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Preface

When elementary courses in discrete and combinatorial mathematics first became
popular, they usually covered a broad spectrum of pure and applied topics. Most
of the students taking such courses were from mathematics and computer science,
with a handful of brave souls from other disciplines. Those other students usually
found the courses quite difficult. However, the applications were useful in a number
of areas.

The teaching of discrete topics has evolved into two streams. The more mathe-
matical parts are studied in courses called Discrete Mathematics, and more advanced,
more rigorous courses called Combinatorics, or named for specific areas (Graph The-
ory, Combinatorial Designs, Cryptography, and so on). Introductions to those areas
of applicable discrete mathematics used by students in business, management and
the social sciences are usually called Finite Mathematics, and elementary courses
on this material are now standard at many colleges and universities. These courses
are typically offered at the freshman level although many students take them later in
their careers.

This book is designed for a one-semester course in finite mathematics and appli-
cations. Often this course will be the student’s first mathematical experience at the
college level, so I have tried to avoid too much sophistication. Those seeking a more
mathematical course should look elsewhere, at the many books on the market that
are named Introduction to Discrete Mathematics or Introduction to Combinatorics.

Outline of Topics

The first chapter contains a brief survey of numbers, equations and elementary set
theory, including Venn diagrams. I have also defined averages (means, medians);
these concepts are omitted by some authors while others define them after discussing
probability, but I find that they fit in naturally as properties of sets of numbers.

Counting is covered in Chapter 2. We discuss selections (combinations) and ar-
rangements (permutations), and the binomial theorem for positive integer index; the
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proof of the binomial theorem could be omitted on a first reading. Only the most
elementary parts of this topic are covered; readers wanting more details should look
in books on discrete mathematics (such as my A Beginner’s Guide to Discrete Math-
ematics, Second Edition, also published by Birkhäuser) or combinatorics.

Counting leads naturally to probability theory. In Chapter 3, I have included the
main ideas of discrete probability, up to Bayes’ theorem. A brief coverage of random
variables and expected values (using the discussion of means in Chapter 1) follows,
but this may be omitted.

Chapter 4 starts with a section on relations and functions. Most students can skim
this material, reading only the subsection First definitions and the first paragraph on
functions and working the first couple of exercises in each set, but a few instructors
prefer to include the harder material. Then we study graph theory, including Euler
and Hamilton cycles and coloring problems. This area is omitted from some finite
mathematics courses, and the ideas in this chapter are not covered elsewhere in the
book, so the whole chapter could be skipped if desired.

Matrices and vectors are defined and discussed briefly in Chapter 5. This course
is not the place for algebraic studies, but matrices are useful for studying systems of
linear equations, and are also used for input-output models.

In Chapter 6, we discuss linear programming, including the simplex
method. Matrices are again useful in this chapter, providing a concise way of rep-
resenting the calculations. We include a discussion of the two-phase simplex method
(“big M method”) for solving linear programming problems in which a basic feasible
starting point is not obvious.

This is where the first edition ended. However, a number of users asked for some
further material. Those who were teaching stronger students wanted a discussion of
two-player, zero-sum games. This is an important application of linear programming.
So Chapter 7 is now an introduction to the theory of games.

Some other colleagues suggested that beginning business majors would benefit
from a discussion of elementary financial mathematics, compound interest and such.
So I added a chapter on this area. I have broadened this slightly to include two other
areas—population growth and radioactive decay—so that students can see that the
mathematics of compounding has applications outside finance.

Problems and Exercises

A number of worked examples, called Sample Problems, are included in the body
of each section. Most of these are accompanied by a practice exercise labeled “Your
Turn”, designed primarily to test the reader’s comprehension of the ideas being dis-
cussed. It is recommended that students work all of these exercises; complete solu-
tions are provided at the end of the book.

The book contains a large selection of exercises, collected at the end of sections.
There should be enough for students to practice the concepts involved; most of the
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problems are quite easy. In a departure from the usual method of providing answers
to odd-numbered exercises, I have divided the exercises for each section into two
sets of roughly the same difficulty, A and B, and provided answers to set A only.
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1

Numbers and Sets

1.1 Numbers

Sets and Number Systems

All of discrete mathematics—and, in fact, all of mathematics—rests on the founda-
tions of set theory and numbers. We start this chapter by reminding you of some
basic definitions and notations and some further properties of numbers and sets.

A set is any collection of objects. The objects in the collection are called the
members or elements of the set. If x is a member of a set S, we write x ∈ S, and
x /∈ S means that x is not a member of S. One way of defining a set is to list all the
elements, usually between braces; thus if S is the set consisting of the numbers 0, 1,
and 3, we could write S = {0, 1, 3}.

Another method is to use the membership law of the set: for example, since the
numbers 0, 1, and 3 are precisely the numbers that satisfy the equation x3 − 4x2 +
3x = 0, we could write the set S as

S = {
x : x3 − 4x2 + 3x = 0

}

(which we read as “the set of all x such that x3 − 4x2 + 3x = 0”). Often we use a
vertical line instead of the colon in this expression, as in

S = {
x | x3 − 4x2 + 3x = 0

}
.

This form is sometimes called set-builder notation.

Sample Problem 1.1. Write three different expressions for the set with elements
1 and −1.

Solution. Three possibilities are {1,−1}, {x : x2 = 1}, and “the set of square
roots of 1”. There are others.

W.D. Wallis, A Beginner’s Guide to Finite Mathematics,
DOI 10.1007/978-0-8176-8319-1_1, © Springer Science+Business Media, LLC 2012
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2 1 Numbers and Sets

Your Turn. Write three different expressions for the set with elements 1, 2,
and 3.

We define several sets of numbers, denoted N,Z,Q, and R, that we shall use
later. The set N of all positive integers or natural numbers is the first number system
we encounter; the natural numbers are used to count things. If one includes zero, to
account for the possibility of there being nothing to count, and negatives for subtrac-
tion, the result is the set Z of integers. It is useful to have a notation for the set of
all non-negative integers—that is, the members of N, together with 0. We shall write
Z

∗ for that set, but the reader should note that a minority of authors, particularly in
Computer Science, include 0 as a member of N.

We sometimes write N = {1, 2, 3, . . .} and Z={. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}.
The use of a string of dots (an ellipsis) is not precise, but is understood to mean that
the set continues without end. Such sets are called infinite (as opposed to finite sets
like {0, 1, 3}). We also write {1, 2, . . . , 20} to mean the set of all positive integers
from 1 to 20. A more precise notation for this set, borrowed from the computer
language Pascal, is (1..20).

The set Q of rational numbers consists of all fractions, the ratios p
q

, where p and
q are integers and q is not 0. In other words,

Q =
{

p

q
: p ∈ Z, q ∈ Z, q �= 0

}
.

In this notation, p is called the numerator of the fraction, and q is the denomina-
tor. An alternative definition is that Q is the set of all numbers with a repeating or
terminating decimal expansion. Examples are

1

2
= 0.5,

−12

5
= −2.4,

3

7
= 0.428571428571 . . . .

In the last example, the digit string 428571 repeats forever, and we usually indicate
this by writing

3

7
= 0.428571.

The denominator q cannot be zero. In fact, division by zero is never possible.
This is not a made-up rule, but rather it follows from the definition of division. When
we write x = p

q
, we mean “x is the number that, when multiplied by q, gives p”.

What would x = 2/0 mean? There is no number that, when multiplied by 0, gives 2.
Similarly, x = 0/0 would be meaningless. In this case, there are suitable numbers x,
in fact every number will give 0 when multiplied by 0, but we wanted a uniquely
defined answer.
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Different decimal expansions do not always mean different numbers. The ex-
ception is an infinite string of 9s. These can be rounded up: 0.9 = 1, 0.79 = 0.8,
and so on. Proving this requires some understanding of the theory of limits, but the
following discussion illustrates the ideas of the proof.

Suppose x is the number represented by 0.9. Then x = 0.9, and multiplying both
sides by 10, 10x = 9.9. If we subtract x from both sides, we get 9x = 10x − x =
10x − 0.9. So 9x = 9.9 − 0.9 = 9 and x = 1.

Integers are rational numbers, and in fact they are the rational numbers with
numerator 1. For example, 5 = 5/1.

Each rational number has infinitely many representations as a ratio:

1/2 = 2/4 = 3/6 = · · · .
The final number system we shall use is the set R of real numbers, consisting

of all numbers that are decimal expansions, all numbers that represent lengths. If n

is any natural number other than a perfect square (one of 1, 4, 9, 16, . . .), then
√

n

is not rational. Another important number that is not rational is the ratio π of the
circumference of a circle to its diameter.

Remember that every natural number is an integer; every integer is a rational
number; every rational number is a real number. Do not fall into the common error
of thinking that “rational number” excludes the integers, and so on. There are spe-
cial words that exclude: for example, real numbers that are not rational are called
irrational numbers.

This is not the end of number systems. For example, the set C of complex num-
bers is derived from the real numbers by including square roots of negative numbers,
plus all the sums of these square roots with real numbers. However, we do not en-
counter them in this book.

Intervals

The set of all real numbers between two bounds is called an interval. For example,
the set of all real numbers greater than −2 but smaller than 2, which we would write
as

S = {x : x ∈ R,−2 < x < 2},
is the interval from −2 to 2, exclusive. These intervals occur so often that there is a
special notation for them. The above example is written (−2, 2), where the parenthe-
sis (round bracket) indicates that the bound is not included. If the bound is included,
a square bracket is used. So

(−2, 2) = {x : x ∈ R,−2 < x < 2},
[−2, 2) = {x : x ∈ R,−2 ≤ x < 2},
(−2, 2] = {x : x ∈ R,−2 < x ≤ 2},
[−2, 2] = {x : x ∈ R,−2 ≤ x ≤ 2}.
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The set of all real numbers greater than 1 is denoted (1,∞), and the set of all real
numbers less than or equal to 3 is (−∞, 3]. Read the symbol ∞ as infinity.

Sample Problem 1.2. Write expressions for the following intervals:

{x : x ∈ R, 3 < x ≤ 4}, {x : x ∈ R, 0 ≤ x},
{x : x ∈ R, x < 2}, {x : x ∈ R, x ≥ 2}.

Solution. (3, 4], [0,∞), (−∞, 2), [2,∞).

Your Turn. Write expressions for the following intervals:

{x : x ∈ R, 0 < x}, {x : x ∈ R, 0 < x < 1},
{x : x ∈ R, 1 < x ≤ 4}, {x : x ∈ R, x < 3}.

Factors

When x and y are integers, we use the phrase “x divides y”, and write x | y, to
mean “ y

x
is an integer”, or alternatively “there is an integer z such that y = x · z”.

We say x is a divisor of y. If x | y is false, one can write x \| y. Thus 2 divides 6
(because 6

2 equals the integer 3), −2 divides 6 (because 6
−2 = −3), 2 divides −6

(because −6
2 = −3). Putting it the other way, the reasons are respectively, 6 = 2 · 3,

6 = (−2) · (−3), and −6 = 2 · (−3). In symbols, we would write 2 | 6 and −2 | 6.
As 4 does not divide 6, we write 4 \| 6.

Some students are confused by the case y = 0, but according to our definition
x divides 0 for any non-zero integer x. We define the factors of a positive integer x

to be the positive divisors of x (in our terminology, negative divisors are not called
factors so −2 is not a factor of 6).

If x divides both y and z, then we call x a common divisor of y and z. Among
the common divisors of y and z there is naturally a greatest one, called (not sur-
prisingly) the greatest common divisor of y and z, and denoted (y, z), or sometimes
gcd(y, z). If (y, z) = 1, y and z are called coprime or relatively prime. For example,
(4, 10) = 2, so 4 and 10 are not coprime; (4, 9) = 1, so 4 and 9 are coprime.

A prime number is a positive integer x other than 1 whose only factors are 1
and x. The first few primes are 2, 3, 5, 7, 11, and 13. The number 1 is excluded, and
is called a unit.

Sample Problem 1.3. What are the factors of 12, 22, and 17? What is (12, 22)?

Solution.

12 has factors 1, 2, 3, 4, 6, and 12.

22 has factors 1, 2, 11, and 22.

17 has factors 1 and 17.

The common factors of 12 and 22 are 1, 2, so (12, 22) = 2.
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Your Turn. What are the factors of 24, 15, and 13? What is (24,15)?

Suppose x is any positive integer. If x is not a prime we can find positive integers
y and z, neither equal to 1, such that x = yz. We could then break down y and z, if
possible, until finally we obtain

x = x1, x2, . . . , xk

where the xi are all primes. So every positive integer is the product of prime factors.
In fact, it can be shown that such a decomposition is unique (up to the order of the
factors): for example, if

2a3b5c = 2x3y7z,

it must be true that a = x, b = y, and c and z are both zero.

Exponents

If x is a positive integer, we know that bx is the product of x copies of b; in this
expression b is ellipsis called the base and x the exponent. It is easy to deduce such
properties as

bxby = bx+y,
(
bx

)y = bxy,

(ab)x = axbx.

Negative exponents are handled by defining b−x = 1
bx , and also b0 = 1 whenever

b is non-zero. The rule bxby = bx+y leads us to define b
1
x to be the xth root of b.

(When x is even, we take the positive root for positive b and say b
1
x is not defined

for negative b).

Sample Problem 1.4. Express the following in the simplest form, as decimal
numbers if possible:

(612)0,
(
x3)5

,
(
x4)0

, (−10)−4,
1

10−2
.

Solution. (612)0 = 1 (b0 = 1 for non-zero b); (x3)5 = x3·5 = x15; (x4)0 = 1
(again, b0 = 1 for any b, or you could also argue that (x4)0 = x4·0 = x0 = 1);
(−10)−4 = 1

(−10)4 = 1
(−1)4×104 = 1

104 = 0.0001; 1
10−2 = 102 = 100.

Your Turn. Do the same to

115, 05,
(
x−1)0

,
x6

x3
, (−2)−1,

1

5−2
.
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Sample Problem 1.5. Express in the simplest possible form, with positive expo-
nents:

1

x−4
,

u−2

v−3
,

(
3a2)(5a−3).

Solution.

1

x−4
= (

x−4)−1 = x(−4)·(−1) = x4;
u−2

v−3
= (

u−2)(v−3)−1 = u−2v3 = v3

u−2
;

(
3a2)(5a−3) = 3 · 5 · a2 · a−3 = 15a−1 = 15

a
.

Your Turn. Express in the simplest possible form, with positive exponents:

t−2

t−3
, y5−2,

(
4x−2)(3x4).

Absolute Value, Floor, and Ceiling

The absolute value or modulus of the number x, which is written |x|, is the positive
number equal to either x or −x. For example, |5.3| = 5.3, | − 7.2| = 7.2.

The floor 	x
 of x is the largest integer not greater than x. If x is an integer,
	x
 = x. Some other examples are 	6.1
 = 6, 	−6.1
 = −7. It is easy to deduce the
following properties:

(1) 	x
 = n if and only if n is an integer and n ≤ x < n + 1.

(2) If x is non-negative, then 	x
 equals the integer part of x. If x is negative and
non-integral then 	x
 is 1 less than the integer part of x.

(3) If n and k are integers, then k divides n if and only if n
k

= 	n
k

.

The ceiling �x� is defined analogously as the smallest integer not less than x.

Sample Problem 1.6. What are 	6.3
, �7.2�, �−2.4�, |3.4|, | − 3.4|?

Solution. 6, 8,−2, 3.4, 3.4.

Your Turn. What are 	2.6
, 	−1.7
, �4.8�, �−4�, |3.1|, | − 4, 4|?

Exercises 1.1 A

1. Is the given statement true or false?
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(i) 3 ∈ {2, 3, 4, 6}; (ii) 4 /∈ {2, 3, 4, 6};
(iii) 5 ∈ {2, 3, 4, 6}; (iv) {3, 2} = {2, 3};
(v) {1, 2} ∈ {1, 2, 3}; (vi) {1, 2} = {1, 2, 3};

(vii) 2 ∈ Z; (viii) {1, 2, 3, 4, 5} = {5, 4, 3, 2, 1};
(ix) R /∈ Z; (x) {4} ∈ {2, 4, 6}.

2. In each case, write the list of all members of the set.

(i) {x : x is an even positive integer less than 12};
(ii) {x : x is a color on the American flag};

(iii) {x : x is a day of the weekend}.
3. Which of the following are true?

(i) All natural numbers are integers.

(ii) All integers are natural numbers.

4. Give an example of a real number that is not a rational number.

5. For each of the following numbers, to which of the sets N,Z,Q,R does it be-
long?

(i) 1.308; (ii) 1.3; (iii) −7;

(iv)
√

3; (v) 10508; (vi) 1 − √
7.

6. Give three different expressions for the set with members 1, −1, and 0.

7. In each case, list all the factors of the number:

(i) 36; (ii) 48; (iii) 50;

(iv) 81; (v) 72; (vi) 61.

8. Decompose the following numbers into primes:

(i) 1044; (ii) 268;

(iii) 256; (iv) 333.

9. In each case, decompose the two numbers into primes, and then compute their
greatest common divisor:

(i) 88 and 132; (ii) 256 and 224;

(iii) 1080 and 855; (iv) 168 and 231.

10. Simplify the following expressions, writing the answers using positive exponents
only:

(i) t3t−3; (ii)
(
2x2y−3

)2;

(iii)
(xy)3

(xy)2
; (iv)

5624

103
;
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(v)
(
4b2

)2
(2b)−3; (vi) (x + y)−3;

(vii)

(
a−4

a−3

)−2

; (viii)
4p2q2

8p2q
.

11. Evaluate the following:

(i) 	117
; (ii) �44.3�;

(iii) 	28.4
; (iv) �−107.7�;

(v) |11.4|; (vi) �√3�;

(vii) | − 27|; (viii) 	−73
;

(ix) 	√2
; (x) 	−7.3
.

Exercises 1.1 B

1. Is the given statement true or false?

(i) 5 ∈ {1, 3, 4, 7}; (ii) 6 /∈ {1, 3, 4, 7};
(iii) 4 ∈ {1, 3, 4, 7}; (iv) {1, 3} = {1, 2, 3};
(v) 3 ∈ {1, 2, 3, 4, 5, 6}; (vi) R ⊆ Z;

(vii) 4 ⊆ {1, 3, 4, 5, 7}; (viii) {1, 2, 3, 4, 5} = {5, 4, 3, 2, 1, 0};
(ix) {1, 3, 2} = {1, 2, 3}; (x) {2, 3, 4} = {1, 2, 3}.

2. In each case, write the list of all members of the set:

(i) {x : x is a month whose name starts with J};
(ii) {x : x is an odd integer between −6 and 6};

(iii) {x : x is a letter in the word “Mississippi”}.
3. Which of the following are true?

(i) All rational numbers are real.

(ii) All real numbers are rational.

(iii) No irrational numbers are rational.

(iv) No irrational numbers are real.

4. For each of the following numbers, to which of the sets N,Z,Q,R does it be-
long?

(i) −2.13; (ii)
√

5; (iii)
√

4; (iv) 2π ;

(v) 1.834; (vi) 2 + √
2; (vii) 0; (viii)

√
2 + √

2.
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5. In each case, list all the factors of the number:

(i) 63; (ii) 24; (iii) 40; (iv) 28;

(v) 29; (vi) 66; (vii) 112; (viii) 70.

6. Give three different expressions for the set with members 0, 1, and 2.

7. Decompose the following numbers into primes:

(i) 96; (ii) 1029; (iii) 38 and 56; (iv) 112 and 54;

(v) 187; (vi) 588; (vii) 175; (viii) 127.

8. In each case, decompose the two numbers into primes, and then compute their
greatest common divisor:

(i) 240 and 84; (ii) 162 and 45;

(iii) 231 and 275; (iv) 444 and 629;

(v) 95 and 125; (vi) 462 and 252.

9. Simplify the following expressions, writing the answers using positive exponents
only:

(i) x4x−4;
(ii)

2632

63
;

(iii) (2xy)−2; (iv) 5y2z−3;

(v) (2x)2y3(xy)−2; (vi) (x − y)−2;

(vii)

(
x − 3

x − 2

)4

; (viii)
2x2y

4xy2
;

(ix) 6x2(3x)−2;
(x)

(2y)2x6

x4
;

(xi) (3xy)−2z;
(xii)

3x2

4x3
.

10. Evaluate the following:

(i) 	8.1
; (ii) 	−4.6
;

(iii) �308�; (iv) �77.7�;

(v) 	√5
; (vi) | − 7.6|;
(vii) �21.5�; (viii) �−7.3�;

(ix) |1.73|; (x) | − 5.2|;
(xi) �−105�; (xii) 	√2
;

(xiii) 	2π
; (xiv) �| − 9.6|�;

(xv) 		7.5

; (xvi) �	7.5
�.
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1.2 Equations and Inequalities

Equations

An equation is any expression of equality. Sometimes an equation simply expresses
a relation between numbers, such as 5−3 = 2. But more often we do not write down
the values of all the numbers concerned. For example, we might write x − 3 = 2.

In the expression x − 3 = 2, the quantity x is called a variable and can represent
any real number. Then x−3 = 2 is true when x = 5, and we say it is false otherwise.
We say x = 5 satisfies the equation, and we say 5 is the solution of the equation.

Sometimes equations can have more than one solution. For example, both x = 1
and x = 2 satisfy the equation x2 − 3x = −2, as you can easily check. We can also
show that there are no other solutions. The set of all solutions is called, naturally
enough, the solution set of the equation. The solution set of x2 − 3x = −2 is {1, 2}.
Two equations with the same solution set are called equivalent.

If a problem asks you to solve an equation, you should find all solutions, or in
other words find the solution set.

Equations are not restricted to one variable. For example, the equation x −y = 2
contains the two variables x and y, and we usually think of it as expressing the rela-
tionship between x and y. This equation has an infinitude of solutions. One example
is x = 3, y = 1, which can also be written (x, y) = (3, 1). We might also use this
equation to express one variable in terms of the other, as in y = x − 2.

Some equations are satisfied by every number; one such equation is (x − 1)2 =
x2 − 2x + 1. Such an equation is called an identity. There are also equations with no
solutions, and these are called inconsistent equations or contradictions.

Sample Problem 1.7. Which of the following are solutions of 2x + 3y = 1? (i)
x = 2, y = 3; (ii) x = −1, y = 1; (iii) x = 5, y = −3.

Solution. If we replace x by 2 and y by 3, the equation becomes 4 + 9 = 1,
which is false. The other two suggested solutions lead to −2 + 3 = 1 and
10 − 9 = 1, respectively, and both of these are true. So (ii) and (iii) are solu-
tions, but (i) is not.

Your Turn. Which of the following are solutions of 3x − 2y = 4?
(i) x = 2, y = 2; (ii) x = 4, y = 4; (iii) x = 3, y = 1.

When an equation is first presented to you, you know nothing about the variables.
When you solve an equation, you find out more about the variables. Assuming the
equation to be true, you know that the variables belong to the solution set. For this
reason, the variables are often called unknowns.
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Linear Equations with One Variable

The degree of an equation is the highest power of a variable that occurs in it. For
example, x − y = 2 is of degree 1, or first degree, while x2 − 3x = −2 is of
degree 2. The simplest equations are those of the first degree. These equations are
called linear because linear equations in two variables can be represented by straight
lines, as we shall see in Section 5.1.

We shall now discuss the solution of linear equations containing one variable,
such as 3x + 4 = 0, 2x = 3, and so on. These equations can be written in the form

ax = b,

which we shall call standard form. The symbols a and b may represent any numbers
provided a �= 0; they are constants, not variables, and in any particular equation their
values will be known.

To solve a linear equation with one variable, we first reduce it to standard form.
If any term on the right-hand side is a multiple of x, add its negative to both sides.
For example, given x + 2 = 1 − 2x, add 2x, the negative of −2x, to both sides. The
−2x cancels, leaving x + 2 + 2x = 1. If any constant is on the left, add its negative
to both sides. In the example, the new equation is x + 2x = 1 − 2. So you must
move all terms involving x to the left-hand side of the equation, and all other terms
to the right-hand side; but when you move a term from one side to the other, you
must change its sign, from positive to negative, or from negative to positive. Finally,
add all terms on each side of the new equation.

Once the equation is in standard form, its solution is immediate. As a is non-zero,
we can divide both sides by it, obtaining

x = b

a
,

and this is the only possible solution.

Sample Problem 1.8. Solve

3x − 4 = x + 2.

Solution. First we move all x terms to the left-hand side. The term x becomes
−x on the left, thus we have:

3x − 4 − x = 2.

Then move the −4. It becomes 4:

3x − x = 4 + 2.
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Next, gather terms, obtaining

2x = 6.

Finally, divide by 2:

x = 3.

Your Turn. Solve 3x + 5 = x + 7.

Sample Problem 1.9. Solve

x

2
− 4 = −5x

3
.

Solution. First move − 5x
3 to the left:

x

2
− 4 + 5x

3
= 0.

Then move the −4. It becomes 4:
x

2
+ 5x

3
= 4.

Next, gather terms. To simplify this equation, we multiply both sides by the com-
mon denominator 6:

3x + 10x = 24.

Finally, divide by 13:

x = 24

13
.

Your Turn. Solve
3x

2
− 5 = 2x

3
.

Equations in General

In solving linear equations with one variable, our procedure is to change the given
equation into a simpler equation that is equivalent to the original. This principle can
be applied to any equation. When we add terms to both sides of an equation, or
equivalently move terms to the other side of the equation, we are actually using the
following general property of equality:

If a, b and c are any quantities, then:

If a = b, then a + c = b + c;
If a = b, then a − c = b − c.
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The process of multiplying by a common denominator, and the process of dividing
by the coefficient of x, use:

If a, b and c are any quantities, then:

If a = b, then c × a = c × b;
If a = b, then

a

c
= b

c
, provided c �= 0.

These ideas can be used in general.

Sample Problem 1.10. Use the equation 4x2 + 3y = y + 6 to express y in terms
of x.

Solution. Even though x is a variable, we move it to the right-hand side because
we want to find an expression for y. So,

3y = y + 6 − 4x2.

All y terms belong on the left:

3y − y = 6 − 4x2.

Now we simplify:

2y = 6 − 4x2,

y = 3 − 2x2.

Your Turn. Use the equation x2 − 2y = 2y − 8 to express y in terms of x.

Inequalities

An inequality is similar to an equation, with one of the signs <, >, ≤, or ≥ replacing
the equality. Solving inequalities is similar to solving equations. Again there will be
a solution set, and inequalities with the same solution set are called equivalent. The
solution sets of inequalities usually involve intervals. A linear inequality is one with
only constants and first powers of variables.

The most important difference between solving inequalities and solving equa-
tions is the effect of multiplying both sides by a constant. If a < b, and c is a positive
constant, then c × a < c × b, but if d is a negative constant, then d × a > d × b. If
the sign is ≤, then multiplication by a positive constant leaves the sign unchanged,
while multiplication by a negative constant changes ≤ to ≥.

Sample Problem 1.11. Solve the following inequality for x:

4x − 3 ≤ 2x + 1.
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Solution. We first rewrite the inequality as:

4x − 2x ≤ 3 + 1

or

2x ≤ 4.

Dividing both sides by 2, we obtain x ≤ 2, or solution set (−∞, 2).

Your Turn. Solve for x: 2x + 3 ≤ x + 6.

Sample Problem 1.12. Solve the following inequality for x:

3x − 2 > 5x + 4.

Solution. We first rewrite the inequality as:
3x − 5x > 2 + 4

or
−2x > 6.

Dividing both sides by −2, we obtain x < −3. Observe the change in the in-
equality sign.

Your Turn. Solve for x: 2x + 3 ≤ 4x + 5.

Sample Problem 1.13. Use the following inequality to express y in terms of x:

3x − 4y > 2(x + y) − 3.

Solution. We first rewrite the inequality with all y terms on the left and all other
terms on the right:

−4y − 2y > 2x − 3x − 3

or
−6y > −x − 3.

Dividing both sides by −6, we obtain y < 1
6x + 1

2 .

Exercises 1.2 A

1. In each case, are the indicated values a solution to the equation?

(i) Equation 3x + y = 4; solution x = 3, y = −5;

(ii) Equation 3x + y = 4; solution x = 4, y = −7;
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(iii) Equation 2x + 3y = 8; solution x = 3, y = 1;

(iv) Equation 2x − 5y = −1; solution x = 2, y = 1;

(v) Equation x2 + y2 = 4; solution x = 2, y = 0;

(vi) Equation x2 + y2 = 1; solution x = 1, y = 1.

2. Solve these equations for x:

(i) 2x − 7 = 5; (ii) x + 3 = 3 − x;

(iii) 3x − 5 = x − 3; (iv) 3(x − 1) = 2(x + 1);

(v) 14 = 4 − 5x; (vi) 3(x − 1) + 2x = 7;

(vii)
1

2
x − 1 = 2; (viii)

3

2
x + 1 = 5 − 4

3
x;

(ix) 2x + 2 = −1 − 4x; (x) 3 − 3x = 4 − 2x;

(xi) 4x − 8 = 7x − 14; (xii) 2(3 + x) = 4x − 7.

3. Use the following equations to express y in terms of x:

(i) 4x − 6y = 9; (ii) 2x + 2y = 6;

(iii) 3x + y = 4y + 6; (iv) x2 − 2y = y − 3.

4. Solve these inequalities for x:

(i) 2x − 5 < 7x − 2; (ii) 3x + 1 > 5 − x;

(iii) 2x + 4 ≥ 4x; (iv) x − 4 ≥ 2 − 4x;

(v) 3 − x ≥ x + 5; (vi) 3x − 3 < 2 + x;

(vii) 5 − 3x ≤ x + 3; (viii) 2x + 3 > 3 − x;

(ix) 2 − 2x > 3 + x; (x) 4(1 − x) < 2(x + 4).

5. Use the following inequalities to express y in terms of x:

(i) 4x + 2y ≤ 4; (ii) x + y ≤ 3 − x;

(iii) x + 3y > 2y + 5x; (iv) 3x − 2y < 2x + 3;

(v) x + 3y + 2 ≥ 3x − y − 6; (vi) 3 − 2x > 5 − 2y.

Exercises 1.2 B

1. In each case, are the indicated values a solution to the equation?

(i) Equation 3x + y = 4; solution x = 1, y = 1;

(ii) Equation 3x + y = 4; solution x = 2, y = 2;

(iii) Equation 4x − 2y = 3; solution x = 2, y = 2.5;

(iv) Equation 4x − 2y = 6; solution x = 3, y = 3;

(v) Equation 2x + 3y = 5; solution x = 1, y = −1;

(vi) Equation x2 + 2x = y; solution x = 3, y = −5;

(vii) Equation x2 + y2 = 3; solution x = 2, y = 1;

(viii) Equation x2 = y2; solution x = 1, y = −1.
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2. Solve these equations for x:

(i) 2x − 4 = 2; (ii) 6x − 3 = 9;

(iii) 8 − 6x = 2; (iv) 2x + 7 = 5;

(v) 6x − 2 = 4x − 4; (vi) 3 + x = 2x + 1;

(vii) 7x − 3 = 2 − 4x; (viii) 2 − 6x = 3x − 7.

3. Solve these equations for x:

(i) 5x − 4 = −4; (ii) 2x − 3 = 5;

(iii) 4 − 2x = 3; (iv) 3x + 7 = 6;

(v) 2x − 4 = 3x − 3; (vi) 3 − x = 3x + 1;

(vii) 5x − 3 = 7 − 2x; (viii) 2 − 3x = 3x + 7;

(ix) 3x + 7 = −1 − 5x; (x) 3 − 3x = 2 − 4x;

(xi) 3x − 2 = 7x − 14; (xii) 2(2 + x) = 3x − 7;

(xiii) 2(x + 3) = 1 − 3x; (xiv) 5 − x = 2(1 − 2x);

(xv) 2x − 5 = 7x − 17; (xvi) 3(x − 1) = 4x − 2.

4. Use the following equations to express y in terms of x:

(i) 3x + 2y = x + 4; (ii) 3 − 2x − 2y = x + y;

(iii) 2(x + y) = 5 − (x − y); (iv) 3 + 3x = 7 + 2y;

(v) 2x − 1

3
= y − 1

2
; (vi) 3x − y = x − 3y.

5. Solve these inequalities for x:

(i) 3 − 4x ≤ 2; (ii) 3x − 5 < 5x − 3;

(iii) 5x + 2 > 8 − x; (iv) 4x + 6 ≤ 2x;

(v) x + 10 ≥ 12 − 3x; (vi) 2 − x ≤ 2x + 5;

(vii) 3x − 3 < 2 + 2x; (viii) 3(x + 1) ≤ 3(1 − 2x).

6. Solve these inequalities for x:

(i) 3 − 2x ≤ 1; (ii) 5x − 5 < 7x − 3;

(iii) 4x + 2 > 7 − x; (iv) 2x + 6 ≤ 4x;

(v) x + 8 ≥ 12 − 5x; (vi) 3 − x ≤ 3x + 1;

(vii) 7x − 3 < 2 + 4x; (viii) 2(x + 1) ≤ 3(1 − x);

(ix) 4 − 7x > 2 + x; (x) 3(1 − 2x) < 2(x + 3);

(xi) 2(x − 3) ≥ 1 + x; (xii) 3x + 2 ≤ 3(3 − x);

(xiii) 1 − 5x > 2(3 − 4x); (xiv) 3(1 + x) < 5(x − 3).
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7. Use the following inequalities to express y in terms of x:

(i) 2x + 2y ≤ 2; (ii) 6x − 3y + 12 < 0;

(iii) 2x + 2y ≤ 1 − 2x; (iv) x − 3y ≤ 3 − 2x;

(v) 4x + 3y > 2y + 5x + 3; (vi) 2x − 5y < x + y − 3;

(vii) 4x + 3y − 2 ≥ 2(x + y); (viii) 6 + 3x > x + 2y;

(ix) 5(x + 1) ≥ 3x + 2y + 1; (x) 3(1 − x) < 2(x − y).

8. Use the following inequalities to express x in terms of y:

(i) 2x + y ≤ 3; (ii) 4x − 2y + 2 < 0;

(iii) 2x + 2y ≤ 2 − 4x; (iv) x − y ≤ 2x − 3;

(v) 2x + 3y > y + 6x + 4; (vi) 6x − 4y < x + y − 3;

(vii) 3x + y − 2 ≥ 4(x − y); (viii) 2 + 3y > 2x + 2y;

(ix) 5(x + 1) ≥ 2x + 3y + 2; (x) 4(1 − x) < 2(x + y).

1.3 Sums

Sigma Notation

Suppose you want to write the sum of the first 16 positive integers. You could write

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 + 10 + 11 + 12 + 13 + 14 + 15 + 16

but, instead of this clumsy form, it is more usual to write 1 + 2 + · · · + 16, assuming
that the reader will take the three dots to mean “continue in this fashion until you
reach the last number shown” (and, more importantly, hoping it is clear that each
number in the sum is obtained by adding 1 to the preceding number).

There is a standard mathematical notation for long sums, which uses the Greek
capital letter sigma, or

∑
. We write the above sum as

16∑

i=1

i

which means we take the sum of all the values i = 1, i = 2, . . . , up to i = 16. In the
same way,

6∑

i=1

i2 = 12 + 22 + 32 + 42 + 52 + 62;

the notation, called sigma notation, means “first evaluate the expression after the
∑

(that is, i2) when i = 1, then when i = 2, . . . , then when i = 6, and add the results”.
More generally, suppose a1, a2, a3, and a4 are any four numbers. (This use of a
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subscript on a letter, like the 1, 2, . . . on a, is common in mathematics—otherwise
we would run out of symbols!) Then

4∑

i=1

ai = a1 + a2 + a3 + a4.

The definition of a set does not allow for ordering of its elements, or for repeti-
tion of its elements. For example, {1, 2, 3}, {1, 3, 2}, and {1, 2, 3, 1} all represent the
same set (which could be written {x | x ∈ N and x ≤ 3}, or {x ∈ N | x ≤ 3}).
However, ordering is often useful, so we define a sequence to be an ordered set. Se-
quences can be denoted by parentheses; (1, 3, 2) is the sequence with first element 1,
second element 3 and third element 2, and is different from (1, 2, 3). Sequences can
contain repetitions, and (1, 2, 1, 3) is quite different from (1, 2, 3); the two occur-
rences of object 1 are distinguished by the fact that they lie in different positions
in the ordering. Formally, a sequence (ai) of length n is a collection of n objects
{a1, a2, . . . , an}, or {ai : 1 ≤ i ≤ n} together with an ordering: a1 is first, a2 is
second, and so on. Entry ai , where i is any one of the positive integers 1, 2, . . . , n, is
called the ith member of the sequence. Two members can have the same value, but
are counted as different if they are in different positions. For example, (1, 2, 1, 3) is
a sequence of length 4, but if we ignore the ordering then its elements form the set
{1, 2, 3} of order 3, called the underlying set of the sequence.

If (ai) is a sequence of length n or longer, then
∑n

i=1 ai is defined by the rules

1∑

i=1

ai = a1,

n∑

i=1

ai =
(

n−1∑

i=1

ai

)

+ an.

The use of ai to mean a “general” or “typical” member of {a1, a2, . . . , an} is
very common. When a set of numbers {a1, a2, . . . , an} is being discussed, we say a
property is true “for all ai” when we mean it is true for each member of the set.

Usually, the sigma notation is used with a formula involving i for the term fol-
lowing

∑
, as in the following examples. Notice that the range need not start at 1; we

can write
∑n

i=j when j and n are any integers, provided j < n.

Sample Problem 1.14. Write out the following as sums and evaluate them:

4∑

i=1

i2;
6∑

i=3

i(i + 1).
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Solution.
4∑

i=1

i2 = 12 + 22 + 32 + 42

= 1 + 4 + 9 + 16

= 30;
6∑

i=3

i(i + 1) = 3·4 + 4·5 + 5·6 + 6·7

= 12 + 20 + 30 + 42

= 104.

Your Turn. Write out the following as sums and evaluate them:

5∑

i=3

i(i − 1);
6∑

i=2

i.

Sample Problem 1.15. Write the following in sigma notation:

2 + 6 + 10 + 14; 1 + 16 + 81.

Solution.

4∑

i=1

(4i − 2);
3∑

i=1

i4.

Your Turn. Write the following in sigma notation:

1 + 3 + 5 + 7 + 9; 8 + 27 + 64 + 125.

Some properties of sums

It is easy to see that the following properties of sums are true:

(1) If c is any given number, then
n∑

i=1

c = nc.

(2) If c is any given number and (ai) is any sequence of length n, then

n∑

i=1

(cai) = c·
(

n∑

i=1

ai

)

.
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(3) If (ai) and (bi) are any two sequences, both of length n, then
n∑

i=1

(ai + bi) =
(

n∑

i=1

ai

)

+
(

n∑

i=1

bi

)

.

(4) If (ai) is any sequence of length n, 1 ≤ j < n, then

n∑

i=1

ai =
j∑

i=1

ai +
n∑

i=j+1

ai.

The following is a standard result on sums.

Theorem 1. The sum of the first n positive integers is 1
2n(n + 1), or

n∑

i=1

i = n(n + 1)

2
.

Proof. Let us write s for the answer. Then s = ∑n
i=1 i. We shall define two very

simple sequences of length n. Write ai = i and bi = n + 1 − i. Then (ai) is
the sequence (1, 2, . . . , n) and (bi) is (n, n − 1, . . . , 1). They both have the same
elements, although they are written in different order, so they have the same sum,

s =
n∑

i=1

ai =
n∑

i=1

bi.

So

2s =
n∑

i=1

ai +
n∑

i=1

bi

=
n∑

i=1

(ai + bi)

=
n∑

i=1

(
i + (n + 1 − i)

)

=
n∑

i=1

(n + 1)

= n·(n + 1).

Therefore, dividing by 2, we get s = n(n + 1)/2. �
Since adding 0 does not change a sum, this result could also be stated as

n∑

i=0

i = n(n + 1)

2
.

That form is sometimes more useful.
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Sample Problem 1.16. Find the sum of the numbers from 11 to 30 inclusive.

Solution.
∑30

i=11 i is required. Now:

30∑

i=1

i =
10∑

i=1

i +
30∑

i=11

i,

and, using the theorem and substituting, we have:

30·31

2
= 10·11

2
+

30∑

i=11

i,

465 = 55 +
30∑

i=11

i,

so
∑30

i=11 i = 465 − 55 = 410.

Sample Problem 1.17. Find 2 + 6 + 10 + 14 + 18 + 22 + · · · + 122.

Solution. This is the sum of the terms 2 + 4i, where i goes from 0 to 30.

30∑

i=0

(2 + 4i) =
(

30∑

i=0

2

)

+
(

30∑

i=0

4i

)

=
(

30∑

i=0

2

)

+ 4·
(

30∑

i=0

(i)

)

= 31·2 + 4· 30·31

2
= 62 + 1860

= 1922.

Your Turn. Find 3 + 7 + · · · + 43.

Two other standard results, that will be proven in the exercises, are:

Theorem 2.

n∑

i=1

i2 = n(n + 1)(2n + 1)

6
.

Theorem 3.

n∑

i=0

xi = xn+1 − 1

x − 1
unless x = 1.
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Exercises 1.3 A

1. Write each of the following as sums and evaluate them:

(i)
6∑

i=1

i2 + 1; (ii)
3∑

i=1

1

10i
;

(iii)
9∑

i=3

i(i − 3); (iv)
5∑

i=2

1

i
;

(v)
4∑

i=2

(−2)i ; (vi)
4∑

i=1

1 + (−1)i ;

(vii)
5∑

i=2

1

i − 1
; (viii)

6∑

i=1

1 + 3i.

2. Write each of the following sums in sigma notation:

(i) 1 + 4 + 7 + 10 + 13;

(ii) 2 + 6 + 10;

(iii) 1 − 4 + 7 − 10 + 13;

(iv) 0 − 1 + 4 − 9 + 16;

(v) 3 + 7 + 3 + 7 + 3 + 7;

(vi) 0 + 3 + 8 + 15.

3. Suppose ai = i2, so that a1 = 1, a2 = 4, a3 = 9, and so on.

(i) Say bi = i3 − (i − 1)3. Prove that
∑n

i=1 bi = n3.

(ii) Prove that bi = 3i2 − 3i + 1, and therefore
n∑

i=1

bi = 3
n∑

i=1

i2 − 3
n∑

i=1

i + n.

(iii) Use this to prove that
n∑

i=1

i2 = n(n + 1)(2n + 1)

6
.

4. Suppose
∑n

i=1 ai = A and
∑n

i=1 bi = B. Evaluate
∑n

i=1 ci in each of the
following cases:

(i) ci = 2ai + 1; (ii) ci = 3ai − bi ;

(iii) ci = ai + bi + 2; (iv) ci = ai + bi + (−1)n.

5. Use the standard results of Theorems 1, 2, and 3 and the four properties of sums
to evaluate the following expressions:
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(i)
12∑

i=7

(i − 3); (ii)
8∑

i=3

(5i2 − 4);

(iii)
6∑

i=2

2i ; (iv)
n∑

i=1

(i2 + 1);

(v)
n∑

i=1

3i ; (vi)
n∑

i=1

(6i2 − 1);

(vii)
n∑

i=1

i(i − 2); (viii)
n∑

i=1

1

2i
.

6. Prove that
n∑

i=1

2n − 1 = n2

(in other words, the sum of the first n odd positive whole numbers is n2).

Exercises 1.3 B

1. Write the following as sums and evaluate them:

(i)
4∑

i=1

i2; (ii)
5∑

i=1

1 + (−1)i ;

(iii)
6∑

i=3

1 − i; (iv)
15∑

i=6

4;

(v)
6∑

i=3

i(i − 1); (vi)
4∑

i=2

1

i2
.

2. Write the following as sums and evaluate them:

(i)
3∑

i=1

i3; (ii)
6∑

i=1

(−1)i ;

(iii)
4∑

i=2

√
i; (iv)

5∑

i=1

1 + i

2
;
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(v)
6∑

i=3

i(i − 2); (vi)
5∑

i=1

(−1)i+1i2;

(vii)
15∑

i=12

i + 1

i
; (viii)

5∑

i=2

i + (−1)i ;

(ix)
5∑

i=2

i2 − 3; (x)
5∑

i=2

i2 − 4i.

3. Write each of the following sums in sigma notation:

(i) 1 + 4 + 9 + 16 + 25;

(ii) 2 + 5 + 8 + 11;

(iii) −1 + 2 − 3 + 4;

(iv) 6 + 5 + 4 + 3 + 2 + 1;

(v) 1 + 3 + 9 + 27 + 81;

(vi) 4 − 6 + 8 − 10 + 12 − 14;

(vii) 2 + 4 + 10 + 28 + 82;

(viii) 4 + 8 + 12 + 16 + 20;

(ix) −1 − 2 − 3 − 4 − 5 − 6;

(x) 11 + 17 + 23.

4. Suppose a1 = 1, a2 = x, a3 = x2, and, in general, ai = xi−1.

(i) Prove that
∑n+1

i=2 ai = x
∑n

i=1 ai ;

(ii) Use this to show that
∑n

i=1 ai = 1 + x
∑n

i=1 ai − xn;

(iii) Use part (ii) to find the value of
∑n

i=1 ai when x �= 1;

(iv) Why did we have to require “x �= 1” in the preceding part?

5. Suppose
∑n

i=1 ai = A and
∑n

i=1 bi = B. Evaluate
∑n

i=1 ci in each of the
following cases:

(i) ci = 5ai ; (ii) ci = 2ai − bi ;

(iii) ci = ai + 2bi ; (iv) ci = ai + bi − 1;

(v) ci = 2ai + bi ; (vi) ci = 2 − bi .

6. Use that standard results of Theorems 1, 2, and 3 in the text and the four proper-
ties of sums to evaluate the following expressions:
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(i)
6∑

i=1

(2i − 5); (ii)
10∑

i=1

(
2i2);

(iii)
20∑

i=1

(
i2 − 3i

)
; (iv)

5∑

i=0

(
1

2

)i

;

(v)
12∑

i=1

i2 − 5i − 1; (vi)
n∑

i=1

2i + 1.

7. Use that standard results of Theorems 1, 2, and 3 and the four properties of sums
to evaluate the following expressions:

(i)
20∑

i=5

(2i + 1); (ii)
n∑

i=1

(
i2 − i

)
;

(iii)
10∑

i=4

(
i2 + 1

)
; (iv)

n∑

i=1

(1 + i)2;

(v)
9∑

i=1

2−i ; (vi)
n∑

i=0

2−i .

1.4 Elements of Set Theory

More About Sets

We defined the notation

s ∈ S

to mean “s belongs to S” or “s is an element of S”. If S and T are two sets, we shall
write T ⊆ S to mean that every member of T is also a member of S. In other words,
“If s is any element of T then s is a member of S”, or

s ∈ T ⇒ s ∈ S,

where ⇒ is shorthand for implies. When T ⊆ S we say T is a subset of S. Sets S

and T are equal, S = T , if and only if S ⊆ T and T ⊆ S are both true. If necessary,
we can represent the situation where T is a subset of S but S is not equal to T , that
is, there is at least one member of S that is not a member of T , by writing S ⊂ T ,
and we call T a proper subset of S.

Suppose R ⊆ S and S ⊆ T are both true. Any member of R will also be a
member of S, which means it is a member of T . So R ⊆ T . This sort of rule is called
a transitive law.

It is important not to confuse the two symbols ∈ and ⊆, or their meanings:
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Sample Problem 1.18. Suppose S = {0, 1}. Which of the following are true:
0 ∈ S, {0} ∈ S, 0 ⊂ S, {0} ⊂ S, 0 ⊆ S, {0} ⊆ S, S ∈ S, S ⊂ S, S ⊆ S?

Solution. 0 is a member of S, but {0} and S are not, so 0 ∈ S is true but {0} ∈ S,
and S ∈ S are false. As 0 is a member of S, {0} ⊂ S and {0} ⊆ S are true. But
0 is not a set of elements of S, so 0 ⊂ S and 0 ⊆ S are false. Finally, S ⊆ S is
true, but S ⊂ S would imply S �= S, so it is false.

Among the standard number sets, many subset relationships exist. Every natural
number is an integer, every integer is a rational number, and every rational number
is a real number, so N ⊆ Z, Z ⊆ Q, Q ⊆ R. We could write all these relationships
down in one expression:

N ⊆ Z ⊆ Q ⊆ R.

In fact, we know that no two of these sets are equal, so we could write

N ⊂ Z ⊂ Q ⊂ R.

Some special sets of numbers are given special names: we have already used Z
∗ to

denote the set of all non-negative integers, and similarly we could write R
∗ for the

set of all non-negative real numbers. The notation + is often used for the set of all
positive members of a number set; in particular, Z+ is another name for N.

An important concept is the empty set, or null set, which has no elements. This
set, denoted by ∅, is unique and is a subset of every other set.

In all the discussions of sets in this book, we shall assume (usually without both-
ering to mention the fact) that all the sets we are dealing with are subsets of some
given universal set, U . The set U may be chosen to be as large as necessary in any
problem we deal with; in many of our discussions we can choose U = Z or U = R.
The universal set can often be chosen to be a finite set.

The Basic Operations on Sets

Given sets S and T , we define three operations: the union of S and T is the set

S ∪ T = {
x : x ∈ S or x ∈ T (or both)

};
the intersection of S and T is the set

S ∩ T = {x : x ∈ S and x ∈ T };
the relative complement of T with respect to S (or alternatively the set-theoretic
difference or relative difference between S and T ) is the set

S\T = {x : x ∈ S and x �∈ T }.
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In particular, the relative complement U\T with respect to the universal set U is
denoted by T and called the complement of T .

We may write R\S = R ∩ S, since each of these sets consists of the elements
belonging to R but not to S. Hence we see that R ⊆ S if and only if R\S = ∅. If S

is any set, S\S will equal ∅.

There is also a special relationship between the other operations and subsets. If
S is any subset of T , then S ∩ T = S and S ∪ T = T .

Sample Problem 1.19. If E is the set of all even integers and Π is the set of all
prime numbers, what are E ∪ Π , E ∩ Π , E\Π , and Z ∪ N, Z∗\Π?

Solution. E∪Π contains all primes and all even numbers. (2 is the only number
we have described twice.) E ∩ Π contains only the common element 2, the only
even prime. E\Π contains all the even numbers except 2. All natural numbers
are integers, so N ⊆ Z and Z ∪ N = Z. Z∗\Π contains all the positive numbers
that are not primes, and zero. In symbols,

E ∪ Π = {. . . ,−8,−6,−4,−2, 0, 2, 3, 4, 5, 6, 7, 8, 10, 11, . . .},
E ∩ Π = {2},
E\Π = {. . . ,−8,−6,−4,−2, 0, 4, 6, 8, . . .},
Z ∪ N = Z,

Z
∗\Π = {0, 1, 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, . . .}.

Your Turn. What are Z\Z∗, Z ∩ N, (N\E) ∪ Π?

If two sets, S and T , have no common element, so that S ∩ T = ∅, then we say
that S and T are disjoint. Observe that S\T and T must be disjoint sets; in particular,
T and T are disjoint.

Sample Problem 1.20. In each case, are the sets S and T disjoint? If not, what
is their intersection?

(i) S is the set of perfect squares, T = R\R∗.

(ii) S is the set of perfect squares, T = R\R+.

(iii) S is the set of all multiples of 5, T is the set of all multiples of 7.

Solution.

(i) The sets are disjoint.

(ii) They are not disjoint, because 0 is a perfect square (0 = 02); S ∩ T = {0}.
(iii) They are not disjoint. S ∩ T is the set of all multiples of 35.
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Your Turn. In each case, are the sets S and T disjoint? If not, what is their
intersection?

(i) S = Π,T is the set of even integers.

(ii) S = {1, 3, 5, 7, 9}, T = {2, 4, 6, 8, 10}.

Properties of the Operations

We now investigate some of the easier properties of the operations ∪, ∩, and \; for
the more difficult problems, we shall introduce some techniques in the next section.

Union and intersection both satisfy idempotence laws: for any set S,

S ∪ S = S ∩ S = S.

Both operations satisfy commutative laws; in other words,

S ∪ T = T ∪ S

and

S ∩ T = T ∩ S,

for any sets S and T . Similarly, the associative laws

R ∪ (S ∪ T ) = (R ∪ S) ∪ T

and

R ∩ (S ∩ T ) = (R ∩ S) ∩ T

are always satisfied. The associative law means that we can omit brackets in a
string of unions (or a string of intersections); expressions like (A ∪ B) ∪ (C ∪ D),
((A ∪ B) ∪ C) ∪ D, and (A∪ (B ∪C))∪D are all equal, and we usually omit all the
parentheses and simply write A ∪ B ∪ C ∪ D. But be careful not to mix operations.
(A ∪ B) ∩ C and A ∪ (B ∩ C) are quite different. Combining these two laws, we see
that any string of unions can be rewritten in any order: for example,

(D ∪ B) ∪ (C ∪ A) = (
C ∪ (

B ∪ (A ∪ D)
)) = (A ∪ B ∪ C ∪ D).

Sample Problem 1.21. Prove that (A ∪ B) ∩ C = A ∪ (B ∩ C) is not always
true.

Solution. To prove that a general rule is not true, it suffices to find just one case
in which it is false. As an example we take the case A = R, B = Z, C = {0}.
Then (A ∪ B) ∩ C = {0}, while A ∪ (B ∩ C) = R.
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Cartesian Product

We define the Cartesian product (or cross product) S × T of sets S and T to be the
set of all ordered pairs (s, t) where s ∈ S and t ∈ T :

S × T = {
(s, t) : s ∈ S, t ∈ T

}
.

There is no requirement that S and T should be disjoint; in fact, it is often useful to
consider S × S.

The number of elements of S × T is |S| · |T |.

Sample Problem 1.22. Suppose S = {0, 1} and T = {1, 2}. What is S × T ?

Solution. S×T = {(0, 1), (0, 2), (1, 1), (1, 2)}, the set of all four of the possible
ordered pairs.

Your Turn. What is S × T if S = {1, 2} and T = {1, 4, 5}?

The sets (R × S) × T and R × (S × T ) are not equal; one consists of an ordered
pair whose first element is itself an ordered pair, and the other of pairs in which the
second is an ordered pair. So there is no associative law, and no natural meaning for
R × S × T . On the other hand, it is sometimes natural to talk about ordered triples
of elements, so we define

R × S × T = {
(r, s, t) : r ∈ R, s ∈ S, t ∈ T

}
.

This notation can be extended to ordered collections of any length.

Exercises 1.4 A

1. In each case, list all elements of the set described:

(i) The set of all odd numbers between 2 and 10;

(ii) The set of all days in a week;

(iii) The set of all positive multiples of 3 between 10 and 20;

(iv) The set of all prime numbers smaller than 10;

(v) The set of all even prime numbers;

(vi) The set of all positive factors of 36.

2. Write brief descriptions of the following sets. (There will often be many correct
answers.)
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(i) {3, 6, 9}; (ii) {3, 6, 9, . . .};
(iii) {1,−10}; (iv) {1, 4, 9};
(v) {1, 3}.

3. Suppose

A = {a, b, c, d, e}, B = {a, c, e, g, i}, C = {c, f, i, e, o}.
Write down the elements of the following sets:

(i) A ∪ B; (ii) A ∩ C;

(iii) A\B; (iv) A ∪ (B\C).

4. Suppose

A = {1, 2, 4, 5, 6, 7}, B = {1, 3, 5, 7, 9}, C = {2, 4, 6, 7, 8, 9}.
Write down the elements of the following sets:

(i) A ∪ B ∪ C; (ii) A ∪ (B ∩ C);

(iii) A\C; (iv) A ∩ (B\C).

5. Suppose

A = {1, 3, 5, 6, 7}, B = {1, 2, 3, 4, 5}, C = {5, 6, 7, 8}.
Write down the elements of the following sets:

(i) A ∩ B; (ii) A ∩ C;

(iii) A\(B ∩ C); (iv) A ∪ B ∪ C;

(v) A\(B ∪ C); (vi) (A ∪ B)\C.

6. Consider the sets

S1 = Π,

S2 = {2, 4, 6, 8},
S3 = {2, 3, 5, 7},
S4 = {x : x is a prime divisor of 30},
S5 = {x ∈ N : x is a power of 2}.

(i) For which i and j , if any, is Si ⊆ Sj ? For which i and j , if any, is Si = Sj ?

(ii) Write down the elements of Si ∩ Sj for every case where i < j .

7. In each case, are the sets S and T disjoint? If not, what is their intersection?

(i) S is the set of all multiples of 5; T is the set of all perfect squares.
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(ii) S is the set of all students in your class; T is the set of all students in your
college.

8. In each case, list all elements of S × T :

(i) S = {a, b, c}, T = {a, c, f };
(ii) S = {x | x2 = 4}, T = {2, 3, 4, 5};

(iii) S = {x | x is a prime less than 4}, T = {4, 5}.
9. In each case, list all elements of R × S × T :

(i) R = {1, 2}, S = {3, 4}, T = {5, 6};
(ii) R = {x, y}, S = {z}, T = {1, 2}.

Exercises 1.4 B

1. In each case, list all elements of the set described:

(i) The set of all integers between two and ten inclusive;

(ii) The set of all months in a year;

(iii) The set of odd positive multiples of 5, less than 50;

(iv) The set of all positive factors of 24;

(v) The set of all factors of 24;

(vi) The set of perfect squares smaller than 20;

(vii) The set of all vowels in English;

(viii) The set of all even integers between two and ten inclusive;

(ix) The set of all seasons in a year;

(x) The set of positive multiples of 5, less than 30.

2. Write brief descriptions of the following sets. (There will often be many correct
answers.)

(i) {2, 4, 6, 8};
(ii) {2, 4, 6, 8, . . .};

(iii) {2, 3, 5};
(iv) {−1,−2,−3, . . .};
(v) {0, 1}.

3. Write at least two different brief descriptions of the set {2, 3, 5, 7}.
4. Consider the sets

A1 = {1, 2, 3, 4},
A2 = {1, 2, 3, 4, 5, 6, 7, 8},
A3 = {3, 4, 5, 8, 9},
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A4 = {4, 3, 2, 1},
A5 = {2, 4, 6, 8}.

(i) For which i and j , if any, is Ai ⊆ Aj ? For which i and j , if any, is Ai = Aj ?

(ii) Write down the elements of Ai ∩ Aj for every case where i < j .

5. Consider the sets
A1 = {1, 2, 4},
A2 = {1, 2, 3, 4, 5},
A3 = {1, 3, 4, 6},
A4 = {4, 2, 1}.

(i) For which i and j , if any, is Ai ⊆ Aj ? For which i and j , if any, is Ai = Aj ?

(ii) Write down the elements of Ai ∩ Aj for every case where i < j .

6. Suppose A = {2, 3, 5, 6, 8, 9}, B = {1, 2, 3, 4, 5}, C = {5, 6, 7, 8, 9}. Write
down the elements of

(i) A ∩ B; (ii) A ∪ C;

(iii) A\(B ∩ C); (iv) (A ∪ B)\C.

7. Suppose A = {1, 2, 3, 4, 5}, B = {2, 3, 5, 7, 8}, C = {2, 4, 6, 7, 8, 9}. Write
down the elements of

(i) (A ∩ B) ∪ C; (ii) A ∪ (B ∩ C);

(iii) A\C; (iv) A ∩ B ∩ C.

8. Suppose A = Π,B = {2, 4, 6, 7, 9}, C = {1, 2, 3, 4, 5, 6}. Write down the
elements of

(i) A ∩ B; (ii) C\A;

(iii) A ∩ (B\C); (iv) A ∩ (B ∪ C).

9. Suppose A = Z
+, B = {−4,−2, 1, 3, 5, 7}, C = {x | x2 = 1}. Write down the

elements of

(i) (A ∩ B) ∪ C; (ii) A ∩ B ∩ C;

(iii) C\A; (iv) A ∩ (B\C).

10. Suppose A = {1, 2, 3, 5, 7}, B = {1, 2, 3, 4, 5, 6, 8}, C = {2, 4, 5, 6, 7}. Write
down

(i) A ∩ B; (ii) A ∩ C;

(iii) A ∪ B; (iv) A ∪ C;

(v) A\(B ∩ C); (vi) A\(B ∪ C);
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(vii) (A ∪ B)\C; (viii) A ∩ B ∩ C.

11. Consider the sets

S1 = {2, 5},
S2 = {1, 2, 4},
S3 = {1, 2, 4, 5, 10},
S4 = {x ∈ N : x is a divisor of 20},
S5 = {x ∈ N : x is a power of 2 and a divisor of 20}.

(i) For which i and j , if any, is Si ⊆ Sj ? For which i and j , if any, is Si = Sj ?

(ii) Write down the elements of Si ∩ Sj for every case where i < j .

12. In each case, are the sets S and T disjoint? If not, what is their intersection?

(i) S = {1, 2, 3, 4, 5}, T = {6, 7, 8, 9, 10};
(ii) S = {1, 2, 3, 4, 5}, T = {5, 6, 7, 8, 9};

(iii) S = {1, 3, 5, 7, 9}, T = {2, 4, 6, 8, 10};
(iv) S = {1, 2, 3, 4, 5}; T = {2, 4, 6, 8, 10}.

13. In each case, are the sets S and T disjoint? If not, what is their intersection?

(i) S is the set of squares 1, 4, 9, . . . and T is the set of cubes 1, 8, 27, . . . of
positive integers.

(ii) S is the set of perfect squares; T = R\R+.

(iii) S is the set of perfect squares 1, 4, 9, . . .; T is the set Π of primes.

14. In each case, list all elements of S × T :

(i) S = {1, 3}, T = {1, 5};
(ii) S = {0, 1, 2}, T = {2, 3, 4};

(iii) S = {1, 3, 5, 7}, T = {1, 2, 3};
(iv) S = {1, 3, 4}, T = {red, blue};
(v) S = {x | x2 = 1}, T = {y | y2 = 4};

(vi) S = {x | x ∈ Π, x < 10}, T = {1, 2};
(vii) S = {1, 2}, T = {3, 4};

(viii) S = {1, 2}, T = {2, 3};
(ix) S = {1, 7}, T = {1, 2, 3};
(x) S = {x | x2 = 1}, T = {y | y2 = 1}.

15. In each case, list all elements of R × S × T :

(i) R = {1, 2}, S = {1, 3}, T = {2, 3};
(ii) R = {12, 13, 14}, S = {1}, T = {1, 2, 3}.
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16. In each case, list all elements of R × S × T :

(i) R = {1, 2, 3}, S = {1, 3}, T = {2};
(ii) R = {2, 3}, S = {1, 3}, T = {1, 2}.

17. In each case, find the sets A ∩ (B ∪ C) and (A ∩ B) ∪ C:

(i) A = {1, 2, 3, 4}, B = {1, 3, 5, 7}, C = {5, 6, 7, 8};
(ii) A = {1, 2, 3, 4}, B = {1, 3, 4, 6}, C = {2, 3, 7, 8}.

18. (i) If S = ∅, T �= ∅, what is S × T ?

(ii) If S × T = T × S, what can you say about S and T ?

19. (i) If A ⊆ S,B ⊆ T , show that A × B ⊆ S × T .

(ii) Find an example of sets A,B, S, T , such that A × B ⊆ S × T and B ⊆ T ,
but A �⊆ S.

1.5 Venn Diagrams

Venn Diagrams

It is common to illustrate sets and operations on sets by diagrams. A set A is repre-
sented by a circle, and it is assumed that the elements of A correspond to the points
(or some of the points) inside the circle. The universal set is usually shown as a rect-
angle enclosing all the other sets; if it is not needed, the universal set is sometimes
omitted. Such an illustration is called a Venn diagram.1

For example, suppose the universal set consists of the nine integers {1, 2, 3, 4, 5,

6, 7, 8, 9}. Then the diagram will be enclosed in a rectangle, and the numbers 1, 2,
3, 4, 5, 6, 7, 8, and 9 will be represented by points in the rectangle. If A is the set
{1, 2, 3, 4}, then a circle will be drawn inside the rectangle, with 1, 2, 3, and 4 inside
it and the other numbers outside:

1 Similar diagram methods were first used by Leibniz and Euler. George Venn used the dia-
grams extensively. Some textbooks use the name “Euler diagram” for the case where not all
possible regions are represented, but we think it more appropriate simply to say “Venn dia-
gram” because Venn formalized and unified diagram methods. For some reason, Leibniz has
escaped credit.
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If B = {3, 4, 5, 6, 7} then A and B can be shown on the same diagram as follows,
with the common elements of A and B in the area common to the two circles:

This same method can be used to represent more general sets. The following
figures show Venn diagrams representing A ∪ B, A ∩ B, A, and A\B; in each case,
the set represented is shown by the shaded area. The universal set is shown in each
figure. Of course, we do not know the individual members of the sets, but they could
be represented by points in the diagram if they were known.

Two sets are equal if and only if they have the same Venn diagram. In order to
illustrate this, consider the set equation

R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T ),

where R, S, and T can be any sets. The Venn diagram for R ∪ (S ∩ T ) is constructed
in Figure 1.1, and that for (R ∪ S) ∩ (R ∪ T ) is constructed in Figure 1.2. The two
are obviously identical.

This rule is called a distributive law, and it should remind you of the distributive
law

a(b + c) = ab + ac

for numbers. There are in fact two distributive laws for sets; the second is:

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

To prove A ⊆ B, it is sufficient to show that all the shaded areas in the diagram
for A are also shaded in B. We illustrate this idea with another set law.
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Fig. 1.1. R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T )

Fig. 1.2. R ∪ (S ∩ T ) = (R ∪ S) ∩ (R ∪ T )

Sample Problem 1.23. Use Venn diagrams to prove that

A ∩ B ∩ C ⊆ B ∩ (A ∪ C).

Solution.

Your Turn. Use Venn diagrams to prove that

A ∩ C ⊆ (A ∩ B) ∪ C.

Sometimes we draw a Venn diagram so as to represent some properties of sets.
For example, if A and B are disjoint sets, the diagram can be drawn with A and
B shown as disjoint circles. If A ⊆ B, the circle for A is entirely inside the circle
for B.
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Counting the Elements

Venn diagrams can also be used to calculate the numbers of elements in sets. We
write the numbers of elements in the areas of the diagram, instead of the elements
themselves.

Sample Problem 1.24. There are 40 students in Dr. Brown’s Finite Mathematics
course and 50 in his Calculus section. If these are his only classes, and if 20
of the students are taking both subjects, how many students does he have alto-
gether? Represent the data in a Venn diagram.

Solution. We use the notation F for the set of students in the finite class and
C for Calculus. There are four areas in the Venn diagram: the set of students
in both classes (the center area, F ∩ C) has 20 members; the set of students in
Finite Mathematics only (the left-hand enclosed area) has 20 members—subtract
20 from 40; the area corresponding to Calculus-only students, has 50 − 20 = 30
members; and the outside area has no members (only Dr. Brown’s students are
being considered). So Dr. Brown has 70 students; the diagram is

Your Turn. A survey shows that 12 newspaper readers buy the morning edition
and seven buy the evening edition; three of these also bought the morning paper.
Represent the data in a Venn diagram. How many readers were surveyed?

This method can be used to find the number of elements in the set represented by
any of the areas or unions of areas, provided there is enough information.

Sample Problem 1.25. 100 people were surveyed to find out whether newspaper
advertisements or flyers were more efficacious in advertising supermarket spe-
cials. 20 of them said they pay no attention to either medium. 50 said they read
the flyers, and 15 of those said they also check the newspapers. How many use
the newspaper ads, in total?

Solution. We do not know how many people read the newspaper advertisements
but not the flyers. Suppose there are X of them. Then we get the Venn diagram
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In order for the total to add to 100, X = 30, so the total who use the newspaper
ads is X + 15 = 45.

These methods can be applied to three or more sets.

Sample Problem 1.26. 500 people were asked about their morning vitamin in-
take. It was found that 150 take vitamin B, 200 take vitamin C, 165 take vitamin E,
57 take both B and C, 125 take both B and E, 82 take both C and E, and 52 take
all three vitamins. How many take both B and E but do not take C? How many
take none of these vitamins?

Solution. We start with the diagram

From the data, v = 52, and u+v = 57, so u = 5. Similarly, w = 73 and y = 30.
Now t + u + v + w = 150, so t = 20. The other sizes are calculated similarly,
and we get the diagram

The cell corresponding to “B and E but not C” has 73 elements. There are 303
elements in total, so there are 197 people who take none.

Your Turn. In a survey of 150 moviegoers, it was found that 80 like horror
movies, 75 like police procedurals, and 60 like romances. In total, 35 like both
horror and procedurals, 25 like horror and romance, and 30 like procedurals and
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romance. 15 like all three types of movie. Represent these data in a Venn diagram.
How many like horror and police procedural movies, but do not like romances?
How many like romances only? How many like none of these three types?

Exercises 1.5 A

1. Represent the following sets in a Venn diagram:
(i) R ∪ S ∪ T ;

(iii) (R ∩ S)\(S ∩ T );

(ii) R ∪ (S ∩ T );

(iv) (R\S) ∩ T .

2. Use Venn diagrams to prove the commutative and associative laws for ∪:

(i) (R ∪ S) = (S ∪ R);

(ii) ((R ∪ S) ∪ T ) = (R ∪ (S ∪ T )).

3. Prove the following rules using Venn diagrams:

(i) S ∩ T = S ∪ T ;

(ii) (S ∩ T ) ⊆ S.

4. 1865 voters were surveyed about a new highway. Of them, 805 were in favor
financing it with a new tax, 627 favored tolls on the highway, while 438 said
they would vote in favor of either measure.

(i) How many favor taxes but not tolls?

(ii) How many favor tolls but not taxes?

(iii) How many would vote against either form of funding?

5. Some shoppers buy bread, butter, and coffee. Ten buy bread, 15 buy butter, and
14 buy coffee. The number buying both bread and butter, both bread and coffee,
and both butter and coffee are four, five, and eight, respectively. Three buy all
three products. How many shoppers were there (assuming all bought at least one
of the three)?

6. 18 people are interviewed. Of these, seven dislike the Republican party, ten dis-
like the Democrats, and 11 dislike the Green party. Moreover, five dislike both
Democrats and Republicans, five dislike both Republicans and Greens, while
six dislike both Democrats and Greens. And four dislike all three types of politi-
cians, on principle. How many like all three?

7. In a survey at Dave’s Bagel Barn, 75 customers were asked about their prefer-
ences. It was found that 35 like poppy seed bagels, 33 like onion bagels, and 26
like chocolate bagels. There were 18 who like both poppy seed and onion, and
nine who like both poppy seed and chocolate, while 12 enjoyed only chocolate
from the three being discussed.

(i) How many customers enjoy onion and chocolate but do not like poppy
seed?
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(ii) How many liked onion but neither of the others?

(iii) How many did not like any of those flavors?

(iv) Can you tell how many liked all three?

8. Elizabeth’s Chocolate Company sells milk chocolates, dark chocolates, and
white chocolates. On one day, 164 customers bought chocolates. 120 of them
purchased a selection that included milk chocolates, 114 included dark choco-
lates in their order, and 84 included white chocolates. There were 80 who bought
both dark and milk and 64 who bought both white and milk, while 40 bought all
three varieties. Draw a Venn diagram to represent these data.

(i) How many bought both dark and white chocolate but no milk chocolate?

(ii) How many bought a milk and white assortment that included no dark
chocolate?

(iii) How many bought white chocolate only?

9. A shopping mall contains K-Mart, Wal-Mart, and Target stores. In a survey of
100 shoppers, it is found that

(a) 47 shopped at Wal-Mart;

(b) 61 shopped at K-Mart;

(c) 52 shopped at Target;

(d) 32 shopped at both Wal-Mart and K-Mart;

(e) 35 shopped at both K-Mart and Target;

(f) 22 shopped at both Wal-Mart and Target;

(g) 12 shopped at all three stores.

(i) How many of those surveyed shopped only at Wal-Mart?

(ii) How many shopped at Wal-Mart and K-Mart, but not at Target?

(iii) How many shopped at exactly one of the stores?

(iv) How many shopped at none of the three stores?

Exercises 1.5 B

1. Represent the following sets in a Venn diagram.

(i) R ∪ S ∪ T ;

(iii) R ∩ (S\T );

(ii) (R ∩ S) ∩ T ;

(iv) (R ∪ T )\(S ∩ T ).

2. Prove: R = (R ∪ S) ∪ (R ∩ S).

3. Find a simpler expression for S ∪ ((R ∪ S) ∩ R).

4. Use Venn diagrams to prove the commutative and associative laws for ∩:
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(i) (R ∩ S) = (S ∩ R);

(ii) ((R ∩ S) ∩ T ) = (R ∩ (S ∩ T )).

5. Use Venn diagrams to prove the distributive law

R ∩ (S ∪ T ) = (R ∩ S) ∪ (R ∩ T ).

6. Prove the following rules using Venn diagrams:

(i) S ∩ S = ∅;

(ii) S ∪ T = S ∩ T ;

(iii) S ⊆ (S ∪ T ).

7. For any sets R and S, prove R ∩ (R ∪ S) = R.

8. Among 1000 personal computer users it was found that 375 have a scanner and
450 have a DVD player attached to their computer. Moreover, 150 had both
devices.

(i) How many had either a scanner or a DVD player?

(ii) How many had neither device?

9. A survey was carried out. It was found that ten of the people surveyed were
drinkers, while five were smokers; only two both drank and smoked, but seven
did neither. How many people were interviewed?

10. 50 people were asked about their book purchases. 20 said they had bought at
least one fiction book in the last week, 30 had bought at least one non-fiction
book, and ten had bought no books. Assuming that any book can be classified
as either fiction or non-fiction, how many of the people interviewed had bought
both fiction and non-fiction during the week?

11. 60 people were asked about news magazines. It was found that 32 read Newsweek
regularly, 25 read Time, and 20 read U.S. News and World Report. Nine read both
Time and U.S. News and World Report, 11 read both Newsweek and Time, and
eight read both Newsweek and U.S. News and World Report. Eight of the people
do not read any of the magazines.

(i) How many read all three magazines?

(ii) Represent the data in a Venn diagram.

(iii) How many people read exactly one of the three magazines?

12. Of 100 high school students, 45 were currently enrolled in Mathematics courses,
38 were enrolled in Science, and 21 were enrolled in Geography. There were 18
in both Math and Science and nine in both Math and Geography, while 12 were
taking Geography but neither of the other subjects. Exactly five students were
taking all three subjects, and there were 23 not currently enrolled in any of the
three subjects. Represent these figures in a Venn diagram. How many students
were taking precisely one of the three subjects? How many were taking precisely
two?
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13. Of 100 personal computer users surveyed, 27 use Dell, 35 use Gateway, and 35
use Hewlett-Packard. Ten of them use both Dell and Gateway, eight use both
Dell and Hewlett-Packard, and 12 use both Gateway and Hewlett-Packard. Four
use all three.

(i) How many use exactly one of these brands?

(ii) How many only use other brands?

14. Freshmen at New College are required to attend at least one orientation lec-
ture. Three lectures are held. Of the 450 freshmen, 136 attended the morning
lecture, 185 the afternoon lecture, and 127 the evening lecture. There were 20
who attended both morning and afternoon, 20 who attended both afternoon and
evening, and five who attended both morning and evening. A total of 41 students
attended more than one lecture.

(i) How many students attended all three lectures?

(ii) How many students failed to attend any lecture?

15. Researchers at IBM were surveyed about their qualifications in computer sci-
ence. It was found that 214 have a Bachelor’s degree, 123 have a Master’s de-
gree, and 99 have a Ph.D. It was further found that 57 have both Bachelor’s and
Master’s degrees, 74 have both Master’s and Ph.D., and 22 have both Bachelor’s
and Ph.D. degrees.

(i) Show that at least eight of the researchers have all three degrees.

(ii) Suppose that all of the researchers with both a Bachelor’s degree and a Ph.D.
also hold a Master’s degree in the field. How many have all three degrees?
How many came into computer science from another field: that is, they have
either a Master’s or a Ph.D., but no Bachelor’s degree?

16. A survey of students found that:

(a) 62 were enrolled in Calculus;

(b) 71 were enrolled in Algebra;

(c) 67 were enrolled in Discrete Mathematics;

(d) 37 were enrolled in both Calculus and Algebra;

(e) 32 were enrolled in both Calculus and Discrete Mathematics;

(f) 40 were enrolled in both Algebra and Discrete Mathematics;

(g) 12 were enrolled in all three subjects;

(h) 44 were enrolled in none of the three.

(i) How many were enrolled in both Calculus and Algebra but not in Discrete
Mathematics?

(ii) How many were enrolled in exactly one of the three subjects?

(iii) How many students were surveyed?



1.6 Averages 43

17. A pet store surveyed 120 of its customers. It was found that 55 of them owned
dogs, 50 owned cats, and 40 owned goldfish. Further, 20 own both dogs and cats,
15 own both dogs and goldfish, and 12 own both cats and goldfish. Draw a Venn
diagram to represent these data.

(i) How many customers own dogs and cats but do not own goldfish?

(ii) How many own none of these three kinds of pets?

18. Prove, using Venn diagrams, that (R\S)\T = R\(S\T ) does not hold for all
choices of sets R, S and T . In other words, show that there are some choices for
R, S and T such that the equation is not true.

1.6 Averages

Central Tendency

Suppose you measure the noon temperature in your home town on ten summer days.
The Fahrenheit temperature readings, arranged in ascending order, might be

F = {76, 79, 80, 81, 83, 83, 84, 84, 84, 86}.
If somebody asked you what is a typical noon summer temperature, there are

three logical answers.

First, you might add the ten readings and divide by 10, giving the answer 82◦.
This is called the mean or average temperature.

Second, you might say 84◦ because that is the most common answer. It came up
three times. This is called the mode of F .

Finally, the median or half-way point is the reading at the midpoint of the list
(after it has been put in ascending or descending order). As F has ten elements, the
midpoint lies between the fifth and sixth readings. Each equals 83, so the median is
83◦.

All three measures are attempts to answer the question, “what is the center of
the collection of temperatures?” For this reason the mean, mode, and median are all
called measures of central tendency.

Sample Problem 1.27. What are the mean, mode, and median of the following
collections?

S = {13, 13, 11, 14, 15},
T = {8, 13, 12, 15, 10, 26}.
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Solution. S has sum 66, so the mean is 66/5 = 13.2. The mode is 13, the only
reading to appear twice. To find the median, first write the readings in ascending
order: 11, 13, 13, 14, 15. The “center” reading is 13, so the median is 13.

T has sum 84, so its mean is 14. Its median is 12.5 (after the readings are re-
ordered as 8, 10, 12, 13, 15, 26, the two “center” values are 12 and 13; when they
are unequal, take the average of the two). There is no mode because no reading
occurs more frequently than any other.

Your Turn. What are the means, modes, and medians of the following collec-
tions?

U = {7, 9, 2, 3, 6, 7, 15},
V = {14, 22, 24, 17, 21, 19}.

Notice the use of the word “collection” rather than “set” because often the data
or observations will not form sets; there will be repetitions. Also observe from the
examples that neither the mean nor the median need be members of the collection.
In fact, all the collections we looked at were integers, but the mean and median were
not always integers.

The Mean

The mean mX of an n-element collection X = {x1, x2, . . . , xn} is defined by the
formula

mX =
∑n

i=1 xi

n
.

If only one set is involved, the subscript X is often omitted.

Suppose a new collection Y = {y1, y2, . . . , yn} is defined by the rule

yi = a + xi.

Then

mY =
∑n

i=1 yi

n
=

∑n
i=1 a + xi

n
= na + ∑n

i=1 xi

n
= a + mX.

So we have the rule:

If the members of Y are obtained by adding a to each member of X, then
the mean of Y is obtained by adding a to the mean of X.

The number a can be positive or negative. This rule is useful in practice, as the
following example shows.
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Sample Problem 1.28. Find the mean of

X = {1051, 1053, 1054, 1055, 1059}.

Solution. We define Y by the rule “yi = xi − 1050”. Then Y = {1, 3, 4, 5, 9};
mY = 22/5 = 4.4, so mX = 4.4 + 1050 = 1054.4.

Your Turn. Use this method to find the mean of

{833, 834, 836, 837, 841, 841}.

When the collection of data is large, there will sometimes be several copies of
the same value. If there are f members all equal to the same value x, then f is called
the frequency of x. For example, the collection F of temperatures that we discussed
at the beginning of this section might be described by saying

76, 79, 80, 81, and 86 each have frequency 1; 83 has frequency 2; 84 has
frequency 3.

If we wish, we can also say that 77, 78, 82, and 85 (and all values outside the range)
have frequency 0.

If the collection X consists of elements {x1, x2, . . . , xk}, where x1 has frequency
f1, x2 has frequency f2, and so on, then its mean is

mX =
∑k

i=1 xifi
∑k

i=1 fi

.

Sample Problem 1.29. The scores in a quiz are integers ranging from 0 to 5. The
frequencies of the scores are:

x 0 1 2 3 4 5
f 2 0 10 14 4 1

.

What is the mean score?

Solution. The sum of the terms xifi is

0 × 2 + 1 × 0 + 2 × 10 + 3 × 14 + 4 × 4 + 5 × 1 = 83

while the sum of the frequencies is

2 + 0 + 10 + 14 + 4 + 1 = 31

so the mean is 83/31 = 2.6774 . . . or about 2.68. In practice we would say the
mean is “about 2.7”, or even “between 2 and 3”, because fractional scores were
not given.
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Your Turn. Find the mean of the following data:

x 2 3 4 5 6 7 8
f 1 3 7 11 12 4 1

.

Instead of a table, data like this is often represented graphically in a histogram,
a diagram with a column for each possible value, where the height of the column
is proportional to the frequency of that value. Here is the histogram for the data of
Sample Problem 1.29.

Measures of Variation

Even when you have decided which measure of central tendency to use, and calculate
it, you do not know all about your collection of readings. For example, consider two
towns. Placidville has similar weather on most summer days; the temperatures on 11
consecutive days were

P = {78, 79, 80, 81, 82, 83, 83, 84, 84, 84, 84}.
In Wildtown the weather is far more extreme, with sudden cold and hot changes;
over eleven days, the recorded temperatures were

W = {69, 71, 75, 81, 82, 83, 84, 84, 89, 91, 93}.
In both cities, the mean, mode and median were 82◦, 84◦, and 83◦, respectively.
However, there is far more temperature variation in Wildtown than in Placidville.

Several measures of variation, or spread, are used. We shall define the standard
deviation.

The Standard Deviation

If a set of observations has mean m, the deviation of an observation x from m is
x − m. At first it seems that the average of the deviations would be a good measure
of variation. However, the mean deviation is always zero! The negative and positive
contributions cancel each other out.
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Better measures can be found by averaging the absolute values of the deviations.
Given an n-element collection X = {x1, x2, . . . , xn} with mean mX, we consider the
values

|x1 − mX|, |x2 − mX|, . . . , |xm − mX|.
For technical reasons, the most reliable measure is found by averaging the squares of
the deviations and taking the square root of this average. So we define the standard
deviation sX of the set X to be

sX =
√∑n

i=1(xi − mX)2

n
.

The quantity s2
X, which must be calculated before the square root is taken, is the

variance of the set X.

Sample Problem 1.30. Calculate the standard deviation of the daily tempera-
tures in Wildtown and Placidville.

Solution. The mean for Wildtown is 82, so the variance is
[
(69 − 82)2 + (71 − 82)2 + (75 − 82)2 + (81 − 82)2 + (82 − 82)2

+ (83 − 82)2 + (84 − 82)2 + (84 − 82)2 + (89 − 82)2 + (91 − 82)2

+ (93 − 82)2]/11

= [169 + 121 + 49 + 1 + 0 + 1 + 4 + 4 + 49 + 81 + 121]/11

= 599/11 = 54.4545 . . .

and the standard deviation is about 7.2. The mean for Placidville is again 82, so
its variance is

[
(78 − 82)2 + (79 − 82)2 + (80 − 82)2 + (81 − 82)2 + (82 − 82)2

+ (83 − 82)2 + (83 − 82)2 + (84 − 82)2 + (84 − 82)2 + (84 − 82)2

+ (84 − 82)2]/11

= [16 + 9 + 4 + 1 + 0 + 1 + 1 + 4 + 4 + 4 + 4]/11

= 48/11 = 4.3636 . . .

and the standard deviation is about 2.1.

The standard deviation of a set of observations will be unchanged if any con-
stant is added to, or subtracted from, each observation. For example, in discussing
Placidville, we could just as easily have subtracted 80 from each reading, and found
the standard deviation of {−2,−1, 0, 1, 2, 3, 3, 4, 4, 4, 4}.
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If the collection X consists of elements {x1, x2, . . . , xk}, where x1 has frequency
f1, x2 has frequency f2, and so on, then its standard deviation is

sX =
∑k

i=1 xi − mX
2fi

∑k
i=1 fi

.

A Formula for Standard Deviation

The formula for variance can be rewritten as

ns2
X =

n∑

i=1

(xi − mX)2

=
n∑

i=1

(
x2
i − 2ximX + m2

X

)

=
(

n∑

i=1

x2
i

)

− 2

(
n∑

i=1

ximX

)

+
(

n∑

i=1

m2
X

)

=
(

n∑

i=1

x2
i

)

− 2mX

(
n∑

i=1

xi

)

+ nm2
X.

Now
∑n

i=1 xi = nmX (this is just the equation for mX, multiplied on both sides
by n), so

2mX

(
n∑

i=1

xi

)

= 2nm2
X,

and

ns2
X =

(
n∑

i=1

x2
i

)

− 2nm2
X + nm2

X =
(

n∑

i=1

x2
i

)

− nm2
X,

giving the formula

sX =
√

(
∑n

i=1 x2
i ) − nm2

X

n
.

This formula is often more convenient for calculations, as the following (very small)
example shows.

Sample Problem 1.31. Find the standard deviation of the data set {1, 1, 1, 2, 3,

3, 5}.
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Solution. The data add to 16, so the mean is 16
7 = 2.285714. Using the original

standard deviation formula, each calculation must include several decimal places
in order to ensure accuracy. However, using the new formula, we find

7s2
X = [

12 + 12 + 12 + 22 + 32 + 32 + 52] − 7

(
16

7

)2

= [1 + 1 + 1 + 4 + 9 + 9 + 25] − 256

7
= 50 − 36.5714 = 13.4286

so s2
X = 1.91837, and sX = 1.39 (correct to two decimal places).

Your Turn. Find the standard deviation of the data {1, 1, 2, 2, 3, 4, 4}.

Exercises 1.6 A

1. Find the mean and median of the following sets of data:

(i) {17, 19, 23, 30};
(ii) {8, 13, 20, 12, 29};

(iii) {14, 15, 23, 22, 24, 19}.
2. Find the mean, mode, and median of the following sets of data:

(i) {3, 16, 10, 1, 4, 2, 6, 2};
(ii) {−3, 5, 8, 1,−4, 6, 6, 6};

(iii) {2, 10, 10, 1, 1, 2, 7, 9, 11, 12}.
3. Find the mean of the data {2, 3, 5, 2, 7, 9, 7}, and list the deviations of the data

from the mean. Verify that the mean deviation is zero.

4. For each set of data in Exercise 2, what is the standard deviation?

5. Find the mean and standard deviation of the following data. Under each score is
listed its frequency

x 1 2 3 4 5 6
f 5 2 4 4 7 4

.

6. Draw a histogram representing the data in the preceding exercise.

Exercises 1.6 B

1. Find the mean and median of the following collections of data:

(i) {15, 17, 28, 21};
(ii) {14, 13, 18, 12, 24};
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(iii) {17, 25, 13, 22, 14, 29};
(iv) {12, 13, 19, 20, 16};
(v) {11, 20, 15, 21, 14, 28, 17}.

2. Find the mean, mode, and median of the following collections of data:

(i) {5, 3, 4, 7, 7};
(ii) {8, 11, 5, 4, 9};

(iii) {8, 12, 10, 4, 4, 7, 6, 11};
(iv) {−3,−5, 6, 4,−4, 6, 6, 8};
(v) {9, 10, 7, 9, 1, 2, 7, 9, 11, 7};

(vi) {73, 77, 72, 70, 77, 83, 86, 84};
(vii) {43, 46, 50, 43, 47, 53, 46, 44};

(viii) {1081, 1083, 1088, 1086, 1087};
(ix) {944, 942, 940, 947, 949}.

3. Find the mean of the data {6, 3, 4, 2, 7, 3, 3}, and list the deviations of the data
from the mean. Verify that the mean deviation is zero.

4. For each set of data in Exercise 2, what is the standard deviation?

5. Find the mean, mode, median, and standard deviation of the following collec-
tions of data:

(i) {2, 4, 8, 3, 8};
(ii) {7, 11, 2, 4, 6, 6};

(iii) {−2,−2, 3, 1, 4, 2, 4,−2};
(iv) {−3,−2, 1, 1,−2, 3, 5, 5};
(v) {2,−2, 5,−3, 3, 7};

(vi) {27, 25, 28, 30, 30};
(vii) {−5,−6, 4, 14, 17,−7, 6, 4, 3,−5};

(viii) {21, 23, 23, 25, 23}.
6. In the following data, under each score is listed its frequency. In each case:

(a) Draw a histogram representing the data;

(b) Find the mean and standard deviation:

(i)
x 1 2 3 4 5 7 9
f 2 1 3 2 4 5 3

;
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(ii)
x 27 28 30 31 33 35
f 1 2 3 1 2 1

;

(iii)
x 1 2 3 4 5 6 7 8 9
f 3 3 2 3 5 4 3 2 3

;

(iv)
x 17 18 19 20 21 22 23 24
f 2 3 3 2 4 8 4 3

.
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Counting

2.1 Basic Counting Principles

Inclusion and Exclusion

Suppose S and T are any two sets, and you want to list all members of S ∪ T . If
you list all members of S, then list all the members of T , you will cover all members
of S ∪ T , but those in S ∩ T will be listed twice. To count all members of S ∪ T ,
you could count all members of both lists, then subtract the number of duplicates. In
other words,

|S ∪ T | = |S| + |T | − |S ∩ T |. (2.1)

This is the simplest case of a rule called the principle of inclusion and exclusion,
and you can remember it in the following way. To list all members of the union of two
sets, list all members of the first set and all members of the second set. This ensures
that all members are included. However, some elements—those in S ∩ T —will be
listed twice, so it is necessary to exclude the duplicates.

Methods for finding the sizes of sets are often used to count the number of mem-
bers of a universal set that have a particular property. If S is the set of all the objects
that have some property A and T is the set of all the objects with property B, then
(2.1) expresses the way to count the objects that have either property A or prop-
erty B:

(i) count the objects with property A;

(ii) count the objects with property B;

(iii) count the objects with both properties;

(iv) subtract the third answer from the sum of the other two.

As an example, we repeat Sample Problem 1.24, and solve it using (2.1).

W.D. Wallis, A Beginner’s Guide to Finite Mathematics,
DOI 10.1007/978-0-8176-8319-1_2, © Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-8176-8319-1_2
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Sample Problem 2.1. Recall that there are 40 students in Dr. Brown’s finite
mathematics course and 50 in his calculus section. If these are his only classes,
and if 20 of the students are taking both subjects, use (2.1) to calculate how many
students he has altogether.

Solution. Using the notation F for the set of students in the finite mathematics
class and C for calculus, (2.1) is

|F ∪ C| = |F | + |C| − |F ∩ C| = 40 + 50 − 20 = 70,

so he has 70 students.

The Rule of Sum

Another rule, sometimes called the rule of sum, can be simply expressed by saying
“the number of objects with property A equals the number that have both property
A and property B, plus the number that have property A but not property B”; if
properties A and B are related to sets S and T as before, this is

|S| = |S ∩ T | + |S\T |. (2.2)

If we rewrite (2.2) as

|S\T | = |S| − |S ∩ T |
and substitute into (2.1), we obtain

|S ∪ T | = |T | + |S\T |. (2.3)

Sample Problem 2.2. Suppose the set S has 25 elements, T has 17 elements, and
S ∩ T has seven elements. Find |S ∪ T | and |S\T |.

Solution. From (2.1) we see

|S ∪ T | = |S| + |T | − |S ∩ T | = 25 + 17 − 7 = 35.

From (2.2) we get

|S\T | = |S| − |S ∩ T | = 25 − 7 = 18.

Your Turn. Suppose |S| = 42, |T | = 32, and |S ∩ T | = 22. Find |S ∪ T | and
|S\T |.
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The Multiplication Principle

It is sometimes useful to break an event down into several parts, forming what we
shall call a compound event. For example, suppose you are planning a trip from Los
Angeles to Paris, with a stopover in New York. You have two options for the flight
to New York: a direct flight with United or an American flight that stops in Chicago.
For the second leg, you consider the direct flight with Air France, a British Airways
flight through London, and Lufthansa stopping in Frankfurt. There are two ways to
make the first flight and three to make the second, for a total of six combinations.

Suppose S is the set of available flights for the first leg and T is the set of available
flights for the second leg. Then the flight combinations correspond to the members
of the Cartesian product S × T , and in this example

|S| = 2, |T | = 3, |S × T | = |S| · |T | = |2 · 3| = 6.

The correspondence between compound events and Cartesian products applies
in general. If S is the set of cases where A occurs, and T is the set of cases where
B occurs, then the possible combinations correspond to the set S × T , which has
|S| · |T | elements. This idea is usually applied without mentioning the sets S and
T . Suppose the event A can occur in a ways, and the event B can occur in b ways,
then the combination of events A and B can occur in ab ways. This very obvious
principle is sometimes called the multiplication principle or rule of product. It can
be extended to three or more sets.

Sample Problem 2.3. To open a bicycle lock you must know a three-number
combination. You must first turn to the left until the first number is reached, then
back to the right until the second number, then left to the third number. Any num-
ber from 1 to 36 can be used. How many combinations are possible?

Solution. There are 36 ways to choose the first number, 36 ways to choose the
second, and 36 ways to choose the third. So there are 36 · 36 · 36 combinations.

Your Turn. Your debit card has a 4-digit PIN. If you can use any digits, how
many PINs are possible?

The multiplication principle only works when the events are performed indepen-
dently—if the result of A is somehow used to affect the performance of B, some com-
bined results may be impossible. In the airline example, if the United flight leaves
too late to connect with the Air France flight, then your choices are not independent,
and only five combinations would be available.

An Extension of the Multiplication Principle

Suppose a class of 20 students has to elect a main representative and an alternate
representative to attend faculty meetings. The alternate will attend only if the main
appointee is unavailable, so the two students selected must be different.



56 2 Counting

There are 20 candidates for the main position. No matter which one is chosen,
there will be 19 candidates for alternate. So the total number of possible choices is
20 · 19 = 380.

The second choice is not independent of the first choice. The set of candidates
for the second election will depend on the choice made in the first election. So this is
not an application of the multiplication principle. But it uses a similar idea—treating
the occurrence, whose possible outcomes are to be counted, as though it were a
compound event.

Sample Problem 2.4. A high school class contains 10 boys and 13 girls. They
have boys’ and girls’ charity drives, and wish to elect a chair and treasurer for
each. The same person cannot be both chair and treasurer. How many combina-
tions are possible?

Solution. There are 10 ways to select the boys’ chair, and when this is done there
are nine ways to select their treasurer. So there are 90 ways to select the boys’
committee. In the same way, there are 13 · 12 = 156 ways to select the girls’
committee. So the total is 90 · 156 = 14040.

Your Turn. What is the answer if each committee also has a secretary?

Sometimes the order of the elements in a set is unimportant, but sometimes the
order is significant. Suppose S is a set with n elements. How many different ways
are there to order the elements of S?

We solve this by treating the ordering as a compound event with n parts. There are
n ways to choose the first element of the ordered set. Whichever element is chosen,
there remain n−1 possible choices for the second element. When two elements have
been selected, there are n − 2 choices for the third element.

In this way, we see that there are n · (n − 1) · (n − 2) · · · 3 · 2 · 1 ways to order S.
This number is called n factorial, and denoted n!. So

n! = n · (n − 1) · (n − 2) · · · 3 · 2 · 1.

For convenience, we define 0! to equal 1.

The different ways of ordering the set S are called permutations of S.

Sample Problem 2.5. Evaluate 10!.
Solution. 10! = 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1 = 362880.

Your Turn. Evaluate 6!.
Sample Problem 2.6. A committee of three people—chair, secretary, and
treasurer—is to be elected by a club with 11 members. If every member is eli-
gible to stand for each position, how many different committees are possible?
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Solution. We can treat the selection of the committee as a compound event with
three parts: choose the chair, choose the secretary, and choose the treasurer. These
parts can be performed in 11, 10, and 9 ways, respectively. So there are 11 · 10 · 9
committees possible.

Your Turn. What is the number of committees if there are 9 members?

This more general method is often combined with the regular multiplication prin-
ciple.

Sample Problem 2.7. Three boys and four girls are to sit along a bench. Three
boys must sit together, as must the girls. How many ways can this be done.

Solution. We treat this as a compound event with three parts. First, it is decided
whether the boys are to be on the left or on the right. This can be done in two
ways. Then the ordering of the boys is chosen. This can be done in 3! = 6 ways.
Finally, the girls are ordered. This can be accomplished in 4! = 24 ways. So there
are 2 · 6 · 24 = 288 arrangements.

Your Turn. How many ways could five boys and four girls be seated on two
benches, if the boys must sit on the back bench and the girls on the front?

Exercises 2.1 A

1. Suppose |S| = 19, |T | = 11, and |S ∩ T | = 8. Find |S ∪ T | and |S\T |.
2. Suppose |S| = 22, |T | = 12, and |S ∪ T | = 28. Find |S ∩ T | and |S\T |.
3. Suppose |S| = 30, |T | = 24, and |S\T | = 12. Find |S ∩ T | and |S ∪ T |.
4. Suppose |S| = 52, |T | = 50, and |S ∪ T | = 62. Find |S\T | and |T \S|.
5. Suppose |S| = 20, |T | = 18, and |S ∩ T | = 13. Find |S\T | and |T \S|.
6. A survey of 1100 voters it was found that 275 of them will vote in favor of a 1

2 %

increase in sales tax for Public Safety funding, 550 will vote in favor of a 1
4 %

increase in income tax for school funding, and 200 of these will vote for both
tax increases.

(i) How many favor the school tax but not the Public Safety tax?
(ii) How many will vote for neither option?

7. In a survey of 500 people, 300 said they intended to holiday in another state
within the next twelve months, and 100 said they would holiday overseas. Of
these, 50 planned to take both types of holiday. Use (2.1) and the rule of sum
to calculate: How many people planned to take an overseas holiday but not an
interstate holiday? How many did not plan to holiday outside their state?
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8. A true–false test consists of eight questions. Assuming you answer all questions,
how many ways are there to answer the test?

9. There are three roads from town X to town Y , four roads from town Y to town Z,
and two roads from town X to town Z.

(i) How many routes are there from town X to town Z with a stopover in
town Y ?

(ii) How many routes are there in total from town X to town Z?

(Assume that no road is traveled twice.)

10. One form of Illinois license plate consists of three letters followed by three dig-
its.

(i) How many different licence plates are possible?
(ii) If the letters O and I are never used, how many licence plates are possible?

11. List all different permutations of the set {A,B,C}.
12. The three boys and four girls in the choir are to sit on two benches. The boys

must sit on the back bench and the girls on the front. How many different ways
can they be seated?

13. A multiple-choice quiz contains 8 questions. Each has three possible answers.

(i) If you must answer every question, how many different answer sheets are
possible?

(ii) If you may either answer a question or leave a blank, how many different
answer sheets are possible?

14. In how many different ways can you order the letters of the word “BREAK”?

15. How many different ways can five people stand in line?

16. Ten midsize cars are available for rental. Three customers arrive, and each
chooses a midsize. In how many different ways can the choice be made?

17. You have six textbooks for your courses and four notebooks.

(i) In how many ways can you stack your books?
(ii) In how many ways can you stack your books, if all the notebooks are to go

on the bottom?

Exercises 2.1 B

1. Suppose |S| = 20, |T | = 14, and |S ∩ T | = 8. Find |S ∪ T | and |S\T |.
2. Suppose |S| = 22, |T | = 23, and |S ∪ T | = 34. Find |S ∩ T | and |S\T |.
3. Suppose |T | = 37, |S ∩ T | = 7, and |S\T | = 14. Find |S| and |S ∪ T |.
4. Suppose |S| = 44, |T | = 18, and |S ∩ T | = 12. Find |S ∪ T | and |S\T |.
5. Suppose |S| = 17, |T | = 19, and |S ∪ T | = 24. Find |S ∩ T | and |S\T |.
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6. Suppose |S| = 34, |T | = 34, and |S\T | = 18. Find |S ∩ T | and |S ∪ T |.
7. Suppose |S| = 24, |S ∩ T | = 6, and |S ∪ T | = 28. Find |T | and |S\T |.
8. Suppose |S ∪ T | = 28, |S ∩ T | = 6, and |S\T | = 12. Find |S| and |T |.
9. Suppose |S ∪ T | = 26, |S\T | = 2 and |T \S| = 3. Find |S| and |T |.

10. Among 440 telephone subscribers, 240 have blocked anonymous callers and 300
have blocked calls from telemarketers. In total, 360 have blocked at least one of
these types of call.

(i) How many have blocked both anonymous callers and telemarketers?
(ii) How many have blocked neither?

11. Among 1000 telephone subscribers it was found that 475 have answering ma-
chines and 250 call waiting. Moreover 150 had both options.

(i) How many had either an answering machine or call waiting?
(ii) How many had neither option?

12. Out of 400 people surveyed, 100 said they plan to buy a new house within the
next three years, and 200 expected to buy a new car in that period. Of these,
50 planned to make both kinds of expenditure. Use (2.1) and the rule of sum to
find out how many planned to buy a new house but not buy a new car, and how
many planned to buy a new car but not buy a new house.

13. The menu in a restaurant lists three appetizers, five entrees and three desserts.
In how many ways can you order a three-course meal of appetizer, entree and
dessert?

14. International airport codes consist of three letters. How many codes are possible?

15. There are 13 contestants. No ties are allowed. In how many different ways can
the judges award first, second, and third prize?

16. In a multiple-choice test, each question has four different possible answers. If
there are five questions, and all questions must be answered, how many different
answer sheets are possible?

17. The ACME company uses serial numbers consisting of three letters followed by
five digits. How many possible serial numbers are there?

18. Dave’s Pizza sells eight different pizzas by the slice and five different brands of
soda. If you want to order a pizza slice and a soda for lunch, how many different
combinations could you choose?

19. Your PIN number consists of four digits; the first cannot be zero.

(i) How many such PIN numbers are possible?
(ii) How many allowable PIN numbers have no zeros anywhere?

(iii) How many allowable PIN numbers have all digits different?
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20. For your soup-and-salad lunch, you must choose between five soups, three sal-
ads, and six dressings. Assuming you choose a soup, a salad, and a dressing,
how many different possible lunches could you order?

21. List all different permutations of the set {1, 2, 3, 4}.
22. On your bookshelf you have five novels and five textbooks.

(i) How many different ways can you arrange your books?
(ii) How many different ways can you arrange your books, if all the novels go

on the left and all the textbooks go on the right?

23. On your bookshelf you have five Mathematics textbooks and four Chemistry
textbooks.

(i) How many different ways can you arrange your books?
(ii) How many different ways can you arrange your books, if all the Chemistry

books go on the left?

24. Derive the formula

|A ∪ B ∪ C| = |A| + |B| + |C| − |A ∩ B| − |A ∩ C| − |B ∩ C|
+ |A ∩ B ∩ C|.

25. Prove that (2n)!/n! = 2n(1 · 3 · 5 · · · (2n − 1)), and consequently that, for any
positive integer n,

2 · 6 · 10 · · · (4n − 6) · (4n − 2) = (n + 1) · (n + 2) · · · (2n − 1) · 2n.

2.2 Arrangements

Sequences on a Set

Suppose S is a set with s elements. We often need to know how many k-element
ordered sets or k-sequences or arrangements of size k can be chosen from S. This
number is denoted P(s, k). In particular, P(s, s) denotes the number of s-sequences
that can be chosen from an s-set, which is the same as the number of permutations
of S. It follows that P(s, s) = s!. For this reason arrangements of size k are often
called permutations of size k.

Given an s-set S = {x1, x2, . . . , xs}, there are s different sequences of length 1
on S, namely (x1), (x2), . . . , and (xs). So P(s, 1) = s. There are s ·(s−1) sequences
of length 2, because each sequence of length 1 can be extended to length 2 in s − 1
different ways, and no two of these s · (s − 1) extensions will ever be equal. So
P(s, 2) = s(s − 1). Similarly, we find
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P(s, 3) = s · (s − 1) · (s − 2),

P (s, 4) = s · (s − 1) · (s − 2) · (s − 3),

...

P (s, k) = s · (s − 1) · (s − 2) · · · (s − k + 1).

So P(s, k) is calculated by multiplying, s, s − 1, s − 2, . . . until there are k factors.

It follows that

P(s, k) = s!/(s − k)!. (2.4)

Sample Problem 2.8. Calculate P(10, 3).

Solution. There are two ways to calculate P(10, 3). We could say P(10, 3) =
10 · 9 · 8 = 720. Or we could use the formula:

P(10, 3) = 10!/7! = 362880/5040 = 720.

The first way is easier.

Your Turn. Calculate P(6, 4).

Several of the problems in the preceding section, such as those on selecting a
committee, asked for the number of sequences of a certain length, and their solutions
can sometimes be stated compactly by using arrangements.

Sample Problem 2.9. A committee of three people—chair, secretary, and
treasurer—is to be elected by a club with 14 members. If every member is eli-
gible to stand for each position, how many different committees are possible?

Solution. We can treat the committee as an ordered set of three elements chosen
from the 14-element set of members. So the answer is P(14, 3), or 2184.

Your Turn. What is the number of committees if there are 12 members?

Sometimes an added condition makes the solution of a problem easier, not harder.
For example, arranging people around a circular table is no more difficult than ar-
ranging them in a line, and sometimes easier.

Suppose n people are to sit around a circular table. We start by arbitrarily labeling
one seat at the table as “1”, the one to its left as “2”, and so on. Then there are n!
different ways of putting the n people into the n seats. However, we have counted
two arrangements as different if one is obtained from the other by shifting every
person one place to the left because these two arrangements put different people in
“1”; but they are clearly the same arrangement for the purposes of the question. Each
arrangement is one of a set of n, all obtained from the others by shifting in a circular
fashion. So the number of truly different arrangements is n!/n, which equals (n−1)!.
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Sample Problem 2.10. How many ways can you make a necklace by threading
together seven different beads?

Solution. Suppose you put the beads on a table before threading them. There
would be (n − 1)! = 6! = 720 ways to arrange them in a circle. However, after
the beads are threaded, the necklace could be flipped over, so every necklace has
been counted twice (for example, abcdefg and agf edcb are the same necklace).
Therefore, the total number is 6!/2 = 360.

Your Turn. How many ways could the three boys and four girls be arranged
around a circular table if the boys must sit together and the girls as well?

Sample Problem 2.11. Kirsten’s Kopying Kompany has eight photocopying ma-
chines and seven employees who can operate them. There are four copying jobs
to be done simultaneously. How many ways are there to allocate these jobs to
operators and machines?

Solution. Call the jobs A,B,C,D. Choose two arrangements: first, which four
operators should do the jobs; second, which machines should be used. The op-
erator choice can be made in P(7, 4) ways, and the machines in P(8, 4) ways.
In each case, the first member of the sequence is the one allocated to job A, the
second to job B, and so on. There are P(7, 4) ·P(8, 4) = 7 · 6 · 5 · 4 · 8 · 7 · 6 · 5 =
1411200 ways.

Sample Problem 2.12. The club in Sample Problem 2.9 wishes to elect a by-
laws committee with three members—Chair, Secretary, and Legal Officer—and
requires that no members of the main club committee be members of the by-laws
committee. In how many different ways can the two committees be chosen?

Solution. Suppose the main committee is chosen first. There are P(14, 3) =
2184 ways to do this. After the election, there are 11 members eligible for elec-
tion to the by-laws committee, so it can be chosen in P(11, 3) = 990 ways. So
there are a grand total of 2184 · 990 = 2162160.

In the preceding Sample Problem we see that, even in small problems, the num-
bers get quite large. It might be better to report the answer in its factored form, as
14 · 13 · 12 · 11 · 10 · 9. This form of answer also makes it clear that we could have
solved the problem by treating the two committees as one six-member sequence,
with P(14, 6) possible solutions.

Arrangements with Repetitions

If repeated elements are allowed, the number of sequences that can be formed from a
set is far larger. If there is no restriction, then sk k-sequences can be formed from an
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k P (6, k) 6k P (6, k)/6k

1 6 6 1.00000
2 30 36 0.83333
3 120 216 0.55556
4 360 1296 0.27778
5 720 7776 0.09259
6 720 46656 0.01543

Table 2.1. Numbers of sequences without and with repetitions

s-set. To show just how great this difference is, even in small cases, Table 2.1 shows
the relative values of P(6, k) and 6k .

In some cases, repetitions are allowed but limited. Problems of this kind can be
modeled by talking about sets with a certain number of copies of each element. For
example, if you want to count the number of sequences of length five based on the
set {A,B} that contain no more than three A’s and no more than four B’s, you could
instead talk about 5-sequences selected from the set {A,A,A,B,B,B,B}.

To avoid the problems that can arise by having multiple copies of the same ele-
ment, we often talk of distinguishable and indistinguishable elements. For example,
many problems can be modeled in terms of selecting marbles from an urn; the usual
convention is that two sequences are distinguishable only if they differ in color se-
quence: any two blue marbles are indistinguishable.

One way to tackle these problems is to assume the “indistinguishable” objects can
be distinguished, and then take this into account. For example, consider the letters in
the word ASSESS. In how many distinguishable ways can you order these letters?

Suppose the letters were written on tiles with numbers as subscripts, like scrabble
tiles. Label them so that no two copies of the same letter get the same subscript,
for example, A1S1S2E1S3S4. Then all the 6 letters are different, and there are 6!
orderings. Say you have each of these orderings written on slips of paper.

Now collect together into one pile all the slips that differ only in their subscripts.
For example, A1E1S1S2S3S4 and A1E1S2S1S3S4 will be in the same pile, as will
A1E1S2S3S1S4, A1E1S4S2S3S1, and several others. In fact, we can work out how
many slips there are in a pile. There are four letters S, and one each of the others.
Two slips will be in the same pile when they have the letters in the same order, but
the subscripts on the S’s are in different order. There are 4! = 24 ways to order the
four subscripts, so there are 4! slips in each pile. Therefore, there are 6!/4! = 30
piles.

Two orderings can be distinguished if and only if their slips are in different piles,
so there are 6!/4! = 30 distinguishable orderings of ASSESS.

The same principle can be applied with several repeated letters. For example, if
SUCCESS is written as S1U1C1C2E1S2S3, we see that there are 2! ways of ordering
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the C’s and 3! ways if ordering the S’s, so each pile will contain 3! · 2! slips, and the
number of distinguishable orderings is 7!/(3! · 2!) = 420.

Sample Problem 2.13. In how many distinguishable ways can you order the let-
ters of the word MISSISSIPPI?

Solution. There are one M , four I ’s, four S’s and two P ’s, for a total of 11
letters. So the number of orderings is 11!/(4! · 4! · 2!) or 34650.

Your Turn. In how many distinguishable ways can you order the letters of the
word BANANA?

The problems are significantly harder if not all the available repetitions are used.

Sample Problem 2.14. An experimenter has an urn containing 12 marbles: five
red, two blue, and five green. Assuming that marbles of the same color are indis-
tinguishable, how many different sequences of length 4 can be chosen from the
set?

Solution. If unlimited numbers of each color were available, this would be the
same as the problem of selecting sequences of length 4 from a 3-set with unlim-
ited repetitions allowed, and there would be 34 = 81 solutions. It is necessary
to exclude those with three or four blue marbles. In the obvious notation, these
are BBBR, BBRB, BRBB, RBBB, BBBG, BBGB, BGBB, GBBB, and
BBBB, nine in total. So the answer is 81 − 9 = 72.

Your Turn. What is the answer if there are four red, three blue, and five green
marbles?

Exercises 2.2 A

1. Calculate:

(i) P(8, 3); (ii) P(4, 4);

(iii) P(5, 4); (iv) P(9, 2).

2. A palindrome is a “word” (any string of letters) that reads the same forwards or
backwards, such as CIV IC or AABAA. How many 5-letter palindromes are
there (using the ordinary, 26-letter alphabet)?

3. Five people are to sit at a round table.

(i) How many ways can they be seated?
(ii) How many ways can they be seated if two specific people must sit together?
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4. What are the answers to the preceding Exercise if the five people sit along a
straight bench, rather than a round table?

5. Three men and four women sit in a row. How many different ways can they do
it if:

(i) the men must sit together;
(ii) the women must sit together?

6. In how many ways can you arrange the letters of the following words?

(i) PROFESSOR; (ii) ACCESSORY ;

(iii) RUBBLE; (iv) BOOKKEEPER.

7. John likes to arrange his books. He has four western, five mystery and six science
fiction books, all different.

(i) In how many ways can he arrange them on a shelf?
(ii) In how many ways can he arrange them if all the books on the same subject

must be grouped together?

8. Suppose your student ID consists of six digits, of which the first cannot be 0
or 9.

(i) How many different ID numbers are possible?
(ii) How many different ID numbers are possible if no digit may appear more

than once?

9. Your PIN number consists of four digits. No repetitions are allowed, and 0 is not
to be used.

(i) How many PIN numbers are possible?
(ii) How many PIN numbers are smaller than 4000?

(iii) How many PIN numbers are even?
(iv) How many PIN numbers contain no number greater than 7?

Exercises 2.2 B

1. Calculate:

(i) P(8, 5); (ii) P(7, 2); (iii) P(4, 1);

(iv) P(7, 5); (v) P(5, 2); (vi) P(9, 4).

2. Calculate:

(i) P(8, 4); (ii) P(8, 2); (iii) P(6, 1);

(iv) P(6, 3); (v) P(5, 3); (vi) P(9, 3).

3. (i) How many ways are there of seating six people at a round table?
(ii) How many ways are there of seating six people at a round table so that two

specific people sit together?
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4. The deck for a card game consists of 24 different cards. You deal a sequence of
three cards from such a deck. How many different sequences are possible?

5. A football league consists of nine teams. Each team must play each other team
twice: once as home team, once as visitors.

(i) How many games must be played?
(ii) If each pair plays only once (that is, you don’t care which is the home team),

how many games must be played?

6. Five stereo systems are to be arranged in a line against the wall of the appliance
department.

(i) How many ways can this be done?
(ii) How many ways can they be arranged if the most expensive model must be

in the middle?

7. A basketball league consists of eight teams. Each team must play each other
team twice: once as home team, once as visitors. How many games must be
played?

8. You have a deck of nine cards: three (identical) aces of spades, three (identical)
Kings of hearts, and three (identical) Queens of clubs. In how many different
ways can you deal a sequence of four cards?

9. A company assigns serial numbers to its computers. Each number consists of
four digits followed by three letters.

(i) How many possible serial numbers are there?
(ii) How many possible serial numbers are there, if no digit can be repeated?

(iii) How many, if no repetitions of digits or letters are allowed?

10. Four men and four women are to be seated at a round table, with men and women
seated alternately. In how many different ways can they be seated?

11. Five men and four women are to be seated in a row, with men and women seated
alternately. In how many different ways can they be seated?

12. In how many ways can you arrange the letters of the following words?

(i) T ODDLER; (ii) OFFERED; (iii) BORROW ;

(iv) ARROWROOT ; (v) MOOSEWOOD; (vi) APPLESEED.

13. In how many ways can you arrange the letters of the following words?

(i) T OPPLE; (ii) PEPPERED; (iii) BOBBIN ;

(iv) LIFELINE; (v) HOOSEGOW ; (vi) BROWBEAT EN .

14. There are 10 speakers in a debate, five on each side. It is agreed that the first
speaker must speak in favor of the proposition, followed by a speaker against it,
then one in favor, then one against. The remaining six speakers may speak in any
order. In how many different ways can the debate be scheduled?
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2.3 Selections

Selections

Given a set S, we are often interested in knowing how many different subsets of a
given size are contained in S. This depends only on the size of S. We shall write
C(s, k) or

(
s
k

)
for the number of k-subsets of an s-set; it is usual to read the symbol

as “s choose k”. The form C(s, k) is used more frequently in specific practical cases,
while we write

(
s
k

)
in general or theoretical discussions. You should be familiar with

both notations.

Obviously
(
s
k

)
depends on the values s and k. We often call

(
s
k

)
or C(s, k) the

choice function (of s and k).

We can use the formula (2.4) to derive expressions for the numbers C(s, k). Sup-
pose S is a set with s elements. It is clear that every k-set that we choose from S gives
rise to exactly k! distinct k-sequences on S and that the same k-sequence never arises
from different k-sets. So the number of k-sequences on S is k! times the number of
k-sets on S, or

(
s

k

)
= P(s, k)

k! = s!
(s − k)!k! . (2.5)

When calculating
(
s
k

)
in practice, you would usually calculate P(s, k), then divide

by k!. So
(

s

k

)
= s · (s − 1) · (s − 2) · · · (s − k + 1)

1 · 2 · 3 · · · k .

There are k factors in the denominator and in the numerator.

Recall that we agreed to say 0! = 1. In combination with (2.5) this yields
(
s
0

) = 1.
This makes sense: it is possible to choose no elements from a set, but one cannot
imagine different ways of doing so. We also define

(
s
k

) = 0 if k > s. Again this
makes sense—there is no way to choose more than s elements from an s-set.

Sample Problem 2.15. Calculate C(8, 5) and
(6

6

)
.

Solution.

C(8, 5) = 8 · 7 · 6 · 5 · 4

5 · 4 · 3 · 2 · 1
= 56,

(
6

6

)
= 6!

0! × 6! = 1.

There is no need for calculation: the terms 6! in the numerator and denominator
cancel.

Your Turn. Calculate C(9, 5) and
(6

0

)
.
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Sample Problem 2.16. A student must answer five of the eight questions on a
test. How many different ways can she answer, assuming there is no restriction
on her choice and the order in which she answers them is unimportant?

Solution.
(8

5

) = 56 ways.

Your Turn. How many ways can she answer if she must choose five, one of
which is Question 1?

Sample Problem 2.17. Computers read strings consisting of the digits 0 and 1.
Such a string with k entries is called a k-bit string. How many 8-bit strings are
there that contain exactly five 1’s?

Solution. To specify a string, it is sufficient to say which positions have 1’s.
There are C(8, 5) choices, so the answer is C(8, 5) = 56.

Your Turn. How many 8-bit strings contain exactly four 1’s?

Sample Problem 2.18. How many ways can a committee of three men and two
women be chosen from six men and four women?

Solution. The three men can be chosen in
(6

3

)
ways; the two women can be

chosen in
(4

2

)
ways. Using the multiplication principle, the total number of com-

mittees possible with no restrictions is
(

6

3

)
·
(

4

2

)
= 6!

3!3! · 4!
2!2!

= 120.

Your Turn. You wish to borrow two mystery books and three westerns from
your friend. He owns five mysteries and seven westerns. How many different
selections can you make?

Sample Problem 2.19. How many different “words” of five letters can you make
from the letters of the word

REPUBLICAN,

if every word must contain two different vowels and three different consonants?

Solution. The three consonants can be chosen in
(6

3

) = 20 ways, and the vowels

in
(4

2

) = 6 ways. After the choice is made, the letters can be arranged in 5! = 120
ways. So there are 20 · 6 · 120 = 14400 “words.”

Your Turn. What is the answer if you use the word

DEMOCRAT ?
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An Illustrative Example

The following example illustrates two important facts. First, the numbers that arise
in selection problems can be very large—sometimes the intermediate steps are much
greater than the answer. And second, there are often two (or more) ways to attack the
same problem.

Suppose the sixteen members of the girls’ track team are to be divided into four
teams of four members each, to train for the relay. Assuming that you don’t care who
runs in which position, how many ways can they be divided?

Start by arbitrarily ordering the four teams I, II, III, IV. The members of Team I
can be chosen in C(16, 4) ways. After they are chosen, there are 12 girls left, so there
are C(12, 4) ways to choose Team II. Team III can be chosen in C(8, 4) ways. Then
Team IV is decided (there are only four girls left.) We have

C(16, 4) · C(12, 4) · C(8, 4)

arrangements. But the order of the teams did not really matter, so every arrangement
is one of 4! that all give the same solution. (4! is the number of ways of arbitrarily
assigning the labels I, II, III, IV to the four teams.) So the answer is

C(16, 4) · C(12, 4) · C(8, 4)

4! = 16!
12! · 4! · 12!

8! · 4! · 8!
4! · 4! = 16!

(4!)4

(the 12!’s and 8!’s cancel).

Equation (2.5) was useful because of the way the factorials 12! and 8! canceled.

If you try to work out the exact answer to the problem, you will find that 16! is
greater than 2×1013. On many calculators this large number will only be represented
approximately, and the divisions will give you at best an approximate answer. But if
you write out

16 · 15 · 14 · 13 · 12 · 11 · 10 · 9 · 8 · 7 · 6 · 5 · 4 · 3 · 2 · 1

(4 · 3 · 2 · 1) · (4 · 3 · 2 · 1) · (4 · 3 · 2 · 1) · (4 · 3 · 2 · 1)

and cancel you’ll get 15 · 14 · 13 · 11 · 10 · 7 · 6 · 5, which comes to 63063000. This
selection problem involved intermediate numbers nearly a million times as great as
the solution. If, instead of canceling the 12! and 8! we had calculated the three C-
numbers, the multiplications would have been very large.

As we promised, there is another way to handle this problem. This time, select
one girl at random. There are 15 other girls from whom her three teammates can be
chosen, so this can be done in

(15
3

)
ways. For each possible choice here, suppose you

select one of the 12 remaining girls. Her team can be completed in
(11

3

)
ways. Again

choose a girl from those remaining; her team can be completed in
(7

3

)
ways. And the

remaining girls must make up the other team. The number of choices is
(

15

3

)
·
(

11

3

)
·
(

7

3

)
= 15 · 14 · 13

3 · 2 · 1
· 11 · 10 · 9

3 · 2 · 1
· 7 · 6 · 5

3 · 2 · 1
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which comes to the same answer. This time the intermediate numbers were consid-
erably smaller.

Problems Combining Different Methods

Some problems can be solved by combining the methods we have been using with
the rule of sum.

Sample Problem 2.20. In Sample Problem 2.18, how many ways are there to
select the committee if one particular couple, say Mr. and Mrs. Smith, do not
wish to be on the committee together?

Solution. The total number of committees possible with no restrictions was 120.
If Mr. and Mrs. Smith are both on the committee, then the rest of the committee is
found by choosing two of the five remaining men and one of the three remaining
women. This can be done in

(
5

2

)
·
(

3

1

)
= 5!

3!2! · 3!
2!1! = 30

ways. So 30 of the 120 possible committees contain both Smiths; when these are
excluded there remain 90 ways of choosing the committee.

(We have in fact applied the rule of sum: interpret S as the set of all possible
committees, and T as the set of committees not containing both Smiths. Then we
found |S| = 120 and |S ∩ T | = 30, we required |S\T |, which the rule tells us
equals 90.)

Your Turn. A group contains three men and seven women. In how many ways
can a committee of three people be chosen if it can contain no more than one
man?

Sometimes both arrangement and selection techniques are applied to the same prob-
lem.

Sample Problem 2.21. A copying company has eight photocopying machines
and seven employees who can operate them. There are four identical copying
jobs to be done. (There are 4000 booklets to be made; each person makes 1000
copies.) How many ways are there to allocate these jobs to operators and ma-
chines?

Solution. We shall give two solutions to this problem.

(i) This is like Sample Problem 2.11, but the jobs are now identical. In that prob-
lem there were P(7, 4) ·P(8, 4) arrangements. As the jobs are indistinguishable,
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the ordering of A,B,C,D is irrelevant, so we divide the number of arrangements
by 4!. The answer is

P(7, 4) · P(8, 4)

4! = (7 · 6 · 5 · 4) · (8 · 7 · 6 · 5)

4 · 3 · 2 · 1
,

which works out to 58800.

(ii) There are C(7, 4) ways to choose four operators and C(8, 4) ways to choose
four machines. When the choice is made, there are 4! ways to assign the four
workers to four machines. So the answer is

P(7, 4) · P(8, 4) · 4! = 7 · 6 · 5 · 4

4 · 3 · 2 · 1
· 8 · 7 · 6 · 5

4 · 3 · 2 · 1
· (4 · 3 · 2 · 1),

the same as before. (There is an extra factor 4! in the numerator and in the de-
nominator.)

Exercises 2.3 A

1. List all the selections of size 3 that can be made from the set {A,B,C,D,E}.
2. Calculate the following quantities:

(i) C(8, 3); (ii) C(9, 4); (iii)

(
6

3

)
;

(iv) C(7, 3); (v) C(7, 7); (vi)

(
8

6

)
.

3. The math department wishes to select four of its 16 members to teach the finite
math course. In how many ways can this selection be made?

4. The Student Council consists of six juniors and 12 seniors. A committee of two
juniors and three seniors is to be formed. How many ways can this be done?

5. A test has 12 questions, and you must answer nine of them.

(i) How many ways can you choose which questions to answer?
(ii) In how many ways can you make your choice if you must include Question

1 or Question 2 (or maybe both)?

6. How many 12-bit binary strings with five 1’s are possible? How many of them
start 101?

7. A state lottery requires you to choose five different numbers from {1, 2, . . . , 49}.
The order in which the numbers are chosen does not matter.

(i) How many possible choices are there?
(ii) The state then draws six different numbers. You win if all five of your num-

bers are chosen. How many of the possible choices are winners?
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8. The directors of a mutual fund select a portfolio of three speculative stocks and
three blue-chip stocks. If they must choose from five speculative stocks and
seven blue-chip stocks, how many different portfolios could be formed?

9. A businessman wishes to pack three different ties for a business trip. If he has
six ties available, how many different selections could be made?

10. There are 18 undergraduates and 14 graduates in the Math club. A committee of
five members is to be selected. Calculate how many ways this can be done, if:

(i) There is no restriction.
(ii) There must be exactly two graduates.

(iii) There must be at least two graduates and two undergraduates.

11. A Euchre deck of cards contains 25 cards: 6 spades, 6 hearts, 6 diamonds, 6 clubs
and a joker. A five-card hand is dealt.

(i) How many different hands are possible?
(ii) How many of those hands contain only spades?

(iii) How many hands contain three spades and two clubs?
(iv) How many hands contain the joker?
(v) How many hands contain only spades and clubs, at least one of each?

Exercises 2.3 B

1. Calculate the following quantities:

(i) C(7, 7); (ii)

(
6

5

)
; (iii)

(
6

1

)
;

(iv) C(10, 2); (v)

(
8

7

)
; (vi)

(
8

0

)
.

2. Calculate the following quantities:

(i) C(8, 4); (ii) C(10, 0); (iii) C(8, 3);

(iv)

(
6

4

)
; (v)

(
2

2

)
; (vi)

(
7

2

)
.

3. A test has ten questions, five in part A and five in part B.

(i) A student has to choose five questions, two from part A and three from
part B. How many ways can she make her choice?

(ii) How many ways can she make her choice if she must choose five questions,
at least two from each part?

4. There are eight seniors, six juniors, five sophomores, and five freshmen on the
student senate. A bylaws committee with four members is to be selected. Calcu-
late how many ways this can be done, if:
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(i) There must be one member from each class.
(ii) There must be exactly two seniors.

(iii) There must be at least two seniors.

5. The homecoming committee wishes to decorate twelve tables in the school col-
ors of red and blue. The tables are in two rows of six and there are to be six red
and six blue tables.

(i) How many different arrangements are possible?
(ii) In how many arrangements are there three red tables in each row?

6. A club with 20 members wants to elect a committee consisting of President,
Secretary, and two Ordinary Members. How many committees are possible?

7. Ruth wishes to choose five guests for a dinner party from among her nine closest
friends.

(i) In how many different ways can she choose her guest list?
(ii) Suppose two of the group are husband and wife and Ruth must include

either both of them or neither. How many possible choices are there?
(iii) Suppose instead that two of the group are bitter enemies and Ruth cannot

include both. How many possible guest lists are there?

8. Suppose Ruth, in the preceding problem, wishes to choose five guests for a din-
ner party from among eleven friends, six men, and five women. She wishes the
final party to consist of three men and three women (including herself). How
many different guest lists are possible?

9. A regular deck of cards contains 52 cards: 13 spades, 13 hearts, 13 diamonds,
and 13 clubs. A five-card hand is dealt.

(i) How many hands contain only spades?
(ii) How many hands contain three spades and two clubs?

(iii) How many hands contain only spades and clubs, at least one of each?

10. There are 12 appetizers on the menu, five cold and seven hot. How many ways
can you choose four different appetizers for your table? In how many cases does
this include two hot and two cold appetizers?

11. A club with 24 members wants to elect a committee consisting of President,
Secretary, and three Ordinary Members. How many committees are possible?

12. The motor pool has eight drivers and nine vehicles. Four drivers must be assigned
to four vehicles for today’s duty. How many ways can it be done?

13. It is required to select, from the set of numbers {1, 2, 3, 4, 5, 6, 7, 8}, a subset
of four that will contain either 1 or 2, but not both. How many selections are
possible?

14. A baseball squad contains three pitchers, two catchers and 12 players who can
play at any other position. How many different teams of nine players, with ex-
actly one pitcher and exactly one catcher, can be formed?
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15. Suppose the Senate contains 52 Democrats and 48 Republicans. A committee of
six must be chosen.

(i) How many different committees can be chosen?
(ii) How many of these possible committees contain exactly three Democrats

and three Republicans?

2.4 More About Selections

Identities Concerning the Choice Function

We observe two important properties of the choice function
(
s
k

)
.

Theorem 4. When 0 ≤ k ≤ s,
(

s

k

)
=

(
s

s − k

)
.

Proof. From (2.5),
(

s

k

)
= s!

(s − k)!k! = s!
k!(s − k)! =

(
s

s − k

)
.

�
This equality can also be derived as follows. If we wish to choose k things from a

set of s, we could just as easily say which k − s will not be included. In other words,
to specify a subset T of S, we could just as easily specify the complement of T in
the set S.

Sample Problem 2.22. Calculate
(100

98

)
.

Solution. From Theorem 4,
(

100

98

)
=

(
100

2

)
= 100 · 99

1 · 2
= 4950.

Your Turn. Calculate
(81

79

)
.

Theorem 5. For all integers k and s such that 1 ≤ k ≤ s,
(

s

k

)
=

(
s − 1

k

)
+

(
s − 1

k − 1

)
.

Proof. Suppose S is an s-set, and suppose x is one particular member of S. Each
subset of S falls into one of two categories: those that do contain x, and those that do
not contain x. So we calculate the number of k-sets on S that contain x, and then the
number that do not. Adding these numbers together, we get the total number of sets.
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The k-sets on S that contain x each have k − 1 other elements, and we get a
different k-set whenever we choose a different (k − 1)-set from those other objects.
So their number equals the number of (k − 1)-sets that can be chosen from S\{x},
namely

(
s−1
k−1

)
.

The k-sets on S that do not contain x are precisely the k-sets of S\{x}, and there
are

(
s−1
k

)
of them. Adding, we get the result. �

Theorem 5 can be used to generate a table of values of the numbers
(
s
k

)
. For

convenience, we call the top row of the table row 0. In row s we write the values of
(

s

0

)(
s

1

)(
s

2

)
. . .

(
s

s

)

in that order. We write the table in a triangular form:
(
s
0

)
occurs a half-space to the

left of
(
s−1

0

)
. So the table is as shown. Observe that

(
s
k

)
lies in the table with

(
s−1
k

)

and
(
s−1
k

)
above it, a half-step to the left and a half-step to the right, respectively.

So Theorem 5 tells us that every term can be constructed by adding together the two
numbers above it.

(
0

0

)

(
1

0

) (
1

1

)

(
2

0

) (
2

1

) (
2

2

)

(
3

0

) (
3

1

) (
3

2

) (
3

3

)

. . . . . . . . . . . . . . . . . . . . .

This table is called Pascal’s triangle. When the values are substituted in we get
the following array.

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
1 5 10 10 5 1

1 6 15 20 15 6 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

The Binomial Theorem

The choice function also arises when an expression like x + y, a binomial function,
is raised to a positive integer power.
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It is easy to verify formulae like

(x + y)2 = x2 + 2xy + y2,

(x + y)3 = x3 + 3x2y + 3xy2 + y3,

(x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4.

Now suppose n is any positive integer. The following theorem provides an ex-
pression for (x + y)n, as a function of x and y. The theorem is called the binomial
theorem for positive integer index n,

Theorem 6. If x and y are any numbers and n is any positive integer, then

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk.

For example, if n = 4, the formula is

(x + y)4 =
(

4

0

)
x4−0y0 +

(
4

1

)
x4−1y1 +

(
4

2

)
x4−2y2 +

(
4

3

)
x4−3y3 +

(
4

4

)
x4−4y4

=
(

4

0

)
x4 +

(
4

1

)
x3y +

(
4

2

)
x2y2 +

(
4

3

)
xy3 +

(
4

4

)
y4.

(4
0

) = 1, so the first term is x4. As
(4

1

) = 4, the second term is 4x3y. Since
(4

2

) = 6, the next term is 6x2y2. In the same way, it is easy to verify the remaining
terms in the previously stated expression for (x + y)4.

The proof of the binomial theorem occurs later in this section.

The theorem is useful when one of the two variables is replaced by 1, or when a
negative sign or a numerical coefficient is included. Some examples are:

(1 + x)3 = 1 + 3x + 3x2 + x3,

(x − y)3 = x3 − 3x2y + 3xy2 − y3,

(2x + y)3 = 8x3 + 12x2y + 6xy2 + y3.

Sample Problem 2.23. Write down an expression for (1 + x)6.

Solution. The relevant coefficients are
(6

0

) = (6
6

) = 1,
(6

1

) = (6
5

) = 6,
(6

2

) =
(6

4

) = 15,
(6

3

) = 20. So

(1 + x)6 =
(

6

0

)
+

(
6

1

)
x +

(
6

2

)
x2 +

(
6

3

)
x3 +

(
6

4

)
x4 +

(
6

5

)
x5 +

(
6

6

)
x6

= 1 + 6x + 15x2 + 20x3 + 15x4 + 6x5 + x6.

Your Turn. Write down an expression for (x − y)6.
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Sample Problem 2.24. What is the coefficient of y3 in (2x − 3y)5?

Solution. The term involving y3 is
(5

3

)
(2x)2(−3y)3, so the numerical coefficient

is
(

5

3

)
22(−3)3 = 10 · 4 · (−27) = −1080

and the coefficient is −1080x2.

Your Turn. What is the coefficient of y2 in (3x + 2y)4?

The binomial theorem can be used to find the approximate values of powers of
numbers close to 1.

Sample Problem 2.25. Find the approximate value (to within 10−3) of 1.0210.

Solution. We write 1.0210 = (1 + 2 · 10−2)10. Then it equals

1 + 10 · 2 · 10−2 + 45 · 4 · 10−4 + 120 · 8 · 10−6 + · · ·
Every subsequent term is at most one-tenth of the one before it. So the approxi-
mate value is

1 + 0.2 + 0.018 + 0.00096 + · · · = 1.219 approx.

Your Turn. Find the approximate value of 0.998.

You should observe the relationship between Pascal’s triangle and the binomial
theorem. The coefficients in row s of the triangle are precisely the coefficients in the
expression for (x + y)s . For example, row 6 is

1, 6, 15, 20, 15, 6, 1.

(Remember, the first row is row 0.)

Proof of the Binomial Theorem

The following proof can be omitted at a first reading.

We consider the following product of n factors:

(x1 + y1) · (x2 + y2) · · · (xn + yn),

where x1, x2, . . . , xn, y1, y2, . . . , yn are some 2n variables. On expanding the prod-
uct, we obtain 2n terms, and each will have n factors, with either xi or yi as the ith
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factor. For example, if n = 2 we get

x1x2 + y1x2 + x1y2 + y1y2,

and if n = 3 the product is

x1x2x3 + y1x2x3 + x1y2x3 + y1y2x3 + x1x2y3 + y1x2y3 + x1y2y3 + y1y2y3.

In constructing the terms, we made n decisions:

• from the first factor, take either x1 or y1;

• from the second factor, take either x2 or y2;

and so on.

In the general case, how many terms are there with exactly k y’s? The term
with y1y2 · · · ykxk+1xk+2 · · · xn can arise in one and only one way in the product:
you must choose the y term at steps 1, 2, . . . , k and the x term at every later step.
Similarly, if i1, i2, . . . , ik are any k of the numbers 1, 2, . . . , n, then the term with
yi1yi2 · · · yik and all other terms x’s occurs if and only if you choose y at steps
i1, i2, . . . , ik , and x at the other n − k steps. So the number of terms that contain
precisely k of the y’s will equal the number of ways of selecting k indices i1, i2, . . . ,
ik from {1, 2, . . . , n}, namely

(
n
k

)
.

Now put x1 = x2 = · · · = xn = x and y1 = y2 = · · · = yn = y. There will be
exactly

(
n
k

)
terms equal to xn−kyk . So

(x + y)n =
n∑

k=0

(
n

k

)
xn−kyk.

Consequences of the Theorem

An interesting summation formula can be obtained by putting x = y = 1 in Theo-
rem 6:

n∑

k=0

(
n

k

)
= 2n. (2.6)

Equation (2.6) gives us an interesting way to work out the number of subsets of
a set.

Theorem 7. Suppose S is any set with n elements. The number of subsets of S is 2s .

Proof. The number of k-element subsets of S is
(
n
k

)
. The total number of subsets

equals the number of 0-element subsets (1, for the empty set), plus the number of
1-element subsets, plus the number of 2-element subsets, and so on up to S itself. So
the number is

∑n
k=0

(
n
k

)
, and the result follows from (2.6). �
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Sample Problem 2.26. How many ways are there to choose three or more people
from a set of 11 people?

Solution. There are 211 possible ways to choose a subset of the 11 people. How-
ever, the subsets with 0, 1, or 2 elements are not allowed. So the number is

211 −
(

11

0

)
−

(
11

1

)
−

(
11

2

)
= 2048 − 1 − 11 − 55 = 1981.

Your Turn. How many ways are there to choose at most seven books from a
selection of ten books?

Exercises 2.4 A

1. Construct the first ten rows of Pascal’s triangle.

2. What is the coefficient of:

(i) y2 in (1 − 2y)6? (ii) x3 in (x + 2y)5?

(iii) y5 in (2x − y)7? (iv) y5 in (x − y)6?

3. Use the binomial theorem to calculate:

(i) (x − 1)4; (ii) (1 − 2z)5;

(iii) (x + x−1)4; (iv) (x + y + z)3;

(v) (x + y − z)2.

4. Evaluate 1.013.

5. Find an approximation to 1.015, using four terms of the binomial theorem.

6. Use the binomial theorem with x = −1 and y = 1 to prove that
s∑

k=0

(−1)k
(

s

k

)
= 0.

7. How many subsets are there in a set of seven elements?

Exercises 2.4 B

1. Calculate
(97

94

)
.

2. What is the coefficient of:

(i) x2 in (1 + 3x)6? (ii) y3 in (5x + 2y)4?

(iii) y4 in (3x − 2y)6? (iv) x3 in (2x − 2y)4?
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(v) x2 in (1 + 2x)5? (vi) x2y2 in (x + y)4?

3. Use the binomial theorem to calculate:

(i) (x − 3y)3; (ii) (1 + x2)3;

(iii) (2x + y)4; (iv) (2x − 5y)3.

4. Use the binomial theorem to calculate:

(i) (x + 1)3; (ii) (2 − 4x)3;

(iii) (2x − x−1)3; (iv) (x2 − x−1)3;

(v) (1 + x2)2; (vi) (1 + 2x − y)3.

5. Use the binomial theorem to evaluate 1.022.

6. Find an approximation to 1.018, using four terms of the binomial theorem.

7. Find an approximation to 0.995, using four terms of the binomial theorem.

8. What is the number of non-empty subsets of a nine-element set?

9. How many ways are there to select a subset of at least two elements from a set
with eight elements?

10. Use Theorem 5 to prove that
(

n

r

)
+ 2

(
n

r − 1

)
+

(
n

r − 2

)
=

(
n + 2

r

)

for any integers satisfying 2 ≤ r ≤ n.

11. Use the binomial theorem with x = −1 and y = 1 to prove that
(

s

0

)
+

(
s

2

)
+

(
s

4

)
+ · · · =

(
s

1

)
+

(
s

3

)
+

(
s

5

)
+ · · ·

and consequently that
(

s

0

)
+

(
s

2

)
+

(
s

4

)
+ · · · = 2s−1.
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Probability

3.1 Events

Experiments and Events

In the next section, we shall try to make sense of two ideas that come up every day
in conversation, “randomness” and “probability” (or “chance”). In order to discuss
these ideas formally, it is necessary to have a suitable definition of the sort of thing
about which it makes sense to say, “is this random?” We shall call such a thing an
“event”. Since many of the applications of probability lie in the analysis of experi-
ments, we shall use the terminology of the empirical sciences.

An experiment is defined to be any activity with well-defined, observable out-
comes or results. For example, a coin flip has the outcomes “head” and “tail”. The
act of looking out the window to check on the weather has the possible results “it
is sunny”, “it is cloudy”, “it is raining”, “it is snowing”, and so on. Both of these
activities fit our definition of an “experiment”.

The different possible outcomes of an experiment will be called sample points of
the experiment. The set of all possible outcomes is the sample space. Each subset of
the sample space is called an event. Those events consisting of one sample point (the
singleton sets) are called simple events. An event E is called random if one cannot
predict with certainty, when the relevant experiment is conducted, whether or not the
outcome will be a member of E.

Many problems will involve ordinary dice, as used for example in games like
Monopoly. These have six faces, with the numbers 1 through 6 on them. The sample
space is the set S = {1, 2, 3, 4, 5, 6}. The event “an odd number is rolled” is {1, 3, 5}.
There are 26 events (the number of subsets of the 6-element set S).

Sample Problem 3.1. Betty and John roll a die. If the result is a 1 or 2, John
wins $2 from Betty; otherwise Betty wins $1 from John. What is the event “John
wins”?

W.D. Wallis, A Beginner’s Guide to Finite Mathematics,
DOI 10.1007/978-0-8176-8319-1_3, © Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-8176-8319-1_3
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Fig. 3.1. Tree diagrams

Solution. {1, 2}.

Your Turn. In the above game, what is the event “Betty wins”?

Tree Diagrams

Consider the experiment where a coin is tossed; the possible outcomes are “heads”
and “tails” (H and T ). The possible outcomes can be shown in a diagram like the one
in Figure 3.1(a). A special point (called a vertex) is drawn to represent the start of the
experiment, and lines are drawn from it to further vertices representing the outcomes,
which are called the first generation. If the experiment has two or more stages, the
second stage is drawn onto the outcome vertex of the first stage, and all these form
the second generation, and so on. The result is called a tree diagram. Figure 3.1(a)
shows the tree diagram for the experiment where the coin is tossed twice.

Sample Problem 3.2.

(i) A coin is flipped three times; each time the result is written down. What is the
sample space? Draw a tree diagram for the experiment.

(ii) Repeat this example in the case where you stop flipping as soon as a head is
obtained.

Solution. (i) The sample space is {HHH,HHT,HT H,HT T , T HH, T HT,

T T H, T T T }. The tree diagram is shown in Figure 3.2(a).

(ii) The sample space is {H, T H, T T H, T T T }. The tree diagram is shown in
Figure 3.2(b).

Sample Problem 3.3. An experiment consists of flipping three identical coins si-
multaneously and recording the results. What is the sample space?

Solution. {HHH,HHT,HT T , T T T }. Notice that the order is not relevant
here, so that for example, the events HHT , HT H and T HH of Sample Prob-
lem 3.2 are all the same event in this case.
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Fig. 3.2. Tree diagrams for Sample Problem 3.2

Your Turn. An experiment consists of flipping a quarter and noting the result,
then flipping two pennies and noting the number of heads. What is the sample
space? Draw a tree diagram.

One common application of tree diagrams is the family tree, which records the
descendants of an individual. The start is the person, the first generation represents
his or her children, the second the children’s children, and so on. (This is why the
word “generation” is used.)

Set Language

Since events are sets, we can use the language of set theory in describing them.
We define the union and intersection of two events to be the events whose sets are
the union and intersection of the sets corresponding to the two events. For exam-
ple, in Sample Problem 3.1, the event “either John wins or the roll is odd” is the set
{1, 2} ∪ {1, 3, 5} = {1, 2, 3, 5}. (For events, just as for sets, “or” carries the under-
stood meaning, “or both”.) The complement of an event is defined to have associated
with it the complement of the original set in the sample space; the usual interpreta-
tion of the complement E of the event E is “E doesn’t occur”. Venn diagrams can
represent events, just as they can represent sets.

The language of events is different from the language of sets in a few cases. If S

is the sample space, then the events S and ∅ are called “certain” and “impossible”. If
U and V have empty intersection, they are disjoint sets, but we call them mutually
exclusive events.

Sample Problem 3.4. A die is thrown. Represent the following events in a Venn
diagram:

A: An odd number is thrown;

B: A number less than 5 is thrown;

C: A number divisible by 3 is thrown.
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Solution.

Your Turn. Repeat the above example for the events:

A: An even number is thrown;

B: John wins (in the game of Sample Problem 3.1);

C: Betty wins.

Sample Problem 3.5. A coin is tossed three times. Events A, B, and C are de-
fined as follows:

A: The number of heads is even;

B: The number of tails is even;

C: The first toss comes down heads.

Write down the outcomes in A, B, C, A ∪ C, B ∩ C, and C. Are any of the sets
mutually exclusive? Write a brief description, in words, of B ∩ C.

Solution. A = {HHT , HT H , T HH , T T T }, B = {HHH , HT T , T HT ,
T T H }, C = {HHH,HHT,HT H,HT T }, A ∪ C = {HHH , HHT , HT H ,
HT T , T HH , T T T }, B ∩C = {HHH , HT T }, and C = {T HH, T HT, T T H,

T T T }. A and B are mutually exclusive, as are A and B ∩ C. B ∩ C consists of
all outcomes with a head first and the other two results equal.

Your Turn. For the sets defined above, write down the outcomes in A ∩ C,
B ∪ C, and A.

Sample Problem 3.6. Describe an experiment in which the outcomes corre-
spond to the time one must wait in the checkout line at a supermarket.

Solution. The experiment might consist of watching the next person to come to
the checkout in a supermarket and observing the time, in minutes, until he or
she is served. The outcome can be any non-negative real number (although large
numbers are extremely unlikely). This example shows that sample spaces need
not be finite sets.
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Exercises 3.1 A

1. A die is rolled and a coin is tossed, and the results are recorded.

(i) Write down all members of the sample space.
(ii) Write down all members of the event

E: The die roll is even.

2. An experiment consists of studying families with three children. B represents
“boy”, G represents “girl”, and, for example, BGG will represent a family where
the oldest child is a boy and the young children are both girls.

(i) What is the sample space for this experiment?

(ii) We define the following events:

E: The oldest child is a boy;

F : There are exactly two boys.

(a) What are the members of E and F ?

(b) Describe in words the event E ∩ F .

(iii) Draw a Venn diagram for this experiment, and show the events E and F

on it.

3. Electronic components are being inspected. Initially one is selected from a batch
and tested. If it fails, the batch is rejected. Otherwise a second is selected and
tested. If the second fails, the batch is rejected; otherwise a third is selected. If
all three pass the test, the batch is accepted.

(i) Draw a tree diagram for this experiment.

(ii) How many outcomes are there in the sample space?

(iii) What is the event, “fewer than three components are tested”?

4. An experimenter tosses four coins—two quarters and two nickels—and records
the number of heads. For example, two heads on the quarters and one on the
nickels is recorded (2, 1).

(i) Write down all members of the sample space.

(ii) Write down all members of the events:

E: There are more heads on the quarters than on the nickels.

F : There are exactly two heads in total.

G: The number of heads is even.

(iii) Write down all members of the events E ∪ F , E ∩ F , E ∩ G, F ∩ G.

(iv) Describe in words the events E ∩ F and F ∩ G.

5. A coin is tossed. If the first toss is a head, the experiment stops. Otherwise, the
coin is tossed a second time.
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(i) Draw a tree diagram for this experiment.

(ii) List the members of the sample space.

(iii) What is the event, “the coin is tossed twice”?

6. A student takes courses in mathematics and computer science. Define the events
E and B by:

E: She passes mathematics;
F : She passes computer science.

Write symbolic expressions (using E,F,∩,∪ and – ) for the following events:
(i) The student fails mathematics;

(ii) The student passes both subjects;
(iii) The student passes exactly one subject;
(iv) The student passes at least one subject;
(v) The student fails both subjects;

(vi) The student passes mathematics but fails computer science.

7. In each of the following cases, are the two events mutually exclusive?

(i) A die shows a 4;
A die shows an odd number.

(ii) A die shows a 4;
A die shows a perfect square.

(iii) A person is male;
The same person is a store clerk.

(iv) A person is a college freshman;
The same person is a college sophomore.

8. Suppose E and F are two events. Must E and (E ∪ F) be mutually exclusive?

Exercises 3.1 B

1. A die is rolled twice, and the results are recorded as an ordered pair.

(i) How many outcomes are there in the sample space?

(ii) Consider the events:

E: The sum of the throws is 4;

F : Both throws are even;

G: The first throw was 3.

(a) List the members of events E,F,G,E ∪ F,E ∩ F,E ∩ G,F ∩ G.

(b) Write descriptions in words of the events E ∩ F,F ∩ G.

(c) Are any two of the events E,F,G mutually exclusive?
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(iii) Draw a tree diagram for this experiment.

(iv) Represent the outcomes of this experiment in a Venn diagram. Show the
events E, F , and G in the diagram.

2. A bag contains two red, two yellow, and three blue balls. In an experiment, one
ball is drawn from the bag and its color is noted, and then a second ball is drawn
and its color noted.

(i) Draw a tree diagram for this experiment.

(ii) How many outcomes are there in the sample space?

(iii) What is the event, “two balls of the same color are selected”?

3. In an experiment, video tapes are tested until either two defectives have been
found or four tapes have been tested in total.

(i) How many outcomes are there in the sample space for this experiment?

(ii) What is the event, “fewer than four tapes are tested”?

4. Two dice, one red and one green, are rolled and the results recorded: for example,
53 means “5 on red, 3 on green”.

(i) Write down all members of the sample space.

(ii) Write down all members of the events:

E: The total is 4;

F : The total is 11;

G: There is at least one 6.

(iii) Write down all members of the events E ∪ F , E ∩ F , F ∩ G, F ∩ G.

(iv) Describe in words the events F ∩ G and F ∩ G.

5. Repeat the preceding Exercise for the case where the two dice are the same color
and indistinguishable (the notation 53 will mean “5 on one die, 3 on the other”).

6. Your doctor tests your cholesterol level each month. After the initial reading she
makes three tests, and records whether the reading is higher than (H ), the same
as (S) or lower than (L) the preceding month.

(i) What are the possible outcomes of this experiment? Write down all mem-
bers of the sample space.

(ii) Consider the events:

E: The cholesterol level never decreases;

F : The cholesterol level decreases at least twice.

(a) Write down the elements of E, F and F .

(b) Write a description in words of the sets E,F .

(c) Are E and F mutually exclusive?
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7. Workers in a factory are classified by gender, experience and union member-
ship.

(i) Define events as follows:

E: The worker is male;

F : The worker has one year’s experience at least;

G: The worker belongs to the union.

Write descriptions in words of the following events: E,F , G, E∩G, E∩E,
E ∪ E, G ∩ F , E ∩ F , E ∩ F ∩ G.

(ii) Write expressions in symbols (using E,F,G,∩,∪ and –) for the events:
(a) The worker is a woman who belongs to the union;
(b) The worker has less than one year’s experience and is a man;
(c) The worker has at least one year’s experience and is a woman union

member.

(iii) Represent the set of all workers on a Venn diagram, with the sets E, F and
G shown. Shade in the set defined in (ii)(c) above.

8. An experiment consists of drawing three marbles from a jar, one at a time.
B represents “blue”, G represents “green”, R represents “red”, and, for example,
BGG will represent a drawing where the first marble was blue and the second
and third were both green.

(i) What is the sample space for this experiment?

(ii) We define the following events:

E: The first marble is green;

F : There are exactly two red marbles.

(a) What are the members of E and F ?

(b) Describe in words the event E ∩ F .

(c) Are E and F mutually exclusive?

9. Consider the following pairs of events. Which pairs are mutually exclusive?

(i) A coin is tossed and falls heads.
The coin falls tails.

(ii) A student wears a watch.
The student wears sneakers.

(iii) Joe is a freshman.
Joe is a sophomore.

(iv) A die is rolled and gives an odd number.
The roll is greater than 4.
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(v) Two dice show a total of 4.
One of the dice shows a 2.

(vi) Two dice show a total of 4.
One of the dice shows a 6.

(vii) A person is male.
The same person is female.

(viii) A student is enrolled in a Physics course.
The same student is enrolled in a Psychology course.

10. The events E and F are mutually exclusive. Which of the following are mutually
exclusive pairs? Draw a Venn diagram showing the intersection in each case:

(i) E and F ; (ii) E and E; (iii) E and F .

11. E and F are two events.

(i) Write symbolic expressions (using the symbols E,F,∩,∪ and −) for the
events:
(a) E occurs but F does not;
(b) E and F both occur;
(c) E does not occur;
(d) Exactly one of the two occurs.

(ii) Illustrate the above events in Venn diagrams.

12. E,F,G are three sets.

(i) Write symbolic expressions (using the symbols E,F,G,∩,∪ and −) for
the events:
(a) E occurs but neither F nor G does;
(b) E and F both occur (no information is given about G);
(c) E does not occur; at least one of F and G does;
(d) Precisely two of the three occur.

(ii) Illustrate the above events in Venn diagrams.

13. Draw tree diagrams for your family, starting with your grandparents.

3.2 Probability Measures

Chance Events

We use the word “chance” frequently in our everyday conversation. For example, we
meet somebody “by chance”; we “chance upon” the solution to a problem; one team
has a “better chance” of reaching the Super Bowl than another; the Weather Channel
announces a “30% chance” of precipitation.
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There are two ideas here. In every case, there is the feature of unpredictability—
a chance occurrence is one for which we cannot be certain of the outcome. The other
feature is that sometimes chance is quantitative—either it can be measured exactly
(the weather forecast) or else we can at least say one “chance” is greater than another
(the football teams). We shall refer to these two aspects of chance as randomness and
probability, respectively.

For example, say you flip a coin. There is no way to tell whether it will fall heads
or tails, so we would say this is a random occurrence. If the coin is made uniformly,
so that it is equally likely to show a head or a tail, we normally call it a fair coin, and
we say the probability of a head is 1

2 , and so is the probability of a tail. (Sometimes
we say “50%” instead of “ 1

2 ”.)

We shall write P(E) for the probability that the event E occurs. Suppose a fair
coin is tossed, if H means “a head is tossed” and T means “a tail is tossed”, then
what we have just said is

P(H) = P(T ) = 1

2
.

Suppose the coin in our example was not uniform; for example, say it was made
as a sandwich of disks of metal, like a quarter, but the different disks were of different
densities. It might be that, if we flipped it enough times, heads would come up 90%
of the time and tails only 10%. Then we would say the probability of a head is 9

10 .
However, this still qualifies as random, because no one knows beforehand whether a
particular flip will be one of the (more common) ones that results in a head or one
of those that give a tail. The probabilities do not have to be equal in order for an
event to be random. (However, when we say one object is selected “at random” from
a collection, this normally means that every object is equally likely to be chosen.)

Probability Distributions

Given any experiment, we could list the probabilities of all the outcomes, like the list
“P(H) = P(T ) = 1

2 ” in the fair coin toss. Such a list is called the probability dis-
tribution of the experiment. Of course, we don’t always know what the probabilities
are, and sometimes the whole point of an investigation is to find out the probability
distribution.

Sample Problem 3.7. A fair die is rolled. Si is the event that the number i is
rolled for i = 1, 2, 3, 4, 5, 6. E means the roll of an odd number, and F the roll
of a number less than 3. Find the probabilities of these events.

Solution. Since the die is fair,

P(S1) = P(S2) = P(S3) = P(S4) = P(S5) = P(S6) = 1/6.

Clearly, P(E) = 1
2 , and P(F) = 1

3 .
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Your Turn. A single die is rolled. What are the probabilities of the following
events:

E: A 4 or a 5 is rolled;

F : An even number is rolled;

G: An odd number greater than 2 is rolled?

Observe that in the above example,

P(E) = P(S1) + P(S3) + P(S5),

so that P(E) equals the sum of the probabilities of the outcomes making up E, and
similarly

P(F) = P(S1) + P(S2).

This additive property works in general. Suppose E is the event {s1, s2, . . . , sm}; as
usual, we just write si for the simple event {si}. Then

P(E) = P(s1) + P(s2) + · · · + P(sm).

We use this to make a general definition of probability.

Definition. Consider an experiment with sample space S = {s1, s2, . . . , sm}. A prob-
ability distribution for the experiment is a function P with the following properties:

1. For each si , 1 ≤ i ≤ n, P (si) is a real number and 0 ≤ P(si) ≤ 1;

2. P(s1) + P(s2) + · · · + P(sm) = 1.

We now define the probability of the event E by the formula

P(E) =
∑

s∈E

P (s).

Uniform Experiments

A very important case is a probability distribution in which every sample point has
the same probability. In this case, the probability is called uniform. We also refer to
the experiment as a uniform experiment. If a uniform experiment has a sample space
with n elements, then each sample point has probability 1

n
. The toss of a fair coin is

a uniform experiment with n = 2 sample points. The roll of a fair die is a uniform
experiment with n = 6 sample points. Another way of saying that an experiment is
uniform is to call it an experiment with equally likely outcomes.
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Suppose a uniform experiment has sample space S. then the probability of an
event E is

P(E) = |E|
|S| .

Remember: this important formula only applies to uniform experiments.

Sample Problem 3.8. A black die and a white die are thrown simultaneously.
What is the probability that the numbers shown total 8, given that the dice are
fair?

Solution. Let us write (x, y) to mean that x shows on the black die and y shows
on the white die. Then there are 36 possible outcomes, namely (1, 1), (1, 2), . . . ,

(1, 6), (2, 1), . . . , (6, 6), and they are equally likely. Five of these outcomes—
(6, 2), (5, 3), (4, 4), (3, 5), and (2, 6)—give a total of 8. So

P(E) = |E|
|S| = 5

36
.

Your Turn. A quarter and a nickel are flipped simultaneously. What is the prob-
ability that exactly one head shows, assuming that both coins are fair?

Sample Problem 3.9. A deck of cards is shuffled and one card is dealt. What is
the probability that it is a spade?

Solution. There are 52 cards in a deck, of which 13 are spades. So

P(E) = |E|
|S| = 13

52
= 1

4
.

Your Turn. A deck is shuffled and one card dealt face up. What is the probability
that is a picture card (King, Queen, or Jack)?

Non-uniform Experiments

Not all experiments are uniform. But in many cases, given an experiment A, we can
find a uniform experiment B such that the outcomes of A are events (not necessarily
simple) of B. We shall explain this method by an example.

Consider the following experiment. Two fair dice are rolled, and the total of the
points on them is recorded. This experiment has eleven outcomes which we shall
denote s2, s3, . . . , s12; si is the outcome “total i”. To calculate the probability of
outcome i, we shall look at a slightly different experiment. In it, two fair dice are
rolled, and the result is recorded as an ordered pair of digits—(1, 3) means “1 on
die 1, 3 on die 2”. There are 62 = 36 outcomes, and each has probability 1

36 . In this
experiment, we write Ei for the event that the two numbers showing add to i. Then
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E2 = {11} |E2| = 1 so P(E2) = 1
36

E3 = {12, 21} |E3| = 2 so P(E3) = 2
36 = 1

18

E4 = {13, 22, 31} |E4| = 3 so P(E4) = 3
36 = 1

12

E5 = {14, 23, 32, 41} |E5| = 4 so P(E5) = 4
36 = 1

9

E6 = {15, 24, 33, 42, 51} |E6| = 5 so P(E6) = 5
36

E7 = {16, 25, 34, 43, 52, 61} |E7| = 6 so P(E7) = 6
36 = 1

6

E8 = {26, 35, 44, 53, 62} |E8| = 5 so P(E8) = 5
36

E9 = {36, 45, 54, 63} |E9| = 4 so P(E9) = 4
36 = 1

9

E10 = {46, 55, 64} |E10| = 3 so P(E10) = 3
36 = 1

12 ;

E11 = {56, 65} |E11| = 2 so P(E11) = 2
36 = 1

18

E12 = {66} |E12| = 1 so P(E12) = 1
36

Table 3.1. Probabilities when rolling two fair dice

P(E) = |Ei |
36

,

and we can calculate all the probabilities; see Table 3.1. But in each case the proba-
bility of the outcome si in the first experiment is obviously equal to the probability
of Ei in the second experiment. So P(s2) = 1

36 , P (s3) = 2
36 , and so on.

Sample Problem 3.10. Three coins are flipped and the number of heads is
recorded. What are the possible outcomes and what is the probability distribu-
tion?

Solution. The outcomes are the four numbers 0, 1, 2, and 3. To calculate proba-
bilities, suppose three coins were flipped and all results recorded. Ei is the event
“there are i heads showing”. Then |S| = 8 and

E0 = {T T T }, P (E0) = 1

8
;

E1 = {HT T, T HT, T T H }, P (E1) = 3

8
;

E2 = {HHT,HT H, T HH }, P (E2) = 3

8
;

E3 = {HHH }, P (E3) = 1

8
.

Your Turn. A game is played using two dice each of which has the numbers 1,
2, 3 on its faces (so each number appears twice per die). An experiment consists
of rolling the dice and adding the numbers showing. What is the sample space?
What is the probability distribution?
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Sample Problem 3.11. There are five marbles—two blue, three red—in a box.
One is drawn out at random. What is the probability that it is blue?

Solution. If the marbles were marked v,w, x, y, z, where v and w are blue and
the others are red, then the event “blue is chosen” is {v,w} and its probability is

P(E) = |E|
|S| = 2

5
.

Your Turn. There are two red, three white, and four blue marbles in a box. One
is drawn at random. What is the probability that it is not blue?

Exercises 3.2 A

1. A sample space contains four outcomes: s1, s2, s3, s4. In each case, do the prob-
abilities shown form a probability distribution? If not, why not?

(i) P(s1) = 0.2, P (s2) = 0.2, P (s3) = 0.2, P (s4) = 0.4;

(ii) P(s1) = 0.2, P (s2) = 0.3, P (s3) = 0.4, P (s4) = 0.5;

(iii) P(s1) = 0.0, P (s2) = 0.2, P (s3) = 0.4, P (s4) = 0.4;

(iv) P(s1) = 0.5, P (s2) = 0.4, P (s3) = 0.3, P (s4) = −0.2.

2. A fair coin is tossed three times. What are the probabilities that:

(i) At least two heads appear;

(ii) An odd number of heads appear;

(iii) The first two results are tails?

3. In the game of roulette, a wheel is divided into 38 equal parts, labeled with the
numbers from 1 to 36, 0, and 00. The spin of the wheel causes the ball to be
randomly placed in one of the parts; the chances of the ball landing on any part
are equal. Half of the parts numbered from 1 to 36 are red and half are black; the
0 and 00 are green. If the chances of the ball landing in any one part are equal,
what are the probabilities of the following events:

(i) The ball lands on a red number;

(ii) The ball lands on a black number;

(iii) The ball lands on a green number;

(iv) The ball lands on 17;

(v) The ball lands on a number from 25 to 36 inclusive.

4. Two fair dice are rolled. What are the probabilities of the following events?

(i) The total is 9;

(ii) The total is odd;

(iii) One odd and one even number are shown.



3.2 Probability Measures 95

5. A box contains seven red and five white balls. One ball is drawn at random. What
is the probability that it is white?

6. In a lottery there are 90 losing tickets and 10 winning tickets. You drawn one
ticket at random. What is the probability that it is a winner?

7. A random number from 0 to 99 is chosen by a computer. What are the probabil-
ities of the following events?

(i) The number is even;

(ii) The number ends in 5;

(iii) The number is divisible by 11.

8. Box A contains tickets numbered 1, 2, 3, 4. Box B contains tickets numbered 2,
3, 4, 5. One ticket is selected from each box.

(i) List all the elements of the sample space of this experiment;

(ii) Find the probability that the tickets have the same number;

(iii) Find the probability that the sum of the two selected numbers is even.

9. A box contains one red, two blue, and two white marbles. One marble is selected
at random. What are the probabilities that it is

(i) red? (ii) blue? (iii) white?

10. A bag contains three red marbles and five blue marbles. Three marbles are drawn
simultaneously, at random, and the colors are noted.

(i) What are the outcomes of this experiment?

(ii) Calculate the probabilities of the outcomes.

Exercises 3.2 B

1. A sample space contains four outcomes: s1, s2, s3, s4. In each case, do the prob-
abilities shown form a probability distribution? If not, why not?

(i) P(s1) = 0.2, P (s2) = 0.4, P (s3) = 0.3, P (s4) = 0.1;

(ii) P(s1) = 0.2, P (s2) = 0.4, P (s3) = 0.6, P (s4) = 0.2;

(iii) P(s1) = 0.1, P (s2) = 0.2, P (s3) = 0.5, P (s4) = 0.2;

(iv) P(s1) = 0.1, P (s2) = 0.2, P (s3) = 0.3, P (s4) = 1.2.

2. A fair coin is tossed four times. What are the probabilities that:

(i) At least three heads appear;

(ii) An even number of heads appear;

(iii) The first result is a head?

3. Two fair dice are rolled. What are the probabilities of the following events?
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(i) The total is 6;

(ii) The total is even;

(iii) Both scores are even.

4. Two fair dice are rolled. What are the probabilities of the following events?

(i) The total is 7;

(ii) The total is 8;

(iii) The total is a multiple of 3;

(iv) The total is a multiple of 4;

(v) One score is even, the other odd.

5. A box contains 12 cards, one for each month of the year. A card is drawn at
random.

(i) What is the probability that the selected card is March?

(ii) What is the probability that the selected card is from a month with r in its
name?

6. A box contains six red and four white balls. One ball is drawn at random. What
is the probability that it is white?

7. A box contains the 365 pages from a desk calendar, one for each day of the year
(not a leap year). A page is drawn at random.

(i) What is the probability that the selected page shows a day in March?

(ii) What is the probability that the selected card shows a day in summer
(June 22 to September 21 inclusive)?

8. The weather forecast gives a 25% chance of snow tomorrow and a 35% chance
of rain. There is a 10% chance that it will both snow and rain during the day.

(i) Represent the data in a Venn diagram.

(ii) What is the probability that it will snow but not rain?

(iii) What is the probability that it will neither snow nor rain?

9. The moose in a Canadian park are 45% plain brown, 35% mottled, and 20%
spotted. One moose is captured at random for the Bronx Zoo. What are the prob-
abilities that:

(i) It is spotted?

(ii) It is not spotted?

(iii) It is not mottled?

10. There are 20 people in a class. There are 12 men (eight physics and four chem-
istry majors) and eight women (five physics and three chemistry majors). One
student’s name is selected at random. What is the probability that:
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(i) The student is a chemistry major?

(ii) The student is male?

11. A box contains four red, two blue, and three white marbles. One is selected at
random. What is the probability that:

(i) The marble is blue?

(ii) The marble is not blue?

12. A box contains six red, three blue, and five white marbles. One is selected at
random. What is the probability that:

(i) The marble is blue?

(ii) The marble is not white?

13. An examination has two questions. Of 100 students 75 do Question 1 correctly
and 72 do Question 2 correctly. 64 do both questions correctly.

(i) Represent these data in a Venn diagram.

(ii) A student’s answer book is chosen at random. What is the probability that:

(a) Question 1 contains an error?

(b) Exactly one question contains an error?

(c) At least one question contains an error?

14. There are 15 members in your club. There are seven men and eight women.
The club committee has three members. One member’s name is selected at ran-
dom.

(i) What is the probability that:

(a) The person selected is on the committee?

(b) The person selected is male?

(ii) Can you work out the probability that the person selected is a male commit-
tee member?

3.3 Non-uniform Probabilities

More General Probabilities

Even when the outcomes are not equally likely, we calculate the probability of an
event from the formula

P(E) =
∑

{s∈E}
P(s).
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Fig. 3.3. Venn diagram for Sample Problem 3.12

Several important facts can be deduced from this; in particular, if E is any event,
0 ≤ P(E) ≤ 1; P(E) = 0 if and only if E is impossible, and P(E) = 1 if and only
if E is certain. If E and F are mutually exclusive events, then

P(E ∪ F) = P(E) + P(F)

and for general E and F

P(E ∪ F) = P(E) + P(F) − P(E ∩ F).

The probability of the complement E of E is

P(E) = 1 − P(E).

Sample Problem 3.12. E and F are events in a sample space with P(E) =
0.6, P (F ) = 0.4, and P(E ∩ F) = 0.2. What is P(E ∪ F)? What is P(E)?

Solution.

P(E ∪ F) = P(E) + P(F) − P(E ∩ F)

= 0.6 + 0.4 − 0.2

= 0.8;
P(E) = 1 − P(E)

= 1 − 0.6

= 0.4.

Your Turn. E and F are events in a sample space with P(E) = 0.7, P (F ) =
0.3, and P(E ∩ F) = 0.1. What are P(E ∪ F), P (E), P (E ∪ F)?

These probabilities can be represented in a Venn diagram—in each area of the
diagram, write the probability of the corresponding event. Then the answer can be
obtained by addition. The Venn diagram for the preceding Sample Problem is shown
in Figure 3.3.

Sample Problem 3.13. A discrete mathematics class is restricted to business and
math majors, all freshmen or sophomores. The percentage makeup of the class
is:
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Freshman business majors 30%;
Freshman math majors 35%;
Sophomore business majors 21%;
Sophomore math majors 14%.

A name is chosen at random from the class list. What are the probabilities of the
following events:

(i) The student is a freshman?

(ii) The student is not a freshman?

(iii) The student is either a freshman or a math major?

Solution. We write F for the event that the student is a freshman, S for sopho-
more, B for business major, and M for math major. Then the data mean

P(F ∩ B) = 0.3; P(F ∩ M) = 0.35;
P(S ∩ B) = 0.21; P(S ∩ M) = 0.14.

(i) Since M = B in this problem (all students are math or business majors, and
none can be both or else the total would add to more than 100%), the usual
equation

F = (F ∩ B) ∪ (F ∩ B)

becomes

F = (F ∩ B) ∪ (F ∩ M)

and, since this is a disjoint union,

P(F) = P(F ∩ B) + P(F ∩ M)

= 0.3 + 0.35

= 0.65.

(ii)

P(F ) = 1 − P(F)

= 1 − 0.65

= 0.35.

(iii) F ∪ M = F ∪ (S ∩ M), and this is a disjoint union, so

P(F ∪ M) = P(F) + P(S ∩ M)

= 0.65 + 0.14

= 0.79.
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The data could also be represented as

B M

F 0.3 0.35
S 0.21 0.14

Your Turn. An entomologist has found that the butterflies in a certain area can
be classified as follows:

Striped males 19%;
Striped females 22%;
Unstriped males 28%;
Unstriped females 31%.

Represent the data in a Venn diagram. Assuming the butterflies appear at random,
what is the probability that the next butterfly to be sighted will be: (a) striped;
(b) female; (c) either striped or female?

Bernoulli Trials and Binomial Experiments

Consider the experiment, “flip a coin three times and count how many heads oc-
cur”. This could be viewed as repeating one basic experiment that has exactly two
outcomes (“flip a coin”) three times and then counting the results.

We shall define a Bernoulli trial to be an experiment in which there are exactly
two possible outcomes. In many applications, it makes sense to think of one of these
events as “success” and the other as “failure” (abbreviated to S and F ). We shall
often denote the probability of success by p. A binomial experiment is one in which
a Bernoulli trial is repeated a certain number of times, and the outcome is the number
of successes in total. So our initial example was a binomial experiment in which the
trial is repeated three times. Since the number of heads is to be counted, we would
probably refer to a head as a “success”. If the coin were fair, p would equal 1

2 .

In a binomial experiment, if the trial is repeated n times, there are n + 1 possible
outcomes, from “0 successes” to “n successes”.

Sample Problem 3.14. A trial consists of throwing a die; a result of 1 or 2 is
a success, other throws are failures. What is the probability of exactly two suc-
cesses in three trials?

Solution. There are three ways in which exactly two successes can occur: the
sequences SSF , SFS, and FSS. Now
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P(SSF) = 1

3
· 1

3
· 2

3
= 2

27
,

P (SFS) = 1

3
· 2

3
· 1

3
= 2

27
,

P (FSS) = 2

3
· 1

3
· 1

3
= 2

27
.

So the probability of exactly two successes is

2

27
+ 2

27
+ 2

27
= 6

27
= 2

9
.

Your Turn. In the experiment described in this Sample Problem, what is the
probability of exactly one success in three trials?

More generally, the number of sequences of n trials that contain k successes and
n − k failures is C(n, k). The probability of any such sequence is pk(1 − p)n−k . So
the probability of k successes is

C(n, k)pk(1 − p)n−k.

Sample Problem 3.15. A sales representative estimates that a sale results from
one in four of his calls to companies. If he makes five calls today, what is the
probability of at least two sales?

Solution. Each call is a Bernoulli trial with p = 1
4 , so the five calls in a day can

be thought of as a binomial experiment with p = 1
4 , n = 5. So

P(2 successes) = C(5, 2)

(
1

4

)2(3

4

)3

= 10 · 33

45
= 270

1024
,

P (3 successes) = C(5, 3)

(
1

4

)3(3

4

)2

= 10 · 32

45
= 90

1024
,

P (4 successes) = C(5, 4)

(
1

4

)4(3

4

)1

= 5 · 3

45
= 15

1024
,

P (5 successes) = C(5, 5)

(
1

4

)5(3

4

)0

= 1 · 1

45
= 1

1024
,

and the probability of at least two successes is the sum of these:

270 + 90 + 15 + 1

1024
= 376

1024
= 47

128
,

or about 37%. Alternatively, we could have noticed that “he makes at least two
sales per day” is the complement of “he makes 0 or 1 sales per day”. The proba-
bility of 0 or 1 sales is
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P(0 sales) + P(1 sale) = C(5, 0)

(
1

4

)0(3

4

)5

+ C(5, 1)

(
1

4

)1(3

4

)4

= 1 · 35

45
+ 5 · 34

45

= 243 + 5 · 81

1024
= 243 + 405

1024

= 648

1024
= 81

128
.

So the probability of at least two sales is

1 − 81

128
= 47

128
.

Your Turn. If the salesman could improve his record to give him a 50% chance
of a sale from each call, what is his probability of at least three successes in the
day?

Sample Problem 3.16. The salesman in the preceding Problem would like to
have at least a 60% chance of two successes per day. How many calls should
he make per day?

Solution. Suppose he makes n calls. The probability of 0 or 1 success is

C(n, 0)

(
1

4

)0(3

4

)n

+ C(n, 1)

(
1

4

)1(3

4

)n−1

= (1 · 3n)

4n
+ n(1 · 3n−1)

4n
.

So what he wants is

3n−1(3 + n)

4n
<

4

10
.

We do some experimental arithmetic:

n = 5 : 3n−1(3 + n)

4n
= 81 · 8

1024
= 0.63 . . . ;

n = 6 : 3n−1(3 + n)

4n
= 243 · 9

4096
= 0.53 . . . ;

n = 7 : 3n−1(3 + n)

4n
= 729 · 10

16384
= 0.44 . . . ;

n = 8 : 3n−1(3 + n)

4n
= 2187 · 11

65536
= 0.36 . . . .

So 8 calls are needed.

Your Turn. How many calls are needed to give the salesman at least a 70%
chance of two successes per day?
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Exercises 3.3 A

1. A sample space contains two events, E and F , and

P(E) = 0.70, P (F ) = 0.25, P (E ∩ F) = 0.15.

Determine

P(E), P (E ∪ F), P (E ∪ F).

2. A sample space contains two events, E and F , and

P(E) = 0.7, P (F ) = 0.5, P (E ∪ F) = 0.9.

Determine

P(E), P (E ∩ F), P (E ∪ F), P (E ∩ F).

3. The events E, F , and G satisfy

P(E) = 0.6, P (F ) = 0.6, P (G) = 0.8,

P (E ∪ F) = 0.8, P (E ∩ G) = 0.5, P (F ∩ G) = 0.5.

Determine

P(E ∩ F), P (E ∪ G), P (F ∪ G).

4. The events E, F , and G satisfy

P(E) = 0.5, P (F ) = 0.5, P (G) = 0.7,

P (E ∪ F) = 0.7, P (E ∩ G) = 0.4, P (F ∩ G) = 0.4.

(i) Determine

P(E ∩ F), P (E ∪ G), P (F ∪ G).

(ii) What is the smallest possible value for P(E ∩ F ∩ G)? What is the largest
possible value?

5. Of 1000 researchers at Bell Laboratories, 375 have a degree in mathematics, 450
have a degree in computer science, and 150 of the researchers have degrees in
both fields. One researcher’s name is selected at random.

(i) What is the probability that the researcher has a degree in mathematics, but
not in computer science?

(ii) What is the probability that the researcher has no degree in either mathe-
matics or computer science?

6. Five hundred Illinois farmers were surveyed. 400 of them grow corn and 300
grow soybeans. Every farmer grows at least one of these crops. If one is chosen
at random, what is the probability that he grows corn but not soybeans?
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7. Two hundred new automobile buyers were surveyed. Their purchases were as
follows:

Sedan Pickup Van
Ford 50 10 10
G M 35 10 15
Other 40 10 20

One survey form is chosen at random. What is the probability that the vehicle
was:

(i) A sedan?

(ii) A Ford?

(iii) A General Motors van or pickup?

8. Jerry’s Gas sells three grades of gasoline at both their full and self-service
pumps. One day they kept track of their first 100 customers and their purchases
in the following table:

Regular
leaded

Regular
unleaded

Premium
unleaded

Full service 15 15 20
Self service 20 25 5

If this trend continues, what is the probability that the next customer who comes
in

(i) Goes to the self-service pumps?

(ii) Buys regular unleaded at the self-service pumps?

(iii) Buys premium unleaded at the full-service pumps?

9. A coin is weighted so that a head is twice as likely to occur as a tail. It is tossed
four times, and the result is noted.

(i) What is the probability that exactly one head occurs?

(ii) What is the probability that at least three heads occur?

10. In a 20-question, true–false test, what is the probability of getting exactly sixteen
answers correct by random guessing?

11. A baseball pitcher estimates that he can throw his fast ball for a strike seven
times in every eight.

(i) What is his probability of throwing exactly seven strikes in eight pitches?

(ii) What is his probability of throwing at least seven strikes in eight pitches?

12. A children’s game uses a die that has 1 on three of its faces, 2 on two of its faces
and a 3 on the last face. If it is rolled six times, what is the probability of rolling
2 exactly three times?
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13. If a fair coin is tossed five times, what is the probability that exactly three heads
occur?

14. A football team has probability 1
3 of winning any game. Suppose they play three

times. What is the probability of:

(i) No wins?

(ii) Three wins?

Exercises 3.3 B

1. A sample space contains two events, E and F , and

P(E) = 0.6, P (F ) = 0.4, P (E ∩ F) = 0.2.

Determine

P(E), P (E ∪ F), P (E ∪ F).

2. A sample space contains two events, E and F , and

P(E) = 0.5, P (F ) = 0.3, P (E ∩ F) = 0.2.

Determine

P(F ), P (E ∪ F), P (E ∩ F).

3. The events E, F , and G satisfy

P(E) = 0.6, P (F ) = 0.5, P (G) = 0.5,

P (E ∪ F) = 0.8, P (E ∪ G) = 0.8, P (F ∩ G) = 0.2.

Determine

P(E ∩ F), P (E ∩ G), P (F ∪ G).

4. The events E, F , and G satisfy

P(E) = 0.5, P (F ) = 0.4, P (G) = 0.6,

P (E ∪ F) = 0.6, P (E ∪ G) = 0.9, P (F ∪ G) = 0.8.

(i) Determine

P(E ∩ F), P (E ∩ G), P (F ∩ G), P (G ∩ E).

(ii) What is the smallest possible value for P(E ∩ F ∩ G)? What is the largest
possible value?
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5. An ice cream store sells three sizes of cones: Large, Giant, and Humongous.
Fillings can be ice cream or sorbet. On Monday, the first 100 purchases were as
shown in the table:

Large Giant Humongous
Ice cream 25 35 20
Sorbet 5 10 5

If this trend continues, what is the probability that the next customer who comes
in

(i) Orders sorbet?

(ii) Buys a Large or Giant ice cream?

6. In a market survey, 50% of those polled said that they usually buy medications at
a pharmacy, and the others that they buy them at a supermarket. 80% buy meat at
the supermarket, 20% at the butcher’s store. 40% buy both meat and medications
at the supermarket. One shopper is selected at random from the survey group.
What is the probability that he:

(i) Buys meat at the supermarket but buys medications at the pharmacy?

(ii) Does not buy either meat or medications at the supermarket?

7. During the 1992 presidential elections, 200 voters were surveyed in the St. Louis
area. Voters were classified according to whether they lived in Missouri (MO),
Illinois (IL), or other states (OS), and whether they intended to vote for Bush
(REP), Clinton (DEM), or Perot (IND). The results were are follows:

REP DEM IND
MO 44 33 21
IL 20 22 14
OS 14 20 12

One of the voter’s responses is selected at random. What are the probabilities of
the following events?

(i) The voter is an Illinois democrat?

(ii) The voter is from Missouri?

(iii) The voter intends to vote for Perot?

(iv) The voter is from outside Illinois?

(v) The voter is either a Democrat or is from Missouri?

8. Last year, there were 200 students enrolled in Calculus II. Of these students, 140
also enrolled in Linear Algebra. Their majors were distributed as follows:
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Enrollment Major
Math Science Business

Calculus only 20 35 5
Calculus and Linear Algebra 90 45 5

Suppose the same trend is followed this year. When the next student comes to
enroll in Calculus II, what is the probability that this student

(i) Is a science major?

(ii) Is not enrolling in Linear Algebra this year?

(iii) Is not a mathematics major but will take Linear Algebra?

9. 500 researchers at IBM were surveyed. It was found that 300 have at least one
degree in computer science, 180 have a Bachelor’s degree in computer science,
123 have a Master’s degree in computer science, and 99 have a Ph.D. in com-
puter science. Additionally, it was found that 63 have both a Bachelor’s and
Master’s degree in computer science, 22 have both a Master’s and Ph.D. degree
in computer science, and 19 have both Bachelor’s and Ph.D. degrees in computer
science. One employee is selected at random. What are the probabilities of the
following events?

(i) She has all three degrees in computer science.

(ii) She has the Bachelor’s and Ph.D. degrees but not the Master’s.

10. 150 Business students tried to sign up at registration for required Marketing, Ac-
counting, and Finance courses. 70 registered for Marketing, 60 for Accounting,
and 50 for Finance. 25 registered for both Marketing and Accounting, 15 for
Finance and Marketing, 10 for Finance and Accounting, and 5 signed up for all
three courses. One student’s registration form is chosen at random. What is the
probability that the student:

(i) Was unable to sign up for any of the courses;

(ii) Signed up for exactly one of the courses;

(iii) Signed up for Marketing and Accounting but not for Finance?

11. Of 200 employees at Wal-Mart, 110 have worked at restocking shelves, 90 have
worked as cleaners, and 90 have run cash registers. A few have done none of
these; they have only worked as managers. 50 of the workers have done both
restocking and cleaning; 40 have done cleaning and run registers; 40 have done
restocking and run registers; and 30 have done all three jobs. A worker is selected
at random.

(i) What is the probability that the worker has a only worked at cleaning?

(ii) What is the probability that the worker has not run a cash register?

(iii) What is the probability that the worker has done only management?



108 3 Probability

12. You have 60 customers on your newspaper route. Of them, 30 take the Morning
News, 40 take the Daily Times, and 34 take the Sunday News-Times. Moreover,
14 take both the Morning News and Daily Times, 24 take both the Daily Times
and the Sunday News-Times, and 10 take both the Morning News and the Sun-
day News-Times. Every customer takes at least one paper. A customer is selected
at random.

(i) What is the probability that the customer takes exactly one paper?

(ii) What is the probability that the customer takes exactly two papers?

(iii) What is the probability that the customer takes all three papers?

13. A die is rolled six times. What is the probability of:

(i) Exactly one six?

(ii) At most one six?

14. A fair coin is tossed six times. Which is more probable—that heads and tails
occur three times each, or that they divide 4 and 2 (either 4 heads or 4 tails)?

15. A multiple-choice test has eight questions, and each question has three possible
answers. A passing grade is five or more correct answers. What is the probability
of passing if you guess the answers at random?

16. A pair of fair dice are rolled and the total is recorded. If this is done ten times,
what is the probability that 7 is recorded at least three times?

17. On average, one light bulb in 20 is defective. What is the probability that there
is more than one defective bulb in a box of ten?

18. A drug is effective in nine cases out of ten. If it is tested on 12 patients, what is
the probability that it will be ineffective in more than two cases?

19. The probability that a new tire will last 25000 miles is 0.9. If you replace all four
tires now, what is the probability that you will need to replace at least one within
the next 25000 miles?

20. A traffic light is green for 50 seconds, yellow for 5 seconds, and red for 45 sec-
onds. If you drive past the light four times in one day, what is the probability that
it is red when you arrive at least twice?

21. A candy company puts a prize inside one in every four boxes of candy. If you
buy five boxes, what is the chance you get:

(i) No prize?

(ii) Exactly one prize?

(iii) More than one prize?

22. How many times must toss a fair coin in order to have a 90% chance of at least
one head?
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3.4 Counting and Probability

All of the elementary counting principles which we studied in Chapter 2 are useful
in calculating probabilities. We shall show this using several examples.

Choosing Marbles

Many elementary problems involve random drawing of marbles from a jar (or bag or
box). These obviously arise in lotteries and other games of chance, but this is not the
only reason for studying such problems. The mathematics is the same if we consider
many other types of random selection. As an example, suppose the telephone sub-
scribers in your area include 500 Democrat supporters and 400 Republicans. Work-
ing out the probabilities of various combinations being contacted in a telephone poll
involves exactly the same calculations as the ones made in studying random drawings
from a jar of 500 black and 400 white marbles. There are also examples in physical
science—for example, molecules escaping from a container of heated gas behave in
the same way.

Sample Problem 3.17. There are 12 red marbles and three blue marbles in a jar.
Three are selected at random. What is the probability that all are red?

Solution. There are 15 marbles, so the number of ways of selecting three is
C(15, 3). So |S| = C(15, 3). The number of ways of selecting three red marbles
is |E| = C(12, 3). So

P(E) = C(12, 3)

C(15, 3)
= 12!

9!3! · 12!3!
15!

= 12·11·10

15·14·13
= 88

91
.

Your Turn. An urn contains five red, four blue and two green marbles. Three
marbles are chosen at random. What is the probability that the three are all dif-
ferent colors?

Sample Problem 3.18. A box contains four red, three white, and two blue balls.
Two balls are chosen at random. What is the probability that they are the same
color?

Solution. There are C(9, 2) = 36 selections available. There are C(4, 2) = 6
ways to choose two red balls, C(3, 2) = 3 ways to choose two white balls, and
C(2, 2) = 1 way to choose two blue balls. So

P(two are the same) = 6 + 3 + 1

C(9, 2)
= 10

36
= 5

18
.

Your Turn. A jar contains six white and four blue balls. Two balls are chosen at
random. What is the probability of selecting at least one white ball?



110 3 Probability

Card Problems

Remember that in a standard deck there are 52 cards, 13 in each of the four suits.
So there are four cards in each of the 13 denominations Ace, King, . . . , 4, 3, 2. In
most card games, the hands of cards are dealt face down to the players, so the order
in which cards are received does not matter.

Sample Problem 3.19. A poker hand of five cards is dealt from a standard deck.
What are the probabilities of the following hands:

(i) The four Kings and the Ace of spades?

(ii) A full house (three cards of one denomination, two of another)?

(iii) A hand with no pair (all different denominations)?

Solution. In each case, the hand dealt is one of the C(52, 5) possible selections
of five cards from the full deck of 52. So, in each case, |S| = C(52, 5).

(i) The event E: “the hand consists of four Kings and the Ace of spades” contains
only one outcome. So

|E| = 1;
P(E) = |E|

|S| = 1

C(52, 5)

= 1

2598960
.

(ii) Let’s say a full house is of “type (x, y)” if it contains three x’s and two
y’s—one could have “type (7, 5)”, “type (King, 4)”, and so on. There are
13 ways to choose the denomination of the three, and for each such choice
there are 12 ways to select the two. So there are 13 · 12 = 156 types. Once
the type is known, we can calculate the number of hands of that type. For
example, if there are three Kings and two fours, then there are C(4, 3) ways
of choosing which Kings are to be used (we must choose three out of the
four possible Kings), and C(4, 2) ways of choosing which fours. So there are
C(4, 3) · C(4, 2) = 4 · 6 = 24 hands of each type. So the number of full
houses is

13 · 12 · C(4, 3) · C(4, 2)

= 13 · 12 · 24,

and the probability is

13·12·24

C(52, 5)
= 6

4165
,

or about one chance in 700.
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(iii) If there is no pair, the hand has one card of each of five denominations. This
collection of denominations can be chosen in C(13, 5) ways. The card in each
denomination can be selected in 4 ways. So the number of hands is

C(13, 5) · 45,

and the probability is

C(13, 5)·45

C(52, 5)
= 2112

4165
,

which is a little greater than 50%.

Your Turn. A poker hand of five cards is dealt from a standard deck. What is
the probability that it contains a flush (all five cards of the same suit)?

The Birthday Coincidence

Sometimes probabilities can be very surprising. One well-known example is the
“birthday coincidence” problem. Suppose there are 30 people in a room. What is
the probability that two of them share the same birthday (day and month)?

For simplicity, let us ignore leap years. (The answer will still be approximately
correct.) What is the probability of the complementary event—that no two have the
same birthday? (The probability of a birthday coincidence will found by subtracting
this probability from 1.) If we assume the people are ordered in some way (alpha-
betical order, for example), then there are 365 choices for the first person’s birthday,
364 for the second, 363 for the third, and so on. So the total number of possible lists
of birthdays (with no repeats) is

P(365, 30) = 365 · 364 · · · 336.

If there is no restriction, each person has 365 possible birthdays. So there are 36530

possibilities. Therefore, the probability of the event “no two have the same birthday”
is

P(E) = |E|
|S| = P(365, 30)

36530

which is approximately 0.294. So the probability of the “birthday coincidence” is
about 0.706.

Similar calculations can, of course, be carried out for any number of people.
Table 3.2 shows the probability of a “birthday coincidence” for various numbers of
people. It is about a 50% chance when there are 23 people in the room.

Most students find this very surprising, and would guess that many more people
would be needed to bring the probability up to 50%.
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n Pn

5 0.027
10 0.117
15 0.253
20 0.411
23 0.507
25 0.569
30 0.706
40 0.891
50 0.970

Table 3.2. Pn is the probability of a “birthday coincidence” among n people

Choosing a Committee

Sample Problem 3.20. A committee of four people is to be chosen at random
from a club with 12 members, four men and eight women.

(i) What is the probability that at least one man is chosen?

(ii) What is the probability that one particular member, Jack Smith, is chosen?

Solution. The number of possible outcomes—all possible committees—is
C(12, 4). This is |S|. They are equally likely.

(i) Let E be the event that at least one man is chosen. Then E is the event that
no man is chosen. |E| = C(8, 4). So |E| = C(12, 4) − C(8, 4).

P(E) = 1 − C(8, 4)

C(12, 4)
= 1 − 14

99
= 85

99
.

(ii) The number of committees containing a given individual is C(11, 3). (Jack
Smith must be a member; the remaining three are chose from the other 11
members and that can be done in C(11, 3) ways.) Therefore,

P(Jack Smith is chosen) = C(11, 3)

C(12, 4)
= 1

3
.

Your Turn. A class has 18 members—six Math majors, five in Economics, and
seven in Computer Science. A class committee of three is chosen at random.
What is the probability that all three have the same major?

Exercises 3.4 A

1. There are three red, three blue, and four white marbles in a jar. Two are chosen
at random. What are the probabilities that:
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(i) Both are blue?
(ii) The two are different colors?

2. A jar contains four red, five blue, and three white marbles. Three are chosen at
random. What are the probabilities that:

(i) All three are red?
(ii) None is red?

3. A computer program assigns 4-digit PIN numbers at random. It rejects any PIN
that starts with 0. What is the probability that:

(i) Your pin will be smaller than 4000?
(ii) Your PIN will contain a duplicated number (e.g., 3141)?

4. A student must select two courses from a list of two humanities and three sci-
ence courses. He selects at random. What is the probability that both are science
courses?

5. A committee of six people (four men and two women) need to select a chairman
and secretary. They do so by drawing names from a hat. What are the probabili-
ties that:

(i) Both are men?
(ii) Exactly one is a man?

6. A poker hand is dealt at random. What is the probability that it contains a straight
(A2345, 23456, 34567, . . . , 10JKQA)? (In a straight, suits do not matter.)

7. Suppose license plates consist of two letters followed by four numbers. Suppose
all possible combinations have been used. If you select a car at random, what is
the probability that the plate has:

(i) Both letters the same?
(ii) No repeated symbol?

(iii) The last digit even?

8. A congressional committee contains four democrats and five republicans. To
choose a subcommittee they list all groups of four that contain at least one repub-
lican and one democrat, and then select one at random. What is the probability
that the selected subcommittee consists of two democrats and two republicans?

9. A secretary types three letters and the three corresponding envelopes. She is in a
hurry to quit work for the day, and forgets to check that she puts the correct letters
in the correct envelopes, so it is as though she puts the letters in the envelopes at
random. What are the probabilities that:

(i) Every envelope gets the correct letter?
(ii) No envelope gets the correct letter?

10. A committee of six men and four women select a steering committee of three
people. If all combinations are equally likely, what is the probability that all
three will be of the same gender?
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11. A pinball machine selects a number from 0 to 9 at random; you are awarded a
free game if that number equals the last digit in your score.

(i) What is the probability that you win a game in this way on your first attempt?
(ii) What is the probability that you will get no “match” in five games?

12. A jar contains four red, four blue, and two white marbles. Three are chosen at
random. What are the probabilities that:

(i) All three are red?
(ii) All three are blue?

(iii) None is red?

13. A supermarket is suspected of overcharging for meat by giving short weight. To
test this, a consumer organization purchases five 1-pound packages of meat, se-
lected at random. If there are 25 packages on display, and three are underweight,
what is the probability that an underweight package is purchased?

Exercises 3.4 B

1. There are six red and four yellow marbles in a jar.

(i) A pair of marbles is chosen at random. What are the probabilities that:
(a) Both are red?
(b) The two are different colors?

(ii) Suppose the one marble is chosen, its color recorded, the marble is returned
to the jar, and another is chosen. What are the probabilities that:
(a) Both are red?
(b) The two are different colors?

2. There are ten red, three white, and four blue marbles in a jar. Two are chosen at
random. What are the probabilities that

(i) Neither is red?
(ii) Exactly one is red?

(iii) Both are red?
3. From the jar in the preceding exercise, three marbles are chosen. What are the

probabilities that:

(i) All three are red?
(ii) The three are of different colors?

4. A box of 50 matches contains three broken matches. Two matches are drawn at
random. What is the probability that neither is broken?

5. Your midterm test contains ten questions, with true–false answers. If you select
your answers at random, what are the probabilities of getting:

(i) Exactly four correct answers?
(ii) Exactly two correct answers?

(iii) At most two correct answers?
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6. An electrician knows that two switches are faulty out of a batch of five. He tests
them one at a time. What is the probability that he finds the two faulty switches
in the first two trials?

7. There are five people in a room. What is the probability that two were born in
the same month (but not necessarily the same year)?

8. In the game Yahtzee, five fair dice are rolled at once. What are the probabilities
of getting:

(i) A Yahtzee, that is, all five dice the same?
(ii) Four of a kind (that is, four of one denomination, with the other different)?

(iii) A full house (that is, three of one denomination, and two of another)?

9. A committee of ten people (four men and six women) need to select an agenda
committee with two members. They do so by drawing names at random. What
are the probabilities that:

(i) Both are men?
(ii) Exactly one is a man?

10. In one state, 50% of license plates consist of two letters followed by four num-
bers and the other 50% have three numbers followed by three letters. Each plate
is chosen at random from among the possibilities. There is no restriction on the
numbers used. What is the probability that the next plate issued contains the
number 5?

11. Seven people sit around a circular table, at random. What is the chance that two
specific people sit together?

12. Four people apply for two jobs. Among them are a husband and wife. Assume
that the four are equally well qualified and choices are made at random.

(i) What is the probability that both husband and wife are appointed?
(ii) What is the probability that at least one is appointed?

13. In a lottery, you must select three different numbers from 1, 2, 3, 4, 5, 6, 7, 8, 9.
If your three are the numbers drawn, you win the first prize; if you have two right
out of three, you win second prize. (The order of the numbers does not count).

(i) What is the probability of winning first prize?
(ii) What is the probability of winning second prize?

14. A club has 12 members, including Mr. and Mrs. Smith. A committee of three is
to be chosen at random.

(i) What is the probability that both are chosen?
(ii) What is the probability that neither are chosen?

15. Your discussion group chooses its chairman at each monthly meeting by drawing
names from a hat. If there are 12 members, what is the probability that you will
not be chosen at any meeting this year?
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16. The scrabble tiles of the letters in the word T ERRORIST are placed in a row
at random. What is the probability that:
(i) The three Rs occur together?

(ii) The three Rs occur together and the two T s occur together?

3.5 Stochastic Processes

Sequences of Experiments

Sometimes an experiment can be viewed as a sequence of smaller experiments. The
outcome consists of a sequence: “outcome of subexperiment 1” followed by “out-
come of subexperiment 2”, etc. An experiment of this kind is called a stochastic
process.

For example, suppose a jar contains three red and two blue marbles. An exper-
iment consists of drawing a marble from the jar, noting its color, drawing another
marble, and noting the second marble’s color. (The first marble is not replaced.) The
possible outcomes are the four ordered pairs of colors: RR, RB, BR, and BB.

To analyze the experiment, we first observe that the first marble drawn is either
red (three-fifths of the cases) or blue (two-fifths). If the first marble is red, then the
remaining marbles are two red and two blue, so in half of these cases ( 1

2 · 3
5 = 3

10
of the original cases) the second marble drawn is red and in the other half ( 3

10 of the
original) it is blue. So, in the obvious notation,

P(RR) = 3

10
,

P (RB) = 3

10
.

In the same way, if the first marble is blue, then the second marble drawn is red in 3
4

and blue in 1
4 of the cases. So

P(BR) = 2

5
· 3

4
= 3

10
,

P (BB) = 2

5
· 1

4
= 1

10
.

So the four outcomes are RR, RB, BR, and BB, and

P(RR) = P(RB) = P(BR) = 3

10
, P (BB) = 1

10
.

Sample Problem 3.21. There are two bags A and B. Bag A contains two red
and one green ball; bag B contains two red and three green balls. First, a bag is
chosen at random, then a ball is chosen at random from it. What are the possible
outcomes, and what are their probabilities? What is the probability that a red
ball is selected?
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Solution. The outcomes are AR, AG, BR, and BG where A and B are the bags
and R and G denote and color of the ball selected. The possible outcomes of
the first subexperiment—the selection of bag—are A and B, with probabilities
each 1

2 . If A is selected, the probability of R is 2
3 and the probability of G is 1

3 . If
B is selected, R has probability 2

5 and G has probability 3
5 . So

P(AR) = 1

2
· 2

3
= 1

3
,

P (AG) = 1

2
· 1

3
= 1

6
,

P (BR) = 1

2
· 2

5
= 1

5
,

P (BG) = 1

2
· 3

5
= 3

10
.

So the probability of red is

P(AR) + P(BR) = 1

3
+ 1

5
= 8

15
.

Notice that there are four red and four green balls. If the two bags were emptied
and one ball chosen, the probability of red would be 1

2 . The process of dividing
the balls into two bags, whose contents are not identical, changes the probabili-
ties.

Your Turn. A die is chosen from two dice, and rolled. One die (die A) is stan-
dard; the other has three faces marked 1 and three marked 6. What are the out-
comes? Assuming that the die is chosen at random, what is the probability of a 6?
Of a 3?

Tree Diagrams

The use of tree diagrams to represent experiments (see Section 3.1) is particularly
useful for stochastic processes. Let us go back to the example of three red and two
blue marbles. The first stage of the experiment can be represented as a branching into
two parts, labeled “red” and “blue”, and the branches can be also be labeled with the
probabilities 3

5 (on red) and 2
5 (on blue):

In each case, the second stage can be represented similarly. The tree diagram for
the whole experiment is shown in Figure 3.4.
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Fig. 3.4. Tree diagram for the whole experiment

Fig. 3.5. Tree diagram with branch probabilities

Finally, the outcomes are sequences of the results of the subexperiments. Each
endpoint on the right of the tree represents an outcome, and the sequence can be read
off by tracing back through the branch to the root. The probability of an outcome can
be calculated by multiplying the probabilities along the branch. So the experiment
under discussion yields the diagram Figure 3.5.

Conditional Probabilities

In the second stage of our experiment, what is the probability of drawing a blue
marble? There are two answers. If the first marble was red, then the probability is 1

2 ;
if it was blue, the probability is 1

4 . We write

P(second blue | first red) = 1

2
,

P (second blue | first blue) = 1

4
.

The sign “|” is read as the word “given”, so the first probability above is “probabil-
ity that the second is blue given that the first is red”. These probabilities are called
conditional because they express the probability of a result in the second draw if a
certain condition (the result of the first draw) is satisfied.

Conditional probabilities arise all the time. Suppose weather records show that
the average temperature on sunny February days is 45◦. Then we say “if it is sunny,
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Fig. 3.6. Tree diagram with branch probabilities

the probability of 45◦ or warmer is 50%”. This is a conditional probability—the
probability of the temperature being 45◦ or warmer given the condition that it is
sunny in the first place. In general, suppose the fact that event A occurs gives extra
information about the probability that B occurs. The probability that B occurs, given
that A occurs, which is the conditional probability P(B | A), is the best measure to
use in deciding whether or not B will happen.

Sample Problem 3.22. Two cards are dealt from a standard deck. The first card
is not replaced before the second is dealt. What is the probability that the second
card is a King, given that the first card is an Ace? What is the probability of a
King given that the first card is a King?

Solution. Given that the first card is an Ace, the second card is a random se-
lection from 51 equally likely possibilities. Four of these outcomes are Kings.
So

P(K | A) = |E|
|S| = 4

51
.

If the first card is a King, there are only three Kings among the cards for the
second trial, so

P(K | K) = 3

51
.

Your Turn. Two cards are dealt, without replacement, from a standard deck.
If the first is a spade, what is the probability that the second is (i) a spade?
(ii) a heart?

It will be seen that the probabilities written on the later branches of a tree diagram
are all conditional probabilities. If an experiment consists of two stages, where the
first stage has possible outcomes A and B and the second stage has possible outcomes
C and D, then the tree diagram will be the one shown in Figure 3.6. Of course, this
all works in a similar way when there are more than two stages, or when there are
more than two outcomes at a stage.
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Sample Problem 3.23. Two cards are dealt without replacement from a standard
deck, and it is noted whether or not the cards are Kings. What are the outcomes
of this experiment, and their probabilities? Represent the information in a tree
diagram.

Solution. We shall write K and N for “a King” and “a card other than a King.”
Using Sample Problem 3.22 we get the probabilities

P(K | K) = 3

51
,

P (K | N) = 4

51
.

(In the Sample Problem we were told that the first card was an Ace, but clearly
any non-King denomination would give the same answer.) Given that the first
card is a King, the second card is either a King or not, so

P(K | K) + P(N | K) = 1.

Therefore, P(N | K) = 48

51
, and similarly P(N | N) = 47

51
.

So the diagram is

(where, for example, “KN” means “King first, non-King second”).

Your Turn. Repeat this Sample Problem, in the case where the information
noted is whether or not the card is a spade.

Exercises 3.5 A

1. A jar contains six marbles, four red and two white. In stage 1 of an experiment,
one marble is selected at random and its color noted; it is not replaced. In stage 2,
another marble is drawn and its color noted.

(i) Draw a tree diagram for this experiment.

(ii) What are the probabilities of the four outcomes (RR, RW, WR, WW)?

(iii) What is the probability that the two marbles selected are different colors?



3.5 Stochastic Processes 121

2. A cage contains six mice: three white females, one white male, and two gray
males. In an experiment, two mice are selected one after the other, without re-
placement, and sex and color are noted.

(i) Draw a tree diagram for this experiment.

(ii) Find the probabilities of all the outcomes.

(iii) What is the probability that two males are selected?

(iv) What is the probability that both a white and a gray mouse are selected?

(v) What is the probability that the second mouse is gray?

3. Three cards are dealt in order from a standard deck. In each case it is only
recorded whether the card is an honor card (Ace, King, Queen, Jack) or a minor
card (10 through 2).

(i) Draw a tree diagram for this experiment. Find the probabilities of the differ-
ent outcomes.

(ii) What is the probability that at least two honor cards are dealt?

4. A jar contains four red, three white, and two blue marbles. One marble is drawn
and placed aside; then another marble is drawn. Only the colors are recorded.

(i) Drawn a tree diagram for this experiment.

(ii) What is the probability that the two marbles are of different colors?

5. Box A contains three red pens and four blue pens. Box B contains two red, one
green and one blue pen. A pen is selected from Box A at random, and placed in
Box B. Then a pen is selected at random from Box B. What is the probability
that this pen is:

(i) Red?

(ii) Blue?

(iii) Green?

6. A card is dealt at random from a regular deck. What is the probability that it is a
Jack given that it is a face card (King, Queen, or Jack)?

7. Two fair dice are rolled. Consider the events:

A: The sum is 7;

B: The sum is odd;

C: At least one die shows a 4.

What are P(A | B), P (B | A), P (A | C), P (C | A)?

8. Two cards are selected from a regular deck, without replacement. Consider the
events:

A: Both cards are red;
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B: The second card is red;

C: At least one card is red;

D: At least one card is a heart.

What are P(A), P (D), P (A | B), P (A | C), P (D | B), P (D | C)?

9. In Exercise 2, what are the conditional probabilities of the following events:

(i) Two males are selected, given that at least one male is selected?

(ii) Two females are selected, given that at least one white mouse is selected?

10. In Exercise 5, what are the conditional probabilities of the following events:

(i) The pen selected from Box B is blue, given that the pen selected from Box A

was blue?

(ii) The pen selected from Box B is blue, given that the pen selected from Box A

was red?

Exercises 3.5 B

1. Three cards are dealt in order from a standard deck. Only the color (red or black)
of the card is recorded. The cards are not replaced.

(i) Draw a tree diagram for this experiment.

(ii) What is the probability that the three cards are red?

2. Eight evenly-matched horses run a race. Three are bay colts, one is a bay filly,
two are brown colts, and two are brown fillies. The color and sex of the first and
second finishers are recorded.

(i) Draw a tree diagram for this experiment.

(ii) What is the probability that both the horses recorded are colts?

(iii) What is the probability that the two horses are of different colors?

(iv) What is the probability that the second horse is a filly?

3. A box contains four red and two blue marbles. One marble is selected at random.
If it is red, it is put aside; if it is blue, it is put back in the box. In either case,
another marble is then drawn.

(i) Draw a tree diagram for this experiment; calculate the probabilities of the
outcomes.

(ii) What is the probability that the first marble is blue?

(iii) What is the probability that at least one blue marble is selected?

4. A city worker can either go to work by car or by bus. If she goes by car, she uses
the tunnel 40% of the time and the bridge 60% of the time. If she takes the bus,
it is equally likely that her bus will use the tunnel or the bridge.
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(i) Draw a tree diagram to represent her possible routes to work.

(ii) Suppose she drives on three days out of five and takes the bus twice out of
every five times. What are the probabilities of the various outcomes? What
is the probability, on a given day, that she crosses the bridge on her way to
work?

5. Box 1 contains five red balls and three white balls. Box 2 contains two red and
two white balls. An experiment consists of selecting two balls at random from
Box 1 and placing them in Box 2, then selecting one ball from Box 2 at ran-
dom.

(i) Draw a tree diagram for this experiment.

(ii) What is the probability that the ball chosen from Box 2 is red?

6. A card is dealt from a regular deck. What is the probability that it is a 5, given
that it is not a face card (King, Queen, or Jack)?

7. Two fair dice are rolled. Consider the events:

A: The sum is 6;

B: Both dice show even numbers;

C: At least one die shows a 4.

What are P(A | B), P (A | C), P (B | A), P (B | C), P (C | A), P (C | B)?

8. A jar contains three white and three red marbles. Two are drawn in succession,
without replacement, and the colors are noted.

(i) Draw a tree diagram for this experiment.

(ii) Let A, B, and C denote the events:

A: Both marbles are red;

B: The second marble is red;

C: At least one marble is red.

What are P(A), P (A | B), P (A | C), P (B | C)?

9. Two cards are dealt in order from a deck of 24 (Ace, King, Queen, Jack, ten and
nine of spades, clubs, diamonds and hearts). Only the suit of the card is recorded.
The cards are not replaced.

(i) Draw a tree diagram for this experiment.

(ii) What is the probability that both cards are red?

(iii) What is the probability that both cards are hearts?

10. A box contains three red, two white, and two blue marbles. One marble is se-
lected at random. If it is red, it is put aside; otherwise, it is put back in the box.
In either case, another marble is then drawn.
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(i) Draw a tree diagram for this experiment; calculate the probabilities of the
outcomes.

(ii) What is the probability that the first marble is blue?

(iii) What is the probability that the second marble is red?

(iv) What is the probability that at least one white marble is selected?

11. Two teams, A and B, play in the finals of a tournament. The first to win two
games wins; once a winner is determined, no further games are played. There
are no ties (extra time is always played until there is a result).

(i) What is the smallest number of games they might play? What is the largest?

(ii) Draw a tree diagram to represent the possible outcomes.

(iii) Assume that each team has a 50% chance of winning each game.

(a) Determine the probabilities of the different possible outcomes.

(b) What is the probability that A wins the finals?

(iv) What are the answers to (a) and (b) if team A has a two-thirds chance of
winning each game?

12. Box 1 contains four light bulbs, of which one is defective. Box 2 contains eight
light bulbs, of which two are defective. Box 3 contains six light bulbs, of which
two are defective. A box is chosen at random and a bulb is chosen at random
from it. What is the probability that the bulb is defective?

13. Two fair dice are rolled. Consider the events:

A: The sum is 8;

B: Both dice show even numbers;

C: At least one die shows a 6.

What are P(A | B), P (A | C), P (B | A), P (B | C), P (C | A), P (C | B)?

14. A jar contains three white, two blue and three red marbles. Two are drawn in
succession, without replacement, and the colors are noted. A, B, and C denote
the events:

A: Both marbles are red;

B: No marble is blue;

C: At least one marble is red.

What are P(A), P (B), P (C), P (A | B), P (A | C), P (B | A), P (B | C)?

15. A roulette wheel in Las Vegas contains 38 numbered spaces. Two are green,
18 red or 18 black. You bet on black. Given that you lose, what is the probability
that red wins?

16. In Exercise 4, what are the conditional probabilities of the following events?
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(i) The worker traveled over the bridge on her way to work, given that she
traveled by bus.

(ii) She used the tunnel, given that she came by car.

17. In Exercise 5, what are the probabilities of the following events?

(i) The ball chosen from Box 2 is red, given that both balls chosen from Box 1
were red.

(ii) The ball chosen from Box 2 is red, given that at least one ball chosen from
Box 1 was red.

(iii) The ball chosen from Box 2 is red, given that at most one ball chosen from
Box 1 was red?

18. Consider Exercises 11, parts (iii) and (iv). In each case, what is the conditional
probability that A wins, given that B wins the first game?

19. In Exercise 12, what is the probability that the chosen bulb is defective, given
that it was not chosen from box 2?

3.6 More About Conditional Probability

The Conditional Probability Formula

In the preceding section, we used conditional probabilities to calculate probabilities
of stochastic processes. The probability of the sequence “A followed by B” is

P(AB) = P(A)P (B | A). (3.1)

This formula can be used more generally, even when A does not happen before B.
Whenever we get more information about whether an event B occurs by knowing
whether or not event A occurs, we define the conditional probability of B given A

by

P(B | A) = P(A ∩ B)

P (A)
. (3.2)

Sample Problem 3.24. A car pool contains both ten red and ten white Fords and
15 red and 5 white Buicks. A car is chosen at random, by picking up the keys.

(i) What is the probability that a red car is chosen?

(ii) You notice that the keys belong to a Buick. What is the probability that a red
car is chosen?

Solution. (i) There are 40 cars, of which 25 are red. So

P(R) = |R|
|S| = 25

40
= 5

8
.
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(ii) There are 20 Buicks, of which 15 are red. So

P(B) = 20

40
= 1

2
,

P (R ∩ B) = 15

40
= 3

8
,

P (R | B) = P(R ∩ B)

P (B)
= 3

8
· 2

1
= 3

4
.

Your Turn. There are five Republicans and three Democrats on a committee.
A subcommittee of two is chosen by a random drawing.

(i) What is the probability that both are Democrats?

(ii) You are told that the committee contains at least one Democrat. What is the
probability that both are Democrats?

Sample Problem 3.25. A carpenter uses screws made by two companies,
X and Y ; 40% of his stock comes from X and the rest from Y . About 2% of the
screws from Y are faulty. If he chooses a screw at random, what is the probability
that it is a faulty screw from company Y?

Solution. We have

P(Y ) = 0.6, P (F | Y) = 0.02.

So

P(Y ∩ F) = P(Y )P (F | Y)

= 0.6·0.02 = 0.012,

and the probability is 0.012 or 1.2%.

Your Turn. Records show that two March days out of five are dull, and it rains
on one out of every three dull days. What is the probability that March 12th next
year will be dull and rainy?

Independence

In everyday English, we say two events are independent if they have no effect on
each other. In probability theory, events A and B are called independent when

P(A | B) = P(A).

Provided neither A nor B is impossible, the relation

P(B | A) = P(A ∩ B)

P (A)
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leads us to the equivalent definition: A and B are independent when

P(A ∩ B) = P(A) · P(B).

This is not quite a translation of the everyday English idea. In the following example,
the events are related, but knowing whether one occurs does not give any information
about the probability of the other.

Sample Problem 3.26. A quarter is flipped three times, and the result—heads or
tails—is recorded. A is the event “all three are the same” (HHH or T T T ) and
B is the event “the first result is a head”. What are P(A) and P(B)? Are A and
B independent?

Solution. There are eight possible outcomes: HHH , HHT , HT H , and so on;
they are equally likely. So |S| = 8. Since |A| = 2 and |B| = 4, we have

P(A) = 2

8
= 1

4
,

P (B) = 4

8
= 1

2
.

The event A ∩ B consists of the single outcome HHH . So

P(A ∩ B) = 1

8
= 1

4
· 1

2
= P(A) · P(B),

so A and B are independent.

Your Turn. Two dice (one red and one green) are rolled and the outcome is re-
corded. A is the event “5 on the red die” and B is the event “even number on the
green die”. What are P(A) and P(B)? Are A and B independent?

Sample Problem 3.27. Two dice are rolled and their sum is recorded. Consider
the events:

A: Sum is 2, 8, or 11;

B: Sum is even;

C: Sum is 4, 7, or 10.

Which of these are independent?

Solution. We write Ei for the outcome: “the sum is i”. These outcomes are the
events shown with their probabilities in Table 3.1. Then

A = {E2, E8, E11},
B = {E2, E4, E6, E8, E10, E12},
C = {E4, E7, E10},
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A ∩ B = {E2, E8},
A ∩ C = ∅,

B ∩ C = {E4, E10},
and from the table

P(A) = (1 + 5 + 2)

36
= 8

36
,

P (B) = (1 + 3 + 5 + 5 + 3 + 1)

36
= 18

36
,

P (C) = (3 + 6 + 3)

36
= 12

36
,

P (A ∩ B) = (1 + 5)

36
= 6

36
,

P (A ∩ C) = 0,

P (B ∩ C) = (3 + 3)

36
= 6

36
.

Now

P(A) · P(B) = 8

36
· 18

36
= 4

36
�= P(A ∩ B),

P (A) · P(C) = 8

36
· 12

36
= 8

108
�= P(A ∩ C),

P (B) · P(C) = 18

36
· 12

36
= 6

36
= P(B ∩ C),

so B and C are independent, but A and B are dependent, and so are A and C.

Your Turn. An urn contains eight balls numbered 1 through 8. Balls 1, 2, and 3
are red; 4, 5, 6, and 7 are white; 8 is blue. One ball is drawn. Consider the events:

A: It is red;

B: It is blue;

C: The number is odd.

Which of these events are independent?

A Summation Formula

Suppose two events, A and B are considered. Since

A = (A ∩ B) ∪ (A\B) = (A ∩ B) ∪ (A ∩ B)

and the latter events are mutually exclusive, we have
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P(A) = P(A ∩ B) + P(A ∩ B)

so

P(A) = P(A | B)P (B) + P(A | B)P (B).

More generally, if the possible outcomes of an experiment are B1, B2, . . . , Bk , then

P(A) =
k∑

i=1

P(A | Bi)P (Bi). (3.3)

In terms of tree diagrams, this formula is a way of stating in symbols the fol-
lowing rule: “to find the probability of A, find the probabilities associated with all
branches that contain A, and sum them”.

Sample Problem 3.28. There are six boxes, two of them round and four square.
Each round box contains two green marbles and three blue marbles. Each square
box contains one green marble and three blue marbles. A box is chosen at random
and a marble is chosen at random from it. What is the probability that the marble
is blue? What is the probability that the box was round, given that the marble
was blue? Represent the probabilities in a tree diagram.

Solution. We write R, S, G, B for round, square, green, blue. Then the proba-
bilities of choosing round and square boxes are

P(R) = 1

3
, P (S) = 2

3
.

So

P(B) = P(B | R)P (R) + P(B | S)P (S)

=
(

3

5

)(
1

3

)
+

(
3

4

)(
2

3

)

= 1

5
+ 1

2
= 7

10
.

We can calculate P(R ∩ B):

P(R ∩ B) = P(B | R)P (R) =
(

3

5

)(
1

3

)
= 1

5
.

So

P(R | B) = P(R ∩ B)

P (B)
=

1
5
7
10

= 2

7
.

The diagram is
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P(B) = P(R ∩ B) + P(S ∩ B) = 1

5
+ 1

2
= 7

10
.

(This last equation is the sum of the probabilities of all branches that contain B.)

Your Turn. Consider the carpenter in Sample Problem 3.25. Suppose further
that about 4% of the screws from company X are faulty. If he selects a screw at
random, what is the probability that it is faulty?

Exercises 3.6 A

1. In each case, illustrate the data with a Venn diagram and calculate P(A | B) and
P(B | A):

(i) P(A) = 0.7, P (B) = 0.4, P (A\B) = 0.4;
(ii) P(A ∪ B) = 0.7, P (A ∩ B) = 0.3, P (B) = 0.3;

(iii) P(A) = 0.6, P (B) = 0.6, P (A ∩ B) = 0.4;
(iv) P(A) = 0.6, P (B) = 0.6, and P(A\B) = 0.4.

2. Suppose A and B are independent events. Find P(A ∪ B) and P(A ∩ B) if

(i) P(A) = 0.5, P (B) = 0.8;
(ii) P(A) = 0.7, P (B) = 0.5;

(iii) P(A) = 0.9, P (B) = 0.7.

3. Two cards are selected from a regular deck. It is recorded whether or not each
card is a spade. Define the events:

A: The first card is a spade;
B: The second card is a spade.
(i) Suppose the first card is not replaced before the second is drawn.

(a) Draw a tree diagram for this experiment.
(b) Find P(A), P (B), P (A | B), P (B | A), and P(A ∩ B).
(c) Are A and B independent?

(ii) Suppose the first card is replaced and the deck is shuffled before the second
selection. Repeat (a), (b), and (c).

4. A random sample of 100 people were asked whether their income level is low,
medium, or high (L,M,H ) and asked which car they prefer of Ford, Chevrolet,
or Toyota (F,C, T ). The following table gives the results of the survey.
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Preference Income
L M H

F 10 13 2
C 20 12 8
T 10 15 10

A person in the survey is chosen at random. Writing F to mean that be the person
prefers Ford, M to mean that she has medium income, and so on, find

(i) P(C | H);

(ii) P(M | T );

(iii) P(H | T );

(iv) P(M | F).

5. A weather forecasting station predicts that on December 18 it will snow with a
probability of 0.6, there will be a change in the wind direction with a probability
of 0.8, and there will be both snow and a change in the wind direction with a
probability of 0.4. If the prediction is correct

(i) What is the probability that there will be neither snow nor a change in the
wind direction?

(ii) What is the probability of snow given that the wind direction has changed?

6. The chef at Le Chat Noir has his good days and his bad days. Let A mean “The
chef cooked lunch badly” and B mean “the chef cooked dinner badly.” If P(A) =
0.3, P(B) = 0.2, and P(A ∩ B) = 0.1, what are:

(i) P(B|A)?

(ii) P(B|A)?

(iii) P(B|A)?

(iv) P(B|A)?

Suppose the chef cooked a bad dinner. What is the probability that lunch was
bad that day?

7. Two dice are rolled and the sum of the top faces is recorded. Let F be the event
that the sum is an odd number, let G be the event that the sum is 4, 7, or 10, and
let E be the event that the sum is 2, 7, or 11.

(i) Find P(E | F).
(ii) Determine whether F and G are independent.

8. Professor Jones has taught the same course for the last 20 years. Each time he
teaches it he gives a pretest on the first day of the class. At the end of each
semester he compares course grades with whether or not students have passed
the pretest. He assigns a course grades C or higher to 60% of the class. He finds
that 60% of those students who got C or better in the course have passed the
pretest while 40% of the students who got less than a C in the course also passed
the pretest.

(i) Draw and label a tree diagram illustrating the process.
(ii) Find the probability that a student who takes the pretest will not pass it.

(iii) If a student has not passed the pretest, what is his probability of getting less
than a C in the course?
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9. Two fair dice, one red and one green, are rolled. Events A, B, and C are defined
as follows:

A: The sum of the two dice is 7;
B: The green die shows a 3;
C: The green die shows a 1.

(i) Are A and B independent?
(ii) Are A and C independent?

10. Three jars, labeled A, B, and C, contain red and green jelly beans as follows:
A has two red and two green, B has four red and three green, and C has two
red and five green. A jar is selected at random, and one jelly bean is selected
at random from it. Represent this experiment in a tree diagram, and find the
probability that the jelly bean is red.

11. Suppose E, F , and G are any three events. Prove that:

P(E ∩ F ∩ G) = P(E) · P(F | G) · P(G | E ∩ F).

Exercises 3.6 B

1. In each case, illustrate the data with a Venn diagram and calculate P(A | B) and
P(B | A):

(i) P(A) = 0.7, P (B) = 0.6, P (A ∪ B) = 0.9;
(ii) P(A) = 0.6, P (B) = 0.3, P (A ∩ B) = 0.2;

(iii) P(A ∪ B) = 0.7, P (A ∩ B) = 0.4, P (A) = 0.6;
(iv) P(A) = 0.4, P (B) = 0.6, P (A ∪ B) = 0.9;
(v) P(A) = 0.6, P (B) = 0.4, P (A ∩ B) = 0.1;

(vi) P(A) = 0.4, P (A ∩ B) = 0.1, P (A ∪ B) = 0.9;
(vii) P(A) = 0.6, P (B) = 0.6, P (A ∩ B) = 0.6;

(viii) P(A) = 0.7, P (B) = 0.6, P (A ∪ B) = 0.8;
(ix) P(A) = 0.8, P (B) = 0.4, P (A ∩ B) = 0.3.

2. Suppose A and B are independent events. Find P(A ∪ B) and P(A ∩ B) if

(i) P(A) = 0.6, P (B) = 0.4;
(ii) P(A) = 0.4, P (B) = 0.4;

(iii) P(A) = 0.8, P (B) = 0.8;
(iv) P(A) = 0.5, P (B) = 0.6;
(v) P(A) = 0.5, P (B) = 0.3;

(vi) P(A) = 0.7, P (B) = 0.7.

3. A box contains six red and four blue marbles. Two marbles are drawn from the
box and their colors are noted. Define the events:

E: The first marble is red;
F : The second marble is red.
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(i) Suppose the first marble is not replaced before the second drawing.

(a) Draw a tree diagram for this experiment.
(b) Find P(E), P (F ), P (E | F), P (F | E), and P(E ∩ F).
(c) Are E and F independent?

(ii) Repeat the preceding questions in the case where the first marble is not
replaced before the second drawing.

4. A box contains five red and seven blue marbles. Two marbles are drawn from
the box and their colors are noted. Define the events:

E: The first marble is red;
F : The second marble is red.
(i) Suppose the first marble is not replaced before the second drawing.

(a) Draw a tree diagram for this experiment.
(b) Find P(E), P (F ), P (E | F), P (F | E), and P(E ∩ F).
(c) Are E and F independent?

(ii) Repeat the preceding questions in the case where the first marble is not
replaced before the second drawing.

5. A random sample of 100 people were asked about their income level and asked
whether they regularly invest in the stock market. The following table gives the
results of the survey.

Income
level

Regularly invest in
stock market
Yes No

High 18 6
Medium 21 16
Low 15 24

A person in the survey is chosen at random. Let H be the event that the person
has a high income. Let Y be the event that the person regularly invests in the
stock market, and let N be the event that the person does not regularly invest in
the stock market. Find

(i) P(H);

(ii) P(Y );

(iii) P(H ∪ Y);

(iv) P(N | H).

6. Suppose an urn contains two red, four green, and five blue marbles. A marble is
selected from the urn and its color noted. If it is red or green it is withdrawn, oth-
erwise it is replaced. Then a second marble is selected from the urn. Determine
the probability the first marble was red, given the second was red.

7. 40 percent of those who take drugs also have an alcohol problem and five percent
of those who do not take drugs have an alcohol problem. If 32% of the population
take drugs, what is the probability that a person who has an alcohol problem also
takes drugs?



134 3 Probability

8. Two fair dice, one red and one green, are rolled. Events A, B, and C are defined
as follows:

A: The sum of the two numbers shown is 6;
B: The number showing on the green die is 2;
C: The green die shows a 3.
(i) Are A and B independent?

(ii) Are A and C independent?

9. Two jars, labeled A and B, contain marbles as follows: A has two red, one white
and two blue, and B contains six red, two white, and two blue. A jar is selected
at random, and a marble is selected at random from it. Represent this experiment
in a tree diagram. What is the probability that the marble chosen is blue?

10. A bookstore sells both fiction and non-fiction. Suppose A denotes the event that
the next book sold is fiction, and B denotes the event that the next book sold
is science fiction (and therefore is fiction). Say P(A) = 0.5 and P(B) = 0.05.
What is P(B|A)?

11. At a certain Midwestern University (that shall remain nameless), 30% of the
underage students have fake I.D.s, and 20% of the underage students are arrested
for drunkenness on a given Friday night. Of those arrested, 60% had fake I.D.s.
If an underage student possessed a fake I.D., what is the probability that she was
arrested for drunkenness that Friday night?

12. Suppose E and F are events in the sample space S. You may assume that 0 <

P(E) < 1 and 0 < P(F) < 1. Are the following true, or false, or is it impossible
to decide?

(i) P(E | E) = 1;
(ii) P(E | E) = 1;

(iii) P(S | F) = 1;
(iv) P(F | S) = 1;
(v) P(F | S) = P(F);

(vi) P(E | E ∩ F) = 0;
(vii) P(E | F) = P(F | E);

(viii) P(E ∪ F) ≥ P(E ∩ F).

13. E and F are any events such that P(F) �= 0. Show that

P(E | F) + P(E | F) = 1.

14. D, E, and F are any events such that P(F) �= 0. Show that

P(D | F) + P(E | F) = P(D ∪ E | F) + P(D ∩ E | F).
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3.7 Bayes’ Formula and Applications

Bayes’ Formula

If A and B are any two events, then A ∩ B and B ∩ A are, of course, the same event.
However, the conditional probability formula gives two different looking expressions
for their probabilities:

P(A ∩ B) = P(B | A)P (A),

P (B ∩ A) = P(A | B)P (B).

It follows that the two expressions must be equal:

P(B | A)P (A) = P(A | B)P (B).

This formula is usually written in the form

P(B | A) = P(A | B)P (B)

P (A)
. (3.4)

Sample Problem 3.29. A store gets 40% of its stock of light bulbs from fac-
tory X, 35% from Y , and 25% from Z. Of the output from X, 1% are faulty;
2% from Y and 3% from Z are faulty. A light bulb is chosen at random from
stock and found to be faulty. What is the chance that it comes from factory Z?

Solution. Write Z for the event “the bulb comes from factory Z” and A for “the
bulb is faulty.” Then P(Z | A) is required. From the data we know P(Z) = 0.25
and P(A | Z) = 0.03. To calculate P(A) we use the formula (3.3):

P(A) = P(A | X)P (X) + P(A | Y)P (Y ) + P(A | Z)P (Z)

= (0.01) · (0.40) + (0.02) · (0.35) + (0.03) · (0.25)

= 0.004 + 0.007 + 0.0075

= 0.0185.

So

P(Z | A) = (0.25) · (0.03)

0.0185

= 75

185
= 15

37
,

or approximately 40.5%.

Your Turn. You are given three coins; one is biased so that it shows heads two-
thirds of the time, and the other two are fair (heads and tails are equally likely).
You select a coin at random and flip; it shows heads. What is the probability that
it is the biased coin?
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The formula (3.4) is called Bayes’ Formula. It is often combined with (3.3) as
follows. Suppose the possible outcomes of an experiment are B1, B2, . . . , Bk . Then

P(Bi | A) = P(A | Bi)P (Bi)

P (A | B1)P (B1) + · · · + P(A | Bk)P (Bk)
(3.5)

(the denominator of (3.5) comes directly from (3.3)).

When Bayes’ formula is used, very often the outcomes B1, B2, . . . , Bk are the
outcomes of an experiment that occurred earlier, and A is an outcome, or set of out-
comes, of a later experiment. Bayes’ formula answers the question, “given the out-
come of the second experiment, what is the probability that the outcome of the first
experiment was so-and-so?” This sometimes confuses students because it somehow
seems to suggest that the outcome of the later experiment can somehow affect the
earlier experiment, and that is impossible—causes must come before effects. What in
fact happens is that knowledge of the later experiment can increase our (incomplete)
knowledge of the earlier experiment.

Sample Problem 3.30. The car pool contains ten Fords (five red and five white)
and 15 Pontiacs (five red and ten white). You are allocated a car at random. You
see from a distance that it is red. What is the probability that you have been given
a Ford?

Solution. We require P(F | R). There are 25 cars of which ten are Fords, so
P(F) = 10

25 = 0.4, and ten are red, so P(R) = 0.4 also. The probability of a red
car, given that it is a Ford, is 0.5, since half the Fords are red. So

P(R)P (F | R) = P(F)P (R | F),

0.4 · P(F | R) = 0.4 · 0.5,

P (F | R) = 0.5.

Your Turn. Box A contains two blue pens and three red pens. Box B contains
two red pens and three blue pens. A box is chosen at random and a pen is chosen
at random from it. If the pen is blue, what is the probability that the box was
Box A?

Tree Diagrams

It is often convenient to use tree diagrams in Bayes’ formula problems. When the
diagram is completed, the terms to be added for the denominator of (3.5) are on the
right hand side.

Bayes’ formula calculations can be carried out as follows:

(i) First, start constructing a tree diagram with the possible outcomes B1, B2, . . . , Bk

as branches.
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(ii) To each of these branches add the branches A (“the event A occurs”) and A

(“A does not occur”). The paths ending in A together represent all the circum-
stances in which A can occur.

(iii) Now calculate the probability—the product of the conditional probabilities—
for each branch that ends in A. The sum of these probabilities will be P(A), the
denominator of (3.5).

(iv) The numerator P(Bi | A) will be written next to one of the branches.

Sample Problem 3.31. Construct a tree diagram for Sample Problem 3.29.

Solution. In the terminology of experiments, Sample Problem 3.29 could be de-
scribed as follows. First, a supplier is chosen; then a light bulb is chosen from
that supplier. So the outcomes of the first experiment (the B1, B2, . . .) are fac-
tories X, Y , or Z. The first part of the tree diagram has three branches labeled
X, Y , and Z, with probabilities 0.4, 0.35, and 0.25, respectively. Event A is “the
bulb is faulty”, and the three probabilities are 0.01, 0.02, and 0.03. So we obtain
the diagram

From the diagram, the denominator is 0.0185. So

P(Z | A) = P(A | Z)P (Z)

0.0185
= 0.0075

0.0185
= 0.405.

Your Turn. Repeat the above for Sample Problem 3.30.

Sample Problem 3.32. The following table shows the proportion of people over
18 who are in various age categories, together with the probability that a person
in a given category will vote in a given election. A vote is selected at random.
What is the probability that the voter was from the 18–24 age group?

Age group Proportion Probability
A: 18–24 18.2% 0.49
B: 25–44 38.6% 0.71
C: 45–64 28.2% 0.63
D: 65+ 15.2% 0.74
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Solution. We use the following diagram (V and N mean “voter” and “non-
voter”, respectively).

P(A | V ) = 0.089

0.653
= 0.136.

Your Turn. What is the probability that the voter was 65 or older?

Box Diagrams

In many examples, it is easiest to represent a two-stage experiment using a box di-
agram. The outcomes of the first experiment are used as labels for rows, and the
outcomes of the second experiment are used as labels for columns. Where row A

meets column B, we put a box containing P(A ∩ B). The sum of entries in row A,
which equals P(A), is written at the end of row A, and so on.

As an example, consider Sample Problem 3.29. The first experiment—determina-
tion of factory—has outcomes X, Y , and Z; the second experiment—“check: is it
faulty”—has outcomes A (faulty) and B (okay). Then

P(A ∩ X) = P(A | X)P (X) = 0.004,

P (A ∩ Y) = P(A | Y)P (Y ) = 0.007,

P (A ∩ Z) = P(A | Z)P (Z) = 0.0075.

(See the diagram in Sample Problem 3.31 for these calculations.)

We can calculate P(B ∩ X) in various ways. For example, A and B are comple-
ments, so

P(A ∩ X) + P(B ∩ X) = P(X),

P (B ∩ X) = P(X) − P(A ∩ X)

= 0.4 − 0.004 = 0.396;
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A B

X 0.004 0.396 0.4
Y 0.007 0.343 0.35
Z 0.0075 0.2425 0.25

0.0185 0.9815

Fig. 3.7. Box diagram of data for Sample Problem 3.29

similarly P(B ∩ Y) = 0.343, P (B ∩ Z) = 0.2425. So the box diagram is as shown
in Figure 3.7.

Sample Problem 3.33. Use the box diagram in Figure 3.7 to calculate P(Z | A)

in Sample Problem 3.29.

Solution. To find P(Z | A), look at column A, which has a total of 0.0185. Then
look at the (Z,A) entry 0.0075, and take the ratio:

P(Z | A) = P(A ∩ Z)

P (Z)
= 0.0075

0.0185
= 0.406.

Your Turn. Produce a box diagram for the problem following Sample Prob-
lem 3.29 and use it to find the probability that you have tossed the biased coin,
given that it shows heads.

Exercises 3.7 A

1. The events E and F satisfy P(E) = 0.6, P (F | E) = 0.5, and P(F | E) =
0.75. Find P(E | F) and P(E | F).

2. One experiment has possible outcomes A, B, C, while a second experiment has
possible outcomes E and F . Find P(A | E), P(B | E), P(C | E), P(A | F),
P(B | F), and P(C | F) in the following cases:

(i) P(A) = 0.4, P (B) = 0.4, P (E | A) = 0.25, P (E | B) = 0.75, and
P(E) = 0.6;

(ii) P(A) = 0.25, P(B) = 0.25, P(E | A) = 0.4, P(E | B) = 0.4, and
P(E) = 0.5;

(iii) P(A) = 2
5 , P (B) = 1

10 , P (E | A) = 1
3 , P (E | B) = 0, and P(E) = 3

5 ;

(iv) P(A) = 2
5 , P (B) = 1

10 , P (E | A) = 1
3 , P (E | B) = 0, and P(E) = 1

2 .

3. An auto rental company has 12 cars available, four small and eight fullsize.
There are ten customers; six want small and four want fullsize. If a small car is
not available, the company gives a free upgrade to fullsize.

(i) How many upgrades are necessary?
(ii) If a customer receives a fullsize, what is the probability that she requested a

small car?
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4. Jason owns two cars, a Caprice and a Mini Cooper. If he drives the Mini Cooper
to his office, he is late to work only 10% of the time (because he can usually
find a parking space); but if he drives the Caprice, he is late 30% of the time.
He drives the Mini Cooper on four days out of every five, but on the fifth day he
needs the larger car.

(i) Draw a box diagram for these data.
(ii) If he arrives on time, what is the probability that he drove the Caprice that

morning?

5. An automobile dealership finds that 4% of their customers default on payments,
so that the car must be repossessed. On analyzing the records, it is found that
among those who did not default, 40% made a large down payment ($2000 or
more), while only 10% of those who later defaulted made a large down pay-
ment.

(i) Suppose a customer makes a large down-payment. What is the probability
that he will default on payments?

(ii) If a customer makes a small down-payment, what is the probability that he
will default on payments?

6. In manufacturing metal office equipment, your company uses nuts supplied by
three companies, A, B, and C. Company A supplies 30%, company B supplies
45%, and company C supplies 25%. It is known that on average the following
percentages of the nuts are defective: 1% of those from A, 1.5% of those from
B, and 0.5% of those from C.

(i) If a nut is selected at random, what is the probability that it is defective?
(ii) If a nut is selected at random and is found to be defective, what is the prob-

ability that it was made by company B?

7. In a certain city, it is found that equally many people have fair and dark hair.
A survey shows that 20% of people with dark hair and 40% of people with fair
hair have blue eyes. A person is chosen at random from the population and is
found to have blue eyes. What is the probability that this person has fair hair?

8. A class contains 60% women. It is found that 12% of the men students and 7%
of the women students are left-handed. A student is chosen at random. If the
student is left-handed, what is the probability that the student is male?

9. In a factory, 30% of the workers smoke. It is found that smokers have three times
the absentee rate of other workers. If a worker is absent, what is the probability
that he is a smoker?

10. An auto insurance company classifies 20% of its drivers as good risks, 60% as
medium risks, and 20% as bad risks (called classes A, B, and C, respectively).
The probability of at least one accident in a given year is 1% for class C, 0.5%
for class B, and 0.1% for class A. If one of their insureds has an accident this
year, what is the probability that he is a class B driver?
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Exercises 3.7 B

1. The events E and F satisfy P(E) = 0.85, P (F | E) = 0.8, and P(F | E) =
0.8. Find P(E | F) and P(E | F).

2. The events E and F satisfy P(E) = 0.5, P (F | E) = 0.4, and P(F | E) = 0.4.
Find P(E | F) and P(E | F).

3. One experiment has the possible outcomes A, B, and C; a second experiment
has the possible outcomes E and F . Calculate P(A | E), P(B | E), P(C | E),
P(A | F), P(B | F), and P(C | F) when:

(i) P(A) = 3
10 , P(B) = 1

2 , P(E | A) = 2
3 , P(F | B) = 2

5 , and
P(F | C) = 1

2 ;

(ii) P(A) = 0.25, P(B) = 0.25, P(E | A) = 0.6, P(F | B) = 0.6, and
P(F | C) = 0.5;

(iii) P(A) = 0.5, P(B) = 0.3, P(E | A) = 0.6, P(F | B) = 0,
and P(F | C) = 0.5;

(iv) P(A) = 1
5 , P(B) = 3

5 , P(E | A) = 1
2 , P(F | B) = 1

3 , and P(F | C) = 1
2 .

4. 60 percent of the suitcases that are lost by Incompetence Airlines are eventually
recovered. Of those that are recovered, 60% were locked, while only 10% of
those not recovered were locked.

(i) If a lost case is locked, what is the probability that it will never be recovered?

(ii) If a lost case is not locked, what is the probability that it will eventually be
recovered?

5. A builder buys tiles from two companies, A and B; he gets 80% from A and
20% from B. He finds that 98% of the tiles he gets from A are undamaged,
while 96% of those from B are undamaged. If he finds a damaged tile, what is
the probability that:

(i) The tile came from A?
(ii) The tile came from B?

6. Suppose the shipping department of a company has three workers who prepare
shipping labels. They prepare 60%, 30%, and 10% of the labels, respectively.
The respective percentages of errors are 3%, 5%, and 10%. Find the probability
that an incorrect label is due to the first person. Also find the probability that an
incorrect label is due to each of the other persons.

7. Box 1 contains 2 red pens and 4 blue pens. Box 2 contains 4 red pens, one green
pen, and 4 blue pens. A pen is chosen from Box 1 and then it is placed in Box 2.
Then a box is chosen at random and a pen is selected.

(i) What is the probability that the pen is blue?
(ii) If the pen is blue, what is the probability it originally came from Box 1?
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(iii) Suppose Box 2 is the one from which a pen in finally selected.

(a) If the pen drawn is blue, what is the probability that the pen drawn
earlier from Box 1 was red?

(b) If the pen drawn is red, what is the probability that the pen drawn earlier
from Box 1 was red?

8. In a manufacturing plant three machines, A, B, and C produce 50%, 35%, and
15%, respectively, of the total production. The quality control department of the
company has determined that 1% of the items produced by Machine A and 2%
of the items produced by each of Machines B and C are defective. If an item is
selected at random and found to be defective, what is the probability that it was
produced by Machine B?

9. A school tax proposition is submitted to voters. The voters’ registered party affil-
iation as a percentage of all voters, and the percentage of each group who voted
in favor of the proposition, are as follows:

Party Registration In Favor
Democrat 40 70
Republican 40 20
Independent 10 80
Other 10 50

A voter is selected at random.

(i) What is the probability that she voted in favor of the proposition?
(ii) If she voted in favor of the proposition, what is the probability that she is a

Democrat?
(iii) If she voted against the proposition, what is the probability that she is not a

Republican?

10. A class contains 20% Math majors, 40% Computer Science majors, and 40%
Engineering majors. 50% of the Math Majors, 75% of the Computer Science
majors, and 25% of the Engineering majors are women.

(i) Draw a box diagram for these data.
(ii) A student’s name is chosen at random from the class list. What is the prob-

ability that the student is a woman?
(iii) A student’s name is chosen at random from the class list and the student is

found to be a woman. What is the probability that the student is an Engi-
neering major?

11. A computer dealer sells 70% PC’s, 20% Apple products and 10% Sun platforms.
In the first 90 days, an average of 5% of the PCs, 1% of the Apples and 3% of the
Suns are returned for repair. What percentage of the repairs are Apples? What
percentage are Suns?
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3.8 Further Examples of Bayes’ Formula

Medical Testing

Probability theory is often misused in the popular press. One particular area where
probabilistic ideas are mentioned but not properly analyzed is in the discussion of
tests for disease and drugs. This is a very important topic nowadays, when compul-
sory drug testing is becoming more common in everyday life and testing for diseases
such as AIDS is also very important.

You may see in a newspaper that a certain test is “90% accurate”. And you would
most likely think this means that, if you test positive, there is a 90% probability that
you have the disease in question. But this is not so, as the next example shows.

Sample Problem 3.34. A test for a venereal disease is 90% accurate: if you have
the disease, the probability is 0.9 that you will test positive; and if you don’t have
the disease, the probability is 0.9 that you will test negative. In the whole popu-
lation, one person in a hundred has the disease. If a given person tests positive,
what is the chance that he has the disease?

Solution. We shall use the abbreviations T (tests positive), N (tests negative),
D (has the disease), and H (is healthy). We want to find P(D | T ). From the
data, we know

P(T | D) = 0.9, P (N | D) = 0.1,

P (T | H) = 0.1, P (N | H) = 0.9,

P (D) = 0.01, P (H) = 0.99.

So

P(D | T ) = P(T | D)P (D)

P (T | H)P (H) + P(T | D)P (D)

= (0.9) · (0.01)

(0.1) · (0.99) + (0.9) · (0.01)

= 0.009

0.099 + 0.009
= 0.009

0.108
= 0.083.

So, even if you test positive, it is still most unlikely that you have the disease.
This example can be represented by the following box diagram:

P N

D 0.009 0.001 0.01
H 0.099 0.891 0.99

0.108 0.892
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Your Turn. A disease has infected 5% of the population. The test is 95%
effective—95% of those with the disease test positive, and 95% of those with-
out the disease test negative. If your test shows a positive result, what is the
probability that you have the disease?

The Three Doors

Marilyn vos Savant’s Ask Marilyn column in Parade magazine for September 9th,
1990 contained a puzzle that generated a lot of interest. It is in fact a version of an
older problem called the Monty Hall Problem, named for the host of the game show
Let’s Make a Deal.

The climax of a TV game show is run as follows. The contestant is given a
choice of three numbered doors. Behind one closed door is a valuable new
car; behind each of the others is a nearly worthless goat. The contestant is
to choose a door, and wins the prize behind it. However, after the choice is
announced but before the door is opened, the host opens one of the other two
doors (not the one she chose) and reveals a goat. (Of course, the host knows
where the car is.) He then asks, “Do you want to stay with your original
choice? Or would you rather switch to the third door?”

Well, should the contestant stay or switch? Or doesn’t it matter?

Before analyzing the problem, we need to agree on three points. First, the car is
placed behind the doors at random, so that on any given night the chance that it is
behind any particular door is 1

3 . Second, the game always proceeds in the same way:
the host always opens a door to show a goat, then offers the switch. Third, on those
nights when the contestant’s first choice is the door with the car, there is an equal
chance that the host will open either of the other two doors.

Without loss of generality, let us suppose the contestant chooses door 1 and the
host opens door 2. We write C1, C2, and C3 as abbreviations for “the car is behind
door 1”, “the car is behind door 2”, and “the car is behind door 3”, and H2, H3 for
“the host opens door 2”, “the host opens door 3”. (He cannot open door 1.) Then
what we want to know is:

Is P(C3 | H2) > P (C1 | H2)?

If so the contestant should switch, otherwise not.

We know the probabilities of the host’s actions, given the position of the car. If
the car is behind door 1, she is equally likely to open either door, so

P(H2 | C1) = P(H3 | C1) = 1
2 .

In the other cases, she must open the remaining “goat” door, so
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P(H2 | C2) = P(H3 | C3) = 0,

P (H2 | C3) = P(H3 | C2) = 1.

Moreover, we know P(C1) = P(C2) = P(C3) = 1
3 .

Now calculation of the probabilities is a simple application of Bayes’ formula.
First,

P(H2) = P(H2 | C1)P (C1) + P(H2 | C2)P (C2) + P(H2 | C3)P (C3)

=
(

1

2

)(
1

3

)
+ (0)

(
1

3

)
+ (1)

(
1

3

)
= 1

2
,

and similarly P(H3) = 1
2 . So

P(C1 | H2) = P(H2 | C1)P (C1)

P (H2)
= ( 1

2 )( 1
3 )

1
2

= 1

3
,

P (C3 | H2) = P(H2 | C3)P (C3)

P (H2)
= (1)( 1

3 )

( 1
2 )

= 2

3
.

So the odds are 2 to 1 in favor of switching. You may find this very surprising—
intuitively, you might argue that “the car was equally likely to be behind any of the
doors, so the probabilities are still equal”, but the host’s choice of doors has actually
given you some information.

The most important assumption in this discussion is that, when the contestant has
chosen correctly, the host is equally likely to open either door. Suppose this were not
true—for example, suppose he always chooses the lowest-numbered available door.
Then if the contestant chooses door 1 and the host opens door 3, she should always
switch; but if he opens door 2, there is no advantage (or disadvantage) in switching.

This problem is particularly well suited to analysis by box diagrams. Assuming
that the contestant chooses door 1, then the fact that the car is equally likely to be
behind any door means that the diagram looks like

C1 C2 C3

H2 ∗ ∗ ∗ ∗
H3 ∗ ∗ ∗ ∗

1
3

1
3

1
3

(where asterisks represent the numbers that have not yet been determined). Since the
host never opens the door that hides the car, the (H2, C2) and (H3, C3) entries must
be zero, and to make the column sums come out right we have
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C1 C2 C3

H2 ∗ 0 1
3 ∗

H3 ∗ 1
3 0 ∗

1
3

1
3

1
3

Assuming the host chooses at random when the car is behind door 1, we can
make the two missing numbers in column C1 equal, and we have

C1 C2 C3

H2 1
6 0 1

3
1
2

H3 1
6

1
3 0 1

2
1
3

1
3

1
3

When the host opens door 2, we need only look at the H2 row to see that the
odds are 2 to 1 ( 1

3 to 1
6 ) in favor of switching, and similarly if he opens door 3.

A Card Game

Suppose there are three cards in a hat. One is red on both sides, one black on both
sides, and the third has one side red and one side black. One card is withdrawn, and
one side is observed to be red. What is the chance that the other side is red?

At first it seems to be an even chance whether the other side is red or black; after
all, there are two cards with at least one red side, and exactly one of the two is red
on the flip side. However, the flip side is twice as likely to be red as black. Let r

and b represent the events “red shows” and “black shows”, while RR, RB, and BB

represent the three cards: RR means “the RR card was drawn”. Then

P(RR | r) = P(r | RR)P (RR)

P (r | RR)P (RR) + P(r | RB)P (RB)

= (1)( 1
3 )

(1)( 1
3 ) + ( 1

2 )( 1
3 )

= 2

3
.

Alternatively, one could construct the box diagram

RB BB RR

r 1
6 0 1

3
1
2

b 1
6

1
3 0 1

2
1
3

1
3

1
3

and the problem is obviously equivalent to the “three doors” problem.
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To understand the apparent paradox, it is easiest to think of the selection process
as selecting a face, not a card. There are three red faces, and two of the three have
red backs.

Exercises 3.8 A

1. Suppose the “three doors” game involved four doors, not three. If you decide
to switch, you choose at random between the two remaining doors. What is the
probability of winning if you switch? What is the probability of winning if you
do not switch?

2. Among one strain of cattle in Texas, it is estimated that 30% of the bulls suffer
from Ruckel’s disease. A blood test has been developed to detect the disease. If
a bull has the disease then the test gives a positive response 80% of the time. If
a bull does not have the disease, the test is positive in 10% of cases. If a bull is
tested for the disease and the test is positive, what is the probability that he really
does not have the disease?

3. A vaccine produces total immunity against smallpox in 95% of cases. If the vac-
cination does not produce immunity, then it has no effect—the person’s probabil-
ity of catching smallpox is the same as that of an unvaccinated person. Suppose
30% of the population have been vaccinated. If a person contracts smallpox,
what is the probability that she had been vaccinated?

4. A city is divided into three wards: North, South, and West. North ward contains
20% of the registered voters, and the others each have 40% each. The Green
Party Committee finds that 10% of the voters in North ward, 5% of the voters in
South ward, and 15% of the voters in West ward are Green Party voters.

(i) What is the probability that a registered voter chosen at random in the city
is a Green voter?

(ii) A registered voter is chosen at random in the city and is found to be a Green
voter. What is the probability that this voter came from South Ward?

5. A test for lupus gives a (true) positive reading in 95% of cases when the disease
is present, and gives a (false) positive reading in 10% of cases when the disease
is absent. In the population, suppose 2% have lupus.

(i) A subject is chosen at random and tests positive. What is the probability that
this person has the disease?

(ii) A subject is chosen at random and tests negative. What is the probability
that this person has the disease?

Exercises 3.8 B

1. Suppose the “three doors” game involved five doors, not three. What is the prob-
ability of winning if you switch? What is the probability of winning if you do
not switch?
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2. A test is positive for 94% of subjects who have a certain disease and negative for
96% of those who do not have the disease. If 4% of the population suffers from
the disease, then

(i) If the test is positive, what is the probability that the patient actually has the
disease?

(ii) If the test is negative, what is the probability that the patient does not have
the disease?

3. A laboratory test for a particular disease tests positive 95% of the time when a
person has the disease, and tests negative 98% of the time when the person does
not have the disease. In general, 0.1% of the population has the disease.

(i) What is the probability that a randomly selected person who tested positive
did not have the disease?

(ii) What is the probability that a randomly selected person who tested negative
actually had the disease?

4. In order to introduce a new brand of laundry detergent, a marketing company
conducted a survey. For the purposes of the survey, the United States was di-
vided into four areas: northeast, southeast, midwest, and west. The company
estimates that 35% of the potential customers are in the northeast region, 30%
in the southeast, 20% in the midwest, and 15% in the west. The survey indicates
that the following percentages of potential customers will try the new detergent:
50% in the northeast, 40% in the southeast, 30% in the midwest, and 40% in the
west. A potential customer chosen at random indicates that she would try the
detergent. What is the probability that she is from the southeast region?

5. A survey of 100 business professors and 100 science professors finds that 70 of
the business professors and 35 of the science professors are overweight. A pro-
fessor is chosen from the sample at random and found to be overweight. What is
the probability that the one chosen was a business professor?

6. A magician puts three cards in a top hat. One is red on both sides, one black
on both sides, and the third has one side red and one side black. One card is
withdrawn, and one side—the first side you see—is observed to be red. What is
the chance that the other side is red?

7. At Western University, 1% of the men and 4% of the women are English majors.
Women comprise 40% of the student population.

(i) What proportion of students are English majors?
(ii) A student chosen at random is found to be an English major. What is the

probability that this student is a woman?

8. Approximately 5% of men and 1% of women suffer from color-blindness.

(i) Assume the general population is 50% female and 50% male. A person is
selected at random and found to be color-blind. What is the probability that
the person was a man?



3.9 Expected Values 149

(ii) Your college has 75% women students. A student is selected at random and
found to be color-blind. What is the probability that the student was a man?
(Assume the percentages for color-blindness are the same as in the general
population.)

9. A test for a disease gives a positive reading in p% of cases when the disease is
present, and also gives a (false) positive reading in p% of cases when the disease
is absent. By coincidence, exactly p% of the population suffer from the disease.
Prove that if a person tests positive, the probability that she has the disease is
50%.

3.9 Expected Values

The Theoretical Mean

Suppose the following experiment is carried out 800 times: three coins are tossed,
and the number of heads is recorded. If E0, E1, E2, and E3, respectively, are the
events that 0, 1, 2, and 3 heads show on a given toss, then

P(E0) = 1/8, P (E1) = 3/8,

P (E2) = 3/8, P (E3) = 1/8.

Since the chance of E0 occurring at any turn is 1/8, we expect it to occur about 100
times out of 800. Similarly, E1, E2, and E3 should occur about 300, 300, and 100
times, respectively. We are not saying that exactly these frequencies would occur in
800 tosses; the chance of any specified result is very small. But we expect results
roughly like those suggested.

This same reasoning can be applied to any experiment. If the possible outcomes
are E1, E2, . . . , Ek , then the expected outcomes from n experiments are

E1 occurs nP (E1) times,
E2 occurs nP (E2) times,
...

Ek occurs nP (Ek) times.

In many cases, there is a numerical value associated with each outcome. In the
coin-tossing example, an obvious value is the number of heads. If we write xi for
the value of Ei in that example, then x0 = 0, x1 = 1, x2 = 2 and x3 = 3. If the
experiment were carried out 800 times, we would expect the average value of the
800 outcomes to be about
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100 · 0 + 300 · 1 + 300 · 2 + 100 · 3

100 + 300 + 300 + 100

= 300 + 600 + 300

800

= 1200

800
= 1.5.

(The procedure is to find the mean, acting as though the expected frequencies were
the actual frequencies that occurred.) We shall call this expected average the expected
value of the experiment. The expected value might be called the theoretical mean
of the experiment. We shall use μ to denote a theoretical mean; if more than one
variable is being discussed, the mean of a variable X will be denoted μX.

In general, suppose an experiment has possible outcomes E1, E2, . . . , Ek , where
Ei has probability P(Ei) = pi and associated value xi . If the experiment is repeated
n times, the expected frequency of Ei is npi , and the expected value of the experi-
ment is

μ =
∑k

i=1 npixi
∑k

i=1 npi

=
∑k

i=1 pixi
∑k

i=1 pi

=
k∑

i=1

pixi

(

since
k∑

i=1

pi = 1

)

.

Sample Problem 3.35. In an experiment, three balls are drawn at random from
a sack containing four red and six blue balls. What is the expected number of red
balls drawn?

Solution. Write Ei for the event that i red balls are drawn and define the value
of Ei to be i. What is required is the expected value of this experiment. If S is
the sample space, then

|S| = C(10, 3) = 120.

If a selection contains i red balls, it must contain 3−i blue balls. There are C(4, i)

ways of selecting i red balls from the four, and C(6, 3− i) ways of selecting 3− i

blue balls, so

|Ei | = C(4, i)C(6, 3 − i).

Therefore,

|E0| = C(4, 0) · C(6, 3) = 20,

|E1| = C(4, 1) · C(6, 2) = 60,

|E2| = C(4, 2) · C(6, 1) = 36,

|E3| = C(4, 3) · C(6, 0) = 4,
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so

p0 = 20

120
, p1 = 60

120
, p2 = 36

120
, p3 = 4

120

and

μ = 20 · 0 + 60 · 1 + 36 · 2 + 4 · 3

120

= 144

120
= 1.2.

So the expected number is 1.2.

Your Turn. A committee of three is selected from a group of five girls and three
boys. If the choice is random, what is the expected number of boys?

Random Variables

When an experiment has a value associated with each outcome, it is convenient to
associate a variable x with the experiment. If, for example, the value associated with
outcome E1 is x1, then we say that x = x1 when E1 occurs; at any time, x equals
the value associated with the current outcome. Then x is called the random variable
associated with the experiment. The expected value of an experiment with associated
random variable x is also called the expected value or mean of x.

In many gambling games, the player pays a fixed amount to play. The play can
often be considered as an experiment, with the associated random variable being
the payoff. The player’s expected net loss or gain is found by subtracting the cost
of a play from the expected value of the variable. A fair game is one in which the
expected net gain equals the price per play.

Sample Problem 3.36. A gambler flips an unbiased coin. If it shows tails, she
loses. If it is a head, she flips again; if it falls tails she stops, but if it falls heads
a second time, she flips once more. For three heads she wins $20, two heads wins
$6, and one head wins $2. How much does she expect to win? If she has to pay
$4 each time she plays this game, should she expect to win or lose in the long
run? How much should be charged if this is to be a fair game?

Solution. Let Ei denote the event that i heads are thrown, and xi the payout for
i heads. Half the time we expect the first flip to fall tails, so E0 has probability
0.5. In the remaining cases, we expect to see tails at the second toss in 50% of
cases, so P(E1) = 0.5 · 0.5 = 0.25. And so on. We have

E0, probability 0.5, value x0 = 0,

E1, probability 0.25, value x1 = 2,

E2, probability 0.125, value x2 = 6,

E3, probability 0.125, value x3 = 20.
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So the expected value of the payout is

0.5 · 0 + 0.25 · 2 + 0.125 · 6 + 0.125 · 20 = 3.75.

So she expects to win $3.75 per play. If she pays $4 each time, she will have a
net loss of 0.25 cents per play, so she expects to lose in the long run. If the game
is to be fair, she should be charged $3.75 per play.

Your Turn. Two gamblers, A and B, each roll a die. If the total is 3 or 9, A pays
B $5; if it is even, B pays A $2; otherwise there is no payoff. Who expects to
win, and by how much?

Binomial Variables

Bernoulli trials and binomial experiments were discussed in Section 3.3. Briefly,
a Bernoulli trial is an experiment in which there are exactly two possible outcomes,
success and failure, and a binomial experiment is a sequence of Bernoulli trials where
the probability of success is the same in each trial. The variable associated with a
binomial experiment is the number of successes achieved. We write p for the proba-
bility of success in a single trial and q = 1 − p for the probability of failure.

Theorem 8. Suppose a binomial experiment consists of n trials, and the probability
of success at each trial is p. Then the mean of the experiment is np.

The proof appears later in this section.

Sample Problem 3.37. A racecar driver wins on average one out of every seven
races. If he competes 35 times in the season, how many times does he expect to
win?

Solution. With no information to the contrary, we assume that success or failure
in one race does not affect success or failure in the next. So we can model the
driver’s performance as a binomial experiment, in which each race is a Bernoulli
trial and success equates with winning. In this model we have n = 35, p = 1

7 ,
and μ = 35 · 1

7 = 5.

Your Turn. A bowler averages one strike every five frames. If she bowls 40
frames, what is her expected number of strikes?

The Binomial Mean

This proof can be omitted at a first reading.
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We saw in Section 3.3 that the probability of exactly k successes in a binomial
experiment is

pk = C(n, k)pk(1 − p)n−k.

So the mean is

μ =
n∑

k=1

kpk =
n∑

k=1

kC(n, k)pk(1 − p)n−k.

(The sum actually starts from k = 0, but the term with k = 0 is zero.)

kC(n, k)pk(1 − p)n−k = n!k
k!(n − k)!p

k(1 − p)n−k

= n!
(k − 1)!(n − k)!p

k(1 − p)n−k

= n
(n − 1)!

(k − 1)!(n − k)!p
k(1 − p)n−k

= npC(n − 1, k − 1)pk−1(1 − p)n−k.

So

μ =
n∑

k=1

npC(n − 1, k − 1)pk−1(1 − p)n−k.

Suppose we define h = k − 1. The equation becomes

μ = np

n−1∑

h=0

C(n − 1, h)ph(1 − p)(n−1)−h.

From the binomial theorem,

n−1∑

h=0

C(n − 1, h)ph(1 − p)(n−1)−h = [
(1 − p) + p

]n−1
,

which equals 1 because (1 − p) + p = 1. So

μ = np.

Exercises 3.9 A

1. A fair coin is tossed three times and the number of heads is recorded. Suppose x

is the number of heads.

(i) Calculate P(x = 0), P(x = 1), P(x = 2), and P(x = 3).
(ii) What is the expected value of x?
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2. A game has four possible outcomes E1, E2, E3, E4. If outcome Ei occurs then
the player wins $i. The probabilities of the outcomes are P(E1) = 2

5 , P(E2) =
P(E3) = P(E4) = 1

5 . What does the player expect to win per play?

3. You play a game in which you toss two fair coins. If both land heads, you win
$10; if there is one head, you win $5; if both are tails, you win nothing. How
much should you pay to play, if this is to be a fair game?

4. A player tosses a fair coin 10 times. Suppose x is the number of heads. If x

is even, the player wins $10; if it is odd, she loses $10. What is the player’s
expected winnings?

5. An investor wishes to invest $100000 in a new dotcom company. She estimates
that in the first year there is a 25% chance of making 100% profit, a 40% chance
of making 50% profit, and a 35% chance of losing 80% of the investment. What
is her expected gain (or loss) after one year?

6. A fair die is rolled 30 times. What is the expected number of sixes?

7. A test contains 10 multiple-choice questions, each with four answers. A student
answers the test by random guessing. What is the expected number correct?

8. Two dice are rolled and the total is noted. Call the roll a “success” if the total
is 9.

(i) What is the probability of a success?
(ii) The experiment is performed twice. Calculate the probability of x suc-

cesses, for x = 0, 1, 2.
(iii) What is the expected value of x?

9. In a raffle with 100000 tickets the first prize is $20000, there are 10 second
prizes of $1000, and 50 consolation prizes of $200. What is the expected value
of a ticket?

10. A gambler bets $6 and rolls a fair die. If a six shows, he wins $9 (in addition
to getting his original investment back). If a five or four shows, his money is
returned with an additional $3. Otherwise he loses his bet. How much does he
expect to win or lose per game?

Exercises 3.9 B

1. Among one strain of laboratory rats, 25% are born with weak hind legs. Let x

denote the number with this defect in a random sample of three rats.

(i) Calculate the probabilities P(x = 0), P(x = 1), P(x = 2), and P(x = 3).
(ii) What is the expected value of x?

2. A game has four possible outcomes E1, E2, E3, E4. If outcome Ei occurs
then the player wins $i. The probabilities of the outcomes are P(E1) = 1

2 ,
P(E2) = 1

4 , P(E3) = P(E4) = 1
8 . What does the player expect to win per play?
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3. In a raffle with 1000 tickets the first prize is $200, there are five second prizes of
$50, and 10 consolation prizes of $5. What is the expected value of a ticket?

4. A gambler bets $2 and tosses three fair coins. If all three land heads, she wins $6
(in addition to getting her original bet back). If there are two heads, her money is
returned. Otherwise she loses her $2. How much does she expect to win or lose
per game?

5. A fair coin is tossed 240 times. What is the expected number of heads?

6. A jar contains three red and seven green marbles. Three marbles are drawn at
random, without replacement. Ei is the event that i red marbles are selected.

(i) Calculate P(E1), P(E2), and P(E3).
(ii) What is the expected number of red marbles?

7. 1% of video cassettes are faulty. In a batch of 600, how many are expected to be
faulty?

8. A state lottery sells 100000 tickets at $1 each. The first prize is $30000. There
are four prizes of $4000, and 100 prizes of $100. What is the expected value of
a ticket?

9. Most American roulette wheels have 38 numbered spaces: 1 through 36, 0, and
00. A number is chosen at random when the ball falls into that slot. Payoffs
for bets are determined as though there were only 36 spaces—for example, if
a player bets $10 that a specific number will be selected, say 15, and 15 is the
winner, she receives $360 (including her initial bet); otherwise she loses her
investment.

(i) What is the expected value of a $10 bet on a specific number?
(ii) Wheels at Monte Carlo usually have 37 slots, with no 00. The return is the

same as in America. What is the expected value in this case?

10. On an American roulette wheel, as described in the previous question, the 0 and
00 spaces are colored green; half the others are colored red, and the remainder
are black. It is possible to bet “red”; if a number in a red space is rolled, you
receive your initial bet plus an equal amount. What is the expected value of a
$10 bet?

11. A drug manufacturer finds that 5% of its aspirin bottles contain more than the
promised 100 tablets. In a batch of 10000 bottles, what is the expected number
of those “overfull” bottles?

12. A box contains eight electrical switches, of which three are faulty. A switch is
chosen at random and tested. If it is faulty, another is chosen and tested. The
process continues until a nondefective switch is found. find the expected number
of switches tested.

13. You play a game in which you toss three fair coins. If all three land heads, you
win $18; if there is one head, you lose $6; if all three are tails, you lose $24.
There is no payoff for two heads.
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(i) What is the expected value of this game?
(ii) Is the game fair?

(iii) If your answer to part (ii) is no, how much should you win or lose if two
heads occur, in order to make the game fair?

14. Suppose a family has six children. Assuming boys and girls are equally likely,
what is the expected number of girls in the family? What is the probability that
this number occurs?

15. A coin is weighted so that heads are twice as likely as tails. It is tossed until
either a tail occurs or three heads have occurred. What is the expected number
of tosses?
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Graph Theory

4.1 Relations

First Definitions

A (binary) relation ρ from a set S to a set T is a rule that stipulates, given any
element s of S and any element t of T , whether s bears a certain relationship to t

(written s ρ t) or not (written s \ρ t). For example, if S is the set of living males and
T is the set of living females, the relation ρ might be “is the son of”; if s denotes a
certain man and t denotes a certain woman, we write s ρ t if s is the son of t , and
s \ρ t otherwise.

Binary relations are very common in mathematics. We have already seen rela-
tions such as ≤, =, and <, and all of these are relations from R to R (or from Z

to Z, or . . . ). The relation |, or “divides,” is a relation from Z
+ to Z

+, or from Z
+

to Z. If P and Q are any collections of sets, then ⊆ and ⊇ are relations from P
to Q.

Alternatively, we can define a binary relation ρ from the set S to the set T as a set
ρ of ordered pairs (s, t), where s belongs to S and t belongs to T , with the notation
that s ρ t when (s, t) ∈ ρ and s \ρ t otherwise. This means that, formally, a binary
relation from S to T can be defined as a subset of S × T , the Cartesian product of S

and T defined in Section 1.4.

Sample Problem 4.1. Suppose S = {1, 2, 3} and T = {1, 2, 3, 4}. Find the sets
corresponding to s < t and s2 = t , in the usual arithmetical sense.

Solution. The relation s < t corresponds to the set L, defined by

L = {
(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)

}
.

W.D. Wallis, A Beginner’s Guide to Finite Mathematics,
DOI 10.1007/978-0-8176-8319-1_4, © Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-8176-8319-1_4
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s2 = t has

R = {
(1, 1), (2, 4)

}

as its the corresponding set.

Your Turn. What are the sets corresponding to s ≤ t and s ≥ t?

Relations on a Set

Suppose α is a binary relation from a set A to itself or, in other words, α ⊆ A × A.
Then we say that α is a binary relation on A. One special relation on a set is the
identity relation: ιA is the identity relation on A if a ιA b is true precisely when b = a,
that is, ιA = {(a, a) : a ∈ A}. If A is a set of numbers, ιA is the same as the ordinary
relation of equality, =.

There are several important properties that a relation on a set may (or may not)
have. Suppose α is a relation on α.

(i) α is called reflexive if and only if a α a for every a ∈ A. α is irreflexive if and
only if a α a is never true for any element a of A.

(ii) α is called symmetric if and only if a α b implies b α a or, in other words, if
(a, b) ∈ α implies (b, a) ∈ α. Since, by the definition of inverse relation, we
know that a α b if and only if b α−1 a, we could say that α is symmetric if
and only if α = α−1. α is called antisymmetric if and only if a α b and b α a

together imply a = b or, in other words, α ∩ α−1 ⊆ ιA. If a α b and b α a can
never both be true, then α is called asymmetric, or sometimes skew. (If a α b

and b α a are never both true, then the truth of (a α b ∧ b α a) implies that a α a

is vacuously true, so all asymmetric relations are antisymmetric, but this gives
us no information.)

(iii) α is called transitive if and only if a α b and b α c together imply a α c, and
atransitive if and only if, whenever a α b and b α c, a \α c, or in other words, if
and only if α ∩ αα = ∅.

In particular, a relation is called an equivalence relation if it is reflexive, sym-
metric, and transitive.

Sample Problem 4.2. What are the reflexive, symmetric, and transitive pro-
perties of < and ≤ on the set Z? Is either relation an equivalence relation?

Solution. < is irreflexive (a < a is never true) while ≥ is reflexive (a ≤ a is
always true). Both relations are antisymmetric, but < is in fact asymmetric. Both
are transitive. Neither is an equivalence relation.
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Your Turn. What are the reflexive, symmetric and transitive properties of = and
≥ on Z? Is either relation an equivalence relation?

The relation of adjacency on the set of integers, defined by i α j if and only if
|i − j | = 1 for i and j positive integers, is irreflexive (since |i − i| = 0), symmetric
(since |i − j | = |j − i|) and not transitive (since 1 α 2 and 2 α 3 but 1 \α 3). It is in
fact atransitive, for i α j and j α k together imply i = j ± 1 and k = j ± 1, so i = k

or i = k ± 2, but i cannot equal c ± 1. So a \α c.

The properties of relations can be exhibited even in quite small cases. For exam-
ple, say A = {1, 2, 3} and consider the relation β on A, defined by

β = {
(1, 1), (2, 2)

}
.

Since ιA �⊆ β, it is not reflexive, but since ιA ∩ β �= ∅, it is not irreflexive either.
Since β = β−1, it is symmetric, and since β ∩ β−1 ⊆ ιA, it is also antisymmetric.
Since ββ = β, it is transitive.

Functions

A function, or mapping, f from a set S to a set T , is a rule that associates with each
member of S exactly one member of T . In other words, a function is a special kind
of relation from S to T , one in which each element of S occurs as the first element
of precisely one ordered pair. This uniqueness property is the main point of the idea
of a function.

The set S is called the domain of the function, and the set T its codomain. If we
used notation consistent with that of the last section, we would write f ⊆ S ×T , but
more often when dealing with functions we write f : S → T ; the set form is then
called the defining set or associated set of f . To indicate the correspondence between
elements, we could again write (s, t) ∈ f , but more often we write f (s) = t , as, for
example, in familiar algebraic functions like f (x) = x3 − 3x + 1.

The image of x under f is the value f (x); if R is any subset of S, then f (R) =
{f (r) : r ∈ R} is the set of images of elements of R and is called the image of R. In
particular f (S), the image of S, is called the range of f and necessarily f (S) ⊆ T .
To avoid trivial cases, it is usual to require that the domain of f should not be empty.

The composition of two functions is defined just as the composition of rela-
tions is. In functions, composition is defined as “first perform one function, then
the other” (where performing f means replacing the value x by f (x)). The compo-
sition “first f , then g” is written g(f (x)), and this can be interpreted as defining a
new function g(f ), by the rule

g(f )(x) = g
(
f (x)

)
.

In order for g(f )(x) to be defined, it is necessary that every value of f (x) be in the
domain of g. This will not necessarily be true for all x in D(f ); in fact, the domain
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of g(f ) is the set of all elements x in the domain of f such that f (x) is in the domain
of g.

This method of combining functions is not commutative; quite possibly g(f )

and f (g) will be different functions. In fact, one might be defined and the other not.
However, composition is associative.

Sample Problem 4.3. S is the set of all real numbers other than 0 and 1. Con-
sider the following functions from S to S:

f1(x) = x; f2(x) = 1

x
; f3(x) = 1 − x;

f4(x) = 1

1 − x
; f5(x) = x

x − 1
; f6(x) = x − 1

x
.

Find formulae for f2(f2), f3(f5), and f5(f3), and verify that they are all mem-
bers of the original set of six functions. Use these to verify that composition is
not commutative.

Solution.

f2(f2)(x) = f2(1/x) = 1

1/x
= x = f1(x);

f3(f5)(x) = f3
(
x/(x − 1)

) = 1 − x

x − 1
= 1

1 − x
= f4(x);

f5(f3)(x) = f5(1 − x) = 1 − x

1 − x − 1
= x − 1

x
= f6(x).

So f2(f2) = f1, f3(f5) = f4, and f5(f3) = f6.

Observe that f5(f3) �= f3(f5), an example of non-commutativity.

Your Turn. Find formulae for f1(f1), f2(f4), and f5(f6), and verify that they
are all members of the original set of six functions.

One-to-One and Onto Functions

Two properties of functions are particularly important: we say that a function f is
one-to-one if f (s1) = f (s2) always implies s1 = s2 for any s1, s2 ∈ D(f ); we say
that f is onto if f (S) = T or, in other words, if for every t ∈ T , there exists an s ∈ S

such that f (s) = t .

These properties depend on the domain of f . For example, consider the function
f defined by f (x) = x2 or f = {(x, x2) : x ∈ R}, which associates its square with
each real number. This satisfies the definition of function, for if we choose x, then
x2 is uniquely determined.
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(i) If we define the domain of f to be the set R of all real numbers, and the
codomain to be R also, then f is neither one-to-one (since f (x) = f (−x))

nor onto (since f (R) = {y ∈ R : y ≥ 0}).
(ii) If instead we define the domain of f to be the set of all non-negative real

numbers, but let the codomain still be the whole of R, then f is one-to-one but
is not onto.

(iii) If we let the domain of f be R but restrict the codomain to be the set of all
non-negative real numbers, then f is onto, but is not one-to-one.

(iv) If both the domain and the codomain are defined to be the set of non-negative
reals, then f is both one-to-one and onto.

Inverse Functions

Given any set S, we can define the identity function ιS : S → S by ιS(s) = s for
every s ∈ S; in other words,

ιS = {
(s, s) : s ∈ S

}
.

For a function, as for any relation, we can define an inverse relation. If the func-
tion is, say f (x) = x2, and if we let the domain and the codomain equal R, then
the inverse relation f −1 contains the pairs (4, 2) and (4,−2), so it is not a function:
f −1(x) would not be uniquely defined. This raises an important question: when is
the inverse relation of a function also a function? The following theorem gives the
necessary and sufficient conditions. You may omit the proof on a first reading.

Theorem 9. Let f be a function, f : S → T . Then the inverse relation f −1 of f is
a function from T to S if and only if f is one-to-one and onto.

Proof. (i) Suppose f is one-to-one and onto. Since f is one-to-one, each element of
T occurs as the second element of at most one ordered pair in f ; since f is onto,
each element of T occurs as the second element of at least one ordered pair in f .
Hence if t ∈ T , exactly one ordered pair (s, t) ∈ f .

Now consider the inverse relation: (t, s) ∈ f −1 exactly when (s, t) ∈ f . Hence
for every t ∈ T , exactly one ordered pair (t, s) ∈ f −1, so f −1 is a function from T

to S.

(ii) Suppose conversely that f −1 is a function from T to S. Then for every t ∈ T ,
exactly one ordered pair (t, s) ∈ f −1 and hence exactly one ordered pair (s, t) ∈ f .
Since at least one ordered pair has t as its second element for each t ∈ T , we see that
f is onto; since at most one ordered pair has t as its second element for each t ∈ T ,
we see that f is one-to-one. �

Notice that the function f1 in Sample Problem 4.3 is the identity function on the
set S, and in that problem we showed that f2 is its own inverse.
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Sample Problem 4.4. What is the inverse of the function f4 from Sample Prob-
lem 4.3?

Solution. f4(x) = 1/(1 − x). Say y = 1/(1 − x). Then 1 − x = 1/y so
x = 1 − 1/y = (y − 1)/y. So f −1

4 (y) = (y − 1)/y. So f −1
4 = f6.

Your Turn. What is the inverse of the function f3 from Sample Problem 4.3?

Exercises 4.1 A

1. Suppose S = {1, 2, 3, 4, 5, 6, 7, 8, 9}. In each part, a binary relation from S to
itself is defined. For each of these relations, what is the corresponding subset of
S × S?

(i) x α y means x = y2.
(ii) x β y means x divides y.

(iii) x γ y means x2 + y = 12.

2. Relations α and β are binary relations from S = {1, 2, 3} to T = {1, 2, 3, 4}
defined by

x α y means x = y2;
x β y means x = y − 1.

For each of these relations, what is the corresponding subset of S × T ?

3. The relations α, β and γ on the set {1, 2, 3} are defined by the sets

α = {
(1, 1), (2, 2), (3, 3)

};
β = {

(1, 3), (2, 2), (3, 1)
};

γ = {
(2, 3), (1, 2), (1, 3), (3, 2)

}
.

Which of these relations are:

(i) Reflexive; (ii) Irreflexive; (iii) Symmetric;

(iv) Antisymmetric; (v) Asymmetric; (vi) Transitive?

4. The following are relations from the set Z+ of positive integers to itself. De-
termine whether each relation has each of the following properties: reflexivity,
symmetry, antisymmetry, transitivity:

(i) m + n ≥ 50; (ii) m + n is odd;

(iii) mn is odd; (iv) m2 − n2 is even.

5. Which, if any, of the relations in Exercises 3 and 4 are equivalence relations?

6. Suppose S = {1, 2, 3, 4}. Is the given set a function from S to S?

(i) {(1, 4), (2, 3), (3, 2), (2, 1), (4, 4)};
(ii) {(2, 1), (3, 4), (1, 4), (2, 1), (4, 2)};
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(iii) {(1, 4), (2, 1), (3, 4), (4, 1), (3, 4)};
(iv) {(1, 2), (2, 2), (3, 1), (4, 2)}.

7. Find the inverses of the following functions.

(i) f6 : S → S from Sample Problem 4.3, where S is the set of all real numbers
other than 0 and 1.

(ii) f : R → R
+, where R is the set of real numbers, R+ is the set of positive

real numbers and

f (x) =
{

2 − x if x ≤ 1,

1/x if x > 1.

8. In each case, is the function one-to-one? Is it onto?

(i) f : K → K where K = {1, 2, . . . , k} and f (1) = k, f (j) = j − 1 when
j = 2, 3, . . . , k.

(ii) f : Z+ → {0, 1, 2, 3}, where Z
+ is the set of positive integers, and

f (j) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if 7 \| j, 3 | j,

1 if 7 | j, 3 \| j,

2 if 21 | j,

3 otherwise.

(iii) f : R → R
+, where f (y) = y2.

Exercises 4.1 B

1. Suppose S = {1, 2, 3, 4, 5, 6, 7, 8, 9}. In each part, a binary relation from S to
itself is defined. For each of these relations, what is the corresponding subset of
S × S?

(i) x α y means x + y = 9. (ii) x β y means 2x < y.

(iii) x γ y means x − y = 0. (iv) x δ y means x − y > 5.

(v) x ε y means 2x = 3y. (vi) x ξ y means x2 < y − 3?

(vii) x η y means x2 > y + 6.

2. Relations α and β are binary relations from S = {1, 2} to T = {1, 2, 3} defined
by

x α y means y = x2 − 1;
x β y means xy > y.

For each of these relations, what is the corresponding subset of S × T ?

3. Relations α and β are binary relations from S = {1, 2, 3} to T = {1, 2, 3, 4}
defined by

x α y means y = x2;
x β y means x = y + 1.

For each of these relations, what is the corresponding subset of S × T ?
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4. A group of people, denoted by A,B, . . . , are at a party. Consider the follow-
ing relations: is each reflexive, symmetric, antisymmetric, asymmetric or transi-
tive?

(i) Aα B means A and B spoke to each other at the party.
(ii) Aβ B means A spoke to B at the party.

(iii) Aγ B means A and B come from the same city.
(iv) Aδ B means A and B met for the first time at the party.
(v) Aε B means A is the father of B.

5. The following are relations from the set Z+ of positive integers to itself. De-
termine whether each relation has each of the following properties: reflexivity,
symmetry, antisymmetry, transitivity.

(i) m is divisible by n.
(ii) m + n is even.

(iii) mn is even.
(iv) 3 | (m + n).
(v) mn > m + n.

6. Is the given relation α an equivalence relation on the given set S?

(i) S = R, a α b means ab ≥ 0.
(ii) S = R, a α b means ab > 0.

(iii) S is the set of all non-zero real numbers, a α b means ab > 0.

(iv) S = Z
+, a α b means a and b have greatest common divisor 16.

7. Which, if any, of the relations in Exercises 5 and 4 are equivalence relations?

8. The relation α from the set Z+ of positive integers to itself is defined by

r α s means rs is a perfect square.

Prove that α is an equivalence relation.

9. Suppose S = {1, 2, 3, 4}. Is the given set a function from S to S?

(i) {(1, 1), (3, 1), (4, 3)};
(ii) {(1, 4), (2, 4), (3, 3), (4, 2)};

(iii) {(1, 1), (3, 1), (1, 2), (4, 2)};
(iv) {(2, 2), (1, 2), (2, 1), (3, 4), (4, 2)};
(v) {(1, 1), (2, 1), (3, 1), (4, 3)};

(vi) {(1, 1), (2, 1), (4, 1)};
(vii) {(1, 4), (2, 1), (3, 3), (4, 2)};

(viii) {(1, 1), (3, 1), (1, 2), (4, 2), (1, 2)};
(ix) {(2, 2), (1, 2), (2, 1), (1, 1)}.

10. In each case, is the function one-to-one? Is it onto?
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(i) f : K → K where K = {1, 2, . . . , k} and f (j) = j + 1, for j =
1, 2, . . . , k − 1, f (k) = 1.

(ii) f : Q → Q, where f (q) = q3 for q ∈ Q. (Q denotes the set of rational
numbers.)

(iii) f : R+ → R
+ where f (x) = √

x.
(iv) f : R → R

∗, where f (y) = y2 + 1.

11. Find the inverses of the following functions.

(i) f5 : S → S from Sample Problem 4.3, where S is the set of all real numbers
other than 0 and 1.

(ii) f3 : S → S from Sample Problem 4.3, where S is the set of all real numbers
other than 0 and 1.

(iii) g : R → R, where R is the set of real numbers and

g(x) =
{

2x if x < 0,

3x if x ≥ 0.

(iv) g : R → R, where R is the set of real numbers and

g(x) =
⎧
⎨

⎩

x if x < 0,

2
√

x if 0 ≤ x < 1,

x + 1 if x ≥ 1.

4.2 Graphs

Graphs and Multigraphs

Suppose we want to describe the roads joining various towns in order to plan an
itinerary. If our only desire is to list the towns that will be visited, in order, we do not
need to know the physical properties of the region, such as hills, whether different
roads cross, or whether there are overpasses. The important information is whether
or not there is a road joining a given pair of towns. In these cases, we could use
a complete road map, with the exact shapes of the roads and various other details
shown, but it would be less confusing to make a diagram as shown in Figure 4.1(a),
that indicates roads joining B to C, A to each of B and C, and C to D, with no direct
roads joining A to D or B to D.

In some cases, there is a choice of routes between two towns. This information
may be important: you might prefer the freeway, which is faster, or you might prefer
the more scenic coast road. In this case, the diagram does not contain enough infor-
mation. For example, if there had been two different ways to travel from B to C, this
information could be represented as in the diagram of Figure 4.1(b).

Sample Problem 4.5. Suppose the road system connecting towns A, B, and C

consists of two roads from A to B, one road from B to C, and a bypass road
directly from A to C. Represent this road system in a diagram.
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Fig. 4.1. Representing a road system

Fig. 4.2. Three representations of the same graph

Solution.

Your Turn. Draw a diagram to represent the road system connecting towns A,
B, C, D, with one road from A to B, one from A to C, two from A to D, and one
from B to C.

The sort of diagram shown in Figure 4.1(a) is called a linear graph, or usually
simply called a graph. The dots representing towns are called vertices, while the
lines representing the road links are called edges.

We make a formal definition, and set up some notation, as follows: a graph G

consists of a finite set V or V (G) of objects called vertices, together with a set E(G)

of pairs of vertices that are called edges. The two vertices belonging to an edge are
called its endpoints; we say they are adjacent, and say the edge joins them.

In the diagram representing a graph, an edge {x, y} is shown as a line from x

to y. This is usually drawn as a straight line segment, but not always; the only im-
portant thing is that it joins the correct points. Moreover, the position of the points
is not fixed. For these two reasons, one graph can give rise to several drawings that
look quite dissimilar. For example, the three diagrams in Figure 4.2 all represent the
same graph. Although the two diagonal lines cross in the first picture, their point of
intersection does not represent a vertex of the graph.

The definition of a graph does not allow for two edges with the same endpoints.
Either a pair of vertices is an edge or it is not. However, there are some situations
where we wish to represent several different links between two vertices. The road
system modeled in Figure 4.1(b) is an example. The lines representing the two roads
from B to C in that figure will be called multiple edges. We say there is a multiple
edge of multiplicity 2 joining B to C. The diagram is called a multigraph. In order
to emphasize the fact that multiple edges are not allowed in graphs, the term simple
graph is sometimes used.
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Digraphs

Some road systems contain one-way roads. These can be modeled by assigning a
direction to some or all of the edges. Such a model is called a directed graph, or
digraph.

Formally, we define a digraph to be a finite set v of objects called vertices together
with a finite set of directed edges, or arcs, which are ordered pairs of vertices. So
a digraph is like a graph except that each edge is allocated a direction—one vertex
is designated a start and the other is a finish. It is important to observe that, unlike
a graph, a digraph can have two arcs with the same endpoints, provided they are
directed in opposite ways. If multiple arcs can occur, the object would be called a
directed multigraph.

Sample Problem 4.6. A road system connecting towns A, B, C, and D consists
of two roads joining A and B, one road from B to C, one road from C to D, and
one-way roads from A to C and from C to A. Represent this road system in a
diagram.

Solution.

Your Turn. A road system connecting towns A, B, C, and D consists of one
road joining A and B, a one-way road from B to C, a one-way road from C to D,
and a one-way road from D to B. Represent this road system in a diagram.

The idea of adjacency needs further consideration in digraphs. Associated with a
vertex x are the two sets

A(x) = {
y : (x, y) is an arc

}
,

B(x) = {
y : (y, x) is an arc

}
.

(A(x) consists of the vertices after x, and B(x) means before x.) A vertex x is called
a source in the digraph if B(x) is empty and a sink if A(x) is empty.

Sample Problem 4.7. Describe the adjacencies in the graph
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Solution.

A(a) = {b, c}, B(a) = ∅,

A(b) = ∅, B(b) = {a, c, d},
A(c) = {b, d}, B(c) = {a},
A(d) = {b}, B(d) = {c};

a is a source and b is a sink.

Graphs and Binary Relations

Suppose G is a graph with vertex set V (G). The binary relation ∼, where x ∼ y

means x is adjacent to y, is a symmetric, antireflexive binary relation on V (G).

On the other hand, any binary relation can be represented by a diagram. If the
relation is symmetric and antireflexive, the diagram will be a graph. If the binary
relation is not symmetric, the lines on the diagram will be directed, and if there are
no loops, the diagram is a digraph. So the study of (simple) graphs and digraphs is
exactly the same as the study of antireflexive binary relations.

The phrase “looped graph” can be used to describe the diagram of a symmetric
relation ∼ in which x ∼ x is sometimes true, but be careful: a “looped graph” is
not really a graph! Similarly, we can discuss looped digraphs. The phrase “infinite
graph” means an object defined like a graph, in which the vertex-set can be infinite,
and these are useful in discussing binary relations on infinite sets.

Graphical Models

So far we have concentrated on graphs as models of roads or pathways. Graphs
and digraphs can be used to model many real-life situations. We shall now describe
several examples of graphical models.

In many cases, a weight is associated with each edge or with each vertex. This is
a real number, usually positive or non-negative, that measures some attribute of the
thing being represented. Typical weights include costs, durations, and capacities.

Telephone Networks

Graphs can be used to model telephone systems in several ways. For example, each
user might be denoted by a vertex. Two vertices are joined by an edge when the
corresponding users can communicate by a local call. In another graph, the vertices
could represent local areas. An edge means that a long distance call can be routed
directly between two areas. The routing used to make longer connections correspond
to sequences of edges.
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Electric Circuits

An electric circuit can be viewed as a number of special places, which we shall call
nodes, joined by wires. At any time a wire either carries a current or does not. A node
means any point at which something more can happen than simply a current being
carried. For example, a node might be an alarm (which will sound when certain wires
connected to it carry a current), a light bulb, a point where current can be input to
the system or one where current can flow out to a device or another circuit, or a
switch. Nodes are represented by vertices and wires by edges. A computer network
is a special example of an electric circuit, with vertices representing the computers
and edges representing connections by which computers can communicate.

Deliveries

A delivery company might operate as follows. Every day trucks travel on a regular
schedule, between some of their depots but not others. Perhaps they travel between
St. Louis and Chicago, and between Chicago and Detroit, but there is no service
between St. Louis and Detroit. Goods sent from St. Louis to Detroit must be sent to
Chicago one day, and on to Detroit the next day. This transportation network can be
represented as a graph whose vertices are the depots and whose edges are the routes.

One natural weight on this graph is the capacity. If three trucks travel from
Chicago to Detroit each day, and each can carry 10000 pounds of freight, then that
edge would be assigned weight 30000. Another weight is the price charged per pound
to transport goods. Yet another is the cost of running each truck.

Commodity Flow

Suppose a company manufactures refrigerators in three factories and sells them from
five wholesale stores. The movement of computers to retailer can be represented by
a directed graph like

where a1, a2, a3 represent the factories and b1, b2, b3, b4, b5 represent the wholesale
stores.

In this case, there are two obvious weights, the capacity of an edge (the num-
ber of truckloads that can be delivered from the particular factory to the particular
wholesaler per day) and the cost of sending refrigerators. The usual problems are to
ensure that each wholesaler receives as many refrigerators as needed, while no fac-
tory exceeds capacity. In other words, can supply meet demand? If this is possible,
we are interested to know the cheapest way of satisfying these conditions. Often it
will be possible to ship refrigerators between wholesalers. In that case, the model
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will contain edges joining some of the bi , but of course using them will entail an
extra cost.

Tournament Schedules

Suppose several baseball teams play against each other in a league. The competition
can be represented by a graph with the teams as vertices and with an edge xy repre-
senting a game between teams x and y. Such a league, where two participants meet
in each game, is called a tournament. Sometimes multiple edges will be necessary;
sometimes two teams do not meet. The particular case where every pair of teams
plays exactly once is called a round robin tournament.

In a round robin tournament, the result of each game can be shown in a directed
graph, where the edge is directed from the winning team to the loser. The digraph
that results from this representation is rather special: if x and y are any two vertices,
then exactly one of the two possible arcs (x, y) and (y, x) occurs in the digraph. The
word “tournament” is also used for directed graphs with this property.

Exercises 4.2 A

1. Draw diagrams to represent the following road systems.

(i) There are three towns, A, B, and C. There are two roads from A to B, two
roads from B to C, and a bypass road from A to C.

(ii) There are four towns, A, B, C, and D. There are two roads from A to B,
two roads from B to C, two roads from C to D, and one road from A to D.

2. For each of the following digraphs, list all the arcs and list the members of A(x)

and B(x) for each vertex x.

3. Draw a diagram for each binary relation defined in Exercise 4.1A.1. Which if
any are graphs? Which if any are digraphs?

4. Draw a diagram for each binary relation defined in Exercise 4.1A.2. Which if
any are graphs? Which if any are digraphs?
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Exercises 4.2 B

1. For each of the following digraphs, list all the arcs and list the members of A(x)

and B(x) for each vertex x.

2. In each case, draw a diagram to represent the road system.

(i) There are four towns, A, B, C, and D. There are two roads from A to B,
one road from B to C, two roads from B to D, and one road from C to D.

(ii) There are four towns, A, B, C, and D. There is one road joining each of
the following pairs: A and B, A and C, A and D, B and D, C and D.

(iii) There are four towns, A, B, C, and D. There is one road from A to B, two
roads from B to C, two roads from C to D, and one road from B to D.

3. Draw a diagram for each binary relation defined in Exercise 4.1B.1. Which if
any are graphs? Which if any are digraphs?

4. Draw a diagram for each binary relation defined in Exercise 4.1B.3. Which if
any are graphs? Which if any are digraphs?

5. Draw a digraph to represent a tournament between teams V,W,X, Y,Z after
the following matches. V beat W , V beat X, W beat X, Y beat V , Y beat Z,
Z beat X. If it is a round robin tournament, how many matches remain to be
played?

4.3 Some Properties of Graphs

Degree

We define the degree or valency d(x) of the vertex x to be the number of edges that
have x as an endpoint.
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Sample Problem 4.8. What are the degrees of the vertices in the following
graph?

Solution. There are three vertices of degree 4 (the upper vertices in the figure),
while the other four have degree 3.

Your Turn. What are the degrees of the vertices on the following graphs?

Sample Problem 4.9. Can you find a graph on six vertices whose vertices have
degrees 5, 3, 2, 2, 1, 1?

Solution. Suppose such a graph exists. The vertex of degree 5 must lie on five
edges, and their endpoints must all be different. (The problem asks for a graph,
not a multigraph, so there are no multiple edges.) As there are six vertices, the
vertex of degree 5 is adjacent to all the other vertices. We know the graph must
contain the following configuration:

Moreover, the black vertices lie on no further edges. It is now necessary to add
edges, touching the clear vertices only, so that two edges touch one vertex and
one edge touches each of the other vertices, in order to make their degrees 3, 2, 2.
This is easily done, as follows:

Your Turn. Can you find a graph on six vertices whose vertices have degrees 5,
4, 2, 1, 1, 1?

Theorem 10. In any graph or multigraph, the sum of the degrees of the vertices
equals twice the number of edges (and consequently the sum of the degrees is an
even integer).
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Proof. Suppose the graph or multigraph has e edges; label the edges, say y1, y2, . . . ,

ye. Consider a list in which each edge appears twice, once for each endpoint. For
example, if y1 has endpoints x4 and x7, you might make entries y1 : x4 and y1 : x7.
Vertex x will appear in precisely d(x) entries, so the total number of entries equals
the sum of the degrees of the vertices. On the other hand, each edge appears twice,
so the total number of entries equals twice the number of edges. �

We shall call a vertex odd if its degree is odd, and even if the degree is even.

Corollary 1. In any graph or multigraph, the number of odd vertices is even.

Some Standard Graphs

Given a set S of v vertices, the graph formed by joining each pair of vertices in S is
called the complete graph on S and denoted KS . We write Kv to mean any complete
graph with v vertices. The three drawings in Figure 4.2 are all representations of K4.
On the other hand, a graph with no edges—consisting of v isolated vertices—will be
called empty, and denoted Kv .

Further standard graphs are the complete bipartite graphs. If S and T are two
disjoint sets of vertices, the complete bipartite graph based on S and T has vertex set
S ∪ T , consisting of all elements of S and all elements of T , and its edges are all the
pairs with one vertex in S and the other in T . There are no edges joining members
of the same set. We write Km,n for any complete bipartite graph in which one vertex
set has m vertices and the other has n. The graph in Sample Problem 4.8 is a copy
of K4,3.

If G is a graph, it is possible to choose some of the vertices and some of the edges
of G in such a way that these vertices and edges again form a graph, say H . H is
then called a subgraph of G; we write H ≤ G. A subgraph of a complete bipartite
graph is simply called a bipartite graph.

Sample Problem 4.10. Suppose a plant contains m machines, and there are n

workers who can operate them. Each worker is qualified to use some of the ma-
chines. Model this situation with a graph.

Solution. We represent the machines by a set of vertices S and the workers by
a set of vertices T . The vertex-set is S ∪ T . There is an edge from (machine) x

to (worker) y if y is qualified to use x. The graph will be bipartite, a subgraph of
the graph Km,n with vertex sets S and T .

Walks and Connectedness

We define a walk in a graph G to be any finite sequence of vertices x0, x1, . . . , xn

and edges y1, y2, . . . , yn of G:

x0, y1, x1, y2, . . . , yn, xn,
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where the endpoints of yi are xi−1 and xi for each i. The length of a walk is its
number of edges. The walk written above might be called an x0xn-walk of length n.
A closed walk, or circuit, is one in which the first and last vertices are the same.

Walks are called simple if there is no repeated edge. A walk in which no vertex
is repeated is a path.

There is no such thing as a closed path—the last vertex is a repeat of the first—
but we shall define a cycle to be a closed simple walk with no vertex repeats except
for the endpoints.

We say two vertices are connected when there is a walk joining them. A graph
is called connected if every pair of its vertices are connected. If a graph is not con-
nected, it falls into two or more parts with no edges joining them. The connected
parts of a graph are called components. So two vertices of G are connected if and
only if they lie in the same component of G.

Among connected graphs, some are connected so slightly that removal of a single
vertex or edge will disconnect them. Such vertices and edges are quite important.
A vertex x is called a cutpoint in G if G−x contains more components than does G;
in particular if G is connected, then a cutpoint is a vertex x such that G − x is
disconnected. Similarly, a bridge is an edge whose deletion increases the number of
components.

Sample Problem 4.11. If a graph represents a road network, what is the inter-
pretation of a bridge? Why are such edges important?

Solution. A bridge represents a road whose deletion would cut people in part of
the network off from those in another part. (Often a real bridge, over a river, etc.,
plays this role.) It is important to recognize such roads so that extra effort can be
taken to keep them open to traffic. For example, the highways department might
give special priority to keeping them plowed in winter.

Your Turn. In such a graph, what is the interpretation of a cutpoint?

Distance

If vertices x and y are adjacent, then there is a path of length 1 from x to y, and we
shall say that the distance from x to y is 1. If x and y are connected, there may be
several paths joining them, and we define the distance between them to be the length
of the shortest path joining them; we denote it D(x, y). For completeness, we define
D(x, x) to be 0.

Sample Problem 4.12. Find the distance between every pair of vertices in the
graph (a) below.
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Solution. There are two different kinds of vertex in the graph. In each part of
the following figure, one vertex is highlighted and the number against a vertex
shows the distance from the highlighted one.

Your Turn. Find the distance between every pair of vertices in graph (b).

Distance arises in the example of a communications network. The vertices of a
graph might represent computers. If two computers are directly linked, the corre-
sponding vertices are adjacent so that edges represent direct links. Often messages
from one computer to another are sent by way of another machine—e-mail mes-
sages are often relayed through several intermediate computers. Two computers can
communicate if the corresponding vertices are connected.

The physical separation between the computers is irrelevant. The number of
times the signal is relayed may well be significant: the more relays, the greater the
chance of a delay. (Direct communication between computers, by media such as
telephone cables, is practically instantaneous, but delays may occur when an inter-
mediate link is busy or down.) So the distance between vertices is a measure of the
possibility of delay.

In this example, we are often interested in the worst case—what is the worst
delay that can occur? To measure this, we define the eccentricity ε(x) of vertex x

in a connected graph to be the largest value of D(x, y), where y ranges through all
the vertices. The diameter D = D(G) of G is the maximum value of ε(x) for all
vertices x of G, while the radius R = R(G) is the smallest value of ε(x).

Sample Problem 4.13. Find the diameter and radius of graph (a) of Sample
Problem 4.12.

Solution. Four vertices have eccentricity 4, and the others have eccentricity 3.
So D = 4, R = 3.

Your Turn. Find the diameter and radius of the graph (b) of Sample Prob-
lem 4.12.

Theorem 11. In any graph G,

R(G) ≤ D(G) ≤ 2R(G).



176 4 Graph Theory

Proof. Clearly, D(G) equals the maximum distance between any two vertices in G.
Say x and y attain this maximum distance, so that D(x, y) = D(G), and say z is a
vertex for which ε(z) = R(G). As R is a distance between two vertices, necessarily
R ≤ D. But by definition D(z, t) ≤ ε(z) = R(G) for every vertex t , so D(G) =
D(x, y) ≤ D(x, z) + D(z, y) ≤ 2R(G). �

Exercises 4.3 A

1. What are the degrees of the vertices in the following graphs?

2. Draw the graphs K5 and K6. What are the degrees of the vertices in these graphs?

3. Can you find a connected graph with four vertices whose degrees are 2, 2, 1, 1?

4. Is there a connected graph with four vertices whose degrees are 3, 3, 1, 1?

5. The n-wheel Wn has n + 1 vertices {x0, x1, . . . , xn}; x0 is joined to every other
vertex and the other edges are

x1x2, x2x3, . . . , xn−1xn, xnx1.

How many edges does Wn have? What are the degrees of its vertices?

6. Identify all cutpoints and bridges in the graphs of Exercise 1.

7. How many edges are there in K7?

8. How many edges are there in Kn?

9. What are the diameter and radius of the following graph, which is called the
Petersen graph?

10. Find all paths from s to t in the following graph.

What is the length of each path? What is the distance from s to t?
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11. Find all paths from s to t in the following graph.

What is the length of each path? What is the distance from s to t?

Exercises 4.3 B

1. Draw the graphs K2,5, K3,3, K7, and K3,4. What are the degrees of the vertices
in these graphs?

2. Can you find graphs whose vertices have the following sets of degrees?

(i) 3, 2, 2, 1; (ii) 5, 3, 3, 1;

(iii) 5, 3, 3, 2, 2; (iv) 4, 4, 3, 3, 2;

(v) 5, 3, 3, 3, 1, 1; (vi) 3, 3, 3, 3, 2, 2;

(vii) 2, 2, 2, 1; (viii) 3, 3, 3, 1, 1, 1;

(ix) 4, 3, 3, 2, 2; (x) 4, 4, 2, 2, 2, 1, 1;

(xi) 5, 4, 3, 3, 2, 1; (xii) 3, 3, 3, 3, 3, 2, 2.

3. What are the degrees of the vertices in the following graphs?

Identify all cutpoints and bridges in these graphs.

4. What are the degrees of the vertices in the following graphs?

Identify all cutpoints and bridges in these graphs.

5. The n-star K1,n has n + 1 vertices {x0, x1, . . . , xn}; x0 is joined to every other
vertex, but there are no other edges. How many edges does K1,n have? What are
the degrees of its vertices?

6. How many edges are there in K3,5? How many edges are there in Km,n?
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7. The graph Kp,q,r has three sets of vertices, of sizes p, q, and r , respectively.
Two vertices are joined if and only if they belong to different sets.

(i) Sketch K3,3,2.

(ii) How many edges are there in K3,3,2?

(iii) How many edges are there in Kp,q,r?

8. The split graph Kp\q has two sets of vertices, V1 of size p − q and V2 of size q.
Two vertices are joined unless they both belong to V2.

(i) Sketch K6\3.

(ii) How many edges are there in K6\3?

(iii) How many edges are there in Kp\q?

9. Find all bridges in the following graphs.

10. What are the diameter and radius of the wheel Wn, which was defined in Exer-
cise 4.3A.5 above?

11. Find all paths from s to t in the following graph.

What is the length of each path? What is the distance from s to t?

12. Find all paths from s to t in the following graph.

What is the length of each path? What is the distance from s to t?
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4.4 Euler’s Theorem and Eulerizations

The Königsberg Bridges

The first mathematical paper on graph theory was published by the great Swiss math-
ematician Leonhard Euler in 1736, and had been delivered by him to the St. Peters-
burg Academy one year earlier.

Euler’s paper grew out of a famous old problem. The town of Königsberg in
Prussia is built on the river Pregel. The river divides the town into four parts, in-
cluding an island called The Kneiphof, and in the eighteenth century the town had
seven bridges; the layout is shown in Figure 4.3. The question under discussion was
whether it is possible from any point on Königsberg to take a walk in such a way as
to cross each bridge exactly once.

Euler set for himself the more general problem: given any configuration of river,
islands and bridges, find a general rule for deciding whether there is a walk that
covers each bridge precisely once.

We first show that it is impossible to walk over the bridges of Königsberg. Sup-
pose there was such a walk. There are three bridges leading to the area C: you can
traverse two of these, one leading into C and the other leading out, at one time in
your tour. There is only one bridge left: if you cross it going into C, then you cannot
leave C again, unless you use one of the bridges twice, so C must be the finish of the
walk; if you cross it in the other direction, C must have been the start of the walk. In
either event, C is either the place where you started or the place where you finished.

A similar analysis can be applied to A, B, and D, since each has an odd number
of bridges—five for B and three for the others. But any walk starts at one place and
finishes at one place; either there can be two endpoints, or the walk can start and
finish at the same place. Therefore, it is impossible for A, B, C, and D all to be
either the start or the finish.

Euler started by finding a multigraph that models the Königsberg bridge problem
(considered as a road network, with the islands and river banks as separate “towns”).
Vertices A, B, C, and D represent the parts A, B, C, and D of the town, and each
bridge is represented by an edge. The multigraph is shown in Figure 4.4. In terms of
this model, the original problem becomes: can a simple walk be found that contains
every edge of the multigraph?

These ideas can be applied to more general configurations of bridges and islands,
and to other problems. A simple walk that contains every edge of a given multigraph
will be called an Euler walk in the multigraph; if an Euler walk starts and finish at the
same vertex, it is called an Euler circuit. Following an Euler walk is called traversing
the multigraph, and finding whether a given multigraph (or a given road network) has
an Euler walk is called the traversability problem.

You obviously cannot traverse a graph if it can be broken into two parts with no
connection between them. For example, the road map of the United States cannot be
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Fig. 4.3. The Königsberg bridges

Fig. 4.4. The multigraph representing the Königsberg bridges

traversed, because there is no way to get from Hawaii to the other states. If a graph
(or multigraph) is to be traversable, it must be connected.

So far we have seen that if a graph or multigraph has an Euler walk, it can have
at most two odd vertices, one for the start of the walk and one for the finish. For
an Euler circuit to exist, all vertices of the graph must be even. (Notice that there
cannot be exactly one odd vertex, because of Corollary 1.) Euler showed that these
conditions are sufficient for the existence of Euler walks in connected multigraphs.

Sample Problem 4.14. The islands A, B, C, D are joined by seven bridges—
two joining A to B, two from C to D, and one each joining the pairs AC, AD,
and BD. Represent the system graphically. Could one walk through this system,
crossing each bridge exactly once?

Solution. Islands B and C each have an odd number
of bridges, so one must be the start of the walk and the
other the finish. With a little experimentation you will
find a solution—one example is BACDABDC, and
there are others.

Your Turn. The islands X, Y , Z, T are joined by seven bridges—three joining
X to Y , and one each joining the pairs XZ, XT , and YZ. Represent the system
graphically. Could one walk through this system, crossing each bridge exactly
once?

Euler’s Proof

We begin with a formal statement of Euler’s theorem.
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Theorem 12. If a connected multigraph has no odd vertices, then it has an Euler
walk starting from any given point and finishing at that point. If a connected multi-
graph has two odd vertices, then it has an Euler walk whose start and finish are the
odd vertices.

Proof. Consider any simple walk in a multigraph that starts and finishes at the same
vertex. If one erases every edge in that walk, one deletes two edges touching any
vertex that was crossed once in the walk, four edges touching any vertex that was
crossed twice, and so on. (For this purpose, count “start” and “finish” combined as
one crossing.) In every case, an even number of edges is deleted.

First, consider a multigraph with no odd vertex. Select any vertex x, and select
any edge incident with x. Go along this edge to its other endpoint, say y. Then
choose any other edge incident with y. In general, on arriving at a vertex, select any
edge incident with it that has not yet been used, and go along the edge to its other
endpoint. At the moment when this walk has led into the vertex z, where z is not x,
an odd number of edges touching z has been used up (the last edge to be followed,
and an even number previously). Since z is even, there is at least one edge incident
with z that is still available. Therefore, if the walk is continued until a further edge is
impossible, the last vertex must be x—that is, the walk is closed. It will necessarily
be a simple walk and it must contain every edge incident with vertex x.

Now assume that a connected multigraph with every vertex even is given, and a
simple closed walk has been found in it by the method just described. Delete all the
edges in the walk, forming a new multigraph. From the first paragraph of the proof,
it follows that every vertex of the new multigraph is even. It may be that we have
erased every edge in the original multigraph; in that case, we have already found an
Euler walk. If there are edges still left, there must be at least one vertex, say c, that
was in the original walk and that is still on an edge in the new multigraph—if there
were no such vertex, then there could be no connection between the edges of the
walk and the edges left in the new multigraph, and the original multigraph must have
been disconnected. Select such a vertex c, and find a closed simple walk starting
from c. Then unite the two walks as follows: at one place where the original walk
contained c, insert the new walk. For example, if the two walks are

x, y, . . . , z, c, u, . . . , x

and

c, s, . . . , t, c,

then the resulting walk will be

x, y, . . . , z, c, s, . . . , t, c, u, . . . , x.

(There may be more than one possible answer if c occurred more than once in the
first walk. Any of the possibilities may be chosen.) The new walk is a closed simple
walk in the original multigraph. Repeat the process of deletion, this time deleting the
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Fig. 4.5. Find Euler walks

newly formed walk. Continue in this way. Each walk contains more edges than the
preceding one, so the process cannot go on indefinitely. It must stop: this will only
happen when one of the walks contains all edges of the original multigraph, and that
walk is an Euler walk.

Finally, consider the case where there are two odd vertices p and q and every
other vertex is even. Form a new multigraph by adding an edge pq to the original.
This new multigraph has every vertex even. Find a closed Euler walk in it, choosing
p as the first vertex and the new edge pq as the first edge. Then delete this first edge;
the result is an Euler walk from q to p. �

It is clear that loops make no difference as to whether or not a graph has an Euler
walk. If there is a loop at vertex x, it can be added to a walk at some traversing of x.

A good application of Euler walks is planning the route of a highway inspector or
mail contractor, who must travel over all the roads in a highway system. Suppose the
system is represented as a multigraph G, as was done earlier. Then the most efficient
route will correspond to an Euler walk in G.

Sample Problem 4.15. Find Euler walks in the road networks represented by
Figure 4.5(a,b).

Solution. In the first example, starting from A, we find the walk ACBEA.
When these edges are deleted (see Figure 4.6(a)) there are no edges remaining
through A. We choose C, a vertex from the first walk that still has edges adjacent
to it, and trace the walk CFIHGDEC, after which there are no edges available
at C (see Figure 4.6(b)). E is available, yielding walk EGJLIE. As is clear
from Figure 4.6(c), the remaining edges form a walk HJKLH .

We start with ACBEA. We replace C by CFIHGDEC, yielding

ACFIHGDECBEA,

then replace the first E by EGJLIE, with result

ACFIHGDEGJLIECBEA
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Fig. 4.6. Constructing an Euler walk

(we could equally well replace the second E). Finally, H is replaced by
HJKLH , and the Euler walk is

ACFIHJKLHGDEGJLIECBEA.

In the second example, there are two odd vertices, namely B and F , so we add
another edge BF and make it the first edge used. The first walk found was

BFHGCABFDBCEB,

and the second is DEGD, exhausting all the vertices and producing the walk

BFHGCABFDEGDBCEB.

The first edge (the new one we added) is now deleted, giving Euler walk

FHGCABFDEGDBCEB

in the original graph.

Your Turn. Find an Euler walk in the road network represented by Figure 4.5(c).

Eulerization

If G contains no Euler walk, the highway inspector must repeat some edges of the
graph in order to return to his starting point. Let us define an Eulerization of G to be
a multigraph, with a closed Euler walk, that is formed from G by duplicating some
edges. A good Eulerization is one that contains the minimum number of new edges,
and this minimum number is the Eulerization number eu(G) of G. For example, if
two adjacent vertices have odd degree, you could add a further edge joining them.
This would mean that the inspector must travel the road between them twice. How-
ever, if the two vertices were not adjacent, one new edge will not suffice—it would
be the same as requiring that a new road be built!

Sample Problem 4.16. Consider the multigraph G of Figure 4.7. What is eu(G)?
Find an Eulerization of the road network represented by G that uses the minimum
number of edges.
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Fig. 4.7. Find Eulerizations

Fig. 4.8. Finding an Eulerization

Solution. Look at the multigraph as shown in Figure 4.8. The black vertices
have odd degree, so they need additional edges. As there are four black vertices,
at least two new edges are needed; but obviously no two edges will suffice. How-
ever, there are solutions with three added edges—two examples are shown—so
eu(G) = 3.

Your Turn. Consider the graph H of Figure 4.7. What is eu(H)? Find an Euler-
ization of the road network represented by H that uses the minimum number of
edges.

An Application of Eulerization

The need for good Eulerization occurs in many practical situations. One good exam-
ple is the scheduling of snowplows. Plows must drive over all the roads in a city, but
the plow does not have to go over a road twice. The ideal route would be an Euler
circuit among the roads—a circuit is required because the plow must return to the
municipal garage.

If no Euler circuit is available, the plow must traverse a circuit in an Eulerization
of the graph. This example shows why Eulerizations must repeat existing edges, and
cannot include new connections: a plow can only run on an existing road.

In practical situations, there may be restrictions because of one-way roads. In this
case, directed graphs are used. The theory of Euler walks and Eulerization is readily
extended to the directed case.

If several plows are available, the schedule is derived by dividing the graph of
the city into several circuits that together cover all the edges. Techniques for doing
this are quite easily derived from the construction for an Euler circuit.
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Other applications include scheduling routes for mailmen and deliveries. There
are also applications in the design of electrical circuits.

Exercises 4.4 A

1. In each case, find all odd vertices in the given graph.

2. Decide whether each graph in Exercise 1 contains an Euler walk. If the graph
contains an Euler walk, find one. Is it an Euler circuit?

3. For what values of n does the complete graph Kn have an Euler walk?

4. State the Eulerization number of the given graph and find a good Eulerization.
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Exercises 4.4 B

1. In each case, how many odd vertices does the given graph contain? Decide
whether the graph contains an Euler walk. If it does, find such a walk. Is the
walk an Euler circuit?

2. In each case, how many odd vertices does the given graph contain? Decide
whether the graph contains an Euler walk. If it does, find such a walk. Is the
walk an Euler circuit?
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3. Find a graph G such that both G and its complement G have Euler circuits.

4. For what values of m and n does Km,n have an Euler walk?

5. Suppose a graph contains an edge whose removal disconnects the graph (when
the edge is deleted, the resulting graph is not connected). Show that the original
graph contains a vertex of odd degree.

6. If a graph does not contain an Euler circuit, one could subeulerize it by deleting
edges until the resulting graph has an Euler circuit.

(i) Prove that the number of edges required to subeulerize a graph is at least as
many as the number required to Eulerize it.

(ii) Find a graph that can be Eulerized with one edge, but cannot be subeuler-
ized.

7. State the Eulerization number of the given graph and find a good Eulerization.
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4.5 Types of Graphs

Paths and Cycles

Suppose a graph consists of a single v-vertex path. We then call the graph itself a
path, and we write Pv for such a graph. A “cycle” Cv is defined similarly to mean a
graph consisting of one v-vertex cycle. If multiple edges are allowed, C2 would mean
a multigraph with two vertices joined by a double edge, and if loops are allowed then
C1 usually means a single vertex with a loop, but for graphs Cv is only defined when
v ≥ 3. The length of a path or cycle is its number of edges, so Cv is a cycle of
length v, while Pv is a path of length v − 1.

Here are examples of P5 and C5.

Trees

Sample Problem 4.17. Suppose an oil field contains five oil wells w1, w2, w3,
w4, w5, and a depot d . It is required to build pipelines so that oil can be pumped
from the wells to the depot. Oil can be relayed from one well to another, at very
small cost. The only real expense is building the pipelines. Figure 4.9(a) shows
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Fig. 4.9. An oil pipeline problem

which pipelines are feasible to build, represented as a graph in the obvious way,
with the cost (in hundreds of thousands of dollars) shown. (A missing edge might
mean that the cost would be very high.) Which pipelines should be built?

Solution. Your first impulse might be to connect d to each well directly, as
shown in Figure 4.9(b). This would cost $2600000. However, the cheapest so-
lution is shown in Figure 4.9(c), and costs $1600000.

Once the pipelines in case (c) have been built, there is no reason to build a direct
connection from d to w3. Any oil being sent from w3 to the depot can be relayed
through w1. Similarly, there would be no point in building a pipeline joining w3
to w4. The conditions of the problem imply that the graph does not need to contain
any cycle. However, it must be connected.

A connected graph that contains no cycle is called a tree. So the solution of the
problem is to find a subgraph of the underlying graph that is a tree, and among those
to find the one that is cheapest to build. We shall return to this topic shortly. But first
we look at trees as graphs.

Sample Problem 4.18. Which of the following graphs are trees?

Solution. Graph (a) is a tree. Graph (b) is not a tree because it is not connected,
although this might not be obvious immediately. Graph (c) contains a cycle, so it
is not a tree.

Your Turn. Which of the following graphs are trees?
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We have already seen trees. The tree diagrams used in Chapter 3 are just trees laid
out in a certain way. To form a tree diagram from a tree, select any vertex as a starting
point. Draw edges to all of its neighbors. These are the first generation. Then treat
each neighbor as if it were the starting point; draw edges to all its neighbors except
the start. Continue in this way; to each vertex, attach all of its neighbors except for
those that have already appeared in the diagram.

Sample Problem 4.19. Draw the first of the following three trees (tree A) as a
tree diagram. How many different-looking diagrams can be made?

Solution. There are four different-looking diagrams. In the following illustra-
tion, the vertices of the original tree are labeled 1, 2, 3, 4. The diagrams obtained
using each type as start are shown.

Your Turn. Repeat this problem for the other trees B and C above.

Every path is a tree, and the star K1,n, which was defined in Exercise 4.3B.5, is
a tree for every n.

A tree is a minimal connected graph in the following sense: if any vertex of
degree at least 2, or any edge, is deleted, then the resulting graph is not connected.
In fact, it is easy to prove that a connected graph is a tree if and only if every edge is
a bridge.

Trees can also be characterized among connected graphs by their number of
edges.

Theorem 13. A finite connected graph G with v vertices is a tree if and only if it has
exactly v − 1 edges.

Proof. (i) Let us call a tree irregular if its number of vertices is not greater by 1 than
its number of edges. We shall assume that at least one irregular tree exists, and show
that a contradiction follows.
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There must be a smallest possible value v for which there is an irregular tree on v

vertices, and let G be an irregular tree with v vertices. This value v must be at least 2
because the only graph with one vertex is K1, which has v − 1(= 0) edges. Choose
an edge in G (G must have an edge, or it will be the unconnected graph Kv) and
delete it. The result is a union of two disjoint components, each of which is a tree
with fewer than v vertices; say the first component has v1 vertices and the second
has v2, where v1 + v2 = v. Neither of these graphs is irregular, so they have v1 − 1
and v2 −1 edges, respectively. Adding one edge for the one that was deleted, we find
that the number of edges in G is

(v1 − 1) + (v2 − 1) + 1 = v − 1.

This contradicts the assumption that G was irregular. So there can be no irregular
trees; we could not even choose one smallest example. We have shown that a finite
connected graph G with v vertices is a tree only if it has exactly v − 1 edges.

(ii) On the other hand, suppose G is connected but is not a tree. Select an edge
that is part of a cycle, and delete it. If the resulting graph is not a tree, repeat the
process. Eventually the graph remaining will be a tree, and must have v − 1 edges.
So the original graph had more than v − 1 edges. �

Corollary 2. Every tree other than K1 has at least two vertices of degree 1.

Proof. Suppose the tree has v vertices. It then has v − 1 edges. So, by Theorem 10,
the sum of all degrees of the vertices is 2(v − 1). There can be no vertex of degree 0,
since the tree is connected and it is not K1; if v − 1 of the vertices have degree at
least 2, then the sum of the degrees is at least 1 + 2(v − 1), which is impossible. So
there must be two (or more) vertices with degree 1. �

An example of a tree with exactly two vertices of degree 1 is the path Pv , pro-
vided v > 1. The star K1,n has n vertices of degree 1.

Sample Problem 4.20. Find all trees with five vertices.

Solution. If a tree has five vertices, then the largest possible degree is 4. More-
over, there are 4 edges (by Theorem 13), so from Theorem 10 the sum of the
five degrees is 8. As there are no vertices of degree 0 and at least two vertices of
degree 1, the list of degrees must be one of

4, 1, 1, 1, 1 3, 2, 1, 1, 1 2, 2, 2, 1, 1.

In the first case, the only solution is the star K1,4. If there is one vertex of de-
gree 3, no two of its neighbors can be adjacent (this would form a cycle), so the
fourth edge must join one of those three neighbors to the fifth vertex. The only
case with the third degree list is the path P5. These three cases are
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Your Turn. Find all trees with four vertices.

A spanning subgraph of a graph G is one that contains every vertex of G. A span-
ning tree in a graph is a spanning subgraph that is a tree when considered as a graph in
its own right. For example, it was essential that the tree used to plan the oil pipelines
should be a spanning tree.

Spanning Trees

It is clear that any connected graph G has a spanning tree. If G is a tree, then the
whole of G is itself the spanning tree. Otherwise G must contain a cycle; delete one
edge from the cycle. The resulting graph is still a connected subgraph of G; and,
as no vertex has been deleted, it is a spanning subgraph. Find a cycle in this new
graph and delete it; repeat the process. Eventually, the remaining graph will contain
no cycle, so it is a tree. So when the process stops, we have found a spanning tree.

A given graph might have many different spanning trees. There are algorithms
to find all spanning trees in a graph. In small graphs, a complete search for spanning
trees can be done quite quickly.

Sample Problem 4.21. Find all spanning trees in the following graph.

Solution. The graph contains two cycles, abf e and cdhg. In order to construct
a tree, it is necessary to delete at least one edge from each of these cycles. As the
original graph contains eight vertices, any spanning tree will have eight vertices.
From Theorem 13, these trees will have seven edges. So exactly one edge must be
removed from each cycle, or there will be too few edges. (This argument would
need some modification if an edge that was common to both cycles were deleted,
but fortunately the graph contains no such edge.) So there are 16 spanning trees,
as follows.
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Exercises 4.5 A

1. Find the diameter and radius of the cycle C2n.

2. The Petersen graph was defined in Exercise 4.3A.9. Find cycles of lengths 5, 6,
8, and 9 in this graph.

3. Find a tree with five vertices, three of which have degree 1.

4. Consider the two graphs shown.

Find cycles of lengths 4, 6, and 8 in the first, and cycles of lengths 3, 4, 5, 6, 7,
and 8 in the second.

5. A graph contains at least two vertices. There is exactly one vertex of degree 1,
and every other vertex has degree 2 or greater. Prove that the graph contains a
cycle. Would this remain true if we allowed graphs to have infinite vertex sets?

6. Represent the following trees as tree diagrams in all possible ways.

7. Find all spanning trees in the following graphs.

Exercises 4.5 B

1. Find the diameter and radius of the cycle C2n+1.

2. Find all different trees on six vertices.

3. Show that the graph
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contains cycles of lengths 5, 6, 8, and 9. (Notice that the central point, where
three edges cross, is not a vertex.)

4. The wheel Wn was defined in Exercise 4.3A.5; it consists of a cycle of length
n together with one further vertex that is adjacent to all n vertices of the cycle.
What are the radius and diameter of W7?

5. For each n = 2, 3, 4, 5, 6, find a tree on seven vertices that has n vertices of
degree 1.

6. Represent the following trees as tree diagrams in all possible ways.

7. Find all ways to represent the following trees as tree diagrams.

8. Suppose a graph has six vertices.

(i) Suppose two vertices are of degree 3 and four of degree 1. Are the vertices
of degree 3 adjacent, or not, or is it impossible to tell?

(ii) Two vertices are of degree 4 and four of degree 1. Is such a graph possible?

9. Find all spanning trees in the following graphs.

10. Find all spanning trees in the following graphs.

4.6 Hamiltonian Cycles

Modeling Road Systems Again

When we discussed modeling road systems in Sections 4.2 and 4.4, the emphasis was
on visiting all the roads: crossing the Königsberg bridges, or inspecting a highway.
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Fig. 4.10. Sample graphs for discussing Hamiltonian cycles

Another viewpoint is that of the traveling salesman or tourist who wants to visit the
towns. The salesman travels from one town to another, trying not to pass through any
town twice on his trip. In terms of the underlying graph, the salesman plans to follow
a cycle.

A cycle that passes through every vertex in a graph is called a Hamiltonian cycle
and a graph with such a cycle is called Hamiltonian. The idea of such a spanning
cycle was simultaneously developed by Hamilton in 1859 in a special case, and more
generally by Kirkman in 1856.

Sample Problem 4.22. Consider the graph in Figure 4.10(a). Which of the fol-
lowing are Hamiltonian cycles?

(i) (a, b, e, d, c, f, a);

(ii) (a, b, e, c, d, e, f, a);

(iii) (a, b, c, d, e, f, a);

(iv) (a, b, c, e, f, a).

Solution. (i) and (iii) are Hamiltonian. (ii) is not; it contains a repeat of e. (iv) is
not; vertex d is omitted.

Your Turn. Repeat this problem for the graph in Figure 4.10(b) and cycles

(i) (a, b, c, f, e, d, a);

(ii) (a, b, f, c, b, e, d, a);

(iii) (a, b, c, d, e, f, a);

(iv) (a, d, e, b, c, f, a).

Which Graphs Are Hamiltonian?

At first, the problem of deciding whether a graph is Hamiltonian sounds similar to
the problem of Euler circuits. However, the two problems are strikingly different in
one regard. We found a very easy test for the Eulerian property, but no nice necessary
and sufficient conditions are known for the existence of Hamiltonian cycles.
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It is easy to see that the complete graphs with 3 or more vertices are Hamilto-
nian, and any ordering of the vertices gives a Hamiltonian cycle. On the other hand,
no tree is Hamiltonian, because trees contain no cycles at all. We can discuss Hamil-
tonicity in a number of other particular cases, but there are no known theorems that
characterize Hamiltonian graphs.

Finding All Hamiltonian Cycles

Suppose you want to find all Hamiltonian cycles in a graph with v vertices. Your
first instinct might be to list all possible arrangements of v vertices and then delete
those with two consecutive vertices that are not adjacent in the graph. This pro-
cess can then be made more efficient by observing that the v lists a1a2, . . . , av−1av ,
a2a3, . . . , ava1, . . . , and ava1, . . . , av−2av−1 all represent the same cycle (written
with a different starting point), and also avav−1, . . . , a2a1 is the same Hamiltonian
cycle as a1a2, . . . , av−1av (traversed in the opposite direction).

Another shortcut is available. If there is a vertex of degree 2, then any Hamilto-
nian cycle must contain the two edges touching it. If x has degree 2, and suppose
its two neighbors are y and z, then xy and xz are in every Hamiltonian cycle. So it
suffices to delete x, add an edge yz, find all Hamiltonian cycles in the new graph, and
delete any that do not contain the edge yz. The Hamiltonian cycles in the original
graph are then formed by inserting x between y and z.

Sample Problem 4.23. Find all Hamiltonian cycles in the graph F of Fig-
ure 4.11.

Solution. The graph F has two vertices of degree 2, namely a and f . When
we replace these vertices by edges bd and ce, we obtain the complete graph
with vertices a, b, c, d (multiple edges can be ignored). This complete graph
has three Hamiltonian cycles: there are six arrangements starting with b, namely
bcde, bced , bdce, bedc, bdec, becd , and the latter three are just the former three
written in reverse. bcde yields a cycle that does not contain edges bd and ce. The
other two give the cycles bcf eda and badcf e, so these are the two Hamiltonian
cycles in F .

Your Turn. Repeat this problem for graphs G and H of Figure 4.11.

The Traveling Salesman Problem

Suppose a traveling salesman wishes to visit several cities. If the cities are repre-
sented as vertices and the possible routes between them as edges, then the salesman’s
preferred itinerary is a Hamiltonian cycle in the graph.

In most cases, there is a cost associated with every edge. Depending on the sales-
man’s priorities, the cost might be a dollar cost such as airfare, or the number of miles
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Fig. 4.11. Find all Hamiltonian cycles

to be driven, or the number of hours the trip will take. The most desirable itinerary
will be the one for which the sum of costs is a minimum. The problem of finding this
cheapest Hamiltonian cycle is called the Traveling Salesman Problem.

We shall continue to speak in terms of a salesman, but these problems have many
other applications. They arise in airline and delivery routing and in telephone routing.
More recently they have been important in manufacturing integrated circuits and
computer chips, and for Internet routing.

In order to solve a Traveling Salesman Problem on v vertices, your first instinct
might be to list all Hamiltonian cycles in the graph. But very often we can assume the
graph is complete. In that case, listing all the cycles can be a very long task because
of the following theorem.

Theorem 14. The complete graph Kv contains (v − 1)!/2 Hamiltonian cycles.

Proof. There are v! arrangements of the vertices. Each Hamiltonian cycle gives rise
to v arrangements in the same cyclic order, and a further v are obtained by reversing
them. So there are v!/(2v) = (v − 1)!/2 Hamiltonian cycles. �

This number grows very quickly. For n = 3, 4, 5, 6, 7 the value of (n−1)!/2 is 1,
3, 12, 60, 360; in K10, there are 181440, and in K24, there are about 1023 Hamiltonian
cycles. 24 vertices is not an unreasonably large network, but performing so many
summations and comparing them would be impossible in practice. To give you some
idea of the times involved, if you had a computer capable of evaluating and sorting
through a million ten-vertex cycles per second, a complete search solution of the
Traveling Salesman Problem for K10 would take about 0.18 seconds. No problem
so far. However, assuming the computer took about twice as much time to process a
24-vertex cycle, the complete search for K24 would take about a billion years.

For practical use, fast methods of reaching a “good solution” have been devel-
oped. Although they are not guaranteed to give the optimal answer, these approxi-
mation algorithms often give a route that is significantly cheaper than the average.

Approximation Algorithms

The nearest neighbor method works as follows. Starting at some vertex x, one first
chooses the edge incident with x whose cost is least. Say that edge is xy. Then an
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Fig. 4.12. Traveling Salesman Problem example

edge incident with y is chosen in accordance with the following rule: if y is the vertex
most recently reached, then eliminate from consideration all edges incident with y

that lead to vertices that have already been chosen (including x), and then select
an edge of minimum cost from among those remaining. This rule is followed until
every vertex has been chosen. The cycle is completed by going from the last vertex
chosen back to the starting position x. This algorithm produces a directed cycle in
the complete graph, but not necessarily the cheapest one, and different solutions may
come from different choices of initial vertex x.

The sorted edges method does not depend on the choice of an initial vertex. One
first produces a list of all the edges in ascending order of cost. At each stage, the
cheapest edge is chosen with the restriction that no vertex can have degree 3 among
the chosen edges, and the collection of edges contains no cycle of length less than v,
the number of vertices in the graph. This method always produces an undirected
cycle, and it can be traversed in either direction.

Sample Problem 4.24. Suppose the costs of travel between St. Louis, Nashville,
Evansville, and Memphis are as shown in dollars on the left in Figure 4.12. You
wish to visit all four cities, returning to your starting point. What routes do the
two algorithms recommend?

Solution. The nearest neighbor algorithm, applied starting from Evansville,
starts by selecting the edge EM because it has the least cost of the three edges
incident with E. The next edge must have M as an endpoint, and ME is not al-
lowed (one cannot return to E, it has already been used), so the cheaper of the
remaining edges is chosen, namely MN. The cheapest edge originating at N is
NE, with cost $110, but inclusion of this edge would lead back to E, a vertex that
has already been visited, so NE is not allowed, and similarly NM is not available.
It follows that NS must be chosen. So the algorithm finds route EMNSE, with
cost $520.

A different result is achieved if one starts at Nashville. Then the first edge se-
lected is NE, with cost $110. The next choice is EM, then MS, then SN, and the
resulting cycle NEMSN costs $530.

If you start at St. Louis, the first stop will be Evansville ($120 is the cheap-
est flight from St. Louis), then Memphis, then Nashville, the same cycle as the
Evansville case (with a different starting point), costing $520. From Memphis,
the cheapest leg is to Evansville, then Nashville, and finally St. Louis, for $530—
the same cycle as from Nashville, in the opposite direction.
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To apply the sorted edges algorithm, first sort the edges in order of increasing
cost: EM($100), EN($110), ES($120), MN($130), MS($150), NS($170). Edge
EM is included, and so is EN. The next choice would be ES, but this is not
allowed because its inclusion would give degree 3 to E. MN would complete a
cycle of length 3 (too short), so the only other choices are MS and NS, forming
route EMSNE (or ENSME) at a cost of $530.

However, in this example, the best route is ENMSE, with cost $510, and it does
not arise from the nearest neighbor algorithm, no matter which starting vertex is
used, or from the sorted edges algorithm.

Your Turn. A new cut-rate airline offers the fares shown on the right side of the
Figure 4.12. What do the algorithms say now?

Exercises 4.6 A

1. Find Hamiltonian cycles in the graphs shown.

2. Prove that the following graph contains no Hamiltonian cycle.

3. List all Hamiltonian cycles in the graphs shown.



200 4 Graph Theory

4. In the following problems you are given the costs associated with the edges of
a complete graph with vertices abcde. Find the costs of the routes generated by
the nearest neighbor algorithm starting at each of the five vertices in turn and by
the sorted edges algorithm.

(i) ab = 24, ac = 23, ad = 20, ae = 21, bc = 27,

bd = 22, be = 30, cd = 26, ce = 27, de = 28;
(ii) ab = 24, ac = 22, ad = 30, ae = 29, bc = 17,

bd = 19, be = 30, cd = 18, ce = 21, de = 25;
(iii) ab = 12, ac = 18, ad = 14, ae = 19, bc = 22,

bd = 16, be = 15, cd = 18, ce = 17, de = 11;
(iv) ab = 27, ac = 22, ad = 28, ae = 17, bc = 33,

bd = 14, be = 23, cd = 24, ce = 26, de = 19;
(v) ab = 24, ac = 26, ad = 20, ae = 21, bc = 33,

bd = 29, be = 23, cd = 25, ce = 27, de = 28;
(vi) ab = 59, ac = 45, ad = 60, ae = 58, bc = 56,

bd = 46, be = 54, cd = 58, ce = 47, de = 48.

Exercises 4.6 B

1. Find Hamiltonian cycles in the graphs shown.

2. Prove that the following graph contains no Hamiltonian cycle.

3. Prove that the Petersen graph (see Exercise 4.3A.9) contains no Hamiltonian
cycle.
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4. List all Hamiltonian cycles in the graphs shown.

5. List all Hamiltonian cycles in the graphs shown.

6. Consider a complete graph K5 with vertices abcde, the costs associated with the
edges being

ab = 1, ac = 2, ad = 3, ae = 4, bc = 7,

bd = 8, be = 9, cd = 5, ce = 6, de = 10.

Find the cost of the cheapest Hamiltonian cycle in this graph by a complete
search. Then find the costs of the routes generated by the nearest neighbor al-
gorithm starting at each of the five vertices in turn and show that the nearest
neighbor solution is never the cheapest.

7. In the following problems you are given the costs associated with the edges of
a complete graph with vertices abcde. Find the costs of the routes generated by
the nearest neighbor algorithm starting at each of the five vertices in turn and by
the sorted edges algorithm.

(i) ab = 24, ac = 26, ad = 20, ae = 21, bc = 33,

bd = 29, be = 30, cd = 25, ce = 27, de = 28;
(ii) ab = 59, ac = 69, ad = 60, ae = 58, bc = 56,

bd = 69, be = 54, cd = 58, ce = 66, de = 61;
(iii) ab = 16, ac = 24, ad = 30, ae = 48, bc = 27,

bd = 29, be = 44, cd = 16, ce = 46, de = 51;
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(iv) ab = 91, ac = 79, ad = 75, ae = 82, bc = 87,

bd = 64, be = 78, cd = 68, ce = 81, de = 88;
(v) ab = 45, ac = 28, ad = 50, ae = 36, bc = 21,

bd = 42, be = 34, cd = 44, ce = 39, de = 25;
(vi) ab = 11, ac = 15, ad = 13, ae = 18, bc = 20,

bd = 12, be = 16, cd = 14, ce = 19, de = 17;
(vii) ab = 14, ac = 12, ad = 15, ae = 24, bc = 27,

bd = 29, be = 44, cd = 16, ce = 46, de = 51;
(viii) ab = 44, ac = 49, ad = 56, ae = 52, bc = 45,

bd = 54, be = 48, cd = 51, ce = 55, de = 50.

8. Prove that the following graph contains no Hamiltonian cycle.

4.7 Graph Representations and Colorings

Representations and Crossings

Consider these two diagrams.

They represent the same graph, the complete graph K4 on four vertices. But as
diagrams they are quite different: in the left-hand version, two edges cross; in the
right-hand diagram there are no crossings. We shall refer to the two diagrams as
different representations of K4 in the plane. The crossing number of a representation
is the number of different pairs of edges that cross; the crossing number ν(G) of
a graph G is the minimum number of crossings in any representation of G. The
diagram shows representations of K4 with crossing numbers 1 and 0, respectively.
As one cannot have a representation with fewer than 0 crossings, we have shown that
ν(K4) = 0.

A representation is called planar if it contains no crossings, and a planar graph
is a graph that has a planar representation. In other words, a planar graph G is one
for which ν(G) = 0. So K4 is planar.
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There are many applications of crossing numbers. An early use was in the design
of railway yards, where it is inconvenient to have the different lines crossing, and it
is better to have longer track rather than extra intersections. An obvious extension
of this idea is freeway design. At a complex intersection, fewer crossings will mean
fewer expensive flyover bridges. More recently, small crossing numbers have proven
important in the design of VLSI chips; if two parts of a circuit are not to be connected
electrically, but they cross, a costly insulation process is necessary.

Surprisingly enough, the crossing numbers of complete graphs are not easy to
calculate. A very easy (but very bad) upper bound can be found as follows. If the v

vertices of Kv are arranged in a circle, and all the edges are drawn as straight lines,
then every set of four vertices contributes exactly one crossing. So

ν(Kv) ≤ C(v, 4).

More sophisticated constructions can be used to find better upper bounds, but the
exact answer is not known in general.

Sample Problem 4.25. Prove that the crossing number of the complete graph on
five vertices is 1.

Solution. We start by considering smaller complete graphs. The representation
of K3 as a triangle is essentially unique: one can introduce a crossing only by a
fanciful, twisting representation of one or more edges. Adding one more vertex
to obtain a K4, one always obtains a representation like the left-hand diagram
we saw at the start of the section, and any other planar representation is essen-
tially equivalent to this. So any planar representation of K5 can be obtained by
introducing another vertex into this representation of K4. If a new vertex e is
introduced inside the triangle abd , then the representation of ce must cross one
of ab, ad , or bd . Similarly, the introduction of e inside any triangle causes a
crossing involving the edge joining e to the vertex that is not on the triangle.
(The “outer area” is considered to be the triangle abc.) The following diagrams
illustrate this for the triangles abc and abc.

Therefore, ν(K5) ≥ 1. A representation with one crossing is easy to find—we
have found three of them already—so ν(K5) = 1.

Your Turn. Prove that the crossing number of the complete bipartite graph K3,3
is 1.

It is easy to calculate the crossing numbers of some small graphs. For example,
the crossing number of any tree is 0. To see this, simply draw the tree as a tree
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diagram, as we did in Section 4.5. The diagram has no crossings. Similarly, any
cycle has crossing number 0.

Suppose G is planar. If a new graph were constructed by inserting a new vertex
of degree 2 into the middle of an edge (dividing an edge), or by deleting a vertex
of degree 2 and joining the two vertices adjacent to it (eliding a vertex), that new
graph will also be planar. Graphs that can be obtained from each other in this way
are called homeomorphic.

As K5 and K3,3 are not planar, it follows that a graph having either as a subgraph
could not be planar. Moreover, a graph that is homeomorphic to one with a subgraph
homeomorphic to K5 or K3,3 cannot be planar. In fact, it may be shown that this
necessary condition for planarity is also sufficient. The proof is too difficult for our
purposes.

Theorem 15. G is planar if and only if G is homeomorphic to a graph containing
no subgraph homeomorphic to K5 or K3,3.

Maps and Planarity

By a map we shall mean what is usually meant by a map of a continent (showing
countries) or a country (showing states or provinces). However, we shall make one
restriction. Sometimes one state can consist of two disconnected parts (in the United
States, Michigan consists of two separate land masses, unless we consider man-made
constructions such as the Mackinaw Bridge). We shall exclude such cases from con-
sideration.

Given a map, we can construct a graph as follows: the vertices are the countries
or states on the map, and the two vertices are joined by an edge precisely when the
corresponding countries have a common border.

Sample Problem 4.26. Represent the map of the mainland of Australia, divided
into states and the Northern Territory, as a graph.

Solution. The map is shown, for reference, alongside its graph.

Vertex T represents the Northern Territory; the states (New South Wales, Queens-
land, South Australia, Victoria, and Western Australia) are denoted by their ini-
tials.

Your Turn. Represent the map of the New England states—Maine, New Hamp-
shire, Massachusetts, Vermont, Connecticut, Rhode Island—as a graph.
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Sometimes two states have only one point in common. An example, in the United
States, occurs where Utah and New Mexico meet at exactly one point, as do Colorado
and Arizona. We shall say that states with only one point in common have no border,
and treat them as if they do not touch.

It is always possible to draw the graph corresponding to a map without crossings.
To see this, draw the graph on top of the map by putting a vertex inside each state
and joining vertices by edges that pass through common state borders so the graph
of any map is planar. Conversely, any planar graph is easily represented by a map.
Therefore, the theory of maps (with the two stated restrictions) is precisely the theory
of planar graphs.

In 1852, William Rowan Hamilton wrote to Augustus de Morgan concerning a
problem that had been posed by a student, Frederick Guthrie. Guthrie said: cartog-
raphers know that any map (our definition) can be colored using four or less colors;
is there a mathematical proof? (Guthrie later pointed out that the question had come
from his brother, Francis Guthrie.)

Kempe published a purported proof in 1879. It was thought that the matter was
over, but in 1890 Heawood pointed out a fallacy in Kempe’s proof. Heawood did,
however, repair the proof sufficiently to prove that every planar map can be colored
in five colors.

After Heawood’s paper appeared, there was renewed interest in the four-color
problem. Because it was easy to state and tantalizingly difficult to prove, it became
one of the most celebrated unsolved problems in mathematics. In 1976, Appel and
Haken finally proved that any map can be colored in at most four colors. Their proof
involved computer analysis of a large number of cases, so many that human analysis
of all the cases is not feasible. We state their theorem as

Theorem 16 (The Four-Color Theorem). Every map can be colored using at most
four colors.

Graph Colorings

Instead of coloring a map, we could instead apply the colors to the vertices of the
corresponding graph. The result to divide the set of vertices into disjoint subsets,
where each subset consists of the vertices that receive a specific color. The defining
property is that no two elements of the same subset are adjacent. The terminology
of colors and colorings is traditionally used for this sort of problem. Given a set
C = {c1, c2, . . .} is a set of labels called colors, a C-coloring (or C-vertex coloring)
ξ of a graph G is a function

ξ : V (G) → C,

that is, a rule that assigns a uniquely-defined color to each vertex. The sets Vi =
{x : ξ(x) = ci} are called color classes. A proper coloring of G is a coloring in
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Fig. 4.13. A graph with chromatic number 3

which no two adjacent vertices belong to the same color class. In other words,

x ∼ y ⇒ ξ(x) �= ξ(y).

A proper coloring is called an n-coloring if C has n elements. If G has an n-coloring,
then G is called n-colorable. So the Four-Color Theorem says that every planar graph
is 4-colorable.

The chromatic number χ(G) of a graph G is the smallest integer n such that
G has an n-coloring. A coloring of G in χ(G) colors is called minimal. We use
the phrase “G is n-chromatic” to mean that χ(G) = n (but note that a minority of
authors use n-chromatic as a synonym for n-colorable).

Some easy small cases of chromatic number are

χ(Kv) = v,

χ(Pv) = 2.

A cycle of length v has chromatic number 2 if v is even and 3 if v is odd. The star
K1,n has chromatic number 2; this is an example of the next theorem.

Clearly, χ(G) = 1 if G has no edges and χ(G) = 2 if G has at least one edge.

Suppose G is a graph with a subgraph H , and suppose G has been n-colored. If
all the vertices and edges that are not in H were deleted, there would remain a copy
of H that is colored in at most n colors. So χ(H) ≤ χ(G) whenever H is a subgraph
of G.

The graph of Figure 4.13 can be colored in three colors:

V0 = {x1, x4}, V1 = {x2, x5}, V2 = {x3, x6}.

Exercises 4.7 A

1. Which of the following graphs are planar?
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2. For each of the following graphs, find the chromatic number and find a coloring
that uses the minimum number of colors.

3. Find the chromatic number and find a coloring that uses the minimum number
of colors for the graphs in Exercise 1, parts (v) and (vi).

4. The wheel Wn was defined in Exercise 4.3A.5 to consist of an n-cycle together
with a further vertex adjacent to all n vertices. What is χ(Wn)?

5. Verify that there are exactly three connected incomplete graphs on four vertices
with maximum degree 3, and all can be 3-colored.

6. G is formed from the complete graph Kv by deleting one edge. Prove that
χ(G) = v − 1 and describe a way of coloring G in v − 1 colors.

Exercises 4.7 B

1. Which of the following graphs are planar?
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2. Prove that ν(K1,n) = ν(K2,n) = 0 for any n.

3. Prove that ν(K3,3) = 1. What is ν(K3,4)?

4. In Sample Problem 4.26, we drew the graph corresponding to a map of Australia,
but omitted the Australian Capital Territory (A.C.T.) and Tasmania. Draw the
graph that would result if these two areas were included. (For your information,
the A.C.T. lies wholly within New South Wales, and Tasmania is an island to the
south.) What is the chromatic number?

5. Find the crossing numbers of the following graphs.

For each graph in the preceding question, find the chromatic number and find a
coloring that uses the minimum number of colors.

6. G is the union of two graphs G1 and G2 that have one common vertex. Show
that χ(G) = max{χ(G1), χ(G2)}.

7. For each of the following graphs, find the chromatic number and find a coloring
that uses the minimum number of colors.
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8. Write P for the Petersen graph, which was defined in Exercise 4.3A.9

(i) What is χ(P )?

(ii) Prove that P is not planar. What is its crossing number?
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Linear Equations and Matrices

5.1 Coordinates and Lines

The Number Line

You should be familiar with the method of representing numbers as points on a num-
ber line. A horizontal line, or axis, is drawn, with two special points marked 0 and 1;
0 is called the origin, and is to the left of 1. The positive number x is represented by
a point on the axis whose distance to the right of 0 is x times as far as the distance
from 0 to 1. We usually say the distance from 0 to 1 is the unit distance, and say the
point representing x is x units to the right of the origin. Negative numbers go to the
left of 0, and −x is x units to the left of the origin.

For convenience, other numbers are often shown on the number line.

Sample Problem 5.1. Show the points corresponding to 5, −3,
√

2, and 2.4 on
a number line.

Solution. We shall show the integers from −5 to 5 on our line, with −3,
√

2,
and 2.4 indicated by heavy dots. The line is:

Your Turn. Show the points corresponding to −2, 1, and 2.5 on a number line.

Intervals and Inequalities

One way in which number lines are used is to show sets of numbers. They are par-
ticularly useful for showing intervals. An interval corresponds to a set of points on
the number line. The set is indicated by a heavy line. The diagram is consistent with
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the notation for intervals: an open bracket at an endpoint means that the endpoint
is excluded from the solution, while a closed bracket means it is included. In other
words, the interval (−2, 2] is shown as

An arrowhead replaces the notation ∞ and means and so on to infinity.

This is very useful for illustrating inequalities. The solution of an inequality is a
collection of intervals.

Sample Problem 5.2. Show the solution sets of 5 < x ≤ 7 and x2 > 1 on
number lines.

Solution. The solutions to the two inequalities are (5, 7] and (−∞,−1) ∪
(1,∞).

Your Turn. Show the solution sets of −1 ≤ x < 3 and x2 ≥ 4 on number lines.

Rectangular Coordinates

If you want to tell somebody how to drive from one point to another in a city, you
sometimes say something like “go four blocks East, to Main Street, then go three
blocks North”. In other words, you give a distance along one number line, then a
distance along another number line. The most efficient way to do this is to set up two
standard number lines, or axes, one in a west–east direction with positive numbers
to the east and the other running south–north with positive numbers to the north.

When two axes are drawn on the page, the west–east axis runs from left to right
and is called the x-axis, while the south–north axis runs from bottom to top and is
called the y-axis. The point where the two lines meet is called the origin and often
denoted O. If you start at the origin, the result of going four units to the right is the
point 4 units along the x-axis, and is written (4, 0). We also say this point has x = 4.
If you then go three units up you reach the point (4, 3), which is also called the point
x = 4, y = 3. These values x and y are called the coordinates of the point; 4 is the
x-coordinate and 3 is the y-coordinate. We often write (x, y) to mean a typical point,
with x-coordinate value x and y-coordinate value y. This standard ordering—always
x-value first—does not have to specify which is the west–east direction and which
the south–north, and saves a lot of writing.

Sample Problem 5.3. Show the points with coordinates (3, 1), (
√

2,
√

2), (0, 2),
(−2, 1), and (−1,−2) on a set of axes.



5.1 Coordinates and Lines 213

Solution. The points are shown below. Notice that negative values place the
points to the left of, or below, the axes, while 0 is on the axis. Coordinates do
not need to be integers.

Your Turn. Show the points with coordinates (−1,−1), (2.3, 1.4), and (0, 1)

on a set of axes.

Graphing Equations

If two quantities x and y are related, then the set of all points (x, y) such that x

is related to y is called the graph of the relationship. For example, consider the
temperature at a given time. If the temperature at time t hours after midnight is d

degrees, this is represented by the point (t, d). The points trace out a line. Figure 5.1
might show the graph of temperature on a winter’s day.

Very often relationships are embedded in equations. Of particular importance is
the linear equation, whose graph is the straight line.

Sample Problem 5.4. A production line moves three feet per minute. The line is
30 feet long. Suppose an object is placed on the line at 3PM. Draw a graph that
shows its position at a given time.

Solution. We are not interested in any time before 3PM or after 3:10PM. So let
x equal the number of minutes after 3PM (for example, 3:05PM is represented
by x = 5.) The variable y is the distance in feet from the starting point. Then the
graph is as shown below. It is the straight line segment joining (0, 0) to (10, 30).

For every point (x, y) on the above graph, the relationship y = 3x is true. The
segment is part of the graph of the equation y = 3x (the graph of this equation would
extend in both directions past the endpoints of the segment).
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Fig. 5.1. Typical temperature graph

The equation of a straight line is a linear equation in the two variables x and y,
and every such equation has a straight line graph. (In fact, this is why such equations
are called “linear”.) Most can be expressed in the form “y equals some non-zero
multiple of x, plus possibly a constant”. The only exceptions are the two axes, which
have equations x = 0 (the y axis; all the different y values are represented on it, but
no x values) and y = 0 (the x axis). We could also say “x equals some non-zero
multiple of y . . .”, and the most general form is to say a straight line is any one of
the sets

{
(x, y) : Ax + By + C = 0

}
,

where A, B and C can be any real numbers, provided A and B are not both zero. We
also say this is the line “with equation Ax + By + C = 0”.

Given the equation of a straight line, the simplest way to draw the graph is to find
two points on a straight line, join them, and extend this segment in both directions.
The easiest method is to find the two points where x = 0 and y = 0 and join them.
These are called the intercepts of the line. In those cases where (0, 0) lies on the line,
the two intercepts are the same, and the usual method is to find one other point. (For
example, put x = 1 in the equation, and find the corresponding value of y.)

Sample Problem 5.5. Draw the straight lines with equations

x + y + 2 = 0, 3x − 2y = 0.

Solution. The line x + y + 2 = 0 passes through (0,−2): to see this, put x = 0
in the equation, and you get 0 + y + 2 = 0, or y = −2; and (−2, 0). The line
3x−2y = 0 passes through (0, 0) and (1, 3

2 ). The lines are shown in the diagram:
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Your Turn. Draw the straight lines with equations

2x − y − 4 = 0, x + y = 0.

You should realize that two different equations can correspond to the same
straight line. For example, the equations Ax+By+C = 0 and 2Ax+2By+2C = 0
give the same line.

Slope

The graph of 3x − 2y = 0 passes through the points (0, 0), (1, 3
2 ), (2, 3), and (4, 6).

Observe that, if we take any two points, the difference in their y coordinates is 3
2

times the difference in their x-coordinates. We call this common ratio the slope of
the line; we say 3x − 2y = 0 has slope 3

2 . Every straight line has a slope.

Say a line has slope m. If (a, b) and (x, y) are any points on the line, then

(y − b) = m(x − a).

In particular, if (0, b) is an intercept, so that (0, b) is a point on the line,

y = mx + b.

This is called the slope-intercept form of the equation of the line, and corresponds to
the standard form

mx + (−1)y + b = 0.

Every line has a slope-intercept form except for the vertical lines, like x = 4. This
line has no intercept on the y axis, and we say it “has infinite slope”.

Lines with the same slope are parallel in the ordinary geometric sense.

Sample Problem 5.6. What are the slopes of the lines

x + y + 2 = 0, 3x − 2y = 0

of Sample Problem 5.5? Write their equations in slope–intercept form.

Solution. The line x + y + 2 = 0 has slope −1. Its slope–intercept form is
y = −x − 2. The line 3x − 2y = 0 is y = 3

2x, with slope 3
2 .

Your Turn. What are the slopes of the lines

2x + y − 4 = 0, x + y = 0?

Write their equations in slope–intercept form.

Exercises 5.1 A

1. Represent the following points on a number line:
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(i) 0.3; (ii)
√

5; (iii) 1.44;

(iv) −3.1; (v)
3

5
; (vi) 3;

(vii) −2; (viii)
√

3 − 6; (ix) 6 − √
3.

2. Represent the solution sets of the following inequalities on a number line:

(i) 3 ≤ x ≤ 5; (ii) 2 ≤ x < 4; (iii) 1 ≤ x2 ≤ 3;

(iv) x + 1 ≥ 0; (v) x2 ≥ 1; (vi) x2 > 1;

(vii) x ≥ 0; (vii) x2 + 1 > 2.

3. Represent the following points on a set of axes:

(i) (1, 0); (ii) (−1,−1); (iii) (
√

2, 2);

(iv) (2,−1); (v) (−2,−1.5); (vi) (−2, 2).

4. Rain is falling at a steady rate. Every three hours, enough rain falls to raise the
level in a rain gauge by one inch. Suppose you empty the gauge at 1PM and put
it out in the rain again. Draw a graph that shows the level of rain in the gauge at
times from 1PM to 10PM.

5. At 2PM you start driving from St. Louis to Chicago at exactly 50 miles per hour.
After 30 minutes you change speed to 60 miles per hour.

(i) How far were you from St. Louis when you changed speed?

(ii) Draw a graph that shows your distance from St. Louis at times from 2PM to
6PM.

6. To convert Fahrenheit to Celsius temperature, one subtracts 32 from the Fahren-
heit temperature and multiplies by 5/9.

(i) Suppose the temperature x◦ Fahrenheit corresponds to y◦ Celsius. What is
the equation linking x and y?

(ii) If the temperature is 68◦ Fahrenheit, what is it in Celsius?

(iii) If the temperature is 25◦ Celsius, what is it in Fahrenheit?

(iv) Draw the graph of this relationship.

7. Draw the graphs of straight lines with the following equations:

(i) 2x + y = 0; (ii) 2x − y − 1 = 0; (iii) −x + 2y + 4 = 0;

(iv) 2x + 3y = 0; (v) 2x − 2y = 0; (vi) 2x − y − 3 = 0.

8. For each line in Exercise 7, what is the slope? Write the equation of the line in
slope-intercept form.

9. What is the equation of the line in Exercise 4? What is its slope?
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Exercises 5.1 B

1. Represent the following points on a number line:

(i) 1.2; (ii) 1 + √
2; (iii) 0.75;

(iv)
2

7
; (v) 3; (vi) −5;

(vii) 3 − √
3; (viii) 1 − √

3; (ix) −1.3.

2. Represent the solution sets of the following inequalities on a number line:

(i) 1 ≤ x ≤ 2; (ii) −2 < x ≤ 1; (iii) 3 ≤ x2 ≤ 4;

(iv) x − 2 < 4; (v) x2 ≥ 2; (vi) x2 > 2;

(vii) 3 ≤ x < 6; (viii) −1 < x ≤ 3; (ix) 2 > x2 > 1;

(x) 1 < x2 ≤ 4; (xi) x + 2 ≥ 3; (xii) x2 < 3.

3. Represent the following points on a set of axes:

(i) (0, 2); (ii) (−2,−1); (iii) (1,−2);

(iv) (2.1, 1.2); (v) (1,
√

3); (vi) (−2, 2.3).

4. Represent the following points on a set of axes:

(i) (0, 0); (ii) (3, 1); (iii) (1.3, 1.7);

(iv) (−2, 1); (v) (−1, 1 + √
2); (vi) (3 − √

5,−2).

5. The state of Missouri decides to change its state income tax laws so that those
with annual income less than $10000 pay no tax and all others pay 10% of
their income. Draw a graph that shows the amount of tax paid on incomes up
to $100000.

6. A train runs at a steady rate of 30 miles per hour. It passes a station at 12 noon.

(i) Draw the graph of a line that shows how far the train is from the station at
a given time, from noon to 6PM.

(ii) What is the equation of the line in part (i)? What is its slope?

(iii) Suppose the train changed its speed to 35 miles per hour at 2PM.

(a) How far had the train traveled from the station when its speed changed?

(b) Draw a graph that shows how far the train is from the station, at times
up to 6PM, in this new case.

7. Your cell phone bill is $40 per month plus 5 cents per minute for calls over
500 minutes.

(i) Draw a graph showing how much you will pay if you use x minutes.

(ii) What is the equation showing how much you will pay if you use x minutes,
where x ≥ 500?

(iii) What is your bill if you use 800 minutes this month?
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8. Draw the graphs of straight lines with the following equations:

(i) x + 2y − 1 = 0; (ii) 3x − 2y + 2 = 0;
(iii) −x − 2y + 6 = 0; (iv) x + 3y = 0;
(v) 2x − 4y = 0; (vi) x − 3y − 2 = 0.

9. For each line in Exercise 8, what is the slope? Write the equation of the line in
slope-intercept form.

10. Draw the graphs of straight lines with the following equations:

(i) x + 3y = 0; (ii) x + 2y − 1 = 0;
(iii) x − 5y = 0; (iv) 2x + 2y − 2 = 0;
(v) 2x − 3y + 1 = 0; (vi) 3x − 2y − 2 = 0.

11. A freight train leaves its depot (D) at midnight. Traveling at constant speed, it
passes South Valley station (SV) at 3AM. It maintains its speed until it crosses
the Narrows Bridge (NB), 60 miles further from SB, then changes to a new speed
until it reaches the City terminal (CT). The trip is represented by the following
graph, with time on the x axis and distance on the y axis.

Assuming that the dotted lines are equally spaced,

(i) How far is it from South Valley station to Narrows Bridge?

(ii) How fast was the train traveling between Narrows Bridge and the City ter-
minal?

(iii) When did the train reach City terminal?

(iv) How long did the train take to travel from South Valley station to Narrows
Bridge?

5.2 Systems of Linear Equations

Pairs of Linear Equations in Two Variables

Suppose (x, y) is the point common to two straight lines (the point of intersection of
the lines). The values x and y satisfy the equations of the two lines. For example, say
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both x + y = 2 and x − y = 0 are true. The graphs of x + y = 2 and x − y = 0 are
shown in the following diagram, and the common point, marked with a dot, is where
both equations are true.

Finding the point of intersection of the two lines is done by simultaneously solv-
ing the two equations. The usual method, with two equations in the two unknowns x

and y, will be called solution by substitution, and is carried out as follows. Choose
one of the equations, treat it as though y were a constant, and solve for x. Then sub-
stitute that solution into the other equation. For example, if we take x + y = 2 and
solve it as though y were a constant, we get x = 2 − y. Now go back to the equation
x − y = 0 and replace x by 2 − y. The resulting equation is (2 − y) − y = 0, or
2 − 2y = 0, which is equivalent to 2y = 2, or y = 1. Finally, since x = 2 − y, we
must have x = 2−1 = 1, and the solution is x = 1, y = 1. The point of intersection,
or solution point, is (1, 1).

Sample Problem 5.7. Simultaneously solve the equations 3x + 2y = 4,
x + 3y = −1.

Solution. From x + 3y = −1 we get x = −3y − 1. Substituting, 3(−3y − 1) +
2y = 4, or 7y = −7, so y = −1. Therefore, x = −3(−1) − 1 = 2. The solution
is x = 2, y = −1; the point of intersection is (2,−1).

Your Turn. Simultaneously solve the equations 2x + y = 4, 3x − y = 1.

A set of two linear equations in two unknowns might have no solutions. For
example, the two equations x − y = 0 and x − y = 1 can have no joint solution:
if the values x and y satisfy x − y = 0, then x − y = 1 must be false. In this case,
the graphs of the two equations will be parallel lines. Another possibility is that all
solutions of one equation will also be solutions of the second. This means that the
two equations are equivalent, and one is a multiple of the other; an example is the
set of two equations x − 2y = 1 and 2x − 4y = 2. The two will have the same
graph.

In every other case, the two equations represent two lines that are not parallel.
From elementary geometry we know that non-parallel lines meet at exactly one point.
So there will be exactly one solution.
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The set of all solutions to a system of equations is its solution set. We have just
seen that the solution set can be empty, can be a one-element set, or can be infinite.
If the solution set is empty, the equations are called inconsistent, and otherwise they
are consistent. If the solution set is infinite, the equations are dependent; otherwise
consistent equations are independent.

Sample Problem 5.8. Find the solution sets of the following systems of equa-
tions, and sketch the corresponding graphs.

(i) 3x − 2y = 4, (ii) 2x − y = 1,

3x − 2y = −1; −4x + 2y = −2.

Solution. In case (i), 3x − 2y cannot equal both 4 and −1, so there are no so-
lutions, and the solution set is empty. In system (ii), whenever the first equation
is true, the second will be true also: each side of the second equation is (−2)

times the corresponding side of the first one. The solution set could be written
{(x, y) | 2x − y = 1 | x ∈ R} or {(x, 2x − 1) | x ∈ R}. The graphs are

Your Turn. Find the solution sets of the following systems of equations, and
sketch the corresponding graphs:

2x + 2y = 3, x − 2y = 1,

2x + 2y = 4; 2x − 4y = 2.

Solution by Elimination

Consider the system of equations

x + y = 8,

x − y = 4.
(5.1)

If x + y = 8 is true, then

x + y + c = 8 + c

will be true for any real quantity c. In particular,

x + y + (x − y) = 8 + (x − y), (5.2)
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whatever the values of x and y may be. Now suppose x and y form a solution of
(5.1). Then x − y = 4, so we could write 4 instead of (x − y) on either side of (5.2).
Let’s make this change on the right side only. We have

x + y + (x − y) = 8 + 4 = 12,

so 2x = 12 and x = 6. So any solution of (5.1) must have x = 6. Then (5.2) tells
us 6 − y = 4, so y = 6 − 4 = 2. The only possible solution is x = 6, y = 2. If
you check, you’ll see that these values make both equations in (5.1) true, so we have
solved the system.

The key to this method was the way the two terms y and −y eliminated each
other. For this reason we say we solved the equations by elimination, and say y was
eliminated. The technique is sometimes called the addition (or subtraction) method
because it can be described like this: we add the left-hand side of the second equa-
tion to the left-hand side of the first, and then add the right-hand side of the second
equation to the right-hand side of the first. Usually we simply say we add the second
equation to the first.

We could also have eliminated x. Starting from the first equation in (5.1), we
could write

x + y − (x − y) = 8 − (x − y),

so

x + y − x + y = 8 − 4 = 4,

2y = 4, y = 2, and we then deduce x = 6 from the original equations.

Sample Problem 5.9. Solve the following equations by elimination:

6x + 4y = 10,

5x − 2y = 3.

Solution. We would like to eliminate y from the first equation. The coefficient
of y in the second equation is 2, not 4. To get around this problem, we could
multiply both sides of the second equation by 2. This will not change the solution
set; we could multiply by any constant other than 0. In other words, we proceed
to solve the equations

6x + 4y = 10,

10x − 4y = 6.

Adding the equations, we find

16x = 16,
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so x = 1. Substituting this back into the second equation we get

5 · 1 − 2y = 3,

so y = 1, and the solution is (x, y) = (1, 1). We usually say we added
2·(equation 2) to (equation 1), and do not bother to write down the new set of
equations.

Your Turn. Solve the following equations by elimination:

4x + 3y = 11,

x − y = 1.

Sample Problem 5.10. Solve the following equations by elimination:

2x + 3y = 12,

3x − 2y = 5.

Solution. In order to eliminate y from the first equation, we multiply the second
equation by 3

2 , obtaining

9

2
x − 3y = 15

2

and add this to the first equation, getting

13

2
x = 39

2
,

x = 3;
substituting back we get 2y = 4, or y = 2.

Systems of Three or More Equations

These techniques can be applied to any number of equations in any number of vari-
ables. However, more variability occurs in dependent systems when there are more
than two equations.

Sample Problem 5.11. Solve the following equations by elimination:

3x + 2y − 2z = 5,

x − 3y + 3z = −2,

5x − 4y + 4z = 1.
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Solution. We eliminate x from the first and third equations. We add −3 times
the second equation to the first equation and −5 times the second equation to the
third equation; those two equations become

11y − 11z = 11,

11y − 11z = 11.

So we get two copies of the same equation. Its solution is y = 1 + z, where z can
be any real number. When we substitute this into the original second equation,
we get

x − 3(1 + z) + 3z = −2,

x − 3 = −2.

So x = 1, and the solution is

(x, y, z) ∈ {
(1, 1 + z, z) | z ∈ R

}
.

The following examples show two further possible forms of dependent solution.
Of course, a set of three equations can also be inconsistent (no solutions) or indepen-
dent (precisely one solution).

Sample Problem 5.12. Solve the following equations by elimination:

x + 2y + z = 8,

2x + y − z = 7,

3x − y − 4z = 3.

Solution. We eliminate z from the second and third equations by adding the
first equation to the second equation and 4 times the first equation to the third
equation; those two equations become

3x + 3y = 15,

7x + 7y = 35.

So we get x = 5 − y, where y can be any real number. When we substitute this
into the original first equation, we get

(5 − y) + 2y + z = 8,

y + z = 3.

So z = 3 − y, and the solution is

(x, y, z) ∈ {
(5 − y, y, 3 − y) | y ∈ R

}
.

Observe that we expressed both x and z in terms of the same variable, y.



224 5 Linear Equations and Matrices

Sample Problem 5.13. Solve the following equations by elimination:

2x + 4y − 6z = 6,

x + 2y − 3z = 3,

−3x − 6y + 9z = −9.

Solution. We eliminate x from the first and third equations. We add −2 times
the second equation to the first equation and 3 times the second equation to the
third equation; those two equations both give the form 0 = 0: both sides are com-
pletely eliminated. It follows that any x, y, and z satisfying the original second
equation will also satisfy the others. The solution is

(x, y, z) ∈ {
(3 − 2y + 3z, y, z) | y ∈ R, z ∈ R

}
.

Your Turn. Solve the following equations by elimination:

3x + 2y − z = 7,

x + y = 3,

2x − y − 3z = 0.

The same solution technique can be applied to the case where there are three
unknowns but only two equations. In this case, an independent solution is impossible.

Sample Problem 5.14. Solve the following equations by elimination:

2x + 3y + 2z = 4,

x + y − z = 2.

Solution. We eliminate z from the second equation by adding the first equation
to twice the second equation, obtaining

4x + 4y = 8.

We have x = 2 − y, where y can be any real number. Substituting this into the
original first equation yields

2(2 − y) + 3y + 2z = 4,

y + 2z = 0.

So z = − 1
2y, and the solution is

(x, y, z) ∈
{(

2 − y, y,−1

2
y

) ∣∣∣∣ y ∈ R

}
.

Your Turn. Solve the following equations by elimination:

x + 2y − z = 5,

2x − 3y − z = 3.
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Exercises 5.2 A

1. In each part, find the complete solution of the system of two linear equations, by
substitution.

(i) 2x + y = 12,

3x − y = 13;
(ii) x + 5y = 11,

x + 2y = 2;
(iii) 5x + 3y = 7,

3x − y = 0;
(iv) 3x − 4y = 4,

x + 2y = 3;
(v) 7x − 2y = 5,

12x − 4y = 4;
(vi) −2x + 5y = 4,

2x − 3y = −2;
(vii) 3x − y = 5,

4x − 2y = 6;
(viii)

1

2
x + 3y = −1,

3x − 2y = 2;

(ix) 5x + 3y = 8,

3x + y = 0;
(x) 2x + y = −1,

2x − y = −3.

2. In each of the parts of Exercise 1, find the complete solution of the system of
two linear equations by elimination.

3. In the following problems, say whether the equations are inconsistent, dependent
or independent. If they are consistent, write down the solution.

(i) 3x − 2y = 0,

6x − 4y = 9;
(ii) 4x − 5y = 0,

2x − 3y = −2;
(iii) 3x − 2y = 0,

2x + 6y = 11;
(iv) 4x + 2y = 1,

−2x + 3y = −1

2
;

(v) 4x − 2y = 8,

2x − y = 4;
(vi) 4x − 2y = 4,

−2x + y = −2;
(vii) 6x + 4y = 9,

3x + 2y = 4;
(viii) 3x + y = 30,

x + 2y = 12;
(ix) x + 2y = 5,

10x − y = 6;
(x) 10x − 16y = 2,

−15x + 24y = −3.

4. In the following problems, say whether the equations are inconsistent, dependent
or independent. If they are consistent, write down the solution.
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(i) x + y + z = 4,

2x − y + z = 3,

x + 2y + 3z = 4;

(ii) x + 4y − 3z = −24,

3x − y + 3z = 36,

x + y + 6z = 3;
(iii) x − y − z = 1,

x − 2y + 3z = 4,

3x − 2y − 7z = 0;

(iv) 2x − 2y − 3z = 6,

4x − 3y − 2z = 0,

2x − 3y − 7z = −1;
(v) 3x − 2y + 2z = 10,

x − 2y + 3z = 7,

2x + y + z = 4;

(vi) x − y − z = 1,

x − 2y + 3z = 4,

2x − y − 6z = −1;
(vii) x + y − z = −1,

2x − 2y − 3z = 5,

4x − 3y + 2z = 16;

(viii) x − y − z = 1,

2x + 3y + z = 2,

3x + 2y = 0;
(ix) x − y = 1,

2x − 3y + z = 6;
(x) 3x + y − 6z = 4,

2x − y + z = 1;
(xi) x − y + z = 20,

x + y + z = 10,

2x + y = 17;

(xii) 2x − 2y − z = 0,

2x − y + 2z = 4,

2x + 3y + z = 20;
(xiii) x + z = 2,

x + y = 0,

y + z = 2;

(xiv) x − 2y + 2z = 2,

2x − 3y + 3z = 2,

5x − 8y + 8z = 7.

Exercises 5.2 B

1. In each part, find the complete solution of the system of two linear equations, by
substitution.

(i) 3x − 2y = 10,

2x − 3y = 15;
(ii)

1

2
x + 3y = −2,

x − 2y = 8;

(iii) 7x + 4y = 2,

3x − 2y = 0;
(iv) 2x + y = −1,

2x − y = −3;
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(v) 5x + 3y = 4,

3x − y = 1;
(vi) 11x + 7y = 1,

−2x − 3y = 5;
(vii) 2x + 3y = 8,

−2x − 2y = −4;
(viii) 3x − 2y = 5,

2x + 3y = 12;
(ix) 5x + 7y = −1,

4x + 7y = 2;
(x) 3x − 5y = 0,

2x + 3y = 38

15
;

(xi) 3x + 2y = 10,

2x − 3y = −4;
(xii) 4x − 3y = 11,

2x + 2y = 16;
(xiii) 6x − 3y = 1,

8x + 5y = 7;
(xiv) 3x + 11y = 5,

5x + 15y = 10;
(xv) 2x + 2y = 12,

5x − 3y = 14;
(xvi) 2x + 3y = 2,

2x − y = −6.

2. In each of the parts of Exercise 1, find the complete solution of the system of
two linear equations by elimination.

3. In the following problems, say whether the equations are inconsistent, dependent
or independent. If they are consistent, write down the solution.

(i) 4x − 3y = 15,

2x + 5y = 1;
(ii) 2x − 3y = 1,

3x + 3y = 9;
(iii) 2x − 2y = 6,

3x − 3y = 7;
(iv) 3x − 4y = 0,

6x − 8y = 7;
(v) 7x − 4y = 2,

4x − 3y = −1;
(vi) 11x − 7y = 1,

3x + 3y = 15;
(vii) 6x + 4y = 8,

3x + 2y = 4;
(viii)

1

2
x − y = 0,

x + 1

2
y = 5;

(ix) 4x + 3y = 1,

−2x + 5y = −7;
(x) 10x − 14y = 2,

−15x + 21y = −3;
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(xi) 2x + 3y = 12,

x − 3y = −3;
(xii) x − y = 5,

x + y = 9;
(xiii) x − 2y = 3,

3x − 6y = 9;
(xiv) 4x − 6y = 0,

6x − 9y = 7;
(xv) 3x − 2y = 6,

x + 2y = 6;
(xvi) x + 2y = 5,

2x + 3y = 4.

4. In the following problems, say whether the equations are inconsistent, dependent
or independent. If they are consistent, write down the solution.

(i) x − z = 2,

x − 2y + z = −4,

2x + y − 3z = 7;

(ii) x + 2y − z = 6,

2x + 4y − 2z = 12,

2x + 7y + z = 24;
(iii) x + z = 2,

x + y = 0,

y + z = 0;

(iv) 3x − 2y + 2z = 2,

2x − 4y + 3z = 2,

5x + 2y = 4;
(v) x + 2y + z = 2,

3x + 6y + 3z = 6,

2x + 4y + 2z = 4;

(vi) x − y − z = 9,

x + y + 3z = −5;

(vii) 2x − 2y − z = 0,

2x − y + 2z = 2,

2x + 3y + z = 10;

(viii) 2x + y − z = 1,

4x + 2y + 2z = 0,

2x − y + z = 6;
(ix) 3x − y + 4z = 5,

x − 2y + 3z = 7,

2x + y + z = 4;

(x) x − 2y + 2z = 3,

2x − 4y + z = 3,

4x − 8y + 3z = 7;
(xi) 2x − y + z = 9,

x + y + z = 9,

x − y + z = 3;

(xii) x + y − z = 8,

x + 4y + z = 12,

x − 2y + z = −4;
(xiii) 4x − 4y + 2z = 10,

2x + y − z = −6,

6x − 7y + z = 12;

(xiv) 3x − 4y + 11z = 6,

2x − 5y + 12z = 4;
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(xv) x + y + 2z = 20,

x − y − 2z = 6,

x + y + z = 40;

(xvi) x + y + 2z = 4,

x + y − 2z = 0,

x + y + 3z = 5;
(xvii) x + 2y − z = 6,

2x + 4y + 2z = 8,

2x + 3y + z = 7;

(xviii) x + 2y + z = 4,

x + y + z = −4,

2x − 2y + 2z = 8;
(xix) x + y + z = 6,

x − y + 2z = 12,

2x + y + z = 1;

(xx) x − 2y + z = 3,

2x − 4y + 3z = 7.

5.3 Formal Solution of Systems of Equations

The Augmented Matrix

In this section, we formalize the process of solving a system of linear equations by
substitution. In order to talk about a system of m equations in n variables, we use
subscripts. We suppose the variables are x1, x2, . . . , xn, and suppose the ith equation
to be

ai1x1 + ai2x2 + · · · + ainxn = bi,

where a11, a12, . . . , amn, b1, . . . , bm are some constants.

We define the augmented matrix of a system to be the following array of num-
bers:

⎡

⎢⎢⎢
⎣

a11 a12 · · · a1n b1
a21 a22 · · · a2n b2
...

...
. . .

...
...

am1 am2 · · · amn bm

⎤

⎥⎥⎥
⎦

.

The vertical line indicates the division between the two types of element, the coeffi-
cients on the left and the constant terms on the right. The horizontal lists of numbers
are called rows and the vertical lists are called columns. The ith row corresponds to
the ith equation; the j th column corresponds to the j th variable when 1 ≤ j ≤ n,
while column n + 1 corresponds to the list of constant terms of the equations. The
number lying in the ith row and the j th column is called the (i, j) element of the
augmented matrix.

Augmented matrices are a special case of more general matrices, or rectangular
arrays of numbers, and we shall discuss the general case in the next section. Many of
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the ideas and notations will be repeated there, but you will find them to be consistent
with this section.

Sample Problem 5.15. Write down the augmented matrix of the system

2x + 4y − 4z = 4,

−2y + 4z = 6,

x − y + 4z = 10.

What is its (2, 3) element?

Solution.

⎡

⎣
2 4 −3 4
0 −2 4 6
1 −1 4 10

⎤

⎦ .

The (2, 3) element equals 4.

Your Turn. Write down the augmented matrix of the system

4x + 3y − 2z = 1,

3x − 2y + 4z = 6,

2x − 3y + 2z = 8.

What is its (2, 2) element?

The first step in solving a set of equations is to select a variable to eliminate. This
is equivalent to choosing a column in the augmented matrix and selecting a row—an
equation—to use for substitution. We say that we are operating on the element in
that row and column. The only requirement is that the matrix has a non-zero entry in
that row and column.

To illustrate this, consider the system in Sample Problem 5.15. Let us choose
row 3, column 1, representing variable x in the first equation. It will be convenient
to interchange rows 1 and 3, so that we are operating on the (1, 1) entry. This is
equivalent to rewriting the equations in a different order. The matrix is now

⎡

⎣
1 −1 4 10
0 −2 4 6
2 4 −3 4

⎤

⎦
R1 ← R3,

R3 ← R1,

where the annotations mean the new row 1 is the old row 3 and the new row 3 is the
old row 1.

Now substitute for x in the other equations. No action is required in the second
equation, but x must be eliminated from the third. So we subtract twice the first
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row from the third row. This yields precisely the equation we would get if we used
equation 1 to substitute for x in equation 3, but for consistency we have kept all the
variables on the left-hand side of the equation. The augmented matrix becomes

⎡

⎣
1 −1 4 10
0 −2 4 6
0 6 −11 −16

⎤

⎦
R3 ← R3 − 2R1,

where the legend means the new row 3 is (the old row 3) −2(the old row 1). (When
we say old we are referring to the preceding augmented matrix, not to the original
one.)

Now multiply row 2 by − 1
2 . Then eliminate the 6y from the third equation. The

result is
⎡

⎣
1 −1 4 10
0 1 −2 −3
0 0 1 2

⎤

⎦ R2 ← 1
2R2,

R3 ← R3 − 6( 1
2R2).

This could have been broken into two steps.

So far we have done the equivalent of substituting in the later equations. Now we
substitute back to find the values. We know from the third equation that z = 3. To
substitute this in the earlier equations, we add twice row 3 to row 2 and subtract four
times row 3 from row 1:

⎡

⎣
1 −1 0 2
0 1 0 1
0 0 1 2

⎤

⎦
R1 ← R1 − 4R3,

R2 ← R2 + 2R3.

Next add row 2 to row 1:
⎡

⎣
1 0 0 3
0 1 0 1
0 0 1 2

⎤

⎦
R1 ← R1 + R2.

The resulting array can be translated into the equations

x = 3, y = 1, z = 2.

Elementary Operations

In our example, we used three operations:

E1: exchange two rows of the matrix;

E2: multiply a row by a (non-zero) constant;

E3: add a multiple of one row to another row.
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We shall call these the elementary row operations. Their importance comes from the
following fact:

Theorem 17. Suppose P is the augmented matrix of a system of linear equations,
and Q is obtained from P by a sequence of elementary row operations. Then the
system of equations corresponding to Q has the same solutions as the system corre-
sponding to P .

It is clear that repeated application of the three elementary operations to the aug-
mented matrix will provide a solution. So we can solve systems of linear equations
by the following technique.

Stage 1.

1. Find the leftmost column in the matrix of coefficients that contains a non-zero
element, say column j . Use E1 to make the row containing this element into the first
row, and E2 to convert its leftmost non-zero element to 1. This is called a leading 1.
Then use E3 to change all entries below the leading 1 to zero. That is, if the (i, j)

entry is aij , then subtract aij · (row 1) from row j .

At this stage we say column j is processed. Processed columns are not disturbed
in the first stage.

2. Find the leftmost unprocessed column in the augmented matrix that contains a
non-zero element, say column k. Use E1 to make this row the first row under the
processed row(s), and E2 to convert its leftmost non-zero element to 1, another lead-
ing 1. Use E3 to change all entries below the leading 1 to zero (but do not change the
processed row or rows). Now column k is also processed.

3. If you have not either reached the last column of coefficients (the vertical line) or
the bottom of the matrix, go back to step 2, make another leading 1 and proceed from
there.

Stage 2.

4. Choose the bottom-most leading 1 and eliminate all elements above it in its column
by use of E3. Do the same to the next leading 1 up, then the next, until you reach the
top.

The process is now finished.

Sample Problem 5.16. Solve the system

2x + 2y + 4z = 0,

3x − y + 2z = 1,

8x + 8z = 2

by row operations.
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Solution. The augmented matrix is
⎡

⎣
2 2 4 0
3 −1 2 1
8 0 8 2

⎤

⎦ .

At step 1, we choose the element in the (1, 1) position and divide row 1 by 2:
⎡

⎣
1 1 2 0
3 −1 2 1
8 0 8 2

⎤

⎦
R1 ← 1

2R1 (using E2).

Then we eliminate the rest of column 1:⎡

⎣
1 1 2 0
0 −4 −4 1
0 −8 −8 2

⎤

⎦ R2 ← R2 − 3 × R1 (using E3),
R3 ← R3 − 8 × R1 (using E3).

In step 2, we choose the (2, 2) position and divide by −4, then eliminate the
entries below the (2, 2) position, obtaining successively

⎡

⎣
1 1 2 0
0 1 1 − 1

4
0 −8 −8 2

⎤

⎦ R2 ← − 1
4 × R2 (using E2),

⎡

⎣
1 1 2 0
0 1 1 − 1

4
0 0 0 0

⎤

⎦
R3 ← R3 + 8 × R2 (using E3).

There are no further numbers available for leading 1’s, so we move to step 4. We
use the (2, 2) element:

⎡

⎣
1 0 1 1

4
0 1 1 − 1

4
0 0 0 0

⎤

⎦
R1 ← R1 − R2 (using E3).

The process is finished. There is no restriction on z. The final augmented matrix
converts to the system

x + z = 1

4
,

y + z = −1

4
(the third equation can be ignored), and the final solution could be expressed as

x = 1

4
− z, y = −1

4
− z, any real number z.

Notice that the sequence of calculations is completely determined by the matrix
of coefficients, the left-hand part of the augmented matrix.

If the column corresponding to a variable receives a leading 1, we shall call that
variable dependent; the others are independent. One standard way of recording the
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answer is to give an equation for each dependent variable, with a constant and the
independent variables on the right; the independent variables take any real number
value. Another way to express the above solution would be to use set notation { 1

4 −z,

− 1
4 − z, z) | z ∈ R}, or perhaps {t + 1

4 , t,− 1
4 ,−t) | t ∈ R}. In this case, t is called

a parameter.

Sometimes there will be no solution to a system of equations. The equations are
then called inconsistent.

Sample Problem 5.17. Solve the system

2x + 2y + 4z = 0,

3x − y + 2z = 1,

8x + 8z = 3.

Solution. The augmented matrix is
⎡

⎣
2 2 4 0
3 −1 2 1
8 0 8 3

⎤

⎦ .

The left-hand part of this equation is the same as in Sample Problem 5.16, so
we go through the same steps, making the appropriate changes to the right-hand
column. At the end of Stage 1, we have

⎡

⎣
1 1 2 0
0 1 1 − 1

4
0 0 0 1

⎤

⎦ .

When we convert back to equations, the third row gives the equation

0 = 1,

which is impossible. No values of x, y and z make this true, so the equations are
inconsistent. There is no need to implement Stage 2.

In set-theoretic terms, we could report that the solution set is ∅.

Exercises 5.3 A

1. In each case, the augmented matrix of a system of equations is shown. Assuming
the variables are x, y, z, what is the solution of the system?

(i)

⎡

⎣
1 0 0 3
0 1 0 1
0 0 0 0

⎤

⎦; (ii)

⎡

⎣
1 0 1 2
0 1 −1 1
0 0 0 0

⎤

⎦;
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(iii)

⎡

⎣
1 0 1 2
0 1 2 1
0 0 0 2

⎤

⎦; (iv)

⎡

⎣
1 0 1 2
0 1 1 1
0 0 0 1

⎤

⎦;

(v)

⎡

⎣
1 0 0 2
0 1 0 2
0 0 0 1

⎤

⎦; (vi)

⎡

⎣
1 0 0 2
0 1 0 2
0 0 0 0

⎤

⎦;

(vii)

⎡

⎣
1 1 1 4

−1 2 1 −1
3 2 4 6

⎤

⎦; (viii)

⎡

⎣
4 3 1 11
2 −2 4 2
1 3 −2 5

⎤

⎦;

(ix)

⎡

⎣
1 0 2 2
0 1 −1 1
0 0 0 2

⎤

⎦; (x)

⎡

⎣
1 0 2 2
0 1 2 1
0 0 1 1

⎤

⎦.

2. Solve the following systems of equations:

(i) 2x + 6y = 6,

4x + 11y = 10;
(ii) 2x + 3y = 5,

4x + 6y = 10;

(iii) 3x − y = 4,

6x − 2y = 2;
(iv) x − 2y = 4,

−3x − 4y = −2,

2x + 3y = 1.

3. Solve the following systems of equations:

(i) x + 2y + z = 3,

x + y − 2z = 2;
(ii) 2x + 2z = 2,

x + 2y + 6z = 3,

2x − 2y = 1;

(iii) x + 2y + z = −1,

2x + 3y − 2z = 7,

−2x + 2y − 3z = −2;

(iv) x + y = 2,

x − y + 5z = 3,

−3x − 3y + 2z = −6.

4. Solve the following systems of equations:

(i) 3x − 2y − 8z + 7t = 1,

x + y − z − t = 3,

x − y − 3z + 3t = −1;

(ii) x + 2y + 3z + 4t = 8,

x − 3y + 4z + 4t = 8,

2x − 2y − z + t = −3,

x − 7y − 7z − 3t = −11.

Exercises 5.3 B

1. In each case, the augmented matrix of a system of equations is shown. Assuming
the variables are x, y, z, what is the solution of the system?
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(i)

⎡

⎣
1 0 0 −1
0 1 0 −1
0 0 1 −1

⎤

⎦; (ii)

⎡

⎣
1 0 0 3
0 1 0 1
0 0 1 2

⎤

⎦;

(iii)

⎡

⎣
1 0 0 4
0 1 0 1
0 0 1 1

⎤

⎦; (iv)

⎡

⎣
1 0 0 2
0 0 1 1
0 0 0 0

⎤

⎦;

(v)

⎡

⎢⎢
⎣

1 1 0 2
0 0 1 −1
0 0 0 0
0 0 0 0

⎤

⎥⎥
⎦; (vi)

⎡

⎢⎢
⎣

1 0 0 2
0 1 0 1
0 0 1 1
0 0 0 1

⎤

⎥⎥
⎦;

(vii)

⎡

⎣
1 1 1 3

−1 1 1 1
1 2 3 6

⎤

⎦; (viii)

⎡

⎣
2 1 1 5
2 −1 3 3
4 1 3 9

⎤

⎦;

(ix)

⎡

⎣
4 2 −3 1
3 −1 −1 1
1 −7 3 1

⎤

⎦; (x)

⎡

⎣
0 1 −1 −1
1 0 1 1
1 2 −1 0

⎤

⎦;

(xi)

⎡

⎣
2 −1 1 −2
3 2 3 8
1 −1 −1 0

⎤

⎦; (xii)

⎡

⎣
2 3 1 −1
1 2 1 0
3 2 −1 −4

⎤

⎦.

2. Solve the following systems of equations:

(i) 3x − 2y = 4,

−6x + 4y = 2;
(ii) x − y = 3,

2x + y = 3;

(iii) 3x − 2y = −1,

−6x + 4y = 2;
(iv) 3x + 2y = 4,

2x + 3y = 1,

5x − 4y = 14;

(v) x + 3y = 5,

2x + 5y = 9;
(vi) 2x + y = 4,

4x + 2y = 8;

(vii) 2x − y = 4,

4x − 2y = 7;
(viii) x + 3y = 4,

2x − 4y = −2,

3x + 5y = 8.

3. Solve the following systems of equations:

(i) x + y + 3z = 2,

4x + 2y + 2z = 10;
(ii) x + y + z = 3,

x + 2y + 2z = 3,

x + y + 2z = 1;
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(iii) x + z = 4,

x + 4y + z = 7,

x − 2y + z = 3;

(iv) x + y − z = 4,

3x + 4y − 7z = 8,

−y + 4z = 4;

(v) 2x + 4z = 6,

2x + y + 5z = 7,

x − y + z = 2;

(vi) x + 2y + 3z = 4,

4x + 5y + 6z = 16,

7x + 8y + 9z = 28.

4. Solve the following systems of equations:

(i) x + y + z = 3,

x + 3y + 2z = 3,

3x + 2y + 4z = 3;

(ii) x − 3z = 2,

x + 2y + z = 2,

x + 4y − z = 2;

(iii) x − 6y − 2z = 1,

2x + 3y − z = 3,

3x + 2y − 2z = 4;

(iv) x + 2y + z = 5,

2x − 3y + 2z = 3;

(v) 2x + y + 3z + t = 4,

x + 3y − 2z + 2t = 5,

3x − 3y + 13z − t = 3;

(vi) x − 2y + z − t = 1,

2x − 4y + 3z − 4t = 2,

x − 3y + 3t = −2.

5. Solve the following systems of equations:

(i) 2x − y + z − 3t = 2,

−4x − 3y + t = 1,

2x − 6y + 3z − 8t = 4;

(ii) 2x + 2y − 2z + 3t = 2,

4x − 2y − z + t = −4,

6x − 3z + 4t = −2,

2x + 8y − 5z + 8t = 10.

5.4 Pivoting

Dependent and Independent Variables

For convenience, we repeat the list of elementary row operations from the preceding
section:

E1: exchange two rows of the matrix;

E2: multiply a row by a (non-zero) constant;

E3: add a multiple of one row to another row.
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In Sample Problem 5.16, we solved the equations

2x + 2y + 4z = 0,

3x − y + 2z = 1,

8x + 8z = 2.

The final augmented matrix was
⎡

⎢
⎣

1 0 1 1
4

0 1 1 − 1
4

0 0 0 0

⎤

⎥
⎦ ,

so the solution was the set of all (x, y, z) satisfying

x = 1

4
− z,

y = −1

4
− z,

z = any real number.

The variables x and y correspond to columns that contain a leading 1, so those
variables are called dependent; the other variable z is called independent. The reason
for this terminology is the way in which the solution is expressed. If a value is chosen
for the variable z, then the corresponding values of x and y can be calculated, and in
ordinary conversation we might say that the values of x and y depend on the value
of z. We shall call this a solution in terms of z.

Suppose we wish to express the solutions to Sample Problem 5.16 in terms of
variable y. We want to rewrite the solution with x and z the dependent variables and
y independent. To do this, we select the row containing the leading 1 corresponding
to y, and manipulate the matrix so that the z entry in that column becomes a leading 1.
In the example, this is the (2, 3) entry. We subtract row 2 from row 1, obtaining

⎡

⎣
1 −1 1 1

2
0 1 1 − 1

4
0 0 0 0

⎤

⎦ R1 ← R1 − R2 (using E3).

This process is called pivoting. The cell that we chose to make into a leading 1,
cell (2, 3), is the pivot position, and the entry there is the pivot element. Row 2 and
column 3 are called the pivot row and pivot column, respectively.

Suppose the variables are x1, x2, . . . , xn; suppose xk is a dependent variable
whose leading 1 is in row i. If the (i, j) entry of the final augmented matrix is non-
zero, it is possible to pivot on that entry. The first step is to divide row i by that
(i, j) entry (an instance of E2). Then subtract suitable multiples of row i from every
other row, so that column j has zeros in all positions except row i (using E3). In the
resulting matrix, xk is independent and xj is now dependent.
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Sample Problem 5.18. Solve the equations

2x + 2y + z + 7t = 13,

−x + 2y − 2z + 2t = 3,

x − y + 3z − 2t = 3.

Express the solutions in four ways, with t , x, y, z, respectively, as independent
variables.

Solution. We reduce the augmented matrix as usual:
⎡

⎣
3 2 1 7 13

−1 2 −2 2 3
1 −1 3 −2 3

⎤

⎦ ,

⎡

⎣
0 5 −8 13 4
0 1 1 0 6
1 −1 3 −2 3

⎤

⎦ R1 ← R1 − 3R3 (using E3),
R2 ← R2 + 3R3 (using E3),

⎡

⎣
0 0 −13 13 −26
0 1 1 0 6
1 0 4 −2 9

⎤

⎦
R1 ← R1 − 5R2 (using E3),

R3 ← R3 + R2 (using E3),
⎡

⎣
0 0 1 −1 2
0 1 0 1 4
1 0 0 2 1

⎤

⎦
R1 ← − 1

13R1 (using E2),
R2 ← R2 + 1

13R1 (using E3),

R3 ← R3 + 4
13R1 (using E3).

So the solution (in terms of t) is

x = 1 − 2t,

y = 4 − t,

z = 1 + t,

with t any real number.

To solve in terms of x, pivot on position (1, 4):
⎡

⎢
⎢
⎣

1
2 0 0 1 1

2

− 1
2 1 0 0 9

2
1
2 0 1 0 3

2

⎤

⎥
⎥
⎦

y = 9
2 + 1

2x,

z = 3
2 − 1

2x,

t = 1
2 − 1

2x.

To solve in terms of y, pivot on position (2, 4):
⎡

⎣
1 −2 0 0 −7
0 1 0 1 4
0 1 1 0 5

⎤

⎦
x = −7 + 2y,

z = 5 − y,

t = 4 − y.

To solve in terms of z, pivot on position (3, 4):
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⎡

⎣
1 0 2 0 3
0 1 1 0 5
0 0 −1 1 −1

⎤

⎦
x = 3 − 2z,

y = 5 − z,

t = −1 + z.

Your Turn. Solve the equations

2x − 3y − z − 2t = 1,

x + 2y − 2z + t = 1,

x − y + z + t = 4.

Express the solutions in four ways, with t , x, y, z, respectively, as independent
variables.

Even in a case where there is one independent variable, it is not always to pivot
in every way. To see this, consider the equations

x + 2y + 2z = 12,

2x − y + 4z = 4.

The analysis proceeds
[

1 2 2 12
2 −1 4 4

]
,

[
1 2 2 12
0 −5 0 −20

]

R2 ← R2 − 2R1 (using E3),
[

1 0 2 4
0 1 0 4

]
R1 ← R1 + 2

5R2 (using E3),
R2 ← − 1

5R2 (using E2),

yielding

x = 4 − 2z,

y = 4.

We can pivot on the (1, 3) cell, obtaining
[

1 0 2 4
0 1 0 4

]
y = 4,

z = 2 − 1
2x,

but we cannot pivot on the (2, 3) entry because it is 0. The solution cannot be ex-
pressed with y as the independent variable.

Exercises 5.4 A

1. In each case, the augmented matrix of a system of equations is shown. Assume
the variables are x, y, z. Express the solution in three ways:

(a) With x and y dependent variables, z independent;

(b) With x and z dependent variables, y independent;

(c) With y and z dependent variables, x independent.
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(i)

[
1 0 −1 1
0 1 −1 1

]
; (ii)

[
1 0 −1 1
0 1 −2 2

]
;

(iii)

[
1 0 1 2
0 1 −2 1

]
; (iv)

[
1 0 3 1
0 1 1 −1

]
.

2. The augmented matrix of a system of equations is shown. Assume the variables
are x, y, z, t . Express the solution in six ways, with two variables in terms of the
other two.

[
1 3 2 0 2
0 1 1 1 1

]
.

3. In each case solve the equations; express the solutions in three ways:

(a) With x and y dependent variables, z independent;

(b) With x and z dependent variables, y independent;

(c) With y and z dependent variables, x independent.

(i)
x + z = 3,

x + y + 2z = 2,

2x − y + z = 7;
(ii) 2x + 2y + 8z = 16,

3x − 2y + 2z = 4,

x + 3y + 8z = 16.

Exercises 5.4 B

1. In each case, the augmented matrix of a system of equations is shown. Assume
the variables are x, y, z. Express the solution in three ways:

(a) With x and y dependent variables, z independent;

(b) With x and z dependent variables, y independent;

(c) With y and z dependent variables, x independent.

(i)

[
1 0 1 1
0 1 −1 2

]
; (ii)

[
1 0 −1 2
0 1 4 6

]
;

(iii)

[
1 0 3 6
0 1 −2 6

]
; (iv)

[
1 0 −2 4
0 1 2 4

]
.
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2. The augmented matrix of a system of equations is shown. Assume the variables
are x, y, z, t . Express the solution in six ways, with two variables in terms of the
other two.

[
1 0 1 2 1
0 1 2 1 2

]
.

3. In each case solve the equations; express the solutions in three ways:

(a) With x and y dependent variables, z independent;

(b) With x and z dependent variables, y independent;

(c) With y and z dependent variables, x independent.

(i) x + 2y − 3z = 5,

2x − y − z = 0,

2x + y − 3z = 4;

(ii) 2x + y = 10,

x + 2y − 3z = 11,

3x − y + 5z = 5.

4. In each part, solve the equations and express the solutions in four ways, with t ,
x, y, z, respectively, as independent variables.

(i) 2x + y − z + t = 5,

x − 2y + z + 6t = −4,

2x − y − 2z + t = 2.

(ii) 2x + y + z + 3t = 9,

3x − 2y + 3z − 4t = 1,

x + 2y + 2z + 3t = 12.

5. Consider the system of equations

2x + y − z + t = 3,

x − 2y − 3z + 3t = −1,

3x + 2y − z + t = 5.

Express the solution in five ways, with two variables in terms of the other two,
but show that there is no solution with independent variables x and y.
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5.5 Matrices and Vectors

Matrices

Suppose a movie theater sells three types of tickets—Adult (A), Student concession
(S), and Child (C). The theater charges more after 6PM, so tickets may also be clas-
sified as Day (D) or Evening (E). If 43 Adult, 33 Student and 18 Child tickets are
sold for the afternoon session, and 78 Adult, 45 Student and 12 Child tickets are sold
in the evening, the day’s ticket sales could be represented by the following table:

M =
A S C

D 43 33 18
E 78 45 12

A rectangular array of data like this is called a matrix. We shall usually denote
matrices by single upper-case letters. In general, matrices can be used whenever the
data is classified in two ways, such as ticket types (A, S, C) and session times (D, E).
The horizontal layers are called rows and the vertical ones columns; for example, the
first row in the above matrix M is

43 33 18

and the second column is

33
45

Sample Problem 5.19. A furniture manufacturer makes tables and chairs. In
January, he made 200 tables and 850 chairs; in February, 300 tables and
1440 chairs; in March, 140 tables and 880 chairs. Represent these data in a
matrix.

Solution. Write T for tables, C for chairs.

T C
Jan 200 850
Feb 300 1440
Mar 140 880

Your Turn. In April, Joe’s Autos sold 32 sedans and 16 pickups. In May, they
sold 44 sedans and 12 pickups. Represent the two months’ sales in a matrix.

The numbers in a matrix are called its entries. Sometimes there are restrictions
on the sort of numbers that may be used; for example, one can consider only integer
matrices or non-negative matrices. When this is done, the set of numbers that may
be used are called the scalars for the problem, and for this reason the word “scalar”
is often used to refer to properties involving only numbers.
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The augmented matrices we saw in the preceding section were one special ex-
ample. The rows represent the different equations and the columns represent the
variables, except the last column, which represents the constant terms.

Suppose a matrix has m rows and n columns. Then we say it is an m × n matrix.
We refer to m × n as the shape or size of the matrix, and the two numbers m and n

are its dimensions. The above matrix representing ticket sales is a 2 × 3 matrix.

It is convenient to refer to the entry in the ith row and j th column of a matrix
as the (i, j) element (or entry). The (1, 2) element of M is 33. When there is no
confusion possible, we would write mij to denote the (i, j) element of a matrix M ,
using the lower-case letter corresponding to the (upper-case) name of the matrix, with
the row and column numbers as subscripts. A common shorthand is M = [mij ]. (All
of this is consistent with the notations for augmented matrices.)

Sample Problem 5.20. What is the shape of the matrix
⎡

⎣
1 0 0 −2

−1 1 4 1
1 3 0 2

⎤

⎦?

Write down its second row and its third column.

Solution. The matrix has shape 3 × 4. Its second row is

−1 1 4 1 ,

and its third column is

0
4
0

.

Your Turn. What is the shape of the matrix
⎡

⎢⎢
⎣

1 3 2
2 0 −2

−1 4 6
1 −2 2

⎤

⎥⎥
⎦?

Write down its third row and its first column.

Sample Problem 5.21. Suppose
[

x 3
−1 2

]
=

[
4 x + y

−1 2

]
.

What are x and y?
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Solution. Two matrices are equal if and only if the corresponding entries are
equal. So we have the two equations x = 4 and 3 = x + y. So x = 4 and
y = −1.

Your Turn. Suppose
[

2x 2
1 4

]
=

[
y x

1 4

]
.

What are x and y?

Adding Matrices

Continuing the movie theater example, let’s say the above figures represent sales for
Monday. Tuesday’s sales are given by

T =
A S C

D 38 23 16
E 118 75 14

If the manager wants to know the total number of Adult evening tickets sold over
the two days, she simply adds the numbers for Monday and Tuesday. That is, she
finds m21 + t21. In the example, she gets 78 + 118 = 196. Let us call this sum s21. In
the same way she could add the entries in the other positions, and produce a matrix
S which we shall call the sum of M and T :

S = M + T

=
[

43 33 18
78 45 12

]
+

[
38 23 16
118 75 14

]

=
[

81 56 34
196 120 26

]
.

In general, if M and T are two matrices with the same shape, the sum of two
matrices M = [mij ] and T = [tij ] is the matrix S = [sij ] defined by

sij = mij + tij .

We shall not define M + T if M and T are of different shapes.

It is possible to take the sum of a matrix with itself, and we write 2M for M +M ,
3M for M + M + M , and so on. This can be extended to multipliers other than
positive integers: if a is any number, aM will mean the matrix derived from M by
multiplying every entry by a. That is,

aM is the matrix with (i, j) entry amij .

We refer to aM as the scalar product (or simply product) of a with M . It has the
same shape as M .
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It is easy to see that this addition satisfies the commutative and associative laws:
if M , T , and W are any matrices of the same size, then

M + T = T + M and (M + T ) + W = M + (T + W).

Because of the associative law, we usually omit the brackets and just write M +
T + W . The scalar product also obeys the laws

(a + b)M = aM + bM, a(bM) = (ab)M, a(M + T ) = aM + aT

for any matrices M and T and any numbers a and b. Notice also that 1M = M is
always true.

We write Omn for a matrix of shape m × n with every entry zero. Usually, we
do not bother to write the subscripts m and n, but simply assume that the matrix is
the correct size for our computations. O is called a zero matrix, and works like the
number zero: if M is any matrix, then

M + O = M,

provided O has the same shape as M .

It is clear that 0M = O for any matrix M (where 0 is the number zero and O is
the zero matrix). From the first law for scalar multiplication above, we see that

M + (−1)M = 1M + (−1)M = (
1 + (−1)

)
M = 0M = O,

so (−1)M acts like a negation of M . We shall simply write −M instead of (−1)M ,
and call −M the negative of M . We can then define subtraction by

M − T = M + (−T ),

just as you would expect.

Sample Problem 5.22. Suppose A,B, and C are the matrices

A =
[

1 3
−1 2

]
, B =

[−2 0
1 4

]
, C =

[−1 4 3
−1 −2 −1

]
.

Find A + B, 2A − 3B, 3A + C,−C.

Solution.
A + B =

[−1 3
0 6

]
, 2A − 3B =

[−4 6
−5 −8

]
,

−C =
[

1 −4 −3
1 2 1

]
.

3A + C is not defined, as A and C are of different sizes.

Your Turn. Calculate −A, 3A − B,B + C.
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Sample Problem 5.23. Suppose the movie theater manager expects sales to be
10% higher next week, when the new release is shown. What sales does she expect
next Monday?

Solution. The sales for this Monday were shown in the matrix M . She expects
10% higher, or 1.1 times as many sales. So her expected matrix of sales is

1.1M = 1.1

[
43 33 18
78 45 12

]
=

[
47.3 36.3 19.8
85.8 46.5 13.2

]
.

Of course, she would round to whole numbers, say
[

47 36 20
86 47 13

]
.

Transposition

If A is an m × n matrix, then we can form an n × m matrix whose (i, j) entry equals
the (j, i) entry of A. This new matrix is called the transpose of A, and written AT .
A matrix A is called symmetric if A = AT .

Sample Problem 5.24. What is the transpose of the matrix

M =
[

1 2
1 −1

]
?

Solution.

MT =
[

1 1
2 −1

]
.

Your Turn. What is the transpose of the matrix

B =
[

2 3
2 1

]
?

Vectors

A matrix with one of its dimensions equal to 1 is called a vector. An m × 1 matrix is
a column vector of length m, while a 1 × n matrix is a row vector of length n. The
individual rows and columns of a matrix are vectors, which we call the row vectors
and column vectors of the matrix.

We shall write vectors with boldface lower case letters to distinguish them from
matrices and numbers. (We treat vectors separately from matrices because, in many
cases, it is not necessary to distinguish between row and column vectors.) In some
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books, a vector is denoted by a lower case letter with an arrow over it, −→v , rather than
a boldface letter v.

It is usual to denote the ith entry of a vector by subscript i. The vector v has
entries v1, v2, . . ., and we usually write v = (v1, v2, . . .).

The two standard operations on vectors follow directly from the matrix opera-
tions. One may multiply by a number, and one may add vectors. If k is any number,
and v = (v1, v2, . . . , vn), then kv = (kv1, kv2, . . . , kvn). If u = (u1, u2, . . . , un),
and v = (v1, v2, . . . , vn), then u + v = ((u1 + v1), (u2 + v2), . . . , (un + vn)). If
u and v are vectors of different lengths, then u + v is not defined. We again write
−v for (−1)v, so −v = (−v1,−v2, . . . ,−vn), and u − v = u + (−v). We define a
zero vector 0 = (0, 0, . . . , 0) (in fact, a family of zero vectors, one for each possible
dimension), and v + (−v) = 0.

Sample Problem 5.25. Calculate 3(1,−1, 3) and (2, 2) + (−1, 3).

Solution. 3(1,−1, 3) = (3,−3, 9); (2, 2) + (−1, 3) = (1, 5).

Your Turn. Calculate 4(2, 0,−1) + (1, 4,−3).

Sometimes there is no important difference between the vector v of length n, the
1 × n matrix (row vector) whose entries are the entries of v, and the n × 1 matrix
(column vector) whose entries are the entries of v. But in the next section, we shall
sometimes need to know whether a vector has been written as a row or a column. If
this is important, we shall write row(v) for the row vector form of v, and col(v) for
the column vector form. If we simply write v, you usually can tell from the context
whether row(v) or col(v) is intended.

Sample Problem 5.26. If v = (1, 2, 3), what are row(v) and col(v)?

Solution.

row(v) = [
1 2 3

]
, col(v) =

⎡

⎣
1
2
3

⎤

⎦ .

Exercises 5.5 A

1. A psychologist has clients who receive individual attention (I) and others who
are seen in group sessions (G). She has four private individual clients (P) and six
who are sent to her by the court (C). Among her groups are 24 private and 12
court clients. Represent these data in a matrix.
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2. A farmer needs to monitor the amounts of vitamins A, B, and C in his chickens’
diet. He buys two prepared food mixes. Each bag of food I contains 200 units
of vitamin A, 100 units of vitamin B, and 250 units of vitamin C. Each bag of
food II contains 250 units of vitamin A, 150 units of vitamin B, and 350 units of
vitamin C.

(i) Represent the data in a matrix.

(ii) If he mixes two bags of food I with three bags of food II, how many units of
each vitamin will there be in the combination?

3. Carry out the following matrix computations.

(i)

[
4 −1

−2 0

]
+

[
3 −1

−1 2

]
;

(ii) 3

[
10 −1
2 7

]
− 2

[
1 −1

−1 1

]
;

(iii) 2

[
6 −1 3
2 4 1

]
+ 3

[
1 −1 4
2 1 −5

]
;

(iv) 3

[−1 −1
3 1

]T

.

4. Suppose
[

x −1
−1 2

]
=

[
y + 1 −1
−1 x

]
.

What are the values of x and y?

5. Find x, y, and z so that
[

x − 2 3 z

y x 2y

]
=

[
y z 3
3z y + 2 6z

]
.

6. Carry out the following vector computations:

(i) −(2,−2); (ii) 3(3, 6, 1);

(iii) 3(2, 3) − 2(1, 4); (iv) 2(−1,−1, 2) − 2(2,−1,−1);

(v) 3(1,−2, 2) + 2(2, 3,−1); (vi) 2(4,−1, 2, 3) − 3(1, 6,−2,−3).

7. Suppose

A =
[

1 1
−2 −1

]
, B =

[
0 1

−2 4

]
, C =

[
3
2

]
,

D =
[

1 2
−2 0

]
, E =

[
1 4
3 −2

]
, F =

[
2
4

]
.

Calculate the following, or say why they do not exist:
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(i) 2A − D; (ii) C − 4F ;

(iii) A + 2B − E; (iv) C − D;

(v) C − A; (vi) 2D + E − 3B.

Exercises 5.5 B

1. An experimenter has 40 albino rats (A) and 64 regular rats (R). In each category,
half the rats are in the control group (C) and half in the experimental group (E).
Construct a matrix that shows the number of rats in each combination of category
and group.

2. An investor has both certificates of deposit (CDs) and municipal bonds (MBs)
at two banks, First National (FN) and Twentyfirst Century (TC). On January 1st,
2003 she had $20000 in CDs at each bank, $30000 in MBs at FN and $10000 in
MBs at TC.

(i) Represent the data in a matrix.

(ii) Assume she receives 5% annual interest on each account. Construct a ma-
trix that shows how much interest she received on each account in 2003.

(iii) She puts all her interest into the account where it was earned. Construct a
matrix that shows how much money she has in the various bank accounts
on January 1st, 2004.

3. This week, a pet sitter has 12 clients with dogs and 14 with cats. Last week,
she had 11 clients with dogs and seven with cats. How many clients with dogs,
and how many with cats, did she have over the two weeks? Write down a vector
equation that shows how you calculated the answer.

4. Trains travel between the four cities: Allentown (A), Baxter (B), Carterville (C),
and Dromney (D). The distance from Allentown to Baxter is 24 miles, from
Allentown to Carterville 17 miles, and from Allentown to Dromney 18 miles.
From Baxter to Carterville is 14 miles, from Baxter to Dromney is 17 miles, and
from Carterville to Dromney is 12 miles.

(i) Represent these distances in a matrix.

(ii) The railways charge $2 for trips of 12 miles or shorter, $3 for 13 to 20 miles,
and $4 for 21 to 35. Write down a matrix that shows the fares between the
four towns. (Write 0 for the “fare” from a town to itself.)

5. Carry out the following matrix computations:

(i) 3

[
1 −1 −1

−2 0 10

]
;

(ii)

[
3 1
2 0

]
−

[−3 0
1 4

]
;

(iii) 3

[
6 1

−2 3

]
+ 2

[
4 2
1 −1

]
;
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(iv) 2

[−1 −1 −2
3 2 −1

]
− 3

[
1 1 −1
2 3 −2

]
;

(v) 2

⎡

⎣
2 −1
1 −1

−1 1

⎤

⎦ − 3

⎡

⎣
2 1
2 −1

−3 0

⎤

⎦ ;

(vi) 5

⎡

⎣
2 −1

−3 −2
−2 1

⎤

⎦ + 4

⎡

⎣
2 3
3 4

−1 0

⎤

⎦ ;

(vii) 3

⎡

⎣
2 −1
4 2

−2 1

⎤

⎦ − 2

⎡

⎣
2 3
1 −1

−1 0

⎤

⎦ ;

(viii) 2

⎡

⎣
2 −1
1 2
2 2

⎤

⎦

T

−
[

2 −1 1
2 −2 2

]
.

6. In each case find x, y, and z so that the equation is true, or show that no such
values exist:

(i)

[
x + y y + z

4 2x − 1

]

=
[

z + x x + y

2x 3

]

;

(ii)

[
x y + 2 x

5 y z

]

=
[

y + 1 z x

x + y x − 1 2y

]

;

(iii)

[
x y + z

4 2y

]

=
[

2 x + y

4 x + z

]

.

7. Carry out the following vector computations:

(i) 4(2,−2); (ii) 2(5, 1,−1);

(iii) (2, 3) + (1, 4); (iv) (1, 0, 3) + 3(4, 4, 4);

(v) 3(−1, 2, 3) + 2(1, 1,−1); (vi) 3(1, 0, 1, 0) − 4(2, 0,−1,−1).

8. Carry out the following vector computations:

(i) 3(2,−1); (ii) −4(−1, 1,−2);

(iii) (1,−1) + 3(2, 2); (iv) (3, 4, 3) − 2(1,−1, 4);

(v) (2, 4, 1) + 2(2, 1,−1); (vi) (1, 3, 3) − 4(1, 1,−1);

(vii) 3(−1, 2, 3) + 2(1, 1,−1); (viii) 2(1, 3, 2, 1) − 3(1, 1,−1,−1).
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9. Suppose

A =
[

1 −1
−2 3

]
, B =

[
0 −1
2 4

]
, C =

[
6
2

]
,

D =
[

3 3
−2 0

]
, E =

[
1 −1
1 0

]
, F =

[
2

−1

]
.

Calculate the following, or say why they do not exist:

(i) 2A + B; (ii) C + D + E; (iii) A + D − E;

(iv) 3C − 2F ; (v) C − 3F ; (vi) 3A − 3A.

10. Suppose

A =
[

1 1
−2 2

]
, B =

[
1 0
2 −1

]
, C =

[
3
2

]
,

D =
[

3 1
0 −1

]
, E =

[
1 1

−1 3

]
, F =

[
0
1

]
.

Calculate the following, or say why they do not exist:

(i) A + B; (ii) C − D + 2E; (iii) A − 2D + E;

(iv) 2C + F ; (v) 2C + 3F ; (vi) 2A − B − D.

5.6 Vector and Matrix Products

Lines and the Dot Product

The equation of a straight line in coordinate geometry has the form

ax + by = c,

where a, b, and c are numbers and x, y are the usual variables. The equation involves
two vectors, the vector (a, b) of coefficients and the vector (x, y) of variables. For
this reason it is natural to associate ax + by with the two vectors (a, b) and (x, y).

We define the dot product (also called the scalar product) of two vectors u =
(u1, u2, . . . , un) and v = (v1, v2, . . . , vn) to be

u · v = (u1v1 + u2v2 + · · · + unvn) =
n∑

k=1

ukvk.

In this notation, a typical straight line in two-dimensional geometry has an equation
of the form
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a · x = c,

where a is some vector of two real numbers, x is the vector of variables (x, y), and c

is a constant. If a and x are of length three, then a · x = c could be the equation of a
plane in three-dimensional space.

Sample Problem 5.27. Suppose t = (1, 2, 3), u = (−1, 3, 0) and v = (2,−2, 2).
Calculate u · v, (t − u) · v, and 3(v · t).

Solution. u · v = −2 − 6 + 0 = −8; (t − u) · v = (2,−1, 3) · (2,−2, 2) =
4 + 2 + 6 = 12; 3(v · t) = 3·4 = 12.

Your Turn. Calculate u · t and (2u − 3v) · t.

It is not hard to see that the dot product is commutative. There is no need to dis-
cuss the associative law because dot products involving three vectors are not defined.
For example, consider t · (u · v). Since (u · v) is a scalar, not a vector, we cannot
calculate its dot product with anything.

As an example of the dot product, suppose a movie theater charges $7 for adults,
$5 for students, and $3 for children. There are 25 adults, 22 students, and 13 children
in the theater. The total paid was 25 · $7, for the adults, 22 · $5, for the students, and
13 · $3, for the children. The total is 25 · $7 + 22 · $5 + 13 · $3, or $324. Let us define
two vectors, u = (25, 22, 13), the vector of attendees, and v = (7, 5, 3), the vector
of charges. The amount paid was $ u · v.

Another important example: the dot product can be used to sum the elements of
a vector. The number in attendance at the theater was 25 + 22 + 13, the sum of the
entries in u. This could be written as

(1, 1, 1) · v = 25 + 22 + 13 = 60.

Matrix Product

We define the product of two matrices as a generalization of the scalar product of
vectors. Suppose the rows of the matrix A are a1, a2, . . . , and the columns of the
matrix B are b1, b2, . . . . Then AB is the matrix with (i, j) entry ai ·bj . These entries
will only exist if the number of columns of A equals the number of rows of A, so this
is a necessary condition for the product AB to exist.

Sample Problem 5.28. Suppose

A =
[

1 2
1 −1

]
, B =

[−1 1
2 0

]
.

Find AB and BA.
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Solution. First, we find AB. The rows of A are a1 = (1, 2) and a2 = (1,−1).
The columns of B are b1 = (−1, 2) and b2 = (1, 0). (Since we are treating them
as vectors, it doesn’t matter whether we write them as row or column vectors.)
Then a1 ·b1 = −1+4 = 3, and similarly a1 ·b2 = 1, a2 ·b1 = −3, and a2 ·b2 = 1.
So

AB =
[

a1 · b1 a1 · b2
a2 · b1 a2 · b2

]
=

[
3 1

−3 1

]
.

Similarly we find

BA =
[

0 −3
2 4

]
.

The entries in AB will only exist if the number of columns in A equals the num-
ber of rows in B. For example, if A were 3 × 2 and B were 4 × 4, the product would
not exist. In general, we can say the following.

Theorem 18. Suppose A is an m × n matrix and B is an r × s matrix. If n = r , then
AB exists and is an m × s matrix. If n �= r , then AB does not exist.

If A were 2 × 3 and B were 3 × 4, then AB would be a 2 × 4 matrix but BA

would not exist. It is also possible that AB and BA might both exist but might be of
different shapes; for example, if A and B have shapes 2 × 3 and 3 × 2, respectively,
then AB is 2 × 2 and BA is 3 × 3. And we observe from the preceding example that,
even when AB and BA both exist and are the same shape, they need not be equal.
There is no commutative law for matrix multiplication.

Matrices and Linear Equations

The dot product of vectors gives us a way of writing linear equations. For example,
the equation

3x − 4y + 2z = 3

can be written

(3,−4, 2) · (x, y, z) = 3.

The system of two equations

3x − 4y + 2z = 3,

2x + 2y − 3z = 2

can be written as the pair of vector equations

(3,−4, 2) · (x, y, z) = 3,

(2, 2,−3) · (x, y, z) = 2.
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But this is exactly the same as the matrix equation

[
3 −4 2
2 2 −3

] ⎡

⎣
x

y

z

⎤

⎦ =
[

3
2

]
.

In the same way, any system of linear equations can be expressed in the form
matrix × column vector = column vector.

Sample Problem 5.29. Express the following sets of equations in matrix form.
(They come from Sample Problem 5.8.)

3x − 2y = 4, 2x − y = 1,

3x − 2y = −1; −4x + 2y = −2.

Solution.
[

3 −2
3 −2

] [
x

y

]
=

[
4

−1

]
,

[
2 −1

−4 2

] [
x

y

]
=

[
1

−2

]
.

Your Turn. Express the following sets of equations in matrix form. (They are
from Your Turn problem 5.8.)

2x + 2y = 3, x − 2y = 1,

2x + 2y = 4; 2x − 4y = 2.

There are many cases where the matrix form of a system of equations is more
appropriate. To illustrate this, we return (again!) to the movie theater manager. Recall
that the theater charges $7 for adults, $5 for students, and $3 for children. When
25 adults, 22 students, and 13 children attended, the total paid was

(25, 22, 13) · (7, 5, 3).

Now suppose you have the ticket sales for a second session: say 41 adults, 12 stu-
dents, and 11 children, sales total

(41, 12, 11) · (7, 5, 3).

These two pieces of information can be put into a single matrix form:

r =
[

25 22 13
41 12 11

] ⎡

⎣
7
5
3

⎤

⎦

is a column vector whose successive entries are the receipts for the successive ses-
sions. Finally, we can calculate the total by adding the elements of r. In other words,
we calculate

(1, 1) · r.

This notation can be expanded by adding further rows as further sessions are
held.
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Sample Problem 5.30. A department store sells men’s shirts, pants, and jackets
in its menswear department. The profit from a shirt is $6, from pants $12, and
from a jacket $20. Write down a matrix model to calculate the total profit for
three months, if during month i the department sells si shirts, pi pants, and ji

jackets.

Solution.

[
1 1 1

]
⎡

⎣
s1 p1 j1
s2 p2 j2
s3 p3 j3

⎤

⎦

⎡

⎣
6

12
20

⎤

⎦ .

Your Turn. A repair shop does welding, panelbeating, and painting. The profit
from an hour of welding is $15, from an hour of panelbeating $18, and from an
hour of painting $20. Write down a matrix model to calculate the total profit for
four weeks, if during week i the department does wi hours of welding, bi hours
of panelbeating, and pi hours of painting.

Zero and Identity Elements

The zero matrix behaves under multiplication the way you would expect: provided
zero matrices of appropriate size are used,

OA = O and AO = O.

This is not just one rule, but an infinite set of rules. If we write in the subscripts, then
the full statement is

If A is any r × s matrix, then Om,rA = Om,s for any positive integer m, and
AOs,n = Or,n for any positive integer n.

There are also matrices that act like the number 1: multiplicative identity ele-
ments. We define In to be the n × n matrix with its (1, 1), (2, 2), . . . , (n, n) entries
1 and all other entries 0. For example,

I3 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ .

If A is any r × s matrix, then IrA = A = AIs.

We call In an identity matrix of order n.

Commutativity

The commutative law does not hold for matrices in general. Even if AB and BA are
both defined and are the same size, it is possible for the two products to be different
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(see Sample Problem 5.28, above). On the other hand, some pairs of matrices have
the same product in either order. If AB = BA we say that A and B commute, or A

commutes with B. For example, any 3 × 3 matrix commutes with I3. There are many
other examples.

Sample Problem 5.31. Show that the following matrices commute.

A =
[

1 −2
1 −1

]
, B =

[
1 2

−1 3

]
.

Solution.

AB = BA =
[

3 −4
2 −1

]
.

Your Turn. Show that the following matrices commute.

C =
[

3 1
−1 1

]
, D =

[
2 1

−1 0

]
.

Suppose A has shape m × n and B is r × s. If both AB and BA exist, then
necessarily n = r and m = s; then AB is m × m and BA is n × n. In order for A

and B to commute, we must have m = n. Both A and B must have the same number
of rows as columns. Such a matrix is called square, and the common dimension is
called its order.

If A is square, we can evaluate the product AA. We call this A squared, and write
it as A2, just as with powers of numbers. We define other positive integer powers
similarly: A3 = AAA = AA2, and in general An+1 = AAn.

Exercises 5.6 A

1. Carry out the following vector calculations:

(i) (1,−1) · (2, 3);

(ii) (1, 3, 3) · (1, 0,−2);

(iii) (1,−1,−2) · (3, 2,−1);

(iv) (−1, 2,−1, 3) · (2, 4,−3,−1);

(v) (1,−1, 3, 1) · (−2,−1, 1, 4);

(vi) (1,−1, 3, 2) · (2,−2,−1, 1).

2. A is a 2 × 4 matrix; B is 2 × 4; C is 1 × 3; D is 4 × 2; E is 3 × 4; F is 4 × 3;
G is 4 × 4. Say whether the indicated matrix exists. If it does exist, what is its
shape?
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(i) 2A − B; (ii) AD; (iii) CF ;

(iv) CFT ; (v) DA; (vi) BFE;

(vii) FF ; (viii) CEF ; (ix) AGF .

3. Carry out the following matrix computations:

(i)

[
2 0 1
3 −1 1

] ⎡

⎣
2 −1
1 −1

−1 1

⎤

⎦;

(ii)

⎡

⎣
2 −1
1 0
2 3

⎤

⎦
[

1 0
2 1

]
;

(iii)

⎡

⎣
2 −1 3
0 1 3
1 1 0

⎤

⎦

⎡

⎣
1
4
1

⎤

⎦;

(iv)

⎡

⎣
1 −1

−1 1
−1 3

⎤

⎦
[

1 0 −1
2 1 1

]
;

(v)

[
2 −1
2 2

] [
4 −2

−1 3

]
.

4. In this exercise,

A =
[

1 −1
−2 3

]
, B =

[
3 0 −1

−1 4 4

]
, C =

[
6
2

]
,

D =
⎡

⎣
−1 1 −1
1 3 3

−2 2 0

⎤

⎦ , E =
⎡

⎣
1 −1
1 0
2 2

⎤

⎦ , F =
⎡

⎣
2

−1
2

⎤

⎦ ,

G = [
2 1 −1

]
, H = [

2 2
]
, K = [−1 2

]
.

Carry out the matrix computations, or explain why they are impossible:
(i) BF ; (ii) AC;

(iii) CF ; (iv) BG;

(v) GD; (vi) EK + KB.

5. Suppose the first quarter’s menswear sales, in the department store of Sample
Problem 5.30, are as shown. In each case, use matrices to calculate the profit for
the quarter.

(i)

Shirts Pants Jackets
January 150 50 20
February 130 40 40
March 140 50 15
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(ii)

Shirts Pants Jackets
January 60 30 12
February 15 20 10
March 35 20 25

6. In each case, find the products AB and BA. Do the two matrices commute?

(i) A =
[

0 1
2 3

]
, B =

[
1 2

−1 1

]
;

(ii) A =
[

2 0
1 −1

]
, B =

[−2 4
3 2

]
;

(iii) A =
[

3 1
−1 3

]
, B =

[
1 3

−3 1

]
.

7. The matrix A is given. Find A2 and A3.

(i)

[
1 1

−1 1

]
; (ii)

[−1 −1
−1 −1

]
;

(iii)

⎡

⎣
2 0 3
0 3 −1

−1 −1 1

⎤

⎦; (iv)

⎡

⎣
3 0 −1
1 1 1
2 0 −1

⎤

⎦.

8. Consider the matrix

A =
[

1 1
−1 2

]
.

(i) Find A2 and A3.

(ii) Evaluate A3 + A2 − 3A.

(iii) Show that A2 − 3A + 3I = O.

Exercises 5.6 B

1. Carry out the following vector calculations:
(i) (2, 3) · (1,−1); (ii) (1, 3) · (2,−1);

(iii) (2, 1,−1) · (3, 0, 1); (iv) (1, 1,−1) · (2, 0, 3);

(v) (4, 2, 1) · (1, 2, 4); (vi) (2, 2,−1) · (2,−2,−3);

(vii) (0, 1, 0, 1) · (3,−1, 2, 2); (viii) (0, 2, 1, 1) · (3, 4, 2, 1);

(ix) (3,−1, 3, 2) · (−1,−1, 2, 1); (x) (1,−2, 5, 2) · (2, 2, 3, 1).



260 5 Linear Equations and Matrices

2. A is a 2 × 4 matrix; B is 2 × 4; C is 1 × 3; D is 4 × 2; E is 3 × 4; F is 4 × 3;
G is 4 × 4. Say whether the indicated matrix exists. If it does exist, what is its
shape?

(i) A + B; (ii) CE; (iii) D(A + B);

(iv) FT ; (v) 2FC; (vi) AD + DA;

(vii) GG; (viii) DA + 3G; (ix) CFE.

3. A is a 2 × 4 matrix; B is 3 × 4; C is 1 × 3; D is 4 × 2; E is 3 × 4; F is 4 × 2;
G is 4 × 4. Say whether the indicated matrix exists. If it does exist, what is its
shape?

(i) A + F ; (ii) AF ; (iii) A + FT ;

(iv) AFT ; (v) FC; (vi) ADA;

(vii) (B + E)F ; (viii) AGF ; (ix) AGE.

4. Carry out the following matrix computations:

(i)

[
3 −1
2 0

] [
4 −2

−3 1

]
;

(ii)

[
3 −1
2 0

]T [
4 −2

−3 1

]
;

(iii)

[
3 −4
3 0

] [
6 −2

−7 4

]
;

(iv)

⎡

⎣
2 −1
1 −1

−1 1

⎤

⎦
[

2 0 1
3 −1 1

]
;

(v)

⎡

⎣
1 −1
1 2

−3 1

⎤

⎦
[

1 0 2
3 1 1

]
;

(vi)

⎡

⎣
2 1 −1
1 −1 2

−1 2 −1

⎤

⎦
[

1 0 2
1 1 −1

]T

.

5. In this exercise,

A =
[

1 −1
2 1

]
, B =

[
2 0 −1

−1 2 1

]
, C =

[
4
2

]
,

D =
⎡

⎣
−1 1 −1
1 1 −3

−2 2 0

⎤

⎦ , E =
⎡

⎣
1 −1

−1 0
1 1

⎤

⎦ , F =
⎡

⎣
2
3
2

⎤

⎦ ,

G = [
2 −1 −1

]
, H = [

1 1
]
, K = [

3 2
]
.

Carry out the matrix computations, or explain why they are impossible:
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(i) BD; (ii) EF ;

(iii) D − EB; (iv) KB;

(v) CET ; (vi) BKT + AHT .

6. A manufacturer sells three products: hard drives, zip drives and flash drives. The
number that were sold in its US and Canada markets in April were given by the
following matrix M .

Hard Zip Flash
USA 5000 1000 9000
Canada 1000 300 2000

Prices, in dollars, for the three products are

S =
⎡

⎣
150
100
50

⎤

⎦ ,

respectively, while the manufacturing costs are

T =
⎡

⎣
100
70
30

⎤

⎦ .

(i) Calculate the matrix quantities MS, MT , and M(S − T ).

(ii) Interpret the matrix quantities MS, MT , and M(S − T ).

(iii) What was the total profit in April?

7. An automobile dealership sells three models of new cars. The profit from a sale
is $1200 per economy sedan, $2000 per family sedan, and $2200 per coupe.
Write down a matrix product that gives the profit for the first three months of
the year, given that the dealership sells ei economy sedans, fi family sedans,
and ci coupes in month i. Use the product to calculate the profit in the following
cases:

(i)

Economy Family Coupe
January 15 8 2
February 11 14 4
March 14 6 3

(ii)

Economy Family Coupe
January 25 8 2
February 10 8 5
March 5 11 7
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8. In each case, find the products AB and BA. Do the two matrices commute?

(i) A =
[

1 −1
1 1

]
, B =

[
2 1

−1 2

]
;

(ii) A =
[

1 2
3 4

]
, B =

[
4 3
2 1

]
;

(iii) A =
[

1 1
−2 1

]
, B =

[
4 −5
10 4

]
;

(iv) A =
[

1 1
3 −2

]
, B =

[
2 −3
1 1

]
;

(v) A =
⎡

⎣
2 2 2
0 1 0
2 1 2

⎤

⎦ , B =
⎡

⎣
2 2 2
0 −1 0
2 3 2

⎤

⎦ ;

(vi) A =
⎡

⎣
3 1 −2
1 2 −1

−1 −1 3

⎤

⎦ , B =
⎡

⎣
2 0 1

−1 3 0
0 1 2

⎤

⎦ .

9. The matrix A is given. Find A2 and A3.

(i)

[
2 −1

−1 0

]
; (ii)

[
1 3

−1 1

]
;

(iii)

[
1 −1

−2 1

]
; (iv)

[
2 1
3 2

]
;

(v)

⎡

⎣
1 0 1
1 1 0
0 1 1

⎤

⎦; (vi)

⎡

⎣
1 −1 1

−1 1 1
1 1 −1

⎤

⎦;

(vii)

⎡

⎣
1 2 1
0 −1 1
0 0 −2

⎤

⎦; (viii)

⎡

⎣
1 4 0
0 1 3
1 0 −1

⎤

⎦.

10. Consider the matrix

A =
[

1 3
5 3

]
.

(i) Find A2 and A3.

(ii) Evaluate A3 − 2A − I .

(iii) Show that A2 − 4A − 12I = O.

11. A and B are any two matrices such that AB exists. Prove that BT AT exists, and
that

BT AT = (AB)T .
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5.7 Inverses

If the matrices A and B satisfy AB = BA = I , we say that B is an inverse of A.

Which matrices have inverses? In the real numbers, everything but 0 has an in-
verse. In the integers, only 1 and −1 have integer inverses, but we know that we
can obtain inverses of other non-zero integers by going to the rational numbers. The
situation is more complicated for matrices.

Suppose A is an r × c matrix. Then AB has r rows and BA has c columns. If
the two are to be equal, then AB is an r × c matrix; and if this is to equal an identity
matrix, it must be square. So r = c, and A is also a square matrix. Only a square
matrix can have an inverse.

Moreover, there are non-zero square matrices without inverses. Even if we re-
strict our attention to the 2 × 2 case, there are examples.

Sample Problem 5.32. Show that the matrix

A =
[

2 1
2 1

]

has no inverse.

Solution. Suppose A has inverse

B =
[

x y

z t

]
.

Then AB = I , so
[

2 1
2 1

] [
x y

z t

]
=

[
2x + z 2y + t

2x + z 2y + t

]
=

[
1 0
0 1

]
.

The (1, 1) entries of the two matrices must be equal, so 2x +z = 1; but the (2, 1)

entries must also be equal, so 2x + z = 0. This is impossible.

Your Turn. Show that the matrices

C =
[

1 0
0 0

]
and D =

[
0 1
0 0

]

have no inverses.

A matrix that has an inverse will be called invertible or non-singular; a square
matrix without an inverse is called singular.

We used the phrase “an inverse” above. However, we shall show that, if a matrix
has an inverse, it is unique. We normally write it as A−1, just as with numbers, but
the notation 1

A
is never used for matrices.
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Theorem 19. If matrices A,B,C satisfy AB = BA = I and AC = CA = I , then
B = C.

Proof. Suppose A,B and C satisfy the given equations. Then

C = CI = C(AB) = (CA)B = IB = B

so B and C are equal. �
In fact, it can be shown that either of the conditions AB = I or BA = I is

enough to determine that B is the inverse of A. However, this requires more algebra
than we shall cover in this book.

Sample Problem 5.33. Suppose

A =
[

3 2
4 3

]
, B =

[
2 1
1 1

]
.

What is the inverse of A if it exists?

Solution. Suppose the inverse is

C =
[

x z

y t

]
.

Then AC = I means
[

3 2
4 3

] [
x z

y t

]
=

[
1 0
0 1

]

which is equivalent to the four equations

3x + 2y = 1, 3z + 2t = 0,

4x + 3y = 0, 4z + 3t = 1.

The left-hand pair of equations is easily solved to give x = 3 and y = −4, while
the right-hand pair give z = −2 and t = 3. So the inverse exists, and is

A−1 = C =
[

3 −2
−4 3

]
.

Your Turn. What is the inverse of B if it exists?

The above procedure can be used to invert square matrices of any order; if there
is no inverse, then the equations will have no solution. We shall now show how to
reduce the number of computations required.
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Calculating the Inverse

The inverse of a square matrix can be calculated by the algorithm used for solving
equations. Suppose A is an n × n matrix with inverse B. Write b1, b2, . . . , bn for
the columns of B, and write u1, u2, . . . , un for the columns of the identity matrix of
order n. Consider the equation AB = I . Column j of the left-hand side is Abj . So
the equation is equivalent to the set of n systems

Ab1 = u1, Ab2 = u2, . . . , Abn = un.

If all these systems have solutions, then the inverse is formed by putting the solution
vectors next to each other in order. If any system has no solution, there is no inverse.

To solve Abj = uj , we reduce the augmented matrix [A | uj ] to reduced row
echelon form. The same steps will produce this result, no matter what vector is on
the right-hand side. It follows that we can carry out the reduction simultaneously for
all n systems of equations. So we have the following technique for inverting an n×n

matrix A.

Row reduce the matrix [A | In]. If the resulting matrix has form [In | B]
then A is invertible, and B is A−1. Otherwise, A is singular.

It follows from this that if a matrix has a row with every entry zero, it must
be singular. This is also true if the matrix has a column with every entry zero. For
example, if A has every entry of its first column zero, then BA has every element zero
in its first column for any choice of B, so the equation A−1A = I cannot possibly
be true—it must fail in the (1, 1) position.

Sample Problem 5.34. For the following matrices, find the inverse or show that
the matrix is singular:

A =
⎡

⎣
1 2 −1
0 −2 1
1 1 −1

⎤

⎦ , B =
⎡

⎣
2 3 2
3 −1 2
1 7 2

⎤

⎦ .

Solution. For A, we have
⎡

⎣
1 2 −1 1 0 0
0 −2 1 0 1 0
1 1 −1 0 0 1

⎤

⎦

⇒
⎡

⎣
1 2 −1 1 0 0
0 −2 1 0 1 0
0 −1 0 −1 0 1

⎤

⎦ ⇒
⎡

⎣
1 2 −1 1 0 0
0 1 0 1 0 −1
0 −2 1 0 1 0

⎤

⎦

⇒
⎡

⎣
1 0 −1 −1 0 2
0 1 0 1 0 −1
0 0 1 2 1 −2

⎤

⎦ ⇒
⎡

⎣
1 0 0 1 1 0
0 1 0 1 0 −1
0 0 1 2 1 −2

⎤

⎦ .
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So A has inverse
⎡

⎣
1 1 0
1 0 −1
2 1 −2

⎤

⎦ .

For B, we get
⎡

⎣
2 3 2 1 0 0
3 −1 2 0 1 0
1 7 2 0 0 1

⎤

⎦

⇒
⎡

⎣
1 7 2 0 0 1
2 3 2 0 1 0
3 −1 2 1 0 0

⎤

⎦ ⇒
⎡

⎣
1 7 2 0 0 1
0 −11 −2 0 1 −2
0 −22 −4 1 0 −3

⎤

⎦

⇒
⎡

⎣
1 7 2 0 0 1
0 −11 −2 0 1 −2
0 0 0 1 −2 1

⎤

⎦

and the zero row on the left tells us that B is singular.

Your Turn. In the above calculations, identify the steps that have been taken at
each stage. (For example, for A, the first step was R3 ← R3 − R1.)

This method can be used to get a general solution for the inverse of a 2×2 matrix.

Theorem 20. The matrix

A =
[

a b

c d

]

is singular if ad − bc = 0. Otherwise it is invertible, with inverse

1

(ad − bc)

[
d −b

−c a

]
. (5.3)

Proof. If a = c = 0, then ad −bc = 0. Moreover A has a zero column, so as we saw
it has no inverse. So we need only consider cases where a, c, or both are non-zero.

First, suppose a and c are both non-zero. The inverse procedure is
[

a b 1 0
c d 0 1

]

⇒
[

ac bc c 0
ac ad 0 a

]
R1 ← cR1,

R2 ← aR2,

⇒
[

ac bc c 0
0 ad − bc −c a

]

R2 ← R2 − R1,

⇒
[

ac 0 (1 + bc
ad−bc

)c − abc
ad−bc

0 ad − bc −c a

]
R1 ← R1 − bc

ad−bc
R2.
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If ad − bc = 0, then we are finished and there is no inverse. Otherwise, notice that

1 + bc

ad − bc
= ad − bc + bc

ad − bc
= ad

ad − bc
,

so we have
[

ac 0 acd
ad−bc

− abc
ad−bc

0 ad − bc −c a

]

⇒
[

1 0 d
ad−bc

− b
ad−bc

0 1 − c
ad−bc

a
ad−bc

]
R1 ← 1

ac
R1,

R1 ← 1
ad−bc

R2

as required.

If a �= 0 and c = 0 the calculations are simpler. We obtain the inverse
[

1
a

− b
ad

0 1
d

]

and this is the form taken by (5.3) when c = 0.

The case where a = 0, c �= 0 is similar to the latter case. �

The Determinant

The number ad −bc is called the determinant of the matrix A, written det(A). Deter-
minants may be defined for square matrices of any order, and it is a general theorem
that a matrix is invertible if and only if its determinant is non-zero. However, we
need only consider the 2 × 2 case.

Sample Problem 5.35. Find the determinants of the following matrices and use
them to find their inverses, if possible:

A =
[

3 1
2 2

]
, B =

[
2 −2

−1 1

]
.

Solution. det(A) = 3·2 − 1·2 = 4, so

A−1 = 1

4

[
2 −1

−2 3

]
=

[
1
2 − 1

4

− 1
2

3
4

]

.

det(B) = 2·1 − (−2)·(−1) = 0, so B has no inverse.

Your Turn. Repeat for

C =
[

1 1
3 4

]
, D =

[
2 4
1 2

]
.



268 5 Linear Equations and Matrices

Exercises 5.7 A

1. Show that the given matrices are inverses:

(i)

[
3
2 −1
0 1

]
and

[
2
3

2
3

0 1

]
;

(ii)

[
2 −3

−1 2

]
and

[
2 3
1 2

]
.

2. Find matrices A and B such that

(i) A

[
3 2
2 1

]
=

[
1 3
2 −1

]
;

(ii) B

[
2 1
3 2

]
=

[
1 −1
1 4

]
.

3. Use row reduction either to find the inverse of the given matrix or to show that
the matrix is singular:

(i)

[
2 −2
4 0

]
; (ii)

[
3 7
2 5

]
;

(iii)

[
4 2
2 1

]
;

(iv)

⎡

⎣
0 0 1
0 1 0
1 0 1

⎤

⎦;

(v)

⎡

⎣
2 3 2
1 2 2
3 1 3

⎤

⎦; (vi)

⎡

⎣
0 1 1
5 1 −2
2 −3 −3

⎤

⎦;

(vii)

⎡

⎣
1 3 3
1 4 3
1 3 4

⎤

⎦; (viii)

⎡

⎣
1 1 −1

−2 −1 7
3 2 −8

⎤

⎦.

4. Find the determinant of the matrix, and use it to invert the matrix or show that it
is singular:

(i)

[
7 4
2 3

]
; (ii)

[−2 2
2 3

]
;

(iii)

[
4 2
8 4

]
; (iv)

[
3 2
1 1

]
.

Exercises 5.7 B

1. Show that the given matrices are inverses:

(i)

[
2 5
1 3

]
and

[
3 −5

−1 2

]
;



5.7 Inverses 269

(ii)

[
1
2 −1
1 −1

]
and

[−2 2
−2 1

]
.

2. Find matrices A, B, and C such that

(i) A

[
1 −1
3 1

]
=

[
5 −1
2 2

]
;

(ii) B

[−1 2
−2 2

]
=

[
1 2

−3 2

]
;

(iii)

[
3 1
1 −2

]
C =

[
7 3
0 1

]
.

3. Use row reduction either to find the inverse of the given matrix or to show that
the matrix is singular:

(i)

[
2 −2
3 −3

]
; (ii)

[
1 1
1 0.5

]
;

(iii)

[
3 1

−4 −2

]
;

(iv)

⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦;

(v)

[
4 3
1 1

]
; (vi)

[
3 2
2 1

]
;

(vii)

[
3 −1

−6 2

]
; (viii)

[
2 3
2 4

]
;

(ix)

⎡

⎣
9 8 7
6 5 4
3 2 1

⎤

⎦; (x)

⎡

⎣
1 −2 3
3 5 1
6 4 2

⎤

⎦;

(xi)

⎡

⎣
2 3 −1
4 2 3
2 7 −6

⎤

⎦; (xii)

⎡

⎣
1 0 2
2 −1 3
4 1 8

⎤

⎦;

(xiii)

⎡

⎣
1 2 3
2 5 1
3 7 4

⎤

⎦; (xiv)

⎡

⎣
1 2 3
2 5 5
3 8 8

⎤

⎦;

(xv)

⎡

⎣
3 2 2
4 2 3
5 4 3

⎤

⎦; (xvi)

⎡

⎣
1 2 1

−3 −5 −3
1 3 2

⎤

⎦;

(xvii)

⎡

⎣
1 1 1
3 1 −1
1 1 2

⎤

⎦; (xviii)

⎡

⎣
1 2 −2
3 2 2
3 1 4

⎤

⎦;
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(xix)

⎡

⎣
1 1 1
0 1 1
2 2 3

⎤

⎦; (xx)

⎡

⎣
5 2 1
4 2 −1
3 1 3

⎤

⎦.

4. Find the determinant of the matrix, and use it to invert the matrix or show that it
is singular:

(i)

[
6 4
3 2

]
; (ii)

[
3 5
1 4

]
;

(iii)

[
3 2

−1 1

]
; (iv)

[
6 4
7 5

]
;

(v)

[−1 −3
1 2

]
; (vi)

[
2 5
1 4

]
;

(vii)

[
3 6

−2 −4

]
; (viii)

[
3 −4
2 −3

]
;

(ix)

[
7 3
5 2

]
; (x)

[
6 −2

−11 4

]
.

5.8 More About Inverses

Some Properties of Inverses

As we said, the usual notation for the inverse of A (if it exists) is A−1. If we define
A0 = I whenever A is square, then powers of matrices satisfy the usual index laws

AmAn = Am+n,
(
Am

)n = Amn

for all non-negative integers m and n, and for negative values also provided that A−1

exists. If x and y are non-zero reals, then (xy)−1 = x−1y−1. The fact that matrices
do not necessarily commute means that we have to be a little more careful, and prove
the following small theorem.

Theorem 21. If A and B are invertible matrices of the same order, then AB is in-
vertible, and

(AB)−1 = B−1A−1.

Proof. We need to show that both (B−1A−1)(AB) and (AB)(B−1A−1) equal the
identity. But (B−1A−1)(AB) = B−1(A−1A)B = B−1IB = B−1B = I =
AA−1 = AIA−1 = A(BB−1)A−1 = (AB)(B−1A−1). �
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There are two cancellation laws for matrix multiplication. If A is an invertible
r × r matrix and B and C are r × s matrices such that AB = AC, then

AB = AC ⇒ A−1(AB) = A−1(AC)

⇒ (A−1A)B = (A−1A)C ⇒ IB = IC ⇒ B = C,

so B = C. Similarly, if A is an invertible s ×s matrix and B and C are r ×s matrices
such that BA = CA, then B = C.

The requirement that A be invertible is necessary. We can find matrices A,B,
and C such that AB and AC are the same size, A is non-zero and AB = AC, but B

and C are different. One very easy example is
[

1 0
0 0

] [
1 −1
2 3

]
=

[
1 0
0 0

] [
1 −1
1 4

]
.

Some other examples are given in the exercises.

Moreover, we can only cancel on one side of an equation; we cannot mix the
two sides. Even if A is invertible it is possible that AB = CA but B �= C (see the
exercises for examples of this, also).

Linear Systems and Inverses

Consider the system of equations Ax = b, where A is an invertible matrix. Multiply-
ing by A−1, x = A−1Ax = A−1b, so the equations have the unique solution A−1b.
This could be used to solve the equations. This technique is not usually helpful in
practical situations because the process of finding the inverse takes at least as long
as solving the equations, but it is useful when there are several sets of equations with
the same left-hand sides, or when the inverse is already known. It is also important
in theoretical studies.

Sample Problem 5.36. Solve the systems:

x + 2y − z = 3, x + 2y − z = −1,

−2y + z = 1, −2y + z = −2,

x + y − z = 0; x + y − z = 2.

Solution. We saw in Sample Problem 5.34 that the matrix of coefficients has
inverse

⎡

⎣
1 1 0
1 0 −1
2 1 −2

⎤

⎦ .
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Now
⎡

⎣
1 1 0
1 0 −1
2 1 −2

⎤

⎦

⎡

⎣
3
1
0

⎤

⎦ =
⎡

⎣
4
3
7

⎤

⎦ ,

so the first system has solution x = 4, y = 3, z = 7.
⎡

⎣
1 1 0
1 0 −1
2 1 −2

⎤

⎦

⎡

⎣
−1
−2

2

⎤

⎦ =
⎡

⎣
−3
−3
−8

⎤

⎦ ,

and the second has solution x = −3, y = −3, z = −8.

Your Turn. Solve the systems:

x + 2y − z = 2, x + 2y − z = 4,

−2y + z = 2, −2y + z = −1,

x + y − z = 1; x + y − z = 3.

The Leontief Input–Output Model

Matrices have important applications in economics. One important example is the
input–output model developed by Wassily Leontief in the 1950s. (He was awarded
the Nobel Prize in economics for this work.)

We explain Leontief’s method using a very much oversimplified example. We
shall describe a company that has no outside needs other than its own products—no
outside costs, etc. This is unrealistic, but illustrates the main principles.

Suppose a company produces three petroleum products—gasoline, heating oil,
and lubricating oil. During production of gasoline, a certain amount of each product
is required, and naturally the company uses its own products. Suppose that, in order
to produce a barrel of gasoline, it is necessary to use 0.2 barrels of gasoline, 0.1 bar-
rels of heating oil, and 0.2 barrels of lubricating oil. Similarly, producing a barrel
of heating oil uses 0.2 barrels of gasoline, 0.3 barrels of heating oil, and 0.1 bar-
rels of lubricating oil, and a barrel of lubricating oil requires 0.1 barrels of gasoline,
0.2 barrels of heating oil, and 0.2 barrels of lubricating oil. This information can be
summarized in the following matrix, called the technology matrix, or input–output
matrix, of the system.

T =
Gas Heat Lub

Gas 0.2 0.2 0.1
Heat 0.1 0.3 0.2
Lub 0.2 0.1 0.2
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Each column represents the demands of the system in producing one product. For
example, in the “heating oil” column, the entry in the “gasoline” row says how much
gasoline is needed to produce one barrel of heating oil.

Suppose the company produces 90 million barrels of gasoline, 60 million bar-
rels of heating oil, and 70 million barrels of lubricating oil each year. Much of this
product is consumed in production. To find out how much, we perform a matrix mul-
tiplication. First, we construct a column vector called the production matrix or total
output matrix,

P =
Gas 90
Heat 60
Lub 70

Then the internal demand is

D0 = T P =
⎡

⎣
0.2 0.2 0.1
0.1 0.3 0.2
0.2 0.1 0.2

⎤

⎦

⎡

⎣
90
60
70

⎤

⎦ =
⎡

⎣
37
41
38

⎤

⎦
Gas,
Heat,
Lub.

So 37 million barrels of gasoline, 41 million barrels of heating oil, and 38 million
barrels of lubricating oil is consumed within the company. This is called the internal
demand and D0 is the internal demand matrix.

We can now calculate how much of each product is available for outside users,
how much the company can actually sell. This amount is

D = P − D0 =
⎡

⎣
90
60
70

⎤

⎦ −
⎡

⎣
37
41
38

⎤

⎦ =
⎡

⎣
53
19
32

⎤

⎦
Gas
Heat
Lub

If the company is operating efficiently, this vector will show exactly how much is be-
ing bought by customers, so it is called the external demand matrix. The fundamental
equation of input–output analysis is

P = T P + D. (5.4)

Using the Leontief Model

Usually the values in P are not given to us. The typical problem encountered by
a company is, given the external demands by our customers and the needs of our
processes, how much of each product should we produce?

Equation (5.4) can be rewritten as

P − T P = D,

or

(I − T )P = D.
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If the matrix I − T has an inverse, then

P = (I − T )−1D.

So we have the following result.

Theorem 22. If a company is to meet its external demands, then the total production
P satisfies

P = (I − T )−1D.

If the matrix I − T has no inverse, the company cannot meet its demands.

In our ongoing example, the matrix was

I − T =
⎡

⎣
0.8 −0.2 −0.1

−0.1 0.7 −0.2
−0.2 −0.1 0.8

⎤

⎦ .

This matrix has inverse

(I − T )−1 = 1

393

⎡

⎣
540 170 110
120 620 170
150 120 540

⎤

⎦ .

Notice that the elements in (I − T )−1 are quite small numbers. This will often
happen. All entries in I − T will be less than 1, and they will usually be given in
decimal form. In calculating the inverse, you will find it easier to invert 1

10 (I − T )

(or even 1
100 (I − T )), and multiply the resulting inverse by 10 (or 100).

Sample Problem 5.37. Suppose our oil company has an external demand of
50 million barrels of gasoline, 30 million barrels of heating oil, and 20 million
barrels of lubricating oil. How much of each product should be produced?

Solution.

P = 1

393

⎡

⎣
540 170 110
120 620 170
150 120 540

⎤

⎦

⎡

⎣
50
30
20

⎤

⎦

= 1

393

⎡

⎣
34300
28000
21900

⎤

⎦ =
⎡

⎣
87.277
71.247
55.725

⎤

⎦
Gas,
Heat,
Lub.

So the company should produce 87277000 barrels of gasoline, 71247000 barrels
of heating oil, and 55725000 barrels of lubricating oil.

Leontief’s original application was not to companies, but to the economies of
countries. Rather than individual products, he dealt with whole sectors of the econ-
omy: the oil industry, the electric power industry, the electronics industry, and so on.
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He identified 81 sectors of the U.S. economy, and applied his analysis to it. Such
an analysis, applied to a small country, can identify areas where the economy can-
not meet its demands, and is used to suggest which commodities must be imported,
which trade agreements should therefore be strengthened, and so on.

Sample Problem 5.38. A farming community produces two commodities, beef
and vegetables. Beef production uses 0.3 pounds of beef and 0.1 pounds of veg-
etables, to feed animals and workers, for each pound produced. Vegetable pro-
duction requires 0.2 pounds of beef and 0.4 pounds of vegetables. There is ex-
ternal demand for 24000 pounds of beef and 16000 pounds of vegetables. How
much should be produced?

Solution. The technology matrix is

T =
[

0.3 0.2
0.1 0.4

]

and

(I − T ) =
[

0.7 −0.2
−0.1 0.6

]

which has determinant 0.42 − 0.02 = 0.4. So

(I − T )−1 = 2.5

[
0.6 0.2
0.1 0.7

]
=

[
1.5 0.5
0.25 1.75

]
,

so

P =
[

1.5 0.5
0.25 1.75

] [
24000
16000

]
=

[
44000
34000

]
.

So the required production is 44000 pounds of beef and 34000 pounds of vegeta-
bles.

Your Turn. An economy produces coal and steel. Each ton of steel requires
0.3 tons of steel and 0.5 tons of coal in its production. Each ton of coal requires
0.2 tons of steel and 0.5 tons of coal. In order to supply an outside demand for
25 tons of steel and 50 tons of coal, how much should be produced?

Exercises 5.8 A

1. In each case show that AB = AC:

(i) A =
[

1 −1
2 −2

]
, B =

[
2 1
1 4

]
, C =

[
4 0
3 3

]
;

(ii) A =
⎡

⎣
1 0 1
1 1 1
1 2 1

⎤

⎦ , B =
⎡

⎣
1 1 2
1 1 0
1 2 2

⎤

⎦ , C =
⎡

⎣
2 2 1
1 1 0
0 1 3

⎤

⎦.
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2. Show that A−1 exists, but AB = CA, even though B �= C:

A =
[−1 3

1 −2

]
, B =

[
1 2
1 1

]
, C =

[
5 7

−2 −3

]
.

3. (i) Prove that the following matrices are inverses:
[

3 2
1 1

]
,

[
1 −2

−1 3

]
;

(ii) Use part (i) to solve the following systems:

(a) 3x + 2y = 4, (b) x − 2y = −1,

x + y = 1; −x + 3y = 2.

4. (i) Prove that the following matrices are inverses:
⎡

⎣
3 5 7
1 2 3
2 3 5

⎤

⎦ ,

⎡

⎣
1 −4 1
1 1 −2

−1 1 1

⎤

⎦ ;

(ii) Use part (i) to solve the following systems.

(a) 3x + 5y + 7z = 1, (b) x − 4y + z = 2,

x + 2y + 3z = 2, x + y − 2z = 1,

2x + 3y + 5z = 1; −x + y + z = −1.

5. In each case the technology matrix T and external demand matrix D for a two-
sector economy are shown. What is the associated production matrix P ?

(i) T =
[

0.3 0.6
0.4 0.3

]
, D =

[
30
20

]
;

(ii) T =
[

0.2 0.1
0.2 0.6

]
, D =

[
42
36

]
;

(iii) T =
[

0.1 0.1
0.2 0.2

]
, D =

[
20
30

]
;

(iv) T =
[

0.4 0.2
0.4 0.2

]
, D =

[
200
120

]
.

6. An economy produces two products, X and Y . To produce each kilogram of X,
one must use 500 grams of X and 250 grams of Y . To produce each kilogram
of Y , one must use 100 grams of X and 250 grams of Y . In a certain week, the
external demand is 84 tonnes of X and 98 tonnes of Y . What is the required
production?
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Exercises 5.8 B

1. In each case show that AB = AC:

(i) A =
[

2 1
4 2

]
, B =

[
0 1
3 7

]
, C =

[
1 4
1 1

]
;

(ii) A =
⎡

⎣
1 2 5
3 −1 1
2 1 4

⎤

⎦ , B =
⎡

⎣
1 −2 2

−1 0 3
2 0 1

⎤

⎦ ,

C =
⎡

⎣
2 −1 1
1 2 1
1 −1 2

⎤

⎦ .

2. Show that A−1 exists, but AB = CA, even though B �= C, when

A =
[

2 −1
1 1

]
, B =

[
3 0
4 1

]
, C =

[
1 0
2 3

]
.

3. Find a matrix A such that
[

0 1
1 0

]
A

[
1 1
0 1

]
=

[
2 1
3 2

]
.

4. (i) Prove that the following matrices are inverses:
⎡

⎣
1 2 3
1 1 1
1 1 2

⎤

⎦ ,

⎡

⎣
−1 1 1
1 1 −2
0 −1 1

⎤

⎦ ;

(ii) Use part (i) to solve the following systems:

(a) x + 2y + 3z = 3, (b) −x + y + z = −1,

x + y + z = 1, x + y − 2z = 0,

x + y + 2z = 4; −y + z = 1.

5. (i) Prove that the following matrices are inverses:
⎡

⎣
2 −2 1
1 0 1
1 −3 0

⎤

⎦ ,

⎡

⎣
3 −3 −2
1 −1 −1

−3 4 2

⎤

⎦ ;

(ii) Use part (i) to solve the following systems:

(a) 2x − 2y + z = 3, (b) 3x − 3y − 2z = 2,

x + z = 2, x − y − z = −1,

x − 3y = 1; −3x + 4y + 2z = 2.
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6. In each case the technology matrix T and external demand matrix D for a two-
sector economy are shown. What is the associated production matrix P ?

(i) T =
[

0.4 0.2
0.3 0.4

]
, D =

[
30
45

]
;

(ii) T =
[

0.3 0.3
0.4 0.4

]
, D =

[
42
36

]
;

(iii) T =
[

0.7 0.2
0.2 0.2

]
, D =

[
40
88

]
;

(iv) T =
[

0.2 0.2
0.3 0.3

]
, D =

[
70
80

]
;

(v) T =
[

0.6 0.2
0.2 0.4

]
, D =

[
40
60

]
;

(vi) T =
[

0.4 0.7
0.4 0.2

]
, D =

[
44
28

]
;

(vii) T =
[

0.25 0.1
0.25 0.2

]
, D =

[
690
460

]
;

(viii) T =
[

0.9 0.2
0.1 0.6

]
, D =

[
100
200

]
.

7. In a three-sector economy the technology matrix T and external demand matrix
D are

T =
⎡

⎣
0.2 0.2 0.4
0.2 0.2 0.4
0.1 0.6 0.2

⎤

⎦ , D =
⎡

⎣
40
30
45

⎤

⎦ .

What is the associated production matrix P ?

8. An economy produces three products, A, B, and C. To produce a hundred
pounds of A requires 30 pounds of A, 30 pounds of B, and 10 pounds of C.
To produce 100 pounds of B requires 10 pounds of A and 50 pounds of B (no C

is used). To produce 100 pounds of C requires 50 pounds of A, 10 pounds of B

and 70 pounds of C. What is the required production in the following cases?

(i) In the first quarter of the year, there was external demand for 7000 pounds
of A, 14000 pounds of B, and 21000 pounds of C.

(ii) In the second quarter, there was external demand for 14000 pounds of A,
7000 pounds of B, and 14000 pounds of C.

9. Suppose Mx denotes the 2 × 2 matrix
[

1 x

0 1

]
,

where x may be any real number.
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(i) Compute MxMy , and show that the matrices Mx and My commute for any
real numbers x and y.

(ii) Find Mx
2, Mx

3, and Mx
4.

(iii) Find a formula for Mx
n, where n is any positive integer.

(iv) What is Mx
−1?
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Linear Programming

6.1 Linear Programming Problems

Constrained Optimization

In many problems, the object is to optimize—either maximize or minimize—
something. A company wishes to maximize profit or minimize cost; a traveler wishes
to minimize the length of a journey; a factory manager wishes to maximize output.
But it is not always straightforward. For example, a traveler might wish to minimize
travel time, but cannot exceed her budget. In this case, the financial limitation is
called a constraint.

Here is a simple example. Suppose a furniture manufacturer makes both dining
suites and desk sets. Two types of timber are used: 12-inch wide oak for tabletops
and chair seats, one-inch pine for legs and supports. Each dining suite uses 44 feet of
oak and 80 feet of pine; each desk set uses 15 feet of oak and 20 feet of pine. Each
dining suite returns a profit of $100 after all expenses (salaries, cost of materials,
factory costs) have been subtracted; each desk set returns $35.

How many dining suites and desk sets should be produced per day? If you sched-
ule x dining suites and y desk sets, the profit will be $(100x + 35y), and the ob-
jective is to maximize profit. So you need to find values for x and y that maximize
100x + 35y. But you need to know what constraints apply. For example, it may be
that only 8000 feet of pine can be supplied each day. The production of x dining
suites and y desk sets requires 80x + 20y feet of pine, so the x and y values must
satisfy

80x + 20y ≤ 8000.

There will probably be another constraint, depending on the amount of oak available.
A further constraint will probably be caused by staffing restrictions: each product will
require a certain number of hours of work. If there are 50 employees each working
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eight hours, at most 400 hours of work can be allocated. And, of course, x and y

cannot be negative.

This particular problem is called a linear constrained optimization problem. The
function to be maximized, 100x + 35y, is a linear function of the two variables. The
constraint on oak leads to a linear inequality, and the other constraints, due to the
availability of oak and of manpower, will probably be linear also.

Constrained optimization problems involve some very difficult mathematics. But
linear problems are easier than most. There are algorithms, or mathematical recipes,
available to solve linear constrained optimizations. For this reason, we shall restrict
our attention to the linear case. We shall explain the geometrical method of solution,
which is very useful in problems involving two variables. Then we shall look in detail
at one of the most widely used algorithms, the simplex method.

Linear Programming Models

The word “program” originally meant the same in mathematics as does
“algorithm”—a mathematical recipe, a method for solving a problem that requires
no input from the solver: once it is set up, the steps are mechanical. This precisely
describes the operation of a computer, so “programming” nowadays usually means
computer programming. But it is also used to describe algorithmic methods of solv-
ing constrained optimization problems. Linear programming is the algorithmic solu-
tion of linear constrained optimization problems.

By a linear programming model we mean a problem made ready for the applica-
tion of such an algorithm. The main features of a linear programming model are:

1. There are several variables that we can control; the solution of the problem con-
sists of finding the appropriate real number values of those variables.

2. The quantity to be maximized or minimized is a linear function, called the ob-
jective function.

3. The variables must satisfy certain linear inequalities, or constraints (often called
regular constraints).

4. The variables are required to be non-negative (non-negativity constraints).

The inequalities will always be taken in the weak form, where equality is an option.
For example, we write x + y ≤ 10 rather than x + y < 10. This distinction is not
usually important in practical problems.

In some problems, the variables are required to take integer values. Problems with
this sort of constraint are called integer programs, and are sometimes very difficult.
We normally ignore such requirements. Even though you cannot sell half a table,
we can schedule 27.5 tables to be made in a day, with the unfinished table to be
completed the next day. Similarly, there are some problems where some variables
can be negative. There are special techniques to handle these unusual cases.
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Setting up Linear Programs

Problems are hardly ever presented in the workplace in terms of equations and in-
equalities. It is important to practice interpreting plain English requirements and for-
mulating the problem as a linear programming model.

The first part of the process is to decide what is the objective, the quantity to
be optimized—profit (maximized), cost (minimized), and so on. Then the variables
must be identified; this is usually done by looking at the objective. Then the objective
function, the relation between the variables and the objective, must be formulated.
Finally, you need to list the constraints.

Sample Problem 6.1. Formulate the following problem as a linear programming
model: An oil refinery produces both gasoline and heating oil. The refinery has
the capacity to produce at most 30000 barrels per day. At least 5000 barrels of
heating oil are required daily because of a contract. The profit is $12 per barrel
of gasoline and $8 per barrel of heating oil. In order to satisfy EPA requirements,
the amount of gasoline produced can be no greater than three times the amount
of heating oil, to limit the noxious byproducts. To maximize profit, what should
be produced daily?

Solution. The quantity to be maximized is profit. The profit depends only on the
number of barrels of the two products, so we define the following variables:

Let x denote the number of barrels of gasoline to be produced daily, and y the
number of barrels of heating oil.

(This is sometimes called the dictionary of variables.)

Then the profit is $P , where P = 12x + 8y.

There are three regular constraints. The maximum capacity means that x + y

cannot exceed 30000. The contractual requirement is that y ≥ 5000. The EPA
requires that x ≤ 3y. Both variables must be non-negative. So the model is:

Maximize P = 12x + 8y

subject to x + y ≤ 30000,

y ≥ 5000,

x − 3y ≤ 0,

x ≥ 0, y ≥ 0.

(The requirement y ≥ 0 is in fact redundant.)

In the next section, we shall discuss a geometric method for solving linear pro-
grams in two variables. The method involves graphical representation of the con-
straints, and for this reason it is convenient to denote the variables x and y. When
there are three or more variables this method does not apply, and for the technique
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we use it will be more convenient to label the variables with subscripts: x1, x2, x3,
and so on.

Sample Problem 6.2. Formulate the following problem as a linear programming
model: a farmer wishes to plant potatoes, corn, and beans. Each acre of potatoes
costs $400 for seed and fertilizer; each acre of corn costs $160; each acre of
beans costs $280. He has 100 acres available, and his capital is $20000. The
profit per acre (after replacing capital) is $120 for potatoes, $40 for corn, and
$60 for beans. He can sell any amount of corn and beans, but the markets will
take at most 30 acres of potatoes. What should he plant to maximize profit?

Solution. The quantity to be maximized is profit. The profit depends only on the
number of acres of each crop, potatoes, corn, and beans. So we define variables:

x1 = number of acres of potatoes to be planted,

x2 = number of acres of corn,

x3 = number of acres of beans.

The profit is $P , where P = 120x1 + 40x2 + 60x3.
The farmer’s outlay will be $(400x1 + 160x2 + 280x3), and this cannot exceed
$20000, and the total number of acres (x1 + x2 + x3) cannot exceed 100. If
x1 > 30, the excess potatoes will not be sold. So we have

Maximize P = 120x1 + 40x2 + 60x3

subject to 400x1 + 160x2 + 280x3 ≤ 20000,

x1 + x2 + x3 ≤ 100,

x1 ≤ 30,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Your Turn. Formulate the following problem as a linear programming model: a
farmer wishes to plant potatoes, corn, and beans. The cost of seed and fertilizer
is: $500 for each acre of potatoes; $250 for each acre of corn; $400 for each acre
of beans. He has 120 acres available, and his capital is $30000. The net profit
per acre is $150 for potatoes, $50 for corn, and $80 for beans. He can sell any
amount of corn and potatoes, but the markets will take at most 20 acres of beans.
What should he plant, to maximize profit?

It is important to distinguish between income and profit. In the following exam-
ple, the income is given. In order to maximize profit, it is first necessary to deduct
the costs from the income to get the profit figure per item.

Sample Problem 6.3. Formulate the following problem as a linear programming
model: a window manufacturer produces two styles of windows, regular and
deluxe. It costs $100 to make each regular window, which the manufacturer sells
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for $150. It costs $120 to make each deluxe window, and these sell for $175
each. The daily production capacity is 110 windows, and the daily cost cannot
exceed $12000. How many windows of each kind should be made daily in order
to maximize profit?

Solution. The quantity to be maximized, profit, depends only on the number of
windows produced in each style. We define the following variables:

x1 = number of regular windows produced per day,

x2 = number of deluxe windows produced per day.

The profit for each regular window is $(150 − 100) = $50 (sales price − cost)
and for each deluxe window it is $(175 − 120) = $55. So the daily profit is $P ,
where

P = 50x1 + 55x2.

The daily outlay will be $(100x1 + 120x2), and this cannot exceed $12000, and
the day’s window production, (x1 + x2), cannot exceed 110. So we have

Maximize P = 50x1 + 55x2

subject to 100x1 + 120x2 ≤ 12000,

x1 + x2 ≤ 110,

x1 ≥ 0, x2 ≥ 0.

(Since the problem has two variables, x and y could be used instead of x1 and
x2.)

Sample Problem 6.4. Formulate the following problem as a linear programming
model: a cement company uses a process that produces 2.2 pounds of waste
particles per barrel of cement produced. The EPA requires that the average waste
be reduced to 1.2 pounds per barrel. The company installs two precipitators to
remove waste; some barrels will be processed with the first machine, some with
the second, and some left unprocessed. The first machine eliminates 1.1 pounds of
waste per barrel and costs 9 cents per barrel processed. The second eliminates
1.5 pounds of waste per barrel and costs 15 cents per barrel processed. What
percentage of barrels should be processed with each precipitator, if the cost is to
be minimal?

Solution. We use the following variables:

x = percentage of barrels processed with machine 1,

y = percentage of barrels processed with machine 2.
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(There is no need for a variable representing the percentage not to be processed
at all.) The cost will be $(0.09x + 0.15y). So we wish to minimize $C, where

C = 9x + 15y.

Barrels processed with the first machine give 1.1 pounds of waste, those from the
second machine give 0.7 pounds, and unprocessed barrels still give 2.2 pounds.
So the average amount of particular waste will be

(
1.1x + 0.7y + 2.2(100 − x − y)

)
/100.

So we require (1.1x + 0.7y + 2.2(100 − x − y))/100 ≤ 1.2, or

1.1x + 1.5y ≥ 100.

The number of unprocessed barrels cannot be negative, so

x + y ≤ 100.

We have

Minimize C = 9x + 15y

subject to 1.1x + 1.5y ≥ 100,

x + y ≤ 100,

x ≥ 0, y ≥ 0.

Exercises 6.1 A

In each case, construct a linear programming model for the problem given.

1. A contractor makes two types of contract homes. The Fleetwood uses $30000
worth of materials and requires 500 man-hours; the profit on a Fleetwood is
$20000. The Majestic needs $40000 worth of materials and 600 man-hours, and
returns profit $25000. He has $700000 worth of materials in stock and his em-
ployees can work at most 11000 hours. How many of each type should he build,
to maximize profit?

2. A farmer’s chickens need 70 units of carbohydrate, 50 units of protein, and
40 units of fat between them per month. He can buy two commercial feeds,
A and B. A pound of feed A contains five units of carbohydrate, three units of
protein, and four units of fat, and costs $2.50. Feed B contains two units of car-
bohydrate, two units of protein, and one unit of fat per pound, and costs $1.40
per pound. The farmer wants to feed his chickens a mixture of the two feeds.
How many of each feed should he buy per month, in order to make the cheapest
blend that supplies the required nutrition?

3. A company produces three types of wooden ornaments. Type I requires six board
feet of lumber and takes two hours of labor to produce. Type II requires four
board feet of lumber and takes three hours of labor to produce. Type III requires
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one board foot of lumber and takes one hour of labor to produce. The three
types yield $30, $45, and $15 profit, respectively. On a particular day there are
200 board feet of lumber and 100 hours of labor available. How many ornaments
of each type should be made, to maximize profit?

4. A farmer wishes to plant up to 60 acres with some combination of corn, linseed,
and oats. He has 160 hours of labor available, and $6000 to spend on costs (seeds,
fertilizer, and so on). Oats require three hours labor and cost $80 per acre, and
sell for $350 per acre. Corn requires five hours labor and cost $90 per acre, and
sell for $420 per acre. Linseed requires four hours labor and cost $110 per acre,
and sell for $500 per acre. How many acres should be planted with each crop, to
maximize profit? (Remember that to calculate the profit, you must subtract the
cost from the income.)

5. A mutual fund has $100000000 to invest. They estimate they can earn 8% in
real estate, 5% in stocks, and 3% in treasury bills. To limit the more risky in-
vestments, they decide to invest at least twice as much in treasury bills as in
stocks and real estate combined, and at least as much in stocks as in real estate.
Uninvested money earns no income. How much should be invested in each, to
maximize the anticipated income?

6. A manufacturer produces two kinds of clocks, standard and mantel. The standard
clocks require five hours of labor and require 40 linear feet of wood, while the
wall clocks need two hours of labor and require eight linear feet of wood. The
profit is $60 on each standard clock and $11 on each mantel clock. Each week
there are 5000 square feet of wood and 600 man-hours available. How many
boxes of each kind should be made in order to maximize profit?

7. A carpentry company produces two different kinds of desk for State University.
The Student desk uses 10 units of wood, 2 units of glue, and 1.5 hours of man-
power. The Professor desk requires 12 units of wood, 2 units of glue, and 2 hours
of manpower. The company has 8000 units of wood, 2000 units of glue, and 1800
man-hours available. If $10 profit is made on each Student desk and $12 on each
Professor desk, how many of each should be made in order to maximize profit?

8. A farmer wishes to plant potatoes, corn, and peppers. Each acre of potatoes costs
$300 for seed; each acre of corn costs $160; each acre of peppers costs $280. He
has 100 acres available for planting, and $20000 available to spend. The profit
per acre is $80 for potatoes, $40 for corn and $70 for peppers. He can sell at most
30 acres of potatoes, but the markets will take any amount of corn and peppers.
How many acres of each crop should he plant to maximize profit?

Exercises 6.1 B

In each case, construct a linear programming model for the problem given.

1. A manufacturer produces two kinds of wooden boxes, large and small. The large
ones require nine minutes’ labor and require ten square feet of wood, while the
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small ones need seven minutes of labor and require eight square feet of wood.
The profit is $3 on each large box and $1 on each small box. Each week there
are 100000 square feet of wood available. There are 40 workers, each of whom
can work 40 hours per week. How many boxes of each kind should be made in
order to maximize profit?

2. Your cat requires at least need 60 units of carbohydrate, 45 units of protein, and
30 units of fat each month. From each pound of feed A she receives five units of
carbohydrate, three units of protein and three units of fat, and costs $2.10. Feed
B contains two units of carbohydrate, three units of protein, and one unit of fat
per pound, and costs $1.80 per pound. How many pounds of each feed should
you buy per month in order to make the cheapest blend that supplies the required
nutrition?

3. A clothing manufacturer has 100 square yards of cotton material, 100 square
yards of wool, and 60 square yards of silk. A pair of slacks requires one square
yard of cotton, two square yards of wool, and two square yards of silk. A skirt
requires two square yards of cotton, one square yard of wool, and two square
yards of silk. The net profit on a pair of slacks is $3, while on a skirt the net
profit is $4. How many skirts and slacks should be made if net profit is to be
maximized?

4. A company manufactures rackets for tennis, squash, and racketball. Each ten-
nis racket requires two units of aluminum and one unit of nylon; each squash
racket requires one unit of aluminum and two units of nylon; each racketball
racket requires two units of aluminum and two units of nylon. The company has
1000 units of aluminum and 800 units of nylon. It cannot manufacture more than
550 rackets in total. The profit on a tennis, squash and racketball racket is $7,
$8, and $11, respectively. How many of each type should be made in order to
maximize profit?

5. An oil company operates two refineries. Refinery I puts out 200, 100, and 80 bar-
rels per day of low-, medium-, and high-grade oil, respectively. Refinery II puts
out 100, 200, and 500 barrels per day of low-, medium-, and high-grade oil, re-
spectively. To fill an order, the company must output 1000 barrels low-grade,
1500 barrels of medium-grade, and 3000 barrels of high-grade oil. If it costs
$200 per day to operate refinery I, and $300 per day to operate refinery II, how
many days should each refinery be operated in order to fill the order at minimum
cost?

6. A toy company makes Bush, Rumsfeld, and Cheney masks using hair, plastic,
and latex. Each Bush mask requires eight ounces of hair, eight ounces of plastic,
and four ounces of latex. Each Rumsfeld mask requires nine ounces of hair, three
ounces of plastic, and three ounces of latex. Each Cheney mask requires two
ounces of hair, eight ounces of plastic, and five ounces of latex. Each Bush mask
yields a profit of $2.00, each Rumsfeld yields $2.50, and each Cheney yields
$3.00. There are 600 ounces of hair, 400 ounces of plastic, and 400 ounces of
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latex available. How many copies of each mask should be made to maximize
profit?

7. A company has 750 pounds of cashews and 1200 pounds of peanuts and wishes
to market two kinds of 12-ounce packages of mixed nuts. The low-grade mixture
contains four ounces of cashews and eight ounces of peanuts; the high-grade
mixture contains eight ounces of cashews and four ounces of peanuts. The profit
is $0.25 on each low-grade package and $0.45 on each high-grade package. How
many packages of each kind should be made in order to maximize profit?

8. A mining company operates two mines, one in Green Valley and one at An-
drew’s Ridge. The Green Valley mine costs $1500 per day to operate and pro-
duces 30 ounces of gold, 200 ounces of silver and 400 pounds of copper each
day. Andrew’s Ridge costs $1200 per day to operate and produces 40 ounces of
gold, 400 ounces of silver and 300 pounds of copper each day. The company
contracts to supply 240 ounces of gold, 2000 ounces of silver and 1200 pounds
of copper. How many days should it operate the mines, to fulfill the contract
while maximizing profit?

9. Phillips Foundry makes two types of gargoyle. Small Evil gargoyles take three
pounds of cast iron and 17 minutes of labor. Large Horrid gargoyles use four
pounds of cast iron and need ten minutes of labor. The profit on each Small Evil
gargoyle is $12, while each Large Horrid gargoyle yields $10 profit. There are
900 pounds of cast iron and 56 hours of labor available each day. To fulfill back
orders, at least 100 Small Evil gargoyles must be made each day. How many
gargoyles of each kind should be made each day, to maximize profit?

10. A garment factory makes sweaters and vests. Each sweater requires 15 ounces
of wool, eight buttons, and 15 hours of work, while each vest requires 10 ounces
of wool, six buttons, and 12 hours of work. The profit is $8 on a sweater and
$6 on a vest. Each week the company has available 5000 ounces of wool and
1000 buttons. It has promised to provide at least 1200 hours of work per week
to its employees. How many garments of each kind should be made each week,
to maximize profit?

11. A toy manufacturer makes three different kinds of model cars: the Porsche, the
Ferrari, and the Jaguar. They are all made of aluminum and steel. Each Porsche
requires two units of steel and one unit of aluminum, each Ferrari requires three
units of steel and four units of aluminum, and each Jaguar needs four units
of steel and two units of aluminum. The company has 8000 units of steel and
12000 units of aluminum available. If $10 profit is made on each Porsche, $12
on each Ferrari, and $5 on each Jaguar, how many of each model car should the
manufacturer make in order to maximize its profit?

12. A farmer mixes three types of food, foods A, B, and C, for his livestock. The
mixture must provide at least 300 units of nutrient X, 20 units of nutrient Y , and
100 units of nutrient Z. The cost of the foods, and the amounts of each type of
nutrient supplied by each food, are shown in the table below. How much of each
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food should be used in order to provide at least the minimum amount of nutrient
needed at the cheapest price?

Food Cost per
pound

Amount of nutrient
per pound of food
X Y Z

A $0.40 100 5 20
B $0.20 60 8 10
C $0.50 100 12 30

13. A furniture shop makes tables, chairs, and cabinets. Each table requires ten units
of wood and six units of paint, takes five hours to make and yields $100 profit.
Each chair requires four units of wood and three units of paint, takes two hours
to make and yields $15 profit. Each cabinet requires eight units of wood and nine
units of paint, takes six hours to make and yields $90 profit. Each table is sold
with six chairs, so the number of chairs made cannot be smaller than six times
the number of tables. (It could be greater; chairs can be sold separately.) If 1000
units of wood, 500 units of paint and 800 working hours are available per week,
how many units of each kind should be produced?

14. A manufacturer produces three types of electrical appliances, models A1, A2,
and A3. Each appliance must be processed by the machine shop and by the
wiring shop. There are 900 hours of labor available in the machine shop each
week, and 2000 in the wiring shop. The specifications of each appliance—
number of hours’ work required in each shop, and profit per unit—are shown
below. There is a contract that requires them to produce at least 100 units of
model A2 per week. How many units of each type should be produced each
week to maximize the profit?

A1 A2 A3
Machine shop 2 2 2
Wiring shop 6 4 2

Profit $20 $15 $12

15. Demiurg, the mythological Greek creator of the universe, is filling the universe
with galaxies, black holes, and quasars. Each galaxy costs $225, each black hole
$250, and each quasar $200. The number of black holes and quasars combined
cannot exceed twice the number of galaxies. There should be at least 50 black
holes, and the number of quasars should be at most one fourth the number of
galaxies. How many of each should Demiurg order to minimize the cost of con-
structing the universe?

16. A toy company manufactures pickups, dump trucks, and semi trucks from plas-
tic, latex, and aluminum. A pickup truck requires four ounces of plastic, four
ounces of latex, and two ounces of aluminum. A dump truck requires six ounces
of plastic, five ounces of latex, and three ounces of aluminum, and a semi re-
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quires eight ounces of plastic, six ounces of latex, and three ounces of aluminum.
A pickup truck sells for $10.00, a dump truck for $14.00, and a semi for $16.00.
There are 800 ounces plastic, 400 ounces latex, and 300 ounces aluminum avail-
able. Find the number of each truck to make in order to maximize revenue.

6.2 The Geometric Method

Planar Representation

If an optimization problem involves only two variables, we can call them X and Y

and represent them in a planar diagram. The point (x, y) represents the situation
where X = x and Y = y. We choose the values x, y, so this choice could be called
our strategy, and we sometimes refer to the point (x, y) as the strategy (x, y). With
every point (x, y) of the plane we can associate several pieces of information—the
value of the objective function when X = x and Y = y, and whether the various
constraints are true for these values of X and Y . The point is called feasible when all
the constraints (including non-negativity) are true, and infeasible otherwise.

Sample Problem 6.5. Consider the linear program

Maximize P = x + y

subject to x + 2y ≤ 6, (A)

2x + y ≤ 6, (B)

x ≥ 0, y ≥ 0.

Which of the points (1, 1), (0, 4), (2, 2), (1,−1), and (3, 3) are feasible? What
is the value of P at these points?

Solution. (1, 1) is feasible, P = 2. (0, 4) is not feasible ((A) is false), P = 4.
(2, 2) is feasible, P = 4. (1,−1) is not feasible (y is negative), P = 0. (3, 3) is
not feasible ((A) and (B) are both false), P = 6.

Your Turn. Repeat this exercise for the points (1, 0), (4, 4), (2, 1), (−1, 1).

Graphing Inequalities

In two dimensions, the set of all points satisfying a linear constraint is easy to repre-
sent geometrically. The set of all points satisfying ax + by ≤ c is shown as follows.
First, draw the line ax + by = c, the boundary line of the inequality. The required
set of points—the solution set of the inequality—consists of all points on this line
together with all points on one side of the line. For example, the set of all points
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satisfying the inequality y ≥ 0 consists of the line y = 0 (the x axis) together with
all points above the axis. This sort of set of points is called a half-plane.

It is necessary to work out which side of the line is in the solution set. The easiest
way is to find one point, not on the line, and check whether or not it satisfies the
inequality. The easiest point to check is the origin, (0, 0); if the origin lies on the
boundary line, some other point must be used.

Sample Problem 6.6. Graph the inequalities

2x + 3y ≤ 6, x − 3y ≤ 0.

Solution. We draw the lines 2x + 3y = 6 and 3x − y = 0 on sets of axes. To
draw 2x + 3y = 6 we join the points (3, 0) and (0, 2) (remember, for a straight
line, it is enough to find two points on the line and join them.) x − 3y = 0 joins
(0, 0) to (3, 1). These four points are shown as dots in the diagrams.

For 2x + 3y ≤ 6, we test with (0, 0), and find that it satisfies the inequality;
putting x = 0, y = 0 results in 0 ≤ 6, which is true. So we take the half-plane
containing the origin.

For x−3y ≤ 0, (0, 0) is not a suitable test point, so we try (1, 1). This satisfies the
inequality. The point (1, 1) is also shown as a dot in the diagram. Both solution-
sets are shown in gray.

Your Turn. Graph the inequalities

2x + 3y ≥ 6, x − y ≤ 0.

The area of the plane that satisfies all the constraints of a constrained optimization
problem is called the feasible region. It is the intersection of the solution sets of all
the constraints. The points of the region are called feasible solutions.

Sample Problem 6.7. Sketch the feasible region for the linear program in Sam-
ple Problem 6.5.

Solution. The first diagram shows the points satisfying both constraints (A)
and (B). The second diagram shows the points satisfying the non-negativity con-
straints. So the feasible region is the one shaded in the third diagram.
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The feasible region we just constructed is called closed because it is a closed
polygon. Some problems have an open feasible region that goes on to infinity in
some direction. Here is an example.

Sample Problem 6.8. Sketch the feasible region for the linear program:

Minimize C = x + y

subject to x + 2y ≥ 4,

4x + 3y ≥ 12,

x ≥ 0, y ≥ 0.

Solution. The first diagram shows the points satisfying the first two constraints,
and the second diagram shows the points satisfying the non-negativity con-
straints. So the feasible region is the one shaded in the third diagram.

Your Turn. Sketch the feasible regions for the linear programs:

(a) Maximize P = x + 2y (b) Minimize C = 3x + 4y

subject to x + 3y ≤ 6, subject to +3y ≥ 6,

4x − 2y ≤ 6, 3x + y ≥ 6,

x ≥ 0, y ≥ 0; x ≥ 0, y ≥ 0.

Level Curves

Let us look again at the linear programming problem in worked Example 6.5. The
function to be maximized was P = x + y. We saw, for example, that x = y = 1 is a
feasible point, with P = 2. There are of course infinitely many other points that give
P = 2. But all of them will lie on the same straight line. A straight line for which
all the points give the same value of the objective function is called a level curve for
that objective function, and the constant value is called the level.
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The diagram shows the level curves for P = 1, 2, 3.5, and 4. They are parallel
lines, and it is clear that, as you move further away from the origin, the value of P

increases. The level curve for level 4 touches the feasible region at only one point,
namely x = y = 2, and no level curve with P > 4 ever touches the feasible region.
So the maximum value of P is 4, and the only way to attain it is to set x = 2 and
y = 2.

This method of solving a linear programming problem is the geometric method,
or solution by diagram, and may be used on any two-variable problem. To summa-
rize, we proceed as follows.

1. Sketch the feasible region.

2. Draw some level curves.

3. By looking at the level curves, decide what is the optimal level (largest when
maximizing, smallest when minimizing) for which the curve still touches the
feasible region.

The different level curves can be found by shifting any one level curve so that the
new line is parallel to the old one. Usually there is just one point of contact between
the best line and the feasible region, and it will be a corner of the region. You can
work out the value of x and y by solving the equations of the two lines that meet in
the corner point.

Very occasionally there will be an infinitude of “best” points, as in the following
example.

Sample Problem 6.9.

Maximize P = x + 2y

subject to x + 2y ≤ 6, (A)

2x + y ≤ 6, (B)

x ≥ 0, y ≥ 0.

Solution. This is the same example as above, with a different objective function.
The diagram, with level curves, is
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The boundary line x + 2y = 6 is one of the level curves. So the optimal value,
P = 6, can be attained by any point (x, y) on the line segment from (0, 3) to
(2, 2).

Sample Problem 6.10. Solve the linear program:

Maximize P = 3x + 2y

subject to 2x + y ≤ 3,

x + 3y ≤ 6,

x − y ≤ 1,

x ≥ 0, y ≥ 0.

Solution. The following diagram shows the feasible region and the level curves
for levels 0, 3, and 6. The maximum is clearly at the point marked with a dot.

To find the coordinates of the point, it is necessary to solve the simultaneous
equations

2x + y = 3,

x + 3y = 6;

the solution is x = 3
5 , y = 9

5 . The maximum is therefore P = 3 3
5 + 2 9

5 = 27
5 .

Your Turn. Solve the linear program of Your Turn problem 6.8(a).

Sample Problem 6.11. Solve the linear program in Sample Problem 6.8.
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Solution. The following diagram shows the feasible region and the level curves
for levels 2 and 4.

The maximum is clearly at the intersection point of

4x + 3y = 12,

x + 2y = 4;

the solution is x = 12
5 , y = 4

5 , C = 12
5 + 4

5 = 16
5 .

Your Turn. Solve the linear program of Your Turn problem 6.8(b).

Not every linear program has a solution. For example, suppose the previous
Worked Example asked us to maximize x + y. There is no “last” level curve. The
interpretation is that (for example) infinite profit is possible. Problems of this kind
are called unbounded. If a real-world problem, this usually means there is some error
in the data.

Exercises 6.2 A

1. In each case, sketch the region satisfying the inequality:

(i) x + 4y ≤ 6; (ii) x + 2y ≤ 6;

(iii) 2x + 3y ≥ 4; (iv) 4x − 4y ≤ 5;

(v) x − 2y ≥ 6; (vi) 3x + y ≥ 12;

(vii) −2x + 3y ≥ 3; (viii) x + 4y ≥ 6;

(ix) 2x + y ≥ 4; (x) 2x + 4y ≤ 10;

(xi) x − 2y ≤ 2; (xii) 2x − y ≥ −4;

(xiii) 2x + y ≤ 4; (xiv) x + 2y ≥ 4;

(xv) x + y ≤ 6; (xvi) 4x + 2y ≤ 4.
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2. In each case, sketch the feasible region for the linear programming problem:

(i) Minimize C = x + y

subject to 2x + y ≥ 4,

x + 2y ≥ 4,

x ≥ 0, y ≥ 0;
(ii) Maximize P = x − 2y

subject to x + 2y ≤ 4,

4x + 4y ≤ 12,

x ≥ 0, y ≥ 0;
(iii) Maximize P = x + 3y

subject to x + 4y ≤ 6,

x + 2y ≤ 6,

x ≥ 0, y ≥ 0;
(iv) Minimize C = 4x + 3y

subject to x + y ≤ 3,

x + 2y ≥ 4,

x + 4y ≤ 6,

x ≥ 0, y ≥ 0;
(v) Minimize P = x + y

subject to x + 2y ≥ 6,

2x − y ≥ −4,

2x + y ≥ 4,

x ≥ 0, y ≥ 0;
(vi) Maximize P = 3x + 4y

subject to x − y ≥ −1,

x + y ≤ 3,

x ≥ 0, y ≥ 0;
(vii) Minimize C = 5x + 3y

subject to 4x + 3y ≥ 12,

x + 2y ≥ 4,

x ≥ 0, y ≥ 0;
(viii) Maximize P = 4x + 2y

subject to x + 4y ≤ 16,

2x + 6y ≤ 12,

x ≥ 0, y ≥ 0;



298 6 Linear Programming

(ix) Maximize P = 2x + 3y

subject to 8x + 2y ≤ 11,

2x + y ≤ 5,

x ≥ 0, y ≥ 0.

3. Solve the linear programming problem by the geometric method in parts (i) to
(v) of Exercise 2.

4. A company manufactures two types of ballpoint pen, the Deluxe and the Stan-
dard. It plans to produce x packs of Deluxe pens and y packs of Standard pens
per week. (Clearly, x and y may not be negative. They need not be whole num-
bers; production can carry over to the next week.) The company has 8000 hours
of labor available per week, and can spend at most $10000 per week on materi-
als.

(i) A pack of Deluxe pens requires $2 in materials and a pack of Standard pens
requires $1. Write an inequality involving x and y that shows the effect of
the $10000 materials limitation.

(ii) Producing a pack of Deluxe pens requires 1 hour of labor, while a pack of
Standard pens requires 2 hours. Write an inequality involving x and y that
shows the effect of the 8000 hours restriction.

(iii) The profit from a pack of Deluxe pens is $3, while the profit from a pack of
Standard pens is $5. Solve a linear programming problem to find out how
many packs of each kind should be produced, in order to maximize profit.

Exercises 6.2 B

1. In each case, sketch the region satisfying the inequality:

(i) x + 2y ≤ 12; (ii) 2x + y ≤ 4;

(iii) x + 3y ≤ 6; (iv) 4x + 4y ≤ 12;

(v) x − y ≥ 8; (vi) x + 2y ≥ 6;

(vii) 4x + 3y ≤ 12; (viii) x − 4y ≤ 3;

(ix) −2x + y ≥ 1; (x) 3x + 2y ≤ 6;

(xi) 2x − 3y ≥ 4; (xii) 2x + 4y ≤ 8;

(xiii) 5x + 2y ≤ 20; (xiv) x + 2y ≥ 4;

(xv) 5x + 3y ≥ 5; (xvi) x + y ≤ 7;

(xvii) 2x + 3y ≤ 10; (xviii) 3x − y ≥ 12;

(xix) 4x − y ≥ 4; (xx) 2x − 3y ≥ 3;

(xxi) x + y ≥ 3; (xxii) x + y ≤ 2;
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(xxiii) x + 2y ≤ 4; (xxiv) x + 3y ≥ 3;

(xxv) 3x + 2y ≥ 6; (xxvi) x + 2y ≥ 3;

(xxvii) 2x − 4y ≤ 6; (xxviii) 5x + 6y ≤ 18;

(xxix) 8x + 7y ≥ 28; (xxx) −2x + 4y ≤ 1;

(xxxi) −2x + 3y ≥ 2; (xxxii) 2x − 4y ≤ 1.

2. In each case, sketch the feasible region for the linear programming problem:

(i) Maximize P = 6x + y

subject to x + y ≤ 7,

3x + y ≥ 12,

x ≥ 0, y ≥ 0;
(ii) Maximize P = −4x + 2y

subject to −2x + 3y ≥ 3,

4x + 3y ≤ 12,

x ≥ 0, y ≥ 0;
(iii) Maximize P = 4x + y

subject to −2x + y ≥ 1,

5x + 2y ≤ 20,

x ≥ 0, y ≥ 0;
(iv) Minimize C = 3x − 2y

subject to x + 2y ≤ 4,

2x + y ≥ 4,

x ≥ 0, y ≥ 0;
(v) Maximize P = 3x + 4y

subject to 2x + 3y ≤ 10,

x + 2y ≤ 12,

x + y ≤ 7,

x ≥ 0, y ≥ 0;
(vi) Minimize C = 3x + 6y

subject to x + 3y ≤ 6,

5x + 3y ≥ 5,

2x + 3y ≤ 10,

x ≥ 0, y ≥ 0;
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(vii) Maximize P = x + y

subject to 3x + 2y ≤ 6,

2x + 4y ≤ 8,

x − y ≥ 8,

x ≥ 0, y ≥ 0;
(viii) Maximize P = 3x − 4y

subject to x + y ≤ 2,

x ≥ 0, y ≥ 0;
(ix) Maximize P = 4x − 3y

subject to x − 2y ≤ −2,

y ≤ 3,

x ≥ 0, y ≥ 0;
(x) Maximize P = 4x + 5y

subject to x − y ≤ 0,

3x + 7y ≤ 21,

x ≥ 0, y ≥ 0;
(xi) Maximize P = 7x + 4y

subject to x + 2y ≤ 6,

3x + 2y ≤ 12,

x ≥ 0, y ≥ 0;
(xii) Minimize C = x + 2y

subject to 3x + 4y ≥ 12,

2x + y ≥ 4,

x ≥ 0, y ≥ 0;
(xiii) Maximize P = 6x + y

subject to 3x + y ≤ 18,

x + y ≤ 12,

2x − y ≤ 0,

x ≥ 0, y ≥ 0;
(xiv) Minimize C = 3x + 4y

subject to x + 4y ≥ 12,

2x + y ≤ 10,

x − y ≥ −1,

x ≥ 0, y ≥ 0;
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(xv) Maximize P = 6x + 3y

subject to x + 5y ≤ 30,

2x + 2y ≤ 12,

x ≥ 0, y ≥ 0;
(xvi) Maximize P = 6x + 5y

subject to 2x + y ≤ 4,

2x + 3y ≤ 8,

x ≥ 0, y ≥ 0;
(xvii) Maximize P = 3x + 4y

subject to 2x + y ≤ 4,

3x + 2y ≤ 8,

x ≥ 0, y ≥ 0;
(xviii) Maximize P = 2x + 3y

subject to −x + 2y ≤ 1,

2x + y ≤ 4,

x ≥ 0, y ≥ 0.

3. Solve the linear programming problem by the geometric method in parts (i) to
(xiv) of Exercise 2.

4. The law firm of Grisham and Turow handles two types of lawsuits: medical mal-
practice suits against surgeons and group actions against pharmaceutical com-
panies. Malpractice suits each require six months of law clerks’ time for prepa-
ration and the hiring of five expert witnesses. Group actions each require ten
months of preparation time and three expert witnesses. This year the firm can
afford to hire at most 120 expert witnesses, and it has 240 months of clerks’ time
available.

(i) The profit from a surgical malpractice suit is $2000000, while the profit
from a group action is $5000000. How many of each type of case should it
handle to maximize profit? What profit will be achieved?

(ii) Suppose a law were introduced that limited profit from group actions to
$2500000, while malpractice suites were unchanged. How should the law
firm react?
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6.3 Linear Programming in Higher Dimensions

Generalizing to Higher Dimensions

In the previous section, we saw that the optimal solution, if one existed, always
corresponded to a corner point of the feasible region, at the intersection of two or
more boundary lines. The point could be found by solving the corresponding linear
equations.

Suppose the problem involves three variables. Although we cannot draw it on a
page, we could define a feasible region in a three-dimensional space. For example,
in a simple case the region might be a cube. The boundary lines would be replaced
by boundary planes, and the corner points would be the intersection of at least three
boundary planes. The optimal solution would again occur at a boundary point.

These ideas can be extended to any number of variables, resulting in a multidi-
mensional feasible region. Suppose there are n variables. By a point we shall mean
an n-dimensional vector of real numbers. If

ai1x1 + ai2x2 + · · · + ainxn ≤ bi (or ≥ bi)

is one of the constraints in a linear programming problem, we define the correspond-
ing boundary hyperplane to be any set of all points (x1, x2, . . . , xn) such that

ai1x1 + ai2x2 + · · · + ainxn = bi,

and the corresponding half-space is the set of all points satisfying the constraint.

We could now define a corner point to be a point satisfying n or more bound-
ary hyperplanes. The corner point is again determined by solving the corresponding
equations, and the optimal value will occur at a corner point.

All of our discussion will also apply to the two-dimensional case; many of our
examples and most of the exercises will be taken from that case, for simplicity and
so that they can be illustrated with diagrams. One minor complication, not evident in
the two-dimensional case, is the fact that a set of n hyperplanes might not determine
a unique point. For example, in three dimensions, three planes might meet in a com-
mon line. (The equivalent problem in two dimensions is when two constraints give
the same line, but we would notice this immediately when setting up the problem.)

Slack Variables

The main problem is to determine which set of equations needs to be solved, in order
to find the optimal solution. In two dimensions, this could be solved by sketching a
feasible region and drawing level curves. A similar technique could be developed in
three dimensions, but a more general method is needed.
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To handle this problem, we introduce some new variables, called slack and sur-
plus variables, one for each regular constraint, and assign these variables values at
every point. The variable will equal 0 at points on the boundary of the constraint,
be negative when the constraint is not satisfied, and in general provide a measure of
how much the point varies from being on the boundary.

To each constraint with sign ≤ is added a new variable, called a slack variable.
Thus the constraint 2x1 + 2x2 ≤ 4 becomes

2x1 + 2x2 + x3 = 4

with the addition of the slack variable x3. The original constraint will be satisfied
whenever x3 ≥ 0.

From each constraint with sign ≥ is subtracted a new variable, called a surplus
variable. Thus the constraint x1 + 5x2 ≥ 4 becomes

x1 + 5x2 − x4 = 4

with the addition of the slack variable x4. The original constraint will be satisfied
whenever x4 ≥ 0.

When we write the system, all variables are represented in the normal constraints.
These constraints become equations, and the conditions that the new variables be
non-negative are added to the non-negativity constraints. In this way, the linear pro-
gramming problem is transformed into a set of equations which are to be satisfied by
non-negative real numbers.

Sample Problem 6.12. Give the representation of the linear programming prob-
lem

Maximize P = x1 + x2

subject to 2x1 + 2x2 ≤ 4,

x1 + 5x2 ≥ 4,

x1 ≥ 0, x2 ≥ 0

with slack and surplus variables.

Solution.

Maximize P = x1 + x2 + 0x3 + 0x4

subject to 2x1 + 2x2 + x3 + 0x4 = 4,

x1 + 5x2 + 0x3 − x4 = 4,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Notice that every variable is included in every equation and in the objective func-
tion, even when the coefficient is 0. This will be useful later, when we recast the
problems in matrix form.
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Sample Problem 6.13. Add slack and surplus variables to the following linear
programming problem.

Minimize C = 3x1 − 2x2

subject to x1 + 2x2 ≤ 3,

3x1 + x2 ≥ 24,

x1 ≥ 0, x2 ≥ 0.

Solution.

Minimize C = 3x1 − 2x2 + 0x3 + 0x4

subject to x1 + 2x2 + x3 + 0x4 = 3,

3x1 + x2 + 0x3 − x4 = 2,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Your Turn. Add slack and surplus variables to the following linear program-
ming problem.

Maximize P = 3x1 + 3x2

subject to x1 + 3x2 ≤ 2,

2x1 − x2 ≥ 1,

x1 ≥ 0, x2 ≥ 0.

Consider the simple case of one constraint involving two variables. For example,
consider x1 + 2x2 ≤ 4. With the addition of the slack variable x3, this becomes
x1 + 2x2 + x3 = 4. The point (2, 1) lies on the boundary line, so it receives x3
coordinate 0, and its coordinates in the new system are (2, 1, 0). The point (1, 1)

lies inside the feasible region, and from the equation we see that x3 = 1, so its
coordinates are (1, 1, 1). These can be illustrated in a diagram, with x taking the role
of x1 and y taking the role of x2. The boundary line is the line x1 + 2x2 = 4, or
x3 = 0.

Standard Form

It will later be important for every equation to have a non-negative right-hand side.
After slack and surplus variables have been included, if any equation has negative
right-hand side, negate the whole equation.

When the slack and surplus variables have been included, and any required nega-
tions have been made, we say the problem is in standard form.



6.3 Linear Programming in Higher Dimensions 305

Sample Problem 6.14. Put the following linear programming problem in stan-
dard form. Sketch the feasible region, and label all the boundary lines and their
points of intersection.

Maximize P = 3x1 + 3x2

subject to x1 + 2x2 ≤ 4,

3x1 + x2 ≤ 3,

x1 ≥ 0, x2 ≥ 0.

Solution.

Maximize P = 3x1 + 3x2 + 0x3 + 0x4

subject to x1 + 2x2 + x3 + 0x4 = 4,

3x1 + x2 + 0x3 + x4 = 3,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Your Turn. Put the following linear programming problem in standard form.
Sketch the feasible region, and label all the boundary lines and their points of
intersection.

Maximize P = x1 + 2x2

subject to x1 + x2 ≤ 6,

2x1 + x2 ≤ 8,

x1 ≥ 0, x2 ≥ 0.

Basic Feasible Solutions

In Sample Problem 6.14 all the corner points have two zero coordinates, correspond-
ing to the fact that two equations of the form xj = 0 are satisfied. In general, a prob-
lem with m regular constraints and n variables, the standard form of the equation will
have m equations and m + n variables, and the corner points are those points with
n zero coordinates. To remember this, recall that the origin is always a corner point,
and it has n variables (the variables of the original problem) zero.

The solutions corresponding to corner points are called basic, and often the cor-
ner points themselves are called basic solutions. Other solutions and points are non-
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basic. Among the basic solutions, those that satisfy the constraints by having no neg-
ative coordinates are called feasible, and the others are infeasible. The basic principle
for solving linear programming problems is this.

Theorem 23. The optimal solution to a linear programming problem is a basic fea-
sible solution.

To find all basic feasible solutions, you could list all sets of n variables. For each
set, a basic solution is obtained by setting those variables to zero, and solving the
equations for the other variables. The n variables in the set are called non-basic for
the particular solution, because they make zero contribution, while the m variables
for which you solve are basic variable.

In small problems, the number of basic feasible solutions is small, and they can
all be examined. Of course, it is still necessary to determine whether the problem is
unbounded.

Sample Problem 6.15. In the linear programming problem of Sample Prob-
lem 6.14, list all basic solutions. State which are feasible, and solve the problem.

Solution.

Non-basic variables Basic variables Basic solution Feasible? P

x1, x2 x3, x4 (0, 0, 4, 3) yes 0
x1, x3 x2, x4 (0, 2, 0, 1) yes 6
x1, x4 x2, x3 (0, 3,−2, 0) no 9
x2, x3 x1, x4 (4, 0, 0,−9) no 12
x2, x4 x1, x3 (1, 0, 3, 0) yes 3
x3, x4 x1, x2 (0.4, 1.8, 0, 0) yes 6.6

The problem is bounded (from the diagram in Sample Problem 6.14), so the
optimum value is P = 6.6, attained at x1 = 0.4, x2 = 1.8.

Your Turn. Perform the same calculations for Your Turn problem 6.14.

Exercises 6.3 A

1. In each case, put the linear programming problem into standard form:

(i) Maximize P = 4x1 + 2x2

subject to x1 + 2x2 ≤ 5,

2x1 + 6x2 ≤ 12,

x1 ≥ 0, x2 ≥ 0;
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(ii) Minimize C = x1 + x2

subject to 2x1 + x2 ≥ 4,

x1 + 2x2 ≥ 4,

x1 ≥ 0, x2 ≥ 0;
(iii) Maximize P = x − 2x2

subject to 2x1 + x2 ≤ 4,

4x1 + 4x2 ≤ 12,

x ≥ 0, x2 ≥ 0;
(iv) Maximize P = 2x1 + 3x2

subject to 8x1 + 2x2 ≤ 11,

2x1 + x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0.

2. For Exercise 1, parts (i) and (ii), sketch the feasible region and label all boundary
lines and corner points, using all slack or surplus variables.

3. For the following linear programming problems, list all basic solutions, say
whether they are feasible, and solve the problem.

(i) Exercise 1(i);

(ii) Exercise 1(ii);

(iii) Maximize P = 3x1 + 4x2

subject to 2x1 + x2 ≤ 4,

3x1 + 2x2 ≤ 8,

x1 ≥ 0, x2 ≥ 0;
(iv) Maximize P = 2x1 + 3x2

subject to −x1 + 2x2 ≤ 2,

2x1 + x2 ≤ 4,

x1 ≥ 0, x2 ≥ 0.

Exercises 6.3 B

1. In each case, put the linear programming problem into standard form.

(i) Maximize P = 3x1 + 3x2

subject to 2x1 + 3x2 ≤ 6,

4x1 + 2x2 ≤ 8,

x1 ≥ 0, x2 ≥ 0;
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(ii) Maximize P = x1 + 4x2

subject to −2x1 + 3x2 ≥ −6,

3x1 + 4x2 ≤ 12,

x ≥ 0, x2 ≥ 0;
(iii) Maximize P = 5x1 + 7x2

subject to 2x1 + x2 ≤ 4,

x1 + x2 ≥ 3,

x1 ≥ 0, x2 ≥ 0;
(iv) Minimize C = 3x1 + 4x2

subject to 2x1 + x2 ≤ 6,

x1 + 3x2 ≥ 3,

x1 ≥ 0, x2 ≥ 0;
(v) Maximize P = 4x1 + x2

subject to −2x1 + x2 ≥ 1,

5x1 + 2x2 ≤ 20,

x1 ≥ 0, x2 ≥ 0;
(vi) Maximize P = 3x1 + 4x2

subject to 2x1 + 3x2 ≤ 10,

x1 + 2x2 ≤ 12,

x1 + x2 ≤ 7,

x1 ≥ 0, x2 ≥ 0.

2. For each part of Exercise 1, sketch the feasible region and label all boundary
lines and corner points, using all slack or surplus variables.

3. For each part of Exercise 1, list all basic solutions, say whether they are feasible,
and solve the problem.

4. In each case, put the linear programming problem into standard form.

(i) Minimize C = 3x1 − 2x2

subject to x1 + 2x2 ≤ 4,

2x1 + x2 ≥ 4,

x1 ≥ 0, x2 ≥ 0;
(ii) Minimize C = 3x1 + 6x2

subject to x1 + 3x2 ≤ 6,

5x1 + 3x2 ≥ 5,

2x1 + 3x2 ≤ 10,

x1 ≥ 0, x2 ≥ 0;
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(iii) Maximize P = x1 + x2
subject to 3x1 + 2x2 ≤ 6,

2x1 + 4x2 ≤ 8,

x1 − x2 ≥ 8,

x1 ≥ 0, x2 ≥ 0;
(iv) Maximize P = 6x1 + 3x2

subject to x1 + 5x2 ≤ 30,

2x1 + 2x2 ≤ 12,

x1 ≥ 0, x2 ≥ 0.

5. For Exercise 1, parts (i) and (ii), sketch the feasible region and label all boundary
lines and corner points, using all slack or surplus variables.

6. For the following linear programming problems, list all basic solutions, say
whether they are feasible, and solve the problem.

(i) Exercise 4(i);

(ii) Exercise 4(ii);

(iii) Maximize P = 8x1 + 5x2 + 6x3

subject to 2x1 + x2 + x3 ≤ 27,

−x1 + x3 ≤ 0,

−2x1 + x2 − x3 ≤ 0,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

6.4 Pivoting in Linear Programming

Exhibiting a Solution

When a linear programming problem is in standard form, there corresponds to each
equation exactly one variable with coefficient 1 in that equation and 0 in the others,
namely the slack or surplus variable for the corresponding constraint. For example,
in Sample Problem 6.14, the equations were

x1 + 2x2 + x3 + 0x4 = 4,

3x1 + x2 + 0x3 + x4 = 3,

and x3 corresponds to the first equation while x4 corresponds to the second. If all
other variables are set to 0, we can read off the values x3 = 4 and x4 = 3. We say
that the equations exhibit the basic solution (0, 0, 4, 3).

The system contains two equations in four unknowns, so its solution set is infi-
nite. It is possible to find another system with exactly the same solution set, which
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exhibits a different basic solution. In fact, there will be one such formulation for each
basic solution.

Sample Problem 6.16. For Sample Problem 6.14, find a formulation that ex-
hibits the basic solution (0, 2, 0, 1).

Solution. We want to find a form in which x2 has coefficient 1 in one equation
and 0, in the other, while x4 plays the same role with the equations reversed. This
could be achieved by adding some multiple of the first equation to the second. (If
you add a multiple of the second equation to the first, you change the coefficient
of x4.) Adding − 1

2 times equation 1 to equation 2, the resulting equations are

x1 + 2x2 + x3 + 0x4 = 4,

5

2
x1 + 0x2 − 1

2
x3 + x4 = 1.

If we divide the first equation by 2, the resulting set

1

2
x1 + x2 + 1

2
x3 + 0x4 = 2,

5

2
x1 + 0x2 − 1

2
x3 + x4 = 1

has the required form.

Your Turn. In the same problem, exhibit the basic solution (0, 3,−2, 0).

When a system exhibits a basic solution, the variables corresponding to the equa-
tions will be the basic variables in the solution. Each equation must exhibit one basic
variable for the system to exhibit a basic solution. The set of basic variables is called
the basis. As you might expect, variables outside the basis are called non-basic for
the formulation.

Sample Problem 6.17. Do the following systems exhibit basic solutions?

(i) x1 + x2 + x3 = 4,

x1 + 2x2 + 0x3 = 3;
(ii) x1 + 2x2 + 0x3 + 2x4 = 3,

0x1 + 2x2 + x3 + 2x4 = 2.

Solution. The first system does not exhibit a basic solution because the second
equation has no basic variable. The second exhibits the basic solution (3, 0, 2, 0)

which is in fact a basic feasible solution.
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Sometimes the same formulation can exhibit a basic solution in more than one
way. For example, in

x1 + x2 + x3 + 0x4 = 2,

0x1 + 0x2 + 2x3 − x4 = 1,

one can consider either x1 or x2 to be the basic variable in the first equation.

Pivoting

Refer back to Section 5.4. We referred to dependent and independent variables. The
augmented matrix of a system of equations exhibits the solution is such a way that
each equation shows how to express one dependent variable in terms of the inde-
pendent variables. This is exactly what is happening when a linear programming
problem is put in standard form. The basic variables are the dependent variables, and
the non-basic variables are the independent variables. The basic solution associated
with the representation is found by setting all the independent variables to zero. So
pivoting is the process of moving from one formulation to another in which the new
basis is obtained by deleting exactly one basis element (and introducing exactly one
new one). This is what was done in Sample Problem 6.16. In this section, we shall
examine pivoting techniques in which both the basic solution exhibited originally
and the new one are feasible.

To understand the pivoting process in terms of linear programming problems, we
consider again the example of Sample Problem 6.16. The diagram is shown below
in Figure 6.1. The process of moving from basic feasible solution (0, 0, 4, 3) to ba-
sic feasible solution (0, 2, 0, 1) corresponds to moving along the line x1 = 0 from
(0, 0, 4, 3) to (0, 2, 0, 1). As this happens, the value of the non-basic variable x2 in-
creases and the value of the basic variable x3 decreases until x3 becomes non-basic
(reaches zero). x2 is then basic.

If we were to cross the line x3 = 0, we would reach an infeasible region, where
x3 is negative. We can only move along x1 = 0 until the first time we reach another
basic point.

The process can be summarized as follows.

1. Select a non-basic variable to become basic.

2. Increase that variable while keeping all other non-basic variables zero.

3. Proceed until you reach a basic solution, that is, until you first meet another
boundary.

4. Rewrite the equations so that they exhibit this new basic feasible solution.

In the example, this worked as follows.

1. We selected the non-basic variable x2 to become basic.
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Fig. 6.1. Diagram for Sample Problem 6.16

2. In the example, the only other non-basic variable was x1, so we proceeded along
the line x1 = 0. If there were another non-basic variable, x5 say, the problem
would be three-dimensional, and each boundary would be a plane. We would
need to keep both x1 and x5 zero, so we would proceed along the line of inter-
section of the two planes x1 = 0 and x5 = 0. In general, we always need to
proceed along the line of intersection of the relevant boundaries.

3. We reached the basic solution (0, 2, 0, 1) on the boundary x3 = 0.

4. The rewritten equations were

1

2
x1 + x2 + 1

2
x3 + 0x4 = 2,

5

2
x1 + 0x2 − 1

2
x3 + x4 = 1.

Matrix Form

By the constraint matrix of a linear programming problem we mean the augmented
matrix for the system of constraint equations. It is convenient to label each row with
the basic variable exhibited by the corresponding equation, and the columns with
the variable names (we use b for the right-hand side). The matrix for Sample Prob-
lem 6.16 is

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x3 1 2 1 0 4

x4 3 1 0 1 3

⎤

⎥⎥
⎦ .

With this labeling, we shall write aij for the entry in row xi and column xj , and bi

for the entry in row xi and column b.

We shall assume that all entries in the b column are positive. If there were a
negative entry, the basic solution being exhibited would not be feasible. In this case,
we say that pivoting is impossible. (We could pivot the equations, but not for the
purpose of solving the linear programming problem.)
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Choosing the Pivot Element

Suppose we plan to pivot in such a way that basic variable xi becomes non-basic and
non-basic variable xj becomes basic. Then aij is called the pivot element, and row
xi and column xj are the pivot row and pivot column, respectively, just as before.
The pivoting process involves adding a suitable multiple of the pivot row to every
other row so that the other entries in the pivot column become 0, and then dividing
the pivot row by the pivot entry.

In linear programming, we must choose a pivot element such that the new basic
solution will be feasible.

The first requirement is that the pivot element be positive. If it is zero, we cannot
use that row to eliminate the other entries in the pivot column; if it is negative, when
we divide the pivot row by the pivot entry, the new right-hand side will be negative,
and the new basic variable will be infeasible.

Now suppose column xj has been chosen as the pivot column. It may be any
column with at least one positive entry. To choose the pivot row, we calculate the
ratio bi

aij
for each row xi such that aij is positive, and select the smallest value. This

determines the pivot row. If any other row were chosen, pivoting would result in an
infeasible solution (in the row that should have been used as pivot row, the right-hand
side will be negative).

In the event of a tie, either candidate may be used. (You will find that in the
resulting basic solution, one of the basic variables will equal zero.)

Sample Problem 6.18. In each case, the pivot column is column x2. Determine
the pivot element.

(i)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 2 0 5 5

x3 0 3 1 6 6

⎤

⎥⎥
⎦ ;

(ii)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 −2 0 5 1

x3 0 3 1 6 6

⎤

⎥⎥
⎦ ;

(iii)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 2 0 5 −1

x3 0 3 1 6 6

⎤

⎥⎥
⎦ .

Solution.

(i) a32 is used because the ratio 6
3 = 2 is smaller than 5

2 .
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(ii) a32 must be used because the ratio b1
a12

is negative.

(iii) No pivot is possible because the system does not exhibit a basic feasible
solution—b1 is negative.

Your Turn. In each case, the pivot column is column x2. Determine the pivot
element.

(i)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 2 0 4 4

x3 0 1 1 4 6

⎤

⎥⎥
⎦ ;

(ii)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 2 0 5 4

x3 0 −1 1 4 6

⎤

⎥⎥
⎦ .

When pivoting, we shall underline the pivot element. After pivoting, it is neces-
sary to update the BV column, to reflect the change in basic variables: if the pivot
element is aij , then the pivot row previously exhibited basic variable xi , but in the
new matrix it represents basic variable xj .

Sample Problem 6.19. Carry out the pivot in Sample Problem 6.18(i).

Solution. Originally the basic feasible solution (5, 0, 6, 0) was exhibited.
⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 2 0 5 5

x3 0 3 1 6 6

⎤

⎥⎥
⎦

⎡

⎢
⎢
⎣

BV x1 x2 x3 x4 b

x1 1 0 − 2
3 1 1

x2 0 1 1
3 2 2

⎤

⎥
⎥
⎦ R1 → R1 − 2

3R2,

R2 → 1
3R2.

The basic feasible solution (1, 2, 0, 0) is now exhibited.

Your Turn. Carry out the pivot in Your Turn problem 6.18(i) .

Exercises 6.4 A

1. In each case, write the constraints in standard form, adding slack and surplus
variables. Do the constraints exhibit a basic feasible solution? If so, write down
that solution.
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(i) x1 + 2x2 ≤ 3,

2x1 + 3x2 ≤ 4;
(ii) 2x1 + 2x2 ≤ 3,

x1 + 3x2 ≥ 5;
(iii) 2x1 + x2 ≤ 5,

x1 + 3x2 ≤ 8;
(iv) 3x1 + 2x2 ≤ 3,

x1 − 2x2 ≥ 5;
(v) 3x1 + 2x2 ≤ 6,

x1 + 3x2 ≥ 4;
(vi) x1 − x2 + 2x3 ≤ 1,

2x1 + x2 + x3 ≥ 3;
(vii) x1 + x2 + 2x3 ≤ 1,

3x1 − 3x2 + 2x3 ≤ 1,

−x1 + 2x2 + 3x3 ≤ 3;
(viii) 3x1 + 2x2 ≤ 3,

x1 + 5x2 ≤ 2,

2x1 − 2x2 ≤ 1.

2. For each problem in Exercise 1 where the constraints exhibit a basic feasible
solution, write down the constraint matrix.

3. In the following problems, you wish to pivot on column x3. Is there a pivot row
available? If so, which row is it? If not, why not?

(i)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 0 4 1 2

x2 0 1 1 4 1

⎤

⎥⎥
⎦ ;

(ii)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x4 0 4 2 1 2

x1 1 1 1 0 2

⎤

⎥⎥
⎦ ;

(iii)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 x5 b

x1 1 2 0 0 4 2

x4 0 3 −2 1 2 6

⎤

⎥⎥
⎦ ;
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(iv)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x1 1 1 −1 0 0 4 2

x5 0 2 1 0 1 1 2

x4 0 −2 3 1 0 2 6

⎤

⎥⎥⎥⎥
⎦

.

4. For those problems in Exercise 3 where a pivot is available, perform the pivot.
Write down the basic feasible solution exhibited originally and the new basic
feasible solution.

5. In the following problems, pivot on the indicated element:

(i)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x3 0 1 1 1 1

x1 1 2 0 3 4

⎤

⎥⎥
⎦ ;

(ii)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x4 2 0 2
3 1 4

x2 1 1 1 0 3

⎤

⎥⎥
⎦ ;

(iii)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x4 0 1 1 1 2

x1 1 2 1 0 4

⎤

⎥⎥
⎦ ;

(iv)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x4 2 0 6 1 2

x2 2 1 4 0 3

⎤

⎥⎥
⎦ ;

(v)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x2 0 1 4 0 1 4 3

x4 0 0 −1 1 2 −1 1

x1 1 0 2 0 1 1 1

⎤

⎥⎥⎥⎥
⎦

;

(vi)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x1 1 0 1 0 1 2 2

x4 0 0 0 1 3 4 3

x2 0 1 1 0 2 −1 1

⎤

⎥⎥⎥⎥
⎦

.
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6. In the constraint system

x1 + 1

2
x2 + 0x3 − 1

2
x4 = 2,

0x1 + 1

2
x2 + x3 + 1

2
x4 = 1,

the basic variables are x1 and x3, while x2 and x4 are non-basic.

(i) What are the values of x1 and x3? What is the basic feasible solution exhib-
ited?

(ii) What is the maximum amount by which x2 can be increased before x1
becomes zero?

(iii) What is the maximum amount by which x2 can be increased before x3
becomes zero?

(iv) What is the maximum amount by which x2 can be increased if the point
under consideration is to remain feasible?

(v) Suppose we stop at a basic feasible solution for which x2 is basic. What are
the coordinates of the point?

Exercises 6.4 B

1. In each case, write the constraints in standard form, adding slack and surplus
variables. Do the constraints exhibit a basic feasible solution?

(i) 7x1 + 2x2 ≤ 5,

5x1 − x2 ≤ 1;
(ii) 3x1 + 2x2 ≤ 6,

4x1 + 3x2 ≥ 1;
(iii) 2x1 + x2 ≥ 3,

3x1 − x2 ≤ 1;
(iv) 5x1 + 7x2 + 2x3 ≤ 8,

3x1 + 3x2 − x3 ≤ 4;
(v) 4x1 + 2x2 ≤ 1,

2x1 + 4x2 ≤ 5;
(vi) 3x1 + 4x2 + 3x3 ≤ 5,

2x1 + 3x2 + x3 ≥ 1;
(vii) 2x1 + 2x2 ≤ 6,

x1 + 3x2 ≤ 4;
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(viii) x1 − 3x2 − 2x3 ≥ 1,

3x1 + 2x2 + 3x3 ≤ 3;
(ix) 3x1 − 5x2 ≤ 1,

x1 + 2x2 ≤ 2;
(x) x1 + 2x2 + 2x3 ≥ 1,

2x1 + 3x2 + x3 ≥ 3;
(xi) 2x1 − x2 + x3 ≤ 1,

3x1 − 2x2 + 2x3 ≤ 1,

−x1 + x2 + 2x3 ≤ 3;
(xii) x1 − 3x2 ≤ 3,

x1 + 2x2 ≤ 2,

2x1 − 3x2 ≤ 1;
(xiii) 4x1 + x2 ≤ 7,

3x1 + 3x2 ≤ 6,

2x1 − x2 ≥ 2;
(xiv) x1 + 2x2 + 2x3 ≤ 3,

2x1 + 3x2 + x3 ≤ 3,

3x1 + x2 − x3 ≤ 2.

2. For each problem in Exercise 1 where the constraints exhibit a basic feasible
solution, write down the constraint matrix.

3. In the following problems, you wish to pivot on column x2. Is there a pivot row
available? If so, which row is it? If not, why not?

(i)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 2 0 5 2

x3 0 3 1 3 4

⎤

⎥⎥
⎦ ;

(ii)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 0 0 3 1

x3 0 −1 1 2 1

⎤

⎥⎥
⎦ ;

(iii)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x4 1 1 0 1 3

x3 3 2 1 0 2

⎤

⎥⎥
⎦ ;
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(iv)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 0 4 0 7

x4 0 0 1 1 2

⎤

⎥⎥
⎦ ;

(v)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 b

x1 1 2 0 2 0 4

x5 0 4 0 3 1 4

x3 0 1 1 8 0 2

⎤

⎥⎥⎥⎥
⎦

;

(vi)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 b

x1 1 −2 0 2 0 2

x5 0 0 0 3 1 2

x3 0 0 1 2 0 4

⎤

⎥⎥⎥⎥
⎦

;

(vii)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x1 1 −1 0 2 0 1 4

x5 0 1 0 2 1 2 1

x3 0 1 1 −3 0 1 2

⎤

⎥⎥⎥⎥
⎦

;

(viii)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x3 1 1 1 2 0 0 2

x6 2 3 0 2 0 1 6

x5 3 2 0 −4 1 0 2

⎤

⎥⎥⎥⎥
⎦

.

4. For those problems in Exercise 3 where a pivot is available, perform the pivot.
Write down the basic feasible solution exhibited originally and the new basic
feasible solution.

5. In the following problems, you wish to pivot on column x4. Is there a pivot row
available? If so, which row is it? If not, why not?

(i)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 0 2 1 2

x2 0 1 1 4 5

⎤

⎥⎥
⎦ ;

(ii)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x3 0 4 1 −1 2

x1 1 1 0 0 2

⎤

⎥⎥
⎦ ;
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(iii)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 x5 b

x1 1 2 0 2 4 2

x3 0 3 1 1 2 6

⎤

⎥⎥
⎦ ;

(iv)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x1 1 1 −1 0 0 0 2

x5 0 2 1 0 1 0 2

x6 0 −2 3 0 0 1 3

⎤

⎥⎥⎥⎥
⎦

;

(v)

⎡

⎢
⎢
⎣

BV x1 x2 x3 x4 x5 b

x1 1 2 0 2 0 2

x5 0 3 −2 2 1 6

⎤

⎥
⎥
⎦ ;

(vi)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x1 1 0 −1 1 0 0 2

x5 0 1 1 2 1 0 2

x6 0 0 3 1 0 1 3

⎤

⎥⎥⎥⎥
⎦

.

6. For those problems in Exercise 5 where a pivot is available, perform the pivot.
Write down the basic feasible solution exhibited originally and the new basic
feasible solution.

7. In the following problems, pivot on the indicated element:

(i)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x3 0 1 2 2 1

x1 1 2 0 4 6

⎤

⎥⎥
⎦ ;

(ii)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x4 1 0 4 1 9

x2 1 1 1 0 2

⎤

⎥⎥
⎦ ;

(iii)

⎡

⎢
⎢
⎣

BV x1 x2 x3 x4 b

x3 0 3 1 4 2

x1 1 1 0 3 2

⎤

⎥
⎥
⎦ ;

(iv)

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 0 2 1 4

x2 0 1 1 2 1

⎤

⎥⎥
⎦ ;
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(v)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x2 0 1 2 0 2 4 4

x4 0 0 −1 1 3 −1 2

x1 1 0 1 0 1 1 1

⎤

⎥⎥⎥⎥
⎦

;

(vi)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x1 1 0 2 0 2 2 2

x4 0 0 0 1 2 3 3

x2 0 1 1 0 4 2 1

⎤

⎥⎥⎥⎥
⎦

;

(vii)

⎡

⎢
⎢
⎣

BV x1 x2 x3 x4 b

x3 4 0 1 4 6

x2 3 1 0 3 8

⎤

⎥
⎥
⎦ ;

(viii)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x2 4 1 1 0 1 0 3

x4 2 0 1 1 3 0 2

x6 1 0 1 0 4 1 4

⎤

⎥⎥⎥⎥
⎦

;

(ix)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x2 0 1 1 0 0 4 2

x1 1 0 −1 1 3 −1 1

x5 0 0 1 0 1 2 1

⎤

⎥⎥⎥⎥
⎦

;

(x)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x1 1 3 1 0 1 0 2

x4 0 2 2 1 2 0 4

x6 0 1 1 0 2 1 1

⎤

⎥⎥⎥⎥
⎦

.

8. In the constraint system

x1 + x2 + x3 + 0x4 = 3,

0x1 + 2x2 + x3 + x4 = 4,

the basic variables are x1 and x4, while x2 and x3 are non-basic.

(i) What are the values of x1 and x4? What is the basic feasible solution exhib-
ited?

(ii) What is the maximum amount by which x2 can be increased before x1
becomes zero?

(iii) What is the maximum amount by which x2 can be increased before x4
becomes zero?
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(iv) What is the maximum amount by which x2 can be increased if the point
under consideration is to remain feasible?

(v) Suppose we stop at a basic feasible solution for which x2 is basic. What are
the coordinates of the point?

6.5 The Simplex Method

Real World Problems

So far we have seen that a linear programming problem can be solved by listing all
the basic solutions, testing them for feasibility, and finding the basic feasible solution
for which the objective function has the best value. This method is fine for small
problems, but impractical in the real world. In a problem with three variables and
two constraints, there are at most 10 basic solutions. However, with 10 variables and
10 constraints, the number could be as high as 184756.

In general, if there are m constraints and n variables in the original problem,
there will be m + n variables after slacks and surpluses are taken into account. Each
selection of n variables leads to a basic solution. If there are no duplicates, there will
be

(
m+n

n

)
basic solutions. A typical scheduling problem could easily have 50 origi-

nal variables and 50 constraints, so there would be about a million million million
million million basic solutions.

In the 1940s, George Dantzig developed a technique, called the simplex method,
for solving linear programs. His algorithm involves pivoting from one basic feasible
solution to another, in such a way that the new solution gives a better value of the
objective function. He proved that, if his method cannot yield an improvement, then
the best possible value of the objective function has been achieved. We shall not
discuss the proof here, but it can be found in advanced books on linear programming.

In practice, the simplex method is nearly always very fast. It is possible to concoct
problems where it will examine a great many of the basic feasible solutions, but in
most cases only a small number will be treated. Moreover, once a basic feasible
solution is found, no infeasible solutions need ever be considered.

In order to implement the simplex method, we need to do three things. First, we
must find a convenient way to keep track of the value of the objective function. This
is done by adding a row to the constraint matrix. The new row is called the objective
row, and the enhanced matrix is called a tableau. A new variable is also added, to
represent the value of the objective function. Second, we need a way to choose a
pivot that will improve the objective function. And finally, we need to find a basic
feasible solution for a starting-point. In this section, we discuss the first two points,
and restrict our attention to maximization problems where the basic solution found
by putting all the original variables to zero (“the origin”) is feasible. We discuss more
general problems in the later sections.
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The Initial Tableau

Suppose the objective function is P = k1x1 + k2x2 + · · · + knxn. We add slack
and surplus variables and move all variables to the left-hand side of the equation,
obtaining

−k1x1 − k2x2 − · · · − knxn + 0xn+1 + · · · + 0xm+n + P = 0.

This line is added to the bottom of the constraint matrix. A new column is added for
P , before the b column, with every entry 0 except the last.

Remember: the elements in the objective row are the negatives of the coefficients
in the expression for P .

Sample Problem 6.20. Construct the initial tableau for the problem with stan-
dard representation:

Maximize P = 3x1 + 4x2 + 0x3 + 0x4

subject to 2x1 + 2x2 + x3 + 0x4 = 6,

x1 + 3x2 + 0x3 + x4 = 6,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Solution. ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 2 2 1 0 0 6

x4 1 3 0 1 0 6

−3 −4 0 0 1 0

⎤

⎥⎥⎥⎥
⎦

Your Turn. Construct the initial tableau for the problem with standard represen-
tation

Maximize P = 2x1 + 3x2 + 0x3 + 0x4

subject to 4x1 + 2x2 + x3 + 0x4 = 6,

2x1 + 4x2 + 0x3 + x4 = 6,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Choosing a Pivot Element

The next question is, which pivot to use? In the Sample Problem 6.20, either a31 or
a42 would be suitable. However, consider the problem with initial tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 2 2 1 0 0 6

x4 1 3 0 1 0 6

−3 2 0 0 1 0

⎤

⎥⎥⎥⎥
⎦

.
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(In this case the original objective function was P = 3x1 − 2x2.) If we pivot on a42
we obtain

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3
4
3 0 1 − 2

3 0 2

x2
1
3 1 0 1

3 0 2

− 11
3 0 0 − 2

3 1 −4

⎤

⎥⎥⎥⎥
⎦

.

We have moved to the basic feasible solution (0, 2, 2, 0), and the value of the objec-
tive function has changed from 0 to −4. It has decreased.

The solution is straightforward. An entry is a suitable pivot element only if the
corresponding entry in the objective row is negative. When we pivot, we are increas-
ing the value of one non-basic variable. For this to increase the objective function,
that variable must have a positive coefficient in the equation for P , which corre-
sponds to a negative entry in the objective row.

The usual practice is to choose the column with the largest negative entry because
experience suggests that this tends to help you reach the end of the process in fewer
steps. However, this is not essential, and you can use any negative entry.

Sample Problem 6.21. In each case, an objective row is shown. Which pivot col-
umn should be chosen?

(i)

[
x1 x2 x3 x4 P b

−2 −1 0 0 0 0

]

;

(ii)

[
x1 x2 x3 x4 P b

−1 1 0 0 0 0

]

;

(iii)

[
x1 x2 x3 x4 P b

1 1 0 0 0 0

]

.

Solution. In (i), either x1 or x2 can be used, but x1 would be the usual choice. In
case (ii), x1 must be chosen. In case (iii), no pivot is available.

Sample Problem 6.22. Pivot on row x4 and column x2 in Sample Problem 6.20.

Solution.
⎡

⎢
⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3
4
3 0 1 − 2

3 0 2

x2
1
3 1 0 1

3 0 2

− 5
3 0 0 4

3 1 8

⎤

⎥
⎥⎥⎥
⎦

.
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Your Turn. Pivot on row x3 and column x1 in Your Turn problem 6.20.

Sample Problem 6.23. Pivot on entry x3 and column x1 in Sample Problem 6.20.

Solution.
⎡

⎢⎢⎢
⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 1 1
2 0 0 3

x4 0 2 − 1
2 1 0 3

0 −1 3
2 0 1 9

⎤

⎥⎥⎥
⎥
⎦

.

After pivoting, examine the new tableau and choose another pivot. Continue in
this way until you reach a tableau with no pivot, as in case (iii) of Sample Prob-
lem 6.21. When this happens, you have reached the optimum solution.

Sample Problem 6.24. Finish Sample Problem 6.20.

Solution. We continue from Sample Problem 6.22. We pivot on x3 and col-
umn x1, obtaining

⎡

⎢⎢⎢
⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 0 3
4 − 1

2 0 3
2

x2 0 0 − 1
4

1
2 0 3

2

0 0 5
4

1
2 1 21

2

⎤

⎥⎥⎥
⎥
⎦

.

The solution is P = 21
2 , obtained by putting x1 = 3

2 , x2 = 3
2 .

Your Turn. Finish Your Turn problem 6.20.

Unbounded Problems

It can happen that a pivot column is available, with a negative entry in the objective
row, but there is no positive entry in the column. In this case, it is possible to increase
the objective function by increasing the value of the relevant variable, but no limit is
found. The feasible region continues without bound. In this case, we say the objective
function is unbounded. In real terms, the usual interpretation is that the problem has
not been stated properly. Typically, one or more conditions have been omitted.

Minimization Problems

The simplex method, as described above, applies only to maximization problems.
Moreover, we have assumed that all the constraints are in the form “some expres-
sion ≤ constant”, so that a basic feasible solution will be exhibited.



326 6 Linear Programming

For convenience, we shall continue to write all problems as maximization prob-
lems. If, for example, we need to minimize the cost C = 3x1 − 2x2, we shall simply
define P = −C, and maximize P = −3x1 + 2x2. No other changes are involved.

If there are any constraints of the form “≥”, we can also rewrite them by negation.
For example, 2x1 − x2 ≥ 2 becomes −2x1 + x2 ≤ −2. However, a negative quantity
on the right-hand side means that the basic solution being exhibited is not feasible.

Sample Problem 6.25. Convert the following problem to a maximization prob-
lem.

Minimize C = 3x1 − 2x2

subject to x1 + 2x2 ≤ 2,

2x1 − x2 ≥ −1,

x1 ≥ 0, x2 ≥ 0.

Solution.

Maximize P = −3x1 + 2x2

subject to x1 + 2x2 ≤ 2,

−2x1 + x2 ≤ 1,

x1 ≥ 0, x2 ≥ 0.

Your Turn. Convert the following problem to a maximization problem.

Minimize C = 2x1 − 3x2

subject to 2x1 − 2x2 ≥ −5,

3x1 + x2 ≤ 4,

x1 ≥ 0, x2 ≥ 0.

Summary of the Simplex Method

We now summarize the simplex method.

Step 1 Write the problem in standard form as a maximization, with slack and surplus
variables. If a basic feasible solution is not exhibited, see the methods in the next
section.

Step 2 Construct the initial tableau. To the constraint matrix, add an objective row
and a column for P .

Step 3 Is there a possible pivot column? If there is no negative entry in the objective
row (other than the b column), the process is finished and you can read off the
optimum value. Otherwise go on.

Step 4 Pivot. Then go back to step 3.



6.5 The Simplex Method 327

Sample Problem 6.26. Solve the following linear programming problem.

Maximize P = 3x1 + 2x2

subject to x1 + 2x2 ≤ 2,

2x1 + 3x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0.

Solution.

Step 1. The problem is a maximization. We insert slack variables, obtaining

Maximize P = 3x1 + 2x2 + 0x3 + 0x4

subject to x1 + 2x2 + x3 + 0x4 = 2,

2x1 + 3x2 + 0x3 + x4 = 5,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Step 2. The initial tableau is
⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 1 2 1 0 0 2

x4 2 3 0 1 0 5

−3 −2 0 0 1 0

⎤

⎥⎥⎥⎥
⎦

.

Step 3. Column x1 is a suitable pivot column.

Step 4. We pivot on entry x3 and column x1, obtaining
⎡

⎢
⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 2 1 0 0 2

x4 0 −1 −2 1 0 1

0 4 3 0 1 6

⎤

⎥
⎥⎥⎥
⎦

.

There is now no pivot. The maximum value is P = 6, obtained by putting
x1 = 2, x2 = 0.

Your Turn. Solve the following linear programming problem.

Maximize P = 5x1 + 3x2
subject to 2x1 + 2x2 ≤ 4,

3x1 + x2 ≤ 7,

x1 ≥ 0, x2 ≥ 0.
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Exercises 6.5 A

1. In each of the following problems, add slack variables and write down the initial
tableau.

(i) Maximize P = 3x1 + 5x2

subject to x1 + 4x2 ≤ 2,

x1 + 2x2 ≤ 4,

x1 ≥ 0, x2 ≥ 0;
(ii) Maximize P = x1 + 3x2

subject to 2x1 + 2x2 ≤ 4,

3x1 + 5x2 ≤ 1,

x1 ≥ 0, x2 ≥ 0;
(iii) Maximize P = 3x1 + 2x2

subject to 3x1 + 3x2 ≤ 2,

x1 + 4x2 ≤ 3,

x1 ≥ 0, x2 ≥ 0;
(iv) Minimize C = 4x1 − 3x2 + 2x3

subject to x1 + x2 + x3 ≤ 3,

3x1 + 2x2 + 3x3 ≤ 4,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(v) Maximize C = 2x1 + 5x2

subject to 2x1 + x2 ≤ 6,

3x1 + 3x2 ≤ 7,

x1 + 2x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0;
(vi) Minimize C = 6x1 − x2

subject to 5x1 + 3x2 ≤ 8,

3x1 + x2 ≤ 4,

x1 + 4x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0.

2. In the following tableaus, perform a pivot on the indicated element.

(i)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 2 1 0 1 0 3

x3 1 0 1 2 0 1

−2 0 0 −1 1 2

⎤

⎥⎥⎥⎥
⎦

;
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(ii)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x4 0 1 2 1 0 2

x1 1 1 1 0 0 1

0 −1 −3 0 1 3

⎤

⎥⎥⎥⎥
⎦

;

(iii)

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x2 0 1 0 0 1 0 2

x1 1 0 1 0 1 0 3

x4 0 0 1 1 3 0 4

0 0 −1 0 1 1 2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(iv)

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 P b

x4 0 0 2 1 1 1 0 3

x1 1 0 −2 0 −1 −2 0 4

x2 0 1 1 0 1 −1 0 4

0 0 −1 0 −4 −1 1 5

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

3. In the following tableaus, perform one operation:
if a pivot is required, perform it;
if the problem is unbounded, say so;
if the problem is finished, state the optimum value and the values of the variables
that attain it.

(i) Maximize P = 12x1 + 5x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 4 2 1 0 0 12

x4 6 4 0 1 0 8

−16 −24 0 0 1 0

⎤

⎥⎥⎥⎥
⎦

;

(ii) Maximize P = 4x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 −3 1 0 −3 0 15

x3 2 0 1 0 0 20

0 0 0 −4 1 45

⎤

⎥⎥⎥⎥
⎦

;
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(iii) Maximize P = 12x1 + 5x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 2 1 1 0 0 6

x4 3 2 0 1 0 4

−8 −12 0 0 1 0

⎤

⎥⎥⎥⎥
⎦

;

(iv) Maximize P = 3x1 + 2x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 0 1 2 −1 0 3

x1 1 0 −1 1 0 4

0 0 1 1 1 18

⎤

⎥⎥⎥⎥
⎦

;

(v) Maximize P = 3x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 0 2 1 −1 0 4

x1 0 1
2 0 1

2 0 4

0 − 1
2 0 3

2 1 12

⎤

⎥⎥⎥⎥
⎦

;

(vi) Maximize P = 3x1 + 2x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 0 1 2 −1 0 2

x1 1 0 −1 1 0 1

0 0 1 1 1 7

⎤

⎥⎥⎥⎥
⎦

;

(vii) Maximize P = 3x1 + 2x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x4 0 − 1
2 − 1

2 1 0 5

x1 1 5
2 2 0 0 3

2

P 2 3
2 3 0 1 9

2

⎤

⎥⎥⎥⎥
⎦

;

(viii) Maximize P = 2x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 −1 1 1 0 0 2

x4 −1 0 2 1 0 5

−5 0 3 0 1 6

⎤

⎥⎥⎥⎥
⎦

;
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(ix) Maximize P = 4x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x4 0 0 0 1 2 0 2

x2 0 1 −2 0 1 0 6

x1 1 0 −1 0 1 0 3

0 0 −3 0 0 1 30

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(x) Maximize P = 12x1 + 5x2

subject to the tableau

⎡

⎢⎢
⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 1 1 1 0 0 3

x4 1 0 −1 1 0 1

−8 0 −3 0 1 15

⎤

⎥⎥
⎥⎥
⎦

;

(xi) Maximize P = 2x1 + 4x2 + 3x3

subject to the tableau

⎡

⎢⎢⎢
⎢
⎣

BV x1 x2 x3 x4 x5 P b

x2 0 1 5 3 1 0 19

x1 1 0 3 −1 2 0 10

0 0 5 10 8 1 96

⎤

⎥⎥⎥
⎥
⎦

;

(xii) Maximize P = 2x1 + 8x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 3 0 1 0 8

x3 0 1 1 −1 0 2

0 −2 0 4 1 16

⎤

⎥⎥⎥⎥
⎦

;

(xiii) Maximize P = 4x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 −3 1 2 0 0 1

x4 2 0 1 1 0 2

0 0 0 2 1 3

⎤

⎥⎥⎥⎥
⎦

;

(xiv) Maximize P = 2x1 + 4x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 −1 2 0 0 6

x4 0 −2 2 1 0 4

0 −1 3 0 1 12

⎤

⎥⎥⎥⎥
⎦

;
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(xv) Maximize P = 2x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x3 −3 0 1 0 2 0 2

x4 −1 0 0 1 1 0 7

x2 −1 1 0 0 1 0 2

−5 0 0 0 3 1 6

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(xvi) Maximize P = 2x1 + 2x2 + x3

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 P b

x3 0 0 1 1 1 3 0 3

x1 1 0 0 2 −2 2 0 2

x2 0 1 0 0 −1 −1 0 4

0 0 0 −3 −2 1 1 15

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

4. Solve the following problems using the simplex method:

(i) Maximize P = 6x1 + 3x2

subject to x1 + 5x2 ≤ 30,

2x1 + 2x2 ≤ 12,

x1 ≥ 0, x2 ≥ 0;
(ii) Maximize P = 6x1 + 5x2

subject to 2x1 + x2 ≤ 4,

2x1 + 3x2 ≤ 8,

x1 ≥ 0, x2 ≥ 0;
(iii) Maximize P = 3x1 + 5x2

subject to 2x1 + 3x2 ≤ 12,

3x1 + 2x2 ≤ 12,

x1 ≥ 0, x2 ≥ 0;
(iv) Maximize P = 2x1 + x2 + 3x3

subject to x1 + 2x2 + x3 ≤ 2,

2x1 + x2 + x3 ≤ 3,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(v) Maximize P = 8x1 + 5x2 + 6x3

subject to 2x1 + x2 + x3 ≤ 54,

−x1 + x3 ≤ 0,

−2x1 + x2 − x3 ≤ 0,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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Exercises 6.5 B

1. In each of the following problems, add slack variables and write down the initial
tableau:

(i) Maximize P = 3x1 + 5x2

subject to 5x1 + 4x2 ≤ 2,

x1 + 2x2 ≤ 3,

x1 ≥ 0, x2 ≥ 0;
(ii) Maximize P = x1 + 3x2

subject to x1 − 2x2 ≤ 2,

2x1 + 3x2 ≤ 6,

x1 ≥ 0, x2 ≥ 0;
(iii) Maximize P = 3x1 + 2x2

subject to 4x1 + 2x2 ≤ 2,

5x1 + 3x2 ≤ 3,

x1 ≥ 0, x2 ≥ 0;
(iv) Maximize P = 3x1 + 6x2

subject to x1 + 4x2 ≤ 2,

x1 + 2x2 ≤ 4,

x1 ≥ 0, x2 ≥ 0;
(v) Maximize P = 2x1 + 5x2

subject to x1 − 4x2 ≤ 4,

5x1 + 2x2 ≤ 3,

x1 ≥ 0, x2 ≥ 0;
(vi) Maximize P = 4x1 + 3x2

subject to 2x1 + 3x2 ≤ 3,

x1 + 2x2 ≥ 4,

x1 ≥ 0, x2 ≥ 0;
(vii) Minimize C = 4x1 − 3x2 + 2x3

subject to x1 − x2 + x3 ≥ 3,

2x1 + x2 + 3x3 ≥ 8,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
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(viii) Minimize C = 4x1 + 3x2 + 2x3

subject to 2x1 + x2 + x3 ≤ 4,

2x1 + 4x2 + 3x3 ≤ 9,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(ix) Minimize C = 5x1 + 4x2 + 2x3

subject to x1 + 2x2 + 3x3 ≥ 11,

3x1 − x2 + 2x3 ≥ 8,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(x) Maximize C = 2x1 + 5x2

subject to 3x1 + x2 ≤ 5,

2x1 + 3x2 ≤ 7,

x1 + 2x2 ≤ 4,

x1 ≥ 0, x2 ≥ 0;
(xi) Minimize C = 6x1 − x2

subject to 3x1 + 2x2 ≤ 10,

3x1 − 4x2 ≤ 4,

x1 + 4x2 ≤ 9,

x1 ≥ 0, x2 ≥ 0;
(xii) Minimize C = 50x1 + 10x2 + 20x3

subject to 5x1 − 5x2 + 5x3 ≥ 5,

10x1 + 5x2 + 5x3 ≥ 10,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(xiii) Maximize C = 4x1 + 3x2

subject to x1 + 4x2 ≤ 4,

3x1 − x2 ≤ 3,

x1 + 3x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0;
(xiv) Minimize C = 6x1 − x2

subject to 3x1 + 2x2 ≥ 8,

3x1 + 4x2 ≤ 14,

5x1 + 3x2 ≤ 15,

x1 ≥ 0, x2 ≥ 0.

2. In the following tableaus, perform a pivot on the indicated element:
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(i)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 2 1 0 1 0 8

x3 2 0 4 2 0 6

−2 0 0 −2 1 3

⎤

⎥⎥⎥⎥
⎦

;

(ii)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 0 1 2 2 0 2

x1 1 0 1 2 0 3

0 0 −4 0 1 3

⎤

⎥⎥⎥⎥
⎦

;

(iii)

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x1 1 0 2 0 1 0 6

x2 0 1 1 0 1 0 4

x4 0 0 1 1 3 0 6

0 0 −2 0 3 1 4

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

;

(iv)

⎡

⎢⎢
⎢⎢
⎣

BV x1 x2 x3 x4 P b

x4 0 1 1 1 0 2

x1 1 1 1 0 0 3

0 −1 −4 0 1 3

⎤

⎥⎥
⎥⎥
⎦

;

(v)

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 3 0 1 0 4

x3 0 2 1 2 0 2

−4 0 0 −2 1 3

⎤

⎥⎥⎥⎥
⎦

;

(vi)

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x2 0 1 0 0 1 0 4

x3 1 0 1 0 1 0 2

x4 2 0 0 1 2 0 5

0 0 −2 0 2 1 3

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(vii)

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 P b

x1 1 0 2 0 −1 −2 0 5

x4 0 0 4 1 1 2 0 3

x2 0 1 1 0 1 −1 0 6

0 0 −1 0 −2 −1 1 8

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.



336 6 Linear Programming

3. In the following tableaus, perform one operation:
if a pivot is required, perform it;
if the problem is unbounded, say so;
if the problem is finished, state the optimum value and the values of the variables
that attain it.

(i) Maximize P = 12x1 + 5x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x4 0 1 2 1 0 2

x1 1 1 1 0 0 1

0 −1 −3 0 1 3

⎤

⎥⎥⎥⎥
⎦

;

(ii) Maximize P = 4x1 + 2x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x4 0 − 1
2 − 1

2 1 0 7
2

x1 1 3
2 2 0 0 3

0 5
2 3 0 1 12

⎤

⎥⎥⎥⎥
⎦

;

(iii) Maximize P = x1 + 7x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 3
2 0 1

2 0 5
2

x3 0 1
2 1 − 1

2 0 1
2

0 − 11
2 0 1

2 1 5
2

⎤

⎥⎥⎥⎥
⎦

;

(iv) Maximize P = x1 + 2x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 4 1 0 1 0 45

x3 2 0 1 −4 0 25

P 4 0 0 7 1 90

⎤

⎥⎥⎥⎥
⎦

;

(v) Maximize P = 12x1 + 5x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 3 0 2 0 4

x3 0 6 1 3 0 9

0 −6 0 −5 1 25

⎤

⎥⎥⎥⎥
⎦

;
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(vi) Maximize P = 2x1 + 2x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 2 0 1 0 30

x3 0 1 1 −1 0 20

0 2 0 5 1 60

⎤

⎥⎥⎥⎥
⎦

;

(vii) Maximize P = 3x1 + 2x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x4 0 0 −2 1 0 0 6

x2 0 1 −4 0 1 0 1

x1 1 0 −1 0 2 0 2

0 0 −3 0 1 1 8

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(viii) Maximize P = 3

2
x1 + 2x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 0 1 1 2 0 1

x1 1 2 0 1 0 2

P 0 2 0 1 1 3

⎤

⎥⎥⎥⎥
⎦

;

(ix) Maximize P = 2x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x4 −3 0 2 1 0 2

x2 −1 1 1 0 0 2

−5 0 3 0 1 6

⎤

⎥⎥⎥⎥
⎦

;

(x) Maximize P = 3x1 + 3x2 + x3

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 5
2 2 0 0 3

2

x4 0 1
2 − 1

2 1 0 5

0 − 3
2 4 0 1 9

2

⎤

⎥⎥⎥⎥
⎦

;

(xi) Maximize P = 3x1 + 3x2 + x3

subject to the tableau

⎡

⎢
⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 3
2 0 1

2 0 5
2

x3 0 1
2 0 − 1

2 0 1
2

0 − 11
2 0 1

2 1 5
2

⎤

⎥
⎥⎥⎥
⎦

;
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(xii) Maximize P = 2x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x3 0 0 1 −2 5 0 15

x1 1 0 0 −1 1 0 1

x2 0 1 0 −1 2 0 5

P 0 0 0 −5 8 1 17

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(xiii) Maximize P = 3x1 + 2x2

subject to the tableau

⎡

⎢⎢
⎢⎢
⎣

BV x1 x2 x3 x4 P b

x4 −8 0 3 1 0 15

x2 −3 1 1 0 0 3

−4 0 1 0 1 3

⎤

⎥⎥
⎥⎥
⎦

;

(xiv) Maximize P = 3x1 − x2 + 2x3

subject to the tableau

⎡

⎢⎢⎢
⎢
⎣

BV x1 x2 x3 x4 x5 P b

x4
5
2

3
2 0 1 1

2 0 3
2

x3
1
2

1
2 1 0 1

2 0 5
2

−2 2 0 0 1 1 5

⎤

⎥⎥⎥
⎥
⎦

;

(xv) Maximize P = 5x1 − 3x2 + 3x3

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x3 5 4 1 0 −2 0 2

x4 −3 2 0 1 −1 0 7

2 0 0 0 −3 1 6

⎤

⎥⎥⎥⎥
⎦

;

(xvi) Maximize P = 3x1 + 2x2 + 3x3

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x4 1 −1 1 1 0 0 5

x5 2 0 −1 0 1 0 10

−1 −2 −1 0 0 1 0

⎤

⎥⎥⎥⎥
⎦

;

(xvii) Maximize P = 5x1 + x2 + 3x3

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x3 0 8
15 1 2

3 − 1
15 0 100

3

x1 1 − 1
15 0 − 1

3
2
15 0 100

3

0 4
15 0 1

3
7
15 1 800

3

⎤

⎥⎥⎥⎥
⎦

;
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(xviii) Maximize P = 3x1 + 2x2 + 3x3

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x4 1 1 1 1 0 0 10

x5 0 1 3 0 1 0 20

−2 2 −3 0 0 1 0

⎤

⎥⎥⎥⎥
⎦

;

(xix) Maximize P = 8x1 + x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 1 1 1 0 0 2

x4 2 1 0 1 0 6

−8 1 0 0 1 0

⎤

⎥⎥⎥⎥
⎦

;

(xx) Maximize P = 2x1 + 5x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 0 1 1 1 0 3

x1 1 2 0 1 0 8

0 −1 0 1 1 16

⎤

⎥⎥⎥⎥
⎦

;

(xxi) Maximize P = 2x1 + x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 0 1 2 3 0 2

x1 1 0 −1 1 0 4

0 0 4 3 1 10

⎤

⎥⎥⎥⎥
⎦

;

(xxii) Maximize P = 3x1 + 2x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x4 0 −5 1 1 0 2

x1 1 −4 2 0 0 2

P 2 −2 2 0 1 6

⎤

⎥⎥⎥⎥
⎦

;

(xxiii) Maximize P = 2x1 + 10x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x4 0 2 −4 1 0 2

x1 1 4 2 0 0 5

P 2 −2 3 0 1 10

⎤

⎥⎥⎥⎥
⎦

;
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(xxiv) Maximize P = 2x1 + 4x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x3 0 0 1 3 4 0 3

x1 1 0 0 1 −1 0 4

x2 0 1 0 2 1 0 2

0 0 0 2 3 1 16

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(xxv) Maximize P = 3x1 + 5x2 + x3

subject to the tableau

⎡

⎢⎢
⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x1 1 1 0 1 1 0 5

x3 0 1 1 −1 2 0 1

0 −1 0 1 3 1 16

⎤

⎥⎥
⎥⎥
⎦

;

(xxvi) Maximize P = 6x1 + 2x2 + x3

subject to the tableau

⎡

⎢⎢⎢
⎢
⎣

BV x1 x2 x3 x4 x5 P b

x2 2 1 1 3 1 0 4

x3 2 0 4 −2 2 0 2

−1 0 0 4 8 1 9

⎤

⎥⎥⎥
⎥
⎦

;

(xxvii) Maximize P = 2x1 + 4x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x3 0 0 1 3 4 0 3

x1 1 0 0 1 −1 0 4

x2 0 1 0 2 1 0 2

0 0 0 2 3 1 16

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(xxviii) Maximize P = 3x1 + 5x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x3 0 −2 1 0 4 0 3

x1 1 0 0 0 −1 0 2

x4 0 −1 0 1 1 0 2

0 −1 0 0 3 1 10

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

;
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(xxix) Maximize P = 2x1 + 8x2 + x3

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 P b

x3 0 3 1 3 2 0 0 7

x1 1 2 0 −1 −1 0 0 6

x6 0 1 0 2 1 1 0 2

0 −1 0 2 5 0 1 19

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(xxx) Maximize P = 3x1 + 8x2 + 6x3

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 P b

x4 20 4 4 1 0 0 0 6

x5 8 8 4 0 1 0 0 10

x6 8 4 2 0 0 1 0 4

−3 −8 −6 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(xxxi) Maximize P = 2x1 + 2x2 + x3

subject to the tableau

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 P b

x2 0 1 5 3 1 3 0 3

x3 0 0 1 −1 1 3 0 3

x1 1 0 0 2 −2 2 0 4

0 0 0 3 2 1 1 17

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

.

4. Solve the following problems using the simplex method.

(i) Maximize P = 3x1 + 4x2

subject to 2x1 + x2 ≤ 4,

3x1 + 2x2 ≤ 8,

x1 ≥ 0, x2 ≥ 0;
(ii) Maximize P = 2x1 + 3x2

subject to −x1 + 2x2 ≤ 1,

2x1 + x2 ≤ 4,

x1 ≥ 0, x2 ≥ 0;
(iii) Maximize P = 3x1 + 5x2

subject to x1 + x2 ≤ 6,

2x1 + x2 ≤ 10,

x1 ≥ 0, x2 ≥ 0;
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(iv) Maximize P = 2x1 + 3x2 + 5x3

subject to 7x1 + x3 ≤ 6,

3x2 + 4x3 ≤ 30,

x1 + 2x2 ≤ 20,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(v) Maximize P = x1 + 2x2 + 3x3

subject to x1 + 2x2 + 2x3 ≤ 4,

4x1 + 3x2 + x3 ≤ 3,

2x1 + 2x2 + x3 ≤ 3,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(vi) Maximize P = 2x1 − 3x2 + 5x3

subject to 2x1 + x2 ≤ 16,

x2 + x3 ≤ 10,

x1 + x2 + x3 ≤ 20,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

5. Consider the following problem:

Maximize P = 2x1 + x2 + x3

subject to −x1 + x3 ≤ 1,

−x2 + x3 ≤ 2,

2x1 − x2 ≤ 3,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

It is possible to derive the final tableau
⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 P b

x3 0 0 1 3 −1 1 0 3

x1 1 0 0 2 −1 1 0 2

x2 0 1 0 3 −2 1 0 1

0 0 0 10 −5 5 1 8

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,

and from column x5 we deduce that the problem is unbounded.

(i) Verify that this tableau can be achieved (pivot on x3, then x1, then x2).

(ii) Show that if we fix x3 = 3, we can make P as large as we please by
increasing x1 and x2, and that the problem remains feasible provided x2 ≥
3 + 2x1 and x1 ≥ 2.

(iii) Find conditions on x2 and x3 such that P increases without bound, pro-
vided x1 = 2.
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6.6 The Two Phase Simplex Method

Initially Infeasible Problems

So far we only know how to apply the simplex method when the initial tableau ex-
hibits a basic feasible solution—when “the origin is feasible”. In theory, we could
start from any basic feasible solution, but we do not know how to find such a starting
point.

We shall now show how to find a basic feasible solution to a problem that is ini-
tially infeasible. The technique adds further variables, called artificial variables in
order to form a new problem (the artificial problem) that is initially feasible. Solv-
ing this problem—called the first phase—leads to a feasible solution to the original
problem. In the second phase, the original is solved by the simplex method.

Problems with Inequalities

Consider a problem with constraints

x1 + 2x2 ≤ 3,

2x1 − 3x2 ≥ 2.

If we add slack and surplus variables, the constraints become

x1 + 2x2 + x3 + 0x4 = 3,

2x1 − 3x2 + 0x3 − x4 = 2.

This does not exhibit a basic solution because the second equation does not exhibit
a basic variable. Constraints that use ≥ do not exhibit basic variables because they
take a surplus variable, with a negative sign.

We could change the second constraint to

−2x1 + 3x2 ≤ −2,

but then the constraint matrix becomes

x1 + 2x2 + x3 + 0x4 = 3,

−2x1 + 3x2 + 0x3 + x4 = −2.

This exhibits the basic solution (0, 0, 3,−2), which is not feasible.

In general, we can change a constraint with sign ≥ to one with sign ≤, but if the
original had a positive constant term then the basic solution exhibited by the new
system will not be feasible.

To avoid this difficulty, we simply add a new variable which we call an artificial
variable. Later we shall need to distinguish artificial variables from other variables,
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so we shall write artificial variables as A1, A2, and so on. The new constraint matrix
would look like

x1 + 2x2 + x3 + 0x4 + 0A1 = 3,

2x1 − 3x2 + 0x3 − x4 + A1 = 2.

Problems with Equalities

Another problem arises if any of the constraints are equalities rather than inequalities.
For example, suppose a farmer has $20000 to spend on corn and wheat seed. If she
spends $x1 on corn and $x2 on wheat, we could express the constraint as

x1 + x2 ≤ 20000,

but perhaps the amount of money left over will enter into our calculations. For exam-
ple, she may get 3% interest from the bank on any surplus. This could be expressed
by adding a figure 0.03 · (20000 − x1 − x2) to the profit, but often it is convenient to
use a variable x3 to represent the remaining cash. The constraint

x1 + x2 + x3 = 20000

does not receive a slack variable, so it does not exhibit a basic variable. Again we
can add an artificial variable.

The Artificial Problem

Sample Problem 6.27. Add slack, surplus and artificial variables to the prob-
lem:

Maximize P = 4x1 − 3x2

subject to x1 + 2x2 ≤ 6,

2x1 − x2 ≥ 2,

x1 + x2 + x3 = 5,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Solution. We add a slack variable to the first constraint, a surplus variable, and
an artificial variable to the second constraint, and an artificial variable to the third
constraint. The equations are

x1 + 2x2 + 0x3 + x4 + 0x5 + 0A1 + 0A2 = 6,

2x1 − x2 + 0x3 + 0x4 − x5 + A1 + 0A2 = 2,

x1 + x2 + x3 + 0x4 + 0x5 + 0A1 + A2 = 5,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, A1 ≥ 0, A2 ≥ 0.
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Your Turn. Add slack, surplus, and artificial variables to the problem

Maximize C = 4x1 − 3x2

subject to 2x1 − 2x2 ≤ 4,

x1 + 4x2 ≥ 4,

x1 + 2x2 + x3 = 7,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

The constraint system we have just constructed exhibits a basic feasible solution
for some linear programming problem, but what is the problem? We need to find
a problem that involves the artificial variables as well as the originals, slacks and
surpluses. To do this, we define a new objective function. Instead of maximizing
P = 4x1 − 3x2, we maximize P = 4x1 − 3x2 − MA1 − MA2, where M is some
very large positive number. It is not usual to specify a value for M , but it is assumed
to be much larger than anything else that arises in the problem.

Sample Problem 6.28. Write down the initial tableau for Sample Problem 6.27.

Solution.
⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4 1 2 0 1 0 0 0 0 6

A1 2 −1 0 0 −1 1 0 0 2

A2 1 1 1 0 0 0 1 0 5

−4 3 0 0 0 M M 1 0

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

.

When the initial tableau is written down, we wish to pivot in a way that in-
volves M . This is not initially possible because M only occurs in the objective row
with a positive sign. So the first step in solving an artificial problem is to change the
objective row. This is called updating the tableau. Simply subtract M times row Ai

from the objective row for each artificial variable Ai .

Sample Problem 6.29. Write down the updated tableau for Sample
Problem 6.27.

Solution. We subtract M× the A1 and A2 rows from the objective row.
⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4 1 2 0 1 0 0 0 0 6

A1 2 −1 0 0 −1 1 0 0 2

A2 1 1 1 0 0 0 1 0 5

−4 3 0 0 0 0 0 1 0

−3M 0 −M 0 M 0 0 0 −7M

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.
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Your Turn. Write down the initial and updated tableaus for Your Turn Prob-
lem 6.27.

Notice that we write the objective row in two lines, with all multiples of M sep-
arated out. The entries in the x1 column, for example, mean that the coefficient of x1
in the objective row is −4 − 3M . This separation will be useful in later calculations.

The Solution Process

We proceed to solve the artificial problem. Because M is large and the objective
function contains each artificial variable multiplied by −M , all artificial variables
will necessarily be zero—that is, non-basic—in the optimal solution.

Sample Problem 6.30. Solve the artificial problem in Sample Problem 6.27.

Solution. We pivot on row A1, column x1. In order to add (3M + 4) times the
new x1 row to the objective row, we actually add 3M times the new row to the
lower part of the objective row and 4 times the row to the upper part:

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4 0 5
2 0 1 1

2 − 1
2 0 0 5

x1 1 − 1
2 0 0 − 1

2
1
2 0 0 1

A2 0 3
2 1 0 1

2 − 1
2 1 0 4

0 1 0 0 −2 2 0 1 4

0 − 3
2M −M 0 − 1

2M 3
2M 0 0 −4M

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥
⎦

.

The next pivot is row A2, column x3:
⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4 0 5
2 0 1 1

2 − 1
2 0 0 5

x1 1 − 1
2 0 0 − 1

2
1
2 0 0 1

x3 0 3
2 1 0 1

2 − 1
2 1 0 4

0 1 0 0 −2 2 0 1 4

0 0 0 0 0 M M 0 0

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

The final pivot is row x3, column x5:
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⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4 0 1 −1 1 0 0 −1 0 1

x1 1 1 1 0 0 0 0 0 5

x5 0 3 2 0 1 −1 2 0 8

0 7 4 0 0 0 4 1 20

0 0 0 0 0 M M 0 0

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.

The basic feasible solution has x1 = 5, x4 = 1, x5 = 8, x2 = x3 = A1 =
A2 = 0.

Your Turn. Solve the artificial problem in Your Turn Problem 6.27.

The solution of the artificial problem is not necessarily optimal for the original
problem. However, the basic solution that was found is also a basic solution for the
original problem because all the artificial variables are zero, and it is feasible. So we
can go on from there to solve the original problem. We simply delete the artificial
variable columns and the second objective row.

Sample Problem 6.31. Complete Sample Problem 6.27.

Solution. The tableau becomes
⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x4 0 1 −1 1 0 0 1

x1 1 1 1 0 0 0 5

x5 0 3 2 0 1 0 8

0 7 4 0 0 1 20

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

We have finished; no further pivoting is necessary. The basic feasible solution
has P = 20, x1 = 5, x2 = 0, x3 = 0. The slack variable and surplus variable are
x4 = 1, x5 = 8.

Your Turn. Complete Your Turn Problem 6.27.

Of course, our small example could have been solved easily by diagram or by
enumerating all basic points. But the two-phase method works quite quickly on larger
problems, where the other methods mentioned would be too slow.

Notes on the Solution Process

1. To choose a pivot column, it is only necessary to look at the second objective
row, the part with the multiples of M . A negative M will always outweigh any
positive number in the other part of the objective row.
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2. In the updated tableau—the starting point for the first phase—all the artificial
variables are basic. After one of them is eliminated from the basis, it will never
return. So you could delete the column for an artificial variable as soon as you
have pivoted on its row.

3. It can happen that the first phase ends with an artificial variable remaining in the
basis. If this variable has value 0 in the b column, it can still be eliminated. But
if it is positive, this means that the original problem has no feasible solutions.
There were no points in the feasible region. In this case, you simply report that
the problem is infeasible.

Summary of the Two-Phase Method

First phase:

Step 1. Change a minimization problem to a maximization problem if necessary.
Add slack and surplus variables. If a basic feasible solution is exhibited, go to
Step 6.

Step 2. Add artificial variables to all constraints that do not exhibit a feasible basic
variable.

Step 3. Form the updated tableau. Add −M times each artificial variable to the
objective function (this forms the initial tableau); then, for each row exhibiting
an artificial variable, add M times that row to the objective function.

Step 4. Solve the artificial problem. If a positive artificial variable remains in the
basis, the problem is infeasible. Otherwise go to Step 5.

Second phase:

Step 5. Delete the artificial variable columns.

Step 6. Solve the problem by the simplex method.

Exercises 6.6 A

1. For each of the following constraints, add all necessary slack, surplus or artificial
variables:

(i) 4x1 + 3x2 ≥ 5;

(ii) x1 + x2 ≥ 2;

(iii) 7x1 − 2x2 + 3x3 = 7;

(iv) 4x1 + 5x2 + x3 ≥ 4;

(v) 4x1 − 4x2 + 2x3 ≤ 5;
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(vi) 7x1 + 3x2 − 3x3 + 7x4 = 5;

(vii) 3x1 − 2x2 + 4x3 − 3x4 ≥ 1;

(viii) 11x1 + 9x2 + 5x3 + 2x4 ≤ 3.

2. Set up the initial and updated tableaus for the following linear programming
problems:

(i) Minimize C = 2x1 + 3x2

subject to 4x1 + 2x2 ≥ 5,

3x1 + 2x2 = 10,

x1 ≥ 0, x2 ≥ 0;
(ii) Minimize C = 2x1 + 5x2

subject to 4x1 + 2x2 ≤ 8,

2x1 + 10x2 ≥ 11,

3x1 − x2 = 7,

x1 ≥ 0, x2 ≥ 0;
(iii) Minimize C = x1 + 2x2 + x3

subject to x1 + 2x2 + 3x3 ≤ 6,

x1 + x2 − x3 ≥ 4,

x2 + x3 = 2,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(iv) Minimize C = 2x1 + 3x2 + x3 + x4

subject to x1 + x2 + 3x3 + 2x4 ≤ 6,

2x1 + 3x2 + x3 + x4 ≥ 9,

2x1 + 2x2 − x3 − x4 = 4,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

3. In the following tableaus, perform one operation:
if a pivot is required, perform it;
if the problem is infeasible, say so;
if the artificial problem is finished, set up the new tableau.

(i) Maximize P = 2x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

BV x1 x2 x3 x4 A2 P b

x3 −1 0 1 −2 0 0 2

A1 2 −1 0 3 1 0 4

2 0 0 −3 0 1 0

−M M 0 2M 0 0 −4M

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

;
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(ii) Maximize P = x1 + 2x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 P b

x2
3
2 1 1

2 0 0 0 3

A1 − 1
2 0 − 1

2 −1 1 0 1

3 0 1 0 0 1 6
3
2M 0 M

2 M 0 0 −M

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(iii) Minimize C = 3x1 + 4x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 P b

x1 1 2 −1 0 0 0 4

A1 0 −3 1 −1 1 0 2

0 −2 3 0 0 1 −12

0 3M −M M 0 0 −2M

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(iv) Minimize C = 4x1 + 6x2

subject to the tableau

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 P b

x1 1 1 1 0 0 0 2

A1 0 −1 −4 −1 1 0 4

0 2 −4 0 0 2 −4

0 2M 8M 2M 0 0 −12M

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

;

(v) Maximize C = x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 P b

x1 1 3 −1 0 0 0 4

A1 0 −3 1 −1 1 0 2

P 0 −2 4 0 0 1 20

0 3M −M M 0 0 −2M

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(vi) Minimize P = 2x1 + 2x2 + x3

subject to the tableau
⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

A1 1 1 0 −1 0 1 0 0 1

x5 2 1 1 0 1 0 0 0 3

A2 1 1 2 0 0 0 1 0 2

2 2 1 0 0 0 0 1 0

−2M −3M −4M M 0 0 0 0 −6M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

;
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(vii) Maximize P = 3x1 + 2x2 + 2x3

subject to the tableau⎡

⎢⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4 2 2 −1 1 0 0 0 0 4

x5 3 1 2 0 1 0 0 0 6

A1 2 −2 1 0 0 1 0 0 1

A2 −1 3 3 0 0 0 1 0 5

−3 −2 −2 0 0 0 0 1 0

−M −M −4M 0 0 0 0 0 −6M

⎤

⎥⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

.

4. Solve the following linear programming problems, or show that they are un-
bounded or infeasible.

(i) Maximize P = 2x1 + x2

subject to x1 + 2x2 = 4,

x1 + 3x2 ≥ 3,

x1 ≥ 0, x2 ≥ 0;
(ii) Minimize C = 2x1 − 3x2 + x3

subject to x1 − 2x2 − 2x3 ≥ 8,

−x1 + 3x2 + x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(iii) Maximize P = 3x1 + 2x2 + x3

subject to x1 + 2x2 + x3 ≤ 8,

2x1 + 3x2 + 3x3 = 6,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(iv) Minimize C = 7x1 + 5x2 + 6x3

subject to x1 + 2x2 + 3x3 ≤ 19,

2x1 + 3x2 ≥ 21,

x1 + x2 + x3 = 10,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(v) Maximize P = 2x1 + 3x2

subject to x1 + x2 ≤ 4,

2x1 + x2 ≥ 10,

x1 ≥ 0, x2 ≥ 0;
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(vi) Maximize P = 7x1 + 9x2 + x3

subject to x1 + x2 + x3 = 7,

x1 + 2x2 − x3 ≤ 3,

x2 − x3 ≤ 5,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(vii) Minimize C = 2x1 + 5x2 + 3x3 − x4

subject to x1 + x2 + 6x3 + x4 ≥ 7,

−x2 + 3x3 + x4 = 0,

x1 + x2 + x3 ≥ 5,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Exercises 6.6 B

1. For each of the following constraints, add all necessary slack, surplus, or artifi-
cial variables:

(i) x1 + 3x2 ≥ 2;

(ii) x1 + 3x2 ≤ 2;

(iii) 3x1 + 2x2 ≥ 5;

(iv) x1 + 3x2 = 2;

(v) 5x1 − 4x2 + 3x3 = 11;

(vi) 3x1 + 3x2 + 2x3 ≤ 4;

(vii) 4x1 − 3x2 + 5x3 ≥ 3;

(viii) 2x1 − 2x2 + x3 = 6;

(ix) 4x1 + 7x2 + x3 ≤ 6;

(x) 7x1 + 4x2 + 8x3 ≥ 5;

(xi) x1 + 3x2 − 3x3 + x4 = 1;

(xii) 2x1 − 2x2 + 3x3 + x4 ≥ 2;

(xiii) x1 − 9x2 + 2x3 − 2x4 ≤ 3;

(xiv) 3x1 − 4x2 + 2x3 + 4x4 = 3;

(xv) 2x1 − 2x2 − 5x3 + 5x4 ≤ 4;

(xvi) 4x1 − 4x2 + 3x3 − 2x4 ≥ 2.

2. Set up the initial and updated tableaus for the following linear programming
problems.
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(i) Minimize C = 3x1 − x2

subject to 2x1 + 3x2 ≤ 12,

x1 + 2x2 ≥ 12,

x1 ≥ 0, x2 ≥ 0;
(ii) Minimize C = 2x1 + 5x2

subject to x1 + x2 ≤ 9,

4x1 + x2 ≥ 8,

2x1 + 7x2 = 28,

x1 ≥ 0, x2 ≥ 0;
(iii) Minimize C = 2x1 + x2

subject to 2x1 + x2 ≤ 6,

x1 + 3x2 ≥ 8,

x1 ≥ 0, x2 ≥ 0;
(iv) Minimize C = 2x1 + 3x2 + x3

subject to 2x1 + 3x2 + x3 ≤ 9,

2x1 + 2x2 + 3x3 = 7,

3x1 + 2x2 + 2x3 ≥ 8,

x1 ≥ 0, x2 ≥ 0;
(v) Maximize P = 4x1 + 3x2 + 2x3

subject to 2x1 + 2x2 − x3 ≤ 4,

3x1 + x2 + 4x3 ≤ 8,

4x1 − 2x2 + 2x3 = 9,

−2x1 + 3x2 + 3x3 = 10,

x1 ≥ 0, x2 ≥ 0;
(vi) Minimize C = 2x1 + 2x2 + x3

subject to 2x1 + x2 + x3 = 8,

x1 + x2 ≥ 6,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

3. In the following tableaus, perform one operation:
if a pivot is required, perform it;
if the problem is infeasible, say so;
if the artificial problem is finished, set up the new tableau.
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(i) Minimize C = x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 P b

x2 3 1 1 0 0 0 3

A1 −4 0 −3 −1 1 0 6

−8 0 −3 0 0 1 −9

4M 0 3M M 0 0 −6M

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(ii) Minimize C = 2x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 P b

x3 1 1 1 0 0 0 3

A1 2 1 0 −1 1 0 5

P 2 3 0 0 0 1 0

−2M −M 0 M 0 0 −5M

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(iii) Minimize C = 2x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 P b

x1 1 1 1 0 0 0 2

A1 0 −1 −2 −1 1 0 1

0 1 −2 0 0 1 −4

0 M 2M M 0 0 −M

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

;

(iv) Minimize C = 3x1 + 4x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 P b

x1 1 2 1 0 0 0 4

A1 0 −3 −2 −1 1 0 2

0 −2 −3 0 0 1 −12

0 3M 2M M 0 0 −2M

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(v) Minimize P = x1 + x2

subject to the tableau
⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x2 3 1 1 0 0 0 0 0 3

A1 −1 0 −1 −1 0 1 0 0 2

A2 −8 0 −3 0 −1 0 1 0 1

−5 0 −2 0 0 0 0 1 −6

9M 0 4M M M 0 0 0 −3M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

;



6.6 The Two Phase Simplex Method 355

(vi) Minimize P = 2x1 + 2x2 + x3

subject to the tableau
⎡

⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

A1 1 1 0 −1 0 1 0 0 6

x5 2 1 1 0 1 0 0 0 8

A2 1 2 4 0 0 0 1 0 12

2 2 1 0 0 0 0 1 0

−2M −3M −4M M 0 0 0 0 −18M

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

;

(vii) Minimize P = 2x1 + 3x2 + 6x3

subject to the tableau⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 P b

x4 1 3 1 1 0 0 0 20

A1 2 3 1 0 −1 1 0 12

2 3 6 0 0 0 1 0

−2M −3M −M 0 M 0 0 −12M

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(viii) Maximize P = 4x1 − 3x2 + 3x3

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4 0 1 −1 1 0 0 −1 0 1

A1 1 1 1 0 0 0 1 0 5

A2 0 3 2 0 1 −1 2 0 8

0 7 1 0 0 0 4 1 20

0 0 0 0 0 M M 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

;

(ix) Minimize P = 2x1 + x2 + 2x3

subject to the tableau
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 A1 A2 P b

x4 −1 0 1 1 0 2 0 −2 0 2

A1 1 0 2 0 −1 0 1 0 0 4

A2 1 1 1 0 0 −1 0 1 0 5

1 0 1 0 0 1 0 −1 1 −5

−M 0 −2M 0 M 0 0 M 0 −4M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

;
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(x) Minimize C = 4x1 − 3x2 + x3

subject to the tableau
⎡

⎢⎢
⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4 1 2 1 1 0 0 0 0 6

A1 2 −1 0 0 −1 1 0 0 2

A2 1 1 1 0 0 0 1 0 5

−4 3 −1 0 0 0 0 1 0

−3M 0 −M 0 M 0 0 0 −7M

⎤

⎥⎥
⎥⎥⎥⎥⎥⎥⎥
⎦

;

(xi) Minimize C = 4x1 + 3x2

subject to the tableau

⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 A2 P b

1 1 1 0 0 0 0 9

3 1 0 −1 1 0 0 8

2 3 0 0 0 1 0 8

4 3 0 0 M M 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(xii) Minimize P = 2x1 + x2 + 2x3

subject to the tableau
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 A1 A2 P b

x4 2 2 2 1 0 0 0 0 0 11

A1 1 0 2 0 −1 0 1 0 0 4

A2 1 1 1 0 0 −1 0 1 0 5

2 1 2 0 0 0 0 0 1 0

−2M −M −3M 0 M M 0 0 0 −9M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

4. Solve the following linear programming problems:

(i) Minimize C = 7x1 + 3x2

subject to 3x1 + 2x2 ≤ 6,

5x1 + 10x2 ≥ 26,

x1 ≥ 0, x2 ≥ 0;
(ii) Minimize C = 2x1 + 2x2 − 3x3

subject to x1 − x2 − 2x3 ≥ 8,

−2x1 + x2 + 6x3 ≥ 2,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
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(iii) Maximize P = 3x1 + 4x2

subject to x1 + x2 ≤ 6,

5x1 + 2x2 ≥ 18,

7x1 + 4x2 ≥ 7,

x1 ≥ 0, x2 ≥ 0;
(iv) Maximize P = 2x1 + 5x2

subject to 3x1 + 2x2 ≤ 6,

x1 + x2 ≥ 4,

x1 ≥ 0, x2 ≥ 0;
(v) Minimize C = 3x1 − 2x2

subject to x1 + 2x2 ≤ 12,

2x1 + x2 ≥ 12,

x1 ≥ 0, x2 ≥ 0;
(vi) Minimize C = 5x1 + x2 + 2x3

subject to x1 − x2 + x3 ≥ 2,

2x1 + x2 + x3 ≥ 4,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(vii) Maximize P = 2x1 + 3x2 + x3

subject to x1 + x2 + x3 ≤ 4,

2x1 + x2 − x3 ≥ 1,

x2 − x3 ≥ 1,

x1 ≥ 0, x2 ≥ 0;
(viii) Minimize C = x1 + 3x2 + 2x3

subject to x1 + x2 + x3 ≥ 4,

5x1 + 10x2 + 15x3 ≥ 28,

3x1 − x2 + 3x3 ≤ 0,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(ix) Minimize C = 4x1 − 2x2 + 2x3

subject to x1 − x2 − 2x3 ≥ 1,

−x1 − 2x2 + 2x3 ≥ 4,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0;
(x) Maximize P = 3x1 + 2x2 − 2x3

subject to 3x1 + 3x2 + 2x3 ≥ 8,

6x1 + 4x2 + 2x3 = 18,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.
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Theory of Games

7.1 Fully-Determined Games

The “Theory of Games” is an area of mathematics that models conflicts. Many of the
ideas are expressed in terms of games between two or more players—that is where
the name originated—but the study also covers war and economic competition. In
these cases, we assume that each player tries to win as much as possible. However,
the methods developed can also be used in problems where we wish to know the
best, or least risky, way to proceed in the face of uncertainty; we act as if life is a
game and nature is a capricious and unpredictable player.

Two-Person, Zero-Sum Games

Suppose you bet with a friend. Usually the result is that the loser pays the winner,
and no other payments occur. Therefore, the amount that the winner gains is the same
as the amount his or her adversary loses. This is called a zero-sum situation, and the
game is a zero-sum game.

A good, simple example of a zero-sum game is matching pennies. Each player
puts a penny on the table, with either the head or the tail upward, but covers it so that
the other player cannot see it. Then they reveal their choices. If the two coins match,
Player I wins. If they are different, Player II wins.

Say the players decide to bet $5 on each play. We shall represent the game by
a matrix. We shall call Player I the row Player, and represent her possible choices
by the rows of the matrix. The first row corresponds to Player I choosing to place
her penny heads up, and the second to placing it heads down. Player II is the column
Player. In each cell of the matrix, we write the outcome if the corresponding choices
are made. By convention, we shall write the outcome for Player I. If Player I chooses
heads and Player II chooses tails, then Player I loses $5, and we put −5 in the row 1,
column 2 position. The negative sign represents loss, so Player II’s gains are shown

W.D. Wallis, A Beginner’s Guide to Finite Mathematics,
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by negative numbers and Player I’s gains are shown by positives. Then our game is
represented by the following matrix:

Player II
H T

Player I H 5 −5
T −5 5

Sample Problem 7.1. In the game of rock–paper–scissors, each Player chooses
one of the three named items and they reveal them simultaneously. Rock beats
(“breaks”) scissors, scissors beat (“cut”) paper, paper beats (“covers”) rock. In
the case of a tie, no money changes hands. Players I and II play rock–paper–
scissors for $2 per game. Write down the matrix.

Solution.

Player II
R S P

Player I R 0 2 −2
S −2 0 2
P 2 −2 0

Because of this representation, two-person, zero-sum games are often called ma-
trix games. The matrix is called a payoff table, and the entries are the payoffs to
Player I.

For convenience, we shall always allocate the rows of the matrix to Player I and
the columns to Player II. (With this convention, there is no need to write the players’
identities on the payoff matrix. We shall call them “the row player” and “the column
player.”) The rows of the payoff matrix are called the row player’s pure strategies,
and the columns are the column player’s pure strategies. To play a game, each player
selects a pure strategy at their turn. (The word strategy is used to describe a player’s
plan as to which row to choose at each turn.) We assume that the choice is made
without knowledge of the other player’s decision.

Domination

In some cases, there is only one sensible choice for a player. For example,

1 2
1 2 3
2 2 −3

.

Player I will always choose row 1—strategy 1—because, in every case, it gives
at least as good a result as row 2, and at least once the outcome is better. In this
example, we say Player I’s strategy is (1, 0) to mean that she will always play row 1
and never play row 2.
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When there is a dominant row, Player II knows which row will be chosen, so he
ignores the other rows, and chooses the column whose entry in the dominant row is
largest. He does not have a dominant column, but he will definitely choose column 1.
The outcome of the game will be a payment of 2 to Player 1. We say the game has
value 2. It is convenient to refer to the players’ choice and the outcome as R1C1,
value 2.

This process of finding the players’ strategies and the value of the game is called
solving the game. Later in this chapter, we shall generalize the ideas of strategy, value
and solving the game to those cases where there are not unique pure strategies to be
followed.

Sample Problem 7.2. In the following matrix games, is there a dominant row or
column? If so what are the players’ strategies?

(i) 1 2
1 −2 3
2 2 −2

;
(ii) 1 2 3

1 2 1 3
2 2 0 −1

.

Solution. (i) has no dominant row or column. In (ii) row 1 is dominant; the row
player’s strategy is (1, 0) and the column player’s strategy is (0, 1, 0).

Your Turn. In the following matrix games, is there a dominant row or column?
If so what are the players’ strategies?

(i) 1 2
1 1 3
2 2 1

;
(ii) 1 2

1 2 1
2 2 −3

.

Consider the game

1 2 3
1 2 1 0
2 1 0 2

.

There is no dominating column. However, every element of column 2 is smaller
than the corresponding element—the one in the same row—in column 1. In row 1,
1 < 2, and in row 2, 0 < 1. (Remember, for the column player, smaller is better.)
So the column player would never consider column 1; he would play as though the
game were

2 3
1 1 0
2 0 2

.

In this case, we say column 1 of the original game is dominated by column 2. A row
or column that is dominated by another is called recessive and need not be considered
in solving the game.
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Sometimes a game can be reduced more than once by discovering dominance.
For example, in the game

1 2 3
1 −3 1 2
2 2 0 1
3 1 −2 0

there is no dominated row. However, column 3 is dominated by column 2. So Player
II would consider the game

1 2
1 −3 1
2 2 0
3 1 −2

.

Now row 3 is dominated by row 2, so it can be deleted, and both players try to solve
the game

1 2
1 −3 1
2 2 0

.

Saddle Points

From now on, we shall save space by omitting the names of the pure strategies.
Assume each player’s strategies are called 1, 2, . . . .

Consider the game

1 2 9
5 3 5
8 2 0

,

which has no dominated rows or columns. How should the row player proceed?

Suppose she is pessimistic. If she chooses row 1, it is possible to win as little as
1 unit. If row 3 is chosen, the gain might be as small as 0. But if she chooses row 2,
a win of 3 or more is guaranteed. This reasoning suggests choosing row 2. This is
called a maximin strategy: for each row, identify the minimum element, then choose
rows so as to maximize this minimum. We say the (2, 2) element is the maximin.

If the column player thinks similarly, he sees that the maximum loss is 8 in col-
umn 1, 3 in column 2, and 9 in column 3. The minimax is again the (2, 2) element 3.

These calculations may be represented in the following way:
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MIN
1 2 9 1
5 3 5 ∗3∗
8 2 0 0

MAX 8 ∗3∗ 9

If the minimax over the columns (the pessimistic column player’s choice) is equal
to the maximin over the rows (the pessimistic row player’s choice), and there is a
unique element that achieves both values, then both players will choose this element.
This is called a minimax strategy. If this occurs in a game, the matrix element com-
monly selected is called a saddle point. The example has saddle point (2, 2) with
value 3. It is again convenient to refer to this solution by its position and value: we
say R2C2, value 3.

Sometimes ties occur. For example, in the game

1 0
1 2

both entries in column 1 achieve the column maximum. However, only the (2, 1)

entry is also a row minimum, so it is a saddle point.

Not all matrix games have saddle points. But if there is a saddle point, the value
of the entry is the value of the game. The row player can be guaranteed at least this
much profit and the column player can be guaranteed at most this much loss, so
sensible play guarantees exactly this outcome. Games are called strictly determined
if the exact outcome of each play is fixed provided the players choose an appropriate
strategy. So games with saddle points are strictly determined.

Sample Problem 7.3. Find a saddle point, if any, in

2 1 −2
4 2 4

−2 1 0
.

Solution.

MIN
2 1 −2 −2
4 2 4 ∗3∗

−2 1 0 −2

MAX 4 ∗3∗ 4

so there is a saddle point R2C2 with value 3.
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Your Turn. Find a saddle point, if any, in

2 2 3
3 1 2

−2 0 1

Multiple Saddle-Points

Suppose a game has two saddle-points. For convenience, suppose they are the (1, 1)

and (2, 2) entries. (The simpler case, where two saddle points occur in the same row,
is left as an exercise.) The game looks like

a b . . .

c d . . .

. . .

As a and d are minimal in their rows, b ≥ a and c ≥ d . From the column maximality,
a ≥ c and d ≥ b. So we have

a ≥ c ≥ d ≥ b ≥ a

and all four entries are equal. The game is still strictly determined. The row player
can choose row 1 or row 2, and the column player can choose column 1 or column 2,
but the payoff is the same.

This argument obviously applies whichever rows and columns contain the saddle
points, and extends to three or more saddle points.

Exercises 7.1 A

1. Two players match fingers. Each shows one or two fingers, simultaneously. If
the numbers of fingers shown by the two players is equal, the row player wins;
otherwise the column player wins. The loser pays the winner the number of
fingers shown (in dollars). Write down a matrix for this game.

2. You are playing a wargame. You plan to attack any one of Slovakia (1), Slovenia
(2), or the Czech Republic (3). Your opponent can choose to defend any one of
the three. If you choose to attack the same country that he chooses to defend,
you will lose (and he will win) 200 points. If you choose different countries, you
will gain (and he will lose) 100. Write down a matrix for this game, with you as
the row player.

3. In each case, solve the game by domination:

(i)
−1 0

0 1
; (ii)

3 −2
2 1

;
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(iii)
2 1 3
1 −2 3

; (iv)
1 2 0
1 0 −1

;

(v)
1 0 2

−1 0 1
0 0 1

; (vi)
1 −2 1
2 0 4
1 0 1

;

(vii)
1 1 1
0 2 1
2 2 1

; (viii)
1 0 3

−2 1 −1
2 1 4

.

4. In each case, use domination to reduce the game to a 2 × 2 game:

(i)
−5 −3 1
2 −1 2

−2 3 4
; (ii)

1 0 −1
1 1 −1
2 −1 1

;

(iii)
1 1 −3
0 −1 2
0 −2 1

; (iv)
2 3 4
1 1 1
3 −1 0

;

(v)
2 1 −2

−2 1 0
−1 1 1

; (vi)
0 0 2
1 0 1
0 1 0

;

(vii)
−2 −1 1
−1 −2 1
−2 −2 0

; (viii)
0 0 −1

−1 1 1
1 1 0

.

5. In each case, solve the game by finding a saddle point:

(i)
−3 2 3
2 0 2
3 −1 −2

; (ii)
0 2 −3

−2 3 1
1 2 4

;

(iii)
6 −4 −2
1 −1 3

−4 −3 4
; (iv)

0 1 −2 3
1 3 1 5
3 −2 0 4

.

6. Suppose a game has two saddle-points in positions (1, 1) and (1, 2). Show that
the game is strictly determined.
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Exercises 7.1 B

1. Two players match fingers. Each shows one, two, or three fingers, simultane-
ously. If the total number of fingers shown is even, the row player wins; if it is
odd the column player wins. The loser pays the winner the number of fingers
shown (in dollars). Write down a matrix for this game.

2. Two players match fingers as in the preceding exercise. Each shows one, two,
or three fingers, simultaneously, and the loser pays the winner the number of
fingers shown (in dollars). If the total number of fingers shown is even, the player
showing the greater number wins; if it is odd the player showing the smaller
number wins; if the two show the same number, it is a tie. Write down a matrix
for this game.

3. In each case, solve the game by domination:

(i)
3 2
0 2

; (ii)
1 −1
2 −2

;

(iii)
1 −1 0
1 2 2

; (iv)
2 1 2
1 0 3

;

(v)
1 2 1
0 0 1
2 2 2

; (vi)
1 −1 0
0 −1 1
1 0 0

;

(vii)
0 0 1

−2 1 −2
−2 0 −1

; (viii)
1 0 −2
0 1 −1
0 0 −2

.

4. In each case, use domination to reduce the game to a 2 × 2 game:

(i)
3 1 2
1 1 2
2 1 0

; (ii)
1 0 1

−1 −1 1
1 −3 −2

;

(iii)
3 1 2
1 1 −1

−2 −1 3
; (iv)

−1 1 2
2 0 0
0 1 0

;

(v)
1 0 0
2 2 1
0 2 1

; (vi)
1 −2 2
2 −1 3
0 3 1

;

(vii)
1 2 −2

−3 −2 −1
1 3 0

; (viii)
0 −1 1
1 0 −3
2 1 0

.
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5. In each case, solve the game by finding a saddle point:

(i)
1 0 2
0 −1 1
0 2 3

; (ii)
4 2 −1
5 0 3
4 3 6

;

(iii)
4 8 3
7 5 4
2 1 4

; (iv)
−5 2 15 3

0 6 10 5
5 5 5 6

.

7.2 2 × 2 Games

Most games do not have saddle points. This adds complications. For example, con-
sider the game with matrix

1 −1
−2 3

,

which has no saddle point.

How should the players proceed? The row player can guarantee a loss of at worst
1 unit—a payoff of at least −1—by selecting row 1. The column player can guarantee
a loss of at worst 1 by choosing column 1. So we might expect to see row 1 and
column 1 chosen, and a payoff of 1 to the row player.

But suppose the column player thought about his opponent’s decision. Assuming
row 1 is chosen, it will be better to choose column 2. So column 2 is chosen. But then
the row player would do better to choose row 2 . . . When there is no saddle point, the
situation does not stabilize.

The point is that if one player’s actions can be predicted, the other player can
take advantage of this fact. The only solution is for each player to choose a row or
column at random each time. However, this choice can be made in accordance with
some probability distribution.

Suppose a game has m row strategies and n column strategies, and has matrix A

with typical entry aij . The matrix A is of size m×n. The row player chooses m non-
negative numbers x1, x2, . . . , xm whose sum is 1, and decides that at each turn she
will select row i with probability xi . Then (x1, x2, . . . , xm) is called the row strategy;
if two or more of the xi are non-zero, this is called a mixed strategy. Similarly, the
column player selects a strategy (z1, z2, . . . , zn).

Once two strategies have been chosen, they can be interpreted as a probability
distribution. The players act independently, so the probability that row i and column
j will be chosen is xizj . Therefore, the expected value of the payoff is

m∑

i=1

n∑

j=1

xiaij zj .
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Mixed Strategies

We begin our general discussion with the simplest case, where both players have two
pure strategies.

As a first example, consider the game

1 −2
−1 3

.

Suppose the row player uses strategy (1 − x, x). If the column player selects
column 1 (the pure strategy (1, 0)), the expected payoff is 1(1−x)+(−1)x, or 1−2x.
If the second column—strategy (0, 1)—is used, the expected payoff is (−2)(1−x)+
3x, or 5x − 2. The expected payoff for column strategy (1 − z, z) is

(1 − z)(1 − 2x) + z(5x − 2) = (7x − 3)z + (1 − 2x).

These facts are represented in the following diagram. The first vertical axis rep-
resents pure strategy “choose row 1”—the case x = 0—and the second represents
pure strategy “choose row 2.” The horizontal axis shows the value of x. The other
lines correspond to the two pure column strategies and show the expected payoff, y

say, to the row player plotted against x.

If you draw a vertical line at any given value of x, it is clear that the expected
payout for that x must lie between the two values where the vertical line crosses
the two column-strategy lines. In particular, if the row player chooses the x value
corresponding to the arrow, the x value where the column-strategy lines intersect,
the expected payoff can never be smaller than the y value at the intersection. If any
other x is chosen, a smaller expected payoff is possible.

In the example, the lines meet when 1−2x = 5x −2, or x = 3
7 . The correspond-

ing expected payoff is y = 1 − 2x = 1 − 2 3
7 = 1

7 = v, say.

The column player wishes to minimize the expected payoff. He cannot make it
smaller than v. He wants the payout to be v even when the row player chooses a pure
strategy: that is, x = 0 or 1. This gives two equations:

case x = 0 (7x − 3)z + (1 − 2x) = 1 − 3z = 1

7
,

case x = 1 (7x − 3)z + (1 − 2x) = 4z − 1 = 1

7
,
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which both yield z = 2
7 . It is easy to check that the column strategy (1 − 2

7 , 2
7 ) =

( 5
7 , 2

7 ) always gives expected payoff v.

Since both players can force an expected payoff no worse for them than v, this v

is called the value of the game.

Sample Problem 7.4. Use the above method to solve

2 −1
−2 1

.

Solution. The diagram for this game is

The lines meet at ( 2
3 , 0). So the value is 0 and the row player’s strategy is ( 1

3 , 2
3 ).

For the column player, 2(1 − z) − 1z = 0 so z = 2
3 and the column strategy is

also ( 1
3 , 2

3 ).

The lines meet at ( 2
3 , 0). So the value is 0 and the row player’s strategy is ( 1

2 , 1
2 ).

For the column player, the strategy is also ( 1
2 , 1

2 ).

Your Turn. Use the above method to solve

2 0
−2 4

.

The General 2 × 2 Game

These principles can be applied to any 2 × 2 game. Consider the game

a b

c d
.

The corresponding diagram is
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The x axis represents the row player’s strategy (1 − x, x), ranging from x = 0
(the left vertical line, pure strategy row 1) to x = 1 (pure strategy, row 2). The y value
is the payoff. The line from (0, a) to (1, c), whose equation is y = a + (c − a)x,
shows the payoffs when column 1 is chosen; the line from (0, b) to (1, d), whose
equation is y = b + (d − b)x, shows the payoffs when column 2 is chosen.

These two lines intersect when

a + (c − a)x = b + (d − b)x,

which simplifies to

x = a − b

a + d − b − c
,

y = ad − bc

a + d − b − c
.

So the game has value

v = ad − bc

a + d − b − c
,

and the row player’s best strategy is
(

d − c

a + d − b − c
,

a − b

a + d − b − c

)
.

Suppose the column player wants to ensure that the expected payoff is v. If he
chooses strategy (1 − z, z) and the row player has chosen (1 − x, x), the expected
payoff is (1 − z)(a + (c − a)x) + z(b + (d − b)x). We set this equal to v. In the case
x = 0, we have

ad − bc

a + d − b − c
= (1 − z)a + zb,

and one can show that the solution is z = a−c
a+d−b−c

, and the column player’s best
strategy is

(
d − b

a + d − b − c
,

a − c

a + d − b − c

)
.

Moreover, it can be seen that when z has this value, then (1 − z)(a + (c − a)x) +
z(b + (d − b)x) = ad−bc

a+d−b−c
for every possible x.

This method will not work when the game has a saddle point, and may give
wrong answers. This is because one cannot assume in that case that the two lines
will meet in the range 0 ≤ x ≤ 1.

Sample Problem 7.5. Solve the game

1 −2
−1 3

by using the formulas.
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Solution. For this game a = 1, b = −2, c = −1, d = 3. So a + d − b − c =
1 + 3 + 2 + 1 = 7. To find the row strategy, observe that d − c = 4, a − b = 3,
so the row strategy is

(
d − c

a + d − b − c
,

a − b

a + d − b − c

)
=

(
4

7
,

3

7

)
.

As d − b = 5, a − c = 2, the column strategy is
(

d − b

a + d − b − c
,

a − c

a + d − b − c

)
=

(
5

7
,

2

7

)
.

The value is

v = ad − bc

a + d − b − c
= 1

7
.

(Observe that this agrees with our earlier result.)

Your Turn. Solve the game

2 −1
−2 1

by using the formulas.

The formula method does not work when a+d −b−c = 0 because the quotients
are not defined. However, this is no problem. If a + d − b − c = 0, the matrix has
form

a b

c b + c − a
.

Suppose a ≥ b. Then c ≥ b + c − a. Therefore, column 2 dominates column 1.
Therefore, the game has a saddle point. A similar result holds if a ≤ b (the proof is
left as an exercise).

More generally, it is possible to show that a 2×2 game is not strictly determined if
and only if each of the elements on one diagonal is greater than each of the elements
on the other diagonal. Otherwise the game has a saddle point (Again, the proof is left
as an exercise.)

Sample Problem 7.6. For what values of a does the game

a 2
1 −1

have a saddle point?
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Solution. In order for the game to have no saddle point, each element of one
diagonal must be greater than each element of the other diagonal. In this example,
the possibility is that each of 1 and 2 be greater than each of a and −1. This
requires a < 1. So there is a saddle point when a ≥ 1.

Exercises 7.2 A

1. For the following games, either find a saddle point or solve by the diagram
method:

(i)
2 −1

−2 3
; (ii)

3 4
2 1

;

(iii)
3 −2
1 2

; (iv)
4 −6

−6 4
;

(v)
−2 2

0 −2
; (vi)

2 −1
−2 −3

;

(vii)
2 −1

−2 1
; (viii)

3 −1
1 2

;

(ix)
2 4
4 2

; (x)
2 6
4 1

;

(xi)
4 −1

−2 2
; (xii)

1 −1
2 −2

;

(xiii)
−2 3

1 2
; (xiv)

2 1
0 3

;

(xv)
2 3
3 −4

; (xvi)
4 −1

−5 2
.

2. For those games in the preceding Exercise that did not have saddle points, solve
by the formula method.

3. For what values of a do the following games have saddle points?

(i)
a 3
1 4

; (ii)
3 3
1 a

;

(iii)
4 3
a 2

; (iv)
0 a

−2 1
.
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4. Verify that the solution of

ad − bc

a + d − b − c
= (1 − z)a + zb

is z = a−c
a+d−b−c

.

5. Prove that if z = a−c
a+d−b−c

then

(1 − z)
(
a + (c − a)x

) + z
(
b + (d − b)x

) = ad − bc

a + d − b − c

for every x with 0 ≤ x ≤ 1.

Exercises 7.2 B

1. For the following games, either find a saddle point or solve by the diagram
method:

(i)
4 −2

−1 2
; (ii)

3 −1
0 2

;

(iii)
−3 2

1 0
; (iv)

2 −1
−2 5

;

(v)
4 −2

−6 4
; (vi)

2 3
5 −6

;

(vii)
2 3
1 −4

; (viii)
3 2
1 4

;

(ix)
1 −1
0 3

; (x)
2 1

−1 3
;

(xi)
3 −2

−1 2
; (xii)

7 3
3 4

;

(xiii)
2 1
0 3

; (xiv)
2 1

−1 4
;

(xv)
2 3
5 −4

; (xvi)
2 3
0 4

.

2. For those games in the preceding Exercise that did not have saddle points, solve
by the formula method.

3. For what values of a do the following games have saddle points?
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(i)
−4 a

−4 2
; (ii)

−2 a

3 −1
;

(iii)
1 −1
2 a

; (iv)
a 1
2 0

.

4. The game

a b

c b + c − a

satisfies a + d − b − c = 0 and a ≤ b. Show that column 2 dominates column 1.

5. Prove that a 2×2 game has a saddle point if and only if the following is not true:
each of the elements on one diagonal is greater than each of the elements on the
other diagonal.

7.3 2 × n Games

The methods of the preceding section can be applied to games in which one player
has two strategies but the other has more than two. We shall discuss 2 × n games,
that is, the row player has two choices, while the column player has n (and usually
n > 2).

The Diagram Method

We generalize the diagram method, from the preceding section, to the case where
there are more than two columns. Again, there are two vertical lines, distance 1 apart.
The line x = 0 represents the case where the row player always chooses row 1, and
the line x = 1 corresponds to column 2. The points with a given x value show
expected payoffs when the row strategy is (1 − x, x).

The y coordinate shows the expected payoff. We draw a line for each pure column
strategy: if the line passes through (x, y) that means the expected payoff, when the
row player uses strategy (1−x, x) and the column player always chooses the column
in question, is y. If a column has first entry a and second entry d , the line for that
column will pass through points (0, a) and (1, d). The diagram might look something
like Figure 7.1(i).

Let’s call a point (x, y) reachable if it is possible for the expected payoff to be y

when the row strategy is (1 − x, x). In Figure 7.1(ii), the set of all reachable points
is shaded. It follows that, no matter how she plays, the row player can always attain
the expected payoff on the heavy line of Figure 7.2(i). Using the same reasoning as
we did in the previous section, the row player should choose the x coordinate of the
point indicated by the arrow, and she can guarantee an expected payoff at least as
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Fig. 7.1. The reachable points

Fig. 7.2. Solving the game

great as the y-coordinate of that point. This highest point on the lower boundary of
the reachable set will be called the value point of the game.

The value point was the intersection of two of the “column” lines. It follows that
the calculations will be exactly the same as those for the game that contains only
those two columns—the one shown in Figure 7.2(ii). The other columns (and the
corresponding pure strategies) are called recessive.

So here is how to solve a 2 × n game. First, draw the diagram. Then eliminate
the recessive columns. Finally, solve the resulting 2 × 2 game.

A dominated column is always recessive, so it is always worthwhile to check for
those before drawing the diagram. And, of course, you should also check for saddle
points.

Sample Problem 7.7. Solve the following matrix game:

2 −3 −2
−2 0 −1

.

Solution. From the diagram
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it is clear that column 2 can be deleted. The solution to

2 −2
−2 −1

is found (from the formula) to be row strategy ( 1
5 , 4

5 ), column strategy ( 1
5 , 4

5 ),
value − 6

5 , so the original game has solution

row strategy

(
1

5
,

4

5

)
, column strategy

(
1

5
, 0,

4

5

)
, value − 6

5
.

Your Turn. Solve the following matrix game:

1 2 4
3 2 1

.

m × 2 Games

Suppose two players, Alice and Bob, play a game with the following matrix. Alice
is row player, Bob is column player.

a b

c d

e f

.

If the players had chosen the opposite roles—Alice chooses columns, and Bob
chooses rows—the matrix representing the game would have two rows and three
columns. Moreover, the payoffs need to be negated: in the original game, if Alice
chose strategy 1 and Bob chose strategy 2, Alice would win b, the entry in row 1 and
column 2, and Bob would win −b. In the new game, when Alice chooses strategy 1
and Bob chooses strategy 2, the result will be shown in the (2, 1) entry of the matrix.
As Bob is the row player, the matrix should show his win, namely −b, as its (2, 1)

entry. Applying this to all entries, we obtain the matrix

−a −c −e

−b −d −f
.

To summarize:

If the roles of row and column player in a matrix game are reversed, the
matrix of the game is transposed and negated.

Suppose you need to solve a game with matrix A, size m× 2. You could proceed
as follows. First, solve the game with matrix AT . The row player’s strategy for A is
the same as the column player’s strategy for AT ; the column player’s strategy for A

is the same as the row player’s strategy for AT ; and the value is the negative of the
value for AT (because the value for AT is the expected payoff for the column player
in the original game).
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Sample Problem 7.8. Solve the game

0 4
2 −1
1 3

.

Solution. We start by solving

0 −2 −1
−4 1 −3

.

This game has diagram

so we delete column 1 and solve

−2 −1
1 −3

by formula, obtaining row strategy ( 4
5 , 1

5 ), column strategy ( 2
5 , 3

5 ) and value − 7
5 .

The 2 × 3 game has this row strategy and value, and column strategy (0, 2
5 , 3

5 ).
So the original had solution

row strategy

(
0,

2

5
,

3

5

)
, column strategy

(
4

5
,

1

5

)
, value

7

5
.

Your Turn. Solve the following matrix game:

−2 2
3 0
2 1

.

Dominated Rows and Columns

Sometimes a game can be reduced to 2 × n or m × 2 form by deleting dominated
rows and columns:

Sample Problem 7.9. Solve the game

3 0 4
5 2 −1
2 1 3

.



378 7 Theory of Games

Solution. Column 2 dominates column 1, so we reduce the game to

0 4
2 −1
1 3

.

We solved this in Sample Problem 7.8; the solution was

row strategy

(
0,

2

5
,

3

5

)
, column strategy

(
4

5
,

1

5

)
, value

7

5
.

Column 1 will never be used in the original game, so the solution is

row strategy

(
0,

2

5
,

3

5

)
, column strategy

(
0,

4

5
,

1

5

)
, value

7

5
.

Exercises 7.3 A

1. Solve the following games:

(i)
1 2 −1

−3 2 1
; (ii)

1 −2 3 1
4 1 −2 0

;

(iii)
−1 2 −2
1 −3 2

; (iv)
2 3 1 2
1 0 4 3

.

2. Solve the following games:

(i)
3 −5

−3 4
0 −2

; (ii)
2 −2

−3 0
1 −1

;

(iii)
0 6 10 2
8 0 −2 4

; (iv)
0 3 −3 2
1 −2 2 0

.

3. Solve the following games:

(i)
1 2 1

−3 1 3
; (ii)

6 −4 1
−2 3 2

;

(iii)
0 −1 −2

−6 2 8
−1 −1 −4

; (iv)
3 −3 −2

−2 1 2
−1 1 1

.

4. Two players match coins. They can show a penny, a nickel, or a dime. If the
total number of cents shown is even, the row player wins; if it is odd, the column
player wins. The payoff is the value of the loser’s coin.
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(i) What is the matrix for this game? (Write the payoff in cents.)

(ii) Solve the game.

Exercises 7.3 B

1. Solve the following games:

(i)
1 −3 4
2 4 1

; (ii)
−2 4 3
6 −3 −1

;

(iii)
3 −1 −3 −2

−3 −2 1 −1
; (iv)

−1 5 −2 1
1 −3 5 −2

.

2. Solve the following games:

(i)
6 4 −2

−2 −6 4
; (ii)

0 −2 2
−2 3 −3

;

(iii)
1 −2 −3

−3 −1 3
; (iv)

3 6 −1 −3
1 −2 3 4

.

3. Solve the following games:

(i)
1 −2

−3 1
−2 3

; (ii)
−1 4

1 2
3 1

;

(iii)

0 3
2 0
4 −2
0 1

; (iv)

2 −3
−1 0
−4 1

1 −1

.

4. Solve the following games:

(i)
1 −2 0
2 −1 1

−4 3 2
; (ii)

2 −3 −4
−2 0 −3
0 1 1

.

5. A game proceeds as follows. The row player selects one of two cards, labeled 1
and 2. The column player selects one of six cards, labeled 1, 2, 3, 4, 5, and 6.
They show the cards simultaneously. If the sum is odd, the row player receives
the sum of the two numbers shown (in dollars). If it is even, the column player
receives the sum.
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(i) Write down the matrix for this game.

(ii) Solve the game.

6. A game proceeds as follows. The row player selects one of two cards, labeled
“odd” and “even”. The column player selects one of six cards, labeled 1, 2, 3, 4,
5, and 6. They show the cards simultaneously. If the number is odd and the row
player chose “odd”, or if the sum is even and the row player chose “even”, the
row player receives the number shown (in dollars); if the row player chose the
wrong parity, the column player receives the number (in dollars).

(i) Write down the matrix for this game.

(ii) Solve the game.

(iii) Suppose the players decide to pay the amount shown plus one dollar. (For
example, if 3 is shown, the winner receives $4.) Write down the matrix and
solve the game.

7.4 General Matrix Games

In the general case, we consider a game with m row strategies and n column strate-
gies. Suppose this game has matrix A with typical entry aij . The matrix A has size
m × n. The row player chooses m non-negative numbers x1, x2, . . . , xm whose sum
is 1, and decides that at each turn she will select row i with probability xi . Then
(x1, x2, . . . , xm) is called the row strategy. Similarly, the column player selects a
strategy (z1, z2, . . . , zn). As we said in Section 7.2, if two or more of the probabili-
ties are non-zero, the strategy is called mixed.

Once two strategies have been chosen, they can be interpreted as a probability
distribution. The players act independently, so the probability that row i and column
j will be chosen is xizj . Therefore, the expected value of the payoff is

m∑

i=1

n∑

j=1

xiaij zj .

The row player would like to find a strategy (x1, x2, . . . , xm) and a value v such
that

m∑

i=1

n∑

j=1

xiaij zj ≥ v

for every possible choice of column strategy. The column player would like to find a
strategy (z1, z2, . . . , zn) and a value v such that

m∑

i=1

n∑

j=1

xiaij zj ≤ v
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for every possible choice of row strategy.

Both players can be satisfied. The following remarkable result is called the mini-
max theorem of game theory.

Theorem 24. For any matrix game A, there exists a value v such that

(i) there is a row strategy (x1, x2, . . . , xm) such that
∑m

i=1
∑n

j=1 xiaij zj ≥ v for
every column strategy (z1, z2, . . . , zn);

(ii) there is a column strategy (z1, z2, . . . , zn) such that
∑m

i=1
∑n

j=1 xiaij zj ≤ v for
every row strategy (x1, x2, . . . , xm).

Solving a Game by Linear Programming

We shall look at a typical matrix game, with matrix

6 3 2
1 2 4

.

This game has only two rows, so we could solve it by diagram, but the methods we
explore here could be used with a game of any size. Write v be the value of this
game. All the elements are positive, so v will be positive also.

Suppose the column player uses strategy (z1, z2, z3). If the row player uses a
pure strategy, the payoff will be as follows:

for row 1, 6z1 + 3z2 + 2z3;
for row 2, z1 + 2z2 + 4z3.

If the row player follows strategy (x1, x2) then the payoff is

(6z1 + 3z2 + 2z3)x1 + (z1 + 2z2 + 4z3)x2.

The column player wishes to choose his strategy so that

6z1 + 3z2 + 2z3 ≤ v,

z1 + 2z2 + 4z3 ≤ v,

as this will ensure a payoff of at most v. Of course, he doesn’t yet know the value of
v, but wishes it to be as small as possible.

We solve this by setting up some new variables, y1, y2, y3, where yi = zi/v write
v for the column vector (y1, y2, y3)

T . Then y1+y2+y3 = 1
v

because z1+z2+z3 = 1,
and in order to minimize v it suffices to maximize 1

v
. Notice that we need v > 0 here

in order to divide through by v; if it were negative, then maximizing and minimizing
would be mixed up, and if it were zero then division is impossible.

But what we have is a linear programming problem:
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Maximize P = y1 + y2 + y3

subject to 6y1 + 3y2 + 2y3 ≤ 1,

y1 + 2y2 − 4y3 ≤ 1,

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0

(the non-negativity conditions arise because the zi are non-negative, and v is posi-
tive).

So we solve this linear programming problem, and obtain the value of the game
and the column player’s optimal strategy. We add two slack variables, forming the
tableau:

⎡

⎢⎢⎢
⎢
⎣

BV y1 y2 y3 y4 y5 P b

y4 6 3 2 1 0 0 1

y5 1 2 4 0 1 0 1

−1 −1 −1 0 0 1 0

⎤

⎥⎥⎥
⎥
⎦

.

We pivot on row y4, column y2, obtaining
⎡

⎢⎢⎢⎢
⎣

BV y1 y2 y3 y4 y5 P b

y2 2 1 2
3

1
3 0 0 1

3

y5 −3 0 8
3 − 2

3 1 0 1
3

1 0 − 1
3 − 1

3 0 1 1
3

⎤

⎥⎥⎥⎥
⎦

.

We next pivot on row y5, column y3, obtaining
⎡

⎢⎢
⎢⎢
⎣

BV y1 y2 y3 y4 y5 P b

y2
11
4 1 0 1

2 − 1
4 0 1

4

y3 − 9
8 0 1 − 1

4
3
8 0 1

8
5
8 0 0 1

4
1
8 1 3

8

⎤

⎥⎥
⎥⎥
⎦

,

and the problem is finished. The linear program had value 3
8 , so v = 8

3 is the value
of the game. The solution was achieved at (y1, y2, y3) = (0, 1

4 , 1
8 ), so the column

player’s strategy is

(z1, z2, z3) = v(y1, y2, y3) = 8

3

(
0,

1

4
,

1

8

)
=

(
0,

2

3
,

1

3

)
.

Now consider the bottom line of the last tableau. It may be interpreted as meaning
that

5

8
y1 + 1

4
y4 + 1

8
y5 + P = 3

8
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is always true. In particular, at the optimal point, when y = (0, 1
4 , 1

8 ) and P = 3
8 ,

1

4
y4 + 1

8
y5 = 0.

Let us write Ai for row i of the game matrix A. From the original problem, y4 =
1 − A1y and y5 = 1 − A2y. So

1

4
y4 + 1

8
y5 =

(
1

4
1 − A1y

)
+ 1

8
(y5 = 1 − A2y) = 3

8

[
1 −

(
1

4
,

1

8

)
Ay

]
,

so ( 2
3 , 1

3 )Ay attains the optimal value 8
3 for any value of y, including the optimal

strategy. So ( 2
3 , 1

3 ) is the optimal row strategy.

Games with Negative Entries

In the above discussion, it was essential that the game have positive value because we
needed to divide by the value. If the game matrix contains zero or negative elements,
the value might not be positive. For example, suppose we need to solve

2 −1 −2
−3 −2 0

.

First, we add a constant to every entry in order to make a new game, the revised
game, with all numbers positive. This is an easy way to ensure a positive value. In
the example, we add 4 throughout, obtaining revised game

6 3 2
1 2 4

—the game we just solved. The optimal strategies for the original game are the same
as those for the revised game: row strategy ( 2

3 , 1
3 ), column strategy (0, 2

3 , 1
3 ). To find

the value of the original game, subtract 4 from the value of the revised game: the
original has value 8

3 − 4 = − 4
3 .

Sample Problem 7.10. Solve the following game

1 −1 0
−1 1 −1
1 −1 2

.

Solution. We first add 2, and solve the revised game

3 1 2
1 3 1
3 1 4

.

For this, we start with the tableau
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⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

BV y1 y2 y3 y4 y5 y6 P b

y4 3 1 2 1 0 0 0 1

y5 1 3 1 0 1 0 0 1

y6 3 1 4 0 0 1 0 1

−1 −1 −1 0 0 0 1 0

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

.

We pivot on row y6, column y3:
⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

BV y1 y2 y3 y4 y5 y6 P b

y4
3
2

1
2 0 1 0 − 1

2 0 1
2

y5
1
4

11
4 0 0 1 − 1

4 0 3
4

y3
3
4

1
4 1 0 1 1

4 0 1
4

− 1
4 − 3

4 0 0 0 1
4 1 1

4

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

.

The next pivot is the (y4, y1) position:
⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

BV y1 y2 y3 y4 y5 y6 P b

y1 1 1
3 0 2

3 0 − 1
3 0 1

3

y5 0 8
3 0 − 1

6 1 − 1
6 0 2

3

y3 0 0 1 − 1
2 0 1

2 0 0

0 − 2
3 0 1

6 0 − 1
6 0 1

3

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

.

The final pivot is (y5, y2):
⎡

⎢⎢⎢
⎢⎢⎢⎢
⎣

BV y1 y2 y3 y4 y5 y6 P b

y1 1 0 0 11
16 − 1

8 − 5
16 0 1

4

y2 0 1 0 − 1
16

3
8 − 1

16 0 1
4

y3 0 0 1 − 1
2 0 1

2 0 0

0 0 0 1
8

1
4

1
8 0 1

2

⎤

⎥⎥⎥
⎥⎥⎥⎥
⎦

.

So the revised game has value 2, and the original game has value 0. The col-
umn player’s strategy is 2( 1

4 , 1
4 , 0) = ( 1

2 , 1
2 , 0), and the row player’s strategy is

2( 1
8 , 1

4 , 1
8 ) = ( 1

4 , 1
2 , 1

4 ).

Your Turn. Solve the following matrix game by the simplex method.

1 −1 −2
−1 1 −1
−2 −1 1

.
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The General Solution

In general we proceed as follows. Given a game with matrix A, of size m × n, with
every entry positive, solve the following linear program by the simplex method:

Maximize P = y1 + y2 + · · · + yn

subject to a11y1 + a12y2 + · · · + a1nyn ≤ 1,

a21y1 + a22y2 + · · · + a2nyn ≤ 1,

...

am1y1 + am2y2 + · · · + amnyn ≤ 1,

y1 ≥ 0, y2 ≥ 0, . . . , yn ≥ 0.

Suppose the maximum value of P is P ∗, attained by y1 = y∗
1 , y2 = y∗

2 , . . ., yn = y∗
n ,

and suppose that in the final tableau the element in the last row (objective row) in
column yn+i , the column for the ith slack variable, is ci . Then the game has value
1/P ∗, the row player has optimal strategy (c1/P

∗, c2/P
∗, . . . , ym/P ∗) and the col-

umn player has optimal strategy (y∗
1/P ∗, y∗

2/P ∗, . . . , y∗
n/P ∗). If the original game

had smallest entry −m ≤ 0, solve the game with matrix A + m + 1; the value of the
original game was 1

P ∗ − m − 1.

In order for the general solution method to work, it is necessary that the proposed
“row player’s strategy” (c1/P

∗, c2/P
∗, . . . , ym/P ∗) satisfies two conditions: the en-

tries must be non-negative and they must add to 1. Non-negativity is obvious: P ∗ is
positive, and if any of the ci were negative there would be another pivot available.
To see that the entries add to 1, observe that if the pivoting process yields value ci in
column yn+i , then we have added ci× row i to the objective row, so we have added
ci to the last element of that row (remember, every row has right-hand entry 1). So
the entry on the right of the objective row is

∑
ci . So

∑
ci = p∗, and

∑
ci/p

∗ = 1.

Exercises 7.4 A

1. Solve the games in Exercise 7.2A1 using linear programming.

2. Solve the games in Exercises 7.3A1, 7.3A2, and 7.3A3 using linear program-
ming.

3. Solve the following games using linear programming:

(i)
1 −2 3

−1 2 −3
2 1 −2

; (ii)
3 −4 3
3 2 −6

−5 −2 4
;

(iii)
0 1 −1
2 0 −2
1 −1 1

; (iv)
1 −4 2
2 −3 −2
1 2 0

.
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4. Solve the following games using linear programming:

(i)
−2 1 0
1 −2 1
0 2 −2

; (ii)
1 −1 −1 0

−1 2 0 −1
−1 0 2 −1

;

(iii)
3 1 −5

−1 1 2
−1 −2 2

; (iv)
2 1 −2 −1

−1 2 1 2
−1 −2 3 −3

.

5. Solve the following games using linear programming:

(i)

−1 0 1 0
−1 −1 −1 2
−1 2 0 −1

1 2 2 −2

; (ii)

3 1 0
1 −1 2

−1 2 −1
1 −2 2

;

(iii)

7 1 −1 3
2 5 −2 −1
3 2 4 −4

−3 4 −3 1

; (iv)

1 1 −1 2
2 −2 −2 −1
1 2 2 −1

−3 −4 3 1

.

Exercises 7.4 B

1. Solve the games in Exercise 7.2B1 using linear programming.

2. Solve the games in Exercises 7.3B1, 7.3B2, 7.3B3, and 7.3B4 using linear pro-
gramming.

3. Solve the following games using linear programming:

(i)
−1 2 1
2 0 2
0 3 −1

; (ii)
−1 1 1
2 −2 2
3 3 −3

;

(iii)
−2 1 0
1 −2 −1
0 2 −1

; (iv)
0 −2 3

−2 2 −1
3 1 −3

.

4. Solve the following games using linear programming:

(i)
3 −4 3
3 2 −2

−2 −2 4
; (ii)

−1 2 −2
1 −2 3
2 1 −2

;
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(iii)
3 −3 −2

−1 4 −1
1 −2 2

; (iv)
1 −2 1

−1 2 −1
1 −1 −1

.

5. Solve the following games using linear programming:

(i)
0 −1 3 2

−1 1 −3 −1
1 4 0 −1

; (ii)
1 3 −1 2

−2 0 2 −1
3 2 −3 −2

;

(iii)
1 −4 2 3
2 −3 −2 −1
1 2 0 −1

; (iv)
1 −1 2 2
2 1 −2 −1
1 3 1 −1

.

6. Solve the following games using linear programming:

(i)

−1 3 1 0
−1 −1 −1 2
−1 2 3 −1

1 −2 2 −2

; (ii)

2 0 0 1
0 3 1 0
0 1 3 0
1 0 0 4

;

(iii)

3 −2 1 −3
−1 1 1 −1

0 −2 2 2
2 −2 −2 1

; (iv)

2 1 −1 3
2 3 −2 −1
3 2 2 −4

−3 4 −3 1

.
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Financial Mathematics

8.1 Simple Interest

In this chapter, we study the mathematics of finance: interest, investments and loans.
There are some very deep mathematical ideas related to finance, and a full study
is well beyond our scope. For example, many topics require the use of calculus. In
our brief overview, we can only touch on a few elementary topics. Even for this,
a calculator will be essential.

In all our financial calculations, we use the idea of percentages. Recall that “per
cent” means “out of 100”. Therefore, R% is just another way of saying R

100 .

How Interest Works

The idea of simple interest is well-known. Suppose you put $100 in a bank account,
and at the end of one year the bank pays you back your $100 plus $6. This is called
interest on your investment, and the rate is 6%.

This interest rate is always stated in terms of the annual interest. Suppose you put
your $100 in the bank for three months, and receive $1.50 in interest. This is 1.5%
of your original investment, but the rate is still quoted as 6%, the equivalent rate if
the money had been kept for a year.

Sometimes you reinvest your money; in the first example, you would have $106
in your account at the beginning of year 2. If this process is carried out automatically
by the bank, it is called compounding. We shall discuss compounding and compound
interest in the next section. Simple interest is just the case where compounding does
not occur. The obvious model is where you take out the interest and spend it as, for
example, when somebody retires and lives on the interest from their savings.

The arithmetic of borrowing money (loans, mortgages) is similar to that for in-
vesting. Typically, you do not wait until the end of a loan period to pay back a loan.

W.D. Wallis, A Beginner’s Guide to Finite Mathematics,
DOI 10.1007/978-0-8176-8319-1_8, © Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-8176-8319-1_8
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The usual practice is to pay equal amounts each month (or each week or . . . ). For
this reason, most loans involve compound interest. However, some loans use simple
interest. We shall give examples at the end of this section.

The original amount you borrow is called the principal, or present value of an
investment or loan. Suppose you draw simple interest on a principal $P for n years
at R$ interest. The total amount you would receive is $A, where

A = P

(
1 + n

R

100

)
= P(1 + nr).

(The fraction r = R/100 is sometimes more convenient to use.) The total interest is
$I , where

I = Pn
R

100
= Pnr.

When dealing in periods shorter than a year, it is common to calculate as though
the year consisted of 12 months, each of 30 days. This 360 day “year” is called a
“standard” year. The regular 365 day year is called an “exact” year. Simple interest
may be calculated for part of a year—n need not be an integer—and in that case,
standard years are used. In the case of an investment, simple interest is usually paid
at the end of each year, but sometimes at the end of the loan period; for a loan,
both interest and principal are typically paid at the end of the whole loan period.
(Compound interest is normally used in cases where parts are paid throughout the
loan period.)

Sample Problem 8.1. You borrow $1600 at 12% simple interest for four months.
How much must you pay at the end of the period? How much would you pay if
the loan were for two years?

Solution. We use the formula A = P(1+nR/100) with P = 1600 and R = 12.
In the first case, n is 1

3 (four months is one-third of a year), so

A = 1600 × (1 + 0.12/3) = 1600 × (1.04) = 1664

and you repay $1664. In the second case, n is 2, so

A = 1600 × (1 + 0.12 × 2) = 1600 × (1.24) = 1984

and you repay $1984.

Your Turn. You borrow $1200 at 10% simple interest for three months. How
much must you pay at the end of the period? How much would you pay if the
loan were for three years?
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Using the “Simple Interest” Formula

The simple interest formula can be inverted. Given the final amount, interest rate and
term, you can calculate the principal:

P = A

(
1 + n

R

100

)
.

Similarly, you can calculate the interest rate from the other data.

Sample Problem 8.2. You borrow $1800 at simple interest for six months. At the
end of the period you owe $1863, including the principal. What was the interest
rate?

Solution. Again we use A = P(1 + nR/100). We know A = 1863, P = 1800,
and n = 1

2 . So

1863 = 1800 ·
(

1 + R

200

)
= 1800 + 9 · R,

and therefore 9 · R = 63, R = 7. So the interest rate was 7%.

Your Turn. You borrow $1400 at simple interest for four months. At he end of
the period you owe $1428, including the principal. What was the interest rate?

Sample Problem 8.3. You need to borrow some money for three months. Your
lender offers a rate of 12%. At the end of the period you repay $824. How much
was the principal?

Solution. Using the formula with R = 12 and n = 1
4 , we get

824 = P(1 + 12/400), A = 824

1.03
= 800.

The principal was $800.

Sample Problem 8.4. You borrow $1400 at simple interest for three years. At the
end of that period, your interest is $210. What was the interest rate?

Solution. In this case P = 1400, I = 210, and n = 3. So

210 = 1400 · 3 · R

100
= 42R; R = 210

42
= 5.

The rate was 5%.

Your Turn. You borrow $2200 at simple interest for two years. At the end of
that period, you owe a total of $2233. What was the interest rate?
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Add-on Loans

One example of a loan calculated with simple interest is the add-on loan. In an add-
on loan, you add the whole amount of simple interest to the principal and pay off
that total. If the principal is $P , the interest is R%, and the period is n years, then
the total to be paid back is $P(1 + nR

100 ).

Very often these loans are for short periods, and in those cases the interest is high.

Sample Problem 8.5. What is your monthly payment on an add-on loan if you
borrow $12000 over five years at 8% per year?

Solution. Simple interest is $960 per year, so the total (simple) interest is for five
years is $4800. Therefore, the total to be paid is $16800. There are 60 monthly
payments, so your monthly payment will be $16800/60, which is $280.

Your Turn. What is your monthly payment on an add-on loan if you borrow
$500 over three months at 36% per year?

Discounted Loans

If the interest is r%, then in a discounted loan you subtract the interest from the
amount borrowed. Suppose your loan says you will borrow $P at an interest rate
of R%, and the period is n years. Instead of $P you receive $P(1 − Rn/100). For
example, if your loan has principal $12000 over 5 years at 8%, you only receive

$12000 × (1 − 0.4) = $7200.

At the end of the period you repay the original principal, $12000 in the example.

These loans are sometimes used by auto sales companies, for lease agreements
with an option to buy.

Sample Problem 8.6. You need to pay $12000. What will be your payments for
a five-year discounted loan at 8% per year?

Solution. If you need $12000 then your principal will be $A where

A × (1 − 0.4) = 12000

so $A = $(12000/0.6) = 20000. Your monthly payments total $20000 over
60 months, so they equal $333.33 per month, to the nearest cent. (In actual fact,
you would probably pay $333.34 per month, with a last payment of $332.94, or
maybe $334 per month, with the last payment adjusted down.)
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Observe the difference between the payments in Sample Problems 8.5 and 8.6.
This is not an isolated example. An add-on loan is always better than a discounted
loan at the same (non-zero) interest rate.

To see this, suppose you need $100. If you borrow $100 for n years at R% in-
terest, using an add-on loan, you eventually pay $100(1 + nR

100 ) = $(100 + nR). In
order to obtain $100 using a discounted loan at R%, your “principal” is $P , where
P(1 − nR/100) = 100.

Suppose the discounted loan were as good a deal as the add-on. Then P ≤ 100+
nR. Then

100 = P(1 − nR/100) ≤ (100 + nR)(1 − nR/100)

= (100 + nR)(100 − nR)/100

from which

10000 ≤ (100 + nR)(100 − nR) = 10000 − n2R2.

This would mean n2R2 ≤ 0. This is never true.

In any case, for a discounted loan or an add-on loan to be worthwhile, the interest
rate must be low. They are better for short-term loans.

Exercises 8.1 A

1. You borrow $5000 at 7% simple interest. What is the total you must pay if the
loan is for a period of:

(i) One year; (ii) Three years; (iii) Five years?

2. You borrow $4800 at 4% simple interest. How much is the interest if the loan is
for a period of:

(i) Two years; (ii) Five years; (iii) Eight years?

3. You borrow $12000 at 4% simple interest. Assume the interest is calculated on a
standard (360-day) year. What is the total you must pay if the loan is for a period
of:

(i) One month; (ii) Three months; (iii) Five months?

4. You borrow $2500 at 6% simple interest. Assume the interest is calculated on a
standard (360-day) year. What is the total you must pay if the loan is for a period
of:

(i) One month; (ii) Two months; (iii) Six months?

5. You borrow $500 at simple interest for two years. At the end of the loan, you
owe $80 in interest. What was the interest rate?

6. You borrow $1200 at simple interest for six months. At the end of the loan, you
must repay a total of $1260. What was the interest rate?
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7. You borrow some money at 7% simple interest. (Assume the interest is calcu-
lated on a standard (360-day) year.) How much did you borrow, if:

(i) Your total repayment at the end of two years is $2508;

(ii) Your total repayment at the end of eight months is $1570;

(iii) The interest you owe at the end of six months is $42?

8. You borrowed $1000 from a loan company at simple interest. After three months,
your total debt was $1060. What interest did they charge?

9. You buy a treasury bill for $980. After three months, you sell it back to the
Government for $1000. What was the interest rate?

10. What is your monthly payment on an add-on loan if you borrow $3000 over
three years at 12% per year?

11. What is your monthly payment on an add-on loan if you borrow $1200 over six
months at 36% per year?

12. You need to pay $24000. How much must you borrow for a five-year discounted
loan at 6%? What will be your monthly payments?

13. You need to pay $16000. How much must you borrow for a three-year discounted
loan at 9%? What will be your monthly payments?

Exercises 8.1 B

1. You borrow $4000 at 8% simple interest. What is the total you must pay if the
loan is for a period of:

(i) One year; (ii) Three years; (iii) Four years?

2. You borrow $8000 at 3% simple interest. What is the total interest if the loan is
for a period of:

(i) Two years; (ii) Three years; (iii) Six years?

3. You borrow $2500 at 5% simple interest. What is the total you must pay if the
loan is for a period of:

(i) Three years; (ii) Four years; (iii) Seven years?

4. You borrow $3000 at 5% simple interest. What is the total interest if the loan is
for a period of:

(i) Two years; (ii) Four years; (iii) Five years?

5. You borrow $2000 at 3% simple interest. Assume the interest is calculated on a
standard (360-day) year. What is the total you must pay if the loan is for a period
of:
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(i) One month; (ii) Four months; (iii) Six months?

6. You borrow $4800 at 5% simple interest. Assume the interest is calculated on a
standard (360-day) year. What is the interest if the loan is for a period of:

(i) One month; (ii) Three months; (iii) Six months?

7. You borrow $400 at simple interest for three years. At the end of the loan, you
owe $120 in interest. What was the interest rate?

8. You borrow $600 at simple interest for two years. At the end of the loan, you
must repay $690 in total. What was the interest rate?

9. You borrow $1000 at simple interest for six months. At the end of the loan, you
owe $60 in interest. What was the interest rate?

10. You borrow $5400 at simple interest for nine months. At the end of the loan, you
must repay a total of $5562. What was the interest rate?

11. You borrow some money at 8% simple interest. How much did you borrow, if:

(i) The interest you owe at the end of four years is $1344;

(ii) Your total repayment at the end of eight months is $13272;

(iii) The interest you owe at the end of six months is $44?

12. You borrow some money at 6% simple interest, calculated on a standard (360-
day) year. How much did you borrow, if:

(i) Your total repayment at the end of two years and four months is $3648;

(ii) Your total repayment at the end of eight months is $2912;

(iii) The interest you owe at the end of six months is $198?

13. A loan of $30000 is repaid after six years; the total repayment is $48000. What
was the interest rate?

14. A company borrows $17300 at 6.8% simple interest to cover short-term costs,
and pays interest of $882.30. How long was the period of the loan?

15. What is your monthly payment on an add-on loan if you borrow $500 over four
months at 30% per year?

16. What is your monthly payment on an add-on loan if you borrow $1200 over five
years at 6% per year?

17. You need to pay $15000. How much must you borrow for a five-year discounted
loan at 5%? What will be your monthly payments (to the nearest cent)?

18. You need to pay $12000. How much must you borrow for a four-year discounted
loan at 9%? What will be your monthly payments?
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8.2 Compound Interest

In this section, students will find it very useful if their calculator enables them to
calculate powers of numbers: for example, if it has a key (possibly one marked xy)
that enables the user to input two numbers and automatically calculate the result of
raising the first number to the power of the second number. (Only positive whole
number powers will occur.)

Compounding

Say, you have $100 and every year you double your money.

One year from now you have $200.

2 years from now you have $400.

3 years from now you have $800.

So in 1 year you gain 100%; in three years you gain 700%—much more than
3 × 100%. This process is called compounding. Tt also happens for interest less than
100%.

Sample Problem 8.7. Suppose you put $1000 in the bank for five years at 10%
interest paid annually. If you take your interest out of the bank at the end of each
year, how much do you have at the end of five years? If you allow it to compound,
how much do you have at the end of five years?

Solution. If you take your interest out of the bank at the end of each year, you
get $100 each year. After five years you have a total of $1500, a profit of $500.

If you put your interest back in the bank at 10%:

• After year 1 you get $100, so you have a total of $1100 in the bank.

• After year 2 you get $110 (10% of $1100), so you have a total of $1210 in
the bank.

• After year 3 you get $121, for a total of $1331.

• After year 4 get $133.10, for a total of $1464.10.

• After year 5 get $146.41, for a total of $1610.51.

So after five years you have $1610.51, a profit of $610.



8.2 Compound Interest 397

Let’s look at this in general. Say you put $P in the bank at R% for N years, and
reinvest all the interest. You end up with

P

(
1 + R

100

)N

.

This process is called geometric growth.

On the other hand, simple interest is the same as “we’ll take the interest out each
year”. After N years at R% you would finish with

P

(
1 + RN

100

)
.

This is called arithmetic growth.

Sample Problem 8.8. Suppose you invest $1200 at 10% interest for three years
with interest paid each year. How much interest is earned in total, if you take the
interest out each year? How much if you reinvest the interest each year?

Solution. We use the two formulas. For arithmetic growth, you end with

1200

(
1 + 10 · 3

100

)
= 1200 · 1.3 = 1560

and the interest is $(1560 − 1200) = $360. Under geometric growth, the amount
received after three years is

1200

(
1 + 10

100

)3

= 1200 · 1.13 = 1200 · 1.331 = 1597.2

and the interest is $397.20.

Your Turn. What are the results for the above problem if your period of invest-
ment is four years?

Interest Periods

Very often a bank pays interest more frequently than once a year. Say you invest at
R% per annum for one year but interest is paid four times per year. The bank pays
R
4 % every 3 months; this is called the interest period, or term. (Unfortunately, term
is also used to denote the life of the loan.) If you invest $A, your capital after a year
is

$P

(
1 + R

400

)4

,
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just as if the interest rate was divided by 4 and the number of years was multiplied
by 4.

(Notice that we used the simplifying assumption that three months is a quarter
of a year. In fact, some quarters can be 92 days, others 91 or 90, but banks seldom
take this into account. Similarly, when interest is calculated every month, it is usual
to assume that each month is one-twelfth of a year.)

Sample Problem 8.9. Say your bank pays R = 8% annual interest, and interest
is paid four times per year. What interest rate, compounded annually, would give
you the same return?

Solution. (1 + R
400 )4 = (1.02)4 = 1.0824 . . . so the effect is the same as com-

pounding annually with 8.24 . . . % interest rate.

Say interest is added t times per year. The result after one year is the same as if
the interest rate were (R/t)% and the investment had been held for t years: after one
year,

P

(
1 + R

t · 100

)t

,

so after N years,

P

(
1 + R

t · 100

)tN

.

The calculations are exactly the same when you borrow money as they are when
you invest money.

Sample Problem 8.10. You borrow $50000 at 10% annual interest, compounded
every three months, for ten years. Assuming you make no payments until the end
of the period, how much will you owe (to the nearest dollar)?

Solution. We have P = 50000, R = 10, t = 4, and N = 10. So

P

(
1 + R

t · 100

)tN

becomes

50000 ×
(

1 + 10

400

)40

= 50000 · (1.025)40 = 50000 · 2.68506

which comes to 134253.19 . . . and you owe $134253.

Your Turn. You borrow $40000 at 12% annual interest, compounded every
three months, for 15 years. Assuming you make no payments until the end of
the period, how much will you owe?
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In Sample Problem 8.9, 8% is called the nominal rate of interest. The nominal
rate doesn’t tell you how often compounding takes place. 8.24. . . % per annum is the
effective rate. (These terms are established in the Truth in Savings Act.)

Note: when discussing a loan, the nominal rate per annum is called the annual
percentage rate or APR.

When the period is a year (“per annum”) the effective rate is called the annual
percentage yield (APY) or effective annual rate (EAR). To avoid confusion, we shall
refer to the APY, both for investments and loans.

Banks and other lenders like to tell you the APR, but what you really want to
know is the APY. To calculate the APY, one works out how much would be owed on
$100 at the end of a year, if no payments were made. This is not a real-world calcula-
tion: credit card companies and mortgage-holders normally require some minimum
payment, or a penalty is charged. In calculating the APY, act as though all penalties
are waived.

Sample Problem 8.11. Your credit card company charges an APR of 18%. Pay-
ments are required monthly, and interest is charged each month. What is the
corresponding APY?

Solution. The amount owing from a $100 loan at the end of one year is

A = 100

(
1 + 18

12 · 100

)12

= 100 · 1.01512

= 119.56,

so the APY is 19.56%.

Your Turn. Suppose your credit card company charges an APR of 12%, under
the above conditions. What is the corresponding APY?

Exercises 8.2 A

1. You borrow $1000 at 12% interest, and repay it after one year. What is the total
payment if the interest is compounded

(i) Every three months;

(ii) Every six months;

(iii) Once a year?

2. You borrow $100 at 6% interest for four years. What is the total interest if com-
pounding takes place

(i) Every month;
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(ii) Every three months;

(iii) Once a year?

3. You invest $3250 at 2% interest compounded annually. What is its value after
five years?

4. You borrow $625 at 8% interest compounded quarterly, and repay it after 12
years. How much interest must you pay?

5. You invest $200 for one year at interest rate 12%, compounded monthly. What
is the value of your investment at the end of the year?

6. You invest $2000 for three years at interest rate 6%, compounded every six
months. What is the value of your investment at the end of the period?

7. You invest a sum for twelve years at interest rate 12%, compounded quarterly.
At the end of the period your investment is worth $10000. How much did you
invest initially?

8. You wish to deposit a sum at 6% interest, compounded every six months, in
order to pay $10000 due in five years. How much must you deposit?

9. You deposit $4000 at 7% interest, compounded monthly. How many years will
it take until your investment exceeds $9000?

10. You invest your money at 12% compound interest paid quarterly. When will it
double in value?

11. What is the APY on a loan:

(i) At 5% APR, compounded monthly;

(ii) At 6% APR, compounded quarterly;

(iii) At 3% APR, compounded monthly?

12. What is the APY corresponding to compound interest at an annual rate of 12%,
compounded:

(i) Annually;

(ii) Quarterly;

(iii) Monthly;

(iv) Daily (assume a 360-day year);

(v) Daily (assume a 365-day year)?

Round your answers to one-hundredth of one percent.

Exercises 8.2 B

1. You borrow $2500 at 8% interest, and repay it after one year. What is the total
payment if the interest is compounded
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(i) Every three months;

(ii) Every six months;

(iii) Once a year?

2. You borrow $5000 at 5% interest, compounded monthly. What is the total pay-
ment if the period is

(i) Two years;

(ii) Four years?

3. You invest $2575 at 4% interest compounded quarterly, for two years. How much
interest do you receive?

4. You borrow $460 at 6% interest compounded quarterly, and repay it after seven
years. How much must you repay, in total?

5. You invest $80000 for 25 years at interest rate 6%, compounded annually. What
is the value of your investment at the end of the period?

6. You invest $1000 for two months at interest rate 24%, compounded each month.
What is the value of your investment at the end of the period?

7. You invest a sum for fifteen years at interest rate 6%, compounded every two
months. At the end of the period your investment is worth $18000. How much
did you invest initially?

8. You make a deposit at 6% interest, compounded every six months, in order to
pay a promissory note for $5000 that falls due in ten years. How much should
you deposit?

9. You invest at 6% interest, compounded annually. How many years must you wait
to double your money?

10. You invest your money at 10% compound interest paid quarterly. When will it
double in value?

11. What is the APY on a loan:

(i) At 7% APR, compounded monthly;

(ii) At 6% APR, compounded monthly;

(iii) At 8% APR, compounded quarterly?

12. Which investment would give a better return: one at 5.8% APR, compounded
monthly, or one at 5.95% APR, compounded annually?

8.3 Regular Deposits

As we pointed out in Sect. 8.1, you do not usually wait until the end of a loan period
to pay back a loan. The usual practice is to pay equal amounts each month (or each
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week or . . . ). Another situation where equal deposits are made is the periodic savings
account, such as a Christmas club or retirement account, where a fixed amount is
deposited into savings each period.

Regular Savings

Consider a periodic savings account. Suppose you deposit $D each month. The in-
terest each month is M%; write m = M/100. Assume the account is empty to start,
and you pay in for n months. (Often n = 11 or 12 because people use these accounts
to save for vacations or Christmas shopping.)

The calculations to find the amount at the end of the nth month might start:

Principal, start of month 1 $D

Interest earned in month 1 $mD

Principal, end of month 1 $(1 + m)D

Add to principle $D

Principal, start of month 2 $D + $(1 + m)D

= $(2 + m)D

Interest earned in month 2 $m(2 + m)D

Principal, end of month 2 $(2 + m)D + $m(2 + m)D

= $(1 + m)(2 + m)D

Add to principle $D

Principal, start of month 3 $D + $(1 + m)(2 + m)D,

and so on.

This soon becomes complicated. An easier way is to calculate the effect of
putting each new payment in a new bank account. The total in all the accounts at
the end of n months will be the required amount.

Payment 1 draws interest for n months, so the amount in that account at the end
is $D(1 + m)n; payment 2 draws interest for n − 1 months, so the amount in that
account at the end is $D(1 + m)n−1. The total of accounts 1 and 2 is

$D(1 + m)n + $D(1 + m)n−1

= $D
[
(1 + m)n + (1 + m)n−1].

If we proceed in this way, the total after n months (n accounts) is

$D
[
(1 + m)n + (1 + m)n−1 + · · · + (1 + m)

]
.
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If m = 0 then the total is simply $nD. We assume m �= 0 and evaluate

(1 + m)n + (1 + m)n−1 + · · · + (1 + m).

Write
X = (1 + m)n + an−1 + · · · + (1 + m)2 + (1 + m).

Then
(1 + m)X = (1 + m)n+1 + (1 + m)n + · · · + (1 + m)3 + (1 + m)2.

Subtracting, mX = (1 + m)n+1 − (1 + m) so X = (1+m)n+1

m
(this is where we need

to assume m �= 0).

So the amount in the account after n months is

$D · [(1 + m)n+1 − (1 + m)]
(1 + m) − 1

= $D · [(1 + m)n+1 − (1 + m)]
m

.

We call this amount the accumulation.

Sample Problem 8.12. At the beginning of each month you put $100 into an
account that pays 6% annual interest. How much have you accumulated at the
end of the year?

Solution. 6% annual interest is 0.5% per month. So m = 0.005, n = 12,D =
100, and you get

$100(1.00513 − 1.005)/0.005

= $100(1.066986 − 1.005) · 200

= $20000(0.061986)

= $1239.72.

Your Turn. In the above example, suppose you started saving in April, so that
you only made nine payments. How much will you accumulate?

Some investment funds are set up so that you make your payment at the end of
the payment period, rather than the beginning. In these cases, it is usual to add the
last payment to the accumulation, even though it accrues no interest. In that case, the
accumulation is

$D · [(1 + m)n − 1]
m

.

For example, in a Christmas club, you might make your first payment on January 31st
and withdraw the money early in December. There are ten payments. If the annual
interest is again 6%, your accumulation is

$D · [(1.005)10 − 1]
0.005

.
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Compound Interest Loans

When you borrow money at compound interest and make regular repayments, inter-
est is normally calculated on the amount you owe. Usually the interest is calculated
at the time your payment is due; when you buy a house on a mortgage and make
monthly payments, the interest is compounded monthly. There is a penalty for late
payments, in addition to the interest on the missed payment. Usually there is no re-
ward for paying early in the month. We shall refer to this arrangement as a standard
compound interest loan, or simply a compound interest loan.

To clarify this, suppose your house payment of $2000 is due on the first of the
month, and on June 1st this year your total indebtedness is $100000. For simplicity,
say your annual interest rate is 12%, so the interest for one month is 1%. On July
1st, interest of $1000 (1% of $100000) is added to your debt. Then payments are
credited. Assuming you made the standard $2000 payment, this is subtracted from
your debt, which becomes ($100000 + $1000 − $2000) = $99000. When August
1st comes around, the new interest will be $990 (1% of $99000). It does not matter
when you made the payment, provided it is on or before July 1st; even if you paid on
June 2nd, it is applied on July 1st. If you made a payment greater than $2000 during
June, the total would be subtracted from your debt on July 1st.

If you miss a payment, or pay less than $2000, some penalty is exacted. The
arrangements differ from loan to loan. Some lenders charge a higher interest rate on
the amount in arrears; some charge a fee; many do both.

Payments

The amount of payment required to pay off a loan can be calculated from the data
about the loan.

The calculation proceeds as follows. Say you borrow $P at M% monthly interest
(compounded monthly), and pay it back at the end of Y years. The arithmetic is the
same as if you put $D into a savings account each month at M% interest compounded
monthly, and at the end of Y years you have exactly enough money to pay off your
loan. This amount is $P(1 + m)n, where n = 12Y and m = M/100. Then the
required monthly payment is $D.

The only difference between this and the example of accumulated savings is that
loan repayments usually start at the end of the first month, so for Y years the total
number of months for which your money accumulates is 12Y − 1, not 12Y , and
you gain nothing during the first month. If we continue to write n for the number of
months in the life of the loan, we use n−1 in place of n in the accumulation formula.
This actually simplifies the formula: we want to sum

$D
[
(1 + m)n−1 + (1 + m)n−2 + · · · + 1

]
.
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The required payment $D for a loan is calculated from

P(1 + m)n = D · [(1 + m)n − 1]
m

.

Sample Problem 8.13. You take out a compound interest loan of $100000 at 6%
annual interest to pay off your house. The period is 30 years. What payment is
required each month?

Solution. Suppose the monthly payment is $D. The interest rate is 0.5% =
0.005 per month. There are 360 months in thirty years. So P(1 + m)n is

$100000 × (1.005)360

or $602257.52. In this example

D × [(1 + m)n − 1]
m

= $D × [(1.005)360 − 1)]
0.005

= $D × 5.0225752 × 200 = $D × 1004.515

so $D × 1004.515 = 602257.52 and D = 599.55. You would pay $599.55 per
month.

Your Turn. To buy your car, you borrow $12000 over five years at 8% interest,
compounded monthly. To pay it off you pay $D per month. What is D?

It is interesting to observe the differences that follow from small changes in a
long-term loan. Suppose we change the annual rate of interest in the preceding ex-
ample from 6% to 8%, leaving the principal and period unchanged. The interest rate
is 0.00666 . . . or 1/150 per month. So the accumulation after 30 years at 8% is

$100000 · (151/150)360,

or $1093572.96. In the “regular savings” model, depositing $D per month, your
accumulated savings would be

$D · [(151/150)360 − 1)]
1/150

= $D · 9.9357296 · 150 = $D · 1490.36.

So your monthly payment is D = 733.76.

On the other hand, changing the period of the loan makes less difference than
you might think. Reducing the period by 20%, to 24 years, adds less than 10% to
your monthly payment:

Sample Problem 8.14. You take out a compound interest loan of $100000 at 6%
annual interest to pay off your house. The period is 24 years. What payment is
required each month?
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Solution. As in Sample Problem 8.14, the interest rate is 0.5% = 0.005 per
month. There are 288 monthly payments. So in this case P(1 + m)n is

$100000 × (1.005)288

or $420557.89, and

D × [(1 + m)n − 1]
m

= $D × [(1.005)288 − 1)]
0.005

= $D × 3.2055789 × 200 = $D × 641.116.

So D × 641.116 = 420557.89. You would pay $655.98 per month.

Your Turn. Repeat the preceding calculation when the interest rate is 8%.

Here is another way of interpreting the above calculation: suppose you contracted
to buy your $100000 house at 6% annual interest over 30 years. Your bank requires
a monthly payment of $600 (actually $599.55 per month, but the bank rounds up
slightly; the last payment would be reduced a little). If you decided to pay an extra
$56 each month, you would finish paying for your house six years ahead of sched-
ule.

We have calculated D from A (answering the question “What payment must I
make?”). We can also calculate A from D (“Given the maximum payment I can
make, how much can I afford?”).

Sample Problem 8.15. You want to buy a car. You can get an 8% loan over five
years. You can pay $200 per month. How much can you afford to pay for the car?

Solution. m = 8/12% = 1/150,D = 200, n = 60. So

mP(1 + m)n = D · [(1 + m)n − 1
]

becomes

P(151/150)60/150 = 200
[
(151/150)60 − 1

]
.

So P ·1.49646 = 150 ·200 ·0.49646, implying P = 9952.69, and you can afford
about $9950.

Your Turn. In the above example, suppose you negotiated a loan at 7.5%. How
much could you then afford?

One can use this method to compare compound interest loans with other sorts of
loans. For example, an add-on loan of $1000 at 5% interest for a four-year period
requires monthly payments of $25. If you took out a $1000 loan for four years at
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6% compound interest, and found your monthly payment to be $25, your principal
was $P , where

0.005 · P · 1.00548 = 25 · [
1.00548 − 1

]
.

Then

P = 25 · [1.00548 − 1]
0.005 · 1.00548

= 6.76223

0.0063525
= 1064.50.

So the APY for the four-year 5% add-on loan is greater than 6%.

Equity

Suppose you have finished 3 years’ payment on a 5-year loan of $9952 at 8% annual
interest for a car. As we saw in Sample Problem 8.14, your payments were $200 per
month.

Think about the remaining 24 months. Your situation is as though you had just
taken a loan of $A at 8% per annum, where

A(151/150)24/150 = 200
[
(151/150)24 − 1

]
,

so 1.17288A = 150 · 200 · 0.17288, A = 4421.94.

We say your equity in the loan is $9952 − $4421.94, about $5530.

You might think that, after making payments for three-fifths of the payment pe-
riod, you would own 60% of your car. However, your equity is a little less than that
amount: around 55.5%.

The difference is much greater on longer-term loans. For example, suppose you
take out a 30-year house loan for $100000 at 8% per annum, with equal monthly
payments of $733.76 (as we calculated above). After three-quarters of the term—
270 of the 360 payments have been made—it is as if you had just taken a loan at 8%
per annum with principal $A, where

A(151/150)90/150 = 733.76
[
(151/150)24 − 1

]
,

that is,

A · 0.012123295 = 600.578

so A = 49539.20 and your equity is $50460.80.

After three-quarters of your payments, you own about half of your house.
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Exercises 8.3 A

1. You invest $200 every quarter for 20 years in an annuity that pays 5% interest
compounded quarterly. What is the final value of the annuity?

2. You invest $4000 every year for five years in an annuity that pays 10.5% interest
compounded annually. What is the final value of the annuity?

3. Credit card interest is 18% interest compounded monthly. How much must be
paid each month to eliminate a debt of $1000 in one year?

4. $200 is invested per month in an fund that pays 9% interest compounded
monthly. The first payment is made at the end of the first month. What is the
value of the annuity after:

(i) 1 year; (ii) 3 years; (iii) 5 years; (iv) 8 years?

5. A house mortgage is set at 9%, compounded monthly. If the house costs
$200000, what is the monthly payment if the term of the mortgage is

(i) 15 years; (ii) 30 years?

6. You take out a compound interest loan of $120000 at 6.5% annual interest to pay
off your house. The period is 30 years. What payment is required each month?

7. You want to buy a car for $8000. The dealer offers you a 5% add-on loan for
four years, with monthly payments. You can borrow $8000 for four years from
your credit union at 7.5% interest. What would be your monthly payment in each
case? Which is the better deal?

8. You take out a compound interest loan of $100000 at 6% annual interest to pay
off your house. The period is 30 years. (We saw earlier that your monthly pay-
ment is $599.55.) What is your equity after:

(i) 15 years; (ii) 20 years; (iii) 22.5 years?

Exercises 8.3 B

1. You invest $160 every quarter for four years in an annuity that pays 4% interest
compounded quarterly. What is the final value of the annuity?

2. You invest $2000 every six months for 10 years in an annuity that pays 8%
interest compounded twice yearly. What is the final value of the annuity?

3. You need to have $100000 in ten years, so you set aside a fixed sum every three
months in a savings account. How much should you set aside each quarter if the
interest is:

(i) 6%; (ii) 8%; (iii) 10%?

4. You take out a compound interest loan of $200000 at 6% annual interest to pay
off your house. The period is 30 years. What payment is required each month?
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5. You wish to accumulate $200000 over a 30 year period by making monthly
payments into a fund that pays 9% annual interest. how much must you pay
each month?

6. You buy a car costing $16995 (after down-payment) and are offered a loan at
1.6% annual interest over 60 months. What payment is required each month?

7. You take out a compound interest loan of $100000 at 6% annual interest to pay
off your house. The period is 24 years. As we saw, your monthly payment is
$655.98. What is your equity after:

(i) 15 years; (ii) 20 years?

8.4 Exponential Growth

In this section, we examine another aspect of compounding, in which either the com-
pounding period is very short or the number of periods is very great. Again you may
wish to have a calculator that enables you to raise numbers to integer powers while
studying this section. It is also useful to have the constant e available on your calcu-
lator.

Continuous Compounding

In some cases, compounding takes place after a very short interest. For example, in
some bank accounts, interest is calculated every day. Over one year, there are 365
compounding periods. We saw in Exercise 8.2A.12 that the interest rate differs very
little between the final interest if the standard year is used instead of the exact year.

In another case, even though the period is longer, there are still a large number
of compounding periods. For example, suppose a company invests some of its funds
and loses track of the investment for 100 years. It is found that there is little difference
whether compounding took place monthly or quarterly.

For our calculations it will be convenient to work in terms of the fraction r =
R/100 rather than the percentage R. If your bank applies interest to your account
n times per year, the interest is R% and your initial investment (“capital”) was $A,
then your ending capital after N years is

$A(1 + r/n)nN .

Consider the example of 100% interest, the case r = 1. The following table
shows the values of (1 + 1/n)n and (1 + 1/n)n − 1 for several values of n. The
right-hand number is the APY corresponding to an APR of 100% with compounding
n times annually.
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n (1 + 1/n)n

1 2.0000000 1.0000000
2 2.2500000 1.2500000
5 2.4883200 1.4883200

10 2.5937424 1.5937424
100 2.6915880 1.6915880

1000 2.7169239 1.7169239
10000 2.7181459 1.7181459

100000 2.7182682 1.7182682

Eventually the right-hand number gets very close to a fixed value, usually de-
noted e, about 2.7182818 . . .

A similar calculation can be made for other values of r . For large n, (1 + r/n)n

gets very close to er . For example, if r = 0.1, then er = 0.10517 . . .

We define continuous compounding to be a process where, after N years, the
ending capital is

$PerN .

The calculations above show that continuous compounding is a very good approxi-
mation to daily interest, and many lenders use it instead of daily interest because it
is easy to calculate.

Sample Problem 8.16. You borrow $50000 at 10% annual interest, compounded
continuously, for ten years. Assuming you make no payments until the end of the
period, how much will you owe (to the nearest dollar)?

Solution. We have P = 50000, R = 10 and N = 10. So r = 0.1 and

PerN = 50000 · e = 135914.09 . . .

and you owe $135914. Compare this with the result of Sample Problem 8.10,
where compounding was quarterly and the answer was $134253. The difference
is not great.

Your Turn. You borrow $40000 at 12% annual interest, compounded continu-
ously, for 15 years. Assuming you make no payments until the end of the period,
how much will you owe?

One advantage of continuous compounding is that one can easily calculate the
interest when principal and interest are known. For example, suppose you invest
$100 for two years and receive $21 interest. Your money grew from $100 to $121
with continuous compounding, so the rate r satisfied 100e2r = 121, so e2r = 1.21
and er = √

1.21 = 1.1. From this, r will equal the natural logarithm, or logarithm to
base e, of 1.1, which equals 0.0953 . . . , so the interest rate was 9.53%. (The natural
logarithm function, written ln, is available on most scientific calculators.)



8.4 Exponential Growth 411

However, you don’t even need to calculate the value of r in order to find the inter-
est; all you need is er . In this example, after n years, your capital will be $100 · (1.1)n

and your interest will be $100 · [(1.1)n − 1]. Of course, you can easily calculate the
APY — in the example, your money would grow from $100 to $110 in the first year,
so the APY is 10%. If you don’t want to deal with natural logarithms, there are tables
to calculate the value of R (and r) from the APY.

Sample Problem 8.17. You borrow $50000 at continuous compounding for ten
years. At the end of the period, you owe $100000. What was the approximate
APY?

Solution. Suppose the rate is r . Then 50000e10r = 100000 so e10r = 2. There-
fore, er equals the tenth root of 2, which equals 1.0718 approximately. The APY
is approximately 7.18%.

Your Turn. You borrow $40000 for seven years. At the end of the period, you
owe $80000. What was the approximate APY?

Observe that the figures of $50000 and $100000 were not an essential part of the
above Sample Problem. The main point was the ratio: the debt at the end was double
the principal. The answer would be the same for any value of P , provided the final
amount owed was twice P .

If k is any constant, the function f (x) = kx is called an exponential function, and
the situation where a quantity changes over x units of time from A to Akx is called
exponential growth; x is the exponent. So continuous compounding is an example of
exponential growth.

Inflation and the Consumer Price Index

There is a tendency for the purchasing power of money to decrease over time; this is
called inflation. Sometimes the rate of inflation will change rapidly, but often it stays
roughly constant for several years. Inflation follows the same model as continuous
compounding.

For example, let’s suppose inflation rate is 5% from 2007 to 2012. If something
costs $100 in January 2007, then five years later, in January 2012, we expect it to cost
$100 · (1.05)5 = $127.63. Of course, individual items do not increase at a uniform
rate, but this would be a useful approximate guide to the cost of living.

As inflation is not constant, governments often calculate tables to show the pur-
chasing power of today’s dollar in earlier years. In the United States, the Consumer
Price Index (CPI) is calculated each month by finding the cost of a standard set of
items (food, housing, vehicles, and so on). There are in fact several CPIs constructed.
We shall always refer to the CPI-U, an index that reflects the cost of living in urban
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areas (about 80% of America). There is also a CPI-W, for wage-earners, and there
are other indices. Tables of the CPI-U are available online at http://stats/bls/gov/cpi/
#tables.

The total CPI is divided by the average for 1982–1984 (the base period), and
multiplied by 100. For example, the CPI for February 2006 was 198.7, so a collection
of goods that cost $198.70 in February 2006 would have cost an average of about
$100 in the base period. The average for a year is also published; the average for
1988 was 118.3; the figures for May and June were 118.0 and 18.5, respectively.

This can be used to compare two different years. The CPI for June 2002 was
179.9. The ratio 179.9

118.5 = 1.518 . . . provides a comparison between June 2002 and
June 1988 prices: if something cost $1000 in 1988, our best guess is that it would cost
about $1518 in 2002. These figures are approximate because the prices of different
items do not increase at the same rate. However, it is reasonable to say “the cost of
living was about 50% higher in 2002 than in 1988.” A speaker in 2002 might say:
“A dollar today is worth about two-thirds of what it was worth in 1988.”

Suppose the cost of a major item at time A is $XA. Suppose the CPI at time A

is CA, and at time B it is CB . Then your estimate of the cost at time B is

CB

CA

XA.

Sample Problem 8.18. A house cost $150000 in June 1988. What would you
expect a similar house to cost in February 2006?

Solution. If the house cost $150000 in mid-1988, it is equivalent to a house that
cost 198.7

118.5 ·$150000 = $251518.99 in February 2006. Your realistic answer might
be “about $250,000.”

Your Turn. A house costs $225000 in February 2006. What would a similar
house have cost in June 2002?

Animal Populations

Another example of exponential growth is the growth of an animal population. Given
two animals (male and female), we know how frequently they will reproduce on
average, and how many offspring will be produced. These numbers are not precise,
but with large numbers the errors average out. If the animals reproduce an average
of three offspring per year, and on average two die per year, the end result is as if the
number of animals grows by 50% annually.

Of course, the animals do not all reproduce at the same time. The process is more
like continuous compounding. In the example, the appropriate model is continuous
compounding with an APY of 50%.

http://stats/bls/gov/cpi/#tables
http://stats/bls/gov/cpi/#tables
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This model is more accurate with shorter breeding periods. When studying mi-
croscopic creatures, that reproduce within hours, reasonable predictions can be made
of the population growth over periods of shorter than a day. For insects, a few days
is often long enough for an accurate model. With humans, we need decades or even
centuries. The “continuous compounding” model of a human population is used only
for predicting the population movement in large cities, states, or whole countries.

Sample Problem 8.19. A fish population doubles every year. At present it is
10000. Approximately when will it reach 100000? When will it reach 1000000?

Solution. After n years, the total population is 10000 · 2n, so the questions are,
“when is 2n = 10?” and “when is 2n = 100?”

Now 23 = 8, 24 = 16, 26 = 64, 27 = 128, so the answers are

100000 : during the 4th year;

1000000 : during the 7th year.

Radioactive Decay

Radioactive decay works like continuous compounding in reverse. A radioactive ma-
terial will dissipate with time, its molecules breaking down into molecules of other
substances. If you have a certain amount present at a given time, it is found that the
proportion that is lost depends only on the type of material and the time elapsed.

If you start with 100 grams, then at the end of one day there will remain 100k

grams, where k is a constant, between 0 and 1, depending only on the material. After
n days, the amount remaining is 100kn grams. This is exactly the same formula as
continuous compounding, with er = k.

Of course, if er is to be smaller than 1, r must be negative. So radioactive decay
is an example of exponential growth with a negative component.

The half-life of an element is the time it takes for the amount of it present to
halve. For example, if you have 500 grams with half-life 1 year, there will be 250
grams after one year, 125 after two years, and so on. After n half-lives amount A

decays to A/2n.

Sample Problem 8.20. An artificial element has a half-life of one hour. You have
450 grams. Approximately how long will it take until only 50 grams is left?

Solution. You want 450/2n = 50.

n = 3 : 450/23 = 450/8 = 56.25,

n = 4 : 450/24 = 450/16 = 28.125,

so the approximate answer is: a little over 3 hours.
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Your Turn. An artificial element has a half-life of one day. You start with 240
grams. How much will be left after four days?

Exercises 8.4 A

1. $1000 is invested at 10% annual interest, compounded continuously. What is the
value of the investment after:

(i) Three months; (ii) Two years; (iii) Ten years?

2. You invest $10000 with continuous compounding. After two years, your invest-
ment is worth $11200. What is its value after

(i) Four years; (ii) Ten years?

3. A house was bought for $120000 in March, 1991, when the CPI was 135.0. What
is its expected value in February 2006?

4. In January 2000 you have the choice of investing in houses for five years, or
investing in a five-year certificate of deposit that pays 3% compounded annually.
The CPI for January 2000 was 168.8, and for January 2005 it was 190.7. Assum-
ing the housing market shows the same growth as the CPI, which is the better
investment? Why?

5. The 2000 census shows the population of Cook County, IL as 5376741. If the
population grows at the rate of 1.2% per year, what is the expected population
in:

(i) 2010; (ii) 2050?

6. A fish hatchery has 2550 fish at the beginning of 1998. Each year the population
grows by 50% at the end of the year, 30% of the fish are sold. How many fish
are there at the beginning of 1999? How many at the beginning of 2002 ?

7. A certain insect doubles in population every week. There are 3400 in a colony
on Monday March 1st, and the numbers are checked every Monday. When do
the numbers exceed 100000?

8. There are 1280 grams of an isotope present at noon on Monday. If the half-life
is 12 hours, how much is left at noon on Thursday?

Exercises 8.4 B

1. $1000 is invested at 6% annual interest, compounded continuously. What is the
value of the investment after:

(i) One year; (ii) Two years; (iii) Four years?
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2. $1000 is invested, and after a year the value of the investment is $1050. Assum-
ing continuous compounding, what is the value after:

(i) Two years; (ii) Four years; (iii) Six years?

3. You invest $20000 with continuous compounding. After two years, your invest-
ment is worth $23000. What is its value after:

(i) Four years; (ii) Six years?

4. In January, 1995, you have the choice of investing in houses for five years, or
investing in a five-year certificate of deposit that pays 3% compounded annually.
The CPI for January 1995 was 150.3, and for January 2000 was 168.8. Assum-
ing the housing market shows the same growth as the CPI, which is the better
investment? Why?

5. A house was bought for $86000 in May, 1989, when the CPI was 123.8. What is
its expected value in February 2006?

6. You bought your house for $167000 in January, 1999, when the CPI was 164.3.
In December, 2005, when the CPI was 196.4, you were offered $195000. Is this
a good deal? Why?

7. The 2000 census shows the population of Cook County, Illinois as 59612. What
is the expected population in 2050:

(i) If the population grows at the rate of 1.2% per year;

(ii) If the population grows at the rate of 1.5% per year?

8. A colony of birds had 4400 members in April 2001. In April, 2003, there are
5234 birds. What is the annual growth rate?

9. A certain class of bacteria double in population in a day if unchecked. How many
days will it take for a colony of 10000 to exceed 1000000?

10. A radioactive material has a half-life of 11 hours. It is safe to move quantities
of 125 grams or less. If you start with 1 kilogram, how long will it be until the
material is safe to move?
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Chapter 1

1.1 {1, 2, 3}, {x : x3 − 5x2 + x + 6 = 0}, the set of the first three positive integers,
{x : x ∈ Z, 1 ≤ x ≤ 3}, {x : x ∈ Z, 0 < x < 4} are some answers.

1.2 (0,∞), (0, 1), (1, 4], (−∞, 3).

1.3 24 has factors 1, 2, 3, 4, 6, 8, 12, 24; 15 has 1, 3, 5, 15; 13 has 1, 13. The com-
mon factors of 24 and 15 are 1, 3, so (24, 15) = 3.

1.4 1, 0, 1, x3,−0.5, 25.

1.5 t−2/t−3 = t3/t2 = t , y5−2 = y3, (4x−2)(3x4) = 12x4−2 = 12x2.

1.6 2,−2, 5,−4, 3.1, 4.4.

1.7 If we replace each of x and y by 2, the equation becomes 6 − 4 = 4, which is
false. The other two suggested solutions lead respectively to 12− 8 = 4, which
is true, and 9 − 2 = 4, which is false. So (ii) is a solution, but (i) and (iii) are
not.

1.8 First move the term x:

3x + 5 − x = 7.

Then move the 5:

3x − x = 7 − 5.

Gather terms:

2x = 2.

Finally, divide by 2:

x = 1.

W.D. Wallis, A Beginner’s Guide to Finite Mathematics,
DOI 10.1007/978-0-8176-8319-1, © Springer Science+Business Media, LLC 2012

http://dx.doi.org/10.1007/978-0-8176-8319-1
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1.9 First move 2x
3 to the left and −5 to the right:

3x

2
− 2x

3
= 5.

Next, multiply by the common denominator 6:

6 × 3x

2
− 6 × 2x

3
= 6 × 5,

9x − 4x = 30.

Finally, divide by 5:

x = 6.

1.10 We move x to the right-hand side:

−2y = 2y − 8 − x2.

All y terms belong on the left:

−4y = −8 − x2.

Multiply both sides by − 1
4 :

y = 2 + 1
4x2.

1.11 We rewrite the inequality as:

2x − x ≤ 6 − 3

or

x ≤ 3.

Solution set (−∞, 3].
1.12 We first rewrite the inequality as:

2x − 4x ≤ 5 − 3

or

−2x ≤ 2.

Dividing both sides by −2, we obtain x ≥ −1, solution set [−1,∞).

1.14
∑5

i=3 i(i − 1) = 3 · 2 + 4 · 3 + 5 · 4 = 6 + 12 + 20 = 38; ∑6
i=2 i = 2 + 3 +

4 + 5 + 6 = 20.

1.15 1 + 3 + 5 + 7 + 9 = ∑5
i=1 2i − 1; 8 + 27 + 64 + 125 = ∑5

i=2 i3.

1.17 3 + 7 + · · · + 43 = ∑11
i=1 4i − 1 = 4 · ∑11

i=1 i − 11 = 4 · 12·11
2 − 11 =

264 − 11 = 253.
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1.19 Z\Z∗ consists of all the negative integers. N ⊆ Z, so Z ∩ N = N. (N\E)

contains just the odd positive integers, and all members of Π other than 2 are
odd, so (N\E) ∪ Π contains all the odd positive integers and 2. In symbols,

Z\Z∗ = {−1,−2,−3,−4,−5,−6, . . .},
Z ∩ N = N,

(N\E) ∪ Π = {1, 2, 3, 5, 7, 9, 11, . . .}.
1.20 (i) The sets are not disjoint; their common element is 2. (ii) These sets are

disjoint.

1.22 {(1, 1), (1, 4), (1, 5), (2, 1), (2, 4), (2, 5)}.
1.23

1.24 The figures are represented by the following diagram. As only readers were
surveyed, there is no need for any “outside area” outside M ∪ E.

From the diagram we see that 16 readers were surveyed.

1.26

20 like horror and police procedural movies, but do not like romances. 20 like
romances only. 10 like none of these three types.

1.27 U has sum 49, so the mean is 49/7 = 7. The mode is 7, the only reading to
appear twice. To find the median, first write the readings in ascending order: 2,
3, 6, 7, 7, 9, 15. The “center” reading is 7, so the median is 7 also.
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V has sum 117, so its mean is 19.5. Its median is 20 (after the readings are
reordered as 14, 17, 19, 21, 22, 24, the two “center” values are 19 and 21, and
we take the average of the two). There is no mode.

1.28 We define Y by the rule “yi = xi − 830”. Then Y = {3, 4, 6, 7, 11, 11}; mY =
42/6 = 7, so mX = 7 + 830 = 837.

1.29 The sum of the terms xifi is

2 × 1 + 3 × 3 + 4 × 7 + 5 × 11 + 6 × 12 + 7 × 4 + 8 × 1 = 202

while the sum of the frequencies is

1 + 3 + 7 + 11 + 12 + 4 + 1 = 39

so the mean is 202/39 = 5.179 . . . or about 5.18. We would say the mean is
“a little greater than 5”.

1.31 The data add to 17, so the mean is 17
7 = 2.428571. Using the formula, we find

7s2
X = [

12 + 12 + 22 + 22 + 32 + 42 + 42] − 7

(
17

7

)2

= [1 + 1 + 4 + 4 + 9 + 16 + 16] − 289

7
= 51 − 41.2857 = 9.7143

so s2
X = 1.38776, and sX = 1.18 (correct to two decimal places).

Chapter 2

2.2 Equation (2.1) yields

|S ∪ T | = |S| + |T | − |S ∩ T | = 42 + 32 − 22 = 52.

From (2.2) we get

|S\T | = |S| − |S ∩ T | = 42 − 22 = 20.

2.3 Each digit can be chosen in 10 ways. So there are 104 possibilities.

2.4 For the boys we now get 10×9×8 = 720. For the girls we get 13×12×11 =
1716. So the total is 720 × 1716 = 1235520.

2.5 6! = 6 × 5 × 4 × 3 × 2 × 1 = 720.

2.6 There are 9 × 8 × 7 = 504 committees.

2.7 The boys can be ordered in 5! = 120 ways. The girls can be ordered in 4! = 24
ways. So there are 120 × 24 = 2880 arrangements.

2.8 P(6, 4) = 6 × 5 × 4 × 3 = 360.
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2.9 P(12, 3), or 1320.

2.10 The boys can be ordered in 3! = 6 ways, and the girls can be ordered in 4! = 24
ways. As the table is circular, it doesn’t matter whether the boys are to the left
or to the right of the girls. So there are 3! × 4! = 6 × 24 = 144 arrangements.

2.13 There are three A’s, two N ’s and one A, for a total of six letters. So the number
of orderings is 6!/(3! × 2!) = 60.

2.14 If unlimited numbers of each color were available, there would be 34 = 81 so-
lutions. It is necessary to exclude the solution with four blue marbles, BBBB.
So the answer is 81 − 1 = 80.

2.15 C(9, 5) = 9×8×7×6
4×3×2×1 = 126,

(6
0

) = 6!
6!×0! = 1.

2.16 She must choose 4 of the last 7 questions, so
(7

4

) = 35 ways.

2.17 There are C(8, 4) choices of where to place the 1’s, so the answer is C(8, 4),
or 70.

2.18 You can choose the mysteries in
(5

2

)
ways and the westerns in

(7
3

)
ways. So you

can choose in
(5

2

) × (7
3

) = 10 × 35 = 350 ways.

2.19 The three consonants can be chosen in
(5

3

) = 10 ways, and the vowels in
(3

2

) =
3 ways. After the choice is made, the letters can be arranged in 5! = 120 ways.
So there are 10 × 3 × 120 = 3600 “words.”

2.20 The committee contains one man or no men. With one man, the number of
choices is 3 × (7

2

) = 63 (3 ways to choose the man,
(7

2

)
to choose the women).

With no men, there are
(7

3

) = 35 possibilities. So there are 63 + 35 = 98
possibilities.

2.22
(81

79

) = (81
2

) = 81×80
1×2 = 3240.

2.23 (x −y)6 = (6
0

)
x6 − (6

1

)
x5y + (6

2

)
x4y2 − (6

3

)
x3y3 + (6

4

)
x2y4 − (6

5

)
xy5 + (6

6

)
y6 =

1 − 6x5y + 15x4y2 − 20x3y3 + 15x2y4 − 6xy5 + y6.

2.24 The term involving y2 is
(4

2

)
(3x)2(2y)2, so the numerical coefficient is

(
4

2

)
3222 = 6 × 9 × 4 = 216

and the coefficient of y2 is 216x2.

2.25 We write 0.998 = (1 − 10−2)8. Then it equals

1 − 8 × 10−2 + 28 × 10−4 + 56 × 10−6 + · · · .
Every subsequent term in at most one-tenth of the one before it. So the approx-
imate value is

1 − 0.08 + 0.0028 − 0.000056 + · · · = 0.923 approx.
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2.26 There are 210 possible ways to choose a subset of the ten books. However, the
subsets with 8, 9 or 10 elements are not allowed. So the number is

210 −
(

10

10

)
−

(
10

9

)
−

(
10

8

)
= 1024 − 1 − 10 − 45 = 964.

Chapter 3

3.1 {3, 4, 5, 6}.
3.3 Write H and T for heads and tails on the quarter, and 0, 1, 2 for the number

of heads on the pennies. The sample space is {H0,H1,H2, T 0, T 1, T 2}. The
experiment consists of two parts. In the first, the outcomes are H and T ; in
the second, there are three outcomes, 1, 2, 3. (The two pennies are not flipped
separately, so in the case of one head we don’t need to worry about which penny
got the head and which the tail. Only the number of heads was recorded.) The
tree diagram is

3.4

3.5 A ∩ C = {HHT,HT H }, B ∪ C = {HHH,HHT,HT H,HT T , T HT ,
T T H }, and A = {HHH,HT T , T HT, T T H } = B.

3.7 E consists of two possible rolls, so P(E) = 1
3 . similarly P(F) = 1

2 . G consists
of the rolls 3 and 5, so P(G) = 1

3 .

3.8 Write HT to mean a head on the quarter and a tail on the nickel, and so on—the
result for the quarter is shown first. Then there are four equally likely outcomes,
HH , HT , T H , and T T , and two of them (HT and T H ) are in the event. So

P(E) = |E|
|S| = 2

4
= 1

2
.
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3.9 12 of the 52 cards are picture cards, so

P(E) = |E|
|S| = 12

52
= 3

13
.

3.10 The sample space is the set of five outcomes S2, S3, S4, S5, S6, where Sj means
that the sum is j . In terms of the slightly different experiment, in which we
distinguish the two dice and record ab to mean a on die 1 and b on die 2, we
have

S2 = {11},
S3 = {12, 21},
S4 = {13, 22, 31},
S5 = {23, 32},
S6 = {33},

and the new experiment has nine equally likely outcomes, so

P(S2) = P(S6) = 1

9
, P (S3) = P(S5) = 2

9
, P (S4) = 3

9
= 1

3
.

3.11 Four of the marbles are blue and five are not blue, so

P(not blue) = |E|
|S| = 5

9
.

3.12

P(E ∪ F) = P(E) + P(F) − P(E ∩ F)

= 0.7 + 0.3 − 0.1

= 0.9,

P (E) = 1 − P(E)

= 1 − 0.7

= 0.3.

E ∪ F = E ∪ (E ∩ F) = E ∪ (E ∪ F), using De Morgan’s laws. These two
events are disjoint, so

P(E ∪ F) = P(E) + P
(
(E ∪ F)

)

= P(E) + [
1 − P(E ∪ F)

]

= 0.7 + [1 − 0.9]
= 0.8.

3.13 The data are represented by
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Since the percentages add to 100%, we can interpret “female” as “not male”
(not always true in the insect kingdom) and the answers are (a) P(S) = 41%;
(b) P(M) = 53%; (c) P(S ∪ M) = 72%.

3.14 There are three ways in which exactly one success can occur: the sequences
SFF , FSF , and FFS. Now

P(SFF) = 1

3
× 2

3
× 2

3
= 4

27
,

P (FSF) = 2

3
× 1

3
× 2

3
= 4

27
,

P (FFS) = 2

3
× 2

3
× 1

3
= 4

27
.

So the probability of exactly two successes is

4

27
+ 4

27
+ 4

27
= 12

27
= 4

9
.

3.15 In this case, each call is a Bernoulli trial with p = 1
2 , so the five calls in a day

can be thought of as a binomial experiment with p = 1
2 , n = 5. So

P(3 successes) = C(5, 3)

(
1

2

)3(1

2

)2

= 10 × 1

32
= 10

32
,

P (4 successes) = C(5, 4)

(
1

2

)4(1

2

)1

= 5 × 1

32
= 5

32
,

P (5 successes) = C(5, 5)

(
1

2

)5(1

2

)0

= 1 × 1

32
= 1

32
,

and the probability of at least two successes is the sum of these:

10 + 5 + 1

32
= 16

32
= 1

2
,

or 50%.

3.16 In this case, the salesman wants

3n+1(3 + n)

4n
<

3

10
.

We have already seen that eight calls are not enough. But:

n = 9
3n−1(3 + n)

4n
= 6561 × 12

262144
= 0.3003 . . .

which is very slightly more than 0.30. Strictly speaking 10 calls are needed, but
the salesman would probably be satisfied with nine calls.
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3.17 There are 11 marbles, so the number of ways of selecting three is C(11, 3). So
|S| = C(11, 3) = 165. The number of ways of selecting one red marble is 5, the
number of ways of selecting one blue is 4, and the number of ways of selecting
one green is 2. So, by the multiplication principle, |E| = 5 × 4 × 2 = 40. So

P(E) = 40

C(11, 3)
= 8

33
.

3.18 There are C(10, 2) = 45 ways to choose two balls. In C(4, 2) = 6 of these
cases, there are no white balls—both are blue—so there are 39 selections with
at least one white, so

P(E) = |E|
|S| = 39

45
= 13

15
.

3.19 Again, there are C(52, 5) different hands possible. To count all the possible
flushes, observe that four suits are possible. If one is chosen—Spades, say—
there are C(13, 5) possible flushes. So there ate 4 × C(13, 5) flushes in total.
So the probability is

P(E) = |E|
|S| = 4 × C(13, 5)

C(52, 5)
= 33

16660
,

or about 0.2%.

3.20 There are 18 class members, so the number of possible committees is C(18, 3).
The number of committees with all Math majors is C(6, 3); there are C(5, 3)

with all Economics majors; and C(7, 3) have all computer Science majors.
The number of committees with all members in the same major is C(6, 3) +
C(5, 3) + C(7, 3), and this is |E|. So

P(E) = |E|
|S| = C(6, 3) + C(5, 3) + C(7, 3)

C(18, 3)
= 6 · 5 · 4 + 5 · 4 · 3 + 7 · 6 · 5

18 · 17 · 16
,

and this comes to 65/816, or about 8%.

3.21 Suppose you took a pencil and labeled the faces with a 1 on die B as 1a, 1b, 1c

and those with a 6 as 6a, 6b, 6c. If Xy means die X was rolled and the face
showing was a y, then there are 12 equally likely outcomes, A1, A2, A3, A4,
A5, A6, B1a, B1b, B1c, B6a, B6b, B6c. Each has probability 1

12 . Four rolls,
namely A6, B6a, B6b, B6c, result in a 6, so the probability of a 6 is P(6) =
4
12 = 1

3 , while 3 results from roll A3 only, and P(3) = 1
12 .

3.22 Given that the first card is a Spade, the second card is a random selection from
51 equally likely possibilities. Twelve of these outcomes are Spades and thir-
teen are Hearts. So

(i) P(S | S) = |E|
|S| = 12

51 ;

(ii) P(H | S) = |E|
|S| = 13

51 .
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3.23 We write S and N for “a spade” and “a card other than a spade”. Then

P(S | S) = 12

51
,

P (K | N) = 13

51
.

Given that the first card is a spade, the second card is either a spade or not, so

P(S | S) + P(N | S) = 1,

therefore

P(N | S) = 39

51
,

and similarly

P(N | N) = 38

51
.

So the diagram is

(where, for example, “S,N” means “spade first, non-spade second”).

3.24 Write D for the event that at least one committee member is a Democrat, and
B for the event that both are Democrats. There are C(8, 2) = 28 possible
committees, and the number containing two Democrats is C(3, 2) = 3. So

P(B) = |B|
|S| = 3

28
.

Next, observe that there are C(5, 2) = 10 committees with both Republicans,
so there are 15 possible committees with one member from each party. We
can now proceed in two ways. Using the conditional probability formula, we
observe that P(D) = 18

28 and P(B ∩ D) = P(B) = 3
28 (if you think for a

moment, you will realize that B ∩ D and B are the same event), so

P(B | D) = P(B ∩ D)

P (D)
= 3

18
.

Alternatively we can restrict ourselves to the new experiment “choose a com-
mittee of two at random from those committees with at least one Democrat”,
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so now |S| = 18, |B| = 3, and

P(B) = |B|
|E| = 3

18
.

3.25 In the obvious notation, P(D) = 2
5 and P(R | D) = 1

3 , so

P(R ∩ D) = P(R | D) × P(D) = 1

3
× 2

5
= 2

15
.

3.26 P(A) = 1
6 and P(B) = 1

2 . We expect these events to be independent because
the two rolls are unconnected, and they are: when considered as one experi-
ment, there are 36 outcomes; there are three outcomes in A ∩ B, namely 6 on
the red and 2, 4 and 6 on the green, so P(A ∩ B) = 3

36 = 1
12 , and this equals

P(A) × P(B).

3.27 From the data,

P(A) = 3

8
,

P (B) = 1

8
,

P (C) = 1

2
,

P (A ∩ B) = 0,

P (A ∩ C) = 2

8
,

P (B ∩ C) = 0.

No two are independent.

3.28 We write F for faulty, and X and Y to indicate the suppliers. Then P(X) = 0.4,
P(F | X) = 0.04, P(Y ) = 0.6, P(F | Y) = 0.02, and

P(F) = P(F ∩ X) + P(F ∩ Y) = P(F | X)P (X) + P(F | Y)P (Y )

= 0.04 × 0.4 + 0.02 × 0.6

= 0.016 + 0.012 = 0.028.

3.29 Use B,F,H, T for biased, fair, heads, tails. Then

P(H) = P(H | F)P (F ) + P(H | B)P (B)

=
(

1

2

)(
2

3

)
+

(
2

3

)(
1

3

)

= 1

3
+ 2

9
= 5

9
;

P(B ∩ H) = P(H | B)P (B) = 2

9
.

So P(B | H) = 2
9/ 5

9 = 2
5 .
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3.30 Write E for the event that a blue pen is chosen. We know that P(A) = P(B) =
0.5. From Bayes’ formula,

P(E)P (A | E) = P(A)P (E | A),

0.5 × P(A | E) = 0.5 × 0.4,

P (A | E) = 0.4.

3.31

From the diagram, the denominator is 0.04. So

P(F | R) = P(R | F)P (F )

0.04
= 0.02

0.04
= 0.5.

3.32 We want P(D | V ). From the diagram,

P(D | V ) = 0.112

0.653
= 0.17.

3.33

H T

B 2
9

1
9

1
3

U 1
3

1
3

2
3

5
9

4
9

3.34 We use the abbreviations T (tests positive), N (tests negative), D (has the dis-
ease) and H (is healthy). We want to find P(D | T ). From the data, we know

P(T | D) = 0.95, P (N | D) = 0.05,

P (T | H) = 0.05, P (N | H) = 0.95,

P (D) = 0.05, P (H) = 0.95.

So

P(D | T ) = P(T | D)P (D)

P (T | H)P (H) + P(T | D)P (D)

= (0.95)(0.05)

(0.05)(0.95) + (0.95)(0.05)

= 0.0475

0.0475 + 0.0475
= 0.0475

0.095
= 0.5.

This example shows that, in some cases, the test gives no useful information.
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3.35 Write Ei for the event that i boys are chosen and define the value of Ei to be i.
What is required is the expected value of this experiment. If S is the sample
space, then

|S| = C(8, 3) = 56.

If a committee contains i boys, it must contain 3 − i girls. There are C(3, i)

ways of choosing i boys from the three, and C(5, 3 − i) ways of selecting 3 − i

girls, so

|Ei | = C(4, i)C(6, 3 − i).

Therefore,

|E0| = C(3, 0) × C(5, 3) = 10,

|E1| = C(3, 1) × C(5, 2) = 30,

|E2| = C(3, 2) × C(5, 1) = 15,

|E3| = C(3, 3) × C(5, 0) = 1,

so

p0 = 10

56
, p1 = 30

56
, p2 = 15

56
, p3 = 1

56
,

and

μ = 10 × 0 + 30 × 1 + 15 × 2 + 1 × 3

56

= 63

56
= 1.125.

So the expected number is 1.125.

3.36 Let E1 denote the event that total 3 or 9 is rolled, E2 denote the event that an
even total (2, 4, 6, 8, 10 or 12) is rolled, and E0 the event that some other total
is rolled. We write xi for the payoff to gambler B when Ei occurs, so x1 = 5,
x2 = −2, and x0 = 0. Out of every 36 rolls of the dice, we expect total 3 twice,
9 four times, and an even total 18 times. We have

E0, probability
1

3
, value x0 = 0,

E1, probability
1

6
, value x1 = 5,

E2, probability
1

2
, value x2 = −2.

So the expected value of the payout is

1

3
× 0 + 1

6
× 5 − 1

2
× 2 = −1

6
.

So A expects to win in the long run, at an average of $ 1
6 per play.
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3.37 With no information to the contrary, we assume that whether or not she bowls
a strike in one frame does not affect her performance in other frames. So we
can model her performance as a binomial experiment, in which each frame is a
Bernoulli trial and success equates with a strike. We have n = 40, p = 1

5 , and
μ = 40 1

5 = 8.

Chapter 4

4.1 s ≤ t corresponds to {(1, 1), (1, 2), (1, 3), (1, 4), (2, 2), (2, 3), (2, 4), (3, 3),
(3, 4)}. s ≥ t corresponds to {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)}.

4.2 Both = and ≥ are reflexive. = is symmetric while ≥ antisymmetric. Both are
transitive. So = is an equivalence relation, but ≥ is not.

4.3 f1(f1(x)) = f1(x) so f1(f1) = f1, f2(f4(x)) = f2(1/(1 − x)) = 1/[1/

(1 − x)] = 1 − x = f3(x) so f2(f4) = f3, f5(f6(x)) = f5((x − 1)/x) =
((x − 1)/x)/[((x − 1)/x) − 1] = ((x − 1)/x)/(−1/x) = (x − 1)/(−1) =
1 − x = f3(x) so f5(f6) = f3 also.

4.4 f3(x) = 1−x. If f3(x) = y then y = 1−x so x = 1−y and f −1
3 (y) = 1−y.

So f −1
3 = f3.

4.5

4.6

4.8

4.9 Suppose such a graph existed. Let x and y be the vertices of degrees 5 and 4,
respectively. Then x is adjacent to all five other vertices, y being one of them.
Therefore, y is adjacent to three vertices other than x. Of the remaining four
vertices, at least three are adjacent both to x and to y, so they have degree at
least 2. This is impossible.

4.11 In a city’s road network, it represents an intersection such that all traffic be-
tween two areas has to pass through that intersection. As such, it might get
a traffic officer assigned in peak hours, or special priority might be given to
servicing its traffic lights.
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4.12 There are four different-looking vertices, shown in black. The distance of every
other vertex from the black one is shown in each case. (The top left and second
from left vertices are actually equivalent, but this is not easy to see.)

4.13 Look at the above diagram. The graph has D = R = 2.

4.14 The walk must start (or finish) at T because there is
only one bridge to that island. With a little experi-
mentation we find the solution T XYZXYX.

4.15 The original network is shown in Figure (i). We start from A, and randomly
choose the walk AGJKHDA. After these edges are deleted, Figure (ii) re-
mains.

We now start at D (alphabetically, the first vertex remaining that was in the
first walk and is not yet isolated). One walk is DBCFEHGD, and its deletion
leaves Figure (iii).

Finally, walk FILKIHF uses up the remaining edges.

Putting these together, we get AGJKHDBCFILKIHFEHGDA.

4.16 The original is shown on the left. The two black vertices need another edge.
They are not joined, so one edge will not suffice. So eu(H) > 1. The right-
hand shows an Eulerization that requires just two edges. So eu(H) = 2, and
the right-hand picture is a good Eulerization.

4.18 Graph (a) is not a tree because it is not connected; it has an isolated vertex.
Graph (b) is a tree. Graph (c) contains a cycle, so it is not a tree.

4.19 There are four different-looking diagrams for the second tree and two for the
third. We show which trees correspond to the different starting vertices using
the same notation as in the sample problem.
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4.20 If a tree has four vertices, then the largest possible degree is 3. Moreover, there
are three edges (by Theorem 13), so from Theorem 10 the sum of the four
degrees is 6. As there are no vertices of degree 0 and at least two vertices of
degree 2, the list of degrees must be one of 3, 1, 1, 1 or 2, 2, 1, 1. In the first
case, the only solution is the star K1,3. The only case with the second degree
list is the path P4. So there are two trees.

4.22 Candidates (i) and (iv) are Hamiltonian. Candidate (ii) is not Hamiltonian be-
cause it contains a repeated vertex, b. Candidate (iii) is not Hamiltonian be-
cause the graph contains no edge cd .

4.23 To traverse vertex a, a Hamiltonian cycle in G must contain one of the paths
bad , bae or ead . If bad is included, the other edge through d might be dc or
de; in the former case, neither bc nor de can be edges, and the only cycle is
badcf e, while the latter case bars be, and the only cycle is badef c. If bae

is included, ad is not an edge, so cd and de are edges, so we have the path
baedc, and the cycle is baedcf . If ead is included, de is not an edge, so dc is
an edge, and there are two possibilities, adcbf e and adcf be. So there are five
Hamiltonian cycles.

Any Hamiltonian cycle in H must contain edges ab and ad , because a has
degree 2. This means bd is not an edge (it would form a triangle), so de must
be in the cycle. There are two ways to finish a cycle: bcf e or bf ce. So there
are two cycles: dabcf e and dabf ce.

4.24 The nearest neighbor algorithm, starting from Evansville, begins with EM, be-
cause it has the least cost of the three edges incident with E. The next edge must
have M as an endpoint, and ME is not allowed (one cannot return to E, it has
already been used), so the cheaper of the remaining edges is chosen, namely
MN. The only available edge from N is NS, as E and M have already been
visited, and the route is EMNSE, with cost $430.

Starting at Nashville, the first edge selected is NE, with cost $90. The next
choice is EM, then MS, then SN, and the resulting cycle NEMSN costs $410. If
you start at St. Louis, the first stop will be Memphis ($110 is the cheapest flight
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from St. Louis), then Evansville, then Nashville, costing $410. From Memphis,
the cheapest leg is to Evansville, then Nashville, and finally St. Louis, for $410.
So both St. Louis and Memphis yield the same cycle as the Nashville case (with
different starting points, and in reverse).

To apply the sorted edges algorithm, first sort the edges in order of increasing
cost: EM($80), EN($90), NM($100), MS($110), ES ($120), NS($130). Edge
EM is included, and so is EN. The next choice would be MN, but this is not
allowed because its inclusion would complete a cycle of length 3 (too short),
so the only other choices are MS and NS, forming route EMSNE (or ENSME)
at a cost of $410.

In this example, the route ENMSE, with cost $420, does not arise from either
algorithm.

4.25 The graph K2,3 can be drawn without crossings, as the
illustration shows, and any representation of K2,3 with-
out crossings will look like this picture. Now K3,3 can
be constructed from K2,3 by adding one vertex adjacent
to the three black vertices. In the representation, this new
vertex could be placed outside the diagram or inside one
of the enclosed areas.

If it is placed outside, then the edge joining it to the central vertex must cross
another edge. If it is placed inside one enclosed area, then the edge joining it
to the vertex not on that enclosed area must cross an edge. That is, one of the
following cases must occur (the thick line represents the offending edge). In
either case, there is a crossing, so ν(K3,3) > 0.

These representations show K3,3 with one crossing, so ν(K3,3) = 1.

4.26
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Chapter 5

5.1

5.2

5.3

5.5

5.6 The line 2x +y −4 = 0 has slope −2. Its slope-intercept form is y = −2x +4.
The line x + y = 0 has slope −1 and slope-intercept form y = −x.

5.7 From 3x − y = 1 we get y = 3x − 1. Substituting, 2x + (3x − 1) = 4, or
5x = 5, so x = 1. Therefore, y = 3(1) − 1 = 2. The solution is x = 1, y = 2;
the point of intersection is (1, 2).

5.8 In the first case, 2x+2y cannot equal both 3 and 4, so there are no solutions, and
the solution set is empty. In the second system, whenever the first equation is
true, the second will be true also: each side of the second equation is 2 times the
corresponding side of the first one. The solution set could be written {(x, y) |
x − 2y = 1} or {(2y + 1, y) | y ∈ R}. The graphs are
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5.9 We would like to eliminate y from the first equation. The coefficient of y in the
second equation is −1, so we multiply both sides of the second equation by 3
and proceed to solve the equations

4x + 3y = 11,

3x − 3y = 3.

Adding the equations, we get

7x = 14,

so x = 2. Substituting this back into the second equation,

2 − y = 1,

so y = 1, and the solution is (x, y) = (2, 1).

5.13 We eliminate x from the first and third equations. We add −3× the second
equation to the first equation and −2× the second equation to the third equa-
tion; those two equations become

−y − z = −2,

−3y − 3z = −6,

so y + z = 2. The equations are equivalent to

y + z = 2,

x + y = 3.

The solution is x = 3 − y, z = 2 − y, for any real number y, or

(x, y, z) ∈ {(3 − y, y, 2 − y) | y ∈ R}.
5.14 We eliminate z from the second equation by adding −1× the first equation to

the second equation, obtaining

x − 5y = −2,

or x = 5y − 2.The first equation yields z = x + 2y − 5 = 7y − 7, and the
solution is

(x, y, z) ∈ {(5y − 2, y, 7y − 7) | y ∈ R}.
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5.15 The augmented matrix is
⎡

⎣
4 3 −2 1
3 −2 4 6
2 −3 2 8

⎤

⎦ .

Its (2, 2) element equals −2.

5.18
⎡

⎣
2 −3 −1 −2 1
1 2 −2 1 1
1 −1 1 1 4

⎤

⎦ ,

⎡

⎣
0 −7 3 −4 −1
1 2 −2 1 1
0 −3 3 0 3

⎤

⎦
R1 ← R1 − 2R2 (using E3),

R3 ← R3 + R2 (using E3),

⎡

⎣
1 2 −2 1 1
0 1 −1 0 −1
0 −7 3 −4 −1

⎤

⎦
R1 ← R2 (using E1),
R2 ← − 1

3R3 (using E1, E2),
R3 ← R1 (using E1),

⎡

⎣
1 0 0 1 3
0 1 −1 0 −1
0 0 −4 −4 −8

⎤

⎦
R1 ← R1 − 2R2 (using E3),

R3 ← R3 + 7R2 (using E3),

⎡

⎣
1 0 0 1 3
0 1 0 1 1
0 0 1 1 2

⎤

⎦ R2 ← R2 − 1
4R3 (using E3),

R3 ← − 1
4R3 (using E2).

So the solution (in terms of t) is

x = 3 − t,

y = 1 − t,

z = 2 − t,

with t any real number.

To solve in terms of x, pivot on position (1, 4):
⎡

⎣
1 0 0 1 3

−1 1 0 1 −2
−1 0 1 0 −1

⎤

⎦
y = −2 + x,

z = −1 + x,

t = 3 − x.

To solve in terms of y, pivot on position (2, 4):
⎡

⎣
1 −1 0 0 2
0 1 0 1 1
0 −1 1 0 1

⎤

⎦
x = 2 + y,

z = 1 + y,

t = 1 − y.
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To solve in terms of z, pivot on position (3, 4):
⎡

⎣
1 0 −1 0 1
0 1 −1 0 −1
0 0 1 1 2

⎤

⎦
x = 1 + z,

y = −1 + z,

t = 2 − z.

5.19 Write S for sedans and P for pickups.

S P
Apr 32 16
May 44 12

5.20 The matrix has shape 4 × 3. Its third row is

−1 4 6

and its first column is

1
2

−1
1

.

5.21 We have the two equations 2x = y and 2 = x. The second gives x = 2, so the
first gives y = 2 · 2 = 4.

5.22 −A = [ −1 −3
1 −2

]
, 3A − B = [ 5 9

−4 2

]
, B + C is not defined, as B and C are of

different sizes.

5.24

BT =
[

2 2
3 1

]
.

5.25 4(2, 0,−1) = (8, 0,−4), so 4(2, 0,−1) + (1, 4,−3) = (8, 0,−4) +
(1, 4,−3) = (9, 4,−7).

5.27 u · t = (−1, 3, 0) · (1, 2, 3) = (−1 · 1) + (3 · 2) + (0 · 3) = (−1) + 6 + 0 = 5;
(2u−3v) · t = [(−2, 6, 0)+(−6, 6,−6)] ·(1, 2, 3) = (−8, 12,−6) ·(1, 2, 3) =
(−8 · 1) + (24 · 2) + (−6 · 3) = −8 + 12 − 18 = −2.

5.29
[

2 2
2 2

] [
x

y

]
=

[
3
4

]
;

[
1 −2
2 −4

] [
x

y

]
=

[
1
2

]
.

5.30

[
1 1 1 1

]

⎡

⎢⎢
⎣

w1 b1 p1
w2 b2 p2
w3 b3 p3
w4 b4 p4

⎤

⎥⎥
⎦

⎡

⎣
15
18
20

⎤

⎦ .
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5.31

CD = DC =
[

5 3
−3 −1

]
.

5.32 Suppose C has inverse

E =
[

x y

z t

]
.

Then CE = I , so
[

1 0
0 0

] [
x y

z t

]
=

[
x y

0 0

]
=

[
1 0
0 1

]
.

The (2, 2) entries of the two matrices cannot be equal (0 �= 1), so no such E

exists. Similarly, if D has inverse
[

x y

z t

]
,

then
[

0 1
0 0

] [
x y

z t

]
=

[
z t

0 0

]
=

[
1 0
0 1

]
,

and again we have the impossible equation 0 = 1.

5.33 Suppose the inverse is

C =
[

x z

y t

]
.

Then BC = I means
[

2 1
1 1

] [
x z

y t

]
=

[
1 0
0 1

]
,

which is equivalent to the four equations

2x + y = 1, 2z + t = 0,

x + y = 0, z + t = 1.

The left-hand pair of equations are easily solved to give x = 1 and y = −1,
while the right-hand pair give z = −1 and t = 2. So the inverse exists, and is

A =
[

1 −1
−1 2

]
.

5.34 For A: R3 ← R3 − R1; R2 ↔ R3; R1 ← R1 − 2R2, R3 ← R3 + 2R2;
R1 ← R1 + R3. For B: R1 ↔ R3; R2 ← R2 − 2R1, R3 ← R3 − 3R1;
R3 ← R3 − 2R2.
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5.35
det(C) = 1 · 4 − 1 · 3 = 1; C−1 =

[
4 −1

−3 1

]
,

det(D) = 2 · 2 − 4 · 1 = 0; no inverse.

5.36 As observed in the Sample Problem, the matrix of coefficients has inverse
⎡

⎣
1 1 0
1 0 −1
2 1 −2

⎤

⎦ .

Now
⎡

⎣
1 1 0
1 0 −1
2 1 −2

⎤

⎦

⎡

⎣
2
2
1

⎤

⎦ =
⎡

⎣
4
1
4

⎤

⎦ ,

so the first system has solution x = 4, y = 1, z = 4.
⎡

⎣
1 1 0
1 0 −1
2 1 −2

⎤

⎦

⎡

⎣
4

−1
3

⎤

⎦ =
⎡

⎣
3
1
1

⎤

⎦ ,

and the second system has solution x = 3, y = 1, z = 1.

5.38 The technology matrix is

T =
[

0.3 0.2
0.5 0.5

]

and

(I − T ) =
[

0.7 −0.2
−0.5 0.5

]

which has determinant 0.35 − 0.10 = 0.25. So

(I − T )−1 = 4

[
0.5 0.2
0.5 0.7

]−1

=
[

2 0.8
2 2.8

]

so

P =
[

2 0.8
2 2.8

] [
25
50

]
=

[
90
190

]
.

So the required production is 90 tons of steel and 190 tons of vegetables.

Chapter 6

6.2 The quantity to be maximized is profit. The profit depends only on the number
of acres of each crop, potatoes, corn, and beans. So we define variables:
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x1 = number of acres of potatoes to be planted,

x2 = number of acres of corn,

x3 = number of acres of beans.

The profit is $P , where P = 150x1 + 50x2 + 80x3.
The farmer’s outlay will be $(500x1 + 250x2 + 400x3), and this cannot exceed
$30 000, and the total number of acres (x1 + x2 + x3) cannot exceed 120. If
x3 > 20, the excess beans will not be sold. So we have

Maximize P = 150x1 + 50x2 + 80x3

subject to 500x1 + 250x2 + 400x3 ≤ 30000,

x1 + x2 + x3 ≤ 120,

x3 ≤ 20,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

6.5 (1, 0) is feasible, P = 1. (4, 4) is not feasible ((A) and (B) are both false),
P = 8. (2, 1) is feasible, P = 3. (−1, 1) is not feasible (x is negative), P = 0.

6.6 For 2x + 3y ≥ 6, we test with (0, 0), and find that it does not satisfy the
inequality; putting x = 0, y = 0 results in 0 ≥ 6, which is false. So we take
the half-plane not containing the origin.

For x − y ≤ 0, (0, 0) is not a suitable test point, so we try (2, 1). This does not
satisfy the inequality. The point (2, 1) is also shown as a dot in the diagram.
Both solution-sets are shown in gray.

6.8
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6.10

Some level curves are shown. The maximum
clearly occurs at the intersection point, x = 15

7 ,
y = 9

7 , where P = 33
7 .

6.11

Some level curves are shown. The minimum
clearly occurs at the intersection point, x = 3

2 ,
y = 3

2 , where C = 21
2 .

6.13 Maximize P = 3x1 + 3x2 + 0x3 + 0x4

subject to x1 + 3x2 + x3 + 0x4 = 2,

2x1 − x2 + 0x3 − x4 = 1,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

6.14 Maximize P = x1 + 2x2 + 0x3 + 0x4

subject to x1 + x2 + x3 + 0x4 = 6,

2x1 + x2 + 0x3 + x4 = 8,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

6.15
Non-basic Basic Basic Feasible? P

variables variables solution
x1, x2 x3, x4 (0, 0, 6, 8) Yes 0
x1, x3 x2, x4 (0, 6, 0, 2) Yes 12
x1, x4 x2, x3 (0, 8,−2, 0) No 16
x2, x3 x1, x4 (6, 0, 0,−4) No 6
x2, x4 x1, x3 (4, 0, 2, 0) Yes 4
x3, x4 x1, x2 (2, 4, 0, 0) Yes 10
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The problem is bounded (from the diagram in Problem 6.14, above), so the
optimum value is P = 12, attained at x1 = 0, x2 = 6.

6.16 We need a form in which x2 has coefficient 1 in one equation and 0, in the
other, while x3 plays the same role with the equations reversed. This can be
achieved by adding a multiple of the second equation to the first. Adding −2×
equation 2 to equation 1, the resulting equations are

−5x1 + 0x2 + x3 − 2x4 = −2,

3x1 + x2 + 0x3 + x4 = 3.

6.18 (i) The entry a12 is chosen because the ratio 4
2 = 2 is smaller than 6

1 = 6.

(ii) a12 is used because the ratio is negative.

6.19 Originally the basic feasible solution (4, 0, 6, 0) was exhibited.
⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x1 1 2 0 4 4

x3 0 1 1 4 6

⎤

⎥⎥
⎦ ,

⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x2
1
2 1 0 2 2

x3 − 1
2 0 1 2 4

⎤

⎥⎥
⎦ R1 → 1

2R1,

R2 → R2 − 1
2R1.

The basic feasible solution (0, 2, 4, 0) is now exhibited.

6.20 ⎡

⎢
⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 4 2 1 0 0 6

x4 2 4 0 1 0 6

−2 −3 0 0 1 0

⎤

⎥
⎥⎥⎥
⎦

.

6.22 ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 1
2

1
4 0 0 3

2

x4 0 3 − 1
2 1 0 3

0 −2 1
2 0 1 3

⎤

⎥⎥⎥⎥
⎦

.
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6.24 We pivot on a42.
⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 0 1
3 − 1

6 0 1

x2 0 1 − 1
6

1
3 0 1

0 0 1
6

2
3 1 5

⎤

⎥⎥⎥⎥
⎦

.

The solution is P = 5, obtained by putting x1 = 1, x2 = 1.

6.25
Maximize P = −2x1 + 3x2

subject to −2x1 + 2x2 ≤ 5,

3x1 + x2 ≤ 4,

x1 ≥ 0, x2 ≥ 0.

6.26
Step 1. The problem is a maximization. We insert slack variables, obtaining

Maximize P = 5x1 + 3x2 + 0x3 + 0x4

subject to 2x1 + 2x2 + x3 + 0x4 = 4,

3x1 + x2 + 0x3 + x4 = 7,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

Step 2. The initial tableau is
⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 2 2 1 0 0 4

x4 3 1 0 1 0 7

−5 −3 0 0 1 0

⎤

⎥⎥⎥⎥
⎦

.

Step 3. Column x1 is a suitable pivot column.

Step 4. We pivot on entry a31, obtaining
⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 1 1
2 0 0 2

x4 0 −2 − 3
2 1 0 1

0 2 5
2 0 1 10

⎤

⎥⎥⎥⎥
⎦

.

There is now no pivot. The maximum value is P = 10, obtained by putting
x1 = 2, x2 = 0.
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6.27
2x1 − 2x2 + 0x3 + x4 + 0x5 + 0A1 + 0A2 = 4,

x1 + 4x2 + 0x3 + 0x4 − x5 + A1 + 0A2 = 4,

x1 + 2x2 + x3 + 0x4 + 0x5 + 0A1 + A2 = 7,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0, x5 ≥ 0, A1 ≥ 0, A2 ≥ 0.

6.29 ⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4 2 −2 0 1 0 0 0 0 4

A1 1 4 0 0 −1 1 0 0 4

A2 1 2 1 0 0 0 1 0 7

4 −3 0 0 0 M M 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

,

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4 2 −2 0 1 0 0 0 0 4

A1 1 4 0 0 −1 1 0 0 4

A2 1 2 1 0 0 0 1 0 7

4 −3 0 0 0 0 0 1 0

−2M −6M −M 0 M 0 0 0 −11M

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.

6.30 We pivot on row A1, column x2. We add 6M times the new row to the lower
part of the objective row and 3 times the row to the upper part.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢
⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4
5
2 0 0 1 − 1

2
1
2 0 0 6

x2
1
4 1 0 0 − 1

4
1
4 0 0 1

A2
1
2 0 1 0 1

2 − 1
2 1 0 5

19
4 0 0 0 − 3

4
3
4 0 1 3

− 1
2M 0 −M 0 − 1

2M 3
2M 0 0 −5M

⎤

⎥⎥⎥⎥⎥⎥⎥⎥
⎥
⎦

.

Next we pivot on row A2, column x3:
⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4
5
2 0 0 1 − 1

2
1
2 0 0 6

x2
1
4 1 0 0 − 1

4
1
4 0 0 1

x3
1
2 0 1 0 1

2 − 1
2 1 0 5

19
4 0 0 0 − 3

4
3
4 0 1 3

0 0 0 0 0 M M 0 0

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

.
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6.31 The new tableau is
⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x4
5
2 0 0 1 − 1

2 0 6

x2
1
4 1 0 0 − 1

4 0 1

x3
1
2 0 1 0 1

2 0 5
19
4 0 0 0 − 3

4 1 3

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

We pivot on row x3, column x5, obtaining
⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x4 3 0 1 1 0 0 11

x2
1
2 1 1

2 0 0 0 7
2

x3 1 0 2 0 1 0 10
11
2 0 3

2 0 0 1 21
2

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

We have P = 21
2 , so C = − 21

2 , at x1 = 0, x2 = 7
2 .

Chapter 7

7.2 Game (i) has no dominant row or column. In (ii), column 2 is dominant—
remember, a smaller result is better for the column player. The column player’s
strategy is (0, 1) and the row player’s strategy is (1, 0).

7.3 The array is

MIN
2 2 3 ∗2∗
3 1 2 1

−2 0 1 −2

MAX 3 ∗2∗ 3

so there is a saddle point R1C2 with value 2.

7.4 The diagram is
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The lines meet at ( 1
4 , 1). So the value is 1 and the row player’s strategy is ( 3

4 , 1
4 ).

For the column player, (1 − z) + 0z = 1 so z = 1
2 and the column strategy is

( 1
2 , 1

2 ).

7.5 For this game a = 2, b = −1, c = −2, d = 1. So a + d − b − c = 2 + 1 +
1 + 2 = 6, d − c = 3, a − b = 3, d − b = 2, a − c = 4, ad − bc = 0. So the
row strategy is

(
d − c

a + d − b − c
,

a − b

a + d − b − c

)
=

(
3

6
,

3

6

)
=

(
1

2
,

1

2

)
.

The column strategy is
(

d − b

a + d − b − c
,

a − c

a + d − b − c

)
=

(
2

6
,

4

6

)
=

(
1

3
,

2

3

)
.

The value is

v = ad − bc

a + d − b − c
= 0

6
= 0.

7.7 From the diagram

it is clear that column 2 can be deleted. The solution to

1 4
3 1

is found from the formula to be row strategy ( 2
5 , 3

5 ), column strategy ( 3
5 , 2

5 ),
value ( 11

5 ), so the original game has solution

row strategy

(
2

5
,

3

5

)
, column strategy

(
3

5
, 0,

2

5

)
, value

11

5
.

7.8 We first solve

2 −3 −2
−2 0 −1

.

This game was solved in Sample Problem 7.7; it has solution

row strategy

(
1

5
,

4

5

)
, column strategy

(
1

5
, 0,

4

5

)
, value − 6

5
.
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So the original has solution

row strategy

(
1

5
, 0,

4

5

)
, column strategy

(
1

5
,

4

5

)
, value

6

5
.

7.10 We add 3; the revised game is

4 2 1
2 4 2
1 2 4

.

For this, we start with the tableau
⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV y1 y2 y3 y4 y5 y6 P b

y4 4 2 1 1 0 0 0 1

y5 2 4 2 0 1 0 0 1

y6 1 2 4 0 0 1 0 1

−1 −1 −1 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

We pivot on row y5, column y2:
⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV y1 y2 y3 y4 y5 y6 P b

y4 3 0 0 1 − 1
2 0 0 1

2

y2
1
2 1 1

2 0 1
4 0 0 1

4

y6 0 0 3 0 − 1
2 1 0 1

2

− 1
2 0 − 1

2 0 1
4 0 1 1

4

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

The next pivot is the (y4, y1) position:
⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV y1 y2 y3 y4 y5 y6 P b

y1 1 0 0 1
3 − 1

6 0 0 1
6

y2 0 1 1
2 − 1

6
1
3 0 0 1

12

y6 0 0 3 0 − 1
2 1 0 1

2

0 0 − 1
2

1
6

1
6 0 1 1

3

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

The final pivot is (y6, y3):
⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV y1 y2 y3 y4 y5 y6 P b

y1 1 0 0 1
3 − 1

6 0 0 1
6

y2 0 1 0 − 1
6

5
12 − 1

6 0 1
12

y3 0 0 1 0 − 1
6

1
3 0 1

6

0 0 0 1
6

1
12

1
6 0 5

12

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.



448 Your Turn Solutions

So the revised game has value 12
5 , and the original game has value − 3

5 . The col-
umn player’s strategy is 12

5 ( 1
6 , 1

12 , 1
6 ) = ( 2

5 , 1
5 , 2

5 ), and the row player’s strategy
is also ( 2

5 , 1
5 , 2

5 ).

Chapter 8

8.1 Use the formula A = P(1 + nR/100) with P = 1200 and R = 10. In the first
case, n is 1

4 , so

P = 1200 × (1 + 0.10/4) = 1200 × (1.025) = 1230

and you repay $1230. In the second case, n is 3, so

P = 1200 × (1 + 0.10 × 3) = 1200 × (1.3) = 1560,

and you repay $1560.

8.2 From A = P(1 + nR/100) with A = 1428, P = 1400 and n = 1
3 , we get

1428 = 1400 ×
(

1 + R

300

)
= 1400 + 14

3
× R,

and therefore 14 × R = 28 × 3, R = 6. So the interest rate was 6%.

8.4 We have P = 2200, A = 2530 and n = 2. So

2530 = 2200

(
1 + 2 × R

100

)
= 2200 + 44R; R = 330

44
= 7.5.

The rate was 7.5%.

8.5 Simple interest is 3% per month, or 9% for the whole period. This comes to $54,
so the total to be paid is $654. There are three monthly payments. Therefore,
the monthly payment will be $654/3, or $218.

8.8 For arithmetic growth,

1200

(
1 + 10 × 4

100

)
= 1200 × 1.4 = 1680

so the interest is $480. Under geometric growth, the amount is

1200

(
1 + 10

100

)4

= 1200 × 1.14 = 1200 × 1.4641 = 1756.92

and the interest is $556.92.

8.10 In this case P = 40000, R = 12, t = 4 and N = 15. So

P

(
1 + R

t × 100

)tN
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becomes

40000 ×
(

1 + 12

400

)60

= 40000 × (1.03)60 = 0 × 5.8916

which comes to 235664.12 . . . , and you owe $235664.

8.11 The amount owing from a $100 loan at the end of one year is

A = 100

(
1 + 12

12 × 100

)12

= 100 × 1.0112

= 112.68,

so the APY is 12.68%.

8.12 Again, 6% annual interest is 0.5% per month, so m = 0.005,D = 100, but in
this case n = 12, so you get

$100(1.00510 − 1.005)/0.005

= $100(1.05114 − 1.005) × 200

= $20000(0.04614)

= $922.80.

8.13 We use the formula

P(1 + m)n = D × [(1 + m)n − 1]
m

with P = 12000, n = 60 and M = 2
3 , (1 + m) = 151

150 . Now
(

151

150

)60

= 1.4858457 . . . ,

so

12000 ×
(

151

150

)60

= D × [( 151
150 )60 − 1]

1
150

becomes

12000 × 1.4858457 = 150 × D × 0.4858457;
that is,

D = 12000 × 1.4858457/(150 × 0.4858457) = 244.676,

and your payment is $244.68.
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8.14 The interest rate is 1/150 per month. So the accumulation after 24 years at 8%
is

$100000 × (151/150)288

or $677763.55. If you deposit $D per month, your accumulated payments
would be

$D × [(151/150)288 − 1)]
1/150

= $D × 5.77763554 × 150 = $D × 866.645.

So your monthly payment is D = 782.05.

8.15 m = 7.5/12% = 5/8% = 1/160,D = 200, n = 60. So

mA(1 + m)n = D × [(1 + m)n − 1]
becomes

A(161/160)60/160 = 200[(161/160)60 − 1].
So A × 1.45329 = 160 × 200 × 0.45329, A = 9980.99, and you can afford
about $9981.

8.16 In this case P = 40000, R = 12, N = 15 and r = 0.12. So

PerN = 40000 × e1.8 = 241985.89 . . . ,

and you owe $241986. Compare this with the result of Your Turn problem 8.10,
where compounding was quarterly and the answer was $235664.

8.17 Suppose the rate is r . Then 40000e7r = 80000 so e10r = 2. Therefore,
er equals the seventh root of 2, which equals 1.1041 approximately. The APR
is approximately 10.4%.

8.18
118.3

198.7
× $225000 = $133958.23.

8.20 After one day, you have 120 grams; after two, 60; after three, 30. So after four
days there are 15 grams remaining.



Answers to Exercises A

Section 1.1

1. (i) T; (ii) F; (iii) F; (iv) T; (v) F; (vi) F; (vii) T; (viii) T; (ix) T; (x) F. 2. (i) 2, 4, 6,
8, 10; (ii) Red, White, Blue; (iii) Sunday, Saturday. 3. (i) Only. 5. (i) Q,R; (ii) Q,R;
(iii) Z,Q,R; (iv) R; (v) N,Z,Q,R; (vi) R. 7. (i) 1, 2, 3, 4, 6, 9, 12, 18, 36; (ii) 1,
2, 3, 4, 6, 8, 12, 16, 24, 48; (iii) 1, 2, 5, 10, 25, 50; (iv) 1, 3, 9, 27, 81; (v) 1, 2,
3, 4, 6, 8, 9, 12, 18, 24, 36, 72; (vi) 1, 61. 8. (i) 22 · 32 · 29; (ii) 22 · 67; (iii) 28;
(iv) 32 · 37. 9. (i) 23 · 11, 22 · 3 · 11, 44; (ii) 28, 25 · 7, 32; (iii) 23 · 33 · 5, 32 · 5 · 19, 45;
(iv) 23 · 3 · 7, 3 · 7 · 11, 21. 10. (i) 1; (ii) 4x4/y6; (iii) xy; (iv) 2 · f 3 or 250; (v) 2b;
(vi) 41/(x + y)3; (vii) a2; (viii) 1

2q. 11. (i) 117; (ii) 45; (iii) 28; (iv) −107; (v) 11.4;
(vi) 2; (vii) 27; (viii) −73; (ix) 1; (x) −8.

Section 1.2

1. (i) Yes; (ii) No; (iii) No; (iv) Yes; (v) Yes; (vi) No. 2. (i) 6; (ii) 0; (iii) 1; (iv) 5;
(v) −2; (vi) 2; (vii) 6; (viii) 24

17 ; (ix) − 1
2 ; (x) −1; (xi) 2; (xii) 13

2 . 3. (i) 2
3x − 3

2 ;
(ii) 3 − x; (iii) x − 2; (iv) 1

3x2 + 1; 4. (i) x > − 3
5 ; (ii) x > 1; (iii) x ≤ 2; (iv) x ≥ 6

5 ;
(v) x ≤ −1; (vi) x < 5

2 ; (vii) x ≥ 1
2 ; (viii) x > 0. 5. (i) y ≤ 2 − 2x; (ii) y ≤ 3 − 2x;

(iii) y > 4x; (iv) y > 1
2x − 3

2 ; (v) y ≥ 1
2x − 2; (vi) y > 1 + x.

Section 1.3

1. (i) 2 + 5 + 10 + 17 + 26 + 37 = 97; (ii) 0.1 + 0.01 + 0.001 = 0.111; (iii) 0 +
4 + 10 + 18 + 28 + 40 + 54 = 154; (iv) 1

2 + 1
3 + 1

4 + 1
5 = 77

60 ; (v) 4 − 8 + 16 = 12;
(vi) 0+2+0+2 = 4; (vii) 1+ 1

2 + 1
3 + 1

4 = 25
12 ; (viii) 4+7+10+13+16+19 = 69.

2. (i)
∑5

i=1 3i − 2; (ii)
∑3

i=1 4i − 2; (iii)
∑4

i=0 (−1)i(3i + 1); (iv)
∑4

i=0 (−1)i i2;
(v)

∑6
i=1 5 + 2(−1)i ; (vi)

∑4
i=1 i2 − 1. 3. (i)

∑n
i=1 bi = (13 − 03) + (23 − 13) +

(33 − 23) + · · · + ((n − 1)3 − (n − 2)3) + (n3 − (n − 1)3) = n3 − 03 = n3;
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(ii) bi = i3−(i−1)3 = i3−i3+3i2−3i+1 = 3i2−3i+1, so
∑n

i=1 bi = 3
∑n

i=1 i2−
3

∑n
i=1 i + ∑n

i=1 1 = 3
∑n

i=1 i2 − 3
∑n

i=1 i + n; (iii) We know
∑n

i=1 bi = n3, so

n3 = 3
∑n

i=1 i2−3
∑n

i=1 i+n. Using the formulae for
∑n

i=1 i, n3 = 3·∑n
i=1 i2−3·

1
2n(n+1)+n so ·∑n

i=1 i2 = 1
3 [n3 +3 · 1

2n(n+1)−n]. Simplifying gives the result.

4. (i)
∑n

i=1 ci = ∑n
i=1 (2ai + 1) = ∑n

i=1 2ai + ∑n
i=1 1 = 2A + n; (ii) 3A − B;

(iii) A + B + 2n; (iv) A + B − 1 if n is odd; A + B if n is even. 5. (i) 39; (ii) 971;
(iii) 124; (iv) 1

6n(n2 + 3n+ 7); (v) 1
2 (3n+1 − 3); (vi) n2(2n+ 3); (vii) n(n+ 1)(2n+

1)/6−2×n(n+1)/2 = n(n+1)(2n−5)/6; (viii) (1− 1
2
n
)/(1− 1

2 )−1 = 1−1/2n.

Section 1.4

1. (i) 3, 5, 7, 9; (ii) Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Satur-
day; (iii) 12, 15, 18; (iv) 2, 3, 5, 7; (v) 2; (vi) 1, 2, 3, 4, 6, 9, 12, 18, 36. 2. (i) Set
of multiples of 3 between 1 and 10; (ii) Set of all positive multiples of 3; (iii) Solu-
tion set of x2 + 9x = 10; (iv) Set of perfect squares less than 10; (v) Solution set of
x2 −4x+3 = 0. 3. (i) a, b, c, d, e, g, i; (ii) c, e; (iii) b, d; (iv) a, b, c, d, e, g. 4. (i) 1,
2, 3, 4, 5, 6, 7, 8, 9; (ii) 1, 2, 4, 5, 6, 7, 9; (iii) 1, 5; (iv) 1, 5. 5. (i) {1, 3, 5}; (ii) {5, 6, 7};
(iii) {1, 3, 6, 7}; (iv) {1, 2, 3, 4, 5, 6, 7, 8}; (v) ∅; (vi) {1, 2, 3, 4}. 6. (i) S3 ⊆ S1,
S4 ⊆ S1, S4 ⊆ S3; (ii) S1 ∩ S2 = {2}, S1 ∩ S3 = {2, 3, 5, 7}, S1 ∩ S4 = {2, 3, 5},
S1 ∩S5 = {2}, S2 ∩S3 = {2}, S2 ∩S4 = {2}, S2 ∩S5 = {2, 4, 8}, S3 ∩S4 = {2, 3, 5},
S3 ∩ S5 = {2}, S4 ∩ S5 = {2}. 7. (i) No; set of all squares of multiples of 5;
(ii) No; S. 8. (i) (a, a), (a, c), (a, f ), (b, a), (b, c), (b, f ), (c, a), (c, c), (c, f );
(ii) (2, 2), (2, 3), (2, 4), (2, 5), (−2, 2), (−2, 3), (−2, 4), (−2, 5); (iii) (2, 4), (2, 5),
(3, 4), (3, 5); 9. (i) (1, 3, 5), (2, 3, 5), (1, 4, 5), (2, 4, 5), (1, 3, 6), (2, 3, 6), (1, 4, 6),
(2, 4, 6); (ii) (x, z, 1), (y, z, 1), (x, z, 2), (y, z, 2).

Section 1.5

1.

4. (i) 367; (ii) 189; (iii) 871. 5. 25. 6. 2. 7. (i) 5; (ii) 10; (iii) 15; (iv) no. 8. (i) 10;
(ii) 24; (iii) 10. 9. (i) 5; (ii) 20; (iii) 18; (iv) 17.
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Section 1.6

1. (i) 22.25; 21; (ii) 16.4; 13; (iii) 19.5; 20.5. 2. (i) 5.5; 2; 3.5; (ii) 3.125; 6; 5.5;
(iii) 6.5; no mode; 8. 3. 5; −3,−2, 0,−3, 2, 4, 2. 4. (i) 4.796; (ii) 4.256; (iii) 4.272.
5. 3.692; 1.727.

Section 2.1

1. 22; 11. 2. 6; 16. 3. 18; 36. 4. 12; 10. 5. 7; 5. 6. (i) 350; (ii) 475. 7. 50; 150. 8. 28 =
256. 9. (i) 12; (ii) 14. 10. (i) 263 × 103 = 17576000; (ii) 243 × 103 = 13824000.
11. ABC, ACB, BAC, BCA, CAB, CBA. 12. 144. 13. (i) 38 = 6561; (ii) 48 =
65536. 14. 5! = 120. 15. 5! = 120. 16. 10 × 9 × 8 = 720. 17. (i) 10! = 3628800;
(ii) 6! × 4! = 17280.

Section 2.2

1. (i) 336; (ii) 24; (iii) 120; (iv) 72. 2. 26 × 26 × 26 = 17576. 3. (i) 4! = 24;
(ii) 3!×2 = 12. 4. (i) 5! = 120; (ii) 4!×2 = 48. 5. (i) 5!×3! = 720; (ii) 4!×4! = 576.
6. (i) 9!/2!2!2! = 45360; (ii) 9!/2!2! = 90720; (iii) 6!/2! = 360; (iv) 10!/3!2!2! =
151200. 7. (i) 15!; (ii) 3! × 4! × 5! × 6! = 24883200. 8. (i) 8 × 105 = 800000;
(ii) 8 × P(9, 5) = 120960.

Section 2.3

1. {A,B,C}, {A,B,D}, {A,B,E}, {A,C,D}, {A,C,E}, {A,D,E}, {B,C,D},
{B,C,E}, {B,D,E}, {C,D,E}. 2. (i) 56; (ii) 126; (iii) 20; (iv) 35; (v) 1; (vi) 28.
3. C(16, 4) = 1820. 4. C(6, 2) × C(12, 3) = 3300. 5. C(12, 5) = 792; C(9, 3) =
84. 6. (i) C(49, 5); (ii) 44. 7. C(5, 3) × C(7, 3) = 350. 8. 20.

Section 2.4

2. (i) 60; (ii) 40y2; (iii) −84x2; (iv) −6x. 3. (i) x4 − 4x3 + 6x2 − 4x + 1; (ii) 1 −
10z+40z2 −80z3 +80z4 −32z5; (iii) x4 +4x2 +6+4x−2 +x−4; (iv) x3 +y3 +z3 +
3x2y+3x2z+3xy2+3xz2+3y2z+3yz2+6xyz; (v) x2+y2+z2+2xy−2xz−2yz.
4. 1.030301. 5. 1.05101. 6. 27 = 128.

Section 3.1

1. (i) {1H, 1T , 2H, 2T , 3H, 3T , 4H, 4T , 5H, 5T , 6H, 6T }; (ii) {2H, 2T , 4H, 4T ,
6H, 6T }. 2. (i) {BBB,BBG,BGB,BGG,GBB,GBG,GGB,GGG}; (ii)(a) E =
{BBB,BBG, BGB,BGG}, F = {BBG,BGB,GBB}. 3. (ii) 4; (iii) {F,PF }.
4. (i) {22, 21, 12, 20, 11, 02, 10, 01, 00}; (ii) E = {21, 20, 10}, F = {20, 11, 02},
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G = {22, 20, 11, 02, 00}; (iii) E ∪ F = {21, 20, 10, 11, 02}, E ∩ F = {20},
E ∩ G = {20}, F ∩ G = {22, 00}; (iv) E ∩ F : there are exactly two heads on
quarters and none on nickels, F ∩ G: the tosses are either all heads or all tails. 5. (i)

(ii) {H, T H, T T }; (iii) {T H, T T }. 6. (i) E; (ii) E ∩ F ; (iii) (E ∪ F) ∩ (E ∩ F);
(iv) E ∪ F ; (v) E ∩ F ; (vi) E\F . 7. (i) Yes; (ii) No; (iii) No; (iv) Yes. 8. Yes.

Section 3.2

1. (i) Yes; (ii) No (total > 1); (iii) Yes; (iv) No (there is a negative probability).
2. (i) 1

2 ; (ii) 1
2 ; (iii) 1

4 . 3. (i) 9
19 ; (ii) 9

19 ; (iii) 1
19 ; (iv) 1

38 ; (v) 6
19 . 4. (i) 1

9 ; (ii) 1
2 ; (iii) 1

2 .
5. 5

12 . 6. 0.1. 7. (i) 1
2 ; (ii) 1

10 ; (iii) 9
100 . 8. (i) 12, 13, 14, 15, 22, 23, 24, 25, 32, 33, 34,

35, 42, 43, 44, 45; (ii) 3
16 ; (iii) 1

2 . 9. (i) 1
5 ; (ii) 2

5 ; (iii) 2
5 . 10. (i) {R,R,R}, {R,R,B},

{R,B,B}, {B,B,B}; (ii) 1
56 , 15

56 , 30
56 , 10

56 , respectively.

Section 3.3

1. 0.3; 0.8; 0.2. 2. 0.3, 0.3, 0.1, 0.7. 3. 0.4; 0.9; 0.9. 4. (i) 0.3, 0.8, 0.8; (ii) 0.2; 0.3.
5. (i) 0.225; (ii) 0.325. 6. 0.4. 7. (i) 0.625; (ii) 0.35; (iii) 0.125. 8. (i) 0.5; (ii) 0.25;
(iii) 0.2. 9. (i) 8

81 ; (ii) 48
81 . 10.

(20
16

)
/220 (about 1 chance in 200). 11. (i) 8( 7

8 )7 1
8 (about

39%); (ii) 8( 7
8 )7 1

8 +( 7
8 )8 (about 74%). 12. 160

729 (about 22%). 13. 5
16 . 14. (i) 8

27 ; (ii) 1
27 .

Section 3.4

1. (i) 1
15 ; (ii) 11

15 . 2. (i) 1
55 ; (ii) 14

55 . 3. (i) 1
3 ; (ii) 1− 9·9·8·7

9000 = 0.496. 4. 3
10 . 5. (i) 2

5 ; (ii) 8
15 .

6. 10×45/C(52, 5). 7. (i) 1
26 ; (ii) 63

130 ; (iii) 1
2 . 8. C(5, 2) ·C(4, 2)/[C(9, 4)−6] = 1

2 .

9. (i) 1
6 ; (ii) 1

3 . 10. [(6
3

) + (4
3

)]/(10
3

) = 1
5 . 11. (i) 1

10 ; (ii) 9
10

5 = 0.59049 (about 60%).
12. (i) 1

30 ; (ii) 1
30 ; (iii) 1

6 . 13. 57
115 (about 50%).

Section 3.5

1. (ii) 2
5 , 4

15 , 4
15 , 1

15 , respectively; (iii) 8
15 . 2. (ii) P(WM,WF) = 1

10 , P(WM,

GM) = 1
15 , P(WF,WM) = 1

10 , P(WF,WF) = 1
5 , P(WF,GM) = 1

5 ,
P(GM,WM) = 1

15 , P(GM,WF) = 1
5 , P(GM,GM) = 1

15 ; (iii) 1
5 ; (iv) 8

15 ;
(v) 1

3 . 3. (i) P(HHH) = 28
1105 , P(HHM) = P(HMH) = P(MHH) = 72

1105 ,
P(HMM) = P(MHM) = P(MMH) = 168

1105 , P(MMM) = 357
1105 ; (ii) 244

1105 .
4. (ii) 13

18 . 5. (i) 17
35 ; (ii) 11

35 ; (iii) 1
5 . 6. 1

3 . 7. 1
3 , 1, 2

11 , 1
3 , respectively. 8. 25

102 ; 15
34 ; 25

51 ; 25
77 ;

32
51 ; 45

77 . 9. (i) 1
4 ; (ii) 3

14 . 10. (i) 2
5 ; (ii) 1

5 .
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Section 3.6

1. (i) 3
4 ; 3

7 ; (ii) 1; 3
7 ; (iii) 2

3 ; 2
3 ; (iv) 1

3 ; 1
3 . 2. (i) 0.9; 0.4; (ii) 0.85; 0.35; (iii) 0.97; 0.63.

3. (i) (b) 1
4 ; 1

4 ; 12
51 ; 12

51 ; 3
51 ; (c) No; (ii) (b) 1

4 ; 1
4 ; 1

4 ; 1
4 ; 1

16 ; (c) Yes. 4. (i) 2
5 ; (ii) 3

7 ; (iii) 5
7 ;

(iv) 9
25 . 5. (i) 0; (ii) 0.5. 6. (i) 1

3 ; (ii) 2
3 ; (iii) 1

7 ; (iv) 6
7 ; 1

2 . 7. (i) 4
9 ; (ii) Yes. 8. (ii) 48%;

(iii) 50%. 9. (i) Yes; (ii) Yes. 10. 19
42 .

Section 3.7

1. 0.5, 0.5. 2. (i) 1
6 ; 1

2 ; 1
3 ; 3

4 ; 1
4 ; 0; (ii) 1

5 ; 1
5 ; 3

5 ; 3
10 ; 3

10 ; 2
5 ; (iii) 2

9 ; 0; 7
9 ; 2

3 ; 1
4 ; 1

12 ;
(iv) 4

15 ; 0; 11
15 ; 8

15 ; 1
5 ; 4

15 . 3. (i) 2; (ii) 1
3 . 4. (i)

Mini Caprice
On Time 0.72 0.14 0.86
Late 0.08 0.06 0.14

0.8 0.2

(ii) 7
43 . 5. (i) 1

97 ; (ii) 1
17 . 6. (i) 0.011; (ii) 27

44 . 7. 2
3 . 8. 8

15 . 9. 9
16 . 10. 30

52 .

Section 3.8

1. 3
8 , 1

4 . 2. 7
31 . 3. 3

143 . 4. (i) 1
10 (10%); (ii) 1

5 (20%). 5. (i) 19
117 (about 16.2%); (ii) 1

883
(about 0.1%).

Section 3.9

1. (i) 1
8 , 3

8 , 3
8 , 1

8 ; (ii) 1.5. 2. $2.20. 3. $5. 4. 0. 5. $17000. 6. 5. 7. 2.5. 8. (i) 1
9 ; (ii) 64

81 ,
16
81 , 1

81 ; (iii) 18
81 . 9. 40c. 10. Lose 50c.

Section 4.1

1. (i) {(1, 1), (4, 2), (9, 3)}; (ii) {(1, 1), (1, 2), (1, 3), (1, 4), (1, 5), (1, 6), (1, 7),
(1, 8), (1, 9), (2, 2), (2, 4), (2, 6), (2, 8), (3, 3), (3, 6), (3, 9), (4, 4), (4, 8), (5, 5),
(6, 6), (7, 7), (8, 8), (9, 9)}; (iii) {(2, 8), (3, 3)}. 2. α : {(1, 1)}, β : {(1, 2), (2, 3),
(3, 4)}. 3. (i) α; (ii) γ ; (iii) α, β; (iv) α; (v) none; (vi) α. 4. (i) S; (ii) S; (iii) ST;
(iv) RST. 5. α in Exercise 4.1A.3; none in Exercise 4.1A.4. 6. (i) No; (ii) Yes;
(iii) Yes; (iv) Yes. 7. (i) One-to-one and onto; (ii) Not one-to-one, but onto; (iii) Not
one-to-one (f (−1) = f (1)); onto. 8. (i) f4; (ii) f −1(x) = 2 − x if x ≥ 1;
f −1(x) = 1/x if 0 < x < 1.
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Section 4.2

1.

2. (i) sa, st, as, at, bs, bt, tb. A(s) = {a, t}, B(s) = {a, b}, A(a) = {s, t}, B(a) =
{s}, A(b) = {s, t}, B(b) = {t}, A(t) = {b}, B(t) = {a, b, s}; (ii) sb, as, bc, ca,
ce, dc, et , td . A(s) = {b}, B(s) = {a}, A(a) = {s}, B(a) = {c}, A(b) = {c},
B(b) = {s}, A(c) = {a, e}, B(c) = {b, d}, A(d) = {c}, B(d) = {t}, A(e) = {t},
B(e) = {c}, A(t) = {d}, B(t) = {e}; (iii) sa, sc, se, ab, ac, bd , ce, dc, dt , et .
A(s) = {a, c, e}, B(s) = ∅, A(a) = {b, c}, B(a) = {s}, A(b) = {d}, B(b) = {a},
A(c) = {d, e}, B(c) = {s, a}, A(d) = {t}, B(d) = {b, c}, A(e) = {t}, B(e) = {s, c},
A(t) = ∅, B(t) = {d, e}.
3.

In addition to the edges shown, β has loops on all vertices and an edge directed
from 1 to each other vertex. None are graphs; all are directed, and all have loops.

4. Neither is a graph; both are directed. α has a loop
on 1, β is a digraph. (There is no edge from 4 to
3 in α, because 4 /∈ S.)

Section 4.3

1 (i) 323303242; (ii) 1124222; (iii) 2422233; (iv) 2332332442. 2. 4; 5. 3. Yes. 4. No.
5. 2n; n once, 3 n times. 6. (ii) Has two bridges and one cutpoint. 7. 21. 8. 1

2n(n−1).
9. D = R = 2. 10. d(s, t) = 3. 11. sabct, saf bt, saect, sdbct, sdbf t (length 4);
saecbf t, sdbaect (length 6); d(s, t) = 4.

Section 4.4

1. Graphs (ii), (v) and (viii) each have two odd vertices.
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2. (i) Yes; Yes; (ii) Yes; No; (iii) Yes; Yes; (iv) No; (v) Yes; No; (vi) Yes; Yes; (vii)
Yes; Yes; (viii) Yes; No. 3. All odd n except n = 1. 4. (i) 2; (ii) 2; (iii) 4; (iv) 5

Section 4.5

1. D = R = n 2. The diagrams show cycles of lengths 5, 6, 8, and 9, respectively.

3. One example:

4.

5. Say there is no cycle. Start at the vertex of degree 1. Select a (new) vertex adjacent
to it. Continue in this way, never repeating a vertex. The process must stop, since the
graph is finite, but it can only stop when all vertices adjacent to the new vertex have
already been chosen. But if this is so, you must have a cycle. 6. In (i), you get eight
different solutions—start at any vertex, they will all be different. Case (ii) has seven
solutions (the two top vertices as roots give the same diagram). In (iii), there are
four different diagrams—for example, start with each vertex in the left-hand branch,
including the bottom vertex. 7. (i) Three trees (delete the edges of the triangle in
turn). (ii) Three trees (delete the edges of the triangle in turn). (iii) Nine trees (delete
one edge from the left triangle and one edge from the right triangle).

Section 4.6

1.
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2. If there is a vertex of degree 2, any Hamiltonian cycle must contain both edges
touching that vertex. So we would need to include all four heavy edges. But they
form a 4-cycle, which is not allowed.

3. (i) abcdef , abdcef ; (ii) abcehgf d , abcf dgeh, abdf cegh, abdgf ceh,
abecf dgh, adbcfgeh, adbecfgh, adf cbegh, adgf cbeh.

4. (i) NN: a 117, b 117, c 122, d 117, e 117, SE: 117; (ii) NN: a 112, b 113, c 112,
d 113, e 116, SE: 113; (iii) NN: a 74, b 76, c 76, d 74, e 76, SE: 76; (iv) NN: a 105,
b 105, c 105, d 100, e 100, SE: 105; (v) NN: a 119, b 122, c 122, d 122, e 122, SE:
122; (vi) NN: a 245, b 245, c 253, d 252, e 245, SE: 245.

Section 4.7

1. (i), (iii), (v), and (vi).

2. (i) 2; color the three top vertices in one color and the others in a second color;
(ii) 4; color the leftmost and rightmost vertices the same.

3. (i) 2; (ii) 4.

4. 3 if n is even, 4 if n is odd.

5.

6. There are v−1 vertices, all connected, so at least v−1 colors are needed. (Consider
all vertices except one endpoint of the deleted edge.) But v − 1 colors suffice (color
the endpoints of the deleted edge the same).

Section 5.1

1.
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2.

3. 4.

5. (i) 25 miles;(ii)

6. (i) y = 5
9 (x − 32); (ii) 20◦C; (iii) 77◦F; (iv)

7.

8. (i) −2; y = −2x; (ii) 2; y = 2x − 1; (iii) 1
2 ; y = 1

2x − 2; (iv) − 2
3 ; y = − 2

3x;
(v) 1; y = x; (vi) 2; y = 2x − 3. 9. y = x − 1.

Section 5.2

1. (i) x = 5, y = 2; (ii) x = −4, y = 3; (iii) x = 1
2 , y = 3

2 ; (iv) x = 2, y = 1
2 ;
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(v) x = 3, y = 8; (vi) x = 1
2 , y = 1; (vii) x = 2, y = 1; (viii) x = 1, y = − 1

2 ;
(ix) x = −2, y = 6; (x) x = −1, y = 1. 3. (i) Inconsistent; (ii) Independent;
x = 1, y = 3

2 ; (iii) Dependent; x = 2 − y/2, any y ∈ R; (iv) Independent; x = 5,
y = 4; (v) Independent; x = −1, y = 5

2 ; (vi) Dependent; x = 1 − y/2, any y ∈ R;
(vii) Inconsistent; (viii) Independent; x = 48

5 , y = 6
5 ; (ix) Independent; x = 17

21 ,
y = 44

21 ; (x) Dependent; x = 1
5 + 8

5y. 4. (i) x = 3, y = 2, z = −1; (ii) x = 9,
y = −8, z = 1

3 ; (iii) x = 5z−2, y = 4z−3, any z ∈ R; (iv) Inconsistent; (v) x = 2,
y = −1, z = 1; (vi) x = 5z − 2, y = 4z − 3, any z ∈ R; (vii) x = 2, y = −2,
z = 1; (viii) Inconsistent; (ix) x = z − 3, y = z − 4, any z ∈ R; (x) x = z + 1,
y = 3z+ 1, any z ∈ R; (xi) Independent; x = 11, y = −5, z = 4; (xii) Independent;
x = 4, y = 4, z = 0; (xiii) Independent; x = 0, y = 0, z = 2; (xiv) Inconsistent.

Section 5.3

1. (i) x = 3, y = 1, any real z; (ii) x = 2−z, y = 1+z, any real z; (iii) No solutions;
(iv) No solutions; (v) No solutions; (vi) x = 2, y = 2, any real z; (vii) x = 4, y = 3,
z = −3; (viii) x = 2 − z, y = 1 + z, any real z; (ix) No solutions; (x) x = 0,
y = −1, z = 1. 2. (i) x = −3, y = 2; (ii) x = 1

2 (5 − 3y), any real y; (iii) No
solutions; (iv) x = 2, y = −1. 3. (i) x = 1 + 5z, y = 1 − 3z, any real z; (ii) x = 2

3 ,
y = 1

6 , z = 1
3 ; (iii) x = 3, y = −1, z = −2; (iv) x = 5

2 , y = − 1
2 , z = 0.

4. (i) x = 1 + 2z − t , y = 2 − z + 2t , any real z, any real t ; (ii) No solutions.

Section 5.4

1.

M =
I G

P 4 24
C 6 12

.

2. (i)

M =
A B C

I 200 100 250
II 250 150 350

;

(ii) 1150 units A, 650 units B, 1550 units C.

3. (i)

[
7 −2

−3 2

]
; (ii)

[
28 −1
8 19

]
;

(iii)

[
15 −5 18
10 11 −13

]
; (iv)

[−3 9
−3 3

]
.
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4. x = 2, y = 1. 5. x = 11, y = 9, z = 3. 6. (i) (−2, 2); (ii) (9, 18, 3); (iii) (4, 1);
(iv) (−6, 0, 6); (v) (7, 0, 4); (vi) (5,−20, 10, 15).

7. (i)

[
1 0

−2 −2

]
; (ii)

[ −5
−14

]
; (iii)

[
0 −1

−9 9

]
;

(iv) No (C,D not the same shape); (v) No (C,A not the same shape);

(vi)

[
3 5
5 −14

]
.

Section 5.5

1. (i) −1; (ii) −5; (iii) 3; (iv) 6; (v) 6; (vi) 3.

2. (i) 2 × 4; (ii) 2 × 2; (iii) No; (iv) 1 × 4; (v) 4 × 4; (vi) 2 × 4; (vii) No; (viii) 1 × 3;
(ix) 2 × 3.

3. (i)

[
3 −1
4 −1

]
; (ii)

⎡

⎣
0 −1
1 0
8 3

⎤

⎦ ; (iii)
[

1 7 5
] ;

(iv)

⎡

⎣
−1 −1 −2
1 1 2
5 3 4

⎤

⎦ ; (v)

[
9 −7
6 2

]
.

4. (i)

[
4
2

]
; (ii)

[
4

−6

]
; (iii) No; (iv) No;

(v)
[

1 3 1
] ; (vi) No.

5. (i) $5700; (ii) $2440.

6. (i) AB =
[−1 1

−1 7

]
, BA =

[
4 7
2 2

]
, No;

(ii) AB =
[−4 8

−5 2

]
, BA =

[
0 −4
8 −2

]
, No;

(iii) AB = BA =
[

0 10
−10 0

]
, Yes.

7. (i)

[
0 2

−2 0

]
,

[−2 2
−2 −2

]
; (ii)

[
2 2
2 2

]
,

[−4 −4
−4 −4

]
;

(iii)

⎡

⎣
1 −3 9
1 10 −4

−3 −4 −1

⎤

⎦ ,

⎡

⎣
−7 −18 15
6 34 −11

−5 −11 −6

⎤

⎦ ;

(iv)

⎡

⎣
7 0 −2
6 1 −1
4 0 −1

⎤

⎦ ,

⎡

⎣
17 0 −5
17 1 −4
10 0 −3

⎤

⎦ .
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8. (i)

[
0 3

−3 3

]
,

[−3 6
−6 3

]
,

[−6 6
−6 0

]
.

Section 5.6

2.

[
5 −7

−4 7

]

3. (i)

[
0 1

4

− 1
2

1
4

]

; (ii)

[
5 −7

−2 3

]
; (iii) No inverse;

(iv)

⎡

⎣
−1 0 1
0 1 0
1 0 0

⎤

⎦ ; (v)

⎡

⎣
4/7 −1 2/7
3/7 0 −2/7

−5/7 1 1/7

⎤

⎦ ;

(vi)

⎡

⎣
3/2 0 1/2

−11/6 1/3 −5/6
17/6 −1/3 5/6

⎤

⎦ ; (vii)

⎡

⎣
7 −3 −3

−1 1 0
−1 0 1

⎤

⎦ ;

(viii) No inverse.

4. (i) 13;
[

3/13 −4/13
−2/13 7/13

]
; (ii) − 10;

[−3/10 1/5
1/5 1/5

]
;

(iii) 0; No inverse; (iv) 1;
[

1 −2
−1 3

]
.

Section 5.7

3. (ii) (a) x = 2, y = −1; (b) x = 1, y = 1.

4. (ii) (a) x = −6, y = 1, z = 2; (b) x = 4, y = 1, z = 2.

5. (i)

[
132
104

]
; (ii)

[
68
124

]
; (iii)

[
190
310

]
.

6. 208 tonnes of X, 20 tonnes of Y .

Section 6.1

1. x = number of Fleetwoods, y = number of Majestics. We figure in thousands of
dollars.

Maximize P = 20x + 25y

subject to 500x + 600y ≤ 11000,

30x + 40y ≤ 700,

x ≥ 0, y ≥ 0.
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2. x = number of pounds of feed A per month, y = number of pounds of feed B per
month.

Minimize C = 2.5x + 1.4y

subject to 5x + 2y ≥ 70,

3x + 2y ≥ 50,

4x + y ≥ 40,

x ≥ 0, y ≥ 0.

3. x1, x2, x3 are the number of ornaments of types I, II, III, respectively.

Maximize P = 30x1 + 45x2 + 15x3

subject to 6x1 + 4x2 + x3 ≤ 200,

2x1 + 3x2 + x3 ≤ 100,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

4. x1, x2, x3 are the acres of corn, linseed and oats, respectively.

Maximize P = 330x1 + 340x2 + 270x3

subject to x1 + x2 + x3 ≤ 60,

5x1 + 4x2 + 3x3 ≤ 160,

90x1 + 110x2 + 80x3 ≤ 6000,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

5. x1, x2 and x3 are amounts (in millions of dollars) to be invested in real estate,
stocks and treasury bills, respectively. P is the expected income in millions of cents.

Maximize P = 8x1 + 5x2 + 3x3

subject to x1 + x2 + x3 ≤ 100,

x1 − x2 ≤ 0,

2x1 + 2x2 − x3 ≤ 0,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

6. x = standard clocks, y = number of mantel clocks.

Maximize P = 60x + 11y

subject to 40x + 8y ≤ 5, 000,

5x + 2y ≤ 600,

x ≥ 0, y ≥ 0.
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7. x = number of student desks, y = number of faculty desks.

Maximize P = 10x + 12y

subject to 10x + 12y ≤ 8000,

2x + 2y ≤ 2000,

1.5x + 2y ≤ 1800

x ≥ 0, y ≥ 0.

8. x1, x2, x3 are the number of acres of types potatoes, corn, and peppers, respec-
tively.

Maximize P = 80x1 + 40x2 + 70x3

subject to x1 + x2 + x3 ≤ 100,

x1 ≤ 30,

300x1 + 160x2 + 280x3 ≤ 20000,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

Section 6.2

1.
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2.

3. (i) C = 8
3 at x = 4

3 , y = 4
3 ; (ii) P = 3 at x = 3, y = 0; (iii) P = 6 at x = 6,

y = 0; (iv) C = 11 at x = 2, y = 1; (v) C = 10
3 at x = 2

3 , y = 8
3 .

4. (i) 2x + y ≤ 10000; (ii) x + 2y ≤ 8000; (iii) The problem is to maximize
P = 3x + 5y subject to the given constraints (including x, y ≥ 0). The maximum is
22000, achieved at x = 4000, y = 2000.

Section 6.3

1. (i) Maximize P = 4x1 + 2x2 + 0x3 + 0x4

subject to x1 + 2x2 + x3 + 0x4 = 5,

2x1 + 6x2 + 0x3 − x4 = 12,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

(ii)
Minimize C = x1 + x2 + 0x3 + 0x4

subject to 2x1 + x2 − x3 + 0x4 = 4,

x1 + 2x2 + 0x3 − x4 = 4,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

(iii) Maximize C = x1 + x2 + 0x3 + 0x4

subject to 2x1 + x2 + x3 + 0x4 = 4,

4x1 + 4x2 + 0x3 + x4 = 12,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.
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(iv) Maximize P = 2x1 + 3x2 + 0x3 + 0x4

subject to 8x1 + 2x2 + x3 + 0x4 = 11,

2x1 + x2 + 0x3 + x4 = 5,

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, x4 ≥ 0.

2.

3. (i)

Non-basic Basic Basic Feasible? P

variables variables solution
x1, x2 x3, x4 (0, 0, 5, 12) Yes 0
x1, x3 x2, x4 (0, 5

2 , 0,−3) No 5
x1, x4 x2, x3 (0, 2, 1, 0) Yes 4
x2, x3 x1, x4 (5, 0, 0, 2) Yes 20
x2, x4 x1, x3 (6, 0,−1, 0) No 24
x3, x4 x1, x2 (3, 1, 0, 0) Yes 14

Maximum P = 20 at x1 = 5, x2 = 0.

(ii)

Non-basic Basic Basic Feasible? C

variables variables solution
x1, x2 x3, x4 (0, 0,−4,−4) No 0
x1, x3 x2, x4 (0, 4, 0, 4) Yes 4
x1, x4 x2, x3 (0, 2,−2, 0) No 2
x2, x3 x1, x4 (2, 0, 0,−2) No 2
x2, x4 x1, x3 (4, 0, 4, 0) Yes 4
x3, x4 x1, x2 ( 4

3 , 4
3 , 0, 0) Yes 8

3

Minimum C = 4 at x1 = 4, x2 = 0 or x1 = 0, x2 = 4.
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(iii)

Non-basic Basic Basic Feasible? C

variables variables solution
x1, x2 x3, x4 (0, 0, 4, 8) Yes 0
x1, x3 x2, x4 (0, 4, 0, 0) Yes 16
x1, x4 x2, x3 (0, 4, 0, 0) Yes 16
x2, x3 x1, x4 (2, 0, 0, 2) Yes 6
x2, x4 x1, x3 ( 8

3 , 0,− 4
3 , 0) No 8

x3, x4 x1, x2 (0, 4, 0, 0) Yes 16

Maximum P = 16 at x1 = 0, x2 = 4. (Note: three boundary lines have a common
point. There are actually only four boundary points.)

(iv)

Non-basic Basic Basic Feasible? C

variables variables solution
x1, x2 x3, x4 (0, 0, 2, 4) Yes 0
x1, x3 x2, x4 (0, 1, 0, 3) Yes 3
x1, x4 x2, x3 (0, 4,−6, 0) No 12
x2, x3 x1, x4 (−2, 0, 0, 8) No −4
x2, x4 x1, x3 (2, 0, 4, 0) Yes 4
x3, x4 x1, x2 ( 6

5 , 8
5 , 0, 0) Yes 36

5

Maximum C = 36
5 at x1 = 6

5 , x2 = 8
5 .

Section 6.4

1. (i)
x1 + 2x2 + x3 + 0x4 = 3,

2x1 + 3x2 + 0x3 + x4 = 4,
(0, 0, 3, 4);

(ii)
2x1 + 2x2 + x3 + 0x4 = 3,

x1 + 3x2 + 0x3 − x4 = 5,
no;

(iii)
2x1 + x2 + x3 + 0x4 = 5,

x1 + 3x2 + 0x3 + x4 = 8,
(0, 0, 5, 8);

(iv)
3x1 + 2x2 + x3 + 0x4 = 3,

x1 − 2x2 + 0x3 − x4 = 5,
no;

(v)
3x1 + 2x2 + x3 + 0x4 = 6,

x1 + 3x2 + 0x3 − x4 = 4,
no;
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(vi)
x1 − x2 + 2x3 + x4 + 0x5 = 1,

2x1 + x2 + x3 − 0x4 − x5 = 3,
no;

(vii)
x1 + x2 + 2x3 + x4 + 0x5 + 0x6 = 1,

3x1 − 3x2 + 2x3 + 0x4 + x5 + 0x6 = 1,

−x1 + 2x2 + 3x3 + 0x4 + 0x5 + x6 = 3,

(0, 0, 0, 1, 1, 3);

(viii)
3x1 + 2x2 + x3 + 0x4 + 0x5 = 3,

x1 + 5x2 + 0x3 + x4 + 0x5 = 2,

2x1 − 2x2 + 0x3 + 0x4 + x5 = 1,

(0, 0, 3, 2, 1).

2. (i) ⎡

⎢
⎢
⎣

BV x1 x2 x3 x4 b

x3 1 2 1 0 3

x4 2 3 0 1 4

⎤

⎥
⎥
⎦ ;

(iii) ⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x3 2 1 1 0 5

x4 1 3 0 1 8

⎤

⎥⎥
⎦ ;

(vii) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x4 1 1 2 1 0 0 1

x5 3 −3 2 0 1 0 1

x6 −1 2 3 0 0 1 3

⎤

⎥⎥⎥⎥
⎦

;

(viii) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 b

x4 3 2 1 0 0 3

x5 1 5 0 1 0 2

x6 2 −2 0 0 1 1

⎤

⎥⎥⎥⎥
⎦

.

3. (i) x1; (ii) x4; (iii) No positive entry in column x2; (iv) x5 or x4; (v) x1; (vi) x5.

4. (i) (2, 1, 0, 0)
⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x3
1
4 0 1 1

4
1
2

x2 − 1
4 1 0 15

4
1
2

⎤

⎥⎥
⎦

(0, 1
2 , 1

2 , 0);
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(ii) (2, 0, 0, 2)
⎡

⎢⎢
⎣

BV x1 x2 x3 x4 b

x3 0 2 1 1
2 1

x1 1 −1 0 − 1
2 1

⎤

⎥⎥
⎦

(1, 0, 1, 0);

(iv) (2, 0, 0, 6, 2)
⎡

⎢⎢
⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x1 1 3 0 0 1 5 4

x3 0 2 1 0 1 1 2

x4 0 −8 0 1 −3 −1 0

⎤

⎥⎥
⎥⎥
⎦

or
⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x5 1 − 1
3 0 1

3 0 14
3 4

x3 0 8
3 0 − 2

3 1 1
3 0

x1 0 − 2
3 1 1

3 0 2
3 2

⎤

⎥⎥⎥⎥
⎦

(4, 0, 2, 0, 0);

(v) (2, 0, 0, 0, 6)
⎡

⎢⎢
⎣

BV x1 x2 x3 x4 x5 b

x4
1
2 1 0 1 0 1

x5 −1 1 −2 0 1 4

⎤

⎥⎥
⎦

(0, 0, 0, 1, 4).

(vi) (2, 0, 0, 0, 2, 3)
⎡

⎢
⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x1 1 − 1
2 − 3

2 0 − 1
2 0 1

x4 0 1
2

1
2 1 1

2 0 1

x6 0 − 1
2

5
2 0 − 1

2 1 2

⎤

⎥
⎥⎥⎥
⎦

.

(1, 0, 0, 1, 0, 2)

5. (i) ⎡

⎢
⎢
⎣

BV x1 x2 x3 x4 b

x2 0 1 1 1 1

x1 1 0 −2 1 2

⎤

⎥
⎥
⎦ ;



470 Answers to Exercises A

(ii) ⎡

⎢
⎢
⎣

BV x1 x2 x3 x4 b

x4
4
3 − 2

3 0 1 2

x3 1 1 1 0 3

⎤

⎥
⎥
⎦ ;

(iii) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x2 −2 1 0 0 −1 2 1

x4
1
2 0 0 1 5

2 − 1
2

3
2

x3
1
2 0 1 0 1

2
1
2

1
2

⎤

⎥⎥⎥⎥
⎦

;

(iv) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x1 1 −1 0 0 −1 3 1

x4 0 0 0 1 3 4 3

x3 0 1 1 0 2 −1 1

⎤

⎥⎥⎥⎥
⎦

;

(v) ⎡

⎢
⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x2 −2 1 0 0 −1 2 1

x4
1
2 0 0 1 5

2 − 1
2

3
2

x3
1
2 0 1 0 1

2
1
2

1
2

⎤

⎥
⎥⎥⎥
⎦

;

(iv) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 b

x1 1 −1 0 0 −1 3 1

x4 0 0 0 1 3 4 3

x3 0 1 1 0 2 −1 1

⎤

⎥⎥⎥⎥
⎦

.

6. (i) 2, 1, (2, 0, 1, 0); (ii) 4; (iii) 2; (iv) 2; (v) (1, 2, 0, 0).

Section 6.5

1. (i) ⎡

⎢
⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 1 4 1 0 0 2

x4 1 2 0 1 0 4

−3 −5 0 0 1 0

⎤

⎥
⎥⎥⎥
⎦

;
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(ii) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 2 2 1 0 0 4

x4 3 5 0 1 0 1

−1 −3 0 0 1 0

⎤

⎥⎥⎥⎥
⎦

;

(iii) ⎡

⎢⎢
⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 3 3 1 0 0 2

x4 1 4 0 1 0 3

−3 −2 0 0 1 0

⎤

⎥⎥
⎥⎥
⎦

;

(iv) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x4 1 1 1 1 0 0 3

x5 3 2 3 0 1 0 4

4 −3 2 0 0 1 0

⎤

⎥⎥⎥⎥
⎦

;

(v) ⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x3 2 1 1 0 0 0 6

x4 3 3 0 1 0 0 7

x5 1 2 0 0 1 0 5

−2 −5 0 0 0 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(vi) ⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x3 5 3 1 0 0 0 8

x4 3 1 0 1 0 0 4

x5 1 4 0 0 1 0 5

6 −1 0 0 0 1 0

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

.

2. (i) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 0 1 −2 −3 0 1

x1 1 0 1 2 0 1

0 0 2 3 1 4

⎤

⎥⎥⎥⎥
⎦

;
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(ii) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 0 1
2 1 1

2 0 1

x1 1 1
2 0 − 1

2 0 0

0 1
2 0 3

2 1 6

⎤

⎥⎥⎥⎥
⎦

;

(iii) ⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 P b

x2 0 1 0 0 1 0 2

x3 1 0 1 0 1 0 3

x4 −1 0 0 1 2 0 1

1 0 0 0 2 1 5

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

(iv) ⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 P b

x5 0 0 2 1 1 1 0 3

x1 1 0 0 1 0 −1 0 7

x2 0 1 −1 −1 0 −2 0 1

0 0 7 4 0 3 1 17

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

.

3. (i) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3 1 0 1 − 1
2 0 8

x2
3
2 1 0 1

4 0 2

20 0 0 6 1 48

⎤

⎥⎥⎥⎥
⎦

;

(ii) Unbounded;

(iii) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x3
1
2 0 1 − 1

2 0 4

x2
3
2 1 0 1

2 0 2

10 0 0 6 1 24

⎤

⎥⎥⎥⎥
⎦

;

(iv) Finished: P = 18 at x1 = 4, x2 = 3;

(v) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 0 1 1
2 − 1

2 0 2

x1 0 0 − 1
4

3
4 0 3

0 0 1
4

5
4 1 13

⎤

⎥⎥⎥⎥
⎦

;
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(vi) Finished: P = 7 at x1 = 1, x2 = 2;
(vii) Finished: P = 9

2 at x1 = 3
2 , x2 = 0; (viii) unbounded; (ix) unbounded;

(x) ⎡

⎢⎢
⎢⎢
⎣

BV x1 x2 x3 x4 P b

x2 0 1 2 −1 0 2

x1 1 0 −1 1 0 1

0 0 −11 8 1 23

⎤

⎥⎥
⎥⎥
⎦

;

(xi) Finished: P = 96 at x1 = 10, x2 = 19, x3 = 0;

(xii) ⎡

⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 P b

x1 1 0 −3 4 0 2

x2 0 1 1 −1 0 2

0 0 3 2 1 20

⎤

⎥⎥⎥⎥
⎦

;

(xiii) Finished: P = 3 at x1 = 0, x2 = 1;

(xiv) Unbounded;
(xv) Unbounded;

(xvi) ⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 P b

x3 − 1
2 0 1 0 2 2 0 2

x1
1
2 0 0 1 −1 1 0 1

x2 0 1 0 0 −1 −1 0 4
3
2 0 0 0 −5 4 1 18

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

.

4. (i) x1 = 6, x2 = 0, P = 36; (ii) x1 = 1, x2 = 2, P = 16; (iii) x1 = 0, x2 = 4,
P = 20; (iv) x1 = 0, x2 = 0, x3 = 2, P = 6; (v) x1 = 9, x2 = 27, x3 = 9, P = 261.

Section 6.6

1. (i) 4x1 + 3x2 − x3 + A1 = 5; (ii) x1 + x2 − x3 + A1 = 2; (iii) 7x1 − 2x2 +
3x3 + A1 = 7; (iv) 4x1 + 5x2 + x3 − x4 + A1 = 4; (v) 4x1 − 4x2 + 2x3 + x5 = 5;
(vi) 7x1 + 3x2 − 3x3 + 7x4 + A1 = 5; (vii) 3x1 − 2x2 + 4x3 − 3x4 − x5 + A1 = 1;
(viii) 11x1 + 9x2 + 5x3 + 2x4 + x5 = 3.

2. (i) ⎡

⎢⎢
⎢⎢
⎣

BV x1 x2 x3 A1 A2 P b

4 2 −1 1 0 0 5

3 2 0 0 1 0 10

2 3 0 M M 1 0

⎤

⎥⎥
⎥⎥
⎦

;
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⎡

⎢
⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 A1 A2 P b

A1 4 2 −1 1 0 0 5

A2 3 2 0 0 1 0 10

2 3 0 0 0 1 0

−7M −4M M 0 0 0 −15M

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎦

;

(ii) ⎡

⎢⎢⎢⎢
⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 A2 P b

4 2 1 0 0 0 0 8

2 10 0 −1 1 0 0 11

3 −1 0 0 0 1 0 7

2 5 0 0 M M 1 0

⎤

⎥⎥⎥⎥
⎥⎥⎥
⎦

⎡

⎢
⎢⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 A2 P b

x3 4 2 1 0 0 0 0 8

A1 2 10 0 −1 1 0 0 11

A2 3 −1 0 0 0 1 0 7

2 5 0 0 0 0 1 0

−5M −9M 0 M 0 0 0 −18M

⎤

⎥
⎥⎥⎥⎥⎥⎥⎥⎥
⎦

;

(iii) ⎡

⎢⎢⎢⎢⎢⎢
⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

1 2 3 1 0 0 0 0 6

2 1 −1 0 −1 1 0 0 4

0 1 1 0 0 0 1 0 2

1 2 1 0 0 M M 1 0

⎤

⎥⎥⎥⎥⎥⎥
⎥
⎦

;

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x3 1 2 3 1 0 0 0 0 6

A1 2 1 −1 0 −1 1 0 0 4

A2 0 1 1 0 0 0 1 0 2

1 2 1 0 0 0 0 1 0

−2M −2M 0 0 M 0 0 0 −6M

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥
⎦

;
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(iv) ⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 A1 A2 P b

1 2 3 2 1 0 0 0 0 6

2 3 1 1 0 −1 1 0 0 9

2 2 −1 −1 0 0 0 1 0 4

2 3 1 1 0 0 M M 1 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 x6 A1 A2 P b

x5 1 2 3 2 1 0 0 0 0 6

A1 2 3 1 1 0 −1 1 0 0 9

A2 2 2 −1 −1 0 0 0 1 0 4

2 3 1 1 0 0 0 0 1 0

−4M −5M 0 0 0 M 0 0 0 −13M

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

.

3. (i) Pivot A1, x1
⎡

⎢⎢⎢⎢⎢
⎢⎢
⎣

BV x1 x2 x3 x4 A2 P b

x3 0 − 1
2 1 − 1

2
1
2 0 4

x1 1 − 1
2 0 3

2
1
2 0 2

0 1 0 −6 −1 1 0

0 1
2M 0 7

2M 1
2M 0 −2M

⎤

⎥⎥⎥⎥⎥
⎥⎥
⎦

;

(ii) Infeasible;

(iii) Pivot A1, x3
⎡

⎢⎢
⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 P b

x1 1 −1 0 −1 1 0 6

x3 0 −3 1 −1 1 0 2

0 7 0 3 −3 1 −18

0 0 0 0 M 0 0

⎤

⎥⎥
⎥⎥⎥⎥⎥
⎦

;

(iv) Infeasible;

(v) Pivot A1, x3
⎡

⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 A1 P b

x1 1 0 0 −1 1 0 6

x3 0 −3 1 −1 1 0 2

P 0 10 4 4 −4 1 28

0 0 0 0 M 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥
⎦

;
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(vi) Pivot A2, x3
⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

A1 1 1 0 −1 0 1 0 0 1

x5
3
2

1
2 0 0 1 0 − 1

2 0 2

x3
1
2

1
2 1 0 0 0 1

2 0 1
3
2

3
2 0 0 0 0 − 1

2 1 −1

0 −M 0 M 0 0 2M 0 −4M

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

;

(vii) Pivot x3, A1
⎡

⎢⎢⎢
⎢⎢⎢⎢⎢⎢⎢⎢⎢
⎣

BV x1 x2 x3 x4 x5 A1 A2 P b

x4 4 0 0 1 0 1 0 0 5

x5 −1 5 0 0 1 −2 0 0 4

x3 2 −2 1 0 0 1 0 0 1

A2 −7 9 0 0 0 −3 1 0 2

1 −6 0 0 0 2 0 1 2

7M −9M 0 0 0 4M 0 0 −2M

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥⎥⎥⎥⎥
⎦

.

4. (i) P = 8 at x1 = 4, x2 = 0; (ii) unbounded; (iii) P = 9 at x1 = 3, x2 = 0,
x3 = 0; (iv) C = 52 at x1 = 1, x2 = 9, x3 = 0; (v) infeasible; (vi) C = 101

3 at
x1 = 0, x2 = 10

3 , x3 = 11
3 ; (vii) C = 14 at x1 = 3, x2 = 2, x3 = 0, x4 = 2.

Section 7.1

1.
2 −3

−3 4
.

2. −200 100 100
100 −200 100
100 100 −200

.

3. (i) Strategy R2C1, value 0; (ii) Strategy R2C2, value 1; (iii) Strategy R1C2,
value 1; (iv) Strategy R1C3, value 0; (v) Strategy R1C2, value 0; (vi) Strategy R2C2,
value 0; (vii) Strategy R3C3, value 1; (viii) Strategy R3C2, value 1.

4.

(i)
2 −1

−2 3
; (ii)

1 −1
−1 1

; (iii)
1 −3

−1 2
(iv)

2 3
3 −1

;

(v)
2 −2

−1 1
; (vi)

1 0
0 1

; (vii)
−2 −1
−1 −2

; (viii)
−1 1
1 0

.
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5. (i) Saddle point R2C2, value 0; (ii) Saddle point R3C1, value 1; (iii) Saddle point
R2C2, value −1; (iv) Saddle point R2C3, value 1.

Section 7.2

1. (i) R( 5
8 , 3

8 )C( 1
2 , 1

2 ) value 3
8 ; (ii) Saddle point: R1C1 value 3; (iii) R( 1

6 , 5
6 )C( 2

3 , 1
3 )

value 4
3 ; (iv) R( 1

2 , 1
2 )C( 1

2 , 1
2 ) value −1; (v) R( 1

3 , 2
3 )C( 2

3 , 1
3 ) value − 2

3 ; (vi) Saddle
point: R1C2 value −1; (vii) R( 1

2 , 1
2 )C( 1

3 , 2
3 ) value 0; (viii) R( 1

5 , 4
5 )C( 3

5 , 2
5 ) value 7

5 ;
(ix) R( 1

2 , 1
2 )C( 1

2 , 1
2 ) value 3; (x) R( 3

7 , 5
7 )C( 4

7 , 2
7 ) value 22

7 ; (xi) R( 4
9 , 5

9 )C( 1
3 , 2

3 )

value 2
3 ; (xii) Saddle point: R1C2 value −1; (xiii) Saddle point: R2C1 value 1;

(xiv) R( 3
4 , 1

4 )C( 1
2 , 1

2 ) value 3
2 ; (xv) R( 7

8 , 1
8 )C( 7

8 , 1
8 ) value 17

8 ; (xvi) R( 7
12 , 5

12 )C( 1
4 , 3

4 )

value 1
4 .

3. (i) a ≤ 3; (ii) all a; (iii) all a; (iv) a ≥ 0.

Section 7.3

1. (i) R( 2
3 , 1

3 )C( 1
3 , 0, 2

3 ) value − 1
3 ; (ii) R( 3

8 , 5
8 )C(0, 5

8 , 3
8 , 0) value − 1

8 ;
(iii) R( 5

9 , 4
9 )C(0, 4

9 , 5
9 ) value − 2

9 ; (iv) R( 3
4 , 1

4 )C( 1
4 , 0, 3

4 , 0) value 7
4 .

2. (i) R( 7
15 , 8

15 , 0)C( 3
5 , 2

5 ) value − 1
5 ; (ii) R(0, 2

5 , 3
5 )C( 1

5 , 4
5 ) value − 3

5 ;
(iii) R( 1

2 , 1
2 )C(0, 1

4 , 0, 3
4 ) value 3; (iv) R( 2

5 , 3
5 )C(0, 1

2 , 1
2 , 0) value 0.

3. (i) R( 6
7 , 1

7 )C( 3
7 , 0, 4

7 ) value 3
7 ; (ii) R( 1

3 , 2
3 )C( 7

15 , 8
15 , 0) value 2

3 ;
(iii) R( 7

8 , 0, 1
8 )C( 5

8 , 0, 3
8 ) value − 3

4 ; (iv) R( 1
4 , 0, 3

4 )C( 1
2 , 1

2 , 0) value 0.

4. For each player, say the strategies are “penny, nickel, dime” in that order.

1 5 −1
1 5 −5

−10 −10 10

R( 10
11 , 0, 1

11 )C( 1
2 , 0, 1

2 ) value 0.

Section 7.4

3. (i) R( 1
2 , 1

2 , 0)C( 1
14 , 4

7 , 5
14 ) value 0; (ii) R( 1

8 , 7
16 , 7

16 )C( 1
6 , 1

2 , 1
3 ) value − 1

2 ;
(iii) R( 1

2 , 0, 1
2 )C(0, 1

2 , 1
2 ) value 0; (iv) R( 1

4 , 0, 3
4 )C(0, 1

4 , 3
4 ) value 1

2 .

4. (i) R( 3
11 , 5

11 , 3
11 )C( 5

22 , 4
11 , 9

22 ) value − 1
11 ; (ii) R( 2

3 , 1
6 , 1

6 C(0, 1
6 , 1

6 , 2
3 ) value − 1

3 ;
(iii) R( 3

11 , 8
11 , 0)C( 7

11 , 0, 4
11 ) value 1

11 ; (iv) R( 10
21 , 8

21 , 1
7 C( 1

2 , 0, 5
14 , 1

7 ) value 1
7 .

5. (i) R(0, 1
3 , 1

3 , 1
3 )C( 5

9 , 2
9 , 0, 2

9 ) value − 1
3 ; (ii) R( 3

20 , 9
20 , 2

5 , 0)C(0, 1
2 , 1

2 ) value 1
2 ;

(iii) R( 2
3 , 0, 1

3 , 0)C0, 0, 7
12 , 5

12 ) value 2
3 ; (iv) R( 5

9 , 0, 7
18 , 1

18 )C( 2
9 , 0, 3

9 , 4
9 ) value 7

9 .
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Section 8.1

1. (i) $5350; (ii) $6050; (iii) $6750. 2. (i) $384; (ii) $960; (iii) $1536. 3. (i) $12040;
(ii) $12120; (iii) $12200. 4. (i) $ 2512.50; (ii) $2525; (iii) $2575. 5. 8%. 6. 10%.
7. (i) $2200; (ii) $1500; (iii) $1200. 8. 24%. 9. 8.16%. 10. $113.33. 11. $236.
12. $40000; $666.67. 13. $21917.81; $608.83.

Section 8.2

1. (i) $1125.51; (ii) $1123.60; (iii) $1120. 2. (i) $27.05; (ii) $26.90; (iii) $26.25.
3. $3588.26. 4. $991.92. 5. $225.36. 6. $2338.10. 7. $2419.99. 8. $7440.94. 9. 12 (ac-
tually about 11 2

3 years). 10. After 6 years. 11. (i) 5.095%; (ii) 6.136%; (iii) 3.042%.
12. (i) 12%; (ii) 12.55%; (iii) 12.68%; (iv) 12.75%; (v) 12.75%.

Section 8.3

1. $27223.76. 2. $24664.64. 3. $91.68. 4. (i) $2501.52; (ii) $8230.54; (iii) $15084.83;
(iv) $27971.23. 5. (i) $2028.53; (ii) $1609.25. 6. $758.48. 7. $200; $193.43; the
credit union is better. 8. (i) 28951.22 (about 29%); (ii) 45996.46 (about 46%);
(iii) 56641.35 (about 57%).

Section 8.4

1. (i) $1025.32; (ii) $1221.40; (iii) $2718.28. 2. (i) $12544; (ii) $17623.42.
3. $176622.22. 4. The CD (it returns $1159.27 for each $1000 invested; housing re-
turns $1129.74). 5. (i) 5376741× (1.012)10 = 6057930; (ii) 5376741× (1.012)50 =
9762135. 6. 2550 × 1.2; 2550 × 1.24. 7. April 5th. 8. 20 grams.
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absolute value, 6
accumulation, 403
acyclic graph, 189
add-on loan, 392–395
adjacency, 166, 167
algorithm, 282
annual percentage rate, 399–401
annual percentage yield, 399–401
antisymmetric, 158
APR, 399–401
APY, 399–401
arc, 167
arrangement, 60–64, 70
arrangements with repetition, 62
artificial variable, 343
associative law, 160
associativity, 28
asymmetric, 158
atransitive, 158
augmented matrix, 229
average, 43
axis, 211, 212

basic feasible solution, 305
basic solution, 305
basic variable, 306
basis, 310
Bayes’ formula, 135–149
Bernoulli trial, 100, 152
big M method, 343
binary relation, 157–165, 168
binomial experiment, 100, 152
binomial theorem, 75–79

binomial variable, 152, 153
bipartite graph, 173
birthday coincidence, 111
boundary hyperplane, 302
box diagram, 138, 145
bridge, 174, 190–194

cancellation law, 271
card problem, 146
Cartesian product, 29
ceiling, 6
central tendency, 43–46
chance, 89
choose, 67–80
chromatic number, 206–209
circuit, 173–178
closed feasible region, 293
closed walk, 174
codomain, 159
coloring, 205–209
column, 229
commutative law, 256
commutativity, 28
commuting matrices, 257
complement, 83
complement of set, 27
complete bipartite graph, 173
complete graph, 173
component, 174
composition, 159
compound interest, 389, 396–415
compounding, 396
conditional probability, 118, 125–134
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connected, 190
connected graph, 180
connectedness, 174
consistent system of equations, 220
constrained optimization, 281
constraint, 281, 282
constraint matrix, 312
Consumer Price Index, 411
continuous compounding, 409–415
contradiction, 10
coordinate, 212
corner point, 302
CPI, 411
crossing, 205
crossing number, 202
cutpoint, 174
cycle, 173–178, 188–194

defining set, 159
degree, 11, 171–178, 191, 193
denominator, 2
dependent system of equations, 220
dependent variable, 238, 311
determinant, 267
diameter of graph, 175
dictionary of variables, 283
difference of matrices, 246
digraph, 167
dimensions of matrix, 244
discounted loan, 392–395
distance, 174
distinguishable elements, 63
distributive law, 35
divisor, 4, 5
domain, 159
domination, 360
dot product, 252

EAR, 399
eccentricity, 175
edge, 166
effective annual rate, 399
empty set, 26
endpoint, 166
equally likely outcomes, 91
equation, 10–17, 213
equity, 407
equivalent equations, 10
Euler walk, 179–188

Eulerization, 183
Eulerization number, 183
Euler’s theorem, 181–183
even vertex, 173
event, 81–89
expected value, 149–156
experiment, 81, 116
exponent, 5
exponential growth, 409–415
external demand matrix, 273

factor, 4, 5
fair game, 151
feasible, 291
feasible region, 292
feasible solution, 292
finish, 167
floor, 6
frequency, 45
function, 159–165

game
strictly determined, 363
value, 369
value point, 375

game theory, 359–387
geometric method, 291–301
graph, 165–209
greatest common divisor, 4

half-space, 302
Hamiltonian cycle, 194–202
histogram, 46

idempotence, 28
identity matrix, 256
image, 159
inclusion and exclusion, 53
inconsistent equations, 10
inconsistent system of equations, 220
independence, 55, 126–134
independent system of equations, 220
independent variable, 238, 311
indistinguishable elements, 63
inequality, 13, 212
infeasible, 291
infinite graph, 168, 193
infinity, 4
initial tableau, 323
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input–output, 272–279
input–output matrix, 272
integer, 2
intercept, 214
interest, 389–415

compound, 389, 396–415
rate, 389, 405
simple, 389–395

interest period, 397
interest rate, 389, 405

effective, 399
nominal, 399

internal demand matrix, 273
intersection, 26, 83
interval, 3, 211
inverse function, 161–165
inverse matrix, 263–279
inverse relation, 161
invertible, 263
invertible matrix, 265
irrational number, 3
irreflexive, 158

Königsberg bridges, 179–182

length, 174
Leontief model, 272–279
level curve, 293
linear equation, 214
linear equations, 218
linear programming, 281, 381–387

and games, 381
linear programming model, 282–291
loan, 404

add-on, 392–395
discounted, 392–395
present value, 390
principal, 390
term, 397

looped graph, 168

map, 204, 205
mapping, 159
matrix, 243–279

of game, 359
maximin, 362
maximization, 281
mean, 43, 149–153
median, 43
minimax, 362

minimax strategy, 363
minimization, 281
mixed strategy, 367, 380
mode, 43
modulus, 6
multigraph, 166, 188
multiple edge, 166
multiplication principle, 55–60
multiplicity, 166
mutually exclusive, 83

natural logarithm, 410
natural number, 2
nearest neighbor algorithm, 197
non-basic variable, 306
non-negativity constraint, 282
non-singular, 263
null set, 26
number line, 211
number system, 1–3
numerator, 2

objective row, 322
odd vertex, 173
one-to-one, 160
onto, 160
open feasible region, 293
optimization, 281
origin, 211, 212

parallel lines, 215
Pascal’s triangle, 75, 77
path, 173–178, 188–194
payoff, 360

expected value, 367
payoff table, 360
percentage, 389
permutation, 56, 60
Petersen graph, 193
pivot column, 238, 313
pivot element, 313
pivot row, 238, 313
pivoting, 237–242, 309
planar graph, 202
planar representation, 202
plane, 253
point of intersection, 218
population growth, 412–415
positive integer, 2



482 Index

present value, 390
prime number, 4
principal, 390
probability, 90–97, 109
probability distribution, 90–97
product of matrices, 253–270
production matrix, 273
proper subset, 25

radioactive decay, 413–415
radius of graph, 175
random variable, 151
range, 159
rational number, 2
reachability, 374
real number, 3
recessive, 361
recessive strategy, 375
reflexive, 158
regular constraint, 282
regular savings, 402
relation, 157–165
relative complement, 26
relative difference, 26
representation of graph, 202
road networks, 165, 174, 194
rock–paper–scissors, 360
row, 229
rule of sum, 54, 70

saddle point, 362–387
sample point, 81
sample space, 81
scalar multiplication, 248
scalar product, 245
selection, 67–80
sequence, 18, 60
set, 1–3, 25–43
set-builder notation, 1
set-theoretic difference, 26
shape of matrix, 244
sigma notation, 17
simple interest, 389–395
simple walk, 174
simplex method, 282, 302
singular, 263
singular matrix, 265
sink, 167
size of matrix, 244

skew, 158
slack variable, 303
slope, 215
slope-intercept form, 215
solution by diagram, 294
solution by elimination, 220–229
solution by substitution, 219–229
solution set, 10, 220
sorted edges algorithm, 198
source, 167
spread, 46
square matrix, 257, 265
standard deviation, 46–49
star, 177, 190
start, 167
stochastic process, 116–125
strategy, 291, 360

mixed, 367, 380
pure, 360
recessive, 375

strictly determined game, 363
subexperiment, 116
subgraph, 173
subscript, 18
subset, 25
sum of matrices, 245
sums, 17–25
surplus variable, 303
symmetric, 158, 168
symmetric matrix, 247
systems of linear equations, 218–237

tableau, 322
technology matrix, 272
theoretical mean, 150
theory of games, 359–387
three doors problem, 144–149
total output matrix, 273
transitive, 158
transitivity, 25
transpose, 247
Traveling Salesman Problem, 196–202
traversability, 179–188
tree, 188–194
tree diagram, 82–89, 117–125, 136
two phase simplex method, 343

unbounded, 296, 325
underlying set, 18
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uniform experiment, 91
union, 26, 53, 54, 83
universal set, 27, 34
updated tableau, 345
updating, 345

valency, 171–178
value, 369
value point, 375
variable

dependent, 238, 311
independent, 238, 311

variance, 47
variation, 46
vector, 247–262
vector addition, 248
Venn diagram, 34–43, 98
vertex, 166, 167

walk, 173–178, 182
weight, 168
wheel, 176

zero-sum game, 359
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