ style’, no progress has been made on the
above prediction, even in the complex case. However, the ‘W ∗ style’ has become
extremely successful. Indeed, as shown by G. Horn [331], every (complex) alter-
native W ∗-algebra has a unique direct sum decomposition into two pieces: (a) the
algebra of all continuous functions from a suitable compact Hausdorff hyper-Stonean
space to C(C); (b) an associative von Neumann algebra. It can be derived from
Horn’s theorem that every real alternative W ∗-algebra has ‘a unique direct sum
decomposition into four pieces’: (a) the algebra of all continuous functions from a
suitable compact Hausdorff hyper-Stonean space to the real Cayley matrix algebra
C(R); (b) the same with O instead of C(R); (c) the same with C(C) instead of
C(R); (d) a real associative von Neumann algebra. Thus, ‘in W ∗ style’, Kaplansky’s
prediction is right.

(3) Jordan. In saying that Jordan Banach algebras ought to be studied we have the
blessing of the Master himself [461]. In recent years Topping [813, 614], Effros and Størmer
[228] and Størmer [601, 602, 603] have made significant progress. In one way, however,
they made an undesirable retreat from [461]. By assuming from the start that they were
dealing with operators on a Hilbert space, they ruled out the exceptional Jordan algebra,
and left to the future the possibility of a theorem asserting that suitable infinite-dimensional
Jordan Banach algebras are special. Admittedly I am prejudiced, but perhaps the AW ∗ point
of view is a good one here.

Eight years after the above paragraph was written, Alfsen, Shultz, and Størmer
[15] removed the ‘undesirable retreat from [461]’ by introducing the so-called
JB-algebras. JB-algebras are complete normed Jordan real algebras which include
both Jordan algebras of self-adjoint ‘operators on a Hilbert space’ (Corollary 3.1.2)
and ‘the exceptional Jordan algebra’ (Example 3.1.56). JB-algebras enjoy a deep and
complete structure theory which has been comprehensively developed in Hanche-
Olsen and Størmer [738], and has been revisited recently in Alfsen and Shultz
[673]. Different approaches to JB-algebras can be found in Ayupov, Rakhimov,
and Usmanov [684], and Iochum [748]. Since we are unable to organize the basic
theory of JB-algebras in a better way than that of [738], we have limited ourselves
to state without proof those results which are needed for our actual purposes, and to
complement the theory in some aspects (originated by the papers of Wright [641]
and Wright and Youngson [643]) which are not covered by the Hanche-Olsen
and Størmer book. This is done from Section 3.1. Among the results taken from
[738], we emphasize the one asserting that JB-algebras generated by two elements
are (isometrically isomorphic to) Jordan algebras of self-adjoint operators on a
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Hilbert space (Proposition 3.1.3). Thus, ‘suitable infinite-dimensional Jordan Banach
algebras are special’.

Kaplansky concludes with the following comment:

Kadison’s beautiful results [358, 359] on isometries of C∗-algebras deserve to be gener-
alized to Jordan C∗-algebras if only to encompass the exceptional Jordan algebra.

What Kaplansky means by a ‘Jordan C∗-algebra’ is not in doubt because he
himself later introduced this notion in detail in his final lecture to the 1976
St. Andrews Colloquium of the Edinburgh Mathematical Society, and pointed out its
potential importance. Jordan C∗-algebras (called JB∗-algebras since Youngson’s
paper [652]) were first studied by Wright [641], who proved that the passing
from each JB∗-algebra to its self-adjoint part establishes a bijective categorical
correspondence between JB∗-algebras and JB-algebras (see Corollary 3.4.3 and
Theorem 3.4.8).

Kadison’s celebrated Theorem A of [358] is fully discussed in Section 2.2. Actu-
ally, we prove the unit-free Paterson–Sinclair generalization [480] of Kadison’s result
(Theorem 2.2.19), starting from a non-associative germ (Theorem 2.2.9). An appro-
priate version for JB-algebras of the Kadison–Paterson–Sinclair theorem, following
the arguments in [643, 223, 342], is stated in Theorem 3.1.21. Therefore, as first
proved in [643], for isometries preserving units of unital JB∗-algebras, Kadison’s
theorem survives (see Proposition 3.4.25) ‘encompassing the exceptional Jordan
algebra’. Nevertheless, Kadison’s theorem does not survive for general isometries,
nor even in the case of closed ∗-invariant unital Jordan subalgebras of operators on
Hilbert spaces. The reason is that, as shown by Braun, Kaup, and Upmeier [126],
two such algebras can be linearly isometric without being ∗-isomorphic (see Anti-
theorem 3.4.34). Anyway, the Kadison–Paterson–Sinclair theorem survives verbatim
in the case of alternative C∗-algebras and also, in a suitably altered form, in the case
of JB∗-algebras which are dual Banach spaces [366].

About the core of the book

Now that we have concluded our review of the non-associative part of Kaplansky’s
monograph [762], let us comment about the leitmotiv of the present book. (To
this end, we found the Introduction of [366] useful.) Our aim is to deal with
non-associative generalizations of C∗-algebras. To this end, we realize that most
generalizations appearing in the literature, like JB∗-algebras, JB-algebras (both
had already been discussed when we reviewed [762]), and JB∗-triples, contain
C∗-algebras, but only after suitable manipulations. Thus C∗-algebras become
JB∗-algebras after replacing the associative product xy with the Jordan product

x• y :=
1
2
(xy+ yx).

They are JB-algebras after the same replacement and then passing to the self-adjoint
part, and they are also JB∗-triples after replacing the product with the triple product

{xyz} :=
1
2
(xy∗z+ zy∗x).
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As a matter of fact, many years ago we tried to approach the non-associative gener-
alizations of C∗-algebras in a somewhat more ingenuous way. Indeed, we removed
associativity in the abstract characterizations of unital (associative) C∗-algebras
given either by the Gelfand–Naimark theorem or by the Vidav–Palmer theorem, and
studied (possibly non-unital) closed ∗-invariant subalgebras of the Gelfand–Naimark
or Vidav–Palmer algebras born after removing associativity.

To be more precise, for a norm-unital complete normed (possibly non-associative)
complex algebra A, we considered the following conditions:

(GN) (Gelfand–Naimark axiom). There is a conjugate-linear vector space involu-
tion ∗ on A satisfying 1∗ = 1 and ‖a∗a‖= ‖a‖2 for every a in A.

(VP) (Vidav–Palmer axiom). A = H(A,1)+ iH(A,1).

In both conditions, 1 denotes the unit of A, whereas, in (VP), H(A,1) stands for the
closed real subspace of A consisting of those elements h in A such that f (h) belongs
to R for every bounded linear functional f on A satisfying ‖ f‖= f (1) = 1.

As we said before, if the norm-unital complete normed complex algebra A
above is associative, then (GN) and (VP) are equivalent conditions, both providing
nice characterizations of unital C∗-algebras (see Lemma 2.2.5 and Theorems 1.2.3
and 2.3.32). In the general non-associative case we were considering, things began
to be more amusing. Indeed, it is easily seen that (GN) implies (VP) (refer again to
Lemma 2.2.5), but the converse implication is not true (see Example 2.3.65).

The amusing aspect of the non-associative consideration of the Vidav–Palmer
and the Gelfand–Naimark axioms greatly increased thanks to the fact (explained
in what follows) that Condition (VP) (respectively, (GN)) on a norm-unital complete
normed complex algebra A implies that A is ‘nearly’ (respectively, ‘very nearly’)
associative. To specify our last assertion, let us recall some elementary concepts of
non-associative algebra. Alternative algebras are defined as those algebras A satis-
fying a2b = a(ab) and ba2 = (ba)a for all a,b in A. By Artin’s theorem (stated in
Theorem 2.3.61), an algebra A is alternative (if and) only if, for all a,b in A, the
subalgebra of A generated by {a,b} is associative. According to Definition 2.4.9
and Proposition 3.2.1, non-commutative Jordan algebras can be introduced as those
algebras A satisfying the Jordan identity (ab)a2 = a(ba2) and the flexibility con-
dition (ab)a = a(ba). As shown in Proposition 2.4.19, non-commutative Jordan
algebras are power-associative (i.e. all subalgebras generated by a single element
are associative) and, as a consequence of Artin’s theorem, alternative algebras are
non-commutative Jordan algebras. For an element a in an algebra A, we denote by
Ua the mapping b → a(ab+ba)−a2b from A to A. By means of Definitions I and II
below, we provide the algebraic notions just introduced with analytic robes. We note
that the notion of an alternative C∗-algebra, emphasized in Definition I, had already
appeared when we reviewed the monograph [762].

Definition I By an alternative C∗-algebra we mean a complete normed alternative
complex algebra (say A) endowed with a conjugate-linear algebra involution ∗ satis-
fying ‖a∗a‖= ‖a‖2 for every a in A.
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Definition II By a non-commutative JB∗-algebra we mean a complete normed
non-commutative Jordan complex algebra (say A) endowed with a conjugate-linear
algebra involution ∗ satisfying ‖Ua(a∗)‖= ‖a‖3 for every a in A.

Since the equality Ua(b) = aba holds for all elements a,b in an alternative algebra,
it is not difficult to realize that alternative C∗-algebras become particular examples
of non-commutative JB∗-algebras. Actually, alternative C∗-algebras are precisely
those non-commutative JB∗-algebras which are alternative (see Fact 3.3.2). Now, by
means of Theorems GN and VP which follow, we can specify how the behaviour of
the Gelfand–Naimark and Vidav–Palmer axioms in the non-associative setting were
clarified.

Theorem GN Norm-unital complete normed complex algebras fulfilling the
Gelfand–Naimark axiom are nothing other than unital alternative C∗-algebras.

Theorem VP Norm-unital complete normed complex algebras fulfilling the Vidav–
Palmer axiom are nothing other than unital non-commutative JB∗-algebras.

Now, keeping in mind Theorems GN and VP above, together with the obvious
fact that closed ∗-invariant subalgebras of an alternative C∗-algebra (respectively,
of a non-commutative JB∗-algebra) are alternative C∗-algebras (respectively, non-
commutative JB∗-algebras), there is no doubt that, even in the non-unital case,
both alternative C∗-algebras and non-commutative JB∗-algebras become reason-
able non-associative generalizations (the latter containing the former) of classical
C∗-algebras. Therefore the main goal of our book will be to prove Theorems GN
and VP (see Theorems 3.2.5 and 3.3.11), together with their non-unital variants
(see Theorem 3.5.53 and [365]), and to describe alternative C∗-algebras and non-
commutative JB∗-algebras by means of the so-called representation theory.

It is worth mentioning that although our approach to the non-associative gen-
eralizations of C∗-algebras is different from those of JB∗-algebras, JB-algebras,
and JB∗-triples, in the end all approaches give rise essentially to the same math-
ematical creature. Indeed, Kaplansky’s JB∗-algebras are nothing other than those
non-commutative JB∗-algebras which are commutative. On the other hand, every
non-commutative JB∗-algebra becomes a JB∗-algebra after symmetrizing its product
(see Fact 3.3.4); JB∗-algebras and JB-algebras coincide after a categorical corres-
pondence (a fact already noted when we reviewed [762]); non-commutative JB∗-
algebras become JB∗-triples in a natural way (see Theorem 4.1.45); and every
JB∗-triple can be seen as a closed subtriple of a suitable JB∗-algebra (a fact
collected without proof in Theorem 4.1.113). Therefore most basic results in the
classical theory of JB∗-algebras, JB-algebras, and JB∗-triples will be involved in our
development.

Since JB∗-triples had not appeared when we reviewed [762], let us comment about
them briefly. Roughly speaking, JB∗-triples become a functional-analytic solution
to the problem of the classification of all ‘bounded symmetric domains’ in com-
plex Banach spaces. Partial solutions to this problem in the same line are due to
Loos [772], who settled the finite-dimensional case, and to Harris [313], who proved
that the open unit ball of each norm-closed subspace of any C∗-algebra, which is
also closed under the triple product {xyz}= 1

2 (xy∗z+ zy∗x), is a bounded symmetric
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domain. The definitive solution, due to Kaup [380, 381], asserts that every bounded
symmetric domain in a complex Banach space is biholomorphically equivalent to the
open unit ball of a suitable complex Banach space, and that if the open unit ball of a
complex Banach space is a bounded symmetric domain, then the Banach space itself
is almost a C∗-algebra, and there is an intrinsically defined triple product {· · ·} on it
which behaves algebraically and geometrically like the one obtained from the binary
product of a C∗-algebra by taking {xyz}= 1

2 (xy∗z+zy∗x). The precise formulation of
this last fact gives rise to the definition of a JB∗-triple (see §2.2.27 and Fact 4.1.41).

JB∗-triples have been intensively studied in recent years and their basic theory can
be found in the monographs of Chu [710], Dineen [721], Friedman and Scarr [732],
Iordanescu [750], Isidro and Stachó [751], and Upmeier [814, 815], as well as in the
survey papers of Chu and Mellon [173], Kaup [384], Rodrı́guez [525], and Russo
[547]. The initial binary approach of our book complements these works.

About the organization of the book

The work we are introducing is covered in two volumes. Roughly speaking, the
dividing line between the two can be drawn between what can be done before and
after involving the holomorphic theory of JB∗-triples and the structure theory of non-
commutative JB∗-algebras. Volume 1 is now concluded, whereas Volume 2 exists
today only in the authors’ minds. Therefore we are going to describe in detail the
content of the first volume (Chapters 1–4), and announce in a less precise form what
we intend to do in the second (Chapters 5–8).

Volume 1

In Chapter 1, we develop the basic theory of normed algebras, putting special em-
phasis on the cases of complete normed unital associative complex algebras and
of (associative) C∗-algebras. Non-associative normed algebras are considered here
only when they do not offer special difficulties, or difficulties can be overcome in an
elementary way. Thus, the first three sections of the chapter are mainly devoted to
attracting the attention of the non-expert reader. The chapter is complemented with
a fourth section where some selected topics in the theory of compact and weakly
compact operators (including recent developments [441, 596]) are discussed.

Chapter 2 is essentially devoted to settling the two first steps in the proof of
the ‘non-associative Vidav–Palmer theorem’ (Theorem VP), namely that the natural
involution of any Vidav–Palmer algebra is an algebra involution (see Theorem 2.3.8)
and that Vidav–Palmer algebras are non-commutative Jordan algebras (see The-
orem 2.4.11). Among the applications of these results, we emphasize the Kadison–
Paterson–Sinclair theorem on isometries of C∗-algebras [358, 480] proved in
Theorem 2.2.19, the Blecher–Ruan–Sinclair non-associative characterization of
(associative) C∗-algebras [106] proved in Theorem 2.4.27, and the non-commutative
Urbanik–Wright theorem (already discussed when we reviewed [762]) proved in
Theorem 2.6.21. (We missed the formulation and a proof of this last theorem in the
delightful book Numbers [727].) Applications of the study of contractive projections
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on C∗-algebras are also made (see Theorems 2.3.68 and 2.4.24). As absolute-valued
algebras arise naturally in the Urbanik–Wright theorem, we devote special attention
to them (see Sections 2.6, 2.7, and 2.8). Since the Vidav–Palmer axiom depends only
on the normed space of the algebra and on the unit, we follow [22, 425] to develop,
where possible, the theory of numerical ranges of elements of norm-unital normed
algebras in the more general setting of a normed space, in which a norm-one element
has been distinguished (see Sections 2.1 and 2.9). This approach (which involves
relevant results of pure geometry of normed spaces [56, 268, 287, 291, 293, 299])
complements those of Bonsall–Duncan [694, 695, 696], Doran–Belfi [725], and
Palmer [786, 787] in their books.

In Chapter 3 our development depends heavily on the basic theory of JB-
algebras, which is taken without proof from Hanche-Olsen and Størmer [738],
and is complemented in some aspects not covered by that book (see Section 3.1
and Subsection 3.4.1). In particular, surjective linear isometries between JB-
algebras are described in detail (see Theorem 3.1.21), and Wright’s categorical
correspondence between JB-algebras and JB∗-algebras [641] is established (see
Fact 3.4.9). Chapter 3 is essentially devoted to proving Theorem GN (see The-
orem 3.2.5), concluding the proof of Theorem VP (see Theorem 3.3.11), developing
the theory of alternative C∗-algebras and of non-commutative JB∗-algebras in
those aspects which do not involve the so-called ‘Jordan spectral theory’ (see
Subsections 3.4.2, 3.4.4, 3.5.1, 3.5.3, and 3.6.2), and proving the unit-free variant
of Theorem GN (see Theorem 3.5.53). The behaviour of the original Gelfand–
Naimark axiom ‖a∗a‖ = ‖a∗‖‖a‖ in the non-associative setting is fully discussed,
generalizing the associative forerunners due to Glimm and Kadison [290] and
Vowden [629] (see Subsections 3.5.2, 3.5.4, and 3.5.6). Some auxiliary results,
taken from the non-geometric theory of non-associative normed algebras, are
also included. Thus Dixmier’s fundamental theorem [723] on continuous auto-
morphisms, which are exponentials of continuous derivations, is proved (see
Theorem 3.4.49).

In Chapter 4, the Jacobson–McCrimmon notion of the Jordan inverse [754, 433,
436] is involved to derive a spectral theory for normed non-commutative Jordan
algebras, which generalizes the one developed in Sections 1.1 and 1.3 for normed
associative algebras. This is done in Subsections 4.1.1, 4.1.2, 4.1.4, and 4.1.5.
Jordan spectral theory is applied to continue the development of the basic theory
of alternative C∗-algebras and of non-commutative JB∗-algebras. In particular,
the relationship between non-commutative JB∗-algebras and JB∗-triples is settled
(see Theorems 4.1.45 and 4.1.55). The functional-analytic treatment of JB∗-triples
is continued in Section 4.2, where Kaup’s commutative Gelfand–Naimark type
theorems for JB∗-triples [380, 381] are proved (see Theorems 4.2.7 and 4.2.9)
and then, following [126, 269, 385, 655], the convexity properties of the closed
unit balls of JB∗-triples and of non-commutative JB∗-algebras are established (see
Theorems 4.2.24, 4.2.28, 4.2.34, and 4.2.36). Following [77, 78], we describe C∗-
algebras and JB∗-algebras generated by a non-self-adjoint idempotent (see Theor-
ems 4.3.11, 4.3.16, 4.3.29, and 4.3.32), and derive Spitkovsky’s theorem [595], that
C∗-algebras generated by a non-self-adjoint idempotent are generated by two self-
adjoint idempotents (see Corollary 4.3.17); we also discuss the appropriate variant
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of Spitkovsky’s theorem for JB∗-algebras (see Corollary 4.3.34). We prove that non-
commutative JB∗-algebras have minimum norm topology (see Theorem 4.4.29) and
minimality of norm (see Proposition 4.4.34). These results generalize associative
forerunners by Cleveland [176] and Bonsall [111], respectively.

We state Behncke’s theory of complete normed hermitian Jordan complex
∗-algebras [82], which is proved following the Aupetit–Youngson arguments [48],
and is presented in a somewhat new way involving the so-called JB∗-representations
(see Theorem 4.5.29 and Corollary 4.5.30). Then a theory of complete normed
hermitian alternative complex ∗-algebras is derived (see Theorem 4.5.37 and
Corollary 4.5.39) in such a way that it contains the classical associative forerunners
[493, 565] as stated in Bonsall–Duncan [696, Section 41]. Generalizing Sakai’s
theorem [807], we prove that domains of closed densely defined derivations of
any unital non-commutative JB∗-algebra are closed under the functional calcu-
lus of class C2 at self-adjoint elements (see Theorem 4.6.63). The chapter also
includes some auxiliary results taken from the general theory of non-associative
normed algebras. Thus the non-associative generalization [516] of Johnson’s
uniqueness-of-norm theorem [353] (see also [696, 715, 786]), as well as Aupetit’s
celebrated forerunner for non-commutative Jordan algebras [40], are settled (see
Section 4.4). Along the same lines, a non-associative version of [522], as well as non-
associative applications of Bollobás’ extremal algebra [110, 182], are discussed (see
Section 4.6).

Volume 2

Chapter 5 will be devoted to proving what can be seen as a unit-free version of the
non-associative Vidav–Palmer theorem, namely that non-commutative JB∗-algebras
are precisely those complete normed complex algebras having an approximate unit
bounded by one, and whose open unit ball is a bounded symmetric domain [365].
Some ingredients in the long proof of this result have been already established in
Volume 1. This is the case of the Bohnenblust–Karlin Corollary 2.1.13, the non-
associative Vidav–Palmer theorem (Theorem 3.3.11) as well as its dual version (Cor-
ollary 3.3.26), Proposition 3.5.23, Theorem 4.1.45, and the equivalence (ii)⇔(vii)
in the Braun–Kaup–Upmeier Theorem 4.2.24. The new relevant ingredients to be
proved in the chapter are: (i) the Chu–Iochum–Loupias result that bounded linear
operators from a JB∗-triple to its dual are weakly compact [172] (equivalently, via
[717, Corollary on p. 12], that all continuous products on the Banach space of a
JB∗-triple are Arens regular); (ii) Kaup’s theorem that JB∗-triples are precisely those
complex Banach spaces whose open unit ball is a bounded symmetric domain [381];
(iii) the contractive projection theorem for JB∗-triples collected without proof in
Theorem 2.3.74; and (iv) Dineen’s celebrated result that the bidual of a JB∗-triple
is a JB∗-triple [213].

Chapter 6 will contain the representation theory for alternative C∗-algebras,
already sketched when we reviewed [762], and the representation theory for
non-commutative JB∗-algebras, following [19, 124, 222, 481, 482, 641]. In these
papers a precise classification of certain prime non-commutative JB∗-algebras (the
so-called ‘non-commutative JBW ∗-factors’) is obtained, and the fact that every
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non-commutative JB∗-algebra has a faithful family of the so-called ‘Type I’ factor
representations is proven. When these results specialize for classical C∗-algebras,
Type I non-commutative JBW ∗-factors are nothing other than the (associative)
W ∗-factors consisting of all bounded linear operators on some complex Hilbert
space [738, Proposition 7.5.2], and, consequently, Type I factor representations are
precisely irreducible representations on Hilbert spaces. The chapter will contain also
a classification of all prime non-commutative JB∗-algebras, obtained in [255, 363]
by applying Zel’manov’s purely algebraic techniques in [437, 662, 663]. Many
applications of the representation theory will be discussed. Among them, we
emphasize the generalization to non-commutative JB∗-algebras [340] of Kaplansky’s
characterization of commutativity of C∗-algebras by means of the absence of
isotropic elements [761, Theorem B in Appendix III].

In Chapters 7 and 8, we will discuss selected topics in the theory of non-associative
normed algebras, which need not be directly related to the non-associative generaliz-
ations of C∗-algebras. Chapter 7 will deal with the analytic treatment of Zel’manov’s
prime theorems for Jordan structures, already sketched in Chapter 6. Thus several
direct contributions of Zel’manov to the theory of normed Jordan algebras [147, 538]
(one of which was refined later in [447]) and the binary results in [146, 151, 152,
539] will be included with proofs. The ternary results in [448, 449] will be simply
surveyed. The survey papers [145, 450, 532] could provide the reader with a more
detailed overview of the intended content of the whole of Chapter 7.

The concluding Chapter 8 will deal with miscellany in the theory of non-
associative normed algebras. We will complement our knowledge on non-associative
generalizations of Rickart’s dense-range-homomorphism theorem (see Theorem
4.1.19 and Proposition 4.1.108) with those obtained in [165, 529]. Complement-
ing Corollary 4.4.55, some automatic continuity theorems for homomorphisms
‘into’, taken from [165, 462, 529], will also be included. Automatic continuity
of Lie homomorphisms, culminating in [130] through the papers of Berenguer–
Villena [97, 98] and Aupetit–Mathieu [47] already discussed in Subsection 4.4.5,
will also receive special attention. As an auxiliary tool for the proof of the main
result in [130], we will incorporate the discussion in [91] about normed Jordan
algebras ‘with finite spectrum’. Actually, the theory of normed Jordan struc-
tures subjected to ‘finiteness conditions’ would merit being systematically or-
ganized. Nevertheless, we will not be doing this, and will limit ourselves to
surveying this matter by reviewing results from Aupetit [43, 44], Aupetit–Baribeau
[45], Aupetit–Maouche [46], Benslimane–Boudi [87, 88], Benslimane–Fernández–
Kaidi [89], Benslimane–Jaa–Kaidi [90], Benslimane–Kaidi [91], Benslimane–
Rodrı́guez [95], Boudi [119], Boudi–Marhnine–Zarhouti–Fernández–Garcı́a [120],
Bouhya–Fernández [121], Fernández [250, 251, 252], Fernández–Garcı́a–Sánchez
[256], Fernández–Rodrı́guez [258], Hessenberger [322, 323, 324, 325], Hessen-
berger–Maouche [326], Loos [402, 404, 405], Maouche [413, 412], Pérez–Rico–
Rodrı́guez–Villena [489], and Wilkins [636]. Another favourite topic to be included
in this chapter is that of the general theory of non-associative H∗-algebras, which
incidentally appears in Remark 2.6.54, Lemma 2.7.50, Subsection 2.8.2, and
Corollary 4.1.104 of this volume. This will be done by taking the appropri-
ate material from the papers [142, 144, 148, 149, 198, 199, 259, 526, 624]
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(see also [687, Chapters 7 and 8] and [525, Section E]). The chapter will conclude
with the non-associative discussion of the Rota–Strang paper [544] covered in
[452, 453].
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1

Foundations

1.1 Rudiments on normed algebras

Introduction In this section we develop the basic theory of normed algebras,
putting special emphasis on the case of complete normed unital associative complex
algebras. Non-associative normed algebras are considered only when they do not
offer special difficulties, or when the difficulties can be overcome in an elementary
way. Thus, this section is mainly devoted to attracting the attention of the non-
expert reader, although the expert reader should browse through it in order to become
familiar with the definitions and symbols introduced here, which need to be kept in
mind throughout the whole book.

Subsection 1.1.1 deals with the basic spectral theory, and culminates with the proof
in Theorem 1.1.46 of the celebrated Gelfand–Beurling formula. In Subsection 1.1.2,
we prove Rickart’s dense-range-homomorphism theorem. Subsection 1.1.3 deals
with the Gelfand theory for complete normed unital associative and commutative
complex algebras, as stated in Theorem 1.1.73, and some applications are discussed.
In Subsection 1.1.4, we introduce topological divisors of zero in a normed algebra,
and involve this notion to prove in Corollary 1.1.95 that (bounded linear) operators
on a Banach space are neither bounded below nor surjective whenever they lie in
the boundary of the set of all bijective operators. Subsections 1.1.5 and 1.1.6 discuss
the complexification, the unital extension, and the completion of a normed algebra.
These tools allow us to show how many results, proved originally for complete
normed unital associative complex algebras, remain true (sometimes in a suitably
altered form) for general normed associative algebras. This section, and throughout,
concludes with a subsection of historical notes and comments.

1.1.1 Basic spectral theory

Throughout this work, K will stand for the field of real or complex numbers. Given
vector spaces X ,Y over K, we denote by L(X ,Y ) the vector space over K of all linear
mappings from X to Y , and we set L(X) := L(X ,X).

By an algebra over K we mean a vector space A over K endowed with a bilinear
mapping (a,b)→ ab from A×A to A, which is called the product or the multiplic-
ation of A. An algebra is said to be associative (respectively, commutative) if its
product is associative (respectively, commutative). An element e of an algebra A is



2 Foundations

said to be a unit for A if ea = ae = a for every a ∈ A. Clearly, an algebra has at
most a unit. The algebra A is said to be unital if it has a nonzero unit (equivalently,
if A has a unit and A 	= 0). The unit of a given unital algebra will be denoted by
1 unless otherwise stated. Given subsets B,C of an algebra A, we set

BC := {xy : (x,y) ∈ B×C}.

Exceptionally, but never in Chapter 1, we will consider algebras over an arbitrary
field F. These are defined as above with F instead of K.

Example 1.1.1 (a) Let E be a non-empty set. Then the set FK(E) (of all functions
from E to K), with operations defined pointwise, becomes a unital associative and
commutative algebra over K.

(b) Let X be a nonzero vector space over K. Then the vector space L(X), with the
product defined as the composition of mappings, becomes a unital associative algebra
over K. It is easily realized that L(X) is commutative if and only if dim(X) = 1. We
denote by IX the unit of L(X), namely the identity mapping on X .

(c) By a subalgebra of an algebra A over K we mean a (vector) subspace (say B)
of A such that BB ⊆ B. In this way, subalgebras of algebras become new examples of
algebras.

Let A and B be algebras over K. By an algebra homomorphism from A to B we
mean a linear mapping F : A → B satisfying F(xy) = F(x)F(y) for all x,y ∈ A.
We say that A and B are (algebra) isomorphic if there exists a bijective algebra
homomorphism from A to B.

Exercise 1.1.2 Prove that every one-dimensional algebra over K with nonzero
product is isomorphic to K.

A norm ‖ · ‖ on (the vector space of) an algebra A over K is said to be an algebra
norm if the inequality ‖ab‖ � ‖a‖‖b‖ holds for all a,b ∈ A. By a normed algebra
we mean an algebra A over K endowed with an algebra norm. A normed algebra
A is said to be complete if it becomes a complete metric space under the distance
d(a,b) := ‖a−b‖, i.e. if the normed space underlying A is a Banach space.

§1.1.3 It is clear that the product of any normed algebra is continuous. Actually,
the axiom ‖ab‖ � ‖a‖‖b‖ of normed algebras does not give much more. Indeed, if
||| · ||| is a norm on an algebra A over K making the product of A continuous (say
|||ab||| � M|||a||||||b||| for all a,b ∈ A and some positive number M), then by setting
‖ · ‖ := M||| · |||, we are provided with an equivalent norm on A converting A into a
normed algebra.

Given a normed space X over K, we denote by

BX := {x ∈ X : ‖x‖ � 1}

the closed unit ball of X , by

SX := {x ∈ X : ‖x‖= 1}

the unit sphere of X , and by X ′ the (topological) dual of X . When necessary, every
normed space X will be seen as a subspace of its bidual X ′′. Given normed spaces
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X ,Y over K, we denote by BL(X ,Y ) the normed space over K of all bounded linear
mappings from X to Y , and we set BL(X) := BL(X ,X).

Example 1.1.4 (a) Let E be a locally compact Hausdorff topological space. Then
the subalgebra CK

0 (E) of FK(E) (consisting of all K-valued continuous functions on
E vanishing at infinity), endowed with the norm

‖x‖ := max{|x(t)| : t ∈ E},

becomes a complete normed associative and commutative algebra over K. This alge-
bra is unital if and only if E is compact. When this is the case, we also write CK(E)
instead of CK

0 (E). We note that, by taking E equal to N endowed with the discrete
topology, we obtain that the real or complex Banach space c0 (of all null sequences
in K) naturally becomes a complete normed associative and commutative algebra
over K.

(b) Let X be a nonzero normed space over K. Then BL(X) is a subalgebra of
L(X), and, endowed with the operator norm

‖F‖ := sup{‖F(x)‖ : x ∈ BX},

becomes a normed unital associative algebra over K. Moreover, the normed algebra
BL(X) is complete if and only if X is a Banach space. Involving the Hahn–Banach
theorem, it is easily realized that BL(X) is commutative if and only if dim(X) = 1.

(c) By restricting the norm, any subalgebra of a normed algebra will be seen
without notice as a new normed algebra.

(d) Let E be a topological space, and let A be a normed algebra over K. Then, by
the continuity of the product of A, the vector space C(E,A) of all continuous func-
tions from E to A becomes an algebra over K under the product defined pointwise.
The subalgebra Cb(E,A) of C(E,A), consisting of all bounded continuous functions
from E to A, becomes a normed algebra over K under the sup norm.

§1.1.5 An element e of an algebra is said to be an idempotent if e2 = e. If e is a
nonzero idempotent in a normed algebra, then we clearly have ‖e‖� 1. In particular,
the unit 1 of a normed unital algebra satisfies ‖1‖� 1. Moreover, no more can be said.
Indeed, if M is any real number with M � 1, and if for λ ∈ K we set ‖λ‖ := M|λ |,
where | · | stands for the usual module on K, then ‖ · ‖ becomes an algebra norm on
K satisfying ‖1‖= M.

Fact 1.1.6 Let E be a connected topological space, let A be a normed algebra over
K, let t0 be in E, and let B stand for the subalgebra of C(E,A) consisting of those
continuous functions from E to A vanishing at t0. Then B has no nonzero idempotent.

Proof Assume to the contrary that there is a nonzero idempotent e ∈ B. Then e(t)
is an idempotent in A for every t ∈ E, and e(t) is nonzero for some t ∈ E. Therefore,
since e(t0) = 0, the continuous mapping t → ‖e(t)‖ from E to R would have a
disconnected range (cf. §1.1.5 above), contradicting the connectedness of E.

As an application of §1.1.3, we have the following.

Proposition 1.1.7 Let A be a finite-dimensional algebra over K. Then A can be
provided with an algebra norm.
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Proof Let {u1, . . . ,un} be a basis of A. Then, for j,k = 1, . . . ,n, we have u juk =

∑n
i=1ρ

jk
i ui, for suitable ρ jk

1 , . . . ,ρ jk
n ∈K. Now, for a=∑n

i=1λiui, set |||a||| :=∑n
i=1 |λi|.

Then, for a as above and b = ∑n
i=1 μiui, we have

ab = ∑n
i=1 τiui, with τi := ∑n

j,k=1λ jμkρ
jk

i ,

and hence

|||ab|||=
n

∑
i=1

|τi| � M
n

∑
j,k=1

|λ j||μk|= M|||a||||||b|||,

where M := nmax{|ρ jk
i | : i, j,k = 1, . . . ,n} does not depend on the couple (a,b).

Finally, apply §1.1.3.

Lemma 1.1.8 Let X be a Banach space over K, let Y,Z be normed spaces over
K, and let f : X ×Y → Z be a separately continuous bilinear mapping. Then f is
(jointly) continuous.

Proof For u ∈ X (respectively, v ∈ Y ), let us denote by fu (respectively, fv) the
bounded linear mapping from Y to Z (respectively, from X to Z) defined by fu(y) :=
f (u,y) for every y ∈ Y (respectively, fv(x) := f (x,v) for every x ∈ X). Then F :=
{ fv : v ∈ BY} is a pointwise bounded family of bounded linear mappings from the
Banach space X to the normed space Z. Indeed, for each x ∈ X and every v ∈ BY

we have

‖ fv(x)‖= ‖ f (x,v)‖= ‖ fx(v)‖ � ‖ fx‖.

It follows from the uniform boundedness principle that F is uniformly bounded on
BX . This implies the existence of a positive number M satisfying

‖ f (x,y)‖ � M‖x‖‖y‖ for every (x,y) ∈ X ×Y .

By combining §1.1.3 and Lemma 1.1.8, we obtain the following.

Proposition 1.1.9 Let A be an algebra over K endowed with a complete norm ‖ · ‖
making the product of A separately continuous. Then, up to the multiplication of ‖ ·‖
by a suitable positive number, A becomes a complete normed algebra.

Definition 1.1.10 Let A be an algebra over K. The annihilator, Ann(A), of A is
defined by

Ann(A) := {a ∈ A : aA = Aa = 0}.

By a centralizer on A we mean a linear mapping (say f ) from A to A satisfying
f (ab) = f (a)b = a f (b) for all a,b ∈ A. The set ΓA of all centralizers on A is a
subalgebra of L(A) containing IA. This subalgebra is called the centroid of A. The
algebra A is said to be central over K whenever ΓA =KIA.

The next proposition contains an easy ‘automatic continuity theorem’.

Proposition 1.1.11 Let A be an algebra over K with Ann(A) = 0. We have:

(i) ΓA is a commutative algebra.
(ii) If A is complete normed, then ΓA ⊆ BL(A).
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Proof Given f ,g ∈ ΓA and a,b ∈ A, we see that

( f ◦g)(a)b = f (g(a))b = g(a) f (b) = g(a f (b))

= g( f (a)b) = g( f (a))b = (g◦ f )(a)b

and

b( f ◦g)(a) = b f (g(a)) = f (b)g(a) = g( f (b)a)

= g(b f (a)) = bg( f (a)) = b(g◦ f )(a).

It follows from the arbitrariness of b in A that ( f ◦g−g◦ f )(a) belongs to Ann(A).
Therefore ( f ◦ g− g ◦ f )(a) = 0. Now, since a is arbitrary in A, we conclude that
f ◦g = g◦ f . Thus ΓA is a commutative algebra.

Assume that A is complete normed. Let f be in ΓA, and let an be a sequence in A
with an → 0 and f (an)→ b ∈ A. Then, for every a ∈ A we have

0 ← f (a)an = a f (an)→ ab and 0 ← an f (a) = f (an)a → ba,

hence ab = ba = 0. Since a is arbitrary in A, and A has zero annihilator, we get that
b = 0. Thus the continuity of f follows from the closed graph theorem.

Let A be a unital associative algebra. An element x ∈ A is said to be invertible in A
if there exists y ∈ A such that xy = yx = 1. If x is invertible, then the element y above
is unique, is called the inverse of x, and is denoted by x−1. We denote by Inv(A) the
set of all invertible elements of A.

Example 1.1.12 (a) Let E be a non-empty set, let FK(E) be as in Example 1.1.1(a),
and let x be in FK(E). Then x ∈ Inv(FK(E)) if and only if x(t) 	= 0 for every t ∈ E.

(b) Let X be a nonzero vector space over K, and let F be in L(X). Then F ∈
Inv(L(X)) if and only if F is bijective.

(c) Let E be a compact Hausdorff topological space, let CK(E) be as in Ex-
ample 1.1.4(a), and let x be in CK(E). Then x ∈ Inv(CK(E)) if and only if x(t) 	= 0
for every t ∈ E. Therefore x ∈ Inv(CK(E)) if and only if x ∈ Inv(FK(E)).

(d) Let X be a nonzero normed space over K, and let F be in BL(X). Then F ∈
Inv(BL(X)) if and only if F is bijective and F−1 is continuous. Therefore, in the
case that X is in fact a Banach space, the Banach isomorphism theorem gives that
F ∈ Inv(BL(X)) if and only if F is bijective, and hence F ∈ Inv(BL(X)) if and only
if F ∈ Inv(L(X)).

Lemma 1.1.13 Let A be a normed unital associative algebra over K, and let a and
b be in Inv(A). Then we have:

(i) ‖a−1 −b−1‖ � ‖a−1‖‖b−1‖‖a−b‖.

(ii)
∣∣∣ 1
‖a−1‖ −

1
‖b−1‖

∣∣∣� ‖a−b‖.

(iii) If ‖a−b‖< 1
‖a−1‖ , then ‖b−1‖ � ‖a−1‖

1−‖a−1‖‖a−b‖ .

Proof We have

‖a−1 −b−1‖= ‖a−1(b−a)b−1‖ � ‖a−1‖‖b−1‖‖a−b‖,

which proves assertion (i). Now, keeping in mind that

‖b−1‖−‖a−1‖ � ‖a−1 −b−1‖,
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it follows from assertion (i) that

1
‖a−1‖ − 1

‖b−1‖ � ‖a−b‖. (1.1.1)

The proof of assertion (ii) is concluded by combining the inequality (1.1.1) with the
one obtained by interchanging the roles of a and b. On the other hand, it follows from
the inequality (1.1.1) that

1−‖a−1‖‖a−b‖
‖a−1‖ =

1
‖a−1‖ −‖a−b‖ � 1

‖b−1‖ . (1.1.2)

Since the condition ‖a− b‖ < 1
‖a−1‖ leads to 1−‖a−1‖‖a− b‖ > 0, assertion (iii)

follows from (1.1.2).

Corollary 1.1.14 Let A be a normed unital associative algebra over K, let a be in
A, and let z be in K such that a− z1 ∈ Inv(A) and |z|> ‖1‖‖a‖. Then

‖(a− z1)−1‖ � ‖1‖
|z|−‖1‖‖a‖ .

Proof We have ‖− z1− (a− z1)‖= ‖a‖< 1
‖(z1)−1‖ , and hence, by Lemma

1.1.13(iii),

‖(a− z1)−1‖ � ‖(z1)−1‖
1−‖(z1)−1‖‖a‖ =

‖1‖
|z|−‖1‖‖a‖ .

Let A be a unital associative algebra over K. It is straightforward that ab and a−1

belong to Inv(A) whenever a,b are in Inv(A). As a consequence, the set Inv(A) is a
group with respect to the product of A. We recall that a topological group is a group
G endowed with a topology making the mappings (x,y)→ xy from G×G to G, and
x → x−1 from G to G, continuous.

Proposition 1.1.15 Let A be a normed unital associative algebra over K. Then
Inv(A) is a topological group in the induced topology from A.

Proof Keeping in mind the continuity of the product of A, it only remains to verify
the continuity of the mapping x → x−1 from Inv(A) to A. By Lemma 1.1.13(ii), the
mapping x → 1

‖x−1‖ from Inv(A) to R is continuous, and hence so is the mapping

x →‖x−1‖. Now, the proof concludes by invoking Lemma 1.1.13(i).

§1.1.16 Let A be a normed associative algebra over K, and let a be in A. We define
powers of a by a1 := a and an+1 := aan. It is easily realized that an+m = anam for all
n,m ∈ N. Now assume that A is normed. Then we define the spectral radius r(a) of
a by

r(a) := inf
{
‖an‖ 1

n : n ∈ N
}
.

Obviously, r(a) � ‖a‖ and r(λa) = |λ |r(a) for λ ∈ K. It is also clear that, as the
infimum of a family of continuous functions, r(·) becomes an upper semicontinuous
function on A.
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Lemma 1.1.17 Let αn be a sequence of non-negative real numbers satisfying

αn+m � αnαm for all n,m ∈ N.

Then the limit limα
1
n

n exists and is equal to inf{α
1
n

n : n ∈ N}.

Proof Write α = inf{α
1
n

n : n ∈ N} and let ε > 0. Fix k such that α
1
k

k < α+ ε . Any
natural number n � k can be written uniquely in the form n = q(n)k+ r(n), where
q(n) ∈ N and 0 � r(n) � k−1, and hence, setting α0 equal to 1, we obtain

αn � αr(n)α
q(n)
k � max{1,α1,α2, . . . ,αk−1}(α+ ε)q(n)k.

Since r(n)
n → 0, we have q(n)k

n → 1 as n → ∞, and hence

α
1
n

n � max{1,α1,α2, . . . ,αk−1}
1
n (α+ ε)

q(n)k
n → α+ ε

as n →∞. Thus limsupα
1
n

n � α+ ε and, since ε was arbitrary and α � α
1
n

n for every

n, we conclude that limα
1
n

n = α .

Corollary 1.1.18 Let A be a normed associative algebra over K, and let a be in A.
We have:

(i) r(a) = lim‖an‖ 1
n .

(ii) If r(a)< 1, then the sequence an converges to zero.

Proof Assertion (i) follows from Lemma 1.1.17 above and the fact that

‖an+m‖ � ‖an‖‖am‖ for all n,m ∈ N.

Assume that r(a)< 1. Choose r(a)< η < 1. By assertion (i), we have ‖an‖ 1
n < η

for n ∈ N large enough, and hence ‖an‖ < ηn → 0. Thus assertion (ii) has been
proved.

Corollary 1.1.19 Let A and B be normed associative algebras over K, let F : A→B
be a continuous algebra homomorphism, and let a be in A. Then r(F(a)) � r(a). As
a consequence, every equivalent algebra norm on A gives rise to the same spectral
radius on A.

Proof For n ∈ N, we have

‖F(a)n‖= ‖F(an)‖ � ‖F‖‖an‖.

Therefore, by taking nth roots, and letting n → ∞, Corollary 1.1.18(i) gives
r(F(a)) � r(a).

Lemma 1.1.20 (von Neumann) Let A be a complete normed unital associative
algebra over K, and let a be in A with r(a)< 1. Then 1−a ∈ Inv(A) and

(1−a)−1 =
∞

∑
n=0

an,

where a0 := 1.
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Proof Choose η with r(a) < η < 1. By Corollary 1.1.18(i), we have ‖an‖ � ηn

for n large enough, and therefore the series ∑‖an‖ converges. It follows from the
completeness of A that the series ∑an is convergent in A. Since for each n we have

(1−a)(1+a+ · · ·+an) = (1+a+ · · ·+an)(1−a) = 1−an+1,

it follows that

(1−a)

(
∞

∑
n=0

an

)
=

(
∞

∑
n=0

an

)
(1−a) = 1.

Thus 1−a is an invertible element of A, and its inverse is
∞

∑
n=0

an .

Corollary 1.1.21 Let A be a complete normed unital associative algebra over K.
We have:

(i) If a ∈ A satisfies ‖1−a‖< 1, then a ∈ Inv(A).

(ii) If a ∈ Inv(A), and if b ∈ A satisfies ‖a−b‖< 1
‖a−1‖ , then b ∈ Inv(A).

Proof Assertion (i) follows by writing a = 1− (1− a) and by applying Lemma
1.1.20. Given a ∈ Inv(A) and b ∈ A such that ‖a−b‖< 1

‖a−1‖ , we see that

‖1−a−1b‖= ‖a−1(a−b)‖ � ‖a−1‖‖a−b‖< 1.

Therefore, by assertion (i), a−1b ∈ Inv(A), and so b = a(a−1b) ∈ Inv(A).

Lemma 1.1.22 Let A be a unital associative algebra over K, and let x and y be in
Inv(A). Then

x−1 − y−1 − y−1(y− x)y−1 = y−1(y− x)x−1(y− x)y−1.

Proof We have

x−1 − y−1 − y−1(y− x)y−1 = x−1(y− x)y−1 − y−1(y− x)y−1

= (x−1 − y−1)(y− x)y−1

= y−1(y− x)x−1(y− x)y−1.

Let X ,Y be normed spaces over K, let Ω be a non-empty open subset of X , let
x0 be in Ω, and let f : Ω→ Y be a function. We recall that f is said to be (Fréchet)
differentiable at x0 if there exists T ∈ BL(X ,Y ) such that

lim
x→x0

x∈Ω\{x0}

‖ f (x)− f (x0)−T (x− x0)‖
‖x− x0‖

= 0.

In this case, the operator T is unique, and is called the (Fréchet) derivative of f at x0.
When X =K, the natural identification BL(K,Y )≡ Y allows us to see the derivative
of f at x0 as the element f ′(x0) ∈ Y given by

f ′(x0) := lim
x→x0

x∈Ω\{x0}

f (x)− f (x0)

x− x0
.
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Theorem 1.1.23 Let A be a complete normed unital associative algebra over K.
Then Inv(A) is open in A. Moreover, the mapping x → x−1 from Inv(A) to A
is differentiable at any point a ∈ Inv(A), with derivative equal to the mapping
x →−a−1xa−1 from A to A.

Proof The first conclusion follows from Corollary 1.1.21(ii). Let us fix a ∈ Inv(A).
Then, by Lemma 1.1.22, for each x ∈ Inv(A) we have

x−1 −a−1 − [−a−1(x−a)a−1] = a−1(x−a)x−1(x−a)a−1,

and hence

‖x−1 −a−1 − [−a−1(x−a)a−1]‖ � ‖a−1‖2 ‖x−1‖‖x−a‖2.

Since the mapping x →‖x−1‖ is continuous (by Lemma 1.1.13(ii)), we derive

lim
x→a

x∈Inv(A)\{a}

‖x−1 −a−1 − [−a−1(x−a)a−1]‖
‖x−a‖ = 0.

Therefore, the mapping x → x−1 is differentiable at a with derivative the mapping
T ∈ BL(A) given by T (x) =−a−1xa−1.

§1.1.24 Let A be an algebra over K, and let S be a non-empty subset of A. Since the
intersection of any family of subalgebras of A is again a subalgebra of A, it follows
that the intersection of all subalgebras of A containing S is the smallest subalgebra
of A containing S. This subalgebra is called the subalgebra of A generated by S, and
is denoted by A(S).

Exercise 1.1.25 Let A be a unital algebra over K, and let S be a non-empty subset
of A. Prove that A(S∪{1}) =K1+A(S).

Now, let A be a normed algebra, and let S be a non-empty subset of A. Since the
intersection of any family of closed subalgebras of A is again a closed subalgebra of
A, it follows that the intersection of all closed subalgebras of A containing S is the
smallest closed subalgebra of A containing S. This subalgebra is called the closed
subalgebra of A generated by S, and is denoted by Ā(S).

Exercise 1.1.26 Let A be a normed algebra over K, and let S be a non-empty subset
of A. Prove that:

(i) If S is a subalgebra of A, then so is S̄.

(ii) Ā(S) = A(S).

(iii) If A is unital, then Ā(S∪{1}) =K1+ Ā(S).

§1.1.27 As usual, we denote by K[x] the algebra of all polynomials in the inde-
terminate x with coefficients in K. Let A be a unital associative algebra over K, and
let a ∈ A. Given a polynomial p(x) =∑n

k=0αkxk with coefficients αk ∈K, we denote
by p(a) the element of A given by p(a) = ∑n

k=0αkak. It is clear that the mapping
p → p(a) is a unit-preserving algebra homomorphism from K[x] onto the subalgebra
of A generated by 1 and a.
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If A is a unital associative algebra and if B is a subalgebra of A containing the
unit of A, then it is clear that Inv(B)⊆ B∩ Inv(A). The next example shows that the
reverse inclusion may not, in general, be true, even in a complete normed context.

Example 1.1.28 Consider the complete normed unital associative and commutative
algebra CC(T), where T= {z ∈C : |z|= 1}. Let u be the element of CC(T) given by
u(z) = z for every z ∈T. It is clear that u is invertible in CC(T) and that the inverse of
u is the function defined by u−1(z) = 1

z for every z∈T. Let B (respectively, C) denote
the subalgebra (respectively, closed subalgebra) of CC(T) generated by {1,u}. Note
that B is nothing other than the subalgebra of CC(T) consisting of all complex poly-
nomial functions, and that C = B̄ because of Exercise 1.1.26(ii). If u were invertible
in C, then we would have u−1 ∈ C, and therefore there would be a polynomial
function p satisfying ‖u−1 − p‖< 1. Thus, for z ∈ T we would have | 1

z − p(z)|< 1,
and hence |1− zp(z)|< 1. Then, by the maximum modulus principle, the inequality
|1− zp(z)|< 1 would be true for every z ∈ BC, and in particular 1 = |1−0p(0)|< 1.
This contradiction shows that u is not invertible in C.

§1.1.29 Given an element a in a complete normed unital associative algebra A,
exp(a) is defined as the element of A given by

exp(a) :=
∞

∑
n=0

an

n!
,

where a0 := 1.

Exercise 1.1.30 Let a and b be commuting elements of a complete normed unital
associative algebra A. Prove that

exp(a+b) = exp(a)exp(b), exp(a) ∈ Inv(A), and exp(a)−1 = exp(−a).

Let A be a unital associative algebra over K. By a one-parameter semigroup in A
we mean a mapping S : R+

0 → A satisfying

(i) S(0) = 1.
(ii) S(t1 + t2) = S(t1)S(t2) for all t1, t2 ∈ R+

0 .

If A is complete normed, and if a is any element of A, then it is clear that the
mapping S :R+

0 →A defined by S(t) := exp(ta) becomes a continuous one-parameter
semigroup in A. Conversely, we have the following.

Theorem 1.1.31 Let A be a complete normed unital associative algebra over K,
and let S : R+

0 → A be a continuous one-parameter semigroup in A. Then there exists
an element a in A such that S(t) = exp(ta) for every t ∈ R+

0 . Moreover, this element
is given by the formula

a = lim
t→0

S(t)−1
t

.

Proof Since S is continuous, the integral
∫ β
α S(t)dt exists for all α ,β ∈ R+

0 and is
an element of A. Further, by the fundamental theorem of calculus, we have

lim
β→α

1
β −α

∫ β

α
S(t)dt = S(α)
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for each α ∈ R+
0 . In particular, since S(0) = 1, it follows that there exists a δ > 0

such that ∥∥∥∥ 1
β

∫ β

0
S(t)dt −1

∥∥∥∥< 1

for every β with 0 < β < δ . By Corollary 1.1.21(i), we realize that

1
β

∫ β

0
S(t)dt ∈ Inv(A)

for every β with 0 < β < δ . On the other hand, it is clear that∫ β

0
S(t + r)dr−

∫ β

0
S(r)dr =

∫ β

0
S(t)S(r)dr−

∫ β

0
S(r)dr

= (S(t)−1)
∫ β

0
S(r)dr,

and ∫ β

0
S(t + r)dr−

∫ β

0
S(r)dr =

∫ β+t

t
S(r)dr−

∫ β

0
S(r)dr

=
∫ β+t

β
S(r)dr−

∫ t

0
S(r)dr.

Therefore, we have

1
t
(S(t)−1)

∫ β

0
S(r)dr =

1
t

∫ β+t

β
S(r)dr− 1

t

∫ t

0
S(r)dr. (1.1.3)

For β ∈]0,δ [ we obtain

1
t
(S(t)−1) =

[
1
t

∫ β+t

β
S(r)dr− 1

t

∫ t

0
S(r)dr

][∫ β

0
S(r)dr

]−1

.

When t → 0 the right-hand side tends to a limit since the first factor tends to S(β )−1.
It follows that

a := lim
t→0

S(t)−1
t

(1.1.4)

exists and is an element of A. Keeping in mind (1.1.4), and again taking the limit as
t → 0 in (1.1.3), we obtain

S(β) = 1+a
∫ β

0
S(r)dr (1.1.5)

for every β ∈ R+
0 . Note that, for each t ∈ R+

0 we have

S′(t) = lim
r→0

S(t + r)−S(t)
r

= lim
r→0

S(t)S(r)−S(t)
r

= aS(t),

and hence, for every k ∈ N∪{0} we have

d
dr

[
− (t − r)k+1

k+1
S(r)

]
= (t − r)kS(r)− (t − r)k+1

k+1
aS(r),

and consequently∫ t

0
(t − r)kS(r)dr =

tk+1

k+1
1+

a
k+1

∫ t

0
(t − r)k+1S(r)dr. (1.1.6)
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Iterated substitution of (1.1.6) (with k = 0, . . . ,n−1) in (1.1.5) leads to

S(t) = 1+
t
1!

a+
t2

2!
a2 + · · ·+ tn

n!
an +

an+1

n!

∫ t

0
(t − r)nS(r)dr

for every n ∈ N. Therefore∥∥∥∥S(t)−
(

1+
t
1!

a+
t2

2!
a2 + · · ·+ tn

n!
an
)∥∥∥∥= ∥∥∥∥an+1

n!

∫ t

0
(t − r)nS(r)dr

∥∥∥∥
� ‖a‖n+1

n!

∥∥∥∥∫ t

0
(t − r)nS(r)dr

∥∥∥∥
� ‖a‖n+1

n!
tn+1 max{‖S(r)‖ : 0 � r � t}.

Letting n → ∞ we obtain that

S(t) =
∞

∑
n=0

tn

n!
an = exp(ta),

which concludes the proof.

Let A be a unital associative algebra over K, and let a be in A. We define the
spectrum of a relative to A (denoted by sp(A,a), or simply sp(a) when the algebra A
is without doubt) as the subset of K given by

sp(A,a) := {μ ∈K : a−μ1 /∈ Inv(A)}.

Example 1.1.32 (a) Let E be a non-empty set, and let x be in FK(E). As a con-
sequence of Example 1.1.12(a), we have sp(FK(E),x) = {x(t) : t ∈ E}.

(b) Let X be a nonzero vector space over K, and let F be in L(X). As a con-
sequence of Example 1.1.12(b), we have

sp(L(X),F) = {μ ∈K : F −μIX is not bijective}.

(c) Let E be a compact Hausdorff topological space, and let x be in CK(E). As a
consequence of Example 1.1.12(c), we have

sp(CK(E),x) = {x(t) : t ∈ E},

and hence sp(CK(E),x) = sp(FK(E),x).
(d) Let X be a nonzero normed space over K, and let F be in BL(X). As a

consequence of Example 1.1.12(d), we have

sp(BL(X),F) = {μ ∈K : F −μIX has not a continuous inverse}.

In the case that X is in fact a Banach space, we actually have

sp(BL(X),F) = {μ ∈K : F −μIX is not bijective},

and hence sp(BL(X),F) = sp(L(X),F).
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Fact 1.1.33 Let A be a unital associative algebra over K, and let a and b be in A.
Then we have:

(i) 1−ab ∈ Inv(A) if and only if 1−ba ∈ Inv(A).

(ii) sp(A,ab)\{0}= sp(A,ba)\{0}.

Proof Assertion (i) follows from the observation that if 1− ab has inverse c, then
1−ba has inverse 1+bca. Assertion (ii) follows from assertion (i).

The following lemma is straightforward.

Lemma 1.1.34 Let A and B be unital associative algebras over K, and let φ : A→B
be a unit-preserving algebra homomorphism. Then

(i) φ(Inv(A)) ⊆ Inv(B). More precisely, if a ∈ Inv(A), then φ(a) ∈ Inv(B) with
φ(a)−1 = φ(a−1).

(ii) For each a ∈ A, sp(B,φ(a))⊆ sp(A,a).

Lemma 1.1.35 Let A be a unital associative algebra over K, and let a be in A.
Then a is invertible in A if (and only if) there exists a unique b ∈ A such that ab = 1.

Proof Assume that there exists a unique b ∈ A such that ab = 1. Then aba = a, so
a(b+ba−1) = 1. It follows from the uniqueness of b that b = b+ba−1, and hence
ba = 1.

§1.1.36 Let A be an algebra over K. We define the opposite algebra of A as the
algebra over K consisting of the vector space of A and the product (a,b)→ ba, and
denote it by A(0). Given another algebra B over K, algebra homomorphisms from A
to B(0) are called algebra antihomomorphisms from A to B. Given an element a in an
algebra A, we denote by La (respectively, Ra) the operator of left (respectively, right)
multiplication by a on A. The mappings L : a → La and R : a → Ra from A to L(A) are
linear, with L1 = R1 = IA whenever A is unital. Moreover A is associative if and only
if L is an algebra homomorphism, if and only if R is an algebra antihomomorphism.
If A is normed, then La and Ra lie in BL(A) for every a ∈ A and, as mappings from A
to BL(A), L and R are contractive.

Lemma 1.1.37 Let A be a unital associative algebra over K, and let a ∈ A. We
have:

(i) a ∈ Inv(A) if and only if La ∈ Inv(L(A)). Moreover, if a ∈ Inv(A), then
L−1

a = La−1 .

(ii) sp(A,a) = sp(L(A),La).

Proof Since the mapping x → Lx is a unit-preserving algebra homomorphism from
A to L(A), it follows from Lemma 1.1.34(i) that a ∈ Inv(A) leads to La ∈ Inv(L(A))
and L−1

a = La−1 . Conversely, if La ∈ Inv(L(A)), then, by Lemma 1.1.35, a ∈ Inv(A).

Invoking Example 1.1.32(d), we get the following.
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Corollary 1.1.38 Let A be a normed unital associative algebra over K, and let
a ∈ A. The following conditions are equivalent:

(i) a ∈ Inv(A).
(ii) La ∈ Inv(BL(A)).

(iii) La ∈ Inv(L(A)).

As a consequence, sp(A,a) = sp(BL(A),La) = sp(L(A),La).

Lemma 1.1.39 Let A be a normed unital associative algebra over K, let a be in
A, and let W be an open subset of K contained in K\sp(A,a). Then the mapping
f : W → A given by f (λ ) = (a− λ1)−1 is differentiable at any point λ ∈ W with
derivative f ′(λ ) = (a−λ1)−2.

Proof Let us fix λ ∈W . Then, for μ ∈W we have

f (μ)− f (λ ) = (a−μ1)−1 − (a−λ1)−1

= (a−μ1)−1 [(a−λ1)− (a−μ1)](a−λ1)−1

= (μ−λ )(a−μ1)−1(a−λ1)−1,

and, keeping Proposition 1.1.15 in mind, we derive that

f ′(λ ) = lim
μ→λ

(a−μ1)−1(a−λ1)−1 = (a−λ1)−2.

Proposition 1.1.40 Let A be a complete normed unital associative algebra over
K, and let a be in A. Then sp(A,a) is a compact subset of K contained in r(a)BK.
Moreover, the mapping λ → (a−λ1)−1 from K\sp(A,a) to A is differentiable.

Proof Let λ ∈ K with |λ | > r(a). Then r(λ−1a) < 1, and so, by Lemma 1.1.20,
a− λ1 = −λ (1− λ−1a) ∈ Inv(A), i.e. λ 	∈ sp(A,a). This proves that sp(A,a) is a
subset of r(a)BK, and consequently that sp(A,a) is bounded in K. Now, in view of
Lemma 1.1.39, to conclude the proof it is enough to show that K\sp(A,a) is an open
subset of K. But this follows from the fact that Inv(A) is an open subset of A (by
Theorem 1.1.23) and the equality

K\sp(A,a) = h−1(Inv(A)),

where h denotes the continuous function λ → a−λ1 from K to A.

Now we prove one of the fundamental results in the theory of normed algebras.

Theorem 1.1.41 Let A be a normed unital associative complex algebra, and let a
be in A. Then sp(A,a) 	= /0.

Proof To derive a contradiction, suppose that sp(A,a) = /0. Then, by Lemma 1.1.39,
the mapping f : C → A given by f (z) = (a − z1)−1 is an entire function. On
the other hand, by Corollary 1.1.14, for each z ∈ C with |z| > ‖1‖‖a‖, we have
‖ f (z)‖ � ‖1‖

|z|−‖1‖‖a‖ , and as a consequence

lim
z→∞

f (z) = 0.

It follows from Liouville’s theorem that f (z) = 0 for each z ∈ C. In particular,

a−1 = f (0) = 0,

a contradiction.
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Definition 1.1.42 Let A be an associative algebra over K. We say that A is a division
algebra if A is unital and Inv(A) = A\{0}.

The next corollary is known as the complex Gelfand–Mazur theorem.

Corollary 1.1.43 Let A be a normed division associative complex algebra. Then A
is isomorphic to C.

Proof For every a ∈ A there exists λ ∈ sp(A,a), hence

a−λ1 	∈ Inv(A) = A\{0},

and so a = λ1. Now, it is clear that the mapping λ → λ1 is a bijective algebra
homomorphism from C to A.

Combining Proposition 1.1.40 and Theorem 1.1.41 we have the following.

Corollary 1.1.44 Let A be a complete normed unital associative complex algebra,
and let a∈A. Then sp(A,a) is a non-empty compact subset of C contained in r(a)BC.

Let K be a non-empty compact subset of K. Then there exists a complete normed
unital associative and commutative algebra A over K, and an element a ∈ A, such
that sp(A,a) = K. Indeed, according to Example 1.1.32(c), it is enough to take A :=
CK(K), and a equal to the element of CK(K) defined by a(t) := t for every t ∈ K. If
we dispense the commutativity, then the algebra A can be chosen independent of K.
This is realized by means of the following.

Exercise 1.1.45 Let K be a non-empty compact subset of K, and let H stand for
the infinite-dimensional separable Hilbert space over K. Prove that there exists T ∈
BL(H) such that sp(BL(H),T ) = K.

Solution We may take H = �2. Note that each bounded sequence αn in K gives
rise to a bounded linear operator on H, just the one {μn} → {αnμn}. Now, let
n → λn be a mapping from N onto a dense subset of K, and consider the operator
T ∈ BL(H) defined by T ({μn}) := {λnμn}. Then, since T − λnIH is not injective
for each n, we have {λn : n ∈ N} ⊆ sp(BL(H),T ), and hence, by Proposition 1.1.40,
also K ⊆ sp(BL(H),T ). To prove the converse inclusion, note that, if λ ∈ K \K,
then the sequence 1

λn−λ is bounded, and hence we can consider the operator

Tλ ∈ BL(H) defined by Tλ ({μn}) := { μn
λn−λ }, which satisfies Tλ (T − λ IH) =

(T −λ IH)Tλ = IH .

Theorem 1.1.46 (Gelfand–Beurling) Let A be a complete normed unital associat-
ive complex algebra, and let a be in A. Then we have

r(a) = max{|λ | : λ ∈ sp(A,a)}.

Proof It follows from Corollary 1.1.44 that

ρ(a) := max{|λ | : λ ∈ sp(A,a)} � r(a).

In order to prove the converse inequality, consider the set

W := {z ∈ C : 1− za ∈ Inv(A)}.
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Note that, for z ∈ C\{0}, we have that z ∈ W if and only if z−1 ∈ C\sp(A,a).
Therefore, it follows from Corollary 1.1.44 that W is an open subset of C containing
{z ∈ C : |z| < ρ(a)−1}. Now, consider the mapping h : W → A given by h(z) :=
(1− za)−1. Note that h(z) = −z−1(a− z−11)−1 for every z ∈ W\{0}, and hence,
by Proposition 1.1.40, h is differentiable in W\{0}. Since, by Proposition 1.1.15,
h is continuous in W , it follows that h is differentiable in W . [Alternatively, by
Theorem 1.1.23, h is differentiable in W .] Keeping in mind Lemma 1.1.20, for each
z ∈ C with |z|< r(a)−1 we can write

h(z) =
∞

∑
n=0

anzn.

Therefore, for each f ∈ A′, the mapping f ◦h is analytic in W and

( f ◦h)(z) =
∞

∑
n=0

f (an)zn

is the power series expansion of f ◦h at z = 0. By Taylor’s theorem, this power series
expansion converges for z ∈ C with |z| < ρ(a)−1. Therefore, for each z ∈ C with
|z| < ρ(a)−1, the sequence f (an)zn converges to 0, and therefore is bounded. Since
this is true for each f ∈ A′, it follows from the principle of uniform boundedness that
anzn is a bounded sequence. Hence, there is a positive number M (depending of z, of
course) such that ‖anzn‖ � M for all n, and therefore ‖an‖ 1

n � M
1
n 1
|z| . Consequently,

r(a) � 1
|z| . Finally, by letting |z| → ρ(a)−1, we conclude that r(a) � ρ(a).

Theorem 1.1.46, together with Example 1.1.32(d), provides us with the following
purely algebraic characterization of the spectral radius of a bounded linear operator
on a complex Banach space.

Corollary 1.1.47 Let X be a complex Banach space, and let F be in BL(X). Then

r(F) = max{|μ | : μ ∈ sp(L(X),F)}.

1.1.2 Rickart’s dense-range-homomorphism theorem

Let A be an algebra over K. A subset I of A is called a left (respectively, right) ideal
of A if I is a subspace of A and AI ⊆ I (respectively, IA ⊆ I). The subset I is said to
be a (two-sided) ideal of A if it is both a left and right ideal of A.

Exercise 1.1.48 Let A be a normed algebra over K, and let I be a

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal

of A. Prove that the closure of I in A is a

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A.

A left, right or two-sided ideal I of an algebra A is called proper if I 	= A. In the
case that A has a unit 1, it is clear that I is proper if and only if 1 	∈ I. §1.1.36 should
be kept in mind for the proof of the next proposition.

Proposition 1.1.49 Let A be a complete normed unital algebra over K. Then the

closure of a proper

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A is a proper

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A.
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Proof Assume for example that I is a left ideal of A, and suppose that Ī = A. Then,
choose b ∈ I such that ‖1−b‖< 1, and note that

‖IA −Rb‖= ‖R1 −Rb‖= ‖R1−b‖ � ‖1−b‖< 1.

By Corollary 1.1.21(i), we find that the element Rb is invertible in BL(A), hence Rb

is bijective, and so A = Rb(A) = Ab ⊆ I.

The assumption in the above proposition that A is unital cannot be removed,
even if A is associative and commutative. A first counterexample is given by any
infinite-dimensional Banach space, endowed with the zero product, by taking a dense
proper subspace. A less trivial counterexample is obtained by taking A equal to c0

(cf. Example 1.1.4(a)), and thinking about the ideal c00 of all quasi-null sequences.
Another counterexample is the following.

Example 1.1.50 Let A stand for the closed subalgebra of CK([0,1]) consisting
of those x ∈ CK([0,1]) such that x(0) = 0, and let I denote the proper ideal of A
consisting of those y ∈CK([0,1]) for which there is 0 < δy � 1 such that y([0,δy]) =

0. We are going to show that I is dense in A. To this end, for n ∈ N, let yn be the
element of I defined by

yn(t) =

⎧⎪⎨⎪⎩
0 if t ∈

[
0, 1

n+1

[
n(n+1)

(
t − 1

n+1

)
if t ∈

[ 1
n+1 ,

1
n

[
1 if t ∈

[ 1
n ,1
]
.

Then, for all x ∈ A and n ∈ N we have

‖xyn − x‖ � max

{
|x(t)| : t ∈

[
0,

1
n

]}
.

Since x is a continuous function with x(0) = 0, it follows that xyn → x. Finally, since
xyn ∈ I for every n, and x is arbitrary in A, we deduce that I is dense in A.

Definition 1.1.51 Let A be an algebra over K, and let I be a

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of

A. We say that I is a maximal

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A if I is proper and if the only

proper

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A containing I is I itself.

As an easy application of Zorn’s lemma, one derives the following.

Fact 1.1.52 Let A be a unital algebra over K. Then there are maximal

⎧⎨⎩ left
right

two-sided

⎫⎬⎭
ideals of A. More precisely, every proper

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A is contained in a

maximal

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A.

As a straightforward consequence of Proposition 1.1.49, we get the following.
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Corollary 1.1.53 Let A be a complete normed unital algebra over K. Then every

maximal

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A is closed.

Let A be an algebra over K, and let I be an ideal of A. Then the quotient vector
space A/I becomes an algebra over K, called the quotient algebra, for the (well-
defined) product given by

(a+ I)(b+ I) := ab+ I for all a+ I,b+ I ∈ A/I.

The mapping π : A → A/I defined by π(a) := a + I becomes an algebra homo-
morphism, called the quotient mapping or canonical homomorphism. If A is unital,
and if I is proper, then the quotient algebra A/I is unital, and the canonical homo-
morphism preserves units.

An algebra A is said to be simple if A has nonzero product and 0 is the only proper
ideal of A.

Lemma 1.1.54 Let A be a unital algebra over K, and let M be a maximal ideal of
A. Then the quotient algebra A/M is simple.

Proof Clearly A/M has nonzero product. Let I be a proper ideal of A/M. Then
π−1(I) is a proper ideal of A containing M, so we have π−1(I) = M by maximality
of M, and so I = 0.

§1.1.55 Let A be a normed algebra, and let I be a closed ideal of A. Then the
quotient algebra A/I becomes a normed algebra for the quotient norm

‖a+ I‖ := inf{‖a+ x‖ : x ∈ I} for every a+ I ∈ A/I.

Indeed, for a,b ∈ A and x,y ∈ I, we have

‖ab+ I‖ � ‖ab+ xb+ay+ xy‖= ‖(a+ x)(b+ y)‖ � ‖a+ x‖‖b+ y‖,

and it is enough to take infimum in x,y to get ‖(a+ I)(b+ I)‖ � ‖a+ I‖‖b+ I‖. The
quotient mapping π : A → A/I is a continuous open mapping with ‖π‖ � 1.

A relevant notion in the automatic continuity theory is that of the separating space
S(Φ) of a linear mapping Φ from a normed space X into a normed space Y , which
is defined by

S(Φ) := {y ∈ Y : there exists xn → 0 in X with Φ(xn)→ y}.

With this notion in mind, the closed graph theorem reads as follows.

Fact 1.1.56 Let X and Y be Banach spaces over K, and let Φ : X → Y be a linear
mapping. Then Φ is continuous if (and only if) S(Φ) = 0.

Lemma 1.1.57 Let X and Y be normed spaces over K, and let Φ : X → Y be a
linear mapping. Then S(Φ) is a closed subspace of Y .

Proof Clearly S(Φ) is a subspace of Y . Assume that y ∈ Y is such that there exists
a sequence yn in S(Φ) converging to y. Then, for each n ∈ N, we can choose xn in
X such that ‖xn‖< 1

n and ‖Φ(xn)− yn‖< 1
n . Therefore xn → 0 and Φ(xn)− yn → 0.
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Since yn → y, we obtain that xn → 0 and Φ(xn)→ y, and we conclude that y ∈S(Φ).
Thus S(Φ) is a closed subspace of Y .

Lemma 1.1.58 Let A and B be normed algebras over K, and let Φ : A → B be an
algebra homomorphism with dense range. Then S(Φ) is an ideal of B.

Proof Let b be in S(Φ), so that there is a sequence xn in A such that xn → 0 and
Φ(xn)→ b. Then, for each a ∈ A we see that axn → 0, xna → 0,

Φ(axn) =Φ(a)Φ(xn)→Φ(a)b, and Φ(xna) =Φ(xn)Φ(a)→ bΦ(a).

Therefore Φ(a)b and bΦ(a) lie in S(Φ). Now, given c ∈ B, choose a sequence an in
A such that Φ(an)→ c, and note that by the above Φ(an)b and bΦ(an) lie in S(Φ).
Since Φ(an)b → cb and bΦ(an)→ bc, and S(Φ) is closed in B (by Lemma 1.1.57),
we realize that cb and bc lie in S(Φ). It follows from the arbitrariness of c in B that
S(Φ) is an ideal of B.

Lemma 1.1.59 and Proposition 1.1.60 immediately below could have been proved
much earlier.

Lemma 1.1.59 Let A be a unital associative algebra over K, and let a in A. If there
exist b,c ∈ A such that ab = ca = 1, then a is invertible in A.

Proof Assume the existence of b,c ∈ A satisfying ab = ca = 1. Then,

b = 1b = (ca)b = c(ab) = c1 = c,

and hence a ∈ Inv(A).

Proposition 1.1.60 Let A be a complete normed complex algebra, let B be a com-
plete normed unital associative complex algebra, let Φ : A → B be an algebra homo-
morphism, and let a be in A. Then

r(Φ(a)) � ‖a‖. (1.1.7)

As a consequence,

1 � ‖a‖+‖1−Φ(a)‖. (1.1.8)

Proof We claim that 1−Φ(x) is invertible in B whenever x is in A and satisfies
‖x‖ < 1. Let x be in A with ‖x‖ < 1. Then we have ‖Lx‖ < 1 and ‖Rx‖ < 1, so that
by Lemma 1.1.20 and Example 1.1.12(d), IA −Lx and IA −Rx are bijective operators
on A. Therefore there exist y,z ∈ A satisfying xy = y−x and zx = z−x. Now we have

(1−Φ(x))(1+Φ(y)) = (1+Φ(z))(1−Φ(x)) = 1,

and hence, by Lemma 1.1.59, 1−Φ(x) is invertible in B, as desired. Now, taking
λ ∈ C with |λ | > ‖a‖, and applying the claim just proved to x := a

λ , we derive that
sp(B,Φ(a))⊆ ‖a‖BC, so that the inequality (1.1.7) follows from Theorem 1.1.46.

By Theorem 1.1.41, we can choose λ ∈ sp(B,Φ(a)), and then clearly 1− λ ∈
sp(B,1−Φ(a)). It follows from Corollary 1.1.44 and the inequality (1.1.7) already
proved that

1 � |λ |+ |1−λ | � r(Φ(a))+ r(1−Φ(a)) � ‖a‖+‖1−Φ(a)‖,

and the proof of the proposition is complete.
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Definition 1.1.61 Let A be a unital algebra over K. The strong radical, or the
Brown–McCoy radical, of A, denoted by s-Rad(A), is defined as the intersection of
all maximal ideals of A. The algebra A is called strongly semisimple if s-Rad(A) = 0.

Theorem 1.1.62 (Rickart’s dense-range-homomorphism theorem) Let A be a com-
plete normed complex algebra, let B be a complete normed unital associative com-
plex algebra, and let Φ : A → B be an algebra homomorphism with dense range.
Assume that B is strongly semisimple. Then Φ is continuous.

Proof Assume at first that B is actually simple. By Lemma 1.1.58, S(Φ) is an ideal
of B, and hence S(Φ) = 0 or B because of the simplicity of B. Suppose that S(Φ) =

B. Then we can choose a sequence an in A such that an → 0 and Φ(an)→ 1, so that,
by the inequality (1.1.8) in Proposition 1.1.60, we have 1 � ‖an‖+‖1−Φ(an)‖→ 0,
a contradiction. Therefore S(Φ) = 0, and Φ is continuous in view of Fact 1.1.56.

Now assume that B is strongly semisimple but not necessarily simple. Let an

be a sequence in A with an → 0 and Φ(an) → b ∈ B. In view of the closed graph
theorem, to prove that Φ is continuous it is enough to show that b = 0. Let M be a
maximal ideal of B. By Lemma 1.1.54, the quotient algebra B/M is a simple unital
associative complex algebra. Moreover, by Corollary 1.1.53, M is closed in B, and
hence, by §1.1.55, B/M is a complete normed algebra. Since the quotient mapping
π : A → A/M is a continuous unit-preserving surjective algebra homomorphism, it
follows that π ◦Φ is a unit-preserving algebra homomorphism from A to B/M with
dense range. Therefore, by the first paragraph in the proof, π ◦Φ is continuous. As
a consequence, we have (π ◦Φ)(an) → 0. But, on the other hand, we deduce from
the continuity of π that (π ◦Φ)(an) = π(Φ(an)) → π(b). Therefore π(b) = 0, and
so b ∈ M. Now, keeping in mind the arbitrariness of the maximal ideal M, and the
strong semisimplicity of B, we conclude that b = 0, as desired.

Corollary 1.1.63 Let A be a strongly semisimple unital associative complex alge-
bra. Then A has at most one complete algebra norm topology.

Proof Let ‖ · ‖ and ||| · ||| be two complete algebra norms on A. Then, by The-
orem 1.1.62 applied to the identity mapping IA : (A,‖ · ‖) → (A, ||| · |||) and to its
inverse mapping, we obtain that both norms are equivalent.

1.1.3 Gelfand’s theory

By a character on an algebra A over K we mean a nonzero algebra homomorphism
from A to K.

Corollary 1.1.64 Let A be a complete normed unital algebra over K, and let ϕ be
a character on A. Then ϕ is continuous with ‖ϕ‖ � 1.

Proof Since ker(ϕ) is both an ideal and a maximal subspace, it is a maximal ideal of
A. Therefore, by Corollary 1.1.53, ker(ϕ) is closed in A, and hence ϕ is continuous.
Given a ∈ A and n ∈ N, we have

|ϕ(a)|n = |ϕ(a)n|= |ϕ(Ln−1
a (a))| � ‖ϕ‖‖a‖n,
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and hence |ϕ(a)| � ‖ϕ‖ 1
n ‖a‖. By letting n → ∞, we obtain that |ϕ(a)| � ‖a‖. Thus

‖ϕ‖ � 1.

Proposition 1.1.65 Let A be a unital associative and commutative algebra over K.
We have:

(i) If A is simple, then A is a field extension of K.
(ii) If M is a maximal ideal of A, then A/M is a field extension of K.

Proof Assume that A is simple. Let a be a nonzero element of A. Then aA is a
nonzero ideal of A, and hence A= aA by simplicity. By taking b∈A such that 1= ab,
we realize that a is invertible in A with inverse b. This shows that A is a field, and
the proof of assertion (i) is complete. Assertion (ii) follows from assertion (i) by
invoking Lemma 1.1.54.

Combining Corollaries 1.1.43 and 1.1.53 and Proposition 1.1.65, we derive the
following.

Corollary 1.1.66 Let A be a complete normed unital associative and commutative
complex algebra, and let M be a maximal ideal of A. Then A/M is isomorphic to C.

On the other hand, as a consequence of Lemma 1.1.34(ii), we have the following.

Corollary 1.1.67 Let A be unital associative algebra over K, and let ϕ be a
character on A. Then ϕ(a) ∈ sp(A,a), for every a ∈ A.

In what follows, for any unital associative and commutative complex algebra A,
we denote by Δ= ΔA the set of all characters on A.

Proposition 1.1.68 Let A be a complete normed unital associative and commuta-
tive complex algebra. We have:

(i) The mapping ϕ → ker(ϕ) defines a bijection from Δ onto the set of all maximal
ideals of A.

(ii) For every a ∈ A, sp(A,a) = {ϕ(a) : ϕ ∈ Δ}.
(iii) For every a ∈ A, r(a) = max{|ϕ(a)| : ϕ ∈ Δ}.

Proof We already know that ker(ϕ) is a maximal ideal of A whenever ϕ is in Δ.
Let M be a maximal ideal of A. Then, by Corollary 1.1.66, there exists an algebra
isomorphism φ : A/M → C. If π : A → A/M denotes the quotient mapping, then it
is clear that ϕ = φ ◦ π is a character on A with ker(ϕ) = M. On the other hand, if
ϕ1,ϕ2 are characters on A such that ker(ϕ1) = ker(ϕ2), then there exists λ ∈ C such
that ϕ1 = λϕ2. Since ϕ1(1) = ϕ2(1) = 1, it follows that λ = 1, and hence ϕ1 = ϕ2.
Thus, assertion (i) has been proved.

In order to prove assertion (ii), let us fix an element a in A. If λ ∈ sp(A,a),
then A(a − λ1) is a proper ideal of A, and hence, by Fact 1.1.52, there exists a
maximal ideal of A containing a − λ1. Therefore, by assertion (i), there exists a
character ϕ on A such that ϕ(a− λ1) = 0, and hence ϕ(a) = λ . This shows that
the inclusion sp(A,a) ⊆ {ϕ(a) : ϕ ∈ Δ} holds. The reverse inclusion follows from
Corollary 1.1.67.

Finally, keeping in mind Theorem 1.1.46, assertion (iii) is a consequence of
assertion (ii).
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Corollaries 1.1.69 and 1.1.70 (immediately below) follow from Fact 1.1.52 and
assertion (i) in Proposition 1.1.68.

Corollary 1.1.69 If A is a complete normed unital associative and commutative
complex algebra, then Δ is not empty.

Corollary 1.1.70 If A is a complete normed unital associative and commutative
complex algebra, then s-Rad(A) =

⋂
ϕ∈Δ ker(ϕ).

If A is a complete normed unital associative and commutative complex algebra, it
follows from Corollary 1.1.64 that Δ is contained in A′. Thus, we can endow Δ with
the relative w∗-topology. This topology on Δ is called the Gelfand topology, and Δ,
equipped with the Gelfand topology, is called the carrier space or Gelfand space
of A.

Proposition 1.1.71 If A is a complete normed unital associative and commutative
complex algebra, then the carrier space Δ of A is a non-empty compact Hausdorff
topological space.

Proof Δ is not empty by Corollary 1.1.69, and is Hausdorff by definition. It follows
from Corollary 1.1.64 that Δ is in fact contained in the closed unit ball BA′ of A′.
Since, by the Banach–Alaoglu theorem, BA′ is compact in the w∗-topology, it
suffices to show that Δ is w∗-closed in A′. Note that, for each a,b ∈ A, the mapping
ha,b : f → f (ab)− f (a) f (b) from A′ to C is w∗-continuous, and hence the set
Ha,b := { f ∈ A′ : ha,b( f ) = 0} is w∗-closed. Since Δ ∪ {0} =

⋂
(a,b)∈A×A Ha,b, it

follows that Δ∪{0} is w∗-closed. Moreover, the mapping h : f → f (1) from A′ to C
is w∗-continuous, and hence the set

H :=
{

f ∈ A′ : h( f ) = 1
}

is w∗-closed. Therefore, Δ= H ∩ (Δ∪{0}) is w∗-closed in A′.

Definition 1.1.72 Let A be a unital associative algebra over K, and let B be a
subalgebra of A. It is clear that, if B contains the unit of A, then the inclusion
Inv(B) ⊆ B∩ Inv(A) holds. We say that B is a full subalgebra of A if B contains the
unit of A and the equality Inv(B) =B∩ Inv(A) actually holds. It is clear that B is a full
subalgebra of A if and only if it contains the unit of A and we have sp(A,x) = sp(B,x)
for every x ∈ B.

Let A be a complete normed unital associative and commutative complex algebra.
It is clear from the definition of the Gelfand topology that, for each a ∈ A, the
mapping G(a) : Δ→ C defined by

G(a)(ϕ) := ϕ(a) for every ϕ ∈ Δ,

is continuous. The element G(a) of the complete normed algebra CC(Δ) is called the
Gelfand transform of a. The mapping G : a → G(a) of A into CC(Δ) is called the
Gelfand representation of A. Now, we summarize the so-called ‘Gelfand theory’ in
Theorem 1.1.73 below. We recall that a family F of mappings from a set E to a set
F is said to separate the points of E whenever for all x1,x2 ∈ E with x1 	= x2 there
exists f ∈ F such that f (x1) 	= f (x2).
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Theorem 1.1.73 Let A be a complete normed unital associative and commutative
complex algebra, with carrier space Δ and Gelfand representation G : A → CC(Δ).
Then

(i) Δ is a non-empty compact Hausdorff topological space.

(ii) The Gelfand representation G is a contractive unit-preserving algebra homo-
morphism whose range is a full subalgebra of CC(Δ) separating the points of Δ.

(iii) G(a)(Δ) = sp(A,a) for every a ∈ A.

(iv) ‖G(a)‖= r(a) for every a ∈ A.

(v) ker(G) =s-Rad(A) = {a ∈ A : r(a) = 0}.

Proof Assertion (i) was proved in Proposition 1.1.71, whereas assertions (iii)
and (iv) were proved in Proposition 1.1.68(ii)–(iii). On the other hand, it is clear
that assertion (iv) implies that G is contractive. The remaining conclusions in asser-
tion (ii) can be easily checked. Finally, assertion (v) follows from Corollary 1.1.70
and assertion (iv).

Corollary 1.1.74 Let A be a complete normed strongly semisimple unital associa-
tive and commutative complex algebra, and let B be any subalgebra of A containing
the unit of A. Then B is strongly semisimple.

Proof By Theorem 1.1.73, B is isomorphic to a subalgebra of CC(E) (for some
compact Hausdorff topological space E) containing the unit. But such a subalgebra
(say C) is always strongly semisimple. Indeed, the valuations of elements of C at
points of E are characters, and kernels of characters are maximal ideals.

Theorem 1.1.75 (Gelfand homomorphism theorem) Let A be a complete normed
complex algebra, let B be a complete normed strongly semisimple unital associative
and commutative complex algebra, and let Φ : A → B be an algebra homomorphism.
Then Φ is continuous.

Proof Regarding Φ as a mapping from A to Φ(A), and keeping in mind Corol-
lary 1.1.74, we may additionally assume that Φ has dense range. Then the result
follows from Theorem 1.1.62.

Given a compact Hausdorff topological space E and a point t ∈ E, we denote by
ϕt : CC(E)→ C the valuation mapping at t, i.e. the mapping f → f (t) from CC(E)
to C.

Proposition 1.1.76 Let E be a compact Hausdorff topological space. Then the
mapping t → ϕt is a homeomorphism from E onto ΔCC(E).

Proof The mapping is injective, because if t1, t2 are distinct points of E, then by
Urysohn’s lemma there is a function f ∈ CC(E) such that f (t1) = 0 and f (t2) = 1,
and therefore ϕt1 	= ϕt2 .

Now we show the surjectivity of the mapping. For each f ∈ CC(E), we will
consider the function f ∗ ∈ CC(E) defined by f ∗(t) := f (t), and the closed subset
Z( f ) of E given by Z( f ) := {t ∈ E : f (t) = 0}. Let ϕ ∈ ΔCC(E), and let { f1, . . . , fn}



24 Foundations

be a finite subset of ker(ϕ). If
⋂n

k=1 Z( fk) = /0, then g :=∑n
k=1 f ∗k fk is strictly positive

on E, hence g ∈ Inv(CC(E)), and so

0 	= ϕ(g) =
n

∑
k=1

ϕ( f ∗k )ϕ( fk) = 0.

This contradiction shows that every finite subset of ker(ϕ) has a common zero. Since
E is compact, all the functions in ker(ϕ) have a common zero, say t0, and thus
ker(ϕ)⊆ ker(ϕt0). Since ϕ(1) = ϕt0(1) = 1, it follows that ϕ = ϕt0 .

Therefore, the mapping t →ϕt is a bijection from E onto ΔCC(E). Since it is clearly
continuous, and both E and ΔCC(E) are compact Hausdorff topological spaces, we
conclude that it is a homeomorphism.

Let E be a compact Hausdorff topological space, and set A :=CC(E). It is straight-
forward that, up to the identification CC(E)≡CC(ΔA) (as normed algebras) induced
by the identification E ≡ ΔA (as topological spaces) given by Proposition 1.1.76 (see
§1.2.27 below for details), the Gelfand representation of A becomes the identity.
Another relevant consequence of Proposition 1.1.76 is the following.

Corollary 1.1.77 Let E and F be locally compact Hausdorff topological spaces,
and let Φ : CC

0 (E)→CC
0 (F) be a bijective algebra homomorphism. Then there exists

a homeomorphism η : F → E such that

Φ( f )(t) = f (η(t)) for all f ∈CC
0 (E) and t ∈ F. (1.1.9)

Proof First note that since the algebras CC
0 (E) and CC

0 (F) are isomorphic, they are
either unital or not at the same time, so E and F are either compact or not at the
same time.

Assume that E and F are compact. Then, clearly, ϕ ◦Φ lies in ΔCC(E) whenever
ϕ is in ΔCC(F), and the mapping τ : ϕ → ϕ ◦Φ from ΔCC(F) to ΔCC(E) is a homeo-
morphism. Now, let σE : E → ΔCC(E) and σF : F → ΔCC(F) be the homeomorphisms

given by Proposition 1.1.76, and set η := σ−1
E ◦τ ◦σF . Then η is a homeomorphism

from F onto E satisfying (1.1.9).
Now assume that E and F are not compact. Let Ê and F̂ stand for their respective

one-point compactifications, and regard CC
0 (E) and CC

0 (F) as ideals of CC(Ê) and
CC(F̂), respectively, in the natural way. Then Φ extends uniquely to a bijective
algebra homomorphism Φ̂ : CC(Ê)→CC(F̂). By the above paragraph, there exists a
homeomorphism η̂ : F̂ → Ê such that Φ̂( f )(t)= f (η̂(t)) for all f ∈CC(Ê) and t ∈ F̂ .
Moreover, since Φ̂(CC

0 (E)) =CC
0 (F), we have η̂(F) = E, so that, by restricting η̂ to

F , we are provided with a homeomorphism η from F onto E satisfying (1.1.9).

Let A be an algebra over K, and let S be a non-empty subset of A. The commutant
of S is defined as the set

Sc := {a ∈ A : ax = xa for every x ∈ S}.

We write Scc instead of (Sc)c for the second commutant or bicommutant of S. The
subset S is called commutative if it consists of pairwise commuting elements (equiva-
lently, if S ⊆ Sc). The following result, whose proof is left to the reader, contains
elementary properties of commutants in associative algebras.
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Proposition 1.1.78 Let A be an associative algebra over K, and let S,S1,S2 non-
empty subsets of A. We have:

(i) Sc is a subalgebra of A, containing 1 if A is unital. Moreover, if in addition A is
a normed algebra, then Sc is a closed subalgebra of A.

(ii) Sc
2 ⊆ Sc

1 whenever S1 ⊆ S2.

(iii) S ⊆ Scc and Sc = Sccc.

(iv) S is commutative if and only if Scc is commutative.

Corollary 1.1.79 Let A be a (normed) associative algebra over K, and let S be a
non-empty commutative subset of A. Then the (closed) subalgebra of A generated by
S is commutative.

Proof By Proposition 1.1.78, Scc is a (closed) commutative subalgebra of A con-
taining S.

We recall that commutants of subsets in unital associative algebras are subalgebras
containing the unit.

Lemma 1.1.80 Let A be a unital associative algebra over K, and let S be a non-
empty subset of A. Then Sc is a full subalgebra of A.

Proof Let x be in Sc ∩ Inv(A). For each b ∈ S, by multiplying the equality xb = bx
on both sides by x−1, we get bx−1 = x−1b. Thus x−1 ∈ Sc, and x ∈ Inv(Sc). Therefore
Sc ∩ Inv(A)⊆ Inv(Sc).

Corollary 1.1.81 Let A be a complete normed unital associative complex algebra,
and let a,b be commuting elements of A. Then we have

(i) sp(a+b)⊆ sp(a)+ sp(b) and sp(ab)⊆ sp(a)sp(b).

(ii) r(a+b) � r(a)+ r(b) and r(ab) � r(a)r(b).

Proof Keeping in mind Theorem 1.1.46, assertion (ii) is a consequence of asser-
tion (i). In order to prove assertion (i), consider the commutative set S := {a,b}, and
set B := Scc. By Proposition 1.1.78, B is a closed unital commutative subalgebra of
A containing S. Let Δ stand for the carrier space of B, and let G : B →CC(Δ) denote
the Gelfand representation. By Theorem 1.1.73(ii)–(iii), we see that

sp(B,a+b) = G(a+b)(Δ) = (G(a)+G(b))(Δ)

⊆ G(a)(Δ)+G(b)(Δ) = sp(B,a)+ sp(B,b).

In the same way, sp(B,ab) ⊆ sp(B,a)sp(B,b). Now, the result follows by invoking
Lemma 1.1.80.

To conclude the present subsection, let us specialize Gelfand’s theory to the case
of algebras ‘generated’ by a single element. Given a (normed) algebra A over K and
a subset S of A, we say that A is generated by S as a (normed) algebra if the (closed)
subalgebra of A generated by S is the whole algebra A. The following lemma will
often be applied.
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Lemma 1.1.82 Let A and B be (normed) algebras over K, let S be a subset of A,
and assume that A is generated by S as a (normed) algebra. We have:

(i) If φ ,ψ : A → B are (continuous) algebra homomorphisms such that φ(s) =ψ(s)
for every s ∈ S, then φ = ψ .

(ii) If φ : A → B is a (continuous) algebra homomorphism, then φ (A) is contained
in the (closed) subalgebra of B generated by φ(S).

Proof Let φ and ψ be as in assertion (i). Then ker(φ −ψ) is a (closed) subalgebra
of A containing S, and hence ker(φ −ψ) = A, which proves assertion (i).

Now let φ : A → B be a (continuous) algebra homomorphism. Let C stand for
the (closed) subalgebra of B generated by φ(S). Then φ−1(C) is a (closed) sub-
algebra of A containing S, and hence φ−1(C) = A. Thus φ(A) ⊆ C, which proves
assertion (ii).

Theorem 1.1.83 Let A be a complete normed unital associative complex algebra,
let a be in A such that A is generated by {1,a} as a normed algebra, and denote
by u the inclusion mapping sp(A,a) ↪→ C. Then there exists a unique continuous
unit-preserving algebra homomorphism Φ : A → CC(sp(A,a)) such that Φ(a) = u.
Moreover we have:

(i) Φ is contractive.
(ii) ker(Φ) =s-Rad(A).

(iii) The range of Φ is a full subalgebra of CC(sp(A,a)).
(iv) sp(A,x) =Φ(x)(sp(A,a)) for every x ∈ A.

Proof Since A is commutative, we may consider the carrier space Δ of A, and
the Gelfand representation G : A → CC(Δ). By Theorem 1.1.73, the Gelfand
transform G(a) of a is a continuous mapping from Δ onto sp(A,a). Moreover, if
ϕ1,ϕ2 ∈ Δ satisfy ϕ1(a) = ϕ2(a), then, since ϕ1(1) = ϕ2(1), we have ϕ1 = ϕ2 (by
Lemma 1.1.82(i)). Therefore, G(a) is injective, and consequently a homeomorphism.
Now, the homeomorphism G(a) : Δ → sp(A,a) induces an isometric surjective
algebra homomorphism G(a)t : CC(sp(A,a)) → CC(Δ) (see §1.2.27 below for
details). By setting

Φ := (G(a)t)−1 ◦G, (1.1.10)

we realize that Φ is a continuous unit-preserving algebra homomorphism from A to
CC(sp(A,a)) satisfying Φ(a) = u. On the other hand, the uniqueness of such a homo-
morphism follows by again invoking Lemma 1.1.82(i). Thus the first conclusion in
the theorem has been proved. Finally, since the algebras CC(sp(A,a)) and CC(Δ) are
isomorphic via G(a)t , and G(a)t is an isometry, the second conclusion follows from
(1.1.10) and Theorem 1.1.73.

Remark 1.1.84 Let A and a be as in Theorem 1.1.83. Then the linear hull of the
set E := {exp(za) : z ∈ C} is dense in A. Indeed, the linear hull of E is a subalgebra
of A containing 1, and its closure contains a because

a = lim
z→0

exp(za)−1
z

.
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1.1.4 Topological divisors of zero

Definition 1.1.85 Let A be an algebra over K. An element a of A is said to be a left
(respectively, right) divisor of zero in A if there exists b ∈ A \ {0} such that ab = 0
(respectively, ba = 0). Elements of A which are left or right (respectively, left and
right) divisors of zero are called one-sided divisors of zero (respectively, two-sided
divisors of zero) in A. We say that an element a ∈ A is a joint divisor of zero in A if
there is b ∈ A\{0} such that ab = 0 and ba = 0. We note that A has no nonzero left
divisor of zero if and only if A has no nonzero right divisor of zero. When this is the
case, we simply say that A has no nonzero divisor of zero.

Exercise 1.1.86 Let A be a nonzero finite-dimensional complex algebra with no
nonzero divisor of zero. Prove that A is isomorphic to C.

Solution Fix y ∈ A \ {0}, and let x be in A. Then the characteristic polynomial
of the operator L−1

y Lx must have a complex root (say λ ), and hence there exists
z ∈ A \ {0} such that (L−1

y Lx − λ IA)(z) = 0. This implies that (x− λy)z = 0, and
hence that x = λy. Since x is arbitrary in A, we have A = Cy. Now, A is a one-
dimensional complex algebra with nonzero product, so the proof is concluded by
applying Exercise 1.1.2.

Let us recall that a linear mapping F between normed spaces X and Y is called
bounded below if there is m > 0 such that ‖F(x)‖ � m‖x‖ for every x ∈ X .

Definition 1.1.87 Let A be a normed algebra over K. An element a of A is said to
be a left (respectively, right) topological divisor of zero in A if there exists a sequence
an of norm-one elements of A satisfying limaan = 0 (respectively, limana = 0).
Hence left (respectively, right) topological divisors of zero in A are nothing other
than those elements a of A such that the operator La (respectively Ra) is not bounded
below. Elements of A which are left or right (respectively, left and right) topological
divisors of zero are called one-sided topological divisors of zero (respectively, two-
sided topological divisors of zero) in A. We say that an element a ∈ A is a joint
topological divisor of zero in A if there is a sequence an of norm-one elements of
A satisfying aan → 0 and ana → 0. In the case that A is commutative, all notions
introduced above coincide, and therefore we will simply speak about topological
divisors of zero.

Exercise 1.1.88 Let a be an element in a normed algebra A. We have:

(i) If a is a left (respectively, joint) divisor of zero in A, then a is a left (respectively,
joint) topological divisor of zero in A. Moreover the converse is true when A is
finite-dimensional.

(ii) The element a is not a joint topological divisor of zero in A if and only if there
exists a positive number m satisfying m‖b‖ � ‖ab‖+‖ba‖ for every b ∈ A.

(iii) If A is unital and associative, and if a is a one-sided topological divisor of zero
in A, then a /∈ Inv(A).

Hint for assertion (ii) Assume that there is no m > 0 satisfying

m‖b‖ � ‖ab‖+‖ba‖ for every b ∈ A.
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Then, for each n ∈ N, there exists bn ∈ A such that 1
n‖bn‖ > ‖abn‖+ ‖bna‖. By

setting an := bn
‖bn‖ , we have ‖an‖= 1 for every n ∈N, and the sequences aan and ana

converge to zero in A. Therefore a is a joint topological divisor of zero in A.

Exercise 1.1.89 Let A be a normed associative algebra over K, and let x be in A
with r(x) = 0, then x is a joint topological divisor of zero in A.

Solution If xn = 0 for some n ∈ N, then x is a joint divisor of zero. Otherwise, for
n ∈ N we set xn := xn

‖xn‖ , so that we have ‖xn‖= 1 and

0 � liminf‖xxn‖= liminf‖xnx‖= liminf
‖xn+1‖
‖xn‖ � lim‖xn‖ 1

n = r(x) = 0,

and therefore x is a joint topological divisor of zero in A.

Proposition 1.1.90 Let A be a complete normed unital associative algebra over K,
and let a be in the boundary of Inv(A) relative to A. Then a is a joint topological
divisor of zero in A.

Proof Since a lies in the boundary of Inv(A) relative to A, it follows from The-
orem 1.1.23 that a 	∈ Inv(A) and there exists a sequence an in Inv(A) with an → a.
By Lemma 1.1.13(ii), for n,m ∈ N we have∣∣∣∣ 1

‖a−1
n ‖

− 1

‖a−1
m ‖

∣∣∣∣� ‖an −am‖.

Therefore 1
‖a−1

n ‖ is a Cauchy sequence in R. Put λ = lim 1
‖a−1

n ‖ . Assume that

λ 	= 0. Then ‖a−1
n ‖ converges to λ−1, and hence is bounded. Let M ∈ R such

that ‖a−1
n ‖ � M for every n ∈ N. By Lemma 1.1.13(i), for all n,m ∈ N we have

‖a−1
n − a−1

m ‖ � M2‖an − am‖, and hence a−1
n is a Cauchy sequence in A. If

a−1
n → b ∈ A, then ana−1

n → ab and a−1
n an → ba, so ab = ba = 1, and so a ∈ Inv(A), a

contradiction. Therefore λ = 0, i.e. 1
‖a−1

n ‖ → 0. Now, setting bn := a−1
n

‖a−1
n ‖ , and writing

abn = (a−an)bn +
1

‖a−1
n ‖ 1 and bna = bn(a−an)+

1
‖a−1

n ‖ 1,

we realize that abn → 0 and bna → 0. Thus a is a joint topological divisor of zero
in A.

Corollary 1.1.91 Let A be a complete normed unital associative algebra over K,
let a be an element of A, and let λ lie in the boundary of sp(A,a) relative to K. Then
a−λ1 is a joint topological divisor of zero in A.

For a subset S of a vector space X over K, co(S) will denote the convex hull of S.

Lemma 1.1.92 Let X be a nonzero normed space over K, let K be a compact subset
of X, and let ∂K denote the boundary of K relative to X. We have:

(i) K ⊆ co(∂K).

(ii) If L is a compact subset of X satisfying K ⊆ L and ∂L⊆ ∂K, then co(K) = co(L).
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Proof We may assume that K 	= /0. Fix a nonzero element u in X . For each x ∈ K,
the set S := {t ∈R : x+tu ∈ K} is a compact subset of R with 0 ∈ S. If α = minS and
β = maxS, then x+αu,x+βu ∈ ∂K and x ∈ [x+αu,x+βu]. Therefore x ∈ co(∂K).
Thus assertion (i) is proved.

In order to prove assertion (ii), assume that L is a compact set in X such that K ⊆ L
and ∂L ⊆ ∂K. Keeping in mind assertion (i), we have

co(K) ⊆ co(L)
| | | |

co(∂K) ⊇ co(∂L),

and the proof concludes.

Let K be a non-empty compact set in K. Recall that the bounded connected com-
ponents of K\K are called the holes of K (in K).

Proposition 1.1.93 Let A be a complete normed unital associative algebra over K,
and let B be a closed subalgebra of A containing the unit of A. We have:

(i) Inv(B) is a clopen subset of Inv(A)∩B, and the boundary of Inv(B) relative to
B is contained in the boundary of Inv(A) relative to A.

(ii) For each b ∈ B, we have sp(A,b) ⊆ sp(B,b), and the boundary of sp(B,b)
relative to K is contained in the boundary of sp(A,b) relative to K. As a con-
sequence, co(sp(A,b)) = co(sp(B,b)).

(iii) If b is in B and if sp(A,b) has no hole in K, then sp(A,b) = sp(B,b).

Proof Keeping in mind Theorem 1.1.23, it is clear that Inv(B) is an open set in
Inv(A)∩B. To see that it is also closed, let bn be a sequence in Inv(B) converging to a
point b ∈ Inv(A)∩B. Then b−1

n converges to b−1 in A, so b−1 ∈ B, which implies that
b ∈ Inv(B). Hence, Inv(B) is a clopen subset of Inv(A)∩B. Moreover, if b is in the
boundary of Inv(B) relative to B, then, by Proposition 1.1.90, b is a joint topological
divisor of zero in B, so b is a joint topological divisor of zero in A, and so b /∈ Inv(A)
(by Exercise 1.1.88(iii)). Since there exists a sequence bn in Inv(B) ⊆ Inv(A) such
that bn converges to b, it follows that b lies in the boundary of Inv(A) relative to A.

The inclusion Inv(B) ⊆ Inv(A), and its consequence that sp(A,b) ⊆ sp(B,b) for
every b ∈ B, are well-known facts to us. Moreover, if b is in B, and if λ is in the
boundary of sp(B,b) relative to K, then b−λ1 is in the boundary of Inv(B) relative
to B. Therefore, by assertion (i), b− λ1 is in the boundary of Inv(A) relative to A,
hence λ ∈ sp(A,b), and so λ lies in the boundary of sp(A,b) relative to K. Now, by
Lemma 1.1.92, we get co(sp(A,b)) = co(sp(B,b)).

Finally, let b be in B such that sp(A,b) has no hole in K. If K = R, then sp(A,b)
is connected, and hence, by assertion (ii), we have sp(A,b) = sp(B,b). If K = C,
then C\sp(A,b) is connected. Since C\sp(B,b) is a clopen subset of C\sp(A,b) by
assertions (i) and (ii), it follows that C\sp(A,b) =C\sp(B,b), and hence sp(A,b) =
sp(B,b).

Let X ,Y be normed spaces over K. Given F ∈BL(X ,Y ), we denote by F ′ : Y ′ →X ′

the transpose operator of F . We recall that the mapping F → F ′ from BL(X ,Y ) to
BL(Y ′,X ′) becomes a linear isometry, and that, in the case that Y = X , this isometry
is an algebra antihomomorphism from BL(X) to BL(X ′).
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Proposition 1.1.94 Let X be a normed space over K, and let F be in BL(X).
We have:

(i) F is a left topological divisor of zero in BL(X) if and only if F is not bounded
below.

(ii) If F is a right topological divisor of zero in BL(X), then F is not an open
mapping.

Proof Assume that F is a left topological divisor of zero in BL(X). Then there
exists a sequence Fn of norm-one elements of BL(X) such that FFn → 0. For n ∈ N,
choose a norm-one element yn ∈ X such that ‖Fn(yn)‖ � n

n+1 , and set xn := Fn(yn)
‖Fn(yn)‖ .

Then xn becomes a sequence of norm-one elements of X satisfying F(xn)→ 0, and
hence F is not bounded below.

Now assume that F is not bounded below. Then there is a sequence xn of norm-
one elements of X such that F(xn) → 0. Take a norm-one element f ∈ X ′ and, for
n ∈ N, consider the bounded linear operator Fn on X defined by Fn(x) := f (x)xn for
every x ∈ X . Then Fn becomes a sequence of norm-one elements of BL(X) satisfying
FFn → 0, and hence F is a left topological divisor of zero in BL(X).

Finally assume that F is a right topological divisor of zero in BL(X). Then F ′ is
a left topological divisor of zero in BL(X ′). Therefore, by the first paragraph in the
proof, there exists a sequence fn of norm-one elements of X ′ satisfying F ′( fn)→ 0.
If F were an open mapping (say F(BX )⊇ δBX for a suitable δ > 0), then, for every
n ∈ N, we would have

‖F ′( fn)‖= sup{| fn(F(x))| : x ∈ BX} � δ sup{| fn(x)| : x ∈ BX}= δ‖ fn‖= δ ,

a contradiction.

The following corollary follows straightforwardly from the open mapping theorem
and Propositions 1.1.90 and 1.1.94.

Corollary 1.1.95 Let X be a Banach space over K, and let F be in the boundary of
Inv(BL(X)) relative to BL(X). Then F is neither bounded below nor surjective.

Corollary 1.1.96 Let X be a complex normed space, and let T be in BL(X). Then
there exists λ ∈ C with |λ |= r(T ) and such that T −λ IX is not bounded below.

Proof Let X̂ stand for the completion of X , and let T̂ be the unique bounded
linear operator on X̂ which extends T . According to Theorem 1.1.46, there is λ ∈
sp(BL(X̂), T̂ ) with |λ | = r(T̂ ), and such a λ lies in the boundary of sp(BL(X̂), T̂ )
relative to C. Then, since r(T̂ ) = r(T ), we have |λ | = r(T ). On the other hand,
by Corollary 1.1.95, T̂ − λ IX̂ is not bounded below, i.e. there is a sequence yn in
SX̂ such that T̂ (yn)− λyn → 0. For n ∈ N, take xn ∈ SX with ‖xn − yn‖ � 1

n . Then
T (xn)−λxn → 0. It follows that T −λ IX is not bounded below.

1.1.5 The complexification of a normed real algebra

Let X ,Y,Z,U be vector spaces over K, and let F : X → Z and G : Y → U be
linear mappings. We denote by F ⊗ G the linear mapping from X ⊗Y to Z ⊗U
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determined by

(F ⊗G)(x⊗ y) = F(x)⊗G(y) for every (x,y) ∈ X ×Y .

Now, let X ,Y be normed spaces over K. We recall that the projective tensor norm
‖ · ‖π on X ⊗Y is defined by

‖α‖π := inf

{
n

∑
i=1

‖xi‖‖yi‖ : α =
n

∑
i=1

xi ⊗ yi

}
.

The normed space (X ⊗Y,‖·‖π) will be called the projective tensor product of X and
Y , and will be denoted by X ⊗π Y . It is well known and easy to see that the equality
‖x⊗ y‖π = ‖x‖‖y‖ holds for every (x,y) ∈ X ×Y . Moreover, if Z and U are normed
spaces over K, and if F : X → Z and G : Y →U are bounded linear mappings, then the
linear mapping F ⊗G from X ⊗π Y to Z ⊗π U is bounded with ‖F ⊗G‖= ‖F‖‖G‖.

Let X be a real vector space. Then the complexification of X is defined as the
real vector space C⊗X , endowed with its natural structure of complex vector space
deriving from the multiplication of vectors by complex numbers determined by
λ (μ ⊗ x) = (λμ)⊗ x. The space X will be regarded as a real subspace of its
complexification via the imbedding x → 1⊗ x, and then the clear equality C⊗X =

X ⊕ iX gives rise to a unique conjugate-linear involutive mapping � on C⊗X such
that X becomes the set of fixed points for �. This involutive mapping will be called
the canonical involution of the complexification of X .

Lemma 1.1.97 Let X be a real normed space. Then C⊗π X becomes a complex
normed space. Moreover, both the natural imbedding X ↪→C⊗π X and the canonical
involution � of C⊗π X are isometries. Therefore, the direct sum C⊗π X = X ⊕ iX is
topological, and hence C⊗π X is complete if and only if so is X.

Proof To prove the first conclusion it is enough to show that, for λ ∈C with |λ |= 1,
the mapping φ : α → λα from C⊗π X to C⊗π X is an isometry. But, for such
a λ , we have φ = Lλ ⊗ IX and φ−1 = Lλ̄ ⊗ IX , so ‖φ‖ = 1 and ‖φ−1‖ = 1, and
so φ is an isometry, as required. That the natural imbedding X ↪→ C⊗π X is an
isometry becomes obvious. On the other hand, since � = τ ⊗ IX (where τ stands for
the conjugation of C), we derive that � is isometric. Finally, for x,y ∈ X we have
x = 1

2 [(x+ iy) + (x+ iy)�], and hence ‖x‖ � ‖x+ iy‖, which shows that the direct
sum C⊗π X = X ⊕ iX is topological.

In view of the above lemma, the complexification of a real normed space X ,
endowed with the projective tensor norm, will be called the (projective) normed
complexification of X , and will be denoted by XC.

Let A,B be algebras over K. As usual, the vector space A ⊗ B will be con-
sidered without notice as a new algebra over K with product determined by
(a1 ⊗ b1)(a2 ⊗ b2) = (a1a2)⊗ (b1b2). Now, assume that A and B are normed.
Then it is straightforward that the projective tensor norm on A ⊗ B is an algebra
norm, so that A⊗π B will be seen without notice as a normed algebra.

Now, let A be a real algebra. Then C⊗A is both a complex vector space and a
real algebra, and it is straightforward that both structures behave smoothly, so the
complexification of A becomes naturally a complex algebra containing A as a real
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subalgebra via the natural imbedding A ↪→ C⊗A, and the canonical involution of
C ⊗ A becomes a conjugate-linear algebra automorphism. Moreover, C ⊗ A is
associative, commutative, or unital, if and only if so is A.

Keeping in mind the above ideas and Lemma 1.1.97, we derive the following.

Proposition 1.1.98 Let A be a normed real algebra. Then its normed complexi-
fication AC := C⊗π A becomes naturally a normed complex algebra containing
isometrically A as a real subalgebra. Moreover, the direct sum AC = A⊕ iA is topolo-
gical, and hence AC is complete if and only if so is A. In addition, AC is associative,
commutative, or unital, if and only if so is A.

Lemma 1.1.99 Let A be a unital associative algebra over K, and let a and b be in
A. We have:

(i) a and b are invertible in A if (and only if) so are ab and ba.
(ii) When a and b commute, a and b are invertible in A if (and only if) so is ab.

Proof Assume that ab and ba lie in Inv(A). Then

a[b(ab)−1] = (ab)(ab)−1 = 1 and [(ba)−1b]a = (ba)−1(ba) = 1.

Therefore, by Lemma 1.1.59, a ∈ Inv(A). Analogously, b ∈ Inv(A).

Proposition 1.1.100 Let A be a unital associative real algebra, and let a be in A.
Then

sp(C⊗A,a) = {α+ iβ : α,β ∈ R such that (a−α1)2 +β 21 /∈ Inv(A)}.

Proof Using that the canonical involution � of C⊗A is a conjugate-linear algebra
automorphism, we realize that an element x ∈ C⊗A is invertible in C⊗A if and
only if so is x�, and that, if this is the case, then we have (x�)−1 = (x−1)�. Then we
deduce that A becomes a full real subalgebra of C⊗A, and that for x ∈C⊗A we have
sp(C⊗A,x�) = {λ̄ : λ ∈ sp(C⊗A,x)} (which implies that sp(C⊗A,a) is invariant
under the conjugation of C). Now, keeping in mind that for α,β ∈ R we have

[a− (α+ iβ)1][a− (α− iβ )1] = (a−α1)2 +β 21 ∈ A,

it follows from Lemma 1.1.99(ii) that

α+ iβ ∈ sp(C⊗A,a)⇔ α− iβ ∈ sp(C⊗A,a)⇔ (a−α1)2 +β 21 /∈ Inv(A).

Now we can prove the real variant of Theorem 1.1.46.

Corollary 1.1.101 Let A be a complete normed unital associative real algebra, and
let a be in A. Then

r(a) = max{|α+ iβ | : α,β ∈ R with (a−α1)2 +β 21 /∈ Inv(A)}. (1.1.11)

Proof By Proposition 1.1.98 and Theorem 1.1.46, we have

r(a) = max{|μ | : μ ∈ sp(AC,a)},

and (1.1.11) follows from Proposition 1.1.100.
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Now, invoking Corollary 1.1.101 and Example 1.1.12(d), we get the following real
variant of Corollary 1.1.47.

Corollary 1.1.102 Let X be a real Banach space, and let F be in BL(X). Then

r(F) = max{|α+ iβ | : α,β ∈ R with (F −αIX )
2 +β 2IX /∈ Inv(L(X))}.

We conclude the present subsection with the following.

Exercise 1.1.103 Apply Proposition 1.1.98 to show that Proposition 1.1.60 remains
true when we replace ‘complex algebras’ with ‘real algebras’. Then look at the
proof of Theorem 1.1.62 to realize that this theorem also remains true with the same
replacement.

1.1.6 The unital extension and the completion of a normed algebra

§1.1.104 Let A be an algebra over K. The unital extension of A is defined as the
algebra over K whose vector space is K×A and whose product is given by

(λ ,x)(μ ,y) := (λμ,λy+μx+ xy).

We will denote by A1 the unital extension of A. A1 is always a unital algebra, whose
unit is 1 := (1,0). Moreover, the mapping a → (0,a) from A to A1 identifies A with
an ideal of A1 . With this identification in mind, we have

A1 =K1⊕A.

Up to an algebra isomorphism, the unital extension of A is the unique unital algebra
over K containing A as a subalgebra and enjoying the following universal property:
every algebra homomorphism from A to any unital algebra B over K extends in a
unique way to a unit-preserving algebra homomorphism from A1 to B. It is straight-
forward that A1 is associative or commutative, if and only if so is A.

Let B,C be algebras over K. The (algebra) direct product of B and C is defined
as the algebra over K whose vector space is B×C, and whose product is defined
coordinate-wise. Set A := B×C. Regarding B and C as subsets of A by means of the
natural imbeddings B ↪→ A and C ↪→ A, they become ideals of A such that A = B⊕C
(which implies BC =CB = 0).

§1.1.105 Conversely, let A be an algebra over K, and let B,C be ideals of A such that
A = B⊕C. Then the mapping (b,c)→ b+c from the algebra direct product B×C to
A becomes a bijective algebra homomorphism taking B onto B and C onto C.

Now, let B,C be associative algebras over K. Then B×C is an associative algebra.
Assume additionally that B and C are unital. Then B ×C is a unital associative
algebra, and an element (b,c) ∈ B ×C is invertible in B ×C if and only if b is
invertible in B and c is invertible in C. As a consequence, for (b,c) ∈ B×C we have

sp(B×C,(b,c)) = sp(B,b)∪ sp(C,c). (1.1.12)

Proposition 1.1.106 Let A be a unital associative algebra over K, and let a be in
A. Then sp(A,a)∪{0}= sp(A1 ,a).
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Proof Noticing that A and K(1−1) are ideals of A1 such that

A1 = A⊕K(1−1),

and that A and K(1−1) are unital algebras, the result follows from §1.1.105 and the
equality (1.1.12).

By a norm-unital normed algebra we mean a normed unital algebra A such that
‖1‖= 1. Now, the following proposition is straightforward.

Proposition 1.1.107 Let A be a (complete) normed algebra over K. Then its unital
extension A1 =K1⊕A, endowed with the norm

‖λ1+a‖ := |λ |+‖a‖, (1.1.13)

becomes a norm-unital (complete) normed algebra over K containing isometrically
A as a closed proper ideal.

Keeping in mind the universal property of the unital extension, the next unit-free
version of Corollary 1.1.64 follows straightforwardly from Corollary 1.1.64 itself
and Proposition 1.1.107.

Corollary 1.1.108 Let A be a complete normed algebra over K, and let ϕ be a
character on A. Then ϕ is continuous with ‖ϕ‖ � 1.

Another relevant consequence of Proposition 1.1.107 is the following.

Corollary 1.1.109 Two complete algebra norms on an associative algebra A over
K give rise to the same spectral radius on A.

Proof In view of Proposition 1.1.98, we may assume that K=C. Let ‖ ·‖ and ||| · |||
be complete algebra norms on A, and denote by the same symbols the corresponding
complete algebra norms on A1 given by Proposition 1.1.107. By Theorem 1.1.46, for
a ∈ A we have

r‖·‖(a) = max{|λ | : λ ∈ sp(A1 ,a)}= r||| · |||(a).

§1.1.110 Let A be a norm-unital normed algebra over K, and let M be a closed
proper ideal of A. Then the normed algebra A/M is norm-unital. Indeed, A/M is
unital with unit 1+M, and, by §1.1.5, we have

1 � ‖1+M‖ � ‖1‖= 1.

Proposition 1.1.111 Let A be a normed unital algebra over K. Then there exists an
equivalent norm ||| · ||| on A converting A into a norm-unital normed algebra over K.
A choice of such a norm ||| · ||| is given by

|||a |||= inf{|λ |+‖a−λ1‖ : λ ∈K} (1.1.14)

for every a ∈ A.

Proof Set M := K(1 − 1) ⊆ A1 . Then A and M are ideals of A1 such that
A1 = A⊕M. Let π : A1 → A1/M be the quotient homomorphism. It follows that
π|A is a bijective algebra homomorphism from A to A1/M. Everything asserted
until now made no use of the fact that the algebra A is normed. Now, consider
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A1 as a normed algebra under the norm given by Proposition 1.1.107, so that,
by §1.1.110, A1/M becomes a norm-unital normed algebra. Since A is closed in
A1 , and M is finite-dimensional, the direct sum A1 = A ⊕ M is topological, and
hence the bijective algebra isomorphism π|A is a homeomorphism. It follows that
|||a ||| := ‖π|A(a)‖ defines an equivalent norm on A converting A into a norm-unital
normed algebra over K. Finally, the equality (1.1.14) follows from the ones
|||a |||= inf{‖a+λ (1−1)‖ : λ ∈K} and (1.1.13).

Lemma 1.1.112 Let X ,Y,Z be normed spaces over K, with completions X̂ ,Ŷ , Ẑ,
respectively, and let f : X ×Y → Z be a continuous bilinear mapping. Then there
exists a unique continuous mapping f̂ : X̂ × Ŷ → Ẑ extending f . Moreover f̂ is
bilinear with ‖ f̂‖= ‖ f‖.

Proof For each x ∈ X , the mapping fx : Y → Ẑ defined by fx(y) = f (x,y) is
a continuous linear mapping. Therefore, there exists a unique continuous linear
mapping f̂ x : Ŷ → Ẑ such that f̂ x|Y = fx and ‖ f̂ x‖ = ‖ fx‖. Consider the mapping

g : X ×Ŷ → Ẑ defined by g(x,y) = f̂ x(y). It is routine to verify that g is a continuous
bilinear mapping such that g|X×Y = f and ‖g‖= ‖ f‖. Now, for each y ∈ Ŷ , consider
de mapping gy : X → Ẑ defined by gy(x) = g(x,y) for every x ∈ X . Since gy is
a continuous linear mapping, there exists a unique continuous linear mapping
ĝy : X̂ → Ẑ such that ĝy|X = gy and ‖ĝy‖= ‖gy‖. Again, the mapping f̂ : X̂ ×Ŷ → Ẑ,

defined by f̂ (x,y) = ĝy(x) for all x ∈ X̂ ,y ∈ Ŷ , is a continuous bilinear mapping
such that f̂ |X×Ŷ = g and ‖ f̂‖= ‖g‖. Therefore, f̂ extends f and satisfies ‖ f̂‖= ‖ f‖.

Finally, the fact that f̂ is the only continuous mapping from X̂ × Ŷ to Ẑ extending f
follows from the fact that X ×Y is dense in X̂ × Ŷ .

Definition 1.1.113 Let A be a normed algebra over K. The (algebra) completion of
A is defined as the complete normed algebra whose Banach space is the completion
of the normed space of A, and whose product is the unique continuous extension
of that of A given by Lemma 1.1.112. Clearly, if A is associative, commutative, or
unital, then so is the completion of A.

Corollary 1.1.114 Let A be a complete normed associative algebra over K, let B
be a normed associative algebra over K, and let F : A → B be an algebra homo-
morphism. Then

r(F(a)) � r(a) for every a ∈ A.

Proof Regarding F as a mapping from A to the completion of B, F remains an
algebra homomorphism, and hence we may assume that B is complete. Moreover,
we may additionally assume that K = C. Indeed, if K = R, then it is enough to
replace A and B with their normed complexifications (see Proposition 1.1.98), and F
with IC⊗F . Now, consider the unital extensions A1 and B1 of A and B, respectively
(which, by Proposition 1.1.107, are complete normed associative complex algebras),
and the unique unit-preserving algebra homomorphism G : A1 → B1 extending F .
Then, invoking Lemma 1.1.34(ii) and Theorem 1.1.46, for a ∈ A we have

r(F(a)) = r(G(a)) = max{|μ | : μ ∈ sp(B1 ,G(a))}
� max{|λ | : λ ∈ sp(A1 ,a)}= r(a).
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We note that Corollary 1.1.109 follows straightforwardly from Corollary 1.1.114
above.

Arguments such as those in the proof of Corollary 1.1.114 also allow us to derive
the following from Corollary 1.1.81(ii).

Corollary 1.1.115 Let A be an associative normed algebra over K, and let a,b be
commuting elements of A. Then

r(a+b) � r(a)+ r(b) and r(ab) � r(a)r(b).

1.1.7 Historical notes and comments

The material in this section has been elaborated mainly from the books of Berberian
[689], Bonsall and Duncan [696], Bourbaki [697], Conway [711], Helemskii [742],
Hille and Phillips [746], Müller [780], Murphy [781], Rickart [795], Rudin [804],
and Sinclair [810]. Other sources are quoted in what follows.

For functional analysts, Proposition 1.1.7 is folklore because of the elementary
observation in §1.1.3 and the fact that bilinear mappings starting from a product of
two finite-dimensional normed spaces and valued into a normed space are automatic-
ally continuous. However, for people working only in pure algebra, Proposition 1.1.7
‘needs a proof’. The elementary one given here is close to that of Albert’s paper [9].

For the roots of Theorem 1.1.31, the reader is referred to the beginning of Notes
and Remarks VIII.10 in Dunford–Schwartz [726]. The proof given here is taken from
Theorem 9.4.2 in Hille–Phillips [746]. According to the authors of [746], the main
points in this proof are due to Nagumo [457], who, according to [804, p. 373], initi-
ated the abstract study of normed algebras. Another proof of Theorem 1.1.31 will be
discussed in Subsection 1.3.3. Besides Theorem 1.1.31, the exponential function on
complete normed unital associative algebras has relevant applications. A sample, also
due to Nagumo [457] (see also [820, Theorem 7.3]), is formulated in the following.

Theorem 1.1.116 Let A be a complete normed unital associative algebra. Then the
connected component of the unit in the topological group Inv(A) coincides with the
subgroup of Inv(A) generated by the set {exp(a) : a ∈ A}.

According to the preface of Zelazko’s book [820], the foundations of the theory of
normed associative algebras are due to Gelfand [284]. In particular, Theorem 1.1.41
and the proof given here are due to him. A proof, avoiding complex function theory,
was later given by Rickart [503], and is included in [795, Theorem 1.6.3] and [696,
Theorem 5.7]. In fact, Rickart’s proof gives additional information, formulated as
follows.

Theorem 1.1.117 Let A be a normed unital associative complex algebra, and let a
be in A. Then there exists λ ∈ sp(A,a) with |λ | � r(a).

According to [795, p. 38], the ‘spectral radius formula’ of Theorem 1.1.46, which
was proved by Gelfand [284] in the general case of a complete normed unital
associative complex algebra, was proved for the algebra of absolutely convergent
trigonometric series by Beurling [101]. With Theorem 1.1.117 in mind, the Gelfand–
Beurling formula follows straightforwardly from Proposition 1.1.40. After the
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Gelfand–Beurling formula is proved in one or other manner, Theorem 1.1.117 can
be refined by replacing in its formulation |λ | � r(a) with |λ | = r(a). Indeed, this
follows by applying Theorem 1.1.46, with the completion of A (say Â) instead of A,
and by noticing that sp(Â,a)⊆ sp(A,a).

A direct proof of Corollary 1.1.43, avoiding both Theorem 1.1.41 and complex
function theory, can be found in Mazet’s paper [430].

Example 1.1.50 contains the solution of the undergraduate student A. Molino to
an exercise raised in the class.

§1.1.118 Theorem 1.1.62 (in the particular case that the algebra A is associative)
and Corollary 1.1.63 are due to Rickart [501]. The actual version of Theorem 1.1.62
is taken from [540]. We do not know whether Theorem 1.1.62 remains true when
associativity of the algebra B is removed altogether. By looking at the proof, this
would be the case whenever the inequality (1.1.8) in Proposition 1.1.60 could be
proved without involving the associativity of B. But this last problem remains open
to date.

§1.1.119 According to [804, p. 373], ‘what really got the subject of associative
normed algebras was Gelfand’s discovery of the important role played by the
maximal ideals of a [complete normed associative and] commutative algebra [284]
and his construction of what is now known as the Gelfand transform’. In particular,
Theorem 1.1.73 and the associative forerunner of Theorem 1.1.75 are due to
Gelfand [284].

According to [790, p. 111], Corollary 1.1.77 is due to Gelfand and Kolmogorov
[286].

The notion of a topological divisor of zero was introduced by Shilov [564].
Propositions 1.1.90 and 1.1.93 are due to Rickart [500].

In relation to Proposition 1.1.93, it is worth mentioning the following.

Proposition 1.1.120 Let A be a complete normed unital associative algebra over K,
let B be a closed subalgebra of A containing the unit of A, and let b be in B. We have:

(i) sp(B,b) is the union of sp(A,b) and a (possibly empty) collection of holes of
sp(A,b).

(ii) If K=C, and if B is generated by {1,b} as a normed algebra, then sp(B,b) has
no hole in C.

Assertion (i) in the above proposition follows easily from the first assertion in
Proposition 1.1.93(ii) and the purely topological fact that, if V and W are open sets
in some topological space, if V ⊆ W, and if W contains no boundary point of V ,
then V is a union of connected components of W [804, Lemma 10.16]. For a proof of
assertion (ii) in Proposition 1.1.120, the reader is referred to [696, Theorem 19.5]. As
a straightforward consequence of Proposition 1.1.120(i), we deduce the following.

Corollary 1.1.121 Let A be a complete normed unital associative algebra over K,
and let a be in Inv(A). If 0 does not belong to any hole of sp(A,a), then a−1 lies in
the closed subalgebra of A generated by {1,a}.
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Corollaries 1.1.95 and 1.1.96 become the rudiments of the so-called operator
theory. Additional basic information on this topic can be found in Section 1.4 below,
as well as in [689, 726, 795]. For deeper developments, the reader is referred to
[767, 780].

Due to the power of complex methods, the possibility (assured by Proposition
1.1.98) of regarding (isometrically) any real normed algebra A as a real subalgebra
of a normed complex algebra becomes a relevant fact. Our method of converting
the algebraic complexification of A into a complex normed algebra by means of
the projective tensor norm, is no other than that of Bonsall and Duncan in [696,
Proposition 13.3]. This method has the advantage that it works without problems in
the non-associative setting. It is worth mentioning that other earlier methods, like the
one in Theorem 1.3.2 of Rickart’s book [795], only work in the associative setting.
All facts about the projective tensor product stated without proof in our development
are straightforward. Anyway, the reader can consult Section 3 of the Defant–Floret
book [717] for details and complements.

Proposition 1.1.111 was proved first by Ocaña in his PhD thesis [784] with a proof
different from ours. Ocaña’s proof was included in [452].

§1.1.122 In the associative case, the existence of a norm-unital equivalent renorm-
ing of a normed unital algebra can be proved as follows:

Let A be a normed unital algebra, and, for a ∈ A, set |||a ||| := ‖La‖. Then we
have |||1 |||= 1 and

|||a |||= ‖La‖ � ‖a‖= ‖La(1)‖ � ‖La‖‖1‖= ‖1‖|||a |||

for every a∈A, so that ||| · ||| is an equivalent norm on A. Finally, if A is associative,
then, as pointed out in §1.1.36, the mapping a→ La is an algebra homomorphism,
which implies that ||| · ||| is an algebra norm.

1.2 Introducing C∗-algebras

Introduction We introduce C∗-algebras, and develop their basic theory, focussing
on the unital commutative case. Some applications to the non-commutative case, like
the continuous functional calculus in a normal element, are considered. The passing
from a C∗-algebra to its C∗-algebra unital extension is also discussed in order to profit
from the non-unital case. As in the case of Section 1.1, the present section is mainly
devoted to attracting the attention of the non-expert reader. Deeper developments
will be discussed later.

1.2.1 The results

We begin this section by introducing the adjoint of a bounded linear operator between
Hilbert spaces.

Proposition 1.2.1 Let H,K,L be Hilbert spaces over K.

(i) If F ∈ BL(H,K), then there is a unique element F∗ ∈ BL(K,H) such that

(F(x)|y) = (x|F∗(y)) for all x ∈ H and y ∈ K.
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(ii) The mapping F →F∗ from BL(H,K) to BL(K,H) is conjugate-linear. Moreover,
for F ∈ BL(H,K) we have F∗∗ = F and

‖F‖= ‖F∗‖= ‖F∗F‖ 1
2 .

(iii) If F ∈ BL(H,K), and if G ∈ BL(K,L), then (GF)∗ = F∗G∗.

Proof If F ∈ BL(H,K) and y ∈ K, then the function x → (F(x)|y) is a continu-
ous linear functional on H, so, by Riesz’ representation theorem, there is a unique
element F∗(y) ∈ H such that (F(x)|y) = (x|F∗(y)) for every x ∈ H. Moreover,

‖F∗(y)‖= sup{|(F(x)|y)| : x ∈ BH} � ‖F‖‖y‖.

It is routine that the map F∗ : K → H is linear, and from the above we realize that F∗

is bounded with ‖F∗‖ � ‖F‖. Thus, F∗ satisfies the condition in assertion (i), which
yields the uniqueness of F∗.

Let F be in BL(H,K). Then, for x ∈ BH we have

(F(x)|F(x)) = (x|F∗F(x)) � ‖F∗F‖,

so

‖F‖2 = sup
{
‖F(x)‖2 : x ∈ BH

}
� ‖F∗F‖ � ‖F‖2.

Hence, ‖F‖ = ‖F∗F‖ 1
2 . The other properties in assertion (ii) have routine verifica-

tions.
Assertion (iii) follows from the fact that, for F ∈ BL(H,K) and G ∈ BL(K,L) we

have

(GF(x)|z) = (F(x)|G∗(z)) = (x|F∗G∗(z))

for all x ∈ H and z ∈ L.

Let H and K be Hilbert spaces over K. For each F ∈ BL(H,K), the operator F∗ ∈
BL(K,H) is called the adjoint of F .

By an involution on a set E, we mean a mapping x → x∗ from E to E satisfying
x∗∗ = x for every x ∈ E. Given a linear or conjugate-linear involution ∗ on a vector
space X over K, we denote by H(X ,∗) the real subspace of X consisting of all
∗-invariant elements of X . In the case K = C and ∗ is conjugate-linear, we have
X = H(X ,∗)⊕ iH(X ,∗). Given two sets E and F , each of which is endowed with an
involution ∗ and a mapping f : E → F , we say that f is a ∗-mapping if the equality
f (x∗) = f (x)∗ holds for every x ∈ E.

A linear or conjugate-linear involution ∗ on an algebra A over K is said to be an
algebra involution if the equality (ab)∗ = b∗a∗ holds for all a,b ∈ A.

§1.2.2 By a ∗-algebra over K we mean an algebra over K endowed with a
conjugate-linear algebra involution ∗. The ∗-invariant subalgebras of a given
∗-algebra will be called ∗-subalgebras. As usual, by a C∗-algebra we mean a
complete normed associative complex ∗-algebra A satisfying ‖a∗a‖ = ‖a‖2 for
every a ∈ A. The straightforward fact that the involution of any C∗-algebra is
an isometry will be applied without notice. On the other hand, it is clear that
closed ∗-subalgebras of C∗-algebras are C∗-algebras. Moreover, it follows from
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Proposition 1.2.1 that, given a complex Hilbert space H, the passing from each
element F ∈ BL(H) to its adjoint F∗ becomes a conjugate-linear algebra involution
on BL(H), and that, endowed with this involution and the operator norm, BL(H)

turns out to be a C∗-algebra.

The celebrated non-commutative Gelfand–Naimark theorem establishes the
reciprocal.

Theorem 1.2.3 Every C∗-algebra is isometric and algebra ∗-isomorphic to a
closed ∗-subalgebra of BL(H) for some complex Hilbert space H.

For the moment, we will not discuss the proof of Theorem 1.2.3.
Let E be a non-empty set, and let FC(E) stand for the algebra of all complex-

valued functions on E (see Example 1.1.1(a)). For each x ∈ FC(E), we denote by
x∗ the element in FC(E) defined by x∗(t) = x(t) for every t ∈ E. It is clear that the
mapping x → x∗ is a conjugate-linear algebra involution on FC(E). In the case that
E is endowed with a locally compact Hausdorff topology, the subalgebra CC

0 (E) of
FC(E) (see Example 1.1.4(a)) is ∗-invariant, and, endowed with the involution ∗ and
its canonical norm ‖x‖ := max{|x(t)| : t ∈ E}, becomes a commutative C∗-algebra.

According to the celebrated commutative Gelfand–Naimark theorem, there are no
more examples of commutative C∗-algebras. Indeed, we have the following.

Theorem 1.2.4 Every commutative C∗-algebra is isometric and algebra ∗-
isomorphic to CC

0 (E) for some locally compact Hausdorff topological space E.

Theorem 1.2.4 above follows easily from Theorem 1.2.23 and Proposition 1.2.44
below. In the commutative case, the proof of the non-commutative Gelfand–Naimark
theorem (Theorem 1.2.3) is very easy. Indeed, we have the following.

Exercise 1.2.5 Let E be a locally compact Hausdorff topological space. Then there
exists a complex Hilbert space H such that the C∗-algebra CC

0 (E) is isometrically
algebra ∗-isomorphic to a closed ∗-subalgebra of BL(H).

Solution Take H equal to the complex Hilbert space �2(E), and for x ∈ CC
0 (E) let

Φ(x) ∈ BL(H) be defined by Φ(x)({λt}t∈E) := {x(t)λt}t∈E for every {λt}t∈E ∈ H.
Then the mapping x → Φ(x) becomes an isometric algebra ∗-homomorphism from
CC

0 (E) to BL(H).

One of the ingredients in the proof of Theorem 1.2.4 is the so-called Stone–
Weierstrass theorem (Theorem 1.2.10), which is proved in what follows.

§1.2.6 Let E be a compact Hausdorff topological space, and let f and g be in
CR(E). As usual, we say that f � g whenever f (t) � g(t) for every t ∈ E. Then � is
a partial order on CR(E), and in fact (CR(E),�) is a lattice for the operations ∨ and
∧ given by

( f ∨g)(t) = max{ f (t),g(t)} and ( f ∧g)(t) = min{ f (t),g(t)}.

Lemma 1.2.7 Let E be a compact Hausdorff topological space and let X be a
subset of CR(E). If f ∨ g and f ∧ g belong to X for all f and g in X, then every
continuous function on E that can be approximated from X in every pair of points in
E can in fact be approximated uniformly from X.
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Proof Let f be a function that can be approximated as described above. For every
ε > 0 and u,v in E there is thus an fu,v in X such that both u and v are in the sets

V u,v = {t ∈ E : f (t)< fu,v(t)+ ε} and Vu,v = {t ∈ E : fu,v(t)< f (t)+ ε}.

For fixed u and variable v the open sets V u,v cover E. Since E is compact, we can
therefore find v1, . . . ,vn ∈ E such that E =

⋃
V u,vk . By the assumption on X , we have

fu := ∨ fu,vk ∈ X , and we see that f (t)< fu(t)+ ε for every t in E. At the same time
fu(t) < f (t)+ ε for every t in Wu =

⋂
Vu,vk which is an open neighbourhood of u.

Varying now u, we find u1, . . . ,um such that E =
⋃

Wuk , and we have

fε := ∧ fuk ∈ X with fε(t)− ε < f (t)< fε (t)+ ε for every t in E.

Lemma 1.2.8 Let E be a compact Hausdorff topological space. If A is a closed
subalgebra of CR(E), then A is stable under the lattice operations f ∨g and f ∧g in
CR(E).

Proof For ε > 0 consider the function h : R→R given by h(x) = ε2 +x2. Note that
for every x ∈ R we have

h(x) = 1+ ε2 +(x2 −1) = (1+ ε2)(1+u(x)),

where u : R → R is the function given by u(x) = x2−1
1+ε2 . Since, for each x ∈ [−1,1]

we have |u(x)| � 1
1+ε2 < 1, it follows that the power series expansion of h(x)

1
2

at 0 converges uniformly on [−1,1]. We can thus find a polynomial p such that

|(ε2 + x2)
1
2 − p(x)| < ε for every x in [−1,1], in particular, p(0) < 2ε . Set

q(x) = p(x)− p(0). Note that for every x ∈ R we have 0 � (ε2 + x2)
1
2 −|x| � ε , and

consequently |q(x)−|x| |� ε+2ε+ε = 4ε . Since q(0) = 0, we know that q( f ) ∈ A
for every f in A. Now take f in A with ‖ f‖ � 1. Then

‖q( f )−| f |‖ � 4ε.

Since ε is arbitrary and A is closed in CR(E), it follows that | f | ∈ A for every f
in A. As

f ∨g = 1
2 ( f +g+ | f −g|) and f ∧g = 1

2 ( f +g−| f −g|),

we immediately have the desired conclusions.

§1.2.9 Let A = CC(E), where E is a compact Hausdorff topological space. Then
H(A,∗) is a closed real subalgebra of A isomorphic to CR(E). Therefore, we can
write CC(E) =CR(E)⊕ iCR(E).

Theorem 1.2.10 (Stone–Weierstrass) Let E be a compact Hausdorff topological
space and let A be a ∗-subalgebra of CC(E) containing the constant functions and
separating the points of E. Then A is dense in CC(E).
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Proof The closure Ā of A in CC(E) is still a ∗-subalgebra of CC(E), so the set
H(Ā,∗) of real-valued functions from Ā is a closed subalgebra of CR(E). By Lemma
1.2.8 it is therefore stable under the lattice operations f ∨g and f ∧g in CR(E). Let t1
and t2 be in E with t1 	= t2. By assumption, there is g∈A such that g(t1) 	= g(t2). Since
the real and imaginary parts of g belong to H(A,∗) we see that H(Ā,∗) separates
points in E and contains the constant real-valued functions. Given α,β real numbers,
we note that there exists h ∈ H(Ā,∗) such that h(t1) = α and h(t2) = β . Indeed, there
exists g ∈ H(Ā,∗) such that g(t1) 	= g(t2), and then the function

h =
α−β

g(t1)−g(t2)
g+

(
α− α−β

g(t1)−g(t2)
g(t1)

)
1

lies in H(Ā,∗) and satisfies h(t1) = α and h(t2) = β . Given f ∈ CR(E) we can
therefore choose h in H(Ā,∗) such that h(t1) = f (t1) and h(t2) = f (t2). Thus H(Ā,∗)
fulfills the assumptions in Lemma 1.2.7, whence f ∈ H(Ā,∗). Consequently,

CC(E) = H(Ā,∗)+ iH(Ā,∗) = Ā.

Definition 1.2.11 Let A be a C∗-algebra. An element a ∈ A is said to be self-adjoint
(respectively, normal) if a∗ = a (respectively, a∗a = aa∗). We note that self-adjoint
elements are normal, and that, for a ∈ A, a∗a is self-adjoint.

Lemma 1.2.12 Let A be a C∗-algebra, and let a be a normal element of A. Then
r(a) = ‖a‖.

Proof We have

‖a2‖2 = ‖(a2)∗a2‖= ‖a∗a∗aa‖= ‖a∗aa∗a‖
= ‖(a∗a)∗(a∗a)‖= ‖a∗a‖2 = ‖a‖4,

and hence ‖a2‖ = ‖a‖2. Since, for n ∈ N, an is also a normal element of A, the last
equality becomes the starting point for an induction argument showing that

‖a2n‖= ‖a‖2n
for every n ∈ N.

Therefore, by Corollary 1.1.18(i), we have

r(a) = lim
n→∞

‖an‖ 1
n = lim

n→∞
‖a2n‖ 1

2n = ‖a‖.

Proposition 1.2.13 Let A be a C∗-algebra, and let a be in A. Then

‖a‖=
√

r(a∗a).

Proof By Lemma 1.2.12 applied to the self-adjoint element a∗a, we have

r(a∗a) = ‖a∗a‖= ‖a‖2.

Corollary 1.2.14 Let A and B be C∗-algebras, and let Φ : A → B be an algebra
∗-homomorphism. Then Φ is contractive. As a consequence, if Φ is bijective, then Φ
is an isometry.

Proof Let a be in A. By Proposition 1.2.13 and Corollary 1.1.114, we have

‖Φ(a)‖2 = r(Φ(a)∗Φ(a)) = r(Φ(a∗a)) � r(a∗a) = ‖a‖2.
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Exercise 1.2.15 Let a be an element in the C∗-algebra M2(C) of all 2×2 complex
matrices. Prove that

2‖a‖= (τ+2δ )
1
2 +(τ−2δ )

1
2 , (1.2.1)

where τ = trace(a∗a) and δ = |det(a)|.

Solution Given a self-adjoint matrix h =

(
r z
z̄ s

)
where r,s are real and z is

complex, it is enough to compute the roots of the characteristic polynomial of h,
and apply Theorem 1.1.46 and Proposition 1.2.13, to get

2‖h‖= |r+ s|+[(r− s)2 +4|z|2] 1
2 .

Now (1.2.1) follows by taking h = a∗a after elementary arrangements.

Lemma 1.2.16 Let A be a unital associative algebra over K, and let a be in Inv(A).
Then

sp(A,a−1) =
{
λ−1 : λ ∈ sp(A,a)

}
.

Proof It is enough to show that, for λ ∈ K\{0}, the condition a− λ1 ∈ Inv(A)
implies that a−1 −λ−11 ∈ Inv(A). But this follows from the fact that

a−1 −λ−11 =−λ−1a−1(a−λ1).

Exercise 1.2.17 Let A be a complete normed unital associative ∗-algebra over K
whose involution is continuous. Prove that exp(a)∗ = exp(a∗) for every a ∈ A.

§1.2.18 Let A be a unital C∗-algebra. Then A is norm-unital. Indeed, we have 1∗ =
1, so ‖1‖= ‖1∗1‖= ‖1‖2. An element u in A is said to be unitary if u∗u = uu∗ = 1,
i.e. if u ∈ Inv(A) and u−1 = u∗. If u is a unitary element of A, then ‖u‖ = 1, since
‖u‖2 = ‖u∗u‖= ‖1‖= 1. As a consequence of Exercises 1.1.30 and 1.2.17, exp(ih)
is unitary for every self-adjoint element h in A.

Exercise 1.2.19 Let H be a complex Hilbert space. Use the polarization law to
realize that linear isometries from H to itself are precisely those operators u ∈ BL(H)

such that u∗u = IH . Conclude then that surjective linear isometries from H to itself
are nothing other than unitary elements of BL(H).

Proposition 1.2.20 Let A be a unital C∗-algebra. Then

(i) sp(A,u)⊆ SC, for every unitary element u of A.
(ii) sp(A,h)⊆ R, for every self-adjoint element h of A.

Proof Let u be a unitary element of A, and let λ be in sp(A,u). Since ‖u‖ = 1, it
follows from Proposition 1.1.40 that |λ | � 1. By Lemma 1.2.16, λ−1 ∈ sp(A,u∗).
Since u∗ is also unitary, it follows that |λ−1| � 1, and so we conclude that |λ |= 1.

Let h be a self-adjoint element of A, and let α+ iβ be in sp(A,h), where α,β ∈R.
Thus, for any γ ∈R we have α+ i(β +γ) ∈ sp(A,h+ iγ1). By Proposition 1.1.40 we
have |α+ i(β + γ)| � ‖h+ iγ1‖, and hence

α2 +(β + γ)2 = |α+ i(β + γ)|2 � ‖h+ iγ1‖2 = ‖(h+ iγ1)∗(h+ iγ1)‖

= ‖(h− iγ1)(h+ iγ1)‖= ‖h2 + γ21‖ � ‖h‖2 + γ2.
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Subtracting γ2 on both sides we are left with α2 + β 2 + 2βγ � ‖h‖2. Since this is
satisfied for all γ ∈ R we conclude β = 0.

Exercise 1.2.21 Let X and Y be complex vector spaces endowed with conjugate-
linear involutions ∗, and let Φ : X → Y be a linear mapping. Prove that Φ is a
∗-mapping if and only if Φ(H(X ,∗))⊆ H(Y,∗).

Combining Proposition 1.2.20(ii) with Corollary 1.1.67, we deduce the following
consequence of Exercise 1.2.21.

Corollary 1.2.22 Let A be a unital C∗-algebra, and let ϕ be a character on A. Then
ϕ is a ∗-mapping.

Now we prove the unital version of Theorem 1.2.4.

Theorem 1.2.23 Let A be a unital commutative C∗-algebra. Then the Gelfand
representation is an isometric algebra ∗-isomorphism from A onto CC(Δ), where
Δ stands for the carrier space of A.

Proof By Theorem 1.1.73, the Gelfand representation G : A →CC(Δ) is a contract-
ive unit-preserving algebra homomorphism whose range separates the points of Δ,
and the equality ‖G(a)‖ = r(a) holds for every a ∈ A. This equality, together with
Lemma 1.2.12, gives us that G is an isometry. On the other hand, by Corollary 1.2.22,
we have that

G(a∗)(ϕ) = ϕ(a∗) = ϕ(a) = G(a)(ϕ) = G(a)∗(ϕ)

for all a ∈ A and ϕ ∈ Δ. Thus G is a ∗-mapping. It follows that G(A) is a closed
∗-subalgebra of CC(Δ) containing the constant functions and separating the points of
Δ. The Stone–Weierstrass theorem implies, therefore, that G(A) =CC(Δ).

Now we are going to take advantage, in the non-commutative case, of the commu-
tative Gelfand–Naimark theorem just proved. In relation to the next result, we note
that, in view of Example 1.1.28, unital closed subalgebras of unital C∗-algebras need
not be full subalgebras.

Proposition 1.2.24 Let A be a unital C∗-algebra. Then we have:

(i) Each non-invertible element of A is a one-sided topological divisor of zero in A.
(ii) Each closed ∗-subalgebra of A containing 1 is a full subalgebra of A.

Proof Let x be in A\ Inv(A). Then, by Lemma 1.1.99(i), x∗x or xx∗ is not invertible
in A. Assume that x∗x is not invertible. Then, by Proposition 1.2.20(ii), x∗x lies in
the boundary of Inv(A) relative to A (indeed, x∗x = lim(x∗x− i

n 1)). Therefore, by
Proposition 1.1.90, there exists a sequence xn of norm-one elements of A such that
x∗xxn → 0. Since

‖xxn‖2 = ‖x∗nx∗xxn‖ � ‖x∗xxn‖,

we conclude that xxn → 0, which shows that x is a left topological divisor of zero in
A. Now assume that xx∗ is not invertible. Then a similar argument gives that x is a
right topological divisor of zero in A. Thus, in any case, x is a one-sided topological
divisor of zero in A, which concludes the proof of assertion (i).
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Now, let B be any closed ∗-subalgebra of A containing 1, and let b be an element
of B \ Inv(B). By assertion (i) just proved (with B instead of A), b is a one-sided
topological divisor of zero in B, so it is a one-sided topological divisor of zero in A,
and so, by Exercise 1.1.88(iii), b is not invertible in A. Thus B is a full subalgebra of
A, and the proof of assertion (ii) is concluded.

Proposition 1.2.25 Let A be a ∗-algebra over K, and let S be a non-empty
∗-invariant subset of A. Then the subalgebra of A generated by S is ∗-invariant. If in
addition A is a normed algebra, and if ∗ is continuous, then the closed subalgebra
of A generated by S is ∗-invariant.

Proof Let B denote the subalgebra of A generated by S. Since S ⊆ B, we have
S = S∗ ⊆ B∗, and hence B∗ is a subalgebra of A containing S. Therefore B ⊆ B∗,
and as a result B = B∗. Now assume that in addition A is a normed algebra, and ∗ is
continuous. Then B̄∗ ⊆ B∗ = B̄, and hence B̄∗ = B̄. The proof concludes by invoking
Exercise 1.1.26(ii).

Combining Corollary 1.1.79 and Proposition 1.2.25 above, we find the following.

Corollary 1.2.26 Let A be a unital C∗-algebra, and let a be a normal element
of A. Then the closed subalgebra of A generated by {1,a,a∗} is a commutative
∗-subalgebra of A.

§1.2.27 Let E,F be compact Hausdorff topological spaces, and let τ : E → F be a
continuous mapping. Then the transpose mapping τ t : CC(F)→CC(E), defined by
τ t( f ) = f ◦ τ for every f ∈ CC(F), becomes a unit-preserving contractive algebra
∗-homomorphism. Moreover, if τ is surjective, τ t is isometric, and if τ is bijective,
then τ t is bijective.

Theorem 1.2.28 Let A be a unital C∗-algebra, let a be a normal element of A,
and denote by u the inclusion mapping sp(A,a) ↪→ C. Then there exists a unique
unit-preserving algebra ∗-homomorphism Φ : CC(sp(A,a))→ A such that Φ(u) = a.
Moreover, Φ is isometric, and its range coincides with the closed subalgebra of A
generated by {1,a,a∗}.

Proof Denote by B the closed subalgebra of A generated by {1,a,a∗}. By Corol-
lary 1.2.26, B is a commutative ∗-subalgebra of A. Consider the carrier space Δ of B,
and the Gelfand representation G : B→CC(Δ). By Theorem 1.2.23, G is an isometric
surjective algebra ∗-homomorphism. On the other hand, by Proposition 1.2.24(ii),
we have sp(A,a) = sp(B,a). By Theorem 1.1.73, the Gelfand transform G(a) of a
is a continuous mapping from Δ onto sp(a). Moreover, if ϕ1,ϕ2 are in Δ and satisfy
ϕ1(a) = ϕ2(a), then we have ϕ1(a∗) = ϕ2(a∗) (by Corollary 1.2.22) and ϕ1(1) =
ϕ2(1), and hence ϕ1 = ϕ2 (by Lemma 1.1.82(i)). Therefore, G(a) is injective, and
consequently a homeomorphism. Now, as noticed in §1.2.27, the homeomorphism
G(a) : Δ → sp(a) induces an isometric surjective algebra ∗-homomorphism
G(a)t : CC(sp(a))→ CC(Δ). Now, set Φ := J ◦G−1 ◦G(a)t , where J stands for the
inclusion mapping B ↪→ A. Then, clearly, Φ is a unit-preserving isometric algebra
∗-homomorphism from CC(sp(a)) to A with Φ(CC(sp(a))) = B. Moreover,
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Φ(u) = G−1(G(a)t(u)) = G−1(G(a)) = a. This concludes the proof concerning
the existence, and also proves the last conclusion in the theorem.

Let Ψ : CC(sp(A,a)) → A be any unit-preserving algebra ∗-homomorphism
with Ψ(u) = a. Then Ψ and Φ coincide on {1,u,u∗}. Therefore, since Ψ is
automatically continuous (by Corollary 1.2.14), and CC(sp(a)) is generated by
{1,u,u∗} as a normed algebra (by the Stone–Weierstrass theorem), it follows from
Lemma 1.1.82(i) that Ψ=Φ.

§1.2.29 As in Theorem 1.2.28, let a be a normal element of a unital C∗-algebra A,
and let u be the inclusion mapping sp(A,a) ↪→C. The unique unit-preserving algebra
∗-homomorphism Φ from CC(sp(A,a)) into A such that Φ(u) = a will be called the
continuous functional calculus at a. If p is a complex polynomial (regarded as a
complex-valued continuous function on sp(A,a)), then we have Φ(p) = p(a) in the
sense of §1.1.27. This is one of the reasons why, for f ∈ CC(sp(A,a)), the symbol
Φ( f ) is usually replaced with f (a). Note that, since f (a) lies in a commutative
∗-subalgebra, f (a) is a normal element of A.

Corollary 1.2.30 Let E be a compact Hausdorff topological space, and let a be in
CC(E). Then

(i) f (a) = f ◦a and sp( f (a)) = f (sp(a)) for every f ∈CC(sp(a)).

(ii) (g◦ f )(a) = g( f (a)) for all f ∈CC(sp(a)) and g ∈CC(sp( f (a))).

Proof We begin by noticing that, by Example 1.1.32(c),

sp(CC(E),a) = a(E),

and hence we can consider the mapping f → f ◦a from CC(sp(a)) to CC(E), which
becomes an isometric unit-preserving algebra ∗-homomorphism taking u to a. Now,
by Theorem 1.2.28, we find that f (a) = f ◦ a for every f ∈ CC(sp(a)). As a con-
sequence, for each f ∈CC(sp(a)) we see that

sp( f (a)) = ( f ◦a)(E) = f (a(E)) = f (sp(a)).

Thus assertion (i) is proved.
Let f be in CC(sp(a)), and let g be in CC(sp( f (a))). It follows from assertion (i)

that (g◦ f )(a) = (g◦ f )◦a = g◦ ( f ◦a) = g( f (a)), and the proof of assertion (ii) is
complete.

Corollary 1.2.31 Let A be a unital C∗-algebra, and let a be in A. Then we have:

(i) a is unitary if and only if a is normal and sp(A,a)⊆ SC.

(ii) a is self-adjoint if and only if a is normal and sp(A,a)⊆ R.

Proof The ‘only if’ parts were proved in Proposition 1.2.20. In order to prove the
‘if’ parts, suppose that a is normal, and consider the continuous functional calculus
at a. If sp(A,a) ⊆ SC, then u is a unitary element in CC(sp(A,a)), and hence a =

Φ(u) is a unitary element in A. If sp(A,a) ⊆ R, then u is a self-adjoint element in
CC(sp(A,a)), and hence a =Φ(u) is a self-adjoint element in A.
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Proposition 1.2.32 Let A and B be unital C∗-algebras, let a be a normal element
of A, and let φ : A → B be a unit-preserving algebra ∗-homomorphism. Then φ(a) is
a normal element of B, sp(B,φ (a)) ⊆ sp(A,a), and we have φ ( f (a)) = f (φ(a)) for
every f ∈CC(sp(A,a)).

Proof The fact that φ(a) is a normal element of B is clear, whereas the inclusion
sp(B,φ(a)) ⊆ sp(A,a) follows from Lemma 1.1.34(ii). Now the mapping f →
f|sp(B,φ(a)) from CC(sp(A,a)) to CC(sp(B,φ(a))) becomes a contractive unit-
preserving algebra ∗-homomorphism. Since φ is also contractive (by Corollary
1.2.14), it follows from Theorem 1.2.28 that the mappings f → φ ( f (a)) and
f → f (φ(a)) become contractive unit-preserving algebra ∗-homomorphisms from
CC(sp(A,a)) to B taking u to φ(a). Since CC(sp(A,a)) is generated by {1,u,u∗} as a
normed algebra (by the Stone–Weierstrass theorem), it follows from Lemma 1.1.82(i)
that φ( f (a)) = f (φ(a)) for every f ∈CC(sp(A,a)).

Corollary 1.2.33 Let A be unital C∗-algebra, let a be a normal element of A, and
let B be any closed ∗-subalgebra of A containing {1,a}. Then we have sp(A,a) =
sp(B,a), and the continuous functional calculuses at a, relative to A and B, coincide.

Proof The equality sp(A,a) = sp(B,a) follows from Proposition 1.2.24(ii). Now,
keeping in mind that the inclusion B ↪→ A becomes a unit-preserving algebra
∗-homomorphism, the remaining part of the conclusion follows by invoking Propos-
ition 1.2.32.

Proposition 1.2.34 Let a be a normal element of a unital C∗-algebra A, and let
f ∈ CC(sp(a)). Then sp( f (a)) = f (sp(a)) (‘spectral mapping theorem’). Moreover,
if g ∈CC(sp( f (a))), then (g◦ f )(a) = g( f (a)).

Proof Let B stand for the closed subalgebra of A generated by {1,a,a∗}. By Cor-
ollary 1.2.26, B is a commutative ∗-subalgebra of A, so that, by the commutative
Gelfand–Naimark theorem (Theorem 1.2.23), the Gelfand representation is an iso-
metric algebra ∗-isomorphism from B onto CC(Δ), where Δ stands for the carrier
space of B. Now, the result follows from Corollaries 1.2.30 and 1.2.33.

Let A be a unital C∗-algebra. An element a of A is said to be positive if a is self-
adjoint and sp(a) ⊆ R+

0 . We write a � 0 to mean that a is positive, and denote by
A+ the set of positive elements of A. We note that, as a consequence of Propos-
ition 1.2.24(ii), if B is a closed ∗-subalgebra of A containing the unit of A, then B+ =

A+ ∩B. In the case that A = CC(E), where E is a compact Hausdorff topological
space, A+ consists precisely of those functions f ∈ A such that f (E) ⊆ R+

0 . Recall
that each real-valued continuous function h on E can be written in a unique way as a
difference of two positive continuous functions h = h+−h− such that h+h− = 0.

As a first application of the continuous functional calculus we have the following
result.

Corollary 1.2.35 If a is a self-adjoint element in a unital C∗-algebra A, then there
are unique positive elements u,v in A such that a = u− v and uv = vu = 0.

Proof Recall that sp(a) ⊆ R by Proposition 1.2.20(ii). If we consider the real-
valued continuous functions f and g defined on R by f (t) := 1

2 (|t| + t) and
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g(t) := 1
2 (|t| − t), then f g = 0 and f (t)− g(t) = t for every t ∈ R. It follows

that u = f (a) and v = g(a) have the asserted properties.
To show the uniqueness, let u1,v1 be positive elements in A such that

a = u1 − v1 and u1v1 = v1u1 = 0.

Let C be the closed subalgebra of A generated by the set {1,u1,v1}. It follows
from Corollary 1.1.79 and Proposition 1.2.25 that C is a commutative ∗-subalgebra
of A. Since a ∈ C, it follows that the closed subalgebra of A (say B) generated
by {1,a} is contained in C, and hence u,v ∈ C by Theorem 1.2.28. On the other
hand, by Theorem 1.2.23, the Gelfand representation G : C → CC(ΔC) is an alge-
bra ∗-isomorphism. The uniqueness now follows from the uniqueness statement for
CC(ΔC).

The decomposition a = u−v of a self-adjoint element a given in Corollary 1.2.35
is sometimes called the orthogonal decomposition of a. The elements u and v are
called the positive and negative parts of a and, according to §1.2.29, are denoted by
a+ and a−, respectively. Note that |a|= a++a−.

Let A = CC(E), where E is a compact Hausdorff topological space. If f ∈ A is
positive, and if n is a natural number, then f has a unique positive nth root in A,
namely the function t → n

√
f (t).

Corollary 1.2.36 If a is a positive element in a unital C∗-algebra A, and if n ∈ N,
then there is a unique positive element b in A such that a = bn.

Proof If we consider the real-valued continuous function f defined on R+
0 by

f (t) := n
√

t, then f (t)n = t for every t ∈ R+
0 . It follows from Proposition 1.2.34

that b = f (a) is positive and bn = a. To show the uniqueness, assume that c
is a positive element in A such that a = cn, and consider the closed subalgebra
(say C) of A generated by the set {1,c}. It follows from Corollary 1.2.26 that C
is a ∗-invariant commutative subalgebra of A. Since a = cn ∈ C, it follows that the
closed subalgebra of A (say B) generated by {1,a} is contained in C, and hence
b ∈ C by Theorem 1.2.28. Finally, keeping in mind that the Gelfand representation
G : C → CC(ΔC) is an algebra ∗-isomorphism (by Theorem 1.2.23), the uniqueness
now follows from the uniqueness statement for CC(ΔC).

If a is a positive element in a unital C∗-algebra A, then the unique element b
obtained in Corollary 1.2.36 is called the positive nth root of a and, according to
§1.2.29, is denoted by a

1
n .

§1.2.37 If h is a self-adjoint element of the closed unit ball of a unital C∗-algebra
A, then 1−h2 is a positive element of A, and the element u = h+ i

√
1−h2 is unitary

and satisfies h = 1
2 (u+ u∗). Therefore, the unitaries linearly span A, a result that is

frequently useful.

Let A = CC(E), where E is a compact Hausdorff topological space. The positive
condition for a real-valued function f ∈A can also be expressed in terms of the norm.
Indeed, given t ∈ R with ‖ f‖ � t, we have that

f is positive if and only if ‖ f − t1‖ � t.

Proposition 1.2.38 Let A be a unital C∗-algebra, let a be a self-adjoint element in
A, and let t be a real number such that ‖a‖� t. Then a � 0 if and only if ‖a− t1‖� t.
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Proof By considering the closed subalgebra of A generated by the set {1,a}, and
keeping in mind Corollary 1.2.26, we may suppose that A = CC(E), for a suitable
compact Hausdorff topological space. The result now follows from the comment
immediately before the statement of the present proposition.

§1.2.39 Let X be a real vector space, and let C be a non-empty subset of X . We
say that C is a cone in X if λx ∈ C whenever x ∈ C and λ � 0. If moreover x,y ∈C
implies x+y∈C, then we say that C is a convex cone. If C is a cone, and if it contains
no entire straight line (i.e. C∩ (−C) = 0), then C is said to be a proper cone. When
a proper convex cone C is given in X , we make X a partially ordered set by defining
x � y to mean y−x ∈C. The relation � is translation-invariant; that is, x � y implies
x+ z � y+ z for every z ∈ X . Also, x � y implies tx � ty for every t ∈ R+

0 , and x � y
if and only if −y � −x. Moreover, if:

• X is in fact a normed space;
• the proper convex cone C is closed in X ;
• xn and yn are sequences in X converging to x and y, respectively; and
• xn � yn for every n ∈ N;

then x � y.

Proposition 1.2.40 If A is a unital C∗-algebra, then A+ is a closed proper convex
cone in H(A,∗).

Proof That A+ is a closed subset of A follows immediately from the continuity of
the involution and Proposition 1.2.38. It is obvious that if a ∈ A+ and λ � 0, then
λa ∈ A+. Let a,b ∈ A+. By Proposition 1.2.38,

‖a−‖a‖1‖ � ‖a‖ and ‖b−‖b‖1‖ � ‖b‖,
so

‖a+b− (‖a‖+‖b‖)1‖ � ‖a−‖a‖1‖+‖b−‖b‖1‖ � ‖a‖+‖b‖.

By Proposition 1.2.38 again, a+b � 0. Finally if a ∈ A+∩ (−A+), then sp(a)⊆ R+
0

and −sp(a) ⊆ R+
0 , hence sp(a) = 0. Since a is self-adjoint, Lemma 1.2.12 applies,

so that ‖a‖= r(a) = 0, and hence a = 0.

§1.2.41 According to the above proposition and §1.2.39, if A is a unital C∗-algebra,
then H(A,∗) will be seen without notice as a partially ordered set.

As pointed out in §1.1.36, if A is an associative algebra over K, then the mapping
a → La from A to L(A) becomes an algebra homomorphism. In the case of C∗-
algebras, we have the following additional information.

Lemma 1.2.42 Let A be a C∗-algebra. Then the mapping a → La from A to BL(A)
becomes an isometry. As a consequence, the set

B := {λ IA +La : λ ∈ C, a ∈ A}

is a closed subalgebra of BL(A).

Proof For a ∈ A, we have

‖a‖2 = ‖aa∗‖= ‖La(a
∗)‖ � ‖La‖‖a∗‖= ‖La‖‖a‖,
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and hence ‖a‖ = ‖La‖. Now B is the sum of the closed subspace {La : a ∈ A} of
BL(A) and the finite-dimensional subspace CIA, and therefore it is closed in BL(A).

§1.2.43 Let B,C be C∗-algebras. Then the algebra direct product B × C be-
comes a C∗-algebra under the involution defined coordinate-wise, and the norm
‖(b,c)‖ := max{‖b‖,‖c‖}.

Proposition 1.2.44 Let A be a C∗-algebra. Then there are a unique involution and
a unique norm on the unital extension A1 of A extending the involution and the norm
of A and converting A1 into a C∗-algebra.

Proof It is clear that the unique conjugate-linear algebra involution ∗ on
A1 = C1⊕A extending that of A is given by

(λ1+a)∗ := λ̄1+a∗.

Then the uniqueness of the desired norm on A1 follows from Corollary 1.2.14. To
prove the existence of the desired norm on A1 , we distinguish two cases depending
on whether or not A has a unit.

First assume that A has a unit 1. Then A and C(1− 1) are ideals of A1 such that
A1 = A⊕C(1−1), and therefore, since

(a+λ (1−1))∗ = a∗+ λ̄ (1−1),

it is enough to apply §§1.1.105 and 1.2.43 to realize that the desired extended norm
on A1 is given by

‖a+λ (1−1)‖ := max{‖a‖, |λ |}.

As a result, the unique C∗-algebra structure on A1 extending that of A is given by the
involution in the first paragraph of the proof and the norm

‖λ1+a‖ := max{‖a+λ1‖, |λ |}.

Now assume that A does not have a unit. Then the mapping λ1+ a → λ IA +La

from A1 to BL(A) becomes an injective algebra homomorphism, and hence, applying
Lemma 1.2.42, we realize that

‖λ1+a‖ := ‖λ IA +La‖ (1.2.2)

defines a complete algebra norm on A1 extending the norm on A. Moreover, given
λ1+a ∈ A1 , and setting T := λ IA+La and T ∗ := λ̄ IA+La∗ , for every x ∈ A we have

‖T (x)‖2 = ‖(λx+ax)∗(λx+ax)‖= ‖x∗(T ∗T )(x)‖ � ‖T ∗T‖‖x‖2,

so ‖T‖2 � ‖T ∗T‖, and so, invoking (1.2.2),

‖λ1+a‖2 � ‖(λ1+a)∗(λ1+a)‖.

From now on, given a C∗-algebra A, the unital extension A1 of A will be seen
without notice as a C∗-algebra containing A as a closed ∗-subalgebra, as shown by
Proposition 1.2.44.

Now, we prove that complex associative and commutative algebras have at most
one C∗-algebra structure.
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Proposition 1.2.45 Let A and B be commutative C∗-algebras, and let Φ : A → B be
a bijective algebra homomorphism. Then Φ preserves involutions and norms.

Proof By passing to C∗-algebra unital extensions if necessary, we may assume that
A and B are unital. Moreover, by Theorem 1.2.23, we may also assume that A =

CC(E) and B =CC(F) for suitable compact Hausdorff topological spaces E and F .
Then the result follows straightforwardly from Corollary 1.1.77.

Given an associative algebra A and a ∈ A, we know that 0 ∈ sp(A1 ,a).

Lemma 1.2.46 Let A be a C∗-algebra, let a be a normal element of A, let f be in
CC(sp(A1 ,a)), and let f (a) be the element of A1 given by the continuous functional
calculus (see §1.2.29). Then f (a) lies in A if and only if f (0) = 0.

Proof Thinking about the unit-preserving algebra ∗-homomorphism φ from A1 =

C1⊕A to C defined by φ(λ1+ x) := λ , the result follows from Proposition 1.2.32.

§1.2.47 Let A be a non-unital C∗-algebra. Then H(A,∗) will be seen without notice
as a partially ordered set relative to the order induced by that of the C∗-algebra
unital extension of A (cf. §1.2.41). Now, with Lemma 1.2.46 in mind, the following
proposition follows from Corollaries 1.2.35 and 1.2.36.

Proposition 1.2.48 Let A be a C∗-algebra. We have:

(i) If a is a self-adjoint element of A, then there are unique positive elements u,v in
A such that a = u− v and uv = vu = 0.

(ii) If a is a positive element of A, and if n∈N, then there is a unique positive element
b in A such that a = bn.

Proposition 1.2.49 Let A be a C∗-algebra, and let e be a non-self-adjoint idem-
potent in A. Then sp(A1 , i(e−e∗)) is a symmetric subset of R, and the mapping λ →
1+ λ 2 becomes a surjection from sp(A1 , i(e− e∗)) \ {0} onto sp(A1 ,e∗e) \ {0,1}.
Consequently, we have:

(i) ‖e‖2 = 1+‖e− e∗‖2.

(ii) {0,‖e‖2} ⊆ sp(A1 ,e∗e)⊆ {0}∪ [1,‖e‖2].

Proof A straightforward computation shows that, for λ ∈ C, we have

λ (1+λ 2)[i(e− e∗)−λ1] = (e∗ − iλ1)[e∗e− (1+λ 2)1](e+ iλ1). (1.2.3)

Now, let λ be in C \ {0, i,−i}. Then we have λ(1 + λ 2) 	= 0. Moreover, since
0 and 1 are the unique possible numbers in the spectrum of an idempotent, both
e∗ − iλ1 and e+ iλ1 are invertible in A1 . It follows from (1.2.3) that i(e− e∗)−λ1
is invertible in A1 if and only if so is e∗e− (1+λ 2)1. Therefore, since

sp(A1 , i(e− e∗))⊆ R

(by Proposition 1.2.20(ii)), e∗e− (1−ρ)1 is invertible in A1 for every ρ ∈R+ \{1}.
Now, keeping in mind that sp(A1 ,e∗e)⊆R, we easily derive that sp(A1 , i(e−e∗)) is
symmetric (relative to zero), and that the mapping λ → 1+λ 2 is a surjection from
sp(A1 , i(e−e∗))\{0} onto sp(A1 ,e∗e)\{0,1}. The consequences, listed in the state-
ment of the present proposition, follow from Lemma 1.2.12 and Theorem 1.1.46.
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As a straightforward consequence, we get the following.

Corollary 1.2.50 A nonzero idempotent e in a C∗-algebra is self-adjoint if (and
only if) ‖e‖= 1.

Proposition 1.2.51 Let A be a commutative C∗-algebra. Then for every algebra
norm ||| · ||| on A we have ‖ · ‖ � ||| · |||.

Proof By Propositions 1.1.107 and 1.2.44, we may assume that A is unital. Let
||| · ||| be an algebra norm on A. Let Δ stand for the carrier space of A (cf. Propos-
ition 1.1.71), let Δ1 denote the subset of Δ consisting of all ||| · |||-continuous charac-
ters on A, let B stand for the completion of (A, ||| · |||), and let ΔB denote the carrier
space of B. We note that, by Corollary 1.1.64, the mapping ψ →ψ|A becomes a bijec-
tion from ΔB to Δ1, and that, since A =CC(Δ) in a natural way (cf. Theorem 1.2.23),
complex-valued continuous functions on Δ can be seen as elements of B.

We claim that Δ1 is dense in Δ. Assume, to derive a contradiction, that Δ1 � Δ.
Then there is an open subset Ω of Δ such that Ω̄⊆ Δ\Δ1, together with real-valued
continuous functions x,y on Δ such that x(φ) = 1 if φ ∈ Δ1, x(φ) = 0 if φ ∈ Ω̄,
y 	= 0, and y(φ) = 0 if φ ∈ Δ\Ω. Since xy = 0, and y 	= 0, x cannot be invertible in
B. Therefore, by Proposition 1.1.68(ii), there exists η ∈ ΔB such that η(x) = 0, and
hence φ0 := η|A lies in Δ1 and satisfies x(φ0) = 0, which is a contradiction.

Now that the claim has been proved, it is enough to apply Proposition 1.1.68(iii)
to realize that for every a ∈ A we have

|||a ||| � r||| · |||(a) = sup
ψ∈ΔB

|ψ(a)|= sup
φ∈Δ1

|a(φ)|= sup
φ∈Δ

|a(φ)|= ‖a‖.

Now we can refine Corollary 1.2.14 as follows.

Corollary 1.2.52 Let A and B be C∗-algebras, and let Φ : A → B be an algebra
∗-homomorphism. Then Φ is contractive. Moreover, if Φ is injective, then Φ is an
isometry.

Proof The first conclusion follows from Corollary 1.2.14. Assume that Φ is inject-
ive, and let a be in A. Then ‖Φ(·)‖ is an algebra norm on the closed subalgebra
of A generated by a∗a, which is a commutative C∗-algebra. Therefore, by Propos-
ition 1.2.51, we have

‖a‖2 = ‖a∗a‖ � ‖Φ(a∗a)‖= ‖Φ(a)∗Φ(a)‖= ‖Φ(a)‖2.

Hence ‖Φ(a)‖= ‖a‖ because of the first conclusion.

1.2.2 Historical notes and comments

The material in this section has been elaborated mainly from the books of Berberian
[689], Bonsall and Duncan [696], Bourbaki [697], Choquet [709], Dixmier [724],
Helemskii [742], Murphy [781], and Pedersen [789]. Other sources are quoted as
appropriate.

The original abstract characterization of closed self-adjoint subalgebras of
bounded linear operators on complex Hilbert spaces, given by Gelfand and Naimark
[285], has been refined with time, giving rise to the current notion of a C∗-algebra,



1.3 The holomorphic functional calculus 53

as defined in §1.2.2. The reader is referred to Chapter 1 of Doran–Belfi [725] for a
detailed account of how the Gelfand–Naimark axioms were successively weakened,
and of the several authors who contributed to this process.

Theorem 1.2.10 becomes the unital version of the Stone–Weierstrass theorem.
A unit-free version follows almost straightforwardly. Indeed, we have the following.

Corollary 1.2.53 Let E be a locally compact Hausdorff topological space, and let
A be a ∗-subalgebra of CC

0 (E) satisfying

(i) for each t ∈ E there is f ∈ A such that f (t) 	= 0;
(ii) A separates the points of E.

Then A is dense in CC
0 (E).

Proof Let E∞ be the one point compactification of E and identify CC
0 (E) with{

f ∈CC(E∞) : f (∞) = 0
}
.

Then A+C1 is a ∗-subalgebra of CC(E∞) and separates points not only in E but
in E∞. Indeed, if t ∈ E, there is by assumption a g in A with g(t) 	= 0, whereas
g(∞) = 0 since g ∈ CC(E∞). By Theorem 1.2.10, for each f ∈ CC

0 (E) and ε > 0,
there are g ∈ A and λ ∈ C such that ‖ f − (g+λ1)‖ < ε

2 . As f (∞) = g(∞) = 0, we
see that |λ |< ε

2 , whence ‖ f −g‖< ε .

Exercise 1.2.15 is taken from the Duncan–Taylor paper [218].
Proposition 1.2.49 is taken from the Becerra–Rodrı́guez paper [77], where some

previous ideas on p. 28 of [798] are exploited. Corollary 1.2.50 is folklore. Indeed,
it follows easily from the non-commutative Gelfand–Naimark theorem, stated in
Theorem 1.2.3 (see for example [711, Proposition II.3.3]).

Proposition 1.2.51 is due to Kaplansky [375] and is included in several books (see
for example [806, Theorem 1.2.4] and [810, Theorem 10.1]). A full generalization
of Kaplansky’s result was later proved by Rickart [502], who incorporated it in his
book [795, Corollary 3.7.7].

1.3 The holomorphic functional calculus

Introduction The holomorphic functional calculus in a single element of a com-
plete normed unital associative complex algebra is one of the most useful tools in
spectral theory. After developing the algebraic forerunners in Subsection 1.3.1, Sub-
section 1.3.2 provides a detailed exposition of the holomorphic functional calculus,
and indicates some applications. Deeper applications will be discussed later (see, for
example, Subsection 3.4.3).

1.3.1 The polynomial and rational functional calculuses

As stated in §1.1.27, given an element a of a unital associative algebra A over K, the
mapping

p(x) =
n

∑
k=0

αkxk → p(a) =
n

∑
k=0

αkak
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is a unit-preserving algebra homomorphism from K[x] onto the subalgebra of A gen-
erated by 1 and a. This homomorphism is called the polynomial functional calculus
at a. As a first outstanding application of this functional calculus, we are going to
prove Theorem 1.3.2 below.

Two idempotents u,v in an algebra are said to be orthogonal if uv = vu = 0.

Lemma 1.3.1 Let A be a unital associative algebra over K, let α1, . . . ,αn be in K,
let e1, . . . ,en be pairwise orthogonal idempotents in A such that 1 = ∑n

k=1 ek, and set
a =: ∑n

k=1αkek. Then for every q ∈K[x] we have q(a) = ∑n
k=1 q(αk)ek.

Proof The assumptions become the cases m = 0,1 of the equality

am = ∑n
k=1αm

k ek (m ∈ N∪{0}),

which is then proved by an easy induction. Now the result follows straightforwardly.

Theorem 1.3.2 Let A be a unital associative algebra over K, and let a be in A.
Then the following conditions are equivalent:

(i) a is a linear combination of pairwise orthogonal idempotents.
(ii) There exist pairwise different numbers α1, . . . ,αn ∈K such that

n

∏
k=1

(a−αk1) = 0.

Moreover, if α1, . . . ,αn are in K in such a way that ∏n
k=1(a−αk1) = 0, then:

(iii) There are unique pairwise orthogonal idempotents e1, . . . ,en ∈ A such that

1 = ∑n
k=1 ek and a = ∑n

k=1αkek.

(iv) The idempotents ek can be explicitly computed by means of the equality

ek =
∏ j 	=k(a−α j1)

∏ j 	=k(αk −α j)
.

Proof (i)⇒(ii) Assume that a is a linear combination of pairwise orthogonal idem-
potents e1, . . . ,em, say a = ∑m

k=1αkek for suitable α1, . . . ,αm ∈K. By setting

αm+1 := 0 and em+1 := 1−∑m
k=1 ek,

e1, . . . ,em,em+1 become pairwise orthogonal idempotents such that

1 = ∑m+1
k=1 ek and a = ∑m+1

k=1 αkek.

Let n be the minimum natural number such that there are α1, . . . ,αn ∈K and pairwise
orthogonal idempotents e1, . . . ,en in A such that

1 = ∑n
k=1 ek and a = ∑n

k=1αkek.

Then α1, . . . ,αn are pairwise different. Indeed, if for example the equality α1 = α2

were true, then a would be a linear combination of the n− 1 pairwise orthogonal
idempotents e1 + e2,e3, . . . ,en, the sum of which is 1, contrarily to the choice of n.
Now let p be in K[x] defined by p(x) :=∏n

k=1(x−αk). Then, by Lemma 1.3.1, we
have p(a) = 0.
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(ii)⇒(i) The proof of this implication is contained in the next paragraph.
Suppose that α1, . . . ,αn are in K in such a way that ∏n

k=1(a−αk1) = 0. To prove

(iii) and (iv), we may assume that n � 2. For k = 1, . . . ,n, set pk(x) := ∏ j 	=k(x−α j)

∏ j 	=k(αk−α j)
.

Then

∑n
k=1 pk(x)−1 and ∑n

k=1αk pk(x)−x

are polynomials of degree � n − 1 which vanish at n different points, namely
α1, . . . ,αn, so ∑n

k=1 pk(x) = 1 and ∑n
k=1αk pk(x) = x, hence ∑n

k=1 pk(a) = 1 and
∑n

k=1αk pk(a) = a. On the other hand, we clearly have (a − αk1)pk(a) = 0, so
apk(a) = αk pk(a), and so am pk(a) = αm

k pk(a) for every non-negative integer m,
hence q(a)pk(a) = q(αk)pk(a) for every q ∈ K[x]. Therefore, by taking q = pk, we
obtain that pk(a)2 = pk(a), and hence pk(a) is an idempotent in A. Moreover, for
j 	= k we clearly have p j(a)pk(a) = 0. Now, by setting ek := pk(a), assertion (iii)
has been proved in what concerns the existence, and assertion (iv) becomes clear
by the definition of the polynomials pk. Now it only remains to prove assertion (iii)
in what concerns the uniqueness. Let u1, . . . ,un be pairwise orthogonal idempotents
in A such that 1 = ∑n

k=1 uk and a = ∑n
k=1αkuk. It follows from Lemma 1.3.1 that

q(a) = ∑n
k=1 q(αk)uk for every q ∈ K[x]. By taking q = pk, we get that ek = uk, as

desired.

The next proposition becomes the version for operators of Theorem 1.3.2 above.

Proposition 1.3.3 Let X be a vector space over K, and let T be in L(X) such that
∏n

k=1(T −αkIX ) = 0 for pairwise different numbers α1, . . . ,αn ∈K. Then

X =
⊕n

k=1 Xk, where Xk := {x ∈ X : T (x) = αkx} for k = 1, . . . ,n. (1.3.1)

Moreover, if for each k we denote by Pk the projection from X onto Xk corresponding
to the decomposition (1.3.1), then Pk can be explicitly computed by means of the
equality

Pk =
∏ j 	=k(T −α jIX)

∏ j 	=k(αk −α j)
.

Proof For k = 1, . . . ,n, set Pk := ∏ j 	=k(T−α j IX )

∏ j 	=k(αk−α j)
. Then, according to Theorem 1.3.2,

{Pk : k = 1, . . . ,n} is a family of pairwise orthogonal linear projections on X
satisfying

IX =
n

∑
k=1

Pk, (1.3.2)

and consequently we have X =
⊕n

k=1 Pk(X). Therefore, to conclude the proof it is
enough to show that Pk(X) = Xk for every k = 1, . . . ,n. Let k be in {1, . . . ,n}. Since
(T −αkIX )Pk = 0, we have T Pk = αkPk, which implies Pk(X)⊆ Xk. Conversely, if x
is in Xk, then (T −αkIX )(x) = 0, so Pj(x) = 0 whenever j 	= k, and so x = Pk(x) (by
(1.3.2)), hence x ∈ Pk(X).

Now we deal with the spectral behaviour of the polynomial functional calculus.
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Proposition 1.3.4 Let A be a unital associative algebra over K, let a be in A, and
let p be in K[x]. We have:

(i) p(sp(A,a))⊆ sp(A, p(a)).
(ii) If K= C and if sp(A,a) 	= /0, then

sp(A, p(a)) = p(sp(A,a)). (1.3.3)

Proof First of all, note that the result holds in the case in which p is constant.
Assume that p is non-constant. Then, for each λ ∈K, there exists q ∈K[x] such that
p(x)− p(λ ) = (x−λ )q(x), and hence

p(a)− p(λ )1 = (a−λ1)q(a) = q(a)(a−λ1).

Therefore, if p(λ ) 	∈ sp(A, p(a)), then, by Lemma 1.1.99(ii), we have that a−λ1 ∈
Inv(A), and so λ 	∈ sp(A,a). Thus assertion (i) follows. Now, assume that K=C and
that sp(A,a) 	= /0. Let λ be in C. Then we can write

p(x)−λ = β (x−α1) · · ·(x−αn)

for some β ,α1, . . . ,αn ∈ C, β 	= 0, n ∈ N. Hence

p(a)−λ1 = β(a−α11) · · ·(a−αn1).

By Lemma 1.1.99(ii), we find that p(a)−λ1 	∈ Inv(A) if and only if at least one of
the factors a−αi1 is non-invertible. Thus λ ∈ sp(A, p(a)) if and only if p(z)−λ = 0
for some z ∈ sp(A,a). Hence p(sp(A,a)) = sp(A, p(a)).

Corollary 1.3.5 Let A be a unital associative algebra over K, and let a be in A
such that there exists a non-constant polynomial p ∈K[x] with p(a) = 0. Then

sp(A,a)⊆ {λ ∈K : p(λ ) = 0}.

If in addition p is of the minimum possible degree, then

sp(A,a) = {λ ∈K : p(λ ) = 0}.

Proof Since p(a) = 0, it follows from Proposition 1.3.4(i) that

p(sp(A,a))⊆ sp(A, p(a)) = sp(A,0) = {0},

and hence sp(A,a) ⊆ {λ ∈ K : p(λ ) = 0}. Let λ1, . . . ,λn be the roots of p in K of
multiplicities m1, . . . ,mn, and write

p(x) = q(x)(x−λ1)
m1 · · ·(x−λn)

mn

for some nonzero q ∈K[x] with no root in K. Then we have

0 = p(a) = q(a)(a−λ11)m1 · · ·(a−λn1)mn .

Therefore, if p is of the minimum possible degree, then none of the factors a−λi1
can be invertible, and hence λi ∈ sp(A,a) for every i ∈ {1, · · · ,n}.

Corollary 1.3.6 Every element in a finite-dimensional unital associative algebra
over K has finite spectrum.
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As usual, we denote by K(x) the field of fractions of the integral domain K[x]. Let
A be a unital associative algebra over K, and let a be in A. Consider the subset Qa of
K(x) consisting of those fractions which can be written as

p(x)
q(x)

with p,q ∈K[x] and q(a) ∈ Inv(A).

Then, clearly, Qa is a subalgebra of K(x) containing K[x]. Moreover, using the
commutativity of the set {1,a}, together with Proposition 1.1.78 and Lemma 1.1.80,
it is routine to verify that the correspondence

f =
p
q
→ f (a) := p(a)q(a)−1

becomes a well-defined algebra homomorphism from Qa to A, extending the poly-
nomial functional calculus at a. This extended algebra homomorphism is called the
rational functional calculus at a. We note that the range of the rational functional
calculus at a becomes a commutative subalgebra of A. We also note that, if f = p

q is
in Qa, the fact that q(a) ∈ Inv(A) implies that q(α) 	= 0 for every α ∈ sp(A,a) (by
Proposition 1.3.4(i)), and hence that, for such an α , the symbol f (α) := p(α)

q(α) has a
sense as an element of K.

Exercise 1.3.7 Let A be a unital associative algebra over K, and let a be in A
such that ∏n

k=1(a−αk1) = 0 for pairwise different numbers α1, . . . ,αn ∈ K. Apply
Lemma 1.3.1 and Theorem 1.3.2 to show that there are unique pairwise orthogonal
idempotents e1, . . . ,en ∈ A such that f (a) = ∑n

k=1 f (αk)ek for every f ∈ K(x) with
poles outside {α1, . . . ,αn}.

Now we prove the so-called spectral mapping theorem for the rational functional
calculus.

Proposition 1.3.8 Let A be a unital associative complex algebra, let a ∈ A with
sp(A,a) 	= /0, and let f be in Qa. Then

sp(A, f (a)) = f (sp(A,a)).

Proof Write f = p
q with p,q ∈ C[x] and q(a) ∈ Inv(A). Note that, for each z ∈ C

we have

f (a)− z1 = p(a)q(a)−1 − z1 = (p(a)− zq(a))q(a)−1 = (p− zq)(a)q(a)−1,

and hence, by Lemma 1.1.99(ii), f (a)− z1 is invertible in A if and only if so is
(p− zq)(a). Therefore, λ ∈ sp(A, f (a)) if and only if 0 ∈ sp(A,(p−λq)(a)). Now
note that by Proposition 1.3.4 we have

sp(A,(p−λq)(a)) = (p−λq)(sp(A,a)) = {p(α)−λq(α) : α ∈ sp(A,a)},

and that, as we already know, q(α) 	= 0 for every α ∈ sp(A,a). As a result, λ belongs
to sp(A, f (a)) if and only if there exists α ∈ sp(A,a) such that 0 = p(α)−λq(α),
that is to say λ = p(α)

q(α) = f (α).

Now, invoking Theorem 1.1.41, we get the following.
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Corollary 1.3.9 Let A be a normed unital associative complex algebra, and let
a ∈ A. If f is in Qa, then

sp(A, f (a)) = f (sp(A,a)).

In particular, if p is in C[x], then

sp(A, p(a)) = p(sp(A,a)).

1.3.2 The main results

In a purely algebraic setting, besides the rational functional calculus, little or nothing
can be done. However, if A is a complete normed unital associative complex algebra,
the possibility of introducing convergence processes opens new trails that we will
now explore. For example, if a ∈ A, and if f is an entire function represented by the
power series f (z) = ∑∞

n=0αn zn (z ∈ C), then the series ∑n�0αn an is absolutely
convergent, a fact that enables the definition

f (a) :=
∞

∑
n=0

αn an.

In this way we obtain an algebra homomorphism from the algebra of all entire
functions to A, called the entire functional calculus at a. A more general ap-
proach can be made keeping in mind that, if f is a function analytic on a disc
{z ∈C : |z− z0|< R} ⊇ sp(A,a), and if f (z) =∑∞

n=0αn(z− z0)
n is the Taylor expan-

sion of f , then, by Theorem 1.1.46 and Corollary 1.1.18(i), the series
∑∞

n=0αn(a− z01)n converges in A, and its sum is naturally denoted by f (a). The
functional calculus obtained in this way extends the polynomial functional calculus,
but not the rational functional calculus. Indeed, if A = CC(T), and if a(z) := z
for every z ∈ T, then the fraction f (x) := 1

x lies in Qa. Nevertheless, as shown in
Example 1.1.28, f (a) = a−1 (in the sense of the rational functional calculus) does
not lie in the closed subalgebra of A generated by {1,a}, and hence cannot be of the
form ∑∞

n=0αn(a− z01)n.
Recall that a curve in C is a continuous mapping γ : [0,1]→ C. Sometimes, when

there is no risk of confusion, we will identify a given curve γ with its range γ([0,1]).
The curve γ is closed if γ(0) = γ(1). A contour Γ in C consists of the union of a
finite family {Γ1, . . . ,Γn} of pairwise disjoint, piecewise continuously differentiable,
closed curves in C. For a contour Γ in C and z0 ∈ C \Γ, we define the index of z0

with respect to Γ to be

IndΓ(z0) =
1

2πi

∫
Γ

d z
z− z0

.

Let K be a compact set in C, and let Ω be an open set in C containing K. A contour
Γ surrounds K in Ω whenever Γ⊆Ω\K and

IndΓ(z) =

{
1 if z ∈ K
0 if z ∈ C\Ω.

The existence of contours surrounding K in Ω is well known (see, for example [680,
Lemma 3.4.5]).
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For a non-empty open subset Ω of C, we denote by H (Ω) the algebra (under
pointwise operations) of all complex-valued holomorphic functions on Ω, endowed
with the topology of the uniform convergence on compact sets.

Lemma 1.3.10 Let A be a complete normed unital associative complex algebra, let
a be in A, and let Ω be an open set in C containing sp(A,a). We have:

(i) For each f ∈ H (Ω), and for each contour Γ surrounding sp(A,a) in Ω, the
integral

1
2πi

∫
Γ

f (z)(z1−a)−1dz

is well defined and does not depend on the choice of Γ.
(ii) If Ω1,Ω2 are open sets in C such that sp(A,a) ⊆ Ω ⊆ Ω1 ∩Ω2, if f1 ∈ H (Ω1)

and f2 ∈ H (Ω2) satisfy f1|Ω = f2|Ω, and if Γ1,Γ2 are contours surrounding
sp(A,a) in Ω1,Ω2, respectively, then

1
2πi

∫
Γ1

f1(z)(z1−a)−1dz =
1

2πi

∫
Γ2

f2(z)(z1−a)−1dz.

Proof Let f be in H (Ω), and let Γ be a contour surrounding sp(A,a) in Ω. By
Proposition 1.1.15, the function f (z)(z1−a)−1 is continuous on Γ, so that the integral

1
2πi

∫
Γ

f (z)(z1−a)−1dz

exists and defines an element of A. Moreover, the integrand is actually a holomorphic
A-valued function in Ω \ sp(A,a) (by Proposition 1.1.40). The Cauchy theorem
implies therefore that the integral is independent of the choice of Γ, provided only
that Γ surrounds sp(A,a) in Ω.

Now, assume that Ω1,Ω2 are open sets in C such that

sp(A,a)⊆Ω⊆Ω1 ∩Ω2,

that f1 ∈ H (Ω1) and f2 ∈ H (Ω2) satisfy f1|Ω = f2|Ω, and that Γ1,Γ2 are contours
surrounding sp(A,a) in Ω1,Ω2, respectively. Fix a contour Γ surrounding sp(A,a) in
Ω. Then, by assertion (i), we have

1
2πi

∫
Γ1

f1(z)(z1−a)−1dz =
1

2πi

∫
Γ

f (z)(z1−a)−1dz

=
1

2πi

∫
Γ2

f2(z)(z1−a)−1dz.

Let A be a complete normed unital associative complex algebra, and let a be
in A. According to the above lemma, if f is a holomorphic function on an open
neighbourhood Ω of sp(A,a), then we can define f (a) by means of the following
Cauchy integral

f (a) :=
1

2πi

∫
Γ

f (z)(z1−a)−1dz, (1.3.4)

where Γ is any contour surrounding sp(A,a) in Ω.
The definition (1.3.4) coincides with the previous definition for polynomials.

Indeed, we have the following.
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Proposition 1.3.11 Let a be an element of a complete normed unital associative
complex algebra A, and let Γ be a contour surrounding sp(A,a) in C. If p(x) =
∑n

k=0αkxk is in C[x], then

1
2πi

∫
Γ

p(z)(z1−a)−1dz =
n

∑
k=0

αkak.

In particular

1
2πi

∫
Γ
(z1−a)−1dz = 1.

Proof It is sufficient to show that

1
2πi

∫
Γ

zk(z1−a)−1dz = ak

for every k � 0. Fix R > r(a). By Lemma 1.3.10(i), we have

1
2πi

∫
Γ

zk(z1−a)−1dz =
1

2πi

∫
|z|=R

zk(z1−a)−1dz.

On the other hand, by Lemma 1.1.20, for each z with |z|> r(a) we have

(z1−a)−1 =
1
z

(
1− a

z

)−1

=
∞

∑
n=0

an

zn+1 .

Since this series converges uniformly on {z ∈ C : |z|= R}, it follows that

1
2πi

∫
|z|=R

zk(z1−a)−1dz =
∞

∑
n=0

(
1

2πi

∫
|z|=R

an

zn−k+1 dz

)
=

∞

∑
n=0

(
1

2πi

∫
|z|=R

dz
zn−k+1

)
an.

Since

1
2πi

∫
|z|=R

dz
zn−k+1 =

{
1 if n = k
0 if n 	= k,

the result follows.

The definition (1.3.4) coincides with the previous definition for fractions. Indeed,
we have the following.

Proposition 1.3.12 Let A be a complete normed unital associative complex alge-
bra, let a be in A, let f be in Qa (say f = p

q with p,q ∈C[x] and q(a) ∈ Inv(A)), and
let Γ be a contour surrounding sp(A,a) in the open set C\{z ∈ C : q(z) = 0}. Then

1
2πi

∫
Γ

f (z)(z1−a)−1dz = p(a)q(a)−1.

Proof Let λ1, . . . ,λn be the roots of q of multiplicities m1, . . . ,mn. Then p(z)
q(z) can be

expressed as

p(z)
q(z)

= p1(z)+
n

∑
j=1

mj

∑
k=1

c j,k

(z−λ j)k
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for some polynomial p1 and complex numbers c j,k, and as a consequence

p(a)q(a)−1 = p1(a)+
n

∑
j=1

m j

∑
k=1

c j,k(a−λ j1)−k.

Since p1(a)=
1

2π i

∫
Γ p1(z)(z1−a)−1dz (by Proposition 1.3.11), to conclude the proof

it is enough to show that, for k ∈ N and λ /∈ sp(A,a), we have

(a−λ1)−k =
1

2πi

∫
Γ

1
(z−λ )k (z1−a)−1dz,

where Γ is any contour surrounding sp(A,a) in C\{λ}.
Let λ and Γ be as above. We claim that the function

z →
[

1
(z−λ )k 1− (a−λ1)−k

]
(z1−a)−1

is (the restriction to C \ (sp(A,a)∪ {λ}) of) a holomorphic function on C \ {λ}.
Indeed, by writing[

1
(z−λ )k 1− (a−λ1)−k

]
(z1−a)−1

=
1

(z−λ )k (a−λ1)−k
[
(a−λ1)k − (z−λ )k1

]
(z1−a)−1,

and by keeping in mind that

xk − yk = (x− y)(xk−1 + xk−2y+ · · ·+ xyk−2 + yk−1)

for all commuting x,y ∈ A, we realize that[
1

(z−λ )k 1− (a−λ1)−k
]
(z1−a)−1

=
1

(z−λ )k (a−λ1)−k
[
(a−λ1)k − (z−λ )k1

]
(z1−a)−1

=
1

(z−λ )k (a−λ1)−k(a− z1)
[
(a−λ1)k−1 +(a−λ1)k−2(z−λ )

+ · · ·+(a−λ1)(z−λ )k−2 +(z−λ )k−11
]
(z1−a)−1

=− 1
(z−λ )k (a−λ1)−k

[
(a−λ1)k−1 +(a−λ1)k−2(z−λ )

+ · · ·+(a−λ1)(z−λ )k−2 +(z−λ )k−11
]
.

Therefore, the function z →
[

1
(z−λ )k 1− (a−λ1)−k

]
(z1−a)−1 is the product of the

holomorphic function in C\{λ} given by

z →− 1
(z−λ )k (a−λ1)−k

by the polynomial function

z → (a−λ1)k−1 +(a−λ1)k−2(z−λ )+ · · ·+(a−λ1)(z−λ )k−2 +(z−λ )k−11,
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and hence the function

z →
[

1
(z−λ )k 1− (a−λ1)−k

]
(z1−a)−1 is holomorphic in C\{λ}.

Now that the claim has been proved, the Cauchy theorem implies that∫
Γ

[
1

(z−λ )k 1− (a−λ1)−k
]
(z1−a)−1dz = 0,

and hence, by Proposition 1.3.11,

1
2πi

∫
Γ

1
(z−λ)k (z1−a)−1dz =

1
2πi

∫
Γ
(a−λ1)−k(z1−a)−1dz

= (a−λ1)−k 1
2πi

∫
Γ
(z1−a)−1dz = (a−λ1)−k,

and the proof is complete.

Now, we formulate and prove the main result in this section.

Theorem 1.3.13 Let A be a complete normed unital associative complex algebra,
let a be in A, let Ω be an open subset of C containing sp(A,a), and let u stand for
the inclusion mapping Ω ↪→ C. Then there is a unique continuous unit-preserving
algebra homomorphism f → f (a) from H (Ω) into A taking u to a. Furthermore, we
have:

(i) f (a) =
1

2πi

∫
Γ

f (z)(z1−a)−1dz for every f ∈ H (Ω), where Γ is any contour

surrounding sp(A,a) in Ω.

(ii) f (a) =
∞

∑
n=0

cn(a− z01)n when Ω is the open disc of centre z0 and radius R � ∞,

and f ∈ H (Ω) is represented by the power series
∞

∑
n=0

cn(z− z0)
n.

(iii) f (a) ∈ {a}cc for each f ∈ H (Ω).
(iv) sp(A, f (a)) = f (sp(A,a)) for each f ∈ H (Ω).
(v) If f ∈ H (Ω) and if Ω1 is an open set in C such that f (Ω)⊆Ω1, then

(g◦ f )(a) = g( f (a)) for every g ∈ H (Ω1).

Proof According to (1.3.4) and to validate assertion (i), we define

f (a) :=
1

2πi

∫
Γ

f (z)(z1−a)−1dz,

where Γ is a contour surrounding sp(A,a) in Ω. The linearity of the mapping f →
f (a) is clear. Moreover, 1 → 1 and u → a, by Proposition 1.3.11. Assume that fn is
a sequence of holomorphic functions on Ω converging uniformly to f on compact
subsets of Ω. Then f is a holomorphic function on Ω, and fn converges uniformly
on Γ. Therefore we have

2π‖ fn(a)− f (a)‖= ‖
∫
Γ
[ fn(z)− f (z)](z1−a)−1dz‖ � M�(Γ)‖ fn − f‖Γ → 0,

as n → ∞, where M = max{‖(z1−a)−1‖ : z ∈ Γ}, �(Γ) denotes the length of Γ and
‖ fn − f‖Γ = sup{| fn(z)− f (z)| : z ∈ Γ}. Since the topology of uniform convergence
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on compact sets of Ω is metrizable, we conclude that the mapping f → f (a) is
continuous. It remains to be proved that f → f (a) is multiplicative. Explicitly, if
f ,g ∈ H (Ω), and h(z) = f (z)g(z) for every z ∈Ω, it has to be shown that

h(a) = f (a)g(a). (1.3.5)

If f and g are rational functions with poles outside Ω, then (1.3.5) holds because of
Proposition 1.3.12. In the general case, by Runge’s theorem, there are sequences fn
and gn of rational functions, with poles outside Ω, converging uniformly on compact
subsets of Ω to f and g, respectively. Then fngn converges to h in the same manner,
and (1.3.5) follows from the continuity of the mapping f → f (a).

Assume that Φ is a continuous unit-preserving algebra homomorphism from
H (Ω) into A such that Φ(u) = a. Then, it is clear that Φ(p) = p(a) for every
polynomial p, and that Φ( 1

q ) = q(a)−1 if q is a polynomial without zeros in Ω.
Hence Φ( f ) = f (a) for every rational function f with poles outside Ω. Now, from
the continuity and the Runge theorem, we obtain Φ( f ) = f (a) for every f ∈ H (Ω).

Assume that Ω is a disc of centre z0 ∈ C and radius R � ∞ and that f ∈ H (Ω)

is represented by the power series
∞

∑
n=0

cn(z− z0)
n. For each n ∈ N, consider the

polynomial pn(z) =
n

∑
k=0

ck(z− z0)
k. Since pn converges uniformly to f on compact

subsets of Ω, it follows from the first paragraph in the proof and Proposition 1.3.11
that

f (a) = lim pn(a) = lim
n

∑
k=0

ck(a− z01)k =
∞

∑
n=0

cn(a− z01)n,

and assertion (ii) is proved.
Assertion (iii) follows directly from the definition since {a}cc is a closed sub-

algebra of A containing (z1 − a)−1 for every z ∈ Γ (by Proposition 1.1.78(i) and
Lemma 1.1.80).

Now, we will prove assertion (iv). If λ /∈ f (sp(A,a)), then

g(z) = ( f (z)−λ )−1

is a holomorphic function on an open neighbourhood of sp(A,a) contained in Ω.
Keeping in mind Lemma 1.3.10(ii), we see that

( f (a)−λ1)g(a) = g(a)( f (a)−λ1) = 1,

and hence λ /∈ sp(A, f (a)). Conversely, if λ ∈ f (sp(A,a)), then there exists z0 ∈
sp(A,a) with f (z0) = λ , and consequently f (z)−λ = (z− z0)g(z) for some function
g ∈ H (Ω). Then f (a)− λ1 = (a− z01)g(a) = g(a)(a− z01) and, since a− z01 /∈
Inv(A), Lemma 1.1.99(ii) applies to conclude that f (a)−λ1 /∈ Inv(A). Hence λ ∈
sp(A, f (a)).

Finally, in order to prove assertion (v), assume that f ∈ H (Ω), and that Ω1 is an
open set in C such that f (Ω)⊆Ω1. Consider the mapping

Φ : H (Ω1)→ A

defined by Φ(g) = (g ◦ f )(a). It can immediately be verified that Φ is a continuous
unit-preserving algebra homomorphism such that Φ(u1) = f (a), where u1 stands for
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the inclusion mapping of Ω1 in C. Note that, by assertion (iv), we have sp(A, f (a)) =
f (sp(A,a))⊆Ω1. Therefore, it follows from the uniqueness of the functional calcu-
lus that Φ(g) = g( f (a)) for every g ∈H (Ω1), that is to say (g◦ f )(a) = g( f (a)) for
every g ∈ H (Ω1).

The algebra homomorphism f → f (a) in Theorem 1.3.13 is called the holo-
morphic functional calculus at a. Assertion (iv) in Theorem 1.3.13 is called the
spectral mapping theorem (for the holomorphic functional calculus).

Exercise 1.3.14 Let A be a complete normed unital associative complex alge-
bra, and let a be in A such that ∏n

k=1(a−αk1) = 0 for pairwise different numbers
α1, . . . ,αn ∈C. Note that, by Corollary 1.3.5, sp(A,a)⊆{α1, . . . ,αn}, and then apply
Exercise 1.3.7, Theorem 1.3.13, and Runge’s theorem to show that there are unique
pairwise orthogonal idempotents e1, . . . ,en ∈ A such that f (a) = ∑n

k=1 f (αk)ek for
every complex-valued holomorphic function f on some open subset of C containing
{α1, . . . ,αn}.

The Cauchy integral formulae for derivatives also hold for the holomorphic func-
tional calculus. Indeed, we have the following.

Proposition 1.3.15 Let A be a complete normed unital associative complex alge-
bra, let a ∈ A, let Ω be an open subset of C containing sp(A,a), and let f be in
H (Ω). Then, for each natural number k we have

f (k)(a) =
k!

2πi

∫
Γ

f (z)(z1−a)−k−1 dz,

where Γ is any contour surrounding sp(A,a) in Ω.

Proof Let Γ be a contour surrounding sp(A,a) in Ω, and let k ∈ N. Then, since

f (k)(a) =
1

2πi

∫
Γ

f (k)(w)(w1−a)−1 dw

and

(z1−a)−k−1 =
1

2πi

∫
Γ
(z−w)−k−1(w1−a)−1 dw,

Fubini’s rule gives

f (k)(a) =
1

2πi

∫
Γ

[
k!

2πi

∫
Γ

f (z)(z−w)−k−1 dz

]
(w1−a)−1 dw

=
k!

2πi

∫
Γ

[
1

2πi

∫
Γ
(z−w)−k−1(w1−a)−1 dw

]
f (z)dz

=
k!

2πi

∫
Γ

f (z)(z1−a)−k−1 dz.

Other consequences of Theorem 1.3.13 are compiled in what follows.

Corollary 1.3.16 Let A,B be complete normed unital associative complex algebras,
let φ : A → B be a continuous unit-preserving algebra homomorphism, let a ∈ A, let
Ω be an open set in C, and suppose that sp(A,a) ⊆ Ω. Then sp(B,φ(a)) ⊆ Ω, and
φ( f (a)) = f (φ(a)) for every f ∈ H (Ω).
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Proof By Lemma 1.1.34(ii), sp(B,φ(a))⊆ sp(A,a), hence sp(B,φ (a))⊆Ω and any
contour surrounding sp(A,a) in Ω is a contour surrounding sp(B,φ(a)) in Ω. Let f
be in H (Ω), and let Γ be a contour surrounding sp(A,a) in Ω. By Theorem 1.3.13(i),
we have

φ ( f (a)) =
1

2πi

∫
Γ
φ( f (z)(z1−a)−1)dz

=
1

2πi

∫
Γ

f (z)(z1−φ(a))−1dz = f (φ(a)).

The following result is easily deduced from Theorems 1.3.13 and 1.2.28.

Fact 1.3.17 Let a be a normal element of a unital C∗-algebra A, let Ω be an open
subset of C such that sp(A,a) ⊆ Ω, and let f be in H (Ω). Then f (a) has the same
meaning in both continuous functional calculus and holomorphic functional calculus
at a.

Proof Since the mappings f → f|sp(A,a), from H (Ω) to CC(sp(A,a)), and g →
g(a), from CC(sp(A,a)) to A, are continuous unit-preserving algebra homo-
morphisms, we realize that the mapping f → f|sp(A,a)(a) from H (Ω) to A is a
continuous unit-preserving algebra homomorphism taking u to a.

As a consequence of Corollary 1.2.30 and Fact 1.3.17 we have the following.

Corollary 1.3.18 Let E be a compact Hausdorff topological space, let a ∈CC(E),
let Ω be an open set in C, and suppose that a(E) ⊆ Ω. Then f (a) = f ◦ a for every
f ∈ H (Ω).

Applying Corollaries 1.3.16 and 1.3.18, we obtain the next result.

Corollary 1.3.19 Let A be a complete normed unital associative and commutative
complex algebra, with carrier space Δ and Gelfand representation G : A → CC(Δ),
let a ∈ A, let Ω be an open set in C, and suppose that sp(A,a)⊆Ω. Then G( f (a)) =
f ◦G(a) for every f ∈ H (Ω).

Proposition 1.3.20 Let A be a complete normed unital associative complex alge-
bra, let a be in A, and let Ω be an open subset of C containing sp(A,a). Then there
exists ε > 0 such that sp(A,b)⊆Ω for every b ∈ A with ‖b−a‖< ε .

Proof Suppose on the contrary that for every n there exist xn ∈ A and λn ∈
sp(A,xn) \Ω such that ‖xn − a‖ < 1

n . Then |λn| � ‖xn‖ � ‖a‖+ 1, and so there
exists a subsequence of λn converging to some λ ∈ C\Ω. Since xn −λn1 /∈ Inv(A),
we have a−λ1 /∈ Inv(A) by Theorem 1.1.23. Thus λ ∈ sp(A,a) and λ /∈ Ω, which
is a contradiction with the assumption that sp(A,a) is contained in Ω.

§1.1.36 should be kept in mind for the formulation and proof of the next theorem.

Theorem 1.3.21 Let A be a complete normed unital associative complex algebra,
let Ω be a non-empty open set in C, and let f be in H (Ω). Then

AΩ := {x ∈ A : sp(A,x)⊆Ω}
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is a non-empty open subset of A, and the mapping f̃ : x → f (x) from AΩ to A
is holomorphic. Moreover, for each a ∈ AΩ, the Fréchet derivative of f̃ at a is
represented by the following BL(A)-valued integral

D f̃ (a) =
1

2πi

∫
Γ

f (z)L(z1−a)−1R(z1−a)−1 dz,

where Γ is any contour that surrounds sp(A,a) in Ω.

Proof Clearly Ω1 ⊆ AΩ, and hence AΩ is not empty. Moreover, by Proposition
1.3.20, AΩ is an open subset of A. Let a be in AΩ, and let Γ be a contour surrounding
sp(A,a) in Ω. Since the mapping x → x−1 is continuous on Inv(A), the integrand
f (z)L(z1−a)−1R(z1−a)−1 is continuous on Γ, so that the integral

1
2πi

∫
Γ

f (z)L(z1−a)−1R(z1−a)−1 dz

exists and defines an element (say T ) of BL(A). Moreover, the integrand is actually
a holomorphic BL(A)-valued function on Ω \ sp(A,a) (by Proposition 1.1.40). The
Cauchy theorem implies therefore that the integral is independent of the choice of Γ,
provided that Γ surrounds sp(A,a) in Ω. For each h ∈ A, the valuation of elements of
BL(A) at h becomes a continuous linear mapping from BL(A) to A, and hence

T (h) =

(
1

2πi

∫
Γ

f (z)L(z1−a)−1R(z1−a)−1dz

)
(h)

=
1

2πi

∫
Γ

f (z)L(z1−a)−1R(z1−a)−1(h)dz

=
1

2πi

∫
Γ

f (z)(z1−a)−1h(z1−a)−1dz.

Since Γ is a compact subset of C \ sp(A,a), there exists a positive number M such
that ‖(z1−a)−1‖� M for every z ∈ Γ. Let z be in Γ and let h be in A with ‖h‖< 1

2M .
Then we have

‖(z1−a)− (z1−a−h)‖= ‖h‖< 1
2M

<
1
M

� 1
‖(z1−a)−1‖ .

Therefore, by Corollary 1.1.21(ii), z1−a−h is invertible in A, and then, by Lemma
1.1.13(iii),

‖(z1−a−h)−1‖ � ‖(z1−a)−1‖
1−‖(z1−a)−1‖‖h‖ � M

1− 1
2

= 2M.

Since

(z1−a−h)−1 − (z1−a)−1 − (z1−a)−1h(z1−a)−1

= (z1−a)−1h(z1−a−h)−1h(z1−a)−1

(by Lemma 1.1.22), we derive that

‖(z1−a−h)−1 − (z1−a)−1 − (z1−a)−1h(z1−a)−1‖

� ‖(z1−a)−1‖2‖h‖2‖(z1−a−h)−1‖ � 2M3‖h‖2.
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Since Γ surrounds sp(A,a) in Ω, the set W := {z ∈ C : IndΓ(z) = 1} is open in C
and satisfies sp(A,a) ⊆ W ⊆ Ω. By Proposition 1.3.20, there exists ε > 0 such that
sp(A,b)⊆W for every b ∈ A with ‖b−a‖< ε . Therefore, if in addition we assume
that ‖h‖ < ε , then sp(A,a+ h) ⊆ W , hence Γ is a contour surrounding sp(A,a+ h)
in Ω, and so

f (a+h)− f (a)−T (h)

=
1

2πi

∫
Γ

f (z)
[
(z1−a−h)−1 − (z1−a)−1 − (z1−a)−1h(z1−a)−1]dz.

It follows that

‖ f (a+h)− f (a)−T (h)‖ � 1
2π

�(Γ)max{| f (z)| : z ∈ Γ}2M3‖h‖2,

where �(Γ) denotes the length of Γ. Hence

lim
h→0

‖ f (a+h)− f (a)−T (h)‖
‖h‖ = 0.

Corollary 1.3.22 Let A be a complete normed unital associative complex algebra,
let Ω be a non-empty open set in C, and let f be a biholomorphic function from Ω
onto f (Ω). Then the mapping f̃ : a → f (a) is biholomorphic from AΩ onto A f (Ω).

Proof Let g : f (Ω)→ Ω be the inverse of f . Since g ◦ f and f ◦ g are the identity
mappings on Ω and f (Ω), respectively, Theorem 1.3.13(v) shows that g̃◦ f̃ and f̃ ◦ g̃
are the identity mappings on AΩ and A f (Ω), respectively. Now f̃ and its inverse g̃ are
holomorphic (by Theorem 1.3.21), and the proof is complete.

This section closes with two typical applications of the holomorphic functional
calculus. If A is a unital associative algebra over K, and if e is an idempotent in A
different from 0 and 1, then, by Corollary 1.3.5, we have sp(A,e) = {0,1}, and hence
A has some element whose spectrum is disconnected, provided such an idempotent
e does exist. Conversely, we have the following.

Proposition 1.3.23 Let A be a complete normed unital associative complex alge-
bra. If the spectrum of some element of A is not connected, then A contains an
idempotent different from 0 and 1. More precisely, if a ∈ A is such that sp(A,a) =
F ∪G for some disjoint non-empty closed subsets F,G of sp(A,a), then there is an
idempotent e 	= 0,1 in {a}cc satisfying:

(i) If a1 := ae and a2 := a(1− e), then a = a1 +a2 and a1a2 = a2a1 = 0.
(ii) sp(A,a1) = F ∪{0} and sp(A,a2) = G∪{0}.

Proof Let a be in A such that sp(A,a) = F ∪G, where F and G are disjoint non-
empty closed subsets of sp(A,a). Let Ω1,Ω2 be disjoint open subsets of C such
that F ⊆ Ω1 and G ⊆ Ω2. Set Ω = Ω1 ∪Ω2, and consider the function f : Ω → C
defined by

f (z) =

{
1 if z ∈Ω1

0 if z ∈Ω2.

Then f ∈H (Ω) and satisfies that f 2 = f . Therefore, by Theorem 1.3.13, e := f (a) is
an idempotent in {a}cc with sp(A,e) = {0,1} (which implies e 	= 0,1). Now, noticing
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that e(1− e) = 0 = (1− e)e, assertion (i) follows. Consider the functions f1(z) =
z f (z) and f2(z) = z(1− f (z)). It follows from Theorem 1.3.13 that a1 = f1(a) and
a2 = f2(a). Hence

sp(A,a1) = f1(sp(A,a)) = F ∪{0} and sp(A,a2) = f2(sp(A,a)) = G∪{0},

which concludes the proof.

Definition 1.3.24 Let A be an associative algebra, and let a,b be in A. We say that
b is an nth root of a in A if a = bn. If in addition A is complete normed and unital,
and if a = exp(b), then we say that b is a logarithm of a in A. We note that the
two meanings of exp(b), given by §1.1.29 and Theorem 1.3.13, do agree (in view of
Theorem 1.3.13(ii)).

Proposition 1.3.25 Let A be a complete normed unital associative complex alge-
bra, and let a be an element of A. If zero lies in the unbounded connected component
of C\ sp(A,a), then

(i) a has roots of all orders in A.
(ii) a has a logarithm in A.

Moreover, if a satisfies the condition sp(A,a) ⊆ R+, then the roots in assertion (i)
can be chosen so as to satisfy the same condition.

Proof Assume that zero lies in the unbounded connected component of C\sp(A,a).
Then there is a function f , holomorphic in a simply connected open set Ω containing
sp(A,a), which satisfies exp( f (z)) = z. It follows from Theorem 1.3.13(v) that b =

f (a) is a logarithm of a. If sp(A,a) ⊆ R+, then f can be chosen so as to be real on
sp(A,a), so that sp(A,b) lies in R, by the spectral mapping theorem. If c = exp( 1

n b),
then cn = a, and another application of the spectral mapping theorem shows that
sp(A,c)⊆ R+ if sp(A,b)⊆ R.

Remark 1.3.26 Let A be a complete normed non-unital associative complex alge-
bra, let a be in A, let Ω be an open set in C, containing sp(A1 ,a) (so that, 0 ∈
Ω), let f be in H (Ω), and, keeping in mind Proposition 1.1.107, let f (a) be the
element of A1 given by the holomorphic functional calculus. It is easily realized that
f (a) ∈ A if and only if f (0) = 0. Indeed, consider the continuous unit-preserving
algebra homomorphism φ : A1 =C1⊕A →C defined by φ(λ1+x) := λ , and apply
Corollary 1.3.16.

1.3.3 Historical notes and comments

The material in this section has been elaborated mainly from the books of
Conway [711], Dales [715], Doran and Belfi [725], Müller [780], Palmer [786],
and Rudin [804]. Other sources are quoted in what follows.

Theorem 1.3.2 and Proposition 1.3.3 are folklore. Proposition 1.3.3 can be found
in [792, Corollary 5.1], where it is derived from a more general result [792, Theorem
5.1].

According to [780, C.1.18], ‘the [holomorphic] functional calculus for one
[bounded linear] operator [on a complex Banach space] was first used by Riesz
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[504] for construction of the spectral projection of a compact operator [cf. Prop-
osition 1.3.23]. The general spectral mapping theorem [Theorem 1.3.13(iv)] was
proved by Dunford [219]’. For a more detailed history, the reader is referred to [786,
pp. 343–4].

In relation to Proposition 1.3.23, it is worth mentioning the following theorem,
which is due to Koliha [391].

Theorem 1.3.27 Let A be a complete normed unital associative complex algebra,
let a be in A, and let μ be in C. Then μ is an isolated point of sp(A,a) if (and only
if) there exists a nonzero idempotent e ∈ A satisfying ae = ea, r((a−μ1)e) = 0, and
e+a−μ1 ∈ Inv(A).

Now let us conclude this subsection by taking the following short proof of The-
orem 1.1.31 from [726], which relies on the holomorphic functional calculus.

Proof Let A and S be as in Theorem 1.1.31. In view of Proposition 1.1.98, to prove
the conclusion in that theorem, we may assume that the complete normed unital
associative algebra A is complex. Set Ω := {z ∈ C \ {0} : |arg(z)| < π

2 }. Since S is
continuous and S(0) = 1, there exists ε > 0 such that ‖S(t)− 1‖ < 1 for 0 � t � ε .
Therefore

sp(A,S(t))⊆ {z ∈ C : |z−1|< 1} ⊆Ω,

and L(t) := logS(t) is defined and continuous for 0 � t � ε . Here, arg and log stand
for the principal values of the argument and logarithmic functions, respectively, and,
for x∈A with sp(A,x)⊆Ω, logx has to be understood in the sense of the holomorphic
functional calculus.

Let t be in R+
0 and let n be in N such that nt � ε . Note that for every k ∈ {1, . . . ,n}

we have
sp(A,S(t))k = sp(A,S(t)k) = sp(A,S(kt))⊆Ω.

Noticing that |arg(λ )| < π
2(k+1) whenever k ∈ N and λ ∈ C satisfy |arg(λ)| < π

2k
and |arg(λ k+1)|< π

2 , a finite induction gives that

sp(A,S(t))⊆Ωn :=
{

z ∈ C\{0} : |arg(z)|< π
2n

}
.

Since logzn = n logz on Ωn, it follows that log(S(t)n) = n logS(t), and hence

L(nt) = logS(nt) = log(S(t)n) = n logS(t) = nL(t).

As a consequence of the above paragraph, we have L(t) = nL( 1
nt) for all 0 � t � ε

and n ∈ N. Now, for each rational number m
n with 0 � m

n � 1, and each t in the
interval [0,ε], we have m

n L(t) = mL( 1
n t) = L(m

n t), and in particular m
n L(ε) = L(m

n ε).
From the continuity of L it follows that sL(ε) = L(sε) for 0 � s � 1, and in particular
t
ε L(ε) = L(t) for 0 � t � ε . Set a := 1

ε L(ε). Then L(t) = ta for 0 � t � ε , and hence

S(t) = exp(ta) (1.3.6)

for 0 � t � ε . If t ∈R+ is arbitrary then 1
nt < ε for some sufficiently large n ∈N, and

so we have

S(t) = S

(
1
n

t

)n

= exp

(
1
n

ta

)n

= exp(ta).

Thus (1.3.6) holds for every t ∈ R+
0 .
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1.4 Compact and weakly compact operators

Introduction We introduce compact and weakly compact operators between (pos-
sibly non-complete) normed spaces, and discuss both old and recent selected topics
in their theory. As far as possible, results on compact operators are obtained from
those on weakly compact operators.

1.4.1 Operators from a normed space to another

Let X and Y be normed spaces over K. By a compact (respectively, weakly compact)
operator from X to Y we mean a linear mapping T : X → Y such that the closure
of T (BX ) in Y is a compact (respectively, weakly compact) subset of Y . We denote
by K(X ,Y ) (respectively, W(X ,Y )) the set of all compact (respectively, weakly com-
pact) operators from X to Y .

The following fact is straightforward.

Fact 1.4.1 Let X and Y be normed spaces over K. We have:

(i) K(X ,Y ) and W(X ,Y ) are subspaces of L(X ,Y ) satisfying

K(X ,Y )⊆W(X ,Y )⊆ BL(X ,Y ).

(ii) If T is in K(X ,Y ) (respectively, W(X ,Y )), if U and V are normed spaces over
K, if F is in BL(Y,V ), and if G is in BL(U,X), then F ◦T ◦G belongs to K(U,V )

(respectively, W(U,V )).

(iii) If T is a compact (respectively, weakly compact) operator from X to Y , then
the restriction of T to any subspace of X is a compact (respectively, weakly
compact) operator.

(iv) If T is a compact (respectively, weakly compact) operator from X to Y , and if Z
is any subspace of Y containing the closure of T (BX ) in Y (for example, if Z is
a closed subspace of Y containing T (X)), then T , regarded as a mapping from
X to Z, is a compact (respectively, weakly compact) operator.

An easy, but not so straightforward result, is the following.

Proposition 1.4.2 Let X and Y be normed spaces over K, and let T be a compact
(respectively, weakly compact) operator from X to Y . If Y is infinite-dimensional
(respectively, non-reflexive), then T (X) is of the first category in Y .

Proof Assume that T (X) is of the second category in Y . Then it follows from the
equality

T (X) =
⋃

n∈N
nT (BX)

that the closure of T (BX ) in Y (say C) contains a closed ball in Y . Since C is compact
(respectively, weakly compact), such a ball also becomes compact (respectively,
weakly compact), so that, by the Riesz sphere theorem (respectively, by Goldstine’s
theorem), Y is finite-dimensional (respectively, reflexive).
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It follows from Proposition 1.4.2 that, if Y is a normed space of the second cat-
egory in itself, and if there exists a surjective compact (respectively, weakly compact)
operator from some normed space to Y, then Y is finite-dimensional (respectively,
reflexive). As a consequence, we have the following.

Corollary 1.4.3 Let Y be a Banach space such that there exists a surjective compact
(respectively, weakly compact) operator from some normed space to Y . Then Y is
finite-dimensional (respectively, reflexive).

Both compact and weakly compact versions of Corollary 1.4.3 do not remain true
if the assumption that Y is a Banach space is relaxed to the assumption that Y is
an arbitrary normed space. Actually, as we are going to show in Proposition 1.4.4
immediately below, there are abundant examples of infinite-dimensional normed
spaces X and Y such that we can find a bijective compact (hence weakly compact)
operator from X to Y . Of course, the space Y in these examples cannot be complete
(much less reflexive).

Proposition 1.4.4 Let X be a separable Banach space, and let Y be an infinite-
dimensional Banach space. Then there exists a bijective compact operator from X ′

to some subspace of Y .

Proof Take a normalized basic sequence (yn)n∈N in Y , as well as a sequence
(xn)n∈N in SX whose linear hull is dense in X . Then the mapping

T : x′ →
∞

∑
n=1

1
n2 x′(xn)yn

becomes an injective linear operator from X ′ to Y . Moreover, since T is the uniform
limit on BX ′ of a sequence of weak∗-to-norm continuous functions, the restriction
of T to BX ′ is weak∗-to-norm continuous, and hence T (BX ′) is (norm-)compact. It
follows from Fact 1.4.1(iv) that T , regarded as an operator from X ′ to T (X ′), becomes
a bijective compact operator.

The bijective compact operators given by the above proposition start from Banach
spaces. Now, the existence of bijective compact operators starting from non-complete
normed spaces follows from the following.

Proposition 1.4.5 Let (X ,‖·‖) be a normed space, and let f be a ‖·‖-discontinuous
linear funcional on X. Then the norm ||| · ||| on X defined by

|||x||| := ‖x‖+ | f (x)|

is not complete. Moreover, compact (respectively, weakly compact) operators start-
ing from (X ,‖ · ‖) remain compact (respectively, weakly compact) when they are
regarded as operators starting from (X , ||| · |||).

Proof Since B(X ,|||·|||) ⊆ B(X ,‖·‖), the last conclusion in the statement becomes clear.
Assume that the norm ||| · ||| is complete. Then, since f is ||| · |||-continuous, ker( f ) is
||| · |||-complete. Keeping in mind that ‖ · ‖ and ||| · ||| coincide on ker( f ), we deduce
that ker( f ) is closed in (X ,‖ · ‖), an hence that f is ‖ · ‖-continuous, contrary to the
assumption.
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Now we deal with useful characterizations of compact and weakly compact
operators.

Proposition 1.4.6 Let X and Y be normed spaces over K, and let T be in BL(X ,Y ).
Then T is a weakly compact operator if and only if T ′′(X ′′)⊆ Y .

Proof Let C stand for the closure of T (BX ) in Y .
Assume that T is weakly compact, so that C is a weakly compact subset of Y . Since

the weak topology of Y is the restriction to Y of the weak∗ topology of Y ′′, it follows
that C is weak∗-closed in Y ′′. Therefore, since T ′′ is weak∗-to-weak∗ continuous
and BX is weak∗ dense in BX ′′ , we derive that T ′′(BX ′′) ⊆ C ⊆ Y , and hence that
T ′′(X ′′)⊆ Y .

Now assume that T ′′(X ′′)⊆ Y . Then, since BX ′′ is a weak∗-compact subset of X ′′,
we see that T ′′(BX ′′) is a weak∗-compact subset of Y ′′ contained in Y , and hence it
is a weakly compact subset of Y containing T (BX ). It follows that C is a weakly
compact subset of Y .

Remark 1.4.7 Let X , Y , and T be as in Proposition 1.4.6. Although not emphasized
in the statement, the above proof shows that T is weakly compact if and only if
T ′′(BX ′′) is contained in the closure of T (BX ) in Y . As a consequence, if T is weakly
compact, then so is T ′′. As a partial converse, if Y is in fact a Banach space, and if
T ′′ is weakly compact, then, since Y is closed in Y ′′, and T ′′ coincides with T on X ,
it follows from Fact 1.4.1(iii)–(iv) that T is weakly compact.

Again, let X , Y , and T be as in Proposition 1.4.6. One can wonder what has to be
added to the condition T ′′(X ′′) ⊆ Y in order to characterize the compactness of T .
An answer is provided by the following.

Theorem 1.4.8 Let X and Y be normed spaces over K, and let T be in BL(X ,Y ).
Then the following conditions are equivalent:

(i) T is a compact operator. T ′′(X ′′)⊆Y , and the restriction of T ′′ to BX ′′ is weak∗-
to-norm continuous.

(ii) For every sequence xn in BX , the sequence T (xn) has a convergent subsequence
in Y .

Proof Again, let C stand for the closure of T (BX ) in Y .
(i)⇒(ii) Assume that T is compact. Since C is norm-compact, and the restriction

to C of the weak∗ topology of Y ′′ is Hausdorff and weaker than the norm topology, we
derive that the norm and weak∗ topologies of Y ′′ coincide on C. On the other hand,
according to Remark 1.4.7 immediately above, we have T ′′(BX ′′) ⊆ C. Since T ′′ is
weak∗-to-weak∗ continuous, it follows that the restriction of T ′′ to BX ′′ is weak∗-to-
norm continuous. Finally, the inclusion T ′′(X ′′)⊆Y follows from the one T ′′(BX ′′)⊆
C just pointed out (or directly from Proposition 1.4.6).

(ii)⇒(iii) Let xn be a sequence in BX , and take a weak∗-cluster point x′′ to the
sequence xn in BX ′′ . Then by assumption (ii), T ′′(x′′) lies in Y and becomes a norm-
cluster point to the sequence T (xn) in Y . Since the norm topology of Y is metrizable,
it follows that T ′′(x′′) is the limit in Y of a suitable subsequence of the sequence
T (xn).
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(iii)⇒(i) Let yn be any sequence in C. For each n, choose xn ∈ BX such that
‖yn −T (xn)‖< 1

n . By assumption (iii), some subsequence of T (xn) (say T (xnk)) has
a limit in Y , which clearly lies in C. It follows that ynk has a limit in C. Thus every
sequence in C has a convergent subsequence in C, hence C is compact.

§1.4.9 Let X , Y , and T be as in the above theorem. It follows from the implication
(i)⇒(ii) that, if T is compact, then T ′′ is compact and T is completely continuous
(meaning that the restriction of T to BX is weak-to-norm continuous). By the way, it
is clear that, if X is reflexive, and if T is completely continuous, then T is compact.
The verification of this last result shows that actually, if X is reflexive, and if T is
completely continuous, then T (BX ) is compact. Hence, in light of Fact 1.4.1(iv),
we realize that T , regarded as a mapping from X to T (X), is a (surjective) compact
operator. To convert it into a bijective compact operator it is enough to think about
the induced mapping X/ker(T )→ T (X).

Corollary 1.4.10 Let X be a normed space over K, let Y be a Banach space over
K, and let T be in BL(X ,Y ). Then the following conditions are equivalent:

(i) T is a compact operator.
(ii) The restriction of T ′′ to BX ′′ is weak∗-to-norm continuous.

(iii) T ′′ is a compact operator.

Proof (i)⇒(ii) By the implication (i)⇒(ii) in Theorem 1.4.8.
(ii)⇒(iii) As suggested in §1.4.9 immediately above, this implication follows

from the weak∗-compactness of BX ′′ .
(iii)⇒(i) Since Y is closed in Y ′′, and T ′′ coincides with T on X , this implication

follows from Fact 1.4.1(iii)–(iv).

Keeping in mind that every Banach space is closed in its bidual (respectively, that
the uniform limit of any sequence of continuous functions is a continuous function),
Proposition 1.4.6 (respectively, the equivalence (i)⇔(ii) in Corollary 1.4.10) yields
the following.

Corollary 1.4.11 Let X be a normed space over K, and let Y be a Banach space
over K. Then both K(X ,Y ) and W(X ,Y ) are closed in BL(X ,Y ).

§1.4.12 Let X and Y be normed spaces over K. By a finite-rank operator from X
to Y we mean a bounded linear mapping T : X → Y such that T (X) is a finite-
dimensional subspace of Y . We denote by F(X ,Y ) the set of all finite-rank operators
from X to Y , and note that F(X ,Y ) is a subspace of BL(X ,Y ). It is also worth
remarking that, for y ∈ Y and f ∈ X ′, the mapping y⊗ f : x → f (x)y from X to Y
is a finite-rank operator. Actually, as we show in Fact 1.4.13 immediately below,
there are not many more finite-rank operators.

Fact 1.4.13 Let X and Y be normed spaces over K, and let T be in F(X ,Y ). Then
there are y1, . . . ,yn ∈ Y and f1, . . . , fn ∈ X ′ such that T = ∑n

i=1 yi ⊗ fi.

Proof We may assume that T 	= 0. Let {y1, . . . ,yn} a basis of T (X), let {g1, . . . ,gn}
stand for the corresponding dual basis of the algebraic dual of T (X) (equal to T (X)′

by Tihonov’s theorem), and, for 1 � i � n, set fi := gi ◦T . Then fi belongs to X ′ for
every i, and we straightforwardly realize that T = ∑n

i=1 yi ⊗ fi.
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Let X be a normed space over K, let M be a nonzero finite-dimensional subspace of
X , and let T be a continuous linear projection on X with T (X) = M. The above proof
shows that T =∑n

i=1 yi ⊗ fi, where {y1, . . . ,yn} is any basis of M, {g1, . . . ,gn} stands
for the corresponding dual basis, and, for 1 � i � n, fi is an element of X ′ which
extends gi. Thanks to the Hahn–Banach theorem, this argument can be reverted to
get the well-known fact which follows.

Fact 1.4.14 Let X be a normed space over K, and let M be a finite-dimensional
subspace of X. Then M is complemented in X (i.e. there exists a continuous linear
projection on X whose range equals M).

Given normed spaces X and Y over K, we denote by F(X ,Y ) the closure of
F(X ,Y ) in BL(X ,Y ). As a straightforward consequence of Fact 1.4.13 (or directly
by Tihonov’s theorem), we get that finite-rank operators are compact operators.
Therefore, invoking Corollary 1.4.11, we derive the following.

Corollary 1.4.15 Let X be a normed space over K, and let Y be a Banach space
over K. Then

F(X ,Y )⊆ K(X ,Y ).

The next proposition becomes a refinement of the so-called Banach–Steinhaus
closure theorem [817, Theorem 3.3.13].

Proposition 1.4.16 Let X be a Banach space over K, let Y be a normed space
over K, and let Fn be a sequence in BL(X ,Y ) converging pointwise to a mapping
F : X →Y . Then F lies in BL(X ,Y ), and Fn converges to F uniformly in each compact
subset of X.

Proof By the uniform boundedness principle, there exists M > 0 such that
‖Fn(x)‖ � M‖x‖ for all x ∈ X and n ∈ N. Therefore, since F is clearly lineal, F
lies in BL(X ,Y ) and ‖F‖ � M. Now, let C be a compact subset of X , and let ε > 0.
Then there exists a finite subset D of X such that C ⊆ D+ ε

3MBX . Moreover, since Fn

converges pointwise to F , there is m ∈ N such that ‖F(d)−Fn(d)‖ � ε
3 whenever d

is in D and n � m. Therefore, for c ∈C and n � m, it is enough to choose d ∈ D and
y ∈ ε

3MBX with c = d + y, to get

‖F(c)−Fn(c)‖ � ‖F(c−d)‖+‖F(d)−Fn(d)‖+‖Fn(d − c)‖

� ‖F‖‖y‖+‖F(d)−Fn(d)‖+‖Fn‖‖y‖

� 2M‖y‖+‖F(d)−Fn(d)‖

� 2ε
3

+
ε
3
= ε.

Exercise 1.4.17 Let X and Y be normed spaces over K, and let T be in K(X ,Y ).
Prove that the closure of T (X) in Y is separable.

Hint Recall that every compact metric space is separable, and keep in mind that the
closure of T (BX ) in Y is a compact metric space.

The inclusion F(X ,Y )⊆ K(X ,Y ) in Corollary 1.4.15 is often an equality. Indeed,
we have the following.
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Proposition 1.4.18 Let X be a normed space over K, and let Y be a Banach space
over K. Then the equality F(X ,Y ) = K(X ,Y ) holds if Y has a Schauder basis, or if Y
is a Hilbert space.

Proof Assume that Y has a Schauder basis (yn)n∈N, let (y′n)n∈N stand for the
sequence of biorthogonal functionals on Y associated to (yn)n∈N, and for n ∈ N set

Pn :=
n

∑
i=1

yi ⊗ y′i ∈ F(Y,Y ).

Then the sequence Pn converges pointwise to IY . Let T be in K(X ,Y ). It follows from
Proposition 1.4.16 that Pn converges uniformly to IY on T (BX ). But this means that
Pn ◦T converges to T in the norm topology of BL(X ,Y ). Since Pn ◦T ∈ F(X ,Y ), it
follows that T ∈ F(X ,Y ).

Now assume that Y is a Hilbert space, let T be in K(X ,Y ) \ F(X ,Y ), and let
Z stand for the closure of T (X) in Y . Then, by Exercise 1.4.17, Z is an infinite-
dimensional separable Hilbert space, and hence has a Schauder basis. It follows from
Fact 1.4.1(iv) and the above paragraph that T , regarded as an operator from X to Z,
is the limit in BL(X ,Z) of a suitable sequence Fn in F(X ,Z). Therefore, denoting by
ι the inclusion Z ↪→ Y , ι ◦Fn becomes a sequence in F(X ,Y ) converging to T in the
norm topology of BL(X ,Y ). Hence T ∈ F(X ,Y ).

1.4.2 Operators from a normed space to itself

Given a normed space X , we set F(X) := F(X ,X), K(X) := K(X ,X), and W(X) :=
W(X ,X), and note that, in view of Fact 1.4.1(i)–(ii), F(X), K(X), and W(X) are
ideals of the algebra BL(X).

Proposition 1.4.19 Let X be a normed space over K, let T be in W(X), and let λ
be in K\{0}. We have:

(i) ker(T −λ IX ) is a reflexive Banach space, and the equality

ker(T −λ IX) = ker(T ′′ −λ IX ′′)

holds.

(ii) The following conditions are equivalent:

(a) T −λ IX is surjective.

(b) T ′′ −λ IX ′′ is surjective.

(c) T −λ IX is open.

(iii) If T −λ IX is bijective, then (T −λ IX)
−1 is continuous.

Proof We can assume that λ = 1.
Set M := ker(T − IX ). Then T becomes the identity on M, which implies (since M

is closed in X and T is weakly compact) that BM is weakly compact or, equivalently,
that the normed space M is reflexive. On the other hand, the equality ker(T − IX ) =

ker(T ′′ − IX ′′) follows from the inclusion T ′′(X ′′) ⊆ X (cf. Proposition 1.4.6). Thus
assertion (i) has been proved.
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Now we proceed to prove assertion (ii).
(a)⇒(b) Let x′′ be in X ′′. Set y′′ := (T ′′ − IX ′′)(x′′). Then we have

x′′ = T ′′(x′′)− y′′ ∈ X +(T ′′ − IX ′′)(X ′′).

On the other hand, by assumption (a), we have

X = (T − IX )(X)⊆ (T ′′ − IX ′′)(X ′′).

It follows that x′′ lies in (T ′′ − IX ′′)(X ′′).
(b)⇒(c) By assumption (b) and the open mapping theorem, there exists a positive

number k such that kBX ′′ ⊆ (T ′′ − IX ′′)(BX ′′). Thus, for x in kBX , there is some x′′ ∈
BX ′′ such that T ′′(x′′)− x′′ = x, which implies that x′′ lies in X , and hence that x
belongs to (T − IX )(BX ). Therefore we have kBX ⊆ (T − IX )(BX ), and T − IX indeed
becomes open.

(c)⇒(a) This is clear.
Finally, assertion (iii) follows from the implication (a)⇒(c) in (ii).

Somehow, the next theorem complements the above proposition, since the case
λ = 0 has been not discussed there.

Theorem 1.4.20 Let X be a normed space, and let T be a surjective weakly com-
pact operator from X to X. Then X/ker(T ) is a reflexive Banach space.

Proof For any normed space Y, let ΔY stand for the open unit ball of Y . Let K denote
the closure in X of T (ΔX ). Then K is weakly compact and we have X =

⋃
n∈N nK.

Since

K ⊆ X = T (X) =
⋃

n∈N
T (nK),

and for every n ∈ N the set T (nK) is weakly compact, it follows from the Baire
category theorem for compact spaces that there exists m ∈ N such that K ∩T (mK)

has non-empty interior in K, when K is endowed with the weak topology. This means
that there exists a weakly open (so norm-open) subset U of X satisfying

/0 	= K ∩U ⊆ T (mK). (1.4.1)

Since K is the closure of T (ΔX ) in X , we can find y ∈ T (ΔX ) and r ∈ R+ such that

y+ rΔX ⊆U. (1.4.2)

Now, take x ∈ ΔX with T (x) = y, and use the continuity of T to find s ∈R+ such that

x+ sΔX ⊆ ΔX and T (sΔX )⊆ rΔX . (1.4.3)

It follows from (1.4.1), (1.4.2), and (1.4.3) that

T (x+ sΔX )⊆ T (ΔX )∩ (y+ rΔX)⊆ T (mK),

which reads as

x+ sΔX ⊆ mK +ker(T ). (1.4.4)
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Now, set X̂ := X/ker(T ), and let π : X → X̂ stand for the natural quotient mapping.
It follows from (1.4.4) that

π(x)+ sΔX̂ ⊆ π(mK).

Keeping in mind that π(mK) is weakly compact, it follows from the above inclusion
that BX̂ is weakly compact or, equivalently, that X̂ is reflexive.

We already know that there are examples of non-complete (hence non-reflexive)
normed spaces X and Y such that we can find a bijective compact (so weakly com-
pact) operator from X to Y (cf. Corollary 1.4.3 and Propositions 1.4.4 and 1.4.5). As
an outstanding consequence of the above theorem, we are going to realize that the
equality X = Y cannot happen in these examples. Indeed, we have the following.

Corollary 1.4.21 Let X be a normed space over K. We have:

(i) If there exists a bijective weakly compact operator from X to X, then X is
reflexive.

(ii) If there exists a surjective compact operator from X to X, then X is finite-
dimensional.

Proof Assertion (i) follows straightforwardly from Theorem 1.4.20.
Assume that there exists a surjective compact operator T : X → X . Then, by

Theorem 1.4.20, X/ker(T ) is a Banach space. On the other hand, denoting by
π : X → X/ker(T ) the natural quotient mapping, π ◦T becomes a surjective compact
operator (cf. Fact 1.4.1(ii)). It follows from Corollary 1.4.3 that X/ker(T ) is finite-
dimensional. Since T induces a linear bijection from X/ker(T ) to X , we conclude
that X is finite-dimensional.

The next proposition shows that assertion (i) in Corollary 1.4.21 does not remain
true when surjectivity replaces bijectivity.

Proposition 1.4.22 Let X be a reflexive Banach space over K containing closed
subspaces Y and Z such that Y has a Schauder basis, Z is isomorphic to X, and
X = Y ⊕Z. Then there exists a couple (M,T ), where M is a dense proper subspace
of X, and T is a surjective weakly compact operator from M to M.

Proof Let (yn)n∈N be the Schauder basis of Y whose existence is assumed, and
let (y′n)n∈N be the sequence of biorthogonal functionals on Y associated to (yn)n∈N.
Then, since the sequence yn ⊗ y′n converges pointwise (to zero), it follows from
the uniform boundedness principle that there exists a positive number k such that
‖yn‖‖y′n‖= ‖yn⊗y′n‖� k for every n∈N, so that we can consider the linear mapping

F : y →
∞

∑
n=1

1
n2 y′n(y)yn

from Y to Y , whose range is a dense subspace of Y . Moreover, since F is compact
(by Corollary 1.4.15), it follows from Corollary 1.4.3 that F(Y ) 	= Y . Therefore,
G := F ⊕ IZ is a bounded linear operator on X such that M := G(X) is a dense proper
subspace of X . Now, let Φ be the isomorphism from Z onto X whose existence
is assumed, and let T : M → M be the linear operator defined by T := G ◦Φ ◦ π ,
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where π stands for the restriction to M of the projection from X onto Z corres-
ponding to the decomposition X = Y ⊕ Z. Then, since M = F(Y )⊕ Z, we have
π(M)=Z, so (Φ◦π)(M) =Φ(Z) = X , and so T (M) =G(X) =M. This shows that T
is surjective. Moreover T is weakly compact because it factors through a reflexive
Banach space.

We note that all requirements on the space X in the above proposition are fulfilled
in the case X = �p(I), where I is any infinite set, and 1 < p < ∞. Therefore we are
provided with surjective weakly compact operators on non-complete normed spaces
of arbitrary density character.

§1.4.23 Let X be a nonzero vector space over K, and let T be in L(X). We denote by
sp(T ) the spectrum of T relative to L(X), i.e. the set of those λ ∈ K such that
T − λ IX is not bijective (cf. Example 1.1.32(b)). We will apply without notice the
fact that, if X is a Banach space, then sp(T ) coincides with the spectrum of T relative
to BL(X) (cf. Example 1.1.32(d)).

Fact 1.4.24 Let X be a nonzero Banach space over K, and let T be in BL(X). Then

sp(T ) = sp(T ′).

Proof It suffices to show that T is bijective if and only if so is T ′.
Since the mapping F → F ′ from BL(X) to BL(X ′) is a unit-preserving algebra

antihomomorphism, it follows that T ′ is bijective whenever T is.
Now, assume that T ′ is bijective. By the above paragraph, T ′′ is bijective, and

hence, by the Banach isomorphism theorem, T ′′ (and hence T ) is bounded below.
This implies that T is injective and that T (X) is closed in X . On the other hand,
T (X) is dense in X because, if f is in X ′ with f (T (X)) = 0, then T ′( f )(X) = 0, so
T ′( f ) = 0, hence f = 0 (by the injectivity of T ′), and the Hahn–Banach theorem
applies. It follows that T is bijective.

The next corollary shows that, concerning spectrum, weakly compact operators on
a (possibly non-complete) normed space become like bounded linear operators on a
Banach space.

Corollary 1.4.25 Let X be a nonzero normed space over K, and let T be in W(X).
Then

sp(BL(X),T ) = sp(T ) = sp(T ′).

As a consequence, sp(T ) is a compact subset of K, and is non-empty whenever
K= C.

Proof In view of Fact 1.4.24, to prove the equality sp(T ) = sp(T ′) it is enough to
show that sp(T ) = sp(T ′′). The equality sp(T ) \ {0} = sp(T ′′) \ {0} follows from
Proposition 1.4.19(i)–(ii). On the other hand, in view of the inclusion T ′′(X ′′) ⊆ X ,
we have that 0 /∈ sp(T ′′) if and only if X is reflexive and 0 /∈ sp(T ). But Corol-
lary 1.4.21(i) asserts that X is reflexive whenever 0 /∈ sp(T ).

Now we proceed to prove that sp(BL(X),T ) = sp(T ). The equality

sp(BL(X),T )\{0}= sp(T )\{0}
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follows from Proposition 1.4.19(iii). On the other hand, 0 /∈ sp(BL(X),T ) if and
only if 0 /∈ sp(T ) and T−1 is continuous. But, if 0 /∈ sp(T ), then, as a by-product of
Corollary 1.4.21(i), X is a Banach space, and hence T−1 is continuous.

The consequence follows from the equality sp(T ) = sp(T ′) already proved, by
keeping in mind Proposition 1.1.40 and Theorem 1.1.41.

For the notion of a full subalgebra of a unital associative algebra, the reader is
referred to Definition 1.1.72.

Corollary 1.4.26 Let X be a nonzero normed space over K. Then both K(X)+KIX

and W(X)+KIX are full subalgebras of the algebra of all (possibly discontinuous)
linear operators on X.

Proof Let B stand indistinctly for K(X)+KIX or W(X)+KIX , and let F ∈ B be
a bijective operator. We must show that F−1 lies in B. Write F = T + λ IX with
T ∈W(X) (occasionally, T ∈ K(X)) and λ ∈ K. First assume that λ 	= 0. Then, by
Proposition 1.4.19(iii), F−1 is continuous, and hence T ◦ F−1 is weakly compact
(occasionally, compact). Therefore we have

F−1 =−λ−1T ◦F−1 +λ−1IX ∈ B,

as desired. Now assume that λ = 0. Then, by Corollary 1.4.21, X is reflexive (occa-
sionally, finite-dimensional), so that, clearly, F−1 is weakly compact (occasionally,
compact), and hence belongs to B.

The information about weakly compact operators stated in Proposition 1.4.19 and
Corollary 1.4.25 can be complemented and refined in the particular case of compact
operators. This is done in Theorem 1.4.27 and Corollary 1.4.29 below.

Theorem 1.4.27 Let X be a nonzero normed space over K, let T be in K(X), and
let λ be in K\{0}. We have:

(i) ker(T −λ IX ) is finite-dimensional.

(ii) If Y is any closed subspace of X, then (T −λ IX )(Y ) is closed in X; in particular,
T −λ IX has closed range.

(iii) T −λ IX is injective if and only if T −λ IX is surjective.

Proof We may assume that λ = 1. Denote by N and R the kernel and the range,
respectively, of the operator T − IX .

Note that T becomes the identity on N, which implies (since N is closed in X and
T is compact) that BN is compact or, equivalently, that N is finite-dimensional. This
proves assertion (i).

Now we proceed to prove assertion (ii). Let Y be a closed subspace of X . Suppose
first that the restriction to Y of T −IX is injective. Let z be in (T − IX )(Y ), so that there
is a sequence yn in Y such that the sequence (T − IX )(yn) converges to z. Suppose,
to derive a contradiction, that ‖yn‖→ ∞. Then we may assume that yn 	= 0 for every
n ∈ N, and we have 1

‖yn‖ → 0, so that (T − IX )(
yn

‖yn‖ )→ 0. Since yn
‖yn‖ lies in SX and

T ∈ K(X), by passing to a subsequence if necessary, we may assume that T ( yn
‖yn‖ )
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converges to some x ∈ X . Then

yn

‖yn‖
= T

(
yn

‖yn‖

)
− (T − IX )

(
yn

‖yn‖

)
→ x,

and hence x ∈ SY . It follows from the continuity of T that T ( yn
‖yn‖) → T (x), hence

T (x) = x, and so x ∈ ker(T − IX )|Y , which contradicts that (T − IX )|Y is injective.
Thus ‖yn‖�∞, and hence, passing again to a suitable subsequence, we may assume
that the sequence ‖yn‖ is bounded. By the compactness of T , we may assume in
addition that T (yn) converges to some u ∈ X . Then, we see that

yn = T (yn)− (T − IX)(yn)→ u− z,

hence u− z ∈ Y , since Y is closed, and (T − IX )(yn)→ (T − IX )(u− z), since T − IX

is continuous. Therefore z = (T − IX )(u − z) ∈ (T − IX )(Y ). It follows from the
arbitrariness of z in (T − IX )(Y ) that (T − IX )(Y ) is closed in X . Now, remove the
additional assumption that (T − IX )|Y is injective, and set Z := N∩Y . It follows from
assertion (i) and Fact 1.4.14 that Y = Z ⊕M for some closed subspace M of Y . Note
that M is a closed subspace of X and (T − IX )|M is a injective. Therefore, by the
previously studied case, (T − IX )(M) is a closed subspace of X . By noticing that
(T − IX )(Y ) = (T − IX )(M), we conclude that (T − IX )(Y ) is a closed subspace of X .

Finally, we proceed to prove assertion (iii). Suppose that N = 0 and R1 := R 	= X .
Then, according to assertion (ii), R2 := (T − IX )(R1) is a closed subspace of R1 and
R2 	= R1, since T − IX is injective. In this way, by denoting Rn := (T − IX )

n(X), we
obtain a strictly decreasing sequence of closed subspaces. As a consequence of the
Riesz lemma, we choose un ∈ Rn such that d(un,Rn+1) � 1

2 and ‖un‖ = 1. Then, if
p > q,

T (up)−T (uq) = (T − IX )(up)− (T − IX )(uq)+up −uq = z−uq

with z ∈ Rp+1 + Rq+1 + Rp ⊆ Rq+1, so that ‖T (up)− T (uq)‖ � 1
2 , which is im-

possible, since T is compact. This shows that R = X if N = 0. Conversely, suppose
that R = X and N1 := N 	= 0. Then N2 := ker(T − IX )

2 is a closed subspace of X and
N2 	= N1, since T − IX is surjective. In this way, by denoting Nn := ker(T − IX)

n, we
obtain a strictly increasing sequence of closed subspaces. As a consequence of the
Riesz lemma, we choose vn ∈ Nn+1 such that d(vn,Nn) � 1

2 and ‖vn‖ = 1. Then, if
p < q,

T (vp)−T (vq) = (T − IX )(vp)− (T − IX )(vq)+ vp − vq = z− vq

with z ∈ Np +Nq +Np+1 ⊆ Nq, so that ‖T (vp)−T (vq)‖ � 1
2 , which is impossible,

since T is compact. This shows that N = 0 if R = X .

Let X be a vector space over K, and let T : X → X be a linear mapping. A
number λ ∈ K is said to be an eigenvalue of T if T − λ IX is not injective. If λ is
an eigenvalue of T , then the elements of ker(T −λ IX ) are called the eigenvectors of
T corresponding to λ .

Lemma 1.4.28 Let X be a vector space over K, and let T : X → X be a linear
mapping. If λ1, . . . ,λn are pairwise different eigenvalues of T , and if, for 1 � i � n,
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xi is a nonzero eigenvector of T corresponding to λi, then the vectors x1, . . . ,xn are
linearly independent.

Proof We proceed by induction. The result is clearly true if n = 1; assume the
result holds for n− 1, let λ1, . . . ,λn be pairwise different eigenvalues of T , and, for
1 � i � n, let xi be a nonzero eigenvector of T corresponding to λi. If α1, . . . ,αn ∈K
satisfy that ∑n

i=1αixi = 0, then we have

0 = (T −λnIX )

(
n

∑
i=1

αixi

)
=

n−1

∑
i=1

αi(λi −λn)xi,

therefore αi = 0 (1 � i � n−1), hence αnxn = 0, and so we also have αn = 0. Thus
x1, . . . ,xn are linearly independent vectors.

Corollary 1.4.29 Let X be a nonzero normed space over K, and let T be in K(X).
Then we have:

(i) sp(T )\{0} coincides with the set of all nonzero eigenvalues of T .

(ii) sp(T ) is either finite (possibly empty) or countably infinite.

(iii) if sp(T ) is empty, then K= R and X is finite-dimensional.

(iv) If sp(T ) is countably infinite, then 0 ∈ sp(T ) and, for each bijection n → λn

from N to sp(T )\{0}, the sequence λn converges to zero.

Proof Assertion (i) follows from Theorem 1.4.27(iii), whereas assertion (iii) fol-
lows from Corollaries 1.4.21(ii) and 1.4.25.

In order to prove assertions (ii) and (iv) we claim that, for each δ ∈ R+, the set

Λδ := {λ ∈K : λ is an eigenvalue of T with |λ |> δ}

is finite. To derive a contradiction, suppose the existence of δ0 ∈ R+ such that the
set Λδ0

is infinite. There is then a sequence λn of pairwise different elements in Λδ0
.

For each natural number n, choose a nonzero eigenvector xn of T corresponding to
λn, and consider the subspace Mn of X generated by x1, . . . ,xn. By Lemma 1.4.28,
Mn becomes a strictly increasing sequence of finite-dimensional subspaces which are
invariant under T . As a consequence of the Riesz lemma, we choose yn ∈ Mn+1 such
that d(yn,Mn) � 1

2 and ‖yn‖= 1. Let p,q be in N. Then

T (yp)−T (yq) = λp+1yp +(T −λp+1IX )(yp)−T (yq) = λp+1(yp + z),

where

z := λ−1
p+1[(T −λp+1IX )(yp)−T (yq)].

Note that yp = ∑p+1
i=1 αixi for suitable α1, . . . ,αp+1 ∈K, and consequently

(T −λp+1IX )(yp) =
p

∑
i=1

αi(λi −λp+1)xi ∈ Mp.

Since T (yq) ∈ Mq+1, it follows that, for q < p, we have z ∈ Mp, and hence

‖T (yp)−T (yq)‖= |λp+1|‖yp + z‖> 1
2
δ0,
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which is impossible, since T is compact. Now that the claim is proved, keeping in
mind that sp(T ) \ {0} = ∪n∈NΛ 1

n
(by assertion (i)), assertion (ii) follows. Assume

from now on that sp(T ) is countably infinite. Let n → λn be any bijection from N to
sp(T )\{0}. Then, according to assertion (i) and the claim, the set {n ∈N : |λn|> ε}
is finite for every ε > 0, and so the sequence λn converges to zero. Moreover, since
sp(T ) is closed in K (by Corollary 1.4.25), we derive that 0 ∈ sp(T ), and the proof
is complete.

The next exercise complements assertion (iv) in Corollary 1.4.29 above.

Exercise 1.4.30 Let λn be any sequence in K \ {0} converging to zero, and let H
stand for the infinite-dimensional separable Hilbert space over K. Prove that there
exists an injective compact operator T : H → H such that

sp(T ) = {0}∪{λn : n ∈ N}.

Solution We may take H = �2. Then, according to the solution of Exercise 1.1.45,
the mapping T : H → H defined by T ({μn}) := {λnμn} becomes a bounded linear
operator on H such that sp(T ) = {0}∪{λn : n∈N}. Moreover, clearly, T is injective.
For n,m ∈ N, define ρnm ∈ K by ρnm = λn if n � m, and ρnm = 0 otherwise, and let
Tm stand for the finite-rank operator on H given by Tm({μn}) := {ρnmμn}. Then
we easily realize that, for m ∈ N, we have ‖T − Tm‖ = max{|λk| : k � m + 1}.
Since the right-hand side of this equality tends to zero as m → ∞, it follows from
Corollary 1.4.15 that T is a compact operator.

Definition 1.4.31 A normed algebra A is said to be topologically simple if A has
nonzero product and has no nonzero closed proper ideal.

Proposition 1.4.32 Let X be a nonzero normed space over K, and let A be a
subalgebra of BL(X) containing F(X). Then F(X) is contained in any nonzero ideal
of A. As a consequence, F(X) is a simple algebra, and the closure in BL(X) of F(X)

is a topologically simple normed algebra.

Proof Let I be a nonzero ideal of A. Take F ∈ I and x0 ∈ X such that F(x0) 	= 0,
and invoke the Hahn–Banach theorem to find f0 ∈ X ′ with f0(F(x0)) = 1. Then, for
every (x, f ) ∈ X ×X ′ we have

x⊗ f = (x⊗ f0)◦F ◦ (x0 ⊗ f ) ∈ I,

so that it is enough to apply Fact 1.4.13 to conclude that F(X)⊆ I. By taking A equal
to F(X) or F(X), the consequence follows straightforwardly.

By combining Corollary 1.4.11 and Propositions 1.4.18 and 1.4.32, we get the
following.

Corollary 1.4.33 Let X 	= 0 be a Hilbert space, or a Banach space having a
Schauder basis. Then K(X) is a topologically simple complete normed algebra, as
well as the smallest nonzero closed proper ideal of BL(X).
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1.4.3 Discussing the inclusion F(X,Y)⊆K(X,Y) in the
non-complete setting

In this subsection, we are going to show that the completeness of the space Y in
Corollaries 1.4.11 and 1.4.15 is very far from being removable. To this end, we begin
by realizing that the limit of a sequence of finite-rank operators need not be a compact
operator, even if the operator starts from a Banach space and its range lives in a pre-
Hilbert space. Indeed, we have the following.

Example 1.4.34 Set X := c0, and let T : X → �2 stand for the bounded linear
operator defined by T ({μn}) := { 1

nμn} for every {μn} ∈ X . For natural numbers
n,m, define ρnm ∈K by ρnm = 1

n if n � m, and ρnm = 0 otherwise, and let Tm : X → �2

stand for the finite-rank operator given by Tm({μn}) := {ρnmμn} for every {μn} ∈ X .
Then we easily realize that, for m ∈ N, we have

‖T −Tm‖ �
√

∞

∑
k=m+1

1
k2 ,

so that T is the limit in BL(X , �2) of the sequence Tm. Now set Y := T (X), and note
that Tm(X)⊆Y for every m∈N. It follows that T , regarded as a mapping from X to Y ,
lies in F(X ,Y ). However T , regarded as a mapping from X to Y , is not a compact
operator. Indeed, for m ∈N, let xm be the element of BX having 1 in its first m entries
and 0 otherwise. If T , regarded as a mapping from X to Y , were compact, then the
sequence T (xm) would have a subsequence converging to some y ∈Y . But, since the
sequence T (xm) converges to { 1

n} in �2, we would have { 1
n} = y ∈ Y = T (X), and

this would imply the existence of some {μn} ∈ X = c0 with 1
nμn =

1
n for every n ∈N,

which is impossible.

The above example shows that Corollary 1.4.15, and consequently the compact
version of Corollary 1.4.11, do not remain true if the completeness of the space Y
is removed. Indeed, if X ,Y,T are as in Example 1.4.34, then T lies in F(X ,Y ), and
hence in the closure of K(X ,Y ) in BL(X ,Y ), but T /∈ K(X ,Y ).

Given normed spaces X and Y over K, we denote by K(X ,Y ) (respectively,
W(X ,Y )) the closure in BL(X ,Y ) of K(X ,Y ) (respectively, W(X ,Y )). The inclusion
K(X ,Y )⊆W(X ,Y ) being clear, we have also the following.

Fact 1.4.35 Let X and Y be normed spaces over K. We have:

(i) If T is in K(X ,Y ), then the restriction of T ′′ to BX ′′ is weak∗-to-norm continuous,
and hence T ′′ ∈ K(X ′′,Y ′′).

(ii) K(X ,Y ) \ K(X ,Y ) ⊆ W(X ,Y ) \ W(X ,Y ), and hence K(X ,Y ) is closed in
BL(X ,Y ) whenever so is W(X ,Y ).

Proof Set S := {T ∈ BL(X ,Y ) : (T ′′)|BX ′′ is weak∗-to-norm continuous} and note
that S is closed in BL(X ,Y ) and that, by Proposition 1.4.6 and the equivalence
(i)⇔(ii) in Theorem 1.4.8, we have K(X ,Y ) = S∩W(X ,Y ).

By combining Example 1.4.34 and Fact 1.4.35, we realize that both Corollary
1.4.10 and the weakly compact version of Corollary 1.4.15 do not remain true if the
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completeness of the space Y is removed. Indeed, if X ,Y,T are as in Example 1.4.34,
then

T /∈ K(X ,Y ), T ′′ ∈ K(X ′′,Y ′′), and T ∈W(X ,Y )\W(X ,Y ).

Our discussion centres now in showing that Example 1.4.34 is not anecdotic.
Indeed, as a consequence of Theorem 1.4.39 and Remark 1.4.40 below, given an
arbitrary non-reflexive Banach space X , we can find a pre-Hilbert space Y and a
non-compact operator T ∈ F(X ,Y ). Of course, the construction is more involved,
and begins with the following refinement of the part of Proposition 1.4.18 involving
Hilbert spaces.

Proposition 1.4.36 Let X be a normed space over K, let H be a Hilbert space
over K, and let T be in K(X ,H). Then T , regarded as an operator from X to T (X),
lies in F(X ,T (X)).

Proof We may assume that T /∈ F(X ,H). Set Z := T (X). Then, by Exercise 1.4.17,
Z is an infinite-dimensional separable pre-Hilbert space, and hence has a countably
infinite orthonormal basis (say {zn : n ∈ N}). For each n ∈ N, let πn stand for the
orthogonal projection from H onto the linear hull of {z1, . . . ,zn}, and set Sn := πn ◦T .
Then for n ∈ N we have Sn(X) ⊆ Z, and hence Sn will be seen as an element of
F(X ,Z). Moreover, since {zn : n ∈ N} remains an orthonormal basis for the closure
of Z in H (say Z̄), for each y ∈ Z̄ we have

(IH −πn)(y) =
∞

∑
i=1

(y|zi)zi −
n

∑
i=1

(y|zi)zi =
∞

∑
i=n+1

(y|zi)zi → 0

as n → ∞. Therefore, by Proposition 1.4.16, the sequence IH −πn converges to zero
uniformly on compact subsets of Z̄, so in particular on the closure of T (BX ) in H.
Noticing that for x ∈ BX and n ∈ N we have

‖T (x)−Sn(x)‖= ‖T (x)−πn(T (x))‖= ‖(IH −πn)(T (x))‖,

it follows that Sn converges to T (regarded as an operator from X to Z) in BL(X ,Z).

Lemma 1.4.37 Let X and Y be normed spaces over K, let T be in BL(X ,Y ), and let
Z be a subspace of Y containing T (X). Then the following conditions are equivalent:

(i) T , regarded as a mapping from X to Z, is weakly compact.
(ii) T ′′(X ′′)⊆ Z.

Proof Let F stand for T regarded as a mapping from X to Z, and let i denote the
inclusion Z ↪→ Y . Then we have T = i ◦F and i′′ = j ◦Φ, where Z◦◦ denotes the
bipolar of Z in Y ′′, Φ : Z′′ → Z◦◦ is the natural identification, and j stands for
the inclusion Z◦◦ ↪→ Y ′′. Therefore T ′′ = j ◦Φ ◦F ′′. On the other hand, by Propos-
ition 1.4.6, condition (i) is equivalent to F ′′(X ′′)⊆ Z. Since both Z′′ and Z◦◦ contain Z
in a natural way, and Φ becomes the identity on Z, it follows that condition (i) is
equivalent to condition (ii).

Proposition 1.4.38 Let X be a non-reflexive Banach space over K, and let Y be an
infinite-dimensional Banach space over K. Then there exists T ∈F(X ,Y ) such that T ,
regarded as an operator from X to T (X), is not compact.
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Proof Since X is non-reflexive, neither is X ′, and hence BX ′ is not weakly compact.
By the Eberlein–Šmulyan Theorem (see for example [729, Theorem 3.109]), there
exists a sequence z′n in BX ′ with no cluster point in the weak topology of X ′. But
certainly z′n has a cluster point (say z′) in the weak∗ topology of X ′. Therefore x′n :=
z′n − z is a bounded sequence in X ′ which has zero as a cluster point in the weak∗

topology but not in the weak topology. Since zero is not a cluster point to x′n in the
weak topology, there exist x′′1 , . . . ,x

′′
m ∈ X ′′ and p ∈ N such that

max
{
|x′′k (x′n)| : 1 � k � m

}
� 1 for every n � p. (1.4.5)

Now, take a normalized basic sequence (yn)n∈N in Y , and consider the operator
T ∈ F(X ,Y ) defined by

T (x) :=
∞

∑
n=1

1
n2 x′n(x)yn.

To obtain a contradiction, suppose that T , regarded as an operator from X onto T (X),
is compact. Then, by Lemma 1.4.37, T ′′(X ′′)⊆ T (X), hence for each k ∈ {1, . . . ,m}
there exists xk ∈ X such that T ′′(x′′k ) = T (xk), and so

∞

∑
n=1

1
n2 x′′k (x

′
n)yn =

∞

∑
n=1

1
n2 x′n(xk)yn.

Therefore x′′k (x
′
n) = x′n(xk) for all k ∈ {1, . . . ,m} and n ∈ N, and consequently, by

(1.4.5), max{|x′n(xk)| : 1 � k � m} � 1 for all n � p, which is impossible because
zero is a cluster point to x′n in the weak∗ topology of X ′.

Theorem 1.4.39 Let X be a Banach space over K. Then the following conditions
are equivalent:

(i) X is reflexive.
(ii) W(X ,Y ) = BL(X ,Y ) for every normed space Y over K.

(iii) W(X ,Y ) is closed in BL(X ,Y ) for every normed space Y over K.
(iv) K(X ,Y ) is closed in BL(X ,Y ) for every normed space Y over K.
(v) F(X ,Y )⊆ K(X ,Y ) for every normed space Y over K.

Proof The implications (i)⇒(ii)⇒(iii), and (iv)⇒(v) are clear, whereas the implic-
ation (iii)⇒(iv) follows from Fact 1.4.35(ii).

(v)⇒(i) Assume that X is not reflexive. Then, by Proposition 1.4.38, there exists
T ∈ K(X , �2) such that T , regarded as an operator from X to Y := T (X), does not
belong to K(X ,Y ). But, by Proposition 1.4.36, T , regarded as an operator from X to
Y , lies in F(X ,Y ).

Remark 1.4.40 Looking at the above proof, we realize that Theorem 1.4.39
remains true if in conditions (ii) to (v) we replace ‘for every normed space Y over K’
with ‘for every separable pre-Hilbert space Y over K’.

Corollary 1.4.21(ii) could be a sample of how results concerning compact oper-
ators between normed spaces X and Y , which are true when Y is complete but need
not be true in general (cf. Corollary 1.4.3 and Proposition 1.4.4), are indeed true
when X = Y . Therefore, thinking about Corollary 1.4.15 and Example 1.4.34, one
can wonder whether the inclusion F(X)⊆ K(X) holds for every normed space X . As
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a matter of fact, the answer to this question is negative, even if X is a pre-Hilbert
space. Indeed, we have the following.

Example 1.4.41 Set X := c00 regarded as a subspace of �2, and consider the
bounded linear operator T : X →X defined by T ({μn}) := { 1

nμn} for every {μn}∈X .
For n,m ∈ N, define ρnm ∈ K by ρnm = 1

n if n � m, and ρnm = 0 otherwise, and let
Tm : X → X stand for the finite-rank operator given by Tm({μn}) := {ρnmμn} for
every {μn} ∈ X . Then for m ∈ N we have ‖T − Tm‖ = 1

m+1 , so that T is the limit

in BL(X) of the sequence Tm, and hence T ∈ F(X). However T /∈ K(X) because
T is bijective and Corollary 1.4.21(ii) applies. (An elementary verification of the
non-compactness of T , avoiding Corollary 1.4.21(ii), is left to the reader.)

Let X and T ∈ F(X) \K(X) be as in the above example. Then, clearly, we have
T ∈ K(X) \K(X). Moreover, invoking Fact 1.4.35, we realize that T ′′ ∈ K(X ′′) and
that T ∈ W(X) \W(X). Therefore, in the absence of completeness of the space Y ,
neither Corollary 1.4.10 nor Corollary 1.4.11 remain true even if X = Y .

1.4.4 Historical notes and comments

According to Taylor and Lay [811, p. 293],

The essential notion of a compact mapping was introduced by David Hilbert in 1906;
eleven years later F. Riesz [505] published a thorough study of compact operators. In 1930,
J. Schauder [555] added some refinements to the theory by proving that the conjugate of a
compact operator is itself compact.

For a much more detailed history of the so-called Riesz–Schauder theory for compact
operators, the reader is referred to Pietsch’s book [790, Section 2.6]. We completely
agree with Pietsch’s words in this section that ‘The theory of compact operators is a
convincing example that deep and important mathematics can be – or should I say
must be – elegant’.

The theory of compact operators is often developed in the setting of possibly non-
complete normed spaces (the books [805, 811] are samples of such an approach).
This is so because most important results in that theory can be proved without
requiring completeness, and such results become widely useful in the study of rel-
evant integral equations of mathematical physics and theoretical mechanics, whose
solutions are modelled through non-complete normed spaces (see [811, p. 306] for
details). Thus for example, Schauder’s theorem, quoted in the above Taylor–Lay
review, does not require completeness. We will not discuss the proof of Schauder’s
theorem here, but include it as the first assertion in Theorem 1.4.42 below.

Theorem 1.4.42 Let X and Y be normed spaces over K, and let T be in BL(X).
We have:

(i) If T is compact, then so is T ′.
(ii) If Y is complete and if T ′ is compact, then T is compact.

Proof For the proof of assertion (i), the reader is referred to [811, Theorem V.7.3].
Assertion (ii) follows from the implication (iii)⇒(i) in Corollary 1.4.10 by apply-

ing assertion (i) with T ′ instead of T .
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To realize that the completeness of Y in assertion (ii) of the above theorem cannot
be removed altogether, Fact 1.4.43 immediately below will be useful. Given normed
spaces X ,Y,Z over K, and T ∈ BL(X ,Y ), we say that T factors through Z if there
exist F ∈ BL(X ,Z) and G ∈ BL(Z,Y ) such that T = G◦F .

Fact 1.4.43 Let X and Y be normed spaces over K, and let T be in BL(X ,Y ).
We have:

(i) T lies in F(X ,Y ) if and only if it factors through a finite-dimensional space
over K.

(ii) If T belongs to F(X ,Y ), then T ′ lies in F(Y ′,X ′).

(iii) If T belongs to F(X ,Y ), then T ′ lies in F(Y ′,X ′).

(iv) If T belongs to F(X ,Y ), then T ′ lies in K(Y ′,X ′).

Proof Assertion (i) is straightforward.
Assume that T ∈ F(X ,Y ). Then, by assertion (i), there is a finite-dimensional

space Z over K, together with F ∈ BL(X ,Z) and G ∈ BL(Z,Y ), such that T =G◦F .
Therefore T ′ = F ′ ◦ G′ factors through the finite-dimensional space Z′, and lies
indeed in F(Y ′,X ′).

Keeping in mind that the mapping F → F ′ from BL(X ,Y ) to BL(Y ′,X ′) is con-
tinuous, assertion (iii) follows from assertion (ii).

Assertion (iv) follows from assertion (iii) and Corollary 1.4.15.

Let X and Y be normed spaces over K, and let T be in BL(X ,Y ). According to
Examples 1.4.34 and 1.4.41 and Fact 1.4.43(iv), there are choices of X ,Y,T such that
T ′ is compact but T is not, and either X is complete or X = Y . Moreover, invoking
Theorem 1.4.42(i), Fact 1.4.43(iv), and the implication (v)⇒(i) in Theorem 1.4.39,
we get the following.

Corollary 1.4.44 A Banach space X over K is reflexive if and only if, for every
normed space Y over K and every operator T ∈ BL(X ,Y ) such that T ′ ∈ K(Y ′,X ′),
we have T ∈ K(X ,Y ).

According to [790, Subsection 4.8.5], weakly compact (referred to as weakly
completely continuous) operators on Banach spaces were introduced by Kakutani
and Yosida for the purpose of the so-called ergodic theory (see [790, §5.3.5.4] and
references therein).

Our starting approach to compact operators through weakly compact ones between
(possibly non-complete) normed spaces follows the lines of the Mena and Rodrı́guez
paper [441]. This paper was motivated by Spurný’s recent theorem [596] (stated in
Corollary 1.4.21(ii)) that compact operators from an infinite-dimensional normed
space to itself cannot be surjective. We note that Spurný’s theorem implies that
zero belongs to the ‘algebraic’ spectrum (cf. §1.4.23) of any compact operator on an
infinite-dimensional normed space, a fact that concludes the classical spectral theory
of compact operators in the non-complete setting. Concerning classical results, we
have taken guidance from the books of Cerdà [706], Conway [711], Dunford and
Schwartz [726], Hille and Phillips [746], Rynne and Youngson [805], and Taylor
and Lay [811].



88 Foundations

Results from Proposition 1.4.2 to Proposition 1.4.5 are taken almost verbatim
from [441]. Some of them are classical. Thus, for example, the compact version
of Corollary 1.4.3 can be found in [811, Theorem V.7.4]. The existence of bijective
compact operators between infinite-dimensional normed spaces is implicitly known
in the classical literature. (Indeed, according to §1.4.9, every compact non-finite-rank
operator starting from a reflexive space gives rise naturally to a bijective compact
operator between infinite-dimensional spaces.) Nevertheless, we did not seen this
fact emphasized until Spurný’s paper [596]. Although strangely introduced, the start-
ing space in Spurný’s example is (isometrically isomorphic to) �2. Proposition 1.4.4
provides us with many more similar examples, where again the starting space is
complete. Note that, if every surjective compact operator had to start from a Banach
space, then Spurný’s theorem reviewed in the preceding paragraph would follow
straightforwardly from the compact version of Corollary 1.4.3. As a matter of fact,
adding Proposition 1.4.5 to Proposition 1.4.4, we are provided with bijective compact
operators starting from a non-complete space.

According to [726, p. 539], in the complete normed setting, Proposition 1.4.6 is
due to Nakamura [458]. Nevertheless, its proof, which can be seen for example in
[726, Theorem VI.4.2], requires no changes when the non-complete normed case is
considered.

A Schauder type theorem also holds for weakly compact operators. Indeed, we
have the following.

Theorem 1.4.45 Let X and Y be normed spaces over K, and let T be in BL(X ,Y ).
We have

(i) If T is weakly compact, then T ′ is weak∗-to-weak continuous.
(ii) If T ′ is weak∗-to-weak continuous, then T ′ is weakly compact.

(iii) If Y is complete, and if T ′ is weakly compact, then T is weakly compact.

Proof Assume that T is weakly compact, let y′λ be a net in Y ′ convergent to zero
in the weak∗-topology of Y ′, and let x′′ be in X ′′. In order to prove assertion (i),
we must show that x′′(T ′(y′λ )) → 0. But, in view of Proposition 1.4.6, we have
y :=T ′′(x′′)∈Y , hence

x′′(T ′(y′λ )) = T ′′(x′′)(y′λ ) = y′λ (y)→ 0,

as desired.
Since BY ′ is weak∗-compact, assertion (ii) becomes clear.
Finally assume that T ′ is weakly compact. Then, by assertions (i) and (ii) (with T ′

instead of T ), T ′′ is weakly compact, so that, if in addition Y is complete, the weak
compactness of T follows from Remark 1.4.7.

Let X ,Y , and T be as in the above theorem. According to [726, p. 539], the
consequence that, when Y is complete, T is weakly compact if and only if so is T ′

(respectively, that, when Y is complete, T is weakly compact if and only
if T ′ is weak∗-to-weak continuous) is due to Gantmacher [279] (respectively, to
Nakamura [458]).

A later characterization of weakly compact operators, due to Davis, Figiel,
Johnson, and Pelczyński [209] (see also [711, Theorem VI.5.4] or [729, Theorem
13.33]), reads as follows.
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Theorem 1.4.46 Let X and Y be Banach spaces over K, and let T : X → Y be
a bounded linear operator. Then T is a weakly compact operator (if and) only if it
factors through a reflexive Banach space over K.

We will not discuss the proof of the above theorem here, but note that it remains
true in the non-complete setting. Indeed, if X and Y are normed spaces over K, and if
T : X → Y is a weakly compact operator, then it follows from Proposition 1.4.6
and Remark 1.4.7 that T ′′(X ′′) ⊆ Y and that T ′′ is weakly compact, so that, by
considering the inclusion mapping X ↪→ X ′′, and applying Theorem 1.4.46 (with
X ′′,Y ′′,T ′′ instead of X ,Y,T ), we realize that T factors through a reflexive Banach
space.

Results from Theorem 1.4.8 to Corollary 1.4.15 are classical, although the equi-
valence (i)⇔(ii) in Theorem 1.4.8 could not be explicitly recorded anywhere. Ac-
tually, Schauder’s theorem, together with arguments like those in the proof of the
implication (i)⇒(ii) in Theorem 1.4.8, allow us to prove the following refinement of
Corollary 1.4.10.

Theorem 1.4.47 Let X and Y be normed spaces over K, and let T be in BL(X ,Y ).
We have:

(i) If T is compact, then the restriction of T ′ to BY ′ is weak∗-to-norm continuous.
(ii) If Y is complete, and if the restriction of T ′ to BY ′ is weak∗-to-norm continuous,

then T is compact.

Proof Assume that T is compact. Then, by Schauder’s theorem (Theorem 1.4.42(i)),
T ′ is compact. Let C stand for the norm-closure of T ′(BY ′) in X ′. Since C is norm-
compact, and the restriction to C of the weak∗ topology of X ′ is Hausdorff and
weaker than the norm topology, we derive that the norm and weak∗ topologies of X ′

coincide on C. Since T ′ is weak∗-to-weak∗ continuous and T ′(BY ′) ⊆ C, it follows
that the restriction of T ′ to BY ′ is weak∗-to-norm continuous.

Now assume that the restriction of T ′ to BY ′ is weak∗-to-norm continuous. Then,
since BY ′ is weak∗-compact, T ′(BY ′) is a norm-compact subset of X ′, and hence T ′

is a compact operator. Therefore, if in addition Y is complete, then, by the converse
of Schauder’s theorem (Theorem 1.4.42(ii)), T is compact.

We have derived the above theorem from Schauder’s theorem, but, conversely,
Schauder’s theorem follows straightforwardly from assertion (i) in the above the-
orem. Although straightforward, we emphasize the following.

Corollary 1.4.48 Let X be a normed space over K, let Y be a Banach space over K,
and let T be in BL(X ,Y ). Then T is compact if and only if the restriction of T ′ to BY ′

is weak∗-to-norm continuous.

If the space Y above is separable, then BY ′ is metrizable, and hence we have the
following.

Corollary 1.4.49 Let X be a normed space over K, let Y be a separable Banach
space over K, and let T be in BL(X ,Y ). Then T is compact if and only if, whenever
y′n is a sequence in Y ′ converging to some y′ ∈ Y ′ in the weak∗-topology of Y ′, the
sequence T ′(y′n) converges to T ′(y′) in the norm topology of X ′.
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Corollary 1.4.48 seems to be due to Dunford and Schwartz [726, Theorem VI.5.6].
According to them [726, p. 539], Corollary 1.4.49 had been proved earlier by
Gelfand [283].

Results from Propositions 1.4.16–1.4.18 are classical. Thus, for example, Propos-
ition 1.4.16 can be found in [729, Corollary 3.87].

The question of whether the equality F(X ,Y ) = K(X ,Y ) holds for all normed
spaces X and all Banach spaces Y remained an open problem for many years. This
question, known as the approximation problem, goes back to the Polish School
in Lwów, and appeared in Banach’s book in 1932 (see [685, pp. 146 and 179]).
According to the comments by Pelczyński and Bessaga in [685, pp. 179–88], Banach,
Mazur, and Schauder had already observed that the approximation problem was
related to the problem of the existence of a basis, as well as to some questions
regarding the approximation of continuous functions. The relation between the
approximation problem and the problem of the existence of a basis becomes clear.
Indeed, if the approximation problem had a negative answer with Y separable,
then, by Proposition 1.4.18, there would exist a separable Banach space without a
Schauder basis. Concerning the relation between the approximation problem and
questions on the approximation of continuous functions, we follow Pietsch [790,
p. 285] according to whom Mazur knew that a negative answer to the approximation
problem would imply a negative response to the following question:

§1.4.50 Given a real-valued continuous function f = f (s, t) defined on the square
[0,1]× [0,1] and a number ε > 0, do there exist numbers a1, . . . ,an, b1, . . . ,bn in
[0,1] and c1, . . . ,cn in R with the property that∣∣∣ f (s, t)− n

∑
k=1

ck f (ak, t) f (s,bk)
∣∣∣< ε

for all s, t ∈ [0,1]?

On November 6, 1936, Mazur, offering an exceptional prize (a live goose), had
entered his question in the famous ‘Scottish book’ of open problems kept at the
Scottish Coffee House in Lwów by Banach, Mazur, Ulam, and other mathematicians
in their circle (see [776, Problem 153]).

A first systematic study of the approximation problem was initiated by Grothen-
dieck [736] in 1955. Let Y be a Banach space over K, and let us say that Y has the
approximation property if for every compact subset K of Y and every ε > 0 there
is an operator T ∈ F(Y ) such that ‖T (y)− y‖ � ε for every y ∈ K. The outstanding
result of Grothendieck (which can also be seen in [729, Theorem 16.35] or [717,
Proposition 5.3(1)]) asserts that Y has the approximation property if (and only if) the
equality F(X ,Y ) = K(X ,Y ) holds for all normed spaces X .

The approximation problem (equivalently, whether every Banach space has the
approximation property) had been considered as one of the central open problems of
Functional Analysis, and it was not until 1972 that Enflo [245], using a very compli-
cated and delicate construction, produced the first example of a Banach space which
fails the approximation property. Since Enflo’s space is separable, he also provided
the mathematical community with the first example of a separable Banach space
without a Schauder basis. About a year after solving the problem, Enflo travelled to
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Warsaw to give a lecture on his solution, after which, since Enflo’s example answered
Mazur’s question 1.4.50 negatively, Mazur handed him a white goose in a basket.
Soon after some other ‘artificial’ examples were constructed. However, Szankowski
[608] showed that nature provides its own examples when he demonstrated that the
space BL(H) of all bounded linear operators on any infinite-dimensional Hilbert
space H fails the approximation property. He also pointed out that his argument
allowed him to construct the first example of a separable C∗-algebra failing the
approximation property, which consequently had no Schauder basis.

For the state-of-the-art on the approximation problem, we refer the reader to the
fine surveys written by Casazza [161] and Oja [465], and to the books written
by Lindenstrauss and Tzafriri [769, 770], Diestel and Uhl [720], Defant and
Floret [717], Megginson [778], Pietsch [790], and Diestel, Fourie, and Swart [719].
These sources have been widely used in our text.

Most results from Proposition 1.4.19 to Corollary 1.4.26 are taken from [441].
Nevertheless, we must say that, as acknowledged in [441], the argument in the proof
of Theorem 1.4.20, as well as the one to derive Corollary 1.4.21(ii) from that the-
orem, involve only slight changes in Spurný’s original proof of Corollary 1.4.21(ii)
[596]. Fact 1.4.24 is well known (see for example [711, Proposition VI.1.9]).
Although easily derivable from the results of [441], the equality sp(BL(X),T ) =
sp(T ) in Corollary 1.4.25 went unnoticed there. We note that, before [596], this
equality was unknown even if the weakly compact operator T was actually compact.
Results from Theorem 1.4.27 to Exercise 1.4.30 (with sp(BL(X),T ) instead of sp(T )
when sp(T ) appears) are classical.

The scarcity of the spectrum of a compact operator T from a normed space
X to itself, assured by Corollary 1.4.29(ii), is complemented by the fact that, for
0 	= λ ∈ sp(T ), the non-bijectivity of T − λ IX centres in a finite-dimensional
subspace. Indeed, we have the following theorem, which culminates the Riesz–
Schauder theory.

Theorem 1.4.51 Let X be a normed space over K, let T be in K(X), and let λ be
in K\{0}. Then X becomes the topological direct sum of two T -invariant subspaces
Y and Z such that Y is finite-dimensional, T −λ IX is nilpotent on Y , and T −λ IX is
bijective on Z.

Sketch of proof A fundamental step in the argument is of a purely algebraic nature.
So let us forget for the moment that X is endowed with a norm, and let F : X → X be
any linear mapping. The descent d(F) of F is defined by the equality

d(F) := min
{

n ∈ N∪{0} : R(Fn) = R(Fn+1)
}
,

with the convention that min /0 = ∞. Analogously, the ascent a(F) of F is defined by
the equality

a(F) := min
{

n ∈ N∪{0} : ker(Fn) = ker(Fn+1)
}
,

with the same convention. The outstanding fact is that, if both d(F) and a(F) are
finite, then these two numbers coincide, and that, denoting by m their common value,
we have X = ker(Fm)⊕Fm(X) (see for example [811, Theorems V.6.2 and V.7.9]).
If this is the case, then clearly both ker(Fm) and Fm(X) are F-invariant subspaces,
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and moreover F is nilpotent on ker(Fm) (since m = a(F)) and bijective on Fm(X)

(since m = d(F)).
Now, recall that X is a normed space, let T and λ be as in the statement, and set

F := T −λ IX . Then minor changes to the proof of assertion (iii) in Theorem 1.4.27
show that both d(F) and a(F) are finite. It follows that, setting Y := ker(Fm) and
Z := Fm(X) with m as above, Y becomes a finite-dimensional subspace (by The-
orem 1.4.27(i)) and we have X = Y ⊕ Z, the sum being topological because Z is
closed (by Theorem 1.4.27(ii)) and finite-codimensional in X .

It is easily realized that the injective compact operators on the complex Hilbert
space �2 constructed in the solution of Exercise 1.4.30 are normal (cf. §1.2.2 and
Definition 1.2.11). Actually, there are not much more normal compact operators on
complex Hilbert spaces. Indeed, if K is any complex Hilbert space, and if F : K → K
is a normal compact operator which is not a finite-rank operator, then there is a copy
of �2 (say H) in K such that both H and its orthogonal H⊥ are F-invariant subspaces,
F = 0 on H⊥, and F = T on H, where T is an injective compact operator like those
in the solution of Exercise 1.4.30 (see for example [711, Theorem II.7.6]).

Exercise 1.4.30 also raises the question of characterizing those Banach spaces X
such that there exists an injective compact operator from X to itself. Separability of X
is a sufficient condition, but not a necessary one. Indeed the mapping {μn}→ { 1

nμn}
from �∞ to itself is an injective compact operator. More generally, if X is the dual
of any separable Banach space, then, by Proposition 1.4.4, there exists an injective
compact operator from X to itself. A natural class of Banach spaces containing both
separable ones and their duals is that of Banach spaces with w∗-separable duals.
We note that, thanks to the bipolar theorem, the w∗-separability of the dual X ′ of a
Banach space X can be characterized by the existence of a sequence ( fn)n∈N in X ′

such that
⋂

n∈N ker( fn) = 0. Now we follow [304] to provide us with a reasonable
answer to the question we are dealing with. Indeed, we have the following.

Proposition 1.4.52 For a Banach space X, the following conditions are equivalent:

(i) X ′ is w∗-separable.

(ii) For every infinite-dimensional Banach space Y , there exists an injective com-
pact operator from X to Y .

(iii) There exists an injective compact operator from X to X.

(iv) There exists an injective compact operator from X to some Banach space.

(v) There exists an injective bounded linear operator from X to some separable
Banach space.

(vi) There exists an injective bounded linear operator from X to �∞.

(vii) There exists an injective bounded linear operator from X to some Banach space
whose dual is w∗-separable.

Proof (i)⇒(ii) Let Y be any infinite-dimensional Banach space. Take a normalized
basic sequence (yn)n∈N in Y , and invoke assumption (i) to find a sequence ( fn)n∈N in
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BX ′ such that
⋂

n∈N ker( fn) = 0. Then the mapping

T : x →
∞

∑
n=1

1
n2 fn(x)yn

becomes an injective compact operator from X to Y .
(ii)⇒(iii) Keeping in mind that condition (iii) is automatically fulfilled if X is

finite-dimensional, this implication becomes clear.
(iii)⇒(iv) This is clear.
(iv)⇒(v) Since the closure of the range of a compact operator is separable

(cf. Exercise 1.4.17).
(v)⇒(vi) Since separable Banach spaces imbed (isometrically) into �∞ (see for

example [671, Theorem 2.5.7]).
(vi)⇒(vii) Since the dual of �∞ is w∗-separable.
(vii)⇒(i) By assumption (vii), there exists an injective bounded linear operator

T from X to a Banach space Y such that Y ′ is w∗-separable. By taking a sequence
(gn)n∈N in Y ′ such that

⋂
n∈N ker(gn) = 0, and setting fn := gnT , the sequence

( fn)n∈N ⊂ X ′ satisfies
⋂

n∈N ker( fn) = 0.

By keeping in mind the compact version of Corollary 1.4.3, the implication
(i)⇒(iii) in the above proposition yields the following.

Corollary 1.4.53 A Banach space X is finite-dimensional if (and only if) X ′ is
w∗-separable and every injective bounded linear operator from X to X is surjective.

§1.4.54 It is conjectured in [304] that the w∗-separability of the dual in the above
corollary cannot be altogether removed. This conjecture has been proved recently by
Avilés and Koszmider [49]. Indeed, they have built an infinite compact Hausdorff
topological space E such that every injective bounded linear operator from CK(E) to
itself is surjective. For additional information about Banach spaces with w∗-separable
duals, the reader is referred to [729, Subsection 3.11.5].

§1.4.55 Set X := c0 or �p (1 � p < ∞). According to Corollary 1.4.33, K(X) is
the smallest nonzero closed ideal of BL(X). It is worth mentioning that, as proved
by Gohberg, Markus, and Fel’dman [294] (see also [715, Theorem 2.5.9] or [703,
Section 5.4]), K(X) is also the largest proper ideal of BL(X). In the case that X is
equal to the complex space �2, this result had been proved earlier by Calkin [157],
and, since then, the complete normed simple complex algebra BL(�2)/K(�2) has been
known as the Calkin algebra. We will see later (cf. Proposition 2.3.43) that the Calkin
algebra is a C∗-algebra in a natural way.

Most results in Subsection 1.4.3 are new. We thank J. F. Mena for his collaboration
in the writing of this subsection. In particular, Example 1.4.41 is due to him.
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Beginning the proof of the non-associative
Vidav–Palmer theorem

2.1 Basic results on numerical ranges

Introduction In this section, we begin to enter the fascinating world of the
geometry of norm-unital normed algebras around their units, which originated in
the Bohnenblust–Karlin paper [108]. To this end, we develop the basic theory of
numerical ranges of elements in a pointed normed space, of elements in a norm-
unital normed algebra, and, in particular, of bounded linear operators on a normed
space. One of the star results in this section is Theorem 2.1.27, which states a
celebrated Banach space characterization, also proved in [108], of unitary elements
in unital C∗-algebras.

2.1.1 Algebra numerical ranges

By a numerical-range space over K we mean a couple (X ,u), where X is a normed
space over K, and u is a fixed norm-one element in X (called the distinguished
element of X). Let (X ,u) be a numerical-range space. By a state of X relative to
u we mean an element f ∈ BX ′ satisfying f (u) = 1. We denote by D(X ,u) the set
of all states of X relative to u, and remark that, by the Hahn–Banach and Banach–
Alaoglu theorems, D(X ,u) becomes a non-empty w∗-compact convex subset of X ′.
Given x ∈ X , we define the numerical range of x (denoted by V (X ,u,x), or simply
V (x) when the couple (X ,u) is without doubt) as the non-empty compact convex
subset of K given by

V (X ,u,x) := { f (x) : f ∈ D(X ,u)}.

Given λ ∈K and r � 0, we denote by BK(λ ,r) the closed ball in K with centre λ
and radius r.

Proposition 2.1.1 Let (X ,u) be a numerical-range space over K, and let x be in X.
Then we have

V (X ,u,x) =
⋂
λ∈K

BK(λ ,‖x−λu‖).

Proof For all f ∈ D(X ,u) and λ ∈K, we see that

| f (x)−λ |= | f (x)−λ f (u)|= | f (x−λu)| � ‖ f‖‖x−λu‖= ‖x−λu‖,
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and hence f (x) ∈ BK(λ ,‖x − λu‖). Thus V (X ,u,x) ⊆ ⋂
λ∈K BK(λ ,‖x − λu‖). In

order to prove the converse inclusion, assume first that x ∈ Ku. If x = αu, then
‖x−λu‖= |α−λ | for every λ ∈K, and hence⋂

λ∈K
BK(λ ,‖x−λu‖) =

⋂
λ∈K

BK(λ , |α−λ |)⊆ BK(α,0) = {α}=V (X ,u,x).

Now, assume that x 	∈ Ku. Let z be in
⋂

λ∈K BK(λ ,‖x− λu‖). Consider the linear
mapping g : Ku+Kx →K given by g(αu+βx) := α+β z. Since, for all α ∈K and
β ∈K\{0} we have

|g(αu)|= |α|= ‖αu‖
and

|g(αu+βx)|= |α+β z|= |β ||αβ + z| � |β |‖α
β u+ x‖= ‖αu+βx‖,

we get ‖g‖ � 1. Now, if f is a Hahn–Banach extension of g, then we realize that
f ∈ D(X ,u) and, consequently, that z = g(x) = f (x) ∈V (X ,u,x).

A straightforward consequence of Proposition 2.1.1 is the following.

Corollary 2.1.2 Let (X ,u) and (Y,v) be numerical-range spaces over K, and let T
be a linear operator from X to Y such that T (u) = v. We have:

(i) If T is contractive, then V (Y,v,T (x))⊆V (X ,u,x) for every x ∈ X.
(ii) If T is an isometry, then V (Y,v,T (x)) =V (X ,u,x) for every x ∈ X.

As a consequence, if Z is a subspace of X with u ∈ Z, then

V (Z,u,z) =V (X ,u,z) for every z ∈ Z.

Corollary 2.1.3 Let X be a nonzero normed space, and let T be in BL(X). Then
we have

V (BL(X ′), IX ′ ,T ′) =V (BL(X), IX ,T ).

Proof Since the mapping F → F ′ form BL(X) to BL(X ′) is a linear isometry send-
ing IX to IX ′ , the result follows from Corollary 2.1.2(ii).

For a complex (normed) vector space X , we will denote by XR the real (normed)
vector space obtained when multiplication of vectors by scalars is restricted to R×X .
Given a complex number z, we denote by ℜ(z) the real part of z.

Proposition 2.1.4 Let (X ,u) be a complex numerical-range space, and let x be in
X. Then we have

V (XR,u,x) =ℜ(V (X ,u,x)). (2.1.1)

Proof Since the mapping f → ℜ ◦ f is a surjective linear isometry from (X ′)R
to (XR)

′, we have D(XR,u) = {ℜ ◦ f : f ∈ D(X ,u)}, and the equality (2.1.1)
follows.

Proposition 2.1.5 Let (X ,u) be a numerical-range space over K, and let x be in X.
Then we have

maxℜ(V (X ,u,x)) = inf

{
‖u+ rx‖−1

r
: r > 0

}
= lim

r→0+

‖u+ rx‖−1
r

.
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Proof In view of Proposition 2.1.4, we may assume that K= R. Since, by Propos-
ition 2.1.1, we have

V (X ,u,x) =
⋂
t∈R

[t −‖x− tu‖, t +‖x− tu‖] ,

it follows that

maxV (X ,u,x) = inf{t +‖x− tu‖ : t ∈ R}. (2.1.2)

Note that, for t1, t2 ∈ R such that t1 � t2, we have

‖x− t1u‖= ‖x− t2u+(t2 − t1)u‖ � ‖x− t2u‖+‖(t2 − t1)u‖= ‖x− t2u‖+ t2 − t1,

hence t1 +‖x− t1u‖ � t2 +‖x− t2u‖, and so the mapping t → t +‖x− tu‖ from R to
R is increasing. Therefore, by (2.1.2), we derive

maxV (X ,u,x) = inf{t +‖x− tu‖ : t ∈ R−}= inf

{
‖u+ rx‖−1

r
: r ∈ R+

}
,

and

maxV (X ,u,x) = lim
t→−∞

(t +‖x− tu‖) = lim
r→0+

‖u+ rx‖−1
r

.

Corollary 2.1.6 Let (X ,u) be a numerical-range space, let I be an interval of R
such that 0 ∈ I and I ∩R+ 	= /0, and let f : I → X be a mapping having a right
derivative at 0 and satisfying f (0) = u. Then we have

maxℜ(V (X ,u, f ′+(0))) = lim
r→0+

‖ f (r)‖−1
r

.

Proof Considering the mapping f0 : I ∩R+ → X defined by

f0(r) :=
f (r)−u

r
,

and noticing that, for r ∈ I ∩R+ we have

f (r) = u+ r f ′+(0)+ r( f0(r)− f ′+(0)),

we get

‖u+ r f ′+(0)‖− r‖ f0(r)− f ′+(0)‖ � ‖ f (r)‖ � ‖u+ r f ′+(0)‖+ r‖ f0(r)− f ′+(0)‖.

Therefore we have

‖u+ r f ′+(0)‖−1
r

−‖ f0(r)− f ′+(0)‖ � ‖ f (r)‖−1
r

� ‖u+ r f ′+(0)‖−1
r

+‖ f0(r)− f ′+(0)‖

for every r ∈ I ∩R+. By keeping in mind Proposition 2.1.5 and the fact that

lim
r→0+

‖ f0(r)− f ′+(0)‖= 0,

the conclusion follows by letting r → 0+.
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Every norm-unital normed algebra will be considered without notice as a
numerical-range space with 1 as its distinguished element. The next proposition
becomes a basic result for the development of the theory of numerical ranges in
norm-unital normed algebras.

Proposition 2.1.7 Let A be a norm-unital complete normed associative algebra,
and let a be in A. Then we have

maxℜ(V (A,1,a)) = sup

{
1
r

log‖exp(ra)‖ : r > 0

}
= lim

r→0+

1
r

log‖exp(ra)‖.

Proof By Corollary 2.1.6, we have

lim
r→0+

‖exp(ra)‖−1
r

= maxℜ(V (A,1,a)).

Therefore, by the chain rule for right derivatives, we also have

lim
r→0+

1
r

log‖exp(ra)‖= maxℜ(V (A,1,a)). (2.1.3)

Let r be in R+. Since

e
1
r exp(a) = exp

(
1
r

1
)

exp(a) = exp

(
1
r

1+a

)
,

we have

e
1
r ‖exp(a)‖=

∥∥∥∥exp

(
1
r

1+a

)∥∥∥∥� e‖
1
r 1+a‖.

Therefore

‖exp(a)‖ � e‖
1
r 1+a‖− 1

r = e
‖1+ra‖−1

r ,

and hence

log‖exp(a)‖ � ‖1+ ra‖−1
r

.

Keeping in mind Proposition 2.1.5, and letting r → 0, we get

log‖exp(a)‖ � maxℜ(V (A,1,a)).

Now, given r ∈ R+, the above inequality, with ra instead of a, reads as

log‖exp(ra)‖ � maxℜ(V (A,1,ra)) = r maxℜ(V (A,1,a)),

and hence

1
r

log‖exp(ra)‖ � maxℜ(V (A,1,a)). (2.1.4)

By combining (2.1.3) and (2.1.4), the result follows.

Definition 2.1.8 Let (X ,u) be a numerical-range space over K. An element x of X
is said to be dissipative if maxℜ(V (X ,u,x)) � 0. Assume in addition that K = C.
An element x ∈ X is said to be hermitian if V (X ,u,x)⊆ R.

For a complex (normed) algebra A, we will denote by AR the real (normed) algebra
obtained when the multiplication of elements of A by scalars is restricted to R×A.
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Corollary 2.1.9 Let A be a norm-unital complete normed associative algebra, and
let a be in A. We have:

(i) a is dissipative if and only if ‖exp(ra)‖ � 1 for every r ∈ R+.
(ii) If K= R, then V (A,1,a) = 0 if and only if ‖exp(ra)‖= 1 for every r ∈ R.

(iii) If K= C, then a is hermitian if and only if ‖exp(ira)‖= 1 for every r ∈ R.

Proof Assertion (i) is a straightforward consequence of Proposition 2.1.7. Asser-
tion (ii) follows from (i) by keeping in mind that, for r ∈ R, we have [exp(ra)]−1 =

exp(−ra). Assertion (iii) follows from (ii) because, by Proposition 2.1.4, a is her-
mitian if and only if V (AR,1, ia) = 0.

The following lemma specifies §1.1.36 in the case of norm-unital normed algebras,
and becomes the key tool for transferring results on algebra numerical ranges from
the associative case to the non-associative one.

Lemma 2.1.10 Let A be a norm-unital normed algebra. Then the mappings

a → La and a → Ra

from A to BL(A) become lineal isometries preserving distinguished elements. As a
consequence, for a ∈ A we have

V (A,1,a) =V (BL(A), IA,La) =V (BL(A), IA,Ra).

Proof The first conclusion is straightforward, whereas the consequence follows
from Corollary 2.1.2(ii).

Let (X ,u) be a numerical-range space. For x ∈ X we define the numerical radius,
v(x) = v(X ,u,x), of x by

v(x) := max{|z| : z ∈V (x)}.

The numerical index, n(X ,u), of X at u, is defined as the maximum non-negative
real number k satisfying k‖x‖ � v(x) for every x ∈ X . We note that v(·) becomes a
seminorm on X such that v(·) � ‖ · ‖, and that, if Z is a subspace of X with u ∈ Z,
then, by Corollary 2.1.2, we have

n(Z,u) � n(X ,u). (2.1.5)

Proposition 2.1.11 Let A be a norm-unital normed complex algebra. Then

n(A,1) � 1
e
.

Proof In view of the above comments, we may assume that A is complete.
First assume that A is associative. Let a be in A. We must show that

‖a‖ � ev(a). (2.1.6)

By Proposition 2.1.7, we have log‖exp(a)‖ � maxℜ(V (A,1,a)) � v(a). Replacing
a with za, for z ∈ C, we get

‖exp(za)‖ � e|z|v(a).

Consider the entire function f : C→ A given by f (z) = exp(za). Then, for r ∈ R+,
the first Cauchy estimate gives
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‖a‖= ‖ f ′(0)‖ � 1
r

max{‖exp(za)‖ : |z|= r} � 1
r

erv(a).

If v(a) = 0, then letting r → +∞ we get a = 0, and hence (2.1.6) holds. Otherwise,
taking r := 1

v(a) , (2.1.6) is obtained.
Now assume that A is not associative. Then, by Lemma 2.1.10, we can see A as a

subspace of BL(A) containing IA. Therefore, by the above paragraph and (2.1.5), we
obtain n(A,1) � n(BL(A), IA) � 1

e .

Definition 2.1.12 Let X be a normed space over K, and let u be in X . We say that
u is a vertex of BX if ‖u‖ = 1 and D(X ,u) separates the points of X . Assume that
‖u‖ = 1. We note that the condition n(X ,u) > 0 implies that u is a vertex of BX .
Assume in addition that K=C. We denote by H(X ,u) the closed real subspace of X
consisting of all hermitian elements of X . It is easily realized that u is a vertex of BX

if and only if H(X ,u)∩ iH(X ,u) = 0. Therefore we have the following.

Corollary 2.1.13 Let A be a norm-unital normed complex algebra. Then 1 is a
vertex of BA (equivalently, H(A,1)∩ iH(A,1) = 0).

§2.1.14 Let X be a normed space, and let Y be a subspace of X ′. We say that Y is
almost norming if there exists m > 0 such that

m‖x‖ � sup{| f (x)| : f ∈ BY} (2.1.7)

for every x ∈ X . When the number m above is equal to 1, we say that Y is norming.
Now, let u be a norm-one element in X , and set

DY (X ,u) := D(X ,u)∩Y.

If DY (X ,u) = /0, then we set nY (X ,u) := 0. Otherwise, we define nY (X ,u) as the
largest non-negative real number k satisfying

k‖x‖ � vY (x) := sup
{
| f (x)| : f ∈ DY (X ,u)

}
for every x ∈ X . We note that

nY (X ,u) � n(X ,u), (2.1.8)

and that, if nY (X ,u) > 0 (respectively, nY (X ,u) = 1), then Y is almost norming
(respectively, norming).

Given a subset S of a vector space X over K, |co|(S) will stand for the absolutely
convex hull of S in X . If X is normed, then co(S) and |co|(S) will denote the closed
convex and closed absolutely convex hull of S in X , respectively.

Lemma 2.1.15 Let X be a normed space, let u be a norm-one element in X, and let
Y be an almost norming closed subspace of X ′ such that the linear hull of DY (X ,u)
is equal to Y . Then nY (X ,u)> 0.

Proof Since the linear hull of DY (X ,u) is equal to Y , we realize that |co|(DY (X ,u))
is a barrel in Y . Therefore, since barrels in a Banach space are neighbourhoods of
zero, there exists k > 0 such that kBY ⊆ |co|(DY (X ,u)). On the other hand, since Y is
almost norming, the inequality (2.1.7) holds for some m > 0 and all x ∈ X . It follows
that mk‖x‖ � vY (x) for every x ∈ X , and hence that nY (X ,u)> 0.
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Definition 2.1.16 Let X be a normed space. An element u ∈ X is said to be a
geometrically unitary element of X if ‖u‖ = 1 and the linear hull of D(X ,u) equals
the whole space X ′. Clearly, geometrically unitary elements of X are vertices of BX .

Theorem 2.1.17 Let u be a norm-one element in a normed space X over K. We
have:

(i) u is a geometrically unitary element of X if and only if n(X ,u)> 0.
(ii) If n(X ,u)> 0, then we have

int(BX ′)⊆ 1
n(X ,u)

|co|(D(X ,u)), (2.1.9)

and hence

BX ′ ⊆ 1
n(X ,u)

|co|(D(X ,u)).

(iii) If K= R, and if n(X ,u)> 0, then we have in fact

BX ′ ⊆ 1
n(X ,u)

|co|(D(X ,u)), (2.1.10)

and hence, for each f ∈ X ′, there are α1,α2 � 0 and f1, f2 ∈ D(X ,u) such that

f = α1 f1 −α2 f2 and α1 +α2 � ‖ f‖
n(X ,u) .

(iv) If K=C, and if n(X ,u) > 0, then, for each f ∈X ′, there are α1,α2,α3,α4 � 0
and f1, f2, f3, f4 ∈ D(X ,u) such that

f = α1 f1 −α2 f2 + i(α3 f3 −α4 f4) and α1 +α2 +α3 +α4 �
√

2‖ f‖
n(X ,u) .

(v) n(X ′′,u) = n(X ,u).
(vi) u is a geometrically unitary element of X ′′ if and only if it is a geometrically

unitary element of X.

Proof Assume that u is a geometrically unitary element of X . Then, by Lemma
2.1.15, we have n(X ,u)> 0.

To prove the converse, note that, in the duality (X ′,X), the set

B := {x ∈ X : v(x) � 1}

is the absolute polar of D(X ,u) in X , and that the inclusion n(X ,u)B ⊆ BX holds. It
follows from the bipolar theorem that

n(X ,u)BX ′ is contained in the w∗-closure of |co|(D(X ,u)). (2.1.11)

Assume that K=R and that n(X ,u)> 0. Then, |co|(D(X ,u)) is w∗-compact in X ′

because

|co|(D(X ,u)) = co(D(X ,u)∪−D(X ,u)) (2.1.12)

and D(X ,u) is w∗-compact, and hence (2.1.10) follows from (2.1.11). Now the proof
of assertion (iii) is concluded by noticing that for f ∈ X ′ \ {0} we have 1

‖ f‖ f ∈ BX ′ ,
and applying (2.1.10) and (2.1.12). On the other hand, noticing that (2.1.10) implies
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(2.1.9), and that (2.1.9) implies that u is a geometrically unitary element of X , asser-
tion (ii) and the ‘if’ part of assertion (i) are proved in the case K= R.

Now, assume that K = C and that n(X ,u) > 0. Let ε > 0, and take n ∈ N such
that BC ⊆ (1+ ε)co({z1, . . . ,zn}), where z1, . . . ,zn are the nth roots of 1 in C. Then
we have

|co|(D(X ,u)) = co(BCD(X ,u))⊆ (1+ ε)co(∪n
i=1ziD(X ,u)).

Since co(∪n
i=1ziD(X ,u)) is w∗-compact, it follows from (2.1.11) that

n(X ,u)BX ′ ⊆ (1+ ε)co(∪n
i=1ziD(X ,u)).

Since co(∪n
i=1ziD(X ,u))⊆ |co|(D(X ,u)), we derive that

n(X ,u)BX ′ ⊆ (1+ ε)|co|(D(X ,u)).

Therefore, since int(BX ′)⊆ ∪ε>0
1

1+εBX ′ , we have

n(X ,u)int(BX ′)⊆ |co|(D(X ,u)).

This proves assertion (ii) and the ‘if’ part of assertion (i) in the case K = C. On the
other hand, since

|co|(D(X ,u))⊆
√

2co(D(X ,u)∪−D(X ,u)∪ iD(X ,u)∪−iD(X ,u))

because
|co|(D(X ,u)) = co(BCD(X ,u)) and BC ⊆

√
2co({1,−1, i,−i}),

and
co(D(X ,u)∪−D(X ,u)∪ iD(X ,u)∪−iD(X ,u))

is w∗-compact, it follows from (2.1.11) that

BX ′ ⊆
√

2
n(X ,u)

co(D(X ,u)∪−D(X ,u)∪ iD(X ,u)∪−iD(X ,u)),

which, after straightforward computations, proves assertion (iv).
By (2.1.5), we have n(X ′′,u) � n(X ,u). To prove the converse inequality, we may

assume that n(X ,u)> 0. Let x′′ be in X ′′. Then we have

v(X ′′,u,x′′) = max{| f (x′′)| : f ∈ D(X ′′,u)} � sup{| f (x′′)| : f ∈ D(X ,u)}

= sup{| f (x′′)| : f ∈ |co|(D(X ,u))} � n(X ,u)sup{| f (x′′)| : f ∈ BX ′ }

= n(X ,u)‖x′′‖,

the last inequality being true because of assertion (ii). Since x′′ is arbitrary in X ′′, we
derive n(X ′′,u) � n(X ,u), as desired.

Finally, assertion (vi) follows from assertions (i) and (v).

The next example shows that, when K= C, the inclusion

BX ′ ⊆ 1
n(X ,u)

|co|(D(X ,u))

cannot be expected in assertion (ii) of Theorem 2.1.17, even if n(X ,u) = 1. In the
example, X is in fact a unital commutative C∗-algebra and u is the unit of X .
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Example 2.1.18 Let X stand for the complex Banach space of all convergent
sequences (an)n∈N of complex numbers, and let u ∈ SX be the sequence constantly
equal to 1. Then, since the coordinate projections on X are elements of D(X ,u),
we have n(X ,u) = 1. Moreover, thanks to the natural identification of X ′ with the
complex Banach space �1(N∪ {0}), D(X ,u) becomes the set of those sequences
(bn)n∈N∪{0} ∈ S�1(N∪{0}) such that bn � 0 for every n ∈ N∪{0}. Now set

f :=

(
1

2n+1 ei 1
n+1

)
n∈N∪{0}

∈ S�1(N∪{0}).

We are going to realize that f does not belong to |co|(D(X ,u)). Assume to the
contrary that f ∈ |co|(D(X ,u)), so that f = ∑m

k=1λk fk for suitable m ∈ N,
fk ∈ D(X ,u), and λk ∈ C \ {0} with ∑m

k=1 |λk| � 1. For k = 1, . . . ,m, write
fk = (bnk)n∈N∪{0} ∈ S�1(N∪{0}) with bnk � 0 for every n ∈ N∪{0}. Then, since

1 = ‖ f‖=
∞

∑
n=0

∣∣∣∣∣ m

∑
k=1

λkbnk

∣∣∣∣∣� ∞

∑
n=0

m

∑
k=1

|λk|bnk =
m

∑
k=1

∞

∑
n=0

|λk|bnk =
m

∑
k=1

|λk| � 1,

we deduce that |∑m
k=1λkbnk|=∑m

k=1 |λk|bnk for every n ∈N∪{0}. Therefore for each
n ∈ N∪{0} there exists ρn ∈ SC such that

λkbnk = ρn|λk|bnk for every k = 1, . . . ,m. (2.1.13)

Let n be in N∪{0}. Since

ρn

m

∑
k=1

|λk|bnk =
m

∑
k=1

λkbnk =
1

2n+1 ei 1
n+1 ,

we deduce that ρn = ei 1
n+1 and that there is k(n) ∈ {1, . . . ,m} such that bnk(n) > 0. It

follows from (2.1.13) that ei 1
n+1 =

λk(n)
|λk(n)|

. But this is a contradiction because the set{
ei 1

n+1 : n ∈ N∪{0}
}

is infinite and the set
{ λk(n)
|λk(n)|

: n ∈ N∪{0}
}

is finite.

Thinking about positive results for norm-unital normed algebras, it is enough to
combine Proposition 2.1.11 and Theorem 2.1.17 to achieve the following.

Corollary 2.1.19 Let A be a norm-unital normed complex algebra. Then 1 is a
geometrically unitary element of A. More precisely, we have

int(BA′)⊆ e|co|(D(A,1)).

Moreover, for each f ∈A′, there are α1,α2,α3,α4 �0 and f1, f2, f3, f4∈D(A,1) such
that

f = α1 f1 −α2 f2 + i(α3 f3 −α4 f4) and α1 +α2 +α3 +α4 � e
√

2‖ f‖.

§2.1.20 Let A be a norm-unital normed associative algebra. An element u ∈ A is
said to be algebraically unitary if u is invertible in A with ‖u‖=‖u−1‖=1. If u is an
algebraically unitary element of A, then Lu is a surjective linear isometry taking 1 to
u. Therefore we have the following.
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Corollary 2.1.21 Let A be a norm-unital normed associative complex algebra,
and let u be an algebraically unitary element of A. Then all conclusions in Corol-
lary 2.1.19 remain true when we replace 1 with u.

By combining Lemma 2.1.15, the inequality (2.1.8), and Theorem 2.1.17(i), we
find the following.

Corollary 2.1.22 Let X ,u, and Y be as in Lemma 2.1.15. Then u is a geometrically
unitary element of X.

Lemma 2.1.23 Let (X ,u) and (Y,v) be numerical-range spaces over K. Assume
that v is a geometrically unitary element of Y , and that there exists a bounded below
linear contraction T from X to Y such that T (u) = v. Then u is a geometrically
unitary element of X.

Proof By Corollary 2.1.2(i), we have v(T (x)) � v(x) for every x ∈ X . Let k > 0 be
such that ‖T (x)‖ � k‖x‖ for every x ∈ X . Then, for each x ∈ X we have

kn(Y,v)‖x‖ � n(Y,v)‖T (x)‖ � v(T (x)) � v(x).

Thus kn(Y,v) � n(X ,u). Now, the result follows from Theorem 2.1.17(i).

Corollary 2.1.24 Let X be a normed space, and let F be in BL(X). If F ′ is a
geometrically unitary element of BL(X ′), then F is a geometrically unitary element
of BL(X).

Proof The mapping T : G → G′ from BL(X) to BL(X ′) is a linear isometry with
T (F) = F ′. Now, apply Lemma 2.1.23.

Lemma 2.1.25 Let X be a normed space over K, and let u be a vertex of BX . Then
u is an extreme point of BX .

Proof Let x,y be in BX such that u = 1
2 (x+ y), and let f be in D(X ,u). Then we

have 1 = f (u) = 1
2( f (x)+ f (y)) with f (x), f (y) ∈ BK. Since 1 is an extreme point

of BK, we get f (u− x) = 0. Finally, since f is arbitrary in D(X ,u), and u is a vertex
of BX , we derive x = u.

Lemma 2.1.26 [806, Proposition 1.6.1 and Theorem 1.6.4] The closed unit ball of
a nonzero C∗-algebra A has extreme points if and only if A is unital. In this case, the
extreme points of BA are precisely the elements u ∈ A such that

(1−uu∗)A(1−u∗u) = 0.

A proof of the above lemma will be given much later (see §4.2.37).

Theorem 2.1.27 Let A be a unital C∗-algebra, and let u be in A. Then the following
conditions are equivalent:

(i) u is unitary (i.e. u∗u = uu∗ = 1).
(ii) u is algebraically unitary.

(iii) u is geometrically unitary.
(iv) u is a vertex of the closed unit ball of A.
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Proof The implications (i)⇒(ii) and (iii)⇒(iv) are clear, whereas the implication
(ii)⇒(iii) follows from Corollary 2.1.21.

(iv)⇒(i) Assume that u is a vertex of BA. By Lemmas 2.1.25 and 2.1.26, we have
(1−uu∗)A(1−u∗u) = 0. Therefore u∗(1−uu∗)u(1−u∗u) = 0. Since

[u(1−u∗u)]∗ = (1−uu∗)u∗ = u∗(1−uu∗),

using the C∗-identity we get u(1−u∗u)= 0. Note that, for any λ ∈C and f ∈D(A,u),
we have

|1+λ f (1−uu∗)|2 = | f (u+λ (1−uu∗))|2 � ‖u+λ (1−uu∗)‖2

= ‖[u+λ (1−uu∗)]∗[u+λ(1−uu∗)]‖

= ‖[u∗+ λ̄ (1−uu∗)][u+λ (1−uu∗)]‖

= ‖u∗u+λu∗(1−uu∗)+ λ̄ (1−uu∗)u+ |λ |2(1−uu∗)2‖

= ‖u∗u+ |λ |2(1−uu∗)‖ � 1+ |λ |2.

For λ = f (1−uu∗), this implies | f (1− uu∗)| = 0. Since u is a vertex of BA and
f ∈ D(A,u) was arbitrary, this shows that 1−uu∗ = 0. Similarly we get 1−u∗u = 0,
so u is unitary.

2.1.2 Operator numerical ranges

Now we are going to construct a norm-unital complete normed associative (neces-
sarily real) algebra such that its unit is a vertex of the closed unit ball but is not a
geometrically unitary element. Since such an algebra will be of the form BL(X) for
some real Banach space X , we are pleasantly obliged to do a quick incursion into the
world of numerical ranges of operators.

Lemma 2.1.28 Let A be a norm-unital normed real algebra, and let a be in A
with V (A,1,a) = 0 and such that a2 lies in the linear hull of {a,1}. Then we have
a2 =−‖a‖21 and ‖a+ s1‖2 = ‖a‖2 + s2 for every s ∈ R.

Proof The assumption that a2 lies in the linear hull of {a,1} implies that this linear
hull is an associative subalgebra of A, so that we may assume that A is associative and
complete. Moreover, by the same assumption, there are real numbers α,μ such that

(a−α1)2 = μ1. (2.1.14)

On the other hand, since V (A,1,a) = 0, Corollary 2.1.9(ii) applies, so that we have

eαr‖exp[r(a−α1)]‖= ‖exp(ra)‖= 1 for every r ∈ R. (2.1.15)

If a ∈ R1, then a = 0 because V (A,1,a) = 0, and the result follows. Therefore, in
what follows we will assume that a /∈R1, and hence that there exists M > 0 such that

M|s| � ‖s1+ t(a−α1)‖ for all s, t ∈ R. (2.1.16)

Suppose that μ = 0. Then, since by (2.1.14) we have

exp[r(a−α1)] = 1+ r(a−α1),
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it follows from (2.1.15) that

eαr‖1+ r(a−α1)‖= 1 for every r ∈ R,

which, in view of (2.1.16), implies α = 0. Therefore we have ‖1+ ra‖= 1 for every
r ∈ R, so a = 0, contradicting our previous assumption that a /∈ R1.

Now, suppose that μ > 0 (say μ = λ 2 with λ > 0). Then, since by (2.1.14) we
have

exp[r(a−α1)] = (coshrλ )1+
1
λ
(sinhrλ )(a−α1),

it follows from (2.1.15) that

eαr

∥∥∥∥(coshrλ )1+
1
λ
(sinhrλ )(a−α1)

∥∥∥∥= 1 for every r ∈ R,

which, in view of (2.1.16), implies Meαr coshrλ � 1 for every r ∈ R, another con-
tradiction.

It follows from the two preceding paragraphs that μ < 0 (say μ = −λ 2 with
λ > 0). Then, since by (2.1.14) we have

exp[r(a−α1)] = (cosrλ )1+
1
λ
(sinrλ )(a−α1),

it follows from (2.1.15) that

eαr

∥∥∥∥(cosrλ )1+
1
λ
(sinrλ )(a−α1)

∥∥∥∥= 1 for every r ∈ R,

which, in view of (2.1.16), implies α = 0. Therefore we have∥∥∥∥(cosrλ )1+
1
λ
(sinrλ )a)

∥∥∥∥= 1 for every r ∈ R, (2.1.17)

and taking r := π
2λ , we derive that ‖a‖ = λ , which together with (2.1.17) implies

easily that ‖a+ s1‖2 = ‖a‖2 + s2 for every s ∈ R, and also, by (2.1.14), that a2 =

−‖a‖21, as required.

Let X be a normed space. We define the spatial numerical index, N(X), of X by
N(X) := n(BL(X), IX ). Since BL(X) can be seen as a subspace of BL(X ′) containing
IX ′ (via the mapping T → T ′ form BL(X) to BL(X ′)), the inequality (2.1.5) applies,
so that we have

N(X) � N(X ′). (2.1.18)

Corollary 2.1.29 Let X be a normed two-dimensional real space. Then X is a
Hilbert space if and only if N(X) = 0.

Proof Assume that X is a Hilbert space. Then X = CR, and hence the oper-
ator T of multiplication by the imaginary unit becomes an element of BL(X) with
V (BL(X), IX ,T ) = 0. Indeed, we have

lim
r→0

‖IX + rT‖−1
r

= lim
r→0

√
1+ r2 −1

r
= 0,

and Proposition 2.1.5 applies. Now, we have v(T ) = 0 and T 	= 0, which implies
N(X) = 0.
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Assume that N(X) = 0. Then, since BL(X) is finite-dimensional, there exists
a norm-one element T ∈ BL(X) such that v(T ) = 0. Moreover, since X is two-
dimensional, T 2 belongs to the linear hull of {IX ,T}. It follows from Lemma 2.1.28
that T 2 =−IX and that

‖(cosϕ)IX +(sinϕ)T‖= 1 for every ϕ ∈ R. (2.1.19)

As a consequence, for ϕ ∈ R, the operator Tϕ := (cosϕ)IX +(sinϕ)T is bijective
with T−1

ϕ = T−ϕ and ‖Tϕ‖ = ‖T−1
ϕ ‖ = 1. Now, since Tϕ is a surjective lin-

ear isometry on X , it is enough to take a norm-one element u ∈ X , to have
‖(cosϕ)u+(sinϕ)T (u)‖= ‖Tϕ(u)‖= 1 for every ϕ ∈ R, which, again by the two-
dimensionality of X , shows ostensibly that X is a copy of the Euclidean plane.

§2.1.30 Given a normed space X , we denote by Π(X) the subset of X × X ′

defined by

Π(X) := {(x, f ) : x ∈ SX , f ∈ D(X ,x)}.

For any subset Γ of Π(X), we set π1(Γ) := {x : (x, f ) ∈ Γ for some f}.

Proposition 2.1.31 Let X be a normed space, let Γ be a subset of Π(X) such that
its natural projection π1(Γ) is dense in SX , and let T be in BL(X). Then we have

V (BL(X), IX ,T ) = co{ f (T (x)) : (x, f ) ∈ Γ}.

Proof Let μ = supℜ({ f (T (x)) : (x, f ) ∈ Γ}). Since, for (x, f ) ∈ Γ, the mapping
F → f (F(x)) belongs to D(BL(X), IX ), Proposition 2.1.5 applies, so that we have

μ � inf

{
‖IX + rT‖−1

r
: r > 0

}
. (2.1.20)

The case T = 0 is obvious; so assume that T 	= 0. Let 0 < r < ‖T‖−1, ε > 0, x ∈ SX .
Since π1(Γ) is dense in SX , there exists (y,g) ∈ Γ such that ‖x− y‖ < ε . We have
ℜ(g(T (y))) � μ � ‖T‖, and so

‖(IX − rT )(y)‖ � ℜ(g((IX − rT )(y)) = 1− rℜ(g(T (y))) � 1− rμ > 0.

Therefore

‖(IX − rT )(x)‖ � 1− rμ−‖IX − rT‖ε.

Since ε is arbitrary, this gives ‖(IX − rT )(x)‖ � 1− rμ , and therefore

‖(IX − rT )(x)‖ � (1− rμ)‖x‖ for every x ∈ X .

If we replace x by (IX + rT )(x), this gives

‖(IX + rT )(x)‖ � (1− rμ)−1‖(IX − r2T 2)(x)‖ for every x ∈ X ,

and so

‖IX + rT‖ � 1+ r2‖T 2‖
1− rμ

.

Therefore
‖IX + rT‖−1

r
� μ+ r‖T 2‖

1− rμ
,
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and this, together with (2.1.20), proves that

μ = inf

{
‖IX + rT‖−1

r
: r > 0

}
.

Now, again by Proposition 2.1.5, we have

maxℜ(V (BL(X), IX ,T )) = supℜ({ f (T (x)) : (x, f ) ∈ Γ}).

The proof is easily completed by replacing T with appropriate scalar multiples of T
and using the fact that V (BL(X), IX ,T ) is a closed convex set.

§2.1.32 Given a normed space X , and a bounded linear operator T on X , we define
the spatial numerical range, W (T ), of T by

W (T ) := { f (T (x)) : (x, f ) ∈Π(X)}.

Corollary 2.1.33 Let X be a normed space, and let T be in BL(X). Then we have

V (BL(X), IX ,T ) = coW (T ).

Proof By the Hahn–Banach theorem, we have π1(Π(X)) = SX . Therefore the result
follows by applying Proposition 2.1.31 with Γ=Π(X).

The next corollary has its own interest.

Corollary 2.1.34 Let X be a Banach space, and let F be in BL(X ′). Then we have

V (BL(X ′), IX ′ ,F) = co{F( f )(x) : (x, f ) ∈Π(X)}.

Proof The set Γ′ := {( f ,x) : (x, f ) ∈Π(X)} is a subset of Π(X ′) whose projection
into the first coordinate is dense in SX ′ (thanks to the Bishop–Phelps theorem).
Therefore the result follows by applying Proposition 2.1.31 with (X ′,Γ′,F) instead
of (X ,Γ,T ).

For a convex subset S of a vector space X , we denote by ext(S) the set of all
extreme points of S.

Corollary 2.1.35 Let X be a Banach space, and let T be in BL(X). Then we have

v(BL(X), IX ,T ) = sup{|x′′(T ′(x′))| : x′ ∈ ext(BX ′),x′′ ∈ ext(BX ′′),x′′(x′) = 1}.

Proof As a consequence of Corollary 2.1.33, we have

v(T ) := v(BL(X), IX ,T ) = sup{φ(x) : x ∈ SX}, (2.1.21)

where, for x ∈ SX , φ(x) is defined by

φ(x) := sup{|x′(T (x))| : x′ ∈ D(X ,x)}.

Now recall that D(X ,x) is a w∗-compact convex subset of X ′, and note that, for
x ∈ SX , the mapping x′ → |x′(T (x))| from X ′ to R is convex and w∗-continuous,
and that consequently the set {x′ ∈ D(X ,u) : |x′(T (x))| = φ(x)} is a w∗-closed face
of D(X ,u). It follows from the Krein–Milman theorem that, for each x ∈ SX , there
exists x′ ∈ ext(D(X ,u)) such that |x′(T (x))| = φ(x). Since D(X ,u) is a face of BX ′ ,
we derive from (2.1.21) that

v(T ) = sup{|x′(T (x))| : x′ ∈ ext(BX ′),x ∈ SX ,x
′(x) = 1}.
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As a consequence, we have

v(T ) � sup{|x′′(T ′(x′))| : x′ ∈ ext(BX ′),x′′ ∈ D(X ′,x′)} � v(T ′) = v(T ),

the equality at the end being true because of Corollary 2.1.3. Therefore we can write

v(T ) = sup{ψ(x′) : x′ ∈ ext(BX ′)},

where now, for x′ ∈ ext(BX ′), ψ(x′) is defined by

ψ(x′) := sup{|x′′(T ′(x′))| : x′′ ∈ D(X ′,x′)}.

The proof is concluded by applying to ψ the same argument as that used for φ .

Fact 2.1.36 Let n be a positive integer greater than or equal to 2, and let m be in Z.
Then we have ∣∣∣cos

(mπ
n

+
π
2n

)∣∣∣� cos
( π

2n

)
.

If in addition n is even, then we also have∣∣∣sin
(mπ

n
+

π
2n

)∣∣∣� cos
( π

2n

)
.

Proof We observe that the inequality∣∣∣cos
(mπ

n
+

π
2n

)∣∣∣� cos
( π

2n

)
is equivalent to the fact that

mπ
n

+
π
2n

/∈
]
− π

2n
,
π
2n

[
+ πZ,

which is equivalent to 2m+1 /∈ ]−1,1[ + 2nZ, and this last statement is obviously
true. Analogously, we note that the inequality∣∣∣sin

(mπ
n

+
π
2n

)∣∣∣� cos
( π

2n

)
is equivalent to

mπ
n

+
π
2n

/∈
]π

2
− π

2n
,
π
2
+

π
2n

[
+ πZ,

which is equivalent to 2m+1 /∈ ]n−1,n+1[ + 2nZ, a statement which is true when
n is even.

Let n be a positive integer greater than or equal to 2. For k = 1,2, . . . ,2n, we write

xk :=

(
cos

(
kπ
n

)
, sin

(
kπ
n

))
,

x′k :=
1

cos
( π

2n

) (cos

(
kπ
n

+
π
2n

)
, sin

(
kπ
n

+
π
2n

))
,

and we define Xn to be the two-dimensional real Banach space such that

ext(BXn) = {xk : k = 1,2, . . . ,2n}. (2.1.22)

Lemma 2.1.37 Let n be an even positive integer, and let Xn be defined as above.

Then N(Xn) � tan
( π

2n

)
.
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Proof For j,k ∈ {1,2, . . . ,2n} we have

|x′k(x j)|=
1

cos
( π

2n

) ∣∣∣∣cos

(
kπ
n

+
π
2n

)
cos

(
jπ
n

)
+ sin

(
kπ
n

+
π
2n

)
sin

(
jπ
n

)∣∣∣∣
=

1

cos
( π

2n

) ∣∣∣∣cos

(
(k− j)π

n
+

π
2n

)∣∣∣∣
so, the preceding fact tells us that |x′k(x j)| � 1. Moreover, for k ∈ {1,2, . . . ,2n} we
have x′k(xk) = 1 and x′k(xk+1) = 1 (with the identification x2n+1 = x1). Therefore,

ext(BX ′
n
) = {x′k : k = 1,2, . . . ,2n}. (2.1.23)

It follows from (2.1.22) and (2.1.23) that, for every T ∈ BL(X) we have

‖T‖n = max{|x′k(T (x j))| : j,k = 1,2, . . . ,2n}, (2.1.24)

and, by applying Corollary 2.1.35, that

vn(T ) = max{|x′k(T (x j))| : k = 1,2, . . . ,2n; j = k,k+1}. (2.1.25)

Now, consider the operator U ∈ BL(Xn) represented by the matrix

(
0 −1
1 0

)
. In order

to compute the norm ‖ · ‖n and the numerical radius vn(·) of U we need an explicit
formula for x′k(U(x j)). For j,k ∈ {1,2, . . . ,2n} we have

x′k(U(x j))

=
1

cos
( π

2n

)(− cos

(
kπ
n

+
π
2n

)
sin

(
jπ
n

)
+ sin

(
kπ
n

+
π
2n

)
cos

(
jπ
n

))
,

and hence, we deduce

x′k(U(x j)) =
1

cos
( π

2n

) sin

(
(k− j)π

n
+

π
2n

)
. (2.1.26)

As a consequence, for every k ∈ {1, . . . ,2n} we have

|x′k(U(xk))|= |x′k(U(xk+1))|= tan
( π

2n

)
,

and hence, by (2.1.25), we get vn(U) = tan
( π

2n

)
. On the other hand, using the equal-

ity (2.1.26) and Fact 2.1.36, we have

|x′k(U(x j))|=
1

cos
( π

2n

) ∣∣∣∣sin

(
(k− j)π

n
+

π
2n

)∣∣∣∣� 1 j,k ∈ {1, . . . ,2n},

and the equality holds for k = n
2 and j = 2n, so that, by (2.1.24), we have ‖U‖n=1.

Now that we know vn(U) and ‖U‖n, the inequality N(Xn) � tan
( π

2n

)
becomes

obvious.

Given an arbitrary family {Xλ : λ ∈ Λ} of normed spaces over K, we denote by
⊕�1

λ∈ΛXλ , the �1-sum of the family. In the case that the family has just two elements
(say X ,Y ), we use the simpler notation X ⊕1 Y .



110 Beginning the proof of the non-associative Vidav–Palmer theorem

Lemma 2.1.38 Let {Xλ : λ ∈ Λ} be a family of normed spaces over K, and let Z
stand for ⊕�1

λ∈ΛXλ . Then we have

N(Z) = inf
λ

N(Xλ ).

Moreover, if N(Xλ )> 0 for every λ ∈ Λ, then IZ is a vertex of the closed unit ball of
BL(Z).

Proof For any normed spaces X and Y , let E stand for X ⊕1 Y . We first check that
N(E) � N(X) by showing that N(E) � v(S) for any S ∈ BL(X) with ‖S‖ = 1. For
such an operator S, let T ∈ BL(E) be given by T (x,y) = (S(x),0). Then ‖T‖ = 1
and hence N(E) � v(T ) , so that, by Corollary 2.1.33, for every ε > 0 we may find
z = (x,y) ∈ SE and z′ = (x′,y′) ∈ SE ′ such that

x′(x)+ y′(y) = ‖x′‖‖x‖+‖y′‖‖y‖= 1 (2.1.27)

and

N(E)− ε �
∣∣z′ (T (z))∣∣= |x′(S(x))| �

∣∣∣∣ x′

‖x′‖

(
S

(
x

‖x‖

))∣∣∣∣
(we may assume that N(E) > 0) implying that N(E)− ε � v(S), and therefore
N(E) � v(S), because x′(x) = ‖x′‖‖x‖ by (2.1.27).

For fixed λ0 ∈ Λ we clearly have

Z =
[
⊕�1

λ 	=λ0
Xλ

]
⊕1 Xλ0

,

so, by the above paragraph, we get N(Z) � N(Xλ0
) and it follows that

N(Z) � inf
λ

N(Xλ ).

Now, let us prove the reverse inequality. Let T be in BL(Z). Then T can be seen as
a family (Tλ )λ∈Λ where Tλ ∈ BL(Xλ ,Z) for every λ ∈ Λ, and ‖T‖= supλ ‖Tλ‖. Let
ε>0. Then we can find λ0∈Λ such that ‖Tλ0

‖>‖T‖−ε , and we write Z = Xλ0
⊕1 Y ,

where Y :=⊕�1
λ 	=λ0

Xλ , and Tλ0
= (A,B) where A ∈ BL(Xλ0

) and B ∈ BL(Xλ0
,Y ). Now

we choose x0 ∈ SXλ0
such that

‖Tλ0
(x0)‖= ‖A(x0)‖+‖B(x0)‖> ‖T‖− ε,

find a0 ∈ SXλ0
, y′ ∈ SY ′ satisfying

‖A(x0)‖a0 = A(x0) and y′(B(x0)) = ‖B(x0)‖,

and define an operator S ∈ BL(Xλ0
) by S(x) = A(x)+ y′(B(x))a0 for every x ∈ Xλ0

.
Then

‖S‖ � ‖S(x0)‖=
∥∥∥A(x0)+‖B(x0)‖a0

∥∥∥= ‖A(x0)‖+‖B(x0)‖> ‖T‖− ε,

so we may find x ∈ Xλ0
, x′ ∈ X ′

λ0
such that

‖x‖= ‖x′‖= x′(x) = 1 and |x′(S(x))| � N(Xλ0
)[‖T‖− ε].
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For z = (x,0) ∈ SZ and z′ = (x′,x′(a0)y′) ∈ SZ′ we clearly have z′(z) = 1 and

|z′(T (z))|= |x′(A(x))+ x′(a0)y
′(B(x))|

= |x′(S(x))|

� N(Xλ0
)[‖T‖− ε]. (2.1.28)

The desired inequality N(Z) � infλ N(Xλ ) follows. Moreover, if T 	= 0, and if
N(Xλ )> 0 for every λ ∈ Λ, then the inequality (2.1.28) shows that v(T )> 0. Since
T is arbitrary in BL(Z), it follows that IZ is a vertex of the closed unit ball of
BL(Z).

Proposition 2.1.39 There exists a real Banach space Z such that IZ is a vertex of
the closed unit ball of BL(Z), but is not a geometrically unitary element of BL(Z).

Proof By Corollary 2.1.29 and Lemma 2.1.37, for each n ∈ 2N, we can find a two-
dimensional real normed space Xn with N(Xn) > 0, in such a way that the sequence
N(Xn) converges to zero. Now, set Z := ⊕�1

n∈2NXn. It follows from Lemma 2.1.38
that IZ is a vertex of the closed unit ball of BL(Z) and that N(Z) = 0. But, by
Theorem 2.1.17(i), the equality N(Z) = 0 is equivalent to the fact that IZ is not a
geometrically unitary element of BL(Z).

Let X be a normed space, and let u be in X . The element u ∈ X is said to be a
strongly extreme point of BX if ‖u‖= 1 and, whenever xn and yn are sequences in BX

with lim
n→∞

1
2 (xn + yn) = u, we have lim

n→∞
(xn − yn) = 0. Clearly, strongly extreme points

of BX are extreme points of BX . Assume that ‖u‖ = 1. We define the modulus of
midpoint local convexity of X at u as the function δX (u, ·) : R+ → R given by

δX (u,ε) := inf
{

max
±

‖u± x‖−1 : x ∈ εSX

}
.

It is clear that, if Y is a subspace of X containing u, then we have

δX(u, ·) � δY (u, ·). (2.1.29)

Lemma 2.1.40 Let X be a normed space, and let u be a norm-one element of X.
Then u is a strongly extreme point of BX if and only if δX (u,ε)> 0 for every ε ∈R+.

Proof If for some ε ∈ R+ we have δX (u,ε) = 0, then for each n ∈ N there exists
zn ∈ εSX such that ‖u± zn‖−1 � 1

n . For each n ∈ N, define

xn :=

(
1+

1
n

)−1

(u+ zn) and yn :=

(
1+

1
n

)−1

(u− zn).

It is clear that xn,yn ∈ BX and that 1
2 (xn + yn) = (1 + 1

n )
−1u converges to u, but

xn − yn = 2(1+ 1
n )

−1zn does not converge to 0. Thus u is not a strongly extreme
point of BX .

Conversely, assume that u is not a strongly extreme point of BX , so that there are
sequences xn and yn in BX satisfying

lim
n→∞

1
2
(xn + yn) = u and lim

n→∞
(xn − yn) 	= 0.
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By passing to subsequences if necessary, we may assume that ‖xn−yn‖> 0 for every
n ∈ N and lim

n→∞
‖xn − yn‖= ε > 0. Note that, for each n ∈ N, we have∥∥∥∥u± ε

2
xn − yn

‖xn − yn‖

∥∥∥∥
=

∥∥∥∥u− 1
2
(xn + yn)+

1
2
(xn + yn)±

ε
2

xn − yn

‖xn − yn‖

∥∥∥∥
�
∥∥∥∥u− 1

2
(xn + yn)

∥∥∥∥+∥∥∥∥1
2

(
1± ε

‖xn − yn‖

)
xn +

1
2

(
1∓ ε

‖xn − yn‖

)
yn

∥∥∥∥
�
∥∥∥∥u− 1

2
(xn + yn)

∥∥∥∥+ 1
2

∣∣∣∣1± ε
‖xn − yn‖

∣∣∣∣+ 1
2

∣∣∣∣1∓ ε
‖xn − yn‖

∣∣∣∣
=

∥∥∥∥u− 1
2
(xn + yn)

∥∥∥∥+ 1
2

∣∣∣∣1+ ε
‖xn − yn‖

∣∣∣∣+ 1
2

∣∣∣∣1− ε
‖xn − yn‖

∣∣∣∣ ,
and hence

lim
n→∞

max
±

∥∥∥∥u± ε
2

xn − yn

‖xn − yn‖

∥∥∥∥−1 = 0.

As a result, δX(u, ε2 ) = 0.

Proposition 2.1.41 Let X be a normed space over K, and let u be a norm-one
element of X. Then we have

δX (u,ε) �
√

1+n(X ,u)2ε2 −1. (2.1.30)

As a consequence, if u is a geometrically unitary element of X, then u is a strongly
extreme point of BX .

Proof Let ε > 0, let x be in εSX , and let f be in D(X ,u). Then we have

max
±

‖u± x‖2 � max
±

| f (u± x)|2 � 1
2
(| f (u+ x)|2 + | f (u− x)|2) = 1+ | f (x)|2.

Taking supremum over f ∈ D(X ,u), we get

max± ‖u± x‖2 � 1+ |v(X ,u,x)|2 � 1+n(X ,u)2ε2,

so
max±‖u± x‖−1 �

√
1+n(X ,u)2ε2 −1,

and (2.1.30) follows by taking infimum in x∈ εSX . The consequence in the statement
of the proposition follows from (2.1.30) by keeping in mind Theorem 2.1.17(i) and
Lemma 2.1.40.

Corollary 2.1.42 Let A be a norm-unital normed algebra over K. Then the unit of
A is a strongly extreme point of BA. More precisely, we have

δA(1,ε) �
√

1+ e−2ε2 −1. (2.1.31)

Proof If K = C, then the result follows from Corollary 2.1.19 and Propos-
itions 2.1.11 and 2.1.41. In the case K = R, the result follows from the complex
case, keeping in mind that: (i) both the notion of strongly extreme point and the
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definition of modulus of midpoint local convexity involve only real scalars; (ii) AC is
a norm-unital normed algebra (by Proposition 1.1.98); and (iii) δA(1,ε) � δAC(1,ε)
(by (2.1.29)).

The next example shows that, in general, a vertex of the closed unit ball of a
Banach space X need not be a strongly extreme point of BX .

Example 2.1.43 Let X be the space of all sequences in K converging to zero, with
norm defined by

‖(an)n∈N‖ := sup

{
1
n
(|a1|+ |an|)+

(
1− 1

n

)
max{|a1|, |an|} : n = 2,3, . . .

}
.

Notice that

1
2

sup{|an| : n = 2,3, . . .} � ‖(an)n∈N‖ � |a1|+2sup{|an| : n = 2,3, . . .} ,

so X is isomorphic to c0 and X ′ is isomorphic to �1. Let {en} be the standard Schauder
basis of X and {e′n} the standard Schauder basis of X ′; that is, e′m((an)

∞
n=1) = am. It

is easy to check that the following functionals are in D(X ,e1):

e′1,e
′
1 +

1
2

e′2, . . . ,e
′
1 +

1
n

e′n, . . .

and the linear hull of these functionals is w∗-dense in X ′, so e1 is a vertex. The point
e1 is however not strongly extreme. Indeed, since

‖e1 ± en‖=
2
n
+

(
1− 1

n

)
−→ 1 while ‖en‖= 1,

it is enough to take xn := e1+en
‖e1+en‖ and yn := e1−en

‖e1−en‖ to realize that

lim
n→∞

1
2
(xn + yn) = e1 but lim

n→∞
‖xn − yn‖= 1.

Now, we are going to summarize and clarify several results in the current section
by discussing the diagram in §2.1.44 immediately below.

§2.1.44 Let X be a nonzero normed space over K, and let u be in X . Then, keeping
in mind Lemma 2.1.25 and Proposition 2.1.41, the implications in the following
diagram hold.

u geometrically unitary =⇒ u vertex of BX

⇓ ⇓

u strongly extreme point of BX =⇒ u extreme point of BX

If X is a norm-unital normed complex algebra, and if u is the unit of X , then, by
Corollary 2.1.19, the strongest condition in the diagram is automatically true. On the
other hand, by Proposition 2.1.39 and Corollary 2.1.42, there exists a norm-unital
normed (necessarily real) algebra X whose unit u is both a vertex and a strongly
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extreme point of BX , but not a geometrically unitary element of X . Thus the hori-
zontal implication in the top row and the vertical implication in the left column of
the above diagram are simultaneously non-reversible, even in the setting of norm-
unital normed real algebras.

According to Corollary 2.1.42 and Example 2.1.43, there is a choice of (X ,u)
(necessarily outside the setting of norm-unital normed algebras) such that u is a
vertex of BX but not a strongly extreme point of BX . As a consequence, the horizontal
implication in the bottom row is not reversible.

To conclude the discussion of the above diagram, note that, by taking X = CR,
and u = 1, we are provided with an example where u is a strongly extreme point of
BX but not a vertex of BX . As a consequence, the vertical implication in the right
column is not reversible, even in the setting of (necessarily real) norm-unital normed
algebras.

2.1.3 Historical notes and comments

This section, as well as a great part of the present work, is tributary to the codi-
fication of the theory of numerical ranges done in the Bonsall and Duncan books
[694, 695, 696]. Most results from Proposition 2.1.1 to Corollary 2.1.13, including
their proofs, are taken almost verbatim from those books. The material just quoted
is originally due to Bohnenblust and Karlin [108], who seem to have been the first
authors to consider algebra numerical ranges. Proposition 2.1.5 is folklore. It follows,
for example, from [726, Theorem V.9.5].

Let X be a complex Banach space. As a consequence of Corollary 2.1.13, IX is a
vertex of the closed unit ball of BL(X). Actually, IX remains a vertex of the closed
unit ball of a much larger Banach space. More precisely, by passing to restrictions
to BX , the space BL(X) can be identified with a closed subspace of the sup-normed
Banach space A0(X) of all bounded continuous functions from BX to X which are
holomorphic in the open unit ball of X and vanish at zero, and it follows straight-
forwardly from Proposition 2 in Harris’ paper [312] that IX becomes a vertex of
BA0(X). In fact, minor changes to the proof of [312, Proposition 2] allow us to realize
that IX is a vertex of BA(X), where A(X) stands for the Banach space of all bounded
continuous functions from BX to X which are holomorphic in the open unit ball of
X . A sketch of the proof could be the following:

Let F be in A(X) such that V (A(X), IX ,F) = 0. We must show that F = 0.
To this end, we take a norm-one element x ∈ X and � ∈ D(X ,x), and consider
the function f : SC → C defined by f (λ ) := λ−1�(F(λx)). Since, for λ ∈ SC,
the mapping G → λ−1�(G(λx)) from A(X) to C is an element of D(A(X), IX ),
we have f (λ ) = 0 (and hence �(F(λx)) = 0) for every λ ∈ SC. By the Cauchy
formula for the circumference, we have in fact �(F(λx)) = 0 for every λ ∈ BC.
With the notation in [312, pp. 1006–7], the above implies that

W (Fs) := {�(Fs(x)) : ‖x‖= 1, � ∈ D(X ,x)}= 0 for every s ∈]0,1[.

Finally, by [312, Theorem 1], we have F = 0, as required.
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Lemma 2.1.15 is taken from the Bandyopadhyay–Jarosz–Rao paper [56].
Theorem 2.1.17 is due to Martı́nez, Mena, Payá, and Rodrı́guez [425], and was
partially rediscovered in [56]. Theorem 2.1.17 is derived in [425] from the following
result, also proved there.

Theorem 2.1.45 Let (X ,u) be a numerical-range space over K, let C be a
convex closed subset of K with non-empty interior, and let x′′ be in X ′′ with
{x′′( f ) : f ∈ D(X ,u)} ⊆ C (which happens for example if x′′ is in X ′′ with
V (X ′′,u,x′′) ⊆ C). Then there exists a net xλ in X such that V (X ,u,xλ ) ⊆ C for
every λ , and x′′ = w∗− limλ xλ .

This generalizes a similar result previously proved by Smith [592] for norm-unital
complete normed associative complex algebras. Theorem 2.1.17 is nothing other
than an abstract version of Corollary 2.1.19, proved previously and independently
by Moore [446] and Sinclair [579], and shows that the Moore–Sinclair theorem and
Proposition 2.1.11 are ‘equivalent’.

Example 2.1.18 has been pointed out to us by M. Martı́n (recent private com-
munication). Corollaries 2.1.21–2.1.24 are taken from [56]. Lemma 2.1.23 is taken
from [332].

Lemma 2.1.26 is due to Kadison [358]. Theorem 2.1.27 is originally due to
Bohnenblust and Karlin [108] (1955). At that time, neither Theorem 2.1.17 nor even
its Corollary 2.1.21 (a straightforward consequence of the earlier Moore–Sinclair
Corollary 2.1.19) were known. However, the particularization of Corollary 2.1.21 to
unital C∗-algebras (applied in our proof) was always C∗-folklore. Although included
in Palmer’s book [787] (2001), Theorem 2.1.27 remained forgotten by many people
until its rediscovery by Akemann and Weaver [5] (2002). However, the Akemann–
Weaver paper actually contains new relevant results along the lines of characterizing
in Banach space terms the elements in certain distinguished subsets of C∗-algebras.
As a sample, we have the following.

Theorem 2.1.46 A norm-one element u of a C∗-algebra A is a partial isometry (i.e.
uu∗u = u) if and only if the sets

{x ∈ A : there exists α > 0 with ‖u+αx‖= ‖u−αx‖= 1}

and

{x ∈ A : ‖u+βx‖= max{1,‖βx‖} for all β ∈ C}

coincide.

The Akemann–Weaver paper [5] has had the additional merit of encouraging
the study of geometrically unitary elements in normed spaces, started earlier in
[425], giving rise to a large series of papers, such as [56], already quoted, and [293]
and [399], which will be discussed later in some detail (see Sections 2.9 and 3.1,
respectively).

§2.1.47 It was an open problem for many years whether the inequality (2.1.18)
(that N(X) � N(X ′) for every nonzero normed space X) is in fact an equality. An
affirmative answer was even claimed without proof in [216] (1987). As a matter of
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fact, Boyko, Kadets, Martı́n, and Werner [122] (2007) found an example of a nonzero
Banach space X with N(X)> N(X ′). Namely, the Banach space

X = {(x,y,z) ∈ c⊕∞ c⊕∞ c : limx+ limy+ limz = 0}

satisfies that N(X) = 1 and N(X ′) < 1 in both the real and the complex case. Actu-
ally, essentially with the same techniques, it is shown in [122] that there are examples
of a real Banach space Y , and of a complex Banach space Z, both isomorphic to c0,
such that

N(Y ) = 1, N(Y ′) = 0, and N(Z) = 1, N(Z′) =
1
e
.

Keeping in mind Theorem 2.1.17(i), the real Banach space Y above satisfies that IY
is a geometrically unitary element of BL(Y ), but IY ′ is not a geometrically unitary
element of BL(Y ′). (As a consequence, the converse of Corollary 2.1.24 does not
hold.) In fact, there is a real Banach space X such that IX is a geometrically unitary
element of BL(X) (with N(X) = 1), whereas IX ′ is not even a vertex of BBL(X ′). This
follows from Theorem 3.3 in Martı́n’s paper [417] by taking E equal to the two-
dimensional Euclidean real space, and X equal to the space X(E) in that theorem.

Corollary 2.1.29 is nothing other than the particularization to the case n = 2
of the following theorem of Rosenthal [542]. For any real normed space X , set
Z(X) := {T ∈ BL(X) : V (T ) = 0}.

Theorem 2.1.48 A real normed space X of dimension n ∈ N is a Hilbert space
provided dim(Z(X))> (n−1)(n−2)

2 , in which case dim(Z(X)) = n(n−1)
2 .

A rediscovery of Rosenthal’s theorem, and related results, can be found in [420].
Corollary 2.1.29 can be also derived from [731, Proposition 9.4.5] (a result also
due to Rosenthal [543]). The proof given here, based on the rather technical
Lemma 2.1.28, could be new.

The spacial numerical range of a bounded linear operator on a normed space was
introduced by Bauer [61], extending Toeplitz’ numerical range of matrices [613],
and, concerning most applications, it is equivalent to Lumer’s numerical range [407].
This is so because of Proposition 2.1.31, essentially proved in [407]. The actual
formulation of Proposition 2.1.31, as well as Corollaries 2.1.33 and 2.1.34 and their
proofs, are taken from [694, Section 9].

§2.1.49 Let X be a normed space over K, and let Y be a (possibly non-closed)
subspace of X . We write Π(Y,X) to denote the subset of SY ×SX ′ given by

Π(Y,X) := {(y,x′) ∈ SY ×SX ′ : x′ ∈ D(X ,y)},

so that, in the case Y = X , we have Π(X ,X) =Π(X) in the sense of §2.1.30. Given a
function f : SY → X , we define the spatial numerical range, W ( f ), of f by

W ( f ) := {x′( f (y)) : (y,x′) ∈Π(Y,X)}.

This notion applies in particular to (possibly unbounded) linear operators T from Y to
X by simply considering the restriction of T to SY , and consequently setting W (T ) :=
W (T|SY

). Applying this convention in the case that Y = X and the linear operator T is
bounded, we re-encounter the particular notion introduced in §2.1.32. From now on,
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assume that X is a Banach space. In the case that Y is dense in X , spatial numerical
ranges of (possibly unbounded) linear operators from Y to X have been successfully
considered by Lumer and Phillips [409] and Arendt, Chernoff, and Kato [27]. The
case that Y is a closed proper subspace of X and that the linear operator T : Y → X
is bounded has been considered by Harris [315], and more recently by Martı́n, Merı́,
and Payá [419], in order to discuss whether Corollary 2.1.33 remains true in this more
general context. Denote by IX

Y the inclusion mapping Y ↪→ X . It is proved in [315]
that the equality

co(W (T )) =V (BL(Y,X), IX
Y ,T ) (2.1.32)

holds for every T ∈ BL(X ,Y ) if either Y is finite-dimensional or X is uniformly
smooth. (For the notion of a uniformly smooth normed space, see Definition 2.9.45
below.) In turn, the authors of [419] prove that, fixing Y arbitrarily in the class of all
infinite-dimensional Banach spaces, there is a choice of X in such a way that there
exists T ∈ BL(Y,X) such that the equality (2.1.32) fails, and that, fixing X arbitrarily
in the class of all non-reflexive Banach spaces, up to equivalent renorming, there is
a choice of Y in such a way that there exists T ∈ BL(Y,X) such that the equality
(2.1.32) fails. Moreover, they introduce a sufficient condition on the couple (Y,X)

(weaker than the uniform smoothness of X or the finite dimensionality of Y ) assuring
that the equality (2.1.32) holds for every T ∈ BL(Y,X).

Now, let X be a Banach space. Denote by B(SX ,X) the Banach space of all
bounded functions from SX to X , endowed with the natural sup norm, and by IX , the
inclusion mapping SX ↪→ X . Then, for every f ∈ B(SX ,X), we clearly have

co(W ( f ))⊆V (B(SX ,X), IX , f ). (2.1.33)

In general, the above inclusion cannot be expected to be an equality. Indeed, as we
will prove in Theorem 2.9.56, the inclusion (2.1.33) becomes an equality for every
f ∈ B(SX ,X) if and only if X is uniformly smooth. The inclusion (2.1.33) is known
to be an equality when X is complex and f is (the restriction to SX of) a uniformly
continuous function from BX to X which is holomorphic on the interior of BX [312].
More generally, the inclusion (2.1.33) becomes an equality whenever f : SX → X is
any uniformly continuous bounded function [315]. In fact, as shown later in [534],
we are provided with the following generalization of Proposition 2.1.31.

Theorem 2.1.50 Let X be a Banach space, and let f be any uniformly continuous
bounded function f : SX → X. Then we have

V (B(SX ,X), IX , f ) = co{x′( f (x)) : (x,x′) ∈ Γ},

where Γ is any subset of Π(X) such that its natural projection π1(Γ) is dense in SX .

Corollary 2.1.35 can be derived from a result of Lima (see [400, Theorem 8]). The
proof given here is taken from Martı́n’s PhD thesis [774].

Fact 2.1.36 and Lemma 2.1.37 are due to Martı́n and Merı́ [418], who actually
prove the following.
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Theorem 2.1.51 Let n be a positive integer greater than or equal to 2. For k =

1,2, . . . ,2n, set

xk :=

(
cos

(
kπ
n

)
, sin

(
kπ
n

))
,

and let Xn stand for the two-dimensional real Banach space such that

ext(BXn) = {xk : k = 1,2, . . . ,2n}.

Then N(Xn) = tan
( π

2n

)
if n is even, and N(Xn) = sin

( π
2n

)
if n is odd.

Lemma 2.1.38 and Proposition 2.1.39 are due to Martı́n and Payá [421], who, con-
cerning Lemma 2.1.38, take some ideas from the proof of Wojtaszczyk’s Theorem 1
in [637]. The original proof of Proposition 2.1.39 does not invoke Corollary 2.1.29
and Lemma 2.1.37 (as we have done in our proof), but the real part of the following
theorem of Duncan, McGregor, Pryce, and White [217].

Theorem 2.1.52 For each t ∈ [0,1] in the real case (respectively, t ∈ [1/e,1] in the
complex case) there is a two-dimensional Banach space X with N(X) = t.

The notion of a strongly extreme point seems to have been introduced by
Lumer [407], who proved the non-quantitative complex version of Corollary 2.1.42.
Lumer’s result is included in [694, Theorem 4.5]. The non-quantitative real version
of Corollary 2.1.42, although straightforwardly deducible from the complex one
by passing to normed complexification, seems to appear first in the Harmand–
Rao paper [311]. The modulus of midpoint local convexity was introduced by
Milman [444]. Lemma 2.1.40 seems to be folklore. The quantitative version of
Corollary 2.1.42 is due to Kadets, Katkova, Martı́n, and Vishnyakova [357] in both
the real and complex cases. The non-quantitative version of Proposition 2.1.41, as
well as Example 2.1.43, is due to Bandyopadhyay, Jarosz, and Rao [56]. As far as
we know, the quantitative version of Proposition 2.1.41 does not appear formulated
anywhere, although it is nothing other than the core of the argument in [357] to
prove Corollary 2.1.42. For additional information about strongly extreme points, the
reader is referred to the papers of Kunen and Rosenthal [395] and McGuigan [438].

Let X be a normed space, and let u be in SX . The element u is said to be a strongly
exposed point of BX if there exists g ∈ SX ′ with the property that, whenever xn is a
sequence in BX such that g(xn)→ 1, we have xn → u. It is well known that, if u is a
strongly exposed point, then u is a denting point of BX , which means that there are
slices of BX of arbitrarily small diameter which contain u. On the other hand, if u is
a denting point of BX , then u is a strongly extreme point of BX [438, Theorem 2.4].
Now, recall that, by Corollary 2.1.42, the unit of any norm-unital normed algebra A
is a strongly extreme point of BA. Under renorming, a better result holds. Indeed, as
shown in the Moreno–Rodrı́guez paper [452], we have the following.

Theorem 2.1.53 Let A be a norm-unital normed algebra. Then there exists an
equivalent algebra norm ||| · ||| on A arbitrarily close to ‖ · ‖, satisfying |||1||| = 1,
and such that 1 becomes a strongly exposed point of B(A,|||·|||).

We note that, even if the norm-unital normed algebra A is associative, 1 need not
be a denting point (much less a strongly exposed point) of BA. Indeed, the Banach
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algebra of all bounded linear operators on any infinite-dimensional complex Hilbert
space has no denting point in its closed unit ball [301]. More generally, the closed
unit ball of a C∗-algebra A is dentable (i.e. there are slices of BA of arbitrarily small
diameter) if and only if A is finite-dimensional [67].

§2.1.54 By a unitary normed algebra we mean a norm-unital normed associative
algebra A such that BA equals the closed convex hull of the set of all algebraically
unitary elements of A (in the sense of §2.1.20). Unital C∗-algebras (see Lemma 2.3.28
below), as well as real or complex discrete group algebras �1(G) for every group G,
are relevant examples of unitary Banach algebras. According to the Becerra–Cowell–
Rodrı́guez–Wood paper [65], we have the following.

Theorem 2.1.55 Let A be a unitary Banach algebra over K such that BA is dent-
able, and let u be a norm-one element of A. Then the following conditions are
equivalent:

(i) u is an algebraically unitary element of A.
(ii) u is a denting point of BA.

(iii) BA equals the closed convex hull of the orbit of u under the group of all surject-
ive linear isometries on A.

We do not know if Theorem 2.1.27 remains true whenever ‘unital C∗-algebra’ is
replaced with ‘unitary complex Banach algebra’ and condition (i) is erased, nor even
if a Banach space characterization of algebraic unitaries in unitary complex Banach
algebras can be found.

Unitary Banach algebras were first considered in Cowie’s PhD thesis [713], but
most of her results were not published elsewhere. Indeed, in her paper [181] we only
find some incidental references to unitary Banach algebras. More recently, unitary
Banach algebras have been reconsidered by Hansen and Kadison [309] without no-
ticing Cowie’s forerunner. One of the main goals in both [713] and [309] is to obtain
characterizations of unital C∗-algebras among unitary Banach algebras by some extra
conditions (a question raised by Gorin [296]). An example along these lines is the
following proposition, proved in the works of both Cowie and Hansen–Kadison.

Proposition 2.1.56 Let A be a unitary closed subalgebra of a C∗-algebra B. Then
A is ∗-invariant, and hence it is a C∗-algebra.

Proof The unit 1 of A is a norm-one idempotent in B, and hence, by Corol-
lary 1.2.50, it is self-adjoint. Therefore, replacing B with the C∗-algebra 1B1 if
necessary, we may assume that B is unital with the same unit as that of A. Let u
be an algebraically unitary element of A. Then u remains algebraically unitary in B
with the same inverse, and hence, by the implication (ii)⇒(i) in Theorem 2.1.27,
we have u∗u = uu∗ = 1, which implies that u∗ = u−1 ∈ A. Since BA is the closed
convex hull of the set of all algebraically unitary elements of A, it follows that A is
∗-invariant.

For a survey of the more relevant results in [181, 309, 713] the reader is referred
to [639]. Incidentally, unitary normed algebras will be considered again in Corol-
lary 2.4.31, Remark 2.4.33, and Theorem 3.5.70. For further developments of the
theory, see [62, 63, 64, 65, 80].
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2.2 An application to Kadison’s isometry theorem

Introduction We prove in Theorem 2.2.9(i) a non-associative germ of the cele-
brated Kadison theorem [358] on surjective linear isometries between unital C∗-
algebras, and state in Theorem 2.2.19 the non-unital version of Kadison’s theorem,
due to Paterson and Sinclair [480]. Hermitian operators on C∗-algebras, as well as
on non-associative algebras close to them, are also described (see Theorem 2.2.9(ii)
and Proposition 2.2.26).

2.2.1 Non-associative results

We begin with the following easy but useful result.

Proposition 2.2.1 Let (X ,u) be a complex numerical-range space, and let T be a
dissipative element in the numerical-range space (BL(X), IX ) such that T (u) = 0.
Then

T (H(X ,u))⊆ H(X ,u).

Proof First assume that X is a Banach space. Let r > 0. Since T is dissipative in
(BL(X), IX), Corollary 2.1.9(i) applies, so that we have ‖exp(rT )‖� 1. On the other
hand, since T (u) = 0, we have exp(rT )(u) = u. It follows from Corollary 2.1.2 that
V (X ,u,exp(rT )(x)) ⊆ V (X ,u,x) for every x ∈ X . As a consequence, we derive that
exp(rT )(H(X ,u))⊆ H(X ,u). Keeping in mind that H(X ,u) is a closed real subspace
of X , and that

T (x) = lim
r→0+

1
r
[(exp(rT ))(x)− x]

for every x ∈ X , we obtain T (H(X ,u))⊆ H(X ,u), as required.
Now remove the assumption of completeness of X . Let X̂ stand for the completion

of X . Then, by Corollary 2.1.2, we have V (X ,u,x) = V (X̂ ,u,x) for every x ∈ X ,
and hence H(X ,u) = X ∩H(X̂ ,u). On the other hand, if for F ∈ BL(X) we consider
the unique operator F̂ ∈ BL(X̂) extending F , then the mapping F → F̂ becomes a
linear isometry from BL(X) to BL(X̂) preserving distinguished elements. Therefore,
again by Corollary 2.1.2, we have V (BL(X), IX ,F) =V (BL(X̂), IX̂ ,F) for every F ∈
BL(X). As a consequence, since T is dissipative in BL(X), so is T̂ in BL(X̂), and
moreover, since T (u) = 0, T̂ (u) = 0 also. The proof is now concluded by applying
the above paragraph with (X̂ , T̂ ) instead of (X ,T ).

Corollary 2.2.2 Let (X ,u) be a complex numerical-range space, and let T be in
H(BL(X), IX ) such that T (u) = 0. Then iT (H(X ,u))⊆ H(X ,u).

Proof The assumption that T is hermitian implies that iT is dissipative. Now, apply
Proposition 2.2.1.

Lemma 2.2.3 Let A be a norm-unital normed complex algebra, and let h,k be in
H(A,1). We have:

(i) If B is any norm-unital normed complex algebra, and if F : A → B is a surjective
linear isometry such that F(1) = 1, then

i(F(hk)−F(h)F(k)) ∈ H(B,1).
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(ii) If T belongs to H(BL(A), IA) with T (1) = 0, then

−T (hk)+T (h)k+hT (k) ∈ H(A,1).

Proof Let B and F be as in assertion (i). Keeping in mind Corollary 2.1.2 and
Lemma 2.1.10, we have

F(h) ∈ H(B,1), Lh ∈ H(BL(A), IA), and LF(h) ∈ H(BL(B), IB).

Moreover, since the mapping G → F−1GF from BL(B) to BL(A) is a linear isometry
preserving distinguished elements, we also have

F−1LF(h)F ∈ H(BL(A), IA).

Therefore S := Lh − F−1LF(h)F ∈ H(BL(A), IA). Since S(1) = 0, Corollary 2.2.2
applies, so that we have

i(hk−F−1(F(h)F(k)) = iS(k) ∈ H(A,1).

Finally, again by Corollary 2.1.2, we get i(F(hk)−F(h)F(k))∈H(B,1), as required.
To prove assertion (ii), as in the proof of Proposition 2.2.1, we may assume that

A is complete. Let T be as in assertion (ii). Let r be in R \ {0}. Then, by Corol-
lary 2.1.9(iii), exp(irT ) is a unit-preserving surjective linear isometry on A. There-
fore, by assertion (i), we have

i [exp(irT )(hk)− exp(irT )(h)exp(irT )(k)] ∈ H(A,1),

and hence

−T (hk)+T (h)k+hT (k) = i lim
r→0

exp(irT )(hk)− exp(irT )(h)exp(irT )(k)
r

lies in H(A,1).

§2.2.4 Given an element a in an algebra A, we denote by Ua the mapping

b → a(ab+ba)−a2b

from A to A. Thus Ua = La(La +Ra)−La2 .

Lemma 2.2.5 Let A be a normed unital complex algebra, and let ∗ be a conjugate-
linear vector space involution on A such that 1∗ = 1. Assume that at least one of the
following conditions holds:

(i) ‖a∗a‖= ‖a‖2 for every a ∈ A,

(ii) ‖Ua(a∗)‖= ‖a‖3 for every a ∈ A.

Then we have ‖1‖= 1 and H(A,∗) = H(A,1). Therefore

A = H(A,1)⊕ iH(A,1).

Proof That ‖1‖ = 1 is straightforward. Assume that (i) holds. Let h and r be in
H(A,∗) and R\{0}, respectively. Then we have

‖1+ irh‖2 = ‖(1− irh)(1+ irh)‖= ‖1+ r2h2‖,
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and hence

‖1+ irh‖2 −1
r

= r
‖1+ r2h2‖−1

r2 .

Therefore, by Proposition 2.1.5, we get maxℜ(V (A,1, ih)) = 0. Applying this last
equality with −h instead of h, we conclude that ℜ(V (A,1, ih)) = 0, that is h∈H(A,1).
By the arbitrariness of h∈H(A,∗), we derive that H(A,∗)⊆H(A,1). In order to prove
the converse inclusion, assume that h ∈ H(A,1), and write h = h1 + ih2 with h1,h2 ∈
H(A,∗). Then, h−h1 = ih2 ∈ H(A,1)∩ iH(A,1), and therefore, by Corollary 2.1.13,
we have h = h1 ∈ H(A,∗).

Assume that (ii) holds. Let h and r be in H(A,∗) and R \ {0}, respectively. Then
we have

‖1+ irh‖3 = ‖U1+irh(1− irh)‖= ‖1+ irh+ r2h2 + ir3(2hh2 −h2h)‖,

and hence

‖1+ irh‖3 −1
r

=
‖1+ irh+ r2h2 + ir3(2hh2 −h2h)‖−1

r
.

Therefore, by Corollary 2.1.6, we get

3maxℜ(V (A,1, ih)) = maxℜ(V (A,1, ih)),

whence maxℜ(V (A,1, ih)) = 0. The rest of the proof runs as above.

Remark 2.2.6 Let A be a normed unital complex algebra, and let ∗ be a conjugate-
linear vector space involution on A such that 1∗ = 1. We will see much later (cf.
Corollary 3.2.7) that condition (i) in Lemma 2.2.5 implies condition (ii) in the same
lemma. Indeed, as we will prove in Theorem 3.2.5, condition (i) implies that A is
‘very nearly’ associative, and that ∗ is an algebra involution on A. By the way,
according to Corollary 2.4.12 below, condition (ii) implies that A is ‘nearly’ asso-
ciative, and that ∗ is an algebra involution on A.

Let A be an algebra over K. We denote by Asym the algebra consisting of the vector
space of A and the product a•b := 1

2(ab+ba), and remark that, if A is normed, then
so is Asym under the given norm on A. By a derivation of A we mean a linear operator
D on A satisfying D(ab) = aD(b)+D(a)b for all a,b ∈ A. By a Jordan derivation of
A we mean a derivation of Asym. We note that Jordan derivations of A are precisely
those linear mappings D : A → A such that D(a2) = 2a•D(a) for every a ∈ A. Now,
let A and B be algebras over K. By a Jordan homomorphism from A to B we mean
an algebra homomorphism from Asym to Bsym. We note that Jordan homomorphisms
from A to B are precisely those linear mappings F : A → B such that F(a2) = F(a)2

for every a ∈ A.

Definition 2.2.7 By a nice algebra we mean a normed unital complex algebra
endowed with a conjugate-linear vector space involution ∗ satisfying

(a2)∗ = (a∗)2 for every a ∈ A (2.2.1)
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and some of the following conditions:

(i) ‖a∗a‖= ‖a‖2 for every a ∈ A,
(ii) ‖Ua(a∗)‖= ‖a‖3 for every a ∈ A.

According to Remark 2.2.6, the requirement (2.2.1) in the definition of a nice algebra
is superfluous, but this is a deep fact which does not matter for the moment.

Lemma 2.2.8 Let A be a nice algebra. Then we have:

(i) (x• y)∗ = x∗ • y∗ for all x,y ∈ A.
(ii) 1∗ = 1.

(iii) A is norm-unital and H(A,∗) = H(A,1).
(iv) If h,k are in H(A,1), then h• k lies in H(A,1).

Proof Assertion (i) is a straightforward consequence of the requirement (a2)∗ =
(a∗)2 for every a ∈ A. Since the unit 1 of A becomes a unit for Asym, it follows
from assertion (i) that 1∗=1, which proves assertion (ii). Therefore, by the remaining
requirements on nice algebras, and Lemma 2.2.5, we have ‖1‖= 1 and H(A,∗) =
H(A,1), which proves (iii). Finally, (iv) follows from (i) and (iii).

The above lemma must be kept in mind throughout the proof of Theorem 2.2.9
immediately below, and will not be explicitly invoked in that proof.

Theorem 2.2.9 Let A be a nice algebra. We have:

(i) If B is a nice algebra, and if F : A → B is a unit-preserving surjective linear
isometry, then F is a Jordan-∗-homomorphism.

(ii) If T is in H(BL(A), IA), then there are h ∈ H(A,∗) and a continuous Jordan
derivation D of A such that T =Lh +D and D(a∗)=−D(a)∗ for every a ∈ A.

Proof Let B be a nice algebra, and let F : A → B be a unit-preserving surjective
linear isometry. By Corollary 2.1.2, we have F(H(A,1)) ⊆ H(B,1), and hence F is
∗-mapping. Let h,k be in H(A,∗). Again by Corollary 2.1.2, we have

F(h• k)−F(h)•F(k) ∈ H(B,1).

On the other hand, keeping in mind that

H(A,1) = H(Asym,1) and H(B,1) = H(Bsym,1),

Lemma 2.2.3(i) applies, so that we have

i(F(h• k)−F(h)•F(k)) ∈ H(B,1).

It follows from Corollary 2.1.13 that

F(h• k)−F(h)•F(k) = 0.

Since h,k are arbitrary elements of H(A,∗), and A = H(A,∗)+ iH(A,∗), the proof of
assertion (i) is concluded.

Now, let T be in H(BL(A), IA). Since the mapping G → G(1) from BL(A) to A is a
linear contraction preserving distinguished elements, Corollary 2.1.2 applies, so that
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h := T (1) lies in H(A,1). Set D := T −Lh. Then D(1) = 0 and, by Lemma 2.1.10, D
belongs to H(BL(A), IA). By Proposition 2.2.1, we have

iD(k) ∈ H(A,∗) for every k ∈ H(A,∗),

which implies that iD is a ∗-mapping (equivalently, D(a∗)=−D(a)∗ for every a∈A).
As a consequence, for k1,k2 ∈ H(A,∗), we see that

i(−D(k1 • k2)+D(k1)• k2 + k1 •D(k2)) ∈ H(A,1),

and on the other hand, by Lemma 2.2.3(ii), we have

−D(k1 • k2)+D(k1)• k2 + k1 •D(k2) ∈ H(A,1).

It follows from Corollary 2.1.13 that

−D(k1 • k2)+D(k1)• k2 + k1 •D(k2) = 0.

Since k1,k2 are arbitrary elements of H(A,∗), and A = H(A,∗)+ iH(A,∗), the proof
of assertion (ii) is concluded.

2.2.2 The Kadison–Paterson–Sinclair theorem

Now, we are going to apply Theorem 2.2.9 to derive the Paterson–Sinclair results
concerning isometries and hermitian operators on C∗-algebras.

Lemma 2.2.10 Let A be a C∗-algebra, let a be in A, and let Ta stand for the bounded
linear operator on A defined by Ta(b) := 1

2 (aa∗b+ba∗a). Then we have r(Ta)= ‖a‖2.

Proof For n ∈ N, we have T n
a (a) = a(a∗a)n, so

‖T n
a ‖2‖a‖2 � ‖T n

a (a)‖2 = ‖a(a∗a)n‖2 = ‖(a∗a)na∗a(a∗a)n‖

= ‖(a∗a)2n+1‖= ‖a‖2(2n+1),

and so ‖T n
a ‖� ‖a‖2n. Therefore we have r(Ta)� ‖a‖2. On the other hand, we clearly

have r(Ta) � ‖Ta‖ � ‖a‖2.

§2.2.11 Let X ,Y,Z be normed spaces over K, and let m : X ×Y → Z be a bounded
bilinear mapping. The adjoint operation m′ : Z′ ×X → Y ′ is defined, for (z′,x) ∈
Z′ ×X , by

m′(z′,x)(y) := z′(m(x,y)) for every y ∈ Y . (2.2.2)

It is straightforward that m′ just defined becomes a bounded bilinear mapping with
‖m′‖ = ‖m‖. The construction of m′ from m can be iterated to get bounded bilinear
mappings

m′′ : Y ′′ ×Z′ → X ′ and mt := m′′′ : X ′′ ×Y ′′ → Z′′

satisfying ‖m′′‖= ‖mt‖= ‖m‖. It is easily realized that mt extends m.
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Indeed, given (x,y,z′) ∈ X ×Y × Z′, and regarding x,y,m(x,y) as elements of
X ′′,Y ′′,Z′′, respectively, we have

m′′′(x,y)(z′) = x(m′′(y,z′)) = m′′(y,z′)(x) = y(m′(z′,x))

= m′(z′,x)(y) = z′(m(x,y)) = m(x,y)(z′),

and hence m′′′(x,y) = m(x,y).

The extension mt of m is called the (first) Arens extension of m. In the case that m
is the product of a given normed algebra A, the product mt on A′′ will be called the
(first) Arens product of A′′, A′′ will be considered without notice as a normed algebra
(relative to its Arens product) containing A as a subalgebra, and the product of A′′

will be denoted by juxtaposition.

Lemma 2.2.12 Let X ,Y,Z be normed spaces over K, and let m : X ×Y → Z be a
bounded bilinear mapping. We have:

(i) The adjoint m′ : Z′ ×X → Y ′ is w∗-continuous in its first variable.
(ii) The second adjoint m′′ : Y ′′ ×Z′ → X ′ is w∗-continuous in its second variable

whenever the first one is fixed in Y .
(iii) The Arens extension mt is the unique mapping from X ′′ ×Y ′′ to Z′′ satisfying the

following properties:

(a) mt extends m.
(b) mt is w∗-continuous in its first variable.
(c) mt is w∗-continuous in its second variable whenever the first one is fixed

in X.

Proof Let x be in X . By the definition (2.2.2) of m′, the composition of the mapping
m′(·,x) : Z′ → Y ′ with any w∗-continuous linear functional on Y ′ is a w∗-continuous
linear functional on Z′. This proves assertion (i).

According again to the definitions, for (x,y,z′) ∈ X ×Y ×Z′ we have

m′′(y,z′)(x) = y(m′(z′,x)) = m′(z′,x)(y) = z′(m(x,y)),

and hence the composition of the mapping m′′(y, ·) : Z′ → X ′ with any w∗-continuous
linear functional on X ′ is a w∗-continuous linear functional on Z′. This proves
assertion (ii).

Property (iii)(a) is already known. Property (iii)(b) follows by applying
assertion (i), with m′′ instead of m, whereas property (iii)(c) follows by applying
assertion (ii), with m′ instead of m. Now that we know that properties (iii)(a–c) are
fulfilled, let g be any mapping from X ′′ ×Y ′′ to Z′′ satisfying these properties with g
instead of mt . Then, for x ∈ X , the set

{y′′ ∈ Y ′′ : g(x,y′′) = mt(x,y′′)}

is w∗-closed in Y ′′ and contains Y . Since Y is w∗-dense in Y ′′, we deduce

g(x,y′′) = mt(x,y′′) for every (x,y′′) ∈ X ×Y ′′.

Now, for y′′ ∈ Y ′′, the set

{x′′ ∈ X ′′ : g(x′′,y′′) = mt(x′′,y′′)}
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is w∗-closed in X ′′ and contains X . Since X is w∗-dense in X ′′, we deduce

g(x′′,y′′) = mt(x′′,y′′) for every (x′′,y′′) ∈ X ′′ ×Y ′′.

Corollary 2.2.13 Let A be a normed unital algebra over K. Then the unit of A
remains a unit for A′′.

Proof By Lemma 2.2.12, the sets

{a′′ ∈ A′′ : a′′1 = a′′} and {a′′ ∈ A′′ : 1a′′ = a′′}

are w∗-closed in A′′. Since they contain A, and A is w∗-dense in A′′, they are the whole
algebra A′′.

Definition 2.2.14 Let X ,Y,Z be vector spaces over K, and let m : X ×Y → Z be a
bilinear mapping. We shall denote by mr the mapping (y,x) → m(x,y) from Y ×X
into Z. Now, assume in addition that X ,Y,Z are normed, and that m is bounded, and,
according to §2.2.11, let mt : X ′′ ×Y ′′ → Z′′ stand for the Arens extension of m. We
will say that m is Arens regular if mrt = mtr. Note that mrtr extends m because mrt

extends mr. The extension mrtr of m is called the second Arens extension of m. Thus,
the Arens regularity of m is equivalent to the coincidence of its first and second Arens
extensions. In the case that m is the product of a given normed algebra A, the product
mrtr on A′′ will be called the second Arens product of A′′, and A is said to be Arens
regular if m is Arens regular (equivalently, if the first and second Arens products
of A′′ coincide).

The following theorem will be proved later (see §2.3.53). For the moment, the
reader is referred to [806, Theorem 1.17.2].

Theorem 2.2.15 Let A be a nonzero C∗-algebra. Then A′′, endowed with the Arens
product and the bitranspose of the involution of A, becomes a unital C∗-algebra. As
a consequence, A is Arens regular.

§2.2.16 Let A be a nonzero C∗-algebra. It follows from Theorem 2.2.15 above that
the set

{a′′ ∈ A′′ : a′′A ⊆ A and Aa′′ ⊆ A}

becomes a closed ∗-subalgebra of A′′ containing the unit of A′′, and containing A as
an ideal. This subalgebra of A′′ is called the C∗-algebra of multipliers of A, and will
be denoted by M(A). We note that, by Corollary 2.2.13, if A has a unit, then M(A) =
A. More information about M(A) will be given in Propositions 2.3.56 and 2.3.57.

Given elements a,b in an algebra, we define the commutator [a,b] of a,b by
[a,b] := ab−ba.

Lemma 2.2.17 Let A be a C∗-algebra. We have:

(i) M(A) = {a′′ ∈ A′′ : a′′ •A ⊆ A}.
(ii) If u is a unitary element of A′′ such that au∗a ∈ A and ua∗u ∈ A for every a ∈ A,

then u lies in M(A).

Proof Let a′′ be in A′′ such that a′′ •A ⊆ A. Then, for b ∈ A we have

[a′′,b2] = 2[a′′ •b,b] ∈ [A,A]⊆ A.
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Since A is the linear hull of the set {b2 : b ∈ A}, we derive [a′′,A]⊆ A. This inclusion,
together with the assumed one a′′ •A ⊆ A, leads to a′′A ⊆ A and Aa′′ ⊆ A. This proves
the inclusion {a′′ ∈ A′′ : a′′ •A ⊆ A} ⊆ M(A). Since the converse inclusion is clear,
the proof of assertion (i) is concluded.

Let u be a unitary element of A′′ such that au∗a ∈ A and ua∗u ∈ A for every a ∈
A. Then, for every ∗-invariant element b ∈ A we have that c := ubu lies in A, so
1
2 (cu∗b+bu∗c) also lies in A, and so

u•b2 =
1
2
(ub2 +b2u) =

1
2
((ubu)u∗b+bu∗(ubu)) =

1
2
(cu∗b+bu∗c) ∈ A.

Since A is the linear hull of the set {b2 : b∗ = b ∈ A} (by Proposition 1.2.48), we
derive that u•A ⊆ A. Now, applying assertion (ii), we get u ∈ M(A), concluding the
proof of assertion (ii).

Remark 2.2.18 As a matter of fact, the first requirement in assertion (ii) of
Lemma 2.2.17 (that au∗a ∈ A for every a ∈ A) implies the second (that ua∗u ∈ A
for every a ∈ A). Indeed, this is a consequence of [3, Proposition 4.4] or [366, 7.7],
which will be proved in Volume 2 of our work.

For elements a,b,c in a C∗-algebra, we set {abc} := 1
2(ab∗c+ cb∗a).

Theorem 2.2.19 (Kadison–Paterson–Sinclair) Let A and B be C∗-algebras, and
let F : A → B be a bijective linear mapping. Then the following conditions are
equivalent:

(i) F is an isometry.
(ii) There exists a unitary element u ∈ M(B), and a bijective Jordan-∗-homo-

morphism G : A → B, satisfying F(a) = uG(a) for every a ∈ A.
(iii) F({xyz}) = {F(x)F(y)F(z)} for all x,y,z ∈ A.

Proof (i)⇒(ii) Assume that condition (i) holds. Then the bitranspose mapping F ′′ :
A′′ → B′′ is a surjective linear isometry. Therefore, by Theorem 2.1.27, u :=F ′′(1) is
a unitary element of B′′. Now, consider the unit-preserving surjective linear isometry
H : a′′ → u∗F ′′(a′′) from A′′ to B′′. Then, by Theorem 2.2.9(i), H is a bijective Jordan-
∗-homomorphism, and we have clearly F ′′(a′′) = uH(a′′) for every a′′ ∈ A′′. For an
arbitrary element b ∈ B, we can write b = F(a) for a suitable a ∈ A, so that

bu∗b = F(a)u∗F(a) = uH(a)u∗uH(a) = uH(a)2 = uH(a2) = F(a2) ∈ B.

On the other hand, for a′′ ∈ A′′ we have

uF ′′(a′′)∗u = uH(a′′)∗ = uH(a′′∗) = F ′′(a′′∗),

which implies uF(a)∗u = F(a∗) for every a ∈ A, and hence uBu ⊆ B. It follows
from Lemma 2.2.17(ii) that u belongs to M(B). Therefore H maps A onto B, and the
mapping G : a → H(a) from A onto B is a bijective Jordan-∗-homomorphism.

(ii)⇒(iii) Assume that (ii) holds. Let x,y,z be in A. Then since

{xyz} := x• (y∗ • z)+ z• (y∗ • x)− (x• z)• y∗,

and G is a Jordan-∗-homomorphism, we have G({xyz}) = {G(x)G(y)G(z)}. On
the other hand, since u is a unitary element of M(B), for b1,b2,b3 ∈ B, the
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equality u{b1b2b3} = {(ub1)(ub2)(ub3)} is straightforwardly verified. It follows
that F({xyz}) = {F(x)F(y)F(z)}, as required.

(iii)⇒(i) Assume that (iii) holds. Let a be in A, and let Ta be as in Lemma 2.2.10.
Then, since for x ∈ A we have Ta(x) = {aax}, we get TF(a) = FTaF−1. According
to Example 1.1.1(b), for every vector space X over K, let L(X) stand for the asso-
ciative algebra over K consisting of all linear operators on X . Since the mapping
T → FT F−1 is a bijective algebra homomorphism from L(A) onto L(B), we have
sp(L(A),Ta) = sp(L(B),TF(a)), and hence, by Corollary 1.1.47, r(Ta) = r(TF(a)).
Therefore, by Lemma 2.2.10, we have ‖a‖= ‖F(a)‖.

Corollary 2.2.20 Let A and B be C∗-algebras, and let F : A → B be a surjective
linear isometry. Then F ′′(M(A)) = M(B).

Proof By the proof of the implication (i)⇒(ii) in Theorem 2.2.19, there exists u ∈
M(B), together with a bijective Jordan-∗-homomorphism H : A′′ → B′′, such that
F ′′(a′′)= uH(a′′) for every a′′ ∈A′′. Since, by Lemma 2.2.17(i), we have H(M(A))=
M(B), we derive F ′′(M(A)) = M(B), as required.

Lemma 2.2.21 Let A be a complete normed algebra, and let D be a continuous
derivation of A. Then exp(D) is a bijective algebra endomorphism on A.

Proof Let a,b be in A. By the Leibnitz rule, for n ∈ N we have

Dn(ab) =
n

∑
i=0

(
n
i

)
Di(a)Dn−i(b).

Therefore

exp(D)(ab) =
∞

∑
n=0

n

∑
i=0

1
i!(n− i)!

Di(a)Dn−i(b) =
∞

∑
i, j=0

1
i! j!

Di(a)D j(b)

=

(
∞

∑
i=0

1
i!

Di(a)

)(
∞

∑
j=0

1
j!

Dj(b)

)
= exp(D)(a)exp(D)(b).

§2.2.22 We recall that an algebra A is said to be semiprime if, for every nonzero
ideal I of A, there are x,y ∈ I such that xy 	= 0. Note that C∗-algebras are semiprime.

Lemma 2.2.23 [678, Theorem 6.3.11] Jordan derivations of semiprime associative
algebras are derivations.

Lemma 2.2.24 Let X be a normed space, let S be in BL(X), and let M be an S-
invariant subspace of X, then we have

V (BL(M), IM,SM)⊆V (BL(X), IX ,S),

where SM stands for the restriction of S to M, regarded as an operator on M.

Proof The set A of those operators T ∈ BL(X) such that T (M) ⊆ M is a subspace
of BL(X) containing IX , and the mapping T → TM from A to BL(M) is a linear
contraction taking IX to IM . Therefore, by Corollary 2.1.2, we have

V (BL(M), IM,SM)⊆V (A, IX ,S) =V (BL(X), IX ,S).
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Lemma 2.2.25 immediately below will be proved later, as a consequence of a more
general result (see §3.1.52). For the moment, the reader is referred to the original
proof which can be seen in [806, Lemma 4.1.3].

Lemma 2.2.25 Derivations of C∗-algebras are continuous.

Proposition 2.2.26 Let A be a C∗-algebra, and let T : A → A be a mapping. Then
the following conditions are equivalent:

(i) T belongs to H(BL(A), IA).

(ii) There are h ∈ H(M(A),∗) and a derivation D of A such that D(a∗)=−D(a)∗ and
T (a) = ha+D(a) for every a ∈ A.

Proof (i)⇒(ii) Assume that (i) holds. Then, by Corollary 2.1.9(iii), for r ∈ R, F :=
exp(irT ) is a surjective linear isometry on A, and hence, by Corollary 2.2.20,

exp(irT ′′)(M(A)) = F ′′(M(A))⊆ M(A).

Therefore, since for a′′ ∈ A′′ we have

iT ′′(a′′) = lim
r→0+

1
r

[
(exp(irT ′′))(a′′)−a′′

]
,

we obtain T ′′(M(A))⊆M(A). On the other hand, since the mapping G → G′′ from
BL(A) to BL(A′′) is a linear isometry preserving distinguished elements, Corol-
lary 2.1.2 applies, so that T ′′ ∈ H(BL(A′′), IA′′). It follows from Lemma 2.2.24 that
(T ′′)M(A) ∈ H(BL(M(A)), IM(A)). Applying Theorem 2.2.9, we find h ∈ H(M(A),∗)
and a Jordan derivation D of M(A) such that

T ′′(a′′) = ha′′+D(a′′) and D(a′′∗) =−D(a′′)∗ for every a′′ ∈ M(A).

As a consequence,

T (a) = T ′′(a) = ha+D(a) and D(a∗) =−D(a)∗ for every a ∈ A.

Finally, by Lemma 2.2.23, D is a derivation of M(A), and, since

D(a) = T (a)−ha ∈ A for every a ∈ A,

we can see D as a derivation of A.
(ii)⇒(i) Assume that condition (ii) holds. By Lemma 2.2.8, h belongs to

H(M(A),1), where 1 stands for the unit of M(A). Therefore, by Lemma 2.1.10,
the mapping Lh : x → hx from M(A) to M(A) belongs to H(BL(M(A)), IM(A)), and
hence (Lh)A : a → ha belongs to H(BL(A), IA). Now, to conclude the proof, it is
enough to show that D lies in H(BL(A), IA). By Lemmas 2.2.21 and 2.2.25, for
r ∈ R, exp(irD) is a bijective ∗-homomorphism on A. Therefore, by the implication
(ii)⇒(i) in Theorem 2.2.19, we have

‖exp(irD)‖= 1 for every r ∈ R,

and hence, by Corollary 2.1.9(iii), D ∈ H(BL(A), IA), as required.
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2.2.3 Historical notes and comments

Proposition 2.2.1 seems to us to be new. As far as we know, it has been never
published before the present work, and helps in a relevant way to simplify the proofs
of several published results.

Theorem 2.2.9 is due to Kaidi, Martı́nez, and Rodrı́guez [362]. The proof we have
given, taken from [362], is close to Paterson’s proof [479] of Kadison’s isometry
theorem [358]. A forerunner of Theorem 2.2.9(i) (respectively, Theorem 2.2.9(ii))
is due to Wright and Youngson [643] (respectively, Youngson [654]), and will be
discussed in detail as a part of Proposition 3.4.25 (respectively, Proposition 3.4.28).
For a ‘∗-free’ generalization of the Wright–Youngson result just quoted, the reader
is referred to the Arazy–Soler paper [26].

The notion and elementary results concerning the adjoint of a bounded bilinear
mapping between normed spaces are taken from Arens’ memorable papers [28, 29].

Lemma 2.2.25 is due to Sakai [549], and is included in several books (see for
example [678, 723, 806]). As we said, a proof following the ideas of [678] will be
given in §3.1.52. A more general result, asserting the automatic continuity of deriv-
ations of complete normed semisimple associative algebras, is due to Johnson and
Sinclair [355], and is included in several books (see for example [715, 786]). (For the
meaning of a semisimple algebra, the reader is referred to Definition 3.6.12 below.)

Theorem 2.2.19 and Proposition 2.2.26 are due to Paterson and Sinclair [480], al-
though the equivalence (i)⇔(iii) in Theorem 2.2.19 is not explicitly formulated there.
The most relevant generalization of the equivalence (i)⇔(iii) in Theorem 2.2.19 is
due to Kaup [381].

§2.2.27 To provide the reader with a precise formulation of Kaup’s result, let us
recall that JB∗-triples are defined as those complex Banach spaces X endowed with
a continuous triple product {· · ·} : X ×X ×X → X which is linear and symmetric in
the outer variables, and conjugate-linear in the middle variable, and satisfies:

(i) For all x in X , the mapping y →{xxy} from X to X is a hermitian operator on X
and has non-negative spectrum.

(ii) The equality

{ab{xyz}}= {{abx}yz}−{x{bay}z}+{xy{abz}}

holds for all a,b,x,y,z in X .
(iii) ‖{xxx}‖= ‖x‖3 for every x in X .

JB∗-triples generalize C∗-algebras because, as we will prove in Fact 4.1.41, each
C∗-algebra becomes a JB∗-triple under the triple product

{xyz} :=
1
2
(xy∗z+ zy∗x).

Now, Kaup’s generalization of the equivalence (i)⇔(iii) in Theorem 2.2.19 reads as
follows.

Theorem 2.2.28 Surjective linear isometries between JB∗-triples are precisely
those bijective linear mappings which preserve triple products.

A forerunner of Kaup’s theorem (generalizing as well the equivalence (i)⇔(iii) in
Theorem 2.2.19) is due to Harris [314]. The particularization of Theorem 2.2.19 to
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the unital case is the celebrated Kadison isometry theorem [358]. We formulate it
here for the sake of completeness.

Theorem 2.2.29 Surjective linear isometries between unital C∗-algebras A and B
are precisely the mappings of the form a → uF(a), where F : A → B is a bijective
Jordan-∗-homomorphism, and u is a unitary element of B.

Kadison’s theorem is included, with two different proofs, in Fleming and
Jamison (see [730, Theorem 6.2.5 and p. 156]), who also include the Paterson–
Sinclair Theorem 2.2.19, without any proof in this case (see [730, Theorem 6.2.6]).
The proofs we have given of Theorem 2.2.19 and Proposition 2.2.26 are essentially
the original ones in [480]. For an alternative proof of Theorem 2.2.19, see Sherman’s
paper [563]. For a ‘∗-free’ generalization of Theorem 2.2.29, the reader is referred
to Arazy’s paper [25]. For another generalization, see Proposition 2.3.20 below.
For more generalizations of Theorem 2.2.29, and precise formulations of some of
those quoted here, the reader is referred to [730, pp. 171–9]. The unital forerunner
of Proposition 2.2.26 is due to Sinclair [578].

Lemma 2.2.23 is originally due to Cusack [202], and, as we pointed out in its
formulation, is included with proof in Ara and Mathieu [678]. Cusack’s result gen-
eralizes Herstein’s forerunner [321] for prime algebras (see §2.5.41 below for the
definition of a prime algebra). Actually, for our purposes, the later and much weaker
result of Sinclair [578] (that Jordan derivations of complete normed semisimple
associative algebras are derivations) would have been enough.

2.3 The associative Vidav–Palmer theorem, starting from a
non-associative germ

Introduction In this section, we continue developing the theory of algebra numer-
ical ranges, to be applied to the study of the so-called Vidav algebras (also known
as V -algebras). These algebras are defined as norm-unital normed complex algebras
satisfying a certain condition, which depends only on their normed spaces and their
units, and are automatically endowed with a natural conjugate-linear vector space
involution. As the main result, we prove in Theorem 2.3.8 that the natural involution
of a V -algebra is an algebra involution. Then, we complete the proof of the so-called
associative Vidav–Palmer theorem, which identifies complete associative V -algebras
with unital C∗-algebras. The associative Vidav–Palmer theorem and the technology
in its proof are applied to complement the general theory of C∗-algebras begun in
Section 1.2 and continued in Theorem 2.1.27 and Section 2.2. Among the applica-
tions of the associative Vidav–Palmer theorem, we emphasize the one asserting that
closed ideals of C∗-algebras are ∗-invariant (see Proposition 2.3.43), as well as the
one involved in the proof of Theorem 2.2.15 (that biduals of nonzero C∗-algebras
are unital C∗-algebras in a natural way) given in §2.3.53. Then we deduce from
Theorem 2.2.19 the Banach–Stone theorem on isometries of CC

0 (E)-spaces. Finally,
we introduce alternative algebras, derive the Vidav–Palmer type theorem for unital
alternative C∗-algebras, and prove a result on ranges of unit-preserving contractive
linear projections on alternative C∗-algebras (see Theorem 2.3.68), which, even in
the particular associative case, generalizes the classical one by Hamana [305].
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2.3.1 Natural involutions of V-algebras are algebra involutions

Lemma 2.3.1 Let A be a norm-unital normed complex algebra, and let h,k be in
H(A,1). Then i[h,k] lies in H(A,1).

Proof By Lemma 2.1.10, the operator Lh −Rh is hermitian, and clearly vanishes at
1. Therefore, by Corollary 2.2.2 we have

i[h,k] = i(Lh −Rh)(k) ∈ H(A,1).

Given a complex number z, we denote by ℑ(z) the imaginary part of z. The next
result is proved in [695, Lemma 26.3] for the case X = C. The general case follows
from the particular one just quoted, and the Hahn–Banach theorem.

Lemma 2.3.2 Let X be a complex Banach space, let f : C → X be an entire
function, and let ϕ be in R\πZ. Assume that ‖ f (z)‖ � e|ℑ(z)| for every z ∈ C. Then

cos(ϕ) f (0)+ sin(ϕ) f ′(0) = ∑
n∈Z

γn f (nπ+ϕ), where γn :=
(−1)n sin2(ϕ)
(nπ+ϕ)2 .

Lemma 2.3.3 Let A be a norm-unital complete normed associative complex alge-
bra, and let h be in H(A,1). Then ‖exp(zh)‖ � e|ℜ(z)|v(h).

Proof By Proposition 2.1.7, for z ∈ C we have

‖exp(zh)‖ � emaxℜ(V (A,1,zh)).

Since

maxℜ(V (A,1,zh)) = max{ℜ(zξ ) : ξ ∈V (A,1,h)}

� max{ℜ(zξ ) : ξ ∈ [−v(h),v(h)]}= |ℜ(z)|v(h),

it follows that ‖exp(zh)‖ � e|ℜ(z)|v(h).

Proposition 2.3.4 Let A be a norm-unital normed complex algebra, let h be in
H(A,1), and let λ ,μ be complex numbers. Then

v(λ1+μh) = ‖λ1+μh‖.

Proof In view of Corollary 2.1.2, we may assume that A is complete.
First assume that A is associative. We can also assume that μ is nonzero and that

1 and h are linearly independent, since otherwise the conclusion is clear. Moreover,
after multiplying by a complex number of modulus 1, we can assume that λ = r+ is
and μ = it for suitable r,s, t ∈ R, so that t 	= 0. By Proposition 2.1.11, we have
v(s1+ th)> 0, and so we can consider

k :=
s1+ th

v(s1+ th)
.

Clearly k ∈ H(A,1) and v(k) � 1. Consider the entire function f : C→ A given by
f (z)= exp(izk). By Lemma 2.3.3 we have ‖ f (z)‖� e|ℑ(z)| for every z∈C. Therefore,
by Lemma 2.3.2, for ϕ ∈ R\πZ, we have

cos(ϕ)1+ isin(ϕ)k = ∑
n∈Z

γn f (nπ+ϕ),
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where

γn =
(−1)n sin2(ϕ)
(nπ+ϕ)2 .

Since, by Corollary 2.1.9(iii), we have ‖ f (nπ+ϕ)‖= 1 for every n ∈ Z, we deduce
that

‖cos(ϕ)1+ isin(ϕ)k‖ � ∑
n∈Z

|γn|.

But,

∑
n∈Z

|γn|= sin2(ϕ)∑
n∈Z

1
(nπ+ϕ)2 = 1,

and consequently ‖cos(ϕ)1+ isin(ϕ)k‖ � 1. Now, a continuity argument gives that

‖cos(ϕ)1+ isin(ϕ)k‖ � 1 for every ϕ ∈ R. (2.3.1)

Note that

λ1+μh = r1+ i(s1+ th) = r1+ iv(s1+ th)k = ρ(cos(ϕ)1+ isin(ϕ)k),

where ρ = |r+ iv(s1+ th)| and ϕ is an argument of r+ iv(s1+ th). Therefore

‖λ1+μh‖= ‖ρ(cos(ϕ)1+ isin(ϕ)k)‖ � ρ = [r2 + v(s1+ th)2]
1
2

= max{r2 +(s+ tα)2 : α ∈V (A,1,h)} 1
2

= max{|r+ i(s+ tα)|2 : α ∈V (A,1,h)} 1
2

= max{|λ +μα| : α ∈V (A,1,h)}= v(λ1+μh),

and hence ‖λ1+μh‖ � v(λ1+μh). But the converse inequality is clear.
Now assume that A is not associative. Then, by Lemma 2.1.10 and the above

paragraph, we have

v(λ1+μh) = v(λ IA +μLh) = ‖λ IA +μLh‖= ‖λ1+μh‖.

Corollary 2.3.5 Let A be a norm-unital normed complex algebra, let h, k be her-
mitian elements in A, and let λ be a real number. Then

(i) ‖k‖ � ‖h+ ik‖.

(ii) ‖h+ iλ1‖2 = ‖h‖2 +λ 2.

(iii) ‖h+ ik‖ � 2v(h+ ik).

(iv) ‖h− ik‖ � 2‖h+ ik‖.

Proof Assertions (i) and (ii) are straightforward consequences of Proposition 2.3.4.
But Proposition 2.3.4 also gives

‖h+ ik‖ � ‖h‖+‖k‖= v(h)+ v(k) � 2v(h+ ik) = 2v(h− ik) � 2‖h− ik‖,

which proves assertions (iii) and (iv).
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Definition 2.3.6 By a V -algebra we mean a norm-unital normed complex algebra
A satisfying A=H(A,1)+ iH(A,1). Let A be a V -algebra. Then, by Corollary 2.1.13,
we have in fact A = H(A,1)⊕ iH(A,1), so there is a unique conjugate-linear vector
space involution ∗ on A such that H(A,∗) = H(A,1). This involution will be called
the natural involution of A.

Without enjoying their name, V -algebras have already appeared in our develop-
ment (see the last conclusion in Lemma 2.2.5). Assertions (iii) and (iv) in
Corollary 2.3.5 lead straightforwardly to assertions (i) and (ii), respectively, in
the following.

Lemma 2.3.7 Let A be a V -algebra. Then we have:

(i) n(A,1) � 1
2 .

(ii) The natural involution ∗ of A satisfies ‖a∗‖ � 2‖a‖ for every a ∈ A, and hence
is continuous.

The main result in this section is the following.

Theorem 2.3.8 The natural involution of any V -algebra is an algebra involution.

The strategy for the proof of this theorem will consist of the consideration of the
bilinear mappings h, k from H(A,1)×H(A,1) into H(A,1) (A is the V -algebra under
consideration) defined by

xy = h(x,y)+ ik(x,y) for all x,y ∈ H(A,1). (2.3.2)

It is not difficult to show (see the end of the proof) that the assertion of Theorem 2.3.8
is equivalent to the following relations:

h(x,y) = h(y,x) for all x,y in H(A,1); (2.3.3)

k(x,y) =−k(y,x) for all x,y in H(A,1). (2.3.4)

The relation (2.3.3) is easy. Indeed, we have the following.

Lemma 2.3.9 Let A be a V -algebra, and let h be defined by (2.3.2). Then we have
h(x,y) = h(y,x) for all x,y in H(A,1).

Proof Let x,y be in H(A,1). From the equality

i[x,y] = i(h(x,y)−h(y,x))− (k(x,y)− k(y,x))

and Lemma 2.3.1, we obtain

h(x,y)−h(y,x) ∈ H(A,1)∩ iH(A,1) = 0.

In view of this lemma and the above comments we concentrate our attention on the
function k. We first obtain, from the theory of numerical ranges, enough information
about this function to reduce the proof of (2.3.4) to normed space results.

Lemma 2.3.10 Let A be a V -algebra. Then

‖k(x,y)+λx+μy‖2 � (‖x‖2 +μ2)(‖y‖2 +λ 2)

for all x,y in H(A,1) and λ ,μ in R.
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Proof Let x,y be in H(A,1). The equality

(x+ iμ1)(y+ iλ1) = (h(x,y)−λμ1)+ i(k(x,y)+λx+μy),

together with Corollary 2.3.5(i), gives

‖k(x,y)+λx+μy‖ � ‖(x+ iμ1)(y+ iλ1)‖ � ‖x+ iμ1‖‖y+ iλ1‖,

and Corollary 2.3.5(ii) concludes the proof.

As mentioned above, the information about the function k given by Lemma 2.3.10
will allow us to reduce the proof of the statement (2.3.4) to the context of normed
space theory. So we begin the second (and final) step in the proof of Theorem 2.3.8.
We shall show that any bilinear mapping on a real normed space satisfying the
property asserted for k in Lemma 2.3.10 must be antisymmetric.

Notation 2.3.11 Let X be a real normed space, and let f : X ×X → X be a bilinear
mapping. We shall say that the pair (X , f ) satisfies the α-property whenever the
inequality

‖ f (x,y)+λx+μy‖2 � (‖x‖2 +μ2)(‖y‖2 +λ 2) (α)

holds for all x,y ∈ X and λ ,μ ∈R. It is clear that, if f satisfies the α-property, then f
is continuous (take λ = μ = 0). With the terminology just introduced, Lemma 2.3.10
reads as follows: if A is a V -algebra, then the pair (H(A,1),k) satisfies the
α-property.

From now until the conclusion of the proof of Corollary 2.3.18, X will denote a
real Banach space, f will be a bilinear mapping from X ×X into X , and we shall
assume that the pair (X , f ) satisfies the α-property. For x in X , fx will denote the
bounded linear operator on X defined by fx(y) = f (x,y) for every y ∈ X .

Lemma 2.3.12 Let x be an extreme point in the closed unit ball of X. Then
f (x,x) = 0.

Proof Take y = x and λ = μ =±1 in the inequality (α).

Lemma 2.3.13 V (BL(X), IX , fx) = 0 for every x ∈ X.

Proof Let r be a positive real number, let x be in X , and let us take λ = 0 and
μ = r−1 in (α) to obtain

‖(IX + r fx)(y)‖ � (1+ r2‖x‖2)
1
2 ‖y‖ for every y ∈ X ,

and so ‖IX + r fx‖ � (1+ r2‖x‖2)
1
2 . By Proposition 2.1.5, we have

maxV ( fx) = lim
r→0+

‖IX + r fx‖−1
r

� lim
r→0+

(1+ r2‖x‖2)
1
2 −1

r
= 0.

The proof is concluded by using −x instead of x.

In agreement with the notation in Definition 2.2.14, f r will stand for the mapping
(x,y)→ f (y,x) from X ×X to X .

Lemma 2.3.14 Assume that X is complete, and that f = f r, and let x be an extreme
point of BX . Then fx = 0.
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Proof Let r and y be in R and X , respectively. By Lemma 2.3.13, we have V ( fy) =

0, so, applying Corollary 2.1.9(ii), we obtain ‖exp(r fy)‖ � 1, and so exp(r fy) is a
surjective linear isometry on X . Therefore, since x is an extreme point of BX , so is
exp(r fy)(x), and hence, by Lemma 2.3.12 we have

f (exp(r fy)(x),exp(r fy)(x)) = 0.

Taking derivatives at r = 0, and keeping in mind that f = f r, we obtain f (x, fy(x)) =
0, that is f (x, fx(y)) = 0, whence f 2

x = 0. On the other hand, by Lemma 2.3.13, we
have V ( fx) = 0. It follows from Lemma 2.1.28 that fx = 0, as required.

In agreement with the notation in §2.2.11, f t : X ′′ ×X ′′ → X ′′ will stand for the
Arens extension of f .

Lemma 2.3.15 The pair (X ′′, f t) satisfies the α-property.

Proof Let x and y′′ be arbitrarily fixed elements in X and X ′′, respectively,
and let λ ,μ be fixed real numbers. Since the norm of X ′′ is w∗-lower semi-
continuous, and the mapping z′′ → f t(x,z′′) from X ′′ to X ′′ is w∗-continuous (by
Lemma 2.2.12(iii)(c)), the function

z′′ → ‖ f t(x,z′′)+λx+μz′′‖

from X ′′ to R is w∗-lower semicontinuous. Therefore, the set

L = {z′′ ∈ X ′′ : ‖ f t(x,z′′)+λx+ μz′′‖2 � (‖x‖2 +μ2)(‖y′′‖2 +λ 2)}

is w∗-closed. Since (X , f ) satisfies the α-property, we have ‖y′′‖BX ⊆ L, and hence
‖y′′‖BX ′′ ⊆ L (because BX ′′ is the w∗-closure of BX in X ′′). In particular, y′′ ∈ L, and
we have proved that

‖ f t(x,y′′)+λx+ μy′′‖2 � (‖x‖2 +μ2)(‖y′′‖2 +λ 2) (α ′)

holds for all λ ,μ in R, x in X , and y′′ in X ′′.
Now we fix x′′,y′′ in X ′′ and λ ,μ in R. Since the mapping z′′ → f t(z′′,y′′) from

X ′′ to X ′′ is w∗-continuous (by Lemma 2.2.12(iii)(b)), the function

z′′ → ‖ f t(z′′,y′′)+λ z′′+μy′′‖

from X ′′ to R is w∗-lower semicontinuous. Therefore, the set

M = {z′′ ∈ X ′′ : ‖ f t(z′′,y′′)+λ z′′+μy′′‖2 � (‖x′′‖2 +μ2)(‖y′′‖2 +λ 2)}

is w∗-closed. Since ‖x′′‖BX ⊆ M (by (α ′)), it follows that ‖x′′‖BX ′′ ⊆ M. Therefore
x′′ ∈ M, which completes the proof.

Lemma 2.3.16 The pair (X , 1
2 ( f + f r)) satisfies the α-property.

Proof Interchange x with y and λ with μ in the inequality (α), and sum up the
resulting inequality with the previous one.

Proposition 2.3.17 For all x and y in X we have

f (x,y) =− f (y,x).
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Proof Write g = 1
2 ( f t + f tr). By Lemmas 2.3.15 and 2.3.16 the pair (X ′′,g) satis-

fies the α-property. On the other hand, the equality g = gr is clear. Therefore, by
Lemma 2.3.14, we have gx′′ = 0 for every extreme point x′′ of BX ′′ . In particular, we
have g(x′′,y) = 0, that is f t(x′′,y) = − f t(y,x′′) for every y ∈ X . For any fixed y the
last equality holds by linearity for all x′′ in the linear hull of the set of all extreme
points of BX ′′ , and by w∗-continuity (thanks to Lemma 2.2.12) it also holds in the
w∗-closure of this linear hull, that is for all x′′ in X ′′. In particular, f (x,y) =− f (y,x)
for all x,y in X .

Corollary 2.3.18 The mapping f is Arens regular.

Proof By Lemma 2.3.15 and Proposition 2.3.17 we have f r = − f and f tr = − f t ,
so f rt = f tr, which is the Arens regularity of f .

With Proposition 2.3.17 above, the proof of Theorem 2.3.8 is essentially com-
pleted. However, a brief summary might be useful.

End of the proof of Theorem 2.3.8 Let A be the V -algebra under consideration so
that, by Lemma 2.3.10, the pair (H(A,1),k) satisfies the α-property. Let x,y be in
H(A,1). By Lemma 2.3.9 (respectively, Proposition 2.3.17), we have h(x,y) = h(y,x)
(respectively, k(x,y) =−k(y,x)). Therefore, we get

(xy)∗ = h(x,y)− ik(x,y) = h(y,x)+ ik(y,x) = yx,

where ∗ stands for the natural involution of A. Now, let a,b be arbitrary elements in
A, and write a = x+ iy and b = z+ it with x,y,z, t ∈ H(A,1). Then we have

(ab)∗ = (xz− yt + i(xt + yz))∗ = zx− ty− i(tx+ zy) = b∗a∗.

From now on, every V -algebra will be seen endowed with its natural involution.
Now note that, if A is a V -algebra, and if ∗ stands for its natural involution, then,
by Theorem 2.3.8, the conclusion in Lemma 2.2.8 holds. Therefore, repeating the
arguments in the proof of Theorem 2.2.9, we obtain the following.

Corollary 2.3.19 Let A be a V -algebra. We have:

(i) If B is a V -algebra, and if F : A → B is a unit-preserving surjective linear
isometry, then F is a Jordan-∗-homomorphism.

(ii) If T is in H(BL(A), IA), then there are h ∈ H(A,∗) and a continuous Jordan
derivation D of A such that T = Lh +D and D(a∗) =−D(a)∗ for every a ∈ A.

Proposition 2.3.20 Let A be a norm-unital normed complex algebra, let B be
a C∗-algebra, and let F : A → B be a surjective linear isometry. Then B has a
unit, and there exists a unitary element u ∈ B, and a surjective isometric Jordan
homomorphism G : A → B, satisfying F(a) = uG(a) for every a ∈ A.

Proof By Corollary 2.1.13, the unit 1 of A is a vertex of BA, and hence u := F(1) is
a vertex of BB. As a first consequence, by Lemma 2.1.25, BB has extreme points, and
therefore, by Lemma 2.1.26, B has a unit. Now, by Theorem 2.1.27, u is a unitary
element of B, and hence the mapping G : a → u∗F(a) from A to B becomes a unit-
preserving surjective linear isometry. Since B is a V -algebra (by Lemma 2.2.5), and A
is unit-preserving linearly isometric to B, we see that B is also a V -algebra. Therefore,
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by Corollary 2.3.19, G is a surjective isometric Jordan-∗-homomorphism, and we
clearly have F(a) = uG(a) for every a ∈ A.

2.3.2 The associative Vidav–Palmer theorem

In what follows, we are going to complete the proof of the associative Vidav–Palmer
theorem.

Lemma 2.3.21 Let A be a norm-unital complete normed associative algebra over
K, and let a be in A. Then sp(a)⊆V (a).

Proof Let μ be in sp(a). Then, for every λ ∈ K, μ − λ lies in sp(a− λ1), and
hence, by Proposition 1.1.40, we have |μ − λ | � ‖a − λ1‖. Therefore we obtain
μ ∈ ∩λ∈KBK(λ ,‖a−λ1‖), and Proposition 2.1.1 applies.

From now on, we assume that the reader is familiarized with the holomorphic
functional calculus in a single element of a unital complete normed associative com-
plex algebra A, as stated in Section 1.3. We recall that, roughly speaking, the holo-
morphic functional calculus assigns to each element a ∈ A, to each open subset Ω
of C containing sp(a), and to each holomorphic mapping f : Ω → C, an element
f (a) ∈ A, in such a way that, when the triple (a,Ω, f ) moves, things behave rea-
sonably. The holomorphic functional calculus will be involved without notice in the
proofs of Proposition 2.3.22 and Lemma 2.3.28 below.

Proposition 2.3.22 Let A be a norm-unital normed associative complex algebra,
and let h be in H(A,1). Then r(h) = ‖h‖.

Proof We may assume that A is complete, and that r(h) < π
2 . Then, by Lemma

2.3.21, we have sp(h)⊆ ]− π
2 ,

π
2 [, and hence

h = arcsin(sinh) =
∞

∑
n=0

αn(sinh)2n+1,

where αn := (2n)!
22n(n!)2(2n+1)

. On the other hand, by Corollary 2.1.9(iii), we have

‖sinh‖ � 1. It follows that ‖h‖ � ∑∞
n=0αn =

π
2 .

Proposition 2.3.23 Let A be a norm-unital complete normed associative complex
algebra, and let h be in H(A,1). Then V (h) = co(sp(h)).

Proof Clearly, V (h) = [s, t] for suitable s, t ∈ R. Therefore, by Lemma 2.3.21 and
Proposition 2.3.22, we derive

r(h− s1) = v(h− s1) = t − s = v(h− t1) = r(h− t1).

Since sp(h− s1)⊆ [0, t − s] and sp(h− t1)⊆ [s− t,0], it follows that

t − s ∈ sp(h− s1) and s− t ∈ sp(h− t1),

that is, both t and s lie in sp(h). Thus we have shown that V (h) ⊆ co(sp(h)). The
converse inclusion follows by a new application of Lemma 2.3.21.
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Lemma 2.3.24 Let A be a complete associative and commutative V -algebra, let ∗
denote the natural involution of A, and let Δ stand for the carrier space of A. Then
the Gelfand transform a → G(a) from A to CC(Δ) becomes a continuous bijective
algebra ∗-homomorphism. Moreover, for h ∈ H(A,1) we have V (h) = co(G(h)(Δ)).

Proof The last conclusion follows from Proposition 2.3.23 and Theorem 1.1.73(iii).
As a consequence, we have G(H(A,∗)) ⊆ H(CC(Δ),∗), which implies that the
Gelfand transform is an algebra ∗-homomorphism. Now, by Theorem 1.1.73(ii),
G(A) becomes a ∗-subalgebra of CC(Δ) containing the constant functions and separ-
ating the points of Δ, so that, by the Stone–Weierstrass theorem (cf. Theorem 1.2.10),
G(A) is dense in CC(Δ). On the other hand, for a= h+ ik ∈A, with h,k ∈H(A,1), we
have G(a) = G(h)+ iG(k) with G(h),G(k) ∈ H(CC(Δ),∗), and therefore, invoking
Proposition 2.3.22 and Theorem 1.1.73(iv), we get

‖a‖ � ‖h‖+‖k‖= r(h)+ r(k) = ‖G(h)‖+‖G(k)‖ � 2‖G(a)‖= 2r(a) � 2‖a‖,

so the Gelfand transform is a linear homeomorphism from A onto G(A), and so G(A)
is closed in CC(Δ). It follows that G(A) =CC(Δ).

Remark 2.3.25 We note that the above proof does not involve Theorem 2.3.8.
Therefore, it becomes an autonomous proof of that theorem in the particular asso-
ciative and commutative case.

Lemma 2.3.26 Let A be a complete associative V -algebra, let ∗ stand for the
natural involution of A, and let a be in A. Then V (a∗a) consists only of non-negative
real numbers.

Proof First of all, note that, since ∗ is an algebra involution (by Theorem 2.3.8),
x∗x is a hermitian element of A whenever x is in A. Let us denote by K(A) the set
of those elements p ∈ A such that V (p) ⊆ R+

0 . Let b be in A. Write b = h+ ik with
h,k ∈ H(A,1). Then we have

b∗b = 2h2 +2k2 −bb∗. (2.3.5)

Now let B stand for the closed subalgebra of A generated by {h,1}. Then, B is
associative and commutative. Moreover, since ∗ is a continuous algebra involution
(by Lemma 2.3.7), B is ∗-invariant. Therefore, keeping in mind Corollary 2.1.2, it
is easily realized that B is a complete V -algebra whose natural involution is the
restriction of ∗ to B. Since both h and h2 are hermitian elements of B, Lemma 2.3.24
applies (with B instead of A), so that we have

V (A,1,h2) =V (B,1,h2)⊆ R+
0 ,

that is h2 ∈ K(A). Analogously, we get k2 ∈ K(A). Assume that −b∗b ∈ K(A). Then,
since sp(b∗b) \ {0} = sp(bb∗) \ {0} (by Fact 1.1.33), it follows from
Proposition 2.3.23 that −bb∗ ∈ K(A), and hence, by (2.3.5), that b∗b ∈ K(A).
But −b∗b ∈ K(A) by assumption, so V (b∗b) = 0. Analogously, V (bb∗) = 0, so
V (h2+k2) = 0. Therefore V (h2) =V (k2) = 0, and, by Corollary 2.1.13, h2 = k2 = 0.
By Proposition 2.3.22, we finally have h = k = 0, and hence b = 0.

Now, let a be the arbitrary element of A in the statement. Then, keeping in mind
that a∗a ∈ H(A,1), and thinking about the closed subalgebra of A generated by
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{a∗a,1}, we can apply Lemma 2.3.24 (with this subalgebra instead of A) to get
the existence of p,q ∈ K(A) such that a∗a = p− q and pq = qp = 0. Set b :=aq.
Then −b∗b = −qa∗aq = q3 ∈ K(A), and hence b = 0 by the above paragraph.
Consequently, we have a∗aq = a∗b = 0, so q2 = 0, and so q = 0. Thus we get
a∗a = p ∈ K(A), as required.

Lemma 2.3.27 Let A be a C∗-algebra, and let | · | be an algebra norm on A such
that | · | � ‖ · ‖. Then | · |= ‖ · ‖.

Proof Let a be in A. Then the closed subalgebra of A generated by a∗a is a commu-
tative C∗-algebra, and hence, by Proposition 1.2.51, we have

‖a‖2 = ‖a∗a‖ � |a∗a| � |a∗||a| � ‖a∗‖|a|= ‖a‖|a|,

and hence ‖a‖ � |a|.

The above lemma will be generalized later in Proposition 4.4.34.

Lemma 2.3.28 (Russo–Dye theorem) Let A be a unital C∗-algebra. Then BA =

co(U), where U stands for the set of all unitary elements of A.

Proof Let x be in A such that 0 < ‖x‖ < 1. Then r(x∗) = r(x) < 1, and r(xx∗) =
r(x∗x) = ‖x‖2 < 1. Let D stand for the open disc in C with centre 0 and radius
‖x‖−1. Then we may define F : D → A by

F(λ ) = (1− xx∗)−
1
2 (λ1+ x)(1+λx∗)−1(1− x∗x)

1
2 for every λ ∈ D.

It is routine that F is holomorphic on D. Let λ be in SC. The following equalities are
elementary:

(1+λx∗)−1(λ1+ x) = x+λ (1+λx∗)−1(1− x∗x), (2.3.6)

(λ1+ x)(1+λx∗)−1 = x+λ (1− xx∗)(1+λx∗)−1. (2.3.7)

Since r(x)< 1, F(λ ) is invertible, and by (2.3.6) and (2.3.7),

(F(λ )−1)∗ = (1− xx∗)
1
2 (λ̄1+ x∗)−1(1+ λ̄x)(1− x∗x)−

1
2

= (1− xx∗)
1
2 (1+λx∗)−1(λ1+ x)(1− x∗x)−

1
2

= (1− xx∗)−
1
2 a(1− x∗x)

1
2 ,

where

a := (1− xx∗)(1+λx∗)−1(λ1+ x)(1− x∗x)−1

= (1− xx∗)[x+λ (1+λx∗)−1(1− x∗x)](1− x∗x)−1

= x+λ (1− xx∗)(1+λx∗)−1

= (λ1+ x)(1+λx∗)−1.

This shows that F(λ ) is unitary for each λ ∈ SC. Since F is holomorphic, we have

F(0) =
1

2π

∫ 2π

0
F(eiθ )dθ .
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Consideration of the series expansion of (1− y)
1
2 for ‖y‖< 1 gives

(1− xx∗)
1
2 x = x(1− x∗x)

1
2 .

Therefore x = F(0) ∈ co(U).

Proposition 2.3.29 (Russo–Dye–Palmer theorem) Let A be a unital C∗-algebra.
Then BA = co(E), where

E := {exp(ih) : h ∈ H(A,∗)}.

Proof We retain the notation in the proof of Lemma 2.3.28. Let u be in U . By
that lemma, it is enough to show that u ∈ co(E). Since u lies in a commutative C∗-
subalgebra of A containing 1, we may assume that A is commutative. Let Δ stand for
the carrier space of A. By Lemmas 2.2.5 and 2.3.24, the Gelfand transform a → G(a)
becomes a continuous bijective algebra ∗-homomorphism from A to CC(Δ). Given
0 < t < 1, set x := tu. Let λ be in SC. Then we have

(λ1+F(λ ))(1+λx∗) =
[
λ1+(λ1+ x)(1+λx∗)−1](1+λx∗)

= λ1+λ 2x∗+λ1+ x = 2λ
[

1+
1
2
(λx∗+ λ̄x)

]
.

Since ‖x‖ < 1, it follows that λ1+F(λ ) is invertible, and hence, since F(λ ) is a
unitary element of A, we derive that sp(F(λ ))⊆ SC \{−λ}. Now, take a continuous
logarithm log : SC \ {−λ} → C. Then g := −i log◦G(F(λ )) is a real-valued con-
tinuous function on Δ satisfying exp(ig) = G(F(λ )). Now, if h denotes the unique
element in A such that G(h) = g, then we have h ∈ H(A,∗) and exp(ih) = F(λ ).
Therefore F(λ) lies in E and, as in Lemma 2.3.28, x ∈ co(E). Finally, let t → 1.

Definition 2.3.30 Let A be a complex ∗-algebra, and let f be a linear functional
on A. We say that f is positive if, for every a ∈ A, we have f (a∗) = f (a) and
f (a∗a)�0. By a C∗-seminorm (respectively, a C∗-norm) on A we mean a submulti-
plicative seminorm (respectively, norm) ||| · ||| on A satisfying

|||a∗a|||= |||a|||2 for every a ∈ A.

Lemma 2.3.31 Let A be a normed unital associative complex ∗-algebra whose
involution is continuous, let P stand for the set of those continuous positive linear
functionals f on A satisfying f (1) = 1, and for a ∈ A set

|||a||| := sup{
√

f (a∗a) : f ∈ P}.

Then ||| · ||| is a continuous C∗-seminorm on A.

Proof Let f be a positive linear functional on A. Then (a,b)→ f (b∗a) becomes a
non-negative hermitian sesquilinear form on A, and hence the mapping a→

√
f (a∗a)

is a seminorm on A, and moreover, by the Cauchy–Schwartz inequality, for a ∈ A
we have

| f (a)|2 = | f (1∗a)|2 � f (1) f (a∗a). (2.3.8)

Therefore, if in addition f is continuous, then we have

| f (a)|2 � f (1)‖ f‖‖a∗‖‖a‖ � f (1)‖ f‖‖∗‖‖a‖2
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for every a ∈ A, which implies

‖ f‖ � f (1)‖∗‖, (2.3.9)

so

f (a∗a) � ‖ f‖‖a∗a‖ � f (1)‖∗‖2‖a‖2,

and so ||| · |||� ‖∗‖‖·‖ on A, which shows that ||| · ||| is indeed a continuous seminorm.
Let a,b be in A, and let f be in P. We claim that

f ((ab)∗ab) � |||a|||2 f (b∗b). (2.3.10)

To prove the claim, consider the mapping g : x → f (b∗xb) from A to C, and note that
g is a continuous positive linear functional on A. If g = 0, then the assertion in the
claim holds in an obvious way. Otherwise, by (2.3.9), we have f (b∗b) = g(1) 	= 0,
and consequently 1

f (b∗b)g is an element of P. Therefore

f ((ab)∗ab)
f (b∗b)

=
g(a∗a)
f (b∗b)

� |||a|||2,

which concludes the proof of the claim. Now that the claim is proved, it is enough to
take suprema in (2.3.10), when f runs over P, to get that ||| · ||| is a submultiplicative
seminorm on A.

Now, let a be in A, and let f be in P. Writing (2.3.8) with a∗a instead of a, we get
f (a∗a)2 � f (a∗aa∗a), which implies |||a|||2 � |||a∗a|||. Since ||| · ||| is a submultiplica-
tive seminorm, the above implies in its turn that |||a|||2 = |||a∗a|||.

Theorem 2.3.32 (Vidav–Palmer) Let A be a complete associative V -algebra. Then
A, endowed with its natural involution and its own norm, becomes a C∗-algebra.

Proof Let ∗ stand for the natural involution of A. Then, by Lemma 2.3.7(ii) and
Theorem 2.3.8, ∗ is a continuous algebra involution, a fact that must be kept in mind
throughout the remaining part of the proof. Let P and ||| · ||| be as in Lemma 2.3.31.
Then, by Lemma 2.3.26, we have D(A,1) ⊆ P, and hence, by Lemma 2.3.7(i) and
(2.3.8), for a ∈ A we get

1
2
‖a‖ � v(a) = sup{| f (a)| : f ∈ D(A,1)}

� sup{
√

f (a∗a) : f ∈ D(A,1)} � |||a|||.

It follows from Lemma 2.3.31 that ||| · ||| is an equivalent C∗-norm on A. Therefore
(A,∗, ||| · |||) is a C∗-algebra, and hence, by Proposition 2.3.29 and Corollary 2.1.9(iii),
we have

B(A,|||·|||) = co{exp(ih) : h ∈ H(A,∗)}= co{exp(ih) : h ∈ H(A,1)} ⊆ BA.

As a result, we have ‖ · ‖ � ||| · |||, and the proof is concluded by applying Lemma
2.3.27.

Remark 2.3.33 The application of Lemma 2.3.27, just done at the end of the above
proof, can be avoided. Indeed, by Lemma 2.2.5, we have

H((A, ||| · |||),1)) = H(A,∗) = H(A,1),
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and hence, by Proposition 2.3.22, we get |||h|||= ‖h‖ for every h∈H(A,∗). Therefore,
if for some a ∈ A we had ‖a‖< |||a|||, then we would have

‖a∗a‖ � ‖a∗‖‖a‖< |||a∗||||||a|||= |||a∗a|||= ‖a∗a‖,

a contradiction.

2.3.3 Complements on C∗-algebras

§2.3.34 Let (X ,u) be a real numerical-range space such that u is a vertex of BX .
Then, clearly, the set C := {x ∈ X : V (X ,u,x)⊆ R+

0 } is a closed proper convex cone
in X . Therefore, according to §1.2.39, X naturally becomes an ordered set in such
a way that C = {x ∈ X : x � 0}. The order of X just reviewed will be called the
numerical-range order.

The following facts follow straightforwardly.

Fact 2.3.35 Let (X ,u) and (Y,v) be real numerical-range spaces such that u and v
are vertices of BX and BY , respectively, and let T : X → Y be a linear mapping with
T (u) = v. We have:

(i) If T is contractive, then T preserves numerical-range orders.
(ii) If in fact n(Y,v) = 1, and if T preserves numerical-range orders, then T is

contractive.

Fact 2.3.36 Let (X ,u) be a real numerical-range space with n(X ,u) = 1. Then
0 � x � y in the numerical-range order of X implies ‖x‖ � ‖y‖.

§2.3.37 Now, let A be a norm-unital normed complex algebra. Then (H(A,1),1) is a
real numerical-range space, and, by Corollary 2.1.2 and Propositions 2.1.4 and 2.3.4,
we have n(H(A,1)) = 1. Therefore, §2.3.34 and Fact 2.3.35 apply appropriately. We
also note that if A is in fact a unital C∗-algebra, then, by Lemma 2.2.5, we have
H(A,∗) = H(A,1).

Keeping in mind Lemma 2.2.5 and Proposition 2.3.23, we get the following.

Proposition 2.3.38 Let A be a unital C∗-algebra. Then the usual order of H(A,∗)
(cf. §1.2.41) coincides with the numerical-range order.

Now, we summarize some facts about the order in the self-adjoint part of a (pos-
sibly non-unital) C∗-algebra (cf. §1.2.47).

Proposition 2.3.39 Let A be a C∗-algebra. We have:

(i) For h ∈ H(A,∗), the following conditions are equivalent:

(a) h � 0.
(b) h = k2 for some k ∈ H(A,∗).
(c) h = a∗a for some a ∈ A.

(ii) If a,b ∈ H(A,∗) with a � b, and if c is in A, then c∗ac � c∗bc.
(iii) If 0 � a � b, then ‖a‖ � ‖b‖.
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(iv) If A is unital, and if a,b are positive invertible elements with a � b, then
0 � b−1 � a−1.

(v) If 0 � a � b, then a
1
2 � b

1
2 .

Proof By Proposition 1.2.48(ii), every positive element of A is of the form k2 for
some k ∈ H(A,∗), and hence of the form a∗a for some a ∈ A. Conversely, by consid-
ering the C∗-algebra unital extension of A if necessary, and applying Lemma 2.3.26
and Proposition 2.3.38, we obtain a∗a � 0 for every a ∈ A. This proves assertion (i).

Let a,b in H(A,∗) such that a � b, and let c be in A. Keeping in mind assertion (i),
we realize that there exists x ∈ A such that b−a = x∗x, hence

c∗bc− c∗ac = c∗(b−a)c = c∗x∗xc = (xc)∗xc � 0.

This proves assertion (ii).
Passing to the C∗-algebra unital extension of A if necessary, assertion (iii) follows

from Proposition 2.3.38 and Fact 2.3.36.
Assume that A is unital. To prove assertion (iv) we first observe that if c � 1, then

c is invertible and c−1 � 1. This follows from assertion (ii) since

c−1 = c−
1
2 1c−

1
2 � c−

1
2 cc−

1
2 = 1.

Now, suppose that a,b are invertible and 0 � a � b. Then, we have

1 = a−
1
2 aa−

1
2 � a−

1
2 ba−

1
2 .

It follows from the above particular case that (a−
1
2 ba−

1
2 )−1 � 1, that is

a
1
2 b−1a

1
2 � 1.

Hence b−1 � (a
1
2 )−1(a

1
2 )−1 = a−1.

Finally, in order to prove assertion (v), note that it suffices to show that for positive
elements a,b ∈ A, the condition a2 � b2 implies a � b. Moreover, by considering the
C∗-algebra unital extension of A if necessary, we may assume that A is unital. Let
t > 0, and write (t1+b+a)(t1+b−a) = h+ ik with h,k ∈ H(A,∗). Then

h =
1
2
[t1+b+a)(t1+b−a)+(t1+b−a)(t1+b+a)]

= t21+2tb+b2 −a2 � t21.

Consequently, h is both invertible and positive. Since

1+ ih−
1
2 kh−

1
2 = h−

1
2 (h+ ik)h−

1
2 ,

and 1 + ih−
1
2 kh−

1
2 is invertible (by Proposition 1.2.20(ii)), we get that h + ik is

invertible. It follows that c(t1 + b − a) = 1 = (t1 + b − a)c∗ for some c ∈ A,
and therefore (t1 + b − a) is invertible because of Lemma 1.1.59. Consequently,
−t /∈ sp(b−a). Hence sp(b−a)⊆ R+

0 , so b−a is positive, that is, a � b.

Exercise 2.3.40 Prove that, for elements a,b in an arbitrary C∗-algebra, the
implication

0 � a � b =⇒ a2 � b2

is not true.
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Solution For example, consider the C∗-algebra A=M2(C), and take the self-adjoint

matrices a =

(
1 0
0 0

)
and b =

(
2 1
1 1

)
.

Now we are going to study closed ideals of C∗-algebras.

Lemma 2.3.41 Let A be a V -algebra, let B be a norm-unital normed complex
algebra, and let T : A → B be a unit-preserving surjective linear contraction. Then
B is a V -algebra, and T preserves natural involutions.

Proof Since A = H(A,1) + iH(A,1), and T (H(A,1)) ⊆ H(B,1) (by Corollary
2.1.2(i)), we have B = T (A) ⊆ H(B,1)+ iH(B,1) ⊆ B, and hence B is a V -algebra.
Since H(A,∗) = H(A,1) and H(B,∗) = H(B,1), it follows from Exercise 1.2.21 that
T is a ∗-mapping.

If X is a vector space over K, if ∗ is a conjugate-linear involution on X , and if
M is a ∗-invariant subspace of X , then the mapping x +M → x∗ +M becomes a
conjugate-linear involution on X/M, which will be called the quotient involution.

Corollary 2.3.42 Let A be a V -algebra, and let M be a closed proper ideal of A.
Then M is invariant under the natural involution of A, and A/M is a V -algebra whose
natural involution is the quotient involution of that of A.

Proof Set B := A/M. By §1.1.110, B is a norm-unital normed complex algebra.
Now, the result follows from Lemma 2.3.41 by taking T : A→ B equal to the quotient
algebra homomorphism, and noticing that M = ker(T ).

Proposition 2.3.43 Let A be a C∗-algebra, and let M be a closed ideal of A. Then
M is ∗-invariant, and A/M is a C∗-algebra for the quotient norm and the quotient
involution.

Proof We may assume that M is proper. If A is unital, then the result follows from
Lemma 2.2.5, Corollary 2.3.42, and Theorem 2.3.32.

Assume that A is not unital. Then the C∗-algebra unital extension A1 of A is a unital
C∗-algebra containing A (isometrically) as a ∗-subalgebra (by Proposition 1.2.44),
and M becomes a closed proper ideal of A1 . By the above paragraph, M is ∗-invariant,
and A1/M is a C∗-algebra in the natural way. Moreover, since A/M can be seen
isometrically as a ∗-subalgebra of A1/M, A/M is a C∗-algebra in the natural way.

Now, we are going to prove Theorem 2.2.15 (that biduals of C∗-algebras are C∗-
algebras in a natural way). To this end, the reader should recall the definition of the
adjoint of a bounded bilinear mapping (see §2.2.11) and, in particular, should regard
the bidual of any normed algebra as a new normed algebra (relative to the Arens
product). Moreover, the consequence of Corollary 2.2.13, that the bidual of a norm-
unital normed algebra A is a norm-unital normed algebra with the same unit as that
of A, should be kept in mind.

Lemma 2.3.44 Let A be a norm-unital normed algebra over K, and let a′′ be in A′′.
Then V (A′′,1,a′′) equals the closure in K of the set

V w∗
(A′′,1,a′′) := {a′′( f ) : f ∈ D(A,1)}.
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Proof Let m denote the product of A. For (b,b′) ∈ A×A′, we have

m′(b′,1)(b) = b′(m(1,b)) = b′(b),

and hence m′(b′,1) = b′. Therefore, for (b′,b′′) ∈Π(A′) we have

m′′(b′′,b′)(1) = b′′(m′(b′,1)) = b′′(b′) = 1,

so m′′(b′′,b′) ∈ D(A,1).
On the other hand, invoking Lemma 2.1.10, and applying Corollary 2.1.34 with

X := A′ and F := La′′ : A′′ → A′′, we have

V (A′′,1,a′′) =V (BL(A′′), IA′′ ,La′′)

= co{m′′′(a′′,b′′)(b′) : (b′,b′′) ∈Π(A′)}

= co{a′′(m′′(b′′,b′)) : (b′,b′′) ∈Π(A′)}.

Since the set V w∗
(A′′,1,a′′) is convex, it follows from the first paragraph in the proof

that V (A′′,1,a′′) is contained in the closure in K of V w∗
(A′′,1,a′′). The converse

inclusion is also true because V (A′′,1,a′′) is closed in K and, for f ∈ D(A,1), the
mapping b′′ → b′′( f ) from A′′ to K is an element of D(A′′,1).

§2.3.45 Let X be a normed space over K endowed with a continuous conjugate-
linear involution ∗. For f ∈ X ′ we define f ∗ ∈ X ′ by f ∗(x) = f (x∗) for every x ∈ X .
Then f → f ∗ is a continuous conjugate-linear involution on X ′ which we shall call
the transpose of the one on X . In what follows, X ′ and X ′′ will be seen without
notice endowed with the transpose and bitranspose involutions, respectively, and the
fact that the bitranspose involution on X ′′ extends the one given on X should be kept
in mind.

Let X ,Y,Z be normed spaces over K, each of which is endowed with a continuous
conjugate-linear involution ∗, and let m : X ×Y → Z be a continuous bilinear map-
ping. Then m∗ will stand for the continuous bilinear mapping (x,y) → (m(x∗,y∗))∗

from X ×Y into Z.

Lemma 2.3.46 Let X ,Y,Z be normed spaces over K, each of which is endowed with
a continuous conjugate-linear involution ∗, and let m : X ×Y → Z be a continuous
bilinear mapping. Then m′∗ = m∗ ′. As a consequence, mt∗ = m∗ t .

Proof The fist conclusion follows from the fact that, for all x∈X , y∈Y , and z′ ∈ Z′,
we have

m′∗(z′,x)(y) = (m′(z′∗,x∗))∗(y) = m′(z′∗,x∗)(y∗) = z′∗(m(x∗,y∗))

= z′((m(x∗,y∗))∗) = z′(m∗(x,y)) = m∗ ′(z′,x)(y).

As a consequence, we have

mt∗ = m′′′∗ = m′′∗ ′ = m′∗ ′′ = m∗ ′′′ = m∗ t .

Corollary 2.3.47 Let A be a normed ∗-algebra over K whose involution is continu-
ous. Then the bitranspose involution on A′′ is an algebra involution if and only if A
is Arens regular.
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Proof Let m denote the product of A. Since ∗ is an algebra involution on A, we have
m∗ = mr. Then, by Lemma 2.3.46, the equality mt∗ = mrt holds, and so mrt = mt r

(the Arens regularity of A) is equivalent to mt∗ = mt r (i.e. the bitranspose involution
is an algebra involution on A′′).

Proposition 2.3.48 Let A be a V -algebra. Then the bidual of A is a V -algebra
whose natural involution coincides with the bitranspose of the natural involution of
A. As a consequence, A is Arens regular.

Proof Let ∗ denote indistinctly the natural involution of A and the first and second
transpose ones. Let (a′′, f ) be in H(A′′,∗)×D(A,1). Then clearly f ∈ H(A′,∗), so
a′′( f ) ∈R, and so a′′ ∈ H(A′′,1) (by Lemma 2.3.44). Therefore we have H(A′′,∗)⊆
H(A′′,1), which proves the first conclusion. Now, the Arens regularity of A fol-
lows from the fact that ∗ is an algebra involution on A′′ (by Theorem 2.3.8) and
Lemma 2.3.47.

Lemma 2.3.49 Let A be a normed associative algebra over K. Then the normed
algebra A′′ is associative.

Proof Let m denote the product of A. Since A is associative, for all a,b,c ∈ A
we have

m(m(a,b),c) = m(a,m(b,c)).

Therefore, for every a′ ∈ A′ we see that

m′(a′,m(a,b))(c) = a′(m(m(a,b),c)) = a′(m(a,m(b,c)))

= m′(a′,a)(m(b,c)) = m′(m′(a′,a),b)(c),

and hence

m′(a′,m(a,b)) = m′(m′(a′,a),b). (2.3.11)

Applying (2.3.11), for every c′′ ∈ A′′ we get

m′(m′′(c′′,a′),a)(b) = m′′(c′′,a′)(m(a,b)) = c′′(m′(a′,m(a,b)))

= c′′(m′(m′(a′,a),b)) = m′′(c′′,m′(a′,a))(b),

and hence

m′(m′′(c′′,a′),a) = m′′(c′′,m′(a′,a)). (2.3.12)

Using (2.3.12), for every b′′ ∈ A′′ we obtain

m′′(b′′,m′′(c′′,a′))(a) = b′′(m′(m′′(c′′,a′),a)) = b′′(m′′(c′′,m′(a′,a)))

= mt(b′′,c′′)(m′(a′,a)) = m′′(mt(b′′,c′′),a′)(a),

and hence

m′′(b′′,m′′(c′′,a′)) = m′′(mt(b′′,c′′),a′). (2.3.13)
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Finally, applying (2.3.13), for every a′′ ∈ A′′ we conclude that

mt(mt(a′′,b′′),c′′)(a′) = mt(a′′,b′′)(m′′(c′′,a′)) = a′′(m′′(b′′,m′′(c′′,a′)))

= a′′(m′′(mt(b′′,c′′),a′)) = mt(a′′,mt(b′′,c′′))(a′),

and hence

mt(mt(a′′,b′′),c′′) = mt(a′′,mt(b′′,c′′)),

i.e. A′′ is associative.

Lemma 2.3.50 Let X be a normed space over K endowed with a continuous
conjugate-linear involution ∗, and let Y be a ∗-invariant subspace of X. Then the
bipolar Y ◦◦ of Y in X ′′ is invariant under the bitranspose involution, and the natural
Banach space identification of Y ◦◦ with Y ′′ preserves bitranspose involutions.

Proof For the sake of convenience, let us take different symbols for the w∗-topology
of X ′′ (say σ(X ′′,X ′)) and the w∗-topology of Y ′′ (say analogously σ(Y ′′,Y ′)). Let
∗ also stand for the bitranspose involution on X ′′. Since ∗ is σ(X ′′,X ′)-continuous
on X ′′, and Y is ∗-invariant, the set {x ∈ Y ◦◦ : x∗ ∈ Y ◦◦} is σ(X ′′,X ′)-closed in X ′′

and contains Y . Therefore, since Y is σ(X ′′,X ′)-dense in Y ◦◦, we deduce that Y ◦◦ is
∗-invariant. Now, denote also by ∗ the bitranspose involution on Y ′′ of the involution
of Y (as a ∗-invariant subspace of X), and recall that it is σ(Y ′′,Y ′)-continuous. Since
the natural identification Φ : Y ◦◦ → Y ′′ is σ(X ′′,X ′)|Y ◦◦ -to-σ(Y ′′,Y ′) continuous and
becomes the identity on Y , the set {x ∈ Y ◦◦ : Φ(x∗) =Φ(x)∗} is σ(X ′′,X ′)-closed in
X ′′ and contains Y . The σ(X ′′,X ′)-density of Y in Y ◦◦ gives Φ(x∗) =Φ(x)∗ for every
x ∈ Y ◦◦.

Lemma 2.3.51 Let X ,Y,Z be normed spaces over K, and let m : X ×Y → Z be a
bounded bilinear mapping. The following conditions are equivalent:

(i) The Arens extension mt : X ′′ ×Y ′′ → Z′′ is w∗-continuous in its second variable.
(ii) The Arens extension mt is separately w∗-continuous.

(iii) There exists a separately w∗-continuous mapping from X ′′ ×Y ′′ to Z′′ which
extends m.

(iv) m is Arens regular.

Proof (i)⇒(ii) By Lemma 2.2.12(iii)(b).
(ii)⇒(iii) This is clear.
(iii)⇒(iv) Assume that there exists a separately w∗-continuous mapping

g : X ′′ ×Y ′′ → Z′′ which extends m. Then, by Lemma 2.2.12(iii), we have g = mt

and gr = mrt . Since the first equality implies gr = mtr, we deduce mtr = mrt , i.e. m is
Arens regular.

(iv)⇒(i) By Lemma 2.2.12(iii)(b), mrt is w∗-continuous in its first variable. There-
fore, if m is Arens regular (i.e. mtr = mrt), then mt is w∗-continuous in its second
variable.

Lemma 2.3.52 Let B be a normed algebra over K, and let A be a subalgebra of
B. Then the bipolar A◦◦ of A in B′′ is a subalgebra of B′′, and the natural Banach
space identification of A◦◦ with A′′ becomes a bijective algebra homomorphism. As
a consequence A is Arens regular whenever so is B.
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Proof The set {y ∈ A◦◦ : Ay ⊆ A◦◦} contains A and, by Lemma 2.2.12(iii)(c), is
σ(B′′,B′)-closed in B′′. Therefore, since A is σ(B′′,B′)-dense in A◦◦, we deduce
that AA◦◦ ⊆ A◦◦. Now, the set {z ∈ A◦◦ : zA◦◦ ⊆ A◦◦} contains A and, by Lemma
2.2.12(iii)(b), is σ(B′′,B′)-closed in B′′. The σ(B′′,B′)-density of A in A◦◦ gives that
A◦◦A◦◦ ⊆ A◦◦, i.e. A◦◦ is a subalgebra of B′′. Assume that B is Arens regular. Then,
by Lemma 2.3.51, the product of B′′ is separately σ(B′′,B′)-continuous. Now, since
the natural identification Φ : A◦◦ →A′′ is σ(B′′,B′)|A◦◦ -to-σ(A′′,A′) bicontinuous and
becomes the identity on A, the mapping (u,v)→Φ(Φ−1(u)Φ−1(v)) from A′′ ×A′′ to
A′′ is separately σ(A′′,A′)-continuous and extends the product of A. It follows from
Lemma 2.3.51 that A is Arens regular.

§2.3.53 Proof of Theorem 2.2.15 Let A be a nonzero C∗-algebra.
Assume at first that A is unital. Then, by Lemma 2.2.5, A is a V -algebra. Therefore,

by Proposition 2.3.48, Lemma 2.3.49, and Theorem 2.3.32, A′′, endowed with the
Arens product and the bitranspose of the involution of A, becomes a unital C∗-
algebra, and moreover A is Arens regular.

To conclude the proof, we must show that the same conclusion holds if A is
not unital. In this case, we consider the C∗-algebra unital extension A1 of A (see
Proposition 1.2.44), so that, by the above paragraph, the desired conclusion holds
with A1 instead of A. Therefore, since A is a ∗-subalgebra of A1 , Lemmas 2.3.50
and 2.3.52 apply to get that the bipolar A◦◦ of A in (A1)

′′ is a ∗-subalgebra of the C∗-
algebra (A1)

′′, that the natural Banach space identification Φ : A◦◦ → A′′ becomes a
bijective algebra ∗-homomorphism, and that A is Arens regular. Now, since Φ is an
isometry which becomes the identity on A, it turns out clear that A′′ is a C∗-algebra in
the natural way. Finally, since BA′′ has extreme points (by the Banach–Alaoglu and
Krein–Milman theorems), it follows from Lemma 2.1.26 that A′′ is unital.

Now that Theorem 2.2.15 has been proved, we are going to provide some comple-
ments on the C∗-algebra of multipliers of a given C∗-algebra in order to derive the
Banach–Stone theorem, on isometries of CC

0 (E)-spaces, from the Kadison–Paterson–
Sinclair theorem (cf. Theorem 2.2.19).

Definition 2.3.54 Flexible algebras are defined as those algebras satisfying the
‘flexibility’ condition (ab)a = a(ba).

Fact 2.3.55 Let A be a flexible algebra over K, let a be in A, and let I be an ideal
of A having a unit element e. Then ae = ea.

Proof Since ae and ea lie in I, and e is the unit of I, we have

ae = e(ae) = (ea)e = ea.

An ideal I of an algebra A over K is said to be essential if I ∩ J 	= 0 for every
nonzero ideal J of A. Now, let A be a C∗-algebra. We recall that closed ideals of A
are ∗-invariant (cf. Proposition 2.3.43) (and hence are C∗-algebras), and that the
C∗-algebra M(A) of multipliers of A was defined as the closed ∗-subalgebra of A′′

given by

{a′′ ∈ A′′ : a′′A ⊆ A and Aa′′ ⊆ A}

(cf. §2.2.16).
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Proposition 2.3.56 Let A be a C∗-algebra. We have:

(i) Every closed ∗-subalgebra of M(A) containing A becomes a C∗-algebra con-
taining A as an essential ideal.

(ii) Conversely, any C∗-algebra containing A as an essential ideal can be seen in a
natural way as a closed ∗-subalgebra of M(A) containing A. More precisely, if B
is a C∗-algebra, if φ : A → B is an isometric algebra ∗-homomorphism such that
φ(A) is an essential ideal of B, then there is a unique algebra ∗-homomorphism
η : B → M(A) satisfying η ◦ φ = ι , where ι denotes the inclusion A ↪→ M(A),
and moreover η is an isometry.

Proof Let C be any closed ∗-subalgebra of M(A) containing A. Clearly A is an ideal
of C. Now let I be an ideal of C with I ∩A = 0. Then we have AI = 0, so A′′I = 0
because the product of A′′ is w∗-continuous in its first variable and A is w∗-dense in
A′′. Therefore I∗I = 0, hence I = 0. This proves assertion (i).

Let B be a C∗-algebra, and let φ : A → B be an isometric algebra ∗-homomorphism
such that φ(A) is an essential ideal of B. Since A′′ and B′′ are C∗-algebras with sep-
arately w∗-continuous products and w∗-continuous involutions (cf. Theorem 2.2.15
and the implication (iv)⇒(ii) in Lemma 2.3.51), φ ′′ becomes an isometric algebra
∗-homomorphism from A′′ to B′′ whose range is a w∗-closed ideal of B′′. Keep-
ing in mind the Banach–Alaoglu and Krein–Milman theorems, it follows from
Lemma 2.1.26 that φ ′′(A′′) has a unit (say e), which becomes clearly an idempotent
of B′′ satisfying φ ′′(A′′) = B′′e. From now on, Fact 2.3.55 should be omnipresent
in the remaining part of the proof. Thus (B′′(1 − e)) ∩ B is an ideal of B with
zero intersection with φ(A) so, since φ(A) is an essential ideal of B, we have
(B′′(1 − e))∩ B = 0 and therefore, by Corollary 1.2.52, the mapping ψ : x → xe
from B into φ ′′(A′′) is an isometric algebra ∗-homomorphism. Then the mapping
η = (φ ′′)−1 ◦ψ is an isometric algebra ∗-homomorphism from B to A′′ whose range
is contained in M(A), and routinely we see that η ◦ φ = ι , where ι denotes the
inclusion A ↪→ M(A). Assume that ζ : B → M(A) is an algebra ∗-homomorphism
satisfying ζ ◦φ = ι . Since φ(A) is an ideal of B, given a ∈ A and b ∈ B there is c ∈ A
such that φ(a)b = φ(c), and we have

aη(b) = ι(a)η(b) = η(φ(a))η(b) = η(φ(a)b) = η(φ(c)) = ι(c)

= ζ (φ(c)) = ζ (φ(a)b) = ζ (φ(a))ζ (b) = ι(a)ζ (b) = aζ (b).

It follows from the arbitrariness of a ∈ A that A(η(b)− ζ (b)) = 0. Now, keeping in
mind that the product of A′′ is w∗-continuous in its first variable and that A is w∗-
dense in A′′, we see that A′′(η(b)−ζ (b)) = 0, and hence η(b)−ζ (b) = 0. It follows
from the arbitrariness of b ∈ B that ζ = η , and the proof is complete.

Given a topological space E, we denote by CC
b (E) the C∗-algebra of all complex-

valued bounded continuous functions on E.

Proposition 2.3.57 Let E be a locally compact Hausdorff topological space. Then
the C∗-algebra CC

b (E) identifies naturally with the C∗-algebra of multipliers of
CC

0 (E).
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Proof Set A := CC
0 (E) and B := CC

b (E). Then it easily realized that A is an
essential ideal of B. Therefore, by Proposition 2.3.56, there is a unique isometric
∗-homomorphism η : B → M(A) satisfying η ◦ φ = ι , where φ and ι denote the
inclusions A ↪→ B and A ↪→ M(A), respectively. Thus, to conclude the proof it is
enough to show that η is surjective. By Goldstine’s theorem, there is a net uλ in
BA converging to 1 in the weak∗ topology of A′′. Then uλa′′ converges to a′′ in the
weak∗ topology of A′′ for every a′′ ∈ A′′, so uλa converges to a in the weak topology
of A for every a ∈ A; hence

uλa converges to a pointwise for every a ∈ A. (2.3.14)

Now let x be in M(A). Then, for each λ , uλ x is a function from E to ‖x‖BC, i.e. uλ x∈
(‖x‖BC)

E . Therefore, since (‖x‖BC)
E is compact for the topology of the pointwise

convergence, the net uλ x has a cluster point h in (‖x‖BC)
E relative to that topology.

Let a be in A. It follows that ha is a cluster point to the net (uλ x)a in the topology of
the pointwise convergence of CE . But, by (2.3.14), uλ (xa) converges to xa pointwise.
Since (uλ x)a = uλ (xa) in M(A), it follows that ha = xa in CE . Now we claim that
h is continuous. Let tμ be a net in E converging to some t ∈ E. We must show that
h(tμ) converges to h(t) in C. Take a compact neighbourhood K of t in E, so that we
may assume that tμ lies in K for every μ , and use Urysohn’s lemma to find a ∈ A
such that a = 1 on K. Then we have

lim
μ

h(tμ) = lim
μ

h(tμ)a(tμ) = lim
μ
(xa)(tμ) = (xa)(t) = h(t)a(t) = h(t),

as desired. Now that the claim has been proved, we have that h lies in B. Finally,
the equality η(h) = x is easily realized. Indeed, keeping in mind that η becomes the
identity on A, for an arbitrary function a ∈ A we have

η(h)a = η(h)η(a) = η(ha) = ha = xa,

so (η(h)− x)A = 0, hence η(h) = x, as desired.

Combining Corollary 1.1.77, Theorem 2.2.19, and Proposition 2.3.57, we get the
following.

Theorem 2.3.58 (Banach–Stone) Let E and F be locally compact Hausdorff
topological spaces, and let Ψ : CC

0 (E) → CC
0 (F) be a surjective linear isometry.

Then there exist a continuous function g : F → SC and a homeomorphism η : F → E
such that

Ψ( f )(t) = g(t) f (η(t)) for all f ∈CC
0 (E) and t ∈ F.

Corollary 2.3.59 Two locally compact Hausdorff topological spaces E and F are
homeomorphic if (and only if) the Banach spaces CC

0 (E) and CC
0 (F) are linearly

isometric.

2.3.4 Introducing alternative C∗-algebras

Let A be an algebra over K. Given elements a,b,c ∈ A, we define the associator
[a,b,c] of a,b,c by

[a,b,c] := (ab)c−a(bc).
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We say that A is alternative if the equalities a2b = a(ab) and ba2 = (ba)a hold for
all a,b ∈ A. These identities can be written in the form

[a,a,b] = 0 and [b,a,a] = 0.

The first of these identities is called the left alternative identity, and the second is the
right alternative identity.

Linearizing the left and right alternative identities, we obtain the identities

[a,c,b]+ [c,a,b] = 0 and [b,c,a]+ [b,a,c] = 0,

from which it follows that in an alternative algebra, the associator is an alternating
function of its arguments. In particular, every alternative algebra is flexible (cf. Defin-
ition 2.3.54). In view of flexibility, in an alternative algebra we can (and shall) sub-
sequently write the product aba without indicating an arrangement of parentheses.

Lemma 2.3.60 In every alternative algebra A over K the following identities are
valid:

x(yzy) = [(xy)z]y, the right Moufang identity,

(yzy)x = y[z(yx)], the left Moufang identity,

(xy)(zx) = x(yz)x, the middle Moufang identity.

Proof We shall first prove that the algebra A satisfies the identity

[x2,y,x] = 0. (2.3.15)

By the flexible and left alternative identities we have

(x2y)x = [x(xy)]x = x(xyx) = x2(yx),

that is, (2.3.15) is proved. Now by (2.3.15)

xy3 = (xy2)y− [x,y2,y] = (xy2)y = [(xy)y]y.

Linearizing the identity xy3 − [(xy)y]y = 0 we find that

0 = x(zy2)+ x(yzy)+ x(y2z)− (xz)y2 − [(xy)z]y− (xy2)z

= x(yzy)− [(xy)z]y− [x,y2,z]− [x,z,y2] = x(yzy)− [(xy)z]y,

and so the right Moufang identity is proved. Left Moufang identity is the reciprocal
relationship (obtained by passing to the opposite algebra, which is alternative since
the defining identities are reciprocal). Finally,

(xy)(zx)− x(yz)x =−[xy,z,x]+ [x,y,z]x = [z,xy,x]+ [z,x,y]x

= [z(xy)]x− z(xyx)+ [(zx)y]x− [z(xy)]x = 0.

The right Moufand identity is equivalent to

[x,yz,y] =−[x,y,z]y, (2.3.16)

since [x,yz,y] = [x(yz)]y− x(yzy) = [x(yz)]y− [(xy)z]y = −[x,y,z]y. The linearized
form of (2.3.16) is

[x,yz,u]+ [x,uz,y] =−[x,y,z]u− [x,u,z]y. (2.3.17)
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Now we prove the so-called ‘Artin’s theorem’.

Theorem 2.3.61 An algebra A over K is alternative (if and) only if the subalgebra
of A generated by any two elements of A is associative.

Proof The ‘if’ part is clear. If a,b are two elements of A, we denote by p = p(a,b)
any non-associative product c1c2 · · ·ct (with some distribution of parentheses) of t
factors ck, each of which is equal to a or b. Also we denote the length t of such a
product by deg(p). In order to prove the ‘only if’ part it clearly suffices to show that
[p,q,r] = 0 for all non-associative products p = p(a,b), q = q(a,b), and r = r(a,b).
We shall prove this assertion by induction on the number

n = deg(p)+deg(q)+deg(r).

If n = 3, then everything follows from the left and right alternative and flex-
ible identities. Now let n > 3, and assume inductively that [u,v,w] = 0 for all non-
associative products u = u(a,b), v = v(a,b), and w = w(a,b) such that
deg(u)+deg(v)+deg(w)< n. Since max{deg(p),deg(q),deg(r)}< n, the induction
hypothesis implies, by the usual argument which yields the generalized associative
law from the associative law, that parentheses are not necessary in the writing of the
products p = p(a,b), q = q(a,b), and r = r(a,b).

Now two of the products p,q,r must begin with the same letter, say a. Moreover,
since associators alternate in A, we may assume that q and r begin with a. If
deg(q) > 1 and deg(r) > 1, then q = aq0 and r = ar0, where deg(q0) = deg(q)− 1
and deg(r0) = deg(r)−1. Setting x = ar0, z = q0, and u = p in (2.3.17), we have

[p,q,r] = [p,aq0,ar0] =−[ar0,aq0, p]

= [ar0, pq0,a]+ [ar0,a,q0]p+[ar0, p,q0]a

=−[pq0,aro,a] = [pq0,a,r0]a = 0

by (2.3.16) and the assumption of the induction. If only one of the products q,r has
degree > 1 (say q = aq0), then (2.3.16) implies that

[p,q,r] = [p,aq0,a] =−[p,a,q0]a = 0

by the assumption of the induction. The easiest case deg(q) = deg(r) = 1 is given by
the right alternative law: [p,q,r] = [p,a,a] = 0.

§2.3.62 By an alternative C∗-algebra we mean a complete normed alternative
complex ∗-algebra A satisfying ‖a∗a‖= ‖a‖2 for every a ∈ A.

Now, the generalization of the associative Vidav–Palmer theorem to the alternative
case is easy. Indeed, we have the following.

Corollary 2.3.63 Let A be a complete alternative V -algebra. Then A, equipped
with its natural involution ∗, becomes an alternative C∗-algebra.

Proof That ∗ is an algebra involution follows from Theorem 2.3.8. Let a be an
element of A, and let B stand for the closed subalgebra of A generated by {a,a∗,1}.
Then, by Theorem 2.3.61, B is associative. Moreover, since ∗ is a continuous algebra
involution (by Lemma 2.3.7), B is ∗-invariant. Now, keeping in mind Corollary 2.1.2,
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it is easily realized that B is a complete V -algebra whose natural involution is the
restriction of ∗ to B. Therefore, since B is associative, Theorem 2.3.32 applies, so
that we have ‖x∗x‖= ‖x‖2 for every x ∈ B. Consequently, ‖a∗a‖= ‖a‖2.

Let A be an algebra over K, and let π : A → A be a linear projection. Then π(A)
becomes naturally an algebra over K under the product �π defined by

x�π y := π(xy)

for all x,y ∈ π(A). If A has a unit 1 and if π(1) = 1, then 1 remains a unit for
(π(A),�π). If A is normed, and if π is contractive, then (π(A),�π) becomes a
normed algebra (under the restriction of the norm of A). Therefore, if in addition A
is norm-unital and π is unit-preserving, then (π(A),�π) is a norm-unital normed
algebra. Moreover, invoking Corollary 2.1.2(i), we straightforwardly derive the
following.

Proposition 2.3.64 Let A be a V -algebra, and let π : A → A be a unit-preserving
contractive linear projection. Then (π(A),�π) is a V -algebra whose natural involu-
tion coincides with the restriction to π(A) of the natural involution of A.

Since unital alternative C∗-algebras are V -algebras (by Lemma 2.2.5), and com-
plete alternative V -algebras are alternative C∗-algebras (by Corollary 2.3.63), Prop-
osition 2.3.64 above could lead to expect that ranges of unit-preserving contractive
linear projections on unital alternative C∗-algebras are alternative C∗-algebras. As
the following example shows, this is no longer true, even in the case of (associative)
C∗-algebras.

Example 2.3.65 Let A stand for the unital C∗-algebra M2(C), and let π be the
unit-preserving linear projection on A defined by

π
(
α11 α12

α21 α22

)
:=

(α11+α22
2 α12

α21
α11+α22

2

)
.

With the help of Exercise 1.2.15, it is easily realized that π is contractive. Let x,y

be the elements of π(A) given by x :=

(
0 1
0 0

)
and y :=

(
0 0
1 0

)
. Then we have

x�π x = 0 and y�π x = 1
2 1, and hence y�π (x�π x) = 0 and (y�π x)�π x = 1

2 x.
Therefore (π(A),�π) is not associative, nor even alternative. Moreover, noticing
that y = x∗, we have ‖x∗ �π x‖ = 1

2 , whereas ‖x‖2 = 1. Thus, in view of Propos-
ition 2.3.64, (π(A),�π) becomes an example of a V -algebra whose norm is not a
C∗-norm for the natural involution. The last reason of this pathology will be found
later in Theorem 3.2.5.

§2.3.66 We note that, as in the associative case, if A is a unital alternative C∗-
algebra, then, by Lemma 2.2.5, we have H(A,∗) = H(A,1), and hence, by §§2.3.37
and 2.3.34, H(A,∗) is canonically endowed with the numerical-range order.

Corollary 2.3.67 Let A be a unital alternative C∗-algebra and let a be in A. Then
we have a∗a � 0 in the numerical-range order of H(A,∗).
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Proof By Theorem 2.3.61, the closed subalgebra of A (say B) generated by
{1,a,a∗} is a C∗-algebra. Therefore, by Corollary 2.1.2 and Propositions 2.3.38
and 2.3.39(i), we have V (A,1,a∗a) = V (B,1,a∗a) ⊆ R+

0 . It follows that a∗a � 0 in
H(A,∗).

Theorem 2.3.68 Let A be a unital alternative C∗-algebra, and let π : A → A be a
unit-preserving contractive linear projection such that

π(π(a)∗π(a)) � π(a∗a) (2.3.18)

for every a ∈ A. Then π(A) is a ∗-invariant subspace of A, and π(A) becomes a
unital alternative C∗-algebra under the norm and the involution of A, and the product
x�π y := π(xy). Moreover, if A is associative, then so is the algebra (π(A),�π).

Proof We note at first that, by Lemma 2.2.5, Corollary 2.1.2(i), and Exercise 1.2.21,
π becomes a ∗-mapping. Let f be in D(A,1). Then g := fπ lies in D(A,1), so, by
Corollary 2.3.67, the mapping (a,b) → g(b∗a) becomes a non-negative hermitian
sesquilinear form on (the vector space of) A, and so, by passing to quotient by the
subspace M := {a∈A : g(a∗a)= 0}, we get a complex pre-Hilbert space X with well-
defined inner product (â|b̂) := g(b∗a), where, for c ∈ A, ĉ stands for the canonical
image of c in X . Since gπ = g, it follows from (2.3.18) that, for a ∈ A, we have

‖π̂(a)‖2 = g(π(a)∗π(a)) = g[π(π(a)∗π(a))] � g(π(a∗a)) = g(a∗a) = ‖â‖2.

Therefore â → π̂(a) becomes a well-defined contractive linear projection on X ,
whose continuous extension to the Hilbert space completion of X (say H) will be
denoted by P. By Corollary 1.2.50, P is a self-adjoint operator on H, and hence, for
a,b ∈ A we have

g(π(a)b) = g(π(a∗)∗b) = (b̂|π̂(a∗)) = (b̂|P(â∗))

= (P(b̂)|â∗) = (π̂(b)|â∗) = g(aπ(b)).

Since f is an arbitrary element of D(A,1), and g = fπ , it follows from Corol-
lary 2.1.13 that

π(π(a)b) = π(aπ(b)) (2.3.19)

for all a,b ∈ A. Now, invoking that A is an alternative algebra and (2.3.19), for x,y ∈
π(A), we get that

x�π (y�π y) = π(xπ(y2)) = π(π(x)y2) = π(xy2)

= π((xy)y) = π((xy)π(y)) = π(π(xy)y) = (x�π y)�π y,

and similarly (y �π y)�π x = y �π (y �π x). This shows that (π(A),�π) is an
alternative algebra. Since (π(A),�π) is a complete V -algebra (by Lemma 2.2.5 and
Proposition 2.3.64), it follows from Corollary 2.3.63 that (π(A),�π) is an alternative
C∗-algebra.
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Assume that A is actually associative. Then, invoking again (2.3.19), for x,y,z ∈
π(A) we obtain that

x�π (y�π z) = π(xπ(yz)) = π(π(x)yz) = π(xyz)

= π(xyπ(z)) = π(π(xy)z) = (x�π y)�π z,

and hence the alternative C∗-algebra (π(A),�π) is associative.

Keeping in mind Fact 2.3.35(i), Theorem 2.3.68 implies the following.

Corollary 2.3.69 Let A be a unital C∗-algebra, and let π : A → A be a unit-
preserving contractive linear projection such that

π(a)∗π(a) � π(a∗a) (2.3.20)

for every a∈ A. Then π(A) is a ∗-invariant subspace of A, and π(A) becomes a unital
C∗-algebra under the norm and the involution of A, and the product x�π y := π(xy).

2.3.5 Historical notes and comments

Proposition 2.3.4 is a light non-associative version of the following theorem due to
Sinclair [580].

Theorem 2.3.70 Let A be a norm-unital normed associative complex algebra, let
k be a hermitian element of A, and let λ ,μ be complex numbers. Then r(λ1+μk) =
‖λ1+μk‖.

The argument given here is taken from [695, Section 26], where techniques in
Browder’s paper [133] are incorporated. The conclusion of the proof of The-
orem 2.3.70, following the lines just quoted, goes as follows.

Proof We may assume that A is complete. Moreover, a normalization process, like
the one in the proof of Proposition 2.3.4, allows us to assume in addition that ‖k‖= 1
and that (λ ,μ) = (cos(ϕ), isin(ϕ)) for some ϕ in R. Then, by Proposition 2.3.22,
we have r(k) = 1, and hence, since sp(k) ⊆ R (by Lemma 2.3.21), we also have
r(cos(ϕ)1+ isin(ϕ)k)� 1. Therefore, invoking the inequality (2.3.1) in the proof of
Proposition 2.3.4, we deduce

r(cos(ϕ)1+ isin(ϕ)k) = ‖cos(ϕ)1+ isin(ϕ)k‖.

Complete associative V -algebras were first considered by Vidav [623]. Let A be a
complete associative V -algebra such that

(V) for every hermitian element h ∈ A we have h2 = x + iy with x,y commuting
hermitian elements of A.

Vidav proved that the natural involution ∗ of A is an algebra involution, and that there
is an equivalent algebra norm ||| · ||| on A satisfying |||a∗a||| = |||a|||2 for every a ∈ A,
and |||h||| = ‖h‖ for every h ∈ H(A,1). According to [694, p. 57], ‘E. Berkson [100]
and B. W. Glickfeld [289] showed independently (and by different methods) that
actually we have

(BG) |||a|||= ‖a‖ for every a ∈ A.
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Finally, T. W. Palmer [474] showed that condition (V) is unnecessary and he also
gave the simplest proof of assertion (BG).’ The whole result just reviewed (called
the associative Vidav–Palmer theorem, and stated in Theorem 2.3.32), together with
Lemma 2.2.5, can be read as that unital C∗-algebras and complete associative V -
algebras are the same.

As we have just said, the associative case of Theorem 2.3.8 (that natural involu-
tions of V -algebras are algebra involutions) is due to Vidav [623] and Palmer [474].
The general non-associative version stated here is due to Rodrı́guez [515], whose
proof has been reproduced almost verbatim. Particular non-associative forerunners
had been obtained earlier in [113, 362, 422, 514].

Proposition 2.3.20 is taken from [528]. A non-unital version, also established
in [528], will be proved in Volume 2 of our work.

The consequence of Theorem 2.3.70, given by Proposition 2.3.22, was proved
independently by Sinclair and Browder in the already cited papers [580] and [133],
respectively. The proof given here is that of Bonsall and Crabb [115], as modified
in [695, Section 26]. Proposition 2.3.23 is due to Vidav [623]. Lemma 2.3.26
is an adaptation of Kaplansky’s argument to show that a certain requirement in
the Gelfand–Naimark abstract characterization of C∗-algebras [285] is redundant.
Indeed, the fact given by Proposition 2.3.39(i) that a∗a � 0 for every element a
in a C∗-algebra, was taken by Gelfand and Naimark as an axiom. Kaplansky’s
result, based on previous ideas of Fukamiya [273] and Kelley and Vaught [387],
was recorded in Schatz’ review [554] of Fukamiya’s paper. Lemma 2.3.27 is
due to Bonsall [111]. Lemma 2.3.28 is due to Russo and Dye [548], whereas
the refinement given by Proposition 2.3.29 is due to Palmer [475]. The commutative
forerunner of the Russo–Dye theorem is due to Phelps [491]. The elementary proof
included here (as well as in the books [695, 696, 725, 787]) of the Russo–Dye–
Palmer result is due to Harris [313], who works in a more general setting. The
whole proof of the associative Vidav–Palmer theorem given here (based on the
results already quoted in the current paragraph) is essentially Palmer’s original
proof, as included in the books [694, 695, 696, 725, 786, 787]. Nevertheless,
we have introduced some simplifications, like the one given by Lemma 2.3.24
(an adaptation of the commutative Gelfand–Naimark Theorem 1.2.23) and the
construction of the equivalent C∗-norm in the conclusion of proof of Theorem 2.3.32,
which, through Lemma 2.3.31, is taken from [510]. For a wide generalization of
Lemma 2.3.26 the reader is referred to the Shirali–Ford theorem [565], and the
alternative proofs of this theorem given by Harris [313] and Pták [494] (see also
[696, Theorem 41.5]). This generalization will be discussed later in detail (see
Corollary 4.5.39(ii)).

The Russo–Dye theorem, stated in Lemma 2.3.28, has been refined by Robertson
[506], Popa [492], Gardner [281], and Kadison and Pedersen [360], among others.
Some of these refinements will be discussed later in a non-associative setting (see
Subsection 4.2.3). The Russo–Dye theorem does not remain true for real C∗-algebras
(i.e. closed real ∗-subalgebras of C∗-algebras). Indeed, CR([0,1]) is a unital real
C∗-algebra with no unitary elements other than ±1. Nevertheless, the Russo–Dye
theorem survives for finite-dimensional real C∗-algebras [62], and, more generally,
for von Neumann real algebras [459].
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To conclude our historical review of the associative Vidav–Palmer theorem, let us
comment on the Vidav–Palmer original proof that the natural involution of a com-
plete associative V -algebra is an algebra involution. The break point in the Vidav–
Palmer argument is the following generalization of Vidav’s Proposition 2.3.23, also
proved in [623].

Lemma 2.3.71 Let A be a norm-unital complete normed associative complex alge-
bra, and let a be in A such that a = h+ ik for commuting elements h,k ∈ H(A,1).
Then V (a) = co(sp(a)).

Proof Since both sp(h) and sp(k) consist only of real numbers (by Lemma 2.3.21),
and the inclusions sp(a)⊆ sp(h)+ isp(k) and sp(h)⊆ sp(a)− isp(k) hold (by Corol-
lary 1.1.81(i)), we get

maxsp(h) = maxℜ(sp(a)).

On the other hand, by Corollary 2.1.9(iii), for r ∈ R we have

‖exp(ra)‖= ‖exp(rh)exp(irk)‖= ‖exp(rh)‖.

It follows from Propositions 2.1.7 and 2.3.23 that

maxℜ(V (a)) = sup

{
1
r

log‖exp(ra)‖ : r > 0

}
= sup

{
1
r

log‖exp(rh)‖ : r > 0

}
= maxV (h) = maxsp(h) = maxℜ(sp(a)).

By replacing a with za for z ∈ BC, the result follows.

Now, the Vidav–Palmer argument concludes as follows.

§2.3.72 (First of all, we note that the associative versions of Corollary 2.1.13 and
Lemma 2.3.1, which will be applied here, were known by Vidav in [623].) Let A
be a complete associative V -algebra. To prove that the natural involution of A is an
algebra involution it is enough to realize that

(i) i[h,k] lies in H(A,1) whenever h,k are in H(A,1).
(ii) a2 lies in H(A,1) whenever a is in H(A,1).

Since we know that assertion (i) holds (cf. Lemma 2.3.1), it only remains to show that
assertion (ii) also holds. Let a be in H(A,1), and write a2=h+ ik with h,k ∈ H(A,1).
Then, according to Palmer’s notice in [474], we have 0 = [a,a2] = [a,h] + i[a,k],
which, together with assertion (i) and Corollary 2.1.13, yields [a,k] = 0, and hence
[h,k] = [a2 − ik,k] = 0. Therefore Lemma 2.3.71 applies, so that we have V (a2) =

co(sp(a2)). On the other hand, we know that sp(a) ⊆ R (by Lemma 2.3.21), which
implies that sp(a2) ⊆ R+

0 . It follows that V (a2) ⊆ R+
0 , and hence that a2 lies in

H(A,1), as desired.

Now results from Lemma 2.3.21 to Theorem 2.3.32, Lemma 2.3.71, and §2.3.72
provide the reader with a complete autonomous proof of the associative Vidav–
Palmer theorem, avoiding the non-associative germ stated in Theorem 2.3.8.
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For later reference, we include here the following straightforward consequence of
Lemmas 2.2.5 and 2.3.71.

Corollary 2.3.73 Let A be a unital C∗-algebra, and let a be a normal element of A.
Then V (a) = co(sp(a)).

Today, Proposition 2.3.39 is folklore in the theory of C∗-algebras. Our approach
follows that of Conway [711] and Murphy [781]. In relation to Proposition 2.3.39, we
reproduce with minor changes a paragraph from pp. 250–1 of the Kadison–Ringrose
book [758]:

Suppose that f is a continuous real-valued function defined on a subset S of the real
line. We say that f is operator-monotonic increasing on S if f (a) � f (b) whenever a
and b are self-adjoint elements of a C∗-algebra, a � b and sp(A,a)∪ sp(A,b) ⊆ S. With

g(t) = t
1
2 (t � 0) and h(t) = − 1

t (t > 0), g and h are operator-monotonic increasing on
their respective domains of definition, by assertions (v) and (iv) in Proposition 2.3.39. It is
clear that an operator-monotonic increasing function on S is monotonic increasing (in the
elementary sense) on S. However, as shown by Exercise 2.3.40, the converse is false. For
further information on this subject, see [310, 616].

Proposition 2.3.43 is also folklore. The proof given here (through Lemma 2.3.41,
Corollary 2.3.42, and the associative Vidav–Palmer theorem) is due to Palmer [476]
and is included in [694, Theorem 7.7]. For the classical proof, the reader is referred
to [724].

The proof of Theorem 2.2.15 given here (which consists of results from Lemma
2.3.44 to §2.3.53, plus the associative Vidav–Palmer theorem) is built from [476,
Proposition 3.9] (see also [694, Section 12]), [514, Section 3], [786, Corol-
lary 1.4.12] (see also [715, Corollary 2.6.18]), [787, Proposition 9.140], [365,
Lemma 2.3], and folklore results about the Arens adjoint of a bounded bilinear
mapping, already contained in Arens’ pioneering paper [29]. As a whole, it could be
new. Although straightforward, Lemma 2.3.46 (that biduals of associative normed
algebras are associative) is relevant. Indeed, as proved by Arens [29], biduals of
associative and commutative normed algebras need not be commutative. A simpler
counterexample has been provided by Zalduendo [658] (see also [786, 1.4.9]). We
note that the bidual of a commutative normed algebra A is commutative if and only
if A is Arens regular (see Lemma 3.5.24(i) below for details).

Proposition 2.3.56 is originally due to Busby [138]. Our proof becomes an
adaptation of an argument of Edwards [223]. Proposition 2.3.57 is due to John-
son [352]. With minor changes, our proof is that of Murphy [781, Example 3.1.3].
Theorem 2.3.58 goes back to Banach [685, Theorem IX.4.3] and Stone [600].

Artin’s theorem, stated in Theorem 2.3.61, tells us that alternative algebras are
very close to associative algebras. Our proof has been taken from [808, pp. 29–30]. A
similar (maybe better formalized) proof, involving the notions in §§2.8.17 and 2.8.26
below, can be found in [822, pp. 36–37]. The first known non-associative alternative
algebra is the so-called algebra of Cayley numbers. This algebra will be introduced
in Section 2.5, and its history can be seen in Subsection 2.5.4 below.

Corollary 2.3.63 is due to Rodrı́guez [514] (see also Braun [125]). Despite the
application of this corollary to prove Theorem 2.3.68 of the current section, another
nontrivial application will be done in the proof of Proposition 2.6.8 below, asserting
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that the complexification of the algebra of Cayley numbers can be converted into an
alternative C∗-algebra.

Looking at Proposition 2.3.64 and Example 2.3.65, we realize that, concerning
ranges of contractive projections, the class of complete V -algebras is more stable
than the subclass consisting of unital C∗-algebras. The most relevant result in this dir-
ection is the following one, proved independently by Kaup [382] and Stachó [597].

Theorem 2.3.74 Let X be a JB∗-triple, and let π : X → X be a contractive
linear projection. Then π(X) becomes a JB∗-triple under the triple product

{xyz}π := π({xyz}).

We remark that, as we reviewed in Subsection 2.2.3, C∗-algebras are JB∗-triples in
a natural way, and that, as we will prove much later (see Theorems 3.3.11 and 4.1.45),
every complete V -algebra becomes a JB∗-triple under a suitable triple product.

Corollary 2.3.69 is due to Hamana [305]. The refinement, given by Theorem
2.3.68, is new (even in the associative setting), although the core of the argument
is taken from Hamana’s original proof of Corollary 2.3.69. Since the assumption
(2.3.20) in Corollary 2.3.69 is stronger than the one (2.3.18) in Theorem 2.3.68
(by Fact 2.3.35(i)), the application of the associative Vidav–Palmer theorem (via
Corollary 2.3.63) done in the proof of Theorem 2.3.68 can be avoided if one is
interested only in Corollary 2.3.69. Indeed, following Hamana’s original argument
again, we have the following.

Proof of Corollary 2.3.69 Let A and π be as in Corollary 2.3.69. Then, for x ∈ π(A)
we have

x∗x = π(x)∗π(x) � π(x∗x) = x∗ �π x,

so, invoking Fact 2.3.36, we derive

‖x‖2 = ‖x∗x‖ � ‖x∗ �π x‖= ‖π(x∗x)‖ � ‖x∗x‖= ‖x‖2,

and so ‖x∗ �π x‖ = ‖x‖2. Since the product �π is associative (by the last paragraph
in the proof of Theorem 2.3.68), we see that (π(A),�π) is a C∗-algebra.

The argument above works verbatim if ‘alternative C∗-algebra’ replaces ‘C∗-
algebra’ in Corollary 2.3.69. In this case, the appropriate conclusion (that (π(A),�π)

is an alternative algebra) can be obtained without any resource to the proof of
Theorem 2.3.68. Indeed, it follows directly from Theorem 3.2.5 below.

2.4 V-algebras are non-commutative Jordan algebras

Introduction We introduce non-commutative Jordan algebras, and prove as
the main result that V -algebras are non-commutative Jordan algebras (see The-
orem 2.4.11). Then we apply this result to prove a theorem (originally due to Choi
and Effros [169]) asserting that ranges of unit-preserving 2-contractive linear projec-
tions on unital C∗-algebras naturally become C∗-algebras (see Theorem 2.4.24), as
well as a refined version of a non-associative characterization of unital C∗-algebras,
originally due to Blecher, Ruan, and Sinclair [106] (see Theorem 2.4.27).
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2.4.1 The main result

We begin this subsection with the following.

Lemma 2.4.1 Let A be a norm-unital normed complex algebra, and let a,b,c be in
H(A,1). Then [a,b,c] lies in H(A,1).

Proof By Lemma 2.1.10, La,Rc belong to H(BL(A), IA), and hence, by Lemma 2.3.1,
we have −i[Rc,La] ∈ H(BL(A), IA). Therefore, since −i[Rc,La](1) = 0, Corol-
lary 2.2.2 applies, so that

[a,b,c] =−i2[Rc,La](b) ∈ H(A,1).

Proposition 2.4.2 Let X be a complex normed space, and let T be in BL(X). We
have:

(i) If T is a dissipative element in (BL(X), IX ), then

‖T (x)‖2 � 8‖x‖‖T 2(x)‖ for every x ∈ X .

(ii) If T is a hermitian element in (BL(X), IX ), then

‖T (x)‖2 � 4‖x‖‖T 2(x)‖ for every x ∈ X .

Proof Assume that T is dissipative. Let x be in X , and let δ � 0. We claim that

‖T 2(x)‖ � δ (‖δx+T (x)‖−δ‖x‖).

To this end, we set u := δx + T (x). If u = 0, the required inequality is obvious.
Assume that u 	= 0, take v := 1

‖u‖u, and choose f ∈ D(X ,v). Then

‖u‖= ‖u‖ f (v) = f (u) = δ f (x)+ f (T (x)),

and so

‖u‖ f (T (v)) = f (T (u)) = δ f (T (x))+ f (T 2(x)) = δ‖u‖−δ 2 f (x)+ f (T 2(x)).

Therefore, since ℜ f (T (v)) � 0 (because the mapping F → f (F(v)) belongs to
D(BL(X), IX )), we have

‖T 2(x)‖ � | f (T 2(x))| � −ℜ f (T 2(x)) � δ‖u‖−δ 2ℜ f (x)

� δ‖u‖−δ 2‖x‖= δ (‖δx+T (x)‖−δ‖x‖),

which proves the claim. Now, if x 	= 0, assertion (i) follows from the claim by taking
δ := ‖T (x)‖

4‖x‖ .
Now, assume that T is hermitian. Then the claim is applicable to both iT and −iT ,

so that we have

‖T 2(x)‖ � δ (‖iT (x)+δx‖−δ‖x‖),

and

‖T 2(x)‖ � δ (‖iT (x)−δx‖−δ‖x‖).

Since ‖iT (x)+δx‖+‖iT (x)−δx‖ � 2‖T (x)‖, this gives

‖T 2(x)‖ � δ (‖T (x)‖−δ‖x‖).

Therefore, if x 	= 0, assertion (ii) follows by taking δ := ‖T (x)‖
2‖x‖ .
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Corollary 2.4.3 Let A be a norm-unital normed complex algebra, let a be in A, and
let h be in H(A,1). Then ‖[h,a]‖2 � 4‖a‖‖[h, [h,a]]‖.

Proof Set T := Lh−Rh. Then, by Lemma 2.1.10, T lies in H(BL(A), IA). Therefore,
by Proposition 2.4.2(ii), we have

‖[h,a]‖2 = ‖T (a)‖2 � 4‖a‖‖T 2(a)‖= 4‖a‖‖[h, [h,a]]‖.

Lemma 2.4.4 Let A be a commutative algebra, let D be a derivation of A, and let
a be an element of A. If LaD is a derivation of A, then, for every b ∈ A, we have
[a,D(b),b] = 0.

Proof For b ∈ A, we have

2(aD(b))b = 2(LaD)(b)b = (LaD)(b2) = La(D(b2))

= La(2D(b)b) = 2a(D(b)b).

Lemma 2.4.5 Let A be a commutative algebra such that, for all a,b ∈ A, [La,Lb] is
a derivation of A. Then, for all a,b ∈ A, we have [a, [a2,b,a],b] = 0.

Proof Let a,c be in A. Since [Lc,La] is a derivation of A, we have

[Lc,La](a
2) = 2a[Lc,La](a),

that is

ca3 − (ca2)a = 2(ca2)a−2((ca)a)a,

and hence

La3 +2L3
a = 3LaLa2 .

Since [L3
a,La] = 0, we derive

[La3 ,La] = 3[LaLa2 ,La] = 3La[La2 ,La].

Therefore [La2 ,La] is a derivation such that La[La2 ,La] is a new derivation, and
Lemma 2.4.4 applies.

Lemma 2.4.6 Let A be a commutative V -algebra and let a,b be in A. Then [La,Lb]

is a derivation of A.

Proof We may assume that a and b are hermitian. Then, by Lemmas 2.1.10
and 2.3.1, i [La,Lb] is a hermitian operator. On the other hand, since A is commutative,
we have i [La,Lb](1) = 0. It follows from Corollary 2.3.19(ii) that [La,Lb] is a
derivation of A.

Although straightforward, the following fact is very useful.

Fact 2.4.7 Let A be an algebra, and let D : A → A be a linear mapping. Then D is
a derivation of A if and only if the equality [D,La] = LD(a) holds for every a ∈ A.

Jordan algebras over K are defined as those commutative algebras over K satis-
fying the so-called ‘Jordan identity’, namely (ab)a2 = a(ba2).

We note that, if A is a V -algebra, then Asym is a commutative V -algebra. In this
way, the following result becomes a cornerstone in our present development.
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Lemma 2.4.8 Let A be a commutative V -algebra. Then A is a Jordan algebra.

Proof Let a,b be in A. By Lemmas 2.4.5 and 2.4.6, we have

[a, [a2,b,a],b] = 0,

that is [Lb,La][La,La2 ](b) = 0. It follows from Lemma 2.4.6 and Fact 2.4.7 that

[[Lb,La], [[La,La2 ],Lb]] = [[Lb,La],L[La,La2 ](b)] = L[Lb,La][La,La2 ](b) = 0.

Now, suppose that a ∈ H(A,1), take b := a2, and set T := i[La2 ,La]. Then we have
[T, [T,La2 ]] = 0. Note that, by Theorem 2.3.8, a2 ∈ H(A,1), and hence, by Lem-
mas 2.1.10 and 2.3.1, La, La2 , and T belong to H(BL(A), IA). Therefore, by Corol-
lary 2.4.3, we get [T,La2 ] = 0, that is [La2 , [La2 ,La]] = 0. Applying Corollary 2.4.3
again, we conclude that [La2 ,La] = 0, and hence [a,b,a2] = 0 for every b ∈ A. Now,
a standard linearization argument, such as that in [808, p. 91], will show that A is a
Jordan algebra. Indeed, replacing a in this equality by a+ tc (t ∈ R), the coefficient
of t is 0, and we have

2[a,b,ca]+ [c,b,a2] = 0 for all a,c in H(A,1) and b in A.

Replacing again a by a + td (t ∈ R), we have similarly (after dividing by 2) the
multilinear identity

[a,b,cd]+ [d,b,ca]+ [c,b,ad] = 0 for all a,c,d in H(A,1) and b in A.

Since A = H(A,1)+ iH(A,1), and the product and the associator are C-multilinear,
we see that

[a,b,cd]+ [d,b,ca]+ [c,b,ad] = 0 for all a,b,c,d in A.

Finally, by taking a = c = d, we conclude that A satisfies the Jordan identity, as
required.

Definition 2.4.9 By a Jordan-admissible algebra we mean an algebra A such that
Asym is a Jordan algebra. We define non-commutative Jordan algebras as those alge-
bras which are both flexible (cf. Definition 2.3.54) and Jordan-admissible.

As a consequence of Theorem 2.3.61, we have the following.

Corollary 2.4.10 Alternative algebras are non-commutative Jordan algebras.

Theorem 2.4.11 Every V -algebra is a non-commutative Jordan algebra.

Proof Let A be a V -algebra. Then, by Lemma 2.4.8, Asym is a Jordan algebra, i.e.
A is Jordan-admissible. Therefore, to conclude the proof it is enough to show that
A is flexible. Let ∗ stand for the natural involution of A, and let a,b be in A. Since
∗ is an algebra involution (by Theorem 2.3.8), we have [a∗,b∗,a∗]∗ = −[a,b,a]. On
the other hand, by Corollary 2.4.1 we also have [a∗,b∗,a∗]∗ = [a,b,a]. It follows that
[a,b,a] = 0.

By combining Lemma 2.2.5 and Theorems 2.3.8 and 2.4.11, we derive the
following.
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Corollary 2.4.12 Let A be a normed unital complex algebra endowed with a
conjugate-linear vector space involution ∗ satisfying

1∗ = 1 and ‖Ua(a∗)‖= ‖a‖3 for every a ∈ A.

Then A is a non-commutative Jordan algebra, and ∗ is an algebra involution on A.

The same conclusion holds (with the same argument) if we replace the requirement
that ‖Ua(a∗)‖= ‖a‖3 for every a ∈ A with the one that ‖a∗a‖= ‖a‖2 for every a ∈ A.
We have not emphasized this fact here because, as we will see in Theorem 3.2.5
below, a better result holds.

Power-associative algebras are defined as those algebras A such that the subalge-
bra of A generated by each element of A is associative.

Proposition 2.4.13 Let A be a Jordan algebra. Then:

(i) A is power-associative.
(ii) For a ∈ A and n,m ∈ N we have [Lan ,Lam ] = 0.

(iii) For a ∈ A and n ∈N, Lan lies in the subalgebra of L(A) generated by {La,La2}.

Proof Since [a,b,a2] = 0 for all a,b ∈ A, we can argue as in the proof of
Lemma 2.4.8 to obtain

2[a,b,ca]+ [c,b,a2] = 0 for all a,b,c ∈ A (2.4.1)

and

[a,b,cd]+ [d,b,ca]+ [c,b,ad] = 0 for all a,b,c,d ∈ A. (2.4.2)

But the identity (2.4.2) is equivalent to

LabLc −LaLbLc +LcaLb −Lb(ca) +LcbLa −LcLbLa = 0 (2.4.3)

for all a,b,c ∈ A. Now let a be in A, define powers of a by a1 := a and an+1 := ana,
let B stand for the subalgebra of L(A) generated by {La,La2}, and note that, thanks
to the Jordan identity, B is commutative. For n � 2, set b = a and c = an−1 in (2.4.3)
to obtain

Lan+1 = La2 Lan−1 −L2
aLan−1 −Lan−1L2

a +2Lan La. (2.4.4)

By induction on n we see that Lan lies in B for every n∈N, and hence that [Lan ,Lam ] =

0. Thus assertions (ii) and (iii) have been proved.
To prove assertion (i) it is enough to show that an+m = anam for all n,m ∈ N

(for then the linear hull of the powers of a becomes an associative subalgebra of A
containing a). For m = 1 this holds by definition of an. Now assume that an+m =

anam. Then

an+m+1 = an+ma = (anam)a = LaLan(am) = Lan La(a
m) = an(aam) = anam+1.

Hence an+m = anam for all n,m ∈ N, as desired.

Lemma 2.4.14 An algebra A over K is flexible if and only if, for all a,b ∈ A, the
equality [a•b,b] = b• [a,b] holds.
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Proof Decodifying the equality [a•b,b] = b• [a,b], according to the meaning of the
commutator [·, ·] and that of the symmetrized product •, we realize that it is nothing
other than a rewriting of the flexibility condition (ab)a = a(ba).

Lemma 2.4.15 Let A be an algebra over K. Then the following conditions are
equivalent:

(i) A is flexible.
(ii) For each a ∈ A, the mapping b → [a,b] is a Jordan derivation of A.

Proof (i)⇒(ii) Assume that A is flexible. Then, linearizing the flexibility condition
(ab)a = a(ba) in the variable a, we get

(ab)c+(cb)a = a(bc)+ c(ba),

and, taking c = b, we obtain

[a,b2] = (ab)b−b(ba) = (ab+ba)b−b(ba+ab) = 2[a•b,b].

It follows from Lemma 2.4.14 that [a,b2] = 2b • [a,b], and hence that condition (ii)
holds.

(ii)⇒(i) Assume that condition (ii) holds. Then, for a,b ∈ A, we have

[a•b,b] = a• [b,b]+ [a,b]•b = b• [a,b],

so that, by Lemma 2.4.14, A is flexible.

An algebra A is said to be power-commutative if the subalgebra of A generated by
each element of A is commutative.

Corollary 2.4.16 Let A be a flexible algebra. Then maximal commutative subsets
of A are subalgebras of A. As a consequence, the subalgebra of A generated by any
commutative subset of A is commutative. In particular, A is power-commutative.

Proof Let S be a maximal commutative subset of A. Then, as happens for any
maximal commutative subset of any algebra, S is a subspace of A. Let x,y be in
S. Then, by Lemma 2.4.15, for every z ∈ S we have

[z,xy] = [z,x• y] = x• [z,y]+ [z,x]• y = 0,

so that S∪{xy} is a commutative subset of A. It follows from the maximality of S
that xy lies in S. Thus S is a subalgebra of A.

Let T be a commutative subset of A. Then, by Zorn’s lemma, there exists a
maximal commutative subset S of A containing T . Since S is a subalgebra of A
(by the above paragraph), it follows that the subalgebra of A generated by T is
commutative.

Lemma 2.4.17 Let A be a power-commutative algebra over K, and let a be in
A. Then the subalgebra of A generated by a coincides, as an algebra, with the
subalgebra of Asym generated by a.

Proof Let A(a) (respectively, Asym(a)) stand for the subalgebra of A (respectively,
of Asym) generated by a. Since all subalgebras of A are subalgebras of Asym, we have
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Asym(a) ⊆ A(a) as subsets. But, since A is power-commutative, A(a) is a commuta-
tive subset of A, so, by the above inclusion, Asym(a) is also a commutative subset of
A, and so it is in fact a subalgebra of A, and therefore A(a)⊆ Asym(a). It follows that
A(a) = Asym(a) as algebras.

Corollary 2.4.18 Let A be an algebra over K. Then the following conditions are
equivalent:

(i) A is power-associative.
(ii) A is power-commutative, and Asym is power-associative.

Proof Assume that A is power-associative. Then, since associative algebras gen-
erated by a single element are commutative, A is power-commutative, and then, by
Lemma 2.4.17, Asym is power-associative.

Now, assume that A is power-commutative and that Asym is power-associative.
Then, by Lemma 2.4.17, A is power-associative.

Proposition 2.4.19 Non-commutative Jordan algebras are power-associative.

Proof Let A be a non-commutative Jordan algebra. Since Asym is a Jordan algebra,
Asym is a power-associative algebra (by Proposition 2.4.13(i)). On the other hand,
since A is flexible, Corollary 2.4.16 applies, so that A is power-commutative. It
follows from Corollary 2.4.18 that A is power-associative.

Corollary 2.4.20 Let A be a complete V -algebra, let ∗ stand for the natural invo-
lution of A, and let h be a hermitian element in A. Then the closed subalgebra of A
generated by h and 1 is ∗-invariant, and, endowed with the restriction of ∗, becomes
a commutative C∗-algebra.

Proof Let B stand for the closed subalgebra of A generated by {h,1}. Then, by
Theorem 2.4.11 and Proposition 2.4.19, B is associative and commutative. Moreover,
since ∗ is a continuous algebra involution (by Lemma 2.3.7 and Theorem 2.3.8), B
is ∗-invariant. Now, keeping in mind Corollary 2.1.2, it is easily realized that B is a
complete V -algebra whose natural involution is the restriction of ∗ to B. Therefore,
since B is associative, Theorem 2.3.32 applies, so that B is a C∗-algebra.

2.4.2 Applications to C∗-algebras

Let X be a vector space over K, and let n be a natural number. Then the vector
space Mn(X) of all n× n matrices with entries in X becomes an Mn(K)-bimodule
by denoting αx and xα (for α ∈ Mn(K) and x ∈ Mn(X)) the elements of Mn(X)

formed by left and right multiplication of x by α in the obvious sense of matrix
multiplication. Given p,q ∈N with p+q = n, y ∈ Mp(X), and z ∈ Mq(X), we denote
by y⊕ z the element of Mn(X) whose principal diagonal blocks (from top to bottom)
are y and z, and whose off-diagonal blocks have 0 (in X) at each entry. Now let Y be
another vector space over K, and let F : X → Y be a linear mapping. We denote by
Fn the linear mapping from Mn(X) to Mn(Y ) which consists of applying F to each
entry of the matrix in Mn(X). In what follows, Mn(C) will be seen endowed with the
involution and the corresponding C∗-norm | · |n deriving from its natural identification
with the algebra of all linear operators on the complex Hilbert space Cn.
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Lemma 2.4.21 Let X be a complex normed space, let n be in N, and let ‖ · ‖n be a
norm on Mn(X) satisfying the following conditions:

(i) ‖αxβ‖n � |α|n‖x‖n|β |n for every x ∈ Mn(X) and all α,β ∈ Mn(C).
(ii) ‖diag{y,0, . . . ,0}‖n = ‖y‖ for every y ∈ X.

Then, the natural vector space identification Mn(X) ≡ Xn2
becomes bicontinuous

when Mn(X) is endowed with the topology of the norm ‖ · ‖n and Xn2
is endowed

with the product topology.

Proof For i, j = 1, . . . ,n, and y ∈ X , let y[i j] stand for the element of Mn(X) having
y in the i j entry and 0 otherwise, and let ui j := 1[i j] be the usual i j matrix unit in
Mn(C). Note that ui1(y[11])u1 j = y[i j] and that, by condition (ii), ‖y[11]‖n = ‖y‖.
Now, let x = (xi j) be in Mn(X). Then we have

‖x‖n �∑
i, j

‖xi j[i j]‖n =∑
i, j

‖ui1(xi j[11])u1 j‖n �∑
i, j

‖xi j[11]‖n =∑
i, j

‖xi j‖,

the last inequality being true thanks to condition (i). On the other hand, since
u1ixu j1 = xi j[11], we have

‖xi j‖= ‖xi j[11]‖n = ‖u1ixu j1‖n � ‖x‖n,

and hence

∑
i, j

‖xi j‖ � n2‖x‖n.

Let A be an algebra over K, and let n be in N. We already know that Mn(A) =
Mn(K)⊗A naturally becomes an algebra over K. When A is in fact a unital algebra,
then the algebra structure of Mn(A) overlaps its Mn(K)-bimodule structure. Indeed,
in this case Mn(K) can be seen as a subalgebra of Mn(A), by means of the embedding
α → α1n = 1nα (where 1n stands for the unit of Mn(A)), and then the left and right
module operations on Mn(A) coincide with the operators of left and right multipli-
cation by elements of Mn(K) on the algebra Mn(A).

Now, let A be a ∗-algebra over K, and let n be in N. Then Mn(A) has a canonical
conjugate-linear algebra involution (also denoted by ∗), namely the one consisting of
transposing the matrix and applying the involution of A to each entry. Thus, Mn(A)
will be considered without notice as a new ∗-algebra.

We recall that an associative complex ∗-algebra has at most a complete C∗-norm.

Proposition 2.4.22 Let A be a C∗-algebra. Then, for each n ∈ N, Mn(A) becomes
a C∗-algebra for a suitable (unique) norm ‖ · ‖n. Moreover, for n,m ∈ N, we have:

(i) ‖αaβ‖n � |α|n‖a‖n|β |n for every a ∈ Mn(A) and all α,β ∈ Mn(C).
(ii) ‖b⊕ c‖n+m = max{‖b‖n,‖c‖m} for all b ∈ Mn(A) and c ∈ Mm(A).

Proof By Proposition 1.2.44, we may assume that A is unital.
Let n be in N. For a = (ai j)1�i, j�n ∈ Mn(A), set ‖a‖ := ∑

1�i, j�n

‖ai j‖. Then ‖·‖

becomes a complete algebra norm on Mn(A) making the involution ∗ of Mn(A)
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isometric. Let Pn stand for the set of all ‖ · ‖-continuous positive linear functionals g
on Mn(A) satisfying g(1n) = 1, and, for a ∈ Mn(A), set

‖a‖n := sup{
√

g(a∗a) : g ∈ Pn}.

By Lemma 2.3.31, ‖ · ‖n becomes a ‖ · ‖-continuous C∗-seminorm on Mn(A). Now,

for a = (ai j)1�i, j�n ∈ Mn(A), set T (a) :=
1
n

n

∑
i=1

aii, so that we have

T (a∗a) =
1
n ∑

1�i, j�n

a∗i jai j,

T (a∗) = T (a)∗, and T (1n) = 1. Let f be in D(A,1). It follows from Lemmas 2.2.5(i)
and 2.3.26 that the mapping fT := f T is an element of Pn. Moreover, for each
a ∈ Mn(A) as above, and all i, j = 1, . . . ,n, we have

0 � 1
n

f (a∗i jai j) � 1
n ∑

1�i, j�n

f (a∗i jai j) = fT (a
∗a).

Since f is arbitrary in D(A,1), it follows from Proposition 2.3.4 that, for a ∈ Mn(A)
as above, we have

1
n
‖ai j‖2 =

1
n
‖a∗i jai j‖=

1
n

v(A,1,a∗i jai j) � ‖a‖2
n

for all 1 � i, j � n, and hence that

1
n2
√

n
‖a‖ � ‖a‖n.

Therefore, ‖·‖n is in fact a complete C∗-norm on Mn(A). Now, since ‖·‖n is an alge-
bra norm, and the natural embedding (Mn(C), | · |n) ↪→ (Mn(A),‖ · ‖n) is an isometry
(because it is a ∗-mapping), assertion (i) follows.

To realize assertion (ii), note that, for n,m ∈ N, Mn(A)×Mm(A) is a C∗-algebra
under the norm max{‖b‖n,‖c‖m}, and that the mapping (b,c)→ b⊕ c is an algebra
∗-isomorphism from Mn(A)×Mm(A) onto the closed subalgebra Mn(A)⊕Mm(A) of
Mn+m(A).

Let A be a C∗-algebra, and let n be in N. After Proposition 2.4.22, Mn(A) will be
seen without notice as a new C∗-algebra relative to its canonical involution and the
norm ‖·‖n. By Lemma 2.4.21, if B is another C∗-algebra, and if F is in BL(A,B), then
Fn lies in BL(Mn(A),Mn(B)) and moreover, by assertion (ii) in Proposition 2.4.22,
we have ‖F‖ � ‖Fn‖.

According to Example 2.3.65, ranges of unit-preserving contractive linear projec-
tions on unital C∗-algebras need not be C∗-algebras. Now, we are going to show in
Theorem 2.4.24 below that such ranges are C∗-algebras whenever the projections are
a little more than contractive.

Lemma 2.4.23 Let A be an algebra over K. Then A is associative if (and only if)
M2(A) is flexible.
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Proof Let a,b,c be in A. Then we have[(
a c
0 0

)(
b 0
0 0

)](
a c
0 0

)
=

(
(ab)a (ab)c

0 0

)
and (

a c
0 0

)[(
b 0
0 0

)(
a c
0 0

)]
=

(
a(ba) a(bc)

0 0

)
.

Therefore, if M2(A) is flexible, then (ab)c = a(bc).

Let A be a C∗-algebra, let F be in BL(A), and let n be in N. We say that F is
n-contractive if Fn : Mn(A)→ Mn(A) is contractive.

Theorem 2.4.24 Let A be a unital C∗-algebra, and let π : A → A be a unit-
preserving 2-contractive linear projection. Then (π(A),�π) is a C∗-algebra.

Proof Note at first that π is contractive and that π2(12) = 12. Then, by Lemma 2.2.5
and Proposition 2.3.64, both (π(A),�π) and (π2(M2(A)),�π2) are V -algebras, and
hence, by Theorem 2.4.11, they are flexible. Since

(π2(M2(A)),�π2) = M2((π(A),�π)),

and (π2(M2(A)),�π2) is flexible, it follows from Lemma 2.4.23 that (π(A),�π) is
associative. Finally, since (π(A),�π) is a complete associative V -algebra, it follows
form Theorem 2.3.32 that (π(A),�π) is a C∗-algebra.

Now we are going to get a geometric characterization of unital C∗-algebras among
all non-associative normed algebras.

Lemma 2.4.25 Let (X ,u) be a complex numerical-range space such that

X = H(X ,u)+ iH(X ,u),

and let ‖ · ‖2 be a norm on M2(X) satisfying:

(i) ‖αxβ‖2 � |α|2‖x‖2|β |2 for every x ∈ M2(X) and all α,β ∈ M2(C).
(ii) ‖y⊕ z‖2 = max{‖y‖,‖z‖} for all y,z ∈ X.

Then, in the numerical-range space ((M2(X),‖ · ‖2),u⊕u), we have

M2(X) = H(M2(X),u⊕u)+ iH(M2(X),u⊕u).

Proof Let h be in H(X ,u). It is enough to show that(
h 0
0 0

)
,

(
0 0
0 h

)
,

(
0 h
h 0

)
, and

(
0 ih

−ih 0

)
lie in H(M2(X),u⊕u).

By condition (ii) and Proposition 2.1.5, we have

maxℜ(V (M2(X),u⊕u, i(h⊕0)))

= lim
r→0+

‖u⊕u+ ir(h⊕0)‖2 −1
r

= lim
r→0+

‖(u+ irh)⊕u‖2 −1
r

= lim
r→0+

max{‖u+ irh‖,1}−1
r

= max

{
lim

r→0+

‖u+ irh‖−1
r

,0

}
= 0,
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so that, replacing h with −h, we get that

(
h 0
0 0

)
= h⊕0 ∈ H(M2(X),u⊕u). Analo-

gously,

(
0 0
0 h

)
∈ H(M2(X),u⊕u).

Let α be in M2(C), and let Lα and Rα stand for the operators of left and right
multiplication by α on the M2(C)-bimodule M2(X). By condition (i), the mappings
α → Lα and α → Rα from M2(C) to BL(M2(A)) are linear contractions taking the
unit 1 of M2(C) to IM2(A), and hence, by Corollary 2.1.2(i), we have

V (BL(M2(X)), IM2(X),Lα)⊆V (M2(C),1,α)
and

V (BL(M2(X)), IM2(X),Rα)⊆V (M2(C),1,α).

Therefore Lα −Rα lies in H(BL(M2(X)), IM2(X)) whenever α is in H(M2(C),1). Note
also that (Lα −Rα)(u⊕u) = 0. It follows from Corollary 2.2.2 that i(αx− xα) lies
in H(M2(X),u⊕ u) whenever α is in H(M2(C),1) and x is in H(M2(X),u⊕ u). By
taking

α :=

(
0 i
−i 0

)
∈ H(M2(C),1) and x :=

(
h 0
0 0

)
∈ H(M2(X),u⊕u)

(
successively, α :=

(
0 1
1 0

)
and x :=

(
0 0
0 h

))
, the above gives that both

(
0 h
h 0

)
and

(
0 ih

−ih 0

)
lie in H(M2(X),u⊕u), as desired.

§2.4.26 In §1.2.2, we introduced C∗-algebras as those complete normed associative
complex ∗-algebras A satisfying ‖a∗a‖ = ‖a‖2 for every a ∈ A. Later, in §2.3.62,
we introduced alternative C∗-algebras by simply relaxing associativity to alternativ-
ity in the above notion. Moreover, as we will see in Proposition 2.6.8, alternative
C∗-algebras need not be associative. Now, we define non-associative C∗-algebras by
altogether removing in the definition of C∗-algebras any requirement of associativity
or alternativity. We note that, by Lemma 2.2.5, a normed unital complex algebra has
at most one involution converting it into a non-associative C∗-algebra.

Theorem 2.4.27 Let A = (A,‖ · ‖) be a complete normed complex algebra. Then
the following conditions are equivalent:

(i) A is a unital non-associative C∗-algebra, and the following ‘matricial
L∞-property’ holds:
For each n ∈ N, Mn(A) is equipped with an algebra norm ‖ · ‖n such that the
family of norms satisfies

(a) ‖ · ‖1 = ‖ · ‖ on M1(A) = A,
(b) ‖αaβ‖n � |α|n‖a‖n|β |n for every a ∈ Mn(A) and all α,β ∈ Mn(C),
(c) ‖b⊕ c‖n+m = max{‖b‖n,‖c‖m} for all b ∈ Mn(A) and c ∈ Mm(A).

(ii) A is a V -algebra satisfying the matricial L∞-property above.
(iii) A is a unital non-associative C∗-algebra, and the following ‘matricial

L2
∞-property’ holds:



2.4 V -algebras are non-commutative Jordan algebras 171

There exists an algebra norm ‖ · ‖2 on M2(A) satisfying

(a) ‖αaβ‖2 � |α|2‖a‖2|β |2 for every a ∈ M2(A) and all α,β ∈ M2(C),
(b) ‖b⊕ c‖2 = max{‖b‖,‖c‖} for all b,c ∈ A.

(iv) A is a V -algebra satisfying the matricial L2
∞-property above.

(v) A is a unital C∗-algebra.

Moreover, if the above conditions are fulfilled, and if, for n ∈ N, Mn(A) is endowed
with the canonical involution corresponding to the involution of the C∗-algebra A,
then the norm ‖ · ‖n provided by the matricial L∞-property coincides with the unique
complete C∗-norm on Mn(A) given by Proposition 2.4.22.

Proof The implications (i)⇒(iii) and (ii)⇒(iv) are clear, whereas the ones (i)⇒(ii)
and (iii)⇒(iv) follow from Lemma 2.2.5. On the other hand, the implication (v)⇒(i)
follows from Proposition 2.4.22.

(iv)⇒(v) Assume that condition (iv) is fulfilled. Then, by Lemma 2.4.25,
(M2(A),‖ · ‖2) is a V -algebra. Therefore, by Theorem 2.4.11 and Lemma 2.4.23,
A is associative, and condition (v) holds by invoking Theorem 2.3.32.

Now that we know that conditions (i)–(v) are equivalent, assume that they hold.
By condition (v), A is a C∗-algebra. Let n be in N, endow Mn(A) with the canonical
involution corresponding to the involution of A, and note that, by condition (i)(c) and
Lemma 2.4.21, the norm ‖ · ‖n in condition (i) is complete. We claim that ‖ · ‖2n−1 is
a C∗-norm on M2n−1(A). Since, by conditions (i)(a) and (v), the claim is true when
n = 1, assume that it is true when n equals a given natural number m. Then, keeping
in mind condition (i)(c), and invoking the clear equality M2m(A) = M2(M2m−1(A)),
we can apply Lemmas 2.2.5 and 2.4.25, and Theorem 2.3.32, to realize that the claim
remains true when n equals m+1. Now that the claim has been proved, note that, by
condition (i)(c), the mapping y → y⊕ 0 from (Mn(A),‖ · ‖n) to (M2n−1(A),‖ · ‖2n−1)

becomes an isometric algebra ∗-homomorphism. It follows from the claim that ‖ ·‖n

is a C∗-norm.

2.4.3 Historical notes and comments

Proposition 2.4.2, as well as its proof, are taken almost verbatim from [694, Lemma
10.9 and Theorem 10.13].

According to [782, pp. 2–3],

Jordan algebras, named by A. A. Albert in 1946, were first introduced by physicist
Pascual Jordan to attempt to introduce an infinite-dimensional algebraic setting for quantum
mechanics essentially different from the standard setting of hermitian matrices. A half
century after the inception of Jordan theory by Jordan, von Neumann and Wigner [356],
there have been remarkable successes in mathematical studies of Jordan algebras.

Today, the theory of Jordan algebras, including a part of its analytic aspect, is nicely
contained in several books, for example those of Schafer [808], Braun and Koecher
[700], Jacobson [754], Zhevlakov, Slinko, Shestakov, and Shirshov [822], Hanche-
Olsen and Størmer [738], Myung [782], Elduque and Myung [728], and McCrimmon
[777].
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Flexible algebras and Jordan-admissible algebras first appeared in Albert’s 1948
paper [12]. Algebras which are both flexible and Jordan-admissible were later called
non-commutative Jordan algebras by Schafer [552].

Theorem 2.4.11 is due to Kaidi, Martı́nez, and Rodrı́guez [362], who proved it
under the assumption (which would be unnecessary today in view of Theorem 2.3.8)
that the natural involution of the V -algebra under consideration is an algebra invo-
lution. The proof of Theorem 2.4.11 given here, which actually started with The-
orem 2.2.9(ii) (cf. the comments immediately before Corollary 2.3.19), is essentially
the original one in [362]. As a novelty, we apply Corollary 2.4.3 instead of the
Kleinecke–Shirokov theorem (see Proposition 3.6.49 below) and Theorem 2.3.70,
as the authors of [362] did.

According to Albert [10], Proposition 2.4.13 is due to Jordan, von Neumann, and
Wigner [356]. The nice characterization of flexible algebras, given by Lemma 2.4.15,
was first proved in Kaidi’s PhD [759], where it is said that the lemma is implicitly
contained in [12, 700, 808]. An explicit formulation and proof appeared later in
Lemma 1.5(i) of Myung’s book [782], where Kaidi’s forerunner goes unnoticed. Our
proof is essentially that of [782], although the passing through the straightforward but
useful Lemma 2.4.14 is emphasized for the first time here.

Power-commutative algebras were introduced by Raffin [497], who proved the
most part of Corollary 2.4.16. The actual formulation and proof of Corollary 2.4.16
are taken from [759]. Lemma 2.4.17 and Corollary 2.4.18 are surely folklore, al-
though, with the exception of the implication (i)⇒(ii) of Corollary 2.4.18, we have
not found them anywhere. Proposition 2.4.19 is due to Schafer [552].

Proposition 2.4.22 is folklore in the theory of C∗-algebras. The proof given here,
avoiding the non-commutative Gelfand–Naimark theorem, could have some meth-
odological interest. The matricial treatment of C∗-algebras originated early in Stine-
spring’s paper [599], where, as the main result, the following theorem is proved.

Theorem 2.4.28 Let A be a unital C∗-algebra, let H be a complex Hilbert space,
and let F be a linear mapping from A to BL(H). Then the following conditions are
equivalent:

(i) There are a complex Hilbert space K, an operator V ∈BL(H,K), and an algebra
∗-homomorphism ρ : A → BL(K) such that

F(a) =V ∗ρ(a)V for every a ∈ A.

(ii) For every n ∈ N, the mapping Fn : Mn(A)→ Mn(BL(H)) takes positive elements
of Mn(A) into positive elements of Mn(BL(H)).

Theorem 2.4.24 is originally due to Choi and Effros [169]. The proof given here,
through Theorems 2.3.32 and 2.4.11, Proposition 2.3.64, and Lemma 2.4.23, is taken
from [515]. Theorem 2.4.24 can be also derived from Hamana’s Corollary 2.3.69, by
keeping in mind the following ‘Schwarz inequality’, whose proof can be seen, for
example, in [788, Proposition 3.3].

Proposition 2.4.29 Let A,B be unital C∗-algebras, and let φ : A → B be a unit-
preserving 2-contractive linear mapping. Then

φ(a)∗φ(a) � φ(a∗a) for every a ∈ A.
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The Choi–Effros Theorem 2.4.24 is included in [690, Theorem 1.3.13] and [788,
Theorem 15.2]. More results concerning unit-preserving contractive linear projec-
tions will be discussed later in Corollaries 3.3.18 and 3.3.19.

The equivalence (ii)⇔(v) and the last conclusion in Theorem 2.4.27 are originally
due to Blecher, Ruan, and Sinclair [106], who could in fact have also proved the
equivalence (i)⇔(v) with minor additional effort. The refinement given by the equi-
valences (iii)⇔(v) and (iv)⇔(v), as well as the whole proof given here (including
Lemma 2.4.25), are new. The Blecher–Ruan–Sinclair proof consists of a straightfor-
ward application of the associative Vidav–Palmer theorem (Theorem 2.3.32) and
of the main result in their paper [106], stated without proof in Theorem 2.4.30
immediately below. Actually, for the sake of convenience, both the formulation and
the proof in [106] of the Blecher–Ruan–Sinclair part of Theorem 2.4.27 involve a
dual version of the associative Vidav–Palmer theorem, due to Moore [446], which
will be discussed much later (see Corollary 3.3.27 below). Now let us formulate the
main result in [106].

Theorem 2.4.30 Let A be a norm-unital normed complex algebra. Then the follow-
ing conditions are equivalent:

(i) A satisfies the matricial L∞-property introduced in Theorem 2.4.27.

(ii) A is isometrically isomorphic to a unital subalgebra of some C∗-algebra.

Moreover, if the above conditions are fulfilled, then actually A can be seen as a
unital subalgebra of a suitable C∗-algebra B in such a way that, for n ∈ N, the
abstract norm ‖ · ‖n on Mn(A) provided by the matricial L∞-property coincides with
the restriction to Mn(A) of the unique complete C∗-norm on Mn(B).

We recall that unitary normed algebras were introduced in §2.1.54. As pointed
out by Hansen and Kadison [309], it is enough to combine Theorem 2.4.30 and
Proposition 2.1.56 to get the following.

Corollary 2.4.31 Let A be a unitary complete normed complex algebra satisfying
the matricial L∞-property. Then A is a C∗-algebra, and, for n ∈N, the abstract norm
‖ · ‖n on Mn(A) provided by the matricial L∞-property coincides with the unique
complete C∗-norm on Mn(A).

Through Theorem 2.4.30 above, we have entered the field of so-called operator
algebras, namely (possibly non-self-adjoint) subalgebras of C∗-algebras. The-
orem 2.4.30 remains interesting if the norm-unital normed complex algebra A is
assumed to be associative and complete, and even if in addition the last conclusion
in the theorem is erased. This is so because of the following two reasons:

(i) Such a restricted version of Theorem 2.4.30 provides us with an abstract char-
acterization of norm-unital complete operator algebras among all norm-unital
complete normed associative complex algebras.

(ii) As a matter of fact, ‘most’ norm-unital complete normed associative complex
algebras are not (isometrically isomorphic to) operator algebras.
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To realize the second reason, we recall that a norm-unital normed power-associative
complex algebra A is said to satisfy the von Neumann inequality if, for every a ∈ BA

and every complex polynomial P, we have

‖P(a)‖ � max{|P(z)| : z ∈ BC}.

According to the celebrated von Neumann theorem (see for example [796, Section
153]), we have the following.

Theorem 2.4.32 Unital C∗-algebras satisfy the von Neumann inequality.

Then, keeping in mind Corollary 1.2.50, we realize that every norm-unital oper-
ator algebra satisfies the von Neumann inequality. On the other hand, as proved by
Foias [264], if X is a complex Banach space, and if BL(X) satisfies the von Neumann
inequality, then X is a Hilbert space. It follows that, given a complex non-Hilbert
Banach space X, BL(X) is never an operator algebra.

Remark 2.4.33 For a norm-unital complete normed associative complex algebra
A, consider the following conditions:

(i) A is unitary.

(ii) A satisfies the von Neumann inequality.

As shown implicitly by Arazy [25] (see [65, Theorem 5.2 and Remark 5.3(a)] for
an explicit formulation and proof), (i)+ (ii) is equivalent to the fact that A is a C∗-
algebra. On the other hand, clearly, neither (i) nor (ii) implies that A is a C∗-algebra.
In the case A=BL(X) for some complex Banach space X , condition (ii) alone is equi-
valent to the fact that A is a C∗-algebra (by Foias’ theorem [264] reviewed above),
whereas the same conclusion, with (i) instead of (ii), remains an open problem. Some
partial answers to this problem can be found in [80, 63].

Let X be a complex Banach space. A holomorphic vector field on int(BX ) is
nothing other than a holomorphic mapping from int(BX ) to X . A holomorphic vector
field Λ on int(BX) is said to be complete if, for each x ∈ int(BX ), there exists a
differentiable function ϕ : R→ int(BX ) satisfying

ϕ(0) = x and
d
dt

ϕ(t) = Λ(ϕ(t)) for every t ∈ R.

The following theorem is due to Arazy [25].

Theorem 2.4.34 Let A be a norm-unital complete normed power-associative com-
plex algebra. Then the following conditions are equivalent:

(i) A satisfies the von Neumann inequality.

(ii) The holomorphic vector field a → 1−a2 on int(BA) is complete.

Since condition (ii) in the above theorem has a meaning without requiring the
associativity of powers for A, it seems reasonable to us to raise the following.
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Problem 2.4.35 Let A be a norm-unital complete normed complex algebra such
that the holomorphic vector field a → 1− a2 on int(BA) is complete. Is A a power-
associative algebra?

If the answer to Problem 2.4.35 were affirmative, then Theorem 2.4.34 would
assert that, given a norm-unital complete normed complex algebra A, the holo-
morphic vector field a → 1− a2 on int(BA) is complete if and only if A is power-
associative and satisfies the von Neumann inequality. Anyway, the study of those
norm-unital complete normed complex algebras A such that the holomorphic vector
field a → 1− a2 on int(BA) is complete would merit special attention because, by
Theorem 2.4.34, such a study would become a general non-associative view of the
von Neumann inequality.

Looking back to Theorem 2.4.30, let us comment about its roots. The most direct
forerunner is the following abstract characterization of the matricial structure of the
so-called operator spaces (i.e. subspaces of C∗-algebras), due to Ruan [546].

Theorem 2.4.36 Let X be a complex normed space such that, for each n ∈ N,
Mn(X) is equipped with a norm ‖ ·‖n in such a way that the family of norms satisfies

(i) ‖ · ‖1 = ‖ · ‖ on M1(X) = X,

(ii) ‖αxβ‖n � |α|n‖x‖n|β |n for every x ∈ Mn(X) and all α,β ∈ Mn(C),
(iii) ‖y⊕ z‖n+m = max{‖y‖n,‖z‖m}, for all y ∈ Mn(X) and z ∈ Mm(X).

Then X can be seen as a subspace of a suitable C∗-algebra A in such a way that, for
n ∈ N, the abstract norm ‖ · ‖n on Mn(X) coincides with the restriction to Mn(X) of
the unique complete C∗-norm on Mn(A).

In relation to the above theorem, it must be remarked that every complex normed
space is linearly isometric to an operator space. Indeed, given a complex normed
space X , and taking E equal to the compact Hausdorff topological space (BX ′ ,w∗), X
is linearly isometric to a subspace of the commutative C∗-algebra CC(E). Therefore,
to avoid triviality, the theory of operator spaces involves essentially the C∗-algebras
where they are imbedded, and, most precisely, the normed matricial structure that
they inherit from those C∗-algebras. To formalize the above idea, consider two
C∗-algebras A and B, subspaces X ⊆ A and Y ⊆ B, and a bounded linear mapping
F : X → Y . Then, running n over N, regarding Mn(X) and Mn(Y ) as normed spaces
under the restrictions of the unique complete C∗-norms of Mn(A) and Mn(B),
respectively, and considering the bounded linear mapping Fn : Mn(X)→ Mn(Y ), we
are provided with an increasing sequence (‖Fn‖)n∈N of non-negative real numbers.
When this sequence is bounded, F is called completely bounded. Now, the theory
of operator spaces is nothing other than the study of the category whose objects
are the subspaces of C∗-algebras and whose morphisms are the completely bounded
mappings. In particular, Theorem 2.4.36 becomes an abstract characterization of
operator spaces up to a ‘complete isometry’.

For an abstract characterization of the matricial structure of self-adjoint subspaces
of C∗-algebras (operator systems), in the spirit of Theorem 2.4.36, the reader is
referred to the paper of Choi and Effros [169]. Finally, we refer the reader to the
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books of Blecher and Le Merdy [690], Paulsen [788], and Pisier [791] for a broad
view of the theory of operator spaces and operator algebras.

2.5 The Frobenius–Zorn theorem, and the generalized
Gelfand–Mazur–Kaplansky theorem

Introduction In this section, we introduce the algebra H of Hamilton quaternions,
and the algebra O of Cayley numbers. As main results, we prove the Frobenius–
Zorn theorem (that R,C,H and O are the unique nonzero alternative algebraic real
algebras with no nonzero joint divisor of zero) and the generalized Gelfand–Mazur–
Kaplansky theorem (that R,C,H and O are the unique nonzero normed alternative
real algebras with no nonzero joint topological divisor of zero).

2.5.1 Introducing quaternions and octonions

By a Cayley algebra over K we mean a unital algebra A over K endowed with a
linear algebra involution ∗ (called the standard involution of A) satisfying

a+a∗ ∈K1 and aa∗ ∈K1 for every a ∈ A. (2.5.1)

Let A be a Cayley algebra over K. Then we can consider the algebra over K consist-
ing of the vector space A×A and the product given by

(a1,a2)(a3,a4) := (a1a3 −a4a∗2,a
∗
1a4 +a3a2) .

This algebra will be called the Cayley–Dickson doubling of A, and will be denoted by
C D(A). As a matter of fact, C D(A) is unital (with 1 = (1,0)), and actually becomes
a new Cayley algebra whose standard involution is given by (a1,a2)

∗ := (a∗1,−a2).
The passing from A to C D(A) is known as the Cayley–Dickson doubling process.

Now, let us pay attention to the case K = R, and consider R as a real Cayley
algebra (with standard involution equal to the identity mapping). Then, clearly, the
Cayley algebra C D(R) becomes a copy of (the real algebra underlying) C, with
standard involution equal to the usual conjugation. By iterating the Cayley–Dickson
doubling process twice more, we get the algebra H of Hamilton’s quaternions, and
the algebra O of octonions (also called Cayley numbers). Indeed, they are the Cayley
algebras C D(C) and C D(H), respectively. It is of straightforward verification that
the algebra H is associative but not commutative, whereas the algebra O is alternative
but not associative.

By an absolute value on an algebra A over K we mean a norm ‖ · ‖ on the vector
space of A satisfying ‖xy‖ = ‖x‖‖y‖ for all x,y ∈ A. By an absolute-valued algebra
we mean a nonzero algebra over K endowed with an absolute value. It is not difficult
to realize that, if we see C, H, and O as C D(A), for A= R,C, and H, respectively,
and if, for a1,a2 ∈ A we set

‖(a1,a2)‖ :=
√

‖a1‖2 +‖a2‖2, (2.5.2)

then ‖ · ‖ becomes an absolute value on C D(A). Thus, R,C,H and O become the
basic examples of absolute-valued algebras. It follows from (2.5.2) that the absolute
values of R, C, H, and O come from inner products.
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§2.5.1 The introduction of H and O above is surely the quickest possible one.
However, concerning H, there is another more natural approach. Indeed, in the same
way as C can be rediscovered as the subalgebra of the algebra M2(R) (of all 2× 2
matrices over R) given by {(

a b
−b a

)
: a,b ∈ R

}
,

H can be rediscovered as the real subalgebra of M2(C) given by{(
z w

−w∗ z∗

)
: z,w ∈ C

}
(see for example [727, p. 195]). Regarding H in this new way, the standard involution
of H corresponds with the operation consisting of the transposition of matrices and
taking standard involution in their entries, and the absolute value of an element of H
is nothing other than the non-negative square root of its (automatically non-negative)
determinant.

In its turn, O can be described in terms of 2× 2 matrices of scalars and vectors,
via the so-called Zorn’s vector matrices. To be precise, O can be re-encountered as
the real algebra whose vector space is{(

z w
−w∗ z∗

)
: z ∈ C,w ∈ C3

}
,

where, for a vector w = (w1,w2,w3) ∈C3, w∗ := (w∗
1,w

∗
2,w

∗
3), and whose product is

defined ‘in a natural way’ by(
z1 w1

−w∗
1 z∗1

)(
z2 w2

−w∗
2 z∗2

)

=

(
z1z2 − (w1,w∗

2) z1w2 + z∗2w1 +w∗
1 ×w∗

2
−z∗1w∗

2 − z2w∗
1 −w1 ×w2 z∗1z∗2 − (w∗

1,w2)

)
,

where, for vectors u = (u1,u2,u3),v = (v1,v2,v3) ∈ C3,

(u,v) := u1v1 +u2v2 +u3v3 (the ‘scalar product’)

and

u×v := (u2v3 −u3v2,u3v1 −u1v3,u1v2 −u2v1) (the ‘vector product’)

(see for example [822, p. 46]). Regarding O in this new way, the standard involution
of O corresponds with the operation consisting of transposing the matrix and taking
standard involution in its entries. Moreover, the absolute value of an element of O is
nothing other than the non-negative square root of its (automatically non-negative)
‘determinant’ zz∗+(w∗,w).

2.5.2 The Frobenius–Zorn theorem

Now, let us go for a long walk which will lead us to the so-called Frobenius–Zorn
theorem, providing us with a first relevant characterization of the algebras R,C,H
and O (see Theorem 2.5.29 below).
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§2.5.2 Let A be a power-associative algebra over K. Then the obvious identities

[a2,a] = 0 and [a2,a,a] = 0

can be linearized to get

2[a•b,a]+ [a2,b] = 0 (2.5.3)

and

2[a•b,a,a]+ [a2,b,a]+ [a2,a,b] = 0. (2.5.4)

Again linearizing (2.5.3) and (2.5.4), we find the identities

[a•b,c]+ [a• c,b]+ [b• c,a] = 0 (2.5.5)

and

2[a•b,c,a]+2[a•b,a,c]+2[a• c,b,a]+2[a• c,a,b]

+2[b• c,a,a]+ [a2,b,c]+ [a2,c,b] = 0. (2.5.6)

Lemma 2.5.3 Let A be a power-associative algebra over K, and let e be an idem-
potent in A. Then we have:

(i) A = A1(e)⊕A 1
2
(e)⊕A0(e) , where Ak(e) := {x ∈ A : e• x = kx} for k = 1, 1

2 ,0.

(ii) Ak(e) = {x ∈ A : ex = xe = kx} for k = 1,0.
(iii) Ak(e)•Ak(e)⊆ Ak(e) for k = 1,0, and A0(e)•A1(e) = 0.
(iv) A 1

2
(e)•A 1

2
(e)⊆ A1(e)+A0(e).

(v) The projections Pk(e) from A onto Ak(e) (k = 1, 1
2 ,0) corresponding to the

decomposition A = A1(e)⊕A 1
2
(e)⊕A0(e) are given by

P1(e) = L•
e(2L•

e − IA), P1
2
(e) = 4L•

e(IA −L•
e),

and

P0(e) = (L•
e − IA)(2L•

e − IA),

where L•
e denotes the multiplication operator by e in the algebra Asym.

Proof Since Asym is power-associative (cf. Corollary 2.4.18), to prove assertions (i),
(iii), (iv), and (v) we may assume in addition that A is commutative. Then, setting
a = e in (2.5.4), we obtain

2L3
e −3L2

e +Le = 0, (2.5.7)

that is p(Le) = 0, where p(x) = x(x− 1)(x− 1
2 ). Therefore assertions (i) and (v)

follow from Proposition 1.3.3. In order to prove assertions (iii) and (iv), set a = e,
b ∈ Ak(e), and c ∈ A j(e) in (2.5.6). This yields

2e[e(bc)]+(2k+2 j−4)e(bc)+(2k2 +2 j2 −8k j+ k+ j)bc = 0.

When k = j = 1 we obtain 0 = (L2
e − IA)(bc) = (Le + IA)(Le − IA)(bc), and keep-

ing in mind that Le + IA belongs to Inv(L(A)), we get (Le − IA)(bc) = 0, that is,
bc ∈ A1(e), and as a result A1(e) is a subalgebra of A. Similarly k = j = 0 yields
0=(L2

e−2Le)(bc)=(Le−2IA)Le(bc), and keeping in mind that Le − 2IA belongs to
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Inv(L(A)), we get Le(bc) = 0. That is, bc∈ A0(e), and as a result A0(e) is a subalgebra
of A. The values k = 1, j = 0 yield

0 = (2L2
e −2Le +3IA)(bc), (2.5.8)

and so 0 = (2L3
e −2L2

e +3Le)(bc). By (2.5.7),

0 = (L2
e +2Le)(bc) = (Le +2IA)Le(bc),

and keeping in mind that Le + 2IA belongs to Inv(L(A)), we deduce that 0 =

Le(bc), and hence, by (2.5.8), bc = 0, and the proof of assertion (iii) is complete.
For k= j= 1

2 , we obtain 0 = 2(L2
e − Le)(bc) = − 1

2 P1
2
(e)(bc). That is, bc lies in

A1(e)+A0(e), and the proof of assertion (iv) is complete.
Finally, in order to prove assertion (ii), remove the assumption that A is commu-

tative. Applying the identity (2.5.5) with a ∈ Ak(e) and b = c = e, we obtain
(2k−1)[a,e] = 0, so [a,e] = 0 for k = 1,0, hence ea = ae = e•a = ka for k = 1,0.
This concludes the proof.

The decomposition in Lemma 2.5.3(i) is called the Peirce decomposition of A
relative to e.

Lemma 2.5.4 Let A be a power-associative algebra over K, and let e be an idem-
potent in A such that A0(e) = 0. Then for y in A 1

2
(e) we have y3 = 0.

Proof Let y be in A 1
2
(e). Then 2e•y= ey+ye= y. Moreover, since A 1

2
(e)•A 1

2
(e)⊆

A1(e) (by Lemma 2.5.3(iv)), we get that y2 = y • y ∈ A1(e). Now, keeping in mind
the identity (2.5.4), we have

0 = 2[e• y,y,y]+ [y2,e,y]+ [y2,y,e] = (y2e)y− y2(ey)+ y3e− y2(ye)

= (y2e)y+ y3e− y2(ye+ ey) = y3 + y3e− y3 = y3e,

and hence y3e = 0. Replacing A with the opposite algebra of A, we also obtain that
ey3 = 0. Therefore y3 ∈ A0(e), and hence y3 = 0.

Lemma 2.5.5 Let A be a power-associative algebra over K with no nonzero joint
divisor of zero, and let e be a nonzero idempotent in A. Then e is a unit for A.

Proof By Lemma 2.5.3(ii), our assumptions clearly imply that A0(e) = 0, and then,
by Lemma 2.5.4, that A 1

2
(e) = 0 also. Therefore, by Lemma 2.5.3(i), we have A =

A1(e), and hence, again by Lemma 2.5.3(ii), e is a unit for A.

Definition 2.5.6 Let A be an algebra over K, and let I be a

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A.

We say that I is a minimal

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A if I is nonzero and if the only

nonzero

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A contained in I is I itself.

§2.5.7 An element a of an algebra is said to be isotropic whenever a 	= 0 = a2. We
note that isotropic elements are nonzero joint divisors of zero.
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Lemma 2.5.8 Let A be a nonzero finite-dimensional associative algebra over K
without isotropic elements. Then A contains a nonzero idempotent.

Proof Take a minimal left ideal I of A, and a nonzero element a ∈ I. Then we
have 0 	= a2 ∈ Ia ⊆ I, so Ia = I, and so there is b ∈ I such that ba = a. Consider
the set J = {x ∈ A : xa = 0}. It is clear that J is a left ideal of A containing the set
{x− xb : x ∈ A}. Since I ∩ J is a left ideal contained in I and I is not contained in J,
the minimality of I gives I ∩ J = 0. Since b ∈ I, we have b−b2 ∈ I. Also b−b2 ∈ J,
and so b−b2 = 0.

§2.5.9 Let A be an algebra over K. An element a ∈ A is said to be algebraic if
the subalgebra of A generated by a is finite-dimensional. We say that A is algebraic
if all its elements are algebraic. If A is unital and power-associative, and if a is an
algebraic element of A, then we can consider the so-called minimum polynomial of
a, namely the unique non-constant monic polynomial p(x) ∈K[x] such that

{q(x) ∈K[x] : q(a) = 0}= p(x)K[x].

The algebra A is called quadratic if it is unital and, for every a ∈ A, a2 lies in the
linear hull of {1,a}. Some authors also require that A 	= K1, but this is not suitable
for our present purpose. If A is quadratic, then, for each a∈A, the linear hull of {1,a}
is a subalgebra of A containing a, and hence A is algebraic and power-associative.
A relevant partial converse is given by the next proposition.

Proposition 2.5.10 Let A be a nonzero power-associative algebraic algebra over
K with no nonzero joint divisor of zero. We have:

(i) If K= C, then A is isomorphic to C.

(ii) If K= R, then A is quadratic.

Proof Take a nonzero element b ∈ A. Then the subalgebra of A generated by b
is a finite-dimensional associative algebra with no isotropic element, and hence, by
Lemma 2.5.8, has a nonzero idempotent. Therefore, by Lemma 2.5.5, A is unital.
Now, let a be any nonzero element of a, and let p stand for the minimum polynomial
of A. If p were decomposable (say p= qs with q,s non-constant monic polynomials),
then we would have q(a)s(a) = s(a)q(a) = 0, and hence q(a) = 0 or s(a) = 0 (by
the absence of nonzero joint divisors of zero), a fact which is not possible because
max{deg(q),deg(s)} < deg(p), and p is the minimum polynomial of a. Therefore
p is indecomposable. Now, if K = C, then a lies in C1, and hence, since a is an
arbitrary nonzero element of A, we conclude that A is isomorphic to C. Assume that
K=R. Then we have that either a∈R1 or (a−α1)2+β 21= 0 for suitable α,β ∈R.
In both cases, a2 belongs to the linear hull of {1,a}, and, again by the arbitrariness
of a ∈ A\{0}, A is quadratic.

For a variant of assertion (i) in the above proposition, see Lemma 2.6.30 below.
Concerning assertion (ii), note that the proof gives more precise information. Indeed,
if A is a nonzero power-associative algebraic real algebra with no nonzero joint
divisor of zero, then A is unital, and the subalgebra of A generated by each element
and the unit is isomorphic to R or C.
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§2.5.11 Let A be a quadratic algebra over K. By definition, for each a ∈ A, there
are elements t(a) and n(a) of K such that

a2 − t(a)a+n(a)1 = 0. (2.5.9)

If a belongs to A \ (K1), then the scalars t(a) and n(a) in (2.5.9) are uniquely
determined. Otherwise, we have a = α1 for a unique α ∈ K, and we set t(a) := 2α
and n(a) := α2, so that (2.5.9) is fulfilled. The mappings a → t(a) and a → n(a),
from A to K, defined in this way are called the trace function and the algebraic norm
function on A, respectively.

Proposition 2.5.12 Let A be a quadratic algebra over K. Then the trace function
is a linear form on A, and the algebraic norm function is a quadratic form on A.

Proof First we prove that t(λa) = λ t(a) for all λ ∈ K and a ∈ A. If λ = 0, this is
clear. Assume that λ 	= 0. If a = α1, then we have

t(λa) = t(λα1) = 2λα = λ t(a).

Assume that a 	∈K1. Then we have

0 = (λa)2 − t(λa)λa+n(λa)1

= λ 2[t(a)a−n(a)1]− t(λa)λa+n(λa)1

= [λ 2t(a)−λ t(λa)]a− [λ 2n(a)+n(λa)]1,

hence λ 2t(a)−λ t(λa) = 0, and so t(λa) = λ t(a).
Now we prove that t(a + b) = t(a) + t(b) for all a,b ∈ A. If a,b are linearly

dependent (say b = λa), then

t(a+b) = t((1+λ )a) = (1+λ )t(a) = t(a)+ t(b).

Assume that a,b are linearly independent. If one of them lies in K1 (say b = β1),
then we have

0 = (a+β1)2 − t(a+β1)(a+β1)+n(a+β1)1

= a2 +2βa+β 21− t(a+β1)a−β t(a+β1)1+n(a+β1)1

= t(a)a−n(a)1+2βa+β 21− t(a+β1)a−β t(a+β1)1+n(a+β1)1

= [t(a)+2β − t(a+β1)]a+[−n(a)+β 2 −β t(a+β1)+n(a+β1)]1,

hence t(a)+2β − t(a+β1) = 0, and so t(a+β1) = t(a)+2β = t(a)+ t(b). Now,
assume additionally that a,b 	∈K1. If a,b,1 are linearly dependent (say b=αa+β1),
then we have

t(a+b) = t((1+α)a+β1) = (1+α)t(a)+2β = t(a)+αt(a)+2β

= t(a)+ t(αa+β1) = t(a)+ t(b).
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If a,b,1 are linearly independent, then we have

0 = (a−b)2 − t(a−b)(a−b)+n(a−b)1+(a+b)2 − t(a+b)(a+b)

+n(a+b)1 = 2a2 +2b2 − [t(a−b)+ t(a+b)]a+[t(a−b)− t(a+b)]b

+[n(a−b)+n(a+b)]1 = 2[t(a)a−n(a)1]+2[t(b)b−n(b)1]

− [t(a−b)+ t(a+b)]a+[t(a−b)− t(a+b)]b+[n(a−b)+n(a+b)]1

= [2t(a)− t(a−b)− t(a+b)]a+[2t(b)+ t(a−b)− t(a+b)]b

+[−2n(a)−2n(b)+n(a−b)+n(a+b)]1,

hence

2t(a)− t(a−b)− t(a+b) = 0 and 2t(b)+ t(a−b)− t(a+b) = 0,

and adding these equalities we obtain t(a+b) = t(a)+ t(b).
Finally, now that we know that t is linear, it is enough to apply t to both members

of the equality (2.5.9) to derive

n(a) =
1
2
[t(a)2 − t(a2)],

which shows ostensibly that n is a quadratic form.

Let A be a quadratic algebra over K. It follows from the above proposition that
A = K1⊕V , where V := ker(t). Thus, each element a ∈ A, can be uniquely written
in the form a = α1+x for α ∈K and x ∈V . As usual, α is called the ‘scalar part’ of
a, and x is called the ‘vector part’ of a. If for x,y ∈V , we denote by −(x,y) and x×y
the scalar and vector parts of xy, respectively, that is to say, if we write

xy =−(x,y)1+ x× y with (x,y) ∈K and x× y ∈V ,

then we are provided with a bilinear form (·, ·) : V ×V → K and a bilinear map-
ping × : V ×V → V . Note that, for x ∈ V , we have x2 ∈ K1 (by (2.5.9)) and also
x2 =−(x,x)1+x×x, so that, since x×x lies in V , we get x×x = 0. Therefore (V,×)

is an anticommutative algebra. Keeping in mind these remarks, the following result
follows straightforwardly.

Proposition 2.5.13 The quadratic algebras over K are the algebras whose vector
space is K1⊕V , for some vector space V over K endowed with an anticommutative
product × and a bilinear form (·, ·), and whose product is defined by

(α1+ x)(β1+ y) := (αβ − (x,y))1+(αy+βx+ x× y).

Moreover, when a quadratic algebra A is regarded in the above manner, then

V = {a ∈ A : a2 ∈K1,a /∈K1\{0}}. (2.5.10)

§2.5.14 Given a vector space V over K endowed with an anticommutative product
× and a bilinear form (·, ·), we will denote by A (V,×,(·, ·)) the quadratic algebra
over K which arises in the manner pointed out in the above proposition.

Lemma 2.5.15 Let A =A (V,×,(·, ·)) be a quadratic real algebra with no nonzero
joint divisor of zero. Then n(x) = (x,x)> 0 for every x ∈V\{0}.
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Proof Let x be an element in V . If n(x) � 0, then, setting α :=
√

−n(x), we have

(α1+ x)(α1− x) = (α1− x)(α1+ x) =−(n(x)1+ x2) = 0,

and hence either α1+ x = 0 or α1− x = 0. In any case, we conclude that x = 0.

Corollary 2.5.16 Let A be a commutative quadratic real algebra with no nonzero
divisor of zero. Then A is isomorphic to R or C.

Proof According to Proposition 2.5.13 and the notation in §2.5.14, we can write
A = A (V,×,(·, ·)). Since A is commutative, for x,y ∈V we have

0 = [x,y] = [(y,x)− (x,y)]1+ x× y− y× x,

which implies that the bilinear form (·, ·) on V is symmetric, and that the anti-
commutative product × on V is identically zero. Assume that dim(V )� 2. Then there
exist nonzero elements x,y∈V such that (x,y)= 0, so that we have xy=−(x,y)1= 0,
contradicting the assumption that A has no nonzero divisor of zero. Therefore we
have dim(V ) � 1. If dim(V ) = 0, then, clearly, A is isomorphic to R. Otherwise,
again by the absence of nonzero divisors of zero in A, Lemma 2.5.15 applies so that
there exists x ∈ V with x2 = −1, and hence the mapping r+ is → r1+ sx (r,s ∈ R)
becomes a bijective algebra homomorphism from C to A.

Applying Proposition 2.5.10(ii) and Corollary 2.5.16, we get the following.

Proposition 2.5.17 Let A be a nonzero power-associative commutative algebraic
real algebra with no nonzero divisor of zero. Then A is isomorphic to R or C.

A quadratic form N on an algebra A is said to admit composition if the equality
N(ab) = N(a)N(b) holds for all a,b ∈ A.

Proposition 2.5.18 Let A =A (V,×,(·, ·)) be a quadratic algebra over K. Then we
have:

(i) For every a = α1+ x ∈ A, t(a) = 2α and n(a) = α2 +(x,x).
(ii) A is flexible if and only if (·, ·) is symmetric and

(x× y,z) = (x,y× z) for all x,y,z ∈V .

(iii) n admits composition if and only if A is flexible and

(x× y,x× y) = (x,x)(y,y)− (x,y)2 for all x,y ∈V .

(iv) A is alternative if and only if A is flexible and

x× (x× y) = (x,y)x− (x,x)y for all x,y ∈V .

Proof Assertion (i) follows from the fact that, for every a = α1+ x ∈ A, we have

a2 = [α2 − (x,x)]1+2αx =−[α2 +(x,x)]1+2αa.

Now, note that, for all x,y ∈V we have

[x,y,x] = (xy)x− x(yx) = [−(x,y)1+ x× y]x− x[−(y,x)1+ y× x]

=−(x× y,x)1− (x,y)x+(x× y)× x+(x,y× x)1+(y,x)x− x× (y× x)

= [−(x× y,x)+(x,y× x)]1+[−(x,y)+(y,x)]x.
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Therefore [x,y,x] = 0 if and only if

(x,y) = (y,x) and (x× y,x) = (x,y× x),

and assertion (ii) follows by linearization of the last equality with respect to x.
Let a = α1+ x and b = β1+ y be in A. By assertion (i) we have

n(ab) = [αβ − (x,y)]2 +(αy+βx+ x× y,αy+βx+ x× y)

= α2β 2 −2αβ (x,y)+(x,y)2 +α2(y,y)+αβ (y,x)+α(y,x× y)

+αβ (x,y)+β 2(x,x)+β (x,x× y)+α(x× y,y)+β (x× y,x)

+(x× y,x× y)

and

n(a)n(b) = [α2 +(x,x)][β 2 +(y,y)] = α2β 2 +α2(y,y)+β 2(x,x)+(x,x)(y,y).

Therefore

n(ab)−n(a)n(b) = αβ [(y,x)− (x,y)]+α[(y,x× y)+(x× y,y)]

+β [(x,x× y)+(x× y,x)]+(x,y)2 +(x× y,x× y)

− (x,x)(y,y).

Now, assertion (iii) follows from assertion (ii), by taking α,β ∈ {0,1} for the ‘only
if’ part.

Let x,y be in V . Then we have

[x,x,y] = x2y− x(xy) =−(x,x)y− x[−(x,y)1+ x× y]

=−(x,x)y+(x,x× y)1+(x,y)x− x× (x× y),

and hence [x,x,y] = 0 if and only if

(1) (x,x× y) = 0 and (2) x× (x× y) = (x,y)x− (x,x)y.

Analogously, we have

[y,x,x] = (yx)x− yx2 = [−(y,x)1+ y× x]x+(x,x)y

=−(y× x,x)1− (y,x)x+(y× x)× x+(x,x)y,

and hence [y,x,x] = 0 if and only if

(1′) (y× x,x) = 0 and (2′) (y× x)× x = (y,x)x− (x,x)y.

Since x× (x× y) = (y× x)× x, it follows that (2) and (2′) occur simultaneously if
and only if (·, ·) is symmetric and (2) occurs. Moreover, in this case, conditions (1)
and (1′) agree. Now, assertion (iv) follows from assertion (ii).

For the proof of the next corollary, assertions (ii), (iii), and (iv) in Propos-
ition 2.5.18 must be kept in mind.
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Corollary 2.5.19 Let A = A (V,×,(·, ·)) be a quadratic algebra over K. We have:

(i) If A is alternative, then the algebraic norm function n on A admits composition.
(ii) If n admits composition and if (·, ·) is nondegenerate, then A is alternative.

Proof Assume that A is alternative. Then A is flexible, and hence (·, ·) is symmetric
and satisfies

(x× y,z) = (x,y× z) for all x,y,z ∈V .

Therefore, for all x,y ∈V , we have

(x× y,x× y) =−(y× x,x× y) =−(y,x× (x× y))

=−(y,(x,y)x− (x,x)y) = (x,x)(y,y)− (x,y)2,

hence n admits composition. Thus assertion (i) is proved.
Now, assume that n admits composition, and that (·, ·) is nondegenerate. Lineariz-

ing the condition

(x× y,x× y) = (x,x)(y,y)− (x,y)2

with respect to y, we obtain that

(x× y,x× z) = (x,x)(y,z)− (x,y)(x,z)

for all x,y,z ∈V . Hence

(x× (x× y)+(x,x)y− (x,y)x,z) =−(x× y,x× z)+(x,x)(y,z)− (x,y)(x,z) = 0

for all x,y,z ∈V , and consequently x× (x× y)+(x,x)y− (x,y)x = 0 for all x,y ∈V .
Thus A is alternative.

Proposition 2.5.20 Let A be an algebra over K. Then the following conditions are
equivalent:

(i) A is a Cayley algebra.
(ii) A is a quadratic algebra, say A = A (V,×,(·, ·)), and the bilinear form (·, ·) is

symmetric.

Moreover, if A is a Cayley algebra, then we have

a+a∗ = t(a)1 and a∗a = aa∗ = n(a)1 for every a ∈ A,

and a∗ = α1− x whenever a = α1+ x with α ∈K and x ∈V .

Proof Assume that A is a Cayley algebra. Since for every a ∈ A we have
a2 − a(a + a∗) + aa∗ = 0, it follows that A is quadratic and t(a)1 = a + a∗ and
n(a)1 = aa∗ for every a ∈ A. As a consequence of the equality t(a)1 = a+ a∗ we
get that H(A,∗) =K1, and that the space V of the vectors of A is precisely the set of
those elements a ∈ A such that a∗ =−a. Therefore we have

(α1+ x)∗ = α1− x for all α ∈K1 and x ∈V ,

which implies a∗a = aa∗ = n(a)1 for every a ∈ A. On the other hand, since ∗ is an
algebra involution, for all x,y ∈V we see that

0 = (xy)∗ − y∗x∗ =−(x,y)1− x× y+(y,x)1− y× x = [(y,x)− (x,y)]1,
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and hence (x,y) = (y,x). Thus we have proved the implication (i)⇒(ii) in the first
conclusion of the proposition, as well as the whole of the second conclusion.

Now, assume that A = A (V,×,(·, ·)), where the bilinear form (·, ·) is symmetric.
Consider the mapping ∗ : A → A defined by

(α1+ x)∗ = α1− x for all α ∈K and x ∈V .

Clearly, ∗ is a vector space involution on A satisfying a+ a∗ ∈ K1 and aa∗ ∈ K1
for every a ∈ A. Moreover, keeping in mind that the form (·, ·) is symmetric, we
straightforwardly realize that ∗ is in fact an algebra involution.

By a composition algebra over K we mean a nonzero algebra over K endowed
with a nondegenerate quadratic form admitting composition. Given a vector space
X over K and a quadratic form q on X , we denote by q(·, ·) the unique symmetric
bilinear form on X such that q(x,x) = q(x) for every x ∈ X .

Proposition 2.5.21 Let A be a unital algebra over K. Then there is at most one
nondegenerate quadratic form on A admitting composition. Moreover, the following
conditions are equivalent:

(i) A is a composition algebra.
(ii) A is a quadratic algebra, say A = A (V,×,(·, ·)), the bilinear form (·, ·) is

symmetric and nondegenerate, and the quadratic algebraic norm form n on A
admits composition.

(iii) A is an alternative Cayley algebra, and the quadratic form N on A determined
by N(a)1 = aa∗ is nondegenerate.

Proof The first conclusion will follow as a by-product of the proof of the implica-
tion (i)⇒(ii).

(i)⇒(ii) Assume that A is a composition algebra. Let N be the nondegenerate
quadratic form on A admitting composition. Then

N(ab,ab) = N(a,a)N(b,b) for all a,b ∈ A. (2.5.11)

Linearize this relative to a to obtain

N(ab,cb) = N(a,c)N(b,b) for all a,b,c ∈ A.

Linearizing this relative to b, we have

N(ab,cd)+N(ad,cb) = 2N(a,c)N(b,d) for all a,b,c,d ∈ A. (2.5.12)

Define T (a) := 2N(a,1) for every a ∈ A. Note that N(1) = 1 by (2.5.11) since
N(a) 	=0 for some a in A. Then

N(α1) = α2 and T (α1) = 2α for every α in K. (2.5.13)

Now (2.5.12) implies

N(ab,c)+N(a,cb) = N(a,c)T (b) for all a,b,c ∈ A (2.5.14)

and

N(ab,d)+N(b,ad) = T (a)N(b,d) for all a,b,d ∈ A. (2.5.15)
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Now N(a2,c)+N(a,ac) = T (a)N(a,c) by (2.5.15) and N(a,ac) = N(a)N(1,c) by
(2.5.14). Hence N(a2−T (a)a+N(a)1,c) = 0 for every c in A. Since N is nondegen-
erate, we have

a2 −T (a)a+N(a)1 = 0 for every a ∈ A.

Therefore A is a quadratic algebra. By the uniqueness of the algebraic norm in
the ‘vector part’ V of a quadratic algebra, we have (x,x) = N(x) for every x ∈ V .
Moreover, by the first equality in (2.5.13) and Proposition 2.5.18(i), we obtain that
n(a) = N(a) for every a in A. Thus n, and hence (·, ·), is nondegenerate, and n admits
composition. Finally, by Proposition 2.5.18(ii)–(iii), (·, ·) is symmetric.

(ii)⇒(iii) Assume that (ii) holds. Then, by Corollary 2.5.19, A is alternative.
Moreover, by Proposition 2.5.20, A is a Cayley algebra and n(a)1 = aa∗ for every
a ∈ A. Therefore 2n(a,b)1 = ab∗+ba∗ for all a,b ∈ A. Since (·, ·) is symmetric and
nondegenerate, it follows from Proposition 2.5.18(i) that n is nondegenerate.

(iii)⇒(i) Assume that (iii) holds. Then, by Proposition 2.5.20, A is a quadratic
algebra, say A = A (V,×,(·, ·)), the bilinear form (·, ·) is symmetric, and

n(a)1 = aa∗ for every a ∈ A.

Therefore n(a,b)1 = 1
2 (ab∗ + ba∗) for all a,b ∈ A, and hence, by assumption, n is

nondegenerate. Finally, by Corollary 2.5.19, n admits composition.

Definition 2.5.22 If V is a real vector space endowed with a product × and an inner
product (·|·) satisfying

(x× y|z) = (x|y× z) for all x,y,z ∈V , (2.5.16)

and

‖x× y‖2 = ‖x‖2‖y‖2 − (x|y)2 for all x,y ∈V , (2.5.17)

then we will say that (V,×,(·|·)) is a cross-product algebra. Note that, if (V,×,(·|·))
is a cross-product algebra, then, by (2.5.17), we have x× x = 0 for every x ∈V , and
hence the product × is anticommutative.

Definition 2.5.23 Let A be a unital alternative algebra, and let a be in A. As in
the associative case, we say that a is invertible in A if there exists b ∈ A such that
ab = ba = 1. Such an element b is called an inverse of a.

For elements x,y,z,w in a given algebra, the following equality is straightforwardly
realized:

[x,y,z]w+ x[y,z,w] = [xy,z,w]− [x,yz,w]+ [x,y,zw]. (2.5.18)

Now let A be a unital alternative algebra, let a be an invertible element of A with
inverse b, and let c be in A. Then, setting (x,y,z,w) = (b,a,a,bc) in (2.5.18), we
obtain

0 =−[b,a2,bc]+ [b,a,a(bc)].

On the other hand, by the right Moufang identity (2.3.16), we have

[b,a2,bc] = [a2,bc,b] =−[a2,b,c]b = [c,b,a2]b =−[c,ba2,b]

= [b,ba2,c] = [b,(ba)a,c] = [b,1a,c] = [b,a,c]
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and

[b,a,a(bc)] =−[b,a(bc),a] = [b,a,bc]a =−[bc,a,b]a

= [bc,ab,a] = [bc,1,a] = 0.

It follows that

[b,a,c] = 0 for every c ∈ A. (2.5.19)

Proposition 2.5.24 Let A be a unital alternative algebra, and let a be an invertible
element in A. We have:

(i) a has a unique inverse.
(ii) La (respectively, Ra) is a bijective operator on A with L−1

a = La−1 (respectively,
R−1

a = Ra−1 ), where a−1 denotes the unique inverse of a.

Proof Suppose that b and c are inverses of a in A. Then, keeping in mind (2.5.19),
we see that

c = 1c = (ba)c = [b,a,c]+b(ac) = b(ac) = b1 = b.

Thus a has a unique inverse. Moreover, if we denote by a−1 the unique inverse of
a, then (2.5.19) gives that [a−1,a,x] = 0 for every x ∈ A. Since the associator is
an alternating function of its arguments, we obtain that La−1La = LaLa−1 = IA and
Ra−1Ra = RaRa−1 = IA, and the proof is complete.

Definition 2.5.25 Now we can consider the classical notion of a division altern-
ative algebra, namely a unital alternative algebra A whose nonzero elements are
invertible in A.

Proposition 2.5.26 Let A be a unital real algebra. Then the following conditions
are equivalent:

(i) A is both a quadratic algebra and a division alternative algebra in the classical
sense.

(ii) A is an alternative quadratic algebra with no nonzero divisor of zero.
(iii) A is an alternative quadratic algebra with no nonzero joint divisor of zero.
(iv) A = A (V,×,(·|·)), where (V,×,(·|·)) is a cross-product algebra.
(v) A is a composition algebra whose nondegenerate quadratic form n admitting

composition satisfies in fact n(a) 	= 0 for every a ∈ A\{0}.

Proof (i)⇒(ii) Let a,b be in A such that ab = 0. If a 	= 0, then, by the assump-
tion (i), we have b = L−1

a (La(b)) = a−1(ab) = 0.
(ii)⇒(iii) This implication is clear.
(iii)⇒(iv) Assume that condition (iii) holds. Then, by Proposition 2.5.13, A =

A (V,×,(·, ·)), where (V,×,(·, ·)) is an anticommutative algebra with a bilinear form.
Moreover, since A is alternative, Corollary 2.5.19 applies, so that n admits composi-
tion. Finally, by Proposition 2.5.18 and Lemma 2.5.15, we conclude that (V,×,(·, ·))
is a cross-product algebra.

(iv)⇒(v) Assume that (iv) holds. Then, by Proposition 2.5.18, n admits composi-
tion, and n(a) = α2 +‖x‖2 > 0 for every nonzero element a = α1+ x in A.
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(v)⇒(i) Assume that (v) holds. Then, by Propositions 2.5.21 and 2.5.20, A is an
alternative quadratic algebra with an algebra involution ∗ satisfying

aa∗ = a∗a = n(a)1 for every a ∈ A.

Therefore, if a 	= 0, then a is invertible in A with a−1 = 1
n(a)a∗.

Let (V,×,(·|·)) be a cross-product algebra. Then, by Propositions 2.5.26 and
2.5.18, we have

x× (x× y) = (x|y)x−‖x‖2y for all x,y ∈V . (2.5.20)

Linearizing with respect to x we obtain

x× (y× z)− z× (x× y) = 2(x|z)y− (x|y)z− (y|z)x for all x,y,z ∈V , (2.5.21)

and as a consequence we have

x× (y× z) = z× (x× y) for all pairwise orthogonal x,y,z ∈V . (2.5.22)

Lemma 2.5.27 Let (V,×,(·|·)) be a cross-product algebra. Assume that x,y,z are
elements of V and v is a norm-one element of V such that each one of the sets
{x,y,z,v} and {x× v,v,y× z} consists of pairwise orthogonal elements. Then

(x× v)× (y× (z× v)) = x× (y× z).

Proof By applying (2.5.22) twice we have

(x× v)× (y× (z× v)) = (x× v)× (v× (y× z)) = (y× z)× ((x× v)× v).

Keeping in mind the anticommutativity of ×, by (2.5.20) we realize that (x×v)×v=
v× (v× x) =−x, and we conclude that

(x× v)× (y× (z× v)) = x× (y× z).

Now recall that, if (V,×,(·|·)) is a cross-product algebra, then, by Propos-
ition 2.5.20, A (V,×,(·|·)) is a Cayley algebra, and hence the Cayley–Dickson
doubling process is applicable to A (V,×,(·|·)).

Proposition 2.5.28 Let (V,×,(·|·)) be a cross-product algebra, let U be a subalge-
bra of (V,×) such that U⊥ 	= 0, and let v be a norm-one element in U⊥. We have:

(i) U × v ⊆ (U ⊕Rv)⊥.
(ii) If U (v) denotes the subalgebra of (V,×) generated by U and v, then

U (v) =U ⊕Rv⊕ (U × v),

and the mapping α1 + u1 + βv + u2 × v → (α1 + u1,−β1 + u2) is an alge-
bra isomorphism from A (U (v),×,(·|·)) onto the Cayley–Dickson doubling,
C D(A (U,×,(·|·))), of A (U,×,(·|·)).

(iii) If (U (v))⊥ 	= 0, then dim(U) � 1.

Proof Assertion (i) follows from the fact that, for all u,u1,u2 ∈U we have

(u× v|v) = (u|v× v) = 0 and (u1 × v|u2) = (u2|u1 × v) = (u2 ×u1|v) = 0.
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The equality U (v) = U ⊕Rv⊕U × v in assertion (ii) follows from the fact that, for
all u,u1,u2 ∈U , by applying (2.5.20) and (2.5.21), we have

u1 × (u2 × v) =−(u1|u2)v− (u1 ×u2)× v,

v× (u× v) =−v× (v×u) = u,

and

(u1 × v)× (u2 × v) = v× ((u1 × v)×u2) = v× [(u1|u2)v− (u1 ×u2)× v]

=−v× [(u1 ×u2)× v] =−u1 ×u2.

Now that we know that U (v) =U ⊕Rv⊕ (U × v), it is a routine matter to show that
the mapping

α1+u1 +βv+u2 × v → (α1+u1,−β1+u2)

is an algebra isomorphism from A (U (v),×,(·|·)) onto C D(A (U,×,(·|·))).
In order to prove assertion (iii), suppose, to derive a contradiction, that (U (v))⊥ 	= 0

and dim(U) � 2. Fix norm-one elements w ∈ (U (v))⊥ and u1,u2 ∈ U such that
(u1|u2) = 0. Set p := v×w. Since p ∈ U (v) ×w, it follows from assertion (i) that
p ∈ (U (v) ⊕Rw)⊥, and then that U (v) × p ⊆ (U (v))⊥. Therefore each one of the
sets {u1,u2, p,v} and {u1 × v,v,u2 × p} consists of pairwise orthogonal elements.
Therefore, by Lemma 2.5.27, we have

(u1 × v)× (u2 × (p× v)) = u1 × (u2 × p).

On the other hand, by (2.5.20), we have

p× v = (v×w)× v =−v× (v×w) = w,

and consequently (u1 × v)× (u2 ×w) = (u1 × v)× (u2 × (p× v)). Hence, we can
conclude that

(u1 × v)× (u2 ×w) = u1 × (u2 × p). (2.5.23)

Analogously, since p = −w × v ∈ U (w) × v, it follows from assertion (i) that
p ∈ (U (w) ⊕Rv)⊥, and then that U (w) × p ⊆ (U (w))⊥. Therefore each one of the
sets {u2,u1, p,w} and {u2 ×w,w,u1 × p} consists of pairwise orthogonal elements.
Therefore, by Lemma 2.5.27, we get that

(u2 ×w)× (u1 × (p×w)) = u2 × (u1 × p).

On the other hand, by (2.5.20), we have w × p = −w × (w × v) = v, and con-
sequently (u2 ×w)× (u1 × v) = −(u2 ×w)× (u1 × (p×w)). Hence, we obtain that
(u2 × w) × (u1 × v) = −u2 × (u1 × p) = u2 × (p × u1). Since, by (2.5.22),
u2 × (p×u1) = u1 × (u2 × p), we conclude that

(u2 ×w)× (u1 × v) = u1 × (u2 × p). (2.5.24)

Now (2.5.23) together with (2.5.24) give that

(u1 × v)× (u2 ×w) = u1 × (u2 × p) = (u2 ×w)× (u1 × v). (2.5.25)
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Since v,w are orthogonal, u2, p are orthogonal, and u1,u2 × p are orthogonal, we
see, by (2.5.17), that ‖p‖ = 1, ‖u2 × p‖ = 1, and ‖u1 × (u2 × p)‖ = 1. Therefore
u1 × (u2 × p) 	= 0, and consequently (2.5.25) contradicts the anticommutativity
of ×.

Theorem 2.5.29 (Frobenius–Zorn) Let A be a nonzero alternative algebraic real
algebra with no nonzero joint divisor of zero. Then A is isomorphic to R,C,H, or O.

Proof By Proposition 2.5.10, A is quadratic, and then, by Proposition 2.5.26, A =

A (V,×,(·|·)), where (V,×,(·|·)) is a cross-product algebra. Suppose that A is not
isomorphic to R. Then U0 := 0 is a subalgebra of V with U⊥

0 = V 	= 0. Choose a

norm-one element v1 ∈ V , set U1 := U (v1)
0 , and let A1 denote the subalgebra of A

generated by 1 and U1. It follows from Proposition 2.5.28(ii) that U1 = Rv1 and that
A1 is isomorphic to C. Therefore, if A1 = A, then A is isomorphic to C. Suppose
that A1 	= A, hence U1 	= V , and consequently U⊥

1 	= 0. Choose a norm-one element

v2 ∈U⊥
1 and consider U2 :=U (v2)

1 . By Proposition 2.5.28(ii), the subalgebra A2 of A
generated by 1 and U2 is isomorphic to H. Therefore, if A2 = A, then A is isomorphic
to H. Suppose that A2 	= A, hence U2 	= V , and consequently U⊥

2 	= 0. Arguing as

above, choose a norm-one element v3 ∈ U⊥
2 , set U3 := U (v3)

2 , and let A3 denote the
subalgebra of A generated by 1 and U3. By Proposition 2.5.28(ii), A3 is isomorphic
to O. Since dim(U2) = 3, it follows from Proposition 2.5.28(iii) that U⊥

3 = 0, and
hence A = A3 is isomorphic to O.

Corollary 2.5.30 Let (V,×,(·|·)) be a nonzero cross-product algebra. Then
(V,×,(·|·)) is isomorphic to one of the following cross-product algebras:

(i) The Euclidean vector space R with trivial cross product.

(ii) The Euclidean vector space R3 with cross product equal to the usual vector
product.

(iii) The Euclidean vector space R7 (regarded as R3 ×R×R3) with cross product
defined by

(x1,α1,y1)× (x2,α2,y2) : = (−α1y2 +α2y1 + x1 × x2 − y1 × y2,(x1|y2)

− (y1|x2),α1x2 −α2x1 − x1 × y2 − y1 × x2),

where for x,y ∈ R3 we have denoted by (x|y) and x× y the usual inner product
and vector product in R3, respectively.

Proof By Proposition 2.5.26 and Theorem 2.5.29, A (V,×,(·|·)) is isomorphic to
C,H, or O, and hence (V,×,(·|·)) is isomorphic to one of the cross-product alge-
bras which appear by considering the vector part of C,H, or O. By keeping in
mind the matricial representations of C,H, and O given in §2.5.1, it turns out that
these algebras are nothing other than the cross-product algebras specified in the
statement.

We conclude this subsection with a by-product of Propositions 2.5.10(i) and
2.5.17.
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Definition 2.5.31 Let A be an algebra over K. The centre of A is defined as the
subset of A consisting of those elements a ∈ A such that

[a,A] = [a,A,A] = [A,a,A] = [A,A,a] = 0,

and is denoted by Z(A). Elements in Z(A) are called central elements of A. We note
that Z(A) becomes an associative and commutative subalgebra of A.

Lemma 2.5.32 Let A be an algebra over K with no nonzero joint divisor of zero.
Then A is unital if (and only if) so is Z(A).

Proof Assume that Z(A) is unital. Let e denote the unit of Z(A). Then, noticing that
e is a central idempotent in A, for every a ∈ A we have

e(ae−a) = (ae−a)e = ae2 −ae = 0

and
(ea−a)e = e(ea−a) = e2a− ea = 0,

so ae = ea = a because A has no nonzero joint divisor of zero, hence e is a unit
for A.

Proposition 2.5.33 Let A be an algebraic algebra over K with no nonzero joint
divisor of zero. Then A is unital if (and only if) Z(A) 	= 0.

Proof Assume that Z(A) 	= 0. Then, by Propositions 2.5.10(i) and 2.5.17, Z(A) is
unital. Now apply Lemma 2.5.32.

Remark 2.5.34 Let A be an algebra over K. The centre of A is closely related to
the centroid, ΓA, of A (cf. Definition 1.1.10). Indeed, by assigning to each z ∈ Z(A)
the operator of multiplication by z on A, we are provided with a natural algebra
homomorphism Φ : Z(A) → ΓA such that ker(Φ) = Ann(A) (cf. Definition 1.1.10
again). Moreover Φ is surjective if and only if A has a unit, if and only if Φ is
bijective. Thus, when A is unital, A is central if and only if Z(A) =K1.

2.5.3 The generalized Gelfand–Mazur–Kaplansky theorem

In Definition 1.1.42 we introduced the notion of a division associative algebra in the
classical sense, and later, in Definition 2.5.25, we extended this notion to the setting
of alternative algebras. Now we will develop other division notions for general non-
associative algebras which have appeared in the literature.

Definition 2.5.35 Let A be an algebra. We say that A is a left- (respectively, right-)
division algebra if A 	= 0 and, for every nonzero element a of A, the operator La

(respectively, Ra) is bijective. Algebras which are left and right (respectively, left or
right) division algebras are called division algebras (respectively, one-sided division
algebras). The algebra A is said to be a quasi-division algebra if A 	= 0 and, for
every nonzero element a of A, at least one of the operators La,Ra is bijective. If A
is commutative, then, clearly, all the above notions coincide. We note that one-sided
division algebras have no nonzero divisor of zero, and that quasi-division algebras
have no nonzero two-sided divisor of zero. If A is finite-dimensional, then it is easily
realized that A is a division algebra if and only if A is a left-division algebra, if
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and only if A is a right-division algebra, if and only if A has no nonzero divisor of
zero, and that A is a quasi-division algebra if and only if A has no nonzero two-sided
divisor of zero. However, even in the finite-dimensional case, quasi-division does not
imply one-sided division. Indeed, we have the following.

Example 2.5.36 Let A denote the algebra over K whose vector space is K2 and
whose product is defined by

(λ1,λ2)(μ1,μ2) := (λ1μ2,λ1μ1 +λ2μ2) .

Then A is a quasi-division algebra but not a one-sided division algebra. The verifi-
cation of this assertion is straightforward.

In the infinite-dimensional setting, one-sided division algebras need not be divi-
sion algebras. Indeed, we have the following.

Example 2.5.37 Let K(x) be the algebra of all rational fractions on one indeter-
minate x over K. Since K(x) is infinite-dimensional, there exists an injective non-
surjective linear mapping F : K(x) → K(x). Define a new product � on K(x) by
a� b := F(a)b. With this new product, K(x) becomes a non-division left-division
algebra over K.

It follows from Proposition 2.5.24 that a division alternative algebra in the clas-
sical sense (see Definition 2.5.25) becomes a division algebra in the meaning of
Definition 2.5.35. As a matter of fact, we have the following.

Proposition 2.5.38 Let A be an alternative algebra. Then the following conditions
are equivalent:

(i) A is a quasi-division algebra.
(ii) A is a left-division algebra.

(iii) A is a right-division algebra.
(iv) A is a division algebra.
(v) A is a division alternative algebra in the classical sense.

Proof We already know that condition (v) implies (iv). On the other hand, the
implications (iv)⇒(ii)⇒(i) and (iv)⇒(iii)⇒(i) are clear.

(i)⇒(v) Assume that A is a quasi-division algebra. Let b be a nonzero element of
A. Then Lb or Rb is a bijective operator (say Lb is bijective). Setting e := L−1

b (b),
we have be = b, and hence be = (be)e = be2, which implies e = e2. Therefore, e
becomes a nonzero idempotent of A, so that, by Lemma 2.5.5, 1 := e is a unit for A.
Now, let a be in A\{0}. Then La or Ra is bijective (say La is bijective), so that there
is a unique c in A with ac = 1. Since a(ca− 1) = 0 (by Theorem 2.3.61), we have
also ca = 1. It follows that a is invertible in A with a−1 = c.

Proposition 2.5.39 Let A be a normed quasi-division alternative complex algebra.
Then A is isomorphic to C.

Proof By Proposition 2.5.38, A is a division alternative algebra in the classical
sense. Let a be in A. By Theorem 1.1.41, there is λ ∈ sp(BL(A),La), which means
that La−λ1 = La − λ IA is not invertible in BL(A). If a − λ1 were not zero, then
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it would be invertible in A, so, by Proposition 2.5.24, La−λ1 would be a bijective
operator on A with L−1

a−λ1 = L(a−λ1)−1 ∈ BL(A), and L−1
a−λ1 would be an inverse of

La−λ1 in BL(A), a contradiction. Therefore a ∈ C1.

Now we prove the so-called real Gelfand–Mazur theorem.

Proposition 2.5.40 Let A be a normed quasi-division associative real algebra.
Then A is isomorphic to R,C or H.

Proof First of all, note that by Proposition 2.5.38, A is a division associative algebra
in the classical sense, and hence A has a unit. Let a be in A. By Proposition 1.1.98
and Theorem 1.1.41, there are α,β ∈ R such that α + iβ ∈ sp(AC,a). Then, by
Proposition 1.1.100, we have that

(a−α1)2 +β 21 /∈ Inv(A).

Since A is a division algebra, we deduce that (a−α1)2 + β 21 = 0. Therefore, by
the arbitrariness of a ∈ A, we see that A is a quadratic algebra, and Theorem 2.5.29
applies.

§2.5.41 Let A be an algebra over K. By a partially defined centralizer on A we
mean a linear mapping (say f ) from a nonzero ideal of A (say dom( f )) to A satisfying
f (xa) = f (x)a and f (ax) = a f (x) for all x ∈ dom( f ) and a ∈ A. If f is a partially
defined centralizer on A, then it is clear that

ker( f ) := {x ∈ dom( f ) : f (x) = 0} and im( f ) := { f (x) : x ∈ dom( f )}

are ideals of A, and that ker( f ) im( f ) = 0. The algebra A is said to be prime if A 	= 0
and the product of two arbitrary nonzero ideals of A is nonzero. If A is prime, then,
since IJ ⊆ I ∩ J for all ideals I and J of A, it follows that the intersection of two
nonzero ideals of A is a nonzero ideal of A.

Lemma 2.5.42 Let A be a prime algebra over K, and let C denote the set of all
partially defined centralizers on A. Then we have:

(i) Every nonzero element f in C is injective.
(ii) If f ,g are elements in C such that f (x0) = g(x0) for some nonzero element x0

in dom( f )∩dom(g), then f (x) = g(x) for every x ∈ dom( f )∩dom(g).
(iii) The relation ∼= defined on C by f ∼= g if and only if f and g coincide on

dom( f )∩dom(g) is an equivalence relation.
(iv) If for f ,g ∈ C we define f + g : dom( f ) ∩ dom(g) → A by ( f + g)(x) :=

f (x)+ g(x), then f + g ∈ C , and f + g ∼= f ′+ g′ for all f ′,g′ ∈ C with f ∼= f ′

and g ∼= g′.
(v) If for f ,g ∈ C we define f g : g−1(dom( f )) → A by ( f g)(x) := f (g(x)), then

f g ∈ C , and f g ∼= f ′g′ for all f ′,g′ ∈ C with f ∼= f ′ and g ∼= g′.

Proof For every f ∈ C , we know that ker( f ) and im( f ) are ideals of A such that
ker( f ) im( f ) = 0. Since A is prime, it follows that either f = 0 or f is injective. Thus
assertion (i) is proved. Now, assume that f ,g are elements in C such that f (x0) =

g(x0) for some nonzero element x0 in dom( f ) ∩ dom(g). Consider the nonzero
ideal of A given by I := dom( f )∩ dom(g), and the mapping h : I → A defined by
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h(x) := f (x)−g(x). It is clear that h∈C and h(x0) = 0. By assertion (i), we conclude
that f (x) = g(x) for every x ∈ I, and so assertion (ii) is proved. In order to prove
assertion (iii), we note that reflexivity and symmetry being obvious, only transitivity
needs proof. To this end, suppose that f ,g,h ∈ C satisfy f ∼= g ∼= h. Then

f (x) = g(x) = h(x) for every x ∈ dom( f )∩dom(g)∩dom(h),

and hence, by assertion (ii), f ∼= h. In order to prove assertions (iv) and (v), suppose
that f ,g ∈ C . Since

dom( f )∩dom(g) and g−1(dom( f )) := {x ∈ dom(g) : g(x) ∈ dom( f )}

are ideals of A containing dom( f )dom(g), it follows that both are nonzero ideals.
It is a routine matter to show that f + g and f g (as defined in the statement) are
elements of C . Moreover, if f ′,g′ ∈ C satisfy f ∼= f ′ and g ∼= g′, then, for all x ∈
dom( f )∩dom( f ′) and y ∈ dom(g)∩dom(g′), we see that

( f +g)(xy) = ( f ′+g′)(xy) and ( f g)(xy) = ( f ′g′)(xy).

Therefore, by assertion (ii), we conclude that f +g ∼= f ′+g′ and f g ∼= f ′g′.

Definition 2.5.43 Let A be a prime algebra over K. By the above lemma, on the
set C of all partially defined centralizers on A, an equivalence relation ∼= is defined,
as well as a sum and a composition. Moreover, these operations are compatible with
∼=. The extended centroid CA of A is defined as the quotient set with the induced
operations.

Proposition 2.5.44 Let A be a prime algebra over K. Then the extended centroid
of A is a field extension of K.

Proof It is straightforward to check that CA is an associative ring with a unit. We
first show that CA is commutative. Let α,β be in CA. For f ∈ α and g ∈ β , set
W := g−1(dom( f ))∩ f−1(dom(g)), and choose x,y ∈W . Then

f g(xy) = f (g(x)y) = g(x) f (y) = g(x f (y)) = g f (xy).

It follows from Lemma 2.5.42 that f g ∼= g f , and so αβ = βα . Next let α be in
CA\{0}. Note that, for f ∈ α , we have f 	= 0 but ker( f ) = 0. Define g : im( f )→ A
by g( f (x)) = x for every x ∈ dom( f ). The mapping g is well-defined since f is an
injection and in fact g is a partially defined centralizer on A. Clearly the equivalent
class determined by g is the inverse of α , and hence CA is a field. Note that for each
λ ∈ K, the mapping x → λx is in fact an everywhere defined centralizer on A, and
hence λ determines an element λ̂ in CA. Finally, the mapping λ → λ̂ becomes a field
embedding of K into CA.

Remark 2.5.45 Let A be a prime algebra. Thinking about the mapping taking each
element f of the centroid of A (cf. Definition 1.1.10) to the equivalence class of C

containing f , we realize that the centroid of A, ΓA, becomes a subalgebra of CA.
Moreover, if A is actually simple, then, clearly, we have ΓA = CA, and hence, by
Proposition 2.5.44, ΓA is a field extension of K.
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Lemma 2.5.46 Let A be a normed prime complex (respectively, real) algebra, and
assume that every partially defined centralizer on A is continuous. Then the extended
centroid of A is isomorphic to C (respectively, to R or C).

Proof In view of Corollary 1.1.43 (respectively, Proposition 2.5.40) and Propos-
ition 2.5.44, it is enough to provide CA with an algebra norm. In fact we will see that,
if for α in CA we define

‖α‖ := inf{‖ f‖ : f ∈ α},

then ‖ · ‖ becomes an algebra norm on CA. The property ‖λα‖= |λ |‖α‖, for λ in C
(respectively, in R) and α in CA, is clear. Let α,β be in CA. For arbitrary f ∈ α and
g ∈ β , consider the partially defined centralizers f + g and f g on A, and note that
f +g ∈ α+β , f g ∈ αβ , ‖ f +g‖ � ‖ f‖+‖g‖, and ‖ f g‖ � ‖ f‖‖g‖. It follows that

‖α+β‖ � ‖α‖+‖β‖ and ‖αβ‖ � ‖α‖‖β‖.

Now ‖ ·‖ is an algebra seminorm on CA satisfying ‖1‖= 1 (where 1 denotes the unit
of CA), hence an algebra norm because CA is a field.

Proposition 2.5.47 Let A be a nonzero normed complex (respectively, real) alge-
bra, and assume that every nonzero ideal of A contains an element which is not a
joint topological divisor of zero in A. Then A is prime, and the extended centroid of
A is isomorphic to C (respectively, to R or C).

Proof Elements x in A satisfying x2 = 0 are joint topological divisors of zero; hence
from the assumption on A it follows that, if P is an ideal of A and if PP = 0, then
P = 0. For P and Q ideals of A, from the inclusions

QP ⊆ P∩Q and (P∩Q)(P∩Q)⊆ PQ

and the above observation it follows that QP = 0 whenever PQ = 0. Therefore, if
PQ = 0 and if P 	= 0, then every element of Q is a joint topological divisor of
zero in A, and so Q = 0. Now that we have shown that A is prime, the proof will
be concluded by invoking Lemma 2.5.46 and proving that every partially defined
centralizer on A is continuous. But, if f is such a partially defined centralizer, then,
by Exercise 1.1.88(ii), there exist x in dom( f ) and a positive number m such that

m‖y‖ � ‖xy‖+‖yx‖ for every y ∈ A.

Now, for every y in dom( f ), we have

m‖ f (y)‖ � ‖x f (y)‖+‖ f (y)x‖= ‖ f (x)y‖+‖y f (x)‖ � 2‖ f (x)‖‖y‖.

Hence f is continuous.

Corollary 2.5.48 Let A be a nonzero normed complex (respectively, real) algebra
with no nonzero joint topological divisor of zero. Then A is prime, and CA is iso-
morphic to C (respectively, to R or C).

Proposition 2.5.49 Let A be a nonzero normed power-associative algebra over K
with no nonzero joint topological divisor of zero. We have:

(i) If K= C, then A is isomorphic to C.
(ii) If K= R, then A is quadratic.
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Proof First assume in addition that A is associative and commutative. Then, identi-
fying each element a ∈ A with its multiplication operator La, elements of A can
be regarded as (everywhere defined) centralizers on A. Then the quotient mapping
C → CA induces a natural embedding A ↪→ CA. By Corollary 2.5.48, A is finite-
dimensional over K.

Now, remove the additional assumption that A is associative and commutative.
By the above paragraph, A is algebraic, so the result follows by applying Propos-
ition 2.5.10.

Since alternative algebras are power-associative (by Theorem 2.3.61), it is enough
to combine Proposition 2.5.49(ii) immediately above and Theorem 2.5.29 to derive
the following.

Theorem 2.5.50 Let A be a nonzero normed alternative real algebra with no
nonzero joint topological divisor of zero. Then A is isomorphic to R,C,H, or O.

The associative particularization of Theorem 2.5.50 above is known as the
Gelfand–Mazur–Kaplansky theorem.

Now, we prove the generalization of the real Gelfand–Mazur theorem (Propos-
ition 2.5.40) to alternative algebras.

Corollary 2.5.51 Let A be a normed quasi-division alternative real algebra. Then
A is isomorphic to R,C,H, or O.

Proof In view of Theorem 2.5.50, it is enough to show that A has no nonzero joint
topological divisor of zero. Let a be in A \ {0}, and let bn be a sequence in A such
that abn → 0. Then, by Propositions 2.5.24 and 2.5.38, we have bn = a−1(abn)→ 0.
Therefore a is not a joint topological divisor of zero.

Now that the main results in the section have been proved, we deal with some by-
products of the arguments applied in their proofs. Applying Proposition 2.5.49(ii)
and Corollary 2.5.16, we get the following.

Proposition 2.5.52 Let A be a nonzero normed power-associative commutative real
algebra with no nonzero topological divisor of zero. Then A is isomorphic to R or C.

§2.5.53 Form now on, the following consequence of the Banach isomorphism the-
orem should be kept in mind: if A is a nonzero complete normed algebra, and if a is
an element of A such that La is bijective, then a is not a left topological divisor of zero.

Noticing that, as a consequence of §2.5.53 above, complete normed quasi-
division algebras have no nonzero two-sided topological divisor of zero, Corollar-
ies 2.5.54 and 2.5.55 immediately below follow from Propositions 2.5.49 and 2.5.52,
respectively.

Corollary 2.5.54 Let A be a nonzero complete normed power-associative quasi-
division algebra over K. We have:

(i) If K= C, then A is isomorphic to C.
(ii) If K= R, then A is quadratic.

Assertion (i) in the above corollary will be proved in Corollary 2.7.11 by other
methods.
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Corollary 2.5.55 Let A be a nonzero complete normed power-associative division
commutative real algebra. Then A is isomorphic to R or C.

By a nearly absolute-valued algebra we mean a nonzero normed algebra A
such that there exists r > 0 satisfying r‖a‖‖b‖ � ‖ab‖ for all a,b ∈ A. Corollar-
ies 2.5.56, 2.5.57, and 2.5.58 immediately below follow straightforwardly from
Proposition 2.5.49, Theorem 2.5.50, and Proposition 2.5.52, respectively.

Corollary 2.5.56 Let A be a nearly absolute-valued power-associative algebra
over K. We have:

(i) If K= C, then A is isomorphic to C.
(ii) If K= R, then A is quadratic.

Corollary 2.5.57 Let A be a nearly absolute-valued alternative real algebra. Then
A is isomorphic to R, C, H, or O.

Corollary 2.5.58 Let A be a nearly absolute-valued power-associative commuta-
tive real algebra. Then A is isomorphic to R or C.

Finally we prove the following.

Proposition 2.5.59 Let A be a normed algebra over K with no nonzero joint topo-
logical divisor of zero. Then A is unital if (and only if) it has nonzero centre.

Proof Assume that Z(A) 	= 0. Then, by Propositions 2.5.49(i) and 2.5.52, Z(A) is
unital. Now apply Lemma 2.5.32.

2.5.4 Historical notes and comments

Quaternions and octonions are widely treated in the books [712], [727], [760], [785],
and [801, Chapter 7], as well as in the survey papers [51] and [587]. These works
and references therein will provide the reader with a relatively complete panoramic
view of the topic. (Other relevant facts concerning quaternions and octonions, not
included in the works just quoted, will be covered in Section 2.6 below.) Anyway, let
us emphasize the abundance of historical notes and mathematical remarks assembled
in [727], and take some excerpts from it. Thus, in a note written for the occasion of
the fifteenth birthday of the quaternions, Hamilton says:

They [the quaternions] started into life, or light, full grown, on the 16th of October, 1843,
as I was walking with Lady Hamilton to Dublin, and came up to Brougham Bridge.

(see p. 191 of [727]). After the discovery of quaternions, Hamilton devoted the re-
mainder of his life exclusively to their further exploration. An excellent revised
version of Hamilton’s papers is today available in [737]. It turns out curious to
know that Hamilton tried for many years to build a three-dimensional associative
real algebra with no nonzero divisors of zero. In fact, shortly before his death in
1865 he wrote to his son:

Every morning, on my coming down to breakfast, you used to ask me: ‘Well, Papa, can
you multiply triplets?’ Whereto I was always obliged to reply, with a sad shake of the head:
‘No, I can only add and subtract them’.



2.5 The Frobenius–Zorn and Gelfand–Mazur–Kaplansky theorems 199

(see p. 189 of [727]). It is not less curious how, in a very elemental way, one can
realize that Hamilton’s attempt just quoted could not be successful. Indeed, keeping
in mind that every real polynomial of odd degree must have a real root, and arguing
as in the solution of Exercise 1.1.86, we realize that if A is a real algebra of odd finite
dimension with no nonzero divisor of zero, then A has dimension 1, and hence it is
isomorphic to R.

According to the information included on p. 249 of [727], the octonions were
discovered by Graves in December 1843, only two months after the birth of the qua-
ternions. Graves communicated his results to Hamilton in a letter dated 4th January
1844, but they were not published until 1848 [306]. In the meantime, in 1845, the
octonions were rediscovered by Cayley, who published his result immediately [164].
For a more detailed history of the discovery of octonions the reader is referred to
pp. 146–7 of [51].

According to [765, p. 509] and [104], the description of octonions as pairs of
quaternions (the Cayley–Dickson doubling process) can be found in Dickson’s
paper [211] (1912). The description of octonions as ‘vector matrices’, as well as
the abstract Cayley–Dickson process, are given in a later paper [669] (1933) of
Zorn, whereas it was actually Albert (a student of Dickson) who first iterated this
construction to produce an infinite family of algebras [7] (1942).

The algebras An (n ∈N∪{0}) which appear by applying inductively the Cayley–
Dickson doubling process to A0 = R are called Cayley–Dickson algebras. As
shown by Shafer [551], for each n > 1, An is a 2n-dimensional central simple non-
commutative Jordan algebra. But, the fact that the Cayley–Dickson process tends
to destroy desirable algebra properties is already visible for the first four Cayley–
Dickson algebras: R,C,H and O. So, for example, R is the unique Cayley–Dickson
algebra with trivial involution, R and C are the unique commutative Cayley–Dickson
algebras, R,C and H are the unique associative Cayley–Dickson algebras, and
R,C,H and O are the unique alternative ones. These first four Cayley–Dickson
algebras are classically well-behaved, whereas the larger Cayley–Dickson algebras
are considered pathological. Actually, one of the most relevant pathologies is the one
given by the following result, due to Moreno [454].

Proposition 2.5.60 Let n � 4. Then An has nonzero joint divisors of zero. More
precisely, An has nonzero divisors of zero, and, for x,y ∈ An, xy = 0 if and only if
yx = 0.

Over the years, general Cayley–Dickson algebras (with emphasis on the algebra
S := A4 of sedenions) have been considered in several papers by algebraists, as well
as by mathematical physicists. Additional references for this matter are [51, 102,
103, 129, 131, 134, 156, 167, 221, 335, 397, 455].

The specialization of Theorem 2.5.29 to the associative setting (that R,C, and H
are the unique nonzero associative algebraic real algebras with no nonzero joint
divisor of zero) is the celebrated Frobenius’ theorem [271] (1878). A new proof
of Frobenius’ theorem, due to Palais [473] (1968) has attained a certain celebrity,
and can be found in Lam [766]. A recent alternative proof of (a generalized version
of) Frobenius’ theorem has been given by Cuenca [195]. The actual formulation of
Theorem 2.5.29 for alternative algebras (called the Frobenius–Zorn theorem) is due
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to Zorn [668] (1930). A complete proof of the Frobenius–Zorn theorem – where
the requirement that the algebra is algebraic is replaced with the apparently stronger
one that the algebra is quadratic (see Proposition 2.5.10(ii)) – can be found in [727].
Another complete proof of the Frobenius–Zorn theorem is given in the recent
paper by Brešar, Šemrl, and Špenko [131], where a joint abstract characterization of
R,C,H,O, and S is also proved.

Our proof of the Frobenius–Zorn theorem consists of the results from Lemma 2.5.3
to the end of the proof of Theorem 2.5.29. Lemma 2.5.3 is due to Albert [12], and
is included in Schafer’s book [808, pp. 130–1], whereas, as pointed out in [165],
Lemma 2.5.4 is implicitly contained in the proof of [808, Lemma 5.3]. Lemma 2.5.5
is taken from the paper of El-Mallah and Micali [243]. Lemma 2.5.8 is the starting
point of Wedderburn’s theory (see for example [670, p. 23]). It is far from being
trivial that Lemma 2.5.8 remains true if the associativity of the algebra A is altogether
removed. Indeed, we have the following theorem, due to Segre [561].

Theorem 2.5.61 Let A be a nonzero finite-dimensional algebra over K without
isotropic elements. Then A contains a nonzero idempotent.

Proposition 2.5.10 must be folklore. Its first conclusion, that C is the unique
nonzero power-associative algebraic complex algebra with no nonzero joint divisor
of zero, can be seen as a refined Frobenius–Zorn type theorem for complex alge-
bras. Proposition 2.5.12 is originally due Dickson [212], and is included in several
books. The proof given here is taken from [822]. Proposition 2.5.13 (crucial in
the treatment of quadratic algebras) and most of the results from Lemma 2.5.15
to Proposition 2.5.20 are due to Osborn [470]. The remaining part of the results
just quoted, as well as Propositions 2.5.21 and 2.5.24, are taken from the books
[754, 808, 822]. The core of our proof of the Frobenius–Zorn theorem (consisting
of the results from Proposition 2.5.26 to the end of the proof of Theorem 2.5.29), as
well as Corollary 2.5.30, is due to Walsh [630] (1967).

When in the definition of cross-product algebras we dispense the requirement
that (x× y|z) = (x|y× z) for all x,y,z in the algebra, we find the so-called trigono-
metric algebras. Thus, trigonometric algebras are those pre-Hilbert real spaces H
endowed with a product × satisfying ‖x×y‖2 = ‖x‖2‖y‖2 − (x|y)2 (or, equivalently,
‖x× y‖= ‖x‖‖y‖sinα , where α is the angle between x and y) for all x,y ∈ H \{0}.
Trigonometric algebras were introduced by Terekhin [610], who showed that the
dimensions of nonzero finite-dimensional trigonometric algebras are precisely 1, 2,
3, 4, 7, and 8. As pointed out in [76, Example 1.1] and [533, p. 143], the existence
of complete trigonometric algebras of arbitrary infinite Hilbertian dimension is im-
plicitly known in Remark 1.6 of the Kaidi–Ramı́rez–Rodrı́guez paper [369]. Indeed,
we have the following.

Example 2.5.62 Let H be an arbitrary infinite-dimensional real Hilbert space (with
orthonormal basis {ui : i ∈ I}, say), and let × stand for the product on H deter-
mined by

ui ×u j :=
1√
2
(uϕ(i, j)−uϕ( j,i)),
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where ϕ is any prefixed injective mapping from I × I to I. Then, for x = ∑iλiui and
y = ∑i μiui in H, we have

x× y =
1√
2
∑
i, j
(λiμ j −μiλ j)uϕ(i, j),

and hence

‖x× y‖2 =
1
2∑i, j

(λiμ j −μiλ j)
2 = ‖x‖2‖y‖2 − (x|y)2,

so that (H,×) becomes a trigonometric algebra.

In the Becerra–Rodrı́guez paper [76], the so-called super-trigonometric algebras
are considered. These are those real pre-Hilbert spaces H endowed with a product ×
satisfying

(x× y|u× v) = (x|u)(y|v)− (x|v)(y|u) for all x,y,u,v ∈ H.

Taking (u,v) = (x,y) in the above equality, we realize that super-trigonometric
algebras are trigonometric. Although never previously noticed, it is straightfor-
ward to realize that the trigonometric algebra in Example 2.5.62 is in fact super-
trigonometric. Therefore every infinite-dimensional real Hilbert space can be
converted into a super-trigonometric algebra under a suitable product. This fact
is derived in [76] from a more general result (see [76, Proposition 2.1]) implying
also that the dimensions of nonzero finite-dimensional super-trigonometric algebras
are precisely 1, 2, and 3. As a consequence, by Corollary 2.5.30, cross-product
algebras need not be super-trigonometric, and super-trigonometric algebras need not
be cross-product algebras. As the main result, it is proved in [76] that all infinite-
dimensional trigonometric algebras can be constructed in a transparent way from
the absolute-valued real algebras with involution considered in Urbanik’s early
paper [617].

The notion of a division algebra given in Definition 2.5.35 is an old concept in
the theory of general non-associative algebras. It appears for example in Wright’s
paper [640]. The same happens with the notion of a one-sided division algebra,
which appears for example in Kaplansky’s paper [377]. On the contrary, the notion
of a quasi-division algebra is quite recent. Indeed, we believe it appeared for the
first time in [529], where Example 2.5.36 is pointed out. Example 2.5.37 is due
to A. Kaidi (recent private communication). Proposition 2.5.38 assures us that, for
alternative algebras, all the notions above coincide and, in addition, even coincide
with that of a division alternative algebra in the classical sense, previously given in
Definition 2.5.25. The equivalences (ii)⇔(iii)⇔(iv)⇔(v) in Proposition 2.5.38 must
be folklore, although we have not found them anywhere. In the particular associative
case, these equivalences are proved in [521, p. 936]. Even in the associative case, the
crucial implication (i)⇒(v) in Proposition 2.5.38 seems to us to be new.

§2.5.63 The so-called Gelfand–Mazur theorem consists of Corollary 1.1.43 (that C
is the unique normed division associative complex algebra) and Proposition 2.5.40
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(that R,C, and H are the unique normed division associative real algebras). Accord-
ing to Zelazko’s book [820, p. 18],

[Proposition 2.5.40] was first announced by S. Mazur in [432]. The first published proof
for complex scalars [(the result stated in Corollary 1.1.43)] has been given by I. M. Gelfand
in the paper [284] which also contains further basic facts of the theory of commutative
Banach algebras.

Between the two above sentences, Zelazko inserts a footnote saying that

The original manuscript of Mazur’s paper contained a complete proof. However, this
made the paper too voluminous and the editors of Comptes Rendues required a more
concise form. The only sensible way of a shortening was to leave out all the proofs, and the
paper was finally so published.

Then, Zelazko reproduces Mazur’s original proof in [820, pp. 19–22]. Mazur’s proof
is also presented by Mazet [430], who took it from the original submission filed in
the archives of the Academy of Science in Paris. Mazur’s paper [432] contains two
other important results (see §§2.6.52 and 2.8.72 below), whose original proofs do not
seem to be available, as far as we know.

Remark 2.5.64 We note that the real algebras H and O have a one-dimensional
centre (namely R1), and that, consequently, they cannot underlie any complex alge-
bra. Therefore, if P is a class of real and complex algebras which contains the
realifications of its complex members, and whose real members reduce to copies of
R,C,H, or O, then complex members of P have to be copies of C. In this way,
thinking about the class P of all normed associative quasi-division real and com-
plex algebras, we realize that the real Gelfand–Mazur theorem (Proposition 2.5.40)
contains the complex one (Corollary 1.1.43). Analogously, Corollary 2.5.51 contains
Proposition 2.5.39. Similar situations will appear later. Focusing on the most relevant
ones, we emphasize that Theorem 2.6.21 contains both Proposition 2.6.17 and the
particularization to alternative algebras of Proposition 2.6.2, and that the real parts
of Propositions 2.6.25 and 2.6.27 contain their respective complex parts.

The generalization of the Gelfand–Mazur theorem to the case of alternative
algebras, given by Proposition 2.5.39 and Corollary 2.5.51, is originally due to
Nieto [463] (see also Kaidi [361]).

The specialization of Theorem 2.5.50 to the associative setting (that R,C, and H
are the unique nonzero normed associative real algebras with no nonzero joint topo-
logical divisor of zero) is due to Kaplansky [375] (1949). In fact, Kaplansky proves
the result under the formally stronger requirement of absence of nonzero one-sided
topological divisors of zero. The generalization of Kaplansky’s theorem to alternative
algebras is due to El-Mallah and Micali [243] (1980). The actual formulation of
Theorem 2.5.50 is taken from [153]. As far as we know, neither Kaplansky’s theorem
nor its generalization to alternative algebras have previously been included with a
proof in any book. The complex case of Kaplansky’s theorem (i.e. the particular-
ization of Proposition 2.5.49 to associative algebras) appears as Theorem 14.4 of
Zelazko [820], with a proof taken from [659], whereas the real case is immediately
proposed as an exercise. Nevertheless, in both cases, completeness is required, and
no reference made to Kaplansky’s work.
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Our proof of Kaplansky’s generalized theorem consists of the Gelfand–Mazur
theorem, and the results from Lemma 2.5.42 to the formulation of Theorem 2.5.50
itself. Lemma 2.5.42 and Proposition 2.5.44 are due to Erickson, Martindale III, and
Osborn [246], and are included as Theorem 9.2.1 of Beidar–Martindale–Mikhalev
[686]. The core of our proof of Kaplansky’s generalized theorem (consisting of the
results from Lemma 2.5.46 to the formulation of Theorem 2.5.50) is essentially
due to Cabrera and Rodrı́guez [153] (1995). Lemma 2.5.46 follows, with minor
variants, some previous ideas of Mathieu [428], later developed in [149]. It is worth
mentioning that, although we have invoked the notion introduced in [246] of extend-
ed centroid for (possibly non-associative) prime algebras, to arrive at Kaplansky’s
generalized theorem (and even in germinally more general results, such as Propos-
ition 2.5.49) it is enough to consider extended centroid of associative and commuta-
tive prime algebras. Indeed, the proof of Proposition 2.5.49 only involves extended
centroid in the associative, commutative and prime setting. We note that the extended
centroid of a (possibly non-prime) semiprime associative algebra A is nothing other
than the centre of the symmetric Martindale algebra of quotients of A (a topic to be
discussed in Volume 2 of this work), and that the extended centroid of a (possibly
non-associative non-prime) semiprime algebra is also considered in the literature.
The standard references for these topics are the books [702, 686, 794, 819].

The actual organization of the proof of Kaplansky’s generalized theorem produced
here has generated some new results. These are Propositions 2.5.49, 2.5.52, and
2.5.59, and Corollaries 2.5.54, 2.5.55, 2.5.56, and 2.5.58. The associative forerunner
of Corollary 2.5.56(i) (that C is the unique nearly absolute-valued associative com-
plex algebra) is an old result of Shilov [564] (1940). Results related to Propos-
itions 2.5.49 and 2.5.52 will be discussed later (see Theorem 4.1.115).

2.6 Smooth-normed algebras, and absolute-valued
unital algebras

Introduction The star result in this section is the so-called non-commutative
Urbanik–Wright theorem (a part of Theorem 2.6.21) asserting that R,C,H, and O are
the unique absolute-valued unital real algebras. We arrive at this result by introducing
and describing (in Theorem 2.6.9) smooth-normed algebras, by observing that
absolute-valued unital algebras are smooth-normed algebras, and then by selecting
from the smooth-normed algebras those which are in fact absolute-valued. As a
consequence, we derive Strzelecki’s theorem (the remaining part of Theorem 2.6.21)
asserting that R,C,H, and O are the unique smooth-normed alternative real algebras.
Unit-free characterizations of smooth-normed algebras and of absolute-valued unital
algebras are also discussed.

2.6.1 Determining smooth-normed algebras and absolute-valued
unital algebras

§2.6.1 Let X be a normed space, and let u be a norm-one element of X . We say
that X is smooth at u if D(X ,u) reduces to a singleton. As an easy consequence
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of Proposition 2.1.5, X is smooth at u if and only if, for each x ∈ X , there exists
limr→0

‖u+rx‖−1
r (the value at x of the Gâteaux derivative of the norm of X at u), and,

if this is the case, then

lim
r→0

‖u+ rx‖−1
r

=ℜ( f (x)),

where f is the unique element of D(X ,u).
By a smooth-normed algebra we mean a norm-unital normed algebra which is

smooth at its unit. As a straightforward consequence of Corollary 2.1.13, we have
the following.

Proposition 2.6.2 C is the unique smooth-normed complex algebra.

The determination of smooth-normed real algebras is much more difficult, and
will culminate in Theorem 2.6.9 below.

Lemma 2.6.3 Quadratic algebras are Jordan-admissible. Therefore, flexible quad-
ratic algebras are non-commutative Jordan algebras.

Proof Let A be a quadratic algebra, and let a,b be in A. Since

a2 = t(a)a−n(a)1,

we straightforwardly derive that (a•b)•a2 = a•(b•a2), i.e. A is Jordan-admissible.

Definition 2.6.4 By a pre-H-algebra we mean a real pre-Hilbert space E endowed
with a bilinear mapping (x,y) → x∧ y from E ×E into E (called the product of E)
satisfying

x∧ y=−y∧ x, ‖x∧ y‖ � ‖x‖‖y‖, and (x∧ y|z)=(x|y∧ z) for all x,y,z ∈ E.

As an example, every real pre-Hilbert space becomes a pre-H-algebra as soon as we
endow it with the zero product.

Let E be an arbitrary pre-H-algebra, consider the real vector space R⊕E, and
define a product on R⊕E by

(λ ,x)(μ ,y) := (λμ− (x|y),λy+μx+ x∧ y).

In view of Proposition 2.5.18, we obtain in this way a flexible quadratic algebra,
which is called the flexible quadratic algebra of the pre-H-algebra E, denoted by
A (E). In the application of Proposition 2.5.18, the reader must have noticed that
A (E) is nothing other than A (E,∧,(·|·)) in the sense of §2.5.14. In what follows
A (E) = R⊕E will be seen endowed with the �2 norm.

Proposition 2.6.5 Let E be a pre-H-algebra. Then the flexible quadratic algebra
of E is a smooth-normed algebra.

Proof Clearly (1,0) is a unit for A (E) and ‖(1,0)‖ = 1. Therefore, since pre-
Hilbert spaces are smooth at any norm-one point, it suffices to show that

‖(λ ,x)(μ,y)‖ � ‖(λ ,x)‖‖(μ ,y)‖.
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First, we claim that ‖x∧ y‖2 � ‖x‖2‖y‖2 − (x|y)2 for all x,y in E. Let x be a nonzero
element of E, and write α = 1

‖x‖2 (x|y). We have x∧y = x∧ (y−αx) by the anticom-
mutativity of ∧, and hence

‖x∧ y‖2 = ‖x∧ (y−αx)‖2 � ‖x‖2‖y−αx‖2 = ‖x‖2‖y‖2 − (x|y)2,

as claimed.
Now let (λ ,x) and (μ,y) be arbitrary elements in A (E). Then

‖(λ ,x)(μ ,y)‖2 = ‖(λμ− (x|y),λy+μx+ x∧ y)‖2

= (λμ− (x|y))2 +‖λy+μx+ x∧ y‖2

= λ 2μ2 +(x|y)2 +λ 2‖y‖2 +μ2‖x‖2 +‖x∧ y‖2,

where the third equality is true because (x|x∧ y) = (x∧ x|y) = (0|y) = 0 and analo-
gously (y|x∧ y) = 0. Finally, by the claim, we have

‖(λ ,x)(μ,y)‖2 � λ 2μ2 +(x|y)2 +λ 2‖y‖2 +μ2‖x‖2 +(‖x‖2‖y‖2 − (x|y)2)

= (λ 2 +‖x‖2)(μ2 +‖y‖2) = ‖(λ ,x)‖2‖(μ ,y)‖2.

Lemma 2.6.6 Let (X ,u) be a real numerical-range space, and let x be in X. Then
we have

V (X ,u,x) =ℜ(V (XC,u,x)).

Proof By Lemma 1.1.97, X is a real subspace of the complex normed space XC.
Therefore, by Corollary 2.1.2, we have V (X ,u,x) = V ((XC)R,u,x). It follows from
Proposition 2.1.4 that V (X ,u,x) =ℜ(V (XC,u,x)).

Lemma 2.6.7 Let A be a smooth-normed real algebra. Then its projective normed
complexification AC is a V -algebra. More precisely, denoting by f the unique element
in D(A,1), we have

H(AC,1) = R1⊕ iker( f ).

Proof By Proposition 1.1.98, AC is a norm-unital normed complex algebra. Let f
be the unique element in D(A,1), and let x be an arbitrary element in ker( f ). Then we
have V (A,1,x) = 0, and hence, by Lemma 2.6.6, ℜ(V (AC,1,x)) = 0 or, equivalently,
ix ∈ H(AC,1). Therefore

R1⊕ iker( f )⊆ H(AC,1).

Now, since every element z ∈ AC can be written as

z = λ1+ x+ i(μ1+ y) = λ1+ iy+ i(μ1− ix),

with λ ,μ in R and x,y in ker( f ), and λ1+ iy and μ1− ix belong to H(AC,1), we get
AC = H(AC,1)+ iH(AC,1), and AC is indeed a V -algebra. Moreover, if z belongs to
H(AC,1), then we have z−λ1− iy ∈ H(AC,1)∩ iH(AC,1) = 0, which proves that
H(AC,1) = R1⊕ iker( f ).

The algebra of complex octonions, denoted by C(C), can be introduced as the
algebra complexification, C⊗O, of O. Since the identities defining the variety of
alternative algebras are linearizable, C(C) is an alternative complex algebra which is
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not associative. Although incidental in relation to the main line of the current section,
Proposition 2.6.8 immediately below becomes one of the fundamental results in the
theory of alternative C∗-algebras.

Proposition 2.6.8 The algebra of complex octonions C(C), endowed with a suit-
able norm and a suitable involution, becomes an alternative C∗-algebra.

Proof Since the absolute value of O derives from an inner product, O becomes
a smooth-normed real algebra. Therefore, as a by-product of Lemma 2.6.7, OC :=
C⊗π O is a V -algebra. Finally, apply Corollary 2.3.63.

Now, we retake the main line of the section by proving the following.

Theorem 2.6.9 Let A be a smooth-normed real algebra. Then there are a pre-H-
algebra E and an isometric algebra homomorphism from A onto the flexible quad-
ratic algebra of E.

Proof Let f be as in Lemma 2.6.7, and let x be in ker( f ). Then, by Lemma 2.6.7,
ix is a hermitian element of the V -algebra AC, and, by Theorem 2.3.8, −x2 = (ix)2 is
also a hermitian element of AC. Therefore, a new application of Lemma 2.6.7 gives
−x2 = μ1+ iy with μ in R and y in ker( f ). Thus x2 + μ1 ∈ A∩ iA = 0, and hence
x2 = −μ1. Keeping in mind Lemma 2.1.28, and the facts that V (A,1,x) = 0 and
x2 =−μ1, we conclude that

x2 =−‖x‖21, (2.6.1)

and that

‖λ1+ x‖2 = λ 2 +‖x‖2 for every λ ∈ R. (2.6.2)

It follows clearly from (2.6.1) that ker( f ), endowed with the restriction of the norm
of A, is a pre-Hilbert space, the inner product of which will be denoted by (·|·).
Moreover, it follows from (2.6.1) and (2.6.2) that

a2 −2 f (a)a+‖a‖21 = 0 for every a ∈ A.

Therefore A is a quadratic algebra with t(a) = 2 f (a) and n(a) = ‖a‖2 for every a∈A.
Thus, by Proposition 2.5.13, we have A = A (E,∧,(·|·)), where E := ker( f ), and ∧
is an anticommutative product on E satisfying

xy =−(x|y)1+ x∧ y for all x,y ∈ E. (2.6.3)

Since A is flexible (by Theorem 2.4.11), it follows from Proposition 2.5.18(ii) that

(x∧ y|z) = (x|y∧ z) for all x,y,z ∈ E. (2.6.4)

Moreover, since x∧ y = 1
2 (xy− yx) (by (2.6.3)), we have

‖x∧ y‖ � ‖x‖‖y‖. (2.6.5)

From (2.6.4) and (2.6.5) it is clear that the pre-Hilbert space E, endowed with the
product ∧ is a pre-H-algebra, and that the mapping λ1 + x → (λ ,x), from A (=
R1⊕E) to the flexible quadratic algebra A (E) of the pre-H-algebra E, is a bijective
algebra homomorphism (by also using (2.6.3)). Therefore, to conclude the proof, it
suffices to show that this mapping is an isometry. But this follows from (2.6.2).
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The following corollary exhibits the strength of Theorem 2.6.9.

Corollary 2.6.10 Let A be a smooth-normed real algebra. Then we have:

(i) A is a non-commutative Jordan algebra.
(ii) The norm of A comes from an inner product (·|·), and the equality

a2 −2(a|1)a+‖a‖21 = 0

holds for every a ∈ A.
(iii) for each a ∈ A\(R1), the linear hull of {1,a} is a subalgebra of A isometrically

isomorphic to C.
(iv) A is a Cayley algebra whose standard involution ∗ becomes isometric.
(v) For each norm-one element u∈A, the operator Uu is a surjective linear isometry

with U−1
u =Uu∗ .

Proof Keeping in mind Theorem 2.6.9, we can write A = A (E) for some pre-H-
algebra E, so the proof of the present corollary becomes almost straightforward.
However, we will supply some indications. For example, Lemma 2.6.3 (respectively,
Proposition 2.5.20) should be applied in the verification of assertion (i) (respectively,
assertion (iv)). Assertion (ii) follows by writing a = ρ1+ y with ρ ∈ R and y ∈ E,
whereas assertion (iii) follows by writing a = λ01+μ0x with λ0,μ0 ∈R and x ∈ SE ,
and then by realizing that the mapping λ + iμ → λ1+ μx becomes an isometric
algebra homomorphism from C to A whose range is the linear hull of {1,a}. The
verification of assertion (v) becomes easier if one knows that, since A is flexible, for
each a ∈ A the operator Ua has the same meaning in both A and Asym (cf. Fact 3.3.3
below for details). Then we can assume that A is commutative, and hence that E is a
real pre-Hilbert space endowed with the zero product. In this case, it is routine that
Ua(b) = 2(a|b∗)a−‖a‖2b∗ for all a,b ∈ A, a fact from which assertion (v) follows
straightforwardly.

Now we prove a Kadison-type theorem for isometries of smooth-normed algebras.

Proposition 2.6.11 Let A and B be smooth-normed real algebras. We have:

(i) The unit-preserving (possibly non-surjective) linear isometries from A to B are
precisely the nonzero Jordan homomorphisms.

(ii) If B 	= R1, then the surjective linear isometries from A to B are precisely the
mappings of the form Uu ◦F, where u is a norm-one element of B and F : A → B
is a bijective Jordan homomorphism.

Proof Let F : A → B be any mapping, and let a be in A. Then, by Corol-
lary 2.6.10(ii), A and B are pre-Hilbert spaces, and we have

a2 −2(a|1)a+‖a‖21 = 0 (2.6.6)

and

F(a)2 −2(F(a)|1)F(a)+‖F(a)‖21 = 0. (2.6.7)

As a consequence of (2.6.6), if F is linear and preserves units, then

F(a2)−2(a|1)F(a)+‖a‖21 = 0.
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Now note that, in the case that F is actually a unit-preserving linear isometry, the last
equality reads as

F(a2)−2(F(a)|1)F(a)+‖F(a)‖21 = 0.

It follows from (2.6.7) that, in this last case, we have F(a2) = F(a)2, and hence
F is a (nonzero) Jordan homomorphism. Conversely, assume that F is a nonzero
Jordan homomorphism. Then, F(1) is a nonzero idempotent in B, so that, by Corol-
lary 2.6.10(iii), we have F(1) = 1, and hence ‖F(a)‖ = ‖a‖ whenever a belongs to
R1. If a /∈ R1, then, by (2.6.6), we have

F(a)2 −2(a|1)F(a)+‖a‖21 = 0,

which, together with (2.6.7), also yields ‖F(a)‖ = ‖a‖. Therefore F is a unit-
preserving linear isometry, and the proof of assertion (i) is complete.

If u is a norm-one element of B, and if F : A → B is a bijective Jordan homo-
morphism, then, by assertion (i) just proved and Corollary 2.6.10(v), Uu ◦ F is a
surjective linear isometry. Assume that B 	= R1, and let G : A → B be any surjective
linear isometry. Then v := G(1) is a norm-one element of B, so that, by Corol-
lary 2.6.10(iii), there exists an isometric copy of C (say C) in B containing v. Take u∈
C such that u2 = v, note that u is a norm-one element of B, and set F :=Uu∗ ◦G. Then
we clearly have F(1) = 1. Moreover, by Corollary 2.6.10(v), F is a surjective linear
isometry from A to B and the equality G =Uu ◦F holds. Finally, by assertion (i), F
is a bijective Jordan homomorphism. This concludes the proof of assertion (ii).

Corollary 2.6.12 Let A stand for either R,C,H, or O. Then the linear isometries
from A to A are precisely the mappings of the form Lu ◦F, where u is a norm-one
element of A and F : A→ A is a bijective Jordan homomorphism.

Proof First of all, we recall that A is an alternative Cayley real algebra, as well as
an absolute-valued algebra whose norm derives from an inner product, and that these
facts imply that A is a smooth-normed algebra. If u is a norm-one element of B, and
if F : A → B is a bijective Jordan homomorphism, then, by Proposition 2.6.11(i),
Lu ◦ F is a linear isometry. Conversely, let G : A → A be a linear isometry. Set
u := G(1). Then u is a norm-one element of A, so that, by setting F := Lu∗ ◦G, F
becomes a surjective linear isometry. Therefore, since F(1)= 1, Proposition 2.6.11(i)
applies, so F is a bijective Jordan homomorphism. Finally, the equality G = Lu ◦F
is clear.

Complete pre-H-algebras will be called H-algebras. As a straightforward con-
sequence of Proposition 2.6.5 and Theorem 2.6.9, we obtain the following.

Corollary 2.6.13 Complete smooth-normed real algebras are precisely the flexible
quadratic algebras of H-algebras.

We recall that every real pre-Hilbert space with zero product is a pre-H-algebra.
Therefore, by Proposition 2.6.5, every nonzero real pre-Hilbert space X can be struc-
tured as a norm-unital normed algebra with arbitrary prefixed unit u in X such that
‖u‖ = 1. (Indeed, take E equal to the orthogonal complement of Ru in X , endow E
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with the zero product, and see X as A (E).) Moreover, the smoothness of the pre-
Hilbert space X at u is well known. Conversely, by Corollary 2.6.10(ii), the normed
space of a smooth-normed algebra is a pre-Hilbert space. In this way, we get the
following characterization of real pre-Hilbert spaces. (For verification of the last
sentence, the linearization of Corollary 2.6.10(ii) could be useful.)

Corollary 2.6.14 Let X be a nonzero real normed space. Then the following con-
ditions are equivalent:

(i) X is a pre-Hilbert space.

(ii) If u is any norm-one element in X, then X is smooth at u and the set of con-
tinuous bilinear mappings f : X ×X → X, satisfying ‖ f‖ = 1 and f (x,u) =
f (u,x) = x for every x in X, is not empty.

(iii) There is a norm-one element u in X such that X is smooth at u, and the set of
continuous bilinear mappings f : X ×X → X, satisfying ‖ f‖= 1 and f (x,u) =
f (u,x) = x for every x in X, is not empty.

Moreover, if X is in fact a pre-Hilbert space, and if u is a norm-one element in X,
then the mapping

(x,y)→ (x|u)y+(y|u)x− (x|y)u

is the unique commutative product on X converting X into a norm-unital normed
algebra with unit u.

Corollary 2.6.15 Let A be a norm-unital normed algebra over K. Then the follow-
ing conditions are equivalent:

(i) A is a smooth-normed algebra.

(ii) ‖1+a‖‖1−a‖= ‖1−a2‖ for every a in A.

(iii) ‖Ua(b)‖= ‖a‖2‖b‖ for all a,b in A.

Proof If K= C, then conditions (ii) and (iii) follow from condition (i) by applying
Proposition 2.6.2. If K = R, then conditions (ii) and (iii) follow from condition (i)
by applying Corollary 2.6.10(iii)–(v).

Assume that condition (ii) holds. Let a and r be in A and R \ {0}, respectively.
Then we have

‖1− r2a2‖−1
r

=
‖1+ ra‖‖1− ra‖−1

r

=
‖1+ ra‖−1

r
‖1− ra‖+ ‖1− ra‖−1

r
.

Therefore, by Proposition 2.1.5, we get

0 = maxℜ(V (A,1,a))−minℜ(V (A,1,a)). (2.6.8)

Thus V (A,1,a) is reduced to a point (in the case K= C, apply (2.6.8) to both a and
ia). By the arbitrariness of a ∈ A, we derive that D(A,1) is reduced to a singleton,
and hence that A is smooth.
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Now assume that (iii) holds. Let a and r be in A and R \ {0}, respectively. Since
U1−a(1+a) = 1−a−a2 +a2a, we have

‖1− ra− r2a2 + r3a2a‖−1
r

=
‖1− ra‖2‖1+ ra‖−1

r

=
‖1− ra‖2 −1

r
‖1+ ra‖+ ‖1+ ra‖−1

r
.

Therefore, by Corollary 2.1.6, we get

−minℜ(V (A,1,a) =−2minℜ(V (A,1,a))+maxℜ(V (A,1,a)),

so minℜ(V (A,1,a)) = maxℜ(V (A,1,a)), and so A is smooth.

As a consequence of the implication (ii)⇒(i) in the above corollary, we get the
following.

Fact 2.6.16 Absolute-valued unital algebras are smooth-normed algebras.

By combining Fact 2.6.16 above and Proposition 2.6.2, we derive the following.

Proposition 2.6.17 C is the unique absolute-valued unital complex algebra.

A better result will be proved later (see Corollary 2.7.17).
The following corollary is contained in both Theorems 2.6.21 and 2.6.41 below.

Its placement here has only a methodological interest.

Corollary 2.6.18 R and C are the unique absolute-valued unital commutative real
algebras.

Proof Let A be a unital absolute-valued real algebra. By Fact 2.6.16 and The-
orem 2.6.9, A is quadratic. Therefore, if in addition A is commutative, then, by
Corollary 2.5.16, A is isomorphic to R or C. The isomorphism has to be an isometry
in view of Proposition 2.6.19 immediately below.

Proposition 2.6.19 Let A be an algebra over K endowed with a norm satisfying
‖a2‖ � ‖a‖2 for every a ∈ A, let B be an algebra over K endowed with a norm
satisfying ‖b2‖ � ‖b‖2 for every b ∈ B, and let φ : A → B be a continuous Jordan
homomorphism. Then φ is in fact contractive.

Proof Assume to the contrary that φ is not contractive. Then we can choose a norm-
one element x in A such that ‖φ(x)‖> 1. Therefore, defining inductively x1 := x2 and
xn+1 := x2

n, we have ‖φ (xn)‖ � ‖φ(x)‖2n → ∞ . Since ‖xn‖ � 1, this contradicts the
assumed continuity of φ .

Lemma 2.6.20 Let E be a pre-H-algebra. Then the following conditions are
equivalent:

(i) A (E) is an absolute-valued algebra.
(ii) A (E) is alternative.

Proof Assume that A (E) is an absolute-valued algebra. Then, since the norm of
A (E) comes from an inner product, the mapping n : a → ‖a‖2 becomes a non-
degenerate quadratic form on A (E) admitting composition, and satisfying n(a)> 0
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for every a ∈ A (E). Therefore, by the implication (v)⇒(iii) in Proposition 2.5.26,
A (E) is alternative.

Now, assume that A (E) is alternative. Then, noticing that

A (E) = A (E,∧,(·|·))

in the sense of §2.5.14, Corollary 2.5.19(i) applies, so that the algebraic norm
function n on A (E) admits composition. Since, by Proposition 2.5.18(i), we have
n(a) = ‖a‖2 for every a ∈ A (E), it follows that A (E) is indeed an absolute-valued
algebra.

Now we prove the main result in this section.

Theorem 2.6.21 Let A be a real algebra. Then the following statements are equi-
valent:

(i) A is an absolute-valued unital algebra.

(ii) A is an alternative smooth-normed algebra.

(iii) A = R,C,H, or O with its usual modulus as norm.

Proof The implication (iii)⇒(i) is clear.
The implication (i)⇒(ii) in the present theorem follows from Fact 2.6.16, The-

orem 2.6.9, and the implication (i)⇒(ii) in Lemma 2.6.20, whereas the implication
(ii)⇒(i) in the present theorem follows from Theorem 2.6.9 and the implication
(ii)⇒(i) in Lemma 2.6.20.

Now that we know that statements (i) and (ii) are equivalent, assume that they
hold. Then, by (i), A has no nonzero joint divisor of zero and, by (ii) and The-
orem 2.6.9, A is alternative and quadratic. Therefore, by the Frobenius–Zorn theorem
(Theorem 2.5.29), A is isomorphic to R,C,H, or O. Finally, by Proposition 2.6.19,
the isomorphism has to be an isometry.

As a straightforward consequence of the implication (ii)⇒(iii) in Theorem 2.6.21,
we derive the following.

Corollary 2.6.22 R,C,H, and O are the unique norm-unital normed alternative
real algebras whose norm comes from an inner product.

Definition 2.6.23 Two absolute-valued algebras A and B over K are said to be
Albert isotopic if there exist linear isometries φ1,φ2,φ3 from A onto B satisfying
φ1(xy) = φ2(x)φ3(y) for all x,y in A.

Corollary 2.6.24 Let A be an absolute-valued real algebra. Then the following
conditions are equivalent:

(i) A is finite-dimensional.

(ii) A is a division algebra.

(iii) There exist a,b ∈ A such that aA = Ab = A.

(iv) There exist a,b ∈ A such that aA and Ab are dense in A.

(v) A is Albert isotopic to R,C,H, or O.



212 Beginning the proof of the non-associative Vidav–Palmer theorem

Proof The implications (i)⇒(ii)⇒(iii)⇒(iv), as well as (v)⇒(i), are clear.
(iv)⇒(v) Assume that condition (iv) holds. Replacing A with its completion

(which is clearly an absolute-valued algebra), we may assume that A is complete.
Moreover, we may also assume that ‖a‖ = ‖b‖ = 1. Then the operators La and Rb

are linear isometries with dense range on the Banach space of A, and hence they
are surjective. Now, defining a new product � on A by x� y := R−1

b (x)L−1
a (y), we

obtain an absolute-valued real algebra, which is Albert isotopic to A, and has a unit
(namely, ab). Finally, apply Theorem 2.6.21.

2.6.2 Unit-free characterizations of smooth-normed algebras, and of
absolute-valued unital algebras

Now, we are going to prove unit-free characterizations of smooth-normed algebras,
and of absolute-valued unital algebras. The next result follows straightforwardly
from Propositions 2.5.59 and 2.6.17, and Theorem 2.6.21.

Proposition 2.6.25 C is the unique absolute-valued complex algebra with nonzero
centre, whereas R, C, H, and O are the unique absolute-valued real algebras with
nonzero centre.

The following lemma follows straightforwardly from Proposition 2.6.25. Never-
theless, the elementary proof we give here has its own interest.

Lemma 2.6.26 Let A be an absolute-valued, associative, and commutative algebra
over R. Then A is equal to R or C.

Proof Since A is an integral domain, we can consider the field of fractions of A
(say F), and extend (in the unique possible way) the absolute value of A to an
absolute value on F. Now F is an absolute-valued field extension of R, and hence
it is isometrically isomorphic to R or C (as a by-product of Corollary 2.6.18). Since
A is a subalgebra of F, the result follows.

Proposition 2.6.27 Let A be an absolute-valued power-associative real (respect-
ively, complex) algebra. Then A is equal to R, C, H, or O (respectively, to C).

Proof Let A be an absolute-valued power-associative algebra over K. By Lemma
2.6.26, there exists a nonzero idempotent in A. Then, by Lemma 2.5.5, A has a unit.
Finally, by Theorem 2.6.21 (respectively, by Proposition 2.6.17), A is equal to R, C,
H, or O (respectively, to C).

§2.6.28 Let A be an algebra over K. We say that A is algebraic of bounded degree if
there exists a non-negative integer number m such that the subalgebra of A generated
by any element of A has dimension � m. If this is the case, then the smallest such
number m is called the degree of A, and is denoted by deg(A). Otherwise, we write
deg(A) = ∞.

Lemma 2.6.29 Let A be an algebraic algebra over K of degree 1 and having no
isotropic element. Then A is isomorphic to K.
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Proof Since A is of degree 1, for each a∈A we have a2 ∈Ka. As a consequence, the
unital extension K1⊕A of A is a quadratic algebra, so that by Proposition 2.5.12 its
trace function t is linear. Since for a ∈ A we have a2 = t(a)a, and A is a nonzero
algebra without isotropic elements, we deduce that the restriction of t to A is a
nonzero linear functional with zero kernel. Therefore A is a one-dimensional algebra
over K with nonzero product, and Exercise 1.1.2 applies.

Lemma 2.6.30 Let A be a nonzero algebraic complex algebra with no nonzero
divisor of zero. Then A is isomorphic to C.

Proof By Exercise 1.1.86, for each a ∈ A we have a2 ∈ Ca. Therefore A is of
degree 1, and Lemma 2.6.29 applies.

By invoking Proposition 2.6.19, we straightforwardly deduce the following.

Corollary 2.6.31 Let A be a nearly absolute-valued algebraic complex algebra.
Then A is isomorphic to C. If A is in fact absolute-valued, then A = C.

Lemma 2.6.32 Let A be an algebraic algebra over K of bounded degree. Then
every family of pairwise orthogonal nonzero idempotents in A is finite, with cardinal
� deg(A).

Proof Let {e1, . . . ,en} be a finite family of pairwise orthogonal nonzero idem-
potents in A. Choose pairwise different nonzero elements λ1, . . . ,λn in K, and set
x := ∑n

i=1λiei. Then for j ∈ N we have x j := ∑n
i=1λ

j
i ei. Therefore {x1, . . . ,xn} is a

linearly independent system of elements of A. Since this system is contained in the
subalgebra of A generated by x, we deduce n � deg(A).

Lemma 2.6.33 Let A be a power-associative algebraic algebra over K of bounded
degree and having no isotropic element. Then A has a unit.

Proof We may assume A 	= 0. Then A has nonzero idempotents. Indeed, the sub-
algebra of A generated by any nonzero element is a finite-dimensional associative
algebra without isotropic elements, and hence, by Lemma 2.5.8, has a nonzero idem-
potent. Choose a maximal family F of pairwise orthogonal nonzero idempotents in
A. By Lemma 2.6.32 we have F = {e1, . . . ,en} for some n ∈N. Set e :=∑n

i=1 ei, and
note that ei belongs to A1(e) for i = 1, . . . ,n.

Now, assume that A is commutative. Then, by Lemma 2.5.3(iii), A1(e) and A0(e)
are orthogonal subalgebras of A. If A0(e) 	= 0, then, as happened to A, A0(e) has a
nonzero idempotent, which is orthogonal to ei for i = 1, . . . ,n, leading to a contradic-
tion. Now that we know that A0(e) = 0, the absence of isotropic elements in A and
Lemma 2.5.4 give that A 1

2
(e) = 0, so A = A1(e), and so e is a unit for A.

Now, remove the assumption that A is commutative. Then, since Asym is a power-
associative commutative algebraic algebra over K of bounded degree and having
no isotropic element, the above paragraph applies, so that Asym has a unit (say
1), which becomes an idempotent of A. Therefore, since (Asym)1(1) = A1(1) (by
Lemma 2.5.3(i)), we have A = A1(1), that is, 1 is a unit for A.

Lemma 2.6.34 Let A be a nonzero commutative real algebra endowed with a norm
‖ · ‖ which comes from an inner product and satisfies ‖x2‖ = ‖x‖2 for every x ∈ A.
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Then, for x,y ∈ A, we have

|(x|y)| � ‖xy‖ � ‖x‖‖y‖, (2.6.9)

and hence A is a normed algebra. Moreover, if in addition A is associative, then A is
isometrically isomorphic to R or C.

Proof Let x,y be in A. Then, from

‖x+ y‖2 = ‖x2 + y2 +2xy‖ � ‖x‖2 +‖y‖2 +2‖xy‖

we obtain (x|y)� ‖xy‖, and, replacing x with −x, we get |(x|y)|� ‖xy‖, which proves
the first inequality in (2.6.9). To prove the second one, we may assume that ‖x‖ =

‖y‖= 1. Then we have

4‖xy‖= ‖(x+ y)2 − (x− y)2‖ � ‖x+ y‖2 +‖x− y‖2 = 2(‖x‖2 +‖y‖2) = 4,

so ‖xy‖ � 1, as desired. Assume additionally that A is associative. Then, in view
of Theorem 2.5.50 and Proposition 2.6.19, to conclude the proof of our lemma it is
enough to show that A has no nonzero (joint) topological divisor of zero. Assume to
the contrary that there exists a norm-one element a ∈ A, and a sequence xn in A with
‖xn‖= 1 and axn → 0. Then, by (2.6.9), we have

|(a|xn)| � ‖axn‖→ 0, (2.6.10)

and, since A is associative, we also have

|(a2|x2
n)| � ‖a2x2

n‖= ‖axn‖2 → 0. (2.6.11)

Therefore, from (2.6.10) and (2.6.11), we derive

‖a+ xn‖4 = (1+2(a|xn)+1)2 → 4

and

‖a+ xn‖4 = ‖a2 +2axn + x2
n‖2

= 1+4‖axn‖2 +1+2(a2|x2
n)+4(a2|axn)+4(x2

n|axn)→ 2,

respectively, which becomes a contradiction.

Proposition 2.6.35 Let A be a nonzero alternative real algebra endowed with a
norm which derives from an inner product and satisfies ‖x2‖= ‖x‖2 for every x ∈ A.
Then A is equal to R, C, H, or O.

Proof Let a be in A\{0}. By the last conclusion in Lemma 2.6.34, the subalgebra
of A generated by a (say Aa) is isomorphic to R or C. As a first consequence, by the
arbitrariness of a ∈ A \ {0}, and Lemma 2.6.33, A has a unit 1. Let ea stand for the
unit of Aa. Then ea and 1− ea are mutually orthogonal idempotents in A, so their
linear hull is a commutative subalgebra of A, and so by (2.6.9) in Lemma 2.6.34,
we have (ea|1−ea) = 0, and hence ‖1‖2 = ‖ea‖2 +‖1−ea‖2. Noticing that nonzero
idempotents in A have to be norm-one elements, the above implies ea = 1. Again,
by the arbitrariness of a ∈ A\{0}, we realize that A is both a quadratic algebra and
a division alternative algebra in the classical sense. Therefore, by Proposition 2.5.38
and Theorem 2.5.29, A is isomorphic to R, C, H, or O. Finally, the isomorphism is
isometric thanks to Proposition 2.6.19.
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Corollary 2.6.36 Let A be a nonzero normed algebra such that there exists a norm-
one unit 1 for Asym. Then 1 is a unit for A.

Proof By our assumptions, both L1 and R1 lie in the closed unit ball of the norm-
unital normed algebra BL(A), and the equality 1

2 (L1+R1) = IA holds. It follows from
Corollary 2.1.42 that L1 = R1 = IA, that is, 1 is a unit element for A.

Lemma 2.6.37 Let A be a nonzero normed algebra satisfying ‖x2‖= ‖x‖2 for every
x ∈ A, and such that Asym is power-associative and algebraic of bounded degree.
Then A has a norm-one unit.

Proof By Lemma 2.6.33, Asym has a unit element (say 1). Moreover, since ‖1‖ =
‖12‖= ‖1‖2, we have ‖1‖= 1. Now, apply Corollary 2.6.36.

Proposition 2.6.38 Let A be a nonzero normed real algebra. Then the following
conditions are equivalent:

(i) A is a smooth-normed algebra.

(ii) A is power-associative, and the equality ‖Ux(y)‖= ‖x‖2‖y‖ holds for all x,y∈A.

Proof The implication (i)⇒(ii) follows from Corollary 2.6.10 and the implication
(i)⇒(iii) in Corollary 2.6.15. Assume that condition (ii) is fulfilled. Then for x,y in
any subalgebra of A generated by a single element, we have

‖x‖2‖y‖= ‖Ux(y)‖= ‖xyx‖ � ‖xy‖‖x‖.

Therefore, all subalgebras of A generated by a single element are absolute-valued
algebras, and, as a by-product, the equality ‖x2‖= ‖x‖2 holds for every x ∈ A . Now,
by Lemma 2.6.26, A is algebraic of bounded degree. It follows from Lemma 2.6.37
that A has a norm-one unit. Finally, by the implication (iii)⇒(i) in Corollary 2.6.15,
A is a smooth-normed algebra.

Proposition 2.6.39 Let A be a nonzero normed real algebra. Then the following
conditions are equivalent:

(i) A is a smooth-normed algebra.

(ii) A is power-associative, the norm of A derives from an inner product, and the
equality ‖x2‖= ‖x‖2 holds for every x ∈ A.

(iii) Asym is power-associative, the norm of A derives from an inner product, and the
equality ‖x2‖= ‖x‖2 holds for every x ∈ A.

Proof The implication (i)⇒(ii) follows straightforwardly from Theorem 2.6.9 (see
also Corollary 2.6.10), whereas the one (ii)⇒(iii) follows from Corollary 2.4.18.
Assume that condition (iii) is fulfilled. Then, by Lemma 2.6.34, the algebra Asym is
algebraic of bounded degree. Therefore, by Lemma 2.6.37, A has a norm-one unit.
Since pre-Hilbert spaces are smooth at all their norm-one elements, it follows that A
is a smooth-normed algebra.

The next corollary follows straightforwardly from the implication (iii)⇒(i) in
Proposition 2.6.39 above, and the implication (i)⇒(iii) in Theorem 2.6.21.
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Corollary 2.6.40 Let A be an absolute-valued real algebra whose norm derives
from an inner product, and such that Asym is power-associative. Then A is equal to
R, C, H, or O.

2.6.3 Historical notes and comments

As mentioned in §2.6.1, the fact that the norm of a normed space is Gâteaux differen-
tiable at a norm-one element if and only if there is a unique state of that point, goes
back to Mazur [431].

As a consequence of Proposition 2.6.2, C is the unique norm-unital normed com-
plex algebra whose norm comes from an inner product. The associative forerunner
of this result is pointed out in Ingelstam’s paper [336], where the vertex property for
the unit of norm-unital normed associative real algebras is also explored.

Proposition 2.6.5, Lemma 2.6.7, Theorem 2.6.9, Corollary 2.6.15, and the multi-
plicative characterization of pre-Hilbert spaces given by Corollary 2.6.14 are due to
Rodrı́guez [515]. For other multiplicative characterizations of pre-Hilbert spaces, see
Theorems 2.9.40 and 2.9.70 below, [527], and [73, Section 4]. A slightly less precise
version of Theorem 2.6.9 was proved by Strzelecki [606] (see also Nieto [464]) under
the additional assumption (unnecessary today, in view of Corollary 2.6.10) of power-
associativity. For a proof of Theorem 2.6.9 avoiding Theorem 2.3.8, the reader is
referred to [520, Section 2].

Proposition 2.6.8 was predicted by Kaplansky in [762, p. 14] (see also the
review of [762] in the preface, p. xiii.), and was proved by Kaidi, Martı́nez,
and Rodrı́guez [362] (see also Braun [125]). Proposition 2.6.11 is new, whereas
Corollary 2.6.12 could be folklore.

The implication (i)⇒(iii) in Theorem 2.6.21 (that R,C,H and O are the unique
absolute-valued unital real algebras) is the celebrated ‘non-commutative Urbanik–
Wright theorem’ [620]. In this memorable paper, whose results were announced in
[619], the authors also prove the so-called ‘commutative Urbanik–Wright theorem’,
which reads as follows.

Theorem 2.6.41 R, C, and C
∗

are the unique absolute-valued commutative real
algebras.

Here C
∗

stands for the so-called McClay algebra (see [14]), namely the real absolute-
valued algebra obtained by replacing the usual product of C by the one (λ ,μ)→ λμ .
The proof is based on Schoenberg’s theorem [556] (see also Characterization (6.1)
in [676, p. 47]) asserting that a normed space X is a pre-Hilbert space if (and only
if) the inequality 4 � ‖x+ y‖2 + ‖x− y‖2 holds for all norm-one elements x,y ∈ X .
The following proof of Theorem 2.6.41 is essentially the original one in [620], but
avoids unnecessary complications.

Proof Let A be an absolute-valued commutative real algebra. Since for all norm-
one elements x,y ∈ A we have

4 = 4‖xy‖= ‖(x+ y)2 − (x− y)2‖ � ‖x+ y‖2 +‖x− y‖2 ,

Schoenberg’s theorem applies giving that A is a pre-Hilbert space. On the other

hand, since R, C, and C
∗

are the unique absolute-valued commutative real algebras of
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dimension �2 (an easy consequence of the implication (i)⇒(v) in Corollary 2.6.24),
it is enough to show that the dimension of A is �2. Assume to the contrary that
we can find pairwise orthogonal norm-one elements u,v,w in A. Then we have
‖u2 − v2‖ = ‖u + v‖‖u − v‖ = 2. Since ‖u2‖ = ‖v2‖ = 1, the parallelogram law
implies that u2 + v2 = 0. Analogously, we obtain u2 +w2 = v2 +w2 = 0. It follows
u2 = 0, and hence also u = 0, a contradiction.

The Urbanik–Wright paper [620] also contains a refinement of Proposition 2.6.25
(whose formulation will be stated at the appropriate place in the current subsection),
and concludes by exhibiting the first known example of an infinite-dimensional
absolute-valued algebra, namely the one corresponding to the case p = 2 in
Remark 2.7.44 below.

Before continuing our historical review, let us formulate the following con-
sequence of the commutative Urbanik–Wright theorem.

Corollary 2.6.42 C is the unique absolute-valued power-commutative complex
algebra.

Proof Let A be an absolute-valued power-commutative complex algebra. Applying
Theorem 2.6.41 to the real algebra underlying each subalgebra of A generated by a
single element, we see that A is algebraic. Now apply Corollary 2.6.31.

§2.6.43 The earliest forerunner of the non-commutative Urbanik–Wright theorem
is Hurwitz’ classical theorem [334] asserting that R,C,H and O are the unique
absolute-valued unital finite-dimensional real algebras whose norms derive from
inner products. Much later, Albert [9] (1949) was able to remove the requirement
in Hurwitz’ theorem that the norm comes from an inner product. Actually, Albert
could have derived his result quickly from Hurwitz’ theorem if he had been aware of
a result of Auerbach [36] (1935) (see also [800, Theorem 9.5.1]) implying that finite-
dimensional transitive normed spaces are Hilbert spaces. We recall that a normed
space X is said to be transitive if, whenever u,v are norm-one elements in X , there
is a surjective linear isometry F : X → X such that F(u) = v. The proof of Albert’s
refinement of Hurwitz’ theorem could have been the following.

Let A be an absolute-valued algebra over K. If A is a division algebra, then the
normed space of A is transitive because for all norm-one elements x,y ∈ A we have
T (x) = y, where T := LR−1

x (y) is a surjective linear isometry on A. Therefore, when
A is finite-dimensional, Auerbach’s result applies, giving that the norm of A comes
from an inner product. Finally, if K= R, if A is finite-dimensional, and if A has a
unit, then, by Hurwitz’ theorem, A is equal to R, C, H, or O.

The argument in the above proof is taken from p. 156 of [51], where no refer-
ence is made to the works of Albert and Auerbach. In fact, Albert’s refinement of
Hurwitz’ theorem appears as Theorem 1 of [51] and is directly attributed there to
Hurwitz [334], including the above argument as a part of the complete proof of
such Hurwitz’ theorem. We do not agree with this attribution. Indeed, as far as we
know, the observation that absolute-valued division algebras have transitive normed
spaces first appears in the proof of Lemma 4 of Wright’s paper [640] (55 years
after Hurwitz’ paper). On the other hand, Auerbach’s result, published 36 years after
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Hurwitz’ paper, seems to us non-obvious. We note that non-separable transitive
Banach spaces need not be Hilbert spaces [800, Proposition 9.6.7], and that whether
infinite-dimensional separable transitive Banach spaces are Hilbert spaces remains
as one of the main open problems in Banach space theory.

The more recent forerunner of the non-commutative Urbanik–Wright theorem is
also due to Albert [13], who showed the following.

Fact 2.6.44 R,C,H and O are the unique absolute-valued unital algebraic real
algebras.

The original proof in [620] of the non-commutative Urbanik–Wright theorem
consists precisely of the verification that absolute-valued unital real algebras are
automatically algebraic. The proof we have given here (as any other proof which
merits being given today) is close to Kaplansky’s prophetic one in [377]. Indeed, the
main aim in [377] is to reduce the proof of the non-commutative Urbanik–Wright
theorem to the verification of the following.

Fact 2.6.45 Absolute-valued unital real algebras are pre-Hilbert spaces.

To clarify Kaplansky’s approach, we note at first that, if A is an absolute-valued
real algebra, and if the norm of A comes from an inner product, then A is a
composition algebra (indeed, the mapping a → ‖a‖2 becomes a nondegenerate
quadratic form on A admitting composition). On the other hand, Kaplansky’s main
theorem in [377] (see also [822, Theorem 2.1]) implies that the unique unital
composition real algebras are R, C, R2 (with coordinate-wise multiplication), H,
M2(R), O, and the Cayley–Dickson doubling of M2(R) (say C(R)). Since R2, M2(R),
and C(R) cannot be absolute-valued algebras because they have nonzero divisors of
zero, the reduction of the proof of the non-commutative Urbanik–Wright theorem to
Fact 2.6.45 above is achieved. In the paper [377] just quoted, which was published
seven years before that of Urbanik and Wright [620], Kaplansky prophesies both
the non-commutative Urbanik–Wright theorem and a proof similar to the one we
have just sketched. Even, it seems that he thinks that the non-commutative Urbanik–
Wright theorem had already been proved at that time. Thus, he says that:

Wright [640] succeeded in removing the assumption [in Albert’s Fact 2.6.44 above] that
the algebra is algebraic.

Since we know that the above assertion is not right, we continue reproducing
Kaplansky’s words with the appropriate corrections and explanations:

Wright proceeds by proving that the norm [of a unital absolute-valued division algebra]
springs from an inner product, and then that the algebra is algebraic. . . . Thus Albert’s finite-
dimensional theorem [i.e. Fact 2.6.44] can be proved by combining Wright’s result with
Hurwitz’ classical theorem on quadratic forms admitting composition.

Immediately, Kaplansky motivates his work by saying that:

The main purpose of this paper is to make a similar method possible in the infinite-
dimensional case by providing a suitable generalization of Hurwitz’ theorem.

After the proof of Fact 2.6.45 given in [515] (which is precisely the one which
follows from Corollaries 2.6.15 and 2.6.10), other interesting results implying the
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same fact have arisen in the literature. This is the case, for example, of El-Mallah’s
theorem [239] which follows.

Theorem 2.6.46 Let A be an absolute-valued real algebra containing a nonzero
idempotent e which commutes with all elements of A. Then the absolute value of A
derives from an inner product (·|·), and the mapping

x → x∗ := 2(x|e)e− x

becomes an algebra involution on A satisfying x∗x = xx∗ = ‖x‖2e for every x ∈ A.

Let us say that an element e of an algebra A is a left unit for A if ea = a for every
a ∈ A. We note that Fact 2.6.45 follows straightforwardly from Corollary 2.7.29 or
Proposition 2.7.33 (that absolute-valued real algebras with a left unit are pre-Hilbert
spaces) below. Proposition 2.7.33 and Theorem 2.6.46, reviewed above, have been
unified in the recent paper of Chandid and Rochdi [168], where its authors show that
both results are closely related. Indeed, they point out the following for the first time.

Fact 2.6.47 Let A be an absolute-valued real algebra with a left unit e. Then the
normed space of A, endowed with the product x� y := x(ye), becomes an absolute-
valued algebra (say B), and e becomes an idempotent in B commuting with all
elements of B.

Proof Straightforward.

It is worth mentioning that all proofs of Fact 2.6.45, quoted until now, simul-
taneously give rich algebraic information which superimposes the argument in the
main result of Kaplansky’s paper [377]. In fact, as remarked in [515] and [521], with
such additional information in mind, the proof of the non-commutative Urbanik–
Wright theorem can be concluded by applying the Frobenius–Zorn theorem (The-
orem 2.5.29) instead of Kaplansky’s. This already happened in the proof given here
(see the formal proof of Theorem 2.6.21). For an additional example, see the alterna-
tive proof of the non-commutative Urbanik–Wright theorem given in Subsec-
tion 2.7.4 below.

The implication (ii)⇒(iii) in Theorem 2.6.21 (that R,C,H and O are the unique
smooth-normed alternative real algebras) is due to Strzelecki [606] (1966). A new
and simpler proof was provided later by Nieto [464]. Strzelecki’s original proof
is based on his previous result that R,C,H and O are the unique smooth-normed
algebraic alternative real algebras [605]. As a consequence of Strzelecki’s theorem,
R,C, and H are the unique smooth-normed associative real algebras. This result
is attributed by the associative Banach algebraists to Bonsall and Duncan [116],
although the Bonsall–Duncan paper was published two years after Strzelecki’s. A
slight refinement of the Bonsall–Duncan result, due to Spatz [594], is included in
[694, Theorem 5.16].

Corollary 2.6.22 is originally due to Ingelstam [338] (1964). Due to the nice
simplicity of its formulation, Ingelstam’s corollary (and even its associative spe-
cialization [337] that R,C and H are the unique norm-unital normed associative
real algebras whose norm comes from an inner product) has attained considerably
more celebrity status than Strzelecki’s more general theorem. Thus, Ingelstam’s
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associative result has been re-proved several times (see Smiley [590], Froelich [272],
and Kulkarni [394]). Today, results like those of Zalar and Cuenca, formulated in
Theorems 2.6.48 and 2.6.49 immediately below, seem more interesting to us than
Ingelstam’s Corollary 2.6.22.

Theorem 2.6.48 [657] R,C,H, and O are the unique unital alternative real alge-
bras A which are pre-Hilbertian spaces satisfying ‖1‖= 1 and ‖x2‖� ‖x‖2 for every
x ∈ A.

Theorem 2.6.49 [192, 193] Let A be a normed real algebra whose norm derives
from an inner product. Assume that the equality

(x((xy)x))x = (x2y)x2

holds for all x,y ∈ A, and that there exists a norm-one idempotent e ∈ A satisfying

‖ex‖ = ‖x‖ for every x ∈ A. Then A is equal to R, C, C
∗

, H, H
∗

, O, O
∗

, or P. If in
addition the idempotent e above commutes with all elements of A, then A is equal to

R, C, C
∗

, H, H
∗

, O, or O
∗

.

Here, for A equal to H or O, the symbol A
∗

stands for the absolute-valued real
algebra obtained by endowing the normed space of A with the product x � y :=
x∗y∗, where ∗ means the standard involution, whereas the symbol P stands for the
absolute-valued real algebra of pseudo-octonions. Such an algebra was discovered
by Okubo [467] (see also [782, pp. 65–71]), and can be described as follows. The
vector space of P is the eight-dimensional real subspace of M3(C) of those trace-
zero elements which remain fixed under the operation consisting of transposing the
matrices and of taking conjugates of their entries. The product � of P is defined by
choosing a complex number μ satisfying 3μ(1− μ) = 1, and then by setting

x� y := μxy+(1−μ)yx− 1
3

t(xy)1 ,

where t denotes the trace function on M3(C), 1 stands for the unit of the associative
algebra M3(C), and, for x,y ∈ P, xy means the product of x and y as elements of
the associative algebra M3(C). If for x,y ∈ P we define (x|y) := 1

6 t(xy), then (.|.)
becomes an inner product on P whose associated norm is an absolute value.

For a new proof of the obvious associative specialization of Theorem 2.6.48,
see [394]. Other results of a similar flavour to that of Theorem 2.6.49 can be found in
[192, 193, 194]. To conclude our review of Ingelstam’s paper [338], let us say that,
according to [338, Remark on p. 234], Ingelstam seems to be aware of Strzelecki’s
theorem, published two years later.

The implication (i)⇒(v) in Corollary 2.6.24 is due to Albert [9], and has the
following as a consequence.

Fact 2.6.50 Let A be a finite-dimensional absolute-valued real algebra. Then A has
dimension 1, 2, 4, or 8, and the norm of A derives from an inner product.

It is worth mentioning that, some years after Albert’s paper [9] (1958), the follow-
ing more general theorem was proven.
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Theorem 2.6.51 Every nonzero finite-dimensional real algebra with no nonzero
divisor of zero has dimension 1, 2, 4, or 8.

The paternity of Theorem 2.6.51 above seems to be in doubt. Indeed, according
to [727], [249], and [51], such a theorem was first proved by Kervaire [388] and
Milnor [445], Adams [2], and Kervaire [388] and Bott–Milnor [117], respectively.
Anyway, in contrast to the case of Albert’s result, all known proofs of this theorem
are extremely deep (see [727, Chapter 11]).

In relation to Fact 2.6.50, it is also worth citing a recent paper by Garibaldi and
Petersson [282], where its authors construct analogues of absolute-valued algebras
in all dimensions 2n (n ∈ N∪ {0}) over arbitrary 2-Henselian fields. We will not
give the definition of a 2-Henselian field here. Suffice to say that fields which are
complete under a discrete valuation, e.g. formal Laurent series fields over any field
of constants, fall into this category, so there are many nontrivial examples.

The implication (ii)⇒(i) in Corollary 2.6.24 (that absolute-valued division real
algebras are finite-dimensional) is the main result in Wright’s paper [640]. The
refinement given by the implication (iii)⇒(i) is originally due to Rodrı́guez [521].
The key tool in the whole proof of Corollary 2.6.24 that we have given (namely, the
spectacularly easy deduction of the implication (iii)⇒(v) from the non-commutative
Urbanik–Wright theorem) is due to Elduque and Pérez [232]. For the history of the
classification of finite-dimensional real algebras and the present status of this topic
the reader is referred to [155] and references therein.

As we have already commented, Proposition 2.6.25 is due to Urbanik and Wright
[620]. Actually, they prove a finer result, namely that R,C,H and O are the unique
absolute-valued real algebras A containing some nonzero element a satisfying

ax = xa,a(ax) = a2x, and (xa)a = xa2 f or every x ∈ A.

According to the information given in pp. 243, 245 of [727], Lemma 2.6.26 and its
proof are due to Ostrowski [472] (1918), who seems to have been the first math-
ematician who considered absolute-valued algebras as abstract objects which were
worth studying. Of course, Corollary 2.6.18, invoked in our proof, was not known to
him, but he was able to prove what actually he needed to, namely that every absolute-
valued field extension of R is isometrically isomorphic to R or C.

§2.6.52 Proposition 2.6.27 is due to El-Mallah and Micali [243]. An early fore-
runner is the one of Mazur [432] asserting that R,C and H are the unique absolute-
valued associative real algebras, although, as we commented in §2.5.63, Mazur’s
proof is not available.

Lemmas 2.6.32 and 2.6.33 are taken from the Cedilnik–Rodrı́guez paper [165].
Lemma 2.6.34, Proposition 2.6.35, and Corollary 2.6.40 are due to Zalar [656]. The
last conclusion in Lemma 2.6.34 has the following non-associative variant, due to
Cuenca [194].

Proposition 2.6.53 Let A be a commutative real algebra endowed with a norm ‖·‖
which comes from an inner product and satisfies ‖x2‖= ‖x‖2 for every x∈A. Assume
additionally that A has no nonzero divisor of zero, and that there exists a norm-one
idempotent e ∈ A satisfying ‖ex‖ = ‖x‖ for every x ∈ A. Then A is equal to R, C,

or C
∗

.
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The proof of Proposition 2.6.35 given here has relevant variants on Zalar’s ori-
ginal one. For variants and refinements of Proposition 2.6.35, see Theorem 2 in the
Cedilnik–Zalar paper [166], Theorem 3.14 in the Moutassim–Rochdi paper [456],
and Theorem 2.8 in Cuenca’s paper [194]. The unit-free characterizations of smooth-
normed real algebras, given by Propositions 2.6.38 and 2.6.39, are due to Benslimane
and Merrachi [93] and Rodrı́guez [533], respectively. Other characterizations of
smooth-normed real algebras will be proved later (see Corollary 2.9.41 and The-
orems 4.1.96 and 4.2.48). We note that, thanks to Strzelecki’s theorem (namely the
implication (ii)⇒(iii) in Theorem 2.6.21), each characterization of smooth-normed
real algebras yields, when restricted to alternative algebras, a characterization of
R,C,H, and O (see Corollaries 2.9.42 and 4.1.100).

Remark 2.6.54 In view of Corollary 2.6.13, a perfect knowledge of complete
smooth-normed real algebras depends on the determination of all H-algebras.
H-algebras are particular examples of the so-called H∗-algebras. By definition,
an H∗-algebra over K is a ∗-algebra A over K, which is a Hilbert space relative to
an inner product (·|·) satisfying (xy|z) = (x|zy∗) = (y|x∗z) for all x,y,z ∈ A. Let A
be an H∗-algebra. Since it is easily realized that the product of A is continuous
(see Lemma 2.8.12(i) below), up to multiplication of the inner product by a
suitable positive number, A becomes a (complete) normed algebra. However, the
requirement

‖ab‖ � ‖a‖‖b‖ (a,b ∈ A) (2.6.12)

is not assumed in the theory because most natural examples of H∗-algebras do
not satisfy it. Now, clearly, H-algebras are precisely those anticommutative real
H∗-algebras A satisfying (2.6.12), and whose H∗-algebra involution is −IA.

H∗-algebras were first studied in the associative complex case [598, 20], and
they were introduced by abstracting the properties of the normed ∗-algebra of all
Hilbert–Schmidt operators on a complex Hilbert space [809]. The corresponding
study of associative real H∗-algebras was done by Kaplansky [374], and has
been rediscovered several times (see [55, 143, 163]). General non-associative
real and complex H∗-algebras were first considered in [198, 199, 142] (see also
[144, 148, 149, 200, 259, 424, 526, 624]). As a consequence of this general theory,
every H-algebra is the Hilbert sum of closed ideals, one of which is an H-algebra
with zero product (so a suitable real Hilbert space equipped with the zero product),
and the others are topologically simple H-algebras (cf. Definition 1.4.31). Moreover,
by [142], if A is a topologically simple H-algebra, then there exists a topologically
simple anticommutative complex H∗-algebra B such that A = {x ∈ B : x∗ = −x}.
Unfortunately, as far as we know, there is no description or classification of
topologically simple anticommutative complex H∗-algebras. Precise descriptions
of topologically simple Lie (and even Malcev) complex H∗-algebras are, however,
known (see [557, 558, 53, 197, 141, 148, 460, 140]).

The theory of associative complex H∗-algebras can be found in [696, Section 34].
Real and complex (possibly non-associative) H∗-algebras are fully surveyed in [525,
Section E] (see also [687, Section 7.2]).
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2.7 Other Gelfand–Mazur type non-associative theorems

Introduction In this section we prove, as main results, that complete normed quasi-
division complex algebras have dimension � 2, and that there are complete absolute-
valued left-division infinite-dimensional real algebras.

2.7.1 Focusing on complex algebras

We begin this section by discussing some Gelfand–Mazur type results for general
non-associative normed complex algebras.

The fact that elements of normed unital associative complex algebras have non-
empty spectra can be reformulated as follows.

Lemma 2.7.1 Let b1,b2 be elements of a normed unital associative complex alge-
bra B. Then there exists (λ1,λ2) ∈ C2\{(0,0)} such that

0 ∈ sp(B,λ1b1 +λ2b2).

Proof If 0 ∈ sp(B,b1), then the result holds with (λ1,λ2) = (1,0). Otherwise, we
can choose μ ∈ sp(B,b−1

1 b2), and consider the equality

b2 −μb1 = b1(b
−1
1 b2 −μ1),

to obtain that the result is true with (λ1,λ2) = (−μ,1).

Proposition 2.7.2 Let A be a nonzero normed complex algebra such that, whenever
a is any nonzero element of A, La is an invertible element of the completion of BL(A).
Then A is isomorphic to C.

Proof Let B denote the completion of BL(A). According to Lemma 2.7.1, whenever
x1 and x2 are in A we can find (λ1,λ2) ∈ C2\{(0,0)} such that

0 ∈ sp(B,λ1Lx1 +λ2Lx2) = sp(B,Lλ1x1+λ2x2
),

so we have λ1x1 +λ2x2 = 0, and so the system {x1,x2} is linearly dependent. Now
apply Exercise 1.1.2.

We recall that, given a bounded linear operator F on a Banach space X , the fact that
F is bijective means that F is an invertible element of BL(X) (cf. Example 1.1.12(d)).
Therefore the next corollary follows by applying Proposition 2.7.2 to A or to the
opposite algebra of A.

Corollary 2.7.3 Let A be a complete normed one-sided division complex algebra.
Then A is isomorphic to C.

We do not know if the requirement of completeness in Corollary 2.7.3 above can
be removed. Actually, even the following more critical problem remains open.

Problem 2.7.4 Is every normed division complex algebra isomorphic to C?

According to Example 2.5.36 and Proposition 1.1.7, Corollary 2.7.3 does not
remain true if the assumption that A is a one-sided division algebra is relaxed to
the assumption that A is a quasi-division algebra. Nevertheless, we are going to
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show in Theorem 2.7.7 below that, under this relaxation, Corollary 2.7.3 remains
‘almost true’.

If x,y are elements of a complete normed unital associative complex algebra B,
then the inclusion

sp(BL(B),Lx −Ry)⊆ sp(B,x)− sp(B,y) (2.7.1)

holds. Indeed, since Lx and Ry are commuting elements of the complete normed
unital associative complex algebra BL(B), we can apply Corollary 1.1.81(i) to
get sp(BL(B),Lx − Ry) ⊆ sp(BL(B),Lx) − sp(BL(B),Ry), and the result follows
by keeping in mind that the mapping z → Lz (respectively, z → Rz) from B to
BL(B) is a unit-preserving algebra homomorphism (respectively, algebra antihomo-
morphism), and consequently the inclusion sp(BL(B),Lx) ⊆ sp(B,x) (respectively,
sp(BL(B),Ry)⊆ sp(B,y)) holds.

Lemma 2.7.5 Let B be a complete normed unital associative complex algebra, and
let a1,a2,b1,b2 be elements in B. Then there exists a couple (λ1,λ2) ∈ C2\{(0,0)}
such that

sp(B,λ1a1 +λ2a2)∩ sp(B,λ1b1 +λ2b2) 	= /0.

Proof By Lemma 2.7.1, there is a couple (λ1,λ2) ∈ C2\{(0,0)} such that

0 ∈ sp(BL(B),λ1(La1 −Rb1)+λ2(La2 −Rb2)).

But, by (2.7.1), we have

sp(BL(B),λ1(La1 −Rb1)+λ2(La2 −Rb2))

= sp(BL(B),Lλ1a1+λ2a2
−Rλ1b1+λ2b2

)

⊆ sp(B,λ1a1 +λ2a2)− sp(B,λ1b1 +λ2b2).

It follows that, for such a couple (λ1,λ2) ∈ C2\{(0,0)}, we have

sp(B,λ1a1 +λ2a2)∩ sp(B,λ1b1 +λ2b2) 	= /0.

Proposition 2.7.6 Let A be a normed complex algebra such that, whenever a is any
nonzero element of A, at least one of the operators La,Ra is an invertible element of
the completion of BL(A). Then dim(A) � 2.

Proof Assume that 3 � dim(A). Let B stand for the completion of BL(A), and
denote by Ω1 (respectively, Ω2) the set of those elements a ∈ A such that La (re-
spectively, Ra) is an invertible element of B. By Proposition 2.7.2, Ω1 and Ω2 are
proper subsets of A\{0}. Since A\{0}=Ω1∪Ω2, and Ω1,Ω2 are open, and A\{0}
is connected, there must exist some x ∈ Ω1 ∩Ω2. Take x1,x2 ∈ A such that the
system {x1,x2,x} is linearly independent. Applying Lemma 2.7.5, we find (λ1,λ2)∈
C2\{(0,0)} and λ ∈ C such that

λ ∈ sp(B,λ1Lx1 L−1
x +λ2Lx2 L−1

x )∩ sp(B,λ1Rx1 R−1
x +λ2Rx2 R−1

x ).

Then, setting y := λ1x1 + λ2x2 − λx, y becomes a nonzero element of A such that
neither Ly nor Ry are invertible elements of B, a contradiction.

As a consequence, we have the following.
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Theorem 2.7.7 Every complete normed quasi-division complex algebra has dimen-
sion � 2.

As a straightforward consequence of Proposition 1.1.7 and Theorem 2.7.7, we
derive the following.

Corollary 2.7.8 Every finite-dimensional quasi-division complex algebra has
dimension � 2.

Since unital algebras of dimension � 2 are (associative and) commutative, the
following corollary follows from Theorem 2.7.7 and Corollary 2.7.3.

Corollary 2.7.9 Complete normed unital quasi-division complex algebras are iso-
morphic to C.

Corollary 2.7.10 Let A be a complete normed power-commutative quasi-division
complex algebra. Then A is isomorphic to C.

Proof If A is algebraic of degree 1, then the result follows from Lemma 2.6.29.
Assume that A is not algebraic of degree 1. Then, since dim(A) � 2 (by The-
orem 2.7.7), A is algebraic of degree 2, and is generated as an algebra by a single
element. Therefore, since A is power-commutative, A is commutative, so A is a
division algebra, and so, by Corollary 2.7.3, A is isomorphic to C, contradicting that
deg(A) = 2.

By Corollaries 2.4.16 and 2.4.18, both flexible algebras and power-associative
algebras are power-commutative. Therefore, Corollary 2.7.10 immediately above
gives rise to the following.

Corollary 2.7.11 Let A be a complete normed quasi-division complex algebra. If
A is flexible or power-associative, then A is isomorphic to C.

The part of the above corollary corresponding to power-associativity has already
been proved in Corollary 2.5.54(i) by other methods.

Now, we are going to discuss completeness-free non-associative versions of the
Gelfand–Mazur complex theorem.

Lemma 2.7.12 Let X be a complex normed space, let F,G be in BL(X), and assume
that G is bounded below and has dense range. Then there exists λ ∈ C such that
F −λG is not bounded below.

Proof Let X̂ stand for the completion of X . For T ∈ BL(X), let T̂ denote the unique
bounded linear operator on X̂ which extends T , and note that, if T is bounded below,
then so is T̂ . By the assumptions on G, we have that Ĝ ∈ Inv(BL(X̂)). Therefore,
keeping in mind Corollary 1.1.44, we can find λ in the boundary of sp(BL(X̂), Ĝ−1F̂)

relative to C. Then, by Corollary 1.1.95, Ĝ−1F̂ − λ IX̂ is not bounded below, and
hence

F̂ −λG = F̂ −λ Ĝ = Ĝ(Ĝ−1F̂ −λ IX̂ )

is not bounded below. It follows that F −λG is not bounded below.
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Proposition 2.7.13 Let A be a nonzero normed complex algebra with no nonzero
left topological divisor of zero, and assume that there is x ∈ A such that Lx has dense
range. Then A is isomorphic to C.

Proof Let y be in A. Noticing that Lx is bounded below and has dense range, we can
apply Lemma 2.7.12 to find λ ∈C such that Ly−λx = Ly−λLx is not bounded below.
Since A has no nonzero left topological divisor of zero, we deduce y = λx. Thus, A
is one-dimensional, and the proof is concluded by applying Exercise 1.1.2.

Theorem 2.7.14 Let A be a normed complex algebra, and assume that at least one
of the following conditions holds:

(i) A is a division algebra, and has no nonzero two-sided topological divisor of
zero.

(ii) A is a
{

left
right

}
-division algebra, and has no nonzero

{
left

right

}
topological divisor

of zero.
(iii) A is a quasi-division algebra, and has no nonzero one-sided topological divisor

of zero.

Then A is isomorphic to C.

Proof Assume that condition (i) is fulfilled. Then, for every a ∈ A \ {0}, the
operators La and Ra are surjective, and some of them are bounded below. Therefore,
whenever a is any nonzero element of A, at least one of the operators La,Ra is
an invertible element of BL(A), so a fortiori at least one of the operators La,Ra

is an invertible element of the completion of BL(A). By Proposition 2.7.6, A is
finite-dimensional, so that the result follows from Exercise 1.1.86.

Now assume that A is a left-division algebra with no nonzero left topological
divisor of zero. Then, for every a ∈ A\{0}, the operator La is surjective and bounded
below. Therefore, whenever a is any nonzero element of A, La is an invertible element
of BL(A), hence a fortiori it is an invertible element of the completion of BL(A), so
that the result follows from Proposition 2.7.2.

Finally, if condition (iii) is fulfilled, then the result follows by applying Propos-
ition 2.7.13 to A or to the opposite algebra of A.

Noticing that complete normed
{

left
right

}
-division algebras have no nonzero

{
left

right

}
topological divisor of zero (courtesy of the Banach isomorphism theorem), we realize
that the part of Theorem 2.7.14 above corresponding to assumption (ii) generalizes
Corollary 2.7.3.

Combining Propositions 2.5.59 and 2.7.13, we get the following.

Corollary 2.7.15 Let A be a nonzero normed complex algebra with nonzero centre

and with no nonzero
{

left
right

}
topological divisor of zero. Then A is isomorphic to C.

Proposition 2.7.16 Let A be a nearly absolute-valued complex algebra. Then the
following conditions are equivalent:

(i) A has nonzero centre.
(ii) A is finite-dimensional.
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(iii) A is a division algebra.
(iv) A is a one-sided division algebra.
(v) A is a quasi-division algebra.

(vi) There exists a ∈ A such that La or Ra is surjective.
(vii) There exists a ∈ A such that La or Ra has dense range in A.

(viii) A is isomorphic to C.

Proof Thinking about the circle of implications (i)⇒(ii)⇒(iii)⇒(iv)⇒(v)⇒
(vi)⇒(vii)⇒(viii)⇒(i), only (i)⇒(ii) and (vii)⇒(viii) merit some explanation;
but these implications follow from Corollary 2.7.15 and Proposition 2.7.13,
respectively.

We note that the implication (i)⇒(viii) in Proposition 2.7.16 above refines the
complex part of Proposition 2.6.25.

Corollary 2.7.17 Nearly absolute-valued complex algebras with a one-sided unit
are isomorphic to C.

2.7.2 Involving real scalars

Now, we involve connectedness arguments in our development in order to discuss
Gelfand–Mazur–Kaplansky-type results for both real and complex algebras.

Lemma 2.7.18 Let X be a nonzero Banach space over K, and let P be a connected
subset of BL(X). Assume that every element of P is either bounded below or surject-
ive. Then either all elements of P are bijective or all elements of P are non-bijective.

Proof Suppose that the conclusion in the lemma is not true. Then

Q := {F ∈ P : F is bijective}

is a non-empty proper subset of the connected set P, and therefore there must exist
some F0 in the boundary of Q relative to P. Since such a F0 lies in the boundary
of Inv(BL(X)) relative to BL(X), it follows from Corollary 1.1.95 that F0 is neither
bounded below nor surjective, contradicting our assumption.

Proposition 2.7.19 Let A be a nonzero complete normed algebra over K such that
La is bijective for some a ∈ A. Assume that some of the following conditions hold:

(i) A has no nonzero left topological divisor of zero.
(ii) For every x ∈ A\{0}, Lx is surjective.

Then A is a left-division algebra.

Proof By Exercise 1.1.2, we can assume that dim(A) � 2. Then apply Lemma
2.7.18 with X = A and P = {Lx : x ∈ A\{0}}.

Combining Propositions 2.5.59 and 2.7.19, we get the next result which, in view
of Corollary 2.7.15, has interest only in the case K= R.

Corollary 2.7.20 Let A be a nonzero complete normed algebra over K with nonzero
centre and with no nonzero left topological divisor of zero. Then A is a left-division
algebra.
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Somehow, the study of complete normed left-division algebras reduces to that
of complete normed left-division algebras with a left unit. For, if A is a complete
normed left-division algebra over K, and if a is any nonzero element of A, then the
vector space of A, endowed with the product x�y := L−1

a (xy) and a suitable positive
multiple of the norm of A, becomes a complete normed left-division algebra over K
with a as a left unit. Now, keeping in mind §2.5.53, and the fact that the absence
of nonzero left topological divisors of zero in a normed algebra is inherited by all
subalgebras, Proposition 2.7.19 implies the following.

Corollary 2.7.21 Let A be a complete normed left-division algebra over K with a
left unit e. Then every closed subalgebra of A containing e is a left-division algebra.

We note that, in view of Corollary 2.7.3, Corollary 2.7.21 above has interest only
if K= R.

Corollary 2.7.22 Let A be a complete normed quasi-division algebra over K which
is not a one-sided division algebra. Then A has nonzero left topological divisors of
zero as well as nonzero right topological divisors of zero. Moreover, there exists a∈A
such that La and Ra are bijective.

Proof By applying Proposition 2.7.19 to A and to the opposite algebra of A, the
first conclusion follows. Assume that, for each a ∈ A, one of the operators La,Ra is
not bijective. Then the sets

Ω1 := {a ∈ A\{0} : La is bijective} and Ω2 := {a ∈ A\{0} : Ra is bijective}

are disjoint non-empty open subsets of A\{0} such that A\{0} = Ω1 ∪Ω2. Since
A\{0} is connected (by Exercise 1.1.2), we reach a contradiction.

We recall that, by §2.5.53, complete normed left-division algebras have no nonzero
left topological divisor of zero. A partial relevant converse is given by the following.

Corollary 2.7.23 Let A be a nonzero complete normed power-associative real
algebra with no nonzero left topological divisor of zero. Then A is both a quadratic
algebra and a left-division algebra.

Proof By Proposition 2.5.49(ii), A is quadratic. As a consequence, A has a unit, and
hence, by Proposition 2.7.19, A is a left-division algebra.

Assertions (i) and (ii) in the next corollary follow straightforwardly from Corol-
laries 2.7.22 and 2.7.23, respectively.

Corollary 2.7.24 Let A be a complete nearly absolute-valued real algebra.
We have:

(i) A is a quasi-division algebra (if and) only if it is a one-sided division algebra.
(ii) If A is power-associative, then A is both a quadratic algebra and a division

algebra.

Corollary 2.7.25 Let A be a complete normed algebra over K with no nonzero
left topological divisor of zero and whose norm derives from an inner product (·|·).
Assume that there exist a,a∗ ∈ A\{0} such that the equality (ax|y) = (x|a∗y) holds
for all x,y ∈ A. Then A is a left-division algebra.
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Proof In view of Proposition 2.7.19, it is enough to show that La is bijective.
Assume to the contrary that La is not bijective. Then, since La is bounded below,
its range is a proper closed subspace of A. Therefore, by the orthogonal projection
theorem, there exists y ∈ A\{0} such that (ax|y) = 0 for every x ∈ A. Now we have
(x|a∗y) = (ax|y) = 0 for every x ∈ A, so a∗y = 0, and so (since A has no nonzero
divisor of zero) either a∗ = 0 or y = 0, a contradiction.

Combining Proposition 2.7.19 with Corollaries 2.7.3, 2.7.22, and 2.7.25, we derive
the following.

Corollary 2.7.26 Let A be a nonzero complete normed complex algebra, and
assume that at least one of the following conditions holds:

(i) La is injective for some a ∈ A, and Lx is surjective for every x ∈ A\{0}.

(ii) A is a quasi-division algebra, and either A has no nonzero left topological
divisor of zero or A has no nonzero right topological divisor of zero.

(iii) A has no nonzero left topological divisor of zero, the norm of A derives from
an inner product (·|·), and there exist a,a∗ ∈ A \ {0} such that the equality
(ax|y) = (x|a∗y) holds for all x,y ∈ A.

Then A is isomorphic to C.

The part of the above corollary corresponding to assumption (ii) can also be
derived from Theorem 2.7.7 and Exercises 1.1.88(i) and 1.1.86.

As a consequence of Theorem 2.7.7 and Proposition 2.7.16, both complete normed
quasi-division complex algebras and absolute-valued quasi-division complex alge-
bras are finite-dimensional. As a matter of fact, a similar result does not hold for
real algebras. Indeed, we are going to construct complete absolute-valued one-sided
division infinite-dimensional real algebras (see Theorem 2.7.38 below). On the way,
we will discover a substantial amount of information about the structure of such
algebras.

Lemma 2.7.27 Let A be a normed real algebra with a left unit e and such that
there exists ρ > 0 satisfying ‖xy‖ � ρ‖x‖‖y‖ for all x,y in A. Then, for each two-
dimensional subspace M of A with e ∈ M, there is a linear mapping ϕ from M to the
two-dimensional Euclidean real space satisfying

ρ‖m‖ � ‖ϕ(m)‖ � ‖m‖ for every m ∈ M.

Proof By passing to the completion of A if necessary, we may assume that A is
complete. Then, since Le = IA, it follows from Proposition 2.7.19 that A is a left-
division algebra. According to Proposition 1.1.98, let us take a complete normed
unital associative complex algebra B containing isometrically BL(A) as a closed real
subalgebra and whose unit is the same as that of BL(A) (namely, the identity mapping
IA on A). Now, for x in A\{0}, Lx is an invertible element of B satisfying ‖L−1

x ‖ �
(ρ‖x‖)−1. Therefore, for every x in A\{0} and every complex number z in sp(B,Lx),
we have that z−1 ∈ sp(B,L−1

x ), and hence that

ρ‖x‖ � |z| � ‖x‖ .
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Finally, for x in A\Re and α,β in R, we may choose z in sp(B,Lx), so that α+β z
belongs to sp(B,Lαe+βx), and we have

ρ‖αe+βx‖ � |α+β z| � ‖αe+βx‖ .

Proposition 2.7.28 Let A be a normed real algebra satisfying the following
conditions:

(i) There is an element a in A such that aA is dense in A.

(ii) There exists ρ > 0 such that the inequality ‖xy‖ � ρ‖x‖‖y‖ holds for all x,y
in A.

Then, for each two-dimensional subspace M of A, there is a linear mapping ϕ from
M to the two-dimensional Euclidean real space satisfying

ρ2‖m‖ � ‖ϕ(m)‖ � ‖m‖ for every m ∈ M.

Proof We may assume that A is complete. Then the operator La is bijective because
it is bounded below and has dense range. Therefore, by Proposition 2.7.19, A is a
left-division algebra. Let M be a two-dimensional subspace of A. Take a basis {u,v}
of M such that ‖u‖= ρ−1. Then, for every x in A, we have

ρ‖x‖ � ‖L−1
u (x)‖ � ‖x‖ .

Now, consider the real algebra B consisting of the vector space of A and the product
x�y := L−1

u (xy). Then, for x,y in B, we have

‖x�y‖= ‖L−1
u (xy)‖ � ‖xy‖ � ‖x‖‖y‖ ,

so that ‖.‖ becomes an algebra norm on B. On the other hand, again for x,y in B,
we have

‖x�y‖= ‖L−1
u (xy)‖ � ρ‖xy‖ � ρ2‖x‖‖y‖ .

Now, since u is a left unit for B, the existence of a linear mapping ϕ from M to the
two-dimensional Euclidean real space satisfying ρ2‖m‖ � ‖ϕ(m)‖ � ‖m‖ for every
m in M follows from Lemma 2.7.27.

Taking ρ = 1 in the above proposition, we obtain the following.

Corollary 2.7.29 Let A be an absolute-valued real algebra, and assume that there
exists a ∈ A such that aA is dense in A. Then A is a pre-Hilbert space.

We recall that a normed space X is said to be uniformly non-square if there exists
0 < σ < 1 such that the inequality

min{‖x+ y‖,‖x− y‖}< 2σ

holds for all x,y in the closed unit ball of X . The main significance of this notion
relies on the fact that the completion of a uniformly non-square normed space is a
superreflexive Banach space [716, Theorem VII.4.4].

As the next example shows, not all nearly absolute-valued real algebras with a left
unit are uniformly non-square.
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Example 2.7.30 Take A equal to C (regarded as a real algebra) endowed with the
algebra norm ‖.‖ defined by ‖α+ iβ‖ := |α|+ |β |. Since ‖1‖= ‖i‖= 1 and ‖1+ i‖=
‖1− i‖ = 2, certainly A is not uniformly non-square. On the other hand, denoting
by | · | the usual module function on C, for x in A we have |x| � ‖x‖ � 21/2|x|. It
follows that

‖xy‖ � |xy|= |x||y| � 2−1‖x‖‖y‖ for all x,y ∈ A.

Corollary 2.7.31 Let A be a normed real algebra satisfying the following condi-
tions:

(i) There is an element a in A such that aA is dense in A.

(ii) There exists ρ > 2−1/4 such that the inequality ‖xy‖� ρ‖x‖‖y‖ holds for all x,y
in A.

Then A is uniformly non-square.

Proof Choose σ with 2−1/2ρ−2 < σ < 1, and let x,y be in the closed unit ball of A.
By Proposition 2.7.28, there exists a linear mapping ϕ from the linear hull of {x,y}
(say M) to an Euclidean real space satisfying

ρ2‖m‖ � ‖ϕ(m)‖ � ‖m‖

for every m in M. It follows that

[min{‖x+ y‖,‖x− y‖}]2

� 2−1(‖x+ y‖2 +‖x− y‖2)

� 2−1ρ−4(‖ϕ(x+ y)‖2 +‖ϕ(x− y)‖2) = ρ−4(‖ϕ(x)‖2 +‖ϕ(y)‖2)

� ρ−4(‖x‖2 +‖y‖2) � 2ρ−4 < 4σ2 .

Lemma 2.7.32 Let A be an absolute-valued algebra over K such that the absolute
value of A comes from an inner product (·|·), and let x be in A such that there exists
x∗ ∈ A satisfying (xy|z) = (y|x∗z) for all y,z ∈ A. Then we have x∗(xy) = ‖x‖2y for
every y ∈ A.

Proof For y ∈ A, we have (xy|xy) = ‖x‖2(y|y). Then, by linearization, we obtain
that the equality (xz|xy) = ‖x‖2(z|y) holds for all y,z ∈ A. Since (xz|xy) = (z|x∗(xy)),
we deduce (z|x∗(xy)) = ‖x‖2(z|y), which, in view of the arbitrariness of z, yields
x∗(xy) = ‖x‖2y.

Proposition 2.7.33 Let A be an absolute-valued real algebra with a left unit e.
Then the absolute value of A derives from an inner product (·|·), and, setting
x∗ := 2(x|e)e− x, we have (xy|z) = (y|x∗z) and x∗(xy) = ‖x‖2y for all x,y,z ∈ A.

Proof By Corollary 2.7.29, the absolute value of A derives from an inner product
(·|·). For y,u in A with (e|u) = 0, we have

(1+‖u‖2)‖y‖2 = ‖e+u‖2‖y‖2 = ‖(e+u)y‖2

= ‖y+uy‖2 = (1+‖u‖2)‖y‖2 +2(uy|y) ,
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and hence (uy|y) = 0. By linearization, we deduce (uy|z) =−(y|uz) for all u,y,z ∈ A
with (e|u) = 0, or, equivalently, (xy|z) = (y|x∗z) for all x,y,z ∈ A. Finally, apply
Lemma 2.7.32.

Corollary 2.7.34 Let A be an absolute-valued real algebra. Then A is a left-division
algebra if (and only if) there exists e ∈ A such that eA = A.

Proof Assume that there exists e ∈ A such that eA = A. Then the normed space
of A becomes an absolute-valued algebra (say B) with left unit e under the product
x�y := L−1

e (xy). Therefore, by Proposition 2.7.33, we have x� (x∗ �y) = ‖x‖2y for
all x,y ∈ A and a suitable involution ∗ on A. This implies that B (and hence A) is a
left-division algebra.

We do not know if the condition eA = A in Corollary 2.7.34 above can be relaxed
to the one that eA is dense in A. Anyway, we have the following consequence.

Corollary 2.7.35 Let A be an absolute-valued real algebra. We have:

(i) A is a quasi-division algebra (if and) only if it is a one-sided division algebra.
(ii) If A is a left-division algebra, then so is its completion.

Proof Assertion (i) follows from Corollary 2.7.34 applied to A or to the opposite
algebra of A. Assume that A is a left-division algebra. Take a norm-one element e∈A,
so that we have eA=A. Then, since Le is an isometry, this equality remains true when
the completion of A replaces A. Therefore, by Corollary 2.7.34, the completion of A
is a left-division algebra.

We introduced transitive normed spaces in Subsection 2.6.3. The most classical
example of a transitive normed space is given by the following.

Lemma 2.7.36 Every pre-Hilbert space over K is transitive.

Proof Let X be a pre-Hilbert space over K. Let u,v be in SX . If u,v are linearly
dependent, then the existence of a surjective linear isometry F : X → X such that
F(u) = v is obvious. Otherwise, we denote by Y the linear hull of {u,v}, we denote
by Z the orthogonal complement of Y in X , we write X = Ku⊕Ku′ ⊕Z and X =

Kv ⊕Kv′ ⊕ Z, where u′ and v′ are norm-one elements of Y orthogonal to u and
v, respectively, and we consider the unique linear mapping F : X → X satisfying
F(u) = v, F(u′) = v′, and F(z) = z for every z ∈ Z. Then, clearly, F is a surjective
linear isometry such that F(u) = v.

Let H be a nonzero real pre-Hilbert space. Fix a norm-one element 1 ∈ H, and
define a product on H by

xy = (x|1)y+(y|1)x− (x|y)1 . (2.7.2)

In this way H becomes a quadratic commutative real algebra (say A), which will
be called the quadratic commutative algebra of H. The algebra A above becomes a
Cayley algebra relative to the standard algebra involution

x → x∗ := 2(x|1)1− x. (2.7.3)
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The notion of the quadratic commutative algebra of a nonzero real pre-Hilbert space
is nothing other than a simplification of that of the quadratic flexible algebra of a
pre-H-algebra (see Definition 2.6.4) in the particular case where the product of the
pre-H-algebra is identically zero. Indeed, denoting by E the orthogonal complement
of R1 in H, and endowing E with the zero product, E becomes a pre-H-algebra,
and the quadratic commutative algebra of H, as defined above, coincides with the
quadratic flexible algebra of E. Consequently, by Proposition 2.6.5, the quadratic
commutative algebra of H is a normed algebra, but this fact does not matter for the
current development. We note that, in view of Lemma 2.7.36, the choice of the norm-
one element 1 above is structurally irrelevant. It follows that quadratic commutative
algebras of nonzero real pre-Hilbert spaces, and nonzero real pre-Hilbert spaces
themselves, are in a bijective categorical correspondence.

Now, let A be the quadratic commutative algebra of a nonzero real pre-Hilbert
space, and let K be a nonzero real pre-Hilbert space (possibly different from the one
underlying A). By a unital ∗-representation of A on K we mean any unit-preserving
Jordan homomorphism φ : A → BL(K) satisfying

(φ (x)(η)|ζ ) = (η|φ(x∗)(ζ )) (2.7.4)

for every x ∈ A and all η,ζ ∈ K. Let φ be a unital ∗-representation of A on K, and
let x be in A. Then, by (2.7.3), we have φ(x∗) = 2(x|1)IK − φ(x), and hence, since
x2 = 2(x|1)x−‖x‖21 (as a consequence of (2.7.2)), we get

φ(x∗)φ(x) = 2(x|1)φ(x)−φ(x)2 = 2(x|1)φ(x)−φ(x2) = ‖x‖2IK .

Therefore, by (2.7.4), for η ∈ K we have

‖φ(x)(η)‖2 = (η|φ(x∗)φ(x)(η)) = ‖x‖2‖η‖2. (2.7.5)

Now, the first assertion in Proposition 2.7.37 immediately below is a straightfor-
ward consequence of the equality (2.7.5) above, whereas the second one is simply a
reformulation of Proposition 2.7.33.

Proposition 2.7.37 If A is the quadratic commutative algebra of a nonzero
real pre-Hilbert space, and if φ is a unital ∗-representation of A on its own pre-
Hilbert space, then the normed space of A with the new product � defined by
x�y := φ(x)(y) becomes an absolute-valued real algebra with a left unit. Moreover,
there are no absolute-valued real algebras with a left unit other than those given by
the construction method just described.

Theorem 2.7.38 Let H denote the linear hull of the canonical Hilbertian basis of
the real Hilbert space �2. Then, under their own norms and suitable products, both
H and �2 become absolute-valued left-division algebras with left units.

Proof Let {u0,u1,u2, . . . ,un, . . .} be the canonical Hilbertian basis of �2. Let us
consider the quadratic commutative algebra of H (say A) by choosing 1 := u0 and
defining the product according to (2.7.2). Now, for n � 0, let us denote by Hn the
subspace of H generated by {u0, . . . ,un}. Then the quadratic commutative algebra of
Hn (say An) is a subalgebra of A, and the standard involution of An is nothing other
than the restriction to An of the standard involution of A. For n � 0, let Gn stand for
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the subspace of H generated by {u0, . . . ,u2n−1}. We will prove by induction that, for
each n � 0, there exists a unital ∗-representation φn of An on Gn satisfying

φn(a)(b) = φm(a)(b) for all m < n, a ∈ Am, and b ∈ Gm. (2.7.6)

Starting from the unique possible unital ∗-representation φ0 from A0 on G0, assume
that, for a certain n � 0, we have been able to find a unital ∗-representation φn of An

on Gn satisfying (2.7.6). Trying to define φn+1, first observe that, since the dimension
of Gn+1 is twice that of Gn, we can choose a linear isometry αn from Gn onto the
orthogonal complement of Gn in Gn+1, so that every element of Gn+1 can be uniquely
written as b+αn(c) for suitable b,c ∈ Gn. Note also that every element of An+1 can
be uniquely written as a+λun+1 for suitable a ∈ An and λ ∈ R. We can then define
φn+1 by

φn+1(a+λun+1)(b+αn(c)) := φn(a)(b)−λc+αn(φn(a
∗)(c)+λb),

and straightforwardly realize that φn+1 becomes a unital ∗-representation of An+1 on
Gn+1 satisfying (2.7.6) with n+1 instead of n, concluding in this way the induction
argument. Now, for a ∈ A and b ∈ H, we can choose n � 0 such that a ∈ An and
b ∈ Gn, and realize that φn(a)(b) does not depend on the chosen n. Therefore we
can define φ(a)(b) := φn(a)(b) ∈ H, and verify without problems that φ becomes a
unital ∗-representation of A on H. By Proposition 2.7.37, H (= A as a pre-Hilbert
space) becomes an absolute-valued algebra with a left unit, for a suitable product.
By Corollaries 2.7.34 and 2.7.35(ii), this absolute-valued algebra and its completion
are left-division algebras with a left unit.

As a consequence of Proposition 2.6.25, infinite-dimensional absolute-valued
algebras have zero centre. Nevertheless, invoking Fact 2.6.47, Theorem 2.7.38 above
has the following remarkable consequence.

Corollary 2.7.39 Let H denote the linear hull of the canonical Hilbertian basis of
the real Hilbert space �2. Then, under their own norms and suitable products, both
H and �2 become absolute-valued algebras containing a nonzero idempotent which
commutes with all elements in these algebras.

In view of Corollary 2.7.39 and/or Theorem 2.7.38, results from Proposition 2.7.40
to Corollary 2.7.43 below have their own interests.

Proposition 2.7.40 Let A be an absolute-valued real algebra containing elements
e and a such that eA = A, a 	= 0, and [a,A] = 0. Then A is finite-dimensional.

Proof Since eA = A and a 	= 0, Corollary 2.7.34 applies to obtain that aA = A.
But then, since [a,A] = 0, we have Aa = A. Therefore the result follows from the
implication (iii)⇒(i) in Corollary 2.6.24.

Although straightforward, we emphasize the following.

Corollary 2.7.41 Let A be an absolute-valued real algebra containing both a left
unit and a nonzero element commuting with all elements of A. Then A is finite-
dimensional.
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Proposition 2.7.42 Let A be an absolute-valued real algebra with a left unit, and
let ||| · ||| be an algebra norm on A. Then we have ‖ · ‖ � ||| · |||.

Proof Let e denote the left unit of A, and let x be in A. According to Propos-
ition 2.7.33, we have Lx∗ ◦Lx = ‖x‖2IA, where x∗ := 2(x|e)e− x. It follows that

‖x‖2 � |||Lx∗ ||||||Lx||| � |||x∗||||||x||| � (2‖x‖|||e|||+ |||x|||)|||x||| ,

so (1+ |||e|||2)‖x‖2 � (|||x|||+‖x‖|||e|||)2, and so (
√

1+ |||e|||2 −|||e|||)‖x‖� |||x|||. Now
apply Proposition 2.6.19, with φ equal to the identity mapping from (A, ||| · |||) to
(A,‖ · ‖).

We do not know if Proposition 2.7.42 remains true whenever the requirement
of the existence of a left unit in A is relaxed to the one that A is a left-division
algebra. Now note that, as a consequence of Proposition 2.6.19, finite-dimensional
algebras over K have at most one absolute value. Since finite-dimensional absolute-
valued algebras are of course left-division algebras, the following corollary becomes
a generalization of the fact just pointed out.

Corollary 2.7.43 Let A be a left-division real algebra. Then there exists at most
one absolute value on A.

Proof Let ‖ · ‖ and ||| · ||| be absolute values on A. Fix e ∈ A with ‖e‖ = 1, and
consider the absolute-valued real algebra B consisting of the vector space of A, the
norm ‖ · ‖, and the product x� y := L−1

e (xy). Since B has a left unit, and |||e|||−1||| · |||
is an algebra norm on B, Proposition 2.7.42 applies giving that ‖ · ‖ � |||e|||−1||| · |||.
Then, keeping in mind that ||| · ||| is an algebra norm on A, and that ‖ ·‖ is an absolute
value on A, we deduce from Proposition 2.6.19 that ‖ · ‖ � ||| · |||. By symmetry, we
have also ||| · ||| � ‖ · ‖.

Remark 2.7.44 Absolute-valued algebras need not have uniqueness of the absolute
value. Indeed, the real or complex Banach space �p (1 � p<∞) can be converted into
an absolute-valued algebra, by simply taking an injective mapping φ : N×N→ N,
by defining the product of basic vectors ei,e j ∈ �p by the rule eie j := eφ (i, j), and then
by extending the product by bilinearity and continuity. Now, let 1 � p < q < ∞, and
consider �p and �q as absolute-valued algebras by means of the above construction
(with the same injective mapping φ : N×N→ N). Then �p is a complete absolute-
valued algebra which, algebraically, can be seen as a subalgebra of �q. However the
restriction of the natural absolute value of �q to �p does not coincide with (nor even
is equivalent to) the natural absolute value of �p. As a consequence, the requirement
of the existence of a left unit in Proposition 2.7.42 cannot be altogether removed.

After Theorem 2.7.38, the following problem becomes relevant.

Problem 2.7.45 Is every normed division real algebra finite-dimensional?

In contrast to Problem 2.7.4 (which, thanks to Corollary 2.7.3, only remains open
in the non-complete case), a general answer to Problem 2.7.45 is unknown even in
the complete case. In this case, the problem reduces to the setting of unital algebras.
For, if A is a complete normed division real algebra, and if a is any nonzero element
of A, then the vector space of A, endowed with the product x� y := R−1

a (x)L−1
a (y)
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and a suitable positive multiple of the norm of A, becomes a complete normed unital
division real algebra (whose unit is precisely a2). Now the next result has its own
interest.

Proposition 2.7.46 Let A be a complete normed unital division real algebra, and
let B be any nonzero closed subalgebra of A. Then B contains the unit of A, and is a
division algebra.

Proof Take a nonzero element b ∈ B. Since R1+B is a closed subalgebra of A
containing 1, Corollary 2.7.21 applies to find r ∈R and c ∈ B such that b(r1+c) = 1.
Therefore 1 = rb+bc ∈ B. Now it is enough to apply Corollary 2.7.21 to both A and
A(0) to conclude that B is a division algebra.

We do not know whether there are complete normed infinite-dimensional divi-
sion real algebras. Anyway, we are going to construct complete normed infinite-
dimensional real algebras such that the operators of left and right multiplication by
any nonzero element are surjective. Before beginning this construction, let us realize
that it is prohibited in the associative setting. Indeed, we have the following.

Proposition 2.7.47 Let A be a nonzero associative algebra over K such that Ra is
surjective for every nonzero element a ∈ A. Then A is a division algebra. Therefore,
if in addition A is a normed algebra, then A is finite-dimensional.

Proof In view of Proposition 2.5.38, to prove the first conclusion it is enough to
show that Ra is injective for every nonzero element a ∈ A. Let a be in A such that
there exists b∈A\{0} satisfying ba= 0. Then, since A=Ab, we have Aa=Aba= 0,
and hence a = 0 (since, otherwise, we would have Aa = A 	= 0, a contradiction). Now
that we know that A is a right-division algebra, the finite dimensionality of A in the
normed case follows from Propositions 2.5.39 and 2.5.40.

As usual, given a bounded linear operator F on a Hilbert space H, we denote by
F∗ the adjoint of F .

Lemma 2.7.48 Let A be a complete absolute-valued algebra over K whose Banach
space is a Hilbert space, let ∗ be a conjugate-linear vector space involution on A,
and define a new product � on A by a�b := (Rb∗)

∗(a). Then, for every b ∈ A\{0},
the operator R�

b , of right multiplication by b relative to the product �, is surjective.

Proof Note that, for b ∈ A, we have R�
b = (Rb∗)

∗, so that it is enough to show that
(Rb)

∗ is surjective for every norm-one element b ∈ A. But, since A is an absolute-
valued algebra, for such an element b, Rb is a linear isometry, and hence, since A is a
Hilbert space, we have (Rb)

∗Rb = IA, which implies that (Rb)
∗ is indeed surjective.

By Corollary 2.7.26, if A is a nonzero complete normed complex algebra such that
Ra is bijective for some a ∈ A and Rx is surjective for every x ∈ A \ {0}, then A is
isomorphic to C. Nevertheless, we have the following.

Corollary 2.7.49 There exists a complete normed infinite-dimensional complex
algebra A such that, for every x ∈ A\{0}, the operator Rx is surjective.
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Proof According to Remark 2.7.44, the complex Hilbert space �2 can be converted
into an absolute-valued algebra (say A) under a suitable product. Defining ∗ on the
linear hull of the basic vectors of �2 as the unique conjugate-linear operator on
�2 fixing all basic vectors, and extending ∗ by continuity, ∗ becomes an isometric
conjugate-linear vector space involution on A. Now apply Lemma 2.7.48, noticing
that, since ∗ is isometric, (A,�) is indeed a normed algebra.

Our next lemma involves standard terminology of H∗-algebras. Following [199,
200, 589], by a left semi-H∗-algebra over K we mean an algebra A over K which is
also a Hilbert space in such a way that the product of A becomes continuous, and is
endowed with a conjugate-linear vector space involution satisfying (ab|c) = (b|a∗c)
for all a,b,c ∈ A.

Lemma 2.7.50 Let A be a left semi-H∗-algebra over K whose involution ∗ is
isometric, and define a new product � on A by a� b := (Rb∗)

∗(a). Then ∗ is an
algebra involution on (A,�).

Proof Let a,b,c be in A. By the definition of the product �, we have
(a � b|c) = (a|cb∗). Using this fact, together with the axiom of left semi-H∗-
algebras (ab|c) = (b|a∗c) and the assumption that the involution ∗ is isometric
(a|b) = (b∗|a∗), we obtain

(b∗ �a∗|c) = (b∗|ca) = (c∗b∗|a) = (a|c∗b∗)

= (a�b|c∗) = (c∗|a�b) = ((a�b)∗|c),

and hence (a�b)∗ = b∗ �a∗.

We recall that, by Proposition 2.7.33, absolute-valued real algebras with a left unit
are pre-Hilbert spaces.

Proposition 2.7.51 Let A be a complete absolute-valued real algebra with a
left unit e, let ∗ stand for the isometric vector space involution on A given by
a∗ := 2(a|e)e−a, and define a new product � on A by a�b := (Rb∗)

∗(a). Then we
have:

(i) (A,�) is a complete normed real algebra, and ∗ becomes an algebra involution
on (A,�).

(ii) The operators of left and right multiplication by any nonzero element on (A,�)

are surjective.

(iii) For every a ∈ A, the equalities a�a∗ = a∗ �a = ‖a‖2e hold.

Proof By Proposition 2.7.33, A, endowed with the involution ∗, becomes a left
semi-H∗-algebra. Therefore, by Lemma 2.7.50, ∗ is an algebra involution on (A,�).
The remaining part of assertion (i) is straightforward.

Assertion (ii) follows from assertion (i) and Lemma 2.7.48.
To prove assertion (iii), note that, for every a ∈ A, we have (Ra)

∗Ra = ‖a‖2IA

(see the proof of Lemma 2.7.48). When applied to e, the above equality gives
a�a∗ = ‖a‖2e. Finally, the equality a∗�a = ‖a‖2e follows from the one just proved
because ∗ is an isometry.
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By combining Theorem 2.7.38 and Proposition 2.7.51, we get the following.

Corollary 2.7.52 There exists a complete normed infinite-dimensional real algebra
A such that, for every a ∈ A\{0}, the operators La and Ra are surjective.

We do not know if the above corollary remains true for complex algebras.

2.7.3 Discussing the results

Now, we are going to summarize and clarify several results in the current section by
discussing the diagram in §2.7.53 immediately below.

§2.7.53 Let A be a nonzero complete normed algebra over K. Then, keeping in
mind §2.5.53, the implications in the following diagram hold. In the diagram, the
abbreviation t.d.z. stands for topological divisor of zero.

A is a
division algebra ⇒ A is a

{
left

right

}
division algebra

⇒
A is a quasi-

division algebra

⇓ ⇓ ⇓

A has no nonzero
one-sided t.d.z. ⇒

A has no nonzero{
left

right

}
t.d.z. ⇒

A has no nonzero
two-sided t.d.z.

We note that the conditions and implications in the top row of the above diagram
are of a purely algebraic nature, and hence do not need the algebra A to be normed.
On the other hand, conditions and implications in the bottom row of the diagram
only need the algebra A to be normed, but not to be complete. However, in general,
vertical implications in the diagram need the algebra A to be complete normed (see
Example 2.7.54 below). Nevertheless, if the algebra A is alternative, then, in view of
Propositions 2.5.24 and 2.5.38, completeness of A can be dispensed for the validity
of those vertical implications. Moreover, if the algebra A above is alternative, then,
by Theorem 2.5.50 and Proposition 2.5.49(i), the requirement that A has no nonzero
joint topological divisor of zero (a condition weaker than the weakest one in the
diagram above) implies that A is a division algebra (the strongest condition in the
diagram), and hence all conditions in the diagram are equivalent.

The following example shows that the vertical implication in the centre column of
this diagram need not be true when completeness of A is removed.

Example 2.7.54 Let H denote the linear hull of the canonical Hilbertian basis
{en : n ∈ N} of the real Hilbert space �2, and, according to Theorem 2.7.38, endow
H with a suitable product (denoted by juxtaposition) converting it into an absolute-
valued left-division algebra. Let T be the linear operator on H determined by T (en)=
1
n en. Then T is bijective and continuous with ‖T‖= 1. Now, let A be the normed real
algebra consisting of the normed space of H and the product x� y := xT (y). For
x ∈ A we have L�

x = LxT , and hence A is a left division algebra. However, for x ∈ A
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we also have x�en =
1
n xen → 0, so that all elements in A are left topological divisors

of zero.

If A is finite-dimensional, then, by Exercise 1.1.88(i), the six conditions in the
diagram in §2.7.53 reduce to two. Indeed, in such a setting, all vertical implications
in the diagram are reversible, and one-sided division implies division, whereas, by
Example 2.5.36, quasi-division does not imply division. It is worth mentioning that,
even in the finite-dimensional case, the weaker condition in the diagram is strictly
stronger than the one where A has no nonzero joint topological divisor of zero.
Indeed, we have the following.

Example 2.7.55 Let A be the two-dimensional algebra over K with basis {u,v} and
multiplication table given by

u2 = uv =−vu = v and v2 = u.

Then uA = Au = Kv 	= A, and hence, since A is finite-dimensional, u becomes a
nonzero two-sided divisor of zero. Nevertheless, A has no nonzero joint (topological)
divisor of zero. For, if a = αu+βv is a nonzero element of A, and if ab = ba = 0 for
some b = λu+μv, then we have

βμ = 0, αλ +αμ−βλ = 0, and αλ −αμ+βλ = 0,

or, equivalently,

βμ = 0, αλ = 0, and αμ−βλ = 0,

which implies, since (α,β ) 	= (0,0), that λ = μ = 0, and hence b = 0.

The discussion of the diagram (in §2.7.53) in the general (possibly non-alternative
and infinite-dimensional) case is more complicated. The above finite-dimensional
discussion already shows that none of the two horizontal implications on the right
of the diagram is reversible. On the other hand, the next example shows that the
strongest condition in the bottom row of the diagram does not imply the weakest one
in the top row, and hence that none of the vertical implications is reversible.

Example 2.7.56 Let 1 � p < ∞, and let A stand for the complete absolute-valued
algebra whose Banach space is the real or complex �p-space, and whose product is
constructed according to Remark 2.7.44. As any absolute-valued algebra, A has no
nonzero one-sided topological divisor of zero. However, a straightforward calcula-
tion shows that, for any basic vector en ∈ A, both Len and Ren are not surjective on A,
so that A is not a quasi-division algebra.

To continue our discussion, let us consider the following claim, whose proof is
straightforward.

Claim 2.7.57 Let A be a normed algebra over K with no nonzero left topological
divisor of zero, and let F be a norm-one bounded linear operator on A which is
injective but not bounded below. Denote by � the product of A, and by B = B(A,F)

the algebra whose vector space is that of A and whose product is defined by
xy := F(x)� y. Then B (with the same norm as that of A) is a normed algebra



240 Beginning the proof of the non-associative Vidav–Palmer theorem

over K with no nonzero left topological divisor of zero, but every element in B is a
right topological divisor of zero in B.

Now, the following example shows that the horizontal implication on the left of
the bottom row of the diagram in §2.7.53 is not reversible.

Example 2.7.58 Let 1 � p < ∞. Then certainly we may find a norm-one bounded
linear operator F , on the classical Banach space �p over K, which is injective but
not bounded below. Moreover, by Remark 2.7.44, we can choose a product on the
Banach space �p converting it into an absolute-valued algebra. We denote by A the
absolute-valued algebra just constructed, and consider the complete normed algebra
B = B(A,F) given by Claim 2.7.57, so that B has no nonzero left topological divisor
of zero but every element in B is a right topological divisor of zero in B.

Remark 2.7.59 Taking in the above example p = 2 and K = R, and replacing
Remark 2.7.44 with Theorem 2.7.38, we find a complete normed left-division real
algebra B (necessarily without nonzero left topological divisors of zero), all elements
of which are right topological divisors of zero in B.

It follows from the information collected to this point that the unique implication
in the diagram in §2.7.53 that could be reversible is the horizontal one on the left
of the top row. If K = C, then, by Corollary 2.7.3, such an implication is indeed
reversible. On the contrary, if K = R, then, by Theorem 2.7.38 and the implication
(ii)⇒(i) in Corollary 2.6.24, we are provided with a complete normed left-division
real algebra which is not a division algebra. Summarizing, we have the following.

Proposition 2.7.60 If K = C, then none of the implications in the diagram in
§2.7.53 is reversible, except the horizontal one on the left of the top row, which is
indeed reversible. If K=R, then, without any exception, none of the implications in
the diagram is reversible.

Now that the discussion of the diagram in §2.7.53 has been formally concluded,
we provide the reader with some complementary details. To this end, we consider
the following.

Claim 2.7.61 Let A be a nonzero algebra over K, and let B = B(A) denote the
algebra over K whose vector space is A×A and whose product is defined by

(x1,x2)(y1,y2) := (x1y2,x1y1 + x2y2) .

Then B has nonzero divisors of zero. Moreover we have:

(i) B is a quasi-division algebra if and only if A is a division algebra.

(ii) If A is in fact a normed algebra, and if we consider B as a normed algebra under
the norm ‖(x1,x2)‖ := ‖x1‖+‖x2‖, then B has no nonzero two-sided topological
divisor of zero if and only if A has no nonzero one-sided topological divisor
of zero.

Proof Since for x2 and y1 in A the equality (0,x2)(y1,0) = 0 holds, the existence in
B of nonzero divisors of zero is not in doubt.
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Assume that B is a quasi-division algebra. Let a be in A\{0}. Since L(0,a) is not
bijective on B, the operator R(0,a) must be bijective on B. This means that the mapping
(x1,x2)→ (x1a,x2a) from B to B is bijective. Equivalently, the operator Ra is bijective
on A. Analogously, the fact that R(a,0) is not bijective on B allows us to obtain that
La is bijective on A. Since a is arbitrary in A\{0}, we get that A is a division algebra.
Now assume that A is a division algebra. Let x = (x1,x2) be in B\{0}. If x1 	= 0, then
the operator L(x1,x2) is bijective on B with inverse mapping given by

(y1,y2)−→ (L−1
x1
(y2 −Lx2 L−1

x1
(y1)),L

−1
x1
(y1)).

Otherwise, the operator R(x1,x2) is bijective on B with inverse mapping given by

(y1,y2)−→ (R−1
x2
(y1),R

−1
x2
(y2)).

Since x is arbitrary in B\{0}, B is a quasi-division algebra.
In this last paragraph of the proof we suppose that A is actually a normed algebra,

and consider B as a normed algebra under the norm

‖(x1,x2)‖ := ‖x1‖+‖x2‖.

Assume that B has no nonzero two-sided topological divisor of zero. Then, for
each nonzero element a in A we have that (0,a) (respectively, (a,0)) is not a right
(respectively, left) topological divisor of zero in B. This implies that such an a is
not a one-sided topological divisor of zero in A. Therefore A has no nonzero one-
sided topological divisor of zero. Now assume that A has no nonzero one-sided
topological divisor of zero. Let x = (x1,x2) be in B\{0}. First suppose that x1 	= 0. If
{yn}= {(yn

1,y
n
2)} is a sequence in B with {xyn}→ 0, then we have in A

{x1yn
2} −→ 0 and {x1yn

1 + x2yn
2} −→ 0,

so {yn
2} → 0 and {yn

1} → 0 (since x1 is not a left topological divisor of zero in A),
and so {yn} → 0. Therefore x is not a left topological divisor of zero in B. Now
suppose that x1 = 0 (so that x2 	= 0). Then, for every y = (y1,y2) in B we have
yx = (y1x2,y2x2), and we easily realize that x is not a right topological divisor of
zero in B (since x2 is not a right topological divisor of zero in A).

Now, the following example shows that the horizontal implication on the right
of the bottom row of the diagram in §2.7.53 is not reversible, even in the infinite-
dimensional case.

Example 2.7.62 Taking the algebra A in Claim 2.7.61 equal to any complete
absolute-valued infinite-dimensional algebra over K, we obtain an infinite-
dimensional complete normed algebra B = B(A) over K which, by assertion (ii)
in the claim, has no nonzero two-sided topological divisor of zero but has nonzero
divisors of zero.

In view of Theorem 2.7.7, a similar example, showing that the horizontal implic-
ation on the right of the top row of the diagram in §2.7.53 is not reversible in the
infinite-dimensional case, is impossible if K=C. If K=R, the existence of such an
example is unknown for the moment. Anyway, as a straightforward consequence of
Claim 2.7.61, we have the following.
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Corollary 2.7.63 There exist quasi-division real algebras of dimension 2, 4, 8 and
16 which are not division algebras. Moreover, if there is an infinite-dimensional
(complete) normed division algebra, then there is also an infinite-dimensional (com-
plete) normed quasi-division algebra which is not a division algebra.

We continue the complements to the discussion of the diagram in §2.7.53 by
considering the case that the complete normed algebra A is commutative. In that
case, clearly, all conditions in the top row are pairwise equivalent, and the same can
be said for the conditions in the second line. However, conditions in the bottom row
do not imply conditions in the top row. Indeed, we have the following (necessarily
infinite-dimensional) example.

Example 2.7.64 Let B stand for the complete absolute-valued algebra whose
Banach space is the real or complex �2-space, and whose product is constructed
according to Remark 2.7.44, and set A := Bsym. For x = ∑i λiei and y = ∑i μiei in
A, we have

xy =∑
i, j

λiμ jeφ(i, j) and yx =∑
i, j

μiλ jeφ (i, j) .

Therefore

(xy|yx) =∑
i, j

λiμ jμiλ j =

(
∑

i
λiμi

)(
∑

j
μ jλ j

)
= (x|y)(y|x) = |(x|y)|2 .

It follows that

4‖x• y‖2 = ‖xy+ yx‖2 = ‖xy‖2 +‖yx‖2 +2ℜ((xy|yx))

= 2(‖x‖2‖y‖2 + |(x|y)|2),

and hence ‖x • y‖ � 2−1/2‖x‖‖y‖. Thus A is a complete nearly absolute-valued
commutative algebra over K (so it has no nonzero one-sided topological divisor of
zero), but, after a straightforward computation, we realize that, for any basic vector
en, the operator of multiplication by en on A is not surjective (so A is not a division
algebra).

We conclude the complements to the discussion of the diagram in §2.7.53 by
considering the case that the complete normed algebra A is unital. In that case,
by Proposition 2.7.19, the vertical implications on the left and middle columns are
reversible. Moreover, if in addition A is complex, then, by Corollary 2.7.9, all condi-
tions in the top row of the diagram are equivalent to the one that A is isomorphic to C.
Therefore, in the complete normed unital complex case, all conditions in the diagram
are equivalent to the one that A is isomorphic to C, unless possibly the one that A has
no nonzero two-sided topological divisor of zero. The following proposition shows
that this last condition is indeed exceptional.

Proposition 2.7.65 There exists an infinite-dimensional complete normed unital
complex algebra with no nonzero two-sided topological divisor of zero.

Proof Let {en : n ∈ N} be the canonical Hilbertian basis of the complex Hilbert
space �2, and, according to Remark 2.7.44, convert �2 into an absolute-valued algebra
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under the product determined by eie j = e2i3 j . Let T be the bounded linear operator
on �2 determined by T (en) =

1
n en. Then T is injective and compact with ‖T‖= 1 (cf.

the solution of Exercise 1.4.30).
Now, let B be the complete normed complex algebra consisting of the Banach

space of �2 and the product x� y := xT (y). We claim that

sp(BL(B),L�
x ) = {0} for every x ∈ B. (2.7.7)

To prove the claim, note at first that, since L�
x = LxT and T is compact, L�

x is
compact, so that, in view of Corollary 1.4.29(i), it is enough to show that L�

x has
no nonzero eigenvalue. For x = ∑i λiei ∈ B\{0}, set

p(x) := min{i ∈ N : λi 	= 0}.

Assume that the claim is not true. Then there are x = ∑i λiei and y = ∑i μiei in
B \ {0} such that L�

x (y) = αy for some nonzero complex number α . Then, since

L�
x (y) = ∑i, j

λiμ j
j e2i3 j , we realize that

p(y) = p(αy) = p(L�
x (y)) = 2p(x)3p(y) > p(y),

a contradiction.
Now, let A stand for the normed unital extension of B (cf. Proposition 1.1.107).

We are going to conclude the proof by showing that A has no nonzero two-sided
topological divisor of zero. Let a = λ1+ x be a two-sided topological divisor of
zero in A. Since a is a left topological divisor of zero, there are sequences λn and xn

in C and B, respectively, such that |λn|+ ‖xn‖ = 1 for every n ∈ N, λλn → 0, and
λxn+λnx+x�xn → 0. Assume that λ 	= 0. Then we have λn → 0, and, consequently,
λxn + x� xn → 0 and ‖xn‖ → 1. The two last convergences imply that −λ lies in
sp(BL(B),L�

x ), contradicting (2.7.7). Therefore λ = 0, and hence a = x ∈ B. Now,
since x is a right topological divisor of zero in A, there are sequences μn and yn in C
and B, respectively, such that |μn|+‖yn‖= 1 for every n ∈N, and μnx+yn �x → 0.
By passing to subsequences if necessary, we can assume that μn converges to some
μ ∈ C, and, consequently, that yn � x → −μx. Assume that x 	= 0. Then, since for
n,m ∈ N we have

‖yn � x− ym � x‖= ‖(yn − ym)� x‖= ‖yn − ym‖‖T (x)‖,

and T is injective, it follows that yn is a Cauchy sequence in B. By setting y :=
limn→∞ yn, we have y � x = −μx (which implies that −μ lies in sp(BL(B),L�

y ))
and |μ |+ ‖y‖ = 1. The fact that −μ ∈ sp(BL(B),L�

y ) and (2.7.7) yields μ = 0, and
consequently, since

‖y‖‖T (x)‖= ‖y� x‖= |μ |‖x‖= 0,

also y = 0, which contradicts the equality |μ|+ ‖y‖ = 1. Therefore a = x = 0, as
desired.

We conclude this subsection by showing how a purely normed space condition on
a normed algebra without nonzero two-sided topological divisors of zero leads to the
finite dimensionality.
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Proposition 2.7.66 Let A be a nonzero normed algebra over K with no nonzero
two-sided topological divisor of zero, and assume that there is a (possibly non-
closed) subspace Y of BL(A) satisfying BL(A) =KIA +Y , and such that every oper-
ator in Y is not bounded below. Then A is isomorphic to K.

Proof Note at first that, since Y consists of operators which are not bounded below,
we must have in fact that BL(A) =KIA ⊕Y . Let λ be the unique linear functional on
BL(A) such that F −λ (F)IA ∈ Y for every F ∈ BL(A). Then ker(λ ) = Y , and hence
λ (T ) 	= 0 whenever T ∈ BL(A) is bounded below. Since Lx or Rx is bounded below
whenever x is in A\{0}, it follows that the linear mapping x → (λ (Lx),λ (Rx)) from
A to K2 is injective, and hence that dim(A)� 2. Assume that dim(A) = 2. Then, with
suitable identifications, we have BL(A) = M2(K) =K4,

BL(A)\ Inv(BL(A)) = {(x,y,z, t) ∈K4 : xt − yz = 0},

and Y = {(x,y,z, t) ∈K4 : x+by+ cz+dt = 0} for suitable b,c,d ∈K. Since

Y ⊆ BL(A)\ Inv(BL(A)), (2.7.8)

and (d,0,0,−1) ∈Y , we deduce d = 0. Then both (b,−1,0,1) and (c,0,−1,1) lie in
Y , and hence, by (2.7.8), b = c = 0. Therefore

Y = {(x,y,z, t) ∈K4 : x = 0}.

Thus (0,1,1,1) ∈ Y ∩ Inv(BL(A)), contradicting (2.7.8). Therefore dim(A) = 1, and
the proof is concluded by applying Exercise 1.1.2.

The actual usefulness of Proposition 2.7.66 will be discussed later (see the proofs
of Propositions 2.7.73 and 2.7.74).

2.7.4 Historical notes and comments

Results from Lemma 2.7.1 to Theorem 2.7.7, Lemma 2.7.18, Corollary 2.7.22, and
results from Example 2.7.56 to Corollary 2.7.63 are taken from [529]. Some of
the original arguments in [529] have been slightly refined (cf. Propositions 2.7.2
and 2.7.6) to be applied in the proof of Theorem 2.7.14. Up to the appropriate
correction, Corollary 2.7.3 was previously pointed out by Kaplansky in [762, p. 13]
(see our comments at the beginning of the preface). According to the acknowledge-
ments of [529], the existence of two-dimensional quasi-division algebras, given by
Example 2.5.36, is due to A. Moreno, who also proved Corollary 2.7.8 (that finite-
dimensional quasi-division complex algebras have dimension �2), thus allowing the
author of [529] to conjecture that Theorem 2.7.7 could be true. Example 2.7.55 is also
due to Moreno (recent private communication). Lemma 2.7.12, Propositions 2.7.13
and 2.7.65, and the part of Theorem 2.7.14 corresponding to assumption (ii) are
taken from the Marcos–Rodrı́guez–Velasco paper [414]. The remaining parts of The-
orem 2.7.14, as well as Corollaries 2.7.10, 2.7.11, 2.7.15, 2.7.20, 2.7.21, and 2.7.23–
2.7.26 are new. Propositions 2.7.16 (excluding condition (i)) and 2.7.19, results from
Lemma 2.7.27 to Corollary 2.7.31, and Example 2.7.64 are taken from the Kaidi–
Ramı́rez–Rodrı́guez paper [369]. Results from Lemma 2.7.32 to Proposition 2.7.37
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are originally due to Rodrı́guez [521], with the exception of Lemma 2.7.36, which is
folklore.

§2.7.67 Now, as announced in Subsection 2.6.3, we follow [521, Remark 4(ii)]
to provide the reader with an alternative complete proof of the non-commutative
Urbanik–Wright theorem, based on Proposition 2.7.33:

Let A be an absolute-valued unital real algebra. Then, as a consequence of
Proposition 2.7.33, the norm of A derives from an inner product (·|·) and, for
x,y∈ A with x orthogonal to 1, we have x(xy) =−‖x‖2y. Taking y= 1 in the above
equality, we obtain x2 = −‖x‖21 for every x ∈ A orthogonal to 1, which implies
that A is a quadratic algebra. Moreover, the same equality now yields Lx2 = L2

x

for every x ∈ A orthogonal to 1, and by symmetry we also have Rx2 = R2
x for such

an x, so that, by an easy process of linearization, we realize that A is alternative.
Now, A is an alternative quadratic real algebra with no nonzero divisor of zero, and
hence, by the Frobenius–Zorn theorem (Theorem 2.5.29) and Proposition 2.6.19,
A is equal to R,C,H, or O.

We remarked in Subsection 2.6.3 that absolute-valued pre-Hilbert algebras are
composition algebras. In [377], Kaplansky proved that composition division algebras
are finite-dimensional, and commented on his attempts to show that the same is
true when ‘division’ is relaxed to ‘left-division’. After Theorem 2.7.38, it is now
clear that Kaplansky’s attempts could not be successful. By the way, Kaplansky’s
result just quoted, together with Corollary 2.7.29, implies Wright’s result [640],
already stated in Corollary 2.6.24, that absolute-valued division real algebras are
finite-dimensional. Theorem 2.7.38 and the proof given here are due to Cuenca [190].
The formalization of the proof, in terms of unital ∗-representations, is taken from
[799, pp. 44–6]. For an alternative proof, the reader is referred to [530]. Simultan-
eously to Cuenca’s discovery, Rodrı́guez [521] applied the possibility of representing
the so-called ‘canonical anticommutation relations’ in quantum mechanics by means
of bounded linear operators on complex Hilbert spaces [699, Proposition 5.2.2],
to show that the quadratic commutative algebra of every infinite-dimensional real
Hilbert space has a ‘topologically irreducible’ unital ∗-representation on its own
Hilbert space. Then he applied Corollary 2.7.34 and Proposition 2.7.37 to get the
following.

Theorem 2.7.68 Every infinite-dimensional real Hilbert space, endowed with a
suitable product, becomes an absolute-valued left-division algebra with a left unit
and with no nonzero closed proper left ideal.

More recently, Elduque and Pérez [232] have proved that every infinite-
dimensional real vector space can be endowed with a pre-Hilbertian norm and
a product which convert it into an absolute-valued algebra with a left unit. Since,
in the construction of [232], the pre-Hilbertian norm and the product can be chosen
in such a way that an arbitrarily prefixed algebraic basis becomes orthonormal, it
follows that Theorem 2.7.38 and a part of Rodrı́guez’ generalization, given by
Theorem 2.7.68 above, can be derived from the Elduque–Pérez result by passing
to the completion. Very recently, relevant progress on the representations of the
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canonical anticommutation relations on separable real Hilbert spaces has been
achieved in the papers of Galina, Kaplan, and Saal [277, 278]. As pointed out
by these authors, their results give rise to a classification, up to an Albert isotopy
(cf. Definition 2.6.23), of all separable complete absolute-valued left-division real
algebras.

Corollary 2.7.39 was first proved by Urbanik [617] by means of a direct con-
struction. Actually, invoking Fact 2.6.47 and Theorem 2.7.68, we realize that every
infinite-dimensional real Hilbert space, endowed with a suitable product, becomes
an absolute-valued algebra containing a nonzero idempotent which commutes with
all elements in the algebra, a result also originally due to Urbanik [617]. Propos-
ition 2.7.40 is due to Diankha, Diouf, and Rochdi [210], who, applying a previous
classification of all absolute-valued finite-dimensional real algebras with a left
unit [508], also provide a classification up to algebra isomorphisms of the algebras
appearing in Corollary 2.7.41. Corollary 2.7.41 had been proved earlier by
Benslimane and Moutassim [94] using other methods.

Proposition 2.7.42, Corollary 2.7.43, and Remark 2.7.44 are originally due to
Rodrı́guez [799]. Corollary 2.7.43 and Remark 2.7.44 were previously announced
in [521, Remark 4(iii)]. The proofs of Proposition 2.7.42 and Corollary 2.7.43
given here are taken from [533]. In relation to Corollary 2.7.43 and Remark 2.7.44,
it is worth mentioning the result in [535] asserting that, if A is a real algebra
endowed with a linear algebra involution ∗ such that a∗a = aa∗ for every a ∈ A,
then there exists at most one absolute value on A. Absolute-valued real algebras
endowed with an isometric involution ∗ as above were introduced and studied by
Urbanik [617], and since then their theory has been fully developed by several
authors (see [76, 238, 241, 242, 288, 509]). By the way, the main result in [535]
asserts that, in Urbanik’s axioms, the requirement that the involution ∗ is isometric is
superabundant.

A real algebra A is said to be ordered if it is provided with a subset A+ of positive
elements which is closed with respect to multiplication by positive real numbers
and with respect to addition and multiplication in A, and satisfies A+ ∩ (−A+) = /0
and A+ ∪ (−A+) = A \ {0}. In [618], Urbanik shows that R is the unique absolute-
valued finite-dimensional ordered real algebra. Nevertheless, he also proves the
following.

Theorem 2.7.69 Complete absolute-valued infinite-dimensional ordered real alge-
bras do exist.

As pointed out in [533], a simplification of Urbanik’s argument, based on
Remark 2.7.44, is the following.

Proof Let {en : n∈N} be the canonical Hilbertian basis of the real Hilbert space �2,
and, according to Remark 2.7.44, convert �2 into an absolute-valued algebra (say A)
under the product determined by eie j = e2i3 j for all i, j ∈N. For x =∑iλiei ∈ A\{0},
set p(x) := min{i ∈ N : λi 	= 0}, and define

A+ :=

{
x =∑

i
λiei ∈ A\{0} : λp(x) > 0

}
.
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Keeping in mind that the mapping (i, j) → 2i3 j is increasing in each one of its
variables, it is easily seen that A+ fulfils the properties required above for the sets
of positive elements of ordered real algebras.

Problem 2.7.45 was first raised by Wright [640]. Propositions 2.7.46 and 2.7.47
could be new. Results from Lemma 2.7.48 to Corollary 2.7.52 are taken from [521].
Example 2.7.54 is new. Proposition 2.7.66 becomes the core of the proof of [68,
Proposition 3.8].

As a consequence of Corollary 2.7.29, complete absolute-valued one-sided div-
ision algebras are Hilbert spaces. On the other hand, by Corollary 2.7.31, complete
normed algebras which are ‘very near to being absolute-valued’ have superreflexive
Banach spaces. Results of the above kind show that, although the finite dimension
cannot always be expected in the conclusions of non-associative Gelfand–Naimark–
Kaplansky-type theorems for complete normed algebras (see for example Theor-
ems 2.7.38 and 2.7.68, and Proposition 2.7.65), the Banach spaces of such algebras
tend to be rather decent. Actually, imposing certain Banach space conditions of close-
ness to the finite-dimension, we can get the finite dimensionality in the conclusion
of some Gelfand–Naimark–Kaplansky-type theorems. One of these Banach space
conditions could be that of not being isomorphic to any of its proper subspaces. We
note that this condition on a Banach space X is equivalent to the one that bounded
linear operators on X which are bounded below become surjective. Therefore, if the
Banach space of a complete normed algebra A fulfils this condition, then all vertical
implications in the diagram in §2.7.53 are reversible. As a consequence, invoking
Corollary 2.6.24 and Theorem 2.7.7, we get Facts 2.7.70 and 2.7.71, respectively,
immediately below.

Fact 2.7.70 Complete absolute-valued algebras over K, whose Banach spaces are
not isomorphic to any of their proper subspaces, are in fact finite-dimensional.

Fact 2.7.71 If A is a complete normed complex algebra with no nonzero two-sided
topological divisor of zero, and if the Banach space of A is not isomorphic to any of
its proper subspaces, then dim(A) � 2.

Facts 2.7.70 and 2.7.71 above would have no interest if infinite-dimensional
Banach spaces which are not isomorphic to any of their proper subspaces did not
exist. Let us therefore review how these exotic Banach spaces were born.

A Banach space X is said to be hereditarily indecomposable if, for every
closed subspace Y of X , the unique complemented subspaces of Y are the finite-
dimensional and the closed finite-codimensional ones. According to the celebrated
paper of Gowers and Maurey [297], the existence of infinite-dimensional hereditarily
indecomposable separable reflexive Banach spaces over K is not in doubt. Moreover,
by [297, Corollary 19], if X is a hereditarily indecomposable Banach space, then X
is not isomorphic to any of its proper subspaces. Therefore, as pointed out in [68],
it is enough to apply Fact 2.7.70 to get that complete absolute-valued algebras
over K, whose Banach spaces are hereditarily indecomposable, are in fact finite-
dimensional. In the case K=C, more can be said. Indeed, as pointed out in [533], it
is enough to invoke Fact 2.7.71 to derive the following.
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Corollary 2.7.72 If A is a complete normed complex algebra with no nonzero
two-sided topological divisor of zero, and if the Banach space of A is hereditarily
indecomposable, then dim(A) � 2.

Fact 2.7.71 is better than Corollary 2.7.72. Indeed, there are Banach spaces which
are not isomorphic to any of their proper subspaces, but are not hereditarily indecom-
posable [33].

Let us say that a Banach space X over K satisfies the scalar-plus-compact property
if every bounded linear operator on X can be written as λ IX + T with λ ∈ K
and T compact. Recently, Argyros and Haydon [32] have constructed an infinite-
dimensional hereditarily indecomposable Banach space over K satisfying the scalar-
plus-compact property, thus solving the so-called scalar-plus-compact problem,
which remained open for many years. Let X be a Banach space. Strictly singular
operators on X are defined as those bounded linear operators on X whose restrictions
to any infinite-dimensional subspace of X are not bounded below. The set of all
strictly singular operators on X becomes an ideal of BL(X) [769, Proposition 2.c.5]
containing all compact operators. Thus, the scalar-plus-compact property is the
strongest form of the so-called scalar-plus-strictly-singular property, which means
that every bounded linear operator on X can be written as λ IX +T with λ ∈K and T
strictly singular. It is well known that, if X satisfies the scalar-plus-strictly-singular
property, then X is not isomorphic to any of its proper subspaces. Indeed, this follows
for example from [158, Corollary on p. 63 and Theorem on p. 66].

Now, we can prove the following.

Proposition 2.7.73 Let A be a complete normed algebra over K with no nonzero
two-sided topological divisor of zero, and assume that the Banach space of A satisfies
the scalar-plus-strictly-singular property. Then A is finite-dimensional.

Proof Suppose on the contrary that A is infinite-dimensional. Let Y stand for the
space of all strictly singular operators on A. Then, since A satisfies the scalar-plus-
strictly-singular property, we have BL(A) =KIA+Y . On the other hand, since strictly
singular operators on an infinite-dimensional Banach space cannot be bounded
below, Y consists of operators which are not bounded below. Therefore, since A
has no nonzero two-sided topological divisor of zero, it is enough to apply Propos-
ition 2.7.66 to get that dim(A) � 1, a contradiction.

The existence of infinite-dimensional Banach spaces fulfilling the scalar-plus-
strictly-singular property was known by Gowers and Maurey before the Argyros–
Haydon solution to the scalar-plus-compact problem. Indeed, it is proved in [297,
Theorem 18] that hereditarily indecomposable complex Banach spaces enjoy the
scalar-plus-strictly-singular property. As a consequence, Corollary 2.7.72 can be
derived from Proposition 2.7.73 above and Corollary 2.7.8.

Let us say that a Banach space X over K satisfies the Shelah–Steprans property
whenever X is not separable and, for every F ∈ BL(X), there exist

λ = λ (F) ∈K and S = S(F) ∈ BL(X)

such that S has separable range and the equality F = λ IX + S holds. In our present
discussion, Banach spaces enjoying the Shelah–Steprans property play a role
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similar to that of infinite-dimensional Banach spaces satisfying the scalar-plus-
strictly-singular property. Indeed, reflexive Banach spaces satisfying the Shelah–
Steprans property do exist [562, 631]. As a matter of fact, it is proved in [68] that
Banach spaces over K fulfilling the Shelah–Steprans property cannot underlie any
complete absolute-valued algebra. As pointed out in [533], the proof of the result of
[68] just reviewed can be slightly refined to get the following.

Proposition 2.7.74 Let X be a Banach space over K satisfying the Shelah–Steprans
property. Then X cannot underlie any complete normed algebra with no nonzero
two-sided topological divisor of zero.

Proof Note that the set Y of all bounded linear operators on X having separable
range is a subspace of BL(X), and that, since X satisfies the Shelah–Steprans prop-
erty, we have BL(X) =KIX +Y . On the other hand, since X is not separable, Y cannot
contain bounded below operators. Now, if X were the Banach space underlying a
complete normed algebra with no nonzero two-sided topological divisor of zero,
then, by Proposition 2.7.66, we would have dim(X) � 1, contradicting that X is not
separable.

In §1.4.54 we reported on the recent paper [49] stating the existence of infinite-
dimensional Banach spaces in which every injective bounded linear operator is sur-
jective. Here we note that, in the complex case, these spaces cannot underlie any
complete normed algebra with no nonzero two-sided divisor of zero. Indeed, as a
consequence of Theorem 2.7.7, we have the following.

Proposition 2.7.75 Let A be a complete normed complex algebra with no nonzero
two-sided divisor of zero and such that every injective bounded linear operator from
A to itself is surjective. Then dim(A) � 2.

For additional information about exotic Banach spaces, the reader is referred to
[31, 304, 398, 429, 679].

2.8 Complements on absolute-valued algebras and algebraicity

Introduction In this section, we complement previously reviewed facts related to
absolute-valued algebras, semi-H∗-algebras, and normed algebraic algebras. Thus,
we prove in Theorem 2.8.4 that algebra homomorphisms from complete normed
algebras to absolute-valued algebras are continuous. This applies to the study of
absolute values on left semi-H∗-algebras, allowing us to show in Proposition 2.8.13
that semi-H∗-algebras having an absolute value are finite-dimensional. As an
interlude, we introduce free non-associative algebras, show that they can be endowed
with different absolute values, and apply this to prove that every (complete)
normed algebra is the quotient of a suitable (complete) absolute-valued algebra
(Corollaries 2.8.20 and 2.8.25). Concerning algebraic algebras, we prove that
complete normed algebraic algebras are of bounded degree (Corollary 2.8.33),
and that absolute-valued algebraic algebras are finite-dimensional (Theorem 2.8.66).
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2.8.1 Continuity of algebra homomorphisms into
absolute-valued algebras

Let F be a bounded linear operator on a normed space X . We denote by k(F) the
largest non-negative number k satisfying k‖x‖� ‖F(x)‖ for every x in X . In this way
F is bounded below if and only if k(F)> 0.

Lemma 2.8.1 Let X be a Banach space over K. Then, for F,G in BL(X) we have

|k(F)− k(G)| � ‖F −G‖ .

Moreover, if F ∈ BL(X) is bounded below and non-bijective, then the open ball in
BL(X) with centre F and radius k(F) consists only of elements which are bounded
below and non-bijective.

Proof Let F,G be in BL(X). For all x in X we have

(k(F)−‖F −G‖)‖x‖ � ‖F(x)‖−‖(F −G)(x)‖ � ‖G(x)‖,

and hence k(F)−‖F −G‖ � k(G), which proves the first assertion in the lemma.
From this first assertion it follows that, if F is bounded below, and if B denotes
the open ball in BL(X) with centre F and radius k(F), then B consists only of
elements which are bounded below. Therefore, if in addition F is non-bijective, then,
by Lemma 2.7.18, all elements of B are non-bijective.

Lemma 2.8.2 Let X and Y be Banach spaces over K, let Φ : X → Y be a linear
mapping with dense range, let F be in BL(X), and let G : Y → Y be a non-surjective
linear isometry such that Φ◦F = G◦Φ. Then ‖F‖ � 1.

Proof Let 0 < r < 1. Then we have ‖G− (G− rIY )‖ = r < 1 = k(G), and hence,
by Lemma 2.8.1, the range of G − rIY is a proper closed subspace of Y . Since
Φ◦ (F − rIX ) = (G− rIY )◦Φ, and Φ has dense range, it follows that F − rIX cannot
be surjective, so F − rIX cannot belong to Inv(BL(X)), and so r � ‖F‖. Now the
proof is concluded by letting r → 1.

Lemma 2.8.3 Let X and Y be Banach spaces over K, let Φ : X →Y be a surjective
linear mapping, and let F and G be in BL(X) and BL(Y ), respectively, such that
Φ◦F = G◦Φ. Then r(G) � r(F).

Proof First assume that K = C. Then, by Theorem 1.1.46, there exists λ ∈
sp(BL(Y ),G) such that |λ |= r(G). Since λ belongs to the boundary of sp(BL(Y ),G)

relative to C, it follows from Corollary 1.1.95 that G−λ IY is not surjective. Since
Φ ◦ (F −λ IX ) = (G−λ IY ) ◦Φ, and Φ is surjective, it follows that F −λ IX cannot
be surjective, so λ belongs to sp(BL(X),F), and so r(G) = |λ | � r(F), as required.

Now assume that K= R. Consider the normed complexifications

XC := C⊗π X and YC := C⊗π Y

of X and Y , respectively, as well as the complex-linear operators

ΦC := IC⊗Φ : XC → YC, FC := IC⊗F : XC → XC,

and
GC := IC⊗G : YC → YC.
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Then XC and YC are complex Banach spaces, ΦC is surjective, FC and GC lie in
BL(XC) and BL(YC), respectively, and the equalities

ΦC ◦FC = GC ◦ΦC,r(FC) = r(F), and r(GC) = r(G)

hold. It follows from the first paragraph in the proof that r(G) � r(F).

Theorem 2.8.4 Let A be a complete normed algebra over K, let B be an absolute-
valued algebra over K, and let Φ : A → B be an algebra homomorphism. Then Φ is
continuous with ‖Φ‖ � 1.

Proof Regarding A and B as real algebras if necessary, we may assume that K=R.
Moreover, regarding Φ as a mapping from A to the completion of its range, we may
also assume that B is complete and that Φ has dense range.

First assume additionally that Φ is actually surjective. Then, since the equality

Φ◦La = LΦ(a) ◦Φ (2.8.1)

holds for every a ∈ A, Lemma 2.8.3 applies to obtain

r(LΦ(a)) � r(La) � ‖La‖ � ‖a‖.

The result in this first considered case now follows from the clear fact that the
equality r(Lb) = ‖b‖ holds for every element b in any absolute-valued algebra.

Now, consider the remaining case that Φ is not surjective. Then, since Φ has
dense range, B must be infinite-dimensional, and then the implication (iii)⇒(i) in
Corollary 2.6.24 shows that, if some left multiplication operator on B is surjective,
then all right multiplication operators on B are non-surjective. Therefore, replacing
A and B with their corresponding opposite algebras if necessary, we may assume
that all left multiplication operators on B are non-surjective. To conclude the proof,
it is enough to show that ‖a‖ � 1 whenever a is in A with ‖Φ(a)‖ = 1. But, for
such an a, LΦ(a) is a non-surjective linear isometry on B, and hence, by (2.8.1) and
Lemma 2.8.2, we have 1 � ‖La‖ � ‖a‖, as desired.

The actual relevance of the conclusion in the above theorem is the automatic
continuity of Φ. Indeed, the additional information that ‖Φ‖ � 1, although directly
given by the proof, would follow from Proposition 2.6.19.

As a straightforward consequence of Theorem 2.8.4, we get the following.

Corollary 2.8.5 Let A be a complete normed algebra over K. We have:

(i) If ||| · ||| is an absolute value on A, then ||| · ||| � ‖ · ‖ on A.
(ii) Characters on A are contractive, and hence continuous.

We note that part (ii) of the above corollary was already proved with more elem-
entary techniques (cf. Corollary 1.1.108).

2.8.2 Absolute values on H∗-algebras

In this subsection, we are going to discuss left semi-H∗-algebras having an absolute
value. We begin by considering the complex case.



252 Beginning the proof of the non-associative Vidav–Palmer theorem

Proposition 2.8.6 Let A be a complete normed complex algebra whose norm
derives from an inner product (·|·) such that there are a,a∗ ∈ A \ {0} satisfying
(ax|y) = (x|a∗y) for all x,y ∈ A. Assume that there exists an absolute value on A.
Then A is isomorphic to C.

Proof By Corollary 2.8.5(i), the topology of A is stronger than that of the absolute
value (say ||| · |||) whose existence has been assumed. Therefore, if aA were not ||| · |||-
dense in A, then aA would not be dense in A for the topology of the Hilbertian norm,
and hence, by the orthogonal projection theorem, there would exist y ∈ A\{0} such
that (ax|y) = 0 for every x ∈ A, and we would have (x|a∗y) = (ax|y) = 0 for every
x ∈ A, so a∗y = 0, and so (since A cannot have nonzero divisors of zero) a∗ = 0,
a contradiction. Therefore, aA is ||| · |||-dense in A, and the proof is concluded by
applying Proposition 2.7.16.

The next corollary follows straightforwardly from §1.1.3 and Proposition 2.8.6.
We recall that left semi-H∗-algebras were incidentally introduced immediately
before Lemma 2.7.50. Right semi-H∗-algebras and one-sided semi-H∗-algebras are
defined in an obvious way.

Corollary 2.8.7 Let A be a nonzero complex one-sided semi-H∗-algebra, and
assume that there exists an absolute value on A. Then A is isomorphic to C.

Proposition 2.8.8 Let A be a complete normed real algebra whose norm derives
from an inner product (·|·) such that there are a,a∗ ∈ A\{0} satisfying

(ax|y) = (x|a∗y) for all x,y ∈ A.

Assume that there exists an absolute value ||| · ||| on A. Then we have:

(i) A is a left-division algebra.
(ii) The absolute value ||| · ||| is continuous and derives from an inner product 〈·|·〉

satisfying 〈ax|y〉= 〈x|a∗y〉 for all x,y ∈ A.
(iii) |||a∗|||= |||a|||.
(iv) For every x ∈ A, the equalities a∗(ax) = |||a|||2x and ‖ax‖= |||a|||‖x‖ hold.

Proof As in the proof of Proposition 2.8.6, ||| · ||| is continuous for the topology of the
Hilbertian norm ‖·‖ on A, and aA is ||| · |||-dense in A. It follows from Corollary 2.7.29
that there exists a ‖ · ‖-continuous inner product 〈·|·〉 on A satisfying

〈x|x〉= |||x|||2 for every x ∈ A. (2.8.2)

Now, keeping in mind the well-known one-to-one correspondence between continu-
ous bilinear forms and bounded linear operators on a real Hilbert space, we get the
existence of a positive bounded linear operator T on A satisfying

〈x|y〉= (x|T (y)) for all x,y ∈ A. (2.8.3)

On the other hand, in view of the equality (2.8.2), the absolute value condition
|||ax|||2 = |||a|||2|||x|||2 can be linearized to obtain 〈ax|ay〉= |||a|||2〈x|y〉 for all x,y ∈ A.
Therefore, applying (2.8.3), we have

(y|a∗T (ax)) = (ay|T (ax)) = 〈ay|ax〉= |||a|||2〈y|x〉= |||a|||2(y|T (x))
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for all x,y ∈ A, and hence

a∗T (ax) = |||a|||2T (x) for every x ∈ A. (2.8.4)

This equality and its consequence

|||a∗||||||T (ax)|||= |||a|||2|||T (x)|||,

together with (2.8.2), give

|||a∗|||2|||T (ax)−aT (x)|||2

= |||a∗|||2(|||T (ax)|||2 + |||aT (x)|||2 −2〈aT (x)|T (ax)〉)
= |||a|||4|||T (x)|||2 + |||a∗|||2|||a|||2|||T (x)|||2 −2|||a∗|||2 〈T (x)|a∗T (ax)〉
= |||a|||2(|||a|||2 −|||a∗|||2)|||T (x)|||2,

which summarizes as

|||a∗|||2|||T (ax)−aT (x)|||2 = |||a|||2(|||a|||2 −|||a∗|||2)|||T (x)|||2 (2.8.5)

for every x∈A. If either a∗= a or a∗=−a, it follows from (2.8.5) that T (ax)= aT (x)
for every x ∈ A. Otherwise, the couples

(b,b∗) := (a+a∗,a+a∗) and (c,c∗) := (a−a∗,a∗ −a)

are in the same situation as that of (a,a∗) with b∗ = b and c∗ =−c, and hence, since
a = 1

2 (b+ c), we also have T (ax) = aT (x) for every x ∈ A. Now that we know that

T (ax) = aT (x) for every x ∈ A, (2.8.6)

it follows from (2.8.5) that

|||a∗|||= |||a|||. (2.8.7)

Now, invoking (2.8.3) and (2.8.6), for x,y ∈ A we have

〈ax|y〉= (ax|T (y)) = (x|a∗T (y)) = (x|T (a∗y)) = 〈x|a∗y〉.

From (2.8.4), (2.8.6), and (2.8.7), we obtain

a(a∗T (y)) = |||a|||2T (y) for every y ∈ A,

and, since the range of T is ‖ · ‖-dense in A (a consequence of (2.8.3) and the
orthogonal projection theorem), we actually have

a∗(ax) = |||a|||2x for every x ∈ A. (2.8.8)

This equality implies ostensibly that a∗A = A, and hence, by Corollary 2.7.34, that A
is a left-division algebra. Finally, invoking (2.8.8), we derive

‖ax‖2 = (ax|ax) = (x|a∗(ax)) = |||a|||2(x|x) = |||a|||2‖x‖2.

It follows from §1.1.3 and Proposition 2.8.8 that nonzero real left semi-H∗-
algebras having an absolute value are left-division algebras. Additional information
is given by Corollary 2.8.9 immediately below. By an absolute-valued left semi-
H∗-algebra we mean a nonzero left semi-H∗-algebra whose Hilbertian norm is an
absolute value.
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Corollary 2.8.9 Let A be a nonzero real left semi-H∗-algebra. Then A has an
absolute value (if and) only if there exists a dense range continuous injective algebra
∗-homomorphism from A to some real absolute-valued left semi-H∗-algebra.

Proof Assume that there exists an absolute value ||| · ||| on A. According to Prop-
osition 2.8.8, ||| · ||| is continuous and derives from an inner product 〈·|·〉 satisfying
〈ab|c〉 = 〈b|a∗c〉 for all a,b,c ∈ A, and moreover the involution ∗ of A is ||| · |||-
isometric. Therefore the completion of A relative to ||| · ||| becomes a real absolute-
valued left semi-H∗-algebra (say B). Finally, the mapping a → a from A to B is
indeed a dense range continuous injective algebra ∗-homomorphism.

Let A be an algebra over K. By a left centralizer on A we mean a linear mapping T :
A→A satisfying T (ab) = aT (b) for all a,b∈A. Clearly, the set of all left centralizers
on A (say Γ�(A)) is a subalgebra of L(A) containing IA and such that T−1 lies in
Γ�(A) whenever T is in Γ�(A)∩ Inv(L(A)). Keeping in mind that, for T ∈ Γ�(A),
both ker(T ) and T (A) are left ideals of A the following lemma follows.

Lemma 2.8.10 Let A be a nonzero algebra over K. If A has no nonzero proper left
ideal (for instance, if A is a right-division algebra), then Γ�(A) is a division algebra.

Corollary 2.8.11 Let A be a nonzero finite-dimensional real left semi-H∗-algebra,
and assume that there exists an absolute value ||| · ||| on A. Then the involution of A is
an isometry, the absolute value ||| · ||| is a positive multiple of the norm of A, and, for
all a,b ∈ A, we have a(a∗b) = |||a|||2b.

Proof It follows from (2.8.2), (2.8.3), and (2.8.6) in the proof of Proposition 2.8.8
that there is T ∈ Γ�(A) such that 〈a|b〉 = (a|T (b)) for all a,b ∈ A, where 〈·|·〉 is
an inner product on A satisfying 〈a|a〉 = |||a|||2 for every a ∈ A. As a consequence,
T is a self-adjoint operator on the finite-dimensional Hilbert space (A,(·|·)), and
hence the characteristic polynomial of T has only real roots. On the other hand,
since A is finite-dimensional and has an absolute value, A is a division algebra, and
hence, by Lemma 2.8.10, Γ�(A) is a division algebra. It follows that T ∈ RIA, and
hence that ||| · ||| on A is a positive multiple of ‖ · ‖. Now, by Proposition 2.8.8(iii),
∗ is ‖ · ‖-isometric. Finally, the equality a(a∗b) = |||a|||2b follows from Proposition
2.8.8(iv).

By a (two-sided) semi-H∗-algebra over K we mean an algebra A over K which is
also a Hilbert space, and is endowed with a conjugate-linear vector space involution
satisfying

(ab|c) = (b|a∗c) = (a|cb∗) for all a,b,c ∈ A.

Recall that H∗-algebras were already introduced in Remark 2.6.54. Indeed, they are
those semi-H∗-algebras whose involution is an algebra involution.

Lemma 2.8.12 Let A be a semi-H∗-algebra over K. We have:

(i) Up to the multiplication of the Hilbertian norm of A by a suitable positive
number, A becomes a complete normed algebra.

(ii) If the involution of A is isometric, then A is in fact an H∗-algebra.
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Proof In view of Proposition 1.1.9, to prove assertion (i) it is enough to show that
the product of A is separately continuous. Let a be in A, and let xn be a sequence in A
converging to zero and such that axn converges to some y ∈ A. Then, for every b ∈ A
we have

(y|b)←− (axn|b) = (xn|a∗b)−→ 0,

so (y|b) = 0, and so y = 0. It follows from the arbitrariness of a ∈ A and the closed
graph theorem that the product of A is continuous in its second variable. An ana-
logous argument shows that the product of A is continuous in its first variable, as
required.

Assume that the involution ∗ of A is isometric. Then, by assertion (i) just proved
and Lemma 2.7.50, ∗ is an algebra involution on A, i.e. A is an H∗-algebra. In the
application of Lemma 2.7.50, the reader must have noticed that, thanks to the right
semi-H∗-algebra condition (ab|c) = (a|cb∗), the product � in that lemma coincides
with the natural product of A.

It follows from assertion (i) in the above lemma that semi-H∗-algebras are both
left and right semi-H∗-algebras, a fact that will be applied in what follows without
notice.

As a consequence of Corollary 2.6.24 and Proposition 2.8.8(i), if A is a left semi-
H∗-algebra and a right semi-H∗-algebra (possibly for different inner products and
involutions), and if there exists an absolute value on A, then A is finite-dimensional.
A better result holds in the case that A is in fact a semi-H∗-algebra. Indeed, we have
the following.

Proposition 2.8.13 Let A be a real semi-H∗-algebra, and assume that there exists
an absolute value ||| · ||| on A. Then A is a finite-dimensional H∗-algebra, the involu-
tion of A is an isometry, the absolute value ||| · ||| is a positive multiple of the norm
of A, and, for all a,b ∈ A, we have

a(a∗b) = (ba∗)a = |||a|||2b. (2.8.9)

Proof The finite dimensionality of A follows from the above comments, and then,
in view of Corollary 2.8.11 and the symmetry of our present assumptions, it only
remains to show that A is in fact an H∗-algebra. But this follows from the fact that
the involution of A is isometric and from Lemma 2.8.12(ii).

The following example shows that, when in the above proposition we replace
‘semi-H∗-algebra’ with ‘one-sided semi-H∗-algebra’, the absolute value ||| · ||| need
not be a positive multiple of the natural norm, nor even an equivalent norm.

Example 2.8.14 Let H be the real pre-Hilbert space whose vector space is the space
of all quasi-null sequences of real numbers and whose inner product is defined by

〈(λn)|(μn)〉 := ∑
n∈N

λnμn.

By the proof of Theorem 2.7.38, there exists a unital ∗-representation φ of the
quadratic commutative algebra of H on H. Now, let G denote the real pre-Hilbert
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space whose vector space is the space of all quasi-null sequences of elements of H
and whose inner product is given by

〈(an)|(bn)〉 := ∑
n∈N

〈an|bn〉

for all (an),(bn)∈ G. Then we can define a unital ∗-representation ψ of the quadratic
commutative algebra of H on G by means of the equality

ψ(a)((bn)) := (φ(a)(bn))

for all a ∈ H and (bn) ∈ G. Since the pre-Hilbert spaces H and G are isomorphic,
we can choose a surjective linear isometry u : G → H, and then the mapping
θ : a → uψ(a)u−1 becomes a unital ∗-representation of the quadratic commutative
algebra of H (whose unit will be denoted by 1) on H. According to Proposi-
tions 2.7.33 and 2.7.37, denoting by ||| · ||| the norm of H and by � the product on H
given by a�b := θ (a)(b), we have

|||a�b|||= |||a||||||b||| and 〈a�b |c〉= 〈b |a∗ � c〉

for all a,b,c∈H, where a∗ := 2〈a|1〉−a. Moreover, if for n∈N we denote by Hn the
image by u of the nth copy of H in G, then Hn becomes a left ideal of (H,�), so that,
if πn stands for the natural (orthogonal) projection from H onto Hn, then we have

πn(a�b) = a�πn(b)

for all a,b ∈ H. Now define a norm ‖ · ‖ on H by

‖a‖2 := ∑
n∈N

n|||πn(a)|||2,

which clearly derives from an inner product (·|·) satisfying

(a�b |c) = (b |a∗ � c)

for all a,b,c ∈ H. Then, for a,b ∈ H, we have

‖a�b‖= ∑
n∈N

n|||πn(a�b)|||2 = ∑
n∈N

n|||a�πn(b)|||2

= ∑
n∈N

n|||a|||2|||πn(b)|||2 = |||a|||2‖b‖2 � ‖a‖2‖b‖2,

and hence (H,�,‖ · ‖) is a normed algebra. In order to extend the vector space
involution ∗ to the completion of this normed algebra, we will prove that ∗ is ‖ · ‖-
continuous. In fact, for a ∈ H, we have

‖a∗‖2 = ∑
n∈N

n|||πn(a
∗)|||2 = ∑

n∈N
n|||2〈a|1〉πn(1)−πn(a)|||2

= ‖a‖2 +4〈a|1〉∑
n∈N

n(〈a|1〉|||πn(1)|||2 −〈πn(1)|πn(a)〉).

Since there exists p ∈ N such that πn(1) = 0 for every n � p, the mapping

a → 〈a|1〉∑
n∈N

n(〈a|1〉|||πn(1)|||2 −〈πn(1)|πn(a)〉)

= 〈a|1〉
p

∑
n=1

n(〈a|1〉|||πn(1)|||2 −〈πn(1)|πn(a)〉)
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is a ||| · |||-continuous quadratic form on H. Therefore, since ||| · ||| � ‖ · ‖ on H, it
follows that there exists a positive number M such that ‖a∗‖ � M‖a‖ for every
a∈H. Now we know that ∗ is ‖ · ‖-continuous, clearly the completion (say A) of
the normed algebra (H,�,‖ · ‖), with the unique continuous extension of ∗, is a
left semi-H∗-algebra. Moreover, the unique continuous extension to A of ||| · ||| is an
absolute value on A whose associated topology is strictly weaker than that of the
norm ‖ · ‖. Indeed, the unique component of the last assertion which could be non-
obvious is that, whenever a is in A with |||a|||= 0, we have a = 0. To realize this, let K
stand for the completion of (H, ||| · |||), and regard H (via the isometry u) as the space
of all quasi-null sequences of elements of H. Then the completion of (H,‖ · ‖) is the
space of those sequences (kn) of elements of K such that ∑∞

n=1 n|||kn|||<+∞, and the
extension by continuity of ||| · ||| to (H,‖ · ‖) is given by |||(kn)|||= ∑∞

n=1 |||kn|||.

A simplification of the argument in the above example allows us to build a (neces-
sarily infinite-dimensional, in view of Corollary 2.8.11) real left semi-H∗-algebra A
having an absolute value which is equivalent to the natural norm but is not a positive
multiple of it. Indeed, it is enough to take the pre-Hilbert space G in the argument
equal to the �2-sum H⊕H instead of G =⊕∞

n=1Hn (with Hn a copy of H for every n),
as we did there.

2.8.3 Free non-associative algebras are absolute-valued algebras

We begin this subsection with the following generalization of Remark 2.7.44. The
proof is straightforward.

Lemma 2.8.15 Let U be a non-empty infinite set, let ϑ : U ×U → U be any
mapping, let X = X (U,K) stand for the free vector space over K generated by
U, and let A = A (U,ϑ ,K) stand for the algebra over K whose vector space is X ,
and whose product is defined as the unique bilinear mapping from X ×X to X

which extends ϑ . If ϑ is injective, if 1 � p < ∞, and if for x = ∑u∈U λuu ∈ A we set

‖x‖p :=

(
∑

u∈U
|λu|p

)1
p

,

then ‖ · ‖p is an absolute value on A .

Let U , ϑ , and A be as in the above lemma, assume that ϑ is injective, and let
1 � p < ∞. We denote by Ap = Ap(U,ϑ ,K) the absolute-valued algebra over K
obtained by endowing A with the norm ‖ ·‖p. By considering the completion of Ap,
we obtain a complete absolute-valued algebra over K whose Banach space is nothing
other than the familiar space �p(U,K).

§2.8.16 Given a topological space E, we denote by dens(E) the density character
of E, namely the smallest cardinal among those of dense subsets of E, and recall that,
in the case that E is an infinite-dimensional normed space, dens(E) coincides with
the smallest cardinal among those of subsets of E whose linear hull is dense in E.
Thus, if U , ϑ , and A are as in Lemma 2.8.15, if ϑ is injective, and if 1 � p<∞, then
we easily realize that dens(Ap(U,ϑ ,K)) equals the cardinal of U . For, if D is any
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dense subset of Ap(U,ϑ ,K), and if for u ∈U we choose du ∈ D with ‖u−du‖p <
1
2 ,

then the mapping u → du from U to D becomes injective.

§2.8.17 Let X be a non-empty set. Non-associative words with characters in X
are defined inductively, according to their (global) degree, as follows. The non-
associative words of degree 1 are just the elements of X. If n � 2, and if we know all
the non-associative words of degree < n, then the non-associative words of degree
n are defined as those of the form (w1)(w2), where w1 and w2 are non-associative
words with deg(w1)+deg(w2) = n. Although the use of brackets is essential in the
above definition, some natural simplifications in the writing are usually accepted.
For example, brackets covering a word of degree 1 are omitted, and words of the
form (w)(w), for some other word w, are written as (w)2. Two non-associative
words are taken to be equal only if they are written exactly the same. Thus for
example, for x,y,z ∈ X, the non-associative words (xy)z and x(yz) are different.
The set M (X) (of all non-associative words with characters in X), endowed with
the mapping (w1,w2)→ (w1)(w2) from M (X)×M (X) to M (X), is called the free
(non-associative) monad generated by X. We recall that monads are defined as sets E
endowed with a mapping (x,y)→ xy from E ×E to E, which is called the product of
the monad. The free monad M (X) constructed above enjoys the following ‘universal
property’: If E is any monad, and if ϕ : X → E is any mapping, then ϕ extends
uniquely to a mapping from M (X) to E preserving products (see for example [754,
p. 24]).

The free vector space over K generated by M (X), with product equal to the
extension by bilinearity of the product of M (X), is called the free non-associative
algebra over K generated by X, and is denoted by F (X,K). The algebra F (X,K)

is characterized up to algebra isomorphisms by the following ‘universal property’:
If A is any algebra over K, and if ϕ : X → A is any mapping, then ϕ extends
uniquely to an algebra homomorphism from F (X,K) to A (see for example [822,
Theorem 1.1.1]). By the universal property of M (X), there exists a unique mapping
∗ : M (X)→ M (X) fixing the elements of X and satisfying (m1m2)

∗ = m∗
2m∗

1 for all
m1,m2 ∈ M (X), and moreover this mapping becomes involutive. Then, extending ∗
to F (X,K) by conjugate linearity, we are provided with a conjugate-linear algebra
involution on F (X,K), which will be called the standard involution.

§2.8.18 Now note that F (X,K) coincides with the algebra A (U,ϑ ,K), for U :=
M (X) and ϑ equal to the product of M (X). Since the mapping ϑ above is injective
[822, Proposition 1.1.2], we invoke Lemma 2.8.15 to realize that there are ‘many’
absolute-values on F (X,K). For 1 � p < ∞, we denote by Fp(X,K) the absolute-
valued algebra over K obtained by endowing F (X,K) (= A (U,ϑ ,K) for U and
ϑ as above) with the absolute value ‖ · ‖p , and note that the standard involution
of F (X,K) becomes an isometry on Fp(X,K). As we will see in the proof of
Proposition 2.8.19 immediately below, the absolute-valued algebra F1(X,K) has
a special relevance in the general theory of normed algebras.

Proposition 2.8.19 Let X be a non-empty set. Then, up to isometric algebra iso-
morphisms, there exists a unique normed algebra N = N (X,K) over K satisfying
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the following properties:

(i) X is a subset of the closed unit ball of N .

(ii) If A is any normed algebra over K, and if ϕ is any mapping from X into
the closed unit ball of A, then ϕ extends uniquely to a contractive algebra
homomorphism from N to A.

Moreover, we have:

(iii) The normed algebra N is in fact an absolute-valued algebra, and has an
isometric conjugate-linear algebra involution.

(iv) The set X consists only of norm-one elements of N .

(v) If X is finite, then N is separable. Otherwise dens(N ) equals the cardinal
of X.

Proof Take N = F1(X,K). Then, according to §2.8.18, N satisfies Properties
(i), (iii), and (iv) in the statement. On the other hand, since M (X) is ‘countably
generated’ by X (cf. §2.8.17), the cardinal of M (X) is that of N if X is finite, or equal
to the cardinal of X otherwise, so that property (v) follows from §§2.8.16 and 2.8.18.
Let A be a normed algebra over K, and let ϕ be a mapping from X into the closed unit
ball of A. Since, forgetting the norm, N is nothing other than F (X,K), the univer-
sal property of this last algebra provided us with a unique algebra homomorphism
ψ : F1(X,K) → A which extends ϕ . Let x be in N . We have x = ∑w∈M (X) xww,
where {xw}w∈M (X) stands for the family of coordinates of x relative to M (X).
Therefore

‖ψ(x)‖=
∥∥∥∥∥ ∑

w∈M (X)

xwψ(w)

∥∥∥∥∥� ∑
w∈M (X)

|xw|‖ψ(w)‖ � ∑
w∈M (X)

|xw|= ‖x‖.

(Starting from the fact that ψ(X) is contained in the closed unit ball of A, the inequal-
ity ‖ψ(w)‖ � 1 just applied is proved by induction on the degree of w ∈ M (X).)
Now that we know that N also satisfies property (ii), let us conclude the proof
by showing that N is the ‘unique’ normed algebra over K satisfying (i) and (ii).
Let N ′ be a normed algebra over K satisfying (i) and (ii) with N ′ instead of N .
Then we are provided with contractive algebra homomorphisms φ : N → N ′ and
φ ′ : N ′→N fixing the elements of X. Therefore φ ′ ◦φ and φ ◦φ ′ are contractive
algebra endomorphisms of N and N ′, respectively, extending the corresponding
inclusions X → N and X → N ′. By the uniqueness of such extensions, we must
have φ ′ ◦φ= IN and φ ◦φ ′ = IN ′ . It follows that φ is an isometric algebra isomorph-
ism from N onto N ′ respecting the corresponding inclusions of X in each of the
algebras.

The absolute-valued algebra N (X,K) in Proposition 2.8.19 has its own right to
be called the free normed non-associative algebra over K generated by the set X.

Now, if A is a normed algebra over K, if X denotes the closed unit ball of A,
and if Φ : N (X,K) → A is the unique contractive algebra homomorphism which
is the identity on X, then we easily realize that the induced algebra homomorphism
N (X,K)/ker(Φ)→ A is a surjective isometry. Therefore, we have the following.



260 Beginning the proof of the non-associative Vidav–Palmer theorem

Corollary 2.8.20 Every normed algebra over K is isometrically algebra-
isomorphic to a quotient of an absolute-valued algebra over K having an isometric
conjugate-linear algebra involution.

The proof of the next corollary involves the clear fact that continuous mappings
between topological spaces decrease the density character, as well as the well-known
fact that, if E is a metrizable topological space, and if F is a subset of E, then
dens(F) � dens(E).

Corollary 2.8.21 Let A be a normed algebra over K, let S be a non-empty subset
of A, and let B stand for the closed subalgebra of A generated by S. If S is finite, then
B is separable. Otherwise we have dens(B) = dens(S).

Proof We may assume that S 	= {0}. Then, considering the set

T :=

{
s
‖s‖ : s ∈ S\{0}

}
,

and noticing that S and T generate the same closed subalgebra of A, that T is finite
whenever so is S, and that dens(T ) � dens(S), it is enough to replace S with T
to realize that we may also assume that S is contained in BA. Now, take a dense
subset X of S whose cardinal equals dens(S), and invoke Proposition 2.8.19 to find a
continuous algebra homomorphism Φ : N (X,K)→ A fixing the elements of X and
such that φ(N (X,K)) is separable if S is finite and dens(φ(N (X,K))) � dens(S)
otherwise. Since φ(N (X,K)) is a closed subalgebra of A containing S, it contains
B, so the result follows straightforwardly.

Now we are going to do a first application of Corollary 2.8.21 in Theorem 2.8.23
below. To this end, we also need the following.

Lemma 2.8.22 Let E be a compact Hausdorff topological space such that there
exists a continuous surjective mapping from E to its square. Then the Banach space
CK(E) becomes an absolute-valued algebra over K for a suitable product.

Proof Let f be a continuous surjective mapping from E to its square, let
π1,π2 : E ×E → E be the coordinate functions, and define a product � on CK(E) by

(x� y)(t) := x[π1( f (t))]y[π2( f (t))] for all x,y ∈CK(E) and t ∈ E.

Let x,y be in CK(E). Taking t1, t2 ∈ E such that ‖x‖ = |x(t1)| and ‖y‖ = |y(t2)|, and
choosing t3 ∈ E such that f (t3) = (t1, t2), we have

‖x� y‖ � |(x� y)(t3)|= |x(t1)y(t2)|= ‖x‖‖y‖.

Since the converse inequality ‖x� y‖ � ‖x‖‖y‖ is clear, (CK(E),�) is indeed an
absolute-valued algebra over K.

Theorem 2.8.23 Let X be a nonzero Banach space over K. Then there exists a
complete absolute-valued algebra A over K satisfying the following properties:

(i) X is linearly isometric to a subspace of A.
(ii) dens(A) = dens(X).

(iii) A is linearly isometric to CK(K) for some compact Hausdorff topological
space K.
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Proof Let F denote the compact Hausdorff topological space consisting of the
closed unit ball of X ′ and the weak∗ topology. Then X can be seen as a subspace
of CK(F). Let ∗ denote the natural involution of CK(K) (which, in the case K=R is
the identity mapping), and let Y stand for the closed subalgebra of CK(F) generated
by X ∪X∗ ∪{1}. Then, by Corollary 2.8.21, we have

dens(Y ) = dens(X ∪X∗ ∪{1}) = dens(X)

and, by Theorem 1.2.23 and §1.2.9, we have Y =CK(E) for some compact Hausdorff
topological space E. Set A := CK(EN). Since there are continuous surjections from
EN to E (namely the coordinate projections), Y is linearly isometric to a subspace of
A (cf. §1.2.27). It follows that X is linearly isometric to a subspace of A. Moreover,
since EN is homeomorphic to its square, Lemma 2.8.22 applies, so that A is an
absolute-valued algebra over K for some product and involution. Therefore, to con-
clude the proof it is enough to show that dens(A) = dens(Y ). To this end, for n ∈ N
denote by πn the n-coordinate projection from EN onto E, let D be a dense subset
of Y whose cardinal equals dens(Y ), and consider now A with its natural structure of
a unital commutative and associative normed algebra with algebra involution. Then,
by Theorem 1.2.10, the unital ∗-subalgebra of A generated by the set

S := { f ◦πn : ( f ,n) ∈ D ×N}

is dense in A. Since the cardinal of S equals the one of D , the desired equality
dens(A) = dens(Y ) follows.

The complete case of Proposition 2.8.19 is also true giving rise to the free com-
plete normed non-associative algebra over K generated by the set X, denoted by
CN (X,K). Indeed, we have the following.

Proposition 2.8.24 Let X be a non-empty set. Then, up to isometric algebra iso-
morphisms, there exists a unique complete normed algebra CN =CN (X,K) over K
satisfying the following properties:

(i) X is a subset of the closed unit ball of CN .
(ii) If A is any complete normed algebra over K, and if ϕ is any mapping from X

into the closed unit ball of A, then ϕ extends uniquely to a contractive algebra
homomorphism from CN to A.

Moreover, we have:

(iii) The complete normed algebra CN is in fact an absolute-valued algebra, and
has an isometric conjugate-linear algebra involution.

(iv) The set X consists only of norm-one elements of CN .
(v) If X is finite, then CN is separable. Otherwise dens(CN ) equals the cardinal

of X.

Proof Take CN equal to the completion of N := N (X,K), note that each con-
tractive algebra homomorphism from N to a complete normed algebra A over K
extends uniquely to a contractive algebra homomorphism from CN to A, and apply
Proposition 2.8.19.
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Corollary 2.8.25 Let A be a nonzero complete normed algebra over K. Then
there exists a complete absolute-valued algebra A over K having an isometric
conjugate-linear algebra involution, satisfying dens(A ) = dens(A), and such that
A is isometrically algebra-isomorphic to a quotient of A .

Proof Choose a dense subset X of the closed unit ball BA of A whose cardinal
equals dens(A). By properties (i), (ii), and (iii) in Proposition 2.8.24, A :=
CN (X,K) is a complete absolute-valued algebra over K having an isometric
conjugate-linear algebra involution, the closed unit ball BA of A contains X, and
there exists a contractive algebra homomorphism Φ : A → A fixing the elements
of X. Moreover, since X is infinite, property (v) in Proposition 2.8.24 assures that
dens(A ) = dens(A). On the other hand, since X is dense in BA, we realize that
the closure of Φ(BA ) in A contains BA. Now, from the main tool in the proof of
Banach’s open mapping theorem (see for example [689, Lemma 48.3]) we deduce
that Φ(BA ) contains the open unit ball of A. Since Φ : A →A is a contractive algebra
homomorphism, it follows from the above that the induced algebra homomorphism
A /ker(Φ)→ A is a surjective isometry.

2.8.4 Complete normed algebraic algebras are of bounded degree

§2.8.26 Let X be a finite set (say X = {x1, . . . ,xn}). As usual, given elements
a1, . . . ,an in an algebra A over K, and a non-associative polynomial p ∈ F (X,K),
we denote by p(a1, . . . ,an) the image of p under the unique algebra homomorphism
Φ : F (X,K) → A satisfying Φ(xi) = ai for every i = 1, . . . ,n. We note that, if
a1, . . . ,an are elements in an algebra A over K, then the set

{p(a1, . . . ,an) : p ∈ F (X,K)}

equals the subalgebra of A generated by {a1, . . . ,an}. We also note that, if A is a
normed algebra over K, and if p is a non-associative polynomial, then the mapping
(a1, . . . ,an)→ p(a1, . . . ,an) from A×·· ·×A to A is continuous. This can be verified
by writing p as a linear combination of elements in M (X), and then arguing by
induction on the degree of such elements.

In what follows, M (respectively, F ) will stand for the free monad (respectively,
the free non-associative algebra over K) generated by a singleton. According to
§1.1.24, given an element a of an algebra A, we denote by A(a) the subalgebra of
A generated by a.

Lemma 2.8.27 Let A be a normed algebra over K, and let n be a natural number.
Then the set An := {a ∈ A : dim(A(a)) � n} is closed in A.

Proof Let a be in the closure of An in A, so that there exists a sequence ak in An

converging to a. Let x1, . . . ,xn+1 be in A(a). Then we can find non-associative poly-
nomials p1, . . . ,pn+1 ∈ F satisfying pi(a) = xi for every i = 1, . . . ,n+ 1. On the
other hand, by the definition of An, for each k ∈N the system {p1(ak), . . . ,pn+1(ak)}
is linearly dependent, and hence there are numbers μk

1 , . . . ,μ
k
n+1 ∈K satisfying

n+1

∑
i=1

|μk
i |= 1 and

n+1

∑
i=1

μk
i pi(ak) = 0.
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It follows from the continuity of the functions pi(·) and the compactness of the unit
sphere of the normed space �n+1

1 (of all (n+1)-uples with entries in K endowed with
the sum norm) that there exist numbers μ1, . . . ,μn+1 ∈K satisfying

n+1

∑
i=1

|μi|= 1 and
n+1

∑
i=1

μixi =
n+1

∑
i=1

μipi(a) = 0,

and hence that the system {x1, . . . ,xn+1} is linearly dependent. In view of the arbi-
trariness of x1, . . . ,xn+1 ∈ A(a), this shows that a lies in An.

Lemma 2.8.27 above must be kept in mind in the proof of the following.

Corollary 2.8.28 Let A be a normed algebraic algebra of bounded degree. Then
we have:

(i) The set {a ∈ A : dim(A(a)) = deg(A)} is open in A.
(ii) The completion of A is algebraic of bounded degree equal to that of A.

Proof We have

{a ∈ A : dim(A(a)) = deg(A)}= A\{a ∈ A : dim(A(a)) � deg(A)−1},

which proves the first conclusion. On the other hand, denoting by Â the completion
of A, we have

A ⊆ {x ∈ Â : dim(Â(x)) � deg(A)},

which proves the second conclusion.

§2.8.29 Let X be a vector space over K. By a polynomial function from K to X
we mean a mapping of the form μ → x0 + μx1 + · · ·+ μnxn, for some non-negative
integer n and some fixed elements x0,x1, . . . ,xn ∈ X .

Lemma 2.8.30 Let X be a vector space over K, and let P1, . . . ,Pm be polynomial
functions from K to X. Then the set

D := {μ ∈K : {P1(μ), . . . ,Pm(μ)} is linearly dependent}

is either finite or equal to the whole K.

Proof First observe that X can be assumed to be finite-dimensional. Therefore,
if there is some element μ0 ∈ K\D, then we can choose a basis in X whose first
m elements are P1(μ0), . . . ,Pm(μ0). For x ∈ X and 1 � i � m, let fi(x) denote the
ith coordinate of x relative to this basis. Then, for x1, . . . ,xm ∈ X with {x1, . . . ,xm}
linearly dependent, we have det( fi(x j))1�i, j�m = 0, so D is contained in the set of
zeros of the nonzero polynomial

μ → det( fi(Pj(μ)))1�i, j�m,

and so D is finite.

For the proof of the next lemma it is convenient to note that, if A is an algebra
over K, if a,b are elements of A, and if p is in F , then the mapping μ → p(a+μb)
from K to A is polynomial. A formal verification of this fact can be done by reducing
to the case that p lies in M , and then by applying induction on the degree of p.
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Lemma 2.8.31 Let A be a normed algebra over K, and assume that there exists a
natural number n such that An := {a ∈ A : dim(A(a)) � n} has non-empty interior
in A. Then An = A.

Proof Let b be an interior point of An, and let a be an arbitrary element in A. Then
there exists a positive number r such that b+μ(a−b) lies in An whenever μ is in K
with |μ |< r. Let x1, . . . ,xn+1 be in A(a). Then there are non-associative polynomials
p1, . . . ,pn+1 ∈ F such that pi(a) = xi for all i = 1, . . . ,n+ 1. If for i = 1, . . . ,n+ 1
we consider the polynomial mapping

Pi : μ → pi(b+μ(a−b)),

then Pi(μ) lies in A(b+ μ(a− b)), and hence, since b+ μ(a− b) belongs to An for
|μ |< r, we see that {P1(μ), . . . ,Pn+1(μ)} is linearly dependent for such values of μ .
It follows from Lemma 2.8.30 that

{x1, . . . ,xn+1}= {P1(1), . . . ,Pn+1(1)}

is also linearly dependent. Since x1, . . . ,xn+1 are arbitrary elements of A(a), we
conclude that a lies in An.

Theorem 2.8.32 Let A be a complete normed algebra over K such that there
exists a non-empty open set Ω ⊆ A consisting only of algebraic elements. Then A
is algebraic of bounded degree.

Proof For n ∈ N, set Ωn := {a ∈Ω : dim(A(a)) � n}. Then we have Ω= ∪n∈NΩn.
Since Ωn is relatively closed in Ω for every n (by Lemma 2.8.27), and Ω is of the
second category in itself, there exists n in N such that Ωn has non-empty interior in
Ω (and hence in A). The proof is concluded by applying Lemma 2.8.31.

Although obvious, we emphasize the following.

Corollary 2.8.33 Complete normed algebraic algebras over K are of bounded
degree.

Completeness cannot be altogether removed in Theorem 2.8.32, nor even in Corol-
lary 2.8.33. Indeed, the normed associative algebra of all finite rank bounded linear
operators on an infinite-dimensional Banach space is algebraic, but is not of bounded
degree.

By combining Corollaries 2.8.28(ii) and 2.8.33, we get the following.

Corollary 2.8.34 Let A be a complete normed algebra over K, and let B be a dense
subalgebra of A. Then A is algebraic if and only if B is algebraic of bounded degree.
Moreover, if this is the case, then A is of bounded degree equal to the one of B.

Now, note that, as a consequence of Theorem 2.6.51, nonzero algebraic real alge-
bras with no nonzero divisor of zero are of bounded degree equal to 1, 2, 4, or 8.
Therefore, Lemma 2.8.27 implies the following.

Corollary 2.8.35 Let A be a nonzero normed real algebra containing a dense
algebraic subalgebra with no nonzero divisor of zero in itself. Then A is algebraic of
bounded degree equal to 1, 2, 4 or 8.
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In particular, the completion of a nonzero normed algebraic real algebra with no
nonzero divisor of zero is algebraic of bounded degree equal to 1, 2, 4 or 8.

§2.8.36 Let A be an algebra, and let S be a subset of A. We say that S is nilpotent if
there exists a natural number n such that, for every m � n, any product of m elements
of S, no matter how associated, is zero. If S is nilpotent, then the smallest such n
is called the index of nilpotency of S. It is easy to realize that, if the subset S is
multiplicatively closed (for example, if S = A), and if any product of n elements
of S, no matter how associated, is zero, then, for every m � n, any product of m
elements of S, no matter how associated, is also zero. By identifying elements of A
with singletons, the above notions apply to elements. Thus, formalizing somewhat,
an element a ∈ A is nilpotent of index n � 2 if p(a) = 0 for every p ∈ M with
deg(p)� n, and there exists q∈M with q(a) 	= 0 and deg(q)= n−1. Note that 0∈A
is the unique nilpotent element of index 1. As the next example shows, elements a∈A
satisfying p(a) = 0 for every p ∈ M with deg(p) equal to a given natural number
need not be nilpotent.

Example 2.8.37 Let A be the two-dimensional algebra over K with basis {u,v},
and multiplication table given by u2 = v2 = v and uv = vu = 0. Then we have
uu2 = u2u = 0, and hence p(u) = 0 for every p ∈ M with deg(p) = 3. However,
u is not nilpotent because 0 	= v = u2 = (u2)2 = ((u2)2)2 = · · · .

Let A be an algebra over K. We say that A is a nil algebra if all elements of A are
nilpotent. If in fact there is n ∈ N such that every element of A is nilpotent of index
�n, then we say that A is a nil algebra of bounded index, and the minimum such n
is called the (bounded) index of A.

Fact 2.8.38 Let A be an algebra over K. Then nilpotent elements of A are algebraic.
More precisely, if a ∈ A is a nilpotent element of index n, then dim(A(a)) � (n−1)!.

Proof The key simple idea is that, given m ∈ N, the set

Mm := {p ∈ M : deg(p) � m}

is finite. We denote by cm the cardinal number of Mm. Now, if a ∈ A \ {0}
is a nilpotent element of index n, then A(a) equals the linear hull of the set
{p(a) : p ∈Mn−1}, so A(a) is finite-dimensional with dim(A(a))� cn−1. Therefore,
to conclude the proof it is enough to show that the estimate cm � m! holds
for every m ∈ N. To this end, let dm denote the cardinal number of the set
{p ∈ M : deg(p) = m}. We claim that dm � (m− 1)!. The claim is clearly true for
m = 1, so we assume inductively that m � 2, and that the claim is true when m is re-
placed with any natural number strictly less than m, and then we prove that the claim
is true for the given m. Keeping in mind the definition of non-associative words of de-
gree m, the induction hypothesis, and the obvious inequality i! j! � (i+ j)!, we have

dm �
m−1

∑
i=1

didm−i �
m−1

∑
i=1

(i−1)!(m− i−1)!

�
m−1

∑
i=1

(m−2)! = (m−2)!(m−1) = (m−1)!,
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as desired. Now that the claim has been proved, for every m ∈ N, we have

cm =
m

∑
i=1

di �
m

∑
i=1

(i−1)! � (m−1)!m = m!,

which concludes the proof.

A reasonable converse of Fact 2.8.38 above becomes a little more difficult. We
recall that the annihilator Ann(A) of an algebra A was introduced in Definition 1.1.10,
and note that Ann(A) is an ideal of A.

Lemma 2.8.39 Let A be an algebra over K, and let a be a nilpotent element in A
of index n. Then n � 2dim(A(a)).

Proof We may assume that A is generated by a. Then we argue by induction on n.
The lemma is clearly true for n = 1,2. Assume inductively that n > 2, and that,
for every algebra B generated by a nilpotent element b of index m < n, we have
m � 2dim(B). Set B := A/Ann(A), let π : A → B be the natural quotient algebra
homomorphism, and write b := π(a). Since A is generated by a we get that

B is generated by b. (2.8.10)

On the other hand, since a is nilpotent of index n, we have that

p(a) = 0 for every p ∈ M with deg(p) � n, (2.8.11)

and

there exists q ∈ M with q(a) 	= 0 and deg(q) = n−1. (2.8.12)

From (2.8.11) we deduce that

p(b) = 0 for every p ∈ M with deg(p) � n. (2.8.13)

Let r and s be in M with deg(s) = n− 1. Then rs and sr are elements of M with
deg(rs) = deg(sr) � n, so that, again by (2.8.11), we have

r(a)s(a) = s(a)r(a) = 0.

Since A equals the linear hull of the set {r(a) : r ∈ M }, we get

xs(a) = s(a)x = 0

for every x ∈ A, so s(a) lies in Ann(A), and so

s(b) = 0 for every s ∈ M with deg(s) = n−1. (2.8.14)

By taking s equal to the non-associative word q given by (2.8.12), we have
0 	= q(a) ∈ Ann(A), and hence

dim(B) � dim(A)−1. (2.8.15)

In fact, it follows from (2.8.13) and (2.8.14) that b is nilpotent of index m < n.
Invoking (2.8.10) and the induction hypothesis, we obtain

m � 2dim(B). (2.8.16)
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Now note that, since n > 2, the monomial q given by (2.8.12) has degree n−1 > 1,
and hence it is the product of two elements of M , one of which (say t) must be of
degree � n−1

2 . Since q(a) 	= 0, it follows that t(a) /∈ Ann(A), and hence that t(b) 	= 0.
Since deg(t) � n−1

2 , we derive that

m � n+1
2

. (2.8.17)

Finally, by applying (2.8.17), (2.8.16), and (2.8.15), we obtain

n � n+1 � 2m � 2dim(B)+1 � 2dim(A).

By combining Fact 2.8.38 and Lemma 2.8.39, we get the following.

Theorem 2.8.40 Let A be a nil algebra over K. Then A is algebraic. Moreover, A
is of bounded index if and only if it is algebraic of bounded degree.

Invoking Corollary 2.8.33, we straightforwardly derive the following from
Theorem 2.8.40 above.

Corollary 2.8.41 Complete normed nil algebras over K are of bounded index.

§2.8.42 Clearly, nilpotent algebras over K are nil algebras of bounded index. The
converse is no longer true. Indeed, every nonzero anticommutative algebra is a nil
algebra of index 2. Nevertheless, by the Nagata–Higman theorem (see for example
[822, Corollary 6.1]), associative nil algebras over K of bounded index are in fact
nilpotent. Therefore, invoking Corollary 2.8.41, we get the following.

Corollary 2.8.43 Complete normed associative nil algebras over K are nilpotent.

Completeness cannot be removed altogether in Corollary 2.8.41, nor even in
Corollary 2.8.43. Indeed, we have the following.

Example 2.8.44 Let M∞(K) denote the associative algebra of all infinite matrices
(λi j)i, j∈N over K with a finite number of nonzero entries. Then M∞(K) becomes
a normed algebra under the norm ‖(λi j)‖ := ∑i, j∈N |λi j|. For n ∈ N, we identify
Mn(K) with the subalgebra of M∞(K) consisting of those matrices (λi j)i, j∈N satis-
fying λi j =0 whenever min{i, j}> n. Now, let A stand for the subalgebra of M∞(K)

consisting of the so-called ‘strictly triangular matrices’, i.e. those matrices (λi j)i, j∈N
satisfying λi j = 0 whenever i � j. Since A = ∪n∈N(A ∩ Mn(K)), and, for n ∈ N,
A∩Mn(K) is nilpotent of index n, A becomes a non-nilpotent normed associative nil
algebra over K.

To get refined versions of Corollaries 2.8.41 and 2.8.43 in the spirit of The-
orem 2.8.32, we need the following additional result.

Lemma 2.8.45 Let A be a normed algebra over K, and assume that there exists a
natural number k such that

Ak := {a ∈ A : a is nilpotent of index � k}

has non-empty interior in A. Then Ak = A.
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Proof Let a be an interior point of Ak, let x be in A, and let p be in M with
deg(p)�k. Keeping in mind that the mapping P : μ → p(a+ μx) from K to A is
continuous, it follows that P(μ) = 0 for μ ∈ K with |μ | small enough. Therefore,
since P is in fact a polynomial function, we have P(μ) = 0 for every μ ∈ K (by the
case m = 1 of Lemma 2.8.30). Now, for 0 	= μ ∈K, we have

p
(

a
μ
+ x

)
=

1

μ deg(p)
p(a+μx) =

1

μ deg(p)
P(μ) = 0,

and it is enough to let μ → ∞ to get p(x) = 0. Since p is any element of M with
deg(p) � k, we see that x is nilpotent of index �k. Finally, since x is arbitrary in A,
the result follows.

Proposition 2.8.46 Let A be a complete normed algebra over K such that there
exists a non-empty open set Ω⊆ A consisting only of nilpotent elements. Then A is a
nil algebra of bounded index.

Proof By Fact 2.8.38, Ω consists only of algebraic elements. Therefore, by The-
orem 2.8.32, A is algebraic of bounded degree. Now, by Lemma 2.8.39, nilpotent
elements of A are of index � k := 2deg(A). Since the open set Ω consists only of
nilpotent elements, the proof is concluded by applying Lemma 2.8.45.

Invoking the Nagata–Higman theorem again, we derive the following.

Corollary 2.8.47 Let A be a complete normed associative algebra over K such that
there exists a non-empty open set Ω⊆ A consisting only of nilpotent elements. Then
A is nilpotent.

With the aim of showing that Theorem 2.8.32 (respectively, Corollary 2.8.33)
‘contains’ Proposition 2.8.46 (respectively, Corollary 2.8.41) through purely alge-
braic results, the proof of Proposition 2.8.46 (respectively, Corollary 2.8.41) given
above involved some of the most difficult results in the current subsection, namely
Theorem 2.8.32 itself (respectively, Corollary 2.8.33 itself) and Lemma 2.8.39
(respectively, Theorem 2.8.40). It is worth mentioning that a simpler analytic proof
of Proposition 2.8.46 (and hence of Corollary 2.8.41) can be given, by invoking only
Lemma 2.8.45 and the following.

Lemma 2.8.48 Let A be a normed algebra over K, and let k be a natural number.
Then the set Ak := {a ∈ A : a is nilpotent of index � k} is closed in A.

Proof Keeping in mind that

Ak = {a ∈ A : p(a) = 0 for every p ∈ M with deg(p) � k},

the result follows by recalling that, for p ∈ M , the mapping a → p(a) from A to A is
continuous.

Second proof of Proposition 2.8.46 For k ∈ N, set

Ωk := {a ∈Ω : a is nilpotent of index � k}.

Then we have Ω = ∪k∈NΩk. Since Ωk is relatively closed in Ω for every k
(by Lemma 2.8.48), and Ω is of the second category in itself, there exists k ∈ N
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such that Ωk has non-empty interior in Ω (and hence in A). The proof is concluded
by applying Lemma 2.8.45.

Lemma 2.8.48 above has an additional interest. Indeed, combining it with Corol-
lary 2.8.41, we get the following.

Corollary 2.8.49 Let A be a complete normed algebra over K, and let B be a dense
subalgebra of A. Then A is a nil algebra if and only if B is a nil algebra of bounded
index. Moreover, if this is the case, then A is of bounded index equal to the one of B.

The Nagata–Higman theorem does not carry over to alternative algebras. This was
proved by Dorofeev [215], who constructed an example of a non-nilpotent alternative
nil algebra over K of bounded index. According to the somewhat altered version of
Dorofeev’s example given in [822, pp. 127–30], this alternative algebra (say B) is the
free vector space generated by a certain monad (say M), with product equal to the
extension by bilinearity of the product of M. Therefore, B becomes a normed algebra
over K under the norm ∥∥∥∥∥ ∑m∈M

λmm

∥∥∥∥∥ := ∑
m∈M

|λm|.

By passing to the completion of (B,‖ · ‖), and applying Corollary 2.8.49, we get the
following.

Proposition 2.8.50 There exists a non-nilpotent complete normed alternative nil
algebra over K.

Thus Corollary 2.8.43 does not carry over to alternative algebras.
Let A be an algebra over K. We denote by A2 the linear hull of the set

{ab : a,b ∈ A}. We obtain a derived series of subalgebras

A(1) ⊇ A(2) ⊇ A(3) ⊇ ·· ·

by defining A(1) := A, A(n+1) := (A(n))2. We say that A is solvable if A(n) = 0 for
some n ∈ N. The following facts are clear:

(i) If A is nilpotent, then A is solvable.
(ii) If A is power-associative and solvable, then A is a nil algebra of bounded index.

(iii) If A is associative and solvable, then A is nilpotent.

However, although non-nilpotent, the alternative nil algebra of bounded index in
Dorofeev’s example is actually solvable. This is not casual because, as proved by
Zhevlakov [666] (see also [822, Corollary 6.3.1]), alternative nil-algebras over K of
bounded index are solvable. Therefore, invoking Proposition 2.8.46, we derive the
following.

Corollary 2.8.51 Let A be a complete normed alternative algebra over K such that
there exists a non-empty open set Ω⊆ A consisting only of nilpotent elements. Then
A is solvable.

In particular, we have the following.

Corollary 2.8.52 Complete normed alternative nil algebras over K are solvable.
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2.8.5 Absolute-valued algebraic algebras are finite-dimensional

Now, we are going to study absolute-valued algebraic algebras. Since, by Corol-
lary 2.6.31, C is the unique absolute-valued algebraic complex algebra, we focus
our attention on the case of real algebras.

As an immediate consequence of Fact 2.6.50, we derive the following.

Corollary 2.8.53 Let A be an absolute-valued algebraic real algebra. Then A is of
bounded degree. More precisely, we have deg(A) = 1, 2, 4, or 8.

The following claim reduces the question of the finite dimensionality of absolute-
valued algebraic algebras to the complete separable case.

Claim 2.8.54 Assume that every complete separable absolute-valued algebraic
real algebra is finite-dimensional. Then every absolute-valued algebraic real algebra
is finite-dimensional.

Proof Let A be an absolute-valued algebraic real algebra. By Corollaries 2.8.53
and 2.8.28(ii), the completion Â of A is an absolute-valued algebraic algebra. Now,
fix a nonzero element a in Â, let b be in Â, and let B denote the closed subalgebra of Â
generated by {a,b}. By Corollary 2.8.21, B is a complete separable absolute-valued
algebraic algebra, hence it is finite-dimensional (by assumption). Therefore, since B
is an absolute-valued algebra, there exist c,d in B such that ca= b and ad = b. Since b
is an arbitrary element in Â, we have aÂ = Âa = Â, and the implication (iii)⇒(i) in
Corollary 2.6.24 applies so that Â (and hence A) is finite-dimensional.

§2.8.55 According to Mazur’s theorem (see for example [800, Proposition 9.4.3]),
if X is a separable Banach space over K, then the set

{u ∈ SX : X is smooth at u}

is dense in the unit sphere SX of X . Now, the next corollary follows from Corollar-
ies 2.8.53 and 2.8.28(i).

Corollary 2.8.56 Let A be a complete separable absolute-valued algebraic real
algebra. Then there exists a norm-one element a in A such that A is smooth at a and
dim(A(a)) = deg(A).

Lemma 2.8.57 Let A be an absolute-valued algebraic real algebra, and let a be a
norm-one element of A. We have:

(i) If dim(A(a)) = deg(A), and if b is in A\{0} with ab = b, then A(b) = A(a).

(ii) If A is smooth at a, then A is smooth at every norm-one element of A(a).

Proof Let b be a nonzero element of A. Then A(b) is a finite-dimensional absolute-
valued algebra, so it is a division algebra, and so there exists c ∈ A(b) satisfying
cb = b. Therefore, if ab = b, then we have (a−c)b = 0, so a = c lies in A(b), and so
A(a) ⊆ A(b). If in addition dim(A(a)) = deg(A), then the above inclusion must be
an equality, which concludes the proof of assertion (i).

Now, let b be a norm-one element in A(a). Then there exists c ∈ A(a) such that
cb = a. Since the left multiplication by c on A is a linear isometry, if A is not smooth



2.8 Complements on absolute-valued algebras and algebraicity 271

at b, then cA is not smooth at cb= a, and therefore A is not smooth at a, which proves
assertion (ii).

Now, let us summarize those aspects of the theory of ultraproducts which are
needed for our purpose (cf. [318]).

§2.8.58 From now until Proposition 2.8.63, I will denote a non-empty set, and
U will stand for an ultrafilter on I. Given a family {Xi}i∈I of Banach spaces, we

may consider the Banach space
�∞⊕
i∈I

Xi �∞-sum of this family, consisting of all families

{xi} ∈ ∏
i∈I

Xi such that

‖{xi}‖ := sup{‖xi‖ : i ∈ I}< ∞,

and the closed subspace NU of
�∞⊕
i∈I

Xi given by

NU :=

{
{xi} ∈

�∞⊕
i∈I

Xi : lim
U

‖xi‖= 0

}
.

The (Banach) ultraproduct of the family {Xi}i∈I (with respect to the ultrafilter U )

is defined as the quotient Banach space (
�∞⊕
i∈I

Xi)/NU , and is denoted by (Xi)U . If we

denote by (xi) the element in (Xi)U containing a given family {xi} ∈
�∞⊕
i∈I

Xi, then it

is easy to verify that ‖(xi)‖ = limU ‖xi‖. Because of this formula, if Yi is a closed
subspace of Xi for each i ∈ I, then in a natural way we can identify (Yi)U with a
subspace of (Xi)U . If Xi is equal to a given Banach space X for every i ∈ I, then the
ultraproduct (Xi)U is called the ultrapower of X (with respect to U ) and is denoted
by XU . In this case, the mapping x → x̂ from X into XU , where x̂ = (xi) with xi = x
for all i ∈ I, is an isometric linear imbedding.

Lemma 2.8.59 Let X be a finite-dimensional normed space. Then XU = X̂ .

Proof Let (xi) be in XU . Since {xi : i ∈ I} is contained in a compact subset of X ,
there exists x := limU xi ∈ X . Then we have x̂ = (xi).

Corollary 2.8.60 Let {Xi}i∈I be a family of Hilbert spaces over K such that
there exists a natural number n satisfying dim(Xi) � n for every i ∈ I. Then
dim((Xi)U ) � n.

Proof Let X be a Hilbert space over K of dimension n. For each i ∈ I we may find
a linear isometry Fi : Xi → X . Then (xi)→ (F(xi)) is a (well-defined) linear isometry
from (Xi)U to XU . Now apply Lemma 2.8.59.

§2.8.61 Let {Ai}i∈I be a family of complete normed algebras over K. Then the
Banach space (Ai)U will be considered without notice as a new complete normed
algebra under the (well-defined) product

(ai)(bi) := (aibi).
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In this way, if for each i ∈ I, Bi is a closed subalgebra of Ai, then, up to the natural
identification, (Bi)U becomes a subalgebra of (Ai)U . If, for each i ∈ I, Ai is in fact
an absolute-valued algebra, then the equality ‖(ai)‖ = limU ‖ai‖ shows that (Ai)U
is an absolute-valued algebra too. It follows that the ultrapower AU of a complete
absolute-valued algebra A is an absolute-valued algebra. Let us also note that, if A
is any complete normed algebra, then the natural imbedding A ↪→ AU becomes an
algebra homomorphism.

As a straightforward consequence of Fact 2.6.50 and Corollary 2.8.60, we derive
the following.

Corollary 2.8.62 Let {Ai}i∈I be a family of finite-dimensional absolute-valued real
algebras. Then the absolute-valued algebra (Ai)U is finite-dimensional with

dim((Ai)U ) � max{dim(Ai) : i ∈ I} � 8.

Now, we can prove the following.

Proposition 2.8.63 Let A be a complete absolute-valued algebraic real algebra.
Then AU is an absolute-valued algebraic algebra with

deg(AU ) = deg(A).

Proof Let (ai) be in AU . For each i ∈ I, A(ai) is a finite-dimensional absolute-
valued real algebra, and hence, by Corollary 2.8.62, (A(ai))U is finite-dimensional
as well, and

dim((A(ai))U ) � max{dim(A(ai)) : i ∈ I} � deg(A).

Since, up to the natural identification, (A(ai))U is a subalgebra of AU contain-
ing (ai), it follows that the subalgebra of AU generated by (ai) is finite-dimensional
with dimension � deg(A). Since (ai) is arbitrary in AU , we obtain that AU is alge-
braic with deg(AU ) � deg(A). The converse inequality follows by regarding A as a
subalgebra of AU .

Lemma 2.8.64 Let X be a Banach space over K, and let F : X → X be a non-
surjective linear isometry. Then F − IX is neither bounded below nor surjective.

Proof Let r be a positive real number. If r < 1, then we have

‖F − (F − rIX )‖= r < 1 = k(F),

and hence, by Lemma 2.8.1, F − rIX /∈ Inv(BL(X)). On the other hand, if r > 1, then
clearly we have F − rIX ∈ Inv(BL(X)). It follows that F − IX lies in the boundary of
Inv(BL(X)) relative to BL(X), and Corollary 1.1.95 applies.

Lemma 2.8.65 Let X be a normed space over K, let F : X → X be a linear
contraction, and let M be a finite-dimensional subspace of X. Assume that F(m) = m
for every m ∈ M, that the restriction of the norm of X to M derives from an inner
product, and that X is smooth at every norm-one element of M. Then there exists a
continuous linear projection π : X → X such that π(X) = M and ker(π) is invariant
under F.
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Proof Let (·|·) denote the inner product on M such that ‖m‖2 = (m|m) for every
m∈M, and let {m1, . . . ,mk} be an orthonormal basis of M relative to (·|·). By the
Hahn–Banach theorem, there are norm-one continuous linear functionals φ1, . . . ,φk

on X satisfying φi(m) = (m|mi) for all m ∈ M and i = 1, . . . ,k. Then the map-
ping π : x → ∑k

i=1 φi(x)mi from X to X is a continuous linear projection on X with
π(X)=M. Let i be in {1, . . . ,k}. Since φi ∈ D(X ,mi), and F is a linear contrac-
tion on X with F(m) = m for every m ∈ M, the mapping ψi := φiF belongs to
D(X ,mi). It follows from the smoothness of X at every norm-one element of M that
ψi = φi, and therefore ker(φi) is invariant under F . To conclude the proof, note that
ker(π) = ∩k

i=1 ker(φi).

Theorem 2.8.66 Absolute-valued algebraic real algebras are finite-dimensional.

Proof Let A be an absolute-valued algebraic real algebra. We must show that A is
finite-dimensional. By Claim 2.8.54, we can assume that A is complete and separable.
Then, by Corollary 2.8.56, there exists a norm-one element a ∈ A such that A is
smooth at a and dim(A(a)) = deg(A). Now assume that A is infinite-dimensional.
Then, by the implication (iii)⇒(i) in Corollary 2.6.24, we cannot have aA = Aa = A,
so, for example, we must have aA 	= A, so that the mapping F : x → ax from A to A
is a non-surjective linear isometry. Let M denote the finite-dimensional subspace of
A given by

M := {x ∈ A(a) : ax = x}.

By Fact 2.6.50, the restriction of the norm of A to M derives from an inner product,
and, by Lemma 2.8.57(ii), A is smooth at every norm-one element of M. Now, we
are in a position to apply Lemma 2.8.65, so that there exists a continuous linear
projection π : A → A such that π(A) = M and ker(π) is invariant under F . Keeping
in mind that A = M ⊕ ker(π), that F is the identity mapping on M, that ker(π) is
invariant under F , and that F is a non-surjective linear isometry, it follows that the
mapping y → F(y) = ay from ker(π) to ker(π) is a non-surjective linear isometry.
By Lemma 2.8.64, there exists a sequence xn of norm-one elements in ker(π) such
that axn − xn → 0. Choose an ultrafilter U on N refining the Fréchet filter (of all
cofinite subsets of N), let β denote the norm-one element in AU given by β := (xn),
and consider A as a subalgebra of AU via the canonical imbedding. Then we have
aβ = β . But, by Proposition 2.8.63, AU is an absolute-valued algebraic algebra with
deg(AU ) = deg(A), hence, since dim(A(a)) = deg(A), we have AU (a) = A(a) and
dim(AU (a)) = deg(AU ). It follows from Lemma 2.8.57(i) that β lies in A(a) and,
more precisely, in M. Now that we know that β is in A, the equality β = (xn) reads
as limU ‖xn −β‖ = 0. Hence, since xn is in ker(π) for all n in N, β is in ker(π) as
well. Then β ∈ M∩ (kerπ) = 0, a contradiction.

Corollary 2.8.67 Let A be an absolute-valued power-commutative real algebra.
Then A is finite-dimensional, and deg(A) � 2.

Proof By the commutative Urbanik–Wright theorem (see Theorem 2.6.41), A is
algebraic with deg(A) � 2. Now apply Theorem 2.8.66.

Since flexible algebras are power-commutative (by Corollary 2.4.16), we derive
the following.
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Corollary 2.8.68 Let A be an absolute-valued flexible real algebra. Then A is finite-
dimensional, and deg(A) � 2.

Since power-associative algebras are power-commutative, we could also have
derived from Corollary 2.8.67 that absolute-valued power-associative real algebras
are finite-dimensional and of degree � 2, but this does not merit being emphasized
because we have already proved a better result in Proposition 2.6.27. In relation
to Corollaries 2.8.67 and 2.8.68, it it worth mentioning that, as we will see in
Corollary 2.8.84 below, absolute-valued power-commutative algebras are in fact
flexible.

2.8.6 Historical notes and comments

Theorem 2.8.4 and the proof given here are due to Rodrı́guez [521], although Lem-
mas 2.8.1 and 2.8.3 are taken from [529] and [516], respectively.

Subsection 2.8.2 is taken from the Cuenca–Rodrı́guez paper [200], although
Lemma 2.8.10 is folklore, and Lemma 2.8.12 was previously known in [199]. Some
of the results of [200] developed here have been slightly refined. In particular,
Corollary 2.8.11 is new. In Proposition 2.8.88 below, we will formulate the precise
description, given in [200], of the algebras considered in Proposition 2.8.13.

In the original proof [618] of Theorem 2.7.69, Urbanik already knew that when
the set X reduces to a singleton, the free non-associative real algebra generated by X
becomes an absolute-valued algebra under the norm ‖ · ‖2. The general case of such
an observation, stated in §2.8.18, is due to Cabrera and was announced in [149], but it
first appeared formulated with the appropriate accuracy in [521]. Results from Prop-
osition 2.8.19 to Corollary 2.8.25 (with the exception of Corollary 2.8.21 and The-
orem 2.8.23) are taken from [533]. Corollary 2.8.21 is new, whereas Theorem 2.8.23
is due to Becerra, Moreno, and Rodrı́guez [68], who acknowledge deep sugges-
tions from Y. Benjamini. Some particular cases of Corollary 2.8.21 seem to be folk-
lore. Indeed, the cases that the algebra A is associative, or that the subset S ⊆ A is
finite, were applied without notice in the original proofs of Theorem 2.8.23 (see [68,
Theorem 2.11]) or Claim 2.8.54 (see [368, Claim 1]), respectively.

A partial converse of Lemma 2.8.22 and its proof is provided by the following.

Theorem 2.8.69 Let E be a compact Hausdorff topological space such that CK(E)
becomes an absolute-valued algebra for a certain product �. Then there exist a
closed subset F of E, a continuous function φ : E → SK, and a continuous surjective
mapping f : F → E ×E, satisfying

(x� y)(t) = φ(t)x[π1( f (t))]y[π2( f (t))]

for all x,y ∈ CK(E) and t ∈ F. Here, as in the proof of Lemma 2.8.22,
π1,π2 :E ×E → E stand for the coordinate projections.

Theorem 2.8.69 above is due to Moreno and Rodrı́guez [451], who mimic
the proof of the celebrated Holsztynki’s theorem [329] asserting that,
if Φ : CK(E) → CK(E) is a (possibly non-surjective) linear isometry, then there
exist a closed subset F of E, a continuous function φ : E → SK, and a continuous
surjective mapping f : F → E, satisfying Φ(x)(t) = x( f (t)) for every x ∈CK(E) and
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t ∈ F. Theorem 2.8.69, together with deep suggestions from Y. Benjamini, allowed
the authors of [451] to prove the following.

Theorem 2.8.70 Let E be a compact metrizable topological space not reduced to
a point. Then CK(E) becomes an absolute-valued algebra for some product if and
only if E is uncountable.

Results from Lemma 2.8.27 to Corollary 2.8.34 are due to Cuartero, Galé,
Rodrı́guez, and Slinko [188] (1993). Nevertheless, although published shortly later,
Lemma 2.8.30 was previously known by Cuartero and Galé [187], and becomes the
key tool in the organization of the material covered here. Actually, Lemma 2.8.30
becomes an algebraic variant of an early analytic result (due to Galé, Ransford, and
White [276]), which is formulated in Lemma 2.8.71 immediately below. This lemma
was applied in [276] to characterize weakly compact algebra homomorphisms from
C∗-algebras. A version of such a characterization in a non-associative setting can be
found in [275].

Lemma 2.8.71 Let X be a complex Banach space, let Ω be a domain in C, and let
f1, . . . , fm be holomorphic functions from Ω to X. Then the set

D := {μ ∈Ω : { f1(μ), . . . , fm(μ)} is linearly dependent}

is either discrete or equal to Ω.

§2.8.72 Lemmas 2.8.27 and 2.8.31 refine previous ideas of Cuartero and Galé
in [186, 187] for associative and power-associative algebras. Corollary 2.8.33 (that
complete normed algebraic algebras are of bounded degree) has a long history. It
was proved by Mazur [432] (1938) for associative and commutative algebras, by
Kaplansky [373] (1947) for (possibly non-commutative) associative algebras, by
Slinko [586] (1990) for Jordan algebras, and by Cuartero and Galé [187] (1994)
for power-associative algebras. Concerning Mazur’s forerunner, let us recall that, as
we commented in §2.5.63, the original proof is not available.

The refinement of Corollary 2.8.33, given by Theorem 2.8.32, already appeared
in the version of [187] for power-associative algebras. For the refinement, the
authors of [187] were inspired by the following result of Aupetit [39] (see also [682,
Theorem 3.2.1]).

Theorem 2.8.73 Let A be a complete normed associative complex algebra such
that there exists a non-empty open set Ω ⊆ A consisting only of elements with
finite spectrum. Then A is finite-dimensional modulo its Jacobson radical. (For the
meaning of the Jacobson radical of an associative algebra, the reader is referred to
Definition 3.6.12 below.)

The case that Ω=A in the above theorem is originally due to Kaplansky [378], and
was rediscovered much later in [327]. An appropriate version for Jordan algebras,
which will be discussed in Volume 2 of our work, can be found in [91]. Thinking
about any non-nil complete normed radical associative complex algebra (as, for
example, the one in the proof of Proposition 4.4.65(iii) below), we realize that,
in its associative complex context, the assumption in Theorem 2.8.73 is ostensibly
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weaker than the one in Theorem 2.8.32, and that the conclusion in Theorem 2.8.73
is the best that we could hope for. The actual historical interest of the stronger
conclusion in Theorem 2.8.32 (that the algebra is algebraic of bounded degree) relies
on Theorem 2.8.75 below.

Corollaries 2.8.43 and 2.8.47 are due to Grabiner [298] (see also [696, The-
orem 46.3]), although they are germinally contained in [373, p. 537]. For the history
of the Nagata–Higman theorem applied in the proof of these corollaries, the reader
is referred to [266]. With the exception of Corollaries 2.8.43 and 2.8.47, which have
already been commented, results from Fact 2.8.38 to Corollary 2.8.49 could be new.
When restricted to power-associative algebras, these results turn out to be much
easier, and actually they are known in [187]. Indeed, in the case of power-associative
algebras, Fact 2.8.38, Lemma 2.8.39, and Theorem 2.8.40 reduce to the following.

Fact 2.8.74 If a is a nilpotent element of index n in a power-associative algebra A,
then dim(A(a)) = n−1.

By keeping the above fact in mind, the power-associative version of Propos-
ition 2.8.46 follows straightforwardly from Theorem 2.8.32 by invoking, in addition,
only (the power-associative version of) Lemma 2.8.45. We thank A. Moreno for
communicating to us the estimate cm � m! in the proof of Fact 2.8.38. The proof of
Lemma 2.8.39 is inspired by that of [452, Proposition 5.8]. Although easily derivable
from previously known facts, results from Proposition 2.8.50 to Corollary 2.8.52
could be also new. We note that Corollaries 2.8.51 and 2.8.52 could have been
formulated in [187] by simply referring to Zhevlakov’s theorem [666], as we
have done.

Let us recall that an algebra A is called locally finite if the subalgebra generated
by any finite subset of A is finite-dimensional. Now, as announced above, let us
focus on the historical interest of algebraic algebras of bounded degree, which in
the associative case relies on the following.

Theorem 2.8.75 Let A be an associative algebraic algebra over K of bounded
degree. Then A is locally finite.

The above theorem was obtained by Kaplansky [376] by applying Jacobson’s
structure theory for associative algebraic algebras of bounded degree [347]. The-
orem 2.8.75 can also be found in [753, Theorems X.10.1(1) and X.12.1], and, thanks
to Corollary 2.8.33, implies the following.

Corollary 2.8.76 Complete normed associative algebraic algebras over K are
locally finite.

Theorem 2.8.75 and Corollary 2.8.76 are specially relevant because they provide
partial affirmative answers to the so-called Kurosh’s problem [396] (1941): wonder-
ing whether every associative algebraic algebra over K is locally finite. Kurosh’s
problem remained open for many years until it was answered negatively by Golod
[295] (1964), who constructed an example of an infinite-dimensional associative nil-
algebra over K with three generators. In [744, p. 192] (1968) Herstein pointed out
that, in Golod’s result, ‘we can get by with two generators instead of three’. Thus we
have the following.
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Theorem 2.8.77 There exist infinite-dimensional associative nil algebras over K
generated by 2 elements.

Complete proofs of the above theorem can be found in the books of Andrun-
akievich and Ryabuhin [677, pp. 60–6], and of Kargapolov and Merzljakov [763,
Example 23.2.5], both published in 1979. Theorem 2.8.77 has been rediscovered
in [307].

According to Kaplansky [379] (1970), after Golod’s negative solution to Kurosh’s
problem, ‘special cases of Kurosh’s problem still invite attention. In a draft of
this paper I asked whether a primitive algebraic [associative] algebra is necessarily
locally finite. In a letter dated July 23, 1969, Amitsur described how to ‘surround’
the Golod example by a primitive algebraic algebra which is not locally finite.
However, the algebra is not itself finitely generated.’ Then, Kaplansky asked
whether every finitely generated, primitive, algebraic associative algebra over K
is finite-dimensional. This question has also been negatively answered by Bell and
Small [84] (2002). (For the meaning of a primitive algebra, the reader is referred to
Definition 3.6.12 below.)

In the proof of [615, Theorem 3.7], Turovskii notices that one of the algebras
over K given by Theorem 2.8.77 (just that in [677, 763] already quoted) can be
provided with an algebra norm. As a consequence, completeness cannot be altogether
removed in Corollary 2.8.76. It is worth mentioning that, according to Dales [203],
every associative and commutative nil complex algebra with countable basis can be
endowed with an algebra norm. If commutativity could be removed in Dales’s result,
then we would be provided with a theoretical proof of Turovskii’s observation.

Theorem 2.8.75 remains true if the assumption that A is associative is relaxed
to the one that A is alternative. This result, due to Shirshov [568], can be seen
in [822, Corollary 5.5.1]. Theorem 2.8.75 also remains true if the assumption that
A is associative is replaced with the one that A is a Jordan algebra. By keeping
in mind [755, Proposition 7.9.1], this Jordan version of Theorem 2.8.75 is due to
Zel’manov [661]. Now, applying Theorem 2.8.32, we derive the following.

Corollary 2.8.78 Let A be a complete normed algebra over K containing a non-
empty, open subset consisting only of algebraic elements. If, further, A is alternative
or Jordan, then A is locally finite.

Although alternative nil algebras of bounded index need not be nilpotent, finite-
dimensional alternative nil algebras over K are indeed nilpotent [808, Theorem
III.3.2], and the same is true with Jordan instead of alternative [808, Theorem IV.4.3].
Now, recall that an algebra A is called locally nilpotent if the subalgebra generated
by any finite subset of A is nilpotent. It follows that locally finite alternative or
Jordan nil algebras over K are locally nilpotent. Therefore, invoking Fact 2.8.74,
Proposition 2.8.32, and the results in [568] and [661] reviewed above, we obtain the
following.

Corollary 2.8.79 Let A be a complete normed algebra over K containing a non-
empty open subset consisting only of nilpotent elements. If, further, A is alternative
or Jordan, then A is locally nilpotent.
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§2.8.80 Generalized standard algebras, introduced by Schafer [553], are defined
by a suitable finite set of identities, and, roughly speaking, they compose the min-
imum class of algebras containing all alternative algebras and all Jordan algebras.
In particular, generalized standard algebras are non-commutative Jordan algebras
[553, Theorem 2]. On the other hand, finite-dimensional generalized standard nil
algebras over K are nilpotent [553, Theorem 4], and hence locally finite generalized
standard nil algebras over K are locally nilpotent. It would be interesting to know
whether Theorem 2.8.75 remains true when the assumption that A is associative is
relaxed to the one that A is generalized standard. If the answer to this question were
affirmative, then Corollaries 2.8.78 and 2.8.79 would remain true with ‘generalized
standard’ instead of ‘alternative or Jordan’.

In relation to the ideas in the above paragraph, let us mention the celebrated
Suttles’ example [607] (see also [487, p. 344]) of a five-dimensional power-
associative commutative nil algebra which is not nilpotent.

Albert’s result (already stated in Fact 2.6.44), that R,C,H, and O are the unique
absolute-valued algebraic unital real algebras, is now obsolete because of the non-
commutative Urbanik–Wright theorem (Theorem 2.6.21). Nevertheless, it has had
the merit of encouraging the work on the question of whether every absolute-valued
algebraic algebra is finite-dimensional. Since this question has an almost trivial
affirmative answer for complex algebras (see Corollary 2.6.31), interest focused
on the case of real algebras. Some partial affirmative answers were provided by
M. L. El-Mallah. Thus, an absolute-valued algebraic real algebra A is finite-
dimensional whenever there exists a nonzero idempotent in A commuting with
every element of A [235], or there exists a continuous algebra involution ∗ on A
satisfying xx∗ = x∗x for every x ∈ A [238], or A satisfies the identity xx2 = x2x [240].
We note that the result in [235] would later become a consequence of the one in [238]
because of Theorem 2.6.46.

Since absolute-valued algebraic real algebras are of degree 1, 2, 4, or 8 (by Corol-
lary 2.8.53), and R is the unique absolute-valued algebraic algebra of degree 1 (by
Lemma 2.6.29), the strategy of studying the cases of degree 2, 4, and 8 separately
could seem tempting in order to answer affirmatively the question we are consider-
ing. As a matter of fact, such an strategy turned out to be unsuccessful, except for the
case of degree 2. Indeed, as proved in [524], we have the following.

Proposition 2.8.81 The absolute-valued real algebras of degree 2 are C, C
∗

, ∗C,

C∗, H, H
∗

, ∗H, H∗, O, O
∗

, ∗O, O∗, and P.

Here, for A equal to C, H, or O, the symbols ∗A and A∗ stand for the absolute-
valued real algebras obtained by endowing the normed space of A with the products
x� y := x∗y and x� y := xy∗, respectively, where ∗ means the standard involution.

We recall that both the symbols A
∗

(for A equal to C,H, or O) and P have already
been introduced in Subsection 2.6.3.

The definitive affirmative answer to the question of whether absolute-valued
algebraic algebras are finite-dimensional, given in Theorem 2.8.66, is due to Kaidi,
Ramı́rez, and Rodrı́guez [367]. The proof given in Subsection 2.8.5 (pp. 270ff.) is
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essentially the original one in [367], although some relevant simplifications taken
from [368] have been incorporated.

According to [533], Lemma 2.8.65 remains true if the assumption that the restric-
tion of the norm of X to M derives from an inner product is altogether removed. The
proof goes as follows:

Let X , F , and M be as in Lemma 2.8.65, but remove the assumption that the
restriction of the norm of X to M derives from an inner product. By a theorem
of Auerbach [36] (see also [800, Lemmas 7.1.6 and 7.1.7]), there are bases
{m1, . . . ,mk} and {g1, . . . ,gk} of M and M′, respectively, consisting of norm-one
elements and satisfying gi(m j) = δi j. Extending each gi to a norm-one linear
functional φi on X , and arguing as in the conclusion of the proof of Lemma 2.8.65,
we realize that the mapping π : x → ∑k

i=1 φi(x)mi from X to X becomes a
continuous linear projection on X such that π(X) = M and ker(π) is invariant
under F .

Corollary 2.8.68, originally due to El-Mallah and Micali [244], is the earliest result
among those included in this section. Later, El-Mallah, in a series of papers (see [235,
236, 237, 238, 239]), deeply refines Corollary 2.8.68 by considering absolute-valued
algebras satisfying the identity xx2 = x2x (which is of course implied by the flexibil-
ity), and proving the following.

Theorem 2.8.82 For an absolute-valued real algebra A, the following conditions
are equivalent:

(i) A is flexible.
(ii) A is a pre-Hilbert space and satisfies the identity x2x = xx2.

(iii) A is finite-dimensional and satisfies the identity x2x = xx2.

(iv) A is equal to R, C, C
∗

, H, H
∗

, O, O
∗

, or P.

A refinement of the above theorem can be found in Corollary 2.7 of Cuenca’s
paper [191]. In [239], El-Mallah combines Theorems 2.6.46 and 2.8.82 with a result
of Urbanik ([617, Theorem 6]) to derive the following.

Corollary 2.8.83 R, C, C
∗

, H, H
∗

, O, and O
∗

are the unique absolute-valued real
algebras A satisfying the identity x2x = xx2 and containing a nonzero idempotent
commuting with all elements of A.

Another relevant consequence of Theorem 2.8.82 is the following.

Corollary 2.8.84 Absolute-valued algebras over K are flexible if (and only if) they
are power-commutative.

Proof If K = C, the result follows from Corollary 2.6.42. Let A be an absolute-
valued power-commutative real algebra. By Corollary 2.8.67, A is finite-dimensional.
On the other hand, clearly, A satisfies the identity x2x = xx2. It follows from the
implication (iii)⇒(i) in Theorem 2.8.82 that A is flexible.

Corollary 2.8.84 was first proved in [524] involving Theorem 2.6.41 and Prop-
osition 2.8.81 instead of Corollary 2.8.67 (which was unknown at the time) and
Theorem 2.8.82.
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In relation to Theorem 2.8.82, it seems to be an open problem whether every
absolute-valued real algebra satisfying the identity x2x = xx2 is finite-dimensional.
According to the theorem itself, the answer is affirmative if A is a pre-Hilbert space.
The answer is also affirmative if A is algebraic [240], but, in view of Theorem 2.8.66,
this result is unsubstantial today.

In relation to the problem just raised, we have the following previously unpub-
lished result, which could help to find an affirmative answer.

Proposition 2.8.85 Let A be an absolute-valued real algebra satisfying the identity
x2x = xx2, and let M be any two-dimensional subspace of A. Then there exists m ∈ M
such that −m2 is a nonzero idempotent.

Keeping in mind that commutative subspaces of an absolute-valued algebra are pre-
Hilbert spaces (indeed, argue as in the proof of Theorem 2.6.41), the proof goes as
follows.

Proof Consider the mapping Φ : A → R defined by

Φ(x) :=
1
4

(
‖x+ x2‖2 −‖x− x2‖2) .

Note that Φ is continuous and satisfies Φ(−x) =−Φ(x) for every x ∈ A, and that SM

is connected and symmetric (i.e. −SM = SM), it follows that Φ(SM) is a connected
and symmetric subset of R, and hence we have 0 ∈Φ(SM). Taking m ∈ SM such that
Φ(m) = 0, and noticing that the linear hull of {m,m2} is a Hilbert space for some
inner product (·|·), we have (m|m2) =Φ(m) = 0, and therefore

‖m2 − (m2)2‖= ‖(m+m2)(m−m2)‖= ‖m+m2‖‖m−m2‖= 2.

Since the linear hull of {m2,(m2)2} is also a Hilbert space, it follows from the
equality ‖m2 − (m2)2‖= 2 above and the parallelogram law that

m2 +(m2)2 = 0.

Now −m2 is a nonzero idempotent.

In recent years, Proposition 2.8.85 has been circulating among people interested
in the topic, generating new interesting results. This is the case of the next theorem,
due to Cuenca [196].

Theorem 2.8.86 R, C, C
∗

, H, H
∗

, O, and O
∗

are the unique absolute-valued real
algebras A satisfying the identity x2x = xx2 and containing a nonzero idempotent
which commutes with all idempotents of A.

Theorem 2.8.86 above refines Corollary 2.8.83, and contains the next result, ori-
ginally due to Chandid [708].

Corollary 2.8.87 R, C, C
∗

, H, and O are the unique absolute-valued real algebras
satisfying the identity x2x = xx2 and whose idempotents pairwise commute. As a
consequence, R,C,H, and O are the unique absolute-valued real algebras satisfying
the identity x2x = xx2 and containing only a nonzero idempotent.
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As an example of how Proposition 2.8.85 works, let us introduce a very short
argument (courtesy of J. A. Cuenca) reducing the proof of the last conclusion in
Corollary 2.8.87 above to El-Mallah’s Corollary 2.8.83:

Let A be an absolute-valued real algebra satisfying the identity x2x = xx2 and
containing only a nonzero idempotent e. Let a be in A \Re. Then, by Propos-
ition 2.8.85, there is b ∈ Re+Ra such that −b2 = e. Thus b /∈ Re (which implies
that Re +Ra = Re +Rb) and [e,b] = 0. Therefore [e,a] = 0, hence [e,A] = 0
because of the arbitrariness of a ∈ A \Re. Now it is enough to invoke Corol-
lary 2.8.83 to conclude that A is equal to R,C,H, or O.

The Cuenca–Rodrı́guez paper [200] contains a precise determination of the alge-
bras A satisfying the requirements in Proposition 2.8.13. To review such a determin-
ation, note at first that, as a consequence of that proposition, we are in fact dealing
with an absolute-valued finite-dimensional real algebra A endowed with an isometric
algebra involution ∗, whose norm derives from an inner product (·|·) satisfying

x∗(xy) = (yx)x∗ and (xy|z) = (x|zy∗) = (y|x∗z) for all x,y,z ∈ A.

Since ∗ is a surjective linear isometry, we can consider the Albert isotope of A
(say B) consisting of the normed space of A and the product x� y := x∗y∗. Now,
we trivially realize that the absolute-valued real algebra B is flexible and satisfies
(x� y|z) = (x|y� z) for all x,y,z ∈ B. Then, noticing that C,H, and O do not satisfy

the last equality, we deduce from Theorem 2.8.82 that B is equal to R, C
∗

, H
∗

, O
∗

,
or P. Moreover, ∗ remains an algebra involution on B, and the correspondence
(A,∗) → (B,∗) is categorical and bijective. After the laborious classification of

algebra involutions on C
∗

, H
∗

, O
∗

, and P done in [200], the determination of the
algebras in Proposition 2.8.13 is germinally concluded. In this way, three new
distinguished examples of absolute-valued finite-dimensional real algebras appear.
These are the natural Albert isotopes of H, O, and P (denoted respectively by Ĥ, Ô,
and P̃) built as follows. For every absolute-valued algebra A, and every surjective
linear isometry ψ : A→A, the ψ-twist of A is defined as the absolute-valued algebra
consisting of the normed space of A and the product x�y :=ψ(x)ψ(y). For A equal
to either H or O, we define Â as the φ -twist of A, where φ stands for the essentially
unique involutive automorphism of A different from the identity operator [349]. On
the other hand, the existence of an essentially unique algebra involution σ on P is
proved in [200], a fact which allows us to define P̃ as the σ -twist of P. Keeping in
mind the arguments and notions above, the following theorem follows easily.

Theorem 2.8.88 The algebras A satisfying the requirements in Proposition 2.8.13

are precisely R, C, C
∗

, H, Ĥ, O, Ô, and P̃.

A slight variant of the proof sketched above, involving Corollary 7 of [468] instead
of Theorem 2.8.82, can be seen in Remark 2.9 of [200].

Nearly absolute-valued algebras have appeared incidentally in previous sections.
Now we will look at them more closely.

For every nonzero normed algebra A over K, let us define ρ(A) as the largest non-
negative real number ρ satisfying ρ‖x‖‖y‖ � ‖xy‖ for all x,y ∈ A, so that ρ(A)> 0
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if and only if A is a nearly absolute-valued algebra, and ρ(A) = 1 if and only A is an
absolute-valued algebra. Let A be a nonzero normed finite-dimensional algebra over
K. Then, by the compactness of spheres, A is nearly absolute-valued if and only if A
has no nonzero divisor of zero. Moreover, if this is the case, then A is isomorphic to
C when K= C (by Exercise 1.1.86), and the dimension of A is equal to 1, 2, 4, or 8
when K=R (by Theorem 2.6.51). On the other hand, by Hopf’s theorem (see p. 235
of [727]), nearly absolute-valued finite-dimensional commutative real algebras have
dimension � 2. We note that, since every finite-dimensional algebra over K can be
endowed with an algebra norm, nearly absolute-valued finite-dimensional real alge-
bras and finite-dimensional real algebras with no nonzero divisor of zero essentially
coincide.

According to Corollary 2.5.57, every nearly absolute-valued alternative real alge-
bra is isomorphic to R, C, H, or O, so that not much more can be said about such
an algebra. The consequence that nearly absolute-valued alternative algebras are
isomorphic to absolute-valued algebras is no longer true if alternativity is removed
(even for finite-dimensional normed algebras A with ρ(A) arbitrarily close to one).
For instance, for 0 < ε < 1

2 , consider the normed real algebra A consisting of the
normed space of H and the product

x� y := (1− ε)xy+ εyx.

Then we have ρ(A) � 1 − 2ε , but A cannot be isomorphic to an absolute-valued
algebra. Indeed, A is not associative and has a unit, whereas every absolute-valued
four-dimensional unital real algebra is isomorphic to H (by Theorem 2.6.21).

The above example shows in addition how a theory of nearly absolute-valued
algebras parallel to that of absolute-valued algebras cannot be expected. Along the
same lines, in contrast to Theorem 2.6.41 and Corollary 2.6.42, there exist infinite-
dimensional complete normed commutative algebras A over K with ρ(A)� 2−

1
2 (see

Example 2.7.64).
Despite the above limitations, in the paper of Kaidi, Ramı́rez, and Rodrı́guez [369],

the authors wondered whether there could be a theory of nearly absolute-valued
algebras ‘nearly’ parallel to that of absolute-valued algebras. More precisely, they
raised the following.

Question 2.8.89 Let P be any one of the purely algebraic properties leading
absolute-valued real algebras to the finite dimension. Is there a universal constant
0 � KP < 1 such that every normed real algebra A satisfying P and ρ(A)> KP is
finite-dimensional?

Applying ultraproduct techniques, the authors of [369] were able to give an
affirmative answer to Question 2.8.89 for the most relevant choices of Property P .
More precisely, they proved the following.

Theorem 2.8.90 Question 2.8.89 has an affirmative answer whenever Property P

is equal to the existence of a unit, the commutativity, or the algebraicity. Moreover,
for these choices of P , the universal constant KP can be (uniquely) chosen in such
a way that there exists a normed infinite-dimensional real algebra satisfying P and
ρ(A) = KP .
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Now, the essential messages of Theorems 2.6.21, 2.6.41, and 2.8.66 remain
‘nearly’ true when nearly absolute-valued algebras replace absolute-valued algebras.
As a consequence, as shown in [369, Corollary 4.4], we have the following result
which generalizes Corollary 2.8.67.

Corollary 2.8.91 A normed power-commutative real algebra A is finite-
dimensional whenever ρ(A) is close enough to one.

Many other results of the same flavour can be obtained (see for example the vari-
ants of our Corollary 2.6.24, Proposition 2.8.13, and Theorem 2.8.4 proved in Corol-
laries 3.2 and 3.4, and Theorem 3.3 of [369], respectively). Concerning the constant
KP in Theorem 2.8.90, we already know that KP � 2−

1
2 when P means commuta-

tivity. When P means algebraicity or existence of a unit, we do not know whether
or not the equality KP = 0 holds. Note that KP = 0 would mean that every nearly
absolute-valued real algebra satisfying P is finite-dimensional. Anyway, nearly
absolute-valued complex algebras are isomorphic to C whenever they have a left
unit or are algebraic (see Corollaries 2.7.17 and 2.6.31, respectively).

In relation to Corollary 2.8.91, it is worth mentioning that four-dimensional power-
commutative division real algebras have recently been classified in the paper of
Darpö and Rochdi [207]. A classification in dimension eight seems to be unknown
for the moment. In the introduction of [207], the reader can also find an accurate
review of the status of the question concerning the classification of general non-
associative finite-dimensional division real algebras.

We conclude our survey on nearly absolute-valued algebras with the following
theorem, also proved in [369].

Theorem 2.8.92 There exists a universal constant 2−1 � K � 2−
1
4 uniquely

determined by the following two properties:

(i) There is a normed real algebra B which is not uniformly non-square, has a left
unit, and satisfies ρ(B) = K.

(ii) If A is any normed real algebra with a left unit and satisfying ρ(A)> K, then A
is uniformly non-square.

Among other results, the proof of Theorem 2.8.92 involves Example 2.7.30 and
Corollary 2.7.31.

2.9 Complements on numerical ranges

Introduction In this section, we resume the study of the geometry of norm-unital
normed algebras around their units, which began in Section 2.1 and continued in
Sections 2.2, 2.3, 2.4, and 2.6. The outstanding new starting fact is that the duality
mapping of any norm-unital normed algebra is norm-norm upper semicontinuous
at the unit, in the sense of Giles, Gregory, and Sims [287]. A relevant character-
ization of the norm-weak upper semicontinuity of the duality mapping of a Banach
space at a point of its unit sphere, obtained in Theorem 2.9.8, shows that some
results on algebra numerical ranges (such as Lemma 2.3.44), already proved by
other methods, are consequences of the starting fact (see Remark 2.9.9(b)). Now,
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many other consequences of the same kind are obtained in Corollaries 2.9.18, 2.9.32,
2.9.37, 2.9.41, 2.9.42, 2.9.50, and 2.9.51. Corollaries 2.9.18 and 2.9.32 also involve
a theorem of Godefroy and Indumathi [291] (see Theorem 2.9.17), asserting that,
if X is a Banach space with a complete predual X∗, and if the duality mapping of
X is norm-weak upper semicontinuous at a given point u ∈ SX , then the equality
V (X ,u,x) = {x( f ) : f ∈ D(X ,u)∩X∗}− holds for every x ∈ X . In their turn, Corol-
laries 2.9.37 to 2.9.51 also involve a nontrivial reformulation of the norm-norm upper
semicontinuity of the duality mapping (called the strong subdifferentiability of the
norm) due to Gregory [299] (see Theorem 2.9.36). As a by-product of our develop-
ment, we prove a numerical-range characterization of uniformly smooth Banach
spaces (see Theorem 2.9.56), already quoted in Subsection 2.1.3.

2.9.1 Involving the upper semicontinuity of the duality mapping

Let σ be a topology on a set E, let τ be a vector space topology on a vector space Y
over K, let f be a function from E to the family 2Y of all subsets of Y (empty values
for f are allowed), and let u be in E. We say that f is σ -τ upper semicontinuous
(in short, σ -τ usc) at u if, for every τ-neighbourhood V of zero in Y , there exists a
σ -neighbourhood U of u in E such that f (x)⊆ f (u)+V whenever x lies in U .

Now, let X be a normed space. The duality mapping of X is defined as the function
x → D(X ,x) from the unit sphere SX of X to 2X ′

. We note that the norm-norm upper
semicontinuity of the duality mapping of X at a given element u ∈ SX means that for
every ε > 0 there exists δ > 0 such that, whenever x is in SX with ‖x−u‖ � δ , and
f is in D(X ,x), we have d( f ,D(X ,u)) � ε .

The above notions are related to the material previously developed because of the
following.

Fact 2.9.1 Let A be a norm-unital normed algebra over K. Then the duality map-
ping of A is norm-norm usc at 1.

Proof Let ε > 0, let x be in SA with ‖x − 1‖ � ε , and let f be in D(A,x). Set
g := (Lx)

′( f ). Then g belongs to D(A,1), and we have

‖ f −g‖= ‖(IA −Lx)
′( f )‖ � ‖(IA −Lx)

′‖= ‖IA −Lx‖= ‖L1−x‖= ‖1− x‖ � ε.

Therefore d( f ,D(A,1)) � ε .

Keeping in mind that, for a norm-one element u in a normed space X , we have

0 � n(X ,u) � 1,

and that such an element u is geometrically unitary if and only if n(X ,u) > 0 (by
Theorem 2.1.17(i)), the requirement n(X ,u) = 1 can be read as that u is a geomet-
rically unitary element of the ‘best possible type’. Such special behaviour of u gives
rise to the following easy consequence of Fact 2.9.1.

Fact 2.9.2 Let (X ,u) be a numerical-range space over K with n(X ,u) = 1. Then
the duality mapping of X is norm-norm usc at u.

Proof Consider D(X ,u) as a compact Hausdorff topological space under the
w∗-topology. Then, for x ∈ X , the function F(x) : f → f (x) from D(X ,u) to K
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is continuous, and, since n(X ,u) = 1, the mapping F : x → F(x) from X to the
norm-unital normed algebra CK(D(X ,u)) becomes a linear isometry taking u to
the unit 1 of CK(D(X ,u)). In this way, we can see X as a subspace of CK(D(X ,u))
containing 1, and the proof is concluded by applying Fact 2.9.1, keeping in mind that
the norm-norm upper semicontinuity of the duality mapping at a point goes down to
subspaces.

Norm-weak∗ upper semicontinuity of the duality mapping of a normed space at a
norm-one element is automatic. Indeed, we have the following.

Fact 2.9.3 Let X be a normed space over K, and let u be a norm-one element of X.
Then, for each weak∗-open subset G of X ′ containing D(X ,u), we can find δ > 0 such
that D(X ,x) ⊆ G whenever x ∈ SX and ‖x− u‖ � δ . As a consequence, the duality
mapping of X is norm-weak∗ usc at u.

Proof Assume that the first conclusion does not hold. Then there would exist a
w∗-open subset G of X ′ containing D(X ,u) and such that, for each n ∈ N, we could
find xn ∈ SX and fn ∈ D(X ,xn) in such a way that ‖xn − u‖ � 1

n and fn /∈ G. By
taking a w∗-cluster point f ∈ X ′ to the sequence fn, we would have f ∈ D(X ,u)
and f /∈ G, a contradiction. Now that the first conclusion has been proved, the con-
sequence follows by noticing that, for each weak∗-open neighbourhood of zero V in
X ′, D(X ,u)+V is weak∗-open in X ′.

Although straightforward, the following consequence of Fact 2.9.3 above merits
being emphasized.

Corollary 2.9.4 Let X be a reflexive (respectively, finite-dimensional) Banach
space over K. Then the duality mapping of X is norm-weak (respectively, norm-
norm) usc at every element of SX .

Fact 2.9.3 becomes one of the ingredients in the proof of a characterization of
the norm-weak upper semicontinuity of the duality mapping of a Banach space
at a norm-one element, in terms of numerical ranges, which will be achieved in
Theorem 2.9.8. The next folklore lemma, which follows from the Hahn–Banach
separation theorem for convex sets (see for example [689, Theorem 34.7 and
Exercise 34.12]), becomes another ingredient in that proof.

Lemma 2.9.5 Let (X ,u) be a numerical-range space over K, and let Y be a sub-
space of X ′. Then the following conditions are equivalent:

(i) V (X ,u,x) = { f (x) : f ∈ D(X ,u)∩Y}− for every x ∈ X, where − means closure
in K.

(ii) D(X ,u) is equal to the weak∗-closure in X ′ of the set D(X ,u)∩Y .

Let X be a Banach space with a (possibly non-complete) predual X∗. For x ∈ SX

we set

Dw∗
(X ,x) := D(X ,x)∩X∗,

and define the pre-duality mapping of X as the function x → Dw∗
(X ,x) from SX

to 2X∗ .
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Proposition 2.9.6 Let X be a Banach space over K with a predual X∗, and let u be
a norm-one element in X. We have:

(i) For every x ∈ X the equality

V (X ,u,x) =
⋂
δ>0

{x( f ) : f ∈ SX∗ , |u( f )−1|< δ}− (2.9.1)

holds.

(ii) If the equality

V (X ,u,x) = {x( f ) : f ∈ Dw∗
(X ,u)}− (2.9.2)

holds for every x ∈ X, then the pre-duality mapping of X is norm-weak usc at u.

Proof Let x be in X . For each positive number δ , consider the set

Bδ := {x( f ) : f ∈ SX∗ , |u( f )−1|< δ},

and let μ be in
⋂

δ>0 Bδ , so that for each δ > 0 there is fδ ∈ SX∗ with

|u( fδ )−1|< δ and |x( fδ )−μ|< δ .

Then for every λ ∈K we have

|μ−λ |= |μ− x( fδ )+ x( fδ )−λu( fδ )+λ (u( fδ )−1)| � δ +‖x−λu‖+ |λ |δ ,

and hence, by letting δ → 0, we get |μ−λ | � ‖x−λu‖. Thus, by Proposition 2.1.1,
we obtain that

μ ∈
⋂
λ∈K

BK(λ ,‖x−λu‖) =V (X ,u,x),

which proves the inclusion ⊇ in the equality (2.9.1). In order to prove the converse
inclusion, consider the subspace P of X generated by u and x. Since P is w∗-closed in
X , the bipolar theorem provides us with a closed subspace H of X∗ such that P = H◦.
Consequently, we have (X∗/H)′ ≡ H◦ = P and, since P is reflexive, we also have
X∗/H ≡P′ in the natural way. Now let μ be in V (X ,u,x). Since V (X ,u,x)=V (P,u,x)
(by Corollary 2.1.2), there is f ∈ X∗ such that ‖ f +H‖= 1, u( f ) = 1, and x( f ) = μ .
Take a sequence hn in H with ‖ f +hn‖→ 1, and set gn := f+hn

‖ f+hn‖ . Then gn becomes
a sequence in SX∗ such that u(gn) → 1 and x(gn) → μ . Therefore, for each δ > 0
there exists k ∈N such that |u(gk+n)−1|< δ for every n ∈N, and hence x(gk+n) lies
in Bδ for every n ∈ N, and then μ ∈ Bδ . Since δ is an arbitrary positive number, the
inclusion ⊆ in the equality (2.9.1) follows. Thus assertion (i) has been proved.

Assume that the equality (2.9.2) holds for every x ∈ X , and let C stand for
the weak∗-closure of Dw∗

(X ,u) in X ′. Then, by Lemma 2.9.5, we have that C =

D(X ,u). Now let V be a weak-open neighbourhood of zero in X∗. Then there exists
a weak∗-open neighbourhood of zero W in X ′ such that V = X∗ ∩ W . Since
D(X ,u) = C ⊆ Dw∗

(X ,u) +W , and D(X ,u) +W is weak∗-open in X ′, it follows
from Fact 2.9.3 that there is δ > 0 such that D(X ,x) ⊆ Dw∗

(X ,u) +W whenever
x ∈ SX and ‖x−u‖ � δ , and hence

Dw∗
(X ,x)⊆ (Dw∗

(X ,u)+W )∩X∗ = Dw∗
(X ,u)+V
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whenever x ∈ SX and ‖x−u‖� δ . Since V is an arbitrary weak-open neighbourhood
of zero in X∗, we deduce that the pre-duality mapping of X is norm-weak usc at u.
This concludes the proof of assertion (ii).

The last ingredient in the proof of Theorem 2.9.8 below is the celebrated Bishop–
Phelps–Bollobás theorem [109] (see also [695, Theorem 16.1]), which reads as
follows.

Theorem 2.9.7 Let X be a Banach space over K, let 0 < ε < 1, and let x ∈ BX and
h ∈ SX ′ be such that |h(x)−1|< ε2

4 . Then there are y ∈ SX and f ∈ D(X ,y) such that
‖y− x‖< ε and ‖ f −h‖< ε .

Theorem 2.9.8 For a numerical-range space (X ,u) over K, consider the following
conditions:

(i) For every x′′ ∈ X ′′ the equality V (X ′′,u,x′′) = {x′′( f ) : f ∈ D(X ,u)}− holds.

(ii) The duality mapping of X is norm-weak usc at u.

Then (i)⇒(ii), and (ii)⇒(i) whenever X is complete.

Proof Assume that condition (i) is fulfilled. Then, by Proposition 2.9.6(ii), the pre-
duality mapping of X ′′ is norm-weak usc at u. Therefore, since the duality mapping
of X is the restriction to X of the pre-duality mapping of X ′′, we deduce that the
duality mapping of X is norm-weak usc at u.

Now assume that X is complete and that the duality mapping of X is norm-weak
usc at u. Let x′′ be in X ′′, and let 0 < ε < 1. Since the set

{h ∈ X ′ : |x′′(h)|< ε}

is a weak-neighbourhood of zero in X ′, and the duality mapping of X is norm-weak
usc at u, there exists 0 < δ < ε such that, for each x ∈ SX with ‖x−u‖< δ and each
f ∈ D(X ,x), we can find g ∈ D(X ,u) satisfying |x′′( f −g)|< ε . Now set

B :=

{
x′′(h) : h ∈ SX ′ , |h(u)−1|< δ 2

4

}
,

and let μ be in B, so that there exists hμ ∈ SX ′ with |hμ(u)−1|< δ 2

4 and x′′(hμ) = μ .

Since X is complete and |hμ(u)− 1| < δ 2

4 , Theorem 2.9.7 applies to find xμ ∈ SX

and fμ ∈ D(X ,xμ) satisfying ‖xμ −u‖< δ and ‖ fμ −hμ‖ < δ . By the above, there
is also gμ ∈ D(X ,u) such that |x′′( fμ −gμ)|< ε . By setting

N(x′′) := supℜ({x′′( f ) : f ∈ D(X ,u)}),

it follows that

ℜ(μ) =ℜ(x′′(hμ)) =ℜ(x′′(hμ − fμ))+ℜ(x′′( fμ −gμ))+ℜ(x′′(gμ))

� ‖x′′‖δ + ε+N(x′′) � (‖x′′‖+1)ε+N(x′′).

Since μ is arbitrary in B, we deduce that

B ⊆ {μ ∈K : ℜ(μ) � (‖x′′‖+1)ε+N(x′′)},
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and hence, by Proposition 2.9.6(i), we have that

V (X ′′,u,x′′)⊆ B̄ ⊆ {μ ∈K : ℜ(μ) � (‖x′′‖+1)ε+N(x′′)},

and therefore maxℜ(V (X ′′,u,x′′)) � (‖x′′‖+1)ε+N(x′′). By letting ε → 0, we get

maxℜ(V (X ′′,u,x′′)) � N(x′′).

Since the converse inequality is clear, it is enough to replace x′′ with zx′′, for z ∈ SK,
to realize that condition (i) in the theorem is fulfilled.

Remark 2.9.9 (a) Let X be a normed space over K, let u be in SX , and let X̂ stand
for the completion of X . Since X and X̂ have the same dual, and the norm-weak
upper semicontinuity of the duality mapping goes down to subspaces, it follows that
Theorem 2.9.8 can be reformulated by saying that the duality mapping of X̂ is norm-
weak usc at u if and only if the equality V (X ′′,u,x′′) = {x′′( f ) : f ∈ D(X ,u)}− holds
for every x′′ ∈ X ′′.

(b) Now let A be a norm-unital normed algebra over K. Since the completion
Â of A is also a norm-unital normed algebra, it follows from Fact 2.9.1 (with Â
instead of A) and part (a) of the current remark that for every a′′ ∈ A′′ we have
V (A′′,1,a′′) = {a′′( f ) : f ∈ D(A,1)}−. In this way we have found a new proof of
Lemma 2.3.44.

As we will see in Proposition 2.9.11 below, Fact 2.9.2 does not remain true if the
assumption that n(X ,u) = 1 is relaxed to the one that u is a geometrically unitary
element of X . To this end, besides Theorem 2.9.8, we need the following.

Lemma 2.9.10 Let {(Xi,ui) : i ∈ I} be a family of numerical-range spaces over K,

consider the normed space
�∞⊕
i∈I

Xi �∞-sum of the family {Xi : i ∈ I}, and let X be a

subspace of
�∞⊕
i∈I

Xi containing the element u := {ui} and the elements {xi} with xi = 0

for all but a finite set of i’s. Then we have

n(X ,u) = inf{n(Xi,ui) : i ∈ I}.

Proof Write L := inf{n(Xi,ui) : i ∈ I}, and fix i0 ∈ I. Since the mapping x → x(i0)
from X to Xi0 is a linear contraction taking u to ui0 , it follows from Corollary 2.1.2(i)
that V (Xi0 ,ui0 ,x(i0))⊆V (X ,u,x) for every x ∈ X , and hence

v(X ,u,x) � v(Xi0 ,ui0 ,x(i0)) � n(Xi0 ,ui0)‖x(i0)‖ � L‖x(i0)‖.

Since i0 was arbitrary in I, we have v(X ,u,x) � L‖x‖ for every x ∈ X , so that
n(X ,u) � L.

Now let i0 be in I, fix xi0 ∈ Xi0 , and let x be in X defined by x(i) = 0 for i 	= i0 and
x(i0) = xi0 . Then, by Proposition 2.1.5, we have

maxℜ(V (X ,u,x)) = lim
r→0+

‖u+ rx‖−1
r

= lim
r→0+

max

{
0,

‖ui0 + rxi0‖−1
r

}
= max{0,maxℜ(V (Xi0 ,ui0 ,xi0))}.



2.9 Complements on numerical ranges 289

Replace xi0 with zxi0 (z ∈ SK) in the equality above, we get

V (X ,u,x) = co(V (Xi0 ,ui0 ,xi0)∪{0})

and, consequently,

v(Xi0 ,ui0 ,xi0) = v(X ,u,x) � n(X ,u)‖x‖= n(X ,u)‖xi0‖.

Since xi0 was an arbitrary element of Xi0 , we have n(X ,u) � n(Xi0 ,ui0), and this is
true for every i0, so that n(X ,u) � L.

Proposition 2.9.11 Let ρ be any real number with 0 < ρ < 1. Then there exists a
complete numerical-range space (X ,u) over K satisfying n(X ,u) = ρ and such that
the duality mapping of X is not norm-norm usc at u, nor even norm-weak usc at u.

Proof Let 0 < μ < 1, let Y stand for K2 endowed with the norm

|(ξ ,η)| := max{|ξ |+ρ |η|,μ |ξ |+ |η|},

and set w := (1,0) ∈ Y . By Proposition 2.1.5, for (ξ ,η) ∈ Y we have

maxℜ(V (Y,w,(ξ ,η))) =ℜ(ξ )+ρ |η|.

This implies v(Y,w,(ξ ,η)) = |ξ |+ ρ |η| for every (ξ ,η) ∈ Y . Consequences of
the above equality are that n(Y,w) = ρ and that D(Y,w) consists of those linear
functionals on Y of the form (ξ ,η)→ ξ +bη for some b ∈K with |b| � ρ .

Now let μn be a sequence of real numbers such that 0 < μn < 1 for every n ∈ N
and μn → 1. For each n ∈ N, let Xn stand for K2 endowed with the norm

|(ξ ,η)|n := max{|ξ |+ρ |η|,μn|ξ |+ |η|}.

Let X denote the Banach space of all convergent sequences x = ((ξn,ηn))n∈N in K2

endowed with the norm

‖x‖ := sup{|(ξn,ηn)|n : n ∈ N},

and set u := (un)n∈N ∈ X , where un := (1,0) for every n ∈N. By the above paragraph
we have that n(Xn,un) = ρ for every n ∈ N, and hence, by Lemma 2.9.10, that
n(X ,u) = ρ .

A straightforward computation shows that X ′ is the space of those sequences
f = ((an,bn))n∈N∪{0} in K2 such that ∑∞

n=1 |(an,bn)|′n < +∞ (where |(·, ·)|′n stands
for the dual norm of |(·, ·)|n) with the norm

‖ f‖= max{|a0|, |b0|}+
∞

∑
n=1

|(an,bn)|′n ,

the canonical duality being given by

f (x) = a0ξ +b0η+
∞

∑
n=1

(anξn +bnηn)

for x = ((ξn,ηn))n∈N ∈ X and (ξ ,η) := lim((ξn,ηn))n∈N. Then, by the standard
procedure, X ′′ is the space of all bounded sequences F = ((cn,dn))n∈N∪{0} in K2

with the norm

‖F‖= max{|c0|+ |d0| , sup{|(cn,dn)|n : n ∈ N}}.
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Let F0 in X ′′ be given by

F0 := ((0,0),(0,1),(0,1), . . . ,(0,1), . . .).

Then one easily obtains that V (X ′′,u,F0) = BK. However, since

D(X ,u) =

{
((an,bn))n∈N∪{0} ∈ X ′ : |b0| � a0, |bn| � ρan (n ∈ N),

∞

∑
n=0

an = 1

}
,

we get that

{F0( f ) : f ∈ D(X ,u)}− = ρBK � BK,

where − means closure in K. Therefore, by Theorem 2.9.8, the duality mapping of X
is not norm-weak usc at u.

Now we are going to show that the upper semicontinuity of the duality mapping of
a Banach space X at a norm-one element u is more a property of D(X ,u) than of u.
To this end we prove first the following.

Lemma 2.9.12 For a numerical-range space (X ,u) over K and a vector space
topology τ on X ′ weaker than or equal to the norm topology, consider the following
conditions:

(i) For each τ-neighbourhood of zero V in X ′ there exists δ > 0 such that h belongs
to D(X ,u)+V whenever h is in BX ′ with |h(u)−1|< δ .

(ii) The duality mapping of X is norm-τ usc at u.

Then (i)⇒(ii), and (ii)⇒(i) whenever X is complete.

Proof Assume that condition (i) holds, let V be any τ-neighbourhood of zero in X ′,
and let δ stand for the positive number associated to V by that condition. Then,
for each x ∈ SX with ‖x − u‖ < δ and each f ∈ D(X ,x), we have | f (u)− 1| =
| f (u− x)| � ‖x − u‖ < δ , and hence f ∈ D(X ,u) +V . Thus the duality mapping
of X is norm-τ usc at u.

Now assume that the duality mapping of X is norm-τ usc at u and that X is
complete, and let V be any τ-neighbourhood of zero in X ′. Take a τ-neighbourhood
of zero W in X ′ with W +W ⊆ V . Then there is 0 < η < 1 such that ηBX ′ ⊆ W

and D(X ,x) ⊆ D(X ,u) +W whenever x is in SX with ‖x− u‖ < η . Set δ := η2

4 ,
and let h be in BX ′ with |h(u) − 1| < δ . Then, by Theorem 2.9.7, there are
x ∈ SX and f ∈ D(X ,x) satisfying ‖x − u‖ < η and ‖ f − h‖ < η . Therefore
h ∈ f +ηBX ′ ⊆ D(X ,u)+W +W ⊆ D(X ,u)+V . Thus assertion (i) is fulfilled.

Proposition 2.9.13 Let X be a Banach space over K, let u,v be in SX such that
D(X ,u) = D(X ,v), and let τ be a vector space topology on X ′ weaker than or equal
to the norm topology. If the duality mapping of X is norm-τ usc at u, then the duality
mapping of X is norm-τ usc at v.

Proof Assume that the duality mapping of X is norm-τ upper semicontinuous at u
but not at v. Then, by Lemma 2.9.12, there exists a τ-neighbourhood V of zero in X ′
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such that for every n ∈ N we can find fn ∈ BX ′ satisfying

| fn(v)−1|< n
n+1

(2.9.3)

and

fn /∈ D(X ,v)+V, (2.9.4)

and there exists δ > 0 such that

h ∈ D(X ,u)+V whenever h ∈ BX ′ and |h(u)−1|< δ . (2.9.5)

Take a cluster point f to the sequence fn in the weak∗-topology of X ′. Then,
by (2.9.3), we have f ∈ D(X ,v) = D(X ,u), so 1 = f (u) is a cluster point to the
sequence fn(u), and so there is m ∈N with | fm(u)−1|< δ . By (2.9.5), fm belongs to
D(X ,u)+V . But, applying that D(X ,u) =D(X ,v) again, this contradicts (2.9.4).

Remark 2.9.14 (a) In Lemma 2.9.12, take τ equal to the norm topology. Then
assertion (i) in that lemma is nothing other than ‘D(X ,u) is strongly exposed by u’
in the sense of §2.9.35 below. Therefore, as we will prove in Theorem 2.9.36, the
implication (ii)⇒(i) remains true in this case if the completeness of X is removed.

(b) Now, take τ equal to the norm topology in Proposition 2.9.13, and look at the
proof. It follows from part (a) of the current remark that the proposition remains true
in this case if the completeness of X is dispensed.

2.9.2 The upper semicontinuity of the pre-duality mapping

In the previous subsection, we introduced the pre-duality mapping of a dual Banach
space as a tool for the proof of Theorem 2.9.8. Now we are going to see how a
good behaviour of the pre-duality mapping becomes important in order to compute
numerical ranges of elements in dual numerical-range spaces.

Given a numerical-range space (X ,u), we denote by Dis(X ,u) the set of all dissi-
pative elements of X (cf. Definition 2.1.8) and for x ∈ X we set

τ(u,x) := maxℜ(V (X ,u,x)).

Lemma 2.9.15 Let (X ,u) be a numerical-range space over K and let f be a linear
functional on X. Then the following conditions are equivalent:

(i) ℜ( f (x)) � 0 for every x ∈ Dis(X ,u).

(ii) There exists λ � 0 such that f ∈ λD(X ,u).

Proof The implication (ii)⇒(i) is clear. Assume that condition (i) holds. Then for
x ∈ X we have x− τ(u,x)u ∈ Dis(X ,u) so that, since −u ∈ Dis(X ,u),

ℜ( f (x)) � τ(u,x)ℜ( f (u)) � ‖x‖ℜ( f (u)).

This shows that ℜ ◦ f is a continuous real-linear functional on X with
‖ℜ ◦ f‖ = ℜ( f (u)), so f ∈ X ′ and ‖ f‖ = ℜ( f (u)). Therefore f (u) = ‖ f‖ and
condition (ii) follows by taking λ := f (u).
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Lemma 2.9.16 Let (X ,u) be a numerical-range space over K, let τ be a locally
convex topology on X, and let X ′

τ stand for the space of all τ-continuous linear
functionals on X. Then Dis(X ,u) is τ-closed in X if and only if the equality
V (X ,u,x) = { f (x) : f ∈ D(X ,u)∩X ′

τ}− holds for every x ∈ X.

Proof The ‘if’ part is clear. Assume that Dis(X ,u) is τ-closed in X . Let x be in X ,
and let η be a real number with η < τ(u,x). Then x−ηu is not dissipative, so by
the Hahn–Banach separation theorem for convex sets there is f ∈ X ′

τ \{0} such that
ℜ( f (y))� ℜ( f (x−ηu)) for every y ∈ Dis(X ,u). Since Dis(X ,u) is a cone, we have
ℜ( f (y)) � 0 for every y ∈ Dis(X ,u), so that, by Lemma 2.9.15, we can suppose that
f ∈ D(X ,u), and then 0 � ℜ( f (x− ηu)) = ℜ( f (x))− η . Therefore we have that
η � ℜ( f (x)) � maxℜ(H(x)), where

H(x) := { f (x) : f ∈ D(X ,u)∩X ′
τ}−.

By letting η → τ(u,x), we obtain τ(u,x) � maxℜ(H(x)). Since the converse in-
equality is clear, it is enough to replace x with zx, for z ∈ SK, to realize that

V (X ,u,x) = { f (x) : f ∈ D(X ,u)∩X ′
τ}−.

Thus the proof of the ‘only if’ part is concluded.

Now we formulate and prove the main result in this subsection.

Theorem 2.9.17 Let X be a Banach space over K with a complete predual X∗, and
let u be a norm-one element in X. We have:

(i) The pre-duality mapping of X is norm-weak usc at u if and only if the equality
V (X ,u,x) = {x( f ) : f ∈ Dw∗

(X ,u)}− holds for every x ∈ X.

(ii) If the duality mapping of X is norm-weak usc at u, then so is the pre-duality
mapping of X.

Proof The ‘if’ part of assertion (i) follows from Proposition 2.9.6(ii). To prove
the ‘only if’ part, we mimic the proof of the implication (ii)⇒(i) in Theorem 2.9.8,
introducing the appropriate changes. Assume that the pre-duality mapping of X is
norm-weak usc at u. Let x be in X , and let 0< ε < 1. Since the set {h∈X∗ : |x(h)|<ε}
is a weak-neighbourhood of zero in X∗, there exists 0 < δ < ε such that, for each
x∈ SX with ‖x−u‖< δ and each f ∈Dw∗

(X ,x), we can find g∈Dw∗
(X ,u) satisfying

|x( f −g)|< ε . Now set

B :=

{
x(h) : h ∈ SX∗ , |u(h)−1|< δ 2

4

}
,

and let μ be in B, so that there exists hμ ∈ SX∗ with |u(hμ)−1|< δ 2

4 and x(hμ) = μ .

Since |u(hμ)− 1| < δ 2

4 , Theorem 2.9.7 applies to find fμ ∈ SX∗ and xμ ∈ D(X∗, fμ)
satisfying ‖ fμ−hμ‖< δ and ‖xμ−u‖< δ . Noticing that the conditions fμ ∈ SX∗ and
xμ ∈ D(X∗, fμ) are equivalent to those xμ ∈ SX and fμ ∈ Dw∗

(X ,xμ), we derive from
the above that there is also gμ ∈ Dw∗

(X ,u) such that |x( fμ −gμ)|< ε . By setting

N(x) := supℜ({x( f ) : f ∈ Dw∗
(X ,u)}),
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it follows that

ℜ(μ) =ℜ(x(hμ)) =ℜ(x(hμ − fμ))+ℜ(x( fμ −gμ))+ℜ(x(gμ))

� ‖x‖δ + ε+N(x) � (‖x‖+1)ε+N(x).

Since μ is arbitrary in B, we deduce that

B ⊆ {μ ∈K : ℜ(μ) � (‖x‖+1)ε+N(x)},

and hence, by Proposition 2.9.6(i), we have that

V (X ,u,x)⊆ B̄ ⊆ {μ ∈K : ℜ(μ) � (‖x‖+1)ε+N(x)},

and therefore τ(u,x)� (‖x‖+1)ε+N(x). By letting ε → 0, we obtain that τ(u,x)�
N(x). Since the converse inequality is clear, it is enough to replace x with zx, for
z ∈ SK, to realize that

V (X ,u,x) = {x( f ) : f ∈ Dw∗
(X ,u)}−.

Thus the proof of assertion (i) is complete.
Now assume that the duality mapping of X is norm-weak usc at u. Then, by

Theorem 2.9.8, we have that Dis(X ′′,u) is w∗-closed in X ′′ and that

Dis(X ,u) = Dis(X ′′,u)∩X .

Let xλ be a net in Dis(X ,u)∩BX converging to some x ∈BX in the w∗-topology of X .
Taking a cluster point x′′ ∈ BX ′′ to the net xλ in the w∗-topology of X ′′, it follows that
x′′ ∈ Dis(X ′′,u). On the other hand, denoting by P : X ′′ → X the Dixmier projection
(i.e. the transpose of the inclusion X∗ ↪→X ′), and keeping in mind that P is continuous
for the corresponding w∗-topologies, we get x = P(x′′). Therefore, since P is a linear
contraction with P(u) = u, it follows from Corollary 2.1.2(i) that x ∈ Dis(X ,u). Thus
Dis(X ,u)∩BX is w∗-closed in X . By the Krein–Smulian theorem (see for example
[726, Theorem V.5.7]), Dis(X ,u) is w∗-closed in X . Finally, by Lemma 2.9.16 (with
τ = w∗) and assertion (i) already proved, we get that the pre-duality mapping of X is
norm-weak usc at u. This concludes the proof of assertion (ii).

It is worth remarking that the assumption in assertion (ii) of Theorem 2.9.17 –
that the duality mapping of X is norm-weak usc at u – does not involve the
predual. Therefore, if X is a dual Banach space, if u is a norm-one element
in X, and if the duality mapping of X is norm-weak usc at u, then the equality
V (X ,u,x) = {x( f ) : f ∈ D(X ,u)∩X∗}− holds for every complete predual X∗ of X
and every x ∈ X.

Concerning norm-unital normed algebras, the main consequence of Theorem
2.9.17 is the next corollary, which follows from that theorem by invoking Fact 2.9.1.

Corollary 2.9.18 Let A be a norm-unital complete normed algebra over K with a
complete predual. Then, for every a ∈ A, we have

V (A,1,a) = {a( f ) : f ∈ Dw∗
(A,1)}−.

Moreover, when in addition A is associative, the same conclusion holds if we replace
1 with any geometrically unitary element of A (cf. §2.1.20).
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Keeping in mind that the bidual of a norm-unital normed algebra is a norm-unital
normed algebra under the Arens product (see §2.2.11 and Corollary 2.2.13), we
realize that the above corollary contains Lemma 2.3.44 (cf. also Remark 2.9.9(b)).

By combining Fact 2.9.2 and Theorem 2.9.17, we find the following.

Corollary 2.9.19 Let X be a Banach space over K with a complete predual X∗, and
let u be in SX such that n(X ,u) = 1. Then the equality

V (X ,u,x) = {x( f ) : f ∈ Dw∗
(X ,u)}−

holds for every x ∈ X.

Invoking James’ theorem (see for example [718, Theorem I.3] or [778, The-
orem 2.9.4]), another relevant consequence of Theorem 2.9.17 is the following.

Corollary 2.9.20 A Banach space X over K is reflexive if and only if the duality
mapping of X ′ is norm-weak usc at every element of SX ′ .

Proof The ‘only if’ part follows from Corollary 2.9.4. Assume that the duality
mapping of X ′ is norm-weak usc at every element h ∈ SX ′ . Then, by Theorem 2.9.17,
we have that {1} = V (X ′,h,h) = {h(y) : y ∈ D(X ′,h) ∩ X}−. This implies that
D(X ′,h)∩X 	= /0, which means that h attains its norm at some point of SX . Now,
since h is arbitrary in SX ′ , the reflexivity of X follows from James’ theorem.

By combining Theorems 2.9.8 and 2.9.17(i), we get the following.

Corollary 2.9.21 Let X be a Banach space over K, and let u be in SX . If the duality
mapping of X is norm-weak usc at u, then so is the pre-duality mapping of X ′′.

Now we are going to see how an appropriate behaviour of the preduality mapping
of a dual Banach space manages to convert geometrically unitaries into so-called
‘w∗-unitaries’.

By a CS-closed set in a Banach space X we mean a subset S of X such that,
whenever ∑∞

n=1αnsn = x ∈ X , with sn ∈ S, αn � 0, and ∑∞
n=1αn = 1, we have x ∈

S. The celebrated Banach principle, that quasi-open continuous linear mappings
between Banach spaces are open, is codified in Jameson’s book [756] as follows.

Lemma 2.9.22 [756, Theorem 22.4] In a Banach space over K, a CS-closed set
and its closure have the same interior.

Corollary 2.9.23 Let X be a Banach space over K, and let S be a CS-closed set in
X. Then |co|(S) and |co|(S) have the same interior in X.

Proof If K = R, then |co|(S) = co(S∪−S) is a CS-closed set (by [756, 22.2 and
22.3]), and the result follows from Lemma 2.9.22. Assume that K=C. Let ε > 0, and
take n ∈ N such that BC ⊆ (1+ ε)co({z1, . . . ,zn}), where z1, . . . ,zn are the nth roots
of 1 in C. Then we have

|co|(S) = co(BCS)⊆ (1+ ε)co(∪n
i=1ziS)⊆ (1+ ε)|co|(S).

By keeping in mind that co(∪n
i=1ziS) is a CS-closed set, and applying Lemma 2.9.22,

we deduce that T ⊆ (1+ ε)|co|(S), where T stands for the interior of |co|(S). There-
fore, since T is open, we have T ⊆ ∪ε>0

1
1+ε T ⊆ |co|(S).
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§2.9.24 Let X be a Banach space with a (possibly incomplete) predual X∗, and
let u be in SX . If Dw∗

(X ,u) = /0, then we set nw∗
(X ,u) := 0. Otherwise, we define

nw∗
(X ,u) as the largest non-negative real number k satisfying

k‖x‖ � vw∗
(X ,x,u) := sup{| f (x)| : f ∈ Dw∗

(X ,u)}

for every x ∈ X . Thus, the set Dw∗
(X ,u) and the number nw∗

(X ,u) coincide with the
set DX∗(X ,u) and the number nX∗(X ,u), respectively, already introduced in §2.1.14.
We say that u is a w∗-unitary element of X if the linear hull of Dw∗

(X ,u) equals the
whole space X∗, and that u is a w∗-vertex of BX if Dw∗

(X ,u) separates the points
of X . Noticing that X∗ is a norming subspace of X ′, Corollary 2.1.22 applies to get
the following.

Corollary 2.9.25 Let X be a Banach space over K with a complete predual, and
let u be a w∗-unitary element of X. Then u is geometrically unitary.

Remark 2.9.26 Let X be a normed space, and let u be a norm-one element in
X . Noticing that D(X ,u) = Dw∗

(X ′′,u), it is clear that u is a geometrically unitary
element of X if and only if u is a w∗-unitary element of X ′′. Moreover we have

n(X ,u) = nw∗
(X ′′,u).

Indeed, the inequality n(X ,u)� nw∗
(X ′′,u) is straightforward. To prove the converse

inequality, we may assume that n(X ,u)> 0. Let x′′ be in X ′′. Then we have

vw∗
(X ′′,u,x′′) = sup{| f (x′′)| : f ∈ D(X ,u)}= sup{| f (x′′)| : f ∈ |co|(D(X ,u))}

� n(X ,u)sup{| f (x′′)| : f ∈ BX ′}= n(X ,u)‖x′′‖,

the last inequality being true because of Theorem 2.1.17(ii). Since x′′ is arbitrary in
X ′′, we derive nw∗

(X ′′,u) � n(X ,u), as desired.

Proposition 2.9.27 Let X be a Banach space over K with a complete predual X∗,
and let u be in SX . We have:

(i) u is a w∗-unitary element of X if and only if nw∗
(X ,u)> 0.

(ii) If nw∗
(X ,u)> 0, then

int(BX∗)⊆
1

nw∗
(X ,u)

|co|(Dw∗
(X ,u)). (2.9.6)

Proof Assume that u is w∗-unitary. Then, by Lemma 2.1.15, we have

nw∗
(X ,u)> 0.

Now assume that nw∗
(X ,u)> 0. Then, in the duality (X ,X∗), the set

B := {x ∈ X : vw∗
(X ,x,u) � 1}

is the absolute polar of Dw∗
(X ,u), and the inclusion B ⊆ 1

nw∗ (X ,u)
BX holds. It follows

from the bipolar theorem that nw∗
(X ,u)BX∗ ⊆ |co|(Dw∗

(X ,u)). Therefore, by apply-
ing Corollary 2.9.23, the inclusion (2.9.6) follows. Clearly, that inclusion implies that
u is w∗-unitary.
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Let X be a Banach space with a complete predual X∗, and let u be a norm-one
element of X . It is obvious that w∗-unitaries are w∗-vertices and that w∗-vertices are
vertices, whereas it is not so obvious but true that w∗-unitaries are geometric unitaries
(by Corollary 2.9.25). On the other hand, if u is a vertex of BX , and if the pre-duality
mapping of X is norm-weak usc at u, then, by Theorem 2.9.17(i), u is a w∗-vertex of
BX . Now, we can complete the picture by proving the following.

Theorem 2.9.28 Let X be a Banach space over K with a complete predual X∗, let
u be a geometrically unitary element of X, and assume that the pre-duality mapping
of X is norm-weak usc at u. Then u is w∗-unitary. More precisely, we have

n(X ,u) = nw∗
(X ,u)> 0 and n(X ,u)int(BX∗)⊆ |co|(Dw∗

(X ,u)).

Proof By Theorem 2.9.17(i), we have v(X ,x,u) = vw∗
(X ,x,u) for every x ∈ X , and,

consequently, the equality n(X ,u) = nw∗
(X ,u) holds. Now apply Theorem 2.1.17(i)

and Proposition 2.9.27.

By invoking Fact 2.9.2 and Theorem 2.1.17(i), Theorem 2.9.28 immediately above
yields the following.

Corollary 2.9.29 Let X be a Banach space over K with a complete predual X∗, and
let u be in SX such that n(X ,u) = 1. Then we have

int(BX∗)⊆ |co|(Dw∗
(X ,u)),

and hence u is w∗-unitary. As a consequence,

BX∗ = |co|(Dw∗
(X ,u)).

§2.9.30 We note that, when K = C, the equality BX∗ = |co|(Dw∗
(X ,u)) cannot be

expected in Corollary 2.9.29. Indeed, it is enough to look at Example 2.1.18 to realize
that the above equality fails by taking X equal to the complex dual Banach space �∞
and u equal to the sequence constantly equal to 1, the equality n(X ,u) = 1 being clear
because the coordinate projections on X are elements of D(X ,u). Note also that, in
this case, X is a unital commutative C∗-algebra and u is the unit of X .

A similar counterexample for K=R does also exist, but is more involved. Indeed,
we have the following.

Example 2.9.31 First step: construction of the dual numerical-range space (X ,u).
Let Y stand for the closed subspace of the real Banach space c0 given by

Y :=

{
y = {λn}n∈N∪{0} : λ1 +λ2 =

∞

∑
n=1

λn+2

2n

}
,

and consider the convex subset K of Y defined by

K := {y = {λn}n∈N∪{0} ∈ Y : λ0 = 1 and 0 � λn � 1 for every n ∈ N}.

Given y = {λn}n∈N∪{0} ∈ B(Y,‖·‖∞) with λ0 = λ1 = λ2 = 0, consider the sequences

y+ :=

{
1,

1
2

∞

∑
n=1

λ+
n+2

2n ,
1
2

∞

∑
n=1

λ+
n+2

2n ,λ+
3 ,λ+

4 , . . .

}
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and

y− :=

{
1,

1
2

∞

∑
n=1

λ−
n+2

2n ,
1
2

∞

∑
n=1

λ−
n+2

2n ,λ−
3 ,λ−

4 , . . .

}
,

where λ+
n = max{λn,0} and λ−

n = max{−λn,0}, and note that y = y+ − y−

and y+,y− ∈ K, to conclude that y ∈ 2 |co|(K). Now, for an arbitrary element
y = {λn}n∈N∪{0} ∈ B(Y,‖·‖∞), write

y = [λ0 −2(λ1 +λ2)]y0 +(λ1 −λ2)y1 − (λ1 −λ2)y2 +2(λ1 +λ2)y3 + y4,

where

y0 := {1,0,0, . . .}, y1 :=

{
1,

1
2
,0,

2
3
,

2
3
,0,0, . . .

}
,

y2 :=

{
1,0,

1
2
,

2
3
,

2
3
,0,0, . . .

}
, y3 :=

{
1,

1
4
,

1
4
,1,0,0, . . .

}
,

and
y4 := {0,0,0,λ3 −2(λ1 +λ2),λ4,λ5, . . .},

and note that y0,y1,y2,y3 belong to K and that y4 is as studied above, to get that
y ∈ 15 |co|(K). Therefore B(Y,‖·‖∞) ⊆ 15 |co|(K), and hence |co|(K) is an absorbing
subset of Y . On the other hand, since K ⊆ B(Y,‖·‖∞), we have |co|(K)⊆ B(Y,‖·‖∞), and
so |co|(K) is a radially bounded subset of Y . It follows that the Minkowski functional
of |co|(K)

‖y‖ := inf{α � 0 : y ∈ α |co|(K)}

is a norm on Y equivalent to ‖ · ‖∞ satisfying ‖ · ‖∞ � ‖ · ‖, and that

int(B(Y,‖·‖))⊆ |co|(K)⊆ B(Y,‖·‖). (2.9.7)

Set X∗ := (Y,‖ · ‖), let X stand for the dual of X∗, and let u denote the element of X
defined by u(y) = λ0 for every y = {λn}n∈N∪{0} ∈ X∗. Keeping in mind that

|u(y)| � ‖y‖∞ � ‖y‖ for every y ∈ X∗,

that {1,0,0, . . .} ∈ BX∗ , and that u({1,0,0, . . .}) = 1, we deduce that ‖u‖= 1.
Second step: proof that n(X ,u) = 1. Noticing that u(y) = 1 for every y ∈ K, and

that K ⊆ BX∗ , we derive that

K ⊆ Dw∗
(X ,u). (2.9.8)

Then, since the equality

‖x‖= sup{|x(y)| : y ∈ |co|(K)}= sup{|x(y)| : y ∈ K}

holds for every x ∈ X (by (2.9.7)), it follows that n(X ,u) = 1.
Last step: proof that BX∗ 	= |co|(Dw∗

(X ,u)). Let y= {λn}n∈N∪{0} be in Dw∗
(X ,u),

and let 0 < α < 1. Then λ0 = 1, |λn| � 1 for every n ∈ N, and αy ∈ |co|(K) (again
by (2.9.7)). Therefore there exist y1 = {μn}n∈N∪{0}, y2 = {νn}n∈N∪{0} ∈ K and t ∈
[0,1] such that αy = ty1 − (1− t)y2, that is to say αλn = tμn − (1− t)νn for every
n ∈N∪{0}. In particular, we have α = αλ0 = tμ0 − (1− t)ν0 = t − (1− t) = 2t −1,
hence t = α+1

2 . Now, for each n ∈ N we have αλn =
α+1

2 μn − 1−α
2 νn, and so

λn =
α+1

2α
μn −

1−α
2α

νn � −1−α
2α

.
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By letting α → 1, we derive that λn � 0 for every n ∈ N. Thus, keeping in mind
(2.9.8), we have proved that

Dw∗
(X ,u) = K.

Now to conclude the proof it is enough to show that

y = {0, 1
2 ,−

1
2 ,0,0, . . .} ∈ (λ |co|(K))\|co|(K) for every λ > 1.

Suppose to the contrary that y ∈ |co|(K), so that there exist y1 = {μn}n∈N∪{0}, y2 =

{νn}n∈N∪{0} ∈ K and t ∈ [0,1] such that y = ty1 − (1− t)y2. Then

0 = tμ0 − (1− t)ν0 = t − (1− t) = 2t −1,

and hence t = 1
2 . Therefore

1
2
=

1
2
μ1 −

1
2
ν1 and −1

2
=

1
2
μ2 −

1
2
ν2,

and consequently

1 =
1
2
(μ1 −μ2)+

1
2
(ν2 −ν1).

But μ1 − μ2 � 1, ν2 − ν1 � 1, and μi,νi � 0 (i = 1,2). It follows that μ1 = ν2 = 1,
μ2 = ν1 = 0. But then

∞

∑
n=1

μn+2

2n = 1 =
∞

∑
n=1

νn+2

2n and 0 � μn,νn � 1

imply μn+2 = 1 = νn+2 for every n. Since y1,y2 ∈ c0 this is impossible. Hence y 	∈
|co|(K). Let 0 < r < 1 be given and set r′ = ∑N

n=1
1
2n where N is sufficiently large so

that r < r′. Then ry = 1
2 (y1 − y2) where

y1 =

{
1,r,0,

r
r′
, . . . ,

r
r′︸ ︷︷ ︸

N

,0, . . .

}
and y2 =

{
1,0,r,

r
r′
, . . . ,

r
r′︸ ︷︷ ︸

N

,0, . . .

}

belong to K. Hence y ∈ λ |co|(K) for every λ = 1
r > 1.

Thinking about positive results for general norm-unital normed algebras, we
have the next relevant corollary to Theorem 2.9.28. To derive the corollary, Prop-
osition 2.1.11, Fact 2.9.1, and Theorems 2.1.17(i) and 2.9.17(ii) should also be
invoked.

Corollary 2.9.32 Let A be a norm-unital complete normed complex algebra with a
complete predual A∗. Then

1
e

int(BA∗)⊆ |co|(Dw∗
(A,1)),

and hence 1 is a w∗-unitary element of A. Moreover, when in addition A is associa-
tive, the same conclusion holds if we replace 1 with any geometrically unitary elem-
ent of A.
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In fact, keeping in mind that the norm-norm upper semicontinuity of the duality
mapping at an element u goes down to subspaces containing u, and that the numerical
index n(·,u) increases when passing to such subspaces, the arguments leading to
Corollaries 2.9.18 and 2.9.32 yield the following.

Corollary 2.9.33 Let A be a norm-unital normed algebra over K, and let X be a
subspace of A with a complete predual X∗ and such that the unit 1 of A lies in X.
We have:

(i) The equality V (X ,1,x) = {x( f ) : f ∈ Dw∗
(X ,1)}− holds for every x ∈ X.

(ii) If K= C, then the inclusion 1
e int(BX∗)⊆ |co|(Dw∗

(X ,1)) holds, and hence 1 is
a w∗-unitary element of X.

To conclude the current subsection, let us formulate the following straightforward
consequence of Theorem 2.1.17(v) and Corollaries 2.9.19 and 2.9.29.

Corollary 2.9.34 Let X be a normed space over K, and let u be in SX such that
n(X ,u) = 1. Then:

(i) For every n ∈ N and every F in the 2n-dual X [2n] of X we have

V (X [2n],u,F) = {F( f ) : f ∈ D(X [2(n−1)],u)}−.

(ii) u is w∗-unitary in all even duals of X. More precisely, for every n ∈ N we have

int(BX [2n−1] )⊆ |co|(D(X [2(n−1)],u)).

2.9.3 Involving the strong subdifferentiability of the norm

§2.9.35 Let (X ,u) be a numerical-range space over K. Then, by Proposition 2.1.5,
for each x ∈ X we have

‖u+ rx‖−1
r

� τ(u,x) := maxℜ(V (X ,u,x))

for every r > 0, and

lim
r→0+

‖u+ rx‖−1
r

= τ(u,x).

We say that the norm of X is strongly subdifferentiable at u if the above
limit is uniform when x runs over the unit closed ball of A, equivalently, if
limr→0+ ϕ(X ,u,r)=0, where

ϕ(X ,u,r) := sup

{
‖u+ rx‖−1

r
− τ(u,x) : x ∈ BX

}
for every r > 0. A subset C of BX∗ is said to be strongly exposed by u, if the distance
d( fn,C) tends to zero for any sequence fn in BX∗ such that fn(u)→ 1. For K � 1 and
r > 0 let us write

βu,K(r) := inf{1−‖u+ rx‖ : x ∈ KBX , τ(u,x) � −1}.

Then u is said to be a τ-point of X if, for any K � 1 there is a rK > 0 such that
βu,K(rK)> 0.



300 Beginning the proof of the non-associative Vidav–Palmer theorem

We can now state one of the main results in this subsection.

Theorem 2.9.36 Let X be a normed space over K, and let u be in SX . Then the
following conditions are equivalent:

(i) u strongly exposes the set D(X ,u).
(ii) The duality mapping of X is norm-norm usc at u.

(iii) For every ε > 0 there is δ > 0 such that

inf{‖g− f‖ : g ∈ D(X ,x) , f ∈ D(X ,u)}< ε

whenever x ∈ SX satisfies ‖x−u‖< δ .
(iv) The norm of X is strongly subdifferentiable at u.
(v) u is a τ-point of X.

Proof (i)⇒(ii) This follows from Lemma 2.9.12.
(ii)⇒(iii) Although this implication is clear, we discuss it to point out that the law

ε → δ is the same in both conditions (a fact which will be applied in the verification
of Corollary 2.9.37). Indeed, condition (ii) means that for every ε > 0 there is δ > 0
such that

D(X ,x)⊆ D(X ,u)+ ε int(BX ′)

whenever x is in SX with ‖x− u‖ < δ , whereas condition (iii) means that for every
ε > 0 there is δ > 0 such that we have

D(X ,x)∩ [D(X ,u)+ ε int(BX ′)] 	= /0 for every x ∈ SX with ‖x−u‖< δ .

(iii)⇒(iv) Let ε > 0. By assumption (iii), there exists ρ > 0 such that, whenever
y is in SX with ‖y− u‖ < ρ , we can find g ∈ D(X ,y) and f ∈ D(X ,u) such that
‖g− f‖< ε . Set δ := min

{ρ
4 ,

1
2

}
. Then, for 0 < r < δ and x ∈ BX , we clearly have

‖u+ rx‖ � 1
2 and 1−‖u+ rx‖= ‖u‖−‖u+ rx‖ � r, and hence∥∥∥∥ u+ rx

‖u+ rx‖ −u

∥∥∥∥� 2‖(1−‖u+ rx‖)u+ rx‖ � 4r < ρ .

Therefore there are g ∈ D(X , u+rx
‖u+rx‖ ) and f ∈ D(X ,u) satisfying ‖g− f‖< ε . Since

ℜ(g(x)) =
ℜ(g(u+ rx))−ℜ(g(u))

r
=

‖u+ rx‖−ℜ(g(u))
r

� ‖u+ rx‖−1
r

,

and τ(u,x) � ℜ( f (x)), we deduce that

‖u+ rx‖−1
r

− τ(u,x) � ℜ(g(x))−ℜ( f (x)) � ‖g− f‖< ε.

Thus, by the arbitrariness of x ∈ BX , we have ϕ(X ,u,r)� ε whenever 0 < r < δ , i.e.
the norm of X is strongly subdifferentiable at u.

(iv)⇒(v) Let K � 1 and x ∈ KBX with τ(u,x)�−1 be given. By the definition of
the function ϕ(X ,u, ·), for every r > 0 we have

‖u+ rx‖=
∥∥∥u+Kr

x
K

∥∥∥� 1+Krτ
(

u,
x
K

)
+Krϕ(X ,u,Kr)

= 1+ rτ(u,x)+Krϕ(X ,u,Kr) � 1− r+Krϕ(X ,u,Kr),
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so the arbitrariness of x in KBX gives

βu,K(r)

r
� 1−Kϕ(X ,u,Kr).

Now suppose that condition (iv) holds, so that limr→0+ ϕ(X ,u,Kr) = 0. It follows
that βu,K(r) must be positive for small enough r.

(v)⇒(i) Let f ∈ BX ′ be such that d( f ,D(X ,u)) > ρ > 0. By applying the separ-
ation theorem to the w∗-compact, convex, disjoint sets D(X ,u) and f +ρBX ′ we find
an x ∈ SX such that

τ(u,x) = max{ℜ(g(x)) : g ∈ D(X ,u)}

� min{ℜ(h(x)) : h ∈ f +ρBX ′}=ℜ( f (x))−ρ .

Let us write y = ρ−1[x− (τ(u,x)+ρ)u] , so that we have

τ(u,y) =−1 and ‖y‖ � 1+2ρ−1.

For r > 0 we have

‖u+ ry‖ � ℜ( f (u+ ry))

=ℜ( f (u))+ rρ−1ℜ( f (x))− rρ−1(τ(u,x)+ρ)ℜ( f (u))

� ℜ( f (u))+ rρ−1(τ(u,x)+ρ)(1−ℜ( f (u)))

� ℜ( f (u))+ rρ−1(ρ−1)(1−ℜ( f (u)))

where we have used that τ(u,x) � −1. It follows that

βu,K(r) � (1−ℜ( f (u)))(1− rρ−1(ρ−1))

where K = 1+2ρ−1. Now suppose that condition (i) does not hold, so that there is a
sequence fn in BX ′ such that fn(u)→ 1 but d( fn,D(X ,u))> ρ for some fixed ρ > 0
and all n. Then the above argument with fn in place of f gives βu,K(r) � 0 for any
r > 0, where K = 1+2ρ−1. Hence u is not a τ-point.

Looking at Fact 2.9.1 and Theorem 2.9.36 and their proofs, we get the following.

Corollary 2.9.37 Let A be a norm-unital normed algebra over K. Then the norm
of A is strongly subdifferentiable at 1. More precisely, for every ε > 0 we have
ϕ(A,1,r)< ε whenever 0 < r < min

{ ε
4 ,

1
2

}
.

Thus the strong subdifferentiability of the norm of norm-unital normed algebras
at their units is ‘uniform’ in the class of such algebras.

Given a normed space X over K and a non-empty subset U of SX , we say that the
norm of X is uniformly strongly subdifferentiable on U if

limr→0+ sup{ϕ(X ,u,r) : u ∈U}= 0.

Proposition 2.9.38 Let X be a normed space over K, let U be a non-empty subset
of SX , and assume that the norm of X is uniformly strongly subdifferentiable on U.
Then we have:

(i) The norm of X is uniformly strongly subdifferentiable on the closure of U.
(ii) X is smooth at every element of the interior of U relative to SX .
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Proof Let ε > 0. By the assumption, there is δ > 0 such that we have

‖u+ rx‖−1
r

� τ(u,x)+ ε (2.9.9)

for every (u,x,r) ∈ U ×BX×]0,δ [. Now, to prove assertion (i) it is enough to show
that the inequality (2.9.9) remains true for every (u,x,r) ∈ Ū × BX×]0,δ [. Fix
(u,x,r) ∈ Ū ×BX×]0,δ [, take a sequence un in U converging to u, for each n ∈ N
take fn ∈ D(X ,un) such that ℜ( fn(x)) = τ(un,x), and let f ∈ BX ′ be a cluster point
to the sequence fn in the w∗-topology. Then f lies in D(X ,u) and, since

‖un + rx‖−1
r

� ℜ( fn(x))+ ε,

we deduce that ‖u+rx‖−1
r �ℜ( f (x))+ε , and hence ‖u+rx‖−1

r � τ(u,x)+ε , as desired.
To prove assertion (ii), let u be in the interior of U relative to SX . We want to realize

that X is smooth at u. Since the assumption that the norm of X is uniformly strongly
subdifferentiable on U appropriately goes down to subspaces, and X is smooth at u
if and only if so are all two-dimensional subspaces of X containing u, we can assume
without loss of generality that X is two-dimensional. Then, by Mazur’s theorem (cf.
§2.8.55), we are provided with a sequence un in SX converging to u and such that
X is smooth at un for every n. On the other hand, the assumption that the norm
of X is uniformly strongly subdifferentiable on U clearly implies that the function
(u,x) → τ(u,x) from U ×BX to R is (jointly) continuous. As a consequence, for
each x ∈ X , the sequence τ(un,x) converges to τ(u,x). Since the smoothness of X
at un reads as τ(un,−x) = −τ(un,x) for every x ∈ X (cf. §2.6.1), it follows that
τ(u,−x) =−τ(u,x) for every x ∈ X , i.e. X is smooth at u, as desired.

§2.9.39 A normed space X is said to be almost transitive if, for every (equivalently,
some) norm-one element x ∈ X , the orbit of x under the group of all surjective
linear isometries on X is dense in SX . The almost transitivity is a weakening of the
transitivity already introduced in §2.6.43.

Let E be a topological space, and let S be a subset of E. We recall that S is said to
be nowhere dense in E if the closure of S in E has empty interior in E. We note that

if S is not nowhere dense in E, then we have in fact S∩ S̄
◦
	= /0. For

S∩ S̄
◦
= /0 ⇒ S ⊆ E \ S̄

◦
⇒ S̄ ⊆ E \ S̄

◦
⇒ S̄

◦
= S̄∩ S̄

◦
= /0.

Now we can prove the following multiplicative characterization of real pre-Hilbert
spaces, which merits being compared with that obtained in Corollary 2.6.14.

Theorem 2.9.40 Let X be a nonzero real (respectively, complex) normed space.
Then the following conditions are equivalent:

(i) X is a pre-Hilbert space (respectively, X = C).
(ii) X is almost transitive, and there are v ∈ SX and a norm-one continuous bilinear

mapping f : X ×X → X such that f (x,v) = f (v,x) = x for every x in X.
(iii) There is a non-nowhere dense subset U of SX such that, for each u ∈ U, we

can find a norm-one continuous bilinear mapping f u : X ×X → X satisfying
f u(x,u) = f u(u,x) = x for every x in X.
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Proof (i)⇒(ii) By Corollary 2.6.14 and Lemma 2.7.36.
(ii)⇒(iii) Let v and f be given by the assumption (ii), and let U stand for the orbit

of v under the group of all surjective linear isometries on X . Then U is a dense (so
non-nowhere dense) subset of SX . Moreover, for each u ∈ U , there is a surjective
linear isometry T u : X → X such that T u(u) = v, so that it is enough to consider
the mapping f u : (x,y) → (T u)−1[ f (T u(x),T u(y))] from X ×X to X to realize that
condition (iii) is fulfilled.

(iii)⇒(i) Let U be the subset of SX given by assumption (iii), and let u be in U .
Then X , endowed with the product f u, becomes a norm-unital normed real (respect-
ively, complex) algebra whose unit is u. Since u is arbitrary in U , it follows from
Corollary 2.9.37 that the norm of X is uniformly strongly subdifferentiable on U .

Therefore, by Proposition 2.9.38, X is smooth at each element of Ū
◦
. Since U is

not nowhere dense in SX , there exists w ∈ U ∩ Ū
◦
, so that X is smooth at w, and

f w : X ×X → X is a norm-one continuous bilinear mapping satisfying

f w(x,w) = f w(w,x) = x for every x in X .

By Corollary 2.6.14 (respectively, Proposition 2.6.2), X is a pre-Hilbert space
(respectively, X = C).

Recall that smooth-normed algebras were defined as those norm-unital normed
algebras which are smooth at their units (cf. §2.6.1).

Corollary 2.9.41 Let A be a norm-unital normed real (respectively, complex) alge-
bra. Then the following conditions are equivalent:

(i) The normed space of A is transitive.
(ii) The normed space of A is almost transitive.

(iii) A is a smooth-normed algebra (respectively, A = C).

Proof The implication (i)⇒(ii) is clear, whereas the one (iii)⇒(i) follows from
Corollary 2.6.10(ii) and Lemma 2.7.36. Finally, if condition (ii) is fulfilled, then, by
the implication (ii)⇒(i) in Theorem 2.9.40, A is a pre-Hilbert space (respectively,
A = C), and hence condition (iii) holds.

Invoking Theorem 2.6.21, Corollary 2.9.41 above yields the following.

Corollary 2.9.42 Let A be a norm-unital normed alternative real algebra. Then the
following conditions are equivalent:

(i) The normed space of A is almost transitive.
(ii) A is equal to R,C,H, or O.

Let X be a normed space over K, and let u be in SX . By the definition of Fréchet
differentiability, the norm of X is Fréchet differentiable at u if there exists a continu-
ous R-linear mapping gu : X → R such that

lim
‖h‖→0

|‖u+h‖−1−gu(h)|
‖h‖ = 0

or, equivalently,

lim
r→0

‖u+ rx‖−1
r

= gu(x) uniformly when x runs over BX .
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By looking at §§2.6.1 and 2.9.35, we realize that, if the norm of X is Fréchet differ-
entiable at u, then we have gu(x) = τ(u,x) for every x ∈ X and that, consequently,
the following fact follows straightforwardly.

Fact 2.9.43 Let X be a normed space over K, and let u be in SX . Then the norm of
X is Fréchet differentiable at u if and only if X is smooth at u and the norm of X is
strongly subdifferentiable at u.

Thus strong subdifferentiability of the norm is a non-smooth extension of Fréchet
differentiability of the norm.

Again let X be a normed space over K, but now let U be a non-empty subset of
SX . We say that the norm of X is uniformly Fréchet differentiable on U if

lim
‖h‖→0

|‖u+h‖−1− τ(u,h)|
‖h‖ = 0 uniformly when u runs over U

or, equivalently,

limr→0 sup
{

‖u+rx‖−1
r − τ(u,x) : (u,x) ∈U ×BX

}
= 0.

The following fact now follows from Fact 2.9.43.

Fact 2.9.44 Let X be a normed space over K, and let U be a non-empty subset of
SX . Then the norm of X is uniformly Fréchet differentiable on U if and only if X is
smooth at every point of U and the norm of X is uniformly strongly subdifferentiable
on U.

Definition 2.9.45 A normed space X is said to be uniformly smooth if the norm of
X is uniformly Fréchet differentiable on the whole unit sphere SX of X .

Now, by keeping Proposition 2.9.38 in mind, we get the following.

Proposition 2.9.46 A normed space X over K is uniformly smooth if and only if
the norm of X is uniformly strongly subdifferentiable on some dense subset of SX .

We note that uniformly smooth Banach spaces are superreflexive, and that, in
fact, superreflexivity is the isomorphic side of the uniform smoothness, i.e. every
superreflexive Banach space has a uniformly smooth equivalent renorming (see for
instance [722, Corollary IV.4.6]).

Now we are going to study numerical ranges in �∞-sums of numerical-range
spaces. We begin with the following fact whose proof is left to the reader.

Fact 2.9.47 Let I be a non-empty finite set, let {Xi}i∈I be a family of normed spaces
over K, and, for each i in I, let ui be a norm-one element in Xi. Denote by Y the
�∞-sum of the family {Xi}i∈I , and by u the element of SY given by u(i) := ui for every
i in I. Then the equality

V (Y,u,y) = co [∪i∈IV (Xi,u(i),y(i))]

holds for every y in Y .

The case in which the set I above is infinite is discussed in the following.
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Theorem 2.9.48 Let I be an infinite set, let {Xi}i∈I be a family of normed spaces
over K, and, for each i in I, let ui be a norm-one element in Xi. Denote by Y the
�∞-sum of the family {Xi}i∈I , and by u the element of SY given by u(i) := ui for every
i in I. Then the following conditions are equivalent:

(i) the equality V (Y,u,y) = co [∪i∈IV (Xi,u(i),y(i))] holds for every y in Y .
(ii) lim(i,r)→(∞,0+)ϕ(Xi,u(i),r) = 0.

In condition (ii) above, the symbol lim(i,r)→(∞,0+) means the limit along the filter
basis on I×R+ consisting of all subsets of I×R+ of the form J×]0,δ [, where J is a
cofinite subset of I and δ is a positive number.

Proof (ii)⇒(i) Fix y in SY , and let ε be a positive number. By assumption (ii), there
exists δ > 0, and a cofinite subset J of I, such that the inequality

‖u( j)+ rx j‖−1
r

− τ(u( j),x j)< ε

holds whenever j is in J, x j is in BXj for such a j, and 0 < r < δ . For k in I\J, we
can choose δk > 0 such that

‖u(k)+ ry(k)‖−1
r

− τ(u(k),y(k))< ε

whenever 0 < r < δk. By setting ρ := min{δ ,min{δk : k ∈ I\J}}, it follows that the
inequality

‖u(i)+ ry(i)‖−1
r

< τ(u(i),y(i))+ ε

is true for every i in I and 0 < r < ρ . Therefore, for 0 < r < ρ we have

‖u+ ry‖−1
r

� sup{τ(u(i),y(i)) : i ∈ I}+ ε,

and, by letting r → 0, we obtain

τ(u,y) � sup{τ(u(i),y(i)) : i ∈ I}+ ε.

In view of the arbitrariness of ε , we actually have

τ(u,y) � sup{τ(u(i),y(i)) : i ∈ I},

so that, replacing y by zy with z in SK, the inclusion

V (Y,u,y)⊆ co [∪i∈IV (Xi,u(i),y(i))]

follows. The reverse inclusion is trivial.
(i)⇒(ii) Assume that condition (ii) is not true. Then there is ε > 0 such that, for

every cofinite subset J of I, and for every δ > 0, there exist 0 < r < δ , j ∈ J, and
x j ∈ BXj such that

‖u( j)+ rx j‖−1
r

− τ(u( j),x j) � ε.

Take 0 < r1 < 1, i(1) ∈ I, and xi(1) ∈ BXi(1)
such that

‖u(i(1))+ r1xi(1)‖−1

r1
− τ(u(i(1)),xi(1)) � ε.
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Assume that, for some n in N we have found

r1, . . . ,rn, i(1), . . . , i(n), and xi(1), . . . ,xi(n)

such that 0 < rm < 1
m , i(m) ∈ I, xi(m) ∈ Xi(m),

‖u(i(m))+ rmxi(m)‖−1

rm
− τ(u(i(m)),xi(m)) � ε

for every m ∈ {1, . . . ,n}, and i(m) 	= i(m′) for all m,m′ ∈ {1, . . . ,n} with m 	= m′.
Then we can choose

0 < rn+1 <
1

n+1
, i(n+1) ∈ I\{i(1), . . . , i(n)}, and xi(n+1) ∈ BXi(n+1)

satisfying

‖u(i(n+1))+ rn+1xi(n+1)‖−1

rn+1
− τ(u(i(n+1)),xi(n+1)) � ε.

In this way, we have constructed a sequence (rn, i(n),xi(n)) with rn ∈ R+, rn → 0,
i(n) ∈ I, i(n) 	= i(m) for n 	= m, xi(n) ∈ BXi(n)

, and

‖u(i(n))+ rnxi(n)‖−1

rn
− τ(u(i(n)),xi(n)) � ε.

Set s := limsupn→∞ τ(u(i(n)),xi(n)), so that, by discarding a finite number of terms in
the sequence (rn, i(n),xi(n)), we can assume that, in addition to the above properties,
we have

τ(u(i(n)),xi(n)) � s+
ε
2

for every n. Now, consider the element y in Y defined by y(i) = xi(n) if i = i(n) for
some n, and y(i) = su(i) otherwise. Then, for every n in N we have

‖u+ rny‖−1
rn

� ‖u(i(n))+ rny(i(n))‖−1
rn

=
‖u(i(n))+ rnxi(n)‖−1

rn
� τ(u(i(n)),xi(n))+ ε.

By taking upper limits as n → ∞, we obtain

τ(u,y) � s+ ε.

On the other hand, the definition of y yields the inequality

sup{τ(u(i),y(i)) : i ∈ I} � s+
ε
2
.

It follows that

sup{τ(u(i),y(i)) : i ∈ I}+ ε
2

� τ(u,y),

so that the equality in assertion (i) cannot be true for y.

§2.9.49 With the notation in Theorem 2.9.48 above, it is clear that the condition

limr→0+ sup{ϕ(Xi,u(i),r) : i ∈ I}= 0

implies the one
lim(i,r)→(∞,0+)ϕ(Xi,u(i),r) = 0.
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But, in view of Corollary 2.9.37, the first of these conditions is fulfilled whenever,
for each i ∈ I, Xi is a norm-unital normed algebra and ui is the unit of Xi. Therefore
it is enough to invoke Fact 2.9.47 and Theorem 2.9.48 itself to derive the following.

Corollary 2.9.50 Let {Ai}i∈I be any family of norm-unital normed algebras over
K, and let B stand for the �∞-sum of the family {Ai}i∈I . Then for every b ∈ B we have

V (B,1,b) = co [∪i∈IV (Ai,1,b(i))],

where 1 stands indistinctly for the unit of B and that of each Ai.

Given a non-empty set I and a normed space X , we denote by B(I,X) the space of
all bounded functions from I to X , endowed with the sup norm. As a straightforward
consequence of Corollary 2.9.50, we get the following.

Corollary 2.9.51 Let I be a non-empty set, and let A be a norm-unital normed
algebra over K. Then for every f ∈ B(I,A) we have

V (B(I,A),1, f ) = co [∪i∈IV (A,1, f (i))].

Proposition 2.9.52 Let E be a topological space with no non-empty open finite
subset (for instance, every topological T1-space without isolated points), let X be
a normed space, and let g : E → SX be a continuous function. Then the following
conditions are equivalent:

(i) For every f in B(E,X), the equality

V (B(E,X),g, f ) = co [∪t∈EV (X ,g(t), f (t))]

holds.
(ii) The norm of X is uniformly strongly subdifferentiable on the range of g.

Proof (ii)⇒(i) The uniform strong subdifferentiability of the norm of X on the
range of g implies lim(t,r)→(∞,0+)ϕ(X ,g(t),r) = 0 (cf. §2.9.49). Now, apply The-
orem 2.9.48.

(i)⇒(ii) Let ε > 0. By assumption (i) and Theorem 2.9.48, there exist δ > 0 and
a cofinite subset J of E such that the inequality

‖g(t)+ rx‖−1
r

− τ(g(t),x) � ε
2

is true whenever t is in J, x is in BX , and 0 < r < δ . Then, for 0 < r < δ , 0 < s < δ ,
t ∈ J, and x ∈ BX , we have∣∣∣∣‖g(t)+ rx‖−1

r
− ‖g(t)+ sx‖−1

s

∣∣∣∣� ε.

Since J is dense in E and g is continuous, the last inequality remains true for

0 < r < δ ,0 < s < δ , t ∈ E, and x ∈ BX .

By letting s → 0, we obtain

‖g(t)+ rx‖−1
r

− τ(g(t),x) � ε

whenever t is in E, x is in BX , and 0 < r < δ .
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If I is an infinite set, and if we endow I with the trivial topology, then I becomes
a topological space with no non-empty open finite subset, and the unique continuous
functions on I are the constant ones. Therefore Proposition 2.9.52 above applies to
get the following.

Corollary 2.9.53 Let X be a normed space, and let u be in SX . For every non-empty
set I, denote by û the element of B(I,X) defined by û(i) = u for every i in I. Then the
following conditions are equivalent:

(i) For every non-empty set I and every f in B(I,X), the equality

V (B(I,X), û, f ) = co [∪i∈IV (X ,u, f (i))]

holds.
(ii) There exists an infinite set I such that we have

V (B(I,X), û, f ) = co [∪i∈IV (X ,u, f (i))]

for every f in B(I,X).
(iii) V (B(N,X), û, f ) = co [∪n∈NV (X ,u, f (n))] for every f in B(N,X).
(iv) The norm of X is strongly subdifferentiable at u.

We note that, in view of the equivalence (ii)⇔(iv) in Theorem 2.9.36, Corol-
lary 2.9.53 provides us with several reformulations of the norm-norm upper semicon-
tinuity of the duality mapping of a normed space X at a norm-one element u. Then the
equivalence (i)⇔(iv) in Corollary 2.9.53 shows that Fact 2.9.1 and Corollary 2.9.51
are ‘equivalent’ statements. In the same way, Corollary 2.9.54 immediately below
becomes a reformulation of the bracketed version of Corollary 2.9.4.

Corollary 2.9.54 Let I be a non-empty set, let X be a finite-dimensional normed
space over K, let u be in SX , and let f be in B(I,X). Then

V (B(I,X), û, f ) = co[∪i∈IV (X ,u, f (i))],

where û stands for the mapping constantly equal to u on I.

By combining Propositions 2.9.46 and 2.9.52, we get the following.

Corollary 2.9.55 Let E be a topological space with no non-empty open finite
subset, let X be a normed space, and let g be a continuous function from E onto
a dense subset of SX . Then the following conditions are equivalent:

(i) For every f in B(E,X), the equality

V (B(E,X),g, f ) = co [∪t∈EV (X ,g(t), f (t))]

holds.
(ii) X is uniformly smooth.

Let X be a normed space over K, and let f be a mapping from SX to X . According
to §2.1.49, we can consider the spatial numerical range W ( f ) of f , namely

W ( f ) := ∪u∈SX V (X ,u, f (u)).

If the mapping f is bounded, then we can also consider its intrinsic numerical range,
namely V (B(SX ,X),1, f ), where 1 stands for the natural embedding SX ↪→ X . In this
case we have the inclusion
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co(W ( f ))⊆V (B(SX ,X),1, f ). (2.9.10)

(Indeed, for u in SX and φ in D(X ,u), the mapping g → φ(g(u)) from B(SX ,X) to K
is an element of D(B(SX ,X),1).) Now, applying Corollary 2.9.55 with E = SX and
g equal to the inclusion mapping SX ↪→ X , we obtain the following numerical-range
characterization of uniformly smooth normed spaces.

Theorem 2.9.56 Let X be a normed space over K. Then the following conditions
are equivalent:

(i) For every bounded function f : SX → X, the equality

co(W ( f )) =V (B(SX ,X),1, f )

holds.
(ii) X is uniformly smooth.

Now let us show an elementary example of a Banach space X , together with a
bounded function f : SX → X , such that the inclusion (2.9.10) is strict.

Example 2.9.57 Take X = R2 with norm ‖(λ ,μ)‖ := max{|λ |, |μ |}. For x,y in X ,
set ]x,y[:= {rx+(1− r)y : 0 < r < 1}, and define a function f : SX → X by

f (u) :=

⎧⎪⎪⎨⎪⎪⎩
(0,0) if u ∈ {(1,1),(1,−1),(−1,−1),(−1,1)},

(0,1) if u ∈](1,1),(1,−1)[∪ ](−1,−1),(−1,1)[ ,

(1,0) if u ∈](1,−1),(−1,−1)[∪ ](−1,1),(1,1)[ .

Then f is bounded with ‖ f‖ = 1. Moreover, it is easily checked that the equality
‖1+ r f‖= 1+ |r| holds for every r in R, and therefore V (B(SX ,X),1, f ) is equal to
the closed real interval [−1,1]. However, we have V (X ,u, f (u)) = {0} for every u in
SX , and hence W ( f ) = {0}.

§2.9.58 Let X be a normed space over K, and let u be in SX . We note that, since
the mapping τ(u, ·) : X → R is subadditive and satisfies τ(u, ·) � ‖ · ‖, we have

|τ(u,x)− τ(u,y)| � ‖x− y‖ for all x,y ∈ X ,

and hence τ(u, ·) is continuous. Now let S be a compact subset of X , and for each
positive integer n consider the function φn : S → R defined by

φn(x) =
‖u+ x

n‖−1
1
n

= ‖nu+ x‖−n.

Then {φn}n∈N is a decreasing sequence of continuous functions pointwise conver-
ging on S to the continuous function τ(u, ·). Therefore, by Dini’s theorem, this
convergence is uniform on S, which implies limr→0+ φS(r) = 0, where

φS(r) := sup

{
‖u+ rx‖−1

r
− τ(u,x) : x ∈ S

}
.

Incidentally, we note that the above argument shows that the norm of a finite-
dimensional normed space is strongly subdifferentiable at any point of the unit
sphere, a fact which also follows from Corollary 2.9.4 and Theorem 2.9.36.
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Lemma 2.9.59 Let (X ,u) be a numerical-range space over K, let I be a non-empty
set, let f : I → X be a mapping such that f (I) is relatively compact in X, and let û
stand for the function constantly equal to u on I. Then

V (B(I,X), û, f ) = co[∪i∈IV (X ,u, f (i))].

Proof Let S denote the balanced hull of the closure of f (I), so that, by §2.9.58, we
have limr→0+ φS(r) = 0. Fix z ∈ SK, r > 0, and i ∈ I. Since S is balanced we have
z f (i) ∈ S so

‖u+ rz f (i)‖−1
r

� τ(u,z f (i))+φS(r)

and we deduce that

‖û+ rz f‖−1
r

� sup{τ(u,z f (i)) : i ∈ I}+φS(r) � τ(û,z f )+φS(r).

Now let r → 0 to obtain τ(û,z f )= sup{τ(u,z f (i)) : i∈ I}. This holds for every z∈ SK
and implies that the compact convex sets V (B(I,X), û, f ) and co[∪i∈IV (X ,u, f (i))]
coincide.

Proposition 2.9.60 Let E be a compact Hausdorff topological space, let F be a
dense subset of E, let (X ,u) be a numerical-range space over K, and let f be a
continuous function from E to X. Then

V (C(E,X), û, f ) = co[∪t∈FV (X ,u, f (t))],

where C(E,X) denotes the normed space of all continuous functions from E to X,
and û stands for the mapping constantly equal to u on E.

Proof By carrying each continuous function from E to X into its restriction to F
we obtain an isometric linear embedding C(E,X) ↪→ B(F,X). Therefore, by Corol-
lary 2.1.2(ii) and Lemma 2.9.59, we have

V (C(E,X), û, f ) =V (B(F,X), û|F , f|F) = co[∪t∈FV (X ,u, f (t))].

As a straightforward consequence, we get the following.

Corollary 2.9.61 Let E be a compact Hausdorff topological space, and let f be in
CK(E). Then

V (CK(E),1, f ) = co( f (E)).

We note that the above corollary also follows from either Corollary 2.3.73, 2.9.51,
or 2.9.54.

2.9.4 Historical notes and comments

This section has been elaborated from the papers (cited chronologically) of Cudia
[189], Ellis [234], Giles–Gregory–Sims [287], Gregory [299], Martı́nez–Mena–
Payá–Rodrı́guez [425], Aparicio–Ocaña–Payá–Rodrı́guez [22], Chonghu [170],
Franchetti–Payá [268], Rodrı́guez [527], Becerra–Rodrı́guez [70], Rodrı́guez [531],
Bandyopadhyay–Jarosz–Rao [56], Godefroy–Indumathi [291], Godefroy–Rao [293],
Dutta–Rao [220], and Acosta-Becerra–Rodrı́guez [1]. The material has been fully
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reorganized, so let us comment about the paternity of the results we have collected.
(Sometimes these results appear originally formulated in terms different from ours,
but, by means of folklore or previously known facts, they become equivalent to those
appearing here.)

Cudia’s pioneering paper [189] underlies most material included in this section.
In particular, Fact 2.9.3 is proved there [189, Theorem 4.3].

In [234], the author formulates Example 2.9.31 (without any proof), and attributes
it to L. Asimow. Some arguments in our proof are taken from [681, Example 2.1.6].
An example similar to Asimow’s, which is more natural but less elementary, will be
discussed below (see Example 2.9.67).

In [287], the authors introduce the different notions of upper semicontinuity of the
duality mapping of a normed space, and prove Theorem 2.9.8 and Lemma 2.9.12,
which, in the case that X is complete and that τ equals the norm topology, is nothing
other than the equivalence (i)⇔(ii) in Theorem 2.9.36. The ‘smooth’ forerunner of
this equivalence (namely, the duality between Fréchet differentiability and strong
exposition) goes back to Smulian [593]. The authors of [287] also consider other geo-
metrical aspects of the norm-norm upper semicontinuity of the duality mapping as
well as its relation to sufficient conditions for a Banach space to be an Asplund space.

In [299], the author introduces the notion of strong subdifferentiability of the
norm of a Banach space at a norm-one element, and proves the crucial equivalence
(ii)⇔(iv) in Theorem 2.9.36. It is worth mentioning that, after Gregory’s paper [299],
most authors have preferred the terminology of strong subdifferentiability of the
norm instead of that of norm-norm upper semicontinuity of the duality mapping.
This happens in particular in the papers where the points of norm-norm upper semi-
continuity for the duality mapping of C∗-algebras, JB∗-triples, and real JB∗-triples
are determined (see [180], [74], and [69], respectively).

In [425], the authors prove Fact 2.9.1 (that the duality mapping of any norm-unital
normed algebra is norm-norm usc at the unit).

In [22], the authors rediscover the strong subdifferentiability of the norm of
a normed space X at a point u ∈ SX , although a different terminology is used
there. They prove Fact 2.9.2, Lemmas 2.9.5, 2.9.10, 2.9.15, 2.9.16, and 2.9.59,
Propositions 2.9.11 and 2.9.60, and Corollaries 2.9.18, 2.9.51, 2.9.53, and 2.9.61,
and suggest condition (iii) in Theorem 2.9.36 as an intermediate condition between
conditions (ii) and (iv) in that theorem. It is worth mentioning that the authors of [22]
prove a light version of Theorem 2.9.17 asserting that, if X is a Banach space with
a complete predual, if u is in SX , and if the duality mapping of X is norm-norm
usc at u, then the equality V (X ,u,x) = {x( f ) : f ∈ Dw∗

(X ,u)}− holds for every
x ∈ X. This light version of Theorem 2.9.17 allows them to prove Corollary 2.9.18,
recently rediscovered by Magajna [411]. Although straightforwardly derivable from
the results in [22], Corollaries 2.9.19, 2.9.33(i) and 2.9.54, are not pointed out there.
A particular case of Corollary 2.9.33(i) has been recently rediscovered by Blecher
and Magajna [105], who apply it to prove a relevant ‘operator system’ variant of
Sakai’s fundamental characterization of von Neumann algebras precisely as the
C∗-algebras with a predual [806, Theorem 1.16.7]. We recall that operator systems
were incidentally introduced in Subsection 2.4.3. The power-associative forerunner
of Corollary 2.9.51 had been proved in [514] by applying Proposition 2.1.7.
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In [170], the author proves the implication (iv)⇒(v) in Theorem 2.9.36 (that a
point where the norm is strongly subdifferentiable is a τ-point). The notion of a
τ-point had been introduced earlier by Franchetti [267].

In [268], the authors give a systematic discussion of strong subdifferentiability of
the norm. In particular they prove the actual version of Theorem 2.9.36, together with
Propositions 2.9.38(ii) and 2.9.46, and Proposition 2.9.13 in the particular case that
τ equals the norm topology. The general case of Proposition 2.9.13 is pointed out
in [75]. The relevant contribution of [268] to Theorem 2.9.36 consists of the proof
of the implication (v)⇒(i) which was previously unknown, and of the fact that the
whole proof allows the authors to avoid completeness in all equivalences in that
theorem. The paper [268] also contains a result of G. Godefroy asserting that Banach
spaces with strongly subdifferentiable norm at every point of their unit spheres are
Asplund spaces. In fact, as proved later by Contreras and Payá in [179], the above
result remains true when the strong subdifferentiability of the norm is relaxed to
the norm-weak upper semicontinuity of the duality mapping. Another refinement of
Godefroy’s result, now with a conclusion of isometric type, appears in the paper of
Godefroy–Montesinos–Zizler [292], where it is shown that, if X is a Banach space
whose norm is strongly subdifferentiable at any point of SX , then X ′ has no proper
closed norming subspace. To realize how this last result contains Godefroy’s one,
note that the strong subdifferentiability of the norm of X goes down to subspaces,
so that, for every subspace Y of X , Y ′ has no proper closed norming subspace for Y ,
which implies, when Y is separable, that Y ′ is separable too.

In [527], the author proves Corollaries 2.9.37 and 2.9.50, and derives from them
that, if {Ai}i∈I is any family of norm-unital complete normed algebras over K, and
if U is an ultrafilter on I, then for every (ai) in the ultraproduct (Ai)U (cf. §2.8.61)
we have

V ((Ai)U ,1,(ai))⊆ co [∪i∈IV (Ai,1,ai)],

where 1 stands indistinctly for the unit of (Ai)U and that of each Ai. This is
applied, together with Theorems 2.5.50 and 2.6.21, to prove that there exists
a universal constant k > 0 such that, if A is any norm-unital complete normed
alternative real algebra with diam(D(A,1)) < k, then A is isomorphic to R,C,H,
or O (a variant of the implication (ii)⇒(iii) in Theorem 2.6.21). The associative
forerunner of the fact just formulated is due to Lumer [408].

In [70], the authors prove Theorem 2.9.40 and Corollaries 2.9.41 and 2.9.42.
Actually, Theorem 2.9.40 is a consequence of a deeper result, also proved in [70],
asserting that, for a nonzero real (respectively, complex) normed space X, the follow-
ing conditions are equivalent:

(i) X is a pre-Hilbert space (respectively, X = C).

(ii) X is almost transitive and there exists v ∈ SX such that we can find a real
(respectively, complex) norm-unital normed algebra A and a (possibly non-
surjective) linear isometry T : X → A with T (v) = 1.

(iii) There exists a non-nowhere dense subset U of SX such that for each u ∈U we
can find a real (respectively, complex) norm-unital normed algebra Au and a
linear isometry Tu : X → Au with Tu(u) = 1.
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The original proof of the result just formulated depended heavily on the Skorik–
Zaidenberg paper [583]. This dependence was avoided later in [73].

In [531], the author proves Propositions 2.9.38(i) and 2.9.52, Theorems 2.9.48
and 2.9.56, and Corollary 2.9.55. Example 2.9.57 is also pointed out there.

In [56], the authors prove Corollary 2.9.25.
In [291], the authors prove Proposition 2.9.6(ii), Theorem 2.9.17, and Corollar-

ies 2.9.20 and 2.9.21. We note that Corollary 2.9.20 contains a result of Diestel [718,
Theorem 1, p. 33], which in turn contains the fact, sometimes attributed to Smulian
[593] but probably due to Fan and Glicksberg [248], that a dual Banach space with
Fréchet differentiable norm at any point of its unit sphere has to be reflexive. A
detailed discussion of the paternity of this last fact can be seen in [790, 5.5.3.7–8].

In [293], the authors prove the non-quantitative version of Theorem 2.9.28 (i.e. the
first conclusion in that theorem). As the main result, they show that, given any non-
reflexive separable Banach space X with a complete predual, there exists u ∈ X such
that, up to a suitable equivalent dual renorming, u becomes geometrically unitary,
but is not w∗-unitary, nor even a w∗-vertex (since, in fact, we have Dw∗

(X ,u) = /0 in
the renorming). The paper [293] also contains a result related to Proposition 2.9.11.
Indeed, given any non-reflexive Banach space X, and any nonzero element u ∈ X,
there exists an equivalent norm on X such that, in the new norm, u is a geometrically
unitary element but not a point of norm-weak upper-semicontinuity for the duality
mapping.

In [220], the authors prove Corollary 2.9.34(i).
In [1], the authors prove Corollaries 2.9.23 and 2.9.29, Proposition 2.9.27, and

the quantitative version of Theorem 2.9.28. We note that, in the case K = R,
Corollary 2.9.29 can easily be derived from the notions and results in the theory
of the so-called unit-order spaces [233] (see also [681, Theorem 2.1.5]). Although
straightforwardly derivable from the results in [1], Corollaries 2.9.32, 2.9.33(ii),
and 2.9.34(ii) are not pointed out there.

Now that we have concluded our review on the paternity of results included in the
section, let us continue with some additional information on the topic. We begin by
noticing that, as pointed out in [73], in the case K = R Fact 2.9.2 has the following
relevant refinement.

Fact 2.9.62 Let (X ,u) be a real numerical-range space with n(X ,u) = 1. Then we
have D(X ,x)⊆ D(X ,u) whenever x is in SX with ‖x−u‖< 2.

Proof Let x be in SX with ‖x − u‖ < 2, and let f be in D(X ,x). By The-
orem 2.1.17(iii), there exist states g,h ∈ D(X ,u) and 0 � α � 1 such that
f = αg − (1 − α)h. Then, to realize that f lies in D(X ,u) it is enough to show
that α = 1. But, if this were not the case, then we would have

1 = f (x) = αg(x)− (1−α)h(x) = αg(x)+(1−α)(h(u− x)−1)

� α+(1−α)(‖u− x‖−1)< α+(1−α)(2−1) = 1,

a contradiction.

Thus, given a real numerical-range space (X ,u) with n(X ,u) = 1, the duality
mapping of X is norm-τ usc at u for every vector space topology τ on X ′.
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Proposition 2.9.6(i) could be new, and implies the following.

Fact 2.9.63 Let X be a normed space over K, and let u be a norm-one element
in X. Then for every x ∈ X we have

V (X ,u,x) =
⋂
δ>0

{ f (x) : f ∈ SX ′ , | f (u)−1|< δ}−.

Proof Let x be in X . Since V (X ,u,x) = V (X ′′,u,x) (by Corollary 2.1.2), Propos-
ition 2.9.6(i) applies with the couple (X ′′,X ′) instead of the couple (X ,X∗) appear-
ing there.

A much deeper result is the following one, due to Lumer and Phillips [409], whose
proof will not be discussed here.

Proposition 2.9.64 Let X be a normed space over K, and let u be in SX . Then for
every x ∈ X we have

V (X ,u,x) =
⋂
δ>0

co{φ(x) : (y,φ ) ∈ Γ,‖y−u‖< δ},

where Γ stands for any subset of Π(X) such that π1(Γ) is dense in SX (cf. §2.1.30).

Proposition 2.9.64 above is applied in [409] to prove Proposition 2.1.31, and also
in [534] to prove the generalization of Proposition 2.1.31 given by Theorem 2.1.50.

Let X be a normed space, and let Y be a subspace of X . We say that Y is a semi-
L-summand of X if, for each x ∈ X , there exists a unique y ∈ Y such that ‖x− y‖ =
‖x+Y‖, and moreover this y satisfies ‖x‖= ‖y‖+‖x−y‖. This happens in particular
if Y is an L-summand of X (which means that Y is the range of a linear projection P
on X such that ‖x‖ = ‖P(x)‖+‖x−P(x)‖ for every x ∈ X). The following result is
folklore.

Fact 2.9.65 Let (X ,u) be a numerical-range space over K. If Ku is a semi-L-
summand of X, then n(X ,u) = 1.

Proof Assume that Ku is a semi-L-summand of X . Let x be in X , and let λ (x) stand
for the unique element of K which satisfies ‖x−λ (x)u‖= ‖x+Ku‖. Then we have

‖x‖= |λ (x)|+‖x−λ (x)u‖,

and hence, since λ (u+ zx) = 1+ zλ (x) for every z ∈K, Proposition 2.1.5 applies to
get maxℜ(V (X ,u,x)) =ℜ(λ (x))+‖x−λ (x)u‖. It follows that

v(X ,u,x) = |λ (x)|+‖x−λ (x)u‖= ‖x‖.

Since x is arbitrary in X , we get n(X ,u) = 1.

§2.9.66 In the case K = R, the converse of the above fact is also true. Indeed, if
(X ,u) is a real numerical-range space, if n(X ,u) = 1, and if x is in X , then, denoting
by λ (x) the mid-point of V (X ,u,x), it is straightforward to realize that λ (x) is the
unique element of K which satisfies

‖x−λ (x)u‖= ‖x+Ku‖,

and that moreover we have ‖x‖= |λ (x)|+‖x−λ (x)u‖, so that Ru becomes a semi-
L-summand of X .
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By a (semi-)M-ideal in a normed space X we mean a closed subspace of X whose
polar in X ′ is a (semi-)L-summand of X ′. It follows from Fact 2.9.65 that one can
build dual numerical-range spaces (X ,u) over K with n(X ,u) = 1 by taking X :=
(X∗)′, where X∗ is a Banach space over K containing a one-codimensional semi-M-
ideal M, and taking u equal to any norm-one element of X annihilating M. (We note
in passing that, by §2.9.66, in the case K=R there are no more such numerical-range
spaces.) If, in addition, one wants that BX∗ 	= |co|(Dw∗

(X ,u)) (cf. Corollary 2.9.29
and Example 2.9.31), then it is enough to find X∗ with the extra property that there
are extreme points of BX∗ which do not belong to SKDw∗

(X ,u).
The philosophy in the above paragraph underlies Example 2.9.67 immediately

below. This example is due to Yost [650]. He was not aware at the time he published
(but noted shortly afterwards [651]) that Asimow’s earlier Example 2.9.31 served the
same purpose.

Example 2.9.67 Let A be the so-called disc algebra, i.e. the closed subalgebra of
CC(BC) consisting of those complex-valued continuous functions on BC which are
holomorphic in its interior, let X∗ stand for the closed real subspace of A consisting
of those functions f ∈ A such that f (1) ∈ R, and let u denote the norm-one element
of X := (X∗)′ defined by u( f ) := f (1) for every f ∈ X∗. We are going to show that
n(X ,u) = 1 and that, however, BX∗ 	= |co|(Dw∗

(X ,u)).
By [739, Example 1.4(b)], M := { f ∈ A : f (1) = 0} is an M-ideal of A, and this

implies that M is an M-ideal of X∗. (Indeed, it is easy to realize that (semi-)M ideals of
a complex Banach space Y are (semi-)M ideals of the real Banach space underlying
Y , and that (semi-)M ideals of a real or complex Banach space Y remain (semi-)M
ideals in any closed subspace of Y containing them.) Therefore, by Fact 2.9.65, we
have n(X ,u) = 1.

To show that BX∗ 	= |co|(Dw∗
(X ,u)), define f ∈ M by f (z) := w(w(z)

1
2 ), where

w(z) :=
i− z

1− iz
,

and note that f maps BC onto {z ∈ C : |z| � 1 and ℜ(z) � 0}, and that the arc
{z ∈C : |z|= 1 and ℜ(z) � 0} is mapped onto itself. It follows [747, pp. 138–9] that
f is an extreme point of BA. Now f is an extreme point of BX∗ and, clearly, f does not
belong to Dw∗

(X ,u)∪−Dw∗
(X ,u). These conditions imply that f /∈ |co|(Dw∗

(X ,u)).

We note that the dual real Banach space X in the above example can be converted
into the normed space underlying a norm-unital complete normed associative and
commutative algebra in such a way that the distinguished element u in the example
becomes the unit. Indeed, according to the argument in the example, we can write
X =Ru⊕�1 L for a suitable subspace L of X , and then we can regard X as the normed
unital extension of L endowed with the zero product (cf. Proposition 1.1.107). On
the other hand, looking at the argument in Example 2.9.67, we realize that, if X now
stands for the dual of the disc algebra, and if u ∈ SX is defined by u( f ) := f (1) for
every f in the algebra, then we are provided with a new example of a dual com-
plex numerical-range space (X ,u) such that n(X ,u) = 1 and BX∗ 	= |co|(Dw∗

(X ,u))
(cf. §2.9.30).
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Now, let u be a nonzero element in a normed space X over K, and note that X can
be equivalently renormed in such a way that, in the new norm, u has norm one, and
Ku becomes an L-summand of X . It follows from Theorem 2.1.17(i) and Facts 2.9.2
and 2.9.65 that, up to such a renorming, u becomes both a geometrically unitary
element and a point of norm-norm upper-semicontinuity for the duality mapping
(compare Proposition 2.1 of [293], and the comments following it).

Let X be a real Banach space with a (possibly incomplete) predual X∗, and let u
be in SX . If n(X ,u) = 1, then, by Fact 2.9.62, we have

Dw∗
(X ,x)⊆ Dw∗

(X ,u) whenever x is in SX with ‖x−u‖< 2,

and hence the pre-duality mapping of X is norm-τ usc at u for every vector space
topology τ on X∗.

Now let X be a Banach space over K with a complete predual, and let u be in SX

such that Ku is a semi-L-summand of X. It follows from Facts 2.9.2 and 2.9.65,
together with Theorems 2.1.17(v) and 2.9.17(ii), that the pre-duality mapping of X,
as well as the pre-duality mapping of any dual of X of even order, is norm-weak usc
at u [220, Proposition 2].

Now we exhibit natural examples of w∗-vertices and w∗-unitaries relative to
incomplete preduals.

Example 2.9.68 Let X be a complex Banach space. According to Corollary 2.9.32,
IX ′ is a w∗-unitary element of BL(X ′) relative to any complete predual, in particular
relative to the complete projective tensor product X⊗̂πX ′ (the duality being deter-
mined by 〈T,x⊗ f 〉= T ( f )(x) for all T ∈ BL(X ′),x ∈ X , and f ∈ X ′) [717, Propos-
ition on p. 27]. It is worth mentioning that, thanks to Corollaries 2.1.13 and 2.1.34, IX ′

is a w∗-vertex of the closed unit ball of BL(X ′) relative to the (possibly incomplete)
predual X ⊗π X ′. Moreover, if X is actually a complex Hilbert space, then IX ′ is in
fact a w∗-unitary element of BL(X ′) relative to the predual X ⊗π X ′. For in this case,
denoting by x→ x̄ the natural identification X ≡X ′, we have x⊗ x̄∈Dw∗

(BL(X ′), IX ′)

whenever x is in SX , and then the polarization law for the sesquilinear mapping
(x,y)→ x⊗ ȳ gives that X ⊗π X ′ is contained in the linear hull of Dw∗

(BL(X ′), IX ′).

Corollary 2.6.14 and Theorem 2.9.40, as well as the refinement of Theorem 2.9.40
formulated in the review of [70] above, provide us with several multiplicative char-
acterizations of real Hilbert spaces but not of complex ones. In order to get multi-
plicative characterizations of both real and complex Hilbert spaces, we introduce the
following concept. We say that an element u of a Banach space X over K acts weakly
as a unit on X whenever u belongs to SX and there exists a Banach space Y over
K containing X isometrically, together with a norm-one bounded bilinear mapping
f : X ×X → Y , such that the equality f (u,x) = f (x,u) = x holds for every x in X .

Lemma 2.9.69 For a norm-one element u of a Banach space X over K, the follow-
ing conditions are equivalent:

(i) u acts weakly as a unit on X.

(ii) The equality ‖u⊗x+x⊗u‖π = 2‖x‖ holds for every x in X, where ‖ ·‖π means
projective tensor norm.
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(iii) There exist a Banach space Y over K and a norm-one bounded symmetric
bilinear mapping f : X ×X → Y such that the equality ‖ f (u,x)‖ = ‖x‖ holds
for every x in X.

Proof (i)⇒(ii) Let Y be a Banach space over K containing X isometrically and
such that there exists a norm-one bounded bilinear mapping f : X ×X →Y satisfying
f (u,x) = f (x,u) = x for every x in X . Then there is a norm-one bounded linear
mapping h from the projective tensor product X ⊗π X into Y such that

f (x1,x2) = h(x1 ⊗ x2) for all x1,x2 in X .

Therefore, for x in X we obtain

2‖x‖= ‖ f (u,x)+ f (x,u)‖= ‖h(u⊗ x+ x⊗u)‖ � ‖u⊗ x+ x⊗u‖π .

(ii)⇒(iii) If (ii) is true, then (iii) follows with Y equal to the complete projective
tensor product X⊗̂πX , and f (x1,x2) := 1

2 (x1 ⊗ x2 + x2 ⊗ x1).
(iii)⇒(i) Assume that (iii) holds. Then the mapping x → x̂ := f (u,x) from X to Y

is a linear isometry, and the mapping f̂ : X̂ × X̂ →Y defined by f̂ (x̂1, x̂2) := f (x1,x2)

is bilinear and bounded with ‖ f̂‖= 1, and satisfies f̂ (û, x̂) = f̂ (x̂, û) = x̂ for every x̂
in X̂ .

Now the desired multiplicative characterization of both real and complex Hilbert
spaces reads as follows.

Theorem 2.9.70 For a Banach space X over K, the following conditions are
equivalent:

(i) X is a Hilbert space.
(ii) Every element of SX acts weakly as a unit on X.

(iii) There is a dense subset of SX consisting of elements which act weakly as units
on X.

(iv) The equality ‖x1 ⊗ x2 + x2 ⊗ x1‖π = 2‖x1‖‖x2‖ holds for all x1,x2 ∈ X, where
‖.‖π means projective tensor norm.

(v) There exists a Banach space Y over K, together with a symmetric bilinear
mapping f : X ×X → Y , such that the equality ‖ f (x1,x2)‖ = ‖x1‖‖x2‖ holds
for all x1,x2 in X.

Proof Keeping in mind Lemma 2.9.69, in the chain of implications

(i)⇒(ii)⇒ (iii)⇒(iv)⇒(v)⇒(i)

only the first and last ones merit a proof.
(i)⇒(ii) Assume that (i) holds. If K=R, then, by Corollary 2.6.14, condition (ii)

is fulfilled. Assume additionally that K = C. Take a conjugation (i.e. a conjugate-
linear involutive isometry) x → x̄ on the complex Hilbert space X , for x,z ∈ X denote
by x� z the operator on X defined by

(x� z)(t) := (t|z)x for every t ∈ X ,

write (Y,‖.‖τ) for the complex Banach space of all trace class operators on X [809,
Chapter III], and consider the mapping f : X ×X → Y given by
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f (x,z) :=
1
2
(x� z̄+ z� x̄).

In view of the implication (iii)⇒(i) of Lemma 2.9.69, to realize that condition (ii)
in the theorem is fulfilled it is enough to show that the equality ‖ f (x,z)‖τ = 1 holds
for all x,z ∈ SX . Let x,z be linearly independent elements of SX . Let T stand for the
two-dimensional operator x� z̄+ z� x̄. Then we have

T T ∗ = x� x+(z|x)x� z+(x|z)z� x+ z� z,

and hence the nonzero eigenvalues of T T ∗ are (1±|(x|z)|)2. Since ‖T‖τ is nothing

other than the sum of the eigenvalues of (T T ∗)
1
2 [809, Theorem III.2], we obtain

‖T‖τ = 2.
(v)⇒(i) Assume that (v) holds. Then, for x,z in SX , we have

4 = 4‖ f (x,z)‖= ‖ f (x+ z,x+ z)− f (x− z,x− z)‖ � ‖x+ z‖2 +‖x− z‖2.

Therefore, by Schoenberg’s theorem [556] (already applied in the proof of The-
orem 2.6.41), X is a Hilbert space.

Combining Theorem 2.9.70 with Lemma 2.7.36, we get the following.

Corollary 2.9.71 A Banach space over K is a Hilbert space if and only if it is
almost transitive and has some point acting weakly as a unit.

We do not know if Theorem 2.9.70 remains true when condition (iii) is replaced
with the one where there exists a non-nowhere dense subset of SX consisting of
elements which act weakly as units. We note that, if a Banach space X over K satisfies
condition (v) in Theorem 2.9.70 with Y = X , then, by the commutative Urbanik–
Wright theorem (Theorem 2.6.41), X has dimension � 2 over R. Lemma 2.9.69 and
Theorem 2.9.70 have been taken from [73].

Let X be a normed space over K, and let u be in SX such that the norm of X
is strongly subdifferentiable at u. Then it is straightforward that the norm of X is
uniformly strongly subdifferentiable on the orbit of u under the group of all surjective
linear isometries on X . Therefore it is enough to invoke Proposition 2.9.46 to get the
following.

Fact 2.9.72 Let X be an almost transitive Banach space over K whose norm is
strongly subdifferentiable at some point u ∈ SX . Then X is uniformly smooth, and
hence superreflexive.

The class (say J ) of almost transitive superreflexive Banach spaces was studied
first by Finet [263] (see also [722, Corollary IV.5.7]), who showed that all mem-
bers of J are uniformly smooth. Therefore Fact 2.9.72 above can be read as that
members of J are precisely those almost transitive Banach spaces X whose norm
is strongly subdifferentiable at some point u ∈ SX . Among the many known charac-
terizations of members of J , our favourite is that of Becerra [72] asserting that a
Banach space X lies in J if (and only if) the norm of X is Fréchet differentiable at
some ‘big point’ of X (cf. §3.1.41 below for the notion of a big point). For other
characterizations of almost transitive superreflexive Banach spaces, the reader is
referred to [73, Theorem 6.8 and Corollary 6.9] and references therein. More recent
results along the same lines can be found in [609, 79].
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Concluding the proof of the non-associative
Vidav–Palmer theorem

3.1 Isometries of JB-algebras

Introduction In this section, we introduce one of the fundamental notions in our
work, namely that of a JB-algebra. JB-algebras are complete normed Jordan real
algebras which behave like the self-adjoint parts of C∗-algebras endowed with the
Jordan product x • y = 1

2 (xy+ yx). JB-algebras enjoy a deep and complete structure
theory which is comprehensively developed in Hanche-Olsen and Størmer [738].
Since we are unable to organize the basic theory of JB-algebras in a better way,
we limit ourselves to reviewing those results which are needed for our purpose, and
complementing the theory in some geometric aspects (originated by the Wright–
Youngson paper [643]) which are not covered by the Hanche-Olsen and Størmer
book. Thus, in Theorem 3.1.21 we exhibit several purely algebraic characterizations
of surjective linear isometries between JB-algebras, along the lines of the Kadison–
Paterson–Sinclair Theorem 2.2.19, and derive in Corollary 3.1.32 a purely alge-
braic characterization of bounded linear operators with zero numerical range on a
JB-algebra, along the lines of the Paterson–Sinclair Proposition 2.2.26. Then we
compute in Corollary 3.1.36 the spatial numerical index of a JB-algebra, and prove
in Corollary 3.1.51 that JB-algebras whose Banach space is convex-transitive are
associative.

3.1.1 Isometries of unital JB-algebras

JB-algebras are defined as those complete normed Jordan real algebras A satisfying

‖x‖2 � ‖x2 + y2‖ (3.1.1)

for all x,y in A. We note that, if x is any element in a JB-algebra, then we have
‖x2‖ = ‖x‖2 (indeed, take y = 0 in (3.1.1)). As mentioned in the introduction, the
basic reference for the theory of JB-algebras is the book by Hanche-Olsen and
Størmer [738].

Lemma 3.1.1 Let A be a complete V -algebra. Then H(A,1) is a closed real sub-
algebra of Asym and, endowed with the restriction of the norm of A, becomes a JB-
algebra.

Proof Since the natural involution ∗ of A is a continuous algebra involution (by
Lemma 2.3.7(ii) and Theorem 2.3.8), and H(A,1) = H(A,∗), we realize that H(A,1)
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is indeed a closed real subalgebra of Asym. On the other hand, by Theorem 2.4.11,
H(A,1) is a Jordan algebra. Therefore, to conclude the proof it is enough to show
that ‖h‖2 � ‖h2 + k2‖ for all h,k ∈ H(A,1). Let h be in H(A,1), and let B stand for
the closed subalgebra of A generated by h and 1. By Corollary 2.4.20, B is a unital
commutative C∗-algebra. Therefore we have ‖h‖2 = ‖h2‖ and, by Gelfand theory
(see Theorem 1.1.73) and Proposition 2.3.23, we also have V (B,1,h2)⊆ R+

0 , which
implies, in view of Corollary 2.1.2, that V (A,1,h2) ⊆ R+

0 . Now, let k be another
hermitian element of A. Since V (A,1,h2)⊆R+

0 and V (A,1,k2)⊆R+
0 , it follows that

v(h2) � v(h2 + k2). Finally, by Proposition 2.3.4, we have

‖h‖2 = ‖h2‖= v(h2) � v(h2 + k2) = ‖h2 + k2‖,

as required.

Corollary 3.1.2 Let A be a C∗-algebra. Then, the self-adjoint part, H(A,∗), of A
becomes naturally a JB-algebra.

Proof If A is unital, then the result follows from Lemmas 2.2.8(iii) and 3.1.1.
Otherwise, the result follows from Proposition 1.2.44 and the unital case.

More examples of JB-algebras can be obtained by considering the so-called
JC-algebras, namely closed subalgebras of the JB-algebra H(A,∗) for some
C∗-algebra A.

One of the deepest results in the theory of JB-algebras is the following.

Proposition 3.1.3 [738, 7.2.5] Let A be a JB-algebra. Then the closed subalgebra
of A generated by two elements is a JC-algebra.

Other relevant results on JB-algebras, needed in what follows, are given in the
following.

Proposition 3.1.4 Let A be a JB-algebra. We have:

(i) [738, Theorem 3.2.2] If A is associative, then A is isometrically isomorphic to
the JB-algebra CR

0 (E) for some locally compact Hausdorff topological space E.
(ii) [738, Proposition 3.4.3] If B is another JB-algebra, and if F : A → B is an

algebra homomorphism, then F is contractive. Moreover, if the algebra homo-
morphism F is injective, then F is an isometry.

(iii) [738, Lemma 1.2.5(ii) and Proposition 3.3.10] If A is unital, then we have
n(A,1) = 1.

The following corollary follows from Propositions 2.4.13(i) and 3.1.4(i).

Corollary 3.1.5 Let A be a JB-algebra, and let a be in A. Then the closed sub-
algebra of A generated by a is isometrically isomorphic to the JB-algebra CR

0 (E) for
some locally compact Hausdorff topological space E. If A is unital, then the closed
subalgebra of A generated by a and 1 is isometrically isomorphic to the JB-algebra
CR(E) for some compact Hausdorff topological space E.

It is worth mentioning that assertion (ii) in Proposition 3.1.4 follows easily from
assertion (i) in that proposition and Corollary 3.1.5. Indeed, it is enough to restrict
the algebra homomorphism F to the closed subalgebra generated by each element,
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to see this restriction as a mapping with values into the closure of its range (which
becomes an associative JB-algebra), and to apply the classical associative fact that
assertion (ii) in Proposition 3.1.4 is true when A and B are of the form CR

0 (E) [738,
Lemma 1.3.7].

Definition 3.1.6 Let X be a vector space over K, and let S be a subset of X . An
element u ∈ S is said to be a K-extreme point of S if, whenever x is in X with
u + BKx ⊆ S, we have x = 0. If K = R, then the notion of a K-extreme point
rediscovers the usual one of an extreme point, whereas, if K = C, then the new
notion (of a complex extreme point) is weaker than that of an extreme point.

Lemma 3.1.7 Let E be a locally compact Hausdorff topological space such that
there exists a K-extreme point u of the closed unit ball of CK

0 (E). Then E is compact,
and |u(t)|= 1 for every t ∈ E.

Proof Let y stand for the element of CK
0 (E) defined by y(t) := u(t)(1−|u(t)|) for

every t ∈ E. Then, for all t ∈ E and λ ∈ BK we have

|(u+λy)(t)| � |u(t)|+ |u(t)|(1−|u(t)|) � |u(t)|+(1−|u(t)|) � 1,

and hence ‖u+ λy‖ � 1. Since u is a K-extreme point of BCK
0 (E), we derive that

y = 0, and hence that,

for every t ∈ E, we have either u(t) = 0 or |u(t)|= 1. (3.1.2)

Set Z := {t ∈E : u(t)= 0}. If Z is empty, then the result follows from (3.1.2). Assume
that Z is not empty. Take t1 ∈ Z, and choose some v ∈ SCR

0 (E) such that v(t1) 	= 0. On

the other hand, since Z = {t ∈ E : |u(t)| < 1} (by (3.1.2)), Z becomes a non-empty
open subset of E, and hence there exists a continuous function h from E to [0,1]
vanishing at E \Z and satisfying h(t1) = 1. Setting w := hv ∈CR

0 (E), it follows that
‖u+λw‖ � 1 for every λ ∈ BK and that w(t1) 	= 0, which is not possible because u
is a K-extreme point of BCK

0 (E).

§3.1.8 Let B and C be JB-algebras. Then, clearly, the algebra direct product A :=
B×C becomes a JB-algebra under the sup norm.

An element u of a unital JB-algebra is said to be a symmetry if u2 = 1. We note
that symmetries of unital JB-algebras are norm-one elements.

Proposition 3.1.9 Let A be a nonzero JB-algebra. Then A is unital if and only if
the closed unit ball of A has extreme points. Moreover, if A is unital, for an element
u ∈ A the following conditions are equivalent:

(i) u is a strongly extreme point of BA.

(ii) u is an extreme point of BA.

(iii) u is a symmetry in A.

Proof If A is unital, then, by Corollary 2.1.42, the unit of A becomes an extreme
point of BA. Conversely, assume that BA has some extreme point u. By Cor-
ollary 3.1.5, the closed subalgebra of A generated by u is equal to CR

0 (E) for
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some locally compact Hausdorff topological space E. Therefore, by Lemma 3.1.7,
we have

ue = u and u2 = e for some nonzero idempotent e ∈ A. (3.1.3)

Now note that, by Lemma 2.5.3, A1(e) and A0(e) are closed subalgebras of A satis-
fying A1(e)A0(e) = 0 and A1(e)∩A0(e) = 0, hence A1(e) and A0(e) are JB-algebras,
and the mapping (x,y)→ x+ y, from the algebra direct product A1(e)×A0(e) to A,
becomes an injective algebra homomorphism. It follows from §3.1.8 and Propos-
ition 3.1.4(ii) that

‖x+ y‖= max{‖x‖,‖y‖} for every (x,y) ∈ A1(e)×A0(e).

As a consequence, since u lies in A1(e), we have ‖u±y‖= 1 for every y in the closed
unit ball of A0(e). Since u is an extreme point of BA, we derive that A0(e) = 0. Now,
by applying Lemma 2.5.4, for each z∈A 1

2
(e) we have z3 = 0, so ‖z‖4 = ‖z4‖= 0, and

so A 1
2
(e) = 0. Thus A=A1(e), so that e is a unit for A. Thus the first conclusion in the

proposition has been proved. Moreover, regarding (3.1.3), the implication (ii)⇒(iii)
has been also proved.

Since the implication (i)⇒(ii) is clear, we are going to conclude with the proof of
the implication (iii)⇒(i).

Let u be a symmetry in A. Let ε > 0, and let a be in εSA. By Proposition 3.1.2, the
closed subalgebra of A (say B) generated by {u,a} is a JC-algebra. Therefore there
exists a C∗-algebra C such that B is a closed subalgebra of the JB-algebra H(C,∗),
and hence, denoting by juxtaposition the product of C and by • the product of B,
we have

1
2 (xyz+ zyx) = x• (y• z)+ z• (y• x)− (x• z)• y ∈ B for all x,y,z ∈ B.

It follows that the normed space of B becomes a norm-unital normed algebra with
unit u under the product x�y := 1

2(xuy+yux). Now, by Corollary 2.1.42 with (B,�)

instead of A, we have max±‖u± a‖− 1 �
√

1+ e−2ε2 − 1. Taking infimum in a ∈
εSA, we derive δA(u,ε) �

√
1+ e−2ε2 − 1. Since ε is an arbitrary positive number,

we derive from Lemma 2.1.40 that u is a strongly extreme point of BA. Thus, the
implication (iii)⇒(i) has been proved.

It is straightforward that the unital extension of a Jordan algebra is a Jordan
algebra. This fact will be applied without notice throughout our work, and underlies
the proof of the following.

Proposition 3.1.10 [738, Theorem 4.4.3] Let A be a JB-algebra. Then A′′, endowed
with the Arens product, becomes a unital JB-algebra.

Corollary 3.1.11 Let A be a JB-algebra. Then there is a unique norm on the unital
extension A1 of A extending the norm of A and converting A1 into a JB-algebra.

Proof The uniqueness of the desired norm on A1 follows from Proposition 3.1.4(ii).
To prove the existence we distinguish two cases, depending on whether or not A has
a unit.
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First assume that A has a unit 1. Then A and R(1− 1) are ideals of A1 such that
A1 = A⊕R(1−1), and therefore it is enough to apply §§1.1.105 and 3.1.8 to realize
that the desired extended norm on A1 is given by

‖a+λ (1−1)‖ := max{‖a‖, |λ |}, (3.1.4)

and as a result we have ‖λ1+a‖ := max{‖a+λ1‖, |λ |}.
Now, assume that A does not have a unit and denote by 1 the unit element of

A′′. Then the mapping λ1+ a → λ1+ a from A1 to A′′ becomes an injective alge-
bra homomorphism whose range coincides with the unital closed subalgebra of A′′

generated by A. Since such a mapping is also isometric on A, by defining

‖λ1+a‖ := ‖λ1+a‖

we get the desired extended norm on A1 .

According to the definition of a JBW -algebra in [738, 4.1.1], and [738, The-
orem 4.4.16], JBW-algebras can be introduced as those JB-algebras which are dual
Banach spaces. As a consequence of the Banach–Alaoglu and Krein–Milman the-
orems and Proposition 3.1.9, nonzero JBW-algebras are unital. Moreover, by [738,
Theorem 4.4.16 and Corollary 4.1.6], if A is a JBW -algebra, then the (complete)
predual of A is unique, and the product of A is separately w∗-continuous.

Proposition 3.1.12 [738, Proposition 4.2.3] Let A be a JBW-algebra, let a be in A,
and let ε > 0. Then there exist pairwise orthogonal idempotents e1, . . . ,en ∈ A and
real numbers λ1, . . . ,λn such that ‖a−∑n

i=1λiei‖< ε .

Proposition 3.1.13 Let A and B be unital JB-algebras, and let F : A → B be a
mapping. Then the following conditions are equivalent:

(i) F is a unit-preserving surjective linear isometry.

(ii) F is a bijective algebra homomorphism.

Proof (i)⇒(ii) Assume that condition (i) holds. To prove that condition (ii) is ful-
filled, we can consider the bitranspose of F , and keep in mind Proposition 3.1.10, to
realize that there is no loss of generality in assuming that A is in fact a JBW -algebra.
First note that, by Proposition 3.1.9, F preserves symmetries, and that, since the
mapping u → 1

2 (u+1) is a bijection from the set of all symmetries of A to the set of
all idempotents of A, F also preserves idempotents. As a consequence, F preserves
orthogonality of idempotents. Indeed, two idempotents e1,e2 ∈ A are orthogonal if
and only if e1 + e2 is an idempotent. Let e1, . . . ,en be pairwise orthogonal idem-
potents in A, and set a := ∑n

i=1λiei. Since F(e1), . . . ,F(en) are pairwise orthogonal
idempotents in B, we have

F(a)2 =
n

∑
i=1

λ 2
i F(ei) = F

(
n

∑
i=1

λ 2
i ei

)
= F(a2).

Since the set of elements a as above is dense in A (by Proposition 3.1.12), we have
in fact F(a)2 = F(a2) for every a ∈ A.

(ii)⇒(i) By Proposition 3.1.4(ii).



324 Concluding the proof of the non-associative Vidav–Palmer theorem

3.1.2 Isometries of non-unital JB-algebras

The next lemma follows straightforwardly from assertions (i) and (iii) in Lemma
2.5.3.

Lemma 3.1.14 Let A be a commutative power-associative algebra over K, and let
e be an idempotent in A such that A 1

2
(e) = 0. Then e is central (cf. Definition 2.5.31).

Given elements a,b,c in a JB-algebra, we set

{abc} := a(bc)+ c(ba)− (ac)b.

Proposition 3.1.15 Let A be a unital JB-algebra, and let u be a norm-one element
of A. Then the following conditions are equivalent:

(i) u is a central symmetry in A.
(ii) The Banach space of A, endowed with the product x� y := {xuy}, becomes a

JB-algebra with unit u.
(iii) The Banach space of A becomes a JB-algebra with unit u, for some product.
(iv) n(A,u) = 1.
(v) u is a geometrically unitary element of A.

(vi) u is a vertex of the closed unit ball of A.

Proof The implications (ii)⇒(iii) and (v)⇒(vi) are clear, whereas the one (iv)⇒(v)
follows from Theorem 2.1.17(i).

(i)⇒(ii) The assumption (i) implies that L2
u = IA, so that Lu is an isometry, and also

that {xuy}= u(xy) for all x,y ∈ A. With these ideas in mind, it is straightforward that
Lu becomes an isometric algebra homomorphism from A onto the algebra obtained
from A by replacing its product with the new one x� y := {xuy}. Therefore this last
algebra is a JB-algebra.

(iii)⇒(iv) By Proposition 3.1.4(iii).
(vi)⇒(i) Assume that (vi) holds. Then by Lemma 2.1.25 and Proposition 3.1.9,

u is a symmetry, and hence e := 1
2 (u + 1) is an idempotent. Therefore, in view

of Lemma 3.1.14, to prove (i) it is enough to show that A 1
2
(e) = 0. Let x be in

A 1
2
(e). Then, since u = 2e − 1, we have ux = 0. Therefore, for r ∈ R, we get

‖u+ rx‖2 = ‖(u+ rx)2‖ = ‖1+ r2x2‖, which, in view of Proposition 2.1.5, implies
maxV (A,u,x) = 0. Replacing x with −x, we derive V (A,u,x) = 0. Since u is in fact
a vertex of BA, we conclude that x = 0, as required.

We note that conditions (iii)–(vi) in Proposition 3.1.15 become Banach space
characterizations of central symmetries in unital JB-algebras.

Corollary 3.1.16 Let A and B be unital JB-algebras. Then the linear isometries
from A onto B are the mappings of the form x→ uΦ(x) where u is a central symmetry
in B and Φ is a bijective algebra homomorphism from A to B.

Proof Let F : A → B be a surjective linear isometry. By Proposition 3.1.15, u :=
F(1) is a central symmetry in B. Therefore the mapping Φ : A → B given by

Φ(x) := uF(x) for everyx ∈ A
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is a unit-preserving surjective linear isometry, hence by Proposition 3.1.13 it is a
bijective algebra homomorphism.

Now we are going to obtain a non-unital version of Corollary 3.1.16.

Lemma 3.1.17 Let A and B be normed algebras over K, and let F : A→B be a con-
tinuous algebra homomorphism. Then F ′′ : A′′ → B′′ is an algebra homomorphism
when A′′ and B′′ are endowed with their respective Arens products.

Proof Let x be in A. Then, by Lemma 2.2.12, the set

{y′′ ∈ A′′ : F ′′(xy′′) = F(x)F ′′(y′′)}

is a w∗-closed subset of A′′ containing A. Therefore, since A is w∗-dense in A′′, we
have F ′′(xy′′) = F(x)F ′′(y′′) for every y′′ ∈ A′′.

Now let y′′ be in A′′. Again by Lemma 2.2.12, the set

{x′′ ∈ A′′ : F ′′(x′′y′′) = F ′′(x′′)F ′′(y′′)}

is a w∗-closed subset of A′′ which, by the above paragraph, contains A. Therefore we
have F ′′(x′′y′′) = F ′′(x′′)F ′′(y′′) for every x′′ ∈ A′′.

From now on, Proposition 3.1.10 will be applied without notice.

Proposition 3.1.18 Let A be a JB-algebra. Then the set

M(A) := {a′′ ∈ A′′ : a′′A ⊆ A} (3.1.5)

becomes a closed subalgebra of A′′ containing the unit of A′′, and containing A as
an ideal.

Proof M(A) is clearly a norm-closed subspace of A′′ containing the unit of A′′. Let
b be in M(A). Taking c = b in the identity (2.4.1) in the proof of Proposition 2.4.13,
we get

b2a2 = b(ba2)−2(ab)2 +2a(b(ba)) for every a ∈ A′′.

Therefore, if a is an element of A, then b2a2 is an element of A. Since the set of
squares of elements of A linearly generates A (a consequence of Corollary 3.1.5), it
follows that b2 is an element of M(A). Since b is arbitrary in M(A), this implies that
M(A) is a subalgebra of A′′. Now, clearly, A is an ideal of M(A).

The set M(A) above is called the JB-algebra of multipliers of A. We note that, by
Corollary 2.2.13, if A has a unit, then M(A) = A.

Lemma 3.1.19 Let A and B be JB-algebras. Then every linear isometry from A
onto B extends to a linear isometry from M(A) onto M(B).

Proof Let F : A → B be a surjective linear isometry. By Proposition 3.1.10 and
Corollary 3.1.16, there are a central symmetry u ∈ B′′ and a bijective algebra homo-
morphism Φ : A′′ → B′′ such that F ′′(x) = uΦ(x) for every x ∈ A′′. As a consequence
we have F ′′(x(yz)) = F ′′(x)(F ′′(y)F ′′(z)) for all x,y,z ∈ A′′. Let x and y be in M(A)
and A, respectively. Then xy2 lies in A, and therefore

F ′′(x)(F(y))2 = F ′′(x)(F ′′(y))2 = F ′′(xy2) = F(xy2) ∈ B.
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It follows that F ′′(x)b2 lies in B for every b ∈ B. Since B is the linear hull of the
set {b2 : b ∈ B} (a consequence of Corollary 3.1.5), we have F ′′(x)B ⊆ B, hence
F ′′(x) ∈ M(B). In this way we have proved that F ′′(M(A)) ⊆ M(B). By symmetry,
we actually have F ′′(M(A)) = M(B), and the mapping x → F ′′(x) from M(A) to
M(B) is a surjective linear isometry extending F .

Remark 3.1.20 Let A be a JB-algebra, let x be in A, and let Tx denote the bounded
linear operator on A given by Tx(y) := 1

3 (2x(xy)+ x2y). Then for every natural num-
ber n we have

‖x‖2n+1 = ‖x2n+1‖= ‖T n
x (x)‖ � ‖T n

x ‖‖x‖ � ‖Tx‖n‖x‖ � ‖x‖2n+1,

and hence ‖T n
x ‖= ‖x‖2n. Therefore r(Tx) = ‖x‖2.

Theorem 3.1.21 Let A and B be JB-algebras, and let F : A → B be a (non
necessarily continuous) bijective linear mapping. Then the following conditions are
equivalent:

(i) F is an isometry.
(ii) There are a central symmetry u∈M(B) and a bijective algebra homomorphism

Φ : A → B such that F(x) = uΦ(x) for every x ∈ A.
(iii) There are two mutually complementary ideals P and Q of A such that F|P and

−F|Q are (possibly non-surjective) injective algebra homomorphisms.
(iv) F(x(yz)) = F(x)(F(y)F(z)) for all x,y,z ∈ A.
(v) F({xyz}) = {F(x)F(y)F(z)} for all x,y,z ∈ A.

(vi) F({xxz}) = {F(x)F(x)F(z)} for all x,z ∈ A.
(vii) F(x3) = (F(x))3 for every x ∈ A.

(viii) F(〈xyz〉) = 〈F(x)F(y)F(z)〉 for all x,y,z ∈ A, where for u,v,w, all either in A
or in B, 〈uvw〉 := 1

3(u(vw)+ v(uw)+w(uv)).
(ix) F(〈xxy〉) = 〈F(x)F(x)F(y)〉 for all x,y ∈ A.

Proof The implications (iv)⇒(v)⇒(vi)⇒(vii) and the one (viii)⇒(ix) are clear.
(i)⇒(ii) Assume that condition (i) holds. Then, by Lemma 3.1.19, F extends

to a surjective linear isometry G : M(A) → M(B), and, by Corollary 3.1.16,
there are a central symmetry u ∈ M(B) and a bijective algebra homomorphism
Ψ : M(A) → M(B) such that G(x) = uΨ(x) for every x ∈ M(A). The proof is
concluded by observing the almost obvious equality Ψ(A) = B.

(ii)⇒(iii) Assume that (ii) holds. Then, by Proposition 3.1.4(ii), Lemma 3.1.17,
and the definition of M(·) given by (3.1.5), Φ extends to a bijective algebra homo-
morphism Ψ : M(A)→ M(B). Now v :=Ψ−1(u) is a central symmetry in M(A) such
that F(x) =Φ(vx) for every x ∈ A. Set e := 1

2 (1+ v). Then e is a central idempotent
in M(A), and hence eA and (1−e)A are mutually complementary ideals in A, and we
easily see that F|eA =Φ|eA and F|(1−e)A =−Φ|(1−e)A.

(iii)⇒(iv) Assume that (iii) holds. Then, by observing that F(P) and F(Q) are
mutually complementary ideals of B, the result follows after a straightforward
calculation.

(vii)⇒(viii) Note that the mapping 〈· · ·〉 is symmetric trilinear with 〈xxx〉= x3.
(ix)⇒(i) With the notation in Remark 3.1.20, we have Tu(v) = 〈uuv〉 with u,v

both either in A or in B, hence, if we assume (ix), then the equality FTxF−1 = TF(x)
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holds for every x ∈ A. But the mapping S → FSF−1 from L(A) to L(B) is a bijective
algebra homomorphism. By Corollary 1.1.102, we have r(TF(x)) = r(Tx) and then,
by Remark 3.1.20, ‖F(x)‖= ‖x‖ for every x ∈ A.

As a direct consequence of the implication (i)⇒(ii) in the above theorem, we get
the following.

Corollary 3.1.22 Linearly isometric JB-algebras are (isometrically) isomorphic.

3.1.3 A metric characterization of derivations of JB-algebras

Now we are going to obtain a purely Banach space characterization of derivations of
a JB-algebra.

Lemma 3.1.23 Let A be a Jordan algebra, and let a,b be in A. Then the mapping
c → [b,c,a] is a derivation of A.

Proof Interchanging a and b in the identity (2.4.3) in the proof of Propos-
ition 2.4.13, and subtracting, we obtain

[[La,Lb],Lc] = L[b,c,a] = L[La,Lb](c) for all a,b,c ∈ A.

Therefore, by Fact 2.4.7, [La,Lb] is a derivation of A.

Proposition 3.1.24 A symmetry in a unital JB-algebra A is central if and only if it
is an isolated point of the set of all symmetries of A.

Proof Let S stand for the set of all symmetries in A. If a belongs to S, then
(1−a)2 = 2(1 − a), and hence ‖1 − a‖ = 2 whenever a 	= 1. Therefore 1 is an
isolated point of S. But, if a is a central symmetry in A, then φ : x → ax is a
homeomorphism of S onto S with φ(1) = a. It follows that all central symmetries in
A are isolated points of S.

Conversely, let a be an isolated point of S. Then, by Lemma 2.2.21, for every
continuous derivation D of A and every real number λ , exp(λD)(a) lies in S. Since
the mapping f : λ → exp(λD)(a) is continuous with f (0) = a, and a is an isolated
point of S, it follows the existence of a neighbourhood of zero in R on which f is
constant, and hence D(a) = f ′(0) = 0. In particular, taking the derivation given by
D(x) := [a,x,y] for all x ∈ A, where y ∈ A (see Lemma 3.1.23), we have [a,a,y] = 0
for every y ∈ A. Therefore [e,e,y] = 0 for every y ∈ A, where e := 1

2 (a+ 1) is an
idempotent in A. Thus we have ey = e(ey) for every y ∈ A, which implies A 1

2
(e) = 0.

By Lemma 3.1.14, e (hence also a) is central.

Remark 3.1.25 By combining Propositions 3.1.9 and 3.1.24, we obtain two new
Banach space characterizations of central symmetries in a unital JB-algebra A.
Indeed, an element u ∈ A is a central symmetry if and only if it is an isolated point
of the set of all extreme points of BA, if and only if it is an isolated point of the set of
all strongly extreme points of BA.

Proposition 3.1.26 Let A be a JB-algebra. Then the connected component of the
identity in the group of all linear isometries from A onto A consists only of algebra
automorphisms.
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Proof Let C denote the connected component of the identity in the group of all
linear isometries from A onto A, and let 1 be the unit of A′′. Then {F ′′(1) : F ∈C} is a
connected subset of A′′. On the other hand, by Remark 3.1.25, the set {F ′′(1) : F ∈C}
has discrete topology. It follows that F ′′(1) = 1 for every F in C, and the proof is
concluded by applying Proposition 3.1.13.

§3.1.27 Let A be a JB-algebra. Then, by Corollary 3.1.11, the unital extension A1

of A can be converted into a unital JB-algebra under a unique norm, and, by Prop-
osition 3.1.4(iii), we have n(A1 ,1) = 1. Therefore 1 is a vertex of BA1 , and hence,
without notice, A will be seen endowed with the order induced by the numerical-
range order of (A1 ,1) as defined in §2.3.34. In the case that A is unital, the passing
to the unital extension is unnecessary. Indeed, in this case the numerical-range order
of (A,1) coincides with the order induced on A by the numerical-range order of
(A1 ,1) because, keeping in mind the explicit expression of the JB-norm on A1 given
by (3.1.4), and applying Fact 2.9.47, for a ∈ A we have V (A1 ,1,a) = co(V (A,1,a)∪
{0}), hence V (A1 ,1,a) ⊆ R+

0 if and only if V (A,1,a) ⊆ R+
0 . Anyway, if a,b are in

A, and if 0 � a � b, then ‖a‖ � ‖b‖ (by Fact 2.3.36). Formally, the definition of the
order in A just given is not that of [738, 3.3.3]. Nevertheless, as a consequence of
assertions (i) and (ii) in Lemma 3.1.29 below, the two definitions agree. We say that
an element a ∈ A is positive if a � 0.

Claim 3.1.28 Let A be a JB-algebra, let B be a closed subalgebra of A, and let b
be in B. Then b is a positive element of A if and only if b is a positive element of B.
As a consequence, in the case that B is associative (say B =CR

0 (E) for some locally
compact Hausdorff topological space E), b is a positive element of A if and only if
b(t) � 0 for every t ∈ E.

Proof Keeping in mind Proposition 3.1.4(ii), we can see the JB-algebra B1

as a unital closed subalgebra of the JB-algebra A1 , so that the first conclusion
follows from Corollary 2.1.2. Assume that B = CR

0 (E) for some locally compact
Hausdorff topological space E. Then E can be enlarged to a compact Haus-
dorff topological space F in such a way that B1 = CR(F) as JB-algebras and
B = {x ∈CR(F) :x(F \E) = 0}. Therefore, since B1 = H(CC(F),∗), the equivalence

b � 0 ⇐⇒ b(t) � 0 for every t ∈ E

follows from Proposition 2.3.38 and Example 1.1.32(c).

Lemma 3.1.29 Let A be a JB-algebra. We have:

(i) x2 � 0 for every x ∈ A.
(ii) Every positive element x ∈ A has a unique positive square root in A (denoted

by
√

x), and
√

x lies in the closed subalgebra of A generated by x.
(iii) If x,y are in A, and if x � 0, then Uy(x) is positive.

Proof Assertion (i) follows from Corollary 3.1.5 and Claim 3.1.28.
Let x be a positive element of A. By Corollary 3.1.5 and Claim 3.1.28, there is a

positive square root of x (say
√

x) in the closed subalgebra of A (say B) generated
by x. Let y be any positive square root of x in A. Then the closed subalgebra of A
generated by y (say C) is of the form CR

0 (E) for some locally compact Hausdorff
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topological space E. Moreover, since x lies in C, we have B ⊆C. It follows that
√

x
and y are positive square roots of x in CR

0 (E). By applying Claim 3.1.28 again, we
derive that y =

√
x. Thus assertion (ii) has been proved.

It follows from assertions (i) and (ii) that an element of A is positive if and only
if it is a square. Therefore, by [738, 3.3.3], our definition of positive elements is in
agreement with that of [738]. As a consequence, assertion (iii) follows from [738,
Proposition 3.3.6].

Proposition 3.1.30 Let A be a unital JB-algebra, and let T : A → A be a linear
mapping satisfying

T (x2)+Ux(T (1))−2xT (x) � 0 (3.1.6)

for every x ∈ A. Then T is continuous.

Proof Note at first that, for every real α , the linear mapping αIA + T satisfies
condition (3.1.6). Therefore we may assume that T (1) � 0 by replacing T by
−‖T (1)‖IA +T , if necessary. Let x be in A. Then, by Proposition 3.1.4(iii), we have
‖x‖= v(x). Therefore we may assume in addition that ‖x‖ ∈V (x). (If −‖x‖ ∈V (x)
only, we may replace x by −x in the subsequent argument.) Take f ∈ D(A,1) such
that f (x) = ‖x‖. Setting y :=

√
‖x‖1− x we observe that f (y2) = 0. Since T (1) � 0,

we have T (x) � −‖x‖T (1)+T (x) = −T (y2). From this, the hypothesis on T , and
Lemma 3.1.29(iii), we conclude that

f (T (x)) � − f (T (y2)) � f (Uy(T (1))−2yT (y)) � −2 f (yT (y))

� 2| f (yT (y))| � 2
√

f (y2)
√

f (T (y)2) = 0,

where the last inequality follows from the fact that, thanks to Lemma 3.1.29(i), the
mapping (u,v)→ f (uv) becomes a non-negative symmetric bilinear form on A, and
the Cauchy–Schwarz inequality applies. Consequently, for each ε > 0 we have

‖x‖= f (x) � f (x− εT (x)) � ‖x− εT (x)‖.

To deduce the boundedness of T from this inequality it suffices, by the closed
graph theorem, to take a sequence xn in A such that xn → 0 and T (xn)→ y for some
y ∈ A, and to show that y = 0. Let ε > 0. Letting n → ∞ in the estimate

‖xn + εy‖ � ‖xn + εy− εT (xn + εy)‖,

we obtain ‖εy‖ � ‖ε2T (y)‖. Thus, cancelling ε and then letting ε → 0, we find that
y = 0 as claimed. As a result, T is bounded.

Corollary 3.1.31 Derivations on JB-algebras are continuous.

Proof Since every derivation of a JB-algebra can be uniquely extended to a deriva-
tion of its unital extension, and a derivation T of a unital JB-algebra satisfies condi-
tion (3.1.6) (actually with = in place of �), the result follows from Corollary 3.1.11
and Proposition 3.1.30.

Corollary 3.1.32 Let A be a JB-algebra, and let T : A → A be a linear mapping.
Then T is a derivation of A if and only if T is bounded with

V (BL(A), IA,T ) = 0.
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Proof Assume that T is a derivation of A. Then, by Corollary 3.1.31, T is
continuous, so, for every λ ∈ R, we may consider exp(λT ) which is an algebra
automorphism of A, and so, by Proposition 3.1.4(ii), we have ‖exp(λT )‖ = 1. By
Corollary 2.1.9(ii), we have V (BL(A), IA,T ) = 0.

Conversely, assume that T is bounded with V (BL(A), IA,T ) = 0. Then, again by
Corollary 2.1.9(ii), the mapping λ → exp(λT ) from R to BL(A) is a continuous
one-parameter group of linear isometries on A, and hence, for all λ ∈R, the operator
exp(λT ) must lie in the connected component of the identity in the group of all isom-
etries from A onto A. By Proposition 3.1.26, exp(λT ) is an algebra automorphism,
i.e. for a,b ∈ A we have

exp(λT )(ab) = exp(λT )(a)exp(λT )(b).

By computing the derivative at λ = 0, we get that T (ab) = aT (b)+T (a)b, i.e. T is
a derivation.

Now we are going to determine the spatial numerical index of JB-algebras and
of preduals of JBW -algebras. Given a locally compact Hausdorff topological space
E and a normed space X , we denote by C0(E,X) the normed space of all X-valued
continuous functions on E vanishing at infinity.

Lemma 3.1.33 Let E be a locally compact Hausdorff topological space, let X be a
normed space over K, and let T be in BL(C0(E,X)). Then we have

v(T ) = sup
{∣∣x′(T ( f )(t)

)∣∣ : f ∈ SC0(E,X), t ∈ E, x′ ∈ SX ′ , x′( f (t)) = 1
}
.

Proof Let f be in SC0(E,X). Then there are t ∈ E and x′ ∈ SX ′ such that x′( f (t)) = 1.
Now, consider the element x′ ⊗δt of D(C0(E,X), f ) defined by

(x′ ⊗δt)(g) := x′(g(t)) for every g ∈C0(E,X).

It follows from the above that the set{
( f ,x′ ⊗δt) : f ∈ SC0(E,X), t ∈ E, x′ ∈ SX ′ , x′( f (t)) = 1

}
is a subset of Π(C0(E,X)) whose projection into the first coordinate is the whole unit
sphere of C0(E,X). Now the result follows from Proposition 2.1.31.

Proposition 3.1.34 Let E be a locally compact Hausdorff topological space, and
let X be a normed space over K. Then N(C0(E,X)) = N(X).

Proof To show that N(C0(E,X)) � N(X), we fix T ∈ BL(C0(E,X)) with ‖T‖ = 1
and prove that v(T ) � N(X). Given ε > 0, we may find f0 ∈C0(E,X) with ‖ f0‖= 1
and t0 ∈ E such that

‖T ( f0)(t0)‖> 1− ε. (3.1.7)

Denote y0 = f0(t0) and find a continuous function with compact support
ϕ : E → [0,1] such that ϕ(t0) = 1 and ϕ(t) = 0 if ‖ f0(t)− y0‖ � ε . Now write
y0 = λx1 +(1−λ )x2 with 0 � λ � 1, x1,x2 ∈ SX , and consider the functions

f j := (1−ϕ) f0 +ϕx j ∈C0(E,X) ( j = 1,2).

Then ‖ϕ f0−ϕy0‖< ε meaning that ‖ f0−(λ f1+(1−λ ) f2)‖< ε , and, using (3.1.7),
we must have
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‖T ( f1)(t0)‖> 1−2ε or ‖T ( f2)(t0)‖> 1−2ε .

By making the right choice of x0 = x1 or x0 = x2 we get x0 ∈ SX such that

‖T ((1−ϕ) f0 +ϕx0)(t0)‖> 1−2ε. (3.1.8)

Next we fix x′0 ∈ SX ′ with x′0(x0) = 1, for x ∈ X denote

Φ(x) := x′0(x)(1−ϕ) f0 +ϕx ∈C0(E,X),

and consider the operator S ∈ BL(X) given by S(x) := T (Φ(x))(t0) for every x ∈ X .
Since, by (3.1.8),

‖S‖ � ‖S(x0)‖> 1−2ε,

we may find x ∈ SX and x′ ∈ SX ′ such that

x′(x) = 1 and |x′(S(x))| � N(X)[1−2ε ].

Now, define g ∈ SC0(E,X) by g := Φ(x), for this x, and consider the functional g′ ∈
SC0(E,X)′ given by g′(h) := x′(h(t0)) for every h ∈C0(E,X). Since g(t0) = x, we have

g′(g) = 1 and |g′(T (g))|= |x′(S(x))| � N(X)[1−2ε].

Hence v(T ) � N(X), as required.
For the reverse inequality, take an operator S ∈ BL(X) with ‖S‖ = 1, and define

T ∈ BL(C0(E,X)) by T ( f )(t) := S( f (t)) for all t ∈ E and f ∈C0(E,X). Then ‖T‖=
1, so v(T )� N(C0(E,X)). By Lemma 3.1.33, given ε > 0, we may find f ∈ SC0(E,X),
x′ ∈ SX ′ , and t ∈ E, such that x′( f (t)) = 1 and

N(C0(E,X))− ε <
∣∣x′(T ( f )(t)

)∣∣= |x′(S( f (t)))|.

It clearly follows that v(S) � N(C0(E,X)), so N(X) � N(C0(E,X)).

Actually, for our present goal we only need the consequence of Proposition 3.1.34
that, if E is a locally compact Hausdorff topological space, then N(CK

0 (E)) = 1.

Proposition 3.1.35 Let A be a JB-algebra. Then the following conditions are
equivalent:

(i) A is associative.
(ii) N(A) = 1.

(iii) IA is a geometrically unitary element of BL(A).
(iv) IA is a vertex of the closed unit ball of BL(A).

Proof (i)⇒(ii) By Propositions 3.1.4(i) and 3.1.34.
(ii)⇒(iii) By Theorem 2.1.17(i).
(iii)⇒(iv) This is clear.
(iv)⇒(i) Assume that condition (i) does not hold. Then, by Lemma 3.1.23, A has

nonzero continuous derivations. Therefore, by Corollary 3.1.32, there are nonzero
bounded linear operators on A with zero numerical range, i.e. condition (iv) fails.

As a consequence of the above proposition, we straightforwardly derive the
following.
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Corollary 3.1.36 Let A be a JB-algebra. Then N(A) is equal to 1 or 0 depending
on whether or not A is associative.

It also follows from Corollary 3.1.32 and Proposition 3.1.35 that a JB-algebra A
is associative (if and) only if there is no nonzero derivation of A.

Lemma 3.1.37 Bijective algebra homomorphisms between JBW-algebras and
derivations of JBW-algebras are w∗-continuous.

Proof Keeping in mind the uniqueness of the predual of a JBW -algebra, the
w∗-continuity of bijective algebra homomorphisms follows from the fact that, by
Proposition 3.1.4(ii), such mappings are surjective linear isometries.

Let T be a derivation of a JBW -algebra A. Then, by Corollary 3.1.31, T is
norm-continuous, so, for every λ ∈ R, we may consider exp(λT ) which is an
algebra automorphism of A, and hence a w∗-continuous mapping (by the above
paragraph). Since

T = lim
λ→0

exp(λT )− IA

λ

in the norm topology of BL(A), we conclude that T is w∗-continuous.

Proposition 3.1.38 Let X be the predual of a JBW-algebra. Then the following
conditions are equivalent:

(i) X ′ is associative.

(ii) N(X) = 1.

(iii) IX is a geometrically unitary element of BL(X).

(iv) IX is a vertex of the closed unit ball of BL(X).

Proof (i)⇒(ii) By the inequality (2.1.18) and Corollary 3.1.36.
(ii)⇒(iii) By Theorem 2.1.17(i).
(iii)⇒(iv) This is clear.
(iv)⇒(i) Assume that condition (i) does not hold. Then, by Lemma 3.1.23, X ′ has

a nonzero norm-continuous derivation (say F). By Lemma 3.1.37, we have F = T ′

for some nonzero T ∈ BL(X), and then, by Corollaries 2.1.3 and 3.1.32, we have
V (BL(X), IX ,T ) = 0. This implies that condition (iv) fails.

As a consequence of the above proposition, we derive the following.

Corollary 3.1.39 Let X be the predual of a JBW-algebra. Then N(X) is equal to
1 or 0 depending on whether or not X ′ is associative.

3.1.4 JB-algebras whose Banach spaces are convex-transitive

Given a normed space X over K, we denote by G = G (X) the group of all surjective
linear isometries from X to X .

Corollary 3.1.40 Let A be a unital JB-algebra. Then G (1) coincides with the set
of all central symmetries of A.
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Proof As a straightforward consequence of the Banach space characterizations of
central symmetries of A (given by Proposition 3.1.15 or Remark 3.1.25), we already
know that G (1) consists only of central symmetries of A. Conversely, to realize that
central symmetries of A lie in G (1), it is enough to keep in mind that multiplications
by central symmetries of A are elements of G .

§3.1.41 An element u in a normed space X over K is said to be a big point of X if
‖u‖= 1 and co(G (u)) = BX . As an illustrative example, by the Russo–Dye theorem
(Lemma 2.3.28), the unit of any unital C∗-algebra A is a big point of A. As a
straightforward consequence of Corollary 3.1.40, we get the following.

Proposition 3.1.42 Let A be a unital JB-algebra. If the linear hull of G (1) is dense
in A (for instance, if 1 is a big point of A), then A is associative.

Proposition 3.1.43 Let A be a JBW-algebra. Then the centre of A is the
norm-closed linear hull of G (1). As a consequence, the following conditions are
equivalent:

(i) The linear hull of G (1) is w∗-dense in A.
(ii) A is associative.

(iii) The linear hull of G (1) is norm-dense in A.

Proof Keeping in mind that the centre of A is w∗-closed in A (and hence, a JBW -
algebra) and Corollary 3.1.40, the first conclusion follows from Proposition 3.1.12
and the fact that 1− 2e is a symmetry whenever e is an idempotent in A. Now, the
consequence follows from Proposition 3.1.42.

A normed space X over K is said to be convex-transitive if every element of SX is
a big point of X .

Proposition 3.1.44 Let X be the predual of a JBW-algebra. If X has no non-
trivial G -invariant closed subspace (for instance, if X is convex-transitive), then X ′ is
associative.

Proof Assume that X has no nontrivial G -invariant closed subspace. Then X ′ has
no nontrivial G ′-invariant w∗-closed subspace, where G ′ := {T ′ : T ∈ G }. As a
consequence, the linear hull of G (X ′)(1) is w∗-dense in X ′, and Proposition 3.1.43
applies.

As a consequence of Proposition 3.1.42, convex-transitive unital JB-algebras
are associative. Now, we are going to show that this result remains true in the
non-unital case.

Lemma 3.1.45 Let X be a Banach space over K, and let u be in SX . Then the
following conditions are equivalent:

(i) u is a big point of X.
(ii) For every positive number δ , the set

Δδ (u) := {T ′( f ) : x ∈ SX , ‖x−u‖ � δ , f ∈ D(X ,x), T ∈ G }

is dense in SX ′ .
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Proof (i)⇒(ii) We fix δ > 0 and g ∈ SX ′ , and take 0 < ε < 1. By the assump-
tion (i), there exists T−1 ∈ G such that |g(T−1(u))−1|< ε ′2

4 , where ε ′ := min{ε,δ}.
By the Bishop–Phelps–Bollobás theorem (cf. Theorem 2.9.7), there are x ∈ SX and
f ∈ D(X ,x) satisfying

‖u− x‖< ε ′ � δ and ‖g◦T−1 − f‖< ε ′ � ε .

This shows that g ∈ Δδ (u).
(ii)⇒(i) Assume that (i) is not true, so that there is z ∈ BX \ co(G (u)). Then, by

the Hahn–Banach theorem, there exists f ∈ SX ′ such that

1 � f (z)> sup{ f (a) : a ∈ co(G (u))}.

By the assumption (ii), for n in N, the set Δ 1
n
(u) is dense in SX ′ , and hence there are

xn ∈ SX with ‖u− xn‖ � 1
n , gn ∈ D(X ,xn), and Tn ∈ G such that ‖ f − gn ◦Tn‖ � 1

n .
In this way we obtain

| f (T−1
n (u))−1| � | f (T−1

n (u))−gn(u)|+ |gn(u)−gn(xn)| �
2
n
,

which implies sup{ f (a) : a ∈ G (u)}= 1, contrarily to the choice of f .

Let X be a Banach space over K. An element f in X ′ is said to be a w∗-superbig
point of X ′ if f belongs to SX ′ and the convex hull of the set {F ′( f ) : F ∈ G } is
w∗-dense in BX ′ . Minor changes to the proof of Lemma 3.1.45 allow us to establish
the following.

Lemma 3.1.46 Let X be a Banach space over K, and let f be an element of SX ′ .
Then the following conditions are equivalent:

(i) f is a w∗-superbig point of X ′.
(ii) For every positive number δ , the set

Δ′
δ ( f ) := {T (x) : g ∈ SX ′ , ‖ f −g‖ � δ , x ∈ D(X ′,g)∩X , T ∈ G }

is dense in SX .

The following corollary follows from Fact 2.9.62 and Lemmas 3.1.45 and 3.1.46.

Corollary 3.1.47 Let (X ,e) be a complete real numerical-range space with
n(X ,e) = 1. Then e is a big point of X if and only if the set

Δ0(e) := {T ′( f ) : f ∈ D(X ,e), T ∈ G }

is dense in SX ′ . If moreover X is a dual space (with predual X∗ say), then e is a
w∗-superbig point of X if and only if the set

Δ′
0(e) := {T (y) : y ∈ D(X ,e)∩X∗, T ∈ G (X∗)}

is dense in SX∗ .

Proposition 3.1.48 Let (X ,e) be a complete (respectively, dual) real numerical-
range space with n(X ,e) = 1 such that there exists some big (respectively,
w∗-superbig) point u in X satisfying ‖e − u‖ < 2. Then e is a big (respectively,
w∗-superbig) point of X.
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Proof Take 0 < δ < 2 − ‖e − u‖. Then we have ‖x − e‖ < 2 whenever x ∈ SX

and ‖x− u‖ < δ . Therefore, by Fact 2.9.62, we have Δδ (u) ⊆ Δ0(e) (respectively,
Δ′
δ (u) ⊆ Δ′

0(e)). Since u is a big (respectively, w∗-superbig) point of X , it follows
from Lemma 3.1.45 (respectively 3.1.46) and Corollary 3.1.47 that e is a big
(respectively, w∗-superbig) point of X .

Now the next proposition follows from Propositions 3.1.42 and 3.1.48, and the fact
that, if A is a unital JB-algebra, then, by Proposition 3.1.4(iii), we have n(A,1) = 1.

Proposition 3.1.49 Let A be a unital JB-algebra. If there is some big point u of A
satisfying ‖1−u‖< 2, then A is associative.

Theorem 3.1.50 Let A be a JB-algebra such that there are a big point u of A and
a positive element p in 2BA satisfying ‖p−u‖< 1. Then A is associative.

Proof We know that A′′ is a unital JB-algebra containing A as a subalgebra, and
that, consequently, we have n(A′′,1) = 1. On the other hand, since p is a positive
element in 2BA, we have ‖1− p‖ � 1, and hence ‖1−u‖< 2 (because ‖p−u‖<1).
Moreover, u is a w∗-superbig point of A′′ (because u is a big point of A). It follows
from Proposition 3.1.48 that 1 is a w∗-superbig point of A′′. Finally, by Propos-
ition 3.1.43, A′′ (and hence A) is associative.

Corollary 3.1.51 Let A be a nonzero JB-algebra. If some positive element in A is
a big point of A, then A is associative. As a consequence, if (the Banach space of) A
is convex-transitive, then A is associative.

Proof The first conclusion follows straightforwardly from Theorem 3.1.50.
Assume that A is convex-transitive. Take a norm-one element x ∈ A. Then, by
Lemma 3.1.29, x2 becomes both a positive element and a big point of A, and the first
conclusion applies.

Now, recalling that, by Corollary 3.1.2, the self-adjoint part of any C∗-algebra
becomes a JB-algebra in a natural way, some results proved in this section for
JB-algebras reflect into results for C∗-algebras. Thus, as a by-product of Cor-
ollary 3.1.31, we can now give a proof of Lemma 2.2.25: that derivations of
C∗-algebras are continuous.

§3.1.52 Proof of Lemma 2.2.25 Let A be a C∗-algebra, and let D be a derivation
of A. Since D can be written as D = D1 + iD2 with D j a derivation of A satisfying
D j(a∗) = D j(a)∗ for every a ∈ A, we can assume that D(a∗) = D(a)∗ for every
a ∈ A. Then we have D(H(A,∗)) ⊆ H(A,∗). Since H(A,∗) is a JB-algebra (by
Corollary 3.1.2), and D, regarded as an operator on H(A,∗), becomes a derivation, it
follows from Corollary 3.1.31 that D is continuous on H(A,∗). Therefore, since the
direct sum A = H(A,∗)⊕ iH(A,∗) is topological, we derive that D, as an operator
on A, is continuous.
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Now, consider the following.

Lemma 3.1.53 Let A be a C∗-algebra. Then the following conditions are
equivalent:

(i) A is commutative.
(ii) The JB-algebra H(A,∗) is associative.

(iii) The equality [a, [b,c]] = 0 holds for all a,b,c ∈ A.
(iv) The equality [a, [a,b]] = 0 holds for all a,b ∈ A.

Proof The implications (i)⇒(ii) and (iii)⇒(iv) are clear.
(ii)⇒(iii) Note that, for a,b,c ∈ A, we straightforwardly have

4[a, [b,c]] = [b,a,c]sym, (3.1.9)

where [·, ·, ·]sym stands for the associator in Asym. Therefore, if condition (ii) is
fulfilled, we have [a, [b,c]] = 0 whenever a,b,c are in H(A,∗), and hence, since
A = H(A,∗)+ iH(A,∗), condition (iii) holds.

(iv)⇒(i) Assume that condition (iv) is fulfilled. Since condition (iv) passes to
the unital extension of A, in order to prove (i) we can invoke Proposition 1.2.44,
and assume without loss of generality that A is unital. Then, by Lemma 2.2.5 and
Corollary 2.4.3, we have [a,b] = 0 whenever a lies in H(A,∗) and b is in A. Since
A = H(A,∗)+ iH(A,∗), we conclude that condition (i) holds.

In view of the above lemma, results involving associativity of JB-algebras (like
Propositions 3.1.35, 3.1.38, 3.1.42, 3.1.43, 3.1.44, and 3.1.49; Corollaries 3.1.36,
3.1.39, and 3.1.51; and Theorem 3.1.50) reflect into results involving commutativity
of C∗-algebras. As a sample, we formulate the following.

Corollary 3.1.54 Let A be a C∗-algebra. We have:

(i) N(H(A,∗)) is equal to 1 or 0 depending on whether or not A is commutative.
(ii) If the Banach space of H(A,∗) is convex-transitive, then A is commutative.

3.1.5 Historical notes and comments

JC-algebras were first considered and studied by Topping [813] and Størmer [601].
The foundational papers for JB-algebras are those of Alfsen, Shultz, and Størmer [15]
(1978) and Shultz [570] (1979), where the theory of unital JB-algebras and JBW -
algebras is developed in depth. In particular, Proposition 3.1.12 and the unital
forerunners of Propositions 3.1.3, 3.1.4, and 3.1.10 can be found in these papers.
The extension of the theory to the non-unital case could be done thanks to Behncke’s
theorem [82] (1979) that the unital extension of a non-unital JB-algebra becomes
a JB-algebra for a suitable norm. On the other hand, Hanche-Olsen [308] (1980)
achieved a new simpler proof of the unital forerunner of Proposition 3.1.10. All the
material roughly reviewed above has been fully re-elaborated in Hanche-Olsen and
Størmer [738], which today is the standard reference for the theory.

Lemma 3.1.1 was first proved by Youngson [652] under the additional assump-
tions (unnecessary today, in view of Theorems 2.3.8 and 2.4.11) that the natural
involution of the V -algebra under consideration is an algebra involution, and that the



3.1 Isometries of JB-algebras 337

V -algebra is a non-commutative Jordan algebra. Corollary 3.1.2 is obvious for any
C∗-algebraist and, as mentioned in the introduction, becomes the motivation for the
theory of JB-algebras.

A Jordan algebra is said to be special if it is isomorphic to a subalgebra of Asym

for some associative algebra A. A deep and useful result in the theory of Jordan
algebras is the following theorem, due to Shirshov [567] and Cohn [178] (see also
[738, 2.4.14]).

Theorem 3.1.55 Any Jordan algebra generated by two elements is special.

Thus Proposition 3.1.3 becomes a deep analytic variant of the Shirshov–Cohn
theorem. A fundamental example of a JB-algebra which is not a JC-algebra is the
following.

Example 3.1.56 Consider the algebra M3(O), of all 3× 3 matrices with entries
in the algebra O of Cayley numbers, and endow it with the algebra involution ∗
consisting of transposing the matrix and taking standard involution in each entry.
Then, clearly, H3(O) :=H(M3(O),∗) is a subalgebra of M3(O)sym. Moreover H3(O)

is a Jordan algebra, and, endowed with a suitable norm, becomes in fact a JB-algebra
[738, Proposition 2.9.2 and Corollary 3.1.7]. Since, as shown by Albert [6] (see
also [738, Corollary 2.8.5]), the Jordan algebra H3(O) is not special, it cannot be a
JC-algebra.

Lemma 3.1.7 is folklore. The crucial equivalence (ii)⇔(iii) in Proposition 3.1.9 is
due to Wright and Youngson [643]. Indeed, they prove that the extreme points of the
positive part (say B+

A ) of the closed unit ball of a unital JB-algebra A are precisely
the idempotents of A. But, since BA is affinely isomorphic to B+

A via the mapping
x → 1

2 (x+ 1), the above fact is equivalent to the equivalence (ii)⇔(iii) in Propos-
ition 3.1.9 that the extreme points of BA are precisely the symmetries in A. The first
conclusion in Proposition 3.1.9 (that a JB-algebra A is unital if and only if BA has
extreme points), as well as the implication (iii)⇒(i) in that proposition, remain true
in the more general setting of the so-called real JB∗-algebras (see Corollary 4.2.58
below). The whole autonomous proof of Proposition 3.1.9 given here seems to us to
be new. Proposition 3.1.13 and the (conclusion of) proof given here are due to Wright
and Youngson [643].

Proposition 3.1.15 is due to Leung, Ng, and Wong [399] (2009), although the
equivalences (ii)⇔(v)⇔(vi) were previously known as a consequence of a more
general result in [261], which will be included later with proof in Theorem 4.2.53.
The next proposition, also proved in [399], follows from Proposition 3.1.15 and the
non-quantitative version of Corollary 2.9.29.

Proposition 3.1.57 Let A be a JBW-algebra, and let u be a norm-one element of A.
Then the following conditions are equivalent:

(i) u is a central symmetry in A.
(ii) The Banach space of A becomes a JBW-algebra with unit u, for some product.

(iii) n(A,u) = 1.
(iv) u is a w∗-unitary element of A (cf. §2.9.24).
(v) u is a w∗-vertex of the closed unit ball of A (cf. §2.9.24 again).
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We note in passing that, in view of [738, Proposition 4.5.3] and the implication
(i)⇒(ii) in the above proposition, if u is a central symmetry in a JBW-algebra A,
then we have

BA∗ = |co|(Dw∗
(A,u)),

which refines the quantitative version of Corollary 2.9.29 in the present case (com-
pare Example 2.9.31).

Corollaries 3.1.16 and 3.1.32, as well as results from Lemma 3.1.19 to Propos-
ition 3.1.26, are taken from the Isidro–Rodrı́guez paper [342] (1995). The equival-
ence (i)⇔(v) in Theorem 3.1.21 remains true in the more general setting of real
JB∗-algebras (see Theorem 4.2.79 below). The equivalence (i)⇔(vii) in The-
orem 3.1.21 remains true in the still more general setting of real JB∗-triples (see
§4.2.76 below). With the exception of some auxiliary results (namely Propos-
itions 3.1.18 and 3.1.30, Lemma 3.1.29, and Corollary 3.1.31), the material from
Proposition 3.1.15 to Corollary 3.1.32 has been fully re-elaborated. Indeed, Propos-
ition 3.1.15 was not known when Theorem 3.1.21 was first proved in [342], and in
fact the original proof of Proposition 3.1.15 in [399] uses Theorem 3.1.21. The rather
surprising quick proof of Proposition 3.1.15 we have given has allowed us to replace,
in the original proof of Theorem 3.1.21, the Banach space characterizations of
central symmetries given by Remark 3.1.25 with those given by Proposition 3.1.15.
An additional historical remark on Proposition 3.1.15 can be found in §4.2.78 below.

Proposition 3.1.18 (without which, condition (ii) in Theorem 3.1.21 would not
have a right meaning) is due to Edwards [223]. Proposition 3.1.30 is an almost
verbatim adaptation of a similar result for C∗-algebras proved by Ara and Mathieu
[678, Theorem 4.1.5] in order to get a new simple proof of Sakai’s theorem (already
stated in Lemma 2.2.25) that derivations of C∗-algebras are continuous. According
to the authors of [678], they follow the ideas of Arendt, Chernoff, and Kato in [27].
According to Youngson [654], Corollary 3.1.31 can be proved by modifying Sakai’s
argument in [806, Lemma 4.1.3] showing the automatic continuity of derivations
of C∗-algebras, but, as far as we know, the details of such a modification were
never explained. Of course, we have preferred here to modify the simpler Ara–
Mathieu argument. By passing to normed complexification, Corollary 3.1.31 follows
also from Villena’s theorem [625] that derivations of complete normed J-semisimple
Jordan complex algebras are continuous. (For the meaning of a J-semisimple Jordan
algebra, the reader is referred to Definition 4.4.12 below.) However, Villena’s result
is very deep and difficult since it depends heavily on Zel’manov’s classification
theorem [662] (see also [777, p. 110]) for prime ‘nondegenerate’ Jordan algebras,
the specialization of Zel’manov’s theorem in the J-primitive case [21, 585], and the
later analytic treatment in [146]. (For the meaning of a J-primitive Jordan algebra,
the reader is referred to §4.4.73 below.)

Lemma 3.1.33 and Proposition 3.1.34 are due to Martı́n and Payá [421]. The fact
actually needed for our development (that N(CK

0 (E)) = 1 for every locally compact
Hausdorff topological space E) is originally due to Duncan, McGregor, Pryce, and
White [217].

Although easily derivable from known results, Propositions 3.1.35 and 3.1.38, as
well as Corollaries 3.1.36 and 3.1.39, do not appear explicitly in any reference.
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Results from Corollary 3.1.40 to Corollary 3.1.51 are taken from the Becerra–
Rodrı́guez paper [73], where previous results in [71] are refined. In particular,
Corollary 3.1.51 was known in [71] with a different proof. It follows from Cor-
ollary 3.1.51 (respectively, Proposition 3.1.44) and Proposition 3.1.4(i) that the
question of convex transitivity for JB-algebras (respectively, for preduals of JBW -
algebras) reduces to the consideration of a similar question for the classical Banach
spaces CR

0 (E) (respectively, LR
1 (μ)). As shown in Wood’s paper [638] (see also

[731, Theorem 12.5.3]), we have the following.

Theorem 3.1.58 Let E be a locally compact Hausdorff topological space. Then the
following conditions are equivalent:

(i) The Banach space CR
0 (E) is convex-transitive.

(ii) E is totally disconnected and, for every probability measure μ on E and every
t ∈ E, there exists a net {γα} of homeomorphisms of E such that the net {μ ◦γα}
is w∗-convergent to δt .

As far as we know, the convex transitivity for LR
1 (μ)-spaces has not been system-

atically studied.
Transitive and almost transitive normed spaces were introduced in §§2.6.43

and 2.9.39, respectively. Keeping in mind Lemma 2.7.36, we are provided with the
following chain of implications between transitivity conditions on a normed space:

pre-Hilbert =⇒ transitive =⇒ almost transitive =⇒ convex-transitive .

As shown in the Greim–Rajalopagan paper [300], we have the following.

Theorem 3.1.59 Let E be a locally compact Hausdorff topological space such that
CR

0 (E) is almost transitive. Then E reduces to a point.

By combining Corollary 3.1.51, Proposition 3.1.4(i), and Theorem 3.1.59, we get
the following.

Corollary 3.1.60 R is the unique almost transitive JB-algebra.

The remarkable fact, given by Corollary 3.1.60 above, was first pointed out in [71].
It is worth mentioning that Theorem 3.1.59 does not remain true when R is replaced
with C. Indeed, in 2002, a counterexample was found by Rambla [498] (and in 2003,
independently by Kawamura [386]). For additional information about transitivity
conditions on normed spaces, the reader is referred to Chapter 12 in Fleming and
Jamison [731], Chapter 9 in Rolewicz [800] (excluding Theorems 9.7.3 and 9.7.7 and
Corollary 9.7.4 which, according to [73, pp. 17–18], are mistaken), and the survey
papers of Cabello [139] and Becerra–Rodrı́guez [73].

Lemma 3.1.53 is due to Topping [813]. In relation to Corollary 3.1.54(i), it is worth
mentioning that the spatial numerical index N(A) of a C∗-algebra A is equal to 1 or
1
2 depending on whether or not A is commutative, a result of Huruya [333] which
will be discussed later (see Corollary 3.5.39(i)). In relation to Corollary 3.1.54(ii),
let us mention that convex-transitive C∗-algebras need not be commutative. Indeed,
the Calkin algebra (cf. §1.4.55) is convex-transitive [71].
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3.2 The unital non-associative Gelfand–Naimark theorem

Introduction In this section, we prove one of the star results in our work. Namely,
as a consequence of Theorem 3.2.5, unital non-associative C∗-algebras are ‘very
nearly’ associative: they are indeed alternative. We note that, by Proposition 2.6.8,
associativity of such algebras cannot be expected.

3.2.1 The main result

We begin this section by including some useful characterizations of non-com-
mutative Jordan algebras.

Proposition 3.2.1 Let A be an algebra over K. We have:

(i) If A is flexible, then the following identities are equivalent:

a(ba2) = (ab)a2, (i.e. [La,Ra2 ] = 0) (3.2.1)

(a2b)a = a2(ba), (i.e. [Ra,La2 ] = 0) (3.2.2)

(ba)a2 = (ba2)a, (i.e. [Ra,Ra2 ] = 0) (3.2.3)

a2(ab) = a(a2b), (i.e. [La,La2 ] = 0). (3.2.4)

(ii) A is a non-commutative Jordan algebra if and only if A is flexible and satisfies
any one of the identities (3.2.1)–(3.2.4).

Proof Assume that A is flexible. Then, writing the flexibility of A as

[Ra,La] = 0, (3.2.5)

and linearizing, we obtain

[Ra,Lb] = [La,Rb]. (3.2.6)

This with b = a2 gives

[Ra,La2 ] = [La,Ra2 ], (3.2.7)

hence (3.2.1) and (3.2.2) are equivalent. On the other hand, linearizing the flexible
identity (a,b,a) = 0 gives (a,b,c)+(c,b,a) = 0, and hence

Lab −LaLb = Rba −RaRb.

Setting b = a in the above equality we obtain

La2 −L2
a = Ra2 −R2

a. (3.2.8)

If A satisfies (3.2.3) and (3.2.5), then by (3.2.8) [Ra,La2 ] = 0, giving (3.2.2). Simi-
larly, (3.2.2) and (3.2.5) imply (3.2.3), and the equivalence of (3.2.1) and (3.2.4)
follows from the same argument. Thus assertion (i) is proved.

Now, remove the assumption that A is flexible, and note that, since

a•b =
1
2
(La +Ra)(b),
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Jordan-admissibility of A is equivalent to the identity

[La +Ra,La2 +Ra2 ] = 0. (3.2.9)

Therefore, Jordan-admissibility is assured whenever all identities (3.2.1)–(3.2.4) are
fulfilled. Hence, if A is flexible and satisfies any one of (3.2.1)–(3.2.4), then, by
assertion (i), A is a non-commutative Jordan algebra. Conversely, if A is a non-
commutative Jordan algebra, then identities (3.2.7) and (3.2.8) (respectively, (3.2.9))
hold by flexibility (respectively, by Jordan-admissibility), so

0 = [La2 +Ra2 ,La]+ [La2 +Ra2 ,Ra]

= [2Ra2 −R2
a +L2

a,La]+ [2La2 −L2
a +R2

a,Ra]

= 2[Ra2 ,La]+2[La2 ,Ra] = 4[Ra,La2 ],

giving (3.2.2), and hence, by assertion (i), A satisfies any one of (3.2.1)–(3.2.4).

As a by-product of the above proposition and its proof, we derive the following.

Corollary 3.2.2 Let A be an algebra over K. We have:

(i) If A is flexible, then the equality

Lab −LaLb = Rba −RaRb

holds for all a,b ∈ A.
(ii) If A is a non-commutative Jordan algebra, then, for each a ∈ A, the set

{La,Ra,La2 ,Ra2} is a commutative subset of L(A).

As usual, every V -algebra will be seen endowed with its natural involution.

Proposition 3.2.3 Let A and B be complete V -algebras, and let F : A → B be a
bijective linear mapping. Then the following conditions are equivalent:

(i) F is a Jordan-∗-homomorphism.
(ii) V (A,1,a) =V (B,1,F(a)) for every a ∈ A.

Proof (i)⇒(ii) Assume that F is a Jordan-∗-homomorphism. Then, clearly, we
have F(H(A,∗)) = H(B,∗). On the other hand, since H(A,∗) = H(A,1) and
H(B,∗) = H(B,1), Lemma 3.1.1, applies, so that H(A,1) and H(B,1) become
JB-algebras in a natural way. It follows that F , regarded as a mapping from
H(A,1) to H(B,1), becomes a bijective algebra homomorphism, and hence, by
Proposition 3.1.4(ii), is an isometry. As a consequence, by Corollary 2.1.2(ii), we
have V (B,1,F(h)) = V (A,1,h) for every h ∈ H(A,1). Now, let a be in A. Writing
a = h+ ik, with h,k ∈ H(A,1), we have

maxℜ(V (F(a))) = maxV (F(h)) = maxV (h) = maxℜ(V (a)).

By replacing a by appropriate complex multiplies of a, we get V (F(a))=V (a), as
required.

(ii)⇒(i) Assume that (ii) holds. Then, clearly, we have F(H(A,1))=H(B,1), and,
as a consequence, F becomes a ∗-mapping. Moreover, by Proposition 2.3.4, F ,
regarded as a mapping from H(A,1) to H(B,1), is a surjective linear isometry. Now,
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keeping in mind Lemma 3.1.1 and the implication (i)⇒(ii) in Proposition 3.1.13, the
proof is concluded by showing that F(1) = 1. But, since

V (B,1,F(1)) =V (A,1,1) = {1}, and V (B,1,1) = {1},

we obtain V (B,1,F(1)− 1) = {0}, and hence, by Corollary 2.1.13, F(1) = 1, as
required.

Lemma 3.2.4 Let A be a complete normed unital algebra over K, and let {Fn}n�0

be a sequence in BL(A). Assume the existence of a positive number k such that the
series ∑n�0

1
n! rnFn converges in BL(A) for every r ∈R with |r|< k, and that, for such

an r, Gr := ∑∞
n=0

1
n! rnFn is an algebra automorphism of A. Then we have:

(i) Fn(ab) =
n

∑
i=0

(
n
i

)
Fi(a)Fn−i(b) for every n � 0 and all a,b ∈ A.

(ii) In particular, if F0 = IA and F1 = 0, then F2 is a derivation of A.

Proof We have Gr(ab) = Gr(a)Gr(b) for every r ∈ R with |r| < k and all a,b ∈
A. Writing the right-hand side of the above equality as a Cauchy product of the
corresponding series, and identifying coefficients, assertion (i) is obtained. Then,
assertion (ii) becomes clear.

Let A be a complete normed unital power-associative algebra over K, and let a be
in A. Then the closed subalgebra of A generated by 1 and a is associative, and so we
can consider exp(a) ∈ A (cf. §1.1.29).

Theorem 3.2.5 Let A be a normed unital complex algebra endowed with a
conjugate-linear vector space involution ∗ satisfying 1∗ = 1 and ‖a∗a‖ = ‖a‖2

for every a ∈ A. Then A is alternative, and ∗ is an algebra involution on A.

Proof The assumption that ‖a∗a‖ = ‖a‖2 for every a ∈ A implies that ∗ is an
isometry. Therefore we can pass to the completion of A, and assume without loss
of generality that A is complete. By Lemma 2.2.5, A is a V -algebra whose natural
involution coincides with ∗, so that, by Theorem 2.3.8, ∗ is an algebra involution on
A. Moreover, by Theorem 2.4.11, A is a non-commutative Jordan algebra, and hence,
by Proposition 2.4.19, A is power-associative.

Let h be in H(A,1), let r be in R, and let a be in A. Set

Gr := Lexp(irh) exp(−irLh).

Keeping in mind that exp(−irLh) is an isometry (by Lemma 2.1.10 and Corol-
lary 2.1.9(iii)), for each s ∈ R, we have

‖1+ sa‖2 = ‖exp(−irh)+ s exp(−irLh)(a)‖2

= ‖[exp(irh)+ s(exp(−irLh)(a))
∗][exp(−irh)+ s exp(−irLh)(a)]‖

= ‖1+ s(Gr(a)+(Gr(a))
∗)+ s2 · · ·‖.

Taking right derivatives at s = 0 (see Corollary 2.1.6), we get

2maxℜ(V (A,1,a)) = maxV (A,1,Gr(a)+(Gr(a))
∗),
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and hence maxℜ(V (A,1,a)) = maxℜ(V (A,1,Gr(a))). Thus we have proved that

V (A,1,a) =V (A,1,Gr(a)) for all a ∈ A and r ∈ R. (3.2.10)

Since G0 = IA, and the mapping r → Gr from R to BL(A) is continuous, there exists
a positive number k such that, for r ∈R with |r|< k, Gr is invertible in BL(A). Thus,
for |r|< k, Gr is a linear bijection satisfying (3.2.10), and hence, by the implication
(ii)⇒(i) in Proposition 3.2.3, it is a Jordan-∗-automorphism. Let ∑n�0

1
n! rnFn be the

power series development of Gr. Then we have F0 = IA, F1 = 0, and

F2 = L2
h −Lh2 . (3.2.11)

It follows from Lemma 3.2.4 that F2 is a Jordan derivation on A. Moreover, we have
F2(a∗) = F2(a)∗ for every a ∈ A. Indeed, this equality can be derived from (3.2.11)
and Corollary 3.2.2(i), or alternatively from the uniqueness of the coefficients in
a power series development, and the fact that Gr is a ∗-mapping. Now, for a ∈ A,
set |||a ||| := v(A,1,a), note that, by Proposition 2.1.11, ||| · ||| is an equivalent vector
space norm on A, and denote also by ||| · ||| the corresponding operator algebra norm
on BL(A). It follows from Lemma 2.2.21 that, for every t ∈ R, exp(tF2) is a Jordan-
∗-automorphism of A, and hence, by the implication (i)⇒(ii) in Proposition 3.2.3,
that |||exp(tF2)|||= 1. Therefore, by Corollary 2.1.9(iii), we have

iF2 ∈ H((BL(A), ||| · |||), IA), (3.2.12)

and then, by Lemma 2.3.21, sp(F2) ⊆ iR. On the other hand, by Lemmas 2.1.10
and 2.3.21, we also have sp(Lh) ⊆ R and sp(Lh2) ⊆ R, so that, since Lh and Lh2

commute (by Corollary 3.2.2(ii)), Corollary 1.1.81(i) gives

sp(F2) = sp(L2
h −Lh2)⊆ sp(L2

h)− sp(Lh2)⊆ (sp(Lh))
2 − sp(Lh2)⊆ R.

It follows that sp(F2) = {0}. Then, invoking (3.2.12) and Proposition 2.3.22, we have
0 = F2 = L2

h −Lh2 .
Since h is an arbitrary element in H(A,1), we can linearize to obtain

Lh •Lk −Lh•k = 0 for all h,k ∈ H(A,1).

Since A = H(A,1) + iH(A,1), we derive La • Lb − La•b = 0 for all a,b ∈ A, and
in particular L2

a − La2 = 0 for every a ∈ A. Since the equality R2
a −Ra2 = L2

a − La2

holds for every a ∈ A (by Corollary 3.2.2(i)), we have also R2
a −Ra2 = 0, and A is

alternative, as required.

We call Theorem 3.2.5 above the unital non-associative Gelfand–Naimark
theorem.

Lemma 3.2.6 Let A be a normed alternative ∗-algebra over K. Then the following
conditions are equivalent:

(i) ‖a∗a‖= ‖a‖2 for every a ∈ A.
(ii) ‖aa∗a‖= ‖a‖3 for every a ∈ A.

Proof Keep in mind that, by Theorem 2.3.61, for each a ∈ A, the subalgebra of A
generated by a and a∗ is associative. If ‖aa∗a‖= ‖a‖3 for every a ∈ A, then we have



344 Concluding the proof of the non-associative Vidav–Palmer theorem

‖a‖2 � ‖a∗a‖, and hence ‖a‖2 = ‖a∗a‖. Conversely, if ‖a∗a‖= ‖a‖2 for every a∈A,
then we clearly have ‖a‖= ‖a∗‖, so

‖a‖4 = ‖a∗a‖2 = ‖a∗aa∗a‖ � ‖a‖‖aa∗a‖ � ‖a‖4,

and so ‖a‖3 = ‖aa∗a‖.

Now, as announced in Remark 2.2.6, we can prove the following.

Corollary 3.2.7 Let A be a normed unital complex algebra endowed with a
conjugate-linear vector space involution ∗ satisfying 1∗ = 1 and ‖a∗a‖ = ‖a‖2 for
every a ∈ A. Then we have ‖Ua(a∗)‖= ‖a‖3 for every a ∈ A.

Proof By Theorem 3.2.5, A is alternative and ∗ is an algebra involution. There-
fore, by Theorem 2.3.61, for each a ∈ A, the subalgebra of A generated by a and
a∗ is associative, and consequently Ua(a∗) = aa∗a. Then the result follows from
Lemma 3.2.6.

3.2.2 Historical notes and comments

Proposition 3.2.1(i) is originally due to Schafer [552]. The proof given here has been
taken almost verbatim from Proposition I.5.1 in Elduque–Myung [728].

Results from Proposition 3.2.3 to Theorem 3.2.5 are due to Rodrı́guez [514]. The-
orem 3.2.5 is attributed erroneously to Braun [125] on p. 280 of Doran–Belfi [725].
Certainly, Braun (both in the introduction and in Theorem 4.5 of [125]) formulates
Theorem 3.2.5, but, in both places, he refers the reader to [514] for a proof. The proof
of Theorem 3.2.5 given here differs slightly from the original one in [514]. However,
some minor changes have been made in order to avoid the unnecessary application
done in [514] of the deep results of Youngson [654] and Wright [641]. These results
will be discussed later in Theorem 3.3.11 and Proposition 3.4.4, respectively.

3.3 The non-associative Vidav–Palmer theorem

Introduction In this section, we introduce non-commutative JB∗-algebras, and
prove as the main result the so-called ‘non-associative Vidav–Palmer theorem’,
which identifies complete V -algebras with unital non-commutative JB∗-algebras. In
fact, the proof of this theorem already started with Theorems 2.4.11 and 2.3.8,
asserting that V -algebras are non-commutative Jordan algebras, and that their
natural involutions are algebra involutions. Therefore, we conclude the proof here by
showing that the characteristic metric axiom ‖Ua(a∗)‖ = ‖a‖3 of non-commutative
JB∗-algebras holds for every element a in any V -algebra. This culminating point of
the theorem is due to Youngson [654], and is strongly based on a Jordan refinement of
Proposition 2.3.29, due to Wright and Youngson [642]. The section is complemented
by proving the so-called ‘dual version of the non-associative Vidav–Palmer theorem’.
This result, whose associative forerunner is due to Moore [446], characterizes unital
non-commutative JB∗-algebras, among norm-unital complete normed complex
algebras, in terms of the behaviour of the dual space.
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3.3.1 The main result

Definition 3.3.1 By a non-commutative JB∗-algebra we mean a complete normed
non-commutative Jordan complex ∗-algebra (say A) such that the equality
‖Ua(a∗)‖ = ‖a‖3 holds for every a ∈ A. Non-commutative JB∗-algebras which
are commutative are simply called JB∗-algebras.

Without enjoying their name, non-commutative JB∗-algebras have already ap-
peared in Corollary 2.4.12, which shows in addition that, in the case of unital alge-
bras, there are severe redundancies in the conditions required for non-commutative
JB∗-algebras in Definition 3.3.1.

We recall that alternative algebras are non-commutative Jordan algebras (by Cor-
ollary 2.4.10), and that for elements a,b in an alternative algebra, we have Ua(b) =
aba (by Theorem 2.3.61). Therefore, it is enough to invoke Lemma 3.2.6 to derive
the following.

Fact 3.3.2 Alternative C∗-algebras are non-commutative JB∗-algebras. More pre-
cisely, alternative C∗-algebras are those non-commutative JB∗-algebras which are
alternative.

The following result is easily verified by applying Corollary 3.2.2(i).

Fact 3.3.3 Let A be a flexible algebra over K. Then, for a ∈ A, the operator Ua has
the same meaning in both A and Asym.

A straightforward consequence of Fact 3.3.3 is the following.

Fact 3.3.4 Let A be a complete normed flexible complex ∗-algebra. Then A is a
non-commutative JB∗-algebra if and only if Asym is a JB∗-algebra.

As a by-product of Facts 3.3.2 and 3.3.4 we find that, if A is a C∗-algebra, then
closed ∗-subalgebras of Asym are JB∗-algebras. JB∗-algebras arising in this way are
called JC∗-algebras.

Lemma 3.3.5 Let A be an associative algebra over K, let a and b be in A, and let
m and n be in N. Then

a(ba)n, (ab)n +(ba)n, and (ab)n(ba)m +(ab)m(ba)n

belong to the subalgebra of Asym generated by {a,b}. As a consequence, if A is
unital, and if q is in K[x], then q(ab)q(ba) lies in the subalgebra of Asym generated
by {a,b,1}.

Proof Let C denote the subalgebra of Asym generated by {a,b}. By interchanging
the roles of m and n, we may assume that m � n. We argue by induction on n. The
lemma is true for n = 1 because, by Fact 3.3.3, we have

aba =Ua(b), ab+ba = 2(a•b), and 2abba = 2Ua(b2).

Assume that the lemma is true for some value of n (say p). Then we have

a(ba)p+1 =Ua[b(ab)p] ∈C,

(ab)p+1 +(ba)p+1 = ab(ab)p +b(ab)pa = 2a• [b(ab)p] ∈C,



346 Concluding the proof of the non-associative Vidav–Palmer theorem

and, for m < p+1,

(ab)p+1(ba)m +(ab)m(ba)p+1 = (ab)m [(ab)p+1−m +(ba)p+1−m](ba)m

= (UaUb)
m [(ab)p+1−m +(ba)p+1−m] ∈C,

whereas, for m = p+1,

2(ab)p+1(ba)p+1 = 2Ua(UbUa)
p(b2) ∈C.

Now, assume that A is unital, and let q(t) = ∑k
i=0λktk be in K[x]. Then, since

q(ab)q(ba) =
k

∑
i, j=0

λiλ j(ab)i(ba) j

=
k

∑
i=0

λ 2
i (ab)i(ba)i + ∑

0�i< j�k

λiλ j((ab)i(ba) j +(ab) j(ba)i),

it follows from the above paragraph that q(ab)q(ba) lies in the subalgebra of Asym

generated by {a,b,1}.

For assertion (i) in the next lemma, Fact 1.1.33(ii), as well as the continuous
functional calculus (stated in Theorem 1.2.28 and §1.2.29), should be kept in mind.

Lemma 3.3.6 Let A be a unital C∗-algebra, and let B be a closed ∗-subalgebra
of Asym with 1 ∈ B. We have:

(i) If x is in B, and if f is a complex-valued continuous function on the compact
set sp(A,xx∗)∪ sp(A,x∗x)⊆ R, then x f (x∗x) and f (x∗x) f (xx∗) lie in B, and we
have f (xx∗)x = x f (x∗x).

(ii) If x belongs to B∩ Inv(A), then x−1 lies in B.
(iii) BB = co(U ∩B), where U stands for the set of all unitary elements of A.

Proof Let x be in B, set K := sp(A,xx∗) ∪ sp(A,x∗x), and let f : K → C be a
continuous function. Take a sequence qn in C[x] converging to f uniformly on K.
Then we have qn(xx∗)→ f (xx∗) and qn(x∗x)→ f (x∗x). Since clearly

qn(xx∗)x = xqn(x
∗x) for every n ∈ N,

it follows that f (xx∗)x = x f (x∗x). Moreover, since xqn(x∗x) and qn(x∗x)qn(xx∗) lie
in B for every n ∈N (by Lemma 3.3.5), we derive that x f (x∗x) and f (x∗x) f (xx∗) also
lie in B. This concludes the proof of assertion (i). In what follows, assertion (i) (just
proved) will sometimes be applied with x∗ instead of x.

Let x be in B∩Inv(A). Then 0 /∈ sp(A,xx∗)∪sp(A,x∗x), and hence, by assertion (i),
we have that x−1 = x∗(xx∗)−1 ∈ B, which proves assertion (ii).

Now, let x ∈ B with 0 < ‖x‖< 1. For λ ∈ SC, set

F(λ ) := (1− xx∗)−
1
2 (λ1+ x)(1+λx∗)−1(1− x∗x)

1
2 .

We saw in the proof of Lemma 2.3.28 that, F(λ ) lies in U for every λ ∈ SC, and that

x =
1

2π

∫ 2π

0
F(eiθ )dθ .

Therefore, to conclude the proof of assertion (iii) it is enough to show that F(λ ) lies
in B for every λ ∈ SC. To this end, note that, for such a λ , we have
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(λ1+ x)(1+λx∗)−1 = [x(1+λx∗)+λ (1− xx∗)] (1+λx∗)−1

= x+λ(1− xx∗)(1+λx∗)−1,

and consequently

F(λ ) = (1− xx∗)−
1
2
[
x+λ (1− xx∗)(1+λx∗)−1](1− x∗x)

1
2

= (1− xx∗)−
1
2 x(1− x∗x)

1
2 +λ (1− xx∗)

1
2 (1+λx∗)−1(1− x∗x)

1
2 .

On the other hand, by assertion (i), we have

(1− xx∗)−
1
2 x(1− x∗x)

1
2 = x ∈ B.

So it only remains to show that (1− xx∗)
1
2 (1+λx∗)−1(1− x∗x)

1
2 is in B. By asser-

tion (ii), it suffices to show that its inverse

(1− x∗x)−
1
2 (1+λx∗)(1− xx∗)−

1
2

= (1− x∗x)−
1
2 (1− xx∗)−

1
2 +λ (1− x∗x)−

1
2 x∗(1− xx∗)−

1
2

is in B. But this holds because, by assertion (i), we have

(1− x∗x)−
1
2 (1− xx∗)−

1
2 ∈ B

and
(1− x∗x)−

1
2 x∗(1− xx∗)−

1
2 = x∗(1− xx∗)−1 ∈ B.

Thus F(λ ) lies in B for every λ ∈ SC, as desired.

Proposition 3.3.7 Let B be a unital JC∗-algebra. Then BB = co(E), where

E := {exp(ih) : h ∈ H(B,∗)}.

Proof Let A be a C∗-algebra such that B is a closed ∗-subalgebra of Asym. Then,
by Corollary 1.2.50, the unit 1 of B becomes a self-adjoint idempotent of A, and
hence, by Fact 3.3.3, 1A1 =U1(A) is a C∗-subalgebra of A containing B. Therefore,
replacing A with 1A1, we may assume that 1 is a unit for A. Let u be a unitary element
of A which lies in B. By Lemma 3.3.6(iii), it is enough to show that u ∈ co(E). Let C
stand for the closed subalgebra of A generated by {u,u∗}. Then C is a commutative
C∗-algebra with 1 ∈ C. Since C is a commutative subalgebra of A, the products of
A and Asym agree on C, and hence C coincides with the closed subalgebra of Asym

generated by {u,u∗}. Since B is a closed ∗-subalgebra of Asym, and u belongs to B, it
follows that C ⊆ B. Therefore, by Proposition 2.3.29, we have

u ∈ co({exp(ih) : h ∈ H(C,∗)})⊆ co(E),

as desired.

As usual, every V -algebra will be seen endowed with its natural involution.

Lemma 3.3.8 Let A be a complete commutative V -algebra, and let x be in A.
Then the closed subalgebra of A generated by {1,x,x∗} is ∗-invariant, and is indeed
bicontinuously ∗-isomorphic to a JC∗-algebra.
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Proof By Lemma 3.1.1, H(A,1) is a closed real subalgebra of A and, endowed
with the restriction of the norm of A, becomes a JB-algebra. Now, write x = h+ ik,
with h,k ∈ H(A,1), and let J stand for the closed subalgebra of H(A,1) generated by
{1,h,k}. Then, by Proposition 3.1.3, there exists a C∗-algebra B, together with an iso-
metric algebra homomorphism φ from J onto a closed subalgebra of the JB-algebra
H(B,∗). Since the direct sums A = H(A,1)⊕ iH(A,1) and B = H(B,∗)⊕ iH(B,∗)
are topological, J + iJ and φ(J) + iφ(J) are closed ∗-subalgebras of A and Bsym,
respectively, and the extension of φ by complex linearity becomes a bicontinuous
algebra ∗-homomorphism from J + iJ onto the JC∗-algebra φ(J)+ iφ(J). The proof
is concluded by noticing that J + iJ is nothing other than the closed subalgebra of A
generated by {1,x,x∗}.

§3.3.9 Given an algebra A, a subalgebra B of A, and an element x ∈ B, we denote
by UB

x and LB
x the operators Ux and Lx regarded as mappings from B to B.

We note that, if A is associative, unital, and complete normed, then, for x ∈ A,
exp(x) has the same meaning in both A and Asym (thanks to Lemma 2.4.17).

Lemma 3.3.10 Let A be a complete normed unital associative algebra over K,
let B be a closed subalgebra of Asym with 1 ∈ B, and let x be in B. Then we have
UB

exp(x) = exp(2LB
x ).

Proof We may assume that B = Asym. Then, for a ∈ A, LA
a and RA

a commute, and we
have LB

a = 1
2 (L

A
a +RA

a ) and, by Fact 3.3.3, also UB
a =UA

a = LA
a RA

a . Therefore, we get

UB
exp(x) = LA

exp(x)R
A
exp(x) = exp(LA

x )exp(RA
x ) = exp(LA

x +RA
x ) = exp(2LB

x ).

As a by-product of Lemma 2.2.5, unital non-commutative JB∗-algebras are com-
plete V -algebras. Now, we prove the following relevant converse (called in the sequel
‘the non-associative Vidav–Palmer theorem’).

Theorem 3.3.11 Let A be a complete V -algebra. Then A, endowed with its natural
involution and its own norm, becomes a non-commutative JB∗-algebra.

Proof Let ∗ denote the natural involution of A. By Theorems 2.3.8 and 2.4.11, ∗
is an algebra involution, and A is a non-commutative Jordan algebra. Therefore, to
conclude the proof it is enough to show that the equality ‖Ux(x∗)‖ = ‖x‖3 holds for
every x∈A. Since, clearly, Asym is a complete commutative V -algebra, we can invoke
Fact 3.3.4 to realize that there is no loss of generality in assuming that A is commu-
tative. Then we fix x ∈ A, and note that, by Lemma 2.3.7(ii) and Proposition 1.2.25,
the closed subalgebra of A generated by {1,x,x∗} is ∗-invariant, and hence becomes
a complete commutative V -algebra. Therefore we may assume in addition that A
is generated by {1,x,x∗} as a normed algebra. Now, we are in a position to apply
Lemma 3.3.8 to find an equivalent norm ||| · ||| on A such that (A,∗, ||| · |||) becomes a
unital JC∗-algebra. Therefore, by Proposition 3.3.7 and Corollary 2.1.9(iii), we have

B(A,|||·|||) = co{exp(ih) : h ∈ H(A,∗)}= co{exp(ih) : h ∈ H(A,1)} ⊆ BA,

and hence

‖ · ‖ � ||| · ||| on A. (3.3.1)
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Let h and a be in H(A,1) and A, respectively. Then, since (A, ||| · |||) is a
closed unital subalgebra of Csym for some complete normed unital associative
algebra C, Lemma 3.3.10 applies, so that we have Uexp(ih)(a) = (exp(2iLh))(a).
On the other hand, by Lemma 2.1.10, Lh belongs to H(BL(A), IA), and hence, by
Corollary 2.1.9(iii), we have ‖exp(2iLh)(a)‖= ‖a‖. It follows that

‖Uexp(ih)(a)‖= ‖a‖. (3.3.2)

Since the equality UvUw(v2) = (Uv(w))2 holds for all v,w ∈ A (indeed, compute this
in the associative algebra C above, using Fact 3.3.3), we apply (3.3.2) twice to get

‖Ua(exp(ih))‖= ‖Uexp( 1
2 ih)Ua(exp(ih))‖= ‖(Uexp( 1

2 ih)(a))
2‖

� ‖Uexp( 1
2 ih)(a)‖

2 = ‖a‖2.

Since the set {b ∈ A : ‖Ua(b)‖ � ‖a‖2} is closed and convex, and h is arbitrary in
H(A,∗), and (A,∗, ||| · |||) is a unital JC∗-algebra, it follows from Proposition 3.3.7
that

‖Ua(b)‖ � ‖a‖2|||b ||| for every b ∈ A. (3.3.3)

Now, let M be the smallest positive number such that ||| · ||| � M‖ · ‖ on A. It follows
from (3.3.3) that

|||a |||3 = |||Ua(a
∗) ||| � M‖Ua(a

∗)‖ � M‖a‖2|||a∗ |||= M‖a‖2|||a |||,

and hence that |||a ||| �
√

M‖a‖. By the arbitrariness of a ∈ A, and the definition of
M, we get that M � 1. Therefore ||| · |||� ‖·‖ on A. Thus, by (3.3.1), we actually have
‖ · ‖= ||| · |||, and as a result A is a JB∗-algebra.

Via Fact 3.3.2, Theorem 3.3.11 contains the associative Vidav–Palmer the-
orem (Theorem 2.3.32) and even its generalization to alternative algebras (Cor-
ollary 2.3.63).

Looking at the proof of Theorem 3.3.11, we realize that the natural involution of
any complete V -algebra is an isometry. We have not emphasized this fact because,
by Theorem 3.3.11 itself, complete V -algebras are (unital) non-commutative JB∗-
algebras, and, as we will prove in Proposition 3.3.13 below, the involution of any
(possibly non-unital) non-commutative JB∗-algebra is isometric.

The following result is a form of Proposition 2.6.19.

Lemma 3.3.12 Let A and B be algebras over K, each of which is endowed with a
conjugate-linear vector space involution ∗ and a norm ‖ · ‖ satisfying

‖Ua(a
∗)‖ � ‖a‖3 for every a ∈ A and ‖Ub(b

∗)‖= ‖b‖3 for every b ∈ B,

and let φ : A → B be a continuous real-linear mapping satisfying

φ(Ua(a
∗)) =Uφ(a)((φ(a))∗) for every a ∈ A.

Then φ is contractive.
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Proof Assume to the contrary that φ is not contractive. Then we can choose a norm-
one element x in A such that ‖φ(x)‖> 1. Defining inductively

x1 := x and xn+1 :=Uxn(x
∗
n),

we have ‖φ(xn)‖ = ‖φ (x)‖3n−1 → ∞ . Since ‖xn‖ � 1, this contradicts the assumed
continuity of φ .

Proposition 3.3.13 Let A be a non-commutative JB∗-algebra. Then the involution
of A is isometric.

Proof Note that, for every a ∈ A, we have ‖a∗‖3 = ‖Ua∗(a)‖ � 3‖a∗‖2‖a‖, and
hence ‖a∗‖ � 3‖a‖. Therefore the real-linear mapping φ : a → a∗ from A to A
becomes continuous. Moreover, by Fact 3.3.3, for each a ∈ A we have

φ(Ua(a
∗)) = (Ua(a

∗))∗ =Ua∗(a) =Uφ (a)((φ(a))∗).

It follows from Lemma 3.3.12 that φ is contractive. But, since φ = ∗ is an involutive
mapping, the result follows.

Lemma 3.3.14 Let (X ,u) be a complete complex numerical-range space with
n(X ,u)> 0. Then H(X ,u)+ iH(X ,u) is closed in X.

Proof Let h,k be in H(X ,u). Then we have v(h) � v(h + ik) � ‖h + ik‖. Since
‖h‖ � 1

n(X ,u)v(h), we get that ‖h‖ � 1
n(X ,u)‖h+ ik‖. Set Y :=H(X ,u)+ iH(X ,u). It

follows from the above that Y = H(X ,u)⊕ iH(X ,u), and that this sum is topological.
Since X is complete, and H(X ,u) is closed in X , we deduce that Y is complete, and
hence closed in X .

Keeping in mind Corollary 2.1.2 and Proposition 2.1.11, Lemma 3.3.14 above
yields the following.

Corollary 3.3.15 Let A be a V -algebra. Then the completion of A is a V -algebra
whose natural involution extends that of A.

Finally, combining Corollary 3.3.15, Theorem 3.3.11, and Proposition 3.3.13, we
get the following.

Corollary 3.3.16 Let A be a V -algebra. Then the natural involution of A is
isometric.

After Lemma 2.2.5 (that unital non-commutative JB∗-algebras are V -algebras) and
Theorem 3.3.11, some results previously proved for V -algebras attain their definitive
form. As a first sample, we formulate the following.

Corollary 3.3.17 (a) Unit-preserving linear contractions between unital
non-commutative JB∗-algebras preserve involutions.

(b) If A is a unital non-commutative JB∗-algebra, if B is a norm-unital complete
normed complex algebra, and if T : A → B is a unit-preserving dense range linear
contraction, then B is a non-commutative JB∗-algebra, and T preserves involutions.
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Proof Part (a) follows from Lemma 2.2.5 and Corollary 2.1.2(i).
Let A, B, and T be as assumed in part (b). Again by Lemma 2.2.5 and Corol-

lary 2.1.2(i), we have T (A) ⊆ H(B,1)+ iH(B,1), and hence H(B,1)+ iH(B,1) is
dense in B. It follows from Proposition 2.1.11, Lemma 3.3.14, and Theorem 3.3.11
that B is a non-commutative JB∗-algebra.

As another sample, we emphasize in the next corollary the non-commutative
JB∗-form of Proposition 2.3.64.

Corollary 3.3.18 Let A be a unital non-commutative JB∗-algebra, and let
π : A → A be a unit-preserving contractive linear projection. Then π(A) is a
∗-invariant subspace of A, and π(A) becomes a unital non-commutative JB∗-algebra
under the norm and the involution of A, and the product

x� y := π(xy).

Invoking Fact 3.3.2, we derive the following.

Corollary 3.3.19 Let A be a unital C∗-algebra, and let π : A → A be a unit-
preserving contractive linear projection. Then π(A) is a ∗-invariant subspace of A,
and π(A) becomes a unital non-commutative JB∗-algebra under the norm and the
involution of A, and the product x� y := π(xy).

According to Example 2.3.65, not much more can be said in the conclusion of
Corollary 3.3.19.

3.3.2 A dual version

§3.3.20 Let (X ,u) be a numerical-range space over K. We define the Kernel,
K(X ,u), of (X ,u) by

K(X ,u) :=
⋂

f∈D(X ,u)

ker( f ),

so that K(X ,u) = 0 if and only if u is a vertex of BX . Clearly, K(X ,u) is a closed
subspace of X satisfying ‖u+K(X ,u)‖= 1, so that

(X/K(X ,u) , u+K(X ,u))

becomes a new numerical-range space over K. In the duality (X ′,X), we have
clearly D(X ,u) ⊆ (K(X ,u))◦, so, keeping in mind the usual identification between
(X/K(X ,u))′ and (K(X ,u))◦, we can write

D(X/K(X ,u) , u+K(X ,u)) = D(X ,u). (3.3.4)

From this we obtain

V (X/K(X ,u) , u+K(X ,u) , x+K(X ,u)) =V (X ,u,x) for every x ∈ X ,

which implies that K(X/K(X ,u) , u+K(X ,u)) = 0 and that

n(X/K(X ,u) , u+K(X ,u)) is the smallest non-negative number

α satisfying ‖x+K(X ,u)‖ � αv(X ,u,x) for every x ∈ X .

}
(3.3.5)

For any subset S of a vector space, we denote by lin(S) the linear hull of S.
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Proposition 3.3.21 Let (X ,u) be a complete numerical-range space over K.
We have:

(i) The following conditions are equivalent:

(a) lin(D(X ,u)) is norm-closed in X ′.

(b) lin(D(X ,u)) is w∗-closed in X ′.

(c) lin(D(X ,u)) = (K(X ,u))◦ in the duality (X ′,X).

(d) n(X/K(X ,u) , u+K(X ,u))> 0.

(ii) If K = R, and if n(X/K(X ,u) , u+K(X ,u)) > 0, then the closed unit ball of
lin(D(X ,u)) is contained in

1
n(X/K(X ,u) , u+K(X ,u))

|co|(D(X ,u)),

and hence, for each f ∈ lin(D(X ,u)), there are α1,α2 � 0 and f1, f2 ∈D(X ,u)
such that

f = α1 f1 −α2 f2 and α1 +α2 � ‖ f‖
n(X/K(X ,u) , u+K(X ,u))

.

(iii) If K = C, and if n(X/K(X ,u) , u+K(X ,u)) > 0, then the open unit ball of
lin(D(X ,u)) is contained in

1
n(X/K(X ,u) , u+K(X ,u))

|co|(D(X ,u)),

and moreover, for each f ∈ lin(D(X ,u), there are α1,α2,α3,α4 � 0 and
f1, f2, f3, f4 in D(X ,u) such that

f = α1 f1 −α2 f2 + i(α3 f3 −α4 f4)

and

α1 +α2 +α3 +α4 �
√

2‖ f‖
n((X/K(X ,u) , u+K(X ,u))

.

Proof (a)⇔(b) Since D(X ,u) is a w∗-compact and convex subset of X ′, this fol-
lows from a well-known result in functional analysis (see for example [726, Corol-
lary V.5.9]).

(b)⇔(c) Since in the duality (X ′,X) we have ( lin(D(X ,u)))◦ = K(X ,u), the
bipolar theorem gives that the w∗-closure of lin(D(X ,u)) is equal to (K(X ,u))◦.

(c)⇔(d) Keeping in mind (3.3.4) and the usual identification

(X/K(X ,u))′ ≡ (K(X ,u))◦,

condition (c) can be reformulated as

lin(D(X/K(X ,u) , u+K(X ,u)) = (X/K(X ,u))′.

Therefore the present equivalence follows by applying Theorem 2.1.17(i) to the
numerical-range space (X/K(X ,u) , u+K(X ,u)).

Assertions (ii) and (iii) in the present proposition follow from the above arguments
and from assertions (ii), (iii), and (iv) in Theorem 2.1.17.
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§3.3.22 The above proposition is going to be specially relevant when applied to
the real space underlying a complex numerical-range space. Let (X ,u) be a complex
numerical-range space. Then, by Proposition 2.1.4, we have K(XR,u) = iH(X ,u). In
particular, iu lies in K(XR,u), and hence n(XR,u) = 0. We define the real numerical
index, nR(X ,u), of (X ,u) by

nR(X ,u) := n(XR/K(XR,u) , u+K(XR,u)).

It follows from (3.3.5) and Proposition 2.1.4 that

nR(X ,u) is the smallest non-negative number α satisfying

‖x+H(X ,u)‖ � α max{|ℑ(λ )| : λ ∈V (X ,u,x)} for every x ∈ X .

}
(3.3.6)

Now, keeping in mind that the mapping f →ℜ◦ f from (X ′)R onto (XR)
′ is a linear

homeomorphism for both the norm and w∗ topologies taking D(X ,u) onto D(XR,u),
it is enough to invoke Proposition 3.3.21 to derive the following.

Corollary 3.3.23 Let (X ,u) be a complete complex numerical-range space, and let
linR(D(X ,u)) denote the real linear hull of D(X ,u). Then the following conditions
are equivalent:

(i) linR(D(X ,u)) is norm-closed in X ′.
(ii) linR(D(X ,u)) is w∗-closed in X ′.

(iii) linR(D(X ,u)) = { f ∈ X ′ : f (H(X ,u))⊆ R}.
(iv) nR(X ,u)> 0.

Moreover, if nR(X ,u) > 0, then the closed unit ball of linR(D(X ,u)) is contained
in 1

nR(X ,u) |co|(D(X ,u)), and hence, for each f ∈ linR(D(X ,u)), there are α1,α2 � 0
and f1, f2 in D(X ,u) such that

f = α1 f1 −α2 f2 and α1 +α2 � ‖ f‖
nR(X ,u) .

Remark 3.3.24 Looking at the proof of Proposition 3.3.21, we realize that, with
the only exception of the implication (a)⇒(b), the whole proposition remains true
without the requirement of completeness of X . Therefore, with the only exception of
the implication (i)⇒(ii), Corollary 3.3.23 remains true without requiring complete-
ness for X .

Theorem 3.3.25 Let (X ,u) be a complete complex numerical-range space such
that n(X ,u)> 0. Then the following conditions are equivalent:

(i) linR(D(X ,u))∩ i linR(D(X ,u)) = 0.
(ii) X = H(X ,u)+ iH(X ,u).

Moreover, if the above conditions hold, then linR(D(X ,u)) is w∗-closed in X ′, and
we have

X ′ = linR(D(X ,u))⊕ i linR(D(X ,u)).

Proof The implication (ii)⇒(i) is straightforward.
Assume that (i) holds. Then, by Theorem 2.1.17(iv), we have that

X ′ = linR(D(X ,u))⊕ i linR(D(X ,u))
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and that the corresponding real linear projection P onto i linR(D(X ,u)) is norm-

continuous (with ‖P‖ �
√

2
n(X ,u) ), so linR(D(X ,u)) is norm-closed in X ′. Therefore,

by the implication (i)⇒(ii) in Corollary 3.3.23, linR(D(X ,u)) is w∗-closed in X ′.
On the other hand, by the implication (i)⇒(iii) in Corollary 3.3.23, we have f = 0
whenever f is in X ′ with f (H(X ,u)+ iH(X ,u)) = 0, and hence H(X ,u)+ iH(X ,u)
is dense in X . Finally, since H(X ,u) + iH(X ,u) is a closed subspace of X (by
Lemma 3.3.14), we see that condition (ii) is fulfilled.

Now, combining Lemma 2.2.5 and Theorems 3.3.11 and 3.3.25, we get the
following.

Corollary 3.3.26 Let A be a norm-unital complete normed complex algebra. Then
A is a non-commutative JB∗-algebra (for its own norm and some involution) if and
only if

linR(D(A,1))∩ i linR(D(A,1)) = 0.

Finally, by invoking Fact 3.3.2, we derive the following.

Corollary 3.3.27 Let A be a norm-unital complete normed associative complex
algebra. Then A is a C∗-algebra (for its own norm and some involution) if and only if

linR(D(A,1))∩ i linR(D(A,1)) = 0.

Now that the main goal in this subsection has been achieved, let us involve Sub-
section 2.9.1 to obtain some interesting by-products.

Proposition 3.3.28 Let X be a Banach space over K, and let u be in SX with

n(X/K(X ,u) , u+K(X ,u))> 0

and such that the duality mapping of X is norm-weak usc at u. Then we have:

(i) K(X ′′,u) is the w∗-closure of K(X ,u) in X ′′.
(ii) n(X/K(X ,u) , u+K(X ,u)) = n(X ′′/K(X ′′,u) , u+K(X ′′,u)).

Proof Since n(X/K(X ,u) , u+K(X ,u)) > 0, Proposition 3.3.21(i) applies, so that
we have (K(X ,u))◦ = lin(D(X ,u)) in the duality (X ′,X). On the other hand, since
the duality mapping of X is norm-weak usc at u, Theorem 2.9.8 applies, so that
[ lin(D(X ,u))]◦ = K(X ′′,u) in the duality (X ′′,X ′). It follows from the bipolar the-
orem that assertion (i) holds.

By the above paragraph, we have that K(X ′′,u) = K(X ,u)◦◦. Then

X ′′/K(X ′′,u) = X ′′/K(X ,u)◦◦ ≡ (X/K(X ,u))′′,

and assertion (ii) follows from Theorem 2.1.17(v).

Keeping in mind that the norm-weak upper semicontinuity of the duality mapping
of a complex normed space X at a point goes down to XR, it is enough to combine
§3.3.22 and Proposition 3.3.28 to get the following.

Corollary 3.3.29 Let X be a complex Banach space, and let u be in SX with
nR(X ,u) > 0 and such that the duality mapping of X is norm-weak usc at u. Then
we have:



3.3 The non-associative Vidav–Palmer theorem 355

(i) H(X ′′,u) is the w∗-closure of H(X ,u) in X ′′.

(ii) nR(X ,u) = nR(X ′′,u).

Now, by invoking Fact 2.9.1, Corollary 3.3.29 above yields the following

Corollary 3.3.30 Let A be a norm-unital complete normed associative complex
algebra with nR(A,1)> 0. Then we have:

(i) H(A′′,1) equals the w∗-closure of H(A,1) in A′′.

(ii) nR(A,1) = nR(A′′,1).

The result in Corollary 3.3.30(i) is the best possible in general, in the sense that
H(A′′,1) does not always equal the w∗-closure of H(A,1) in A′′.

Example 3.3.31 Let A be the disc algebra (cf. Example 2.9.67). Note first that,
since valuations of elements of A at points of BC lie in D(A,1), elements of H(A,1)
are real-valued functions, and hence we have

H(A,1) = R1. (3.3.7)

Now, let n be in N, and consider the element xn of A defined by

xn(z) :=
n
√

1+ z− n
√

1− z
n
√

1+ z+ n
√

1− z

for every z ∈ BC, where n
√· stands for the principal determination of the complex

nth root. A straightforward but tedious computation shows that xn(BC) is the inter-
section of the closed discs D±

n of centres c±n and radius Rn, where

c±n =±
sin π

2n cos π
2n

1− cos2 π
2n

i and Rn =
sin π

2n

1− cos2 π
2n

.

(As a hint, consider the Möbius transform φ(z) := 1+z
1−z on the Riemann sphere, and

note that xn(z) = φ−1( n
√

φ(z)) for every z ∈ BC.) Then, by Corollaries 2.1.2 and
2.9.61, we see that V (A,1,xn) = xn(BC), and consequently

|ℑ( f (xn))| �
sin π

2n

1+ cos π
2n

for every f ∈ D(A,1). (3.3.8)

Now take a cluster point F to the sequence xn in the weak∗ topology of A′′. Since
xn(1) = 1 and xn(−1) =−1 for every n, we realize that F is not a multiple of 1. On
the other hand, (3.3.8) implies that ℑ(F( f )) = 0 for every f ∈ D(A,1), so that, by
Lemma 2.3.44, F lies in H(A′′,1). It follows from (3.3.7) that H(A,1) is not w∗-dense
in H(A′′,1).

§3.3.32 Looking at the roots of Corollary 3.3.30, the above example shows that the
equivalent conditions (i)–(iv) in Corollary 3.3.23 need not be automatically fulfilled,
even if the complete complex numerical-range space (X ,u) satisfies n(X ,u)> 0, nor
even if X is a norm-unital complete normed associative and commutative complex
algebra, and u is the unit of X . We note that, in this last case, we have n(X ,u)� 1

e (by
Proposition 2.1.11), and that, in the case of the example, we have in fact n(X ,u) = 1.



356 Concluding the proof of the non-associative Vidav–Palmer theorem

3.3.3 Historical notes and comments

JB∗-algebras were introduced by Kaplansky in his final lecture to the 1976
St. Andrews Colloquium of the Edinburgh Mathematical Society, pointing out
its potential importance. Answering a problem raised by Kaplansky, unital
JB∗-algebras were first studied by Wright in [641], who established a strong
mutual dependence with unital JB-algebras (see Fact 3.4.9 below). Shortly later,
unital JB∗-algebras were reconsidered by Braun, Kaup, and Upmeier [126], who
proved that unital JB∗-algebras are JB∗-triples in a natural way (see Theorem 4.1.45
below), and determined those JB∗-triples which underlie unital JB∗-algebras (see
Theorem 4.1.55 below). Simultaneously, Wright and Youngson [642, 643] proved a
Russo–Dye–Palmer-type theorem for unital JB∗-algebras (a germ of which has been
stated in Proposition 3.3.7), and studied unit-preserving surjective linear isometries
between unital JB∗-algebras (see Proposition 3.4.25 below). Non-unital JB∗-algebras
were considered by Youngson [655], and JB∗-algebras which are dual Banach spaces
were considered by Edwards [222].

Non-commutative JB∗-algebras arose in the literature as a necessity for a right
formulation of the non-associative Vidav–Palmer theorem. Without enjoying their
name, they were first considered by Kaidi, Martı́nez, and Rodrı́guez, who, in [362,
Theorem 11], proved a forerunner of Theorem 3.3.11. A systematic study of non-
commutative JB∗-algebras began with the work of Payá, Pérez, and Rodrı́guez [481,
482], and continued shortly later in the papers of Braun [124] and Alvermann–
Janssen [19].

In the above two paragraphs, we have referred the reader to the pioneering papers
on JB∗-algebras and non-commutative JB∗-algebras. Most results in these papers, as
well as more recent developments on the topic, will be included in our work at the
appropriate point.

Results from Lemma 3.3.5 to Proposition 3.3.7 are due to Wright and
Youngson [642]. A definitive version of Proposition 3.3.7 (with ‘JB∗-algebra’ instead
of ‘JC∗-algebra’) will be discussed later (see Corollary 3.4.7). Theorem 3.3.11 and the
proof given here (including Lemmas 3.3.8 and 3.3.10) are due to Youngson [652, 654].
In fact, Youngson proved Lemma 3.3.8 in [652], and Theorem 3.3.11 in [654], under
the assumptions (unnecessary today in view of Theorems 2.3.8 and 2.4.11) that the
natural involution of A is an algebra involution, and that A is a non-commutative Jordan
algebra. An independent proof of Theorem 3.3.11, with the same restrictions, can be
seen in [514]. The actual formulation of Theorem 3.3.11 appeared first in [515].

A better version of Lemma 3.3.10, due to Upmeier [814, Corollary 22.8], is proved
in Theorem 3.3.38 below.

Definition 3.3.33 Let A be a Jordan algebra. A subalgebra B of A is called a
strongly associative subalgebra if [La,Lb] = 0 for all a,b in B. This condition is
clearly equivalent to

(bx)a−b(xa) = 0 for all a,b in B and x in A.

In particular, every strongly associative subalgebra of A is associative.

Now Proposition 2.4.13(i)–(ii) reads as follows.
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Fact 3.3.34 The subalgebra generated by each element of a Jordan algebra is
strongly associative.

Lemma 3.3.35 Let A be a Jordan algebra over K. Then

Uxz,y =Ux,yLz +Uz,yLx −LyUx,z = LzUx,y +LxUz,y −Ux,zLy

for all x,y,z in A.

Proof By taking a = x, b = z, and c = y in the identity (2.4.1) in the proof of
Proposition 2.4.13, we see that

2LxyLx +Lx2 Ly = 2LxLxy +LyLx2 for all x,y ∈ A. (3.3.9)

On the other hand, by taking a = c = x and b = y in the identity (2.4.3) we obtain

Lx2 Ly +2LxyLx = 2LxLyLx +Lx2y for all x,y ∈ A. (3.3.10)

It follows from (3.3.9) and (3.3.10) that

2LxyLx +Lx2 Ly = 2LxLyLx +Lx2y for all x,y ∈ A. (3.3.11)

Now, by using (3.3.10), we deduce that

Ux2,y = Lx2 Ly +LyLx2 −Lx2y

= 2LxLyLx −2LxyLx +LyLx2

= 2(LxLy +LyLx −Lxy)Lx −Ly(2L2
x −Lx2)

= 2Ux,yLx −LyUx

for all x,y in A, and linearizing in x we conclude that

Uxz,y =Ux,yLz +Uz,yLx −LyUx,z for all x,y,z ∈ A.

Analogously, by using (3.3.11), we derive that

Ux2,y = 2LxUx,y −UxLy for all x,y ∈ A,

and linearizing in x we conclude that

Uxz,y = LzUx,y +LxUz,y −Ux,zLy for all x,y,z ∈ A.

§3.3.36 Let A be a Jordan algebra over K, and let B be a subalgebra of A.
We write M (B)A to denote the subalgebra of L(A) generated by IA and the set
{Lb : b∈ B}. Since an associative algebra is commutative if and only if it is generated
by a commutative subset, it turns out that B is a strongly associative subalgebra of A
if and only if the algebra M (B)A is commutative.

Proposition 3.3.37 Let A be a Jordan algebra over K, let B be a strongly associa-
tive subalgebra of A, and let b,c be in B. Then Ubc =UbUc.

Proof Setting x = y = b and z = c in the first equality of Lemma 3.3.35, and using
the commutativity of M (B)A, we obtain

Ubc,b =UbLc for all b,c ∈ B. (3.3.12)

Linearizing (3.3.12) with respect to b in B, we obtain
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Ubc,b′ +Ub′c,b = 2Ub,b′Lc for all b,b′,c ∈ B. (3.3.13)

Now we have

UbUc =Ub(2L2
c −Lc2)

= 2Ubc,bLc −Ubc2,b (by (3.3.12))

=U(bc)c,b +Ubc −Ubc2,b (by (3.3.13))

=Ubc,

which proves the statement.

Lemma 3.3.35 and Proposition 3.3.37 have been taken from [754, pp. 38–9].

Theorem 3.3.38 Let A be a complete normed unital Jordan algebra over K, and
let x be in A. Then we have Uexp(x) = exp(2Lx).

Proof Since the closure of a strongly associative subalgebra of A remains a strongly
associative subalgebra of A, it follows from Fact 3.3.34 and Proposition 3.3.37 that
the mapping t →Uexp(tx) from R+

0 to BL(A) is a continuous one-parameter semigroup
in BL(A). Therefore, by Theorem 1.1.31, there exists some F ∈ BL(A) such that
Uexp(tx) = exp(tF) for every t ∈ R+

0 , and moreover

F = lim
t→0+

Uexp(tx)− IA

t
.

But, a straightforward computation of the limit in the right-hand side of the above
equality shows that F = 2Lx, and the result follows.

The finite-dimensional forerunner of Theorem 3.3.38 above can be seen in [700,
Satz XI.2.2].

Lemma 3.3.12 is due to Wright [641], whereas Proposition 3.3.13 (that the involu-
tion of a JB∗-algebra is an isometry) is due to Youngson [652]. It is worth mentioning
that this last result was a (today redundant) requirement in Kaplansky’s definition of
JB∗-algebras, and that this requirement was also assumed in [641]. Lemma 3.3.14 is
folklore. Indeed, it is nothing other than a straightforward abstract version of [694,
Lemma 5.8]. Concerning Corollary 3.3.16 (that the natural involution of a V -algebra
is an isometry), let us say that we do not know of any proof avoiding Theorem 3.3.11.

Corollary 3.3.18 is taken from [515]. For a forerunner, see [507, Lemma 1.4] and
the comment following it. For other relevant results on contractive projections, the
reader is referred to the papers of Bunce–Peralta [136] and Effros–Størmer [229].

The dual version of the associative Vidav–Palmer theorem, given by Corol-
lary 3.3.27, is originally due to Moore [446], and can be found in Bonsall and Duncan
[695, pp. 103–9], where a light version of Example 3.3.31 is added (with an argument
quite different from ours) to show the content of §3.3.32. Proposition 3.3.21,
Corollary 3.3.23, and Theorem 3.3.25 are due to Martı́nez, Mena, Payá, and
Rodrı́guez [425], and become a non-straightforward abstract version of Moore’s
argument. The dual version of the non-associative Vidav–Palmer theorem, given by
Corollary 3.3.26, as well as Proposition 3.3.28 and Corollaries 3.3.29 and 3.3.30,
are also taken from [425]. Without enjoying its name, the real numerical index
of a norm-unital normed complex associative algebra A first arises in Smith’s
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paper [591], who defines it as the smallest non-negative number α satisfying
‖a+H(A,1)‖ � α max{|ℑ(λ)| : λ ∈V (A,1,a)} for every a ∈ A (compare assertion
(3.3.6) in §3.3.22), and establishes Example 3.3.31 (with arguments close to ours)
and the associative forerunner of Corollary 3.3.30(i). The associative forerunner of
Corollary 3.3.30(ii) is also due to Smith [592].

3.4 Beginning the theory of non-commutative JB∗-algebras

Introduction This section is devoted to establishing the basic theory of non-
commutative JB∗-algebras. Since many results can be reduced to the commutative
case (via Fact 3.3.4), Wright’s theorem [641] (see Fact 3.4.9), asserting that
A → H(A,∗) becomes an equivalence from the category of all JB∗-algebras onto that
of all JB-algebras, turns out specially relevant. As a consequence, Proposition 3.3.7
attains its definitive form as a Russo–Dye–Palmer-type theorem for unital non-
commutative JB∗-algebras, which is due to Wright and Youngson [642] (see
Corollary 3.4.7).

In a second subsection, we study surjective linear isometries between unital non-
commutative JB∗-algebras, and show in Proposition 3.4.31 and Corollary 3.4.32
that, in the particular case of alternative C∗-algebras, both the Bohnenblust–Karlin
Theorem 2.1.27 and Kadison’s Theorem 2.2.29 remain true verbatim. However, in
the general case no reasonable version of Kadison’s theorem can be expected. Indeed,
according to Antitheorem 3.4.34, due to Braun, Kaup, and Upmeier [126], there exist
linearly isometric unital JC∗-algebras which are not ∗-isomorphic.

In a third subsection, we prove a theorem of Dixmier [723] (see Theorem 3.4.49)
implying that continuous algebra automorphisms of a complete normed complex
algebra, which are near the identity operator, can be written as exponentials
of continuous derivations. Dixmier’s arguments are also applied to provide (in
Theorem 3.4.42 and Corollary 3.4.44) nontrivial information about the spectrum
of continuous derivations and automorphisms of complete normed non-nilpotent
complex algebras.

Dixmier’s theorem just reviewed becomes one of the ingredients in the proof of a
structure theorem for bijective algebra homomorphisms between non-commutative
JB∗-algebras (Theorem 3.4.75), which generalizes the classical one by Okayasu
[466] for C∗-algebras.

3.4.1 JB-algebras versus JB∗-algebras

We begin this subsection with the following.

Proposition 3.4.1 Let A be a non-commutative JB∗-algebra. We have:

(i) Every closed associative ∗-subalgebra of A is a C∗-algebra.

(ii) For every h ∈ H(A,∗), the closed subalgebra of A generated by h (occasion-
ally, by h and 1 if A is unital) is ∗-invariant, and is indeed a commutative
C∗-algebra.

Proof Assertion (i) follows from Fact 3.3.2.
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Let h be in H(A,∗), and let B stand for the closed subalgebra of A generated
by h (occasionally, by h and 1 if A is unital). By Propositions 3.3.13 and 1.2.25,
B is ∗-invariant. On the other hand, by Proposition 2.4.19 and Corollary 2.4.18, B is
associative and commutative. It follows from assertion (i) that B is a commutative
C∗-algebra. Thus, the proof of assertion (ii) is concluded.

Now we invoke a new ingredient on JB-algebras to derive fundamental basic
results in the theory of non-commutative JB∗-algebras. As stated in Propos-
ition 3.1.4(i), if A is a JB-algebra, then the closed subalgebra of A generated by
each element is isometrically isomorphic to CR

0 (E), for a suitable locally compact
Hausdorff topological space E. A relevant converse is given by Proposition 3.4.2
immediately below.

Proposition 3.4.2 Let A be a complete normed Jordan real algebra such that the
closed subalgebra of A generated by each element is isometrically isomorphic to
CR

0 (E), for a suitable locally compact Hausdorff topological space E. Then A is a
JB-algebra.

The proof of Proposition 3.4.2 is implicitly contained in [738]. Indeed, it is the
core of the proof of [738, Proposition 3.8.2]. For the sake of completeness, we
reproduce here the argument of Hanche-Olsen and Størmer.

Proof Let Ã be the unital extension of A. Then Ã is a complete normed Jordan real
algebra [738, 3.3.1], and for all a ∈ A it follows from the assumption that the closed
subalgebra C(a) of A generated by a is isomorphic to a JB-algebra. Thus as in the
proof of [738, 3.3.9] Ã is an order unit space in which −1 � a � 1 implies 0 � a2 � 1.
By [738, 3.1.6] then, Ã is a JB-algebra in the order norm, hence so is A. Since the
order norm coincides with the given norm on each C(a), A is a JB-algebra in the
given norm.

Invoking Propositions 3.4.2 and 3.4.1(ii), and the commutative Gelfand–Naimark
theorem (see Theorem 1.2.4), we derive the following.

Corollary 3.4.3 Let A be a non-commutative JB∗-algebra. Then H(A,∗) becomes
a JB-algebra under the product of Asym and the norm of A.

As a first consequence, we can prove the following generalization of Corol-
lary 1.2.52.

Proposition 3.4.4 Let A and B be non-commutative JB∗-algebras, and let F : A→B
be an algebra ∗-homomorphism. Then F is contractive. Moreover, if F is injective,
then F is an isometry.

Proof Let F : A → B be any algebra ∗-homomorphism. In view of Lemma 3.3.12,
to prove that F is contractive it is enough to show that it is continuous. To this
end, note that, by Corollary 3.4.3, H(A,∗) and H(B,∗) become JB-algebras in a
natural way, and that F induces an algebra homomorphism from H(A,∗) to H(B,∗).
Then, by Proposition 3.1.4(ii), F is continuous on H(A,∗). Therefore, since the
direct sums A = H(A,∗)⊕ iH(A,∗) and B = H(B,∗)⊕ iH(B,∗) are topological (by
Proposition 3.3.13), we deduce that F is continuous on A, as desired.
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Now, assume that the algebra ∗-homomorphism F above is injective. Then the
induced algebra homomorphism from H(A,∗) to H(B,∗) is injective, and hence,
by Proposition 3.1.4(ii), it has closed range in H(B,∗). Since the direct sum
B = H(B,∗)⊕ iH(B,∗) is topological, we derive that F has closed range in B,
and hence that F(A) is a non-commutative JB∗-algebra. This allows us to assume
without loss of generality that F is bijective. Then, the fact that F is isometric follows
by applying the first paragraph to F and F−1.

Remark 3.4.5 Proposition 3.4.4 holds with ‘Jordan-∗-homomorphism’ instead of
‘algebra ∗-homomorphism’. We have not emphasized this apparent generalization
because it follows by applying the proposition itself to the JB∗-algebras Asym and
Bsym (see Fact 3.3.4)

The proof of the next result is quite similar to that of Lemma 3.3.8.

Proposition 3.4.6 Let A be a JB∗-algebra, and let x be in A. Then the closed
subalgebra of A generated by {x,x∗} is ∗-invariant, and is indeed a JC∗-algebra.

Proof By Corollary 3.4.3, H(A,∗) is a closed real subalgebra of A and, endowed
with the restriction of the norm of A, becomes a JB-algebra. Now, write x = h+ ik,
with h,k in H(A,∗), and let J stand for the closed subalgebra of H(A,∗) generated by
{h,k}. Then, by Proposition 3.1.3, there exists a C∗-algebra B, together with an iso-
metric algebra homomorphism φ from J onto a closed subalgebra of the JB-algebra
H(B,∗). Since the direct sums A = H(A,∗)⊕ iH(A,∗) and B = H(B,∗)⊕ iH(B,∗)
are topological, J + iJ and φ(J) + iφ(J) are closed subalgebras of A and Bsym,
respectively, and the extension of φ by complex linearity becomes a bicontinuous
algebra ∗-homomorphism from J + iJ onto the JC∗-algebra φ (J)+ iφ(J). The proof
is concluded by noticing that J + iJ is nothing other than the closed subalgebra of A
generated by {x,x∗}, and that, by Proposition 3.4.4, φ is an isometry.

Now, we can formulate and prove a Russo–Dye–Palmer-type theorem for non-
commutative JB∗-algebras.

Corollary 3.4.7 Let A be a unital non-commutative JB∗-algebra. Then BA = co(E),
where E := {exp(ih) : h ∈ H(A,∗)}.

Proof The inclusion BA ⊇ co(E) follows from Lemma 2.2.5 and Corollary
2.1.9(iii).

To prove the converse inclusion, note that, by Lemma 2.4.17 and Fact 3.3.4, we
may assume that A is commutative. Let x be in BA. Then, by Proposition 3.4.6,
the closed subalgebra of A (say B) generated by {1,x,x∗} is a unital JC∗-algebra.
Therefore, by Proposition 3.3.7, we have

x ∈ co({exp(ih) : h ∈ H(B,∗)})⊆ co(E).

Theorem 3.4.8 immediately below becomes the main result in the present
subsection.

Theorem 3.4.8 Let B be a JB-algebra. Then there is a unique JB∗-algebra A such
that B = H(A,∗).
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Proof The uniqueness of A is easy. Indeed, algebraically viewed, A must coincide
with the algebra complexification of B, and the JB∗-algebra involution ∗ must be the
canonical involution of that complexification. Moreover, if two norms convert (A,∗)
into a JB∗-algebra, then, by Proposition 3.4.4, they must coincide.

To prove the existence, note first that, since B can be isometrically imbedded into
a unital JB-algebra (by Corollary 3.1.11), we may assume that B is unital. Let A
denote the projective normed complexification of B, so that (A,‖ · ‖π) becomes a
complete normed unital Jordan complex algebra, and let ∗ stand for the canonical
involution of A, so that ∗ becomes an isometric conjugate-linear algebra involution
on (A,‖ · ‖π) satisfying H(A,∗) = B. Let F denote the closed convex hull in A of
the set {exp(ih) : h ∈ B}. Then F is a closed and absolutely convex subset of A.
Moreover, for h ∈ B, we have

‖exp(ih)‖π = ‖cos(h)+ isin(h)‖π � ‖cos(h)‖+‖sin(h)‖ � 2

(where, for the last inequality, we have applied Corollary 3.1.5), which implies F ⊆
2B(A,‖·‖π ). Now, let h,k be in B, and let J stand for the closed subalgebra of B gen-
erated by {1,h,k}. Then, by Proposition 3.1.3, there exists a C∗-algebra C, together
with an isometric algebra homomorphism φ from J onto a closed subalgebra of the
JB-algebra H(C,∗). Since the direct sums A = B⊕ iB and C = H(C,∗)⊕ iH(C,∗) are
topological, J+ iJ and φ (J)+ iφ(J) are closed ∗-subalgebras of A and Csym, respect-
ively, and the extension of φ (say ψ) by complex linearity becomes a bicontinuous
algebra ∗-isomorphism from J + iJ onto the JC∗-algebra φ(J) + iφ (J). Therefore
we have ‖exp(iψ(h))• exp(iψ(k))‖ � 1, and hence, invoking Proposition 3.3.7, we
derive that

exp(iψ(h))• exp(iψ(k)) ∈ co({exp(il) : l ∈ φ(J)}).

By applying ψ−1, we get exp(ih)exp(ik) ∈ co({exp(il) : l ∈ J}), and hence

exp(ih)exp(ik) lies in F for all h,k ∈ B. (3.4.1)

Assume that ‖h+ ik‖π � 1
2 . Then we have

‖ψ(h+ ik)‖ � ‖φ(h)‖+‖φ(k)‖= ‖h‖+‖k‖ � 2‖h+ ik‖π � 1,

and hence, applying Proposition 3.3.7 again, we derive that

ψ(h+ ik) ∈ co({exp(il) : l ∈ φ(J)}).

By applying ψ−1, we get h+ ik ∈ co({exp(il) : l ∈ J}), and hence

h+ ik lies in F whenever h,k are in B with ‖h+ ik‖π � 1
2 . (3.4.2)

From (3.4.2) we deduce that B(A,‖·‖π ) ⊆ 2F . Since we already know that F is a closed
and absolutely convex subset of A with F ⊆ 2B(A,‖·‖π ), it follows that F is the closed
unit ball for an equivalent vector space norm ||| · ||| on A. Moreover, since (3.4.1)
implies that FF ⊆ F , we realize that ||| · ||| is in fact an algebra norm on A satisfying
|||1 |||= 1. Then, for h ∈ B, we clearly have ||| exp(irh) |||= 1 for every r ∈R, so h lies
in H((A, ||| · |||),1) (by Corollary 2.1.9(iii)). Now, (A, ||| · |||) is a complete commutative
V -algebra whose natural involution is ∗, and hence, by Theorem 3.3.11, (A, ||| · ||| ,∗)
is a JB∗-algebra. Moreover, by Corollary 3.4.3 and Proposition 3.1.4(ii), we have
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|||h ||| = ‖h‖ for every h ∈ B. Thus H(A, ||| · ||| ,∗) = B isometrically, and the proof is
complete.

Corollary 3.4.3 and Theorem 3.4.8 provide us with the following.

Fact 3.4.9 Let A denote the category whose objects are the JB∗-algebras,
and whose morphisms are the algebra ∗-homomorphisms, and let B stand for
the category whose objects are the JB-algebras, and whose morphisms are the
algebra homomorphisms. Then A → H(A,∗) establishes a bijective equivalence
from A to B.

Keeping in mind that every JB-algebra can be enlarged to a unital JB-algebra (cf.
Corollary 3.1.11), Fact 3.4.9 above implies the following.

Corollary 3.4.10 Every JB∗-algebra can be enlarged to a unital JB∗-algebra.

Corollary 3.4.10 above remains true with ‘non-commutative JB∗-algebra’ instead
of ‘JB∗-algebra’, but this will be proved later (see Corollary 3.5.36).

§3.4.11 Let B,C be non-commutative JB∗-algebras. Then the algebra direct
product B×C becomes a non-commutative JB∗-algebra under the involution defined
coordinate-wise, and the norm ‖(b,c)‖ := max{‖b‖,‖c‖}.

Corollary 3.4.12 Let A be a JB∗-algebra. Then there are a unique involution and
a unique norm on the unital extension A1 of A extending the involution and the norm
of A, and converting A1 into a JB∗-algebra.

Proof As we pointed out when we dealt with C∗-algebras (see the proof of Prop-
osition 1.2.44), the unique conjugate-linear algebra involution ∗ on A1 = C1⊕A
extending that of A is given by (λ1+ a)∗ := λ̄1+ a∗. Then the uniqueness of the
desired norm on A1 follows from Proposition 3.4.4. To prove the existence of such a
norm on A1 , we distinguish two cases depending on whether or not A has a unit.

First assume that A has a unit 1. Then we argue as in the proof of Propos-
ition 1.2.44, with §3.4.11 instead of §1.2.43, to conclude that the desired extended
norm on A1 is given by

‖a+λ (1−1)‖ := max{‖a‖, |λ |}.

Now, assume that A does not have a unit. By Corollary 3.4.10, there is a unital JB∗-
algebra B containing A isometrically as a ∗-subalgebra. By the universal property of
A1 , the inclusion A ↪→ B induces an injective algebra ∗-homomorphism from A1 to
B, so that A1 becomes a JB∗-algebra.

Now we can prove the following generalization of Proposition 2.3.43.

Proposition 3.4.13 Let A be a non-commutative JB∗-algebra, and let M be a closed
ideal of A. Then M is ∗-invariant, and A/M is a non-commutative JB∗-algebra for
the quotient norm and the quotient involution.

Proof Assume at first that A is commutative. Then, arguing as in the proof of Prop-
osition 2.3.43, with Theorem 3.3.11 instead of Theorem 2.3.32, and Corollary 3.4.12
instead of Proposition 1.2.44, the result follows.
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Now, remove the additional assumption that A is commutative. By a part of
Fact 3.3.4, Asym is a JB∗-algebra. Since M remains a closed ideal of Asym, it follows
from the above paragraph that M is ∗-invariant, and that Asym/M is a JB∗-algebra in
the natural way. Finally, since (A/M)sym = Asym/M, the remaining part of Fact 3.3.4
applies, so that A/M is a non-commutative JB∗-algebra in the natural way.

Since quotients of alternative algebras are alternative algebras, it is enough to
invoke Fact 3.3.2, to derive the following.

Corollary 3.4.14 Let A be an alternative C∗-algebra, and let M be a closed ideal
of A. Then M is ∗-invariant, and A/M is an alternative C∗-algebra for the quotient
norm and the quotient involution.

Now we need to involve in our development a deep result in the theory of Jordan
algebras. It is called the fundamental formula, and reads as follows.

Proposition 3.4.15 [754, p. 52] Let A be a Jordan algebra over K, and let a,b be
in A. Then we have

UUa(b) =UaUbUa. (3.4.3)

A complete proof of the above proposition, concluding in §4.2.66, will be given in
our work (see Remark 3.4.83 below for details).

For any algebra A over K, let (a,b)→Ua,b stand for the unique symmetric bilinear
mapping from A×A to L(A) such that Ua,a =Ua for every a ∈ A. In the case that A
is a Jordan algebra, the fundamental formula (3.4.3) can be linearized in the variable
b to get

UUa(b),Ua(c) =UaUb,cUa. (3.4.4)

Corollary 3.4.16 Let A be a Jordan algebra, and let a,b,c be in A. Then we have

UbUa,c(b
2) =Ub(a)Ub(c).

Proof We may assume that A is unital. Then, by (3.4.4), we have

UbUa,c(b
2) =UbUa,cUb(1) =UUb(a),Ub(c)(1) =Ub(a)Ub(c).

Proposition 3.4.17 Let A be a non-commutative JB∗-algebra. Then we have

‖Ua,c(b)‖ � ‖a‖‖b‖‖c‖ for all a,b,c ∈ A. (3.4.5)

Proof By Facts 3.3.3 and 3.3.4, we may assume that A is commutative. Then, by
Corollary 3.4.10, we may additionally assume that A is unital. Let h,k be in H(A,∗).
Then, by Proposition 3.4.6 (with x := h+ ik), the closed subalgebra of A generated
by {1,h,k} is a JC∗-algebra, and hence, working in a C∗-algebra envelope, we have

Uexp(ik)Uexp(−ik)(h) =Uexp(−ik)Uexp(ik)(h) = h for all h,k ∈ H(A,∗) (3.4.6)

and

‖Uexp(ik)(exp(ih))‖= 1 for all h,k ∈ H(A,∗). (3.4.7)

Now, let k be in H(A,∗). Then (3.4.6) gives
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Uexp(ik)Uexp(−ik) =Uexp(−ik)Uexp(ik) = IA for every k ∈ H(A,∗) (3.4.8)

and, since the set {a ∈ A : ‖Uexp(ik)(a)‖ � 1} is closed and convex, it is enough to
invoke (3.4.7) and Corollary 3.4.7 to conclude that

‖Uexp(ik)(a)‖ � ‖a‖ for all k ∈ H(A,∗) and a ∈ A. (3.4.9)

It follows from (3.4.8) and (3.4.9) that

‖Uexp(ik)(a)‖= ‖a‖ for all k ∈ H(A,∗) and a ∈ A. (3.4.10)

Now, let h be in H(A,∗), and let a,c be in A. Then, by (3.4.10) and Corollary 3.4.16,
we have

‖Ua,c(exp(ih))‖= ‖Uexp( ih
2 )Ua,c(exp(ih))‖= ‖Uexp( ih

2 )(a)Uexp( ih
2 )(c)‖

� ‖Uexp( ih
2 )(a)‖‖Uexp( ih

2 )(c)‖= ‖a‖‖c‖.

Since h is arbitrary in H(A,∗), and the set {b∈A : ‖Ua,c(b)‖� ‖a‖‖c‖} is closed and
convex, it is enough to invoke Corollary 3.4.7 again to conclude that the inequality
(3.4.5) holds.

Since every JB-algebra is the self-adjoint part of a suitable JB∗-algebra (by The-
orem 3.4.8), Proposition 3.4.17 above implies the following.

Corollary 3.4.18 Let A be a JB-algebra. Then we have

‖Ua,c(b)‖ � ‖a‖‖b‖‖c‖ for all a,b,c ∈ A.

We conclude this subsection with an entry on normal elements of non-commutative
JB∗-algebras. To this end we begin by proving the following.

Lemma 3.4.19 Let A be a C∗-algebra, and let a be in A. Then a is normal if (and
only if) [[a,a∗],a] = 0.

Proof Assume that [[a,a∗],a] = 0. Then, writing a = h + ik with h,k ∈ H(A,∗),
we have [[h,k],k] + i[[k,h],h] = 0, so that, since both [[h,k],k] and [[k,h],h] lie in
H(A,∗), we deduce that [[h,k],k] = 0. Therefore, thinking about the C∗-algebra unital
extension of A, and invoking Lemma 2.2.5 and Corollary 2.4.3, we get that [h,k] = 0
or, equivalently, [a,a∗] = 0.

Definition 3.4.20 Let A be a ∗-algebra over K, and let a be in A. We say that a is
normal if the subalgebra of A generated by a and a∗ is associative and commutative.
In the case that A is associative, we invoke Corollary 1.1.79 to realize that a is normal
if and only if [a,a∗] = 0. In this way, we are in agreement with the notion of a normal
element of a C∗-algebra introduced in Definition 1.2.11.

Actually, keeping in mind Theorem 2.3.61 and Corollary 1.1.79, we obtain the
following.

Fact 3.4.21 Let A be an alternative algebra over K, and let a be in A. Then a is
normal if (and only if) [a,a∗] = 0.

Keeping in mind Propositions 3.3.13 and 3.4.1(i), we immediately get the
following.
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Fact 3.4.22 Let A be a non-commutative JB∗-algebra, and let a be a normal elem-
ent of A. Then the closed subalgebra of A generated by {a,a∗} (occasionally, by
{1,a,a∗} if A is unital) is ∗-invariant, and is indeed a commutative C∗-algebra.

An independent and deeper result is the following.

Proposition 3.4.23 Let A be a non-commutative JB∗-algebra, and let a be in A.
Then a is normal if (and only if) [a,a∗] = 0 = [a,a,a∗].

Proof Assume that [a,a∗] = 0. Let B denote the closed subalgebra of A generated
by {a,a∗}. Then, by Propositions 3.3.13 and Corollary 2.4.16, B is ∗-invariant and
commutative, and hence is a JB∗-algebra. Therefore, by Proposition 3.4.6, there
exists a C∗-algebra C such that B can be seen as a closed ∗-subalgebra of Csym. Since
B is the closed subalgebra of Csym generated by {a,a∗}, there is no loss of generality
in supposing that C equals the closed subalgebra of C generated by {a,a∗}. Now
assume additionally that [a,a,a∗] = 0, an equality which, in terms of the product of
C, reads as [[a,a∗],a] = 0. It follows from Lemma 3.4.19 that a is a normal element
of C, so C is commutative, and so Csym =C is an associative algebra. Finally, since
B was a subalgebra of Csym, we derive that B is associative and commutative.

Corollary 3.4.24 Let B be a JB-algebra, and let h,k be in B such that
[h,h,k] = 0 = [k,k,h]. Then the subalgebra of B generated by {h,k} is associative.

Proof By Theorem 3.4.8, there exists a JB∗-algebra A such that H(A,∗) = B. Then,
writing a := h+ ik ∈ A, the assumptions on h and k imply that [a,a,a∗] = 0. There-
fore, by Proposition 3.4.23, a becomes a normal element of A, and this implies that
the subalgebra of B generated by {h,k} is associative.

3.4.2 Isometries of unital non-commutative JB∗-algebras

As the next proposition shows, Kadison’s Theorem 2.2.29 survives in the more gen-
eral setting of non-commutative JB∗-algebras whenever isometries preserve units.

Proposition 3.4.25 Let A and B be unital non-commutative JB∗-algebras, and
let F : A → B be a bijective linear mapping. Then the following conditions are
equivalent:

(i) F is a Jordan-∗-homomorphism.
(ii) F is isometric and preserves units.

(iii) V (A,1,a) =V (B,1,F(a)) for every a ∈ A.

Proof (i)⇒(ii) By Remark 3.4.5.
(ii)⇒(iii) By Corollary 2.1.2(ii).
(iii)⇒(i) By Lemma 2.2.5 and the implication (ii)⇒(i) in Proposition 3.2.3.

We note that the implication (ii)⇒(i) in Proposition 3.4.25 can also be obtained as
a straightforward consequence of Theorem 2.2.9.

Lemma 3.4.26 Derivations on non-commutative JB∗-algebras are continuous.

Proof Argue as in the case of C∗-algebras (see §3.1.52) with Corollary 3.4.3 instead
of Corollary 3.1.2.
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An apparently more general result is that Jordan derivations of non-commutative
JB∗-algebras are continuous, but this follows from Lemma 3.4.26, by invoking
Fact 3.3.4.

Lemma 3.4.27 Let A be a non-commutative JB∗-algebra, and let D be a derivation
of A such that D(a∗) =−D(a)∗ for every a ∈ A. Then D lies in H(BL(A), IA).

Proof By Lemmas 3.4.26 and 2.2.21, and Proposition 3.3.13, exp(irD) is an alge-
bra ∗-automorphism of A for every r ∈ R. Therefore, by Proposition 3.4.4, we have
‖exp(irD)‖ = 1 for every r ∈ R, and D lies in H(BL(A), IA) by Corollary 2.1.9(iii).

Proposition 3.4.28 Let A be a unital non-commutative JB∗-algebra, and let T :
A → A be a mapping. Then the following conditions are equivalent:

(i) T belongs to H(BL(A), IA).
(ii) There are h ∈ H(A,∗) and a Jordan derivation D of A such that T = Lh +D and

D(a∗) =−D(a)∗ for every a ∈ A.

Proof (i)⇒(ii) By Theorem 2.2.9(ii).
(ii)⇒(i) Assume that condition (ii) holds. Then, by Lemmas 2.2.5 and 2.1.10,

we have Lh ∈ H(BL(A), IA). On the other hand, by Lemma 3.4.27, we also have
D ∈ H(BL(A), IA). It follows that T ∈ H(BL(A), IA).

For elements x,y,z in a given algebra, the following equality is straightforwardly
realized:

[xy,z]− x[y,z]− [x,z]y = [x,y,z]− [x,z,y]+ [z,x,y]. (3.4.11)

Remark 3.4.29 If A is a C∗-algebra, then, by Lemma 2.2.23, the Jordan derivation
D arising in assertion (ii) of Proposition 3.4.28 is in fact a derivation. The same
conclusion holds (in this case, in a trivial way) if A is a JB∗-algebra. However, in
the general case of non-commutative JB∗-algebras, D need not be a derivation. The
reason is of a purely algebraic nature. Indeed, let B be any alternative algebra over
K, whose Jordan derivations are derivations. Then, since for alternative algebras the
equality (3.4.11) takes the form

[xy,z]− x[y,z]− [x,z]y = 3[x,y,z], (3.4.12)

and the operator [·,z] is a Jordan derivation (by Lemma 2.4.15), we derive that B
is associative. Now, let A be an alternative C∗-algebra, and assume that Propos-
ition 3.4.28 is true with ‘derivation’ instead of ‘Jordan derivation’. Then every Jordan
derivation D of A satisfying D(a∗) =−D(a)∗ for every a ∈ A is a derivation, and this
implies that every Jordan derivation of A is a derivation, hence A is associative. But
we already know the existence of alternative C∗-algebras which are not associative
(cf. Proposition 2.6.8).

We recall that the notions of an invertible element and that of the inverse of
such an element work for unital alternative algebras as if they were associative (see
Proposition 2.5.24 for details). Therefore, as in the associative case (cf. §2.1.20),
we can define algebraically unitary elements of a norm-unital alternative normed
algebra A as those invertible elements u ∈ A satisfying ‖u‖= ‖u−1‖= 1.
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Lemma 3.4.30 Let A be a norm-unital alternative normed algebra over K, and
let u be an algebraically unitary element of A. Then Lu and Ru are surjective linear
isometries on A. As a consequence, u is a geometrically unitary element of A.

Proof Since Lu and Ru are bijective operators with L−1
u = Lu−1 and R−1

u = Ru−1

(see Proposition 2.5.24 again), the first conclusion follows. Since u = Lu(1), the
consequence follows from the first conclusion and Corollary 2.1.19.

As in the associative case, unitary elements of a unital alternative C∗-algebra A
are defined as those elements u ∈ A satisfying uu∗ = u∗u = 1 (equivalently, as those
invertible elements u ∈ A such that u−1 = u∗). Now we can formulate and prove the
following generalization of Theorem 2.1.27.

Proposition 3.4.31 Let A be a unital alternative C∗-algebra, and let u be in A. Then
the following conditions are equivalent:

(i) u is unitary.
(ii) u is algebraically unitary.

(iii) u is geometrically unitary.
(iv) u is a vertex of the closed unit ball of A.

Proof The implications (i)⇒(ii) and (iii)⇒(iv) are clear, whereas the one (ii)⇒(iii)
follows from Lemma 3.4.30.

(iv)⇒(i) Assume that u is a vertex of BA. Then u remains a vertex of the closed
unit ball of the closed subalgebra of A generated by {1,u,u∗}. Since this last alge-
bra is an (associative) C∗-algebra, it follows from the implication (iv)⇒(i) in The-
orem 2.1.27 that uu∗ = u∗u = 1, i.e. u is unitary in A.

Corollary 3.4.32 Let A be a norm-unital normed complex algebra, let B be a
unital alternative C∗-algebra, and let F : A → B be a mapping. Then the following
conditions are equivalent:

(i) F is a surjective linear isometry.
(ii) A is a non-commutative JB∗-algebra for some involution, and there exists a

Jordan-∗-isomorphism G : A → B, together with a unitary element u in B, satis-
fying F = LuG.

Proof (i)⇒(ii) Assume that F is a surjective linear isometry. Set u := F(1). By
Corollary 2.1.13 and Proposition 3.4.31, u is a unitary element of B. Write G := Lu∗F .
Then, by Lemma 3.4.30, G is a surjective linear isometry. Therefore, since G(1) = 1,
and B is a non-commutative JB∗-algebra (by Fact 3.3.2), Corollary 3.3.17(b) applies
(with G−1 instead of T ), so that A is a non-commutative JB∗-algebra. Then, by
Proposition 3.4.25, G is a Jordan-∗-isomorphism. Finally, the equality F = LuG
is clear.

(ii)⇒(i) By Remark 3.4.5 and Lemma 3.4.30.

The following straightforward corollary has its own interest.

Corollary 3.4.33 Linearly isometric unital alternative C∗-algebras are Jordan-∗-
isomorphic.
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Corollary 3.4.33 above does not remain true if we replace ‘alternative C∗-algebras’
with ‘non-commutative JB∗-algebras’. As a matter of fact, nor does it even survive
in the setting of unital JC∗-algebras. Indeed, we have the following.

Antitheorem 3.4.34 There exist linearly isometric unital JC∗-algebras which are
not ∗-isomorphic.

Proof Consider the unital C∗-algebra C of all continuous functions from T to
M2(C), where T := {z ∈C : |z|= 1}, let A stand for the closed ∗-subalgebra of Csym

consisting of those functions x ∈ C such that x(z) is a symmetric matrix (relative to
the transposition) for every z ∈ T, and note that the unit 1 of C lies in A. Let u be the

unitary element of C given by u(z) :=

(
z 0
0 1

)
for every z ∈ T, so that the Banach

space of C, endowed with the product x� y := xu∗y and the involution x� := ux∗u,
becomes a unital C∗-algebra (say D) whose unit is u. Now, note that the Banach
space of A becomes a closed �-invariant subalgebra (say B) of Dsym, and that the
unit of D lies in B. It follows that A and B are linearly isometric unital JC∗-algebras.
However, as a matter of fact, A and B are not ∗-isomorphic.

To realize the last assertion, note that A contains the JC∗-algebra of all 2 × 2
complex symmetric matrices, just as the constant functions, and hence the matrices

e :=

(
0 1
1 0

)
and f :=

(
1 0
0 −1

)
are elements of A satisfying e∗ = e, f ∗ = f ,

e2 = f 2 = 1, and e • f = 0. Now we argue by contradiction, so we assume that A
and B are ∗-isomorphic. Then, there must exist x,y ∈ B such that x� = x, y� = y,
x� x = y� y = u, and x� y+ y� x = 0. Keeping in mind the definition of � and �,
the above conditions are equivalent to the ones ux∗ = xu∗, uy∗ = yu∗, x∗x = y∗y = 1,

and x∗y =−y∗x. Therefore, writing x :=

(
x11 x12

x12 x22

)
and y :=

(
y11 y12

y12 y22

)
, with

xi j,yi j ∈CC(T), and denoting by v the inclusion of T into C, we derive that

vx12 = x12, vy12 = y12, (3.4.13)

x22 and y22 are real-valued functions, (3.4.14)

|x12|2 + x2
22 = |y12|2 + y2

22 = 1, (3.4.15)

ρ := i(x12y12 + x22y22) is a real-valued function. (3.4.16)

Invoking (3.4.14) and (3.4.16), we get

|x12|2|y12|2 = x2
22y2

22 +ρ2. (3.4.17)

On the other hand, (3.4.16) implies

x12
2y2

12 = x2
22y2

22 −ρ2 +2iρx22y22,

which, together with

x12
2y2

12 = |x12|2v̄v|y12|2 = |x12|2|y12|2

(a consequence of (3.4.13)), gives

|x12|2|y12|2 = x2
22y2

22 −ρ2 +2iρx22y22. (3.4.18)
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Comparing (3.4.17) and (3.4.18), and invoking (3.4.14) and (3.4.16) again, we obtain
x2

22y2
22 +ρ2 = x2

22y2
22 −ρ2, so ρ = 0, and so

x12y12 =−x22y22. (3.4.19)

Multiplying (3.4.19) by v, and applying (3.4.13), we get

x12y12 =−vx22y22. (3.4.20)

It follows from (3.4.19) and (3.4.15) that

|x12|2|y12|2 = (1−|x12|2)(1−|y12|2) = 1−|x12|2 −|y12|2 + |x12|2|y12|2,

so |x12|2 + |y12|2 = 1, and so, keeping in mind (3.4.15),

x2
22 + y2

22 = 1. (3.4.21)

Finally, we have

(y22x12 − x22y12)
2 = y2

22x2
12 + x2

22y2
12 −2y22x12x22y12

= (y2
22|x12|2 + x2

22|y12|2 +2y2
22x2

22)v

= [y2
22(|x12|2 + x2

22)+(|y12|2 + y2
22)x

2
22]v

= (y2
22 + x2

22)v = v,

where we have applied (3.4.13) and (3.4.20) for the second equality, (3.4.15) for
the penultimate one, and (3.4.21) for the last one. Thus y22x12 − x22y12 becomes a
continuous square root of the function z → z on T, the desired contradiction.

We note that Antitheorem 3.4.34 prohibits any reasonable version of Kadison’s
Theorem 2.2.29 for non-commutative JB∗-algebras.

3.4.3 An interlude: derivations and automorphisms of
normed algebras

§3.4.35 Let X be a normed space over K, and let n be in N. We denote by Xn

the normed space over K of all continuous n-linear mappings from Xn to X . For
F ∈ BL(X), we define F0,F1, . . . ,Fn ∈ BL(Xn) by

F0( f )(x1, . . . ,xn) := F( f (x1, . . . ,xn))

and
Fi( f )(x1, . . . ,xn) := f (x1, . . . ,xi−1,F(xi),xi+1, . . . ,xn)

for all f ∈ Xn, (x1, . . . ,xn) ∈ Xn, and 1 � i � n. We have the following fact, whose
routine verification is left to the reader.

Fact 3.4.36 With the notation above, we have:

(i) ‖Fi‖ � ‖F‖ for all 0 � i � n.
(ii) The mapping F → F0 from BL(X) to BL(Xn) is a unit-preserving algebra homo-

morphism.
(iii) For 1 � i � n, the mapping F → Fi from BL(X) to BL(Xn) is a unit-preserving

algebra antihomomorphism.
(iv) If 0 � i 	= j � n, and if F,G ∈ BL(X), then Fi and G j commute.
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Lemma 3.4.37 Let X be a complex Banach space, let H be in BL(X), and let n be
in N. We have:

(i) sp(BL(Xn),H1 + · · ·+Hn −H0)

⊆
n summands︷ ︸︸ ︷

sp(BL(X),H)+ · · ·+ sp(BL(X),H) − sp(BL(X),H).

(ii) If H is bijective, then sp(BL(Xn),H1H2 · · ·HnH−1
0 )

⊆
n factors︷ ︸︸ ︷

sp(BL(X),H) · · ·sp(BL(X),H)(sp(BL(X),H))−1.

Proof Since H0,H1, . . . ,Hn are mutually commuting elements of BL(Xn) (by
Fact 3.4.36(iv)), it follows from Corollary 1.1.81 that

sp(BL(Xn),H1 + · · ·+Hn −H0)

⊆ sp(BL(Xn),H1)+ · · ·+ sp(BL(Xn),Hn)− sp(BL(Xn),H0).

Moreover, by Fact 3.4.36(ii)–(iii) and Lemma 1.1.34, we have

sp(BL(Xn),Hi)⊆ sp(BL(X),H) for every i = 0, . . . ,n,

and assertion (i) is proved. By keeping in mind Lemma 1.2.16, assertion (ii) is
verified in an analogous manner.

Let n be in N. By an n-algebra over K we mean a couple (X , p), where X is a
vector space over K, and p is a fixed n-linear mapping from Xn to X (called the
product of the n-algebra X). Let (X , p) be an n-algebra over K. By a derivation of X
we mean a linear mapping D : X → X satisfying

D(p(x1, . . . ,xn)) = p(D(x1),x2, . . . ,xn)+ p(x1,D(x2), . . . ,xn)+ · · ·
· · ·+ p(x1,x2, . . . ,D(xn))

for all x1, . . . ,xn ∈ X . By an automorphism of X we mean a bijective linear mapping
Φ : X → X satisfying Φ(p(x1, . . . ,xn)) = p(Φ(x1), . . . ,Φ(xn)) for all x1, . . . ,xn ∈ X .
When X is in fact a normed space over K, and the n-linear product p is continuous,
we say that (X , p) is a normed n-algebra. Since we will not deal with geometric
properties of normed n-algebras, we do not assume that ‖p‖ � 1 in the above defin-
ition. Given a normed n-algebra (X , p), and H ∈ BL(X), with the notation in §3.4.35
we realize that H is a derivation (respectively, an automorphism) if and only if

H0(p) = H1(p)+H2(p)+ · · ·+Hn(p)

(respectively, H is bijective and H0(p) = (H1H2 · · ·Hn)(p)).

Proposition 3.4.38 Let X be a complete normed complex n-algebra with nonzero
product. Then we have:

(i) For each continuous derivation D of X, there exist

λ1, . . . ,λn ∈ sp(BL(X),D)

such that λ1 + · · ·+λn ∈ sp(BL(X),D).
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(ii) For each continuous automorphism Φ of X, there exist

λ1,λ2, . . . ,λn ∈ sp(BL(X),Φ)

such that λ1λ2 · · ·λn ∈ sp(BL(X),Φ).

Proof In what follows, p stands for the product of X . Let D be a continuous deriv-
ation of X . Since

(D1 + · · ·+Dn −D0)(p) = 0 and p 	= 0,

we have that 0 ∈ sp(BL(Xn),D1 + · · ·+ Dn − D0). Therefore, invoking Lemma
3.4.37(i), we derive that

0 ∈
n summands︷ ︸︸ ︷

sp(BL(X),D)+ · · ·+ sp(BL(X),D) − sp(BL(X),D),

and assertion (i) follows. By invoking Lemma 3.4.37(ii) instead of Lemma 3.4.37(i),
assertion (ii) follows in a similar way.

As a particular case of Proposition 3.4.38 we get the following.

Corollary 3.4.39 Let A be a complete normed complex algebra with nonzero
product. Then we have:

(i) For each continuous derivation D of A, there exist λ1,λ2 in sp(BL(A),D) such
that λ1 +λ2 ∈ sp(BL(A),D).

(ii) For each continuous algebra automorphism Φ of A, there exist λ1,λ2 in
sp(BL(A),Φ) such that λ1λ2 ∈ sp(BL(A),Φ).

As the following example shows, the information given by Corollary 3.4.39 is the
best possible, even if A is associative and commutative.

Example 3.4.40 Let K be a compact subset of C such that there are λ1,λ2 ∈
K with λ1 + λ2 ∈ K (respectively, such that 0 /∈ K and there are λ1,λ2 ∈ K with
λ1λ2 ∈ K). We are going to show that there exists a complete normed associative and
commutative complex algebra A with nonzero product, together with a continuous
derivation (respectively, a continuous algebra automorphism) of A, whose spectrum
relative to BL(A) equals K.

Let B stand for the three-dimensional associative and commutative complex alge-
bra with basis {u1,u2,u3} and multiplication table given by

u1u2 = u2u1 = u3 and uiu j = 0 if (i, j) 	= (1,2),(2,1),

and consider the linear operator D (respectively, F) from B to B determined by the
conditions

D(u1) = λ1u1, D(u2) = λ2u2, and D(u3) = (λ1 +λ2)u3

(respectively, F(u1) = λ1u1, F(u2) = λ2u2, and F(u3) = λ1λ2u3).

It is routine to verify that D is a derivation (respectively, F is an algebra automor-
phism) of B, and that sp(L(B),D) = {λ1,λ2,λ1 + λ2} (respectively, sp(L(B),F) =

{λ1,λ2,λ1λ2}).
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Now, invoke Exercise 1.1.45 to be provided with a complex Banach space C,
together with an operator T ∈ BL(C), such that sp(BL(C),T ) = K. Endowing C
with the zero product, C becomes a complete normed associative and commutative
complex algebra, and every linear operator on C is a derivation (respectively, an
algebra automorphism, if the operator is bijective) of C.

Now, endow B with any algebra norm, and let A denote the algebra B×C with
coordinate-wise operations and the sup norm. Then A is a complete normed asso-
ciative and commutative complex algebra with nonzero product, and the operator on
A given by

(x,y)→ (D(x),T (y))
(
respectively,

(
x,y
)
→
(
F
(
x
)
,T
(
y
)))

is a continuous derivation (respectively, a continuous algebra automorphism) of A
whose spectrum relative to BL(A) equals K.

§3.4.41 In §2.8.36, we introduced the notion of a nilpotent algebra in a rather
intuitive way. Now, we need to formalize that notion somewhat. To this end, we recall
that, in §§2.8.17 and 2.8.26, we introduced non-associative words with characters
on an arbitrary set of indeterminates, the (global) degree of such a word, and the
meaning of p(a1, . . . ,an) when p is a non-associative word with characters in a set
of n indeterminates, and a1, . . . ,an are elements of a given algebra. Given a non-
associative word p with characters in a set X of indeterminates, and given x ∈ X, we
define the degree of p in x by induction on the global degree of p, as follows. If the
global degree of p is 1, then the degree of p in x is 1 or 0, depending on whether
or not p = x, whereas, if the global degree of p is >1, then the degree of p in x is
defined as m1 +m2, where m1 and m2 are the degrees of p1 and p2 in x, respectively,
p1,p2 being the unique non-associative words such that p = p1p2. A non-associative
word in n indeterminates which is of degree 1 in each of them will be called an
n-linear non-associative word. The name is justified because, if A is any algebra,
and if p is an n-linear non-associative word, then the mapping

pA : (a1, . . . ,an)→ p(a1, . . . ,an),

from An to A, is n-linear. This can be easily realized by induction on the global
degree n of p. With such an induction argument in mind, the following facts,
involving a given n-linear non-associative word p, are easily verified:

(i) If A is any algebra, and if H is a derivation (respectively, an algebra automor-
phism) of A, then H remains a derivation (respectively, an automorphism) of the
n-algebra (A,pA).

(ii) If A is a normed algebra, then the mapping pA is continuous.

On the other hand, according to §2.8.36, an algebra A is nilpotent if and only if, for
some n ∈ N, and every n-linear non-associative word p, we have pA = 0.

The above facts will be applied without notice in the proof of the following.
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Theorem 3.4.42 Let A be a complete normed non-nilpotent complex algebra. Then
we have:

(i) For each continuous derivation D of A, and each natural number n, there exist
λ1, . . . ,λn in sp(BL(A),D) such that

λ1 + · · ·+λn ∈ sp(BL(A),D).

(ii) For each continuous algebra automorphism Φ of A, and each natural number n,
there exist λ1,λ2, . . . ,λn ∈ sp(BL(A),Φ) such that

λ1λ2 · · ·λn ∈ sp(BL(A),Φ).

Proof Let n be in N. Since A is not nilpotent, there exists an n-linear non-
associative word pn in n indeterminates, and elements x1, . . . ,xn ∈ A such that
pn(x1, . . . ,xn) 	= 0. Now, consider the continuous n-linear mapping pn : An → A
defined by pn(a1, . . . ,an) := pn(a1, . . . ,an) for every (a1, . . . ,an) ∈ An. Then the
Banach space of A, endowed with the product pn, becomes a complete normed
complex n-algebra with nonzero product. Moreover, derivations (respectively, alge-
bra automorphisms) of A, become derivations (respectively, automorphisms) of the
n-algebra (A, pn). Now, the proof is concluded by applying Proposition 3.4.38.

Remark 3.4.43 With the argument in the above proof, it can be shown that, if A is
a complete normed nilpotent complex algebra of index m � 2, then, for each continu-
ous derivation D of A (respectively, each continuous algebra automorphism Φ of A),
and for each natural number n � m− 1, there exist λ1,λ2, . . . ,λn in sp(BL(A),D)

(respectively, in sp(BL(A),Φ)) such that λ1 +λ2 + · · ·+λn ∈ sp(BL(A),D) (respect-
ively, λ1λ2 · · ·λn ∈ sp(BL(A),Φ)). We note that the case m = 3 of this result also
follows from Corollary 3.4.39.

Corollary 3.4.44 Let A be a complete normed non-nilpotent complex algebra.
Then:

(i) For each continuous derivation D of A, we have 0 ∈ co(sp(BL(A),D)).
(ii) For each continuous algebra automorphism Φ of A, there are λ ,μ in

sp(BL(A),Φ) such that |λ | � 1 � |μ|.

Proof Let D be a continuous derivation of A. By Corollary 3.4.42, for each n ∈ N,
there exist λ1, . . . ,λn ∈ sp(BL(A),D) such that

λ1 + · · ·+λn ∈ sp(BL(A),D),

and hence μn := 1
n(λ1 + · · ·+ λn) ∈ co(sp(BL(A),D)). Since |μn| � 1

n r(D) → 0, it
follows that 0 ∈ co(sp(BL(A),D)). By Carathéodory theorem, we conclude that 0 ∈
co(sp(BL(A),D)).

Let Φ be a continuous algebra automorphism of A. Suppose that

1 < k := min{|λ | : λ ∈ sp(BL(A),Φ)}.

By Corollary 3.4.42, for each n ∈ N, there exist λ1,λ2, . . . ,λn ∈ sp(BL(A),Φ)

such that λ1λ2 · · ·λn ∈ sp(BL(A),Φ), and hence kn � |λ1λ2 · · ·λn| � r(Φ), a
contradiction. Therefore k � 1, and hence there exists λ ∈ sp(BL(A),Φ) such
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that |λ | � 1. Since Φ−1 is a continuous algebra automorphism of A, and
sp(BL(A),Φ−1) = sp(BL(A),Φ)−1 (by Lemma 1.2.16 and Example 1.1.32(d)),
it follows from the above that there exists μ ∈ sp(BL(A),Φ) such that |μ−1|� 1, and
the proof is complete.

Lemma 3.4.45 Let X be a complex Banach space, let T be in BL(X), and let x be
in X. We have:

(i) If T (x) = 0, then exp(T )(x) = x.

(ii) If exp(T )(x) = x, and if sp(BL(X),T )∩{±2nπi : n ∈ N}= /0, then T (x) = 0.

Proof Consider the entire function f defined by f (z) = ∑∞
n=0

zn

(n+1)! . Note that

f (z)z = z f (z) =
∞

∑
n=0

zn+1

(n+1)!
= exp(z)−1 (3.4.22)

vanishes on the set 2πiZ. Since f (0) = 1, it follows that the zero set of f is

Z( f ) = {±2nπi : n ∈ N}.

On the other hand, keeping in mind Theorem 1.3.13, it follows from (3.4.22) that

f (T )T = T f (T ) = exp(T )− IX .

If x ∈ X is such that T (x) = 0, then we have 0 = f (T )T (x) = (exp(T )− IX)(x), and
hence exp(T )(x) = x. Now assume that sp(BL(X),T )∩Z( f ) = /0 and that x ∈ X is
such that exp(T )(x) = x. By Theorem 1.3.13, we have

0 	∈ f (sp(BL(X),T )) = sp(BL(X), f (T )),

and hence f (T ) ∈ Inv(BL(X)). Therefore

T (x) = f (T )−1 f (T )T (x) = f (T )−1(exp(T )− IX )(x) = 0,

and the proof is complete.

The proof of the next lemma is left to the reader.

Lemma 3.4.46 Let A,B be complete normed unital power-associative algebras,
and let φ be a continuous unit-preserving homomorphism or antihomomorphism
from A to B. Then φ(exp(a)) = exp(φ(a)) for every a ∈ A.

Lemma 3.4.47 Let X be a complete normed complex n-algebra, and let D be in
BL(X). Then we have:

(i) If D is a derivation of X, then exp(D) is an automorphism of X.

(ii) If exp(D) is an automorphism of X, and if

sp(BL(X),D)⊆
{

z ∈ C : |ℑ(z)|< 2π
n+1

}
,

then D is a derivation of X.
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Proof Let p denote the product of the n-algebra X . We claim that

exp(D1 + · · ·+Dn −D0)(p) = p (3.4.23)

if and only if exp(D) is an automorphism of X . Indeed, keeping in mind Fact
3.4.36(iv) and Exercise 1.1.30, we see that the equality (3.4.23) can be rewritten as
exp(D1) · · ·exp(Dn)exp(D0)

−1(p) = p, or equivalently

exp(D1) · · ·exp(Dn)(p) = exp(D0)(p). (3.4.24)

On the other hand, it follows from Fact 3.4.36(ii)–(iii) and Lemma 3.4.46 that

exp(Di) = exp(D)i for every i = 0, . . . ,n.

Therefore, the equality (3.4.24) can be rewritten as

exp(D)1 · · ·exp(D)n(p) = exp(D)0(p),

which, in its turn, is equivalent to the fact that exp(D) is an automorphism of X . This
concludes the verification of the claim.

Assume that D is a derivation of X . Then we know that

(D1 + · · ·+Dn −D0)(p) = 0.

By Lemma 3.4.45(i), we deduce that exp(D1 + · · ·+ Dn − D0)(p) = p, and con-
sequently exp(D) is an automorphism of X because of the claim above.

Now assume that exp(D) is an automorphism of X and that

sp(BL(X),D)⊆
{

z ∈ C : |ℑ(z)|< 2π
n+1

}
.

By Lemma 3.4.37, for each λ ∈ sp(BL(Xn),D1 + · · ·+ Dn − D0) there exist λ0,

λ1, . . . ,λn in sp(BL(X),D) such that λ = λ1 + · · ·+λn −λ0, and consequently

|ℑ(λ )| � |ℑ(λ1)|+ · · ·+ |ℑ(λn)|+ |ℑ(λ0)|< 2π.

Therefore sp(BL(Xn),D1 + · · ·+Dn −D0)∩{±2nπi : n ∈ N}= /0. Now, since

exp(D1 + · · ·+Dn −D0)(p) = p

(by the claim), Lemma 3.4.45(ii) applies, so that (D1 + · · ·+Dn −D0)(p) = 0, and
so D is a derivation of X .

Assertion (i) in the above lemma remains true for complete normed real
n-algebras. This can be realized by arguing as in Lemma 2.2.21 or, preferably,
by passing to ‘complexification’ and then applying the proved complex result.

Proposition 3.4.48 Let X be a complete normed complex n-algebra, and let Φ be
a continuous automorphism of X such that

sp(BL(X),Φ)⊆
{

z ∈ C\{0} : |arg(z)|< 2π
n+1

}
.

Then log(Φ) is a derivation of X, where log stands for the principal determination
of the complex logarithm.
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Proof Define D := log(Φ). By Theorem 1.3.13, exp(D) =Φ, and

sp(BL(X),D) = log(sp(BL(X),Φ))⊆ log

({
z ∈ C\{0} : |arg(z)|< 2π

n+1

})
=

{
z ∈ C : |ℑ(z)|< 2π

n+1

}
.

Now, by Lemma 3.4.47(ii), D is a derivation of X .

Although obvious, we emphasize the case n = 2 of the above proposition in the
following.

Theorem 3.4.49 Let A be a complete normed complex algebra, and let Φ be a
continuous algebra automorphism of A such that

sp(BL(A),Φ)⊆
{

z ∈ C\{0} : |arg(z)|< 2π
3

}
.

Then log(Φ) is a derivation of A.

Proposition 3.4.50 Let A be a normed algebra over K such that there exists M > 0
satisfying ‖a‖2 � M‖a2‖ for every a ∈ A. We have:

(i) If B is a normed algebra over K, and if φ : B → A is a continuous Jordan
homomorphism, then ‖φ‖ � M.

(ii) If K= C, then A has no nonzero continuous Jordan derivations.

Proof Noticing that ||| · ||| := 1
M ‖·‖ is an equivalent (possibly non-submultiplicative)

norm on A satisfying |||a |||2 � |||a2 |||, assertion (i) follows from Proposition 2.6.19.
To prove assertion (ii), we may assume that A is complete. Let D be a continuous

Jordan derivation of A, and let z be in C. Then exp(zD) is a continuous Jordan
automorphism of A. Therefore, by assertion (i), we have ‖exp(zD)‖ � M, and hence
D = 0 because of Liouville’s theorem.

By combining Lemma 2.2.25 and Proposition 3.4.50(ii), we derive the following.

Corollary 3.4.51 Commutative C∗-algebras have no nonzero derivations.

Now we can realize that, in Theorem 3.4.49, the number 2π
3 cannot be replaced by

a larger one. Indeed, we have the following.

Example 3.4.52 Let A stand for the commutative C∗-algebra C3, and let Φ denote
the automorphism of A defined by Φ(λ1,λ2,λ3) := (λ3,λ1,λ2). Then we have

sp(BL(A),Φ) =
{

z ∈ C : z3 = 1
}
⊆
{

z ∈ C\{0} : |arg(z)| � 2π
3

}
.

However, in view of Corollary 3.4.51, log(Φ) cannot be a derivation.

A relevant consequence of Theorem 3.4.49 is the following.
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Corollary 3.4.53 Let A be a complete normed algebra over K. Then the following
conditions are equivalent:

(i) A has no nonzero continuous derivation.

(ii) The set of all continuous algebra automorphisms of A is discrete (for the norm
topology).

Proof Let A = A (A) stand for the set of all continuous algebra automorphisms
of A.

(ii)⇒(i) Let D be a continuous derivation of A, so that exp(λD) lies in A for every
real number λ . Suppose that A is discrete. Since the mapping f : λ → exp(λD) is
continuous with f (0)= IA, and IA is an isolated point of A , it follows that there exists
a neighbourhood of zero in R on which f is constant. Therefore D = f ′(0) = 0.

(i)⇒(ii) Suppose that A has no nonzero continuous derivation. Assume that
K=C. Since A is a subgroup of Inv(BL(A)), and Inv(BL(A)) is a topological group
(by Proposition 1.1.15), A is a topological group too, and hence, to prove that A is
discrete, it is enough to show that IA is an isolated point of A . Let Φ be in A with
‖IA −Φ‖< 1. Then we have

sp(BL(A),Φ)⊆ {z ∈ C : |1− z|< 1} ⊆
{

z ∈ C\{0} : |arg(z)|< 2π
3

}
,

and hence, by Theorem 3.4.49, log(Φ) is a derivation of A. Since A has no nonzero
continuous derivation (by the assumption), we obtain log(Φ) = 0, so Φ = IA.
Thus IA is an isolated point of A , as desired. Now assume that K = R. Then
AC := C⊗π A is a complete normed complex algebra with no nonzero continuous
derivation. (Indeed, involving the canonical conjugate-linear automorphism of
AC, we easily realize that every continuous derivation D of AC can be written as
D = D1 + iD2 with Di a derivation of AC satisfying Di(A) ⊆ A, so that Di can be
regarded as a continuous derivation of A, and the assumption that A has no nonzero
continuous derivation applies.) Since IC⊗Φ lies in A (AC) whenever Φ is in A (A),
and the mapping Φ→ IC⊗Φ from A (A) to A (AC) is a topological imbedding (it is
in fact an isometry), and A (AC) is discrete (by the complex case already discussed),
we see that A (A) is discrete.

Another consequence of Theorem 3.4.49 is the following.

Corollary 3.4.54 Let A be a complete normed associative semiprime complex
algebra. Then the set of all continuous algebra automorphisms of A is relatively
open in the set of all continuous Jordan automorphisms of A.

Proof Let A (respectively, J ) stand for the set of all continuous algebra automor-
phisms (respectively, Jordan automorphisms) of A. Since J is a topological group,
and A is a subgroup of J , it is enough to show that IA lies in the interior of A

relative to J . Let Φ be in J with ‖IA −Φ‖< 1. Then we have

sp(BL(A),Φ)⊆ {z ∈ C : |1− z|< 1} ⊆
{

z ∈ C\{0} : |arg(z)|< 2π
3

}
,
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and hence, by applying Theorem 3.4.49 with Asym instead of A, log(Φ) is a Jordan
derivation of A. Now, by Lemma 2.2.23, log(Φ) is a derivation, and hence Φ lies
in A .

Now, we are going to take advantage of Proposition 3.4.50(ii) to compute numer-
ical indexes of unital non-commutative JB∗-algebras (see Theorem 3.4.59 below).

Proposition 3.4.55 Let A be a normed non-commutative Jordan complex algebra
such that there exists M > 0 satisfying ‖a‖2 � M‖a2‖ for every a ∈ A. Then A is
associative and commutative.

Proof Since A is flexible, Lemma 2.4.15 applies, so that for every a ∈ A, the map-
ping b → [a,b] is a (continuous) Jordan derivation of A. Therefore, by applying
Proposition 3.4.50(ii), we get that A is commutative, i.e. A is in fact a Jordan algebra.
Then Lemma 3.1.23, together with a new application of Proposition 3.4.50(ii), gives
that A is associative.

Lemma 3.4.56 Let A be a normed associative algebra over K, and let a,b be in A.
Then

r(a+b) � max{‖a‖,‖b‖}+
√

‖ab‖.

Proof By Propositions 1.1.98 and 1.1.107, and Definition 1.1.113, we may suppose
that A is complex, norm-unital, and complete. Then the conclusion in the lemma is
equivalent to

|λ | � max{‖a‖,‖b‖}+
√

‖ab‖ for every λ ∈ sp(a+b). (3.4.25)

Let λ be in sp(a + b). Since the inequality (3.4.25) becomes evident whenever
|λ | � max{‖a‖,‖b‖}, let us suppose that |λ | > max{‖a‖,‖b‖}. Then λ1− a and
λ1−b are invertible and, by Corollary 1.1.14, we have

‖(λ1−a)−1‖ � (|λ |−‖a‖)−1 and ‖(λ1−b)−1‖ � (|λ |−‖b‖)−1.

Hence

‖((λ1−a)(λ1−b))−1‖ � (|λ |−max{‖a‖,‖b‖})−2. (3.4.26)

Moreover, since

(λ1−a)(λ1−b)−λ (λ1− (a+b)) = ab,

and λ (λ1− (a+b)) /∈ Inv(A), it follows from Corollary 1.1.21 that

‖((λ1−a)(λ1−b))−1‖−1 � ‖(λ1−a)(λ1−b)−λ (λ1− (a+b))‖= ‖ab‖.

This and the inequality (3.4.26) complete the proof.

Lemma 3.4.57 Let A be a non-commutative JB∗-algebra, and let a be in A. Then

‖a∗ •a‖ � 1
2

(
‖a‖2 +

√
‖Ua∗(a2)‖

)
.
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Proof By Fact 3.3.4 and Proposition 3.4.6, there exist a C∗-algebra B and an iso-
metric algebra ∗-homomorphism φ from the closed subalgebra of Asym generated by
{a,a∗} onto a closed ∗-subalgebra of Bsym. Since for b ∈ B we have

‖b∗b+bb∗‖ � ‖b‖2 +
√

‖b∗b2b∗‖

(by Lemma 3.4.56), we derive

‖a∗ •a‖= ‖φ(a)∗ •φ(a)‖

� 1
2

(
‖φ (a)‖2 +

√
‖φ(a)∗φ(a)2φ(a)∗‖

)
=

1
2

(
‖a‖2 +

√
‖Ua∗(a2)‖

)
.

Results such as Proposition 3.3.13 (that the involution of a non-commutative
JB∗-algebra is isometric) or Corollary 3.4.3 (that the self-adjoint part of a non-
commutative JB∗-algebra is a JB-algebra) must be omnipresent when we are dealing
with non-commutative JB∗-algebras. This is the case in the proof of the following.

Proposition 3.4.58 Let A be a unital non-commutative JB∗-algebra, and let a be
in A. Then

1
2
‖a‖ � v(A,1,a) � 1

2

(
‖a‖+

√
‖a2‖

)
.

Proof The first inequality follows from Lemmas 2.2.5 and 2.3.7(i). For the second
one, by multiplying a by a suitable unimodular number (a fact that does not affect
the conclusion), we may suppose that v(a) = maxℜ(V (A,1,a)). Set h := 1

2 (a+a∗).
Then, by Lemma 2.2.5, we have v(a) = v(h), and hence

(v(a))2 � ‖h‖2 = ‖h2‖= 1
4
‖a2 +a∗2 +a∗a+aa∗‖ � 1

2
(‖a2‖+‖a∗ •a‖).

On the other hand, by Lemma 3.4.57 and Proposition 3.4.17, we have

‖a∗ •a‖ � 1
2

(
‖a‖2 +‖a‖

√
‖a2‖

)
.

It follows that

(v(a))2 � 1
4

(
2‖a2‖+‖a‖

√
‖a2‖+‖a‖2

)
=

1
4

(
‖a2‖+

√
‖a2‖

√
‖a2‖+‖a‖

√
‖a2‖+‖a‖2

)
� 1

4

(
‖a2‖+‖a‖

√
‖a2‖+‖a‖

√
‖a2‖+‖a‖2

)

=
1
4

(√
‖a2‖+‖a‖

)2

,

and this completes the proof.

Theorem 3.4.59 Let A be a unital non-commutative JB∗-algebra. Then n(A,1) is
equal to 1 or 1

2 depending on whether or not A is associative and commutative.
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Proof By the first inequality in Proposition 3.4.58, we have n(A,1) � 1
2 . On the

other hand, if A is associative and commutative, then, by Fact 3.3.2, A is a commu-
tative C∗-algebra, and hence, by Theorem 1.2.23, we have A =CC(E) for a suitable
compact Hausdorff topological space E, and therefore n(A,1) = 1 (indeed, the valu-
ations of elements of A at points of E lie in D(A,1)). Now, to conclude the proof it
is enough to show that, if n(A,1)> 1

2 , then A is associative and commutative. But, if
n(A,1)> 1

2 , then, by the second inequality in Proposition 3.4.58, we have

(2n(A,1)−1)2‖a‖2 � ‖a2‖ for every a ∈ A,

and A is associative and commutative because of Proposition 3.4.55.

Keeping in mind Fact 3.3.2 and the fact that commutative alternative algebras over
K are associative (by identity (3.4.12)), we derive the following.

Corollary 3.4.60 Let A be a unital alternative C∗-algebra. Then n(A,1) is equal to
1 or 1

2 depending on whether or not A is commutative.

3.4.4 The structure theorem of isomorphisms of non-commutative
JB∗-algebras

§3.4.61 If a is an element of a normed algebra generating an associative subalgebra,
then we can consider the spectral radius r(a) of a, defined as in the associative
case by

r(a) := inf
{
‖an‖ 1

n : n ∈ N
}

(cf. §1.1.16). We note that, in view of Corollary 1.1.18(i), for such an a we have

r(a) = lim‖an‖ 1
n .

Now the simple argument in the proof of Corollary 1.1.19 yields the following.

Fact 3.4.62 Let A be a normed power-associative algebra over K, let B be a normed
algebra over K, let F : A → B be a continuous algebra homomorphism, and let a
be in A. Then F(a) generates an associative subalgebra of B, and the inequality
r(F(a)) � r(a) holds. As a consequence, every equivalent algebra norm on A gives
rise to the same spectral radius on A.

The following outstanding variant of Fact 3.4.62 above generalizes Corol-
lary 1.1.114.

Proposition 3.4.63 Let A be a complete normed power-associative algebra over K,
let B be a normed algebra over K, let F : A → B be an algebra homomorphism, and
let a be in A. Then F(a) generates an associative subalgebra of B, and the inequality
r(F(a)) � r(a) holds.

Proof Let C denote the closed subalgebra of A generated by a. Then C is a
complete normed associative algebra over K, and, as a consequence, F(C) is
an associative subalgebra of B containing F(a). Therefore, regarding F as an
algebra homomorphism from C to F(C), and applying Corollary 1.1.114, we get
r(F(a)) � r(a).
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As an immediate consequence, we derive the following.

Corollary 3.4.64 Two complete algebra norms on a power-associative algebra A
over K give rise to the same spectral radius on A.

Lemma 3.4.65 Let A be a non-commutative JB∗-algebra, and let x be in A. Then

‖x∗ • x‖ � 1
2
‖x‖2.

Proof By Fact 3.3.4 and Proposition 3.4.6, there exist a C∗-algebra B and an iso-
metric algebra ∗-homomorphism φ from the closed subalgebra of Asym generated by
{x,x∗} onto a closed ∗-subalgebra of Bsym. Now in B we have

φ(x)∗ •φ(x) = 1
2
(φ (x)∗φ(x)+φ(x)φ(x)∗) ,

and hence

φ (x)∗ •φ(x) � 1
2
φ(x)∗φ(x) � 0.

Therefore, we have

‖x∗ • x‖= ‖φ(x)∗ •φ(x)‖ � 1
2
‖φ(x)∗φ(x)‖= 1

2
‖φ(x)‖2 =

1
2
‖x‖2.

The inequality ‖x∗ •x‖� 1
2‖x‖2 in the above Lemma is sharp (see Example 2.3.65).

Proposition 3.4.66 All complete algebra norms on a non-commutative JB∗-algebra
A are equivalent.

Proof Let a be in A. Since H(A,∗) is a JB-algebra (by Corollary 3.4.3), and a∗ •a
belongs to H(A,∗), we see that ‖a∗ • a‖ = r(a∗ • a). Now, let ||| · ||| be any complete
algebra norm on A. Keeping in mind Lemma 3.4.65, and that the spectral radius is
the same for ‖ · ‖ and ||| · ||| (by Corollary 3.4.64), we have

1
2
‖a‖2 � ‖a∗ •a‖= r(a∗ •a) � |||a∗ •a ||| � |||a∗ ||||||a |||. (3.4.27)

Now we shall show that the algebra involution ∗ on A is ||| · |||-continuous. If |||xn |||→0
and |||x∗n − y ||| → 0, then, by (3.4.27),

1
2
‖xn‖2 � |||x∗n ||| |||xn ||| −→ 0.

Hence ‖xn‖→ 0. On the other hand,

1
2
‖xn − y∗‖2 � |||x∗n − y ||| |||xn − y∗ ||| −→ 0.

Hence ‖x∗n−y‖→ 0 and so y= 0. By the closed graph theorem, the algebra involution
∗ on A is ||| · |||-continuous. It follows from (3.4.27) that ‖·‖ and ||| · ||| are comparable,
and hence equivalent.

Corollary 3.4.67 Let A and B be non-commutative JB∗-algebras, and let F : A→ B
be a bijective algebra homomorphism. Then F is continuous.

Proof Define a complete algebra norm ||| · ||| on A by |||a ||| := ‖F(a)‖, and apply
Proposition 3.4.66.
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§3.4.68 Let A be a non-commutative JB∗-algebra. In view of Corollary 3.4.3,
H(A,∗) becomes a JB-algebra in a natural way, and hence it will be seen endowed
with the order introduced in §3.1.27. Thus, according to assertions (i) and (ii) in
Lemma 3.1.29, an element h of H(A,∗) is positive if and only if h = k2 for some
k ∈ H(A,∗). Note that, for a ∈ A, we have a∗ • a � 0. Indeed, writing a = h+ ik,
with h,k ∈ H(A,∗), we have a∗ • a = h2 + k2. Actually we have a∗a � 0, but this
will be proved in the appropriate place of Volume 2 of this work. Anyway, according
to Claim 3.1.28, if B is any closed ∗-subalgebra of A, then the order of H(B,∗)
(as the self-adjoint part of the non-commutative JB∗-algebra B) coincides with the
order induced by that of H(A,∗). We note that, if A is in fact a C∗-algebra, then, by
Proposition 2.3.39(i), the order in H(A,∗) just introduced coincides with the (more
usual) order introduced in §1.2.47.

The next fact becomes the unit-free version of Corollary 2.3.67.

Fact 3.4.69 Let A be an alternative C∗-algebra. Then a∗a � 0 for every a ∈ A.

Proof Let a be in A, and let B stand for the closed subalgebra of A generated
by {a,a∗}. Then, since ∗ is continuous, B is ∗-invariant (cf. Proposition 1.2.25) and is
indeed an associative C∗-algebra (cf. Theorem 2.3.61). Therefore the result follows
from Proposition 2.3.39(i).

Lemma 3.4.70 Let A be a non-commutative JB∗-algebra, let a be a positive element
of H(A,∗), let b be in A, let B denote the closed subalgebra of A generated by b, let C
stand for the unital extension of B, and let z be in sp(C,b). Then ‖a−b‖ � d(z,R+

0 ).

Proof We may assume that z 	= 0. On the other hand, by Fact 3.3.4 and Lemma
2.4.17, we may assume that A is commutative. Then, by Corollary 3.4.10, we may
also assume that A is unital. Let 1 and 1 stand for the units of C and A, respectively,
and note that, since B is an associative algebra containing b, and C is the unital
extension of B, and 0 	= z ∈ sp(C,b), we have z ∈ sp(C1+B,b). (Indeed, if 1 ∈ B,
this follows from Proposition 1.1.106; otherwise, the mapping φ : λ1+ x → λ1+ x
from C = C1⊕B to C1+B is a bijective algebra homomorphism with φ(b) = b.)
Now, applying Lemma 2.3.21 and Corollary 2.1.2, we get

z ∈V (C1+B,1,b) =V (A,1,b).

Let f be in D(A,1) such that f (b) = z. Since the restriction of f to H(A,∗) belongs
to D(H(A,∗),1) (by Lemma 2.2.5), and a is a positive element of the JB-algebra
H(A,∗), we have f (a) � 0. It follows that

‖a−b‖ � | f (a−b)|= | f (a)− z| � d(z,R+
0 ).

§3.4.71 Let X and Y be complex vector spaces, each of which is endowed with
a conjugate-linear involution ∗. For T ∈ L(X ,Y ), we consider the element T ∗ ∈
L(X ,Y ) defined by T ∗(x) := (T (x∗))∗, and note that the mapping T → T ∗, from
L(X ,Y ) to itself, becomes a conjugate-linear involution on L(X ,Y ). Moreover, if Z
is another complex vector space endowed with a conjugate-linear involution ∗, then,
for F ∈ L(X ,Y ) and G ∈ L(Y,Z), we have (GF)∗ = G∗F∗. As a consequence, if T is
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a bijective operator in L(X ,Y ), then T ∗ is bijective, and (T ∗)−1 = (T−1)∗, which in
its turn implies that, if T is in L(X), then

sp(L(X),T ∗) = {λ̄ : λ ∈ sp(L(X),T )}. (3.4.28)

If X and Y are in fact complex ∗-algebras, and if T : X → Y is an algebra homo-
morphism, then so is T ∗.

Now, let A and B be non-commutative JB∗-algebras. We denote by Aut(A,B) the
set of all bijective algebra homomorphisms from A to B. For F ∈ Aut(A,B), we
define F• ∈ Aut(B,A) by F• = (F∗)−1. When B = A, we write Aut(A) instead of
Aut(A,A). The set of those F ∈ Aut(A) such that F• = F and sp(L(A),F)⊆R+

0 will
be denoted by Aut+(A). The set of those derivations D of A such that D∗ =−D will
be denoted by Der∗(A). We recall that bijective algebra homomorphisms from A to
B, as well as derivations of A, are automatically continuous (see Corollary 3.4.67 and
Lemma 3.4.26), and that elements of Der∗(A) are in fact hermitian operators on A
(see Lemma 3.4.27).

Lemma 3.4.72 Let A be a non-commutative JB∗-algebra. Then the mapping
D → exp(D) is a homeomorphism from Der∗(A) onto Aut+(A).

Proof By the holomorphic functional calculus, the mapping F → exp(F) is a
homeomorphism from the set of those elements in BL(A) whose spectrum is included
in the complex band {z∈C :−π <ℑ(z)< π} onto the set of those elements in BL(A)
whose spectrum is included in C\R−

0 . On the other hand, as noted above, elements
of Der∗(A) are hermitian operators on A. Let D be in Der∗(A). Then we have

sp(BL(A),D)⊆V (BL(A), IA,D)⊆ R,

and hence, by the spectral mapping theorem, sp(BL(A),exp(D))⊆R+. Since clearly
(exp(D))• = exp(D), we have in fact that exp(D) ∈ Aut+(A). Now let F be in
Aut+(A). Then there exists a unique element D ∈ BL(A) such that sp(BL(A),D)⊆R
and F = exp(D). Moreover, since

exp(D∗) = F∗ = F−1 = exp(−D),

and sp(BL(A),D∗) ⊆ R (by the equality (3.4.28) and Example 1.1.32(d)), we get
D∗ =−D. Since D is a derivation of A (by Theorem 3.4.49), we conclude that D lies
in Der∗(A).

Corollary 3.4.73 Let A be a non-commutative JB∗-algebra, and let F be in
Aut+(A). Then there exists a unique G ∈ Aut+(A) such that G2 = F. (This G will be
denoted by

√
F).

Proof With Lemma 3.4.72 in mind, we have F = exp(D) for a unique D∈Der∗(A).
Then G := exp( 1

2 D) is the unique element of Aut+(A) such that G2 = F .

The next lemma is crucial to state the structure theorem we are after.

Lemma 3.4.74 Let A and B be non-commutative JB∗-algebras, and let F be in
Aut(A,B). Then F•F lies in Aut+(A).
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Proof Let a be in A, and let z be in C. Then, keeping in mind Proposition 3.3.13
and its consequence (that ‖(F•)−1‖= ‖F‖), we have

‖a‖‖F•F(a)− za‖ � ‖a∗ • (F•F(a)− za)‖

= ‖F•(F(a)∗ •F(a)− zF∗(a∗ •a))‖

� ‖F‖−1‖F(a)∗ •F(a)− zF∗(a∗ •a)‖.

Set α := ‖a∗ • a‖, let C denote the closed subalgebra of A generated by a∗ • a,
and let D stand for the unital extension of C. Then, since C is a C∗-algebra (by
Lemma 3.4.1(ii)), and a∗ •a is a positive element of C, we have

α ∈ sp(D,a∗ •a).

Now F∗ is a continuous algebra isomorphism, and hence F∗(C) is the closed sub-
algebra of B generated by F∗(a∗ •a), and αz∈ sp(E,zF∗(a∗ •a)), where E stands for
the unital extension of F∗(D). On the other hand, F(a)∗ •F(a) is a positive element
in B. It follows from Lemma 3.4.70 that

‖F(a)∗ •F(a)− zF∗(a∗ •a)‖ � d(αz,R+
0 ) = αd(z,R+

0 ).

Now by Lemma 3.4.65 we have

‖F(a)∗ •F(a)− zF∗(a∗ •a)‖ � 1
2
‖a‖2d(z,R+

0 ),

and hence

‖F•F(a)− za‖ � 1
2
‖F‖−1‖a‖d(z,R+

0 ).

Since a is arbitrary in A, we see that F•F − zIA is bounded below whenever z is in
C \R+

0 . Therefore, by Proposition 1.1.94(i) and Corollary 1.1.91, the boundary of
sp(BL(A),F•F) relative to C is contained in R+

0 , and hence sp(BL(A),F•F) ⊆ R+
0 .

Since F•F ∈ Aut(A), and (F•F)• = F•F , the proof is complete.

Theorem 3.4.75 Let A and B be non-commutative JB∗-algebras, and let F be in
Aut(A,B). Then F can be written in a unique way as

F = Gexp(D), (3.4.29)

where D is in Der∗(A) and G : A → B is a bijective algebra ∗-homomorphism.

Proof Assume that there is a decomposition such as that in (3.4.29). Then we
have F• = exp(D)G−1, so F•F = exp(2D), and so, by Lemma 3.4.72 and Corol-
lary 3.4.73, F•F lies in Aut+(A) and D must be the unique element in Der∗(A) such
that exp(D) =

√
F•F . Then, obligatorily, G = F exp(−D), and the uniqueness of the

decomposition (3.4.29) follows.
To show the existence of a decomposition such as that in (3.4.29), use Lemma

3.4.74 and Corollary 3.4.73 to find D ∈ Der∗(A) such that exp(D) =
√

F•F , and
define G := F exp(−D). Then the proof is concluded by showing that G∗ = G. But,
since

(G∗)−1G = exp(−D)F•F exp(−D) = exp(−D)exp(2D)exp(−D) = IA
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and

G(G∗)−1 = F exp(−D)exp(−D)F• = F exp(−2D)F• = F(F•F)−1F• = IB,

we get G∗ = G, as desired.

The following relevant corollary is known as the essential uniqueness of the JB∗-
structure in non-commutative JB∗-algebras.

Corollary 3.4.76 If two non-commutative JB∗-algebras are isomorphic, then they
are isometrically ∗-isomorphic.

Proof Combine Theorem 3.4.75 and Proposition 3.4.4.

Since C∗-algebras are non-commutative JB∗-algebras (by Fact 3.3.2), and commu-
tative C∗-algebras have no nonzero derivations (by Corollary 3.4.51), it follows from
Theorem 3.4.75 that bijective algebra homomorphisms between commutative C∗-
algebras are ∗-homomorphisms, and hence are automatically isometric (by Corol-
lary 1.2.14). This was already proved in Proposition 1.2.44 with more elementary
methods.

As the reader may have noticed, there is some redundancy in Corollary 3.4.76
because, by Proposition 3.4.4, bijective algebra ∗-homomorphisms between non-
commutative JB∗-algebras are automatically isometric (in other words, the involu-
tion of a non-commutative JB∗-algebra determines the norm). Now we are going to
show that, conversely, the norm of a non-commutative JB∗-algebra determines the
involution. To this end, we prove the following.

Lemma 3.4.77 Let A be a non-commutative JB∗-algebra, and let D be in Der∗(A).
Then

‖exp(D)‖= e‖D‖.

Proof By Lemma 3.4.27, D lies in H(BL(A), IA). Then, by Lemma 2.3.21 and
Proposition 2.3.22, {‖D‖,−‖D‖} ∩ sp(BL(A),D) 	= /0. Since D∗ = −D, it follows
from the equality (3.4.28) and Example 1.1.32(d) that

{‖D‖,−‖D‖} ⊆ sp(BL(A),D).

Thus e‖D‖ lies in sp(BL(A),exp(D)), and hence

e‖D‖ � ‖exp(D)‖ � e‖D‖.

Proposition 3.4.78 Bijective algebra homomorphisms between non-commutative
JB∗-algebras are isometric (if and) only if they preserve involutions.

Proof Let A and B be non-commutative JB∗-algebras, and let F : A → B be an
isometric surjective algebra homomorphism. Then, writing F = Gexp(D) as in The-
orem 3.4.75, and applying Lemma 3.4.77, we have

1 = ‖F‖= ‖exp(D)‖= e‖D‖,

so D = 0, and so F = G preserves involutions.
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The following corollary includes several by-products of Theorem 3.4.75 and of
the arguments in its proof. Given non-commutative JB∗-algebras A and B, we denote
by Aut∗(A,B) the set of all bijective algebra ∗-homomorphisms from A to B.

Corollary 3.4.79 Let A and B be non-commutative JB∗-algebras. We have:

(i) If F is in Aut(A), and if F• = F, then sp(BL(A),F)⊆ R.

(ii) If F is in Aut(A,B), then ‖F•F‖= ‖F‖2.

(iii) If F is in Aut(A,B), then ‖F•‖= ‖F−1‖= ‖F‖.

(iv) If F is in Aut(A) with F•F = FF• (equivalently, with F∗F = FF∗), then
r(F) = ‖F‖.

(v) An algebra automorphism F of A is a ∗-automorphism (i.e. F• = F−1) if and
only if F•F = FF• and sp(BL(A),F)⊆ SC.

(vi) If D is in Der∗(A), then ‖exp(D)− IA‖= ‖exp(D)‖−1.

(vii) If F is in Aut(A,B), and if F = Gexp(D), with G and D as in Theorem 3.4.75,
then ‖F −G‖= d(F,Aut∗(A,B)) = ‖F‖−1.

(viii) Aut(A,B) is closed in BL(A,B).

Proof Let F be in Aut(A) with F• = F . Then, by Lemma 3.4.74, we have
sp(BL(A),F2)⊆ R+

0 , and hence sp(BL(A),F)⊆ R. This proves assertion (i).
Let F be in Aut(A,B). By Theorem 3.4.75, F can be written as F =Gexp(D),

where D is in Der∗(A) and G : A → B is a bijective algebra ∗-homomorphism. Then
we have F•F = exp(2D), and hence, invoking Lemma 3.4.77 twice, and keeping in
mind that G is a surjective linear isometry, we get

‖F•F‖= ‖exp(2D)‖= e2‖D‖ = (e‖D‖)2 = ‖exp(D)‖2 = ‖Gexp(D)‖2 = ‖F‖2.

This proves assertion (ii).
Since the involutions of A and B are isometric (cf. Proposition 3.3.13), asser-

tion (iii) follows from assertion (ii).
Keeping in mind assertion (ii), assertion (iv) is proved by mimicking the proof of

Lemma 1.2.12.
Since ∗-automorphisms of A are surjective linear isometries, the ‘only if’ part

of assertion (v) becomes straightforward. The ‘if’ part follows by applying asser-
tion (iv) to both F and F−1, and then by invoking Proposition 3.4.78.

Let D be in Der∗(A). Then we have

‖exp(D)‖−1 � ‖exp(D)− IA‖=
∥∥∥∥∥ ∞

∑
n=1

Dn

n!

∥∥∥∥∥
�

∞

∑
n=1

‖Dn‖
n!

= e‖D‖ −1 = ‖exp(D)‖−1,

where, for the last equality, we have applied Lemma 3.4.77. This proves asser-
tion (vi).

Let F be in Aut(A,B). Then, by Proposition 3.4.4, for H ∈ Aut∗(A,B) we have
‖H‖= 1, so ‖F −H‖ � ‖F‖−‖H‖= ‖F‖−1, and so

d(F,Aut∗(A,B)) � ‖F‖−1.
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Now write F = Gexp(D), with G ∈ Aut∗(A,B) and D ∈ Der∗(A). Then, by asser-
tion (vi), we have

‖F −G‖= ‖G(exp(D)− IA)‖= ‖exp(D)− IA‖

= ‖exp(D)‖−1 = ‖Gexp(D)‖−1 = ‖F‖−1.

This proves assertion (vii).
Let Fn be a sequence in Aut(A,B) converging to some F ∈ BL(A,B). Then, clearly,

F is an algebra homomorphism from A to B. On the other hand, by assertion (iii),
we have ‖F−1

n ‖ = ‖Fn‖ for every n, so the sequence F−1
n is bounded, and so, since

‖F−1
n −F−1

m ‖ � ‖F−1
n ‖‖F−1

m ‖‖Fn −Fm‖ for all n,m, we see that F−1
n is a Cauchy

sequence in BL(B,A). By taking L := limn→∞ F−1
n , we have LF = IA and FL = IB,

which shows that F is bijective. This concludes the proof of assertion (viii).

For the formulation and proof of the next corollary, recall that, if A is a C∗-algebra,
then by Facts 3.3.2 and 3.3.4, A is a non-commutative JB∗-algebra, and Asym is a
JB∗-algebra.

Corollary 3.4.80 Let A and B be C∗-algebras. We have:

(i) If F : A → B is a bijective Jordan homomorphism, then F can be written in a
unique way as F = Gexp(D), where D is in Der∗(A) and G : A → B is a bijective
Jordan-∗-homomorphism.

(ii) Aut(Asym,Bsym)\Aut(A,B) is closed in BL(A,B).

Proof Assertion (i) follows from Theorem 3.4.75 and Lemma 2.2.23.
Now note that, if Aut(A,B)= /0, then, by Corollary 3.4.79(viii), assertion (ii) holds.

Therefore, to conclude the proof of assertion (ii), we may assume that Aut(A,B) 	= /0.
In this case, choosing H ∈ Aut(A,B), the mapping F → HF becomes a homeo-
morphism from BL(A) onto BL(A,B) taking Aut(Asym) onto Aut(Asym,Bsym), and
taking Aut(A) onto Aut(A,B). Hence it is enough to show that Aut(Asym)\Aut(A) is
closed in BL(A). But, by Corollary 3.4.54, Aut(Asym)\Aut(A) is relatively closed in
Aut(Asym). Since Aut(Asym) is closed in BL(A) (by Corollary 3.4.79(viii)), we derive
that Aut(Asym)\Aut(A) is closed in BL(A), as desired.

3.4.5 Historical notes and comments

Propositions 3.4.1, 3.4.4, 3.4.6, and 3.4.13, Corollary 3.4.3, and Theorem 3.4.8 are
due to Wright [641] in the unital case. Wright’s proof of Proposition 3.4.13 is dif-
ferent from ours. The actual unit-free version of Corollary 3.4.3 was first proved
by Youngson [655], by applying the main result in Behncke’s paper [82] (see Prop-
osition 4.5.24 below) and a generalization of Bonsall’s facts [112, 114], obtained
in [653], which was later refined in [48] (see Corollary 4.5.32 below). Corollary 3.4.3
is explicitly stated in Proposition 3.8.2 of the Hanche-Olsen and Størmer book [738],
with a different proof from that of Youngson. The core of the proof in [738] is
formulated in our Proposition 3.4.2. Youngson’s paternity of Corollary 3.4.3 affects
the paternity of the actual unit-free versions of Propositions 3.4.4, 3.4.6, and 3.4.13,
and Theorem 3.4.8. A relevant consequence of Proposition 3.4.6 is the following.
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Corollary 3.4.81 Let A be a unital non-commutative JB∗-algebra. Then A satisfies
the von Neumann inequality.

Proof Since powers in A and in Asym coincide (by Lemma 2.4.17), and Asym is a
JB∗-algebra (by Fact 3.3.4), we may assume that A is commutative. Let a be in BA.
Then, by Proposition 3.4.6, the closed subalgebra of A generated by {1,a,a∗} is a
subalgebra of Bsym, for some unital C∗-algebra B. Since powers in B and in Bsym

coincide, it follows from Theorem 2.4.32 that, for every complex polynomial P, we
have ‖P(a)‖ � max{|P(z)| : z ∈ BC}.

Wright’s ideas in [641] underlie the proof of Theorem 3.4.8 given here, although
the concluding application of the non-associative Vidav–Palmer theorem (The-
orem 3.3.11) seems to us to be new. Corollary 3.4.7 and Proposition 3.4.17 are due
to Wright and Youngson [642], whereas Corollary 3.4.10 is due to Youngson [655].
The Russo–Dye-type theorem for non-commutative JB∗-algebras underlying Corol-
lary 3.4.7, as well as some refinements given in [574], will be discussed later (see
Subsection 4.2.3).

Historically, the fundamental formula UUa(b) =UaUbUa for Jordan algebras, stated
in Proposition 3.4.15, was derived from the so-called Macdonald’s theorem [410].
This theorem is one of the deepest results in the theory of Jordan algebras. In order
to formulate it, we recall that, in §§2.8.17 and 2.8.26, we introduced non-associative
words with characters on an arbitrary set of indeterminates, the (global) degree of
such a word, the notion of a non-associative polynomial on a finite set of indeter-
minates, and the meaning of p(a1, . . . ,an) where p is a non-associative polynomial
in n indeterminates, and a1, . . . ,an are elements of a given algebra. Later, in §3.4.41,
we introduced the degree of a non-associative word in one of the indeterminates.
Now, we invite the reader to imagine the notion of ‘degree of a non-associative
polynomial in one of the indeterminates’. We also recall that special Jordan algebras
were introduced immediately before Theorem 3.1.55. According to the formulation
in [822, Corollary 3.3.2], Macdonald’s theorem reads as follows.

Theorem 3.4.82 Let p be a non-associative polynomial in three indeterminates,
of degree � 1 in one of them. If p(a1,a2,a3) = 0 for all a1,a2,a3 in every special
Jordan algebra, then p(a1,a2,a3) = 0 for all a1,a2,a3 in every Jordan algebra.

We note that, when the degree of p is zero in one of the indeterminates, the
conclusion in Theorem 3.4.82 follows from the Shirshov–Cohn Theorem 3.1.55.

Remark 3.4.83 A complete proof of the fundamental formula for Jordan alge-
bras, which avoids Macdonald’s theorem, will be given in our work. The proof
begins with the linearizations of the Jordan identity pointed out in the proof of
Proposition 2.4.13, continues with Lemmas 3.1.23, 3.3.35, and 4.1.33, and Propos-
itions 4.1.34 and 4.2.16, concluding finally in §4.2.66.

Until Corollary 3.4.18, JB∗-algebras have parasitized JB-algebras. Now, Cor-
ollary 3.4.18 becomes the first sample showing how the relation JB-algebra to
JB∗-algebra is in fact symbiotic. Since the inequality ‖Ua,c(b)‖ � ‖a‖‖b‖‖c‖ is
straightforward for elements a,b,c in any JC-algebra, the theory of JB-algebras
developed in [738] reduces the proof of Corollary 3.4.18 to the case of the
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exceptional JB-algebra H3(O) in Example 3.1.56. However, we do not know of
a direct proof in this case.

Proposition 3.4.23 could be new. Via Fact 3.4.9, the commutative version
of Proposition 3.4.23 is equivalent to Corollary 3.4.24, which in its turn, via
Proposition 3.1.3, is equivalent to a result of Topping [813, Proposition 1].

Proposition 3.4.25 was first proved by Wright and Youngson [643], with an argu-
ment different from that given here. Actually, the core of the proof in [643] consisted
of Corollary 3.4.3 and Proposition 3.1.13. Lemmas 3.4.26 and 3.4.27, and Prop-
osition 3.4.28 are due to Youngson [654]. Keeping in mind that non-commutative
JB∗-algebras are JB∗-triples in a natural way (see Theorem 4.1.45 below), the
result of Barton and Friedman [60], asserting the automatic continuity of derivations
of JB∗-triples, generalizes Lemma 3.4.26. Proposition 3.4.31 is the particularization
to alternative C∗-algebras of a more general result for non-commutative JB∗-
algebras proved in [126, 365] (see Theorem 4.2.28 below). Corollary 3.4.32 is
taken from [366].

Antitheorem 3.4.34 was first proved by Braun, Kaup, and Upmeier [126, Sec-
tion 5] with an argument quite different from ours. In fact, with the notation in our
proof, they showed that there is no surjective linear isometry on (the Banach space
of) A taking 1 to u. But, since the JC∗-algebras A and B coincide as Banach spaces,
and 1 and u are the units of A and B, respectively, this is equivalent to the fact proved
here that A and B cannot be ∗-isomorphic (by Proposition 3.4.25).

Subsection 3.4.3 is chaired by Theorem 3.4.49. This theorem is the first deep
result in the theory of associative normed algebras which remains true in the
non-associative setting without needing any change in its proof. It appears as
Lemma III.9.9 of Dixmier’s book [723], and, according to [723, p. 315], it is
essentially due to J.-P. Serre. The clever ideas of Dixmier–Serre are included in
Fact 3.4.36, and Lemmas 3.4.37, 3.4.45, and 3.4.47. In fact, the original results
were the case n = 2 of ours, but our generalizations are obvious, and some of
them (namely the actual formulations of Fact 3.4.36 and Lemma 3.4.37) become
essential for the proof of Theorem 3.4.42. Results from Proposition 3.4.38 to
Corollary 3.4.44 are essentially due to Aparicio and Rodrı́guez [23], although
some of them (including Theorem 3.4.42) are presented here in a refined way.
The information about the spectrum of derivations and automorphisms given by
Theorem 3.4.42 and Corollary 3.4.44 could seem rather poor. However, the complete
normed complex algebras in those results are not assumed to be associative, and the
unique additional assumption, that they are not nilpotent, is really smooth. For
better algebras, the information about the spectrum of automorphisms is much
more precise. This is the case of the following classical theorem of Kamowitz and
Scheinberg [371].

Theorem 3.4.84 Let A be a complete normed semisimple associative and commu-
tative complex algebra, and let Φ be an algebra automorphism of A. Then either
Φn = IA for some n ∈ N, or sp(BL(A),Φ) contains the whole unit sphere SC
of C.

The actual formulation of Lemma 3.4.47 appears in the paper of Castellón and
Cuenca [162], who also emphasize the case n = 3 in the following.
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Corollary 3.4.85 Let A be a complete normed complex 3-algebra, and let Φ be a
continuous automorphism of A such that

sp(BL(A),Φ)⊆ {z ∈ C : ℜ(z)> 0}.

Then log(Φ) is a derivation of A.

A classical associative forerunner of Theorem 3.4.49 is due to Zeller-Meier [660]
(see also [696, Theorem 18.15]), who proved that if A is a complete normed
associative complex algebra, and if Φ is a continuous algebra automorphism of
A such that sp(BL(A),Φ) ⊆ {z ∈ C : ℜ(z) > 0}, then log(Φ) is a derivation of A.
We note that even the particularization of Theorem 3.4.49 to associative algebras
becomes a better result, and that Zeller-Meier’s proof needs associativity. In relation
to Proposition 3.4.50, we note that the unique assumption on the normed algebra A
(that there exists M > 0 such that ‖a‖2 � M‖a2‖ for every a ∈ A) is automatically
fulfilled when A is a nearly absolute-valued algebra. Therefore, as a by-product, we
get the following.

Corollary 3.4.86 Nearly absolute-valued complex algebras have no nonzero con-
tinuous derivation.

In particular, as pointed out in [533, Proposition 3.7], absolute-valued complex
algebras have no nonzero continuous derivation.

Corollary 3.4.51 is due to Sakai [806]. A relevant generalization, due to Johnson
[354] (see also [696, Theorem 18.21]), assures that complete normed semisimple
associative and commutative complex algebras have no nonzero derivation. One of
the ingredients in Johnson’s proof is the celebrated Singer–Wermer theorem [582]
asserting that the range of a continuous derivation of a complete normed associat-
ive and commutative complex algebra is contained in the radical. The question of
whether the continuity can be removed in the Singer–Wermer theorem (known as
the Singer–Wermer conjecture) was affirmatively answered by Thomas [611] (see
also [715, Theorem 5.2.48]). A more modest generalization of the Singer–Wermer
theorem will be proved later in Proposition 3.6.51.

Corollary 3.4.53 could be new. Corollary 3.4.54 is due to Sinclair [577], who,
being unaware of Theorem 3.4.49, shows in a previous lemma how Zeller-Meier’s
proof can be adapted to cover the case of continuous Jordan automorphisms of
complete normed associative complex algebras.

Results from Proposition 3.4.55 to Corollary 3.4.60 are taken from [514]. The
associative forerunner of Corollary 3.4.60 is originally due to Crabb, Duncan, and
McGregor [183].

§3.4.87 Corollary 3.4.64 is originally due to Balachandran and Rema [54] with the
following clever proof:

Let ‖·‖ and ||| · ||| be two complete algebra norms on a power-associative algebra
A, and let a be in A. Choose a maximal associative subalgebra B of A containing
a. Then B is both ‖ ·‖- and ||| · |||-closed in A. Therefore ‖ ·‖ and ||| · ||| are complete
algebra norms on the associative algebra B, and the well-known associative result
applies (see Corollary 1.1.109) to get that the spectral radius of a is the same for
both ‖ · ‖ and ||| · |||.
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The refinement of Corollary 3.4.64, given by Proposition 3.4.63, was pointed out
first in [520].

Results from Lemma 3.4.65 to Corollary 3.4.76 are due to Payá, Pérez, and
Rodrı́guez [481]. Some arguments from [806, p. 162] (respectively, [512]), invoked
by the authors of [481] in the proof of Proposition 3.4.66 (respectively, Lemma 3.4.74
and Theorem 3.4.75), have been incorporated. The associative forerunners of
Theorem 3.4.75 and Corollary 3.4.76 are originally due to Okayasu [466] and
Gardner [280], respectively. Both Okayasu’s and Gardner’s results are included in
Sakai’s book [806, Corollary 4.1.21 and Theorem 4.1.20].

Lemma 3.4.77 and Corollary 3.4.79 are new, although they are adaptations of
previous arguments in the study of algebra automorphisms and Jordan automor-
phisms of C∗-algebras, done in [798] and [512], respectively. Actually, the whole of
Subsection 3.4.4 is tributary to the new proof of Okayasu’s theorem given in [798].
The associative forerunner of assertion (ii) in Corollary 3.4.79 is proved in [798] as
follows:

Let A and B be C∗-algebras, and let F be in Aut(A,B). Then, for a ∈ A we have

‖F(a)‖2 = ‖F(a)∗F(a)‖= r(F(a)∗F(a)) = r(F−1(F(a)∗F(a)))

� ‖F−1(F(a)∗F(a))‖= ‖F−1(F(a)∗)a‖ � ‖F−1(F(a)∗)‖‖a‖

= ‖(F•F(a))∗‖‖a‖= ‖F•F(a)‖‖a‖ � ‖F•F‖‖a‖2,

and hence ‖F‖2 � ‖F•F‖. That this inequality is in fact an equality, is easily
derived.

The simple proof above does not work in the actual setting of Corollary 3.4.79,
where A and B are non-commutative JB∗-algebras, so that the proof of the equality
‖F•F‖ = ‖F‖2 given there is actually new. The associative forerunner of asser-
tion (viii) in Corollary 3.4.79 is originally due to Sakai [806, Proposition 4.1.13].

Proposition 3.4.78 (that isometric surjective algebra homomorphisms between
non-commutative JB∗-algebras preserve involutions) is folklore in the theory,
although the proof given here is new. Usually, it is verified by passing to biduals via
Lemma 3.1.17, by applying that biduals of non-commutative JB∗-algebras are unital
non-commutative JB∗-algebras (a result which will be proved in Theorem 3.5.34
below), and then by invoking Corollary 3.3.17(a).

Corollary 3.4.80 is taken from [512].

3.5 The Gelfand–Naimark axiom ‖a∗a‖=‖a∗‖‖a‖, and the
non-unital non-associative Gelfand–Naimark theorem

Introduction In Theorem 3.5.5 we will give a precise description of quadratic
non-commutative JB∗-algebras. This becomes an auxiliary tool to prove in The-
orem 3.5.15 that, if A is a complete normed unital complex algebra endowed with a
conjugate-linear vector space involution ∗ such that 1∗ = 1 and ‖a∗a‖= ‖a∗‖‖a‖ for
every a∈A, and if dim(A)� 3, then A is an alternative C∗-algebra. We show that, if A
is a nonzero non-commutative JB∗-algebra, then A has an approximate unit bounded
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by 1 (Proposition 3.5.23), and the bidual of A is a unital non-commutative JB∗-
algebra in a natural manner (Theorem 3.5.34). These results are applied to prove (in
Theorem 3.5.49) that Theorem 3.5.15 reviewed above remains true if the assumption
that A is unital with 1∗ = 1 is relaxed to that of the existence of an approximate unit
bounded by 1 and consisting of ∗-invariant elements. As a consequence, we derive
the so-called non-unital non-associative Gelfand–Naimark theorem, which asserts
that alternative C∗-algebras are precisely those non-associative C∗-algebras having
an approximate unit bounded by 1 (Theorem 3.5.53). Moreover, we exhibit abun-
dant examples of non-associative C∗-algebras which are not alternative. The section
concludes by proving in Theorem 3.5.66 that complete normed non-commutative
Jordan complex ∗-algebras A satisfying ‖a∗a‖ = ‖a∗‖‖a‖ for every a ∈ A are in
fact alternative C∗-algebras. This generalizes Vowden’s celebrated theorem [629]
asserting that complete normed associative complex ∗-algebras A satisfying ‖a∗a‖=
‖a∗‖‖a‖ for every a ∈ A are C∗-algebras.

3.5.1 Quadratic non-commutative JB∗-algebras

Let X ,Y be vector spaces over K, and let Z be a subspace of Y . Then X ⊗Z imbeds
naturally into X ⊗Y . Moreover, if X and Y are in fact normed spaces, it is straightfor-
ward to realize that the natural embedding X ⊗π Z ↪→ X ⊗π Y becomes contractive,
i.e. for α ∈ X ⊗Z, we have

‖α‖X⊗πY � ‖α‖X⊗πZ. (3.5.1)

In the case that Z is the range of a contractive linear projection on Y , a better result
holds. Indeed, we have the following.

Lemma 3.5.1 Let X ,Y be normed spaces over K, and let Z be the range of a
contractive linear projection on Y . Then the natural embedding

X ⊗π Z ↪→ X ⊗π Y

is an isometry.

Proof Let P be a contractive linear projection on Y with P(Y ) = Z, and note that
the operator IX ⊗P is a linear projection on X ⊗Y which becomes the identity on
X ⊗Z. Now, let α be in X ⊗Z, and write

α =
n

∑
i=1

xi ⊗ yi (3.5.2)

for suitable n ∈ N, xi ∈ X , and yi ∈ Y . Then, applying IX ⊗P to both members of the
equality (3.5.2), we obtain α = ∑n

i=1 xi ⊗P(yi), and hence

‖α‖X⊗πZ �
n

∑
i=1

‖xi‖‖P(yi)‖ �
n

∑
i=1

‖xi‖‖yi‖.

By considering the different ways of writing α in (3.5.2), we get

‖α‖X⊗πZ � ‖α‖X⊗πY ,

which, together with (3.5.1), concludes the proof.
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Proposition 3.5.2 Let H be a real pre-Hilbert space, and let ‖ · ‖π stand for the
projective tensor norm on C⊗H = H ⊕ iH. Then we have

‖x+ iy‖2
π = ‖x‖2 +‖y‖2 +2

√
‖x‖2‖y‖2 − (x|y)2 (3.5.3)

for all x,y ∈ H.

Proof Let x,y be in H. If x,y are linearly dependent, then the equality (3.5.3)
becomes clear. Assume that x,y are linearly independent. Then, keeping in mind
the orthogonal projection theorem and Lemma 3.5.1, there is no loss of generality in
assuming that H = lin{x,y}.

As a first step, we assume additionally that ‖x‖ = ‖y‖ = 1 and (x|y) = 0. Then
by considering the product on H determined by x2 = x, xy = yx = y, and y2 = −x,
H becomes an isometric copy of C, regarded as a real normed algebra. Since this
algebra is a smooth-normed algebra, Lemma 2.6.7 applies, so that C⊗π H is a V -
algebra whose natural involution ∗ is determined by x∗ = x and y∗ = −y. Then, we
straightforwardly realize that the mapping

λx+μy −→ (λ + iμ ,λ − iμ) (λ ,μ ∈ C),

is an algebra ∗-isomorphism from C⊗π H onto the C∗-algebra C2. Since (C⊗π H,∗)
is also a C∗-algebra (by Theorem 2.3.32), it follows that the above isomorphism is
an isometry, i.e. we have

‖λx+μy‖π = max{|λ + iμ |, |λ − iμ |} (3.5.4)

for all λ ,μ ∈ C.
Now, remove the additional assumptions on x,y done in the above paragraph.

Then, setting

x0 :=
x

‖x‖ and y0 :=
y− (x0|y)x0

‖y− (x0|y)x0‖
,

x0,y0 satisfy the conditions required for x,y in the above paragraph. Therefore, taking

λ0 := ‖x‖+ i(x0|y) and μ0 := i‖y− (x0|y)x0‖,

and applying (3.5.4) with (x0,y0,λ0,μ0) instead of (x,y,λ ,μ), we get (3.5.3).

Lemma 3.5.3 Let A be a unital algebra over a field extension F of K, and assume
that A (regarded as an algebra over K) is a normed algebra. Then we have:

(i) F= C if K= C, and F= R or C if K= R.

(ii) Up to an equivalent renorming, A becomes a normed algebra over F.

Proof Assertion (i) is an immediate consequence of the Gelfand–Mazur theorem.
Assertion (ii) becomes obvious in the case that F=K. Assume that F 	=K. Then,

by assertion (i), we have that F = C and K = R. Note that, for θ ∈ R and a ∈ A,
we have

‖eiθa‖= ‖cos(θ)a+ sin(θ)(i1)a‖ � k‖a‖,
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where k := 1+ ‖i1‖. Therefore, by defining |||a ||| := sup{‖eiθa‖ : θ ∈ R} for every
a ∈ A, we realize that ||| · ||| becomes a complex vector space norm on A satisfying
‖ · ‖ � ||| · ||| � k‖ · ‖. Moreover, for a,b ∈ A we have

|||ab |||= sup{‖eiθab‖ : θ ∈ R} � sup{‖eiθa‖ : θ ∈ R}‖b‖ � |||a ||||||b |||.

It follows that ||| · ||| is a complex algebra norm on A equivalent to the given norm
‖ · ‖.

Let A=A (V,×,(·, ·)) be the quadratic algebra over K associated to a vector space
V over K endowed with an anticommutative product × and a bilinear form (·, ·) (see
§2.5.14). Assume that V is endowed with a norm ‖ · ‖ making (·, ·) and × continu-
ous. Then A becomes a normed algebra under a suitable norm whose restriction
to V is equivalent to ‖ · ‖, and such that the direct sum A = K1 ⊕V becomes
topological. Indeed, clearly the product of A becomes continuous for the norm
α1+ x → |α|+‖x‖, and §1.1.3 applies.

The following result provides us with a relevant converse to the above comment.

Proposition 3.5.4 Let A be a quadratic algebra over a field extension F of K, and
assume that A (regarded as an algebra over K) is a normed algebra. Then we have:

(i) F = C if K = C, and F = R or C if K = R. (Hence, according to Propos-
ition 2.5.13, we can write A =A (V,×,(·, ·)), where V is a vector space over F,
(·, ·) : V ×V → F is an F-bilinear form, and × is an F-bilinear anticommutative
product on V .)

(ii) Up to an equivalent renorming, A becomes a normed algebra over F.

(iii) The direct sum A = F1⊕V is topological.

(iv) The bilinear form (·, ·) and the anticommutative product × are continuous on
V ×V .

Proof Assertions (i) and (ii) follow from Lemma 3.5.3, and allow us to assume that
F=K. Then, to prove (iii) it is enough to show that V is closed in A. To this end, we
note that, for x,y ∈V , we have

xy =−(x,y)1+ x× y, (3.5.5)

and that we may assume that V 	= 0. Let xn be a sequence in V converging to
a=α1+x with α ∈K and x∈V . Then, taking a nonzero element y∈V , and invoking
(3.5.5), we have

− (xn,y)+(y,xn)

2
1 = xn • y → (α1+ x)• y =− (x,y)+(y,x)

2
1+αy.

It follows that αy = 0, so α = 0, and so a lies in V . Now that assertion (iii) has
been proved, it is enough to invoke (3.5.5) again to conclude that (·, ·) and × are
continuous on V ×V , i.e. assertion (iv) holds.

Now we are going to determine those non-commutative JB∗-algebras which are
quadratic. Indeed, they can be constructed from H-algebras (introduced immediately
before Corollary 2.6.13) as follows.
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Theorem 3.5.5 Let E be an H-algebra, and let A (E) stand for the flexible quad-
ratic algebra of E (see Definition 2.6.4). Then the complexification of A (E), with
involution ∗ defined by

[(α,x)+ i(β ,y)]∗ := (α,−x)− i(β ,−y) (3.5.6)

for all (α,x),(β ,y) ∈ A (E) = R⊕E, and norm given by

‖b+ ic‖2 := ‖b‖2 +‖c‖2 +2
√

‖b‖2‖c‖2 − (b|c)2 (3.5.7)

for all b,c ∈ A (E), becomes a quadratic non-commutative JB∗-algebra.
Conversely, every quadratic non-commutative JB∗-algebra comes from a suitable

H-algebra E in the way described in the above paragraph.

Proof Let E be an H-algebra. Since A (E) is quadratic over R, the complexifica-
tion of A (E) is quadratic over C (an easy consequence of Proposition 2.5.13). On
the other hand, by Proposition 2.6.5, A (E) is a complete smooth-normed algebra.
Therefore, by Lemma 2.6.7, its projective normed complexification, C⊗π A (E), is
a complete V -algebra whose natural involution ∗ is given by (3.5.6). Since A (E) is
a Hilbert space, it is enough to invoke Proposition 3.5.2 to derive that the norm of
C⊗π A (E) must be given by (3.5.7). Moreover, since C⊗π A (E) is a complete V -
algebra, it follows from Theorem 3.3.11 that (C⊗π A (E),∗) is a non-commutative
JB∗-algebra. This concludes the proof of the first paragraph of the theorem.

Now, let A be any quadratic non-commutative JB∗-algebra. According to Propos-
ition 2.5.13 and §2.5.14, write A = A (V,×,(·, ·)), and note that

(i) A = C1⊕V ;

(ii) for x,y ∈V , we have xy =−(x,y)1+ x× y;

(iii) the form (·, ·) is symmetric (since A is flexible, and Proposition 2.5.18(ii)
applies);

(iv) V is ∗-invariant (a consequence of the equality (2.5.10) in Proposition 2.5.13).

By Proposition 3.5.4, V becomes a closed subspace of A. Set M :=V ∩ iH(A,∗) and
B := R1+M. Then B is a closed real subspace of A. Moreover, for x,y ∈ M we have
that [x,y] ∈ M and x•y ∈ (C1)∪H(A,∗), which implies that x•y ∈R1 and xy ∈ B. It
follows that B is a real subalgebra of A. More precisely, B is a norm-unital complete
normed real algebra. Moreover, keeping in mind the straightforward equality
A=B⊕ iB, we realize that, algebraically regarded, A is a copy of the complexification
of B. Now observe that every state of B (relative to 1) is the restriction to B of the real
part of a state of A. Since states of A are real-valued on H(A,∗) (by Lemma 2.2.5),
it follows that states of B vanish on M, so D(B,1) reduces to a singleton, and so
B is a complete smooth-normed real algebra. By Theorem 2.6.9, there exists an
H-algebra E such that B equals the flexible quadratic algebra, A (E), of E.
Let C stand for the non-commutative JB∗-algebra built from E according to
the first paragraph in the theorem. Then it is routine to verify that the natural
identification of A=A (E)⊕ iA (E) with C becomes an algebra ∗-isomorphism. By
Proposition 3.4.4, this identification is an isometry. This concludes the proof of the
second paragraph of the theorem.
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We recall that the algebra of complex octonions C(C) was introduced immediately
before Proposition 2.6.8, where it was proved that C(C) becomes an alternative C∗-
algebra for suitable norm and involution. We also recall that, by Corollary 3.4.76, the
C∗-algebra structure of an alternative C∗-algebra is essentially unique.

Corollary 3.5.6 The quadratic alternative C∗-algebras are C,C2,M2(C) and
C(C).

Proof Let A be a quadratic alternative C∗-algebra. By Theorem 3.5.5, there exists
an H-algebra E such that A equals the complexification of the flexible quadratic
algebra A (E), with involution and norm given by (3.5.6) and (3.5.7), respectively.
Moreover, since A is alternative, so is A (E), and hence, by Corollary 2.6.13
and Theorem 2.6.21, we get that A (E) = R,C,H, or O. Then, easily, we have
A=C,C2,M2(C), or C(C).

In the case of (commutative) JB∗-algebras, Theorem 3.5.5 attains a simpler form.
Indeed, in this case the parameter H-algebra E in the theorem must have zero
product. With this idea in mind, we derive the next corollary, and leave the details of
proof to the reader. We recall that a conjugation on a complex Hilbert space H is an
isometric conjugate-linear involutive operator on H.

Corollary 3.5.7 Let H be a complex Hilbert space, let σ be a conjugation
on H, let (·|·) stand for the inner product on C1 ⊕ H regarded as the �2-sum
of C and H, and, for a = λ1+ x ∈ C1⊕H, set a� := λ̄1−σ(x). Then the vector
space C1⊕H, with product, involution ∗, and norm ‖ · ‖ defined by

(λ1+ x)(μ1+ y) := [λμ+(x|σ(y))]1+λy+μx,

(λ1+ x)∗ := λ̄1+σ(x),
and

‖a‖2 := (a|a)+
√

(a|a)2 −|(a|a�)|2,

respectively, becomes a quadratic JB∗-algebra.
Conversely, every quadratic JB∗-algebra comes from a suitable complex Hilbert

space H, with conjugation σ , in the way described in the above paragraph.

3.5.2 The axiom ‖a∗a‖=‖a∗‖‖a‖ on unital algebras

We begin this subsection by realizing that there exist unusual involutions � on the
C∗-algebra C2 satisfying

1� = 1 and ‖a�a‖= ‖a�‖‖a‖ for every a in A. (3.5.8)

Example 3.5.8 Let A denote the associative and commutative algebra C2 with its
unique structure of C∗-algebra given by

‖(λ ,μ)‖ := max{|λ |, |μ |} and (λ ,μ)∗ := (λ̄ , μ̄).

Let f be any linear form on A such that f (1) = 0 and f (a∗) =− f (a) for every a ∈ A,
and define a mapping � from A to A by

a� := a∗+ f (a)1.
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Then � is a conjugate-linear vector space involution on A satisfying (3.5.8). Indeed,
all the assertions are clear except possibly the last one in (3.5.8). We can easily see
that there is α in R such that for every a = (λ ,μ) in A we have f (λ ,μ) = iα(λ −μ).
Thus, the involution � implemented by f is determined by

(λ ,μ)� = (λ + iα(λ −μ),μ+ iα(λ −μ)),

and therefore, we can write the desired equality ‖a�a‖= ‖a�‖‖a‖ in the form

max{|λ + iα(λ −μ)| |λ |, |μ+ iα(λ −μ)| |μ |}

= max{|λ + iα(λ −μ)|, |μ+ iα(λ −μ)|}max{|λ |, |μ |}.

To verify this equality, note that for all λ and μ in C we have

|λ + iα(λ −μ)|2 −|λ |2 = |μ+ iα(λ −μ)|2 −|μ |2,

and therefore |λ | � |μ| if and only if |λ + iα(λ −μ)| � |μ+ iα(λ −μ)|.

It will be crucial for our development that things behave in a totally different way
for the C∗-algebra C3. This is shown in the following lemma.

Lemma 3.5.9 Let f be a linear form on the C∗-algebra A := C3 such that
f (1) = 0 and f (a∗) = − f (a) for every a in A, define a mapping � from A to A by
a� := a∗+ f (a)1, and assume the equality ‖a�a‖ = ‖a�‖‖a‖ holds for every a in A.
Then f = 0.

Proof There exist α and β in R such that for every a = (λ ,μ ,ν) in A we have

f (λ ,μ ,ν) = iα(λ −μ)+ iβ (λ −ν).

Taking in particular (λ ,μ,ν) = (iσρ,−ρ ,ρ + 1), where ρ is an arbitrary positive
number and σ denotes the sign of α , we have

f (λ ,μ ,ν) =−σ(α+β )ρ+ i[ρ(α−β )−β ],
so

|λ + f (λ ,μ,ν)|2 −|ν+ f (λ ,μ ,ν)|2 = 4|α|ρ2 +2(|α|−1)ρ−1.

Therefore, if α were not zero, then for ρ large enough we would have

|λ + f (λ ,μ ,ν)|> |ν+ f (λ ,μ,ν)|. (3.5.9)

Noticing that |λ |= |μ |< |ν|, and that the condition ‖a�a‖= ‖a�‖‖a‖ now reads as

max{|λ + f (λ ,μ,ν)| |λ |, |μ+ f (λ ,μ ,ν)| |μ |, |ν+ f (λ ,μ ,ν)| |ν|}

= max{|λ + f (λ ,μ ,ν)|, |μ+ f (λ ,μ ,ν)|, |ν+ f (λ ,μ,ν)|}max{|λ |, |μ |, |ν|},

the inequality (3.5.9) leads to a contradiction. Hence α = 0. Since a change of the
variables μ and ν in f (λ ,μ ,ν) corresponds to an interchange of the roles of α and
β , then β = 0 also.

Lemma 3.5.10 Let A be an associative and commutative unital C∗-algebra having
an idempotent different from 0 and 1, let f be a linear form on A, define � on A
by a� := a∗+ f (a)1, and assume that the equality ‖a�a‖ = ‖a�‖‖a‖ holds for every
a ∈ A. Then f is continuous.
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Proof We may assume A = B×C, where B and C are associative and commutative
unital C∗-algebras. Then there are linear forms g and h on B and C, respectively,
such that for every (b,c) in A we have f ((b,c)) = g(b)+ h(c), and the assumption
‖a�a‖= ‖a�‖‖a‖ for every a ∈ A reads as

max{‖b∗[b+(g(b)+h(c))1]‖,‖c∗[c+(g(b)+h(c))1]‖}

= max{‖b+(g(b)+h(c))1‖,‖c+(g(b)+h(c))1‖}max{‖b‖,‖c‖},

(3.5.10)

for all b ∈ B and c ∈ C, where we have denoted by 1 the unit elements of B and C.
Assume that g is not continuous. Then, for fixed c in C and z in C, there is a null
sequence {bn} in B such that g(bn) = z−h(c) for every n in N. Setting b := bn and
taking limits in the equality (3.5.10), we obtain

‖c∗(c+ z1)‖= max{|z|,‖c+ z1‖}‖c‖.

Taking z =−1 and c = 1, we have 0 = 1, a contradiction. Therefore g is continuous.
Analogously, h is also continuous, hence so is f .

Let E be a topological space. We recall that E is said to be totally disconnected
if the unique connected subsets of E are the singletons. It is easily realized that,
if E is totally disconnected, compact, and Hausdorff, and if x,y are distinct points
of E, then there exists a clopen subset F of E such that x ∈ F and y ∈ E \ F .
Therefore, the characteristic functions of clopen subsets of a totally disconnected
compact Hausdorff topological space separate the points.

Proposition 3.5.11 Let E be a compact Hausdorff topological space. Then CC(E)
is the closed linear hull of its idempotents if and only if E is totally disconnected.

Proof It is clear that the idempotents of CC(E) are the characteristic functions of
the clopen subsets of E. We denote by B the linear hull of the idempotents in CC(E).

Assume that B is dense in CC(E). Since CC(E) separates the points of E, so does
B. It follows that if x and y are distinct points of E, then there exists an idempotent
χ in CC(E) such that χ(x) 	= χ(y). In others words, there exists a clopen subset F
of E such that x ∈ F and y ∈ E \F . Therefore, any subset of E of cardinality � 2 is
disconnected. Thus E is totally disconnected.

In order to prove the converse, assume that E is totally disconnected. Since B is a
∗-subalgebra of CC(E), with 1 ∈ B, and B separates the points of E, it is enough to
invoke the Stone–Weierstrass theorem (Theorem 1.2.10) to conclude that B is dense
in CC(E).

Lemma 3.5.12 Let K be a compact subset of R with at least three points, and let f
be a linear form on the C∗-algebra CC(K) such that f (1) = 0 and f (a∗) = − f (a)
for every a in CC(K). Define a mapping � from CC(K) to CC(K) by a� := a∗+ f (a)1,
and assume that the equality ‖a�a‖ = ‖a�‖‖a‖ holds for every a in CC(K). Then
f (x) = 0, where x denotes the inclusion of K in C.

Proof Suppose first that K is not totally disconnected, so that K contains a non-
trivial closed interval [α,β ]. We may also assume that K ⊆ [−1,1], and then we can
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consider the element y of CC(K) given by y := x+ i(1−x2)
1
2 . Writing Δ := y(K), for

w in C we have

max{|z+w+ f (y)| |z+w| : z ∈ Δ}

= ‖(y+w1)�(y+w1)‖= ‖(y+w1)�‖‖y+w1‖

= max{|z+w+ f (y)| : z ∈ Δ}max{|z+w| : z ∈ Δ}.

This equality implies that the mappings z → |z+w+ f (y)| and z → |z+w| from Δ
into R attain their respective maxima at a common point of Δ. Now consider the arc
Γ := {y(t) : α < t < β}, and the open angular region

Ω :=

{
λ ∈ C\{0} :

λ
|λ | ∈ Γ

}
,

and note that, for λ in Ω, the mapping z → |z+ λ | from Δ into R only attains its
maximum at the point z := λ

|λ | . It follows that w+ f (y)
|w+ f (y)| =

w
|w| for every w in the

non-empty open set Ω∩ (Ω− f (y)), which implies that f (y) = 0, since otherwise
Ω∩ (Ω− f (y)) would be contained in the line R f (y). Also f (y∗) = − f (y) = 0, so
f (x)=0 because 2x = y+ y∗.

Now suppose that K is totally disconnected, so that, by Lemma 3.5.10, f is con-
tinuous, and therefore, since f (1) = 0 and CC(K) is the closed linear hull of its
idempotents (by Proposition 3.5.11), it is enough to prove f (p) = 0 for every non-
trivial idempotent p in CC(K). Changing p by 1− p, if necessary, we may assume
that the clopen subset {t ∈ K : p(t) = 0} is not connected. Then there are nontrivial
idempotents q and r in CC(K) satisfying pq = pr = qr = 0 and p+q+ r = 1. In this
way the linear hull of {p,q,r} is a �-invariant C∗-subalgebra of CC(K) isomorphic
to C3. From Lemma 3.5.9 we obtain f (p) = 0, as desired.

In the context of the above lemma we actually have f = 0. This is a direct con-
sequence of the following result.

Lemma 3.5.13 Let A be a unital non-commutative JB∗-algebra such that there
exists a nonzero linear form f on A satisfying

f (1) = 0, f (a∗) =− f (a), and ‖a�a‖= ‖a�‖‖a‖ for every a in A,

where a� := a∗+ f (a)1. Then A is (isometrically) isomorphic to the C∗-algebra C2.

Proof Consider the subspace T of H(A,∗) given by

T := {h ∈ H(A,∗) : f (h) = 0}.

By Proposition 3.4.1(ii), the closed subalgebra A(h) of A generated by 1 and any
element h of H(A,∗) is a unital commutative C∗-algebra, hence there is a compact
subset K of R such that A(h) can be seen as CC(K) and h can be seen as the inclusion
of K in C. Moreover A(h) is �-invariant. It follows from Lemma 3.5.12 that, if h is
actually in H(A,∗)\T , then K has at most two points, so there are real numbers αi

(i= 1,2,3) satisfying ∑ |αi|= 1 and α1h2+α2h+α31= 0. Since H(A,∗)\T is dense
in H(A,∗) (T is a proper subspace of H(A,∗)), and the set

{h ∈ H(A,∗) : ∃α1,α2,α3 ∈ R with ∑ |αi|= 1 and α1h2 +α2h+α31 = 0}
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is closed in H(A,∗), we have that H(A,∗) with product h • k := 1
2 (hk + kh) is a

quadratic real algebra, and hence A is a (complex) quadratic algebra.
If f was discontinuous, then we would have ‖a∗a‖ = ‖a∗‖‖a‖ for every a in

the dense subset ker( f ), hence, since ∗ is isometric on A (by Proposition 3.3.13),
we would actually have ‖a∗a‖= ‖a‖2 for every a in A. By Theorem 3.2.5, A would
be an alternative algebra. Since, by Corollary 3.5.6, A would be finite-dimensional, f
would be a discontinuous linear form on a finite-dimensional normed space. There-
fore f is continuous.

Since a quadratic non-commutative JB∗-algebra of dimension 2 is (isometrically)
isomorphic to the C∗-algebra C2, to conclude the proof it is enough to show that the
assumption dim(A) � 3 leads to a contradiction.

By Theorem 3.5.5, there exists an H-algebra E such that A equals the complexifi-
cation of the flexible quadratic algebra A (E) with involution ∗ given by (3.5.6) and
norm given by (3.5.7). Since clearly 0 	= f (E) ⊆ R, by the continuity of f and the
Riesz–Fréchet representation theorem, there exists a nonzero element u in E such
that f (x) = (x|u) for every x in E. Since we assume dim(A)� 3, we can take a norm-
one element x in E with (x|u) = 0. Now, writing a := u+ iρx (where ρ is an arbitrary
positive number) and ε := ‖u‖, we have:

a� = ε21−u+ iρx,

a�a =
(
ε2 +ρ2)1+ ε2u+ iρ

(
ε2x+2x∧u

)
,

‖a‖= ε+ρ ,

‖a�‖= ε
(
ε2 +1

) 1
2 +ρ ,

‖a�a‖=
[(
ε2 +ρ2)2

+ ε6
] 1

2
+ρ
(
ε4 +4‖x∧u‖2) 1

2 .

Since ‖a�a‖= ‖a�‖‖a‖ and ‖x∧u‖ � ‖x‖‖u‖= ε , we obtain

(ε+ρ)
[
ε
(
ε2 +1

) 1
2 +ρ

]
�
[(
ε2 +ρ2)2

+ ε6
] 1

2
+ ερ(ε2 +4)

1
2 ,

or equivalently

(ε+ρ)
[
ε
(
ε2 +1

) 1
2 +ρ

]
− ερ

(
ε2 +4

) 1
2 �

[(
ε2 +ρ2)2

+ ε6
] 1

2
.

Taking ρ large enough to make positive the left-hand side of the above inequality,
we may rationalize the variable ρ to obtain

2ε
[

1+
(
ε2 +1

) 1
2 −
(
ε2 +4

) 1
2

]
ρ3 +Mρ2 +Nρ � 0,

where M and N are suitable functions of ε . Dividing by ρ3 and letting ρ → +∞, it
follows that

1+
(
ε2 +1

) 1
2 −
(
ε2 +4

) 1
2 � 0.

Finally, from this last inequality we derive ε2 � 0, a contradiction.
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Lemma 3.5.14 Let A be a complete normed unital complex algebra endowed with
a conjugate-linear vector space involution � satisfying 1� = 1 and ‖a�a‖= ‖a�‖‖a‖
for every a in A. Then A is norm-unital, and the inclusion H(A, �) ⊆ H(A,1)+ iR1
holds.

Proof That A is norm-unital is straightforward. Let h be in H(A, �), and let r be a
positive real number. Then, since (1+ irh)� = 1− irh, we have

‖1− irh‖‖1+ irh‖=
∥∥1+ r2h2

∥∥� 1+ r2
∥∥h2
∥∥ ,

and hence

‖1− irh‖‖1+ irh‖−1
r

� r
∥∥h2
∥∥ .

Writing

‖1− irh‖‖1+ irh‖−1
r

= ‖1− irh‖‖1+ irh‖−1
r

+
‖1− irh‖−1

r
,

letting r → 0+, and applying Proposition 2.1.5, we deduce that

maxℜ(V (A,1, ih))−minℜ(V (A,1, ih)) � 0.

Therefore there exists a real number λh such that ℜ( f (ih)) = λh for every f ∈
D(A,1), and hence h+ iλh1 ∈ H(A,1). Now, since h is an arbitrary �-invariant elem-
ent of A, we derive that H(A, �)⊆ H(A,1)+ iR1.

Theorem 3.5.15 Let A be a complete normed unital complex algebra endowed with
a conjugate-linear vector space involution � satisfying 1� = 1 and

‖a�a‖= ‖a�‖‖a‖

for every a in A. Then A is an alternative C∗-algebra for its own norm and a suitable
involution ∗. Moreover, except possibly in the case that (A,∗) is the C∗-algebra C2,
we have � = ∗. In the exceptional case that (A,∗) = C2, the involutions � satisfy-
ing the above requirements are exactly the mappings of the form a → a∗ + f (a)1,
where f is any linear form on C2 such that f (1) = 0 and f (a∗) = − f (a) for every
a in C2.

Proof By Lemma 3.5.14, A is norm-unital and, for a in A with a� = a, we have
a = h+ ir1 for suitable h in H(A,1) and r in R. It follows that A is a V -algebra and
that, for each element a ∈ A, there exists a unique complex number f (a) such that

a� = a∗+ f (a)1, (3.5.11)

where ∗ stands for the natural involution of the V -algebra A. From the fact that both
� and ∗ are conjugate-linear vector space involutions on A fixing the unit element 1,
it follows that the mapping f : a → f (a) is a linear form on A satisfying f (1) = 0 and
f (a∗) =− f (a) for every a in A. Moreover, by Theorem 3.3.11, (A,‖ · ‖,∗) is a non-
commutative JB∗-algebra. Now the result follows from (3.5.11), Lemma 3.5.13,
Example 3.5.8, and Theorem 3.2.5 (recalling that, by Proposition 3.3.13, ∗ is
isometric).
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Corollary 3.5.16 Let A be a complete normed unital complex algebra endowed
with a conjugate-linear vector space involution ∗ satisfying

(a2)∗ = (a∗)2 and ‖a∗a‖= ‖a∗‖‖a‖ for every a ∈ A.

Then A is an alternative C∗-algebra.

Although Corollary 3.5.16 is a straightforward consequence of Theorem 3.5.15,
we feel it appropriate to add the following.

§3.5.17 Autonomous proof of Corollary 3.5.16 With the notation in §3.4.71, the
assumption (a∗)2 = (a2)∗ for every a ∈ A (equivalent to the fact that ∗ is an algebra
involution on Asym) is also equivalent to (Ta)

∗ = Ta∗ for every a ∈ A, where Ta is
defined by Ta(b) := a•b. It follows from the equality (3.4.28) and Example 1.1.32(d)
that

sp(BL(A),Ta∗) = sp(BL(A),Ta).

As a consequence, if h ∈ H(A,1), then, by Lemmas 2.1.10 and 2.3.21, we have

sp(Th∗) = sp(Th)⊆ R.

Let a be in H(A,∗). By Lemma 3.5.14, a = h+ ir1 with h ∈ H(A,1) and r ∈R. Then
Ta = Th + irIA and Ta = Ta∗ = Th∗ − irIA. Hence

sp(Ta)⊆ (R+ ir)∩ (R− ir),

which implies that r = 0. In this way, we have shown that H(A,∗)⊆ H(A,1). There-
fore, A is a V -algebra whose natural involution is the given one ∗. Then, by Corol-
lary 3.3.16, ∗ is isometric, so the equality ‖a∗a‖ = ‖a‖2 holds for every a ∈ A, and
so, by Theorem 3.2.5, A is an alternative C∗-algebra, as required.

Corollary 3.5.18 Let A be a complete normed unital associative complex ∗-algebra
satisfying ‖a∗a‖= ‖a∗‖‖a‖ for every a in A. Then A is a C∗-algebra.

Another straightforward consequence of Theorem 3.5.15 is the following.

Corollary 3.5.19 Let A be a complete normed associative unital complex algebra
with a conjugate-linear vector space involution ∗ satisfying

1∗ = 1 and ‖a∗a‖= ‖a∗‖‖a‖ for every a in A.

If dim(A) � 3, then A is a C∗-algebra.

Remark 3.5.20 If one is only interested in the associative specialization of The-
orem 3.5.15, given by Corollary 3.5.19, then all non-associative references used in
the proof can be avoided. For instance, Theorem 3.2.5 becomes unnecessary, whereas
the non-associative Vidav–Palmer theorem (Theorem 3.3.11) can be replaced with
its earlier associative version (Theorem 2.3.32). Moreover, since C,C2, and M2(C)
are the unique quadratic associative C∗-algebras, the determination of quadratic non-
commutative JB∗-algebras in Theorem 3.5.5 can be replaced by the easy computation
of the norm on the C∗-algebra M2(C) given by Exercise 1.2.15.
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3.5.3 An interlude: the bidual and the spacial numerical index of a
non-commutative JB∗-algebra

By an approximate unit in a normed algebra A we mean a net {aλ}λ∈Λ in A such that

limλ aλa = limλ aaλ = a for every a ∈ A.

Lemma 3.5.21 Let A be a normed flexible algebra over K such that A equals the
linear hull of the set {b2 : b ∈ A}. Then each approximate unit in Asym remains an
approximate unit in A.

Proof Let a,b be in A. By Lemma 2.4.15 we have [a,b2] = 2b• [a,b], and then, by
Lemma 2.4.14, the equality [a,b2] = 2[a • b,b] holds. Therefore, if {aλ}λ∈Λ is an
approximate unit in Asym, then we have limλ [aλ ,b

2] = 0 for every b ∈ A, and hence
limλ [aλ ,a] = 0 for every a∈A because A equals the linear hull of the set {b2 : b∈A}.
Now we have

lim
λ

aλa = lim
λ

(
aλ •a+

1
2
[aλ ,a]

)
= a

and

lim
λ

aaλ = lim
λ

(
aλ •a− 1

2
[aλ ,a]

)
= a.

Now we invoke Hanche-Olsen and Størmer [738] once more to prove the
following.

Lemma 3.5.22 Let A be a JB-algebra. Then A has an approximate unit aλ bounded
by 1 and such that a2

λ is also an approximate unit in A.

Proof Let Λ stand for the set of all positive elements in the open unit ball of A.
Then, according to [738, Proposition 3.5.4] and its proof, Λ is a directed set for the
natural order of A (cf. §3.1.27), and the net {λ}λ∈Λ is an approximate unit for A.
Now, for λ ∈ Λ, set aλ :=

√
λ (cf. Lemma 3.1.29(ii)), and note that λ �

√
λ ∈ Λ. It

follows that {aλ}λ∈Λ is an approximate unit for A.

We recall that, by Corollary 3.4.3, the self-adjoint part of a non-commutative
JB∗-algebra becomes a JB-algebra in a natural way.

Proposition 3.5.23 Let A be a non-commutative JB∗-algebra. Then each approxi-
mate unit in the JB-algebra H(A,∗) remains an approximate unit in A. Therefore A
has an approximate unit aλ bounded by 1, consisting of ∗-invariant elements and
such that a2

λ is also an approximate unit in A.

Proof The second conclusion follows from the former because of Lemma 3.5.22.
Now note that, by Propositions 3.4.1(ii) and 1.2.48, A equals the linear hull of the
set {b2 : b ∈ A}. Since the first conclusion in the present proposition is clear if A is
commutative, it follows from Fact 3.3.4 and Lemma 3.5.21 that it remains true in the
general case.

Recall that the bidual of any normed algebra is a normed algebra for the Arens
product.
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Lemma 3.5.24 Let A be an Arens regular normed algebra over K. We have:

(i) If A is commutative, then so is A′′.

(ii) If A has a bounded approximate unit, then A′′ has a unit.

Proof Assume that A is commutative, so that with the notation in Definition 2.2.14,
we have mr = m, where m stands for the product of A. Therefore, involving also the
notation in §2.2.11, the Arens regularity of A gives mtr = mrt = mt , showing that A′′

is commutative.
Now, assume that A has a bounded approximate unit aλ . Let 1 be a cluster point

to aλ in A′′ relative to the w∗-topology, and let a be in A. Since A is Arens regular,
the product of A′′ is separately w∗-continuous (by Lemma 2.3.51), and hence 1a and
a1 are cluster points in A′′ of aλa and aaλ , respectively, for the w∗-topology. Since
both aλa and aaλ converge to a in the norm topology, we deduce that 1a = a1 = a.
Applying the separate w∗-continuity of the product of A′′ again, we realize that 1 is
a unit for A′′.

For later reference, we state here the following straightforward consequence of
Theorem 2.2.15 and Lemma 3.5.24(i).

Corollary 3.5.25 Let A be a commutative C∗-algebra. Then A′′, endowed with
the Arens product and the bitranspose of the involution of A, becomes a unital
commutative C∗-algebra.

The proof of the next proposition is quite similar to that of Theorem 2.2.15 given
in §2.3.53.

Proposition 3.5.26 Let A be a nonzero JB∗-algebra. Then A′′, endowed with
the Arens product and the bitranspose of the involution of A, becomes a unital
JB∗-algebra. As a consequence, A is Arens regular.

Proof Assume at first that A is unital. Then, by Lemma 2.2.5, A is a V -algebra.
Therefore, by Proposition 2.3.48, and Theorem 3.3.11, A′′, endowed with the
Arens product and the bitranspose of the involution of A, becomes a unital non-
commutative JB∗-algebra, and A is Arens regular. Moreover, by Lemma 3.5.24(i), A′′

is commutative.
To conclude the proof, we must show that the same conclusions hold if A is

not unital. In this case, we consider the JB∗-algebra unital extension A1 of A (see
Corollary 3.4.12), so that, by the above paragraph, the desired conclusion holds
with A1 instead of A. Therefore, since A is a ∗-subalgebra of A1 , Lemmas 2.3.50
and 2.3.52 apply to get that the bipolar A◦◦ of A in (A1)

′′ is a ∗-subalgebra of
the JB∗-algebra (A1)

′′, that the natural Banach space identification Φ : A◦◦ → A′′

becomes a bijective algebra ∗-homomorphism, and that A is Arens regular. Now,
since Φ is an isometry becoming the identity on A, it turns out that A′′ is clearly a
JB∗-algebra in the natural way. Finally, since A has a bounded approximate unit (by
Proposition 3.5.23), it follows from Lemma 3.5.24(ii) that A′′ is unital.

§3.5.27 Let X be a normed space over K. We denote by P(X) the normed space
over K of all continuous bilinear mappings from X ×X to X . Given u ∈ SX , U(X ,u)
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will stand for the set of those elements f ∈ BP(X) such that f (x,u) = f (u,x) = x for
every x ∈ X .

Lemma 3.5.28 Let (X ,u) be a numerical-range space over K. Then U(X ,u) is a
(possibly empty) face of BP(X).

Proof Let 0 � λ � 1, and let f ,g be in BP(X) such that

λ f +(1−λ )g ∈U(X ,u).

Consider the bounded linear operators S and T on X defined by S(x) := f (x,u)
and T (x) := g(x,u) for every x ∈ X . Then S and T lie in the closed unit ball of
BL(X) and we have λS+(1−λ )T = IX . Since IX is an extreme point of BBL(X) (by
Corollary 2.1.13 and Lemma 2.1.25), we deduce that f (x,u) = g(x,u) = x for every
x ∈ X . A similar argument shows that f (u,x) = g(u,x) = x for every x ∈ X .

Definition 3.5.29 By a JB∗-admissible algebra we mean a normed complex algebra
A such that Asym is a JB∗-algebra for the norm of A and some involution ∗. We note
that we do not assume ∗ to be an algebra involution on A, and that, by Fact 3.3.4,
non-commutative JB∗-algebras are JB∗-admissible algebras.

Lemma 3.5.30 Let A be a nonzero JB∗-admissible algebra. Then A′′, endowed
with the Arens product and the bitranspose of the involution of A, becomes a unital
non-commutative JB∗-algebra. As a consequence, A is Arens regular.

Proof Set A = (X ,m), where X and m stand for the Banach space of A and the
product of A, respectively. Then we have:

Asym = (X , 1
2(m+mr)), A′′ = (X ′′,mt), and (Asym)′′ = (X ′′, 1

2 (m
t +mrt)).

Since Asym is a JB∗-algebra, Proposition 3.5.26 applies, so that (Asym)′′, endowed
with its Arens product 1

2 (m
t + mrt) and the bitranspose of the involution of A,

becomes a unital JB∗-algebra. Let 1 stand for the unit of (Asym)′′. We clearly have
1
2 (m

t +mrt) ∈ U(X ′′,1). Therefore, by Lemma 3.5.28, mt ∈ U(X ′′,1), i.e. A′′ is a
unital normed algebra with the same unit 1. Now, since (Asym)′′ is a V -algebra (by
Lemma 2.2.5) whose natural involution is (the bitranspose of the given involution) ∗,
and 1 is a common unit for both (Asym)′′ and A′′, we see that A′′ is a V -algebra.
Therefore, by Theorem 3.3.11, A′′ is a unital non-commutative JB∗-algebra for the
involution ∗. Finally, the Arens regularity of A follows from Corollary 2.3.47.

A first straightforward consequence of Lemma 3.5.30 is the following.

Proposition 3.5.31 JB∗-admissible algebras are nothing other than non-
commutative JB∗-algebras.

§3.5.32 By an identity over K we mean a nonzero non-associative polynomial
over K on a finite set of indeterminates (cf. §2.8.26). Given an algebra A over K,
we say that A satisfies the identity p = p(x1, . . . ,xn) if the equality p(a1, . . . ,an) = 0
holds for all a1, . . . ,an ∈ A. An identity is said to be multilinear if there exists n ∈ N
such that it can be written as a linear combination of n-linear non-associative words
on the indeterminates x1, . . . ,xn (cf. §3.4.41).
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Lemma 3.5.33 Let A be an Arens regular normed algebra over K. Then A′′ satisfies
all multilinear identities satisfied by A.

Proof Note that, by Lemma 2.3.51, the product of A′′ is separately w∗-continuous.
Then we realize that, given a multilinear identity p = p(x1, . . . ,xn) over K, the
mapping (a1, . . . ,an) → p(a1, . . . ,an) from A′′ × · · · × A′′ to A′′ is separately
w∗-continuous. Indeed, this can be verified by writing p as a linear combination
of n-linear non-associative words, and then arguing by induction on the degree
of such words. Therefore, if A satisfies the identity p, it is enough to apply the
w∗-density of A in A′′ to conclude that A′′ also satisfies p.

The following theorem follows from Lemmas 3.5.30 and 3.5.33.

Theorem 3.5.34 Let A be a nonzero non-commutative JB∗-algebra. Then A′′,
endowed with the Arens product and the bitranspose of the involution of A, becomes
a unital non-commutative JB∗-algebra satisfying all multilinear identities satisfied
by A.

Since the alternative identities are 3-linearizable, it is enough to invoke Fact 3.3.2
to get the following.

Corollary 3.5.35 Let A be a nonzero alternative C∗-algebra. Then A′′, endowed
with the Arens product and the bitranspose of the involution of A, becomes a unital
alternative C∗-algebra.

It follows from Theorem 3.5.34 (respectively, Corollary 3.5.35) that every non-
commutative JB∗-algebra (respectively, every alternative C∗-algebra) can be enlarged
to a unital non-commutative JB∗-algebra (respectively, to a unital alternative C∗-
algebra). Replacing Corollary 3.4.10 with the fact just pointed out, and arguing as in
the proof of Corollary 3.4.12, we get the following.

Corollary 3.5.36 Let A be a nonzero non-commutative JB∗-algebra (respectively,
an alternative C∗-algebra). Then there are a unique involution and a unique norm
on the unital extension A1 of A extending the involution and the norm of A and
converting A1 into a non-commutative JB∗-algebra (respectively, an alternative
C∗-algebra).

Let A be an algebra over K. If A is unital, we set A1 := A. Otherwise, A1 will stand
for the unital extension of A. For z ∈ A1, we denote by Tz the linear operator on A
defined by Tz(x) := xz for every x ∈ A, and remark that Tz is continuous when A is
normed. Now, in the case that A is a non-commutative JB∗-algebra, the JB∗-norm on
A1 given by Corollary 3.5.36 can be computed as follows.

Lemma 3.5.37 Let A be a nonzero non-commutative JB∗-algebra. Then the unique
JB∗-norm on A1 which extends that of A is given by ‖z‖= ‖Tz‖ for every z ∈ A1.

Proof By Theorem 3.5.34, we can see A1 as the norm-closed ∗-subalgebra of A′′

consisting of those elements z in A′′ which can be written in the form λ1+ x for
some λ ∈ C and x ∈ A, where 1 stands for the unit of A′′. In this way A1 is a non-
commutative JB∗-algebra containing A isometrically so that, to conclude the proof,
it is enough to show that the equality ‖z‖ = ‖Tz‖ holds for every z ∈ A1 (here ‖z‖
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means the norm of z as an element of A′′). Let z be in A1. Then the operator
(Tz)

′′ : A′′ → A′′ and the operator of right multiplication by z on A′′, say RA′′
z ,

coincide on A and are weak∗-continuous (the second one, by Lemma 2.2.12(i)).
It follows from the weak∗-density of A in A′′ that (Tz)

′′ = RA′′
z , and hence ‖Tz‖ =

‖(Tz)
′′‖ = ‖RA′′

z ‖. Since ‖z‖ = ‖RA′′
z ‖, because A′′ is a norm-unital normed algebra,

we obtain ‖z‖= ‖Tz‖, as required.

We recall that, given a non-empty set I and a normed space X over K, B(I,X)

stands for the normed space over K of all bounded functions from I to X . On the
other hand, we note that, given a normed algebra A over K, the normed space P(A)
(cf. §3.5.27) has a natural distinguished element, namely the product of A, which
will be denoted by pA. In this case we always have ‖pA‖ � 1, and ‖pA‖ = 1 if A is
actually a nonzero non-commutative JB∗-algebra.

Theorem 3.5.38 Let A be a nonzero alternative C∗-algebra. Then n(P(A),pA) is
equal to 1 or 1

2 depending on whether or not A is commutative.

Proof Recall that A′′ is a unital alternative C∗-algebra in a natural way (cf. Corol-
lary 3.5.35), and consider the chain of linear mappings

A1
F1−→BL(A)

F2−→P(A)
F3−→P(A′′)

F4−→B(H(A′′,∗)×H(A′′,∗),A′′),

where F1(z) := Tz for every z ∈ A1, F2(T )(x,y) := T (xy) for every T ∈ BL(A) and all
x,y ∈ A, F3( f ) := f ′′′ (the third Arens adjoint of f ) for every f ∈ P(A), and

F4(g)(h,k) := exp(−ih)[g(exp(ih),exp(ik))exp(−ik)]

for every g ∈ P(A′′) and all h,k ∈ H(A′′,∗). Then F1, F2, and F3 are isometries
(by Lemma 3.5.37, Proposition 3.5.23, and §2.2.11, respectively). But F4 is also an
isometry. Indeed, keep in mind Corollary 3.4.7 together with the fact that left and
right multiplications by unitary elements on A′′ are isometries (by Lemma 3.4.30
and Proposition 3.4.31). On the other hand, the equalities F1(1) = IA, F2(IA) = pA,
F3(pA) = pA′′ are clear, whereas the one F4(pA′′) = 1̂ (the mapping constantly equal
to 1 on H(A′′,∗)×H(A′′,∗)) follows from Artin’s theorem (cf. Theorem 2.3.61).
Now let δ denote either 1 or 1

2 depending on whether or not A is commutative.
Since A1 and B(H(A′′,∗)×H(A′′,∗),A′′) are unital alternative C∗-algebras (by Cor-
ollary 3.5.36), and they are commutative if and only if so is A (by Theorem 3.5.34),
it follows from Corollary 3.4.60 that

δ = n(A1,1) � n(BL(A), IA) � n(P(A), pA) � n(P(A′′), pA′′)

� n[B(H(A′′,∗)×H(A′′,∗),A′′), 1̂] = δ .

Looking at the above proof, and invoking Corollaries 2.1.2(ii) and 2.9.51, The-
orem 2.1.17(i), and Fact 2.9.1, we get the following.

Corollary 3.5.39 Let A be a nonzero alternative C∗-algebra. We have:

(i) N(A) is equal to 1 or 1
2 depending on whether or not A is commutative.

(ii) pA is both a geometrically unitary element of P(A) and a point of norm-norm
upper semicontinuity of the duality mapping of P(A).
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(iii) Numerical ranges in (P(A), pA) can be computed in terms of numerical ranges
in (A′′,1). Indeed, for every f ∈ P(A) we have

V (P(A), pA, f ) = co
[⋃

(h,k)∈H(A′′,∗)×H(A′′,∗)V (A′′,1,Φ f (h,k))
]
,

where Φ f (h,k) := exp(−ih)[ f ′′′(exp(ih),exp(ik))exp(−ik)], and f ′′′ stands for
the third Arens adjoint of f .

If the alternative algebra A in Theorem 3.5.38 is unital, then the passing to the
bidual in the proof is unnecessary. Therefore assertion (iii) in Corollary 3.5.39 is
also true with A instead of A′′ and f instead of f ′′′.

Remark 3.5.40 Let X be a Banach space with a complete predual X∗. Then, since

P(X)≡ BL(X⊗̂πX ,X)≡ (X⊗̂πX⊗̂πX∗)
′,

the complete projective tensor product X⊗̂πX⊗̂πX∗ becomes a natural predual for
P(X), the duality being determined by 〈 f ,x⊗ y⊗ x∗〉= f (x,y)(x∗) for all f ∈ P(X),
x,y ∈ X , and x∗ ∈ X∗. Now let A be an alternative W ∗-algebra (i.e. an alternative
C∗-algebra with a complete predual). It follows from Corollary 3.5.39(ii) and The-
orems 2.9.28 and 2.9.17 that pA is a w∗-unitary element of P(A), and that the equality
V (P(A), pA, f ) = { f (g) : g ∈ Dw∗

(P(A), pA)}− holds for every f ∈ P(A).

§3.5.41 Thinking about Theorem 3.5.38, one could suspect that, if A is a nonzero
non-commutative JB∗-algebra, then n(P(A), pA) is equal to 1 or 1

2 depending
on whether or not A is associative and commutative, which would imply (by
Theorem 2.1.17(i)) that pA is a geometrically unitary element of P(A). As a matter
of fact, this suspicion is very far from being right. Indeed, it is very easy to provide a
non-commutative JB∗-algebra A whose product pA is not an extreme point of BP(A).
(We note that, if this is the case, then, by Lemma 2.1.25, pA cannot be a vertex of the
closed unit ball of P(A), much less a geometrically unitary element of P(A), and so
n(P(A), pA) = 0.) For instance, if B is a C∗-algebra which fails to be commutative, if
λ is a real number with 0 < λ < 1, and if we replace the product xy of B by the one

(x,y)→ λxy+(1−λ )yx,

then we obtain a non-commutative JB∗-algebra (say A) whose product is not an
extreme point of BP(A). With λ = 1/2 in the above construction we even obtain a
(commutative) JB∗-algebra with such a pathology.

For the moment, we do not know of any non-commutative JB∗-algebras A whose
products are geometrically unitary elements of P(A) other than alternative C∗-
algebras. Therefore we raise the following.

Problem 3.5.42 Let A be a non-commutative JB∗-algebra such that the product of
A is a geometrically unitary element of P(A). Is A alternative?

Concerning the above problem, the only remarkable fact that we know is that, if
we relax the condition that pA is a geometrically unitary element of P(A) to the one
that pA is an extreme point of P(A), then the answer is negative. This is shown in the
following.
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Example 3.5.43 Let A be the (commutative) JB∗-algebra whose Banach space is
the ∗-invariant subspace of the C∗-algebra M2(C) given by{(

α β
γ α

)
: α,β ,γ ∈ C

}
,

and whose product is the one • defined by

x• y := 1
2 (xy+ yx) for all x,y in A.

Since A is commutative and fails to be associative, it follows that A is not alternative.
We are going to prove that pA is an extreme point of BP(A). To this end we take f ,g in
BP(A) and 0 < λ < 1 such that λ f +(1−λ )g = pA, and we proceed to show that f =
pA. If 1 denotes the unit of A then, by Lemma 3.5.28, we have f (x,1) = f (1,x) = x
for every x in A. In this way 1 is a unit for the normed complex algebras B and Bsym,
where B consists of the normed space of A endowed with the product f . Since A
is a V -algebra (by Lemma 2.2.5) and Vidav’s requirement involves only the Banach
space and the unit, B and Bsym are also V -algebras whose natural involutions coincide
with the JB∗-involution of A. Since A and Bsym are commutative V -algebras, and the
mapping F : x → x from A to Bsym is a surjective linear isometry preserving the units,
Corollary 2.3.19 applies, so that F is an algebra isomorphism, and hence Bsym = A.
Now, by Theorem 2.4.11 and Fact 3.3.4, B is a non-commutative JB∗-algebra and,
since A is quadratic and squares in B and Bsym coincide, B is also quadratic. Then,
by Theorem 3.5.5, B is the complexification of the flexible quadratic algebra A (E)
for a suitable H-algebra E. Since A is three-dimensional over C, E must be two-
dimensional over R. Let {u,v} be a basis of E. Then we have (u|u∧v)= (v|u∧v)= 0,
so u∧ v = 0 and hence ∧ is identically zero on E. Therefore, B is commutative, so
that B = Bsym. Since we know that Bsym = A, we obtain B = A. This means f = pA

as required.

Let A stand for the JB∗-algebra in the above example. We do not know if pA is
actually a vertex of P(A). If this were the case, then, by the finite dimensionality
of P(A), pA would be a geometrically unitary element of P(A), and the answer to
Problem 3.5.42 would be negative.

Despite what we mentioned in §3.5.41, some technical aspects in the proof of
Theorem 3.5.38 can be used to get the following generalization of Corollary 3.5.39(i)
to the setting of non-commutative JB∗-algebras.

Proposition 3.5.44 Let A be a nonzero non-commutative JB∗-algebra. Then N(A)
is equal to 1 or 1

2 depending on whether or not A is associative and commutative.

Proof Recall that A′′ is a unital non-commutative JB∗-algebra in a natural way (cf.
Theorem 3.5.34), and consider the chain of linear mappings

A1
G1−→BL(A)

G2−→BL(A′′)
G3−→B(H(A′′,∗),A′′),

where G1(z) := Tz for every z ∈ A1, G2(T ) := T ′′ for every T ∈ BL(A), and

G3(S)(h) := exp(−iLh)S(exp(ih)) for all S ∈ BL(A′′) and h ∈ H(A′′,∗).
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Then G1 and G2 are isometries (the former by Lemma 3.5.37). Moreover, by Lem-
mas 2.1.10 and 2.2.5 and Corollaries 2.1.9(iii) and 3.4.7, G3 is also an isometry. On
the other hand, the equalities G1(1) = IA, G2(IA) = IA′′ are clear, whereas the one
G3(IA′′) = 1̂ (the mapping constantly equal to 1 on H(A′′,∗)) follows by noticing
that exp(ih) = exp(iLh)(1) for every h ∈ H(A′′,∗). Now let δ denote either 1 or
1
2 depending on whether or not A is associative and commutative. Since A1 and
B(H(A′′,∗),A′′) are unital non-commutative JB∗-algebras (by Corollary 3.5.36), and
they are associative and commutative if and only if so is A (by Theorem 3.5.34 again),
it follows from Theorem 3.4.59 that

δ = n(A1,1) � n(BL(A), IA) � n(BL(A′′), IA′′) � n[B(H(A′′,∗),A′′), 1̂] = δ .

Looking at the above proof, and invoking Corollaries 2.1.2(ii) and 2.9.51, we get
the following.

Corollary 3.5.45 Let A be a nonzero non-commutative JB∗-algebra. Then numer-
ical ranges in (BL(A), IA) can be computed in terms of numerical ranges in (A′′,1).
Indeed, for every T ∈ BL(A) we have

V (BL(A), IA,T ) = co
[⋃

h∈H(A′′,∗)V [A′′,1,exp(−iLh)T ′′(exp(ih))]
]
.

Moreover, if A is unital, then we have in fact

V (BL(A), IA,T ) = co
[⋃

h∈H(A,∗)V [A,1,exp(−iLh)T (exp(ih))]
]

for every T ∈ BL(A).

3.5.4 The axiom ‖a∗a‖=‖a∗‖‖a‖ on non-unital algebras

The main result in this section is built from several previously proved results, and the
following lemmata.

Lemma 3.5.46 Let A be a complete normed complex algebra, and let aλ be an
approximate unit bounded by 1 in A. Consider A′′ as a complete normed algebra
under the Arens product, and let 1 be a w∗-cluster point in A′′ to the net aλ . Then we
have 1a = a for every a ∈ A, and a1 = a for every a ∈ A′′. Consequently, B :=C1+A
becomes a subalgebra of A′′, and 1 is a unit for B. Moreover, for α ∈ C and a ∈ A,
we have ‖α1+a‖= lim‖αaλ +a‖.

Proof Arguing as in the proof of Lemma 3.5.24(ii), the first conclusion follows
from the w∗-density of A in A′′, and the fact that the Arens product on A′′ is w∗-
continuous in its first variable and w∗-continuous in the second one when the first
variable is fixed in A (by Lemma 2.2.12(iii)). Now, let α and a be in C and A,
respectively. Then, for b in the closed unit ball of A, we have

‖b(α1+a)‖= ‖αb+ba‖= lim‖b(αaλ +a)‖ � liminf‖αaλ +a‖.

Since the closed unit ball of A is w∗-dense in the closed unit ball of A′′,
and the operator b → b(α1+ a) from A′′ to A′′ is w∗-continuous, and closed balls
in A′′ are w∗-closed, we actually have ‖b(α1 + a)‖ � liminf‖αaλ + a‖ for
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every b in the closed unit ball of A′′. In particular, by taking b = 1, we derive
‖α1+a‖ � liminf‖αaλ +a‖. On the other hand, for every λ we have

‖αaλ +a‖ � ‖αaλ +a− (α1+a)aλ‖+‖(α1+a)aλ‖

� ‖a−aaλ‖+‖α1+a‖,

and hence limsup‖αaλ +a‖ � ‖α1+a‖.

Corollary 3.5.47 Let A be a complete normed complex algebra such that A′′,
endowed with the Arens product, has a left unit 1, and let aλ be any approximate
unit bounded by 1 in A. Then, for α ∈ C and a ∈ A, we have

‖α1+a‖= lim‖αaλ +a‖.

Proof Let 1′ be a w∗-cluster point to the net aλ in A′′. By the first conclusion
in Lemma 3.5.46, we have 1′ = 11′ = 1. Now, apply the last conclusion in
Lemma 3.5.46.

Lemma 3.5.48 Let A be a non-commutative JB∗-algebra such that the equality
‖a∗a‖= ‖a‖2 holds for every a ∈ A. Then A is alternative.

Proof By Proposition 3.5.23, A has an approximate unit aλ bounded by 1, con-
sisting of ∗-invariant elements, and such that a2

λ is also an approximate unit in A.
Therefore, invoking Theorem 3.5.34 and Corollary 3.5.47, for α ∈ C and a ∈ A,
we have

‖α1+a‖2 = lim‖αaλ +a‖2 = lim‖(αaλ +a)∗(αaλ +a)‖

= lim‖|α |2a2
λ + ᾱaλa+αa∗aλ +a∗a‖

= lim‖|α |2a2
λ + ᾱa+αa∗+a∗a‖

= ‖|α |21+ ᾱa+αa∗+a∗a‖= ‖(α1+a)∗(α1+a)‖.

By Theorem 3.2.5, the algebra C1+A (and hence A) is alternative.

Now we state and prove the main result in the present subsection.

Theorem 3.5.49 Let A be a complete normed complex algebra, let � be a conjugate-
linear vector space involution on A such that

‖a�a‖= ‖a�‖‖a‖

for every a ∈ A, and assume that A has an approximate unit bounded by 1 consisting
of �-invariant elements. Then A is an alternative C∗-algebra for a suitable involution
∗. Moreover, except possibly in the case that (A,∗) is the C∗-algebra C2, we have
�= ∗. In the exceptional case that (A,∗) = C2, the involutions � satisfying the above
requirements are exactly the mappings of the form a  → a∗+ f (a)1, where 1 stands
for the unit of A, and f is any linear form on A such that f (1) = 0 and f (a∗) =− f (a)
for every a ∈ A.

Proof We may assume that A 	= 0. Let aλ be the approximate unit of A whose
existence is assumed, let 1 and B be as in Lemma 3.5.46, and note that ‖1‖ = 1.
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Let h be a �-invariant element of A, and let r be a positive real number. Then, since
(aλ + irh)� = aλ − irh, we have

‖1− irh‖‖1+ irh‖= lim‖aλ − irh‖‖aλ + irh‖= lim‖(aλ − irh)(aλ + irh)‖

= lim‖a2
λ + iraλh− irhaλ + r2h2‖

= lim‖a2
λ + r2h2‖ � 1+ r2‖h2‖,

and hence
‖1− irh‖‖1+ irh‖−1

r
� r‖h2‖.

Writing

‖1− irh‖‖1+ irh‖−1
r

= ‖1− irh‖‖1+ irh‖−1
r

+
‖1− irh‖−1

r
,

letting r → 0+, and applying Proposition 2.1.5, we deduce that

max{ℜ( f (ih)) : f ∈ D(B,1)}−min{ℜ( f (ih)) : f ∈ D(B,1)} � 0.

Therefore there exists a real number λh such that ℜ( f (ih)) = λh for every f ∈
D(B,1), and hence

h+ iλh1 ∈ H(B,1). (3.5.12)

Now, since h is arbitrary in H(A, �), we derive that B=H(B,1)+ iH(B,1). Therefore,
by the non-associative Vidav–Palmer theorem (Theorem 3.3.11), we have in fact
B = H(B,1)⊕ iH(B,1), and B becomes a non-commutative JB∗-algebra for the
involution ∗ whose ∗-invariant elements are precisely the elements in H(B,1). Now
note that, as a consequence of (3.5.12), h+ iλh1 is ∗-invariant, and consequently
we have

h+ iλh1 = h∗ − iλh1. (3.5.13)

Assume that 1 	∈ A. Then, since A is a closed ideal of B, and (B,∗) is a non-
commutative JB∗-algebra, it follows from Proposition 3.4.13 that A is ∗-invariant.
Therefore h∗ lies in A, so that, by (3.5.13), we have

2iλh1 = h∗ −h ∈ A,

which implies that λh = 0, and hence that h is ∗-invariant. Now, by the arbitrariness
of h� = h ∈ A, we obtain that �= ∗. Since ∗ is isometric (by Proposition 3.3.13), the
proof in this case is concluded by applying Lemma 3.5.48.

Now, assume that 1 ∈ A. Then, writing 1 = h+ ik for suitable �-invariant elements
h,k ∈ A, and keeping in mind (3.5.13), we have

1� = h− ik = h∗ −2iλh1− i(k∗ −2iλk1) = h∗ − ik∗ −2(λk + iλh)1

= 1∗ −2(λk + iλh)1 = 1−2(λk + iλh)1,

and hence 1� = α1 for a suitable complex number α . Moreover, since

1 = 1�� = (α1)� = ᾱ1� = ᾱα1 = |α|21,
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we get |α| = 1. Now, for a ∈ A, set a� := ᾱa�. Then � becomes a conjugate-linear
vector space involution on A satisfying

1� = 1 and ‖a�a‖= ‖a�‖‖a‖ for every a ∈ A.

By applying Theorem 3.5.15, we obtain that the conclusion of our theorem is true
with � instead of �. Therefore we have �= ∗, except possibly in the case that
dim(A) = 2. As a consequence, since ∗ is an isometry, � (and hence �) is continuous
without any exception. Finally, since 1 = limaλ1 = limaλ , and a�λ = aλ for every λ ,
we get 1� = 1, so α = 1, and so �=�, which completes the proof.

A direct consequence of Theorem 3.5.49 is the following.

Corollary 3.5.50 Let A be a complete normed complex algebra endowed with a
conjugate-linear vector space involution ∗ satisfying

(a2)∗ = (a∗)2 and ‖a∗a‖= ‖a∗‖‖a‖ for every a ∈ A,

and assume that A has an approximate unit bounded by 1 and consisting of
∗-invariant elements. Then A is an alternative C∗-algebra.

3.5.5 The non-unital non-associative Gelfand–Naimark theorem

We begin this subsection with another direct consequence of Theorem 3.5.49;
namely, the following.

Proposition 3.5.51 Let A be a complete normed complex algebra endowed with
a conjugate-linear vector space involution ∗ such that ‖a∗a‖ = ‖a‖2 for every
a∈A, and assume that A has an approximate unit bounded by 1 and consisting of
∗-invariant elements. Then A is an alternative C∗-algebra.

Certainly, Proposition 3.5.51 follows from Theorem 3.5.49 in a straightforward
way. However, Theorem 3.5.49 depends heavily on Theorem 3.5.15, whose proof
is quite involved. Therefore we feel it appropriate to provide the reader with the
following.

§3.5.52 Autonomous proof of Proposition 3.5.51 We may assume that A 	=0. Let
aλ be the approximate unit of A whose existence is assumed, let 1 and B be as in
Lemma 3.5.46, and note that ‖1‖ = 1. Let h be a ∗-invariant element of A, and let r
be a positive real number. Then we have

‖1+ irh‖2 = lim‖aλ + irh‖2 = lim‖(aλ + irh)∗(aλ + irh)‖
= lim‖a2

λ + iraλh− irhaλ + r2h2‖
= lim‖a2

λ + r2h2‖ � 1+ r2‖h2‖,
and hence

lim
r→0+

‖1+ irh‖−1
r

� lim
r→0+

√
1+ r2‖h2‖−1

r
= 0.

Replacing h with −h, and applying Proposition 2.1.5, we deduce that h belongs to
H(B,1), where B stands for the complete normed complex algebra C1+A. Now,
since h is an arbitrary ∗-invariant element of A, we derive that B=H(B,1)+ iH(B,1).
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Therefore, by the non-associative Vidav–Palmer theorem (Theorem 3.3.11), B is a
non-commutative JB∗-algebra for the involution

(α1+a)∗
′
:= ᾱ1+a∗. (3.5.14)

(We note that, in the dangerous case that 1 lies in A, writing 1 = h+ ik with h and
k ∗-invariant elements of A, and recalling that ∗-invariant elements of A belong to
H(A,1), we get 1−h ∈ H(A,1)∩ iH(A,1) = 0, so 1∗ = 1, and so (3.5.14) becomes a
good definition.) Now, clearly, A is a non-commutative JB∗-algebra for the involution
∗, and the proof is concluded by applying Lemma 3.5.48.

According to §2.4.26, by a non-associative C∗-algebra we mean a complete
normed complex ∗-algebra A satisfying ‖a∗a‖= ‖a‖2 for every a ∈ A. Now we can
formulate and prove the main result in this section, namely the so-called non-unital
non-associative Gelfand–Naimark theorem.

Theorem 3.5.53 Let A be a non-associative C∗-algebra. Then A is alternative if
and only if A has a bounded approximate unit bounded by 1.

Proof Assume that there exists an approximate unit aλ bounded by 1 in A. Then,
since ∗ is an isometric algebra involution on A, the net 1

2 (aλ + a∗λ ) becomes a
bounded approximate unit bounded by 1 and consisting of ∗-invariant elements.
Therefore, by Proposition 3.5.51, A is alternative.

Now, assume that A is alternative. Then, by Fact 3.3.2 and Proposition 3.5.23, A
has an approximate unit bounded by 1.

Since alternative commutative complex algebras are associative (a consequence of
the equality (3.4.12)), we derive the following.

Corollary 3.5.54 Commutative (associative) C∗-algebras are nothing other than
commutative non-associative C∗-algebras having an approximate unit bounded by 1.

The remaining part of this subsection is devoted to show the abundance of non-
associative C∗-algebras which are not alternative. To this end, we begin by remarking
that non-associative C∗-algebras have an ‘isotopy type’ stability property. Let A
be a non-associative C∗-algebra. Given surjective linear isometries F,G : A → A
preserving the involution of A, the Banach space of A, endowed with the new product
a�b := F(G(a)G(b)), becomes a new non-associative C∗-algebra for the same invo-
lution. Non-associative C∗-algebras obtained in this way are called (non-associative)
C∗-isotopes of A. As a matter of fact, C∗-isotopes of alternative C∗-algebras need not
be alternative. As an example, take A := C2, and define a product � on A by

(λ1,λ2)� (μ1,μ2) := (λ2μ2,λ1μ1).

Then (A,�) becomes a C∗-isotope of A which is not alternative. Actually, most
alternative C∗-algebras have C∗-isotopes which are not alternative. Indeed, we have
the following.

Proposition 3.5.55 Let A be an alternative C∗-algebra. Then the following condi-
tions are equivalent:

(i) All C∗-isotopes of A are alternative.
(ii) The identity mapping on A is the unique Jordan-∗-automorphism of A.
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(iii) A = CC
0 (E) for some locally compact Hausdorff topological space E such that

there is no homeomorphism from E onto E other than the identity.

Proof (i)⇒(ii) Let F be a Jordan-∗-automorphism of A. By Fact 3.3.2 and
Remark 3.4.5, F is a surjective linear isometry preserving ∗, and hence, by setting
a�b := F(ab), (A,�) becomes a C∗-isotope of A. Therefore, by the assumption (i),
(A,�) is an alternative algebra. This means that

F(a2)b = aF(ab) and bF(a2) = F(ba)a

for all a,b ∈ A. Since A has an approximate unit aλ (by Proposition 3.5.23),
it is enough to set b := aλ in the equalities above and take limits in λ to deduce

F(a2) = aF(a) = F(a)a for every a ∈ A.

Linearizing, we get

2F(a•b) = aF(b)+bF(a) and 2F(a•b) = F(a)b+F(b)a

for all a,b ∈ A, which implies (with b := aλ as above)

F(a) = limλ aF(aλ ) and F(a) = limλ F(aλ )a

for every a ∈ A, and hence, since F is a Jordan automorphism,

F(a) = limλ a•F(aλ ) = limλ F(F−1(a)•aλ ) = F(F−1(a)) = a

for every a ∈ A. Thus F is the identity mapping on A.
(ii)⇒(iii) Let D be a continuous Jordan derivation of A preserving ∗. Then, for

every r ∈ R, exp(rD) is a Jordan-∗-automorphism of A, and hence, by the assump-
tion (ii), we have exp(rD) = IA, so D = 0 (by taking derivatives at r = 0). Now
let h be in H(A,∗). Then, by Lemma 2.4.15, D := i[h, ·] is a continuous Jordan
derivation of A preserving ∗. Therefore, by the above, we have [h, ·] = 0. Since h
is arbitrary in H(A,∗), we get that A is commutative. By the equality (3.4.12), A
is also associative. Now, by Theorem 1.2.4, we have A = CC

0 (E) for some locally
compact Hausdorff topological space E. Finally, since different homeomorphisms
from E onto E give rise to different ∗-automorphisms of A, a new application of the
assumption (ii) assures that condition (iii) holds.

(iii)⇒(i) Assume that condition (iii) holds. Then, by Corollary 1.1.77, A has no
∗-automorphism other than the identity mapping. Then, by Theorem 2.2.19, the
linear isometries from A onto A preserving ∗ are precisely the mappings of the form
a→ ua, where u runs over the set of all self-adjoint unitary elements in the C∗-algebra
of multipliers M(A) of A. Therefore, since M(A) is commutative (as a consequence
of Corollary 3.5.25), the product � of any C∗-isotope of A is of the form a�b = uab,
with u as above, and such a product is clearly associative (and hence alternative).

By an absolute-valued C∗-algebra we mean a complete absolute-valued complex
algebra A endowed with a conjugate-linear algebra involution ∗. We note that, since
conjugate-linear algebra involutions on complete absolute-valued algebras are iso-
metric (a consequence of Theorem 2.8.4), absolute-valued C∗-algebras are non-
associative C∗-algebras, and that, by Proposition 2.6.27, none of them, with the
exception of C, is alternative, nor even power-associative. As a consequence, since
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C∗-isotopes of absolute-valued C∗-algebras are absolute-valued C∗-algebras, no C∗-
isotope of an alternative C∗-algebra different from C can be an absolute-valued
C∗-algebra.

Now, let us recall some basic facts about the Hilbert tensor product of two Hilbert
spaces (see [723, pp. 21–2] for details) which will be applied without notice in the
proof of the next proposition. Let H1,H2 be Hilbert spaces over K. Then the algebraic
tensor product H1 ⊗H2 becomes a pre-Hilbert space under the inner product (·|·)
determined on elementary tensors by

(x⊗ y|u⊗ v) = (x|u)(y|v).

The completion of the pre-Hilbert space (H1 ⊗H2,(·|·)) is called the Hilbert tensor
product of H1 and H2, and is denoted by H1⊗̂H2. The Hilbertian dimension of
H1⊗̂H2 is equal to the product of the Hilbertian dimensions of H1 and H2. On
the other hand, the natural identification H1 ⊗H2 ≡ H2 ⊗H1 becomes an isometry,
and hence extends uniquely to a surjective linear isometry G : H1⊗̂H2 → H2⊗̂H1.
Moreover, if H3,H4 are Hilbert spaces over K, and if a and b are in BL(H1,H3) and
BL(H2,H4), respectively, then there exists a unique operator

a⊗b ∈ BL(H1⊗̂H2,H3⊗̂H4)

satisfying (a⊗b)(x⊗y) = ax⊗by for all x ∈ H1 and y ∈ H2, and we have ‖a⊗b‖=
‖a‖‖b‖ and (a⊗ b)∗ = a∗ ⊗ b∗. Finally, note that the mapping (a,b) → a⊗ b from
BL(H1,H3)×BL(H2,H4) to BL(H1⊗̂H2,H3⊗̂H4) is bilinear.

Proposition 3.5.56 Let H be an infinite-dimensional complex Hilbert space, and
let A stand for the C∗-algebra of all bounded linear operators on H. Then A becomes
an absolute-valued C∗-algebra for its natural involution and a suitable product.

Proof Consider the Hilbert tensor product H⊗̂H, take a surjective linear isometry
F : H⊗̂H → H, and let G : H⊗̂H → H⊗̂H be the unique surjective linear isom-
etry such that G(x ⊗ y) = y ⊗ x for all x,y ∈ H. Now, define a product � on A
by a� b := F ◦G ◦ (a⊗ b) ◦F∗. Then we have ‖a� b‖ = ‖a‖‖b‖ for all a,b ∈ A.
Moreover, noticing that G∗ = G, and that for a,b ∈ A we have G(a⊗b) = (b⊗a)G,
we straightforwardly realize that (a�b)∗ = b∗ �a∗.

Theorem 3.5.57 Let X be a nonzero complex Banach space. Then there exists an
absolute-valued C∗-algebra A with dens(A) = dens(X) and such that X is linearly
isometric to a subspace of A.

Proof Let E denote the compact Hausdorff topological space consisting of the
closed unit ball of X ′ and the weak∗ topology. Then X can be seen isometrically
as a subspace of CC(E). Now, by Exercise 1.2.5, X can be seen isometrically as a
subspace of BL(H) for some infinite-dimensional complex Hilbert space H, and,
by Proposition 3.5.56, BL(H) becomes an absolute-valued C∗-algebra for its
natural involution ∗ and a suitable product �. Let A stand for the closed sub-
algebra of (BL(H),�) generated by X ∪ X∗. Then, by Proposition 1.2.25, A is
∗-invariant, and hence it is an absolute-valued C∗-algebra containing X isometrically.
Moreover, by Corollary 2.8.21, we have dens(A) = dens(X ∪ X∗). But, clearly,
dens(X ∪X∗) = dens(X).
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To conclude the present subsection, let us note that the case K = C of Corol-
lary 2.8.25 can now be reformulated as follows

Fact 3.5.58 Let A be a complete normed complex algebra. Then there exists an
absolute-valued C∗-algebra A with dens(A ) = dens(A) and such that A is isomet-
rically algebra-isomorphic to a quotient of A .

3.5.6 Vowden’s theorem

The aim of this subsection is to prove a reasonable non-associative generalization of
Vowden’s theorem that complete normed associative complex ∗-algebras A satisfying
‖a∗a‖ = ‖a∗‖‖a‖ for every a ∈ A are in fact C∗-algebras. We begin by proving a
particular case of this last result.

Lemma 3.5.59 Let A be a complete normed associative and commutative complex
∗-algebra satisfying ‖a∗a‖= ‖a∗‖‖a‖ for every a ∈ A. Then A is a C∗-algebra.

Proof Given a ∗-invariant element h in A, for every n ∈ N, h2n
remains ∗-invariant,

and hence, by induction, we get ‖h2n‖= ‖h‖2n
, which implies r(h) = ‖h‖. In particu-

lar, we have r(a∗a) = ‖a∗a‖ for every a ∈ A. On the other hand, given a ∈ A and
n ∈ N, we see that (a∗a)n = (an)∗an, so

‖(a∗a)n‖ 1
n = ‖(an)∗an‖ 1

n = ‖(a∗)n‖ 1
n ‖an‖ 1

n ,

and so r(a∗a) = r(a∗)r(a). Since r(a∗) = r(a) (by Corollary 1.1.109), it follows that

‖a∗‖‖a‖= ‖a∗a‖= r(a∗a) = r(a∗)r(a) = r(a)2 � ‖a‖2,

and so ‖a∗‖ � ‖a‖. Replacing a by a∗, we also have ‖a‖ � ‖a∗‖. Thus ‖a∗‖= ‖a‖,
and hence ‖a∗a‖= ‖a‖2.

Definition 3.5.60 Let A be a ∗-algebra over K, and let S be a non-empty subset
of A. We say that S is normal if the subalgebra A(S∪ S∗) of A generated by S∪ S∗

is associative and commutative. In the case that A is associative, we invoke Corol-
lary 1.1.79 to realize that S is normal if and only if S∪S∗ is a commutative subset of
A. Anyway, an element a ∈ A is normal in the sense of Definition 3.4.20 if and only
if the singleton {a} is a normal subset of A.

Proposition 3.5.61 Let A be a ∗-algebra over K. We have:

(i) Each normal subset of A is contained in a maximal normal subset of A.

(ii) Maximal normal subsets of A are ∗-subalgebras of A.

(iii) If A is normed, then maximal normal subsets of A are closed in A.

Proof In view of Zorn’s lemma, to prove assertion (i) it is enough to show that
the family F of all normal subsets of A is inductive for the inclusion order. Let C

be a chain of F . Then the set {A(S ∪ S∗) : S ∈ C } is a chain of associative and
commutative subalgebras of A (relative to the inclusion), and hence

∪S∈C A(S∪S∗)
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is an associative and commutative subalgebra of A. Since

∪S∈C A(S∪S∗)⊇ A((∪S∈C S)∪ (∪S∈C S)∗),

we get that ∪S∈C S is an upper bound for C in F .
Let S be a normal subset of A. Then, by Proposition 1.2.25, A(S∪S∗) is an associa-

tive and commutative ∗-subalgebra of A, and as a consequence, it is a normal subset
of A. Therefore, in the case that S is in fact a maximal normal subset of A, we have
S = A(S∪S∗), which proves assertion (ii).

Assume that A is a normed algebra, and let B be a maximal normal subset of A.
The fact that B is an associative and commutative ∗-subalgebra of A (assured by
assertion (ii) just proved) must be omnipresent along the argument which follows.
Let x be an element in B̄. Then A(B∪ {x}) ⊆ B̄ so that, since B̄ is an associative
and commutative subalgebra of A, the same is true for A(B∪{x}). Therefore, since
A(B∪{x∗}) = (A(B∪{x}))∗, we deduce that A(B∪{x∗}) (and hence A(B∪{x∗}))
is an associative and commutative subalgebra of A. Since x ∈ B̄ ⊆ A(B∪{x∗}), it
follows that

A(B∪{x,x∗})⊆ A(B∪{x∗}),

hence A(B∪{x,x∗}) is an associative and commutative subalgebra of A, so B∪{x} is
a normal subset of A, and so x ∈ B by maximality of B. Thus B is closed in A because
of the arbitrariness of x ∈ B̄.

Let A be a (normed) algebra over K endowed with a (continuous) conjugate-linear
algebra involution ∗, and let S be a non-empty subset of A. Then, as a consequence
of Proposition 1.2.25, the (closed) subalgebra of A generated by S∪S∗ is the smallest
(closed) ∗-subalgebra of A containing S. Thus, when we are dealing with possibly
discontinuous involutions on normed algebras, the following definition becomes
useful.

Definition 3.5.62 Let A be a normed ∗-algebra over K, and let S be a non-
empty subset of A. Since the intersection of any family of closed ∗-subalgebras
of A is again a closed ∗-subalgebra of A, it follows that the intersection of all closed
∗-subalgebras of A containing S is the smallest closed ∗-subalgebra of A containing S.
This subalgebra is called the closed ∗-subalgebra of A generated by S.

Now, as a straightforward consequence of Proposition 3.5.61, we derive the
following.

Corollary 3.5.63 Let A be a normed ∗-algebra over K, and let S be a normal
subset of A. Then the closed ∗-subalgebra of A generated by S is associative and
commutative.

If A is a power-associative algebra over K, then, by Corollary 2.4.18, A is power-
commutative, and hence, if in addition A is a ∗-algebra, then, for every ∗-invariant
element h in A, the set {h} (occasionally, {h,1} if A is unital) is a normal subset of A.
Therefore, invoking Corollary 3.5.63, we get the following.

Corollary 3.5.64 Let A be a normed power-associative ∗-algebra over K, and let
h be in H(A,∗). Then the closed ∗-subalgebra of A generated by h is associative and
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commutative. Moreover, if A is unital, then the closed ∗-subalgebra of A generated
by {h,1} is associative and commutative.

Proposition 3.5.65 Let A be a complete normed power-associative complex
∗-algebra satisfying ‖a∗a‖= ‖a∗‖‖a‖ for every a ∈ A. Then ∗ is continuous.

Proof Let x be any ∗-invariant element of A, and let Bx stand for the closed
∗-subalgebra of A generated by x. According to Corollary 3.5.64, Bx is associative
and commutative. Therefore, by Lemma 3.5.59, Bx is a C∗-algebra, and hence, by
Proposition 1.2.44, the unital extension Bx

1 is a C∗-algebra containing Bx as a closed
∗-subalgebra. Now, we will show that ‖x2 − x4‖ � ‖x2‖ whenever ‖x‖ � 1. For such
an x, Proposition 1.3.4(ii) gives that

sp(Bx
1 ,x

2 − x4) =
{
λ 2 −λ 4 : λ ∈ sp(Bx

1 ,x)
}
.

Since ‖ · ‖ and r(·) coincide on Bx
1 (by Lemma 1.2.12) and sp(Bx

1 ,x) ⊆ R (by Prop-
osition 1.2.20(ii)), Theorem 1.1.46 applies, so that we have

‖x2 − x4‖= sup
{
λ 2 −λ 4 : λ ∈ sp(Bx

1 ,x)
}

� sup
{
λ 2 : λ ∈ sp(Bx

1 ,x)
}
= ‖x2‖.

Now, we will show that the set H(A,∗) is closed in A. Let hn be a convergent
sequence in H(A,∗) whose limit is h+ ik, with h,k ∈ H(A,∗). Since hn−h converges
to ik, we may assume (by setting hn for hn −h) that hn converges to ik, and also that
‖hn‖ � 1. Then, by the first paragraph in the proof, we have ‖h2

n − h4
n‖ � ‖h2

n‖ for
every n ∈ N. Letting n → ∞ we obtain∥∥−k2 − k4

∥∥� ‖k2‖.

Therefore, suitably repeating the arguments in the first paragraph of the proof, we
see that

sup
{
λ 2 +λ 4 : λ ∈ sp(Bk

1 ,k)
}

� sup
{
λ 2 : λ ∈ sp(Bk

1 ,k)
}
.

Choose μ ∈ sp(Bk
1 ,k) such that μ2 = sup{λ 2 : λ ∈ sp(Bk

1 ,k)}. Then we have
μ2+μ4 � μ2, so μ = 0. It follows that ‖k‖= r(k) = 0 and so k = 0. This shows that
H(A,∗) is closed.

Finally, since H(A,∗) is closed in A (by the above paragraph), and A is complete,
the direct sum A = H(A,∗)⊕ iH(A,∗) is topological, and hence ∗ : h+ ik → h− ik
(h,k ∈ H(A,∗)) is continuous.

Now we can prove the main result in the present subsection.

Theorem 3.5.66 Let A be a complete normed non-commutative Jordan complex
∗-algebra satisfying ‖a∗a‖ = ‖a∗‖‖a‖ for every a ∈ A. Then A is an alternative
C∗-algebra.

Proof By Proposition 3.5.65, H(A,∗) is a closed real subalgebra of Asym, and hence
it is a complete normed Jordan real algebra. Let h be any element of H(A,∗), and
let B stand for the closed subalgebra of A generated by h. Then, since ∗ is con-
tinuous (again by Proposition 3.5.65), B is ∗-invariant. On the other hand, by Corol-
lary 2.4.18, B is associative and commutative. It follows from Lemma 3.5.59 that B is
a C∗-algebra in the natural way, and hence, by Theorem 1.2.4, we have B=CC

0 (E) for
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some locally compact Hausdorff topological space E. Therefore, by Lemma 2.4.17,
the closed subalgebra of Asym generated by h equals CC

0 (E), which implies that the
closed subalgebra of the normed Jordan real algebra H(A,∗) generated by h equals
CR

0 (E). Since h is an arbitrary element of H(A,∗), Proposition 3.4.2 applies, so that
H(A,∗) is a JB-algebra. Then, by Lemma 3.5.22, H(A,∗) has an approximate unit aλ
bounded by 1, which is clearly an approximate unit for Asym. Since A equals the linear
hull of the set {b2 : b ∈ A} (because closed subalgebras generated by self-adjoint
elements are CC

0 (E) algebras), Lemma 3.5.21 gives us that aλ is an approximate unit
for A. Finally, the result follows from Corollary 3.5.50.

The following unit-free version of Corollary 3.5.18 follows straightfor- wardly
from Theorem 3.5.66 above.

Corollary 3.5.67 (Vowden theorem) Let A be a complete normed associative com-
plex ∗-algebra satisfying ‖a∗a‖= ‖a∗‖‖a‖ for every a in A. Then A is a C∗-algebra.

Now we conclude with a theorem summarizing the main results in the present
section.

Theorem 3.5.68 Let A be a complete normed complex ∗-algebra. Then the follow-
ing conditions are equivalent:

(i) A has an approximate unit bounded by 1 and consisting of ∗-invariant elements,
and the equality ‖a∗a‖= ‖a∗‖‖a‖ holds for every a ∈ A.

(ii) A has an approximate unit bounded by 1, and the equality ‖a∗a‖= ‖a‖2 holds
for every a ∈ A.

(iii) A is alternative, and the equality ‖a∗a‖= ‖a∗‖‖a‖ holds for every a ∈ A.

(iv) A is a non-commutative Jordan algebra, and the equality ‖a∗a‖ = ‖a∗‖‖a‖
holds for every a ∈ A.

(v) A is alternative, and the equality ‖a∗a‖= ‖a‖2 holds for every a ∈ A.

Proof (ii)⇔(v) By Theorem 3.5.53.
The implication (iv)⇒(iii) follows from Theorem 3.5.66, whereas the one

(iii)⇒(iv) follows from Corollary 2.4.10.
(i)⇒(v) as a consequence of Corollary 3.5.50, whereas the implication (v)⇒(i)

follows from Fact 3.3.2 and Proposition 3.5.23.
The implication (v)⇒(iii) is clear, whereas the one (iii)⇒(v) follows from Corol-

lary 2.4.10 and Theorem 3.5.66.

3.5.7 Historical notes and comments

Lemma 3.5.1 is folklore (see for example [717, Proposition 3.9(1)]). Propos-
ition 3.5.2 and Theorem 3.5.5 are due to Payá, Pérez, and Rodrı́guez [482].
According to Theorem 3.5.5, a perfect knowledge of quadratic non-commutative
JB∗-algebras depends on the determination of all H-algebras. A similar situation
happened when studying complete smooth-normed real algebras (see Remark
2.6.54).
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Proposition 3.5.4 is a refined version of Proposition 2.3 in the Cabrera–Moreno–
Rodrı́guez paper [145], where Lemma 3.5.3 is also proved, pointing out that
the renorming argument in the proof is taken from Theorem 1.3.3 in Rickart’s
book [795]. With more or less precision in the formulation and proof, the content of
Proposition 3.5.4 often arises in the literature, mainly in the case that K = C (see
for example [91] and [152]). Restricting again to the case K = C, the germ for the
proof we have provided can be found at the beginning of the proof of Theorem 3.1
of [482]. Corollary 3.5.6 can be proved without involving Theorem 3.5.5. Indeed,
it is enough to note that, by Corollary 2.5.19(i), the algebraic norm function on a
quadratic alternative algebra admits composition, that the algebraic norm function
on a quadratic alternative C∗-algebra is nondegenerate, and that consequently, by
[808, Theorem 3.25], C,C2,M2(C) and C(C) are the unique quadratic alternative
C∗-algebras.

With the exception of Proposition 3.5.11 which is taken from Rickart’s book
[795, p. 293], results from Example 3.5.8 to Theorem 3.5.15 are due to Cabrera
and Rodrı́guez [150]. Corollary 3.5.16, as well as the autonomous proof given in
§3.5.17, are earlier [514]. The associative forerunner, given by Corollary 3.5.18, is
due to Glimm and Kadison [290], and is included in [694, Theorem 7.2] (with a
proof rather similar to that in §3.5.17) and in [725, Sections 15 and 16] (with a proof
close to that of Glimm and Kadison).

Lemma 3.5.21 and the fact that non-commutative JB∗-algebras have approxi-
mate units bounded by 1 (a consequence of Proposition 3.5.23) were proved first
by Villena in his PhD thesis [816]. The first published proof of this fact appeared
in [365] as a consequence of a deeper result. Lemma 3.5.22 and the actual formula-
tion of Proposition 3.5.23 are taken from [537]. Lemma 3.5.24 is folklore, whereas
Proposition 3.5.26 is due to Youngson [655] with a different proof. The unital fore-
runner of Proposition 3.5.26 is due to Edwards [222]. Results from Lemma 3.5.30
to Corollary 3.5.36 are built from [481] and [520]. It is worth mentioning that Prop-
osition 3.5.31 answered affirmatively a question implicitly raised by Alvermann and
Janssen [19], who also re-proved Theorem 3.5.34 as a consequence of a more general
result.

With the exception of Remark 3.5.40 which is taken from [536], results from
Lemma 3.5.37 to Proposition 3.5.44 are due to Kaidi, Morales, and Rodrı́guez [364].
Corollary 3.5.45 is earlier [514]. The associative (respectively, the unital non-
associative) forerunner of Proposition 3.5.44 is due to Huruya [333] (respectively,
to Rodrı́guez [514]). Twelve years before the paper [364] was published, the
general statement of Proposition 3.5.44 was formulated in [340] as a straightforward
consequence of its unital forerunner, of Theorem 3.5.34, and of the claim in [216]
that the equality N(X ′) = N(X) holds for every normed space X . However this
argument had a gap because, as we commented in §2.1.47, the claim of [216]
turned out to be false. By the way, now that we are provided with a correct proof
of Proposition 3.5.44, it is enough to invoke in addition Theorem 3.5.34, together
with the fact that the chain of inequalities N(X) � N(X ′) � N(X ′′) is true for every
normed space X , to get the following result, also pointed out in [364].
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Corollary 3.5.69 The equality N(A′) = N(A) holds for every non-commutative
JB∗-algebra A.

The results and methods in [364] inspired the following theorem of Becerra,
Cowell, Rodrı́guez, and Wood [65].

Theorem 3.5.70 Let A be a norm-unital complete normed associative algebra over
K, and let U stand for the set of all algebraically unitary elements of A (cf. §2.1.20).
Then the following conditions are equivalent:

(i) A is unitary (cf. §2.1.54).
(ii) For every f ∈ P(A) we have

V (P(A), pA, f ) = co
[⋃

(u,v)∈U×U V (A,1,u−1 f (u,v)v−1)
]
.

(iii) For every T ∈ BL(A) we have

V (BL(A), IA,T ) = co
[⋃

u∈U V (A,1,u−1T (u))
]
.

Moreover, if A is unitary, then pA is both a strongly extreme point of BP(A) and
a point where the duality mapping of P(A) is norm-norm upper semicontinuous,
and if in addition K = C, then we have in fact n(P(A), pA) � 1

e , and hence pA is a
geometrically unitary element of P(A) (compare Proposition 2.1.41).

Lemmas 3.5.46 and 3.5.48, as well as Corollary 3.5.47, are taken from [537].
Theorem 3.5.49 and Corollary 3.5.50 are due to Cabrera and Rodrı́guez [154].

Proposition 3.5.51 and the autonomous proof following it, as well as The-
orem 3.5.53, Corollary 3.5.54, and Proposition 3.5.56, are due to Rodrı́guez [537].
Proposition 3.5.55 is a refined version of [537, Proposition 4.10]. Proposition 3.5.55
leads to the question of the existence of locally compact Hausdorff topological
spaces not reduced to a point, and having no homeomorphism onto itself other than
the identity mapping. According to [731, p. 196], the first example of such a (even
compact) space is due to A. Pelczyński, who communicated it to W. J. Davis to be
included at the end of [208]. For recent progresses on this topic, the reader is referred
to [392]. Theorem 3.5.57 is claimed in [537, Remark 4.12(b)]. However, the hints
for the proof given there are incorrect because they rely on [537, Remark 4.12(a)]
(which has an unsolvable mistake) and on the proof of Theorem 2.8.23. Thus
Theorem 3.5.57 and the proof given here are new.

Subsection 3.5.6 is a non-associative reading of Vowden’s paper [629], incorpor-
ating and/or refining those results in Rickart’s book [795] which were applied there.
Thus, Lemma 3.5.59 is a part of [795, Theorem 4.2.2], whereas Proposition 3.5.61
becomes a non-associative version of [795, Theorem 4.1.3]. Proposition 3.5.61
and Corollary 3.5.64 are new. With Corollary 3.5.64 and Lemma 3.5.59 in mind,
the proof of Proposition 3.5.65 is essentially that of [629, Lemma 3.1] (see also
[725, Proposition 10.1]). Proposition 3.5.65 was proved first by Cabrera and
Rodrı́guez [154] using different methods. A refinement of Proposition 3.5.65 will
be obtained later in Proposition 4.4.70. Corollary 3.5.67 is the main result in [629],
and is known as Vowden’s theorem. Both its non-associative generalization, stated in
Theorem 3.5.66, and the (conclusion of) proof given here are new.
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For the long history of Vowden’s theorem, the reader is referred to pages 6–8 of
Doran–Belfi [725]. This book also includes in detail Vowden’s arguments. Indeed,
Vowden’s theorem is derived in [725, Theorem 16.1] from the Glim–Kadison Cor-
ollary 3.5.18 by applying a suitable refinement of our Proposition 1.2.44 (see [725,
Proposition 14.1] for details), also due to Vowden. Let us note that, in [725], the
term C∗-algebra means a complete normed associative complex ∗-algebra satisfying
‖a∗a‖= ‖a∗‖‖a‖ for every element a in the algebra.

Given a set I of identities over K (cf. §3.5.32), we define the variety of algebras
over K determined by I as the class of all algebras over K satisfying all identities
in I. Now let V be a variety of algebras over K, let A be an algebra over K endowed
with an algebra involution ∗, and let S be a non-empty subset of A. We say that S
is V -normal if the subalgebra of A generated by S ∪ S∗ lies in V . (Thus, normal
subsets, as introduced in Definition 3.5.60, are nothing other than V -normal subsets
when V equals the variety of all associative and commutative algebras.) An element
a ∈ A is said to be V -normal if {a} is a V -normal subset of A.

Let V be a variety of algebras. Looking at the proof of Proposition 3.5.61,
we realize that it remains true whenever we replace ‘normal subset’ with
‘V -normal subset’ everywhere in its formulation and proof and, accordingly, we
replace ‘[a certain algebra] is associative and commutative’ with ‘[a certain algebra]
lies in V ’ in the proof. Therefore we have the following.

Proposition 3.5.71 Let V be a variety of algebras over K, and let A be a ∗-algebra
over K. We have:

(i) Each V -normal subset of A is contained in a maximal V -normal subset of A.
(ii) Maximal V -normal subsets of A are ∗-subalgebras of A.

(iii) If A is normed, then maximal V -normal subsets of A are closed.

The above proposition implies the following.

Corollary 3.5.72 Let V be a variety of algebras over K, let A be a normed
∗-algebra over K, and let S be a V -normal subset of A. Then the closed ∗-subalgebra
of A generated by S lies in V .

Interesting consequences along the lines of Corollary 3.5.64 are given in the
following.

Corollary 3.5.73 Let A be a normed ∗-algebra over K. We have:

(i) If A is power-commutative, and if a is in H(A,∗), then the closed ∗-subalgebra
of A generated by a is commutative.

(ii) If A is alternative, and if a is in A, then the closed ∗-subalgebra of A generated
by a is associative.

Proof Assume that A is power-commutative (respectively, alternative), and let a
be in H(A,∗) (respectively, in A). Take V equal to the variety of all commu-
tative (respectively, associative) algebras over K, and note that the element a
is V -normal in a clear way (respectively, by Theorem 2.3.61). Then, by Corol-
lary 3.5.72, the closed ∗-subalgebra of A generated by a is commutative (respectively,
associative).
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The implication (iii)⇒(v) in Theorem 3.5.68 was proved first in [154] by involving
Vowden’s associative forerunner (stated in Corollary 3.5.67). Now, with the aid of
Corollary 3.5.73 just proved, an easier proof of the same kind can be given, by
arguing as follows:

Let A be a complete normed alternative complex ∗-algebra satisfying ‖x∗x‖ =
‖x∗‖‖x‖ for every x ∈ A, and let a be in A. By Corollary 3.5.73(ii), the closed
∗-subalgebra of A generated by a is associative. Finally, by Corollary 3.5.67, we
have ‖a∗a‖= ‖a‖2.

Since there are quotients of special Jordan algebras which are not special (see
for example [822, Theorem 3.2.5]), the class of all special Jordan algebras over K
is not a variety of algebras over K. Nevertheless, it can be enlarged to a minimum
variety, namely that of the so-called i-special Jordan algebras over K. These are
defined as those Jordan algebras over K which satisfy all identities satisfied by all
special Jordan algebras over K. It is worth remarking that not all Jordan algebras
are i-special. More precisely, the Albert Jordan algebra in Example 3.1.56 is not
i-special (see [754, p. 51] or [777, Theorem B.5.3]). Now, as a last consequence of
Corollary 3.5.72, we can prove the following.

Corollary 3.5.74 Let A be a normed Jordan ∗-algebra over K, and let a be in A.
Then the closed ∗-subalgebra of A generated by a is i-special.

Proof Take V equal to the variety of all i-special algebras over K, and note that, by
Theorem 3.1.55, the element a is V -normal. Then, by Corollary 3.5.72, the closed
∗-subalgebra of A generated by a lies in V .

3.6 Jordan axioms for C∗-algebras

Introduction We begin Subsection 3.6.1 by introducing modular ideals and the
unit-free version of the strong radical of an algebra, and by proving in Theorems 3.6.7
and 3.6.9 the unit-free versions of Rickart’s dense-range-homomorphism and Gel-
fand’s homomorphism theorems. (The unital forerunners of these results were proved
in Theorems 1.1.62 and 1.1.75.) Then we introduce primitive ideals and the radical
(called the Jacobson radical in the associative setting) of an algebra. According to
Proposition 3.6.14, the strong radical is included in the radical, and the inclusion
becomes an equality in the commutative setting. The subsection is concluded by
introducing quasi-invertible elements and quasi-invertible subsets of an alternative
algebra, and by proving in Theorem 3.6.21 that the Jacobson radical of any associat-
ive algebra A is the largest quasi-invertible ideal of A.

Subsection 3.6.2 contains the main result in the section. Indeed, we prove in
Theorem 3.6.30 that a norm and a conjugate-linear involution on the vector space
of a complex associative algebra A convert A into a C∗-algebra if (and only if) they
convert the Jordan algebra Asym into a JB∗-algebra. We note that the ‘only if’ part of
the statement just formulated follows from Facts 3.3.2 and 3.3.4.

Subsection 3.6.3 contains some complements to Jacobson’s representation the-
ory of associative algebras, to be applied later. Our development includes several
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applications of Jacobson’s representation theory to normed algebras. To this end,
we introduce associative normed Q-algebras, which are (possibly non-complete)
normed associative algebras that behave spectrally like complete normed associative
algebras. As we will realize in Subsection 4.4.4, as well as at the appropriate place
in Volume 2 (where the results of [523] will be developed), associative normed
Q-algebras become crucial in the treatment of some relevant topics in the theory
of complete normed non-associative algebras.

3.6.1 Jacobson’s representation theory: preliminaries

Let A be an algebra over K. Given a ∈ A, we consider the subsets A(1− a) and
(1−a)A of A defined by

A(1−a) := {x− xa : x ∈ A} and (1−a)A := {x−ax : x ∈ A}.

(The notation subliminally uses the unital extension A1 of A.) An element e ∈ A is
called a left (respectively, right) modular unit for a subspace X of A if (1− e)A ⊆ X
(respectively, A(1− e)⊆ X). A left ideal I of A is called a modular left ideal of A if
there exists a right modular unit for I in A. Analogously, a right ideal I of A is called
a modular right ideal of A if there exists a left modular unit for I in A. A (two-sided)
ideal I of A is said to be a modular ideal of A if it is both a modular left ideal and a
modular right ideal of A. If I is a modular ideal of A, then left and right modular units
for I in A are the same, and therefore they are called (two-sided) modular units for I.
(Indeed, if e is a left modular unit for the ideal I, and if f is a right modular unit for
I, then f − e f ∈ I and e− e f ∈ I, hence e− f ∈ I, so that for every x ∈ A we have
x−xe = (x−x f )+x( f −e) ∈ I+ I ⊆ I and x− f x = (x−ex)+(e− f )x ∈ I+ I ⊆ I.)

The next result is straightforward.

Fact 3.6.1 Let A be an algebra over K. We have:

(i) If A is unital, then every

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal I of A is modular, and 1 is a⎧⎨⎩ right
left

two-sided

⎫⎬⎭ modular unit for I.

(ii) If e is a

⎧⎨⎩ right
left

two-sided

⎫⎬⎭ modular unit for a

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal I of A, then it is a⎧⎨⎩ right
left

two-sided

⎫⎬⎭ modular unit for any

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A containing I.

(iii) If e is a

⎧⎨⎩ right
left

two-sided

⎫⎬⎭ modular unit for a proper

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal I of A, then

e /∈ I.
(iv) A proper ideal I of A is modular if and only if the quotient algebra A/I is unital.

The next result generalizes Proposition 1.1.49.

Proposition 3.6.2 Let A be a complete normed algebra over K. Then the closure of

a proper modular

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A is a proper modular

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A.
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Proof Assume for example that I is a modular left ideal of A. Then, by Exer-
cise 1.1.48 and Fact 3.6.1(ii), Ī is a modular left ideal of A. Now suppose that Ī = A.
Take a right modular unit e for I, and choose b ∈ I such that ‖e−b‖< 1. Since

‖Re −Rb‖= ‖Re−b‖ � ‖e−b‖< 1,

it follows from Corollary 1.1.21(i) that IA − (Re −Rb) is invertible in BL(A), hence
IA − (Re −Rb) is bijective, and so

A = [IA − (Re −Rb)](A)⊆ (IA −Re)(A)+Rb(A) = A(1− e)+Ab ⊆ I.

Let A be an algebra over K. By a maximal modular

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A we

mean a modular

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A which is a maximal

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A

(cf. Definition 1.1.51). Keeping in mind Fact 3.6.1(ii)–(iii), an easy application of
Zorn’s lemma yields the following.

Fact 3.6.3 Let A be an algebra over K. Then every proper modular

⎧⎨⎩ left
right

two-sided

⎫⎬⎭
ideal of A is contained in a maximal modular

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A.

As a straightforward consequence of Proposition 3.6.2, we get the following.

Corollary 3.6.4 Let A be a complete normed algebra over K. Then every maximal

modular

⎧⎨⎩ left
right

two-sided

⎫⎬⎭ ideal of A is closed.

The next lemma, which generalizes Lemma 1.1.54, follows straightfor- wardly
from Fact 3.6.1(iv).

Lemma 3.6.5 Let A be an algebra over K, and let M be a maximal modular ideal
of A. Then the quotient algebra A/M is a unital simple algebra.

In Definition 1.1.61, we introduced the strong radical of any unital algebra. Now,
keeping in mind that in the unital case maximal ideals and maximal modular ideals
are the same, we can extend the notion of strong radical to (possibly non-unital)
algebras as follows.

Definition 3.6.6 Let A be an algebra over K. The strong radical of A, denoted by
s-Rad(A), is defined as the intersection of all maximal modular ideals of A (with the
usual convention that s-Rad(A) = A if maximal modular ideals of A do not exist).
The algebra A is called strongly semisimple if s-Rad(A) = 0. We note that, in view of
Fact 3.6.3, s-Rad(A) 	= A if and only if there exists some proper modular ideal of A.

Now, arguing as in the proof of Theorem 1.1.62, with ‘maximal modular ideal’
instead of ‘maximal ideal’, Lemma 3.6.5 instead of Lemma 1.1.54, and Corol-
lary 3.6.4 instead of Corollary 1.1.53, we obtain the following non-unital version of
Rickart’s dense range homomorphism theorem.
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Theorem 3.6.7 Dense range algebra homomorphisms, from complete normed com-
plex algebras to complete normed strongly semisimple associative complex algebras,
are automatically continuous.

A wide generalization of the above theorem will be proved later (see The-
orem 4.1.19).

Arguing as in the proof of Corollary 1.1.63, with Theorem 3.6.7 instead of The-
orem 1.1.62, we get the following non-unital version of Rickart’s uniqueness-of-
norm theorem.

Corollary 3.6.8 Strongly semisimple associative complex algebras have at most
one complete algebra norm topology.

Let A be an algebra over K. Then the kernels of characters on A are maximal
modular ideals of A. Indeed, if ϕ is a character on A, and if we take e ∈ A such
that ϕ(e) = 1, then e becomes a modular unit for ker(ϕ). Now assume that K = C,
and that A is in fact a complete normed associative and commutative algebra. Then,
keeping in mind Corollary 3.6.4 and Lemma 3.6.5, minor changes to the arguments
leading to Proposition 1.1.68(i) allow us to realize that, actually, the mapping
ϕ → ker(ϕ) defines a bijection from the set of all characters on A onto the set of
all maximal modular ideals of A. As a consequence, the strong radical of A equals
the intersection of kernels of characters on A. This last fact will be applied without
notice in the proof of the following non-unital version of Theorem 1.1.75.

Theorem 3.6.9 (Gelfand homomorphism theorem) Let A be a complete normed
complex algebra, let B be a complete normed strongly semisimple associative and
commutative complex algebra, and let Φ : A → B be an algebra homomorphism.
Then Φ is continuous.

Proof Let an be a sequence in A with an → 0 and Φ(an) → b ∈ B. In view
of the closed graph theorem, to prove that Φ is continuous it is enough to
show that b = 0. Let ϕ be a character on B. Then, by Corollary 1.1.108, both
ϕ : B → C and ϕ ◦ Φ : A → C are continuous mappings. Therefore we have
0 ← (ϕ ◦Φ)(an) = ϕ(Φ(an))→ ϕ(b), and hence ϕ(b) = 0. Since ϕ is an arbitrary
character on B, and B is strongly semisimple, we conclude that b = 0, as desired.

Now we are going to show how the study of the strong radical of a non-
commutative JB∗-algebra can be reduced to the commutative case.

Lemma 3.6.10 Let A be a flexible algebra over K such that Asym is unital. Then A
is unital.

Proof Let 1 stand for the unit of Asym, and let a be in A. Since the mapping x→ [a,x]
is a derivation of Asym (by Lemma 2.4.15), we have [a,1] = 0. Therefore

a1 = a•1+
1
2
[a,1] = a and 1a = 1•a− 1

2
[a,1] = a.

Proposition 3.6.11 Let A be a non-commutative JB∗-algebra. Then we have:

(i) Closed ideals of A and closed ideals of Asym are the same.
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(ii) Maximal modular ideals of A and maximal modular ideals of Asym are the same,
hence

s-Rad(A) = s-Rad(Asym).

Proof Let I be a closed ideal of Asym. Then, by Fact 3.3.4 and Proposition 3.4.13, I
is a JB∗-algebra. Therefore, by Propositions 3.4.1(ii) and 1.2.48, I is the linear hull of
the set {x2 : x ∈ I}, hence I • I = I, and so I remains invariant under every derivation
of Asym. It follows from Lemma 2.4.15 that [A, I]⊆ I, and consequently AI+ IA ⊆ I,
i.e. I is an ideal of A. Since, clearly, closed ideals of A are closed ideals of Asym,
assertion (i) has been proved.

Now let I be a maximal modular ideal of A. Then, clearly, I is a modular ideal
of Asym. Therefore, by Fact 3.6.3, there exists a maximal modular ideal J of Asym

containing I, and, by Corollary 3.6.4 and assertion (i) just proved, J is an ideal of A.
Therefore J = I by maximality of I, and hence I is a maximal modular ideal of
Asym. Conversely, let I be a maximal modular ideal of Asym. Then, by Corollary 3.6.4
and assertion (i), I is an ideal of A. Keeping in mind Fact 3.6.1(iv), that Asym/I =
(A/I)sym, and that A/I is a flexible algebra, it follows from Lemma 3.6.10 that A/I
is a unital algebra, and hence that I is a modular ideal of A. Therefore, according
to Fact 3.6.3, there exists a maximal modular ideal J of A containing I. Since J is a
proper ideal of Asym, we deduce that J = I by maximality of I, and hence that I is a
maximal modular ideal of A. Thus the proof of assertion (ii) is complete.

In the above proof, Lemma 3.6.10 could have been replaced with Propos-
ition 3.4.13 and Corollary 2.6.36.

Definition 3.6.12 Let A be an algebra over K. Given a subspace X of A, the core of
X (in A) is defined as the largest ideal of A contained in X . Primitive ideals of A are
defined as the cores of maximal modular left ideals of A. The radical of A, denoted
by Rad(A), is defined as the intersection of all primitive ideals of A (with the usual
convention that Rad(A) = A if primitive ideals of A do not exist). The algebra A is
called semisimple if Rad(A) = 0, and radical if Rad(A) = A. We note that, in view of
Fact 3.6.3, A is non-radical if and only if there exists some proper modular left ideal
of A. An outstanding case of semisimplicity occurs when A is a primitive algebra,
which means that A 	= 0 and that zero is a primitive ideal of A.

Most radicals for algebras are named after the mathematicians who introduced
them and/or showed their usefulness. Thus, for example, the strong radical is called
the Brown–McCoy radical. Nevertheless, when we deal with a (possibly non-
associative) algebra A, the radical of A (as defined above) will not enjoy any author
name in our work, and will be called the Jacobson radical of A only when A is
associative. Several reasons justify this convention. Indeed, for alternative algebras,
our unnamed radical is known in the literature as the Kleinfeld radical (see §3.6.58
below). Moreover, for Jordan-admissible algebras, a ‘Jacobson radical’ different
from our unnamed radical, but coinciding with it in the associative case, is well
understood in the literature (see Definition 4.4.12 below).

As a straightforward consequence of Corollary 3.6.4, we derive the following.
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Corollary 3.6.13 Let A be a complete normed algebra over K. Then primitive
ideals of A, the strong radical of A, and the radical of A are closed subsets of A.

Proposition 3.6.14 Let A be an algebra over K. We have:

(i) Every maximal modular ideal of A is a primitive ideal of A, and hence
Rad(A)⊆ s-Rad(A).

(ii) If A is commutative, then every primitive ideal of A is a maximal modular ideal
of A, and hence Rad(A) = s-Rad(A).

Proof Let I be a maximal modular ideal of A. Then, by Fact 3.6.3, there exists a
maximal modular left ideal J of A containing I, and the core of J in A must be equal
to I by maximality of I as an ideal. This proves assertion (i).

Assume that A is commutative. Then, since left ideals of A are ideals of A, the core
of each left ideal I must coincide with the whole I. Therefore, primitive ideals of A
are maximal modular ideals of A. This proves assertion (ii).

In view of assertion (ii) in the above proposition, strongly semisimple commuta-
tive algebras will be called simply semisimple (commutative) algebras.

§3.6.15 Let A be an algebra over K. By a semiprime ideal of A we mean an ideal
I of A such that, whenever J is any ideal of A with JJ ⊆ I, we have J ⊆ I. Thus
semiprime ideals of A are precisely those ideals I of A such that A/I is a semiprime
algebra (cf. §2.2.22), and consequently A is a semiprime algebra if and only if zero
is a semiprime ideal of A. By a prime ideal of A we mean an ideal P of A such
that, whenever I and J are ideals of A with IJ ⊆ P, we have I ⊆ P or J ⊆ P. Thus
prime ideals of A are precisely those ideals P of A such that A/P is a prime algebra
(cf. §2.5.41), and consequently A is a prime algebra if and only if zero is a prime
ideal of A.

Proposition 3.6.16 Let A be an algebra over K. Then we have:

(i) Primitive ideals of A are prime ideals of A.
(ii) Rad(A) is a semiprime ideal of A.

Proof Let P be a primitive ideal of A, let I and J be ideals of A with IJ ⊆ P, and
assume that J � P. To prove assertion (i) we must show that I ⊆ P. Take a maximal
modular left ideal M of A such that P is the core of M in A. Since J is not contained in
P, J cannot be contained in M, and hence J+M = A by maximality of M. Take x ∈ J
and y ∈ M such that x+y is a right modular unit for M. Then x is also a right modular
unit for M, and hence for every z∈ I we have z= (z−zx)+zx∈M+IJ ⊆M+P⊆M.
Thus I ⊆ M, which implies I ⊆ P, as desired.

Since prime ideals of A are semiprime ideals of A, and the intersection of any
family of semiprime ideals of A is a semiprime ideal of A, assertion (ii) follows from
assertion (i) and the definition of Rad(A).

Lemma 3.6.17 Let A be an algebra over K, and let I be a left ideal of A such that
for each x ∈ I there is a ∈ A satisfying x+ a− ax = 0. Then I is contained in every
maximal modular left ideal of A.

Proof Assume, to derive a contradiction, that M is a maximal modular left ideal
of A such that I is not contained in M. Then I +M = A by maximality of M. Take
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x ∈ I and y ∈ M such that x+ y is a right modular unit for M. Then x is also a right
modular unit for M. Let a be in A such that x+a−ax = 0. We have x = ax−a ∈ M,
contradicting Fact 3.6.1(iii).

The following proposition follows from Lemma 3.6.17 just proved and the defini-
tion of the radical.

Proposition 3.6.18 Let A be an algebra over K, and let I be an ideal of A such that
for each x ∈ I there is a ∈ A satisfying x+a−ax = 0. Then I ⊆ Rad(A).

It is straightforward that the unital extension of an alternative algebra is an alter-
native algebra. This fact will be applied without notice.

Definition 3.6.19 Let A be an alternative algebra over K, and let a be in A. An
element b ∈ A is said to be a quasi-inverse of a in A if

a+b−ab = a+b−ba = 0.

It is straightforward that b is a quasi-inverse of a in A if and only if 1−b is an inverse
of 1− a in the unital extension A1 of A. Therefore a has at most one quasi-inverse
in A (cf. Proposition 2.5.24(i)). If a has a quasi-inverse in A, then we say that a is a
quasi-invertible element of A, and its unique quasi-inverse will be denoted by a!. It
is also straightforward that, if A is unital, then a is quasi-invertible in A if and only if
1−a is invertible in A, and that, if this is the case, then we have (1−a)−1 = 1−a!.
A subset S of A is said to be quasi-invertible if all elements of S are quasi-invertible
in A.

Lemma 3.6.20 Let A be an associative algebra over K, and let I be a left ideal
of A such that for each x ∈ I there is a ∈ A satisfying x+ a− ax = 0. Then I is a
quasi-invertible subset of A.

Proof Let x be in I. Take a ∈ A such that x + a− ax = 0. Then a = ax − x lies
in I, and hence there exists b ∈ A such that a+ b− ba = 0. Now in A1 we have
(1− a)(1− x) = 1 and (1− b)(1− a) = 1. Therefore, by Lemma 1.1.59, 1− a is
invertible in A1 . But then 1− x = (1− a)−1 is also invertible in A1 , and hence x is
quasi-invertible in A. Since x is arbitrary in I, the result follows.

Theorem 3.6.21 Let A be an associative algebra over K. Then Rad(A) is the largest
quasi-invertible ideal of A.

Proof By Proposition 3.6.18, all quasi-invertible ideals of A are contained in
Rad(A). Therefore, since Rad(A) is an ideal of A, to conclude the proof it is enough
to show that Rad(A) is a quasi-invertible subset of A. Let y be in A such that there
is no a ∈ A satisfying y + a − ay = 0. Then y /∈ A(1− y) and y becomes a right
modular unit for A(1−y). On the other hand, since A is associative, A(1−y) is a left
ideal of A. It follows from Facts 3.6.3 and 3.6.1(ii)–(iii) that there exists a maximal
modular left ideal M of A such that y /∈ M. Then, clearly, y cannot belong to the
core of M in A, and hence y /∈ Rad(A) (cf. Definition 3.6.12). Therefore, for each
x ∈ Rad(A), there must exist a ∈ A such that x+a−ax = 0. But, by Lemma 3.6.20,
this implies that Rad(A) is a quasi-invertible subset of A, as desired.
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Let A be an algebra over K. There is a lack of symmetry in the definition of Rad(A)
in that it is defined as the intersection of cores of maximal modular left ideals of A.
Thus, in general, we can have Rad(A(0)) 	=Rad(A), where A(0) stands for the opposite
algebra of A (cf. §1.1.36). Even the extreme situation that A is a radical algebra and
A(0) is a primitive algebra may happen, as one can easily realize by choosing A equal
to the real algebra obtained from C after replacing its usual product with the one
� defined by λ � μ := λ̄ μ (see Corollary 3.6.60 below for details). Nevertheless,
algebras such as those in the above example cannot be associative. Indeed, noticing
that (for any choice of A) ideals of A and of A(0) are the same, and that in the
associative case quasi-invertible elements (and hence quasi-invertible subsets) of A
and of A(0) are the same, Theorem 3.6.21 just proved implies the following.

Corollary 3.6.22 Let A be an associative algebra over K. Then

Rad(A(0)) = Rad(A).

Another relevant consequence of Theorem 3.6.21 is the following.

Corollary 3.6.23 Let A be a normed associative algebra over K, and let x be in
Rad(A). Then r(x) = 0.

Proof Suppose first that K = C. Then, by Theorem 3.6.21, x
λ is quasi-invertible

in A for every λ ∈ C \ {0}, and hence sp(A1 ,x) ⊆ {0}. A fortiori, the spectrum
of x relative to the completion of A1 has no nonzero element, and therefore, by
Theorem 1.1.46, we have r(x) = 0, as desired.

Suppose now that K = R, and let α,β be in R such that λ := α+ iβ 	= 0. Then,
since 2αx−x2

|λ |2 lies in Rad(A), Theorem 3.6.21 applies again to obtain that 2αx−x2

|λ |2 is
quasi-invertible in A, and hence that

(x−α1)2 +β 21 (= |λ |21−2αx+ x2)

is invertible in A1 (so also in the completion of A1). It follows from Corollary 1.1.101
that r(x) = 0.

We stop our development of Jacobson’s representation theory for the moment
because we are already provided with enough information about it in order to attack
the proof of the main result in this section.

3.6.2 The main result

Let A be an associative complex algebra, and let ∗ and ‖ · ‖ be a conjugate-linear
involution and a norm, respectively, on (the vector space of) A. If one wants
(A,∗,‖·‖) to be a C∗-algebra, then, according to the current axioms for C∗-algebras,
both ∗ and ‖ · ‖ have to satisfy requirements involving the associative product of A.
As the main result, we will prove in Theorem 3.6.30 how the fact that (A,∗,‖ · ‖)
being a C∗-algebra can be characterized in terms involving only the behaviour of ∗
and ‖ · ‖ on the Jordan algebra Asym.

Lemma 3.6.24 Let A be a non-commutative JB∗-algebra, and let h be in H(A,∗).
Then Lh and Rh belong to H(BL(A), IA).
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Proof Since A1 is a non-commutative JB∗-algebra in a natural manner (cf.
Corollary 3.5.36), and h ∈ H(A1 ,∗), we have LA1

h ,RA1
h ∈ H(BL(A1), IA1 ) (by

Lemmas 2.2.8(iii) and 2.1.10). Therefore, by Lemma 2.2.24, LA
h and RA

h lie in
H(BL(A), IA).

Given an algebra A over K and a subset S of A, we set

LS := {Lx : x ∈ S} and RS := {Rx : x ∈ S}.

Theorem 3.6.25 Let A be an alternative complex ∗-algebra, and assume that Asym

is a JB∗-algebra for a suitable norm ‖·‖ and the given involution ∗. Then A, with the
norm ‖ · ‖ and the involution ∗, is an alternative C∗-algebra.

Proof In view of Facts 3.3.2 and 3.3.4, it is enough to show that ‖ · ‖ is an algebra
norm on A. For a ∈ A, let Da denote the linear operator on A defined by Da(b) :=
[a,b], and let X stand for the complex Banach space consisting of the vector space
of A (equal to that of Asym) and the norm ‖ · ‖. Let h be in H(A,∗). Then, since A
is a flexible algebra, and ∗ is a conjugate-linear algebra involution on A, it follows
from Lemma 2.4.15 that Dh is a derivation of Asym satisfying Dh(b∗) =−Dh(b)∗ for
every b ∈ A. Therefore, since (Asym,‖ ·‖,∗) is a JB∗-algebra, Lemma 3.4.27 applies,
so that we have Dh ∈ H(BL(X), IX ). On the other hand, by Lemma 3.6.24, we also
have LAsym

h ∈ H(BL(X), IX ). It follows that

Lh = LAsym

h +
1
2

Dh ∈ H(BL(X), IX ). (3.6.1)

As a by-product, since A = H(A,∗)+ iH(A,∗), we have that La ∈ BL(X) for every
a ∈ A. Now, since A is an alternative algebra, the mapping a → La from A to BL(X) is
a Jordan homomorphism, and so the closure (say J) in BL(X) of the set CIX +LA is
a closed subalgebra of BL(X)sym. Moreover, by Corollary 2.1.2 and (3.6.1) we have
H(J, IX )⊇ RIX +LH(A,∗), so

H(J, IX )+ iH(J, IX )⊇ CIX +LA,

and so H(J, IX ) + iH(J, IX ) is dense in J. But, by Proposition 2.1.11 and Lemma
3.3.14, H(J, IX )+ iH(J, IX ) is closed in J, so actually we have

J = H(J, IX )+ iH(J, IX ).

Therefore, by the non-associative Vidav–Palmer theorem (Theorem 3.3.11), J is a
JB∗-algebra in a natural way. Now, by (3.6.1), the mapping a → La is an algebra
∗-homomorphism from the JB∗-algebra (Asym,‖ · ‖,∗) to the JB∗-algebra J, and
hence, by Proposition 3.4.4, we have ‖La‖ � ‖a‖ for every a ∈ A or, equivalently,
‖ab‖ � ‖a‖‖b‖ for all a,b ∈ A. Thus ‖ · ‖ is an algebra norm on A, as desired.

Now we are going to refine Theorem 3.6.25 above in the case where the alternative
algebra A is actually associative. To this end, we begin by revisiting Lemma 2.3.71
and Proposition 3.4.55 in Lemmas 3.6.26 and 3.6.27 immediately below.

Lemma 3.6.26 Let A be a norm-unital normed associative complex algebra, and
let a be in A such that a = h + ik for commuting elements h,k ∈ H(A,1). Then
‖a‖ � 2r(a).



434 Concluding the proof of the non-associative Vidav–Palmer theorem

Proof Since h and k remain hermitian in the completion of A (cf. Corollary 2.1.2),
we may assume that A is complete. Then, by Lemma 2.3.71, we have V (a) =
co(sp(a)), and hence, by Theorem 1.1.46, v(a) = r(a). Now the result follows from
Corollary 2.3.5(iii).

Lemma 3.6.27 Let A be a normed non-commutative Jordan complex algebra such
that there exists M > 0 satisfying ‖a‖� Mr(a) for every a ∈ A. Then A is associative
and commutative.

Proof For every a ∈ A we have ‖a‖2 � M2r(a)2 = M2r(a2) � M2‖a2‖. Now apply
Proposition 3.4.55.

Lemma 3.6.28 Let A be an associative complex algebra endowed with a conjugate-
linear involution ∗ satisfying (ab)∗ = a∗b∗ for all a,b ∈ A, and assume that Asym is a
JB∗-algebra for some norm ‖ · ‖ and the given involution ∗. Then A is commutative.

Proof With the notation and arguments at the beginning of the proof of The-
orem 3.6.25, for h ∈ H(A,∗) we have (as there) that Lh = LAsym

h + 1
2 Dh and

LAsym

h ∈ H(BL(X), IX ), but now iDh ∈ H(BL(X), IX ). Let a be in A, and write
a = h+ ik with h,k ∈ H(A,∗). Then we have La = Lh + iLk = F + iG, where

F := LAsym

h + i
2 Dk ∈ H(BL(X), IX) and G := LAsym

k − i
2 Dh ∈ H(BL(X), IX ).

Moreover, since F = 1
2 (La +Ra∗), and G = 1

2i (La −Ra∗), and A is associative, we
get that FG = GF , and hence, by Lemma 3.6.26, we have ‖La‖ � 2r(La). On the
other hand, the associativity of A implies that LA is a subalgebra of BL(X). Since a is
arbitrary in A, it follows from Lemma 3.6.27 that LA is a commutative algebra. Now,
since the mapping x → Lx is an algebra homomorphism from A to LA, the desired
commutativity of A will follow as soon as we prove that this homomorphism has
zero kernel. But, if x is in A with Lx = 0, then UAsym

x (x∗) = xx∗x = Lx(x∗x) = 0, so
‖x‖3 = ‖UAsym

x (x∗)‖= 0 because (Asym,‖ · ‖,∗) is a JB∗-algebra, and so x = 0.

The last ingredient for the proof of the associative refinement of Theorem 3.6.25 is
the following celebrated result of Herstein [320, Theorem H] (included also in [743,
Theorem 3.1]), whose proof will not be discussed here.

Proposition 3.6.29 Surjective Jordan homomorphisms from associative algebras
over K to associative prime algebras over K are either algebra homomorphisms or
algebra antihomomorphisms.

Now the main result in this subsection reads as follows.

Theorem 3.6.30 Let A be an associative complex algebra, and assume that Asym is
a JB∗-algebra for a suitable norm ‖ ·‖ and a suitable involution ∗. Then A, endowed
with the norm ‖ · ‖ and the involution ∗, becomes a C∗-algebra.

Proof In view of Theorem 3.6.25, it is enough to show that ∗ is an algebra involu-
tion on A.

Assume first that A is prime. Then, since ∗ is a conjugate-linear algebra involution
on Asym, the mapping x → x∗ from AR to AR is a surjective Jordan homomorphism.
Therefore, by Proposition 3.6.29, it is either an algebra homomorphism or an algebra
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antihomomorphism. In both cases, keeping in mind Lemma 3.6.28, ∗ becomes an
algebra involution on A, as desired.

Now remove the assumption that A is prime. Let a be in A. With the notation in
the proof of Theorem 3.6.25, we have

La = LAsym

a + 1
2 Da and Ra = LAsym

a − 1
2 Da.

On the other hand, since Da is a derivation of Asym, Lemma 3.4.26 applies, so that we
have Da ∈ BL(X). Since clearly LAsym

a ∈ BL(X), it follows that La,Ra ∈ BL(X). Since
a is arbitrary in A, we realize that the product of A is separately ‖ · ‖-continuous,
and hence, by Proposition 1.1.9, there exists M > 0 such that M‖ · ‖ becomes a
complete algebra norm on A. Let x be in Rad(A). Then, x∗ • x lies in Rad(A), and

hence, by Corollaries 3.6.23 and 1.1.18(i), we have limM
1
n ‖(x∗ • x)n‖ 1

n = 0, so

lim‖(x∗ • x)n‖ 1
n = 0. But, on the other hand, we have ‖(x∗ • x)n‖ = ‖x∗ • x‖n for

every n ∈ N because x∗ • x is a self-adjoint element of the JB∗-algebra Asym, and
Proposition 3.4.1(ii) applies. Therefore x∗ • x = 0, and hence, by (the commutative
version of) Lemma 3.4.65, x = 0. Since x is arbitrary in Rad(A), the above shows that
A is semisimple. Now let P be any primitive ideal of A. Since M‖ · ‖ is a complete
algebra norm on A, Corollary 3.6.13 applies, so that P is ‖ · ‖-closed in A, hence
P is a closed ideal of the JB∗-algebra (Asym,‖ · ‖,∗). By Proposition 3.4.13, P is
∗-invariant, and Asym/P is a JB∗-algebra for the quotient norm and the quotient
involution. Thus, since (A/P)sym = Asym/P, we realize that, replacing ‖·‖ and ∗ with
the corresponding quotient norm and quotient involution, A/P satisfies the properties
required for A in the statement of the theorem, with the advantage now, thanks
to Proposition 3.6.16(i), that A/P is a prime algebra. According to the prime case
already considered, the quotient involution on A/P is an algebra involution, i.e. we
have (ab)∗−b∗a∗ ∈ P for all a,b ∈ A. Since P is an arbitrary primitive ideal of A, and
A is semisimple, we conclude that ∗ is an algebra involution on A, as desired.

Remark 3.6.31 The associative refinement of Theorem 3.6.25 given by The-
orem 3.6.30 does not remain true for general alternative algebras. Indeed, let B
be an alternative C∗-algebra, let F be a Jordan automorphism of B, and let A
stand for the (alternative) complex algebra consisting of the vector space of B and
the product x � y := F−1(F(x)F(y)). Then Asym (= Bsym) is a JB∗-algebra and
therefore, if Theorem 3.6.30 were true for alternative algebras, then we would have
‖F−1(F(x)F(y))‖ = ‖x� y‖ � ‖x‖‖y‖ for all x,y ∈ B. In particular, we could take
F := exp(zD), with z ∈ C and D a Jordan derivation of B, and apply Liouville’s
theorem to get

exp(−zD)(exp(zD)(x)exp(zD)(y)) = xy

for all x,y∈B, obtaining in this way that exp(zD) would be an algebra automorphism
of B, and hence that D would be a derivation of B. Thus all Jordan derivations of B
would be derivations of B, and hence B would be associative (cf. Remark 3.4.29).
But we know the existence of non-associative choices of B (cf. Proposition 2.6.8).

3.6.3 Jacobson’s representation theory continued

Now we retake our development of Jacobson’s representation theory in order to prove
some fundamental results which will be applied later, mainly in Subsection 4.4.4.
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From now until Lemma 3.6.52, A will stand for an associative algebra over K. The
assumed associativity of A is crucial in the proof of the following.

Proposition 3.6.32 We have:

(i) If I is a modular left ideal of A, then the core of I in A coincides with the set of
those elements a ∈ A such that aA ⊆ I.

(ii) If a is in A, and if Aa ⊆ Rad(A), then a lies in Rad(A).

Proof Let I be a modular left ideal of A, and set J := {a ∈ A : aA ⊆ I}. Then J is an
ideal of A containing all ideals of A contained in I. Therefore, to conclude the proof of
assertion (i) it is enough to show that J ⊆ I. But this follows by taking a right modular
unit e ∈ A for I because then, for every a ∈ J, we have a = (a−ae)+ae ∈ I + I ⊆ I.

Let a be in A such that Aa ⊆ Rad(A). Then, by Corollary 3.6.22, we have
aA ⊆ Rad(A), and hence aA is contained in every primitive ideal of A, so also
in every maximal modular left ideal of A. It follows from assertion (i) just proved
that a belongs to every primitive ideal of A, i.e. a lies in Rad(A). Thus assertion (ii)
has been proved.

Assertion (ii) in the above proposition can also be derived from the fact that
Rad(A) is a semiprime ideal of A (cf. Proposition 3.6.16(ii)). Indeed, if I is a
semiprime ideal of A, then, since the set J := {a ∈ A : Aa ⊆ I} is an ideal of A, and
JJ ⊆ I, we have J ⊆ I.

As usual, by a left A-module we mean a vector space X over K endowed with a
bilinear mapping (a,x)→ ax from A×X to X (called the module multiplication of X)
satisfying a(bx) = (ab)x for all a,b ∈ A and x ∈ X .

Definition 3.6.33 Let X be a vector space over K. By a representation of A on X we
mean an algebra homomorphism from A to L(X). Given a representation π of A on X ,
the corresponding left A-module is the vector space X with the module multiplication
defined by

ax = π(a)(x) for all a ∈ A and x ∈ X . (3.6.2)

Conversely, given a left A-module X , the corresponding representation of A on X is
the algebra homomorphism π : A → L(X) defined by (3.6.2).

We shall make frequent use of the simple observation that the kernel of a
representation π is given in terms of the corresponding left A-module X by
ker(π) = {a ∈ A : aX = 0}.

Let X be a left A-module. By an A-submodule of X we mean a subspace Y of
X such that AY ⊆ Y . We remark that, given an A-submodule Y of X , the quotient
vector space X/Y naturally becomes a left A-module under the (well-defined) module
multiplication given by a(x+Y ) := ax+Y .

Example 3.6.34 If we take X = A as a vector space over K, then X becomes a
left A-module under the module product ax as defined in the algebra A. This left
A-module is called the regular left A-module. Clearly, the A-submodules of the regu-
lar left A-module are precisely the left ideals of A. Therefore, given a left ideal I of A,
the quotient vector space A/I becomes naturally a left A-module. We will refer to it
as the standard left A-module A/I. The corresponding representation is called the left
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standard representation of A on A/I. It is clear that the kernel of this representation
is the set {a ∈ A : aA ⊆ I}.

Definition 3.6.35 By an irreducible left A-module we mean a left A-module X with
no nonzero proper A-submodule and such that AX 	= 0. A representation of A is
irreducible if the corresponding left A-module is irreducible.

Let x0 be an element of a left A-module X . We denote by ker(x0) the left ideal of
A given by ker(x0) := {a ∈ A : ax0 = 0}. We say that x0 is a cyclic vector if Ax0 = X .
We denote by id(x0) the subset of A given by

id(x0) := {e ∈ A : ex0 = x0}.

Propositions 3.6.36 and 3.6.37 immediately below show how irreducible repre-
sentations are related to maximal modular left ideals.

Proposition 3.6.36 Let X be a left A-module and let x0 be in X \{0}. We have:

(i) Each element of id(x0) is a right modular unit for the left ideal ker(x0).
(ii) If x0 is a cyclic vector, then id(x0) is non-empty and ker(x0) is a modular left

ideal of A.
(iii) If X is irreducible, then x0 is a cyclic vector and ker(x0) is a maximal modular

left ideal of A.

Proof Assertion (i) is straightforward.
Assume that x0 is cyclic. Then, since Ax0 =X , there exists e∈A such that ex0 = x0.

Therefore, by assertion (i), e becomes a right modular unit for ker(x0). This proves
assertion (ii).

Assume that X is irreducible. Then, since Ax0 is an A-submodule of X , and X has
no nonzero proper A-submodules, we have either Ax0 = 0 or Ax0 = X . If Ax0 = 0,
then Y := {x ∈ X : Ax = 0} is a nonzero A-submodule of X , and so Y = X . But
this is impossible because AX 	= 0. Therefore Ax0 = X , and hence x0 is cyclic. By
assertion (ii), ker(x0) is a modular left ideal of A. Let I be a left ideal of A with
ker(x0) � I. Then Ix0 is an A-submodule of X , and Ix0 	= 0. Therefore Ix0 = X , and
hence there exists e ∈ I∩ id(x0). By assertion (i), e is a right modular unit for ker(x0)

and therefore also for I (cf. Fact 3.6.1(ii)). But then, since e ∈ I, we have I = A
(cf. Fact 3.6.1(iii)). This proves assertion (iii).

Proposition 3.6.37 Let I be a proper modular left ideal of A, let e ∈ A be a right
modular unit for I, let X denote the standard left A-module A/I (cf. Example 3.6.34),
and set x0 := e+ I ∈ X. We have:

(i) x0 is a cyclic vector and ker(x0) = I.
(ii) If I is actually a maximal modular left ideal, then X is irreducible.

Proof Let φ : A → X := A/I stand for the natural quotient mapping. For every
a ∈ A we have a − ae ∈ I, so φ(a) − ax0 = φ(a − ae) = 0, and so X = Ax0

because φ is surjective. If a ∈ ker(x0), then φ(ae) = ax0 = 0, and so ae ∈ I. But then
a = (a − ae) + ae ∈ I + I ⊆ I. Therefore ker(x0) ⊆ I. Conversely, if a ∈ I, then
ax0 = ae+ I = a− (a−ae)+ I = a+ I = 0, hence a ∈ ker(x0). Thus assertion (i) is
proved.
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Let Y be a nonzero A-submodule of X , and set J := {a ∈ A : φ(a) ∈ Y}. Then J
is a left ideal of A with I � J. Therefore, if I is maximal, then we have J = A, so
φ(a) ∈ Y for every a ∈ A, and so Y = X . Since AX = X (by assertion (i)) and X 	= 0,
the above proves assertion (ii).

Now we can prove the main result in this subsection.

Theorem 3.6.38 We have:

(i) Primitive ideals of A coincide with kernels of irreducible representations of A.

(ii) Each primitive ideal of A is the intersection of the maximal modular left ideals
of A containing it.

(iii) Rad(A) is the intersection of the maximal modular left ideals of A.

(iv) Rad(A) is the intersection of the maximal modular right ideals of A.

(v) Rad(A) is the largest quasi-invertible left ideal of A.

(vi) Rad(A) is the largest quasi-invertible right ideal of A.

(vii) Rad(A) coincides with the set of those elements a ∈ A such that Aa is a quasi-
invertible subset of A.

(viii) Rad(A) coincides with the set of those elements a ∈ A such that aA is a quasi-
invertible subset of A.

Proof Let P be a primitive ideal of A. By definition, there exists a maximal modular
left ideal I of A such that P is the core of I in A. Therefore, by Proposition 3.6.32(i),
we have that P= {a∈A : aA⊆ I}. But, as proved in Example 3.6.34, {a∈A : aA⊆ I}
is the kernel of the left standard representation of A on A/I, and moreover, by
Proposition 3.6.37(ii), this representation is irreducible. Thus P becomes the kernel
of an irreducible representation of A. Conversely, let now P be the kernel of some
irreducible representation π of A. Let X stand for the corresponding irreducible left
A-module, and take x0 ∈ X \ {0}. Then, by Proposition 3.6.36(iii), we have that
Ax0=X and that I := ker(x0) is a maximal modular left ideal of A. Therefore, since

aX = 0 ⇐⇒ aAx0 = 0 ⇐⇒ aA ⊆ ker(x0) = I,

and P = ker(π) = {a ∈ A : aX = 0}, we derive from Proposition 3.6.32(i) that P is
the core of the maximal modular left ideal I, and hence that P is a primitive ideal
of A. Thus assertion (i) has been proved.

Let P be a primitive ideal of A. By assertion (i), there exists an irreducible left
A-module X such that P = {a ∈ A : aX = 0}. This shows that

P =
⋂
{ker(x) : x ∈ X \{0}},

and, by Proposition 3.6.36(iii), each ker(x) with x ∈ X \ {0} is a maximal modular
left ideal of A. This proves assertion (ii).

Assertion (iii) follows from assertion (ii) and the definition of Rad(A).
By Theorem 3.6.21, Rad(A) is a quasi-invertible left ideal of A. Therefore, to

conclude the proof of assertion (v) it is enough to show that every quasi-invertible left
ideal of A is contained in Rad(A). But this follows from assertion (iii) by invoking
Lemma 3.6.17.
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Let a be in Rad(A). Then Aa ⊆ Rad(A), and hence, by Theorem 3.6.21, Aa is
a quasi-invertible subset of A. Conversely, let a be in A such that Aa is a quasi-
invertible subset of A. Then, since Aa is a left ideal of A, it follows from assertion (v)
that Aa ⊆ Rad(A). But then, by Proposition 3.6.32(ii), we have a ∈ Rad(A). Thus
assertion (vii) has been proved.

Finally, assertions (iv), (vi), and (viii) follow from assertions (iii), (v), and (vii),
respectively, by invoking the symmetry of the radical given by Corollary 3.6.22.

Let X and Y be left A-modules. By a module homomorphism from X to Y we mean
a linear mapping Φ : X → Y satisfying Φ(ax) = aΦ(x) for all a ∈ A and x ∈ X . We
say that X and Y are isomorphic if there is a bijective module homomorphism from
X to Y . The centralizer set for the left A-module X is defined as the set of all module
homomorphisms from X to X . Clearly, the centralizer set for X is a full subalgebra
of L(X) containing IX .

Proposition 3.6.39 Let X be an irreducible left A-module. Then we have:

(i) The centralizer set for X is a division algebra.

(ii) X is isomorphic to the standard left A-module A/I for some maximal modular
left ideal I of A.

Proof To prove assertion (i) it is enough to show that every nonzero operator in
the centralizer set for X is bijective. But, if T is such an operator, then ker(T ) and
T (X) are A-submodules of X with ker(T ) 	= X and T (X) 	= 0, so that ker(T ) = 0 and
T (X) = X because X is irreducible.

Take x0 ∈ X \ {0}, and set I := ker(x0). By Proposition 3.6.36(iii), we have that
Ax0 = X and that I is a maximal modular left ideal of A. If a,b are in A with a−b ∈ I,
then ax0 = bx0 by the definition of I. Therefore Φ : a+ I → ax0 becomes a well-
defined mapping from A/I to X , and it is easily realized that Φ is in fact a surjective
module homomorphism from the standard left A-module A/I to X . Moreover Φ is
injective because ker(Φ) is a submodule of X , ker(Φ) 	=X , and X is irreducible. Thus
assertion (ii) has been proved.

Now we will deal with some applications of the material included so far in this
subsection to the case of normed algebras. We begin with the following.

Example 3.6.40 Let X be a nonzero normed space over K, and let A be a subalge-
bra of L(X) containing the space F(X) of all finite-rank operators on X (cf. §1.4.12).
We claim that the inclusion A ↪→ L(X) is an irreducible representation of A. Indeed,
let Y be a nonzero submodule of the left A-module corresponding to the representa-
tion A ↪→ L(X). By taking y ∈ Y and f ∈ X ′ with f (y) = 1, for every x ∈ X we have
x⊗ f ∈ A and then x = (x⊗ f )(y) ∈ Y , hence Y = X . Now that the claim has been
proved, we note that, by Theorem 3.6.38(i), A is a primitive algebra. Therefore, by
letting A run over the family of all subalgebras of BL(X) containing F(X), we are
provided with abundant examples of normed primitive algebras over K. In particular,
BL(X), F(X), and the algebra K (X) (of all compact operators on X) become normed
primitive algebras over K.
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§3.6.41 We denote by q-Inv(A) the set of all quasi-invertible elements of A.
A subalgebra B of A is said to be a quasi-full subalgebra of A if, whenever b is
in B ∩ q-Inv(A), the quasi-inverse of b in A lies in B. It is easy to realize that a
subalgebra B of A is a quasi-full subalgebra of A if and only if B1 is a full subalgebra
of A1 in the sense of Definition 1.1.72. We say that A is a normed Q-algebra if A is
normed and q-Inv(A) is a neighbourhood of zero in A. If A is normed and unital, then,
clearly, A is a normed Q-algebra if and only if Inv(A) is a neighbourhood of 1 in A.

Example 3.6.42 Assume that A is complete normed. Then A is a normed Q-algebra.
Actually A satisfies the apparently stronger condition that q-Inv(A) is open in A. For
q-Inv(A) is the inverse image of Inv(A1) under the continuous mapping a → 1− a
from A to A1 , and Inv(A1) is open in A1 in view of Theorem 1.1.23.

Proposition 3.6.43 Assume that A is normed. Then the following conditions are
equivalent:

(i) A is a normed Q-algebra.
(ii) Every element a ∈ A with r(a)< 1 is quasi-invertible in A.

(iii) Every element a ∈ A with ‖a‖< 1 is quasi-invertible in A.
(iv) Maximal modular left ideals of A are closed in A.
(v) The closure in A of each proper modular left ideal of A is a proper left ideal

of A.
(vi) A is a quasi-full subalgebra of its completion.

(vii) A is a quasi-full subalgebra of some complete normed associative algebra
over K.

(viii) q-Inv(A) is open in A.

Moreover, if K= C, then the above conditions are equivalent to

(ix) r(a) = sup{|λ | : λ ∈ sp(A1 ,a)} for every a ∈ A.

Proof The implications (ii)⇒(iii), (vi)⇒(vii), and (viii)⇒(i) are clear.
(i)⇒(ii) By assumption (i), there exists δ > 0 such that x is quasi-invertible in A

whenever x is in A with ‖x‖< δ . Let a be in A such that r(a)< 1. Then an → 0 (cf.
Corollary 1.1.18(ii)), and hence there exists n ∈N such that ‖an‖< δ , which implies
that an is quasi-invertible in A. Now we have 1 /∈ sp(A1 ,an), which implies (in view
of Proposition 1.3.4(i)) that 1 /∈ sp(A1 ,a). Thus a is quasi-invertible in A.

(iii)⇒(iv) Assume that condition (iv) is not fulfilled. Then there exists a maximal
modular left ideal I of A such that Ī = A. Therefore, taking a right modular unit e ∈ A
for I, there is x ∈ I with ‖e− x‖ < 1. Thus, if condition (iii) were fulfilled, e− x
would have a quasi-inverse y in A, and we would have

e = x− y+ y(e− x) = x− yx− (y− ye) ∈ I,

contradicting Fact 3.6.1(iii).
(iv)⇒(v) Let I be a proper modular left ideal of A. By Fact 3.6.3, there is a

maximal modular left ideal J of A containing I, and, by the assumption (iv), J is
closed in A. Therefore Ī ⊆ J, which implies that Ī is proper.

(v)⇒(vi) Let Â stand for the completion of A, and let x be in A∩q-Inv(Â). Then
1− x belongs to Inv(Â1), so the operator of right multiplication by 1− x on Â1 is a
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homeomorphism, and so A1(1− x) is dense in Â1 . Therefore, given z ∈ A, there are
sequences αn and zn in K and A, respectively, such that lim(αn1+ zn)(1− x) = z.
But, since (αn1+zn)(1−x) = αn1+zn−αnx−znx and zn−αnx−znx ∈ A for every
n ∈ N, and the sum A1 =K1⊕A is topological, we get that αn → 0 and then that

zn(1− x) = zn − znx −→ z.

Hence A(1− x) is dense in A. Since A(1− x) is a modular left ideal of A, it
follows from assumption (v) that A(1− x) = A, and hence there is y ∈ A satisfying
y(1− x) =−x. Now, if x! denotes the quasi-inverse of x in Â, we have in Â1 that

x! =−x+ xx! =−x(1− x!) =−x(1− x)−1 = y ∈ A.

(vii)⇒(viii) Assume that there is a complete normed associative algebra B over
K containing A as a quasi-full subalgebra. Then q-Inv(A) = A∩ q-Inv(B) and, as
pointed out in Example 3.6.42, q-Inv(B) is open in B. Therefore q-Inv(A) is open
in A.

Now that the equivalence of conditions (i)–(viii) has been proved, suppose that
K= C.

(vii)⇒(ix) Assume that there is a complete normed associative algebra B over
K containing A as a quasi-full subalgebra, and let a be in A. Then A1 is a full
subalgebra of B1 , and hence sp(A1 ,a) = sp(B1 ,a). On the other hand, we have
r(a) = sup{|λ | : λ ∈ sp(B1 ,a)} thanks to Theorem 1.1.46. It follows that
r(a) = sup{|λ | : λ ∈ sp(A1 ,a)}.

(ix)⇒(ii) Let a be in A with r(a) < 1. By the assumption (ix), we have that 1 /∈
sp(A1 ,a), so 1−a ∈ Inv(A1), and so a ∈ q-Inv(A).

Now the proof of the proposition is complete.

Corollary 3.6.44 Assume that A is a normed Q-algebra, and let X be an irreducible
left A-module. Then we have:

(i) X can be endowed with a norm ‖ · ‖ satisfying ‖ax‖ � ‖a‖‖x‖ for all a ∈ A and
x ∈ X, and such that the centralizer set for X consists only of ‖ · ‖-continuous
operators.

(ii) The centralizer set for X is isomorphic to R,C, or H if K=R, and to C if K=C.

Proof In view of Proposition 3.6.39(ii), we may assume that X equals the stand-
ard left A-module A/I for some maximal modular left ideal I of A. Then, by
the implication (i)⇒(iv) in Proposition 3.6.43, I is closed in A, so that we can
consider the quotient norm ‖ · ‖ on A/I, and we easily realize that the inequality
‖a(b+ I)‖� ‖a‖‖b+ I‖ holds for all a,b ∈ A. Let T be in the centralizer set for A/I.
Then, taking a right modular unit e∈A for I, for every a∈A we have a+I = a(e+I),
and hence

‖T (a+ I)‖= ‖T (a(e+ I))‖= ‖aT (e+ I)‖ � ‖a‖‖T (e+ I)‖,

which implies that ‖T (a + I)‖ � ‖a + I‖‖T (e + I)‖, and hence that T is
‖ · ‖-continuous. This concludes the proof of assertion (i). Assertion (ii) follows
from assertion (i), Proposition 3.6.39(i), and the Gelfand–Mazur theorem (cf.
Proposition 2.5.40 and Corollary 1.1.43).
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Keeping in mind Example 3.6.42, the proof of the above corollary yields the
following.

Fact 3.6.45 Assume that A is complete normed, and let X be an irreducible left
A-module. Then X can be endowed with a complete norm ‖ · ‖ satisfying

‖ax‖ � ‖a‖‖x‖ f or all a ∈ A and x ∈ X ,

and such that the centralizer set for X consists only of ‖ · ‖-continuous operators.

Corollary 3.6.46 Assume that A is a normed Q-algebra. Then

Rad(A) = {x ∈ A : r(ax) = 0 for every a ∈ A}

= {x ∈ A : r(xa) = 0 for every a ∈ A}.

Proof Let x be in Rad(A). Then, for every a ∈ A, both ax and xa lie in Rad(A),
and hence, by Corollary 3.6.23, we have r(ax) = r(xa) = 0. Conversely, let x be in A
such that r(ax) = 0 (respectively, r(xa) = 0) for every a∈ A. Then, by the implication
(i)⇒(ii) in Proposition 3.6.43, ax (respectively, xa) is quasi-invertible in A for every
a∈ A. It follows from assertion (vii) (respectively, assertion (viii)) in Theorem 3.6.38
that x lies in Rad(A).

The next result follows straightforwardly from Corollaries 1.1.115, 3.6.23, and
3.6.46.

Corollary 3.6.47 Assume that A is a commutative normed Q-algebra. Then

Rad(A) = {x ∈ A : r(x) = 0}.

Now we are going to prove the Kleinecke–Shirokov and Singer–Wermer theorems.

Lemma 3.6.48 Let a be in A, let D be a derivation of A such that D2(a) = 0, and
let n be in N. Then we have:

(i) Dn+1(an) = 0.

(ii) Dn(an) = n!(D(a))n.

Proof Assertion (i) is true for n = 1 because of the assumption D2(a) = 0. Assume
that it is true for some n. Then, by the Leibnitz rule and the assumption D2(a) = 0,
we have

Dn+2(an+1) = Dn+2(aan) = aDn+2(an)+(n+2)D(a)Dn+1(an) = 0.

Assertion (ii) is clearly true for n = 1. Assume that it is true for some n. Then, by
the Leibnitz rule, the assumption D2(a) = 0, and assertion (i), we have

Dn+1(an+1) = aDn+1(an)+(n+1)D(a)Dn(an) = (n+1)!(D(a))n+1.

Proposition 3.6.49 (Kleinecke–Shirokov) Assume that A is normed, and let a,b be
in A such that [b, [b,a]] = 0. Then r([b,a]) = 0.
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Proof Let D stand for the continuous derivation of A defined by D(x) := [b,x]. By
the assumption, we have D2(a) = 0. Therefore, by Lemma 3.6.48(ii), for n ∈ N we
have Dn(an) = n!(D(a))n, and hence

‖[b,a]n‖= ‖(D(a))n‖ � ‖D‖n‖a‖n

n!
.

The result now follows by taking nth roots and letting n → ∞.

Corollary 3.6.50 Assume that A is normed, let a be in A, and let D be a con-
tinuous Jordan derivation of A such that [a,D(a)] belongs to the centre of A. Then
r(D(a)) = 0.

Proof For x ∈ A, let L•
x stand for the multiplication operator by x on Asym. Then,

by Lemma 2.4.7, we have [D,L•
a] = L•

D(a). On the other hand, in view of the identity
(3.1.9) in the proof of Lemma 3.1.53, the assumption that [a,D(a)] belongs to the
centre of A reads as that [L•

a,L
•
D(a)] = 0. It follows that [L•

a, [L
•
a,D]] = 0 in the normed

algebra BL(A). Therefore, by Proposition 3.6.49, we have r(L•
D(a)) = r([D,L•

a]) = 0.
Now the proof is concluded by noticing that, for every x ∈ A, the inequality
r(x) � r(L•

x) holds. Indeed, for n ∈ N, we have xn+1 = (L•
x)

n(x), and hence

r(x) = lim‖xn+1‖ 1
n � lim‖(L•

x)
n‖ 1

n ‖x‖ 1
n = r(L•

x).

The next result follows straightforwardly from Corollaries 3.6.47 and 3.6.50.

Proposition 3.6.51 (Singer–Wermer) Assume that A is a commutative normed
Q-algebra, and let D be a continuous derivation of A. Then the range of D is
contained in Rad(A).

Lemma 3.6.52 Let X be a left A-module. Assume that A is normed, that there is
a norm ‖ · ‖ on X satisfying ‖ax‖ � ‖a‖‖x‖ for all a ∈ A and x ∈ X, and that there
exists a cyclic vector x0 in X. Then an algebra norm can be built on the centralizer
set for X.

Proof Let D stand for the centralizer set for X , for F ∈ D set |F | := ‖F(x0)‖, and
note that, if |F |= 0, then F(x0) = 0, so F(X) = F(Ax0) = AF(x0) = 0, hence F = 0.
Then it becomes clear that | · | becomes a norm on the vector space of D . Since for
any fixed element F ∈ D there exists a ∈ A with ax0 = F(x0), for every G in D

we have

|G◦F |= ‖(G◦F)(x0)‖= ‖G(ax0)‖= ‖aG(x0)‖ � ‖a‖‖G(x0)‖= ‖a‖|G|,

and hence the mapping ΘF : G → G ◦F is a bounded linear operator on (D , | · |).
If for F in D we define |||F ||| to be the operator norm of ΘF as a bounded linear
operator on (D , | · |), then ||| · ||| becomes an algebra norm on D , as required.

§3.6.53 Let A be a (possibly non-associative) algebra over K. The subalgebra
of L(A) generated by the set of all left and right multiplication operators on A is
called the multiplication ideal of A, and is denoted by M �(A). Thinking about the
representation M �(A) ↪→ L(A) of M �(A) on the vector space of A, we can see A as
a left M �(A)-module in a natural way. Then, clearly, the ideals of A are precisely
the M �(A)-submodules of A, and the centroid of A coincides with the centralizer
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set (say D) for the M �(A)-module A. Therefore, if A has zero annihilator, then,
by Proposition 1.1.11(i), D is a commutative algebra. Moreover, if A is actually
semiprime, then the minimal ideals of A (cf. Definition 2.5.6) are precisely the
irreducible M �(A)-submodules of A.

Lemma 3.6.54 Let A be a prime algebra over K, and let X be a minimal ideal
of A. Then X is the smallest nonzero ideal of A. Moreover, regarding X as a left
M �(A)-module, the centralizer set for X is isomorphic to the extended centroid of A.

Proof Let I be a nonzero ideal of A. Then X ∩ I is an ideal of A contained in X ,
so either X ∩ I = X or X ∩ I = 0. Since the latter possibility is prohibited by the
primeness of A, we have that X ⊆ I. Thus X becomes the smallest nonzero ideal of A.

Let C and D stand for the set of all partially defined centralizers on A and for
the centralizer set for X , respectively. It is clear that each F ∈ D can be regarded
as an element of C . Moreover, denoting by F̂ the equivalence class in C containing
F (cf. Lemma 2.5.42), we realize that the mapping F → F̂ becomes an injective
algebra homomorphism from D to the extended centroid of A. Let f be a nonzero
partially defined centralizer on A. Then, by the first paragraph of the proof, we have
X ⊆ dom( f ) and X ⊆ f (X). The inclusion X ⊆ dom( f ) allows us to consider the
mapping x → f (x), from the left M �(A)-module X onto the left M �(A)-module
f (X), which becomes a nonzero module homomorphism, and hence a module iso-
morphism because X is an irreducible left M �(A)-module. As a consequence, f (X)

is an irreducible left M �(A)-module, so we have X = f (X) because of the inclusion
X ⊆ f (X). Therefore, the restriction of f to X (say F) can be regarded as an element
of D , which clearly verifies f ∈ F̂ . Since f is an arbitrary nonzero partially defined
centralizer, we conclude that the mapping F → F̂ is surjective, and so the proof is
complete.

Proposition 3.6.55 Let A be a normed prime algebra over K with a minimal ideal.
Then the extended centroid of A is isomorphic to R or C if K=R, and to C if K=C.

Proof Let X stand for the minimal ideal of A whose existence has been assumed.
Then X becomes an irreducible left M �(A)-module. Therefore, keeping in mind
Proposition 3.6.36(iii) and that M �(A) is a normed algebra (as a subalgebra of
BL(A)), it follows from Lemma 3.6.52 that an algebra norm can be built on the
centralizer set (say D) for the left M �(A)-module X . Since D is isomorphic to
CA (by Lemma 3.6.54) and CA is a field extension of K (by Proposition 2.5.44), we
derive from the Gelfand–Mazur theorem (cf. Proposition 2.5.40 and Corollary 1.1.43)
that CA is isomorphic to R or C if K= R, and to C if K= C.

Keeping in mind Remark 2.5.45, Proposition 3.6.55 above yields the following.

Corollary 3.6.56 Let A be a normed simple algebra over K. Then the centroid of
A is isomorphic to R or C if K= R, and to C if K= C.

3.6.4 Historical notes and comments

Proposition 3.6.2 and Corollary 3.6.13 first appear (somewhat implicitly) in [165,
Lemmas 1 and 4] with a different proof. The paternity of results from The-
orems 3.6.7–3.6.9 is the same as that of their unital forerunners (cf. §§1.1.118
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and 1.1.119). The associative forerunner of assertion (i) in Proposition 3.6.11 (that
closed ‘Jordan’ ideals of C∗-algebras are ideals) is due to Civin and Yood [175],
whereas the actual version is taken from [481]. Assertion (ii) in that proposition
is new.

According to Lam [766, p. 48],

The notion of the radical was a direct outgrowth of the notion of semisimplicity. It may be
somewhat surprising, however, to remark that the radical was studied first in the context of
nonassociative rings (namely finite-dimensional Lie algebras) rather than associative rings.
In the work of E. Cartan [[159]], the radical of a finite-dimensional Lie algebra A (say
over C) is defined to be the maximal solvable ideal of A. The Lie algebra A is semisimple
iff its radical is zero, i.e. iff it has no nonzero solvable ideals. Cartan characterized the
semisimplicity of a Lie algebra in terms of the nondegeneracy of its Killing form, and
showed that any semisimple Lie algebra is a finite direct sum of simple Lie algebras.
Moreover, he classified the finite-dimensional simple Lie algebras (over C). Therefore, the
structure theory of finite-dimensional semisimple Lie algebras is completely determined.

For a detailed history of radicals for associative algebras, we refer the reader to
Palmer’s book [786, 4.8.1]. Concerning the Jacobson radical, we reproduce Palmer’s
words in [786, p. 506]:

Sam Perlis [490] showed that the nil radical of a finite-dimensional algebra is the largest
quasi-regular ideal [quasi-invertible ideal in our terminology] of the algebra. Baer [50]
introduced the term ‘quasi-regular ideal’ and showed that in any ring the sum of all quasi-
regular ideals is a quasi-regular ideal, and that the quotient modulo this ideal has no nonzero
quasi-regular ideals. However, Nathan Jacobson [345], in a paper the great importance of
which was immediately recognized, showed that a significant theory could be based on
the use of this ideal as a radical. Indeed, except for the role played by modular ideals,
Jacobson’s original paper, together with his paper [346], contains the complete theory very
much as it is known today. Jacobson noted that his radical agrees with the nil-radical in
rings satisfying the descending chain condition on left ideals, and agrees with the Gelfand
radical [the strong radical in our terminology] for commutative Banach algebras.

Several of the results on the Jacobson radical were obtained independently and simultan-
eously by Max Zorn and Einar Hille, cf. [745, pp. 475–6]. Hille has access to preliminary
versions of Irving E. Segal’s paper [560] in which modular ideals were first defined (with
the name regular ideals). He seems to have been the first mathematician to recognize the
important connections between modular ideals and the theory of the Jacobson radical. Most
of these connections are presented in his book [745]. However, an exposition of the theory
containing all elements of our present day theory does not seem to have been given until
the book of Jacobson [753].

Results from Proposition 3.6.14 to Corollary 3.6.22 and from Propositions 3.6.32
to 3.6.39 are essentially due to Jacobson [344, 345], although we have been helped
by the development done in the Bonsall–Duncan book [696, Sections 24–5]. The
actual (non-associative) versions of Propositions 3.6.14 and 3.6.18, as well as the
(non-associative) argument in the proof of Lemma 3.6.17, are taken from [516],
whereas the actual (non-associative) version of Proposition 3.6.16 seems to us to be
new. Corollary 3.6.23 has been taken from [696, Proposition 25.1(i) and Remark (1)
that follows]. Assertion (i) in Proposition 3.6.39 is known as Schur’s lemma [559].
Although elementary, it becomes an extremely useful statement in representation
theory of groups and algebras. An outstanding sample of its usefulness is the
so-called Jacobson density theorem [344, Theorem 6] (see also [753, p. 28]), which
reads as follows.
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Theorem 3.6.57 Let A be an associative algebra over K, let X be an irreducible left
A-module, and let D stand for the centralizer set for X (which, by Schur’s lemma, is
a division algebra over K). If x1, . . . ,xn are linearly D-independent vectors of X and
if y1, . . . ,yn are arbitrary vectors in X, then there exists a ∈ A such that axi = yi for
every i = 1, . . . ,n.

Proof (Rowen [545]) We proceed by induction. The theorem is true if n = 1(cf.
Proposition 3.6.36(iii)); assume the theorem holds for n − 1, and let x1, . . . ,xn

be linearly D-independent vectors of X . Note that, by the universal property of
the unital extensions, X becomes an irreducible left A1-module for the module
action defined by (λ1+ a)x = λx+ ax, and that the centralizer set for X as a left
A1-module coincides with D . Let Xn−1 stand for the left A1-module direct product
of n− 1 copies of X . By the induction hypothesis, we have Xn−1 = A(x1, . . . ,xn−1)

so, a fortiori, Xn−1 = A1(x1, . . . ,xn−1). We claim that there exists bn ∈ A1 such that
bnxn 	= 0 and bnxi = 0 for all i 	= n. Otherwise the mapping φ : A1(x1, . . . ,xn−1)→ X
given by

φ(b(x1, . . . ,xn−1)) = bxn (3.6.3)

would be a well-defined module homomorphism from Xn−1 to X . But it is clear that,
if ψ is any module homomorphism from Xn−1 to X , and if Ii denotes the natural
imbedding from X into the ith coordinate of Xn−1, then ψi := ψ ◦ Ii is an element of
D , and that for each (y1, . . . ,yn−1) ∈ Xn−1 we have ψ(y1, . . . ,yn−1) = ∑n−1

i=1 ψi(yi).
Therefore, by taking b = 1 in (3.6.3), we would have xn = φ(x1, . . . ,xn−1) =

∑n−1
i=1 φi(xi), contrary to the assumption that x1, . . . ,xn are linearly D-independent.

Now that the claim is proved, by symmetry, for each j with 1 � j � n there exists
b j ∈ A1 such that b jx j 	= 0 and b jxi = 0 for all i 	= j. Since X is irreducible, given
arbitrary vectors y1, . . . ,yn in X , for each j with 1 � j � n there is a j ∈ A such that
a jb jx j = y j. By setting a :=∑n

j=1 a jb j ∈ A, we have axi = aibixi = yi for each i.

§3.6.58 Theorem 3.6.21 (that the radical of any associative algebra is the largest
quasi-invertible ideal) remains true for alternative algebras. The history of this result
is the following. Let A be an alternative algebra over K. In 1948, Smiley [588]
showed that there exists a quasi-invertible ideal of A which contains all quasi-
invertible one-sided ideals of A (compare assertions (v) and (vi) in Theorem 3.6.38).
This largest quasi-invertible ideal is known in the literature as the Smiley radical
of A. Later, in 1955, Kleinfeld [390] showed that Rad(A) is the intersection of the
maximal modular left ideals of A, as well as the intersection of the maximal modular
right ideals of A (compare assertions (iii) and (iv) in Theorem 3.6.38), that the
Smiley radical of A is contained in Rad(A) (a consequence of Proposition 3.6.18),
and that the quotient algebra A/Rad(A) is a subdirect sum of primitive associative
algebras and of eight-dimensional unital composition algebras over a field extension
of K (cf. Proposition 2.5.21). Because of the relevance of the results in [390], in the
alternative setting we are considering, Rad(A) is known as the Kleinfeld radical of A.
Finally, in 1969, Zhevlakov [667] showed that the inclusion of the Smiley radical in
the Kleinfeld radical is in fact an equality. All these results are included with proof
in [822, Chapter 10], whose authors propose the name Zhevlakov’s radical to refer
to the common value of the Kleinfeld and Smiley radicals.
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The asymmetry of the radical for general non-associative algebras, discussed im-
mediately before Corollary 3.6.22, is clarified in what follows.

Fact 3.6.59 Let A be a nonzero (complete normed) algebra over K. We have:

(i) If A is non-radical and has no nonzero (closed) proper left ideal, then A has a
right unit.

(ii) If A has a right unit and has no nonzero (closed) proper ideal, then A is a
primitive algebra.

(iii) If A has a left unit, has no right unit, and has no nonzero (closed) proper left
ideal, then A is a radical algebra, whereas A(0) is a primitive algebra.

Proof Assume that A is non-radical. Then there exists a maximal modular left ideal
of A, (which, by Corollary 3.6.4, must be closed in A). Therefore, if in addition A
has no nonzero (closed) proper left ideal, then zero is a modular left ideal of A, and
each right modular unit for zero in A becomes a right unit for A. Thus assertion (i)
has been proved.

Assume that A has a right unit e. Then e becomes a right modular unit for every
subspace of A, in particular for zero. As a consequence, since zero is a left ideal
of A, Fact 3.6.3 applies, so that there exists a maximal modular left ideal M of A,
(the core of which must be closed in A in view of Corollary 3.6.13). Therefore, if
in addition A has no nonzero (closed) proper ideal, then zero is the core of M, and
hence a primitive ideal of A. Thus assertion (ii) has been proved.

Assertion (iii) follows from assertions (i) and (ii), the latter with A(0) instead
of A.

Invoking assertion (iii) in Fact 3.6.59 just proved, and the non-commutative
Urbanik–Wright theorem (the implication (i)⇒(iii) in Theorem 2.6.21), we derive
the following.

Corollary 3.6.60 The situation that A is a radical algebra and that A(0) is a
primitive algebra occurs if A is equal to ∗C, ∗H, or ∗O (in the sense of the paragraph
immediately after Proposition 2.8.81), as well as if A is any complete absolute-valued
infinite-dimensional real algebra with a left unit and with no nonzero closed proper
left ideal (the existence of which is assured by Theorem 2.7.68).

By the way, combining assertion (i) in Fact 3.6.59 and the non-commutative
Urbanik–Wright theorem, we obtain that R, C, H, and O are the unique (complete)
absolute-valued real algebras with no nonzero (closed) proper one-sided ideal and
such that both they and their opposite algebras are non-radical.

Theorems 3.6.25 and 3.6.30, as well as Remark 3.6.31, are due to Rodrı́guez
[518], whose arguments have been reproduced almost verbatim. Theorem 3.6.25 had
been previously proved by Braun [125] under the additional assumptions that the
algebra A in the theorem is unital and that the product of A is continuous. Anyway,
Braun’s arguments in [125] were different from ours. Lemma 3.6.26 is taken from
[695, Lemma 25.1], whereas Lemma 3.6.27 is taken from [514]. The associative
forerunner of Lemma 3.6.27 (which in fact is the version applied in our development)
can be seen in [696, Corollary 15.7]. Lemma 3.6.28 contains an argument in the proof
of [482, Proposition 2.3].
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§3.6.61 Associative normed Q-algebras are nothing other than particular cases of
certain topological rings, namely the so-called ‘Q-rings’, whose study goes back
to Kaplansky [372]. Since then, associative normed Q-algebras have seldom been
studied. Exceptions are Yood’s relevant papers [646, 648], and Palmer’s approach
in terms of the so-called ‘spectral algebras’ (see [478] and [786, Chapter 2]). With
Palmer’s terminology, Proposition 3.6.43 can be found in [786, Theorem 2.2.5, Cor-
ollary 2.4.8, and Proposition 2.5.15]. Our proof follows the Yood–Palmer arguments,
together with the adaptation to the associative setting of some ideas in the non-
associative approach to normed Q-algebras done in [488] (see §4.4.71 below). A
nice characterization of associative normed Q-algebras, not contained in Propos-
ition 3.6.43 , is that of Fuster and Marquina [274] (see also [786, Proposition 2.2.7])
asserting that a normed associative algebra A is a normed Q-algebra if and only if,
whenever a is in A with ‖a‖< 1, the geometric series ∑n∈N an converges in A.

The implication (i)⇒(vii) in Proposition 3.6.43 becomes an affirmative answer to
the so-called Wilansky’s conjecture [635] (that every associative normed Q-algebra
is a quasi-full subalgebra of some complete normed associative algebra). Curiously
enough, as pointed out by Beddaa and Oudadess in [81], Wilansky’s conjecture had
been solved ten years earlier by Arosio in [35, Theorem 2], by proving that every
associative normed Q-algebra is a quasi-full subalgebra of its completion.

Corollary 3.6.44 is due to Palmer [478] (see also [786, Theorems 4.2.7 and
4.2.11]). Its complete normed forerunner (including Fact 3.6.45) is due to Rickart
[501], and is included in both [795, Theorem 2.2.6 and Lemma 2.4.4] and [696,
Lemma 25.2 to Corollary 25.4]. Actually, the sources just quoted contain the
(occasionally complete normed forerunner of the) next fact, which follows by
combining Corollary 3.6.44(ii) and Theorem 3.6.57.

Fact 3.6.62 Let A be an associative complex normed Q-algebra, and let X be an
irreducible left A-module. If x1, . . . ,xn are linearly independent vectors of X and if
y1, . . . ,yn are arbitrary vectors in X, then there exists a ∈ A such that axi = yi for
every i = 1, . . . ,n.

It is worth emphasizing that Jacobson cares about analytic characterizations of his
radical in the complete normed (associative) case. This is done in [345, Section 7],
where the complete normed complex forerunner of Corollary 3.6.46 is proven. The
complete normed (real or complex) forerunner of Corollary 3.6.46 can be found in
[696, Proposition 25.1].

Proposition 3.6.49 states the celebrated Kleinecke–Shirokov theorem [389, 566]
(see also [696, Proposition 18.13]). The proof of Proposition 3.6.49 actually shows
that, if A is a normed associative algebra over K, if a is in A, and if D is a con-
tinuous derivation of A such that D2(a) = 0, then r(D(a)) = 0. According to the
main theorem in Thomas’ paper [612], the result just formulated remains true if the
requirement of continuity for D is removed altogether. Corollary 3.6.50 is taken from
[511]. As discussed in Subsection 3.4.5, the complete normed complex forerunner
of Proposition 3.6.51 is due to Singer and Wermer [582].

Now, let us follow [442] to construct, in Lemma 3.6.63 and Proposition 3.6.64
immediately below, normed Q-algebras of bounded linear operators on any (possibly
non-complete) normed space.



3.6 Jordan axioms for C∗-algebras 449

Lemma 3.6.63 Let X be a normed space, and let B be a subalgebra of BL(X) such
that:

(i) The identity mapping IX lies in B.
(ii) If F belongs to B and is bijective, then F−1 belongs to B.

(iii) An operator F ∈ B is bijective if and only if so is F ′.

Then B is a normed Q-algebra.

Proof For F in B, we have that F is invertible in B if and only if F is bijective
(by the assumption (ii)), if and only if F ′ is invertible in the Banach algebra
BL(X ′) (by the assumption (iii) and the Banach isomorphism theorem). Now, let
us consider the mapping h from B into BL(X ′) defined by h(F) = F ′. It follows that
Inv(B) = h−1(Inv(BL(X ′))). Since h is continuous, and Inv(BL(X ′)) is open in
BL(X ′), we conclude that Inv(B) is open in B, and hence that B is a normed
Q-algebra (cf. §3.6.41).

As a matter of fact, there are not many natural examples of non-complete normed
Q-algebras. Fortunately, Lemma 3.6.63 above, together with some results proved in
Subsection 1.4.2, provide us with two of them. Indeed, we have the following.

Proposition 3.6.64 Let X be a normed space over K. Then both K(X)+KIX and
W(X)+KIX are normed Q-algebras.

Here, as in Section 1.4, K(X) (respectively, W(X)) stands for the ideal of BL(X)

consisting of all compact (respectively, weakly compact) operators on X .

Proof Let B stand for either K(X)+KIX or W(X)+KIX , so that assumption (i) in
Lemma 3.6.63 is fulfilled by B. On the other hand, by Corollary 1.4.26 (respectively,
Corollary 1.4.25), assumption (ii) (respectively, assumption (iii)) in Lemma 3.6.63
is also fulfilled by B.

Results from Lemma 3.6.52 to Corollary 3.6.56 have been taken from [148, 525].
For a forerunner of Proposition 3.6.55, see [177].
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Jordan spectral theory

4.1 Involving the Jordan inverse

Introduction In Subsection 4.1.1, we introduce the notion of a Jordan-invertible
(in short J-invertible) element of a unital Jordan algebra, as well as that of the
J-inverse of such an element. As we notice in §4.1.1, these notions generalize the
classical ones of an invertible element and of the inverse of such an element in
a unital alternative algebra A (cf. Definition 2.5.23), when A is seen as a Jordan
algebra by passing to Asym. By considering the J-spectrum linked in the obvious
way to the notion of a J-invertible element, we develop a spectral theory for normed
unital Jordan algebras in parallel to that developed in the associative case (cf. Subsec-
tion 1.1.1). It is worth emphasizing the Jordan variant of Corollary 1.1.38 given by
Theorem 4.1.10, as well as the Gelfand–Beurling formula stated in Theorem 4.1.17.
We conclude the subsection by proving a wide non-associative generalization of
Rickart’s dense-range-homomorphism theorem in Theorem 4.1.19. Indeed, dense-
range algebra homomorphisms from complete normed algebras to complete normed
Jordan-admissible strongly semisimple algebras are automatically continuous (com-
pare Theorem 3.6.7).

In Subsection 4.1.2, we introduce the notion of a topological J-divisor of zero in
a normed Jordan algebra, noticing in Proposition 4.1.23 that this notion generalizes
that of a one-sided topological divisor of zero in a normed alternative algebra A (cf.
Definition 1.1.87), when A is seen as a normed Jordan algebra by passing to Asym. Then
we develop a Jordan variant of Subsection 1.1.4, by considering topological J-divisors
of zero instead of one-sided topological divisors of zero. Most results in the subsection
are applied to prove in the concluding Corollary 4.1.31 that, if b is an element of a
closed subalgebra B of a complete normed Jordan complex algebra A, then the spectra
of the multiplication operators by b on B and A are essentially the same.

Corollary 4.1.31 just reviewed becomes one of the main tools in Subsection 4.1.3.
Indeed, when suitably translated to the setting of Banach Jordan ∗-triples (see
Lemma 4.1.42), it is applied to prove that non-commutative JB∗-algebras are JB∗-
triples in a natural way, and that there is a natural bijective correspondence between
unital JB∗-algebras and nonzero JB∗-triples with a distinguished unitary element
(see Theorems 4.1.45 and 4.1.55, respectively). We recall that JB∗-triples were
introduced in §2.2.27. Other main tools in the subsection are Proposition 3.4.6 and
Theorem 3.4.8.
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In Subsection 4.1.4, we extend the notions of J-invertible element, J-inverse, and
J-spectrum to the setting of a unital Jordan-admissible algebra A, by simply trans-
lating to A the corresponding ones in the Jordan algebra Asym. As a first relevant
application of the translation of results in Subsection 4.1.1 to this more general
setting, we prove in Theorem 4.1.63 that normed non-commutative Jordan quasi-
division complex algebras are isomorphic to C, thus providing a partial affirmative
answer to Problem 2.7.4. We introduce the notion of a J-full subalgebra B of a
unital Jordan-admissible algebra A, meaning that 1 lies in B and that the equal-
ity J-sp(A,x) = J-sp(B,x) holds for every x ∈ B. As the main result, we prove in
Theorem 4.1.71 that closed unital ∗-subalgebras of unital non-commutative JB∗-
algebras are J-full subalgebras. This allows us to build in Corollary 4.1.72 a con-
tinuous functional calculus at each normal element of any unital non-commutative
JB∗-algebra, which generalizes the one built in Theorem 1.2.28 in the particular case
of C∗-algebras.

We begin Subsection 4.1.5 by proving that each element of a normed unital
non-commutative Jordan algebra is contained in a closed associative and commu-
tative J-full subalgebra (see Proposition 4.1.86). This allows us to develop in
Theorems 4.1.88 and 4.1.93 a holomorphic functional calculus for a single element
of a complete normed unital non-commutative Jordan complex algebra, in parallel
to that done in Theorems 1.3.13 and 1.3.21, where the particular case of a complete
normed unital associative complex algebra was considered.

Finally, in Subsection 4.1.6, we characterize smooth-normed algebras as
those norm-unital normed Jordan-admissible algebras A such that the equality
‖a‖‖a−1‖ = 1 holds for every a in some non-empty open subset of A consisting
only of J-invertible elements (see Theorem 4.1.96). As a consequence, R,C,H, and
O are the unique norm-unital normed alternative real algebras such that the equality
‖a‖‖a−1‖= 1 holds for every a in some non-empty open subset of A consisting only
of invertible elements (see Corollary 4.1.100).

4.1.1 Basic spectral theory for normed Jordan algebras

§4.1.1 Let A be a unital alternative algebra over K, and suppose that a and b are in-
verses in A (cf. Definition 2.5.23), i.e. ab= 1= ba. Then we have the Jordan relations

a•b = 1
2 (ab+ba) = 1 and a2 •b = 1

2 (a
2b+ba2) = 1

2 (a(ab)+(ba)a) = a.

Conversely, assume a and b are elements which satisfy the Jordan relations

a•b = 1 and a2 •b = a.

Then we have ab+ba = 21 and a2b+ba2 = 2a. Hence, by Theorem 2.3.61,

a2b+aba = 2a = aba+ba2 and a2b = ba2.

Then 2a= 2a2b= 2ba2 so a= a2b= ba2 and ab= ba2b= ba. This and ab+ba= 21
imply that ab = 1 = ba, so a and b are inverses. These considerations lead to the
following.

Definition 4.1.2 Let A be a unital Jordan algebra over K. An element a∈A is called
J-invertible with b as a J-inverse if the equalities ab = 1 and a2b = a hold.
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Let A be a unital associative and commutative algebra over K, and let a be in A.
Then A is a Jordan algebra and, without involving §4.1.1, we straightforwardly
realize that a is J-invertible with b as a J-inverse if and only if a is invertible with b
as an inverse. This will be applied without notice.

Let A be a Jordan algebra over K. We note that the identity (2.4.2) in the proof of
Proposition 2.4.13 can be read as

[Lac,Ld ]+ [Lad ,Lc]+ [Lcd ,La] = 0 for all a,c,d ∈ A. (4.1.1)

Theorem 4.1.3 Let A be a unital Jordan algebra over K. Then:

(i) If a is J-invertible in A with b as J-inverse, then b is J-invertible with a as
J-inverse.

(ii) For a ∈ A, the following three conditions are equivalent:

(a) a is J-invertible;
(b) 1 is in the range of Ua;
(c) Ua is a bijective operator on A.

(iii) If a is J-invertible in A, then it has a unique J-inverse and, in fact, this is the
element b =U−1

a (a).
(iv) If a and b are J-inverses in A, then Ub =U−1

a and Lb =U−1
a La.

(v) If a and b are J-inverses in A, then [Lak ,Lb� ] = 0 for all k, � > 0. Also, if we
define a−n := bn for n > 0 and a0 := 1, then aka� = ak+� for all integer numbers
k, �.

(vi) Given a,b ∈ A, both a and b are J-invertible if and only if Ua(b) is J-invertible.

Proof If a is J-invertible with b as a J-inverse, then the identity (4.1.1) gives
[La2 ,Lb]+ [L1,La]+ [L1,La] = 0. Since L1 = IA we have [La2 ,Lb] = 0. Then

a2b2 = La2 Lb(b) = LbLa2(b) = b(a2b) = ba = 1

and b2a = b2(a2b) = (b2a2)b = b. This shows that a satisfies the conditions for a
J-inverse of b; hence assertion (i) is proved.

Now, we proceed to prove assertion (ii). If a is J-invertible with b as a J-inverse
then Ua(b2) = 2a(ab2)− a2b2 = 2ab− 1 = 1, using the result a2b2 = 1 established
in the proof of assertion (i). Hence 1 is in the range of Ua. Hence (a)⇒(b). Next
assume 1 ∈ Ua(A) so we have a c in A such that 1 = Ua(c). Then the operator
IA =U1 =UUa(c) =UaUcUa by the fundamental formula (3.4.3) in Proposition 3.4.15.
Hence U−1

a exists and so (b)⇒(c). Next assume (c) and let b = U−1
a (a). Then

a =Ua(b) and

Ua(1) = a2 = La(a) = LaUa(b) =UaLa(b).

Since U−1
a exists this gives 1 = La(b) = ab. Similarly,

Ua(a) = a3 = La2(a) = La2Ua(b) =UaLa2(b).

Hence a = a2b. Hence a is J-invertible with b as J-inverse and we have proved that
(c)⇒(a).

If b is a J-inverse of a then Ua(b) = 2a(ab)− a2b = a. Since U−l
a exists by

assertion (ii), this gives b =U−1
a (a) and b is unique. Thus the proof of assertion (iii)

is complete.
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Assume that a and b are J-inverses. Then we have Ua(b) = a so, by the funda-
mental formula (3.4.3), Ua =UUa(b) =UaUbUa. Since U−1

a exists this gives UaUb =

IA =UbUa and so Ub =U−1
a . We had [La2 ,Lb] = 0 in the proof of assertion (i). Also

[Ua,Lb] = [U−1
b ,Lb] = 0. Since Ua = 2L2

a −La2 these two relations give [L2
a,Lb] = 0.

We now note that, by the identity (2.4.3) in the proof of Proposition 2.4.13, we have

La2 Lb −L2
aLb +LabLa −La(ba) +LabLa −LbL2

a = 0,

and hence La2 Lb − L2
aLb + La − La + La − LbL2

a = 0. Since L2
aLb = LbL2

a we get
La = (2L2

a −La2)Lb, so La =UaLb and Lb =U−1
a La. This proves assertion (iv).

Assume again that a and b are J-inverses. Then it follows from assertion (iv)
that the operators La, Ua, Lb and Ub pairwise commute. On the other hand, by
Proposition 2.4.13(iii), for k > 0, Lak (respectively, Lbk ) belongs to the subalgebra of
L(A) generated by {La,Ua} (respectively, by {Lb,Ub}). It follows that [Lak ,Lb� ] = 0
for all k, � � 0. Now if k > 0 then

aka−1 = La−1Lak−1(a) = Lak−1 La−1(a) = Lak−1(1) = ak−1.

Assuming aka−(�−1) = ak−�+1 for � > 1 we get from [Lak ,Lb] = 0 that

aka−� = ak
(

a−(�−1)a−1
)
=
(

aka−(�−1)
)

a−1 = ak−�+1a−1.

If k−�+1 > 0 this gives aka−� = ak−� by what we proved first and the result is clear
if k− �+ 1 = 0 or < 0 by power associativity (cf. Proposition 2.4.13(i)). The case
aka� where k and � are of the same sign is covered by power associativity. Hence
assertion (v) holds.

Given a,b ∈ A, the fundamental formula (3.4.3) gives UUa(b) =UaUbUa. Therefore
the linear operator UUa(b) is invertible in L(A) if and only if Ua and Ub are invertible.
Hence assertion (vi) follows from assertion (ii).

According to assertion (iii) in the above theorem, if a is a J-invertible element in a
unital Jordan algebra A, then the element b =U−1

a (a) is called the J-inverse of a, and
is denoted by a−1. We denote by J-Inv(A) the set of all J-invertible elements of A.

For any commutative algebra A over K, and for all a,b in A, note that

Ua,b = LaLb +LbLa −Lab.

Lemma 4.1.4 Let A be a normed unital Jordan algebra over K, and let a and b be
in J-Inv(A). Then:

(i)
∥∥a−1 −b−1

∥∥� 3
∥∥a−1

∥∥ ∥∥b−1
∥∥ ‖a−b‖.

(ii)
∣∣∣ 1
‖a−1‖ −

1
‖b−1‖

∣∣∣� 3‖a−b‖.

(iii) If ‖a−b‖< 1
3‖a−1‖ , then

∥∥b−1
∥∥� ‖a−1‖

1−3‖a−1‖‖a−b‖ .
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Proof We have

Ua−1,b−1(b−a)

= a−1 (1−b−1a
)
+b−1 (a−1b−1

)
−
(
a−1b−1)(b−a)

= a−1 −a−1 (b−1a
)
+b−1 (a−1b

)
−b−1 −

(
a−1b−1)b+

(
a−1b−1)a

= a−1 +[La,La−1 ]
(
b−1)+[Lb−1 ,Lb]

(
a−1)−b−1.

Now, keeping in mind Theorem 4.1.3(v), we see that

Ua−1,b−1(b−a) = a−1 −b−1. (4.1.2)

Therefore ∥∥a−1 −b−1
∥∥= ∥∥Ua−1,b−1(b−a)

∥∥� 3
∥∥a−1

∥∥ ∥∥b−1
∥∥ ‖a−b‖ ,

which proves assertion (i). Now, keeping in mind that∥∥b−1
∥∥−∥∥a−1

∥∥�
∥∥a−1 −b−1

∥∥ ,
it follows from assertion (i) that

1
‖a−1‖ − 1

‖b−1‖ � 3‖a−b‖. (4.1.3)

The proof of assertion (ii) is concluded by combining the inequality (4.1.3) with the
one obtained by interchanging the roles of a and b. On the other hand, it follows from
the inequality (4.1.3) that

1−3
∥∥a−1

∥∥‖a−b‖
‖a−1‖ =

1
‖a−1‖ −3‖a−b‖ � 1

‖b−1‖ . (4.1.4)

Since the condition ‖a−b‖< 1
3‖a−1‖ leads to 1−3‖a−1‖‖a−b‖> 0, assertion (iii)

follows from (4.1.4).

Corollary 4.1.5 Let A be a normed unital Jordan algebra over K, let a be in A, and
let z be in K such that a− z1 ∈ J-Inv(A) and |z|> 3‖1‖‖a‖. Then∥∥(a− z1)−1

∥∥� ‖1‖
|z|−3‖1‖‖a‖ .

Proof We have

‖−z1− (a− z1)‖= ‖a‖< 1
3‖(z1)−1‖ ,

and hence, by Lemma 4.1.4(iii),∥∥(a− z1)−1
∥∥�

∥∥(z1)−1
∥∥

1−3‖(z1)−1‖‖a‖ =
‖1‖

|z|−3‖1‖‖a‖ .

Given a normed unital Jordan algebra A over K, we can argue as in the proof
of Proposition 1.1.15, with Lemma 4.1.4 instead of Lemma 1.1.13, to obtain the
continuity of the mapping x → x−1 from J-Inv(A) to A. Next, we give an alternative
proof of this fact.
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Proposition 4.1.6 Let A be a normed unital Jordan algebra over K. Then:

(i) An element a ∈ A is J-invertible in A if and only if Ua ∈ Inv(BL(A)).

(ii) The mapping x → x−1 from J-Inv(A) to A is continuous.

Proof Let a be in A. If a ∈ J-Inv(A), then, by Theorem 4.1.3(ii)–(iv),

Ua ∈ Inv(L(A)) and U−1
a =Ua−1 ∈ BL(A),

hence Ua ∈ Inv(BL(A)). Conversely, if Ua ∈ Inv(BL(A)), then Ua ∈ Inv(L(A)), and
hence, by Theorem 4.1.3(ii), a ∈ J-Inv(A). Thus assertion (i) is proved.

Keeping in mind that the mappings x → Ux from A to BL(A), F → F−1 from
Inv(BL(A)) to BL(A), and (F,x) → F(x) from BL(A)× A to A are continuous
(the second one by Proposition 1.1.15), assertion (ii) follows from assertion (i)
by noticing that the equality x−1 = U−1

x (x) holds for every x ∈ J-Inv(A) (cf. The-
orem 4.1.3(iii)).

Theorem 4.1.7 Let A be a complete normed unital Jordan algebra over K. Then
J-Inv(A) is open in A, and the mapping x → x−1 from J-Inv(A) to A is differentiable
at any point a ∈ J-Inv(A), with derivative equal to the mapping −Ua−1 .

Proof By Proposition 4.1.6(i), we have J-Inv(A) = f−1(Inv(BL(A))), where
f : A → BL(A) is the mapping defined by f (x) = Ux. Since f is continuous, and
Inv(BL(A)) is open in BL(A) (by Theorem 1.1.23), it follows that J-Inv(A) is
open in A.

Keeping in mind Theorem 4.1.3, for a,x ∈ J-Inv(A), we have

Ua(x
−1 −a−1 +Ua−1(x−a))

=Ua
(
x−1)−Ua

(
a−1)+ x−a =Ua

(
x−1)+ x−2a

=Ua
(
x−1)+Ux

(
x−1)−2Ux,a

(
x−1)=Ux−a

(
x−1) ,

and hence

x−1 −a−1 +Ua−1(x−a) = (Ua−1 ◦Ux−a)
(
x−1) . (4.1.5)

It follows that∥∥x−1 −a−1 +Ua−1(x−a)
∥∥= ∥∥(Ua−1 ◦Ux−a)

(
x−1)∥∥

�
∥∥Ua−1

∥∥ ∥∥Ux−a
∥∥ ∥∥x−1

∥∥
� 3
∥∥Ua−1

∥∥ ∥∥x−a
∥∥2 ∥∥x−1

∥∥ ,
and hence, keeping in mind Proposition 4.1.6(ii), we conclude that

lim
x→a

x∈J-Inv(A)\{a}

∥∥x−1 −a−1 +Ua−1(x−a)
∥∥

‖x−a‖ = 0.

Therefore, the mapping x → x−1 is differentiable at a with derivative equal to
−Ua−1 ∈ BL(A).
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Given an element a of a unital Jordan algebra A over K, the J-spectrum of a
relative to A is the subset J-sp(A,a) of K defined by

J-sp(A,a) := {λ ∈K : a−λ1 is not J-invertible in A}.

Corollary 4.1.8 Let A be a complete normed unital Jordan algebra over K,
and let a be in A. Then J-sp(A,a) is a closed subset of K, and the mapping
f : K \ J-sp(A,a)→ A given by f (λ ) = (a−λ1)−1 is differentiable with derivative
f ′(λ ) = (a−λ1)−2 for every λ ∈K\ J-sp(A,a).

Proof Note that J-sp(A,a) = g−1(A\J-Inv(A)), where g :K→A is given by g(λ ) =
a−λ1. Since g is continuous and J-Inv(A) is an open subset of A (by Theorem 4.1.7),
it follows that J-sp(A,a) is a closed subset of K. Moreover, since g is a differentiable
function with derivative g′(λ ) =−1 for every λ ∈K, and h : x→ x−1 is differentiable
in J-Inv(A) with derivative h′(x) =−Ux−1 for every x ∈ J-Inv(A), it follows from the
chain rule that f = h◦g|K\J-sp(A,a) is differentiable with derivative

f ′(λ ) = h′(g(λ ))(g′(λ )) =−U(a−λ1)−1(−1) = (a−λ1)−2

for every λ ∈K\ J-sp(A,a).

Proposition 4.1.9 Let A be a unital Jordan algebra over K, and let a be in A. If La

is invertible in L(A), then a is J-invertible in A, and La−1 is invertible in L(A).

Proof Assume that La is invertible in L(A), and set b = L−1
a (1). Then ab = 1, and

hence La(a) = a2 = a21 = a2(ab) = a(a2b) = La(a2b), where we have applied the
Jordan identity for the penultimate equality. Since La is injective, it follows that a =

a2b, and so a is J-invertible in A with a−1 = b. Finally, since La−1 = U−1
a La (by

Theorem 4.1.3(iv)), La−1 is invertible in L(A).

Theorem 4.1.10 Let A be a complete normed unital Jordan complex algebra, and
let a be in A. Then

J-sp(A,a)⊆ sp(BL(A),La)⊆
1
2
(J-sp(A,a)+ J-sp(A,a))

and

sp(BL(A),Ua)⊆ J-sp(A,a)J-sp(A,a).

Proof If λ ∈ J-sp(A,a), then a− λ1 is not J-invertible in A, and hence, by Prop-
osition 4.1.9, La−λ1 = La −λ IA is not invertible in L(A). Therefore La −λ IA is not
invertible in BL(A), and so λ ∈ sp(BL(A),La). Thus

J-sp(A,a)⊆ sp(BL(A),La).

Since S := {La,La2} is a commutative subset of BL(A), Proposition 1.1.78 applies
so that the bicommutant Scc of S in BL(A) is a closed commutative subalgebra of
BL(A) containing S∪{IA}. We remark that

Ua−z l =Ua −2zLa + z2IA ∈ Scc for every z ∈ C.

Let ϕ be a character on Scc, let zϕ1 ,z
ϕ
2 stand for the roots of the equation

ϕ(Ua)−2zϕ(La)+ z2 = 0,
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and note that

ϕ(La) =
1
2
(zϕ1 + zϕ2 ) and ϕ(Ua) = zϕ1 zϕ2 .

Since ϕ(Ua−zϕi l) = 0 (i = 1,2), it follows that Ua−zϕi l is not invertible in Scc, hence

is not invertible in BL(A) (by Lemma 1.1.80). Therefore, by Proposition 4.1.6(i),
a− zϕi 1 is not J-invertible in A. Thus zϕ1 ,z

ϕ
2 ∈ J-sp(A,a).

Let λ be in sp(BL(A),La). Then, clearly, λ lies in sp(Scc,La) so, by Propos-
ition 1.1.68(ii), there exists a character ϕ on Scc such that λ = ϕ(La), hence

λ =
1
2

(
zϕ1 + zϕ2

)
∈ 1

2
(J-sp(A,a)+ J-sp(A,a)) .

Analogously, if λ ∈ sp(BL(A),Ua), then λ = ϕ(Ua) for some character ϕ on Scc, and
hence

λ = zϕ1 zϕ2 ∈ J-sp(A,a)J-sp(A,a).

Corollary 4.1.11 Let A be a complete normed unital Jordan complex algebra, and
let a be in A. Then

co(J-sp(A,a)) = co(sp(BL(A),La)).

Theorem 4.1.12 Let A be a normed unital Jordan complex algebra, and let a be in
A. Then J-sp(A,a) 	= /0.

Proof Let Â stand for the completion algebra of A. Since Â is a unital Jordan
algebra and J-Inv(A) ⊆ J-Inv(Â), we have J-sp(Â,a) ⊆ J-sp(A,a). Therefore, we
can assume that A is complete. Then the result follows from Corollary 4.1.11 and
Theorem 1.1.41. (Alternatively, we can argue as in the proof of Theorem 1.1.41 with
Corollary 4.1.5 instead of Corollary 1.1.14.)

Definition 4.1.13 Let A be a Jordan algebra over K. We say that A is a J-division
algebra if A is unital and J-Inv(A) = A\{0}.

Arguing as in the proof of Corollary 1.1.43, with Theorem 4.1.12 instead of The-
orem 1.1.41, we get the following.

Corollary 4.1.14 Let A be a normed J-division Jordan complex algebra. Then A is
isomorphic to C.

The next result generalizes von Neumann’s Lemma 1.1.20. For a good understand-
ing of its formulation and of some subsequent results, §3.4.61 could be kept in mind.

Lemma 4.1.15 Let A be a complete normed unital Jordan algebra over K, and let
a be in A with r(a)< 1. Then 1−a ∈ J-Inv(A) and

(1−a)−1 =
∞

∑
n=0

an.

Proof Consider the closed subalgebra B of A generated by 1 and a. Then B is a
complete normed unital associative and commutative algebra, and a is an element of
B with r(a)< 1. By Lemma 1.1.20, 1−a is invertible in B with inverse c :=∑∞

n=0 an.
Thus, clearly, 1−a is a J-invertible element of A with J-inverse c.
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Lemma 4.1.16 Let A be a normed power-associative algebra over K, and let a be
in A. Then r(a) � r(La).

Proof For each n ∈N we have ‖an+1‖= ‖Ln
a(a)‖� ‖Ln

a‖‖a‖. Therefore, by taking
nth roots, and letting n → ∞, the result follows.

The next theorem generalizes the Gelfand–Beurling formula stated in The-
orem 1.1.46.

Theorem 4.1.17 Let A be a complete normed unital Jordan complex algebra, and
let a be in A. Then J-sp(A,a) is a non-empty compact subset of C, and we have

r(a) = r(La) = max{|λ | : λ ∈ J-sp(A,a)} .

Proof By Theorem 4.1.12 and Corollary 4.1.8, J-sp(A,a) is a non-empty closed
subset of C. On the other hand, if λ is a nonzero complex number such that λ ∈
J-sp(A,a), then a−λ1 /∈ J-Inv(A), hence 1−λ−1a /∈ J-Inv(A), so r(λ−1a) � 1 (by
Lemma 4.1.15), and so |λ |� r(a). Thus J-sp(A,a) is a compact subset of C contained
in r(a)BC.

Set ρ(a) := max{|λ | : λ ∈ J-sp(A,a)}. It follows from the above that ρ(a)� r(a).
On the other hand, by Corollary 4.1.11, we have

ρ(a) = max{|λ | : λ ∈ sp(BL(A),La)} .

Therefore, invoking Lemma 4.1.16 and Theorem 1.1.46, we realize that r(a) �
r(La) = ρ(a), and the proof is complete.

We conclude this subsection by proving a wide non-associative generalization of
Rickart’s dense-range-homomorphism theorem. The core of the proof is the follow-
ing Jordan version of Proposition 1.1.60.

Proposition 4.1.18 Let A be a complete normed algebra over K, let B be a normed
unital Jordan algebra over K, let Φ : A → B be an algebra homomorphism, and let x
be in A. Then

r(Φ(x)) � 3‖x‖. (4.1.6)

As a consequence,

1 � 3‖x‖+‖1−Φ(x)‖. (4.1.7)

Proof Regarding Φ as an algebra homomorphism from A to the completion of B,
there is no loss of generality in assuming that B is complete. Moreover, in the case
K= R, passing to projective normed complexifications (cf. Proposition 1.1.98), and
extending Φ by complex linearity, we may additionally assume that in any case we
have K= C. Then, in view of Theorem 4.1.17, to prove (4.1.6) it is enough to show
that 1−Φ(x) is J-invertible in B whenever x is in A and satisfies ‖x‖ < 1

3 . Let x be
in A with ‖x‖< 1

3 . Then we have∥∥2Lx +Lx2 −2(Lx)
2
∥∥� 2‖x‖+3‖x‖2 < 1,

so that by Lemma 1.1.20 and Example 1.1.12(d), IA − (2Lx + Lx2 − 2(Lx)
2) is a

bijective operator on A. Therefore there exists some y ∈ A satisfying[
IA −

(
2Lx +Lx2 −2(Lx)

2)](y) = x2 −2x
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or, equivalently, x2 −2x− y+2xy+ x2y−2x(xy) = 0. Now we have the equality

Φ(x)2 −2Φ(x)−Φ(y)+2Φ(x)Φ(y)+Φ(x)2Φ(y)−2Φ(x)(Φ(x)Φ(y)) = 0,

which can be reformulated as U1−Φ(x)(1 − Φ(y)) = 1. Therefore, by Theorem
4.1.3(ii), 1−Φ(x) is J-invertible in B, as desired. Now that (4.1.6) has been proved,
note that the closed subalgebra of B generated by 1 and Φ(x) is associative. It follows
from Corollary 1.1.81(ii) that

1 = r(1) � r(Φ(x))+ r(1−Φ(x)) � 3‖x‖+‖1−Φ(x)‖,

and the proof of the proposition is complete.

Theorem 4.1.19 Let A be a complete normed algebra over K, let B be a complete
normed Jordan-admissible strongly semisimple algebra over K, and let Φ : A → B
be an algebra homomorphism with dense range. Then Φ is continuous.

Proof Assume at first that B is actually unital and simple. By Lemma 1.1.58, S(Φ)

is an ideal of B, and hence S(Φ) = 0 or B because of the simplicity of B. Suppose
that S(Φ) = B. Then we can choose a sequence an in A such that an → 0 and
Φ(an)→ 1, so that, regarding Φ as an algebra homomorphism from Asym to Bsym, the
inequality (4.1.7) in Proposition 4.1.18 applies to get 1 � 3‖an‖+‖1−Φ(an)‖→ 0,
a contradiction. Therefore S(Φ) = 0, and Φ is continuous in view of Fact 1.1.56.

Now remove the assumption that B is unital and simple. Let an be a sequence
in A with an → 0 and Φ(an) → b ∈ B. In view of the closed graph theorem, to
prove that Φ is continuous it is enough to show that b = 0. Let M be a maximal
modular ideal of B. By Lemma 3.6.5, the quotient algebra B/M is a simple unital
Jordan-admissible algebra over K. Moreover, by Corollary 3.6.4, M is closed in
B, and hence, by §1.1.55, B/M is a complete normed algebra. Since the quotient
mapping π : A → A/M is a continuous surjective algebra homomorphism, it follows
that π ◦Φ is an algebra homomorphism from A to B/M with dense range. Therefore,
by the first paragraph in the proof, π ◦Φ is continuous. As a consequence, we have
(π ◦Φ)(an) → 0. But, on the other hand, we deduce from the continuity of π that
(π ◦Φ)(an) = π(Φ(an))→ π(b). Therefore π(b) = 0, and so b∈ M. Now, keeping in
mind the arbitrariness of the maximal modular ideal M, and the strong semisimplicity
of B, we conclude that b = 0, as desired.

Corollary 4.1.20 Let A be a strongly semisimple Jordan-admissible algebra over
K. Then A has at most one complete algebra norm topology.

Remark 4.1.21 We do not know any generalizations of Theorem 4.1.19. However,
Corollary 4.1.20 will be significantly refined later. Indeed, remaining in the strongly
semisimple setting, the requirement of Jordan-admissibility in Corollary 4.1.20
can be removed altogether (a consequence of Corollary 4.4.60). On the other
hand, remaining in the Jordan-admissible setting, the requirement of strong semi-
simplicity in Corollary 4.1.20 can be relaxed to that of ‘Jacobson semisimplicity’
(see Definition 4.4.12 and Corollary 4.4.14) which, in the particular associative
setting, is nothing other than the usual semisimplicity (cf. Definition 3.6.12 and
Theorem 3.6.21). Actually, via Proposition 4.4.59, these refinements are by-products
of the general uniqueness-of-norm theorem provided by Theorem 4.4.43.
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4.1.2 Topological J-divisors of zero

Let A be an alternative algebra over K, and let a be an element of A. Then a is a
one-sided divisor of zero in A if and only if there exists b ∈ A\{0} such that aba = 0
(equivalently, Ua(b) = 0 in the Jordan algebra Asym). This consideration leads to the
following.

Definition 4.1.22 Let A be a Jordan algebra over K. An element a of A is said to
be a J-divisor of zero in A if there exists b ∈ A\{0} such that Ua(b) = 0. In this way,
J-divisors of zero in A are nothing other than those elements a of A such that the
operator Ua is not injective.

Proposition 4.1.23 Let A be a normed alternative algebra over K, and let a be an
element of A. Then the following conditions are equivalent:

(i) a is a one-sided topological divisor of zero in A.

(ii) There exists a sequence xn in SA satisfying limaxna = 0 (equivalently,
limUa(xn) = 0 in the normed Jordan algebra Asym).

Proof The implication (i)⇒(ii) is clear. To prove (ii)⇒(i), assume the existence
of a sequence xn in SA such that limaxna = 0 and limaxn 	= 0. By passing to a
subsequence if necessary, we may assume the existence of a positive number ε such
that ‖axn‖ � ε for every n ∈ N. Setting yn := axn

‖axn‖ , we realize that yn is a sequence
in SA such that limyna = 0.

Proposition 4.1.23 above leads to the following.

Definition 4.1.24 Let A be a normed Jordan algebra over K. An element a of A
is said to be a topological J-divisor of zero in A if there exists a sequence xn in SA

satisfying limUa(xn) = 0. In this way, topological J-divisors of zero in A are nothing
other than those elements a of A such that the operator Ua is not bounded below.
As a consequence, equivalent algebra norms on A give rise to the same topological
J-divisors of zero. On the other hand, it is clear that every J-divisor of zero in A
is a topological J-divisor of zero in A, and that the converse is true whenever A is
finite-dimensional.

Proposition 4.1.25 Let A be a normed Jordan algebra over K, and let a be an
element of A. We have:

(i) a is a topological J-divisor of zero in A if and only if Ua is a left topological
divisor of zero in BL(A).

(ii) If A is unital, and if a is a topological J-divisor of zero in A, then a /∈ J-Inv(A).

Proof Assertion (i) follows from Proposition 1.1.94(i). Assume that A is unital,
and that a is a topological J-divisor of zero in A. Then, by assertion (i) and
Exercise 1.1.88(iii), Ua /∈ Inv(BL(A)), and hence, by Proposition 4.1.6(i),
a /∈ J-Inv(A).

The next result becomes the Jordan version of Proposition 1.1.90.
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Proposition 4.1.26 Let A be a complete normed unital Jordan algebra over K, and
let a be in the boundary of J-Inv(A) relative to A. Then a is a topological J-divisor of
zero in A.

Proof Since J-Inv(A) is open in A (by Theorem 4.1.7) and a lies in the boundary
of J-Inv(A) relative to A, it follows that a 	∈ J-Inv(A) and there exists a sequence an

in J-Inv(A) with an converging to a. By Proposition 4.1.6(i), we realize that Ua /∈
Inv(BL(A)), but Uan ∈ Inv(BL(A)) for every n. Moreover, it follows from the continu-
ity of the mapping x→Ux that Uan converges to Ua. Therefore Ua lies in the boundary
of Inv(BL(A)) relative to BL(A). Finally, by Propositions 1.1.90 and 4.1.25(i), we
conclude that a is a topological J-divisor of zero in A.

Corollary 4.1.27 Let A be a complete normed unital Jordan algebra over K, let a
be an element of A, and let λ be in the boundary of J-sp(A,a) relative to K. Then
a−λ1 is a topological J-divisor of zero in A.

Proposition 4.1.28 Let A be a complete normed unital Jordan algebra over K, and
let B be a closed subalgebra of A containing the unit of A. Then we have:

(i) J-Inv(B) is a clopen subset of J-Inv(A)∩B, and the boundary of J-Inv(B) rela-
tive to B is contained in the boundary of J-Inv(A) relative to A.

(ii) For each b ∈ B, we have J-sp(A,b)⊆ J-sp(B,b), and the boundary of J-sp(B,b)
relative to K is contained in the boundary of J-sp(A,b) relative to K. As a
consequence, co(J-sp(B,b)) = co(J-sp(A,b)).

(iii) If b is in B, and if J-sp(A,b) has no hole in K, then J-sp(A,b) = J-sp(B,b).

Proof Argue as in the proof of Proposition 1.1.93, with Theorem 4.1.7 and Propos-
ition 4.1.26 instead of Theorem 1.1.23 and Proposition 1.1.90, respectively.

The notation in §3.3.9 is involved in the formulations and proofs of the next results.

Corollary 4.1.29 Let A be a complete normed unital Jordan complex algebra, let
B be a closed subalgebra of A containing the unit of A, and let b be an element of B.
Then

co
(
sp
(
BL(B),LB

b

))
= co

(
sp
(
BL(A),LA

b

))
.

Proof By Corollary 4.1.11 and Proposition 4.1.28(ii), we have

co
(
sp
(
BL(B),LB

b

))
= co(J-sp(B,b)) = co(J-sp(A,b)) = co

(
sp
(
BL(A),LA

b

))
,

as desired.

Now, by passing to unital extensions (cf. §1.1.104), we are going to take advantage
of Corollary 4.1.29 in the non-unital case.

Proposition 4.1.30 Let A be an algebra over K, and let a be in A. Then:

(i) For λ ∈K\{0}, we have that LA
a −λ IA ∈ Inv(L(A)) if and only if LA1

a −λ IA1 ∈
Inv(L(A1)).

(ii) sp(L(A1),L
A1
a ) = {0}∪ sp(L(A),LA

a ).
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Proof Let λ ∈K\{0}. Assume that LA
a −λ IA is invertible in L(A) with inverse F .

It is easily realized that the linear mapping T : A1 → A1 defined by

T (α1+ x) := F(x)+λ−1α(F(a)−1)

satisfies (
LA1

a −λ IA1

)
T = T

(
LA1

a −λ IA1

)
= IA1 ,

hence LA1
a −λ IA1 ∈ Inv(L(A1)). Conversely, assume that LA1

a −λ IA1 is invertible in
L(A1) with inverse T . Then, for each x ∈ A we have(

LA1
a −λ IA1

)
T (x) = T

(
LA1

a −λ IA1

)
(x) = IA1 (x),

hence

aT (x)−λT (x) = T (ax−λx) = x. (4.1.8)

In particular, we have T (x) = λ−1(aT (x)− x) ∈ A. Therefore we can consider the
linear mapping F : A → A defined by F(x) = T (x). Now, note that (4.1.8) can be
rewritten as follows (

LA
a −λ IA

)
F = F

(
LA

a −λ IA
)
= IA.

Thus LA
a −λ IA ∈ Inv(L(A)), and the proof of assertion (i) is complete.

It follows from assertion (i) that

sp
(
L(A1) ,L

A1
a

)
\{0}= sp

(
L(A),LA

a

)
\{0}.

Since A is an ideal of A1 , we realize that LA1
a (A1)⊆ A, so LA1

a /∈ Inv(L(A1)), hence
0 /∈ sp(L(A1),L

A1
a ). Thus assertion (ii) follows.

Corollary 4.1.31 Let A be a complete normed Jordan complex algebra, let B be a
closed subalgebra of A, and let b be an element of B. Then

co
(
{0}∪ sp

(
BL(B),LB

b

))
= co

(
{0}∪ sp(BL(A),LA

b )
)
.

Proof Note that A1 is a complete normed unital Jordan complex algebra, and that
B1 can be seen as a closed subalgebra of A1 containing the unit of A1 . Therefore, by
Corollary 4.1.29, we have

co
(

sp
(

BL(B1),L
B1
b

))
= co

(
sp
(

BL(A1),L
A1
b

))
. (4.1.9)

On the other hand, by Example 1.1.32(d), we know that

sp
(

BL(A),LA
b

)
= sp

(
L(A),LA

b

)
and sp

(
BL(A1) ,L

A1
b

)
= sp

(
L(A1) ,L

A1
b

)
,

so that, by Proposition 4.1.30, we find that

sp
(

BL(A1) ,L
A1
b

)
= {0}∪ sp

(
BL(A),LA

b

)
(4.1.10)

and

sp
(

BL(B1) ,L
B1
b

)
= {0}∪ sp

(
BL(B),LB

b

)
. (4.1.11)

By combining (4.1.9), (4.1.10), and (4.1.11), the result follows.
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4.1.3 Non-commutative JB∗-algebras are JB∗-triples

Definition 4.1.32 By a Jordan ∗-triple over K we mean a vector space J over K
endowed with a mapping {· · ·} : J × J × J → J (called the triple product of J),
which is linear in the outer variables and conjugate-linear in the middle variable,
and satisfies the ‘commutative’ condition

{xyz}= {zyx} (4.1.12)

and the Jordan triple identity

{uv{xyz}}= {{uvx}yz}−{x{vuy}z}+{xy{uvz}}. (4.1.13)

Note that, by taking z = x in (4.1.13), and keeping in mind (4.1.12), we obtain

{uv{xyx}}= 2{{uvx}yx}−{x{vuy}x}. (4.1.14)

By taking u = x in (4.1.14), keeping in mind (4.1.12), and applying (4.1.14) again,
we see that

{xv{xyx}}= 2{{xvx}yx}−{x{vxy}x}= 2{xy{xvx}}−{x{vxy}x}

= 2(2{{xyx}vx}−{x{yxv}x})−{x{vxy}x}

= 4{{xyx}vx}−3{x{vxy}x},

hence 3{xv{xyx}}= 3{x{vxy}x}, and so

{xv{xyx}}= {x{vxy}x} = {{xvx}yx}. (4.1.15)

When necessary, we write {·, ·, ·} instead of {· · ·}.
Jordan algebras and Jordan ∗-triples are closely related as we shall see in the

results that follow.

Lemma 4.1.33 Let A be a Jordan algebra over K. Then

Uab,c +Ua,bc = LbUa,c +Ua,cLb for all a,b,c ∈ A.

Proof By Lemma 3.3.35, for all x,y,z in A we have the following double writing to
the operator Uxz,y

Uxz,y =Ux,yLz +Uz,yLx −LyUx,z = LzUx,y +LxUz,y −Ux,zLy. (4.1.16)

For a,b,c given in A, replacing (x,y,z) with (a,c,b) in the first writing of Uxz,y in
(4.1.16), we obtain

Uab,c =Ua,cLb +Ub,cLa −LcUa,b, (4.1.17)

whereas, replacing (x,y,z) with (c,a,b) in the second writing of Uxz,y in (4.1.16),
we get

Ua,bc = LbUa,c +LcUa,b −Ub,cLa. (4.1.18)

Adding identities (4.1.17) and (4.1.18), the result follows.

Proposition 4.1.34 Let A be a Jordan ∗-algebra over K. Then A is a Jordan ∗-triple
over K for the triple product {abc} :=Ua,c(b∗).
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Proof It is clear that the triple product {· · ·} just defined is linear in the outer
variables and conjugate-linear in the middle variable, and satisfies the commutative
condition (4.1.12). In order to verify the Jordan triple identity (4.1.13), consider the
trilinear triple product [abc] :=Ua,c(b), and note that

[abc] = ([La,Lb]+Lab)(c). (4.1.19)

It is immediate to realize that, for every derivation D of A, we have

DUa,c =UD(a),c +Ua,cD+Ua,D(c) (4.1.20)

for all a,c ∈ A. Since [Lu,Lv] is a derivation of A for all u,v ∈ A (by Lemma 3.1.23),
it follows from (4.1.20) that

[Lu,Lv]Ua,c =U[Lu,Lv](a),c +Ua,c[Lu,Lv]+Ua,[Lu,Lv](c) (4.1.21)

for all a,c ∈ A. Moreover, by Lemma 4.1.33 we have

LuvUa,c =ULuv(a),c −Ua,cLuv +Ua,Luv(c) (4.1.22)

for all a,c ∈ A. Now, since clearly [Lu,Lv]−Luv =−([Lv,Lu]+Lvu), it follows from
(4.1.19), (4.1.21), and (4.1.22) that

[uv[abc]] = [[uva]bc]− [a[vub]c]+ [ab[uvc]] (4.1.23)

for all u,v,a,b,c ∈ A. Finally, keeping in mind that

{abc}= [ab∗c] and [abc]∗ = [a∗b∗c∗],

and consequently {abc}∗ = [a∗bc∗], by replacing v and b with v∗ and b∗, respectively,
in (4.1.23) we obtain

{uv{abc}}= {{uva}bc}−{a{vub}c}+{ab{uvc}}

for all u,v,a,b,c ∈ A, and the proof concludes.

Now we will see that every Jordan ∗-triple can be regarded as a family of Jordan
algebra structures.

Proposition 4.1.35 Let J be a Jordan ∗-triple over K, and let e be in J. Then J
becomes a Jordan algebra over K under the product xy = {xey}.

Proof The product just defined is commutative by (4.1.12). Let x,y be in J. Setting
z := xy, (4.1.14) implies

(xy)x2 = {ze{xex}}= 2{{zex}ex}−{x{eze}x}
and

2{zex}= 2{{yex}ex}= {ye{xex}}+{x{eye}x}.

Applying (4.1.15) twice, we get

{x{eze}x}= {x{e{xey}e}x}= {x{ex{eye}}x}= {xe{x{eye}x}}.

Combining these identities, it follows that

(xy)x2 = {{ye{xex}}ex}+{{x{eye}x}ex}−{xe{x{eye}x}}

= {{ye{xex}}ex}= {xe{ye{xex}}}= x(yx2).

Hence J is a Jordan algebra.
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Definition 4.1.36 Given a Jordan ∗-triple J over K and an element e in J, the Jordan
algebra over K obtained from e via Proposition 4.1.35 above is called the e-homotope
algebra of J, and is denoted by J(e).

Given elements x,y in a Jordan ∗-triple J, we denote by L(x,y) the linear operator
on J defined by L(x,y)(z) := {xyz}.

Definition 4.1.37 By a Banach Jordan ∗-triple over K we mean a Jordan ∗-triple
over K endowed with a complete norm making the triple product continuous. Let
J be a Banach Jordan ∗-triple over K. Then clearly L(x,y) belongs to BL(J) for all
x,y ∈ J. We say that J is hermitian if K = C and if, for every x ∈ J, L(x,x) lies in
H(BL(J), IJ). If in addition the inclusion

sp(BL(J),L(x,x))⊆ R+
0

holds for every x ∈ J, then we say that J is positive hermitian. We will apply without
notice that, thanks to Proposition 2.3.23, the complex Banach Jordan ∗-triple J is
positive hermitian if and only if V (BL(J), IJ,L(x,x))⊆ R+

0 for every x ∈ J.

By a subtriple of a Jordan ∗-triple J we mean a subspace M of J such that {xyz}
lies in M whenever x,y,z are in M. Clearly, subtriples of a Jordan ∗-triple are Jordan
∗-triples.

As a straightforward consequence of Lemma 2.2.24, we get the following.

Lemma 4.1.38 Let J be a hermitian (respectively, positive hermitian) Banach
Jordan ∗-triple, and let M be a closed subtriple of J. Then the Banach Jordan
∗-triple M is hermitian (respectively, positive hermitian).

§4.1.39 Now, the reader is invited to recall the definition of a JB∗-triple, given in
§2.2.27, and to note that, according to Definitions 4.1.32 and 4.1.37, JB∗-triples are
nothing other than those positive hermitian Banach Jordan ∗-triples J such that the
equality

‖{xxx}‖= ‖x‖3 (4.1.24)

holds for every x ∈ J. Therefore, as a first consequence of Lemma 4.1.38 above, we
get the following.

Fact 4.1.40 Every closed subtriple of a JB∗-triple is a JB∗-triple.

Now, as announced in Subsection 2.2.3, we can prove the following.

Fact 4.1.41 Let A be a C∗-algebra. Then A becomes a JB∗-triple under its own
norm and the triple product

{xyz} :=
1
2
(xy∗z+ zy∗x) . (4.1.25)

Proof We straightforwardly realize that (A,{· · ·}) is a complex Banach Jordan
∗-triple (perhaps note that Asym is a Jordan algebra, and apply Proposition 4.1.34).
On the other hand, the equality (4.1.24) follows from Lemma 3.2.6. Therefore it
only remains to show that (A,{· · ·}) is positive hermitian. To this end, note that, by
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Proposition 1.2.44 and Lemma 4.1.38, we may assume that A is unital. Let x be in A.
By Lemmas 2.2.5 and 2.3.26, we have

V (A,1,xx∗)∪V (A,1,x∗x)⊆ R+
0 ,

and hence, by Lemma 2.1.10, we get

V (BL(A), IA,Lxx∗ +Rx∗x)⊆ R+
0 .

Noticing that the Jordan ∗-triple structure and the ∗-algebra structure of A are related
by means of the equality L(x,x) = 1

2 (Lxx∗ +Rx∗x), the proof is concluded.

The next lemma becomes the crucial link between the present subsection and
the preceding one. It will be applied in the proofs of Lemma 4.1.43 and Propos-
ition 4.1.50.

Lemma 4.1.42 Let J be a complex Banach Jordan ∗-triple, let M be a closed
subtriple of J, and let x,y be in M. Then we have

co
(
{0}∪ sp

(
BL(M),LM(x,y)

))
= co

(
{0}∪ sp

(
BL(J),LJ(x,y)

))
.

Proof By Proposition 4.1.35, J becomes a complex Jordan algebra (say A) under
the product uv := {uyv}. Moreover, up to multiplication of the norm of J by a suitable
positive number, A is a complete normed algebra, and the equality LA

x = LJ(x,y)
holds. Noticing that M becomes a closed subalgebra (say B) of A, and that the equal-
ity LB

x = LM(x,y) holds, the proof is concluded by applying Corollary 4.1.31.

The next lemma is a converse form of Lemma 4.1.38.

Lemma 4.1.43 Let J be a hermitian Banach Jordan ∗-triple such that for each
x ∈ J there exists a positive hermitian closed subtriple of J containing x. Then J is
positive hermitian.

Proof Let us fix x ∈ J and, according to the assumption, take a positive hermitian
closed subtriple M of J with x ∈ M. Since both M and J are hermitian Banach Jordan
∗-triples, Proposition 2.3.23 applies, so that we have

V (BL(M), IM,LM(x,x)) = co
(
sp(BL(M),LM(x,x))

)
and

V (BL(J), IJ,L
J(x,x)) = co

(
sp(BL(J),LJ(x,x))

)
.

It follows from Lemma 4.1.42 that

co({0}∪V (BL(M), IM ,LM(x,x))) = co
(
{0}∪V (BL(J), IJ,L

J(x,x))
)
.

Therefore, since V (BL(M), IM,LM(x,x))⊆R+
0 (because M is positive hermitian), we

get V (BL(J), IJ,LJ(x,x))⊆ R+
0 . Finally, since x is arbitrary in J, we conclude that J

is positive hermitian.

Let J be a (Banach) Jordan ∗-triple over K, and let S be a non-empty subset of J.
Since the intersection of any family of (closed) subtriples of J is a (closed) subtriple
of J, it follows that the intersection of all (closed) subtriples of J containing S is
the smallest (closed) subtriple of J containing S. This subtriple is called the (closed)
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subtriple of J generated by S. In the case where J is a Banach Jordan ∗-triple, the
closure in J of any subtriple of J is a subtriple too, and hence the closed subtriple of
J generated by S coincides with the closure in J of the subtriple generated by S.

Combining Lemmas 4.1.38 and 4.1.43, we obtain the following.

Corollary 4.1.44 A hermitian Banach Jordan ∗-triple J is positive hermitian
(respectively, a JB∗-triple) if and only if the closed subtriple generated by each of its
elements is positive hermitian (respectively, a JB∗-triple).

Now we can prove the main result in this subsection.

Theorem 4.1.45 Let A be a non-commutative JB∗-algebra. Then A becomes a JB∗-
triple under its own norm and the triple product

{xyz} :=Ux,z(y
∗). (4.1.26)

Proof By Facts 3.3.3 and 3.3.4, we may assume that A is a (commutative) JB∗-
algebra. Then, since ∗ is continuous on A (by Proposition 3.3.13), it is enough to
apply Proposition 4.1.34 to realize that A becomes a complex Banach Jordan ∗-triple
(say J) under the product (4.1.26). Moreover, for x ∈ J, the equality ‖{xxx}‖= ‖x‖3

follows from the axiom ‖Ux(x∗)‖= ‖x‖3 of JB∗-algebras. Therefore, it only remains
to show that J is positive hermitian.

We begin by proving that J is hermitian. To this end, we note that, by Corol-
lary 3.4.10 and Lemma 4.1.38, we may additionally assume that the JB∗-algebra A
is unital. Let x be in J. Then, since the Jordan ∗-triple structure of J is related to the
∗-algebra structure of A by means of the equality

LJ(x,x) = LA
xx∗ +

[
LA

x ,L
A
x∗
]
,

and D := [LA
x ,L

A
x∗ ] is a derivation of A (by Lemma 3.1.23) satisfying

D(y∗) =−D(y)∗ for every y ∈ A,

it is enough to apply Proposition 3.4.28 to get that LJ(x,x) lies in H(BL(J), IJ). Since
x is arbitrary in J, we conclude that J is hermitian, as desired.

Now, let us fix x ∈ J. Then, by Proposition 3.4.6, there exists a C∗-algebra B such
that the closed subalgebra of A generated by {x,x∗} (say C) can be seen as a closed
∗-subalgebra of Bsym. Since B becomes a positive hermitian Banach Jordan ∗-triple
under the triple product (4.1.25) (cf. Fact 4.1.41), and the restriction to C of this
triple product coincides with the restriction to C of the triple product (4.1.26) of J,
it follows from Lemma 4.1.38 that C becomes a positive hermitian closed Jordan
subtriple of J containing x. Finally, since J is hermitian (by the above paragraph),
and x is arbitrary in J, it is enough to invoke Lemma 4.1.43 to conclude that J is
positive hermitian. Thus the proof is complete.

Now we are going to determine unital JB∗-algebras among JB∗-triples. To this
end, we begin with the following.

Proposition 4.1.46 Let A be a unital Jordan real algebra endowed with a vector
space complete norm ‖ ·‖ satisfying ‖x2‖= ‖x‖2 � ‖x2 +y2‖ for all x,y ∈ A. Then A
is a JB-algebra.
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Proof For a,b ∈ SA we have

‖ab‖= 1
4

∥∥(a+b)2 − (a−b)2
∥∥� 1

4

(∥∥(a+b)2
∥∥+∥∥(a−b)2

∥∥)
=

1
4

(
‖a+b‖2 +‖a−b‖2)� 1

2
(‖a‖+‖b‖)2 = 2.

The above implies ‖ab‖ � 2‖a‖‖b‖ for all a,b ∈ A, and hence the product of A is
continuous. Let us fix an element x in A, denote by B the closed subalgebra of A
generated by {1,x}, and consider the smallest positive number M such that

‖uv‖ � M‖u‖‖v‖ for all u,v in B.

Since B is a commutative and associative algebra, for all u,v ∈ B we have

‖uv‖2 =
∥∥(uv)2

∥∥= ∥∥u2v2
∥∥� M

∥∥u2
∥∥∥∥v2

∥∥= M ‖u‖2 ‖v‖2 ,

and hence ‖uv‖ � M
1
2 ‖u‖‖v‖. Therefore M � M

1
2 , so M � 1, and so the norm

of B is an algebra norm. Thus B is a JB-algebra. Therefore, as a consequence of
Proposition 3.1.4(iii), we have v(B,1,x) = ‖x‖, and, by Lemma 3.1.29(i), f (x2) � 0
whenever f is in D(B,1). Since elements of D(B,1) are nothing other than the
restrictions to B of the elements of D(A,1), it follows from the arbitrariness of x
in A that, for each a ∈ A, there exists f ∈ D(A,1) such that ‖a‖ = | f (a)|, and that,
for each f ∈ D(A,1), the mapping (a,b)→ f (ab) from A×A to R becomes a non-
negative symmetric bilinear form. Now, for a,b ∈ A, choose f ∈ D(A,1) such that
‖ab‖= | f (ab)|. Then, by the Cauchy–Schwarz inequality we have

‖ab‖= | f (ab)| �
√

f (a2) f (b2) �
√
‖a2‖‖b2‖= ‖a‖‖b‖.

As a result, A is a JB-algebra.

§4.1.47 Given an element x of a Jordan ∗-triple J over K, the triple powers of x are
inductively defined by

x(1) = x and x(2n+3) =
{

xx(2n+1)x
}

for every n ∈ N∪{0},

so that x(3) = {xxx}.
A Jordan ∗-triple J is called abelian if the identity

{uv{xyz}}= {{uvx}yz} (4.1.27)

is satisfied. It is immediate to verify that an equivalent condition to (4.1.27) is that
L(J,J) := {L(x,y) : x,y ∈ J} is a commutative set of linear operators on J. Moreover,
in view of the Jordan triple identity (4.1.13), it is clear that (4.1.27) is also equivalent
to the identity

{uv{xyz}}= {u{vxy}z}. (4.1.28)

It is easy to show that, for elements x,y,z in an abelian Jordan ∗-triple J, we have

{xyz}(3) =
{

x(3)y(3)z(3)
}

and L(x(3),x(3)) = (L(x,x))3.
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Lemma 4.1.48 Let J be an abelian Banach Jordan ∗-triple over K.

(i) If for each x ∈ J the equality ‖{xxx}‖= ‖x‖3 holds, then we have

‖{xyz}‖ � ‖x‖‖y‖‖z‖ f or all x,y,z ∈ J,

and hence ‖L(x,x)‖= ‖x‖2 for every x ∈ J.
(ii) If for each x ∈ J the equality r(L(x,x)) = ‖x‖2 holds, then we have

‖{xxx}‖= ‖x‖3 f or every x ∈ J.

Proof Assume that for each x ∈ J the equality ‖{xxx}‖ = ‖x‖3 holds. Let c be the
smallest positive constant such that ‖{xyz}‖ � c‖x‖‖y‖‖z‖ for all x,y,z ∈ J. Since J
is abelian, it follows that

‖{xyz}‖3 =
∥∥∥{xyz}(3)

∥∥∥= ∥∥∥{x(3)y(3)z(3)
}∥∥∥

� c
∥∥∥x(3)

∥∥∥∥∥∥y(3)
∥∥∥∥∥∥z(3)

∥∥∥= c(‖x‖‖y‖‖z‖)3 .

Hence c � c
1
3 , so c � 1, and so ‖{xyz}‖ � ‖x‖‖y‖‖z‖ for all x,y,z ∈ J. As a con-

sequence, we deduce that ‖L(x,x)‖ � ‖x‖2 for every x ∈ J. On the other hand, we
have

‖x‖3 = ‖{xxx}‖= ‖L(x,x)(x)‖ � ‖L(x,x)‖‖x‖,

and hence ‖x‖2 � ‖L(x,x)‖. Thus ‖L(x,x)‖= ‖x‖2 for every x ∈ J.
Now assume that for each x ∈ J the equality r(L(x,x)) = ‖x‖2 holds. Then, since

J is abelian, for x ∈ J we have

‖{xxx}‖2 =
∥∥∥x(3)

∥∥∥2
= r

(
L
(

x(3),x(3)
))

= r
(
(L(x,x))3)

= (r(L(x,x)))3 = ‖x‖6 ,

and hence ‖{xxx}‖= ‖x‖3.

Lemma 4.1.49 Let J be a Jordan ∗-triple over K, let z be an element of J, and let
M stand for the subtriple of J generated by z. Then we have{

z(2m+1)z(2k+1)z(2n+1)
}
= z(2(m+k+n+1)+1) for all m,k,n ∈ N∪{0}. (4.1.29)

Consequently, M coincides with the linear hull of all triple powers of z, and is
abelian. Moreover, the Jordan algebra M(z) (cf. Definition 4.1.36) is the subalgebra
of J(z) generated by z.

Proof We recall that J(z) is the Jordan algebra obtained by endowing J with the
product xy := {xzy}, and that, as any Jordan algebra, J(z) is power-associative (cf.
Proposition 2.4.13(i)). First of all, we note that the triple powers of z in J are closely
related to the powers of z in J(z). More precisely,

z(2n+1) = zn+1 for every n ∈ N∪{0}. (4.1.30)

We argue by induction on n. Clearly z(1) = z = z1. Assume that p ∈ N is such that
(4.1.30) is true for every value n with n � p. Then we have

z(2p+3) =
{

zz(2p+1)z
}
=
{

zzp+1z
}
= {z{zpzz}z} ,
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and applying (4.1.15) we obtain

z(2p+3) = {{zzpz}zz}=
{{

zz(2p−1)z
}

zz
}
=
{

z(2p+1)zz
}
=
{

zp+1zz
}
= zp+2.

Now that (4.1.30) has been established, we are going to prove (4.1.29). Indeed, if
k = 0, then{

z(2m+1)z(1)z(2n+1)
}
=
{

zm+1zzn+1}= zm+1zn+1 = zm+n+2 = z(2(m+n+1)+1),

whereas, if k ∈ N, then{
z(2m+1)z(2k+1)z(2n+1)

}
=
{

z(2m+1)
{

zz(2k−1)z
}

z(2n+1)
}

=
{

zm+1
{

zzkz
}

zn+1
}
,

and applying (4.1.13){
z(2m+1)z(2k+1)z(2n+1)

}
=
{{

zkzzm+1
}

zzn+1
}
+
{

zm+1z
{

zkzzn+1
}}

−
{

zkz
{

zm+1zzn+1}}
=
(

zkzm+1
)

zn+1 + zm+1
(

zkzn+1
)
− zk (zm+1zn+1)

= zm+k+n+2 = z(2(m+k+n+1)+1).

It follows from (4.1.29) that the linear hull of all triple powers of z is an abelian
Jordan ∗-triple, which clearly coincides with the subtriple M of J generated by z.
Moreover, it follows from (4.1.30) that M(z) coincides with the subalgebra of J(z)

generated by z.

Proposition 4.1.50 Let J be a hermitian Banach Jordan ∗-triple. Then the following
conditions are equivalent:

(i) The equality ‖{xxx}‖= ‖x‖3 holds for every x ∈ J.
(ii) The equality ‖L(x,x)‖= ‖x‖2 holds for every x ∈ J.

Moreover, if the above conditions are fulfilled, then we have r(L(x,x)) = ‖x‖2 for
every x ∈ J.

Proof Let y be in J, and let M stand for the closed subtriple of J generated by y.
Then, as a consequence of Lemma 4.1.42, we have

r
(
LM(z,z)

)
= r
(
LJ(z,z)

)
for every z ∈ M.

Therefore, since both M and J are hermitian Banach Jordan ∗-triples, Propos-
ition 2.3.22 applies to get∥∥LM(z,z)

∥∥= r
(
LM(z,z)

)
= r
(
LJ(z,z)

)
=
∥∥LJ(z,z)

∥∥ for every z ∈ M. (4.1.31)

Note also that, by Lemma 4.1.49, M is abelian.
Assume that condition (i) is true for J. Then it remains true for M, and hence, by

Lemma 4.1.48(i), we have ‖LM(y,y)‖ = ‖y‖2. Therefore, invoking (4.1.31), we get
r(LJ(y,y)) = ‖LJ(y,y)‖= ‖y‖2. Since y is arbitrary in J, we realize that condition (ii),
as well as the last conclusion in the proposition, are true for J.
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Now assume that condition (ii) is true for J. Then, by (4.1.31), it remains true for
M, and moreover for each z ∈ M the equality r(LM(z,z)) = ‖z‖2 holds. Therefore, by
Lemma 4.1.48(ii), we have ‖{yyy}‖= ‖y‖3. Since y is arbitrary in J, we realize that
condition (i) is true for J.

The following corollary follows straightforwardly from §4.1.39 and Propos-
ition 4.1.50.

Corollary 4.1.51 JB∗-triples are precisely those positive hermitian Banach Jordan
∗-triples J satisfying ‖L(x,x)‖ = ‖x‖2 for every x ∈ J. If J is a JB∗-triple, then the
equality r(L(x,x)) = ‖x‖2 holds for every x ∈ J.

A mapping F between Jordan ∗-triples J and K over K is called a triple homo-
morphism if it is linear and preserves triple products, i.e.

F({xyz}) = {F(x)F(y)F(z)} for all x,y,z ∈ J.

Proposition 4.1.52 Let J and K be JB∗-triples, and let F : J → K be a bijective
triple homomorphism. Then F is an isometry.

Proof Argue as in the proof of the implication (iii)⇒(i) in Theorem 2.2.19 with the
equality r(L(x,x)) = ‖x‖2 in Corollary 4.1.51 instead of Lemma 2.2.10.

Replacing Corollary 4.1.51 with Proposition 4.1.50 in the above proof, we realize
that Proposition 4.1.52 remains true if we relax ‘JB∗-triples’ to ‘hermitian Banach
Jordan ∗-triples satisfying ‖{xxx}‖= ‖x‖3 for every element x’.

Definition 4.1.53 An element e of a Jordan ∗-triple J over K is called unitary if
{eex}= x for every x ∈ J.

Proposition 4.1.54 There is a bijective correspondence between unital Jordan
∗-algebras over K and nonzero Jordan ∗-triples over K with a distinguished unitary
element. More precisely, if A is a Jordan ∗-algebra over K with unit element e 	= 0,
then e is a unitary element with respect to the Jordan ∗-triple product on A given
by {abc} := Ua,c(b∗). Conversely, if J is a nonzero Jordan ∗-triple over K, and if e
is a unitary element of J, then J endowed with the product x� y := {xey} and the
involution x∗ := {exe} becomes a Jordan ∗-algebra over K with unit element e 	= 0.
These two constructions are mutually inverse.

Proof If A is a Jordan ∗-algebra with unit element e 	= 0, then e∗ = e, and therefore
e is a unitary element for the Jordan ∗-triple associated to A via Proposition 4.1.34.
Further, the Jordan product � associated to the Jordan ∗-triple A with distinguished
unitary element e via Proposition 4.1.35 coincides with the original product of A
since

a�b = {aeb}=Ua,b(e) = a(be)+b(ae)− (ab)e = ab.

Conversely, suppose J is a nonzero Jordan ∗-triple with unitary element e. By
Proposition 4.1.35, J is a Jordan algebra with unit element e for the product x� y =
{xey}. By (4.1.14), we have

{e{exe}e}= 2{{xee}ee}−{xe{eee}}= 2{xee}−{xee}= 2x− x = x
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for every x∈ J, showing that the conjugate-linear mapping x→ x∗ := {exe} is involu-
tive. Further, (4.1.15) implies

(x� y)∗ = {e{xey}e}= {ex{eye}}= {exy∗},

whereas (4.1.13) implies

x∗ � y∗ = {{exe}ey∗}= {ex{eey∗}}−{ee{exy∗}}+{e{xee}y∗}= {exy∗}.

Hence ∗ is an algebra involution on the Jordan algebra J. Further, the Jordan ∗-triple
product associated to the involutive unital Jordan algebra J via Proposition 4.1.34
coincides with the original Jordan ∗-triple product, since (4.1.13) implies

Ux,z(y
∗) = x� (y∗ � z)+ z� (x� y∗)− (x� z)� y∗

= {xe{y∗ez}}+{ze{xey∗}}−{{xez}ey∗}= {x{ey∗e}z}= {xyz}.

Theorem 4.1.55 There is a bijective correspondence between unital JB∗-algebras
and nonzero JB∗-triples with a distinguished unitary element. More precisely, if A
is a JB∗-algebra with unit element e 	= 0, then A endowed with the triple product
{abc} := Ua,c(b∗) becomes a JB∗-triple with unitary element e. Conversely, if J is
a nonzero JB∗-triple, and if e is a unitary element of J, then J endowed with the
product xy := {xey} and the involution x∗ := {exe} becomes a JB∗-algebra with unit
element e 	= 0. These two constructions are mutually inverse.

Proof Let A be a JB∗-algebra with unit element e 	= 0. Then, by Theorem 4.1.45, A
becomes a JB∗-triple (say J) with respect to the Jordan ∗-triple product on A given
by {abc} :=Ua,c(b∗), and, clearly, e becomes a unitary element of J.

Now, let J be a nonzero JB∗-triple, and let e be a unitary element of J. Then,
by Proposition 4.1.54, J endowed with the product xy := {xey} and the involution
x∗ := {exe} becomes a Jordan ∗-algebra (say A) with unit element e 	= 0. Moreover,
A is endowed with a complete norm ‖ · ‖ (namely, the one of J) making the product
and the involution of A continuous. Let h be in H(A,∗). Then the closed subalgebra
of A generated by h (say Bh) is ∗-invariant and associative. Moreover, by Propos-
ition 4.1.54, Bh is a closed subtriple of J (say M), and, since Bh is an associative
and commutative algebra, the Jordan ∗-triple M is abelian. Therefore, since ‖e‖= 1
(as ‖e‖= ‖{eee}‖= ‖e‖3), Lemma 4.1.48(i) gives ‖xy‖= ‖{xey}‖ � ‖x‖‖y‖ for all
x,y ∈ Bh. Thus, since

‖Ux(x∗)‖= ‖{xxx}‖= ‖x‖3 for every x ∈ Bh,

we realize that Bh is a unital JB∗-algebra. By Proposition 3.4.1(i), Bh is in fact a
unital C∗-algebra. Therefore we have ‖h2‖ = ‖h‖2 and f (h2) � 0 whenever f is
in D(Bh,e). Now, let k be another element of H(A,∗), take g ∈ D(Bh,e) such that
g(h2) = ‖h‖2, extend g to an element s ∈ D(A,e), and note that the restriction of s to
Bk is an element of D(Bk,e). Then we have

‖h2‖= ‖h‖2 = s(h2) � s(h2 + k2) � ‖h2 + k2‖.

Since h and k are arbitrary elements of H(A,∗), it follows from Proposition 4.1.46
that H(A,∗) is a JB-algebra. Therefore, by Theorem 3.4.8, there exists a norm ||| · |||
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on A such that (A,∗, ||| · |||) becomes a JB∗-algebra. Then, by Theorem 4.1.45 (or the
first paragraph of the present proof), (A,∗, ||| · |||) can be seen as a JB∗-triple in such a
way that the mapping x → x from (A,∗, ||| · |||) to J becomes a triple homomorphism.
Finally, by Proposition 4.1.52, we have ‖ · ‖= ||| · |||, and (A,∗,‖ · ‖) is indeed a JB∗-
algebra.

It then follows from Proposition 4.1.54 that the two constructions in the statement
are mutually inverse.

4.1.4 Extending the Jordan spectral theory to
Jordan-admissible algebras

Definition 4.1.56 Let A be a unital Jordan-admissible algebra over K. We say that
an element a in A is J-invertible in A with J-inverse b if a is J-invertible in the
Jordan algebra Asym with J-inverse b, i.e. if the equalities a • b = 1 and a2 • b = a
hold (cf. Definition 4.1.2). Thus, when a is a J-invertible element of A, we keep the
notation a−1 for the (unique) J-inverse of a in A (cf. Theorem 4.1.3(iii)). We now
proceed to study these notions in the particular case where A is a non-commutative
Jordan algebra. First of all, we note that, in the still more particular case where A is
alternative, §4.1.1 reads as follows.

Fact 4.1.57 Let A be an alternative algebra over K, and let a be in A. Then a is
J-invertible in A with J-inverse b if and only if a is invertible in A with inverse b.

The next result contains a nice intrinsic characterization of J-invertible elements
of unital non-commutative Jordan algebras.

Proposition 4.1.58 Let A be a unital non-commutative Jordan algebra over K, and
let a be an element of A. Then the following conditions are equivalent:

(i) a is J-invertible in A.
(ii) There exists b ∈ A such that ab = ba = 1 and a2b = ba2 = a.

Moreover, in the case where the above conditions are fulfilled, the element b appear-
ing in condition (ii) is unique and coincides with the J-inverse of a, and we have:

(iii) Ua is a bijective operator on A, and

(Ua)
−1 =Ua−1 , LaLa−1 = RaRa−1 , La−1 =Ua−1Ra, Ra−1 =Ua−1 La.

(iv) For i, j,k, � ∈ N, the operators Lai ,Ra j ,La−k , and Ra−� pairwise commute.

Proof (i)⇒(ii) Assume that a is J-invertible in A. It follows from Corollary 3.2.2
that

(La2 −Ra2)(a−1) = (L2
a −R2

a)(a
−1) = (La −Ra)(La +Ra)(a

−1)

= 2(La −Ra)(a•a−1) = 2(La −Ra)(1) = 0,

so a2a−1 = a−1a2, and so, since a2 •a−1 = a, we get that a2a−1 = a−1a2 = a. Then
a−1a= a−1(a2a−1) = (a−1a2)a−1 = aa−1, and hence, since a•a−1 = 1, we conclude
that aa−1 = a−1a = 1. Thus condition (ii) is fulfilled with b = a−1.
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(ii)⇒(i) Assume the existence of an element b in A satisfying ab = ba = 1 and
a2b = ba2 = a. Then it is immediate to verify that a•b = 1 and a2 •b = a. Thus a is
J-invertible in A with J-inverse b, and the uniqueness of b follows.

From now on, we suppose that conditions (i) and (ii) are fulfilled.
In order to prove assertion (iii) we begin by noticing that, by Fact 3.3.3 and

Theorem 4.1.3(iv), Ua is a bijective operator on A and (Ua)
−1 = Ua−1 . Moreover,

as a consequence of the identity (3.2.6) in the proof of Proposition 3.2.1 we have
[La,Ra−1 ] = [Ra,La−1 ], and as consequence of Corollary 3.2.2(i) we obtain

LaLa−1 = RaRa−1 and La−1La = Ra−1Ra, (4.1.32)

and so [La,La−1 ] = [Ra,Ra−1 ]. Therefore

[La +Ra,La−1 ] = [La +Ra,Ra−1 ] =
1
2
[La +Ra,La−1 +Ra−1 ] = 2

[
LAsym

a ,LAsym

a−1

]
,

and hence, invoking Theorem 4.1.3(v), we have

[La +Ra,La−1 ] = [La +Ra,Ra−1 ] = 0. (4.1.33)

On the other hand, replacing a by a+λc in the identity (3.2.2) of Proposition 3.2.1,
and equalizing the coefficients of λ we obtain

((ac+ ca)b)a+(a2b)c = (ac+ ca)(ba)+a2(bc).

This relation becomes

RaRb(La +Ra)+La2b = Rba(La +Ra)+La2 Lb. (4.1.34)

Hence setting b = a−1 we get

Ra = RaRa−1(La +Ra)−La2La−1 .

Now, using (4.1.32) and (4.1.33), and recalling the definition of Ua (cf. §2.2.4),
we have

Ra = [La(La +Ra)−La2 ]La−1 =UaLa−1 .

By interchanging the role of a and a−1, we conclude that Ra−1 =Ua−1La. The equality
La−1 =Ua−1Ra follows by duality. Thus assertion (iii) is proved.

In order to prove assertion (iv) we begin by recalling that, by Corollary 3.2.2(ii),
the set S1 := {La,Ra,La2 ,Ra2} is a commutative subset of L(A). Keeping in mind
the definition of Ua, it is then clear that Ua ∈ Sc

1 (the commutator of S1 in L(A)),
and hence, by Lemma 1.1.80, Ua−1 =U−1

a ∈ Sc
1. Now, it follows from assertion (iii)

that La−1 ,Ra−1 ∈ Sc
1, and, by the definition of Ua−1 , also La−2 ,Ra−2 ∈ Sc

1. Therefore,
setting S2 := {La−1 ,Ra−1 ,La−2 ,Ra−2}, we realize that S := S1 ∪ S2 is a commutative
subset of L(A) because S1 and S2 are commutative and each element of S1 commutes
with every element of S2. Let k be in N. Keeping in mind (4.1.34) and its dual,
an induction argument shows that Lxk and Rxk belong to the subalgebra of L(A)
generated by S1. Analogously, La−k ,Ra−k belong to the subalgebra generated by S2.
Therefore Lak ,Rak ,La−k ,Ra−k belong to the subalgebra generated by S. Since S is a
commutative set, assertion (iv) follows from Corollary 1.1.79.
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Let A be a unital Jordan-admissible algebra over K. According to the
concept of a J-invertible element of A introduced in Definition 4.1.56, we set
J-Inv(A) := J-Inv(Asym), and we say that A is a J-division algebra whenever
J-Inv(A) = A\{0}. With this convention, Corollary 4.1.14 reads as follows.

Corollary 4.1.59 Let A be a normed J-division Jordan-admissible complex alge-
bra. Then A is isomorphic to C.

The next result becomes the non-commutative generalization of Proposition 4.1.9.

Proposition 4.1.60 Let A be a unital non-commutative Jordan algebra over K, and
let a be in A such that La is bijective. Then a is J-invertible in A, and Ra−1 is bijective.

Proof Set b := L−1
a (1). Then, clearly, ab = 1. Moreover, since Ra,La2 , and Ra2

commute with La (by Proposition 3.2.1), we have

ba = Ra(b) = RaL−1
a (1) = L−1

a Ra(1) = L−1
a (a) = L−1

a La(1) = 1,

a2b = La2(b) = La2L−1
a (1) = L−1

a La2(1) = L−1
a (a2) = L−1

a La(a) = a,

and

ba2 = Ra2(b) = Ra2 L−1
a (1) = L−1

a Ra2(1) = L−1
a (a2) = L−1

a La(a) = a.

Therefore, by Proposition 4.1.58, a is J-invertible in A, and Ra−1 = Ua−1 La is
bijective.

To take the maximum profit of Corollary 4.1.59 and Proposition 4.1.60 above,
some additional auxiliary results have to be proved.

Lemma 4.1.61 Let A be a non-commutative Jordan algebra over K, let a be in A
such that La is bijective, and set e := L−1

a (a). If at least one of the operators La2 ,Ra2

is injective, then e is an idempotent.

Proof We have clearly ae = a (I). Therefore, since A is flexible, we obtain

0 = (ae)a−a(ea) = a2 −a(ea) = a(a− ea),

which, by the injectivity of La, implies that ea = a (II). Moreover, by (I) and the
identities (3.2.1) and (3.2.4) in Proposition 3.2.1, we get that

0 = (ae)a2 −a(ea2) = a3 −a(ea2) = a(a2 − ea2)

and

0 = a2(ae)−a(a2e) = a3 −a(a2e) = a(a2 −a2e),

which, again by the injectivity of La, imply a2 = ea2 (III) and a2 = a2e (IV). Now
note that the identity (3.2.1) can be linearized as

[z,y,x2]+ [x,y,xz+ zx] = 0 for all x,y,z ∈ A,

and that consequently, by (I), (II), and (III), we have

0 = [e,e,a2]+ [a,e,ae+ ea] = [e,e,a2]+2[a,e,a]

= [e,e,a2] = e2a2 − e(ea2) = e2a2 − ea2 = e2a2 −a2,
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which together with (III) again gives (e2 − e)a2 = 0 (V). An analogous argument,
involving (IV) and the identity (3.2.2) instead of (III) and the identity (3.2.1), gives
that a2(e2 − e) = 0 (VI). Now, if La2 is injective, then e2 = e (by (VI)), whereas if
Ra2 is injective, then e2 = e as well (by (V)).

We recall that an algebra A is said to be a quasi-division algebra if A 	= 0 and,
for every a ∈ A \ {0}, at least one of the operators La,Ra is bijective (cf. Defin-
ition 2.5.35).

Proposition 4.1.62 Let A be a non-commutative Jordan quasi-division algebra
over K. Then A is a J-division algebra.

Proof Replacing A with the opposite algebra A(0) of A if necessary, we may assume
that there exists a ∈ A\{0} such that La is bijective. Then we have a2 = La(a) 	= 0,
and hence certainly at least one of the operators La2 ,Ra2 is bijective. Therefore, by
Lemma 4.1.61, e := L−1

a (a) is a nonzero idempotent, and hence, since A cannot have
nonzero joint divisors of zero, Lemma 2.5.5 applies to get that A is unital. Finally,
applying Proposition 4.1.60 to both A and A(0), we realize that every nonzero element
of A is J-invertible in A.

Now the following partial affirmative answer to Problem 2.7.4 follows from
Corollary 4.1.59 and Proposition 4.1.62.

Theorem 4.1.63 Let A be a normed non-commutative Jordan quasi-division com-
plex algebra. Then A is isomorphic to C.

As a by-product of Proposition 4.1.62, non-commutative Jordan one-sided (say
left) division algebras over K are unital. Therefore it is enough to invoke Propos-
ition 4.1.60 to get the following.

Corollary 4.1.64 Non-commutative Jordan one-sided division algebras over K are
in fact division algebras.

Definition 4.1.65 Let A be a unital Jordan-admissible algebra over K. A sub-
algebra B of A is called a J-full subalgebra of A if B contains the unit element
of A and the J-inverses of those of their elements which are J-invertible in A.
According to the concept of invertibility in A introduced in Definition 4.1.56,
for a ∈ A we set J-sp(A,a) := J-sp(Asym,a). It is then clear that a subalgebra B
of A is a J-full subalgebra if and only if it contains the unit of A and the equality
J-sp(A,x) = J-sp(B,x) holds for every x ∈ B.

Unital finite-dimensional subalgebras of unital non-commutative Jordan algebras
become examples of J-full subalgebras. Indeed, this follows from the next more
general result.

Proposition 4.1.66 Let A be a unital non-commutative Jordan algebra over K, and
let B be an algebraic subalgebra of A containing 1. Then B is a J-full subalgebra
of A.

Proof Let b be in B \ J-Inv(B). Let C stand for the subalgebra of B generated by
{b,1}. By Proposition 2.4.19, C is a unital associative algebra. Let p(x) be the



4.1 Involving the Jordan inverse 477

minimum polynomial of b (cf. §2.5.9). Since b /∈ J-Inv(B), it follows that b /∈ Inv(C),
hence 0 ∈ sp(C,b), and so, by Corollary 1.3.5, p(0) = 0. Therefore p(x) = xq(x)
for a suitable polynomial q(x). Hence 0 = p(b) = bq(b), and consequently
Ub(q(b)) = bq(b)b = 0. Since q(b) 	= 0, it follows that Ub is not injective, and
hence that b is not J-invertible in A (by Proposition 4.1.58(iii)). Thus B is a J-full
subalgebra of A.

Assertion (i) in the next result generalizes Proposition 1.2.20(ii), whereas, in the
particular case of unital C∗-algebras, assertion (ii) makes the usual order in their
self-adjoint parts (cf. §1.2.41) agree with the order introduced in §3.4.68.

Fact 4.1.67 Let A be a unital non-commutative JB∗-algebra, and let a be in H(A,∗).
Then we have:

(i) J-sp(A,a)⊆ R.
(ii) a � 0 (in the sense of §3.4.68) if and only if J-sp(A,a)⊆ R+

0 .

Proof Let B stand for the closed subalgebra of A generated by {1,a}. Then, by
Propositions 3.4.1(ii) and 4.1.28(ii), we have that

B is a unital commutative C∗-algebra
and co(sp(B,a)) = co(J-sp(A,a)).

}
(4.1.35)

It follows from (4.1.35) and Proposition 1.2.20(ii) that J-sp(A,a) ⊆ R, and asser-
tion (i) is proved.

Now we prove assertion (ii). By Claim 3.1.28, a is a positive element of A if
and only if a is a positive element of B. Therefore the result follows by invoking
(4.1.35).

Now we are going to prove that closed ∗-subalgebras of unital non-commutative
JB∗-algebras are J-full subalgebras.

Lemma 4.1.68 Let C be a unital C∗-algebra, let x be a non-invertible element of
C, and for n ∈ N set

xn :=
(nx∗x+ i1)−

1
2 (nxx∗+ i1)−

1
2

‖(nx∗x+ i1)−
1
2 (nxx∗+ i1)−

1
2 ‖

.

Then the sequence xxnx converges to zero in C.

Proof We may assume that x 	= 0. Let n be in N. Then we have∥∥∥x(nx∗x+ i1)−
1
2

∥∥∥2
=
∥∥∥(nx∗x− i1)−

1
2 x∗x(nx∗x+ i1)−

1
2

∥∥∥
=
∥∥∥x∗x(n2(x∗x)2 +1)−

1
2

∥∥∥
� max

{
t√

n2t2 +1
: t ∈

[
0,‖x‖2]}=

‖x‖2√
n2‖x‖4 +1

,

and analogously ∥∥∥(nxx∗+ i1)−
1
2 x
∥∥∥2

� ‖x‖2√
n2‖x‖4 +1

.
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Therefore we get∥∥∥x(nx∗x+ i1)−
1
2 (nxx∗+ i1)−

1
2 x
∥∥∥� ‖x‖2√

n2‖x‖4 +1
.

Now we invoke the assumption that x is not invertible in C, so that, by Lemma
1.1.99(i), x∗x or xx∗ must be non-invertible in C. If x∗x is not invertible, then we have

1 �
∥∥∥(nx∗x+ i1)−

1
2

∥∥∥= ∥∥∥(nx∗x+ i1)−
1
2 (nxx∗+ i1)−

1
2 (nxx∗+ i1)

1
2

∥∥∥
�
∥∥∥(nx∗x+ i1)−

1
2 (nxx∗+ i1)−

1
2

∥∥∥∥∥∥(nxx∗+ i1)
1
2

∥∥∥
�
∥∥∥(nx∗x+ i1)−

1
2 (nxx∗+ i1)−

1
2

∥∥∥ 4
√

n2 ‖x‖4 +1,

and the same conclusion

1 �
∥∥∥(nx∗x+ i1)−

1
2 (nxx∗+ i1)−

1
2

∥∥∥ 4
√

n2‖x‖4 +1

holds analogously if xx∗ is not invertible. It follows that

‖xxnx‖=

∥∥∥x(nx∗x+ i1)−
1
2 (nxx∗+ i1)−

1
2 x
∥∥∥∥∥∥(nx∗x+ i1)−

1
2 (nxx∗+ i1)−

1
2

∥∥∥ �
‖x‖2√

n2‖x‖4+1
1

4
√

n2‖x‖4+1

=
‖x‖2

4
√

n2‖x‖4 +1
,

hence xxnx → 0, as desired.

Definition 4.1.69 Let A be a (normed) Jordan-admissible algebra A. An element
a∈A is said to be a (topological ) J-divisor of zero in A if it is a (topological) J-divisor
of zero in the (normed) Jordan algebra Asym (cf. Definitions 4.1.22 and 4.1.24). We
note that, according to Definition 4.1.56 and Proposition 4.1.25(ii), if A is unital, then
(topological) J-divisors of zero in A cannot be J-invertible.

First of all, we note that, in the particular case where A is alternative, Propos-
ition 4.1.23 reads as follows.

Fact 4.1.70 Let A be a normed alternative algebra over K, and let a be in A. Then
a is a topological J-divisor of zero in A if and only if a is a one-sided topological
divisor of zero in A.

Now, the following theorem generalizes Proposition 1.2.24.

Theorem 4.1.71 Let A be a unital non-commutative JB∗-algebra. Then we have:

(i) Each non-J-invertible element of A is a topological J-divisor of zero in A.
(ii) Each closed ∗-subalgebra of A containing 1 is a J-full subalgebra of A.

Proof By Fact 3.3.4, we may assume that A is commutative.
Let x be in A \ J-Inv(A). Then x is not J-invertible in the closed subalgebra B

of A generated by {1,x,x∗}. But, by Proposition 3.4.6, there exists a C∗-algebra C
such that 1 is a unit for C, and B can be seen as a closed ∗-subalgebra of Csym.
Moreover, by Lemma 3.3.6(ii), x is not invertible in C, and then, by Lemma 3.3.6(i),
for each n ∈N, the element xn of C given by Lemma 4.1.68 lies in B. It follows from
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Lemma 4.1.68 that Ux(xn)→ 0, with ‖xn‖ = 1 and xn ∈ A, which shows that x is a
topological J-divisor of zero in A, thus concluding the proof of assertion (i).

Now, let B be any closed ∗-subalgebra of A containing 1, and let b be an element
of B\ J-Inv(B). By assertion (i) just proved, b is a topological J-divisor of zero in B,
so it is a topological J-divisor of zero in A, and so, by Proposition 4.1.25(ii), b is not
J-invertible in A. Thus B is a J-full subalgebra of A, and the proof of assertion (ii) is
concluded.

Now we can generalize the continuous functional calculus stated in Theorem
1.2.28, §1.2.29, and Proposition 1.2.34. We recall that an element a of a ∗-algebra A
over K is said to be normal if the subalgebra of A generated by {a,a∗} is associative
and commutative (cf. Definition 3.4.20). Also we recall that J-spectra of elements of a
complete normed unital Jordan-admissible complex algebra are non-empty compact
subsets of C (cf. Theorem 4.1.17).

Corollary 4.1.72 Let A be a unital non-commutative JB∗-algebra, let a be a
normal element of A, and denote by u the inclusion mapping J-sp(A,a) ↪→ C. Then
there exists a unique unit-preserving algebra ∗-homomorphism f → f (a) from
CC(J-sp(A,a)) to A taking u to a. Moreover, we have:

(i) The ∗-homomorphism above is isometric, and its range coincides with the
closed subalgebra of A generated by {1,a,a∗}.

(ii) If f is in CC(J-sp(A,a)), then J-sp(A, f (a)) = f (J-sp(A,a)) (‘spectral mapping
theorem’).

(iii) If f is in CC(J-sp(A,a)), and if g is in CC(J-sp(A, f (a))), then the equality
(g◦ f )(a) = g( f (a)) holds.

Proof Let B stand for the closed subalgebra of A generated by {1,a,a∗}, and let
Φ : CC(J-sp(A,a)) → A be a unit-preserving algebra ∗-homomorphism such that
Φ(u) = a. Then, since B is ∗-invariant (by Propositions 3.3.13 and 1.2.25), and Φ
is continuous (by Proposition 3.4.4), and the closed subalgebra of CC(J-sp(A,a))
generated by {1,u,u∗} equals CC(J-sp(A,a)) (by the Stone–Weierstrass theorem), it
follows from Lemma 1.1.82(ii) that

Φ(CC(J-sp(A,a)))⊆ B.

This allows us to see Φ as a unit-preserving algebra ∗-homomorphism from
CC(J-sp(A,a)) to B taking u to a. On the other hand, since a is normal, B is
associative and commutative, and hence it is a commutative C∗-algebra (by Prop-
osition 3.4.1(i)). Moreover, by Theorem 4.1.71, B is a J-full subalgebra of A,
which implies J-sp(A,x) = J-sp(B,x) = sp(B,x) for every x in B. Now, replacing
A with B, we may assume that A is a C∗-algebra, so that the result follows from
Theorem 1.2.28, §1.2.29, and Proposition 1.2.34.

Given a normal element a of a unital non-commutative JB∗-algebra A, the algebra
∗-homomorphism f → f (a) from CC(J-sp(A,a)) to A, given by Corollary 4.1.72,
will be called the continuous functional calculus at a.

In view of Fact 4.1.57 and Definition 4.1.65, and to be in agreement with the asso-
ciative case (cf. Definition 1.1.72), J-full subalgebras of a unital alternative algebra
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A will be called simply full subalgebras of A. With this convention in mind, it is
enough to invoke Facts 3.3.2 and 4.1.70 to get the following.

Corollary 4.1.73 Let A be a unital alternative C∗-algebra. Then we have:

(i) Each non-invertible element of A is a one-sided topological divisor of zero in A.
(ii) Each closed ∗-subalgebra of A containing 1 is a full subalgebra of A.

If A is a unital Jordan-admissible complex ∗-algebra, then, by the uniqueness of the
J-inverse, H(A,∗) becomes a J-full real subalgebra of Asym. With this idea in mind,
it is enough to combine Theorem 3.4.8, Fact 4.1.67, and Corollary 4.1.72, to get the
following continuous functional calculus for a single element of a unital JB-algebra.

Corollary 4.1.74 Let A be a unital JB-algebra, let a be in A, and denote by u
the inclusion mapping J-sp(A,a) ↪→ R. Then there exists a unique unit-preserving
algebra homomorphism f → f (a) from CR(J-sp(A,a)) to A taking u to a. Moreover,
we have:

(i) The homomorphism above is isometric, and its range coincides with the closed
subalgebra of A generated by {1,a}.

(ii) If f is in CR(J-sp(A,a)), then J-sp(A, f (a)) = f (J-sp(A,a)).
(iii) Whenever f is in CR(J-sp(A,a)) and g is in CR(J-sp(A, f (a))), we have

(g◦ f )(a) = g( f (a)).

4.1.5 The holomorphic functional calculus for complete normed unital
non-commutative Jordan complex algebras

The main goal of this subsection is to prove that unital non-commutative Jordan
algebras over K are ‘locally spectrally’ associative, and to take advantage of this
fact.

Lemma 4.1.75 Let A be a Jordan algebra over K, let G be a non-empty subset
of A, and let B stand for the subalgebra of A generated by G. Then M (B)A (in
the sense of §3.3.36) coincides with the subalgebra of L(A) generated by the set
{La,Lab : a,b ∈ G}.

Proof It is obvious that M (B)A is generated by operators of the form Lw̄, where
w = w(x1, . . . ,xn) is some non-associative word and w̄ = w(a1, . . . ,an) with ai ∈ G
(cf. §§2.8.17 and 2.8.26). Therefore it suffices to show that, for any non-associative
word w, the operator Lw̄ lies in the subalgebra (say C ) of L(A) generated by the set
{La,Lab : a,b ∈ G}. We proceed by induction on the degree of the non-associative
word w. If deg(w) � 2, then it is obvious that Lw̄ ∈ C . If deg(w) � 3, then either
w = (w1w2)w3 or w = w3(w2w1), where wi are non-associative words of lesser
degree. Since A is commutative, we have (w1 w2)w3 = w3(w2 w1), and hence the
identity (2.4.3) in the proof of Proposition 2.4.13 gives

Lw̄ = Lw1 w2 Lw3 + Lw1 w3Lw2 + Lw2 w3 Lw1 − Lw1 Lw3 Lw2 − Lw2 Lw3 Lw1 .

By the induction assumption, Lw̄i ,Lw̄i w̄ j ∈C , and therefore Lw̄ ∈C also. This proves
the statement.
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Corollary 4.1.76 Let A be a unital Jordan algebra over K, let G be a subset of A
containing 1, and let B stand for the subalgebra of A generated by G. Then M (B)A

coincides with the subalgebra of L(A) generated by the set

{Ua,b : a,b ∈ G}.

Proof Let C (respectively, D) stand for the subalgebra of L(A) generated by
{La,Lab : a,b ∈ G} (respectively, {Ua,b : a,b ∈ G}). It is clear that Ua,b ∈ C for all
a,b ∈ G, and hence D ⊆ C . Moreover, it follows from the equalities La = Ua,1 and
Lab = LaLb + LbLa −Ua,b that {La,Lab : a,b ∈ G} ⊆ D , and hence C ⊆ D . Thus
C = D , and the result follows from Lemma 4.1.75.

The notion of a strongly associative subalgebra of a Jordan algebra was introduced
in Definition 3.3.33.

Proposition 4.1.77 Let A be a unital Jordan algebra over K, let B be a strongly
associative subalgebra of A containing 1, let C be a subset of B∩ J-Inv(A). Then the
subalgebra of A generated by B∪{z−1 : z ∈C} is strongly associative.

Proof Let D stand for the subalgebra of A generated by B ∪ {z−1 : z ∈ C}. By
Corollary 4.1.76 above, M (D)A is equal to the subalgebra of L(A) generated by

G :=
{

Ux,y : x,y ∈ B∪{z−1 : z ∈C}
}
.

Therefore, in view of §3.3.36, it is enough to show that G is a commutative subset
of L(A). Let b and c be in B and C, respectively. It follows from the identity (3.4.4)
before Corollary 3.4.16 that

UcUc−1,bUc =UUc(c−1),Uc(b) =Uc,Uc(b),

so that, since Uc is bijective (by Theorem 4.1.3(ii)), we have

Uc−1,b =U−1
c Uc,Uc(b)U

−1
c .

Now let c,d be in C. Keeping in mind the identity (3.4.4) and the fact that M (B)A is
commutative (cf. again §3.3.36), we have

UdUcUc−1,d−1UcUd =UdUUc(c−1),Uc(d−1)Ud =UdUc,Uc(d−1)Ud

=UUd(c),UdUc(d−1) =UUd(c),UcUd(d−1) =UUd(c),Uc(d),

and hence

Uc−1,d−1 =U−1
c U−1

d UUd(c),Uc(d)U
−1
d U−1

c .

Therefore Uc−1,b as well as Uc−1,d−1 are products of an element in M (B)A by inverses
in L(A) of elements of this algebra. Since b is arbitrary in B and c,d are arbitrary in
C, this shows that G is contained in the double commutator of M (B)A in L(A) (cf.
Proposition 1.1.78(iii) and Lemma 1.1.80). Finally, since M (B)A is commutative,
it follows from Proposition 1.1.78(iv) that G is a commutative subset of L(A), as
desired.

The next corollary follows straightforwardly from Proposition 4.1.77.
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Corollary 4.1.78 Let A be a unital Jordan algebra over K. Then each maximal
strongly associative subalgebra of A is a J-full subalgebra of A.

Let A be a Jordan algebra over K. We already know that the subalgebra of A
generated by each element of A is strongly associative (cf. Fact 3.3.34). On the
other hand, the set of all strongly associative subalgebras of A is inductively ordered
by inclusion. Therefore each strongly associative subalgebra of A is contained in
a maximal strongly associative subalgebra of A. These arguments, together with
Corollary 4.1.78 above, lead to the following.

Corollary 4.1.79 Let A be a Jordan algebra over K. For each a in A there is a
maximal strongly associative subalgebra B of A containing a. If in addition A is
unital, then B is a J-full subalgebra of A.

As a first consequence of the above corollary, we have the following.

Proposition 4.1.80 Let A be a normed J-division Jordan-admissible real algebra.
Then A is quadratic.

Proof By passing to Asym if necessary, we may assume that A is a Jordan alge-
bra. Let a be in A, and note that, by Corollary 4.1.79, there is a J-full associative
subalgebra B of A containing a. Since B is a normed associative real algebra, Propos-
ition 1.1.98, Theorem 1.1.41, and Proposition 1.1.100 apply to obtain the existence of
α,β ∈ R such that (a−α1)2 +β 21 /∈ Inv(B). Then, since B is a J-full subalgebra of
A, we derive that (a−α1)2+β 21 /∈ J-Inv(A). Finally, since A is a J-division algebra,
we get that (a−α1)2 +β 21 = 0.

Now it is enough to invoke Proposition 4.1.62 to get the following.

Corollary 4.1.81 Normed non-commutative Jordan quasi-division real algebras
are quadratic.

Then, invoking Corollary 2.5.16, we obtain the following partial affirmative
answer to Problem 2.7.45.

Proposition 4.1.82 Normed Jordan division real algebras are isomorphic to R
or C.

The subproblem of Problem 2.7.45, whether (even complete) normed non-
commutative Jordan division real algebras are finite-dimensional, remains open.
In view of Corollary 4.1.81, the answer would be affirmative if flexible quadratic
division real algebras were finite-dimensional.

Lemma 4.1.83 Let A be a unital non-commutative Jordan algebra over K, let a be
a J-invertible element of A, and let D be a derivation of A. Then

D(a) =−Ua(D(a−1)).

Proof It is clear that D is a derivation of Asym, and hence, by Fact 3.3.3, we may
assume that A is commutative. Note that

0 = D(1) = D(aa−1) = aD(a−1)+D(a)a−1,
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and consequently

0 = 2a(aD(a−1))+2a(D(a)a−1). (4.1.36)

Moreover, we have D(a) = D(a2a−1) = a2D(a−1)+D(a2)a−1, and hence

D(a) = a2D(a−1)+2(aD(a))a−1. (4.1.37)

By subtracting (4.1.37) from (4.1.36) we obtain

−D(a) =Ua(D(a−1))+2[La,La−1 ](D(a)),

and, keeping in mind Theorem 4.1.3(v), the result follows.

Proposition 4.1.84 Let A be a unital non-commutative Jordan algebra over K.
Then each maximal commutative subset of A is a J-full subalgebra of A.

Proof Let B be a maximal commutative subset of A. By Corollary 2.4.16, B is a
subalgebra of A, and clearly 1 lies in B. Let a be in B, and assume that a is J-invertible
in A. Then, since the mapping y → [x,y] is a derivation of Asym (by Lemma 2.4.15),
Fact 3.3.3 and Lemma 4.1.83 apply, so that we have

[x,a−1] =−Ua−1([x,a]) = 0 for every x ∈ B.

Hence by maximality of B, a−1 lies in B.

Definition 4.1.85 Let A be a (normed) Jordan-admissible algebra over K, and let
S be a non-empty subset of A. Since the intersection of any family of (closed) J-full
subalgebras of A is a (closed) J-full subalgebra of A, it follows that the intersection
of all (closed) J-full subalgebras of A containing S is the smallest (closed) J-full
subalgebra of A containing S. This subalgebra is called the (closed) J-full subalgebra
of A generated by S.

If A is a normed algebra over K, then clearly each maximal commutative subset of
A is closed in A. Moreover, if in addition A is a Jordan algebra, then each maximal
strongly associative subalgebra of A is closed in A.

Proposition 4.1.86 Let A be a (normed) unital non-commutative Jordan algebra
over K, and let a be in A. Then the (closed) J-full subalgebra of A generated by a is
associative and commutative.

Proof By Zorn’s lemma, there exists a maximal commutative subset B of A con-
taining a. By Proposition 4.1.84, B is a J-full subalgebra of A. Furthermore, if A
is normed, then B is closed in A. Now, since B is a Jordan algebra, Corollary 4.1.79
applies, so that there is a maximal strongly associative (hence associative) subalgebra
C of B containing a, and C is a J-full subalgebra of B. Moreover, if A is normed, then
C is closed in B. Since the relation ‘to be a J-full subalgebra of’ is transitive, we get
that C is a J-full subalgebra of A. Moreover, if A is normed, then C is closed in A
because B is closed in A and C is closed in B. Finally note that the (closed) J-full
subalgebra of A generated by a is contained in C.

The proof of the following lemma is straightforward.
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Lemma 4.1.87 Let A and B be unital Jordan-admissible algebras over K, and let
Φ : A → B be a unit-preserving algebra homomorphism. If x is J-invertible in A, then
Φ(x) is J-invertible in B with Φ(x)−1 = Φ(x−1). As a consequence, if C is a J-full
subalgebra of B, then Φ−1(C) is a J-full subalgebra of A.

The next theorem generalizes Theorem 1.3.13 and becomes the main result in
the present subsection. We recall that, given a non-empty open subset Ω of C, the
complex algebra H (Ω) (of all complex-valued holomorphic functions on Ω) is
canonically endowed with the topology of the uniform convergence on compact
subsets of Ω.

Theorem 4.1.88 Let A be a complete normed unital non-commutative Jordan com-
plex algebra, let a be in A, let Ω be an open subset of C containing J-sp(A,a), and
let u stand for the inclusion mapping Ω ↪→ C. Then there is a unique continuous
unit-preserving algebra homomorphism f → f (a) from H (Ω) into A taking u to a.
Furthermore, we have:

(i) f (a) =
1

2πi

∫
Γ

f (z)(z1−a)−1dz for every f ∈ H (Ω), where Γ is any contour

surrounding J-sp(A,a) in Ω.

(ii) f (a) =
∞

∑
n=0

cn(a− z01)n when Ω is the open disc of centre z0 and radius R � ∞,

and f ∈ H (Ω) is represented by the power series
∞

∑
n=0

cn(z− z0)
n.

(iii) For each f ∈ H (Ω), f (a) belongs to the closed J-full subalgebra of A gener-
ated by a.

(iv) (Spectral mapping theorem) For each f ∈ H (Ω) we have

J-sp(A, f (a)) = f (J-sp(A,a)).

(v) If f ∈ H (Ω) and if Ω1 is an open set in C such that f (Ω)⊆Ω1, then

(g◦ f )(a) = g( f (a)) f or every g ∈ H (Ω1).

(vi) If f ∈ H (Ω), then for each natural number k we have

f (k)(a) =
k!

2πi

∫
Γ

f (z)(z1−a)−k−1 dz,

where Γ is any contour surrounding J-sp(A,a) in Ω.

Proof Let B stand for the closed J-full subalgebra of A generated by a, and let
Φ : H (Ω) → A be a continuous unit-preserving algebra homomorphism such that
Φ(u) = a. Then, by Lemma 4.1.87, Φ−1(B) is a closed subalgebra of H (Ω) con-
taining all rational functions with poles outside Ω, and hence, by Runge’s theorem,
we have Φ−1(B) = H (Ω) or, equivalently, Φ(H (Ω)) ⊆ B. This allows us to see
Φ as a continuous unit-preserving algebra homomorphism from H (Ω) to B taking
u to a. Moreover, by Proposition 4.1.86, B is a complete normed associative and
commutative complex algebra, and, since B is a J-full subalgebra of A, we have
J-sp(A,x) = J-sp(B,x) = sp(B,x) for every x in B. Now, replacing A with B, we may
assume that A is associative, so that the result follows from Theorem 1.3.13 and
Proposition 1.3.15.
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As in the associative case, the algebra homomorphism f → f (a) in Theorem 4.1.88
will be called the holomorphic functional calculus at a.

Arguing as in the proof of Proposition 1.3.23, with Theorem 4.1.88 above instead
of Theorem 1.3.13, we get the following.

Proposition 4.1.89 Let A be a complete normed unital non-commutative Jordan
complex algebra. If the J-spectrum of some element of A is not connected, then A
contains an idempotent different from 0 and 1. More precisely, if a ∈ A is such that
J-sp(A,a) = F∪G for some disjoint non-empty closed subsets F,G of J-sp(A,a), then
there is an idempotent e 	= 0,1 in the closed J-full subalgebra of A generated by a
satisfying:

(i) If a1 := ae and a2 := a(1− e), then a = a1 +a2 and a1a2 = a2a1 = 0.
(ii) J-sp(A,a1) = F ∪{0} and J-sp(A,a2) = G∪{0}.

Fact 4.1.90 Let a be a normal element of a unital non-commutative JB∗-algebra A,
let Ω be an open subset of C such that J-sp(A,a)⊆ Ω, and let f be in H (Ω). Then
f (a) has the same meaning in both continuous functional calculus and holomorphic
functional calculus at a.

Proof Argue as in the proof of Fact 1.3.17 with Theorem 4.1.88 and Corol-
lary 4.1.72 instead of Theorems 1.3.13 and 1.2.28, respectively.

Proposition 4.1.91 Let A be a complete normed unital Jordan-admissible complex
algebra, let a be in A, and let Ω be an open subset of C containing J-sp(A,a). Then
there exists ε > 0 such that J-sp(A,b)⊆Ω for every b ∈ A with ‖b−a‖< ε .

Proof Reduce to the commutative case, and then argue as in the proof of Propos-
ition 1.3.20 with Theorem 4.1.7 instead of Theorem 1.1.23.

Theorem 4.1.3 will be applied without notice in the proof of the following.

Proposition 4.1.92 Let A be a complete normed unital Jordan-admissible algebra
over K, let a be in J-Inv(A), and let b be in A such that

‖a−b‖<
√

1
32‖a−1‖2 +‖a‖2 −‖a‖. (4.1.38)

Then b ∈ J-Inv(A).

Proof We may assume that A is commutative. Noticing that

‖Ua −Ub‖= ‖Ua−b,a+b‖ � 3‖a−b‖‖a+b‖

and that ‖a+b‖= ‖2a− (a−b)‖ � 2‖a‖+‖a−b‖, we obtain

‖Ua −Ub‖ � 3‖a−b‖2 +6‖a‖‖a−b‖.

Therefore, invoking the assumption (4.1.38), and recalling that Ua−1 = U−1
a , we

obtain that

‖Ua −Ub‖ � 3
[
(‖a−b‖+‖a‖)2 −‖a‖2]< 1

3‖a−1‖2 � 1

‖U−1
a ‖

.
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Now, since ‖Ua −Ub‖ < 1
‖U−1

a ‖ , it follows from Corollary 1.1.21(ii) that Ub is a

bijective operator, i.e. b ∈ J-Inv(A).

The next result generalizes Theorem 1.3.21.

Theorem 4.1.93 Let A be a complete normed unital non-commutative Jordan com-
plex algebra, let Ω be a non-empty open set in C, and let f be in H (Ω). Then

AΩ := {x ∈ A : J-sp(A,x)⊆Ω}

is a non-empty open subset of A, and the mapping f̃ : x → f (x) from AΩ to A
is holomorphic. Moreover, for each a ∈ AΩ, the Fréchet derivative of f̃ at a is
represented by the following BL(A)-valued integral

D f̃ (a) =
1

2πi

∫
Γ

f (z)U(z1−a)−1 dz,

where Γ is any contour that surrounds J-sp(A,a) in Ω.

Proof Clearly Ω1 ⊆ AΩ, and hence AΩ is not empty. Moreover, by Propos-
ition 4.1.91, AΩ is an open subset of A. Let a be in AΩ and let Γ be a contour
surrounding J-sp(A,a) in Ω. Since the mapping x → x−1 is continuous on J-Inv(A),
the integrand f (z)U(z1−a)−1 is continuous on Γ, so that the integral

1
2πi

∫
Γ

f (z)U(z1−a)−1 dz

exists and defines an element (say T ) of BL(A). Moreover, as a consequence of
Corollary 4.1.8, we see that the integrand is actually a holomorphic BL(A)-valued
function on Ω \ J-sp(A,a). The Cauchy theorem implies therefore that the integral
is independent of the choice of Γ, provided only that Γ surrounds J-sp(A,a) in Ω.
For each h ∈ A, the valuation of elements of BL(A) at h becomes a continuous linear
mapping from BL(A) to A, and hence

T (h) =

(
1

2πi

∫
Γ

f (z)U(z1−a)−1 dz

)
(h) =

1
2πi

∫
Γ

f (z)U(z1−a)−1(h)dz.

Since Γ is a compact subset of C\ J-sp(A,a), there exist positive numbers M and N
such that ‖z1 − a‖ < M and ‖(z1 − a)−1‖ � N

3 for every z ∈ Γ. Let z be in Γ,

and let h be in A with ‖h‖ <
√

1
N2 +M2 −M. Keeping in mind that the function

g :R+×R+ → R defined by g(t,s) :=
√

1
t2 + s2 − s is strictly decreasing in each of

its variables, we see that

‖(z1−a)− (z1−a−h)‖= ‖h‖<
√

1
32‖(z1−a)−1‖2 +‖z1−a‖2 −‖z1−a‖,

and hence, by Proposition 4.1.92, we can assert that z1−a−h ∈ J-Inv(A). Moreover,
since √

1
32‖(z1−a)−1‖2 +‖z1−a‖2 −‖z1−a‖< 1

3‖(z1−a)−1‖ ,
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it follows from Lemma 4.1.4(iii) that

‖(z1−a−h)−1‖ � ‖(z1−a)−1‖
1−3‖(z1−a)−1‖‖h‖ � N

3(1−N‖h‖) .

Therefore, since ‖h‖<
√

1
N2 +M2 −M, we have that

∥∥(z1−a−h)−1
∥∥< N

3[1−N(
√

1
N2 +M2 −M)]

=
N

3(1+MN −
√

1+(MN)2)
.

Now, since

(z1−a−h)−1 − (z1−a)−1 −U(z1−a)−1(h) = (U(z1−a)−1 ◦Uh)((z1−a−h)−1)

(by (4.1.5)), we get that∥∥∥(z1−a−h)−1 − (z1−a)−1 −U(z1−a)−1(h)
∥∥∥

� 9
∥∥(z1−a)−1

∥∥2 ‖h‖2
∥∥(z1−a−h)−1

∥∥< N3‖h‖2

3(1+MN −
√

1+(MN)2)
.

On the other hand, arguing as in the proof of Theorem 1.3.21, with Proposition 4.1.91
instead of Proposition 1.3.20, we find ε > 0 such that, for ‖h‖ < ε , the inclusion
J-sp(A,a+h)⊆Ω holds and Γ surrounds J-sp(A,a+h) in Ω. Therefore, if in addition
we assume that ‖h‖< ε , then we have

f (a+h)− f (a)−T (h)

=
1

2πi

∫
Γ

f (z)
[
(z1−a−h)−1 − (z1−a)−1 −U(z1−a)−1(h)

]
dz.

It follows that

‖ f (a+h)− f (a)−T (h)‖

� 1
2π

�(Γ)max{| f (z)| : z ∈ Γ} N3‖h‖2

3(1+MN −
√

1+(MN)2)
,

where �(Γ) denotes the length of Γ. Hence

lim
h→0

‖ f (a+h)− f (a)−T (h)‖
‖h‖ = 0.

4.1.6 A characterization of smooth-normed algebras

We recall that, according to Corollary 2.6.10(i), smooth-normed algebras are non-
commutative Jordan algebras. Thus one may wonder about the behaviour of the
Jordan inverse in these algebras. In fact, we are going to characterize smooth-normed
algebras, among norm-unital normed non-commutative Jordan algebras, in terms of
such a behaviour.

Lemma 4.1.94 Let A be a normed unital Jordan algebra over K, and let u and x
be in A. Assume that there exists δ > 0 such that u+ rx ∈ J-Inv(A) whenever r is in
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R with |r| � δ . Then

lim
r→0

(u+ rx)−1 −u−1

r
=−Uu−1(x).

Proof By the equality (4.1.5), for r ∈ R with |r| � δ we have

(u+ rx)−1 −u−1 + rUu−1(x) = (Uu−1 ◦Urx)((u+ rx)−1),

and hence

‖(u+ rx)−1 −u−1 + rUu−1(x)‖ � r2‖Uu−1‖‖Ux‖‖(u+ rx)−1‖.

Keeping in mind Proposition 4.1.6(ii), we deduce that

lim
r→0

‖(u+ rx)−1 −u−1 + rUu−1(x)‖
r

= 0.

Lemma 4.1.95 Let A be a norm-unital normed associative real algebra such that
the equality ‖a‖‖a−1‖= 1 holds for every element a in some non-empty open subset
W consisting only of invertible elements. Then A is (isometrically isomorphic to)
R,C, or H.

Proof First note that, for w ∈ W and b ∈ A, we have ‖w−1b‖ = ‖w−1‖‖b‖ and
‖bw‖= ‖b‖‖w‖. Therefore, choosing w ∈W , we realize that w−1W enjoys all prop-
erties satisfied by W , and hence, replacing W with w−1W , we may assume that 1∈W .
Let a be in A. Then, for r ∈ R with |r| small enough, we have 1 + ra ∈ W , and
consequently

‖1+ ra‖‖(1+ ra)−1‖= 1. (4.1.39)

Since limr→0+
(1+ra)−1−1

r =−a (by Lemma 4.1.94 applied to Asym), it is enough
to invoke Corollary 2.1.6 and take right derivatives at r = 0 in (4.1.39) to get
minV (A,1,a) =maxV (A,1,a). Since a is arbitrary in A, we deduce that A is smooth,
and the result follows from the implication (ii)⇒(iii) in Theorem 2.6.21.

Now we can prove the main result in the present subsection.

Theorem 4.1.96 Let A be a norm-unital normed real algebra. Then the following
conditions are equivalent:

(i) A is a smooth-normed algebra.
(ii) A is a J-division non-commutative Jordan algebra, and moreover the equality

‖a‖‖a−1‖= 1 holds for every nonzero element a ∈ A.
(iii) A is a J-division Jordan-admissible algebra, and the equality ‖a‖‖a−1‖ = 1

holds for every nonzero element a ∈ A.
(iv) A is a Jordan-admissible algebra, and there exists a non-empty open subset W

of A contained in J-Inv(A) and such that the equality ‖a‖‖a−1‖ = 1 holds for
every a ∈W.

Proof (i)⇒(ii) Assume that (i) holds. Then, by Corollary 2.6.10(i), A is a
non-commutative Jordan algebra. Let a be a nonzero element of A. By Corollary
2.6.10(iii), the subalgebra of A generated by {1,a} is an isometric copy of R or C,
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so that the inverse a−1 of a in this subalgebra satisfies ‖a‖‖a−1‖ = 1. But, clearly,
a−1 is the J-inverse of a in A. Since a is arbitrary in A\{0}, condition (ii) holds.

The implications (ii)⇒(iii) and (iii)⇒(iv) are clear.
(iv)⇒(i) Suppose that (iv) holds. In order to prove (i), we can replace A with Asym,

so that we may assume that A is a Jordan algebra. Moreover, replacing W with
the interior of the set {x ∈ J-Inv(A) : ‖x‖‖x−1‖ = 1}, we can additionally assume
that W is an open subset of A satisfying (R \ {0})W ⊆ W and such that x−1 ∈ W
whenever x ∈ W (cf. Proposition 4.1.6(ii)). We claim that there exists v ∈ W such
that Lv is bijective. This is clear if 1 ∈W . Assume that 1 /∈W . Let v ∈W . By Propos-
ition 4.1.86, there exists a closed J-full associative and commutative subalgebra B of
A containing v. Then, clearly, W ′ :=W ∩B is a non-empty open subset of B contained
in Inv(B), and the equality ‖x‖‖x−1‖= 1 holds for every x ∈W ′. By Lemma 4.1.95,
B is (isometrically isomorphic to) R or C. In particular, there exist α,β ∈R such that
v2 = α1+ βv. Note that α 	= 0 because otherwise we would have v2 = βv, which
would imply v= β1, contradicting the assumption that 1 /∈W . Moreover, replacing if
necessary v with v+δ1 for δ small enough, we can assume that β 	= 0. On the other
hand, taking a = v and n = 2 in the identity (2.4.4) in the proof of Proposition 2.4.13,
we get that Lv3 +2L3

v −3Lv2 Lv = 0. Since v2 = α1+βv and

v3 = v(α1+βv) = αv+β (α1+βv) = αβ1+(α+β 2)v,

we find that

2L3
v −3βL2

v +(−2α+β 2)Lv +αβ IA = 0.

Therefore LvF = FLv = IA, where

F =−α−1β−1 [2L2
v −3βLv +(−2α+β 2)IA

]
,

and hence Lv is bijective. Now that the claim has been proved, let us fix v ∈W such
that Lv is bijective, and set u := ‖v‖v−1. Then u ∈W , ‖u‖= ‖u−1‖= 1, and Lu−1 is
bijective. Let x be in A. Then, for r ∈ R with |r| small enough, we have u+ rx ∈W ,
and consequently

‖u+ rx‖
∥∥(u+ rx)−1

∥∥= 1. (4.1.40)

Now, keeping in mind Lemma 4.1.94 and Corollary 2.1.6, it is enough to take right
derivatives at r = 0 in (4.1.40) to deduce that

maxV (A,u,x) = minV (A,u−1,Uu−1(x)). (4.1.41)

Replacing x with −x in (4.1.41), we find that

minV (A,u,x) = maxV (A,u−1,Uu−1(x)),

which together with (4.1.41) implies that V (A,u,x) consists of a single point. Since
Lu−1 is a surjective linear contraction taking u to 1, and x is arbitrary in A, it follows
from Corollary 2.1.2(i) that, for every a ∈ A, V (A,1,a) is reduced to a point. Thus
D(A,1) is reduced to a singleton, and hence A is smooth.

Since the set of all J-invertible elements of a complete normed unital Jordan-
admissible algebra is open (by Theorem 4.1.7), the next result follows from The-
orem 4.1.96.
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Corollary 4.1.97 Let A be a norm-unital complete normed real algebra. Then A is
smooth if and only if A is Jordan-admissible and the equality ‖a‖‖a−1‖ = 1 holds
for every a ∈ J-Inv(A).

Since the real normed algebra underlying a smooth-normed complex algebra is
a smooth-normed real algebra, it is enough to invoke Theorem 4.1.96 and Propos-
ition 2.6.2 to get the following.

Corollary 4.1.98 Let A be a norm-unital normed Jordan-admissible complex
algebra such that the equality ‖a‖‖a−1‖ = 1 holds for every element a in some
non-empty open subset consisting only of J-invertible elements. Then A is (isomet-
rically isomorphic to) C.

With Theorem 4.1.7 in mind, Corollary 4.1.98 above yields the following.

Corollary 4.1.99 C is the unique norm-unital complete normed Jordan-admissible
complex algebra satisfying ‖x‖‖x−1‖= 1 for every J-invertible element x.

The following corollary follows straightforwardly from Theorem 4.1.96, the
implication (ii)⇒(iii) in Theorem 2.6.21, and Fact 4.1.57 (cf. also Proposition
2.5.38).

Corollary 4.1.100 Let A be a norm-unital normed alternative real algebra. Then
the following conditions are equivalent:

(i) A is a division algebra, and the equality ‖a‖‖a−1‖= 1 holds for every nonzero
element a ∈ A.

(ii) There exists a non-empty open subset W of A contained in Inv(A) and such that
the equality ‖a‖‖a−1‖= 1 holds for every a ∈W.

(iii) A is (isometrically isomorphic to) R,C,H, or O.

Keeping in mind Fact 4.1.57 and Theorem 4.1.7, Corollary 4.1.100 above yields
the following.

Corollary 4.1.101 R,C,H, and O are the unique norm-unital complete normed
alternative real algebras satisfying ‖x‖‖x−1‖= 1 for every invertible element x.

4.1.7 Historical notes and comments

Theorem 4.1.3 and its proof have been taken from [754, pp. 52–3]. According to
[754, footnote on p. 53],

The notion of [J-]inverse [of an element in a unital Jordan algebra] was introduced by
N. Jacobson in [348], Theorem 4.1.3 was proved in this paper but the proof was consider-
ably more complicated than the present one since it did not use [the fundamental formula
stated in] Proposition 3.4.15 (which was conjectured in this paper). The present simple
proof is due to K. McCrimmon [433].

The pioneering paper dealing with spectral theory for normed Jordan algebras
is that of Viola Devapakkiam [628], where Proposition 4.1.6, the first assertion in
Theorem 4.1.7, Corollaries 4.1.8 and 4.1.14, and Theorems 4.1.12 and 4.1.17 are
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proved. Viola Devapakkiam also introduces the notion of a topological J-divisor of
zero, and proves Propositions 4.1.25, 4.1.26, and 4.1.28(ii).

Our approach to results from Lemma 4.1.4 to Theorem 4.1.17 (respectively,
from Proposition 4.1.23 to Proposition 4.1.28) is close to that of Martı́nez’ PhD
thesis [775] (respectively, Kaidi’s PhD thesis [759]). The second assertion in
Theorem 4.1.7 is due to Martı́nez [775]. In the original proof, the identity (4.1.5)
was derived straightforwardly from the following.

Theorem 4.1.102 Any unital Jordan algebra generated by two J-invertible ele-
ments and their inverses is special.

The above theorem, due to McCrimmon [434], becomes a variant of the Shirshov–
Cohn theorem (Theorem 3.1.55), and is known as the Shirshov–Cohn theorem with
inverses. Proposition 4.1.9 is due to Kaidi [759]. Theorem 4.1.10 is due to Rodrı́guez.
With his permission, it was included in Martı́nez’ PhD thesis [775], and was pub-
lished later in [422]. Theorem 4.1.10 is applied in [775, 422] to prove that the natural
involution of a complete Jordan V -algebra is an algebra involution. Although this
result is now obsolete (in view of Theorem 2.3.8), Martı́nez’ argument remains
useful. Indeed, as pointed out by Bensebah [85], it can be adapted to prove the
following.

Theorem 4.1.103 Let A be a complete normed Jordan complex algebra with zero
annihilator (cf. Definition 1.1.10), and let ∗ be a conjugate-linear vector space
involution on A such that La lies in H(BL(A), IA) whenever a is in H(A,∗). Then
∗ is an algebra involution on A.

Proof It is enough to show that a2 lies in H(A,∗) whenever a is in H(A,∗). Let a be
in H(A,∗), and write a2 = b+ ic with b,c ∈ H(A,∗). Then the Jordan identity yields

0 = [La,La2 ] = [La,Lb]+ i[La,Lc].

Since i[La,Lb] and i[La,Lc] lie in H(BL(A), IA) (by Lemma 2.3.1), it follows from
Corollary 2.1.13 that [La,Lb] = [La,Lc] = 0. Then, since

[Lb,Lc](a) = [La,Lc](b)− [La,Lb](c)

(because A is commutative), we obtain that [Lb,Lc](a) = 0. Therefore, invoking
Lemma 3.1.23 and Fact 2.4.7, we have

[[Lb,Lc],Lb]+ i[[Lb,Lc],Lc] = [[Lb,Lc],La2 ] = L[Lb,Lc](a2) = 2La[Lb,Lc](a) = 0.

Since [[Lb,Lc],Lb] and [[Lb,Lc],Lc] lie in H(BL(A), IA) (again by Lemma 2.3.1),
Corollary 2.1.13 applies again to get [[Lb,Lc],Lb] = 0. Now it is enough to invoke
Corollary 2.4.3 to derive [Lb,Lc] = 0, and then, by Lemma 2.3.71, we have

V (BL(A), IA,La2) = co(sp(BL(A),La2)). (4.1.42)

On the other hand, since sp(BL(A),La) ⊆ R (by Lemma 2.3.21), it follows from
Proposition 4.1.30(ii) that sp(BL(A1),L

A1
a ) ⊆ R, so that, by Corollary 4.1.11, we

have J-sp(A1 ,a)⊆R. Then Theorem 4.1.88(iv) assures that J-sp(A1 ,a2)⊆R+
0 , and,

by applying Corollary 4.1.11 again, we realize that sp(BL(A1),L
A1

a2 ) ⊆ R+
0 . Again

Proposition 4.1.30(ii) applies to obtain that sp(BL(A),La2) ⊆ R+
0 . It follows from
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(4.1.42) that La2 lies in H(BL(A), IA). Finally, since La2 = Lb + iLc, and La2 ,Lb,Lc

are in H(BL(A), IA), it follows from Corollary 2.1.13 that Lc = 0, so c = 0 because A
has zero annihilator, and so a2 = b ∈ H(A,∗), as desired.

The next corollary is also pointed out in [85].

Corollary 4.1.104 Jordan complex semi-H∗-algebras with zero annihilator are H∗-
algebras.

Proof Let A be a Jordan complex semi-H∗-algebra with zero annihilator. By
Lemma 2.8.12, we may assume that the norm of A is an algebra norm, and hence
that A is a complete normed algebra. On the other hand, for each a ∈ H(A,∗), La is a
self-adjoint element of the C∗-algebra of all bounded linear operators on (the Hilbert
space of) A, and hence, by Lemma 2.2.5, we have La ∈ H(BL(A), IA). Therefore
Theorem 4.1.103 applies, so that the involution ∗ of A is an algebra involution, i.e. A
is an H∗-algebra.

The natural variant of Theorem 4.1.103 for associative algebras is also true.
Indeed, we have the following.

Proposition 4.1.105 Let A be a complete normed associative complex algebra
with zero annihilator, and let ∗ be a conjugate-linear vector space involution on
A such that La and Ra lie in H(BL(A), IA) whenever a is in H(A,∗). Then there is a
contractive and injective algebra ∗-homomorphism from A into some C∗-algebra. As
a consequence, ∗ is an algebra involution on A.

Proof By associativity, the set

L := {λ IA +La : (λ ,a) ∈ C×A} (respectively, R := {λ IA +Ra : (λ ,a) ∈ C×A})

is a subalgebra of BL(A), and the mapping a → La (respectively, a → Ra) from A
to L (respectively, R) is a contractive algebra homomorphism (respectively, anti-
homomorphism). Moreover, by the assumption on ∗, both L and R are V -algebras.
Therefore, by Corollary 3.3.15 and Theorem 2.3.32, the closures of L and R in BL(A)
are C∗-algebras, and the mappings a → La and a → Ra from A to the C∗-algebras L̄
and R̄, respectively, are ∗-mappings. Now consider the C∗-algebra R̄(0) opposite of R̄
(cf. §1.1.36), and the C∗-algebra L̄× R̄(0) direct product of L̄ and R̄(0) (cf. §1.2.43).
Since A has zero annihilator, it follows that the mapping a → (La,Ra) from A to
L̄× R̄(0) is a contractive and injective algebra ∗-homomorphism.

Arguing as in the proof of Corollary 4.1.104, with Proposition 4.1.105 instead
of Theorem 4.1.103, we realize that associative complex semi-H∗-algebras with
zero annihilator are H∗-algebras. However, as a matter of fact, this result has the
following easier proof, which also works in the case of real algebras:

Let A be an associative real or complex semi-H∗-algebra with zero annihilator.
Keeping in mind that A is a Hilbert space, for each T ∈ BL(A) we denote as usual
by T ∗ ∈ BL(A) the adjoint operator of T . Then, since A is an associative semi
H∗-algebra, for a,b ∈ A we have

L(ab)∗ = (Lab)
∗ = (LaLb)

∗ = (Lb)
∗(La)

∗ = Lb∗La∗ = Lb∗a∗ ,
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and analogously R(ab)∗ = Rb∗a∗ . Since A has zero annihilator, we deduce that
(ab)∗ = b∗a∗.

We do not know if Proposition 4.1.105 remains true when ‘associative’ is replaced
with ‘alternative’. Anyway, as proved by Cuenca in [714, Proposition 1.2.25], alter-
native complex semi-H∗-algebras with zero annihilator are H∗-algebras.

Proposition 4.1.18 and Theorem 4.1.19 are due to Rodrı́guez and Velasco [540].
Proposition 4.1.108 below states a variant of Theorem 4.1.19, also proved in [540].
The formulation and proof of this result involve the definition and the fact which
follow.

Definition 4.1.106 An algebra A over K is said to admit power-associativity
if the algebra Asym is power-associative. Without enjoying their name, algebras
admitting power-associativity have already appeared in our development (cf.
Corollaries 2.4.18 and 2.6.40, Lemma 2.6.37, and Proposition 2.6.39). We note
that, by Corollary 2.4.18, power-associative algebras admit power-associativity.
We also note that, since Jordan algebras are power-associative, Jordan-admissible
algebras admit power-associativity.

Fact 4.1.107 [520] Let A be a complete normed power-associative algebra over K,
let B be a normed unital algebra over K, let Φ : A→B be an algebra homomorphism,
and let x be in A. Then 1 � ‖x‖+‖1−Φ(x)‖.

Proof By Proposition 3.4.63, the subalgebra of B generated by 1 and Φ(x) is
associative and the inequality r(Φ(x))� r(x) holds. Therefore, by Corollary 1.1.115,
we have

1 = r(1) � r(Φ(x))+ r(1−Φ(x))

� r(x)+ r(1−Φ(x)) � ‖x‖+‖1−Φ(x)‖.

Proposition 4.1.108 Let A be a complete normed algebra over K admitting power-
associativity, let B be a complete normed strongly semisimple algebra over K, and
let Φ : A → B be an algebra homomorphism with dense range. Then Φ is continuous.

Proof Argue as in the proof of Theorem 4.1.19, with Fact 4.1.107 instead of the
inequality (4.1.7) in Proposition 4.1.18.

The uniqueness-of-norm consequence of the above proposition (that strongly
semisimple algebras admitting power-associativity have at most a complete algebra
norm topology) is better than Corollary 4.1.20, but, as commented in Remark 4.1.21,
still better results are known. We note in passing that the (commutative) Jordan
forerunner of Corollary 4.1.20 goes back to Balachandran and Rema [54]. Both
Theorem 4.1.19 and Proposition 4.1.108 contain Rickart’s classical dense-range-
homomorphism theorem, as well as the result of Putter and Yood [495] that dense
range algebra homomorphisms from complete normed Jordan algebras to complete
normed (automatically Jordan) strongly semisimple algebras are continuous.

It is easily realized that, if B is a normed algebra, and if there exists a dense
range algebra homomorphism from some algebra admitting power-associativity to
B, then B admits power-associativity. Therefore, since Jordan-admissible algebras
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admit power-associativity, a proof of the next conjecture would provide us with a
result containing both Theorem 4.1.19 and Proposition 4.1.108.

Conjecture 4.1.109 Let B be a complete normed strongly semisimple algebra over
K admitting power-associativity. Then dense range algebra homomorphisms from
complete normed algebras over K to B are automatically continuous.

Actually, a proof of the above conjecture could become only a partial affirmative
answer to the following.

Problem 4.1.110 Let B be a complete normed strongly semisimple algebra over K.
Are dense range algebra homomorphisms from complete normed algebras over K to
B automatically continuous?

Looking at the second paragraph in the proof of Theorem 4.1.19, we realize that
both Conjecture 4.1.109 and Problem 4.1.110 reduce to the particular case where the
complete normed algebra B (occasionally admitting power-associativity) is unital
and simple. Interesting attempts to establish Conjecture 4.1.109 and to solve Prob-
lem 4.1.110 can be found in [174, 416, 621]. Problem 4.1.110 has an affirmative
answer if the algebra B is algebraic [165].

Proposition 4.1.30 is due to Bensebah [85]. Corollaries 4.1.29 and 4.1.31 are
new. Together with the consequence given later in Lemma 4.1.42, they become a
codification of an argument of Kaup in the proof of [381, Theorem 3.3] (see also
[814, Theorem 20.1]).

To conclude our comments on Subsections 4.1.1 and 4.1.2, let us review the
following Jordan version of Theorem 1.1.116, due to Loos [403].

Theorem 4.1.111 Let A be a complete normed unital Jordan complex algebra.
Then the connected component of the unit in the set of all invertible elements of A is
the set

{Uexp(a1) · · ·Uexp(an)(1) : n ∈ N; a1, . . . ,an ∈ A}.

The purely algebraic results contained in Lemmas 4.1.33, 4.1.48, and 4.1.49, as
well as in Propositions 4.1.34, 4.1.35, and 4.1.54, are taken from Upmeier [814].
According to Upmeier’s note in [814, p. 392],

Jordan [∗]-triples are particular cases of Jordan pairs which form the most satisfactory
category from an algebraic point of view. For a systematic account of the theory of Jordan
pairs, cf. [771].

Lemma 4.1.38 and Facts 4.1.40 and 4.1.41 are folklore, whereas Lemma 4.1.43
is due to Kaup [381]. Theorem 4.1.45 is due to Braun, Kaup, and Upmeier [126] in
the unital case, and to Youngson [655] in the actual unit-free case. Our proof is close
to that of [814, Proposition 20.35], where the unital version of Theorem 4.1.45 is
stated.

The celebrated Araki–Elliott theorem [24] (see also [725, Theorem 37.1])
asserts that the axiom ‖ab‖ � ‖a‖‖b‖ in the definition of a C∗-algebra is redundant.
The Araki–Elliott type theorem for unital JB-algebras, stated in Proposition 4.1.46,
is due to Shultz and was announced in [672, pp. 111–12]. It was later proved by
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Alvermann [17], who also proved the following Araki–Elliott-type theorem for
unital JB∗-algebras.

Theorem 4.1.112 Let A be a unital Jordan complex algebra endowed with a com-
plete norm ‖ · ‖ and a ‖ · ‖-continuous conjugate-linear algebra involution ∗ satisfy-
ing ‖Ua(a∗)‖= ‖a‖3 for every a ∈ A. Then A is a JB∗-algebra.

Actually, Alvermann requires the involution to be ‖ · ‖-isometric, but this follows
from our weaker requirement of continuity by keeping in mind Lemma 3.3.12, and
then arguing as in the proof of Proposition 3.3.13.

Lemma 4.1.48 is taken from Upmeier [814, Lemmas 20.8 and 20.32]. Propos-
ition 4.1.50 and Corollary 4.1.51 are due to Kaup [380, 381]. In view of Corol-
lary 4.1.51, JB∗-triples could have been defined as those positive hermitian Banach
Jordan ∗-triples J satisfying ‖L(x,x)‖= ‖x‖2 for every x ∈ J. Historically, this is the
first definition of a JB∗-triple. It is introduced in [380] (under the name of a C∗-triple
system), and is the one taken in Chu [710, Definition 2.5.25] and Upmeier [814,
Definition 20.7] with its current name.

Proposition 4.1.52 is half of Theorem 2.2.28, reviewed at that time without proof.
We referred there to Kaup’s paper [381] for a proof. However, keeping Propos-
ition 4.1.50 in mind, we realize that Theorem 2.2.28 is six years older (see [380,
Proposition 5.4]). Theorem 4.1.55 is due to Braun, Kaup, and Upmeier [126]. We
note that, keeping Proposition 4.1.54 in mind, Theorem 4.1.55 follows straight-
forwardly from Theorems 4.1.45 and 4.1.112. Thus Theorem 4.1.112, whose proof
has not been discussed, could have been the key tool for a complete proof of The-
orem 4.1.55. Anyway, the proof of Theorem 4.1.55 we have given is close to both
the original one in [126] and Alvermann’s proof of Theorem 4.1.112. An alternative
proof of Theorem 4.1.55 is reviewed in what follows.

In [270], Friedman and Russo apply Horn’s determination of the so-called Type I
JBW ∗-triple factors [330] to prove the following converse form of Theorem 4.1.45.

Theorem 4.1.113 Every JB∗-triple is isometrically triple-isomorphic to a closed
subtriple of (the JB∗-triple underlying) a suitable JB∗-algebra.

Then, as pointed out in [270], Theorem 4.1.113 above and Proposition 3.4.17
imply the following.

Corollary 4.1.114 Let J be a JB∗-triple. Then we have

‖{xyz}‖ � ‖x‖‖y‖‖z‖ for all x,y,z ∈ J.

Now it is worth noticing that Theorem 4.1.55 follows straightforwardly from The-
orem 4.1.45, Proposition 4.1.54, and Corollary 4.1.114 immediately above. Although
quite involved as a whole, the proof of Theorem 4.1.55 just suggested has today
become the current one, mainly in the mind of the youngest JB∗-algebraists.

Proposition 4.1.58 is due to McCrimmon [433], whereas Proposition 4.1.60
is due to Kaidi [759]. With the exception of Facts 4.1.67 and 4.1.70 (which are
folklore), the results from Lemma 4.1.61 to Corollary 4.1.73 are new. We note
that Corollary 4.1.73 could have been derived almost straightforwardly from its
associative forerunner (Proposition 1.2.24) and the fact that, if A is a unital alternative
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C∗-algebra, and if x is in A, then the closed subalgebra of A generated by {1,x,x∗}
is an (associative) C∗-algebra. Corollary 4.1.74 is well-known in the theory of
JB-algebras (see [738, Theorem 3.2.4]).

Outside the setting of (normed) Jordan-admissible algebras, (topological)
J-divisors of zero have seldom been considered in the literature. Nevertheless,
they can be defined without any problem in the setting of general (normed) algebras.
Indeed, let A be an algebra over K, and let a be in A. We say that a is a J-divisor of
zero in A if the operator U•

a :=UAsym

a is not injective. In the case where A is normed,
we say that a is a topological J-divisor of zero in A if the operator U•

a is not bounded
below. With these notions in mind, we are provided with the following.

Theorem 4.1.115 Let A be a nonzero normed power-associative algebra over K
with no nonzero topological J-divisor of zero. We have:

(i) If K= C, then A is isomorphic to C.

(ii) If K = R, then A is both a quadratic (hence Jordan-admissible) algebra and a
J-division algebra.

Proof We note that, since A has no nonzero J-divisor of zero, and for a ∈ A the
equality U•

a (a) = a3 holds, A has no isotropic element. Now let a be an arbitrary
nonzero element of A, and let B be the subalgebra of A generated by a. Then B is a
nonzero normed associative and commutative algebra over K with no nonzero topo-
logical J-divisor of zero, and hence with no nonzero one-sided topological divisor of
zero (by Proposition 4.1.23).

Assume that K= C. Then, by Proposition 2.5.49(i), B is isomorphic to C. There-
fore A is algebraic of degree 1, and hence, by Lemma 2.6.29, A is isomorphic to C.

Finally, assume that K = R. Then, by Theorem 2.5.50, B is isomorphic to R or
C. Therefore A is algebraic of bounded degree, and then, by Lemma 2.6.33, A is
unital. Now, denoting by C the subalgebra of A generated by {1,a}, and arguing as
above (with C instead of B), we obtain that C is isomorphic to R or C. Therefore A
is quadratic. Moreover, since a is invertible in C, it follows that a is J-invertible in A.
Therefore A is a J-division algebra.

The above theorem is a refined version, proved in [93], of the main result in
[370]. It is worth mentioning that, in the proof of Theorem 4.1.115(ii), the use of
Lemma 2.6.33 can be avoided. Indeed, the algebra A has a nonzero idempotent e
(because it contains copies of R or C), and we have U•

e (A0(e)) = U•
e (A 1

2
(e)) = 0

(cf. Lemma 2.5.3); hence A0(e) = A 1
2
(e) = 0 (because A has no nonzero J-divisor of

zero), and e becomes a unit for A.
Lemma 4.1.75 has been taken from [822, Proposition 2, p. 67], whereas its con-

sequence, stated in Corollary 4.1.76, appears as Lemma 1 in [754, p. 42]. Prop-
osition 4.1.77 is the key tool in Subsection 4.1.5. It is due to N. Jacobson, who
communicated it to Martı́nez to be included in his PhD thesis [775] and later pub-
lished it in [423]. By the indication of a referee, Jacobson’s argument was incorp-
orated as a part of the proof of [95, Theorem 1]. Proposition 4.1.80 is due to Viola
Devapakkiam [628], whereas Corollary 4.1.81 and Proposition 4.1.82 are new. It is
worth mentioning that, reducing to the commutative case (as we have done in our
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proof), and invoking Proposition 4.1.25(ii), Proposition 4.1.80 follows from The-
orem 4.1.115 above.

Lemma 4.1.83 is raised as an exercise in [754, p. 54]. Propositions 4.1.84
and 4.1.86 are due to Kaidi [759, 361]. They also appear incorporated with a
proof in [423, 95]. Theorem 4.1.88 is the main result in Martı́nez’ paper [423]. Its
commutative forerunner is also due to him [775]. Theorem 4.1.93 is new.

In relation to Definition 4.1.85, the following result, taken from [759], should be
noted.

Proposition 4.1.116 Let A be a complete normed unital Jordan-admissible algebra
over K, and let B be a J-full subalgebra of A. Then the closure of B in A is a J-full
subalgebra of A. As a consequence, for any non-empty subset S of A, the closed
J-full subalgebra of A generated by S coincides with the closure in A of the J-full
subalgebra of A generated by S.

Proof Let x be in B̄∩J-Inv(A). Then x = limbn for a suitable sequence bn in B, and,
since J-Inv(A) is open in A (cf. Theorem 4.1.7), we may assume that bn ∈ J-Inv(A) for
every n∈N. But, since B is a J-full subalgebra of A, we have b−1

n ∈B for every n∈N.
Therefore, invoking Proposition 4.1.6(ii), we deduce that x−1 = limb−1

n ∈ B̄.

The associative forerunner of Proposition 4.1.116 can be found in [697, p. 18],
where the assumption of completeness for A is forgotten.

Lemma 4.1.95 is due to Aupetit [682, Corollary 1.2.3], and generalizes Edwards’
forerunner [227] asserting that R,C, and H are the only norm-unital complete
normed associative real algebras satisfying ‖x‖‖x−1‖ = 1 for every invertible
element x. Theorem 4.1.96 is the main result in the paper of Benslimane and
Merrachi [92]. Although easily deducible from results known at that time, Corollar-
ies 4.1.97–4.1.101 went unnoticed in [92]. It is worth mentioning that, keeping in
mind Proposition 2.5.24 and the fact that the product of invertible elements a,b in
a unital alternative algebra is invertible with (ab)−1 = b−1a−1 [822, Lemma 10.9],
Corollary 4.1.100 can be proved without any resource to Theorem 4.1.96. Indeed, it
is enough to mimic the proof of Lemma 4.1.95.

4.2 Unitaries in JB∗-triples and in non-commutative
JB∗-algebras

Introduction In Subsection 4.2.1, we prove Kaup’s theorems that abelian JB∗-
triples are closed subtriples of commutative C∗-algebras [381], and that JB∗-triples
generated by a single element are in fact commutative C∗-algebras [380] (see The-
orems 4.2.7 and 4.2.9, respectively). Either directly or by means of its consequence
stated in Corollary 4.2.12, the second of these theorems becomes one of the key tools
in the remaining part of the present section.

Subsection 4.2.2 contains the main results in the section. After developing the
Peirce arithmetics for a tripotent of a Jordan ∗-triple [771], we prove the Braun–
Kaup–Upmeier theorems [126] that vertices of the closed unit ball of a JB∗-triple
J are precisely the unitary elements of J, and that vertices of the closed unit ball
of a non-commutative JB∗-algebra A are precisely the ‘J-unitary elements’ of A
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(see Theorems 4.2.24 and 4.2.28, respectively). These theorems generalize the
Bohnenblust–Karlin Theorem 2.1.27. Refining an argument of Peralta [486], we
provide a simple proof of a result by Friedman–Russo [269] and Upmeier [814] (see
Proposition 4.2.32), and derive from it that the extreme points of the closed unit ball
of a JB∗-triple J are precisely the complete tripotents of J (see Theorem 4.2.34).
Then we conclude the subsection by proving Youngson’s theorem [655] that non-
commutative JB∗-algebras are unital if and only if their closed unit balls have
extreme points (see Theorem 4.2.36).

We begin Subsection 4.2.3 by establishing the Wright–Youngson generalization
of the Russo–Dye theorem to the setting of non-commutative JB∗-algebras [642]
(see Fact 4.2.39). Then we prove Siddiqui’s refinement [574] that each element in
the open unit ball of a unital non-commutative JB∗-algebra is an arithmetic mean
of a finite number of J-unitary elements (see Theorem 4.2.43). This generalizes
associative forerunners of Gardner [281] and Kadison–Pedersen [360].

In Subsection 4.2.4, we do a quick incursion into the world of real
non-commutative JB∗-algebras [19] and of real JB∗-triples [341]. Real
non-commutative JB∗-algebras constitute an important unifying class of algebras
because they include (complex) non-commutative JB∗-algebras (regarded as real
algebras), real JB∗-algebras [18] (so also JB-algebras), and real alternative C∗-
algebras [762] (so also real C∗-algebras [735]). They also include smooth-normed
real algebras, introduced in §2.6.1. Actually, smooth-normed real algebras are
precisely those real non-commutative JB∗-algebras which are J-division algebras
(see Theorem 4.2.48). As in the complex case, a real non-commutative JB∗-algebra
is unital if and only if its closed unit ball has extreme points (see Corollary 4.2.58),
and biduals of real non-commutative JB∗-algebras are real non-commutative JB∗-
algebras in a natural way (see Proposition 4.2.62). Real JB∗-triples contain (com-
plex) JB∗-triples (regarded as real spaces) and real non-commutative JB∗-algebras
(under a natural triple product). Algebraic characterizations of vertices [261] and
of extreme points [341] of the closed unit ball of a real JB∗-triple are given (see
Theorems 4.2.53 and 4.2.57, respectively).

4.2.1 A commutative Gelfand–Naimark theorem for JB∗-triples

We recall that C∗-algebras are JB∗-triples in a natural way, and that closed subtriples
of JB∗-triples are JB∗-triples (cf. Facts 4.1.41 and 4.1.40, respectively). Now let E
be a subset of a Hausdorff locally convex complex space such that 0 /∈ E, E ∪{0}
is compact, and TE ⊆ E, where T := {z ∈ C : |z|= 1}. Then E is a locally compact
Hausdorff topological space, we set

CT
0 (E) := {x ∈CC

0 (E) : x(zt) = zx(t) for every (z, t) ∈ T×E},

and note that CT
0 (E) is a closed subtriple of the C∗-algebra CC

0 (E), so that CT
0 (E)

becomes an abelian JB∗-triple. As the main result in this subsection, we will show
in Theorem 4.2.7 that there are no more abelian JB∗-triples other than those given
by the construction just done. To this end, we begin by proving the following Stone–
Weierstrass type theorem.



4.2 Unitaries in JB∗-triples and in non-commutative JB∗-algebras 499

Proposition 4.2.1 Let E be as above, and let J be a subtriple of CT
0 (E) satisfying

(i) for each t ∈ E there is x ∈ J such that x(t) 	= 0;
(ii) J separates the points of E.

Then J is dense in CT
0 (E).

Proof For x ∈CC
0 (E), let P(x) denote the complex-valued function on E defined by

P(x)(t) :=
1

2π

∫ 2π

0
e−iθ x(eiθ t)dθ

for every t ∈ E. Then it is easily realized that P(x) lies in CT
0 (E) for every x ∈CC

0 (E),
and that P(x) = x whenever x is in CT

0 (E). Therefore the mapping P : x → P(x)
becomes a contractive linear projection on CC

0 (E) whose range is CT
0 (E).

Now let M be a subtriple of CT
0 (E), and let x1, . . . ,xn,y1, . . . ,ym be in M. Then for

every (z, t) ∈ T×E we have

(x1x2 · · ·xny∗1y∗2 · · ·y∗m)(zt) = zn−m(x1x2 · · ·xny∗1y∗2 · · ·y∗m)(t),

hence P(x1x2 · · ·xny∗1y∗2 · · ·y∗m) = 0 whenever n 	= m+ 1. But, if n = m+ 1, then a
straightforward induction argument on m shows that x1x2 · · ·xm+1y∗1y∗2 · · ·y∗m lies in
M, hence

P(x1x2 · · ·xm+1y∗1y∗2 · · ·y∗m) = x1x2 · · ·xm+1y∗1y∗2 · · ·y∗m ∈ M.

Therefore P(x1x2 · · ·xny∗1y∗2 · · ·y∗m) ∈ M for all values of n and m, which implies that
the image under P of the subalgebra of CC

0 (E) generated by M ∪M∗ is contained
in M.

To conclude the proof, note that, by the assumptions on J and the Stone–
Weierstrass theorem (cf. Corollary 1.2.53), the subalgebra of CC

0 (E) (say A)
generated by J ∪ J∗ is dense in CC

0 (E). Therefore, since P(A) ⊆ J, and P is
continuous, and P is the identity on CT

0 (E), it follows that J is dense in CT
0 (E).

Lemma 4.2.2 Let J be a complex Banach Jordan ∗-triple, and let λ : J → C be a
triple homomorphism. Then λ is continuous and ‖λ‖ �

√
N, where

N := sup{‖{xyz}‖ : x,y,z ∈ SJ}.

Proof Otherwise, there would be a z in SJ with |λ (z)|2 >N. Setting x := λ (z)
|λ (z)|2 z, we

see that λ (x) = 1 and N‖x‖2 < 1. By induction we have ‖x(2n+1)‖ � (N‖x‖2)n‖x‖
for every natural number n, and therefore the series ∑n�0 ‖x(2n+1)‖ converges. It
follows from the completeness of J that the series ∑n�0 x(2n+1) is convergent in J. Set
y :=∑∞

n=0 x(2n+1). Since for each n we have x+{x,∑n
k=0 x(2k+1),x}=∑n+1

k=0 x(2k+1), it
follows that x+{xyx}= y, and consequently 1+λ (y) = λ (y), a contradiction.

Let J be a complex Banach Jordan ∗-triple, and denote by Λ = ΛJ the set of all
nonzero triple homomorphisms from J to C. It follows from Lemma 4.2.2 that Λ
is contained in J′. Thus Λ can and will be endowed with the relative w∗-topology.
Note that Λ may be empty. Anyway, note that TΛ ⊆ Λ, so that the relation λ ∈ Tμ
becomes an equivalence relation on Λ. We denote by Λ/T the corresponding quotient
topological space.
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Proposition 4.2.3 If J is a complex Banach Jordan ∗-triple, then Λ∪{0} is a w∗-
compact subset of J′. As a consequence, Λ is a locally compact Hausdorff topological
space for the relative w∗-topology.

Proof It follows from Lemma 4.2.2 that Λ is in fact contained in rBJ′ for
suitable r > 0. Since, by the Banach–Alaoglu theorem, BJ′ is compact in the
w∗-topology, it suffices to show that Λ ∪ {0} is w∗-closed in J′. Note that, for
each x,y,z ∈ J, the mapping hx,y,z : f → f ({xyz})− f (x) f (y) f (z) from J′ to C is
w∗-continuous, and hence the set Hx,y,z := { f ∈ J′ : hx,y,z( f ) = 0} is w∗-closed.
Since Λ∪{0}=⋂(x,y,z)∈J×J×J Hx,y,z, it follows that Λ∪{0} is w∗-closed in J′.

Proposition 4.2.4 Let J be a complex Banach Jordan ∗-triple. Then we have:

(i) For each x ∈ J, the complex-valued function G(x) on Λ, defined by

G(x)(λ ) := λ (x) f or every λ ∈ Λ,

lies in CT
0 (Λ).

(ii) The mapping G : x → G(x) from J to CT
0 (Λ) becomes a dense range continuous

triple homomorphism.

Proof Let x be in J. Then, clearly, G(x) is a continuous function satisfying
G(x)(zλ ) = zG(x)(λ ) for every (z,λ ) ∈ T×Λ. Moreover, since Λ∪{0} is compact
in the w∗-topology of J′, and for every ε > 0 we have

{λ ∈ Λ : |G(x)(λ )| � ε}= {λ ∈ Λ : |λ (x)| � ε}= {λ ∈ Λ∪{0} : |λ (x)| � ε},

we conclude that G(x) lies indeed in CT
0 (Λ). Thus assertion (i) has been proved.

Assertion (ii) follows straightforwardly from Lemma 4.2.2 and Proposition 4.2.1
applied to the subtriple G(J) of CT

0 (Λ).

Given a complex Banach Jordan ∗-triple J, the mapping G in the above proposition
is called the Gelfand representation of J.

Proposition 4.2.5 Let J be a nonzero abelian hermitian Banach Jordan ∗-triple.
Then the closed linear hull A of L(J,J)∪{IJ} in BL(J) is a unital commutative C∗-
algebra for the involution determined by L(x,y)∗ = L(y,x).

Proof Since J is abelian we have

L(u,v)L(x,y) = L(x,y)L(u,v) = L({x,y,u},v) (4.2.1)

for all u,v,x,y ∈ J. Therefore L(J,J)∪ {IJ} is a commutative and multiplicatively
closed subset of BL(J), and hence the closed linear hull A of L(J,J)∪{IJ} in BL(J)
is a unital commutative subalgebra of BL(J). Since

4L(x,y) = L(x+ y,x+ y)−L(x− y,x− y)

+ i(L(x+ iy,x+ iy)−L(x− iy,x− iy)) , (4.2.2)

and by Corollary 2.1.2

L(x+ y,x+ y)−L(x− y,x− y) and L(x+ iy,x+ iy)−L(x− iy,x− iy)
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lie in H(A, IJ), it follows that A is a commutative and associative complete V -
algebra. Hence A becomes a commutative C∗-algebra for its natural involution ∗
because of the associative Vidad–Palmer theorem (cf. Theorem 2.3.32). Moreover,
by (4.2.2), we have L(x,y)∗ = L(y,x) for all x,y ∈ J.

Let J be an abelian hermitian Banach Jordan ∗-triple, and let Δ stand for the
carrier space (cf. Proposition 1.1.71) of the unital commutative C∗-algebra A in
Proposition 4.2.5. Then, by Corollary 1.2.22, we have ϕ(L(x,x)) ∈ R for all ϕ ∈ Δ
and x ∈ J. We set

Δ0 := {φ ∈ Δ : φ(L(x,x)) 	= 0 for some x ∈ J},

and, for σ =±, we set

Δσ
0 := {ϕ ∈ Δ0 : σϕ(L(x,x)) � 0 for every x ∈ J},

which is clearly a closed subset of Δ0. We note that, since Δ is compact and Haus-
dorff, and Δ\Δ0 is either empty or a singleton (depending on whether or not IJ lies in
the closed linear hull of L(J,J) in BL(J)), Δ0 becomes a locally compact Hausdorff
topological space.

Proposition 4.2.6 Let J be a nonzero abelian hermitian Banach Jordan ∗-triple.
Then we have:

(i) Δ0 is the disjoint union of Δ+
0 and Δ−

0 . In particular, Δ+
0 and Δ−

0 are clopen
in Δ0.

(ii) For every λ ∈ Λ there exists a unique λ̃ ∈ Δ such that λ̃ (L(x,y)) = λ (x)λ (y)
for all x,y ∈ J, and moreover λ̃ lies in Δ+

0 .
(iii) The mapping λ → λ̃ from Λ to Δ+

0 is continuous and surjective, and induces a
continuous bijective mapping from Λ/T to Δ+

0 .

Proof By polarization law (cf. (4.2.2)), we have Δ+
0 ∩Δ−

0 = /0. Now let ϕ be in
Δ0 \Δ−

0 . Then ϕ(L(x,x)) = 1 for some x ∈ J, and then, applying (4.2.1), for each
u ∈ J we have

ϕ(L(u,u)) = ϕ(L(x,x))ϕ(L(u,u)) = ϕ(L(x,x)L(u,u)) = ϕ(L({xxu},u))

= ϕ(L({uxx},u)) = ϕ(L(u,x)L(x,u)) = ϕ(L(u,x)L(u,x)∗)

= ϕ(L(u,x))ϕ(L(u,x)∗) = ϕ(L(u,x))ϕ(L(u,x)) � 0.

Thus ϕ ∈ Δ+
0 , and we have proved assertion (i).

Let λ ∈ Λ be given and fix x ∈ J with λ (x) = 1. Consider the mapping λ̃ : A→ C
defined by

λ̃ (F) := λ (F(x)) for every F ∈ A.

Keeping in mind Lemma 4.2.2, it turns out clear that λ̃ is a continuous linear mapping
satisfying λ̃ (IJ) = 1 and λ̃ (L(x,x)) = 1 	= 0. Moreover, for each u,v ∈ J we have

λ̃(L(u,v)) = λ ({uvx}) = λ (u)λ (v)λ (x),
and hence

λ̃ (L(u,v)) = λ (u)λ (v). (4.2.3)
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Therefore

λ̃ (L(u1,v1)L(u2,v2)) = λ̃ (L({u1v1u2}),v2) = λ ({u1v1u2})λ (v2)

= λ (u1)λ (v1)λ (u2)λ (v2) = λ̃ (L(u1,v1))λ̃ (L(u2,v2))

for all u1,u2,v1,v2 ∈ J. Keeping in mind the description of A, we easily deduce
that λ̃ (F ◦ G) = λ̃(F)λ̃ (G) for all F,G ∈ A, that is to say λ̃ ∈ Δ0. Moreover, it
follows from (4.2.3) that λ̃ (L(u,u)) � 0 for every u ∈ J, and so we have in fact that
λ̃ ∈ Δ+

0 . Assume that ψ ∈ Δ satisfies ψ(L(u,v)) = λ (u)λ (v) for all u,v ∈ J. Then
ψ(IJ) = λ̃ (IJ) and ψ(L(u,v)) = λ̃ (L(u,v)) for all u,v ∈ J, and consequently ψ = λ̃
because of the continuity of ψ (cf. Corollary 1.1.64) and the description of A. This
completes the proof of assertion (ii).

Let ϕ ∈ Δ+
0 be given and fix x ∈ J such that ϕ(L(x,x)) = 1. Then consider the

mapping λ : J → C defined by

λ (u) := ϕ(L(u,x)) for every u ∈ J.

It is clear that λ is a nonzero linear mapping. Since, for all u,v,w ∈ J we have

{{uxx}vw}= {{xxu}vw}= {xx{uvw}},

it follows that

L(x,x)L({uvw},x) = L({xx{uvw}},x) = L({{uxx}vw},x)

= L({uxx},v)L(w,x) = L(u,x)L(x,v)L(w,x),

and hence

λ ({uvw}) = ϕ(L({uvw},x)) = ϕ(L(x,x))ϕ(L({uvw},x))

= ϕ(L(x,x)L({uvw},x)) = ϕ(L(u,x)L(x,v)L(w,x))

= ϕ(L(u,x))ϕ(L(v,x)∗)ϕ(L(w,x)) = λ (u)λ (v)λ (w).

Therefore λ ∈ Λ. Moreover, for all u,v ∈ J we have

ϕ(L(u,v)) = ϕ(L(x,x))ϕ(L(u,v)) = ϕ(L(x,x)L(u,v))

= ϕ(L({xxu},v)) = ϕ(L({uxx},v)) = ϕ(L(u,x)L(x,v))

= ϕ(L(u,x))ϕ(L(v,x)∗) = ϕ(L(u,x))ϕ(L(v,x)) = λ (u)λ (v),

and consequently, by assertion (ii), ϕ = λ̃ . Thus we have proved that the mapping
λ → λ̃ from Λ to Δ+

0 is surjective. If λi is a net on Λ such that λi → λ ∈ Λ and
λ̃i → ϕ ∈ Δ, then for all x,y ∈ J we see that λi(x)→ λ (x), λi(y)→ λ (y), and

λ (x)λ (y)←− λi(x)λi(y) = λ̃i(L(x,y))−→ ϕ(L(x,y)).

Therefore, by assertion (ii), ϕ = λ̃ . Hence λ → λ̃ , regarded as a mapping from Λ to
Δ, has closed graph. Therefore, since Δ is compact, that mapping is continuous by
the closed graph theorem [674, Theorem 2.58]. For λ ∈ Λ and z ∈ T, it is clear that
z̃λ = λ̃ . Assume that λ ,μ ∈ Λ satisfy λ̃ = μ̃ . Then we have λ (x)λ (y) = μ(x)μ(y)
for all x,y ∈ J, and choosing y ∈ J such that λ (y) = 1 we see that λ (x) = μ(x)μ(y)
for every x ∈ J, and in particular 1 = |μ(y)|2. Therefore λ = μ(y)μ and |μ(y)|= 1.
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Thus the mapping ˜ induces a bijective mapping from Λ/T onto Δ+
0 . Moreover, this

mapping is continuous from Λ/T endowed with the quotient topology onto Δ+
0 [818,

Theorem 6.5.4].

Now we can prove the main result in this subsection.

Theorem 4.2.7 Let J be a nonzero abelian JB∗-triple. Then J is isometrically triple-
isomorphic to a subtriple of a commutative C∗-algebra. More precisely, the Gelfand
representation

G : J −→CT
0 (Λ)

becomes an isometric surjective triple homomorphism.

Proof In view of Proposition 4.2.4, it is enough to show that G is an isom-
etry. Let x be in J \ {0}. Then, by Corollary 4.1.51 and Propositions 1.1.68(ii)
and 4.2.6(i), there exists ϕ ∈ Δ+

0 such that ϕ(L(x,x)) = ‖x‖2. Moreover, by
Proposition 4.2.6(ii)–(iii), there is λ ∈ Λ satisfying ϕ(L(x,x)) = |λ (x)|2. Therefore
we have ‖x‖2 = |λ (x)|2 = |G(x)(λ )|2 � ‖G(x)‖2. Now, if G were not an isometry,
then there would exist y ∈ J with ‖y‖ < ‖G(y)‖ = 1, so that, by Lemma 4.1.48(i),
the sequence y(2n+1) would converge to zero in J, whereas G(y(2n+1)) would not
converge to zero in CT

0 (Λ), a contradiction.

Now we are going to show that JB∗-triples generated by a single element are
in fact commutative C∗-algebras (regarded as JB∗-triples). To this end, we begin
by proving the following lemma, which follows by applying the Stone–Weierstrass
theorem twice.

Lemma 4.2.8 Let E be a subset of R+ such that E ∪ {0} is compact, and let u
stand for the inclusion mapping E ↪→C. Then the set {p(u2)u : p ∈C[x]} is dense in
CC

0 (E).

Proof By Corollary 1.2.53, the set { f (u)u : f ∈CC(E)} is dense in CC
0 (E). But, by

Theorem 1.2.10, the set {p(u2) : p ∈ C[x]} is dense in CC(E).

Theorem 4.2.9 Let J be a JB∗-triple, let x be a nonzero element of J, and let M
stand for the closed subtriple of J generated by x. Then there exists a unique couple
(E,Φ), where E is a subset of R+ such that E∪{0} is compact, and Φ is an isometric
triple homomorphism from the C∗-algebra CC

0 (E) to J satisfying Φ(CC
0 (E)) = M and

Φ(u) = x, where u denotes the inclusion mapping E ↪→ C.

Proof First we prove the existence of the couple (E,Φ). By Fact 4.1.40, Lemma
4.1.49, and Theorem 4.2.7, we may assume that M is a closed subtriple of CC

0 (F)

for some locally compact Hausdorff topological space F . Then, by induction, we get
|x|2nx = x(2n+1) for every n ∈ N∪{0} (cf. §4.1.47), and hence p(|x|2)x lies in M for
every p ∈ C[x]. Therefore

N :=
{

p(|x|2)x : p ∈ C[x]
}

is a subtriple of M containing x, so N is dense in M because M is generated by x as a
Banach Jordan ∗-triple. Define E := {|x(t)| : t ∈ F}\{0}, so that E is a subset of R+
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such that E ∪{0} is compact, let u denote the inclusion mapping E ↪→ C, and note
that, by Lemma 4.2.8,

L :=
{

p(u2)u : p ∈ C[x]
}

is a dense subtriple of CC
0 (E). Since ‖p(u2)u‖ = ‖p(|x|2)x‖ for every p ∈ C[x], the

correspondence p(u2)u → p(|x|2)x becomes a well-defined isometric dense range
triple homomorphism from L to M taking u to x. Extending by continuity this triple
homomorphism, and composing this extension with the inclusion mapping M ↪→
J, we get the desired isometric triple homomorphism Φ : CC

0 (E) → J satisfying
Φ(CC

0 (E)) = M and Φ(u) = x.
Now we show the uniqueness of the couple (E,Φ). Let (E1,Φ1) be a couple

with the same properties as (E,Φ), and, accordingly, let u1 stand for the inclusion
mapping E1 ↪→ C. Then, regarding Φ and Φ1 as surjective M-valued mappings,
Φ−1 ◦Φ1 becomes a surjective linear isometry from CC

0 (E1) to CC
0 (E) taking u1 to u.

Therefore, by the Banach–Stone theorem (cf. Theorem 2.3.58), there is a T-valued
continuous function v on E, together with a homeomorphism τ : E → E1, such that

(Φ−1 ◦Φ1)(g)(t) = v(t)g(τ(t)) for every (g, t) ∈CC
0 (E1)×E. (4.2.4)

By taking g = u1 in (4.2.4), we get t = v(t)τ(t) for every t ∈ E, which implies that
v(t) = 1 for every t ∈ E, so τ(t) = t for every t ∈ E, and so E1 = E. Finally, invoking
(4.2.4) again, we get that Φ1 =Φ.

Definition 4.2.10 Let J and x be as in the above theorem. Then the locally compact
subset E of R+, given by the theorem, will be called the triple spectrum of x (relative
to J), and will be denoted by σ(x). We note that ‖x‖= maxσ(x).

The isometric triple homomorphism Φ in Theorem 4.2.9 does not have a specific
name in the literature. Indeed, by setting f (x) := Φ( f ) for every f ∈ CC

0 (σ(x)), Φ
is nothing other than the mapping f → f (x) from CC

0 (σ(x)) to J, which suggests a
‘continuous triple functional calculus’ in the element x of J.

Corollary 4.2.11 Let J be a JB∗-triple, and let x be in J. Then there exists a unique
y ∈ J such that {yyy}= x.

Proof Assume at first that J is equal to (the JB∗-triple underlying) CC
0 (E) for some

locally compact Hausdorff topological space E. Then the mapping y : E →C, defined
by y(t) = x(t)

3
√

|x(t)|2
if x(t) 	= 0 and y(t) = 0 otherwise, is the unique element in J such

that {yyy}= x.
Now let J be an arbitrary JB∗-triple, let x be in J \ {0}, and let M stand for the

closed subtriple of J generated by x. Then, according to Theorem 4.2.9 and a half of
the above paragraph there exists y ∈ M such that {yyy}= x. Let z be any element of
J satisfying {zzz} = x, and let N stand for the closed subtriple of J generated by z.
Then M ⊆ N, and hence y,z ∈ N. It follows from Theorem 4.2.9 again and the other
half of the above paragraph that z = y.

Corollary 4.2.12 Let J be a JB∗-triple, and let x and ϕ be norm-one elements of
J and J′, respectively, such that ϕ(x) = 1. Then the restriction of ϕ to the closed
subtriple of J generated by x is a triple homomorphism. In particular, ϕ({xxx}) = 1.
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Proof In view of Lemma 4.1.49, it is enough to show that ϕ(x(2n+1)) = 1 for
every n ∈ N. Fix n ∈ N, and let r be in R with 0 < r � 1

2n+1 . Then the mean
value theorem shows that the function t → t − rt2n+1 is increasing in [0,1]. Since
1 = ‖x‖= maxσ(x), it follows from Theorem 4.2.9 that∥∥∥x− rx(2n+1)

∥∥∥= max
{

t − rt2n+1 : t ∈ σ(x)
}
= 1− r.

Therefore, by Proposition 2.1.5, we have minℜ(V (J,x,x(2n+1))) = 1. On the other
hand, since ∥∥∥x(2n+1)

∥∥∥= max
{

t2n+1 : t ∈ σ(x)
}
= 1,

we have V (J,x,x(2n+1))⊆ BC. It follows that V (J,x,x(2n+1)) = {1}. Therefore, since
ϕ(x(2n+1)) ∈V (J,x,x(2n+1)), we see that ϕ(x(2n+1)) = 1, as desired.

4.2.2 The main results

Definition 4.2.13 An element e of a Jordan ∗-triple over K is said to be a tripotent
(‘triple idempotent’) if it satisfies {eee}= e.

The so-called Peirce decomposition of a Jordan ∗-triple relative to a tripotent
follows easily from the corresponding Pierce decomposition of a Jordan algebra
relative to an idempotent. Indeed, we have the following.

Fact 4.2.14 Let J be a Jordan ∗-triple over K, and let e be a tripotent in J. Then:

(i) J=J1(e)⊕ J 1
2
(e)⊕ J0(e), where Jk(e) :={x ∈ J : {eex}=kx} for k∈{1, 1

2 ,0}.

(ii) The projections Pk(e) from J onto Jk(e) (k = 1, 1
2 ,0) corresponding to the

decomposition J = J1(e)⊕ J1
2
(e)⊕ J0(e) are given by

P1(e) = L(e,e)(2L(e,e)− IJ), P1
2
(e) = 4L(e,e)(IJ −L(e,e)),

and

P0(e) = (L(e,e)− IJ)(2L(e,e)− IJ).

Proof The tripotent e becomes an idempotent in the e-homotope Jordan algebra
J(e) of J (cf. Definition 4.1.36) in such a way that L(e,e) becomes the multiplication
operator by e in J(e). Therefore the result follows from assertions (i) and (v) in
Lemma 2.5.3.

Proposition 4.2.15 Let J be a hermitian Banach Jordan ∗-triple, and let e be a
tripotent in J. Then for every (x,y,z) ∈ J1(e)× J1

2
(e)× J0(e) we have

‖λ 2x+λy+ z‖= ‖x+ y+ z‖ for every λ ∈ SC (4.2.5)

and

max{‖x‖,‖y‖,‖z‖} � ‖x+ y+ z‖. (4.2.6)

Proof Let k be in {1, 1
2 ,0}, and let u be in Jk(e). Then we have L(e,e)(u)=ku, so

L(e,e)n(u) = knu for every n ∈ N, hence

exp(μL(e,e))(u) = ekμu for every μ ∈ C.
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Now let (x,y,z) be in J1(e)× J1
2
(e)× J0(e), let λ be in SC, and write λ = eiθ for

some θ ∈ R. Then, since exp(2iθL(e,e)) is an isometry (cf. Corollary 2.1.9(iii)), it
follows that

‖λ 2x+λy+ z‖= ‖e2iθ x+ eiθ y+ z‖

= ‖exp(2iθL(e,e))(x+ y+ z)‖= ‖x+ y+ z‖,

which proves (4.2.5). Keeping in mind (4.2.5) with λ =−1, we get

‖y‖= 1
2
‖x+ y+ z− (x− y+ z)‖

� 1
2
(‖x+ y+ z‖+‖x− y+ z‖)

= ‖x+ y+ z‖ (4.2.7)

and

‖x+ z‖= 1
2
‖x+ y+ z+(x− y+ z)‖

� 1
2
(‖x+ y+ z‖+‖x− y+ z‖)

= ‖x+ y+ z‖. (4.2.8)

On the other hand, taking y = 0 and λ = i in (4.2.5), we obtain

‖x‖= 1
2
‖x+ z− (−x+ z)‖ � 1

2
(‖x+ z‖+‖− x+ z‖) = ‖x+ z‖ (4.2.9)

and

‖z‖= 1
2
‖x+ z+(−x+ z)‖ � 1

2
(‖x+ z‖+‖− x+ z‖) = ‖x+ z‖.

(4.2.10)

Keeping in mind (4.2.7), and combining (4.2.8) with (4.2.9) and (4.2.10), the
inequality (4.2.6) follows.

Let J be a Jordan ∗-triple over K. Note that, in terms of the operator L(x,y), the
Jordan triple identity (4.1.13) can be reformulated as

[L(u,v),L(x,y)] = L({uvx},y)−L(x,{vuy}). (4.2.11)

Apart from the operator L(x,y), there are two important basic operators on J, namely
the so-called quadratic operator and the Bergmann operator. The quadratic operator
Qx : J → J, induced by x ∈ J, is defined by

Qx(y) = {xyx} for every y ∈ J.

It follows from the Jordan triple identity (4.2.11) that

0 = [L(x,u),L(x,u)] = L(Qx(u),u)−L(x,Qu(x)),

and hence we have

L(Qx(u),u) = L(x,Qu(x)), (4.2.12)
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that is to say

{{xux}uz}= {x{uxu}z}. (4.2.13)

Note that linearizing (4.2.13) we get the identities

2{{xuy}uz}= {x{uyu}z}+{y{uxu}z} (4.2.14)

and

2{x{uxv}z}= {{xux}vz}+{{xvx}uz}), (4.2.15)

which can be reformulated as

2L({xuy},u) = L(x,Qu(y))+L(y,Qu(x)) (4.2.16)

and

2L(x,{uxv}) = L(Qx(u),v)+L(Qx(v),u), (4.2.17)

respectively. Given x,y ∈ J, let us define the mapping Qx,z : J → J by

Qx,z(y) = {xyz} for every y ∈ J.

It is clear that Qx = Qx,x for every x ∈ J, and that

Qx,z =
1
2 (Qx+z −Qx −Qz) for all x,z ∈ J. (4.2.18)

In terms of quadratic operators, the identity (4.1.14) has the following three readings

2L(x,y)Qx,u = Qu,Qx(y) +QxL(y,u), (4.2.19)

2L(x,y)L(x,v) = L(Qx(y),v)+QxQy,v, (4.2.20)

and

2Q{uvx},x = L(u,v)Qx +QxL(v,u). (4.2.21)

Note that the identity (4.1.15) can be reformulated as

L(x,u)Qx = QxL(u,x) = QQx(u),x. (4.2.22)

Proposition 4.2.16 Given u,x,y in a Jordan ∗-triple over K, we have

{{xyx}u{xyx}}= {x{y{xux}y}x}. (4.2.23)

Proof Since the left-hand side of (4.2.11) changes sign if we interchange (x,y) and
(u,v), so does the right-hand side. This implies

L(u,{yxv})−L({xyu},v) = L({uvx},y)−L(x,{vuy}),
that is to say

{u{yxv}z}−{{xyu}vz}= {{uvx}yz}−{x{vuy}z}.

In particular, setting v = y and z = x, we have

{u{yxy}x}= 2{xy{xyu}}−{x{yuy}x}. (4.2.24)

On the other hand, the Jordan triple identity (4.1.13) gives

{{xyx}u{xyx}}= 2{{{xyx}ux}yx}−{x{u{xyx}y}x}.
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Now, writing {u{xyx}y} according to (4.2.24), we obtain

{{xyx}u{xyx}}= 2{{{xyx}ux}yx}−2{x{yx{yxu}}x}+{x{y{xux}y}x}.
(4.2.25)

But, applying (4.2.22), we have

{{{xyx}ux}yx}= L(x,y)L(x,u)Qx(y)

= QxL(y,x)L(u,x)(y) = {x{yx{uxy}}x}. (4.2.26)

Therefore the identity (4.2.23) follows by combining (4.2.25) and (4.2.26).

Let J be a Jordan ∗-triple over K. The identity (4.2.23), proved in Propos-
ition 4.2.16, is called the fundamental formula, and can be written as

QQx(y) = QxQyQx. (4.2.27)

By applying the fundamental formula twice, we get

QQxQy(u) = QxQyQuQyQx. (4.2.28)

Note also that the identity (4.2.15) can be reformulated as

2Qx,zL(u,x) = QQx(u),z +L(z,u)Qx. (4.2.29)

It is easy to verify that

Qu+tx = Qu +2tQu,x + t2Qx

for all scalars t. Hence we have

QQu+tx(v) = QQu(v)+2tQu,x(v)+t2Qx(v)

= QQu(v) +4tQQu(v),Qu,x(v) +2t2(QQu(v),Qx(v) +2QQu,x(v))

+4t3QQu,x(v),Qx(v) + t4QQx(v).

On the other hand, from the fundamental formula (4.2.27),

QQu+tx(v) = Qu+txQvQu+tx = (Qu +2tQu,x + t2Qx)Qv(Qu +2tQu,x + t2Qx).

Comparing the coefficients of t in both expressions, we obtain

2QQu(v),{uvx} = QuQvQu,x +Qu,xQvQu. (4.2.30)

Also, comparing the coefficients of t2 in both expressions, we obtain

2QQu(v),Qx(v) +4Q{uvx} = QxQvQu +QuQvQx +4Qu,xQvQu,x. (4.2.31)

Lemma 4.2.17 For u,w,x in a Jordan ∗-triple J over K, we have

2QQuQw(x),{uwx} = QuQwQxL(w,u)+L(u,w)QxQwQu.

Proof Linearizing (4.2.30) with respect to v, we get

QQu(v),{uwx}+QQu(w),{uvx} = QuQv,wQu,x +Qu,xQv,wQu. (4.2.32)
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Setting v = Qw(x) in (4.2.32), we have

QQuQw(x),{uwx} = QuQQw(x),wQu,x +Qu,xQQw(x),wQu −QQu(w),{uQw(x)x}. (4.2.33)

Note that, by (4.2.22) and (4.2.19), we have

2QuQQw(x),wQu,x = 2QuQwL(x,w)Qu,x

= QuQwQQx(w),u +QuQwQxL(w,u), (4.2.34)

and similarly, by (4.2.22) and (4.2.29), we have

2Qu,xQQw(x),wQu = 2Qu,xL(w,x)QwQu

= QQx(w),uQwQu +L(u,w)QxQwQu. (4.2.35)

On the other hand, invoking (4.2.12) and (4.2.30), we see that

2QQu(w),{uQw(x)x} = 2QQu(w),{uwQx(w)}

= QuQwQQx(w),u +QQx(w),uQwQu. (4.2.36)

It follows from (4.2.34), (4.2.35), and (4.2.36) that

2(QuQQw(x),wQu,x +Qu,xQQw(x),wQu −QQu(w),{uQw(x)x})

= QuQwQxL(w,u)+L(u,w)QxQwQu,

so the statement follows from (4.2.33).

Lemma 4.2.18 For u,v,x in a Jordan ∗-triple J over K, we have

2Qx,QuQv(x) +4Q{uvx} = QuQvQx +QxQvQu +4L(u,v)QxL(v,u). (4.2.37)

Proof If we compare (4.2.37) with (4.2.31) we see that we have to show

2L(u,v)QxL(v,u) = Qx,QuQv(x) +2Qx,uQvQx,u −QQu(v),Qx(v). (4.2.38)

By (4.2.29), we have

2L(u,v)QxL(v,u) = 4Qx,uL(v,x)L(v,u)−2QQx(v),uL(v,u),

and applying (4.2.20), we obtain

2L(u,v)QxL(v,u) = 2Qx,uL(Qv(x),u)+2Qx,uQvQx,u −2QQx(v),uL(v,u).

Now, using (4.2.29) twice more, we have

2L(u,v)QxL(v,u) = Qx,QuQv(x) +L(x,Qv(x))Qu +2Qx,uQvQx,u

−QQu(v),Qx(v)−L(Qx(v),v)Qu,

and applying (4.2.12), we get the identity (4.2.38), as desired.

Let J be a Jordan ∗-triple over K. The Bergmann operator B(x,y) : J → J, induced
by x,y ∈ J, is defined by

B(x,y) = IJ −2L(x,y)+QxQy. (4.2.39)

Obviously, we have B(tx,y) = B(x, ty) for every t ∈ R.
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Lemma 4.2.19 Let J be a Jordan ∗-triple over K, and let x,y,z be in J. The
Bergmann operator satisfies

QB(x,y)(z) = B(x,y)QzB(y,x). (4.2.40)

Proof The identity (4.2.40) can be proved by comparing the expansions of both
sides. Indeed, the left-hand side is equal to

Qz −4Qz,{xyz}+2Qz,QxQy(z) +4Q{x,y,z} −4QQxQy(z),{xyz}+QQxQy(z),

whereas the right-hand side equals

Qz −2L(x,y)Qz −2QzL(y,x)+QxQyQz +QzQyQx +4L(x,y)QzL(y,x)

−2QxQyQzL(y,x)−2L(x,y)QzQyQx +QxQyQzQyQx,

which is identical to the left-hand side by the identity (4.2.21), Lemmas 4.2.18
and 4.2.17, and the identity (4.2.28).

Lemma 4.2.20 Let J be a Jordan ∗-triple over K, and let e be a tripotent in J.
Then the projections Pk(e) from J onto Jk(e) (k = 1, 1

2 ,0) corresponding to the
decomposition

J = J1(e)⊕ J1
2
(e)⊕ J0(e) (cf. Fact 4.2.14(i))

are given by

P1(e) = Q2
e , P1

2
(e) = 2(L(e,e)−Q2

e), and P0(e) = B(e,e).

Proof Keeping in mind Fact 4.2.14(ii), it follows from (4.2.14) that

P1(e)(u) = 2L(e,e)2(u)−L(e,e)(u) = 2{ee{eeu}}−{eeu}

= {e{eue}e}= Q2
e(u)

for every u ∈ J, and hence

P1
2
(e) = 4(L(e,e)−L(e,e)2) = 2(L(e,e)−P1(e)) = 2(L(e,e)−Q2

e).

As a consequence,

P0(e) = IJ −P1
2
(e)−P1(e) = IJ −2(L(e,e)−Q2

e)−Q2
e

= IJ −2L(e,e)+Q2
e = B(e,e).

After simple computations, the next result follows from Lemma 4.2.20 above and
the definition of the Bergmann operator.

Corollary 4.2.21 Let J be a Jordan ∗-triple over K, and let e be a tripotent in J.
Then

(i) B(e,(1− t)e) = t2P1(e)+ tP1
2
(e)+P0(e) for every t ∈ R.

(ii) For each t ∈ R\{0}, B(e,(1− t)e) is bijective with

B(e,(1− t)e)−1 = B(e,(1− t−1)e).

(iii) Given k ∈ {1, 1
2 ,0}, the elements of Jk(e) are precisely those elements x∈ J such

that B(e,(1− t)e)(x) = t2kx for every t ∈ R\{0}.
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Proposition 4.2.22 Let J be a Jordan ∗-triple over K, and let e be a tripotent in J.
Then we have

{Ji(e)Jj(e)Jk(e)} ⊆ Ji− j+k(e) and
(4.2.41)

{J1(e)J0(e)J}= 0 = {J0(e)J1(e)J},

where J�(e) := 0 whenever � /∈ {1, 1
2 ,0}.

Proof Let t be a nonzero real number. It follows from Lemma 4.2.19 and Corol-
lary 4.2.21(ii) that

B(e,(1− t)e)({xyx})

= B(e,(1− t)e)QxB(e,(1− t)e)B(e,(1− t−1)e)(y)

= QB(e,(1−t)e)(x)B(e,(1− t−1)e)(y)

= {B(e,(1− t)e)(x),B(e,(1− t−1)e)(y),B(e,(1− t)e)(x)}

for all x,y ∈ J. Linearizing in x, we have

B(e,(1− t)e)({xyz})={B(e,(1− t)e)(x),B(e,(1− t−1)e)(y),B(e,(1− t)e)(z)}

for all x,y,z ∈ J. Keeping in mind Corollary 4.2.21(iii), for vα ∈ Jα(e), the last
equality implies

B(e,(1− t)e)({viv jvk}) = {(t2ivi)(t
−2 jv j)(t

2kvk)}= t2(i− j+k){viv jvk},

and consequently {viv jvk} ∈ Ji− j+k(e) whenever i − j + k ∈ {1, 1
2 ,0}, and

{viv jvk}=0 otherwise.
To show the second part of (4.2.41), let us fix x ∈ J1(e) and z ∈ J0(e). We first

observe that Qe(z) = 0 because of the first part of (4.2.41). Hence, by (4.2.16), we
have

L(z,e) = L(z,Qe(e)) = 2L({eez},e)−L(e,Qe(z)) = 0.

Therefore (4.2.17) implies

L(x,z) = L(Q2
e(x),z) = 2L(e,{Qe(x)ez})−L(Qe(z),Qe(x)) = 0.

Likewise, another application of (4.2.16) gives

L(z,x) = L(z,Q2
e(x)) = 2L({zeQe(x)},e)−L(Qe(x),Qe(z)) = 0.

We recall that the Kernel K(X ,u) of a numerical-range space (X ,u) over K
was defined as the subspace of X consisting of those elements x ∈ X such that
V (X ,u,x) = {0} (cf. §3.3.20).

Lemma 4.2.23 Let J be a Banach Jordan ∗-triple over K such that the equaliy
‖{aaa}‖= ‖a‖3 holds for every a ∈ J, and let e be a nonzero tripotent in J. Then

J1
2
(e)⊕ J0(e)⊆ K(J,e). (4.2.42)

Proof Let u be in SJ . Then, given a ∈ J and r ∈ R, we can write

{u+ ra,u+ ra,u+ ra}= {uuu}+ r(2{uua}+{uau})+ r2b+ r3c,
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where b and c are elements of J which do not depend on r, and hence, invoking
Corollary 2.1.6, we have

3maxℜ(V (J,u,a)) = lim
r→0+

(‖u+ ra‖2 +‖u+ ra‖+1)
‖u+ ra‖−1

r

= lim
r→0+

‖u+ ra‖3 −1
r

= lim
r→0+

‖{u+ ra,u+ ra,u+ ra}‖−1
r

= lim
r→0+

‖{uuu}+ r(2{uua}+{uau})+ r2b+ r3c‖−1
r

= maxℜ(V (J,{uuu},2{uua}+{uau})).

Now take u equal to the nonzero tripotent e in the statement. If a lies in Jk(e) for
k ∈ {0, 1

2}, then {eea}= ka and, by Proposition 4.2.22, {eae}= 0, so that we have

3maxℜ(V (J,e,a)) = maxℜ(V (J,e,2ka)) = 2k maxℜ(V (J,e,a)),

which implies V (J,e,a) = {0}. Thus the inclusion (4.2.42) has been proved.

Theorem 4.2.24 Let J be a JB∗-triple, and let u be a norm-one element of J. Then
the following conditions are equivalent:

(i) u is a unitary element of J (cf. Definition 4.1.53).
(ii) J is the JB∗-triple underlying a JB∗-algebra with unit u (cf. Theorem 4.1.45).

(iii) The Banach space of J becomes a non-commutative JB∗-algebra with unit u,
for some product and involution.

(iv) The Banach space of J becomes a norm-unital normed algebra with unit u, for
some product.

(v) n(J,u) = 1 or 1
2 depending on whether or not J is abelian.

(vi) u is a geometrically unitary element of J (cf. Definition 2.1.16).
(vii) u is a vertex of the closed unit ball of J (cf. Definition 2.1.12).

Proof The implications (ii)⇒(iii), (iii)⇒(iv), and (vi)⇒(vii) are clear.
(i)⇒(ii) By assumption (i) and Theorem 4.1.55, the Banach space of J, endowed

with the product ab := {aub} and the involution x∗ := {uxu}, becomes a JB∗-algebra
(say A) with unit u. Now, if we think about the JB∗-triple underlying A, then, by
Proposition 4.1.54, we re-encounter J.

(ii)⇒(v) By Theorems 3.4.59 and 4.1.55.
(iv)⇒(vi) By Corollary 2.1.19.
(v)⇒(vi) By Theorem 2.1.17(i).
(vii)⇒(i) By Corollary 4.2.12, we have V (J,u,u−{uuu}) = {0}. Therefore, by

assumption (vii), u becomes a nonzero tripotent. Then, invoking assumption (vii)
again and Lemma 4.2.23, we see that J 1

2
(u) = 0 = J0(u), so J = J1(u), and so u is a

unitary element of J.

Definition 4.2.25 Let A be a unital Jordan-admissible ∗-algebra over K, and let a
be in A. We say that a is J-unitary if a is J-invertible in A with a−1 = a∗.
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Fact 4.2.26 Let A be a unital Jordan-admissible ∗-algebra over K, and let a be in
A. Then the following conditions are equivalent:

(i) a is J-unitary in A.
(ii) a∗ is J-unitary in A.

(iii) a is J-invertible in A and U•
a (a

∗) = a, where U• denotes the operator U on Asym.

Moreover, when A is in fact a non-commutative Jordan algebra, we have:

(iv) a is J-unitary in A if and only if a is J-invertible in A and Ua(a∗) = a.
(v) If a is J-unitary, then a is normal (cf. Definition 3.4.20).

Proof The first conclusion follows from Theorem 4.1.3, whereas assertion (iv)
follows from Fact 3.3.3 and the equivalence (i)⇔(iii) above. Finally, assertion (v)
follows from the definition of a J-unitary element and the bracket-free version of
Proposition 4.1.86.

Definition 4.2.27 Now let A be a norm-unital normed Jordan-admissible algebra
over K, and let a be in A. We say that a is algebraically J-unitary if a is J-invertible
in A and ‖a‖= ‖a−1‖= 1.

According to Theorem 4.2.24, the existence of a geometrically unitary element
in a JB∗-triple J is equivalent to the fact that J is isometrically triple-isomorphic to
a unital JB∗-algebra. Therefore the study of geometrically unitary elements in JB∗-
triples is concluded with the following.

Theorem 4.2.28 Let A be a unital non-commutative JB∗-algebra, and let u be in
A. Then the following conditions are equivalent:

(i) u is J-unitary.
(ii) u is algebraically J-unitary.

(iii) The Banach space of A becomes a norm-unital normed algebra with unit u, for
some product.

(iv) u is geometrically unitary.
(v) u is a vertex of the closed unit ball of A.

(vi) u is a unitary element of the JB∗-triple underlying A (cf. Theorem 4.1.45).
(vii) Uu is a surjective isometry.

Proof Since all conditions mean the same in A and in Asym, we may assume that A
is commutative.

(i)⇒(ii) By Fact 4.2.26, assumption (i) can be read as that u is J-invertiblein A
and Uu(u∗) = u. Therefore we have ‖u‖3 = ‖Uu(u∗)‖ = ‖u‖, hence‖u‖ = 1. Then,
by assumption (i) again and Proposition 3.3.13, ‖u−1‖= ‖u∗‖= ‖u‖= 1.

(ii)⇒(iii) Assume that u is algebraically J-unitary. By Theorem 4.1.3(v), we have
[Lu,Lu−1 ] = 0, and hence

Uu,a(u
−1) = u(au−1)+a(uu−1)−u−1(ua) = [Lu,Lu−1 ](a)+a = a.

Therefore A becomes a unital complex algebra with unit u under the product
a � b := Ua,b(u−1). But, by Proposition 3.4.17, we have ‖a � b‖ � ‖a‖‖b‖ for
all a,b ∈ A, and hence (A,�,‖ · ‖) becomes a norm-unital normed complex algebra
with unit u.



514 Jordan spectral theory

(iii)⇒(iv) By Corollary 2.1.19.
(iv)⇒(v) This is clear.
(v)⇒(vi) By the implication (vii)⇒(i) in Theorem 4.2.24.
(vi)⇒(i) By assumption (vi) and the identity (4.2.14) with x = z = u, we have that

Q2
u = IA, which in terms of the product and the involution of A reads as UuUu∗ = IA.

Therefore, by Theorem 4.1.3, u is J-invertible in A with u−1 = u∗.
(ii)⇒(vii) Assume that u is algebraically J-unitary. By Theorem 4.1.3, we have

UuUu−1 = IA. But, by Proposition 3.4.17, ‖Uu‖� ‖u‖2 = 1 and ‖Uu−1‖� ‖u−1‖2 = 1.
It follows that Uu is a surjective isometry.

(vii)⇒(ii) Assume that Uu is a surjective isometry. Then, by Theorem 4.1.3, u is
J-invertible in A and U−1

u = Uu−1 . Therefore, by Proposition 3.3.13,for v equal to u
or u−1 we have ‖v‖3 = ‖Uv(v∗)‖= ‖v∗‖= ‖v‖, and hence ‖v‖= 1.

The above theorem generalizes Proposition 3.4.31, which in its turn generalizes
Theorem 2.1.27.

Given Jordan ∗-triples J and K over K, the vector space J × K will be seen
without notice as a new Jordan ∗-triple over K under the triple product defined
coordinate-wise.

Fact 4.2.29 Let J and K be JB∗-triples. Then the direct product J ×K becomes a
JB∗-triple under the sup norm.

Proof It only merits to be proved that

V [BL(J×K), IJ×K ,L((x,y),(x,y))]⊆ R+
0 for every (x,y) ∈ J×K.

To realize this, endow the vector space BL(J)×BL(K) with the sup norm, define a
mapping ϕ : BL(J)×BL(K)→ BL(J×K) by

ϕ(F,G)(x,y) := (F(x),G(y))

for all (F,G) ∈ BL(J)×BL(K) and (x,y) ∈ J ×K, and note that ϕ becomes a linear
isometry satisfying ϕ(IJ, IK) = IJ×K and

ϕ(L(x,x),L(y,y)) = L((x,y),(x,y)) for every (x,y) ∈ J×K.

Then, by Corollary 2.1.2(ii) and Fact 2.9.47, for every (x,y) ∈ J×K we have

V [BL(J×K), IJ×K ,L((x,y),(x,y))]

=V [BL(J)×BL(K),(IJ, IK),(L(x,x),L(y,y))]

= co[V (BL(J), IJ,L(x,x))∪V (BL(K), IK ,L(y,y))]⊆ R+
0 .

Let J be a Jordan ∗-triple over K. Two subtriples M and N of J are said to be
orthogonal if

{MNN}= {NMM}= {MNM}= {NMN}= 0.

If M and N are orthogonal subtriples of J, then, clearly, M +N is a subtriple of J,
and the mapping (x,y)→ x+ y from M×N to J becomes a triple homomorphism.
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Corollary 4.2.30 Let J be a Jordan ∗-triple over K, and let e be a tripotent in J.
We have:

(i) J1
2
(e) is a subtriple of J, and J1(e) and J0(e) are orthogonal subtriples of J.

(ii) If J is in fact a Banach Jordan ∗-triple, then the direct sum

J = J1(e)⊕ J 1
2
(e)⊕ J0(e)

is topological, hence Jk(e) (k ∈{0, 1
2 ,1}) and J1(e)⊕J0(e) are closed subtriples

of J.

(iii) If J is actually a JB∗-triple, then:

(a) ‖x+ z‖= max{‖x‖,‖z‖} for every (x,z) ∈ J1(e)× J0(e).

(b) The normed space of J1(e), endowed with the product ab := {aeb} and the
involution x∗ := {exe}, becomes a JB∗-algebra with unit e.

Proof Assertion (i) follows straightforwardly from Proposition 4.2.22.
Assume that J is a Banach Jordan ∗-triple. Then, by the definition of the subspaces

Jk(e) (k ∈ {0, 1
2 ,1}), they are closed in J, so the direct sum J = J1(e)⊕J 1

2
(e)⊕J0(e)

is topological, and so J1(e)⊕ J0(e) is closed in J. That Jk(e) (k ∈ {0, 1
2 ,1}) and

J1(e)⊕ J0(e) are subtriples of J follows from assertion (i).
Finally, assume that J is a JB∗-triple. Then, by assertion (ii) and Fact 4.1.40, Jk(e)

(k ∈ {0, 1
2 ,1}) and J1(e)⊕ J0(e) become JB∗-triples. Moreover, by assertion (i),

the mapping (x,z) → x + z from J1(e) × J0(e) to J1(e) ⊕ J0(e) is a bijective
triple homomorphism. It follows from Fact 4.2.29 and Proposition 4.1.52 that
‖x + z‖ = max{‖x‖,‖z‖} for every (x,z) ∈ J1(e)× J0(e). This proves part (a) of
assertion (iii). Since e clearly becomes a unitary element of the JB∗-triple J1(e)
(cf. Definition 4.1.53), part (b) follows from Theorem 4.1.55.

The next corollary will not be applied later, but has its own interest.

Corollary 4.2.31 Let J be a JB∗-triple, and let e be a nonzero tripotent in J. Then

J 1
2
(e)⊕ J0(e) = K(J,e).

Proof Since the inclusion J1
2
(e)⊕ J0(e) ⊆ K(J,e) was already proved in Lemma

4.2.23 under weaker assumptions, now it is enough to show that K(J,e)∩ J1(e) = 0.
But, since

K(J,e)∩ J1(e) = K(J1(e),e)

(cf. Corollary 2.1.2), this follows from Corollaries 4.2.30(iii)(b) and 2.1.13.

Proposition 4.2.32 Let J be a JB∗-triple, and let e be a nonzero tripotent in J.
Then {xye} lies in the JB∗-algebra J1(e) (cf. Corollary 4.2.30(iii)(b)) whenever x
and y belong to J 1

2
(e), and the sesquilinear mapping

(x,y)→ [x|y] := {xye} from J 1
2
(e)× J1

2
(e) to J1(e)
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satisfies the following properties:

(i) [x|y]∗ = [y|x] for all x,y ∈ J 1
2
(e).

(ii) [x|x] � 0 for every x ∈ J 1
2
(e).

(iii) If x is in J 1
2
(e), and if [x|x] = 0, then x = 0.

Proof That [x|y] := {xye} lies in J1(e) whenever x and y belong to J 1
2
(e) follows

from Proposition 4.2.22. Since the mapping T → T (e) from BL(J) to J is a linear
contraction taking IJ to e, it follows from Corollary 2.1.2 that, for every x ∈ J 1

2
(e),

we have

V (J1(e),e, [x|x]) =V (J,e, [x|x]) =V (J,e,L(x,x)(e))

⊆V (BL(J), IJ,L(x,x))⊆ R+
0 ,

hence [x|x] lies in H(J1(e),∗) (cf. Lemma 2.2.5), and then actually [x|x] � 0
(cf. §3.4.68). Thus property (ii) has been proved. Property (i) follows from the
equality [x|x]∗ = [x|x] already proved, by polarization law. The proof of property (iii)
is more ingenious than involved. Let x be in J 1

2
(e), and suppose that the equality

{xxe} = 0 holds. Take ψ ∈ D(J1(e),e). Then, by the properties already proved, the
mapping (a,b)→ψ({abe}) becomes a non-negative hermitian sesquilinear form on
J 1

2
(e). Therefore, by the assumption on x and the Cauchy–Schwarz inequality, we

have ψ({x(3)xe}) = 0. By the arbitrariness of ψ ∈ D(J1(e),e) and Corollary 2.1.13,
we deduce that {x(3)xe}= 0, hence

0 = {x(3)xe}= 2{{xxe}xx}−{x{xex}x}=−Q2
x(e)

because of the Jordan triple identity (4.1.13) and the assumption on x again. Now,
the fundamental formula (4.2.27) yields

{{xex}{xex}{xex}}= QQx(e)Qx(e) = QxQeQ2
x(e) = 0,

so {xex}= 0, and so

0 = {ex{xex}}= 2{{exx}ex}−{x{xee}x}=−1
2
{xxx}.

Therefore x = 0.

Lemma 4.2.33 Let J be a JB∗-triple, let e be a nonzero tripotent in J, and let y be
in J 1

2
(e) such that ‖e+ y+ z‖ � 1 for some z in J0(e). Then y = 0.

Proof By the equality (4.2.5) in Proposition 4.2.15 we have

‖− e+ iy+ z‖= ‖e+ y+ z‖ � 1,

so that, if we set

u :=
1
2
[(e+ y+ z)− (−e+ iy+ z)],

then ‖u‖ � 1, and hence ‖{uuu}‖ = ‖u‖3 � 1. Noticing that u = e + αy,
where α = 1

2(1 − i), and keeping in mind Proposition 4.2.22, we see that
{uuu}= e+2|α|2{yye}+2α{yee}+ |α|2α{yyy}+α2{yey} and that

e+2|α |2{yye} ∈ J1(e), 2α{yee}+ |α|2α{yyy} ∈ J1
2
(e), α2{yey} ∈ J0(e).
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Therefore we derive from the inequality (4.2.6) in Proposition 4.2.15 that
‖e+ 2|α|2{yye}‖ � ‖{uuu}‖, and hence ‖e+ 2|α|2{yye}‖ � 1. On the other hand,
by Proposition 4.2.32(ii), we have

‖e+2|α|2{yye}‖= 1+2|α|2‖{yye}‖.

It follows that {yye}= 0, and then, by Proposition 4.2.32(iii), y = 0.

A tripotent e in a Jordan ∗-triple J is said to be complete if J0(e) = 0.

Theorem 4.2.34 Let J be a nonzero JB∗-triple, and let u be in J. Then the following
conditions are equivalent:

(i) u is a complete tripotent in J.

(ii) u is an extreme point of BJ.

(iii) u is a complex extreme point of BJ (cf. Definition 3.1.6).

Proof (i)⇒(ii) Assume that u is a complete tripotent of J. Let v be in J such that
‖u± v‖ � 1, and write v = x+ y with x ∈ J1(u) and y ∈ J 1

2
(u). Since u± x ∈ J1(u),

it follows from the inequality (4.2.6) in Proposition 4.2.15 that ‖u± x‖ � 1. Now,
keeping in mind that J1(u) is a JB∗-algebra with unit u (cf. Corollary 4.2.30(iii)(b)),
it follows from Corollary 2.1.42 that x = 0. Therefore v = y, hence ‖u± y‖ � 1, and
so, by Lemma 4.2.33, y = 0. Thus v = 0, and hence u is an extreme point of BJ .

(ii)⇒(iii) This is clear.
(iii)⇒(i) Assume that u is a complex extreme point of BJ . By Theorem 4.2.9, the

closed subtriple of J generated by u is equal to the JB∗-triple underlying CC
0 (E) for

some locally compact Hausdorff topological space E. Therefore, by Lemma 3.1.7,
u becomes a tripotent in CC

0 (E), and hence in J. Now, since u ∈ J1(u), it follows
from Corollary 4.2.30(iii)(a) that ‖u±λ z‖ = 1 for every z in the closed unit ball of
J0(u), and every λ ∈ BC. Since u is a complex extreme point of BJ , we derive that
J0(u) = 0, i.e. u is a complete tripotent in J.

Fact 4.2.35 An element u in a JB∗-triple J is a complete tripotent if and only if
B(u,u) = 0.

Proof Let J be a JB∗-triple, and let u be in J. If u is a complete tripotent in J,
then, by definition, J0(u) = 0, and hence B(u,u) = 0 because of the equality P0(u) =
B(u,u) in Lemma 4.2.20. Conversely, assume that B(u,u) = 0. By Theorem 4.2.9,
the closed subtriple of J generated by u can be regarded as the JB∗-triple underlying
the C∗-algebra CC

0 (σ(u)) in such a way that u(t) = t for every t ∈ σ(u), so that, since
B(u,u)(u) = 0, we have that t(1− t2)2 = 0 for every t ∈ σ(u), and hence σ(u) =
{1}. Therefore u is a tripotent in CC

0 (σ(u)), and hence in J. Since B(u,u) = 0, the
equality P0(u) = B(u,u) in Lemma 4.2.20 applies again to get that u is a complete
tripotent.

Theorem 4.2.36 Let A be a nonzero non-commutative JB∗-algebra. Then the ex-
treme points of BA are precisely those elements u ∈ A satisfying

a−2Uu,a(u
∗)+UuUu∗(a) = 0 (4.2.43)
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for every a ∈ A. Moreover the following conditions are equivalent:

(i) A is unital.

(ii) A has geometrically unitary elements.

(iii) BA has vertices.

(iv) BA has extreme points.

Proof The first conclusion follows from Theorems 4.1.45 and 4.2.34, and Fact
4.2.35, by expressing the Bergmann operator B(u,u) in terms of the product and
the involution of A. The implication (ii)⇒(iii) is clear, whereas the ones (i)⇒(ii) and
(iii)⇒(iv) follow from Corollary 2.1.19 and Lemma 2.1.25, respectively. Therefore
to conclude the proof it is enough to show that (iv)⇒(i). Assume that BA has an
extreme point (say u), so that, by the first conclusion, the equality (4.2.43) holds
for every a ∈ A. Since A′′ is a unital non-commutative JB∗-algebra containing A as a
∗-subalgebra, and the product of A′′ is separately w∗-continuous (cf. Theorem 3.5.34,
Corollary 2.3.47, and Lemma 2.3.51), and A is w∗-dense in A′′, we deduce that the
equality (4.2.43) also holds for every a ∈ A′′. Then, by taking in (4.2.43) a equal to
the unit 1 of A′′, we obtain that

1−2u•u∗+Uu((u
∗)2) = 0,

and hence 1 = 2u•u∗ −Uu((u∗)2) ∈ A. Thus A is unital.

Lemma 2.1.26, which was assumed without proof at the time, now becomes almost
obvious. Indeed, we have the following.

§4.2.37 Proof of Lemma 2.1.26 Let A be a nonzero C∗-algebra. Then, by Fact
3.3.2, A is a non-commutative JB∗-algebra. Therefore, by the equivalence (i)⇔(iv)
in Theorem 4.2.36, BA has extreme points if and only if A is unital. Moreover,
keeping in mind that, for a,b,c in any associative algebra, the equality 2Ua,b(c) =
acb+ bca holds, it follows from the first conclusion in Theorem 4.2.36 that, if A is
unital, then the extreme points of BA are precisely those elements u ∈ A such that
(1−uu∗)A(1−u∗u) = 0.

Remark 4.2.38 According to Theorem 4.2.36, a non-commutative JB∗-algebra A
has geometrically unitary elements if and only if BA has vertices, if and only if BA

has extreme points. A similar situation need not hold for general JB∗-triples. Indeed,
every complex Hilbert space H becomes a JB∗-triple under the triple product
{xyz} := (x|y)z+(z|y)x

2 . However, every element in SH is an extreme point of BH

whereas, if dim(H) � 2, BH has no vertex.

4.2.3 Russo–Dye type theorems for non-commutative JB∗-algebras

Let A be a unital non-commutative JB∗-algebra. Then clearly exp(ih) is a J-unitary
element of A whenever h is in H(A,∗). On the other hand, as a by-product of The-
orem 4.2.28, every J-unitary element of A lies in SA. Therefore, invoking Corol-
lary 3.4.7, we get the following generalization of the classical Russo–Dye theorem
(cf. Lemma 2.3.28).



4.2 Unitaries in JB∗-triples and in non-commutative JB∗-algebras 519

Fact 4.2.39 Let A be a unital non-commutative JB∗-algebra, and let U stand for
the set of all J-unitary elements of A. Then BA = co(U).

Let J be a nonzero JB∗-triple having a unitary element. Then, according to the
implication (i)⇒(ii) in Theorem 4.2.24, J is the JB∗-triple underlying some unital
JB∗-algebra A. But, in view of the equivalence (i)⇔(vi) in Theorem 4.2.28, the
unitaries of J are precisely the J-unitaries of A. Therefore it is enough to invoke
Fact 4.2.39 above to get the following.

Corollary 4.2.40 If a JB∗-triple J has a unitary element, then BJ equals the closed
convex hull of the set of all unitaries in J.

Certainly the Russo–Dye–Palmer-type theorem contained in Corollary 3.4.7 is
better than its consequence established in Fact 4.2.39. Now we are going to refine
Fact 4.2.39 in a different direction.

Lemma 4.2.41 Let A be a unital JB∗-algebra, and let u be a J-unitary element of
A. Then we have:

(i) The Banach space of A becomes a unital JB∗-algebra with unit u for the product
� defined by x�y :=Ux,y(u∗) and the involution � defined by x� :=Uu(x∗). (This
JB∗-algebra is called the u-isotope of A, and is denoted by A(u).)

(ii) The J-unitary elements of A and of A(u) are the same.

Proof By Theorem 4.1.45, A has an underlying JB∗-triple (say J) which consists
of the Banach space of A and the triple product {xyz} := Ux,z(y∗), and, by the
implication (i)⇒(vi) in Theorem 4.2.28, u becomes a unitary element of J. Therefore,
assertion (i) follows from the third sentence in Theorem 4.1.55. Moreover, by the last
sentence in Theorem 4.1.55, the JB∗-triple underlying A(u) coincides with J. Now,
since the JB∗-algebras A and A(u) have the same underlying JB∗-triple, assertion (ii)
follows from the equivalence (i)⇔(vi) in Theorem 4.2.28.

Lemma 4.2.42 Let A be a unital JB∗-algebra, let u be a J-unitary element of A,
and let x be in A with ‖x‖< 1. Then there are J-unitary elements u1 and v1 of A such
that x+u = u1 + v1.

Proof By Lemma 4.2.41, we may assume that u = 1. Let B stand for the closed
∗-subalgebra of A generated by x and 1, and recall that B can be seen as a ∗-
subalgebra of Csym for some unital C∗-algebra C (cf. Proposition 3.4.6). Since ‖x‖<
1, both 1+x and 1+x∗ are invertible elements of C (cf. Lemma 1.1.20). Set y := 1+x
and v := y(y∗y)−

1
2 ∈ C. Then v becomes a unitary element of C. Since ‖y‖ � 2, it

follows from §1.2.37 that
√

y∗y = w+w∗, where w :=
√

y∗y
2 + i

√
1− y∗y

4 is a unitary
element of C. Therefore, if we set u1 := vw and v1 := vw∗, then u1 and v1 are unitary
elements of C such that x+1 = u1 + v1. But, since

u1 = y(y∗y)−
1
2

(√
y∗y
2

+ i

√
1− y∗y

4

)
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and

v1 = y(y∗y)−
1
2

(√
y∗y
2

− i

√
1− y∗y

4

)
,

and y belongs to B, and B is a closed ∗-subalgebra of Csym, it follows from
Lemma 3.3.6(i) that u1 and v1 lie in B. Therefore u1 and v1 are J-unitary elements of
A satisfying x+1 = u1 + v1.

Theorem 4.2.43 Let A be a unital non-commutative JB∗-algebra, let n be in N with
n > 2, and let a be in A such that ‖a‖ < 1− 2

n . Then there are J-unitary elements
u1,u2, . . . ,un ∈ A satisfying

a =
1
n
(u1 +u2 + · · ·+un).

Proof Since Asym is a unital JB∗-algebra, and the J-unitary elements of A and of
Asym are the same, we may assume that A is commutative. Set x := (n−1)−1(na−1),
so that ‖x‖< 1 and na= (n−1)x+1. Applying Lemma 4.2.42 n−1 times, we obtain
J-unitary elements v1,v2, . . . ,vn−1 and u1,u2, . . . ,un (where un = vn−1) such that

na = (n−1)x+1 = (n−2)x+(x+1) = (n−2)x+(v1 +u1)

= (n−3)x+(x+ v1)+u1 = (n−3)x+(v2 +u2)+u1

= (n−4)x+(x+ v2)+u2 +u1 = (n−4)x+(v3 +u3)+u2 +u1 = · · ·

= (x+ vn−2)+un−2 + · · ·+u1 = un +un−1 +un−2 + · · ·+u1.

As a consequence of Theorem 4.2.43, the open unit ball of a unital non-
commutative JB∗-algebra is contained in the convex hull of the set of all J-unitary
elements. Therefore, as announced above, Theorem 4.2.43 refines Fact 4.2.39.

According to Theorem 4.1.45 and Proposition 4.1.52, linear bijections between
non-commutative JB∗-algebras are isometries as soon as they preserve the triple
products {xyz} := Ux,z(y∗). Now, with the help of Lemma 4.2.41, we can prove the
converse.

Proposition 4.2.44 Surjective linear isometries between non-commutative JB∗-
algebras preserve triple products.

Proof Let A and B be non-commutative JB∗-algebras, and let F : A → B be a
surjective linear isometry. To prove that F preserves triple products, we may assume
that A and B are commutative. Moreover, thinking about the double transpose of
F , and applying Proposition 3.5.26, we may also assume that A and B are unital.
Then, by the equivalence (i)⇔(iv) (or (i)⇔(v)) in Theorem 4.2.28, u := F(1) must
be a J-unitary element of B. Now, by Lemma 4.2.41(i), F can be seen as a unit-
preserving surjective linear isometry from A to the JB∗-algebra B(u) = (B,�, �),
and hence, by the implication (ii)⇒(i) in Proposition 3.4.25, for all x,y ∈ A we
have F(xy) = F(x)�F(y) and F(x∗) = F(x)�. Therefore F , regarded as a mapping
from the JB∗-triple underlying A to the JB∗-triple underlying B(u), becomes a triple
homomorphism. But, as we saw in the proof of Lemma 4.2.41(ii), B and B(u) have
the same underlying JB∗-triple.

Somehow, Proposition 4.2.44 mitigates Antitheorem 3.4.34.
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4.2.4 A touch of real JB∗-triples and of real non-commutative
JB∗-algebras

Definition 4.2.45 By a real non-commutative JB∗-algebra (respectively, a real
JB∗-algebra, a real alternative C∗-algebra, or a real C∗-algebra) we mean a closed
real ∗-subalgebra of a (complex) non-commutative JB∗-algebra (respectively, JB∗-
algebra, alternative C∗-algebra, or C∗-algebra).

Example 4.2.46 (a) Every non-commutative JB∗-algebra (respectively, JB∗-
algebra, alternative C∗-algebra, or C∗-algebra) becomes a real non-commutative
JB∗-algebra (respectively, real JB∗-algebra, real alternative C∗-algebra, or real
C∗-algebra) when it is regarded as a real algebra.

(b) According to Lemma 2.6.7 and Theorem 3.3.11, every complete smooth-
normed real algebra, endowed with the involution a∗ := 2 f (a)1−a (where f stands
for the unique element in D(A,1)), becomes a unital real non-commutative JB∗-
algebra. In particular, H is a real C∗-algebra, and O is a real alternative C∗-algebra,
when they are endowed with their standard involutions.

(c) According to Theorem 3.4.8, every JB-algebra, with the identity mapping as
involution, becomes a real JB∗-algebra.

Now, invoking Proposition 3.4.1(i) and Corollary 3.4.3, we get the following.

Fact 4.2.47 Let A be a real non-commutative JB∗-algebra. Then:

(i) Every closed associative ∗-subalgebra of A is a real C∗-algebra.
(ii) H(A,∗) becomes a JB-algebra under the product of Asym and the norm of A.

Theorem 4.2.48 Let A be a real algebra. Then the following conditions are equi-
valent:

(i) A is a complete smooth-normed real algebra.
(ii) A is a J-division real non-commutative JB∗-algebra.

(iii) A is a unital real non-commutative JB∗-algebra such that H(A,∗) = R1.

Proof (i)⇒(ii) Assume that condition (i) is fulfilled. Then, as shown in
Example 4.2.46(b), A is a unital real non-commutative JB∗-algebra. Moreover,
by the implication (i)⇒(ii) in Theorem 4.1.96, A is a J-division algebra.

(ii)⇒(iii) Assume that A is a unital real non-commutative JB∗-algebra. Then, by
Fact 4.2.47(ii), H(A,∗) is a JB-algebra in a natural way. Now suppose that con-
dition (iii) does not hold, so that there exists x ∈ H(A,∗) \R1. Then, by Propos-
ition 3.1.4(i), the closed subalgebra of H(A,∗) generated by x and 1 is of the form
CR(E) for some compact Hausdorff topological space E, which must have at least
two points. Take y,z ∈ CR(E) \ {0} such that yz = 0. Then we have Uy(z) = 0 in A,
so y is a nonzero J-divisor of zero in A (cf. Definition 4.1.69), and so y is a nonzero
non-J-invertible element of A, hence A is not a J-division algebra, i.e. condition (ii)
is not fulfilled.

(iii)⇒(i) Set S(A,∗) := {a ∈ A : a∗ = −a}. Since z • t lies in H(A,∗) whenever
z, t are in S(A,∗), the assumption (iii) provides us with a symmetric bilinear form
(·|·) on S(A,∗) satisfying z• t =−(z|t)1 for all z, t ∈ S(A,∗). Since A =R1⊕S(A,∗),
we can extend (·|·) to a symmetric bilinear form on A by defining (1|1) := 1 and
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(1|z) := 0 for every z ∈ S(A,∗). Let a be in A, and write a = λ1+ z with λ ∈ R and
z ∈ S(A,∗). Then a belongs to the closed (automatically ∗-invariant) subalgebra of A
generated by z and 1, which is a unital commutative real C∗-algebra (say B) because
of Fact 4.2.47(i), and we have

a∗a = (λ1− z)(λ1+ z) = [λ 2 +(z|z)]1 = (a|a)1.

Regarding B as a closed real ∗-subalgebra of some unital commutative C∗-algebra,
and keeping in mind Theorem 1.2.23, it follows that (a|a) � 0, and hence that (·|·)
is an inner product on A satisfying (a|a) = ‖a‖2. Thus the Banach space of A is a
Hilbert space, hence A is smooth at 1, i.e. A is a smooth-normed algebra.

In relation to the above theorem, we recall that the structure of smooth-normed
real algebras was described in Theorem 2.6.9.

Lemma 4.2.49 Let A be a unital real non-commutative JB∗-algebra whose unit is
a vertex of BA. Then A is a JB-algebra, and ∗ is the identity on A.

Proof Set S(A,∗) := {a ∈ A : a∗ = −a}, and let x and r be in S(A,∗) and R,
respectively. Then, by Fact 4.2.47(i), we have

‖1± rx‖2=‖(1± rx)∗(1± rx)‖=‖(1∓ rx)(1± rx)‖=‖1− r2x2‖ � 1+ r2‖x2‖,

and hence limr→0+
‖1±rx‖−1

r � 0. It follows from Proposition 2.1.5 that

0 � minV (A,1,x) � maxV (A,1,x) � 0,

so V (A,1,x) = {0}, and therefore x= 0 because 1 is a vertex of BA. Thus S(A,∗) = 0,
and hence A=H(A,∗) because A=H(A,∗)⊕S(A,∗). Now ∗ is the identity mapping
on A, so A is commutative, and so, by Fact 4.2.47(ii), A is a JB-algebra.

Definition 4.2.50 By a real JB∗-triple we mean a closed real subtriple of a (com-
plex) JB∗-triple.

Example 4.2.51 (a) Every JB∗-triple becomes a real JB∗-triple when it is regarded
as a real space.

(b) By Theorem 4.1.45, every real non-commutative JB∗-algebra becomes a real
JB∗-triple under its own norm and the triple product {xyz} :=Ux,z(y∗).

(c) Every real Hilbert space X becomes a real JB∗-triple under its own norm and
the triple product {xyz} := (x|y)z+(z|y)x

2 . Indeed, this follows by considering the Hilbert
space complexification of X , and then by invoking Remark 4.2.38.

Lemma 4.2.52 Let J be a real JB∗-triple. We have:

(i) If x and ϕ are norm-one elements of J and J′, respectively, such that ϕ(x) = 1,
then the restriction of ϕ to the closed subtriple of J generated by x is a triple
homomorphism, so in particular we have ϕ({xxx}) = 1.

(ii) If e is a tripotent in J, then J1(e), endowed with the product ab := {aeb} and the
involution x∗ := {exe}, becomes a real JB∗-algebra with unit e.

Proof Let X be any JB∗-triple containing J as a closed real subtriple.
Let x and ϕ be norm-one elements of J and J′, respectively, such that ϕ(x) = 1. By

the Hahn–Banach theorem, there exists ψ ∈ D(X ,x) such that the restriction to J of
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ℜ◦ψ equals ϕ . But then, by Corollary 4.2.12, for every n ∈N we have ψ(x(2n+1)) =

1, and hence ϕ(x(2n+1)) = 1. Therefore, by Lemma 4.1.49, the restriction of ϕ to the
closed subtriple of J generated by x is a triple homomorphism.

Now let e be a tripotent in J. Then, by Corollary 4.2.30(iii)(b), X1(e), endowed
with the product ab := {aeb} and the involution x∗ := {exe}, becomes a JB∗-algebra
with unit e. Since J1(e) is a closed real subtriple of X1(e), it follows that J1(e)
becomes a closed real ∗-subalgebra of the JB∗-algebra X1(e) containing e.

Theorem 4.2.53 Let J be a real JB∗-triple, and let e be a norm-one element of J.
Then the following conditions are equivalent:

(i) e is a geometrically unitary element of J.

(ii) e is a vertex of the closed unit ball of J.

(iii) J is the real JB∗-triple underlying a JB-algebra with unit e (cf. Examples
4.2.46(c) and 4.2.51(b)).

Proof (i)⇒(ii) This is clear.
(ii)⇒(iii) By Lemma 4.2.52(i), we have V (J,e,e−{eee}) = {0}. Therefore, by

assumption (ii), e becomes a tripotent. Then, invoking assumption (ii) again and
Lemma 4.2.23, we see that J 1

2
(e) = 0 = J0(e), and hence J = J1(e). Therefore, by

Lemma 4.2.52(ii), the Banach space of J, endowed with the product ab := {aeb}
and the involution x∗ := {exe}, becomes a real JB∗-algebra (say A) with unit e. Now,
by the assumption once more and Lemma 4.2.49, A is a JB-algebra and ∗ is the
identity on A. Finally, if we think about the real JB∗-triple underlying A, then, by
Proposition 4.1.54, we re-encounter J.

(iii)⇒(i) By Proposition 3.1.4(iii) and Theorem 2.1.17(i).

It follows from the above theorem that the existence of a geometrically unitary
element in a nonzero real JB∗-triple J is equivalent to the fact that J is isometric-
ally triple-isomorphic to a unital JB-algebra. Therefore, the study of geometrically
unitary elements in real JB∗-triples is concluded with Proposition 3.1.15, which was
proved much earlier.

If J is a real JB∗-triple, then its vector space complexification has a natural triple
product, namely the one obtained by extending that of J by complex linearity in
the outer variables, and by conjugate linearity in the middle variable. Analogously,
if A is a real non-commutative JB∗-algebra, we can extend both the product of
A (by complex bilinearity) and the involution of A (by conjugate-linearity) to the
complexification of A. Actually, we have the following.

Proposition 4.2.54 Let (X ,‖ · ‖) be a JB∗-triple (respectively, a non-commu-
tative JB∗-algebra, a JB∗-algebra, an alternative C∗-algebra, or a C∗-algebra),
and let A be a closed real subtriple (respectively, a closed real ∗-subalgebra)
of X. Then the complexification A ⊕ iA of A, endowed with its natural triple
product (respectively, with its natural product and involution) and the norm
|||a ⊕ ib||| := max{‖a + ib‖,‖a − ib‖}, becomes a JB∗-triple (respectively, a non-
commutative JB∗-algebra, a JB∗-algebra, an alternative C∗-algebra, or a
C∗-algebra).
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Proof Consider a set copy X̂ of X with sum, product by scalars, triple product
(respectively, product and involution), and norm defined by x̂+ ŷ := x̂+ y, λ x̂ :=̂̄λx, {x̂ŷẑ} := {̂xyz} (respectively, x̂ŷ := x̂y and x̂∗ := x̂∗), and ‖x̂‖ := ‖x‖, respect-
ively. Then X̂ becomes a JB∗-triple (respectively, a non-commutative JB∗-algebra, a
JB∗-algebra, an alternative C∗-algebra, or a C∗-algebra), and hence, by Fact 4.2.29
(respectively, in an obvious way), X × X̂ is also a JB∗-triple (respectively, a non-
commutative JB∗-algebra, a JB∗-algebra, an alternative C∗-algebra, or a C∗-algebra)
under the norm

‖(x, ŷ)‖ := max{‖x‖,‖y‖}.

Now, the mapping

a⊕ ib → (a, â)+ i(b, b̂) = (a+ ib, â− ib)

becomes a bijective triple homomorphism (respectively, a bijective algebra
∗-homomorphism) from the complexification of A onto a closed subtriple
(respectively, a closed ∗-subalgebra) of X × X̂ .

In more intrinsic terms, Proposition 4.2.54 above can be reformulated as follows.

Fact 4.2.55 Let A be a real JB∗-triple (respectively, a real non-commutative JB∗-
algebra, a real JB∗-algebra, a real alternative C∗-algebra, or a real C∗-algebra).
Then the complexification A ⊕ iA of A, endowed with its natural triple product
(respectively, with its natural product and involution), becomes a JB∗-triple (respect-
ively, a non-commutative JB∗-algebra, a JB∗-algebra, an alternative C∗-algebra, or
a C∗-algebra) in a unique norm. Moreover this norm extends the norm of A, and
converts the canonical involution of A⊕ iA (x+ iy → x− iy) into an isometry.

Proof The existence of the required norm on A ⊕ iA follows from Propos-
ition 4.2.54, which also assures that this norm extends the norm of A and converts the
canonical involution of A⊕ iA into an isometry. The uniqueness of the required norm
on A⊕ iA follows from Proposition 4.1.52 (respectively, Proposition 3.4.4).

Definition 4.2.56 Given a real JB∗-triple (respectively, a real non-commuta-
tive JB∗-algebra, a real JB∗-algebra, a real alternative C∗-algebra, or a real C∗-
algebra) A, the complexification of A, as described in Fact 4.2.55 above, will be
called the JB∗-triple complexification (respectively, the non-commutative JB∗-
complexification, the JB∗-complexification, the alternative C∗-complexification,
or the C∗-complexification) of A.

Theorem 4.2.57 Let J be a nonzero real JB∗-triple. Then the extreme points of BJ

are precisely the complete tripotents of J.

Proof Let X stand for the JB∗-triple complexification of J, and note that, since the
canonical involution of X is an isometry, we have

‖x‖ � ‖x+ iy‖ for all x,y ∈ J. (4.2.44)

Let e be a complete tripotent in J. If x and y are in J with x+ iy ∈ X0(e), then we
have 0 = {e,e,x+ iy} = {eex}+ i{eey}, so {eex} = {eey} = 0 because {eex} and
{eey} lie in J, so x = y = 0 because e is a complete tripotent in J, hence x+ iy = 0.



4.2 Unitaries in JB∗-triples and in non-commutative JB∗-algebras 525

Thus e becomes a complete tripotent in X . Therefore, by the implication (i)⇒(ii) in
Theorem 4.2.34, e is an extreme point of BX , and hence of BJ .

Conversely, let now e be an extreme point of BJ . If x and y are in J, and if

‖e+λ (x+ iy)‖ � 1 for every λ ∈ SC,

then we have

‖e± x‖ � ‖e± x± iy‖ � 1 and ‖e± y‖ � ‖e± y∓ ix‖ � 1

because of (4.2.44), so x = y = 0 because e is an extreme point of BJ , hence
x+ iy = 0. Thus e becomes a complex extreme point of BX . Therefore, by the implic-
ation (iii)⇒(i) in Theorem 4.2.34, e is a complete tripotent in X , and hence in J.

Corollary 4.2.58 Let A be a nonzero real non-commutative JB∗-algebra. Then the
extreme points of BA are precisely those elements u ∈ A satisfying

a−2Uu,a(u
∗)+UuUu∗(a) = 0 (4.2.45)

for every a ∈ A. Moreover the following conditions are equivalent:

(i) A is unital.
(ii) BA has strongly extreme points.

(iii) BA has extreme points.

Proof Let X stand for the non-commutative JB∗-complexification of A. Let u ∈ A
be an extreme point of BA. Then, as we have shown in the proof of Theorem 4.2.57,
u is a complex extreme point of BX . Therefore, by the implication (iii)⇒(i) in The-
orem 4.2.34, u is a complete tripotent in X . Therefore, keeping in mind Fact 4.2.35,
and expressing the Bergmann operator B(u,u) in terms of the product and the in-
volution of A, the equality (4.2.45) holds for every a ∈ X , so in particular for every
a ∈ A. Conversely, let u be in A such that the equality (4.2.45) holds for every a ∈ A.
Then that equality holds for every a ∈ X because X = A⊕ iA, so u is an extreme
point of BX (by the first conclusion in Theorem 4.2.36), and so u is an extreme point
of BA. Thus the first conclusion in the corollary has been proved. The implication
(ii)⇒(iii) is clear, whereas the one (i)⇒(ii) follows from Corollary 2.1.42. Therefore
to conclude the proof it is enough to show that (iii)⇒(i). Assume that BA has an
extreme point (say u). Then, as we already know, u is a complex extreme point of
BX , and hence, by the implication (iii)⇒(ii) in Theorem 4.2.34, u is an extreme point
of BX . Therefore, by the implication (iv)⇒(i) in Theorem 4.2.36, X is unital. But the
unit of X has to lie in A because the canonical involution of X is a conjugate-linear
algebra automorphism.

Now, arguing as in §4.2.37, with Corollary 4.2.58 above instead of Theorem
4.2.36, we get the following real version of Lemma 2.1.26.

Corollary 4.2.59 The closed unit ball of a nonzero real C∗-algebra A has extreme
points if and only if A is unital. In this case, the extreme points of BA are precisely
the elements u ∈ A such that (1−uu∗)A(1−u∗u) = 0.

§4.2.60 Let X be a complex normed space, and let � be an isometric conjugate-
linear involution on X . As we pointed out in §2.3.45, the involution of X can be
transposed to the successive duals of X , giving rise to isometric conjugate-linear
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involutions on them, and moreover the bitranspose involution on X ′′ extends the
given one on X . As there, these successive transposed mappings will be denoted with
the same symbol �. It is easy to realize that the mapping f → f|H(X ,�) from H(X ′, �) to
H(X , �)′ becomes a surjective linear isometry. In short, we have H(X , �)′ ≡ H(X ′, �)
naturally as dual real Banach spaces. Therefore H(X , �)′′ identifies with H(X ′′, �) in
such a way that this identification becomes the identity on H(X , �).

Assume additionally that X is endowed with a (possibly different) continuous
conjugate-linear involution ∗ commuting with �. Then the following assertions are
straightforwardly verified:

(i) H(X , �) is ∗-invariant, and hence the involution ∗ of H(X , �) can be transposed
to the successive duals of H(X , �).

(ii) The bitransposes of ∗ and � commute, hence H(X ′′, �) is a ∗-invariant subset
of X ′′.

(iii) The natural identification H(X , �)′′ ≡ H(X ′′, �) becomes a ∗-mapping.

Lemma 4.2.61 Let X be a normed complex algebra, and let � be an isometric
involutive conjugate-linear algebra automorphism of X. We have:

(i) H(X , �) is a real subalgebra of X, which contains the unit of X if X is unital.
(ii) If we endow X ′′ with the Arens product, then the bitranspose of � becomes a

conjugate-linear algebra automorphism of X ′′, hence H(X ′′, �) is a real sub-
algebra of X ′′, which contains the unit of X ′′ if X ′′ is unital.

(iii) If in addition we endow H(X , �)′′ with the Arens product, then the natural
identification H(X , �)′′ ≡H(X ′′, �) as Banach spaces becomes an algebra homo-
morphism.

Proof Assertion (i) is clear, whereas assertion (ii) follows from the appropriate
conjugate-linear variant of Lemma 3.1.17. The verification of assertion (iii) consists
of an adaptation of the argument in the proof of Lemma 3.1.17 just applied. Indeed,
let F : H(X , �)′′ → H(X ′′, �) denote the natural identification, and let x be in H(X , �).
Then, since F is w∗-continuous, Lemma 2.2.12 applies so that the set

{y′′ ∈ H(X , �)′′ : F(xy′′) = F(x)F(y′′)}

is w∗-closed in H(X , �)′′, and contains H(X , �) because F is the identity on H(X , �).
Therefore, since H(X , �) is w∗-dense in H(X , �)′′, we have

F(xy′′) = F(x)F(y′′) for every y′′ ∈ H(X , �)′′. (4.2.46)

Now let y′′ be in H(X , �)′′. Again by Lemma 2.2.12, the set

{x′′ ∈ H(X , �)′′ : F(x′′y′′) = F(x′′)F(y′′)}

is a w∗-closed subset of H(X , �)′′, which contains H(X , �) because of (4.2.46). There-
fore we have F(x′′y′′) = F(x′′)F(y′′) for every x′′ ∈ H(X , �)′′.

Proposition 4.2.62 Let A be a nonzero real non-commutative JB∗-algebra (respect-
ively, real JB∗-algebra, real alternative C∗-algebra, or real C∗-algebra). Then A′′,
endowed with the Arens product and the bitranspose of the involution of A, becomes
a unital real non-commutative JB∗-algebra (respectively, real JB∗-algebra, real
alternative C∗-algebra, or real C∗-algebra). As a consequence, A is Arens regular.
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Proof Let X stand for the non-commutative JB∗-complexification (respectively,
JB∗-complexification, alternative C∗-complexification, or C∗-complexification) of
A, and let � denote the canonical involution of X . Then � becomes an isometric
conjugate-linear algebra automorphism of X commuting with ∗, and hence we have
A = H(X , �) as real non-commutative JB∗-algebras. On the other hand, by The-
orem 3.5.34 (respectively, Proposition 3.5.26, Corollary 3.5.35, or Theorem 2.2.15),
the Banach space X ′′, endowed with the Arens product and the bitranspose of ∗,
becomes a unital non-commutative JB∗-algebra (respectively, JB∗-algebra, alter-
native C∗-algebra, or C∗-algebra). Therefore, by §4.2.60(ii) and Lemma 4.2.61(ii),
H(X ′′, �) is a real ∗-subalgebra of X ′′ containing the unit of X ′′, and hence is a unital
real non-commutative JB∗-algebra (respectively, real JB∗-algebra, real alternative
C∗-algebra, or real C∗-algebra). Since A = H(X , �), it follows from §4.2.60(iii) and
Lemma 4.2.61(iii) that A′′, endowed with the Arens product and the bitranspose of
the involution of A, becomes a unital real non-commutative JB∗-algebra. Finally, the
Arens regularity of A follows from Corollary 2.3.47.

Corollary 4.2.63 Let A be a nonzero JB-algebra, let B be a real non-commutative
JB∗-algebra, and let Φ : A → B be a surjective linear isometry. Then Φ is a triple
homomorphism (cf. Examples 4.2.46(c) and 4.2.51(b)).

Proof By Proposition 3.1.10, A′′ is a unital JB-algebra containing A as a subalgebra,
and, by Proposition 4.2.62, B′′ is a real non-commutative JB∗-algebra contain-
ing B as a ∗-subalgebra. Therefore, thinking about the bitranspose mapping
Φ′′ : A′′ → B′′, there is no loss of generality in assuming that A is unital. Then,
by Proposition 3.1.4(iii) and Theorem 2.1.17(i), Φ(1) is a geometrically unitary
element of B. Therefore, by the implication (i)⇒(iii) in Theorem 4.2.53, there exists
a unital JB-algebra C such that B=C as real JB∗-triples. Therefore, as a consequence
of Corollary 3.1.16, Φ is a triple homomorphism.

Surjective linear isometries between real JB∗-triples need not be triple homo-
morphisms. Even more, as the next example shows, unitary elements of real JB∗-
triples cannot be characterized in terms of their underlying Banach spaces.

Example 4.2.64 Let X stand for the two-dimensional real Euclidean space. Then
we can identify X with C, and consider it as a real JB∗-triple under the triple
product {λμρ} := λ μ̄ρ (cf. Example 4.2.51(a)), so that all elements in SX become
unitary elements. However, as it happens with any real Hilbert space, we can also
consider X as a real JB∗-triple under the triple product {xyz} := (x|y)z+(z|y)x

2 (cf.
Example 4.2.51(c)), so that no element in SX becomes unitary.

4.2.5 Historical notes and comments

Results from Proposition 4.2.1 to Theorem 4.2.7 are due to Kaup [381], although
the proof of Proposition 4.2.1 is only sketched there. It is worth mentioning that,
since abelian JB∗-triples are particular cases of ternary C∗-rings in the meaning of
Zettl’s paper [665] (published the same year as [381]), some of Kaup’s arguments
overlap with Zettl’s. In particular, Proposition 4.2.5 can be derived from [665, Prop-
osition 3.2]. In relation to Theorem 4.2.7, it should be remarked that, according to
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[381, Corollary 1.13] and the example following it, abelian JB∗-triples need not be
triple isomorphic to commutative C∗-algebras. Theorem 4.2.9 is also due to Kaup,
but is earlier [380]. We thought that our proof of Theorem 4.2.9 was new. However,
after having been kindly notified by A. M. Peralta, we must acknowledge that our
argument is close to one suggested in [137, p. 80]. Kaup’s original proof in [380] is
included in Chu’s book [710, pp. 177–81].

Corollary 4.2.11 (that every element of a JB∗-triple has a unique cubic root) is
folklore regarding the existence, but could be new regarding the uniqueness.

For people who understand the geometry of CC
0 (E)-spaces well, Corollary 4.2.12

is a straightforward consequence of Kaup’s Theorem 4.2.9. Indeed, note at first that,
if a normed space X is smooth at an element x∈ SX , then the unique state of X relative
to x is an extreme point of BX ′ . Therefore, if one knows that the extreme points
of the closed unit ball of CC

0 (E)
′ are precisely the valuations at points of E after

multiplication by unimodular complex numbers (see for example [730, Theorem
2.3.5]), then it turns out clear that CC

0 (E) is smooth at a given norm-one element x if
and only if there is a unique t0 ∈ E such that |x(t0)| = 1. Now let J be a JB∗-triple,
let x be in SJ , let M stand for the closed subtriple of J generated by x, and invoke
Theorem 4.2.9 and Definition 4.2.10 to identify M with CC

0 (σ(x)) in such a way
that x(t) = t for every t ∈ σ(x). It follows that M is smooth at x, and hence that the
valuation at 1 ∈ σ(x) is the unique state of M relative to x. But the valuation at 1 is
surely a triple homomorphism, which proves Corollary 4.2.12.

Despite the above comments, it seems to us that Corollary 4.2.12 could have
gone unnoticed before the writing of our work (see also Peralta’s paper [486]).
Besides the applications of Corollary 4.2.12 we have done (indeed, it is one of the
ingredients in our proofs of Theorems 4.2.24 and 4.2.53), we are going to point out
in Proposition 4.2.65 immediately below an outstanding new application.

JBW ∗-triples are defined as those JB∗-triples which are dual Banach spaces. Let J
be a JBW ∗-triple, let J∗ stand for the (complete) predual of J, let ϕ be in SJ∗ , and take
z ∈ SJ with ϕ(z) = 1. Since the mapping T → ϕ(T (z)) is a state of BL(J) relative to
IJ , for every x ∈ J we have

ϕ({xxz}) = ϕ(L(x,x)(z)) ∈V (BL(J), IJ ,L(x,x))⊆ R+
0 .

Therefore the mapping (x,y)→ ϕ({xyz}) becomes a non-negative hermitian sesqui-
linear form on J, and hence the mapping x →‖x‖ϕ :=

√
ϕ({xxz}) is a seminorm on

J. The symbol ‖ ·‖ϕ is appropriate because, as proved by Barton and Friedman [60],
this seminorm does not depend on the chosen support z for ϕ .

Proposition 4.2.65 Let J be a JBW ∗-triple. Then for every x ∈ J we have

sup{‖x‖ϕ : ϕ ∈ SJ∗}= ‖x‖.

Proof For x∈ J set |||x ||| := sup{‖x‖ϕ : ϕ ∈ SJ∗}. The inequality ||| · |||� ‖·‖ follows
from Corollary 4.1.51, and hence ||| · ||| becomes a continuous seminorm on J. Now,
in view of the Bishop–Phelps theorem, to conclude the proof it is enough to show
that |||x |||� 1 for every x ∈ SJ which attains its norm at some ϕ ∈ SJ∗ . Let therefore x
and ϕ be in SJ and SJ∗ , respectively, such that ϕ(x) = 1. Then, by Corollary 4.2.12,
we have |||x ||| � ‖x‖ϕ =

√
ϕ({xxx}) = 1, as desired.
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Fact 4.2.14, as well as the remaining purely algebraic material in Subsection 4.2.2,
are originally due to Loos [771, Chapter I] and Meyberg [443, 779]. Our approach to
this material follows the one of Loos, together with those of Upmeier [814, Sections
18 and 21] and Chu [710, Section 1.2].

§4.2.66 Now the fundamental formula for Jordan algebras, given in Propos-
ition 3.4.15, can be proved as follows.

Let A be a Jordan algebra over K, and let a,b be in A. Regarding A as a real
Jordan algebra with conjugate-linear involution ∗ equal to the identity operator,
it is enough to apply Proposition 4.1.34 and the fundamental formula for Jordan
∗-triples (cf. the reformulation in (4.2.27) of Proposition 4.2.16) to get that
UUa(b) =UaUbUa.

Proposition 4.2.15, assertions (i) and (ii) in Proposition 4.2.32, and Lemma 4.2.33
are due to Friedman and Russo [269]. The beginning of our proof of Propos-
ition 4.2.15 follows [710, proof of Lemma 3.2.1], whereas the remaining part is
the original one in [269]. Assertion (iii) in Proposition 4.2.32 was first proved
by Upmeier [814, Theorem 21.25] by means of a deep and long argument of a
holomorphic nature. The short proof we have given is a refinement of that provided
recently by Peralta in [486]. Invoking the structure theory of JB∗-triples [330, 270],
assertion (iii) in Proposition 4.2.32 can be deeply refined. Indeed, as proved by
Bunce, Fernández-Polo, Martı́nez, and Peralta [135, Proposition 2.4], we have the
following.

Proposition 4.2.67 Let J,e, and [·|·] : J 1
2
(e)× J1

2
(e) → J1(e) be as in Propos-

ition 4.2.32. Then ‖x‖2 � 4‖[x|x]‖ for every x ∈ J 1
2
(e).

By keeping in mind Corollary 4.1.114, and quantifying the proof of assertion (iii)
in Proposition 4.2.32, we are able to prove a less accurate version of the above
proposition. Indeed, the constant 4 should be replaced with the much bigger one
26(2+ 3

√
4)6.

Proof Let x be a norm-one element in J 1
2
(e), and set M := ‖{xxe}‖ � 1. Then for

every ψ ∈ D(J1(e),e) we have∣∣∣ψ ({x(3)xe}
)∣∣∣�√ψ

(
{x(3)x(3)e}

)
ψ({xxe}) �

√
M,

so

v
(

J1(e),e,{x(3)xe}
)

�
√

M,

and so ‖{x(3)xe}‖ � 2
√

M because of Lemmas 2.2.5 and 2.3.7(i). Therefore∥∥Q2
x(e)
∥∥= ∥∥∥2{{xxe}xx}−{x(3)xe}

∥∥∥� 2M+2
√

M � 4
√

M.

Now we have

‖{xex}‖3 = ‖{{xex}{xex}{xex}}‖=
∥∥QQx(e)Qx(e)

∥∥= ∥∥QxQeQ2
x(e)
∥∥� 4

√
M,
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and hence

1
2
=

1
2
‖{xxx}‖= ‖{x{xee}x}‖= ‖2{{exx}ex}−{ex{xex}}‖

� 2M+
3
√

4
√

M � (2+ 3
√

4) 6
√

M.

Therefore ‖x‖2 = 1 � 26(2+ 3
√

4)6M = 26(2+ 3
√

4)6‖[x|x]‖.

Proposition 4.2.67 above is better understood if we are aware of the Minkowski
inequality for JB∗-algebra-valued non-negative hermitian sesquilinear forms, which
is proved in Fact 4.2.68 immediately below. Indeed, Proposition 4.2.67 then asserts
that the mapping x →

√
‖[x|x]‖ from J 1

2
(e) to R becomes in fact a norm equivalent

to the restriction to J1
2
(e) of the norm of J.

Fact 4.2.68 Let X be a complex vector space, let A be a non-commutative JB∗-
algebra, and let [·|·] : X ×X → A be a sesquilinear mapping such that [x|y]∗ = [y|x]
and [x|x] � 0 for all x,y ∈ X. Then the mapping x →

√
‖[x|x]‖ becomes a seminorm

on X.

Proof [798, pp. 126–9] Let x,y be in X , and let a,b be positive numbers. Then we
have

ab[x+ y|x+ y] � ab[x+ y|x+ y]+ [bx−ay|bx−ay] = (a+b)(b[x|x]+a[y|y]),

hence, dividing by ab(a+b), we obtain

0 � [x+ y|x+ y]
a+b

� [x|x]
a

+
[y|y]

b
, (4.2.47)

and therefore

‖[x+ y|x+ y]‖
a+b

�
(∥∥∥∥ [x|x]a

+
[y|y]

b

∥∥∥∥�
)
‖[x|x]‖

a
+

‖[y|y]‖
b

. (4.2.48)

Now, if both ‖[x|x]‖ and ‖[y|y]‖ are nonzero, then the inequality√
‖[x+ y|x+ y]‖ �

√
‖[x|x]‖+

√
‖[y|y]‖

follows by taking a =
√
‖[x|x]‖ and b =

√
‖[y|y]‖ in (4.2.48). If for example

‖[x|x]‖= 0, then, taking b = 1 and letting a → 0 in (4.2.48), we get√
‖[x+ y|x+ y]‖ �

√
‖[y|y]‖=

√
‖[x|x]‖+

√
‖[y|y]‖,

which concludes the proof.

Remark 4.2.69 (a) Let X be a vector space over K, and let p be a mapping from
X to R+

0 . Then, as pointed out in [798, pp. 127-128], p is a seminorm on X if and
only if, whenever x,y are in X , we have

p(λx) = |λ |p(x) for every λ ∈K, and

p(x+ y)2

a+b
� p(x)2

a
+

p(y)2

b
for all a,b ∈ R+. (4.2.49)

(b) Now let X ,A, and [·|·] : X × X → A be as in Fact 4.2.68. One can won-
der whether the non-negative JB-algebra-valued mapping p : x →

√
[x|x] is a
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‘seminorm’ on X , with a meaning to be determined. Certainly the inequality
p(x + y) � p(x) + p(y) cannot be expected. (Indeed, as pointed out in [798,
pp. 131–3], this inequality fails by taking X equal to any complex Hilbert space of
dimension �2 and A equal to the C∗-algebra BL(X), by defining [u|v](w) := (w|v)u
for all u,v,w∈X , and then by picking x,y∈X such that ‖x‖= ‖y‖= 1 and (x|y) = 0.)
Nevertheless, according to the inequality (4.2.47) in the proof of Fact 4.2.68,
p satisfies (4.2.49). It follows from part (a) of the present remark that p could
be called a seminorm on X in a very precise sense which coincides with the usual
one in the case A = C.

Theorems 4.2.24 and 4.2.28 are due to Braun, Kaup, and Upmeier [126]. In this
paper, the notion of a vertex of the closed unit ball of a normed space appeared
with an apparently different meaning, and with a different name. Indeed, let X be
a normed space over K, let u be in X , and let Q be a subset of X . The authors
of [126] defined the tangent cone to Q at u, Tu(Q), as the set of those x ∈ X such that
x = lim xn−u

tn
for some sequence xn in Q with limxn = u and some sequence tn of

positive real numbers. When K=C, they defined the holomorphic tangent cone to Q
at u, T̂u(Q), as T̂u(Q) := ∩λ∈C\{0}λTu(Q), and proved Theorems 4.2.24 and 4.2.28
with ‘T̂u(int(BX )) = 0’ instead of ‘u is a vertex of BX ’ (for X equal to J and A,
respectively). Much later, Kaidi, Morales, and Rodrı́guez [365] proved the next fact,
which gave rise to the actual formulations of Theorems 4.2.24 and 4.2.28.

Fact 4.2.70 Let X be a nonzero complex normed space, and let u be in SX . Then

T̂u(int(BX )) = K(X ,u) (cf. §3.3.20).

As a consequence, u is a vertex of BX if and only if T̂u(int(BX )) = 0.

Non-commutative JBW ∗-algebras are defined as those non-commutative JB∗-
algebras which are dual Banach spaces. Propositions 4.2.71 and 4.2.72 immediately
below follow from Theorems 4.2.24 and 4.2.28, respectively, and from the non-
quantitative version of Corollary 2.9.32.

Proposition 4.2.71 Let J be a JBW ∗-triple, and let u be a norm-one element of J.
Then the following conditions are equivalent:

(i) u is a unitary element of J (cf. Definition 4.1.53).
(ii) u is a w∗-unitary element of J (cf. §2.9.24).

(iii) u is a w∗-vertex of the closed unit ball of J (cf. §2.9.24 again).

Proposition 4.2.72 Let A be a unital non-commutative JBW ∗-algebra, and let u be
in A. Then the following conditions are equivalent:

(i) u is J-unitary (cf. Definition 4.2.25).
(ii) u is w∗-unitary.

(iii) u is a w∗-vertex of the closed unit ball of A.

The associative forerunner of Proposition 4.2.72 above is due to Akemann and
Weaver [5].

The equivalence (i)⇔(iii) in Theorem 4.2.34 (that complex extreme points of the
closed unit ball of a JB∗-triple are precisely the complete tripotents) is originally
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due to Kaup and Upmeier [385] (1977), who raised the question whether complete
tripotents in a JB∗-triple are in fact extreme points of the closed unit ball. Partial
affirmative answers to this question were known by Harris [314, Theorem 11]
(1974) (for closed subtriples of C∗-algebras) and Loos [772, Theorem 5.6] (1977)
(for finite-dimensional JB∗-triples), and another partial affirmative answer was
given later by Braun, Kaup, and Upmeier [126, Lemma 4.1] (1978) (for unital JB∗-
algebras). It seems to be difficult to settle the paternity of the definitive affirmative
answer to the Kaup–Upmeier question, given by the implication (i)⇒(ii) in The-
orem 4.2.34. According to a clever argument in Chu [710, p. 187], such an affirmative
answer can easily be derived from the Kaup–Upmeier implication (i)⇒(iii) in
Theorem 4.2.34 (1977), the Braun–Kaup–Upmeier Corollary 4.2.30(iii)(b) (1978),
and the Friedman–Russo Proposition 4.2.15 (1985). Chu’s argument goes as follows:

Let J be a JB∗-triple, let u be a complete tripotent in J, let v be in J such that
‖u±v‖� 1, and write v= x+y with x∈ J1(u) and y∈ J 1

2
(u). Then, by the equality

(4.2.5) in Proposition 4.2.15, we have ‖λ 2(u± x)± λy‖ � 1 for every λ ∈ SC,
and hence, by the inequality (4.2.6) in Proposition 4.2.15, ‖u± x‖ � 1. But, in
view of Corollaries 4.2.30(iii)(b) and 2.1.42, the last inequality implies x=0, so
‖u+μy‖�1 for every μ ∈ SC, and so ‖u+μy‖�1 for every μ ∈BC by convexity.
On the other hand, by the implication (i)⇒(iii) in Theorem 4.2.34, u is a complex
extreme point of BJ . It follows that v = y = 0, and u is indeed an extreme point
of BJ .

Theorem 4.2.34, just mentioned, could be seen as the starting point for a good
understanding of norm-closed faces of closed unit balls of JB∗-triples, as achieved
in the paper of Edwards, Fernández-Polo, Hoskin, and Peralta [224]. The C∗-algebra
forerunner of [224] is due to Akemann and Pedersen [4].

§4.2.73 As a consequence of [213] and [225, Theorem 4.6], tripotents in a JB∗-
triple J are precisely those elements in J which are centres of symmetry of some
w∗-closed face of the closed unit ball of J′′.

A more recent Banach space characterization of tripotents in JB∗-triples is due to
Fernández-Polo, Martı́nez, and Peralta [261], who prove the following.

Theorem 4.2.74 A norm-one element u of a JB∗-triple J is a tripotent if and only
if the sets

{x ∈ J : there exists α > 0 with ‖u+αx‖= ‖u−αx‖= 1}
and

{x ∈ J : ‖u+βx‖= max{1,‖βx‖} for all β ∈ C}

coincide.

The above theorem generalizes the associative forerunner of Akemann and
Weaver [5, Theorem 1], already reviewed in Theorem 2.1.46. As the authors of [261]
show, Theorem 4.2.34 can easily be derived from Theorem 4.2.74 above.

Fact 4.2.35 is due to Kaup and Upmeier [385], whereas Theorem 4.2.36 is due to
Youngson [655].
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Fact 4.2.39 is due to Wright and Youngson [642]. Results from Lemma 4.2.41
to Theorem 4.2.43 are due to Siddiqui [571, 573, 574], and become nontrivial
generalizations of associative forerunners due to Gardner [281], and Kadison and
Pedersen [360] (see also [789, p. 98]). Our proof of Lemma 4.2.42 introduces
relevant simplifications on Siddiqui’s original proof. For further associative devel-
opments on the topic, some of which were inspired in [34], the reader is referred to
[302, 360, 469, 484, 541]. Jordan versions of these developments can be found in
[572, 575, 576].

Proposition 4.2.44 is a straightforward consequence of Theorem 4.1.45 and of
the part of Kaup’s Theorem 2.2.28 which has still not been proved in our work.
(The other part of Theorem 2.2.28 was already proved in Proposition 4.1.52.)
Nevertheless, our proof of Proposition 4.2.44 could be interesting because it
provides an autonomous argument to Theorem 2.2.28 in the particular case of
non-commutative JB∗-algebras.

Real C∗-algebras can be characterized by means of intrinsic axioms. This ap-
proach seems to go back to Arens and Kaplansky [30] (who studied the commutative
case), and continued in the general case with the contributions of Ingelstam [339]
and Palmer [477]. The standard references for real C∗-algebras are the books of
Goodearl [735] and Li [768]. The reader is also referred to pp. 274–5 of Doran–
Belfi [725] for a short survey on the topic. Among recent works on the matter, we
emphasize that of Chu, Dang, Russo, and Ventura [171], where, as the main result,
the following theorem is proved.

Theorem 4.2.75 Surjective linear isometries between real C∗-algebras are pre-
cisely the bijective triple homomorphisms.

As far as we know, to date, real alternative C∗-algebras have been considered only
by Kaplansky [762] (see the review of [762] in the preface of our work).

In the case of the existence of a unit, real JB∗-algebras were introduced (under
the name of J∗B-algebras) by Alvermann [18], who provided a system of intrinsic
axioms for them, and classified them in the finite-dimensional case.

To conclude our comments on Definition 4.2.45, let us say that, although strongly
involved in our development, real non-commutative JB∗-algebras (which contain real
JB∗-algebras, real alternative C∗-algebras, and hence real C∗-algebras) have been
considered only by Alvermann and Janssen [19], as particular cases of their ‘real
weakly admissible algebras’. Nevertheless, in most cases, only minor changes have
had to be made to transfer the results known for real (commutative) JB∗-algebras to
the possibly non-commutative setting. This should be kept in mind in relation to our
next comments about the paternity of results.

Theorem 4.2.48 is due to Becerra, López, Peralta, and Rodrı́guez [66].

§4.2.76 After a comprehensive finite-dimensional forerunner, due to Loos [772,
Chapter 11], real JB∗-triples (in the sense of Definition 4.2.50) were introduced by
Isidro, Kaup, and Rodrı́guez [341], who proved the bracket-free versions of Prop-
osition 4.2.54 and Fact 4.2.55, Theorem 4.2.57, and Corollary 4.2.63. As the main
result, they showed that surjective linear isometries between real JB∗-triples are pre-
cisely those bijective linear mappings preserving the cubes. We recall that, according



534 Jordan spectral theory

to Example 4.2.64, surjective linear isometries between real JB∗-triples need not
preserve triple products. Nevertheless, if J is a (complex) JB∗-triple, then the cube
mapping determines the triple product because of the straightforward equality

4{xyx}= (y+ x)(3) + (y− x)(3)− (y+ ix)(3)− (y− ix)(3),

which holds for all x,y ∈ J. Therefore the main result in [341], reviewed above, con-
tains Kaup’s celebrated theorem on (complex-linear) surjective isometries of JB∗-
triples (cf. Theorem 2.2.28). For real-linear isometries of JB∗-triples, the reader is
referred to Dang’s paper [205]. Other fundamental papers on real JB∗-triples are
[66, 226, 260, 383, 426].

For later reference, we formulate here the following result, also proved in [341].

Proposition 4.2.77 Let A be a nonzero JB-algebra, let e be in A, and, according
to Propositions 4.1.34 and 4.1.35, consider A as a real Jordan algebra with product
x�y :=Ux,y(e). Then (A,�) is a JB-algebra with unit e if and only if e is an isolated
point of the set of all extreme points of BA.

Several other notions of JB∗-triples over the real field (different from that in
Definition 4.2.50) appear in the literature, all of them attempting to find an intrinsic
axiomatic definition of real JB∗-triples.

The attempt due to Upmeier [814, Definition 20.7] appeared in 1985. Nine years
later, Dang and Russo [206, Definition 1.3] extracted the following axiomatic defin-
ition of a JB∗-triple over the real field. By a J∗B-triple they mean a real Banach space
J equipped with a structure of a real Banach Jordan ∗-triple which satisfies

(J∗B1) ‖{xxx}‖= ‖x‖3 for every x ∈ J;

(J∗B2) ‖{xyz}‖ � ‖x‖‖y‖‖z‖ for all x,y,z ∈ J;

(J∗B3) sp(L(J)C,L(x,x))⊂ [0,+∞) for every x ∈ J;

(J∗B4) sp(L(J)C,L(x,y)−L(y,x))⊂ iR for all x,y ∈ J.

Every closed subtriple of a J∗B-triple is a J∗B-triple [206, Remark 1.5]. The
class of J∗B-triples includes all real JB∗-triples (in the sense of Definition 4.2.50).
Moreover, complex JB∗-triples are precisely those complex Banach Jordan ∗-triples
whose underlying real Banach space is a J∗B-triple [206, Proposition 1.4]. Accord-
ing to [206, Theorem 3.11], the complexification of every abelian J∗B-triple J is a
complex JB∗-triple in some norm extending the norm on J, in other words, every
abelian J∗B-triple is a real JB∗-triple.

In [485], Peralta introduced the so-called numerically positive J∗B-triples. By
a numerically positive J∗B-triple he means a J∗B-triple J satisfying the following
axiom:

(J∗B5) V (BL(J), IJ,L(x,x))⊂ [0,+∞) for every x ∈ J.

Every real JB∗-triple is a numerically positive J∗B-triple. Moreover, a J∗B-triple J
having a unitary element is a real JB∗-triple if and only if it is a numerically positive
J∗B-triple, equivalently, J is a real JB∗-algebra [485, Theorem 2.6]. It remains as
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an open problem if every numerically positive J∗B-triple is a real JB∗-triple [485,
p. 105].

The above discussion about axiomatic approaches to real JB∗-triples has been
taken from [137, pp. 72–3].

§4.2.78 Theorem 4.2.53 is due to Fernández-Polo, Martı́nez, and Peralta [261]. It
is worth mentioning that, combining Remark 3.1.25 ([342] 1995), Proposition 4.2.77
([341] 1995), and Theorem 4.2.53 ([261] 2004), the Banach space characterizations
of central symmetries in unital JB-algebras, provided by Proposition 3.1.15 ([399]
2009), follow straightforwardly. Nevertheless, as far as we know, we have been the
first to notice this incidence.

The bracketed versions of Proposition 4.2.54 and Fact 4.2.55, Corollary 4.2.58,
and Proposition 4.2.62 have been taken from [536], where, with more or less pre-
cision, the indications for the corresponding proofs are given. Proposition 4.2.62
can be also obtained from a more general result of Alvermann and Janssen [19,
Theorem 6.1]. Corollary 4.2.59 is pointed out in [343, Remark 1.10].

As we mentioned above, surjective linear isometries between real JB∗-triples are
precisely those bijective linear mappings preserving the cubes. As a consequence,
bijective triple homomorphisms between real JB∗-triples are isometries. In the
particular case of real non-commutative JB∗-algebras, we have the following
relevant converse, which generalizes Proposition 4.2.44, Corollary 4.2.63, and
Theorem 4.2.75.

Theorem 4.2.79 Surjective linear isometries between real non-commutative JB∗-
algebras are in fact triple homomorphisms.

The above theorem was proved by Fernández-Polo, Martı́nez, and Peralta, under
the additional assumption that the real non-commutative JB∗-algebras under con-
sideration are unital (see [260, Corollary 3.4]). But, as pointed out in [536], this
additional assumption can be removed by passing to biduals, by keeping in mind
Proposition 4.2.62, and then by applying the original result in [260] to the bitranspose
mapping of the given isometry.

An independent generalization of Corollary 4.2.63 is that surjective linear isom-
etries from JB-algebras to real JB∗-triples are triple homomorphisms [341, Propos-
ition 4.11]. The proof of this result is the same as that of Corollary 4.2.63 whenever
one knows that the bidual of a real JB∗-triple J becomes a JB∗-triple under a triple
product extending the one of J [341, Lemma 4.2].

Unitary elements of a real JB∗-triple J are strongly extreme points of BJ because,
if u is a unitary element of J, then J becomes a real JB∗-algebra with unit u for a suit-
able product and a suitable involution (cf. Lemma 4.2.52(ii)), and Corollary 2.1.42
applies. Keeping in mind Proposition 4.2.54, Corollary 4.2.58, and Theorem 4.2.28,
we easily realize that, if a real non-commutative JB∗-algebra A has a unitary element
in the Jordan ∗-triple sense, then A has a unit, and unitary elements of A in the
Jordan ∗-triple sense coincide with J-unitary elements, as well as with algebraically
J-unitary elements. In particular, if a JB-algebra A has a unitary element in the Jordan
∗-triple sense, then A has a unit, and unitary elements in the Jordan ∗-triple sense
coincide with symmetries in the usual JB-algebra meaning.
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Keeping in mind the above paragraph and Theorem 4.2.79, we see that, in the
setting of unital real non-commutative JB∗-algebras, the notion of a J-unitary element
is actually a Banach space notion. In the particular case of unital JB-algebras, explicit
Banach space characterizations of J-unitaries are provided by Proposition 3.1.9.
For a general real non-commutative JB∗-algebra, we do not know any explicit
Banach space characterization of its J-unitary elements. Could they coincide with
the strongly extreme points of its closed unit ball?

To conclude our comments on Subsection 4.2.4, let us mention that, as a con-
sequence of [341, Lemma 4.2] and [226, Theorem 3.9], the Banach space char-
acterization of tripotents of (complex) JB∗-triples, formulated in §4.2.73, remains
true verbatim in the case of real JB∗-triples. In turn, the natural real variant of
the geometric characterization of tripotents of (complex) JB∗-triples, reviewed in
Theorem 4.2.74, determines tripotents in real JB∗-triples [261, Theorem 2.3].

4.3 C∗- and JB∗-algebras generated by a
non-self-adjoint idempotent

Introduction Let A be a C∗-algebra generated (as a normed ∗-algebra) by a non-
self-adjoint idempotent e, and set K := sp(A1 ,

√
e∗e) \ {0}. As a consequence of

Proposition 1.2.49, K is a compact subset of [1,∞[ whose maximum element is
greater than 1. Moreover, as we show in Proposition 4.3.3, in general no more can
be said about K. We prove that, if 1 does not belong to K, then A is ∗-isomorphic
to the C∗-algebra C(K,M2(C)) of all continuous functions from K to the C∗-algebra
M2(C) (see Theorem 4.3.11), and that, if 1 belongs to K, then A is ∗-isomorphic to
a distinguished proper closed ∗-subalgebra of C(K,M2(C)) (see §4.3.14 and The-
orem 4.3.16). Replacing C∗-algebra with JB∗-algebra, sp(A1 ,

√
e∗e) \ {0} with the

triple spectrum σ(e) of e (cf. Theorem 4.1.45 and Definition 4.2.10), and M2(C)
with the three-dimensional spin factor C3, similar results are obtained (see The-
orems 4.3.29 and 4.3.32).

Several relevant consequences of the results reviewed above are derived. Among
them, we emphasize Spitkovsky’s theorem [595], that C∗-algebras generated by
a non-self-adjoint idempotent are generated by two self-adjoint idempotents (see
Corollary 4.3.17), as well as the appropriate variant of this theorem for JB∗-algebras
(see Corollary 4.3.34). On the other hand, after proving in Theorem 4.3.47 that the
centre of any non-commutative JB∗-algebra A coincides with the centre of the
JB∗-algebra Asym [19], we deduce that a non-commutative JB∗-algebra has a
non-self-adjoint idempotent if and only if it has a non-central self-adjoint idempotent
(see Proposition 4.3.49).

4.3.1 The case of C∗-algebras

As in other occasions, M2(C) will stand for the C∗-algebra of all 2×2 matrices with
entries in C.

Lemma 4.3.1 Let e be an idempotent in M2(C) different from 0 and 1, and set
e11 := ‖e‖−2e∗e, e12 := ‖e‖−1e∗, e21 := ‖e‖−1e, and e22 := ‖e‖−2ee∗. Then, for
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i, j,k, l ∈ {1,2}, we have e∗i j = e ji, ei jekl = eil if j = k, and ei jekl = ‖e‖−1eil if j 	= k.
As a consequence, ee11 = e22e = e.

Proof The equality e∗i j = e ji is clear. On the other hand, by Lemma 1.2.12, we
have sp(M2(C),e∗e) = {0,‖e‖2}, and hence (e∗e−‖e‖21)e∗e = 0, which reads as
e2

11 = e11. Analogously, e2
22 = e22. Now we have

(ee∗e−‖e‖2e)∗(ee∗e−‖e‖2e) = (e∗ee∗ −‖e‖2e∗)(ee∗e−‖e‖2e)

= (e∗e−‖e‖21)e∗e(e∗e−‖e‖21) = 0,

and hence ee∗e−‖e‖2e = 0, which reads as both e21e11 = e21 and e22e21 = e21. By
taking adjoints, we deduce e11e12 = e12 and e12e22 = e12. The remaining assertions in
the lemma are either obvious or easily deducible from the above computations.

The mapping η : [1,∞[→M2(C), which is introduced in Lemma 4.3.2 immediately
below, will play a crucial role through this section.

Lemma 4.3.2 Let t be in [1,∞[, and let η(t) denote the element of M2(C) defined by

η(t) :=
1
2

(
1 t +

√
t2 −1

t −
√

t2 −1 1

)
.

Then η(t) is an idempotent satisfying ‖η(t)‖= t. Therefore, setting

η11(t) := t−2η(t)∗η(t), η12(t) := t−1η(t)∗, η21(t) := t−1η(t),
and

η22(t) := t−2η(t)η(t)∗,
we have

ηi j(t)
∗ = η ji(t), ηi j(t)ηkl(t) = ηil(t) if j = k,

and

ηi j(t)ηkl(t) = t−1ηil(t) if j 	= k.

As a consequence, η(t)η11(t) = η22(t)η(t) = η(t).

Proof That η(t) is an idempotent in M2(C) is straightforward. Moreover, comput-
ing its norm according to Exercise 1.2.15, we have ‖η(t)‖ = t. Now the remaining
assertions in the statement follow from Lemma 4.3.1.

Let K be a subset of [1,∞[. We denote by ηK the restriction to K of the continuous
mapping t → η(t) from [1,∞[ to M2(C), given by Lemma 4.3.2. Moreover, for i, j ∈
{1,2}, we denote by ηK

i j the restriction to K of the continuous mapping t → ηi j(t)
from [1,∞[ to M2(C), given by that lemma.

Now, let K be a compact subset of [1,∞[. Let u stand for the element of CC(K)

defined by u(t) := t for every t ∈ K. We denote by A (K) the complete normed
associative complex ∗-algebra whose vector space is that of all 2×2 matrices with
entries in CC(K), whose (bilinear) product is determined by the equalities

( f [i j])(g[kl]) := ( f g)[il] if j = k and ( f [i j])(g[kl]) := (u−1 f g)[il] if j 	= k,

whose norm is given by ‖( fi j)‖ := ‖ f11‖+ ‖ f12‖+ ‖ f21‖ + ‖ f22‖, and whose
(conjugate-linear) involution ∗ is determined by ( f [i j])∗ := f̄ [ ji]. Here, as usual, for
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f ∈CC(K) and i, j ∈ {1,2}, f [i j] means the matrix having f in the (i, j)-position and
0’s elsewhere. It is useful to see A (K) as a CC(K)-module in the natural manner,
namely by defining the product of a function f ∈CC(K) and a matrix ( fi j) ∈ A (K)

by f ( fi j) := ( f fi j). In this regard, we straightforwardly realize that A (K) becomes
in fact an algebra over CC(K), i.e. the operators of left and right multiplication by
arbitrary elements of A (K) are CC(K)-module homomorphisms. Moreover, the
symbol f [i j] can now be read as the product of the function f ∈ CC(K) and the
matrix [i j] ∈ A (K), where, for i, j ∈ {1,2}, [i j] stands for the matrix having the
constant function equal to one in the (i, j)-position and 0’s elsewhere.

According to Example 1.1.4(d), for K as above, we denote by C(K,M2(C)) the
algebra of all continuous functions from K to M2(C), and remark that C(K,M2(C))
becomes naturally a C∗-algebra. We will see C(K,M2(C)) as a CC(K)-module in the
natural manner. From now on in this section, u will always stand for the element of
CC(K) defined by u(t) := t for every t ∈ K.

Proposition 4.3.3 Let K be a compact subset of [1,∞[ whose maximum element is
greater than 1. Then ηK is a non-self-adjoint idempotent in C(K,M2(C)) satisfying

sp(C(K,M2(C)),
√

η∗
KηK)\{0}= K,

and the mapping F from A (K) to C(K,M2(C)), defined by

F (( fi j)) := ∑
i, j∈{1,2}

fi jηK
i j ,

becomes a continuous algebra ∗-homomorphism satisfying F (u[21]) = ηK.

Proof By the first part of Lemma 4.3.2, for t ∈ K, η(t) is an idempotent in M2(C)
satisfying ‖η(t)‖= t, which implies

sp(M2(C),
√

η(t)∗η(t))\{0}= {t}.

It follows that ηK is a non-self-adjoint idempotent of C(K,M2(C)) satisfy-
ing sp(C(K,M2(C)),

√
η∗

KηK) \ {0} = K. On the other hand, the mapping
F : A (K)→C(K,M2(C)) is an algebra ∗-homomorphism if (and only if), for every
t ∈ K, the composition of F with the valuation at t is an algebra ∗-homomorphism
from A (K) to M2(C). But this last fact follows from the definition of the operations
on A (K), and the second part of Lemma 4.3.2.Finally, both the continuity of F (it
is in fact contractive) and that F (u[21]) = ηK become obvious facts.

Given a normed ∗-algebra A over K and a subset S of A, we say that A is generated
by S as a normed ∗-algebra if the closed ∗-subalgebra of A generated by S is equal to
the whole algebra A.

Lemma 4.3.4 Let K be a compact subset of [1,∞[. Then A (K) is generated by
u[21] as a normed ∗-algebra.

Proof Set p := u[21], and let C denote the closed ∗-subalgebra of A (K) generated
by p. We have u2[11] = p∗p ∈ C. Therefore, since CC(K) is bicontinuously iso-
morphic to CC(K)[11] by means of the mapping f → f [11], and CC(K) is generated
by u2 as a normed algebra, we obtain that CC(K)[11]⊆C, and hence that

CC(K)[21] = uCC(K)[21] = (u[21])(CC(K)[11]) = p(CC(K)[11])⊆C.
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Starting with the fact that u2[22] = pp∗ ∈C, a similar argument shows that CC(K)[22]
and CC(K)[12] are contained in C. It follows that A (K) =C.

Let A be a C∗-algebra. We recall that the unital extension A1 becomes naturally a
C∗-algebra containing A isometrically as a ∗-subalgebra (cf. Proposition 1.2.44), and
that A becomes naturally a JB∗-triple (cf. Fact 4.1.41).

Lemma 4.3.5 Let A be a C∗-algebra, let a be a nonzero element in A, set

E := sp(A1 ,
√

a∗a)\{0},

and let v stand for the inclusion mapping E ↪→ C. Then:

(i) There exists a unique continuous triple homomorphism Φ : CC
0 (E)→ A taking

v to a.

(ii) Φ is an isometry, and the range of Φ equals the closed subtriple of A generated
by a.

(iii) For f ,g ∈CC
0 (E), we have

Φ( f )Φ(ḡ)∗ = f (
√

aa∗)g(
√

aa∗), Φ( f̄ )∗Φ(g) = f (
√

a∗a)g(
√

a∗a),

Φ( f )g(
√

a∗a) =Φ( f g), and g(
√

aa∗)Φ( f ) =Φ(g f ).

(When necessary, elements of CC
0 (E) should be identified with those complex-

valued continuous mappings on sp(A1 ,
√

a∗a) = sp(A1 ,
√

aa∗) vanishing at 0.)

Proof Let M denote the closed subtriple of A generated by a. By induction we get
a(a∗a)n = a(2n+1) for every n ∈ N∪{0} (cf. §4.1.47), and hence ap(a∗a) belongs
to M for every p ∈ C[x]. Therefore the set N := {ap(a∗a) : p ∈ C[x]} is a subtriple
of M containing a, so N is dense in M because M is generated by a as a Banach
Jordan ∗-triple. Now note that, by Lemma 4.2.8, L := {vp(v2) : p ∈ C[x]} is a dense
subtriple of CC

0 (E), and that for every p ∈ C[x] we have

‖ap(a∗a)‖2 = ‖p̄(a∗a)a∗ap(a∗a)‖= sup{t2|p(t2)|2 : t ∈ E}= ‖vp(v2)‖2.

It follows that the correspondence vp(v2) → ap(a∗a) becomes a well-defined iso-
metric dense range triple homomorphism from L to M taking v to a. Extending
by continuity this triple homomorphism, and composing this extension with the
inclusion mapping M ↪→A, we get an isometric triple homomorphism Φ :CC

0 (E)→A
satisfying Φ(CC

0 (E)) = M and Φ(v) = a. If Ψ : CC
0 (E)→ A is any continuous triple

homomorphism with Ψ(v) = a, then ker(Φ−Ψ) is a closed subtriple of CC
0 (E)

containing L, so ker(Φ−Ψ) =CC
0 (E), hence Ψ=Φ.

To prove the equality Φ( f )Φ(ḡ)∗ = f (
√

aa∗)g(
√

aa∗) for f ,g ∈ CC
0 (E), we can

assume that f and g are of the form vp(v2) and vq(v2), for suitable p and q in C[x],
respectively. Then we have

Φ( f )Φ(ḡ)∗ = ap(a∗a)q(a∗a)a∗ = aa∗p(aa∗)q(aa∗) = f (
√

aa∗)g(
√

aa∗),

as desired. The proof of the equality Φ( f̄ )∗Φ(g) = f (
√

a∗a)g(
√

a∗a) is similar. To
realize that Φ( f )g(

√
a∗a) = Φ( f g) and g(

√
aa∗)Φ( f ) = Φ(g f ), take f of the form

vp(v2) with p ∈ C[x], and g of the form q(v2) for some q ∈ C[x] with q(0) = 0.
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Proposition 4.3.6 Let A be a C∗-algebra, and let e be a non-self-adjoint idempotent
in A. We have:

(i) K := sp(A1 ,
√

e∗e)\{0} is a compact subset of [1,∞[ whose maximum element
(namely ‖e‖) is greater than 1.

(ii) There exists a unique continuous algebra ∗-homomorphism F : A (K)→ A such
that F(u[21]) = e.

(iii) The closure in A of the range of F coincides with the closed ∗-subalgebra of A
generated by e.

(iv) F is injective if and only if either 1 does not belong to K or 1 is an accumulation
point of K.

(v) If 1 is an isolated point of K, then ker(F) consists precisely of those matrices
( fi j) ∈ A (K) which vanish at every t ∈ K \{1} and satisfy

f11(1)+ f12(1)+ f21(1)+ f22(1) = 0.

Proof Assertion (i) follows from Propositions 1.1.40 and 1.2.49.
According to assertion (i), we write CC(K) instead of CC

0 (K). Nevertheless, at
a certain moment of the proof, elements of CC(K) should be identified with those
complex-valued continuous mappings on sp(A1 ,

√
e∗e) = sp(A1 ,

√
ee∗) vanishing at

0. Let Φ : CC(K) → A be the linear isometry given by Lemma 4.3.5 when we take
K = E (so v = u) and a = e in that lemma. For i, j ∈ {1,2}, consider the linear
isometry Φi j : CC(K)→ A defined, for f ∈CC(K), by

Φ11( f ) := f (
√

e∗e), Φ22( f ) := f (
√

ee∗),

Φ21( f ) :=Φ( f ), Φ12( f ) :=Φ( f̄ )∗.

We claim that, for f ,g ∈CC(K) and i, j,k, l ∈ {1,2}, we have

Φi j( f )Φkl(g) =Φil( f g) if j = k,

and

Φi j( f )Φkl(g) =Φil(u
−1 f g) if j 	= k.

Indeed, the equality Φi j( f )Φkl(g)=Φil( f g) for j = k follows from Lemma 4.3.5(iii).
To realize that Φi j( f )Φkl(g) = Φil(u−1 f g) if j 	= k, keep in mind that e is an
idempotent, and take f (respectively, g) of the form p(u2) for some p ∈ C[x] with
p(0) = 0, if i = j (respectively, k = l), and of the form up(u2) for some p ∈ C[x],
otherwise. Now that the claim is proved, it is clear that the mapping F : A (K)→ A
defined by

F(( fi j)) :=Φ11( f11)+Φ12( f12)+Φ21( f21)+Φ22( f22)

becomes a continuous algebra ∗-homomorphism satisfying F(u[21]) = e. Moreover,
both the uniqueness of F under the above conditions, and that the closure in A of the
range of F coincides with the closed ∗-subalgebra of A generated by e, follow from
Lemma 4.3.4. Thus assertions (ii) and (iii) have been proved.

Assertions (iv) and (v) are proved together in the next two paragraphs.



4.3 C∗- and JB∗-algebras generated by an idempotent 541

Let ( fi j) be in A (K). Then we have:

[11]( fi j)[11] = ( f11 +u−1 f12 +u−1 f21 +u−2 f22)[11],

[12]( fi j)[12] = (u−1 f11 +u−2 f12 + f21 +u−1 f22)[12],

[21]( fi j)[21] = (u−1 f11 + f12 +u−2 f21 +u−1 f22)[21],

[22]( fi j)[22] = (u−2 f11 +u−1 f12 +u−1 f21 + f22)[22].

Assume that ( fi j) is in ker(F). Then, since ker(F) is an ideal of A (K), and, for all
i, j ∈ {1,2}, the restriction of F to CC(K)[i j] is an isometry, we deduce:

f11 +u−1 f12 +u−1 f21 +u−2 f22 = 0,

u−1 f11 +u−2 f12 + f21 +u−1 f22 = 0,

u−1 f11 + f12 +u−2 f21 +u−1 f22 = 0,

u−2 f11 +u−1 f12 +u−1 f21 + f22 = 0.

Therefore, for every t ∈ K we have:

t2 f11(t)+ t f12(t)+ t f21(t)+ f22(t) = 0,

t f11(t)+ f12(t)+ t2 f21(t)+ t f22(t) = 0,

t f11(t)+ t2 f12(t)+ f21(t)+ t f22(t) = 0,

f11(t)+ t f12(t)+ t f21(t)+ t2 f22(t) = 0.

As a first consequence, if 1 belongs to K, then

f11(1)+ f12(1)+ f21(1)+ f22(1) = 0.

On the other hand, keeping in mind that, for t ∈ K \{1}, we have∣∣∣∣∣∣∣∣
t2 t t 1
t 1 t2 t
t t2 1 t
1 t t t2

∣∣∣∣∣∣∣∣=−(t2 −1)4 	= 0,

for such a t we deduce

f11(t) = f12(t) = f21(t) = f22(t) = 0.

Therefore, if either 1 does not belong to K, or 1 is an accumulation point of K, then

f11 = f12 = f21 = f22 = 0,

and hence F is injective.
Assume that 1 is an isolated point of K. Then the function χ : K → C, defined by

χ(1) := 1 and χ(t) := 0 for t ∈ K \{1}, is continuous. Set

p := F(χ [11]), q := F(χ [22]), and r := F(χ [12]).

Since, for i, j,k, l ∈ {1,2} the equalities

(χ [i j])∗ = χ [ ji] and (χ [i j])(χ [kl]) = χ [il]
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hold, we have that p and q are self-adjoint idempotents of A satisfying
pqp = p and qpq = q, and that pq = r. But the equality pqp = p implies
[(1− q)p]∗[(1− q)p] = p(1− q)p = 0, and hence p = qp = pq. Analogously
q = pq = qp. It follows p = q = r = r∗. Let ( fi j) be in A (K) vanishing at every
t ∈ K \{1} and such that

f11(1)+ f12(1)+ f21(1)+ f22(1) = 0.

Then we have

( fi j) = f11(1)(χ [11])+ f12(1)(χ [12])+ f21(1)(χ [21])+ f22(1)(χ [22]),

and hence F(( fi j)) = ( f11(1)+ f12(1)+ f21(1)+ f22(1))p = 0.

As an immediate consequence of Propositions 4.3.3 and 4.3.6, we obtain the
following.

Corollary 4.3.7 Let K be a compact subset of [1,∞[ whose maximum element is
greater than 1, and let F : A (K)→C(K,M2(C)) be the algebra ∗-homomorphism
given by Proposition 4.3.3. Then we have:

(i) The closure in C(K,M2(C)) of the range of F coincides with the closed ∗-
subalgebra of C(K,M2(C)) generated by ηK.

(ii) F is injective if and only if either 1 does not belong to K or 1 is an accumulation
point of K.

(iii) If 1 is an isolated point of K, then ker(F ) consists precisely of those matrices
( fi j) ∈ A (K) which vanish at every t ∈ K \{1} and satisfy

f11(1)+ f12(1)+ f21(1)+ f22(1) = 0.

The next fact follows straightforwardly from Wedderburn’s theory. Nevertheless,
for the sake of completeness, we give here an alternative proof.

Fact 4.3.8 Let A be a C∗-algebra of dimension �3. Then A is commutative.

Proof As any finite-dimensional C∗-algebra, A has a unit 1. (Thinking about
complete arguments, the most elementary proof of this result could be to apply
Lemma 2.6.33 to the Jordan real algebra H(A,∗), and then to invoke Lemma 3.6.10.)
Now, since dim(A) � 3, there are h,k ∈ H(A,∗) such that A equals the linear hull of
{1,h,k}. Writing [h,k] =α1+βh+γk with α,β ,γ ∈C, we have [[h,k],h] =−γ[h,k],
and hence [[h,k], [[h,k],h]] = 0. Therefore, by applying both Proposition 3.6.49 and
Lemma 1.2.12 twice, we obtain that [h,k] = 0, which implies the commutativity
of A.

Lemma 4.3.9 Let X be a complex normed space, let E be a compact Hausdorff
topological space, and let f be a function from E to C such that there are continuous
mappings α,β : E → X satisfying β (t) 	= 0 and α(t) = f (t)β (t) for every t ∈ E.
Then f is continuous.

Proof Set M := max{‖α(t)‖ : t ∈ E} and m := min{‖β (t)‖ : t ∈ E}. Then we have
m > 0, and hence | f (t)| � m−1M for every t ∈ E, so that f is bounded. Let t be in E,
and let tλ be a net in E converging to t. Take a cluster point z of the net f (tλ ) in C.
Then (z,β (t)) is a cluster point of the net ( f (tλ ),β (tλ )) in C×X , hence zβ (t) is a
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cluster point of the net f (tλ )β (tλ ) in X , and therefore we have α(t) = zβ (t), which
implies (since β (t) 	= 0) z = f (t). In this way we have shown that f (t) is the unique
cluster point of f (tλ ) in C. Since f (tλ ) is bounded, we deduce that f (tλ ) converges
to f (t).

Lemma 4.3.10 Let K be a compact subset of ]1,∞[. Then the ∗-homomorphism
F : A (K) → C(K,M2(C)), given by Proposition 4.3.3, is surjective. As a con-
sequence, C(K,M2(C)) is generated by ηK as a normed ∗-algebra.

Proof Let us fix t ∈ K. In view of Lemma 4.3.2, the linear hull of the set
{ηi j(t) : i, j ∈ {1,2}} is a ∗-subalgebra of M2(C). Moreover, since t ∈]1,∞[, such
a subalgebra is not commutative (indeed, η12(t) does not commute with η21(t)).
It follows from Fact 4.3.8 that such a subalgebra is the whole algebra M2(C), and,
consequently, that the set {ηi j(t) : i, j ∈ {1,2}} becomes a basis of M2(C).

Let α be in C(K,M2(C)). It follows from the above that, for each t ∈ K, there are
complex numbers f11(t), f12(t), f21(t), f22(t) uniquely determined by the condition

α(t) = f11(t)η11(t)+ f12(t)η12(t)+ f21(t)η21(t)+ f22(t)η22(t). (4.3.1)

Moreover, applying Lemma 4.3.2 again, for every t ∈ K we have:

η11(t)α(t)η11(t) = ( f11(t)+ t−1 f12(t)+ t−1 f21(t)+ t−2 f22(t))η11(t),

η12(t)α(t)η12(t) = (t−1 f11(t)+ t−2 f12(t)+ f21(t)+ t−1 f22(t))η12(t),

η21(t)α(t)η21(t) = (t−1 f11(t)+ f12(t)+ t−2 f21(t)+ t−1 f22(t))η21(t),

η22(t)α(t)η22(t) = (t−2 f11(t)+ t−1 f12(t)+ t−1 f21(t)+ f22(t))η22(t).

Since, for i, j ∈ {1,2}, ηK
i jαηK

i j and ηK
i j are continuous functions on K, and ηi j(t) 	= 0

for every t ∈ K, it follows from Lemma 4.3.9 that the mappings

t → f11(t)+ t−1 f12(t)+ t−1 f21(t)+ t−2 f22(t),

t → t−1 f11(t)+ t−2 f12(t)+ f21(t)+ t−1 f22(t),

t → t−1 f11(t)+ f12(t)+ t−2 f21(t)+ t−1 f22(t),

t → t−2 f11(t)+ t−1 f12(t)+ t−1 f21(t)+ f22(t)

from K to C are continuous. Since, for t ∈ K we have∣∣∣∣∣∣∣∣
1 t−1 t−1 t−2

t−1 t−2 1 t−1

t−1 1 t−2 t−1

t−2 t−1 t−1 1

∣∣∣∣∣∣∣∣= t−8

∣∣∣∣∣∣∣∣
t2 t t 1
t 1 t2 t
t t2 1 t
1 t t t2

∣∣∣∣∣∣∣∣=−t−8(t2 −1)4 	= 0,

we deduce that, for all i, j ∈{1,2}, the function fi j : t → fi j(t) from K to C is continu-
ous. Therefore, we can consider the element ( fi j) of A (K), which, in view of (4.3.1),
satisfies F (( fi j)) = α . Since α is arbitrary in C(K,M2(C)), the surjectivity of F is
proved. Now, it follows from assertion (i) in Corollary 4.3.7 that C(K,M2(C)) is
generated by ηK as a normed ∗-algebra.

Now we are ready to prove the first main result in this subsection.
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Theorem 4.3.11 Let A be a C∗-algebra, and let e be a non-self-adjoint idempotent
in A. Set K := sp(A1 ,

√
e∗e)\{0} (which, in view of Proposition 4.3.6, is a compact

subset of [1,∞[ whose maximum element is greater than 1), and assume that 1 does
not belong to K. Then the closed ∗-subalgebra of A generated by e is ∗-isomorphic
to C(K,M2(C)). More precisely, we have:

(i) There exists a unique algebra ∗-homomorphism Φ : C(K,M2(C))→ A such that
Φ(ηK) = e.

(ii) Such an algebra ∗-homomorphism is isometric, and its range coincides with the
closed ∗-subalgebra of A generated by e.

Proof Let F : A (K) → C(K,M2(C)) and F : A (K) → A be the algebra
∗-homomorphisms given by Propositions 4.3.3 and 4.3.6, respectively. By
assertion (ii) in Corollary 4.3.7 (respectively, assertion (iv) in Proposition 4.3.6),
F (respectively, F) is injective. On the other hand, by the first conclusion in
Lemma 4.3.10, F is surjective. It follows that Φ := F ◦F−1 is an injective algebra
∗-homomorphism from C(K,M2(C)) to A satisfying Φ(ηK) = e. As any injective
algebra ∗-homomorphism between C∗-algebras, Φ is isometric (cf. Corollary 1.2.52),
and hence has closed range. Now, that Φ is the unique algebra ∗-homomorphism
from C(K,M2(C)) to A satisfying Φ(ηK) = e, and that the range of Φ coincides
with the closed ∗-subalgebra of A generated by e, follow from the fact (given also by
Lemma 4.3.10) that C(K,M2(C)) is generated by ηK as a normed ∗-algebra.

The following fact follows straightforwardly from Lemma 1.1.35 and the defin-
ition of quasi-invertible elements of an associative algebra (cf. Definition 3.6.19).

Fact 4.3.12 Let A be an associative algebra over K, and let a be in A. Then a is
quasi-invertible in A if and only if there exists a unique b∈A such that a+b−ab= 0.

Lemma 4.3.13 Let K be a compact subset of [1,∞[ whose maximum element is
greater than 1, and let F : A (K)→C(K,M2(C)) be the algebra ∗-homomorphism
given by Proposition 4.3.3. Then an element x ∈ A (K) is quasi-invertible in A (K)

if and only if F(x) is quasi-invertible in C(K,M2(C)).

Proof Let x = ( fi j) be in A (K). We claim that x is quasi-invertible in A (K) if and
only if λx(t) 	= 0 for every t ∈ K, where

λx(t) :=
t2 −1

t2 ( f11(t) f22(t)− f12(t) f21(t))

− 1
t
( f12(t)+ f21(t))− f11(t)− f22(t)+1.

Assume that x is quasi-invertible in A (K). Let us fix t ∈ K, and identify complex-
valued continuous functions on {t} with complex numbers. Then, since the
restriction mapping A (K) → A ({t}) is an algebra homomorphism, ( fi j(t)) is a
quasi-invertible element of A ({t}), and hence, by Fact 4.3.12, there are com-
plex numbers g11(t),g12(t),g21(t),g22(t) uniquely determined by the condition
( fi j(t))(gi j(t))− ( fi j(t))− (gi j(t)) = 0. This means that the linear system in the
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indeterminates x11,x12,x21,x22 ∈ C

( f11(t)+ t−1 f12(t)−1)x11 +( f12(t)+ t−1 f11(t))x21 = f11(t)

( f11(t)+ t−1 f12(t)−1)x12 +( f12(t)+ t−1 f11(t))x22 = f12(t)

( f21(t)+ t−1 f22(t))x11 +( f22(t)+ t−1 f21(t)−1)x21 = f21(t)

( f21(t)+ t−1 f22(t))x12 +( f22(t)+ t−1 f21(t)−1)x22 = f22(t)

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(4.3.2)

has a unique solution (namely xi j = gi j(t)), and hence that the principal determinant
of the system (by the way, equal to λx(t)2) is nonzero. Conversely, assume that
λx(t) 	= 0 for every t ∈ K. Then, for each t ∈ K, the system (4.3.2) has a unique
solution xi j = gi j(t), and, since the function t → λx(t) from K to C is continuous,
the functions gi j : t → gi j(t) from K to C are continuous. Then we easily realize that
y := (gi j) ∈ A (K) is the unique element of A (K) satisfying xy− x− y = 0, which
implies that x is quasi-invertible in A (K) because of Fact 4.3.12. Now, the claim is
proved.

On the other hand, F (x) is quasi-invertible in C(K,M2(C)) if and only if 1−F (x)
is invertible in C(K,M2(C)), if and only if 1−F (x)(t) is invertible in M2(C) for
every t ∈ K, if and only if det(1−F (x)(t)) 	= 0 for every t ∈ K, where det(·) means
determinant. But, for t ∈ K, a straightforward but tedious computation shows that
det(1−F (x)(t)) = λx(t). Therefore, F (x) is quasi-invertible in C(K,M2(C)) if and
only if λx(t) 	= 0. By invoking the claim proved in the preceding paragraph, the result
follows.

§4.3.14 Let K be a compact subset of [1,∞[ with 1 ∈ K, and let p be a self-adjoint
idempotent in M2(C), different from 0 and 1. Then Cp is a self-adjoint subalgebra
of M2(C), and hence

Cp(K,M2(C)) := {α ∈C(K,M2(C)) : α(1) ∈ Cp}

is a proper closed ∗-subalgebra of C(K,M2(C)). We note that, in the construction
of the C∗-algebra Cp(K,M2(C)), the choice of the idempotent p is structurally ir-
relevant. Indeed, if, for i ∈ {1,2}, pi is a self-adjoint idempotent in M2(C), different
from 0 and 1, then there exists a norm-one element χi in the Hilbert space C2 such
that pi is the operator χ → (χ |χi)χi on C2, and hence, since there exists a unitary
element v ∈ M2(C) with v(χ1) = χ2 (by Lemma 2.7.36 and Exercise 1.2.19), the
mapping α → vαv∗ becomes an algebra ∗-automorphism of C(K,M2(C)) sending
Cp1(K,M2(C)) onto Cp2(K,M2(C)). We also note that, if we take p = η(1), then
Cp(K,M2(C)) contains ηK .

Lemma 4.3.15 Let K be a compact subset of [1,∞[ with 1∈K, and whose maximum
element is greater than 1, and let F : A (K) → C(K,M2(C)) be the algebra ∗-
homomorphism given by Proposition 4.3.3. Then the closure in C(K,M2(C)) of the
range of F coincides with Cη(1)(K,M2(C)). As a consequence, Cη(1)(K,M2(C)) is
generated by ηK as a normed ∗-algebra.

Proof For x = ( fi j) in A (K), we have

F (x)(1) = ( f11(1)+ f12(1)+ f21(1)+ f22(1))η(1) ∈ Cη(1),



546 Jordan spectral theory

and therefore F (x) lies in Cη(1)(K,M2(C)). This shows that the range of F (say B)
is contained in Cη(1)(K,M2(C)).

To continue our argument, we identify C(K,M2(C)) with CC(K)⊗M2(C) in the
natural manner. Then we have:

2(1⊗η(1)) = 1⊗
(

1 1
1 1

)
= (1+u)−1u(ηK

11 +ηK
12 +ηK

21 +ηK
22) ∈ B,

(4.3.3)√
u2 −1⊗

(
0 1
−1 0

)
= u(ηK

21 −ηK
12) ∈ B, (4.3.4)

√
u2 −1⊗

(
1 0
0 −1

)
= u(ηK

22 −ηK
11) ∈ B, (4.3.5)

(u2 −1)⊗
(

1 0
0 1

)
= u2(ηK

22 +ηK
11)−u(ηK

12 +ηK
21) ∈ B. (4.3.6)

Now, keep in mind that B is a CC(K)-submodule of C(K,M2(C)), and denote by
C1(K) the closed ideal of CC(K) consisting of those complex-valued continuous
functions on K vanishing at 1. It follows from (4.3.3) that

CC(K)⊗
(

1 1
1 1

)
⊆ B,

and, by invoking the Stone–Weierstrass theorem, it follows from (4.3.4), (4.3.5), and
(4.3.6) that

C1(K)⊗
(

0 1
−1 0

)
⊆ B̄, C1(K)⊗

(
1 0
0 −1

)
⊆ B̄,

and

C1(K)⊗
(

1 0
0 1

)
⊆ B̄.

Since {(
1 1
1 1

)
,

(
0 1
−1 0

)
,

(
1 0
0 −1

)
,

(
1 0
0 1

)}
is a basis of M2(C), we deduce that C1(K)⊗M2(C)⊆ B̄. Since

Cη(1)(K,M2(C)) = [C1⊗η(1)]⊕ [C1(K)⊗M2(C)] ,

and C1⊗η(1) ⊆ B (by (4.3.3)), we obtain Cη(1)(K,M2(C)) ⊆ B̄. By invoking the
first paragraph in the present proof, we have Cη(1)(K,M2(C)) = B̄.

Now, it follows from assertion (i) in Corollary 4.3.7 that Cη(1)(K,M2(C)) is gen-
erated by ηK as a normed ∗-algebra.

Now we are ready to prove the second main result in this subsection.

Theorem 4.3.16 Let A be a C∗-algebra, and let e be a non-self-adjoint idempotent
in A. Set K := sp(A1 ,

√
e∗e)\{0} (which, in view of Proposition 4.3.6, is a compact

subset of [1,∞[ whose maximum element is greater than 1), and assume that 1
belongs to K. Then the closed ∗-subalgebra of A generated by e is ∗-isomorphic
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to Cp(K,M2(C)) for any self-adjoint idempotent p ∈ M2(C) different from 0 and 1.
More precisely, we have:

(i) There exists a unique algebra ∗-homomorphism Φ : Cη(1)(K,M2(C))→ A such
that Φ(ηK) = e.

(ii) Such an algebra ∗-homomorphism is isometric, and its range coincides with the
closed ∗-subalgebra of A generated by e.

Proof Let F : A (K) → C(K,M2(C)) and F : A (K) → A be the algebra ∗-
homomorphisms given by Propositions 4.3.3 and 4.3.6, respectively, and let x be
in A (K). Then, by Lemma 1.2.12 and Corollary 1.1.114, we have

‖F(x)‖2 = ‖F(x)∗F(x)‖= r(F(x∗x)) � r(x∗x).

On the other hand, by Lemma 4.3.13, we have

sp(A (K)1 ,x) = sp(C(K,M2(C))1 ,F (x)),

so r(x) = r(F (x)) (by Theorem 1.1.46), and so

r(x∗x) = r(F (x∗x)) = r(F (x)∗F (x)) = ‖F (x)∗F (x)‖= ‖F (x)‖2.

It follows ‖F(x)‖� ‖F (x)‖. Therefore F (x)→ F(x) (x ∈A (K)) becomes a (well-
defined) continuous algebra ∗-homomorphism from the range of F to A. Then, by
the first conclusion in Lemma 4.3.15, such an algebra ∗-homomorphism extends by
continuity to an algebra ∗-homomorphism

Φ : Cη(1)(K,M2(C))−→ A

satisfying Φ ◦F = F , and hence Φ(ηK) = e. Now, that Φ is the unique algebra ∗-
homomorphism from Cη(1)(K,M2(C)) to A satisfying Φ(ηK) = e, and that the range
of Φ coincides with the closed ∗-subalgebra of A generated by e, follow from the fact
(also given by Lemma 4.3.15) that Cη(1)(K,M2(C)) is generated by ηK as a normed
∗-algebra.

To conclude the proof, it is enough to show that Φ is injective. Let α be in ker(Φ).
Then, by the first conclusion in Lemma 4.3.15, there exists a sequence xn = ( f n

i j) in

A (K) such that F (xn)→ α . For n ∈ N and i, j ∈ {1,2}, define gn
i j ∈CC(K) by

gn
11 := f n

11 +u−1 f n
12 +u−1 f n

21 +u−2 f n
22,

gn
12 := u−1 f n

11 +u−2 f n
12 + f n

21 +u−1 f n
22,

gn
21 := u−1 f n

11 + f n
12 +u−2 f n

21 +u−1 f n
22,

gn
22 := u−2 f n

11 +u−1 f n
12 +u−1 f n

21 + f n
22.

Then we have [i j]xn[i j] = gn
i j[i j]. Now, since the restriction of F to CC(K)[i j] is an

isometry (by the proof of Proposition 4.3.6), we deduce

‖gn
i j‖= ‖gn

i j[i j]‖= ‖F(gn
i j[i j])‖= ‖F([i j]xn[i j])‖= ‖F([i j])F(xn)F([i j])‖

= ‖F([i j])Φ(F (xn))F([i j])‖→ ‖F([i j])Φ(α)F([i j])‖= 0.
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As a consequence, gn
i j(t)→ 0 for every t ∈ K. Since for t ∈ K \{1}, we have∣∣∣∣∣∣∣∣

1 t−1 t−1 t−2

t−1 t−2 1 t−1

t−1 1 t−2 t−1

t−2 t−1 t−1 1

∣∣∣∣∣∣∣∣=−t−8(t2 −1)4 	= 0,

it follows from the definition of gn
i j that f n

i j(t)→ 0 for every t ∈ K \{1}. Now, since
for t ∈ K \{1} we have F (xn)(t)→ α(t) and

F (xn)(t) = ∑
i, j∈{1,2}

f n
i j(t)ηi j(t)→ 0,

for such a t we obtain α(t) = 0. Therefore, if 1 is an accumulation point of K, then
α = 0, as desired. Assume that 1 is an isolated point of K. Then the function

χ : K → C, defined by χ(1) := 1 and χ(t) := 0 fort ∈ K \{1},

is continuous, and, since there exists λ ∈C such that α(1) = λη(1), for such a λ we
have α = λχηK

21 = F (λχ [21]). Therefore

0 =Φ(α) =Φ(F (λχ [21])) = F(λχ[21])),

which, in view of assertion (v) in Proposition 4.3.6, implies λ = 0, and hence
α = 0.

Now we combine Theorems 4.3.11 and 4.3.16 to derive some attractive con-
sequences.

Corollary 4.3.17 Let A be a C∗-algebra generated, as a normed ∗-algebra, by a
non-self-adjoint idempotent e. Then A is generated, as a normed algebra, by two
self-adjoint idempotents p1 and p2. Moreover p1 and p2 can be chosen so as to
satisfy

ep1 = p2e = e, p1e = p1, and ep2 = p2. (4.3.7)

Proof By Theorems 4.3.11 and 4.3.16, we may assume that A is of the form
C(K,M2(C)) or Cη(1)(K,M2(C)) (where, in the first case, K is a compact subset of
]1,∞[ and, in the second case, K is a compact subset of [1,∞[ not reduced to a point
and such that 1 ∈ K) and that e = ηK . Set p1 := ηK

11 and p2 := ηK
22, and note that, in

the case 1 ∈ K, p1 and p2 lie in Cη(1)(K,M2(C)). According to Lemma 4.3.2, p1 and
p2 are self-adjoint idempotents, and for every t ∈ K we have p2(t)p1(t) = t−2e(t),
so (p2(t)p1(t))m = t−2me(t) for every m ∈ N, and so q(p2(t)p1(t)) = q(t−2)e(t)
for every q ∈ C[x] with q(0) = 0. Now invoke the Stone–Weierstrass theorem (cf.
Corollary 1.2.53) to find a sequence qn in C[x] with qn(0) = 0 for every n, and
qn(t−2)→ 1 uniformly on K. Then we have

‖qn(p2 p1)− e‖= max{‖qn(p2(t)p1(t))− e(t)‖ : t ∈ K}

= max{|qn(t
−2)−1|‖e(t)‖ : t ∈ K}

� max{|qn(t
−2)−1| : t ∈ K}‖e‖ −→ 0.
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Therefore e belongs to the closed (automatically ∗-invariant) subalgebra of A gener-
ated by p1 and p2. Since A is generated by e as a normed ∗-algebra, the first conclu-
sion in the corollary follows. Finally, the equalities (4.3.7) follow from Lemma 4.3.2.

Corollary 4.3.18 Let A be a C∗-algebra generated, as a normed ∗-algebra,
by a non-self-adjoint idempotent e, and set K := sp(A1 ,

√
e∗e) \ {0}. If 1 is an

isolated point of the compact set K, then A is ∗-isomorphic to the C∗-algebra
C×C(K \{1},M2(C)).

Proof If 1 belongs to K, then, for each α ∈ Cη(1)(K,M2(C)), there exists a
unique complex number λ (α) such that α(1) = λ (α)η(1), and the mapping
α → (λ (α),α|K\{1}) becomes an injective algebra ∗-homomorphism from Cη(1)
(K,M2(C)) to C×Cb(K \ {1},M2(C)), where Cb(K \ {1},M2(C)) stands for the
C∗-algebra of all bounded continuous functions from K \ {1} to M2(C). Moreover,
if 1 is in fact an isolated point of K, then we have that

Cb(K \{1},M2(C)) =C(K \{1},M2(C)),

and that the above algebra ∗-homomorphism is surjective. Finally, apply The-
orem 4.3.16.

Corollary 4.3.19 Let A be a C∗-algebra generated, as a normed ∗-algebra, by a
non-self-adjoint idempotent e, and set K := sp(A1 ,

√
e∗e)\{0}. Then A has a unit if

and only if either 1 does not belong to K or 1 is an isolated point of K.

Proof In view of Theorems 4.3.11 and 4.3.16, and Corollary 4.3.18, it is enough to
show that, if 1 is an accumulation point of K, then Cη(1)(K,M2(C)) does not have
a unit. Assume that 1 ∈ K. We claim that, given t0 ∈ K \ {1}, the valuation at t0 (as
a mapping from Cη(1)(K,M2(C)) to M2(C)) is surjective. Indeed, if a = (λi j) is an
arbitrary element of M2(C), then, for i, j ∈ {1,2}, there exists fi j ∈CC(K) such that
fi j(1) = 0 and fi j(t0) = λi j, and hence the element α of C(K,M2(C)), defined by
α(t) := ( fi j(t)) for every t ∈ K, belongs to Cη(1)(K,M2(C)) and satisfies α(t0) = a.
Assume in addition that Cη(1)(K,M2(C)) has a unit 1. Then, by the claim just proved,
for every t ∈ K \ {1}, 1(t) must be equal to the unit of M2(C). Now, if 1 is in fact
an accumulation point of K, then 1(1) is the unit of M2(C), which is not possible
because 1(1) is a complex multiple of η(1).

Corollary 4.3.20 Let A be a C∗-algebra. Then A has a non-self-adjoint idempotent
(if and) only if it contains (as a closed ∗-subalgebra) a copy of either M2(C) or
Cp([1,2],M2(C)) for any self-adjoint idempotent p ∈ M2(C) different from 0 and 1.

Proof In order to prove the ‘only if’ part, we assume that A has a non-self-adjoint
idempotent e, and note that we may suppose in addition that A is generated by e
as a normed ∗-algebra. Set K := sp(A1 ,

√
e∗e) \ {0}. If 1 does not belong to K,

then, by Theorem 4.3.11, A contains a copy of M2(C). Assume that 1 belongs to
K, and that K is disconnected. Take a clopen proper subset U of K with 1 ∈ U .
Then, arguing as in the proof of Corollary 4.3.18, we realize that A is ∗-isomorphic
to Cp(U,M2(C))×C(K \U,M2(C)), for some self-adjoint idempotent p ∈ M2(C)
different from 0 and 1, and hence it contains a copy of M2(C). Finally, assume that
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1 belongs to K, and that K is connected. Then we have K = [1,‖e‖], and there-
fore, by Theorem 4.3.16, A is isomorphic to Cp([1,‖e‖],M2(C)), for some p as
above. But, taking a homeomorphism φ from [1,‖e‖] onto [1,2] with φ(1) = 1,
φ induces a ∗-isomorphism from C([1,‖e‖],M2(C)) onto C([1,2],M2(C)) sending
Cp([1,‖e‖],M2(C)) onto Cp([1,2],M2(C)).

§4.3.21 We remark that Cp([1,2],M2(C)) does not contain any copy of M2(C). To
realize this, we argue by contradiction. Assume that Cp([1,2],M2(C)) contains
a copy (say B) of M2(C), and, for α ∈ Cp([1,2],M2(C)), let λ(α) stand for
the unique complex number satisfying α(1) = λ (α)p. Then, since the mapping
λ : Cp([1,2],M2(C)) → C is an algebra homomorphism, by the simplicity of B we
have λ (B) = 0. Therefore B is contained in the ideal (say M) of C([1,2],M2(C))
consisting of those continuous functions from [1,2] to M2(C) vanishing at 1. Now,
since M has no nonzero idempotent (by Fact 1.1.6), and the unit of B is a nonzero
idempotent of M, the contradiction is clear.

In relation to Proposition 4.3.22 immediately below, we note that, as a by-product
of Theorems 4.3.11 and 4.3.16, non-self-adjoint idempotents in a C∗-algebra are non-
normal, hence non-central. Indeed, for every t ∈]1,∞[ we have [η(t),η(t)∗] 	= 0 in
M2(C).

Proposition 4.3.22 Let A be a C∗-algebra containing a non-central idempotent e.
Then there exists a continuous mapping r → er from [1,∞[ to the set of idempotents
of A satisfying e‖e‖ = e and ‖er‖= r for every r ∈ [1,∞[.

Proof First assume that e is not self-adjoint. Then, by Theorems 4.3.11 and 4.3.16,
we may assume that A is of the form C(K,M2(C)) or Cη(1)(K,M2(C)) (where, in
the first case, K is a compact subset of ]1,∞[ and, in the second case, K is a compact
subset of [1,∞[ not reduced to a point and such that 1 ∈ K) and that e = ηK . In any
case, set ρ := maxK > 1. Let r be in [1,∞[, let er denote the element of C(K,M2(C))
defined by

er(t) := η
(

1+
(r−1)(t −1)

ρ−1

)
for every t ∈ K, and note that eρ = ηK . Noticing that, in the case where 1 belongs
to K, er lies in Cη(1)(K,M2(C)), it turns out that in any case er is an element of A.
Moreover, keeping in mind Lemma 4.3.2, we easily realize that er is an idempotent,
and that ‖er‖ = r. On the other hand, since ‖ηK‖ = ρ , we have e‖ηK‖ = ηK . Now it
only remains to show that the mapping r → er is continuous. Fix r ∈ [1,∞[ and ε>0,
and take δ >0 such that ‖η(s)−η(r)‖ < ε whenever s is in [1,∞[ with |s− r| < δ .
Then, for s ∈ [1,∞[ with |s− r|< δ , we have∣∣∣∣[1+

(s−1)(t −1)
ρ−1

]
−
[

1+
(r−1)(t −1)

ρ−1

]∣∣∣∣= |s− r|(t −1)
ρ−1

� |s− r|< δ

for every t ∈ K, so ‖es(t)− er(t)‖< ε for every t ∈ K, and so ‖es − er‖ � ε .
Now assume that e is self-adjoint. Since e is non-central, we may choose a self-

adjoint element a ∈ A with ea− ae 	= 0. Then the mapping D : A → A defined by
D(b) := ba−ab for every b∈ A becomes a continuous derivation satisfying D(e) 	= 0
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and D(b∗) =−D(b)∗ for every b ∈ A. Therefore, for s ∈ R, exp(sD) is a continuous
algebra automorphism of A satisfying

[exp(sD)(b)]∗ = exp(−sD)(b∗)

for every b ∈ A, and consequently g(s) := exp(sD)(e) is a nonzero idempotent in A,
and we have

g(s)∗ = g(−s). (4.3.8)

Now, let f : R → [1,∞[ be the continuous mapping defined by f (s) := ‖g(s)‖. By
(4.3.8), we have

f (−s) = f (s) (4.3.9)

for every s ∈ R. Let r,s be in R. Then, keeping in mind (4.3.8), (4.3.9), and that
exp
(

s−r
2 D
)

is an automorphism of A, we have

f

(
r+ s

2

)2

=

∥∥∥∥g

(
r+ s

2

)∥∥∥∥2

=

∥∥∥∥g

(
r+ s

2

)∗
g

(
r+ s

2

)∥∥∥∥
= r

(
g

(
r+ s

2

)∗
g

(
r+ s

2

))
= r

(
g

(
− r+ s

2

)
g

(
r+ s

2

))
= r

[
exp

(
s− r

2
D

)(
g

(
− r+ s

2

)
g

(
r+ s

2

))]
= r

[[
exp

(
s− r

2
D

)(
g

(
− r+ s

2

))][
exp

(
s− r

2
D

)(
g

(
r+ s

2

))]]
= r(g(−r)g(s)) � ‖g(−r)‖‖g(s)‖= f (−r) f (s) = f (r) f (s),

and therefore

f

(
r+ s

2

)
�
√

f (r) f (s) � f (r)+ f (s)
2

.

In this way we have shown that f is convex. Assume that f (r) = 1 for some r ∈]0,∞[.
Then, by (4.3.9) and the convexity of f , we have f (s) = 1 for every s ∈ [−r,r].
Therefore, for s ∈ [−r,r], the idempotent g(s) has norm equal to 1, so it is self-
adjoint, and so, by (4.3.8) the equality g(s) = g(−s) holds. Since g is differentiable
at 0 with g′(0) = D(e), the above implies D(e) = 0, which is a contradiction. Thus,
f (r)> 1 for every r ∈]0,∞[. Now, let 0 < r < s. Noticing that f (0) = 1 and that then,
by the convexity of f , the mapping t → f (t)−1

t is increasing, we have

0 < f (r)−1 <
s
r
( f (r)−1) � f (s)−1.

In this way, we have shown that f|[0,∞[ is strictly increasing and non-bounded. As a
consequence, the range of f|[0,∞[ is [1,∞[, and the inverse mapping h : [1,∞[→ [0,∞[ is
continuous. Now, for r ∈ [1,∞[, let er be the idempotent of A defined by er := g(h(r)).
Then, clearly, the mapping r → er is continuous, and we have e1 = e. Moreover, by
the definition of g and h, we also have that ‖er‖= f (h(r))= r for every r ∈ [1,∞[.
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We recall that partial isometries in a C∗-algebra A are defined as those elements
a ∈ A satisfying aa∗a = a. Thus partial isometries in C∗-algebras are nothing other
than the tripotents of their underlying JB∗-triples.

Lemma 4.3.23 Let A be a C∗-algebra, and let a be a partial isometry in A such
that both a∗a and aa∗ lie in the centre of A. Then a is normal.

Proof Since a∗a and aa∗ lie in the centre of A, we have [a∗a,a] = 0 and [aa∗,a] = 0,
which reads as a∗a2 = a and a2a∗ = a, respectively. The two last equalities, together
with the one aa∗a = a, and those obtained by taking adjoints, imply [[a,a∗],a] = 0.
Therefore, by Lemma 3.4.19, a is normal.

Let A denote the C∗-algebra of all bounded linear operators on an infinite-
dimensional complex Hilbert space H, let b : H → H be any non-surjective linear
isometry, and set a := b (respectively a := b∗). Then a is a non-normal partial
isometry in A such that a∗a (respectively, aa∗) lies in the centre of A.

Corollary 4.3.24 Let A be a C∗-algebra. Then the following conditions are equi-
valent:

(i) A contains a non-self-adjoint idempotent.
(ii) There exists a non-normal partial isometry a ∈ A such that a belongs to a2Aa2.

(iii) A contains a non-normal partial isometry.
(iv) A contains a non-central self-adjoint idempotent.

Proof (i)⇒(ii) By the assumption (i) and Theorems 4.3.11 and 4.3.16, we may
assume that A is of the form C(K,M2(C)) or Cη(1)(K,M2(C)), where, in the first
case, K is a compact subset of ]1,∞[ and, in the second case, K is a compact subset
of [1,∞[ whose maximum element is greater than 1 and such that 1 ∈ K. In any
case, by Lemma 4.3.2, ηK

21 is a non-normal partial isometry in A, and we have
ηK

21 = (ηK
21)

2(u2ηK
12)(ηK

21)
2.

(ii)⇒(iii) This is clear.
(iii)⇒(iv) Let a be the partial isometry whose existence is assumed in (iii). Then,

keeping in mind that both a∗a and aa∗ are self-adjoint idempotents, it follows from
Lemma 4.3.23 that A contains a non-central self-adjoint idempotent.

(iv)⇒(i) Since nonzero self-adjoint idempotents of A are norm-one elements, this
implication follows from Proposition 4.3.22.

Set A := M2(C) and a :=

(
0 1
0 0

)
. Then a is a non-normal partial isometry in A,

which does not belong to a2Aa2.

4.3.2 The case of JB∗-algebras

Let K be a compact subset of [1,∞[. Let Θ : A (K)→ A (K) be the linear mapping
determined by

Θ( f [i j]) := f [i j] if i 	= j, Θ( f [11]) := f [22], Θ( f [22]) := f [11]

for every f ∈ CC(K). Then Θ becomes an isometric involutive algebra
∗-antiautomorphism of A (K). Therefore, the set of fixed elements for Θ is a closed
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∗-subalgebra of A (K)sym, and hence a complete normed Jordan complex ∗-algebra.
Such a normed Jordan complex ∗-algebra will be denoted by B(K). Note that
elements of B(K) are precisely those matrices ( fi j) ∈ A (K) satisfying f11 = f22, or
equivalently, those elements of A (K) of the form f ([11]+ [22])+g[12]+h[21] with
f ,g,h ∈CC(K).

Lemma 4.3.25 Let K be a compact subset of [1,∞[. Then B(K) is generated by
u[21] as a normed ∗-algebra.

Proof Set p := u[21] ∈ B(K), and let B denote the closed ∗-subalgebra of B(K)

generated by p. We have u2[11] = p∗p and u2[22] = pp∗, which, in view of
Lemma 3.3.5, implies for n ∈ N that

u2n+1[21] = p(p∗p)n ∈ B, u2n+1[12] = p∗(pp∗)n ∈ B,

and

u2n([11]+ [22]) = (p∗p)n +(pp∗)n ∈ B.

Therefore, for every q ∈ C[x], uq(u2)[21] and uq(u2)[12] lie in B, and, if q(0) = 0,
then q(u2)([11]+ [22]) also lies in B. It follows that CC(K)[21]⊆ B, CC(K)[12]⊆ B,
and CC(K)([11]+ [22])⊆ B. This implies B(K) = B.

We recall that, if A is a C∗-algebra, then Asym is a JB∗-algebra (cf. Facts 3.3.2
and 3.3.4).

Now consider the mapping

ϑ :

(
λ11 λ12

λ21 λ22

)
−→

(
λ22 λ12

λ21 λ11

)
from M2(C) to itself. Then ϑ is an involutive algebra ∗-antiautomorphism of
M2(C). Therefore, the set of fixed elements for ϑ is a ∗-subalgebra of the JB∗-
algebra M2(C)sym, and hence a JB∗-algebra. Such a JB∗-algebra is called the
three-dimensional spin factor, and is denoted by C3. Without enjoying its name,
the three-dimensional spin factor has already appeared in our development (cf.
Examples 2.3.65 and 3.5.43).

Let K be a compact subset of [1,∞[. According to Example 1.1.4(d), we denote
by C(K,C3) the algebra of all continuous functions from K to C3, and remark that
C(K,C3) naturally becomes a JB∗-algebra. We will identify C(K,C3) with the closed
∗-subalgebra of C(K,M2(C))sym consisting of those continuous functions from K to
M2(C) whose range is contained in C3.

Lemma 4.3.26 Let K be a compact subset of [1,∞[ whose maximum element is
greater than 1, let F : A (K) → C(K,M2(C)) be the algebra ∗-homomorphism
given by Proposition 4.3.3, and let G denote the restriction to B(K) of F . Then
G is an algebra ∗-homomorphism from B(K) to C(K,M2(C))sym, and the closure in
C(K,M2(C)) of the range of G coincides with the closed ∗-subalgebra of C(K,C3)

generated by ηK.

Proof Noticing that G (u[21]) = ηK , and keeping in mind Lemma 4.3.25, it is
enough to show that the range of G is contained in C(K,C3). But this follows
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from the fact that ηK actually belongs to C(K,C3), and from a new application of
Lemma 4.3.25.

Lemma 4.3.27 Let K be a compact subset of ]1,∞[. Then C(K,C3) is generated by
ηK as a normed ∗-algebra.

Proof Identifying C(K,M2(C)) with CC(K) ⊗ M2(C) in the natural manner,
the operator ϑ̂ := ICC(K) ⊗ ϑ becomes an involutive ∗-antiautomorphism of
C(K,M2(C)), whose set of fixed points is precisely C(K,C3). Moreover, since
A (K) is generated by u[21] as a normed ∗-algebra (by Lemma 4.3.4), and
F (Θ(u[21])) = ϑ̂ (F (u[21])), we have F ◦ Θ = ϑ̂ ◦ F . On the other hand,
by Lemma 4.3.10, F : A (K) → C(K,M2(C)) is surjective. Since B(K) is the
set of fixed points for Θ, and C(K,C3) is the set of fixed points for ϑ̂ , and G is the
restriction to B(K) of F , it follows that G (as a mapping from B(K)→C(K,C3))
is surjective. Now, apply Lemma 4.3.26.

According to Definition 4.2.10, each nonzero element x of a JB∗-triple J has a
triple spectrum σ(x)⊆R+ determined by Theorem 4.2.9. We note that σ(x) does not
change when we replace J with any closed subtriple of J containing x. Now, recalling
that C∗-algebras are JB∗-triples in a natural way, and invoking assertions (i) and (ii)
in Lemma 4.3.5, we get the following.

Corollary 4.3.28 Let A be a C∗-algebra, and let a be a nonzero element in A. Then
we have σ(a) = sp(A1 ,

√
a∗a)\{0}.

We recall that JB∗-algebras become naturally JB∗-triples (cf. Theorem 4.1.45),
and that, if A is a C∗-algebra, then A and the JB∗-algebra Asym have the same under-
lying JB∗-triple.

Theorem 4.3.29 Let B be a JB∗-algebra, and let e be a non-self-adjoint idempotent
in B. Set K := σ(e), and assume that 1 does not belong to K. Then K is a compact
subset of ]1,∞[, and the closed ∗-subalgebra of B generated by e is ∗-isomorphic to
C(K,C3). More precisely, we have:

(i) There exists a unique algebra ∗-homomorphism Ψ : C(K,C3) → B such that
Ψ(ηK) = e.

(ii) Such an algebra ∗-homomorphism is isometric, and its range coincides with the
closed ∗-subalgebra of B generated by e.

Proof Let Be denote the closed ∗-subalgebra of B generated by e. By Prop-
osition 3.4.6, there exists a C∗-algebra A such that Be can be seen as a closed
∗-subalgebra of Asym. Therefore, by Corollary 4.3.28 and Proposition 4.3.6, K :=
σ(e) is a compact subset of ]1,∞[. By Theorem 4.3.11, there exists an isometric
algebra ∗-homomorphism Φ : C(K,M2(C)) → A such that Φ(ηK) = e. Let Ψ
stand for the restriction of Φ to C(K,C3). Then, clearly, Ψ is an isometric algebra
∗-homomorphism from C(K,C3) to Asym, which satisfies Ψ(ηK) = e. Noticing that
the closed ∗-subalgebras of Asym and B generated by e coincide, it follows from
Lemma 4.3.27 that the range of Ψ is Be. This last fact allows us to see Ψ as an
algebra ∗-homomorphism from C(K,C3) to B. That Ψ is the unique (automatically
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continuous because of Proposition 3.4.4) algebra ∗-homomorphism from C(K,C3)

to B with Ψ(ηK) = e follows from a new application of Lemma 4.3.27.

§4.3.30 Let K be a compact subset of [1,∞[ with 1 ∈ K, and let p be a self-adjoint
idempotent in C3, different from 0 and 1. Then

Cp(K,C3) := {α ∈C(K,C3) : α(1) ∈ Cp}

is a proper closed ∗-subalgebra of C(K,C3). As in the case of the C∗-algebra
Cp(K,M2(C)), the JB∗-algebra Cp(K,C3) does not depend structurally on p. Indeed,
it is straightforward that self-adjoint idempotents in C3, different from 0 and 1, are

precisely the matrices 1
2

(
1 eiθ

e−iθ 1

)
with θ ∈R. Therefore if, for j ∈ {1,2}, p j is a

self-adjoint idempotent in C3, different from 0 and 1, say pj =
1
2

(
1 eiθ j

e−iθ j 1

)
with

θ j ∈R, and if we set v :=

(
0 eiθ1

e−iθ2 0

)
, then v becomes a unitary element of M2(C)

satisfying vp1v∗ = p2 and vC3v∗ = C3, and hence the mapping α → vαv∗ becomes
an algebra ∗-automorphism of C(K,C3) sending Cp1(K,C3) onto Cp2(K,C3).

Lemma 4.3.31 Let K be a compact subset of [1,∞[ with 1 ∈ K, whose maximum
element is greater than 1. Then Cη(1)(K,C3) is generated by ηK as a normed ∗-
algebra.

Proof Argue as in the proof of Lemma 4.3.27, invoking Lemma 4.3.15 instead of
Lemma 4.3.10.

By invoking Theorem 4.3.16 and Lemma 4.3.31 instead of Theorem 4.3.11 and
Lemma 4.3.27, respectively, the proof of the following theorem is similar to that of
Theorem 4.3.29, and hence is omitted.

Theorem 4.3.32 Let B be a JB∗-algebra, and let e be a non-self-adjoint idempotent
in B. Set K := σ(e), and assume that 1 belongs to K. Then K is a compact subset of
[1,∞[ whose maximum element is greater than 1, and the closed ∗-subalgebra of B
generated by e is ∗-isomorphic to Cp(K,C3) for any self-adjoint idempotent p ∈ C3

different from 0 and 1. More precisely, we have:

(i) There exists a unique algebra ∗-homomorphism Ψ : Cη(1)(K,C3)→ B such that
Ψ(ηK) = e.

(ii) Such an algebra ∗-homomorphism is isometric, and its range coincides with the
closed ∗-subalgebra of B generated by e.

Now we deal with the main corollaries to Theorems 4.3.29 and 4.3.32.

Lemma 4.3.33 Let E be a locally compact Hausdorff topological space, let x be
in CR

0 (E) such that x(t)> 0 for every t ∈ E, and for n ∈ N let xn denote the element

of CR
0 (E) defined by xn(t) := nx(t)

1+nx(t) . Then the sequence xn becomes an approximate

unit for CC
0 (E).

Proof Let y be in CC
0 (E), let ε > 0, and note that |y(t)− y(t)xn(t)| = |y(t)|

1+nx(t) for
all (t,n) ∈ E ×N. Then there exists a compact subset F of E such that |y(t)| � ε



556 Jordan spectral theory

whenever t lies in E \F , and hence |y(t)− y(t)xn(t)| � ε for all (t,n) ∈ (E \F)×N.
Now set

M := min{x(t) : t ∈ F}> 0,

and take m ∈ N such that ‖y‖
1+nM � ε whenever n � m. It follows that ‖y− yxn‖ � ε

whenever n � m.

Corollary 4.3.34 Let B be a JB∗-algebra generated, as a normed ∗-algebra, by
a non-self-adjoint idempotent. Then B is generated, as a normed algebra, by two
self-adjoint idempotents.

Proof By Theorems 4.3.29 and 4.3.32, we may assume that B is of the form
C(K,C3) or Cη(1)(K,C3), where, in the first case, K is a compact subset of ]1,∞[
and, in the second case, K is a compact subset of [1,∞[ not reduced to a point and
such that 1 ∈ K. Let |K| stand for the maximum of K, and let θ : K → R be defined
by θ(t) = π

2|K| (t −1). We note that cosθ and sinθ are injective functions on K, that
cosθ(t)> 0 for every t ∈ K, and that sinθ (t)> 0 for every t ∈ K \{1}. Now let p1

and p2 be the continuous functions from K to C3 defined by

p1(t) := η(1) =
1
2

(
1 1
1 1

)
and p2(t) :=

1
2

(
1 e2iθ (t)

e−2iθ (t) 1

)
,

and note that, in the case 1 ∈ K, p1 and p2 lie in Cη(1)(K,C3), so that p1

and p2 become self-adjoint idempotents of B. In what follows C will denote
the closed subalgebra of B generated by p1 and p2, and D will stand for either
{ f ∈ CC(K) : f (1) = 0} ≡ CC

0 (K \ {1}) or CC(K) depending on whether or not 1
lies in K.

Let ( j,k) stand for either (1,2) or (2,1). Then we straightforwardly realize that,
for every t ∈ K, we have Upj(t)(pk(t)) = cos2 θ(t)p j(t), so

[Up j(t)(pk(t))]m = cos2m θ (t)pj(t) for every m ∈ N,

and so q[Up j(t)(pk(t))] = q(cos2 θ(t))p j(t) for every q ∈ C[x] with q(0) = 0. Now

let f be an arbitrary element of CC(K), and invoke the Stone–Weierstrass theorem
(cf. Corollary 1.2.53) to find a sequence qn in C[x] with qn(0) = 0 for every n, and
qn(cos2 θ(t))→ f (t) uniformly on K. Then we have

‖qn(Up j(pk))− f p j‖= max{‖qn[Up j(t)(pk(t))]− f (t)p j(t)‖ : t ∈ K}

= max
{∣∣qn(cos2 θ(t))− f (t)

∣∣‖p j(t)‖ : t ∈ K
}

� max
{∣∣qn(cos2 θ(t))− f (t)

∣∣ : t ∈ K
}
‖p j‖→ 0.

Therefore f p j belongs to C. Thus CC(K)pj ⊆C.
On the other hand, for every t ∈ K we have (p1(t)− p2(t))2 = sin2 θ(t)1 in C3,

and hence q[(p1(t)− p2(t))2] = q(sin2 θ(t))1 for every q ∈ C[x] with q(0) = 0. As
above, it follows from the Stone–Weierstrass theorem that D1 ⊆C.

It follows from the above paragraphs that the CC(K)-module

E := D1+CC(K)p1 +CC(K)p2
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is contained in C. Let b =

(
b11 b12

b21 b11

)
be an arbitrary element of B. Then we

straightforwardly realize that sinθb = f 1+gp1 +hp2, where

f := sinθ
(

b11 −
b12e−iθ +b21eiθ

2cosθ

)
∈ D,

g :=
i(b12e−2iθ −b21e2iθ )

2cosθ
∈CC(K),

h :=
i(b21 −b12)

2cosθ
∈CC(K),

and hence sinθb ∈ E. As a first consequence, if 1 /∈ K, then f
sinθ ∈ D, g

sinθ ∈CC(K),

and h
sinθ ∈CC(K), hence b = f

sinθ 1+ g
sinθ p1 +

h
sinθ p2 ∈ E ⊆C, which concludes the

proof in this case. Assume that 1 ∈ K. Then for every n ∈ N we have

nsinθ
1+nsinθ

b ∈CC(K)sinθb ⊆CC(K)E ⊆ E ⊆C.

Suppose that b(1) = 0. Then the entries b11,b12, and b21 belong to D, and hence
b = lim nsinθ

1+nsinθ b ∈ C because, thanks to Lemma 4.3.33, the sequence nsinθ
1+nsinθ is an

approximate unit for D. For arbitrary b ∈ B, take μ ∈ C such that b(1) = μη(1), so
that b− μη(1) belongs to B and vanishes at 1, and hence lies in C. It follows that
b = (b−μη(1))+μη(1) ∈C+μC ⊆C, and the proof is complete.

Corollary 4.3.35 Let B be a JB∗-algebra generated, as a normed ∗-algebra, by a
non-self-adjoint idempotent e, and set K := σ(e). If 1 is an isolated point of K, then
B is ∗-isomorphic to the JB∗-algebra C×C(K \{1},C3).

Proof Argue as in the proof of Corollary 4.3.18, invoking Theorem 4.3.32 instead
of Theorem 4.3.16.

Corollary 4.3.36 Let B be a JB∗-algebra generated, as a normed ∗-algebra, by a
non-self-adjoint idempotent e, and set K := σ(e). Then B has a unit if and only if
either 1 does not belong to K or 1 is an isolated point of K.

Proof Argue as in the proof of Corollary 4.3.19, invoking Theorems 4.3.29
and 4.3.32, and Corollary 4.3.35 instead of Theorems 4.3.11 and 4.3.16, and
Corollary 4.3.18, respectively.

Corollary 4.3.37 Let B be a JB∗-algebra. Then B has a non-self-adjoint idem-
potent (if and) only if it contains (as a closed ∗-subalgebra) a copy of either C3 or
Cp([1,2],C3) for any self-adjoint idempotent p ∈ C3 different from 0 and 1.

Proof Argue as in the proof of Corollary 4.3.20, invoking Theorems 4.3.29
and 4.3.32, and Corollary 4.3.35 instead of Theorems 4.3.11 and 4.3.16, and
Corollary 4.3.18, respectively.

Arguing as in §4.3.21, one can realize that, for any self-adjoint idempotent p∈C3

different from 0 and 1, the JB∗-algebra Cp([1,2],C3) does not contain any copy
of C3.
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§4.3.38 In relation to Proposition 4.3.39 immediately below, we note that, as a
by-product of Theorems 4.3.29 and 4.3.32, non-self-adjoint idempotents in a JB∗-
algebra are non-normal (cf. Definition 3.4.20), hence non-central. Indeed, for every
t ∈]1,∞[ we have [η(t),η(t),η(t)∗] 	= 0 in C3.

Proposition 4.3.39 Let B be a JB∗-algebra containing a non-central idempotent e.
Then there exists a continuous mapping r → er from [1,∞[ to the set of idempotents
of B satisfying e‖e‖ = e and ‖er‖= r for every r ∈ [1,∞[.

Proof First assume that e is not self-adjoint. Then, invoking Theorems 4.3.29
and 4.3.32 instead of Theorems 4.3.11 and 4.3.16, respectively, and keeping
in mind that, for every t ∈ [1,∞[, η(t) lies in C3, the first part of the proof of
Proposition 4.3.22 works verbatim.

Now assume that e is self-adjoint. Since e is non-central, we may apply Lemma
3.1.14 to find c ∈ H(B,∗) \ {0} such that ec = 1

2 c, which implies [e,e,c] = 1
4 c 	= 0.

There is no loss of generality in assuming that B is generated by {e,c} as a normed
algebra. Then, by Proposition 3.4.6, there exists a C∗-algebra A such that B becomes
a closed ∗-subalgebra of Asym. Set a := i(ec− ce) ∈ A, and consider the mapping
D : A → A defined by

D(b) := ba−ab for every b ∈ A.

Then D becomes a continuous derivation of A satisfying D(b∗) = −D(b)∗ for every
b ∈ A (since a is self-adjoint). Moreover, in view of the identity (3.1.9) in the proof
of Lemma 3.1.53, we have

D(b) = 4i[e,b,c] ∈ B for every b ∈ B, (4.3.10)

and consequently D(e) 	= 0. By the second part of the proof of Proposition 4.3.22,
there exists a continuous function h : [1,∞[→ R such that the continuous mapping
e → er := exp(h(r)D)(e), from [1,∞[ to the set of idempotents of A, satisfies e1 = e
and ‖er‖= r for every r ∈ [1,∞[. Therefore, the proof is concluded by realizing that,
for every r ∈ [1,∞[, er lies in B. But this follows from the fact that, by (4.3.10), B is
invariant under D.

Lemma 4.3.40 Let B be a Jordan algebra, and let a be in B such that a belongs to
Ua2(B). Then there exists an idempotent e in B such that Ua(B)=Ue(B).

Proof Throughout the proof, the fundamental formula, stated in Proposition
3.4.15, will be applied (sometimes to the unital extension of B) without
notice. Set C := Ua(B), and note that UC(B) ⊆ C. Since a ∈ Ua2(B) = U2

a (B),
there is v ∈C such that a =Ua(v). For an arbitrary element x =Ua(z) of C we have
UaUv(x) = UaUvUa(z) = UUa(v)(z) = Ua(z) = x, so UaUv is the identity on C. In
particular, v =UaUv(v) =Ua(v3), and hence for x ∈C we have

x =UaUv(x) =UaUUa(v3)(x) =U2
a U3

v Ua(x) =UaUaUvU
2
v Ua(x)

=UaU2
v Ua(x) (since U2

v Ua(x) ∈UC(B)⊆C) =UaUvUvUa(x)

=UvUa(x) (since UvUa(x) ∈UC(B)⊆C).
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Thus (Ua)|C, regarded as a mapping from C to itself, is bijective with inverse (Uv)|C.
Let e=Ua(v2)∈Ua(B) =C. Then Ue =UaU2

v Ua =UaUvUvUa is the identity on C, so

C =Ue(C)⊆Ue(B)⊆UC(B)⊆C

shows C = Ue(B). To conclude the proof, we show that e is an idempotent. Indeed,
keeping in mind that Uv(a2) ∈UC(B)⊆C, we get that

e2 = (Ua(v
2))2 =UaUv2(a2) =UaUvUv(a

2) =Uv(a
2) ∈C.

Therefore,

e2 =Ue(e
2) = (e2)2 = (Uv(a

2))2 =UvU
2
a (v

2) =UvUaUa(v
2) =UvUa(e) = e.

In relation to Corollary 4.3.41 immediately below, we note that tripotents in
(the JB∗-triple underlying) a JB∗-algebra are precisely those elements a satisfying
Ua(a∗) = a.

Corollary 4.3.41 Let B be a JB∗-algebra. Then the following conditions are
equivalent:

(i) B contains a non-self-adjoint idempotent.

(ii) There exists a non-normal tripotent a ∈ B such that a belongs to Ua2(B).

(iii) B contains a non-central self-adjoint idempotent.

Proof (i)⇒(ii) By the assumption (i) and Theorems 4.3.29 and 4.3.32, we may
assume that B is of the form C(K,C3) or Cη(1)(K,C3), where, in the first case, K is
a compact subset of ]1,∞[ and, in the second case, K is a compact subset of [1,∞[
whose maximum element is greater than 1 and such that 1 ∈ K. In any case, by
Lemma 4.3.2, ηK

21 is a non-normal tripotent in B, and we have ηK
21 =U(ηK

21)
2(u2ηK

12),

with u2ηK
12 ∈ B.

(ii)⇒(iii) Assume that condition (ii) is fulfilled. We may suppose that B is gen-
erated by a as a normed ∗-algebra. Since a lies in Ua2(B), Lemma 4.3.40 applies,
giving the existence of an idempotent e ∈ B such that Ua(B) =Ue(B). Note that Ue =

Le(2Le − IB), so that, by Lemma 2.5.3, Ue(B) becomes a subalgebra of B, and e is a
unit for such a subalgebra. Suppose, to derive a contradiction, that e is self-adjoint.
Then Ue(B) is a closed ∗-subalgebra of B, and hence, since a = Ua(a∗) ∈ Ua(B) =
Ue(B), and B is generated by a as a normed ∗-algebra, we deduce that Ua(B) = B
and that e is a unit for B. It follows from Theorem 4.1.3 that a is J-invertible in B
and that a−1 = a∗, i.e. a is a J-unitary element of B (cf. Definition 4.2.25), and this
implies that a is normal (cf. Fact 4.2.26(v)), contrarily to the assumption. Therefore
the idempotent e is not self-adjoint, hence non-central (cf. §4.3.38).

(iii)⇒(i) Since nonzero self-adjoint idempotents of B are norm-one elements, this
implication follows from Proposition 4.3.39.

Comparing Corollary 4.3.41 with Corollary 4.3.24, one is tempted to conjecture
that the equivalent conditions (i)–(iii) in Corollary 4.3.41 are also equivalent to the
following:

(iv) B contains a non-normal tripotent.
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As a matter of fact, we have been unable to prove or disprove the conjecture just
formulated. Actually, an eventual establishment of such a conjecture would provide
in particular an affirmative answer to the following unsolved question.

Problem 4.3.42 Let B be a JB∗-algebra containing a nonzero tripotent. Does B
contain a nonzero self-adjoint idempotent?

We conclude this subsection with an application to the theory of JB-algebras.
By Corollary 3.4.3, the self-adjoint part of the three-dimensional (complex) spin
factor C3 is a JB-algebra, which is called the three-dimensional real spin factor, and
is denoted by S3. According to Example 1.1.4(d), we denote by C([1,2],S3) the
algebra of all continuous functions from [1,2] to S3, and remark that C([1,2],S3)

becomes naturally a JB-algebra. Now let p be an idempotent in S3 different from 0
and 1. Then

Cp([1,2],S3) := {α ∈C([1,2],S3) : α(1) ∈ Rp}

is a proper closed subalgebra of C([1,2],S3). We note that, according to the argu-
ment in §4.3.30, Cp([1,2],S3) does not depend structurally on p.

Now we have the following.

Corollary 4.3.43 Let B be a JB-algebra. Then B has a non-central idempotent (if
and) only if it contains (as a closed subalgebra) a copy of either S3 or Cp([1,2],S3)

for any idempotent p ∈ S3 different from 0 and 1.

Proof By Theorem 3.4.8, there exists a JB∗-algebra whose self-adjoint part is
equal to B. Now apply Corollary 4.3.37 and the equivalence (i)⇔(iii) in Corollary
4.3.41.

4.3.3 An application to non-commutative JB∗-algebras

§4.3.44 Let A be an algebra over K. We have clearly

Z(A)⊆ {a ∈ A : [a,A] = 0}, (4.3.11)

where Z(A) stands for the centre of A (cf. Definition 2.5.31). Now denote by Aant

the algebra consisting of the vector space of A and the product [a,b] = ab − ba.
Then, according to Definition 1.1.10, the right-hand side of the inclusion (4.3.11)
is nothing other than Ann(Aant). (We note in passing that, since the algebra Aant is
anticommutative, we have Ann(Aant) = Z(Aant).) Since for x,y,z ∈ A we straightfor-
wardly have

[x,y,z]ant +4[x,y,z]sym = 2[x,y,z]−2[z,y,x], (4.3.12)

where [·, ·, ·]ant and [·, ·, ·]sym denote the associator in Aant and Asym respectively, it
follows that

Z(A)⊆ Z(Asym)∩Ann(Aant). (4.3.13)

Proposition 4.3.45 Let A be a flexible algebra. Then

Z(A) = Z(Asym)∩Ann(Aant).
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Proof Linearizing the flexibility condition [x,y,x] = 0 in the variable x, we get
[x,y,z] =−[z,y,x]. Therefore, the equality (4.3.12) yields

[x,y,z]ant +4[x,y,z]sym = 4[x,y,z],

which implies the converse inclusion in (4.3.13).

Fact 4.3.46 Let A be an algebra, and let D be a derivation of A.

T hen D(Z(A))⊆ Z(A).

Proof Noticing that, for x,y,z ∈ A, we have D([x,y]) = [D(x),y] + [x,D(y)] and
D([x,y,z]) = [D(x),y,z]+ [x,D(y),z]+ [x,y,D(z)], the conclusion is evident.

Theorem 4.3.47 Let A be a non-commutative JB∗-algebra. Then

Z(A) = Z(Asym).

Proof In view of Proposition 4.3.45, it is enough to show that Z(Asym) is con-
tained in Ann(Aant). Clearly, Z(Asym) is a closed associative ∗-subalgebra of Asym,
and hence, by Fact 3.3.4 and Proposition 3.4.1(i), Z(Asym) is a commutative C∗-
algebra. On the other hand, by Lemma 2.4.15 and Fact 4.3.46, for each a ∈ A, the
mapping Da : x → [a,x] is a derivation of Z(Asym). It follows from Corollary 3.4.51
that Da(Z(Asym)) = 0 for every a ∈ A. Therefore [A,Z(Asym)] = 0 or, equivalently,
Z(Asym)⊆ Ann(Aant), as desired.

Another interesting application of Proposition 4.3.45 is the following.

Corollary 4.3.48 Let A be a flexible power-associative algebra over K. Then cen-
tral idempotents in A and in Asym are the same.

Proof In view of (4.3.13), it is enough to show that central idempotents in Asym

are central elements of A. Let e be a central idempotent in Asym. It follows from
the definition itself of A 1

2
(e) (cf. Lemma 2.5.3(i)) that A 1

2
(e) = 0, and then, by

Lemma 2.5.3(i)–(ii), e ∈ Ann(Aant). Therefore, by Proposition 4.3.45, e ∈ Z(A).

Now we can generalize and unify Propositions 4.3.22 and 4.3.39, as well as (par-
tially) Corollaries 4.3.24 and 4.3.41.

Proposition 4.3.49 Let A be a non-commutative JB∗-algebra. We have:

(i) If A contains a non-central idempotent e, then there exists a continuous mapping
r → er from [1,∞[ to the set of idempotents of A satisfying e‖e‖ = e and ‖er‖= r
for every r ∈ [1,∞[.

(ii) A contains a non-self-adjoint idempotent if and only if A contains a non-central
self-adjoint idempotent.

Proof Noticing that Asym is a JB∗-algebra, assertion (i) (respectively, assertion (ii))
follows from Proposition 4.3.39 (respectively, Corollary 4.3.41) by applying either
Theorem 4.3.47 or Corollary 4.3.48.

Remark 4.3.50 Since alternative C∗-algebras are non-commutative JB∗-algebras
(cf. Fact 3.3.2), Proposition 4.3.49 above remains true with ‘alternative C∗-algebra’
instead of ‘non-commutative JB∗-algebra’. Actually, since the closed ∗-subalgebra
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generated by a single element of an alternative C∗-algebra is associative, most results
in Subsection 4.3.1 remain true with ‘alternative C∗-algebra’ instead of ‘C∗-algebra’.
In particular, this is the case with Theorems 4.3.11 and 4.3.16.

4.3.4 Historical notes and comments

Most results in Subsections 4.3.1 and 4.3.2 are due to Becerra and Rodrı́guez
[77, 78].

Corollary 4.3.28 (or, equivalently, assertions (i) and (ii) in Lemma 4.3.5) are
due to Iochum, Loupias, and Rodrı́guez [340, Lemma 8 and Remark 1], whereas
Lemma 4.3.40 is due to Loos [401, Lemma 1.1]. Corollary 4.3.17 goes unnoticed in
[77, 78], and becomes a unit-free version of a theorem by Spitkovsky [595], which
has been rediscovered in [393, Theorem 6] (see also [83, 317] for related results).
Corollary 4.3.34 is new.

In view of Corollary 4.3.17, C∗-algebras generated by a non-self-adjoint idem-
potent are closely related to C∗-algebras generated by two self-adjoint idem-
potents. These last algebras have been studied by several authors since Pedersen’s
paper [483]. According to the formulation of Pedersen’s results done by Raeburn
and Sinclair [496], we are provided with the following.

Theorem 4.3.51 There exists an essentially unique triple (A ,p1,p2), where A is
a unital C∗-algebra and p1 and p2 are self-adjoint idempotents in A , satisfying the
following universal property:

(i) If A is any unital C∗-algebra with two self-adjoint idempotents p1 and p2, then
there is a unique unit-preserving algebra ∗-homomorphism from A to A taking
p1 and p2 to p1 and p2, respectively.

Moreover, we have:

(ii) A is generated by {1,p1,p2} as a normed algebra.
(iii) The C∗-algebra A can be materialized as the closed ∗-subalgebra of the

C∗-algebra C([0,1],M2(C)) consisting of those functions α ∈ C([0,1],M2(C))
such that α(0) and α(1) are diagonal matrices, and in this materialization we
have

p1(t) =

(
1 0
0 0

)
and p2(t) =

(
t

√
t(1− t)√

t(1− t) 1− t

)
for every t ∈ [0,1].

For additional information about normed associative algebras generated by two
idempotents the reader is referred to the survey paper by Böttcher and Spitkovsky
[118], the book by Roch, Santos, and Silbermann [797], and the references in these
two works.

Now from Theorem 4.3.51 above, let us derive the following non-associative
variant.

Theorem 4.3.52 There exists an essentially unique triple (B,e1,e2), where B is
a unital JB∗-algebra and e1 and e2 are self-adjoint idempotents in B, satisfying the
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following universal property:

(i) If B is any unital JB∗-algebra with two self-adjoint idempotents e1 and e2, then
there is a unique unit-preserving algebra ∗-homomorphism from B to B taking
e1 and e2 to e1 and e2, respectively.

Moreover, we have:

(ii) B is generated by {1,e1,e2} as a normed algebra.
(iii) The JB∗-algebra B can be materialized as the closed ∗-subalgebra of the

JB∗-algebra C([0,1],C3) consisting of those functions β ∈ C([0,1],C3) such

that β (0) and β (1) lie in the linear hull of

{(
1 0
0 1

)
,

(
0 1
1 0

)}
, and in this

materialization we have

e1(t) =
1
2

(
1 1
1 1

)
and e2(t) =

1
2

(
1 e2iθ (t)

e−2iθ (t) 1

)
for every t ∈ [0,1], where θ (t) := arccos

√
t.

Proof The essential uniqueness of the triple (B,e1,e2) under condition (i) is easy.
Indeed, let C be a unital JB∗-algebra, and let f1 and f2 be self-adjoint idempotents
in C such that condition (i) holds with (C , f1, f2) instead of (B,e1,e2). Then we are
provided with unit-preserving algebra ∗-homomorphisms

φ : B → C and ψ : C → B

such that φ(e j) = f j and ψ(f j) = e j . Therefore ψ ◦φ and φ ◦ψ are unit-preserving
algebra ∗-endomorphisms of B and C fixing e j and f j, respectively. By the unique-
ness of such homomorphisms, we must have ψ ◦φ = IB and φ ◦ψ = IC , and hence φ
is an algebra ∗-isomorphism from B onto C taking e j to f j.

Let (B,e1,e2) be as in assertion (iii) of the present theorem. We are going to
show that B is generated by {1,e1,e2} as a normed algebra. Let C denote the closed
subalgebra of B generated by {1,e1,e2}, let F 0 and F 1 stand for the ideals of
CC([0,1]) defined by

F 0 := {x ∈CC([0,1]) : x(0) = 0} and F 1 := {x ∈CC([0,1]) : x(1) = 0},

and note that F 0 ≡ CC
0 (]0,1]), F 1 ≡ CC

0 ([0,1[), and F 0 ∩F 1 ≡ CC
0 (]0,1[). Note

also that, for t ∈ [0,1], we have cosθ (t) =
√

t and sinθ(t) =
√

1− t, so that cosθ and
sinθ are injective functions on [0,1] satisfying cosθ(t) > 0 for every t ∈]0,1] and
sinθ(t) > 0 for every t ∈ [0,1[. Now, as in the proof of Corollary 4.3.34, for every
t ∈ [0,1] we have

(e1(t)− e2(t))
2 = sin2 θ(t)1 = (1− t)1

and

Ue j(t)(ek(t)) = cos2 θ(t)e j(t) = te j(t)

whenever ( j,k) equals either (1,2) or (2,1). Therefore, resuming the argument
in the proof of Corollary 4.3.34, we obtain that F 11 ⊆ C and F 0e j ⊆ C, and
hence that the CC([0,1])-module E := F 11 + F 0e1 + F 0e2 is contained in C.

Let β =

(
b11 b12

b21 b11

)
be an arbitrary element of B. Then we have
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sin(2θ)β = 2sinθ cosθβ = f 1+ge1 +he2,

where

f := sinθ
(

2cosθb11 −b12e−iθ −b21eiθ
)
∈ F 1,

g := i(b12e−2iθ −b21e2iθ ) ∈ F 0,

h := i(b21 −b12) ∈ F 0,

so sin(2θ)β ∈ E, and so for every n ∈ N we have

nsin(2θ)
1+nsin(2θ)

β ∈CC([0,1])sin(2θ)β ⊆CC([0,1])E ⊆ E ⊆ C.

Suppose that β (0) = β (1) = 0. Then b11,b12, and b21 lie in F 0 ∩F 1, and hence
β = lim nsin(2θ )

1+nsin(2θ )β ∈ C because, thanks to Lemma 4.3.33, the sequence nsin(2θ )
1+nsin(2θ ) is

an approximate unit for F 0∩F 1. Now remove the assumption that β (0)= β (1)= 0.
Let γ be the element of C defined by

γ := λ1+μe1 +νe2 +ηe1 • e2,

where

λ := b11(1)−b12(1), μ := b11(0)−b11(1)+b12(0)+b12(1),

ν := b11(0)−b11(1)−b12(0)+b12(1), and η := 2(b11(1)−b11(0)).

Then we straightforwardly realize that (β − γ)(0) = (β − γ)(1) = 0. It follows that
β = (β−γ)+γ ∈C+C⊆C. Since β is arbitrary in B, and C is the closed subalgebra
of B generated by {1,e1,e2}, B is certainly generated by {1,e1,e2} as a normed
algebra.

Now let (A ,p1,p2) be as in assertion (iii) of Theorem 4.3.51, and let (B,e1,e2)

be as in assertion (iii) of the present theorem. Set

v :=
1√
2

(
1 i
1 −i

)
,

and note that v is a unitary element of M2(C) such that vA v∗ equals the closed
∗-subalgebra of C([0,1],M2(C)) (say D) consisting of those functions β ∈C([0,1],

M2(C)) such that β (0) and β (1) lie in the linear hull of

{(
1 0
0 1

)
,

(
0 1
1 0

)}
,

that vp jv∗ = e j, and that B becomes a closed ∗-subalgebra of D sym. Let B be any
unital JB∗-algebra with two self-adjoint idempotents e1 and e2, and let C stand for
the closed ∗-subalgebra of B generated by {1,e1,e2}. By Proposition 3.4.6, there
is a unital C∗-algebra A such that C can be seen as a closed ∗-subalgebra of Asym.
By Theorem 4.3.51, there exists a unit-preserving algebra ∗-homomorphism Φ :
A →A such that Φ(p j) = e j. It follows that the mapping Ψ : β → Φ(v∗βv) from
D to A becomes a unit-preserving algebra ∗-homomorphism satisfying Ψ(e j) = e j.
Moreover, invoking the preceding paragraph, we realize that Ψ(B)⊆C. Regarding
Ψ as a mapping from B to C, composing this mapping with the inclusion C ↪→ B,
and invoking again the preceding paragraph, we finally find a unique unit-preserving
algebra ∗-homomorphism from B to B taking e j to e j.
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The arguments leading to Proposition 4.3.45 are due to Skosyrskii [584]. The-
orem 4.3.47 is originally due to Alvermann and Janssen [19, Theorem 7.3]. Our
proof of Theorem 4.3.47, as well as Proposition 4.3.49, are new.

4.4 Algebra norms on non-commutative JB∗-algebras

Introduction In 1967, Johnson [353] proved one of the more outstanding re-
sults in the theory of normed associative algebras, namely that surjective algebra
homomorphisms from complete normed associative algebras to complete normed
semisimple associative algebras are automatically continuous. The consequence, that
semisimple associative algebras have at most one complete algebra norm topology,
has become known as ‘Johnson’s uniqueness-of-norm theorem’.

In Subsection 4.4.1, we follow McCrimmon [435, 436] to introduce the notions
of Jacobson radical (in short J-radical) and of Jacobson semisimplicity (in short
J-semisimplicity) of a Jordan-admissible algebra. These notions generalize the usual
ones of radical and semisimplicity in the particular associative case. Then we prove
Aupetit’s generalization of Johnson’s theorem to the setting of Jordan-admissible
algebras [40] (see Theorem 4.4.13). Our proof of Aupetit’s theorem is not at all
the original one, but relies on a non-associative adaptation of ‘T. J. Ransford’s
three circles theorem’ [499] (see Proposition 4.4.3), which simplifies Aupetit’s
techniques.

In Subsection 4.4.2, we extend the notion of a normed Q-algebra (introduced in
§3.6.41 for associative algebras) to the more general case of Jordan-admissible alge-
bras. Then we refine the associative arguments in [204, 519] to prove the automatic
continuity of surjective algebra homomorphisms from Jordan-admissible normed
Q-algebras to complete normed J-semisimple Jordan-admissible algebras having
minimality of norm topology (see Theorem 4.4.23).

In Subsection 4.4.3, we apply Theorem 4.4.23 just reviewed to derive that
non-commutative JB∗-algebras have minimum norm topology (see Theorem 4.4.29),
a result which generalizes Cleveland’s associative theorem [176]. We also prove that
non-commutative JB∗-algebras have minimality of norm (see Proposition 4.4.34).

In Subsection 4.4.4, we follow [516] to introduce the notions of weak radical and
ultra-weak radical of an arbitrary algebra. The weak radical is always contained in
the ultra-weak radical, and the ultra-weak radical is contained in most classical rad-
icals which are relevant in the automatic continuity theory (see Proposition 4.4.59).
In particular, the ultra-weak radical of an associative (or even Jordan-admissible)
algebra is contained in the Jacobson radical. As main results we prove that algebras
with zero weak radical have at most one complete algebra norm topology (see The-
orem 4.4.43), and that surjective algebra homomorphisms, from complete normed
algebras to complete normed algebras with zero ultra-weak radical, are automat-
ically continuous (see Theorem 4.4.45). Several applications of Theorems 4.4.43
and 4.4.45 are done. In particular, the Johnson–Aupetit–Ransford Theorem 4.4.13 is
deeply refined (see Corollary 4.4.62). The subsection also contains an example, due
to Haı̈ly [303], of an (unfortunately non-normed) associative algebra with zero weak
radical and nonzero ultra-weak radical.
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4.4.1 The Johnson–Aupetit–Ransford uniqueness-of-norm theorem

We begin this subsection with the following slight variant of Dini’s theorem.

Lemma 4.4.1 Let E be a compact Hausdorff topological space, and let fn : E →R+
0

be a decreasing sequence of continuous functions. Then

limn→∞ supt∈E fn(t) = supt∈E limn→∞ fn(t).

Proof Since fn is a decreasing sequence of non-negative functions, we can con-
sider the function f : E → R+

0 defined by f (t) := limn→∞ fn(t). Moreover, it is
clear that supt∈E fn(t) is a decreasing sequence of non-negative numbers such that
supt∈E f (t) � supt∈E fn(t) for every n ∈ N, and hence

supt∈E f (t) � L := limn→∞ supt∈E fn(t).

For each n ∈ N consider the set Fn := {t ∈ E : fn(t) � L}. It follows from the
continuity of the functions fn that Fn is a decreasing sequence of non-empty closed
subsets of E. Since E is compact, it follows that ∩n∈NFn 	= /0. For any t0 ∈ ∩n∈NFn

we realize that

f (t0) = limn→∞ fn(t0) � L,

and so supt∈E f (t) � L. This shows that

supt∈E f (t) = L = limn→∞ supt∈E fn(t).

§4.4.2 Let A be an algebra over K, and let a be in A. Following [812, p. 23], we
define inductively the plenary powers of a by

a[0] := a and a[n+1] := (a[n])2.

Without enjoying their name, plenary powers have already appeared in the proof
of Proposition 2.6.19. Assume in what follows that A is normed. Then we have

‖a[n+1]‖ � ‖a[n]‖2, and hence the sequence ‖a[n]‖ 1
2n is decreasing. Therefore we can

define the number

s(a) := inf

{∥∥∥a[n]
∥∥∥ 1

2n
: n ∈ N∪{0}

}
= lim

∥∥∥a[n]
∥∥∥ 1

2n
.

We note that, if a generates an associative subalgebra of A, then we have a[n] = a2n

for every n, and hence the number s(a) just introduced is nothing other than the usual
spectral radius r(a) of a (cf. §3.4.61). In this case, we will always use without notice
the symbol r(a) instead of s(a).

Proposition 4.4.3 Let A be a normed complex algebra, let p : C→ A be a polyno-
mial function (cf. §2.8.29), and let R > 0. Then

sup
|w|=1

s(p(w))2 � sup
|z|=R

s(p(z)) sup
|z|= 1

R

s(p(z)).

Proof Let w be an arbitrary complex number of modulus 1. Choose a norm-one
continuous linear functional f on A satisfying f (p(w))= ‖p(w)‖. Set q(z)= f (p(z)),
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so that q(z) = ∑d
k=0αkzk say, where d is the degree of p. Then the Cauchy–Schwarz

inequality gives:

‖p(w)‖2 = | f (p(w))|2 = |q(w)|2 =
∣∣∣∣∣ d

∑
k=0

αkwk

∣∣∣∣∣
2

�
(

d

∑
k=0

|wk|2
)(

d

∑
k=0

|αk|2
)

= (d +1)

(
d

∑
k=0

αkRkᾱkR−k

)

� (d +1)

(
d

∑
k=0

|αk|2R2k

) 1
2
(

d

∑
k=0

|αk|2R−2k

) 1
2

= (d +1)

(
1

2π

∫ 2π

0
|q(Reit)|2dt

) 1
2
(

1
2π

∫ 2π

0
|q(R−1eit)|2dt

) 1
2

� (d +1) sup
|z|=R

‖p(z)‖ sup
|z|= 1

R

‖p(z)‖.

Repeating with p(z) replaced by p(z)[n], for an arbitrary natural number n, and taking
2n th roots, we obtain∥∥∥p(w)[n]

∥∥∥ 2
2n

� (2nd +1)
1

2n sup
|z|=R

∥∥∥p(z)[n]
∥∥∥ 1

2n
sup
|z|= 1

R

∥∥∥p(z)[n]
∥∥∥ 1

2n
. (4.4.1)

Keeping in mind that the convergence ‖p(·)[n]‖ 1
2n → s(p(·)) is monotone decreasing,

the proof is concluded by letting n → ∞ in (4.4.1) and applying Lemma 4.4.1.

Corollary 4.4.4 Let X be a complex normed space, let B be a normed complex
algebra, and let Φ be a linear mapping from X to B. Suppose that there exists M > 0
such that s(Φ(x)) � M‖x‖ for every x ∈ X. Then

s(Φ(x))2 � M‖x‖d(Φ(x),S(Φ)) for every x ∈ X.

Accordingly, s(b) = 0 for every b ∈S(Φ)∩Φ(X).

Proof For x,y given in X , consider the polynomial p(z) = Φ(x)+Φ(y)z, and note
that, for R > 0 we have

s(p(z)) = s(Φ(x+ yz)) � M‖x+ yz‖ � M(‖x‖+‖y‖R) whenever |z|= R,

and

s(p(z)) � ‖p(z)‖ � ‖Φ(x)‖+‖Φ(y)‖R−1 whenever |z|= R−1.

It follows from Proposition 4.4.3 that

s(Φ(x+ y))2 = s(p(1))2 � M(‖x‖+‖y‖R)(‖Φ(x)‖+‖Φ(y)‖R−1). (4.4.2)

Now, fix x ∈ X and b ∈S(Φ), and choose a sequence xn in X such that xn → 0 and
Φ(xn)→ b. By (4.4.2), for R > 0 and for each n ∈ N, we have

s(Φ(x))2 = s(Φ((x− xn)+ xn))
2

� M(‖xn − x‖+‖xn‖R)(‖Φ(x− xn)‖+‖Φ(xn)‖R−1).
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Letting n → ∞, we deduce that

s(Φ(x))2 � M‖x‖(‖Φ(x)−b‖+‖b‖R−1),

and now, letting R → ∞, we find that

s(Φ(x))2 � M‖x‖‖Φ(x)−b‖.

It follows from the arbitrariness of b in S(Φ) that

s(Φ(x))2 � M‖x‖d(Φ(x),S(Φ)).

At this point, we are interested in the following consequence of Corollary 4.4.4.

Lemma 4.4.5 Let A and B be normed complex algebras, and let Φ : A → B be a
linear mapping such that there exists M > 0 satisfying s(Φ(a)) � Ms(a) for every
a ∈ A. Then s(b) = 0 for every b ∈S(Φ)∩Φ(A).

§4.4.6 Let A be a normed algebra over K, and let a be in A. Keeping in mind
that squares are the same in A and Asym, we realize that the number s(a) has the
same meaning in A and Asym. Therefore, if A admits power-associativity (cf. Defin-
ition 4.1.106), then, by §4.4.2, s(a) coincides with the spectral radius of a in Asym.
Invoking Proposition 3.4.63 and Lemma 4.4.5, the fact just formulated yields the
following.

Proposition 4.4.7 Let A be a complete normed complex algebra admitting power-
associativity, let B be a normed complex algebra, and let Φ : A → B be a Jordan
homomorphism. Then s(b) = 0 for every b ∈S(Φ)∩Φ(A).

§4.4.8 Let A be a Jordan-admissible algebra. Then, since (A1)
sym = (Asym)1 and

(Asym)1 is a Jordan algebra, it follows that A1 is a Jordan-admissible algebra. An
element a of A is said to be quasi-J-invertible in A if 1−a is J-invertible in the unital
extension A1 of A, and a subset of A is called quasi-J-invertible if all its elements are
quasi-J-invertible in A. Keeping in mind the definition of a J-invertible element in a
unital Jordan-admissible algebra (cf. Definition 4.1.56) and the fact already pointed
out that (A1)

sym = (Asym)1 , we realize that quasi-J-invertible elements, and con-
sequently quasi-J-invertible subsets, are the same in A and Asym. It is worth remark-
ing that, in view of Fact 4.1.57, if A is alternative, then quasi-J-invertible elements
(respectively, quasi-J-invertible subsets) of A are precisely quasi-invertible elements
(respectively, quasi-invertible subsets) of A in the sense of Definition 3.6.19.

Keeping in mind §4.4.6 and the fact that the unital extension of a complete normed
algebra is a complete normed algebra (cf. Proposition 1.1.107), Lemma 4.1.15
implies the following.

Fact 4.4.9 Let A be a complete normed Jordan-admissible algebra over K, and let
a be in A with s(a)< 1. Then a is quasi-J-invertible in A.

Theorem 4.1.3 must be omnipresent along the proof of the following.

Lemma 4.4.10 Let A be a Jordan-admissible algebra over K, let a be a quasi-
J-invertible element of A, and let I be a quasi-J-invertible ideal of A. Then a+ I is a
quasi-J-invertible subset of A.
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Proof Since ideals of A are ideals of Asym, we may assume that A is commutative.
Set b :=1−a and let x be in I. Then, since a is quasi-J-invertible in A, b is J-invertible
in A1 , and hence

U−1
b ((b− x)2) =U−1

b (b2 −2bx+ x2)

=U−1
b (b2)−U−1

b (2bx− x2)

= 1−U−1
b (2bx− x2)

is J-invertible in A1 because U−1
b (2bx− x2) = Ub−1(2bx− x2) ∈ I and I is a quasi-

invertible subset of A. Therefore

Ub−1Ub−x(1) =Ub−1((b− x)2) =U−1
b ((b− x)2) ∈ J-Inv(A1),

so Ub−x(1) ∈ J-Inv(A1), hence 1− (a+ x) = b− x ∈ J-Inv(A1), and finally a+ x is
quasi-J-invertible in A.

Proposition 4.4.11 Let A be a Jordan-admissible algebra over K. Then we have:

(i) There exists a largest quasi-J-invertible ideal of A (say J-Rad(A)).
(ii) J-Rad(A) is the core of J-Rad(Asym) in A.

Proof To prove assertion (i) it is enough to show that the sum of all quasi-
J-invertible ideals of A is a quasi-J-invertible subset of A. Assume, to derive a
contradiction, that this is not true. Then there exists a minimum natural num-
ber n such that there are quasi-J-invertible ideals I1, . . . , In of A and elements
x1 ∈ I1, . . . ,xn ∈ In in such a way that ∑n

i=1 xi is not quasi-J-invertible in A. Then,
clearly n � 2 and ∑n−1

i=1 xi must be quasi-J-invertible in A, so that, by Lemma 4.4.10,
∑n−1

i=1 xi + In is a quasi-J-invertible subset of A, which implies that ∑n
i=1 xi is quasi-

J-invertible in A, the desired contradiction.
Now we proceed to prove assertion (ii). Let I stand for the core of J-Rad(Asym)

in A. Then, clearly, I is a quasi-J-invertible ideal of A. On the other hand, every
quasi-J-invertible ideal of A is a quasi-J-invertible ideal of Asym, so it is an ideal
of A contained in J-Rad(Asym), hence it must be contained in I. It follows that
I = J-Rad(A).

Definition 4.4.12 Let A be a Jordan-admissible algebra over K. The ideal J-Rad(A)
given by the above proposition will be called the Jacobson radical of A. The Jordan-
admissible algebra A is said to be J-semisimple when J-Rad(A) = 0. We remark that,
according to Theorem 3.6.21, we have J-Rad(A) = Rad(A) whenever A is actually
associative, and that, consequently, J-semisimplicity is nothing other than semisim-
plicity when we deal with associative algebras. This remark will be frequently used,
mostly without notice. As we commented in §3.6.58, the equality J-Rad(A)=Rad(A)
actually holds in the more general case where A is alternative, but this will only be
applied incidentally with the appropriate notice.

Theorem 4.4.13 Let A be a complete normed complex algebra admitting power-
associativity, let B be a complete normed Jordan-admissible complex algebra, and
let Φ : A → B be a surjective algebra homomorphism. If B is J-semisimple, then Φ is
continuous.
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Proof It is enough to show that S(Φ)⊆ J-Rad(B). By Proposition 4.4.7, for every
b ∈ S(Φ), we have s(b) = 0, and hence, by Fact 4.4.9, b is quasi-J-invertible in
B. Thus S(Φ) is a quasi-J-invertible subset of B. Since S(Φ) is an ideal of B (by
Lemma 1.1.58), it follows that S(Φ)⊆ J-Rad(B), as desired.

We call Theorem 4.4.13 above the Johnson–Aupetit–Ransford theorem.
Arguing as in the proof of Corollary 1.1.63, with Theorem 4.4.13 instead of The-

orem 1.1.62, we get the following.

Corollary 4.4.14 Let A be a J-semisimple Jordan-admissible complex algebra.
Then A has at most one complete algebra norm topology.

When the algebra B in Theorem 4.4.13 is in fact a non-commutative Jordan alge-
bra, we can relax the assumption of Φ being an algebra homomorphism to that of Φ
being merely a Jordan homomorphism. This will be established in Corollary 4.4.18.
To this end, we begin by pointing out the next fact, which follows by arguing as in
Example 3.6.42, with Theorem 4.1.7 instead of Theorem 1.1.23.

Fact 4.4.15 Let A be a complete normed Jordan-admissible algebra over K. Then
the set of all quasi-J-invertible elements of A is open in A.

Lemma 4.4.16 Let A be a Jordan-admissible algebra over K, let I be an ideal of A,
and let S stand for the set of all quasi-J-invertible elements of A. Then the following
conditions are equivalent:

(i) I ⊆ S.
(ii) S+ I ⊆ S.

(iii) (A\S)+ I ⊆ A\S.

Proof The equivalence (i)⇔(ii) follows from Lemma 4.4.10 and the fact that 0 ∈ S,
whereas the one (ii)⇔(iii) follows from the fact that, for a ∈ A and x ∈ I, we have
a = (a+ x)+(−x).

Proposition 4.4.17 Let A be a complete normed Jordan-admissible algebra over
K. We have:

(i) J-Rad(A) is closed in A.
(ii) J-Rad(A) is invariant under any continuous derivation of A.

(iii) If A is in fact a non-commutative Jordan algebra, then

J-Rad(A) = J-Rad(Asym).

Proof Let S stand for the set of all quasi-J-invertible elements of A. By Lemma
4.4.16, we have (A\S)+J-Rad(A)⊆ A\S. Since A\S is closed in A (by Fact 4.4.15),
it follows that (A \ S)+ J-Rad(A) ⊆ A \ S. Since J-Rad(A) is an ideal of A, Lemma
4.4.16 applies again to derive that J-Rad(A)⊆ J-Rad(A), and the proof of assertion (i)
is complete.

Let D be a continuous derivation of A. Then, for r ∈ R, exp(rD) is a bijective
algebra endomorphism on A (cf. Lemma 2.2.21), and hence

exp(rD)(J-Rad(A)) = J-Rad(A).
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Therefore, by assertion (i) just proved, for x ∈ J-Rad(A) we have

D(x) = lim
r→0

exp(rD)(x)− x
r

∈ J-Rad(A),

which proves assertion (ii).
Assume that A is actually a non-commutative Jordan algebra. Then, by Lemma

2.4.15 and (the commutative case of) assertion (ii) just proved, we have
[A,J-Rad(Asym)]⊆ J-Rad(Asym). Therefore

A(J-Rad(Asym))⊆ A• (J-Rad(Asym))+ [A,J-Rad(Asym)]

⊆ J-Rad(Asym)+ J-Rad(Asym)⊆ J-Rad(Asym),

and analogously (J-Rad(Asym))A ⊆ J-Rad(Asym). Thus J-Rad(Asym) is an
ideal of A. Since J-Rad(A) is the core of J-Rad(Asym) in A, it follows that
J-Rad(A) = J-Rad(Asym), which proves assertion (iii).

By combining Proposition 4.4.17(iii) and (the commutative particularization of)
Theorem 4.4.13, we get the following variant of Theorem 4.4.13.

Corollary 4.4.18 Let A be a complete normed complex algebra admitting power-
associativity, let B be a complete normed J-semisimple non-commutative Jordan
complex algebra, and let Φ : A → B be a surjective Jordan homomorphism. Then
Φ is continuous.

4.4.2 A non-complete variant

Now we are going to prove an interesting non-complete variant of Theorem 4.4.13.
To this end, we begin by establishing the following.

Lemma 4.4.19 Let X and Y be Banach spaces over K, and let Φ : X →Y be a linear
mapping. Then S(Φ) is a closed subspace of Y , and the mapping x →Φ(x)+S(Φ)

from X to Y/S(Φ) is continuous.

Proof We already know that S(Φ) is a closed subspace of Y (cf. Lemma 1.1.57).
Let xn be a sequence converging to 0 in X and such that Φ(xn)+S(Φ) converges
to y+S(Φ) for some y ∈ Y . Then there exists a sequence yn in S(Φ) such that
Φ(xn)− y+ yn converges to 0 in Y . For each n ∈ N, take zn ∈ X with ‖zn‖ < 1

n and
‖yn −Φ(zn)‖ < 1

n . It follows that xn + zn → 0 and Φ(xn + zn) → y, so that y lies in
S(Φ), and hence y+S(Φ) = 0. The proof is concluded by applying the closed graph
theorem.

Lemma 4.4.20 Let A and B be Jordan-admissible algebras over K, and let
Φ :A→B be an algebra homomorphism. We have:

(i) If x is quasi-J-invertible in A, then Φ(x) is quasi-J-invertible in B.
(ii) If Φ is surjective, then Φ(J-Rad(A))⊆ J-Rad(B).

Proof Assertion (i) follows straightforwardly from Lemma 4.1.87 and the universal
property of unital extensions.

Assume that Φ is surjective. Then, by assertion (i), Φ(J-Rad(A)) is a quasi-
J-invertible ideal of B, and hence it is contained in J-Rad(B).
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In §3.6.41, we introduced the notion of a normed Q-algebra in the associative
setting. Now we extend this notion to the more general setting of Jordan-admissible
algebras. Thus, by a (Jordan-admissible) normed Q-algebra over K we mean a
normed Jordan-admissible algebra A over K such that the set of all quasi-J-invertible
elements of A is a neighbourhood of zero in A. According to Fact 4.4.15, every
complete normed Jordan-admissible algebra over K is a normed Q-algebra over K.

Lemma 4.4.21 Let A be a normed Q-algebra over K. We have:

(i) If Φ is a surjective algebra homomorphism from A to a J-semisimple Jordan-
admissible algebra over K, then ker(Φ) is closed in A.

(ii) If M is a closed ideal of A, then A/M is a normed Q-algebra over K.
(iii) If x is in A with s(x)< 1, then x is quasi-J-invertible in A.

Proof Let B be a J-semisimple Jordan-admissible algebra over K, and let Φ : A→ B
be a surjective algebra homomorphism. Take δ > 0 such that a is quasi-J-invertible
in A whenever a is in A with ‖a‖< δ , and let b be in Φ(ker(Φ)). Then there are x ∈ A
and y ∈ ker(Φ) such that b = Φ(x) and ‖x− y‖ < δ . Since b = Φ(x− y), and x− y
is quasi-J-invertible in A, it follows from Lemma 4.4.20(i) that b is quasi-J-invertible
in B. Thus Φ(ker(Φ)) is a quasi-J-invertible ideal of B, and hence Φ(ker(Φ)) = 0
because B is J-semisimple. Therefore ker(Φ) ⊆ ker(Φ), and ker(Φ) is closed in A,
which proves assertion (i).

Assertion (ii) follows from Lemma 4.4.20(i) and the fact that, for any closed ideal
M of A, the natural quotient homomorphism A → A/M is open.

In view of §4.4.6, to prove assertion (iii) we may assume that A is commutative.
Choose δ > 0 such that a is quasi-J-invertible in A whenever a is in A with ‖a‖< δ ,
and let x be in A with r(x) < 1. Then xn → 0 (cf. Corollary 1.1.18(ii)), and hence
there exists n ∈ N such that ‖xn‖ < δ , which implies by the choice of δ that xn

is quasi-J-invertible in A. Now we have 1 /∈ J-sp(A1 ,xn), which implies in view
of Corollary 4.1.79 and Proposition 1.3.4(i) that 1 /∈ J-sp(A1 ,x). Thus x is quasi-
J-invertible in A, and the proof of assertion (iii) is complete.

Definition 4.4.22 We say that a normed algebra (A,‖ · ‖) has minimality of norm
topology if every continuous algebra norm on A is equivalent to ‖ · ‖.

Theorem 4.4.23 Let A be a normed complex Q-algebra, let B be a complete normed
J-semisimple Jordan-admissible complex algebra having minimality of norm topo-
logy, and let Φ : A→B be a surjective algebra homomorphism. Then Φ is continuous.

Proof By assertions (i) and (ii) in Lemma 4.4.21, ker(Φ) is a closed ideal of A,
and the quotient algebra A/ker(Φ) is a normed complex Q-algebra. Therefore, if
Φ̂ : A/ker(Φ)→ B denotes the algebra isomorphism induced by Φ, and if for b ∈ B
we define |b| := ‖Φ̂−1(b)‖, then (B, | · |) becomes a normed complex Q-algebra. Now
the desired continuity of Φ is equivalent to the existence of a positive number K such
that ‖b‖ � K|b| for every b ∈ B. To prove this, let (C, | · |) denote the completion of
(B, | · |), and let F stand for the mapping b → b from (B,‖ · ‖) to (C, | · |). Since F
is an algebra homomorphism with dense range, S(F) is a closed ideal of (C, | · |)
(by Lemma 1.1.58). Moreover, by Lemma 4.4.19, the mapping b → b+S(F) from
(B,‖ · ‖) to (C/S(F), | · |) is continuous, i.e. there is a positive number M such that
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|b+S(F)| � M‖b‖ for every b ∈ B. On the other hand, for b ∈ B∩S(F) we have
in view of Proposition 4.4.7 that s|·|(b) = 0 and, since (B, | · |) is a normed complex
Q-algebra, this implies that b is quasi-J-invertible in B (by Lemma 4.4.21(iii)). Now
B∩S(F) is a quasi-J-invertible ideal of B, and hence B∩S(F) = 0 because B is
J-semisimple. It follows that, if for b ∈ B we define |||b ||| := |b+S(F)|, then ||| · |||
becomes an algebra norm on B satisfying ||| · ||| � M‖ · ‖. Since B has minimality of
norm topology, ||| · ||| and ‖·‖ are equivalent norms on B, so there is a positive number
K such that

‖b‖ � K|||b |||= K|b+S(F)| � K|b|

for every b ∈ B, and the proof is concluded.

4.4.3 The main results

According to Proposition 1.2.51, every algebra norm on a commutative C∗-algebra
is greater than the natural norm. This result does not remain true if commutativity is
removed. Indeed, we have the following.

Fact 4.4.24 Let A be a complete normed complex algebra such that the inequality
‖ · ‖ � KA ||| · ||| holds for some positive constant KA and every equivalent algebra
norm ||| · ||| on A. Then A has no nonzero continuous derivation. Therefore, if in
addition A is associative, then A is commutative.

Proof Let D be a continuous derivation of A. Then, by Lemma 2.2.21, for each
z ∈C the mapping a →‖exp(zD)(a)‖ is an equivalent algebra norm on A, and hence
we have ‖a‖� KA‖exp(zD)(a)‖ for every a ∈ A. With exp(−zD)(a) instead of a, the
last inequality reads as ‖exp(−zD)(a)‖� KA‖a‖, so that, by Liouville’s theorem, we
get D = 0.

In view of the above fact, the best non-commutative generalization of Propos-
ition 1.2.51 one can expect is that the topology of the norm of any C∗-algebra A be
smaller than the topology of any algebra norm on A. This expectation will become
true as a consequence of Theorem 4.4.29 below.

Fact 4.4.25 Let A be a complete normed unital Jordan-admissible algebra over K,
and let a be in A. We have:

(i) If K= C, then s(a) = max{|λ | : λ ∈ J-sp(A,a)}.
(ii) If K= R, then

s(a) = max{|α+ iβ | : α,β ∈ R with (a−α1)2 +β 21 /∈ J-Inv(A)}.

Proof Since squares of elements, J-invertible elements, J-spectra of elements, and
s(·) mean the same in A and in Asym, we may assume that A is commutative. Then
assertion (i) follows from Theorem 4.1.17, whereas assertion (ii) follows from Prop-
osition 4.1.86 and Corollary 1.1.101.

The next lemma generalizes Corollary 3.6.23.

Lemma 4.4.26 Let A be a normed Jordan-admissible algebra over K, and let x be
in J-Rad(A). Then s(x) = 0.
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Proof Suppose first that K = C. Then, x
λ is quasi-J-invertible in A for every λ ∈

C \ {0}, and hence J-sp(A1 ,x) ⊆ {0}. A fortiori, the J-spectrum of x relative to the
completion of A1 has no nonzero element, and therefore, by Fact 4.4.25(i), we have
s(x) = 0, as desired.

Suppose now that K=R. Let α,β be in R such that λ := α+ iβ 	= 0. Then, since
2αx−x2

|λ |2 lies in J-Rad(A), 2αx−x2

|λ |2 is quasi-J-invertible in A, and hence

(x−α1)2 +β 21 (= |λ |21−2αx+ x2)

is J-invertible in A1 (so also in the completion of A1). It follows from Fact 4.4.25(ii)
that s(x) = 0.

Since for every element x in a JB-algebra we have s(x) = r(x) = ‖x‖, Lemma
4.4.26 immediately above implies the following.

Corollary 4.4.27 Every JB-algebra is J-semisimple.

Lemma 4.4.28 Let A be a non-commutative JB∗-algebra. We have:

(i) If ||| · ||| is any algebra norm on A, then

(a) ‖x‖2 � 2|||x∗ ||||||x ||| for every x ∈ A,

(b) (A, ||| · |||) is a normed Q-algebra.

(ii) A has minimality of norm topology.

(iii) A is J-semisimple.

Proof Let ||| · ||| be an algebra norm on A, and let x be in A. By Proposition 3.4.1(ii),
the closed subalgebra of A generated by x∗ • x is a commutative C∗-algebra, and
hence, by Proposition 1.2.51, we have

‖x∗ • x‖ � |||x∗ • x ||| � |||x∗ ||||||x |||.

Since ‖x‖2 � 2‖x∗ • x‖ (cf. Lemma 3.4.65), we deduce that ‖x‖2 � 2|||x∗ ||||||x |||.
Hence ‖xn‖2 � 2|||(x∗)n ||||||xn ||| for every natural number n, which implies that
(r‖·‖(x))

2 � r||| · |||(x
∗)r||| · |||(x). Since r||| · |||(x

∗) � r‖·‖(x) (by Proposition 3.4.63), it
follows that r‖·‖(x) � r||| · |||(x). Therefore, if |||x ||| < 1, then r‖·‖(x) < 1, so 1− x is
J-invertible in A1 (by Lemma 4.1.15), and so x is quasi-J-invertible in A. This shows
that (A, ||| · |||) is a normed Q-algebra, and the proof of assertion (i) is concluded.

Let ||| · ||| be a continuous algebra norm on A (say ||| · ||| � M‖ · ‖ for some M > 0).
By assertion (i)(a) already proved and Proposition 3.3.13, for every x ∈ A we have

‖x‖2 � 2M‖x∗‖|||x |||= 2M‖x‖|||x |||,

so ‖x‖ � 2M|||x |||. Thus ||| · ||| and ‖ · ‖ are equivalent norms on A, hence A has
minimality of norm topology, and assertion (ii) is proved.

Let x be in J-Rad(A). Then x∗ • x lies in J-Rad(A), so r(x∗ • x) = 0 (by Lemma
4.4.26), and so x∗ • x = 0 (by Proposition 3.4.1(ii) and Lemma 1.2.12). Since
‖x‖2 � 2‖x∗ • x‖ (cf. Lemma 3.4.65 again), we deduce that x = 0. This proves
assertion (iii).
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Let A be an alternative C∗-algebra. Arguing as in the proof of Lemma 2.3.27, we
realize that, if ||| · ||| is any algebra norm on A, then we have ‖x‖2 � |||x∗ ||||||x ||| for
every x ∈ A. In our present particular case, this becomes a refinement of assertion
(i)(a) in the above lemma. The associative forerunner of the result just formulated
can be found in [795, Theorem 4.8.3(ii)].

Theorem 4.4.29 Let A be a non-commutative JB∗-algebra. Then the topology of
any algebra norm on A is stronger than that of the natural norm.

Proof Let ||| · ||| be an algebra norm on A. By Lemma 4.4.28(i)(b), (A, ||| · |||) is a
normed complex Q-algebra, whereas, by Lemma 4.4.28(ii)–(iii), (A,‖ · ‖) is a com-
plete normed J-semisimple Jordan-admissible complex algebra having minimality
of norm topology. Therefore the result follows by applying Theorem 4.4.23 to the
surjective algebra homomorphism Φ : x → x from (A, ||| · |||) to (A,‖ · ‖).

Theorem 4.4.29 above contains one of the ingredients in its proof, namely that
(as assured by Lemma 4.4.28(ii)) non-commutative JB∗-algebras have minimality of
norm topology. But Lemma 4.4.28(ii) also has other interesting consequences, which
are discussed in the rest of this subsection. The most direct one is the following.

Corollary 4.4.30 Let A be a non-commutative JB∗-algebra, let B be a normed
complex algebra, and let φ : A → B be a continuous algebra homomorphism. Then
the range of φ is bicontinuously isomorphic to a non-commutative JB∗-algebra. As
a consequence, φ(A) is closed in B.

Proof By Proposition 3.4.13, C := A/ker(φ) is a non-commutative JB∗-algebra.
Let φ̂ : C → B stand for the induced (continuous and injective) algebra homo-
morphism. Since c → ‖φ̂(c)‖ is a continuous algebra norm on C, it follows from
Lemma 4.4.28(ii) that there exists M > 0 such that ‖c‖ � M‖φ̂(c)‖ for every c ∈C.
Thus φ̂ , regarded as a mapping from C to φ(A), becomes a bicontinuous algebra
isomorphism.

Invoking Fact 3.3.4, it follows from Corollary 4.4.30 just proved that, if A is a
non-commutative JB∗-algebra, if B is a normed complex algebra, and if φ : A → B
is a continuous Jordan homomorphism, then φ(A) is closed in B.

Corollary 4.4.31 Let A be a unital non-commutative JB∗-algebra, let B be a
normed unital Jordan-admissible complex algebra, and let φ : A→B be a continuous
unit-preserving algebra homomorphism. Then φ(A) is a J-full subalgebra of B.

Proof Let b be in φ(A)\ J-Inv(φ(A)). By Corollary 4.4.30 and Theorem 4.1.71(i),
b is a topological J-divisor of zero in φ (A), so it is a topological J-divisor of zero in
B (cf. Definition 4.1.69). Therefore, by Definition 4.1.56 and Proposition 4.1.25(ii),
b is not J-invertible in B.

Corollary 4.4.32 Let B be a normed associative complex algebra, and assume that
B is the range of a continuous Jordan homomorphism from some non-commutative
JB∗-algebra. Then B is bicontinuously isomorphic to a C∗-algebra.

Proof By the assumption, there is a non-commutative JB∗-algebra A, and a con-
tinuous surjective Jordan homomorphism φ : A → B. Since Asym is a JB∗-algebra
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(cf. Fact 3.3.4), and φ becomes a Jordan homomorphism from Asym to B, we may
assume that A is commutative. Then ker(φ) is a closed ideal of A, and hence, by
Proposition 3.4.13, A/ker(φ) is a JB∗-algebra, so there is no loss of generality in
assuming additionally that φ is bijective. Then, since a → ‖φ(a)‖ is a continuous
algebra norm on the JB∗-algebra A, we can apply Lemma 4.4.28(ii) to realize that φ
is bicontinuous. Let C denote the associative complex algebra consisting of the vector
space of A and the product x�y := φ−1(φ(x)φ(y)). Then Csym (=A) is a JB∗-algebra
under the norm and the involution of A, and hence, by Theorem 3.6.30, C becomes a
C∗ algebra under the same norm and involution. Finally, since

φ (x� y) = φ(x)φ(y) for all x,y ∈C,

φ becomes a bicontinuous algebra isomorphism from the C∗-algebra C onto B.

Definition 4.4.33 Let (A,‖ · ‖) be a normed algebra. We say that (A,‖ · ‖) has
minimality of norm if, whenever ||| · ||| is an algebra norm on A with ||| · ||| � ‖ · ‖, we
have in fact ||| · |||= ‖ · ‖.

The next result becomes a relevant geometric complement to Theorem 4.4.29.
Instead of Theorem 4.4.23, the key tool here is the non-associative Vidav–Palmer
theorem.

Proposition 4.4.34 Every non-commutative JB∗-algebra has minimality of norm.

Proof Let A be a nonzero non-commutative JB∗-algebra, and let ||| · ||| be an algebra
norm on A such that ||| · ||| � ‖ · ‖. By Lemma 4.4.28(ii), ||| · ||| and ‖ · ‖ are equivalent
norms on A.

Assume at first that A is unital. Then, according to §1.1.5, we have
1 � |||1 ||| � ‖1‖ = 1, so |||1 ||| = 1. Let ||| · ||| and ‖ · ‖ stand for the corresponding
dual norms of ||| · ||| and ‖ · ‖. It follows that for f ∈ A′ we have ‖ f‖ � ||| f |||, so
D((A, ||| · |||),1)⊆ D((A,‖ · ‖),1), and so

V ((A, ||| · |||),1,a)⊆V ((A,‖ · ‖),1,a)

for every a ∈ A. Since (A,‖ · ‖) is a V -algebra (by Lemma 2.2.5), we deduce
that (A, ||| · |||) is a complete V -algebra whose natural involution coincides with the
JB∗-involution of A. Consequently, (A, ||| · |||) is a non-commutative JB∗-algebra
(by Theorem 3.3.11), the identity mapping (A, ||| · |||) → (A,‖ · ‖) is an algebra
∗-homomorphism, and hence, by Proposition 3.4.4, we have that ||| · |||= ‖ · ‖.

Now remove the assumption that A is unital. Let ||| · ||| and ‖ · ‖ stand for the
corresponding bidual norms of ||| · ||| and ‖·‖. By Theorem 3.5.34, (A′′,‖·‖) becomes
naturally a unital non-commutative JB∗-algebra. Since ||| · |||� ‖ ·‖ on A′′, we deduce
from the above paragraph that ||| · |||= ‖ · ‖ on A′′, and hence on A.

Corollary 4.4.35 Let B be a normed complex algebra, and assume that B is the
range of a contractive Jordan homomorphism from some non-commutative JB∗-
algebra. Then B is isometrically isomorphic to a non-commutative JB∗-algebra.

Proof By the assumption, there is a non-commutative JB∗-algebra A, and a con-
tractive surjective Jordan homomorphism φ : A → B. As in the proof of Corol-
lary 4.4.32, we may assume that A is commutative and that φ is bijective. Then, since
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a→|||a ||| := ‖φ(a)‖ is an algebra norm on the JB∗-algebra A, and ||| · |||� ‖·‖ on A, it
follows from Proposition 4.4.34 that ||| · |||= ‖·‖ on A, and hence that φ is an isometry.
Let C denote the complex algebra consisting of the vector space of A and the product
x� y := φ−1(φ(x)φ(y)), and note that, since φ is an isometry and B is a normed
algebra, the norm of A becomes an algebra norm on C. Then, since Csym (= A) is
a JB∗-algebra under the norm and the involution of A, C becomes a JB∗-admissible
algebra in the sense of Definition 3.5.29. Therefore, by Proposition 3.5.31, C is in fact
a non-commutative JB∗-algebra under the same norm and involution. Finally, since
φ(x� y) = φ(x)φ(y) for all x,y ∈ C, φ becomes an isometric algebra isomorphism
from the non-commutative JB∗-algebra C onto B.

Combining Fact 3.3.2 and Corollary 4.4.35, we get the following.

Corollary 4.4.36 Let B be a normed alternative complex algebra, and assume that
B is the range of a contractive Jordan homomorphism from some non-commutative
JB∗-algebra. Then B is isometrically isomorphic to an alternative C∗-algebra.

4.4.4 The uniqueness-of-norm theorem for general
non-associative algebras

In this subsection, we apply the associative particularization of Lemma 4.4.5 to prove
a powerful uniqueness-of-norm theorem for general non-associative algebras.

Proposition 4.4.37 Let A and B be normed associative complex algebras, and let
Φ : A → B be an algebra homomorphism. We have:

(i) If A is a normed Q-algebra, then the inequality r(Φ(a)) � r(a) holds for every
a ∈ A.

(ii) If both A and B are normed Q-algebras, and if Φ is surjective, then S(Φ) is
contained in the Jacobson radical of B.

Proof Assume that A is a normed Q-algebra. To prove assertion (i), we can see
Φ as an algebra homomorphism from A to the completion of B, and hence we
may assume that B is complete. Then, extending Φ to an algebra homomorphism
from A1 to B1 , and applying Lemma 1.1.34(ii), we derive that for every a ∈ A we
have sp(B1 ,Φ(a)) ⊆ sp(A1 ,a). Therefore, by Theorem 1.1.46 and the implication
(i)⇒(ix) in Proposition 3.6.43, we have

r(Φ(a)) = max{|λ | : λ ∈ sp(B1 ,Φ(a))} � max{|λ | : λ ∈ sp(A1 ,a)}= r(a)

for every a ∈ A.
Now assume that both A and B are normed Q-algebras and that Φ is surjective.

Then, by assertion (i) just proved and Lemma 4.4.5, we have r(b) = 0 whenever b
is in S(Φ). But, for b ∈ B, the condition r(b) < 1 implies that b is quasi-invertible
in B (by the implication (i)⇒(ii) in Proposition 3.6.43). Therefore S(Φ) becomes
a quasi-invertible ideal of B, hence S(Φ) ⊆ Rad(B) (by Theorem 3.6.21), which
proves assertion (ii).

§4.4.38 Let A be an associative algebra over K. Recall that, according to §3.6.41, a
subalgebra B of A is said to be a quasi-full subalgebra of A if, whenever b belongs to
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B and is quasi-invertible in A, the quasi-inverse of b lies in B. The following routines
will be applied without notice.

(i) A subalgebra B of A is a quasi-full subalgebra of A if and only if B1 is a full
subalgebra of A1 (cf. Definition 1.1.72), if and only if sp(A1 ,b) = sp(B1 ,b) for
every b ∈ B.

(ii) If B is a quasi-full subalgebra of A, then B remains quasi-full in any subalgebra
of A containing it.

(iii) The intersection of any family of quasi-full subalgebras of A is a quasi-full
subalgebra of A.

(iv) One-sided ideals of A are quasi-full subalgebras of A.
(v) If A is unital, then full subalgebras of A are quasi-full subalgebras of A.

(vi) The relation ‘to be a quasi-full subalgebra of’ is transitive.

Definition 4.4.39 (a) Let A be an associative algebra over K. Since the intersection
of any family of quasi-full subalgebras of A is a quasi-full subalgebra of A, it follows
that, for any non-empty subset S of A, there is a smallest quasi-full subalgebra of A
containing S. This subalgebra will be called the quasi-full subalgebra of A generated
by S.

(b) Now let A be an arbitrary algebra over K. The quasi-full subalgebra of L(A)
generated by LA ∪RA will be called the quasi-full multiplication algebra of A, and
will be denoted by QFM (A) .

(c) Again, let A be an arbitrary algebra over K. Then the set W (A), of those
elements a ∈ A such that La and Ra belong to the Jacobson radical of QFM (A), is a
subspace of A, and hence contains a largest subspace of A invariant under the algebra
of operators QFM (A). This last subspace of A, which is clearly an ideal of A, will
be called the weak radical of A, and will be denoted by w-Rad(A).

Lemma 4.4.40 Let A be a real algebra. Then

w-Rad(AC)∩A ⊆ w-Rad(A).

Proof The real algebra L(A) can and will be identified in an obvious way with
the full real subalgebra of L(AC) consisting of those complex-linear operators on
AC which leave A invariant. For a ∈ A, the multiplication operators by a on A are
then identified with the multiplication operators by a on AC, so the symbols La and
Ra have unambiguous meanings. Now, clearly, QFM (AC)∩ L(A) is a quasi-full
subalgebra of L(A) containing LA ∪RA, and hence we have

QFM (A)⊆ QFM (AC)∩L(A). (4.4.3)

As a first consequence of (4.4.3), QFM (A) becomes a quasi-full real subalge-
bra of QFM (AC), so Rad(QFM (AC))∩QFM (A) is a quasi-invertible ideal of
QFM (A), and so

Rad(QFM (AC))∩QFM (A)⊆ Rad(QFM (A)).

This inclusion, together with the definition of the weak radical, gives

w-Rad(AC)∩A ⊆ W (A).



4.4 Algebra norms on non-commutative JB∗-algebras 579

To conclude the proof, it only remains to show that w-Rad(AC)∩A is invariant under
QFM (A). But this follows from the inclusion (4.4.3) and the fact that w-Rad(AC)

is invariant under QFM (AC).

Remark 4.4.41 Let A be complete normed algebra over K. Since BL(A) is a full
subalgebra of L(A) (by the Banach isomorphism theorem) containing LA ∪RA, and
QFM (A) is the smallest quasi-full subalgebra of L(A) containing LA∪RA, it follows
that QFM (A) ⊆ BL(A), and that QFM (A) is actually a quasi-full subalgebra of
BL(A).

Proposition 4.4.42 Let A and B be complete normed algebras over K, and let
Φ : A → B be a bijective algebra homomorphism. Then S(Φ) is contained in the
weak radical of B.

Proof Assume at first that K = C. Consider the bijective algebra homomorphism
Φ̂ : L(A)→ L(B) defined by Φ̂(F) :=ΦFΦ−1 for every F ∈ L(A). Since

Φ̂(La) = Lφ(a) and Φ̂(Ra) = Rφ(a) for every a ∈ A, (4.4.4)

Φ̂ maps LA ∪RA onto LB ∪RB, so QFM (A) onto QFM (B). Now QFM (A) and
QFM (B) are quasi-full subalgebras of the complete normed associative complex
algebras BL(A) and BL(B), respectively (cf. Remark 4.4.41 above), and the mapping
Φ̃ : F → Φ̂(F) from QFM (A) to QFM (B) is a bijective algebra homomorphism.
Therefore, keeping in mind Proposition 4.4.37(ii) and the implication (vii)⇒(i) in
Proposition 3.6.43, we have

S(Φ̃)⊆ Rad(QFM (B)).

On the other hand, keeping in mind (4.4.4), we easily realize that Lb and Rb belong
to S(Φ̃) whenever b is in S(Φ). It follows that Lb and Rb belong to Rad(QFM (B))
whenever b is in S(Φ). Thus S(Φ) ⊆ W (B), and the proof will be concluded by
showing that S(Φ) is invariant under QFM (B). Let b be in S(Φ), and let G be
in QFM (B). Take a sequence an in A with an → 0 and Φ(an) → b, and take F ∈
QFM (A) such that Φ̃(F)=G. Then F(an)→ 0 and Φ(F(an))=G(Φ(an))→G(b),
so G(b) ∈S(Φ), as desired.

Now assume that K = R. Then Φ can be extended to a bijective algebra
homomorphism Ψ := IC ⊗ Φ from AC to BC. Since AC and BC are complete
normed complex algebras (cf. Proposition 1.1.98), the above paragraph applies,
so that S(Ψ)⊆ w-Rad(BC). But, clearly, S(Φ)⊆S(Ψ)∩B, so S(Φ)⊆ w-Rad(B)
because of Lemma 4.4.40.

As a consequence of the above proposition, bijective algebra homomorphisms
between complete normed algebras with zero weak radical are automatically con-
tinuous. Thus, in equivalent terms, we have established the following.

Theorem 4.4.43 Let A be an algebra over K with zero weak radical. Then A has
at most one complete algebra norm topology.

To prove an automatic continuity theorem for surjective algebra homomorphisms
between general complete normed non-associative algebras we need to slightly
enlarge the weak radical, as follows.
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Definition 4.4.44 Let A be an algebra over K. Let A be any subalgebra of L(A)
containing LA ∪RA. As in the definition of the weak radical, we can consider the
largest A-invariant subspace of A consisting of elements a such that La and Ra lie in
the Jacobson radical of A. This subspace will be called the A-radical of A, and will
be denoted by A-Rad(A). The ultra-weak radical of A (denoted by uw-Rad(A)) is
defined as the sum of all A-radicals of A when A runs over the set of all subalgebras
of L(A) satisfying

LA ∪RA ⊆ A⊆ QFM (A).

Since the weak radical of A is precisely the QFM (A)-radical of A, it follows that

w-Rad(A)⊆ uw-Rad(A). (4.4.5)

Theorem 4.4.45 Let A and B be complete normed algebras over K, and let Φ :
A → B be a surjective algebra homomorphism. Assume that B has zero ultra-weak
radical. Then Φ is continuous.

Proof By (4.4.5), the extra assumption on B, and Theorem 4.4.43, B has a unique
complete algebra norm topology. Therefore it is enough to show that ker(Φ) is
closed in A. Consider the couples (F,G) with F ∈ QFM (A), G ∈ QFM (B), and
ΦF = GΦ. Let A (respectively, B) be the set of all F (respectively, G) which appear
in these couples. It is easy to realize that A (respectively, B) is a subalgebra of
QFM (A) (respectively, QFM (B)) containing LA ∪RA (respectively LB ∪RB) and
that Φ̂ :F →G becomes a surjective algebra homomorphism from A to B satisfying

Φ̂(La) = Lφ (a) and Φ̂(Ra) = Rφ(a) for every a ∈ A. (4.4.6)

Let C stand for the closure of ker(Φ̂) in A (recall that, by Remark 4.4.41, QFM (A),
so also A, is an algebra of continuous operators on A), and let G be in Φ̂(C). Then
there are H ∈ A and I ∈ ker(Φ̂) such that G = Φ̂(H) and ‖H − I‖ < 1. By setting
F := H − I ∈ A, we have

‖F‖< 1 and ΦF = GΦ. (4.4.7)

As a first consequence, it is enough to invoke Lemma 2.8.3 to deduce that
r(G) � r(F)< 1, and hence F (respectively, G) has a quasi-inverse F! (respectively,
G!) in BL(A) (respectively, BL(B)). Since QFM (A) and QFM (B) are quasi-full
subalgebras of BL(A) and BL(B), respectively, F! and G! lie in QFM (A) and
QFM (B), respectively. On the other hand, the equality ΦF = GΦ in (4.4.7) implies
that ΦF! = G!Φ. It follows that G! belongs to B. Since G is arbitrary in Φ̂(C), and
Φ̂(C) is an ideal of B, we derive that Φ̂(C) is a quasi-invertible ideal of B, and hence
Φ̂(C) ⊆ Rad(B). If a is any element in the closure of ker(Φ) in A, then, keeping in
mind (4.4.6), we realize that La and Ra belong to C, so LΦ(a) (= Φ̂(La)) and RΦ(a)

(= Φ̂(Ra)) belong to Φ̂(C). Thus Φ(ker(Φ)) is a subspace of B, any element b of
which satisfies that Lb and Rb belong to Rad(B). This, together with the invariance
of Φ(ker(Φ)) under B (which is easy to see), shows that

Φ(ker(Φ))⊆B-Rad(B)⊆ uw-Rad(B) = 0.

Hence ker(Φ) is closed in A, as desired.
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Since both the weak and the ultra-weak radical are not classical notions, we devote
the remaining part of this subsection to derive relevant consequences from The-
orems 4.4.43 and 4.4.45 which can be formulated in classical terms. In particular, the
most relevant results in Subsection 4.4.1 will be fully refined (see Corollaries 4.4.62
and 4.4.64 below). A detailed discussion of the results obtained in this process will
also be included.

We begin by deriving some remarkable consequences of Theorem 4.4.43.

Exercise 4.4.46 Let A be a ∗-algebra over K. Then both the weak and the ultra-
weak radical of A are ∗-invariant subsets.

Hint With the notation in §3.4.71, the mapping Θ : T → T ∗ becomes a conjugate-
linear algebra automorphism of L(A) leaving the set LA ∪RA invariant. Therefore Θ
leaves QFM (A) invariant, and hence induces an involutive map on the set of all
subalgebras A of L(A) with

LA ∪RA ⊆ A⊆ QFM (A).

By an algebra with hermitian multiplication we mean a complete normed complex
∗-algebra A such that La and Ra lie in H(BL(A), IA) whenever a is in H(A,∗). Without
enjoying their name, algebras with hermitian multiplication already appeared in The-
orem 4.1.103 and Proposition 4.1.105. The annihilator Ann(A) of an algebra A was
introduced in Definition 1.1.10.

Proposition 4.4.47 Let A be an algebra with hermitian multiplication. Then

w-Rad(A)⊆ Ann(A). (4.4.8)

As a consequence, if A has zero annihilator, then A has a unique complete algebra
norm topology.

Proof In view of Exercise 4.4.46, to prove (4.4.8) it is enough to show that
w-Rad(A) ∩ H(A,∗) ⊆ Ann(A). Let a be in w-Rad(A) ∩ H(A,∗). Since a
lies in w-Rad(A), we invoke Remark 4.4.41 and Corollary 3.6.23 to obtain that
r(La) = r(Ra) = 0. Then, since La and Ra belong to H(BL(A), IA), it follows from
Proposition 2.3.22 that La =Ra = 0. Hence a∈Ann(A), as desired. The consequence
now follows from Theorem 4.4.43.

In view of Proposition 4.4.59(i) below, the inclusion w-Rad(A) ⊆ Ann(A) in the
above proposition is in fact an equality.

Lie algebras are defined as those anticommutative algebras A satisfying the Jacobi
identity (ab)c+(bc)a+(ca)b = 0 for all a,b,c ∈ A. All associative algebras become
Lie algebras under the commutator product

(a,b)→ ab−ba,

and, by the Birkhoff–Witt theorem, there are no Lie algebras others than the sub-
algebras of the Lie algebras obtained by this procedure (see [752, pp. 159–62]). To
formalize the above fact, we recall that, given any algebra A over K, we introduced
the symbol Aant to mean the algebra consisting of the vector space of A and the
commutator product [a,b] = ab− ba (cf. §4.3.44). If A is in fact a normed algebra
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under the norm ‖ ·‖, then Aant will be seen without notice as a normed algebra under
the norm 2‖ · ‖.

Remark 4.4.48 (a) Let A be a non-commutative JB∗-algebra. Since La and Ra

belong to H(BL(A), IA) for every a ∈ H(A,∗) (by Lemma 3.6.24), and clearly
Ann(A) = 0, it follows that A is an algebra with hermitian multiplication and zero
annihilator. Therefore, by applying Proposition 4.4.47, we re-encounter Propos-
ition 3.4.66 (that A has a unique complete algebra norm topology).

(b) Now let A be an associative algebra with hermitian multiplication and
zero centre. Then, clearly, Aant is a Lie algebra with hermitian multiplication and zero
annihilator. Therefore Aant has a unique complete algebra norm topology.

(c) Let A be a C∗-algebra with zero centre (for example, the C∗-algebra of all
compact operators on an infinite-dimensional complex Hilbert space). It follows
from parts (a) and (b) of the present remark that the Lie algebra Aant has a unique
complete algebra norm topology.

(d) Again, let A be a non-commutative JB∗-algebra. Since every derivation of A
is continuous (cf. Lemma 3.4.26), the set D of all derivations of A has a natural com-
plete normed Lie algebra structure as a closed subalgebra of the complete normed
Lie algebra (BL(A))ant. It is straightforward that the mapping D → D� := −D∗

(cf. §3.4.71) becomes a conjugate-linear algebra involution on D. Moreover,
if D is in H(D, �), then D belongs to H(BL(A), IA) (by Lemma 3.4.27), hence

LBL(A)ant

D = LBL(A)
D − RBL(A)

D lies in H(BL(BL(A)), IBL(A)) (by Lemma 2.1.10), so
RD

D = −LD
D ∈ H(BL(D), ID) (by Lemma 2.2.24). Thus D is a Lie algebra with

hermitian multiplication.
(e) Let A be a C∗-algebra. Let a be in A, and let D be in Ann(D). Since

La − Ra∈D, Fact 2.4.7 yields LD(a) − RD(a) = [D,La − Ra] = 0, and hence D(a)
belongs to the centre of A. Therefore we have [[D,La],La] = [LD(a),La] = 0. Now, if
a=a∗, then, by part (a) of the present remark, La lies in H(BL(A), IA), so [D,La] = 0
(by Corollary 2.4.3), hence LD(a) = [D,La] = 0, and finally, by the arbitrariness of
a ∈ H(A,∗), D = 0. Thus Ann(D) = 0. Since D is a Lie algebra with hermitian
multiplication (by part (d) of the present remark), it follows that D has a unique
complete algebra norm topology.

(f) Finally, let A be a complex H∗-algebra (cf. Remark 2.6.54). Then, for
a ∈ H(A,∗), La and Ra are self-adjoint elements of the unital C∗-algebra BL(A),
and hence La and Ra lie in H(BL(A), IA). Therefore A is an algebra with hermitian
multiplication. As a consequence, if Ann(A) = 0, then A has a unique complete
algebra norm topology.

Now we deal with the main consequences of Theorem 4.4.45.

Proposition 4.4.49 Let A be a complete normed algebra over K with no nonzero
two-sided topological divisor of zero. Then uw-Rad(A) = 0. As a consequence, sur-
jective algebra homomorphisms from complete normed algebras over K to A are
continuous.

Proof Let x be in uw-Rad(A). Then, by the definition of the ultra-weak radical and
Remark 4.4.41, there are subalgebras A1, . . . ,Am of BL(A) containing LA ∪RA, and
elements x1, . . . ,xm ∈A such that Lxi and Rxi belong to Rad(Ai) for every i= 1, . . . ,m,
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and x = ∑m
i=1 xi. By Corollary 3.6.23 and Exercise 1.1.89, for i = 1, . . . ,m, Lxi and

Rxi are left topological divisors of zero in Ai (so also in BL(A)), and therefore, by
Proposition 1.1.94(i), xi is a two-sided topological divisor of zero in A. Thus x = 0
because A has no nonzero two-sided topological divisor of zero, and, since x is
arbitrary in uw-Rad(A), the first conclusion in the proposition holds. The con-
sequence now follows from Theorem 4.4.45.

Let A be an algebra over K. We say that A satisfies the descending chain condition
(DCC) on ideals if every descending chain

I1 ⊇ I2 ⊇ ·· · ⊇ In ⊇ ·· ·

of ideals of A stabilizes. It is easy to realize that A satisfies the DCC on ideals if and
only if every non-empty family of nonzero ideals of A has a minimal element. Now
let S be a subset of A. Then the intersection of the family of all ideals of A containing
S is the smallest ideal of A containing S. This ideal is called the ideal of A generated
by S. It is straightforward that, if A is associative, then the ideal of A generated by a
single element a ∈ A is precisely

Ka+Aa+aA+

{
n

∑
k=1

xkayk : n ∈ N; x1, . . . ,xn,y1, . . . ,yn ∈ A

}
.

Lemma 4.4.50 Let A be an algebra over K. We have:

(i) If uw-Rad(A) = 0, then A is semiprime.

(ii) If A is semiprime and satisfies the DCC on ideals, then uw-Rad(A) = 0.

(iii) If A is simple, then uw-Rad(A) = 0.

Proof Let P be an ideal of A such that PP = 0, and let x be in P. Then we have

L2
x = LxFLx = 0 for every F ∈ M �(A)

(cf. §3.6.53 for notation), which implies that the ideal of M �(A) generated by Lx (say
P) satisfies PP = 0, and hence is a quasi-invertible ideal. Thus Lx ∈ Rad(M �(A))
and, analogously, Rx ∈ Rad(M �(A)). Since x is arbitrary in P, we deduce that
P ⊆ M �(A)-Rad(A). Now, if uw-Rad(A) = 0, then M �(A)-Rad(A) = 0, so P = 0,
hence A is semiprime. This proves assertion (i).

Assume that A satisfies the DCC on ideals, and that uw-Rad(A) 	= 0. Then we
have A-Rad(A) 	= 0 for some subalgebra A of L(A) containing LA ∪ RA. Since
A-invariant subspaces of A are ideals of A, and A satisfies the DCC on ideals, there
is a minimal A-invariant subspace P of A with P ⊆ A-Rad(A). If PA = 0, then
PP = 0, and hence A is not semiprime. Otherwise, P is an irreducible A-module
(cf. Definition 3.6.35). But then, for x ∈ A-Rad(A) we have that Lx(P) = 0 because
Lx ∈ Rad(A) (cf. Theorem 3.6.38(i)), hence A-Rad(A)P = 0, so PP = 0, and finally
A is again not semiprime. This proves assertion (ii).

Assume that A is simple. Then A is a semiprime algebra with DCC on ideals.
Therefore, by assertion (ii) just proved, we have uw-Rad(A) = 0.

By combining Theorem 4.4.45 and Lemma 4.4.50(iii), we get the following.
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Corollary 4.4.51 Surjective algebra homomorphisms from complete normed alge-
bras over K to complete normed simple algebras over K are continuous.

Now we are going to discuss the weak and the ultra-weak radical in the finite-
dimensional setting.

Proposition 4.4.52 Let A be a finite-dimensional algebra over K. We have:

(i) M �(A) = QFM (A).
(ii) M �(A)-Rad(A) = uw-Rad(A) = w-Rad(A).

(iii) A is semiprime if and only if uw-Rad(A) = 0.

Proof Since M �(A) is a finite-dimensional subalgebra of L(A), the unital extension
of M �(A) is a finite-dimensional subalgebra of the unital extension of L(A), and
hence, by the associative particularization of Proposition 4.1.66, M �(A) is a quasi-
full subalgebra of L(A). This proves assertion (i).

By assertion (i) just proved, for every subalgebra A of L(A) such that

LA ∪RA ⊆ A⊆ QFM (A),

we must have M �(A) = A= QFM (A), and hence

M �(A)-Rad(A) = A-Rad(A) = w-Rad(A).

This proves assertion (ii).
Asume that uw-Rad(A) = 0. Then, by Lemma 4.4.50(i), A is semiprime. This

proves the ‘if’ part of assertion (iii).
Assume that A is semiprime. Since A has the DCC on ideals, it follows from

Lemma 4.4.50(ii) that uw-Rad(A) = 0. This proves the ‘only if’ part of as-
sertion (iii).

We recall that the unique Hausdorff vector space topology of a given finite-
dimensional algebra over K comes from an algebra norm (cf. Proposition 1.1.7).
Therefore, when no geometric considerations are involved, to say that a finite-
dimensional algebra over K is normed becomes redundant. The following corollary
follows straightforwardly from Theorem 4.4.45 and Proposition 4.4.52(iii).

Corollary 4.4.53 Surjective algebra homomorphisms from complete normed alge-
bras over K to finite-dimensional semiprime algebras over K are continuous.

Now we can settle the question of the automatic continuity of algebra homo-
morphisms into finite-dimensional algebras. The unique new ingredient is the fol-
lowing.

Fact 4.4.54 Let A be a normed algebra over K having isotropic elements (cf.
§2.5.7), then there exists a discontinuous algebra homomorphism from some com-
plete normed, associative, and commutative algebra over K into A.

Proof Let B be the complete normed, associative, and commutative algebra con-
sisting of any infinite-dimensional Banach space over K, and the zero product. Take
a discontinuous linear functional f on B, and an isotropic element x ∈ A. Then
the mapping b → f (b)x becomes a discontinuous algebra homomorphism from B
into A.
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Corollary 4.4.55 Let A be a finite-dimensional algebra over K. Then the following
conditions are equivalent:

(i) Algebra homomorphisms from complete normed algebras over K into A are
continuous.

(ii) Algebra homomorphisms from complete normed, associative, and commutative
algebras over K into A are continuous.

(iii) A has no isotropic element.

Proof In view of Fact 4.4.54, it is enough to show that condition (iii) implies
condition (i). Suppose that A has no isotropic element. Let B be a complete normed
algebra over K, and let Φ : B→ A be an algebra homomorphism. Since both the finite
dimensionality and the absence of isotropic elements are inherited by all subalgebras
of A, to prove that Φ is continuous there is no loss of generality in assuming that Φ
is surjective. Then, since the absence of isotropic elements implies semiprimeness,
the continuity of Φ follows from Corollary 4.4.53.

Now we are going to relate the weak and ultra-weak radicals with other classical
radicals.

Lemma 4.4.56 Let A be an algebra over K, let A be a subalgebra of L(A) contain-
ing LA∪RA, and let x be in A-Rad(A). Then there exists a∈A such that x+a−ax= 0.

Proof By the definition of A-Rad(A), Rx has a quasi-inverse (say T ) in A, so that,
writing a := T (x)− x, we have

x+a−ax = T (x)−T (x)x+ x2 = (T +Rx −RxT )(x) = 0.

Lemma 4.4.57 Let A be a non-commutative Jordan algebra over K, and let x be in
A such that Lx is quasi-invertible in L(A). Then x is quasi-J-invertible in A.

Proof Since Lx is quasi-invertible in L(A), IA − Lx is invertible in L(A), hence
LA1
1−x = IA1 − LA1

x is invertible in L(A1) (by Proposition 4.1.30(i)), so 1− x is
J-invertible in A1 (by Proposition 4.1.60), and finally x is quasi-J-invertible in A, as
desired.

Definition 4.4.58 Let A be a Jordan-admissible algebra over K, and let x be a
quasi-J-invertible element of A. Then 1− x is J-invertible in A1 , so there is a unique
element x! ∈ A such that 1− x! = (1− x)−1. The element x! above is called the
quasi-J-inverse of x in A. We note that, since

(1− x!)• (1− x) = (1− x)−1 • (1− x) = 1,

we have x+ x! − x! • x = 0. As a consequence, x! belongs to any ideal of A contain-
ing x.

The strong radical, s-Rad(A), and the radical, Rad(A), of a (possibly
non-associative) algebra A were introduced in Definitions 3.6.6 and 3.6.12,
respectively.
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Proposition 4.4.59 Let A be an algebra over K. We have:

(i) Ann(A)⊆ w-Rad(A)⊆ uw-Rad(A)⊆ Rad(A)⊆ s-Rad(A).
(ii) If A is Jordan-admissible, then uw-Rad(A)⊆ J-Rad(A).

(iii) If A is non-commutative Jordan, then uw-Rad(A)⊆ J-Rad(A)⊆ Rad(A).

Proof The inclusion Ann(A)⊆ W (A) is clear. Therefore, to conclude that Ann(A)
⊆ w-Rad(A) it is enough to show that Ann(A) is invariant under QFM (A). But
the set

M := {F ∈ L(A) : F(Ann(A)) = 0}

is a left ideal (so a quasi-full subalgebra) of L(A) containing LA ∪ RA. Therefore
QFM (A) ⊆ M, which means that QFM (A)(Ann(A)) = 0, and this is more than
the invariance of Ann(A) under QFM (A).

The inclusion w-Rad(A) ⊆ uw-Rad(A) has already been pointed out in the state-
ment (4.4.5) of Definition 4.4.44.

By the definition of uw-Rad(A), to prove the inclusion uw-Rad(A)⊆ Rad(A) it is
enough to show that A-Rad(A)⊆ Rad(A) for every subalgebra A of L(A) containing
LA ∪RA. But this follows from Lemma 4.4.56 and Proposition 3.6.18.

The inclusion Rad(A)⊆ s-Rad(A) was already proved (cf. Proposition 3.6.14(i)).
Now, assume that A is Jordan-admissible. In order to prove the inclusion uw-Rad

(A)⊆ J-Rad(A) it is enough to show that A-Rad(A)⊆ J-Rad(A) for every subalgebra
A of L(A) containing LA∪RA. Let A be such a subalgebra, and let x be in A-Rad(A).
Then LAsym

x = 1
2 (Lx +Rx) is quasi-invertible in A, so also in L(A). Therefore, since

Asym is a Jordan algebra, it follows from Lemma 4.4.57 that x is quasi-J-invertible in
Asym, and hence in A (cf. §4.4.8). Thus A-Rad(A) becomes a quasi-J-invertible ideal
of A, so A-Rad(A)⊆ J-Rad(A), as desired.

Finally, assume that A is non-commutative Jordan, and let x be in J-Rad(A). Then x
is quasi-J-invertible in A (with quasi-J-inverse x!, say). Since

(1− x!)(1− x) = (1− x)−1(1− x) = 1

(by Proposition 4.1.58), we deduce that x + x! − x!x = 0. Since x is arbitrary in
J-Rad(A), it follows from Proposition 3.6.18 that J-Rad(A)⊆ Rad(A).

The next result is the weaker we can obtain from Theorem 4.4.45 and from the
chain of inclusions in Proposition 4.4.59(i).

Corollary 4.4.60 Surjective algebra homomorphisms, from complete normed
algebras over K to complete normed strongly semisimple algebras over K, are
continuous.

Let A be an algebra over K and, according to §1.1.36, let A(0) stand for the opposite
algebra of A. Noticing that uw-Rad(A)= uw-Rad(A(0)), and selecting the appropriate
inclusions in Proposition 4.4.59(i), we get that

uw-Rad(A)⊆ Rad(A)∩Rad(A(0))⊆ s-Rad(A).

Therefore, invoking Theorem 4.4.45, we obtain the following refinement of Corol-
lary 4.4.60 immediately above.
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Corollary 4.4.61 Let A and B be complete normed algebras over K, and let Φ :
A → B be a surjective algebra homomorphism. If Rad(B)∩Rad(B(0)) = 0, then Φ is
continuous.

By combining Theorem 4.4.45 and Proposition 4.4.59(ii), we get the next refine-
ment of Theorem 4.4.13.

Corollary 4.4.62 Surjective algebra homomorphisms from complete normed alge-
bras over K to complete normed J-semisimple Jordan-admissible algebras over K
are continuous.

By combining Lemma 4.4.28(iii) and Corollary 4.4.62, we obtain the following
refinement of Proposition 3.4.66

Corollary 4.4.63 Surjective algebra homomorphisms from complete normed com-
plex algebras to non-commutative JB∗-algebras are continuous.

Invoking Proposition 4.4.17(iii) and the commutative particularization of Corol-
lary 4.4.62, we obtain the following refinement of Corollary 4.4.18.

Corollary 4.4.64 Surjective Jordan homomorphisms from complete normed alge-
bras over K to complete normed J-semisimple non-commutative Jordan algebras
over K are continuous.

Let A be a non-commutative Jordan algebra over K. Keeping in mind Propos-
ition 4.4.59(iii), and noticing that J-Rad(A) = J-Rad(A(0)), we get that

J-Rad(A)⊆ Rad(A)∩Rad(A(0)).

Therefore Corollary 4.4.64 above also refines Corollary 4.4.61 in the particular non-
commutative Jordan setting.

Now we begin a detailed discussion of Proposition 4.4.59 and of its consequences.
Throughout the discussion, the facts that Rad(A) = s-Rad(A) when A is a commu-
tative algebra (cf. Proposition 3.6.14(ii)) and that J-Rad(A)=Rad(A) when A is an
associative algebra (cf. Theorem 3.6.21) will be applied without notice. First we
consider the associative and commutative case.

Proposition 4.4.65 Let A be an associative and commutative algebra over K. Then
we have:

(i) LA = RA = M �(A) = QFM (A).
(ii) Ann(A)⊆ w-Rad(A) = uw-Rad(A) = J-Rad(A) = Rad(A) = s-Rad(A).

(iii) The situation 0 = Ann(A) � w-Rad(A) = A can be exemplified even in the
complete normed complex case.

Proof Since LA is a subalgebra of L(A) (by associativity), and LA = RA (by com-
mutativity), we get that LA =RA =M �(A). But LA is actually a quasi-full subalgebra.
Indeed, if a is in A such that La is quasi-invertible in L(A), then, by Lemma 4.4.57, a
is quasi-invertible in A (with quasi-inverse a!, say), and hence (La)

! = La! ∈ LA

because the mapping x → Lx is an algebra homomorphism. Now it is clear that
QFM (A) = LA, which concludes the proof of assertion (i).
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In view of Proposition 4.4.59, to prove assertion (ii) only the inclusion
Rad(A) ⊆ w-Rad(A) must be settled. But, by assertion (i) just proved, Rad(A) is
a QFM (A)-invariant subspace of A. Therefore, to conclude, we must only show
that, for every a ∈ Rad(A), La (= Ra) lies in Rad(QFM (A)). But this follows from
the fact that x → Lx is now an algebra homomorphism from A onto QFM (A), so
that Lemma 4.4.20(ii) applies.

To prove assertion (iii), fix a sequence αn of positive real numbers satisfying
αn+m � αnαm and lim n

√
αn = 0, and take A equal to the complete normed com-

plex algebra consisting of those formal power series a = ∑n∈Nλnxn such that
‖a‖ := ∑∞

n=1αn|λn| < +∞. Then, clearly, Ann(A) = 0. Moreover, since r(x) =
lim n
√
‖xn‖ = lim n

√
αn = 0, and the set {a ∈ A : r(a) = 0} is a closed subalgebra of

A (by Proposition 1.1.107 and Theorem 1.1.73), and A is generated by x as a normed
algebra, we derive from Lemma 1.1.20, that every element of A is quasi-invertible in
A, i.e. Rad(A) = A.

As a result, the particularization of Theorem 4.4.45 to the case where the range
algebra is associative and commutative gives rise to a result weaker than Gelfand’s
Theorem 3.6.9.

The discussion of Proposition 4.4.59 in the non-commutative associative case
is more involved. Indeed, besides some classical results, it needs the construction
of a non-semiprime associative algebra over K with zero weak radical (compare
Lemma 4.4.50(i)). The starting point of the construction is the so-called Weil algebra
over K. This algebra (say W ) is nothing other than the free unital associative algebra
over K generated by two indeterminates x,y subjected to the condition [y,x] = 1.
The algebra W has the universal property that, whenever A is any unital associative
algebra over K, and a,b are in A with [b,a] = 1, there exists a unique (automatically
unit-preseving) algebra homomorphism Φ : W →A such that Φ(x) = a and Φ(y) = b.
Given f = f (x,y) ∈ W , there exists a unique quasi-null sequence {pn}n∈N∪{0} in
K[x] such that f = ∑∞

n=0 pn(x)yn. As a consequence, the mapping

(p, f )→ p(x)+ f (x,y)y

from K[x]×W to W becomes a linear bijection, a fact that will be codified by writing
W = K[x]⊕Wy. It it easily realized that for f ∈ W we have [ f ,x] = ∂ f

∂y , where ∂ f
∂y

stands for the formal partial derivative of f with respect to y. Moreover it is well
known that W is a simple algebra [802, Corollary 1.6.34].

Lemma 4.4.66 Let W stand for the Weil algebra over K. Then there exists a unique
algebra homomorphism ρ : W → L(W ) such that

ρ(x) = Lx and ρ(y) = Lx −Rx +Ly −Ry,

and a unique algebra antihomomorphism θ : W → L(W ) such that

θ(x) = Lx +Ry and θ (y) =−Rx −Ry.

Moreover, both ρ and θ preserve units, and we have

[ρ( f ),θ (g)] = 0 for all f ,g ∈W. (4.4.9)
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Proof The existence and uniqueness of ρ and θ under the requirements in
the statement, as well as the fact that ρ and θ preserve units, follow from
the universal property of W , once we notice that, for the prefixed values of ρ
and θ at x and y, we have [ρ(y),ρ(x)] = [θ(x),θ (y)] = IW . By noticing that
[ρ(x),θ(x)] = [ρ(x),θ(y)] = [ρ(y),θ(x)] = [ρ(y),θ (y)] = 0, and that W is gen-
erated by {x,y}, the fact that [ρ( f ),θ(g)] = 0 for all f ,g ∈ W follows almost
straightforwardly.

Theorem 4.4.67 Let W stand for the Weil algebra over K, let ρ and θ be the linear
mappings from W to L(W ) given by Lemma 4.4.66, and let A denote the algebra over
K consisting of the vector space W ×W and the product

( f1,g1)( f2,g2) := ( f1 f2,ρ( f1)(g2)+θ ( f2)(g1)).

Then we have:

(i) A becomes a unital associative algebra.
(ii) J := {0}×W is an ideal of A with JJ = 0, hence A is not semiprime.

(iii) J is the unique nonzero proper ideal of A, hence A satisfies the DCC on ideals.
(iv) 0 = Ann(A) = w-Rad(A)� uw-Rad(A) = Rad(A) = s-Rad(A) = J.

Proof Assertion (i) follows straightforwardly from the associativity of W and the
fact that ρ (respectively, θ ) is a unit-preserving algebra homomorphism (respect-
ively, antihomomorphism) from W to L(W ) satisfying (4.4.9). Moreover, it is also
straightforward that W ×{0} is a subalgebra of A isomorphic to W via the mapping
( f ,0)→ f , that (as assured in assertion (ii)) J is a nonzero ideal of A with JJ=0, and
that the natural vector space isomorphism A/J ∼= W becomes an algebra isomorph-
ism. The prefixed values of ρ and θ at x and y can be forgotten at these points of the
proof, but not in those which follow.

We are now going to prove assertion (iii). First, let I be a nonzero ideal of A
contained in J, so that I = {0}× L for some nonzero subspace L of W . Then, for
every f ∈ L we have:

(a) (x,0)(0, f ) = (0,ρ(x)( f )) = (0,x f ) ∈ I, so x f ∈ L;
(b) (0, f )(x,0) = (0,θ(x)( f )) = (0,x f + f y) ∈ I, so x f + f y ∈ L, and so f y ∈ L;
(c) (0, f )(y,0) = (0,θ(y)( f )) = (0,− f x− f y) ∈ I, so f x+ f y ∈ L, and so f x ∈ L;
(d) (y,0)(0, f ) = (0,ρ(y)( f )) = (0,x f − f x+y f − f y) ∈ I, so

x f − f x+y f − f y ∈ L, and so y f ∈ L;

and, summarizing, x f , f y, f x,y f ∈ L. Thus L is invariant under left and right multi-
plication by the generators of W , and is therefore a nonzero ideal of W . Since W is
simple, we obtain L =W or, equivalently, I = J. Since I is an arbitrary nonzero ideal
of A contained in J, we conclude that J is a minimal ideal of A. But, on the other
hand, the algebra isomorphism A/J ∼= W and the simplicity of W imply that J is a
maximal ideal of A. Now let I be any nonzero proper ideal of A. By the minimality of
J, either I∩J = 0 or I∩J = J. The first of these possibilities cannot happen because it
would imply that I⊕J = A (by the maximality of J), and then, writing (1,0) = u+v
with u ∈ I and v ∈ J, v would be a nonzero idempotent in J, contradicting that JJ = 0.
Therefore, I ∩ J = J, so J ⊆ I, and so, again by the maximality of J, we finally have
I = J. Thus assertion (iii) has been proved.
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Set F := R(x,1) − L(x,0) ∈ M �(A). We are going to show that F is a bijective
operator on A. To this end, note that for every ( f ,g) ∈ A we have

F( f ,g) = ( f ,g)(x,1)− (x,0)( f ,g) = ( f x,ρ( f )(1)+θ(x)(g))− (x f ,ρ(x)(g))

= ( f x,ρ( f )(1)+xg+gy)− (x f ,xg) = ([ f ,x],gy+ρ( f )(1)).

Let ( f ,g) be in A such that F( f ,g) = 0. Then we have

f x−x f = 0 and gy+ρ( f )(1) = 0. (4.4.10)

The first equality in (4.4.10) implies that ∂ f
∂y = 0, so f = p(x) ∈K[x], hence

ρ( f ) = ρ(p(x)) = p(ρ(x)) = p(Lx),

and finally ρ( f )(1) = p(x) = f . Therefore, by the second equality in (4.4.10), we get
gy+ f = 0, which implies f = g = 0 because W = K[x]⊕Wy. Thus F is injective.
To prove that F is surjective, let now ( f ,g) be arbitrary in A. Since the mapping
∂
∂y : W → W is surjective, there exists h ∈ W such that [h,x] = ∂h

∂y = f . Write h =

h1 +h2y and g = g1 +g2y with h1,g1 ∈ K[x] and h2,g2 ∈W , and set e := g1 +h2y.
Then we have

F(e,g2) = ([e,x],g2y+ρ(e)(1)).

But e−h = g1 −h1 ∈K[x], so [e,x] = ∂e
∂y = ∂h

∂y = f . On the other hand, since

ρ(e) = ρ(g1)+ρ(h2y) = ρ(g1)+ρ(h2)ρ(y),

and ρ(y)(1) = 0, we derive that ρ(e)(1) = ρ(g1)(1) = g1, and hence that
g2y+ρ(e)(1) = g2y+g1 = g. It follows that F(e,g2) = ( f ,g). Thus F is surjective.

Since the linear operator F : A → A in the above paragraph is bijective, it is
invertible in L(A) and moreover, since F ∈ QFM (A), and QFM (A) is a quasi-
full subalgebra of L(A) containing the unit IA of L(A) (because A is unital), F−1 lies
in QFM (A). Since F−1(0,1)=(1,0) (because F(1,0)=(0,1)), and (0,1) belongs to
J, and (1,0) does not belong to J, it follows that J is not invariant under QFM (A).
Now, invoking the definitions of the weak and strong radicals, Lemma 4.4.50(i),
Proposition 4.4.59, and assertions (ii) and (iii) in the present theorem, assertion (iv)
follows.

In Remark 4.4.68 immediately below, we conclude our discussion of Propos-
ition 4.4.59.

Remark 4.4.68 (a) Let A be an associative algebra over K. We already know
that the inclusion Ann(A) ⊆ w-Rad(A) in Proposition 4.4.59(i) may be strict (cf.
Proposition 4.4.65(iii)). Moreover, according to Theorem 4.4.67, the inclusion
w-Rad(A) ⊆ uw-Rad(A) may also be strict. We note however that the algebra A in
Theorem 4.4.67 cannot be endowed with any algebra norm. (Indeed, the algebra A in
Theorem 4.4.67 contains a a copy of the Weil algebra, and hence there are a,b ∈ A
such that [b,a] = 1; therefore, if there were an algebra norm ‖ · ‖ on A, then, by
Proposition 3.6.49, we would have r‖·‖(1) = 0, a contradiction.) On the other hand,
the inclusion uw-Rad(A) ⊆ Rad(A) may be strict too. Indeed, since simple algebras
have zero ultra-weak radical (by Lemma 4.4.50(iii)), the celebrated Sasiada’s
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construction [550] (see also [743, pp. 125–31]) of a simple radical associative algebra
provides us with an example where in fact we have 0 = uw-Rad(A) � Rad(A) = A.
Nevertheless, the question: does the equality uw-Rad(A) = Rad(A) hold whenever
the associative algebra A is complete normed and complex, remains open to date.
A counterexample of such an algebra A with 0 = uw-Rad(A) � Rad(A) would
show that, even in the associative setting, Theorem 4.4.45 is a strict refinement
of Johnson’s theorem. To conclude the discussion of Proposition 4.4.59 in the
associative setting, let us note that the inclusion Rad(A) ⊆ s-Rad(A) may be strict,
even in the unital C∗-algebra case. Indeed, let H be any infinite-dimensional complex
Hilbert space, and let A stand for the C∗-algebra BL(H). Then the space K(H), of all
compact operators on H, is a nonzero proper ideal of A (which implies that zero is
not a maximal ideal of A). Moreover, by Corollary 1.4.33, K(H) is contained in every
nonzero closed ideal of A. It follows from Corollary 1.1.53 that s-Rad(A) ⊇ K(H),
and hence, keeping in mind Example 3.6.40, we get that 0 = Rad(A) � s-Rad(A).
Note that, since A is unital, the equality s-Rad(A) = A cannot be expected (cf.
Fact 1.1.52). Now, let H be as above, and let A stand for the C∗-algebra K(H) (cf.
Proposition 2.3.43). Then, since A is not unital, we realize that zero is not a modular
ideal of A. Moreover, by Corollary 1.4.33, A is topologically simple. It follows from
Corollary 3.6.4 that s-Rad(A) = A, and hence, keeping in mind Example 3.6.40
again, we get that 0 = Rad(A)� s-Rad(A) = A.

(b) Now, let A be an anticommutative algebra over K. Then, clearly, A is a non-
commutative Jordan algebra. Moreover we have J-Rad(A) = A because, for each
x∈A, −x is the quasi-J-inverse of x (cf. Definition 4.4.58). Therefore, by asser-
tions (i) and (iii) in Proposition 4.4.59, we have

J-Rad(A) = Rad(A) = s-Rad(A) = A.

Nevertheless, since there are choices of A such that A is simple (for example the
subalgebra of the Lie algebra (M2(K))ant consisting of all trace-zero matrices), it
follows from Lemma 4.4.50(iii) that, for such choices of A, we have

0 = uw-Rad(A)� J-Rad(A) = A and 0 = uw-Rad(A)� Rad(A) = A.

This last strict inclusion clarifies the penultimate inclusion in Proposition 4.4.59(i),
whereas the former clarifies Proposition 4.4.59(ii) and the first inclusion in Propos-
ition 4.4.59(iii). When we were in the associative setting (cf. part (a) of the present
remark), the inclusion uw-Rad(A)⊆ Rad(A) was already clarified. But the algebra A
appearing there was not finite-dimensional, nor even complete normed.

(c) The inclusion J-Rad(A)⊆Rad(A) in Proposition 4.4.59(iii) may be strict, even
in the unital JB∗-algebra case. Indeed, let H be any infinite-dimensional complex
Hilbert space, and let A stand for the JB∗-algebra (BL(H))sym. By Lemma 4.4.28(iii),
we have J-Rad(A) = 0. On the other hand, since A is commutative, we have
Rad(A) = s-Rad(A). Moreover, by Proposition 3.6.11(ii) and part (a) of the present
remark, we have

s-Rad(A) = s-Rad(BL(H))⊇ K(H).

It follows that 0 = J-Rad(A) � Rad(A). Now, let H be as above, and let A stand
for the JB∗-algebra (K(H))sym. Then, by Lemma 3.6.10, Corollary 1.4.33, and
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Proposition 3.6.11(i), A is non-unital and topologically simple. It follows from
Lemma 4.4.28(iii) and Corollary 3.6.4 that 0 = J-Rad(A)� Rad(A) = A.

4.4.5 Historical notes and comments

In [353], Johnson proved that every irreducible representation of a complete normed
associative algebra on a normed space, whose range consists only of bounded
operators, is automatically continuous. Then he derived his celebrated uniqueness-
of-norm theorem (the associative particularizations of Theorem 4.4.13 and Corollary
4.4.14). Johnson’s uniqueness-of-norm theorem, which is included with its classical
proof in [696, Section 25], has inspired Subsections 4.4.1, 4.4.2, and 4.4.4.

According to Allan [16], Lemma 4.4.1 was proved by Zemánek in his PhD
thesis [821], as a step in the proof of his celebrated characterization of the radical
of a complete normed associative complex algebra B as the set of those elements
b ∈ B satisfying r(b + x) = 0 for every x ∈ B such that r(x) = 0 (see also [683,
Theorem 5.3.1]); but, in the published version in [664], the lemma does not appear,
since a different method of proof was used. Both Proposition 4.4.3, which (as
done by Palmer in [786, p. 227]) we call Ransford’s three circles theorem, and
the proof given here, are due to Ransford [499]. Corollary 4.4.4 was pointed out
by Villena [626], and becomes an abstract version of Ransford’s simple argument
in [499] to derive Johnson’s uniqueness-of-norm theorem from Ransford’s three
circles theorem. Allan’s book [675, pp. 248–59] contains a proof of Lemma 4.4.1,
as well as relevant generalizations of Ransford’s three circles theorem. These are
applied to give some very elementary proofs of results of Aupetit, Ransford and
others on the variations of the spectral radius of a holomorphic family of elements
in a complete normed associative complex algebra (see also [16] again).

Lemma 4.4.10 and Proposition 4.4.11 are due to McCrimmon, who in [435]
proved the commutative case of assertion (i) in Proposition 4.4.11 (see also [822,
Section 14.3] and [777, Section III.1.3]), and later completed the proof of the
proposition with the argument reproduced in the last paragraph of our proof (see
[436, Section 6]). The remaning results from Lemma 4.4.5 to Corollary 4.4.14
are due to Aupetit [40] (1982), and predate Ransford’s work [499] (1989). In
fact, a revolution in the theory of complete normed Jordan algebras arose when
Aupetit jordanized the associative methods in his books [682] and [683] in order
to solve several Jordan problems that seemed intractable using classical tools.
Thus in Aupetit’s paper [40] just quoted, at the same time that a first Jacobson-
representation-theory-free proof of Johnson’s uniqueness-of-norm theorem was
given, the generalization of Johnson’s theorem to the setting of Jordan-admissible
algebras (as stated in Theorem 4.4.13) was proved. The new tool in Aupetit’s
original proof of Proposition 4.4.7 was the subharmonicity of the spectral radius in
complete normed Jordan complex algebras (see Theorem 4.5.14 below), generalizing
the corresponding associative forerunner, due to Vesentini [622]. Following on
from this explanation, the reader will understand why we call Corollary 4.4.14 (or
Theorem 4.4.13 itself) the Johnson–Aupetit–Ransford uniqueness-of-norm theorem.

§4.4.69 Our versions of results from Proposition 4.4.3 to Corollary 4.4.14 are
more general than those in the literature previously cited. The changes to the
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original proofs, although clever, are however not particularly deep. Indeed, the idea
of introducing the function s(·) on a general non-associative normed algebra as
a succedaneous of the associative spectral radius r(·), and that of formulating the
Aupetit–Ransford techniques involving s(·) instead of r(·), are due to A. Cedilnik
(old private communication). On the other hand, according to [786, p. 227], the
idea of removing completeness nontrivially in the Aupetit–Ransford techniques
first appears in [516]. It is also worth mentioning that the actual versions of
Proposition 4.4.7, Theorem 4.4.13, and Corollary 4.4.18 have been possible thanks
to the refinement of the ideas of Balachandran–Rema [54] (cf. §3.4.87) stated in
Proposition 3.4.63. Finally, let us say that Ransford deals only with associative
algebras, that Aupetit deals only with associative or Jordan algebras, but that the
unification of Aupetit’s results in terms of Jordan-admissible algebras is almost
straightforward.

Now, let us apply Proposition 4.4.7 to prove the following refinement of Propos-
ition 3.5.65.

Proposition 4.4.70 Let A be a complete normed complex ∗-algebra admitting
power-associativity and satisfying ‖a∗a‖ = ‖a∗‖‖a‖ for every a ∈ A. Then ∗ is
continuous.

Proof Given h∈H(A,∗), we have h2 ∈H(A,∗) and ‖h2‖= ‖h‖2, so for every n∈N
we have h[n] ∈ H(A,∗) (cf. §4.4.2) and ‖h[n]‖ = ‖h‖2n

, which implies s(h) = ‖h‖.
Moreover, denoting by B the normed complex algebra obtained from A by only
replacing the product by scalars λa with λ̄a, and noticing that ∗ can be seen
as a (linear) Jordan homomorphism from A to B, Proposition 4.4.7 applies, so
that the equality s(x) = 0 holds whenever x lies in S(∗). On the other hand, for
x ∈S(∗) we know that x∗x ∈S(∗)∩H(A,∗). It follows that, for x ∈S(∗) we have
‖x∗‖‖x‖= ‖x∗x‖= s(x∗x) = 0, and so x = 0. Therefore S(∗) = 0.

Assertion (i) in Proposition 4.4.17 is taken from Martı́nez’ PhD thesis [775] (see
also [250, Lemma 6.5] for a different proof), whereas the remaining assertions
in that proposition are taken from Cuenca’s PhD thesis [714], and also appear
in [259, Lemma 16]. Although easily derivable from previously known results,
Corollary 4.4.18 could be new. The associative forerunner of this corollary (that
surjective Jordan homomorphism, from complete normed associative algebras to
complete normed semisimple associative algebras, are continuous) is due to Sinclair
(see the introduction of [577]).

Lemma 4.4.19 is folklore in automatic continuity theory (see for example [810,
Lemma 1.3]).

Without enjoying their name, Jordan normed Q-algebras first appeared in Viola
Devapakkiam’s paper [628], and were considered later, in an incidental way, by
Bensebah in [86].

§4.4.71 Normed Q-algebras (in our Jordan-admissible meaning) were introduced
and studied in depth by Pérez, Rico, and Rodrı́guez [488], following Yood’s and
Palmer’s associative forerunners (cf. §3.6.61). We summarize the main results
of [488] on normed Q-algebras in Theorem 4.4.72 immediately below. Some
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definitions are suitable. Let A be a Jordan algebra over K. A vector subspace M
of A such that Um(A) ⊆ M for every m ∈ M is called an inner ideal of A. If in
addition M is also a subalgebra of A, then it is called a strict inner ideal of A. Given
x ∈ A, a strict inner ideal M of A is called x-modular when the following three
conditions are satisfied:

(i) U1−x(A)⊆ M.
(ii) U1−x,m(z) ∈ M for all z ∈ A1 and m ∈ M.

(iii) x2 − x ∈ M.

If there exists x ∈ A such that M is a maximal element (relative to the inclusion) of
the family of all proper x-modular strict inner ideals of A, then we say that M is a
maximal modular inner ideal of A. Now, let A be a Jordan-admissible algebra over
K. The maximal modular inner ideals of A are, by definition, the maximal modular
inner ideals of the Jordan algebra Asym. In agreement with §4.4.38, a subalgebra B
of A is said to be a quasi-J-full subalgebra of A if, whenever b belongs to B and is
quasi-J-invertible in A, the quasi-J-inverse of b lies in B.

Theorem 4.4.72 Let A be a normed Jordan-admissible algebra over K. Then the
following conditions are equivalent:

(i) The set of all quasi-J-invertible elements of A is open.
(ii) A is a Q-algebra (in our meaning, that the set of all quasi-J-invertible elements

of A is a neighbourhood of zero in A).
(iii) The set of all quasi-J-invertible elements of A has some interior point.
(iv) s(a) = sup{|λ | : λ ∈ sp((A1)C,a)} for every a ∈ A.
(v) sup{|λ | : λ ∈ sp((A1)C,a)} � ‖a‖ for every a ∈ A.

(vi) A is a quasi-J-full subalgebra of its completion.
(vii) A is a quasi-J-full subalgebra of some complete normed Jordan-admissible

algebra over K.
(viii) Every element a ∈ A with ‖a‖< 1 is quasi-J-invertible in A.

(ix) Maximal modular inner ideals of A are closed in A.

We will not discuss here the proof of Theorem 4.4.72 above. Let us say however
that the implication (ii)⇒(viii) in the theorem follows from Lemma 4.4.21(iii), and
that, in slightly different terms, the equivalence (iv)⇔(vi) will be proved later (see
Proposition 4.6.11). Let us also recall that, in the particular associative setting, the
most part of Theorem 4.4.72 was already proved (cf. Proposition 3.6.43).

§4.4.73 The notion of inner ideal in the Jordan algebra setting becomes a suc-
cedaneous of that of one-sided ideal in the associative setting (see [777, pp. 86–7] for
details). Accordingly, given a Jordan algebra A, J-primitive ideals of A are defined as
the cores in A of maximal modular inner ideals of A, and A is said to be a J-primitive
algebra if zero is a J-primitive ideal of A (compare Definition 3.6.12). The concept
of modularity for inner ideals of a Jordan algebra is due to Hogben and McCrimmon
[328], who prove, as the main result, that the Jacobson radical of a Jordan algebra A
coincides with the intersection of all J-primitive ideals of A (see also [777, Theorem
III.5.3.1]). Thus, a Jordan algebra is J-semisimple if and only if it is a subdirect
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product of J-primitive Jordan algebras. The reader is referred to [257] for the non-
commutative Jordan version of the result of [328] just quoted.

The associative forerunner of Theorem 4.4.23 is due to Rodrı́guez [519], and its
actual version is proved independently in [86, 488].

As pointed out by Yood in [646], the associative forerunner of Lemma 4.4.28(i)(b)
(that a C∗-algebra is a normed Q-algebra under any algebra norm) is due to
Rickart [502] (see also [795, Theorem 4.8.3]). The associative forerunner of
Theorem 4.4.29 is due to Cleveland [176], and is included in [786, Theorem 6.1.16].
Its actual non-associative version is due independently to Bensebah [86] and Pérez-
Rico-Rodrı́guez [488]. The proof of Theorem 4.4.29 given in [86, 488] (based on the
Aupetit–Ransford techniques) is essentially the same in both papers, and has been
incorporated in our text almost verbatim. According to Palmer [786, pp. 560, 567], in
the associative setting, proofs similar to the one we have given had been previously
discovered by Dales [204] and Rodrı́guez [519]. Theorem 4.4.29 has been re-proved
by Hejazian and Niknam [319] by jordanizing Cleveland’s original arguments.

It turns out rather curious that, via Fact 3.3.4, the commutative particularization
of Theorem 4.4.29 is better than the theorem itself. Thus, for example, if A is a
C∗-algebra, then, applying Theorem 4.4.29 to the JB∗-algebra Asym, we get that the
topology of any algebra norm on Asym is stronger than that of the natural norm.
Since algebra norms on any algebra A are algebra norms on Asym, this fact refines
Cleveland’s classical theorem. A similar comment can be made concerning Propos-
ition 4.4.34.

The appropriate variant of Cleveland’s theorem for JB∗-triples is also true. Indeed,
as proved by Fernández-Polo, Garcés, and Peralta [262], we have the following.

Theorem 4.4.74 Let J be a JB∗-triple, and let ||| · ||| be any norm on J making
continuous the triple product of J. Then the topology of ||| · ||| is stronger than that of
the natural norm.

As a consequence, if J is a JB∗-triple, and if ||| · ||| is a continuous norm on J making
continuous the triple product of J, then ||| · ||| is equivalent to the natural norm of J.
This particular case of Theorem 4.4.74 had been previously proved by Bouhya and
Fernández [121], who also proved the following variant of Proposition 4.4.34.

Proposition 4.4.75 Let J be a JB∗-triple, and let ||| · ||| be any norm on J such that
||| · ||| � ‖ · ‖ and |||{xyz}||| � |||x ||||||y ||||||z ||| for all x,y,z ∈ J. Then ||| · |||= ‖ · ‖.

It is worth remarking that, although C∗-algebras are JB∗-triples, Cleveland’s
theorem is not straightforwardly derivable from Theorem 4.4.74. Actually The-
orems 4.4.29 and 4.4.74 are mutually independent results.

Although easily derivable from the results in [86, 488], Corollary 4.4.30 went
unnoticed there. Corollary 4.4.31 is new. Its associative forerunner is due to
Barnes [59]. Proposition 4.4.34 has been taken from [488]. The associative fore-
runner of Proposition 4.4.34 (that C∗-algebras have minimality of norm) had
already been proved in Lemma 2.3.27 without involving any version of the Vidav–
Palmer theorem. As we commented in Subsection 2.3.5, it is due to Bonsall [111].
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Corollaries 4.4.32, 4.4.35, and 4.4.36 become refinements of the following fact,
proved in [488].

Fact 4.4.76 Let B be a normed associative complex algebra, and assume that B
is the range of a continuous (respectively, contractive) Jordan homomorphism from
some C∗-algebra. Then B is bicontinuously (respectively, isometrically) isomorphic
to a C∗-algebra.

Let A be a normed algebra over K. We say that A has minimum norm (respectively,
minimum norm topology) if it satisfies the conclusion in Proposition 1.2.51 (respect-
ively, Theorem 4.4.29). These notions are related to those previously introduced in
Definitions 4.4.22 and 4.4.33 by means of the following diagram:

A has minimum norm =⇒ A has minimum norm topology

⇓ ⇓

A has minimality of norm
A associative

=⇒ A has minimality of norm topology

§4.4.77 All implications in the diagram are clear, except for the one involving the
additional requirement that A be associative. The proof of this implication, taken
from [519], goes as follows:

Assume that the normed associative algebra (A,‖ · ‖) has minimality of norm,
and let ||| · ||| be a continuous algebra norm on A. Then the closed unit ball of A for
the norm ‖·‖ is a ||| · |||-bounded and multiplicatively closed subset of A. Therefore,
by a theorem of Rota and Strang [544] (see also [696, Theorem 4.1]) which will
be proved later in Proposition 4.5.2(i), there exists an algebra norm p on A which
is equivalent to ||| · ||| and satisfies p(a) � 1 whenever a is in A with ‖a‖ � 1. Since
p(·)� ‖·‖ and A has minimality of norm, we have p(·) = ‖·‖. Therefore ||| · ||| and
‖ · ‖ are equivalent norms on A.

Even in the case of normed alternative algebras, we do not know if minimality
of norm implies minimality of norm topology. For a full non-associative discussion
of the Rota–Strang associative theorem, applied in the above proof, the reader is
referred to [452, 453]. The property of having minimum norm is enjoyed by some
normed algebras which are far from being associative. Indeed, according to Propos-
ition 2.7.42, every absolute-valued real algebra with a left unit has minimum norm
(compare Proposition 2.6.27 and Theorem 2.7.38).

In the paper [111] already quoted, Bonsall proves that, if X is a normed space over
K, and if B is any subalgebra of BL(X) containing all finite-rank operators, then B
(endowed with the operator norm) has minimality of norm (and hence, also has min-
imality of norm topology). Therefore, by Example 3.6.40 and Theorem 4.4.23, if X is
a complex Banach space, and if B is any closed subalgebra of BL(X) containing all
finite-rank operators, then surjective algebra homomorphisms from normed complex
Q-algebras to B are automatically continuous. Actually, as proved by Dales in [204],
if X is a Banach space over K, and if B is any subalgebra of BL(X) containing all
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finite-rank operators, then B has minimum norm topology. According to [204], this
last fact is a very old result of Eidelheit [230], which may even go back to S. Mazur
before 1939. Generalizations of the results of Bonsall and Dales quoted above can
be seen in the paper of Esterle [247].

Most notions and results in Subsection 4.4.4 are taken from Rodrı́guez’
paper [516]. Exceptions are Proposition 4.4.49 (which is taken from [529]),
assertions (i) and (ii) in Lemma 4.4.50, Proposition 4.4.52, Corollary 4.4.53, and
assertions (i) and (ii) in Proposition 4.4.65 (all of which are taken from [520]),
Fact 4.4.54 (which is folklore), Corollary 4.4.55 (which was proved in [165] by
other methods), Corollary 4.4.64 (which, as mentioned in relation to its forerunner
stated in Corollary 4.4.18, could be new), assertion (iii) in Proposition 4.4.65
(which is folklore, see for example [696, Corollary 1.24]), and Lemma 4.4.66 and
Theorem 4.4.67 (due to Haı̈ly [303]).

Before the publication of [516], the problem of the uniqueness of the complete
algebra norm topology in general non-associative algebras had not been solved. Even
more, this problem had been not formally raised at that time because, for general
non-associative algebras, there was no notion of ‘radical’ such that: (i) it had the
same algebraic relevance as that of Jacobson radical in the associative case; and
(ii) one could expect that a non-associative algebra with zero ‘radical’ to have at
most one complete algebra norm topology. The proof of Theorem 4.4.43 leads in
a natural way to a suitable notion of such a ‘radical’, namely the weak radical as
introduced in Definition 4.4.39. Analogously, in order to solve the more ambitious
problem of the automatic continuity of surjective algebra homomorphisms, the proof
of Theorem 4.4.45 leads in a natural way to the notion of ultra-weak radical as
introduced in Definition 4.4.44.

The existence of infinite-dimensional Lie algebras with a unique complete alge-
bra norm topology, shown in Remark 4.4.48, encouraged some authors to produce
deeper results along these lines. In order to review these results, note that, given
a complete normed associative algebra B, the complete normed Lie algebra Bant

will have a unique complete algebra norm topology (respectively, surjective alge-
bra homomorphisms from complete normed algebras to Bant will be automatically
continuous) as soon as w-Rad(Bant) = 0 (respectively, uw-Rad(Bant) = 0). But, what
does it mean that w-Rad(Bant) = 0 (respectively, that uw-Rad(Bant) = 0) in terms of
the classical associative properties of B? The pioneering paper trying to answer these
questions is that of Berenguer and Villena [98]. The definitive solution is given by
Aupetit and Mathieu [47].

Let B be an associative algebra. The centre modulo the radical, Z (B), of B is
defined as the subspace of B consisting of those elements b ∈ B such that [b,x] ∈
Rad(B) for every x ∈ B (see [683, p. 92]). Clearly, we have that Rad(B) ⊆ Z (B),
so that Z (B) = 0 if and only if B is semisimple and has zero centre. For b ∈ B, we
denote by Db the inner derivation of B defined by Db(x) := [b,x] for every x ∈ B
(note that Db = LBant

b = −RBant

b ). As a key tool in the whole paper [47], Aupetit and
Mathieu prove the following.

Proposition 4.4.78 Let B be a complete normed associative complex algebra. Then
b ∈ B belongs to Z (B) if and only if r(D[b,x]) = 0 for every x ∈ B.
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Now, with Definition 4.4.44 being omnipresent in the whole argument, we can
prove the following.

Corollary 4.4.79 Let B be a complete normed associative complex algebra. Then
uw-Rad(Bant)⊆ Z (B).

Proof In view of Remark 4.4.41, it is enough to show that

A-Rad(Bant)⊆ Z (B) (4.4.11)

for every subalgebra A of BL(B) containing DB. Let A be such a subalgebra, and
let b be in A-Rad(Bant). Then, for every x ∈ B, [b,x] lies in A-Rad(Bant) (because
A-Rad(Bant) is an ideal of Bant), so D[b,x] belongs to Rad(A), and so r(D[b,x]) = 0 (by
Corollary 3.6.23). Therefore, by Proposition 4.4.78, b belongs to Z (B). Thus the
desired inclusion (4.4.11) has been proved.

Combining Theorem 4.4.45 and Corollary 4.4.79, we get the following.

Theorem 4.4.80 Let B be a complete normed semisimple associative complex
algebra with zero centre. Then surjective algebra homomorphisms from complete
normed complex algebras to the complete normed Lie algebra Bant are automatically
continuous. As a consequence Bant has a unique complete algebra norm topology.

The above theorem is the main result in the Aupetit–Mathieu paper [47]. Our
discussion shows that it is somehow contained in Theorem 4.4.45. Indeed, it is
contained in Theorem 4.4.45, but modulo Proposition 4.4.78 (as we have already
commented) becomes the key tool in [47]. Theorem 4.4.80, with ‘bijective’ instead
of ‘surjective’, is the main result in the Berenguer–Villena forerunner [98] already
quoted. A variant along the same lines, which is not contained in Theorem 4.4.80, can
be seen in [97]. A generalization of Theorem 4.4.80 to the setting of Jordan algebras,
due to Brešar, Cabrera, Fosner, and Villena [130], will be completely proved in the
second volume of our book.

In relation to Proposition 4.4.78, we note that, as was proved earlier by Harris
and Kadison [316], the centre modulo the radical of a complete normed associative
complex algebra B can also be characterized as the set of those elements b ∈ B such
that sp(B1 ,b+ x)⊆ sp(B1 ,b)+ sp(B1 ,x) for every x ∈ B.

In the same way as Theorem 4.4.80 is the natural generalization of Remark
4.4.48(c), the following theorem, due to Villena [627], becomes the natural gen-
eralization of Remark 4.4.48(e). We recall that derivations of a complete normed
semisimple associative algebra are continuous [355], so that the set of all derivations
of such an algebra B becomes a closed subalgebra of the complete normed Lie
algebra (BL(B))ant.

Theorem 4.4.81 Let B be a complete normed semisimple associative complex alge-
bra, and let D stand for the complete normed Lie complex algebra of all derivations
of B. Then surjective algebra homomorphisms from complete normed Lie complex
algebras to D are automatically continuous. As a consequence, D has a unique
complete algebra norm topology.
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Remark 4.4.48(f) has also been significantly refined. Indeed, as proved in
[526], dense range algebra homomorphisms from complete normed algebras to
H∗-algebras with zero annihilator are automatically continuous.

In the complex case, Proposition 4.4.49 has a relevant refinement. Indeed, as
proved in [529], if A is a complete normed complex algebra with no nonzero
two-sided topological divisor of zero, then (possibly non-surjective) algebra homo-
morphisms from complete normed complex algebras to A are continuous. The
question of whether a similar result is true for real algebras remains unanswered to
date, even if the assumption that A has no nonzero two-sided topological divisor of
zero is strengthened to the one that A has no nonzero one-sided topological divisor
of zero. An affirmative answer to this question depends on an affirmative answer to
the complete version of Problem 2.7.45 (see [529] for details).

Corollary 4.4.60 contains Rickart’s classical uniqueness-of-norm theorem
(Corollary 3.6.8) and even its generalization to Jordan-admissible algebras (Cor-
ollary 4.1.20), but does not contain non-associative dense-range-homomorphism
theorems like Theorem 4.1.19 or Proposition 4.1.108, nor even Rickart’s associative
forerunner. Corollary 4.4.61 has recently been rediscovered in [415]. It is worth
mentioning that, in view of Remark 4.4.68(c), Corollary 4.4.61 does not contain
Corollary 4.4.62 and 4.4.63, nor even Aupetit’s forerunner stated in Theorem 4.4.13.

As pointed out in [303], the weak radical does not behave ‘too well’ as a radical.
Indeed, if A stands for the associative algebra in Haı̈ly’s Theorem 4.4.67, then we
have w-Rad(A)= 0, but, if J denotes the unique nonzero proper ideal of A, then, since
JJ = 0, we get w-Rad(J) = J 	= 0. This pathology resembles that of the annihilator.
Indeed, if A is any nonzero algebra with zero product, then its unital extension A1

has zero annihilator, but A is an ideal of A1 with Ann(A) = A 	= 0. It is also proved in
Haı̈ly’s paper [303] that the weak radical of any finite-dimensional Jordan algebra
becomes the largest nilpotent ideal of A. The variant of this result with ‘alternative’
instead of ‘Jordan’, as well as related results for generalized standard algebras (cf.
§2.8.80), had been proved earlier in [520].

§4.4.82 To conclude our comments on Subsection 4.4.4, let us relate the weak
and ultra-weak radicals to other classical radicals which need not be relevant in the
automatic continuity theory. Let A be an algebra over K. Since A is a semiprime ideal
of A (cf. §3.6.15), and the intersection of any family of semiprime ideals of A is a
semiprime ideal of A, it follows that there exists a smallest semiprime ideal of A.
This ideal is called the Baer radical of A. Since Rad(A) is a semiprime ideal of A
(by Proposition 3.6.16(ii)), the Baer radical of A is contained in Rad(A). Following
[728, Section I.1] and [819, Section 21], we define the Albert radical of A as the
intersection of the family of those maximal ideals M of A such that AA � M (with
the usual convention that the Albert radical of A equals the whole algebra A if such
maximal ideals do not exist). Clearly, the Albert radical of A is contained in the
strong radical of A, and is equal to the strong radical of A whenever A is unital.
In the finite-dimensional setting, the Albert radical was introduced by Albert [8]
(see also Jacobson [350, pp. 1090–1]), who proved that, if A is a finite-dimensional
algebra, then the Albert radical of A is the smallest ideal R of A such that A/R is zero
or a finite direct sum of simple ideals.
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Assertions (i) and (ii) in the following lemma are well known (see for
example [819, 21.9]). Assertion (iii) is due to Albert [8].

Lemma 4.4.83 Let A be an algebra over K. We have:

(i) If M is a maximal ideal of A such that AA � M, then M is a semiprime ideal
of A.

(ii) The Albert radical of A is a semiprime ideal of A, and hence contains the Baer
radical of A.

(iii) The situation that the Baer radical of A is equal to zero, but the Albert radical
of A is isomorphic to K, can be exemplified even in the unital finite-dimensional
case.

Proof Let M be a maximal ideal of A such that AA � M. Then the quotient algebra
A/M is simple, and hence semiprime. Therefore M is a semiprime ideal of A. This
proves assertion (i).

Assertion (ii) follows from assertion (i) by keeping in mind that the intersection
of any family of semiprime ideals of A is a semiprime ideal of A.

Let A be the three-dimensional unital algebra over K with basis {1,u,v} and
multiplication table given by u2 = 1, uv = v2 = v, vu = 0. The reader may easily
verify that the unique nonzero proper ideals of A are I1 :=Kv, I2 :=Kv+K(1+u),
and I3 :=Kv+K(1−u). It follows that I1 is isomorphic to K, and that A is a prime
algebra (hence the Baer radical of A equals zero). On the other hand, since I2 and I3

are the unique maximal ideals of A, and AA = A, and I1 = I2 ∩ I3, we deduce that I1

equals the Albert radical of A.

Proposition 4.4.84 Let A be an algebra over K. We have

(i) M �(A)-Rad(A) is contained in the Albert radical of A.

(ii) The situation that M �(A)-Rad(A) = 0 and that A has nonzero Albert radical can
be exemplified even in the unital finite-dimensional case.

Proof To prove assertion (i), it is enough to show that R := M �(A)-Rad(A) is
contained in every maximal ideal M of A such that AA � M. Let M be such an ideal.
Regard A as a left M �(A)-module in the natural way, and note that the ideals of A are
nothing other than the M �(A)-submodules of A. Since M is a maximal ideal of A with
AA � M, it follows that the quotient M �(A)-module A/M is irreducible. Therefore,
for every x ∈ R we have Lx(A/M) = 0 (because Lx ∈ Rad(M �(A))) or, equivalently,
xA ⊆ M. Thus RA ⊆ M and, in particular RR ⊆ M. Since M is a semiprime ideal of
A (by Lemma 4.4.83(i)), we derive that R ⊆ M, as desired.

To prove assertion (ii), let A stand for the unital finite-dimensional algebra over K
given by Lemma 4.4.83(iii), so that the Albert radical of A equals Kv for some
nonzero idempotent v. If v were in M �(A)-Rad(A), then, by Lemma 4.4.56,
there would exist a ∈ A such that a = va − v ∈ Kv, and hence, since v is the
unit of Kv, we would have v = 0, a contradiction. Therefore v /∈ M�(A)-Rad(A).
Since, by assertion (i), M�(A)-Rad(A) is contained in Kv, we conclude that
M�(A)-Rad(A) = 0.
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Remark 4.4.85 Let A be a finite-dimensional algebra over K. It follows from
Propositions 4.4.52(ii) and 4.4.84 that, as pointed out in [516], uw-Rad(A) is con-
tained in the Albert radical of A, and that there are choices of A where uw-Rad(A)= 0
and A has nonzero Albert radical.

Let A be an algebra over K, and let I be an ideal of A. We denote by Ĩ the ideal of
M �(A) generated by the set {Lx,Rx : x ∈ I}, and we say that I is a multiplicatively nil
ideal of A if Ĩ is a nil algebra. Now assume that A is associative. For a,b∈A1 , we will
denote by Ma,b the two-sided multiplication operator on A defined by Ma,b(x) = axb.
Note that M1,1 = IA, and that, for each a ∈ A, Ma,1 = LA

a and M1,a = RA
a . Moreover,

we have Ma,bMc,d = Mac,db for all a,b,c,d ∈ A1 . Then it is easy to realize that Ĩ
consists precisely of those elements of M �(A) which can be written as ∑n

i=1 Mai,bi

for suitable n ∈N and ai,bi ∈ A1 (1 � i � n) such that, for each i, at least one of ai,bi

lies in I.

Lemma 4.4.86 Let A be an associative algebra over K, let I be an ideal of A, and let
S (I) stand for the sum of all ideals J of A satisfying JJ ⊆ I. If I is a multiplicatively
nil ideal of A, then so is S (I).

Proof Note that each element of S (I) can be written as ∑m
i=1 ci for suitable m ∈ N

and ci ∈ A (1 � i � m) such that ciA1ci ⊆ I. Let F be in S̃ (I). It follows that F =

∑n
i=1 Mai,bi for suitable n ∈N and ai,bi ∈ A1 (1 � i � n) such that, for each i, at least

one of aiA1ai, biA1bi is contained in I. Since

Fn+1 = ∑
1�i1,i2,...,in+1�n

Mai1 ai2 ···ain+1 ,bin+1 ···bi2 bi1
,

and for each choice of i1, i2, . . . , in+1∈{1, . . . ,n} there exist j,k∈{1, . . . ,n+1} such
that i j = ik, we deduce that at least one of ai1 ai2 · · ·ain+1 , bin+1 · · ·bi2 bi1 lies in I, and
consequently Fn+1 ∈ Ĩ. Now, if I is a multiplicatively nil ideal of A, then Fn+1 is
nilpotent, so F is nilpotent, and so S (I) is a multiplicatively nil ideal of A because

F is arbitrary in S̃ (I).

Let A be any algebra over K. Following [822, p.161], we define by transfinite
induction the Baer chain of A as the chain

B0(A)⊆ B1(A)⊆ ·· · ⊆ Bβ (A)⊆ ·· ·

of ideals of A, indexed by ordinal numbers β , as follows. We set B0(A) := 0. If
β > 0 is not a limit ordinal, then Bβ (A) denotes the sum of all ideals J of A such that
JJ ⊆ Bβ−1(A). Finally, if β is a limit ordinal, then we set Bβ (A) := ∪α<βBα(A).
The Baer chain stabilizes at some ordinal γ (for example when γ is greater than the
cardinality of the algebra A), and B(A) := Bγ(A) coincides with the Baer radical of
A as defined in §4.4.82 (see [822, Proposition 8.2.4]).

We already know that both the Baer radical of A and the ultra-weak radical of A are
contained in Rad(A). In the associative case we have the following clarifying result.

Proposition 4.4.87 Let A be an associative algebra over K. Then we have:

(i) The Baer radical of A is a multiplicatively nil ideal of A.
(ii) The Baer radical of A is contained in M �(A)-Rad(A), and hence in uw-Rad(A).
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Proof To prove assertion (i) it is enough to show that Bα(A) is a multiplicatively nil
ideal of A for every ordinal α . Suppose the contrary, and let β stand for the minimum
ordinal such that Bβ (A) is not a multiplicatively nil ideal of A. It is clear that β > 0.
In the case where β is not a limit ordinal, with the terminology of Lemma 4.4.86 we
have Bβ (A) =S (Bβ−1(A)), and hence, by that lemma, Bβ (A) is a multiplicatively
nil ideal of A, which is a contradiction. Now, assume that β is a limit ordinal. Let

F be in B̃β (A). Write F = ∑n
i=1 Mai,bi for suitable n ∈ N and ai,bi ∈ A1 (1 � i � n)

such that, for each i, at least one of ai,bi lies in Bβ (A), and fix α < β such that,

for each i, at least one of ai,bi lies in Bα(A). Then F ∈ B̃α(A), and consequently

F is nilpotent. It follows from the arbitrariness of F ∈ B̃β (A) that Bβ (A) is again a
multiplicatively nil ideal of A. This contradiction concludes the proof of assertion (i).

Assertion (ii) follows from assertion (i) and the fact that nil-ideals of M �(A) are
quasi-invertible ideals of M �(A).

Let A be an algebra over K, and let I be an ideal of A. We denote by (I : A) the ideal
of A consisting of those x∈A such that xA+Ax⊆ I. We always have I ⊆ (I : A). If the
above inclusion becomes an equality, then we say that I is a zero-annihilator ideal
(in short, z-ideal) of A. Thus I is a z-ideal of A if and only if the quotient algebra A/I
has zero-annihilator. Since A is a z-ideal of A, and the intersection of any family of
z-ideals of A is a z-ideal of A, it follows the existence of a smallest z-ideal of A. This
ideal will be called the zero-annihilator radical (in short, z-radical) of A. Clearly, the
z-radical of A contains the annihilator of A and is contained in the Baer radical of A.

Let A be any algebra over K. Define by transfinite induction a chain

C0(A)⊆ C1(A)⊆ ·· · ⊆ Cβ (A)⊆ ·· · (4.4.12)

of ideals of A, indexed by ordinal numbers β , as follows. Set C0(A) := 0, Cβ (A) :=
(Cβ−1(A) : A) if β > 0 is not a limit ordinal, and Cβ (A) := ∪α<βCα(A) otherwise.
This chain stabilizes at some ordinal γ (for example whenever γ is greater than the
cardinality of the algebra A), and accordingly we setC (A) := Cγ(A).

Now we can mimic the proof of [822, Proposition 8.2.4] to prove the following.

Proposition 4.4.88 Let A be an algebra over K. Then C (A) (as defined immedi-
ately above) coincides with the z-radical of A.

Proof Let R stand for the z-radical of A. By the definition of C (A), we have C (A) =
(C (A) : A), so C (A) is a z-ideal of A, and so R ⊆ C (A). Assume that this inclusion
is strict. Then we have C (A)� R, and hence there exists a minimum ordinal δ such
that Cδ (A) � R. It is clear that δ cannot be a limit ordinal, and that Cδ−1(A) ⊆ R.
But then

Cδ (A) = (Cδ−1(A) : A)⊆ (R : A) = R,

a contradiction.

Lemma 4.4.89 Let A be an algebra over K, and let I be a QFM (A)-invariant
subspace of A. Then we have:

(i) QFM (A)((I : A))⊆ I.
(ii) (I : A) is QFM (A)-invariant.
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Proof The set {F ∈ QFM (A) : F((I : A)) ⊆ I} is a left ideal (hence a quasi-full
subalgebra) of QFM (A) containing LA ∪RA, and therefore it contains QFM (A).
This proves assertion (i). Assertion (ii) follows from assertion (i) and the fact that
I ⊆ (I : A).

Corollary 4.4.90 Let A be an algebra over K. Then we have:

(i) Every link in the chain (4.4.12) is QFM (A)-invariant.
(ii) The z-radical of A is QFM (A)-invariant.

Proof Assume that assertion (i) does not hold. Then there exists a minimum
ordinal δ such that Cδ is not QFM (A)-invariant. Clearly δ > 0 and δ cannot be
an ordinal limit. Therefore, by Lemma 4.4.89(ii), Cδ−1 is not QFM (A)-invariant,
a contradiction.

Assertion (ii) follows from assertion (i) and Proposition 4.4.88.

Proposition 4.4.91 Let A be an algebra over K, and let a be in A. Then the
following conditions are equivalent:

(i) a lies in the z-radical of A.
(ii) Every sequence an in A such that a1 = a and an+1 ∈ QFM (A)(an) is quasi-

null.
(iii) Every sequence an in A such that a1 = a and an+1 ∈ (LA∪RA)(an) is quasi-null.

Proof (i)⇒(ii) Assume that (i) holds. Let an be a sequence in A with the properties
required in (ii). Then, by Corollary 4.4.90(ii), an lies in the z-radical of A for every
n ∈ N. Therefore, by Proposition 4.4.88, for each n ∈ N, there exists a minimum
ordinal number αn such that an ∈Cαn(A). Note that αn cannot be an ordinal limit, and
set αm :=min{αn : n∈N}. Assume that αm > 0. Then αm = β+1, so that, since am ∈
Cαm(A), Corollary 4.4.90(i) and Lemma 4.4.89(i) apply to get that am+1 ∈ Cβ (A).
This implies αm+1 � β < αm, which contradicts the definition of αm. Therefore
αm=0, and hence am = 0.

(ii)⇒(iii) This is clear.
(iii)⇒(i) Let R stand for the z-radical of A. Assume that a does not belong to

R, and set a1 := a. Then, since R is a z-ideal of A, we have a1 /∈ (R : A), and
hence there exists x1 ∈ A such that a1x1 /∈ R or x1a1 /∈ R. Let us set a2 := a1x1 if
a1x1 /∈ R and a2 := x1a1 otherwise, so that a2 /∈ R. Proceeding by induction, we get a
non-quasi-null sequence an in A with the properties required in (iii).

As a straightforward consequence of the implication (iii)⇒(i) in the above pro-
position, we derive the following.

Corollary 4.4.92 Let A be a nilpotent algebra over K (cf. §2.8.36). Then the
z-radical of A is the whole algebra A.

A linear operator F on a vector space X over K is said to be pointwise nilpotent if
for each x ∈ X there exists n ∈ N such that Fn(x) = 0.

Fact 4.4.93 Let X be a vector space over K, and let F be a pointwise nilpotent
linear operator on X. Then F is quasi-invertible in L(X).
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Proof Let G : X → X stand for the mapping defined by G(x) :=−∑n∈N Fn(x). It is
routine to verify that G belongs to L(X) and that G becomes the quasi-inverse of F
in L(X).

The next theorem refines the first inclusion in Proposition 4.4.59.

Theorem 4.4.94 Let A be an algebra over K. Then the z-radical of A is contained
in w-Rad(A).

Proof Let R stand for the z-radical of A. In view of Corollary 4.4.90(ii) and
the definition of the weak radical, it is enough to show that Ly,Ry belong to
Rad(QFM (A)) whenever y is in R. Let (y,x,F) be in R × A × QFM (A),
for each natural number n set an := (FLy)

n(x), and note that, since y ∈ R,
a1 = FLy(x) = FRx(y) ∈ R (by Corollary 4.4.90(ii)). Since an+1 = FLy(an), it
follows from the implication (i)⇒(ii) in Proposition 4.4.91 that there exists m ∈ N
such that (FLy)

m(x) = am = 0. Since x is arbitrary in A, this shows that the operator
FLy is pointwise nilpotent, hence it is quasi-invertible in L(A) (by Fact 4.4.93),
so also in QFM (A) because QFM (A) is a quasi-full subalgebra of L(A).
Now, since F is arbitrary in QFM (A), we derive from Theorem 3.6.38(vii) that
Ly ∈ Rad(QFM (A)). An analogous argument shows that Ry ∈ Rad(QFM (A)).
Since y is arbitrary in R, the proof is complete.

By combining Corollary 4.4.92 and Theorem 4.4.94, we get the following.

Corollary 4.4.95 Let A be a nilpotent algebra over K. Then A = w-Rad(A).

The above corollary can be proved straightforwardly. Indeed, if A 	= 0 is a nil-
potent algebra of index m, then M �(A) is a nilpotent algebra of index � m− 1, so
M �(A) = QFM (A) is a radical algebra, and so w-Rad(A) = A.

Following [786, p. 515], we say that a normed associative algebra A is topologic-
ally nilpotent if

lim
n→∞

sup{‖a1a2 · · ·an‖
1
n : ai ∈ BA for i = 1,2, . . . ,n}= 0. (4.4.13)

As pointed out in [453], the notion of a topologically nilpotent normed algebra can be
generalized to the non-associative setting by simply replacing a1a2 · · ·an in (4.4.13)
with the values at (a1,a2, . . . ,an) of all n-linear non-associative words on a set of
n indeterminates (cf. §3.4.41). Clearly, normed nilpotent algebras are topologically
nilpotent, but the converse is far from being true [786, p. 516]. The following variant
of Corollary 4.4.95 is proved in [453]: if A is a topologically nilpotent complete
normed algebra, then A = w-Rad(A).

4.5 JB∗-representations and alternative C∗-representations of
hermitian algebras

Introduction In this section we deal with local characterizations, as well as with
characterizations up to equivalent renormings, of non-commutative JB∗-algebras. As
an outstanding auxiliary tool, we introduce hermitian Jordan-admissible complex
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∗-algebras (see Definition 4.5.18), and discuss algebra ∗-homomorphisms from them
to non-commutative JB∗-algebras.

We begin Subsection 4.5.1 by proving in Theorem 4.5.1 that a complete normed
unital complex ∗-algebra is a non-commutative JB∗-algebra (in its own norm) if and
only if so is the closed ∗-subalgebra generated by each of its self-adjoint elements.
The question of whether this result is true when the requirement of the existence of a
unit is dispensed seems to remain open to date, even if the algebra is associative and
commutative. (We note that non-commutative JB∗-algebras which are associative
and commutative are nothing other than commutative C∗-algebras.) Then we prove
Barnes’ theorem [57] that a complete normed (possibly non-unital) associative and
commutative complex ∗-algebra is a C∗-algebra in an equivalent norm if and only
if so is the closed ∗-subalgebra generated by each of its self-adjoint elements (see
Corollary 4.5.7). Actually, the requirement of commutativity in Barnes’ theorem can
be removed altogether. This is the content of a celebrated result of Cuntz [201],
formulated later without proof in Theorem 4.5.54. We conclude Subsection 4.5.1 by
proving in Proposition 4.5.11 that algebra ∗-homomorphisms from complete normed
Jordan-admissible complex ∗-algebras to non-commutative JB∗-algebras are con-
tinuous, a result whose associative forerunner goes back to Rickart [501].

Subsection 4.5.2 contains the main results in the section, and begins with a gen-
eral non-associative version of Vesentini’s theorem [622] that the spectral radius
is a subharmonic function (see Theorem 4.5.14). Then we develop Behncke’s the-
ory of complete normed hermitian Jordan complex ∗-algebras [82] following later
arguments of Aupetit and Youngson [48], which rely on Vesentini’s theorem. The-
orem 4.5.29 and Corollary 4.5.30 summarize Behncke’s theory in a somewhat new
way. As done in [48], we apply Theorem 4.5.29 to derive that a complete normed
unital Jordan complex ∗-algebra A is a JB∗-algebra in an equivalent norm if and
only the set {exp(ih) : h ∈ H(A,∗)} is bounded (see Corollary 4.5.32). With The-
orem 3.6.25 as a key tool, we also derive from Theorem 4.5.29 a full theory of com-
plete normed hermitian alternative complex ∗-algebras, which contains its classical
associative forerunner [493, 565] as stated in Bonsall–Duncan [696, Section 41] (see
Theorem 4.5.37 and Corollaries 4.5.38 and 4.5.39). A characterization of normed
unital complex ∗-algebras which are alternative C∗-algebras in an equivalent norm,
similar to that proved in the Jordan setting, is also obtained (see Corollary 4.5.42).
As shown in Proposition 4.5.45, the requirement in Corollaries 4.5.32 and 4.5.42
that the algebra be unital is not that essential. Nevertheless, even in the unital case, a
verbatim unification of Corollaries 4.5.32 and 4.5.42 in the natural common setting
of non-commutative Jordan algebras is far from being true (see Example 4.5.43).

As a matter of fact, we do not know any reasonable characterization of normed
unital complex ∗-algebras which are non-commutative JB∗-algebras in an equivalent
norm. In Subsection 4.5.3, we formulate a conjecture which, if were proved, would
overcome this gap.

4.5.1 Preliminary results

As an aperitif, we begin this subsection with the following theorem, which provides
us with several local characterizations of non-commutative JB∗-algebras, and which
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could have been proved much earlier. It is indeed a by-product of the non-associative
Vidav–Palmer theorem.

Theorem 4.5.1 Let A be a complete normed unital complex ∗-algebra. Then the
following conditions are equivalent:

(i) A is a non-commutative JB∗-algebra (in its own norm).

(ii) For each h ∈ H(A,∗), the closed ∗-subalgebra of A generated by h is a non-
commutative JB∗-algebra (in the norm of A).

(iii) For each h ∈ H(A,∗), the closed ∗-subalgebra of A generated by h is a commu-
tative C∗-algebra (in the norm of A).

(iv) A is a power-associative algebra, and the equality ‖exp(ih)‖ = 1 holds for
every h ∈ H(A,∗).

Proof (i)⇒(ii) This is clear.
(ii)⇒(iii) Let h be in H(A,∗). By assumption (ii) and Proposition 3.4.1(ii), the

closed ∗-subalgebra of A generated by h is indeed a commutative C∗-algebra.
(iii)⇒(i) As a first consequence of assumption (iii), A is norm-unital. Let h be

in H(A,∗), and note that, as a new consequence of assumption (iii), the subalgebra
of A generated by {h,1} (say B) is associative. Let M be in R such that ‖h‖ < M,
set k := 1− h

M ∈ B∩H(A,∗), let C stand for the closed ∗-subalgebra of A generated
by k, and note that, again by assumption (iii), C is a C∗-algebra. Since ‖1− k‖ < 1,
we have (1− k)n → 0 as n → ∞, and hence 1 lies in C because 1− (1− k)n ∈ C
for every n ∈ N and 1 − (1 − k)n → 1 as n → ∞. Since C is now a unital C∗-
algebra, it follows from §1.2.18 that ‖exp(irk)‖ = 1 for every r ∈ R, and therefore,
by Corollaries 2.1.2 and 2.1.9(iii), k lies in H(A,1). Then h = M(1− k) also lies
in H(A,1). Since h is arbitrary in H(A,∗), we get that H(A,∗) ⊆ H(A,1), so A
is a V -algebra whose natural involution coincides with ∗, and so A is a non-
commutative JB∗-algebra because of the non-associative Vidav–Palmer theorem
(Theorem 3.3.11).

(i)⇒(iv) This follows from Proposition 2.4.19, Lemma 2.2.5, and Corollary
2.1.9(iii).

(iv)⇒(i) If condition (iv) is fulfilled, then, by Corollaries 2.1.2 and 2.1.9(iii),
we have H(A,∗) ⊆ H(A,1), so A is a V -algebra whose natural involution coin-
cides with ∗, and so A is a non-commutative JB∗-algebra because of Theorem
3.3.11.

Let A be a complete normed unital complex ∗-algebra. As a consequence of the
implication (i)⇒(iv) in the above theorem, if A is a non-commutative JB∗-algebra
in an equivalent norm, then there exists a constant M ∈ R such that ‖exp(ih)‖ � M
for every h ∈ H(A,∗). However, as we will show in Example 4.5.43, the converse
assertion is not true even if A is a finite-dimensional non-commutative Jordan alge-
bra. We will prove in Corollary 4.5.32 (respectively, Corollary 4.5.42) that such a
converse assertion is true if A is a Jordan (respectively, alternative) algebra. For
the moment, we limit ourselves to consider the case where A is an associative and
commutative algebra (see Theorem 4.5.5 below). To this end, we begin by proving
the following.
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Proposition 4.5.2 Let A be a normed associative algebra over K, and let S be a
bounded and multiplicatively closed subset of A. We have:

(i) There exists an algebra norm ||| · ||| on A satisfying

||| · ||| � 1 on S and
1
M
‖ · ‖ � ||| · ||| � M‖ · ‖ on A,

where M := max{1,sup{‖s‖ : s ∈ S}}.
(ii) If A is unital, then there exists an algebra norm ||| · ||| on A satisfying

|||1 |||= 1, ||| · ||| � 1 on S, and 1
K ‖ · ‖ � ||| · ||| � K‖ · ‖ on A,

where K := max{‖1‖,sup{‖s‖ : s ∈ S}}.

Proof We begin by proving assertion (ii), so that we assume that A is unital. Then,
clearly, T := S∪{1} is a multiplicatively closed subset of A contained in KBA. For
a ∈ A, set

p(a) := sup{‖sa‖ : s ∈ T}.

Then p(·) � K‖ · ‖ on A. Since 1 ∈ T , we have ‖ · ‖ � p(·), and so, for a,b ∈ A, we
have

p(ab) = sup{‖sab‖ : s ∈ T} � sup{‖sa‖ : s ∈ T}‖b‖= p(a)‖b‖ � p(a)p(b).

It is now clear that p is an algebra norm on A equivalent to ‖ · ‖. Therefore, defin-
ing ||| · ||| on A by |||a ||| := p(La) (here p(·) stands for the operator norm on BL(A)
corresponding to p), and keeping in mind §1.1.122, we see that ||| · ||| becomes an
algebra norm on A satisfying |||1 |||= 1 and ||| · |||� p(·)� p(1) ||| · ||| on A. Then, since
p(1) � K (by the definitions of K and p), and ‖ · ‖ � p(·) � K‖ · ‖ on A, we derive
that 1

K ‖ · ‖ � ||| · ||| � K‖ · ‖ on A. Also, for t ∈ T and x ∈ A, we have

p(tx) = sup{‖stx‖ : s ∈ T} � p(x),

since st ∈ T . Thus ||| t ||| � 1 for every t ∈ T , and hence ||| · ||| � 1 on S.
Assertion (i) follows from assertion (ii) just proved by regarding A as a subalgebra

of its normed unital extension (cf. Proposition 1.1.107).

Corollary 4.5.3 Let A be a normed associative algebra over K, and let a be in A.
Then

r(a) = inf{|||a ||| : ||| . ||| ∈ En(A)},

where En(A) denotes the set of all equivalent algebra norms on A.

Proof By the definition of the spectral radius and Corollary 1.1.19, we have r(a) �
|||a ||| for every ||| · ||| ∈ En(A). Let ε > 0. Setting b := 1

r(a)+ε a, we see that r(b) < 1,
and consequently, by Corollary 1.1.18(ii), {bn : n ∈ N} is a bounded and multiplica-
tively closed subset of A. Therefore, by Proposition 4.5.2(i), there exists ||| . ||| ∈En(A)
such that |||b ||| � 1, so |||a ||| � r(a)+ε , and the result follows.

Corollary 4.5.4 Let A be a complete normed unital power-associative complex
algebra, and let h be in A. Assume the existence of κ > 0 such that ‖exp(ith)‖ � κ
for every t ∈ R. Then r(h) � κ−1‖h‖.

Proof Let B stand for the closed subalgebra of A generated by h and 1. It is
clear that B is a complete normed unital associative complex algebra and that
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S := {exp(ith) : t ∈ R} is a multiplicatively closed subset of B containing 1 (cf.
Exercise 1.1.30). Since S is bounded by κ , it follows from Proposition 4.5.2(ii) that
there exists an equivalent algebra norm ||| · ||| on B such that |||1 |||= 1, ||| exp(ith) |||� 1
for every t ∈ R, and κ−1‖x‖ � |||x ||| for every x ∈ B. But, since ||| · ||| is an algebra
norm on B, the conditions |||1 ||| = 1 and ||| exp(ith) ||| � 1 for every t ∈ R imply
||| exp(ith) ||| = 1 for every t ∈ R. Thus, by Corollary 2.1.9(iii), h is a hermitian
element of the norm-unital complete normed complex algebra (B, ||| · |||). Therefore,
by Corollary 1.1.19 and Proposition 2.3.22, we have r(h) = |||h ||| � κ−1‖h‖.

Now, as the main result in this subsection, we prove the following theorem, which
becomes an associative-commutative variant of Theorem 4.5.1.

Theorem 4.5.5 Let A be a complete normed unital associative and commutative
complex ∗-algebra. Then the following conditions are equivalent:

(i) A is a C∗-algebra in an equivalent norm.
(ii) For each h ∈ H(A,∗), the closed ∗-subalgebra of A generated by h and 1 is a

C∗-algebra in an equivalent norm.
(iii) There exists M > 0 such that ‖exp(ih)‖ � M for every h ∈ H(A,∗).

Proof (i)⇒(ii) This is clear.
(ii)⇒(iii) By the assumption (ii) and §1.2.18, for each h ∈ H(A,∗), there exists

a constant κ depending on h such that ‖exp(ith)‖ � κ for every t ∈ R. Let x be in
s-Rad(A). Then h := 1

2 (x+x∗) and k := 1
2i (x−x∗) lie in s-Rad(A)∩H(A,∗) because

s-Rad(A) is ∗-invariant. Therefore, by Theorem 1.1.73(v), we have r(h)=r(k)=0,
so, by Corollary 4.5.4, h = k = 0, and so x = h + ik = 0. Thus A is (strongly)
semisimple, so that, by Corollary 1.1.63, ∗ is continuous on A, and consequently
H(A,∗) is closed in A. For n ∈ N, set

Hn := {h ∈ H(A,∗) : ‖exp(ith)‖ � n for every t ∈ R}.

Then Hn is closed in H(A,∗) and H(A,∗) =∪n∈NHn. By Baire’s theorem, there exists
m ∈N such that Hm has non-empty interior in H(A,∗). Fix h0 and δ > 0 such that the
ball in H(A,∗) with centre h0 and radius δ is contained in Hm. If h ∈ H(A,∗) with
‖h‖< δ , then

‖exp(ith)‖= ‖exp(it(h+h0))exp(−ith0)‖

� ‖exp(it(h+h0))‖‖exp(−ith0)‖ � m2

for every t ∈ R. Hence ‖exp(ih)‖ � m2 for every h ∈ H(A,∗).
(iii)⇒(i) By assumption (iii), the set {exp(ih) : h ∈ H(A,∗)} is a bounded and

multiplicatively closed subset of A. Therefore, in view of Proposition 4.5.2(ii),
there exists an equivalent algebra norm ||| · ||| on A such that ||| exp(ih) ||| � 1 for
every h ∈ H(A,∗). Thus, the normed algebra (A, ||| · |||) is norm-unital and we
have in fact ||| exp(ih) ||| = 1 for every h ∈ H(A,∗). Now, by Corollary 2.1.9(iii),
we have H(A,∗) ⊆ H((A, ||| · |||),1). Therefore (A, ||| · |||) is a V -algebra whose
natural involution coincides with ∗, and so (A, ||| · |||) is a C∗-algebra because of
the associative Vidav–Palmer theorem (Theorem 2.3.32).

§4.5.6 The assumption in the above theorem that the algebra be unital is not that
essential. To realize this, some elementary facts have to be kept in mind. Let A be
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a normed algebra over K. By a normed unital extension of A we mean the unital
extension A1 of A (cf. §1.1.104) endowed with an algebra norm extending the norm
of A and making the direct sum A1 = K1⊕ A topological. We note that, if A is
complete, the last requirement (that the direct sum A1 = K1⊕A is topological) is
superfluous. Anyway, the norms of two normed unital extensions of A are equivalent.
Moreover, we are always provided with a distinguished normed unital extension
of A, namely the one given by Proposition 1.1.107, which will be called the standard
normed unital extension of A. On the other hand, if A is actually a C∗-algebra (or,
more generally, a non-commutative JB∗-algebra), then we are provided with the
unique C∗-unital extension (or non-commutative JB∗-unital extension) of A given
by Proposition 1.2.44 (or Corollary 3.5.36). Now assume that A is complete and
power-associative, and for a ∈ A set

(exp−1)(a) :=
∞

∑
n=1

an

n!
∈ A.

Then in any normed unital extension of A we have exp(a) = 1+(exp−1)(a), and
hence

‖exp(a)‖ � ‖1‖+‖(exp−1)(a)‖ and ‖(exp−1)(a)‖ � ‖1‖+‖exp(a)‖.

Now we can prove the following unit-free version of Theorem 4.5.5.

Corollary 4.5.7 Let A be a complete normed associative and commutative complex
∗-algebra. Then the following conditions are equivalent:

(i) A is a C∗-algebra in an equivalent norm.
(ii) For each h ∈ H(A,∗), the closed ∗-subalgebra of A generated by h is a C∗-

algebra in an equivalent norm.
(iii) There exists a constant K > 0 such that ‖(exp−1)(ih)‖ � K for every h ∈

H(A,∗).

Proof (i)⇒(ii) This is clear.
In the remaining parts of the proof, (A1 ,‖ · ‖) will denote the standard normed

unital extension of A endowed with the unique conjugate-linear algebra involution
which extends ∗, r1+ k (r ∈ R and k ∈ H(A,∗)) will be an arbitrary element in
H(A1 ,∗), and B will stand for the closed ∗-subalgebra of A generated by k. Then we
note that C1+B is the closed ∗-subalgebra of A1 generated by r1+ k and 1, and
that C1+B, endowed with the norm ‖ · ‖, can be seen as the standard normed unital
extension (B1 ,‖ · ‖) of B.

(ii)⇒(iii) By assumption (ii), we can consider the C∗-unital extension (B1 , ||| · |||)
of B, so that B1 is a C∗-algebra in an equivalent norm. Since r1+ k is an arbitrary
element of H(A1 ,∗), it follows from the implication (ii)⇒(iii) in Theorem 4.5.5 that
there exists a constant M ∈R such that ‖exp(ih)‖ � M for every h ∈ H(A1 ,∗), so in
particular for every h ∈ H(A,∗). Thus

‖(exp−1)(ih)‖ � 1+‖exp(ih)‖ � 1+M for every h ∈ H(A,∗).

(iii)⇒(i) Assume that condition (iii) is fulfilled. Then we have

‖exp(i(r1+ k))‖= ‖eir exp(ik)‖= ‖exp(ik)‖ � 1+‖(exp−1)(ik)‖ � 1+K.
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Since r1+ k is an arbitrary element of H(A1 ,∗), it follows from the implication
(iii)⇒(i) in Theorem 4.5.5 that A1 (and hence A) is a C∗-algebra in an equivalent
norm.

The remaining part of this subsection will be devoted to discussing basic results
concerning algebra ∗-homomorphisms into non-commutative JB∗-algebras.

Definition 4.5.8 Let A be a complex ∗-algebra. By a non-commutative JB∗-
representation (respectively, a JB∗-representation, an alternative C∗-representation,
or a C∗-representation) of A we mean an algebra ∗-homomorphism from A to some
non-commutative JB∗-algebra (respectively, JB∗-algebra, alternative C∗-algebra, or
C∗-algebra).

Fact 4.5.9 Let A be a complete normed complex ∗-algebra admitting power-
associativity, let Φ be a non-commutative JB∗-representation of A, and let h be in
H(A,∗). Then ‖Φ(h)‖ � s(h).

Proof Let B stand for the non-commutative JB∗-algebra where the range of Φ lives.
Since Φ(h) ∈ H(B,∗), we have ‖Φ(h)‖ = r(Φ(h)) (cf. Proposition 3.4.1(ii) and
Lemma 1.2.12). Therefore, regarding Φ as an algebra homomorphism from Asym

to Bsym, and keeping in mind §4.4.6, the result follows from Proposition 3.4.63.

Let A be an algebra over K, and let a be in A. We denote by UAsym

a the operator Ua

in the algebra Asym, and recall that, if A is Jordan-admissible (respectively, unital and
Jordan-admissible), then a is quasi-J-invertible (respectively, J-invertible) in A if and
only if a is quasi-J-invertible (respectively, J-invertible) in Asym (cf. Definition 4.1.56
and §4.4.8).

Proposition 4.5.10 Let A be a Jordan-admissible algebra over K. Then A/J-Rad(A)
is J-semisimple.

Proof Consider the quotient mapping a → ā from A to Ā := A/J-Rad(A), and note
that A1/J-Rad(A) ≡ (Ā)1 . Suppose that a ∈ A is such that ā ∈ J-Rad(Ā). Then ā
is quasi-J-invertible in Ā, and hence 1̄− ā is J-invertible in (Ā)1 . Therefore, by

Theorem 4.1.3(ii), 1̄ is in the range of the operator U((Ā)1 )sym

1̄−ā , so that there exist λ ∈
K and b ∈ A such that 1̄ =U ((Ā)1 )sym

1̄−ā (λ 1̄+ b), and hence there exists c ∈ J-Rad(A)

such that 1=U (A1 )
sym

1−a (λ1+b)+ c. Since c is quasi-J-invertible in A, it follows that

1− c = U (A1 )
sym

1−a (λ1+ b) is J-invertible in A1 . Therefore, by Theorem 4.1.3(vi),
1− a is J-invertible in A1 , and as a result a is quasi-J-invertible in A. Thus the set
Q := {a ∈ A : ā ∈ J-Rad(Ā)} is a quasi-J-invertible ideal of A. Therefore
Q = J-Rad(A), and consequently Ā is J-semisimple.

Proposition 4.5.11 Let A be a complete normed Jordan-admissible complex
∗-algebra, and let Φ be a non-commutative JB∗-representation of A. Then:

(i) J-Rad(A)⊆ ker(Φ).
(ii) Φ is continuous.

Proof Let x be in J-Rad(A). Then h := 1
2 (x + x∗) and k := 1

2i (x − x∗) lie in
J-Rad(A)

⋂
H(A,∗) because J-Rad(A) is ∗-invariant. Therefore, by Lemma 4.4.26,
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we have s(h) = s(k) = 0, so Φ(h) = Φ(k) = 0 (by Fact 4.5.9), and so Φ(x) =
Φ(h+ ik) = 0. Thus J-Rad(A)⊆ ker(Φ), which proves assertion (i).

Now we proceed to prove assertion (ii).
Assume at first that A is J-semisimple. Then, by Corollary 4.4.14, ∗ is continuous

on A, and hence the direct sum A = H(A,∗)⊕ iH(A,∗) is topological. On the other
hand, by Fact 4.5.9, we have ‖Φ(h)‖ � ‖h‖ for every h ∈ H(A,∗), and hence Φ is
continuous on H(A,∗). It follows that Φ is continuous on A.

To conclude the proof, remove the assumption in the above paragraph that A is
J-semisimple. Then, by Propositions 4.4.17(i) and 4.5.10, A/J-Rad(A) is a complete
normed J-semisimple Jordan-admissible complex algebra, and is endowed with the
quotient involution (again because J-Rad(A) is ∗-invariant). By keeping in mind the
above paragraph, it follows from assertion (i) that

Ψ : a+ J-Rad(A)−→Φ(a)

becomes a well-defined continuous non-commutative JB∗-representation of the
∗-algebra A/J-Rad(A). Since Φ = Ψ ◦π, where π : A → A/J-Rad(A) stands for the
quotient mapping, we derive that Φ is continuous.

Remark 4.5.12 Let A be a complex ∗-algebra. Then, as usual, H(A,∗) will be seen
as a real algebra, precisely as a real subalgebra of Asym.

Assume that A is Jordan-admissible. Then H(A,∗) is a real Jordan algebra, and
we have

J-Rad(A)⊆ J-Rad(H(A,∗))+ iJ-Rad(H(A,∗)). (4.5.1)

Indeed, I := J-Rad(A)∩H(A,∗) is an ideal of H(A,∗), each element of which has
a quasi-J-inverse in A, which must lie in H(A,∗) because of the uniqueness of
the quasi-J-inverse. Therefore I is a quasi-J-invertible ideal of H(A,∗), and hence
I ⊆ J-Rad(H(A,∗)). But J-Rad(A) = I + iI because J-Rad(A) is ∗-invariant, so the
inclusion (4.5.1) follows.

Now assume that A is complete normed and Jordan-admissible, and let Φ be
a non-commutative JB∗-representation of A. Then H(A,∗) is a (possibly non-
complete) normed Jordan real algebra, and we have the following refinement of
Proposition 4.5.11(i):

J-Rad(H(A,∗))+ iJ-Rad(H(A,∗))⊆ ker(Φ). (4.5.2)

Indeed, if h is in J-Rad(H(A,∗)), then, by Lemma 4.4.26, we have s(h) = 0, so that,
by Fact 4.5.9, Φ(h) = 0. Thus J-Rad(H(A,∗)) ⊆ ker(Φ), and the inclusion (4.5.2)
follows.

4.5.2 The main results

Let Ω be an open subset of C. A function u : Ω→ [−∞,+∞[ is called subharmonic
if it is upper semicontinuous and satisfies the submean inequality, i.e. whenever a
closed disc BC(w,r) in C is contained in Ω, we have

u(w) � 1
2π

∫ 2π

0
u(w+ reit)dt.
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Lemma 4.5.13 Let Ω be an open subset of C, let X be a complex normed space,
and let f : Ω→ X be a holomorphic function. Then z → log‖ f (z)‖ is a subharmonic
function on Ω.

Proof Certainly log‖ f (z)‖ is upper semicontinuous on Ω, indeed even continuous,
so we only need to check the submean inequality. Let BC(w,r) be a closed disc
in C contained in Ω. By the Hahn–Banach theorem, there exists φ ∈ SX ′ such that
φ( f (w)) = ‖ f (w)‖. Then φ ◦ f is a complex-valued holomorphic function on Ω, so
log |φ ◦ f | is subharmonic on Ω. Consequently, we have

log‖ f (w)‖= log |φ( f (w))| � 1
2π

∫ 2π

0
log |φ( f (w+ reit))|dt

� 1
2π

∫ 2π

0
log‖ f (w+ reit)‖dt,

so log‖ f‖ does indeed satisfy the submean inequality.

Theorem 4.5.14 Let Ω be an open subset of C, let A be a normed complex algebra,
and let f : Ω → A be a holomorphic function. Then both functions z → logs( f (z))
and z → s( f (z)) are subharmonic on Ω.

Proof For each n ∈N∪{0}, consider the holomorphic function fn on Ω defined by

fn(z) := ( f (z))[n]

in the sense of §4.4.2, set

un(z) := 1
2n log‖ fn(z)‖ (z ∈Ω),

and note that, by Lemma 4.5.13, un is subharmonic on Ω. Moreover, keeping in mind
§4.4.2 again, we see that the sequence un is decreasing and converges to the function
logs( f (z)). Hence logs( f (z)) is subharmonic on Ω. Since the real exponential func-
tion is increasing and convex, it follows that s( f (z)) is also subharmonic on Ω.

Let S be a subset of C and let ζ ∈ C. We say that S is non-thin at ζ if ζ belongs
to the closure of S \{ζ} in C and if, for every subharmonic function u defined on a
neighbourhood of ζ , we have

limsup
z→ζ

z∈S\{ζ}

u(z) = u(ζ ).

For the proof of the following proposition, the reader is referred to Ransford’s
book [793, Theorem 3.8.3]. A particular case, enough for our later application, can
be seen in Aupetit’s book [682, Théorème II.11], where it is attributed to K. Oka and
W. Rothstein.

Proposition 4.5.15 A connected subset of C containing more than one point is
non-thin at every point of its closure.

Lemma 4.5.16 Let A be a complete normed unital Jordan complex algebra, let
Ω be an open subset of C containing [0,1], and let f : Ω → A be a holomorphic
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function. If a < b < c < d are real numbers such that

J-sp(A, f (t))⊆ [a,b]∪ [c,d] for every t ∈ [0,1] and J-sp(A, f (0))⊆ [a,b],

then

J-sp(A, f (t))⊆ [a,b] for every t ∈ [0,1].

Proof We may assume that a > 0. Let E := {t ∈ [0,1] : J-sp(A, f (t)) ⊆ [a,b]}.
We first show that E is open in [0,1]. Assume to the contrary that there exist
t0 ∈ E and a sequence tn in [0,1] converging to t0 with tn /∈ E for every
n ∈ N. Hence there exists αn ∈ J-sp(A, f (tn))∩ [c,d] for every n ∈ N. By passing to
a subsequence if necessary, we may assume that αn converges to some α ∈ [c,d].
Thus f (t0) − α1 is a J-invertible element which is the limit of a sequence
f (tn)−αn1 of non- J-invertible elements. This contradicts the fact that the set of
J-invertible elements is open in A (cf. Theorem 4.1.7). Hence E is open in [0,1]. Let
γ := sup{r ∈ [0,1] : [0,r] ⊆ E}. Since E is open, we have 0 < γ � 1. Furthermore
[0,γ[⊆ E, and because z → r( f (z)) is subharmonic (by Theorem 4.5.14) and [0,γ[ is
non-thin at γ (by Proposition 4.5.15), we have

r( f (γ)) = limsup
r→γ
r<γ

r( f (r)) � b,

hence γ ∈ E and so as E is open in [0,1], we have γ = 1 and the result follows.

Let B and C be unital Jordan algebras over K. Then the algebra direct product
B×C is a unital Jordan algebra, and, keeping in mind Definition 4.1.2, we see that

J-Inv(B×C) = J-Inv(B)× J-Inv(C). (4.5.3)

As a consequence, for (b,c) ∈ B×C we have

J-sp(B×C,(b,c)) = J-sp(B,b)∪ J-sp(C,c). (4.5.4)

Proposition 4.5.17 Let A be a unital Jordan-admissible algebra over K, and let a
be in A. Then

(i) a is quasi-J-invertible in A if and only if 1−a is J-invertible in A.

(ii) J-sp(A1 ,a) = J-sp(A,a)∪{0}.

Proof Since (A1)
sym = (Asym)1 , it follows from the definitions of quasi-

J-invertibility (cf. §4.4.8) and of the J-spectrum (cf. Definition 4.1.65) that we
may assume that A is commutative. Noticing that A and K(1− 1) are ideals of A1

such that

A1 = A⊕K(1−1),

and that A and K(1−1) are unital algebras, assertion (i) (respectively, assertion (ii))
follows from §1.1.105 and the equality (4.5.3) (respectively, the equality (4.5.4)).

Definition 4.5.18 Let A be a Jordan-admissible complex ∗-algebra. We denote by
A+ the set of those elements h ∈ H(A,∗) such that J-sp(A1 ,h)⊆ R+

0 , and say that A
is hermitian if J-sp(A1 ,h)⊆R for every h∈H(A,∗). It follows from the definition of
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J-spectrum (cf. Definition 4.1.65) that A+ = (Asym)+, and that A is hermitian if and
only if Asym is hermitian. If in addition A is unital, then, by Proposition 4.5.17(ii),

A+ = {h ∈ H(A,∗) : J-sp(A,h)⊆ R+
0 },

and A is hermitian if and only if J-sp(A,h) ⊆ R for every h ∈ H(A,∗). As a con-
sequence, in any case we have

(A1)
+ = {α1+h ∈ A1 : α ∈ R, h ∈ H(A,∗), and α+ J-sp(A1 ,h)⊆ R+

0 }

(hence A∩ (A1)
+ = A+), and A is hermitian if and only if A1 is hermitian.

The next fact follows from Corollary 3.5.36 and Fact 4.1.67.

Fact 4.5.19 Let A be a non-commutative JB∗-algebra. Then A is hermitian.
Moreover, an element a ∈ A lies in A+ if and only if a � 0 in the order of H(A,∗)
introduced in §3.4.68.

Lemma 4.5.20 Let A be a complete normed power-associative ∗-algebra over K,
and let a be in A. Then r(a) = r(a∗).

Proof For x ∈ A, set |||x ||| := ‖x∗‖. Then ||| · ||| becomes a complete algebra norm on
A. Therefore, by Corollary 3.4.64, we have

r(a) = r||| · |||(a) = inf{|||an ||| : n ∈ N}= inf{‖(a∗)n‖ : n ∈ N}= r(a∗).

Proposition 4.5.21 Let A be a complete normed algebra over K. We have:

(i) If a is in A with ‖a‖< 1, then there exists a unique x ∈ A such that 2x− x2 = a
and ‖x‖< 1.

(ii) If A is power-associative, and if a is in A with r(a) < 1, then there exists a
unique x ∈ A such that 2x− x2 = a and r(x)< 1.

(iii) If A is a power-associative ∗-algebra, and if h is in H(A,∗) with r(h)< 1, then
there exists a unique x ∈ H(A,∗) such that 2x− x2 = h and r(x)< 1.

(iv) If K = C, if A is a unital non-commutative Jordan ∗-algebra, and if h is in
A+∩ J-Inv(A), then there exists a unique a ∈ A+∩ J-Inv(A) such that a2 = h.

Proof Let a be in A with ‖a‖ < 1, set E := {u ∈ A : ‖u‖ � ‖a‖}, and let T be the
mapping from E to E defined by T (u) := 1

2 (a+u2). Then we have

‖T (u)−T (v)‖= 1
2
‖u2 − v2‖= 1

2
‖(u+ v)• (u− v)‖

� 1
2
‖u+ v‖‖u− v‖ � ‖a‖‖u− v‖

for all u,v ∈ E. Therefore T is a contraction mapping. By the contraction mapping
principle (see for example [709, Théorème V.3.21.1]), there exists x ∈ E with T (x) =
x, i.e. with 2x − x2 = a, and we have ‖x‖ � ‖a‖ < 1. Suppose now that y ∈ A,
2y−y2=a, and ‖y‖< 1. Then we have

‖x− y‖= 1
2
‖x2 − y2‖ � 1

2
‖x+ y‖‖x− y‖ � ‖x‖+‖y‖

2
‖x− y‖.

Since ‖x‖+‖y‖
2 < 1, the above implies that y = x, which concludes the proof of

assertion (i).
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Assume that A is power-associative, and let a be in A with r(a) < 1. Let B stand
for the closed subalgebra of A generated by a. Then B is associative, and hence,
by Corollary 4.5.3, there exists an equivalent algebra norm ||| · ||| on B such that
|||a ||| < 1. Therefore, by assertion (i), there exists x ∈ B such that 2x− x2 = a and
r(x)� |||x |||<1. Suppose now that y∈A, 2y−y2 = a, and r(y)< 1. Let C stand for the
closed subalgebra of A generated by y, and note that, as a lies in C, the inclusion B⊆C
holds. Since C is associative and commutative, and x ∈ B, it follows from Corollary
1.1.115 that

r(x+ y) � r(x)+ r(y)< 2,

and hence r( 1
2 (x + y)) < 1. It follows from Definition 3.6.19 and Lemma 1.1.20

that 1
2 (x + y) is quasi-invertible in C, and hence there exists w ∈ C such that

w+ 1
2 (x+ y)− 1

2 w(x+ y) = 0. Since 2x− x2 = 2y− y2, we have

x− y =
1
2
(x2 − y2) =

1
2
(x+ y)(x− y) =

[
1
2

w(x+ y)−w

]
(x− y)

= w

[
1
2
(x2 − y2)− (x− y)

]
= 0,

so x = y, and the proof of assertion (ii) is complete.
Now, assume that A is a power-associative ∗-algebra, and that h is in H(A,∗) with

r(h) < 1. Then, by assertion (ii), there exists a unique x ∈ A such that 2x− x2 = h
and r(x) < 1. But h = h∗ = (2x− x2)∗ = 2x∗ − (x∗)2. Moreover, by Lemma 4.5.20,
we have r(x∗) = r(x)< 1. Therefore by the uniqueness of x, we conclude that x = x∗,
and so assertion (iii) is proved.

Finally, assume that K= C, that A is a unital non-commutative Jordan ∗-algebra,
and that h is in A+∩ J-Inv(A) with ‖h‖= 1. Then, according to Theorem 4.1.17, we
have r(1− h) < 1, and hence, by assertion (iii), there exists a unique x ∈ H(A,∗)
such that 2x − x2 = 1 − h and r(x) < 1. By taking a := 1 − x ∈ H(A,∗), we get
a2 = 1 − 2x + x2 = h. Then, by Propositions 4.1.86 and 1.3.4(ii), we have
J-sp(A,h) = {λ 2 : λ ∈ J-sp(A,a)}. Therefore, since J-sp(A,h)⊆ R+ and r(1−a) =
r(x)< 1, we derive that

J-sp(A,a)⊆ R+.

Thus a belongs to A+ ∩ J-Inv(A). Suppose now that b ∈ A+ ∩ J-Inv(A) and b2 = h.
Then y := 1−b ∈ H(A,∗), 2y−y2 = 1−h, and r(y)< 1, i.e. y satisfies the conditions
determining the element x above. Therefore y = x, and hence b = a. Now, up to an
obvious normalization, assertion (iv) has been proved.

In what follows, the Jordan versions of the Gelfand–Beurling formula (given in
Theorem 4.1.17) and of the spectral mapping theorem (stated in Theorem 4.1.88(iv))
will be applied without notice.

Theorem 4.5.22 Let A be a complete normed hermitian Jordan complex ∗-algebra.
Then A++A+ ⊆ A+.

Proof In light of the comments in Definition 4.5.18, we may assume that, in addi-
tion, A is unital. Suppose, to obtain a contradiction, that there exist h,k ∈ A+ such
that h+ k does not belong to A+. Then there exists γ > 0 such that h+ k+ γ1 is not
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J-invertible. Since h+ 1
2γ1 lies in A+ ∩ J-Inv(A), Proposition 4.5.21(iv) applies, so

that there exists a ∈ A+∩J-Inv(A) such that a2 = h+ 1
2γ1. Now, setting c := k+ 1

2γ1,
we see that

Ua(l+Ua−1(c)) = a2 + c = h+ k+ γ1

is not J-invertible in A while a is J-invertible. Hence l+Ua−1(c) is not J-invertible
(by Theorem 4.1.3(vi)) which means that −1 ∈ J-sp(A,Ua−1(c)). Let f : C → A be
the holomorphic function defined by

f (z) :=−Ua−1(zc+(1− z)l).

Note that, for 0 � t � 1, tc+(1− t)l = tk+(1− t)1+ 1
2γ1 is J-invertible, and hence

so is f (t) (cf. Theorem 4.1.3(vi) again). Set

α := (max{‖ f (t)−1‖ : t ∈ [0,1]})−1,

and take β > max{‖ f (t)‖ : t ∈ [0,1]}. Then

1 � ‖1‖= ‖ f (0) f (0)−1‖ � ‖ f (0)‖‖ f (0)−1‖< βα−1,

and hence 0 < α < β . On the other hand, for every t ∈ [0,1] we have

J-sp(A, f (t))⊆ βBC and [J-sp(A, f (t))]−1 = J-sp(A, f (t)−1)⊆ α−1BC.

Since f (t) ∈ H(A,∗), it follows that

J-sp(A, f (t))⊆ [−β ,−α]∪ [α,β ] for every t ∈ [0,1].

However J-sp(A, f (0)) = J-sp(A,−a−2) ⊆ [−β ,−α] whereas 1 ∈ J-sp(A, f (1)),
which contradicts Lemma 4.5.16.

Corollary 4.5.23 Let A be a complete normed Jordan complex ∗-algebra. Then the
following conditions are equivalent:

(i) A is hermitian.
(ii) x∗x ∈ A+ for every x ∈ A.

Moreover, if A is unital, then the above conditions are equivalent to

(iii) H(A,∗) = A+−A+ and A++A+ ⊆ A+.

Proof (i)⇒(ii) For each h ∈ H(A,∗), we have J-sp(A1 ,h) ⊆ R, and so
J-sp(A1 ,h2) ⊆ R+

0 , that is h2 ∈ A+. Now, given x ∈ A, writing x = h + ik with
h,k ∈ H(A,∗), we see that x∗x = h2 + k2, and, by Theorem 4.5.22, we conclude that
x∗x ∈ A+.

(ii)⇒(i) For each h∈H(A,∗), the inclusion J-sp(A1 ,h2)⊆R+
0 gives the inclusion

J-sp(A1 ,h)⊆ R.
Now that the equivalence of conditions (i) and (ii) has been proved, suppose that

A is unital.
(i)⇒(iii) For each h ∈ H(A,∗), note that r(h)1 and r(h)1−h lie in A+ and

h = r(h)1− (r(h)1−h).

Therefore H(A,∗) = A+ −A+. The inclusion A+ +A+ ⊆ A+ is provided by The-
orem 4.5.22.
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(iii)⇒(i) Let h ∈ H(A,∗). Write h = u − v with u,v ∈ A+. Then we have
h+ r(v)1 = u+ (r(v)1− v) ∈ A+ + A+ ⊆ A+. Thus J-sp(A,h+ r(v)1) ⊆ R+

0 , and
hence J-sp(A,h)⊆ R.

Proposition 4.5.24 Let A be a complete normed hermitian Jordan complex
∗-algebra. Then:

(i) The set A+ is a closed convex cone in H(A,∗). Moreover, if in addition A is
unital, then

A+ = {h ∈ H(A,∗) : r(r(h)1−h) � r(h)}. (4.5.5)

(ii) For all h,k ∈ H(A,∗) we have:

(a) r(h+ k) � r(h)+ r(k).
(b) r(hk) � r(h)r(k).
(c) r(h)2 � r(h2 + k2).

Proof In view of the comments in Definition 4.5.18, we may assume that A
is unital. Given h,k ∈ H(A,∗), it turns out clear that r(h)1 ± h,r(k)1 ± k ∈ A+,
so (r(h) + r(k))1 ± (h + k) ∈ A+ (by Theorem 4.5.22), and therefore we have
r(h+ k) � r(h)+ r(k), which proves assertion (ii)(a).

It is clear that R+
0 A+ ⊆A+, so that, applying Theorem 4.5.22 again, we realize that

A+ is a convex cone. Moreover, it follows immediately from assertion (ii)(a) proved
above that

|r(h)− r(k)| � r(h− k) for all h,k ∈ H(A,∗). (4.5.6)

On the other hand, if h ∈ A+, then the inclusion J-sp(A,h) ⊆ [0,r(h)] holds,
hence J-sp(A,r(h)1 − h) ⊆ [0,r(h)], and so r(r(h)1 − h) � r(h). Conversely, if
h ∈ H(A,∗) with r(r(h)1−h) � r(h), then J-sp(A,r(h)1−h)⊆ [−r(h),r(h)], so that
J-sp(A,h − r(h)1) ⊆ [−r(h),r(h)], hence J-sp(A,h) ⊆ [0,2r(h)], and in particular
h ∈ A+. Therefore, we have proved the equality (4.5.5). Since r(·) � ‖ · ‖, it follows
from (4.5.6) and (4.5.5) that A+ is closed in H(A,∗). Thus the proof of assertion (i)
is complete.

Now we proceed to prove assertion (ii)(b). Let h,k be in H(A,∗) and let t be in R.
Then (h− tk)2 ∈ A+. Since r(h2)1−h2 and r(k2)1− k2 are both in A+, and A+ is a
convex cone, it follows that

(r(h2)+ t2r(k2))1−2thk = (h− tk)2 +(r(h2)1−h2)+ t2(r(k2)1− k2) ∈ A+.

Hence, if λ ∈ J-sp(A,hk), we have r(h2)+ t2r(k2)−2λ t ∈ R+
0 . Since this holds for

every t ∈ R, it follows that λ 2 � r(h2)r(k2), and hence r(hk) � r(h)r(k).
Finally, we prove assertion (ii)(c). Let h,k be in H(A,∗). Then, since both

r(h2+k2)1− (h2 + k2) and k2 lie in A+, and A++A+ ⊆ A+, we have

r(h2 + k2)1−h2 = [r(h2 + k2)1− (h2 + k2)]+ k2 ∈ A+,

and so r(h)2 = r(h2) � r(h2 + k2) because h2 ∈ A+.

Lemma 4.5.25 Let A be a complete normed Jordan-admissible complex ∗-algebra
such that h = 0 whenever h is in H(A,∗) with s(h) = 0. Then ∗ is continuous.
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Proof Let x be in J-Rad(A). Then h := 1
2 (x + x∗) and k := 1

2i (x − x∗) lie in
J-Rad(A)

⋂
H(A,∗) because J-Rad(A) is ∗-invariant. Therefore, by Lemma 4.4.26,

we have s(h) = s(k) = 0, so h = k = 0, and so x = h+ ik = 0. Thus A is J-semisimple,
so that the continuity of ∗ follows from Corollary 4.4.14.

Fact 4.5.26 Let X be a complex vector space endowed with a conjugate-linear
involution ∗, let Y be complex normed space endowed with a continuous conjugate-
linear involution ∗, and let Φ : X → Y be a dense range linear ∗-mapping. Then
Φ(H(X ,∗)) is dense in H(Y,∗).

Proof Noticing that the direct sum Y = H(Y,∗)⊕ iH(Y,∗) is topological, that
Φ(H(X ,∗)) ⊆ H(Y,∗), and that Φ(H(X ,∗))+ iΦ(H(X ,∗)) is dense in Y , the result
follows.

Definition 4.5.27 Let A be a complex ∗-algebra. Let Φ1 : A → B1 and Φ2 : A → B2

be non-commutative JB∗-representations of A (cf. Definition 4.5.8). We say that Φ1

and Φ2 are equivalent if there exists an automatically isometric (cf. Proposition 3.4.4)
bijective algebra ∗-homomorphism F from B1 to B2 such that Φ2 = F ◦Φ1. If the
mapping F above is merely an automatically contractive (cf. again Proposition 3.4.4)
algebra ∗-homomorphism, then we say that Φ2 factors through Φ1. We note that, if
Φ1 and Φ2 are equivalent, and if one of them is actually a JB∗-representation, an
alternative C∗-representation, or a C∗-representation, then so is the other.

Fact 4.5.28 Two dense range non-commutative JB∗-representations of a complex
∗-algebra are equivalent if (and only if) each of them factorizes through the other.

Proof Let A be a complex ∗-algebra, and let Φ1 : A → B1 and Φ2 : A → B2

be non-commutative JB∗-representations of A such that there exist algebra
∗-homomorphisms F : B1 → B2 and G : B2 → B1 satisfying Φ2 = F ◦Φ1 and
Φ1 = G◦Φ2. Then we have Φ2 = F ◦G◦Φ2 and Φ1 = G◦F ◦Φ1. Now assume that
Φ1 and Φ2 have dense ranges. Then F ◦G = IB2 and G◦F = IB1 because F ◦G and
G◦F are continuous, so F is bijective, hence Φ1 and Φ2 are equivalent.

Theorem 4.5.29 Let A be a complete normed hermitian Jordan complex ∗-algebra.
Then, up to equivalence, there exists a unique dense range JB∗-representation Φ of
A satisfying ‖Φ(h)‖= r(h) for every h ∈ H(A,∗). Moreover we have:

(i) Every JB∗-representation of A factors through Φ.
(ii) ker(Φ) = J-Rad(H(A,∗))+ iJ-Rad(H(A,∗)).

(iii) Φ is bijective if and only if there exists κ > 0 such that r(h) � κ‖h‖ for every
h ∈ H(A,∗).

(iv) A+ =Φ−1(B+)∩H(A,∗), where B stands for the JB∗-algebra where the range
of Φ lives.

Proof First of all, we prove the existence of Φ. According to Proposition
4.5.24(ii)(a)–(b), r(·) is a submultiplicative seminorm on H(A,∗). Therefore M :=
{h ∈ H(A,∗) : r(h) = 0} is an ideal of H(A,∗) and |h+M| := r(h) is an algebra
norm on the Jordan algebra H(A,∗)/M, which, in view of Proposition 4.5.24(ii)(c),
satisfies |x|2 � |x2 + y2| for all x,y ∈ H(A,∗)/M. Therefore the completion of
(H(A,∗)/M, | · |) becomes a JB-algebra (say (D,‖·‖)), and hence, by Theorem 3.4.8,
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there exists a JB∗-algebra (B,‖ · ‖) such that (H(B,∗),‖ · ‖) = (D,‖ · ‖). Moreover,
clearly, the mapping

Φ : h+ ik → (h+M)+ i(k+M) (h,k ∈ H(A,∗))

from A to B becomes a dense range JB∗-representation of A, and we have

r(h) = |h+M|= ‖Φ(h)‖ for every h ∈ H(A,∗).

In what follows, B will stand for the JB∗-algebra where the range of Φ lives.
Now we prove assertion (i). Let Ψ : A → C be any JB∗-representation of A.

Then, by Fact 4.5.9, we have ‖Ψ(h)‖ � r(h) = ‖Φ(h)‖ for every h ∈ H(A,∗),
so that Φ(h) → Ψ(h) (h ∈ H(A,∗)) becomes a well-defined contractive algebra
homomorphism from Φ(H(A,∗)) to Ψ(H(A,∗)). Therefore, since Φ(H(A,∗)) is
dense in H(B,∗) (by Proposition 3.3.13 and Fact 4.5.26), and H(B,∗) is complete,
there exists a contractive algebra homomorphism G from H(B,∗) to H(C,∗)
satisfying G ◦Φ = Ψ on H(A,∗). By extending G by complex linearity, we get
an algebra ∗-homomorphism F from B to C satisfying F ◦Φ = Ψ on A. Thus Ψ
factors through Φ.

Noticing that the proof of assertion (i) just done involves only the abstract proper-
ties of Φ, the essential uniqueness of Φ follows from assertion (i) and Fact 4.5.28.

Now we prove assertion (ii). The inclusion

J-Rad(H(A,∗))+ iJ-Rad(H(A,∗))⊆ ker(Φ)

follows from Remark 4.5.12. If h is in ker(Φ) ∩ H(A,∗), then we have r(h) =
‖Φ(h)‖= 0, and hence, by Lemma 4.1.15, h has a quasi-J-inverse in A, which must
lie in ker(Φ)∩H(A,∗) because ker(Φ) is an ideal of A and the quasi-J-inverse is
unique. Therefore ker(Φ)∩H(A,∗) becomes a quasi-J-invertible ideal of H(A,∗),
and hence ker(Φ) ∩ H(A,∗) ⊆ J-Rad(H(A,∗)). Since ker(Φ) is ∗-invariant, the
inclusion

ker(Φ)⊆ J-Rad(H(A,∗))+ iJ-Rad(H(A,∗))

follows.
Now we prove assertion (iii). Assume that Φ is bijective. Then, since Φ is con-

tinuous (by Proposition 4.5.11(ii)), it follows from the Banach isomorphism theorem
that there exists κ > 0 such that ‖Φ(a)‖ � κ‖a‖ for every a ∈ A, and this implies
r(h) = ‖Φ(h)‖ � κ‖h‖ for every h ∈ H(A,∗). Conversely, assume that there exists
κ > 0 such that r(h)� κ‖h‖ for every h ∈ H(A,∗). Then, by Lemma 4.5.25, H(A,∗)
is closed in A. On the other hand, Φ, regarded as a mapping from H(A,∗) to H(B,∗),
has dense range, and we have κ‖ · ‖ � r(·) = ‖Φ(·)‖ = r(·) � ‖ · ‖ on H(A,∗). It
follows that Φ, regarded as a mapping from H(A,∗) to H(B,∗), is bijective, and this
implies that Φ is bijective.

Finally, we prove assertion (iv). Assume at first that A is unital. Then, since
Φ has dense range, B is unital and Φ(1) = 1. Moreover, keeping in mind that
r(·) = ‖Φ(·)‖= r(Φ(·)) on H(A,∗), given h ∈ H(A,∗), we realize that

r(r(h)1−h) � r(h) if and only if r(r(Φ(h))1−Φ(h)) � r(Φ(h)).

Therefore, by Proposition 4.5.24(i), h ∈ A+ if and only if Φ(h) ∈ B+, as desired. To
conclude the proof, remove the assumption above that A is unital. Let A1 stand for
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the standard normed unital extension of A. Then A1 becomes a complete normed
Jordan complex ∗-algebra, and is hermitian. Therefore, by the first conclusion in
the theorem, there exists a dense range JB∗-representation Φ1 : A1 → D satisfying
‖Φ1(h)‖= r(h) for every h ∈ H(A1 ,∗), and the restriction of Φ1 to A, regarded as a
mapping from A to the closure of Φ1(A) in D, is a JB∗-representation of A equivalent
to Φ. Therefore, by the previously considered unital case, for h ∈ H(A,∗) we have

h ∈ A+ ⇐⇒ h ∈ (A1)
+ ⇐⇒Φ1(h) ∈ D+ ⇐⇒Φ(h) ∈ B+.

Corollary 4.5.30 Let A be a complete normed hermitian Jordan complex ∗-algebra.
We have:

(i) Uh(A+)⊆ A+ for every h ∈ H(A,∗).
(ii) If H(A,∗) is J-semisimple, then the closed ∗-subalgebra of A generated by each

element of A is special.

Proof Throughout the proof, Φ : A → B will denote the JB∗-representation of A
given by Theorem 4.5.29.

Let h be in H(A,∗), and let k be in A+. In view of Theorem 4.5.29(iv), to prove
assertion (i) it is enough to show that UΦ(h)(Φ(k)) lies in B+. But Φ(h) ∈ H(B,∗)
and Φ(k) ∈ B+, so that we have indeed UΦ(h)(Φ(k)) ∈ B+ because H(B,∗) is a JB-
algebra (cf. Corollary 3.4.3) and Lemma 3.1.29(iii) applies.

Let a be in A, and let C stand for the closed ∗-subalgebra of A generated by a. Then,
since Φ is continuous (by Proposition 4.5.11(ii)), Φ(C) is contained in the closed
∗-subalgebra of B generated by Φ(a). But, in view of Proposition 3.4.6, this last
subalgebra is a JC∗-algebra, and hence is special. Therefore Φ(C) is a special Jordan
algebra. Now assume that H(A,∗) is J-semisimple. Then, by Theorem 4.5.29(ii), Φ
is injective, and hence C ≈Φ(C) is special. Thus assertion (ii) has been proved.

If B is any non-commutative JB∗-algebra, then B is hermitian (cf. Fact 4.5.19),
and the Jordan algebra H(B,∗) is J-semisimple (cf. Corollaries 3.4.3 and 4.4.27).
Therefore the next corollary generalizes Proposition 4.5.11(ii).

Corollary 4.5.31 Let A and B be complete normed Jordan-admissible complex
∗-algebras, assume that B is hermitian and that the Jordan algebra H(B,∗) is
J-semisimple, and let Φ : A → B be an algebra ∗-homomorphism. Then Φ is
continuous.

Proof By Theorem 4.5.29, there exists an injective JB∗-representation (say Ψ) of
Bsym, which is continuous by Proposition 4.5.11(ii). Then Ψ ◦Φ becomes a JB∗-
representation of Asym, and hence, again by Proposition 4.5.11(ii), it is continuous.
Therefore, if an is any sequence in A such that an → 0 and Φ(an)→ b ∈ B, then we
have 0 ←Ψ(Φ(an))→Ψ(b), so b = 0 because Ψ is injective. Now the continuity of
Φ follows from the closed graph theorem.

Corollary 4.5.32 Let A be a complete normed unital Jordan complex ∗-algebra.
Then the following conditions are equivalent:

(i) A is a JB∗-algebra in an equivalent norm.
(ii) There exists κ1 > 0 satisfying ‖a‖2 � κ1‖a∗a‖ for every a ∈ A.
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(iii) There exists κ2 > 0 such that ‖exp(ih)‖ � κ2 for every h ∈ H(A,∗).
(iv) A is hermitian and there exists κ3 > 0 such that r(h) � κ3‖h‖ for every h ∈

H(A,∗).

Proof (i)⇒(ii) By the assumption (i), there is an equivalent norm ||| · ||| on A
converting A into a JB∗-algebra. Let m and M be positive numbers such that
m ||| · ||| � ‖ · ‖ � M ||| · |||. Then, by Lemma 3.4.65, for every a ∈ A we have

‖a‖2 � M2|||a |||2 � 2M2|||a∗a ||| � 2M2

m
‖a∗a‖.

(ii)⇒(iii) Assume that condition (ii) is fulfilled. Let h be in H(A,∗). Then, by
induction, for every n ∈ N we have ‖h‖2n � κ2n−1

1 ‖h2n‖, and hence ‖h‖ � κ1r(h).
Since h is arbitrary in H(A,∗), it follows from Lemma 4.5.25 that ∗ is continuous.
Therefore, for every h ∈ H(A,∗) we have

‖exp(ih)‖2 � κ1‖(exp(ih))∗ exp(ih)‖= κ1‖exp(−ih)exp(ih)‖= κ1‖1‖.

(iii)⇒(iv) Assume that condition (iii) is fulfilled. Then, by Corollary 4.5.4, r(h)�
κ−1

2 ‖h‖ for every h ∈ H(A,∗). Moreover, for h ∈ H(A,∗) we have ‖exp(inh)‖ � κ2

for every n ∈ Z, so r(exp(ih)) = r(exp(−ih)) = 1, and so J-sp(A,h) ⊆ R. Thus A is
hermitian.

(iv)⇒(i) Assume that condition (iv) is fulfilled. Let Φ be the JB∗-representation
of A given by Theorem 4.5.29. Then, by assertion (iii) in that theorem, Φ is bijec-
tive, and hence bicontinuous (by Proposition 4.5.11(ii) and the Banach isomorphism
theorem). Therefore A is a JB∗-algebra in the equivalent norm ||| · ||| := ‖Φ(·)‖.

Now we are going to prove the appropriate variants of Theorem 4.5.29 and
Corollary 4.5.32 for alternative algebras (see Theorem 4.5.37 and Corollary 4.5.42,
respectively).

Lemma 4.5.33 Let A be a complete normed hermitian Jordan-admissible complex
∗-algebra, and let B be a closed ∗-subalgebra of A. Then B is hermitian.

Proof Since A is hermitian, so is A1 . Therefore, regarding B1 as a closed
∗-subalgebra of A1 , it follows from Proposition 4.1.28(iii) that

J-sp(B1 ,h) = J-sp(A1 ,h)⊆ R for every h ∈ H(B,∗),

and B is indeed hermitian.

Proposition 4.5.34 Let A be a complete normed hermitian alternative complex
∗-algebra, and let a be in A. Then r(a)2 � r(a∗a).

Proof Thinking about the closed ∗-subalgebra of A generated by a, and invoking
Corollary 3.5.73(ii) and Lemma 4.5.33, we may assume that A is associative. Then
it turns out clear that we may assume in addition that A is unital. The Gelfand–
Beurling formula (cf. Theorem 1.1.46) implies that the inequality r(a)2 � r(a∗a)
holds if and only if, given λ ∈ C with |λ |2 > r(a∗a), the element a − λ1 is
invertible in A. Therefore, replacing a with λ−1a, it is sufficient to show that
1 /∈ sp(A,a) whenever r(a∗a)< 1. Suppose, then, that r(a∗a)< 1. Then 1−a∗a lies in
A+∩ Inv(A). Therefore, by Proposition 4.5.21(iv), there exists h ∈ A+∩ Inv(A) such
that h2 = 1−a∗a. Note that



622 Jordan spectral theory

(1+a∗)(1−a) = 1+a∗ −a−a∗a = h2 +a∗ −a = h
[
1+h−1(a∗ −a)h−1]h.

Since ih−1(a∗ − a)h−1 ∈ H(A,∗), it has real spectrum. Thus 1 + h−1(a∗ − a)h−1

is invertible in A, and hence 1 − a is left invertible. A similar argument applied
to (1 − a)(1 + a∗) shows that 1 − a is right invertible. Thus, by Lemma 1.1.59,
1 /∈ sp(A,a).

By keeping in mind Artin’s theorem (Theorem 2.3.61), the following fact becomes
straightforward.

Fact 4.5.35 Let A be an alternative algebra over K, and let a,b be in A. Then

[a,b]2 = 2
(
a2 •b2 −a• (a•b2)

)
+4
(
a• (a•b)−a2 •b

)
•b.

Let A be a complex ∗-algebra, and note that ∗ remains a conjugate-linear algebra
involution on Asym. If Φ : A → B is a non-commutative JB∗-representation of A, then
Φ, regarded as a mapping from Asym to Bsym, clearly becomes a JB∗-representation
of Asym. According to assertion (ii) in the next proposition, when A is alterna-
tive, all dense range JB∗-representations of Asym are obtained by the procedure just
described.

Proposition 4.5.36 Let A be an alternative complex ∗-algebra, and let

Φ : Asym →C

be a JB∗-representation of Asym. Then:

(i) ker(Φ) is an ideal of A, and the alternative complex algebra A/ker(Φ) becomes
a normed algebra in the norm |||a+ker(Φ) ||| := (1+4

√
3)‖Φ(a)‖.

(ii) If Φ has dense range, then there exists an alternative C∗-algebra B such that

(a) Bsym =C as JB∗-algebras, and

(b) Φ, regarded as a mapping from A to B, becomes an alternative C∗-
representation of A.

Proof Let h,k be in H(A,∗). Then, by Fact 4.5.35, we have

Φ
(
[h,k]2

)
= 2
(
Φ(h)2 •Φ(k)2 −Φ(h)• (Φ(h)•Φ(k)2)

)
+4
(
Φ(h)• (Φ(h)•Φ(k))−Φ(h)2 •φ(k)

)
•Φ(k).

Therefore, since iΦ([h,k]) ∈ H(C,∗), and H(C,∗) is a JB-algebra, we have

‖Φ([h,k])‖2 = ‖Φ([h,k])2‖= ‖Φ([h,k]2)‖ � 12‖Φ(h)‖2‖Φ(k)‖2,

and hence

‖Φ([h,k])‖ � 2
√

3‖Φ(h)‖‖Φ(k)‖. (4.5.7)

Now let a1,a2 be in A, and write a j = h j + ik j with h j,k j ∈ H(A,∗) ( j = 1,2). It
follows from (4.5.7) that

‖Φ([a1,a2])‖ � 2
√

3(‖Φ(h1)‖+‖Φ(k1)‖)(‖Φ(h2)‖+‖Φ(k2)‖).
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Therefore, since the involution of C is an isometry (cf. Proposition 3.3.13), we derive
that ‖Φ([a1,a2])‖ � 8

√
3‖Φ(a1)‖‖Φ(a2)‖, and hence

‖Φ(a1a2)‖ � ‖Φ(a1 •a2)‖+
1
2
‖Φ([a1,a2])‖

= ‖Φ(a1)•Φ(a2)‖+
1
2
‖Φ([a1,a2])‖

� ‖Φ(a1)‖‖Φ(a2)‖+4
√

3‖Φ(a1)‖‖Φ(a2)‖

= (1+4
√

3)‖Φ(a1)‖‖Φ(a2)‖.

Since a1,a2 are arbitrary in A, the inequality

‖Φ(a1a2)‖ � (1+4
√

3)‖Φ(a1)‖‖Φ(a2)‖

just proved makes the proof of assertion (i) straightforward.
Now that assertion (i) has been proved, keep it in mind and note that, since

ker(Φ) is ∗-invariant, the quotient involution (also denoted by ∗) becomes a
||| · |||-isometric conjugate-linear algebra involution on A/ker(Φ), and hence we
can consider the completion (say D) of (A/ker(Φ), ||| · ||| ,∗), which becomes an
alternative complex ∗-algebra. Now assume that Φ has dense range. Then, since the
mapping a+ker(Φ)→ Φ(a) from A/ker(Φ) to C is both a multiple of an isometry
and a Jordan-∗-homomorphism, it extends to a bijective Jordan-∗-homomorphism
Ψ : D →C satisfying

Φ=Ψ◦π , where π stands for the quotient mapping A → A/ker(Φ). (4.5.8)

Let B denote the alternative complex algebra consisting of the vector space of C and
the product

x� y :=Ψ(Ψ−1(x)Ψ−1(y)). (4.5.9)

It follows from (4.5.8) and (4.5.9) that Φ, regarded as a mapping from A to B,
becomes an algebra homomorphism. Moreover we easily realize that Bsym = C as
Jordan algebras, and that the involution ∗ of C becomes a conjugate-linear algebra
involution on B. Since C is a JB∗-algebra, it follows from Theorem 3.6.25 that B is
an alternative C∗-algebra for the norm and the involution of C, and then clearly Φ,
regarded as a mapping from A to B, becomes an alternative C∗-representation of A.
Thus assertion (ii) has been proved.

We note that assertion (ii) in the above proposition refines one of the ingredients
in its proof, namely Theorem 3.6.25.

Theorem 4.5.37 Let A be a complete normed hermitian alternative complex
∗-algebra. Then, up to equivalence, there exists a unique dense range alternative
C∗-representation Φ of A satisfying ‖Φ(a)‖2 = r(a∗a) for every a ∈ A. Moreover
we have:

(i) Every alternative C∗-representation of A factors through Φ.

(ii) ker(Φ) = Rad(A).
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(iii) Φ is bijective if and only if there exists κ > 0 such that r(h) � κ‖h‖ for every
h ∈ H(A,∗).

(iv) A+ =Φ−1(B+)∩H(A,∗), where B stands for the alternative C∗-algebra where
the range of Φ lives.

Proof First of all, we prove the existence of Φ. Since Asym is a complete normed
Jordan complex algebra, and ∗ remains an algebra involution on Asym, and Asym is
hermitian, we can apply Theorem 4.5.29 to Asym, and consider the dense range JB∗-
representation Φ : Asym →C given by that theorem, which satisfies

‖Φ(h)‖= r(h) for every h ∈ H(A,∗).

Then, according to Proposition 4.5.36(ii), Φ is in fact an alternative C∗-representation
of A into an alternative C∗-algebra B such that Bsym =C. Therefore, for every a ∈ A
we have

‖Φ(a)‖2 = ‖Φ(a)∗Φ(a)‖= ‖Φ(a∗a)‖= r(a∗a).

Thus the existence of the representation Φ in the statement has been proved.
In what follows, B will stand for the alternative C∗-algebra where the range of

Φ lives.
Now we prove assertion (i). Let Ψ : A → D be any alternative C∗-representation of

A. Then, by Fact 4.5.9, for every a ∈ A we have

‖Ψ(a)‖2 = ‖Ψ(a)∗Ψ(a)‖= ‖Ψ(a∗a)‖ � r(a∗a) = ‖Φ(a)‖2,

so that Φ(a) → Ψ(a) (a ∈ A) becomes a well-defined contractive algebra
∗-homomorphism from Φ(A) to Ψ(A). Therefore, since Φ(A) is dense in B, there
exists a contractive algebra ∗-homomorphism G from B to D satisfying G ◦Φ = Ψ.
Thus Ψ factors through Φ.

Noticing that the proof of assertion (i) just done involves only the abstract proper-
ties of Φ, the essential uniqueness of Φ follows from assertion (i) and Fact 4.5.28.

Now we prove assertion (ii). Keeping in mind that Rad(A) = J-Rad(A) (cf.
§3.6.58), we must show that ker(Φ) = J-Rad(A). The inclusion J-Rad(A) ⊆ ker(Φ)

follows from Proposition 4.5.11(i). Conversely, if x is in ker(Φ), then, by Propos-
ition 4.5.34, we have

r(x)2 � r(x∗x) = ‖Φ(x)‖2 = 0,

so r(x) = 0, and so x is quasi-invertible in A (cf. Lemma 4.1.15, Definition 3.6.19,
and Fact 4.1.57). Thus ker(Φ) is a quasi-invertible ideal of A, and hence
ker(Φ)⊆ J-Rad(A).

Finally, assertions (iii) and (iv) follow straightforwardly from the first paragraph
in the proof and the corresponding assertions in Theorem 4.5.29.

Since C∗-representations are alternative C∗-representations, and dense range
alternative C∗-representations are C∗-representations whenever the starting alge-
bra is associative, the next corollary follows straightforwardly from Theorem
4.5.37 above.
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Corollary 4.5.38 Let A be a complete normed hermitian associative complex
∗-algebra. Then, up to equivalence, there exists a unique dense range
C∗-representation Φ of A satisfying ‖Φ(a)‖2 = r(a∗a) for every a ∈ A. Moreover we
have:

(i) Every C∗-representation of A factors through Φ.
(ii) ker(Φ) = Rad(A).

(iii) Φ is bijective if and only if there exists κ > 0 such that r(h) � κ‖h‖ for every
h ∈ H(A,∗).

(iv) A+ = Φ−1(B+)∩H(A,∗), where B stands for the C∗-algebra where the range
of Φ lives.

Corollary 4.5.39 Let A be a complete normed hermitian alternative complex
∗-algebra. Then:

(i) The mapping a→
√

r(a∗a) is a C∗-seminorm on A (cf. Definition 2.3.30) whose
kernel is equal to the radical of A.

(ii) a∗a ∈ A+ for every a ∈ A.
(iii) Rad(A) = J-Rad(H(A,∗))+ iJ-Rad(H(A,∗)).

Proof Let Φ : A → B be the alternative C∗-representation of A given by The-
orem 4.5.37.

By the first conclusion in that theorem, we have
√

r(a∗a) = ‖Φ(a)‖ for every
a ∈ A, so that, keeping in mind that B is an alternative C∗-algebra, the mapping
a →

√
r(a∗a) becomes indeed a C∗-seminorm on A. Moreover, by Theorem

4.5.37(ii), we have

{a ∈ A :
√

r(a∗a) = 0}= Rad(A).

Thus assertion (i) has been proved.
Let a be in A. In view of Theorem 4.5.37(iv), to prove assertion (ii) it is enough

to show that Φ(a)∗Φ(a) ∈ B+. But this is indeed true because of Facts 4.5.19
and 3.4.69.

Invoking §3.6.58, Remark 4.5.12, and Theorem 4.5.29(ii), we have

Rad(A) = J-Rad(A)⊆ J-Rad(H(A,∗))+ iJ-Rad(H(A,∗))⊆ ker(Φ) = Rad(A),

and assertion (iii) follows.

With Theorem 4.5.37 instead of Theorem 4.5.29, arguments like those in the proof
of Corollary 4.5.31 yield the following.

Corollary 4.5.40 Let A be a complete normed Jordan-admissible complex
∗-algebra, let B be a complete normed semisimple hermitian alternative complex
∗-algebra, and let Φ : A → B be an algebra ∗-homomorphism. Then Φ is continuous.

Recalling that, for an alternative algebra A, we have Rad(A) = J-Rad(A), and
looking at Corollary 4.5.39(iii), the next problem arises naturally (see also the
inclusion (4.5.1) in Remark 4.5.12).

Problem 4.5.41 Let A be a complete normed hermitian non-commutative Jordan
∗-algebra. Does the equality J-Rad(A)=J-Rad(H(A,∗))+ iJ-Rad(H(A,∗)) hold?
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We note that the above problem reduces to the commutative case. For, if A is as in
Problem 4.5.41, then so is Asym, and moreover H(A,∗) = H(Asym,∗) as Jordan real
algebras, and J-Rad(A) = J-Rad(Asym) thanks to Proposition 4.4.17(iii). We also note
that, if Problem 4.5.41 had an affirmative answer, then Theorem 4.5.29(ii) and Corol-
laries 4.5.30(ii) and 4.5.31 would have a better formulation. Keeping in mind §3.6.58,
such a better formulation of Corollary 4.5.31 would contain Corollary 4.5.40.

Corollary 4.5.42 Let A be a complete normed unital alternative complex ∗-algebra.
Then the following conditions are equivalent:

(i) A is an alternative C∗-algebra in an equivalent norm.
(ii) There exists κ1 > 0 satisfying ‖a‖2 � κ1‖a∗a‖ for every a ∈ A.

(iii) There exists κ2 > 0 such that ‖exp(ih)‖ � κ2 for every h ∈ H(A,∗).
(iv) A is hermitian and there exists κ3 > 0 such that r(h) � κ3‖h‖ for every h ∈

H(A,∗).

Proof (i)⇒(ii) By the assumption (i), there is an equivalent norm ||| · ||| on A
converting A into an alternative C∗-algebra. Let m,M > 0 be such that
m ||| · ||| � ‖ · ‖ � M ||| · |||. Then for every a ∈ A we have

‖a‖2 � M2|||a |||2 = M2|||a∗a ||| � M2

m
‖a∗a‖.

(ii)⇒(iii) Argue verbatim as in the proof of the implication (ii)⇒(iii) in Corol-
lary 4.5.32.

(iii)⇒(iv) Noticing that Asym is a complete normed unital Jordan complex alge-
bra, that ∗ remains a conjugate-linear algebra involution on Asym, that A is hermitian
if and only if so is Asym, and that both exp(·) and r(·) have the same meaning
in A and Asym, the present implication follows from the implication (iii)⇒(iv) in
Corollary 4.5.32.

(iv)⇒(i) Assume that condition (iv) is fulfilled. Let Φ be the alternative C∗-
representation of A given by Theorem 4.5.37. Then, by assertion (iii) in that theorem,
Φ is bijective, and hence bicontinuous (by Proposition 4.5.11(ii) and the Banach
isomorphism theorem). Therefore A is an alternative C∗-algebra in the equivalent
norm ||| · ||| := ‖Φ(·)‖.

Corollary 4.5.32 (respectively, Corollary 4.5.42) does not remain true if we replace
‘Jordan algebra’ and ‘JB∗-algebra’ (respectively, ‘alternative algebra’ and ‘alterna-
tive C∗-algebra’) with ‘non-commutative Jordan algebra’ and ‘non-commutative
JB∗-algebra’. Indeed, we have the following.

Example 4.5.43 Let λ be a real number, set M := |λ | + |1 − λ |, let ||| · |||
denote the usual C∗-norm on M2(C), and let A stand for the complete normed
unital complex algebra consisting of the vector space of M2(C), the product
a � b := λab + (1 − λ )ba, and the norm ‖ · ‖ := M ||| · |||. Note that A is a non-
commutative Jordan algebra, and that the usual involution ∗ of M2(C) remains a
conjugate-linear algebra involution on A.

We are going to realize that A satisfies conditions (ii)–(iv) in both Corollary 4.5.32
and Corollary 4.5.42. Indeed, we have clearly ‖exp(ih)‖= M for every h ∈ H(A,∗),
so A satisfies condition (iii) with κ2 = M. On the other hand, A is hermitian because
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Asym = M2(C)sym as algebras with involution, and clearly Mr(h) = ‖h‖ for every
h ∈ H(A,∗), so A satisfies condition (iv) with κ3 = 1

M . Now, let a be in A. Then,
noticing that

|||a∗ �a ||| � | |λ |− |1−λ | | |||a |||2,

we have ‖a∗ � a‖ � | |λ |−|1−λ | |
M ‖a‖2. Therefore, if λ 	= 1

2 , then A satisfies condi-
tion (ii) with κ1 = M

| |λ |−|1−λ | | . But, if λ = 1
2 , then in the order of M2(C) we have

a∗ �a � 1
2 a∗a, so |||a∗ �a ||| � 1

2 |||a |||2, and so ‖a∗ �a‖ � 1
2M‖a‖2.

Assume that A is a non-commutative JB∗-algebra in some norm | · |. Then
| · | = ||| · ||| because the mapping x → x from the JB∗-algebra (Asym, | · |) to the
JB∗-algebra (M2(C)sym, ||| · |||) is an algebra ∗-homomorphism and Proposition 3.4.4
applies. Therefore we have

|||λab+(1−λ )ba |||= |||a�b |||= |a�b| � |a||b|= |||a ||||||b |||

for all a,b ∈ M2(C). Set a :=

(
0 1
0 0

)
, note that |||a |||= 1 and a2 = 0, take unimodu-

lar complex numbers α,β such that αλ = |λ | and β (1− λ ) = |1− λ |, and write
b := αa∗a+βaa∗. Then |||b |||= 1 and

1 = |||a ||||||b ||| � |||λab+(1−λ )ba |||= (|λ |+ |1−λ |)|||aa∗a |||= |λ |+ |1−λ |,

and hence 0 � λ � 1.
Now, when λ /∈ [0,1], the corresponding complete normed unital non-commutative

Jordan complex ∗-algebra A satisfies conditions (ii)–(iv) in both Corollary 4.5.32
and Corollary 4.5.42, but is not a non-commutative JB∗-algebra in any norm.

Remark 4.5.44 (a) Let λ be in R\ [0,1], and let A be the corresponding algebra in
Example 4.5.43 above, so that A is a complete normed hermitian non-commutative
Jordan complex ∗-algebra, but A is not a non-commutative JB∗-algebra in any norm.
Then, since M2(C) is simple (by Proposition 1.4.32), and

ab =
λ

2λ −1
a�b+

λ −1
2λ −1

b �a

for all a,b ∈ M2(C) (which implies that ideals of A are ideals of M2(C)), A is simple.
As a consequence, every non-commutative JB∗-representation of A is either zero
or injective. But, if there were an injective non-commutative JB∗-representation of
A (say Φ : A → B), then A would be a non-commutative JB∗-algebra in the norm
| · | := ‖Φ(·)‖, which is impossible. Therefore A has no nonzero non-commutative
JB∗-representation. It follows that Theorem 4.5.29 (respectively, Theorem 4.5.37)
does not remain true if we replace ‘Jordan algebra’ and ‘JB∗-representation’
(respectively, ‘alternative algebra’ and ‘alternative C∗-representation’) with ‘non-
commutative Jordan algebra’ and ‘non-commutative JB∗-representation’. Note also
that, since both M2(C) and A are unital and simple, we have Rad(M2(C)) = 0 and
Rad(A) = 0, and then, since J-Rad(H(M2(C),∗)) = 0 (by Corollary 4.5.39(iii)) and
H(M2(C),∗) = H(A,∗) as Jordan real algebras, we realize that J-Rad(H(A,∗)) = 0.

(b) Let λ be in R \ [0,1], let A be the corresponding algebra in Example 4.5.43
above (the norm ‖ · ‖ of A can be forgotten), and let ||| · ||| be the usual C∗-norm
on M2(C). Then A is a non-commutative Jordan complex ∗-algebra such that Asym

(= M2(C)sym) is a JB∗-algebra for the norm ||| · ||| and the involution ∗. However,
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according to the third paragraph in the example, A cannot be a non-commutative
JB∗-algebra for the norm ||| · ||| and the involution ∗. Therefore Theorem 3.6.25 does
not remain true if we replace ‘alternative algebra’ and ‘alternative C∗-algebra’ with
‘non-commutative Jordan algebra’ and ‘non-commutative JB∗-algebra’, respectively.

As we show in Proposition 4.5.45 immediately below, the assumption in Cor-
ollary 4.5.32 (respectively, Corollary 4.5.42) that the algebra be unital is not that
essential. For the formulation and proof, §4.5.6 should be kept in mind.

Proposition 4.5.45 Let A be a complete normed Jordan (respectively, alternative)
complex ∗-algebra. Then the following conditions are equivalent:

(i) A is a JB∗-algebra (respectively, an alternative C∗-algebra) in an equivalent
norm.

(ii) There exists κ1 > 0 satisfying ‖a‖2 � κ1‖a∗a‖ for every a ∈ A.
(iii) There exists κ2 > 0 such that ‖(exp−1)(ih)‖ � κ2 for every h ∈ H(A,∗).
(iv) A is hermitian and there exists κ3 > 0 such that r(h) � κ3‖h‖ for every h ∈

H(A,∗).

Proof The proofs of the implications (i)⇒(ii) and (iv)⇒(i) in the proposition do
not need changing from those of the corresponding implications in Corollary 4.5.32
(respectively, Corollary 4.5.42) because the existence of a unit was never applied
there.

(ii)⇒(iii) Assume that condition (ii) is fulfilled. Then, arguing as in the beginning
of the proof of the implication (ii)⇒(iii) in Corollary 4.5.32, we obtain that ∗ is
continuous. Let h be in H(A,∗). Then the closed subalgebra B of A generated by h
is associative, commutative, and ∗-invariant. Working in the standard normed unital
extension B1 of B, and keeping in mind Exercises 1.1.30 and 1.2.17, we see that

1= exp(−ih)exp(ih) = exp(ih)∗ exp(ih)

= (1+(exp−1)(ih))∗(1+(exp−1)(ih))

= [1+((exp−1)(ih))∗](1+(exp−1)(ih))

= 1+((exp−1)(ih))∗+(exp−1)(ih)+((exp−1)(ih))∗(exp−1)(ih),

and hence

((exp−1)(ih))∗(exp−1)(ih) =−((exp−1)(ih))∗ − (exp−1)(ih).

Therefore, we have

‖(exp−1)(ih)‖2 � κ1‖((exp−1)(ih))∗(exp−1)(ih)‖

= κ1‖((exp−1)(ih))∗+(exp−1)(ih)‖

� κ1(‖∗‖+1)‖(exp−1)(ih)‖,
and hence

‖(exp−1)(ih)‖ � κ1(‖∗‖+1).

(iii)⇒(iv) Assume that condition (iii) is fulfilled. Let A1 be the standard normed
unital extension of A. Then, arguing as in the proof of the implication (iii)⇒(i) in
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Corollary 4.5.7, we get that ‖exp(ih)‖ � 1+ κ2 for every h ∈ H(A1 ,∗). Now, by
the implication (iii)⇒(iv) in Corollary 4.5.32 (respectively, Corollary 4.5.42) we
conclude that A1 is hermitian and that there exists a constant κ3 > 0 such that

r(h) � κ3‖h‖ for every h ∈ H(A1 ,∗),

so that in particular A is hermitian and r(h) � κ3‖h‖ for every h ∈ H(A,∗).

Corollary 4.5.46 Let B be a complete normed Jordan real algebra. Then the fol-
lowing conditions are equivalent:

(i) B is a JB-algebra in an equivalent norm.
(ii) There exists κ > 0 satisfying ‖x‖2 � κ‖x2 + y2‖ for all x,y ∈ B.

Proof (i)⇒(ii) By the assumption (i), there is an equivalent norm ||| · ||| on B con-
verting B into a JB-algebra. Let m,M > 0 be such that

m ||| · ||| � ‖ · ‖ � M ||| · ||| .

Then for all x,y ∈ B we have

‖x‖2 � M2|||x |||2 � M2|||x2 + y2 ||| � M2

m
‖x2 + y2‖.

(ii)⇒(i) Let A denote the projective normed complexification of B, so that
(A,‖·‖π) becomes a complete normed Jordan complex algebra, and let ∗ stand
for the canonical involution of A, so that ∗ becomes a conjugate-linear algebra
involution on (A,‖ · ‖π) satisfying H(A,∗) = B. Then, by the assumption (ii), for
a = x+ iy ∈ A with x,y ∈ B, we have

‖a‖2
π � (‖x‖+‖y‖)2 � 4max{‖x‖2,‖y‖2}

� 4κ‖x2 + y2‖= 4κ‖a∗a‖= 4κ‖a∗a‖π .

Therefore, by the implication (ii)⇒(i) in Proposition 4.5.45, A is a JB∗-algebra in
an equivalent norm. Finally, by Corollary 3.4.3, B (= H(A,∗)) is a JB-algebra in an
equivalent norm.

Let A be a complete normed power-associative complex ∗-algebra, let h be in
H(A,∗), and let B stand for the closed ∗-subalgebra of A generated by h. Then,
according to Corollary 3.5.64, B is associative (and commutative). Therefore, to say
that B is a C∗-algebra in the norm of A is equivalent to simply saying that the norm
of A becomes a C∗-norm on B.

Corollary 4.5.47 Let A be a complete normed Jordan (respectively, alternative)
complex ∗-algebra, and assume that, for every h ∈ H(A,∗), the closed ∗-subalgebra
of A generated by h is a C∗-algebra in the norm of A. Then A is a JB∗-algebra
(respectively, an alternative C∗-algebra) in an equivalent norm.

Proof Let h be in H(A,∗), and let B stand for the closed ∗-subalgebra of A
generated by h. Then, thinking about the C∗-unital extension of B, we realize that
‖(exp−1)(ih)‖ � 2. Since h is arbitrary in A, the result follows from Propos-
ition 4.5.45.

Of course, we could expect a better result than the one given by the above corol-
lary. Therefore we raise the following.
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Problem 4.5.48 Let A be a complete normed Jordan (respectively, alternative)
complex ∗-algebra, and assume that, for every h ∈ H(A,∗), the closed ∗-subalgebra
of A generated by h is a C∗-algebra in the norm of A. Is A a JB∗-algebra (respectively,
an alternative C∗-algebra) in its own norm?

As far as we know, the above problem remains open to date even if the algebra
A is associative and commutative. (Note that an algebra over K is associative and
commutative if and only if it is Jordan and alternative.) Nevertheless, as a by-product
of Theorem 4.5.1, we have the following.

Corollary 4.5.49 Problem 4.5.48 has an affirmative answer whenever the algebra
A is unital.

We note that, in view of Theorem 3.6.25, an affirmative answer to the Jordan ver-
sion of Problem 4.5.48 would imply an affirmative answer to its alternative version.
On the other hand, the alternative version of Problem 4.5.48 can be reduced to its
associative version. Indeed, we have the following.

Fact 4.5.50 Assume that Problem 4.5.48 has an affirmative answer for any associa-
tive algebra A. Then it has an affirmative answer for any alternative algebra A.

Proof Let A be a complete normed alternative complex ∗-algebra such that the
closed ∗-subalgebra of A generated by each h ∈ H(A,∗) is a C∗-algebra in the norm
of A. Let a be in A, and let B stand for the closed ∗-subalgebra of A generated by
a. Then, clearly, the closed ∗-subalgebra of B generated by each h ∈ H(B,∗) is a
C∗-algebra. On the other hand, by Corollary 3.5.73(ii), B is associative. It follows
from the assumption that B is a C∗-algebra, and hence ‖a∗a‖ = ‖a‖2. Thus A is an
alternative C∗-algebra because of the arbitrariness of a ∈ A.

4.5.3 A conjecture on non-commutative JB∗-equivalent algebras

Let A be a complete normed non-commutative Jordan complex ∗-algebra. If A is a
non-commutative JB∗-algebra in some equivalent norm, then, by Fact 3.3.4, Asym

is a JB∗-algebra in an equivalent norm, and hence, by Proposition 4.5.45, the set
{(exp−1)(ih) : h ∈ H(A,∗)} is bounded. However, in view of Example 4.5.43, the
converse of the assertion just formulated is far from being true. Unfortunately, we
do not know any reasonable characterization of normed complex ∗-algebras which
are non-commutative JB∗-algebras in an equivalent norm. Nevertheless, looking for
such a characterization, we have found the following fact, which could be useful.

Fact 4.5.51 Let A be a non-commutative JB∗-algebra, and let a be a normal elem-
ent of A (cf. Definition 3.4.20). Then r(La) = r(Ra) = r(a).

Proof By Fact 3.4.22, the closed ∗-subalgebra of A generated by a is a commutative
C∗-algebra. Therefore, by Lemma 1.2.12, we have

r(La) � ‖La‖ � ‖a‖= r(a).

But in view of Lemma 4.1.16, we have in fact r(La) = r(a). Analogously,
r(Ra) = r(a).
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Noticing that the normality of an element of a ∗-algebra is a purely algebraic
property, and that the conclusion in the above fact remains true under equivalent
algebra renormings of the non-commutative JB∗-algebra A (by Fact 3.4.62), we
cherish the following.

Conjecture 4.5.52 Let A be a complete normed non-commutative Jordan complex
∗-algebra. Then A is a non-commutative JB∗-algebra in an equivalent norm if (and
only if) the set {(exp−1)(ih) : h∈H(A,∗)} is bounded and, for every normal element
a ∈ A, we have r(La) = r(Ra) = r(a).

In the next remark, the reader can find several facts endorsing the above conjecture.

Remark 4.5.53 (a) Conjecture 4.5.52 is in agreement with Proposition 4.5.45
because, as pointed out in [452, 6.4], if A is a normed Jordan or alternative algebra
over K, then the equalities r(La) = r(Ra) = r(a) hold automatically for every a ∈ A.
Indeed, in the Jordan case this follows by passing to complexification, unital exten-
sion, and completion if necessary, and then by applying Theorem 4.1.17 and Propos-
ition 4.1.30(ii), whereas in the alternative case it is enough to invoke Lemma 4.1.16,
to note that the mappings a → La and a → Ra from A to BL(A) are continuous Jordan
homomorphisms, and to apply Fact 3.4.62.

(b) Let λ be in R\[0,1], and let A be the corresponding algebra in Example 4.5.43.
Then, as we already know, A is a complete normed non-commutative Jordan complex
∗-algebra such that the set {(exp−1)(ih) : h ∈ H(A,∗)} is bounded, but A is not a
non-commutative JB∗-algebra in any norm. Therefore, if Conjecture 4.5.52 were
right, then there would exist a normal element a ∈ A such that either r(La) 	= r(a)
or r(Ra) 	= r(a). Actually, the existence of such a normal element is easily realized.

Indeed, take a :=

(
1 0
0 0

)
, and let b stand for

(
0 1
0 0

)
if λ > 1 (respectively,(

0 0
1 0

)
if λ < 0). Then a is a self-adjoint idempotent of A and we have a�b = λb

(respectively, a�b = (1−λ )b), hence

λ ∈ sp(BL(A),La) (respectively, 1−λ ∈ sp(BL(A),La)),

and finally r(La) > 1 = r(a). Thus Conjecture 4.5.52 is also in agreement with
Example 4.5.43.

(c) Let A be a complete normed non-commutative Jordan complex ∗-algebra
such that

(i) the set {(exp−1)(ih) : h ∈ H(A,∗)} is bounded;
(ii) for every normal element a ∈ A, the equalities r(La) = r(Ra) = r(a) hold.

Then, by the requirement (i) and Proposition 4.5.45, there exists an equivalent norm
||| · ||| on A converting Asym into a JB∗-algebra. Therefore, in view of Fact 3.3.4,
Conjecture 4.5.52 would be right as soon as we were able to prove that the
inequality |||ab ||| � |||a ||||||b ||| holds for all a,b ∈ A. Unfortunately, we are able
to show that this inequality holds only when at least one of the elements a,b
is self-adjoint. Assume for example that a ∈ H(A,∗). Then, by Lemmas 2.4.15,
3.4.27 and 3.6.24, the operators b → [a,b] and b → a • b lie in H(BL(A, ||| · |||), IA),
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and hence also La ∈ H(BL(A, ||| · |||), IA). Therefore, by Proposition 2.3.22, we
have r(La) = |||La |||, so that, by requirement (ii), we get |||La ||| = r(a) � |||a |||,
hence |||ab ||| � |||a ||||||b ||| for every b ∈ A, as desired. We note that, in the above
argument, requirement (ii) has been applied only in the particular case where the
element a is self-adjoint. Actually, if someone were able to prove the inequality
|||ab ||| � |||a ||||||b ||| for normal a and arbitrary b, then he/she would have established
Conjecture 4.5.52 in the case where A is unital. Indeed, if A is unital, then
exp(ih) is normal and ||| exp(ih) ||| = 1 whenever h is in H(A,∗), so that, if the
inequality |||ab ||| � |||a ||||||b ||| were true for normal a and arbitrary b, we would have
||| exp(ih)b ||| � |||b ||| for every b, so |||ab ||| � |||b ||| for every a with |||a ||| � 1 and
arbitrary b (by Corollary 3.4.7), and so |||ab ||| � |||a ||||||b ||| for arbitrary a,b.

4.5.4 Historical notes and comments

Theorem 4.5.1 is new. Even the associative particularization of the implication
(ii)⇒(i) (that a complete normed unital associative complex ∗-algebra is a
C∗-algebra whenever so is the closed ∗-subalgebra generated by each self-adjoint
element) could be new. The associative forerunner of the equivalence (i)⇔(iv) in
that theorem is originally due to Glickfeld [289, Theorem 2.4], and is included by
Pták [494, Theorem 10.1] in a long list of characterizations of C∗-algebras, which in
its turn is reproduced in [725, Theorem 36.1].

As we already pointed out in §4.4.77, Proposition 4.5.2 is due to Rota and
Strang [544], who also prove (a generalization of) Corollary 4.5.3. These results
appear as Theorem 4.1 and Corollary 4.2, respectively, of Bonsall–Duncan [696].
Corollary 4.5.4 is taken from the proof of [653, Theorem 11].

In [57, 58] Barnes attempted to characterize C∗-equivalent algebras (i.e. normed
complex ∗-algebras which are C∗-algebras in an equivalent norm) in terms of
the closed ∗-subalgebras generated by their self-adjoint elements. To this end, he
introduced the concept of locally C∗-equivalent algebras (i.e. complete normed
associative complex ∗-algebras such that the closed ∗-subalgebra generated by each
self-adjoint element is C∗-equivalent), established their basic properties, and asked
whether they were necessarily C∗-equivalent. Actually, he answered the question
affirmatively in several interesting special cases. For example, he proved in [57,
Proposition 2.2] the outstanding equivalence (i)⇔(ii) in Theorem 4.5.5. The simple
proof given here is due to Wichmann, who announced it in [633] but did not publish
it. Wichmann’s proof is included in the books by Aupetit [682, pp. 126–7] and
Doran–Belfi [725, Proposition 47.5]. The equivalence (i)⇔(iii) in Theorem 4.5.5
had been proved previously by Glickfeld [289, Theorem 1.8]. In 1976, Cuntz [201],
with an ingenious proof, answered Barnes’ question affirmatively. Indeed, he proved
the following.

Theorem 4.5.54 Locally C∗-equivalent algebras are C∗-equivalent.

Cuntz’s proof of the above theorem is included in Chapter 9 of Doran–Belfi [725].
According to Palmer [787, p. 1185], ‘No one seems to have improved Cuntz’s
original proof. . . An easier, more direct proof would be of considerable interest.’ It
would also be quite interesting to know whether the natural Jordan and alternative
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generalizations of Cuntz’s theorem remain true. Thus, keeping in mind Corol-
lary 3.5.64 and Fact 3.3.2, we raise the following.

Problem 4.5.55 Let A be a complete normed Jordan (respectively, alternative) com-
plex ∗-algebra, and assume that the closed ∗-subalgebra of A generated by each self-
adjoint element of A is C∗-equivalent. Is A a JB∗-algebra (respectively, an alternative
C∗-algebra) in an equivalent norm?

We note that arguments like those in the proof of Corollary 4.5.7 enable the reduc-
tion of the above problem to the case where A is unital. We also note that, in view
of Theorem 3.6.25, an affirmative answer to the Jordan version of Problem 4.5.55
would imply an affirmative answer to its alternative version, and hence would contain
Cuntz’ associative theorem. Nevertheless, with certain reservations, we could agree
with the concluding remark in Youngson’s paper [653] that Cuntz’ methods do not
generalize [straightforwardly] to the case of Jordan algebras.

To conclude our comments on Cuntz’ theorem, let us review the following weaker
form, proved by Wu [644].

Theorem 4.5.56 Let A be a complete normed associative complex ∗-algebra such
that the subalgebra of A generated by each self-adjoint element of A can be endowed
with a (possibly non-complete) equivalent C∗-norm. Then A is C∗-equivalent.

It is easy to realize that, if Problem 4.5.55 had an affirmative answer, then The-
orem 4.5.56 itself would imply its natural Jordan (respectively, alternative) general-
ization.

Fact 4.5.9, Proposition 4.5.11(i), and Remark 4.5.12 could be new. The associat-
ive forerunner of Proposition 4.5.11(ii) is due to Rickart [501], who includes it in
his book [795, Theorem 4.1.20] (see also [696, Theorem 37.3] and [725, Theorem
23.11]). Actually, Rickart’s theorem is more general than the associative forerunner
of Proposition 4.5.11(ii), and was later refined by Yood [645]. The following Jordan
variant of Yood’s theorem has been proved by Putter and Yood [495].

Theorem 4.5.57 Let A be a complete normed Jordan complex algebra, let B be
a complete normed Jordan complex ∗-algebra such that there exists a vector space
norm | · | on H(B,∗) satisfying |h| � r(h) for every h ∈ H(B,∗), and let Φ : A → B be
an algebra homomorphism such that Φ(A) =Φ(A)∗. Then Φ is continuous.

The above theorem is indeed better than Yood’s associative variant because it
implies the following fact which, on the other hand, contains Proposition 4.5.11(ii).

Fact 4.5.58 Let A be a complete normed Jordan-admissible complex algebra, let
B be a complete normed Jordan-admissible complex ∗-algebra such that there exists
a vector space norm | · | on H(B,∗) satisfying |h| � s(h) for every h ∈ H(B,∗), and
let Φ : A → B be an algebra homomorphism such that Φ(A) = Φ(A)∗. Then Φ is
continuous.

Proof Regard Φ as an algebra homomorphism from Asym to Bsym, note that
H(B,∗) = H(Bsym,∗) as real vector spaces, keep in mind §4.4.6, and apply The-
orem 4.5.57.
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Proposition 4.5.10 is due to McCrimonn, who proved it first in the commutative
case [435] (see also [822, Theorem 14.8] and [777, Theorem III.1.7.1]), and pointed
out its actual version later [436].

Lemma 4.5.13 is taken from Ransford’s book [793, Lemma 6.4.1]. With a slightly
different argument, it can also be found as part (a) of the proof of Theorem 1.2.1
of Aupetit’s book [682]. Theorem 4.5.14 is originally due to Vesentini [622], and
is included in both [682, Théorème 1.2.1] and [793, Theorem 6.4.2]. Our versions
of Lemma 4.5.13 and Theorem 4.5.14 are more general than those which have pre-
viously been cited in the literature. The paternity of these (not particularly deep)
generalizations is the same as that of other similar generalizations already mentioned
in §4.4.69.

In relation to Proposition 4.5.15, we remark that the notion of thinness was intro-
duced by Brelot in [127, 128]. Thinness can be characterized in terms of the so-called
fine topology introduced by Cartan in [160], namely the weakest topology on C with
respect to which all subharmonic functions are continuous. In fact a subset S of C is
non-thin at ζ precisely when ζ is a fine limit point of S. For more information we
refer to Brelot [701].

Lemma 4.5.16, as well as the proof of Theorem 4.5.22 given here, are due to
Aupetit and Youngson [48]. For a comprehensive account of the applications of
potential theory and of analytic multifunctions to the theory of normed Jordan alge-
bras, including Aupetit’s Theorem 4.4.13, the reader is referred to Aupetit’s survey
papers [41] and [42, Chapter 8].

Proposition 4.5.21 is a non-associative version of the so-called Ford’s lemma.
Our arguments to prove assertions (i)–(iii) in that proposition become appropriate
non-associative adaptations of those in Propositions 8.13 and 12.11 of Bonsall–
Duncan [696]. The associative forerunner of assertions (iii) and (iv) can be found
in Doran–Belfi [725, Lemma 22.5], where it is commented that ‘The key to the
study of Banach algebras with arbitrary involutions is the following “square-root”
lemma due to J. W. M. Ford [265]. This lemma generalizes a classical square-root
lemma which required that the involution be continuous.’ Surely assertion (iv) in
Proposition 4.5.21 was known by Aupetit and Youngson in [48] (otherwise their
proof of Theorem 4.5.22 would not be correct). Nevertheless, no hint or indication is
given there.

Results from Theorem 4.5.22 to Corollary 4.5.30 are originally due to Behncke
[82], although some auxiliary tools (like Lemma 4.5.25 and Fact 4.5.26), as well as
the formal statement of Theorem 4.5.29, could be new. Concerning hermitian Jordan
algebras, Behncke’s paper advantageously overlaps those of Putter–Yood [495] and
Youngson [653], published almost at the same time. The proof of Proposition 4.5.24
has been taken from [653].

The next corollary refines Corollary 4.5.31.

Corollary 4.5.59 Let A be a complete normed Jordan-admissible complex algebra,
let B be a complete normed hermitian Jordan-admissible complex ∗-algebra such
that the Jordan algebra H(B,∗) is J-semisimple, and let Φ : A → B be an algebra
homomorphism such that Φ(A) =Φ(A)∗. Then Φ is continuous.
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Proof Applying Theorem 4.5.29 to Bsym, and keeping in mind §4.4.6, we real-
ize that s(·) is a vector space norm on H(B,∗). Therefore the result follows from
Fact 4.5.58.

The associative forerunner of Proposition 4.5.34 is due to Pták [493], whereas its
current version is new. After reducing to the associative case, our proof has been
taken from [696, Lemma 41.2]. Although straightforward, Fact 4.5.35 (which seems
to go back to Jacobson and Rickart [351]) becomes a classical tool in the study of
Jordan and Lie structures in associative algebras.

Results from Proposition 4.5.36 to Corollary 4.5.42 are new, although the newness
of Corollary 4.5.38 is only of the formal type. Actually, Corollary 4.5.38 and the
associative forerunners of Proposition 4.5.34 and of assertions (i) and (ii) in Corol-
lary 4.5.39 gather the best known important results in the theory of complete normed
hermitian associative complex ∗-algebras (mainly due to Pták [493] and Shirali and
Ford [565]), as included in Bonsall–Duncan [696, Section 41]. Additional relevant
results on hermitian associative complex ∗-algebras, due to Aupetit [37, 38], Doran
[214], Harris [313], Pták [494], and Wichmann [632, 634], can be found in [682,
Chapitre 4] and [725, Chapter 6]. The associative particularization of assertion (iii)
in Corollary 4.5.39 is not recorded anywhere. The reason could be that the self-
adjoint part of an associative ∗-algebra need not be an associative algebra, but only
a Jordan algebra, and that the Jacobson radical of a Jordan algebra could turn out
uninteresting (maybe even unknown) for the associative algebraist.

Proposition 4.5.34, as well as assertions (i) and (ii) in Corollary 4.5.39, are proved
in [440] under the additional assumption of the continuity of the involution.

With Theorem 4.5.37 instead of Theorem 4.5.29, arguments like those in the proof
of Corollary 4.5.59 yield the following refinement of Corollary 4.5.40.

Corollary 4.5.60 Let A be a complete normed Jordan-admissible complex algebra,
let B be a complete normed semisimple hermitian alternative complex ∗-algebra,
and let Φ : A → B be an algebra homomorphism such that Φ(A) =Φ(A)∗. Then Φ is
continuous.

We note that, if Problem 4.5.41 had an affirmative answer, then Corollary 4.5.59
would attain a better formulation which would contain Corollary 4.5.60 immediately
above.

The associative forerunner of the equivalence (i)⇔(iii) in Corollary 4.5.42 is due
Pták [494, Theorem 8.4]. The associative forerunners of the equivalences (i)⇔(ii)
and (i)⇔(iv) in Corollary 4.5.42 (which were conjectured by Kaplansky [375]) had
been proved earlier by Yood [647, 649], and are also included in [494, Theorem 8.4].
The associative forerunner of the equivalence (i)⇔(ii) in Corollary 4.5.42 can also
be found in Palmer [787, Theorem 11.2.8].

Example 4.5.43 and Remark 4.5.44 are new, although, concerning Example 4.5.43,
some arguments taken from the papers [19, 517] have been incorporated. Let λ be
in R \ [0,1], and let A be the corresponding algebra in Example 4.5.43. Then A is a
complete normed non-commutative Jordan complex ∗-algebra such that the closed
∗-subalgebra of A generated by each self-adjoint element of A is a C∗-algebra in
an equivalent norm, but A is not a non-commutative JB∗-algebra in any equivalent
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norm. Therefore Problem 4.5.55 does not merit to be considered outside its actual
version.

Corollary 4.5.46 is new. It becomes a new sample of the symbiotic relationship
between JB-algebras and JB∗-algebras (cf. Corollary 3.4.18 for a similar situation).

4.6 Domains of closed derivations

Introduction In Subsection 4.6.1, we prove that the domain of a closed densely
defined derivation of a complete normed unital non-commutative Jordan complex
algebra A is a J-full subalgebra of A (see Proposition 4.6.14) and that, more generally,
if a is an element in the domain of such a derivation, then also f (a) (in the sense of the
holomorphic functional calculus) lies in the domain, where f is any complex-valued
holomorphic function on an open neighbourhood of J-sp(A,a) (see Theorem 4.6.15).

We begin Subsection 4.6.2 by constructing Bollobás’ extremal algebra Ea(K) (of
a given compact convex subset K of C) [110] in a new simple way. Then we prove
in Fact 4.6.31 that Ea(K) can be seen as a norm-unital complete normed algebra of
complex-valued continuous functions on K, so that the universal property of Ea(K)

gives rise to a functional calculus at a single element a of any norm-unital complete
normed power-associative complex algebra, provided the numerical range of a is
contained in K (see Proposition 4.6.32). Since this functional calculus depends on the
numerical range instead of on the spectrum, we call it the geometric functional calcu-
lus. As a first outstanding result, we show in Theorem 4.6.39 how the geometric func-
tional calculus provides us with natural bounds for Fréchet derivatives of functions
defined by the holomorphic functional calculus (cf. Theorem 4.1.93). The key tool in
the proof of Theorem 4.6.39 (namely Proposition 4.6.46) is also applied to prove in
Proposition 4.6.56 that domains of closed densely defined derivations of any norm-
unital complete normed power-associative complex algebra are closed under the
geometric functional calculus, as soon as functions are ‘derivable’ in a natural sense
(cf. Definition 4.6.42). As a consequence, we derive in Corollaries 4.6.64 and 4.6.69
the theorems of Sakai [807] and Bratteli–Robinson [123], respectively, that domains
of closed densely defined derivations of any unital C∗-algebra are closed under the
continuous functional calculus at self-adjoint elements, as soon as functions are
reasonably regular.

4.6.1 Stability under the holomorphic functional calculus

Let A be an algebra over K. By an A-bimodule we mean a vector space X over K
endowed with two bilinear mappings (a,x)→ ax and (a,x)→ xa from A×X to X .
If X is an A-bimodule, then the product vector space A×X can and will be seen as
an algebra over K under the product defined by

(a,x)(b,y) := (ab,ay+ xb).

The algebra A×X just introduced is called the split null X-extension of A. It is clear
that the natural imbeddings of A and X into A×X allow us to see A as a subalgebra
of A×X , and X as an ideal of A×X such that XX = 0. We note that, since A and
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X are subsets of a common algebra, expressions like Ua(x) = a(ax+ xa)− a2x, for
a ∈ A and x ∈ X , have a meaning (cf. §2.2.4). Nevertheless, to avoid any confusion,
given a ∈ A, we denote by LX

a , RX
a , and UX

a the mappings from X to X given by

LX
a (x) = ax, RX

a (x) = xa and UX
a (x) = a(ax+ xa)−a2x.

It is worth noticing that, given a ∈ A, the operators L(a,0), R(a,0), and U(a,0) on A×X
are diagonal. Indeed, for every (b,x) ∈ A×X we have

L(a,0)(b,x) = (La(b),L
X
a (x)), R(a,0)(b,x) = (Ra(b),R

X
a (x)), (4.6.1)

and

U(a,0)(b,x) = (Ua(b),U
X
a (x)). (4.6.2)

In the case where A is unital, we will say that X is a unital A-bimodule whenever
1x = x1 = x for every x in X . It is clear that in this case, the split null X-extension of
A is unital with unit element (1,0).

Let A be a (non-commutative) Jordan algebra over K. Following [754, p. 80], an
A-bimodule X is said to be a (non-commutative) Jordan A-bimodule if the split null
X-extension of A is a (non-commutative) Jordan algebra.

Lemma 4.6.1 Let A be a unital non-commutative Jordan algebra, let X be a unital
non-commutative Jordan A-bimodule, and let a be a J-invertible element in A. Then
we have:

(i) LX
a LX

a−1 = RX
a RX

a−1 , LX
a−1 =UX

a−1RX
a , and RX

a−1 =UX
a−1LX

a .

(ii) For i, j,k, � ∈ N, the operators LX
ai ,R

X
a j ,L

X
a−k , and RX

a−� pairwise commute.

Proof Keeping in mind (4.6.1) and (4.6.2), assertions (i) and (ii) in the present
lemma follow from assertions (iii) and (iv) in Proposition 4.1.58.

For the proof of the next result, Proposition 4.1.58 should be kept in mind.

Proposition 4.6.2 Let A be a unital non-commutative Jordan algebra, and let X be
a unital non-commutative Jordan A-bimodule. We have:

(i) An element (a,x) is J-invertible in the split null X-extension of A if and only if a
is J-invertible in A. Moreover, in this case we have

(a,x)−1 = (a−1,−Ua−1(x)).

(ii) For every element (a,x) in the split null X-extension of A, we have

J-sp(A×X ,(a,x)) = J-sp(A,a).

Proof Suppose that (a,x) is J-invertible in the split null X-extension of A with J-
inverse (b,y). Then we have

(a,x)(b,y) = (b,y)(a,x) = (1,0) and (a,x)2(b,y) = (b,y)(a,x)2 = (a,x),

hence

(ab,ay+ xb) = (ba,bx+ ya) = (1,0)

and

(a2b,a2y+(ax+ xa)b) = (ba2,b(ax+ xa)+ ya2) = (a,x),
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and so ab = ba = 1 and a2b = ba2 = a. Thus a is J-invertible in A. Conversely,
suppose that a is J-invertible in A. Then, by Lemma 4.6.1, we see that

LX
a UX

a−1 =UX
a−1 LX

a = RX
a−1 (4.6.3)

and

LX
a2UX

a−1 =UX
a−1LX

a2 =UX
a−1LX

a (L
X
a +RX

a )−UX
a−1U

X
a = RX

a−1(L
X
a +RX

a )− IX ,

and hence

LX
a2UX

a−1 = (LX
a +RX

a )R
X
a−1 − IX . (4.6.4)

Therefore, by (4.6.3), we have

(a,x)(a−1,−Ua−1(x)) = (1,−aUa−1(x)+ xa−1)

= (1,(−LaUa−1 +Ra−1)(x)) = (1,0),

and, by (4.6.4), we have

(a,x)2(a−1,−Ua−1(x)) = (a2,ax+ xa)(a−1,−Ua−1(x))

= (a,−a2Ua−1(x)+(ax+ xa)a−1)

= (a,(−La2Ua−1 +(La +Ra)Ra−1)(x))

= (a,x).

Arguing similarly we can also show that

(a−1,−Ua−1(x))(a,x) = (1,0) and (a−1,−Ua−1(x))(a,x)2 = (a,x).

Summarizing, we have shown that (a,x) ∈ J-Inv(A×X) and that

(a,x)−1 = (a−1,−Ua−1(x)).

Thus assertion (i) is proved. Finally, assertion (ii) follows from assertion (i) and the
fact that (a,x)−λ (1,0) = (a−λ1,x) for all (a,x) ∈ A×X and λ ∈K.

§4.6.3 Let A be a (complete) normed algebra. If X is an A-bimodule endowed with
a (complete) norm satisfying

‖ax‖ � ‖a‖‖x‖ and ‖xa‖ � ‖x‖‖a‖ for all a in A and x in X ,

then we say that X is a (complete) normed A-bimodule. In this case, the split null X-
extension of A can and will be regarded as a new (complete) normed algebra under
the norm

‖(a,x)‖ := ‖a‖+‖x‖.

Proposition 4.6.4 Let A be a complete normed unital non-commutative Jordan
complex algebra, let a be in A, let Ω be an open subset of C containing J-sp(A,a),
let f be in H (Ω), and let X be a complete normed unital non-commutative Jordan
A-bimodule. Then, for every x ∈ X we have

J-sp(A×X ,(a,x)) = J-sp(A,a)
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and

f ((a,x)) = ( f (a),
1

2πi

∫
Γ

f (z)U(z1−a)−1(x)dz),

where Γ is any contour that surrounds J-sp(A,a) in Ω.

Proof Let x be an element of X , and let Γ be a contour that surrounds J-sp(A,a) in
Ω. It follows from Proposition 4.6.2(ii) that

J-sp(A×X ,(a,x)) = J-sp(A,a),

and hence Γ is a contour that surrounds J-sp(A× X ,(a,x)) in Ω. It follows from
Theorem 4.1.88(i) that

f ((a,x)) =
1

2πi

∫
Γ

f (z)(z(1,0)− (a,x))−1 dz =
1

2πi

∫
Γ

f (z)(z1−a,−x)−1 dz.

Now, applying Proposition 4.6.2(i), we obtain that

f ((a,x)) =
1

2πi

∫
Γ
( f (z)(z1−a)−1, f (z)U(z1−a)−1(x))dz.

The proof concludes by using the facts that the natural projections from A×X onto A
and X , respectively, are continuous linear mappings, and that the integral commutes
with such mappings.

Let A be an algebra. If we take X =A as a vector space, and if, given (a,x)∈A×X ,
the products ax and xa stand for the products as defined in the algebra A, then X
becomes an A-bimodule. This bimodule is called the regular A-bimodule, and the
split null X-extension of A (with X as above) will be called the split null A-extension
of A. It is clear that the algebra A is unital if and only if the regular A-bimodule is
unital. On the other hand, if the algebra A is (complete) normed, then clearly the
regular A-bimodule is (complete) normed, and hence, according to §4.6.3, the split
null A-extension of A can and will be seen as a (complete) normed algebra.

Fact 4.6.5 If A is a non-commutative Jordan algebra, then the regular A-bimodule
is a non-commutative Jordan A-bimodule.

Proof By Proposition 3.2.1, it is enough to show that the split null A-extension of
A satisfies the flexible and Jordan identities. But, flexible and Jordan identities can
be linearized to get

[c,b,a]+ [a,b,c] = 0 and [c,b,a2]+ [a,b,ac+ ca] = 0,

respectively. Therefore, given elements (a,x),(b,y) in the split null A-extension of
A, we see that

[(a,x),(b,y),(a,x)] = ([a,b,a], [x,b,a]+ [a,y,a]+ [a,b,x]) = (0,0)

and

[(a,x),(b,y),(a,x)2] = [(a,x),(b,y),(a2,ax+ xa)]

= ([a,b,a2], [x,b,a2]+ [a,y,a2]+ [a,b,ax+ xa]) = (0,0).

Thus, the split null A-extension of A is a non-commutative Jordan algebra.
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Now, invoking Theorem 4.1.93 and the notation introduced in its formulation, it is
enough to apply Proposition 4.6.4 to get the following.

Corollary 4.6.6 Let A be a complete normed unital non-commutative Jordan com-
plex algebra, let a be in A, let Ω be an open subset of C containing J-sp(A,a), and
let f be in H (Ω). Then, for every b ∈ A, in the split null A-extension A×A of A, we
have

J-sp(A×A,(a,b)) = J-sp(A,a)

and

f ((a,b)) = ( f (a),D f̃ (a)(b)),

where D f̃ (a) denotes the Fréchet derivative of f̃ : AΩ → A at a.

Let X1 and X2 be vector spaces over K, and let T be an X2-valued linear mapping
on a subspace of X1 (called the domain of T and denoted by dom(T )). Then we say
that T is a partially defined linear operator from X1 to X2. Now, let A be an algebra
over K, let X be an A-bimodule, and let D be a partially defined linear operator from
A to X whose domain is a subalgebra of A and satisfies

D(ab) = aD(b)+D(a)b for all a,b in dom(D).

Then we say that D is an X-valued partially defined derivation of A.
In the next statement the reader can find two properties of direct verification which

show how the structure of the split null X-extension of A is the appropriate one for
the study of X-valued derivations of A.

Lemma 4.6.7 Let A be an algebra, and let X be an A-bimodule. We have:

(i) A mapping from a subset of A into X is an X-valued derivation of A if and only
if its graph is a subalgebra of the split null X-extension of A.

(ii) If D is an X-valued derivation of A, then the mapping a→ (a,D(a)) is an algebra
isomorphism from dom(D) onto the graph of D.

§4.6.8 Let A be a unital algebra, and let X be a unital A-bimodule. When 1 belongs
to the domain of an X-valued derivation D of A, it is clear that D(1) = 0. On the
other hand, if 1 is not in dom(D), then it is straightforward to see that the mapping
D1 : λ1+ a → D(a) is an X-valued derivation of A whose domain (the subalgebra
K1⊕dom(D)) contains the unit of A. So we have the following.

Fact 4.6.9 If A is a unital algebra, and if X is a unital A-bimodule, then every
X-valued derivation of A can be extended to an X-valued derivation of A whose
domain contains the unit of A. This extension vanishes at the unit.

Proposition 4.6.10 Let A be a unital non-commutative Jordan algebra, let X be a
unital non-commutative Jordan A-bimodule, and let D be an X-valued derivation of
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A such that 1 ∈ dom(D). We have:

(i) If a is a J-invertible element in A such that a and a−1 belong to dom(D), then
D(a) =−Ua(D(a−1)).

(ii) dom(D) is a J-full subalgebra of A if and only if the graph of D is a J-full
subalgebra of the split null X-extension of A.

Proof Assertion (i) is a generalization of Lemma 4.1.83, and is proved by arguing
verbatim as there. On the other hand, keeping in mind Proposition 4.6.2(i), asser-
tion (ii) follows from assertion (i).

Let A be a normed unital non-commutative Jordan complex algebra, and let a be
in A. The ‘algebraic’ J-spectral radius ρA(a) of a relative to A is defined by

ρA(a) := sup{|z| : z ∈ J-sp(A,a)}.

We note that, thanks to Fact 4.4.25(i), we have

ρA(a) = r(a) whenever A is complete. (4.6.5)

Proposition 4.6.11 Let A be a complete normed unital non-commutative Jordan
complex algebra, and let B be a dense subalgebra of A containing the unit of A. Then
B is a J-full subalgebra of A if and only if ρA(b) = ρB(b) for every b in B.

Proof We may assume that A, and hence B, is a Jordan algebra. The ‘only if’ part
is clear. For the ‘if’ part, let a be in B such that a is J-invertible in A. Since B is dense
in A, and 1 lies in the range of Ua (by Theorem 4.1.3(ii)), it follows the existence of
b in B such that ‖Ua(b)− 1‖ < 1, and, by (4.6.5), we have ρA(Ua(b)− 1) < 1. By
the assumption, ρA and ρB agree in B. Hence ρB(Ua(b)−1)< 1, so 1 does not lie in
J-sp(B,Ua(b)−1), and so Ua(b) is J-invertible in B. Now, by Theorem 4.1.3(vi), a is
J-invertible in B, and as a result B is a J-full subalgebra of A.

The next result is easily proved by induction.

Lemma 4.6.12 Let A be a normed power-associative algebra, let X be a normed
A-bimodule, let D be an X-valued derivation of A, and let n be a natural number.
Then ‖D(an)‖ � n‖a‖n−1‖D(a)‖ for every a in dom(D).

Let X1 and X2 be normed spaces over K, and let T be a partially defined linear
operator from X1 to X2. We recall that T is said to be densely defined if dom(T ) is
dense in X1, and that T is said to be a closed operator if its graph is closed in the
normed direct product space X1 ×X2.

Lemma 4.6.13 Let A be a complete normed unital power-associative complex
algebra, let X be a complete normed unital A-bimodule, and let D be a closed densely
defined X-valued derivation of A. Then 1 lies in dom(D).

Proof By the density of dom(D) in A there exists a in dom(D) such that ‖1−a‖<1.
For each natural number n, let us write an := 1− (1−a)n. Clearly an lies in dom(D)

and an → 1 as n → ∞. Let D1 denote the extension of D assured by Fact 4.6.9. Then
D(an) =−D1((1−a)n) so, by Lemma 4.6.12,

‖D(an)‖ � n‖1−a‖n−1‖D(a)‖,

and so D(an)→ 0. Therefore 1 lies in dom(D) because D is closed.
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Proposition 4.6.14 Let A be a complete normed unital non-commutative Jordan
complex algebra, let X be a complete normed unital non-commutative Jordan
A-bimodule, and let D be a closed densely defined X-valued derivation of A. Then
dom(D) is a J-full subalgebra of A.

Proof Keeping in mind Lemma 4.6.13 and Proposition 4.6.11, in order to prove
that dom(D) is a J-full subalgebra of A it is enough to show that ρA(a) = ρdom(D)(a)
for every a in dom(D). But ρA(a) = ρA×X((a,D(a))) (by Proposition 4.6.2(ii)),
and, if G denotes the graph of D, then we have ρA×X ((a,D(a))) = ρG((a,D(a)))
because G is a closed subalgebra of the complete normed unital non-commutative
Jordan algebra A × X containing the unit of A × X , and (4.6.5) applies. Also
ρG((a,D(a))) = ρdom(D)(a) (by Lemma 4.6.7(ii)). Therefore ρA(a) = ρdom(D)(a), as
required.

Theorem 4.6.15 Let A be a complete normed unital non-commutative Jordan
complex algebra, let X be a complete normed unital non-commutative Jordan
A-bimodule, let D be a closed densely defined X-valued derivation of A, let a be in
dom(D), let Ω be an open subset of C containing J-sp(A,a), and let f be in H (Ω).
Then f (a) ∈ dom(D), and

D( f (a)) =
1

2πi

∫
Γ

f (z)U(z1−a)−1(D(a))dz ,

where Γ is any contour that surrounds J-sp(A,a) in Ω.

Proof Let Γ be a contour that surrounds J-sp(A,a) in Ω. Then, by Proposition 4.6.4,
J-sp(A×X ,(a,D(a))) = J-sp(A,a) and

f ((a,D(a))) =

(
f (a),

1
2πi

∫
Γ

f (z)U(z1−a)−1(D(a))dz

)
.

Since, by Proposition 4.6.14, dom(D) is a J-full subalgebra of A, and hence, by
Proposition 4.6.10(ii), the graph (say G) of D is a (closed) J-full subalgebra of A×X ,
Theorem 4.1.88(iii) applies, so that f ((a,D(a))) ∈ G. Therefore f (a) ∈ dom(D) and

D( f (a)) =
1

2πi

∫
Γ

f (z)U(z1−a)−1(D(a))dz.

Thus the proof is complete.

Let A be an algebra. By a (partially defined) derivation of A we mean a linear
mapping D from a subalgebra dom(D) of A to A satisfying

D(ab) = aD(b)+D(a)b

for all a,b ∈ dom(D). Clearly, (partially defined) derivations of A are nothing
other than X-valued (partially defined) derivations of A, when X equals the regular
A-bimodule. Now, recalling Theorem 4.1.93 and the notation introduced in its
formulation, it is enough to invoke Fact 4.6.5 and Theorem 4.6.15 above to obtain
the following.

Corollary 4.6.16 Let A be a complete normed unital non-commutative Jordan
complex algebra, let D be a closed densely defined derivation of A, let a be in
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dom(D), let Ω be an open subset of C containing J-sp(A,a), and let f be in H (Ω).
Then f (a) ∈ dom(D) and

D( f (a)) = D f̃ (a)(D(a)),

where D f̃ (a) denotes the Fréchet derivative of f̃ : AΩ → A at a.

The following corollary shows in particular that when A splits into two direct
summands, all closed densely defined derivations of A arise in a natural way from
the knowledge of closed densely defined derivations of the given direct summands.

Corollary 4.6.17 Let A be a complete normed unital non-commutative Jordan
complex algebra, let X be a complete normed unital non-commutative Jordan
A-bimodule, and let D be a closed densely defined X-valued derivation of A. Then,
every central idempotent in A lies in dom(D).

Proof In view of Lemma 4.6.13, 0 and 1 belong to dom(D). Let e be a central
idempotent in A different from 0 and 1. Then the subalgebra B of A generated by
{1,e} is isomorphic to C2 (via the mapping (λ ,μ) → λe+ μ(1− e)), and hence,
by Proposition 4.1.66, B is a closed J-full subalgebra of A containing e. As a con-
sequence, we have J-sp(A,x) = sp(B,x) for every x ∈ B (which implies J-sp(A,e) =
{0,1}), and

x = 0 whenever x is in B with J-sp(A,x) = {0}. (4.6.6)

Now, consider the open subset Ω of C given by Ω := B(0, 1
2 )∪B(1, 1

2 ) (where B(z,r)
denotes the open ball in C with centre z and radius r), and the complex-valued
holomorphic mapping f on Ω defined by f (z) = 0 if z ∈ B(0, 1

2 ) and f (z) = 1 if
z ∈ B(1, 1

2 ). Since AΩ is an open subset of A containing e (by Proposition 4.1.91),
and the mapping a → f (a) from AΩ into A is continuous (by Theorem 4.1.93), the
density of dom(D) in A gives the existence of an element a in dom(D)∩AΩ such
that ‖ f (e)− f (a)‖ < 1. But, according to Theorem 4.1.88(iii), f (e) lies in B and,
by Theorem 4.1.88(iv), we have J-sp(A, f (e)− e) = {0}, which implies f (e) = e
because of (4.6.6). On the other hand, since f (a) is an idempotent and e is a central
idempotent, we have e− f (a) = (e− f (a))3, and hence ‖e− f (a)‖ � ‖e− f (a)‖3.
It follows that e = f (a) because ‖e − f (a)‖ < 1, and then e lies in dom(D) by
Theorem 4.6.15.

The notion of a non-commutative Jordan bimodule over a non-commutative
Jordan algebra is a particular case of that of a bimodule over an algebra relative to a
variety. Indeed, given a variety V and an algebra A in V , the A-bimodules relative
to V are defined as those A-bimodules X such that the algebra split null X-extension
of A remains a member of V . When V is the variety of all associative (respectively,
alternative) algebras, the bimodules relative to V are called associative (respectively,
alternative) bimodules.

In view of Fact 4.1.57 and Definition 4.1.65, given an element a of a unital alter-
native algebra A over K, we write sp(A,a) instead of J-sp(A,a). Now, since alter-
native bimodules are non-commutative Jordan bimodules, and for elements x,y in an
alternative algebra we have Ux(y) = xyx, Theorem 4.6.15 has the following remark-
able consequence.
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Corollary 4.6.18 Let A be a complete normed unital alternative complex algebra,
let X be a complete normed unital alternative A-bimodule, let D be a closed densely
defined X-valued derivation of A, let a be in dom(D), let Ω be an open subset of C
containing sp(A,a), and let f be in H (Ω). Then f (a) ∈ dom(D), and

D( f (a)) =
1

2πi

∫
Γ

f (z)(z1−a)−1D(a)(z1−a)−1 dz,

where Γ is any contour that surrounds sp(A,a) in Ω.

§4.6.19 When V is the variety of all associative and commutative algebras, the
bimodules relative to V are called associative and commutative bimodules. Combin-
ing Corollary 4.6.18 above and Proposition 1.3.15 we get the following.

Corollary 4.6.20 Let A be a complete normed unital associative and commutative
complex algebra, let X be a complete normed unital associative and commutative
A-bimodule, let D be a closed densely defined X-valued derivation of A, let a be in
dom(D), let Ω be an open subset of C containing sp(A,a), and let f be in H (Ω).
Then f (a) ∈ dom(D), and

D( f (a)) = f ′(a)D(a).

4.6.2 Stability under the geometric functional calculus

This subsection relies on the following.

Theorem 4.6.21 Let K be a non-empty compact and convex subset of C. Then,
up to isometric algebra isomorphisms preserving distinguished ele- ments, there
exists a unique norm-unital complete normed associative complex algebra A with a
distinguished element u, satisfying the following properties:

(i) V (A ,1,u) = K.

(ii) If A is any norm-unital complete normed associative complex algebra, and if a
is in A with V (A,1,a) ⊆ K, then there is a unique contractive unit-preserving
algebra homomorphism from A to A taking u to a.

Moreover, we have:

(iii) A is generated by {1,u} as a normed algebra.

(iv) sp(A ,u) = K.

§4.6.22 In the case where K is reduced to a point (say K = {λ} for some λ ∈C), the
above theorem becomes trivial. Indeed, if a is an element of any norm-unital normed
complex algebra, and if V (a) = {λ}, then, by Corollary 2.1.13, we have a = λ1.
Thus, in this case, Theorem 4.6.21 follows straightforwardly by taking A = C and
u = λ .

§4.6.23 The essential uniqueness of the couple (A ,u) under the conditions (i)
and (ii) in Theorem 4.6.21 follows from a categorical argument like the one in the
first paragraph of the proof of Theorem 4.3.52.



4.6 Domains of closed derivations 645

Assertions (iii) and (iv) in Theorem 4.6.21 are easily realized from the abstract
characterization of the couple (A ,u) given by the theorem (see §§4.6.71 and 4.6.72
below). We do not include the arguments here because, actually, assertions (iii)
and (iv) will follow almost straightforwardly from the construction of the couple
(A ,u) which is done in the following.

From now until Proposition 4.6.36, K will stand for a non-empty compact and
convex subset of C. For z ∈ C we set

ωK(z) := max{|ezw| : w ∈ K}= emaxℜ(zK).

The next lemma is straightforward, and will be applied without notice.

Lemma 4.6.24 The following assertions hold:

(i) ωK(z1 + z2) � ωK(z1)ωK(z2) for all z1,z2 ∈ C.

(ii) ωK(z) � e|K||z| for every z ∈ C, where |K| stands for max{|w| : w ∈ K}.

§4.6.25 Let us denote by D(K) the set of all entire functions g such that

‖g‖ := sup{(ωK(z))
−1|g(z)| : z ∈ C}<+∞,

so that, given g ∈ D(K), ‖g‖ is the smallest non-negative number M satisfying
|g(z)| � MωK(z) for every z ∈ C, and in particular we have

|g(z)| � ‖g‖ωK(z) for every z ∈ C. (4.6.7)

Now, noticing that ‖ · ‖ is a norm on D(K), and that convergence of sequences in
(D(K),‖ · ‖) implies uniform convergence on compact subsets of C, it is easily
realized that (D(K),‖ · ‖) is a complex Banach space. It is also worth mentioning
that, as a consequence of (4.6.7), we have

|g(0)| � ‖g‖ whenever g is in D(K). (4.6.8)

Lemma 4.6.26 Let g be in D(K). Then g′ lies in D(K) and we have

‖g′‖ � e|K|‖g‖.

Proof Let z and r be in C and R+, respectively. Since

g′(z) =
1

2πi

∫
|ξ−z|=r

g(ξ )
(ξ − z)2 dξ ,

and

|g(ξ )| � ‖g‖ωK(ξ ) � ‖g‖ωK(ξ − z)ωK(z) � ‖g‖er|K|ωK(z)

whenever |ξ − z|= r, we deduce that

|g′(z)| � 1
2π

2πr
1
r2 ‖g‖er|K|ωK(z) =

1
r
‖g‖er|K|ωK(z).

By taking r := 1
|K| , we get |g′(z)|� e|K|‖g‖ωK(z). Since z is arbitrary in C, the result

follows.
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§4.6.27 According to Lemma 4.6.26 just proved, the linear operator u : g → g′

on the complex Banach space D(K) is continuous. Therefore we can consider the
closed subalgebra A of BL(D(K)) generated by 1 := ID(K) and u. Clearly, A is a
norm-unital complete normed associative complex algebra, u is an element of A ,
and the couple (A ,u) satisfies property (iii) in Theorem 4.6.21.

We are going to show that the couple (A ,u) in §4.6.27 above satisfies condi-
tions (i) and (ii) in Theorem 4.6.21, as well as property (iv) in that theorem. To this
end, the following reformulation of the first equality in Proposition 2.1.7 becomes
crucial.

Fact 4.6.28 Let A be a norm-unital complete normed associative complex algebra,
and let a be in A. Then V (A,1,a) ⊆ K if and only if ‖exp(za)‖ � ωK(z) for every
z ∈ C.

§4.6.29 Let u and A be as in §4.6.27. We are going to prove that the couple (A ,u)
satisfies condition (ii) in Theorem 4.6.21. Indeed, let A be any a norm-unital complete
normed associative complex algebra, let a be in A such that V (A,1,a)⊆ K, and let θ
be in A′ with ‖θ‖ � 1. Then the mapping g : C→ C defined by g(z) := θ(exp(za))
is an entire function satisfying g(k)(0) = θ(ak) for every non-negative entire number
k. Moreover, by Fact 4.6.28, we have |g(z)| � ωK(z) for every z ∈ C, i.e. g belongs
to D(K) and ‖g‖ � 1. Now, let p(x) = ∑n

k=0λkxk be in C[x]. Then we have

θ(p(a)) =
n

∑
k=0

λkθ(ak) =
n

∑
k=0

λkg(k)(0) =
n

∑
k=0

λk

[
uk(g)

]
(0)

=

[(
n

∑
k=0

λkuk

)
(g)

]
(0) = [p(u)(g)](0),

and hence, invoking (4.6.8), we get

|θ(p(a))|= |[p(u)(g)](0)| � ‖p(u)(g)‖ � ‖p(u)‖‖g‖ � ‖p(u)‖.

Since θ is an arbitrary element of the closed unit ball of A′, we deduce that ‖p(a)‖�
‖p(u)‖. Therefore p(u) → p(a) becomes a well-defined contractive algebra homo-
morphism from the dense subalgebra B := {p(u) : p ∈C[x]} of A to A. By extend-
ing this homomorphism by continuity, we find a contractive unit-preserving algebra
homomorphism from A to A taking u to a. It follows from Lemma 1.1.82(i) that
there is no other such homomorphism. This shows that the couple (A ,u) satisfies
condition (ii) in Theorem 4.6.21, as desired.

§4.6.30 Let u and A be as in §4.6.27. We are going to prove that the couple (A ,u)
satisfies condition (i) in Theorem 4.6.21, as well as property (iv) in that theorem.
Let λ be in K. Then we straightforwardly realize that the complex-valued function
gλ on C defined by gλ (z) := eλz lies in D(K), and that u(gλ ) = λgλ . Thus λ is an
eigenvalue of u, and hence

λ ∈ sp(L(D(K)),u)⊆ sp(A ,u).

Since λ is arbitrary in K, we conclude that

K ⊆ sp(A ,u). (4.6.9)
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Now, let w be in C and let g be in D(K). Then for every z ∈ C we have

[exp(wu)(g)](z) =
∞

∑
n=0

wn

n!
g(n)(z) = g(w+ z), (4.6.10)

so, applying (4.6.7), we get

|[exp(wu)(g)](z)|= |g(w+ z)| � ‖g‖ωK(w+ z) � ‖g‖ωK(w)ωK(z),

hence ‖exp(wu)(g)‖ � ‖g‖ωK(w). Since g is arbitrary in D(K), we derive that

‖exp(wu)‖ � ωK(w).

Then, since w is arbitrary in C, Fact 4.6.28 applies to get

V (A ,1,u)⊆ K. (4.6.11)

Finally, since sp(A ,u)⊆V (A ,1,u) (by Lemma 2.3.21), it follows from (4.6.9) and
(4.6.11) that

K = sp(A ,u) =V (A ,1,u).

Keeping in mind §§4.6.23, 4.6.25, 4.6.27, 4.6.29, and 4.6.30, the proof of The-
orem 4.6.21 is complete.

Now that Theorem 4.6.21 has been proved, the essentially unique norm-unital
complete normed associative complex algebra A with distinguished element u, as-
sociated to K via the theorem, will be called the extremal algebra of K and will be
denoted by Ea(K), whereas, according to assertion (iii) in the theorem, the distin-
guished element u will be called the generator of Ea(K). The algebra Ea(K) fulfils a
relevant additional property. Indeed, we have the following.

Fact 4.6.31 Ea(K) is contractively isomorphic, in a unique manner, to a full sub-
algebra of CC(K) in such a way that the generator u becomes the inclusion mapping
K ↪→ C.

Proof In view of properties (iii) and (iv) in Theorem 4.6.21 (which will be applied
without notice at some future point of the argument) and of Theorem 1.1.83, it
is enough to show that Ea(K) is (strongly) semisimple. Moreover, by §4.6.22, we
can assume that K has more than one point. Let g be in D(K) \ {0}. Then, by
the inequality (4.6.7) and Lemma 4.6.24(ii), we have |g(z)| � ‖g‖e|K||z| for every
z ∈ C, and hence g is an entire function of exponential type. By the main theorem
in the theory of such functions (see for example [107, pp. 839–40]), there exists
g̃∈H (C\|K|BC) (the so-called Borel transform of g) such that, for r > |K|, we have

g(z) =
∫
|w|=r ewzg̃(w)dw for every z ∈ C. (4.6.12)

Moreover, by the well-known determination of g̃ on each open half-plane tangent to
|K|BC (say g̃(w) = 1

2πi

∫+∞
−∞ e−wt g(t)dt for ℜ(w)> |K|) , we have

|g̃(w)| � ‖g‖
2π(|w|− |K|) for every w ∈ C\ |K|BC. (4.6.13)

Since g̃ depends linearly on g, we derive from (4.6.13) that, if gn → g in D(K), then
g̃n → g̃ uniformly on compact subsets of C \ |K|BC. On the other hand, keeping in
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mind our construction of Ea(K) in §4.6.27, it follows from (4.6.12) that, for p∈C[x],
and r > |K|, we have

[p(u)(g)](z) =
∫
|w|=r ewz p(w)g̃(w)dw for every z ∈ C, (4.6.14)

i.e. the Borel transform of p(u)(g) is the function w → p(w)g̃(w). Now, let
T be arbitrary in Ea(K), and let r > |K| be such that the circumference
Γ := {w ∈ C : |w| = r} avoids the zeros of g̃. Take a sequence pn in C[x] such
that pn(u) → T in Ea(K), and note that pn(u)(g) → T (g) in D(K). It follows that

pn(·)g̃(·)→ T̃ (g)(·) uniformly on Γ, and hence (since g̃ does not vanish on Γ) that
the sequence pn(·) is uniformly Cauchy on Γ, so also on rBC (by the maximum
modulus principle). Let h stand for the uniform limit of pn(·) on rBC. Then, by
(4.6.14), we have that

[T (g)](z) =
∫
|w|=r ewzh(w)g̃(w)dw for every z ∈ C. (4.6.15)

Now, assume that T lies in the strong radical of Ea(K). Then, noticing that pn(·)→ 0
on K (by Theorem 1.1.83), we derive that h = 0 on K. Since h is continuous on rBC
and holomorphic on its interior (say Ω), and K is an infinite subset of Ω, we get
that h = 0 on rBC. By invoking (4.6.15), we obtain T (g) = 0. Since g is arbitrary in
D(K)\{0}, we get T = 0. Finally, since T is arbitrary in the strong radical of Ea(K),
we realize that Ea(K) is strongly semisimple, as desired.

In view of Fact 4.6.31, elements of Ea(K) will often be seen as complex-valued
continuous functions on K. When this is the case, given f ∈ Ea(K), ‖ f‖ will mean
the norm of f as an element of Ea(K), whereas ‖ f‖∞ will mean the norm of f as an
element of CC(K). The display of elements of Ea(K) as complex-valued functions
on K gives rise to the following geometric functional calculus at a single element of
a norm-unital complete normed power-associative complex algebra.

Proposition 4.6.32 Let A be a norm-unital complete normed power-associative
complex algebra, and let a be in A with V (A,1,a) ⊆ K. Then there exists a unique
contractive unit-preserving algebra homomorphism f → f (a) from Ea(K) to A tak-
ing the generator u to a. As a consequence, for f ∈ Ea(K) we have

V (A,1, f (a))⊆V (Ea(K),1, f ).

Proof Let B stand for the closed subalgebra of A generated by {1,a}, and let
Φ : Ea(K) → A be a contractive unit-preserving algebra homomorphism such that
Φ(u) = a. Then, by Theorem 4.6.21(iii) and Lemma 1.1.82(ii), we have

Φ(Ea(K))⊆ B.

On the other hand, since A is power-associative, B is associative. This allows us to see
Φ as a contractive unit-preserving algebra homomorphism from Ea(K) to B taking
u to a. Moreover, according to Corollary 2.1.2, we have V (A,1,a) = V (B,1,a).
Therefore, replacing A with B, we may assume that A is associative, so that the first
conclusion in the proposition follows from Theorem 4.6.21(ii). Now that the first
conclusion has been proved, the consequence follows from Corollary 2.1.2(i).

Remark 4.6.33 Let γ,δ be in C with γ 	= 0, and set L := γK + δ . In view of
Theorem 4.6.21, it is a tautology that Ea(K) and Ea(L) are isometrically isomorphic.
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More precisely, denoting by u and v the generators of Ea(K) and Ea(L), respect-
ively, and arguing as in §4.6.23, we realize that there exists a unique continuous
algebra homomorphism φ : Ea(L) → Ea(K) taking v to γu+ δ , and that moreover
such an algebra homomorphism φ is a surjective isometry. Now, denoting by η the
function z → γz+ δ from K to L, it is enough to invoke Proposition 4.6.32 to get
that f ◦η lies in Ea(K) whenever f is in Ea(L), and that the surjective isometric
algebra homomorphism φ : Ea(L)→ Ea(K) above is nothing other than the mapping
f → f ◦η .

§4.6.34 Let L be a non-empty compact and convex subset of C with L ⊆ K. By
Theorem 4.6.21 and Fact 4.6.31, there is a contractive unit-preserving algebra homo-
morphism φ : Ea(K) → Ea(L) taking K ↪→ C to its restriction L ↪→ C. Then, given
f ∈ Ea(K), it is enough to valuate φ( f ) at points of L to realize that φ( f ) = f|L.
Therefore f|L lies in Ea(L) and ‖ f|L‖ � ‖ f‖ whenever f belongs to Ea(K). Now let
A be a norm-unital complete normed power-associative complex algebra, let a be
in A with V (A,1,a) ⊆ L, and let f be in Ea(K). Then it follows from the above and
Proposition 4.6.32 that f (a) = f|L(a). In other words, the element f (a) in the sense
of Proposition 4.6.32 does not depend on K, so we could have taken K =V (A,1,a).
The more general formulation we have done is interesting only when f is fixed
and a moves.

§4.6.35 Let A be a norm-unital normed complex algebra. We denote by AK the
closed and convex subset of A given by

AK := {x ∈ A : V (A,1,x)⊆ K}.

Proposition 4.6.36 Let f be in Ea(K), and let A be a norm-unital complete normed
power-associative complex algebra. Then the mapping x → f (x) from AK to A is
continuous.

Proof Take a sequence pn of polynomial functions on K with pn → f in Ea(K).
Then pn(x)→ f (x) uniformly in x ∈ AK .

As one could easily have expected, we have the following.

Fact 4.6.37 Let a be a normal element of a unital non-commutative JB∗-algebra A,
and set K := co(J-sp(A,a)). Then we have

V (A,1,a) = K.

Moreover, for f ∈ Ea(K), f (a) has the same meaning in both continuous functional
calculus (cf. Corollary 4.1.72) and geometric functional calculus at a.

Proof Let B stand for the closed ∗-subalgebra of A generated by a. Then, by
Proposition 4.1.28(ii), we have co(J-sp(B,a)) = co(J-sp(A,a)) = K. Moreover, by
Fact 3.4.22, B is a commutative C∗-algebra, and then Corollaries 2.1.2 and 2.3.73
apply to get

V (A,1,a) =V (B,1,a) = co(sp(B,a)) = co(J-sp(B,a)).

It follows that V (A,1,a) = K, which proves the first conclusion. Now, the second
conclusion follows because the mappings f → f|J-sp(A,a) from Ea(K) to
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CC(J-sp(A,a)), and g → g(a) from CC(J-sp(A,a)) to A, are contractive unit-
preserving algebra homomorphisms, so the mapping f → f|J-sp(A,a)(a) from Ea(K)

to A is a contractive unit-preserving algebra homomorphism taking the generator
u to a, and so we must have f|J-sp(A,a)(a) = f (a) for every f ∈ Ea(K), in view of
Proposition 4.6.32.

Let K be a non-empty compact and convex subset of C. Then regarding Ea(K) as
an algebra of complex-valued continuous functions on K as assured by Fact 4.6.31,
we have the following.

Fact 4.6.38 Ea(K) contains the restriction to K of any complex-valued holo-
morphic function on some open neighbourhood of K.

Proof Let Ω be an open neighbourhood of K. Since sp(Ea(K),u) = K (by The-
orem 4.6.21(iv)), for f ∈ H (Ω), we can consider the element f (u) ∈ Ea(K) (in the
sense of the holomorphic functional calculus). Then, since the mapping g → g from
Ea(K) to CC(K) is a continuous unit-preserving algebra homomorphism, it is enough
to apply Corollaries 1.3.16 and 1.3.18 to get

f|K = f (u) ∈ Ea(K) (4.6.16)

for every f ∈ H (Ω).

Now recall that, according to Theorem 4.1.93, if A is a complete normed unital
non-commutative Jordan complex algebra, if Ω is a non-empty open set in C, and if
f is in H (Ω), then AΩ := {x ∈ A : J-sp(A,x) ⊆ Ω} is a non-empty open subset of
A, and the mapping f̃ : x → f (x) from AΩ to A (where f (x) should be understood
in the sense of the holomorphic functional calculus stated in Theorem 4.1.88) is
holomorphic. With Fact 4.6.38 and these ideas in mind, we can formulate one of the
main results in the present subsection.

Theorem 4.6.39 Let A be a norm-unital complete normed non-commutative Jordan
complex algebra, let a be in A, and set K :=V (A,1,a). We have:

(i) J-sp(A,a)⊆ K.
(ii) If Ω is an open subset of C containing K, and if f is in H (Ω), then:

(a) f (a) has the same meaning in both holomorphic functional calculus and
geometric functional calculus (cf. Proposition 4.6.32).

(b) ‖D f̃ (a)‖ � ‖ f ′ |K‖, where D f̃ (a) denotes the Fréchet derivative of the map-
ping f̃ : AΩ → A at a, and the norm of f ′ |K is taken in Ea(K).

§4.6.40 Assertion (i) in Theorem 4.6.39 follows by arguing as in the proof of
Lemma 2.3.21, with Fact 4.4.25(i) instead of Proposition 1.1.40.

To prove assertion (ii)(a), note that, in view of (4.6.16) and Proposition 4.6.32,
the mappings f → f|K from H (Ω) to Ea(K), and g → g(a) from Ea(K) to A, are
continuous unit-preserving algebra homomorphisms. Therefore the mapping f →
f|K(a) from H (Ω) to A is a continuous unit-preserving algebra homomorphism
taking the inclusion Ω ↪→ C to a, and hence we must have f|K(a) = f (a) for every
f ∈ H (Ω), in view of Theorem 4.1.88.

Assertion (ii)(b) is much deeper, and needs several auxiliary results.
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Let X and Y be normed spaces over K, and let T be a partially defined linear
operator from X to Y . We recall that T is said to be closeable if, whenever xn is a
sequence in dom(T ) with xn → 0 and T (xn)→ y∈Y , we have y= 0. If T is closeable,
then the closure of the graph of T in X ×Y becomes the graph of a closed partially
defined linear operator from X to Y , which is called the closure of T and is denoted
by T̄ . Thus, when T is closeable, dom(T̄ ) consists precisely of those elements x ∈ X
such that x = limxn for some sequence xn in dom(T ) such that the sequence T (xn) is
convergent in Y , and for such an x we have T̄ (x) = limT (xn).

From now until Proposition 4.6.56, K will stand for a compact and convex subset
of C with more than one point.

Proposition 4.6.41 Let u stand (as always in this subsection) for the generator
of Ea(K). Then the mapping p(u) → p′(u) from B := {p(u) : p ∈ C[x]} to Ea(K)

becomes a (well-defined) closeable densely defined derivation of Ea(K).

Proof Keeping in mind properties (iii) and (iv) in Theorem 4.6.21, only closeability
merits a proof. Let pn be a sequence in C[x] with pn(u)→ 0 and pn

′(u)→ f ∈Ea(K),
both convergences being regarded in Ea(K). Let z,w be different elements of K, and
consider the complex-valued continuous functions gn and h on the real interval [0,1]
defined by

gn(t) := pn(z+ t(w− z)) and h(t) := (w− z) f (z+ t(w− z)),

respectively. Then, by Fact 4.6.31, we have gn → 0 and gn
′ → h uniformly on [0,1].

Therefore, for 0 � r � 1 we obtain that

0 ← gn(r)−gn(0) =
∫ r

0
gn

′(t)dt →
∫ r

0
h(t)dt .

Hence h = 0, so (w−z) f (z) = h(0) = 0, and so f = 0 because z is arbitrary in K.

Definition 4.6.42 The closure of the closeable densely defined derivation of Ea(K)

in the above proposition is clearly a closed densely defined derivation of Ea(K),
which will be called the canonical derivation of Ea(K). Its domain will be denoted
by Ea1(K), and, for f ∈ Ea1(K), f ′ will denote the image of f under the canonical
derivation. This notation does not involve any confusion because, as we will prove
later, every function f ∈ Ea1(K) is of class C1 on K, and its derivative in the classical
sense coincides with the image of f under the canonical derivation of Ea(K) (see
Remark 4.6.53(c)).

The following fact is straightforward.

Fact 4.6.43 Ea1(K) endowed with the norm ‖ f‖1 := ‖ f‖+‖ f ′‖ becomes a norm-
unital complete normed algebra containing densely the algebra of all polynomial
functions on K.

Let A be a power-associative algebra. An A-bimodule X is said to be a power-
associative A-bimodule if the split null X-extension of A is a power-associative
algebra.

The next lemma is straightforwardly realized by induction.
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Lemma 4.6.44 Let A be a power-associative algebra, let X be a power-associative
A-bimodule, let a be in A, let n be in N, and let π1 and π2 stand for the natural
projections from the split null X-extension A × X of A to A and X, respectively.
We have:

(i) π1[(a,x)n] = an for every x ∈ X.
(ii) The mapping x → π2[(a,x)n] from X to X is linear.

Lemma 4.6.45 Let A be a norm-unital complete normed power-associative com-
plex algebra, let X be a complete normed unital power-associative A-bimodule, let
(a,x) be in the complete normed split null X-extension A×X of A, and let π1 and π2

stand for the natural projections from A×X to A and X, respectively. Then we have:

(i) ‖π2[(a,x)n]‖ � n‖a‖n−1‖x‖ for every n ∈ N.
(ii) ‖π2[exp(a,x) ]‖ � emaxℜ(V (A,1,a))‖x‖.

(iii) If V (A,1,a)⊆ K, then ‖π2[exp(z(a,x)) ]‖ � |z|‖x‖ωK(z) for every z ∈ C.

Proof Assertion (i) follows easily by induction.
As a consequence of assertion (i), we get that ‖π2[exp(a,x) ]‖ � e‖a‖‖x‖. Taking

r ∈R\{0}, setting a+ 1
r 1 instead of a in the last inequality, and keeping in mind that(

a+
1
r

1,x
)
= (a,x)+

1
r
(1,0)

(which implies that exp(a+ 1
r 1,x) = e

1
r exp(a,x)), we derive that

‖π2[exp(a,x) ]‖ � e
‖1+ra‖−1

r ‖x‖.

Hence, letting r → 0+, it is enough to invoke Proposition 2.1.5 to obtain the inequal-
ity in assertion (ii).

Assume that V (A,1,a)⊆ K. Then, by assertion (ii), for z ∈ C we have

‖π2[exp(z(a,x)) ]‖ � |z|‖x‖emax{ℜ(wz):w∈V (A,1,a)}

� |z|‖x‖emax{ℜ(wz):w∈K} = |z|‖x‖ωK(z),

which proves assertion (iii).

Now we prove the key tool in the proof of Theorem 4.6.39.

Proposition 4.6.46 Let A be a norm-unital complete normed power-associative
complex algebra, let a be in AK, and let X be a complete normed unital power-
associative A-bimodule. Then, for each x ∈ X, there exists a unique continuous unit-
preserving algebra homomorphism f → f (a,x), from (Ea1(K),‖·‖1) to the complete
normed split null X-extension A×X of A, taking the generator u to (a,x). Moreover,
denoting by π1 and π2 the natural projections from A×X to A and X, respectively,
for f ∈ Ea1(K) we have:

(i) π1( f (a,x)) = f (a) for every x∈X, where f (a) should be understood in the sense
of the geometric functional calculus (cf. Proposition 4.6.32).

(ii) The mapping d f̂ (a) : x → π2( f (a,x)) from X to X is linear and continuous
with ‖d f̂ (a)‖ � ‖ f ′‖.
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Proof Let x be in X , and let θ be in X ′ with ‖θ‖ � 1. Then, the mapping

h : z → θ(π2[exp(z(a,x)) ])

is an entire function vanishing at zero, and hence, by Lemma 4.6.45(iii), the mapping
g : C→ C defined by

g(0) := h′(0) and g(z) :=
h(z)

z
for z 	= 0

belongs to D(K) and ‖g‖ � ‖x‖. Moreover, we have that

g(k−1)(0) = θ
[
π2

(
(a,x)k

k

)]
for every k ∈ N.

Now, let p(x) = ∑n
k=0λkxk be in C[x]. Then, regarding Ea(K) as in §4.6.27, we have

θ [π2(p(a,x))] =
n

∑
k=1

λkkθ
[
π2

(
(a,x)k

k

)]
=

n

∑
k=1

λkkg(k−1)(0)

=
n

∑
k=1

λkk[uk−1(g)](0) =

[(
n

∑
k=1

λkkuk−1

)
(g)

]
(0)

=
[
p′(u)(g)

]
(0),

and hence, invoking (4.6.8), we get

|θ [π2(p(a,x))]|=
∣∣[p′(u)(g)](0)∣∣� ∥∥p′(u)(g)

∥∥�
∥∥p′(u)

∥∥‖g‖ �
∥∥p′(u)

∥∥‖x‖ .

Since θ is an arbitrary element of the closed unit ball of X ′, we deduce that

‖π2(p(a,x))‖ �
∥∥p′(u)

∥∥‖x‖. (4.6.17)

Therefore, invoking Lemma 4.6.44(i), we obtain

‖p(a,x)‖= ‖π1(p(a,x))‖+‖π2(p(a,x))‖

= ‖p(a)‖+‖π2(p(a,x))‖ � ‖p(u)‖+
∥∥p′(u)

∥∥‖x‖

� max{1,‖x‖}
(
‖p(u)‖+

∥∥p′(u)
∥∥)= max{1,‖x‖}‖p(u)‖1.

This shows that the algebra homomorphism p(u) → p(a,x), from the dense
subalgebra B := {p(u) : p ∈ C[x]} of (Ea1(K),‖ · ‖1) to A, is continuous. By
extending this homomorphism by continuity, we find a continuous unit-preserving
algebra homomorphism from (Ea1(K),‖ · ‖1) to A taking u to (a,x). It follows
from Lemma 1.1.82(i) that there is no other such homomorphism. Thus the first
conclusion in the proposition has been proved.

Let x be in X , and let f be in Ea1(K). Take a sequence pn in C[x] with pn(u)→ f
in (Ea1(K),‖ · ‖1). Then

pn(u)→ f in Ea(K), pn
′(u)→ f ′ in Ea(K), and pn(a,x)→ f (a,x) in A×X .

Therefore, invoking Lemma 4.6.44(i), Proposition 4.6.32, and (4.6.17), we get

π1( f (a,x)) = limπ1(pn(a,x)) = lim pn(a) = f (a)

and

‖π2( f (a,x))‖= lim‖π2(pn(a,x))‖ � lim
∥∥pn

′(u)
∥∥‖x‖= ‖ f ′‖‖x‖.
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Thus the second assertion in the proposition will hold as soon as we realize
that π2( f (a,x)) depends linearly on x. But this follows from the fact that, by
Lemma 4.6.44(ii), π2(pn(a,x)) depends linearly on x for every n.

Te following refinement of Fact 4.6.38 will be useful.

Fact 4.6.47 Let Ω be an open neighbourhood of K in C, and let f be in H (Ω).
Then f|K belongs to Ea1(K) and f|K

′ = f ′ |K.

Proof Since the canonical derivation g→ g′ of Ea(K) is densely defined and closed,
Corollary 4.6.20 applies, so that we have that f (u) lies in Ea1(K) and that ( f (u))′ =
f ′(u), both f (u) and f ′(u) being understood in the sense of the holomorphic
functional calculus. Since f (u) = f|K and f ′(u) = f ′ |K (by (4.6.16)), the result
follows.

End of the proof of Theorem 4.6.39 In view of §4.6.40, it is enough to prove asser-
tion (ii)(b) in the theorem. Let A,a, and

K :=V (A,1,a)⊇ J-sp(A,a)

be as in the theorem. Let Ω be an open neighbourhood of K in C, and let f be
in H (Ω). We must show that ‖D f̃ (a)‖ � ‖ f ′ |K‖. If K reduces to a point (say λ ),
then, by Corollary 2.1.11, we have that a = λ1, and hence, by Theorem 4.1.93,
we obtain D f̃ (a) = f ′(λ )IA, which proves the result in this case. Assume that K is
not reduced to a point. Let b be in A, and let us consider the element (a,b) of the
complete normed split null A-extension of A. Keeping in mind Fact 4.6.47, we can
argue as in §4.6.40 to realize that the symbol f (a,b) has the same meaning in both the
holomorphic functional calculus (cf. Proposition 4.6.2) and the functional calculus
suggested by Proposition 4.6.46. But, by Theorem 4.1.93 and Proposition 4.6.4, in
the meaning of the holomorphic functional calculus we have π2( f (a,b))=D f̃ (a)(b).
Therefore, by Proposition 4.6.46(ii), we have D f̃ (a)(b) = d f̂ (a)(b) and then
‖D f̃ (a)‖= ‖d f̂ (a)‖ � ‖ f ′ |K‖ because b is arbitrary in A.

Now that Theorem 4.6.39 has been proved, we proceed to discuss other relevant
consequences of Proposition 4.6.46. For the first one, Fact 4.6.48 immediately below
becomes crucial. To prove this fact, we recall that an algebra A over K is power-
associative if (and only if) it is third and fourth power associative; that is, A satisfies
the identities

[a,a,a] = 0 and [a2,a,a] = 0. (4.6.18)

This result, whose proof can be found in [11] or [471], should be kept in mind for
the proof of the following.

Fact 4.6.48 Let A be a power-associative algebra over K. Then the regular
A-bimodule is a power-associative A-bimodule.

Proof As already commented in §2.5.2, identities (4.6.18) can be linearized to get

[b,a,a]+ [a,b,a]+ [a,a,b] = 0 (4.6.19)
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and

[ab+ba,a,a]+ [a2,b,a]+ [a2,a,b] = 0. (4.6.20)

In view of the identities (4.6.18), (4.6.19), and (4.6.20), for (a,x) in the split null
A-extension of A we see that

[(a,x),(a,x),(a,x)] = ([a,a,a], [x,a,a]+ [a,x,a]+ [a,a,x]) = (0,0)

and

[(a,x)2,(a,x),(a,x)] = [(a2,ax+ xa),(a,x),(a,x)]

= ([a2,a,a], [ax+ xa,a,a]+ [a2,x,a]+ [a2,a,x]) = (0,0).

Therefore, the split null A-extension of A is a power-associative algebra, i.e. the
regular A-bimodule is a power-associative A-bimodule.

The above fact should be kept in mind for the formulation and proof of the
following.

Lemma 4.6.49 Let A be a normed power-associative unital algebra over K, let a
be in A, and let p be in K[x]. Then the mapping x → p(x) from A to A is differentiable
at a with Fréchet derivative equal to the mapping x → π2(p(a,x)), where π2 stands for
the natural projection from the split null A-extension of A onto the regular A-module.

Proof We may assume that p(x) = xn for some n ∈ N, and then we argue by
induction on n. Let x be in A, and set Fn(x) := π2((a,x)n). Then, by Lemma 4.6.44,
F depends linearly on x, and we have(

an+1,Fn+1(x)
)
= (a,x)n+1 = (a,x)n(a,x)

= (an,Fn(x))(a,x) =
(
an+1,anx+Fn(x)a

)
,

i.e. Fn+1(x) = anx + Fn(x)a. Replacing x with x − a, the last equality can be
written as

xn+1 −an+1 −Fn+1(x−a) = (xn −an)(x−a)+ [xn −an −Fn(x−a)]a.

Now let n be in N such that

lim
x→a

‖xn −an −Fn(x−a)‖
‖x−a‖ = 0.

Then, since the mapping x → xn is continuous, we derive that

0 � lim
x→a

‖xn+1 −an+1 −Fn+1(x−a)‖
‖x−a‖

� lim
x→a

[
‖xn −an‖+‖a‖‖xn −an −Fn(x−a)‖

‖x−a‖

]
= 0.

Since the case n = 1 is clear, the proof is complete.

Let A be a norm-unital normed complex algebra. We note that, since K has two
distinct points (say λ ,μ), the convex subset AK of A introduced in §4.6.35 has two
distinct elements (namely λ1,μ1), and hence AK is a perfect subset of A. On the
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other hand, if in addition A is power-associative and complete, then, in view of
Fact 4.6.48, Proposition 4.6.46 and its notation are applicable when X equals the
regular A-bimodule. Keeping these ideas in mind, we have the following.

Proposition 4.6.50 Let A be a norm-unital complete normed power-associative
complex algebra, let a be in AK, and let f be in Ea1(K). Then

lim
x→a

x∈AK\{a}

‖ f (x)− f (a)−d f̂ (a)(x−a)‖
‖x−a‖ = 0,

where f (·) should be understood in the sense of the geometric functional calculus
(cf. Proposition 4.6.32).

Proof According to Fact 4.6.43, take a sequence pn of polynomial functions on K
converging to f in (Ea1(K),‖·‖1). Then pn(x)→ f (x) in A for every x∈AK , whereas
pn

′ → f ′ in Ea(K), and, by Proposition 4.6.46, d p̂n(x)→ d f̂ (x) in BL(A) for every
x ∈ AK . Let n,m be in N, and let x be in AK . Then, by Lemma 4.6.49, the function

Φ : t → [pn − pm − (d p̂n(a)−d p̂m(a))] (a+ t(x−a))

from [0,1] to A is derivable in [0,1] with

Φ′(t) = [d p̂n(a+ t(x−a))−d p̂m(a+ t(x−a))− (d p̂n(a)−d p̂m(a))] (x−a).

Therefore, by the classical mean value theorem and Proposition 4.6.46(ii), we have

‖pn(x)− pn(a)− (pm(x)− pm(a))− (d p̂n(a)−d p̂m(a))(x−a)‖

= ‖Φ(1)−Φ(0)‖ � 2‖x−a‖ sup
0�t�1

‖d( p̂n − p̂m)(a+ t(x−a))‖

� 2‖x−a‖‖pn
′ − pm

′‖.

By letting n → ∞, we derive that

‖ f (x)− f (a)−d f̂ (a)(x−a)‖
‖x−a‖

� 2‖ f ′ − pm
′‖+ ‖pm(x)− pm(a)−d p̂m(a)(x−a)‖

‖x−a‖

whenever x 	= a. Now let ε > 0. We may choose m such that ‖ f ′ − pm
′‖ < ε

3 , and
then, according to Lemma 4.6.49, there is δ > 0 such that

‖pm(x)− pm(a)−d p̂m(a)(x−a)‖
‖x−a‖ <

ε
3

whenever 0 < ‖x−a‖< δ . It follows that

‖ f (x)− f (a)−d f̂ (a)(x−a)‖
‖x−a‖ < ε

whenever 0 < ‖x−a‖< δ .

Proposition 4.6.50 just proved can be seen as a geometric variant of The-
orem 4.1.93.
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Corollary 4.6.51 Let A be a norm-unital complete normed power-associative com-
plex algebra, let a,b be in AK, and let f be in Ea1(K). Then

‖ f (b)− f (a)‖ � ‖ f ′‖‖b−a‖.

Proof In view of Proposition 4.6.50, the mapping φ : [0,1] → A defined by
φ(t) := f (a+ t(b−a)) is derivable with φ ′(t) = d f̂ (a+ t(b−a))(b−a). Therefore,
by the classical mean value theorem and Proposition 4.6.46(ii), we have

‖ f (b)− f (a)‖= ‖φ(1)−φ(0)‖ � ‖ f ′‖‖b−a‖.

As a by-product of Lemma 4.6.49, we have the following.

Corollary 4.6.52 Assume that K has non-empty interior in C, let f be in Ea(K),
let A be a norm-unital complete normed power-associative complex algebra, and let
U stand for the interior of AK in A. Then U is not empty, and the mapping x → f (x)
from U to A is holomorphic.

Proof It is plain that λ1 lies in U whenever λ is in K
◦

(indeed, if λ +εBC ⊆ K, then
we have λ1+ εBA ⊆ AK). Thus U is not empty. Take a sequence pn of polynomial
functions on K with pn → f in Ea(K). Then pn(x) → f (x) uniformly in x ∈ AK .
Since the mapping x → pn(x) is holomorphic on U (by Lemma 4.6.49), the result
follows from the generalized Weierstrass convergence theorem (see for example
[707, Theorem 16.12]).

Remark 4.6.53 (a) Let f be in Ea1(K), let A be a norm-unital complete normed
associative and commutative complex algebra, let a be in AK , and let X be a com-
plete normed unital associative and commutative A-bimodule (cf. §4.6.19). Then the
mapping

d f̂ (a) : X → X

in Proposition 4.6.46(ii) is nothing other than the operator of left (= right) mul-
tiplication by f ′(a) on X . Indeed, given x ∈ X , prove by induction that in the
split null X-extension of A we have (a,x)n = (an,nan−1x) for every n ∈ N, and
then apply Fact 4.6.43 to get that f (a,x) = ( f (a), f ′(a)x), which implies that
d f̂ (a) = π2( f (a,x)) = f ′(a)x.

(b) Let f be in Ea1(K), let A be a norm-unital complete normed associative and
commutative complex algebra, and let a be in AK . Keeping in mind that the regular
A-bimodule is associative and commutative, it follows from Proposition 4.6.50, and
part (a) of the present remark, that

lim
x→a

x∈AK\{a}

‖ f (x)− f (a)− f ′(a)(x−a)‖
‖x−a‖ = 0.

(c) Let f be in Ea1(K). By taking A := C and a := λ ∈ K in part (b) of the
present remark, we realize that f is of class C1 on K, and that the derivative of f in
the classical meaning coincides with the image of f under the canonical derivation
of Ea(K).
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As in the case of complex-valued continuous functions on an interval, each func-
tion in Ea(K) has a ‘primitive’ (now relative to the canonical derivation of Ea(K)).
Indeed, we have the following.

Proposition 4.6.54 The kernel of the canonical derivation of Ea(K) reduces to
C1, and its range is the whole algebra Ea(K). More precisely, given λ ∈ K and
f ∈ Ea(K), there exists a unique g=Iλ ( f ) ∈ Ea1(K) such that g′= f and g(λ ) = 0.
Moreover the operator Iλ : Ea(K)→ Ea(K) is linear and continuous, and we have

‖Iλ‖= ‖u−λ1‖,

where u stands for the generator of Ea(K).

Proof Let f ∈ Ea1(K) be in the kernel of the canonical derivation of Ea(K). It
follows from Remark 4.6.53(c) and the convexity of K that f is a constant function.
Thus the kernel of the canonical derivation of Ea(K) reduces to C1.

Let λ be in K, and let f be in Ea(K). Following on from the above paragraph,
the uniqueness of g ∈ Ea1(K) such that g′ = f and g(λ ) = 0 is clear. To prove the
existence of such a function g, let us begin by considering the case where f = p on
K for some p ∈ C[x]. Let q be the unique polynomial in C[x] such that q′ = p and
q(λ ) = 0. Since V (Ea(K),1,λ1+t(u−λ1))⊆K for every t ∈ [0,1], Theorem 4.6.21
applies, so that we have ‖p(λ1+ t(u−λ1))‖ � ‖p(u)‖. Therefore, since

(u−λ1)
∫ 1

0
p(λ1+ t(u−λ1))dt =

[
q(λ1+ t(u−λ1))

]1

0

= q(u)−q(λ1) = q(u)−q(λ )1 = q(u),

we obtain that ‖q(u)‖ � ‖p(u)‖‖u − λ1‖. Therefore the linear mapping
Iλ : p(u)→ q(u) from the dense subalgebra of Ea(K) consisting of all polynomial
functions on K into Ea(K) is continuous, and hence we can consider its continuous
extension to Ea(K), which is also denoted by Iλ . Clearly, for each f ∈ Ea(K) we
have Iλ ( f ) ∈ Ea1(K), Iλ ( f )′ = f , Iλ ( f )(λ ) = 0, and ‖Iλ ( f )‖ � ‖u−λ1‖‖ f‖.
Since Iλ (1) = u−λ1, we have in fact the equality ‖Iλ‖= ‖u−λ1‖.

Corollary 4.6.55 A function f : K → C lies in Ea1(K) if and only if it is of class
C1 on K and its classical derivative f ′ belongs to Ea(K). If this is the case, then f ′

coincides with the image of f under the canonical derivation of Ea(K).

Proof The ‘only if’ part follows from Remark 4.6.53(c).
Assume that f is of class C1 on K and that f ′ ∈ Ea(K). Then, by the last re-

quirement and Proposition 4.6.54, there exists g ∈ Ea1(K) such that g′ = f ′, where
g′ stands for the image of g under the canonical derivation of Ea(K). Moreover,
by Remark 4.6.53(c), g is of class C1 on K, and g′ has an unambiguous meaning.
Therefore, since f is of class C1 on K, f −g is a function of class C1 on K with zero
derivative, which implies that f − g is constant on K because K is convex. Finally,
since g ∈ Ea1(K), we derive that f ∈ Ea1(K).

The following application of Proposition 4.6.46 becomes a geometric variant of
Theorem 4.6.15.
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Proposition 4.6.56 Let A be a norm-unital complete normed power-associative
complex algebra, let X be a complete normed unital power-associative A-bimodule,
let D be a closed densely defined X-valued derivation of A, let a be in dom(D)∩AK,
and let f be in Ea1(K). Then f (a) (in the sense of the geometric functional calculus)
lies in dom(D). Moreover the equality

D( f (a)) = d f̂ (a)(D(a))

holds, and hence ‖D( f (a))‖ � ‖ f ′‖‖D(a)‖, where the norm of f ′ is taken in Ea(K).

Proof The graph (say G) of D is a closed subalgebra of the complete normed
split null X-extension A × X of A. Moreover, by Lemma 4.6.13, G contains the
unit of A×X . Therefore, since Ea1(K) is generated by {1,u} as a normed algebra
(by Fact 4.6.43) and (a,D(a)) belongs to G, it follows from the first conclusion in
Proposition 4.6.46 and Lemma 1.1.82(ii) that f (a,D(a)) lies in G. Therefore, by the
whole second conclusion in Proposition 4.6.46, we have

f (a) ∈ dom(D), D( f (a)) = d f̂ (a)(D(a)), and ‖D( f (a))‖ � ‖ f ′‖‖D(a)‖,

as desired.

By combining Proposition 4.6.56 and Fact 4.6.37, we get the following.

Corollary 4.6.57 Let A be a unital non-commutative JB∗-algebra, let X be a com-
plete normed unital power-associative A-bimodule, let D be a closed densely defined
X-valued derivation of A, let a be a normal element in dom(D) \C1, set K :=
co(J-sp(A,a)), and let f be in Ea1(K). Then f (a) (in the sense of the continuous
functional calculus) lies in dom(D) and we have ‖D( f (a))‖ � ‖ f ′‖‖D(a)‖, where
the norm of f ′ is taken in Ea(K).

To progress with the remaining part of the present subsection, let us prove the
following.

Proposition 4.6.58 Let A be a unital commutative C∗-algebra, let D be a closed
densely defined derivation of A, and let a be in dom(D)\C1. Set K := co(sp(A,a)),
and let f : K → C be a function of class C1 on K. Then f (a) (in the sense of the
continuous functional calculus) lies in dom(D) and D( f (a)) = f ′(a)D(a).

Proof Fix z0 in K. Since f ′ is continuous on K and holomorphic on K
◦
, it follows

from Mergelyan’s theorem (see for example [803, Theorem 20.3.1]) that we can
find a sequence pn of polynomial functions on K such that pn(z0) = 0 and pn

′ → f ′

uniformly on K. Therefore, since for z ∈ K we have

f (z)− pn(z) = (z− z0)

∫ 1

0

[
f ′(z0 + t(z− z0))− pn

′(z0 + t(z− z0))
]

dt ,

we derive that

‖ f − pn‖∞ � max{|z− z0| : z ∈ K}‖ f ′ − pn
′‖∞,

and hence that pn → f uniformly on K. Now, by Lemma 4.6.13, we have that pn(a)∈
dom(D) and, by the above,

pn(a)→ f (a) and D(pn(a)) = pn
′(a)D(a)→ f ′(a)D(a).

Since D is closed, the result follows.
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Let A be a unital C∗-algebra, let D be a closed densely defined derivation of A, let
a be a normal element in dom(D), let f be in CC(sp(A,a)), and consider f (a) in the
sense of the continuous functional calculus. If a is in C1, then so is f (a), and hence,
by Lemma 4.6.13, f (a) ∈ dom(D). Assume that a /∈C1. Then, in general, f (a) need
not lie in dom(D). (Indeed, take A = CC([−1,1]), D equal to the usual derivation
of A, a(t) = t, and f (t) = |t|.) Therefore, one can wonder about conditions on f
implying that f (a) ∈ dom(D). If A is commutative, then, by Proposition 4.6.58, one
such condition is that f be (the restriction to sp(A,a) of) a function of class C1 on K,
where K := co(sp(A,a)). Even dispensing the commutativity of A, Corollary 4.6.57
provides us with another such condition. Indeed, if the mapping f is (the restriction
to sp(A,a) of) a function in Ea1(K), then certainly f (a) lies in dom(D). But this
naturally raises another question, namely, which complex-valued continuous func-
tions on K lie in Ea1(K)? A partial answer is provided by Fact 4.6.47 above. In the
case where a is self-adjoint, other answers, independent of Fact 4.6.47, are given by
Theorem 4.6.60 and Lemma 4.6.66 below.

Fact 4.6.59 Let K be a closed and bounded interval of R not reduced to a point,
and let g : K → C be of class C1 on K. Then there exists a polynomial p ∈ C[x] of
degree � 1, and a continuous function f : R→ C whose support is contained in K,
and such that the Fourier transform of f lies in L1(R) and f + p = g on K.

Proof Write K = [α,β ] with α,β ∈R and α < β . Take p ∈C[x] of degree �1 such
that (g− p)(α) = (g− p)(β ) = 0. Set f = g− p on K, and f = 0 on R \K. Then,
denoting by f̂ the Fourier transform of f , for 0 	= t ∈ R we have

f̂ (t) =
1

(2π) 1
2

∫ ∞

−∞
f (r)e−itrdr =

1

(2π) 1
2

∫ β

α
f (r)e−itrdr

=
1

(2π)
1
2

[
f (r)

e−itr

−it

]β
α
+

1

(2π)
1
2

∫ β

α
f ′(r)

e−itr

it
dr

=
1

(2π) 1
2 it

∫ β

α
f ′(r)e−itrdr,

and hence

it f̂ (t) =
1

(2π)
1
2

∫ β

α
f ′(r)e−itrdr. (4.6.21)

Since f ′ ∈ L2(R), it follows from (4.6.21) that it f̂ (t) ∈ L2(R) (see [803, Theorem
9.13(a)]) and so∫ ∞

−∞
| f̂ (r)|dr =

∫ 1

−1
| f̂ (r)|dr+

∫ ∞

1
| f̂ (r)|dr+

∫ −1

−∞
| f̂ (r)|dr

=

∫ 1

−1
| f̂ (r)|dr+

∫ ∞

1

∣∣∣∣1r r f̂ (r)

∣∣∣∣dr+
∫ −1

−∞

∣∣∣∣1r r f̂ (r)

∣∣∣∣dr

�
∫ 1

−1
| f̂ (r)|dr+

(∫ ∞

1

dr
r2

) 1
2
(∫ ∞

1
|r f̂ (r)|2dr

) 1
2

+

(∫ −1

−∞

dr
r2

) 1
2
(∫ −1

−∞
|r f̂ (r)|2dr

) 1
2

<+∞.
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Theorem 4.6.60 Let K be a closed and bounded interval of R not reduced to a
point, and for n ∈ N let Cn(K) stand for the space of all complex-valued functions
on K which are of class Cn on K. Then we have

C2(K)⊆ Ea1(K)⊆C1(K)⊆ Ea(K).

Moreover, all inclusions in the above chain are continuous when we consider the
topology of the natural complete norm on each link of the chain (cf. Fact 4.6.43 for
the case of Ea1(K)).

Proof The second inclusion has been already proved (cf. Remark 4.6.53(c)).
Now let us prove the last inclusion. Let g be in C1(K). Consider the polynomial

p ∈ C[x] and the function f : R→ C given by Fact 4.6.59, let f̂ denote the Fourier
transform of f , and let u stand for the generator of Ea(K). Then, keeping in mind
Corollary 2.1.9(iii), we have∫ +∞

−∞

∥∥ f̂ (r)exp(−iru)
∥∥dr =

∫ +∞

−∞

∣∣ f̂ (r)∣∣dr <+∞.

Therefore, since f̂ is continuous, we realize that

h :=
1

(2π)
1
2

∫ +∞

−∞
f̂ (r)exp(−iru)dr (4.6.22)

defines an element of Ea(K). Since f (t) := 1

(2π)
1
2

∫+∞
−∞ f̂ (r)e−trdr for every t ∈ R, it

is enough to valuate (4.6.22) at points of K, to get that f = h on K. Therefore, since
h ∈ Ea(K) and g = f + p on K, we conclude that g ∈ Ea(K).

Now let us prove the first inclusion. Let f be in C2(K). By the inclusion C1(K)⊆
Ea(K) just proved, we have that f ′ ∈ Ea(K). It follows from Corollary 4.6.55 that
f ∈ Ea1(K).

Now that all inclusions have been proved, the continuity of these inclusions fol-
lows from the closed graph theorem by keeping in mind that convergence in the nat-
ural norm of each link of the chain implies pointwise convergence. (The continuity of
the second inclusion is indeed straightforward because ‖ · ‖ � ‖ · ‖∞ on Ea(K).)

The continuity of the inclusion C1(K) ⊆ Ea(K) in the above theorem can be
specified as follows.

Fact 4.6.61 Let K be a closed and bounded interval of R not reduced to a point, and
let f be in C1(K). Then f lies in Ea(K) and we have ‖ f‖ � M(‖ f‖∞+ �(K)‖ f ′‖∞),
where M > 0 is a universal constant, and �(K) denotes the length of K.

Proof According to Theorem 4.6.60, let M > 0 denote the norm of the continuous
inclusion C1([0,1])⊆ Ea([0,1]), so that we have

‖g‖ � M(‖g‖∞+‖g′‖∞) for every g ∈C1([0,1]). (4.6.23)

Write K = [α,β ] with α,β ∈ R and α < β , and consider the mapping
η :t → (β − α)t + α from [0,1] onto K. Since f ∈ Ea(K) (by the last inclusion
in Theorem 4.6.60), we derive from Remark 4.6.33 that f ◦ η ∈ Ea([0,1]) and
that ‖ f ◦ η‖ = ‖ f‖. On the other hand, the equalities ‖ f ◦ η‖∞ = ‖ f‖∞ and
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‖( f ◦η)′‖∞ = (β −α)‖ f ′‖∞ are clear. It follows from the inequality (4.6.23) that
‖ f‖ � M(‖ f‖∞+ �(K)‖ f ′‖∞).

Through the geometric functional calculus built in Proposition 4.6.32, the inclu-
sion C1(K) ⊆ Ea(K) in Theorem 4.6.60 shows that hermitian elements of a norm-
unital complete normed power-associative complex algebra admit C1-functional
calculus. This fact must be kept in mind for the formulation of the following.

Corollary 4.6.62 Let A be a norm-unital complete normed power-associative
complex algebra, let X be a complete normed unital power-associative
A-bimodule, let D be a closed densely defined X-valued derivation of A, let a be
in (dom(D)∩H(A,1)) \R1, set K := V (A,1,a), and let f : K → C be of class C2

on K. Then f (a) (in the sense of the geometric functional calculus) lies in dom(D).
Moreover we have

‖D( f (a))‖ � M
(∥∥ f ′

∥∥
∞+ �(K)

∥∥ f ′′
∥∥
∞
)
‖D(a)‖ ,

where M > 0 is a universal constant, and �(K) denotes the length of K.

Proof The first conclusion in the present corollary follows from the first conclusion
in Proposition 4.6.56 and the inclusion C2(K) ⊆ Ea1(K) in Theorem 4.6.60. But
Proposition 4.6.56 also assures that ‖D( f (a))‖ � ‖ f ′‖‖D(a)‖, where the norm of
f ′ is taken in Ea(K). Therefore, since f ′ is of class C1 on K, the second conclusion
follows from Fact 4.6.61.

Now, combining Facts 4.1.67 and 4.6.37, and Corollary 4.6.62, we get the
following.

Theorem 4.6.63 Let A be a unital non-commutative JB∗-algebra, let X be a
complete normed unital power-associative A-bimodule, let D be a closed densely
defined X-valued derivation of A, let a be in (dom(D)∩ H(A,∗)) \R1, set K :=
co(J-sp(A,a)), and let f be of class C2 on K. Then f (a) (in the sense of the
continuous functional calculus) lies in dom(D), and we have

‖D( f (a))‖ � M
(∥∥ f ′

∥∥
∞+ �(K)

∥∥ f ′′
∥∥
∞
)
‖D(a)‖ ,

where M > 0 is a universal constant, and �(K) denotes the length of K.

When we take in Theorem 4.6.63 A equal to any C∗-algebra (cf. Fact 3.3.2), and
X equal to the regular A-bimodule, we obtain the following.

Corollary 4.6.64 Let A be a unital C∗-algebra, let D be a closed densely defined
derivation of A, let a be in (dom(D)∩H(A,∗)) \R1, set K :=co(sp(A,a)), and let f
be of class C2 on K. Then f (a) (in the sense of the continuous functional calculus)
lies in dom(D).

Now we are going to prove interesting variants of results from Corollary 4.6.62 to
Corollary 4.6.64.

§4.6.65 In what follows, f will stand for a complex-valued function on R of the
form

f (t) =
∫ +∞

−∞
eirth(r)dr (4.6.24)
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for some complex-valued continuous function h on R such that∫ +∞

−∞
|rh(r)|dr <+∞. (4.6.25)

We note that such a function f is derivable with

f ′(t) = i
∫ +∞

−∞
reirth(r)dr. (4.6.26)

Now, since the integral in (4.6.25) becomes a natural upper bound for modules of
values of f ′, we denote it by ||| f ′ |||.

Lemma 4.6.66 Let K be a closed and bounded interval of R not reduced to a point,
and let f be as in §4.6.65. Then f|K belongs to Ea1(K) and f|K

′ = f ′ |K, where f|K
′

denotes the image of f|K under the canonical derivation of Ea(K). Moreover, we have
‖ f|K

′‖ � ||| f ′ |||.

Proof Recall that the canonical derivation of Ea(K) is densely defined and
closed (cf. §4.6.42). Let u stand for the generator of Ea(K), and let r be in R.
By Corollary 4.6.20 (or Fact 4.6.47), exp(iru) lies in Ea1(K) and [exp(iru)]′ =
ir exp(iru). On the other hand, since u lies in H(Ea(K),1) (by Theorem 4.6.21(i)),
Corollary 2.1.9(iii) applies to obtain that,∫ +∞

−∞
‖h(r)exp(iru)‖dr =

∫ +∞

−∞
|h(r)|dr <+∞

and ∫ +∞

−∞
‖h(r)ir exp(iru)‖dr =

∫ +∞

−∞
|rh(r)|dr <+∞.

It follows that

g : =
∫ +∞

−∞
h(r)exp(iru)dr

lies in Ea1(K), and that

g′ = i
∫ +∞

−∞
rh(r)exp(iru)dr.

Valuating the above expressions of g and g′ at each point of K, and invoking (4.6.24)
and (4.6.26), respectively, we get that g= f|K and g′ = f ′ |K . Hence f|K lies in Ea1(K)

and f|K
′ = f ′ |K , which proves the first conclusion in the lemma. Finally, since

‖ f|K
′‖= ‖g′‖ �

∫ +∞

−∞
|rh(r)|‖exp(iru)‖dr =

∫ +∞

−∞
|rh(r)|dr = ||| f ′ ||| ,

the second conclusion certainly holds.

Corollary 4.6.67 Let A be a norm-unital complete normed power-associative com-
plex algebra, let X be a complete normed unital power-associative A-bimodule, let D
be a closed densely defined X-valued derivation of A, let a be in dom(D)∩H(A,1),
and let f be as in §4.6.65. Then f (a) (in the sense of the geometric functional
calculus) lies in dom(D) and we have ‖D( f (a))‖ � ||| f ′ |||‖D(a)‖.
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Proof If a is in R1, then f (a) belongs to C1, and hence, by Lemma 4.6.13, f (a)
lies in dom(D) and then clearly D(a) = 0, so that the result follows. Otherwise, take
K = V (A,1,a), note that K is a closed and bounded interval of R not reduced to a
point, and apply Proposition 4.6.56 and Lemma 4.6.66.

Now, combining Lemma 2.2.5, Fact 4.6.37, and Corollary 4.6.67, we get the
following.

Proposition 4.6.68 Let A be a unital non-commutative JB∗-algebra, let X be a
complete normed unital power-associative A-bimodule, let D be a closed densely
defined X-valued derivation of A, let a be in dom(D)∩H(A,∗), and let f be as in
§4.6.65. Then f (a) (in the sense of the continuous functional calculus) lies in dom(D)

and we have ‖D( f (a))‖ � ||| f ′ |||‖D(a)‖.

When in Proposition 4.6.68 we take A equal to any C∗-algebra, and X equal to the
regular A-bimodule, then we obtain the following.

Corollary 4.6.69 Let A be a unital C∗-algebra, let D be a closed densely defined
derivation of A, let a be in dom(D)∩H(A,∗), and let f be as in §4.6.65. Then f (a)
(in the sense of the continuous functional calculus) lies in dom(D) and we have
‖D( f (a))‖ � ||| f ′ |||‖D(a)‖.

Keeping in mind Lemma 4.6.13, and looking at the proofs of Propositions 4.6.56
and 4.6.58, we realize that Proposition 4.6.56 (as well as its consequences given in
Proposition 4.6.68, Theorem 4.6.63, and Corollaries 4.6.57, 4.6.62, 4.6.64, 4.6.67,
and 4.6.69) and Proposition 4.6.58 remain true if we relax the assumption that D is
densely defined to the one that 1 lies in dom(D). As is proved in Proposition 4.6.70
immediately below, even this last assumption is not too restrictive.

Proposition 4.6.70 Let A be a complete normed unital power-associative
algebra over K, let X be a complete normed unital A-bimodule, and let D be
a closed partially defined X-valued derivation of A with 1 /∈ dom(D). Then the
mapping D̂ : λ1+ a → D(a) from K1+ dom(D) to X is a closed partially defined
X-valued derivation of A. Obviously D̂ extends D, and 1 lies in dom(D̂).

Proof In view of §4.6.8, only the assertion that D̂ is closed merits a proof. Assume
that ‖1+ dom(D)‖ < 1. Then, arguing as in the proof of Lemma 4.6.13, we obtain
that 1 ∈ dom(D), contrarily to the assumption. Therefore ‖1+ dom(D)‖ � 1. Let
λn1+an be a sequence in K1+dom(D) such that

λn1+an → a ∈ A and D̂(λn1+an) = D(an)→ x ∈ X .

Then

|λn −λm| � ‖(λn −λm)1+dom(D)‖ � ‖(λn1+an)− (λm1+am)‖

for all n,m ∈ N, and so λn is a Cauchy sequence in K. If λ is the limit of λn, then
an converges to −λ1+ a. Since D is closed, we get that −λ1+ a lies in dom(D)

and x = D(−λ1+a). Therefore a = λ1+(−λ1+a) ∈K1+dom(D) and x = D̂(a),
which concludes the proof.
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4.6.3 Historical notes and comments

Subsection 4.6.1 is a non-associative reading of Rodrı́guez’ paper [522], following
the indications in the concluding remark of that paper. Actually, a few indications
were somewhat daring, and should be read as predictions. This is the case for Corol-
laries 4.6.6 and 4.6.16 which, for both the formulations and the proofs, need a result
unknown at that time, namely Theorem 4.1.93.

According to [754, footnote on p. 80], the notion of a bimodule relative to a given
variety of algebras is due to Eilenberg [231]. In [754, Theorem II.9], the reader
can find an intrinsic condition, on a variety V , which is equivalent to the fact that,
for every algebra A in V , the regular A-bimodule is an A-bimodule relative to V .
Facts 4.6.5 and 4.6.48 could have been obtained as corollaries of the result in [754]
just quoted.

Proposition 4.6.11 is due to Pérez, Rico, and Rodrı́guez [488]. Lemmas 4.6.12
and 4.6.13 (and consequently, Proposition 4.6.70) remain true if the assumption
that the algebra A is power-associative is removed altogether. Indeed, it is enough
to understand powers of an element a ∈ A as left powers of a, defined inductively
by a1 := a and an+1 := aan. The associative forerunner of Corollary 4.6.17 was
suggested to the author of [522] by a referee of Publicacions Matemàtiques.

Let A be a complete normed unital associative and commutative complex algebra,
let X be a complete normed unital non-commutative Jordan A-bimodule, and let D
be a closed densely defined X-valued derivation of A. Since dom(D) is isomorphic
to the graph of D (via Lemma 4.6.7), and the graph of D is a closed subalgebra of
the complete normed algebra A×X , we realize that dom(D) is a complete normed
complex algebra under the norm ‖a‖1 := ‖a‖+ ‖D(a)‖. Since dom(D) is a full
subalgebra of A (by Proposition 4.6.14), we obtain that the pair of complete normed
unital associative and commutative complex algebras (A,dom(D)), with norms ‖ · ‖
and ‖ · ‖1 respectively, becomes a Wiener pair as defined in [783, 1.7]. But it is easy
to see that, if (R,R1) is a Wiener pair of complete normed unital associative and
commutative complex algebras with R1 dense in R, then the mapping φ → φ|R1

is a
homeomorphism from the carrier space of R onto the carrier space of R1 (see [783,
11.7.V] for details). Therefore, as pointed out in [522], the mapping φ → φ|dom(D) is a
homeomorphism from the carrier space of A onto the carrier space of dom(D). When
X equals the regular A-module, the result just proved is originally due to Loy [406],
who seems to have been the first author interested in domains of closed densely
defined derivations.

Theorem 4.6.21 is due to Bollobás [110], who constructed the extremal algebra
Ea(K) (of a compact and convex set K ⊆ C) as the completion of a certain normed
algebra of formal power series.

The argument suggested in §4.6.23 to show the essential uniqueness of the couple
(A ,u) in Theorem 4.6.21, as well as those given in §§4.6.71 and 4.6.72 immediately
below, are folklore.

§4.6.71 Property (iii) in Theorem 4.6.21 can be derived from the intrinsic char-
acterization of the couple (A ,u) provided by the first conclusion in the theorem.
Indeed, let B stand for the closed subalgebra of A generated by {1,u}. Let A
be any norm-unital complete normed associative complex algebra, let a be in A
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with V (A,1,a) ⊆ K, and let ψ be the unique contractive unit-preserving algebra
homomorphism from A to A taking u to a, given by condition (ii). Then ψ|B is
a contractive unit-preserving algebra homomorphism from B to A taking u to a.
On the other hand, if η is any continuous unit-preserving algebra homomorphism
from B to A taking u to a, then, by Lemma 1.1.82(i), we have η = ψ|B . Since
V (B,1,u) = V (A ,1,u) = K, it follows that the couple (B,u) fulfils conditions (i)
and (ii) in the theorem with (B,u) instead of (A ,u). Since B is generated by {1,u}
as a normed algebra, the essential uniqueness of such couples (given by §4.6.23)
applies to get that A is generated by {1,u} as a normed algebra, i.e. property (iii) in
Theorem 4.6.21 holds.

§4.6.72 Property (iv) in Theorem 4.6.21 is also easily realized from the intrinsic
characterization of the couple (A ,u) provided by the first conclusion in the theorem.
Indeed, by condition (i) and Lemma 2.3.21, we have sp(A ,u) ⊆ K. To prove the
converse inclusion let λ be in K. By taking A = C and a = λ in condition (ii), we
find a character φ on A such that φ(u) = λ , and hence, by Corollary 1.1.67, we have
that λ lies in sp(A ,u).

The Banach space of entire functions D(K), considered in §4.6.25, seems to have
been introduced first in [182]. The construction of Ea(K) we have given (through
results from Lemma 4.6.26 to §4.6.30), as an algebra of bounded linear operators
on D(K) endowed with the operator norm, could be new. Nevertheless, in the case
where K equals the closed unit disc, this construction is clearly suggested by some
ideas of Browder [132] included in [695, Remark (2), p. 64]. In the particular case
where K is a line segment, our construction is well known in the literature (see [133,
184, 185, 581]).

Fact 4.6.31 is well known thanks to a more involved construction of Ea(K), done
by Crabb, Duncan, and McGregor in the paper [182] quoted above. This construction
is included in detail in Section 24 of the Bonsall–Duncan book [695], and will
not be discussed here. Briefly, in the Crabb–Duncan–McGregor construction, Ea(K)

arises directly as a suitable norm-unital complete normed algebra of complex-valued
continuous functions on K in such a way that the generator u becomes the inclusion
mapping K ↪→ C. Regarding Ea(K) in this way, and keeping in mind that valuations
at points of K are then characters on Ea(K), it is clear that the inclusion Ea(K) ↪→
CC(K) becomes a contractive unit-preserving injective algebra homomorphism tak-
ing the generator to K ↪→C. By keeping in mind that properties (iii) and (iv) of Ea(K)

in Theorem 4.6.21 can be proved independently of any construction (cf. §§4.6.71
and 4.6.72), the additional property in Fact 4.6.31 that Ea(K) is a full subalgebra of
CC(K) then follows from Theorem 1.1.83. Thus, in the Crabb–Duncan–McGregor
construction, Fact 4.6.31 becomes almost obvious. By the way, the fact that Ea(K)

is a full subalgebra of CC(K) is explicitly established in [182, Corollary 1.4].
The independent proof of Fact 4.6.31 we have given, based on our own construc-

tion, is new. In relation to this proof, it is worth mentioning that, if g is in D(K),
then C \K becomes a domain of holomorphy for the Borel transform g̃ of g, and
the equality g(z) =

∫
Γ ewzg̃(w)dw holds for every z ∈ C, where Γ is any contour

surrounding K in C. Indeed, this follows easily from [693, Theorem 5.3.5]. It is
also worth mentioning that the embedding Ea(K) ↪→ CC(K) can be explicitly given
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in terms of our construction. Indeed, as we pointed out in §4.6.30, the function
gλ : C → C defined by gλ (z) := eλ z belongs to D(K) whenever λ is in K. Then,
given T ∈ Ea(K) ⊆ BL(D(K)), it is easily realized that T̂ (λ ) = T (gλ )(0) for every
λ ∈K, where T̂ stands for T regarded as a complex-valued continuous function on K.

The next remarkable theorem is due to Crabb–Duncan–McGregor [182] (see
also [695, Theorem 24.5]). In terms of our construction of Ea(K), as an algebra of
bounded linear operators on D(K), the theorem has the following formulation and
proof.

Theorem 4.6.73 D(K) is the dual space of Ea(K). More precisely, we have:

(i) For each g ∈ D(K), the mapping φ(g) : T → T (g)(0) from Ea(K) to C is linear
and continuous, i.e. φ(g) lies in (Ea(K))′.

(ii) The mapping φ : g→ φ(g) from D(K) to (Ea(K))′ is a surjective linear isometry.

Proof Assertion (i) follows from the inequality (4.6.8) in §4.6.25, which also gives
that ‖φ(g)‖ � ‖g‖ for every g ∈ D(K). Now, clearly, the mapping φ in assertion (ii)
is a linear contraction. On the other hand, taking z = 0 in the equality (4.6.10) of
§4.6.30, we obtain that

g(w) = φ (g)(exp(wu)) for all w ∈ C and g ∈ D(K). (4.6.27)

As a first consequence of (4.6.27), φ is injective. Let θ be in (Ea(K))′, and consider
the mapping g : C → C defined by g(z) = θ (exp(zu)). Then, by Fact 4.6.28, g lies
in D(K) and ‖g‖ � ‖θ‖. Moreover, again by (4.6.27), we have φ(g) = θ . Since φ
is injective, and θ is arbitrary in (Ea(K))′, this shows that φ is bijective and that
‖φ−1(θ)‖ � ‖θ‖ for every θ ∈ (Ea(K))′. Finally, since φ is contractive, certainly it
is an isometry.

A less explicit but more intrinsic formulation of Theorem 4.6.73 is that there is
a surjective linear isometry φ : D(K)→ (Ea(K))′ determined by the condition that
g(w) = φ(g)(exp(wu)) for all w ∈C and g ∈ D(K), the determination being assured
by Remark 1.1.84. This formulation is close to that in [182].

The authors of [182] also introduce the Banach space D0(K) as the closed
subspace of D(K) consisting of those entire functions g : C→ C such that

lim
z→∞

(ωK(z))
−1|g(z)|= 0,

and prove that, in the duality (Ea(K),D(K)) given by Theorem 4.6.73, Ea(K)

becomes the dual space of D0(K). More explicitly, we have the following.

Theorem 4.6.74 For each T ∈ Ea(K), the mapping ψ(T ) : g → T (g)(0) from
D0(K) to C is linear and continuous, and the mapping ψ : T → ψ(T ) from Ea(K) to
(D0(K))′ is a surjective linear isometry.

Results from Proposition 4.6.32 to Proposition 4.6.56, as well as Proposition
4.6.70, become a non-associative reading of Rodrı́guez’ paper [513]. Actually,
these results can be considered as new even in their associative particularization.
The reason is that, although the paper [513] was carefully written in Spanish, its
published version is not easily available, and in addition the editors of the publication
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did not send the author the proofs for correction. As a result, the published version
of [513] is almost unreadable, even for native Spanish speakers.

In view of Proposition 4.6.32, many questions involving the numerical range (say
K) of an element of a norm-unital complete normed power-associative complex
algebra can be answered by looking only at the algebra Ea(K). The crucial advantage
is that Ea(K) can be regarded as an algebra of complex-valued functions on K. As a
sample of the application of this procedure, let us prove a non-associative version of
the main result in [427]. For 0 � α � π

2 , we denote by Kα the closed angular region
in C with vertex at zero, angle 2α , and bisected by the non-negative part of the real
axis, i.e.

Kα := {0}∪{z ∈ C\{0} : |arg(z)| � α}.

Theorem 4.6.75 Let A be a norm-unital complete normed power-associative com-
plex algebra, and let a be in A such that V (A,1,a)⊆ Kα for some 0 � α < π

2 . Then
there exists an A-valued holomorphic semigroup z → az, with parameter in the right
open half-plane of C, satisfying a1 = a. As a consequence, a has a square root in A.

Proof Set K :=V (A,1,a). Since continuous algebra homomorphisms preserve both
holomorphy and the product, we invoke Theorem 4.6.21(i) and Proposition 4.6.32 to
realize that it is enough to prove the theorem in the particular case where A = Ea(K)

and a = u (the generator of Ea(K)). Then, since V (Ea(K),1,u) = K ⊆ Kα , we have

minℜ(V (Ea(K),1,zu)) = minℜ(zK) � 0 for z ∈ Kπ
2 −α ,

and hence ‖exp(−zu)‖� 1 for such a z (by Corollary 2.1.9(i)). Let t > 0, consider the
closed disc in C with centre at t and radius t cosα , which is contained in Kπ

2 −α where
the boundedness given above is valid, and let n be in N. It follows from the Cauchy
inequalities for the entire function z → exp(−zu) that ‖un exp(−tu)‖ � n!

tn(cosα)n .
Now, let z be in C with 0 <ℜ(z)< n. Since

‖tn−z−1un exp(−tu)‖ � min

{
tn−ℜ(z)−1‖un‖ , t−(ℜ(z)+1) n!

(cosα)n

}
,

the integral
∫ +∞

0 tn−z−1un exp(−tu)dt is absolutely convergent, and the convergence
is uniform on compact subsets of Ωn := {z ∈ C : 0 < ℜ(z) < n}. Therefore the
mapping

z → 1
Γ(n− z)

∫ +∞

0
tn−z−1un exp(−tu)dt

from Ωn to Ea(K) is holomorphic (here Γ stands for Euler’s gamma function).
Finally, since for λ ∈ K and z ∈Ωn we have∫ +∞

0
tn−z−1λ n exp(−tλ )dt = λ z

∫ +∞

0
(λ t)n−z−1 exp(−tλ )λ dt = λ zΓ(n− z),

and n is arbitrary in N, it is enough to invoke Fact 4.6.31 to conclude that, for each
z ∈C with ℜ(z)> 0, the function uz : λ → λ z from K to C lies in Ea(K), and that the
mapping z → uz becomes an Ea(K)-valued holomorphic semigroup, with parameter
in the right open half-plane of C, satisfying u1 = u.
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Let A be a power-associative algebra, let a be in A, let X be a power-associative
A-bimodule, and let π2 stand for the natural projection from the split null X-extension
A×X of A to X . Then it is easily realized by induction that, for n ∈ N, the linear
mapping x → π2[(a,x)n] from X to X considered in Lemma 4.6.44(ii) is precisely the
operator ∑n−1

k=0(R
X
a )

kLX
an−k−1 .

Let K be a closed and convex subset of C with more than one point. It is proved
in [513] that, for each λ ∈ K, the ‘integral’ operator Iλ : Ea(K)→ Ea(K), given by
Proposition 4.6.54, satisfies

‖I n
λ ‖=

‖(u−λ1)n‖
n!

for every n ∈ N, and hence r(Iλ ) = 0. Therefore, given g ∈ Ea(K), λ ∈ K, and 0 	=
z ∈ C, there exists a unique f ∈ Ea1(K) such that f − z f ′ = g and f (λ ) = 0 (indeed,
take f = Iλ (Iλ − zIEa(K))

−1(g)). For n ∈N let Ean(K) stand for the domain of the

nth iteration of the canonical derivation of Ea(K), and for f ∈ Ean(K) let f (n) denote
the image of f under that nth iteration. Proposition 4.6.54 is applied in [513] to show
that Ean(K) becomes a complete normed algebra under the norm

‖ f‖n :=
n

∑
k=0

‖ f (k)‖
k!

.

Now assume additionally that K has empty interior. Then the arguments in the proof
of Theorem 4.6.60, subjected to an easy induction, show that

C(K)⊇ Ea(K)⊇C1(K)⊇ Ea1(K)⊇C2(K)⊇ ·· ·

· · · ⊇ Ean(K)⊇Cn+1(K)⊇ Ean+1(K)⊇ ·· · ,
and hence that

C∞(K) = Ea∞(K) :=
⋂

n∈N
Ean(K).

Proposition 4.6.58 could be new. The particular case, when the element a ∈
dom(D) \C1 is assumed to be self-adjoint, can be found in Bratteli’s book [698,
Example 1.6.1]. In relation to this last result, it is worth mentioning a celebrated
counterexample of McIntosh [439] exhibiting a (necessarily non-commutative)
unital C∗-algebra A, a closed densely defined derivation D of A, a self-adjoint element
a ∈ dom(D) \R1, and a complex-valued C1-function on co(sp(A,a)), such that
f (a) /∈ dom(D). This gives special relevance to Corollaries 4.6.64 and 4.6.69, which
are due to Sakai [807, Theorem 3.3.7] and Bratteli–Robinson [123], respectively.
The Bratteli–Robinson result is included with proof in both [698, Theorem 1.6.2]
and [807, Proposition 3.3.6]. The proof of Fact 4.6.59 becomes a simplification of
Sakai’s argument in [807] to derive Corollary 4.6.64 from Corollary 4.6.69. For
additional information about closed derivations of C∗-algebras, the reader is referred
to [698, 807] and references therein. We note that, in view of Corollary 4.6.57,
McIntosh’s counter-example implies that the inclusion Ea1(K) ⊆ C1(K) in The-
orem 4.6.60 is strict. The inclusion C1(K) ⊆ Ea(K) in Theorem 4.6.60 is due to
Baillet [52]. Actually, Baillet proves the following much more general result.
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Theorem 4.6.76 Let A be a norm-unital complete normed associative complex
algebra, let a be in H(A,1), let Ω be an open subset of R containing sp(A,a), and
let ι stand for the inclusion mapping Ω ↪→ R. Then there exists a unique continuous
unit-preserving algebra homomorphism f → f (a) from C1(Ω) to A taking ι to a, and
such that f (a) = 0 for every function f ∈ C1(Ω) vanishing in some neighbourhood
of sp(A,a) contained in Ω.

In the above theorem, C1(Ω) is endowed with the topology of uniform conver-
gence of functions and their derivatives on compact subsets of Ω. Now, if K is a
closed interval of R not reduced to a point, and if we take A=Ea(K) and a=u (the
generator of Ea(K)), then we have a ∈ H(A,1) and sp(A,a)=K (cf. Theorem 4.6.21),
so that, keeping in mind Fact 4.6.31, the inclusion C1(K)⊆Ea(K) in Theorem 4.6.60
follows straightforwardly from Baillet’s Theorem 4.6.76.

Results from Corollary 4.6.57 to Proposition 4.6.68 not previously quoted in this
subsection are new.
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[66] J. Becerra, G. López, A. M. Peralta, and A. Rodrı́guez, Relatively weakly open sets
in closed balls of Banach spaces, and real JB∗-triples of finite rank. Math. Ann. 330
(2004), 45–58. 533, 534
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tives complexes régulières ou semi-simples à spectre fini. J. Algebra 113 (1988), 201–6.
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J. Math. Pures Appl. 19 (1940), 319–37. 634

[128] M. Brelot, Sur les ensembles effilés. Bull. Sci. Math. 68 (1944), 12–36. 634
[129] M. Bremner and I. Hentzel, Identities for algebras obtained from the Cayley–Dickson

process. Comm. Algebra 29 (2001), 3523–34. 199
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[131] M. Brešar, P. Šemrl, and S. Špenko, On locally complex algebras and low-dimensional
Cayley–Dickson algebras. J. Algebra 327 (2011), 107–25. 199, 200

[132] A. Browder, States, numerical ranges, etc. In Proceedings of the Brown informal
analysis seminar. Summer, 1969 (revised version, Summer of 2012). 666

[133] A. Browder, On Bernstein’s inequality and the norm of Hermitian operators. Amer.
Math. Monthly 78 (1971), 871–3. 156, 157, 666

[134] R. Brown, On generalized Cayley–Dickson algebras. Pacific J. Math. 20 (1967),
415–22. 199

[135] L. J. Bunce, F. J. Fernández-Polo, J. Martı́nez, and A. M. Peralta, A Saitô–Tomita–
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[489] J. Pérez, L. Rico, A. Rodrı́guez, and A. R. Villena, Prime Jordan–Banach algebras with
nonzero socle. Comm. Algebra 20 (1992), 17–53. xxi

[490] S. Perlis, A characterization of the radical of an algebra. Bull. Amer. Math. Soc. 48
(1942), 128–32. 445

[491] R. R. Phelps, Extreme points in function algebras. Duke Math. J. 32 (1965), 267–77.
157

[492] S. Popa, On the Russo–Dye theorem. Michigan Math. J. 28 (1981), 311–15. 157
[493] V. Pták, On the spectral radius in Banach algebras with involution. Bull. London Math.

Soc. 2 (1970), 327–34. xx, 605, 635
[494] V. Pták, Banach algebras with involution. Manuscripta Math. 6 (1972), 245–90. 157,

632, 635
[495] P. S. Putter and B. Yood, Banach Jordan ∗-algebras. Proc. London Math. Soc. 41 (1980),

21–44. 493, 633, 634
[496] I. Raeburn and A. M. Sinclair, The C∗-algebra generated by two projections. Math.

Scand. 65 (1989), 278–90. 562
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Villars Éditeur, Paris, 1969. xix, 130, 359, 390, 417
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[734] S. González and H. Ch. Myung (eds.), Nonassociative algebraic models. Proceedings
of the workshop held at the Universidad de Zaragoza, Zaragoza, April 1989. Nova
Science Publishers, Inc., Commack, NY, 1992. 677, 681, 691

[735] K. R. Goodearl, Notes on real and complex C∗-algebras. Shiva Mathematics Series 5.
Shiva Publishing Ltd., Nantwich, 1982. 498, 533

[736] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires. Mem. Amer.
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[751] J. M. Isidro and L. L. Stachó, Holomorphic automorphism groups in Banach spaces:
an elementary introduction. North-Holland Math. Stud. 105, North-Holland Publishing
Co., Amsterdam, 1985. xviii

[752] N. Jacobson, Lie algebras. Interscience Tracts in Pure and Applied Mathematics 10,
Interscience Publishers, New York–London, 1962. 581

[753] N. Jacobson, Structure of rings. Amer. Math. Soc. Colloq. Publ. 37, Providence, RI,
1964. 276, 445

[754] N. Jacobson, Structure and representations of Jordan algebras. Amer. Math. Soc.
Colloq. Publ. 39, Providence, RI, 1968. xix, 171, 200, 258, 358, 364, 425, 490, 496,
497, 637, 665

[755] N. Jacobson, Structure theory of Jordan algebras. University of Arkansas Lecture
Notes in Mathematics 5, University of Arkansas, Fayetteville, AR, 1981. 277

[756] G. J. O. Jameson, Topology and normed spaces. Chapman and Hall, London; Halsted
Press [John Wiley & Sons], New York, 1974. 294

[757] W. B. Johnson and J. Lindenstrauss (eds.), Handbook of the geometry of Banach spaces.
Vol. 2. North-Holland, Amsterdam, 2003. 677, 687

[758] R. V. Kadison and J. R. Ringrose, Fundamentals of the theory of operator algebras.
Vol. I. Elementary theory. Grad. Stud. Math. 15, American Mathematical Society,
Providence, RI, 1997. 159

[759] A. Kaidi, Bases para una teorı́a de las álgebras no asociativas normadas. PhD thesis,
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en la Academia de Ciencias Matemáticas, Fı́sico-Quı́micas y Naturales de Granada,
Granada, 1993. 245, 246

[800] S. Rolewicz, Metric linear spaces. Math. Appl. 20, D. Reidel Publishing Co.,
Dordrecht; PWN-Polish Scientific Publishers, Warsaw, 1985. 217, 218, 270, 279, 339

[801] H. E. Rose, Linear algebra. A pure mathematical approach. Birkhäuser Verlag, Basel,
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Symbol index

1 (the unit of a unital algebra), 2
1 (the unit of the unital extension), 33
‖ · ‖π (projective tensor norm), 31
| · |n (natural C∗-norm on Mn(C)), 166
‖ · ‖n (n ∈ N), 167–175
{· · ·}, 127, 130, 324, 463
[a,b] = ab−ba, 126
[a,b,c] = (ab)c−a(bc), 151
�π (natural product on the range of the projection

π), 154
⊕�1

λ∈ΛXλ (�1-sum of the family {Xλ }), 109

⊕�∞
i∈IXi (�∞-sum of the family {Xi}), 271

[i j] (for i, j = 1,2), 538

a•b = 1
2 (ab+ba), 122

a−1 (the [J-]inverse of a), 5, 188, 453, 473
a[n] (plenary powers of a), 566
a! (the quasi-[J-]inverse of a), 431, 585
Ann(A) (annihilator of A), 4
Aut(A) = Aut(A,A), 384
Aut(A,B) (isomorphisms from A onto B), 384
Aut+(A) = {F ∈ Aut(A) : F• = F,sp(F)⊆ R+

0 },
384

Aut∗(A,B) (∗-isomorphisms from A onto B), 387
A(a) (subalgebra of A generated by a), 262
A(S) (subalgebra of A generated by S), 9
Ā(S) (closed subalgebra of A generated by S), 9
A1 (= A or A1 depending on whether or not A is

unital), 407
A1 (unital extension of A), 33
AC (complexification of A), 32
AR (real algebra underlying A), 97
Ak(e) k = 1, 1

2 ,0 (Peirce subspaces of A relative
to the idempotent e), 178

AΩ = {x ∈ A : [J−]sp(A,x)⊆Ω}, 65, 486
AU (ultrapower of A), 272
A(0) (opposite algebra of A), 13
A(u) (u-isotope of A), 519
A+ (positive part of A), 47, 613
Aant (antisymmetrized algebra of A), 560
AK = {x ∈ A : V (A,1,x)⊆ K}, 649
Asym (symmetrized algebra of A), 122
(Ai)U (ultraproduct of the family {Ai}), 271

A (E) (flexible quadratic algebra of the
pre-H-algebra E), 204

A (K) (associative algebra of the compact set
K ⊆ [1,∞[), 537

A (U,ϑ ,K), 257
Ap(U,ϑ ,K) (1 � p < ∞), 257
A (V,×,(·, ·)) (quadratic algebra of (V,×,(·, ·))),

182
∗A (for A= C, H, or O), 278
A∗ (for A= C, H, or O), 278
A
∗

(for A=H, or O), 220
An n ∈ N∪{0} (Cayley–Dickson algebras), 199
A-Rad(A) (A-radical of A), 580

BL(X ,Y ) (bounded linear operators from X to Y ),
3

BL(X) = BL(X ,X), 3
B(I,X) (bounded functions from I to X), 117, 307
B(x,y) (Bergmann operator of (x,y)), 509
BC = {xy : (x,y) ∈ B×C}, 2
βu,K(r) =

inf{1−‖u+ rx‖ : x ∈ KBX , τ(u,x) � −1},
299

B(A) (Baer radical of A), 601
B(K) (Jordan algebra of the compact set

K ⊆ [1,∞[), 553
BX (closed unit ball of X), 2

co(S) (convex hull of S), 28
|co|(S) (absolutely convex hull of S), 99
co(S) (closed convex hull of S), 99
|co|(S) (closed absolutely convex hull of S), 99
c0 (null sequences in K), 3
CA (extended centroid of A), 195
Cb(E,A) (bounded continuous functions from E

to A), 3
CC

b (E) =Cb(E,C), 150
Cp([1,2],S3) = {α ∈C([1,2],S3) : α(1) ∈ Rp},

560
Cp(K,C3) = {α ∈C(K,C3) : α(1) ∈ Cp}, 555
Cp(K,M2(C)) =

{α ∈C(K,M2(C)) : α(1) ∈ Cp}, 545
CK(E) =CK

0 (E) when E is compact, 3
CK

0 (E) (K-valued continuous functions on E
vanishing at infinity), 3
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CT
0 (E) = {x ∈CC

0 (E) :
x(zt) = zx(t) ∀(z, t) ∈ T×E}, 498

C(C) (complex octonions), 205
C(R) (Cayley–Dickson doubling of M2(R)), 218
C(E,A) (continuous functions from E to A), 3
C0(E,X) (X-valued continuous functions on E

vanishing at infinity), 330
C D(A) (Cayley–Dickson doubling of A), 176
CN (X,K) (free complete normed non-associative

K-algebra on X), 261
C3 (three-dimensional spin factor), 553

C
∗

(McClay algebra), 216

deg(A) (degree of A), 212
dens(E) (density character of E), 257
dom(·) (domain of a partially defined operator),

194, 640
Der∗(A), 384
Dis(X ,u) (dissipative elements of X relative to u),

291
D(X ,u) (states of X relative to u), 94
DY (X ,u) = D(X ,u)∩Y , 99
Dw∗

(X ,x) = D(X ,x)∩X∗, 285
D(K) (Banach space of K), 645
d f̂ (a) : X → X (formal differential of f at a), 652
δX (u, ·) : R+ → R (modulus of midpoint local

convexity of X at u), 111
ΔA (characters on A), 21
Δ= ΔA, 21

exp(a) (exponential of a), 10, 342
(exp−1)(a) = ∑∞

n=1
an

n! , 609
ext(S) (extreme points of S), 107
Ea(K) (extremal algebra of K), 647
Ea1(K) (derivable elements of Ea(K)), 651
Ean(K) n ∈ N (n-times derivable elements of

Ea(K)), 669
Ea∞(K) = ∩n∈NEan(K), 669
η : [1,∞[→ M2(C), 537
ηK = η|K , 537
ηi j : [1,∞[→ M2(C), 537
ηK

i j = (ηi j)|K , 537

f (a), 46, 57–59, 479, 484, 648
f̃ : AΩ → A, 66, 486
f ∗(x) = f (x∗) for (x, f ) ∈ X ×X ′, 146
f [i j] (for f ∈CC(K) and i, j = 1,2), 538
f ′ (for f ∈ Ea1(K)), 651
F ′ : Y ′ → X ′ (transpose of the operator

F : X → Y ), 29
F ⊗G (operator tensor product of F and G), 30
F∗ : K → H (adjoint of the operator F : H → K),

38
FK(E) (K-valued functions on E), 2
Fi( f )(x1, . . . ,xn) (0 � i � n), 370
F(X ,Y ) (finite-rank operators from X to Y ), 73
F(X) = F(X ,X), 75
F (X,K) (free non-associative K-algebra on X),

258
Fp(X,K) (1 � p < ∞), 258

F : A (K)→C(K,M2(C)), 538

G : A →CC(Δ) (Gelfand representation for
complete normed unital associative and
commutative complex algebras), 22

G : J →CT
0 (Λ) (Gelfand representation for

complex Banach Jordan ∗-triples), 500
Γ (a contour in C), 58
ΓA (centroid of A), 4
Γ�(A) (left centralizers on A), 254
G (X) (surjective linear isometries on X), 332
G : B(K)→C(K,C3), 553

H(X ,∗) (∗-invariant elements of (X ,∗)), 39
H1⊗̂H2 (Hilbert tensor product of H1 and H2), 417
H3(O) (Albert exceptional Jordan algebra), 337
H (Ω) (C-valued holomorphic functions on Ω),

59
H (algebra of Hamilton quaternions), 176

id(x0) = {e ∈ A : ex0 = x0}, 437
IndΓ(z0) (index of z0 with respect to Γ), 58
Inv(A) (invertible elements of A), 5
IX (identity mapping on X), 2
(I : A) = {x ∈ A : xA+Ax ⊆ I}, 602
ℑ(z) (imaginary part of z), 132

J-Inv(A) (J-invertible elements of A), 453, 475
J-Rad(A) (Jacobson radical of A), 569
J-sp(A,a) (J-spectrum of a relative to A), 456, 476
J(e) (e-homotope algebra of J), 465
Jk(e) k = 1, 1

2 ,0 (Peirce subspaces of J relative to
the tripotent e), 505

ker(x0) = {a ∈ A : ax0 = 0}, 437
k(F) = max{k � 0 : k‖x‖ � ‖F(x)‖ ∀x ∈ X}, 250
K(X ,u) = ∩ f∈D(X ,u) ker( f ), 351
K(X ,Y ) (compact operators from X to Y ), 70
K(X) = K(X ,X), 75
K= R or C, 1
K[x] (polynomials over K in the indeterminate x),

9
K(x) (fractions over K in the indeterminate x), 57

lin(S) (linear hull of S), 351
L(X ,Y ) (linear mappings from X to Y ), 1
L(X) = L(X ,X), 1
La (left multiplication by a), 13
LS := {Lx : x ∈ S}, 433
LX

a (left multiplication by a on the bimodule X),
637

LB
x = (Lx)|B, 348

L(x,y)(z) = {xyz}, 465
L(J,J) = {L(x,y) : x,y ∈ J}, 468
ΛJ (nonzero triple homomorphisms from J to C),

499
Λ= ΛJ , 499

m′ : Z′ ×X → Y ′, 124
m′′ : Y ′′ ×Z′ → X ′, 124
m′′′ : X ′′ ×Y ′′ → Z′′, 124
mt = m′′′, 124
mr(y,x) = m(x,y), 126
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m∗(x,y) = (m(x∗,y∗))∗, 146
M(A) (algebra of multipliers of A), 126, 325
Mn(X) (n×n matrices with entries in the vector

space X), 166
Mn(A) (n×n matrices with entries in the algebra

A), 167
M∞(K) (infinite matrices over K with a finite

number of nonzero entries), 267
Ma,b(x) = axb, 601
M (X) (free monad generated by X), 258
M (B)A, 357
M �(A) (multiplication ideal of A), 443

n(a) (algebraic norm of a), 181
n(X ,u) (numerical index of (X ,u)), 98
nY (X ,u), 99
nw∗

(X ,u) = nX∗ (X ,u), 295
nR(X ,u) (real numerical index of (X ,u)), 353
N(X) (spatial numerical index of X), 105
N (X,K) (free normed non-associative K-algebra

on X), 258

ωK(z) = max{|ewz| : w ∈ K}, 645
O (algebra of Cayley numbers), 176

p(a) = ∑n
k=0 αkak for p(x) = ∑n

k=0αkxk ∈K[x], 9
p(a1, . . . ,an) (valuation of p at (a1, . . . ,an)), 262
P(X) (continuous products on X), 405
pA (product of A), 408
Pk(e) k = 1, 1

2 ,0 (Peirce projections relative to e),
178, 505

ϕ(X ,u,r) = sup
{

‖u+rx‖−1
r − τ(u,x) : x ∈ BX

}
,

299
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