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Preface

Advances in technology over the last 25 years have created a situation in which
workers in diverse areas of computer science and engineering have found it neces-
sary to increase their knowledge of related fields in order to make further progress.
Clifford (geometric) algebra offers a unified algebraic framework for the direct
expression of the geometric ideas underlying the great mathematical theories of
linear and multilinear algebra, projective and affine geometries, and differential
geometry. Indeed, for many people working in this area, geometric algebra is the
natural extension of the real number system to include the concept of direction.
The familiar complex numbers of the plane and the quaternions of four dimen-
sions are examples of lower-dimensional geometric algebras.

During “The 6th International Conference on Clifford Algebras and their Ap-
plications in Mathematical Physics” held May 20-25, 2002, at Tennessee Tech-
nological University in Cookeville, Tennessee, a Lecture Series on Clifford Ge-
ometric Algebras was presented. Its goal was to to provide beginning graduate
students in mathematics and physics and other newcomers to the field with no
prior knowledge of Clifford algebras with a bird’s eye view of Clifford geometric
algebras and their applications. The lectures were given by some of the field’s
most recognized experts. The enthusiastic response of the more than 80 partici-
pants in the Lecture Series, many of whom were graduate students or postdocs,
encouraged us to publish the expanded lectures as chapters in book form. The
book, which contains many up-to-date references to the rapidly evolving litera-
ture, should also serve as a handy reference to professionals who want to keep
abreast with the latest developments and applications in the field.

In Chapter 1, Pertti Lounesto states that “Clifford algebra is by definition the
minimal construction designed to control the geometry in question.” He then gives
a concise but coherent introduction to geometric algebras by thoroughly examin-
ing the Clifford product of two vectors, the definition of a bivector, and how these
concepts are used to represent reflections and rotations in the plane and in higher
dimensional spaces. The geometric significance of quaternions is explained in
three and four dimensions. He carefully shows us how the more advanced con-
cepts of spinors, exterior algebra and contraction, the Grassmann—Caley algebra
and shuffle product, naturally evolve from the more basic concepts. An important
feature is that he shows how the lower dimensional Clifford algebras can be rep-
resented in terms of the familiar algebra of square matrices. His lecture ends with
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several categorical definitions of Clifford algebras of a quadratic form, and their
deformations to Clifford algebras of an arbitrary bilinear form.

In Chapter 2, Ian Porteous shows us that the “control of the geometry” that each
Clifford algebra has follows directly from its close relationship to the correspond-
ing classical group. He begins with a systematic study of Clifford algebras by
showing how they can be constructed from matrix algebras over the real numbers,
complex numbers, or quaternions with the famous periodicity of eight. He cata-
logs all this information into useful tables of their most important features, such
as tables of the spinor groups, groups of motion, conjugation types, the general
linear groups, and the corresponding dimensions of the associated Lie algebras.
He gives a brief history and discussion of Vahlen matrices and conformal trans-
formations, which have recently found diverse applications in pattern recognition
and image processing.

John Ryan, in Chapter 3, introduces the basic concepts of Clifford analysis
which extends the well-known complex analysis of the plane to three and higher
dimensions. A generalized Cauchy-Riemann operator, called the Dirac operator,
makes it possible to introduce the analogues of holomorphic functions. Cauchy’s
theorem and Cauchy’s integral formula all generalize nicely to the higher dimen-
sions of Clifford analysis. He shows that holomorphic functions are preserved
under the action of conformal Méobius transformations. One of the most impor-
tant topics in classical complex analysis is the study of boundary value problems.
These problems generalize nicely to the study of boundary behavior in Hardy
spaces, which is closely related to the study of monogenic functions on the n-ball
and its boundary, the (n — 1)-sphere. By introducing the Fourier transform, and
complex Clifford analysis, monogenic functions defined on the n-ball can be holo-
morphically extended to larger “tube” domains.

The last three chapters are built upon the core material set down in the first
three chapters.

Much of the recent interest in Clifford (geometric) algebras can be traced back
to the work of David Hestenes and coworkers in late 1960’s and early 1970’s,
who viewed Clifford’s geometric algebra as a unified language for mathematics
and physics. In Chapter 4, William Baylis explores some of the extensive appli-
cations that have been made to physics. One of the earliest applications was to
electromagnetism and the efficient formulation of Maxwell’s equation as a single
equation when expressed in the Pauli algebra, which is the geometric algebra of
the physical space, or in the even more powerful Dirac algebra, which is the al-
gebra of Minkowski spacetime. Both of these geometric algebras can be applied
to directly to the study of special relativity because of the ease of representing
not only the rotations of 3-dimensional space, but the more general Lorentz trans-
formations of space and time. The relationships and interplay between these two
important algebras are clearly explained, and a set of fully integrated exercises
provides many opportunities for the reader to get a hands-on knowledge of the
basic ideas. Some of the many important topics explored are charge dynamics
in uniform fields, directed plane waves, polarization and phase shifters, standing
waves, and the potential of a moving charge. The spinorial formulation of classical
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relativistic physics leads naturally to the quantum-mechanical form and provides
insight into spin 2 systems.

Jon Selig, in Chapter 5, applies Clifford algebra to robotics and computer vi-
sion. He begins by arguing that Clifford algebra is particularly well suited to mod-
ern microprocessor architectures because the problems of computer graphics can
be expressed very efficiently in terms of Clifford algebras. Using quaternions to
express rotations, he tackles the problem of satellite navigation. Next he uses bi-
quaternions to write down the kinematic equations of the Stewart platform, which
is used in aircraft simulators and in novel machine tools. The problem is to deter-
mine the position and orientation of the platform from the lengths of the hydraulic
actuators. Both the quaternions and biquaternions are examples of different Clif-
ford algebras. By turning to yet another Clifford algebra, he uses homogeneous
elements to represent points, lines and planes in three dimensions. The operations
in this Clifford algebra are used to represent incidents relationships, which he
then uses to solve the correspondence problem in computer vision, and the inverse
kinematic problem of the joint angles of a robot that will place the end-effector in
a prescribed position.

Chapter 6, by Tom Branson, explains some of the deepest applications of Clif-
ford algebras that have been made in differential geometry. If Clifford (geometric)
algebras are as fundamental to mathematics as has been claimed, one would ex-
pect that using these algebras should make possible new insights into all areas of
mathematics which have their roots in geometry. Branson introduces the reader
to all kinds of new geometrical objects constructed in Clifford algebra. Starting
with the concept of the Dirac operator, introduced in Chapter 3, and the struc-
ture group of orthogonal transformations on Riemannian geometry, introduced in
Chapter 2, he goes on to discuss spin geometry and the even more sophisticated
objects which arise, such as Stein—Weiss gradients, the Bochner—Weitzenbock for-
mulas, and the Hijazi inequality. This chapter assumes, on the part of the reader, an
understanding of differential geometry, a good mastery of the material contained
in the first three chapters and is not for the timid of heart. Professor Branson has
remarked, “Spin geometry is a fairly deep subject, and is not a subject where you
can completely master one line before going on to the next line. At some point
the reader has to believe in these objects and let the understanding build.”

A particularly valuable feature of this book is the inclusion of an Appendix
where the editors have tried, for the first time, to give an up-to-date summary of
the existing Clifford (geometric) algebra software that is accessible on the web.
We believe that being able to perform quick and reliable computations with these
algebras leads to a greater understanding of the theory and applications. The soft-
ware provides tools for generating examples, checking conjectures, finding coun-
terexamples, and advancing understanding via experimentation.

The reader should note that in Chapter 1 (Lounesto), C?,, , denotes the Clifford
algebra of the quadratic space RP? endowed with a quadratic form

Q(x)=$%+x%+...+x§-x§+l_..._x?l

where n = p + g. Furthermore, C¢,, is a shorthand for CZ,, o.



XVi Preface

In Chapter 2 (Porteous), C¥,, 4 denotes the Clifford algebra of the quadratic
space RP'9 endowed with a quadratic form

QU0 = —af ~ o}~ —al ol o a?

where n = p + q. Furthermore, Porteous introduces C¥,, 4 -, the Clifford algebra
generated multiplicatively and additively by p basis 1-vectors e;,1 = 1,...,p,
that square to —1 in Cl,, 4 r; g basis 1-vectors e;,7 = p+1,...,p+q, that square
to +1; and r basis 1-vectorse;, i = p+ g+ 1,...,p + g + r, that square to 0.
Likewise, the quadratic space R%" is denoted here by R™ while the associated
Clifford algebra being denoted by C¢q ,, and not by C¢,, as in Chapter 1.

In Chapter 3 (Ryan), C¥,, is used to denote the Clifford algebra of the negative-
definite quadratic form Q(x) = —x? — - - - — z2. For reference, this is referred to
as Clo » in Lounesto’s Chapter 1.

The meaning of C¥,, ; in Chapter 4 (Baylis), is the same as that of C/,, ; from
Chapter 1. In Chapter 5 (Selig), a slightly different notation is used. Namely,
C{(p, q,r) denotes the Clifford algebra generated by p basis 1-vectors e;,i =
1,...,p, that square to +1; g basis 1-vectors e;,2 = p+1,...,p+ g, that square
to —1; and r basis 1-vectorse;,i =p+q+1,...,p+ g+ 7, that square to 0. In
Chapter 6 (Branson), the meaning of C/,, , is the same as in Chapter 1.
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1

Introduction to Clifford Algebras

Pertti Lounesto

ABSTRACT Clifford algebras of lower-dimensional Euclidean spaces and Min-
kowski spacetime are discussed and identified with their matrix images. The geo-
metric significance of quaternions and bivectors is explored in 3D and 4D. Pauli’s
introduction of spin is reviewed in terms of Clifford algebras. The exterior algebra
and contractions are introduced and related to the Clifford algebra. The exterior and
shuffle products of the Grassmann—Cayley algebra are applied to the join and meet;
it is shown that the shuffle product is like an exterior product stepping downwards
from the volume element. Spin groups and conformal groups are discussed in lower
dimensions. Then Clifford algebras are defined over arbitrary fields for arbitrary
quadratic forms as well as for nonsymmetric bilinear forms.

1.1 Introduction

Clifford algebras are algebras of geometries, the geometry being determined by
a quadratic form on a linear space. Clifford algebra is by definition the minimal
construction designed to control the geometry in question.

In geometry, information about oriented subspaces can be encoded in blades,
which can be added and multiplied. Everybody is familiar with this tool in the
special case of 1-dimensional subspaces, commonly manipulated by vectors and
not by projection operators, which lose information about orientations.

In physics, the concept of Clifford algebra as such or in the disguise of matrices
is a necessity in the description of electron spin, because spinor spaces cannot be
constructed by tensorial methods in terms of exterior powers of the defining vector
space.

Thus, Clifford algebra is the natural algebraic tool for controlling subspaces and
rotations/spins. Today, Clifford algebras are used in such disciplines as molecular
chemistry and electromagnetism, and in engineering applications, such as robotics
and computer vision.

This lecture was presented at the “Lecture Series on Clifford Algebras and their Applications”, May 18
and 19, 2002, as part of the 6th International Conference on Clifford Algebras and their Applications
in Mathematical Physics, Cookeville, TN, May 20-25, 2002.

AMS Subject Classification: 15A66, 17B37, 20C30, 81R25.

Keywords: Clifford algebras, bilinear form, quadratic form.
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1.2 Clifford algebra of the Euclidean plane

1.2.1 The Clifford product of two vectors

Consider the plane R x R = {(z,vy) | z,y € R}. Introduce a linear structure
by addition (z1,y1) + (z2,¥2) = (21 + Z2,¥1 + y2) and by scaling A(z,y) =
(Az, Ay), where A € R. The linear structure makes the plane R x R into a linear
space R?. Take a basis (e, ez) of R?, say e; = (1,0), e = (0, 1). Introduce the
length of r = ze; + yey as {r| = y/22 + y2. The introduction of length makes
R? into a Euclidean plane, also denoted by R2. The basis vectors e, e, are unit
vectors, le1| =1, ea| = 1.

Related to length there is the scalar valued product a - b = aj1b; + agby of
two vectors a = aje; + ages, b = bie; + boey € RZ. The scalar product is
symmetric, a - b = b - a. Two vectors a, b are orthogonal, a L b, if their scalar
product vanishes, a - b = 0. The unit vectors ey, e are orthogonal, e; Les.

Next, we introduce an associative, but noncommutative (nonsymmetric) prod-
uct for vectors in R2. If the vector r is multiplied by itself or squared, rr = r?, we
require that the square of the vector equals the square of the length of the vector,

r? =|r|%
In coordinate form, we introduce a product for vectors such that
(re; + yeg)?‘ =z + 92
Using the distributive law, without assuming commutativity, gives
z%e? + yzeg +zy(eres + eze1) = z? + 92,

This is satisfied if the orthogonal unit vectors e;, e, obey the multiplication rules

which corresponds to lel] = |es] =1
eje; = —eqe; e; L ey

Using associativity and anticommutativity we can calculate the square as (ere2)?

= —e?e? = —1. Since the square of the product e; ey is negative, it follows that
e e is neither a scalar nor a vector. The product e; e, is a new kind of quantity
called a bivector, and represents the oriented plane area of the square with sides

e; and e,. Write for short e;o = ejes.

ke

e - e e e
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Define for two vectors a = aje; + azes, b = bye; + bsey the Clifford product

ab = a1b; + azby + (a1bs — azby)e;s, a sum of a scalar and a bivector.!

1.2.2  The Clifford algebra Cl, of R*

Let (e}, e2) be an orthonormal basis of the Euclidean plane R2. The four elements

1 scalar
€1, €3 vectors
€19 bivector

form a basis (1,e1, ez, e12) for the Clifford algebra C/; of R?, that is, an arbi-
trary element

U = ug + uier + ugses + ugey in  Cly

is a linear combination of a scalar ug, a vector ¥ = u;e; + uges and a bivector

-~

U = ujizei2.

Example 1 Compute e1e12 = e1€e1e3 = eg, €19€] = €1e9€] = —efeQ = —ey,
€€19 = ex€e ey = —ele% = —ej and e19ey = ele% = e1. Note in particular

that e anticommutes with both e and e3.

The Clifford algebra C?; is a 4-dimensional real linear space with basis ele-
ments 1, e;, ey, €12 which have the multiplication table

€1 € €12
el 1 €13 €3
e | —en2 1 —e
€19 —€9 €] -1

1.2.3  The exterior product of two vectors

Extracting the scalar and bivector parts of the Clifford product we have as prod-
ucts of two vectors a = a1e; + ageq and b = bie; + byeq:

a-b=aib + asby, the scalar product “a dot b”,
aAb={(ajby — agbi)e1s, the exterior product “a wedge b”.

The bivector a A b represents the oriented plane segment of the parallelogram
with sides a and b. The area of this parallelogram is |a1by — agb;|, and we will

IThe Clifford product ab is not the same as the scalar producta - b = a1b; + azba.
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take the magnitude of the bivector a A b to be this area |]a A b} = [a1bs — azbq].
Y

| Area = |a1by — agb ]|

L x

The parallelogram can be regarded as a kind of geometrical product of its sides:

a

a

The bivectors a A b and b A a have the same magnitude but opposite directions
of rotation. This can be expressed simply by writing

aANb=-bAa.

Using the multiplication table of the Clifford algebra C?; we notice that the Clif-
ford product

(a1e1 + azez)(breg + baez) = a1by + agby + (a1bz — azbr)ers

of two vectors a = aje; + age; and b = bje; + baes is the sum of a scalar
a-b =a;b, + aghs and a bivector a A b = (a;bg — agh;)e12.2 In an equation,

ab=a-b+aAb. (a)
The commutative rule a - b = b - a, together with the anticommutative rule
aAb = —bA a, implies a relation between ab and ba. Thus,

ba=a-b—aAb. (b)

Adding and subtracting equations (a) and (b), we find
a-b=1(ab+ba) and aAb=i(ab-ba).
2The bivector valued exterior product a A b = (a1bg — agb; Jej2, which represents a plane area,

should not be confused with the vector-valued cross product a X b = (a1bz — a2b;)es3, which
represents a line segment.
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Two vectors a and b are parallel, a || b, when they commute, ab = ba, that
is,anb = 0 oraiby = asby, and orthogonal, alb, when they anticommute,
ab = —ba, thatis, a-b = 0. Thus,

ab=ba <= a|b <= aAb=0 <= ab=a-b,
ab=-ba <«— alb <« a-b=0 <= ab=aAb.

1.2.4  Perpendicular projections and reflections

Let us calculate the component of a in the direction of b when the two vectors
make an angle ¢, 0 < ¢ < 180°. The parallel component a;; is a scalar multiple
of the unit vector b/{b| :

b b
a = |a|cos Lplil = |a||b] cos Lp}bT.

In other words, the parallel component a is the scalar product a-b = [a||b| cos ¢

multiplied by the vector b=! = b/|b|?, called the inverse? of the vector b. Thus,

a”:(a-b)l—b% a a)

=(a-b)b~ L.

b
q)

The last formula tells us that the length of b is irrelevant when projecting into the
direction of b.
The perpendicular component a is given by the difference

a, =a—a;=a—(a-b)b™!
=(ab-a-b)b~! =(aAb)b~ L

Note that the bivector e;o anticommutes with all the vectors in the e;es-plane;
therefore

(anb)b ! =—-b~!(aAb)=b7!(bAra)=—(bAra)b~l.
The area of the parallelogram with sides a, b is
laib| =]aAb]=]al|b|sine

where 0 < ¢ < 180°.

The reflection of r across the line a is obtained by sending r = r +r to
r' =r; —ry, where rj = (r-a)a~!. The mirror image r’ of r with respect to a
is then

3The inverse b—! of a nonzero vector b € R2 C (¥, satisfies b~ b = bb~! = 1 in the
Clifford algebra Cl3. A vector and its inverse are parallel vectors.
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r'=(r-a)a’!-(rAa)a’?

=(r-a—rAa)a’!
=(a-r+aAr)a’!
= ara™!

and further

The formular’ = ara~—! can be obtained directly using only commutation proper-
ties of the Clifford product: decomposer = rjj+r, wherearja™ =rjaa~! =
rj, whilear;a™! = —rjaa~!

The composition of two reflections, first across a and then across b, is given by

=—r;.

r—r =ara”! 5 r’ =br'b~! =b(ara”!)b~! = (ba)r(ba)~!.

P//

The composite of these two reflections is a rotation by twice the angle between a
and b.

1.2.5 Rotations

The product of a vector r = ze; + ye, and a unit complex number e!¥ = cos ¢ +
isin ¢, where for short i = ej5, is another vector in the e;ex-plane:

rcosp +rising = re'?.

The vector ri = zxe; — ye; is perpendicular to r so that a counterclockwise
rotation by 7/2 carries r to ri.

Since the unit bivector i anticommutes with every vector r in the e;ez-plane,
the rotated vector can also be expressed as

rcosp +rising =rcosyp — irsiny = e *“r.

Furthermore, we have cos ¢ + isiny = (cos £ + isin £)? and thus the rotated
vector also has the form s~ !rs where s = €/2 and s~ = e~¥¥/2. The coun-
terclockwise rotation of r by the angle ¢ will then result in rz = 27 !r = s~ Irs
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where 2 = ei¥, 27! = €™ and s2 = z. There are two complex numbers s
and —s which result in the same rotation s~ rs = {—s)~!r(—s). In other words,
there are two complex numbers which produce the same final result but via dif-
ferent actions.

rz
s = ei‘P/2
-5 = e—i(27r—<p)/2 — ei(p/2e—i7r v
eim = —1
r

2T — @

1.2.6 Cly as the matrix algebra R(2)

We can represent the orthogonal unit vectors ey, ez by the matrices

o ~(1 0 o [0 1
1=%0 -1/ "27\1 0

and the bivector €12 = ejep by

0 1
€12 1 0/

These correspondences establish an isomorphism of algebras

Cty ~ R(2) = {(i Z) ]a,b,c,deR}.

It should be emphasized that the Clifford algebra C¥¢3 has more structure than the
matrix algebra R(2). In the Clifford algebra, there is a distinguished subspace of

vectors
2 r y
R _{(y _I)|m,yeR}.

1.3 Quaternions
Quaternions are generalized complex numbers of the form

w1z + jy + kz
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where w, z,y, z are real numbers and the generalized imaginary units* i, j, k
satisfy the following multiplication rules:

i2=j2=k2=—1,

The quaternion product is by definition noncommutative: the order of multipli-
cation matters. It turns out that the quaternion multiplication is associative.
The above multiplication rules can be condensed into the following form:

2= =k*=ijk=-1.

Alternatively, these latter multiplication rules could be taken as a definition of
the quaternion product (in the expression ijk we have omitted parentheses and
thereby tacitly assumed associativity).

Two notations are used to represent a quaternion: the hypercomplex number
notation w + iz + jy + kz and the 4-tuple notation (w, z,y, z) € R*, composed
of a scalar w € R and a vector (z,y,2) € R3. The 4D real linear space R?,
endowed with the quaternion product, is denoted by H, in honor of Hamilton.

1.3.1 Vectors as pure quaternions
A quaternion q is a sum of a scalar w € R and a vector iz + jy + kz € R3,
g=w+iz+jy+kze RoR3

This phrase connotes that scalars w for the linear space H are identified with ele-
ments (w, 0,0,0) in H, and vectors iz +jy +kz with (0, z, ¥, z). Each quaternion
g = w + iz + jy + k= is uniquely expressible in the form ¢ = {q)¢ + {g)1, where
(@)o = w € Rand (g); = iz + jy + kz € R3, (g)¢ being called the scalar part
of ¢ and {(g); the pure parf® of q. If the scalar part vanishes, then the quaternion
is called pure.

A quaternion is a scalar, with vanishing pure part, if and only if it commutes
with every quaternion. In other words, R is the center of the ring H. As a con-
sequence, the ring structure of H induces the real linear structure in H. A ring
automorphism or anti-automorphism of H is a real linear automorphism of H. A
ring automorphism or anti-automorphism of H is a real algebra automorphism or
anti-automorphism of H.

In contrast, the field of complex numbers C has automorphisms which send
nonrational real numbers in R \ Q to nonreal complex numbers in C \ R.

A nonzero quaternion q is pure if and only if its square is a negative scalar,
q* < 0. The direct sum decomposition of Hl to the subspaces of scalars and pure
quaternions Hl = R @ R3 is induced by the ring structure of H.

“Two typefaces are in use: italics i, j, k to emphasize origin in complex numbers and boldface
i, ], k to emphasize association with vectors, that is, iz + jy + kz € RS,

5The pure part of a quaternion has a dual role: as a vector (generator of translations) and as a
bivector (generator of rotations). Hence a nondiscriminating label: pure.
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1.3.2  Quaternion product via the scalar and cross products

The product of two quaternions @ = ag + a and b = by + b, where ag,bg € R
and a,b € R3, can be written as

ab = apby —a-b +agb +aby +a x b.

The product of two vectors a = ia; + jas + kaz and b = ib; + jby + kbz is a
sum of a scalar and a vector,

ab=-a-b+axb,

where we recognize the scalar product a - b = a1by + agbs + a3bs and the cross
product a x b = i(a2b3 — azbs) + j(asb; — a1bs) + k(a1bs — azby).

We may reobtain the scalar/cross product of two vectors a, b € R3 in terms of
the scalar/pure part of their quaternion product:

a-b = —(ab)g, axb={(ab);.

Foralla,b € R®,a-b = —J(ab+ba),axb = 1(ab - ba), and (a x b) La,
(ax b)Lb.

1.3.3 Matrix representation of quaternion multiplication

The product gu = v of two quaternions ¢ = w + iz + jy + kz and v = ug +
iug + jug + kua can be represented by matrix multiplication:

w -z -y —z ug Vg
T w —Z Yy U1 _ U1
y z w -z ug | | vy
z -y z w us3 v3

Swapping the multiplication to the right, that is, ug = v’, gives a partially trans-
formed matrix:

w -z -y -z ug v
T w oz -y ur | v
y —z w ug | | v
z Yy -z w uz v

Let us denote the matrices of H — H, v — qu and H — H, u — ug, respectively,
by Lq and R, that is,

Ly(u)=qu(=v) and R,(u)=ug(="1').
We find that®
LiLij =~] and RiRij =1

SNote that RiT RjT RI =_1J.
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Thesets {L, € R(4) | ¢ € H}and {R, € R(4) | ¢ € H} form two subalgebras
of R(4), both isomorphic to H. For two arbitrary quaternions a, b € H these two
matrix representatives commute, that is, Lo, Rp = RyL,. Any real 4 x 4-matrix
is a linear combination of matrices of the form L, R;. The above observations
together with (dimH)? = dim R(4) can be expressed as

or more informatively, R(4) = H @ H*.

Take a matrix of the form U = L,R; in R(4). Then UTU = |a|?|b]?], but
in general U + UT # al. Take a matrix of the form V = L, + R, in R(4).
Then V 4+ VT = 2(Re(a) + Re(b))I, but in general VTV # BI. Conversely, if
UecR(4)issuchthatU +UT = ol and UTU = GI, then the matrix U belongs
either to H or to H*.

Besides real 4 x 4-matrices, quaternions can also be represented by complex
2 X 2-matrices:

w—}-iz—%—jy—{—kz:(w_lz —zz—y).

—iT+y w+iz

The orthogonal unit vectors i, j, k are represented by Pauli matrices oy, 09,03
dividedby i = v/—1:

(0 =i\ . (0 -1 —i 0
=(57) () (00

1.3.4 Linear spaces over H

Much of the theory of linear spaces over commutative fields extends to H. Be-
cause of the noncommutativity of H it is, however, necessary to distinguish be-
tween two types of linear spaces over H|, namely right linear spaces and left linear
spaces.

A right linear space over H consists of an additive group V and a map

VxH-V, (xA)-—x\

such that the usual distributivity and unity axioms hold and such that, for all
AMp€eHandx eV,
(xA)p = x(Ap).
A left linear space over H consists of an additive group V and a map

HxV -V, (Ax)— Ax

such that the usual distributivity and unity axioms hold and such that, for all
AMpeHandxeV,
A(ux) = (Ap)x.
A mapping L : V — U between two right linear spaces V and U is a right
linear map if it respects addition and, forall x € V, A € H, L(x)\) = (L(x))A.
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Comment 2 In the matrix form the above definition means that

(e G- () () -1( o) ()]

Remark 3 Although there are linear spaces over H, there are no algebras over
H, since noncommutativity of H precludes bilinearity over H: A(zy) = (Az)y #

(xA)y = z(\y) # z(yA) = (zy)A.

1.4 Clifford algebra of the Euclidean space R*

The 3-dimensional Euclidean space R® has a basis consisting of three orthogonal
unit vectors e1, ey, e3. The Clifford algebra Clz of R? is the real associative
algebra generated by the set {e1, ez, e3} satisfying the relations

el=1, ei=1 e€i=1,

eje; = —ege;, ejez= —eze;, e€gez= —ezey.

The Clifford algebra C?3 is 8-dimensional with the following basis:

1 the scalar

e, €3, e3 vectors

ejes, ejes, ezes bivectors

ejezes a volume element.

We abbreviate the unit bivectors as e;; = e;e;, when ¢ # j, and the unit oriented
volume element as ej23 = ejesez. An arbitrary element in C¥3 is a sum of a
scalar, a vector, a bivector and a volume element, and can be written as o + a +
beiss + Beios, where o, 3 € Rand a,b € R3.

1.4.1 Matrix representation of Cl3

The set of 2 x 2-matrices with complex numbers as entries is denoted by C(2).
Mostly we shall regard this set as a real algebra with scalar multiplication taken
over the real numbers in R although the matrix entries are in the complex field C.
The Pauli matrices

0 1 0 —i 1 0
1= 1 0) 2T\ 0) BT 0 -1

satisfy the multiplication rules

0?=03=02=1 and
0103 = 103 = —020],
0301 = i03 = —0103,

0903 = 10] = —0302.
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They also generate the real algebra C(2). The correspondencese; ~ 01, ez ~ 09,
e3 = o3 establish an isomorphism between the real algebras, Cfs ~ C(2), with
the following correspondences of the basis elements:

C(2) Ct3
I 1
01, 02, 03 €1, €, €3
0102, 0103, 0203 €12, €13, €23
010203 €123
Note that e;; = —ej; for ¢ # j. The essential difference between the Clifford

algebra C¢3 and its matrix image C(2) is that in the Clifford algebra Cls we
will, in its definition, distinguish a particular subspace, the vector space R3, in
which the square of a vector equals its length squared, that is, r? = |r|2. No such
distinguished subspace has been singled out in the definition of the matrix algebra
C(2). Instead, we have chosen the traceless Hermitian matrices to represent R3,
and thereby added extra structure to C(2).’

1.4.2  The center of Cls

The element e;93 commutes with all the vectors e, es, e3 and therefore with
every element of Cf3. In other words, elements of the form

T+ 0
z+ye123’—3< 0 v z+iy>

commute with all the elements in C¥¢3. The subalgebra spanned by scalars and

3-vectors
3

R@/\R3={$+y6123|$,y€R}

consists of those elements of C¢3, which commute with every element of C/s, that
is, it is the center Cen (C¥f3) of Cls. Note that 010203 = il. Since e2,; = —1,
the center of C/3 is isomorphic to the complex field C, that is,

3
Cen(Cls) =R& /\R® ~C.

TWe could also have chosen, for the representatives of the anticommuting (and therefore orthogo-
nal) unit vectors in R3, the following matrices:

_1/(3 5 (0 —i _1( 5 -3
M=Ils —3¢) WT\: o) MTE\-3 -5/

thatis, u1 = %(501 +30102), up = 02,uz = %(503 —30203). These matrices are non-Hermitian
and satisfy ujug + upu; = 2651,



Lecture 1: Introduction to Clifford Algebras 13

1.4.3 The even subalgebra Cl3

The elements 1 and e;o = ejez, €13 = ejes, €33 = esez are called even,
because they are products of an even number of vectors. The even elements are
represented by the following matrices:

w+iz r+y )

w + €23 + ye3; + 2€12 = | . .
23 T Ye€3) 12 ir—y w—iz

The even elements form a real subspace

2
R@/\RS = {w + zeqs + yes; + ze12 | w,z,y,2 € R}

~ {wl + zioy + yiog + zio3 | w,z,y,z € R}

which is closed under multiplication. Thus, the subspace R & /\2 R3 is a subal-
gebra, called the even subalgebra of Cl3. We will denote the even subalgebra by
even(C/3) or for short by C£3. The even subalgebra is isomorphic to the division
ring of quaternions H, as can be seen by the following correspondences:

H cr

1 —ea3
J —es]
k —€12

Remark 4 The Clifford algebra Cl3 contains two subalgebras, isomorphic to C
[the center] and H [the even subalgebra], in such a way that

1. ab=bafora€ Candb e H,
2. Clsis generated as a real algebra by C and H,
3. (dimC)(dim H) = dim C¥3.

These three observations can be expressed as

CoH~Cls.

1.4.4 Involutions of Cls

The Clifford algebra Cf3 has three involutions similar to complex conjugation.
Take an arbitrary element

u = (u)o+ (w)1 + (u)2 + (w)3 in Cls,

written as a sum of a scalar (u)g, a vector (u);, a bivector (u)2 and a volume
element (u)3. We introduce the following involutions:

4= (u)o — (u)1 + (u)2 — (u)s, grade involution,
@ = (u)g + (u)1 — (u)g — (u)s, reversion,
udo — (u)1 — (u)2 + (u)s, Clifford conjugation.

|
l
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Clifford conjugation is a composition of the two other involutions: @ = 4~ = 4",
The correspondences o; ~ e, 02 > ey, 03 =~ e fix the following representa-
tions for the involutions:

u:(a b), a, b, e, deC,
c d

L dr = . fa* ¢ _ [ d b
u_ _b* a* 3 u_ b* d* b u_ _c a b

where the asterisk denotes complex conjugation. We recognize that the reverse i
is represented by the Hermitian conjugate u! and the Clifford-conjugate % by the
matrix u ™! det u € R(2) [for an invertible u).

The grade involution is an automorphism, that is,

uv = ud,
while the reversion and the conjugation are anti-automorphisms, that is,
uv =94 and uT = Va.

The grade involution induces the even-odd grading of C¢3 = C¢3 & Cf3.

1.5 The electron spin in a magnetic field

2::

N . . 2 - - .
In classical mechanics kinetic energy %mv £, P = m, and potential energy

W = W(7) sum up to the total energy 8
2
2m

Replace the total energy and momentum by their differential operators,

0
E=iki— and P=—ihV,
ot P
operating on a complex valued wave function, (7,t) € C. The result is a wave
equation, known as the Schrodinger equation,9

Loy R

Y_ g R YR
il = o=V + Wy, Y:RxR-C,

a quantum mechanical description of the electron. The Schrédinger equation ex-
plains all atomic phenomena except those involving magnetism and relativity.

8This holds in a conservative force field F, where fo F . ds = 0 for all loops C.
9Light has both wave and particle properties. This prompted de Broglie to propose that perhaps
particles also have wave properties such as interference and diffraction.
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In 1922 the Stern—Gerlach experiment passed a beam of silver atoms through an
inhomogeneous magnetic field. On the screen there appeared, instead of a smear
of silver, two distinct traces: the beam split in two in the direction of the magnetic
field. In 1925 Uhlenbeck & Goudsmit proposed that the electron has an intrinsic
angular momentum, the spin. The electron spin can take only two orientations
relative to the magnetic field: either parallel or opposite. In the Stern & Gerlach
experiment the electron spin made atoms into magnetic dipoles which interacted
with the magnetic field: atoms went up or down according as the spin was parallel
or opposite to the vertical magnetic field.

1.5.1 Gauge transformations

The probability density of the electron, |1(7,t)[2, ° does not change under a
phase transition, that is, [{(F,t)|? = |¢(7,t)e!*() |2, This suggests that gauge
transformations,

U(F, 1) = p(F e, e e U(1),
should preserve the form of the Schrodinger equation. By the Leibniz rule

: % tay __ (2 6’(/} i iaaa
zﬁa—t(we )-—(zﬁat Je Fye 5

—ihV (e'®) = (—ikVy)et® + Fye'*Va,
and differentiating the latter twice,
(=ihV)2(pe*) = (—ihiV) - [(—iAVY)e™® + hpe*Va]
= -1V — i282(V) - (Va) + B2(Va)? — ik2p(V2a)]e>
=[R2V + i2he(V) - A + e2 A% + ikie(V - A)let®,

where we have abbreviated eA = —/Va. The extra terms containing A can be
given a physical interpretation by recalling the gauge invariance of the electro-
magnetic field.

1.5.2  The electron in an electromagnetic field

Electromagnetic interaction is brought in via potentials V, A of the fields

. 04 .
E=-VV-—— = A
\Y% 5 B =V x A,
provided that one agrees on a physical interpretation of the U (1)-gauge:
Oa -
V=-ho— A=— .
e 50 e EVa

!0The probability of finding an electron in a space region is the integral of {+(¥, £)|2 over that
region. This is the Born interpretation of QM.
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By comparison we see that zf’z (zpe“") and (—A2V?)(1e'®) agree, respectively,
up to a phase, with

g
50
(i at+ev)¢, and

[(—ihV — eA) - (—ihV — eA)]y
= —H2V2y + iheV - (A1) + iehA - (Vi) + e2 A%y
—H2V24 + ihe(V - A + i2ReA - (Vo) + e2 A2y,
where in the last row we-have evaluated V - (A) by regarding ¢ as a scalar

(although complex scalar). In the case of W = 0 and electromagnetic potentials
V, A (or in the case of W = —eV and a magnetic potential A):

) 1 7 )
”‘a_f = 3= [(=iAY — ed) - (~iRY — eA) — eV, 1)

abbreviated as, in terms of the generalized momentum 7 = —iAV — eff,
oy 1

i A 2~ Y A . 3
e = o [F 7Y —eVy), Y:RxR-C.

This equation does not yet involve the spin of the electron.

1.5.3 Interaction of the spin and a magnetic field

Applying the anticommutation relations of the Pauli matrices ¢ and the commu-
tation relations'!

mmwy — womy = theBsy  (permute 1, 2, 3 cyclically)

of the components 7 = pj — eAy of the generalized momentum 7@ = 7 — eA
results in 12 13 B
(G -7)2 = (7-7)] — he(G - B).
2

Pauli replaced 7 - 7 by (& - 7)* in equation (1):

1 _,
?;f %[(7?-7?)] —he(G-B)Y —eVy, P:R*xR— c?
This Pauli equation describes the spin by virtue of the term
he _
+—(7- B).
5 (7 B)

Uy mop = (—i ﬁﬁ —eA)(— ﬁ% —eA)Y = zﬁe(—(Azll)) + A —),
(mime — momi )P = zfie(a—lé;—2 — %4—1)1/) = theB3y.
12The notation & - B = (0 1) B; + (0 ) B; + (1 0 ) B3 is not a scalar product
10 1 0 0 -1
of & and B; it is only a temporary abbreviation, used for historical reasons.
B(r101)(n202) + (m202)(7101) = (7172 — 72w )(0102) = (ikeBs)(ios) = —heBsos.
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1.5.4 Pauli’s extra term as a byproduct in C¥3
In terms of the Clifford algebra C¢3 Pauli replaced

77 = (—ihV — ed) - (—ihV — ed) by 7% = (—ihV —ed)?.

In so doing Pauli actually invoked the Clifford algebra C¥3 of the Euclidean space
R3. Pauli observed that, although e2(A A A) =0 and ~h2(V A V) =0,

-,

(T AT = [(—ihV — eA) A (—ihV — eA))s
= iheV A (Ay) + ified A (V)
= ifie[(V A A + (V) A A+ AN (V)]
= ihe[e123(V x A)|Y = —he(V x A)y = —heBy,

where in the last row we used the identification ej23 = i.  Thus, Pauli came
across the equation

where 1’

where the last term is responsible for the spin. Of course, @2 = T - ¥ + T A 7.
Indeed,

T2h = (—ihV — eA)(—ihV — eA)p
= —12V2y + iheV(AY) + ihe AV + e2 A%
= —H2V2y + ihe(VA)Y + iheVAY + ihe AV + e2 A%
= —12V2y + itie(VA)Y — ihe AV + 2ifie(A - V)i + ihe AV + e2 A%
= —12V2y + ihe(V - Ay + ihe(V A Ay + 2ikie(A - V)i + e2 A%
= [~H2V2 4+ e2A2 + ihe(V- A+ 24 - V)Y + ifieeins(V x A)p,
= [-H2V2 4 €2 A2 + ihe(V - A+ 24 - V)Y — heBy,

A
A

~— e

where this time we evaluated V(/Tw) by regarding v as an element of Cl3. We
see that @2 = (T - & + T A 7).

14Note that there is no metric involved in ifie(V A A), before operation on t, and no orientation
without identification i = ej23.
15The terms mean (77 )¢ = 7 (T4) and (FRAR)Y = T A (7). Compare this to 729 = #(7Y).
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1.6 From column spinors to spinor operators

1.6.1 Square matrix spinors

In the nonrelativistic theory of the spinning electron one considers the complex
linear space of the two-component column matrices, the column spinors

¢=($2> €C? where 1,92 €C.

An isomorphic complex linear space is obtained if one replaces column spinors
by square matrix spinors
_ (¥ 0)
v (1112 0

where only the first column is nonzero. This replacement brings all elements,
vectors and spinors, inside a single algebra, C(2). If we multiply a square matrix
spinor ¢ on the left by an arbitrary element u € C(2), then the result is also of
the same type, another square matrix spinor:

uir w2\ (¥ 0) _(w O

ug; uz2 ) \¥2 O w2 0)°
Such matrices, with only the first column being nonzero, form a subspace S of
C(2). The subspace S is a left ideal of C(2), that is,

up €S forall veC(2) and Y€ S.
This left ideal S of C(2) contains no left ideals other than S itself and the zero

ideal {0}. Such a left ideal is called minimal in C(2). The fact that ¢ is in a
minimal left ideal, or that only its first column is nonzero, can be expressed as

peC@)f={Mf|MeC(2)}
where

f=%(1+03)=((1) 8)

The element f is an idempotent, that is, f2 = f.

1.6.2 Ideal spinors

We shall regard the correspondences e; =~ 01, €3 >~ 03, €3 =~ 03 as an identifica-
tion between C¥3 and C(2). This allows us to use the same notations for elements
in C¥3 and its matrix image C(2).
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As a real linear space, S has a basis (fo, f1, f2, f3) where
1 0
f0=f:%(1+e3) = (0 0)’
0 0
fi=enf=73(es+er) = ( 0),

7

f2=e31f=%(e31—e1) = (_01 g),

. O
f3=e12f=%(e12+e123) s (é 0)-

As a complex linear space, S has a basis (g1, g2}, where

10 0 0
gl=f:%(1+e3)f_v<o o), gz=e1f=%(el+el3):<1 0)'

The square matrix spinor in C(2) f

¢=¢1g1+¢292=<$1 g) where 11,9, € C
2

corresponds, in terms of Clifford algebra, to an ideal spinor in Cl3 f

¥ =191 + ¥ag2 where ¢ = Re(yr) + Im(tr)eros.

1.6.3 Complex linear structure on the spinor space

In this section we present a complex structure for ideal spinors in S = C¥sf,
f = £(1 + e3), without any reference to complex numbers in C(2). The subset

IszCfgfz{<S g) cE(C}

of C?3 is a subring with unity f, thatis, af = fa for a € F. None of the elements
of IF is invertible as an element of C/3, but for each nonzero a € F there is a
unique b € F such that ab = f. Thus, F is a division ring with unity f. !¢ As a
2-dimensional real division algebra F must be isomorphic to C. The isomorphism
FF ~ C is seen by the equation f2 = — f; relating the basis elements fo, f3 of the
real algebra IF.

Comment 5 The multiplication of an element ) of the real linear space S on the
left by an arbitrary even element u € Cf;, expressed in coordinate form in the

basis (fO, fla f27 f3)a
uy = (up + u1€3 + uUgesr + ugeas)(Yofo + Y1f1 + Yafo + ¥3f3),

167his follows from the idempotent f being primitive in C¢3. An idempotent is primitive if it is not
the sum of two nonzero idempotents which annihilate each other.
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corresponds to the matrix multiplication

ug —uUy —Uy —ug 1o
up~ | B Yo Uz U 1
Uy  —u3z  Up uy g
uz Uz  —~up U V3

The square matrices corresponding to the left multiplication by even elements
constitute a subring of R(4); this subring is an isomorphic image of the quater-
nion ring H.

The minimal left ideal

S = Clsf ~ {(ﬁ; 8)

has a natural right F-linear structure defined by

Y1, ¥ EC}

SxTF — 8, (1) = PA.

We shall provide the minimal left ideal S with this right F-linear structure, and
call it a spinor space.'”

The map C¢3 — Endfr S, u — 7(u), where 7(u) is defined by the relation
7(u)y = uy, is a real algebra isomorphism. Employing the basis fo, - f2 for
the F-linear space S, the elements 7(e1), 7(e3), 7(e3) will be represented by the
matrices 01, 02, 03. In this way the Pauli matrices are reproduced.

1.6.4 The two scalar products of spinors

There is a natural way to introduce scalar products on the spinor space S =
Cls f ~ C(2)f. First, note that for all 1, ¢ € S the product

Gou (V1 U3) (01 O\ _ (diertuier O
P00 0 /\e 0 0 0
falls in the division ring F (2 — 2* means complex conjugation). To show that

the mapping _
SxS—F, (Y,0) = ve

defines a scalar product we only have to verify that the reversion ¢ — Pis a
right-to-left F-semilinear map. For all ¢y € S, A € F we have ()™ = Ay where
the map A — X is an anti-involution of the division algebra F (actually complex
conjugation).

7Note that multiplying a matrix 1 in S = C(2)f, a left ideal, on the left by A € F does not result
in a left F-linear structure. Also note that in the right F-linear space S = Cl3 f, ¥ = g1¥1 + gava,
where ¥, = Re(¥x) + Im(1) )e12 multiplies from the right the basis elements g1 = %(1 + e3),

92 = L(e1 +ei3).
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Multiplying a spinor 1) € S = Cl3f by an element u € C¥3 is a right F-linear
transformation S — S, 1y — wut. The automorphism group of the scalar prod-
uct is formed by those right F-linear transformations which preserve the scalar
product, that is,

(u)) " (up) = forall P,peS.

The automorphism group of the scalar product 1[)4,0 is seen to be the group {u €
Cls | 4u = 1} which is isomorphic to the group of unitary 2 x 2-matrices,

U@2)={ueC@®)|ulu=1}.

We can also use the Clifford conjugate v — @ of Cl3 to introduce a scalar
product for spinors. In this case, the element

b= (e ) (5 0) = (b L )

PE\ e w2 O Y12 — a1 O

does not appear in the division ring F = fC¥3 f. However, we can find an invert-
ible element a € C¥¢3 so that atyyp € F, e.g.,a = e; or a = e3;. The map

SxS—F, (¥,9) — ap

defines a scalar product. Writing

0 1
7=(5)
we find that atp ~ 7(3) "J7 (). Hence, the automorphism group
{ueCtz|au=1}

of the scalar product a1 is the group of symplectic 2 x 2-matrices,

Sp(2,C) = {ueCQ)|u'Ju=J}.

1.6.5 Operator spinors in the even subalgebra Cl}

Up until now spinors have been objects which have been operated upon. Next
we will replace such passive spinors by more active operators. Instead of ideal
spinors ¥ € Cls f, with matrix images

(%Y1 O
v=( o) ecor,

in minimal left ideals we will consider the following even elements:

¥ = 2even(t) ~ (i; :;?) )
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also computed as ¥ = 3 + z/? € Ct3 for ) € Cl3f. Note that this even spinor
U ¢ Ct7 carries the same amount of information as the original column spinor
¥ € C? or the ideal spinor ¢ € Cl3f : no information was lost in projecting out
the even part.

Classically, the expectation values of the components of the spin vector s =
(s1, 82, s3) have been determined in terms of the column spinor ¢ € C? by com-
puting the following three real numbers:

si=yloy, sa=vylooy, s3=1los.

In terms of the ideal spinor ¢y € Cl3f there is an analogous computation of the
components:

s1 = 2(Pe1)o, sz = 2(Yeahdo, s3 = 2(Pesto.

More conveniently, the spin vector s = sje; + sge2 + szes can be computed,
benefiting the multivector structure of Cls, directly as

8= 2<¢931/;>1: ¥ € Clsf.

It should be emphasized that not only did we get all the components of the spin
vector s at one stroke, but we also got the entity s as a whole.
In terms of the even spinor ¥ € Cég,L we may compute s = sy €] + sp€s + s3es
directly as
S = \I/eg\i/.

More importantly, the spin vector s is obtained without using any projection op-
erators: this form of s is applicable in further computations. Since the even spinor
¥ acts here like an operator, it is also referred to as an operator spinor.

Remark 6 The mapping Ct7 — R3 ¥ — Ues¥ (= Vo3¥t) is the K S-
transformation (introduced by Kustaanheimo & Stiefel 1965) for spinor regular-
ization of Kepler motion, and its restriction to norm-one spinor operators V¥ satis-
fying U = 1 (or equivalently YT = I results in a Hopf fibration S* — S* —
S2 (the matrix Wo3U! is both unitary and involutory and represents a reflection
of the spinor space with axis ).

The above mapping should not be confused with the ‘Cartan map’, see Cartan
1966 p. 41 and Keller & Rodriguez-Romo 1991 p. 1591. A ‘Cartan map’ § x S —
Cls, (Y, p) — 2¢e @, where S = Clsf, sends a pair of ideal spinors to a
complex paravector xo + X where

zo = —(Y19p2 — Y2¢01),
x = e (Y11 — Yap2) + ea(i(191 + Yop2)) + es(— (Y12 + P201))

(complex means coefficients in {z+yei23 | z,y € R}). When ) = ¢, the complex
vector x is null, x? = 0.
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Note also that trace(¥!) = 2(y1h)o = ¥ which equals U = det(¥).
In operator form the Pauli equation

5 = o )W—%EWeg—eVW, ¥:R*xR - Cet

shows explicitly the quantization direction es of the spin. The occurrence of ej is
due to the injection C2 — C(2)f, f = (I + 03); made explicit in the mapping
Claf — Ctf, 2even(By) = BUe; with a fixed B € R3. If we rotate the
system 90° about the y-axis, counterclockwise as seen from the positive y-axis,
then vectors and operator spinors transform to

B'=uBu! and ¥ =ul where u= exp(%elg),

and the Pauli equation transforms to

L ov 1
if ot 2m

(@ 7)) — %B”qﬂes — eV,

If this equation is multiplied on the right by © ™!, then e3 goes to €] = uesu™!,

and the equation looks like

"
he =
agt - QLm(ﬁ:/ . 7?/)\11// _ Q—ZB/\I/Hel _ CV\I/U,

ih

where U7 = u¥u~!. Both the transformation laws give the same values for
observables, that is, U'ez ¥V’ = ¥"e, ",

1.7 In4D: Clifford algebra C¢; of R*

The Clifford algebra CZ4 of R* with an orthonormal basis (e1, ez, €3, e4) is gen-
erated by the relations

e?=el=el=el=1 and eje;=—eje; for i#j.
It is a 16-dimensional algebra with basis consisting of
scalar 1
vectors ej,es,€e3,€q
bivectors ejs, €13, €14, €23, €24, €34
3-vectors e123,€124, €134, €234

volume element ej534

where €;; = €,€; for: 76 ] and €1234 = €1€2€3€4.
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The Clifford algebra C?4 is isomorphic to the real algebra of 2 x 2-matrices
H(2) with quaternions as entries,

(0 —i (0 —j (0 -k (01
1=\ 0 )%\ 0 )BT\ ke 0 )T \1 o)

The even subalgebra C¢3 is isomorphic to the direct sum H & H, where addition
and multiplication is defined componentwise.

1.7.1 Bivectors in \*R* C Cly

The essential difference between 3D and 4D spaces is that bivectors are no longer
products of two vectors. Instead, bivectors are sums of products of two vectors in
R*. In the 3-dimensional space R® there are only simple bivectors, that is, all the
bivectors represent a plane. In the 4-dimensional space R this is not the case any
more.

Example 7 The bivector B = ej2 + €34 € /\2 R* is not simple. For all simple
elements the square is real, but B?> = —2 + 2e1234 € R.

If the square of a bivector is real, then it is simple.'8

Usually a bivector in /\2 R* can be uniquely written as a sum of two simple
bivectors, which represent completely orthogonal planes. There is an exception to
this uniqueness, crucial to the study of four dimensions: If the simple components
of a bivector have equal squares, that is equal norms, then the decomposition to a
sum of simple components is not unique.

Example 8 The bivector e e, + €3e4 can also be decomposed into a sum of two
completely orthogonal bivectors as follows:

ere; + ezes = 3(e1 +e3)(ex +eq) + 1(e1 —e3)(e2 —ey).

1.8 Clifford algebra of Minkowski spacetime

The Clifford algebra C¥¢3 ; of R3! with an orthonormal basis (eg, €2, €3,€4) is
generated by the relations

e?=el=el=1, ei=-1 and eje; = —eje; for i#j.

It is a 16-dimensional algebra isomorphic to the real algebra of 4 x 4-matrices

R(4).

18Even when the square of a 3-vector is real, this does not mean that it is simple (or decomposable).
For instance, V = e23 + €456 € /\3 RS is not simple although its square is real. This can be seen
by computing Ve, V~1,i=1,2,...,6, (note that V2=_2hence V-1 = —%V) and observing
that none of them is a vector: all are 5-vectors. [This footnote has been corrected by the Editors.]
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The even subalgebra C£ | of Cl3); is isomorphic to C(2). The even elements

u € O3 of unit norm u@ = 1 form the subgroup Spin(3, 1), which is a 2-fold
covering group of the Lorentz group SO(3, 1).

1.9 The exterior algebra and contractions

The exterior algebra A V of a linear space V, with basis (e, ez,...,€,), has a
basis consisting of

1 scalar
e),es,...,e, vectors
ejNey, e Neg, ..., e, 1 Ne, bivectors
ejNesA...Ne, volume element.
The multiplication rules are
e;Ne; =—e;Ne;

together with associativity and the unity 1. A scalar producton V' can be extended
k
to the homogeneous parts A~ V by

<XIAX2 AL AXE, YL AY2 A AYE> = det(Xi - Y5)

and further by orthogonality to all of A V. This scalar valued product can be used
to define the contraction AV x AV — AV, (u,v) = udv by

<udv,w> = <v,u Aw> forall w€ /\V.

The contraction could also be defined by its characteristic properties

xJdy=x-y,
xd(uAv)=(xJu)Av+ oA (XAY),
(uAv)dw=ud(viw)

which hold forall X,y € V and u,v,w € A V.
The contraction could also be introduced via the Clifford product as

wdv=(uA (Uel2...n))el_21u.n'

This can be proved by observing <ueja n,w> = <e€12..n,% A w> and com-
puting

<(uA(verz. n))ely. n W>
= <epy ., (uA(ve ) Aw>
=<epy ., (verz. n)  ATAwW>
= <vejy. nely ,TAW> = <v,TAw> = <uJv,w>.
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Geometrically, for decomposable homogeneous multivectors A and B, not or-
thogonal to each other, the contraction A 1B is the largest subspace of B orthog-
onal to A."°

1.10 The Grassmann—Cayley algebra and shuffle
products

In the Grassmann—Cayley algebra, we have the exterior product and the shuffle
product defined (in terms of the Clifford product) by

uVo= ((uel-2ln) A (’Ue;2l,,.n))e12m"'

The shuffle product is associative and metric independent, but depends on orien-
tation, while its unity is e;s .. The shuffle product is like the exterior product
upside down, lowering degrees. The shuffle inverse is given by

uw/CY = ((uery )" V)erz. ..

Under a linear transformation L of V' the shuffle product transforms as

AL@vv)= ALV A L(v)/ det(L).

In geometry, joins of subspaces are dealt with the exterior product and meets
with the shuffle product. It should be noted that the definition of the shuffle prod-
uct in terms of the Clifford product makes the Grassmann-Cayley algebra unnec-
essary.

1.11 Alternative definitions of the Clifford algebra

We work over a field F (although the generalization to commutative rings is ap-
parent). Let us denote by [F-alg the category of associative algebras over I : its
objects are unital associative F-algebras and its morphisms are F-algebra homo-
morphisms preserving the unit elements. Let V' be a vector space over F equipped
with a quadratic form @, i.e., @ : V — T satisfies

(i) QOx)=XQ(x)forallAeF,xeV;
(i) themap (x,y) — Q(x+y) — Q(x) — Q(y) is F-bilinear.

19This sentence needs an explanation. Recall that the exterior product of k linearly independent
vectors of V is called a decomposable (homogeneous) or simple multivector of degree k, and that the
subspace of V spanned by these k vectors is called the subspace of the decomposable multivector.
Scalars are considered as decomposable elements of degree 0, with the associated subspace reduced
to {0}. The contraction A J B of two decomposable multivectors A and B is still a decomposable
multivector, unless it vanishes. Geometrically, if S and T are the subspaces of A and B, respectively,
the subspace of A J B is the largest subspace of T orthogonal to S provided that no vector of S
(except 0) is orthogonal to T.. In fact, existence of such a nonzero vector is a sufficient and necessary
condition to assure that A 1B = 0. [Editors]
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Definition 9 (of category Q-alg): The objects are pairs (A, f), where A is an
object of F-alg and f : V — A is an F-linear map with the property that f(x)? =
Q(x)14 for all x € V (14 being the unit element of A); the morphisms from
(A, f) to (B, g) are F-alg morphisms h from A to B with the property that g =
hof.

The initial object in Q-alg is called the Clifford algebra C?(Q) of Q. The
terminal object of Q-alg is ({0}, f), where {0} is the trivial ring and f is the zero
map.

Definition 10 (of category Q-geoalg): The objects A are objects in F-alg such
that V is a subspace of A and x?> = Q(x) for all x € V; the morphisms from A
to B are F-alg morphisms h such that h|V is an isometry of Q on V.

The initial object in Q-geoalg is called the Clifford algebra C¢(Q) of Q. This
category (J-geoalg has no terminal object.

Definition 11 (of Clifford algebra by generators and relations): An associative
algebra over F with unity is the Clifford algebra C¢(Q) of a nondegenerate Q if
it contains V and F as distinct subspaces so that

1) x?2=Q(x)forallxinV,

2) V generates CL(Q) as an algebra over F,

3) CUQ) is not generated by any proper subspace of V.

Let B be a bilinear form, not necessary symmetric, on V. The contraction is a
bilinear product AV x AV — AV, (u,v) — u dv determined by

1) ny:B(xvy)7

2) xd(uAv) = (xJu)Av+aA(xdv),

3) (wAv)dw=ud(viw),
forall x,y in V and u,v,w in A V.

Definition 12 (of Clifford algebra C¢(B), B nondegenerate, but not necessarily
symmetric). Introduce the Clifford product xu = x lu+x Auforall xinV and
w in AV and extend the Clifford product by linearity and associativity to all of
A V. The Clifford algebra C¢(B) of B is the pair (\ 'V, the Clifford product).

1.11.1 Discussion on the definitions

The category Q-alg is bigger than Q-geoalg, which consists of those objects of
Q-alg, which contain V.

Example 13 1. Consider a 2-dimensional real linear space V with a vanishing
quadratic form Q = 0. Then C8(Q) = AV, the exterior algebra of V. Recall that
AV =R& V & \>V. The exterior algebra \'V has the following two-sided
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ideals™ of dimension respectively 0, 1, 2, 3, 4 :

{0, AV, LeAV, VeAV, AV

the third one is the ideal generated by L, that is any line through the origin in V.
The corresponding factor algebras, of dimension 4, 3, 2, 1, 0, are

AV, ReV, RelL, R, {0},

where L' is any line supplementary to L in V, so that there exists a surjective
algebra morphism from \V onto R @ L’ with kernel L & /\2 V', this algebra
morphism maps every element of V to its parallel projection onto L' with respect
to L. The lattice of factor algebras is

/\V——»R@V——)R@L'——)R——){O};

the third object R @ L' is one among infinitely many analogous factor algebras.
The category Q-alg contains all these five algebras, whereas Q-geoalg contains
only the first two.

Example 14 Consider Cly 3 ~ H @& H, which contains two nontrivial ideals,
both isomorphic to H, but only in the category R-alg, not in the category Q-alg.
The ideals %(1 + e123)Clo 3 have unit elements %(1 + ej93) (denoted by 1) and
three other basis elements

i~ (1 +e)er, j
1 .
5 J

[ (1 — 8123)81,

(1+eiz3)ez, Kk =~ i(1+ems)es,

1
2
%(1 — 8123)82, k ~ %(1 — 8123)83.

Inthe formerideal i'j'k’' = 1 and in the latter ijk = — 1. The algebras H and H'
with bases (1,1,5,k) and (1,7,7', k") are not isomorphic in the category Q-alg
(the identity mapping on V does not extend to an Q-alg isomorphism from H
to H'). The lattice of ideals is

Cgoyg
7N
H H
NS

{0}
where the last object does not belong to QQ-geoalg.

The Clifford algebra C¢(B) is just C¢(Q), where Q(x) = B(x,x) for all x
in V. However, C¢(Q) has the same multivector structure as C¢(B) only for a
symmetric B. In particular, the bivector spaces (and all multivector spaces of

20This list of ideals was completed by the Editors by adding an extra 2-dimensional ideal L & /\2 V.
The subsequent list of factor algebras has been completed accordingly.
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higher grade) are different in C£(Q) and C?¢(B) for a nonsymmetric B. A conse-
quence is that the reversions are different in C£(Q) and C¢(B), if defined so that
their invariant spaces are of homogeneous grade. Alternatively, and more appro-
priately, the reversion should be defined as an anti-involution fixing scalars and
vectors.

The Clifford algebra C¢(B) of an antisymmetric bilinear form B is just the
exterior algebra A V. One should not confuse such a C¢(B) with the symplectic
Clifford algebras (also of antisymmetric bilinear forms). In characteristic 0, the
symplectic Clifford algebra of B = 0 is just the algebra of symmetric tensors,
which is of infinite dimension.

All the above Clifford algebras are algebras of quadratic forms and bilinear
forms. One could also study Clifford algebras linearizing polynomial forms f of
degrees d > 2 on n-dimensional spaces V. For n > 2 and d > 3, such Clifford
algebras CY(V, f) are infinite dimensional.
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Mathematical Structure
of Clifford Algebras

Ian Porteous

ABSTRACT The first part of this chapter is mainly concerned with the construction
of Clifford algebras for real and complex nondegenerate quadratic spaces of arbi-
trary rank and signature, these being presented as matrix algebras over R, C, H, ?R,
2C or 2H. In each case the algebra has an anti-involution known as conjugation, and
the second part is concerned with determining products, or equivalently correlations,
on the spinor space for which the induced adjoint anti-involution on the matrix al-
gebra is conjugation. Applications of the classification are to the description of the
Spin groups and conformal groups for quadratic spaces of low dimension.

2.1 Clifford algebras

2.1.1 Construction of the algebras C, ,

We have seen in the previous lecture how well adapted the algebra of quater-
nions H is to the study of the groups SO(3) and SO(4). The center of interest is a
finite-dimensional vector space X over the real field R, furnished with a quadratic
form, in the one case R3 and in the other case R*. In either case the real associative
algebra of quaternions H contains both R and X as linear subspaces, there being
an anti-involution, namely conjugation, of the algebra, such that, for all z € X,

Tr=12% =711

In the former case, when R3 is identified with the subspace of pure quaternions,
this formula can also be written in the simpler form

?=-2® =_z.z

In an analogous, but more elementary way, the real algebra of complex numbers C
may be used in the study of the group SO(2).

This lecture was presented at “Lecture Series on Clifford Algebras and their Applications”, May 18
and 19, 2002, as part of the 6th International Conference on Clifford Algebras and their Applications
in Mathematical Physics, Cookeville, TN, May 20-25, 2002.

AMS Subject Classification: 15A66, 17B37, 20C30, 81R25.

Keywords: Clifford algebra, spinor, Radon~Hurwitz number, correlation, conjugation, conformal
transformation, Vahlen matrix.
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Our aim is to put these rather special cases into a wider context. To keep the
algebra simple, the emphasis is laid at first on generalizing the second of the two
displayed formulae.

Let X be a finite-dimensional real quadratic space, that is a finite-dimensional
vector space assigned a possibly degenerate quadratic form. As follows from one
of the definitions in Lecture 1, the Clifford Algebra for X is a real associative
algebra, C¢(X), with unit element 1, containing isomorphic copies of R and X
as linear subspaces, and generated as a real associative algebra by them in such a
way that, for all z € X, 2 = —z(®. The dimension of the algebra is 241mX

Superficially, it would seem to be simpler to arrange things so that for all = €
X, £2 = £ as was the case in Lecture 1. But there is a good reason for adopting
the ‘negative’ convention, as we shall see in a moment. To simplify notations, in
practice R and X are identified with their copies in C£(X).

The Clifford algebra has an anti-involution, known as conjugation

CUX)— CUX); a— a”

such that, forall z € X, z~ = —z. Then,forallz € X,z -z =z z.

The vector space R @ X is called the space of paravectors of the Clifford
algebra. It becomes a real quadratic space on being assigned the quadratic form
A4z - N4z 2=X-22=A-2A+z2) = A+2)"(\+ ).
Here is where we get a positive payoff for adhering to the negative convention!
In particular, if X is a positive-definite quadratic space of dimension n then the
space of paravectors R @ X is a positive-definite quadratic space of dimension
n+ 1.

One almost invariably works with an orthonormal basis for the vector space X.
We denote by RP%" the real vector space RPT9+" such that the first p vectors of
the standard basis have scalar square —1, the next g have scalar square 41, and
the final r have scalar square 0, these basis vectors being mutually orthogonal.
The Clifford algebra generated by these basis vectors is then denoted by C¥, 4 -,
the first p basis vectors having square 41, the next ¢ vectors having square —1 and
the final r basis vectors having square 0. In the Clifford algebra the basis vectors
anticommute, the equation

O=z-y=3((z+y) (z+y)-z-z-y-9)
becoming in the Clifford algebra
0=-zy—yz=—(z+y)* +2* + >

The quadratic space RP-? is also denoted by RP+?, the associated Clifford alge-
bra being denoted by C?,, ,. In the same spirit, the quadratic space R>™ is also
denoted by R™, the associated Clifford algebra being denoted by Clg . (not C,,,
to avoid confusion with the conventions of Lecture 1). A quadratic space is said to
be neutral if it is nondegenerate, that is r = 0 and the number of positive squares
is equal to the number of negative squares, that is p = q.

It is generally helpful to have an explicit construction of the Clifford algebras
for quadratic spaces of arbitrary rank, signature and nullity.
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Proposition 1 Let W be a linear subspace of a finite-dimensional real quadratic
space X, assigned the induced quadratic form with Clifford algebra C¢(X). Then
the subalgebra of C{(X) generated by W may be identified with C¢(W').

By this proposition the existence of a Clifford algebra for an arbitrary n-dimen-
sional quadratic space X is implied by the existence of a Clifford algebra for the
neutral nondegenerate space R™™. Such an algebra is constructed below.

The starting point for all our work is the observation that the three matrices

b5 Go) = ()

in R(2) are mutually anticommutative and satisfy the equations

2 2 2
1 0 0 1 0 -1
(6 %)=t (Fo)=1 m (§73)=-

the product of any two of them being plus or minus the third.

We select the second and third of these to represent an orthonormal set of vec-
tors of the quadratic space R%:!, embedded as a linear subspace of the matrix
algebra R(2) of 2 x 2 matrices over the field of real numbers R. These vectors
generate the algebra, the identity matrix and the three matrices together forming
a basis for the algebra as a four-dimensional linear space. With these choices, the
algebra represents the real Clifford algebra C¥1 ; of the quadratic space R,

It is now very easy to construct a representation of the Clifford algebra C¢; 2
of the quadratic space R%2. Let a and b be the generators of Cfy 1. The algebra
we require is none other than R(4), thought of as R(2)(2), taking as a set of four
mutually anticommuting matrices the matrices

a 0 b 0 0 -1 0 1
6 2) 65 @) = (o)
with 0 the 2 x 2 matrix ($ ) and 1 the 2 x 2 matrix (} ). Clearly two of these
have square —1 and two have square +1, and together they generate the sixteen-
dimensional real algebra R(4). Continuing in the same way, one proves by induc-
tion that the real algebra R(2™) represents the real Clifford algebra C¢,, ,, of the
real quadratic space R™".

Now consider the case of the quadratic space RP+9 with an orthonormal basis,
the first p vectors of which have scalar square —1, so Clifford square +1, while
the remaining g have scalar square 1, so Clifford square —1. Clearly its Clifford
algebra C¥,, 4 is representable as a subalgebra of the real algebra C/,, ,, where n
is the larger of p and q.

We can even construct in this way Clifford algebras for degenerate quadratic
spaces, where some of the generating vectors have square 0. For in any of the
algebras constructed so far if one chooses one basis vector a, say of square —1,
and another b, say of square +1, then because a and b anticommute, a + b and
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a — b both have square 0. In particular the Grassmann algebra of the vector space
R™, all of whose basis vectors anticommute and have square 0, is representable
as a real subalgebra of the real algebra C¢,, ,, = R(2™).

The main theorem of this section is that for any p, ¢ the Clifford algebra CZ,, ,
of the nondegenerate real quadratic space RP? is representable as a full matrix
algebra with entries in one of the real algebras R, C, H, 2R or ?H. 2R is shorthand
notation for the real algebra of diagonal 2 x 2 real matrices, H is shorthand
notation for the real algebra of diagonal 2 x 2 quaternionic matrices, and 2C is a
shorthand notation for the algebra of diagonal 2 x 2 complex matrices, regarded
either as a real or as a complex algebra according to the context. For example
Clo,1 = C, with generator i, C¥y o = H, with generators i and k, while Cly 3 =

2H, with generators (§ ), ((’) fj) and (§ 9 ).

This last algebra is to be preferred to the algebra H as a Clifford algebra for
R%3, since although i,j and k mutually anticommute, and each has square —1,
the product ij = k, and they generate only the four-dimensional real algebra H,
and not an eight-dimensional algebra. (In Porteous 1995 H is referred to as a
nonuniversal Clifford algebra for R%:3.)

One then obtains H(2) as a representation of the Clifford algebra R 4 by taking
as the fourth generator the matrix ($ '), which clearly anticommutes with the
previous three and also has square —1.

The main result of this section is the following theorem:

Theorem 1 For 0 < p,q < 7, matrix representations of the Clifford algebras
Cly,q are exhibited in the following table.

Table 1.1

q—)

P R C H H H(2) C(4) R(@B) 2R(8)

1 2R R(2) C(2) H(2) ZH(2) H(4) C(8) R(16)
R(2) 2R(2) R(4) C(4) H(4) °2H(4) H(8) C(16)
C(2) R(4) °R(4) R(8) C(8) H(8) 2H(8) H(16)
H(2) C(4) R(8) 2R(8) R(16) C(16) H(16) 2H(16)
ZH(2) H(4) C(8) R(16) 2R(16) R(32) C(32) H(32)
H(4) %H(4) H(8) C(16) R(32) 2R(32) R(64) C(64)
C(8) H(8) 2H(8) H(16) C(32) R(64) 2R(64) R(128)

=

the table extending to higher p, q with ‘period’ 8.

Most of this follows at once from what we have already done. For example, for
any p,q, Clpi1,9+1 = Clp4(2). Also, clearly, Cly o = ?R. What is missing are
the remarks, first that, if S is an orthonormal subset of type (p + 1, ¢), generating
a real associative algebra A, then, for any a € S with a? = 1, the set

{ba:be S\{a}}U{a}

is an orthonormal subset of type (¢ + 1, p) generating A. From this it follows at
once that the Clifford algebras R,414 and Ryq1,, are isomorphic. The second
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remark requires first that we introduce the concept of the tensor product of two
real algebras.

A tensor product decomposition of a real algebra is somewhat analogous to a
direct sum decomposition of a vector space, but involves the multiplicative struc-
ture rather than the additive structure. Suppose that B and C are subalgebras of a
finite-dimensional algebra A over K, the algebra being associative and with unit
element, such that (i) forany b € B, ¢ € C, ¢b = be, (ii) A is generated as an
algebra by B and C, and (iii) dim 4 = dim Bdim C.

Then we say that A is the tensor product B @k C over K, the abbreviation
B ® C being used when the field K is not in doubt.

Let B and C be subalgebras of a finite-dimensional algebra A over K, such
that A = B ® C, the algebra A being associative and with unit element. Then
B n C = K (the field K is identified with the set of scalar multiples of the unit
element 1 4)).

For our present purposes the important facts are that

R®R=R, CQR=C, HoR =H,
CC==?C, HeC=C(2) HeoHR(4).

The first three of these statements are obvious. The two mutually commuting
copies of C in 2C are multiples of the identity matrix and the matrix (§ ).
The mutually commuting copies of C and H in C(2) are multiples of the identity
and the standard representation of quaternions as 2 x 2 complex matrices. The two
mutually commuting copies of H in R(4) are the representations of quaternions,
first by themselves multiplying other quaternions on the left, and secondly by their
conjugates multiplying other quaternions on the right, the commutativity in this
case following from the associativity of the quaternions. Moreover, for any m, n,
R(m) ® R(n) = R(mn). We leave it as an exercise to work out why.
The other result that we need is that, for all p, g,

Clp,gta = Clp g ® Clog

bearing in mind that C¥p 4 = H(2).

To prove this, let a, b, ¢, d be the last four generators of C¥y, 514, and let the
others be e;. Then (abed)? = 1. Let f; = abede;, for each i. It is easily verified
that the f; anticommute, and that f? = €?, for all 7. The f; then generate a copy
of C¥y, 4 in C¥,, 44 4 that commutes with the copy of C¥y 4, generated by a, b, ¢, d.
Hence the result.

For example

Clhys = CoH(2) ~  C(4),

Clhe = HoH(2) = R(8),

Clo; = ’HoH(2) = 7R(8),
and Cfo)g =] H(2) ® H(2) = R(IG).

The negative of a real quadratic space is that obtained by replacing the quadratic
form by the same form multiplied by —1. In particular the negative of the quad-
ratic space RP? is isomorphic to the quadratic space R%P. An important, and
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perhaps surprising feature of Table 1.1 is that the Clifford algebras of a quadratic
vector space and of its negative are quite different.

2.1.2  The even Clifford algebras CZ)

A map from a vector space or algebra to itself that respects the vector space or
algebra structure is said to be an involution if its square is the identity. Such a
map from an algebra to itself is an anti-involution if the order of products is
reversed. For example, conjugation on the real algebra of quaternions H is an
anti-involution, since, for any q,¢' € H, q¢' = ¢'g.

Let C¢(X) be the Clifford algebra of a finite-dimensional quadratic space X.
We have already mentioned conjugation as the unique anti-involution of C¢(X)
that sends each vector to its negative. In fact, the linear involution X — X :
z — —z also extends uniquely to an involution of C4(X), known as the main
involution of the algebra, while the identity on X extends to an anti-involution of
C¢(X), known as reversion. The main involution will be denoted by a +— &, while
reversion will be denoted by a — o~ The two anti-involutions and the involution
commute with each other, each the composite of the other two.

It is not difficult to prove that the main involution leaves invariant a subalgebra
of C¢(X), spanned by all even products of basis elements of X, and known as
the even Clifford algebra of X. The even subalgebra of the Clifford algebra C¥,, 4
will be denoted here by C3 |

Proposition 2 For any finite p, q,

CE;’WH = Clpg, C€g+1,q = Clyp.

We give the proof in the particular case thatp = 0, g = n+ 1. Let ey, ...,
en+1 be the standard orthonormal basis for R™*1. Each has square equal to —1
in Clo ny1, and, of course, they anticommute. Then the n elements e1ep41, - . .,
enén41 each have square —1, and these also anticommute, while together with
R they generate Cfg’n +1 as a real algebra, thus being an algebra isomorphic
to Cf()’n.

Similar arguments hold in the other cases.

It follows, in particular, that the table of the even Clifford algebras Cég,q is the
same as Table 1.1, except that there is an additional line of entries down the left-
hand side matching the existing line of entries across the top row. The symmetry
about the main diagonal in the table of even Clifford algebras expresses the fact
that the even Clifford algebras of a finite-dimensional nondegenerate quadratic
space, and of its negative, are mutually isomorphic.

2.1.3 Complex Clifford algebras

So far we have only considered real Clifford algebras of real quadratic spaces.
Everything that we have done before can be carried through for the complex



Lecture 2: Clifford Algebra Structures 37

quadratic spaces C™. We denote this Clifford algebra by C?,(C). This algebra
may be considered as the tensor product over R or € and any of the real Clifford
algebras Cl,, ;, where p + g = n.

Theorem 2 For any finite k,
C ® Clo ok = C(2F) and C @ Clg gx41 = 2C(2%).

In defining the conjugation anti-involution for the algebra C ® C¥,, 4, we have
to decide whether or not to conjugate the complex coefficients. It turns out, as
we shall see in a later section, that if we do not conjugate the coefficients, then
the only invariant is the rank n of the relevant real quadratic space, but that if we
conjugate the coefficients, then signature remains important. We also will have
occasion to consider briefly the tensor products of C¢,, , by 2R? and of C,, by
2C?, where ¢ denotes the involution that consists in swapping the components
of 2R and 2C, respectively, this swap to be invoked when conjugation is being
defined.

2.1.4 Spinors

Table 1.1 exhibits each of the Clifford algebras C?,, , as the real algebra of endo-
morphisms of a right A-linear space of the form A™, where A = R, C, H, ?R
or 2H. This space is called the (real) spinor space or space of (real) spinors of
the quadratic space RP9. Tt is identifiable with a minimal left ideal of the algebra,
namely the space of matrices with every column except the first nonzero. However
as a minimal left ideal it is nonunique.

Physicists concerned with space-time have to choose between the Clifford al-
gebras G 3 = H(2) and Cl3, = R(4), with Cf3 ; = C#3 , = C(2). Roughly
speaking, in the former case the spinor space H? is known as the space of Dirac
spinors, though these, as originally defined, consisted of quadruplets of complex
numbers rather than pairs of quaternions, while in the latter case the spinor space
R* is known as the space of Majorana spinors. The complexification of each of
these algebras is isomorphic to C(4). This algebra is known as the Weyl algebra,
the complex spinor space C* being known as the space of Weyl spinors.

Minimal left ideals of a matrix algebra are generated by primitive idempotents.
An idempotent of an algebra is an element y such that y? = y. It is primitive if
it cannot be expressed as the sum of two idempotents whose product is zero. The
simplest example in a matrix algebra is the matrix consisting entirely of zeros,
except for a single entry of 1 somewhere in the main diagonal. The minimal ideal
generated by such an idempotent then consists of matrices all of whose columns
except one consist of zeros. The easiest idempotents to construct are of the form
3(1 + z) where 2% = 1, but not > = —1. Of course, 3(1 — ) also is an
idempotent, so that spinor spaces constructed in this way come naturally in pairs.
However, these are not necessarily primitive. They are when the matrix algebra
consists of 2 x 2 matrices over R, C or Hl, but in the case of 4 x 4 matrix algebras,
the primitive idempotents are products of commuting pairs of such idempotents.
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Although as minimal left ideals of matrix algebras any two spinor spaces are
equivalent, they may behave differently when the Clifford algebra structure of the
matrix algebra is taken into account, and so may have possibly different physical
interpretations. Therefore, in applications the terms Majorana, Dirac and Weyl
spinors may be reserved for specific minimal left ideals of the Clifford algebra.

For example, suppose that the algebra C¥; 3 = H(2) is generated by mutually
anti-commuting vectors Yo, Y1, V2, ¥3, where 72 = 1,9% =42 = v = —1. Then
the spinor space generated by the primitive idempotent (1 + vo71) consists of
Dirac spinors, while the spinor space of C @ H(2) = C(4) generated by the
primitive idempotent (1 + vyov1)(1 + i70v172773) consists of Weyl spinors.

Likewise, suppose that the algebra Cf3 1 2 R(4) is generated by mutually anti-
commuting vectors e, €1, €3, €3, where e2 = —1,e? = €2 = e = 1. Then the
spinor space generated by the primitive idempotent (1 + e1)(1 + eges) consists
of Majorana spinors.

2.1.5 Groups of motions

The Clifford algebra Cf; », plays a central role in studying the group of isometries
or motions of R™, not only the rotations and anti-rotations (orientation-reversing)
of R™, but also translations of R™. Indeed, we can go further and include confor-
mal transformations of R™ in our study, though we defer that discussion to a later
section.

The starting point of all this is the observation that if v is any nonzero (and
therefore invertible) vector of R™, then the map

1 1

po:R* 5 RY 2z vzd™ = —vzv™
is reflection of R™ in the orthogonal complement in R™ of the line through the
origin spanned by the vector v since any real multiple of v maps to minus itself,
while any vector anti-commuting in the algebra with v maps to itself. Now any
rotation of R™ is representable as the composite of an even number of hyperplane
reflections and so is representable as conjugation of R™ by that composite, that is
by an element of the even Clifford algebra Cégyn. Explicitly one has the following
proposition.

Proposition 3 Let g be a product of nonzero vectors in Cly 5. Then the map

A1
Pg i T+ gT§

is an orthogonal automorphism of R™, being a rotation if the number of factors is
even, in which case § = g.

The group of products of invertible vectors in Cf; r, is known as the Clifford or
Lipschitz group I'(n) of R™. The subgroup, each of whose elements is the product
of an even number of nonzero vectors, is the even Clifford group, and is denoted
by I'(n).
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The quadratic norm of any element g € I'(n) is defined to be the necessarily
nonnegative real number g~ g, since each vector in R™ has quadratic norm equal
to v - v. The subgroup of T'°(n), consisting of all elements of quadratic norm
equal to 1, is known as the group Spin(n). Clearly any element g of Spin(n)
induces the same rotation as its negative, and it turns out that this is the only am-
biguity — the group Spin(n) doubly covers the special orthogonal group SO(n)
of rotations of R™.

Of course, the original space R™ does not belong to the even Clifford algebra
Ceg,n. We can get around this by multiplying the elements of R™ by the last basis
vector, the one that we used to identify C¢2 with Cfg ,,—1. Then the space R™
maps to the space of paravectors in Cly ,_1.

Proposition 3 therefore implies:

Proposition 4 Let g be an element of Spin(n). Then, since § = g, the map
Pg Y = gYg,

is a rotation of R™ and any rotation of that space may be so induced, the only
ambiguity being one of the sign of g.

If we work with paravectors this is replaced by

Proposition 5 Let g be an element of Spin(n), regarded as a subset of Clo n_1.
Then the map

Pg Y+ 9Yg,
where y = XA+ z, with A\ € R, and z € R™™1, is a rotation of the space of

paravectors R @ R™ L, and any rotation of that space may be so induced, the
only ambiguity being one of the sign of g.

Still remaining with the positive-definite case, we have

Theorem 3 Let (¢ b) in Clo o (2) represent an element of the even Clifford group
I'°(n + 1) in Clo n+1 with a € TO(n). Then the map R™ — R", z ara~l +
ba™! is an orientation-preserving isometry of R™ and any isometry of R™ may be
so represented, the representation being unique up to nonzero real multiples of a
and b.

Strictly speaking what is involved here is the subgroup of Cfg (2) consisting
of all matrices of the form (§ 2), with a € T°(n) and b = ap, where p € R™.
In the particular case that n = 3, Spin(4) is most frequently identified with the
group S* x S% C 2H. An alternative to 2H consists of the matrices of H(2) of the
form (¢ ). The subalgebra of H(2) consisting of all matrices of the form (g %)
is known as Clifford’s algebra (1873) of biquaternions. Elements of it are all of
the form a + be, where a and b are quaternions and €2 = 0, € being represented in
H(2) by the matrix (3§ ). This is C€g 5 ;.

Much of what we have said about isometries of the positive-definite spaces R™
extends to the indefinite spaces RP9, especially the important cases for physics
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where either p = 3,¢ = 1, orp = 1,q = 3. We return to these in the next sec-
tion, where we also show how Clifford algebras may be used to handle conformal
transformations efficiently.

2.2 Conjugation

2.2.1 Symmetric and skew products and anti-involutions

In order to have a clear understanding of the various Spin groups, we begin by
classifying the conjugation anti-involutions of Clifford algebras of nondegener-
ate real or complex quadratic spaces. According to Theorem ! and Theorem 2,
any such Clifford algebra is representable as a matrix algebra A(m), for some
number m, where A = Kor’Kand K=R, Cor H.

A correlation on an n-dimensional vector space over K = R, C or H is just a
real linear map from the vector space to its dual, this being nondegenerate if its
kernel is zero, in which case it is a linear isomorphism. Let £ : v — v¢ be such a
nondegenerate correlation. It induces a K-valued bilinear product (a, b) +— a%b.

It is an important fact, which here we take without proof, that any anti-invol-
ution of the matrix algebra K(n) is induced by either a symmetric or skew corre-
lation on the vector space K™, in the sense discussed below.

The most familiar example is the map from R™ to its dual, which sends a col-
umn vector to the row vector which is its transpose. The induced product on
R™ is then the standard positive-definite scalar product, symmetric since, for any
z,y € R?,z -y = y - z. The induced anti-involution on the real algebra R(n) of
linear maps from R™ to itself, known as the adjoint anti-involution, is in this case
a transposition. Let us denote the transpose of an element a of this algebra by a™.
Then the elements a such that a”a = 1 form the orthogonal group O(n).

The product just discussed is positive-definite, since the square t? =z .z
of any element = of the vector space R™ is greater than or equal to zero, being
equal to zero only when = = 0. Besides this, one has products of signature (p, ),
where p of the basis vectors have scalar square —1 and g have scalar square +1.
The associated groups are the groups O(p, q), with O(0,n) = O(n). The de-
terminant of any element of O(p, ¢) is equal to +1 or —1. The eclements with
determinant equal to 41 form the special orthogonal group SO(p, q).

Another example of a correlation, this time on R?, is the map (z,y) — (y, —z)"
inducing a skew product

(«,y) (z,y) =y'z — 'y,

skew, since (z,y) - (¢, ¢) = —(,¥') - (2,y).
The induced anti-involution of R(2) is the map

(Z cci) = (\_db :zc)
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This product is known as the standard symplectic product on R?, the induced
group consisting of all 2 x 2 real matrices with determinant 1. The notation used
here for this group is Sp(2; R), or when it is necessary to save space in tables, by
Spa(R).

An analogous nondegenerate symplectic product may be defined on each even-
dimensional real vector space. The associated classical groups are the real sym-
plectic groups Sp(2n;R). There are complex analogues of these products and
groups, the associated classical groups being O(n; C) and Sp(2n; C).

Elements of O(n;C) have determinant equal to +1 or to —1. Those of deter-
minant equal to +1 form the special complex orthogonal group SO(n;C). All
elements of both Sp(2n; R) and Sp(2n; C) have determinant equal to +1.

Also of importance is the real linear, but complex semilinear map sending a
column vector of C™ to its conjugate transpose. This real linear map induces a
sesquilinear (that is, one-and-a-half times linear) product on C™ which is sym-
metric in the sense that if one forms the product of two vectors in reverse order,
then the resulting product is the conjugate of the product of the elements in the
given order. The product that is simply the same one multiplied by the scalar i is
then a skew sesquilinear product. Both give rise to the same anti-involution of the
algebra C(n), namely conjugate transposition, the group of matrices whose in-
verse is the conjugate transpose forming the unitary group U(n). Here again one
has analogous products with signature (p, ¢), and associated groups U (p, ¢), with
U(0,n) = U(n). Elements of U(p, q) have determinant a complex number of
modulus 1. The subgroup of those with determinant +1 is denoted by SU(p, q).

For quaternionic spaces one has to be careful, since H is not commutative. The
usual convention is to regard H™ as a right-vector space, this implying that the
scalars multiply vectors on the right. The dual space is then a left-vector space,
and any correlation between the two has to be semilinear, involving one of the
anti-involutions of H. One of these is of course conjugation. The others corre-
spond to reflections of the three-dimensional space of pure quaternions in a plane,
the typical one that we choose being that in which only the quaternion j changes
sign. Symmetric correlations of either type turn out to be equivalent to skew corre-
lations of the other type. The groups that arise are denoted by Sp(n) for the sym-
metric conjugation case, equivalently for the skew symmetric case, and O(n; H),
or, more briefly, O,, (H) for the opposite case. In the quaternionic symplectic case,
one again has the possibility of other signatures, the groups being Sp(p, g), with
Sp(0,n) = Sp(n).

Finally, for each of the spaces 2K™, where K = R, C or H, there are symmet-
ric or equivalent skew correlations involving the involution swap. It is of some
interest that in each of these cases the group that arises is isomorphic in an obvi-
ous way to the general linear group GL(n; K), elements of the group consisting
of 2 x 2 matrices with entries in IKK(n), the top left entry being any invertible
matrix, the bottom right entry some transform of this, depending on the details
of the product, the other two off-diagonal entries being zero. The subgroup of
GL(n; R), consisting of those elements with determinant +1, forms the special
linear group SL(n; R). The subgroup of GL(n; C), consisting of those elements
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with determinant +1, forms the special linear group SL(n; C).

The determinant of an n x n quaternionic matrix is defined to be the square
root of the determinant of the matrix regarded as a 2n x 2n complex matrix, the
latter necessarily having as determinant a nonnegative real number. The subgroup
of GL(n; H) consisting of those elements with determinant 41 forms the special
linear group SL(n; H).

There are altogether, up to fairly obvious equivalences, zen families of symmet-
ric or skew correlations to choose from.

Theorem 4 Any symmetric or skew-symmetric correlation on a right A-linear
space of finite dimension > 1 belongs to one of the following ten types, which are
mutually exclusive.

a symmetric R-correlation;

a symmetric, or equivalently, a skew *R7 -correlation;
a skew R-correlation;

a skew C-correlation;

a skew H- or equivalently a symmetric H-correlation;
a skew, or equivalently a symmetric, 2H° -correlation;
a symmetric, H-or equivalently a skew H-correlation;
a symmetric C-correlation;

a symmetric, or equivalently a skew, C-correlation;

a symmetric, or equivalently a skew, 2C’ -correlation.

O OO NN AW~

The logic behind the numbering of these ten types derives from the order in which
most of the cases appear in Table 6.1 below.

The job of identification in any particular case is made easier by the fact that
an anti-involution of an algebra is uniquely determined by its restriction to any
subset that generates the algebra. This means that in classifying the conjugation
anti-involution of a Clifford algebra C¢(X), all one has to do is to examine the
representatives in the algebra of an orthonormal basis for the quadratic space X.

What has to be noted is that among all the products that arise, signature is an in-
variant for just three, symmetric real products on R™, unitary products on C*, and
the quaternionic symplectic products on H™. The corresponding real quadratic
spaces are denoted by R?9, C™? and H™?. In each of these cases, products of
signature (p, p) will be said to be neutral.

It is not possible to give all the details here. The interested reader is referred to
Porteous (1995) for the full story. Table 6.1 first appeared explicitly in Hampson
(1969), was published in Porteous (1969), but was implicit in Wall (1968).

One case that is easily verified is that of the positive-definite quadratic spaces.
One has

Theorem 5 Conjugation on the Clifford algebra Cly 5, is conjugate transposition
of the matrices representing the elements of the algebra.

We begin by reminding the reader that the Clifford algebras C¥¢, 4 for 0 <
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P, g <7and C® Cly ,, for 0 < n < 7 are as in Table 1.1 and Theorem 2. First,
we recall

Table 1.1
q —

p =1 R C H °2H H(2) C@H) R(B8) Z2R(8)

!l R 2R R(2) C(2) H(2) 2H(2) H((4) C(8) R(16)

C| R(2) ?R(2) R(4) C(4) H(4) °H(4) H(8) C(16)

H| C(2) R4) *R@4) R(8) C(8) H(8) 2H(8) H(16)

M| H(2) C@4) R(8) 2R(8) R(16) C(16) H(16) 2H(16)

H(2) | 2H(2) H(4) C(8) R(16) 2R(16) R(32) C(32) H(32)

C(4) | H(4) 2H(4) H(8) C(16) R(32) °R(32) R(64) C(64)

R(8) | C(8) H(8) 2H(8) H(16) C(32) R(64) 2R(64) R(128)

extending indefinitely either way with period 8.
Here, and in the tables that follow, the left-hand column is to be added in when
the even subalgebras are under consideration.

Theorem 6 Conjugation types for the algebras Ci, 4, are to be overlaid on
Table 1.1.

Table 6.1
qgmod8 —
pmod 8 20 0 8 4 24 4 8 0 20
l 0 1 23 45 6 7 0
8 2 22 2 8 6 % 6 8
4 3 21 07 6 5 4
24 4 8 0 20 0 8 4 24
4 5 6 7 01 2 3 4
8 6 26 6 8 2 22 2 8
0 7 6 5 43 21 0

For the complexifications of C¥,, ; we have two results:

Theorem 7 Table 7.2 classifies conjugation for the complexification of the alge-
bras Cly, 4 when the complex coefficients are not conjugated. Here signature is
not important, the result depending only on n = p + q. The table of algebras is

Table 7.1
n mod 8§ —
+1 | C 2C C(2) 2C(2) C(4) 2C(4) C(8) 2cC(8)
extending indefinitely with period 8.
The classification then follows by overlaying the following table on it.
Table 7.2

nmod8 —
27 [ 7 9 3 23 39 7 27
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Theorem 8 Table 8.2 classifies conjugation for the complexification of the alge-
bras Cl,, 4 when the complex coefficients are conjugated. Here signature remains
important.

The table of algebras is

Table 8.1
q e
p 41 Cc 2
] C 2C

extending indefinitely with period 2.
The classification then follows by overlaying the following table on it.

Table 8.2
gmod2 —
pmod 2 28 8 28
! 8 8 8

For the codes 0, 4 and 8 in Tables 6.1 and 7.2, there is a further classification
by signature. The choice along the top row or down the extra column on the left
is the positive-definite one. Elsewhere, the choice is the neutral one.

For completeness we also have the following two results:

Theorem 9 For the tensor product of Cl, 4 by ?R, with conjugation swapping
the components of the coefficients, we have

Table 9.1

—p+qgmod8 —
2| 195 % 59 1%

Theorem 10 For the tensor product of C¢,, 4 by 2C, with conjugation swapping
the components of the coefficients, we have, withn = p + q,

Table 10.1

nmod2 —
29 ] 9 2

Tables 6.1, 7.2, 8.2, 9.1 and 10.1 may be more appreciated if the various code
numbers are replaced by the classical groups that preserve the sesquilinear forms
on the spinor spaces. We give them here for0 < p+¢ < 8in Tables 6.1’ to 10.1".
To save space, we abbreviate the notations slightly in obvious ways.
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Table 6.1’
q —
p 01 Uy Sp1 2Sp: Spa Uy O 203
L GLi(R) Spa(R) Spa(C) Spi,1 GLo(H) O4(H) O(C)
Spa(R) 2Spa(R) Sps(R) Uz Ou(H) 204(H)
Spa(C) Sps(R) GL4y(R) 044 Os(C)
Sp1,1 U2 Oy4 2044
GLy(H) O4H) Os(C)
O4(H) 204(1HI)
Og(C)
Table 7.1’
n —

01(C) GL1(C) Spa(T) 2Spa(C) Sps(C) GL4(C) Os(C) 205(C)

Table 8.1'

q —
P Uy 20, U, U, Uy 2U4 Us 2Us
L GLy(C) Uz GL3(C) U, GL4(C) Us GLs(C)
Uy 2U, U, 2U, Us 2Us
GLy(C) Us GL4(C) Us GL3(C)
U, 2U, Us 2Us
GL4(C) Us GLs(C)
Us 2Us
GLs(C)

Table 9.1'
p GLf(nS GL1(C) GL1(H) 2GLi(H) GLy(H) GL4(C) GLs(R) 2GLs(R)
| 2GL;(R) GLy(R) GLy(C) GLo(H) 2GLy(H) GL4(H) GLs(C) GL16(R)

ete.

Table 10.1'

mn—

GL1(C) 2GL;1(T) GLs(C) 2GLa(C) GL4(C) 2GL4(C) GLs(T) 2GLs(C)

The dimension of the classical group consisting of matrices g such thatg™g = 1
is the dimension of its Lie algebra, the real vector space of matrices ¢ such that
g+g =0.

The dimensions of the groups in Table 6.1’ are shown in Table 6.1”.
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Table 6.1"

0 1 3 6 10 16 28 56
1 3 6 10 16 28 56
3 6 10 16 28 56
6 10 16 28 56
10 16 28 56

16 28 56
28 56
56

These depend only on the rank n = p + ¢ and not on the index p, ¢. The dimen-
sions of the groups in Table 7.1’ are twice those of the groups in Table 6.1’

2.2.2 Tables of spin groups

For each n, the quadratic norm g™ g of any element g of the group Spin(n) is
equal to +1, the group being a subgroup of the even classical group associated
in Table 6.1’ to the signature (0, n) or (n, 0). That group, being the part of the
classical group that lies in the even Clifford algebra for the given signature, lies in
the table either in the position p = 0, ¢ = n — 1 or in the positionp = n, ¢ = —1
(in an extra column on the left that matches the first row). For any p, ¢, with
neither p nor ¢ equal to 0, the quadratic norm of an element of Spin(p, ¢) may
be equal either to 41 or to —1. It is then the subgroup Spin™ (p, ¢), consisting of
those elements of Spin(p, ¢) with quadratic norm +1, that is a subgroup of the
even classical group for the signature, namely the classical group in the position
p, ¢ — 1. The group SO*(p, q), with neither p nor q equal to 0, which it covers
twice, is the group of arthochronous isometries of R?+? that preserve not only the
orientations of R?:? but also its semi-orientations, the important case for physics
being whenp, ¢ =3, 1orl, 3.

The group Spin(n) or Spin* (p, ¢), with n = p+q, has dimension %n(n— 1).
It is the whole group in Table 6.1, for n = p + g < 5, but is of dimension one
less than this, namely of dimension 13, rather than 16, forn = p+ ¢ = 6. In
this case, each algebra has a real-valued determinant, and lowering the dimension
by 1 corresponds to taking the determinant equal to 1.

Theorem 11 The groups Spin(n) for n < 6, as well as the groups Spin™ (p, q)
for p+ q < 6, where both p and q are nonzero, are shown in Table 11.1.
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Table 11.1
q—)
p =1 Oy Uy Sp1 2Sp Spy SUy4
L 01 GLi(R) Sp2(R) Sp2(C) Spiy SLo(H)
Ul SPQ(R) ZSPQ(R) S}M(R) SUZ’Z
Spr Sp2(C)  Sps(R) SL4(R)
2Sp1 Spign SUas
Spy SLo(H)
SU,

The groups Spin(n; C), for n < 6, are shown in Table 11.2.
Table 11.2

mn —

As a matter of fact it is enough to prove that Spin(6; C) & SL(4; C). All the
real cases then follow by restriction. Many writers do not give the entirety of these
tables and some are in error. Note in particular that Spin™(3,3) = SL(4; R). Of
course, for physics, an important case is

Spin*(3,1) = Spin* (1, 3) = Sp,(C),
lying in the even Clifford algebra
ng,l = Cg(l))?; = C(2)’

this group just being the six-dimensional group of 2 x 2 complex matrices of
determinant 1.

2.2.3  The Radon—Hurwitz numbers

Because of the overarching position of the positive-definite quadratic spaces, the
top row of Table 1.1 is especially important.

One application is to the construction of linear subspaces of the groups
GL(s; R), for finite s, a linear subspace of GL(s; R) being, by definition, a
linear subspace of the real matrix algebra R(s) all of whose elements, with the
exception of the origin, are invertible.

For example, the standard copy of C in R(2) is a linear subspace of GL(2; R)
of dimension 2, while either of the standard copies of H in R(4) is a linear sub-
space of GL(4; R) of dimension 4. On the other hand, when s is odd, there is no
linear subspace of GL(s; R) of dimension greater than 1. For if there were such
a space of dimension greater than 1, then there would exist linearly independent
elements @ and b of GL(s; R) such that, forall A € R, a + Ab € GL(s; R) and
therefore such that ¢ + A1 € GL(s; R), where ¢ = b~'a. However, by the fun-
damental theorem of algebra, there is a real number A such that det(c+ A1) = 0,
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R — R; A — det(c+ A1) being a polynomial map of odd degree. This provides
a contradiction.

Proposition 6 Let K(m) be a possibly nonuniversal Clifford algebra for the posi-
tive-definite quadratic space R™, for any positive integer n. Then R @ R™ is a
linear subspace of GL(m; K) and therefore of one of the groups GL(m; R),
GL(2m; R) or GL(4m; R), according as K = R, C or H. Moreover, the con-
Jjugate of any element of R @ R™ is the conjugate transpose of the representative
in GL(m; K) or, equivalently, the transpose of its representative in GL(m; R),
GL(2m; R) or GL(4m; R).

The following follows from the top line of Table 1.1.

Proposition7 Let {x(k)} be the sequence of positive integers defined by
x(8p+q) =4p+ j,wherej = 0forq=0,1forq=1,2forq =20r3
and 3 for ¢ = 4, 5, 6 or 7. Then if 2X¥) divides s, there exists a k-dimensional
linear subspace X of GL(s; R) such that

1. foreachx € X, 27 = —x, x"x = —x2, being a nonnegative real multiple
of °1, and zero only if t = 0,

2. R® X isa (k + 1)-dimensional linear subspace of GL(s; R).

The sequence ¥ is called the Radon—Hurwitz sequence (Radon (1923) and Hur-
witz (1923)). It can be proved that there is no linear subspace of GL(s; R)) of
dimension greater than that asserted here.

As a particular case, there is an eight-dimensional linear subspace of GL(8; R),
since R(8) is a (nonuniversal) Clifford algebra for R”. This remark provides a
route into the study of the algebra of Cayley numbers, also known as the octonion
algebra.

2.2.4  Vahlen matrices and conformal transformations

Consider the positive-definite quadratic space R™, with Clifford algebra C¥g ,
and Clifford group T'. It follows from earlier work that the real algebra Cfg »(2)
of 2 x 2-matrices with entries in C¥g ,, is isomorphic to C¥; 41, where elements
of the vector space R1'"*1 are represented by matrices of the form ( j; 2z ), where
z € R™ and u, v € R, such matrices being referred to below as vectors in
Clo,,(2). Let T'(2) denote the Clifford group of Cly,,(2). For many applications,
one would like to characterize the elements of I'(2) in terms of R™ and T'. Such
a characterization was given by Vahlen (1902), extending the work of Clifford on
biquaternions, and his work was re-presented in a series of papers by Ahlfors in
the early 80s, for example (1985), (1986). The reader is referred to a whole se-
ries of papers that have appeared during the last 15 years, for example, the paper
of Jan Cnops (1994), developed from earlier work of Maks (1989) and Fillmore
and Springer (1990}. For a parallel account, involving paravectors, see Elstrodt,
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Grunewald and Mennicke (1987). See also Waterman (1993), Porteous (1995)
and Pozo and Sobczyk (2002).

Here we limit ourselves to discussing the positive-definite case. We begin by
describing conjugation and reversion on C¥; .. (2).

Proposition 8 For any element of Cly .(2)

a c\-_(d -—c J a c\~ _(d c

b d) “\-b a) b d) ~\b a
These hold for vectors in C¥p ,,(2) and so for the whole of C¥ ,,(2).
The next theorem describes the Clifford group I'(2) of CZ; ,,(2).

Theorem 12 Let T be the Clifford group of R™, and let G be the set of all matrices
<Z Z) of Cly n(2) such that

(@)a,b,c,d€T; (b)ab,cd,ac,bdeR™; (¢c)A=ad —cbeR".
Then G is the Clifford group T'(2).

The number A is known as the pseudo-determinant of the matrix.

The indefinite case is somewhat trickier to handle. One important difference
is that the four entries in a Vahlen matrix need not belong to I'. Each must be a
finite product of vectors, but some of these may be null. Of course, the pseudo-
determinant must still be a nonzero real number.

Conformal maps are maps that preserve angle. One’s first encounter with con-
formality is probably in a course on functions of one complex variable, where it
is proved that any holomorphic map is conformal. However, it was proved long
ago by Liouville (1850) that conformality for transformations of R? is much more
restrictive. He proved that the image of any plane or sphere must be either a plane
or sphere. It then follows from a theorem of Mobius that any such map is rep-
resentable as the composite of a finite number of orthogonal maps, translations,
or inversions of R? in spheres. The simplest such inversion is the inversion in
the sphere, with centre the origin, namely the map R® — R3 : z +— z/|z|?,
defined everywhere except at the origin. The obvious analogue of this theorem
holds for positive-definite quadratic spaces of any finite dimension greater than 3.
The analogous statement for indefinite quadratic spaces is also true by a theorem
of Haantjes (1938).

We show here how Clifford algebras may be used to handle such Mobius maps.
We limit ourselves to the case of positive-definite quadratic spaces, explicitly R,
for any positive n.

The trick is first to map the space R™ to the unit sphere S™ in R?*! by stereo-
graphic projection from the South Pole (0,...,0,1), but factoring this through
the null-cone in RL™+1 | as follows:

l—z-z 2z
14z-2’ 14z -2

m—»(%(l +z-x), %(1—m-m),m)—>(

).
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It is not difficult to prove that any orthogonal transformation of R»**! not
only preserves the null-cone, but also induces a Mobius transformation of R™,
and moreover any Mobius transformation of R™ may be so induced.

The Mébius group M (0, n) is the connected component of the identity of the
group of Mdbius transformations of R™. One can save a dimension by identify-
ing R™ with the space of paravectors in R®™~!, and then representing such a
paravector x by the matrix

taven() o) via-ea () 7)+( 2)
- (; ) - (1) 1 ).

Consider now an element of Spin* (1, n + 1) represented by an element of
Clo n—1(2) of the form
a ¢
G2

By Proposition 5 and Proposition 8, it maps the paravector representing the vec-

tor T to
a ¢\ (z zz\ [(d )  z'z'”
b dj\1 = b o) “\1 £ )’
where =’ = (az + c)(bz + d)~! and A is the real number (bz + d)(bx + d)".
For example, the translation x — z + c is represented by the matrix

6 %)

and inflation by the positive scalar p by the matrix

(7 )

while inversion in the unit quasi-sphere composed with the hyperplane reflection
x — —z is represented by the matrix

0 -1
1 0/
Representations of the M6bius groups M (0,n) = M (R™) for n < 4 are given
in the following theorem.

Theorem 13
M(O71) = SP(Q,R)/{l,—l}
M(Ov2) = SP(Q,C)/{l,—l}
M(O73) = SP(L 1)/{17_1}
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The indefinite cases follow the same route, except for some detail. In particular,
for pq odd, the group Spin* (p+1, ¢+ 1) covers the Mobius group M (p, ¢) four
times and not twice. In particular, for the case p, ¢ = 1, 3, important for physics,

2.3
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[2]
3]
(4]
(5]
[6]
(7]
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9]

[10]
(i1]

[12]

[13]
[14]

[15]
[16]
[17]

(18]

M(1,3) = SU(2,2)/{1,i, -1, —i}.
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3
Clifford Analysis

John Ryan

ABSTRACT We introduce the basic concepts of Clifford analysis. This analysis
started many years ago as an attempt to generalize one variable complex analysis
to higher dimensions. Most of the basic analysis was initially developed over the
quaternions which are a division algebra. However, it was soon realized that virtu-
ally all of this analysis extends to all dimensions using Clifford algebras. Here we in-
troduce a generalized Cauchy—Riemann operator, often called a Dirac operator, and
the analogues of holomorphic functions. These functions are called Clifford holo-
morphic functions or monogenic functions. We give a generalization of Cauchy’s
theorem and Cauchy’s integral formula. Using Cauchy’s theorem, we can establish
the Mobius invariance of monogenic functions. We will alsc introduce the Plemelj
formulas and operators, and Hardy spaces.

3.1 Introduction

In this chapter we regard Clifford algebras as natural generalizations of the com-
plex number system. First, note that if z is a complex number, then zZz = [|z{2.
For a quaternion ¢, we also have gg = ||g||2. Quaternions in this way may be
regarded as a generalization of the complex number system. It seems natural to
ask if one can extend basic results of one complex variable analysis on holomor-
phic function theory to four dimensions using quaternions. The answer is yes.
This was developed by the Swiss mathematician Rudolph Fueter in the 1930s and
1940s and also by Moisil and Theodorescu [29]. See for instance [12]. An excel-
lent review of this work is given in the survey article “Quaternionic analysis” by
Sudbery, see [47]. There is also earlier work of Dixon [11]. However, in previous
lectures we have seen that for a vector z € R™, when we consider R” embedded
in the Clifford algebra C¢,,, then z2 = —||z||2. So it is reasonable to ask if all
that is known in the quaternionic setting further extends to the Clifford algebra
setting. Again the answer is yes. The earlier aspects of this study were developed

This lecture was presented at “Lecture Series on Clifford Algebras and their Applications”, May 18
and 19, 2002, as part of the 6th International Conference on Clifford Algebras and their Applications
in Mathematical Physics, Cookeville, TN, May 20-25, 2002.

AMS Subject Classification: 30G35.

Keywords: Cauchy—Riemann operator, monogenic functions, Cauchy’s theorem, Cauchy’s integral,
Plemel;j formula, Hardy space.
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by among others, Richard Delanghe [9], Viorel Iftimie [16] and David Hestenes
[15). The subject that has grown from these works is now called Clifford analysis.

In more recent times, Clifford analysis has found a wealth of unexpected appli-
cations in a number of branches of mathematical analysis, particularly classical
harmonic analysis. See, for instance, the work of Alan McIntosh and his collabo-
rators [21, 22], Marius Mitrea [27, 28] and papers in [37]. Links to representation
theory and several complex variables may be found in [14, 34-36] and elsewhere.

The purpose of this paper is to review the basic aspects of Clifford analysis.

Alternative accounts of much of this work, together with other related resulits,
can be found in [5, 10, 13, 14, 20, 31, 37, 38].

3.2 Foundations of Clifford analysis

We start by replacing the vector z = z1e1+. . .+2xn e, by the differential operator
D= Z;;l ej%. One basic, but interesting, property of D is that D? = —A,,
7

. 2 . - . . .
the Laplacian 23;1 g—zg in R™. The differential operator D is called a Dirac op-
erator.
This is because the classical Dirac operator constructed over four-dimensional
Minkowski space squares to give the wave operator.

Definition 1. Suppose that U is a domain in R™ and f and g are C-functions
defined on U and taking values in CC,,. Then f is called a left monogenic function
if Df = 0 on U, while g is called a right monogenic function on U if gD = 0,
where gD = 37 _, aﬁf;ej.

Left monogenic functions are also called left regular functions and, perhaps
most appropriately, left Clifford holomorphic functions. The term Clifford holo-
morphic functions, or Clifford analytic functions appears to be due to Semmes,
see [41] and elsewhere. We shall most often use the term Clifford holomorphic
functions.

Examples of such functions include the gradients of real valued harmonic func-
tions on U. If k is harmonic on U, and if it is also real valued, then Dh is a vec-
tor valued left monogenic function. It is also a right monogenic function. Such a
function is commonly referred to as a conjugate harmonic function, or a harmonic
1-form. See for instance [46]. An example of such a function is G(z) = B

It should be noted that if f and g are left monogenic functions then, due to the
lack of commutativity of the Clifford algebra, it is not in general true that their
product f(z)g(z) is left monogenic.

To introduce other examples of left monogenic functions, suppose that  is a
C¥,, valued measure with compact support [¢z] in R™. Then the convolution

: ]G(w —y)du(y)



Lecture 3: Clifford Analysis 55

defines a left monogenic function on the maximal domain lying in R™\[]. The
previously defined integral is the Cauchy transform of the measure [y].

Another way of constructing examples of left monogenic functions was intro-
duced by Littlewood and Gay in [23], for the case n = 3, and independently re-
introduced for all n by Sommen [43]. Suppose U’ is a domain in R*~!, spanned
by ez, ..., exn. Suppose also that f'(z') is a C¥,,-valued function such that at each
point z' € U’ there is a multiple series expansion in zo, ..., T, that converges
uniformly on some neighborhood of ' in U’ to f’. Such a function is called a real
analytic function. The series

where D' = Z?:z €; %, defines a left monogenic function f in some neighbor-
7

hood U(f’) in R™ of U’. The left monogenic function f is the Cauchy—-Kowa-
lewska extension of f'. 3

It should be noted that if f is a left monogenic function, then f and f are both
right monogenic functions!.

We now turn to analogues of Cauchy’s Theorem and Cauchy’s integral formula.

Theorem 1 (Clifford—Cauchy Theorem). Suppose that f is a left Clifford holo-
morphic function on U, and g is a right Clifford holomorphic function on U.
Suppose also that V is a bounded subdomain of U with piecewise differentiable
boundary S lying in U. Then

—e1 DYef!(z') = exp(—z1e. D) f'(z'),

?T‘lp—a

/S o(@)n(z) f () do(z) = 0 @.1)

where n(z) is the outward pointing normal vector to S at x and o is the Lebesgue
measure on S.

Proof. The proof follows directly from Stokes’ Theorem. One important point to
keep in mind is that, since C¥, is not a commutative algebra, the order of the
quantities g, n(z) and f must be maintained. One then has that

| s@in(@) @) dota) = [ (e@D)f(a) + a(a)Ds (@) da” =0,
S Vv

Suppose that g is the gradient of a real valued harmonic function and f = 1. Then
the real part of Equation 1 gives the following well-known integral formula:

/ < grad g(z),n(z) > do(z) = 0.

'Here, f denotes the Clifford conjugate of f while f is the reversion of a C¢n, -valued function f.
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We now turn to the analogue of a Cauchy integral formula.

Theorem 2 (Clifford-Cauchy Integral Formula). Suppose thatU,V, S, f and
g are all as in Theorem 1 and that y € V. Then

f(w) = wi [S Gz — y)n(z) f(z) do (z)
and )
ou) = - [S o(z)n(2)G(z — y) do(z)

where w,, is the surface area of the unit sphere in R™.

Proof. The proof follows very similar lines to the argument in one variable com-
plex analysis. We shall establish the formula for f(y), the proof being similar
for g(y). First, let us take a sphere S"~!(y,r) centered at y and of radius 7.
The radius r is chosen sufficiently small so that the closed disc with boundary
S57=1(y,r) lies in V. Then, by the Clifford—Cauchy theorem,

/ Gz —y)n(z)f(z)do(z) = / Gz — y)n(z) f(z) do(x).
S Sn=1(y,r)

However, on S"~1(y,r) the vector n(z) = So G(z —y)n(z) = ;,le and

- Ilz yl[
/ G(z — y)n(z) f(z) do(x)
Sn=1(y,r)

1
= [ )~ S o)+ / e B o)

The right side of the previous expression reduces to

/_ &Bﬁlﬂy—»dv(rnﬂy)/ _do(2).
S yr) gn—t

Now [¢. 1 do(z) = wy, and by continuity

r—Q Sn—1(y,r) rn—
The result follows. O
One important feature to note is that Kelvin inversion, 27" = W whenever

is nonzero, plays a fundamental role in this proof. Moreover, the proof is almost
exactly the same as the proof of Cauchy’s Integral Formula for piecewise C'-
curves in one variable complex analysis.

Having obtained a Cauchy Integral Formula in R™, a number of basic results
that one might see in a first course in one variable complex analysis carry over
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more or less automatically to the context described here. This includes Liouville’s
Theorem and Weierstrass’ Convergence Theorem. We leave it to the interested
reader to set up and establish the Clifford analysis analogues of these results.
Their statements and proofs can be found in [5].

Theorems 1 and 2 show us that the individual components of the equations
Df = 0 and gD = 0 comprise generalized Cauchy—Riemann equations. In the
particular case that f is vector valued, f = Z —1 fje;, the generalized Cauchy-

af;
Riemann equations become o = —L whenever ¢ # j, and ZJ 1 61‘ = 0.

This system of equations is often referred to as the Riesz system.

Having obtained an analogue of Cauchy’s integral formula in Euclidean space,
we now exploit this result to show how many consequences of the classical Cauchy
integral carry over to the context described here. We begin with the Mean Value
Theorem.

Theorem 3 (The Mean Value Theorem). Suppose that D(y, R) is a closed disc
centered at y, of radius R and lying in U. Then, for each left Clifford holomorphic
Sfunction f on U

Ll @ .
1) =75, /Mm eyt

Proof. We have already seen that for each r € (0, R),

f(y)=—1- —fﬁ%

Wn Sn—1(y,r) ”‘T - yl

do(z),

where S™~1(y,r) is the (n — 1)-dimensional sphere centered at y and of radius 7.
We obtain the result by integrating both sides of this expression with respect to
the variable r, and dividing throughout by R. O

Let us now explore the real analyticity properties of Clifford holomorphic func-
tions. First note that when n is even,

Glz —y) = (-1)"T (z —y) ™.
Also

lyll

(o) =27 (1me) ™ = (mam) e o] = o] =

So for, ||y|| < ||zl

(z—y) = A +yz 4.yt oy )
=14z y+.. 4z ly. . c7ly+. )z
Hence, these two sequences converge uniformly to (z — y) ™! provided

lyll < <lzl],
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and they converge pointwise to (z — y)~! provided ||y|| < ||z||. One now takes
(—1)"_5‘2 times the (n — 1)-fold product of the series expansions of (z — y)~!
with itself to obtain a series expansion for G(z —y). In the process of multiplying
series together, in order to maintain the same radius of convergence, one needs
to group together all linear combinations of monomials in ¥y, . .., ¥, that are of
the same order. Thus, we have deduced that when 7 is even, the multiple Taylor

series expansion

Z( Z y]l"...y{;‘ 8G(z) )
2\ il gal 520 O

converges uniformly to G(z — y) provided ||y|| < r < ||z||, and converges point-
wise to G(z — y) provided |jy|| < ||z]|.

A similar argument holds when n is odd.

Returning to Cauchy’s integral formula, let us suppose that f is a left Clif-
ford holomorphic function defined in a neighborhood of the closure of some ball
B(0, R). Then

fW=5-[  Gl-yn@ie)d)
8B(0,R)
Yyl yin B1G(z) )
LB(OR)]_O< 12 il gl 02t . Bady @) (@) do()
Jite+in=j

provided ||yl| < |jz||. Since this series converges uniformly on each ball B(0, ),
for each » < R, this last integral can be re-written as

o yin 8IG(z
Z / ( AoV 2 ( )]. n() f(z)) do (z).
=0 /8B(O,R) Jite..Jnt Ozt ... Ozy

Jl <dn N
Jit.. +]n—]

Since the summation within the parentheses is a finite summation, this last ex-
pression easily reduces to

1 & oy ¥G(z
—Z( ¥ —yl—,—,/ ——.————(——)Tn(z)f(z)) do(z).
Wr i, JveIn JoB(OR) oz} ..oz

J1t e tin=j

On placing

1 87G(z)
R —_—7N\T x dO' ) =a; n
Wn JoB(o,R) O ...0x (2)f(z) do(z) d1eed

it may be seen that on B(0, R) the series
e J

1 In
Z( Z Iljjy aj1~~~jn)

j=0  g1..dn
Jit.+in=j
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converges pointwise to f(y). Convergence is uniform on each ball B(0,), pro-
videdr < R.

Similarly, if g is a right Clifford holomorphic function defined in a neighbor-
hood of the closure of B(0, R), then the series

p v
Toedn g0 gl

oo

Tt FIn=j3

converges pointwise on B(0, R) to g(y) and converges uniformly on B(0,r) for
r < R, where

J
Vedn = L g(z)n(z _0G=) — do(z).

b; _
J
Wn JoB(0,R) oz} ... 0z

By translating the ball B(0, R) to the ball B(w, R), where
w=wuwr1e; +...+ wnen,
one may readily observe that for any left Clifford holomorphic function £, defined

in a neighborhood of the closure of B(w, R), the series

oo

Z( Z (yl - wl)‘jl - (yn - ’lUn)j" aglmjn)

1 !
=0 irodm 4 J1t---In:
J1t-dn=]

converges pointwise on B(w, R) to f(y), where

7 —
T PO~ (2 (w) do(a).
n JoB(w,Ry 07" ...2¥
Again, the series converges uniformly on B(w, r) foreachr < R. A similar series
may be readily obtained for any right Clifford holomorphic function defined in a
neighborhood of the closure of B(w, R).
The types of power series that we have developed for left Clifford holomor-
phic functions are not entirely satisfactory. In particular, unlike their complex
analogues, the homogeneous polynomials

. i
Z .1'—."'611'1.., Jn
Stin J1:..-Int
Jit...+in=7
are not expressed as a linear combination of left Clifford holomorphic polynomi-
als. To rectify this situation, let us first take a closer look at the Taylor expansion
for the Cauchy kernel G(z — y) where all the Taylor coefficients are real. Let us
first look at the first order terms in the Taylor expansion. This is the expression
0G(z) 0G(z)
) 6I1_+“' Yn 6.’[” .
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Since G is a Clifford holomorphic function,

8G’(x):_i 1 8G’(x).

e; €;
oz 1= Oz

=2

Therefore, the first order terms of the Taylor expansion for G(z — y) can be re-
expressed as

Z(yj - eflejyl)m-

Moreover, for 2 < j < n, the first order polynomial y; — e} 'e;y; is a left Clifford
holomorphic polynomial. Let us now go to second order terms. Again, we replace
the operator % by the operator

n ) D)
-2 g,
7

i=2

2
whenever it arises. Let us consider the term gzica(;;’ where 7 # j # 1. We end up
with the polynomial

Yiys — yiyier e — yiyier e
= 3((yi —yie1 &) (y; —yier 'e;) + (y5 — yiey ') (yi —yiey ei).
2
Similarly, the polynomial attached to the term %ﬂ is (y; — yie7 " es)?. Us-

ing the Clifford algebra anticommutation relations e;e; + eje; = —24;5, and on
replacing the differential operator 6%1 by the operator

the power series we previously obtained for G{z —y) can be replaced by the series

2 1G(x)

-§_0< ‘ E : Pj2~~~jn (y) (9:25%2 - (91‘2{’ )7
J=8  J2.dn

J2t...+in=j

where ||y|| < ||z|| and

1 _ _
Py, .(y) = 3‘,2(%(1) —y1e7 o)) - - (Wo(s) — 161 'eo(h))-

Here, (i) € {2,...,n} and the previous summation is taken over all permuta-
tions of the monomials (yq(;y — y1e7 160(1)) without repetition. The quaternionic
monogenic analogues for these polynomials were introduced by Fueter [12], while
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the Clifford analogues, P}, . ;., were introduced by Delanghe in [9]. It should be
noted that each polynomial P, ;, (y) takes its values in the space spanned by
{1, e1eg, ..., e1e,}. Also, each such polynomial is homogeneous of degree j.
Similar arguments to those just outlined give

i 3G(z) —— )
Jat.tjn=j

provided ||y[| < {lz].

Proposition 1. Each of the polynomials P;,.. ;. (y) is a left Clifford holomorphic
polynomial.

Proof. Calculating

0 e 0
DP;,. 5.(y) =e1 <6—yl +er' > eja—yjpja...jn (y)>
j=2

we then consider the expression

0 ]
(54 +Z erle; )P 5 (9)
This term is equal to
0 < _, 0
a. e )% o _'_la e \Yo(i— __lai—
<6yj +jzzzel ejayj) (Yo(1) — €1 €o)¥1) - - Yo(i-1) — €1 Ea(i-1)¥1)

_ - -1
X (yo(i) — € leo(i)yl)(ya(i+l) — € lea(i+1)y1) e (ya(j) — € eo(j)yl)-

This is equal to

Z (Yo(1) = €1 "ea(y¥1) - - - Wo(i=1) — €1 "€a(i-1y¥1)(—€1 "€o(i))
X (Yo(i+1) — €1 '€oi+1)¥1) - (Yo(s) — €1 €a(5)¥1)
+ Z el_lea(i)(ya(l) - el_lea(l)yl) o Yoio1y — el_lea(i—l)yl)

—1 -1
X (Yo(is1) — €1 Coi+1)¥1)--- (Uo(s) — €1 €a()¥1)-

If we multiply the previous term by ¥y, and add to it the following term, which is
equal to zero,

Z (Yo(1) — €1 o)1) - - - Wo(i=1) — €1 "eoi=1y¥1) Wo(i) — Yo (i)

X (Yo(it1) — el_leo(i+1)y1) ooy — el_lea(i)yl)
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we get, after regrouping terms,

Z Wo(1) — €1 "eay¥1) - - - Wo(i=1) — €7 eo(i-1)¥1) Yoy — €1 “eosy¥1)
X (Yo(i+1) = €1 €oirn¥1) - - - (Yo(s) — €1 "€o(5)¥1)
- Z (Yoriy — €1 "eo(iy¥1) Wo(1) = €1 "eo)¥1) - - - Yo(iz1) — €] *€o(i—1)¥1)
X (Yo(r1) — €1 o)1) - - Wols) — €1 "€o(5)¥5)-

Since the summation is taken over all possible permutations, without repetition,
the last term vanishes. O

Using Proposition 1 and the results we previously obtained on series expan-
sions, we can obtain the following generalization of Taylor expansions from com-
plex analysis.

Theorem 4 (Taylor Series). Suppose that f is a left Clifford holomorphic func-
tion defined in an open neighborhood of the closure of the ball B(w, R). Then

(e <]

fly) = Z( Z Py, 5.y — w)ajz...jn>

j=0_ J2eedn
J2t+..tin=3

where )
1 / FG(z —w)

wn JaB(w,R) 0T} ... Oz}

n(z)f(z) do(z)

aJ2Jn =

and ||y — w|| < R. Convergence is uniform provided ||z — w|} < r < R.

A simple application of Cauchy’s theorem tells us that the Taylor series that
we obtained for f in the previous theorem remains valid on the largest open ball
on which f is defined, and on the largest open ball on which g is defined. Also,
the previous identities immediately yield the mutual linear independence of the
collection of the left Clifford holomorphic polynomials

{Pjs.cjn 12+ ... Jn =173, 0 < j < oo}.

3.3 Other types of Clifford holomorphic functions

Unlike the classical Cauchy—Riemann operator a%‘ = % + ia%, the generalized
Cauchy-Riemann operator D that we have introduced here does not have an iden-
tity component. Instead, we could have considered the differential operator
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Also for U’ a domain in R & R™™!, spanned by {1,e3,...,en—1}, one can con-
sider C?,,_1-valued differentiable functions f’ and ¢’ defined on U’ such that
D'f" =0and ¢’ D’ =0, where

Traditionally, such functions are also called left monogenic and right monogenic
functions. To avoid confusion, we shall call such functions unital left monogenic
and unital right monogenic, respectively. In the case where n = 2, the opera-
tor D’ corresponds to the usual Cauchy-Riemann operator, and unital monogenic
functions are the usual holomorphic functions studied in one variable complex
analysis. The function

z
llzll™

G'(z) =

=z Yzl 72

is an example of a function which is both unital left monogenic and unital right

monogenic. It is a simple matter to observe that f’ is unital left monogenic if and

only if f" is unital right monogenic. However, T is not unital right monogenic

whenever f’ is unital left monogenic. Instead, 71 satisfies the equation TD’ =0.
The function theory for unital left monogenic functions is much the same as for

left monogenic functions. For instance, if f” is unital left monogenic on U’, and ¢’

is unital right monogenic on the same domain, and S’ is a piecewise smooth,
compact surface lying in U’ and bounding a subdomain V", then

[ d@n@r @i =0,
where n(z) is the outward pointing normal vector to S at . Also, foreachy € V”

there is the following version of Cauchy’s integral formula:

@) =— [ ¢@-yn@r (@ do)

Wn Js/

To get from the operator D to the operator D', one first rewrites D as
~1
0 — _, 0
ent — + e e ——) .
i (Ba:n ; " 7 Oz

On multiplying on the left by e,,, and changing the variable z,, to g, we get the
operator



64 John Ryan

This operator takes its values in the even subalgebra C¢} of CZ¢,. Applying the
isomorphism

0:Clyy — ClL, Blej,...e5) =€ e, ...exle;,
it immediately follows that 8(D’) = D”. So if f’ is unital left monogenic, then

D”8(f) = 0. If we change the variable x; of the function 8(f(z)) to z,,, we get
a left monogenic function, which we denote by 8'(f)(z), where

z=1x161+ ...+ Tpe, € U CR"
if and only if
z=z,+z1614... +Th_ten1 €U CROR L

It should be noted that D'D’ = D'D’ = A,,.
When n = 3, the algebra C/;3 is split by the two projection operators

Ei = %(1 + 616263)

into the direct sum
Cls =FE,.Cl3 & E_Cis,

and each of these subalgebras is isomorphic to the quaternion algebra H. In this
setting, the differential operator F1 D’ can best be written as

85 & o0 8
129,39 .0 49
EeD' =g +ig +ig, T gy

and the operator E.+ D can best be written as

EiD = ?,gax— +356?; + k%.

We shall denote the first of these two operators by Dj; and the second by Dy. The
operator Dy is sometimes referred to as the Cauchy-Riemann~Fueter operator.
The function theory associated to the differential operators Dy and Dy is much
the same as that associated to the operators D and D’. In fact, historically the
starting point for Clifford analysis was to study the function theoretic aspects of
the operators Dy and Dy, see for instance [9, 12] and the excellent review article
of Sudbery [47].

It is a simple enough matter to set up analogues of Cauchy’s theorem and
Cauchy’s integral formula for the quaternionic valued differentiable functions that
are either annihilated by Dy or Dy, either acting on the left or on the right. When
dealing with the operator Dy, such functions are called quaternionic monogenic.
The quaternionic monogenic Cauchy kernel is the function ¢~!||q||~2. Conse-
quently, for each quaternionic left monogenic function f(g) defined on a domain
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U” C H, and each g lying in a bounded subdomain with piecewise C*-bound-
ary 57,

Flgo) = — / (@ — 20)~ g = a0l ~2n(q) £(q) dor(a)-
w3 Jg»

Similarly, if g is right quaternionic monogenic on U”, then

o) = - [ o@n@a - la-wlPdee. G2

w3

3.4 The equation D*f =0

It is reasonably well known that if h is a real valued harmonic function defined
on a domain U C R”, then for each y € U and each compact, piecewise C!-sur-
face S lying in U such that S bounds a subdomain V of Sand y € V,

h(y)
1
= ;-/(H(a: —y) < n{z), grad h(z) > — < G(z — y),n{z) > h(z)) do(z),
nJS
where
) 1
Yy)= 3
(n—2)[|z — y|jn—2
This is Green'’s formula for a harmonic function, and it heavily relies on the stan-

dard inner product on R™. Introducing the Clifford algebra C?,,, the right side of
Green’s formula is the real part of

L [ (6 - yn(@)h(z) - H(z - y)n(z) Dh(x)) do(a).

Wn Js

H(x—

Assuming that the function h is C2, then on applying Stokes’ theorem, the
previous integral becomes

- (6(e - y)n(@)h(z) - H(z - y)n(z) Dh(z) ) do (),

Wn JSn=i(y,r(y))

where S™"~1(y, r(y)) is a sphere centered at y, of radius r(y) and lying in V. On
letting the radius r(y) tend to zero, the first term of the integral tends to h(y),
while the second term tends to zero. Consequently, the Clifford analysis version
of Green’s formula is

h(y) = — /S (6@ - y)n(@)h(z) - H(z - y)n(z) Dh(z)) do(a).

We obtained this formula under the assumption that h is real valued and C2.
The fact that h is real valued can easily be seen to be irrelevant, and so we can
assume that h is C¥,, valued. From now on, we shall assume that all harmonic
functions take their values in C¥,,. If h is also a left monogenic function, then the
Clifford analysis version of Green’s formula becomes Cauchy’s integral formula.
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Proposition 2. Suppose that f is a Clifford holomorphic function on some do-
main U. Then x f () is harmonic.

Proof.

n

Dzf(z) = -nf(z) - Y _z; Bz szekeJ a

j=1

Now

Z:zkekeJ 6 ZszekeJ 6

k=1 j#k

As f is left monogenic, this last expression simplifies to Ek 1 Tk af (I) . More-
over, D(377_ lzJ—gg—”—) = 0. Consequently, D2z f(z) = 0. 0O

The previous proof is a generalization of the statement: “if h(x) is a real valued
harmonic function, then so is < z, grad A(z) > 7.
In fact, in the previous proof, we determine that

Dzf(z) = —nf(z) -2 z; 655).

In the special case where f(z) = Pi(z), a left Clifford holomorphic polynomial
of order k, this equation simplifies to

Dz Py (z) = —(n + 2k) P (x).

Suppose now that h(z) is a harmonic function defined in a neighborhood of the
ball B(0, R). Then Dh is a left Clifford holomorphic function, and there is a series
Y20 Pi(z) of left Clifford holomorphic polynomials with each P, homogeneous
of degree [, such that the series converges locally uniformly on B(0, R) to Dh(z).

Now consider the series -~

Z n:-IQZ Pz).

=0

Since

— S IR@] <A@,

this new series converges locally uniformly on B(0, R) to a left Clifford holomor-
phic function fi(z). Moreover, Dz fi(z) = Dh(z) on B(0, R). Consequently,
h(z) — z f1(z) is equal to a left Clifford holomorphic function f2(z) on B(0, R).
We have established:

Proposition 3. Suppose that h is a harmonic function defined in a neighborhood
of B(0, R). Then there are left Clifford holomorphic functions f1 and f defined
on B(0, R) such that h(z) = zf1(z) + f2(z) for each z € B(0, R).
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This result remains invariant under translation. As a consequence, it shows us
that all harmonic functions are real analytic functions. So there is no need to spec-
ify whether or not a harmonic function is C2. The result also provides an Almansi
type decomposition of harmonic functions in terms of Clifford holomorphic func-
tions over any ball in R™.

It should be noted that Proposition 3 remains true only if A is real valued.

Proposition 3 gives rise to an alternative proof of the Mean Value Theorem for
harmonic functions.

Theorem 5. For any harmonic function h defined in a neighborhood of a ball
B(a,R) andanyr < R,
1
h(a) = — h(z)do(z).
Wn J8B(a,r)

Proof. Proposition 3 tells us that there is a pair of left Clifford holomorphic func-
tions f; and f2 such that

h(z) = (z - a)fi(z) + fa()
on B(a, R). So h(a) = f2(a), and we have previously shown that

1 fo(z) do(z) = fala).

Wn J&B(a,r)
Now

/ (z — a) fi(z) do(z) = r / n(z)f1(z) do(z) = 0.
8B(a,r)

oB(a,r)

The following is an immediate consequence of Proposition 3.

Proposition 4. If h;(z) is a harmonic polynomial homogeneous of degree l, then

hi(z) = pi(z) + zpi—1(x)

where py is a left Clifford holomorphic polynomial homogeneous of degree l while
pi—1 Is a left monogenic polynomial which is homogeneous of degree | — 1.

It is well known that pairs of homogeneous harmonic polynomials of differing
degrees of homogeneity are orthogonal with respect to the usual inner product
over the unit sphere. Proposition 4 offers a further refinement to this. Suppose
that f and g are Cf,,-valued functions defined on S*~1, and each component of f
and g is square integrable. If we define the CZ,, inner product of f and g to be

<fo>=— [ T@)do)

¢ Sn-1
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then if f and g are both real valued, this inner product is equal to

1
— f(z)g(z) do (=),
wn Sn—1
which is the usual inner product for real-valued square integrable functions de-
fined on S™~1. Now

< zpi—1(z),pi(z) > = —;1: - D1 (z)zpi(z) do(zx)

= [ i @n@n(E) do(z) =0.
Wn Jgn-1
The evaluation of the last integral is an application of Cauchy’s theorem.

Let us denote the space of C¢,,-valued functions defined on S™"~!, and such
that each component is square integrable, by L2(S™"~, CZ,). Clearly, the space
of real valued square integrable functions defined on S" ! is a subset of L2(S" 1,
Cl,_1). The space L?(S"~1,C¥,) is a Cf,-module.

We have shown that by introducing the module L2(S"~, CZ,,), Proposition 4
provides a further orthogonal decomposition of harmonic polynomials, using left
Clifford holomorphic polynomials. We shall return to this theme later. This de-
composition was introduced for the case n = 4 by Sudbery [47], and indepen-
dently extended for all » by Sommen [43].

Let us now consider higher order iterates of the Dirac operator D. In the same
way that DH (z) = G(z), there is a function G3(z) defined on R™\ {0} such that
DG3(z) = H(x). Specifically,

T

Gs(z) = C(n, 3)H—IF_2’

for some dimensional constant C(n, 3). Continuing inductively, we may find a
function Gk (z) on R™\{0} such that DG (z) = Gk—1(z). Specifically,

T
where when n is odd, so is k.

1
where when n is odd, k is even.

T
where when n is even, k is odd and k& < n.

1

Gi(z) = C(n, k)

)™ =*
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where when n is even, k is even and k < n.
Gr(z) = C(n, k)(zk_" log ||z| + A(n, k)zk'")

where when n is even, k& > n. In the last expression, A(n, k) is a real constant
dependenton n and k, and C(n, k) is a constant dependent on 7 and & throughout.
It should be noted that G1(z) = G(z) and G2(z) = H(z). It should also be
noted that D*G(z) = 0.
Here is a simple technique for constructing solutions to the equation D*g = 0
from left Clifford holomorphic functions. The special case k = 2 was illustrated
in Proposition 2.

Proposition 5. Suppose that f is a left Clifford holomorphic function on U. Then
() =0

Proof. The proof is by induction. We have already seen the result to be true in the
case k = 2 in Proposition 2. If & is odd, then

Da* f(a) = (k - 1)e*~*f(a).

If k is even, then
Dzt f(z) = —n(k — 1)z* 2 f(z) + 2577 Z &T
By arguments presented in Proposition 5, this expression is equal to

—n(k — 1)z* "2 f(z) + 2*2 Zn: x4 8f(a'v) .

J
= 0z

However, > =15 Bg (=) is a left Clifford holomorphic function. So the proof by

induction is now complete. O

We shall refer to a function g : U — C¥,,, which satisfies the equation D¥g =
0, as a left k-monogenic function. Similarly, if  : U — C¥,, satisfies the equation
hD* = 0, then h is a right k-monogenic function. In the case where k = 1, we
return to the setting of left, or right, Clifford holomorphic functions, and when
k = 2 we return to the setting of harmonic functions. When k = 4, the equations
D*g = 0 and gD* = 0 correspond to the equations A2g = 0 and A2h = 0. So
left or right 4-monogenic functions are in fact biharmonic functions.

More generally, if & is even, thin a left or right k-monogenic function f auto-

matically satisfies the equation A2 f = 0.
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Proposition 6. Suppose that p is a left k-monogenic polynomial homogeneous of
degree q. Then there are left Clifford holomorphic polynomials fo, . .., fr_1 such
that

p(@) = fo(z) + ... + 2" i1 (),

and each polynomial f; is homogeneous of degree q — j, whenever ¢ — j > 0,
and identically zero otherwise.

Proof. The proof is via induction on k. The case & = 2 is established immedi-
ately after the proof of Proposition 2. Let us now consider Dp(z). This is a left
(k — 1)-monogenic polynomial homogeneous of degree ¢ — 1. So by the induction
hypothesis,

Dp(z) = gi(z) + ... + 2" 2ge_1(2),
where each g; is a left Clifford holomorphic polynomial homogeneous of degree
g — j, whenever g — j > 0, and is equal to zero otherwise. Using Euler’s lemma,

and the observations made after the proof of Proposition 5, one may now find left
Clifford holomorphic polynomials fi(z),. .., fe—1(z) such that

D(zfi(z) + ...+ ¥ fi_1(z)) = Dp(z),
and
fi(z) = ¢jg;(z)
for some ¢; € R, and where 1 < j < k — 1. It follows that

k—1 -
p(z) - Y 2 fi(z)
j=1

is a left Clifford holomorphic polynomial fo, homogeneous of degree g. O

One may now use Proposition 6, and the arguments used to establish Proposi-
tion 3, to deduce:

Theorem 6. Suppose that f is a left k-monogenic function defined in a neighbor-
hood of the ball B(0, R). Then there are left monogenic functions fo, ..., ft—1
defined on B(0, R) such that f(z) = fo(z) + ...+ 271 fi_1(z) on B(0, R).

Theorem 6 establishes an Almansi decomposition for left k-monogenic func-
tions in terms of left Clifford holomorphic functions over any open ball. It also
follows from this theorem that each left k-monogenic function is a real analytic
function. It is also reasonably well known that if & is a biharmonic function de-
fined in a neighborhood of B(0, R), then there are harmonic functions k; and hy
defined on B(0, R) such that

h(z) = ha(z) + ||z]*ha(2).

In the special case where k = 4, Theorem 6 both establishes this result and re-
fines it.
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Since each left k-monogenic function is a real analytic function, we can imme-
diately use Stokes’ theorem to deduce the following Cauchy—Green type formula.

Theorem 7. Suppose that f is a left k-monogenic function defined on some do-
main U, and suppose that S is a piecewise C' compact surface lying in U and
bounding a bounded subdomain V of U. Then for eachy € V,
1 u , A
1) = o |16 = un(@) D fla) dota).

W
n G=1

3.5 Conformal groups and Clifford analysis

Here we examine the role played by the conformal group within parts of Clifford
analysis. Our starting point is to ask what type of diffeomorphisms acting on sub-
domains of R™ preserve Clifford holomorphic functions. If a diffeomorphism ¢
can transform the class of left Clifford holomorphic functions on one domain U
to a class of left Clifford holomorphic functions on the domain ¢(U) and do the
same for the class of right Clifford holomorphic functions on U, then it must
preserve Cauchy’s theorem. If f and g are left and right Clifford holomorphic
on U, respectively, and these functions are transformed to f’ and g’, left and right
Clifford holomorphic functions on ¢(U), then

[ 9@ do@) =0= [ g on@)s ) doty)

s #(S)

where S is a piecewise C'-compact surface lying in U and y = ¢(z). An impor-
tant point to note here is that we need to assume that ¢ preserves vectors orthog-
onal to the tangent spaces at = and ¢(z). As the choice of = and S is arbitrary,
it follows that the diffeomorphism ¢ is angle preserving. In other words, ¢ is a
conformal transformation. A theorem of Liouville [24] tells us that for dimen-
sions 3 and greater the only conformal transformations on domains are M&bius
transformations.

In order to deal with Mobius transformations using Clifford algebras, we have
seen in a previous chapter that one can use Vahlen matrices. We now proceed
to show that each Mobius transformation preserves monogenicity. Sudbery [47],
and also Bojarski [3], have established this fact. We will need the following two
lemmas.

Lemma 1. Suppose that $(z) = (az+b)(cz+d)~" is a Mébius transformation;
then

Glu—v) = J($,2)7 Gz —y)J(6,9)7",
where u = ¢(z), v = ¢(y) and

(cz + d)
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Proof. The proof essentially follows from the fact that

(13_1 _ y—l) — x——l(y . I)y—l.
Consequently,

le=t —y~! =zl e~ wllyl ™, and ez - ayd = a(z - y)a.

If one breaks the transformation down into terms arising from the generators of
the Mobius group, using the previous set of equations, then one readily arrives at

the result. O
Lemma 2. Suppose that y = ¢(z) = (az + b)(cz + d)~! is a Mobius transfor-
mation, and for domains U and V we have $(U) = V. Then

/ F(u)n(u)g(u) do(u) = / F@(x))J (%, 2)n(z)J (¢, )g(¢(x)) do ()
s o=

where u = (z), S is a orientable hypersurface lying in U, and

e

cx+d

T2 = e ap

Proof Outline. On breaking 1 up into the generators of the M&bius group, the
result follows by noting that

It follows from Cauchy’s Theorem that if g(u) is a left Clifford holomorphic
function in the variable u, then J (v, ) f(¢(z)) is left Clifford holomorphic in
the variable z.

When ¢(z) is the Cayley transformation

y=(e,z+1)(z+ en)"l,

we can use this transformation to establish a Cauchy-Kowalewska extension in a
neighborhood of the sphere. If f(z) is a real analytic function defined on an open
subset U of S~ 1\{e,}, then

W(y) =J(¢7 y) ' f(6(v))

is a real analytic function on the open set V. = ¢~1}(U). This function has a
Cauchy-Kowalewska extension to a left Clifford holomorphic function L(y) de-
fined on an open neighborhood V (g) C R™ of V. Consequently,

F(z)=J(¢~" 2)L(¢7 ()
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is a left Clifford holomorphic defined on an open neighborhood

U(f)=¢"1(V(9)

of U. Moreover Fjyy = f. Combining with similar arguments for the other Cayley
transformation

y=(—epz+1)(z - en)"l,
one can deduce:

Theorem 8 (Cauchy—Kowalewska Theorem). Suppose that f is a Cl,-valued
real analytic function defined on S™~L. Then there is a unique left Clifford holo-
morphic function F defined on an open neighborhood U(f) of S™~! such that
Fign1 = f.

IS

In fact, if f(u) is defined on some domain and satisfies the equation DEf =0,
then the function Jx (¢, 2} f(1(z)) satisfies the same equation, where
cz+d
lex + df|n=F+1

Jk(d)ax) =

Theorem 9 (Fueter-Sce Theorem). Suppose that f = u +iv is a holomorphic
function on a domain Q C C and that Q = Q and f(Z) = f(z). Then the function

/

F(z) = u(zy, [']) + e vl 2])

lll

is a unital left(n — 1)-monogenic function on the domain {z : x1 + i||z’|| € Q}
whenever 1 is even. Here ©’ = xqe3 + ... + Zpen.

Proof. First let us note that z~'e; is left n — 1 monogenic whenever n is even. It
follows that

ok
-1 _ —-k—1
ﬁl‘ €1 = CrT €1
1

is n — 1 left monogenic for each positive integer k. Here ¢x, is some nonzero real
number. Using Kelvin inversion, it follows that z*e; is left n — 1 monogenic for
each positive integer k. By taking translations and Taylor series expansions for
the function f, the result follows. |

This result was first established for the case n = 4 by Fueter [12], see also Sud-
bery [47]. It was extended to all even dimensions by Sce [40], though the methods
used do not make use of the conformal group. This result has been applied in [32,
33] to study various types of singular integral operators acting on LP spaces of
Lipschitz perturbations of the sphere.
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3.6 Conformally flat spin manifolds

The invariance of monogenic functions under Mobius transformations, described
in the previous section, makes use of a conformal weight factor J(¢, z). This in-
variance can be seen as an automorphic form invariance, which leads to a natural
generalization of the concept of a Riemann surface to the Euclidean setting. A
manifold M is said to be conformally flat if there is an atlas A of M whose tran-
sition functions are Mobius transformations. For instance, via the Cayley trans-
formations

(ent1T +1)(T + €n11)” and (—eny17+ 1)(z —eny1) Y,

one can see that the sphere S™ C R™*! is an example of a conformally flat man-
ifold. Another way of constructing conformally flat manifolds is to take a simply
connected domain U of R™, and consider a Kleinian subgroup I" of the Mébius
group at acts discontinuously on U. Then the factorization U\I' is a conformally
flat manifold. For instance, let U = R™ and let I be the integer lattice

Zk = Zei+...+ Zex

for some positive integer k& < n. In this case, R*\ Z* gives the cylinder Cy, and
when k = n we get the n-torus. Also, if we let

U=R™"\{0} and T ={2F:ke Z},

the resulting manifold is S x S"~1.
We locally construct a spinor bundle over M by making the identification
(u, X) with either (z, £J(¢, z)X), where

u=19Y(z) = (ax + b)(cz + d)" ! = (—az — b)(—cx — d)~ L.

If we can compatibly choose the signs, then we have created a spinor bundle over
the conformally flat manifold. Note, it might be possible to create more than one
spinor bundle over M. For instance, consider the cylinder C. If we make the
identification (z, X) with (z + m, (—1)™**™ X)) where ! is a fixed integer
with ! < k,and m = mye; + ...+ mye; + ... + myex, then we have created k
different spinor bundles E, . .., E* over Cy.

We have used the conformal weight function J(1, 2} to construct the spinor
bundle E. It is easy to see that a section f : M — E could be called a left
monogenic section if it is locally a left monogenic function. It is now natural to
ask if one can construct Cauchy integral formulas for such sections. To do this,
we need to construct a kernel over the Euclidean domain U that is periodic with
respect to I', and then use the projection map p : U — M to construct from this
kernel a Cauchy kernel for U. In [19], we show that the Cauchy kernel for Cy,
with spinor bundle E', is constructed from the kernel

cote(z,y) = >, (=)™ TGz —y +m+n),
mezZt neZk-!
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wheren = niy1€141 + ... + npe,. While for the conformally flat spin manifold
St x S™~1! with trivial bundle C%,, the Cauchy kernel is constructed from the
kernel

— 00

i G(2*z — 2y) + 2272"G(2)( Y G2 FaTt — 2Ry )G (y).
k=0 k=-—1

See [17-19] for more details and related results.

It should be noted that one may set up a Dirac operator over arbitrary Rieman-
nian manifolds, see for instance [4], and one may set up Cauchy integral formulas
for functions annihilated by these Dirac operators [6, 28].

3.7 Boundary behavior and Hardy spaces

Possibly the main topic that unites all that has been previously discussed here
on Clifford analysis is its applications to boundary value problems. This, in turn,
leads to a study of boundary behavior of classes of Clifford holomorphic func-
tions and Hardy spaces. Let us look first at one of the simplest cases. Previously,
we noted that if 8 is a square integrable function defined on the sphere S™~1,
then there is a harmonic function % defined on the unit ball in R™ with bound-
ary value 6 almost everywhere. Also, we have seen that h(z) = fi(z) + zf2(z)
where fy and f; are left Clifford holomorphic. However, on S~ ! the function
G(z) = z. One can see that on S™~! we have §(z) = fi(z) + g(z) almost
everywhere. Here, f; is left monogenic on the unit ball B(0,1) and g is left Clif-
ford holomorphic on R™\ B(0, 1), where B(0,1) is the closure of the open unit
ball. Let H%(B(0,1)) denote the space of Clifford holomorphic functions defined
on B(0,1), with extensions to a square integrable functions on S™~!, and let
H?(R™\B(0,1) denote the class of left Clifford holomorphic functions defined
on R™\ B(0, 1), with square integrable extensions to S™~!. What we have so far
outlined is that

L*(s™"1) = H*(B(0,1)) ® H*(R™\B(0,1)),

where L2(S™~1) is the space of C,, valued Lebesgue square integrable functions
defined on S™~!. This is the Hardy 2-space decomposition of L2(S™1). It is
also true if we replace 2 by p where 1 < p < 0o. We will not go into more details
here, since it is beyond the scope of the material presented here.

Let us now take an alternative look at a way of obtaining this decomposition.
This method will generalize to all reasonable surfaces. We will clarify what we
mean by a reasonable surface later. Instead of considering an arbitrary square
integrable function on ™71, let us instead assume that @ is a continuously differ-
entiable function. Let us now consider the integral

— [ 6@ - ym@)h(z) do(a)

Wn Jgn-1



76 John Ryan

where y € B(0, 1). This defines a left Clifford holomorphic function on B(0,1).
Now let the point y approach a point z € S™~! along a differentiable path y(t).
Let us also assume that é’(’i—(ttl is evaluated at t = 1, so that y(¢) = z is not
tangential to S™~! at z. We can essentially ignore this last point at a first read. We

want to evaluate

lim 1 G(z — y(t))n(z)f(z) do(zx).

t—1w, gn—1
We do this by removing a small ball on B(0, 1) from S™~!. The ball is centered
at z and is of radius e. We denote this ball by b(z, €). The previous integral now
splits into an integral over b(z, €) and an integral over S"~!\b(z, €). On b(z, €),
we can express 0(x) as (8(z) — 8(z)) + 8(z). As 8 is continuously differentiable,

16(z) —0(2)]l < Cliz — 2|

for some C € R*. It follows that

lim lim /b o Gz — y(t))n(z)(8(x) — 8(2))|| do(z) = 0.

e—0t—1

Moreover, the term

lim lim L G(z —y(t))n(x)0(z) do(z)

e—0t—ol Wn b(z €

can be replaced by the term

lim lim

€0 t—1 /B(O,l)maB(z,e) G(z — y(t))n(z)0(z) do(zx),

since 6(z) is a Clifford holomorphic function. By the residue theorem the limit of
this integral evaluates to 16(z).

We leave it to the interested reader to note that the singular integral or principal
valued integral

lim lim l/ G(z —y(t))n(z)f(z) do(zx)
Sn—1\b(z,€)

e—=0t—1 wp

= P.V.—l—- G(z — 2)n(z)f(z) do(z)

Wn Jgn—1

is bounded.
We have established that

lim G(z — y(t))n(z)0(z) do(x)

t—1 Sn—1

= 16(2) + P.V.i G(z — z)n(z)0(z) do(z).

Wn Jgn-1
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If we now assumed that y(t) is a path tending to 2 on the complement of
B(0,1), then similar arguments give

lim Gz — y(t))n(z)8(z) do(z)

t—1 gn-—1

1
=—20(z) + P.V.w— /s » G(z — z)n(z)8(z) do(z).
We will write these expressions as

(£3] + Cgn-1)0.

If we consider the limit
lim — /s 1 Gz —y(t))n(z)(3] + Cgn-1)0(z) do(z),
we may determine that
(%I+ Cgn-1)? = %I—F Cgn-1.
Furthermore,
(%I+ CSnfl)(—%I—*— Cgn-1) =0 and (—%I—F Cgn-1)? = —%I+ Cgn-1.

It is known that each function ¢ € L?(S™~!) can be approximated by a sequence
of functions, each with the same properties as 8. This tells us that the previous
formulas can be repeated, but this time simply for § € L2(S™~1). It follows that
for such a 6 we have

0 = (31 + Cgn-1)0 + (A1 — Csnn)6.

This formula gives the Hardy space decomposition of L2(S™~!). In fact, if one
looks more carefully at the previous calculations used to obtain these formulas we
see that it is not so significant that the surface used is a sphere, and we can redo
the calculations for any “reasonable” hypersurface S. In this case, we get

where 6 now belongs to L?(S), and

Cgl = P.V.i /s G(z — y)n(z)0(z) do(z).

wn
This gives rise to the Hardy space decomposition
L*(S) = H¥(S*) @ H*(5™),

where S¥ are the two domains that complement the surface S (we are assuming
that S divides R™ into two complementary domains).
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Lastly, one should address the smoothness of S. In some parts of the litera-
ture, one simply assumes that S is compact and C?. More recently, one assumes
that S has rougher conditions, usually that the surface is Lipschitz continuous,
see for instance [21, 22, 27]. The formulas given above, involving the singular
integral operator Clg, are called Plemelj formulas. It is a simple exercise to show
that these formulas are conformally invariant. Using Kelvin inversion, or even a
Cayley transformation, one can show that these formulas and the Hardy space de-
compositions are also valid on unbounded surfaces and domains. A great deal of
recent Clifford analysis has been devoted to the study of such Hardy spaces and
singular integral operators. This is due to an idea of R. Coifman, that various hard
problems in classical harmonic analysis, studied in Euclidean space, might be
more readily handled using tools from Clifford analysis, particularly the singular
Cauchy transform and associated Hardy spaces.

In particular, Coifman speculated that a more direct proof of the celebrated
Coifman-McIntosh-Meyer Theorem [7], could be derived using Clifford analy-
sis. The Coifman—-McIntosh-Meyer Theorem establishes the L? boundedness of
the double layer potential operator for Lipschitz graphs in R™. Coifman’s obser-
vation was that the double layer potential operator is the real or scalar part of the
singular Cauchy transform arising in Clifford analysis and discussed earlier. If
one can establish the L? boundedness of the singular Cauchy transform for a Lip-
schitz graph in R™, then one automatically has the L? boundedness for the double
layer potential operator for the same graph. The L? boundedness of the singular
Cauchy transform was first established for Lipschitz graphs with small constant
by Murray [30], and extended to the general case by McIntosh, see [26, 27]. One
very important reason for needing to know that the double layer potential operator
is L? bounded for Lipschitz graphs is to be able to solve boundary value problems
for domains with Lipschitz graphs as boundaries. Such boundary value problems
would include the Dirichlet problem and Neuman problem for the Laplacian. See
[26, 27] for more details. In [49] Clifford analysis, and more precisely the Hardy
space decomposition mentioned here, is specifically used to solve the water wave
problem in three dimensions.

3.8 More on Clifford analysis on the sphere

In the previous section, we saw that LZ(S™~!) splits into a direct sum of Hardy
spaces for the corresponding complementary domains B(0, 1) and R*\ B(0, 1).
In an earlier section, we saw that any left Clifford holomorphic function f(z) can
be expressed as a locally uniformly convergent series Z?io f;(z), where each
fi(z) is left Clifford holomorphic and homogeneous of degree j. Now following
[47], consider the operator

0 0 e 0
g | _ 1 ) o _ - _ e
D=z""zD=x""( E eier(T; . T 5z, E z; 3z, )).

i<k j=1
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By letting the last term in this expression act on homogeneous polynomials, one
may determine from Euler’s lemma that

i 0

is the radial operator r-g—r. So r%fj (z) = jf;(z). Since each polynomial fj is
Clifford holomorphic, it follows that each f; is an eigenvector of the spherical

Dirac operator
zAp_1 =1z E eiek(zii - 9 )
i<k a.’Ek 6zi
T

with eigenvalue k. Now using Kelvin inversion, we know that fi is homogen-
eous of degree k and left Clifford holomorphic if and only if G(z)fx(z7!) is
homogeneous of degree —n + 1 — k and is left Clifford holomorphic. On re-
stricting G(z) fe(z™!) to the unit sphere, this function becomes = fi(z~!) and
this function is an eigenvector for the spherical Dirac operator zA,, 1. Since each
f € H2(R*\B(0,1)) can be written as

G(z)fe(=™),

NE

o
il

0

where each fi is homogeneous of degree & and is left Clifford holomorphic, it
follows that if h € L?(S™1), then

An_1zh(z) = (1 — n)zh(z) — zAn_1h(2).

Similarly, if we replace S*~! by the n-sphere S™ embedded in R**!, then we
have the identity
Anzh(z) = —nzh(z) — zA,h(z)

for each h € L%(S™). As all C* functions defined on S™ belong to L2(S™), this
identity holds for all such functions too.

It should be noted that for each z € S™, if we restrict the operator zA,, to the
tangent bundle T'S7, then we obtain the Euclidean Dirac operator acting on this
tangent space.

By using the Cayley transformation

2 = P(y)(ens1y + 1)y + eny1) ]

from R™ to ™\ {en+1}, one can transform left Clifford holomorphic functions
from domains in R™ to functions defined on domains lying on the sphere. If
f(y) is left Clifford holomorphic on the domain U lying in R™, then we obtain a
function f'(z) = J(¢~ 1, z) f(»"!(z) defined on the domain U’ = (U) lying
on S™. Here

_ r+1
J(?p I,I) = W
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Similarly, if g(y) is right Clifford holomorphic on U, then
g'(z) = g~ (2) (¥~ 2)

is a well-defined function on U’. Moreover for any smooth, compact hypersur-
face S bounding a subdomain V' of U, we have from the conformal invariance of
Cauchy’s Theorem,

~ﬁdumuwumw@pﬂ

where S’ = 9(S), and n(z) is the unit vector lying in the tangent space TS}
of S™ at z and outer normal to S’ at z. Furthermore ¢’ is the Lebesgue measure
onS’.

From Lemma 1, it now follows that for each point ' € V' = ¢(V'), we have
the following version of Cauchy’s Integral Formula:

P =~ [ Gz -y)n@)f (z)do(a),

Wn Jgr

where, as before,
!

-y
Glz—y)=+—"7—,
z—y'[™
but now z and y' € S™. It would now appear that the functions f’ and ¢’ are
solutions to some spherical Dirac equations. We need to isolate this Dirac opera-
tor. We shall achieve this by applying the operator zA,, to the kernel G,(z,y’) =
G(z —y'). Sincez and y’' € S™,

”I—"yl”2:2_2<z7yl >,

where < z,y’ > is the inner product of z and . So

—n z_y’
Gs s ! :2 2 —
(Iy) (1_<Ivyl >)7

In calculating zA, G, (x,y"), we need to know what A, < z,y’ > evaluates to.
It is a simple exercise to determine that

Ap <z, >=zy'+ <z,9 >,

which is the wedge product z A 3’ of = with y'.
Now let us calculate zA,Gs(z,y') :

—n T Yy
N=27 An———“ - An——n -
IAnGs(Iyy) z (I (1_ <I,y/ >)7 I (1_<Iyyl >)7)

nT 1 A 1
PSR R NS
(1-<z,y' >)2 (1- <,y >) ( T,y >)

I3

2

(—z y').
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First,
z Ay

n+2 3
2

(I-<zy >) =z
S0

A, Gy (Ia y/)

—n n
=927

2{l— < z,y >

e Ql-<z,y >)+z Ay —z(z Ay)Y).
The expression
21— <z,y >)+z Ay —z(zAy)y

is equal to

2-2<z,y > +ay'+ < z,y > —z(zy+ < 2,9 >)y'.
This expression simplifies to

I-<z,y > 42y — 2y < 2,y >,

which in turn simplifies to

(1-<z,y >)1 +zy) = —2(1- < 2,9 >)(z— ).

So

zA,Gs(z,y') = _—nst(z, y').

2

Hence

z(An + g)Gs(z, y') =0,

so the Dirac operator, Ds, over the sphere is z(A,, + 5). It follows from our
Cauchy integral formula for the sphere that D, f'(z) = 0. For more details on
this operator, related operators and their properties see [8, 25, 38, 39, 48].
Besides the operator D, we also need a Laplacian A, acting on functions
defined on domains on S™. To do this, we will work backwards and look for a
fundamental solution to A,,. A strong candidate for such a fundamental solution

is the kernel
1 1

n=3fz -yl

HS(I, y/) -
By similar considerations to those made in the previous calculation, we find that
DsHy(z,y") = —zHy(z,y') + Gs(z,9').

So
(Ds + z)Hy(z,y') = Gs(z, ).

Therefore we may define our Laplacian A, to be D (Dy + x).
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Definition 2. Suppose h is a CL,, valued function defined on a domain U’ of S™.
Then h is called a harmonic function on U’ if Agh = 0.

In much the same way as one would derive Green’s Theorem in R™, one now
has

Theorem 10. Suppose U’ is a domain on S™ and h : U’ — C¥,, is a harmonic
function on U’. Suppose also that S’ is a smooth hypersurface lying in U’ and
that S’ bounds a subdomain V' of U’ and thaty' € V'. Then

hly') = — /,(Gs(z, y')n(@)h(z) + Hs(z,y')n(z) Dsh(2)) do’ (z).

Wn

See [25] for more details.

3.9 The Fourier transform and Clifford analysis

Closely related to Hardy spaces is the Fourier transform. Here we will consider
R" as divided into the upper and lower half spaces R®* and R"~, where

R™ = {x = zie1 +... + Tne, : Tn > 0}

and
R™ :{2=2161+...+In6n:1n <0}

These two domains have R"~! = span < ey,...,e,_1 > as a common bound-
ary. As before,
L2(Rn—1) — H2(Rn+) D H2(Rn—)

Let us now consider a function ¢y € L2(R"~!). Then

1
) = () + —PV.

n Rn—1

Gla' - y)ent(z') da™ ")

(@) - PV [ Gl —peavta’) da™)

Wn Rn—1
almost everywhere. Here

S(y) + LP.V. G(z' — y)ent(z') dz™ !

Wn R»-1
is the nontangential limit of

L[ 6@ - ye)ensla)
Wn Jrn-1
as y(t) tends to y nontangentially through a smooth path in the upper half space,
and )
Y(y) — —P.V. G(z' — y)ent(z') dz™?

Wn Rn-1

(1
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is the nontangential limit of
-1

Rn~1

G(z' —y(t))en¥o(z') dz™~

as y(t) tends nontangentially to y through a smooth path in lower half space.
Consider now the Fourier transform, F (1) = 9, of 1. In order to proceed, we
need to calculate

1
F(3v w—P.V. / Gz’ — y)eav(z') dz™1).
n Rn-1
In particular, we need to determine

f(iP.V. G(z' — y)eatp(z') dz™1).

(.L}n Rn—1
Following [26], it may be determined that this is

¢
1; 5
21el o)

where ( = (1e1 + ...+ (n_1€n-1. SO

F(5 Q/J:i:i G(z’——y)end}(z’)da(z’)):%(1:!:1 en).
Rt Icn°
Now, as observed in [26],
¢
3 2 n i=1 2 n)y 3 n (e
(b1 sqpen))’ = 31 gegen). H i em}1 i pien) =0
and C

Taking the Cauchy—Kowalewska extension of *<*' <> we get
exp(i < ', > —izpen()

defined on some neighborhood in R™ of R™~1,
Now consider

exp(i < z',¢ > —iznenl)3(1 i “C”

which simplifies to
z<z "> —za|¢ 1 (1 i

||<u en)
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ifz, > 0,and to

i<z z . C
i<z >+ nIICH%(l — )

if z, < 0. The first of these series converges locally uniformly on the upper half
space while the second series converges locally uniformly on the lower half space.
We denote these two functions by e, (z, {), respectively. The integrals

1 ex(z,)P(¢) do(C)

Wn Jrn-1

define the left monogenic functions ¥, () on the upper and lower half spaces,
respectively. Moreover,
. € H*(R™)

explicitly gives the Hardy space decomposition of 1 € L2?(R™~1). The links
between the Fourier transform and Clifford analysis were first found in [44], and
later independently rediscovered and applied in [22].

The integrals

L €+ (.’IZ, C) dcn_l

Wn JRn-1

can be expressed in polar coordinates as

1 / /oo ir<z',('>tzp.r,.n-21 ¢ n-—-2
— e ’ MTrtTe2 (1 £ ——e,) drdS™4,
on Jsnes Jo 2 pepen)

where (! = Wng In {22], Chun Li observed that the integrals

o0
/ eir<z’y( >iznr%(1 + C/en)rn—2 dr
0
are Laplace transforms of the function f(R) = R™~2. So the integral
o0 ;. ’ ’
/ eir<z Ne >—znr%(1 _ iclen) dr
0

evaluates to
(=) (n —2){(< 2/, ¢ > +iz,) "L

Hence the integral

1 eq(z,¢)d¢™?

Wn Jrn-1
becomes

1
— (=) (n = U< &', ¢ > +imp) "L (1 + denC’) dS™ 2

Wn Sn—-2
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For any complex number a + ib, the product (a + ib)1(1 + ie,(’) is equal to
(a — ben) (1 + ien(’). Thus, the previous integral becomes
1
— (—)™(< 2, ¢’ > —znenl!) T L1 + ien(’) dS™ 2
Wn Jgn—-2
The imaginary, or ¢:C¥,, part of this integral is the integral of an odd function, so
when n is even, the integral becomes

1 / (n—2)le(’ JSn—2
wn Jgn-2 2(< 2, > —z €, )] ’

and when n is odd, the integral becomes

-1 (n—2)! _
— ds"2,
Wn /Sn_z (< 2,¢' > —zpe)n!

These integrals are the plane wave decompositions of the Cauchy kernel for
the upper half space, described by Sommen in [45]. It should be noted that while
introducing the Fourier transform and exploring some of its links with Clifford
analysis, we have also been forced to complexify the Clifford algebra C¥,, to the
complex Clifford algebra C¢,,(C). Furthermore, the functions (1 + zﬁz) are
defined on spheres lying in the null cone

{Tnen +iw' 1w € R™Y, 22 — |lu']|? = 0}.

n
This leads naturally to the question: What domains in C™ do the functions e+ (z, )
extend to?
Here we are replacing the real vector variable z € R"™ by a complex vector
variable z = z1e1 + ... + z,e, € C*, where 21, ...,2z, € C. Lettingz =z + 1y
where = and y are real vector variables, the term

e~ <S> =z Il

is well defined for z,[[¢|| > | < ¢,y > |. Inthis case, iy’ + z, e, varies over the
interior of the forward null cone

{iy' + znen: 2, >0 and z, > ||¥'||},
s0 e (2, () is well defined for each
z=z+iy=72 +1y + (z, + iyn)en, € C*,
where 2’ € R"!,y,, € R, z,, > O and ||y'|| < z,,. Similarly, e_(z, () holomor-
phically extends to
{z=2 +i) + (xn +iyn)en : 2 € R 2, <0,y €R, [[¥] < |zal}-

We denote these domains by C*, respectively. It should be noted that ¥'* holo-
morphically continue to C*, respectively. We denote these holomorphic continu-
ations of U* by ¥’ * The domains C* are examples of tube domains.
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3.10 Complex Clifford analysis

In the previous section, we showed that any left Clifford holomorphic function
f € H?*R™%) can be holomorphically continued to a function f1 defined on
a tube domain C* in C™. In this section, we will briefly show how this type of
holomorphic continuation happens for all Clifford holomorphic functions defined
on a domain U C R™.

Let S be a compact smooth hypersurface lying in U, and suppose that S bounds
a subdomain V' of U. Cauchy’s integral formula gives

)=~ /3 Gz — y)n(z)f (z) do (z)

Wn

for each y € V. Let us now complexify the Cauchy kernel. The function G(z)

holomorphically continues to
2z

In even dimensions this is a well-defined function on C*\ N(0), where N(0) =
{z € €" : 2% = 0}. In odd dimensions this lifts to a well-defined function on
a complex n-dimensional Riemann surface double covering C*\ N (0). Though
things work out well in odd dimensions, for simplicity we will work with the
cases where 7 is even. In holomorphically extending G(z — y) in the variable y,
we obtain a function
Glz—2)= _r-z
T ((z-2)h)F

This function is well defined on C*\ N(z), where
N(z) ={zeC": (z — 2z)® = 0}.
It follows that the integral

L [ 6t - (@) f(e)do(z)

Wn Js

is well defined provided z is not in N (z) for any = € S. The set
C™\ Uzes N(z)

is an open set in C™. We shall take the component of this open set which con-
tains V and denote it by V1. It follows that the left Clifford holomorphic function
£ (y) has a holomorphic extension f(z) to V't. Furthermore, this function is given
by the integral formula
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The holomorphic function f1 is a solution to the complex Dirac equation D1ft
= 0, where
e 0
T — L
D' = Zej 35
Jj=1

By allowing the hypersurface to deform and move out to include more of U in its
interior, we see that f' is a well-defined holomorphic function on U*, where Ut
is the component of

C\U, egnu N(z)

which contains U. In the special cases where U is either of R™* | then UT = C*,
See [34-36] for more details.
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Applications of Clifford Algebras
in Physics

William E. Baylis

ABSTRACT Clifford’s geometric algebra is a powerful language for physics that
clearly describes the geometric symmetries of both physical space and spacetime.
Some of the power of the algebra arises from its natural spinorial formulation of
rotations and Lorentz transformations in classical physics. This formulation brings
important quantum-like tools to classical physics and helps break down the classi-
cal/quantum interface. It also unites Newtonian mechanics, relativity, quantum the-
ory, and other areas of physics in a single formalism and language. This lecture is

an introduction and sampling of a few of the important applications in physics.

4.1

Introduction

Clifford’s geometric algebra is an ideal language for physics because it maximally
exploits geometric properties and symmetries. It is known to physicists mainly as
the algebras of Pauli spin matrices and of Dirac gamma matrices, but its utility
goes far beyond the applications to quantum theory and spin for which these ma-
trix forms were introduced. In particular, Clifford algebra

generalizes cross products to wedge products, which have transparent geo-
metric meanings and work in spaces of any dimension,

constructs the unit imaginary ¢ as a geometric object, thereby explaining its
important role in physics,

extends complex analysis to more than two dimensions,

simplifies calculations of duals and thereby clears potential confusion of
pseudovectors and pseudoscalars,

reduces rotations and Lorentz transformations to algebraic multiplication,
and more generally allows computational geometry without matrices or ten-
sors,

AMS Subject Classification: 15A66, 17B37, 20C30, 81R25.
Keywords: Paravectors, duals, Maxwell’s equations, light polarization, Lorentz transformations, spin,
gauge transformations, eigenspinors, Dirac equation, quaternions, Liénard—Wiechert potentials.
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o formulates classical physics in an efficient spinorial formulation with tools
that are closely related to ones familiar in quantum theory such as spinors
(“rotors™) and projectors, and

o thereby unites Newtonian mechanics, relativity, quantum theory, and more
in a single formalism as simple as the algebra of Pauli spin matrices.

In this lecture, there is space to discuss only a few examples of the many appli-
cations of Clifford algebras in physics. For other applications, the reader will be
referred to published articles and books. The mathematical background for this
chapter is given by the lecture [1] of the late Professor Pertti Lounesto earlier in
the volume.

4.2 Three Clifford algebras

The three most commonly employed Clifford algebras in physics are the quater-
nion algebra H ~ C¥; 2, the algebra of physical space (APS) C¢3, and the space-
time algebra (STA) C¢; 5. They are closely related. Hamilton’s quaternion alge-
bra H, [2] introduced in 1843 to handle rotations, is the oldest, and provided the
concept (again, by Hamilton) of vectors. The superiority of H for matrix-free and
coordinate-free computations of rotations has been recently rediscovered by space
programs, the computer-games industry, and robotics engineering. Furthermore,
H is a division algebra and has been investigated as a replacement of the com-
plex field in an extension of Dirac theory [3]. Quaternions were used by Maxwell
and Tait to express Maxwell’s equations of electromagnetism in compact form,
and they motivated Clifford to find generalizations based on Grassmann theory.
Hamilton’s biquaternions (complex quaternions) are quaternions over the com-
plex field H ® C, and with them, Conway (1911) and others were able to express
Maxwell’s equations as a single equation.

The complex quaternions are isomorphic to APS: H ® C ~ C¢3, which is fa-
miliar to physicists as the algebra of the Pauli spin matrices. The even subalgebra
CK;L is isomorphic to H, and the correspondences i < €32, j > €13, k > €31
identify pure quaternions with bivectors in APS, and hence with generators of
rotations in physical space. APS distinguishes cleanly between vectors and bivec-
tors, in contrast to most approaches with complex quaternions. The volume ele-
ment e93 in APS squares to —1 and commutes with vectors and their products,
and it can therefore be identified with the unit imaginary ¢. Every element of APS
can then be expressed as a complex paravector, that is the sum of a scalar and
a vector [4-6]. The identification 7 = ej23 endows the unit imaginary with geo-
metrical significance and helps explain the widespread use of complex numbers
in physics [7]. The sign of ¢ is reversed under parity inversion, and imaginary
scalars and vectors correspond to pseudoscalars and pseudovectors, respectively.
The dual of any element z is simply —iz, and in particular, one sees that the
vector cross product X y of two vectors &, ¥ is the vector dual to the bivector
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x A y. Itis traditional in APS to denote reversion by a dagger, & = z', [6, 8-10]
since reversal corresponds to Hermitian conjugation in any matrix representation
that uses Hermitian matrices (such as the Pauli spin matrices) for the basis vectors
€1,€2,€e3 ~1

The quadratic form of vectors in APS is the traditional dot product and implies
a Euclidean metric. Paravectors constitute a four-dimensional linear subspace of
APS, but as shown below, the quadratic form they inherit implies the pseudo-
Euclidean metric of Minkowski spacetime. Paravectors can therefore be used to
model spacetime vectors in relativity [8, 11]. The algebra of paravectors and their
products is no different from the algebra of vectors, and in particular the par-
avector volume element is ¢ and duals are defined in the same way. APS admits
interpretations in both spacetime (paravector) and spatial (vector) terms, and the
formulation of relativity in APS marries covariant spacetime notation with the
vector notation of spatial vectors. Matrix elements and tensor components are not
needed, although they can be found by expanding multiparavectors in the basis
elements of APS.

Another approach to spacetime is to assume the Minkowski spacetime metric
and use the corresponding algebra C?¢; 3 or Cl3 1. In STA, C¥; 3 is generated by
products of the basis vectors 7y, ¢ =0, 1,2, 3, satisfying

AN
I

L, p
5O W) = 0w = -1, p
0, n

?

o

Dirac’s electron theory (1928) was based on a matrix representation of C¢; 3 over
the complex field, and Hestenes [10] (1966) pioneered the use of STA (real C¢; 3)
in several areas of physics. The even subalgebra is isomorphic to APS: Cﬁfs o~
C?3. The volume element in STA is I = ~gy17v27y3- Although it is referred to
as the unit pseudoscalar and squares to —1, it anticommutes with vectors, thus
behaving more like an additional spatial dimension than a scalar.

This lecture mainly uses APS, although generalizations to C¥,,, the Clifford
algebra of n-dimensional Euclidean space, are made where convenient, and one
section is devoted to the relation of APS to STA.

4.2.1 Bivectors as plane areas

The Clifford (or geometric) product of vectors was introduced in Lecture 1 and
given there as the sum of dot and wedge products. The dot product is familiar from
traditional vector analysis, but the wedge product of two vectors is a new entity:

I The argument is easily extended to spaces of » Euclidean dimensions. There are also other reasons
for using the dagger (f) for reversion: (1) it is clearest to use, whenever possible, the same notation
in the algebra as in its standard matrix representation, (2) in small print, & is easily confused with Z,
and (3) when comparing APS and STA below, it is essential to have separate notations for reversal of
elements in STA and in APS.
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the bivector. The bivector v A w represents the plane containing v and w, and
as discussed in Lecture 1, it has an intrinsic orientation given by the circulation
in the plane from v to w and a size or magnitude |v A w| given by the area
of the parallelogram with sides v and w. Bivectors enter physics in many ways:
as areas, planes, and the generators of reflections and rotations. In the old vector
analysis of Gibbs and Heaviside, bivectors are replaced by cross products, which
are vectors perpendicular to the plane. However, this ploy is useful only in three
dimensions, and it hides the intrinsic properties of bivectors. As discussed below,
cross products are actually examples of algebraic duals.

The reversion, as defined in Lecture 1, reverses the order of vector factors in the
product. Because noncollinear vectors do not commute, reversion gives us a way
of distinguishing collinear and orthogonal components. Any element invariant
under reversal is said to be real whereas elements that change sign are imaginary.
Every element = can be split into real and imaginary parts:

x—*—x* z -zt
T = 9 + 9 = <x>Re + <x>lm :

Scalars and vectors (in a Euclidean space) are thus real, whereas bivectors are
imaginary.

Exercise 1. Verify that the dot and wedge product of any vectors u,v € Cl, can
be identified as the real and imaginary parts of the geometric product uv.

Exercise 2. Let r be the position vector of a point that moves with velocity v = .
Show that the magnitude of the bivector T A v is twice the rate at which the
time-dependent T sweeps out area. Explain how this relates the conservation of
angular momentum v A p, with p = mu, to Kepler’s second law for planetary
orbits, namely that equal areas are swept out in equal times.

4.2.2 Bivectors as operators

The fact that the bivector of a plane commutes with vectors orthogonal to the
plane and anticommutes with ones in the plane means that we can easily use unit
bivectors to represent reflections. In particular, in an n-dimensional Euclidean
space, n > 2, the two-sided transformation

vV — €12vV€]2

reflects any vector v in the e; = eje; plane.

As shown in Lecture 1, bivectors generate rotations. The demonstration there
was for rotations in Cf; introduced in Lecture 1, but it is easily extended to three
or more dimensions, The bivector e generates a rotation in the e, plane: any
vector v in the e plane is rotated by 8 in the plane in the sense that takes e; —
e by

v — vexp (e12f) = exp (en16) v. 2.1
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The rotation element exp (e;20) is the product of two unit vectors in the rotation
plane:
exp (e128) = ejey exp (e128) = en,

where n = e; exp (ej20) is the unit vector obtained from e, by a rotation of 8
in the ej2 plane. In general, every product mmn of unit vectors m and n can be
interpreted as a rotation operator in the plane containing 7 and n. The product
mmn does not depend on the actual directions of 7 and n, but only on the plane
in which they lie and on the angle between them. This is the basis of a convenient
representation of SU(2) rotations in C¥3 as vectors on the surface of the unit
sphere [12].

Relation (2.1) shows two ways to rotate any vector v in a plane. Note that the
left and right rotation operators are not the same, but rather inverses of each other:

exp (e210) exp (e120) = exp (e2;0) exp (—eq6) = 1.

In spaces of more than two dimensions, we may want to rotate a vector v that has
components perpendicular to the rotation plane. Then the products v exp (eje20)
and exp (ege;6) v no longer work; they include terms like ezeje; that are not
even vectors. (They are trivectors as will be discussed in the next section.) We
need a form for the rotation that leaves perpendicular components invariant. Re-
call that perpendicular vectors commute with the bivector for the plane. For ex-
ample, eze s = ejges. Therefore, for the rotation we use

v — RvR™!, 2.2)

where R = exp (%6219) is a rotor and R™! = exp (%e129) is its inverse. The
transformation (2.2) is linear, because RovR~! = a RvR~! for any scalar ¢, and
R(v+w)R™! = RvR™! + RwR™! for any two vectors v and w. The two-
sided form of the rotation leaves anything that commutes with the rotation plane
invariant. This includes vector components perpendicular to the rotation plane
as well as scalars. The form may remind you of transformations of operators in
quantum theory. It is sometimes called a spin transformation to distinguish it from
one-sided transformations common with matrices operating on column vectors.

The ability to rotate in any plane of n-dimensional space without components,
tensors, or matrices is a major strength of geometric algebra in physics. A product
of rotors is a rotor (rotations form a group), and in physical space, where n = 3,
any rotor can be factored into a product of Euler-angle rotors

9
R =exp (—em%) exp (—e31§> exp (—e12%> . 2.3)

However, such factorization is not necessary since there is always a simpler ex-
pression R = exp (©), where © is a bivector whose orientation gives the plane of
rotation and whose magnitude © = |@| gives half the angle of rotation. By using
the rotor R = exp (©) instead of a product of three rotations in specified planes,
one can avoid degeneracies. The simple rotor expression allows smooth rotations
in a single plane and thus interpolations between arbitrary orientations [12].
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Relation to rotation by matrix multiplication

Spin transformations rotate vectors, and when we expand v = v7e;, it is the basis
vectors and not the coefficients that are directly rotated:

= e ' e ) - R!
v=2ve; - v =€, e;j —»e; = Re;R™.

It is easy to find the components of the rotated vector v’ in the original (unprimed)
basis:

v'i:ei'vlz(ei-e;-)vj.

The matrix of scalar values e; - e} is the usual rotation matrix.? For example, in
Cl3 with R = exp (%6219) ,

e -e] ej-e) e -e} cos§ —sinf O
ey-e] er-ey, ey-ef | =1 sinf cosf® O
e3-e| ez-e, ez-e} 0 0 1

Exercise 3. Let R = exp (%6219) and assume that
n = Re R = exp (ex1f)e;.

Show that
(n61 + 1)

\/2(1+n'61)'

Hint: find the unit vector that bisects 1 and e;.

R=(ne)"? =

Relation of rotations to reflections

Evidently R? = exp (e218) = ne, is the rotor for a rotation in the plane of n
and e; by 20. Its inverse is e; 72, and it maps any vector v to nejve n. If ez is a
unit vector normal to the plane of rotation,

vV - NE3E3E|VEZE 1 NE = (neg) €31Ve3z; (neg) s

which represents the rotation as reflections in two planes with unit bivectors nes
and e3;. The planes intersect along e3 and have a dihedral angle of .

Example 4. Mirrors in clothing stores are often arranged to give double reflec-
tions so that you can see yourself rotated rather than reflected. Two mirrors with
a dihedral angle of 90° will rotate your image by 180°. This corresponds to the
above transformation with n replaced by e;.

Exercise 5. How could you orient two mirrors so that you see yourself from the
side, that is, rotated by 270°7

2While one can readily compute the transformation matrices by writing the spin transformations
explicitly for basis vectors, neither the matrices nor even the vector components are needed in the
algebraic formulation.
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The rotation that results from successive reflections in two nonparallel planes
in physical space depends only on the line of intersection and the dihedral an-
gle between the planes; it is independent of rotations for both planes about their
common axis.

Exercise 6. Corner cubes are used on the moon and in the rear lenses on cars to
reverse the direction of the incident light. Consider a sequence of three reflections,
first in the e |2 plane, followed by one in the ea3 plane, followed by one in the es;
plane. Show that when applied to any vector v, the result is —v.

Time-dependent rotations

An additional infinitesimal rotation by 2’ dt during the time interval dt changes
arotor R to

R+dR=(1+39'dt)R.
The time-rate of change of R thus has the form

o d
R=§=§Q’RE§RQ,

where the bivector 2 = R™1Q'R is the rotation rate as viewed in the rotating
frame. For the special case of a constant rotation rate, we can take the rotor to be

R(t) = R(0)e/2,
If R(0) = 1, then & = Q'. Any vector r is thereby rotated to ' = RrR™!
giving a time derivative

Qr —rQd

"’I:R[ 2

+ 1»} R~ = R[(Qr)p, + 7 R,

where we noted that r is real and the bivector §2 is imaginary. Since r can be any
vector, we can replace it by (§2r)p_ + 7 to determine the second derivative

# = R[(Q((Qr)g, + 7))p, + (¥)g, + 7] R
= R[(Q(92r)g,)p, +2(QF)g, + 7] R™'
=R [erA 420 + r] R, 2.4)

where (Qr)p. = Qr®, and 72 is the part of r coplanar with €2. A force law
f' = m#' in the inertial system is seen to be equivalent to an effective force

f =m#=R'f'R— mQ*r® - 2mQ2

in the rotating frame. The second and third terms on the RHS are identified as the
centrifugal and Coriolis forces, respectively.
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4.2.3 Higher-grade multivectors in C¢,

Higher-order products of vectors also play important roles in physics. Products
of k orthonormal basis vectors e; can be reduced if two of them are the same,
but if they are all distinct, their product is a basis k-vector. In an n-dimensional
space, the algebra contains () such linearly independent multivectors of grade k,
which form a basis of the homogeneous linear subspace (Cty), of the algebra.?
The highest-grade element is the volume element, proportional to

€T = €123..n = €1€2€3"* - €p.

Exercise 7. Find the number of linearly independent elements in the geometric
algebra Cls of 5-dimensional space. How is this subdivided into vectors, bivec-
tors, and so on?

A general element of the algebra is a mixture of different grades. We use the
notation (z), to isolate the part of = with grade k. Thus, (z), is the scalar part
of z, (z), is the vector part, and by (z), ; we mean the sum (z), + (z), of the
bivector and vector parts. Evidently

n

T = (z) 0,1,2,. Z

k=0

In APS, in addition to scalars, vectors, and bivectors, there are also trivectors,
elements of grade 3:

uAv Aw = (uvw), = E wvkut (ejerer); = E sjklujvkwlelgg
g.k,l gkt
uwl vl w
=epdet { u2 v?2 w?}, 2.5
ud 3wl

where we have used the fact that in 3-dimensional space (ejexer); = €jri€123
(here €;x; is the Levi-Civita symbol). The determinant in (2.5) ensures that the
wedge product vanishes if the vector factors are linearly dependent.

While the component expressions can be useful for comparing results with
other work, the component-free versions u A v A w = (uvw), are simpler and
more efficient to work with. In the trivector (uvw), , the factor wv can be split
into scalar (grade-0) and bivector (grade-2) parts uv = (uv), + (uv),, but
(uv), w is a (grade-1) vector, so that only the bivector piece contributes: (uvw),
= ({(uv), w), . Now split w into components coplanar with (uv), and orthogo-
nal to it:

w=w” +w?,

31n the notation of Lecture 1, (CZy. ), is the same as the subspace AFV of the exterior algebra AV,
where V is n-dimensional Euclidean space.
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and recall that w® and w' anticommute and commute with (uwv), , respectively.
The coplanar part w® is linearly dependent on u and v and therefore does not
contribute to the trivector. We are left with

(uvw), = ((uv), w), = ((uv),w"),
= 3 ((wv), w + w (uv),) = ((uv)y wh, -

Similarly, the vector part of the product (uv), w is

((wv),w), = ((uv),w?), =1 ((uv), w — w(uv),) = (uv),w)y, .
Exercise 8. Show that while (uvw),; = ((uv), w), , the difference

(wow), — ((wv), w), = ((uv)yw),

does not generally vanish.

A couple of important results follow easily.
Theorem 9. ((uv), w)p, = u(v-w) —v(u-w).

Proof. Expand ((uv), w)p, = %((uv)zw — w (uv),), add and subtract term
uwv and vwwu, and collect:

{({uv), wg,

{(uv —vu)w — w(uv — vu)]

[~ TN N

[uvw + vwYv — Vvuw — vwu — WUY — uWwY + WYy + vwu|

—_—

u(v-w)—v(u-w)—(w-u)v+ (w-v)y|

——

vew)—v(u-w).

Let B be the bivector (uv), . If we expand u = u’e; and v = v e, we find
B = u/v* (ejexr), = $B* (ejer),

where B7* = y/v* — u*v7 and we used the antisymmetry of

(ejer), = — (exe;j), -
From the last theorem, the vector (Bw), lies in the plane of B and is orthogonal
to w. In terms of components,
(Bw)l = %Bjkwl<(ejek)2el>1 - %Bjkwl (ej5k[ — ekéﬂ) = lewlej

is the contraction B - w = —w - B of the bivector B by the vector w.* It
lies in the intersection of the plane of B with the hypersurface orthogonal to w.
Similar relations for wedge and dot products among higher-grade elements can
be formulated [4, 9] but are not needed here.

4The dot is commonly used [10] to indicate contractions of mixed-grade products, as used below.
When restricted to the case as here that B contains only grades equal to or higher than those of w,
we can use the notation of Lecture 1: (Bw); = BLw = -w 1B.
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Duals

Note that in CZ,,, the number of independent k-grade multivectors is the same as
the number of independent (n — k)-grade elements. For example, both the vectors
(grade 1 elements) and the pseudovectors (grade n — 1 elements) occupy linear
spaces of n dimensions. We can therefore establish a one-to-one mapping between
such elements. We define the Clifford-Hodge dual’® *z of an element z by

*r= ze}l.
The dual of a dual is e,}Q = =1 times the original element. If z is a k-vector, each
term in a k-vector basis expansion of = will cancel k of the basis vector factors®
in er, leaving *z = zes! as an (n — k)-vector.

A simple k-vector is a single product of k£ orthogonal vectors that span a k-
dimensional subspace. Every vector in that subspace is orthogonal to vectors
whose products comprise the (n — k)-vector *z. In this sense, any simple ele-
ment and its dual are fully orthogonal. The dual of a scalar is a volume element,
known as a pseudoscalar; the dual of a vector is the hypersurface orthogonal to
that vector, known as a pseudovector; and so on.”

In physical space (n = 3), the dual to a bivector is the vector normal to the
plane of the bivector. Thus, er = ej23 and e,}l = —ej123 = —er, and for
example

* (e12) = e12 (—ei123) = es.

We recognize this as the cross product and we can write more generally
*luAv)=uxXv,

which when taken between polar vectors emphasizes its relation to the plane of
u and v. The volume element e squares to —1 and commutes with all vectors
and hence all elements. Because of its association with the unit imaginary? it is
convenient to denote er by i, i.e., we let i = er = eja3. Thus, *(u Av) =
(u Av)i~!and

uAv=iluxuv).

5This definition is the same as used in my text [6] and gives the commonly used sign for the Hodge
dual of the electromagnetic field. However, Lounesto [4] uses er instead of e;l in his definition of
the dual. The difference is the sign e3. = *1.

SWithin an overall sign arising from the anticommutativity of the basis vectors. Formally, the
cancellation is a left grade contraction of e;l by x.

TThese names are most suitable in APS where the pseudoscalar belongs to the center of the algebra,
but they are also applied in cases with an even number n of dimensions, where e anticommutes with
the vectors.

8The association is given formally by the isomorphism between the center (commuting part) of
the algebra of physical space (APS) and the field of complex numbers C [1]. It is helpful to remem-
ber the geometric meaning of ¢ thus introduced into the algebra: it is the unit volume element, which
defines the dual relationship. Its appearance helps make sense of some of the many complex numbers
that appear in real physics, and the dual relationship helps avoid confusion associated with pseu-
doscalars, pseudovectors, and their behavior under inversion. The bivector in APS, for example, is the
pseudovector whose dual is the vector normal to the plane of the bivector: e12 = e123e3 = ie3.
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However, whereas the cross product of two vectors is not generally defined in
n > 3 dimensions and is nonassociative as well as noncommutative, the exterior
wedge product is defined in spaces of any dimension and is associative.’? It also
emphasizes the essential properties of the plane and is an operator on vectors that
generates rotations.

Exercise 10. Verify by calculation of some explicit values that the Levi-Civita
symbol is the dual to the volume element (e jere;)s in APS:

Ejkl = " (ejexer); = (ejerer), 651'

This definition is easily extended to higher dimensions.

We can use duals to express a rotor in physical space in terms of the axis of
rotation, which is dual to the rotation plane. For example

R =exp (%62610) = exp (—%iegﬂ)

is the rotor for a rotation v — RvR ™1 by 6 about the e3 axis in physical space.
Furthermore, in APS the volume of the parallelepiped with sides a, b, ¢, is dual
to a pseudoscalar, namely the trivector

a A bAc=(abc); = (abc), = ((ab), c);
= (i*(ab), ), =i{(a X b)c)g, =i(a X b)-c.

Exercise 11. The bivector rotation rate § = —iw can be expressed as the dual
of a vector w in physical space. Show that (Qr)q, = w X1 .

Exercise 12. Show that in physical space ((uv), w)p, = u (v - w) — v (u - w)

becomes (u x v) x w = (u - w)v — (v - w)u.

e

Exercise 13. Rewrite the effective force (4.2.2) in the rotating frame in terms of
w =i

Except for their normalization, reciprocal basis vectors are duals to hyperplanes
formed by wedging all but one of the basis vectors. The reciprocal basis is im-
portant when the basis is not orthogonal and not necessarily normalized, as in the
study of crystalline solids. We can think of the reciprocal vectors as basis 1-forms,
that is linear operators a* on vectors a; whose operation is defined by

a* (a;) =a; - a* = 5;-“.

9As Lounesto discusses [4], one can define a cross product of n — 1 vectors as the dual of a
pseudovector, and in n = 7 dimensions, a trivector can be defined that gives a cross product of any
two vectors as the pure part of an octonion product.
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4.3 Paravectors and relativity

The space of scalars, the space of vectors, and the space of bivectors, are all linear
subspaces of the full 2"-dimensional space of the algebra C?,,. Direct sums of
the subspaces are also linear subspaces of the algebra. The most important is the
direct sum of the scalar and the vector subspaces. It is an (n + 1)-dimensional
linear space known as paravector space. In APS (n = 3), every element reduces
to a complex paravector. '

Elements of real paravector space have the form p = p° +p = (p), + (p);,
and the algebra C?,, also includes homogeneous subspaces of multiparavectors.
For example,

paravector space = (Clpn), o, (n+1)-dim

biparavector space = (Cln), | , (n ; 1)-dim

1
k-paravector space = (Cﬂn)ky k1) (n ;: )-dim.
In general, 0-grade paravectors are scalars in (Cf,), , (n + 1)-grade paravectors
are volume elements (pseudoscalars) in (C¢y) . , and the linear space of k-grade
multiparavectors is (Cln), ;| = (Cln), ® (Cln),_,,k=1,2,...,n.

4.3.1 Clifford conjugation

In addition to reversion (dagger-conjugation), introduced above, we need Clifford
conjugation, the anti-automorphism that changes the sign of all vector factors as
well as reversing their order, and we need their combination. For any paravector p,
its Clifford conjugate is
p=p"~p, PI=0p.

Clifford conjugation can be used to split paravectors into scalar and vector parts,
and it is convenient to extend such a split to a general element p of C¥,, by defining
the scalarlike and vectorlike parts so that!!

_p+DP P—P _
P=" vty =

Clifford conjugation is combined with reversion to give the grade involution'?

(p)g + (p)y, = scalarlike + vectorlike.

=5, @' = pg)' = 5'd"

10paravectors have other uses as well. Paravectors in Cfo, 7 can be identified with octonions. [4]

1The scalarlike part of an element comprises all parts of grade k with & mod 4 = 0, 3, and the
vectorlike part comprises the rest.

12The symbol in Lecture 1 for the grade involution is the hat: 51 = $. However, physicists com-
monly use the hat decoration to indicate a unit element, and in this lecture it is preserved for that

purpose.
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an automorphism with which elements can be split into even and odd parts:

pt _ gt
_P +2_p + p____Qp = (p), + (p)_ = even + odd.
These relations offer simple ways to isolate different vector and paravector grades.

In particular, for n = 3, (here - - - stands for any expression)

(= ds=1(")ogs (=0
< )Re = < )0,1 < )Im = < )2,3
< >+:< ')o,z < >_:< )1,3

Exercise 14. Verify that the splits can be combined to extract individual vector
grades as follows:

Codo = res = (et = ¢ dsws Fooh = (o dnay

<>2

Example 15. Let B be any bivector. Then B is even, imaginary, and vectorlike,
whereas B2 is even, real, and scalarlike. Any analytic function f (B) is even and

FB) =f(-B)=f(B) =f (BT) . Spatial rotors R (B) = exp (1B) are
even and unitary: Rt (B) = R~ (B) = R(-B) .}

il

<"'>ImV’ <”'>3=<"'>ImS'

4.3.2 Paravector metric

If {e;, ez, -+, ey} is an orthonormal basis of the original Euclidean space, so
that
(ejer), = % (ejex + exe;) = §;
7Cklo = 3\Ci®k k€j iks
the proper basis of paravector space is {eg,e1,€2,- - ,en}, where we identify
€o = 1 for convenience in expanding paravectors p = p’e,, = 0,1,--- ,nin

the basis. The metric of paravector space is determined by a quadratic form. We
need a product of a paravector p with itself or a conjugate that is scalar valued. It
is easy to see that p? generally has vector parts, but pp = (pp), = pp is a scalar.
Therefore it is adopted as the quadratic form (“square length”):

Q(p) = pp.
By “polarization” p — p + g we find the inner product

(p,q) = (pd) s = 3 (pT+ ap) = P*q” (eueu) s = P"¢" M.

13We can use either grade numbers or conjugation symmetries to split an element into parts. The
grade numbers emphasize the algebraic structure whereas the conjugation symmetries indicate an
operational procedure to compute the part.
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Exercise 16. Show that (p3)s = 3 [Q (p+ q) ~ Q (p) — Q (9)] .
Exercise 17. Find the values of ., = (e, &,)¢ .

We recognize the matrix
(M) = diag (1,-1,-1,...,-1)

as a natural metric of the paravector space.!* It has the form of the Minkowski
metric. If (pg)s = 0, then the paravectors p and ¢ are orthogonal. For any ele-
ment x € Cly, 2% = 27 = (2T)g. If n = 3, then 2T = det z, where g is the
standard 2 x 2 matrix representation of x € Cl3, in which e ~g). [1]1IfzZ =1,
x i unimodular.

The inverse of an element x can be written

1=

g,[&iu

but this does not exist if 2z = 0. The existence of nonzero elements of zero
length (“nonzero zero divisors™) means that C¢,,, n > 0, and most other Clifford
algebras, unlike the (Clifford) algebras of reals, complexes, and quaternions, are
not division algebras. This may seem an annoyance at first, but it is the basis for
powerful projector techniques, as we demonstrate below.

Exercise 18. Show that the paravector 1 + ey has no inverse and is orthogonal
to itself.

Spacetime as paravector space

The paravectors of physical space provide a covariant model of spacetime. (Ex-
tensions to curved spacetimes are possible, but for simplicity we restrict ourselves
here to flat spacetimes.) We use SI units with ¢ = 1 and, unless specified oth-
erwise, take n = 3. Spacetime vectors are represented by paravectors whose
frame-dependent split into scalar and vector parts reflects the observer’s ability
to distinguish time and space components. In particular, any timelike spacetime
displacement dr = dt + dx has a Lorentz-invariant length defined as the proper
time interval dT :
dr? = dx dz = 7, dz"dz".

The proper velocity is

dz
U= —= 1 +v) = ute
dr 7 ( ) 2
where v = dx /dt is the usual coordinate velocity and we use the summation con-
vention for repeated indices. Other spacetime vectors are similarly represented,

141f we instead adopt the quadratic form Q (p) = —pp, the paravector metric has the opposite
signature.
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for example,

p=mu=FE+p: paramomentum
j=j"e, = p+J: current density

A = Ate, = ¢ + A : paravector potential
0 = 0u.e,n"” = 0; — V : gradient operator.

Exercise 19. Consider a function f (s), where s is the scalar s = (kZ)g =
kbx, = k,x* and k is a constant paravector. Use the chain rule for differ-
entiation to prove that 8f (s) = kf'(s), where f'(s) = df/ds. Note that
0, = 0/0zH.

Biparavectors represent oriented planes in spacetime, for example the electro-
magnetic field

F = (3A), = LF* (e,8,), = E +B.

The basis biparavectors (€,&,),, = — (e,&,),, are also the generators of Lorentz
rotations, and the expansion of F' in this basis gives directly the usual tensor com-
ponents F'#¥ . However, no tensor elements are needed in APS, and the algebra of-
fers several ways to interpret F' geometrically. The field at any point is a covariant
plane in spacetime, and for any observer it splits naturally into frame-dependent
parts: a timelike plane E = Eeg = (F'), and a spatial plane :B = (F'), . Since
E = (Feg)g, ; the electric field E lies in the intersection of F' with the spa-
tial hyperplane dual (and thus orthogonal) to eg. From iB = (Feg);,, , we see
that the usual magnetic field B is the vector dual to the spacetime hypersurface
(Fe())Im .

We need to be careful about stating that F' is a plane in spacetime. The sum
of electromagnetic fields is another electromagnetic field, but the sum of planes
in four dimensions is not necessarily a single plane. We may get two orthogo-
nal planes. (Of course this cannot happen in three dimensions, where the sum of
any two planes is also a plane, but spacetime has four dimensions.) Thus, we dis-
tinguish simple fields, which are single spacetime planes from compound ones,
which occupy two orthogonal (and hence commuting) planes. How do we distin-
guish a simple field from a compound one? All we need to do is square it. The
square of any simple field is a real scalar, whereas the square of a compound field
contains a spacetime volume element, that is a pseudoscalar, given in APS as an
imaginary scalar.

Example 20. The biparavector (pg),, = % (pq — qp) is simple and represents a
spacetime plane containing paravectors p and q. Its square

— _ — - 2 - = - 2 _
(pd)y = L (07 — qp)* = L (pq7 + 4p)* — % (pdgp + 4ppq) = (PQ)g — PP4T

is seen to be a real scalar.
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If paravectors p and q are orthogonal to both  and s, then (pq + r5), is a com-
pound biparavector with orthogonal spacetime planes (pq);, and (r5),, . How-
ever, the planes in a compound biparavector may not be unique: if p,q,r, s are
mutually orthogonal paravectors and if pp = r7 and q§ = s8§, then

pi+ri)y =3 (p+NTa+9) +p-NTg=9)

expresses the compound biparavector as two sets of orthogonal planes. Orthog-
onal planes in spacetime are proportional to each other’s dual. As a result, any
compound biparavector can be expressed as a simple biparavector times a com-
plex number.

Exercise 21. Show that e1&y + ezéz = ejég (1 + i) for any compound bipar-
avector €1€p + €e3€,.

The square of F = E + iB is
F?=FE*-B24+2E-B

and F is evidently simple if and only if E - B = 0. A null field, with F2 = 0, is
thus simple. It can be written F' = (1 + I::) E, where kE = iB.

Exercise 22. Show that kF = F = —Fk for any null field F = (1 + k) E.

Lorentz transformations

Much of the power of Clifford’s geometric algebra in relativistic applications
arises from the form of Lorentz transformations. In APS, we identify paravec-
tor space with spacetime, and physical (restricted) Lorentz transformations are
rotations in paravector space. They take the form of spin transformations

p— LpL', odd multiparavector grade

F — LFL, even multiparavector grade,

where the Lorentz rotors L are unimodular, LL = 1, with matrix representations
in SL(2,C), and they have the form

L=zexp(dW), W=3Iiw# (entu) -

Every L can be factored into a boost B = B t (a real factor) and a spatial rotation
R = R! (a unitary factor): L = BR.
For any paravectors p, q, the scalar product

(pq)s — <LpLTEqu>S =(pd) s

is Lorentz invariant. In particular, the square length pp = (po)2 — p? is invari-
ant and can be timelike (> 0), spacelike (< 0), or lightlike (null, = 0). Nuil
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paravectors are orthogonal to themselves. Similarly F2 is Lorentz invariant, and
simple fields can be classified as predominantly electric (F'2 > 0), predominantly
magnetic (F% < 0), or null (F? = 0).

With Lorentz transformations, we can easily transform properties between iner-
tial frames. The position coordinate x of a particle instantaneously at rest changes
only by its time, the proper time 7 : dz,est = d7. We transform this to the lab, in
which the particle moves with proper velocity u = dz/dr, by

dz = Ld2rest L' = LLVdr = udr = dt +dz = dt (1 + v).

With L = BR it follows that

dt
T = 2 = = —
LL' =B =u=—(1+v).

Now LLT = LeoL! = w s just the Lorentz rotation of the unit basis paravector
eg, and its square length is invariant:

wi=1=+*(1-2%),
where v = dt/dr is the time-dilation factor.
Example 23. Consider the transformation of a paravector p = p*e,, in a system
that is boosted from rest to a velocity v = ves :
p— LpL' = BpB = pru,

where B = exp (%wegéo) = y1/2 represents a rotation in the ez€g paravector
plane and u, = Be, B is the boosted proper basis paravector. Evidently

ug = BeoB = B?eq = ueg = v {eg + ves)
u; =€
Uz = e

uz = Be3B = uez = 7(63 + 'er)

1
2

withy = (1 - %;)

As in the case of spatial rotations, if we put LpL! = p’ = p'Ye,,, we can easily

Jfind

pY =pt (u.e")g
and hence the usual 4 x 4 matrix relating the components of p before and after
the boost, but we have no need of it. The relations for w,, are useful for drawing
spacetime diagrams. Thus, if v = 0.6, then v = 1.25 and

Ug = % (560 + 363) s uz = % (563 + 360) .

We can take this further and look at planes in spacetime, as shown in Fig. 4.1.
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€427 Uy,

FIGURE 4.1. Spacetime diagram showing a boost to v = 0.6 e3 .

Exercise 24. Show that the biparavectors e3€, and €1 €3 are invariant under any
boost B along es.

Exercise 25. Let system B have proper velocity uap with respect to A, and let
system C have proper velocity upc as seen by an observer in B. Show that the
proper velocity of C as viewed by A is
1/2 1/2

UAC = UA/BUBCUA/B
and that this reduces to the product usc = uapUBc when the spatial velocities
are collinear. Writing each proper velocity in the form u = -y (1 + v) , show that
in the collinear case

(vac)y _ _vaB+vsc
<UAC>S 1+'UAB"UBC.

vac =
Example 26. Consider a boost of the photon wave paravector
k=w(1+k) =¥ = BeB=u(w+kl) +k*
with k!l = k-9 © = k — k* and u = v (1 +v). This describes what hap-

pens to the photon momentum when the light source is boosted. Evidently kL is
unchanged, but there is a Doppler shift and a change in Kl

w’=<u(w+k”)> :'yw(l-i—fc-v)

K-v= <uf) (w—l—k“)gs =yw (v+l€:-f)) = w'cosd’.
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Thus the photons are thrown forward

v+ cos @

= —.
€08 14+ vcosé

(3.6)

in what is called the “headlight” effect (see Fig. 4.2).

FIGURE 4.2. Headlight effect in boosted light source.

Exercise 27. Solve (3.6) for cos 0 and show that the result is the same as in (3.6)
except that v is replaced by —v and 0 and §' are interchanged.

Exercise 28. Show that at high velocities, the radiation from the boosted source
is concentrated in the cone of angle v~ about the forward direction.

Simple rotors of Lorentz transformations can be expressed as a product of para-
vectors in the spacetime plane of rotation. Consider a biparavector (pg), and a
paravector r with a coplanar component 7~ and an orthogonal component 7.
The coplanar component is a linear combination of p and ¢ : r® = ap + fq,
where a and £ are scalars. Now the product of (pg),, with p satisfies

(pd)y p = 1 (pap — app) = p (@0)y = p (PO}, ,

Similarly with ¢ and thus with any linear combination of p and g. It follows that
if L is a simple Lorentz rotor in the plane (pg)y, , that the coplanar component
obeys

Lr® =r2Lt.
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On the other hand 7 is orthogonal to the plane and thus coplanar with its dual:
(pFt)g =0=(gr'),, so that

(pd)y = § (p@r" —gprt) = vt (g — qp) = —r* (pD)},
and consequently for any Lorentz rotor L that rotates in the plane of (pq);, ,
Lrt =rtLt
The Lorentz transformation of r thus gives
LrLt =rt 4 L%,

In spacetime, it is possible for a null vector to be both coplanar and orthogonal to
a null flag. An example of a null flag is

F=(1+€3)€1=(1+€3)€3€1=i(1—}—€3)€2.

The dual flag *F = —iF = (1 + e3) ey is the rotation of F about e3 by %n. A
Lorentz transformation generated by F' leaves the flagpole 1 + ez invariant, since
F(l1+e3)=0=(1+e3)Ft

Suppose that r lies in the plane of rotation of L and that s = LrLt = L?r.
Then, as long as 77 # 0,

-1 -1
L:(sr'1)1/2= (s+r)7r _ stTh 41

V2(sr~ 1+ 1)g B (2(sr— 1+ 1))_19/2‘

Exercise 29. Verify that LL = 1 and

srl 4 1) (s+7) 24 sr—t 4 ps—1

Lir = ( = =
r (2(sr~141))g 2t s 715

S.

(Hint: note that s3 = r7 # 0 so that 715 = r5/ (r7) = r5/ (s3) = rs~1.)

If we rotate a null paravector k = w (1 + fc) in a spacetime plane that con-
tains k, then k¥ — k' = LkL' = L2k. In the case of a boost, L = B =
exp (%wic) , we find

k' =e"k

withe” = (k) g /(F)g =w'/w=y(1+v) =/ (1+v)/(1-v).

Lorentz rotations in the same or in dual planes commute, but otherwise they
generally do not. Furthermore, whereas any product of spatial rotations is another
spatial rotation, the product of noncommuting boosts generally does not give a
pure boost, but rather the product of a boost and a rotation. Lorentz rotations can
also be expressed as the product of spacetime reflections. Up to four reflections
may be needed.
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4.3.3 Relation of APS to STA

An alternative to the paravector model of spacetime in APS is the spacetime alge-
bra (STA) introduced by David Hestenes [10]. They are closely related, and it is
the purpose of this section to show how.

STA is the geometric algebra C¥; 3 of Minkowski spacetime. It starts with a
4-dimensional basis {0, V1,72, 73} = {,.} satisfying

VYo + YV = 20

in each frame. The chosen frame can be independent of the observer and her
frame {9,}.! Any spacetime vector p = p*¥,, can be multiplied by 4 to give
the spacetime split

PYo=p-% +p A% =p° +ptex,
where eg = 1 and ex = x40 are the proper basis paravectors of the system
in APS. (This association establishes the previously mentioned isomorphism be-
tween the even subalgebra of STA and APS.) More general paravector basis ele-
ments u,, in APS arise when the basis {7, } used for the expansion p = p*~,, is
for a frame in motion with respect to the observer:!®

Uy = YuYo -

In particular, ug = 0% is the proper velocity of the frame {v,} with respect
to the observer frame {%,} . The basis vectors in APS are relative; they always
relate two frames, but those in STA can be considered absolute.

Clifford conjugation in APS corresponds to reversion in STA, indicated by a
tilde:

Uy = (VuYo) = FoVu-
For example, if the proper velocity of frame {vy,,} with respect to 4o is wo = Yoo,
then the proper velocity of frame {9,.} with respect to yo is %o = §o7o. It is not
possible to make all of the basis vectors in any STA frame Hermitian, but one
usually takes 4} = 4o and ’y): = —% in the observer’s frame {4, } . Hermitian
conjugation in STA then combines reversion with the reflection in the observer’s
time axis 4o: T'f = 9990 , for example

’U,L = &O(VMF?O)—’SIO = ’Y;ﬁ’o =Uy,

5The hat here is not related to the grade involution. It is used to designate the observer frame and
to emphasize that the basis vectors 4, have unit magnitudes: (’m)2 =£1.

16 A double arrow might be thought more appropriate than an equality here, because u,, and y4, 90
act in different algebras. However, we are identifying C¢3 with the even subalgebra of C?; 3, so that
the one algebra is embedded in the other. Caution is still needed to avoid statements such as

. wrong! N N . ~ o
i=ejexez3=e; ANexNes3 = FAYNA¥AYAY3 A5 =0.

This is not valid because the wedge products on either side of the third equality refer to different
algebras and are not equivalent.
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which shows that all the basis paravectors u,, are Hermitian. It is important to note
that Hermitian conjugation is frame dependent in STA just as Clifford conjugation
of paravectors is in APS.

Example 30. The Lorentz-invariant scalar part of the paravector product pg in
APS thus becomes

(p3) s = 3P"¢" (en8y + €,8,) = 594" (VAoYovw + Yo FoYovu) = PH¢ Nuv.
Biparavector basis elements in APS become basis bivectors in STA:

'21' (euéu - eueu) = % (7;4;70;70711 - 7U'A70'A707u) = % (7;4711 - 71/)'#) .

Lorentz transformations in STA are effected by v, — Lv,L ", with LL™ = 1.
Every product of basis vectors transforms the same way. An active transformation
keeps the observer frame fixed and transforms only the system frame:

e = 3o = wu = Yo = LiuL Fo = Lo (3oL %0) = Le, LY.

We noted that the 4o in the definition of e, is always the observer’s time axis.
In a passive transformation, it is the system frame that stays the same and the
observer’s frame that changes. Let us suppose that the observer moves from frame
{7,.} to frame {¥,.} where v, = L4,L". Then

€u = YuYo = Uy =VuYo-

To re-express the transformed relative coordinates w,, in terms of the original e,,,
we must expand the system frame vectors v, in terms of the observer’s trans-
formed basis vectors. Thus

u, = LA, L % = Le, L.

The mathematics is identical to that for the active transformation, but the inter-
pretation is different. Since the transformations can be realized by changing the
observer frame and keeping the system frame constant, the physical objects can
be taken to be fixed in STA, giving what is referred to as an invariant treatment
of relativity.

The Lorentz rotation is the same whether we rotate the object forward or the
observer backward or some combination. This is trivially seen in APS where only
the object frame relative to the observer enters. Furthermore, as seen above, the
space/time split of a property in APS is simply a result of expanding into vector
grades in the observer’s proper basis {e,, } :

p={(p)o+ (), =p"+p, F=(F), +(F),=E+iB.

To get the split for a different observer, you can expand p in his paravector ba-

sis {u,} and F' in his biparavector basis {(uuﬁu>1 5 (» Where u = ug is his
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proper velocity relative to the original observer. Then with the transformation
u, = Le, L' you re-express the result in its proper basis before splitting vector
grades. The physical fields, momenta, etc. are transformed and are not invariant
in APS, but covariant, that is the form of the equations remains the same but not
the vectors and multivectors themselves.!’

4.4 Eigenspinors

A Lorentz rotor of particular interest is the eigenspinor A that relates the particle
reference frame to the observer. It transforms distinctly from paravectors and their
products: A — LA and is a generally reducible element of the spinor carrier space
of Lorentz rotations in SL(2, C). This property makes A a spinor. The eigen part
refers to its association with the particle. Indeed any property of the particle in the
reference frame is easily transformed by A to the lab (= observer’s frame). For
example, the proper velocity of a massive particle can be taken to be © = 1 in the
reference frame. In the lab it is then

u = AegAl = AAT,

which is seen to be the timelike basis vector of a frame moving with proper ve-
locity u (with respect to the observer).

If we write A = BR, then u is independent of R. Traditional particle dynam-
ics gives only u and by integration the world line. The eigenspinor gives more,
namely the orientation and the full moving frame {u, = Ae,A'}. While uo is
the proper velocity, w3 is essentially the Pauli-Lubariski spin paravector [13].

4.4.1 Time evolution

The eigenspinor A changes in time, with A (7) giving the Lorentz rotation at
time 7. For boosts (rotations in timelike planes) this means that A relates the
observer frame to the commoving inertial frame of the object at 7. Eigenspinors
at different times can be related by

A(Tg) = L(Tg,Tl) A(Tl) ;
where the time-evolution operator is
L(m,m)=A(r2)A(my)

and is also seen to be a Lorentz rotation.
The time evolution is in principle found by solving the equation of motion

A=1oa=1AQ, @7

-2

7You can have absolute frames in APS, if you want them for use in passive transformations, by
introducing an absolute observer.
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with the spacetime rotation rate §2 = AR - AA = A, A, where Q. is its
biparavector value in the reference frame. This relation allows us to compute time-
rates of change of any property that is known in the reference frame. We take the
reference frame of a massive particle to be the commoving inertial frame of the
particle, in which u = 1. For example, the acceleration in the lab is

= (Qu)p, = (ALAT), = A(Q )5 AT
The proper velocity u of a particle can always be obtained from an eigenspinor
that is a pure boost:

A=l = (14u) /y/2{1 +u)g.

The spacetime rotation rate is then

Q = 244 = _fl_ 14+u 1+a
(G,

(u(l+a))y, i Au iuxu
1+~ 1+y 14~v°

where we noted that (1 +u) (1 + @) is a scalar. The negative imaginary part
@ X u/(1++) is the spatial rotation rate, known as the proper Thomas pre-
cession rate.'®

4.4.2 Charge dynamics in uniform fields

A standard problem in particle dynamics is to find the motion of a charge in
constant, uniform electric and magnetic fields. We saw above an interpretation
of the field F' as a spacetime plane. Its definition is given in this operational or
dynamic sense: it is the spacetime rotation rate of a test charge with a unit charge-
to-mass ratio. The Lorentz-force equation follows from the eigenspinor evolution
(4.7) with the spacetime rotationrate 2 = eF' /m :

A= P 4.8)
2m

Exercise 31. From the relation p = mu = mAA' for the momentum p of the
charge, prove that the identification above of the spacetime rotation rate leads to
the covariant Lorentz-force equation'®

p=e(Fup, = (Fu+uFt).

18This one-line derivation is not only much neater but considerably clearer than the usual cumber-
some one based on differentials!

190ne of the advantages of treating EM relativistically is that, provided we know how quantities
transform, we can determine general laws from behavior in the rest frame. Thus the Lorentz force
equation is the covariant extension of the definition of the electric field, viz. the force per unit charge
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For any constant F', the eigenspinor satisfying (4.8) has the form
e
A(r)=L(r)A(0), L(7) = (—F)
(1) =L(r)A(0), L(7) = exp (5 FT
and this implies a spacetime rotation of the proper velocity
w(r)=A(T)AT (1) = L (1) w(0) Lt (7).

This is a trivial solution that works for all constant, uniform fields, whether or
not they are spacelike, timelike, or null, simple or compound. Traditional texts
usually treat the simple spacelike case (or occasionally the simple timelike case)
by finding a drift frame in which the electromagnetic field is purely magnetic
(or electric). We see that a more general solution is much easier. Furthermore, it
is readily extended. If F' varies in time but commutes with itself at all different
times, the solution has the form above with F'r replaced by fOT F (r")dr'. Also,
if you have a nonnull simple field, it can always be factored into

F=u4F,; = utli/2Fdﬂ[11/2
where F; is the field in the drift frame and ug4 is the proper velocity of the drift

frame with respect to the lab. Its vector part is orthogonal to F'4.

Example 32. Consider the field
F = (561 + 4i63) Eo = (561 + 46162) Eo.

We note that F2 > 0, so we expect the field in the drift frame to be purely electric.
We therefore factor out the electric field Ep ey, leaving

F=5 (1 - %eg) Eoel = udFd.
In the last step, we normalize the velocity factor so that uq is a unit paravector:

1-4
udz—(——ﬂ:—g(l-—éeg)zy(l—{-v)
1— 18
25

which leaves F 4 = 3Eye;.

in the rest frame of the charge: prest = eFErest. This rest-frame relation is NOT covariant. The
LHS is the rest-frame value of the covariant paravector p, where the dot indicates differentiation with
respect to proper time, whereas the RHS is the real part of the covariant biparavector field F,which
transforms distinctly. The covariant Lorentz-force equation follows when we boost p from rest to the
lab:

P = AprestA’ = eA(Frest) g Al = e(AFretAY) o = e(A (AFA) AT)p = e(Fu)p,.
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Exercise 33. Factor the electromagnetic field
F = (381 — 5i83) Eo

into a drift velocity and electric or magnetic drift field.
Solution: F = ugF 4 = 3(1 + 2e,) (~ide3Ep).

For compound fields, the drift field is a combination of collinear magnetic and
electric fields, and the solution easily gives a rifle transformation: a commuting
boost and rotation. Traditional electromagnetic theory texts rarely treat this case.
For null fields, F with F? = 0, the drift frame idea is not useful, since the drift
velocity is at the speed of light. Our simple algebraic solution above still works,
however, and indeed is then especially easy to evaluate since

exp (307) =1+ Q7

when 22 = 0.

4.5 Maxwell’s equation

Maxwell’s famous equations were written as a single quaternionic equation by
Conway (1911) [14, 15], Silberstein (1912, 1914) [16, 17], and others. In APS we
can write

where po = £5' = 47 x 30 Ohm is the impedance of the vacuum, with 3 =
2.99792458. The usual four equations are simply the four vector grades of this re-
lation, extracted as the real and imaginary, scalarlike and vectorlike parts. The re-
lation is also seen as the necessary covariant extension of Coulomb’s law
V . E = p/eyp. The covariant field is not E but F' = E + ¢ B, the divergence is
part of the covariant gradient 8, and p must be part of 7 = p—j . The combination
is Maxwell’s equation.?’

Exercise 34. Derive the continuity equation {37) s = 0 from Maxwell’s equation
in one step. (Hint: note that the D’Alembertian 00 is a scalar operator and that

<F>s =0.)

4.5.1 Directed plane waves

In source-free space (j = 0), there are solutions F (s) that depend on spacetime
position only through the Lorentz invariant s = (kZ), = wt — k - @, where k =

20We have assumed that the source is a real paravector current and that there are no contributing
pseudoparavector currents. Known currents are of the real paravector type, and a pseudoparavector
current would behave counter-intuitively under parity inversion. Qur assumption is supported experi-
mentally by the apparent lack of magnetic monopoles.
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w + k # 0 is a constant propagation paravector. Since 0 (kZ), = k, Maxwell’s
equation gives B ~

OF = kF'(s) =0. (5.10)
In a division algebra, we could divide by k and conclude that F'(s) = 0, a
rather uninteresting solution. There is another possibility here because APS is not
a division algebra: k£ may have no inverse. Then k has the form k = w (1 + Iz:) ,
and after integrating (5.10) from some sp at which F is presumed to vanish, we
get (1 — IQ:) F (s) = 0, which means

F(s)=kF(s).

The scalar part of F vanishes and consequently (kF (s)) g = k-F(s)=0

so that the fields E and B are perpendicular to k and thus anticommute with it.
Furthermore, equating imaginary parts gives :B = kE and it follows that

F=E+iB= (1+E)E<s)

with E = (F'), real. This is a plane-wave solution with F' constant on all spatial
planes perpendicular to k. Such planes propagate at the speed of light along k.In
spacetime, F' is constant on the light cones k - © — ¢ =constant.

However, F is not necessarily monochromatic, since E (s) can have any func-
tional form, including a pulse, and the scale factor w, although it has dimensions
of frequency, may have nothing to do with any physical oscillation. Note further
that F' is null:*!

F2:(1+E>E(1+E)E:(1+ic) (1-&)E*=0.

The energy density £ = % (5OE2 + B?/ to) and Poynting vector § = E x
B/ g are given by

%50FFJ‘:€+S=€OE2<1+’;)-

Example 35. Monochromatic plane wave of frequency w linearly polarized along
E;:
F = (1 +k> Egcoss.

Example 36. Monochromatic plane wave of frequency 5w linearly polarized
along Eq :

F = (1 +E> Eqcosbs.

2l1n fact, F is what Penrose calls a null flag. The flagpole <1 + E) lies in the plane of the flag
but is orthogonal to it. This becomes important below when we discuss charge dynamics. The null
flag structure is beautiful and powerful, but you miss it entirely if you write only separate electric and
magnetic fields!
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Example 37. Monochromatic plane wave circularly polarized with helicity k :
F = (1 + I;:) Egexp (imsk) = (1 + I;:) Eqexp(—iks) .

Note that the rotation factor has become a phase factor (a “duality rotation”) in
the last expression. This is a result of the “Pacwoman property” in which 1 + k

gobbles neighboring factors of k: (1 + I::) k= (1 + I::) :
(1 + IE) Egexp (msic) = (1 + Iz:) exp (—imsk) Eq
= (1 + IE) (cos ks — iksin KS) E,
[gobble!] = (1 + I;:) (cosks —isinks) Eg
= (1 + I;:) Eqgexp (—iks).
Example 38. Linearly polarized Gaussian pulse of width A Jw :
F= (1 + I;:) Eqexp (—%32/A2) .
Example 39. A circularly polarized Gaussian pulse with center frequency w :
F=(1+k) Boexp (—}s?/A% +is).
These all have the common form
F= (1+ic) E-= (1+ic) Eof (s),
where f (s) is a scalar function, possibly complex valued. We will use this be-

low.22

4.5.2 Polarization basis

A beam of monochromatic radiation can be elliptically polarized as well as lin-
early or circularly polarized. There are two degrees of freedom, so that arbitrary
polarization can be expressed as a linear combination of two independent po-
larization types. There is a close analogy to the 2-D oscillations of a pendulum

Z2Warning: Don’t assume from the last relation that E (s) is Eof (s) . It doesn’t follow when f
is complex. Remember that (1 + I::) has no inverse, so we can’t simply drop it. Instead, since Ejg is

real and kEo is imaginary,

E=((1+k) Eof (5)) = Eo(Npe+kEo ()
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formed by hanging a mass on a string. Both linear and circular polarization bases
are common, but we find the circular basis most convenient, partially because of
the relation noted above between spatial and duality rotations. Circularly polar-
ized waves also have the simple form used popularly by R. P. Feynman [19] in
terms of the paravector potential as a rotating real vector:

Ax = aexp (insk) ,

with s = (kZ)g =wt —k -z and @ - k = 0, where k = %1 is the helicity. The
corresponding field is

« = (04),, =irkaexp (insfc) = (1 + I::) Eyexp (insk) ,
with Fg = ikka = ka X k.
A linear combination of both helicities of such directed waves is given by
F = (1 + I::) Eoei‘% <E+ei8f° + E_e_m;)
= (1 + I::) Eoe ™ (Epe ™ + E_e*)

where E; are the real field amplitudes, § gives the rotation of E about kats=0,
and in the second line, we let Pacwoman gobble the k’s. Because every directed

plane wave can be expressed in the form F' = (1 + k) E (s), it is sufficient to
determine E (s) = (F)g, :

<<1 + I;:) EoE e ®e ¥ 4 (1 + I::) EOE_e_i‘seis>Re
=([(1+k) BoBye™ + Bo (1+ k) B_e¥] et
(

(e+,e_) <I>e—"s>Re ,

where the complex polarization basis vectors € = 2~ (1 + k) Eq are basis

null flags satisfying e_ = eL, €4 - eL =1 =e_ €', and the Poincaré spinor

o= f<E+e ;)

gives the (real) electric-field amplitudes and their phases, and thus contains all the
information needed to determine the polarization and intensity of the wave.??
23The direction of the magnetic fieldat s = 0 is Bo =kx Eg. In terms of this

€4 = % (Eo :i:iBo) .
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Stokes parameters

Physical beams of radiation are not fully monochromatic and not necessarily fully
polarized. To describe partially polarized light, we can use the coherency density,
which in the case of a single Poincaré spinor is defined by

p=¢ed® = ploy,

where the o, are the usual Pauli spin matrices and the normalization factor ¢ has
been chosen to make p° the time-averaged energy density:

(€+8)u = (3eoFF) =leo((1+k)E*(1+k))

o (1+) ZaEvz)t_av =/ (1+k).

The coefficients p# are the Stokes parameters. The coherency density can be
treated algebraically in Cl3 to study all polarization and intensity properties of
the beam.?

The Stokes parameters are given by

Pt ={pou)s = %tr (pou).
Explicitly

p° =eo (B2 + E2), p! = 260ELE_ cos ¢,
p? =2c0E,E_sin ¢, p® = &g (Ei - EE) ,

where ¢ = 26 is the azimuthal angle of p = plo' + p%a3 + p03. The coherency
density is a paravector in the space spanned by the basis {1, 03, o3}, namely
p=p"+p.

This space, called Stokes subspace, is a 3-D Euclidean space analogous to phys-
ical space. It is not physical space, but its geometric algebra has exactly the same
form as (is isomorphic to) APS, and it illustrates how Clifford algebras can arise
in physics for spaces other than physical space. As in APS, it is the algebra and
not the explicit matrix representation that is significant.

The electric field E can be transformed to the familiar Jones-vector basis by a unitary matrix:

E= <(Eo,f>’o) s e—is>Re, (Eo,f)’o) = (e4,e-) UL,
_ _{ Eje~® 4 E_é, _ 1 /11
by =Ust= (i (Eyemi — E_ei‘s)) ' Usr= 5] (i —i) '

24Many optics texts still use the 4 x 4 Mueller matrices for this purpose, but this strikes me as
even more perverse than using 4 x 4 matrices for Lorentz transformations. The coherency density,
introduced by Born and Wolf as the “coherency matrix” by the time of the third edition of their
Principles of Optics book in 1964, is really much simpler. Transformed as here into the helicity
basis, it matches the quantum formulation of the spin-%density matrix as well as the standard matrix
representation of APS.



Lecture 4: Applications in Physics 121

FIGURE 4.3. The direction of p gives the type of polarization.

As defined for a single ®, p is null: det p = pp = 0. Thus, p = p° (1 +n)
where n is a unit vector in the direction of p. It fully specifies the type of po-
larization. In particular, for positive helicity light, n = o3, for negative helicity
polarization n = —o'3, and for linear polarization at an angle § = %(b with re-
spect to Eg, n = 01 cos ¢ + o2 sin ¢. Other directions correspond to elliptical
polarization.

Polarizers and phase shifters

The action of ideal polarizers and phase shifters on the wave is modeled mathe-
matically by transformations on the Poincaré spinor ¢ of the form & — 7T'®. For
polarizers T is a projector

Pn - '% (1 + n) ,

where n is a real unit vector in Stokes subspace that specifies the type of polariza-
tion. Projectors are real idempotent elements: P, = P, = P2 just as we would
expect for ideal polarizers. For example, a circular polarizer allowing only waves
of positive helicity corresponds to the projector Pg, = % (1+ o3), which when
applied to ® eliminates the contribution E_ of negative helicity without affecting
the positive-helicity part:

. E+e—i6 . E+e—i6
@.—\/é(E—ei(s)—*Po’a@.—\/é( 0 .

A second application of P, changes nothing further. The polarizer represented
by the complementary projector P, eliminates the upper component of ®. Gen-
erally, since PP, = P_»Pn = 0, opposite directions in Stokes subspace corre-
spond to orthogonal polarizations.
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Multiplication of ® by exp (i) phase shifts the wave by an angle . An overall
phase shift in the wave is hardly noticeable since the total phase is in any case
changing very rapidly, but the effect of giving different polarization components
different shifts can be important. If the wave is split into orthogonal polarization
components () and the two components are given a relative shift of c, the
result is equivalent to rotating p by « about n in Stokes subspace:

T = Pneia/Q + l’)ne—ia/Q — eina/Q.

If n = o3, this operator represents the effects of passing the waves through a
medium with different indices of refraction for circularly polarized light of differ-
ent helicities, as in the Faraday effect or in optically active organic solutions, and
the result is a rotation of the plane of linear polarization by %a about k. On the
other hand, if n lies in the ;07 plane, the above operator T represents the effect
of a birefringent medium with polarization types n and —n corresponding to the
slow and fast axes, respectively. In a quarter-wave plate, for example, o = %w.
Incident light linearly polarized half way between the fast and slow axes will be
rotated by %7!' to o3, giving circularly polarized light.

The basic technique of splitting the light into opposite polarizations +n, acting
differently on the two polarization components, and then recombining is modeled
by the operator

T=PnAs +P_nA_.

If the actions A are the same, the result is the identity operator: nothing happens.
The ideal filter is the special case Ay = 1, and A_ = 0, that is one of the
polarization parts is discarded.

Coherent superpositions and incoherent mixtures

A superposition of two waves of the same frequency is coherent because their
relative phase is fixed. Mathematically, one adds spinors in such cases:

®=9,+ 9,

where the subscripts refer to the two waves, not to spinor components. Coherent
superpositions of monochromatic waves are always fully polarized and can be
represented by a single Poincaré spinor or Jones vector.

However, real beams of waves are never fully monochromatic. Two waves of
different frequencies have a continually changing relative phase, and when their
product <I>1<I>£ is averaged over periods large relative to their beat period, such
terms vanish. The waves then combine incoherently, and one should add their
coherency densities rather than their Poincaré spinors:

p=p1+p2.

In such an incoherent superposition, the polarization can vary from O to 100%.
Any transformation T of spinors, & — T'®, transforms the coherency density
by
p— Tpr.
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Example 40. Consider a sandwich of two crossed linear polarizers, with a third
linear polarizer of intermediate polarization inserted in between. If p is initially
unpolarized, the first polarizer, say of type 1, produces

Pnpopn = popn = %po (1+m),

that is, fully polarized light with half the intensity. The crossed polarizer, repre-
sented by P_,,, would annihilate the polarized beam, but if a different polarizer,
say type m, is applied before the —n one, we get

Prrp’PrPrm = p° (PmPn + Pnpm) Pm
=20 (PsuPr)s Pm = %po(l +m - n)Py,.
Application of the final polarizer of type —n then yields
3°1+m - -n)P_ PP =11+ m-n)(1-m.n)P,
=1°(1- (m-n)’) P
The maximum intensity is 1/8th the initial, reached when m - n = 0, that is when

the linear polarization of the intervening polarizer is at 45° to each of the crossed
polarizers.

In addition, many other transformations that do not preserve the polarization
can be applied. For example, depolarization of a fraction f of the radiation is
modeled by

p—=1=flp+1ip)s,

and detection itself takes the form p — (pD) 5 , where the detection operator may
equal D = 1 in an ideal case, but more generally it can have different efficiencies
D for opposite polarization types:

D=D,P,+D_P_,.

A number of other transformations are possible.

4.5.3 Standing waves and E|| B fields

Standing waves are formed from the superposition of oppositely directed plane
waves:

F= (1+E>E0f(wt—k-:c)+(1—fc>Eof(wt+k-a;)
= (f+ — 1-k) Eq

where fi = f{wt + k- x) £ f (wt — k- ) . For the monochromatic circularly
polarized wave f (s) = expis of negative helicity,

f+ =2exp(iwt)cosk - x, f- = 2iexp (iwt) sink -
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and
F = 2(cosk - x — iksink - ©) Eq exp (iwt) = 2Eq exp(ik k - ) exp (iwt),
N e N e’
real: spatial rot. duality rot.

which represents electric and magnetic fields that are aligned on the radii of a
spiral fixed in space. The field rotates in duality space (£ — B — —E) atevery
point in space. Thus at £ = 0, there is only an electric field throughout space, and
a quarter of a cycle later, there is only a magnetic field. At intermediate times,
both electric and magnetic fields exist and they are aligned. To change to a wave
of positive helicity plus its reflection, replace ¢ by —1.

The roles of time and space are reversed if waves of opposite helicity are su-
perimposed. In this case, the fields throughout space point in a single direction at
a given instant in time, and that direction rotates about k in time. How much of
the ﬁelfl is electric and how much magnetic depends only on the spatial position
along k. The energy density for both circular-wave superpositions are constant
and their Poynting vectors vanish: £ + S = JeoFF' = 269 E%.%

4.5.4 Charge dynamics in plane waves

We saw above how eigenspinors made easy work of the problem of charge dy-
namics in constant uniform fields. What about motion in the more complicated
field of a directed plane wave? A derivation of the relativistic motion of a charge
in a linearly polarized monochromatic plane wave was given by A. H. Taub [20]
in 1948, using 4 x 4 matrix Lorentz transformations of the charge. The derivation
is simpler using eigenspinors (or rotors) in Clifford’s geometric algebra, as shown
by Hestenes in 1974 [21]. Here we review the extension [6] to arbitrary plane
waves and plane-wave pulses in APS.
The fields of directed plane waves are null flags of the form

F(s) = (1+1;)E(s), s=(kB)g, k-E=0.
All null flags on a given flagpole annihilate each other and therefore commute:
F(s1)F(s3) = (1 + k) E(s)) (1 + k) E(sy) =0=F(sy) F (s1)

and as a result, the solution to the equation of motion (4.8) is the exponential
expression

2m

A () =exp{—e—/0TF[s ()] dr’}A(O),

25There was considerable controversy about such fields when they were first proposed by Chu and
Ohkawa [18] in 1982. A surprising number of physicists were convinced that the rule £ - B = 0
for directed plane waves and other simple fields also had to be true of superpositions in free space.
The result and its interpretation are quite obvious with some geometric algebra. Now E|| B fields are
used routinely in the laser cooling of atoms to submicrokelvin temperatures. Opposite helicities, as
naturally obtained by reflection, are required for the operation of the Sisyphus effect.
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which by virtue of the nilpotency of F' reduces to

A(r) {1+—/ Fls }A(O). 5.11)

The problem is that F [s (7)] is the electromagnetic field at the charge at proper
time 7, and we need to know the world line z (7) of the charge to know its value.
We could get the world line by integrating u (1) = AAT, but it is A we’re trying
to find! This looks hopeless, but there’s a surprising symmetry that comes to the
rescue.

From kF = 0, it follows that kA (1) = 0, the bar conjugate of which is
Ak = 0, and from the definition of A, AkA" = k.. is the propagation paravector

as seen in the instantaneous rest frame of the charge. Since k is constant in the
lab,
frere = - (ARAY) =2 (RRAT) =0,
dr Re
and it is also constant in the rest frame of the charge. Now that is unexpected
because the charge, as we will see, is accelerating! In particular, the scalar part

$ = (kll) g = Wrest Of Kyest is constant. Thus, s = s + wrest™ and we can solve
(5.11) above:

A(r) = [1 + szrest / (s ds'J A(0)

1+k E
P O/ f(s') ds'| A(0),

2Tn‘*‘)rest

where in the second line we noted that every plane wave with flag pole 1 4 k can
be expressed by (1 + 12:) E,f (s). This is the solution since we know f (s) and
can integrate it, but there’s another form, using

F(s) =0A(s) = kA (s),

which is valid in the Lorenz gauge (84), = 0. The integral over F is thus
trivially expressed as

A(s) — A(so)] A(0), (5.12)

giving a change in the eigenspinor that is linear in the change in the paravec-
tor potential. This can lead to substantial accelerations in the plane of k and
A (s) — A(so), especially when the charge is injected with high velocity along
k into the beam so as to produce a large Doppler shift and thus a large ratio
w /wrest- Curiously, however, the acceleration occurs always in a way that con-
serves (ki)g . There can therefore be substantial first- and even second-order
Doppler shifts from the acceleration caused by the field, but the rotal Doppler
shift in the frame of the charge is constant.
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Example 41. For the field pulse
F(s) =kAq/ cosh®s

there is a net change in the paravector potential of —2Ag so that from (5.12),

A (o0) = <1+ kao)A(O).

Wrest

With injection of the charge along I::, one finds a final proper velocity

2
4 (00) = A (00) AT (00) = 1o + 2ag + 2730

Wrest

where ag = eAg/m is the dimensionless amplitude of the vector potential.
Exercise 42. Show that the energy gain in the last example is

2wa?

Wrest

Exercise 43. Verify that ua is conserved in the last example. B
(Hint: Recall (ki) g = wrest and note ugag = agtio and kag = aok.)

FIGURE 4.4. The electromagnetic field of a directed plane wave is a flag tangent to the
light cone. Its flagpole lies along the propagation paravector k.

Insight into Why ke stays constant in the frame of the accelerating charge is
provided by the geometry of the null flag. The rotation occurs in the flag plane,
and the propagation paravector lies along the flagpole which lies in the plane.
However, the flagpole is also orthogonal to the plane and therefore invariant under
rotations in it.

Modern lasers possess high electric fields and seem excelient candidates for
particle accelerators. Our result (5.12) above shows why simply hitting a charge
with a laser has rather limited effect. The net change in the eigenspinor is linear
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in the change in paravector potential. You can gain energy only for about a half
cycle of the laser. Continue into the next half cycle and the charge starts losing
energy.

Another scheme is possible that avoids these problems. It is called the autoreso-
nant laser accelerator (ALA) and combines a constant magnetic field along the k
axis of a circularly polarized plane wave. When the cyclotron frequency of the
charge is resonant with the frequency of the laser, the acceleration along k is con-
tinuous and the frequencies remain resonant. This can lead to substantial energy
gains. Eigenspinors and projectors provide a powerful tool for solving trajectories
of charges in such cases, as well as for cases of superimposed electric fields [22].

The electromagnetic field in the case of a longitudinal magnetic field has the
form .

F = kAI (S) + ZB(),C
from which the equation of motion times & follows:
WwWe -

A=-2FkFA=- <RA,

2m

where w, = eBy/m is the proper cyclotron frequency. The solution
kA = exp (—%iwer) kA (0)

implies _
§= <ATkA>S = Wrest = CoNst.

as before, so that we can again solve for A. At resonance W, = Wrest in a circularly
polarized wave A = mexp (z (s — s0) 12:) a/e, we find energy gains of mA~y
with

Ay=u(0)-k X ar + lww. (ar)’.

These can be substantial, accelerating 100 MeV electrons to 1 TeV within 2 km
in a 10 Tesla magnetic field with a Ti:Sapphire laser pulse. [22]

4.5.5 Potential of moving point charge

Accelerating charges radiate. Indeed, radiation reaction had to be calculated for
the ALA, even though it turned out to be small over a wide range of parameters.
The potentials and fields of point charges in general motion are derived in most
electrodynamics texts. The traditional derivation of the retarded fields is tricky
and the final result rather messy and opaque. APS helps clear the fog and provides
insight into the origin and nature of the radiation.

The potential of a moving point charge was derived (before special relativity!)
by A. Liénard (1898) and E. Wiechert (1900). It is easily obtained from the rest-
frame Coulomb potential:

Koe

<Rrest > S

érest =
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FIGURE 4.5. z is field point, 7 (7) is world line of charge.

with Ko = (4meo) ™" and R(7) = z — 7 (1), the difference paravector between
the field position = and the world line of the charge at the retarded proper time 7.
The denominator (R.est)g is the time component of the difference in the com-
moving inertial frame. It is a Lorentz invariant simply because it is measured in
the rest frame of the charge at the retarded time, but we make it manifestly invari-
ant by writing

(Rrest>5 = (Ra>5

where u is the proper velocity of the charge at 7 and R = R (7) can be in any
inertial frame. We only need to boost ®,.st to the proper velocity of the charge at
the retarded 7 to get the paravector potential for a charge in general motion:

Koeu

= t—
A(z) = APrestA R)g'

It is that simple. Note that A (z) is covariant and depends only on the relative
position and proper velocity of the charge at the retarded 7. It is independent of
the acceleration or any other properties of the trajectory. The retarded time 7 is
determined by the light-cone condition RR = 0, where causality demands that
R° > 0.

Liénard-Wiechert field

The electromagnetic field is found from F' = (6/1>V with the complication that
the light-cone condition makes 7 a function of z, that is a scalar field, so that there
are two contributions to the gradient term:

d
0= (0 0 —.
(0), + 107 (2)] =
The first term is differentiation with respect to the field position z with 7 held
fixed. The second term arises from the dependence on z of the scalar field 7 () .
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If we apply this to RR = 0, we find directly

R
or(z) = ——.
(@) (Ru)g
The evaluation of the field is now straightforward, and the result
K _ -
F(z) = —2_ ((R@)y + 1RiuR) = F. + F,
(Ru)g

has a simple interpretation: F'.is the boosted Coulomb field and F'- is a directed
plane wave propagating in the direction R that is linear in the acceleration. Both
F. and F', are simple fields, with F'. predominantly electric, F'.-F, = 0,and F',
anull flag. The spacetime plane of F. is (Ri);, =~ (R — vR° — (Rv),) . The
real part gives the electric field in the direction of R from the retarded position
of the charge, minus v times the time R° for the radiation to get from the charge
to the field point. The electric field thus points from the instantaneous “inertial
image” of the charge, that is the position the charge would have at the instant
the field is measured if its velocity remained the constant. If the charge moves
at constant velocity, the electric field lines are straight from the instantaneous
position of the charge. It is obvious that this had to be that way: in the rest frame
of the charge the lines are straight from the charge, and the Lorentz transformation
is linear and transforms straight lines into straight lines. The radiation field in the
constant-velocity case vanishes, of course, because there is no acceleration. The
magnetic field lines are normal to the spatial plane (Rwv),, swept out by R as
the charge moves along v. They thus circle around the charge path. With APS,
we easily decipher both the spacetime geometry and the spatial version with the
same formalism.

When a charge accelerates, its inertial image can move rapidly, even at superlu-
minal speeds, and lines need to shift laterally. The Coulomb field lines are broken,
and F'. no longer satisfies Maxwell’s equations by itself. The radiation field F, is
just the transverse field needed to connect the Coulomb lines. Only the fotal field
F = F_.+F, is generally a solution to Maxwell’s equation.

The APS is sufficiently simple that calculations such as the field of a uniformly
accelerated charge are easily made and provide simple analytical results that help
unravel questions about the relation of such a radiating system to the nonradiating
charge at rest in a uniform gravitational field [6]. One can also simplify the deriva-
tion of the Lorentz—Dirac equation for the motion of a point charge with radiation
reaction and lay bare its relation to related equations such as the Landau—Lifshitz
equation [23].

There are many other cases where relativistic symmetries can simplify elec-
trodynamics, even where relativity at first seems to play no significant role. For
example, the currents induced in a conductor by an incident wave are easily cal-
culated, and the oblique incident case is simply related to the normal incident one
by a boost. Similarly, wave guide modes can be generated by boosting standing
waves down the guide. APS plays a crucial role in unifying relativity with vectors
and simple geometry.
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4.6 Quantum theory

As seen above, classical relativistic physics in Clifford algebra has a spinorial
formulation that gives new geometrical insights and computational power to many
problems. The formulation is closely related to standard quantum formalism. The
algebraic use of spinors and projectors, together with the bilinear relations of
spinors to observed currents, gives quantum-mechanical form to many classical
results, and the clear geometric content of the algebra makes it an illuminating
probe of the quantum/classical interface. This section summarizes how APS has
provided insight into spin-% systems and their measurement.

Consider an elementary particle with an extended distribution. Its current den-
sity j (z) is related by an eigenspinor field A (z) to the reference-frame density
Pref:

7 (@) = A (@) pres () AT (z) . (6.13)

This form allows the velocity (and orientation) to be different at different space-
time positions z. The current density (6.13) can be written in terms of the density-
normalized eigenspinor ¥ as

i=0, U=p/A,

and it is independent of gauge rotations ¥ — YR of the reference frame. The
momentum of the particle p = mu = mAA can be multiplied from the right by
At = (AT)_1 to obtain

pAf = mA.

This is the classical Dirac equation [24, 25]. It is a real linear equation: real linear
combinations of solutions are also solutions. In particular, since pr1 /

ef2 is a scalar,
it also holds for ¥ = prle/fQA :

p¥t =mU. (6.14)
The classical Dirac equation (6.14) is invariant under gauge rotations, and its real
linear form suggests the possibility of wave interference.

Consider the eigenspinor ¥, for a free particle of well-defined constant mo-
mentum p = mu. In this case, we can define a proper time 7 for the particle, and
we look for an eigenspinor ¥, that depends only on 7. The continuity equation
for j implies a constant pres:

— — dpref
(07 =0 = (Oper) W5 = 2.

Gauge rotations ¥ — U R include the possibility of a time-dependent rotation R.
For the free particle of constant momentum, we assume a fixed rotation rate, and
using gauge freedom to crient the reference frame, we take the rotation axis to be
e3 in the reference frame. Including this rotation, the free eigenspinor ¥,, has the
form

¥, (7) = Ty (0) 707,
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Now the proper time is given explicitly in Lorentz-invariant form by

7= (uf)g = <£j>s )

m
and therefore the free eigenspinor ¥, has the spacetime dependence

T, (z) = ¥, (0) e~ Hwo/m) PZ)ses (6.15)

The gauge rotation is associated with the classical spin of the particle, and the
spacetime dependence of ¥, (6.15) gives the behavior of de Broglie waves pro-
vided we identify wy/m = .

A further local gauge rotation by ¢ (z) about e3 in the reference frame can be
accommodated without changing the physical momentum p in (6.15) by adding a
gauge potential A (z) that undergoes a compensating gauge transformation (to be
determined below)

\I,p (:L‘) —_ ‘I'p (0) e twoTes _ ‘I'p (0) e~ il(pteA)T)ses/h

The real linear form of the classical Dirac equation (6.14) suggests that real linear
combinations

¥ (z) = /a(p) e—i((p+eA)i)ses/ﬁd3p,

where a (p) is a scalar amplitude, may form more general solutions for particles
of a given mass m. Such linear combinations are indeed solutions to (6.14) if p is
replaced by the momentum operator defined by

p¥ = ihOV¥es — eAV.

With this replacement, the classical Dirac equation (6.14) becomes Dirac’s quan-
tum equation. The gauge transformation in A that compensates for the local gauge
transformation ¥ — We~*¢(#)e3 js now seen to be

A A+ Zaqﬁ (z). (6.16)

The gauge potential A is identified as the electromagnetic paravector potential,
and the coupling constant e is the electric charge of the particle. The gauge trans-
formation (6.16) is easily seen leave the electromagnetic field F' = <8A>V invari-
ant. The traditional matrix form of the Dirac equation follows by splitting (6.14)
into even and odd parts and projecting both onto the minimal left ideal C¢3P,,,
where Po, = 3 (1 + e3).

The Dirac theory is the basis for current understanding about the relativistic
quantum theory of spin-% systems. The brief discussion above suggests that its
foundations lie largely in Clifford’s geometric algebra of classical systems. This
suggestion is explored more fully elsewhere [13], where it is shown that the basic
two-valued property of spin-% systems is indeed associated with a simple property
of rotations in physical space. Extensions to higher dimensional spaces have suc-
ceeded in explaining the gauge symmetries of the standard model of elementary
particles in terms of rotations in C?7 [27], and extensions to multiparticle systems
promise to demystify entanglement.
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4.7 Conclusions

In the space of this lecture, we have only scratched the surface of the many appli-
cations of Clifford’s geometric algebra to physics. There has been no attempt at a
thorough review of the work, the extent of which may be gleaned from texts [4,
6, 8, 31, 32], proceedings of recent conferences and workshops [5, 28-30, 33, 34]
and from several websites [35]. I have instead tried to illustrate the conceptual and
computational power the algebra brings to physics. Many of its tools arise from
the spinorial formulation inherent in the algebra and are familiar from quantum
mechanics. Had the electrodynamics and relativity of Maxwell and Einstein been
originally formulated in APS, the transition to quantum theory would have been
less of a “quantum leap.”
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5
Clifford Algebras in Engineering

J.M. Selig

ABSTRACT In this chapter, we look at some applications of Clifford algebra in
engineering. These applications are geometrical in nature concerning robotics and
vision mainly. Most engineering applications have to be implemented on a computer
these days so we begin by arguing that Clifford algebra are well suited to modern
microprocessor architectures.

Our first application is to satellite navigation and uses quaternions. The rotation
of the satellite is to be found from observations of the fixed stars. The same problem
occurs in many other guises throughout the natural sciences and engineering.

Next we use biquaternions to write down the kinematic equations of the Stewart
platform. This parallel robot is used in aircraft simulators and in novel machine
tools. The problem is to determine the position and orientation of the platform from
the lengths of the hydraulic actuators.

In the next section, we introduce a less familiar Clifford algebra C£(0, 3, 1). The
homogeneous elements of this algebra can be used to represent points, lines and
planes in three dimensions. Moreover, meets joins and orthogonal relationships be-
tween these linear subspaces can be modelled by simple formulas in the algebra.
This algebra is used in the following sections to discuss a couple of problems in
computer vision and the kinematics of serial robots.

5.1 Introduction

Traditionally in computing, methods involving many algebraic operations have
not been favoured. In many applications such as graphics clipping, it has been pos-
sible to devise algorithms that use many comparison operations rather than take
a more straightforward approach which would use a few polynomial evaluations.
For simple processors these operations are much quicker and hence fast programs
can be written. Today’s processors are rather different and of course the ambitions
of the programmers have developed too. Hence, even though the speed of proces-
sors has increased very rapidly over the last decade or so, the speed of operation is

This lecture was presented at “Lecture Series on Clifford Algebras and their Applications”, May 18
and 19, 2002, as part of the 6th International Conference on Clifford Algebras and their Applications
in Mathematical Physics, Cookeville, TN, May 20-25, 2002.

AMS Subject Classification: 15A66, 68T45, 68M01, 70BI15.

Keywords: Clifford algebras, robotics, computer vision, satellite navigation, quaternions, biquater-
nions, Stewart platform, meet, join, kinematics.
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still a crucially important factor. In modern processors the slowest operation turns
out to be the ‘fetch’ operation, where the next instruction is retrieved from mem-
ory. To improve the efficiency therefore, possessors usually have a ‘pipeline’ of
instructions which have been pre-fetched from memory. When a choice or com-
parison instruction is encountered the hardware must guess which branch will be
taken after the instruction has been executed. Indeed much research has been di-
rected to the problem of ‘branch prediction’ to improve the performance of these
microprocessors. If the wrong guess is made the pipeline will have to be flushed
and the instructions from the correct branch will be loaded. Hence, for modern
processors comparison operations should be avoided if at all possible. Moreover
multiplication, the traditional bottleneck, is now often supported in hardware, or
at least the micro code for it will be cached on the processor chip. For these rea-
sons algebraic methods are becoming more attractive.

Additionally, some modern processors have a lot of support for graphics. For
instance, the Sony PlayStation 2 can perform a vector cross product faster than a
scalar product. The PlayStation 2 (PS2) vector co-processors can perform a vector
product in 2 instructions at one cycle each, giving the result after a total of 5
cycles. A scalar product in comparison takes 9 cycles (with 5 ‘free’ wait cycles
to schedule other instructions in), [5]. The problems of computer graphics can
be expressed very neatly in terms of Clifford algebras. Indeed much of the early
development of the subject was motivated by the desire to solve problems in 3-D
geometry. Thus it is not too surprising that Clifford algebras are becoming more
important in this area of computing, it is already common for graphics programs
to use quaternions to represent rotations.

Since computer graphics is one of the main applications driving development in
computer hardware, it does not seem unreasonable to expect even greater conver-
gence between algebraic systems for representing geometry and the hardware to
support it. A spin-off should be that the hardware will also support other Clifford
algebras. Applications which can be represented in terms of Clifford algebras will
find that this is the preferred route to computer implementation.

A major reason why Clifford algebras are so usefu! is that they contain all the
exterior powers of a representation of some symmetry group. These representa-
tions usually have geometric significance, for example the points, lines and planes
in 3 dimensions, see section 5.4 later. In the Clifford algebra we can combine ele-
ments from these representations and the group itself in the same algebra and they
can be treated on an equal footing. Clifford algebras could be thought of as a way
of hiding lots of determinant calculations. So above it has been assumed that fast
methods can be found to compute these determinants as they have been already
for the vector product.

Of course the benefits of using Clifford algebras in engineering applications
are not solely computational. A major benefit of using Clifford algebras is the
simplification of symbolic computation. Much of the power of any notation come
from its conciseness. Clifford algebras are able to express relationships between
elements with remarkably short equations. While it is uncommon for problems to
be solvable by Clifford algebra methods alone, it is certainly true that as problems
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become more complicated it is easier to use the Clifford algebra as the equations
are invariably more manageable. This argument naturally leads to consideration
of symbolic algebra packages. Clifford algebras are ideally suited to implementa-
tion in such packages and indeed several implementations exist, notably CLICAL
and CLIFFORD. These programs were intended as general purpose utilities for
computations in any Clifford algebra.! I am not aware that they have been used in
any particular engineering application, but this will surely come.

In this lecture I will attempt to give an account of some of the engineering ap-
plications where Clifford algebras have been used. The applications are linked by
their use of geometry. That is the geometry of three-dimensional Euclidian space.
The applications include computer vision and the kinematics of robots. There are
other application of Clifford algebras not so closely tied to geometry, notably in
signal and image processing but I have tried to present a coherent picture here
rather than an encyclopedic review.

We begin by looking at a modern twist on the ‘Clifford algebra’ that started it
all—Hamilton’s quaternions.

5.2 Quaternions

The connection between quaternions and rotations has been explored in Lecture 1.
As mentioned above, many computer graphics systems use quaternions to repre-
sent rotations, there are several reasons for this. Certainly storage requirements
are less, quaternions are specified by four numbers while a 3 x 3 rotation ma-
trix is determined by nine numbers. Another reason why quaternions are used is
that there are well understood methods for interpolating unit quaternions. A more
important reason for prefering quaternions is the simple way that errors can be
handled. Rotations are represented by unit quaternions, hence after a computa-
tion the components of the quaternion may no longer satisfy this requirement. All
that is necessary to recover a rotation though is a normalisation, that is division
by the square root of the sum of the squared components of the quaternion. By
contrast rotation matrices are 3 X 3 orthogonal matrices with unit determinants,
to regain these properties after a computation, a time consuming Gramm-Schmidt
orthogonalisation procedure is required.

In many branches of engineering, quaternions are used to solve practical prob-
lem involving rotations. Here we just look at one example, but see [12] for several
others.

The problem considered here is that of satellite navigation. We wish to deter-
mine the orientation or attitude, of an earth orbiting artificial satellite relative to
some fixed orientation. Many artificial satellites solve this problem using inertial
navigation techniques, that is by carrying a gyroscope. Here we look at a differ-

ICLICAL and CLIFFORD are briefly reviewed in the Appendix in section 7.1.1, p. 190, and
section 7.1.4, p. 196, respectively. Edi.ors
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ent method which is also often used. For satellite navigation this problem can be
traced back to Wahba [15] in the mid 1960s. However, the same problem occurs
in the crystallography literature in 1957 [10], and in studies of paleomagnetism
in the mid 1970s [11] and most recently in the late 1980s in the field of computer
vision [8].

For this technique the satellite carries a vision system and can make observa-
tions of the fixed stars. The fixed stars can be assumed to be infinitely far away so
that the measured direction to a star will be the same on the satellite as it would
be on earth or at any position of the satellite. Any difference will be a result of
the difference in the coordinate systems used and hence their relative orientations,
see figure 5.1.

to a fixed star

b;

FIGURE 5.1. Fixed star observed from two different positions

Let a; denote the unit direction vector to the ith fixed star in the fixed frame and
b; the unit vector to the same star in the satellite’s coordinate frame. The relative
rotation between the two frames will be represented by a unit quaternion h and
hence the relationship between the two sets of vectors can be written as

b; = hash™

where h™ denotes the quaternionic conjugate of k. For a single star this equation
would have a ‘circles-worth’ of solutions, corresponding to the rotations which
fix a;. If several stars are observed then experimental errors will usually spoil the
consistency of the set of these equations. Hence, the problem is tc estimate the
best h given several observations. The concept of ‘best’ here has usually been
interpreted as the least squared distance. That is, & must be chosen so as to min-
imise the sum of the squares of the distances between the observed vector b; and
the estimated one ha;h~,

Q* =Y |bi — hash™[*.

(3

Although this choice of objective function may seem arbitrary there are sound
statistical reasons for using it, see [17].
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Notice, this equation can be rewritten as,

Q* = (b — ha;sh™)(by —ha;7h™) =Y (2—biha;h™ — ha;h7b})

i i

since a; and b; are assumed to be unit vectors.

The cost function @2 must be minimised subject to the condition that h re-
mains a unit quaternion hh~ = 1. This can be done using a Lagrange multiplier,
however, because the unit quaternions form a Lie group, differential geometry can
be used to simplify the approach. The function Q2 can be thought of a function
defined on the 3-dimesional sphere defined by the unit quaternions, so a mini-
mum of Q? will be a critical point. To find the critical points of Q? all that is
needed is that its derivative along tangent vector fields vanish. These derivatives
can be evaluated with the help of the exponential map. This maps Lie algebra ele-
ments to the group. A Lie algebra element here corresponds to a pure quaternion,
v = vz% + vyJ + v k. The exponential,

e’ =14 (Bv) + 2(6v*) + - = cosf + vsin®

corresponds to a one-parameter subgroup, with parameter f. Now to differentiate
a quaternion along a left-invariant vector field we shift it along the one-parameter
subgroup and take the difference with the original and divide by the parameter
distance, finally we take the limit as the size of the shift decreases,

e""h—h _

6Uh=égr}) 7 = vh.

So the derivative of Q? along an arbitrary left-invariant vector field is,

8,Q% = — Y _(bwha h™ + biha; h™v™ + vhash™b; + hash™v7by).

i

Now v, b; and ha;h™ are all pure quaternions, so that v~ = —v, b = —b; and
so on. Further, for pure quaternions z, y we have the well know relation,

TY=—T - Y+T XY

where - and x are the scalar and vector products of the corresponding vectors.
Using these relations to simplify the derivative of Q% we obtain,

8,Q% = —4v - (Z ha;h™ x bi> .
The critical points are given by the vanishing of this expression and since v is

arbitrary we can write,
Z ha;h™ x b; =0
i
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as the condition for h to make Q2 critical.

One way to make progress with this equation is to adopt a different representa-
tion for the rotation group. Suppose, a; and b; are the 3-vectors corresponding to
the pure quaternions a; and b;. It is well known that 3-vectors can be represented
by 3 x 3 antisymmetric matrices. A straightforward computation confirms that the
antisymmetric matrix corresponding to the 3-vector a; X b; is given by the matrix
product b;al —a;b] . The effect of the rotation ha;h~ can be represented by the
product Ra; where R is the 3 x 3 rotation matrix corresponding to h and —h.
Now the equation for a critical point reads,

> (bial RT — Ra;b]) = 0.

If we write P = 3", a;b! then the equation simplifies to,
RP = PTRT.

This equation has 4 solutions in general, they are closely related to the polar de-
composition of the matrix P. Let P = RZ;Q be the polar decomposition of P so
that @) is a 3 x 3 symmetric matrix and RZ; is a rotation matrix. Note that in the
literature the polar decomposition of a matrix decomposes it into an orthogonal
matrix and a positive definite symmetric matrix. Here we require the orthogonal
matrix to be a rotation but it is not necessary that the symmetric matrix be positive.
Hence if the classical polar decomposition yields a reflection we can multiply it
by —1 to get a rotation and then we will have to multiply the symmetric matrix
by —1to get Q.

Now R = R, is certainly a solution, but we have 3 others, R = R, R,, RoR,
and Rz R,. Where R; is a rotation of 7 radians about the ith eigenvector of Q.
That is, the R;s satisfy, R;QR; = . Finally the least squares solution we are
seeking is given by the solution which minimises Q2. It can be shown that if
det(P) > 0 then the minimising solution is R = R,,. If det(P) < O then the
minimising solution is R = R; R, where R; is the rotation by 7 about the eigen-
vector of ¢ which has the smallest magnitude.

Notice that, the quaternions were dispensed with after a certain point in the so-
lution. This seems to be a characteristic of engineering approaches to problems:
the solution is the important thing not the purity of the method used. No doubt
there is a method of solving this problem which uses quaternions throughout or
perhaps it is necessary to represent the vectors and rotations in a larger Clifford
algebra to be able to produce a solution purely in terms of Clifford algebra. How-
ever the polar decomposition seems to have been little studied in the context of
Clifford algebras, however see [14].

Finally here, the function Q? is essentially a function on the group of rotations,
SO(3). Above it was defined on the S3 of unit quaternions however, it clearly
has the same value for & and —h and hence passes to the quotient SO(3), which
is topologically the projective space PR3. In general, that is for most choices of
stars, P will be non-singular, we need at least 3 stars though. Now, Q? will be a
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Morse function on PR? and hence from a knowledge of the topology of the space
we have that the minimum number of critical points is 4. Moreover, it is possible
to predict that these will be exactly one local maxima, one local minima and two
types of saddle point.

5.3 Biquaternions

Clifford himself introduced the biquaternions [4] to represent rigid motions in
three-dimensions. At the turn of the 20th Century Study used biquaternions to
show that the group of rigid body motions SE(3), consists of elements of a six
dimensional projective quadric. These ideas seem to have been forgotten except
by mechanical engineers working on the kinematics of mechanisms. Here, bi-
quaternions are often used in conjunction with ‘dual vectors’ which represent
lines in space. A general dual quaternion can be written as b = hg + hi¢, here
ho and h; are standard quaternions and ¢ represents the dual unit € which squares
to zero and commutes with the quaternions. Points in space can be represented
by biquaternions of the form p = 1 + pe, where p = pgi + pyj + p.k is the
usual representation of a position vector by a pure quaternion. Rotations can be
represented in exactly the same way as above by unit quaternions, rr~ = 1. Their
effect on a point  will be given by,

r(l+pe)r~ =(1+rpre).

Translations can be represented by dual quaternions of the form (1+ %ts), where ¢
is the translation vector written as a pure quaternion. The corresponding action of
the translation on a point is given by,

(14 3te)(1+pe)(1—Lt7e) = (14 (p+ t)e).

As usual, the group multiplication is modelled by Clifford multiplication, so
that a general rigid body motion consisting of a rotation followed by a translation
is given by a dual quaternion,

h=(1+ %ts)r =(r+ %trs)
Further, if we multiply two such group elements we get,
(ri + $tirie)(ro + tareg) =
(7‘17‘2 + %(Tltg’r'g + t17'17'2).€) = (7‘17‘2 + %(Tltg’rl— + tl)rlrgs)

which shows the action of the rotations on the translations. Notice that, as with
the rotations, this group is actually the double cover of the group of rigid trans-
formations since & and —h give the same results on points.

If we extend the quaternion conjugate to the dual quaternions by defining,

h™ = (hy +hTe)
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then it is a simple matter to check that for a general rotation and translation we
have,

Pi— _ 1 1 - _

hh™ = (r + 5tre)(r + 5tre)” = 1.

Since, 77~ =1 and ¢t~ = —t, this equation splits into a pair of quaternion equa-
tions,
hohy =1, hohy + h1hg =0.

It is clear that any proper rigid motion, that is any combination of translations
and rotations, can be represented as a dual quaternion satisfying these relations.
It is also true, but a little harder to see, that any dual quaternion satisfying the
above relations represents a proper rigid motion. Suppose we write a general dual
quaternion as,

h = (zo + z1i + 22§ + x3k) + (yo + y17 + Y25 + ysk)e.

The two relations for the dual quaternion to represent a proper rigid motion be-
come,

zg+zf+zg+z§=1
and
Toyo + T1y1 + Tay2 + z3y3 = 0.

Since both i and —A represent the same motion we can identify these pairs by
assuming {x¢ : 1 : T2 : T3 : Yo : Y1 : Y2 : y3) are homogeneous coordinates in
the seven dimensional projective space PR. This can be thought of as a projection
which identifies pairs of elements in the double covering group. In PR7 the group
elements must still satisfy the second relation which is homogeneous,

Zoyo + T1y1 + T2y2 + 23y3 =0,

this defines a six dimensional quadric, known as the Study quadric. Each proper
rigid motion corresponds to a point in this quadric and almost all the points of the
quadric correspond to proper rigid motions. The exceptions comprise a special
3-plane,

o =x1 =292 =23 =0.

Much of robotics is concerned with rigid motions and hence the geometry of
the Study quadric is of fundamental importance. For example, the trajectory of
the end-effector of a robot can be thought of as a curve in the Study quadric.
The relative motions allowed by mechanical joints are subspaces of the Study
quadric: revolute (or hinge joints) and prismatic (or sliding) joints allow motions
corresponding to lines in the quadric while spherical and planar joints correspond
to 3-planes. We will look at a more complex example in a moment but before that
the dual quaternions will be related to the standard notations for Clifford algebras
introduced in Lecture 2.

In Lecture 1 we saw that the quaternions could be thought of as the Clifford
algebra C£(0, 2) which is also isomorphic to the even subalgebra of C¢(0, 3). Here



Lecture 5: Clifford Algebras in Engineering 143

we show that the dual quaternions are isomorphic to the even subalgebra of the
degenerate Clifford algebra C¢(0, 3, 1). This algebra has three generators which
square to —1 and one which squares to 0, say e? = €% = e2 = —1 and e? = 0.
The isomorphism can be specified by giving the mapping on the generators,

i+ ege3, Jrrege;, krorerey, €1 eereqes.

Notice that the element eej eoe3 commutes with all the elerpents in the even subal-
gebra C¢°(0, 3, 1). In this algebra, a typical biquaternion h as above, would have
the form,

h = zo + T1eze3 + Tre3€1 + T3€1€3 + Yoeeiezes + y1e1e + yaeze + yaeze.

As an example, we will look at the forward kinematics of a Stewart platform.
This is a parallel manipulator, used originally to provide motion for aircraft sim-
ulators, but more recently this structure has been used in hexapod machine tools.
The robot consists of a platform connected to the ground by six hydraulic cylin-
ders. Each cylinder has a passive spherical joint at either end, see figure 5.2.

FIGURE 5.2. The Stewart platform

The forward kinematic problem is to determine the position and orientation of
the platform given the ‘leg-lengths’ determined by the extension of the hydraulic
cylinders. The mechanism is designed so that by actuating the six hydraulic cylin-
ders the six degrees of freedom of the platform can be controlled.

Let the centres of the passive spherical joints on the base be located at points
b1, be, ..., be. Further, suppose that in a standard position of the platform the cen-
tres of the spherical joints on the platform have position vectors a1, ag, ..., ds.
Now suppose that the length of the ith leg, the one connecting b; to a;, is {;. We
seek a biquaternion h = hg + hie which takes the platform from its standard
position to a position with the given leg-lengths. For each leg we get an equation,

l22 = (hoaih(; +t—bi)(hoaih5 +t—bi)_, 1= 1,...,6.
Here the translation ¢t = 2h1hg = —2hoh] . Expanding these equations gives,
lf = ]ai[2+Ibil2+hoa,-hgbi+bihoaiho—hoa,-hgt—thoaihg +bit+tbi—t2,

i = 1,...,6, where the fact that ¢ and all the points are pure quaternions has
been used to replace t~ by —t for example. Next we may use the relations £ =
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2h1hg = —2hohT and the fact that hohy = 1 to transform the equations to the
form,

0 = (Jas|® + bif* — I)hohg + hoashg b + bihoashg +
2h0aihf — 2h1aih6‘ + 2b1h1h6 - 2}1,0}1,—1.1)1 + 4h1h1_,

t = 1,...,6. This is clearly a homogeneous quadratic equations in the coordi-
nates, (Zo : Z1 : T2 : T3 :Yo 1 Y1 : Y2 Y3)-

This gives us six quadratic equations which we must solve together with the
quadratic equation for the Study quadric (hoh] + h1hg = 0), so seven quadratic
equations in all. Thus, from Bézout’s theorem, we might expect a maximum of
27 = 128 solution but it is well known that there are at most 40. Looking at
the equations above we see that each of the six ‘leg-equations’ contains the term
4h1hT, now on the 3-plane hy = 0, or in coordinates zo = z; = 22 = z3 = 0,
all of these equations reduce to hjh] = 0. That is all of our quadrics contain a
2-dimensional quadric which has nothing to do with the solution of our problem.
However, it does mean that the seven quadratic equation do not form a complete
intersection and hence simple counting arguments based on the degrees of the
equations and Bézout’s theorem, will not work.

Progress can be made by subtracting one of the equations above from the five
others, this gets rid of the troublesome k1 h] terms. But now the five quadrics and
the Study quadric all contain the special 3-plane hy = 0. Nevertheless, proceeding
in this way it is possible to show that there are at most only 40 solutions. This
approach is due to Wampler {16], but the result has also been demonstrated by
more laborious means.

Finally in this section, note that there is a possible confusion in terminology,
these biquaternions are also sometimes referred to as ‘double quaternions’. How-
ever, these terms are also used to denote the algebra obtained by extending the
quaternions with a basis element which squares to 1 rather than 0. The Clifford
algebra obtained in this way is the even subalgebra of C¢(0, 4), see lecture 2. This
is the Clifford algebra for SO(4), see 1] for example of the use of this algebra in
robotics.

5.4 Points, lines, and planes

Above we have looked at the representation of the group of rigid body motions on
the points in space R3. In order to extend these ideas to lines and planes in space
it is necessary to use the Clifford algebra C¢(0, 3,1). Now we saw above that the
dual quaternions can be thought of as the even subalgebra of this algebra. So we
might be tempted to use the same representation for the group and the points as
before. This works well for the group, a group element

g=1Zo+ 1t + z2J + 3k + (yo + Y11 + y2j + y3k)e
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can simply be rewritten as,
g = To + T1e2e3 + xa€3e) + Tze1€2 + Yoeereze3 + Yre1€ + yaege + yseze.

The representation of points cannot be treated in the same way, this is because
we want the representation of the points to be compatible with the representation
of the lines and the planes. It turns out that we can represent points as elements
of grade 3 in the algebra. That is, a point with coordinates (pz, py, p.) Will be
represented by an algebra element of the form,

p = ejeze3 + pyegeze + pyezere + pyejege.

Now it is not too difficult to see that the effect of a rigid transformation on such a
point can be represented by the Clifford conjugation,

P =gpg”

where ¢ is the Clifford element representing the transformation.

Lines in R? can be represented by elements of grade 2. Notice that, these el-
ements have even grade so if we were only interested in lines we could use the
biquaternion algebra, that is lines can be represented as dual vectors. A line can
be specified by its Pliicker coordinates, these are given by a unit vector v =
(vz, vy, v;) in the direction of the line and a moment vector u = (uz, Uy, Uz)
where u = p x v and p is the position vector of any point on the line. The Clifford
algebra element corresponding to such a line is given by,

£ = vgeges + vyese) + v.e1e0 + uzeje + uyese + ueze.

Not every grade 2 element of the Clifford algebra corresponds to a line. The form
of the Plicker coordinates given above require that v-v = 1 and v - u = 0, both
these conditions can be summarised as a single relation in the Clifford algebra as,

o0 =1.

Once again the action of a rigid transformation on a line is given by the conjuga-
tion,

0 =qglg.
Notice that these lines are directed lines, £ and —¢ correspond to the same line but
with opposite directions.

As might be expected by now, planes can be represented by elements of grade 1.
Every plane can be specified by a unit normal vector n = (ng, ny, n;), and a
perpendicular distance from the origin d. A typical plane is represented by the
algebra element,

T = nze; + nyea +nye3 +de.

The requirement that the normal must be a unit vector can be neatly written in the
algebra as,
- =1
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and the action of the group of rigid motions is again given by the conjugation,
7’ =gmg”.

The advantage of having all the linear elements represented in the same algebra
is that it is now possible to look at the meets and joins of these spaces. We begin
by looking at some incidence relations. The condition for a point p to lie on a line
with direction v and moment u is simply that the moment vector is given by the
cross product of the point and the direction vector, u — p x v = 0. In the Clifford
algebra the point is represented by an element,

p = e1ez€e3 + preze3e + Py€seie + p.e1eze
and the line is represented by,
{ =vzeqes + Uyeze] + vzerez + uzere + uyese + uzese.

A direct computation shows that,

pl~ +4lp” = 2(uz — PyUz + szy)€2€3€+
2(uy — povs + Pzvz)esere + 2(u, — pruy + pyvz)eseie.

Hence, the Clifford algebra condition for a point p to lie on a line £ is simply,
pl~ +4ep” =0.

For a point p to lie in a plane, we must have that n - p — d = 0, where n is
the unit normal to the plane and d the perpendicular distance of the plane to the
origin. In the Clifford algebra this condition becomes, a point p lies in a plane 7
if and only if,

pr~ +ap~ =0.

In a similar manner it is possible to show that the condition for a line £ to lie in
aplane 7 is,
n” + 7wl =0.

These incidence relations can be used to help verify the relations for the meet
of a pair of linear subspaces. For example, suppose we have line £ and a plane 7.
Consider the Clifford algebra expression,

p=Ltn" 47l .

Now since 7 is homogeneous of grade 1 and £ is homogeneous of grade 2, p can
only contain elements of grades 1 or 3. But it is easy to see that p~ = p and hence
we may conclude that p is homogeneous of grade 3. The coefficient of ejeze3 in p
is simply, —2n - v where n is the unit normal vector to the plane and v is the unit
vector in the direction of the line. Hence we see that this coefficient is zero only
if the line is parallel to the plane. If we divide p by this coefficient we produce
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a point, this point is the intersection point of the line and the plane. This can be
seen by considering the incidence relations, showing that the point lies on both
the plane and the line. It is not necessary to consider the constant factor here, the
element p can be used. So the point lies on the line since,

pl™ +lp” = (U™ +ml )T +Lln + )T
=0n 0"+l 4 HUnl =0,

Notice that the relations £~ = —¢, 7~ = —x and £2 = —1, have been used to
simplify this.
Also the point lies on the plane because,

pr A+ wp” =UrnT + ) nT +n(lnT +wl)T
=4r? fmlr 4 mbn + 7T =0.
Here the relation 72 = —1 has also been used.

In a similar fashion it is possible to show that the line determined by the inter-
section of a pair of planes 7; and 2 is given by finding A = 77y — mem; and
then dividing by the “magnitude” of A, thatis, A/vVAA~.

These relations can be neatly summarised using the exterior product. In a Clif-
ford algebra this exterior product can be defined by the relation,

T Au = 3(zu+ (~1)*uz)

where z is a grade 1 element of the algebra and u is an element of grade k. Jux-
taposition of symbols on the right of this definition denotes the Clifford product.
The exterior product can then be extended to the rest of the algebra by requiring it
to be linear and associative, for more details see, [9]. Using the exterior product,
the meet of a line £, and a plane 7, becomes,

p=LAT/EtUAT)EAT).

The sign of the square root is chosen so that the coefficient of ejezes is +1.
Similarly the meet of a pair of planes 7, and 7 is given by the line,

L=m /‘\71’2/\/(71’1 /‘\7r2)(7r1 /‘\7r2)‘ .

Further meet operations are given by this normalised exterior product.

To find the join of a pair of linear elements we need a new idea. One approach
is to use the Hodge star, this is a dualising operation which depends on the metric.
The operation is linear, so we need only give the mapping of the basis elements
in the algebra
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*1 = ejeqeze *ejegeze = 1
*€1 = €g€e3ée *€2€3€ = —€1
*€y = esele *€3€1€ = —é€3
*€3 = €1€92€ *€1€9€ = —e€3
*€ — —ej1€qe3 *€1€2€3 = €

*€1€3 = €3€ *€3€ = €1€9
*€2€3 = €1€ *x€1€ = €92€3
*€3e1 = €2€ *€0€ = €3€1

So, for example, if p = ejezes + pyezeze + pyeseie + p,ejeze then xp =
e — pze1 — pye2 — Pze3. Notice that this operation is not coordinate invariant, a
change of basis will change the operation.

In a non-degenerate Clifford algebra this operation can be represented by mul-
tiplication by the basis element of highest grade, (the unit pseudoscalar). In our
degenerate C¢(0, 3, 1), the basis element of highest grade will be ejezeze and
multiplying this by any other basis element containing an e will annihilate it. So
the above mapping approach is forced on us.

Now the join of a pair of linear elements can be found by dualising the ele-
ments, finding the meet and then dualising the result. For example the join of a
pair of points p; and ps should be the line joining these two points. Dualising, we
get a pair of grade 1 elements, (*p1) and (xp2). The meet of these elements is the
grade 2 element,

A= (xp1)(xp2)” — (*p2)(*xp1)”

The line joining the points is the dual of this divided by the magnitude,
£ = N/ VNN

The alternative approach is to introduce a new product, the shuffle product.
This is taken directly from the theory of Grassmann-Cayley algebras, see for ex-
ample [18]. We will write the shuffle product as V and define it on exterior prod-
ucts of grade 1 elements. So for two such elements, a = a; Aag A --- A a; and
b = by Aby A---Aby in a general Clifford algebra, with j 4+ k& > n the dimension
of the algebra, we define,

aVvVb= Z Slgn det aa(l), -y 8a(n—k)s bi,..., bk)aa(n_k+1) N Naggy -

The sum is taken over all permutations o of 1,2,. .., j such thato(1) < ¢(2) <
-<o(n—k)ando(n—k+1)<o(n—k+2)<--- <a(j).
Each a; can be written as a sum of basis elements,

a; = a;1e1 +appea+ -+ apnen.

So the determinant in the above definition is the determinant of the matrix whose
columns are the coefficients a,(1yi, @s(2)ss - - - » 0o (k)i- The shuffle product is then
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extended to the entire Clifford algebra by demanding that it distributes over addi-
tion. As an example, consider the shuffle product e1eze3 V eqeze. For an orthog-
onal basis we can confuse the Clifford product of basis elements with the exterior
product, so the above formula gives,

erezes V egeze = det(eq, eq, €3, €)eqes
— det(eq, €2, €3, €)e1ez + det(es, €2, e3,€)e1eo

where we have taken e to be the fourth basis element “e4”. Only the first term on
the right hand side of this equation is non-zero since the determinants vanish in
the other two terms, and hence we can conclude that,

ejeges Vegesze = eges.
Using this approach the join of two points is given by the formula,

£=p1Vpa/v/(p1Vp2)(p1Vp2)~.

The two approaches are related by the relation,

*x(a V b) = (xa A xb).

An advantage of the Clifford algebra is that we can also discuss Euclidian dis-
tances and perpendicularity. For example, the condition for a line £ to be perpen-
dicular to a plane 7 is simply én~ — w{~ = 0. This can be demonstrated by a
direct computation, assuming,

{ = vzeqez + vyezer + v.ejeq + uzeie + uyeqe + ueze

and
T =nze1 + nyep + ne3 + de
then
n — 7wl = —2(vyn, —vnyler — 2(vng — venz)es

— 2(vgny — vy )es — 2(nguy + NyUy + nyu,)e

and if v = 4n this clearly vanishes and conversely if this vanishes it can be seen
that the unit vectors v and n must be either parallel or anti-parallel.

We can also use perpendicularity to construct new linear elements. For instance,
suppose we are given a line £ and a point p then the plane perpendicular to the
line passing through the point is given by,

nt = L(pt™ —fp7).

This can be checked using the condition for perpendicularity with £ and the inci-
dence relation with p.

In the next couple of sections these ideas are used to look at some practical
problems in robotics and computer vision. Note that there are other approaches
to the problem of representing the geometry of points, lines and planes using
Clifford algebras, see for example [6] and [2].
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Left image plane Right image plane

G G
FIGURE 5.3. Two cameras observing a single point

5.5 Computer vision example

A central problem in Computer Vision is the correspondence problem. Suppose
we have two or more cameras looking at the same scene. If we can find points in
the images which correspond to the same point in the scene then we have solved
the correspondence problem. The difficulty of this problem can be reduced by
realising that there are geometric constraints on image points which are the pro-
jection of the same object point. To keep things simple we will keep to just two
cameras, that is stereo vision. Now given an image point in the right hand camera
say, we know that the object point could be anywhere along the line joining the
image point to the centre of projection in that camera. The image of this line in the
left hand camera is called the epipolar line and clearly the corresponding image
point in this camera must lie on this line, see figure 5.3. In a general situation we
will have four points, ¢y, cr, the centres of projection for the left and right cam-
eras respectively and pr,, pr which are the image points, that is the points on the
right and left image planes respectively. We require a simple algebraic condition
to determine whether or not the points are consistent with a single object point.
The condition required is simply,

prLVerLVerVpr=0.

To see why this is so consider the following relation between a point p and a
plane T,

PV T =d— pgNgy — PyNy — P27 .

This is the negative of the perpendicular distance between the point and the plane.
Hence we can use p V7w = 0 as the incidence relation which ensures that the point
lies on the plane. In fact we have that,

3(pm” +7pT) = —(pV Mererese.

Now the relation for four points to lie on a plane can be found from the above
relation by assuming that the plane is the mutual join of three of the points. Notice
that this relation also caters for the case where the object point is at infinity, the
four points will still be coplanar in this situation.

The above relation is very neat but it requires that we know the coordinates
of all four points in some global coordinate frame. It is more usual to have the
coordinates of the image points in local coordinate frames. Moreover, the image
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coordinate are usually taken to be homogeneous, that is the image plane is as-
sumed to be a projective plane. So if we know the global coordinates for three
non-collinear points in a plane, say p;, p2 and p3 then any other point in the plane
can be written as,

P =a1p1 + aap2 + aa3p3 .

The a;s here are the homogeneous coordinates. The grade 3 element p here will
not be a point, in the sense that the coefficient of e;eze3 will not necessarily be 1.
However, dividing by this coefficient will not affect the homogeneous coordinates
and further it will not affect the condition for the four points to be coplanar since
the condition is also homogeneous. Hence if we write the left image point as,

PL = a1P1r + aapar + a3psL

and the right image point as,

PR = B1p1r + Bapar + Babar

then the consistency condition can be written,

3

(c1p1z+aspar+aspar)Ver Ver(Bipir+Bapar+Papsr) = P iFyfB; =0,
i,7=1

The matrix Fj; is known as the fundamental matrix of the system and clearly its
elements are given by,

E‘jzpiLVcLVcRijR, i,j=1,2,3.

These ideas can be extended to the cases where there are three or more cam-
eras, see [13]. There are also many other geometric problems in computer vision
which benefit from this sort of algebraic approach. For example, if we assume that
we can solve the correspondence problem, then using a single camera we could
capture successive images. Using the correspondences we could try to find the
rigid motion undergone by the camera between the two images. This is a similar
problem to the one studied in section 5.2 above, however this problem doesn’t
usually have a unique solution.

5.6 Robot kinematics

Kinematics is a key problem in robotics. In section 5.3 above we looked at the
forward kinematics for a parallel robot. The inverse kinematics of a serial manip-
ulator will be studied here. The problem here is to determine the joint angles of
the robot that will place the end-effector in a prescribed position. For a six joint
industrial robot this is a formidable problem and solutions have been found for
only a few particular structures.
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FIGURE 5.4. A three-joint robot

Here we will look at a three joint machine placing a point at a predetermined
position, see figure 5.4. In a full six joint robot the orientation of the end-effector
as well as its position, would be important.

The joints of the robot will be assumed to be revolute, that is simple hinge joint
allowing rotation about an axis. If £ is the line determining the axis of the joint
then the possible motions allowed by the joint are given by the exponential,

el = cosg +¢sin§ = a(f).
Recall that £2 = —1. We will label these one-parameter subgroups a(6), as an
allusion to the usual A-matrices of standard robotics.

Now suppose that we have the coordinates of a point on the end-effector. In the
home position of the robot, where all the joint angles are zero, this point is repre-
sented by the Clifford algebra element po. After the robot has moved the position
of this point on the end-effector becomes p. This final position can be found from
the initial position by rotating about each of the joints in turn. The axes of the
joints in the home position will be labelled, £;, ¢2 and ¢35 and the corresponding
joint angles will be 8, 82 and 03, see figure 5.4. So the final position of the point
is given by,

p = a1(01)az(02)as(03)poagz (63)as (2)ay (61) -

Notice that we rotate about the distal joints first, that is those furthest from the
fixed base of the robot. Now we must solve this equation for the joint angles
91, 92 and 93.

Let us introduce two new points, p, = aj pa; and ps = azpeaz , with these
definitions the kinematic equation becomes,

Po = G2pPpa5 -

The next step is to eliminate 6 from this equation to leave equations involving 6;
and 63 only.
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To do this, we look at some generalities first. Consider the action of a general
rotation, a(f) = cos(36) + £sin(36) on a general point p. If we write p =
%(p —fpl) + %(p + £pf) then using standard trigonometric relations and the fact

that £2 = —1, we obtain the relation,

a(f)pa(0) = 1(p — €pl) + 1(p+ €pl) cos 6 + 1 (fp — pl)sinb.

The terms here have useful interpretations, the point %(p — ¢pf) is the orthogonal

projection of the point p onto the line £. The terms 3 (p + £pf) and %(Ep — pf)
are element of grade 3 but are not points, they lack the necessary ejeses term.
However, they can be thought of as free vectors, under a rigid transformation
they transform according to the rotations only, they are unaffected by translations.
Moreover, these free vectors can be thought of as the differences between pairs of
points. So now the free vector %(p + £pf) is the vector joining p to its orthogonal
projection on £. The free vector %(Ep — p?), has the same length as the first one
but is orthogonal to it and to the line £.

The point %(p — ¢p?) is clearly independent of the angle of rotation 4. Hence,
we can write the following equation between p,, and pg not involving 8z,

Pa — Lapala = pg — Lapgls.

Alternatively, we could use the idea that the planes perpendicular to £ and passing
through the points p, and pg should coincide. In fact this turns out to be a simple
rearrangement of the above equation,

Pal2 + €opo = ppla + L2ps .

Either of these equations will give us just one linear condition for the coordinates
of the points p, and pg. To see this, note that the we know that the normal to the
perpendicular plane, it must be the direction of the line #5. So the only information
that the equation gives us concerns the distance of the plane from the origin.

We can get another equation from the length of the free vector %(p + ¢pf) or
%(Ep — pf). This is, just the perpendicular distance from the point to the rotation
axis, so clearly independent of the rotation angle. Using the Hodge star, if we let
do = *(£2pa — Pal2) and qg = *(£2pg — ppls), then the second equation can be
written,

9090 = 989g -

This equation is quadratic in the components of p, and pg, however, the variables
we are really interested in are cos 6, sinf;, cos§; and sinfs. It is possible to
simplify the equation using the first equation pof2 + fopa = pgla + f2ps, and
the trigonometric identity cos? § + sin? § = 1 to show that the equation above is
actually linear in the variables cos 61, sin 81, cos 8, and sin 5.

Hence, we have two linear equations in the four variables, cos 81, sin 6;, cos 6,
and sin ;. From the trigonometric identities cos? 6; + sin® 6; = 1 and cos? 63 +
sin? 3 = 1 we obtain two more equations. The system now reduces to a pencil
of conic curves.
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Clearly if we were given a particular mechanism, that is, home positions for
the lines £1, £2, £3 and coordinates of the point pg, then it would be a reasonably
straightforward matter to give a solution for the joint angles in terms of the coordi-
nates of the point p. However, with this symbolic approach there is some hope that
we can address more general problems concerning this robot. For example, how
do the singularities of the robot depend on its design parameters? The singularities
are configurations where there are less than 4 solutions to the inverse kinematics
problems. All these robots will have singularities, in particular at the edge of the
robot’s workspace, with only revolute joints the robot can’t reach points that are a
long way from the first joint. The boundary of the set of reachable points will be
a set of singularities. But it is the singularities inside the workspace that are more
interesting.

Another interesting problem here concerns what are known as cuspidal robots.
The different solutions to the inverse kinematics represent different configurations
of the robot which place the point at the same position. It has been claimed that
for some 3-joint robots it is possible for the robot to move from one of these
configurations to another without passing through a singularity. This is clearly a
topological property of the map from the 3-torus of joint space, that is the space
coordinatised by the joint variables, to the robot’s workspace. In particular, the
set of regular points in the robot’s work space would have to have non-trivial
fundamental group.

5.7 Concluding remarks

It would be useful if the methods presented above could be extended to the dy-
namics of robots and other systems of rigid bodies. To do this the algebra would
need to include the coadjoint representation of group of rigid body motions. This
is because we would need to use wrenches, these are combinations of forces and
torques. Evaluating a wrench on a Lie algebra element or screw should result in
a scalar, the work done. This evaluation map needs to be modelled in the algebra
too. A possible solution has be proposed by Hestenes [6, 7]. This uses the Clif-
ford algebra C¢(4, 1), that we met in Lecture 2 in connection with the conformal
group.

In general it would be helpful if we could write all of robotics using a single al-
gebra. We could then do the modelling, analysis and control in a single formalism,
and when we were ready to implement our algorithms it would simple if could
write efficient code using the same formalism again. Moreover, if we needed to
use information from cameras, so called visual servoing, this could come in the
same formalism too. At a lower level here, there are applications of Clifford anal-
ysis to image processing, see [3]. Ideally these low level vision tasks could also
be integrated into the same algebraic scheme.

So far, the best candidate for such a universal language would appear to be a
Clifford algebra. However, there are several competing flavours each with advan-
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tages and disadvantages.

Exercises

1. The Frobenius inner product of two 3 rotation matrices, R; and Rs is de-
fined as,
< R1, Ry >p=Tr(RTR,)

where Tr() is the trace of the matrix. Show that if h; and hs are unit quater-
nions corresponding to the rotation matrices then,

Tr(RTRy) = 4Re(hy he)? — 1
where Re() denotes the real part of the quaternion.

2. Biquaternions can be used to represent lines in space as follows. A line with
direction v = (vz, vy,v;)T and moment u = (u,, uy, uz)7 is represented
by a biquaternion of the form,

/= (Vet + vyg + vok) + e(uzt + uyj + usk).

Given two lines ¢; and Z;, investigate the geometrical significance of the
biquaternion expressions, £1£5 + £2£7] and £1£5 — {347 .

3. Using the Clifford algebra C¥(0,3,1) as above, find expressions for the
following,

(i) the condition for two lines to be co-planar.
(ii) the square of the perpendicular distance between a point and a line.
(iii) the line along the common perpendicular to a pair of lines.

(iv) the condition for two planes to be mutually perpendicular.

4. Extend the analysis in section 5.5 above to the case where there are three
cameras, hence obtain an expression for the trifocal tensor.
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Clifford Bundles
and Clifford Algebras

Thomas Branson

ABSTRACT In view of General Relativity, it is necessary to study physical fields,
including solutions of the Dirac equation, in curved spacetimes. It is generally be-
lieved that the study of Riemannian (positive definite) metrics (infinitesimal dis-
tance functions) will ultimately be relevant to the more directly physical problem
of Lorentz signature metrics, via principles of analytic continuation in signature.
This adds impetus to the natural mathematical pursuit of studying spin structure, the
Dirac operator, and other related operators on Riemannian manifolds. This lecture is
a biased attempt at an introduction to this subject, with an emphasis on fundamen-
tal ideas likely to be important in future work, for example, Stein—Weiss gradients,
Bochner—Weitzenbock formulas, the Hijazi inequality, and the Penrose local twistor
idea. This provides at least a framework for the study of advanced topics such as
spectral invariants and conformal anomalies, which are not treated here.

6.1 Spin geometry

The starting point for the study of the spinor bundle and the Dirac operator on
manifolds is the realization that, like differential forms and other species of ten-
sors that people are more familiar with, spinors are an associated bundle. This
means the following. The structure group of Riemannian geometry is O(n).
Roughly speaking, this means that there is a copy of O(n) acting on each tan-
gent space. In fact, these groups and actions fit together into a principal bundle
[32].

6.1.1 Associated bundles

With oriented Riemannian geometry (in which we can give ordered local or-
thonormal frames, consistent up to even permutation), the structure group reduces

This lecture was presented at “Lecture Series on Clifford Algebras and their Applications”, May 18
and 19, 2002, as part of the 6th International Conference on Clifford Algebras and their Applications
in Mathematical Physics, Cookeville, TN, May 20-25, 2002.

AMS Subject Classification: 53C27, 53A30.

Keywords: Spinor, Dirac operator, Bochner-Weitzenbock formula, Hijazi inequality, local twistors,
spannors, plyors, tractors, Stein-Weiss gradients.
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to SO{n). It’s natural to ask what we get when we now go to the simply connected
double cover Spin(n) of SO(n), and the answer, in brief is spin geometry.

In fact, we should really be speaking of covers of SO(p, q), in order to cover
pseudo-Riemannian spin geometry of all signatures. For the most part, we shall
ignore this here, however. It turns out that in spin geometry, one has to take a little
more care in changing signature than in most of (tensorial) pseudo-Riemannian
geometry.

An associated bundle is made from two ingredients: a principal bundle F with
structure group H on a manifold M, and a representation (A, V') of H. The as-
sociated bundle is a vector bundle V = F X V, whose section space is fairly
easy to describe: the sections may be naturally identified with smooth functions
¢ : M — V with the special property that

o(z-h) =Mh)"f(z), €M, he H.

With this, we can get at least some understanding of vector bundles by a kind of
mental shorthand: the tangent bundle “is” the defining representation of SO(n);
the two-form bundle A2 M “is” just the alternating two-tensor representation, and
so on. Even without having the details of the associated bundle construction near
at hand, one can believe in them and do computations based on their fundamental
properties. That is, we use the associated bundle construction to promote linear
algebra to vector bundle theory.

In fact, much of this thinking and calculating can be done on the level of the
Lie algebra f, as opposed to the group H. Part of the genesis of spinors was
the realization that, when one examines the irreducible, finite-dimensional repre-
sentations of the classical Lie algebra so(n, C) using the usual classification by
dominant integral weights, one gets more than just the irreducible constituents of
the tensor algebra over the defining representation. The new wrinkle is the spin
representation ¥, which is irreducible for odd n, and breaks into two irreducible
summands ¥4 when n is even. Now everything can be realized in the tensor al-
gebra over ¥; for example, when n is even, ¥ ® ¥ =,,(,) A (the right side being
alternating tensors of all orders), so in particular we recover all tensors, since these
are generated by Al. The representation ¥ can be integrated to Spin(n), but not
to SO(n).

Something is being swept under the rug in the above; however, there is a topo-
logical obstruction to having a principal Spin{n) bundle over a given mani-
fold M, analogous to the orientability obstruction that governs reduction of O(n)
structure to SO(n) structure. Roughly speaking, granting orientability, the spin
obstruction has to do with having local orthonormal frames for the tangent bun-
dle which are split into pairs: (X1, X2), (X3, X4), .... We need to be able to
arrange the overlaps so that pairs go to pairs (though not necessarily pairs with
corresponding subscripts). From now on, we shall assume that this condition is
satisfied, so that our manifolds are spinnable. An additional warning to heed is
that there are generally many different spin structures — i.e., choices of a princi-
pal Spin(n) bundle covering the SO(n) bundle of orthonormal frames. For the
most part, statements we make will be true for any choice of the spin structure.
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In any case, the old SO(n) bundles are still with us as we do spin geometry; they
are just the ones associated to representations A : Spin(n) — V which factor
through SO(n) via the covering homomorphism Spin(n) — SO(n).

Where does Clifford algebra come in? Computing some elementary tensor
products reveals a rich structure. First, we find that

A ® T Xgpinm) L& Tw,

where ¥ and T'w have no joint content — i.e., no isomorphic Spin(n) summands.
This means there is a nonzero Spin(n)-invariant map — the projection
o~ Proj
Ner3neTw — 5.

We may view this, by the usual trick of identifying End(V') with V' ® V*, as an
invariant map

Al 5 EXe¥* ZSpin(n) End(E),

n = v(n)-
This brings Clifford multiplication into view. In fact, 7 is a section of the vector
bundle T ® End(X), and is called the Clifford section.

6.1.2 The Clifford relation

The famous Clifford relation is forced upon us as follows. Symmetrizing two
Clifford multiplications,

smea+a®n) — s(v(mv(a) +v(@)y(n)

gives a well-defined invariant map from the symmetric 2-tensors ©*T* to End(X).
(The reader should check this.)
By the reverse of the trick above, this gives Spin(n)-invariant maps

®2T*—>2®2*, ®2T*®2—>2
But there is only one such thing (up to a constant factor), since
O*T* ® L Zgpinn) O M,

where M has no joint content with . This is a fairly special property of ¥; there
are few modules with this property.

Furthermore, ®2T* splits as Rg @ TFS?, where g is the metric (or inner
product), and TFS? are the trace-free symmetric 2-tensors. Our map above must
emanate from just one of these; otherwise we could restrict and contradict unique-
ness. But

(Cg gSpin(n) AO

is the trivial representation, and of course A°® ¥ = ¥. So the map we are looking
at must be

1v(m)v(@) +v(@)y(m)¥ = cg*(n, o)y
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for some constant ¢, where g¥ is the metric on 7* M determined by the metric g on
T M. By renormalizing -y, we recover our favorite normalization for the Clifford
relation; for example, ¢ = —2.

In abstract index notation [38], we have v(7) = v*n,. The above argument
may be rephrased as

2 2
’)’a')’b +')’b')’a — (’)’a’)’b +’)’b’)’a _ E,yc,ycgab) +E,yc,yc gab‘

TFS? End(Z), -, 0 "
The value —n in the last underbrace is a consequence of our choice of normaliza-
tion just above.

The Clifford section v now plays a role analogous to that of the metric ten-
sor g; it is a section which encodes information about the geometry, allowing
us to compute without always referring to the Lie theoretic constructs that gave
birth to the theory. This is underlined by the fact that we may now describe the
even-dimensional splitting ¥ = ¥, & ¥_ using the Clifford section. We take
the volume form E;; ;.. and contract with the tensor argument on the gammas to
form a chirality operator

%= lEl Yyt
] it in

One computes that % = (——1)[1‘;-1]. If n is odd, ¥ = const - Idy, by irreducibility
(Schur’s Lemma). If n is even, there are two eigenmodules for %, and

_wmp2~_ (1 0

in the corresponding block decomposition. This gives exactly the ¥, & X _ split-
ting. We could also have chosen (—i)"/ 2% as our definition of x, but the choice
above turns out to make better contact with weight theoretic considerations for
the Lie algebra so(n).

6.1.3 Bundles with Spin(n) structure

The spinor bundle(s) only generate the additional Spin(n) bundles that are “out
there”. One can capture these additional bundles in a few different ways. First,
one could take bundles associated to other irreducible Spin(n) modules; there
are infinitely many of these which are not already SO(n) modules. Second, we
could take iterated tensor products of 2, and pick out the irreducible) summands.
(We get infinitely many duplicate copies of each module in this way.) Or, finally,
we could take the transition functions relating trivializations of the bundle ¥;
these will be valued in Spin(n). Now compose these transition functions with
various representations of Spin(n) to get new sets of transition functions:

0o N O 22 Spin(n) —— Aut(V).
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Here we are relying on the fact that (o, ) is faithful to be assured that we are
getting everything.
These three processes are really equivalent. For an example of approach (2),
take
A ® T gpinen) T Tw. (1.1)

new

This allows us to discover the twistor bundle Tw. It also suggests a tensor-spinor
realization of this bundle. First take spinor-1-forms ¢,, where the index indicates
the A! content. From a general such thing, we may make a spinor y%y,; this
corresponds to the ¥ summand in (1.1).

It also hints that we can get our hands on the other summand by writing a
counter term which will assure that this derived object vanishes:

1 1
a = Pa+ =7aVPb — =77’ - (12)
n on y
Tw part ¥ part

Thus twistors are spinor-1-forms ¢, with ¥%p, = 0. Like the spinors, these are
irreducible for odd n, and split into two pieces (another chiral decomposition)
when n is even.

There are some obvious generalizations of this construction, some of which are
under intense scrutiny in current research. For example, one could start with the
spinor-k-forms ¥ ® A as in [7]. The generalization of the map used just above is
the interior Clifford multiplication

int(y): T®AF — L@ AR,

a1
(pal...ak = ’7 (pal...ak~

(1.3)

Since it is possible for powers of int(7y) to annihilate a spinor-form without int(7)
itself annihilating, © ® A* will generally break up into several irreducible pieces
[22]. We shall denote the “top piece,” i.e., the null bundle for int(7y), by Y. Al-
ternatively, we could replace A* above with the symmetric tensors ©*, and define
int(7) in formally the same way. The null bundle Zj, for int(+) will automatically
consist of spinor-trace-free-symmetric k-tensors, as

T Pay.ar =0 = 0=7"27" 04, o = —9""*Pa;. ay (1.4)

by symmetry and the Clifford relation. By symmetry again, if the a;ay trace van-
ishes, all traces must vanish.

6.1.4 Connections

It is sometimes said that a differential geometer is someone who knows what a
connection is. In spin geometry, as in other branches of geometry, an understand-
ing of connections is indeed a kind of gateway to the theory.
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The Levi-Civita connection V on the orthonormal frame bundle F (see, e.g.,
[26]) lifts to a connection on the bundle S of spin frames. Transferring to associ-
ated bundles, or proliferating the connection to duals and tensor products, we get
a connection V on all Spin(n) bundles, satisfying

Vg=0, VE=0, Vy=0.
On the spinor bundle, there is a family of so-called Friedrich connections [25]
V. + const - v, (1.5)

which are arguably just as distinguished as the spin connection, and which are
quite useful in problems involving Dirac eigenspinors.

Exercise 1. Show that among the Friedrich connections, only the spin connection
annihilates the Clifford section .

6.1.5 Stein—-Weiss gradients

There is a universal construction of first-order differential operators in Rieman-
nian spin geometry due to Stein and Weiss [39]. First note that if V is a natural
Spin(n) bundle, then

V:VoT"MQ®V.

One way to think of this is as follows: if a section ¢ of V has index structure ¢y,
then Vi has index structure V.. That is, an extra cotangent index has been
added, signaling tensor product with the cotangent bundle.

Now as it happens, the defining representation T of so(n) has a multiplicity
free selection rule governing its tensor products with other so(n)-modules. This
means that if V' is irreducible, then T ® V breaks up as W; & --- & Wy, for
some NV, with the various W,, coming from distinct isomorphism classes. On the
bundle level,

T"M®V gSpin(n) Wi o---& WN(V) ’

Wu gSpin(n) Wv = UuU="v. (16)

Here we write N = N (V) to highlight the fact that N depends on V — in fact it
is a very useful numerical invariant.
This allows us to speak of projections

Proj, := Projy
on the bundle T* ® V, and thus of gradients
Gu = Projwu o V

These are universal, Spin(n)-equivariant operators, since V and the Projyy,_ are.
These operators are unique up to isomorphic realization of bundles and up to
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constant factors; because of this, they actually give a classification of equivariant
first-order operators.

For example, take the spinor bundle ¥, in odd dimensions for now. The decom-
position (1.2) exactly realizes the decomposition in (1.6), and the corresponding
gradients are

T=Grw:?% = Vap+ ‘,1{7a7bvb¢a
Gz = =297V

In the formula for G's;, we are just finding a different realization of the operator
Y 4 7 Vet

i.e., of the Dirac operator. (In fact, to get to the standard realization, just left-
multiply the formula for Gx by v%.) T is called the twistor operator. In this
sense Y and T are the two gradients emanating from the spinor bundle, and in
particular N (%) = 2.

In even dimensions, we have the chiral decomposition, so we get two Dirac
operators and two twistor operators:

(1.7

V:Ei—dj;, T:Ei-—)TWi.

That Y should reverse chirality is clear from the observation that V; (resp. %)
should preserve (resp. reverse) chirality.

Other examples of gradients, or (when reducible bundles are involved) opera-
tors with a block decomposition whose entries are gradients, are the following.
The exterior derivative on differential forms is

d: A% = A (d9)agar.ar = (K + 1)V ]aoPas...ay] - (1.8)

Thus the usual normalization of d is k + 1 times the gradient from A* to A*+1,
Note that in abstract index notation, an expression like V4 means (V) ,p . The
conformal Killing operator S carrying Al to the trace-free symmetric 2-tensors
TFS? is .

(SM)ab = V(ampy — Egabvc'f]c-

As usual, the parentheses around the indices indicate symmetrization. The name
of this operator derives from the fact that its null space (viewed as a space of
vector fields) consists exactly of the conformal vector fields X ; i.e., those vector
fields for which

Lxg=2wg (1.9)

for some smooth function w, where £ is the Lie derivative. In index notation, (1.9)
translates to V(o X3) = wgasp , and contracting, we find that w = %VCX c,

By the basic uniqueness result, the formal adjoint G* of a gradient G must
be a gradient. If G is realized as above, i.e., as going from V to a subbundle of
T*M®V,then G* is always a divergence in the additional T* M tensor argument:

G* = (Proj, V)" = V*Proj;, = V*Inj, ,
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where Inj,, injects the copy of W, into T*M ® V. For example, we have the
interior derivative § : A**1 — A¥, defined by

(5(10)a1...ak = _Va‘)(pao...ak .

Exercise 2. The alert reader will notice an apparent normalization problem when
comparing with (1.8). This is because § is conventionally computed in the form
of inner product (kV)~1p® %%, .., whereas the above general discussion
uses an inner product on T*M ® V with the property that |€ @ ¢|2 = |£]2|¢]2.
This “default” inner product, when applied to building differential form inner
products, leads to an inner product without the (k!)~! formula above. Show that
d and § are formal adjoints in the form inner product, and that the gradient (k +
1)~'d and & are formal adjoints in the default inner product.

The above implies (as the reader may check explicitly) that
(S8*T)o = =V7a, (Tp)* = -V, (1.10)

are the formal adjoints of the conformal Killing and twistor operators, respec-
tively.

Exercise 3. Verify equations (1.10).

Note that when speaking of formal adjoints, a statement like Y™ = ¥, while
true, hides some subtleties. First, recall from above that ¥ exchanges the two
chiralities:

Y.
D, —= 5.

In dimension 4k, each of ¥4 and ¥ _ is self-dual, and ¥ _ and Y _ are formal
adjoints of each other. In dimension 4k + 2, £ and ¥ _ are duals, so each of Y +
and Y _ is formally self-adjoint.

6.2 Conformal structure

The Dirac operator is deeply related to conformal structures on manifolds. A con-
formal structure is an equivalence class of Riemannian metrics, with g equivalent
(or conformal) to § iff § = Q2 g for some positive smooth function 2. In fact, not
just the Dirac operator, but every gradient depends only on conformal structure,
in a suitable sense.

6.2.1 Conformal covariance and weights

Let g and § = Q2g be two conformal metrics. Since the volume element and
Clifford section have the metric-related properties (|E|> = 1 and the Clifford
relation), they need to be given a compatible pointwise scaling:

E=Q"'E, 4=Q714.
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Theorem 1. [24] Each gradient G : V — W is conformally covariant: there are
numbers a, b with

G = Q°G(Q%)
for all sections ¢ of V.

The conformal biweight (a,b) moves around depending on what realizations
of the bundles we use. For example, viewing the conformal Killing operator S as
acting on tangent, as opposed to cotangent, vector fields results in different (a, b).
To understand and control this, we need to take a broader view: there’s really
a structure group larger than Spin(n) at work in statements like these, namely
R, x Spin(n). The R, part has something to do with the pointwise scaling.
To make precise versions of these statements, we need to know something about
weights of modules for (some) Lie algebras.

Irreducible Spin(n) modules (thus bundles on spinnable manifolds) are pa-
rameterized by the dominant so(n) weights

A= (A, h) € ZEU (B + 2)°,
where £ = [n/2]. The dominance condition is

/\l > 2 l/\€[7 n even,
A1 >+ > A >0, nodd

A is the highest weight of the module, which we may call V(\). We shall call
the corresponding bundle V(). In general, weights parameterize the possible
irreducible representations of a (fixed choice of) maximal abelian subalgebra t.
Such irreducible representations are necessarily one-dimensional, and are given
by

m! Xy + -+ mfXe o (um? + - + pem?)Id.

The ¢-tuple p is the weight of the representation.

In the case of so(n), this plays out as follows [39, 40]. In the usual matrix
presentation, so(n) is the Lie algebra of skew-symmetric n X n matrices. A basis
for this consists of the L, for a < b, where Ly has a 1 in the (a, b) entry, and a
—1inthe (b, a) entry. A good choice for t is the span of L1z, Lz, .. ., Las—1,2¢ -

Each irreducible so(n) module has a lexicographically maximal weight, which
is necessarily dominant, and necessarily occurs with multiplicity 1; this is the
highest weight. Some Lie algebra theory forces integrality conditions on the

. S e .
weights, which, in the present case, work out to the Z* U (3 + Z)  condition
above.
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Some familiar modules/bundles and their highest weights are:

AF k<t

A% (neven)

TESP

Y (n odd)

Y+ (neven)

Tw (n odd)

Tw (4 < neven)

Twi (n = 2)

algebraic Weyl tensors (n > 5)
algebraic Weyl, tensors (n = 4)

—
BRI
T
vO
(=]
S

—
vo
L
Sh
— .
)

DO LRI LRIt | TS
N TN
- —
N
NG

H-

e e e R e N N e e
N DN

Recall there is a gradient V(A) — V(u) when T*M ® V(A) has a V(p)
summand, i.e., if

(1) ®A gSpin(n) Hob---

on the level of representations. This happens iff

p=Azxe, someac€ {1,...,¢}
or @2.11)
nisodd, Ay #0, p=A.

Some important gradients in odd dimensions are the self-gradients — operators
associated to the exceptional case in (2.11). Among these are the Dirac operator,
the Rarita~Schwinger operator S on Tw (see below), and the operator xd on A‘.
In this last example, x is the Hodge star operator taking k-forms to (n—k)-forms:

ayl...ak

(*So)ak+1...an = Eal...anﬂo
In even dimensions, there will be gradients
V (o, :t%) — V(o, :F%)

whenever o is an (¢ — 1)-tuple with (o, 1) dominant and integral. By the above
table of weights, the Dirac operators will be among these. It is then natural to
speak of the Dirac operatoron V(3,...,5) & V(3,..., 2, -5

We can see that there will be an operator on twistors, R : Tw — Tw in odd
dimensions, and for 4 < n even,

+
Tw, —— Tw_.

This is the Rarita—Schwinger operator. This also makes it clear why there should
be no Rarita-Schwinger operator in dimension 2, since this would have to try to
take V(2) to itself or V(—2).
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In fact, we may make an elementary construction of the Rarita-Schwinger op-
erator S by forming the Dirac symbol on ¢,, that is ¥°V;¢,, and then adding a
counterterm designed to attain the condition v*(S¢), =0 :

2
(S8¢)a = 1 Vipa — ;’Yavbsob.

A somewhat better known set of gradients is that emanating from V(1) & Al.
(Here we adopt the convention of omitting terminal strings of zeros in weights.)
By the selection rule (2.11), these should go to V(2), V(1,1), and V(0) for
n > 5. These bundles are exactly TFS?, A2, and A° and the corresponding
operators are {(up to constants and isomorphic realizations) S, d, and §. More
generally, there is an S-like operator on A* [9], in addition to the familiar d and é.

Returning to our discussion of conformal structure, note that we have less to
work with than we did in the Riemannian regime — g is determined only up to
a positive function multiple. This may be reflected by taking a larger number of
trivializing neighborhoods (O, g4 ); here gq is a metric on O,. On an overlap
Oy N Op, we have gg = Q%O‘ga, and we may build a bundle V(w|A) with
transition functions

Q;“:;Tba

where Ty, are (Riemannian spin) transitions (Oq,ga) — (Og, ga). What we
get out of this are tensor-spinor density bundles — corresponding to each old
(Riemannian) bundle V()), we now have a whole family V[w|A] of bundles,
parameterized by a complex number w. Since V[w|]] is naturally isomorphic to
V{[w|0] ® V[0|}A], we could have gotten away with defining the density bundles
E|w] := V[w|0], and the tensor-spinors of conformal weight w = 0.

Exercise 4. Show that the tangent bundle is naturally isomorphic to V[1|1], while
the cotangent bundle is V[—1]1].

In the case of tensors, this means that we can do some of our weight account-
ing by using index position. For example, if £% (resp. £,) is the tangent (resp.
cotangent) bundle, and we put, for example, £,°[w] := E[w] @ £, ® £?, then

Eabw] = Eap[w + 2] = E%%w - 2).

In fact, this explains why conformal weights and biweights move around as we
move among different isomorphic realizations of bundles.

To describe the conformal biweights of the gradients, and many other operators
as well, consider the rho-shift of a weight [w|A] :

(@A) = (w+ n/2|A+ pn), where 2p, =(n—2,n—2,...,n— 20).
The affine Weyl group acts on such shifted weights, according to permutations and

an even number of sign changes, n even,
any number of sign changes, n odd.
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The equivalence relation of lying in the same affine Weyl orbit will be denoted
by ~ .

The first necessary condition for having a conformally invariant differential
operator V[w|A] — V[u|y] is that

(W[A) ~ (ulf)-

That is, the bundles must have the same central character under the algebra
so(n + 1,1). The relevance of this algebra will be explored in somewhat more
detail later, in Section 6.3. In addition, the drop in conformal weight, w — wu,
must be the order of the differential operator. Note that our “operators” are really
functors that assign operators to conformal structures. We adopt the convention
that our operators must be nonzero on flat space, so that (for example) KA is
not an operator. The condition about the drop in conformal weight is then just
a homogeneity condition under uniform scaling of the metric. If our prospective
conformally invariant operator is a gradient, we must thus have u = w — 1.

Suppose there is a gradient G : V(A) — V(u). If we choose any conformal
weight wo and view G as carrying V{wo|A] to V[wo — 1|u], some invariant theory
shows that the conformal variation of G along the curve of metrics €2°“ g must
take the form

(wo + ¢)[G, my],

where m,, is multiplication by w, and ¢ is a constant. Thus we have an invariant
operator when wo = —c. Knowing now that gradients are conformally invariant
for some choice of the initial conformal weight, we may determine which choice
does the trick using the above central character considerations. For example, if
we have a self-gradient V(e{\) — V(e|)) in odd dimensions (where the bullets
e represent numbers we do not necessarily know), then we must have

V(5 = V(=31

Exercise 5. Show that if our gradient takes V(®|---A;---) to V(e|---A; +
€---), where € = 1 and the corresponding lists - - - agree, we must have

V(E()‘2+E)I)‘z)_)v(€)‘z,)‘z+l)

For example, to work out the conformal biweight of the conformal Killing op-
erator, we reason as follows:

V(el5 254 25%) = V(o2 25 m)
V(a5 55 o VI et L 0,
Vi) - Vij2,

where ( )o is trace-free symmetrization.
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When spinors are in play, conventions vary on the treatment of indices. One
choice is to suppress spin indices altogether, and another is to write them, assign-
ing them weights of =1/2 (depending on position) in analogy with the weight 1
of a tensor index. We shall have occasion to consider this briefly later, in Subsec-
tion 6.3.1.

Remark 1. Weyl’s dimension formula [30] gives a formula for the dimension of
the module V' (A), and thus for the fiber dimension of V(}), in terms of the entries
of A. For example in dimension 4,

dimV(A) = A2 — XZ. (2.12)

Exercise 6. Use (2.12) to find the dimensions of the half-spinor bundles ¥4 ; the
form bundles A*, A%, and A3; the bundles Wy of algebraic Weyl tensors; and the
bundles TEFSP of trace-free symmetric p-tensors in dimension 4.

Though it is not obvious, the above information is almost enough to compute
the spectra of all natural operators on bundles over the round sphere S™; in par-
ticular the G*G when G is a gradient [10]. Implicit in this are the spectra of
self-gradients [11]. This recovers old results on, for example, the spectrum of the
Dirac operator. But it is general, so that one may plug in weight parameters and
get, for example, the spectrum of the self-gradienton V(p+ 3, 3, ..., 3, %3); in
fact, this is the bundle described in (1.4) above. This operator has been an object
of considerable recent study.

This in turn says something about classifying Bochner—Weitzenbsck (BW) for-
mulas on general Riemannian spin manifolds [10]. There are deep connections
between this and estimates that can be made on solutions of first-order elliptic
differential systems [12, 19], with consequences for decay rates of these solu-
tions on open manifolds. Indeed, this last question actually inspired the original
invention of gradients on the part of Stein and Weiss.

6.2.2 Bochner-Weitzenbock formulas and a discrete leading
symbol

Here is a partial illustration of all this in a “small” situation. The ideas are closely
related to those of the general calculation, but no heavy machinery is required.
One may compute (from the conformal variations of the gradients and scalar cur-
vature) that for certain explicit constants k.,

K .
T ; Newen (2.13)

is conformally invariant
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for each A [9]. In fact, if G, carries V(A) to V(o)
by =214+ A+ 0u+2pn,2— au))‘l.

(In case k, is undefined, our invariant operator is GXG,.) In the most elemen-
tary example, A = 0, we get (up to a factor) the Yamabe operator or conformal
Laplacian
Yi=A+ 22 g 2.14)
o 4n—1)"" ‘

The operator (2.13) need not be second-order in general — it could be zero, or at
least have order zero, for some bundles V(). In fact, it turns out to have order 2
exactly when the numerical invariant N(V (X)) =: N(A) (recall (1.6) and the
ensuing discussion above) is odd. By some invariant theory, being of order less
than 2 and being conformally invariant for N () even, expression (2.13) must be
an action of the Weyl tensor C. In particular, this discussion applies if our bundle
is ¥ (n odd) or £4 (n even), since then N(A) = 2. Furthermore, the Weyl tensor
cannot act, by weight considerations. Thus the expression (2.13) vanishes.

As a result, we have two equations on the two GG, :

K 2, .
2(7],—1) + n— 1GlGl _2G2G2 —0,

G’{Gl + G§G2 = V*V.

(2.15)

(The second of these follows directly from the definition of gradients.) Here and
below, we shall list gradients according to the lexicographical ordering of their
target weights o, the largest weights coming first. (In particular, o7 is always
A + e1.) Solving the system (2.15) for the G5 G.,, we get

K

nG3Ge = V'V+ 7,
P e ey K (2.16)
n—1 1717 ICES

These are, respectively, the Lichnerowicz formula and Friedrich formula. After
taking account of the normalization change resulting from realizing the spinor
bundle in different ways (as ¥ and in T* ®X), the Lichnerowicz formula becomes

K
z‘ .
The left side of the Friedrich formula is 7*T', where T is the twistor operator.

To do this in a more general setting, we use a device called the discrete leading
symbol [1]. To use this, we need a complete understanding of the model case of
round S™. Here the section space of V() is (a completion of) a direct sum of
modules,

V2=V*'V+ (2.17)

V(e; A) Zspinme1) V(@)

for Spin(n+1), where we use an overline to signal the transition from n to n+1.
The Spin(n + 1) module labeled by a occurs (with multiplicity 1) iff a|spin(n)
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has a A summand — this is an instance of Frobenius reciprocity. If a occurs, we
say that @ | Aor A T o. In fact, | is an example of a branching rule, in this
case the one describing restriction of Spin(n + 1) representations to a Spin(n)
subgroup (which is imbedded in the standard way). In terms of weight arithmetic,
this branching rule is given by the interlacing condition

ar > A1 20 > Ay > o > A, n even,
a1 > A1 2oy > A > 2> A > Joygyr], nodd.

We have .
T(V) = P V(@53) Zspinnsny D V(@).
ali alA

A curious but useful aspect of the interlacing rule reveals itself upon branching
twice, from Spin(n + 1) to Spin(n) to Spin(n — 1). Let L := [(n + 1) /2]. If

Q= (augy...,arL),

then .
alAd < A]o anda; —A; €N.

Note that & runs through a finite set, say A, for o | A, while o runs through an
infinite set.

For a natural differential operator on V (), there are two descriptions of the
discrete leading symbol, one microlocal (or at least pointwise), and one global:

(1) Pick a point (z,£) in the cotangent bundle of an arbitrary M (with the
Riemannian spin structure), with § # 0. This choice of a distinguished direction £
leaves us with a symmetry group Spin(n — 1), isomorphic to Spin(n — 1). Take
the leading symbol 01¢.q4(D)(z,£) € End(V(A).), and decompose relative to
the Spin(n — 1)¢-splitting:

V(A)e =V(B1)e® - ®V(Bon))e

where
V(8:)¢ Zspin(n—1) ¥(N).
(The underline signals the transition from n to n — 1.) We get

alead(D) (:E’ 6) = Z i (D) IdX(ﬂi)s

for some eigenvalues u;(D). A main point is that the list of (3;, ui(D)) is inde-
pendent of z, €, and M. In fact the 3; just list the 8 T X. So do the a for a | A,

so we can speak of u(D, &).
(2) Take the special case of the sphere, and take the leading asymptotics of
spec(D), in the sense

eig(D, S™, &) = k(D, &)a? + o(a?) asa; — .

(As part of the game, one has to show there are such asymptotics.)
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Theorem 2. [1] These are the same: u(D, gz) =k(D, &)

Remark 2. The calculation of the spectrum makes essential use of conformal
covariance. The noncompact group G = Spin(n + 1,1) gets involved; see [10,
18].

Remark 3. To oversimplify a bit, the G*G for gradients G are the basic “building
blocks” of natural differential operators. However, these are not usually confor-
mally covariant. The first-order operators G and G*, on the other hand, are confor-
mally covariant, but don’t usually have spectra, since they generally go from one
bundle to another. Nevertheless, the calculation works, as G and G* can be made
to live in a diagram of operators which are “‘simultaneously diagonalizable” (in
a suitable loose sense). This is slightly more involved than it looks at first biush,
as some of these operators act on subquotients (under the conformal group) of
section spaces, rather than on full sectiou spaces.

. . © . . . .
Remark 4. By the interlacing rule, the « and a may be identified with lattice
points in rectangular boxes. The box A of « is infinite on one end, and its base is

the box A of all &,

For example, the spinor bundle ¥ for n odd gives rise to a two-point set A, and
the discrete leading symbol k(V ) of the Dirac operator takes the values +1 on
these points. The square of the Dirac operator has k(Y?) = 1, and in fact the
discrete leading symbol takes compositions to products:

k(D1oD2)(8) = k(D1)(8) - k(D2)(8).

In particular, this shows how to construct an operator D; with D D of the form
(V*V)* + (lower order), if such exists.
Generalizing the example of VQ, the discrete leading symbol of any operator
of the form
(V*V)* + (lower order)

on any bundle V() is the constant function 1.

Ellipticity is detected by the discrete leading symbol: D is elliptic iff k(D) is
nowhere zero. D is positively elliptic (has positive definite leading symbol) iff
k(D) is a positive function. In fact, the best ellipticity constant c for an operator
of order 2p,

o2p(D)(€) 2 clé[*71d

in the sense of endomorphisms, is the minimum value of the discrete leading
symbol.

The characteristic function of a point in A corresponds to a fundamental pro-
jection in the algebra of leading symbols. Here the prototypical example is the
differential form bundle A* for k < (n — 2)/2, where the operators dd and dé
give rise to the fundamental projections. This example is somewhat misleading in
its simplicity however, as generally the operators representing fundamental pro-
jections are of higher order, and need not commute.
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If Gy, ..., Gy are the gradients emanating from V (), then

in k(G* Gg, + - * G
soin (G3,Gay + -+ G5 Ga,)(B)

is also the best Kato constant k for solutions of the first-order system G,, ¢ =
-++ = Gq,p = 0, in the sense that

2
|dlel|” < IVl off {pe = 0}. 2.18)

(See [12, 19].)
The presence of a Bochner—Weitzenbock (BW) formula

a1GG1 + -+ anG NG N = (02 order)
is signaled by the discrete leading symbol relation
alk(G’{Gl) + -+ aNk(G}‘VGN) =0.

Given a knowledge (from [10]) of the k(G G,), we can algebraically determine
the left sides of BW formulas. Specifically, there are numbers s,,, ¢, (built from
conformal weights) such that

a1k(GiG1) +--- +ank(GyGN) =0 =
a1é189 +--- +anénsad =0
N(A) — 1}

forj =0,1,...,
or j [ 5

BW formulas are key ingredients in the business of relating local geometry and
spectral data, since

> auGiGu= Y (—a.)GiGy +Curv.

a, >0 —ay >0
-

~~
nonneg. op. nonneg. op.

The above shows there are [N (A)/2] independent BW formulas on V(). If the
curvature term is positive (resp. negative) definite, so is the operator on the left
(resp. the first term on the right). This is only the most obvious of a sophisticated
bag of tricks for proving vanishing theorems and eigenvalue estimates.

The classification of BW left sides depends on the classification theory of
second-order conformally covariant operators, which in turn depends on a com-
plete understanding of second-order contributors to V*V :

T*@(T*"eVA) = (T*eT") @V(\).
Ne—— S——
G, targets APA2ZHTFS?
An example of a bundle with N(\) = 4 (so that there are 2 independent BW
formulas) is the bundle introduced above in (1.1). The gradient target bundles



174 Thomas Branson

are X (or the copy of ¥ contained in T* ® Tw), Tw itself, and the bundles
Y, and Zs. (Recall the discussion around (1.3) and (1.4) above.) Denoting the
corresponding gradients by Gx, Gtw, 'y, and Gz, the discrete leading symbols
of the G}, G, on the two-point space B(A) are:

e é .
G Cra n?n:fz) <n+2):<n—2)
n—3
G4 Gy . 2D
GGz m? 281.‘“12)

The corresponding BW formulas are derived in [17]; a basis is:

(n—3)(n—2)GEG2_ (n_g)(n+2)Gr}wGTw+G§Gy
n 2n
_ (—2)(n-3) n—3 1.,
~ 8n(n-1) K+2(n—2)b'+8c"
—1)(n+2 —2)(n+1

S0t D e, - 02D D o + 6302
_ _(n+2)(n+1) n+1 3 .,
B 8n(n —1) K 2(n—2)b +80' '

Here b is the trace-free Ricci tensor, and the curvature actions b- and C : are:

1
(b-@)u= Py ((n —2)bux — bary*vu) @,
(C: 0)u = Cap*ur*vPr .

These are the unique invariant actions of TFS? (where b lives) and of the algebraic
Weyl tensor bundle W (where C lives) on twistors.

Here is a sample theorem demonstrating what one can do with the resulting
estimates:

Theorem 3. [17] Suppose n = 8, and g is an Einstein manifold (i.e., b = 0).
Then any twistor ¢ in ker(Gx) N ker(Gy) or in ker(Gr) Nker(Gz) is parallel
(ie., Vo =0).

6.2.3 The Hijazi inequality

One of the major touchstones of spin geometry has been the Hijazi inequality
[27], which related the bottom eigenvalue of the conformal Laplacian Y (recall
(2.14)) with that of the square of the Dirac operator. To explain how this comes
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about, recall the first equation of (2.15), which integrates to

o- [ (%L_l)lwﬁ—mczmun—f;lclw) d,

= / (%[W - %]V¢]2) dvg + (nonnegative). (2.19)

(Recall the normalization change implicit in (2.16,2.17).) The Yamabe operator
governs the conformal change of the scalar curvature K according to

K, 2 e~ (mF2)w/2y o(n=2)w/2. (2.20)

2in—1) n-2

where K, is the scalar curvature of the metric g, = ¢?**g, and the operator Y’
is computed in the metric g. A well-known symmetrization argument shows that
the bottom eigenfunction of ¥ does not change sign, so we may assume that it
is a positive function, which we may then write as e(»~2/“1/2 for some smooth
function wy. With w = wy in (2.20), and p; the bottom eigenvalue of Y, we have

K., _ 2

2ln—1) n-2

2
n—2

—2(4)1

Hie

e——(n+2)w1/2 .Hlye(n—2)w1/2 —

Substituting into the basic inequality (2.19) at the metric g; := g,,,, we have

2
0= / (n — 2;116_2“‘]1/1[2 - %]lez/}F) dvg, + (nonnegative).  (2.21)

The obvious thing to do now is to take advantage of the conformal covariance
relation for the Dirac operator, in the form

Vw Y= e~(n+1)w1/2v(e(n—l)w1/2¢)'
1

If e(®~Dw1/24) is an eigenspinor for Y, with eigenvalue A, then

2 2
0= /e_2“"|1/)|2 < My — E/\2> dvg, + (nonnegative),

n—2
and we have:
Theorem 4. [27] A2 > nu;/(n — 2).

It is clear how one would use the derivation above to study the case of equality.
There are various improvements in the case of Kihler manifolds, quaternionic
Kihler manifolds, and the like; see, for example, [28], [31], and [33].

There are two main obstacles to the attempt to extend this line of reasoning
to other bundles. First, we depended on the fact that, in some BW formula, we
could have just one GG, appear with a coefficient of a given sign. In general,
the coefficient signs tend to try to split about evenly, as one might expect. Another
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is that it is difficult to keep the other curvatures (b and C) out of the picture. The
spinor and scalar bundles are special in that weight considerations prevent b and C
from acting; this simplified state of affairs never occurs again as we go up into the
space of bundles. There is a BW formula omitting b, whenever N () is even,
the combination (2.13). Effective estimation using this, however, will depend on
having some control over C. See {15, 16] for some attempts in this direction.

Like central results in other fields, the Hijazi inequality is closely related to
other fundamental phenomena. For example, an argument of Bir and Moroianu
explained in [20] ties it closely to the sharp Kato estimate for solutions of the
Dirac equation, namely

n

Vo = = |dwl] < “ 2Tl off { =0},

where V, = V, + Ma/n. (Recall (1.5) and (2.18) above.) We compute

n

(Y _ n-— 2/\2) I¢I(n—2)/(n—1)

n(n —2) ’ 2 n—-12,, —nf{n—
=22 (| - M=l (g,
ey (Jami]” - 22w i )
Modulo some analytic niceties having to do with the possible zero set of 1, the
nonnegativity of the right side of (2.22) establishes the Hijazi inequality.

6.3 Tractor constructions

The constructions of spin-tractors and form-tractors below is joint work of the
author and Rod Gover [14].

6.3.1 Enlarging the structure group

To some extent, the use of the word twistor to describe the bundle T'w is a mistake
that has been solidified by tradition. The Penrose local twistor bundle is an object
whose generalizations are sure to be much-studied in the near future. Recal; that
we are working in the setting of Riemannian spin geometry. The constructions we
are about to introduce generalize more or less readily to the pseudo-Riemannian
case, including the Lorentzian regime where Penrose’s construction finds its most
natural home.

A first step is to realize that there is a larger group lurking at the edges of the
picture, namely

G = Spin(n + 1,1),

and that the structure groups we have dealt with thus far, as well as some others,
are natural subgroups of G. When the Iwasawa decomposition and Langlands
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decomposition of a semisimple Lie group,
G = KAN = NMAN,

are applied to our G, the groups N and N are copies of R™, and the group A is
a copy of R.. (The conformal weight lives in the dual of this.) The group M is
Spin(n), and K is Spin{n + 1). The stereographic injection R™ — S™ is

N < NMAN — NMAN/MAN.

The introduction of conformal weights carried us from M -bundles to M A-
bundles. But there’s a further step, suggested by Cartan’s work: P = MAN-
bundles — not just on homogeneous spaces for &G, but on conformal (spin) man-
ifolds. That is, there is a P-structure to these manifolds that is not usually ex-
ploited. It is not generally known that there is a rich supply of M AN-bundles, in
which the N factor acts nontrivially — in contrast to the situation for the clas-
sical tensor-spinor-density bundles. These bundles exist on M A-manifolds, i.e.,
manifolds endowed with a conformal structure. That is, our manifolds need only
have M A structure, and we get bundles with the richer M AN structure free of
charge.

The basic concept is one that seems to be rediscovered in different forms at ir-
regular intervals. Besides the work of Penrose [38], pioneering work was done by
T.Y. Thomas [42] in the 1920s, but lacking the language of bundles, it was largely
forgotten until the explanation of [2] in modern terminology. I.E. Segal’s span-
nors and plyors [36, 37], introduced to explain fundamental physical phenomena,
are examples of such objects, although Segal treated them only on homogeneous
model spaces.

One important difference feature of M AN-bundles, as opposed to M - or M A-
bundles, is the lack of complete reducibility. That is, M AN -bundles have compo-
sition lattices, or (dropping some information) Jordan-Holder series of the form

V&V, & - &V,. (3.23)

The & notation means that each V, & .- & V.. for s > ¢ > r is an invariant
subbundle, but there is no invariant direct complement; that is, any attempt to get
just the information from Vg, ..., Vg involves taking a quotient. If we reduce
the structure group to M A, we may replace the & in (3.23) with &, but the action
of N carries us from V, to V,_; for each g.

On the face of it, it would appear to be a formidable task to find lists of M A-
representations that can be “glued together” using actions of V. But in fact, there
is an abundant source of such things, and they are geometrically very natural.
First, we can always restrict representations of G to M AN. When we do this for
the (half) spin representation in dimension 4, we obtain Penrose local twistors
and Segal spannors. When we use the full differential form representation, we get
Segal plyors. But there is really not too much that is special about dimension 4
from this point of view — the general setup only really recognizes a difference
between even and odd dimensions.
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With these restrictions of G-representations in hand, we can always take M AN-
subquotients. This means we iterate and alternate the processes of taking subrep-
resentations and quotients. Following the standard (after [2]) modern parlance, we
shall call these tractor (or tractor-density) bundles. The full tractor bundles play
a central role in the theory — these are those obtained from restricting a (usually
irreducible) G-representation. One benefit of having all these bundles around is a
cure for the composition problem for conformally invariant operators. Such oper-
ators on conventional tensor-spinor-density bundles almost never compose, since
forming the composition AB would mean that the weights a and d in

A=Q7%40°, B=QBQ°

must match up — in practice, this “‘almost never” happens. With all these M AN -
bundles though, there are many compositions, and in fact this is a good way of
constructing new operators. In particular, one may start in a “conventional” tensor-
spinor-density bundle (where N acts trivially), travel through some tractor bun-
dles, and emerge at a conventional bundle. In fact, doing so is necessary for the
curved version of Jantzen—Zuckerman translation, or curved translation for short
[23].

To concentrate on local twistors and spannors, or what we might call spin-
tractors from the current viewpoint: If we realize the positive spin representation
of Spin(n+2, C) in the real form Spin(n +1, 1), then restrict to M = Spin(n),
we get an object “containing” both positive and negative spinors:

MG =M1
Here the first summand is an M AN-quotient, and the second is an M AN-sub-
module; recall that this is the meaning of the semidirect sum sign & . The num-
bers in brackets encode the conformal weights. A more Penrosian notation would
be

EP & £P' ).

Here the M-modules involved are indicated by the indices adorning the generic
bundle symbol £, the P indicating positive spinors, and the P’ negative. In this
notation, the index positions carry conformal weights. This is also true in the
tensor case, where, for example, the cotangent bundle &, is isomorphic to £%[2]
(the vector field 2-densities) as an M A-bundle. The difference is that reversal of
a spinor index position incurs only half the “penalty” (or “reward”) of a tensor
index move. One point that must be observed is that in dimension 4k, the positive
and negative spinors are self-contragradient (their own dual modules), while in
dimension 4k + 2, they are dual to each other. The upshot is that, for example,

Ep =EP[-1), n =4k,
Ep=EP'[-1], n=4k+2.
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Let us denote spin-tractor indices by A, B, --- . Then, as a consequence of the
discussion immediately above,

EP G £p, n =4k,

3.24
EPGEp, n=4k+2. (3:24)

£B ~yvan € {
What do form-tractors (plyors) look like? To see, one could use the relation to
spinors in even dimensions: as M -bundles,

A=Y QY.

On the tractor level, we can take the tensor square of the spin-tractors £B. In
dimension 4k, this gives

EFRG (EP o 0 EP ) & Epigy.
This reflects the usual notational convention on tensor products; for example,
EPQY = £P ® £9. Thus we are getting forms of (reduced) weights 1, 0, and
—1. This is different from what we get in the de Rham complex with its natural
conformal weights:
Elayar] = Ak[—k].
In dimension 4, the subquotients of the above are:
ePo = el g =g,
EPQ = £5D(31 g £]1],
Epg 2 RPN @ E[-1],

where SD (resp. ASD) means self-dual (resp. anti-self-dual). The first line of this
is one of the things that makes 2-component spinor calculus in dimension 4 so
appealing: a pair of spinor indices, one primed and one unprimed, is “equivalent”
to a tensor index.

This does not quite tell the whole story of the M AN-structure of the form-
tractors, even in dimension 4. In fact, what one is getting is a direct sum of 1-form
tractors and self-dual 3-form tractors:

EBC > £, @ Eipay-

The duality referred to here is under the structure group G = Spin(5, 1). This
basically comes down to the fact that the full tractor bundle based on a tensor
product of G-modules is the tensor product of the relevant full tractor bundles —
tractorization and tensor product commute.

A form-tractor bundle &[4, ... 4, (for k small enough to safely avoid considera-
tions of duality in the middle order of form) looks like

AFTH1] & (A*[0] @ AF2[0]) & AF1[—1]
= g[al”’ak—l] [k] ¢ (g[al”’ak] [k] ® g[al’”ak—2] [k ) & g[al”‘ak—l][k -2
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In particular, standard tractors are 1-form-tractors:
Ea 2 E[) G & (1) & E[-1], (3.25)
and adjoint tractors are 2-form tractors:
Eap =E G (Euy2]@E) G &,

The name “adjoint” comes from the fact that the adjoint representation of
so(n + 2, C) is isomorphic to the 2-form representation of that algebra. One may
also compute, for example, that trace-free symmetric p-tensor tractors, i.e., the full
tractor bundie based on the trace-free symmetric representation of se(n + 2, C),
look like

8(A1~~~A,,)o =

D ey @ (Emranola + 71| (=) = (-DP(=1)%, 0 <7 <p—Jal}.
There are undoubtedly several conditions in standard Riemannian geometry that
have natural equivalents in tractor geometry. For example:

Theorem 5 (Gover). A (Riemannian signature) conformal manifold admits a
parallel tractor if and only if the conformal structure contains an Einstein metric.

6.3.2 Spin-tractors

To get back to spin-tractors: Suppose we are given just a conformal class of met-
rics, that is, the set of metrics of the form Q2g, where ¢ is a given metric and
Q is a positive smooth function. Note that it is not really necessary to specify a
“background metric” g; we can formulate things in terms of equivalence classes
of metrics.

To describe spin-tractors, it is useful to alter our convention on the normal-
ization of the Clifford symbol . For present purposes, we switch to a Clifford
symbol 8 = +/+/2, so that the Clifford relation becomes

,Baﬂb + ﬂbﬂa — —g“bId. (326)

We shall call the associated Dirac operator [) := 3V, .
We start with an ordinary pair of spinors,

(4
< <f>> , (3.27)

of opposite chirality. In fact, for the sake of definiteness, let us say that ¢ is a
positive spinor ¥*, and ¢ is a negative spinor ¢* . This pair is meant to represent
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the spin tractor at the choice of metric g; at the conformally related choice § =
2g, we get (suppressing indices and their weights)

,(Z} B Qw+1/2¢
(&) - (Qw—1/2(¢+wc,8%/z)> ' (329

Here w = log{}, and w, is an abbreviation for w|, = V.w. (We shall propagate
this abbreviation to higher derivatives, so that wg, = V3 V,w.)

If we had a set of trivializations for the spinor bundle parameterized by some
set B, what we now have is a really big set of trivializations, parameterized by
B x {Q1}. In fact, what we have defined is £B[w], the bundle of spin-tractor-
w-densities, where w is a complex number. One could also start with spinor-
(w + 1)-densities ¥ and ¢; the effect would be to eliminate the powers of (2
from (3.28).

In order to avoid dealing with the difference between dimension 4k and 4k + 2
continually, it is useful to work without a chirality assumption on ¥ or ¢ in (3.27).
This means that we are really taking a direct sum of two spin-tractor bundles:

(EP G ep) @ (ET & £p), n = 4k, (3.292)
EP & ep)o (EX G Ep), n=dk+2. (3.29b)

In fact, with this convention, we can also handle the odd-dimensional case in uni-
fied calculations. In odd dimensions, the spin-tractor bundle is a direct sum of two
copies of L{w + ] & Z{w — 1]. A distinguished splitting comes from the action
of Pin(n) (which doubly covers O(n)). This is analogous to the splitting, in
the differential form bundle A, of A(*1)/2 which are isomorphic under SO(n),
but not under O(n). Using primed and unprimed indices to distinguish the two
Pin(n)-modules in question, the splitting looks typographically just like the case
n = 4k in (3.29).

Though it is not completely obvious, an easy calculation shows that (3.28) is an
action of the group of positive functions €2, and thus is consistent. That is, if we
make the change of trivialization forced by the scale change g — 2g, and then
the change by 029 — Z2Q?g, this is the same as if we make the scale change
g — (2E)2g all at once.

Remarkably, there is a conformally invariant connection on £B[w] — this is
quite unlike our experience with “conventional” tensor-spinor-density bundles.
At a scale g, this is built from the spin connection by

Y\ [ Ve +Bep
W (5) = (wums o) 330

Here P is the normalization of the Ricci tensor that is used in conformal geometry,

Scal p_ Ric - Jg .

V= smo 1y n—2
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In fact, the appearance of the Ricci tensor signals the presence of the Cartan
connection — curvature coefficients for the M -structure appear as connection
coefficients for the M AN-structure.

The problem with this conformally invariant connection, or with analogous
connections for other tractor bundles, is that one cannot iterate it. That is, one
cannot form V;,V, U8 in a conformally invariant way, because of the tensor con-
tent of V,UB, a section of £, ® £B[w]. To do so would require a conformally
invariant connection on the contangent bundle £, which of course we don’t have.
This state of affairs is cured by the introduction of tractor-indexed replacements
for V,, notably the tractor-D operator.

If f. is atractor of weight w (where * denotes any number of full tractor indices
of any type, in up and/or down positions), let

fa
Daf. = w iV, f, . (3.31)
—Lfw(w + L(n = 2))]"1(VeV, + wd)f.

The vertical stack on the right side reflects the standard tractor content (re-
call (3.25); the rightward direction is now downward). On the left side, standard
tractor content is indicated by the index A. Though this formula may not make
elementary sense for some values of w, it does make perfect sense over the field
of rational functions of w; that is, over C(w). Evaluation at “forbidden” values
of w sometimes makes sense (and in fact is very productive), when viewed in this
way. For example, a zero and a pole may neutralize each other, or it may actually
be a residue we are after in a given calculation.

In fact, looking back at (3.31), the residue at w = 0 (if n # 2) is

0
Vafu

*

This gives the invariance of the exterior derivative d on scalar functions (or full
tractors of weight 0). If n = 2,

0 0 fe
Dafe=w"? 0 +w | Vofil +] 0
—%V“Vaf* 0 0

gives the conformal invariance of the scalar Laplacian. With this in place, we may
then conclude the invariance of d at the w™" level, and of the identity map at the
w? level.

Back in the case n # 2, the residue at w = %(2 —n)is

0
0 )

1
2 )
—VeV, + 3(n — 2))fu
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showing the invariance of the Yamabe operator

reft?] e

Back to spin-tractors again: Where does the Dirac operator appear? Consider
the problem of tractor extension. The D 4 construction, in fact, solves a certain
tractor extension problem for f., namely to extend it to a tractor with f, in the top
slot. As indicated by formulas like (3.28), the top slot is an invariant function of
the tractor stack — one can project onto this slot. This is not true of the other slots
(again, see (3.28)), but one may invariantly inject into the bottom siot (writing
0 above). This is, of course, due to the semidirect sum nature of tractors; for
example (3.24).

A computationally productive way to think of this is to define positional sec-
tions, so that, for example, a standard (one-form) tractor is

o
Mo | =Ya0 + Z4%pq + Xap.
P
Because of (3.25),
YAGgA[—l], ZA“GSA“[l], XAGgA[l].

The above remarks about projecting slots translate to the statement that X 4 is
an invariant section, but Z4* and Y4 depend on the choice of metric (within
the conformal class). Positional sections make it clear how we can compute (even
with a computer!) with sections having several tractor indices — rather than trying
to work with multidimensional arrays, we just have long formulas with several
indexed positional operators. Such representations may not be very evocative, but
they reduce computation (when this is necessary) to a purely mechanical matter.

Let’s write a spin-tractor as
¥
( =Yy¥ +xp.
12

Here we have suppressed the spin-tractor index, as well as the spin indices, so
that our symbols are now noncommutative. By (3.28), y has weight —%, and x
has weight 3. By (3.30),

Voy = xPqs 3%, Vix =yBs.

Using a prime for the conformal variation, that is, letting the metric run through a
conformal curve g, = e%%* g for w a smooth function, and letting’ = (d/de)|c=o0,
we have (from (3.28))

x'=0, y = —-wxf°.
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Having y+x¢ as a tractor extension means that (y1)+x¢)’ = 0; this is satisfied
by

2_py 332
n+2w’ (3.32)

Thus the Dirac operator has appeared, but what about its conformal invariance?
This is just the observation that

So:

((w + %f)‘ll/w)

has a pole at w = —n /2, with residue

(ps)

It is not hard to see that the first (topmost) nonzero slot in such an invariant expres-
sion projects out to an invariant operator; the result is the conformal invariance of

P :E[(1-n)/2] - Z[(-1-n)/2],

or with (weighted) indices attached,
D : EP[-n/2] — EF [-n/2 - 1],
D :EF [-n/2) - EF[-nj2 - 1].

In this tractor extension problem, we implicitly reasoned that the expression [) =
%V, was, up to a constant, the only quantity with the right valence, invariance
and homogeneity properties to land in the bottom slot; we put it there with an un-
determined coefficient, and pinned down the coefficient by conformal variation.
There are also ways to do a direct computation of the tractor extension, using fun-
damental tractor operators applied to tractor quantities with undetermined slots,

like
(d)
* 3

which we shall not explain in detail here. That is, it is not necessary to input the
Dirac operator with an undetermined coefficient in order to get the Dirac operator
as output. In the unlikely event that someone (from another planet, say) were to
discover spin-tractors before discovering the Dirac operator, he, she, or it would
inexorably be led to the Dirac operator anyway.

Applying the tractor-D to our spin-tractor, we obtain

Da¥ = Ya(yy +x0) +w ' Z4%(y(Vath + Batp) + x(Vagp + Pap8°9))
— 3w+ (n—2)/2)] 7 Xa(y(VeVay + 2P ¢ + (w — 3)9)
+x(V°V, + 2Pas BV + (w — $)do + dfy)).  (3.33)
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The residue at w = O is
Ya:-04+Za%(y(Vap + Bap) +x %)+ X4 - *.

In the obvious array notation, this is

0 0
Vo +Bap *|;
* *

we are allowed to project out an entry if there are no nonzero entries to its left or
above it. If we take (1, ¢) to be the tractor extension of ¢ as in (3.32), we have

2
Ya -0+ 2% (y(Va + —BaPY) +x %) + X4 -,

—_———
(T¥)a

showing the invariance of the twistor operator T : £EF — 821) (or similarly
with P replaced by P’). Here the underline means that we take only the sections
T, annihilated by interior Clifford multiplication:

8%, = 0.

Exercise 7. Getting ¢ from 1 by the tractor extension and take the residue at
w = (2 — n)/2, construct a third-order conformally invariant operator D3 from
EP(2 — n)/2] — EF'[(—4 — n)/2] (or the same with P and P’ interchanged).
Use the Lichnerowicz formula to write this in the form D3 = Y ° + (lower order).
Hint: In array form as above, we have (up to a constant factor)

0 0
0 0
0 Dy

A tractor analogue of the Clifford section is
OAA — XAyy* 4 ZAa(yIBax* _ xﬂ“y*) _ YAXX*.

This satisfies

a*a® + aBat = —hAB,

where hAB is the tractor metric
hap=24"2pa+ XaYp+YaXp.

Note that h is indefinite. The tractor metric and tractor Clifford section are parallel
in the connections given.
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To compute o D 4, we need the identities

YaY4 =0, XaX*=0, YaX?=1, Z1.Z% = gas,
yx*+xy*=1d, x*y=Id, y*x=1Id,
x*x=0, y'y=0.

With this, if we abbreviate the formula (3.33) as

Da¥ =Ya(yy + xp) + Zs*(yna + x0a) + Xa(ym + x¢€),

we have

D4l = y(p + Bna) + x(m — %8,).

If ¥ takes the form y - 0 + x¢, this is

(1= gnw™ )y —w™x(1+ (w + 3(n - 2)) ") Py,

or in vertical notation,

( (1- 3wl )
w1+ (w0 + §n - 2))Py)

The Dirac operator emerges as the residue of this at w = %(2 — n). Note that
since the tractor-D lowers weights by 1, this is an operator from

6.4
(1

(2]

3]
(4]

(3]

(6l
(7

(8]

L1 —n)/2] - Z[(~1 —n)/2].
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Appendix

In this appendix we briefly review existing software for computations
with Clifford geometric algebras. We believe that being able to per-
form quick and reliable computations with these algebras leads to a
greater understanding of the theory and applications. The software
provides tools for easily generating examples, checking conjectures,
finding counterexamples, and advancing understanding via experi-
mentation. for these purposes [34, 36]. In fact, many of the examples
and exercises that appeared in [35], and most recently in Lecture 1 of
this volume, were derived or checked by Lounesto with CLICAL.

7.1 Software for Clifford (geometric) algebras

Here we follow in the footsteps of the late Pertti Lounesto who, to the best of our
knowledge, was the first to design and use the computer software called CLICAL.

It was the advent of personal computers that made CLICAL, originally written
in PASCAL for a mainframe computer, more popular. In 1987 its first success-
ful PC version appeared [37] with the most recent version 4 being available for
downloading from [38]. Both editors of this volume are indebted to Lounesto for
introducing us to CLICAL. While CLICAL has semi-symbolic abilities, its code
was optimized for computations with Clifford algebras C¢(Q) of a quadratic non-
degenerate form @, and was not designed to deal with Clifford algebras C¢(B)
of an arbitrary bilinear form B. While in 1987 a paper [22] on deformations of
Clifford algebras appeared, the properties of Clifford algebras C¢(B) where B
has an antisymmetric part really came into focus in the early 1990s (see [S] and
[33]). The need to compute with C¢(B) for an arbitrary B gave a stimulus to
the development of CLIFFORD, a Maple package which was first presented in
1996 (see [1]). Fundamental to the development of this package was Chevalley’s
1954 recursive definition of Clifford multiplication for an arbitrary bilinear form
such that B(x,x) = Q(x) (see [33] and references therein). Most recently, a
new non-recursive definition of Clifford multiplication based on the Rota—Stein
cliffordization process [3] has been introduced to CLIFFORD.

CLIFFORD is not the only program capable of symbolic computations. There
exist quite a number of other packages, some based upon computer algebra sys-
tems such as Maple or Mathematica, and some standalone programs based on C++
libraries or Matlab. We will review a few of the available packages here, many of
which are freely downloadable from the web. Our review is intended not only as
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a brief software guide for the reader, but in some cases as an introduction to ap-
plications of Clifford (geometric) algebras not covered in the previous chapters.
Since these algebras have applications in physics, robotics, computer vision, im-
age processing, signal processing and space dynamics, it should not be surprising
that a number of special and general-purpose packages exist and that their num-
ber continues to grow. Some of these packages, and results derived with them,
have already been presented in [6] seven years ago. Since then, new attempts, es-
pecially in the area of visualization, have yielded very interesting new programs.
The reader is strongly encouraged to download and explore one or more of these
programs.

7.1.1 Standalone software

We will begin by describing standalone programs that do not require any addi-
tional software such as Maple or Mathematica.

CLICAL - Complex Number, Vector Space and Clifford Algebra Calculator

It was around 1982 when a group of scientists from the Helsinki University of
Technology, directed by Pertti Lounesto, wrote the first version of CLICAL for
a mainframe computer. In 1987 a PC version that ran in a DOS window became
available. The most recent version 4, from 1992, can be downloaded from [38].
CLICAL is powerful calculator for quickly performing computations in non-
degenerate! algebras C?), , for any signature (p,q) where n = p + ¢ < 10. For
example, to work in C¥; 3 one sets the dimension and the signature at the program
prompt as follows:

>dimension 1,3
The following information about C¢,, 4 can be now displayed:

>info

Algebra C1(1,3)

- isomorphic with M2 (H)

- a simple algebra

- square of the oriented volume j = el234 is -1

- primitive idempotent ip = 1/2*(1l+eld)

- automorphism groups of scalar products of spinors
for reversion Sp(2,2) and for conjugation Sp(2,2)

The above display says that C¢; 3 = Mat(2, H) which is in agreement with Ta-
ble 1.1 page 35 (Lecture 2). Furthermore, the Clifford element i, = %(1 + eqq)
where ey = ejeq4 = €; A ey is a primitive idempotent that can be used to gen-
erate a minimal left ideal (a spinor module) S = C¥; 3ip. In S x S we have two

!By a non-degenerate Clifford algebra we mean a Clifford algebra C¢(Q) of a non-degenerate
quadratic form Q.
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bilinear forms? 3() (1, ¢) and B (¥, ¢) such that
(W, 9) = pBP(W)(p) = Xip and (¥, 9) = B (¥)(p) = Xy

for some “pure spinors” p, p’ € C¥¢; 3 and A\, M’ € K ~ H. It is precisely these two
bilinear forms, 3(+) with reversion and (=) with conjugation that have Sp(2, 2)
as their automorphism group [32].

CLICAL can handle computations with complex numbers, quaternions, oc-
tonions, vectors, in addition to elements of C¥, ,. For the latter, Clifford (geo-
metric), wedge, and dot products are available. Several transcendental functions
including exponential and logarithmic are built in. Elements of C¢, , must be
entered with numeric coefficients (real or complex) but the multivectors are en-
tered symbolically as shown in the display above. Depending on whether e? =
1or e? = —1, the indices ¢ and j appearing in basis Grassmann monomials
(blades) are displayed in different colors. Examples and tutorials are accessible
from within the program. The manual [37] explains computations in various low
dimensional geometries, 3D vector algebra, electromagnetism and Lorentz trans-
formations, spin groups, the Cayley transform and the outer exponential, Mtbius
transformations and Dirac spinors. There are also external files with tutorials on
octonions, spinors, Dirac equation, etc., that can be read into the program. There
is also a file on triality, one of the favorite topics of Pertti Lounesto.

GAIGEN — A C++ code optimized generator

GAIGEN is a special purpose program for implementation of geometric algebras.
It generates C++ and C source codes which produces any Clifford algebra C,, 4.,
including degenerate (see Lecture 2), in dimensions up to 8 as might be requested
by the user. The following operations are available: geometric and outer prod-
ucts, left and right contractions, scalar product, (modified) Hestenes inner product,
the outermorphism operator, and the delta product. Several useful functions such
as factorization, meet and join are built in. GAIGEN has been used in computer
graphics to write a simple scanline renderer using different geometric algebras.
Several test movies and images that have been rendered with the program are
displayed at [21].

7.1.2 C++ Template classes for Geometric Algebras

At [56] one can find a source code in C++ containing template classes for im-
plementing the geometric algebras C?,, 4, and documentation. The main template
class is GeometricAlgebra. It implements the addition of a multivector and a
scalar, the subtraction of a scalar from a multivector, and (left or right) multiplica-
tion of a multivector by a scalar. Next, it implements the negation, addition, sub-
traction, multiplication, accessing coefficients, grade-involution, reversion, and

2See Section 6.4 in Lecture 1 where Lounesto discusses two bilinear forms in the spinor space
S =Ctf ~C(2)f.
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conjugation of an arbitrary element. It requires three template parameters: the
data type for scalars, the value of p, and the value of ¢. The data type for scalars
must support addition, subtraction, multiplication, assignment from another mem-
ber of the same type, and assignment from the integer 0. The multiplication need
not be commutative. According to the documentation, this GeometricAlge-
bra template class inherits from the GeomMultTable template class which
maintains lookup tables that are used in the multiplication, grade involution, re-
version, and conjugation. Both classes use a GeomGradeTable template class.
There are also some external data files available. The geoma . h file contains the
declarations and implementations of each of the classes. The geomaData . h file
contains all of the static variable declarations needed by the template classes in
geoma . h. A C++ code for a fractal generator that uses these files and the Geo-
metricAlgebra template class is posted on the web page. For more informa-
tion, we suggest visiting the page and downloading the C++ source files.

7.1.3  Visualization software

There have been two very interesting projects similar to GAIGEN that attempt to
visualize elements of geometric algebras and the operations that can be performed
on them, such as geometric multiplication. As described in Lecture 1, multivectors
can represent lines, planes, volume elements, and other geometric quantities.

The CLU Project - A C++ library with OPEN-GL graphics

FIGURE 7.1. Visualization of the embedding of a 1D-Euclidean space in the corresponding
conformal space using CLUCALC
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Project CLU [43] consists of several parts. The CLU library encodes Clifford
algebra operations in C++ language, CLUDRAW offers visualization of Grass-
mann multivectors through OpenGL, and CLUCALC visualizes multivector cal-
culations (see figures (7.1) and (7.2)). Thus, while CLICAL was dubbed by
Lounesto “Clifford algebra calculator”, CLUCALC is a “visual Clifford algebra
calculator”. Grassmann basis multivectors are realized as blades, with an ability
to mix blades coming from different spaces. The program can perform compu-
tations in projective space (PGA), the spacetime algebra (STA)?, the geometric
algebra of the standard Euclidean 3D space®, and the Clifford algebra C¢; 5 use-
ful in modeling a Clifford neural network. The meet and join of blades can be
computed, general multivector equations can be solved, and the null space and
the inverse of a multivector can be found. CLUDRAW can visualize points, lines,
planes, circles, spheres, rotors, motors and translators, represented by multivec-
tors. It contains various tutorial programs useful for the user. The entire CLU
project is described in [43] from where CLUCALC and a manual can be down-
loaded.

FIGURE 7.2. Inversion of a plane and a line on a sphere using CLUCALC

3See Lecture 4 where the STA is described.
4See Lecture 1 where the Clifford algebra C¢3 of the Euclidean 3D space is introduced.
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GABLE - A Matlab package with visualization

GABLE (Geometric AlgeBra Learning Environment) is a Matlab package for
learning Geometric Algebra C/3 of the Euclidean 3D-space. It can be down-
loaded from [18], along with a tutorial [39] that describes its features. This tuto-
rial, according to its authors, “is aimed at the sophomore college level, although
it may provide a gentle introduction to anyone interested in the topic.” The aim of
GABLE is to visualize the geometric product, the outer product, the inner prod-
uct, and the geometric operations that may be formed with them. The user can
perform various computations using the geometric algebra, including projections
and rejections, orthogonalization, interpolation of rotations, and the intersection
of linear offset spaces such as lines and planes. As in CLUCALC, blades are
used to represent subspaces, while meet and join are used to manipulate them.
An example of the Euclidean geometry of 2-dimensional space represented in
the 3-dimensional homogeneous model is presented in the tutorial. The author of
GABLE has used this model in teaching his college geometry courses.

KAMIWAALI — Interactive 3D sketching with Java

In [27] one can find KAMIWAAL, a very interesting interactive Java application
for three-dimensional sketching. The software uses a conformal model of the Eu-
clidean space based on the Clifford (de Sitter) algebra C¢y 1. The user can perform

FIGURE 7.3. Screen shot of KAMIWAAI — Interactive 3D sketching with Java

three-dimensional drawings on the screen that can include geometric objects like
points, lines, circles, spheres, etc., and which can later be reshaped interactively
by moving (dragging) their points over the screen. It is possible to visualize inter-
sections of spheres with lines and other spheres, and to have the intersection sets
follow motions of the lines and spheres they depend on.

Upon starting KAMIWAALI in a DOS window, one sees three panels: the front
and the side view panels, and a panel with seven radio buttons for creation and ma-
nipulation of the objects (see Figure 7.3). The objects are internally implemented
as Java classes. As the author states, “These software objects are geometric enti-
ties mathematically defined and manipulated in a conformal geometric algebra,
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FIGURE 7.4. Plane Fractal: b = —0.152815 + 0.656528e13 € Cl3 o created with CLI

combining the five dimensions of origin, three space, and infinity. Simple geomet-
ric products in this algebra represent geometric unions, intersections, arbitrary
rotations and translations, projections, distance, etc. To ease the coordinate free
and matrix free implementation of this fundamental geometric product, a new
algebraic three level approach is implemented in KAMIWAAIL According to its
author, the underlying GeometricAlgebra Java package has recently under-
gone substantial change, in that there is now a new class PointC for conformal
points. All other objects are now constructed in terms of these points. The soft-
ware is described in [28].

CLI - Clifford fractal generator

Another very interesting and visual software is a Clifford fractal generator called
CLI for MS-DOS? by Jordi Vives Nebot [40]. It can generate Julia and Mandel-
brot 2- and 3-dimensional Clifford fractals. For example, pictures on the cover of
[6] were created using this program. They represent sections = + yeis + ze; of
two Julia-type 3-dimensional Clifford fractals viewed from an isometric perspec-
tive. Each image is a result of 10 iterations of the map ¢ — c? + b, where c and b
are elements of the Clifford algebra C¢,, 4, p + g = 2. Convergence of the result-
ing sequences of Clifford elements was determined by using a spinorial norm (the
scalar part of the Clifford number times it Clifford-conjugate). We display these
fractals, along with the metrics and base points b that have been used to create
them, in figures (7.4) and (7.5).

5 According to its author, a new Windows version of the software is expected in a few months.
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FIGURE 7.5. Quaternionic Fractal: b = —0.152815 + 0.5e1 + 0.656528e12 € C¥o,2
created with CLI

7.1.4  Symbolic programs
CLIFFORD - A Maple 8 package for C¢(B)

CLIFFORD and its associated supplementary packages, the most important of
which is BIGEBRA, are available at [2]. It is a general purpose Maple package®
for computations in C£(B) where B is an arbitrary bilinear form B : VxV — R,
dim V' < 9. Computations with general Clifford matrices, quaternions, octonions,
and octonionic matrices are also implemented.” The most general element of
CY(B) is represented as a Grassmann polynomial, although other representa-
tions, including Clifford polynomials, are available. All packages are written in
the Maple programming language and their code is open. The main module con-
tains 110 various procedures beginning with two user-selectable algorithms that
implement the Clifford (geometric) product: CMULNUM based on the Cheval-
ley’s recursive formula and CMULRS based on a Rota—Stein cliffordization pro-
cess [19]. The main goal behind the development of CLIFFORD was a desire to
compute not only in C¢,, 4, which is the Clifford algebra C¢(Q) of the quadratic
form of signature (p,q), but more generally in C¢(B) for any bilinear form B.
The Clifford product in C¢(B) is defined in Section 11 of Lecture 1 as

xu=xJdu+xAu (1.1)

for any x € V and u € Cf(B), and then it is extended by linearity and associativ-
ity to all of A\ V. The left contraction x Ju depends on B and acts as a derivation
on AV.

It is an amazing consequence of (1.1) that the standard defining relation on the

SCLIFFORD is available for Maple V, 6, 7, and 8 from [2].
7Computations with octonions are enhanced by a supplementary package OCTONION.
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Clifford algebra generators {e;,es,...,e,}, n = dim V, namely
eie; +eje; = 2B(ei, e;) = 2g(es, €5), 1# 7, (12)

where g = g7 is the symmetric part of B, is independent of the antisymmetric
part F = —FT of B = g + F. This is because, for any x,y € V,

xy =xJdy+xAy=B(xy)+xAy
=g9(x,y) + (F(x,y) +xAy)) =g(x,y) +xAy (1.3)

where x Ay = F(x,y) + x Ay is the antisymmetric dotted wedge in C¢(B) [5,
33]. Due to the presence of the extra F'-dependent terms in (1.3), similar terms
that depend on F' appear in the Clifford product uv of any two general Clifford
elements u, v € C¢(B), or in the reversion of u, making detailed computations in
such algebras very complicated.® This is especially true when B is purely sym-
bolic, i.e., non-numeric. To compute the Clifford product in this case it is much
more efficient to use the algorithm CMULRS. Both algorithms are described in
the help pages of the CLIFFORD package (see also [3]). The BIGEBRA package
allows the user to compute tensor products of Clifford and Grassmann algebras,
and perform calculations in co-algebras and Hopf algebras. This supplementary
package comes with its own extensive help pages. It has also been described in [4]
and [19], and online computations with both packages can be performed via [20].

GA Package for Maple V from Cambridge

Another Maple package for computations with Clifford (geometric) algebras is
the GA package created by the Geometric Algebra Research Group at The Uni-
versity of Cambridge [8]. Computations can be carried out in arbitrary dimensions
and signature. The package has four built-in signatures but additional signatures
can be programmed by the user. It is based on the geometric algebra axioms from
[26]. The package implements computations only in C/,, 4, that is, geometric al-
gebras of a non-degenerate quadratic form. The default metric of the package is
the ‘mother’ algebra from [17]. All basis vectors with positive index have square 1
and those with negative index square to -1. There are three built-in algebras:

(a) SA: The Pauli Algebra C¢3 = C(2) with three generators e[1], e[2]
e[3], all of which square to 1.

(b) STA: The Spacetime Algebra C?; 3 = H{(2) with four generators e [0],
e[l], e[2], e[3] where e[0] squares to 1 and the remaining vec-
tors square to —1.

(c) MSTA: The Multiparticle Spacetime Algebra consisting of many copies of
the STA. The generators e [0], e[4], e[8], ..., aresuch thatall

8By a suitable choice of the basis in V, the symmetric part g of B can be assumed to have been
diagonalized.
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e[k], where £ = 0 mod 4, square to 1, and all other generators square
to —1.

The user may add a new metric to the package using the add_metric proce-
dure. However, first the user must do some programming to define the squares
of the new generators. Following [26], the package has a built-in inner product,
outer product, commutator product, and a scalar product (the scalar part of the
geometric product). Projections on homogeneous blade components are imple-
mented. Additional procedures allow one to create multivectors with symbolic
coefficients and manage multivector expressions. Geometric calculus includes a
multivector derivative mderiv and a multivector differential mdif £. There is
only one help page available in the form of a Maple worksheet.

GLYPH — A Maple V package for C¢(B)

GLYPH is a symbolic Maple V package based on the approach presented in the
GA package, but it allows for computations with Clifford algebras C¢(B) of an
arbitrary bilinear form B. For some metric spaces, such as the n-dimensional Eu-
clidean and pseudo-Euclidean spaces, the geometric algebras C¢, o and C¥ .,
respectively, have been pre-computed and their multiplication tables are stored in
the package, while others must be defined by the user. The algebras SA, STA, and
MSTA are built-in. Elements of C¢(B) are represented as Clifford polynomials
in generic multivectors. Left and right contraction, the scalar product, the exte-
rior (wedge) and Clifford products are programmed. Algebraic functions that are
available include Clifford and exterior inverses, Clifford exponentials and exterior
exponentials, Hodge dual, reversion, grade involution, and Clifford conjugation
(see Lecture 1 and [35]). The procedure csolve solves systems of equations in
Clifford polynomials. The representation of a Clifford polynomial as a matrix in
a complex universal Clifford algebra is built in. Computations with quaternions
and octonions are possible. The package includes help pages that are accessible
through a Maple browser. GA can be downloaded from [44], along with docu-
mentation.

CLIFFORD — A Mathematica package

This package, for calculations in the Clifford algebra C¢,, , with Mathematica, is
described in [13] and it is available at [12]. It is used to perform computations
in crystallography using geometric algebras in higher dimensions. The package
contains 31 functions and permits symbolic operations with no restriction on the
dimension n (= p + q). According to its authors, the two key procedures in the
package are an algorithm for the geometric product between multivectors (blades)
and a grade operator. The former is based on a unique representation of the blades

el"'ey'? ... ey as n-tuples (m1, my, ..., my,) of zeros and ones that are easily
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handled by Mathematica.® The function GeometricProduct (alias Gp) is lin-
ear and it accepts symbolic, constant and numeric coefficients. The signature of
the bilinear form <x,y> can be set by using $SetSignature=p (by default
p=20). Additional functions available include OuterProduct (aliased as Oup)
and MultivectorInverse (aliased as Mvi).

A Mathematica package for Clifford algebras

A Mathematica package for differential geometric computations with Clifford al-
gebras is described in [41] and it is posted at [42]. Its Clifford product function CP
is based on the product definition given in [7, p. 186]. One of the most important
functions inside the program is Nabla. It is the Clifford algebra generalization of
Hamilton’s V operator. It appears in Maxwell vacuum equations written in C?; 3
or Cl3 1 as

Nabla[BivectorField]=0.

The package uses a Grassmann multivector basis obtained by the exterior product
of orthogonal basis vectors. The most general element of C¥,, 4 is referred to as
cliffor. The function C1iffordAlgebra (alias CA) takes as an input a list of
squares of the orthogonal basis elements and defines the corresponding working
environment. For example, CA[1, -1-1-1] defines C¥; 3. Several implemented
algebra automorphisms are Rev for the reversion, GradeInvol for the grade
involution, and GRev for Clifford conjugation. The package permits one to com-
pute with the complexified Clifford algebras C ® C¥,, ,. The exterior and interior
products are encoded following the approach of [23]. A regular representation of
the algebra in terms of 2™ x 2" matrices where n = p + ¢ is used to imple-
ment the Clifford product in a Matlab environment for all C¢, 4, n = p + q¢ < 6.
However, the Clifford product CP is not implemented by matrix multiplication of
square matrices, but rather in terms of matrix multiplication of column vectors.
The numerical computations in Clifford algebras are performed with Matlab.

In the area of differential geometry, this package carries computations with
cliffor fields on a manifold. For example, the function

MetricTensor[{hg,h1,...,hn},{q0s---,qn}]

defines a metric tensor on the manifold and the orthogonal sets of coordinates that
will be used. The h; are the well-known Lamé’s coefficients, and g; are the names
of the coordinates. In particular, the package is intended for differential geometric
computations in the four-dimensional Euclidean space and in Minkowski space.

9Selecting a suitable internal representation of Grassmann multivectors (blades) is of critical im-
portance for the performance of a symbolic package. In CLIFFORD there is no “hidden” internal
representation of basis multivectors. For example, the blade e; A ez A e3 is just encoded as the string
elwe2we3. The operation of multiplication of two basis multivectors is carried out by an appropriate
concatenation and sorting operation on the corresponding strings. Lists provide an alternative, and
perhaps a better way to internally represent multivectors.
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In addition to the Nabla operator and the Laplace operator Nabla [Nabla] act-
ing on cliffors, additional tools such as Ricci gives Ricci rotation coefficients,
ExtD gives the exterior differential of a cliffor and Codi £ returns its codifferen-
tial.

Two sets of example files related to Maxwell and Dirac equations are supplied
by the authors. In the first set, a non-standard solution to the Maxwell equations
[45] is treated and it is shown how invariants of an electromagnetic field are com-
puted. In the second set, it is shown how the standard matrix form of Dirac’s equa-
tion can be put into exact correspondence with four different sets of Hestenes-type
geometric equations. This can be done irrespectively of the signature chosen for
the Minkowski space-time, C¥¢; 3 or C¥3 ;. The equality of each real component
of the Dirac bispinor equation with a geometric component of the Hestenes-type
can be tested with the software.

LUCY - A Clifford algebra approach to spinor calculus

LUCY, named after William Kingdon Clifford’s wife Lucy [14, 16], is a Maple 8
package available for downloading from [47]. It is a program for calculations in-
volving real or complex spinor algebra and spinor calculus on manifolds in any di-
mension. It offers the freedom to adopt arbitrary bases in which to do calculations.
Translations between the purely (real or complex) Clifford algebraic language of
C{(V,g), for a symmetric metric tensor g, and the familiar matrix language are
built in. As the authors state in [46], “LUCY enables one to explore the structure
of spinor covariant derivatives on flat or curved spaces and correlate the var-
ious spinor-inner products with the basic involutions of the underlying Clifford
algebra. The canonical spinor covariant derivative is based on the Levi-Civita
connection and a facility for the computation of connection coefficients has also
been included”. A self-contained account of the facilities available, together with
a description of the syntax, illustrative examples for each procedure, and a brief
survey of the algorithms that are used in the program are described in [46]. The
main (grade) involution, complex conjugation, and the anti-involution of rever-
sion are implemented in C¢(V, g). LUCY accepts elements that belong to the
dual space V*. For example, to designate {X,} as the basis naturally dual to
{e*}, i.e., e*(Xp) = 6“5 with respect to the Kronecker symbol, one uses the pro-
cedure Cliffordsetup with X, labeling the ambient dual basis, as an extra
fourth argument:

Cliffordsetup(u..w,{(a1,b1) =g*®, (ag,by) =g**%, ... } e, X)

Instead of using the contravariant metric components g%° = g(e?, e), one can use
the covariant matrix components g,5, Where g, is defined by g*“gcp, = 6%, s0
that g, = g*(Xa, Xs) where g* the induced metric on V*. Thus, the program is
capable of computing with the Clifford algebra of the cotangent space at a point p
of an n-dimensional manifold M. For any tangent vector fields X, Y and Clifford
element o, computation of the covariant derivative VxY and V x a with respect
to the Levi-Civita (pseudo-)Riemannian connection V induced by a user-defined
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plane wave metric g can be done with LUCY. Computations with spinor left and
right CZ-modules generated by primitive idempotents for simple Clifford algebras
C¥, as well as computations with dual spinors are implemented. For example, the
procedure Spinorsetup returns a symbolic primitive idempotent P and two
lists of Clifford elements {c;} and {3;} called the left and right kernel elements,
respectively. These elements are such that {3; P} spans the left (spinor) module
C¢P while { P(3;} spans the right (spinor) module PCY. The matrix representation
of a spinor module constructed with LUCY follows the approach of the so called
“total matrix algebra” from [10]. Appropriate conversion functions exist which
convert a symbolic element w from C¥ into a matrix in the chosen spinor module
and back.

The spinor adjoint map with respect to a chosen anti-involution is defined as
the procedure Spinoradjoint following [48]. It is needed for the introduc-
tion of various spinor inner products (see also [32] and Lecture 2 of this volume).
Likewise, spinor conjugation for any involution is encoded as Spinorconju-
gation in a similar manner. Computation of the spinor covariant derivative Sy
with respect to any tangent vector field Y is a type-preserving directional deriva-
tive on spinors, and it is implemented in LUCY as Spinorderiv following
[10, 58]. For more on multivector calculus and applications of multivectors in
special relativity see [9].

Calculating the spectral basis with Mathematica

Let a € C,, be any multivector in the complex Clifford algebra C,, of an n-
dimensional complex vector space C™. The minimal polynomial of a is the unique
monic polynomial 1(z) of least degree m = »_;_, m; such that

r

(@) =[J(a—a)™ =0

i=1

for the distinct complex numbers o, a9, . . ., . € C called the eigenvalues of a.
The linearly independent powers {1,a,...,a™ !} of a over the complex num-
bers make up the standard basis of the commutative subalgebra A(a) of C,,.
Once the minimal polynomial ¥(z) of @ € C,, is known, the following spectral
decomposition of a exists:

T

a= Z(ai + qi)pi,

=1
where p; and g; satisfy the rules
{pr+...+pr =1, pip; = 8i;pi, g1 #0 but g™ =0, pegr = g}

The p;’s are mutually annihilating idempotents which partition the unity and the
g;’s are nilpotents with the respective indexes m;’s. The set

{pi,qfli——.l,...,r, k=1,...,m; -1}
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is called the spectral basis of the algebra A(a).

Knowing the spectral decomposition of a makes it very easy to extend the defi-
nition of any function which is defined at the spectral points a; up to the mth — 1
derivative. The following Mathematica Package will calculate the spectral basis
of any element a, given its minimal polynomial ¥(x), [54].1

(* Power Series Method for Evaluating Structure Equation *)
(* A Mathematica Package *)
(* Given list m={ml,m2,...,mr} of non-decreasing positive
integers, psilm]l=(a-x[1])"ml (a-x[2])"m2...(a-x[r]) "mr
is the minimal polynomial of the list m. *)
psi[m_List]:=Product((a - x[j])"(m[([3]]),{j,Length[m]}]
psilm_List,i_J:=psifm]/((a-x[i])"(m[[i]]))
(* Calculates pli]l=pgseries[m,i,0] and ql[i] “k=pgseries[m, i, k]
using power series for i=1,2, ... , Length[m] *)
paseries(m_,i_,k_]:=
Together [Normal [Series([1/psi[m,i], {a,x[i],m[[i]]-(1+k)}]]]*
(a-x[1]) "k * psi[m,i]
(* Calculates p[i] and gl[i] for i=1,2, ... , Length[m] *)
paseries[m _List]:=
Do[pli]l=pgseries[m,i,0];qg[i]=pgseries[m,i,1];
Print[i], {i,Length(m]}]

Other packages for Mathematica are described in [53]. One such package con-
tains formulas for obtaining solutions to the classical cubic equation [52]. The
unipodal numbers have been studied in [25, 51].

7.1.5 Online interactive calculators, animations, and 3D
computer games

In this section we review online Clifford algebra “calculators”, geometric alge-
bra animations available on the web, and some specialized applications of these
algebras in 3D computer games.

CLIFFORD - BIGEBRA interactive

The web page [20] contains an interactive window that gives access to the CLIF-
FORD and BIGEBRA packages mentioned above. Sample help pages for the
BIGEBRA package exist for the vee product, tangle solver, and Grassmann and
Clifford co-products. In addition, a two-dimensional example of a quantum Clif-
ford algebra is provided, and a worksheet that shows how the axioms for a Grass-
mann—Hopf algebra are checked. Perhaps the most interesting feature of that web
page is a link to a Maple interactive window which runs CLIFFORD and BIGE-
BRA. By entering commands to that page one can see how the packages work. The
window is a Maple V worksheet where the user can type in commands. Typing

19Everything still works if the characteristic polynomial (given a matrix representation of the mul-
tivector a) is used instead, but powers of the ¢;’s might have lower indexes than expected.
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?Clifford and pressing the | calculate | button displays the introductory page
of CLIFFORD from the Maple browser. To define the Clifford algebra of the
Euclidean plane C/; and its multiplication table, one can enter the following set
of commands:

> restart:with(Cliff5):with(linalg): ## line (1)
> B:=diag(l,1); ## line (2)
> cbas:=cbasis(2); ## line (3)
> M:=matrix (4,4, (i,]j)->cmul (cbas[i],cbas[j])); ## line (4)
that give
10
B [0 1]
cbas := [Id, el, e2, elwe2]
Id el e2 elwe2
M= el Id  elwe2 €2
" e2 —elwe2 Id —el
elwe2 —e2 el ~Id

A multiplication table in the Clifford algebra C¢(B) in dimension 2 where B has
an antisymmetric part can be similarly computed as follows:

> B:=matrix(2,2,[1,b,-b,1]); ## line (6)
> M:=matrix(4,4,(i,j)->cmul (cbas[i],cbas[jl)); ## line (7)
that gives
1 b
B:= [—b 1]
Id el e2 elwe?2
M= el Id elwe2 +bld e2 —bel
T e2 —elwe2 —bld Id —be2 — el

elwe?2 —bel —e2 el —be2 —(1+b%)Id—2belwe2
Likewise, one can try any command in CLIFFORD or BIGEBRA.

Online Geometric Calculator

The web page [15] contains a calculator for the Clifford algebra C¢3 of R3. It is
similar to CLICAL except that it is limited to the Euclidean 3-space. Computa-
tions are performed with vectors, bivectors, trivector, quaternions, and, of course,
with real and complex numbers. It is interesting to note that the calculator uses Re-
verse Polish Notation (RPN) like Hewlett Packard calculators. RPN was invented
in the 1920s by the Polish mathematician Jan Lukasiewicz [57]. Inner, geometric,
and outer products are available as well as projections onto the scalar, 1-vector,
2-vector and 3-vector parts of any Clifford number v € Cf3. A nice glossary
of terms, references, bibliography and links are provided. The most general el-
ement u can be expressed in the standard basis {1,x,y,z,Xy,X2,yYz,Xyz}
where z = e}, y = €3,z = e3,zy = e1ex = e; Aey,...,TYz = ejee3 =
e; A ez A es. Entering 1-2x+4y-xy+xyz (window a), by successive usage
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of stacks, and pressing button moves it into the top stack window b. If
we now enter 1-4y-xy into the bottom window (again by using the stacks)
and press the button, the Clifford product of the b and a stacks, namely -
16+6x+6xy+xyz+4xz+2y+2z, will appear in the bottom window a. Additional
functions include cos u, sinu, tanu, /u, and the magnitude |u| of u € Cl3, re-
placing u with its multiplicative inverse, dividing u by its magnitude, and isolating
the even and the odd parts of u.

Interactive and animated Geometric Algebra with CINDERELLA

CINDERELLA [30] is a very powerful software tool for studying and teaching
Euclidean, spherical, and hyperbolic geometries, and for creating Java applets
that can be easily pasted onto the web pages. It performs internally computations
with complex numbers that form one of the few examples of a commutative Clif-
ford algebra. The software clearly has great visualizing and animating capabilities
and could have been included with other visualization software already described
above. However, we find its greatest strength in its ability to create the applets that
are a great pedagogical tool and a propagator of the usefulness of the geometric al-
gebras. For examples, see the CINDERELLA page [31] as well as [29] where many
Java applets, created with the software by Eckhard Hitzer and related to Clifford
(geometric) algebras, have been posted. On that last web page, notice in particular
the applet on calculating and explaining the inverse of a vector with respect to the
geometric multiplication; another one on a projection and rejection of a vector
from and onto a bivector (see Figure 7.6) and several other applets demonstrating
properties of bivectors, trivectors, Grassmann outer product, etc.. Very interesting

FIGURE 7.6. Projection (x - B)B~! and rejection (x A B)B~! components of a vector
x with respect to the bivector plane B (applet created by E. Hitzer with CINDERELLA on
29D
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are applets showing rotations in 2D with exponentiated bivectors, and reflections
in 2D and 3D — concepts already discussed by Lounesto in Lecture 1. See also
an applet on point groups in two dimensions whose mathematics is based on the
approach presented in [24]. On the same page, there are also applets showing ap-
plications of the geometric algebras to the study of oscillations, circular polarized
waves, and simple mechanical structures such as beams with distributed and con-
centrated loads (created by Luca Redaelli from Milan). Finally, let us also mention
the fact that CINDERELLA includes an “automatic” theorem proving feature that
does not use, however, symbolic methods to create a formal proof, but, instead, it
uses a technique called Randomized Theorem Checking.

Geometric algebras in 3D computer games

In the February 1998 issue of the Game Developer Magazine appeared an ar-
ticle “Rotating Objects Using Quaternions” by Nick Bobick [11]. This article
explains the important role that quaternions play in describing rotations in the 3D
space of a computer game or when manipulating a robot arm. The author states
that Implementing a floating camera that tracks and rotates about a real-time 3D
character is just one of the many reasons you should understand the importance
and implementation of quaternions. Of course, dual quaternions (also called bi-
quaternions) have been used to describe screw motions void of a gimbal lock.
We refer the reader to Lecture 5 of the present volume (and references therein) as
well as to [49] and [50] by the same author. For additional applications of Clifford
(geometric) algebras, see [55].

In [9], there is an account of how multivector methods of Clifford (geomet-
ric) algebras are used in programming 3D computer games. Following [26] Ian
C. G. Bell discusses multivector blades, the geometric product, step-ordered and
bitwise-ordered multivector bases (used by programmers), regular matrix repre-
sentation of multivectors, the dual of a multivector with respect to a pseudoscalar
using the contractive inner product (the same as the left contraction defined in
Lecture 1) and the XOR operation applied to indices. He also discusses the inner
and outer products used by Hestenes and coworkers. He also touches upon oper-
ations on multivectors such as the standard involution, multivector inverses, the
exponential of a general element, spinors, quaternions, join and meet, Minkow-
ski null vectors, inverse coordinate frames and homogeneous coordinates. An-
other chapter is devoted to multivectors as geometric objects of lines and planes,
simplexes, frames, to multivectors as transformations, Lorentz transforms, trans-
lations, higher dimensional embeddings, and reflections, to shears and strains,
rotations, 3D rotations, 4D rotations, and culminating in rigid body kinematics.
Another chapter applies multivector calculus to physics including special relativ-

ity.
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Clifford polynomial, 198
Clifford product, 2, 27, 147, 191, 199
algorithms for, 197
definition of, 3
Clifford section, 159, 160, 164, 185
Clifford, W.K., 141
Clifford—Cauchy
Integral Formula, 56
Theorem, 55
Clifford~Hodge dual, 100
co-algebra, 197
coadjoint representation, 154
coherency density, 120
Coifman, R., 78
Coifman-McIntosh-Meyer
Theorem, 78
commutator product, 198
complex numbers
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in physics, 92
computer
graphics, 136
vision, 137, 149-151
conformal
anomaly, 157
biweight, 165
covariance, 164
group
Clifford analysis, 71
Killing operator, 163
Laplacian, 170, 174
model
of Euclidean space, 194
structure, 164
transformation, 48
vector field, 163
conjugation, 32, 36, 40, 141, 191, 192,
199
contraction, 25, 27
left, 25, 191
right, 191
convolution, 54
corner cubes, 97
correlation, 40
correspondence problem, 150
cotangent bundle, 162
covariant derivative, 200
critical point, 139, 140
cross product, 9, 94, 100, 136
vector valued, 4n
crystallography, 138, 198
cubic equation, 202
current density, 105
curvature, 175
curved space, 200
cuspidal robot, 154

2]

de Broglie waves, 131
de Broglie, L., 14n
differential
bundle, 181
operator, 64
Dirac
eigenspinor, 162
equation, 157, 191, 200
classical, 130
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operator, 54, 157, 163, 164, 175,

184
Euclidean, 79
higher order iterates of, 68
on sphere, 79
Dirac bispinor equation, 200
Dirac gamma matrices, 91
Dirac spinor, 191
Dirichlet problem, 78
Dixon, A. C., 53
Doppler shift, 108
dot product, 93, 191
dotted wedge product, 197
double cover, 39
drift frame, 115
dual, 92, 94, 100
quaternion, see biquaternion
space, 200
spinor, 201
vector, 141
dynamics of rigid body, 154

eigenmodules, 160
eigenspinor, 113
time evolution of, 113
Einstein manifold, 174
electrodynamics, 124
electromagnetic
field, 15, 105
operational definition, 114
potential, 16
electromagnetism, 191
electron spin, 14, 15
epipolar line, 150
Euclidean
geometry, 204
plane, 2
space
conformal model of, 194
Euler angles, 95
exponential map, 139, 151
exterior
algebra, 25
ideals of, 28
derivative, 163
differential, 200
exponential, 198

inverse, 198
product, 1, 3, 147, 199
bivector valued, 4n

field
null, 107
predominantly electric or
magnetic, 107
simple and compound, 105
flagpole
of null flag, 126
flat space, 200
force field
conservative, 14n
form-tractor, 176
forward null cone, 85
Fourier transform, 82
fractal generator, 192
free vectors, 153
Friedrich
formula, 170
connection, 162
Frobenius
inner product, 155
reciprocity, 171
Fueter, R., 53
Fueter—Sce Theorem, 73
function
C¢,, valued, 68
k-monogenic, 69
biharmonic, 69
Clifford analytic, 54
Clifford holomorphic, 54
power series of, 59
right, 59
harmonic, 54, 82
conjugate, 54
Green’s formula, 65
Mean Value Theorem, 67
Lebesgue
square integrable, 75
monogenic, 54
left, 54, 63
right, 63
right unital, 63
Morse, 141
quaternionic



left monogenic, 64
right monogenic, 65
real analytic, 55

fundamental

group, 154
matrix, 151

gauge

gener.

potential, 131
rotations, 130
transformation, 15
al linear group, 41

Geometric Algebra

geom

animations with, 204
in computer games, 205
etric
calculus, 198

on manifold, 199
product, 4

visualization of, 194

gimbal lock, 205

grade

involution, 14, 102, 192, 198, 199

operator, 198

gradient operator, 105
Grassmann

algebras

tensor product of, 197
basis multivector, 193
co-product, 202
monomial, 191
multivector

visualization of, 193
polynomial, 196
product, 204

Grassmann—Cayley algebra, 1, 26, 34,

148

Grassmann-Hopf algebra

axioms of, 202

Green’s formula, 65
group

GL(n; C), 42
GL(n; R), 42
GL(s; R), 47
O(n;C), 41

SL(n; C), 42
SL(n; H), 42

Index

SL(n; R), 42
S0O(3), 140
S0O(n), 158
SO(p, q), 158
SO*(p,q), 46
Sp(2,2), 191
U(n), 41
U(p,q). 41
Pin(n), 181
Spin(6; C), 47
Spin(n), 46, 158
Spin*(3,1), 47
Spin*(3,3), 47
Spin™(p, q), 46
Sp(2n;C), 41
Clifford, 38
fundamental, 154
general linear, 41
Lipschitz, 38
Mobius, 72
of motions, 38
orthogonal, 40
special linear, 42
special orthogonal, 39, 40
spin

Spin(n), 39
symplectic

Sp(2n;R), 41
unitary, 41

2

Hamilton, W.R., 92
Hardy space, 75
decomposition of, 77
harmonic
function, 54, 82
conjugate, 54
Green’s formula, 65
polynomial
homogeneous, 67
headlight effect, 109
hexapod machine tool, 143
Hijazi inequality, 157, 174
Hodge
dual, 198
star, 147, 153
Hopf
algebra, 197

215
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fibration, 22
Hurwitz, A., 48
hydraulic cylinder, 143
hyperbolic geometry, 204

4

ideal
minimal left, 21, 37, 132
right F-linear structure of, 20
idempotent
primitive, 19n, 37, 38, 190, 201
idempotents
mutually annihilating, 201
imaginary unit
geometrical significance of, 92
in APS, 100
incidence
relation, 150
relations, 146, 149
inflation, 50
initial object, 27
inner product, 68, 198
Frobenius, 155
visualization of, 194
interior
Clifford multiplication, 161, 185
product, 199
inversion, S0
involution, 36
main, 36
isometry, 38
Iwasawa decomposition, 176

Java
applets, 204
classes, 194
join, 1, 191, 193
of linear subspaces, 147, 148
joint
angles, 151
mechanical, 142
prismatic, 142
revolute, 142, 152
spherical, 143
Jones vector, 122

k-monogenic function, 69
k-vector

simple, 100
Kihler manifold, 175
Kato constant, 173
Kelvin inversion, 56, 73, 78, 79
Kepler motion, 22

Second Law, 94
Killing operator, 165
kinematics

forward, 143

inverse, 151-154
kinetic energy, 14

Lamé’s coefficients, 199
Landau-Lifshitz equation, 129
Langlands decomposition, 177
Laplace operator, 200
Laplacian, 54, 81, 182
lasers

as particle accelerators, 127
left

contraction, 196

monogenic function, 63
left-invariant vector field, 139
Levi-Civita

connection, 162, 200

symbol, 98, 101
Liénard—Wiechert

field, 128

potential, 128
Lichnerowicz formula, 170
Lie

algebra, 45, 139, 154

so(n), 160
so(n+1,1), 168

derivative, 163

group, 139
light

polarization of, 117
light-cone condition, 128
linear subspace of general linear group,

47

Liouville’s Theorem, 57
Lipschitz



graph, 78
Littlewood, T. E., 55
Lorentz
group, 25
rotor, 106
signature, 157
transformation, 106, 191
active and passive, 112
Lorentz-Dirac equation, 129

Lukasiewicz, J., 203

&l

Mobius
group, 50, 72
Kleinian subgroup of, 74
transformation, 71, 74, 191

magnetic
field, 16
potential, 16
main involution, 36
Maple, 189

programming language of, 196
Mathematica, 189

package, 202
Matlab, 189
matrix

algebra with anti-involution, 42

polar decomposition of, 140

quaternionic

determinant of, 42

Maxwell

equation, 116

equations, 199, 200
Mean Value Theorem, 57

harmonic function, 67
mechanical

beam, 205

joint, 142
meet, 1, 191, 193

of linear subspaces, 147
metric

Minkowski, 104

of paravector space, 103

tensor, 160, 199
microprocessor, 136

Index

minimal
left ideal, 37, 190
polynomial, 201
Minkowski
metric, 104
spacetime, 1
as paravector space, 93
monogenic function, 54
left, 54, 55
Morse
function, 141
mother algebra, 197
motion, 38
motor
as multivector, 193

217

MSTA, see multiparticle spacetime al-

gebra
multiparavector, 102
multiparticle spacetime algebra, 197
multivector, 98, 191
bases
bitwise-ordered, 205
step-ordered, 205
calculus, 201, 205
decomposable, 26
subspace of, 26
derivative, 198
differential, 198
regular matrix
representation of, 205
simple, 26

mutually annihilating idempotents, 201

nabla operator, 199, 200
Neuman problem, 78
norm

quadratic, 39
null

bundle, 161

flag, 126
number

Radon-Hurwitz, 47

2]

object
initial, 27
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terminal, 27 Pauli
octonion, 48, 191, 196 algebra, 197
matrix, 196 equation, 16, 23
one-parameter subgroup, 139, 152 matrices, 16, 91
Online Geometric Calculator, 203 Pauli, W., 16
operator Pauli-Lubanski spin paravector, 113
Spin(n)-equivariant, 162 pencil of conics, 153
Cauchy-Riemann, 62 perpendicularity, 149, 155
generalized, 62 PGA, see projective space
Cauchy-Riemann-Fueter, 64 phase shifter, 121
chirality, 160 Pin(n)group, 181
differential, 64 Pliicker coordinates, 145
Dirac, 54, 157, 163, 164, 175, 184 plane
eigenvector of, 79 segment, 3
higher order iterates of, 68 wave decomposition, 85
Killing, 165 wave
Laplacian, 54 directed, 116
outermorphism, 191 metric, 201
potential Plemelj formula, 78
double layer, 78 Poincaré spinor, 119
projection, 64 point groups, 205
Rarita—Schwinger, 166 polar decomposition, 140
twistor, 163 polarization of light, 118
wave, 54 polarizer, 121
Yamabe, 170 polynomial
orientability obstruction, 158 Clifford holomorphic, 59, 70
orthochronous isometry, 46 left, 61
orthogonal group, 40 harmonic
oscillations, 205 homogeneous, 67
outer potential
exponential, 191 energy, 14
product, 198 operator
visualization of, 194 double layer, 78
primitive idempotent, 190, 201
[ﬂ principal
Spin(n) bundle, 158
pacwoman property, 118 bundle, 157, 158
paleomagnetism, 138 prismatic joint, 142
paramomentum, 105 product
paravector, 32, 39, 92 Clifford, see Clifford product
metric, 103 cross, see cross product
null, 106 delta, 191
potential, 105 dot, 191
relativity, 102 exterior, see exterior product
space, 102 geometric, see geometric product
as spacetime, 93 inner, 68
spacelike, 106 inner (modified, 191
timelike, 106 outer, 191

particle accelerators, 127 quaternion, see quaternion product



scalar, see scalar product

sesqui-linear, 41

shuffle, 148

skew, 40

symmetric, 40

symplectic, 41

vector, see cross product

wedge, 191
projection, 5

operator, 64
projective space, 140, 142, 193
projector, 121
proper

rigid motion, 142

time, 104

velocity, 104, 107
pseudo-determinant, 49
pseudo-Riemannian geometry, 158
pseudoscalar, 92, 100, 148

in STA, 93
pseudovector, 92, 100
pure spinor, 191

2

quadratic
form, 103
norm, 39
space, 32
c", 37
R"1, 33
R?%0, 32
negative, 35
neutral, 32
nondegenerate, 34
quadric variety, 141, 143
quantum
Clifford algebra, 202
quarter-wave plate, 122
quaternion, 1, 7, 31, 92, 136-140, 155,
196, 203
algebra H, 64
as complex matrix, 10
in computer games, 205
product, 8,9
matrix representation of, 9
pure, 8
pure part of, 8
scalar part of, 8
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2]

Radon, J., 48
Radon-Hurwitz
number, 47
sequence, 48
Randomized Theorem Checking, 205
Rarita—Schwinger operator, 166
real part of a quaternion, 155
reciprocal
basis, 101
vectors
as 1-forms, 101
reflection, 5, 94
relativity
invariant and covariant treatments
of, 112
Reverse Polish Notation (RPN), 203
reversion, 14, 29, 36, 55n, 191, 192, 198,
199
in C¢(B), 197
in APS, 93
revolute joint, 142, 151
Ricci
rotation coefficients, 200
tensor, 174, 181
Riemannian
geometry, 157
manifold, 157
metric, 157
surface, 74, 86
Riesz system, 57
rifle transformation, 116
rigid
body kinematics, 205
motion, 140, 141, 144
proper, 142
Rota—Stein cliffordization process, 189,
196
rotating reference frame, 97
rotation, 6, 39, 95, 136, 137, 140, 141,
152, 153
as two reflections, 96
generator of, 94
in paravector space, 106
matrix, 96, 155
rotor, 95
as multivector, 193
Lorentz, 106
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SA, see Pauli algebra
satellite navigation, 137

scalar product, 2, 9, 40, 136, 139, 198

automorphism group of, 21
of spinors, 20
scanline renderer, 191
Schrodinger equation, 14, 15
screw, 154
motion, 205
self-gradient, 166
sesquilinear product, 44
shuffle product, 1, 26, 148
simple and compound fields, 105
singularity, 154
six joint robot, 151
skew product, 40
S0(3,1),25
SO(n), 158
SO(n)-module, 160
Sony PlayStation, 136
SO(p, q), 158
Sp(2,2), 191
Spin(3,1),25
space
linear
over H, 10
spacetime
algebra, 92, 193, 197
as paravector space, 104
diagram, 107
Minkowski, see Minkowski,
spacetime
split, 111
spectral
basis, 201
decomposition, 201
invariant, 157
spherical
Dirac operator
eigenvector of, 79
geometry, 204
joint, 143
spin
classical, 131
connection, 162
group, 191
manifold

conformally flat, 74
representation, 158
transformation, 95, 106

spin-3 system, 130
spin-tractor, 176
Spin(n), 39
bundle, 162
group, 158
module, 160
irreducible, 165
Spin(n)-equivariant operator, 162
spinor, 18, 37
adjoint, 201
algebra

complex, 200

real, 200
as square matrix, 18
bundle, 74, 157, 160, 172
calculus on manifold, 200
conjugation, 201
covariant derivative, 200, 201
Dirac, 37, 38
inner product, 201
Majorana, 37, 38
module, 190, 201
operator, 18-23
space, 20, 37

bilinear form in, 191
Weyl, 37, 38

spinor-1-form, 161
spinor-form, 161
spinorial norm, 195
STA, 92, 93, see spacetime algebra
relation to APS, 111
standing wave, 123
Stein—-Weiss gradient, 157, 162
Stewart platform, 143
Stokes
parameters, 120
subspace, 120
structure group, 157
Study quadric, 142
Study, E., 141
swap, 37
symmetric. product, 40
symmetry group, 136
symplectic
Clifford algebra, 29
product, 41
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of Gibbs and Heaviside, 94

bundle, 158
tangent product, 136, 139
bundle, 158 vectors
vector field, 201 orthogonal, 2
tangle solver, 202 parallel, 5
Taylor series, 62 vee product, 202
tensor product of algebras, 35 velocity
tensor-spinor bundle, 167 composition, 108
terminal object, 27 proper, 104, 107
theorem proving, 205 visualization software, 192
Thomas precession, 114 volume element, 11
time in APS, 92
proper, 104 in physical space, 100
time-dilation factor, 107 in STA, 93
total
energy, 14
matrix algebra, 201
tractor wave
bundle, 179 coherent superpositions of, 122
construction, 176 operator, 54
translation, 50, 141, 143, 153 paravector, 108
translator waves
as multivector, 193 incoherent mixtures of, 122
triality, 191 wedge product, 93, 191
trivector, 101, 203 dotted, 197
twistor, 157, 161 Weierstrass’ Convergence Theorem, 57
bundle, 161 Weyl
local, 176 dimension formula, 169
operator, 163, 185 tensor, 169

tensor bundle, 174

wrench, 154
unipodal numbers, 202

unit imaginary
geometrical significance of, 92 XOR operation, 205
in APS, 100

unitary group, 41
Yamabe operator, 170, 175, 183

Vahlen matrix, 48

conformal transformation, 71
vector

inverse of, 204

projection onto bivector, 204

rejection from bivector, 204
vector

analysis



