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Preface

This is the second edition of my book Galaxy Formation. Many people liked the first
edition which appeared in 1998, just before the explosion of magnificent new data
which have completely changed the face of astrophysical cosmology. Many of the
agonies which had to be gone through in the first edition have disappeared and, to
many people’s amazement, including mine, there is now a concordance model for
cosmology, the cosmologist’s equivalent of the particle physicist’s standard model.
Just like the standard model, however, the concordance model creates as many
problems as it solves. This is not a cause for concern, but rather one for celebration
because we are now able to ask much better and deeper questions than in the past.
These questions indicate clearly the need for physics and astrophysics ‘Beyond the
Concordance Model’.

The object of this new edition is to bring this amazing story up-to-date, very much
in the spirit of the first edition. To recapitulate some of the points made in the previous
preface about the origin of the book, I was asked by Springer-Verlag to expand the set
of lecture notes that I prepared in 1988 for the First Astrophysics School organised
by the European Astrophysics Doctoral Network into a full-length book. The set of
notes was entitled Galaxy Formation and was published as a chapter of the volume
Evolution of Galaxies: Astronomical Observations (eds. I. Appenzeller, H.J. Habing
and P. Lena, pages 1 to 93, Springer-Verlag Berlin, Heidelberg, 1989). In that chapter,
I attempted to bridge the gap between elementary cosmology and the technical papers
appearing in the literature which can seem quite daunting on first encounter. The
objective was to present the physical ideas and key results as clearly as possible as
an introduction and guide to the technical literature.

In 1993, more lecture notes on The Physics of Background Radiation were
prepared for the 23rd Advanced Course of the Swiss Society of Astrophysics
and Astronomy, the topic being The Deep Universe (A.R. Sandage, R.G. Kron
and M.S. Longair, Springer-Verlag Berlin, Heidelberg, 1995). Then, also in 1993,
I completed a history of twentieth century astrophysics and cosmology, which was
published as Chap. 23 of a three-volume work entitled Twentieth Century Physics
(eds. L.M. Brown, A. Pais and A.B. Pippard, IOP Publications, AIP Press Bris-
tol, and New York 1995). A much enlarged full-length book on this topic entitled
The Cosmic Century: A History of Astrophysics and Cosmology was published by
Cambridge University Press in 2006. That book brought the story of the origin of
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galaxies and the large-scale structure of the Universe up-to-date as of October 2005
and it has been further updated and expanded in the present book. Just as in the
first edition, the present volume is much more than a recycled and concatenated
version of previously published works. I have rewritten and rethought the original
versions, expanded some parts, brought everything up-to-date and included new
material.

I often find that I understand things best, and present them most clearly, when
I have to prepare them for students, at either the undergraduate or the post-graduate
level, and so I have adopted the same form of presentation here. I have intentionally
presented the material in an informal, pedagogical manner, and attempted to avoid
getting bogged down in formalities and technicalities. If the material becomes too
difficult, I simply summarise the key points, give some appropriate references and
pass on. My approach is to reduce the problems to their simplest form and ratio-
nalise from these examples the results of more complete analyses. Wherever it is
feasible without excessive effort, we will attempt to derive exact results. The level
of presentation is intended to be appropriate for a final-year undergraduate or first-
year post-graduate course of lectures. In other words, it is assumed that the reader
has a good grasp of basic physics but does not necessarily have the appropriate
background in astronomy, astrophysics or cosmology. My aim has been to write
a user-friendly book, taking particular care to expound carefully areas where I have
found students have difficulty.

When I wrote the original set of lecture notes on galaxy formation, my objective
was to tell the story of modern astrophysical cosmology from the perspective of
one of its most important and fundamental problems of cosmology – how did the
galaxies come about? I enjoy this approach to the exposition of modern cosmology
because, to do the problem justice, it is essential to introduce the whole of what
I call classical cosmology, as the framework for the discussion. This approach has,
for me, the great advantage of concentrating upon a crucial problem of astrophysical
cosmology rather than regarding the objective of cosmology as being simply the
delineation of a preferred cosmological model, however interesting that is in its
own right. As we will show, the origin of galaxies and larger-scale structures in the
Universe is one of the great cosmological problems and has provided us with unique
and direct information about the physics of the very early Universe.

This new understanding brings with it the question of whether or not the old
structure of the book is really appropriate – do we really need to grind through all
the old story in order to understand the problems raised by the concordance model?
My decision has been to maintain much of the original structure of the book, largely
because the approach was very strongly physics-motivated and the old story reveals
much of the essential physics of the concordance model.

One final warning is in order. I make no claim that this presentation is com-
plete, unbiased or objective. You should regard the book as my own impressions
and opinions of what I consider to be the important issues of modern astrophysi-
cal cosmology. Others would tell the story in a completely different way and put
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emphasis upon different parts of what is unquestionably a multi-dimensional story.
I will endeavour to include as wide a spectrum of ideas and opinions as possible,
but the text will inevitably be incomplete. I do not worry about this – it should
encourage you to read as widely as possible in order to neutralise my prejudices and
biases.

Good Luck!

Venice and Cambridge,
July 2007 Malcolm Longair
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1 A Brief History of Cosmology
and Galaxy Formation

We begin with a broad-brush historical overview of the development of ideas and
concepts concerning galaxies, cosmology and galaxy formation from the time of
Tycho Brahe and Newton to the present day. This chapter therefore summarises
qualitatively many of the key topics to be dealt with in quantitative detail in the rest
of this book.1 If you do not need this gentle introduction, or misguidedly think that
history is boring, you may pass straightaway to Chap. 2.

1.1 Pre-History

It always comes as a surprise to me to realise how recent our understanding of
galaxies, cosmology and galaxy formation really is. The motions of the Sun, Moon
and planets against the background of the ‘fixed stars’ had been studied from ancient
times, but the scientific study of their motions in the modern sense only began in the
sixteenth century.

The developments which led to the Newtonian revolution can be traced to the
technological and observational achievements of Tycho Brahe in the final decades
of the sixteenth century. I have told this remarkable story elsewhere (Longair, 2003).
Tycho Brahe measured the positions of the Sun, Moon, planets and 777 stars over
a period of 20 years, resulting in an order of magnitude improvement in the accuracy
with which their orbits were determined over all previous measurements. In the year
before his death, he employed Johannes Kepler as his assistant and assigned him
the task of working out the orbits of the planets from his magnificent data sets. In
the period 1601 to 1619, Kepler succeeded in interpreting the mass of Tycho’s data
in terms of elliptical planetary orbits about the Sun, which was located in one of
the foci of each ellipse. Kepler’s discovery of his three laws of planetary motion
was a miracle of geometrical analysis. The three laws embody not only the elliptical
orbits of the planets (the first law), but also the areal law – that equal areas are
swept out by the radius vector from the Sun to the planet in equal times (the second
law) – and the dependence of the period T of the planet’s orbit about the Sun upon
the three-halves power of its mean distance r from the Sun, T ∝ r3/2, (the third
law).

1 Comprehensive references to the original papers discussed in this chapter can be found in
my book The Cosmic Century: A History of Astrophysics and Cosmology (Longair, 2006).
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In 1664, at the age of only 21, Isaac Newton first derived his law of gravity from
Kepler’s third law. Writing Newton’s law of gravity in modern vector notation,

f = −G
M1 M2

r2
ir , (1.1)

where f is the gravitational force acting between two point masses M1 and M2

separated by a distance r and ir is the unit vector in the direction from one mass
to the other. Newton’s achievement was to unify the terrestrial law of gravity with
celestial dynamics by showing that (1.1) could explain the acceleration of falling
apples on Earth and the orbits of the planets. It is no exaggeration to say that
astronomy, astrophysics and cosmology are the sciences of gravity – all the systems
we study in astronomy and cosmology are attempting to counteract the omnipresent
attractive force of gravity by one means or another.

In 1692 Richard Bentley gave the first series of Boyle Lectures which Robert
Boyle had founded ‘to combat atheism’. Bentley took as his theme Newton’s ‘sublime
discoveries’ and entered into a short but profound correspondence with Newton
about the nature of our physical Universe. The question at issue was the stability of
a finite or infinite Universe filled with stars under the attractive force of gravity. The
conclusion of the correspondence was that the Universe must be infinite because, if
it were not, it would collapse to its centre under gravity. With remarkable insight,
they recognised, however, that an infinite Universe filled with stars is gravitationally
unstable. If a star is displaced from its equilibrium position, it continues to accelerate
in that direction. To quote Harrison:

(Newton) agreed with Bentley that providence had designed a universe of
infinite extent in which uniformly distributed stars stand poised in unstable
equilibrium like needles on their points (Harrison, 1987).

It was only in the twentieth century that the nature of this instability was fully
appreciated. For a static medium, the instability criterion and the growth rate of the
instability were derived by James Jeans in 1902 and the corresponding results for an
expanding medium by Georges Lemaître, Howard Robertson and Evgenii Lifshitz in
the 1930s and 1940s. Their results are central to the understanding of the problems
of the formation of structure in the Universe and the modern working out of their
basic insights will dominate much of the discussion throughout this book.

As part of the dialogue with Bentley, Newton proposed that the stars are objects
like the Sun and he made star counts in an attempt to show that the stars are
indeed uniformly distributed in space. From the seventeenth century onwards, most
astronomers assumed that the stars are objects similar to the Sun, but at vastly
greater distances. The problem was to find means of measuring their distances. If
they were assumed to have the same intrinsic luminosities as the Sun, the inverse
square law could be used to estimate distances by comparing the relative brightnesses
of the Sun and the distant stars. The technical problem was that the Sun is so much
brighter than the brightest stars that is was difficult to make good estimates of the
ratio of their observed flux densities, or apparent magnitudes. An ingenious solution
was discovered in 1668 by James Gregory, who used Jupiter as an intermediate
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luminosity calibrator, assuming that its light was entirely sunlight reflected from the
disc of the planet and that its surface was a perfect reflector. Then, the apparent
magnitudes of Jupiter and the bright star Sirius could be compared and the distance
of Sirius was found to be about 83,190 astronomical units (Gregory, 1668). The
same method was used by John Michell in 1767 using Saturn as an intermediary to
estimate of a distance of 460,000 astronomical units for Vega, or α Lyrae.

The method of Gregory and Michell depended upon the assumption that all
the stars have the same absolute luminosities. The first direct measurements of
stellar distances were made by the technique of stellar parallaxes, the first successful
measurement being announced in 1838 by Friedrich Bessel for the star 61 Cygni. The
measurement of stellar parallaxes was however difficult and demanding technically
and by 1900 only about 100 parallaxes were known for stars in the vicinity of the
Sun.

1.2 The Galaxies and the Structure of our Galaxy

In his extraordinary text of 1610, the Sidereus Nuncius or The Sidereal Messenger,
Galileo Galilei demonstrated that the Milky Way can be resolved into stars when
observed through the telescope. These observations led to the earliest speculative
cosmologies of the modern era. The ‘island universe’ model of René Descartes,
published in The World of 1636, involved an interlocking jig-saw puzzle of solar
systems. In 1750, Thomas Wright of Durham published An Original Theory or New
Hypothesis of the Universe, in which the Sun was one of many stars which orbit
the ‘Divine Centre’ of the star system. Immanuel Kant in 1755 and Johann Lambert
in 1761 took these ideas further and developed the first hierarchical, or fractal,
models of the Universe. Kant also made the prescient suggestion that the flattening
of these ‘island universes’ was due to their rotation. The problem with these early
cosmologies was that they lacked observational validation.

Towards the end of the eighteenth century, William Herschel was one of the first
astronomers to attempt to define the distribution of stars in the Universe in some
detail on the basis of careful astronomical observation. To determine the structure
of the Milky Way, he counted the numbers of stars in different directions. Then,
assuming that they all have the same intrinsic luminosities, he derived his famous
picture for the structure of our Galaxy which consisting of a flattened disc of stars
with diameter about five times its thickness, the Sun being located close to its centre
(Fig. 1.1) (Herschel, 1785).

John Michell had already warned Herschel that the assumption that the stars have
a fixed luminosity was a poor approximation. In his remarkable pioneering paper of
1767, Michell introduced statistical methods into astronomy in order to show that
binary and star clusters must be real physical systems and not random associations
of stars on the sky (Michell, 1767). Consequently, there must be a dispersion in the
absolute luminosities of the stars from their observed range of apparent magnitudes in
bright star clusters, such as the Pleiades. Despite this warning, Herschel proceeded to
produce a number of different versions of his model for the structure of our Galaxy,
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Fig. 1.1. William Herschel’s model of the Galaxy based upon star counts in different directions.
The Sun is located close to the centre of the disc of stars (Herschel, 1785)

adding appendages to account for various features of the star counts in different
directions.

In 1802, Herschel measured the magnitudes of visual binary stars and was forced
to agree with Michell’s conclusion about the wide dispersion in the luminosities of
the stars (Herschel, 1802). Equally troubling was the fact that observations with his
magnificent 40-foot telescope showed that, the fainter he looked, the more stars he
continued to find. There seemed to be no edge to the Galaxy and Herschel gradually
lost faith in his model. In addition, the importance of interstellar extinction by dust
was not appreciated – it was only in the 1930s that its central importance for studies
of our own and other galaxies was fully appreciated.

Even before the discovery of the telescope, it had been realised that there exist
‘nebulous’ objects which differ from the stars in having a diffuse or fuzzy appearance.
Kant, Lambert, Swedenborg and Wright argued that these objects were ‘island
universes’ similar to the Milky Way, but too distant to be resolved into stars. There
was, however, no observational basis for this hypothesis. Herschel also inferred that
the nebulae were island universes similar to our Galaxy. A test of this picture was
to show that the nebulae could be resolved into stars and he believed that this had
been achieved in a number of cases. In others, he assumed that the nebulae were
too distant to be resolved into individual stars. This picture came into question,
however, when he discovered that, among the nebulae were the planetary nebulae,
which consist of a central star surrounded by a shell of gas. Herschel recognised
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that these nebulae were unlikely to be resolved into stars but rather consisted of
‘luminous fluid’ surrounding the central star.

The cataloguing of the bright nebulae was begun by Charles Messier whose
catalogue of 109 objects was compiled during the years 1771 to 1784. Messier’s
interest was primarily in comets and his objective in compiling the catalogue was
to enable him to distinguish between diffuse nebulae and comets. The catalogue
contains a mixture of what we now know are the brightest Galactic and extra-
galactic nebulae and they are still commonly referred to by their Messier, or M,
numbers.

The systematic cataloguing of the nebulae was begun by William Herschel
and his sister Caroline and was continued through the first half of the nineteenth
century by his son John Herschel. The results of these huge endeavours was the
publication by John Herschel in 1864 of the General Catalogue of Nebulae and
Clusters of Stars containing 5079 objects. These catalogues were based upon visual
observations long before photography became a standard tool of the astronomer. In
1888, John Dreyer published an expanded catalogue which was known as the New
General Catalogue of Nebulae and Clusters of Stars which, together with the two
supplementary Index Catalogues of 1895 and 1908, contain some 15,000 objects.
Objects in these catalogues are still commonly referred to by their NGC or IC
numbers.

While the cataloguing of the nebulae proceeded apace, their nature remained
a mystery. Undoubtedly, some of them were gas clouds, as demonstrated by William
Huggins’ pioneering spectroscopic observations of diffuse nebulae in the 1860s
(Huggins and Miller, 1864). The big question was whether or not the ‘spiral nebulae’
were objects within our own Galaxy or were more distant systems. These nebulae
were beyond the distances at which conventional techniques of distance measurement
could be used. This problem culminated in what became known as ‘The Great
Debate’ and concerned two related issues. Firstly, what is the size of our own Galaxy
and, secondly, are the spiral nebulae members of our Galaxy or are they separate
‘island universes’, well beyond the confines of our Galaxy? This key episode in
the history of modern astronomy should be required reading for all observers and
theorists (Sandage, 1961b; Hoskin, 1976; Smith, 1982; Trimble, 1995).

To illustrate the nature of the problem, by 1920, Jacobus Kapteyn had determined
the luminosity function of stars near the Sun and so, from star counts in different
directions, determined the structure of the Galaxy which he found to be highly
flattened with dimensions 1500 pc perpendicular to the plane and about 8 times that
size in the Galactic plane (Fig. 1.2) (Kapteyn, 1922).

Meanwhile, Harlow Shapley had adopted a quite different approach to the de-
termination of Galactic structure. In 1912, Henrietta Leavitt had discovered the
remarkable period–luminosity relation for Cepheid variable stars in the Magellanic
Clouds (Fig. 1.3). This discovery provided a powerful means of measuring astro-
nomical distances because the Cepheid variables are intrinsically luminous stars
and their distinctive light curves can be recognised in stars in distant systems. The
Cepheid variables were the tools used by Harlow Shapley to determine the structure
of the Galaxy through his studies of globular clusters. He found the scale of the



8 1 A Brief History of Cosmology and Galaxy Formation

Fig. 1.2. Kapteyn’s model for the distribution of stars in the Galaxy (Kapteyn, 1922). The
diagram shows the distribution of stars in a plane perpendicular to the Galactic plane. The
curves are lines of constant number density of stars and are in equal logarithmic steps. The
Sun S is slightly displaced from the centre of the system

Fig. 1.3. A plot of the period–
luminosity relation for the 25
Cepheid variables discovered by
Leavitt in the Small Magellanic
Cloud (Leavitt, 1912). The upper
locus is found for the maximum
light of the Cepheid variables and
the lower line for their minimum
brightnesses

globular cluster system to be enormous, the most distance globular cluster having
a distance of 67 kpc. Furthermore, the globular cluster system was not centred upon
the Solar System, but rather most of the globular clusters were found in a direction
centred upon the constellation of Sagittarius (Fig. 1.4) (Shapley, 1918).

The course of the debate was complex, but the issues were resolved finally and
conclusively in 1925 by Edwin Hubble’s observations of Cepheid variables in the
Andromeda Nebula. Using the period–luminosity relation for Cepheid variables, he
established to everyone’s satisfaction that the spiral nebulae are distant extragalactic
systems.

Within a year, Hubble had published the first major survey of the properties
of galaxies as extragalactic systems. In his remarkable paper (Hubble, 1926), he
introduced an early version of his classification of galaxies into ellipticals, spirals
and irregulars, estimated mass-to-light ratios for these different types of galaxies,
used number counts of galaxies to show that they are uniformly distributed in space
and hence estimated the mean density of matter in the Universe in the form of
galaxies. Adopting Einstein’s static model of the Universe, he found that the radius
of curvature of its spherical geometry was 27,000 Mpc. He estimated that, with the



1.2 The Galaxies and the Structure of our Galaxy 9

Fig. 1.4. The distribution of globular clusters in the Galaxy according to Shapley’s distance
measurements (Shapley, 1918). The scales on the abscissa and ordinate are in units of 100 pc
and correspond to distances in and perpendicular to the Galactic plane respectively. The Sun,
located at zero coordinates on the abscissa and ordinate, lies towards one edge of the globular
cluster system

100-inch Hooker telescope, he could observe typical galaxies to about 1/600 of the
radius of the Universe. He concluded with the remark that

. . . with reasonable increases in the speed of plates and sizes of telescopes,
it may become possible to observe an appreciable fraction of the Einstein
universe.

This paper marked the beginning of extragalactic astronomy. It comes as no surprise
to learn that George Ellery Hale began his campaign to raise funds for the Palomar
200-inch telescope in 1928 – before the year was out, he had secured a grant of
$6 million from the Rockefeller Foundation for the telescope, the construction of
which was completed in 1949.

In 1929, Hubble made his second fundamental contribution to cosmology. He
showed that the extragalactic nebulae are all moving away from our own Galaxy and
that their recessional velocities v are proportional to their distances r from our Galaxy
(Fig. 1.5a) (Hubble, 1929). It is remarkable that he was able to deduce this key result
from such a small sample of nearby galaxies but, within five years, he and Humason
had extended the relation to very much greater velocities and distances using the
apparent magnitudes of the fifth brightest members of clusters of galaxies as distance
indicators (Fig. 1.5b). The velocity–distance relation v = H0r is commonly referred
to as Hubble’s law and H0 as Hubble’s constant. The significance of this discovery
was that, combined with the isotropy of the Universe, Hubble’s law demonstrates
that the whole system of galaxies is partaking in a uniform expansion.
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Fig. 1.5. a Hubble’s first velocity–distance relation for nearby galaxies (Hubble, 1929). The
filled circles and the full line represent a solution for the solar motion using the nebulae
individually; the open circles and the dashed line represent a solution combining the nebulae
into groups. The cross is an estimate of the mean distance of the other 20 galaxies for
which radial velocities were available. b The velocity–apparent magnitude relation for the
fifth brightest member of clusters of galaxies, corrected for galactic obscuration (Hubble
and Humason, 1934). Each cluster velocity is the mean of the various individual velocities
observed in the cluster, the number being indicated by the figure in brackets.

1.3 The Theory of the Expanding Universe

In Newton’s Principia Mathematica, he emphatically took the position that all motion
takes place with respect to a system of absolute space and time. He fiercely rejected
the idea that the motion of a body could only be described relative to those of



1.3 The Theory of the Expanding Universe 11

other bodies. This position was challenged by Bishop Berkeley, Christiaan Huygens
and others but, at least until the late nineteenth century, Newton’s view prevailed.
The issue was revived by Ernst Mach who argued that motion can only be defined
relative to other bodies. Specifically, he took the view that the local inertial frame
of reference is determined by the frame of the distant stars, or galaxies in modern
parlance. Thus, a freely swinging Foucault pendulum swings in a reference frame
which is fixed relative to the distant galaxies. Albert Einstein gave the name Mach’s
principle to this idea.

During the late eighteenth century, non-Euclidean geometries began to be taken
seriously by mathematicians who realised that the fifth postulate of Euclid, that
parallel lines meet only at infinity, might not be essential for the construction of
a self-consistent geometry. Proposals that the global geometry of space might not
be Euclidean were discussed by Girolamo Saccheri and Johann Lambert. In 1816,
Carl Friedrich Gauss repeated this proposal in a letter to Christian Gerling and was
aware of the fact that a test of the local geometry of space could be carried out by
measuring the sum of the angles of a triangle between three high peaks, the Brocken,
Hoherhagen and Inselberg. In 1818, Gauss was asked to carry out a geodetic survey
of the state of Hanover and he devoted a large effort to carrying out and reducing
the data himself. He was certainly aware of the fact that the sum of the angles of the
triangle was 180◦ within the limits of geodetic measurements.

The fathers of non-Euclidean geometry were Nikolai Lobachevsky, who became
rector of Kazan University in Russia in 1827, and János Bolyai in Transylvania,
then part of Hungary. In the 1820s, they independently solved the problem of the
existence of non-Euclidean geometries and showed that Euclid’s fifth postulate could
not be deduced from the other postulates (Lobachevsky, 1829, 1830; Bolyai, 1832).
In his papers entitled On the Principles of Geometry, Lobachevsky also proposed
an astronomical test of the geometry of space. If the geometry were hyperbolic, the
minimum parallax of any object would be

θ = arctan
( a

R

)
, (1.2)

where a is the radius of the Earth’s orbit and R the radius of curvature of the
geometry. He found a minimum value of R ≥ 1.66 × 105 AU = 2.6 light years,
using an observational upper limit of 1 arcsec for the parallax of bright stars. In
a prescient statement which will warm the hearts of observational astronomers, he
remarked:

There is no means other than astronomical observations for judging the
exactness which attaches to the calculations of ordinary geometry.

Non-Euclidean geometries were placed on a firm theoretical basis by Bernhard Rie-
mann, who also discovered closed spherical geometries. The English-speaking world
was introduced these ideas through the works of William Clifford and Arthur Cayley.
Until Albert Einstein’s discovery of the General Theory of Relativity, considerations
of the geometry of space and the role of gravity in defining the large-scale structure
of the Universe were separate questions. After 1915, they were inextricably linked.
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In that year, after a titanic intellectual struggle, Einstein discovered the definitive
version of his General Theory of Relativity which describes how space–time is
distorted by the presence of matter and how, in turn, matter moves along trajec-
tories in bent space–time (Einstein, 1915, 1916). For the first time, a relativistic
theory of gravity was available which enabled self-consistent models of the Uni-
verse as a whole to be constructed and, characteristically, Einstein did not hesitate
to do so.

In seeking a solution of his field equations for the Universe as a whole, Einstein
had explicitly in mind that Mach’s principle should be incorporated into any model
of the large-scale structure of the Universe. He had, however, a major problem.
Without modification, the field equations predicted that the Universe was unstable.
He could only find static solutions by introducing what is now known as the cosmical
or cosmological constant λ, which appears as a constant in Einstein’s field equations.
In his great paper of 1917, Einstein showed that the introduction of the cosmological
constant resulted in static solutions for the Universe as a whole which had closed,
spherical geometry and a finite size (Einstein, 1917). He also believed that he had
incorporated Mach’s principle into General Relativity, in the sense that no solution
of the equations would exist if there were no matter present. In the same year,
this was, however, shown to be incorrect by Willem de Sitter, who found solutions
of the equations even if there were no matter present in the Universe (de Sitter,
1917).

For many decades, the status of the cosmological constant was the subject of
debate. In 1919, Einstein realised that a term involving the cosmological constant
would appear in the field equations of General Relativity, quite independent of its
cosmological significance (Einstein, 1919). In the derivation of the field equations,
the λ-term appears as a constant of integration which is normally set equal to zero in
the development of standard General Relativity. Einstein was not enthusiastic about
the term, remarking that it ‘detracts from the formal beauty of the theory’. Willem
de Sitter wrote in 1919 that the term

. . . detracts from the symmetry and elegance of Einstein’s original the-
ory, one of whose chief attractions was that it explained so much without
introducing any new hypotheses or empirical constant.

Others regarded it as a constant which appears in the development of the General
Relativity and its value should be determined by astronomical observation.

The irony of the situation is that this debate took place before it was realised
that the Universe is in fact non-stationary. In 1922, Aleksander Friedman published
the first of two classic papers in which he discovered both static and expanding
solutions of Einstein’s field equations. In the first paper, Friedman found solutions for
expanding universes with closed spatial geometries, including those which expand
to a maximum radius and eventually collapse to a singularity (Friedman, 1922). In
the second paper of 1924, he showed that there exist expanding solutions which are
unbounded and which have hyperbolic geometry (Friedman, 1924). These solutions
correspond exactly to the standard world models of general relativity and are known
as the Friedman world models.
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In 1925, Friedman died of typhoid in Leningrad before the fundamental sig-
nificance of his work was appreciated. The neglect of Friedman’s work in these
early days is somewhat surprising since Einstein had commented, incorrectly as he
admitted, on the first of the two papers in 1923. It was not until Georges Lemaître
independently rediscovered the same solutions in 1927, and then became aware
of Friedman’s papers, that the pioneering nature of Friedman’s contributions was
appreciated (Lemaître, 1927).

Einstein’s field equations without the cosmological constant contain perfectly
satisfactory solutions in which the Universe is uniformly expanding. According
to George Gamow, when the expansion of the Universe was discovered, Einstein
regarded the introduction of the cosmological constant as ‘the biggest blunder of my
life’ (Gamow, 1970). The cosmological constant was not consigned to oblivion for
long however. As Yakov Zeldovich remarked:

The genie is out of the bottle and, once he is out, he is very difficult to put
back in again.

The cosmological constant immediately found a rôle in reconciling the age of the
Earth with the expansion age of the Universe as given by the inverse of Hubble’s
constant H−1

0 . If the cosmological constant is zero, all Friedman models of the Uni-
verse have ages less than H−1

0 . At that time, Hubble’s estimate of H0 was about
500 km s−1 Mpc−1, corresponding to H−1

0 = 2×109 years. This time-scale was less
than the age of the Earth as determined by nucleocosmochronology, that is, from
dating using long-lived radioactive isotopes. A positive value of the cosmological
constant can resolve this discrepancy since its effect is to stretch out the expansion
time-scale of the Universe, a picture advocated by Arthur Eddington and Lemaître.
It turned out that Hubble’s estimate of H0 was seriously overestimated and, follow-
ing revisions in the 1950s by Walter Baade and Allan Sandage, this conflict was
eliminated. Despite the fact that the cosmological constant appeared to be no longer
necessary, it made regular appearances in the literature to account for various fea-
tures of cosmological data, but these pieces of evidence were not compelling. Then,
during the period 1995 to 2005, convincing evidence for a positive value of the cos-
mological constant was found from studies of very distant Type 1a supernovae and
from determinations of the power spectrum of fluctuations in the Cosmic Microwave
Background Radiation.

As the standard models of General Relativity became better understood, a major
thrust of cosmological research became the determination of the large-scale dynami-
cal and geometrical properties of the Universe – its rate of expansion, its deceleration,
its mean density, its geometry and its age. These remained among the most diffi-
cult programmes of modern observational cosmology until, in the first years of the
twenty-first century, precise estimates became available using techniques undreamt
of by the pioneers of geometrical cosmology.
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1.4 The Big Bang

The next major advance occurred soon after the Second World War when George
Gamow realised that, in an expanding Universe, the early stages must have been
very hot indeed – the temperature was so high that the dynamics of the expansion
were dominated by the energy density of thermal radiation rather than by its matter
content, in other words, the Universe was radiation-dominated. Following an earlier
suggestion of Lemaître, he attempted to explain the origin of the chemical elements
by primordial nucleosynthesis, that is, by nuclear fusion processes as the Universe
cooled down from its very hot initial stages. The reasons for adopting this picture
were twofold. Firstly, following the work of Cecilia Payne, the abundances of the
chemical elements in stars seemed to be remarkably uniform and secondly it was
thought that the central temperatures of the stars were not high enough for nucle-
osynthesis to take place. Gamow’s programme was not successful because of the
problem of synthesising elements heavier than helium – there are no stable isotopes
with atomic mass numbers 5 and 8. Therefore, in the short time-scales available
in the hot early phases of the expansion, there was not time to synthesis elements
heavier that helium. Gamow’s coworkers Ralph Alpher and Robert Herman showed
that only deuterium, helium-3 and helium-4 were created in significant quantities
(Fig. 1.6) (Alpher and Herman, 1950).

In the course of their calculations, Alpher and Herman worked out the thermal
history of the Universe in some detail and predicted that there should be present in
the Universe today a diffuse background of black-body radiation with temperature
about 5 K, the cooled remnant of its very hot early phases (Alpher and Herman,
1948). The detection of this background radiation was far beyond the capabilities
of the technology of the 1940s and the lack of success of Gamow’s programme of
primordial nucleosynthesis resulted in the neglect of this key prediction for many
years. Furthermore, in the 1950s, Fred Hoyle discovered the triple-α resonance,
which leads to the formation of carbon from three helium nuclei (Hoyle, 1954). Soon
after, he and his colleagues, Margaret Burbidge, Geoffrey Burbidge and William
Fowler, showed how the heavy elements could be accounted for by nucleosynthesis
in stars (Burbidge et al., 1957).

Interest in what is now referred to as the Big Bang model of the Universe grew
steadily through the 1950s and early 1960s as evidence was found for cosmological
evolutionary effects in the distribution of faint radio sources (Ryle, 1955, 1958). On
the theoretical side, interest was rekindled in the question of the synthesis of elements
in the early Universe, not now with a view to creating all the elements, but rather
to account for the cosmic abundance of helium. By 1964, it was appreciated that,
wherever helium could be observed in the Universe, it is present with a very high
chemical abundance, about 24% by mass. This figure far exceeded what could be
explained by stellar nucleosynthesis. I remember vividly attending a course of post-
graduate lectures given by Fred Hoyle in Cambridge in 1964 entitled Problems of
Extragalactic Astrophysics in which this problem was discussed. During the lecture
course, Hoyle, Roger Tayler, and John Faulkner carried out detailed computations of
the expected abundance of helium produced by primordial nucleosynthesis. Within
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Fig. 1.6. The evolution of the
fraction (by number) of the light
nuclei in a radiation-dominated
Universe, according to calcula-
tions by Fermi and Turkevich and
published by Alpher and Herman
in 1950 (Alpher and Herman,
1950). The models began with
100% of the material in the form
of neutrons. The tritium 3H and
neutrons shown surviving to
2000 seconds decay radioactively
with half-lives of 12.46 years and
10.25 minutes respectively

a week of the topic being raised, they had shown that about 23 to 25% of helium by
mass is created by this process and that the percentage is remarkably independent
of the precise initial conditions. The paper by Hoyle and Tayler was published in
Nature in 1964 (Hoyle and Tayler, 1964). Subsequent more detailed calculations by
Robert Wagoner, Fowler and Hoyle confirmed these conclusions and suggested that
other elements which are difficult to account for by stellar nucleosynthesis, the light
isotope of helium, 3He, deuterium, D, and lithium, 7Li, could also be accounted for in
this way (Wagoner et al., 1967). Equally important, the success of these computations
resulted in an upper limit to the mean baryon mass density of the Universe of about
one tenth the critical density – if the density were any higher, less than the observed
abundances of deuterium and helium-3 would be created primordially.

By the early 1960s, as the sensitivity of receivers for centimetre wavelengths
improved, it became feasible to search for the cool background radiation left over
from the early stages of the Big Bang. The predicted remnant of the Big Bang was
discovered, more or less by accident, by Arno Penzias and Robert Wilson in 1965
(Penzias and Wilson, 1965). The Cosmic Microwave Background Radiation was the
second key discovery of twentieth century observational cosmology. Observations
by the Cosmic Background Explorer (COBE), launched in 1989, showed that, away
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from the Galactic plane, the radiation is uniform over the sky to better than one part
in 100,000 on angular scales greater than 7◦ and that its spectrum is of black-body
form with a quite remarkable precision (Smoot et al., 1992; Fixsen et al., 1996).
These observations provided compelling evidence that our Universe went through
a very hot, dense phase when the matter and radiation were in thermal equilibrium
in its early stages.

The upshot of these discoveries was that there were four independent pieces of
evidence for the Big Bang picture of the origin and evolution of our Universe. Firstly,
the expansion of the distribution of galaxies discovered by Hubble; secondly, the
black-body spectrum and isotropy of the Cosmic Microwave Background Radia-
tion; thirdly, the formation of the light elements by primordial nucleosynthesis; and
fourthly, the fact that the ages of the oldest stars and nucleochronology ages were of
the same order as the expansion age of the Universe. Thus, the Big Bang provided
a natural framework within which to tackle the problems of galaxy and structure
formation.

1.5 Galaxy and Structure Formation

The Friedman world models are isotropic and homogeneous and so the enormous
diversity of structure we observe in the Universe today is absent. The next step
in developing more realistic models of the Universe is to include small density
perturbations into the homogeneous, isotropic models and study their development
under gravity. For the case of a stationary medium, this problem was solved by
James Jeans in 1902 (Jeans, 1902). The criterion for collapse is that the size of the
perturbation should exceed the Jeans’ length λJ = cs/(G	0/π)

1/2, where cs is the
speed of sound in the medium and 	0 its density. On scales greater than the Jeans’
length, the instability grows exponentially. The physical meaning of the instability
criterion is that, on large enough scales, the gravitational force of attraction by the
matter of the perturbation exceeds the pressure gradients which resist collapse.

The analysis was repeated for the case of an expanding medium in the 1930s by
Lemaître and by Richard Tolman for the case of spherically symmetric perturbations
(Lemaître, 1933; Tolman, 1934) and the solution for the general case was found
by Evgenii Lifshitz in 1946 (Lifshitz, 1946). Lifshitz found that the condition for
gravitational collapse is exactly the same as the Jeans’ criterion at any epoch but,
crucially, the growth-rate of the density perturbations is no longer exponential but
only algebraic. For a Universe with the critical density, Ω0 = 1 or 	0 = 3H2

0 /8πG,
the density contrast Δ = δ	/	 grows with time as Δ ∝ t2/3. The implication of this
result is that the fluctuations from which the large-scale structure of the Universe
formed cannot have grown from infinitesimal random perturbations. For this reason,
Lemâitre, Tolman and Lifshitz inferred that galaxies could not have formed by
gravitational collapse.

From the early 1960s onwards, other authors took the point of view that the
solution to the problem was to include finite perturbations into the model of the early
Universe and then follow in detail how their mass spectrum would evolve with time.
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The Moscow school led by Yakov Zeldovich, Igor Novikov and their colleagues and
James Peebles at Princeton pioneered this approach to the study of the development
of structure in the Universe. If perturbations on a particular physical scale are tracked
backwards into the past, at some large redshift, the scale of the perturbation is equal
to the horizon scale, that is r ≈ ct, where t is the age of the Universe. In 1964,
Novikov showed that, to form structures on the scales of galaxies and clusters of
galaxies, the density perturbations on the scale of the horizon had to have amplitude
Δ = δ	/	 ∼ 10−4 in order to guarantee the formation of galaxies by the present
epoch (Novikov, 1964). These were certainly not infinitesimal perturbations and
their origin had to be ascribed to processes occurring in the very early Universe.

The discovery of the Cosmic Microwave Background Radiation in 1965 had an
immediate impact upon these studies since the thermal history of the pre-galactic
gas could be worked out in detail and this was essential in order to determine
how the speed of sound, and hence the Jeans’ length, varied with cosmic epoch. If
there is no energy input into the background radiation, the temperature of the thermal
background radiation changes with scale factor a as T = T0/a = T0(1+z), where z is
redshift, exactly as in the adiabatic expansion of a photon gas. Therefore, at redshifts
z ∼ 1500, the temperature of the radiation was about 4000 K, at which temperature
there were sufficient photons in the Wien region of the Planck distribution to ionise
all the intergalactic hydrogen. This epoch is referred to as the epoch of recombination
and at earlier epochs the hydrogen was fully ionised; at a correspondingly earlier
epoch, the primordial helium was ionised as well. Somewhat earlier than the epoch
of recombination, the inertial mass density of the radiation was equal to the mass
density of the matter, 	c2 = aT 4, and so, at times earlier than the epoch of matter
and radiation equality, the dynamics of the Universe were radiation-dominated.

The coupling of matter and radiation by electron scattering was worked out by
Ray Weymann in 1966 and in much more detail by Zeldovich and Rashid Sunyaev
in 1969 (Weymann, 1966; Zeldovich and Sunyaev, 1969). The pioneering papers by
Zeldovich and Sunyaev were based upon the theory of induced Compton scatter-
ing which had been published by Aleksander Kompaneets in 1956, long after this
remarkable classified work had been completed (Kompaneets, 1956). What these
papers showed was that, during the radiation-dominated epochs, the matter and radi-
ation were maintained in very close thermal contact by Compton scattering as long
as the intergalactic gas remained ionised. This enabled the speed of sound to be
determined at all epochs before the epoch of recombination. Therefore, the evolu-
tion of the Jeans’ length and the mass of baryonic matter within this length, what is
known as the Jeans’ mass, could be evaluated.

In 1968, Joseph Silk showed that, during the pre-recombination epochs, sound
waves in the radiation-dominated plasma were damped by repeated electron scat-
terings (Silk, 1968). The effect of this damping was to dissipate fluctuations with
masses less than about 1012 M�, a mass known as the Silk mass, by the epoch of
recombination. Consequently, all fine-scale structure would be wiped out and only
large-scale structures on the scale of large galaxies and clusters of galaxies could
form after recombination. In the early 1970s, Zeldovich and Edward Harrison inde-
pendently put together information about the spectrum of the initial fluctuations on
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different physical scales and showed that observed structures in the Universe could
be accounted for if the mass fluctuation spectrum had the form Δ(M) ∝ M−2/3 in
the very early Universe, corresponding to a power spectrum of initial fluctuations of
the form |Δk|2 ∝ kn with n = 1. The amplitude of this scale-free power spectrum,
known as the Harrison–Zeldovich spectrum of initial perturbations, was inferred to
be ∼ 10−4 (Harrison, 1970; Zeldovich, 1972).

A key test of these models was provided by the fact that density fluctuations at
the epoch of recombination should leave some imprint upon the intensity distribution
of the Cosmic Microwave Background Radiation on the sky. In the simplest picture,
if the process of recombination were instantaneous, adiabatic perturbations would
be expected to result in temperature fluctuations ΔT/T = 1

3Δφ/c
2 = 1

3Δ	/	 on
large physical scales associated with large-scale gravitational perturbations, an ef-
fect known as the Sachs–Wolfe effect (Sachs and Wolfe, 1967). In fact, the problem
is somewhat more complicated than this, partly because the process of recombi-
nation is not instantaneous and because other physical processes come into play
on angular scales of about 1◦ and less. These include the adiabatic compression
of the perturbations and first-order Doppler scattering due to the collapse of the
primordial perturbations. These predictions provided a challenge for the observers
since the amplitudes of the temperature fluctuations in these early theories were in
the range ΔT/T ∼ 10−3 − 10−4, well within the capability of sensitive anisotropy
measurements of the Cosmic Microwave Background Radiation.

In the 1970s, these concepts gave rise to two principal scenarios for the formation
of structure in the Universe. The first, known as the adiabatic model, was based upon
a picture in which the perturbations were adiabatic sound waves before the epoch
of recombination and structure in the Universe formed by the fragmentation of
large-scale structures which reached amplitude δ	/	 ∼ 1 at relatively late epochs.
A realisation of this scenario was described by Andrei Doroshkevich, Sunyaev and
Zeldovich in 1974 (Doroshkevich et al., 1974).

An alternative picture was one in which the perturbations were not sound waves
but isothermal perturbations in pressure balance with the background radiation in
the pre-recombination plasma. Small mass perturbations were not damped in this
picture and so perturbations on all scales survived to the recombination epoch. After
that epoch, the Jeans’ mass dropped to about 106 M�, corresponding roughly to
the masses of globular clusters. Galaxies and clusters of galaxies then formed by
the process of hierarchical clustering under the influence of perturbations on larger
physical scales.

Both models predicted similar amplitudes for the density perturbations at the
epoch of recombination on large physical scales and consequently similar temper-
ature perturbations in the Cosmic Microwave Background Radiation. Their subse-
quent behaviour was, however, quite different. The adiabatic picture could be thought
of as a ‘top-down’ process of galaxy formation in which the largest scale structures
formed first and then smaller scale structures formed by a process of fragmentation.
In contrast, the isothermal picture corresponded to a ‘bottom-up’ process in which
small-scale objects came together to form larger structures by hierarchical cluster-
ing. In the adiabatic picture, galaxies, stars and the chemical elements all formed at
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relatively late epochs, whereas in the isothermal picture, they could begin to form at
very much earlier cosmic epochs.

Throughout the 1970s increasingly sensitive searches were made for temperature
fluctuations in the Cosmic Microwave Background Radiation, these observations
being analysed critically by Bruce Partridge in his review of 1980 (Partridge, 1980a).
His own observations had reached sensitivities of ΔT/T ≈ 10−4 or slightly better
by that time (Partridge, 1980b). Models with low density parameters were in serious
conflict with these upper limits because, in these, there is relatively little growth
of the perturbations after the epoch of recombination. Thus, by the early 1980s,
the upper limits to the intensity fluctuations in the Cosmic Microwave Background
Radiation were beginning to constrain severely purely baryonic theories of structure
formation. Furthermore, the limits to the density parameter in the form of baryons
from primordial nucleosynthesis arguments showed that, if the density of matter in
the Universe were close to the critical density, most of the matter in the Universe
would have to be in some non-baryonic form.

1.6 Hot and Cold Dark Matter

A solution to these problems appeared in 1980 when Valentin Lyubimov and his
collaborators reported experiments which suggested that the electron neutrino had
a finite rest mass of about 30 eV (Lyubimov et al., 1980). In 1966, Semion Gershtein
and Zeldovich had noted that relic neutrinos of finite rest mass could make an ap-
preciable contribution to the mass density of the Universe (Gershtein and Zeldovich,
1966) and, in the 1970s, Györgi Marx and Alex Szalay had considered the role of
neutrinos of finite rest mass as candidates for the dark matter, as well as studying
their role in galaxy formation (Marx and Szalay, 1972). The intriguing aspect of
Lyubimov’s result was that, if the relic neutrinos had this rest mass, the Universe
would just be closed, Ω0 = 1.

Zeldovich and his colleagues developed a new version of the adiabatic model in
which the Universe was dominated by neutrinos with finite rest mass (Doroshkevich
et al., 1980). Neutrino fluctuations would begin to grow as soon as they became non-
relativistic but, since the neutrinos are very weakly interacting particles, they would
stream freely out of the perturbations and so small-scale density perturbations would
be quickly damped out. The closely coupled matter and radiation density fluctuations
would oscillate at a low level during the pre-recombination era but, after recombi-
nation, the baryonic matter would fall into the larger amplitude neutrino fluctuations
and then evolve more or less as in the standard adiabatic scenario. Because of the
free-streaming of the neutrinos, however, only the very largest scale perturbations
with masses M ≥ 1016 M� would survive to the epoch of recombination and so, just
as in the adiabatic model, the largest scale perturbations would form first and then
smaller scale structures form by the process of fragmentation. This model had the
great advantage of reducing very significantly the expected amplitude of temperature
fluctuations in the Cosmic Microwave Background Radiation since the perturbations
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in the baryonic matter would be of low amplitude during the critical phases when
the background photons were last scattered.

In 1970, Zeldovich discovered a solution for the non-linear development of
a collapsing cloud and used it to show that large-scale perturbations would collapse
into sheets and pancakes which resemble the large-scale filamentary structure seen
in the distribution of galaxies (Zeldovich, 1970). This scenario for galaxy formation
became known as the Hot Dark Matter picture since the neutrinos were relativistic
when they decoupled from the primordial plasma.

There were, however, concerns about this picture. First of all, there were reser-
vations about the experiments which claimed to have measured the rest mass of the
electron neutrino and it appears that Lyubimov’s results were erroneous – the present
upper limit to the rest mass of the electron neutrino is a few electronvolts. Secondly,
constraints could be set to the masses of the neutrinos if they were to constitute the
dark matter in galaxies, groups and clusters of galaxies. In 1979, James Gunn and
Scott Tremaine showed how the phase space constraints associated with fermions
such as neutrinos could be used to set lower limits to their masses (Tremaine and
Gunn, 1979). While 30 eV neutrinos could bind clusters and the haloes of giant
galaxies, those needed to bind dwarf galaxies would have to have masses much
greater than 30 eV. This was not necessarily a fatal flaw because it could be that
some other form of dark matter was present in the haloes of the dwarf galaxies.

There was also the realisation about this time that there were several alternative
possibilities for the dark matter which came from theories of elementary particles.
Examples included the axions, supersymmetric particles such as the gravitino or
photino and ultraweakly interacting neutrino-like particles, all of which would be
relics of the very early Universe. The period 1980 to 1982 marked the period when the
particle physicists began to take the early Universe very seriously as a laboratory for
particle physics. According to James Peebles, Richard Bond introduced the term Cold
Dark Matter in 1982 to encompass many of the exotic types of particle suggested by
particle physicists. The matter was ‘cold’ in the sense that these particles decoupled
from the thermal background after they had become non-relativistic.

The Cold Dark Matter scenario is similar in many ways to the isothermal model.
Since the matter is very cold, perturbations are not destroyed by free streaming.
Fluctuations on all scales can survive and so, when the pre-recombination Universe
became matter dominated, these perturbations began to grow, decoupled from the
matter and radiation. As in the Hot Dark Matter scenario, after the epoch of recom-
bination, the baryonic matter collapsed into the growing potential wells in the dark
matter and galaxies, groups and clusters formed by hierarchical clustering. In 1982,
Peebles demonstrated how the presence of such particles could reduce the ampli-
tude of the predicted fluctuations in the Cosmic Microwave Background Radiation
to levels consistent with the observational upper limits (Peebles, 1982). A remark-
ably useful formalism for the process of hierarchical clustering was described by
William Press and Paul Schechter in 1974 which gives a good description of how the
mass function of objects of different masses evolves with time (Press and Schechter,
1974).
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These alternative dark matter scenarios for galaxy formation were the subject
of a great deal of analysis and computer simulation during the 1980s. The Hot
Dark Matter picture tended to predict too much power in large-scale structures,
while the Cold Dark Matter models predicted too little (Frenk, 1986). One of the
most important predictions of these models was that temperature fluctuations in the
Cosmic Microwave Background Radiation should be detected at the level of about
one part in 105 and these were detected in 1992 by the COBE satellite. Fluctuations
on angular scales θ ≥ 7◦ were discovered with amplitude ΔI/I ≈ 10−5 by George
Smoot and his colleagues (Smoot et al., 1992). These fluctuations correspond to
physical dimensions about ten times the size of the largest holes and voids observed
in the distribution of galaxies. On these large angular scales, the source of intensity
fluctuations is the Sachs–Wolfe effect, that is, the gravitational redshift associated
with photons originating from within the density fluctuations at the last scattering
surface (Sachs and Wolfe, 1967). It can be shown that the Harrison–Zeldovich
spectrum with n = 1 results in temperature fluctuations which are independent of
angular scale for all scales greater than a few degrees, consistent with the COBE
observations.

The Cold Dark Matter model became the preferred picture for galaxy and struc-
ture formation, but it needed patching up to achieve consistency with all the obser-
vations. Viable models were constructed which include a tilted power spectrum of
the initial fluctuations as compared with the standard Harrison–Zeldovich spectrum,
others included the cosmological constant or decaying neutrinos, yet others consid-
ered a mixture of Hot and Cold Dark Matter and others considered that the Universe
might be open. All the models included biasing of the distribution of visible matter
relative to that of the dominant dark matter, which defined the large-scale structure
of the distribution of galaxies (Turok, 1997).

The picture changed dramatically in the final years of the twentieth century and
the first few years of the twenty-first. Firstly, the Type 1a supernovae were found
to be excellent ‘standard candles’ for the estimation of cosmological distances.
The redshift–magnitude relation for these supernovae strongly suggested that the
cosmological constant was not zero, but had a large positive value, the best-fitting
value corresponding to a density parameter of what became known as the dark energy
of ΩΛ ≈ 0.7 (Knop et al., 2003; Tonry et al., 2003).

Equally important were experiments to determine the detailed power spectrum
of temperature fluctuations in the Cosmic Microwave Background Radiation which
were predicted to display prominent maxima on angular scales less than 1◦. The
predictions were refined in the context of the baryonic adiabatic and isothermal
models by Sunyaev and Zeldovich in 1970 (Sunyaev and Zeldovich, 1970). It was
realised that these acoustic fluctuations contain a great deal of information about
the large-scale properties of the Universe and a number of experimental groups
made very large efforts to pin down the exact shape of their power spectrum. Strong
evidence for these oscillations were found in these experiment, but these endeav-
ours were largely superseded by the first-year results of the Wilkinson Microwave
Anisotropy Probe (Bennett et al., 2003). These defined in exquisite detail the power
spectrum of the fluctuations in the Cosmic Microwave Background Radiation and
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enabled remarkably precise estimates of cosmological parameters to be made, par-
ticularly when combined with the results of large-scale galaxy surveys such as the
Anglo-Australian Telescope 2dF Survey and the Sloan Digital Sky Survey. These
observations demonstrated beyond doubt that the large-scale geometry of the Uni-
verse is very close to flat, that the density parameter in dark and baryonic matter
is close to 0.28 and that the density parameter in the dark energy is close to 0.72
(Tegmark et al., 2004). What is particularly impressive about these results is that
they are entirely consistent with many independent astronomical estimates of the
cosmological parameters. This has given rise to the concept of the concordance
values of the cosmological parameters, a set of parameters which, within the quoted
uncertainties, are in agreement with all the best estimates of their values.

From the perspective of galaxy and structure formation, the good news was that
these achievements incorporate naturally the formation of structure according to the
standard ΛCDM model with no biasing. Equally impressive was the fact that the
determination of the two-point correlation function for galaxies determined from
the large-scale galaxy surveys now overlapped the corresponding angular scales
in the Cosmic Microwave Background Radiation and that these were in excellent
agreement. In the most recent analyses, evidence has been found for a maximum in
the two-point correlation function for galaxies corresponding to the first peak in the
power spectrum of perturbations in the Cosmic Microwave Background Radiation.

The upshot of these remarkable developments is that we have now entered the
era of precision cosmology in which cosmological parameters can be estimated
with confidence to better than 5% and much deeper cosmological questions can be
addressed by the present and future generations of observations and experiments.

1.7 The Very Early Universe

Despite the undoubted success of the concordance model, it raises as many problems
as it solves. The picture is incomplete in the sense that, within the context of the
standard world models, the initial conditions have to be put in by hand in order to
create the Universe as we observe it today. How did these initial conditions arise? The
resolution of these problems will undoubtedly give insight into the laws of physics
under physical conditions which at the moment can only be studied by cosmological
observations.

– The horizon problem. This problem can be restated, ‘Why is the Universe so
isotropic?’ (Dicke, 1961). At earlier cosmological epochs, the particle horizon
r ∼ ct encompassed less and less mass and so the scale over which particles
could be causally connected became smaller and smaller. A vivid example of
this problem is to work out how far light could have travelled along the last
scattering layer at z = 1000 since the Big Bang. Regions of the sky separated by
angular distances greater than 2◦ could not have been in causal communication.
Why then is the Cosmic Microwave Background Radiation so isotropic?
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– The flatness problem. This problem arises from the fact that, according to the
standard world models, if the Universe were set up with a value of the density
parameter differing even slightly from the critical valueΩ0 = 1, it would diverge
very rapidly fromΩ0 = 1 at later epochs (Dicke, 1961; Dicke and Peebles, 1979).
There is nothing in the standard world models that would lead us to prefer any
particular value of Ω0. Why then in the density parameter close to one today?
This is sometimes referred to as the fine-tuning problem.

– The baryon asymmetry problem. The baryon asymmetry problem arises from
the fact that the photon-to-baryon ratio today is Nγ /NB ≈ 109. If photons were
neither created or destroyed, this ratio is conserved as the Universe expands.
At temperature T ≈ 1010 K, electron–positron pair production takes place from
the photon field. At a correspondingly higher temperature, baryon–antibaryon
pair production takes place with the result that there must have been a very
small asymmetry in the baryon–antibaryon ratio in the very early Universe if
we are to end up with the correct photon-to-baryon ratio at the present day.
If the Universe had been symmetric with respect to matter and antimatter, the
photon-to-baryon ratio would now be about 1018, in gross contradiction with the
observed value (Zeldovich, 1965). Therefore, there must be some mechanism
in the early Universe which results in a slight asymmetry between matter and
antimatter.

– The primordial fluctuation problem. What was the origin of the density fluctu-
ations from which galaxies and large-scale structures formed? The amplitudes
of the density perturbations when they came through the horizon had to be of
finite amplitude, Δ = δ	/	 ∼ 10−4, on a very wide range of mass scales. These
cannot have originated as statistical fluctuations in the numbers of particles on,
say, the scales of superclusters of galaxies. There must have been some physical
mechanism which generated finite amplitude perturbations with power spectrum
close to P(k) ∝ k in the early Universe.

– The values of the cosmological parameters. The horizon and flatness problems
were recognised before compelling evidence was found for the finite value of
the cosmological constant, or in modern parlance, the density parameter of the
dark energy ΩΛ. The Universe seems to be geometrically flat and so the sum
of the density parameters in the matter and the dark energy must sum to unity,
ΩΛ +Ωm = 0.72 + 0.28 = 1. Even if the sum of these two parameters were not
precisely unity, it is a surprise that the two parameters are of the same order of
magnitude at the present epoch because the matter density evolves with redshift
as (1 + z)3, while the dark energy density parameter is unchanging with cosmic
epoch. Why then do we live at an epoch when they have more or less the same
value?
A further problem concerns the present value of the density parameter of the
dark energy ΩΛ which can be estimated using simple concepts from quantum
field theory. The value found is about 10120 times greater than permissible values
at the present epoch. This is quite a problem, but it should not be passed over
lightly. If the inflationary picture of the very early Universe is taken seriously,
this is exactly the type of force which drove the inflationary expansion.
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– The nature of dark matter and dark energy. As if these problems were not serious
enough, they are compounded by the fact that the nature of the dark matter and
the dark energy are unknown. One of the consequences of precision cosmology
is the troubling result that we do not understand the nature of about 95% of the
material which drives the large-scale dynamics of the Universe.

The first suggestion that some of these problems might be resolved by appeal
to particle physics was made by Sakharov in 1967 who suggested that the baryon–
antibaryon asymmetry might be associated with the type of symmetry-breaking
observed in the decays of the K mesons, in other words, that the asymmetry is
associated with the type of symmetry-breaking which occurs in Grand Unified
Theories of elementary particles in the early Universe (Sakharov, 1967).

The most important conceptual development for contemporary cosmology came
in 1981 with Alan Guth’s proposal of the inflationary model for the very early Uni-
verse (Guth, 1981). There had been earlier suggestions foreshadowing his proposal.
For example, Zeldovich had noted in 1968 that there is a physical interpretation of
the cosmological constant Λ associated with the zero-point fluctuations of a vac-
uum. Andrei Linde in 1974 and Sydney Bludman and Malvin Ruderman in 1977 had
shown that the scalar Higgs fields, which had been introduced to give the W± and
Z0 particles mass, have similar properties to those which would result in a positive
cosmological constant.

In Guth’s paper of 1981, he realised that if the Universe went through an early
exponential expansion phase, this would solve both the problem of the isotropy of
the Universe on a large scale and would also drive the Universe towards a flat spatial
geometry. The effects of the exponential expansion is to drive neighbouring particles
apart at an exponentially increasing rate so that, although they were in causal contact
in the very early Universe, the exponential inflation quickly moves them far beyond
their local horizons and can account for the large-scale isotropy of the Universe by
the end of the inflation epoch. The exponential expansion also straightens out the
geometry of the Universe, however curved it may have been in its initial stages. At the
end of this phase of exponential inflation, the Universe transforms into the standard
Friedman world model, which, since it has very precisely flat geometry, must have
Ω0 = 1. In Guth’s original picture, the transformation to the Friedman solution
took place through a first-order phase transition but this created too many magnetic
monopoles. The model was revised in 1982 by Linde and by Andreas Albrecht and
Paul Steinhardt who showed how the transition to the Friedman solutions could be
smooth and continuous and so avoid many of the problems associated with Guth’s
proposal (Linde, 1982, 1983; Albrecht and Steinhardt, 1982).

The original hope that a physical realisation for the inflationary expansion could
be found within the context of particle physics beyond the standard model has not
been achieved, but the underlying concepts of the inflationary picture have been
used to define the necessary properties of the inflaton potential needed to create the
Universe as we know it.

Since 1982, the inflationary scenario for the early evolution of the Universe
between the epochs when it was only 10−34 to 10−32 seconds old has been studied
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very intensively. Among the further successes claimed for the theory has been
the realisation that quantum fluctuations in the fields which drive the inflation are
also amplified during the inflationary era. In 1977, Stephen Hawking and Gary
Gibbons worked out the important result that quantum fluctuations in expanding
de Sitter space produce thermal radiation with a well-defined temperature (Gibbons
and Hawking, 1977). This acted as a stimulus to apply similar ideas to the new
inflationary picture with a view to estimating the perturbation spectrum. Following
the 1982 Nuffield Workshop held in Cambridge, the key result was established that
the spectrum of quantum fluctuations of the vacuum Higgs fields were scale-free and
result naturally in adiabatic curvature perturbations with spectrum strikingly similar
to the Harrison–Zeldovich spectrum with n ≈ 1 (Gibbons et al., 1983). According
to Andrew Liddle and David Lyth:

Although introduced to resolve problems associated with the initial condi-
tions needed for the Big Bang cosmology, inflation’s lasting prominence
is owed to a property discovered soon after its introduction. It provides
a possible explanation for the initial inhomogeneities in the Universe that
are believed to have led to all the structures we see, from the earliest objects
formed to the clustering of galaxies to the observed irregularities in the
microwave background (Liddle and Lyth, 2000).



2 The Large-Scale Structure of the Universe

Our current picture of how matter and radiation are distributed in the Universe on
a large scale is derived from a wide variety of different types of observation. In
this chapter, we concentrate upon the large-scale distribution of matter and radiation
in the Universe and discuss galaxies and clusters of galaxies in Chaps. 3 and 4
respectively. The observations described in this chapter provide much of the essential
underpinning of modern cosmological research.

2.1 The Spectrum and Isotropy of the Cosmic Microwave
Background Radiation

On the very largest scales, the best evidence for the overall isotropy of the Universe
is provided by observations of the Cosmic Microwave Background Radiation. This
intense diffuse background radiation in the centimetre, millimetre and submillimetre
wavebands was discovered in 1965 by Penzias and Wilson whilst commissioning
a sensitive maser receiver system for centimetre wavelengths at the Bell Telephone
Laboratories (Penzias and Wilson, 1965). It was soon established that this radiation is
remarkably uniform over the sky and that, in the wavelength range 1 m > λ > 1 cm,
the intensity spectrum had the form Iν ∝ ν2, corresponding to the Rayleigh–Jeans
region of a black-body spectrum at a radiation temperature of about 2.7 K.

The maximum intensity of a black-body spectrum at a radiation temperature of
2.7 K occurs at a wavelength of about 1 mm at which atmospheric emission makes
precise absolute measurements of the background spectrum from the surface of the
Earth very difficult indeed. During the 1970s and 1980s several high-altitude balloon
experiments carrying millimetre and submillimetre spectrometers were flown and
evidence found for the expected turn-over in the Wien region of the spectrum,
but there were discrepancies between the experiments (Weiss, 1980). The only
satisfactory approach for determining the detailed spectrum and isotropy of the
Cosmic Background Radiation over the whole sky was to place the receiver system
in a satellite above the Earth’s atmosphere and this was achieved by the Cosmic
Background Explorer (COBE) of NASA which was launched in November 1989.
This mission was dedicated to studies of the background radiation, not only in the
millimetre and submillimetre wavebands, but also throughout the infrared waveband
from 2 to 1000 μm.
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Fig. 2.1. The final spectrum of the Cosmic Microwave Background Radiation as measured by
the COBE satellite (Fixsen et al., 1996). The units of the abscissa are inverse centimetres, so
that 10 units corresponds to 1 mm and 5 to 2 mm. Uncertainties are a small fraction of the line
thickness. Within the quoted errors, the spectrum is precisely that of a perfect black-body at
radiation temperature T = 2.728 ± 0.002 K

2.1.1 The Spectrum of the Cosmic Microwave Background Radiation

The Far Infrared Absolute Spectrophotometer (FIRAS) of COBE measured the
spectrum of the Cosmic Microwave Background Radiation in the wavelength range
0.5 to 2.5 mm with very high precision during the first year of the mission. The
FIRAS detectors and a reference black-body source were cooled to liquid helium
temperatures and there was sufficient liquid cryogen for only one year of observation.
Particular care was taken over the thermometry involved in making such absolute
temperature measurements. The final spectrum shown in Fig. 2.1 is that of a perfect
black-body with a radiation temperature T = 2.728 ± 0.002 K (Fixsen et al.,
1996). More quantitatively, the deviations from a perfect black-body spectrum in the
wavelength interval 2.5 > λ > 0.5 mm amounted to less than 0.03% of the maximum
intensity. This is the most beautiful example I know of a naturally occurring black-
body radiation spectrum.

There are two convenient ways of describing the degree to which the observed
spectrum differs from that of a perfect black-body spectrum, both of them pioneered
by Zeldovich and Sunyaev in the late 1960s (for details of their work, see their review
of 1980 (Sunyaev and Zeldovich, 1980a)). They showed that the injection of large
amounts of thermal energy in the form of hot gas into the intergalactic medium can
produce various types of distortion of the black-body radiation spectrum because of
Compton scattering of the background photons by hot electrons. We will not go into
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the physics of these processes at this point, except to note the forms of distortion
and the limits which can be set to certain characteristic parameters.

If there were early injection of thermal energy prior to the epoch when the
primordial plasma recombined at a redshift of about 1000, and if the number of
photons was conserved, the spectrum would relax to an equilibrium Bose–Einstein
spectrum with a finite dimensionless chemical potential μ,

Iν = 2hν3

c2

[
exp

(
hν

kTr
+ μ

)
− 1

]−1

. (2.1)

The simplest way of understanding this result is to note that the Bose–Einstein
distribution is the equilibrium distribution for photons when there is a mismatch
between the total energy and the number of photons over which this energy is to
be distributed. In the case of a black-body spectrum, both the energy density and
number density of photons are determined solely by the temperature Tr. In contrast,
the Bose–Einstein distribution is determined by two parameters, the temperature Tr

and the dimensionless chemical potential μ.
In the case of Compton scattering by hot electrons at late epochs, the energies of

the photons are redistributed about their initial values and, to second order, there is
an increase in their mean energies so that the spectrum is shifted to slightly greater
frequencies.1 In 1969, Zeldovich and Sunyaev showed that the distortion of the
black-body spectrum takes the form

ΔIν
Iν

= y
xex

(ex − 1)

[
x

(
ex + 1

ex − 1

)
− 4

]
, (2.2)

where y is the Compton scattering optical depth y = ∫
(kTe/mec2) σT Ne dl,

x = hν/kTr and σT is the Thomson scattering cross-section (Zeldovich and Sunyaev,
1969). In the limit of small distortions, y 	 1, the intensity in the Rayleigh–Jeans
region decreases as ΔIν/Iν = −2y and the total energy under the spectrum increases
as ε = ε0e4y.

Limits to the parameters y andμ have been derived from the very precise spectral
measurements made by the FIRAS instrument. The results quoted by Page are as
follows (Page, 1997):

|y| ≤ 1.5 × 10−5 , |μ| ≤ 10−4 . (2.3)

These are very strong limits indeed and will prove to be of astrophysical importance
in the study of the physics of the intergalactic gas, as well as constraining the amount
of star and metal formation which could have taken place in young galaxies.

2.1.2 The Isotropy of the Cosmic Microwave Background Radiation

Equally remarkable were the COBE observations of the isotropy of the distribution of
the Cosmic Microwave Background Radiation over the sky. The prime instruments

1 I have given a derivation of this result in my book High Energy Astrophysics, Vol. 1
(Longair, 1997b).



30 2 The Large-Scale Structure of the Universe

for these studies were the Differential Microwave Radiometers which operated at
frequencies of 31.5, 53 and 90 GHz, thus sampling the Rayleigh–Jeans region of the
background spectrum. The angular resolution of the radiometers was 7◦. The choice
of observing frequency was crucial in these observations. At higher frequencies,
the millimetre and submillimetre emission of diffuse Galactic dust at high galactic
latitudes, often referred to as ‘cirrus’, confuses the picture, whilst at lower frequencies
the radio synchrotron radiation of ultrarelativistic electrons gyrating in the Galactic
magnetic field becomes important. The final results of the four-year mission are
shown in Fig. 2.2 at increasing levels of sensitivity (Bennett et al., 1996).

Figure 2.2a illustrates the stunning result that the Cosmic Microwave Background
Radiation is extraordinarily uniform over the whole sky with radiation temperature
2.728 K.

At a sensitivity level of about one part in 1000 of the total intensity, a large-scale
anisotropy of dipolar form was observed over the whole sky (Fig. 2.2b). The plane
of our Galaxy can also be observed as a faint band of emission along the Galactic
equator. The global dipole anisotropy is naturally attributed to aberration effects
associated with the Earth’s motion through an isotropic radiation field. Excluding
regions close to the Galactic plane, the temperature distribution was found to have
precisely the expected dipole distribution, T = T0[1 + (v/c) cos θ], where θ is the
angle with respect to the direction of maximum intensity and v is the Earth’s velocity
through the isotropic background radiation. The amplitude of the cosmic microwave
dipole was 3.353 ± 0.024 mK with the maximum intensity in the direction towards
galactic coordinates l = 264.25◦ ±0.33◦; b = 48.22◦ ±0.13◦ (Bennett et al., 1996).
It was inferred that the Earth is moving at about 350 km s−1 with respect to the frame
of reference in which the radiation would be 100% isotropic. It is significant that,
although not designed to undertake this task, exactly the same form of large-scale
dipole anisotropy was observed by the FIRAS instrument.

The measurement of the velocity of the Sun relative to the Cosmic Microwave
Background Radiation is an important result for understanding the large-scale dis-
tribution of mass in the Universe. Once allowance is made for the motion of the Sun
about the centre of our Galaxy, an estimate of the peculiar velocity of our Galaxy and
the local group of galaxies relative to the frame of reference in which the background
radiation would be perfectly isotropic can be found. This motion can be attributed to
perturbations in the distribution of mass on very large scales in the relatively nearby
Universe (Kolatt et al., 1995).

On angular scales of 7◦ and greater, Bennett and his colleagues achieved sensi-
tivity levels better than one part in 100,000 of the total intensity from analyses of
the complete microwave data set obtained over the four years of the COBE mission
(Fig. 2.2c). At this sensitivity level, the radiation from the plane of the Galaxy is
intense, but is confined to a broad strip lying along the Galactic equator. Away from
this region, the sky appears quite smooth on a large scale, but there are significant
fluctuations in intensity from beamwidth to beamwidth over the sky. These fluctu-
ations are present at the level of only about 1 part in 100,000 of the total intensity
and, when averaged over the clear region of sky at |b| > 20◦ amount to a root-mean-
square amplitude of 35 ± 2 μK on an angular scale of 7◦, or to 29 ± 1 μK when
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Fig. 2.2a–c. Maps of the whole sky in galactic coordinates as observed at a wavelength of
5.7 mm (53 GHz) by the COBE satellite at different sensitivity levels. a The distribution of total
intensity over the sky. b Once the uniform component was removed, the dipole component
associated with the motion of the Earth through the background radiation was observed, as
well as a weak signal from the Galactic plane. c Once the dipole component was removed,
radiation from the plane of the Galaxy was seen as a bright band across the centre of the
picture. The fluctuations seen at high galactic latitudes were a combination of noise from
the telescope and the instruments and a genuine cosmological signal. The rms value of the
fluctuations at each point away from the Galactic equator amounted to 36 μK. When averaged
statistically over the whole sky at high latitudes, an excess sky noise signal of cosmological
origin of 30 ± 5 μK was detected (Bennett et al., 1996)

smoothed to 10◦ angular scale. These values were found to be frequency independent
for the three COBE frequency channels at 31.5, 53 and 90 GHz. The detection of
these fluctuations is a crucial result for understanding the origin of the large-scale
structure of the Universe. The COBE observations allow information to be obtained
about the angular spectrum of the intensity fluctuations on all scales θ ≥ 7◦. In
Chap. 15, we will deal with the important cosmological information which can be



32 2 The Large-Scale Structure of the Universe

Fig. 2.3. A map of the whole sky in galactic coordinates as observed by the WMAP satellite
at millimetre wavelengths (Bennett et al., 2003). The angular resolution of the map is about
20 times higher than that of Fig. 2.2c. The emissions due to Galactic dust and synchrotron
radiation have been subtracted from this map

derived from observations of temperature fluctuations in the Cosmic Microwave
Background Radiation on smaller angular scales.

It is interesting to compare the COBE map (Fig. 2.2c) with the more recent
WMAP observations of 2003 made with about 20 times higher angular resolution
(Bennett et al., 2003) (Fig. 2.3). It can be seen that the same large scale features
are present on both maps. In particular, regions of strong positive and negative
fluctuations agree rather well. We will have a lot more to say about Fig. 2.3 in due
course.

The COBE observations are crucial for cosmology. From the point of view of
the structure of the Universe on the very largest angular scales, they show that
the Cosmic Microwave Background Radiation is isotropic to better than one part
in 100,000. Whatever its origin, this observation in itself shows that the Universe
must be extraordinarily isotropic on the large scale. As we will show, it is wholly
convincing that this radiation is the cooled remnant of the very hot early phases of
the Big Bang.

How is the distribution of radiation related to the distribution of matter in the
Universe? We will take up this topic in much more detail in Chap. 9, but it is useful to
outline here how they are related. In the standard Big Bang picture, when the Universe
was squashed to only about one thousandth of its present size, the temperature of
the Cosmic Microwave Background Radiation was about one thousand times greater
than it is now. The temperature of the background radiation varies with redshift z
as Tr = 2.728(1 + z)K and so, at a redshift z = 1500, the temperature of the
radiation field was about 4000 K. At this temperature, there were sufficient Lyman
continuum photons in the Wien region of the background spectrum to photoionise
all the neutral hydrogen in the Universe. At this early epoch, known as the epoch
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of recombination, galaxies had not formed and all the ordinary baryonic matter,
which was eventually to become the visible matter of galaxies as we know them,
was still in the form of remarkably smooth, partially ionised pre-galactic gas. At
earlier epochs, the pre-galactic gas was fully ionised and was very strongly coupled
to the background radiation by Thomson scattering.

Therefore, when we look back to these epochs, it is as if we were looking at the
surface of a star surrounding us in all directions, but the temperature of the radiation
we observe has been cooled by a cosmological redshift factor of 1500, so that what we
observe is redshifted into the millimetre waveband. This analogy makes it clear that,
because of Thomson scattering of the background radiation, we can only observe the
very surface layers of our ‘star’. We cannot obtain any direct information about what
was going on at earlier epochs. This ‘surface’ at which the Universe became opaque
to radiation is known as the last scattering surface and the fluctuations observed by
COBE are interpreted as the very low intensity ripples present on that surface on
angular scales of 7◦ and greater. These ripples grow under gravity and will eventually
define some of the very largest scale structures in the local Universe.

In the interpretation of the COBE observations described in the last paragraph, it
was assumed that the intergalactic gas was transparent to radiation from the epoch of
recombination onwards and was not reionised and heated at some later epoch. If that
were to occur, the perturbations would be further damped by Thomson scattering
and this has now been detected in the WMAP observations. However, the damping
is not so great that features in the power spectrum of the fluctuations are wiped out.

One important aspect of these studies is that the energy density of the Cosmic
Microwave Background Radiation amounts to εrad = aT 4

r = 4.2 × 10−14 J m−3 =
2.64 × 105 eV m−3. This energy density of radiation pervades the whole Universe at
the present epoch and provides by far the greatest contribution to the average energy
density of the universal background radiation.

2.2 The Large-Scale Distribution of Galaxies

The visible Universe of galaxies is highly inhomogeneous, consisting of structures
from the scale of isolated galaxies, through groups and clusters of galaxies to su-
perclusters and giant voids in the distribution of galaxies. As we progress to larger
and larger scales, the distribution of galaxies becomes smoother, but still contains
significant non-random features. For many purposes, it is convenient to think of the
galaxies as the building blocks of the Universe which define its large-scale structure.

An excellent representation of the large-scale distribution of galaxies on the
sky is shown in Fig. 2.4. This remarkable picture was created from scans of 185
contiguous UK Schmidt plates, each of which covers an area of 6◦ × 6◦ on the
sky, the scanning being carried out by the Cambridge APM high-speed measuring
machine (Maddox et al., 1990). The image is centred on the South Galactic pole
and so the effect of Galactic obscuration by dust on the distribution of galaxies is
negligible. Each plate was carefully calibrated and stars distinguished from galaxies
by their different image profiles. Figure 2.4 contains over two million galaxies with
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Fig. 2.4. The distribution of galaxies with 17 ≤ b j ≤ 20.5 shown in an equal area projection
centred on the South Galactic pole. This image was reconstructed from machine scans of 185
UK Schmidt plates by the Cambridge APM measuring machine. There are over two million
galaxies in this image. The small empty patches in the map are regions that have been excluded
about bright stars, nearby dwarf galaxies, globular clusters and step wedges (Maddox et al.,
1990)

apparent magnitudes in the range 17 ≤ b j ≤ 20.5 and so represents the distribution
of galaxies on the sky on the grandest scale.

It is apparent that, although one bit of Fig. 2.4 does not look too different from
another on a large enough scale, the distribution of galaxies is far from uniform on
a small scale. There appear to be clumps of galaxies, stringy structures and holes but,
of course, the eye is expert at finding such structures in random data. Despite this
concern, much of the obvious clumping, the clusters, holes and stringy structures
are real features of our Universe. To demonstrate the reality of these features, the
three-dimensional distribution of galaxies needs to be determined and so distances
have to be measured for very large samples of galaxies. Although this is a really
huge task, this has now been achieved thanks to the efforts of many astronomers.

2.2.1 Two-Point Correlation Functions

We need statistical methods appropriate for describing the clustering properties of
galaxies on a wide range of scales and the simplest approach is to use two-point
correlation functions. In the cosmological case, these can be described either in
terms of the distribution of galaxies on the sky, or in terms of spatial two-point
correlation functions in three dimensions. On the sky, we define the angular two-
point correlation function, w(θ), by

N(θ) dΩ = ng[1 +w(θ)] dΩ , (2.4)
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wherew(θ) describes the excess probability of finding a galaxy at an angular distance
θ from any given galaxy. The term dΩ is the element of solid angle and ng is a suitable
average surface density of galaxies. The term w(θ) contains information about the
clustering properties of galaxies to a given limiting apparent magnitude and can be
measured with some precision from large statistical surveys of galaxies such as the
Cambridge APM surveys which contain over two million galaxies (Fig. 2.4). Notice
the important point that two-point correlation functions take circularly symmetric
averages about each galaxy and so throw away all information about the ‘stringiness’
of the distribution of galaxies. Some of this more detailed structural information can
be recovered using three- and four-point correlation functions, but let us begin with
the two-point correlation functions.

The homogeneity of the distribution of galaxies with increasing distance can be
studied by measuring the angular two-point correlation function as a function of
increasing apparent magnitude. If the galaxies are sampled from a homogeneous,
but clustered, distribution, the angular two-point correlation function scales with
increasing limiting distance D in local Euclidean space as

w(θ, D) = D0

D
w0

(
θ

D

D0

)
, (2.5)

where the function w0(θ) has been determined to distance D0. The factor θ(D/D0)

in the argument of w0 takes account of the fact that a fixed scale subtends a smaller
angle at a greater distance D and the factor (D0/D) in front of w0 takes account
of the fact that there are more background galaxies (∝ D3), but that the surface
density of galaxies about any galaxy to a fixed physical scale increases only as D2.
If the galaxies extend to distances D such that redshift effects need to be taken
into account, it is necessary to integrate over the luminosity function of the galaxies
counted and to use a Friedman world model to determine the spatial and surface
number densities of galaxies (Groth and Peebles, 1977; Scranton et al., 2002).

Such scaling analyses were carried out by Groth and Peebles who showed that
the two-point correlation functions determined from a bright sample of Zwicky
galaxies, from the Lick counts of galaxies and from a deep sky survey plate in an
area known as the Jagellonian field scaled exactly as expected if the distribution
of the galaxies displayed the same degree of spatial correlation throughout the
local Universe out to z ∼ 0.1 (Groth and Peebles, 1977, 1986). A similar result
was found by comparing the two-point correlation functions found at increasing
apparent magnitude limits in the machine-scanned surveys carried out by the APM
group at Cambridge (Maddox et al., 1990). Figure 2.5a shows the angular two-point
correlation functions w(θ) measured at increasing apparent magnitude limits in the
magnitude range 17.5 < m < 20.5. In Fig. 2.5b, these functions are scaled to the
angular correlation function found from the Lick survey.

More recently, the same type of analysis has been carried out for a large sample
of galaxies from the Sloan Digital Sky Survey (SDSS) which extends to apparent
magnitude r∗ = 23 by Connolly, Scranton and their colleagues. According to their
estimates, the mean redshift in the magnitude interval 21 ≤ r∗ ≤ 22 is 0.43. Using
the same scaling procedures with a proper Friedman cosmological model, they
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Fig. 2.5a,b. The two-point correlation function for galaxies over a wide range of angular
scales. a The scaling test for the homogeneity of the distribution of galaxies can be performed
using the correlation functions for galaxies derived from the APM surveys at increasing
limiting apparent magnitudes in the range 17.5 < m < 20.5. The correlation functions are
displayed in intervals of 0.5 magnitudes. b The two-point correlation functions scaled to the
correlation function derived from the Lick counts of galaxies (Maddox et al., 1990)

Fig. 2.6a,b. The two-point correlation function for galaxies determined from the Sloan Digital
Sky Survey (SDSS) (Connolly et al., 2002; Scranton et al., 2002). a The angular two-point
correlation function determined in a preliminary analysis of 2% of the galaxy data contained
in the Sloan Digital Sky Survey. b Comparison of the scaled angular two-point correlation
functions found by Maddox and his colleagues from the APM galaxy survey (solid line) with
that found from the SDSS analysis
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find excellent agreement with the angular two-point correlation function determined
by Maddox and his colleagues (Fig. 2.6) (Connolly et al., 2002; Scranton et al.,
2002). It is noteworthy that a better match of the correlation functions is found for
a concordance world model withΩ0 = 0.3 andΩΛ = 0.7 than for the critical model
with Ω0 = 1 and ΩΛ = 0.

These are important results for the construction of cosmological models. As
expressed by Peebles (Peebles, 1993):

. . . the correlation function analyses have yielded a new and positive test of
the assumption that the galaxy space distribution is a stationary (statistically
homogeneous) random process.

Figures 2.5b and 2.6b illustrate the important point that the correlation function
for galaxies is smooth, meaning that clustering is found on all angular scales with
no prominent features on the scales of clusters or superclusters of galaxies. Of
course, it needs to be remembered that the two-point correlation function is circularly
symmetric about each galaxy and so wipes out a lot of detailed information. In
Figs. 2.5b and 2.6b, w(θ) can be characterised by a power law of the form

w(θ) ∝ θ−(0.7−0.8) (2.6)

with a cut-off on large angular scales.
It is more meaningful physically to work in terms of the spatial two-point

correlation function ξ(r) which describes the clustering properties of galaxies in
three dimensions about any galaxy:

N(r) dV = N0[1 + ξ(r)] dV , (2.7)

where N(r) dV is the number of galaxies in the volume element dV at distance r
from any galaxy and N0 is a suitable average space density. ξ(r) describes the excess
number of galaxies at distance r from any given galaxy.

In order to derive ξ(r) directly from observation, we need to know the distribution
of galaxies in space. If, however, we make a number of reasonable assumptions, we
can derive a simple formula which relatesw(θ) to ξ(r). Suppose a cluster of galaxies
has radial number density distribution n(r) = n0[1 + ξ(r)]. Then, it is a simple
calculation to show that the projected distribution is given by the integral

N(a) = 2
∫ amax

a

n(r) r

(r2 − a2)1/2
dr = 2

∫ amax

a

n0[1 + ξ(r)] r

(r2 − a2)1/2
dr , (2.8)

where a is the projected radial distance from the centre of the cluster and amax is
the tidal radius of the cluster. The first term in the second integral for n(a) is just
a constant. If we adopt a power law dependence for ξ(r), ξ(r) ∝ r−γ , the second term
in the integral can be written in dimensionless form using the substitution r = ax as
follows:

N(a) = 2n0a−(γ−1)
∫ amax/a

1

x−(γ−1)

(x2 − 1)1/2
dx . (2.9)
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Allowing the upper limit of the integral to go to infinity, we see that the integral is
a constant and that N(a) and ξ(r) are related by

N(a) ∝ a−(γ−1) . (2.10)

Consequently, in the region in which the angular two-point correlation function can
be described by the power law relation (2.6), the function ξ(r) can be well represented
by a power law of the form

ξ(r) =
(

r

r0

)−γ
, (2.11)

where γ = 1.7 − 1.8. More detailed analyses of the relation between ξ(r) and w(θ)
show that the correlation function (2.11) is a good match to the data on physical
scales from about 100h−1 kpc to 10h−1 Mpc in which the scale r0 = 5h−1 Mpc and
the exponent γ = 1.7 − 1.8.2 On scales greater than about 10h−1 Mpc the two-point
correlation function decreases more rapidly than the power law (2.11). Thus, on
large enough scales, the amplitude of the clustering decreases dramatically and the
Universe becomes isotropic on the very largest physical scales.

We also obtain the important result that on physical scales r � 5h−1 Mpc, the
mean amplitude of the density perturbations is less than one and consequently density
perturbations on larger scales are on average still in the linear regime δ	/	 	 1 at
the present epoch.

2.2.2 Walls and Voids in the Distribution of Galaxies on Large Scales

The analysis of Sect. 2.2.1 provides the simplest description of the distribution of
galaxies on large scales, but it cannot describe the walls and voids in the distribution
of galaxies seen in Fig. 2.4. The nature of these structures has been well defined by
a number of large-scale redshift surveys for galaxies.

One of the earliest complete samples of nearby galaxies is presented in Fig. 2.7
which shows the local three-dimensional distribution of galaxies derived from the
Harvard–Smithsonian Astrophysical Observatory survey of over 14,000 bright galax-
ies (Geller and Huchra, 1989). Our own Galaxy is located at the centre of the diagram
and, if the galaxies were uniformly distributed in the local Universe, the points would
be uniformly distributed over the diagram, which is certainly very far from the case.
There are gross inhomogeneities and irregularities in the local Universe including
large ‘holes’ or ‘voids’ in which the local number density of galaxies is signifi-
cantly lower than the mean, and long ‘filaments’ or ‘walls’ of galaxies, including the
feature known as the ‘Great Wall’, which extends from right ascensions 9h to 17h

2 The use of h = H0/(100 km s−1 Mpc−1) is a convenient device for adjusting the dimen-
sions and luminosities of extragalactic objects to the reader’s preferred value of Hub-
ble’s constant. If a value of H0 = 100 km s−1 Mpc−1 is preferred, h = 1; if the value
H0 = 50 km s−1 Mpc−1 is adopted, h = 0.5 and so on. It is now known that the value of
h is h = 0.72 ± 0.07.
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Fig. 2.7. The distribution of galaxies in the nearby Universe as derived from the Harvard–
Smithsonian Center for Astrophysics survey of galaxies. The map contains over 14,000
galaxies which form a complete statistical sample around the sky between declinations
δ = 8.5◦ and 44.5◦. All the galaxies have recession velocities less than 15,000 km s−1.
Our Galaxy is located at the centre of the map and the radius of the bounding circle is
150h−1 Mpc. The galaxies within this slice have been projected onto a plane to show the
large-scale features in the distribution of galaxies. Rich clusters of galaxies which are
gravitationally bound systems with internal velocity dispersions of about 103 km s−1 appear
as ‘fingers’ pointing radially towards our Galaxy at the centre of the diagram. The distribution
of galaxies is highly irregular with huge holes, filaments and clusters of galaxies throughout
the local Universe (Geller and Huchra, 1989)

about half-way to the limit of the survey. There are a number of ‘streaks’ or ‘fingers’
pointing towards our own Galaxy and these correspond to clusters of galaxies, the
lengths of the ‘streaks’ corresponding to the components of the velocity dispersion
of the galaxies in the clusters along the line of sight.
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Fig. 2.8a,b. The spatial distribution of galaxies on a large-scale. In both diagrams, the dis-
tribution extends to a redshift z ≈ 0.25. a A slice through the Anglo-Australian Telescope
2dF Galaxy Survey (Colless et al., 2001) showing the pronounced ‘cellular’ structure of the
distribution of galaxies on the large scale (image courtesy of the 2dFGRS Team). b The
distribution of galaxies in the Sloan Digital Sky Survey, showing the same ‘cellular’ structure
observed in the AAT 2dF survey (Stoughton et al., 2002)
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These surveys have now been extended to much greater distances and the same
overall picture emerges. Among the first of these surveys, the Las Campanas Redshift
Survey sampled the distribution of galaxies to a distance about four times that of the
Harvard–Smithsonian survey and included 26,418 galaxies (Lin et al., 1996). The
sizes of the voids in the galaxy distribution were on roughly the same physical scale
as those in Fig. 2.7, indicating that the Universe is homogeneous on a large enough
scale, consistent with the scaling arguments from the angular two-point correlation
functions.

More recently, the statistics of such surveys has been increased by an order
of magnitude by the Anglo-Australian Telescope Two-degree Field (2dF) survey of
galaxies and the first results of the Sloan Digital Sky Galaxy Survey (Fig. 2.8a and b).
In the 2dF survey, the redshifts of over 200,000 galaxies were measured. To reveal the
‘cellular’ structure more clearly, only a narrow wedge 4◦ wide is shown in Fig. 2.8a
which includes 56,237 galaxies (Colless et al., 2001). The map shown in Fig. 2.8b
from the Sloan galaxy survey also includes over 200,000 galaxies (Stoughton et al.,
2002). In both cases, the surveys extend to redshifts of about 0.25 and it can be seen
that the ‘cellular structure persists out to the limits of the surveys. Notice that this
means that these surveys have already mapped out a large fraction of the distribution
of galaxies at the present epoch.

In Figs. 2.7 and 2.8a and b, the scales of the largest holes are about 30–50 times
the scale of a cluster of galaxies, that is, up to about 50h−1 Mpc. These are the largest
known structures in the Universe and one of the major cosmological challenges is
to reconcile this gross irregularity in the large-scale spatial distribution of galaxies
with the remarkable smoothness of the Cosmic Microwave Background Radiation
seen in Fig. 2.2c. Despite the presence of the huge voids however, the amplitude of
these irregularities decreases with increasing scale so that on the very largest scales,
one bit of Universe looks very much like another.

It is important to have a quantitative description of the large-scale topology of
the galaxy distributions shown in Figs. 2.7 and 2.8a and b. In the 1980s, Gott and
his colleagues developed techniques for evaluating the topology of the distribution
of voids and galaxies from large redshift surveys (Gott et al., 1986; Melott et al.,
1988). As they expressed the issue delightfully in their paper:

We would like to know whether the distribution of galaxies on large scales
is best described as a hierarchy of clusters, an irregular lattice of cells or
‘bubbles’, a network of filaments, or a set of non-intersecting filaments.
Loosely speaking, one might describe the topology of these models as
respectively a ‘meatball’ topology, a ‘swiss-cheese’ topology, a ‘sponge’
topology and a ‘spaghetti’ topology.

The importance of these studies is that the topology of the distribution of galaxies
is intimately related to the initial conditions from which the large-scale structure
formed, in particular, to the common assumption that the perturbations were Gaussian
fluctuations with random phases.

From an analysis of the CfA galaxy survey, Gott and his colleagues found that
the distribution of the galaxies on the large scale is ‘sponge-like’, the material of
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the sponge representing the location of the galaxies and the holes in the sponge
corresponding to the large voids (Gott et al., 1986; Melott et al., 1988). Both the
holes and the distribution of galaxies are continuously connected throughout the
local Universe. This topology is possible in three dimensions but not in two. Just
like a sponge, overall the distribution of material of the sponge and the holes is
homogeneous, but, on a small scale, it is highly inhomogeneous.

Similar analyses have been carried out for the large AAT 2dF and SDSS Galaxy
surveys by Hoyle, Vogeley, Gott and their colleagues (Hoyle et al., 2002a,b). They
find that the overall topology of the two independent surveys are in remarkable
agreement and similar to that of a Gaussian random field. They go further and show
how further astrophysically important issues can be addressed by considering the
topologies of red and blue galaxies separately and comparing these with simulations
of the formation of structure in the concordance ΛCDM model. We will return to
these issues in Part IV.

Another way of investigating the large-scale distribution of discrete objects in
the Universe is to study the distribution of extragalactic radio sources over the
sky. Unlike the optical waveband, it turns out that, when a survey of the radio sky
is made, the objects which are easiest to observe are extragalactic radio sources
associated with certain rare classes of active galaxy, the radio quasars and radio
galaxies, at very great distances. Because they are rare objects, they sample the
isotropy of the Universe on a very large scale. Figure 2.9 shows the distribution
of the brightest 54,579 extragalactic radio sources at a wavelength of 6 cm in the
Greenbank Catalogue of radio sources which spans most of the northern hemisphere
(Gregory and Condon, 1991; Kooiman et al., 1995). Besides the hole about the North
Celestial pole, there are holes in the vicinity of a few intense radio sources. There
is also a small excess of sources lying along the Galactic plane but otherwise the
distribution is entirely consistent with the sources being distributed uniformly at
random over the sky on the large scale.

Kooiman and his colleagues report weak clustering on angular scales 1–2◦,
consistent with an angular two-point correlation function of the form w(θ) ∝ θ−0.8.
A much stronger angular two-point correlation signal was found in the much deeper
FIRST survey carried out with the VLA by Helfand and his colleagues (Cress et al.,
1996). At a limiting flux density of 1 mJy at 1.4 GHz, 138,665 radio sources were
detected and an angular two-point correlation function of the form w(θ) ∝ θ−1.1

measured down to angular separations of a tenth of a degree.
The radio sources are ideal for probing the large-scale distribution of discrete ob-

jects since they are readily observed at large distances. The bulk of the radio sources
plotted in Fig. 2.9 lie at redshifts z ≥ 1 and so they sample the distribution of discrete
sources on the largest physical scales accessible to us at the present epoch. Notice
that the extragalactic radio sources provide complementary information to that pro-
vided by the Cosmic Microwave Background Radiation, in that they refer to the
large-scale distribution of discrete objects, such as galaxies, once they have formed.

On fine scales, the clustering of galaxies takes place on a very wide variety
of scales from pairs and small groups of galaxies, such as the Local Group of
galaxies, to giant clusters of galaxies, such as the Coma and Pavo clusters which can
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Fig. 2.9. The distribution of radio sources in the Greenbank Catalogue of radio sources at 6 cm
(Gregory and Condon, 1991). The picture includes 54,579 radio sources with angular sizes
less than 10.5 arcmin and flux densities S ≥ 25 mJ. The area about the North Celestial pole
was not surveyed. There are ‘holes’ in the distribution about a few bright radio sources and
a small excess of sources associated with the Galactic plane. Otherwise, the distribution does
not display any significant departure from a random distribution on a large scale, although
there is evidence for clustering on the scale of 1◦ (Kooiman et al., 1995)

contain thousands of members – we discuss some of their properties in Chap. 4. The
rich regular clusters are self-gravitating bound systems, but there are also irregular
clusters which have an irregular, extended appearance and it is not so clear that these
are bound systems.

The term supercluster is used to describe structures on scales larger than those
of clusters of galaxies. They may consist of associations of clusters of galaxies,
or a rich cluster with associated groups and an extended distribution of galaxies.
Some authors would classify the ‘stringy’ structures seen in Figs. 2.7 and 2.8 as
superclusters, or supercluster cells. From the physical point of view, the distinction
between the clusters and the superclusters is whether or not they are gravitationally
bound. Even in the rich, regular clusters of galaxies, which have had time to relax
to a state of dynamical equilibrium, there has only been time for individual galaxies
to cross the cluster up to about 10 times in the age of the Universe and so, on larger
scales, there is scarcely time for the systems to become gravitationally bound. Our
own Galaxy and the Local Group of galaxies are members of what is known as the
Local Supercluster. This is the huge flattened distribution of galaxies centred on the
Virgo cluster, which lies at a distance of about 15–20 Mpc from our own Galaxy. It
can be seen very prominently in maps of the distribution of bright galaxies running
more or less perpendicular to the plane of the Galaxy and is outlined by filled circles
in Fig. 2.10 (Kolatt et al., 1995).
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Fig. 2.10. An equal area projection drawn in galactic coordinates of the distribution of bright
galaxies over the whole sky. In the north, the galaxies are taken from the UGC catalogue
and, in the south, from the ESO, UGC and MCG catalogues. There is an absence of galaxies
at low galactic latitudes because of extinction by interstellar dust. The prominent band of
galaxies intersecting the Galactic plane at right angles at l ∼ 320◦ is the Local Supercluster
of Galaxies and the Supergalactic plane is delineated by the filled circles. Some regions in
which prominent clustering of galaxies is found are labelled by the constellations in which
these lie (Kolatt et al., 1995)

We conclude that, on the very largest scales, the distribution of matter and
radiation is remarkably isotropic and homogeneous. This greatly simplifies the con-
struction of cosmological models.

2.3 Hubble’s Law and the Expansion of the Universe

Hubble made his great discovery of the velocity–distance relation for galaxies in
1929 (Hubble, 1929). A modern version of Hubble’s law, in the form of an redshift–
apparent magnitude relation or Hubble diagram, is shown in Fig. 2.11 for the brightest
galaxies in clusters (Sandage, 1968). It is found empirically that the brightest galaxies
in nearby clusters all have more or less the same intrinsic luminosities and so their
apparent magnitudes can be used to estimate relative distances by application of the
inverse square law.

For a class of galaxy of fixed intrinsic luminosity L, the observed flux density S
is given by the inverse square law, S = L/4πr2 and so, converting this relation into
astronomical apparent magnitudes m using the standard relation m = constant −
2.5 log10 S, it follows that

m = 5 log10 r + constant . (2.12)
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Fig. 2.11. A modern version of the velocity–distance relation for galaxies for the brightest
galaxies in rich clusters of galaxies. This correlation indicates that the brightest galaxies in
clusters have remarkably standard properties and that their velocities of recession from our
own Galaxy are proportional to their distances (Sandage, 1968)

This was the approach adopted by Hubble and Humason in their pioneering analysis
of 1934 (Hubble and Humason, 1934) – they assumed that the 5th brightest galaxy
in a cluster would have more or less the same intrinsic luminosity (Fig. 1.5b). In
Fig. 2.11, the corrected apparent magnitude in the V waveband is plotted against
the logarithm of the redshift of the brightest galaxies in a number of rich clusters
of galaxies which span a wide range of redshifts. The redshift z is defined by the
formula

z = λobs − λem

λem
, (2.13)

where λem is the emitted wavelength of some spectral feature and λobs is the wave-
length at which is it observed. In the limit of small velocities, v 	 c, if the redshift
is interpreted in terms of a recessional velocity v of the galaxy, v = cz and this
is the type of velocity plotted in the velocity–distance relation. It is an unfortunate
tradition in optical astronomy that the splendidly dimensionless quantity, the redshift
z, is converted into a velocity by multiplying it by the speed of light. As we will see
below, interpreting the redshift in terms of a recessional velocity leads to confusion
and misunderstanding of its real meaning in cosmology. It is best if all mention of
recessional velocities are expunged in developing the framework of cosmological
models.
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The solid line shown in Fig. 2.11 is m = 5 log10 z + constant, corresponding
to v ∝ r, and it runs precisely through the observed points – correlations do not
come any better than this in cosmology. The velocity–distance relation is normally
written v = H0r, where H0 is known as Hubble’s constant. The velocity–distance
relation appears to hold good for all classes of extragalactic system, including the
active galaxies and quasars.

We discussed in detail recent evidence for the homogeneity of the distribution of
galaxies in space in Sect. 2.2. In fact, Hubble realised in the 1930s that a simple test
of the homogeneity of the Universe is provided by the number counts of galaxies.
As we will show ins Sect. 17.2.1, in a homogeneous Universe it is expected that the
number counts of galaxies follow the law N(≥ S) ∝ S−3/2, where S is the observed
flux density of the galaxy. This result is independent of the luminosity function of the
sources so long as the counts do not extend to such large distances that the effects
of the cosmological redshift have to be taken into account. In terms of apparent
magnitudes, this relation becomes N(≤ m) ∝ 100.6m .

Hubble found that the counts of galaxies to about 20th magnitude more or
less followed this relation, although they showed some convergence at the faintest
apparent magnitudes, which Hubble interpreted as evidence for the effects of space
curvature at large distances (Hubble, 1936). More recent counts of galaxies are shown
in Fig. 2.12 which extend to very faint apparent magnitudes (Metcalfe et al., 1996).
The results are similar to those of Hubble at m ≤ 20; the counts are slightly flatter
than the Euclidean predictions, but are entirely consistent with the expectations of
uniform world models once the effects of observing the populations at significant
cosmological distances are taken into account. Divergences from the expectations
of the uniform models occur at much fainter blue apparent magnitudes (B ≥ 22), in
the sense that there is an excess of faint blue galaxies; we will take up the origin of
this excess in detail in Chap. 17.

The combination of the observed large-scale isotropy and homogeneity of the
Universe with Hubble’s law shows that the Universe as a whole is expanding uni-
formly at the present time. Let us show this formally by the following simple
calculation. Consider a uniformly expanding system of points (Fig. 2.13). The def-
inition of a uniform expansion is that the distances between any two points should
increase by the same factor in a given time interval, that is, we require

r1(t2)

r1(t1)
= r2(t2)

r2(t1)
= · · · = rn(t2)

rn(t1)
= · · · = α = constant , (2.14)

for any set of points. Let us select some galaxy at random and take the distances of
the other galaxies from it to be r1, r2, . . . . Then, the recession velocity of galaxy 1
relative to the chosen origin is

v1 = r1(t2)− r1(t1)

t2 − t1
= r1(t1)

t2 − t1

[
r1(t2)

r1(t1)
− 1

]

= r1(t1)

t2 − t1
(α− 1) = H0r1(t1) . (2.15)
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Fig. 2.12. The counts of faint galaxies observed in the B, I and K wavebands compared with the
expectations of various uniform world models, as well as other models in which various forms
of the evolution of the luminosity function of galaxies with redshift are assumed (Metcalfe
et al., 1996). The galaxy counts follow closely the expectations of uniform world models at
magnitudes less than about 22, but there is a excess of galaxies in the B and I wavebands at
fainter magnitudes

Similarly, for the nth galaxy,

vn = rn(t1)

t2 − t1
(α− 1) = H0rn(t1) . (2.16)

Thus, a uniformly expanding distribution of galaxies automatically results in
a velocity–distance relation of the form v ∝ r.

This analysis is, however, much deeper than simply an explanation of the local
velocity–distance relation. Notice that the above analysis applies to galaxies at all
distances in a uniformly expanding universe. The requirements of isotropy and
homogeneity mean that the same linear velocity–distance relation must hold true
at all distances, including at distances at which the recession velocities exceed the
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Fig. 2.13. Illustrating the origin of the velocity–distance relation for an isotropically expanding
distribution of galaxies. The distribution of galaxies expands uniformly between the epochs
t1 and t2. If, for example, we consider the motions of the galaxies relative to the galaxy A,
it can be seen that galaxy C travels twice as far as galaxy B between the epochs t1 and t2
and so has twice the recession velocity of galaxy B relative to A. Since C is always twice the
distance of B from A, it can be seen that the velocity–distance relation is a general property
of isotropically expanding universes

speed of light. A good way of understanding this assertion is to consider the familiar
example of the surface of an expanding balloon as an analogue for the kinematics of
an expanding universe. As the balloon is blown up, the distances between points on
the sphere increase and everywhere a velocity–distance relation is obtained locally.
When the balloon is blown up to a huge size, widely separated points on the sphere
separate at speeds which can be greater than the speed of light. There is, however,
nothing unphysical about this since there is no causal connection between the points.
The points are simply partaking in a geometrically uniformly expansion which takes
place over enormous distances. We will return to this important point in Chap. 12.

2.4 Conclusion

The upshot of the considerations of this chapter is that the correct starting point
for the construction of models for the large-scale dynamics of the Universe is that
they should be isotropic and homogenous on the large scale and that they should be
uniformly expanding. These are enormous simplifications and, taken in conjunction
with the General Theory of Relativity, provide a set of simple world models which
provide the framework within which we can study the problems of the origin of
galaxies and the other large-scale structures we observe in the Universe today.



3 Galaxies

3.1 Introduction

‘Galaxy formation’ is the title of this book and so we should summarise what
is known about the properties of galaxies. This is not a trivial business because
normal galaxies are complex, many-body systems. Typically, a galaxy can consist
of hundreds of millions or billions of stars, it can contain considerable quantities
of interstellar gas and dust and can be subject to environmental influences through
interactions with other galaxies and with the intergalactic gas. Star formation takes
place in dense regions of the interstellar gas. To complicate matters further, it is
certain that dark matter is present in galaxies and in clusters of galaxies and the
dynamics of galaxies are largely dominated by this invisible dark component. Its
nature is, however, unknown.

Until the advent of the massive surveys of galaxies, the 2dF Galaxy Survey
undertaken by the Anglo-Australian Telescope and the Sloan Digital Sky Survey
(SDSS), the typical properties of galaxies were defined by meticulous morphological
studies of large samples of bright galaxies. Being bright and relatively nearby, the
morphological classification schemes had to encompass a vast amount of detail and
this was reflected in Hubble’s pioneering studies as elaborated by de Vaucouleurs,
Kormendy, Sandage, van den Bergh and others. In contrast, the sheer size of the
new galaxy samples, which each encompass about 200,000 galaxies, has meant that
classification schemes had to be based upon parameters which could be derived from
computer analysis of the galaxy images and spectra. What the new approach loses in
detail, it more than makes up for in the huge statistics involved and in the objective
nature of the classification procedures.

These recent developments have changed the complexion of the description of
the properties of galaxies. While the new samples provide basic global information
about the properties of galaxies, the old schemes describe many features which
need to be incorporated into the understanding of the detailed evolution and internal
dynamics of particular classes of galaxy. The upshot is that, we need to develop
in parallel both the traditional and more recent approaches to the classification of
galaxies. We will summarise some of their more important properties, as well as
elucidating some of the essential physics. In the next chapter, we will perform
a similar exercise for clusters of galaxies. The books Galaxies in the Universe: an
Introduction by Sparke and Gallagher, Galactic Astronomy by Binney and Merrifield
and Galactic Dynamics by Binney and Tremaine can be thoroughly recommended
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as much more thorough introductions to these topics (Sparke and Gallagher, 2000;
Binney and Merrifield, 1998; Binney and Tremaine, 1987). The results of the 2dF
Galaxy Survey and the Sloan Digital Sky Survey (SDSS) are too recent to have
entered the textbooks. We begin with the traditional approach and then relate these
studies to the more global approach adopted in recent analyses.

3.2 The Revised Hubble Sequence for Galaxies

Let us first describe the traditional approach to the classification of galaxies, noting
points of contact with more recent statistical approaches. Galaxies come in a be-
wildering variety of different shapes and forms. In order to put some order into
this diversity, classification schemes were devised on the basis of their visual ap-
pearances, or morphologies, originally on photographic plates but nowadays from
digital images taken with CCD cameras. The basis of the traditional morphological
schemes remains the Hubble Sequence of Galaxies, described in Hubble’s mono-
graph The Realm of the Nebulae (Hubble, 1936). The Hubble sequence, sometimes
referred to as a ‘tuning-fork’ diagram, arranges galaxies into a continuous sequence
of types with elliptical galaxies at the left-hand end and spirals at the right-hand end
(Fig. 3.1). The spiral galaxies are ordered into two branches named ‘normal’ and
‘barred’ spirals. Conventionally, galaxies towards the left-hand end of the sequence
are referred to as ‘early-type’ galaxies and those towards the right as ‘late-type’
galaxies, reflecting Hubble’s original prejudice concerning their evolution from one
type to another. Despite the fact that these ideas have long outlived their usefulness,
the terms are still in common use, even in the era of the massive surveys of galaxies.

Morphological classification schemes such as the Hubble sequence become an
integral part of astrophysics when independent properties of galaxies are found to
correlate with the morphological classes. This has been found to be the case for

Fig. 3.1. The Hubble sequence of galaxies as presented in The Realm of the Nebulae (Hubble,
1936)
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a number of the overall properties of galaxies such as their integrated colours, the
fraction of the mass of the galaxy in the form of neutral and molecular gas, and so on
(Sect. 3.8). The vast majority of galaxies can be accommodated within the revised
Hubble Sequence of Galaxies, which is described in detail by de Vaucouleurs,
Sandage, Kormendy and van den Bergh (de Vaucouleurs, 1974; Sandage, 1975;
Kormendy, 1982; van den Bergh, 1998). Van den Bergh emphasised that the classical
Hubble types refer primarily to intrinsically luminous galaxies and that, in addition,
there exists a large population of intrinsically low luminosity dwarf galaxies which
can only be observed relatively nearby. There are also various other categories of
galaxies with special characteristics, for example, the Seyfert galaxies, cD galaxies,
N galaxies, radio galaxies, starburst galaxies and so on. Many of these types of
galaxy contain active galactic nuclei.

Elliptical galaxies E. These galaxies show no structural features in their brightness
distributions but have an elliptical appearance, as if they were spheroids or ellipsoids
of revolution (Fig. 3.2a). In absolute magnitude, elliptical galaxies range from among
the most luminous galaxies known, having MB ≈ −24, to dwarf ellipticals (dE),
which are found in the Local Group of galaxies. In Hubble’s notation, the observed
ellipticity of the galaxy is included in the morphological designation according to
the rule that the number 10 × (a − b)/a was written after the letter E, where a
and b are the observed major and minor axes of the ellipse. Thus E0 galaxies are
circular and E7 galaxies, the most extreme ellipticities found in elliptical galaxies,
have b/a = 0.3. Galaxies flatter than E7 all show a distinct disc and bulge structure
and hence are classified as lenticular (S0) rather than E galaxies.

Spiral galaxies S, SA, SB. The characteristic feature of spiral galaxies is their disk-
like appearance with well-defined spiral arms emanating from their central regions
(Fig. 3.2b and 3.3a). Very often the spiral pattern is double with a remarkable degree
of symmetry with respect to the centre of the galaxy, but many more complicated
configurations of spiral structure are known. The light distribution of what Hubble
termed ‘normal’ spiral galaxies (or SA galaxies) can be decomposed into a central
bulge or spheroidal component, similar in character to an elliptical galaxy, and a disk
component, within which the spiral arms lie. In the case of the barred spirals (or
SB galaxies), the central bulge has an elongated or ellipsoidal appearance, the spiral
arms originating from the ends of the bar (Fig. 3.3a). There are as many ‘barred’
spiral galaxies as ‘normal’ spirals and, furthermore, there are just as many spirals
intermediate between these two classes.

Spiral galaxies are classified as Sa, Sb, Sc according to the following criteria, in
decreasing order of importance: (1) the openness of the winding of the spiral arms,
(2) the degree of resolution of the arms into stars and (3) the size of the spheroidal
component or central bar relative to the disk component. Thus,

– Sa galaxies have tightly wound spiral arms which are smooth showing no reso-
lution into stars. The central bulge or bar is dominant, shows no structure and is
unresolved into star clusters.

– Sb galaxies have more open spiral arms, which show resolution into stars. The
central spheroidal component or bar is generally smaller than in Sa galaxies.
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Fig. 3.2a,b. Examples of different types of normal galaxy. a The elliptical galaxy M87 (NGC
4486), one of the most luminous galaxies in the nearly Virgo cluster of galaxies. This image
shows its famous optical jet originating in the bright nucleus of the galaxy which contains
a black hole of mass M ∼ 109 M�

– Sc galaxies have very open spiral arms which are patchy and are resolved into
star clusters and regions of ionised hydrogen. The spheroidal component is very
small. In barred spiral galaxies, the bar is resolved into clusters and HII regions
and is not as prominent as in classes Sa or Sb.

– The revised Hubble scheme extends this classification beyond Sc to include
‘nearly chaotic’ structures which would have been classified as very late Sc
spirals in the standard sequence but are now as classified Sd spirals.

These morphological classes are rather broad and intermediate stages along the
sequence are defined as Sab, Sbc and Scd. It is found that, within a given class of
spiral galaxy, the importance of the bulge can vary considerably. It is interesting
to compare this approach with the more recent statistical approach in which the
bulge-to-disc ratio is one of the key measurable parameters.



3.2 The Revised Hubble Sequence for Galaxies 53

Fig. 3.2. (continued) b The spiral galaxy M51 (NGC 5194) and its nearby dusty companion
(NGC 5195). (Images courtesy of NASA, ESA and the Hubble Heritage Team (STScI/AURA))

Lenticular galaxies S0 or L. All galaxies with smooth light distributions and axial
ratios b/a < 0.3 show evidence of a disk-like component and these are called
lenticular (lens-like) or S0 galaxies (Fig. 3.3b). They are similar to spiral galaxies
in that their light distributions can be decomposed into a central bulge, similar in
properties to elliptical galaxies, and an extensive disk. The lenticular galaxies appear
intermediate in morphological type between elliptical and spiral galaxies.

In many cases, the central bulges of the S0 galaxies have a bar-like appearance
and hence, as in the case of the spirals, they can be divided into ‘ordinary’ and
‘barred’ lenticulars as well as intermediate types. In a number of lenticular galaxies,
there is evidence for obscuring matter, often in the form of rings as can be seen in the
example of NGC 1300 in Fig. 3.3b. In the revised Hubble classification, lenticular
galaxies which are free of obscuring matter are termed ‘early’ S0− with stages S00

and S0+ representing ‘later’ stages with increasing amounts of obscuring material.
By the intermediate stage between lenticular and spiral galaxies, S0/a, the obscuring
matter begins to show what is referred to as ‘incipient spiral structure’.

Irregular galaxies. In Hubble’s original classification, irregular galaxies were sys-
tems ‘lacking both dominating nuclei and rotational symmetry’ and the class in-
cluded everything which could not be readily incorporated into the standard Hubble
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Fig. 3.3a,b. Examples of different types of normal galaxy. a The barred spiral galaxy NGC
1300

sequence. Many of these irregulars were similar to the companion galaxies of our
own Galaxy, the Magellanic Clouds, and these were designated Irr I or Magellanic
irregulars. There remained a small class of irregulars consisting of galaxies such as
M82 , NGC 520 and NGC 3077, in which there was no evidence of resolution into
stars; these galaxies were classified Irr II galaxies.

Evidence that the Irr I galaxies form a natural extension of the Hubble sequence
was provided by de Vaucouleurs’ discovery of weak but definite spiral structure in
the Large Magellanic Cloud (LMC). Galaxies like the LMC can be considered to
belong to stages in the Hubble sequence later than Sd and are denoted Sm. Thus, the
late stages of the sequence reads: Scd, Sd, Sdm, Sm, Im. The Irr II systems find no
natural place in the revised sequence and are designated I0 by de Vaucouleurs. The
characteristics of the I0 irregular galaxies are that they are very rich in interstellar
matter and contain young stars and active regions of star formation; a number of
these would be classified as starburst galaxies.

In the revised Hubble sequence, shown in tabular form in Table 3.1, the vari-
ous stages along the sequence are assigned numbers ranging from −6 to 11. All
transitions along the sequence are smooth and continuous. The frequencies with
which different types of galaxy are found among catalogues of bright galaxies are
shown in Tables 3.2 and 3.3 (de Vaucouleurs 1963). Striking features of this table
are the large percentage of lenticular galaxies and the roughly equal proportions of
normal, barred and intermediate spiral galaxies. The latter statistics indicate that, in
well over half the known examples of spiral galaxies, there are bar-like structures
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Fig. 3.3. (continued) b The SB0 or lenticular galaxy NGC 2787. (Images courtesy of NASA,
ESA and the Hubble Heritage Team (STScI/AURA))

Table 3.1. The revised Hubble sequence of galaxies according to de Vaucouleurs’ classification
(de Vaucouleurs, 1974)

−6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 10 11
E− E0 E+ S0− S00 S0+ S0a Sa Sab Sb Sbc Sc Scd Sd Sdm Sm Im I0

in their central regions and this has important implications for the origin of spiral
structure.

The figures given in Tables 3.2 and 3.3 must be treated with considerable caution.
First of all, the galaxies included in the above statistics are those present in bright
galaxy catalogues. They therefore refer to objects of a very wide range of intrinsic
luminosities, from among the most luminous galaxies known, such as M87, to nearby
dwarf galaxies. Secondly, as mentioned above, the classical Hubble types refer
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Table 3.2. The frequencies with which galaxies of different morphological types are found
among samples of bright galaxies (de Vaucouleurs, 1963)

Class of Galaxy E L S Im I0 Pec Total

Number 199 329 934 39 13 14 1528
Percentage 13.0 21.5 61.1 2.55 0.85 0.9 100

Table 3.3. The frequencies of different subtypes among 994 spiral galaxies (de Vaucouleurs,
1963)

Class 0/a a ab b bc c cd d dm m ? Total Percentage
of Galaxy

SA 17 25 25 57 57 82 30 9 3 4 2 311 31.3
SAB 13 15 23 45 50 71 35 11 3 7 1 274 27.6
SB 26 43 33 83 27 55 27 28 9 30 10 366 36.8
S 4 1 0 6 1 13 1 10 0 0 7 43 4.3

almost exclusively to intrinsically luminous galaxies. Thirdly, the above statistics
include galaxies belonging to the general field, to weak groups and to rich clusters
of galaxies, but the fractions of the different morphological types vary with the
local galaxy number density. In an important paper, Dressler plotted the frequency
of different galaxy types as a function of the number density of galaxies in which
they are found (Fig. 3.4) (Dressler, 1980). Field galaxies, that is, galaxies which are
not members of groups or clusters of galaxies, are located towards the left of the
diagram, while rich clusters of galaxies are towards the right. It can be seen that, in
rich clusters, the elliptical and S0 galaxies are much more common than the spiral
galaxies, whereas in the general field, the majority of galaxies are spirals. Evidently,
the environment in which a galaxy finds itself is correlated with its morphological
characteristics. These relations will be quantified in more detail in Sect. 3.9.4.

3.3 Peculiar and Interacting Galaxies

The revised Hubble classification can encompass the forms of virtually all galaxies.
There are, however, a number of galaxies with very strange appearances and these
are referred to collectively as peculiar galaxies. Arp published his Atlas of Peculiar
Galaxies in 1966 and a corresponding catalogue for the Southern Hemisphere 1987
(Arp, 1966; Arp et al., 1987). As he remarked in the introduction to the first Atlas:

The greatest deviations from the normal are emphasised in this atlas.

A few galaxies are known, for example, in which the stellar component is in the form
of a ring rather than a disc or spheroid, the Cartwheel being a beautiful example of
this type of galaxy (Fig. 3.5); these are known as ring galaxies.
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Fig. 3.4. The fractions of different morphological types of galaxy found in different galaxy
environments. The local number density of galaxies is given as a projected surface density,
	proj of galaxies, that is, numbers Mpc−2 (Dressler, 1980)

Most of these remarkable structures are due to strong gravitational interactions, or
collisions, between galaxies. In the early 1970s, Toomre and Toomre carried out pi-
oneering computer simulations of close encounters between galaxies which showed
how such events could give rise to remarkable asymmetric structures (Toomre and
Toomre, 1972). In Fig. 3.6, a deep image of the pair of interacting galaxies known
as the Antennae is shown, revealing the extraordinary long ‘tails’ which seem to be
emanating from a pair of closely interacting spiral galaxies in which a great deal of
recent star formation has occurred.

The Toomres showed how such elongated ‘tails’ could be accounted for by
a gravitational interaction between two spiral galaxies. In the simulation shown
in Fig. 3.7, the two spiral galaxies pass close to each other on prograde orbits,
that is, the rotational axes of the two discs are parallel and also parallel to the
rotational axis of the two galaxies about their common centre of mass. The spiral
galaxies are represented by differentially rotating discs of stars and, while they are
at their distance of closest approach, the stars in the outermost rings feel the same
mutual force acting upon them for a very much longer time than if the passage
had been in, say, the retrograde direction. As a result, the outer rings of stars feel
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Fig. 3.5. The peculiar galaxy known as the Cartwheel as observed by the Hubble Space
Telescope. (Image courtesy of NASA, ESA and the Hubble Heritage Team (STScI/AURA))
Its strange appearance is almost certainly due to a recent collision, or strong interaction, with
one of its nearby companions. The simulations by Toomre and Toomre show that such a ‘tidal
wave’ is expected if a compact mass had passed through a spiral galaxy close to its centre
(Toomre, 1974)

a coherent force for an extended period and are stripped off to form the types
of extended structure observed in the Antennae. Many of the features of strong
gravitational interactions are described in the pioneering papers by the Toomres.
Similar structures are found in more recent supercomputer simulations of colliding
and interacting galaxies which can include millions of stars, as well as incorporating
the dynamics of the interstellar gas in the collision (Barnes and Hernquist, 1996;
Mihos and Hernquist, 1996; Springel, 2005). The compression of the interstellar
media in the collision results in regions of intense star formation.

Interactions between galaxies play a central role in many aspects of galactic
evolution. From the observational point of view, the IRAS satellite showed that
colliding galaxies are among the most luminous extragalactic far-infrared sources.
The inference is that, when galaxies collide, their interstellar media are compressed
to high densities and the rate of star formation is greatly enhanced, resulting in
intense far-infrared emission.

Collisions between galaxies have also assumed a central role in models of galaxy
formation. In the preferred scenarios of structure formation, galaxies are built up
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Fig. 3.6a,b. The strange pair of interacting galaxies known as the Antennae, named after
the elongated structures apparently torn off in a collisions between the galaxies. a A wide
field image showing the extended ‘tails’ produced in the encounter. b A ‘true colour’ Hubble
Space Telescope image of the colliding galaxies. The many blue regions in the diagram contain
young luminous stars, indicating that a large amount of star formation has been induced by
the collision between the interstellar media of the interacting galaxies. (Image courtesy of
NASA, ESA and the Hubble Heritage Team (STScI/AURA))

by the process of hierarchical clustering in which larger galaxies are formed by
the coalescence of smaller galaxies. In this picture, strong gravitational encounters
between galaxies are essential in forming the structures we observe today. Reference
to Table 3.2 shows that the percentage of peculiar and interacting systems among the
present population of galaxies is only about 1%. We will find that this percentage
increases dramatically as we look further and further back in time, consistent with
the hierarchical picture of structure formation.

3.4 The Light Distribution in Galaxies

Another approach to the classification of galaxies is to use their light distributions
since it is found that these are somewhat different for bulge-dominated and disc-
dominated systems. Let us first summarise the results of studies of bright galaxies
and then show how these can be adapted for the study of large samples of galaxies.
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Fig. 3.7. A simulation of a close encounter between two disc galaxies which approach each
other on prograde orbits. It can be seen that the outer rings of stars are torn off each galaxy,
forming the remarkable ‘Antenna’ structures (Toomre and Toomre, 1972)
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3.4.1 Elliptical Galaxies

The earliest expression for the observed surface brightness distribution of elliptical
galaxies as a function of radius r is commonly referred to as Hubble’s law

I(r) = I0

(
r

rc
+ 1

)−2

, (3.1)

where rc is the core radius of the galaxy. This expression provides a reasonable
description of the intensity distribution in the central regions of elliptical galaxies
but is a poor fit in the outer regions.

A much better description of the surface brightness distribution of elliptical
galaxies and the bulges of spiral galaxies is the empirical law proposed by de
Vaucouleurs which is usually referred to as the r1/4 law (de Vaucouleurs, 1948)

log10
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]
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− 1

]
, (3.2)

or

loge
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I(r)
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= −7.6692
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− 1

]
. (3.3)

This expression provides a good representation of the luminosity profile over many
decades of surface brightness. The expression has been normalised so that re is
the radius within which half the total luminosity is emitted and I(re) is the surface
brightness at that radius. The corresponding total luminosity of the galaxy is

L = 7.215πIer
2
e

(
b

a

)
, (3.4)

where b/a is the apparent axis ratio of the elliptical galaxy (Gilmore et al., 1989).

3.4.2 Spiral and Lenticular Galaxies

The light distributions in most spiral and lenticular galaxies can be decomposed
into two components, a spheroidal component associated with the central bulge and
a disc component. The luminosity profile of the spheroidal component is the same
as that of an elliptical galaxy and may be described by the de Vaucouleurs r1/4 law
discussed above.

In almost all galaxies in which there is evidence of a disc component, including
spirals, barred spirals and lenticulars, the luminosity profile of the disc may be
represented by an exponential light distribution

I(r) = I0 exp(−r/h) , (3.5)
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where h is called the disc scale length; for our own Galaxy h ≈ 3 kpc. I0 is the central
surface brightness. The total luminosity of the disc is then L = 4πh2 I0. According
to Freeman, this luminosity profile is also found in very late-type galaxies, such as
the Magellanic irregulars which show evidence of a disc in rotation.

In 1970, Freeman discovered the remarkable result that, although the disc com-
ponents of large disc galaxies have a wide range of luminosities, there is remarkably
little scatter in the value of the central surface brightness I0 (Freeman, 1970). A mean
value of I0 = 21.67 ± 0.3 B magnitudes arcsec−2 was found for the galaxies in the
sample studied by Freeman, the differences in total luminosity being due to variations
in the scale length of the light distribution h from galaxy to galaxy. There has been
considerable debate about the validity of this result because the samples of galaxies
studied are strongly influenced by selection effects, in particular, the galaxies have
to be bright enough and large enough for precise surface photometric observations
to be possible. Disney suggested that the constancy of the central surface brightness
of the discs of spiral galaxies could be largely attributed to these selection effects
(Disney, 1976). Van der Kruit surveyed a number of attempts to remove the effects
of observational selection from the samples studied and concluded that ‘non-dwarf
galaxies do have a relatively narrow dispersion of central surface brightnesses, and
this is not the result of selection effects’ (Gilmore et al., 1989). It is certainly the
case that, for low luminosity spiral galaxies, the values of central surface brightness
are smaller Freeman’s standard value, the most extreme cases being the low surface
brightness disc galaxies which can have I0 as low as 25.5 B magnitudes arcsec−2.

3.4.3 Putting the Light Distributions Together

A convenient way of combining the light distributions of elliptical and spiral galax-
ies is to adopt the formulation proposed by Sérsic which can be thought of as
a generalisation of de Vaucouleurs’ r1/4 law (Sérsic, 1968)

log10

[
I(r)

I(re)

]
= −bn

[(
r

re

)1/n

− 1

]
. (3.6)

where re is the radius within which half of the total light is emitted and the bn is
a normalisation constant to ensure that the total light sums to L tot for a given value
of n. It can be seen that the value n = 4 results in de Vaucouleurs’ r1/4 law and
n = 1 in the exponential law found in the discs of spiral galaxies.

This formalism can be used to discriminate between disc-dominated and bulge-
dominated galaxies. A beautiful example of the application of Sérsic’s formula to
a large sample of galaxies is shown in Fig. 3.8a which shows the distribution of
n among 10,095 galaxies selected from the Millennium Galaxy Catalogue (Driver
et al., 2006). It can be seen that the galaxy sample splits very beautifully into two
populations, one centred on the value n = 4, corresponding to the elliptical galaxies
and the bulges of spiral galaxies and the other the value n = 1, corresponding to
the light distribution of disc galaxies. In the analysis by Driver and his colleagues,
the morphological categories were checked by visual inspection of the images of the
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Fig. 3.8. a A plot of the observed value of the Sérsic index n as a function of the absolute
blue magnitude in a sample of 10,095 galaxies from the Millennium Galaxy Catalogue. b The
histogram showing the number of galaxies in equal logarithmic bins of Sérsic index n (Driver
et al., 2006)

galaxies. The distinction between the bulge-dominated and disc-dominated systems
occurs at about n ≈ 2. As we will see, these structural parameters are strongly
correlated with other properties of the galaxies, in particular, with the red and blue
galaxy sequences described in Sect. 3.9.2. This procedure is particularly valuable
in distinguishing the structural properties of large samples of galaxies by computer
analyses.

3.5 The Masses of Galaxies

All direct methods of measuring masses in astronomy are dynamical. For systems
such as star clusters, galaxies and clusters of galaxies, it can generally be assumed
that they have reached some form of dynamical equilibrium and then, by measuring
the velocities of the objects which make up the system and knowing its dimensions,
mass estimates can be made. A key result for determining the masses of galaxies and
clusters of galaxies is the virial theorem, first derived for star clusters by Eddington
in 1916 (Eddington, 1916).

3.5.1 The Virial Theorem for Clusters of Stars, Galaxies
and Clusters of Galaxies

Star clusters, galaxies and clusters of galaxies can generally be considered to be
gravitationally bound configurations, meaning that the stars or galaxies have come
into dynamical equilibrium under gravity. This assertion is supported by comparison
of the crossing time of an object within the system with its age. The crossing time is
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defined to be tcr = R/〈v〉 where R is the size of the system and 〈v〉 is the typical speed,
or velocity dispersion, of the objects of which it is composed. For example, the orbital
speed of the stars in our Galaxy at our distance from its centre, 8.5 kpc, is about 220
km s−1. Therefore, the time it takes the stars to make one complete revolution about
the centre of our Galaxy is t = 2πR/v ≈ 2.5 × 108 years. This is very much less
than the age of the Galaxy, which is about 1.3 × 1010 years, and so the system must
be gravitationally bound. Similarly, in the Coma cluster of galaxies, the crossing
time is less than about one-tenth the age of the Universe, indicating that the cluster
must be gravitationally bound, or else the galaxies would have dispersed long ago.

The virial was introduced by Rudolph Clausius in 1870 in connection with the
thermal energy of gases. The virial was defined to be the quantity Ξi = − 1

2 〈ri · Fi〉
where the force Fi acts on the particle i located at position vector ri . The angle
brackets represent the time average of the force acting on the particle and Clausius
showed that Ξi is the system’s average kinetic energy (see p. 105 in (Sparke and
Gallagher, 2000)). In the astronomical context, the theorem refers to the energy
balance in systems in equilibrium under gravity and it is found in a variety of
different guises. In its application to the internal properties of stars, the virial theorem
describes the relation between the thermal energy of the gas and its gravitational
potential energy. The theorem can be extend to include rotational energy, magnetic
energy, the energy in the form of convective motions or turbulence, and so on. In
stellar dynamics, in which the ‘gas’ of stars may be taken to be collisionless, the
tensor virial theorem relates the equilibrium state to the energies associated with the
velocity distribution of the stars at each point, which will in general be anisotropic
(Binney and Tremaine, 1987). In this section, we will only consider the simplest
form of virial theorem for a self-gravitating system of point masses.

Suppose a system of particles (stars or galaxies), each of mass mi , interact with
each other only through their mutual forces of gravitational attraction. Then, the
acceleration of the ith particle due to all other particles can be written vectorially

r̈i =
∑
j �=i

Gm j(r j − ri)∣∣ri − r j

∣∣3 . (3.7)

Now, take the scalar product of both sides with miri .

mi(ri · r̈i) =
∑
j �=i

Gmim j
ri · (r j − ri)∣∣ri − r j

∣∣3 . (3.8)

Differentiating (ri · ri) with respect to time

d

dt
(ri · ri) = 2ṙi · ri , (3.9)

and then, taking the next derivative,

1
2

d2

dt2
(r2

i ) = d

dt
(ṙi · ri) = (r̈i · ri + ṙi · ṙi) = (r̈i · ri + ṙ2

i ) . (3.10)
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Therefore, (3.8) can be rewritten

1
2

d2

dt2
(mir2

i )− mi ṙ2
i =

∑
j �=i

Gmim j
ri · (r j − ri)∣∣ri − r j

∣∣3 . (3.11)

Now we sum over all the particles in the system,

1
2

d2

dt2

∑
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i −

∑
i

mi ṙ2
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∑
i

∑
j �=i

Gmim j
ri · (r j − ri)∣∣ri − r j

∣∣3 . (3.12)

Now the double sum on the right-hand side represents the sum over all the elements
of a square n × n matrix with all the diagonal terms zero. If we sum the elements ij
and ji of the matrix, we find

Gmim j

[
ri · (r j − ri)∣∣ri − r j

∣∣3 + r j · (ri − r j)∣∣r j − ri

∣∣3
]

= − Gmim j∣∣ri − r j

∣∣ . (3.13)

Therefore,

1
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dt2
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i

mir2
i −

∑
i

mi ṙ2
i = − 1

2

∑
j �=i
i, j

Gmim j∣∣ri − r j

∣∣ , (3.14)

where the factor 1
2 on the right-hand side is included because the sum is still over all

elements of the array and so the sum of each pair would be counted twice.
Now,

∑
i mi ṙ2

i is twice the total kinetic energy, T , of all the particles in the
system, that is,

T = 1
2

∑
i

mi ṙ2
i . (3.15)

The gravitational potential energy of the system is

U = − 1
2

∑
j �=i
i, j

Gmim j∣∣ri − r j

∣∣ . (3.16)

Therefore,

1
2

d2

dt2

∑
i

mir2
i = 2T − |U| . (3.17)

If the system is in statistical equilibrium

d2

dt2

∑
i

mir2
i = 0 , (3.18)
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and therefore

T = 1
2 |U| . (3.19)

This is the equality known as the virial theorem in stellar dynamics.
Notice that, at no point, have we made any assumption about the orbits or velocity

distributions of the particles. The velocities might be random, as is often assumed to
be the case for globular clusters or spherical elliptical galaxies, but they might also
have highly elongated orbits about the centre of the galaxy. In the case of the discs
of spiral galaxies, the velocity vectors are highly ordered and the mean rotational
speed about the centre is much greater than the random velocities of the stars. In
all these cases, the virial theorem must hold if the system is to remain in dynamical
equilibrium. In its simplest form, the expression (3.19) tells us nothing about the
velocity distribution of the stars or galaxies within the system.

Despite the elegance of the theorem, its application to astronomical systems is
not straightforward. In most cases, we can only measure directly radial velocities
from the Doppler shifts of spectral lines and positions on the sky. In some cases,
independent distance measures of the stars or galaxies within the system are available,
but generally, within star clusters and clusters of galaxies, it is not possible to
distinguish whether the objects are on the near or far side of the cluster. In some cases,
the proper motions of the objects can be measured and then their three-dimensional
space motions can be found. Generally, for clusters of galaxies, we need to make
assumptions about the spatial and velocity distributions of galaxies in the cluster.
For example, if we assume that the velocity distribution of the galaxies is isotropic,
the same velocity dispersion is expected in the two perpendicular directions as along
the line of sight and so 〈v2〉 = 3〈v2‖〉, where v‖ is the radial velocity. If the velocity
dispersion is independent of the masses of the stars or galaxies, we can find the total
kinetic energy T = (1/2)

∑
i mi ṙ2

i = (3/2)M〈v2‖〉, where M is the total mass of the
system. If the velocity dispersion varies with mass, then 〈v2‖〉 is a mass-weighted
velocity dispersion. If the system is spherically symmetric, we can work out from the
observed surface distribution of stars or galaxies a suitably weighted mean separation
Rcl, so that the gravitational potential energy can be written |U| = G M2/Rcl. Thus,
the mass of the system can be found from the virial theorem

T = 1
2 |U| M = 3〈v2

‖〉Rcl/G. (3.20)

Notice that, in general, we have to estimate some characteristic velocity, or velocity
dispersion, and the size of the system in order to find its mass. This general result is
widely applicable in astrophysics.

3.5.2 The Rotation Curves of Spiral Galaxies

In the case of spiral galaxies, masses can be estimated from their rotation curves,
that is, the variation of the orbital, or rotational, speed vrot(r) about the centre of
the galaxy with distance r from its centre. Examples of the rotation curves of spiral
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galaxies derived from optical and radio 21-cm line studies are shown Fig. 3.9b
(Bosma, 1981). In a few galaxies, there is a well-defined maximum in the rotation
curve and the velocity of rotation decreases monotonically with increasing distance
from the centre. If this decrease continues to infinite distance, the total mass of
the galaxy converges and is similar to that derived from the rotation curve in the
central regions. In many cases, however, the rotational velocities in the outer regions
of galaxies are remarkably constant with increasing distance from the centre. It is
apparent from Fig. 3.9a that the flat rotation curve of our spiral neighbour M31
extends far beyond the optical image of the galaxy.

The significance of these flat rotation curves can be appreciated from application
of Gauss’s theorem to Newton’s law of gravity. For simplicity, let us assume that
the distribution of mass in the galaxy is spherically symmetric, so that we can
write the mass within radius r as M(≤ r). According to Gauss’s law for gravity,
for any spherically symmetric variation of mass with radius, we can find the radial
acceleration at radius r by placing the mass within radius r, M(≤ r), at the centre of
the galaxy. Then, equating the centripetal acceleration at radius r to the gravitational
acceleration, we find

G M(≤ r)

r2
= v2

rot(r)

r
M(≤ r) = v2

rot(r)r

G
. (3.21)

For a point mass, say the Sun, M(≤ r) = M�, and we recover Kepler’s third law
of planetary motion, the orbital period T being equal to 2πr/vrot ∝ r3/2. This result
can also be written vrot ∝ r−1/2 and is the variation of the circular rotational velocity
expected in the outer regions of a galaxy if most of the mass is concentrated within
the central regions.

If the rotation curve of the spiral galaxy is flat, vrot = constant, M(≤ r) ∝ r and
so the mass within radius r increases linearly with distance from the centre. This
contrasts dramatically with the distribution of light in the discs, bulges and haloes of
spiral galaxies which decrease exponentially with increasing distance from the centre

Fig. 3.9. a The rotation curve for the nearby giant spiral galaxy M31, showing the flat rotation
curve extending well beyond the optical image of the galaxy (Courtesy of Dr. Vera Rubin)
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Fig. 3.9. (continued) b Examples of the rotation curves of spiral galaxies from optical and
neutral hydrogen observations (Bosma, 1981)

(see Sect. 3.4.2). Consequently, the local mass-to-luminosity ratio must increase in
the outer regions of spiral galaxies.

It is most convenient to quote the results in terms of mass-to-luminosity ratios
relative to that of the Sun. For the visible parts of spiral galaxies, for which the rotation
curves are well-determined, mean mass-to-light ratios in the B waveband in the
range 1–10 are found. This is similar to the value found in the solar neighbourhood;
averaging over the masses and luminosities of the local stellar populations, a value
of M/L ≈ 3 is found. The M/L ratio must however increase to much larger values at
large values of r. Values of M/L ≈ 10–20 M�/L� are found in the outer regions of
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spiral galaxies, similar to the values found for elliptical galaxies. These data provide
crucial evidence for the presence of dark matter in galaxies.

There are theoretical reasons why spiral galaxies should possess dark haloes.
Ostriker and Peebles showed that, without such a halo, a differentially rotating disc
of stars is subject to a bar instability (Ostriker and Peebles, 1973). Their argument has
been confirmed by subsequent computer simulations and suggests that dark haloes
can stabilise the discs of spiral galaxies. We will return to the thorny question of the
nature of the dark matter in Chap. 4.

3.5.3 The Velocity Dispersions of Elliptical Galaxies

Expression (3.20) can be used to estimate the masses of elliptical galaxies. Doppler
broadening of the widths of stellar absorption lines in galaxies can be used to estimate
the velocity dispersion 〈Δv2‖〉 of stars along the line of sight through the galaxy. Typ-
ical mass-to-luminosity ratios for elliptical galaxies are about 10–20 M�/L�. The
trouble with this argument is that it has to be assumed that the velocity distribution of
the stars in the elliptical galaxy is isotropic. As will be discussed in Sect. 3.6.3, there is
compelling evidence that in general elliptical galaxies are triaxial systems and so the
isotropy of the stellar velocity distribution needs to be tested directly by observation.

Evidence that there must indeed be considerable amounts of dark matter in
the haloes about two of the giant elliptical galaxies in the Virgo cluster, M49 and
M87, has been presented by Côté and his colleagues (Côté et al., 2001, 2003). They
measured the radial velocities of a large sample of globular clusters in the haloes of
these galaxies and so were able to extend the range of radii over which the velocity
dispersion in these galaxies could be measured. A beautiful example of the quality of
their data for M49 is shown in Fig. 3.10. Their measurements are shown by the filled
circles at radii R ≥ 10 kpc, the dotted and solid lines bracketing them showing the
one and two sigma ranges of their estimates of the velocity dispersion. The points
at radii less than 10 kpc show the velocity dispersion measured by other authors and
it can be seen that the data are consistent with the velocity dispersion remaining
remarkably constant out to radii up to 40 kpc from the centre.

Various attempts to account for the variation of the velocity dispersion with
radius are indicated by the different lines on the diagram. These assume that the mass
distribution follows the radial optical intensity distribution, but with various extreme
assumptions about the anisotropy of the stellar velocity distribution. Even models
in which the stars (or globular clusters) are on radial orbits cannot account for the
fact that the line-of-sight velocity dispersion is independent of radius out to 40 kpc.
Côté and his colleagues conclude that these data provide evidence that the velocity
dispersion is isotropic and that there must be dark matter haloes about these galaxies.
Similar conclusions can be drawn from X-ray observations of these galaxies, using
the technique described in the context of clusters of galaxies in Sect. 4.4.

Physically, the fact that the velocity dispersion remains constant out to large
radii has exactly the same explanation as the flatness of the rotation curves of spiral
galaxies (see expression 3.21). To bind globular clusters to these massive galaxies
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Fig. 3.10. The velocity dispersion of stars and globular clusters in the nearby giant elliptical
galaxy M49 (NGC 4472). The data points at R < 10 kpc are obtained from the velocity
width of the stellar absorption lines. The filled circles at radii R > 10 kpc are derived from
the velocity dispersion of globular clusters. Various models for the velocity dispersion as a
function of radius R, assuming that the mass follows the light are shown (Côté et al., 2003)

with these large velocity dispersions at large radii means that the mass within radius
R must increase proportional to R.

3.6 The Properties of Spiral and Elliptical Galaxies

At first glance, it would seem that the elliptical galaxies should be among the simpler
stellar systems to interpret theoretically because they can be approximated as single
spheroidal stellar distributions. This turns out to be an overoptimistic expectation.

3.6.1 The Faber–Jackson Relation and the Fundamental Plane

Extensive studies have been made of correlations between various properties of
elliptical galaxies, specifically, their luminosities, their sizes, as described by the de
Vaucouleurs radius re, their central velocity dispersions, their surface brightnesses,
the abundance of heavy elements, and so on. Of these, two studies are of particular
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importance. The first is the analysis of Faber and Jackson who found a strong
correlation between luminosity L and central velocity dispersion σ of the form
L ∝ σ x where x ≈ 4 (Faber and Jackson, 1976). This correlation has been studied by
other authors who have found values of x ranging from about 3 to 5. The significance
of this relation is that, if the velocity dispersion σ is measured for an elliptical galaxy,
its intrinsic luminosity can be found from the Faber–Jackson relation and hence, by
measuring its observed flux density, its distance can be found.

This procedure for measuring distances was refined by Dressler and his col-
leagues and by Djorgovski and Davis who introduced the concept of the fundamental
plane for elliptical galaxies (Dressler et al., 1987; Djorgovski and Davis, 1987). The
fundamental plane lies in a three-dimensional space in which luminosity L is plotted
against the central velocity dispersion σ and the mean surface brightness Σe within
the half-light radius re, that is, Σe = L(≤ re)/πr2

e . Dressler and his colleagues
found an even stronger correlation than the Faber–Jackson relation when the surface
brightness was included,

L ∝ σ8/3 Σ−3/5
e . (3.22)

Various expressions for the fundamental plane appear in the literature, for example

re ∝ σ1.4 I−0.9
e (3.23)

which is remarkably similar to (3.22).
Dressler and his colleagues found just as good a correlation if they introduced

a new diameter Dn, which was defined as the circular diameter within which the
total mean surface brightness of the galaxy exceeded a particular value. The surface
brightness was chosen to be 20.75 B magnitudes arcsec−2. The correlation found
was σ ∝ D3/4

n , thus incorporating the dependence of both L and Σe into the new
variable Dn.

The origin of these empirical correlations is not understood. The argument can
be inverted to determine under what conditions relations such as the Faber–Jackson
relation would be found. For example, since the mass of the galaxy is given by
M ∝ σ2re and L ∝ Ier2

e , it follows that L ∝ σ4/Ie(M/L)2. Thus, if Ie and M/L
were constant for all elliptical galaxies, we would obtain L ∝ σ4. It is not at all
clear, however, why Ie and M/L should be constant for elliptical galaxies.

Despite the lack of theoretical underpinning of these correlations, Dressler and
his colleagues estimate that they enable the distances of individual galaxies to be
determined to about 25% and for clusters of galaxies to about 10%.

3.6.2 Ellipticals Galaxies as Triaxial Systems

It might be thought that the internal dynamics of elliptical galaxies would be relatively
straightforward. Their surface brightness distributions appear to be ellipsoidal, the
ratio of the major to minor axes ranging from 1:1 to about 3:1. It is natural to attribute
the flattening of the elliptical galaxies to the rotation of these stellar systems and this
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can be tested by observations of the mean velocities and velocity dispersions of the
stars throughout the body of the galaxy. These measurements can be compared with
the rotation and internal velocity dispersions expected if the flattening of the elliptical
galaxies were wholly attributed to the rotation of an axisymmetric distribution of
stars. In the simplest picture, it is assumed that the velocity distribution is isotropic
at each point within the galaxy.

Bertola and Capaccioli in 1975 and Illingworth in 1977 first showed that elliptical
galaxies rotate too slowly for centrifugal forces to be the cause of their observed
flattening; in other words, the ratio of rotational to random kinetic energy is too
small (Bertola and Capaccioli, 1975; Illingworth, 1977). This analysis was repeated
in 1983 for a larger sample of elliptical galaxies and for the bulges of spiral galaxies
by Davies and his colleagues with the results shown in Fig. 3.11 (Davies et al.,
1983). The solid lines show the amount of rotation vm necessary to account for the
observed ellipticity of the elliptical galaxy relative to the velocity dispersion σ of the
stars. It can be seen that, for low luminosity elliptical galaxies and for the bulges of
spiral galaxies, the ellipticity of the stellar distribution can be attributed to rotation.
The most luminous ellipticals with MB < −20.5 generally do not possess enough
rotation to account for the observed flattening of the galaxies. This means that the
assumptions of an axisymmetric spatial distribution and/or an isotropic velocity
distribution of stars at all points within the galaxy must be wrong. As a consequence,
these massive elliptical galaxies must be triaxial systems, that is, systems with three
unequal axes and consequently with anisotropic stellar velocity distributions. There
is no reason why the velocity distribution should be isotropic because the time-
scale for the exchange of energy between stars through gravitational encounters is
generally greater than the age of the galaxy. Therefore, if the velocity distribution
began by being anisotropic, it would not have been isotropised by now.

Further evidence for the triaxial nature of massive elliptical galaxies has come
from studies of their light distributions. In many systems not only does the ellipticity
of the isophotes of the surface brightness distribution vary with radius, but also the
position angle of the major axis of the isophotes can change as well. All types of
variation of ellipticity with radius are known. In some cases there is a monotonic
change with radius but in others there can be maxima and minima in the radial
variation of the ellipticity (Bertola and Galletta, 1979). The dynamics of such galaxies
must be much more complicated than those of a rotating isothermal gas sphere.
Another piece of evidence for the complexity of the shapes and velocity distributions
within elliptical galaxies comes from the observation that, in some ellipticals, rotation
takes place along the minor as well as along the major axis (Bertola et al., 1991). Thus,
despite their simple appearances, some elliptical galaxies may be triaxial systems.

The theoretical position has been clarified by an elegant and original analysis by
Martin Schwarzschild (Schwarzschild, 1979). By applying linear programming tech-
niques to the determination of orbits in general self-gravitating systems, he showed
that there exist stable triaxial configurations not dissimilar from those necessary to
explain some of the internal dynamical properties of what appear on the surface
to be simple ellipsoidal stellar distributions. His analysis showed that there exist
stable orbits about the major and minor axes but not about the immediate axis of the
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Fig. 3.11. A diagram showing the flattening of elliptical galaxies as a function of their rota-
tional velocities. The open circles are luminous elliptical galaxies, the filled circles are lower
luminosity ellipticals and the crosses are the bulges of spiral galaxies. If the ellipticity were
entirely due to rotation with an isotropic stellar velocity distribution at each point, the galaxies
would be expected to lie along the solid line. This diagram shows that, at least for massive
ellipticals, this simple picture of rotational flattening cannot be correct (Davies et al., 1983)

triaxial figure. With this new understanding of the stellar motions in elliptical galax-
ies, galaxies can be characterised as oblate-axisymmetric, prolate-axisymmetric,
oblate-triaxial, prolate-triaxial and so on.

3.6.3 The Tully–Fisher Relation for Spiral Galaxies

The masses of spiral galaxies can be estimated from their rotation curves as described
in Sect. 3.5.2. In 1975, Tully and Fisher discovered that, for spiral galaxies, the widths
of the profiles of the 21-cm line of neutral hydrogen, once corrected for the effects of
inclination, are strongly correlated with their intrinsic luminosities (Tully and Fisher,
1977). In their studies, they correlated the total B luminosities with the corrected
velocity width ΔV of the 21-cm line and found the relation

LB ∝ ΔVα , (3.24)
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where α = 2.5. A much larger survey carried out by Aaronson and Mould found
a somewhat steeper slope, α = 3.5, for luminosities measured in the optical B
waveband and an even steeper slope, α = 4.3 in the near-infrared H waveband
at 1.65 μm (Aaronson and Mould, 1983). The correlation was found to be much
tighter in the infrared as compared with the blue waveband, because the luminosities
of spiral galaxies in the blue waveband are significantly influenced by interstellar
extinction within the galaxies themselves, whereas, in the infrared waveband the dust
becomes transparent. What has come to be called the infrared Tully–Fisher relation
is very tight indeed. As a result, measurement of the 21-cm velocity width of a spiral
galaxy can be used to infer its absolute H magnitude and hence, by measuring its
flux density in the H waveband, its distance can be estimated. This procedure has
resulted in some of the best distance estimates for spiral galaxies and has been used
in programmes to measure the value of Hubble’s constant.

There is an interesting interpretation of the Tully–Fisher relation for exponential
discs. Suppose that the mass distribution follows the same distribution as the optical
surface brightness with radius, I = I0 exp(−r/h). Then, the total mass of the disc is

M =
∫ ∞

0
2πrI0e−r/h dr = 2πI0h2

∫ ∞

0
xe−x dx = 2πI0h2 . (3.25)

Thus, most of the mass of the disc lies within radius r ∼ h. The maximum of the
rotation curve therefore corresponds roughly to the Keplerian velocity at distance
h from the centre. Placing all the mass at the centre of the disc and equating the
centripetal and gravitational accelerations, the maximum of the rotation curve is
expected to correspond to Vmax where

V 2
max

h
≈ 2πG I0h2

h2
; Vmax ∝ (I0h)1/2 . (3.26)

Eliminating h from (3.25) and (3.26), we find that M ∝ V 4
max. If we now adopt

Freeman’s result that the central surface brightnesses of bright spiral galaxies have
a roughly constant value and assume that the mass-to-luminosity ratio is constant
within the discs of spiral galaxies, we expect L ∝ V 4

max, roughly the observed
Tully–Fisher relation.

3.6.4 Luminosity–Metallicity Relations

An important aspect of the physics of galaxies which will play an important role
in understanding their formation is the relation between their luminosities, masses,
colours and the abundances of the heavy elements, the last being referred to as their
metallicities. The observations are well-understood, but their interpretation is subject
to many caveats and uncertainties.

For elliptical galaxies, Faber showed in 1973 showed that there is a correlation
between their luminosities and the strength of the magnesium absorption lines (Faber,
1973). In subsequent analyses, a similar relation was established over a wide range
of luminosities and between the central velocity dispersion of the elliptical galaxy
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and the strength of the Mg2 index (Bender et al., 1993). They also showed that the
Mg2 index was strongly correlated with the (B – V) colours of the bulges of these
galaxies and so the correlation referred to the properties of the galaxy as a whole. The
result was a strong correlation between luminosity, colour and metallicity spanning
almost a factor of 1000 in luminosity (Fig. 3.12).

A similar relation was found by Visvanathan and Sandage for elliptical galaxies
in groups and clusters of galaxies in the sense that the more luminous the galaxy,
the redder they were observed to be (Visvanathan and Sandage, 1977). Their prime
interest was in using this correlation in groups and clusters of galaxies to estimate
their distances, but the sense of the correlation is the same as that found by Faber and
her colleagues since galaxies with greater metallicities have greater line blanketing
in the blue and ultraviolet regions of the spectrum and hence are redder than their
lower metallicity counterparts.

A similar correlation was first established for late-type and star forming galaxies
by Lequeux and his colleagues (Lequeux et al., 1979). These pioneering studies
involved determining the gas-phase metallicities of the galaxies and were followed
by a number of studies which extended the luminosity–metallicity correlation to
a range of 11 magnitudes in absolute luminosity and a factor of 100 in metallicity
(Zaritsky et al., 1994). These studies laid the foundation for the analyses of the huge
databases of galaxies available from the Sloan Digital Sky Survey.

Fig. 3.12. The correlation between the luminosity of the bulges or spheroids of elliptical
galaxies, what Faber and her colleagues refer to as ‘Dynamically Hot Galaxies’, and the
strength of their absorption lines due to heavy elements, as measured by the Mg2 index
(Bender et al., 1993)
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In the analysis of Tremonti and her colleagues, rather than using luminosity,
they work directly with the stellar mass of the galaxy (Tremonti et al., 2004). This
approach has become feasible thanks to the development of efficient and reliable
codes for determining the stellar and gaseous masses of galaxies from their optical
spectra (Bruzual and Charlot, 2003; Charlot and Longhetti, 2001). It turns out that
the correlation with stellar mass is stronger than that with luminosity. Figure 3.13
shows the strong correlation between metallicity and the total stellar mass of star-
forming galaxies. These observations provide important constraints on the physics
of the evolution of galaxies. With the advent of 8–10-metre class telescopes, these
studies have been extended to samples of galaxies at large redshifts and so constrain
directly the evolution of the stellar and gaseous content of galaxies of different
masses (Savaglio et al., 2005). These topics will be taken up in much more detail in
Chaps. 17 to 19.

Fig. 3.13. The stellar mass–gas phase metallicity relation for 53,400 star-forming galaxies
from the SDSS. The large black points represent the median in bins of 0.1 dex in mass which
include at least 100 data points. The thin line through the data is a best-fitting smooth curve
and the solid lines are the contours which enclose 68% and 95% of the data (Tremonti et al.,
2004)
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3.7 The Luminosity Function of Galaxies

The frequency with which galaxies of different intrinsic luminosities are found in
space is described by the luminosity function of galaxies. The luminosity function
of galaxies φ(L) dL is defined to be the space density of galaxies with intrinsic
luminosities in the range L to L + dL. If S is the flux density (in W m−1 Hz−1)
of a nearby galaxy, for which redshift corrections can be neglected, the luminosity
of the galaxy is L = 4πr2S (in W Hz−1), where r is the distance of the galaxy.
In optical astronomy, it is traditional to work in terms of absolute magnitudes, M,
rather than luminosities and so, in terms of absolute magnitudes, the luminosity
function φ(L) dL = Φ(M) dM. The important difference between these two forms
of the luminosity function is that, in terms of magnitudes, the luminosity function is
presented on a logarithmic scale of luminosity. The absolute magnitude M and the
luminosity L are related by the expression

log

(
L

L∗

)
= −0.4 (M − M∗) . (3.27)

where the absolute magnitude M∗ and the luminosity L∗ are corresponding reference
values of these quantities.

In 1977, Felten made a careful comparison of nine different determinations of the
local luminosity function for nearby galaxies, reducing them all to the same value of
Hubble’s constant, the same magnitude system and the same corrections for Galactic
extinction. In this heroic analysis, he found that the independent determinations were
in remarkably good agreement (Felten, 1977). Felten’s analysis is summarised in
Fig. 3.14, using reduced absolute magnitudes, MB0

T
in de Vaucouleurs’ B0

T magnitude
system and using a Galactic extinction law AB = 0.25 cosec |b|. The solid line shows
a best-fit to the data of the form of luminosity function proposed by Schechter

φ(x) dx = φ∗xαe−x dx , (3.28)

or,

φ(L) dL = φ∗
(

L

L∗

)α
exp

(
− L

L∗

)
dL

L∗ , (3.29)

where x = L/L∗ and L∗ is the luminosity which characterises the ‘break’ in the
luminosity function seen in Fig. 3.14 (Schechter, 1976). The form of the Schechter
luminosity function is as simple as it could be: a power law with a high luminosity
exponential cut-off. Its shape is characterised by two parameters, the slope of the
power law α at low luminosities and the ‘break’ luminosity L∗.

It is traditional in optical astronomy to write the luminosity function in terms of
astronomical magnitudes rather than luminosities and then the beautiful simplicity
of the Schechter function is somewhat spoiled:

Φ(M) dM = 2
5φ

∗ ln 10
{
dex[0.4(M∗ − M)]}α+1

× exp
{−dex[0.4(M∗ − M)]} dM , (3.30)
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Fig. 3.14. The local luminosity function of galaxies from nine independent estimates con-
sidered by Felten fitted by a Schechter luminosity function of the form n(x) dx ∝ xαe−x dx,
where x = L/L∗ (Felten, 1977)

where M∗ is the absolute magnitude corresponding to the luminosity L∗. We have
used the notation dex y to mean 10y. In his reassessment of the luminosity function
for galaxies in 1985, Felten preferred the following best-fit values: α = −1.25 and
MB0

T
= −20.05 + 5 log10h (Felten, 1985).

The normalisation factor φ∗ determines the space density of galaxies and al-
lowance has to be made for the fact that the galaxies used in the determination
mostly lie within the local supercluster. Hence, the value of φ∗ is an overestimate as
compared with what would be found for a sample of field galaxies. Felten’s preferred
value of φ∗ for the general field was 1.20 × 10−2h3 Mpc−3.

These pioneering efforts by Felten were followed by careful studies of larger
and larger samples of galaxies (see, for example, the review by Binggeli, Sandage
and Tammann (Binggeli et al., 1988)), culminating in the analyses of very large
samples of galaxies observed in the 2dF and Sloan Digital Sky Survey (SDSS) galaxy
surveys . These very large surveys sample such large volumes of the Universe that
the problems of correcting for the presence of the local supercluster are not relevant.
Recent determinations of the luminosity function of galaxies from these surveys
are shown in Fig. 3.15. The 2dF galaxy survey included 221,414 galaxies for all of
which spectroscopic redshifts and colours were available (Fig. 3.15a). The overall
luminosity function, as well as the functions for red and blue galaxies are shown on
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Fig. 3.15. a The luminosity function of galaxies derived from a sample of 221,414 galaxies ob-
served in the 2dF galaxy survey. The overall luminosity function and those of the red and blue
galaxies in the sample have been fitted by Schechter luminosity functions (Cole et al., 2005)

Table 3.4. Parameters describing the overall luminosity function of galaxies from the 2dF and
SDSS surveys. The functions are determined at a redshift of 0.1 and include K-corrections
and evolutionary corrections for the observed change in form of the luminosity functions over
the redshift interval 0 < z < 0.3

Galaxy survey Waveband φ∗/h3 Mpc−3 M∗ − 5 log10 h α

2dF galaxy survey bJ 0.0156 −19.52 −1.18
SDSS galaxy survey r 0.0149 ± 0.0004 −20.44 ± 0.01 −1.05 ± 0.01

the diagram. In the case of the SDSS survey, redshifts were determined for 147,986
galaxies (Fig. 3.15b) (Blanton et al., 2003). The best-fit parameters describing the
overall luminosity function for these two large surveys are listed in Table 3.4. It can
be seen that the form of these functions are in good agreement.

3.7.1 Aspects of the Luminosity Function of Galaxies

A number of features of the luminosity function of galaxies should be noted.

Dependence upon galactic environment. With the availability of large unbiased
samples of galaxies, it is possible to determine the luminosity function for galaxies
of different morphological types in different environments, such as clusters, groups
and void regions. The evidence of Fig. 3.15a shows that there is a clear difference in
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Fig. 3.15. (continued) b The luminosity function of galaxies derived from a sample of
147,986 galaxies observed in the Sloan Digital Sky Survey. The magnitudes are measured in
the r∗ waveband as observed at a redshift z = 0.1. The observations are very well-fitted by
a Schechter luminosity function with the parameters given on the diagram and in Table 3.4
(Blanton et al., 2003)

the luminosity functions of red and blue selected galaxies, corresponding to early and
late-type galaxies respectively in the Hubble sequence. In addition, there is evidence
that the luminosity function of galaxies in rich clusters differs from that of galaxies
in underdense regions of the Universe, the void regions. Using data from the 2dF
galaxy survey, Croton and his colleagues showed clear differences in the forms of
the luminosity functions for early and late-type galaxies as a function of the over
or underdensity of the region relative to the mean density of galaxies (Fig. 3.16)
(Croton et al., 2005). The population in the voids is dominated by late-type galax-
ies and shows, relative to the mean, a deficit of early-type galaxies that becomes
increasingly pronounced at magnitudes fainter than MbJ − 5 log10 h = −18.5. In
contrast, clusters show a relative excess of very bright early-type galaxies with
MbJ − 5 log10 h < −19.

These facts combined with the differences in the relative numbers of galaxies
of different morphological types as a function of galaxy density indicate that the
approximation of a universal luminosity function for all galaxies wherever they are
found in the Universe is, at best, a rough approximation.
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Fig. 3.16. The luminosity functions for early and late-type galaxies in rich clusters of galax-
ies and in large voids (Croton et al., 2005). As they express this result, the void popula-
tion is composed almost exclusively of faint late-type galaxies, while in the clusters the
galaxy population brighter than MbJ − 5 log10 h = −19 consists predominantly of early
types

IsL∗ a standard candle? In 1962, Abell suggested that the luminosity of the break
in the luminosity function of rich clusters L∗, corresponding to M∗, could be used
as a ‘standard candle’ in the redshift–apparent magnitude relation (Abell, 1962). He
found excellent agreement with the expected slope of the redshift–magnitude relation
using this technique. Subsequent studies of the luminosity functions of individual
clusters of galaxies have show that they are similar in form to the standard Schechter
function with more or less the same parameters as those described above. Schechter
found that, if only those clusters for which good fits to his proposed function were
included, the dispersion in the absolute magnitude of M∗ was only 0.25 magnitudes,
as good a result as has been obtained from studies of the brightest galaxies in clusters
(Schechter, 1976).

With the availability of the large surveys of galaxies, this proposal has to be
treated with some caution since there is evidence for the evolution of the form the
luminosity function, even over remarkably small redshift intervals. As shown in
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Fig. 3.17. The evolution of the luminosity function of galaxies at small redshifts. Over the
redshift interval 0 to 0.3, the value of M∗ becomes more positive by (0.8 ± 0.1) magnitudes,
that is, the break in the luminosity function moves to fainter intrinsic luminosities as the
Universe grows older (Baldry et al., 2005)

Fig. 3.17, the luminosity function as observed in the u-waveband shows significant
changes over the small redshift interval 0.3 > z > 0.02 (Baldry et al., 2005).
Specifically, they find that M∗ decreases by 0.8 ± 0.1 magnitudes between redshifts
0.3 and zero.

The brightest galaxies in clusters. At the very highest luminosities, the brightest
galaxies in clusters do not fit smoothly onto an extrapolation of the Schechter
luminosity function. These massive galaxies, a splendid example of which can be
seen in Fig. 4.1, are known as cD galaxies, their characteristic being that they are
similar to giant elliptical galaxies but in addition possess extensive stellar envelopes.
They are the most luminous galaxies found in rich clusters and groups of galaxies. It
appears that these are very special galaxies and not just the most luminous members
of the luminosity function of galaxies, as was shown statistically by Tremaine and
Richstone (Tremaine and Richstone, 1977). Evidently, there must be some physical
reason why the first ranked cluster galaxies have these unique properties; we will
return to this issue in Chap. 4.

The luminosity function for low luminosity galaxies. The luminosity function is
quite poorly known at low luminosities, because these galaxies can only be observed
in relatively nearby groups and clusters. According to Binggeli and his colleagues,
the lowest luminosity regions of the luminosity function are exclusively associated
with irregular and dwarf elliptical galaxies (Binggeli et al., 1988). These conclusions
are confirmed by analyses of the SDSS, in particular, the analysis of a large sample
of galaxies with distances in the range 10 < r < 150 Mpc so that galaxies as faint
as M = −12.5 can be included (Blanton et al., 2005). These data show an upturn in
the slope of the luminosity function at very low luminosities, the best-fitting value of
α being about −1.3. As the authors comment, however, a large number of galaxies
at very low luminosities may be missing because of their low surface brightnesses
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and so the true low luminosity slope may be −1.5 or even steeper. In agreement
with Bingelli and his colleagues, they find that extremely low luminosity galaxies
are predominantly blue, low surface brightness, exponential disks.

3.7.2 The Integrated Luminosity and the Mean Mass-to-Luminosity Ratio
for Visible Matter in the Universe

An important calculation is the integrated luminosity of all the galaxies within
a given volume of space. For a cluster of galaxies, the result would be the integrated
optical luminosity of the cluster; if this were a typical unit volume of space, the
result would be the luminosity density of the radiation due to all the galaxies in the
Universe. Although the number of galaxies in the luminosity function diverges at
low luminosities, the total background light remains finite. The luminosity density
is

εB(0) =
∫ ∞

0
L φ(L) dL = φ∗L∗

∫ ∞

0
xa+1e−x dx

= φ∗L∗Γ(a + 2) , (3.31)

where Γ is the gamma-function. For a cluster of galaxies, φ∗ is the normalisation
factor in the luminosity function. To estimate the luminosity density of a typical
volume of space, we can use the values determined by Felten for the field luminosity
function quoted above, a = −1.25, φ∗ = 1.2×10−3h3 Mpc−3 and M∗ = −20.05+
5 log10h, corresponding to 1.24 × 1010h−2 L�. Then,

εB(0) = 1.8 × 108hL� Mpc−3 . (3.32)

The value found from the SDSS luminosity function (Blanton et al., 2003) in the 0.1r
waveband is

(1.84 ± 0.04)× 108hL� Mpc−3 . (3.33)

These results are consistent with other estimates of the luminosity density, for
example from the 2dF Galaxy Redshift Survey (Fig. 3.15a) and the Millennium
Galaxy Catalogue.

A useful reference value for cosmological studies is the average mass-to-
luminosity ratio for the Universe, if it is assumed to have the critical cosmological
density, 	c = 3H2

0 /8πG = 2.0 × 10−26h2 kg m−3. In terms of solar units, the
mass-to-luminosity ratio would be

	c

εB
=
(

M

L

)

B
= 1600 h

(
M�
L�

)

B
. (3.34)

Although there is some variation about this estimate, its importance lies in the fact
that it is significantly greater than the typical mass-to-luminosity ratios of galaxies
and clusters of galaxies, even when account is taken of the dark matter which must
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be present. This result indicates that the mass present in galaxies and clusters of
galaxies is not sufficient to close the Universe.

It is useful to work out typical values for the mean space density and luminosity
of galaxies. Using the mean luminosity of galaxies for Felten’s best estimate of the
luminosity function with a = −1.25, we find 〈L〉 = 1.25L∗ = 1.55 × 1010h−2 L�.
Adopting the mean luminosity density of the Universe given by (3.32), the typical
number density of galaxies n̄ = εB(0)/〈L〉 = 10−2h3 Mpc−3. In other words, the
typical galaxies which contribute most of the integrated light of galaxies are separated
by a distance of about 5h−1 Mpc, if they were uniformly distributed in space, which
we know to be very far from the truth. For reference, galaxies such as our own
and M31 have luminosities LGal(B) ≈ 1010 L�. Evidently, if the ratio of mass-to-
luminosity were the same for all galaxies, the ‘mean’ galaxies would also contribute
most of the visible mass in the Universe.

These data also enable limits to be placed upon the average mass density in
stars at the present epoch. In the simplest estimate, we can adopt a typical mass-to-
luminosity ratio for the visible parts of galaxies of M/L ≈ 3 and then the density
parameter in stars at the present epoch would be Ω∗h = 2 × 10−3. A very much
more careful analysis has been carried out by Bell and his collaborators who used the
combined SDSS and Two Micron All Sky Survey (2MASS) catalogues of galaxies
(Bell et al., 2003). The benefit of including the 2MASS data is that the luminosity
functions can be determined in the relatively unobscured 2 μm waveband. Their
upper limit to the stellar mass density in the local Universe is

Ω∗h = (2 ± 0.6)× 10−3 , (3.35)

assuming the initial mass function of stars is as rich in low mass stars as is allowed
by galaxy dynamics in the local Universe. This is a key result for many aspects of
galaxy formation.

3.8 The Properties of Galaxies:
Correlations Along the Hubble Sequence

What gives the Hubble classification physical significance is the fact that a number
of physical properties are correlated with position along the sequence. Many of these
were reviewed by Roberts and Haynes in an important analysis of the properties of
a large sample of bright galaxies selected primarily from the Third Reference Cata-
logue of Bright Galaxies (de Vaucouleurs et al., 1991; Roberts and Haynes, 1994).
They emphasised that, although there are clear trends, there is a wide dispersion
about these correlations at any point along the sequence (Fig. 3.18).

Some of the more important findings of Roberts and Haynes’ survey are as
follows:

– Total masses and luminosities. The average masses and range of masses are
roughly constant for galaxies in classes S0 to Scd. At later stages beyond Scd,
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Fig. 3.18a–g. Global galaxy parameters as a function of stage along the Hubble sequence
(Roberts and Haynes, 1994). The circles represent the galaxies in the RC3-UGC sample and the
squares those within the local supercluster of galaxies. The filled circles are medians; the open
symbols are mean values. The error bars represent the 25 and 75 percentiles of the distributions.
a Total masses, MT; b Total mass-to-luminosity ratio (MT /LB); c Neutral hydrogen mass to
total mass (MHI/MT); d Neutral hydrogen mass to blue luminosity (MHI/LB)
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Fig. 3.18. (continued) e Total mass surface density (σT); f Surface mass density of neutral
hydrogen (σHI); g Integrated (B − V) colour

the masses of the galaxies decrease monotonically (Fig. 3.18a). The mass-to-
luminosity ratios of the galaxies in the sample are roughly constant (Fig. 3.18b)
and so it is no surprise that the average luminosity for the S0 to Scd galaxies is
roughly constant, whilst it decreases monotonically beyond Scd. These relations
again quantify van den Bergh’s remark that the classical Hubble types refer
primarily to luminous, and consequently, massive galaxies.

– Neutral hydrogen. There is a clear distinction between elliptical and spiral galax-
ies in that very rarely is neutral hydrogen observed in ellipticals while all spiral
and late-type galaxies have significant gaseous masses. The upper limit to the
mass of neutral hydrogen in elliptical galaxies corresponds to MHI/Mtot ≤ 10−4.
For spiral galaxies, the fractional mass of the galaxy in the form of neutral hy-
drogen ranges from about 0.01 for Sa galaxies to about 0.15 at Sm, the increase
being monotonic along the revised Hubble sequence (Fig. 3.18c). The fractional
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hydrogen mass is more or less independent of the mass of the galaxy at a par-
ticular point along the Hubble sequence. A consequence of the constancy of the
Mtot/LB ratio for the galaxies in the sample is that there is also a significant trend
for the ratio MHI/LB to increase along the sequence (Fig. 3.18d).

– Total surface density and surface density of neutral hydrogen. These quantities
change in opposite senses along the Hubble sequence. The total surface density,
as determined by the total mass of the galaxy and its characteristic radius,
decreases monotonically along the sequence (Fig. 3.18e), whereas the surface
density of neutral hydrogen increases along the sequence (Fig. 3.18f).

– Integrated colour. There is a strong correlation in the sense that elliptical galaxies
are red whereas late-type galaxies are blue. This relation is shown quantitatively
in Fig. 3.18g. Despite the systematic trend, there is a significant dispersion about
the relation at each point in the sequence. For example, there are Sc galaxies
which are red. As we will see, the analysis of the very large samples of galaxies
provided by the SDSS and 2dF Galaxy Surveys have quantified the central
importance of colour in understanding the astrophysics of galaxies (Sect. 3.9).

– Luminosity function of HII regions. In a pioneering study, Kennicutt and his
colleagues determined the luminosity function of HII regions in different galaxy
types (Kennicutt et al., 1989). Normalising to the same fiducial mass, it was
found that there is a much greater frequency of HII regions in the late-type
galaxies as compared with early-type galaxies and that the relation is monotonic
along the sequence.

Morton and Haynes pointed out that an obvious interpretation of these correlations
is that there are different rates of star formation in different types of galaxy. As
they express it, the various correlations provide information about the past, current
and future star formation rates in galaxies. The correlation with colour along the
sequence is related to the past star formation history of the galaxy; the changes in the
luminosity function of HII regions refer to star formation rates at the present epoch;
the large fraction of the mass of neutral hydrogen and its large surface density at
late stages in the sequence show that these galaxies may continue to have high star
formation rates in the future.

To put more flesh on this argument, the integrated colours of galaxies of different
Hubble types can be plotted on a (U−B, B−V) colour–colour diagram, the colours
being corrected for internal and external reddening. Such a colour–colour diagram
for a sample of galaxies selected from the Hubble Atlas of Galaxies is shown in
Fig. 3.19 in which it can be seen that the colours of galaxies occupy a remarkably
narrow region of the (U − B, B − V) plane (Larson and Tinsley, 1978). There is
a monotonic variation of Hubble types along this locus, the bluest galaxies being
the Sc and Sd galaxies and the reddest the elliptical galaxies, as can be seen from
comparison with Fig. 3.18g. The colours of the galaxies cannot be represented by
those of any single class of star which is hardly surprising since different classes of
star make the dominant contribution at different wavelengths.

The integrated light of galaxies is principally the sum of the light of main se-
quence stars plus red giant stars, in particular, the K and M giants. To a rough
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Fig. 3.19. The colour–colour
(U–B, B–V) diagram for the
integrated colours of galaxies
of different morphological types
for galaxies selected from the
Hubble Atlas of Galaxies (Larson
and Tinsley, 1978)

approximation, the colours of galaxies can be represented by the sum of the num-
bers of luminous blue stars on the main sequence and of luminous giants on the
giant branch. If all the stars in galaxies formed 1010 years ago, the main sequence
termination point would now have reached roughly the mass of the Sun, M ≈ M�,
and the brightest main-sequence stars would have spectral properties similar to that
of the Sun, that is, a G2 star. There would therefore be no bright blue stars on the
main sequence and the integrated light of the galaxy would be dominated by red
giants. On the other hand, if star formation has continued over 1010 years, or if
there were a burst of star formation in the recent past, there would be a significant
population of hot blue stars on the main sequence giving the galaxy a significantly
bluer colour.

3.9 The Red and Blue Sequences

With the availability of the large samples of galaxies from the SDSS and the 2dF
Galaxy Survey, a more quantitative approach to the classification of galaxies has
had to be developed, necessitated by the need to analyse these huge samples by
computer algorithms. What is lost in detail in these computer-based classifications is
more than compensated for by the huge statistics of galaxies with different properties.
The upshot of these studies is that what are traditionally referred to as early and late-
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type galaxies are found to form two distinct sequences which are known as the red
and blue sequences. In summary:

– The red sequence consists of non-star-forming, high mass spheroidal galaxies,
or, more colloquially ‘old, red and dead’ galaxies.

– The blue sequence consists of star-forming, low mass galaxies which are disc-
dominated.

These two sequences are defined by a number of the characteristic properties which
have already been introduced.

3.9.1 Colour Versus Absolute Magnitude

Perhaps the most striking distinction between the two sequences appears in the
plot of the colour 0.1(g − r) against absolute magnitude M. Figure 3.20a shows
the distribution of these properties for 144,000 galaxies from the SDSS catalogue
(Blanton et al., 2003). Superimposed on the diagram are isodensity contours, the
bulk of the galaxies lying within the heavy white contours. The separation into two
sequences is clearly defined, the oval region at the top of the diagram being the red
sequence and the broader region towards the bottom right the blue sequence.

Baldry and his colleagues have shown that the colour distribution of these galax-
ies can be separated into red and blue sequences which can be can be very well-
described by Gaussian distributions over the magnitude range −23.5 ≤ Mr ≤
−15.75 (Baldry et al., 2004). It is striking how precisely the overall colour distri-
bution in each bin of absolute magnitude over this wide magnitude range can be
decomposed into two Gaussian distributions (Fig. 3.21). The red galaxies are the

Fig. 3.20. a Illustrating the bimodality in the distribution of colour 0.1(g − r) of galaxies
as a function of optical absolute magnitude (Blanton et al., 2003). b A plot of Sérsic index
against colour for 10,095 galaxies selected from the Millennium Galaxy Catalogue (Driver
et al., 2006)
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Fig. 3.21. Illustrating the bimodality in the distribution of the colours of galaxies as a function
of optical absolute magnitude for a sample of 66,848 galaxies selected from the Sloan Digital
Sky Survey (SDSS). The distributions of colours have been fitted by pairs of Gaussians.
The data have been binned in intervals of 0.1 in the rest frame (u − r) colour. The galaxy
distributions are binned in 0.5 magnitude intervals. Only half of the histograms presented by
the authors are shown (Baldry et al., 2004)

most luminous, while the blue galaxies form the dominant population at low abso-
lute magnitudes, as is reflected in the different luminosity functions for red and blue
galaxies (Fig. 3.15a).
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3.9.2 Sérsic Index and Colour

Bimodality is also present in the structural properties of the galaxies. As seen
in Fig. 3.8a, the Sérsic index n can be used to divide galaxies into spheroidal-
dominated and disc-dominated galaxies and this shows up even more dramatically in
a plot of colour against Sérsic index (Fig. 3.20b) (Driver et al., 2006). As discussed
in Sect. 3.4.3, the spheroid-dominated systems are most commonly found with
Sérsic parameter n = 4, whereas the disc-dominated systems typically have n = 1.
There is a clear separation between these systems in Fig. 3.8a, but it is even more
pronounced in Fig. 3.20b in which the red and blue sequences occupy quite separate
regions of the diagram. The dividing line between the two sequences occurs about
n = 2.

3.9.3 Mean Stellar Age and Concentration Index C

Another approach to separating galaxies into two sequences is to use measures of
the age of their stellar populations and the degree of concentration of the light
towards their centres. Kauffmann and her colleagues have used sample of 122,808
galaxies from the SDSS to study the average age of their stellar populations using
the amplitude of the Balmer break, or discontinuity, at 400 nm, Dn(4000), and the
Balmer absorption line index HδA. The latter measures the strengths of the Balmer
absorption line which are particularly strong in galaxies which have undergone
a recent burst of star formation (Kauffmann et al., 2003). They have shown that
these indices provide good measures of star formation activity over the last 109 and
(1–10)× 109 years respectively.

The concentration index C is defined to be the ratio C = (R90/R50), where R90
and R50 are the radii enclosing 90% and 50% of the Petrosian r-band luminosity of
the galaxy. The concentration parameter C is strongly correlated with Hubble type,
C = 2.6 separating early from late-type galaxies. Those galaxies with concentration
indices C ≥ 2.6 are early-type galaxies, reflecting the fact that the light is more
concentrated towards their centres.

Dn(4000) and HδA are plotted against the concentration index C and the mean
stellar mass density within the half light radius μ∗ in Fig. 3.22. The panels of that
diagram show that the galaxy populations are divided into two distinct sequences.
Kauffmann and her colleagues show that the dividing line between the two se-
quences occurs at a stellar mass M ≈ 3 × 1010 M�. Lower mass galaxies have
young stellar populations, low surface mass densities and the low concentration
indices typical of disks. They infer that a significant fraction of the lowest mass
galaxies have experienced recent starbursts. For stellar masses M ≥ 3 × 1010 M�,
the fraction of galaxies with old stellar populations increases rapidly. These also have
the high surface mass densities and high concentration indices typical of spheroids
or bulges.
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Fig. 3.22. Density distributions showing the trends of the stellar age indicators Dn(4000) and
HδA with concentration index C = (R90/R50) and surface mass density μ∗ (Kauffmann
et al., 2003)

3.9.4 The Effect of the Galaxy Environment

The differences in morphological types of galaxies found in different galactic envi-
ronments has already been illustrated in Figs. 3.4 and 3.16. Another way of presenting
these data emphasising the distinction between the galaxies in the red and blue se-
quences was carried out by Hogg and his colleagues (Hogg et al., 2004). The sample
consisted of 55,158 galaxies in the redshift interval 0.08 ≤ z ≤ 0.12. The local
galaxy density about any given galaxy was defined by the quantity δ1×8, meaning
the overdensity about any galaxy in a cylindrical volume with transverse comoving
radius 1 h−1 Mpc and comoving half-length along the line of sight of 8 h−1 Mpc.
Thus, a galaxy in an environment with the average density of galaxies has δ1×8 = 0.
Values of δ1×8 ≥ 50 are found in the cores of rich clusters.

The top row of Fig. 3.23 shows contour plots of the number density of galaxies
in the colour–absolute magnitude diagram of Fig. 3.21a, but now shown separately
for different overdensity environments, ranging from low excess number densities,
δ1×8 ≤ 3, to very high density environments δ1×8 ≥ 50. These data quantify the
statement that red galaxies are found preferentially in rich galaxy environments. The
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Fig. 3.23. Illustrating the bimodality in the distribution of the colours of galaxies as a function
of the density of galaxies in which the galaxy is observed and as a function of their structures
as parameterised by the Sérsic index n (Hogg et al., 2004)

second and third rows further split the sample of galaxies into those with Sérsic
parameters greater and less than 2. These diagrams quantify the statement that red
spheroidal galaxies are found in the richest cluster regions and these are avoided by
the blue disc-like galaxies.

3.9.5 The New Perspective

The new way of quantifying the physical properties of galaxies developed in this
section illustrates a profound difference of approach to the study of galaxies as
compared with, say, ten years ago when the first edition of this book was written. The
advent of the huge galaxy surveys as represented by the SDSS and 2dF galaxy surveys
have provided the opportunity to quantify by computer algorithm the properties of
galaxies which in the past relied somewhat upon the eye of the experienced observer.
The division of galaxies into members of the blue and red sequences parallels in
many ways the division into early and late-type galaxies. To a good approximation,
galaxies earlier than Sa in the Hubble sequence, stage T = 1 in de Vaucouleurs’
classification (Table 3.1), are members of the red sequence and galaxies later than
T = 1 belong to the blue sequence.
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Of particular importance is the fact that the relative number densities of galaxies
of different types are now well-established with large statistics and so are ripe for
comparison with the predictions of theories of galaxy formation. As an example of
the usefulness of the new statistics, an important result is how the average number,
luminosity and mass densities of the stellar component of galaxies in the local
Universe are made up. Bell and his colleagues have shown, for example, that while
the red sequence contains only 20% of the galaxies by number, these contribute 40%
of the stellar luminosity density and 60% of the average stellar mass density at the
present epoch (Bell et al., 2003).

3.10 Concluding Remark

This exposition has focussed upon understanding the properties of galaxies at the
present epoch and has refrained from consideration of the vast amount of data now
available on samples of galaxies at earlier epochs, or large redshifts, which provide
clues to their origin and evolution. These topics will be taken up in much more detail
in Chaps. 17 to 19 once the origin of large-scale structures in the Universe has been
established.



4 Clusters of Galaxies

Associations of galaxies range from pairs and small groups, through the giant clusters
containing over a thousand galaxies, to the vast structures on scales much greater
than clusters such as the vast ‘walls’ seen in Figs. 2.7 and 2.8. Clustering occurs
on all scales, as is demonstrated by the two-point correlation function for galaxies
(Figs. 2.5 and 2.6). Few galaxies can be considered truly isolated. Rich clusters
of galaxies are of particular interest because they are the largest gravitationally
bound systems we know of in the Universe. They possess correspondingly deep
gravitational potential wells which can be observed through the bremsstrahlung X-
ray emission of hot gas which forms an atmosphere within the cluster. The hot gas can
also be detected through the decrements which it causes in the Cosmic Microwave
Background Radiation as a result of the Sunyaev–Zeldovich effect.

Clusters, therefore, provide laboratories for studying many different aspects of
galactic evolution within rather well-defined astrophysical environments. Interac-
tions of galaxies with each other and with the intergalactic medium in the cluster can
be studied, as well as the distribution and nature of the dark matter, which dominates
their dynamics. Radio source events can strongly perturb the distribution of hot gas.
From the perspective of the formation of large-scale structure, the mass function for
clusters of galaxies provides constraints on the development of structure on large
scales and on cosmological parameters.

4.1 The Large-Scale Distribution of Clusters of Galaxies

Until relatively recently, the surveys of rich clusters of galaxies which have been the
focus of most attention resulted from the pioneering efforts of George Abell. More
recently, clusters have been detected by analysing the distribution of galaxies found
in machine-scanned surveys of 48-inch Schmidt telescope plates, such as the APM
and COSMOS cluster surveys. Most recently, rich clusters have been identified in
the large catalogues of galaxies provided by the Sloan Digital Sky Survey. Another
approach is to identify clusters of galaxies as extended X-ray sources at high galactic
latitudes and this has proved to be an effective procedure which is independent of
the need to identify the individual cluster members (Sect. 4.4).
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4.1.1 The Abell Catalogues of Rich Clusters of Galaxies

It is worthwhile recounting the heroic efforts of Abell and his colleagues in creating
the Abell catalogue of rich clusters of galaxies and its southern counterpart. The
48-inch Schmidt telescope was constructed on Palomar mountain during the late
1940s as a wide-field telescope to support and complement observations made with
the 200-inch telescope. The Palomar Sky Survey took seven years to complete
and comprised 879 pairs of 14-inch plates, each providing roughly 6◦ × 6◦ sky
coverage and having limiting magnitudes of 21.1 in the blue and 20.0 in the red
wavebands. Abell was one of the principal observers for the Palomar Sky Survey
and, while the plates were being taken, he systematically catalogued the rich clusters
of galaxies appearing on the plates. The word ‘rich’ meant that there was no doubt
as to the reality of the associations of galaxies appearing on the plates (Abell, 1958).
A typical example of a rich, regular cluster of galaxies, Abell 2218, is shown in
Fig. 4.1. A corresponding catalogue for the southern hemisphere was created with
the completion of the ESO-SERC Southern Sky Survey, which was made with the
48-inch UK Schmidt Telescope at the Siding Spring Observatory in New South Wales
(Abell et al., 1989). In both cases, the clusters were found by visual inspection of
the Sky Survey plates.

Crucial to the success of Abell’s programme was adherence to the strict set of
criteria he established for the inclusion of clusters in the catalogue. The 4073 clusters
in the combined northern and southern catalogue of Abell, Corwin and Olowin fulfil
the following selection criteria:

– Richness criterion. The clusters must have 50 members brighter than 2 magni-
tudes (m3 + 2) fainter than the third brightest member (m3). Richness classes
are defined by the number of galaxies with magnitudes between m3 and m3 + 2,

Fig. 4.1. The rich, regular cluster of galaxies Abell 2218. Abell classified this cluster as
richness class 4. The central galaxy is a supergiant or cD galaxy, which is very much brighter
than all the other galaxies in the cluster. It is located close to the dynamical centre of the
cluster. The image also shows a number of arcs which are the gravitationally lensed images
of very distant background galaxies (Courtesy NASA, ESA and the Space Telescope Science
Institute)
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as described in Table 4.1. A richness class 0 is included for clusters which have
between 30 and 50 members within the same magnitude interval, but the cata-
logues are not complete for this class. Studies of a number of nearby clusters
of different richness classes have shown that richness is proportional to the total
number of galaxies in the cluster.

– Compactness criterion. Galaxies are only counted within a radius of 1.5 h−1 Mpc
of the cluster centre. This radius corresponds to an angular radius of 1.7/z arcmin,
the redshift of the cluster being estimated from the apparent magnitude of its
tenth brightest member, m10.

– Distance criteria. Abell clusters with redshifts less than 0.02 span more than
one Sky Survey plate and hence this lower redshift limit was adopted. The upper
redshift limit is set by the fact that galaxies could not be counted to magnitudes
fainter than mr = 20 in the northern survey and therefore the third brightest
galaxy must be brighter than m3 = 17.5. This redshift limit corresponds to
z ≈ 0.2. From redshift measurements of a number of clusters, it was found that
m10, the apparent magnitude of the tenth brightest cluster member, is a reliable
distance indicator. The clusters were then divided into distance classes in such
a way that there was a small probability of the class assigned to the cluster being
more than one class wrong.

Within the northern sample, Abell defined a complete statistical sample of 1682
clusters which fulfilled distance criteria 1 to 6 and richness criteria 1 to 5. The
numbers of clusters in each richness class in this sample and the total numbers in the
southern sample are included in Table 4.1. The number density distribution of clusters
with increasing distance, equivalent to the number counts of clusters, is shown in
Fig. 4.2 (Batuski et al., 1989). It can be seen that serious incompleteness sets in at
distances greater than about 600h−1 Mpc, corresponding to redshift z = 0.2, but
at smaller distances, there is reasonable agreement between the samples of clusters

Table 4.1. Definitions of the richness classes R of Abell clusters and the numbers of clusters
within Abell’s complete northern sample of 1682 clusters and the total sample of southern
clusters. N is the number of galaxies in the cluster between magnitudes m3 and m3 +2 (Abell,
1958; Bahcall, 1988; Abell et al., 1989)

Richness N Number of clusters Total number of
Class R in the complete clusters in the

northern sample southern sample

(0)a (30 − 49) (≥ 103) (664)
1 50 − 79 1224 656
2 80 − 129 383 273
3 130 − 199 68 41
4 200 − 299 6 1
5 300 or more 1 0

a The sample is not complete for richness class zero
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Fig. 4.2. The average estimated space densities of Abell clusters in the Northern and Southern
catalogues for richness classes R ≥ 1 as a function of estimated distance Dc (Batuski et al.,
1989)

in the northern and southern hemispheres. The space density of Abell clusters with
richness classes greater than or equal to 1 is, to a good approximation,

Ncl(R ≥ 1) ≈ 10−5h3 Mpc−3 , (4.1)

so that the typical distance between cluster centres, if they were uniformly dis-
tributed in space, would be ∼ 50h−1 Mpc. These figures can be compared with the
space density of ‘mean galaxies’ of 10−2h3 Mpc−3 and their typical separations of
5h−1 Mpc (see Sect. 3.7.2).

4.1.2 Comparison with Clusters Selected from the Sloan Digital Sky Survey

The studies of Abell and his colleagues were entirely based upon visual inspec-
tion of the plates and film copies of the Northern and Southern 48-inch Schmidt
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Telescope Sky Surveys. Great care was taken to ensure the consistency of the clus-
ter identifications and classifications over many years. The advent of high speed
measuring machines with powerful procedures for star-galaxy separation enabled
more objective approaches to the identification of rich clusters to be developed. It
is perhaps most instructive to compare Abell’s results with those of the Bahcall and
her colleagues who have identified the clusters present in the early release com-
missioning data of the Sloan Digital Sky Survey (SDSS) (Bahcall et al., 2003b).
The SDSS has the great advantages of having images in five different wavebands as
well as redshifts for very large samples of galaxies at z ≤ 0.1. As a result, velocity
dispersions are available for many of the clusters studied, enabling masses to be
estimated.

The analyses described by Bahcall and her colleagues do not use all these data but
employ two of the various algorithms available to isolate clusters of galaxies which
satisfy criteria similar to Abell’s, but which extend to slightly lower richness classes.
They find that 53 of the 58 Abell clusters in the area of sky studied are included in
their merged catalogue of clusters, the remaining five clusters being detected just
below the richness limits of their catalogue. This is a remarkable testament to the
quality of the visual approach of Abell and his colleagues.

An advantage of the procedures adopted by Bahcall and her colleagues is that
the limits of the catalogue can be expressed in terms of the velocity dispersions
and masses of the clusters. Thus, the threshold for the inclusion of clusters in
the catalogue corresponds to typical velocity dispersions σv ≥ 400 km s−1 and to
masses M within radius 0.6 h−1 Mpc of their centres of M ≥ 5 × 1013h−1 M�. This
threshold corresponds to richness classes below Abell’s richness class 0. The average
space density of these rich clusters is 2 × 10−5h3 Mpc−3, in excellent agreement
with Abell’s estimate when account is taken of the fact that the sample extends to
somewhat lower richness limits.

Bahcall and her colleagues provide a useful table showing the velocity disper-
sions, masses and luminosities for the samples of clusters of different richnesses in
their catalogue (Table 4.2). These data provide estimates of the mass-to-luminosity
ratios for clusters of different richnesses. It can be seen from Table 4.2 that these
range from ∼ 170 h to ∼ 250 h with increasing richness. In turn, these data can be
used to determine the mass functions of rich clusters of galaxies and to provide con-
straints on the mass density parameterΩ0 and the amplitude of the mass fluctuations
σ8 (Sects. 8.7 and 14.4).

4.1.3 Abell Clusters and the Large-Scale Distribution of Galaxies

Abell clusters are strongly correlated in space, both with each other and with the
distribution of galaxies in general. These associations were originally described in
terms of the superclustering of galaxies, but it is preferable nowadays to express
the clustering in terms of the correlation functions introduced in Sect. 2.2.1. It is
simplest to quote the results of the SDSS survey of rich clusters by Bahcall and her
colleagues who include extensive references to earlier work (Bahcall et al., 2003a).
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Table 4.2. An example of the scaling relations for clusters of galaxies of different richnesses
from analysis of the commissioning data from the SDSS (Bahcall et al., 2003b). Ngal is the
number of red E/S0 galaxies one magnitude fainter than L∗ in the i band within a radius
of 1 h−1 Mpc of the brightest cluster galaxy where L∗ = 1010 h2 L�. Λ is a measure of the
richness of the cluster and is derived from the best-fit cluster model which has total luminosity
Lcl = ΛL∗, where the luminosity is measured within a radius of 1 h−1 Mpc

σv L tot M
Ngal Λ (km s−1) (1011 h−2 L�) (1014 h−1 M�)

10 35 350 2.1 0.35
15 43 430 3.2 0.6
20 50 500 4.4 0.9
25 56 560 5.5 1.2
30 61 620 6.6 1.5
40 70 730 8.7 2.2

The correlation functions for the different richness classes described in Table 4.2
are shown in Fig. 4.3. The best-fit two-point correlation function has the form

n(r) dV = n0 [1 + ξ(r)] dV , where ξ(r) =
(

r

r0

)−2

, (4.2)

which is slightly steeper than the value found on smaller physical scales for galaxies
in general. The data included in Fig. 4.3 show that the correlation length r0 is
much greater than that for galaxies in general. Bahcall and her colleagues find
that the variation can be described by the relation r0 = 2.6

√
d for (20 ≤ d ≤

90)h−1 Mpc, where d is the mean comoving separation distance of the clusters
belonging to different richness classes. Thus, the correlation lengths for these rich
clusters are large, on the scale of the huge voids seen in the distribution of galaxies
in general.

The rich clusters are generally found in the densest regions in the ‘cosmic
web’ seen in Figs. 2.7 and 2.8. Some measure of the association of Abell clusters
with galaxies in general has been provided by the analysis of Seldner and Peebles
(Seldner and Peebles, 1977). They cross-correlated the counts of galaxies in the
Shane–Wirtanen catalogue, which extended to apparent magnitude m ≈ 19, with
the positions of Abell clusters of distance class 5. The cross-correlation function was
found to be of the form

ξgc = Ar−2.4 ,

out at a distance of 15h−1 Mpc from the cluster centres. This function represents
the correlation of the Abell clusters with galaxies in the vicinity of the cluster, but
outside what would normally be considered to be the cluster boundary; Seldner and
Peebles refer to this phenomenon as the superclustering of galaxies about Abell
clusters. This result is in agreement with the visual impression of the distribution of
galaxies seen in Figs. 2.7 and 2.8.
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Fig. 4.3. The two-point spatial correlation function for four richness thresholds (Ngal ≥ 10,
≥ 13, ≥ 15, ≥ 20) for clusters selected from the SDSS (Bahcall et al., 2003a). Best-fit
functions with slope 2 and correlation-scale r0 are shown by the dashed lines. The error bars
show the 1 σ uncertainties in the estimates. The values of d for the four panels are 26.2, 35.6,
41.5 and 58.1 Mpc with increasing richness

4.2 The Distribution of Galaxies in Clusters of Galaxies

Clusters of galaxies come in a variety of shapes and forms and various schemes have
been developed to put some order into this diversity. Just as in the case of galaxies,
modern computer-based systems of classification bring new, quantitative insights
into the wealth of detail contained in the visual classification of clusters.

4.2.1 The Galaxy Content and Spatial Distribution of Galaxies in Clusters

Abell classified clusters as regular if they are more or less circularly symmetrical with
a central concentration, similar in structure to globular clusters (Abell, 1962). These
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are among the richest clusters, generally containing over 1000 members. Examples
include the Coma cluster. The galaxies are predominantly elliptical and S0 galaxies
as has been indicated by the results shown in Figs. 3.4 and 3.16. Abell called all the
other clusters in which there is much less well-defined structure irregular clusters.
In his words, the irregular clusters

. . . have a more nearly amorphous appearance, and possess little or no
spherical symmetry or central concentration. The irregular clusters some-
times, however, have several small subcondensations or nuclei and resemble
loose swarms of small clusters.

Examples of the latter include the Hercules and Virgo clusters.
Oemler studied systematically a representative sample of fifteen Abell clusters of

different richness classes and morphological types and distinguished three principal
types of cluster according to their galaxy content (Oemler, 1974):

– cD clusters have a unique and dominant cD galaxy and the ratio of elliptical (E)
to lenticular (S0) to spiral (S) galaxies is roughly 3 : 4 : 2, that is, only about
20% are spirals. These clusters are very rich in E and S0 galaxies.

– Spiral-rich clusters have galaxy-type ratios E : S0 : S roughly 1 : 2 : 3, that is,
about 50% spirals, a distribution similar to the proportions of types found in the
general field.

– The remaining clusters are called spiral-poor clusters. They have no dominant
cD galaxy and have galaxy type ratios E : S0 : S roughly 1 : 2 : 1.

Abell noted that there is a correlation between the structure of clusters and galaxy
content and this result was quantified by Oemler who established the following
relations:

– In cD clusters or regular clusters, the spatial distribution of galaxies resembles
the distribution of stars in a globular cluster (see Sect. 4.2.2). The space density
of galaxies increases rapidly towards the centre of the cluster. The spiral-rich
clusters and irregular clusters are not symmetric and there is little central con-
centration; the spatial density of galaxies is roughly uniform towards the central
regions and is lower than that in cD clusters. The spiral-poor clusters are inter-
mediate between these two extremes.

– In the case of spiral-rich clusters, the radial distribution of elliptical, lenticular
and spiral galaxies is more or less the same. In cD and spiral-poor clusters,
however, the relative space density of spiral galaxies decreases markedly towards
the central regions, reflecting Dressler’s correlation of galaxy type with galaxy
number density (Dressler, 1984). In these clusters, the spiral galaxies form a halo
around a central core of elliptical and S0 galaxies. There is therefore segregation
by galaxy type in cD and spiral-poor clusters.

– In addition to evidence for segregation by galaxy type, there is some evidence
for mass segregation as a function of cluster type. Adopting apparent magnitude
as a measure of mass, Oemler found that, in cD and spiral-poor clusters, the
massive galaxies are located closer to the centre than less massive galaxies.
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However, this mass segregation is only important for the brightest members of
clusters, m ≤ m1+2, where m1 is the apparent magnitude of the brightest galaxy;
galaxies fainter than m1 + 2 appear to be uniformly distributed throughout the
clusters. No such mass segregation is found in spiral-rich clusters.

As discussed in Sects. 3.7.1 and 4.2.3, the cD galaxies found in the centres of
cD clusters have a number of features which distinguish them from giant elliptical
galaxies (Kormendy, 1982). Their most distinctive features are their extensive stellar
envelopes which can be as large as 100 kpc. In addition to being found in rich clusters,
examples of cD galaxies are known in small groups of galaxies but, in all cases, they
are found in regions of significantly enhanced galaxy density relative to the general
field. Dressler found that cD galaxies are only found in regions in which the galaxy
density exceeds 1 h−3 galaxy Mpc−3, compared with an average galaxy density of
10−2h−3 Mpc−3 (Dressler, 1984). According to Dressler, the local galaxy density
rather than the richness of the cluster determines whether or not a cD galaxy is
present in a group or cluster. Some of the central cD galaxies in rich clusters are
also distinctive in having multiple nuclei which are found in about 25–50% of all
cD galaxies. In contrast, multiple nuclei are an order of magnitude less common in
second and third ranked cluster members.

These results are important in understanding the dynamical evolution of clus-
ters. Regular, cD clusters are systems which have had time to relax to dynamical
equilibrium, whereas the other systems are still in the process of relaxation.

4.2.2 Clusters of Galaxies and Isothermal Gas Spheres

In regular clusters, the space density of galaxies increases towards the central regions,
which are referred to as the cores of the clusters. Outside the core, the space density
of galaxies decreases steadily until it disappears into the background of unrelated
objects. The regular structures of these clusters suggests that they have relaxed to
a stationary dynamical state similar to that found in the distribution of stars in globular
clusters. The spatial distribution of galaxies in a regular cluster can be modelled by
the distribution of mass in an isothermal gas sphere. These distributions are important
in the discussion which follows and so let us derive the relevant expressions for the
density distribution of an isothermal gas sphere.

The term isothermal means that the temperature, or mean kinetic energy of the
particles, is constant throughout the cluster. In physical terms, this means that the
velocity distribution of the galaxies is Maxwellian with the same velocity dispersion
(or temperature) throughout the cluster. If all the galaxies had the same mass, the
velocity dispersion would be the same at all locations within the cluster. This is
a rather sweeping approximation since it would mean that there had been enough time
for the galaxies to have exchanged kinetic energy and come to a thermal equilibrium
velocity distribution. Although a good case can be made that the galaxies have had
time to ‘virialise’, that is, to satisfy the virial theorem when the cluster formed, it
takes much longer for energy exchange to take place, except for the most massive
galaxies in the cluster. Nonetheless, let us work out the density distribution of an
isothermal gas sphere as a reference model for comparison with the observations.
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We need the Lane–Emden equation, which describes the structure of a spherically
symmetric object, such as a star, in hydrostatic equilibrium. The requirement of
hydrostatic equilibrium is that, at all points in the system, the attractive gravitational
force acting on a mass element 	 dV at radial distance r from the centre of the system
is balanced by the pressure gradient at that point,

∇ p = dp

dr
= −G M	

r2
, (4.3)

where M is the mass contained within radius r,

M =
∫ r

0
4πr2	(r) dr dM = 4πr2	(r) dr . (4.4)

Reordering (4.3) and differentiating, we find

r2
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= −G
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dr
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(
r2

	

dp
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)
+ 4πGr2	 = 0 . (4.5)

Equation (4.5) is the Lane–Emden equation. We are interested in the case in which
the pressure p and the density 	 are related by the perfect gas law at all radii
r, p = 	kT/μ, where μ is the mass of an atom, molecule or galaxy. In thermal
equilibrium, 3

2 kT = 1
2μ〈v2〉, where 〈v2〉 is the mean square velocity of the atoms,

molecules or galaxies. Therefore, substituting for p,

d

dr

(
r2

	

d	

dr

)
+ 4πGμ

kT
r2	 = 0 . (4.6)

Equation (4.6) is a non-linear differential equation and, in general, must be solved
numerically. There is, however, an analytic solution for large values of r. If 	(r) is
expressed as a power series in r, 	(r) = ∑

Anr−n , there is a solution for large r
with n = 2,

	(r) = 2

Ar2
where A =

(
4πGμ

kT

)
. (4.7)

This mass distribution has the unfortunate property that the total mass of the cluster
diverges at large values of r,

∫ ∞

0
4πr2	(r) dr =

∫ ∞

0

8π

A
dr → ∞ . (4.8)

There are, however, at least two reasons why there should be a cut-off at large
radii. First of all, at very large distances, the particle densities become so low that the
mean free path between collisions is very long. The thermalisation time-scales con-
sequently become greater than the time-scale of the system. The radius at which this
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occurs is known as Smoluchowski’s envelope. Secondly, in astrophysical systems,
the outermost stars or galaxies are stripped from the system by tidal interactions
with neighbouring systems. This process defines a tidal radius rt for the cluster.
Therefore, if clusters are modelled by isothermal gas spheres, it is perfectly permis-
sible to introduce a cut-off at some suitably large radius, resulting in a finite total
mass.

It is convenient to rewrite (4.6) in dimensionless form by writing 	 = 	0 y, where
	0 is the central mass density, and introducing a structural index or structural length
α, where α is defined by the relation

α = 1

(A	0)1/2
. (4.9)

Distances from the centre can then be measured in terms of the dimensionless
distance x = r/α. Then, (4.6) becomes

d

dx

[
x2 d(log y)

dx

]
+ x2 y = 0 . (4.10)

Two versions of the solution of (4.10) are listed in Table 4.3 and illustrated in
Fig. 4.4. In column 2, the solution of y as a function of distance x is given; in the
third column, the projected distribution onto a plane is given, this being the observed
distribution of a cluster of stars or galaxies on the sky. It is a simple calculation to
show that, if q is the projected distance from the centre of the cluster, the surface
density N(q) is related to y(x) by the integral

N(q) = 2
∫ ∞

q

y(x)x

(x2 − q2)1/2
dx . (4.11)

Inspection of Table 4.3 and Fig. 4.4, shows that α is a measure of the size of
the core of the cluster. It is convenient to fit the projected distribution N(q) to the
distribution of stars or galaxies in a cluster and then a core radius for the cluster can
be defined. It can be seen that the projected density falls to the value N(q) = 1/2 at
q = 3, that is, at a core radius R1/2 = 3α. R1/2 is a convenient measure of the core
radius of the cluster.

Having measured R1/2, the central mass density of the cluster can be found if
the velocity dispersion of the galaxies in this region is also known. From Maxwell’s
equipartition theorem, 1

2μ〈v2〉 = 3
2 kT and therefore, from the definition of α,

α2 = 1

A	0
= kT

4πGμ	0
=

〈
v2
〉

12πG	0
. (4.12)

Observationally, we can only measure the radial component of the galaxies’ velocities
v‖. Assuming the velocity distribution of the galaxies in the cluster is isotropic,

〈
v2〉 = 〈

v2
x

〉+ 〈
v2

y

〉+ 〈
v2

z

〉 = 3
〈
v2

‖
〉
. (4.13)
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Fig. 4.4. The density distribution y(x) and the projected density distribution N(q) for an
isothermal gas sphere

Table 4.3. The density distribution y(x) and the projected density distribution N(q) for an
isothermal gas sphere

x, q y(x) N(q) x, q y(x) N(q)

0 1.0 1.0 12 0.0151 0.0839
0.5 0.9597 0.9782 14 0.0104 0.0694
1.0 0.8529 0.9013 16 0.0075 0.0591
1.5 0.7129 0.8025 20 0.0045 0.0457
2 0.5714 0.6955 30 0.0019 0.0313
3 0.3454 0.5033 40 0.0010 0.0229
4 0.2079 0.3643 50 0.0007 0.0188
5 0.1297 0.2748 100 1.75 × 10−4 0.0101
6 0.0849 0.2143 200 5.08 × 10−5 0.0053
7 0.0583 0.1724 300 2.32 × 10−5 0.0036
8 0.0418 0.1420 500 8.40 × 10−6 0.0021
9 0.0311 0.1209 1000 2.0 × 10−6 0.0010

10 0.0238 0.1050

Expressing the central density 	0 in terms of R1/2 and 〈v2‖〉, we find

	0 =
9
〈
v2‖
〉

4πG R2
1/2

. (4.14)
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Thus, assuming the central density distribution of a cluster can be represented by
an isothermal gas sphere, we can find the central mass density of the cluster by
measuring 〈v2‖〉 and R1/2.

Improved versions of the isothermal sphere model were evaluated by King and
these have provided good fits to the light distributions of globular clusters and
galaxies (King, 1966, 1981). The models were originally derived from studies of the
solutions of the Fokker–Planck equation which describes the distribution function
f(v, r) for the stars in a cluster under the condition that there should be no particles
present with velocities which enable them to escape from the cluster. This might
occur for two reasons. Either the stars have velocities which exceed the escape
velocity from the cluster, or the stars travel to distances greater than the tidal radius
of the cluster when they are lost from the cluster because of tidal forces. In either
case, the cluster can be modelled as a truncated isothermal gas sphere in which none
of the stars can have velocities exceeding some value ve. This is implemented by
truncating the Maxwell velocity distribution at this velocity which in turn results in
models with finite tidal radii rt. The luminosity profiles for such clusters are shown
in Fig. 4.5, the models being parameterised by the quantity log rt/rc, the logarithm
of the ratio of the tidal and core radii. In the limit rt/rc → ∞, the models become
isothermal gas spheres.

The models which best represent elliptical galaxies are not too dissimilar from
isothermal gas spheres. In terms of King’s models, the giant elliptical galaxies

Fig. 4.5. King models for the distribution of stars in globular clusters, galaxies or of galxies
in clusters of galaxies (King, 1966, 1981). The curves show the projected distribution of stars
or galaxies, equivalent to N(q) in Table 4.3, and are parameterised by the quantity log(rt/rc)

where rt is the tidal radius and rc the core radius. The arrows indicate log rt
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have log rt/rc ≈ 2.2; for dwarf elliptical galaxies, the surface brightness decreases
somewhat more rapidly in the outer regions and King models having small values
of log rt/rc can give a good representation of the data. These profiles have also been
found to provide a good description of the distribution of galaxies in clusters.

According to Bahcall, the observed distribution of galaxies in regular clusters
can be described by truncated isothermal distributions N(r) of the form

N(r) = N0[ f(r)− C] , (4.15)

where f(r) is the projected isothermal distribution normalised to f(r) = 1 at r = 0
and C is a constant which reduces the value of N(r) to zero at some radius Rh

such that f(Rh) = C (Bahcall, 1977). For regular clusters core radii lie in the range
R1/2 = 150 − 400 kpc, the Coma cluster having R1/2 = 220 kpc. Bahcall found
that there is a relatively small dispersion in the values of C required to provide
a satisfactory fit to the profiles of many regular clusters, typically the value of C
corresponding to about 1.5% of the isothermal central density.

Many different density distributions have been proposed to describe the space
density distribution of galaxies in clusters in addition to the above examples. These
include models such as de Vaucouleurs’ law for elliptical galaxies (equations 3.2
or 3.3) as well other possibilities such as the Plummer model which is derived from
a gravitational potential with a core radius b of the form

φ = − G M

(r2 + b2)1/2
, (4.16)

where M is the total mass of the system. Using Poisson’s law for gravity in spherical
polar coordinates, we find the density distribution from

∇2φ = 1

r2

∂

∂r

(
r2 ∂φ

∂r

)
= 4πG	 . (4.17)

Then,

	(r) = 3M

4πb3

(
1 + r2

b2

)−5/2

. (4.18)

Binney and Tremaine discuss these and other possibilities (Binney and Tremaine,
1987).

4.2.3 The Luminosity Function for Cluster Galaxies

The luminosity functions for cluster galaxies can be represented by the Schechter
function introduced in Sect. 3.7, but, as indicated by Fig. 3.16, there are significant
differences in the shapes of the luminosity functions for early and late-type galaxies
as compared with the general field, or the even more extreme case of the void regions.
These functions are another way of presenting Dressler’s results concerning the
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different types of galactic populations found in environments of different densities
(Fig. 3.4).

In Sandage’s analysis of the redshift–apparent magnitude relation, he demon-
strated that there is remarkably little scatter in the absolute magnitudes of the brightest
members of rich clusters of galaxies, the standard deviation of the brightest clus-
ter galaxies amounting to σM = 0.28 (Sandage, 1988) (see Fig. 2.11). There was
some controversy about whether or not the constancy of the absolute magnitude of
the first-ranked cluster galaxy could be explained by randomly sampling the high
luminosity region of the luminosity function, or whether they possess some special
property which is independent of the cluster richness.

Tremaine and Richstone compared the dispersion in absolute magnitudes of the
first-ranked members σ(M1) with the mean value of the difference in magnitude
between the first and second ranked members ΔM12 = 〈M1 − M2〉 (Tremaine
and Richstone, 1977). They showed that for any statistical luminosity function
σ(M1)/ΔM12 = t1 > 1 must hold. For example, using Schechter’s function,
t1 = 1.20. For Sandage’s data on rich clusters, t1 = 0.48±0.10, supporting his point
of view that there is much less dispersion in the absolute magnitudes of first ranking
cluster galaxies than would be expected if they were simply randomly sampled from
the luminosity function. Geller and Postman failed to confirm this result (Geller and
Postman, 1983). Nonetheless, as discussed in Sect. 4.2.1, the cD galaxies are quite
distinct from normal giant elliptical galaxies (Kormendy, 1982).

A further classification scheme, due to Bautz and Morgan also bears upon the
issue of the origins of the brightest galaxies in clusters (Bautz and Morgan, 1970).
In the Bautz–Morgan classification scheme, clusters are classified according to the
presence or absence of a dominant D or cD galaxy at the centre of the cluster.
Bautz–Morgan class I clusters contain a dominant centrally located cD galaxy (for
example Abell 2199); class II clusters have a central galaxy intermediate between
a cD and giant elliptical galaxy (for example, the Coma cluster); class III clusters
have no dominant central galaxy. Intermediate classes between classes I, II and III
have been defined. A number of properties of clusters depend upon Bautz–Morgan
class. For example, Sandage has found that there is a weak correlation between
Bautz–Morgan class and the absolute magnitude of the brightest cluster member
which cannot account for all the difference between the Bautz–Morgan classes.
There must in addition be an inverse correlation between Bautz–Morgan class and
the absolute magnitudes of the second and third brightest members in the sense that
they are relatively brighter in Bautz–Morgan class III clusters. This phenomenon is
illustrated by the data in Table 4.4 which lists the mean absolute magnitudes of the
first, second and third brightest galaxies in a large sample of rich clusters studied by
Sandage and Hardy (Sandage and Hardy, 1973).

4.2.4 Summary of the Properties of Rich Clusters of Galaxies

There are some clear trends in the overall properties of clusters of galaxies. A se-
quence of types can be defined based on Abell’s distinction between regular and
irregular clusters with the addition of an intermediate class. Table 4.5 is adapted
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Table 4.4. The absolute magnitudes of the first, second and third ranked cluster galaxies as
a function of Bautz–Morgan type (Sandage 1976). It is assumed that h = 0.5

Bautz–Morgan M1 M2 M3

Class

I −23.09 ± 0.051 −22.72 ± 0.077 −22.47 ± 0.091
I-II −23.30 ± 0.068 −22.83 ± 0.091 −22.56 ± 0.121
II −23.37 ± 0.130 −22.60 ± 0.217 −22.34 ± 0.212
II-III −23.46 ± 0.092 −22.18 ± 0.247 −21.96 ± 0.233
III −23.68 ± 0.102 −22.22 ± 0.157 −21.82 ± 0.187

Table 4.5. A summary of the typical properties of rich cluster of galaxies of different types
(Bahcall, 1977)

Property/Class Regular Intermediate Irregular

Bautz–Morgan type I, I-II, II (II), II-III (II-III), III
Galaxy content Elliptical/S0-rich Spiral-poor Spiral-rich
E : S0 : S ratio 3 : 4 : 2 1 : 4 : 2 1 : 2 : 3
Symmetry Spherical Intermediate Irregular shape
Central concentration High Moderate Very little
Central profile Steep gradient Intermediate Flat gradient
Mass segregation Marginal evidence Marginal evidence No segregation

for m − m(1) < 2 for m − m(1) < 2
Examples Abell 2199, Coma Abell 194, 539 Virgo, Abell 1228

from Bahcall’s review of 1977 and summarises many of the properties described
above as a function of cluster type (Bahcall, 1977). Like the Hubble sequence for
galaxies, these types are only part of a continuous sequence and there is considerable
overlap in some of the properties.

4.3 Dynamical Estimates of the Masses of Clusters of Galaxies

It might seem that the measurement of the masses of clusters of galaxies is rela-
tively straightforward. The virial theorem (3.20) provides a simple relation between
the mass of the cluster, the radial velocity dispersion of the galaxies 〈v2‖〉 and the
characteristic radius Rcl of the galaxy distribution. The problems arise in ensuring
that the galaxies really belong to the cluster and are not random coincidences of
foreground or background objects and also that large enough samples of radial ve-
locities are available. These problems are now being addressed by projects such as
the Sloan Digital Sky Survey in which radial velocities, colours and structural data
are available for large samples of clusters. The results presented in Table 4.2 give
some impression of the wealth of data which will become available for many clusters
over the coming years.
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Fig. 4.6. An optical image of the central region of the Coma cluster of galaxies, Abell 1656,
showing the two central massive galaxies NGC 4889 and NGC 4874. North is to the right of
this image. (Courtesy of Dr. Robert Lupton and the SDSS consortium)

As a case study, let us consider the Coma cluster (Fig. 4.6) which has always
been regarded as the archetype of a rich regular cluster of galaxies; we will find
that this is an overoptimistic assertion. The surface density distribution of galaxies
in the Coma cluster and the variation of their velocity dispersion with radius were
determined in a classic paper by Kent and Gunn who assembled radial velocities for
about 300 cluster members (Kent and Gunn, 1982). The projected surface density
of galaxies increases smoothly towards the centre and can be described by a King
profile with tidal radius rt = 16h−1 Mpc (Fig. 4.7a). The inference is that the cluster
has relaxed to a bound equilibrium configuration, as is confirmed by comparing the
crossing time of a typical galaxy in the cluster with the age of the Universe. The
crossing time is tcr = R/〈v〉 where R is the size of the cluster and 〈v〉 is the mean
random velocity of galaxies. For the Coma cluster, taking 〈v〉 = 103 km s−1 and
R = 2 Mpc, the crossing time is about 2 × 109 years, roughly a tenth the age of the
Universe and so the cluster must be gravitationally bound.

These data were further analysed in detail by Merritt who considered a wide
range of possible models for the mass distribution within the cluster (Merritt, 1987).
In the simplest reference model, with which the others can be compared, it is assumed
that the mass distribution in the cluster follows the galaxy distribution, that is, the
mass-to-luminosity ratio is a constant throughout the cluster, and that the velocity
distribution is isotropic at each point in the cluster. With these assumptions, Merritt
derived a mass for the Coma cluster of 1.79×1015h−1 M�, assuming that the cluster
extends to 16h−1 Mpc. The mass within a radius of 1h−1 Mpc of the cluster centre
is 6.1 × 1014 M�. The corresponding value of the mass-to-blue luminosity ratio for
the central regions of the Coma cluster is about 350h M�/L�. The population of
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Fig. 4.7. a The surface density profile for the distribution of galaxies in the Coma cluster
according to Kent and Gunn. b The projected velocity dispersion as a function of radius for
galaxies in the Coma cluster (Kent and Gunn, 1982)

galaxies in the central region of the Coma cluster is dominated by elliptical and S0
galaxies for which the typical mass-to-luminosity ratios are about 10 − 20 M�/L�.
There is therefore a discrepancy of about a factor of 20 between the mass which can
be attributed to galaxies and the total mass which must be present. This is the result
which was discovered by Zwicky (Zwicky, 1937).

This is also where the trouble begins. Dark matter dominates the mass of the
cluster but there is no reason why it should have the same distribution as the
visible matter. Likewise, there is no reason a priori why the velocity distribu-
tion of the galaxies should be isotropic. This is most simply expressed in terms
of the velocity dispersion of the galaxies in the radial and circumferential direc-
tions, σ2

r (r), σ
2
θ (r) and σ2

φ(r) within the cluster. The assumption of isotropy is that
σ2

r (r) = σ2
θ (r) = σ2

φ(r). If, however, the galaxies were on circular orbits about the
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Fig. 4.7. (continued) c Three possible velocity dispersion profiles which are consistent with
the data of Gunn and Kent, A corresponding to an isotropic velocity distribution, while B and
C involve velocity anisotropies (Merritt, 1987)

centre, σ2
r (r) = 0, or, if they were purely radial, σ2

θ (r) = σ2
φ(r) = 0. Kent and

Gunn pointed out that the extreme radial models are inconsistent with the variation
of velocity dispersion with radius shown in Fig. 4.7. Merritt carried out a care-
ful study of how the inferred mass-to-luminosity ratio would change for a wide
range of different assumptions about the relative distributions of the visible and
dark matter and the anisotropy of the velocity distribution (Fig. 4.7c) (Merritt,
1987). For the cluster as a whole, the mass-to-luminosity ratio varied from about
0.4 to at least three times the reference value, while the mass-to-luminosity ratio
within the core of the cluster at 1 h−1 Mpc was always very close to 350 hM�/L�.
There can be no doubt that the dynamics of the cluster are dominated by dark
matter.

Perhaps the most remarkable result of recent times has been the finding that the
Coma cluster is probably not the quiescent regular cluster it appears to be. Colless
and Dunn have added 243 more radial velocities to the sample, bringing the total
number of cluster members with radial velocities to 450 (Colless and Dunn, 1996).
They find compelling evidence that, in addition to the main body of the cluster, there
is a distinct subcluster whose brightest member is NGC 4839. The main cluster has
mass 0.9 × 1015h−1 M�, while the less massive cluster has mass 0.6 × 1014h−1 M�.
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Fig. 4.8. An X-ray image of the Coma cluster of galaxies obtained by the XMM-Newton
Observatory, showing the X-ray emission associated with the main body of the Coma cluster
and the smaller cluster associated with NGC 4839 (Courtesy of the Max Planck Institute for
Extraterrestrial Physics and ESA)

These clusters are clearly seen in the XMM-Newton X-ray image of the Coma cluster
and the total masses derived from the X-ray observations agree with those derived
by Colless and Dunn (Fig. 4.8). In addition, Colless and Dunn inferred that there is
subclustering of galaxies about the two brightest members NGC4889 and NGC4874
and that these are in the process of coalescing in the central regions of the cluster.
The moral of this story is that appearances can be deceptive.

4.4 X-Ray Observations of Hot Gas in Clusters of Galaxies

The X-ray image of the Coma cluster (Fig. 4.8) provides an excellent demonstration
of the power of X-ray astronomy in the study of clusters of galaxies. One of the most
important discoveries made by the UHURU X-ray Observatory was the detection of
intense X-ray emission from rich clusters of galaxies. The nature of the emission was



4.4 X-Ray Observations of Hot Gas in Clusters of Galaxies 115

soon identified as the bremsstrahlung of hot intracluster gas, the key observations
being the extended nature of the emission and the subsequent detection of the highly
ionised iron line FeXXVI by the Ariel-V satellite (Mitchell et al., 1976). It was
quickly appreciated that the X-ray emission of the gas provides a very powerful
probe of the gravitational potential within the cluster enabling the distribution of hot
gas and the total gravitating mass to be determined. Let us repeat the calculation
presented by Fabricant, Lecar and Gorenstein which shows how this can be done
(Fabricant et al., 1980).

For simplicity, we assume that the cluster is spherically symmetric so that the
total gravitating mass within radius r is M(≤ r). The gas is assumed to be in
hydrostatic equilibrium within the gravitational potential defined by the total mass
distribution in the cluster, that is, by the sum of the visible and dark matter as well
as the gaseous mass. If p is the pressure of the gas and 	 its density, both of which
vary with position within the cluster, the requirement of hydrostatic equilibrium
is

dp

dr
= −G M(≤ r)	

r2
. (4.19)

The pressure is related to the local gas density 	 and temperature T by the perfect
gas law

p = 	kT

μmH
, (4.20)

where mH is the mass of the hydrogen atom and μ is the mean molecular weight of
the gas. For a fully ionised gas with the standard cosmic abundance of the elements,
a suitable value is μ = 0.6. Differentiating (4.20) with respect to r and substituting
into (4.19), we find

	kT

μmH

(
1

	

d	

dr
+ 1

T

dT

dr

)
= −G M(≤ r)	

r2
. (4.21)

Reorganising (4.21),

M(≤ r) = − kTr2

GμmH

[
d(log 	)

dr
+ d(log T)

dr

]
. (4.22)

Thus, the mass distribution within the cluster can be determined if the variation
of the gas density and temperature with radius are known. Assuming the cluster is
spherically symmetric, these can be derived from high sensitivity X-ray intensity
and spectral observations. A suitable form for the bremsstrahlung spectral emissivity
of a plasma is

κν = 1

3π2

Z2e6

ε3
0c3m2

e

(me

kT

)1/2
g(ν, T)NNe exp

(
− hν

kT

)
, (4.23)
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where Ne and N are the number densities of electrons and nuclei respectively, Z is
the charge of the nuclei and g(ν, T) is the Gaunt factor, which can be approximated
by

g(ν, T) =
√

3

π
ln

(
kT

hν

)
. (4.24)

The spectrum of thermal bremsstrahlung is roughly flat up to X-ray energies
ε = hν ∼ kT , above which it cuts off exponentially (Longair, 1997b). Thus, by
making precise spectral measurements, it is possible to determine the temperature
of the gas from the location of the spectral cut-off and the column density of the hot
gas from the X-ray surface brightness. In practice, the spectral emissivity has to be
integrated along the line of sight through the cluster. Performing this integration and
converting it into an intensity, the observed surface brightness at projected radius a
from the cluster centre is

Iν(a) = 1

2π

∫ ∞

a

κν(r)r

(r2 − a2)1/2
dr . (4.25)

Cavaliere noted that this is an Abel integral which can be inverted to find the emis-
sivity of the gas as a function of radius (Cavaliere, 1980)

κν(r) = 4

r

d

dr

∫ ∞

r

Iν(a)a

(a2 − r2)1/2
da . (4.26)

X-rays maps of about 200 clusters were made by the Einstein X-ray Observa-
tory (Forman and Jones, 1982) and more recently analyses of the ROSAT All Sky
Survey have resulted in the NORAS and REFLEX catalogues of clusters of galaxies
identified solely through the requirement that the extragalactic X-ray sources have
extended structures (Böhringer et al., 2000, 2001). In the northern NORAS sample,
it was found that 76% of the extended X-ray sources were indeed associated with
clusters of galaxies. In addition, the ROSAT, Chandra and XMM-Newton X-ray
Observatories have produced beautiful X-ray maps and spectroscopic studies of the
hot gas in clusters.

An example of the quality of data now available is illustrated by the X-ray
map of the central regions of the Virgo cluster as observed in the ROSAT All Sky
Survey (Fig. 4.9a). A number of galaxies belonging to the Virgo cluster have been
detected as X-ray sources, as well as a few background clusters and active galaxies.
In addition, the X-ray emission of the diffuse intergalactic gas is roughly centred
on the massive galaxy M87. Evidence that the intergalactic gas traces the mass
distribution of the cluster is provided by comparison of the contours of the X-ray
surface brightness distribution with the surface distribution of galaxies as determined
by the photometric survey of the Virgo cluster by Binggeli, Tammann and Sandage
(Binggeli et al., 1987; Schindler et al., 1999). The distribution of galaxies in the
cluster and the diffuse X-ray emission are remarkably similar (Fig. 4.9b). In both
wavebands the irregular structure of the Virgo cluster can be decomposed into three
major subclusters centred on M87, M49, and M86. In the M87 subcluster the gas
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Fig. 4.9a,b. Comparison of the X-ray surface brightness distribution and the surface density
of luminous matter in galaxies in the Virgo cluster. a The X-ray image of the Virgo cluster
from the ROSAT All Sky Survey in the X-ray energy band 0.4 − 2 keV. The image has been
smoothed with a Gaussian filter with σ = 24 arcmin at the faintest levels and with decreasing
filter size with increasing surface brightness. Some galaxies in the Virgo cluster have been
detected as well as a few distant clusters and active galaxies. (Courtesy of the Max Planck
Institute for Extraterrestrial Physics, Garching.) b The contours show the number density of
the 1292 member galaxies in the Virgo Cluster Catalogue smoothed with a Gaussian filter
with σ = 24 arcmin. The spacing of the contours is linear (Schindler et al., 1999)

mass is about three times the visible mass in galaxies, assuming M/L = 20 for
the galaxies), while it accounts only for 8% to 14% of the total mass at 0.4 and
1 Mpc, respectively. The projected mass-to-light ratio has a roughly constant value
of about 500 M�/L�. Thus, the dark matter, which defines the gravitational potential
in the cluster and which is traced by the distribution of hot gas, must have a similar
distribution to that of the visible matter.

Another beautiful example of the combined use of X-ray imaging and spec-
troscopy is provided by the observations and analysis of the rich cluster Abell 1413
by Pratt and Arnaud (Pratt and Arnaud, 2002). The observations by the XMM-
Newton X-ray Observatory included spatially resolved X-ray spectroscopy of the
cluster X-ray emission and so the projected temperature variation with radius in the
cluster could be determined. Their results are shown in Fig. 4.10. First, the average
X-ray surface brightness distribution as a function of radius is fitted by an empirical
model (Fig. 4.10a). Then, the projected average temperature of the gas is estimated in
annuli at different radial distances from the centre of the cluster (Fig. 4.10b). These
are deprojected to derive the variation of the total mass within radius r using (4.22)
(Fig. 4.10c). Finally, the ratio of gas density to total density as a function of radius, or
in the case of Fig. 4.10d, the overdensity relative to the critical cosmological density,
can be found.

These data are typical of what is found in rich clusters of galaxies. The dominant
form of mass is the dark matter the nature of which is unknown. About 20% of the
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Fig. 4.10a–d. Illustrating the determination of the physical properties of the cluster A1413
from X-ray imaging and spectroscopy by the XMM-Newton X-ray Observatory. a The X-ray
brightness distribution as a function of distance from the centre of the cluster. b The projected
radial distribution of temperature of the gas. c The integrated mass distribution as a function
of distance form the centre. d The fraction of gas density to total mass density fgas within the
cluster as a function of overdensity δ relative to the critical cosmological density (Pratt and
Arnaud, 2002)

mass is in the form of hot intergalactic and this is typically about five times the mass
in the visible parts of galaxies. The spectroscopic observations also enable the mass
of iron in the intracluster medium to be determined and this is typically found to be
between about 20 and 50% of the solar value, indicating that the intergalactic gas
has been enriched by the products of stellar nucleosynthesis.

The wealth of data from the recent generation of X-ray satellites has enabled
important insights into their origin and evolution of clusters to be obtained. It is con-
venient to adopt a simple reference model for understanding the various correlations
between the properties of clusters, what is referred to as the self-similar model for
cluster formation; this will be discussed in more detail in Chap. 16.
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The simplest picture of cluster formation is to suppose that clusters developed
from small perturbations in the distribution of the dark matter by gravitational col-
lapse (see Part II). The amplitude of the perturbations grew from values δ	/	 ∼ 10−3

at the epoch of recombination to large amplitudes δ	/	 � 1 at late epochs. The
considerations of Sect. 16.1 suggest that clusters became virialised bound systems
when (δ	/	)v ≈ 200. In the standard self-similar model, it is supposed that clusters
of all masses virialised at the same epoch with the same values of (δ	/	)v. As a re-
sult, their masses are simply proportional to 	v R3, where 	v was the mean density of
the Universe at the epoch of virialisation. When the clusters virialised, they satisfied
the virial theorem, G M2/R = Mσ2

v . Since M ∝ R3, it follows that σv ∝ R, where
R can be taken to be the characteristic radius of the cluster.

The bolometric X-ray luminosity of the intracluster gas due to thermal brems-
strahlung is given by the relation

Lx ∝ VN2
e T 1/2 , (4.27)

where V ∼ R3 is the volume of emitting gas, Ne is the electron density and T
the temperature of the gas (Longair, 1997b). The gas forms an atmosphere within
the gravitational potential of the cluster as a whole, the latter being defined by the
distribution of the dark matter. Equation (4.19) can be written to order of magnitude
as

p

R
∼ G M	

R2
and so 3NekT ∼ G M

R
	 , (4.28)

where it is assumed that the ions and electrons both contribute to the pressure of the
gas. According to the virial theorem (3.19), the velocity dispersion of the galaxies
is related to the gravitational potential by G M/R ≈ σ2

v and so

kT ∼ mpσ
2
v , (4.29)

that is, T ∝ σ2
v . If the fraction of the total mass of the cluster in hot intracluster gas

is η, it follows that the X-ray luminosity of the cluster is

Lx ∝ η2 M2

R3
T 1/2 ∝ Rσ2

v T 1/2 ∝ σ4
v , (4.30)

where it has been assumed that η takes the same value for clusters of different
masses. Then, since M ∝ R3 ∝ σ3, this model results in the prediction that the
X-ray luminosity and the mass of the cluster are related by

Lx ∝ M4/3 . (4.31)

The scaling relations (4.30) and (4.31) have been the subject of considerable
study. Figure 4.11 shows the results of a major study of X-ray clusters discovered in
the ROSAT All Sky Survey (Reiprich and Böhringer, 2002). It can be seen that the
best-fit relation is slightly steeper than the predictions of the scaling model, but it is
interesting that the general trend is not so different from the simple picture.
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Fig. 4.11. The correlation between the X-ray luminosity of a cluster of galaxies and its total
mass for the brightest X-ray clusters of galaxies in the ROSAT All Sky Survey (Reiprich
and Böhringer, 2002). The mass was determined to the virial radius which was taken to be
a density 200 greater than the critical cosmological density. The best-fit relation for their
sample of 106 clusters is shown by the solid line. The best-fit relation for a smaller sample of
63 clusters which form a better complete sample is shown by the tripledot-dashed line. The
dot-dashed line shows the expectation of the simple self-similar relation Lx ∝ M4/3. The
dashed line is the prediction of a model with preheating of the intracluster gas

Another test of this model is the X-ray luminosity–velocity dispersion relation
which has been analysed in some detail by Ortiz-Gil and her colleagues (Ortiz-Gil
et al., 2004). For a large sample of clusters from the REFLEX catalogue derived from
the ROSAT All Sky Survey, they found a correlation of the form Lx ∝ σ(4.1±0.3)

v ,
in good agreement with the correlation (4.30) predicted by the self-similar model
(Fig. 4.12). A similar result was found for a smaller sample of clusters which formed
a more complete statistical sample. Although this result is encouraging, their results
for the Lx − T and σv − T relations differ from the expectations of the self-similar
model. They found Lx ∝ T 3.1±0.2 compared with the expected relation Lx ∝ T 2 and
σv ∝ T 1.00±0.16 compared with the predicted σv ∝ T 0.5. They noted that these last
two relations are compatible with the X-ray luminosity–velocity dispersion relation.
They inferred that there must be other contributions to the thermal heating and
cooling of the intracluster gas than simply the thermal energy which resulted from
the initial process of virialisation. There is now considerable evidence that such
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Fig. 4.12. A plot of bolometric X-ray luminosity Lx versus radial velocity dispersion σv for
the REFLEX sample of 171 clusters. The linear fit has logarithmic slope of (4.1 ± 0.3). The
dashed lines are the 1σ errors. Filled circles correspond to clusters at redshift z ≤ 0.05, open
triangles are clusters with 0.05 < z ≤ 0.1 and open circles are clusters at z > 0.1 (Ortiz-Gil
et al., 2004)

additional sources of heating and cooling are important in understanding the state of
the intracluster gas.

If the density of the hot intracluster gas is large enough, its cooling rate can
be sufficiently great for it to cool over cosmological time-scales. At high enough
temperatures, the principal energy loss mechanism for the gas is the same thermal
bremsstrahlung process which is responsible for the X-ray emission. The total energy
loss rate per unit volume due to thermal bremsstrahlung is

−
(

dE

dt

)
= 1.435 × 10−40 Z2T

1
2 ḡNNe W m−3 , (4.32)

where Z is the charge of the ions, N and Ne are the number densities of ions and
electrons respectively and ḡ is a mean Gaunt factor which has value roughly 1 – we
assume Z = 1 and N = Ne. The thermal energy density of the fully ionised plasma
is ε = 3NkT and so the characteristic cooling time for the gas is

tcool = 3NkT∣∣∣∣
dE

dt

∣∣∣∣
= 1010 T 1/2

N
years , (4.33)
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where the temperature is measured in kelvins and the number density of ions or
electrons is measured in particles m−3. Thus, if the typical temperature of the gas
is 107 to 108 K, the cooling time is less that 1010 years if the electron density is
greater than about 3 × 103 to 104 m−3. These conditions are indeed found in many
of the clusters of galaxies which are intense X-ray emitters. As a result, the central
regions of these hot gas clouds cool and, to preserve pressure balance, the gas density
increases, resulting in the formation of a cooling flow.

Evidence for these cooling flows and their role in the evolution of clusters
of galaxies was reviewed by Fabian (Fabian, 1994). An example of the cooling
flow in the cluster Abell 478 is illustrated by the diagrams shown in Fig. 4.13.
The ROSAT observations have been deprojected to determine mean values of the
density and temperature of the gas as a function of radial distance from the centre.
The temperature decreases towards the central regions while the electron density
increases to values greater than 104 m−3 in the very centre. At a radius of 200 kpc,
the electron temperature is T = 7×107 K and the electron density Ne = 8×103 m−3.
Inserting these values into (4.33), we find that the cooling time is 1010 years. It can
be seen that, outside this radius, the temperature of the gas is constant, whilst at
smaller radii the gas temperature decreases towards the central regions.

As a result, matter drifts slowly in through the surface at radius rcool, at which
the cooling time of the gas is equal to the age of the cluster. The X-ray luminosity of

Fig. 4.13. The properties of the intracluster gas in the cluster Abell 478 obtained by depro-
jecting images taken by the ROSAT X-ray Observatory (White et al., 1994). The cooling time
of the gas is less than 1010 years within a radius of 200 kpc (Fabian, 1994)
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the cooling flow results from the internal energy of each element of the gas as well
as the work done as it drifts slowly in towards the central regions whilst maintaining
hydrostatic equilibrium. The appropriate conserved quantity is

	v2( 1
2v

2 +w) , (4.34)

where 	, v and w are the density, velocity and enthalpy of the gas flow. Note that
the relevant quantity which describes the energy content of the flow is the enthalpy
w = ε + pV , where ε is the internal energy of the gas and p and V are its pressure
and specific volume. This is because, in addition to its internal thermal energy,
work is done on the volume element by the pressure of the gas. When the volume
element drifts within the cooling radius rcool, all of the energy associated with the
enthalpy is available for heating the gas and so the energy deposited per unit mass
is w = ε+ pV = 5

2 nkT for a perfect gas, where n is the number density of particles
in the flow. It follows that the total energy input to the gas is determined by the rate
at which mass drifts inwards through any radius, Ṅ . In the steady state, this energy
is reradiated by the gas as X-rays and so the cooling luminosity of the flow Lcool is

Lcool = 5
2 ṄkT = 5

2

Ṁ

μm
kT , (4.35)

where m is the mass of the hydrogen atom andμ is the mean molecular weight of the
gas. Thus, knowing the total X-ray luminosity due to cooling, and the temperature of
the gas, (4.35) can be used to work out the mass flow rate Ṁ through any radius. The
result of this calculation for the cluster Abell 478 is shown in Fig. 4.13. The cooling
flow results in a mass inflow rate of about 600 to 800 M� y−1 and so over a period
of 1010 years, such cooling flows can contribute significantly to the baryonic mass
in the central regions of the cluster.

According to Fabian, about half of the clusters detected by the Einstein X-ray
Observatory have high central X-ray surface brightnesses and cooling times less
than 1010 years (Fabian, 1994). Abell 478 has a particularly massive flow. Typically,
the inferred mass flow rates are about 100 to 300 M� y−1.

This cannot be the whole story, however, since X-ray spectroscopic observations
of the cores of clusters have shown that there is an absence of cool gas which would
be expected if there were no other energy sources. This is most vividly demonstrated
by observations by the ESA XMM-Newton satellite, for example, the observations
of the cluster Sérsic 159-03 which has a cool core (de Plaa et al., 2005). Figure 4.14
shows the X-ray spectrum of the cluster, the solid line showing the wealth of X-ray
emission lines expected according to standard models of cooling flows. It can be
seen that the observed spectrum differs dramatically from the expectations of the
cooling flow models, because of the absence of strong lines associated with ions
such as FeXVII. This lack of cool gas seems to be a feature of many of the cooling
flows observed in rich clusters of galaxies (Kaastra et al., 2004). The inference is that
there must be some further heating source within the cluster to reheat the cooling
gas.

Many models have been proposed to resolve this problem, some of these being
listed by Kaastra and his colleagues (Kaastra et al., 2004). These models include
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Fig. 4.14. Comparison of the observed high resolution X-ray spectrum of the cluster of galaxies
Sérsic 159-03 observed by the ESA XMM-Newton satellite with the predicted spectrum of
a standard cooling flow model without heating. The strong lower excitation lines from ions
such as Fe XVII are absent, indicating the lack of cool gas in the cluster (de Plaa et al., 2005)

metallicity inhomogeneities, buoyantly rising radio bubbles transporting cool gas
outwards, halo-in-halo structures, turbulent mixing due to rising and falling hot gas
bubbles, heating by AGN activity, contamination due to non-thermal X-ray emission,
heating by dead radio galaxies, rapid cooling due to mixing with cold gas and heat
conduction by electrons. They also propose heating by coronal loops, similar to
those observed in the corona of the Sun, but on the scale of the cores of clusters of
galaxies.

A highly suggestive set of observations made by the Chandra X-ray Observatory
shows that the cooling gas in the central regions of a number of clusters is perturbed
by the presence of radio lobes of recent radio source events. One of the most
compelling examples is the central region of the Perseus cluster of galaxies in
which the buoyant lobes of relativistic plasma have pushed back the intracluster gas,
forming ‘holes’ in the X-ray brightness distribution (Fig. 4.15a) (Fabian et al., 2000).
In a very long X-ray exposure with the Chandra X-ray Observatory, Fabian and his
colleagues identify what they interpret as isothermal sound waves produced by the
weak shock wave associated with the expanding lobes (Fig. 4.15b). They show that
the energy injected into the intracluster gas by these sound waves can balance the
radiative cooling of the cooling flow (Fabian et al., 2006).
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Fig. 4.15a,b. The central regions of the Perseus cluster of galaxies as observed by the Chandra
X-ray Observatory. a The central regions of the cluster showing the cavities evacuated by the
radio lobes which are shown by the white contour lines (Fabian et al., 2000). b An unsharp-
mask image of the central regions of the cluster showing the various features caused by the
expanding radio lobes. Many of the features are interpreted as sound waves caused by the
weak shock wave associated with the expansion of the radio lobes (Fabian et al., 2006)

4.5 The Sunyaev–Zeldovich Effect in Hot Intracluster Gas

An independent method of studying hot gas in clusters of galaxies and elsewhere
in the Universe is through the search for decrements in the intensity of the Cosmic
Microwave Background Radiation. As the photons of the background radiation pass
through the gas cloud, a few of them suffer Compton scattering by the hot electrons.
Although to first order the photons are just as likely to gain as lose energy in
these scatterings, to second order there is a net statistical gain of energy and so
the spectrum of the Cosmic Microwave Background Radiation is shifted to slightly
higher energies. As a result, there is expected to be a decrease in the intensity of
the background radiation in the Rayleigh–Jeans region of the spectrum, that is, at
energies hν 	 kTr, while in the Wien region, hν � kTr, there should be a slight
excess – Tr is the temperature of the background radiation. These predictions were
made by Sunyaev and Zeldovich as long ago as 1969 (Sunyaev and Zeldovich, 1970)
and it was almost 20 years before the Sunyaev–Zeldovich effect was observed with
confidence in the directions of clusters of galaxies (Birkinshaw, 1990).

The magnitude of the distortion is determined by the Compton scattering optical
depth y through the region of hot gas,

y =
∫ (

kTe

mec2

)
σT Ne dl . (4.36)

The resulting decrement in the Rayleigh–Jeans region of the spectrum is

ΔIν
Iν

= −2y . (4.37)
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Fig. 4.16. Intensity changes due to the Sunyaev-Zeldovich effect in units of 2(kT0)
3/(hc)2,

plotted against X = hν/kT0 for three values of kTe (in keV), where θe = kTe/mec2. The solid
curves are calculated using the second-order correction to the Kompaneets equation, while
the dashed lines are calculated from the first-order correction. The points are the result of
a Monte Carlo evaluation of the Boltzmann collision integral by Garrett and Gull (Challinor
and Lasenby, 1998)

Thus, the magnitude of the decrement along any line of sight through the cluster
provides a measure of the quantity

∫
NeTe dl, in other words, the integral of the

pressure of the hot gas along the line of sight.1 For the typical parameters of hot
intracluster gas, the predicted decrement amounts to ΔI/I ≈ 10−4. The spectral
signature of the effect is quite distinctive over the peak of the spectrum of the
Cosmic Microwave Background Radiation (Fig. 4.16) and has been worked out
in detail by Challinor and Lasenby (Challinor and Lasenby, 1998). This form of
distortion has been measured in 15 Abell clusters in the SuZIE experiment carried
out at the CalTech Submillimetre Observatory on Mauna Kea (Benson et al., 2004).

An important feature of the Sunyaev–Zeldovich effect is that, if the hot gas clouds
have the same properties at all redshifts, the observed decrement is independent of
redshift since the scattering results in only a fractional change in the temperature
of the background radiation. This prediction is beautifully illustrated by the maps
of decrements in the Cosmic Microwave Background Radiation obtained by the
OVRO and BIMA millimetre arrays which span a range of redshift from 0.1 to
0.8 (Fig. 4.17)(Carlstrom et al., 2000). All these clusters were known to be X-ray
sources and there is good agreement between the sizes of the X-ray images and the
Sunyaev–Zeldovich decrements.

1 I have given a discussion of the physical process involved in the Sunyaev–Zeldovich effect
in High Energy Astrophysics, Vol. 1 (Longair, 1997b).
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Fig. 4.17. Images of the Sunyaev–Zeldovich decrement in 12 distant clusters with redshifts
in the range 0.14 to 0.89 (Carlstrom et al., 2000). Each of the images is plotted on the same
intensity scale. The data were taken with the OVRO and BIMA millimetre arrays. The filled
ellipse at the bottom left of each image shows the full-width half-maximum of the effective
resolution used in reconstructing the images
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The combination of the Sunyaev–Zeldovich and thermal bremsstrahlung obser-
vations of the intracluster gas enable the dimensions of the hot gas cloud to be
determined independently of knowledge of the redshift of the cluster. Using order of
magnitude arguments, the Sunyaev–Zeldovich effect determines the quantity NeTe L,
where L is the dimension of the volume of hot gas. The bremsstrahlung emission
of the cluster determines the quantity L3 N2

e T 1/2. The temperature T can be esti-
mated from the shape of the bremsstrahlung spectrum and so Ne can be eliminated
between these two relations so that an estimate of L can be found. By measuring the
angular size θ of the emitting volume, the distance of the cluster can be found from
D = L/θ. Once the redshift of the cluster has been measured, Hubble’s constant
can be estimated (Sect. 8.3). This is one of the more promising physical methods of
estimating Hubble’s constant without the necessity of using a hierarchy of distance
indicators.

4.6 Gravitational Lensing by Galaxies and Clusters of Galaxies

A beautiful method for determining the mass distribution in galaxies and clusters of
galaxies has been provided by the observation of gravitationally lensed images of
background galaxies. In the case of clusters of galaxies, these consist of spectacular
arcs about the central core of the cluster as well as distorted images of background
galaxies caused by the individual galaxies in the cluster. Gravitational lensing has
the potential to provide information about many key problems in the astrophysics
of galaxies, clusters and larger-scale structures It is therefore worthwhile studying
some simple aspects of gravitational lensing and its applications.

4.6.1 Basic Theory of Gravitational Deflections

Many of the most important results can be derived from the formula for the gravita-
tional deflection of light rays by the Sun, first derived by Einstein in his great paper
of 1915 on the General Theory of Relativity (Einstein, 1915). He showed that the
deflection of light by a point mass M due to the bending of space–time amounts to
precisely twice that predicted by a Newtonian calculation,

α̃ = 4G M

ξc2
, (4.38)

where ξ is the ‘collision parameter’ (Fig. 4.18a). The angles in Fig. 4.18a have been
exaggerated to illustrate the geometry of the deflection. For the very small deflections
involved in the gravitational lens effect, ξ is almost exactly the distance of closest
approach of the light ray to the deflector.

Chwolson in 1924 and Einstein in 1936 realised that, if a background star were
precisely aligned with a deflecting point object, the gravitational deflection of the
light rays would result in a circular ring, centred upon the deflector (Fig. 4.18c)
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Fig. 4.18. a Illustrating the geometry of the deflection of light by a deflector, or lens, of mass
M (Wambsganss, 1998). b Illustrating the two light paths from the source to the observer for
a point mass (Wambsganss, 1998). c Illustrating the changes of the appearance of a compact
background source as it passes behind a point mass. The dashed circles correspond to the
Einstein radius. When the lens and the background source are precisely aligned, an Einstein
ring is formed with radius equal to the Einstein radius θE

(Chwolson, 1924; Einstein, 1936). It is a straightforward calculation to work out the
radius of what came to be known as an ‘Einstein ring’, although it should perhaps be
known as a ‘Chwolson ring’. In the following analysis, we adopt the notation used
by Wambsganss in his excellent online introduction to many aspects of gravitational
lensing (Wambsganss, 1998). In Fig. 4.18a, the distance of the background source
is DS and that of the deflector, or lens, DL, the distance between them being DLS.
Suppose the observed angular radius of the Einstein ring is θE. Then, for a point
source on-axis, since all the angles are small,

θE = α̃

(
DLS

DS

)
= 4G M

ξc2

(
DLS

DS

)
, (4.39)

where α̃ is the deflection given by (4.38). Since ξ = θE DL,

θ2
E = 4G M

c2

(
DLS

DS DL

)
= 4G M

c2

1

D
, (4.40)
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where D = (DS DL/DLS). Thus, the Einstein angle θE, the angle subtended by the
Einstein ring at the observer, is given by the relation

θE =
(

4G M

c2

)1/2 1

D1/2
. (4.41)

We have worked out this expression assuming the geometry of space is Euclidean.
The above relation is also correct if the sources are at cosmological distances,
provided the Ds are angular diameter distances (Blandford and Narayan, 1992).2

Expressing the mass of the deflector in solar masses M� and the distance D in
Gpc (= 109 pc = 3.056 × 1025 m), we find

θE = 3 × 10−6
(

M

M�

)1/2 1

D1/2
Gpc

arcsec . (4.42)

Thus, clusters of galaxies with masses M ∼ 1015 M� at cosmological distances
can result in Einstein rings with angular radii tens of arcseconds. Such rings were
first reported by Soucail and his colleagues and by Lynds and Petrosian (Lynds and
Petrosian, 1986; Soucail et al., 1987). Beautiful examples of partial Einstein rings
about the centre of the cluster Abell 2218 have been observed with the Hubble
Space Telescope by Kneib, Ellis and their colleagues (Figs. 4.1 and 4.19). The
rings are not complete and are elliptical rather than circular. The ellipticity and the
incompleteness of the rings reflect the facts that the gravitational potential of the
cluster is not precisely spherically symmetric and that the background galaxy and
the cluster are not perfectly aligned.

4.6.2 Magnification of Images by Gravitational Lensing

It is worth developing the theme of gravitational lensing a little further since the
technique provides some of the most important information about the distribution of
dark matter in the Universe is proving to be a powerful cosmological tool. In addition
to the very accessible review by Wambsganss, the comprehensive discussion of
all aspects of gravitational lensing presented in the volume Gravitational Lensing:
Strong, Weak and Micro by Schneider, Kochanek and Wambsganss can be thoroughly
recommended (Wambsganss, 1998; Schneider et al., 2006).

Let us first continue the analysis of the images of a background point source
formed by a point mass deflector. We can first relate the angle of the observed image
to its position in the absence of the deflector. From Fig. 4.18a, recalling that all the
angles are very small,

θDS = βDS + α̃DLS . (4.43)

Next, it is useful to introduce the reduced deflection angleα(θ)which is the deflection
of the image of the background object because of the presence of the deflector as

2 Angular diameter distances are introduced in Sect. 5.5.3. The formula for angular diameter
distances between any two redshifts is derived in Sect. 7.5.
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Fig. 4.19. The central region of the rich cluster of galaxies Abell 2218 observed by the Hubble
Space Telescope at a wavelength of 840 nm. Several arcs can be observed more or less centred
on the core of the Abell cluster. These are the gravitationally lensed images of background
galaxies more or less perfectly aligned with the centre of the cluster. The circled segments
of rings are the images of an extremely distant red galaxy (Courtesy of NASA, J.-P. Kneib,
R. Ellis, and the Space Telescope Science Institute)

measured by the observer. From the geometry of Fig. 4.18a,

β = θ − α(θ) . (4.44)

Inserting the value of α̃ into the expression α(θ) = (DLS/DS)α̃, we find

α(θ) = (DLS/DS)α̃ =
(

DLS

DS

)
4G M

ξc2
=
(

DLS

DS DL

)
4G M

θc2
= θ2

E

θ
, (4.45)
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where we have used the expression (4.41) for the Einstein angle θE. As a result, the
lens equation (4.44) can be written

β = θ − θ2
E

θ
. (4.46)

The solutions of this quadratic equation give the two possible routes from the source
to the observer:

θ =
β ±

√
β2 + 4θ2

E

2
. (4.47)

These light paths are illustrated in Fig. 4.18b. Notice that one of the angles is positive
and the other negative, the small negative value corresponding to the longer route.
The negative sign means that, if the object were extended, it would be mirror-inverted
relative to the other image. Notice also that the images lie on opposite sides of the
Einstein angle θE.

As in the case of geometric optics, surface brightness is conserved on passing
through a gravitational lens and so the images are magnified because of the changes
in solid angle. Consider a small angular segment of an arc of azimuthal angle dφ. In
the absence of the lens, the solid angle subtended at the observer would be dφ βdβ.
Because of the effect of gravitational lensing, the angle β becomes θ and dβ becomes
dθ and so the solid angle becomes dφ θdθ. Consequently, the magnification of the
lensed images is

μ = θ

β

dθ

dθ
. (4.48)

Finally, it is convenient to introduce a normalised impact parameter u in terms of
the Einstein radius θE, u = β/θE. After a little algebra, the magnifications of the two
images can be written

μi =
(

1 − θ4
E

θ4
i

)−1

= 1

2
± u2 + 2

2u
√

u2 + 4
. (4.49)

Again, the magnification of the image outside the Einstein radius is positive and the
other, inside the Einstein radius, is negative because of mirror-imaging. The sum
of the magnitudes of the two image magnifications is the total magnification of the
background point source:

μ = |μ1| + |μ2| = u2 + 2

u
√

u2 + 4
. (4.50)

The reason for carrying out this calculation is that it is the expression which describes
the characteristic signature of microlensing of background stars by objects in the
halo of our Galaxy (see Sect. 4.7.1). A sketch of the gravitational deflections of a star
of finite diameter by a point deflector is shown in Fig. 4.18c.
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4.6.3 Extended Deflectors

The simplest generalisation of the above result is to consider the deflection due to
a lens with an axially symmetric mass distribution along the line of sight. In that
case, Schneider and his colleagues show that the deflection is given by the expression

α̃ = 4G M(≤ ξ)

ξc2
, (4.51)

where M(≤ ξ) is the total projected mass within the radius ξ at the lens, a result
corresponding to Gauss’s theorem for Newtonian gravity.

We can derive from this result the necessary condition for the formation of
a gravitationally lensed image about an object of mass M and radius R. For simplicity,
let us suppose that the lens is a uniform disc of radius R and mass M. Then, using
the result (4.51), the deflection for rays grazing the edge of the disc is

α̃ = 4G M(< R)

Rc2
= 4πGΣ

c2
R , (4.52)

where we have introduced the surface density of the lens is Σ = M/πR2. The
deflection measured by the observer at the origin is, as before,

α(θ) = DLS

DS
α̃ = DLS

DS

4πGΣ

c2
R . (4.53)

Let us now introduce a critical surface density defined by

Σcrit = c2

4πG

DS

DLS DL
= c2

4πG

1

D
(4.54)

Then,

α(θ) = Σ

Σcrit

R

DL
= Σ

Σcrit
θ. (4.55)

Thus, if the surface density of the deflector is of the same order as the critical surface
density, multiple images will be observed. The significance of the critical surface
density can be appreciated by rewriting it in terms of the critical cosmological density
which will be introduced in Sect. 7.2.2, 	c = 3H2

0 /8πG = 3H2
0 /8πG = 2×10−26h2

kg m−3. Then,

Σcrit ∼ 	c
c2

H2
0

1

D
. (4.56)

If the sources are at cosmological distances D ∼ c/H0, the critical surface density is

Σcrit ∼ 	c
c

H0
. (4.57)

Thus, for sources at cosmological distances, the critical surface density is roughly
2h kg m−2. In fact, the Universe as a whole can be thought of as acting as a giant grav-
itational lens in understanding the effects of inhomogeneities upon the cosmological
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redshift–angular diameter relation3 (Dyer and Roeder, 1972, 1973; Dashevsky and
Zeldovich, 1964; Zeldovich, 1964).

Let us apply the result (4.51) to the case of an isothermal gas sphere, which
provides a reasonable description of the mass distribution in clusters of galaxies.
We consider the simple analytic solution (4.7), which has the unpleasant features of
being singular at the origin and of having infinite mass when integrated to an infinite
distance, but these are unimportant for our present analysis. For this reason, this
analysis is often referred to as the case of a singular isothermal sphere. Assuming that
the velocity dispersion is isotropic and that 〈v2‖〉 is the observed velocity dispersion
along the line of sight,

	(r) = 2

Ar2
where A = 4πGμ

kT
= 4πG

〈v2‖〉
. (4.58)

We now work out the projected mass density, or the surface densityΣ(ξ), at projected
distance ξ by integrating along the line of sight, say, in the z-direction

Σ(ξ) = 2
∫ ∞

0
	(r) dz = 2

∫ π/2

0
	(r)ξ sec2θ dθ (4.59)

= 〈v2‖〉
πG

1

ξ

∫ π/2

0
dθ = 〈v2‖〉

2G

1

ξ
. (4.60)

Therefore, the total mass within the distance ξ perpendicular to the line of sight at
the deflector is

∫ ξ

0
Σ(ξ)2πξ dξ = π〈v2‖〉ξ

G
. (4.61)

The gravitational deflection of the light rays is therefore

α̃ = 4G M(< ξ)

ξc2
= 4π〈v2‖〉

c2
. (4.62)

This is the remarkable result we have been seeking. For a singular isothermal gas
sphere, the gravitational deflection is independent of the distance at which the light
rays pass by the lens. We can therefore find the Einstein radius θE directly from
(4.39)

θE = 4π〈v2‖〉
c2

DLS

DS
= 28.8 〈v2

3‖〉
DLS

DS
arcsec , (4.63)

where 〈v2
3‖〉 means the observed velocity dispersion of the galaxies in the cluster

measured in units of 103 km s−1. Fort and Mellier note that this is a rather robust
expression for estimating the masses of clusters of galaxies (Fort and Mellier, 1994).
They find that for a variety of plausible mass distributions the estimates agree to
within about 10%.

3 These relations are developed in Sect. 7.7.
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Fig. 4.20. The gravitational distortions of a background source (Panel I) when it is located at
different positions with respect to the axis of the gravitational lens. In this example, the lens is
an ellipsoidal non-singular squeezed isothermal sphere. The ten positions of the source with
respect to the critical inner and outer caustics are shown in the panel (S). The panels labelled
(1) to (10) show the shapes of the images of the lensed source (Kneib, 1993). Note the shapes
of the images when the source crosses the critical caustics. Positions (6) and (7) correspond
to cusp catastrophes and position (9) to a fold catastrophe (Fort and Mellier, 1994)
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Strong lensing of background sources only occurs if they lie within the Einstein
angle θE of the axis of the lens. An excellent discussion of the shapes and intensities
of the gravitationally distorted images of background sources for more general mass
distributions is given by Fort and Mellier (Fort and Mellier, 1994). The gravitational
lensing is not true lensing in the sense of geometric optics but rather the light
rays come together to form caustics and cusps. Figure 4.20 shows the types of
images expected for gravitational lensing by an ellipsoidal gravitational potential.
The background source is shown in panel (I) and, in the second panel labelled
(S), different positions of the background source with respect to the critical inner
and outer caustic lines associated with the gravitational lens are shown. These
are lines along which the lensed intensity of the image is infinite. The images
labelled (1) to (10) show the observed images of the background source when it is
located at the positions labelled on the second panel (S). The numbers and shapes
of the images depend upon the location of the source with respect to the caustic
surfaces. It can be seen that the predicted images resemble the arcs seen in Figs. 4.1
and 4.19.

For clusters of galaxies, these inferred masses are in good agreement with the
values obtained by measuring the velocity dispersion of the cluster galaxies and
with the X-ray methods of measuring total masses. An important aspect of the
gravitational lensing approach to the determination of cluster masses is that it is
possible to determine the details of the gravitational potential within the cluster.
These studies show, for example, that the distribution of mass in Abell 2218 is
more complex than a simple spherically symmetric distribution (Kneib et al., 1996).
Another example of the power of the gravitational lensing technique is shown in
Fig. 4.21 which was created by Tyson and his colleagues using a parametric inversion
technique to analyse a very deep HST image of the cluster Cl 0024+1654 (Tyson et al.,
1998). They find that, excluding mass concentrations centered on visible galaxies,
more than 98% of the remaining mass is represented by a smooth concentration of
dark matter centered on the brightest galaxies in the core of the cluster. With the
availability of very deep cluster images in a number of wavebands taken with the
Advanced Camera for Surveys (ACS) on the Hubble Space Telescope, the distortions
of background objects by many galaxies in the clusters can be used to define detailed
mass distributions (Zekser et al., 2006).

The extension of these techniques to the weak gravitational lensing of large
samples of distant galaxies by large-scale structures has been developed by Kaiser
who has shown how the distorted images can be used to determine the large-scale
two-point correlation function for galaxies (Kaiser, 1992).

4.6.4 Gravitational Lensing and the Astrophysics of Galaxies

The above discussion barely scratches the surface of what will undoubtedly be
a major growth area in the physics of galaxies and clusters in the coming years.
Gravitational lensing probes directly the total mass distribution, independent of the
distribution of baryonic matter and so can be used to address a number of key
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Fig. 4.21. The reconstructed mass distribution in the cluster Cl 0024+1654 which is dominated
by the underlying dark matter distribution shown in orange. Mass associated with the galaxies
is shown in blue. The contours show 0.5, 1 and 1.5 times the critical lensing column density.
Tyson and his colleagues find the mass distribution is remarkably smooth once the mass
associated with the galaxies is removed. They find a mass-to-luminosity ratio for the cluster
of M/L = (276 ± 40)h(M�/L�) (Tyson et al., 1998)

astrophysical questions. For example:

– What is the distribution of mass in the dark matter haloes of galaxies and clusters?
– What are the tidal radii of the mass distributions for galaxies, both in the general

field and in the cores of clusters?
– What is the bias parameter for galaxies, meaning the ratio between the clustering

amplitudes for the baryonic and dark matter?
– Is there structure in the distribution of dark matter within galaxies and clusters,

or is it smooth?
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These and many other issues are addressed in the comprehensive survey Gravi-
tational Lensing: Strong, Weak and Micro by Schneider, Kochanek and Wambsganss
(Schneider et al., 2006). Strong lensing effects such as those illustrated in Fig. 4.20
enable the mass distribution to be determined on the scale of the inner caustic sur-
faces but, in addition, weak lensing can be detected statistically to much larger radii.
As can be seen from panels 1, 2 and 3 of Fig. 4.20, the gravitationally lensed images
are predicted to be stretched tangentially to the line joining the lens to the background
galaxy. Therefore, by measuring the orientations of the images of large numbers of
background galaxies, the effects of weak gravitational lensing can be distinguished
statistically from the intrinsic ellipticities of galaxies. Convincing evidence for the
detection of a statistical weak lensing signature for galaxies was first discovered by
Brainerd and her colleagues (Brainerd et al., 1996) and has since been repeated for
very much larger samples of galaxies.

As Schneider emphasises in his review, galaxy-galaxy imaging may well provide
the best constraints statistically on the dimensions of dark matter haloes. A good
example of what has been achieved is provided by the Red-Sequence Cluster Survey
which involved ∼ 1.2 × 105 lensing galaxies and ∼ 1.5 × 106 fainter background
galaxies in an area of 45.5 square degrees (Hoekstra et al., 2004). The lensing galaxies
had medium redshift z ≈ 0.35 and the background galaxies z ≈ 0.53. These data
showed that the dark matter haloes were somewhat rounder than the light distribution
of the galaxies. Interestingly, the analysis of the shear data on larger angular scales
provided evidence for truncation of the isothermal density distribution at a radius of
(185 ± 30) h−1 kpc, one of the few direct estimates of the scale of the dark matter
haloes.

A good example of the power of this technique is the determination of the
mass distribution in a sample of 22 early-type galaxies which were imaged by
the Advanced Camera for Surveys (ACS) of the Hubble Space Telescope (Gavazzi
et al., 2007). In the central regions, the mass distributions were determined by optical
spectroscopy and by strong gravitational lensing. In the outer regions, the statistical
weak gravitational lensing technique enabled the mass profile to be determined out to
about 300 kpc. Gavazzi and his colleagues found that the total mass density profile
was consistent with that of an isothermal sphere, 	 ∝ r−2, over two decades in
radius from (3–300) h−1 kpc, despite the fact that the inner regions are dominated
by baryonic matter whilst the outer regions are dominated by dark matter. They found
that the average stellar mass-to-light ratio was M∗/LV = 4.48±0.46h M�/L� while
the overall average virial mass-to-light ratio was Mvir/LV = 246+101

−87 h M�/L�.
An example of the use of weak gravitational lensing to estimate the bias parameter

for large samples of galaxies has been carried out by Simon and his colleagues using
the data from the Garching-Bonn Deep Survey (Simon et al., 2007). Typically,
about 105 lensing galaxies were studied in three redshift intervals centred on z =
0.35, 0.47, 0.61 and for each sample typically (1 − 3) × 106 background galaxies
were observed. Similar bias parameters were found in the three redshift intervals,
each about b = 0.8 ± 0.1 (see Sect. 14.4).

Another example of the power of gravitational lensing techniques is provided by
the remarkable simulations of Wambsganss, which are contained in his online re-
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view of gravitational lensing (Wambsganss, 1998). While the deflection data provide
strong geometric constraints on the overall distribution of dark matter, the observed
intensities of the multiple images of background quasars are more difficult to recon-
cile with the simplest smooth models. Wambsganss’s splendid simulations illustrate
the expected fluctuations in the observed intensities of the multiple images if the
dark matter in the lensing galaxy consisted of large numbers moving lenses. Such
fluctuations are observed in the relative brightnesses of the four components of the
quadruple quasar Q2237+0305.

4.7 Forms of Dark Matter

One of the fundamental problems of cosmology is the unknown nature of the dark
matter which is the dominant form of gravitating mass in the outer regions of large
galaxies, in clusters of galaxies and other large-scale systems. This problem will
haunt much of this book.

We are certain that the dark matter is present on the basis of the various arguments
presented in Sects. 4.3 to 4.6, but we can only identify what it might be by standard
astronomical techniques if it emits radiation or absorbs the radiation of background
sources. An illustrative toy model is to suppose that the dark matter is in the form
of standard bricks. There would have to be only one kilogram brick per cube of
side roughly 500 million kilometres to attain the critical cosmological density 	c =
3H2

0 /8πG. If the bricks were uniformly distributed throughout the Universe, they
would not obscure the most distant objects we can observe and they would be so
cold that they would emit negligible amounts of far-infrared radiation. This example
illustrates the point that there could be many forms of ordinary baryonic dark matter
present in the Universe which would be very difficult to detect, even before we
consider more exotic possibilities. Let us consider first the case of baryonic dark
matter.

4.7.1 Baryonic Dark Matter

By baryonic matter, we mean ordinary matter composed of protons, neutrons and
electrons and for convenience we will include the black holes in this discussion. As
illustrated by the example of the bricks, certain forms of baryonic matter are very
difficult to detect because they are very weak emitters of electromagnetic radiation.
Important examples of such weak emitters are stars with masses M ≤ 0.08M�, in
which the central temperatures are not hot enough to burn hydrogen into helium –
they are referred to collectively as brown dwarfs. They have no internal energy
source and so the source of their luminosity is the thermal energy with which they
were endowed at birth. There could be a small contribution from deuterium burning,
but even this is not possible for stars with masses M ≤ 0.01M�. Brown dwarfs are
normally classified as inert stars with masses in the range 0.08 ≥ M ≥ 0.01M�.
Below that mass, they are normally referred to as planets, 0.01M� corresponding to
ten times the mass of Jupiter.
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Until recently, brown dwarfs proved to be very difficult to detect. The situation
has changed dramatically with a number technical advances in optical and infrared
astronomy. The 2MASS infrared sky survey, which was conducted at a wavelength
of 2 μm, has discovered many cool brown dwarfs. The NICMOS infrared camera on
the HST has discovered numerous brown dwarfs in nearby star clusters. The same
techniques of high precision optical spectroscopy which has been spectacularly
successful in discovering extrasolar system planets, has also been used to discover
a number of brown dwarfs orbiting normal stars. Although the brown dwarfs are
estimated to be about twice as common as stars with masses M ≥ 0.08M�, they
contribute very little to the mass density in baryonic matter as compared with normal
stars because of their low masses. The consensus of opinion is that brown dwarfs
could only make a very small contribution to the dark matter problem.

A strong limit to the total amount of baryonic matter in the Universe is provided
by considerations of primordial nucleosynthesis. As will be shown in Sect. 10.4, the
standard Big Bang model is remarkably successful in accounting for the observed
abundances of light elements such as helium-4, helium-3, deuterium and probably
lithium-7 through the process of primordial nucleosynthesis. An important conse-
quence of that success story is that the primordial abundances of the light elements,
particularly of deuterium and helium-3, are sensitive tracers of the mean baryon
density of the Universe. Steigman has reviewed recent observational evidence on the
primordial abundances of the light elements and compared these with the predictions
of standard Big Bang nucleosynthesis (Steigman, 2006). He finds a best estimate
of the mean baryon density of the Universe of ΩBh2 = (0.0223 ± 0.002). Adopt-
ing a value of h = 0.7 (see Sect. 8.3), the density parameter in baryonic matter is
ΩB = 0.0455, compared with a mean density of matter in the Universe ofΩ0 ≈ 0.3
(see Sect. 8.7). Thus, ordinary baryonic matter is only about one tenth of the total
mass density of the Universe, most of which must therefore be in some non-baryonic
form.

Black holes are another possible candidate for the dark matter. The supermassive
black holes in the nuclei of galaxies have masses which are typically only about 0.1%
of the mass of the bulges of their host galaxies and so they contribute negligibly to
the mass density of the Universe. There might, however, be an invisible intergalactic
population of massive black holes. Limits to the number density of such black holes
can be set in certain mass ranges from studies of the numbers of gravitational lenses
observed in large samples of extragalactic radio sources. In their VLA survey of
a very large sample of extragalactic radio sources, designed specifically to search for
gravitationally lensed structures, Hewitt and her colleagues set limits to the number
density of massive black holes with masses in the range 1010 ≤ M ≤ 1012 M�.
They found that the numbers corresponded to ΩBH 	 1 (Hewitt et al., 1987).
The same technique can be used to study the mass density of lower mass black
holes by searching for the gravitationally lensed images on an angular scale of
a milliarcsecond, corresponding to masses in the range 106 ≤ M ≤ 108 M� (Kassiola
et al., 1991). Wilkinson and his colleagues searched a sample of 300 compact radio
sources studied by VLBI techniques for examples of multiple gravitationally lensed
images but none were found. The upper limit to the cosmological mass density of
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intergalactic supermassive compact objects in the mass range 106 ≤ M ≤ 108 M�
corresponded to less than 1% of the critical cosmological density (Wilkinson et al.,
2001).

It cannot be excluded that the dark matter might consist of a very large population
of very low mass black holes but these would have to be produced by a rather special
initial perturbation spectrum in the very early Universe before the epoch of primordial
nucleosynthesis. The fact that black holes of mass less than about 1012 kg evaporate
by Hawking radiation on a cosmological time-scale sets a firm lower limit to the
possible masses of mini-black holes which could contribute to the dark matter at the
present epoch (Hawking, 1975).

An impressive approach to setting limits to the contribution which discrete low
mass objects, collectively known as MAssive Compact Halo Objects, or MACHOs,
could make to the dark matter in the halo of our own Galaxy, has been the search
for gravitational microlensing signatures of such objects as they pass in front of
background stars. The MACHOs include low mass stars, white dwarfs, brown dwarfs,
planets and black holes. These events are very rare and so very large numbers of
background stars have to be monitored. The beauty of this technique is that it is
sensitive to MACHOs with a very wide range of masses, from 10−7 to 100 M�,
and so the contributions of a very wide range of candidates for the dark matter can
be constrained. In addition, the expected light curve of such gravitational lensing
events has a characteristic form which is given by the magnification relation (4.50)
and which is independent of wavelength. The time-scale of the brightening is roughly
the time it takes the MACHO to cross the Einstein radius of the dark deflector which
is why a very wide range of masses can be constrained by this technique. Two very
large projects, the MACHO and the EROS projects, have made systematic surveys
over a number of years to search for these events. The MACHO project, which ran
from 1992 to 1999 used stars in the Magellanic Clouds and in the Galactic bulge
as background stars and millions stars were monitored regularly (Alcock et al.,
1993b). The first example of a microlensing event was discovered in October 1993
(Fig. 4.22), the mass of the invisible lensing object being estimated to lie in the range
0.03 < M < 0.5 M� (Alcock et al., 1993a).

By the end of the MACHO project, many lensing events had been observed,
including over 100 in the direction towards the Galactic bulge, about three times
more than expected. In addition, 13 definite and 4 possible events were observed
in the direction of the Large Magellanic Cloud (Alcock et al., 2000). The numbers
are significantly greater than the 2–4 detections expected from known types of
star. The technique does not provide distances and masses for individual objects,
but, interpreted as a Galactic halo population, the best statistical estimates suggest
that the mean mass of these MACHOs is between 0.15–0.9 M�. The statistics are
consistent with MACHOs making up about 20% of the necessary halo mass, the 95%
confidence limits being 8–50%. Somewhat fewer microlensing events were detected
in the EROS project which found that less that 25% of the mass of the standard dark
matter halo could consist of dark objects with masses in the range 2 × 10−7 to 1 M�
at the 95% confidence level (Afonso et al., 2003). The most likely candidates for the
MACHOs observed by the MACHO project would appear to be white dwarfs which
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Fig. 4.22. The gravitational microlensing event recorded by the MACHO project in February
and March 1993. The horizontal axis shows the date in days measured from day zero on
2 January 1992. The vertical axis shows the amplification of the brightness of the lensed
star relative to the unlensed intensity in blue and red wavebands. The solid lines show the
expected variations of brightness of a lensed star with time (Eq. 4.50). The same characteristic
light curve is observed in both wavebands, as expected for a gravitational microlensing event
(Alcock et al., 1993b)

would have to be produced in large numbers in the early evolution of the Galaxy,
but other more exotic possibilities cannot be excluded. The consensus view is that
MACHOs alone cannot account for all the dark matter in the halo of our Galaxy and
so some form of non-baryonic matter must make up the difference.

4.7.2 Non-Baryonic Dark Matter

The general consensus is that the dark matter is most likely to be some non-baryonic
form and so is of the greatest interest for particle physicists since it may consist
of the types of particles predicted by theories of elementary particles but not yet
detected experimentally. Three of the most popular possibilities are discussed in the
following paragraphs.

Axions. The smallest mass candidates are the axions which were invented by particle
theorists in order to ‘save quantum chromodynamics from strong CP violation’. If
they exist, they must have been created when the thermal temperature of the Universe
was about 1012 K but they were out of equilibrium and never acquired thermal
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velocities – they remained ‘cold’. Their rest mass energies are expected to lie in the
range 10−2 to 10−5 eV. The role of such particles in cosmology and galaxy formation
is discussed by Efstathiou and Kolb and Turner (Efstathiou, 1990; Kolb and Turner,
1990).

Neutrinos with finite rest mass. A second possibility is that the three known types
of neutrino have finite rest masses. Laboratory tritium β-decay experiments have
provided an upper limit to the rest mass of the electron antineutrino of mν ≤ 2 eV
(Weinheimer, 2001), although the particle data book suggests a conservative upper
limit of 3 eV (see http://www-pdg.lbl.gov/pdg.html). This measurement does not
exclude the possibility that the two other types of neutrino, the μ and τ neutrinos,
could have greater masses. However, the discovery of neutrino oscillations has
provided a measurement of the mass difference between the μ and τ neutrinos of
Δm2

ν ∼ 3×10−3 (Eguchi et al., 2003; Aliu et al., 2005). Thus, although their masses
are not measured directly, they probably have masses of the order of 0.1 eV.

The reason that these values are of interest is that neutrinos of rest mass about
10–20 eV would be enough to provide the critical density, as may be appreciated
from the following calculation. The number density of neutrinos of a single type in
thermal equilibrium at temperature T is

N = N = 4πg

h3

∫ ∞

0

p2 dp

eE/kT + 1
= 0.091

(
2πkT

hc

)3

m−3 , (4.64)

where the statistical weight g for the neutrinos is g = 1. If there are Nν neutrino
types present, each with rest mass mν, the present mass density of neutrinos in the
Universe would be

	ν = NNνmν . (4.65)

The present temperature of the neutrino background radiation, which was in
equilibrium with the matter prior to the epoch when the neutrinos decoupled,
is (4/11)1/3 of the temperature of the Cosmic Microwave Background Radia-
tion, that is, Tν = 1.94 K, and so the value of N is rather precisely known
(see Sect. 10.5). Therefore, if 	ν is to equal the critical density of the Universe
	c = 1.88 × 10−26h2 kg m−3, the necessary rest mass energy of the neutrino is
mν = 184h2/Nν eV. Since there are three neutrino species, each with its antiparti-
cle, Nν = 6 and hence the necessary rest mass of the neutrino is 31 h2 eV. Taking
h = 0.7, it follows that, if the neutrino rest mass were about 15 eV, known types of
neutrino could close the Universe. However, if the mass of the neutrinos is of the
order 0.1 eV, they certainly could not account for the amount of dark matter present
in the Universe.

WIMPs. A third possibility is that the dark matter is in some form of Weakly Inter-
acting Massive Particle, or WIMP. This might be the gravitino, the supersymmetric
partner of the graviton, or the photino, the supersymmetric partner of the photon, or
some form of as yet unknown massive neutrino-like particle. The possible existence
of these types of unknown particles represents theoretical extrapolations beyond the
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range of energies which have been explored experimentally, but these ideas are suffi-
ciently compelling on theoretical grounds that many particle theorists take seriously
the possibility that cosmological studies will prove to be important in constraining
theories of elementary processes at very high energies.

In fact, there is the real possibility that clues will be found from experiments to
be carried out in the TeV energy range with the Large Hadron Collider (LHC) and
the next generation International Linear Collider (ILC). An understanding of TeV
physics will undoubtedly impact our understanding of the Universe back to epochs
t ∼ 10−8 seconds. But there are even more exciting possibilities. To paraphrase
the generic arguments given by Trodden, physics beyond the standard model of
particles physics is essential and almost any model involves new particles at the TeV
scale (Trodden, 2006). These particles are related to the particles of the standard
model through an extra new symmetry which is necessary to avoid proton decay
and the violation of precision tests of electro-weak theory. This new symmetry
leads to the expectation of some new stable particle at the weak energy scale. It is
particularly intriguing that the weak interaction cross-section is of exactly the right
order of magnitude at the decoupling mass-scale to provide sufficient mass density
in WIMPs to account for the dark matter (see Sect. 10.6).

4.7.3 Astrophysical and Experimental Limits

Useful astrophysical limits can be set to the number densities of different types of
neutrino-like particles in the outer regions of giant galaxies and in clusters of galaxies.
The WIMPs and massive neutrinos are collisionless fermions and therefore there are
constraints on the phase space density of these particles, which translate into a lower
limit to their masses. This is because, for a given momentum, only a finite number
of particles within a given volume is allowed. Let us give a simple derivation of this
result. More details of this calculation are given by Tremaine and Gunn, who provide
a slightly tighter constraint on the masses of these hypothetical particles (Tremaine
and Gunn, 1979).

Being fermions, neutrino-like particles are subject to the Pauli exclusion principle
according to which there is a maximum number of particle states in phase space for
a given momentum pmax. The elementary phase volume is h3 and, recalling that there
can be two particles of opposite spin per state, the maximum number of particles
with momenta up to pmax is

N ≤ 2
g

h3

4π

3
p3

max , (4.66)

per unit volume, where g is the statistical weight of the neutrino species. If there
is more than one neutrino species present, we multiply this number by Nν. Bound
gravitating systems such as galaxies and clusters of galaxies are subject to the virial
theorem according to which the kinetic energy of the particles which make up
the system is equal to half of its gravitational potential energy (Sect. 3.5.1). If σ
is the root-mean-square velocity dispersion of the objects which bind the system,
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σ2 = G M/R, and the maximum velocity which particles within the system can
have is the escape velocity from the cluster, vmax = (2G M/R)1/2 = √

2σ . The
neutrino-like particles bind the system and so its total mass is M = NNνmν where
mν is the rest mass of the particle. We therefore find the following lower limit to the
rest mass of the particle from (4.66) in terms of observable quantities:

m4
ν ≥

(
9π

8
√

2g

)
�

3

NνGσR2
mν ≥ 1.5

(Nνσ3 R2
Mpc)

1/4
eV , (4.67)

where the velocity dispersionσ3 is measured in units of 103 km s−1 and R is measured
in Mpc.

Let us insert typical values for the velocity dispersions and radii of the systems
in which there is known to be a dark matter problem. In clusters of galaxies, typical
values are σ = 1000 km s−1 and R = 1 Mpc. If there is only one neutrino species,
Nν = 1, we find mν ≥ 1.5 eV. If there were six neutrino species, namely, electron,
muon, tau neutrinos and their antiparticles, Nν = 6 and then mν ≥ 0.9 eV. For
giant galaxies, for which σ = 300 km s−1 and R = 10 kpc, mν ≥ 20 eV if Nν = 1
and mν ≥ 13 eV if Nν = 6. For small galaxies, for which σ = 100 km s−1 and
R = 1 kpc, the corresponding figures are mν ≥ 80 eV and mν ≥ 50 eV respectively.
Thus, particles with rest masses mν ∼ 1 eV could bind clusters of galaxies but they
could not bind the haloes of giant or small galaxies.

There is a further constraint on the possible masses WIMPs. Studies of the decay
of the W± and Z0 bosons at CERN have shown that the width of the decay spectrum
is consistent with there being only three neutrino species with rest mass energies
less than about 40 GeV. Therefore, if the dark matter is in some form of ultraweakly
interacting particle, its rest mass energy must be greater than 40 GeV.

Another important constraint is that, if the masses of the particles were greater
than 15 eV and they are as common as neutrinos and photons, as expected in the
standard Big Bang model, the present density of the Universe would exceed the
critical mass density 	c (see Sect. 4.7.2). Therefore there would have to be some
suppression mechanism to ensure that, if m ≥ 40 GeV, these particles are very much
less common than the photons and electrons neutrinos at the present day. This could
take place by the mechanism described in Sect. 10.6.

The search for evidence for different types of dark matter particles has developed
into one of the major areas of the discipline known as astroparticle physics. An
important class of experiments involves the search for weakly interacting particles
with masses m ≥ 1 GeV, which could make up the dark halo of our Galaxy. In
order to form a bound dark halo about our Galaxy, the particles would have to
have velocity dispersion 〈v2〉1/2 ∼ 230 km s−1 and their total mass is known.
Therefore, the number of WIMPs passing through a terrestrial laboratory each day
is a straightforward calculation. When these massive particles interact with the
sensitive volume of the detector, the collision results in the transfer of momentum to
the nuclei of the atoms of the material of the detector and this recoil can be measured
in various ways. There is a small temperature increase which can be measured in
a cryogenically cooled detector, or the ionisation caused by the recoiling nucleus
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can be measured in an ionisation chamber, or the light emitted by the passage of the
recoil nucleus through the material detected by a scintillation detector. The challenge
is to detect the very small number of events expected because of the very small cross-
section for the interaction of WIMPs with the nuclei of atoms. A typical estimate
is that less than one WIMP per day would be detectable by 1 kilogram of detector
material. These are very demanding experiments and they have to located deep
underground to avoid contamination by cosmic rays and must be heavily shielded
against natural radioactivity in the surrounding rocks. Such experiments have been
carried out in deep underground laboratories such as those at Gran Sasso in Italy, the
Soudan Underground Laboratory in Minnesota, USA and the Boulby Underground
Laboratory in Yorkshire, England.

A good example of the quality of the data now available is provided by the
results of the Cryogenic Dark Matter Search (CDMS) at the Soudan Labora-
tory. The CDMS experiment has set a 90% confidence upper limit to the spin-
independent WIMP–nucleon interaction cross-section at its most sensitive mass of
60 GeV/c2 of σw ≤ 1.6 × 10−47 m2 (Akerib et al., 2006). This cross-section can be
compared with the weak interaction cross-section for neutrino–electron scattering,
σ = 3 × 10−49(E/mec2)m2. Already the CDMS result constrains the predictions
of supersymmetric models. The sensitivity of these experiments should improved
by an order of magnitude with the CDMSII experiment planned for 2007 and then
by successive order of magnitude improvements through the different phases of the
SuperCDMS proposal.



5 The Theoretical Framework

5.1 The Cosmological Principle

The observational evidence discussed in Chap. 2, particularly the isotropy of the
Cosmic Microwave Background Radiation, indicates that the natural starting point
for the construction of cosmological models is to assume that, to first approximation,
the Universe is isotropic and homogeneous at the present epoch. This is precisely
what Einstein assumed in developing his static model of 1917, the first fully self-
consistent model of the Universe, derived long before the large-scale isotropy of our
Universe was established (Einstein, 1917). Likewise, Friedman’s discovery of what
were to become the standard models for the large-scale dynamics of the Universe
predated the discovery of the expansion of the Universe. The Friedman models were
based upon expanding solutions of Einstein’s equations, following clues provided
by de Sitter and Lanczos.1

One of the problems facing the pioneers of relativistic cosmology was the in-
terpretation of the space and time coordinates to be used in these calculations. For
example, de Sitter’s solution for an empty universe could be written in apparently sta-
tionary form, or as an exponentially expanding solution. By 1935, the problem was
solved independently by Robertson and Walker (Robertson, 1935; Walker, 1936).
They derived the metric of space–time for all isotropic, homogeneous, uniformly
expanding models of the Universe. This form of the metric is independent of the
assumption that the large-scale dynamics of the Universe are described by Einstein’s
General Theory of Relativity – whatever the physics of the expansion, the space–time
metric must be of Robertson–Walker form, because of the assumptions of isotropy
and homogeneity.

A key step in the development of these models was the introduction by Hermann
Weyl in 1923 of what is known as Weyl’s postulate (Weyl, 1923). To eliminate the
arbitrariness in the choice of coordinate frames, Weyl introduced the idea that, in the
words of Hermann Bondi (Bondi, 1960):

The particles of the substratum (representing the nebulae) lie in space–time
on a bundle of geodesics diverging from a point in the (finite or infinite)
past.

1 For details of the historical development of the standard world models, see my book The
Cosmic Century (Longair, 2006)
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The most important aspect of this statement is the postulate that the geodesics, which
represent the world lines of galaxies, do not intersect, except at a singular point in
the finite, or infinite, past. Again, it is remarkable that Weyl introduced this postulate
before Hubble’s discovery of the recession of the nebulae. By the term ‘substratum’,
Bondi meant an imaginary medium which can be thought of as a fluid which defines
the overall kinematics of the system of galaxies. A consequence of Weyl’s postulate
is that there is only one geodesic passing through each point in space–time, except
at the origin. Once this postulate is adopted, it becomes possible to assign a notional
observer to each world line and these are known as fundamental observers. Each
fundamental observer carries a standard clock and time measured on that clock from
the singular point is called cosmic time.

One further assumption is needed before we can derive the framework for the
standard models. This is the assumption known as the cosmological principle and it
can be stated:

We are not located at any special location in the Universe.

A corollary of this statement is that we are located at a typical position in the Universe
and that any other fundamental observer located anywhere in the Universe at the
same cosmic epoch would observe the same large-scale features which we observe.
Thus, we assert that every fundamental observer at the same cosmic epoch observes
the same Hubble expansion of the distribution of galaxies, the same isotropic Cos-
mic Microwave Background Radiation, the same large-scale spongy structure in the
distribution of galaxies and voids, and so on. As we showed in Sect. 2.3, the com-
bination of Hubble’s law and the isotropy of the Universe implies that the system
of galaxies as a whole is expanding uniformly and every observer on every galaxy
partaking in the uniform expansion observes the same Hubble flow at the same epoch
– all of them correctly believe that they are at the centre of a uniformly expanding
Universe. The isotropy of the background radiation, the evidence of the scaling of
the two-point correlation function with apparent magnitude and the ubiquity of the
sponge-like structure of the distribution of galaxies suggest that the cosmological
principle is a sensible starting point for the construction of cosmological models.

The specific features of the observable Universe we need in what follows are
its overall isotropy and homogeneity, as well as Hubble’s law. The combination of
these with the Minkowski metric of special relativity results in the Robertson–Walker
metric for any isotropic, uniformly expanding world model.

5.2 Isotropic Curved Spaces

During the late eighteenth century, non-Euclidean spaces began to be taken seriously
by mathematicians who realised that Euclid’s fifth postulate, that parallel lines
meet only at infinity, might not be essential for the construction of self-consistent
geometries. The first suggestions that the global geometry of space might not be
Euclidean were discussed by Lambert and Saccheri. In 1786, Lambert noted that, if
space were hyperbolic rather than flat, the radius of curvature of space could be used
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as an absolute measure of distance. In 1816, Gauss repeated this proposal in a letter
to Gerling and was well aware of the fact that a test of the local geometry of space
could be carried out by measuring the sum of the angles of a triangle between three
high mountain peaks (Longair, 2006).

The fathers of non-Euclidean geometry were Nikolai Ivanovich Lobachevsky in
Russia and János Bolyai in Transylvania (Lobachevsky, 1829, 1830; Bolyai, 1832).
In his papers, On the Principles of Geometry of 1829 and 1930, Lobachevsky at
last solved the problem of the existence of non-Euclidean geometries and showed
that Euclid’s fifth postulate could not be deduced from the other postulates. Non-
Euclidean geometry was placed on a firm theoretical basis by the studies of Bernhard
Riemann and the English-speaking world was introduced to these ideas through the
works of Clifford and Cayley.

Einstein’s monumental achievement was to combine special relativity and the
theory of gravity through the use of Riemannian geometry and tensor calculus to
create the General Theory of Relativity (see Chap. 6). Within a couple of years of
formulating the theory, Einstein realised that he now had the tools with which fully
self-consistent models for the Universe as a whole could be constructed. In Einstein’s
model, which we discuss in Sect. 7.3, the Universe is static, closed and has isotropic,
spherical geometry. The Friedman solutions, published in 1922 and 1924, were also
isotropic models but they were expanding solutions and included geometries that
were both spherical and hyperbolic (Friedman, 1922, 1924).

It turns out that it is not necessary to become enmeshed in the details of Riemann-
ian geometry to appreciate the geometrical properties of isotropic curved spaces. We
can demonstrate simply why the only isotropic curved spaces are those in which the
two-dimensional curvature of any space section κ is constant throughout the space
and can only take positive, zero or negative values. The essence of the following
argument was first shown to me by my colleague, the late Peter Scheuer.

Let us consider first of all the simplest two-dimensional curved geometry, the
surface of a sphere (Fig. 5.1). In the diagram, a triangle is shown consisting of two
lines drawn from the north pole down to the equator, the angle between them being
90◦; the triangle is completed by the line drawn along the equator of the sphere. The
three sides of this triangle are all segments of great circles on the sphere and so are
the shortest distances between the three corners of the triangle. The three lines are
geodesics in the curved geometry.

We need a procedure for working out how non-Euclidean the curved geometry
is. The way this is done in general is by the procedure known as the parallel
displacement or parallel transport of a vector on making a complete circuit around
a closed figure such as the triangle in Fig. 5.1. Suppose we start with a little vector
perpendicular to AC at the pole and lying in the surface of the sphere. We then
transport that vector from A to C, keeping it perpendicular to AC. At C, we rotate
the vector through 90◦ so that it is now perpendicular to CB. We then transport the
vector, keeping it perpendicular to CB to the corner B. We make a further rotation
through 90◦ to rotate the vector perpendicular to BA and then transport it back to
A. At that point, we make a final rotation through 90◦ to bring the vector back to its
original direction. Thus, the total rotation of the vector is 270◦. Clearly, the surface
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Fig. 5.1. Illustrating the sum of
the angles of a triangle on the
surface of a sphere.

of the sphere is a non-Euclidean space. This procedure illustrates how we can work
out the geometrical properties of any two-space, entirely by making measurements
within the two-space, in this case, on the surface of the sphere.

Another simple calculation illustrates an important feature of parallel transport
on the surface of a sphere. Suppose the angle at A is not 90◦ but some arbitrary
angle θ. Then, if the radius of the sphere is Rc, the surface area of the triangle ABC
is A = θR2

c . Thus, if θ = 90◦, the area is πR2
c/2 and the sum of the angles of the

triangle is 270◦; if θ = 0◦, the area is zero and the sum of the angles of the triangle
is 180◦. Evidently, the difference of the sum of the angles of the triangle from 180◦
is proportional to the area of the triangle, that is

(Sum of angles of triangle − 180◦) ∝ (Area of triangle) . (5.1)

This result is a general property of isotropic curved spaces.
Let us now work out the sum of the angles round a closed figure in an isotropic

curved space. The procedure is shown schematically in Fig. 5.2a which shows two
geodesics from the origin at O being crossed by another pair of geodesics at distances
r and r + Δx from the origin. The angle dθ between the geodesics at O is assumed
to be small. In Euclidean space, the length of the segment of the geodesic AB would
be ξ = r dθ. However, this is no longer true in non-Euclidean space and instead, we
write

ξ(r) = f(r) dθ . (5.2)

It is straightforward to work out the angle between the diverging geodesics at distance
r from the origin. From Fig. 5.2a, it can be seen that the angle between the geo-
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Fig. 5.2. a A schematic diagram illustrating the change in angle β between the geodesics
from O over the distance interval Δx. b Illustrating how the sum of the rotations around the
subloops add up linearly to the total rotation dβ round the large loop and hence that the total
rotation is proportional to the area enclosed by the loop

desics is

β = ξ(r + dr)− ξ(r)

dr
= dξ(r)

dr
= dθ

d f(r)

dr
. (5.3)

Let us now move a distance Δx further along the geodesics. The change in the
angle β, Δβ is

Δβ = dξ(r + Δx)

dr
− dξ(r)

dr
= d2ξ(r)

dr2
Δx = d2 f(r)

dr2
Δx dθ . (5.4)

Let us check that this result makes sense. In Euclidean space, ξ(r) = f(r) dθ =
r dθ, f(r) = r and hence (5.3) becomes β = dθ. Furthermore, in Euclidean space,
d2 f(r)/dr2 = 0 and so Δβ = 0, in other words, β = dθ remains true for all values
of r.

Now, the rotation of the vector dβ depends upon the area of the quadrilateral
ABCD. In the case of an isotropic space, we should obtain the same rotation wherever
we place the loop in the two-space. Furthermore, if we were to split the loop up
into a number of subloops, the rotations around the separate subloops must add
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up linearly to the total rotation dβ (Fig. 5.2b). Thus, in an isotropic two-space,
the rotation dβ should be proportional to the area of the loop ABCD and must be
a constant everywhere in the two-space, just as we found in the particular case of
a spherical surface in Fig. 5.1.

The area of the loop is dA = ξ(r)Δx = f(r)Δx dθ, and so we can write

d2 f(r)

dr2
= −κ f(r) , (5.5)

where κ is a constant, the minus sign being chosen for convenience. This is the
equation of simple harmonic motion which has solution

f(r) = A sin κ1/2r . (5.6)

We can find the value of A from the expression for ξ(r) for very small values of r,
which must reduce to the Euclidean expression dθ = ξ/r. Therefore, A = κ−1/2 and

f(r) = sin κ1/2r

κ1/2
. (5.7)

κ is the curvature of the two-space and can be positive, negative or zero. If it is
negative, we can write κ = −κ′, where κ′ is positive and then the circular functions
become hyperbolic functions

f(r) = sinh κ′1/2r

κ′1/2 . (5.8)

As we showed above, in the Euclidean case, d2 f(r)/dr2 = 0 and so κ = 0.
The results we have derived include all possible isotropic curved two-spaces. The

constant κ can be positive, negative or zero corresponding to spherical, hyperbolic
and flat spaces respectively. In geometric terms, Rc = κ−1/2 is the radius of curvature
of a two-dimensional section through the isotropic curved space and has the same
value at all points and in all orientations within the plane. It is often convenient to
write the expression for f(r) in the form

f(r) = Rc sin
r

Rc
, (5.9)

where Rc is real for closed spherical geometries, imaginary for open hyperbolic
geometries and infinite for the case of Euclidean geometry.

The simplest examples of such spaces are the spherical geometries in which Rc

is just the radius of the sphere as illustrated in Fig. 5.1. The hyperbolic spaces are
more difficult to envisage. The fact that Rc is imaginary can be interpreted in terms of
the principal radii of curvature of the surface having opposite sign. The geometry of
a hyperbolic two-sphere can be represented by a saddle-shaped figure (Fig. 5.3), just
as a two-sphere provides an visualisation of the properties of a spherical two-space.
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Fig. 5.3. Illustrating the geometry
of an isotropic hyperbolic two-
space. The principal radii of
curvature of the surface are equal
in magnitude but have opposite
signs in orthogonal directions

5.3 The Space–Time Metric for Isotropic Curved Spaces

In flat space, the distance between two points separated by dx, dy, dz is

dl2 = dx2 + dy2 + dz2. (5.10)

Let us now consider the simplest example of an isotropic two-dimensional curved
space, namely the surface of a sphere which we discussed in Sect. 5.2. We can set up
an orthogonal frame of reference at each point locally on the surface of the sphere.
It is convenient to work in spherical polar coordinates to describe positions on the
surface of the sphere as indicated in Fig. 5.4. In this case, the orthogonal coordinates
are the angular coordinates θ and φ, and the expression for the increment of distance
dl between two neighbouring points on the surface can be written

dl2 = R2
c dθ2 + R2

c sin2 θ dφ2, (5.11)

where Rc is the radius of curvature of the two-space, which in this case is just the
radius of the sphere.

The expression (5.11) is known as the metric of the two-dimensional surface and
can be written more generally in tensor form

dl2 = gμν dxμdxν. (5.12)

It is a fundamental result of differential geometry that the metric tensor gμν contains
all the information about the intrinsic geometry of the space. The problem is that
we can set up a variety of different coordinate systems to define the coordinates of
a point on any two-dimensional surface. For example, in the case of a Euclidean
plane, we could use rectangular Cartesian coordinates so that

dl2 = dx2 + dy2, (5.13)

or we could use polar coordinates in which

dl2 = dr2 + r2dφ2. (5.14)
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Fig. 5.4. The surface of a sphere as the simplest example of a two-dimensional curved space

How can we determine the intrinsic curvature of the space simply in terms of the
gμν of the metric tensor? Gauss first showed how it is possible to do this (Weinberg,
1972; Berry, 1989). For the case of two-dimensional metric tensors which can be
reduced to diagonal form, as in the cases of the metrics (5.11), (5.13) and (5.14), the
intrinsic curvature of the space is given by the quantity

κ = 1

2g11g22

{
− ∂2g11

∂x2
2

− ∂2g22

∂x2
1

+ 1

2g11

[
∂g11

∂x1

∂g22

∂x1
+
(
∂g11

∂x2

)2
]

+ 1

2g22

[
∂g11

∂x2

∂g22

∂x2
+
(
∂g22

∂x1

)2
]}

. (5.15)

It is a useful exercise to use (5.15) to show that both metrics (5.13) and (5.14) have
zero curvature and that, for the surface of a sphere, the metric (5.11) corresponds
to a space of positive curvature with κ = R−2

c at all points on the sphere. κ is
known as the Gaussian curvature of the two-space and is the same as the definition
of the curvature introduced in Sect. 5.2. In general curved spaces, the curvature
κ varies from point to point in the space. The extension to isotropic three-spaces
is straightforward if we remember that any two-dimensional section through an
isotropic three-space must be an isotropic two-space and we already know the
metric tensor for this case.
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We have already worked out the length of the distance increment dl (5.11). The
natural system of coordinates for an isotropic two-space is a spherical polar system
in which a radial distance 	 round the sphere is measured from the pole and the
angle φ measures angular displacements at the pole. From Fig. 5.4, the distance 	
round the arc of a great circle from the point O to P is 	 = θRc and so the metric
can be written

dl2 = d	2 + R2
c sin2

(
	

Rc

)
dφ2 . (5.16)

The distance 	 is the shortest distance between O and P on the surface of the sphere
since it is part of a great circle and is therefore the geodesic distance between O and
P in the isotropic curved space. Geodesics play the role of straight lines in curved
space.

We can write the metric in an alternative form if we introduce a distance measure

x = Rc sin

(
	

Rc

)
. (5.17)

Differentiating and squaring, we find

dx2 =
[

1 − sin2
(
	

Rc

)]
d	2 d	2 = dx2

1 − κx2
, (5.18)

where κ = 1/R2
c is the curvature of the two-space.

Therefore, we can rewrite the metric in the form

dl2 = dx2

1 − κx2
+ x2dφ2 . (5.19)

Notice the interpretation of the distance measure x. It can be seen from the metric
(5.19) that dl = x dφ is a proper dimension perpendicular to the radial coordinate 	
and that it is the correct expression for the length of a line segment which subtends
the angle dφ at geodesic distance 	 from O. It is therefore what is known as an
angular diameter distance since it is guaranteed to give the correct answer for the
length of a line segment perpendicular to the line of sight. We can use either 	 or
x in our metric but notice that, if we use x, the increment of geodesic distance is
d	 = dx/(1−κx2)1/2. We recall that the curvature κ = 1/R2

c can be positive as in the
spherical two-space discussed above, zero in which case we recover flat Euclidean
space (Rc → ∞) and negative in which case the geometry becomes hyperbolic
rather than spherical.

We can now write down the expression for the spatial increment in any isotropic,
three-dimensional curved space. As mentioned above, the trick is that any two-
dimensional section through an isotropic three-space must be an isotropic two-space
for which the metric is (5.16) or (5.19). We note that, in spherical polar coordinates,
the general angular displacement perpendicular to the radial direction is

dΦ2 = dθ2 + sin2 θ dφ2 , (5.20)
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and can be found by rotating the coordinate system about the radial direction. Note
that the θs and φs in (5.20) are different from those used in Fig. 5.4. Thus, by
a straightforward extension of the formalism we have derived already, we can write
the spatial increment

dl2 = d	2 + R2
c sin2

(
	

Rc

) [
dθ2 + sin2 θ dφ2] , (5.21)

in terms of the three-dimensional spherical polar coordinates (	, θ, φ). An exactly
equivalent form is obtained if we write the spatial increment in terms of x, θ, φ in
which case we find

dl2 = dx2

1 − κx2
+ x2 [dθ2 + sin2 θ dφ2] . (5.22)

We are now in a position to write down the Minkowski metric in any isotropic
three-space. It is given by

ds2 = dt2 − 1

c2
dl2 , (5.23)

where dl is given by either of the above forms of the spatial increment, (5.21)
or (5.22). Notice that we have to be careful about the meanings of the distance
coordinates −x and 	 are equivalent but physically quite distinct distance measures.
We can now proceed to derive from this metric the Robertson–Walker metric.

5.4 The Robertson–Walker Metric

In order to apply the metric (5.23) to isotropic, homogeneous world models, we need
the cosmological principle and the concepts of fundamental observers and cosmic
time which were introduced in Sect. 5.1. For uniform, isotropic world models, we
define a set of fundamental observers, who move in such a way that the Universe
always appears to be isotropic to them. Each of them has a clock and proper time
measured by that clock is called cosmic time. There are no problems of synchro-
nisation of the clocks carried by the fundamental observers because, according to
Weyl’s postulate, the geodesics of all observers meet at one point in the past and
cosmic time can be measured from that reference epoch.

We can now write down the metric for such Universes from the considerations
of Sect. 5.3. From (5.21) and (5.23), the metric can be written in the form

ds2 = dt2 − 1

c2

[
d	2 + R2

c sin2 (	/Rc)
(
dθ2 + sin2 θ dφ2)] . (5.24)

t is cosmic time and d	 is an increment of proper distance in the radial direction.
There is a problem in applying this metric to the expanding Universe as is

illustrated by the space–time diagram shown in Fig. 5.5. Since light travels at a finite
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Fig. 5.5. A simple space–time diagram illustrating the definition of the comoving radial
coordinate distance

speed, we observe all astronomical objects along a past light cone which is centred
on the Earth at the present epoch t0. Therefore, when we observe distant objects, we
do not observe them at the present epoch but rather at an earlier epoch t1 when the
Universe was still homogeneous and isotropic but the distances between fundamental
observers were smaller and the spatial curvature different. The problem is that we
can only apply the metric (5.24) to an isotropic curved space defined at a single
epoch.

To resolve this problem, we perform the following thought experiment. To mea-
sure a proper distance which can be included in the metric (5.24), we line up a set
of fundamental observers between the Earth and the galaxy whose distance we wish
to measure. The observers are all instructed to measure the distance d	 to the next
fundamental observer at a particular cosmic time t which they read on their own
clocks. By adding together all the d	s, we can find a proper distance 	 which is
measured at a single epoch and which can be used in the metric (5.24). Notice that
	 is a fictitious distance in that we cannot actually measure distances in this way.
We observe distant galaxies as they were at some epoch earlier than the present and
we do not know how to project their positions relative to us forward to the present
epoch until we know the kinematics of the expanding Universe. Thus, the distance
measure 	 depends upon the choice of cosmological model.

Let us work out how the 	 coordinates of galaxies change in a uniformly ex-
panding Universe. The definition of a uniform expansion is that between two cosmic
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epochs, t1 and t2, the distances of any two fundamental observers, i and j, change
such that

	i(t1)

	 j(t1)
= 	i(t2)

	 j(t2)
= constant , (5.25)

that is,

	i(t1)

	i(t2)
= 	 j(t1)

	 j(t2)
= ... = constant = a(t1)

a(t2)
. (5.26)

For isotropic world models, a(t) is a universal function known as the scale factor
which describes how the relative distances between any two fundamental observers
change with cosmic time t. Let us therefore adopt the following definitions. We set
a(t) equal to 1 at the present epoch t0 and let the value of 	 at the present epoch be
r, that is, we can rewrite (5.26) as

	(t) = a(t)r . (5.27)

The term r thus becomes a distance label which is attached to a galaxy or fundamental
observer for all time and the variation in proper distance in the expanding Universe
is taken care of by the scale factor a(t); r is called the comoving radial distance
coordinate.

Proper distances perpendicular to the line of sight must also change by a factor
a between the epochs t and t0 because of the isotropy and homogeneity of the world
model,

Δl(t)

Δl(t0)
= a(t) . (5.28)

From the metric (5.24),

a(t) = Rc(t) sin
[
	/Rc(t)

]
dθ

Rc(t0) sin [r/Rc(t0)] dθ
. (5.29)

Reorganising this equation and using (5.27), we see that

Rc(t)

a(t)
sin

[
a(t)r

Rc(t)

]
= Rc(t0) sin

[
r

Rc(t0)

]
. (5.30)

This is only true if

Rc(t) = a(t) Rc(t0) , (5.31)

that is, the radius of curvature of the spatial sections is proportional to the scale
factor a(t). Thus, in order to preserve isotropy and homogeneity, the curvature of
space changes as the Universe expands as κ = R−2

c ∝ a−2. Notice that κ cannot
change sign and so, if the geometry of the Universe was once, say, hyperbolic, it will
always remain so.
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Let us call the value of Rc(t0), that is, the radius of curvature of the spatial
geometry at the present epoch, �. Then

Rc(t) = a(t)� . (5.32)

Substituting (5.27) and (5.32) into the metric (5.24), we obtain

ds2 = dt2 − a2(t)

c2
[dr2 + �2 sin2(r/�)(dθ2 + sin2 θ dφ2)] . (5.33)

This is the Robertson–Walker metric in the form we will use in much of our future
analysis. Notice that it contains one unknown function a(t), the scale factor, which
describes the dynamics of the Universe and an unknown constant � which describes
the spatial curvature of the Universe at the present epoch.

It is possible to rewrite this metric in different ways. For example, if we use a
comoving angular diameter distance r1 = � sin(r/�), the metric becomes

ds2 = dt2 − a2(t)

c2

[
dr2

1

1 − κr2
1

+ r2
1(dθ

2 + sin2 θ dφ2)

]
, (5.34)

where κ = 1/�2. By a suitable rescaling of the r1 coordinate κr2
1 = r2

2 , the metric
can equally well be written

ds2 = dt2 − R2
1(t)

c2

[
dr2

2

1 − kr2
2

+ r2
2(dθ

2 + sin2 θ dφ2)

]
, (5.35)

with k = +1, 0 and −1 for universes with spherical, flat and hyperbolic geometries
respectively. Notice that, in this rescaling, the value of R1(t) = Rc(t0)a = �a and
so the value of R1(t) at the present epoch is � rather than unity. This is a popular
form for the metric, but I will normally use (5.33) because the r coordinate has an
obvious and important physical meaning.

The importance of the metrics (5.33), (5.34) and (5.35) is that they enable us
to define the invariant interval ds2 between events at any epoch or location in the
expanding Universe. Let us recall the meanings of the various components and
variables in the metric (5.33):

– The term t is cosmic time, that is, time as measured by a clock carried by
a fundamental observer.

– The term r is the comoving radial distance coordinate which is fixed to a galaxy
for all time and which is the proper distance the galaxy would have if its world
line were projected forward to the present epoch t0 and its distance measured at
that time.

– The term a(t) dr is the element of proper (or geodesic) distance in the radial
direction at the epoch t.

– The term a(t) [� sin(r/�)] dθ = a(t) r1 dθ is the element of proper distance
perpendicular to the radial direction subtended by the angle dθ at the origin.
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– Similarly, a(t) [� sin(r/�)] sin θ dφ = a(t) r1 sin θ dφ is the element of proper
distance in the φ-direction.

Notice that so far we have specified nothing about the physics which determines
the rate of expansion of the Universe; this has all been absorbed into the function
a(t). Note the key point that, whatever the physics which determines the function
a(t), only the three types of isotropic geometry described by the Robertson–Walker
metric are allowed and these types are fixed for all time, although the curvature
changes as a−2(t).

5.5 Observations in Cosmology

Many of the most important results which relate the intrinsic properties of distant
objects to their observed properties are independent of the specific cosmological
model. It is therefore useful to produce a catalogue of results which describe how
the observed properties of objects are related to their intrinsic properties and which
are independent of the particular form of a(t). First of all, let us elucidate the real
meaning of redshift in cosmology.

5.5.1 The Cosmological Redshift

By cosmological redshift, we mean the shift of spectral lines to longer wavelengths
associated with the isotropic expansion of the system of galaxies. If λe is the wave-
length of the line as emitted and λ0 the observed wavelength, the redshift z is defined
to be

z = λ0 − λe

λe
. (5.36)

If the redshift z were interpreted as the recession velocity v of a galaxy, these would
be related by the Newtonian Doppler shift formula

v = cz . (5.37)

This is the type of velocity which Hubble used in deriving the velocity–distance
relation, v = H0r. As discussed in Sect. 2.3 and elaborated in Chap. 12, it is
incorrect to use the special relativistic Doppler shift formula

1 + z =
(

1 + v/c

1 − v/c

)1/2

, (5.38)

at large redshifts. Rather, because of the requirements of isotropy and homogeneity,
the relation v ∝ r applies at all comoving radial distances, including those at which
the recession velocity would exceed the speed of light.
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The key point is that the redshift has a much deeper meaning in cosmology, which
we can demonstrate from an analysis of the Robertson–Walker metric. Consider
a wave packet of frequency ν1 emitted between cosmic times t1 and t1 + Δt1 from
a distant galaxy. This wave packet is received by an observer at the present epoch in
the interval of cosmic time t0 to t0 + Δt0. The signal propagates along null cones,
ds2 = 0, and so, considering radial propagation from source to observer, dθ = 0 and
dφ = 0, the metric (5.33) gives us the relation

dt = −a(t)

c
dr

c dt

a(t)
= −dr . (5.39)

Notice that a(t) dr is simply the interval of proper distance at cosmic time t. The
minus sign appears because the origin of the r coordinate is the observer at t = t0.
Considering first the leading edge of the wave packet, the integral of (5.39) is

∫ t0

t1

c dt

a(t)
= −

∫ 0

r
dr . (5.40)

The end of the wave packet must travel the same distance in units of comoving
distance coordinate since the r coordinate is fixed to the galaxy for all time. There-
fore,

∫ t0+Δt0

t1+Δt1

c dt

a(t)
= −

∫ 0

r
dr , (5.41)

that is,
∫ t0

t1

c dt

a(t)
+ c Δt0

a(t0)
− c Δt1

a(t1)
=
∫ t0

t1

c dt

a(t)
. (5.42)

Since a(t0) = 1, we find that

Δt0 = Δt1
a(t1)

. (5.43)

This is the cosmological expression for the phenomenon of time dilation. Distant
galaxies are observed at some earlier cosmic time t1 when a(t1) < 1 and so phenom-
ena are observed to take longer in our frame of reference than they do in that of the
source. The phenomenon is precisely the same as time dilation in special relativity,
whereby, for example, relativistic muons, created at the top of the atmosphere, are
observed to have longer lifetimes in the observer’s frame as compared with their
proper lifetimes.

The result (5.43) provides us with an expression for redshift. If Δt1 = ν−1
1 is the

period of the emitted waves and Δt0 = ν−1
0 the observed period, then

ν0 = ν1a(t1) . (5.44)
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Rewriting this result in terms of redshift z,

z = λ0 − λe

λe
= λ0

λe
− 1 = ν1

ν0
− 1 , (5.45)

that is,

a(t1) = 1

1 + z
. (5.46)

This is one of the most important relations in cosmology and displays the real
meaning of the redshifts of galaxies. Redshift is a measure of the scale factor of the
Universe when the radiation was emitted by the source. When we observe a galaxy
with redshift z = 1, the scale factor of the Universe when the light was emitted
was a(t) = 0.5, that is, the distances between fundamental observers (or galaxies)
were half their present values. Note, however, that we obtain no information about
when the light was emitted. If we did, we could determine directly from observa-
tion the function a(t). Understanding of the astrophysical evolution of galaxies is
improving all the time and it may eventually be possible to determine a(t) in this
way.

One important consequence of this calculation is that we can now derive an
expression for the comoving radial distance coordinate r. Equation (5.40) can be
written

r =
∫ t0

t1

c dt

a(t)
. (5.47)

Thus, once we know a(t), we can immediately find r by integration. This integral
emphasises the point that r is an artificial distance which depends upon how the
Universe has expanded between the emission and reception of the radiation.

The expression (5.43) for the time dilation as a function of redshift provides
a direct test of the Robertson–Walker formalism. The discovery that supernovae of
Type 1a have a narrow dispersion in their absolute magnitudes and have exactly
the same light curves, that is, the time-variation of their luminosities throughout
the supernova outburst, has made these objects particularly important cosmological
tools. Their properties and their use in determining cosmological parameters are
described in more detail in Sect. 8.5.3, These standard properties become even more
precisely defined when account is taken of a correlation between the maximum
luminosity and the width of the light curve (Fig. 5.6). These supernovae have such
great luminosities at maximum light that they can be observed at large redshifts.
Figure 5.7a shows a plot of the width w of the light curves for a large sample of
supernovae from the Calán-Tololo and Supernova Cosmology Program projects as
a function of redshift z, or, more precisely, (1 + z) (Goldhaber et al., 2001). In the
lower panel (Fig. 5.7b), the observed light curve widthw has been divided by (1+ z)
for each supernova. It can be seen that the observations are in excellent agreement
with the expectations of (5.43).
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Fig. 5.6. The average time variation of the brightness of a Type 1a supernova from a large sam-
ple of supernovae observed in the Calán-Tololo and Supernova Cosmology Program projects.
The light curves have been corrected for the effects of time dilation and the luminosity–width
correlation (Goldhaber et al., 2001)

Another way of testing the time dilation relation using the remarkably standard
properties of the Type 1a supernovae is to use their spectral evolution as a clock to
compare the time evolution of low and high redshift supernovae. This test has been
carried out for the supernova SN 1997ex, which had redshift 0.361, by members of
the Supernova Cosmology Program team (Foley et al., 2005). The time between the
first two spectra was 24.88 days and between the first and third spectra 30.95 days.
The amount of aging in the supernova rest frame should be a factor of 1/(1 + z)
smaller corresponding to ages of 18.28 and 22.74 days. The spectral feature age
technique applied to the Keck spectra observed for the supernova showed that the
corresponding elapsed times in the supernova rest frame were 16.97 ± 2.75 and
18.01 ± 3.14 days, respectively, in excellent agreement with the expectations of
cosmological time dilation. Similar results are found from the ESSENCE programme
which involves a large consortium of the key players in the Type 1a supernova area
(Wood-Vasey et al., 2007).

5.5.2 Hubble’s Law

In terms of proper distances, Hubble’s law can be written v = H	 and so

d	

dt
= H	 . (5.48)
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Fig. 5.7. a The observed width w of the light curves of Type 1a supernovae plotted against
(1+z). The low redshift squares are from the Calán-Tololo supernova programme and the high
redshift circles are for a subset of 35 supernovae from the Supernova Cosmology Program
(SCP). The open circles are for the remainder of the 42 SCP fully analyzed supernovae.
The band delineated by the dash-dotted lines corresponds to stretch values 0.7 to 1.3 which
encompass the bulk of the data, except for two outliers. The best-fitting linear relation and
the 1σ limits are also shown. b The stretch s plotted against (1 + z). Stretch is defined as the
observed light curve width w divided by (1 + z) for each supernova. The notation is the same
as in a (Goldhaber et al., 2001)

We have written H rather than H0 in Hubble’s law since a ‘Hubble’s constant’ H
can be defined at any epoch as we show below. Substituting 	 = a(t)r, we find that

r
da(t)

dt
= Ha(t)r , (5.49)

that is,

H = ȧ/a . (5.50)

Since we measure Hubble’s constant H0 at the present epoch, t = t0, a = 1, we find

H0 = (ȧ)t0 . (5.51)
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Thus, Hubble’s constant H0 defines the present expansion rate of the Universe.
Notice that we can define a value of Hubble’s constant at any epoch through the
more general relation

H(t) = ȧ/a . (5.52)

5.5.3 Angular Diameters

The great simplification which results from the use of the Robertson–Walker metric
in the form (5.33) is apparent in working out the angular size of an object of proper
length d perpendicular to the radial coordinate at redshift z. The relevant spatial
component of the metric (5.33) is the term in dθ. The proper length d of an object
at redshift z, corresponding to scale factor a(t), is given by the increment of proper
length perpendicular to the radial direction in the metric (5.33), that is,

d = a(t)� sin
( r

�
)

Δθ = a(t)D Δθ = DΔθ

(1 + z)
; (5.53)

Δθ = d(1 + z)

D
, (5.54)

where we have introduced a distance measure D = � sin(r/�). For small redshifts,
z 	 1, r 	 �, (5.54) reduces to the Euclidean relation d = rΔθ.

The expression (5.54) can also be written in the form

Δθ = d

DA
, (5.55)

so that the relation between d and Δθ looks like the standard Euclidean relation. To
achieve this, we have to introduce another distance measure DA = D/(1 + z) which
is known as the angular diameter distance and which is often used in the literature.

Another useful calculation is the angular diameter of an object which contin-
ues to partake in the expansion of the Universe. This is the case for infinitesimal
perturbations in the expanding Universe. A good example is the angular diameter
which large-scale structures present in the Universe today would have subtended at
an earlier epoch, say, the epoch of recombination, if they had simply expanded with
the Universe. This calculation is used to work out physical sizes today corresponding
to the angular scales of the fluctuations observed in the Cosmic Microwave Back-
ground Radiation. If the physical size of the object is d(t0) now and it expanded with
the Universe, its physical size at redshift z was d(t0)a(t) = d(t0)/(1 + z). Therefore,
the object subtended an angle

Δθ = d(t0)

D
. (5.56)

Notice that in this case the (1 + z) factor has disappeared from (5.53).
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5.5.4 Apparent Intensities

Suppose a source at redshift z has luminosity L(ν1) (measured in W Hz−1), that is,
the total energy emitted over 4π steradians per unit time per unit frequency interval.
What is the flux density S(ν0) of the source at the observing frequency ν0, that is, the
energy received per unit time, per unit area and per unit bandwidth (W m−2 Hz−1)
where ν0 = a(t1)ν1 = ν1/(1 + z)? Suppose the source emits N(ν1) photons of
energy hν1 in the bandwidth ν1 to ν1 + Δν1 in the proper time interval Δt1. Then
the luminosity L(ν1) of the source is

L(ν1) = N(ν1) hν1

Δν1Δt1
. (5.57)

These photons are distributed over a ‘sphere’ centred on the source at epoch t1
and, when the ‘shell’ of photons arrives at the observer at the epoch t0, a certain
fraction of them is intercepted by the telescope. The photons are observed at the
present epoch t0 with frequency ν0 = a(t1)ν1, in a proper time interval Δt0 =
Δt1/a(t1) and in the waveband Δν0 = a(t1)Δν1.

We also need to know how the photons spread out over a sphere between the
epochs t1 and t0, that is, we must relate the diameter of our telescope Δl to the
angular diameter Δθ which it subtends at the source at epoch t1. The metric (5.33)
provides an elegant answer. The proper distance Δl refers to the present epoch at
which R(t) = 1 and hence

Δl = DΔθ , (5.58)

where Δθ is the angle measured by a fundamental observer, located at the source.
We can also understand this result by considering how the photons emitted by

the source spread out over solid angle dΩ, as observed from the source in the
curved geometry. If the Universe were not expanding, the surface area over which
the photons would be observed at a time t after their emission would be

dA = R2
c sin2 x

Rc
dΩ , (5.59)

where x = ct. In the expanding Universe, Rc changes as the Universe expands and
so, in place of the expression x/Rc, we should write

1

�
∫ t0

t1

c dt

a
= r

� , (5.60)

where r is the comoving radial distance coordinate. Thus,

dA = �2 sin2 r

� dΩ . (5.61)

Therefore, the diameter of the telescope as observed from the source is Δl = DΔθ.
Notice how the use of the comoving radial distance coordinate takes account of the
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changing geometry of the Universe in this calculation. Notice also the difference
between (5.54) and (5.58). They correspond to angular diameters measured in op-
posite directions along the light cone. The factor of (1 + z) difference between them
is part of a more general relation concerning angular diameter measures along light
cones which is known as the reciprocity theorem.

Therefore, the surface area of the telescope is πΔl2/4 and the solid angle sub-
tended by this area at the source is ΔΩ = πΔθ2/4. The number of photons incident
upon the telescope in time Δt0 is therefore

N(ν1)ΔΩ/4π , (5.62)

but they are now observed with frequency ν0. Therefore, the flux density of the source,
that is, the energy received per unit time, per unit area and per unit bandwidth is

S(ν0) = N(ν1) hν0 ΔΩ

4πΔt0 Δν0 (π/4)Δl2
. (5.63)

We can now relate the quantities in (5.63) to the properties of the source, using
(5.43) and (5.44)

S(ν0) = L(ν1)a(t1)

4πD2
= L(ν1)

4πD2(1 + z)
. (5.64)

If the spectra of the sources are of power law form, L(ν) ∝ ν−α, this relation becomes

S(ν0) = L(ν0)

4πD2(1 + z)1+α . (5.65)

We can repeat the analysis for bolometric luminosities and flux densities. In
this case, we consider the total energy emitted in a finite bandwidth Δν1 which is
received in the bandwidth Δν0, that is

Lbol = L(ν1)Δν1 = 4πD2S(ν0)(1 + z)× Δν0(1 + z)

= 4πD2(1 + z)2Sbol , (5.66)

where the bolometric flux density is Sbol = S(ν0)Δν0. Therefore,

Sbol = Lbol

4πD2(1 + z)2
= Lbol

4πD2
L

. (5.67)

The quantity DL = D(1 + z) is called the luminosity distance of the source since
this definition makes the relation between Sbol and Lbol look like an inverse square
law. The bolometric luminosity can be integrated over any suitable bandwidth so
long as the corresponding redshifted bandwidth is used to measure the bolometric
flux density at the present epoch,

∑
ν0

S(ν0)Δν0 =
∑

ν1
L(ν1)Δν1

4πD2(1 + z)2
=
∑

ν1
L(ν1)Δν1

4πD2
L

. (5.68)
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The formula (5.64) is the best expression for relating the observed intensity S(ν0)

to the intrinsic luminosity of the source L(ν1). We can also write (5.67) in terms of
the luminosity of the source at the observing frequency ν0 as

S(ν0) = L(ν0)

4πD2
L

[
L(ν1)

L(ν0)
(1 + z)

]
, (5.69)

but this now requires knowledge of the spectrum of the source L(ν). The last term in
square brackets is a form of what is known as the K-correction. K-corrections were
introduced by the pioneer optical cosmologists in the 1930s in order to ‘correct’ the
apparent magnitude of distant galaxies for the effects of redshifting their spectra
when observations are made through standard filters with a fixed mean observing
frequency ν0 (Sandage, 1961b). Taking logarithms and multiplying by −2.5, we
can write (5.69) in terms of absolute (M) and apparent (m) magnitudes through the
relations M = constant − 2.5 log10 L(ν0) and m = constant − 2.5 log10 S(ν0). We
find

M = m − 5 log10(DL)− K(z)− 2.5 log10(4π) , (5.70)

where

K(z) = −2.5 log10

[
L(ν1)

L(ν0)
(1 + z)

]
. (5.71)

This form of K-correction is correct for monochromatic flux densities and luminosi-
ties. In the case of observations in the optical waveband, apparent magnitudes are
measured through standard filters which usually have quite wide pass-bands. There-
fore, to determine the appropriate K-corrections, the spectral energy distribution of
the galaxy has to be convolved with the transmission function of the filter in the rest
frame and at the redshift of the galaxy. This is a straightforward calculation once the
spectrum of the object is known.

Although I prefer to work directly with (5.64) and take appropriate averages,
K-corrections are rather firmly established in the literature and it is often convenient
to use the term to describe the effects of shifting the emitted spectrum into the
observing wavelength window.

5.5.5 Number Densities

We often need to know the number of objects in a particular redshift interval,
z to z + dz. Since there is a one-to-one relation between r and z, the problem
is straightforward because, by definition, r is a radial proper distance coordinate
defined at the present epoch. Therefore, the number of objects in the interval of
comoving radial coordinate distance r to r + dr is given by results already obtained
in Sect. 5.3. The space–time diagram shown in Fig. 5.5 illustrates how we can
evaluate the numbers of objects in the comoving distance interval r to r + dr entirely
by working in terms of comoving volumes at the present epoch. At the present epoch,
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the radius of curvature of the spatial geometry is � and so the volume of a spherical
shell of thickness dr at comoving distance coordinate r is

dV = 4π�2 sin2(r/�) dr = 4πD2 dr . (5.72)

Therefore, if N0 is the present space density of objects and their number is conserved
as the Universe expands,

dN = N(z) dz = 4πN0 D2 dr . (5.73)

The definition of comoving coordinates automatically takes care of the expansion
of the Universe. Another way of expressing this result is to state that (5.73) gives
the number density of objects in the redshift interval z to z + dz, assuming the
comoving number density of the objects is unchanged with cosmic epoch. If, for
some reason, the comoving number density of objects changes with cosmic epoch
as, say, f(z) with f(z = 0) = 1, then the number of objects expected in the redshift
interval dz is

dN = N(z) dz = 4πN0 f(z) D2 dr . (5.74)

5.5.6 The Age of the Universe

Finally, let us work out an expression for the age of the Universe, T0, from a rear-
ranged version of (5.39). The basic differential relation is

− c dt

a(t)
= dr , (5.75)

and hence

T0 =
∫ t0

0
dt =

∫ rmax

0

a(t) dr

c
, (5.76)

where rmax is the comoving distance coordinate corresponding to a = 0, z = ∞.

5.6 Summary

The results we have derived can be used to work out the relations between intrinsic
properties of objects and observables for any isotropic, homogeneous world model.
Let us summarise the procedures described above:

1. First work out from theory, or otherwise, the function a(t) and the curvature
of space at the present epoch κ = �−2. Once we know a(t), we know the
redshift–cosmic time relation.
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2. Now work out the comoving radial distance coordinate r from the integral

r =
∫ t0

t1

c dt

a(t)
. (5.77)

Recall what this expression means: the proper distance interval c dt at epoch t is
projected forward to the present epoch t0 by the scale factor a(t). This integration
yields an expression for r as a function of redshift z.

3. Next, work out the distance measure D from

D = � sin
r

� . (5.78)

This relation determines D as a function of redshift z.
4. If so desired, the angular diameter distance DA = D/(1 + z) and the lumi-

nosity distance DL = D(1 + z) can be introduced to relate physical sizes and
luminosities to angular diameters and flux densities respectively.

5. The number of objects dN in the redshift interval dz and solid angle Ω can be
found from the expression

dN = ΩN0 D2 dr , (5.79)

where N0 is the number density of objects at the present epoch which are
assumed to be conserved as the Universe expands.

We will develop some explicit solutions for these functions in Chap. 7.



6 An Introduction to Relativistic Gravity

The standard world models which are used as the framework for astrophysical cos-
mology and for studying the problems of galaxy formation are based upon Einstein’s
General Theory of Relativity. General Relativity is a beautiful theory but it requires
a thorough understanding of tensor calculus in four-dimensional non-Euclidean
spaces to appreciate fully Einstein’s epoch-making achievement. This is beyond the
scope of the present text and so Sects. 6.1 to 6.5 are intended to provide some flavour
of the full theory and to introduce some key ideas which will be needed later.1 In
Sect. 6.6, the experimental and observational status of General Relativity is reviewed
and it is shown that it has triumphantly survived the many critical tests of the theory
which have been devised since its inception in 1915.2 If you are happy to accept
General Relativity at its face value, you may advance to Chap. 7.

6.1 The Principle of Equivalence

As Einstein expressed it many years later:

I was sitting in a chair in the patent office in Bern when all of a sudden
a thought occurred to me: ‘If a person falls freely he will not feel his own
weight’. I was startled. This simple thought made a deep impression upon
me. It impelled me towards a theory of gravitation.

Expressed in more technical terms, a key consideration which led Einstein to the
General Theory was the null result of the Eötvös experiment, which showed rather
precisely that gravitational mass mg is proportional to inertial mass mI. Following
Will’s exposition (Will, 2006), the deviations from linearity can be written

mg = mI +
∑

A

ηA EA

c2
. (6.1)

1 I have given a more extended introduction to the theory in Chap. 17 of my book Theoretical
Concepts in Physics (Longair, 2003). For an up-to-date physical exposition of General Rel-
ativity, the book General Relativity: An Introduction for Physicists by Hobson, Efstathiou
and Lasenby can be recommended (Hobson et al., 2006).

2 This assessment is based upon the superb article by Will published in Living Reviews in
Relativity (Will, 2006).
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EA is the internal energy of the body generated by interaction A, η is a dimensionless
parameter that measures the strength of the violation of the linearity of the relation
between mg and mI induced by that interaction, and c is the speed of light. The
internal energy terms include all the mass-energy terms which can contribute to the
inertial mass of the body, for example, the body’s rest energy, its kinetic energy, its
electromagnetic energy, weak-interaction energy, binding energy and so on. If the
inertial and gravitational masses were not exactly linearly proportional to each other,
there would be a finite value ηA which would be exhibited as an difference in the
accelerations of bodies of the same inertial mass composed of different materials.
A measurement of, or limit to, the fractional difference in accelerations between two
bodies yields the quantity known as the ‘Eötvös ratio’,

η = 2
|a1 − a2|
a1 + a2

=
∑

A

ηA
(

EA
1

m1c2
− EA

2

m2c2

)
, (6.2)

where the subscript ‘I’ has been dropped from the inertial masses.
A summary of the limits to η from the time of Eötvös to the present day is

shown in Fig. 6.1 which includes the famous torsion balance experiments of Eötvös,
Dicke, Braginsky and their collaborators. From the late 1980s onwards, numerous
experiments were carried out primarily to search for a “fifth force” but their null
results also provided limits to the Eötvös ratio. For example, as discussed by Will,
the “Eöt-Wash” experiments carried out at the University of Washington used a so-
phisticated torsion balance tray to compare the accelerations of various materials
toward local topographical features on Earth, movable laboratory masses, the Sun
and the Galaxy and provided limits of η ≤ 3 × 10−13. Thus, gravitational mass mg

is proportional to inertial mass mI to better than one part in 3 × 1012.
The principle of equivalence asserts that the gravitational field g at any point in

space can be precisely replaced by an accelerated frame of reference a. In Newton’s
terminology, ‘mass’ is proportional to ‘weight’. The statement that, locally inertial
and gravitational mass are the same is known as the weak equivalence principle.
Einstein’s version of the principle is much stronger. In his own words:

All local, freely falling, non-rotating laboratories are fully equivalent for
the performance of all physical experiments.

By free-fall, we mean a frame of reference which is accelerated at the local gravita-
tional acceleration at that point in space, a = g. This statement formally identifies
inertial and gravitational mass, since the force acting on a particle in a gravita-
tional field depends upon the particle’s gravitational mass, whereas the acceleration
depends upon its inertial mass.

A more transparent statement of the principle is given by Will who clarifies
exactly what is assumed in what he calls the Einstein equivalence principle. In
Will’s words:

The Einstein equivalence principle (EEP) is a more powerful and far-
reaching concept; it states that:
1. The weak equivalence principle is valid.
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Fig. 6.1. Selected tests of the weak equivalence principle, showing bounds on η, which
measures the fractional differences in accelerations of different materials or bodies. The free-
fall and Eöt-Wash experiments were originally performed to search for a fifth force (light
grey region, representing many experiments). The dark grey band shows bounds on η for
gravitating bodies from lunar laser ranging (LLR) (Will, 2006)

2. The outcome of any local non-gravitational experiment is independent
of the velocity of the freely falling reference frame in which it is per-
formed.

3. The outcome of any local non-gravitational experiment is independent
of where and when in the universe it is performed.

The second piece of EEP is called local Lorentz invariance (LLI), and the
third piece is called local position invariance (LPI).

The importance of this description of the assumptions behind the General Theory
of Relativity is that it makes clear the scope for developing alternative theories of
relativistic gravity. Thus, if either (2) or (3) were to be relaxed, a much wider range
of possible theories of relativistic gravity could be developed and these are illustrated
by the range of additional parameters listed in Table 6.1. For our modest ambitions
in this chapter, we simply use the parameterised post-Newtonian (PPN) coefficients
listed in Table 6.1 as measures of the success of standard General Relativity.
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Table 6.1. The PPN parameters and their significance (note that α3 has been shown twice to
indicate that it is a measure of two effects)

Parameter What it measures Value Value in semi- Value in fully
relative to General Relativity in General conservative conservative

Relativity theories theories

γ How much space-curvature is 1 γ γ

produced by unit rest mass?

β How much ‘non-linearity’ in the 1 β β

superposition law for gravity?

ξ Preferred-location effects? 0 ξ ξ

α1 Preferred-frame effects? 0 α1 0
α2 0 α2 0
α3 0 0 0

α3 Violation of conservation
ζ1 of total momentum? 0 0 0
ζ2 0 0 0
ζ3 0 0 0
ζ4 0 0 0

The principle of equivalence has profound consequences for our understanding
of the nature of space and time in a gravitational field. Let us illustrate some of these
by two elementary examples.

6.2 The Gravitational Redshift

In the first example, we replace a stationary frame of reference located in a uniform
gravitational field g by a frame of reference which is accelerated in the opposite
direction. Consider a light wave of frequency ν propagating from the ceiling to the
floor of a lift in a gravitational field g = −a (Fig. 6.2).

We assume that the acceleration is small. If the height of the lift is h, a light signal
travels from the ceiling to the floor in a time t = h/c. According to the principle
of equivalence, we can replace the gravitational field by an accelerated frame of
reference and so, after time t, the floor is accelerated to a speed u = at = |g|t.
Hence,

u = |g|h
c

. (6.3)

Therefore, the light wave is observed with a higher frequency when it arrives at the
floor of the lift because of the Doppler effect. To first order in u/c, the observed
frequency ν′ is

ν′ = ν
(

1 + u

c

)
= ν

(
1 + |g|h

c2

)
. (6.4)
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Fig. 6.2. Illustrating the gravi-
tational redshift/blueshift of an
electromagnetic wave propagat-
ing from the ceiling to the floor of
a stationary lift in a gravitational
field according to the principle of
equivalence

Let us now express this result in terms of the change in gravitational potential
between the ceiling and floor of the lift. Since g = −gradφ

|g| = −Δφ

h
. (6.5)

Notice that, because of the attractive nature of the gravitational force, φ is more
negative at h = 0 than at the ceiling. Therefore,

ν′ = ν

(
1 − Δφ

c2

)
. (6.6)

This is the formula for the gravitational redshift zg in the ‘Newtonian’ limit. Recalling
the definition of redshift,

z = λobs − λem

λem
= ν − ν′

ν
, (6.7)

we find that

zg = Δφ

c2
. (6.8)

In this simple example, since Δφ is negative, zg is also negative corresponding to
a gravitational blueshift rather than redshift. If the light waves propagated from the
floor to the ceiling, we would obtain a redshift of the same magnitude. Thus, the
frequency of the waves depends upon to the gravitational potential in which the
light waves are propagated.

A test of the expression (6.8) for the gravitational redshift was proposed by
Eddington in 1924. He estimated that the gravitational redshift of the lines in the
spectrum of the white dwarf star Sirius B should be czg = 20 km s−1. The value
measured by Adams in 1925 was 19 km s−1. Eddington was jubilant (Eddington,
1926):
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Prof. Adams has thus killed two birds with one stone. He has carried out
a new test of Einstein’s theory of General Relativity, and has shown that
matter at least 2000 times denser than platinum is not only possible, but
actually exists in the stellar universe.

Laboratory experiments to measure the gravitational redshift were carried out
by Pound, Rebka and Snider who measured the difference in redshift of γ -ray
photons moving up then down a tower 22.5 m high at Harvard University using
the Mössbauer effect (Pound and Rebka, 1960; Pound and Snider, 1965). In this
effect, the recoil effects of the emission and absorption of the γ -ray photons are zero
since the momentum is absorbed by the whole atomic lattice. The γ -ray resonance
is therefore very sharp indeed and only tiny Doppler shifts are needed to move
off resonance absorption. In the Harvard experiment, the difference in redshifts for
γ -ray photons moving up and down the tower was:

zup − zdown = 2gh

c2
= 4.905 × 10−15 . (6.9)

The measured value was (4.900 ± 0.037)× 10−15, a precision of about 1%. Notice
the key point that the gravitational redshift is incompatible with special relativity,
according to which the observers at the top and bottom of the tower are at rest in the
same inertial frame of reference.

Suppose we now write (6.6) in terms of the period of the waves T . Then,

T ′ = T

(
1 + Δφ

c2

)
. (6.10)

This expression is exactly the same as the time dilation formula between inertial
frames of reference in special relativity, only now the expression refers to different
locations in the gravitational field. This expression for time dilation is exactly what
would be evaluated for any time interval and so we can write in general

dt ′ = dt

(
1 + Δφ

c2

)
. (6.11)

Let us now take the gravitational potential to be zero at infinity and measure the
gravitational potential at any point in the field relative to that value. We assume that
we are in the weak field limit in which changes in the gravitational potential are
small. Then, at any point in the gravitational field, we can write

dt ′2 = dt2
[

1 + φ(r)

c2

]2

, (6.12)

where dt is the time interval measured at φ = 0, that is, at r = ∞. Since φ(r)/c2 is
small, we can write this expression as

dt ′2 = dt2
[

1 + 2φ(r)

c2

]
. (6.13)
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If we now adopt the Newtonian expression for the gravitational potential for a point
mass M,

φ(r) = −G M

r
, (6.14)

we find

dt ′2 = dt2
(

1 − 2G M

rc2

)
. (6.15)

Let us now introduce this expression for the time interval into the standard Minkowski
metric of special relativity,

ds2 = dt ′2 − 1

c2
dl2 , (6.16)

where dl is the differential element of proper distance. The metric of space–time
about the point mass can therefore be written as

ds2 = dt2
(

1 − 2G M

rc2

)
− 1

c2
dl2 . (6.17)

This calculation shows how the metric coefficients become more complicated than
those of Minkowski space–time when we attempt to derive a relativistic theory of
gravity. Notice how careful we have to be about keeping track of time in General
Relativity. The time interval measured by an observer at a point in the gravita-
tional field is dt ′; the interval dt is a time interval at infinity. The gravitational
redshift relates these differences in time keeping. Notice further that both of these
are different from the time measured by an observer in free-fall in the gravitational
field.

6.3 The Bending of Light Rays

Let us show how the expression for dl has to be changed as well. Consider the prop-
agation of light rays in our lift but now travelling perpendicular to the gravitational
acceleration. We again use the principle of equivalence to replace the stationary lift
in a gravitational field by an accelerated lift in free space (Fig. 6.3).

In the time the light ray propagates across the lift, a distance l, the lift moves
upwards a distance 1

2 |g|t2. Therefore, in the frame of reference of the accelerated
lift, and also in the stationary frame in the gravitational field, the light ray follows
a parabolic path as illustrated in Figs. 6.3a–c. Let us approximate the light path by
a circular arc of radius R. The length of the chord d across the circle is then

d2 = 1
4 |g|2t4 + l2 . (6.18)
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Fig. 6.3a–d. Illustrating the application of the principle of equivalence to the propagation
of a light ray in a gravitational field and in a uniformly accelerated lift. In the equivalent
accelerated frame of reference, the light ray travels along a curved path

Now, from the geometry of the diagram, it can be seen that φ = |g|t2/2l. Hence,
since Rφ = d,

R2 = d2

φ2
= l2 + 4l4

|g|2t4
. (6.19)
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Now, 1
2 |g|t2 	 l, l = ct and so the second term in (6.19) is much larger than the

first. Therefore,

R = 2l2

|g|t2
= 2c2

|g| . (6.20)

Thus, the radius of curvature of the path of the light ray depends only upon the
local gravitational acceleration |g|. Since g is determined by the gradient of the
gravitational potential, it follows that the curvature of the paths of light rays depends
upon the mass distribution.

6.4 Further Complications

The consequences of these two elementary calculations are that the rate at which
clocks tick depends upon the gravitational potential in which they are located and
the paths of light rays are bent by the gravitational influence of the mass-energy
distribution. In other words, not only is space curved but, more generally, space–
time is curved. Neither the space nor time coordinates take the simple ‘Euclidean’
values which appear in the Minkowski metric, which can be written in polar coor-
dinates

ds2 = dt2 − 1

c2

[
dr2 + r2(dθ2 + sin2 θ2dφ2)

]
. (6.21)

It must be emphasised that the arguments of Sects. 6.2 and 6.3 are illustrative of
how Newtonian gravity has to be modified to incorporate the principle of equiv-
alence and the rules of special relativity and many unsatisfactory steps were in-
volved.

To complicate matters further, any relativistic theory of gravity must be non-
linear. This follows from Einstein’s mass-energy relation E = mc2 as applied to
the gravitational field. The gravitational field due to some mass distribution has
a certain local energy density at each point in space. Since E = mc2, it follows
that there is a certain inertial mass density in the gravitational field which is itself
a source of gravitational field. This property contrasts with that of, say, an electric
field distribution. This possesses a certain amount of electromagnetic field energy
and a corresponding inertial mass density but this does not generate additional
electrostatic charge. Thus, relativistic gravity is intrinsically a non-linear theory and
this accounts for a great deal of its complexity.

This feature of relativistic gravity was recognised by Einstein in 1912. From
his student days, he vaguely remembered Gauss’s theory of surfaces and con-
sulted his old school friend, the mathematician Marcel Grossmann, about the most
general forms of transformation between frames of reference for metrics of the
form

ds2 = gμν dxμ dxν. (6.22)
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Although outside Grossmann’s field of expertise, he soon came back with the answer
that the most general transformation formulae were the Riemannian geometries, but
that they had the ‘bad feature’ that they are non-linear. Einstein instantly recognised
that, on the contrary, this was a great advantage since any satisfactory theory of
relativistic gravity must be non-linear.

Finally, although we can eliminate the acceleration due to gravity at a particular
point in space, we cannot eliminate completely the effects of gravity in the vicinity of
that point. This is most easily seen by considering the gravitational field at distance
r from a point mass M (Fig. 6.4). It is apparent that we need different freely falling
lifts at different points in space in order to eliminate gravity everywhere. Even over
very limited regions of space, if we make very precise measurements, neighbouring
particles will be observed to begin to move under the influence of the quadrupole
field which cannot be eliminated by transforming to a single accelerated reference
frame. As an example, consider a standard Euclidean (x, y, z) coordinate frame
inside an orbiting Space Station, the z-coordinate being taken in the radial direction.
It is a useful exercise to show that, if two test particles are released from rest, with

Fig. 6.4. Illustrating the ‘tidal forces’ which cannot be eliminated when the acceleration due
to gravity g is replaced by an accelerated reference frame at a particular point in space. In this
example, the observer is in centrifugal equilibrium in the field of a point mass. Initially, test
masses are located on a sphere about the observer. At a later time, the sphere is distorted into
an ellipsoid because of the tidal forces which cannot be eliminated when transforming away
the gravitational field at the observer (Penrose, 1997)
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an initial separation vector ξ , this separation vector varies with time as

d2

dt2

⎡
⎣
ξ x

ξ y

ξ z

⎤
⎦ =

⎡
⎣

−G M/r3 0 0
0 −G M/r3 0
0 0 +2G M/r3

⎤
⎦
⎡
⎣
ξ x

ξ y

ξ z

⎤
⎦ . (6.23)

The pleasant aspect of this analysis is that it can be seen that the uncompensated
forces depend upon r−3. This is the part of the gravitational field which cannot be
eliminated by transforming to a single freely falling frame. Notice that it has the
form of a ‘tidal force’, which depends upon r−3, of exactly the same type which
causes Earth–Moon and Earth–Sun tides. We therefore need a theory which reduces
locally to Einstein’s special relativity in a freely falling frame and which transforms
correctly into another freely falling reference frame when we move to a different
point in space. There is no such thing as a global Lorentz frame in the presence of
a non-uniform gravitational field.

Einstein’s General Relativity enables us to find the metric of space–time in the
presence of mass-energy. The simplest example is the metric of space–time about
a point mass of mass M, the Schwarzschild metric, which can be written

ds2 = dt2
(

1 − 2G M

rc2

)
− 1

c2

⎡
⎢⎢⎣

dr2

(
1 − 2G M

rc2

) + r2 (dθ2 + sin2 θ2dφ2)
⎤
⎥⎥⎦ ,

(6.24)

where the metric has been written in spherical polar coordinates. The Schwarzschild
metric is exact for a stationary point mass in General Relativity. Some elements of
the Schwarzschild metric are similar to those which were derived in our approximate
analyses. For example, the increment of proper time is

dt ′ = dt

(
1 − 2G M

rc2

)1/2

, (6.25)

and has the same properties which we derived above, namely, the coordinate time t
keeps track of how clocks measure time at infinity. Clocks closer to the origin run
slower relative to clocks at infinity by the factor (1 − 2G M/rc2)1/2. This enables
us to derive the general expression for gravitational redshift. The period of the light
waves changes by precisely this factor as the light ray propagates from radius r from
the point mass to infinity. Therefore, the change of frequency is

ν′ = ν

(
1 − 2G M

rc2

)−1/2

, (6.26)

where ν is the frequency measured at infinity. Thus, the redshift z of the radiation is

zg = λobs − λem

λem
= λobs

λem
− 1 =

(
1 − 2G M

rc2

)−1/2

− 1 , (6.27)
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or

1 + zg =
(

1 − 2G M

rc2

)−1/2

. (6.28)

Light rays emitted from the Schwarzschild radius rg = 2G M/c2 are shifted to
infinite wavelengths.3

6.5 The Route to General Relativity

Einstein’s great achievement was to understand how the features discussed in
Sects. 6.1 to 6.4 could be incorporated into a self-consistent theory of relativis-
tic gravity. The remarkable story of Einstein’s struggles to discover the theory is
told in some detail by Abraham Pais in his splendid scientific biography of Einstein
Subtle is the Lord . . . (Pais, 1982). This is not the place to go into the tech-
nical details of what Einstein did. In summary, his thinking was guided by four
ideas:

– The influence of gravity on light
– The principle of equivalence
– Riemannian space–time
– The principle of covariance

My recommended approach would be to begin with Rindler’s excellent introduc-
tory text Relativity: Special, General, and Cosmological (Rindler, 2001), and then
proceed to either Weinberg’s Gravitation and Cosmology or Hobson, Efstathiou and
Lasenby’s General Relativity: An Introduction for Physicists, which both describe
clearly why General Relativity has to be as complex as it is. In both books the
physical content of the theory and the mathematics are elucidated at each stage
(Weinberg, 1972; Hobson et al., 2006). Another useful recommendation is d’Inver-
no’s Introducing Einstein’s Relativity which is particularly clear on the geometric
aspects of the theory (d’Inverno, 1992). The understanding of the theory requires
considerable effort. Let me outline some of the key steps in its formal develop-
ment.

6.5.1 Four-Tensors in Relativity

In formulating the Special Theory of Relativity, Einstein realised that all the laws of
physics, with the exception of gravity, could be written in Lorentz-invariant form. By
this, we mean that the equations are form-invariant under Lorentz transformations:

3 I have given further examples of the use of the Schwarzschild metric to derive expressions
for light deflection by point masses and the advance of the perihelion of planetary orbits, as
well as an introduction to Schwarzschild black holes, in Chap. 17 of my book Theoretical
Concepts in Physics (Longair, 2003).
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this is often called Lorentz covariance. The simplest example is the introduction of
four-vectors into special relativity; these are designed to be objects which are form-
invariant under Lorentz transformations. Just for this subsection, we use the notation
used by professional relativists in which the velocity v is measured in units of the
speed of light, equivalent to setting the value of c = 1. Then, the time coordinate
x0 = t and the spatial components are x = x1, y = x2 and z = x3. As a result,
we can write the transformation of a four-vector Vα between two inertial frames of
reference in standard configuration in the form

Vα → V ′α = Λα
βV β , (6.29)

where the matrix Λα
β is the standard Lorentz transformation

Λα
β =

⎡
⎢⎢⎣
γ −γv 0 0

−γv γ 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ , (6.30)

and γ = (1 − v2/c2)−1/2. The convention of summing over identical indices is
adopted in (6.29). Some familiar examples of four-vectors are listed in Table 6.2,
along with their translations into more familiar quantities.

Many physical quantities are naturally described in terms of tensors rather than
vectors. The natural extension of the concept of four-vectors is then to four-tensors
which are objects which transform according to the rule

Tαγ → T ′αγ = Λα
βΛ

γ

δ Tβδ . (6.31)

For example, relativists call matter without any internal pressure ‘dust’ and the
energy–momentum tensor for dust is Tαβ = 	0uαuβ , where 	0 is the proper mass
density of the dust, meaning the density measured by an observer moving with
the flow, or a comoving observer; uα is the velocity four-vector. Writing out the

Table 6.2. Examples of common four-vectors. The second column gives the four-vector
notation used in this section. The third column translates the components of the four-vectors
into more familiar quantities. In all cases, c = 1 and γ = (1 − v2/c2)−1/2

Displacement four-vector [x0, x1, x2, x3] [t, x, y, z]
Velocity four-vector [v0, v1, v2, v3] [γ, γvx, γvy, γvz]
Momentum four-vector [p0, p1, p2, p3] [γm0, γm0vx, γm0vy, γm0vz]

Acceleration four-vector [a0, a1, a2, a3]
[
γ

dγ

dt
, γ

d(γvx)

dt
, γ

d(γvy)

dt
, γ

d(γvz)

dt

]

Frequency four-vector [k0, k1, k2, k3] [
ω, kx, ky, kz

]

Four-momentum of photon [p0, p1, p2, p3] [
�ω,�kx,�ky,�kz

]
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components of Tαβ in terms of the quantities in the third column of Table 6.2, we
find

Tαβ = γ 2	0

⎡
⎢⎢⎣

1 ux uy uz

ux u2
x uyux uzux

uy uxuy u2
y uzuy

uz uxuz uyuz u2
z

⎤
⎥⎥⎦ , (6.32)

where (ux, uy, uz) are the components of the three-velocity measured in the chosen
reference frame. It is instructive to note the form of the T 00 component of this four-
tensor, T 00 = γ 2	0, which corresponds to the total energy density. This quantity
has a natural interpretation in special relativity. The observed density of the dust 	
as it moves with the flow is increased by two powers of the Lorentz factor γ over
the proper value 	0. One of these is associated with the formula for the relativistic
three-momentum of the dust, p = γmu, and the other with length contraction in the
direction of motion of the dust, l = l0/γ .

When the pressure cannot be neglected, the energy–momentum tensor becomes

Tαβ = (	0 + p)uαuβ − pgαβ , (6.33)

where gαβ is the metric tensor, which in the case of special relativity is the matrix

gαβ =

⎡
⎢⎢⎣

1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

⎤
⎥⎥⎦ . (6.34)

Then, it is a pleasant exercise to show that the equation

∂βTαβ = 0 , (6.35)

expresses the laws of conservation of momentum and energy in relativity, where ∂β
means partial differentiation of the tensor components with respect to β and so the
operator ∂β has the form

[∂/∂x0, ∂/∂x1, ∂/∂x2, ∂/∂x3] . (6.36)

Maxwell’s equations in a vacuum can be written in compact form in terms of the
antisymmetric electromagnetic field tensor Fαβ

Fαβ =

⎡
⎢⎢⎣

0 Ex Ey Ez

−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

⎤
⎥⎥⎦ , (6.37)

and the current density four-vector jα = [	e, j]. I apologise for deviating from my
normal practice of using strictly SI units. This form of Maxwell’s equations is written
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in Heaviside–Lorentz units with c = 1. The equation of continuity becomes

∂α jα = 0 . (6.38)

Maxwell’s equations for the relations between electric and magnetic fields and their
sources become

∂βFαβ = jα . (6.39)

Thus, four-tensors provide the natural language for expressing the laws of physics
in a form which guarantees that they transform correctly according to the Lorentz
transformations.

6.5.2 What Einstein Did

The elementary considerations of Sects. 6.1 to 6.4 indicate that the aim of General
Relativity is to incorporate the influence of the mass-energy distribution upon space–
time into the metric coefficients gμν. The metric of space–time locally has to reduce
to the standard Minkowski metric

ds2 = dt2 − 1

c2
dl2 . (6.40)

Therefore, the natural starting point for the development of general transformations
between arbitrary four-dimensional spaces is the Riemannian metric of form

ds2 =
∑
μ,ν

gμν dxμdxν = gμν dxμdxν , (6.41)

where the coordinates xμ and xν define points in four-dimensional space and the in-
terval ds2 is given by a homogeneous quadratic differential form in these coordinates.
The components of the metric tensor gμν vary from point-to-point in space–time and
define its local curvature. Since the local curvature defines the properties of the gravi-
tational field, the gμν can be thought of as being analogous to gravitational potentials.

We need to develop a way of relating the gμν to the mass-energy distribution, that
is, to find the analogue of Poisson’s equation in Newtonian gravity which involves
second-order partial differential equations. As an illustrative example, in deriving
(6.13), we rationalised that g00 should have the form

g00 =
(

1 + 2φ

c2

)
, (6.42)

(see also the Schwarzschild metric (6.24)). Poisson’s equation for gravity is

∇2φ = 4πG	 , (6.43)
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and hence, from (6.42) and (6.43), we find that

∇2g00 = 8πG

c2
T00 . (6.44)

This is a crude calculation but it shows why it is reasonable to expect a close
relation between the derivatives of gμν and the corresponding components of the
energy–momentum tensor Tμν.

The tensor equivalent of this analysis involves the differentiation of tensors
and this is where the complications begin: partial differentiation of tensors does not
generally yield other tensors. Thus, the definitions of the equivalent vector operations
of grad, div and curl are correspondingly more complicated for tensors as compared
with vectors. Furthermore, the analysis can no longer be carried out in Minkowski
space–time since space–time is necessarily curved. How this problem was solved
and the components of the metric tensor gμν are related to the energy–momentum
tensor Tμν was Einstein’s extraordinary achievement of the years 1912 to 1915.

What is needed is a tensor which involves the metric tensor gμν and its first and
second derivatives and which is linear in its second derivatives. It turns out that there
is a unique answer to this problem: it is the fourth-rank tensor Rλμνκ which is known
as the Riemann–Christoffel tensor. Other tensors can be formed from this tensor by
contraction, the most important of these being the Ricci tensor

Rμκ = Rλμλκ , (6.45)

and the curvature scalar

R = gμκRμκ . (6.46)

Einstein’s stroke of genius was to propose that these tensors are related to the
energy–momentum tensor in the following way

Rμν − 1
2 gμνR = −8πG

c2
Tμν . (6.47)

This is the key relation which shows how the components of the metric tensor gμν
are related to the mass-energy distribution Tμν in the Universe.

We will go no further along this route, except to note that Einstein realised that
he could add an additional term to the left-hand side of (6.47). This is the origin
of the famous cosmological constant Λ and was originally introduced in order to
construct a static closed model for the Universe. Equation (6.47) then becomes

Rμν − 1
2 gμνR +Λgμν = −8πG

c2
Tμν . (6.48)

In the discussion of Chap. 7, we will use the Newtonian equivalents of these equations
but it must be appreciated that we can only do this with the reassurance that the
complete Einstein equations give fully self-consistent world models, without any
need to introduce ad hoc assumptions. Our Newtonian equivalences can however
provide intuitive impressions of the physical content of the theory.



6.6 Experimental and Observational Tests of General Relativity 189

6.6 Experimental and Observational Tests of General Relativity

In Einstein’s exposition of the General Theory of Relativity, three tests of the theory
were proposed, the gravitational redshift, the advance of the perihelion of planetary
orbits and the deflection of light rays by the Sun. In 1964, Irwin Shapiro proposed
a fourth test, the time delay of electromagnetic waves due to the distortion of space–
time in the gravitational field of the Sun (Shapiro, 1964). The history of these tests
and their status up to 1993 were comprehensively described by Will in his excellent
book Theory and Experiment in Gravitational Physics (Will, 1993). More recently,
he has updated the status of these tests and many other approaches to validating
General Relativity (Will, 2006). Let us first review the four classic tests of the
theory and then look briefly at the current status of possible modifications to General
Relativity.

6.6.1 The Four Tests of General Relativity

Traditionally, there are four tests of the theory. The first is the measurement of the
gravitational redshift of electromagnetic waves in a gravitational field which was
discussed in Sect. 6.2. There, we described the use of the Mössbauer effect to mea-
sure the redshift of γ -ray photons in terrestrial experiments and the observation of
the gravitational redshift of the emission lines in white dwarfs. More recent versions
of the test have involved placing hydrogen masers in rocket payloads and measur-
ing very precisely the change in frequency with altitude. These experiments have
demonstrated directly the gravitational redshift of light. In the rocket experiments,
the gravitational redshift was measured with a precision of about 5 parts in 105.
Nowadays, it is preferable to regard this as a test of the conservation of energy in
a gravitational field.

The second and oldest test, and the first great triumph of General Relativity, was
the explanation of the perihelion shift of the orbit of the planet Mercury. Mercury’s
orbit has ellipticity e = 0.2 and, in 1859, Le Verrier found that, once account is
taken of the influence of the other planets in the Solar System, there remained
a small but significant advance of the perihelion of its orbit which amounted to
about ω̇ ≈ 43 arcsec per century (Le Verrier, 1859). The origin of this perihelion
shift remained a mystery, possible explanations including the presence of a hitherto
unknown planet close to the Sun, oblateness of the solar interior, deviations from
the inverse square law of gravity near the Sun and so on. Continued observations of
Mercury by radar ranging have established the advance of the perihelion of its orbit
to about 0.1% precision with the result ω̇ = 42.98(1 ± 0.001) arcsec per century,
once the perturbing effects of the other planets had been taken into account (Shapiro,
1990). Einstein’s theory of General Relativity predicts a value of ω̇ = 42.98 arcsec
per century, in remarkable agreement with the observed value.

There has been some debate as to whether or not the agreement really is as
good as this comparison suggests because there might be a contribution to the
perihelion advance if the core of the Sun were rapidly rotating and so possessed
a finite quadrupole moment. Observations of the vibrational modes of the Sun,
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or helioseismology, have shown that the core of the Sun is not rotating sufficiently
rapidly to upset the excellent agreement between the predictions of General Relativity
and the observed perihelion advance. Specifically, the quadrupole moment of the Sun
has now been measured to be J2 = (2.2 ± 0.1) × 10−7 and so its contribution to
the perihelion advance is less than 0.1% of the predicted advance. In Will’s recent
assessment, he quotes the limits in terms of the values of PPN coefficients γ and β
(see Sect. 6.6.3),

ω̇ = 42.98

[
1

3
(2 + 2γ − β)+ 3 × 10−4 J2

10−7

]
arcsec per century . (6.49)

Adopting the above value of J2, the limit of 0.1% accuracy for ω̇ corresponds to
(2γ − β − 1) < 3 × 10−3.

The third test was the measurement of the deflection of light by the Sun. For
light rays just grazing the limb of the Sun, the deflection amounts to ΔθGR =
4G M/R�c2 = 1.75 arcsec, where R� is the radius of the Sun. Historically, this was
a very important result. According to Newtonian theory, if we assume that the photon
has a momentum p = hν/c and then use the Rutherford scattering formula to work
out the deviation of the light path, we find that the Newtonian deflection amounts to
half the prediction of General Relativity, ΔθNewton = 2G M/R�c2. This prediction
led to the famous eclipse expeditions of 1919 led by Eddington and Crommelin to
measure precisely the angular deflections of the positions of stars observed close to
the limb of the Sun during a solar eclipse. One expedition went to Sobral in Northern
Brazil and the other to the island of Principe, off the coast of West Africa. The Sobral
result was 1.98 ± 0.012 arcsec and the Principe result 1.61 ± 0.3 arcsec. These were
technically demanding observations and there has been some controversy about the
reliability of the results (Coles, 2001).

The modern version of the test originally involved measuring very precisely
the angular separations between compact radio sources as they are observed close
to the Sun. By means of Very Long Baseline Interferometry (VLBI), an angular
precision of 100 microarcsec has now been achieved. In recent experiments, the
VLBI technique has been used to measure deflections by the Sun over the whole
sky. For example, at 90◦ to the direction of the Sun, the deflection of the radio waves
still amounts to 4 milliarcsec, which is readily measurable by VLBI techniques.

The evolution of the precision of the light deflection test from the early opti-
cal studies to the most recent VLBI experiments is shown in the upper panel of
Fig. 6.5. Transcontinental and intercontinental VLBI observations of quasars and
radio galaxies have been used to monitor the Earth’s rotation and these are sensitive
to the deflection of light over almost the entire celestial sphere. An analysis of almost
2 million VLBI observations of 541 radio sources made by 87 VLBI sites over the
period 1979 to 1999 yielded the following value for the parameter γ : (γ − 1) =
(−1.7 ± 4.5) × 10−4, or equivalently, (1 + γ)/2 = 0.99992 ± 0.00023 (Shapiro
et al., 2004). Notice also the limits shown in Fig. 6.5 obtained from the very precise
positions of stars measured by the ESA Hipparcos astrometric satellite. General rel-
ativistic corrections had to be made for stars over the whole sky in order to obtain the
quoted accuracy of about one milliarcsecond for the stars in the Hipparcos catalogue.



6.6 Experimental and Observational Tests of General Relativity 191

Fig. 6.5. Measurements of the quantity (1 + γ)/2 from light deflection and time delay exper-
iments. The value of γ according to General Relativity is unity. The arrows at the top of the
diagram denote anomalously large values from early eclipse expeditions. The time delay mea-
surements from the Cassini spacecraft yielded agreement with General Relativity at the level
of 10−3 percent. VLBI radio deflection measurements have reached 0.02 percent accuracy.
The Hipparcos limits were derived from precise measurements of the positions stars over the
whole sky and resulted in a precision of 0.1 percent in the measurement of γ (Will, 2006)

The forthcoming GAIA mission of ESA will measure the positions of about a billion
stars in the Galaxy with a precision of about ten microarcsecond for stars brighter
than 15th magnitude and so further estimates of the value of γ can be expected.

The fourth of the traditional tests is closely related to the deflection of light
by the Sun and concerns the time delay expected when an electromagnetic wave
propagates through a varying gravitational potential. In 1964, Shapiro realised that
the gravitational redshift of radio signals passing close to the Sun causes a small time
delay which can be measured by very precise timing of signals which are reflected
from planets or space vehicles as they are about to be occulted by the Sun (Shapiro,
1964). Originally, the radio signals were reflected from the surface of the planets,
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but later experiments used transponders on space vehicles which passed behind the
Sun. The most accurate results from the early experiments were obtained using
transponders on the Viking space vehicles which landed on Mars. These ‘anchored’
transponders gave results in agreement with General Relativity to within 0.1%.

A significant improvement was obtained in 2003 from Doppler tracking of the
Cassini spacecraft while en route to Saturn. This experiment had the advantage
of carrying out the timing measurements at two different radio frequencies and
so much improved corrections could be made for the effects of the dispersion of
the radio signals by the interplanetary plasma. The result of this experiment was
(γ − 1) = (2.1 ± 2.3) × 10−5. Hence the coefficient 1

2 (1 + γ) must be within at
most 0.0012 percent of unity (Bertotti et al., 2003). These results are summarised
diagramatically in the lower panel of Fig. 6.5, which is taken from Will’s review
(Will, 2006).

6.6.2 Pulsars and General Relativity

Some of the most remarkable results have come from radio observations of pulsars.
These pulsating radio sources are identified with rotating, magnetised neutron stars
and they emit beams of radio emission along their magnetic poles. It is assumed that
the rotational and magnetic axes are misaligned so that the distant observer normally
detects one pulse per rotation period of the neutron star. A sketch of this model for
a pulsar is shown schematically in Fig. 6.6 for the case of the binary pulsar PSR
1913+16. The typical parameters for a neutron star are that their masses are about
1.4M�, their radii about 10 km and their magnetic flux densities range from 104 to
109 T. Observations by Joseph Taylor and his colleagues using the Arecibo radio
telescope have demonstrated that these are among the most stable clocks we know
of in the Universe (Taylor, 1992).

The most intriguing systems are those pulsars which are members of binary
systems, particularly those which are referred to as relativistic binaries in which
both members of the binaries are neutron stars and their binary periods are less than
a day. The first of these to be discovered was the binary pulsar PSR 1913+16 (Hulse
and Taylor, 1975). The system has a binary period of only 7.75 hours and its orbital
eccentricity is large, e = 0.617. This system is a pure gift for the relativist. To test
General Relativity, we need a perfect clock in a rotating frame of reference and
systems such as PSR 1913+16 are ideal for this purpose. The neutron stars are so
inert and compact that the binary system is very ‘clean’ and so can be used for some
of the most sensitive tests of General Relativity yet devised.

Precise timing of the arrival times of the pulses enables many independent
parameters of the binary system to be determined and these depend upon the masses
of the neutron stars. In Fig. 6.7, the most accurately determined three parameters are
used to estimate the masses of the neutron stars in the binary system PSR 1913+16,
assuming that General Relativity is the correct theory of gravity. It can be seen
that the different loci intersect very precisely at a single point in the m1/m2 plane.
Some measure of the precision with which the theory is known to be correct can be
obtained from the accuracy with which the masses of the neutron stars are known:
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Fig. 6.6. A schematic diagram of the orbit of the binary pulsar PSR 1913+16. The pulsar is
one of a pair of neutron stars in binary orbits about their common centre of mass. There is
a displacement between the axis of the magnetic dipole and the rotation axis of the neutron
star. The radio pulses are assumed to be due to beams of radio emission from the poles of the
magnetic field distribution and are associated with the passage of the beam across the line of
sight to the observer. As a result of the ability to measure precisely many parameters of the
binary orbit from ultraprecise pulsar timing, the masses of the two neutron stars have been
measured with very high precision (Taylor, 1992; Will, 2006)

m1 = 1.4414 ± 0.0002 M� and m2 = 1.3867 ± 0.0002 M�. These are the most
accurately known masses for any extrasolar system object.

Four other neutron star–neutron star binaries are known, including the system
J0737-3039 in which both neutron stars are observed as pulsars (Lyne et al., 2004).
This system is of the greatest interest since ultimately even better estimates of the
orbital parameters of the system can be found than is the case for PSR 1913+16. It
has not, however, yet been observed over as long a time period as PSR 1913+16.

A second remarkable measurement has been the rate of loss of orbital rotational
energy by the emission of gravitational waves. A binary star system loses energy
by the emission of gravitational radiation and the rate at which energy is lost can
be precisely predicted once the masses of the neutron stars and the parameters of
the binary orbit are known.4 The rate of change of the angular frequency Ω of the
orbit due to the emission of gravitational radiation is precisely known, dΩ/dt ∝ Ω5.

4 I have given a simple heuristic derivation of the formula for the rate of loss of energy of
a binary system by gravitational radiation in the Explanatory Supplement to Chap. 8 of my
book The Cosmic Century (Longair, 2006).
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Fig. 6.7. Constraints on the masses of the pulsar PSR 1913+16 and its invisible companion
from precise timing data, assuming General Relativity to be the correct theory of gravity. The
width of each strip in the plane reflects the observational uncertainties, shown as a percent-
age. The inset shows the same three most accurate constraints on the full mass plane; the
intersection region has been magnified 400 times in the large figure (Will, 2006)

The change in orbital phase of the binary pulsar PSR 1913+16 has been observed
over a period of 30 years and General Relativity is in precise agreement with the
observed changes over that period (Fig. 6.8). Thus, although the gravitational waves
themselves have not been detected, exactly the correct energy loss rate from the
system has been measured; it is generally assumed that this is convincing evidence
for the existence of gravitational waves and this observation acts as a spur to their
direct detection by future generations of gravitational wave detectors.

This is a very important result for the theory of gravitation since it enables
a range of alternative theories of gravity to be excluded. For example, since General
Relativity predicts only quadrupole emission of gravitational radiation, any theory
which, say, involved the dipole emission of gravitational waves can potentially be
excluded. The only problem with this argument for the system PSR 1913+16 is that
the masses of the two neutron stars are almost exactly the same and so it possesses
a rather small dipole moment. It turns out that at the moment the solar system tests
provide better constraints on theories of relativistic gravity.
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Fig. 6.8. The change of orbital phase as a function of time for the binary neutron star system
PSR 1913+16 compared with the expected changes due to gravitational radiation energy loss
by the binary system (Taylor, 1992; Will, 2006)

6.6.3 Parameterised Post-Newtonian Models

We have already introduced the parameters β and γ without explaining precisely
what they mean. These quantities are found in what are called parameterised post-
Newtonian (PPN) models for theories of relativistic gravity. To understand this
approach to comparing the theories with observation, it is simplest to quote the
words of Will (Will, 2006):

The comparison of metric theories of gravity with each other and with
experiment becomes particularly simple when one takes the slow-motion,
weak-field limit. This approximation, known as the post-Newtonian limit,
is sufficiently accurate to encompass most solar-system tests that can be
performed in the foreseeable future. It turns out that, in this limit, the
space–time metric predicted by nearly every metric theory of gravity has
the same structure. It can be written as an expansion about the Minkowski
metric in terms of dimensionless gravitational potentials of varying degrees
of smallness.
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The spirit of this approach is to relax the powerful constraints implied by the
Einstein equivalence principle discussed in Sect. 6.1 and so allow a wider range of
possible theories of relativistic gravity. To give some impression of what is involved
in this approach, Table 6.1, taken from Will’s survey, shows a list of the various
parameters involved in these theories. Notice that the entries for ξ and for α1, α2 and
α3 correspond to relaxing the second and third conditions involved in the Einstein
equivalence principle.

These modifications would change the metric coefficients from the values they
take in General Relativity. Thus, quoting Will, the metric coefficients would become:

g00 = −1 + 2U − 2βU2 − 2ξΦW + (2γ + 2 + α3 + ζ1 − 2ξ)Φ1

+2(3γ − 2β + 1 + ζ2 + ξ)Φ2 + 2(1 + ζ3)Φ3 + 2(3γ + 3ζ4 − 2ξ)Φ4

−(ζ1 − 2ξ)A − (α1 − α2 − α3)w
2U − α2w

iw jUij

+(2α3 − α1)w
i Vi + O(ε3) (6.50)

g0i = − 1
2 (4γ + 3 + α1 − α2 + ζ1 − 2ξ)Vi − 1

2 (1 + α2 − ζ1 + 2ξ)Wi

− 1
2 (α1 − 2α2)w

iU − α2w
jUij + O(ε5/2) (6.51)

gij = (1 + 2γU)δij + O(ε2) . (6.52)

The quantities U , Uij , ΦW , Φ1, Φ2, Φ3, Φ4, A, Vi , Wi are various metric potentials
which can be interpreted in terms of Newtonian gravity. Thus, U , defined by

U =
∫

	′

|x − x′| d3x′ , (6.53)

is just the Newtonian gravitational potential.
The expressions (6.50) to (6.52) look rather forbidding at first sight, but the

important point is that it is possible to test theories in which the Einstein equivalence
principle is relaxed and provide further constraints upon acceptable theories. As
Will points out in his review, some of the theories may appear somewhat unphysical
within the realms of known physics, but in some extensions of the Standard Model
of particle physics, for example, even some of our most cherished theories, such as
Lorentz invariance, might have to be sacrificed. Another example involves scalar-
tensor modifications of General Relativity which are involved in unification schemes
such as string theory, and in cosmological model building.

Some of these post-Newtonian ‘corrections’ have quite obvious meanings. For
example, inspection of the first three terms of (6.50) shows that, for a point mass,
the first two are just the familiar metric coefficient (1+φ/c2) in our notation and the
third is a non-linear term in the square of the potential β(φ/c2)2. In the same way,
inspection of (6.52) shows that γ describes how much space-curvature is produced
by unit mass, reducing to the standard result if γ = 1. The limits which can be set to
possible deviations from the Einstein equivalence principle are listed in Table 6.3.
Will’s review should be consulted for more details about these possibilities.
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Table 6.3. Current limits on the PPN parameters. Here ηN is a combination of other parameters
given by ηN = 4β − γ − 3 − 10ξ/3 − α1 + 2α2/3 − 2ζ1/3 − ζ2/3

Parameter Effect Limit Remarks

γ − 1 Time delay 2.3 × 10−5 Cassini tracking
Light deflection 4 × 10−4 VLBI

β − 1 Perihelion shift 3 × 10−3 J2 = 10−7 from helioseismology
Nordtvedt effect 2.3 × 10−4 ηN = 4β − γ − 3 assumed

ξ Earth tides 10−3 Gravimeter data
α1 Orbital polarisation 10−4 Lunar laser ranging

2 × 10−4 PSR J2317+1439
α2 Spin precession 4 × 10−7 Solar alignment with ecliptic
α3 Pulsar acceleration 4 × 10−20 Pulsar Ṗ statistics
ηN Nordtvedt effect 9 × 10−4 Lunar laser ranging
ζ1 – 2 × 10−2 Combined PPN bounds
ζ2 Binary acceleration 4 × 10−5 P̈p for PSR 1913+16
ζ3 Newtons 3rd law 10−8 Lunar acceleration
ζ4 – – Not independent (6ζ4 = 3α3 + 2ζ1 − 3ζ3)

Table 6.4. Constancy of the gravitational constant G. For binary pulsar data, the bounds are
dependent upon the theory of gravity in the strong-field regime and on the neutron star equation
of state. Big Bang nucleosynthesis bounds assume a specific form for the time dependence
of G

Method (Ġ/G)/10−13 year−1 Reference

Lunar laser ranging 4 ± 9 (Williams et al., 2004)
Binary pulsar PSR 1913+16 40 ± 50 (Kaspi et al., 1994)
Helioseismology 0 ± 16 (Guenther et al., 1998)
Big Bang nucleosynthesis 0 ± 4 (Copi et al., 2004)

6.6.4 Variation of the Gravitational Constant with Cosmic Epoch

An important question for cosmology is whether or not the gravitational constant
G has varied with time. A summary of recent results is shown in Table 6.4 (Will,
2006).

– The technique of lunar laser ranging has provided the strongest limit to date. In
the analysis of these data, evidence is sought for steady changes in the lunar orbit
which could be attributed to changes in the gravitational constant with time.

– The techniques of accurate pulsar timing have been used to determine whether or
not there is any evidence for steady changes in the pulsar’s orbital period due to
steady variations in the gravitational constant G with time. This test is somewhat
dependent upon the equation of state used to describe the interior of the neutron
star.
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– The helioseismology limit is derived from the remarkable success of the standard
astrophysical model of the solar interior in accounting for its internal structure.
The frequency spacings between the p-modes of different azimuthal and radial
order are very sensitive to the sound speed in the central regions of the star. If the
gravitational constant had varied with cosmic epoch, the chemical composition
and hence the speed of sound and frequency separations in the central regions
would have been significantly different from the observed values.

– The primordial nucleosynthesis argument follows from the fact that, if the grav-
itational constant were greater in the past, the early evolution of the Universe
would have been more rapid than in the standard model of its early stages and
so helium would have been dramatically overproduced relative to its observed
cosmic value. We will return to this argument in Chap. 10.

The sense of the data listed in Table 6.4 is that there can have been little change in
the value of the gravitational constant over typical cosmological time-scales which
are about 1010 years.

6.7 Summary

General Relativity has passed every observational and experimental test which has
been made of the theory and so we can have confidence that it is the correct starting
point for the development of models of the large-scale dynamical structure of our
Universe.



7 The Friedman World Models

7.1 Einstein’s Field Equations

Einstein realised that, in General Relativity, he had discovered a theory which enabled
fully self-consistent models for the Universe as a whole to be constructed. The
standard models contain three essential ingredients:

– The cosmological principle, which, combined with the observations that the
Universe is isotropic, homogeneous and uniformly expanding on a large scale,
leads to the Robertson–Walker metric (5.33).

– Weyl’s postulate, according to which the world lines of particles meet at a singular
point in the finite or infinite past. This means that there is a unique world line
passing through every point in space–time. The fluid moves along streamlines
in the universal expansion and so behaves like a perfect fluid for which the
energy–momentum tensor is given by the Tαβ of (6.33).

– General Relativity, which enables us to relate the energy–momentum tensor to
the geometrical properties of space–time through (6.47) or (6.48).

The assumptions of isotropy and homogeneity result in enormous simplifications of
Einstein’s field equations which reduce to the following pair of equations:

ä = −4πG

3
a

(
	+ 3p

c2

)
+ 1

3Λa ; (7.1)

ȧ2 = 8πG	

3
a2 − c2

�2
+ 1

3Λa2 . (7.2)

In these equations, a is the scale factor normalised to the value unity at the present
epoch t0, 	 is the total inertial mass density of the matter and radiation content of
the Universe and p the associated total pressure. � is the radius of curvature of
the geometry of the world model at the present epoch and so the term −c2/�2 is
a constant of integration. The cosmological constant Λ was introduced by Einstein
in 1917 in order to create a static Universe with closed geometry which he hoped
would enable Mach’s principle to be incorporated into General Relativity (Einstein,
1917).

Let us look more closely at the meanings of (7.1) and (7.2). Equation (7.2) is
referred to as Friedman’s equation and has the form of an energy equation, the
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term on the left-hand side corresponding to the kinetic energy of the expanding
fluid and the first term on the right-hand side to its gravitational potential energy,
as we will show in Sect. 7.2. An illuminating account of Friedman’s equation, its
physical content and its solutions has been given by White, whose presentation can
be thoroughly recommended (White, 1990). The pair of equations (7.1) and (7.2)
incorporate the First Law of Thermodynamics in its full relativistic form as can be
appreciated from the following analysis. We write the first law in the usual form

dU = −p dV . (7.3)

We need to formulate the law so that it is applicable for relativistic and non-relativistic
fluids and so we write the internal energy U as the sum of all the terms which can
contribute to the total energy of the fluid in the relativistic sense. Thus, the total
internal energy consists of the fluid’s rest mass energy, its kinetic energy, its thermal
energy and so on. If we write the sum of these energies as εtot = ∑

i εi , the internal
energy is εtotV and so, dividing (7.3) by da, it follows that

d

da
(εtotV) = −p

dV

da
. (7.4)

Now, V ∝ a3 and so, differentiating, we find

dεtot

da
+ 3

(εtot + p)

a
= 0 . (7.5)

This result can be expressed in terms of the inertial mass density associated with
the total energy εtot = 	c2; this is the type of density 	 which should be included in
(7.1) and (7.2). Therefore, (7.5) can also be written

d	

da
+ 3

(
	+ p

c2

)

a
= 0 . (7.6)

Let us show how (7.5) and (7.6) lead to a number of important results which we
will use repeatedly in what follows. First of all, suppose the fluid is very ‘cold’ in
the sense that p 	 	0c2, where 	0 is its rest mass density. Then, setting p = 0 and
ε0 = Nmc2, where N is the number density of particles of rest mass m, we find

dN

da
+ 3N

a
= 0 and so N = N0a−3 , (7.7)

that is, the equation of conservation of mass for a gas of non-relativistic particles.
Next, the thermal pressure of non-relativistic matter can be included into (7.5).

We will normally be dealing with monatomic gases or plasmas for which the thermal
energy is εth = 3

2 NkT and p = NkT . Then, substituting εtot = 3
2 NkT + Nmc2 and

p = NkT into (7.5), we find

d

da

( 3
2 NkT + Nmc2)+ 3

(
5
2 NkT + Nmc2

a

)
= 0 ,

d(NkT)

da
+ 5NkT

a
= 0 and so NkT = N0kT0a−5 . (7.8)
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Since N = N0a−3, we find the standard result for the adiabatic expansion of
a monatomic gas with ratio of specific heats γ = 5/3, T ∝ a−2. More generally, if the
ratio of specific heats of the gas is γ , the energy density is εtot = NkT/(γ−1)+Nmc2

and so the temperature changes as T ∝ a−3(γ−1).
We can deduce another important result from the expression for a monatomic

gas, T ∝ a−2. If we write εth = 1
2 Nm〈v2〉, where 〈v2〉 is the mean square velocity

of the particles of the gas, we find 〈v2〉 ∝ a−2. Thus, the random velocities of
the particles of the gas decrease as v ∝ a−1. This result applies equally to the
random motions of galaxies relative to the mean Hubble flow, what are known as the
peculiar velocities of galaxies, vpec. Therefore, as the Universe expands, we expect
the peculiar velocities of galaxies to decrease as vpec ∝ a−1.

Finally, in the case of a gas of ultrarelativistic particles, or a gas of photons, we
can write p = 1

3εtot. Therefore, from (7.5),

dεtot

da
+ 4εtot

a
= 0 and so εtot ∝ a−4 . (7.9)

In the case of a gas of photons, εrad = ∑
Nhν and, since N ∝ a−3, we find ν ∝ a−1.

This is an alternative derivation of the relation between the scale factor a and the
cosmological redshift z. If ν0 is the frequency of the photon at the present epoch and
νem its frequency when the scale factor was a, νem/ν0 = a−1 and hence, from the
definition of (5.45),

z = νem

ν0
− 1 ; a = 1

1 + z
. (7.10)

Let us now return to the analysis of (7.2). Differentiating this equation with
respect to time and dividing through by ȧ, we find

ä = 4πGa2

3

d	

da
+ 8πG	a

3
+ 1

3Λa . (7.11)

Now, substituting the expression for d	/da from (7.6), we find

ä = −4πGa

3

(
	+ 3p

c2

)
+ 1

3Λa , (7.12)

that is, we recover (7.1). The purpose of these calculations has been to show how
(7.1) and (7.2) correctly include the law of conservation of energy for both relativistic
and non-relativistic gases.

Equation (7.1) has the form of a force equation, but, as we have shown, it contains
implicitly the First Law of Thermodynamics as well. An equation of this form can
be derived from Newtonian considerations, but it does not contain the pressure term
3p/c2. This pressure term can be considered a ‘relativistic correction’ to the inertial
mass density, but it is unlike normal pressure forces which depend upon the gradient
of the pressure and, for example, hold up the stars. The term 	 + (3p/c2) can be
thought of as playing the role of an active gravitational mass density.
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The general solutions of (7.2) for expanding world models were discovered
by Aleksander Aleksandrovich Friedman in two remarkable papers published in
1922 and 1924 (Friedman, 1922, 1924) (for translations, see the book Cosmological
Constants (Bernstein and Feinberg, 1986)). In these papers, Friedman assumed that
Λ �= 0 and so it is appropriate to refer the complete set of models with and without
the Λ-term as the Friedman world models.

As we will discuss in Chaps. 8 and 15, there is now compelling evidence for
a finite value of the cosmological constantΛ. It might therefore seem best to plunge
straight into the full analysis of (7.1) and (7.2) withΛ �= 0. Rather than do this, I will
develop the models with and without a finite value of Λ in parallel in what follows.
There are two reasons for not discarding the models with Λ = 0 immediately. The
first is that the models with Λ = 0 often have simple analytic solutions which
give insight into the behaviour of the cosmological models. The second reason
is that the effects of the cosmological constant only become appreciable at late
cosmological epochs and so for many purposes, particularly in the early Universe,
we can confidently set the cosmological constant equal to zero.

7.2 The Standard Friedman World Models with Λ = 0
By dust, cosmologists mean a pressureless fluid and so we set p = 0 in the Friedman
equations. In this section, the cosmological constant Λ is also set to zero. It is
convenient to refer the density of the fluid to its value at the present epoch 	0 and
then, because of conservation of mass, 	 = 	0a−3. Therefore, (7.1) and (7.2) reduce
to

ä = −4πG	0

3a2
; ȧ2 = 8πG	0

3a
− c2

�2
. (7.13)

7.2.1 The Newtonian Analogue of the Friedman World Models

In 1934, Milne and McCrea showed that relations of the form (7.13) can be derived
using non-relativistic Newtonian dynamics (Milne and McCrea, 1934a,b). We will
perform this calculation because the ideas implicit in the argument can be used to
understand some of the problems which arise in the theory of galaxy formation.
Consider a galaxy at distance x from the Earth and work out its deceleration due
to the gravitational attraction of the matter inside the sphere of radius x centred on
the Earth (Fig. 7.1). By Gauss’s theorem, because of the spherical symmetry of the
distribution of matter about the origin, we can replace that mass, M = (4π/3)	x3,
by a point mass at the centre of the sphere and so the deceleration of the galaxy is

mẍ = −G Mm

x2
= −4πx	m

3
. (7.14)

The mass of the galaxy m cancels out on either side of the equation, showing that
the deceleration refers to the sphere of matter as a whole rather than to any particular
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Fig. 7.1. Illustrating the dynamics
of Newtonian world models

galaxy. We now replace x by the comoving radial distance coordinate r using the
relation x = ar, and express the density in terms of its value at the present epoch,
	 = 	0a−3. Then,

ä = −4πG	0

3a2
, (7.15)

which is identical to (7.1) for dust models with Λ = 0. Multiplying (7.15) by ȧ and
integrating, we find

ȧ2 = 8πG	0

3a
+ constant. (7.16)

This result is identical to (7.2) if we identify the constant with −c2/�2. This New-
tonian calculation illustrates why we can identify the left-hand side of (7.2) with the
kinetic energy of expansion of the fluid and the first term on the right-hand side with
its gravitational potential energy.

The above analysis brings out a number of important features of the Friedman
world models. First of all, there is an important flaw in the Newtonian argument in
that we have applied Gauss’s law to an infinite distribution of matter and ignored the
issue of the boundary conditions at infinity. The argument works, however, because
of the assumption of isotropy and homogeneity of the matter throughout the infinite
Universe: local physics is also global physics. The same physics which defines
the local behaviour of matter also defines its behaviour on the largest scales. For
example, the curvature of space κ within one cubic metre is exactly the same as that
on the scale of the Universe itself.

Furthermore, although we might appear to have placed the Earth in a preferred
position in Fig. 7.1, an observer located on any galaxy anywhere in the Universe
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would perform exactly the same calculation to estimate the deceleration of any other
galaxy relative to the observer’s galaxy. This is a result of the cosmological principle
which asserts that all fundamental observers should observe the same large-scale
features of the Universe at the same epoch. In other words, the Newtonian calculation
applies for all observers who move in such a way that the Universe appears isotropic
to them which is, by definition, for all fundamental observers.

Notice also that at no point in the argument did we ask over what physical scale
the calculation was to be valid. For strictly uniform isotropic models, this calculation
describes correctly the dynamics of the Universe on scales greater than the horizon
scale which, for the moment, we can take to be r = ct, that is, the maximum distance
between points which can be causally connected at the epoch t. The reason for this
is the same as for the first two points: local physics is also global physics and so,
if the Universe were set up in such a way that it had uniform density on scales
far exceeding the horizon scale, the dynamics on these very large scales would be
exactly the same as the local dynamics.

Friedman died of typhoid during the civil war in Leningrad in 1925 and did
not live to see what have become the standard models of the Universe bear his
name (see the biography by Tropp, Frenkel and Chernin (Tropp et al., 1993)). It is
perhaps surprising that these papers did not attract more widespread interest at the
time. This may have been partly due to a brief note published by Einstein in 1922
criticising some steps in Friedman’s first paper (Einstein, 1922). In the following
year, Einstein graciously acknowledged that his criticism was based upon an error
in his own calculations and that Friedman’s solution was indeed correct (Einstein,
1923). Georges Lemaître rediscovered Friedman’s solutions in 1927 and brought
Friedman’s contributions to the wider notice of astronomers and cosmologists during
the 1930s (Lemaître, 1927).

7.2.2 The Critical Density and the Density Parameter

It is convenient to express the density of the world models in terms of a critical
density 	c which is defined to be

	c = (
3H2

0 /8πG
) = 1.88 × 10−26 h2 kg m−3 . (7.17)

Where Hubble’s constant H0 has been written H0 = 100h km s−1 Mpc−1 in view of
uncertainty about its exact value.1 Then, the actual density of the model at the present
epoch 	0 can be referred to this value through a density parameter Ω0 = 	0/	c.
Thus, the density parameter is defined to be

Ω0 = 	0

	c
= 8πG	0

3H2
0

. (7.18)

The subscript 0 has been attached to Ω because the critical density 	c changes
with cosmic epoch, as does Ω. It is convenient to refer any cosmic density to 	c.

1 As will be discussed in Chaps. 8 and 15, Hubble’s constant is now known to better than
10% accuracy. A value of h = 0.7 can be used with some confidence.
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For example, we will often refer to the density parameter of baryons, ΩB, or of
visible matter, Ωvis, or of dark matter, ΩD, and so on; these are convenient ways of
describing the relative importance of different contributions to Ω0.

The dynamical equations (7.13) therefore become

ä = −Ω0 H2
0

2a2
; ȧ2 = Ω0 H2

0

a
− c2

�2
. (7.19)

Several important results can be deduced from these equations. If we set the quantities
in the second equation of (7.19) equal to their values at the present epoch, t = t0,
a = 1 and ȧ = H0, we find

� = c/H0

(Ω0 − 1)1/2
and κ = (Ω0 − 1)

(c/H0)2
. (7.20)

This last result shows that there is a one-to-one relation between the density of the
Universe Ω0 and its spatial curvature κ, one of the most beautiful results of the
Friedman world models with Λ = 0.

7.2.3 The Dynamics of the Friedman Models with Λ = 0
To understand the solutions of (7.19), we substitute (7.20) into (7.19) to find the
following expression for ȧ

ȧ2 = H2
0

[
Ω0

(
1

a
− 1

)
+ 1

]
. (7.21)

In the limit of large values of a, ȧ2 tends to

ȧ2 = H2
0 (1 −Ω0) . (7.22)

Thus:

– The models having Ω0 < 1 have open, hyperbolic geometries and expand
to a = ∞. They continue to expand with a finite velocity at a = ∞ with
ȧ = H0(1 −Ω0)

1/2.
– The models withΩ0 > 1 have closed, spherical geometry and stop expanding at

some finite value of a = amax – they have ‘imaginary expansion rates’ at infinity.
They reach the maximum value of the scale factor after a time

tmax = πΩ0

2H0(Ω0 − 1)3/2
. (7.23)

These models collapse to an infinite density after a finite time t = 2 tmax, an
event sometimes referred to as the ‘big crunch’.

– The model with Ω0 = 1 separates the open from the closed models and the
collapsing models from those which expand forever. This model is often referred
to as the Einstein–de Sitter or the critical model. The velocity of expansion tends
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to zero as a tends to infinity. It has a particularly simple variation of a(t) with
cosmic epoch,

a =
(

t

t0

)2/3

κ = 0, (7.24)

where the present age of the world model is t0 = (2/3)H−1
0 .

Some solutions of (7.21) are displayed in Fig. 7.2 which shows the well-known
relation between the dynamics and geometry of the Friedman world models with
Λ = 0. The abscissa in Fig. 7.2 is in units of H−1

0 and so the slope of the relations
at the present epoch, a = 1, is always 1. The present age of the Universe is given by
the intersection of each curve with the line a = 1.

Another useful result is the function a(t) for the empty world model, Ω0 = 0,
a(t) = H0t, κ = −(H0/c)2. This model is sometimes referred to as the Milne

Fig. 7.2. The dynamics of the classical Friedman models with ΩΛ = 0 characterised by the
density parameter Ω0 = 	0/	c. If Ω0 > 1, the Universe collapses to a = 0 as shown; if
Ω0 < 1, the Universe expands to infinity and has a finite velocity of expansion as a tends to
infinity. In the case Ω0 = 1, a = (t/t0)2/3 where t0 = (2/3)H−1

0 . The time axis is given in
terms of the dimensionless time H0t. At the present epoch a = 1 and in this presentation, the
three curves have the same slope of 1 at a = 1, corresponding to a fixed value of Hubble’s
constant at the present day. If t0 is the present age of the Universe, then H0t0 = 1 forΩ0 = 0,
H0t0 = 2/3 for Ω0 = 1 and H0t0 = 0.57 for Ω0 = 2
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model. It is an interesting exercise to show why it is that, in the completely empty
world model, the global geometry of the Universe is hyperbolic. The reason is
that, in the empty model, the galaxies partaking in the universal expansion are
undecelerated and any particular galaxy always has the same velocity relative to
the same fundamental observer. Therefore, the cosmic times measured in different
frames of reference are related by the standard Lorentz transform t ′ = γ(t − vr/c2)

where γ = (1 − v2/c2)−1/2. The key point is that the conditions of isotropy and
homogeneity apply at constant cosmic time t ′ in the frames of reference of all
fundamental observers. The Lorentz transform shows that this cannot be achieved
in flat space but it is uniquely satisfied in hyperbolic space with κ = −(H0/c)2.
A simple derivation of this result is given in the Appendix to this chapter.

The general solutions of (7.21) are most conveniently written in parametric form.
For Ω0 > 1,

a = A(1 − cos θ) t = B(θ − sin θ), (7.25)

A = Ω0

2(Ω0 − 1)
and B = Ω0

2H0(Ω0 − 1)3/2
. (7.26)

For Ω0 < 1,

a = A(coshφ − 1) t = B(sinhφ − φ), (7.27)

A = Ω0

2(1 −Ω0)
and B = Ω0

2H0(1 −Ω0)3/2
. (7.28)

All the models tend towards the dynamics of the critical model at early times but
with a different constant, that is, for θ 	 1 and φ 	 1,

a = Ω
1/3
0

(
3H0t

2

)2/3

. (7.29)

We will find these results useful in understanding the growth of small perturbations
in the expanding Universe (Sect. 11.4.2).

7.3 Friedman Models with Non-Zero Cosmological Constant

The tortuous history of the cosmological constant Λ was told briefly in Chap. 1
and need not be repeated here. So far as the interpretation of the term is concerned,
Einstein soon realised that the Λ-term would appear as a constant in his field
equations quite independent of its cosmological significance (Einstein, 1919). In
1933, Lemaître suggested that the Λ-term could be interpreted in terms of a finite
vacuum energy density (Lemaître, 1933). In his words:

Everything happens as though the energy in vacuo would be different from
zero.

This insight foreshadows the present interpretation of the cosmological constant
which associates it with dark energy, the nature of which is one of the great unsolved
cosmological mysteries. Let us illustrate how this remarkable situation has come
about.
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7.3.1 The Cosmological Constant and the Vacuum Energy Density

Einstein’s field equations with the inclusion of the cosmological constant can be
written

ä = −4πGa

3

(
	+ 3p

c2

)
+ 1

3Λa ; (7.30)

ȧ2 = 8πG	

3
a2 − c2

�2
+ 1

3Λa2 . (7.31)

Considering dust-filled universes as in Sect. 7.2, we set 3p/c2 = 0 and then (7.30)
becomes

ä = −4πGa	

3
+ 1

3Λa = −4πG	0

3a2
+ 1

3Λa . (7.32)

Inspection of (7.32) gives some insight into the physical meaning of the cosmological
constant. Even in an empty universe, 	 = 0, there is a net force acting on a test parti-
cle. IfΛ is positive, the term may be thought of as the ‘repulsive force of a vacuum’,
in the words of Zeldovich, the repulsion being relative to an absolute geometrical
frame of reference (Zeldovich, 1968). There was no obvious interpretation of the
Λ-term according to classical physics. There is, however, a natural interpretation in
the context of quantum field theory.

A key development has been the introduction of Higgs fields into the theory
of weak interactions. These and other ideas of quantum field theory are described
by Zeldovich in an article aimed at providing enlightenment for observational as-
tronomers (Zeldovich, 1986). The Higgs field was introduced into the electro-weak
theory of elementary particles in order to eliminate singularities in the theory and
to endow the W± and Z0 bosons with masses. Precise measurement of the masses
of these particles at CERN has confirmed the theory very precisely, although the
Higgs particles themselves have not yet been found in accelerator experiments; the
particle physics community confidently expects that these elusive particles will be
discovered in the first experiments carried out at the Large Hadron Collider (LHC)
at CERN in 2008. As described by Zeldovich, the Higgs fields have the property of
being scalar fields, unlike the vector fields of electromagnetism or the tensor fields
of General Relativity, and have negative pressure equations of state p = −	c2.

In the modern picture of the vacuum, there are zero-point fluctuations associated
with the zero-point energies of all quantum fields. The stress–energy tensor of
a vacuum has a negative pressure equation of state, p = −	c2. This pressure may be
thought of as a ‘tension’ rather than a pressure. When such a vacuum expands, the
work done p dV in expanding from V to V + dV is just −	c2 dV so that, during the
expansion, the mass-energy density of the negative pressure field remains constant.
We can find the same result directly from (7.6). If the vacuum energy density is to
remain constant, 	vac = constant, it follows from that equation that p = −	c2.

Since vacuum fluctuations are now an integral part of modern physics, it is
straightforward to work out what the cosmological vacuum energy should be. Carroll,



7.3 Friedman Models with Non-Zero Cosmological Constant 209

Press and Turner have described how a theoretical value ofΛ can be estimated using
simple concepts from quantum field theory (Carroll et al., 1992). In their approach,
they perform a standard analysis to estimate the energy density of the vacuum fields
by integrating to a maximum wavenumber kmax at which the theory breaks down.
They find

	vac = lim
L→∞

E0

L3
= � k4

max

16π2
. (7.33)

They take the energy at which conventional field theory breaks down due to quantum
gravitational effects to occur at the Planck energy scale, E∗ ≈ 1019 GeV and hence,
if kmax = E∗/�, 	vac ≈ 1095 kg m−3.

A similar argument is presented by Peacock in his splendid book Cosmological
Physics (Peacock, 2000). Heisenberg’s Uncertainty Principle states that a virtual pair
of particles of mass m can exist for a time t ∼ �/mc2, corresponding to a maximum
separation x ∼ �/mc. Hence, the typical density of the vacuum fields is 	 ∼ m/x3 ≈
c3m4/�3. The mass density in the vacuum fields is unchanging with cosmic epoch
and so, adopting the Planck mass for m = mPl = (hc/G)1/2 = 5.4 × 10−8 kg
≡ 3 × 1019 GeV, the mass density corresponds to about 1097 kg m−3.

There is now compelling evidence thatΛ is finite with mass density correspond-
ing to 	v ≈ 6 × 10−27 kg m−3, about 10120 times less than the predicted value. This
is quite a problem, but it should not be passed over lightly. If the inflationary picture
of the very early Universe is taken seriously, this is exactly the type of field which
drove the inflationary expansion. Then, we have to explain why 	v decreased by
a factor of about 10120 at the end of the inflationary era. In this context, 10−120 looks
remarkably close to zero, which would correspond to the standard Friedman picture
with Λ = 0, but this evidently cannot be the type of Universe we live in.

Thus, it is now quite natural to believe that there are indeed forces in nature
which can provide Zeldovich’s ‘repulsion of the vacuum’ and to associate a certain
mass density 	v with the energy density of the vacuum, or the dark energy, at the
present epoch. It is convenient to rewrite the formalism we have developed above
in terms of a density parameter ΩΛ associated with the dark energy as follows. We
begin with (7.30) in the form:

ä = −4πGa

3

(
	m + 	v + 3pv

c2

)
, (7.34)

where, in addition to the density of ‘dust’ 	m, we have included the mass density 	v

and pressure pv of the vacuum fields. Since pv = −	vc2, it follows that

ä = −4πGa

3
(	m − 2	v) . (7.35)

As the Universe expands, 	m = 	0/a3 and 	v = constant. Therefore,

ä = −4πG	0

3a2
+ 8πG	va

3
. (7.36)
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Equations (7.32) and (7.36) have precisely the same dependence of the ‘cosmological
term’ upon the scale factor a and so we can formally identify the cosmological
constant with the vacuum mass density.

Λ = 8πG	v . (7.37)

At the present epoch, a = 1 and so

ä(t0) = −4πG	0

3
+ 8πG	v

3
. (7.38)

A density parameter associated with 	v can now be introduced, in exactly the same
way as the density parameter Ω0 was defined:

ΩΛ = 8πG	v

3H2
0

and so Λ = 3H2
0ΩΛ . (7.39)

The dynamical equations (7.30) and (7.31) can now be written

ä = −Ω0 H2
0

2a2
+ΩΛH2

0 a ; (7.40)

ȧ2 = Ω0 H2
0

a
− c2

�2
+ΩΛH2

0 a2 . (7.41)

We now substitute the values of a and ȧ at the present epoch, a = 1 and ȧ = H0,
into (7.41) to find the relation between the curvature of space, Ω0 and ΩΛ:

c2

�2
= H2

0 [(Ω0 +ΩΛ)− 1] , (7.42)

or

κ = 1

�2
= [(Ω0 +ΩΛ)− 1](

c2/H2
0

) . (7.43)

Thus, the condition that the spatial sections are flat Euclidean space becomes

(Ω0 +ΩΛ) = 1 . (7.44)

We recall that the radius of curvature Rc of the spatial sections of these models
change with scale factor as Rc = a� and so, if the space curvature is zero now, it
must have been zero at all times in the past.

7.3.2 Varying the Equation of State of the Vacuum Energy

A further generalisation of the formalism given above is to suppose that the equation
of state has the generic form pi = wi	i c2. We can then use the relativistic energy
conservation equation (7.6) to find the variation of the density with scale factor a.
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Equation (7.6) becomes

d	i

da
+ 3

(
	i + pi

c2

)

a
= 0 ; d	i

da
= −3	i(1 +wi)

a
. (7.45)

Hence, integrating, the variation of the density with scale factor is

	i ∝ a−3(1+wi ) . (7.46)

This result makes a lot of sense. In the case of cold matter, wi = 0 and so 	 ∝ a−3.
For photons and ultrarelativistic matter, wi = 1/3 and so 	 ∝ a−4. For standard
dark energy, wi = −1 and 	 = constant. It is therefore straightforward to repeat the
analysis of the previous section to find the relations between the density parameter
in the species i and the geometrical properties of the world models. We leave it as
an exercise for the reader to show that the results of these calculations are:

ä = −Ω0 H2
0

2a2
− (1 + 3wi)

Ωi0 H2
0

2a2+3wi
, (7.47)

where the density parameter at the present epoch of the species i, Ωi0, is given by

Ωi0 = 8πG	i0

3H2
0

. (7.48)

The expression for ȧ becomes

ȧ2 = Ω0 H2
0

a
+ Ωi0 H2

0

a1+3wi
− c2

�2
. (7.49)

Inserting the values of a = 1 and ȧ = H0 at the present epoch, we find

c2

�2
= H2

0 [(Ω0 +Ωi0)− 1] , (7.50)

and so

κ = 1

�2
= [(Ω0 +Ωi0)− 1](

c2/H2
0

) . (7.51)

The reason for carrying out this extension of the standard formalism is that we can
use these results to estimate wi directly from the observations. Note also that (7.51)
shows that the condition for flat spatial geometry is that all the contributions to Ω0

and Ω0i sum to unity,

Ω0 +
∑

i

Ω0i = 1 . (7.52)

7.3.3 The Dynamics of World Models with Λ �= 0: General Considerations

The dynamics of world models with Λ �= 0 are of special importance in the light of
the most recent estimates of the values of cosmological parameters. First of all, we
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discuss some general considerations of the dynamics of these models and then look
in more detail at the range of models which are likely to be relevant for our future
studies.

Models with Λ < 0 are not of a great deal of interest because the net effect
is to incorporate an attractive force in addition to gravity which slows down the
expansion of the Universe. The one difference from the models with Λ = 0 is
that, no matter how small the values of ΩΛ and Ω0 are, the universal expansion is
eventually reversed, as may be seen by inspection of (7.32).

Models with Λ > 0, ΩΛ > 0 are much more interesting because a positive
cosmological constant leads to a repulsive force which opposes the attractive force
of gravity. In each of these models, there is a minimum rate of expansion ȧmin which
is found by setting ä = 0 in (7.40). The corresponding value of the scale factor and
minimum rate of expansion are

amin = (Ω0/2ΩΛ)
1/3 , (7.53)

ȧ2
min = 3H2

0

2

(
2ΩΛΩ

2
0

)1/3 − c2

�2
. (7.54)

If the right-hand side of (7.54) is greater than zero, the dynamical behaviour shown
in Fig. 7.3a is found. For large values of a, the dynamics become those of the de
Sitter universe

a(t) ∝ exp

[(
Λ

3

)1/2

t

]
= exp

(
Ω

1/2
Λ H0t

)
. (7.55)

If the right-hand side of (7.54) is less than zero, there exists a range of scale
factors for which no solution exists and it can be shown readily that the function a(t)
has two branches, as illustrated in Fig. 7.3b. For the branch B, the Universe never
expanded to sufficiently large values of a that the repulsive effect of the Λ-term can
prevent the Universe collapsing. In the case of branch A, the dynamics are dominated
by the Λ-term; the repulsive force is so strong that the Universe never contracted
to such a scale that the attractive force of gravity could overcome its influence. In
the latter model, there was no initial singularity – the Universe ‘bounced’ under the
influence of the Λ-term. In the limiting case in which the density of matter is zero,
Ω0 = 0, the dynamics of the model are described by

ȧ2 = H2
0

[
ΩΛa2 − (ΩΛ − 1)

]
, (7.56)

which has solution

a =
(
ΩΛ − 1

ΩΛ

)1/2

coshΩ1/2
Λ H0τ , (7.57)

where the time τ = t − tmin is measured from the time at which the model ‘bounced’,
that is, from the time at which a = amin. In all cases in which the models bounce,
the variation of a with cosmic time is symmetrical about amin. Their asymptotic
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Fig. 7.3a–d. Examples of the dynamics of world models in which Λ �= 0 (Bondi, 1960).
Models a and d are referred to as Lemaître models. In a, the model parameters are Ω0 = 0.3
and ΩΛ = 0.7, a favoured model according to current best estimates of these parameters.
b This ‘bouncing’ model has Ω0 = 0.05 and ΩΛ = 2. The zero of cosmic time has been
set to the value when ȧ = 0. The loci are symmetrical in cosmic time with respect to this
origin. c This model is an Eddington–Lemaître model which is stationary at redshift zc = 3,
corresponding to scale factor a = 0.25. In d, the model parameters are Ω0 = 0.01 and
ΩΛ = 0.99 and the age of the Universe can far exceed H−1

0

behaviour corresponds to exponentially collapsing and expanding de Sitter solutions

a =
(
ΩΛ − 1

ΩΛ

)1/2

exp
(
±Ω1/2

Λ H0τ
)
. (7.58)

In these ‘bouncing’ Universes, the smallest value of a, amin, corresponds to the
largest redshifts which objects could have.

The most interesting cases are those for which ȧmin ≈ 0. The case where ȧmin = 0
is known as the Eddington–Lemaître model and is illustrated in Fig. 7.3c. The literal
interpretation of these models is either: A, the Universe expanded from an origin at
some finite time in the past and will eventually attain a stationary state in the infinite
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future; B, the Universe is expanding away from a stationary solution in the infinite
past. The stationary state C is unstable because, if it is perturbed, the Universe moves
either onto branch B, or onto the collapsing variant of branch A. In Einstein’s static
Universe, the stationary phase occurs at the present day. From (7.53), the value ofΛ
corresponding to ȧmin = 0 is

Λ = 3
2Ω0 H2

0 (1 + zc)
3 or ΩΛ = Ω0

2
(1 + zc)

3 , (7.59)

where zc is the redshift of the stationary state. The static Eddington–Lemaître models
have ȧ = 0 for all time and so, setting the right-hand side of (7.41) equal to zero
and substituting (7.59), we find a one-to-one relation between the mean density of
matter in the Universe Ω0 and the redshift of the stationary phase zc,

Ω0 = 2

(1 + zc)3 − 3(1 + zc)+ 2
= 2

z2
c(zc + 3)

. (7.60)

This calculation is largely of academic interest nowadays. If a stationary, or near-
stationary, state had occurred, the fact that galaxies and quasars are now observed
with redshifts z > 6 suggests that zc > 6 and so Ω0 ≤ 0.01, which is at least an
order of magnitude less than the total mass density in dark matter at the present
epoch.

The properties of the world models with non-zero cosmological constant are
conveniently summarised in a plot of Ω0 against Ω0 + ΩΛ presented by Carroll,
Press and Turner (Fig. 7.4) (Carroll et al., 1992). The world models with Λ = 0
lie along the 45◦ line passing through zero on both axes. As shown by (7.43), the
spatial geometry of the world model depends upon the value of Ω0 + ΩΛ, the
value unity separating the open from closed geometries. The models which were
stationary in the past, corresponding to the dividing line between those models
which had a singular past and those which ‘bounced’, are given by (7.59) and
(7.60), the values of the stationary redshifts being indicated along the locus to the
bottom right of the diagram – Carroll, Press and Turner call these ‘loitering’ models.
Finally, the diagram also shows the dividing line between those models which will
eventually recollapse to a ‘big crunch’ in the future and those which will expand
forever. This dividing line can also be found from (7.59) and (7.60) by requiring
the models to tend to stationary phases in the future, for which the values of a are
greater than one and the redshifts less than zero. For example, using (7.60), we
find that the model which is stationary at a scale factor a = 1.5, corresponding to
(1 + zc) = 2/3, has Ω0 = 27/16 = 1.69. The corresponding value of ΩΛ from
(7.59) is 0.25, so that Ω0 + ΩΛ = 31/16 = 1.94, which lies on the solid line
separating the models which expand to infinity from those which collapse in a finite
time in Fig. 7.4.

The models with positive cosmological constant can have ages greater than H−1
0 .

In the limiting cases of Eddington–Lemaître models with ȧmin = 0 in the infinite
past, for example, the Universe is infinitely old. A closely related set of models, with
ages which can be greater than H−1

0 , are the Lemaître models which have values of
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Fig. 7.4. The classification of the Friedman world models withΩΛ �= 0 in a plot ofΩ0 against
Ω0 +ΩΛ (Carroll et al., 1992). The Eddington–Lemaître models lie along the line labelled
‘loitering’

ΩΛ such that the value of ȧmin is just greater than zero. An example of this type of
model is shown in Fig. 7.3d.

As we will show in Chap. 15, there is now strong evidence that the spatial
geometry of the Universe is flat, so that Ω0 + ΩΛ is very close to unity. The
dynamics of such spatially flat models with different combinations of Ω0 and ΩΛ

are shown in Fig. 7.5. These models indicate how the age of the Universe can be
greater than H−1

0 for large enough values of ΩΛ.

7.4 Observations in Cosmology

Models with finite values of the cosmological constant dominate much of current
cosmological thinking and so it is convenient to develop the expressions for the
relations between observables and intrinsic properties in parallel for models with
and without the Λ-term. The reason for including the results for world models with
ΩΛ = 0 is that they can often be expressed analytically in closed form and so provide
insight into the physics of the world models.
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Fig. 7.5. The dynamics of spatially flat world models,Ω0 +ΩΛ = 1, with different combina-
tions of Ω0 and ΩΛ. The abscissa is plotted in units of H−1

0 . The dynamics of these models
can be compared with those shown in Fig. 7.2 which have ΩΛ = 0

7.4.1 The Deceleration Parameter

Just as Hubble’s constant H0 measures the expansion rate of the Universe at the
present epoch, so we can define the present deceleration of the Universe ä(t0). It
is conventional to define the deceleration parameter q0 to be the dimensionless
deceleration at the present epoch through the expression

q0 = −
(

aä

ȧ2

)

t0

. (7.61)

Substituting a = 1, ȧ = H0 at the present epoch into the dynamical equation (7.40),
we find

q0 = Ω0

2
−ΩΛ . (7.62)

Equation (7.62) represents the present competition between the decelerating effect
of the attractive force of gravity and the accelerating effect of the repulsive dark
energy. Substituting the favoured values of Ω0 = 0.3 and ΩΛ = 0.7 (see Chaps. 8
and 15), we find q0 = −0.55, showing that the Universe is accelerating at the present
epoch because of the dominance of the dark energy.
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7.4.2 The Cosmic Time–Redshift Relation

An important result for many aspects of astrophysical cosmology is the relation
between cosmic time t and redshift z. Combining (7.41) and (7.42), we find

ȧ = H0

[
Ω0

(
1

a
− 1

)
+ΩΛ(a

2 − 1)+ 1

]1/2

. (7.63)

Because a = (1 + z)−1,

dz

dt
= −H0(1 + z)

[
(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)

]1/2
. (7.64)

The cosmic time t measured from the Big Bang follows immediately by integration
from z = ∞ to z,

t =
∫ t

0
dt = − 1

H0

∫ z

∞
dz

(1 + z)[(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)]1/2
. (7.65)

Let us evaluate this integral separately for models with ΩΛ = 0 and for finite ΩΛ.

Models with ΩΛ = 0. For Ω0 > 1, we can write x = (Ω0 − 1)a/Ω0 =
(Ω0 − 1)/Ω0(1 + z), and then the cosmic time–redshift relation becomes

t(z) = Ω0

H0(Ω0 − 1)3/2
[
sin−1 x1/2 − x1/2(1 − x)1/2

]
. (7.66)

For Ω0 < 1, we write y = (1 − Ω0)a/Ω0 = (1 − Ω0)/Ω0(1 + z), and then the
cosmic time–redshift relation becomes

t(z) = Ω0

H0(1 −Ω0)3/2

[
y1/2(1 + y)1/2 + sinh−1 y1/2] . (7.67)

For large redshifts, z � 1, Ω0z � 1, (7.66) and (7.67) reduce to

t(z) = 2

3H0Ω
1/2
0

z−3/2 . (7.68)

We can find the present age of the Universe for the different world models by
integrating from z = 0 to z = ∞.

t0 = Ω0

H0(Ω0 − 1)3/2

[
sin−1

(
Ω0 − 1

Ω0

)1/2

− (Ω0 − 1)1/2

Ω0

]
if Ω0 > 1 ;

t0 = 2

3H0
if Ω0 = 1 ;

t0 = Ω0

H0(1 −Ω0)3/2

[
(1 −Ω0)

1/2

Ω0
− sinh−1

(
1 −Ω0

Ω0

)1/2
]

if Ω0 < 1 .

The age of the Universe is a monotonic function of Ω0. The useful simple cases are
those for the critical model Ω0 = 1 for which the present age of the Universe is
(2/3)H−1

0 and the empty model, Ω0 = 0, for which it is H−1
0 . For Ω0 = 2, the age

of the Universe is 0.571 H−1
0 .
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Models withΩΛ �= 0. The time–redshift relation for any of the models with finite
ΩΛ can be found by integration of (7.65). The models with zero curvature are of
particular interest and there is a simple analytic solution for the cosmic time–redshift
relation for these models. From (7.44), the condition that the curvature of space is
zero, � → ∞, is Ω0 +ΩΛ = 1. Then, from (7.65),

t =
∫ t

0
dt = − 1

H0

∫ z

∞
dz

(1 + z)[Ω0(1 + z)3 +ΩΛ]1/2
. (7.69)

The cosmic time–redshift relation becomes

t = 2

3H0Ω
1/2
Λ

ln

(
1 + cos θ

sin θ

)
where tan θ =

(
Ω0

ΩΛ

)1/2

(1 + z)3/2 . (7.70)

The present age of the Universe follows by setting z = 0

t0 = 2

3H0Ω
1/2
Λ

ln

[
1 +Ω

1/2
Λ

(1 −ΩΛ)1/2

]
. (7.71)

This relation illustrates how it is possible to find a Friedman model which has
age greater than H−1

0 and yet has flat spatial sections. For example, if ΩΛ = 0.9
and Ω0 = 0.1, the age of the world model would be 1.28H−1

0 . For the popular
world model with Ω0 = 0.3 and ΩΛ = 0.7, the age of the Universe is 0.964H−1

0 ,
remarkably close to H−1

0 .

7.4.3 Distance Measures as a Function of Redshift

We can now complete our programme of finding expressions for the comoving radial
distance coordinate r and the distance measure D. We recall that the increment of
comoving radial coordinate distance is

dr = − c dt

a(t)
= −c dt(1 + z) . (7.72)

From (7.64),

dr = −c dt

a
= c

H0

dz

[(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)]1/2
, (7.73)

and so, integrating from redshift 0 to z, we find the expression for r,

r = c

H0

∫ z

0

dz

[(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)]1/2
. (7.74)

Then, we can find the distance measure D by evaluating D = � sin(r/�), where �
is given by (7.42). Let us discuss first the case ΩΛ = 0.
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Models withΩΛ = 0. Integrating (7.74) with ΩΛ = 0 and Ω0 > 1, we find

r = c

H0

∫ z

0

dz

(1 + z)(Ω0z + 1)1/2
(7.75)

= 2c

H0(Ω0 − 1)1/2

[
tan−1

(
Ω0z + 1

Ω0 − 1

)1/2

− tan−1(Ω0 − 1)−1/2

]
. (7.76)

If Ω0 < 1, the inverse tangents are replaced by inverse hyperbolic tangents. After
some further straightforward algebra, we find that

D = 2c

H0Ω
2
0(1 + z)

{
Ω0z + (Ω0 − 2)[(Ω0z + 1)1/2 − 1]} . (7.77)

This is the famous formula first derived by Mattig (Mattig, 1959). Although the
integral has been found for the case of spherical geometry, it turns out that the
formula is correct for all values of Ω0. In the limit of the empty, or Milne, world
model, Ω0 = 0, (7.77) becomes

D = cz

H0

(
1 + z

2

)

(1 + z)
. (7.78)

The variations of r and D with redshift for a range of standard world models are
shown in Figs. 7.6a and 7.7.

Models with ΩΛ �= 0. Solutions of the integral (7.74) for the case ΩΛ �= 0 may
be found in terms of elliptic functions but we do not wish to enter into that exercise
here. It is generally easier to evaluate the comoving radial distance coordinate r
and distance measure D = � sin(r/�) by numerical integration. Some examples of
these computations for flat world models with Ω0 +ΩΛ = 1 for different values of
Ω0 are shown in Fig. 7.6b. Notice that, because the geometry of these world models
is flat � = ∞, r = D.

Figures 7.6 and 7.7 repay some study. For the models with ΩΛ = 0, the smaller
the value of Ω0, the greater the comoving radial distance coordinate at a given
redshift. We can interpret this result in terms of the light travel time along the radial
geodesic from the source to the observer on Earth. The smaller the deceleration
of the expansion, the greater the distance light has to travel to reach the Earth.
Likewise, for the models with finite values of ΩΛ, the greater the value of ΩΛ, the
greater the stretching of the cosmic time-scale and so the greater the light travel
time to the Earth. The comparison of Figs. 7.6a and 7.7 shows the influence of the
curved spatial geometry upon the observed properties of distant objects. For the
case Ω0 = 1, D and r are the same in the two diagrams since the geometry is flat.
For other values of Ω0, the loci of the distance measure D in Fig. 7.7 diverge with
respect to this model because of their hyperbolic (Ω0 < 1) and spherical (Ω0 > 1)
geometries.
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Fig. 7.6a,b. The variation with redshift of a the radial comoving distance coordinate r for
models with ΩΛ = 0, and b the comoving radial distance coordinate r for models with
ΩΛ �= 0. Because the geometry is flat, Ω0 +ΩΛ = 1, r is also equal to the distance measure
D in Fig. 7.6b. In the case ΩΛ = 1, D = r = (c/H0)z. In both diagrams, r and D are
measured in units of c/H0

�

Fig. 7.7. The variation with redshift of the distance measure D for Friedman world models
with ΩΛ = 0. D is measured in units of c/H0

7.4.4 Angular Diameter–Redshift Relations

Models with ΩΛ = 0. In Fig. 7.8a, the variation of the observed angular size of
a rigid rod of unit proper length is shown using the expressions (5.54) and (7.77) –
this type of angular diameter is known as a metric angular diameter. Except for the
empty world model, Ω0 = 0, there is a minimum in the angular diameter–redshift
relation which occurs at z = 1.25 for the critical model, Ω0 = 1, and at z = 1 if
Ω0 = 2. The reason for the minimum in the angular diameter–redshift relation is
a combination of two effects. The first is the curved spatial geometry of the world
models and the second, and more important, is the fact that a rigid rod occupies
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Fig. 7.8. a The variation of the angular diameter of a rigid rod of unit proper length with
redshift for world models withΩΛ = 0. b The variation of the angular diameter of a rigid rod
of unit proper length with redshift for world models with finite values of ΩΛ and flat spatial
geometry, Ω0 +ΩΛ = 1. In both diagrams, c/H0 has been set equal to unity

a larger fraction of the celestial sphere at a large redshift, by the factor (1 + z)which
appears in (5.54).

Metric angular diameters are different from the types of angular diameter which
are often used to measure the sizes of galaxies. The latter are often defined to some
limiting surface brightness and so, since bolometric surface brightnesses vary with
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redshift as (1 + z)−4, angular sizes measured to the same limiting surface brightness
at a wide range of redshifts are not rigid rods of fixed proper length. The angular
diameter–redshift relation can be worked out for isophotal angular diameters, but
this requires knowledge of the K-corrections to be applied as a function of radius
within the galaxy.

Models with ΩΛ �= 0. The corresponding metric angular diameter–redshift rela-
tions for models with flat spatial geometry and finite values of ΩΛ are shown in
Fig. 7.8b. All these models have minima at some redshift, reflecting the fact that r(z)
‘saturates’ at large redshifts (Fig. 7.6b) and the (1 + z) term in the expression (5.54)
dominates the dependence upon redshift.

7.4.5 Flux Density–Redshift Relations

Models with ΩΛ = 0 and ΩΛ �= 0. The observed flux density of a source of unit
luminosity per unit frequency interval at frequency ν0 with a power law spectrum
L(ν) ∝ ν−1 is given by (5.65) with the distance measure D given by (7.77) for
models with ΩΛ = 0 (Fig. 7.9a). The corresponding diagram for flat spatial models
with ΩΛ �= 0 are shown in Fig. 7.9b. Comparison of (5.65) and (5.66) shows that,
because we have taken the spectral index to be α = 1, these are also the variations
of the bolometric flux density with redshift in both cases. For galaxies, the detailed
form of the spectrum has to be taken into account and this is often done using the
K-corrections described by (5.69), (5.70) and (5.71). Figure 7.9 illustrates the very
considerable challenge involved in attempting to distinguish between world models
using the redshift–apparent magnitude, or flux density–redshift, relation. Objects
with remarkably standard luminosities need to be used to have a hope of making
progress. Fortunately, this has been achieved with the use of the Type 1a supernovae.

Ghost images. A unique feature of the Lemaître world models is the possible
appearance of ghost images. In the Eddington–Lemaître models, the curvature of
space κ is positive, as may be seen from the location of the ‘loitering’ line in
Fig. 7.4. Those models which have ȧmin just greater than zero also have closed
spherical spatial sections, as may also be seen in Fig. 7.4. Since the expansion
almost stops at redshift zc, there is time for electromagnetic waves to propagate from
the source to the observer a number of times around the closed geometry of the
Universe. In principle, the same object may be observed in diametrically opposite
directions, or multiply in the same position on the sky, although at different redshifts
and consequently at different times in its life-history.

To illustrate this behaviour, consider the case of the Eddington–Lemaître model
which is stationary at redshift zc = 3. In this case, the density parameter can be found
from (7.60), Ω0 = 1/27, and the value of ΩΛ from (7.59), ΩΛ = 32/27. Conse-
quently, the radius of curvature of the closed geometry is � = (27/6)1/2(c/H0).
Inserting these values into (7.74) and integrating, we find the relation between r/�
and redshift shown in Fig. 7.10. The values of r/� = π, 2π, 3π and 4π are shown. It
can be seen that r/� tends to infinity as the redshift approaches the stationary value
zc = 3.
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Fig. 7.9. The variation of the flux density of a source of luminosity 1 W Hz−1 with a power
law spectrum L(ν) ∝ ν−1 with redshift. In both diagrams, c/H0 = 1. Comparison of (5.65)
and (5.66) shows that, since the spectral index α = 1, these relations are the same as the
variations of bolometric flux densities with redshift. a World models with ΩΛ = 0. b World
models with finite values of ΩΛ and flat spatial geometry Ω0 +ΩΛ = 1
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Fig. 7.10. The function r/� as a function of redshift z for the Eddington–Lemaître model
which is stationary at redshift zc = 3

The flux density–redshift relation for a source with spectral index α = 1, defined
by S ∝ ν−α, is

S ∝ 1

[� sin(r/�)]2(1 + z)2
. (7.79)

It can therefore be seen that there is a first minimum in the flux density–redshift
relation corresponding to r/� = π/2 and the observed flux density diverges at
r/� = π, corresponding to redshift z = 2.825. This behaviour is repeated in the
intervals π < r/� < 2π, 2π < r/� < 3π, 3π < r/� < 4π, . . . , the corresponding
redshifts being 2.9923, 2.99967, 2.999986 and so on. The interpretation of these
phenomena is that, at r/� = π, we observe the antipodal point in the spherical
closed geometry to our own location in the Universe. We may think of the light from
a galaxy at the antipodal point being focussed on our own Galaxy at z = 0. In the
case r/� = 2π, we observe our own locality, but as it was at the redshift z = 2.9923.
These repeated images occur indefinitely as z → zc.

A corollary of this behaviour is that we can observe the same object in opposite
directions in the sky, provided it has a very long lifetime. The radiation sets off in
opposite directions from the source in the closed spherical geometry. If the source is
observed at the redshift corresponding to r/�, there will be an image of the source
at an earlier time in the opposite direction with redshift corresponding to 2π − r/�.
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Similar results are found in Lemaître models which do not quite reach the
stationary state but have slightly positive values of ȧmin. They would lie just slightly
above the ‘loitering’ line in Fig. 7.4. These models have to be rather finely tuned for
the effect to be observable.

The possibility of observing ‘ghost’ images does not occur in the Friedman
models with ΩΛ = 0. It is left as an exercise for the reader to use (7.76) to show
that in all closed Friedman models with ΩΛ = 0, r/� tends to π/2 as z tends to
infinity. Since r/� = π/2 corresponds to light rays propagating from the minimum
flux density in the closed geometry to the Earth, the possibility of observing the
same source in opposite directions in the sky, or multiple images of the same object
in the same direction, does not occur.

The reason for discussing this aspect of the Lemaître models is that, if such
repeated ‘ghost’ images were found, this would be evidence that the Universe passed
through a long quasi-stationary phase. Searches for such ghost images have been
carried out using large catalogues of extragalactic radio sources, but no positive
result has been reported.

7.4.6 The Comoving Volume Within Redshift z

This relation can be determined from (5.72) by integration using the familiar ex-
pressions for the element of comoving radial distance coordinate dr and the distance
measure D.
Models withΩΛ = 0. In these cases, there are convenient expressions for the three
cases with κ > 1, κ = 1 and κ < 1. The expression (5.72) can be integrated for the
case Ω0 > 1,� = (c/H0)(Ω0 − 1)−1/2 to give

V(z) = 2π�3
(

r

� − 1
2 sin

2r

�
)

= 2π�3

⎛
⎝sin−1 D

� − D

�

√
1 − D2

�2

⎞
⎠ . (7.80)

For the case Ω0 < 1,� = (c/H0)(1 −Ω0)
−1/2,

V(z) = 2π�3
(

1
2 sinh

2r

� − r

�
)

= 2π�3

⎛
⎝D

�

√
1 + D2

�2
− sinh−1 D

�

⎞
⎠ . (7.81)

For the critical world model, Ω0 = 1,� = ∞, r = D and so

V(z) = 4π

3
r3 . (7.82)

Examples of the comoving volume within redshift z are shown in Fig. 7.11a. Notice
in Fig. 7.11a the convergence of the enclosed volume at redshifts z > 1. One of
the problems of finding large redshift objects can be appreciated from this diagram.
Whereas, at small redshifts, the volume elements increase with redshift as z2 dz,
at large redshifts, Ω0z > 1, z > 1, the volume elements decrease with increasing
redshift as z−3/2 dz and so per unit redshift interval there are fewer sources and
they become rarer and rarer with increasing redshift, even if the comoving number
density is constant.
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Fig. 7.11. a The variation of the comoving volume within redshift z for world models with
ΩΛ = 0. b The variation of the comoving volume within redshift z for flat world models with
finite values of ΩΛ
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Models withΩΛ �= 0. There is little alternative in general to numerical integration
using the familiar expressions for the element of comoving radial distance coordinate
dr and the distance measure D. The case of flat geometry, with Ω0 + ΩΛ = 1, is
simpler since D = r. Some examples of the results for models with finite values of
ΩΛ are shown in Fig. 7.11b. The model with Ω0 = 1 appears on both Fig. 11a and
b. It can be seen that there is greater enclosed volume in the models with finite ΩΛ

because of the stretching of the cosmological time-scale.

7.5 Angular Diameter Distances Between Any Two Redshifts

There are occasions when it is necessary to relate metric diameters as observed
from locations other than the origin at z = 0. A good example is the geometry of
gravitational lensing in which we need the angular diameter distance DA(zi, z j),
meaning the angular diameter distance necessary to work out the physical size of
an object which subtends an angle θ between redshifts zi and z j (see Sect. 4.6 and
(4.40)). It is a useful exercise to derive the pleasant result presented by Blandford
and Narajan for the appropriate angular diameter distance to be used for models with
ΩΛ = 0 (Blandford and Narayan, 1992). The extension to models with ΩΛ �= 0
follows the same line of development, but it is simplest to carry out these calculations
by numerical integration.

Models with ΩΛ = 0. We begin with the expression for the comoving radial
distance coordinate rij between redshifts zi and z j . By extension of (7.76), we find

rij = 2c

H0(Ω0 − 1)1/2

[
tan−1

(
Ω0z j + 1

Ω0 − 1

)1/2

− tan−1
(
Ω0zi + 1

Ω0 − 1

)1/2
]

= 2c

H0(Ω0 − 1)1/2

[
tan−1 G j

(Ω0 − 1)1/2
− tan−1 Gi

(Ω0 − 1)1/2

]
, (7.83)

where G j = (Ω0z j + 1)1/2 and Gi = (Ω0zi + 1)1/2. Using the summation formulae
for inverse tangents, this can be rewritten

rij = 2c

H0(Ω0 − 1)1/2
tan−1 N1(Ω0 − 1)1/2

N2
, (7.84)

where N1 = (G j − Gi) and N2 = (Ω0 − 1 + Gi G j).
We now form the expression �′ sin(r ′

ij/�′) in order to find the distance measure
Dij between the redshifts zi and z j . We need to use the radius of curvature of the
spatial geometry �′ and the comoving radial distance coordinate r ′

ij at the redshift
zi , but these both scale as a(t) and so, since � = (c/H0)/(Ω0 − 1)1/2,

sin
r ′

ij

�′ = sin
rij

� = sin

[
2 tan−1 N1(Ω0 − 1)1/2

N2

]
(7.85)

= 2N1 N2(Ω0 − 1)1/2

N2
1 (Ω0 − 1)+ N2

2

. (7.86)
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Hence the distance measure D(zi , z j) is

D(zi , z j) = �′ sin
r ′

ij

�′ = 2c

H0(1 + zi)

N1 N2

N2
1 (Ω0 − 1)+ N2

2

. (7.87)

Expanding the denominator of the second term, we find

N2
1 (Ω0 − 1)+ N2

2 = Ω2
0(1 + zi)(1 + z j) , (7.88)

and so the distance measure from zi to z j is

D(zi , z j) = 2c

H0Ω
2
0

(G j − Gi)(Ω0 − 1 + Gi G j)

(1 + zi)2(1 + z j)
. (7.89)

Therefore, following the argument which led to (5.54), but now between the scale
factors a(z1) and a(z2), we find

θ = d(1 + z j)

D(zi , z j)(1 + zi)
= d

DA(zi , z j)
, (7.90)

where the angular diameter distance DA(zi, z j) is given by

DA(zi , z j) = D(zi , z j)(1 + zi)

(1 + z j)
(7.91)

= 2c

H0Ω
2
0

(G j − Gi)(Ω0 − 1 + Gi G j)

(1 + zi)(1 + z j)2
. (7.92)

This is the expression for the angular diameter distance between redshifts zi and
z j quoted by Blandford and Narajan and can be used in the expressions for the
gravitational lens formulae (4.39) to (4.41). Expression (7.92) has the attractive
feature that it can be used in either direction along the light cone. Thus, the angular
diameter distance from z j to zi is found by interchanging the indices i and j in
(7.92),

DA(z j, zi) = 2c

H0Ω
2
0

(Gi − G j)(Ω0 − 1 + Gi G j)

(1 + z j)(1 + zi)2
, (7.93)

and so we find

DA(zi , z j)

DA(z j , zi)
= (1 + zi)

(1 + z j)
. (7.94)

This is precisely the reciprocity theorem which we alluded to in Sect. 5.5.4. The
angular diameter distances to be used in opposite directions along the light cone
differ by the ratio of the scale factors corresponding to the redshifts z1 and z2. If we
set zi = 0 and z j = z, we find

DA(0 → z)

DA(z → 0)
= 1

(1 + z)
, (7.95)

as we demonstrated in Sect. 5.5.4.
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Models withΩΛ �= 0. In place of (7.84), we write

rij = c

H0

∫ z j

zi

dz

[(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)]1/2
(7.96)

and then form Dij = � sin(rij/�) using the expression �2 = (c/H0)
2/[(Ω0 +

ΩΛ)− 1]. In the case of the flat models, � → ∞ and so Dij = rij which simplifies
the further analysis. These values of Dij can be used directly in (7.90) and (7.91).
This is an important set of computations since the Dij are needed in order to work
out the statistics of gravitationally lensed images expected in deep images of the sky.

7.6 The Flatness Problem

Hubble’s constant was introduced in Section 5.5.2 where it was emphasised that,
in general, it changes with cosmic epoch. We can find the variation of Hubble’s
constant with redshift from (7.63) by setting a = (1 + z)−1. Then,

H(z) = ȧ

a
= H0

[
(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)

]1/2
. (7.97)

In the same way, we can define a density parameter Ω at any epoch through the
definition Ω = 8πG	/3H2. For the case of ‘dust’ 	 = 	0(1 + z)3 and so

Ω = 8πG

3H2
	0(1 + z)3 (7.98)

= Ω0[
Ω0z + 1

1 + z

]
−ΩΛ

[
1

(1 + z)
− 1

(1 + z)3

] . (7.99)

Therefore at large redshifts z � 1, Ω0z � 1, it can be seen that the terms in the
second square bracket in the denominator of (7.99) tend to zero and the terms in the
first square bracket tends to Ω0. Therefore, at large redshifts, Ω → 1, whatever the
value of Ω0 at the present epoch.

It is not surprising that the dark energy is unimportant dynamically at large
redshifts because of the very different dependences of the matter and the dark
energy densities upon redshift. Let us therefore set the term inΩΛ equal to zero and
rewrite (7.99) as follows:

(
1 − 1

Ω

)
= (1 + z)−1

(
1 − 1

Ω0

)
. (7.100)

There are two ways of looking at this result. On the one hand, it reaffirms our
conclusion from (7.29) that the dynamics of all the world models tend to those of
the critical model in their early stages. On the other hand, it is remarkable that the
Universe is as close as it is to the value Ω0 = 1 at the present day. If the value
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of Ω0 were significantly different from 1 in the distant past, then it would be very
different from 1 now as can be seen from (7.100). There is nothing in the standard
models which requires Ω0 to take any particular value – it is simply a parameter
which should be fixed as part of the initial conditions of our Universe.

As will be shown in Chaps. 8 and 15, the observational evidence strongly suggests
that Ω0 ≈ 0.3, which on its own means that the curvature of space κ must be close
to zero at the present epoch. Indeed, as we will show in Chap. 15, the curvature of
space as determined by the WMAP mission is quite remarkably close to zero. This
is the origin of what is often referred to as the flatness problem, namely, that our
Universe must have been very finely tuned indeed to the value Ω = 1 in the distant
past if it is to end up close toΩ0 = 1 now. This observation turns out to be one of the
key pieces of empirical evidence for the inflationary picture of the early Universe.

7.7 Inhomogeneous World Models

The results derived above are exact for isotropic, homogeneous world models. The
evidence discussed in Chap. 2 shows that the Universe is isotropic and homogeneous
on the large scale but, on small scales, the Universe is very far from homogeneous.
Matter is concentrated into stars and galaxies which are very large perturbations in
the mean density. These perturbations cause deviations of the paths of light rays and
it is important to understand their effect upon the results quoted above. We consider
first the limiting case in which the matter distribution is so inhomogeneous that there
is no matter within the light cone subtended by a distant object at the observer.

This problem was treated elegantly by Zeldovich using simple physical argu-
ments (Zeldovich, 1964). Identical results are obtained more arduously from a gen-
eral Riemannian approach to the propagation of light signals in inhomogeneous
cosmological models. We consider the case of the critical Einstein–de Sitter world
model, Ω0 = 1,ΩΛ = 0, for which the spatial geometry is flat, κ = 0,� = ∞.

If the Universe were so inhomogeneous that all the matter was condensed into
point-like objects, there is only a small probability that there will be any matter
within the light cone subtended by a distant object of small angular size. Because
of the long-range nature of gravitational forces, however, the background metric
remains the standard flat Einstein–de Sitter metric and the overall dynamics of the
Universe are unaltered. The Robertson–Walker metric for the critical model can be
written

ds2 = dt2 − a2(t)

c2

[
dr2 + r2(dθ2 + sin2 θ dφ2)

]
(7.101)

= dt2 − a2(t)

c2

[
dx2 + dy2 + dz2] , (7.102)

where a(t) = (t/t0)2/3 and t0 = 2
3 H0 is the present age of the Universe. The terms r,

x, y and z are comoving coordinates referred to the present epoch t0.
First, we consider the homogeneous case. Consider the events A and B which

correspond to the emission of light signals at cosmic time t from either end of
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a standard rod of length L oriented at right angles to the line of sight at comoving
radial distance coordinate r (Fig. 7.12a). Then, the interval between events is minus
the square of a proper length

c2 ds2 = −a2(t)r2 dθ2 = −a2(t) dy2 = −L2 . (7.103)

Since a(t) = (1 + z)−1, we recover the result of Sects. 5.5.3 and 7.4.4,

dθ = L(1 + z)

r
, (7.104)

where r = D = (2c/H0)
[
1 − (1 + z)−1/2

]
for the Einstein–de Sitter model. Notice

that, in the homogeneous case, the angle between the light rays dθ remains a constant
during propagation from the source to the observer. This fundamental result is true
for all isotropic world models and is a consequence of the postulates of isotropy and
homogeneity.

In the model of an inhomogeneous Universe, we consider the propagation of the
light rays in this background metric, but include in addition the effect of the absence
of matter within the light cone subtended by the source at the observer. As discussed
in Sect. 4.6, the angular deflection of a light ray by a point mass, or by an axially
symmetric distribution of mass at the same distance, is

4G M(< p)

pc2
, (7.105)

where M(< p) is the mass within ‘collision parameter’ p, that is, the distance
of closest approach of the light ray to the point mass (Fig. 4.18b). Figure 7.12b
shows an idealised model for the propagation of the rays along the light cone,
assuming the light paths are known. Because of the principle of superposition,

Fig. 7.12. a Illustrating the deflection of light rays by a disc of material within the light cone
subtended by the distant object AB. b Illustrating the divergence of a light ray because of the
‘negative’ mass, indicated by the grey shaded area, due to the absence of a disc of material in
the interval dl within the light cone (Zeldovich, 1964)
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the effect of the ‘missing mass’ within the light cone may be precisely found by
supposing that the distribution of mass has negative density −	(t) within the light
cone. The deviations of the light cones from the homogeneous result, dθ = dy/dx =
constant, are due to the influence of the ‘negative mass’ within the light cone. As
a result, the light rays bend outwards rather than inwards, as in the usual picture
(Fig. 7.12b).

Considering a small section of the light path of proper length dl = a(t) dx in the
radial direction, the change in θ due to the ‘negative mass’ inside the light cone is

Δθ = 4G dM(< p)

pc2
. (7.106)

Now, dM(< p) = πp2	(t) dl and hence

dθ

dl
= 4πG p	(t)

c2
. (7.107)

We now convert to comoving coordinates θ = dy/dx, l = a(t)x, p = a(t)y. For the
Einstein–de Sitter model, 	(t) = 	0(1 + z)3 with 	0 = 3H2

0 /8πG and

x = 2c

H0

[
1 − (1 + z)−1/2] . (7.108)

If we write 2c/H0 = x0, then (1 + z) = x2
0/(x0 − x)2 and hence

d2 y

dx2
= 6y

(x0 − x)2
. (7.109)

This equation can be solved using a series trial function y = ∑
n an(x0 − x)n , for

which the solution can be written

y = a3(x0 − x)3 + a−2(x0 − x)−2 . (7.110)

Fitting the boundary conditions, namely that, at x = y = 0, the angle subtended by
the source is Θ = dy/dx, we find

y = 2cΘ

5H0
(1 + z)

[
1 − (1 + z)−5/2] . (7.111)

Therefore, since L = a(t)y = y/(1 + z), the final result is

L = 2cΘ

5H0

[
1 − (1 + z)−5/2] . (7.112)

Corresponding results have been obtained for Friedman models with Ω0 �= 1
by Dashevsky and Zeldovich and by Dyer and Roeder (Dashevsky and Zeldovich,
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Fig. 7.13. Comparison between the angular diameter–redshift relation in the homogeneous,
uniform Einstein–de Sitter world model (α = 1), the same background model in which
there is no mass within the light cone subtended by the source (α = 0) and the case in
which half of the total mass is uniformly distributed and the rest is contained in point masses
(α = 0.5)

1964; Dyer and Roeder, 1972). In these cases, if Ω0 > 1,

L = 3cΩ2
0Θ

4H0(Ω0 − 1)5/2

[
sin−1

(
Ω0 − 1

Ω0

)1/2

− sin−1
(

Ω0 − 1

Ω0(1 + z)

)1/2
]

− 3cΩ0Θ

4H0(Ω0 − 1)2

[
1 − (1 +Ω0z)1/2

(1 + z)

]
+ 1

2(Ω0 − 1)

[
1 − (1 +Ω0z)1/2

(1 + z)2

]
.

(7.113)

If Ω0 < 1, the inverse trigonometric functions are replaced by inverse hyperbolic
functions according to the rule sin−1 ix = i sinh−1x.

The θ − z relation (7.112) is compared with the standard result (7.104) in
Fig. 7.13. It can be seen that the minimum in the standard θ − z relation disappears
in the maximally inhomogeneous model. Thus, if no minimum is observed in the
θ − z relation for a class of standard rods, it does not necessarily mean that the
Universe must have Ω0 ≈ 0. It might just mean that the Universe is of high density
and is highly inhomogeneous.

Dyer and Roeder have presented the analytic results for intermediate cases in
which a certain fraction of the total mass density is uniformly distributed within the
light cone (Dyer and Roeder, 1973). A particularly simple result is found for the
case of the Einstein–de Sitter model in which it is assumed that a fraction α of the
total mass density is uniformly distributed within the light cone, the remainder being
condensed into discrete point masses. It is assumed that the light cone does not pass
so close to any of the point masses that strong gravitational lensing distorts the light
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cones. They find the simple result:

L = ΘDA = Θ
2

β
(1 + z)(β−5)/4 [1 − (1 + z)−β/2

]
, (7.114)

where β = (25 − 24α)1/2. It can be seen that (7.114) reduces to (7.104) and (7.112)
in the limits α = 1 and α = 0 respectively. The angular diameter–redshift relation
for the case α = 0.5 is included in Fig. 7.13. Finding the minimum of (7.114), Dyer
and Roeder also show that, for the Einstein–de Sitter model, the minimum in the
angular diameter–redshift relation occurs at a redshift (Dyer and Roeder, 1973),

zmin =
(

5 + β

5 − β

)2/β

− 1 . (7.115)

Thus, if a minimum is observed in the θ− z relation, there must be matter within
the light cone and limits can be set to the inhomogeneity of the matter distribution in
the Universe. The effects upon the observed intensities of sources may be evaluated
using the same approach as in Sect. 7.4.5. The θ − z relation may be used to work
out the fraction of the total luminosity of the source incident upon the observer’s
telescope using the reciprocity theorem. The end results are not so very different
from those of the standard models.

The case of strong gravitational lensing, in which the light cone subtended by the
source at the observer passes close to a massive deflector, was discussed in Sect. 4.6.
As shown in that section, strong gravitational lensing causes major distortions of the
images of distant background sources, if they lie within roughly the Einstein angle
θE, given by (4.42) and (4.63), of the deflector. The types of distortion, illustrated in
Fig. 4.20, have been observed in a number of gravitationally lensed sources in the
optical and radio wavebands. In addition, the flux densities of the background sources
can be enhanced by factors of up to about 40 over their unlensed intensities. This
type of flux density enhancement has been shown to account for the extraordinary
luminosity of the galaxy IRAS F10214+4724. Assuming the galaxy were unlensed,
its far-infrared luminosity would be ∼ 3 × 1014 L�. The image of the galaxy is,
however, clearly distorted because of strong gravitational lensing and, once a best-
fitting mass model has been used to determine the flux density enhancement, the
far-infrared luminosity of the galaxy is found to be ∼ 1013 L�, still a very large
value, but not as extreme as once believed (Close et al., 1995).

As mentioned in Sect. 4.6, even in the weak lensing limit, the images of back-
ground objects are distorted by the presence of mass concentrations along the line of
sight. These distortions are often referred to as the effects of cosmic shear upon the
images of galaxies and can be used to determine the distribution of dark matter in the
intervening objects. An example of this technique for determining the distribution
of dark matter in the rich cluster of galaxies Cl 0024+1654 was shown in Fig. 4.21.

Kaiser has also shown how the statistics of the distortions of background objects
by intervening mass concentrations can be used to determine the power spectrum of
density fluctuations in the large-scale distribution of matter in the Universe (Kaiser,
1992). We will return to this topic in Sect. 15.8.5.



A7 The Robertson–Walker Metric
for an Empty Universe

The world model containing no matter at all,Ω0 = 0,ΩΛ = 0, is often referred to as
the Milne model. We have already emphasised the contradictions inherent in using
the special theory of relativity in the presence of gravitational fields. In this special
case, however, there are no gravitational forces since there is no matter present.
The value of this analysis is that it brings out the importance of the cosmological
principle in the setting up of the framework for cosmological models. We will show
how the appropriate Robertson–Walker metric can be derived for this special case.

In the empty model, test particles move apart at constant velocity from t = 0
to t = ∞. The origin of the uniform expansion is taken to be [0, 0, 0, 0] and the
world lines of particles diverge from this point, each point maintaining constant
velocity with respect to the others. The space–time diagram for this case is shown in
Fig. A7.1, our own world line being the t axis and that of particle P having constant
velocity v with respect to us.

The problem becomes apparent as soon as we attempt to define a suitable cosmic
time for ourselves and for a fundamental observer moving with the particle P. At
time t, the observer P is at distance r and, since v is constant, r = vt. Because of the

Fig. A7.1. The space–time diagram for an empty Universe
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relativity of simultaneity, however, the observer P measures a different time τ from
the observer O. From the Lorentz transformation,

τ = γ
(

t − vr

c2

)
; γ =

(
1 − v2

c2

)−1/2

.

Since r = vt,

τ = t

(
1 − r2

c2t2

)1/2

. (A7.1)

The problem is that t is only proper time for the observer at O and for nobody else.
We need to be able to define surfaces of constant cosmic time τ , because it is only
on these surfaces that we can impose conditions of isotropy and homogeneity on the
large-scale structure of the Universe, in accordance with the cosmological principle.
Therefore, the surface of constant cosmic time τ is

τ = t

(
1 − r2

c2t2

)1/2

= constant . (A7.2)

Locally, at each point in the space, this surface must be normal to the world line of
the fundamental observer.

Next we define the element of radial distance dl at the point P on the surface τ =
constant. The interval ds2 = dt2 − (1/c2) dr2 is an invariant. Over the τ = constant
surface, ds2 = −(1/c2) dl2 and hence

dl2 = dr2 − c2 dt2 . (A7.3)

τ and dl define locally the proper time and proper distance of events at P and are
exactly the elements cosmic time t and radial distance coordinate x introduced in
Sects. 5.1 and 5.4. This analysis clarifies why the metric of empty space is not
a simple Euclidean metric.

Let us now transform from the frame S to the frame S′ at P moving at radial
velocity v. Distances perpendicular to the radial coordinate remain unaltered under
Lorentz transformation and therefore, if in S,

ds2 = dt2 − 1

c2

(
dr2 + r2 dθ2) , (A7.4)

the invariance of ds2 means that

dt2 − 1

c2
dr2 = dτ2 − 1

c2
dl2 , (A7.5)

the perpendicular distance increment r2 dθ2 remaining unaltered. Therefore, in S′,

ds2 = dτ2 − 1

c2

(
dl2 + r2 dθ2) . (A7.6)
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Now we need to express r in terms of l and τ to complete the transformation to the
(τ, l) coordinate system.

Along the surface of constant τ ,

dl2 = dr2 − c2 dt2 . (A7.7)

The Lorentz transform of dτ is

dτ = γ
(

dt − v

c2
dr
)

= 0 ,

and hence,

dt2 = v2

c4
dr2 , (A7.8)

that is, from (A7.7)

dl2 = dr2
(

1 − v2

c2

)
= dr2

(
1 − r2

c2t2

)
. (A7.9)

Hence we need only replace t by τ using (A7.1) to find a differential expression for
dr in terms of dl and τ ,

dl = dr
(

1 + r2

c2τ2

)1/2 . (A7.10)

Integrating using the substitution r = cτ sinh x, the solution is

r = cτ sinh(l/cτ) . (A7.11)

The metric (A7.6) can therefore be written

ds2 = dτ2 − 1

c2

[
dl2 + c2τ2 sinh2(l/cτ) dθ2] . (A7.12)

This corresponds precisely to the Robertson–Walker metric for an empty Universe.
The geometry is an isotropic curved space with hyperbolic geometry, the radius of
curvature of the geometry � being cτ . This explains why an empty universe has
hyperbolic spatial sections. The conditions (A7.1) and (A7.10) are the key relations
which indicate why we can only define a consistent cosmic time and radial distance
coordinate in hyperbolic rather than flat space.



8 The Determination of Cosmological Parameters

In this chapter, we summarise the results of programmes to determine the cosmo-
logical parameters discussed in Chap. 7 by the observation of distant objects, such
as galaxies, clusters of galaxies and quasars. The information which can be derived
from observations of the Cosmic Microwave Background Radiation and the large-
scale distribution of galaxies will be described in Chap. 15, once the tools necessary
to interpret these data have been developed. Therefore, the discussion presented in
this chapter is necessarily incomplete. All the information will be synthesised into
a consistent picture, what is often referred to as the concordance model, in Sect. 15.9.

8.1 The Cosmological Parameters

We can summarise the results of the calculations of Chap. 7 for observational
cosmology as follows. The standard uniform world models can be described by
a small number of parameters:

– Hubble’s constant, H0, describes the present rate of expansion of the Universe,

H0 =
(

ȧ

a

)

t0

= ȧ(t0) . (8.1)

– The deceleration parameter, q0, describes the present dimensionless deceleration
of the Universe

q0 = −
(

äa

ȧ2

)

t0

= − ä(t0)

H2
0

. (8.2)

– The density parameter Ω0, is defined to be the ratio of the present mass-energy
density of the Universe 	0 to the critical density 	c = 3H2

0 /8πG,

Ω0 = 	0

	c
= 8πG	0

3H2
0

. (8.3)

For many aspects of astrophysical cosmology, it is important to determine separately
the density parameter in baryonic matter ΩB and the overall density parameter Ω0,
which includes all forms of baryonic and non-baryonic dark matter.
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– The density parameter of the vacuum fields, or the dark energy,

ΩΛ = 8πG	v/3H2
0 = Λ/3H2

0 , (8.4)

where Λ is the cosmological constant.
– The curvature of space is given by κ = c2/�2.
– The age of the Universe T0 is given by

T0 =
∫ 1

0

da

ȧ
. (8.5)

As discussed in the Chap. 7, within the context of the Friedman world models, these
are not independent parameters. Specifically, (7.51) and (7.62) show that

κ

(
c

H0

)2

= (Ω0 +ΩΛ)− 1 , (8.6)

and

q0 = Ω0

2
−ΩΛ . (8.7)

Other parameters will be introduced in Chap. 15 in relation to the formation of
structure in the Universe.

The observational approach to the determination of these parameters can be
appreciated from the relations presented in Sect. 7.4, specifically, Figs. 7.6 to 7.9
and 7.11. The basic point is that the variation of the different distance measures
with redshift are determined by the dynamics and geometry of the Universe. Thus, if
precise measurements of any of these relations could be made, the parametersΩ0 and
ΩΛ could be estimated directly. The best approach would be to estimate precisely
some distance measure, for example r, D, DA or DL, for some class of object by
a technique which is independent of redshift and then plot the results on relations
such as (7.6) or (7.7). This procedure is now possible in some of cosmological tests,
as we will discuss.

A traditional approach has been to select objects which are believed to possess
the same intrinsic properties at different redshifts and then determine how their
observed properties vary with redshift; then, the angular diameter–redshift or flux
density–redshift relations can be compared with the expectations of Figs. 7.8 and 7.9
respectively. This procedure is critically dependent upon our ability to identify
reliably the same types of ‘standard candle’ or ‘rigid rod’ at different redshifts.

8.2 Testing the Friedman Models

Let us first investigate in a little more detail the relation between the cosmological
parameters and how we might disentangle them. To repeat the Einstein equations,
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which are the basis of the standard models,

ä = −Ω0 H2
0

2a2
+ΩΛH2

0 a , (8.8)

ȧ2 = Ω0 H2
0

a
+ΩΛH2

0 a2 − c2

�2
. (8.9)

These equations describe two different aspects of the cosmological models. Equation
(8.8) describes the deceleration, or acceleration, of the Universe under the competing
influences of gravity and the dark energy. Expression (8.7) shows that the deceleration
parameter provides a measure of the difference between half the density parameter
Ω0 and the density parameter in the vacuum fields ΩΛ.

In contrast, (8.9) describes how the curvature of space, κ = �−2, depends upon
the total energy density in both the matter and the dark energy, as well as the kinetic
energy of the expansion. The expression (8.9) describes the basic feature of the
isotropic, homogeneous world models of General Relativity that the curvature of
space at any epoch is determined by the total mass-energy density at any epoch.
Furthermore, (5.32) shows that the space curvature changes as κ = R−2

c (t) =
(�a)−2 ∝ a−2, that is, its variation with cosmic epoch is independent of the details
of the dynamics of the Universe. Let us look in a little more detail into how we can
distinguish between these parameters observationally.

The deceleration of the Universe and its present mass density are separately
measurable quantities. The density parameter Ω0 can be found from the virial theo-
rem in its various guises (Sect. 8.7). Inspection of the expressions for the comoving
radial distance coordinate r and the distance measure D shows that the dynamical
and geometrical properties of the models become entangled when we relate the in-
trinsic properties of objects at large redshifts to observables. It turns out, however,
that at small redshifts the differences between the world models depend only upon
the deceleration parameter and not upon the density parameter and the curvature of
space. Let us demonstrate this by a simple argument given by Gunn (Gunn, 1978).

In order to relate observables to intrinsic properties, we need to know how
the distance measure D depends upon redshift and this involved two steps. First,
we worked out the dependence of the comoving radial distance coordinate r upon
redshift z and then formed the distance measure D = � sin(r/�). Let us first carry
out this calculation in terms of the kinematics of a world model decelerating with
deceleration parameter q0. We can write the variation of the scale factor a with
cosmic epoch in terms of a Taylor series as follows:

a = a(t0)+ ȧ(t0) Δt + 1
2 ä(t0)(Δt)2 + . . .

= 1 − H0τ − 1
2 q0 H2

0 τ
2 + . . . , (8.10)

where we have introduced H0, q0 and the look-back time τ = t0 − t = −Δt; t0 is
the present epoch and t is some earlier epoch. The above expansion can be written
in terms of x = H0τ and so, since a = (1 + z)−1,

1

1 + z
= 1 − x − q0

2
x2 + . . . . (8.11)
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Now, we express the redshift z to second order in x = H0τ . This is achieved by
making a further Taylor expansion of [1 − x − (1/2)q0x2]−1 to second order in x.
Carrying out this expansion, we find

z = x +
(

1 + q0

2

)
x2 + . . . . (8.12)

We can now find the expression for the comoving radial distance coordinate r by
taking the integral

r =
∫ τ

0

c dτ

a
=
∫ τ

0
c(1 + z) dτ

= c

H0

[
x + x2

2
+
(

1 + q0

2

) x3

3
. . .

]
. (8.13)

Finally, we can express r to second order in z by dividing (8.13) successively through
by (8.12). We find

r =
(

c

H0

)[
z − z2

2
(1 + q0)+ . . .

]
. (8.14)

The last step is to evaluate D = � sin(r/�) but, since the expansion for small values
of r/� is

D = r

(
1 − 1

6

r2

�2

)
, (8.15)

the dependence upon the curvature only appears in third order in z and so to second
order, we find the kinematic result

D =
(

c

H0

)[
z − z2

2
(1 + q0)

]
. (8.16)

Let us now evaluate the comoving radial distance coordinate r and the distance
measure D to third order in redshift starting from the full solution of the dynamical
field equations, that is, starting from the general result (7.74) for r

r = c

H0

∫ z

0

dz[
(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)

]1/2 .

The denominator of the integral can be reorganised to show explicitly the dependence
upon the deceleration parameter q0 and the present matter density parameterΩ0 using
(8.7)

r = c

H0

∫ z

0

dz[
1 + (2 +Ω0 − 2ΩΛ)z + (1 + 2Ω0 −ΩΛ)z2 +Ω0z3

]1/2

= c

H0

∫ z

0

dz[
1 + 2(1 + q0)z + (

1 + 3
2Ω0 + q0

)
z2 +Ω0z3

]1/2 . (8.17)
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Now expand the denominator to second order for small values of z

r = c

H0

∫ z

0

[
1 − z(1 + q0)+ z2

2

(
2 + 5q0 + 3q2

0 − 3
2Ω0

)]
dz

= c

H0

[
z − z2

2
(1 + q0)+ z3

6

(
2 + 5q0 + 3q2

0 − 3
2Ω0

)]
. (8.18)

As before, we form D = � sin(r/�), where

� = c/H0

[(Ω0 +ΩΛ)− 1]1/2
= c/H0( 3

2Ω0 − q0 − 1
)1/2 . (8.19)

Preserving quantities to third order in z, we find

D = c

H0

[
z − z2

2
(1 + q0)+ z3

6

(
3 + 6q0 + 3q2

0 − 3Ω0
)]
. (8.20)

This is the result we have been seeking.
To second order in the redshift, we obtain exactly the same result as that ob-

tained from the kinematic argument (8.16). What this means is that, to second order
in redshift, the distance measure D does not depend upon the density parameter Ω0

at small redshifts, z 	 1; it only depends upon the deceleration, or acceleration,
whatever its cause. The physical meaning of this result is that the greater the deceler-
ation, the closer the source of the radiation is to us and so the smaller the look-back
time and the comoving radial distance coordinate of the source. Conversely, if the
Universe accelerated between the redshift z and the present epoch, the look-back
time τ would be greater and so would the comoving radial distance coordinate r.
The negative sign in front of the terms in z2 in (8.20) formalises these qualitative
arguments. It can also be seen from (8.20) that, even to third order in the redshift,
the dependence upon the density parameter is quite weak.

One approach to the determination of the kinematics of the Universe is therefore
to estimate the deceleration of the Universe by determining the distance measures D
for objects at small redshifts, say z ≤ 0.3, at which there are small but appreciable
differences between the world models. This is a very demanding programme, but it
may well become feasible with the huge surveys of nearby galaxies undertaken by
the AAT 2dF and SDSS teams.

As discussed above, the standard procedure is to determine the D − z relation
very precisely to large redshifts and then estimate the parameters Ω0 and ΩΛ from
the detailed shape of that relation. As an example, the variations of the comoving
radial distance coordinate r and the distance measure D are shown as a function of
redshift in Fig. 7.6 for a range of flat world models. It can be seen that these relations
are of quite different shapes.

The importance of these analyses is that they provide tests of General Relativity
and the laws of physics on the largest scales accessible to us at the present epoch. To
express this thought less cryptically, is the present deceleration or acceleration of the
Universe entirely due to the amount of gravitating matter and dark energy present in
the Universe today?
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8.3 Hubble’s ConstantH0

Hubble’s constant H0 appears ubiquitously in cosmological formulae and its value
was the subject of considerable controversy for many years. The use of the redshift–
magnitude relation for brightest cluster galaxies had the advantage that Hubble’s law
is defined well beyond distances at which there might have been deviations associated
with the peculiar motions of clusters and superclusters of galaxies (Fig. 2.11).
Therefore, Hubble’s constant could be found if the distances to the nearest rich
clusters of galaxies could be estimated accurately.

The traditional approach to this calibration involved a hierarchy of distance
indicators to extend the local distance scale from the vicinity of the Solar System to
the nearest giant cluster of galaxies, the Virgo cluster. The only direct methods of
distance measurement involve stellar parallaxes and can only be used for stars in the
neighbourhood of the Sun. To extend the distance scale further, it is assumed that
objects of the same intrinsic types can be identified at greater distances. Then, their
relative brightnesses provide estimates of their distances. Examples of the different
techniques used are summarised in Fig. 8.1. The period–luminosity relation for
Cepheid variables provides one of the best means of extending the distance scale
from our own Galaxy to nearby galaxies. Other techniques were used to extend the
distance scale from the neighbourhood of our Galaxy to the Virgo cluster, including
the luminosity functions of globular clusters, the brightest stars in galaxies and the
luminosities of Type 1a supernovae at maximum light. In 1977, Tully and Fisher
discovered the relation between the absolute magnitudes of spiral galaxies and the
velocity widths of their 21-cm line emission (Tully and Fisher, 1977). This relation
could be determined for a number of spiral galaxies in a nearby group or cluster and
then relative distances found by assuming that the same correlation between their
intrinsic properties is found in more distant groups and clusters (see Sect. 3.6.3).

From the 1970s until the 1990s, there was an ongoing controversy concerning
the value of Hubble’s constant. A detailed discussion of the different approaches to
the determination of Hubble’s constant during the 1970s and 1980s was provided
by Rowan-Robinson, his conclusions being updated in 1988 (Rowan-Robinson,
1985, 1988). In a long series of papers, Sandage and Tammann found values of
Hubble’s constant of about 50 km s−1 Mpc−1, whereas de Vaucouleurs, Aaronson,
Mould and their collaborators consistently found values of about 80 km s−1 Mpc−1.
The nature of the discrepancy can be appreciated from their estimates of the distance
to the Virgo cluster. If its distance is 15 Mpc, the higher estimate of H0 is found,
whereas if the distance is 22 Mpc, values close to 50 km s−1 Mpc−1 are obtained.
Sandage and Tammann repeatedly emphasised how sensitive the distance estimates
are to observational selection effects, such as the Malmquist effect, namely that
intrinsically more luminous galaxies are selected in faint samples of galaxies than
in brighter samples, and systematic errors.

During the 1990s, a major effort was made to resolve these differences, much
of it stimulated by the capability of the Hubble Space Telescope (HST) to measure
Cepheid variable stars in the Virgo cluster of galaxies. When the HST project
was approved in 1977, one of its major scientific objectives was to use its superb
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Fig. 8.1. Illustrating the ‘cosmological distance ladder’ (Rowan-Robinson, 1985, 1988). The
diagram shows roughly the range of distances over which different classes of object can be
used to estimate astronomical distances. The diagram has been redrawn and updated from
Rowan-Robinson’s presentation

sensitivity for faint star-like objects to enable the light curves of Cepheid variables
in the Virgo cluster to be determined precisely and so estimate the value of Hubble’s
constant to 10% accuracy. This programme was raised to the status of an HST Key
Project in the 1990s with a guaranteed share of observing time to enable a reliable
result to be obtained.

The Key Project team, led by Freedman, carried out an outstanding programme
of observations and analysis of these data. Equally important was the fact that
the team used not only HST data, but also all the other distance measurement
techniques to ensure internal self-consistency of the distance estimates. For example,
the improved determination of the local distance scale in our own Galaxy from the
parallax programmes of the Hipparcos astrometric satellite improved significantly
the reliability of the calibration of the local Cepheid distance scale. The great advance
of the 1990s was that the distances of many nearby galaxies became known very
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much more precisely than they were previously. As a result, by 2000, there was
relatively little disagreement among the experts about the distances of those galaxies
which had been studied out to the distance of the Virgo cluster. If there were
differences, they arose from how the data were to be analysed once the distances
were known, in particular, in the elimination of systematic errors and biases in the
observed samples of galaxies. The final result of the HST Key Project published in
2001 was 72 ± 8 km s−1 Mpc−1, where the errors are 1 − σ errors (Freedman et al.,
2001).

In addition to this approach, new physical methods of measuring H0 became
available which have the advantage of eliminating many of the steps involved in the
traditional cosmological distance ladder. They are based upon measuring a physical
dimension l of a distant object, independent of its redshift, and its angular size θ,
so that an angular diameter distance DA can be found from DA = l/θ at a known
redshift z. A beautiful example of the use of this technique was described by Panagia
and his colleagues who combined IUE observations of the time-variability of the
emission lines from the supernova SN 1987A in the Large Magellanic Cloud with
Hubble Space Telescope observations of the emission-line ring observed about the
site of the explosion to measure the physical size of the ring (Panagia et al., 1991).
The distance found for the Large Magellanic Cloud was as accurate as that found by
the traditional procedures.

Another promising method, suggested originally by Baade in 1926 and modified
by Wesselink in 1947, involves measuring the properties of an expanding stellar
photosphere (Baade, 1926; Wesselink, 1947). If the velocity of expansion can be
measured from the Doppler shifts of the spectral lines and the increase in size
estimated from the change in luminosity and temperature of the photosphere, the
distance of the star can be found. The Baade–Wesselink method was first applied to
supernovae by Branch and Patchett and by Kirshner and Kwan in the 1970s (Branch
and Patchett, 1973; Kirshner and Kwan, 1974). It was successfully applied to the
supernovae SN 1987A in the Large Magellanic Cloud by Eastman and Kirshner,
resulting in a distance consistent with other precise distance measurement techniques
(Eastman and Kirshner, 1989). Extending the Baade–Wesselink technique to 10
Type II supernovae with distances ranging from 50 kpc to 120 Mpc, Schmidt and his
colleagues found a value of H0 of 60 ± 10 km s−1 Mpc−1 (Schmidt et al., 1992).

Another approach which has produced promising results involves the use of
the hot gaseous atmospheres in clusters of galaxies, the properties of which can be
measured from their X-ray emission and from the Sunyaev–Zeldovich decrement in
the Cosmic Microwave Background Radiation due to inverse Compton scattering. As
discussed in Sect. 4.5, clusters of galaxies contain vast quantities of hot gas which
is detected by its X-ray bremsstrahlung. The X-ray surface brightness depends
upon the electron density Ne and the electron temperature Te through the relation
Iν ∝ ∫

N2
e T−1/2

e dl. The electron temperature Te can be found from the shape of
the bremsstrahlung spectrum. Furthermore, the decrement in the background due
to the Sunyaev–Zeldovich effect is proportional to the Compton optical depth y =∫
(kTe/mec2) σT Ne dl ∝ ∫

NeTe dl. Thus, the physical properties of the hot gas are
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overdetermined and the physical dimensions of the X-ray emitting volume can be
found. Bonamente and his colleagues studied 38 clusters of galaxies in the redshift
interval 0.14 ≤ z ≤ 0.89 using X-ray data from the Chandra X-ray Observatory
and measurements of the corresponding Sunyaev–Zeldovich decrements from the
Owens Valley Radio Observatory and the Berkeley-Illinois-Maryland Association
interferometric arrays (Bonamente et al., 2006). An estimate of Hubble’s constant of
H0 = 76.9+3.9

−3.4 (stat)+10.0
−8.0 (syst) km s−1 Mpc−1 was found assuming Ω0 = 0.3 and

ΩΛ = 0.7.
Another example of a physical method of measuring H0 is to use gravitational

lensing of distant objects by intervening galaxies or clusters. The first gravitationally
lensed quasar 0957+561 was discovered by Walsh, Carswell and Weymann in 1979
(Walsh et al., 1979). The gravitational deflection of the light from the quasar by
the intervening galaxy splits its image into a number of separate components, in
the case of 0957+561 into two almost identical quasar images (Fig. 8.2). If the
background quasar is variable, a time delay is observed between the variability of
the different images because of the different path lengths from the quasar to the
observer on Earth. For example, a time delay of 418 days has been measured for
the two components of the double quasar 0957+561 (Kundic et al., 1997). This
observation enables physical scales at the lensing galaxy to be determined, the main
uncertainty resulting from the modelling of the mass distribution in the lensing
galaxy. In the case of the double quasar 0957+561, Kundic and his colleagues claim

Fig. 8.2a,b. Optical images of the double quasar 0957+561. a The system observed in a 80
second exposure made with the WFPC2 camera of the Hubble Space Telescope. The A and
B quasar images and the primary lensing galaxy G1 are apparent. b A 39,000 second image
made with the same camera. A shifted version of the image has been subtracted so that
quasar A acts as a template for quasar B. White objects are negative ‘ghosts’ resulting from
the subtraction process. The lensing galaxy is now clearly visible, as are other faint features
including the arc to the south of the lensing galaxy (Bernstein et al., 1997)
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that the mass distribution in the galaxy is sufficiently well-constrained for the model
dependent uncertainties to be small. They derived a value of Hubble’s constant of
H0 = 64 ± 13 km s−1 Mpc−1 at the 95% confidence level. A statistical analysis
of 16 multiply imaged quasars by Oguri found a value of Hubble’s constant of
H0 = 68 ± 6 (stat) ± 8 (syst) km s−1 Mpc−1 (Oguri, 2007).

The estimates of Hubble’s constant found by these physical methods, as well
as the value determined from studies of the fluctuation spectrum of the Cosmic
Microwave Background Radiation (Chap. 15), are consistent with the value of H0 =
72 ± 8 km s−1 Mpc−1 found by Freedman and her colleagues.

8.4 The Age of the Universe T0

Globular clusters are among the oldest systems in our Galaxy and so their ages
provide lower limits to the age of the Universe. The determination of their ages
was pioneered by Sandage and Schwarzschild and involved the comparison of the
Hertzsprung–Russell diagrams of the oldest, metal-poor, globular clusters with the
expectations of the theory of stellar evolution from the main sequence onto the giant
branch (Sandage and Schwarzschild, 1952).

The feature of these diagrams which is particularly sensitive to the age of the
cluster is the main sequence termination point. In the oldest globular clusters, the
main sequence termination point has reached a mass of about 0.9 M� and in the
most metal-poor, and presumably oldest, clusters the abundances of the elements
with Z ≥ 3 are about 150 times lower than their Solar System values. These facts
make the determination of stellar ages much simpler than might be imagined. As
Bolte has pointed out, low mass, metal-poor stars have radiative cores and so are
unaffected by the convective mixing of unprocessed material from their envelopes
into their cores (Bolte, 1997). Furthermore, the corrections to the perfect gas law
equation of state are relatively small throughout most solar mass stars. Finally, the
surface temperatures of these stars are high enough for molecules to be rare in
their atmospheres, simplifying the conversion of their effective temperatures into
predicted colours. Taking account of the various sources of uncertainty, Chaboyer
demonstrated that the absolute magnitude of the main sequence termination point is
the best indicator of the age of the cluster (Chaboyer, 1998).

As understanding of the theory of stellar evolution has advanced, improved
estimates of the ages of the oldest globular clusters have become available. A good
example of what can be achieved is illustrated in Fig. 8.3 which shows a comparison
of the Hertzsprung–Russell diagram for the old globular cluster 47 Tucanae with
the predicted isochrones for various assumed ages for the cluster. In this case the
abundance of the heavy elements is only 20% of the Solar abundance and the age of
the cluster is estimated to be between (12 − 14)× 109 years (Hesser et al., 1987).

In 1994, Maeder reported evidence that the ages of the oldest globular clusters are
about 16 × 109 years (Maeder, 1994) and similar results were reported by Sandage
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Fig. 8.3. The Hertzsprung–
Russell diagram for the globular
cluster 47 Tucanae (Hesser et al.,
1987). The solid lines show
fits to the data using theoretical
models of the evolution of stars
of different masses from the
main sequence to the giant
branch due to VandenBerg. The
isochrones shown have ages of
10, 12, 14 and 16 ×109 years,
the best-fitting values lying in
the range (12–14) × 109 years.
The cluster is metal-rich relative
to other globular clusters, the
metal abundance corresponding
to about 20% of the solar value

in 1995 (Sandage, 1995). In 1997, Bolte argued that the ages of the oldest globular
clusters were

T0 = 15 ± 2.4 (stat)
+4

−1
(syst) Gy. (8.21)

The first results of the Hipparcos astrometric survey relating to the determination
of the local distance scale were announced in 1997, with the result that it increased by
about 10% (Feast and Catchpole, 1997). This result meant that the stars in globular
clusters were more luminous than previously thought and so their main sequence
lifetimes were reduced. In Chaboyer’s review of 1998, the ages of globular clusters
were estimated to be T0 = (11.5 ± 1.3) Gy (Chaboyer, 1998).

Constraints on the age of the Galaxy can also be obtained from estimates of the
cooling times for white dwarfs. According to Chaboyer, these provide a firm lower
limit of 8 Gyr. The numbers of white dwarfs observed in the vicinity of the Solar

System enable an estimate of
(

9.5+1.1
−0.8

)
Gy to be made for the age of the disc of

our Galaxy (Oswalt et al., 1996).
In 1904, Rutherford used the relative abundances of radioactive species to set

a lower limit to the age of the Earth of 700 million years, in the process demolishing
the Kelvin–Helmholtz picture of stellar evolution (Rutherford, 1907). Using similar
techniques, lower limits to the age of the Universe can be derived from the discipline
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of nucleocosmochronology. A secure lower limit to the age of the Universe can
be derived from the abundances of long-lived radioactive species. In 1963 Anders
used these to determine an accurate age for the Earth of 4.6 × 109 years (Anders,
1963). Some pairs of long-lived radioactive species, such as 232Th–238U, 235U–238U
and 187Re–187Os can provide information about nucleosynthetic time-scales before
the formation of the Solar System (Schramm and Wasserburg, 1970). These pairs of
elements are all produced by the r-process in which the time-scale for neutron capture
is less than the β-decay lifetime. The production abundances of these elements can
be predicted and compared with their present observed ratios (Cowan et al., 1991).

The best astronomical application of this technique has been carried out by
Sneden, Cowan and their colleagues for the ultrametal-poor K giant star CS 22892-
052 in which the iron abundance is 1000 times less than the solar value (Sneden
et al., 1992). A number of species never previously observed in such metal-poor
stars were detected, for example, Tb (terbium, Z = 65), Ho (holmium, Z = 67), Tm
(thulium, Z = 69), Hf (hafnium, Z= 72) and Os (osmium, Z = 76), as well a single line
of Th (thorium, Z = 90). The thorium abundance is significant smaller than its scaled
solar system abundance and so the star must have been formed much earlier than the
Solar System. A lower limit to the age of CS 22892-052 of (15.2 ± 3.7)× 109 years
was found.

A conservative lower bound to the cosmological time-scale can be found by as-
suming that all the elements were formed promptly at the beginning of the Universe.
From this line of reasoning, Schramm found a lower limit to the age of the Galaxy
of 9.6 × 109 years (Schramm, 1997). The best estimates of the age of the Galaxy
are somewhat model-dependent, but typically ages of about (12-14)× 109 years are
found (Cowan et al., 1991).

8.5 The Deceleration Parameter q0
The hope of the pioneers of observational cosmology was that the value of q0 could
be found from studies of distant galaxies through the redshift–apparent magnitude
relation, the angular diameter–redshift relation or the number counts of galaxies. This
programme proved to be very much more difficult than the pioneers had expected.
By the beginning of the twenty-first century, however, real progress was made by two
rather different routes, one involving the use of supernovae of Type 1a and the other
observations of the spectrum of fluctuations in the Cosmic Microwave Background
Radiation.

The major problem encountered by many of the traditional approaches concerned
the evolution with cosmic time of the properties of the objects studied and it is salutary
to review exactly what went wrong.

8.5.1 The Redshift–Magnitude Relation for the Brightest Galaxies in Clusters

The redshift–apparent magnitude relation for the brightest galaxies in clusters shows
an impressive linear relation (Fig. 2.11), but it only extends to redshifts z ∼ 0.5 at
which the differences between the world models are still relatively small (Sandage,
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1968). Sandage was well aware of the many effects which needed to be considered
before a convincing estimate of q0 could be found. Some of these were straightfor-
ward, such as the need to determine the luminosities of galaxies within a given metric
diameter, but others were more complex. For example, as discussed in Sect. 4.2.3,
Sandage and Hardy discovered that the brightest galaxy in a cluster is more luminous,
the greater the difference in magnitude between the brightest and next brightest galax-
ies in the cluster (Sandage and Hardy, 1973). In what they termed the Bautz–Morgan
effect, the second and third ranked members of the cluster were intrinsically fainter
than the corresponding galaxies in other clusters with less dominant first ranked
galaxies. It seemed as though the brightest galaxy became brighter at the expense of
the next brightest members, a phenomenon which could plausibly be attributed to
the effects of galactic cannibalism (Hausman and Ostriker, 1977). Sandage adopted
an empirical correction to reduce the clusters to a standard Bautz–Morgan type.

Sandage was also well aware of the need to take account of the evolution of
the stellar populations of the galaxies with cosmic time. These corrections followed
naturally from his work on the Hertzsprung–Russell diagrams of globular clusters
of different ages which mimic the cosmic evolution of the old stellar populations of
galaxies. He included evolutionary corrections in the K-corrections to the absolute
magnitudes of the galaxies. There were, however, other worrying pieces of evidence
which did not fit easily into a picture of the passive evolution of galaxies in clusters.
Dramatic evidence for the evolution of galaxies in rich, regular clusters at relatively
small redshifts was first described in the pioneering analyses of Butcher and Oemler.
They found that the fraction of blue galaxies in such clusters increased from less
than 5% in a nearby sample to percentages as large as 50% at redshift z ∼ 0.4
(Butcher and Oemler, 1978, 1984). The Butcher–Oemler effect has been the subject
of a great deal of study and debate, the major observational problems concerning the
contamination of the cluster populations by foreground and background galaxies, as
well as bias in the selection criteria for the clusters selected for observation (Dressler,
1984).

The determination of q0 might seem to be easier if the samples of galaxies
extended to larger redshifts, but it proved far from trivial to find suitable clusters
at redshifts greater than 0.5. Those in which the brightest galaxies were observed
often turned out to be bluer than expected. This finding reflects a basic problem with
this approach to measuring the deceleration parameter: the differences between the
expectations of the world models only become appreciable at large redshifts at which
the Universe was significantly younger than it is now. Consequently careful account
has to be taken of the evolutionary changes of the objects which are assumed to have
‘standard’ properties.

By the time of Sandage’s review of the problem in 1993, the uncertainties in the
value of q0 had not decreased, his estimate being q0 = 1 ± 1 (Sandage, 1995). In
fact, by that time, Aragón-Salamanca , Ellis and their colleagues had extended the
infrared redshift–apparent magnitude relation for the brightest galaxies in clusters
to redshift z = 0.9 (Aragòn-Salamanca et al., 1993). They found evidence that
the galaxies were bluer at the larger redshifts, but, perhaps surprisingly, that their
redshift–apparent magnitude relation followed closely a model with q0 = 1 with no
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corrections for the evolution of the stellar populations of the galaxies, for cluster
richness or for Bautz–Morgan type.

8.5.2 The Redshift–Magnitude Relation for Radio Galaxies

Another approach to extending the redshift–apparent magnitude relation to large
redshifts became possible in the early 1980s when the use of the first generation
of CCD cameras enabled complete samples of bright 3CR radio sources to be
identified with very faint galaxies. These galaxies turned out to have very strong,
narrow emission line spectra and spectroscopy by Hyron Spinrad and his colleagues
showed that many of these radio galaxies had very large redshifts. These observations
showed that the 3CR radio galaxies are among the most luminous galaxies known.

At about the same time, infrared photometry of these galaxies in the 1–2.2 μm
waveband became feasible with the development of sensitive indium antimonide
detectors. There were several advantages in defining the redshift–apparent magnitude
relation in the K waveband at 2.2 μm, one of them being that dust becomes transparent
in the near-infrared waveband and so extinction corrections to the luminosities of
the galaxies are very small. A second advantage is that the stars which contribute
most of the luminosity at these wavelengths belong to the old red giant population
of the galaxy. As a result, the magnitudes are not affected by bursts of star formation
which can profoundly influence the optical magnitudes of the galaxies and which
is largely responsible for the fact that the galaxies at redshifts greater than 0.5 are
significantly bluer than those observed at lower redshifts (see Sect. 17.2.2).

In 1984, Lilly and I determined the redshift–apparent magnitude relation for
a complete sample of 3CR radio galaxies at an infrared wavelength of 2.2 μm
(Fig. 8.4) (Lilly and Longair, 1984). We found that there is a remarkably well-
defined K magnitude–redshift relation which extended to redshifts of 1.5. It was
also clear that the galaxies at large redshifts were more luminous than expected
for world models with q0 ∼ 0–0.5. When simple evolutionary corrections were
made for the increased rate at which stars evolved onto the giant branch at earlier
epochs (Sect. 17.2.2), values of q0 in the range 0 to 1 were found. This appeared
to be evidence for the evolution of the stellar populations of these galaxies over
cosmological time-scales.

There were, however, problems with this simple picture. In the late 1980s,
Chambers, Miley, McCarthy and their collaborators discovered the alignment of the
radio structures with the optical images of the 3CR galaxies and this complicated the
interpretation of these data (Chambers et al., 1987; McCarthy et al., 1987). Optical
images taken with the Hubble Space Telescope and ground-based infrared images
taken with the UK Infrared Telescope of five of the 3CR radio galaxies in the redshift
interval 1 < z < 1.3 are shown in Fig. 8.5 (Best et al., 1996). The infrared images
in the right-hand column look exactly like the classic picture of a double radio
source associated with a giant elliptical galaxy. In the HST images in the left-hand
column, however, a wide variety of high surface brightness structures is observed
aligned with the radio structures – the optical images of the radio galaxies are quite
unlike the symmetric structure of giant elliptical galaxies. Our optical spectroscopic
observations of the aligned structures seen in the five radio galaxies in Fig. 8.5
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Fig. 8.4. The K magnitude–redshift relation for a complete sample of narrow line radio galaxies
from the 3CR catalogue. The infrared apparent magnitudes were measured at a wavelength
of 2.2 μm. The dashed lines show the expectations of world models with q0 = 0 and 1

2 . The
solid line is a best-fitting line for standard world models withΩΛ = 0 and includes the effects
of stellar evolution of the old stellar population of the galaxies (Lilly and Longair, 1984)

showed that they are shock-excited gas clouds, probably associated with the strong
shocks created by the passage of the radio jets through the intergalactic medium
surrounding the radio galaxy (Best et al., 2000).

Using a combination of surface photometry of these galaxies in the optical and
infrared wavebands, we were able to show that the alignment effect does not have
a strong influence upon the K magnitude–redshift relationships (Best et al., 1998).
More serious was the fact that surveys of fainter samples of 6C radio galaxies by
Eales, Rawlings and their colleagues found that, although the K magnitude–redshift
relation agreed with our relation at redshifts less than 0.6, their sample of radio
galaxies at redshifts z ∼ 1 were significantly less luminous than the 3CR galaxies
by about 0.6 magnitudes (Eales et al., 1997). Our most recent analysis of these
data for a preferred cosmological model with Ω0 = 0.3 and ΩΛ = 0.7, including
corrections for the evolution of their stellar populations, have demonstrated that
3CR radio galaxies at redshifts z ≥ 0.6 are indeed significantly more luminous than
their nearby counterparts (Inskip et al., 2002). Our apparent success in accounting
for the K magnitude–redshift relation for 3CR radio galaxies in the 1980s was an
unfortunate cosmic conspiracy.

The lesson of this story is that the selection of galaxies as standard objects at large
redshifts is a hazardous business; we generally learn more about the astrophysics and
astrophysical evolution of the galaxies rather than about cosmological parameters.
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Fig. 8.5. HST (left) and UKIRT (right) images of the radio galaxies 3C 266, 368, 324, 280
and 65 with the VLA radio contours superimposed (Best et al., 1996). The images are drawn
on the same physical scale. The angular resolution of the HST images is 0.1 arcsec while that
of the ground-based infrared images is about 1 arcsec

8.5.3 The Redshift–Magnitude Relation for Type 1a Supernovae

The discussion of Sect. 7.4.5 makes it clear that what is required is a set of standard
objects which are not susceptible to poorly understood evolutionary changes with
cosmic epoch. The use of supernovae of Type 1a to extend the redshift–apparent
magnitude relation to redshifts z > 0.5 has a number of attractive features. First
of all, it is found empirically that these supernovae have a very small dispersion in
absolute luminosity at maximum light (Branch and Tammann, 1992). This dispersion
can be further reduced if account is taken of the correlation between the maximum
luminosity of Type 1a supernovae and the duration of the initial outburst. This
correlation, referred to as the luminosity–width relation, is in the sense that the
supernovae with the slower decline rates from maximum light are more luminous
than those which decline more rapidly (Phillips, 1993). Secondly, there are good
astrophysical reasons to suppose that these objects are likely to be good standard
candles, despite the fact that they are observed at earlier cosmological epochs. The
preferred picture is that these supernovae result from the explosion of white dwarfs
which are members of binary systems which accrete mass from the other member
of the binary. Although the precise mechanism which initiates the explosion has not
been established, the favoured picture is that mass accreted onto the surface of the
white dwarf raises the temperature of the surface layers to such a high temperature
that nuclear burning is initiated and a deflagration front propagates into the interior of
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the star, causing the explosion which results in its destruction. It is entirely plausible
that these types of explosion should have uniform properties.

In 1995 Ariel Goobar and Saul Perlmutter discussed the feasibility of observing
Type 1a supernova out to redshift z ≈ 1 in order to estimate the values ofΩ0 andΩΛ

(Goobar and Perlmutter, 1995). In 1996, they and their colleagues described the first
results of systematic searches for Type 1a supernovae at redshifts z ∼ 0.5 using an
ingenious approach to detect them before they reached maximum light (Perlmutter
et al., 1996). Deep images of selected fields, including a number which contain
distant clusters of galaxies, were taken during one period of new moon and the fields
were then imaged in precisely the same way during the next new moon. Using rapid
image analysis techniques, any supernovae which appeared between the first and
second epoch observations were quickly identified and reobserved photometrically
and spectroscopically over the succeeding weeks to determine their types and light
curves.

Using this search technique, Perlmutter and his colleagues discovered 27 super-
novae of Type 1a between redshifts 0.4 and 0.6 in three campaigns in 1995 and 1996
(Perlmutter et al., 1996, 1997). The team used these and subsequent data to demon-
strate convincingly the effects of cosmological time dilation by comparing the light
curves of Type 1a supernovae at redshifts z ∼ 0.4–0.8 with those of the same type
at the present epoch, thus testing directly the cosmological time dilation–redshift
relation (Goldhaber et al., 2001) (see Fig. 5.7). The same peak luminosity–width
correlation was found as that observed at small redshifts. When account was taken
of this relation, the intrinsic spread in the luminosities of the Type 1a supernovae
was only 0.21 magnitudes.

This same technique has been used to discover Type 1a supernovae at redshifts
greater than z = 0.8 as a result of observations with the Hubble Space Telescope. In
two independent programmes, Garnavich, Perlmutter and their colleagues discovered
the Type 1a supernovae SN1997ck at redshift z = 0.97 and SN1997ap at redshift
z = 0.83 respectively (Garnavich et al., 1998; Perlmutter et al., 1998). The great
advantage of the HST observations is that their high angular resolution enables very
accurate photometry to be carried out on stellar objects in distant galaxies.

The redshift–apparent magnitude relation presented by Wood-Vasey and his
colleagues was derived from the combined ESSENCE and Supernova Legacy Survey
data (Fig. 8.6). This compilation has resulted in a redshift–apparent magnitude
relation similar to that found by Perlmutter, Garnavich and their colleagues, but with
much larger statistics (Wood-Vasey et al., 2007). The solid line shows a best-fitting
theoretical curve (solid line) which has cosmological parameters Ω0 = 0.27 and
ΩΛ = 0.73. The major result of these observations, which has been found by the
independent groups, is that the data favour cosmological models in which ΩΛ is
non-zero. This was the first time in the history of observational cosmology that
compelling evidence for a finite value of the cosmological constant has been found.
The groups have continued to extend this technique to large redshifts through the
discovery of Type 1a supernovae at very large redshifts (Knop et al., 2003; Tonry
et al., 2003). The best presentation of these results is in terms of a diagram in which
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Fig. 8.6. The luminosity distance–redshift relation for supernovae of Type 1a from the com-
bined ESSENCE and Supernova Legacy Survey data. For comparison the overplotted solid
line and residuals are for a ΛCDM model with w = −1, Ω0 = 0.27 and ΩΛ = 0.73.
The dotted and dashed lines are for models with ΩΛ = 0, as indicated in the figure legend
(Wood-Vasey et al., 2007)

the density parameter of the matter content of the Universe Ω0 is plotted against
ΩΛ. The results of the Supernova Cosmology Project are shown in Fig. 8.7.

There are various ways of interpreting Fig. 8.7, particularly when taken in con-
junction with independent evidence on the mean mass density of the Universe and the
evidence from the spectrum of fluctuations in the Cosmic Microwave Background
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Fig. 8.7. The 68%, 90%, 95%
and 99% confidence limits for the
values of Ω0 and ΩΛ determined
by the Supernova Cosmology
Project. Also shown the diagram
is the condition Ω0 + ΩΛ =
1 which corresponds to flat
geometry (Knop et al., 2003)

Radiation. Perhaps the most conservative approach is to note that the matter density
in the Universe must be greater than 0 and, as discussed in Sect. 8.7, all the data are
consistent with values of Ω0 ≈ 0.25 − 0.3. Consequently, ΩΛ must be non-zero.
The data would be consistent withΩ0 +ΩΛ = 1 ifΩ0 ≈ 0.25 − 0.3. We will come
back to these results in Chap. 15.

8.5.4 The Number Counts of Galaxies

In his assessment of approaches to the determination of cosmological parameters,
Sandage was not optimistic about the use of the number counts of galaxies (Sandage,
1961a):

Galaxy counts are insensitive to the model . . . There seems to be no hope of
finding q0 from the N(m) counts because the predicted differences between
the models are too small compared with the known fluctuations of the
distribution.

These concerns have been fully justified by subsequent studies. The determination
of precise counts of galaxies has proved to be one of the more difficult areas of
observational cosmology. Ellis has provided an excellent account of the problems of
determining and interpreting the counts of faint galaxies (Ellis, 1997). The reasons
for these complications are multifold. First of all, galaxies are extended objects, often
with complex brightness distributions, and great care must be taken to ensure that
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the same types of object are compared at different magnitude limits and redshifts.
Furthermore, the distribution of galaxies is far from uniform on scales less than
about 50 h−1 Mpc, as illustrated by the large voids and walls seen in Figs. 2.7
and 2.8. Even at the faintest magnitudes, this ‘cellular’ structure in the distribution
of galaxies results in fluctuations in the number counts of galaxies which exceed the
statistical fluctuations expected in a random distribution (see Sect. 17.7). In addition,
the probability of finding galaxies of different morphological types depends upon
the galaxy environment. Finally, the luminosity function of galaxies is quite broad
(Figs. 3.14 to 3.16) and so the differences between models are masked by the
convolution of the predictions of the world models with this function.

Up till about 1980, the deepest counts extended to apparent magnitudes of about
22 to 23 and, although there were disagreements between the results of different
observers, there was no strong evidence that the counts of galaxies departed from
the expectations of uniform world models. Since that time, much deeper number
counts have been determined thanks to the use of large area CCD cameras on large
telescopes, as well as the spectacular images obtained from the Hubble Deep Field

Fig. 8.8. Galaxy number counts in the infrared H waveband (1.65 μm) to H = 28 magnitude
compiled by Metcalfe and his colleagues. The predictions of the various evolving and non-
evolving models discussed by them are also shown (Metcalfe et al., 2006)
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and the Hubble Ultra-Deep Field. An example of a compilation of deep counts of
galaxies in the blue (B), red (I) and infrared (K) wavebands is shown in Fig. 2.12
(Metcalfe et al., 1996). It can be seen that there is a large excess of faint galaxies
at blue magnitudes greater than about 22 while the counts of galaxies at red and
infrared wavelengths show rather more modest evolution. The counts in the infrared
H waveband in particular show little evidence for evolution, but various predictions
for models with evolving and non-evolving galaxy populations indicate the real diffi-
culties of determining cosmological parameters by this means (Fig. 8.8). While there
is little prospect of using these observations to determine cosmological parameters,
they are of the greatest interest in studying the astrophysical evolution of galaxies
with cosmic epoch and this topic will be taken up in Chaps. 17 and 19.

8.5.5 The Angular Diameter–Redshift Test

The angular diameter–redshift relation provides an attractive route for the determi-
nation of cosmological parameters if accurate proper distances l of astronomical
objects can be measured at large redshifts and their corresponding angular sizes
θ measured. Then, the angular diameter distance DA = l/θ can be determined
as a function of redshift and compared with the predictions of the standard world
models. The physical methods of measuring proper distances at large redshifts de-
scribed in Sect. 8.3, involving the Sunyaev–Zeldovich effect in conjunction with
X-ray observations of the hot gas in clusters, gravitational lenses and the various
versions of the Baade–Wesselink method, all provide means of undertaking this test.
A possible problem with this programme is the extent to which the predicted angular
diameter–redshift relations are modified by inhomogeneities in the distribution of
mass along the line of sight, which can significantly change the predicted relations
(Sect. 7.7).

The alternative approach is to use objects which may be considered to be ‘rigid
rods’, but the problem is to find suitable metric sizes which can be used in the
test. A distinctive feature of this test is the predicted minimum angular diameter
as the objects are observed at large redshifts (Fig. 7.8). A good example is the use
of the separation of the radio components of double radio sources, such as those
illustrated in Fig. 8.5. Large samples of these objects can be found spanning a wide
range of redshifts. This test was first carried out by Miley who used the largest
angular size of the radio structures of radio galaxies and quasars as a ‘rigid rod’
(Miley, 1968, 1971), but no minimum was found in the observed relation. Kapahi
confirmed this result using instead the median angular separation θm of the radio
source components as a function of redshift (Kapahi, 1987), but again no minimum
was found (Fig. 8.9a). The median angular separation of the source components is
observed to be roughly inversely proportional to redshift and this was interpreted
as evidence that the median physical separation of the source components lm was
smaller at large redshifts. Examples of fits to the observational data using evolution
functions of the form lm ∝ (1 + z)−n are shown in Fig. 8.9a for world models with
q0 = 0 and 0.5; values of n ≈ 1.5–2.0 can provide good fits to the data. There are
many reasons why the separation of the radio source components might be smaller
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Fig. 8.9. a The angular diameter–redshift relation for double radio sources, in which the
median angular separation of the double radio source components θm is plotted against
redshift (Kapahi, 1987). The observed relation follows closely the relation θm ∝ z−1. The
left-hand panel shows fits to the observations for a world model with q0 = 0 and the right-hand
panel for a model with q0 = 0.5, in both cases, the median separation of the components being
assumed to change with redshift as lm ∝ (1 + z)−n . b The mean angular diameter–redshift
relation for 82 compact radio sources observed by VLBI (Kellermann, 1993). In addition to
the standard Friedman models, the relation for steady state cosmology (SS) as well as the
relation θ ∝ z−1 (dashed line) are shown

in the past, for example, the ambient interstellar and intergalactic gas may well have
been greater in the past and so the source components could not penetrate so far
through the surrounding gas. Again, we learn more about astrophysical changes with
cosmic epoch of the objects studied rather than about cosmological parameters.
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Fig. 8.10. The median angular
diameter–redshift relation for
145 high luminosity compact
radio sources observed by VLBI
(Gurvits et al., 1999). The nota-
tion is the same as Fig. 8.9b

Another version of the same test was described by Kellermann and involved
using only compact double radio structures studied by Very Long Baseline Inter-
ferometry (Kellermann, 1993). He argued that these sources are likely to be less
influenced by changes in the properties of the intergalactic and interstellar gas, since
the components are deeply embedded within the central regions of the host galaxy.
In his angular diameter–redshift relation, there is evidence for a minimum in the
relation, which would be consistent with a value of q0 ∼ 0.5 (Fig. 8.9b). A problem
with this analysis is that the sources at small redshifts are less luminous that those at
large redshift. Gurvits and his colleagues repeated the analysis with a much larger
sample of 330 compact radio quasars from which they selected a subsample of 145
high luminosity quasars with L ≥ 1026 W Hz−1 (Gurvits et al., 1999). The resulting
angular diameter–redshift relation shown in Fig. 8.10 shows the large scatter when
the data were binned into 12 bins, each with 12–13 sources. As they comment:

None of the solid lines represents the best fit.

Presumably, the properties of the sources are determined by local physical conditions
close to the quasar nucleus. In addition, there is a clear lack of high luminosity sources
at small redshifts which would ‘anchor’ the relation.

8.6 ΩΛ and the Statistics of Gravitational Lenses

One way of testing models with finite values of ΩΛ is to make use of the fact
that the volume enclosed by redshift z increases as ΩΛ increases, as illustrated by
Fig. 7.11b for the caseΩ0 +ΩΛ = 1. The statistics of gravitationally lensed images
by intervening galaxies therefore provides an important test of models with finiteΩΛ.
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The power of this approach is illustrated by the following calculation (Fukugita et al.,
1992). We assume, for simplicity, that we can represent the population of lensing
galaxies by identical isothermal spheres which have constant comoving space density
N0. We can then use the calculation which resulted in (4.63) for the Einstein radius
θE, within which strong distortions of the image of a background object are expected,

θE = 4π〈v2‖〉
c2

DLS

DS
,

where 〈v2‖〉 is the mean square velocity dispersion along the line of sight of the
particles which make up each isothermal sphere, DS is the angular diameter distance
of the background quasar and DLS the angular diameter distance from the lens to the
background source. We can therefore write the cross-section σE of the isothermal
sphere for strong lensing as

σE = πD2
Lθ

2
E = A

(
DL DLS

DS

)2

, (8.22)

where DL is the angular diameter distance of the isothermal sphere, or lens. We
now work out the probability that a background quasar at redshift zS is observed to
be strongly lensed. From (5.73), the number of isothermal spheres in the redshift
interval z to z + dz per steradian is

dN = N0 D2 dr , (8.23)

where D is the distance measure which is related to the angular diameter distance by
DA = D/(1 + z). Therefore, the probability of strong lensing in the redshift interval
dz is given by the total solid angle subtended by all the isothermal spheres in the
increment of comoving radial distance coordinate dr

p(z) dz = N0σE D2

D2
A

dr = N0σE D2

[D/(1 + z)]2
dr = N0σE(1 + z)2 dr . (8.24)

We integrate this result from z = 0 to zS to obtain the desired probability:

p(zS) = AN0

∫ zS

0

(
DL DLS

DS

)2

(1 + z)2 dr . (8.25)

In general, dr is given by the expression

dr = c dz

H0[(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)]1/2
, (8.26)
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and so

p(zS) = AN0

∫ zS

0

(
DL DLS

DS

)2 c(1 + z)2 dz

H0[(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)]1/2
.

(8.27)

To integrate this expression we need to evaluate DLS, the angular diameter distance
from the lens to the source. Following the reasoning of Sect. 7.5, the appropriate
comoving distance coordinate between the epochs corresponding to zL and zS is

r(zL, zS) = −
∫ zS

zL

c dt

a(t)
, (8.28)

and then we form the distance measure D(zL, zS) and the angular diameter distance
DA(zL, zS),

DA(zL, zS) = D(zL, zS)
1 + zL

1 + zS
= �
(1 + zS)

sin
∫ zS

zL

dr

� . (8.29)

Carroll and his colleagues present the results of the integral (8.27) in a pleasant
format. They normalise the integral to the probability of lensing in the case of the
Einstein–de Sitter model, Ω0 = 1,ΩΛ = 0 in which case, it is straightforward to
show that the probability for any other model becomes

p(zS) = 15H2
0

4c2

[
1 − 1

(1 + zS)

]−3 ∫ zS

0

(
DL DLS

DS

)2

× (1 + z)2 dz

[(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)]1/2
. (8.30)

This function is plotted in Fig. 8.11 in the same format as Fig. 7.4, the contours
showing the relative lensing probabilities for a quasar at a typical redshift zS = 2. It
can be seen that, ifΩΛ = 0, as represented by the solid diagonal line, there are only
small changes in the probability of lensing. For low values of Ω0, the probability
increases by about a factor of 2 as compared with theΩ0 = 1 model. In contrast, the
probability of lensing is very strongly dependent upon the value ofΩΛ. For example,
for the flat world models withΩ0 +ΩΛ = 1, the probability of lensing increases by
almost a factor of ten asΩ0 changes from 1 to 0.1. This dramatic increase occurs for
a number of reasons. First of all, the distance measure D increases with increasing
redshift more rapidly in models with low Ω0 than in models with high Ω0 and so
much greater volumes are encompassed at a given redshift (Fig. 7.11). Second, the
combination of parameters DL DLS/DS is sensitive to the presence of the cosmolog-
ical constant which stretches out the angular diameter distance at a given redshift.

To obtain limits to the value of ΩΛ from the frequency and properties of gravi-
tational lenses in complete samples of quasars and radio galaxies, modelling of the
lens and background source populations needs to be carried out. The probabilities
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Fig. 8.11. The probability of observing strong gravitational lensing relative to that of the
critical Einstein–de Sitter model, Ω0 = 1,ΩΛ = 0 for a quasar at redshift zS = 2 (Carroll
et al., 1992). The contours show the relative probabilities derived from the integral (8.30) and
are presented in the same format as in Fig. 7.4

have to be averaged over the luminosity functions of lensing galaxies and the distri-
bution of background sources. Models have to be adopted for the lenses which can
account for the observed structures of the lensed images. The amplification of the
brightness of the images as well as the detectability of the distorted structures need
to be included in the computations. These complications are considered in some
detail in the review by Carroll and his colleagues and by Kochanek (Carroll et al.,
1992; Kochanek, 1996).

The largest survey to date designed specifically to address this problem has been
the Cosmic Lens All Sky Survey (CLASS) in which a very large sample of flat
spectrum radio sources was imaged by the Very Large Array (VLA), the Very Long
Baseline Array (VLBA) and the MERLIN long baseline interferometer. The sources
were selected according to strict selection criteria and resulted in the detection of
13 sources which were multiply imaged out of a total sample of 8958 radio sources
(Chae et al., 2002). More recently, the CLASS collaboration has reported the point-
source lensing rate to be one per 690 ± 190 targets (Mitchell et al., 2005). The
analysis of these data used the luminosity functions for different galaxy types found
in the AAT 2dF survey as well as models for the evolution of the population of flat-
spectrum radio sources. The CLASS collaboration found that the observed fraction
of multiply lensed sources was consistent with flat world models, Ω0 +ΩΛ = 1, in
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which density parameter in the matter Ω0 was

Ω0 = 0.31
+0.27

−0.14
(68%)

+0.12

−0.10
(syst) . (8.31)

Alternatively, for a flat universe with an equation of state for the dark energy of the
form p = w	c2, they found an upper limit to w,

w < −0.55
+0.18

−0.11
(68%) , (8.32)

consistent with the standard value for the cosmological constant w = −1 (Chae
et al., 2002).

8.7 The Density ParameterΩ0

Estimates of the average cosmological density of matter in galaxies were included
in Hubble’s first paper on the extragalactic nature of the diffuse nebulae. He used
his estimates of their average mass-to-light ratios to estimate a mean cosmological
density of 	0 = 1.5 × 10−28 kg m−3 (Hubble, 1926). A similar analysis was carried
out in 1958 by Oort who found that the average mass density was 3.1 × 10−28 kg
m−3 assuming that Hubble’s constant was 180 km s−1 Mpc−1 (Oort, 1958).

In 1978, Gunn expressed the same result in terms of the mass-to-light ratio which
would be needed if the Universe were to attain the critical density (Gunn, 1978). He
found (M/L)crit = 2600h, very much greater than the values found in our vicinity
in the plane of the Galaxy. As described in Sects. 3.5, 4.3 and 4.4, the mass of dark
matter in galaxies and clusters of galaxies far exceeds that in the visible parts of
galaxies. If account is taken of the dark matter, the overall mass-to-luminosity ratio
attains values of M/L ∼ 100–150. In well-studied rich clusters, such as the Coma
cluster, the value of M/L is of the order of 250, but this value is biased towards
elliptical and S0 galaxies which have three times larger values of M/L than the spiral
galaxies, the latter contributing most of the light per unit volume in the Universe at
large. These values of M/L are significantly less than the value needed to close the
Universe. Gunn’s best estimate of the density parameter for bound systems such as
galaxies, groups and clusters of galaxies was about 0.1 and was independent of the
value of h.

In 2000, Bahcall reviewed the many different approaches which can be taken to
derive values of M/L for clusters of galaxies – cluster mass-to-light ratios, the baryon
fraction in clusters and studies of cluster evolution (Bahcall, 2000). These have all
found the same consistent result that the mass density of the universe corresponds
to Ω0 ≈ 0.25 and furthermore that the mass approximately traces light on large
scales. These results reflect the generally accepted view that, if mass densities are
determined for bound systems, the total mass density in the Universe is about a factor
of 4 less than that needed to close the Universe.
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On scales greater than those of clusters of galaxies, estimates of the mass density
in the general field can be found from the cosmic virial theorem (Peebles, 1976). In
this procedure, the random velocities of galaxies with respect to the mean Hubble
flow are compared with the varying component of the gravitational acceleration
due to large-scale inhomogeneities in the distribution of galaxies. As in the other
methods of mass determination, the mass density is found by comparing the random
kinetic energy of galaxies with their gravitational potential energy, this comparison
being carried out in terms of two-point correlation functions for both the velocities
and positions of galaxies selected from the general field. Application to the random
velocities of field galaxies suggested that Ω0 might be larger than 0.2 (Davis et al.,
1978; Davis and Peebles, 1983).

A similar argument involves studies of the infall of galaxies into superclusters
of galaxies. Galaxies in the vicinity of a supercluster are accelerated towards it,
thus providing a measure of the mean density of gravitating matter within the
system. The velocities induced by large-scale density perturbations depend upon the
density contrast δ	/	 between the system studied and the mean background density.
A typical formula for the infall velocity u of test particles into a density perturbation
is (Gunn, 1978):

u ∝ H0rΩ0.6
0

(
δ	

	

)

0
. (8.33)

In Gunn’s analysis, this method resulted in values of Ω0 about 0.2 to 0.3. In the
case of small spherical perturbations, a result correct to second order in the density
perturbation was presented by Lightman and Schechter (Lightman and Schechter,
1990).
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In an ambitious programme, Dekel and his colleagues devised numerical pro-
cedures for deriving the distribution of mass in the local Universe entirely from
the measured velocities and distances of complete samples of nearby galaxies, the
objective being to determine a three-dimensional map of velocity deviations from
the mean Hubble flow. Then, applying Poisson’s equation, the mass distribution
responsible for the observed peculiar velocity distribution can be reconstructed nu-
merically. Figure 8.12 shows an example of a reconstruction of the local density
distribution using this procedure (Hudson et al., 1995). Despite using only the veloc-
ities and distances, and not their number densities, many of the familiar features of
our local Universe are recovered – the Virgo supercluster and the ‘Great Attractor’
can be seen as well as voids in the mean mass distribution. These procedures tended
to produce somewhat larger values of Ω0, Dekel stating that the density parameter
is greater than 0.3 at the 95% confidence level.

The issue of the total amount of dark matter present in the Universe was the
subject of heated debate throughout the 1990s. Some flavour of the points of con-
tention among the experts in the field can be gained from the discussions at the 1996
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Fig. 8.12. Surface density plots of the density field in the local Supergalactic plane. The
left-hand panel shows the mass distribution reconstructed from the peculiar velocity and
distance information for the galaxies in this region using the POTENT numerical procedure.
The right-hand panel shows the density field of optical galaxies, both images smoothed with
a Gaussian filter of radius 1200 km s−1. The density contrast is proportional to the height of
the surface above (or below) the plane of the plot (Hudson et al., 1995)

Princeton meeting Critical Dialogues in Cosmology between Burstein and Dekel,
White acting as moderator (Dekel et al., 1997). The upshot of these considerations
was that there was agreement that the value of Ω0 is greater than 0.1 and a value of
0.2 to 0.3 would be consistent with most of the data.

The infall test became feasible on very large scales following the completion
of the Two-Degree Field (2dF) survey of galaxy redshifts carried out at the Anglo-
Australian Telescope. The survey involved measuring redshifts for almost 200,000
galaxies randomly selected from the Cambridge APM galaxy survey. A cut from that
survey was shown in Fig. 2.8a. The concept behind the test was that that superclusters
of galaxies generate a systematic infall of other galaxies in their vicinities and this
would be evident in the pattern of recessional velocities, resulting in anisotropy in
the inferred spatial clustering of galaxies. Using the redshifts of more than 141,000
galaxies from the 2dF galaxy redshift survey, Peacock and his colleagues discovered
convincing statistical evidence for infall and estimated the overall density parameter
to be Ω0.6

0 = 0.43b ± 0.07, where b is the bias parameter, the factor by which
visible matter is more clustered than the dominant dark matter. When this result was
combined with data on the anisotropy of the Cosmic Microwave Background, their
result favoured a low density Universe with Ω0 ≈ 0.3 (Peacock et al., 2001).

When taken in conjunction with the results derived from the power spectrum of
fluctuations in the Cosmic Microwave Background Radiation discussed in Sect. 15.9,
the consensus view is that the best estimate of the overall density parameter for the
Universe is Ω0 ≈ 0.25 − 0.3. An immediate consequence of this result is that most
of the mass in the Universe cannot be in baryonic matter, which is constrained by
the production of the light elements in the early stages of the Big Bang. As will
be discussed in Sect. 10.4, the best estimate of the density parameter in baryons is
Ωbar = (0.0223 ± 0.002)h−2, consistent with the results of analyses of the power
spectrum of fluctuations in the Cosmic Microwave Background Radiation. Adopting
h = 0.7, Ωbar = 0.0455 and so there cannot be sufficient baryons to account for
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the observed total mass density. Most of the mass in the Universe must be in some
non-baryonic form.

8.8 Summary

From a subject dogged by controversy and strong feeling for most of the twentieth
century, classical cosmology saw a dramatic change in perspective during the last
decade. New methods were developed which eliminated many of the problems of the
pioneering efforts of previous decades. Whilst the emphasis in this chapter has been
upon the traditional route to the determination of cosmological parameters, the con-
sensus picture received a remarkable boost from analyses of the fluctuation spectrum
of the Cosmic Microwave Background Radiation, a story which is told in the context
of the understanding of the formation of large-scale structures in the Universe in
Chap. 15. Indeed, many cosmologists would now look first to these observations
as providing the key to unlocking many of the problems of the determination of
cosmological parameters.



9 The Thermal History of the Universe

We are now well on our way to setting the scene for our attack on the problems of
understanding the origin and evolution of galaxies and the large-scale structure of
our Universe. Before we can do that, however, we need to work out in some detail
the thermal history of the matter and radiation content of the Universe according to
the standard Big Bang picture. In this chapter and Chap. 10, we develop a number
of concepts which are essential for understanding the problems of galaxy formation.
We first consider the dynamics of radiation-dominated universes.

9.1 Radiation-Dominated Universes

For a gas of photons, massless particles or a relativistic gas in the ultrarelativistic
limit E � mc2, pressure p is related to energy density ε by p = 1

3ε and the inertial
mass density of the radiation 	r is related to its energy density ε by ε = 	rc2. If N(ν)
is the number density of photons of energy hν, then the energy density of radiation
is found by summing over all frequencies

ε =
∑
ν

hνN(ν) . (9.1)

If the number of photons is conserved, their number density varies with scale factor
a as N = N0a−3 = N0(1 + z)3 and the energy of each photon changes with redshift
by the usual redshift factor ν = ν0(1 + z). Therefore, the variation of the energy
density of radiation with redshift is

ε =
∑
ν0

hν0 N0(ν0)(1 + z)4 = ε0(1 + z)4 = ε0a−4 . (9.2)
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This is exactly the same expression as (7.9) which was deduced from a more ther-
modynamic perspective. In the case of black-body radiation, the energy density of
the radiation is described by the Stefan–Boltzmann law1

ε = 4σ

c
T 4 , (9.3)

and its spectral energy density, that is, its energy density per unit frequency range,
by the Planck distribution

ε(ν) dν = 8πhν3

c3

1

ehν/kT − 1
dν . (9.4)

It immediately follows that, for black-body radiation, the radiation temperature Tr

varies with redshift as Tr = T0(1 + z) and the spectrum of the radiation changes as

ε(ν1) dν1 = 8πhν3
1

c3

1

ehν1/kT1 − 1
dν1

= 8πhν3
0

c3

1

ehν0/kT0 − 1
(1 + z)4 dν0

= (1 + z)4 ε(ν0) dν0 , (9.5)

where T1 = T0(1+z). Thus, a black-body spectrum preserves its form as the Universe
expands, but the radiation temperature changes as Tr = T0(1 + z) and the frequency
of each photon as ν = ν0(1 + z). Another way of looking at these results is in terms
of the adiabatic expansion of a gas of photons. The ratio of specific heats γ for
radiation and a relativistic gas in the ultrarelativistic limit is γ = 4/3. It is a simple
exercise to show that, in an adiabatic expansion, T ∝ V−(γ−1) = V−1/3 ∝ a−1,
which is exactly the same as the above result.

A key test of the standard Big Bang picture is whether or not the temperature of
the Cosmic Microwave Background Radiation has followed the predicted relation
Tr = T0(1 + z). The fine-structure splittings of the ground state of neutral carbon
atoms CI enable this test to be carried out. The photons of the background radiation
excite the fine-structure levels of the ground state of the neutral carbon atoms and the
relative strengths of the absorption lines originating from the ground and first excited
states are determined by the energy density and temperature of the background
radiation. The test has been carried out using the absorption lines observed in
damped Lyman-α clouds in the spectra of quasars (see Sect. 18.3). This is a difficult
experiment since the lines are weak, but successful observations were carried out with
the Keck 10-metre Telescope in the 1990s. Cowie and his colleagues observed the CI
absorption lines in a damped Lyman-α cloud at redshift z = 1.776 in the spectrum
of the quasar Q1331+170 and derived a background temperature Trad = 7.4±0.8 K,
consistent with expected temperature, T(z) = T0(1 + z) = 7.58 K (Songaila et al.,

1 I have written the Stefan–Boltzmann law in terms of the Stefan–Boltzmann constant
σ = 5.670 × 10−8 W m−2 K−4. The pre-factor 4/c converts this intensity into an energy
density.
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1994). The experiment was repeated by Ge and his colleagues who studied the CI
absorption lines in a damped Lyman-α cloud at redshift z = 1.9731 in the spectrum of
the quasar QSO 0013-004 and found Trad = 7.9±1.0 K, consistent with the predicted
temperature of T(z) = T0(1 + z) = 8.105 K (Ge et al., 1997). Most recently, the
observation has been repeated by Ledoux and his colleagues for the quasar PSS
J1443+2724 in which there is an absorption system at redshift zabs = 4.224 (Ledoux
et al., 2006). The expected radiation temperature of the background radiation at this
redshift is 14.2 K, consistent with the observed excitation of the ground and first
fine-structure excited states of CI. Strictly speaking, these are only upper limits to
the temperature of the background radiation, since there might be other local sources
of excitation of the fine-structure lines, but this is regarded as unlikely. The results of
these experiments provide evidence that the radiation temperature of the background
radiation has followed the expected dependence upon redshift.

The variations of p and 	 with a can now be substituted into Einstein’s field
equations with the results:

ä = −8πG	0

3a3
+ 1

3Λa ; ȧ2 = 8πG	0

3a2
− c2

�2
+ 1

3Λa2 .

In the early Universe, a 	 1 and so the terms associated with the cosmological
constant and the space curvature become negligible. Therefore,

ä = −8πGε0

3c2

1

a3
; ȧ2 = 8πGε0

3c2

1

a2
. (9.6)

Integrating

a =
(

32πGε0

3c2

)1/4

t1/2 or ε = ε0a−4 =
(

3c2

32πG

)
t−2 . (9.7)

Thus, the dynamics of the radiation-dominated models, a ∝ t1/2, depend only
upon the total inertial mass density in relativistic and massless forms. Therefore, to
determine the dynamics of the early Universe, we have to include in all the massless
and relativistic components into the total energy density, ε0 or 	0. The force of
gravity acting upon the sum of these determines the rate of deceleration of the early
Universe.

9.2 The Matter and Radiation Content of the Universe

A schematic representation of the intensity Iν of the extragalactic background radi-
ation from radio to γ -ray wavelengths is shown in Fig. 9.1a (Longair and Sunyaev,
1971). This is a rather old picture, but I still like it since it gives a good repre-
sentation of the intensity of the background radiation in those regions in which it
has been measured (solid lines) and those regions in which only upper limits to the
extragalactic background had been made (dashed lines).
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Fig. 9.1. a The spectrum of the extragalactic background radiation as it was known in 1969
(Longair and Sunyaev, 1971). This figure still provides a good indication of the overall
spectral energy distribution of the background radiation. The solid lines indicate regions of
the spectrum in which extragalactic background radiation had been detected. The dashed lines
were theoretical estimates of the background intensity due to discrete sources and should not
be taken too seriously. b The spectrum of the extragalactic background radiation plotted as
I = νIν = λIλ (Hauser and Dwek, 2001). The acronyms used in this diagram stand for: CRB
= cosmic radio background; CMB = cosmic microwave background; CIB = cosmic infrared
background; CUVOB = cosmic ultraviolet and optical background; CXB = cosmic X-ray
background; CGB = cosmic γ -ray background
�

Figure 9.1a has the virtue of representing the spectral shape of the background
over an enormous range of energies, but, since it is presented in units per unit
frequency interval, it does not provide a good representation of the energy density of
radiation in each waveband. To obtain the integrated intensity, we need I = ∫

Iν dν.
For rough estimates, this is often approximated by I ∼ νIν. A version of this form of
presentation is shown in Fig. 9.1b which enables the main contributors to the energy
density of the extragalactic background radiation to be identified (Hauser and Dwek,
2001) .

I surveyed the background radiation in all wavebands in 1995 and refer the
interested reader to that review (Longair, 1995). Since that time, new estimates of
the ultraviolet, optical and infrared background have become available and these are
shown in Fig. 9.2, which is presented in the same units as in Fig. 9.1b. The filled
symbols show upper limits to the background radiation. The open symbols show
the background intensity due to galaxies which are observed in very deep surveys
in these wavebands The solid and dashed lines show estimates of the background
intensity from analyses of the spectra of ultrahigh energy γ -ray sources in which
the effects of γγ absorption attenuates the high energy spectrum (Aharonian et al.,
2006)

In summary, diffuse background radiation of cosmological origin has been de-
tected in the radio, centimetre, millimetre, far-infrared, X- and γ -ray wavebands.
Background radiation in the ultraviolet, optical and near-infrared wavebands has not
been detected with certainty, but is now strongly constrained by the observational
upper limits and the number counts of faint galaxies shown in Fig. 9.2.

It is useful to have estimates of the typical energy densities and number densities
of the photons in each waveband and these are summarised in Table 9.1. It must
be emphasised that these are very rough estimates and, for precise calculations,
integrations should to be taken over the appropriate regions of the spectrum.

To anticipate the discussion of Chap. 17, the bulk of the diffuse extragalactic
background in the radio, far-infrared, infrared, optical, ultraviolet, X-ray and γ -
ray waveband is due to the integrated emission of discrete sources (Longair, 1995;
Hauser and Dwek, 2001). The one exception is the Cosmic Microwave Background
Radiation which cannot be associated with discrete sources and is convincingly
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Fig. 9.2. The spectrum of the extragalactic background radiation plotted as I = νIν = λIλ
in the ultraviolet, optical and infrared wavebands. The filled symbols show upper limits to
the background radiation. The open symbols show the background due to known types of
sources. The solid lines show the range of limits to the background intensity from analysis of
the spectra of ultrahigh energy γ -ray sources in which the effects of γγ absorption attenuates
the high energy spectrum (Aharonian et al., 2006). The dashed line with the thicker solid line
shows the best estimate of the upper limit to the background intensity

identified with the cooled remnant of the hot early phases of the Big Bang, as we
will show.

It can be seen from Fig. 9.1b and Table 9.1 that the Cosmic Microwave Back-
ground Radiation provides by far the largest contribution to the energy density of
radiation in intergalactic space. Adopting a radiation temperature of 2.728 K, the
energy density of radiation is 2.616 × 105 eV m−3. Comparing the inertial mass
density in the radiation and the matter, we find

	r

	m
= 4σT 4(z)

Ω0	c(1 + z)3c3
= 2.48 × 10−5(1 + z)

Ω0h2
. (9.8)

Thus, at redshifts z ≥ 4×104Ω0h2, the Universe was certainly radiation-dominated,
even before we take account of the contribution of the three types of neutrino to
the inertial mass density. During the radiation-dominated phase, the dynamics are
described by the relation, a ∝ t1/2. Adopting the reference values h = 0.7,Ω0 = 0.3,
the transition to the radiation-dominated era would take place at redshift z ≈ 6000. At
redshifts less than this value, the Universe was matter-dominated and the dynamics
were described by the standard Friedman models, a ∝ t2/3 provided Ω0z � 1. We
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Table 9.1. The energy densities and photon number densities of the extragalactic background
radiation in different regions of electromagnetic spectrum. These estimates are based on the
data provided by Hauser and Dwek (Hauser and Dwek, 2001). Note that these are generally
rough estimates which are intended only to be used for making order of magnitude calculations

Waveband Energy density Number density
of radiation (eV m−3) of photons (m−3)

Radio (300 MHz) 10−2 ∼ 104

Cosmic Microwave Background 2.6 × 105 4 × 108

Infrared (140–1000 μm) 4 × 103 3 × 105

UV-optical-near IR (0.16–3.5 μm) ∼ 104 ∼ 104

X-ray (∼ 10 keV) 20 3 × 10−3

γ -ray (∼ 1 MeV) 10 ∼ 10−5

γ -ray (≥ 10 MeV) 0.5 ∼ 3 × 10−8

will provide a more precise estimate of the epoch at which the inertial mass densities
in the massless particles and non-relativistic matter were equal in Sect. 10.5.

The present photon-to-baryon number ratio is another key cosmological pa-
rameter. The number density of photons associated with the Cosmic Microwave
Background Radiation is

N = 0.244

(
2πkT

hc

)3

= 4.13 × 108 m−3 , (9.9)

assuming T = 2.728 K. Therefore, the photon-to-baryon number ratio is

Nγ

NB
= 3.7 × 107

ΩBh2
. (9.10)

Adopting the reference values ΩB = 0.05, h = 0.7, we find Nγ /NB = 1.5 × 109.
Thus, the number density of photons is overwhelmingly greater than that of baryons
at the present epoch. If photons were neither created nor destroyed during the
expansion of the Universe, this number is an invariant. This ratio is also proportional
to the specific entropy per baryon during the radiation-dominated phases of the
expansion (see Sect. 10.5).

The resulting thermal history of the Universe is summarised in Fig. 9.3. Certain
epochs are of special significance for structure formation and we now deal with some
of these in more detail.

9.3 The Epoch of Recombination

At redshifts z ≈ 1500, the radiation temperature of the Cosmic Microwave Back-
ground Radiation was T ≈ 4000 K and then there were sufficient photons with
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Fig. 9.3. The thermal history of the Cosmic Microwave Background Radiation according to
the standard Big Bang picture. The radiation temperature decreases as Tr ∝ a−1 except for
small discontinuities as different particle–antiparticle pairs annihilate at kT ≈ mc2. Various
important epochs in the standard picture are indicated, including the neutrino and photon
barriers. In the standard model, the Universe is optically thick to neutrinos and photons prior
to these epochs. An approximate time-scale is indicated along the top of the diagram

energies hν ≥ 13.6 eV in the high energy region of the Planck distribution to ionise
all the neutral hydrogen present in the intergalactic medium. We will often refer to
the region of the Planck spectrum with photon energies E = hν � kT as the Wien
region It may at first appear strange that the temperature is not closer to 150,000 K,
the temperature at which 〈hν〉 = kT = 13.6 eV, the ionisation potential of neu-
tral hydrogen. The important points to note are that the photons far outnumber the
baryons in the intergalactic medium and that there is a broad range of photon energies
present in the Planck distribution.

It is a useful calculation to work out the fraction of photons in the Wien region
of the Planck distribution with energies hν ≥ E in the limit hν � kT . Their number
density is

n(≥ E) =
∫ ∞

E/h

8πν2

c3

dν

ehν/kT
= 1

π2

(
2πkT

hc

)3

e−x(x2 + 2x + 2) , (9.11)
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where x = hν/kT . Now, the total number density of photons in a black-body
spectrum at temperature T is

N = 0.244

(
2πkT

hc

)3

m−3 . (9.12)

Therefore, the fraction of the photons of the black-body spectrum with energies
greater than E is

n(≥ E)

nph
= e−x(x2 + 2x + 2)

0.244π2
. (9.13)

Roughly speaking, the intergalactic gas will be ionised if there are as many ionising
photons with hν ≥ 13.6 eV as there are hydrogen atoms, that is, we need only
one photon in 3.6 × 107/ΩBh2 ∼ 109 of the photons of the Cosmic Microwave
Background Radiation to have energy greater than 13.6 eV to ionise the gas. For
illustrative purposes, let us take the ratio to be one part in 109 Then, to find x, we
need to solve

1

109
= e−x(x2 + 2x + 2)

0.244π2
. (9.14)

The solution is x = E/kT ≈ 26.5. This is a very important result. There are so
many photons relative to hydrogen atoms that the temperature of the radiation can
be 26.5 times less than that found by setting E = kT and there are still sufficient
photons with energy E ≥ 13.6 eV to ionise the gas. Therefore, the intergalactic gas
was largely ionised at a temperature T ∼ 150,000/26.5 = 5600 K. Since the present
temperature of the Cosmic Microwave Background Radiation is 2.728 K, this means
that the Universe became ionised at a scale factor a ∼ 2.728/5600 = 5 × 10−4 or at
a redshift z ∼ 2000.

It is interesting to note that this type of calculation appears in a number of
different guises in astrophysics. For example, the nuclear reactions which power the
Sun take place at a much lower temperature than expected, the temperature at which
regions of ionised hydrogen become fully ionised is only about 10,000 K and light
nuclei are destroyed in the early Universe at much lower temperatures than would
be expected. In all these cases, the Wien region of the Planck and the high energy
tail of the Maxwell distributions contain large numbers of photons and particles
respectively with energies very much greater than the mean.

Detailed calculations show that the pre-galactic gas was 50% ionised at a redshift
zr ≈ 1500 and this epoch is referred to as the epoch of recombination, since the
pre-galactic gas was ionised prior to this epoch. When we run the clocks forward, the
universal plasma recombined at this time. At earlier epochs, z ≈ 6000, helium was
50% ionised and rapidly became fully ionised at earlier times. The most important
consequence of these considerations is that, at redshifts greater than about 1000, the
Universe became optically thick to Thomson scattering. This is the simplest of the
scattering processes which impede the propagation of photons from their sources
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to the Earth through an ionised plasma (Longair, 1997b). The photons are scattered
without any loss of energy by free electrons. The increment of optical depth of the
intergalactic gas to Thomson scattering is

dτT = σT Ne(z) dx = σT Ne(z) c
dt

dz
dz , (9.15)

where σT is the Thomson scattering cross-section σT = 6.653 × 10−29 m2 and dx
is the increment of proper distance at redshift z. Let us evaluate this integral in the
limit of large redshifts, assuming that the Universe was matter-dominated through
the epoch of recombination. Then, from (7.64), the cosmic time–redshift relation
can be written in the limit Ω0z � 1, z � 1

dz

dt
= −H0(1 + z)

[
(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)

]1/2 = −H0Ω
1/2
0 z5/2 .

(9.16)

It is important to distinguish between the total mass density 	0 and the mass
density in baryons 	B. Assuming that 25% of the primordial material by mass is
helium (see Sect. 10.4), NH = (3/4)	B/mp and so we can write the density parameter
in baryons ΩB = 8πG	B/3H2

0 = 32πGmp NH/9H2
0 . Then, if x(z) is the fractional

ionisation of hydrogen, the number density of electrons is NHx(z)(1 + z)3 and so
the optical depth for Thomson scattering in the limit z � 1 is

τT = 9σT H0c

32πGmp

ΩB

Ω
1/2
0

∫
z3x(z)

z5/2
dz = 0.052

ΩB

Ω
1/2
0

h
∫

x(z) z1/2 dz . (9.17)

It can be seen that, as soon as the pre-galactic hydrogen was fully ionised, x(z) ≈ 1, at
z ≈ 1500, the optical depth to Thomson scattering became very large. For example,
if we assume the intergalactic gas was more or less fully ionised at z > 1, 000, the
optical depth at larger redshifts was

τT = 0.035
ΩB

Ω
1/2
0

hz3/2 . (9.18)

For our reference values ΩB = 0.05, Ω0 = 0.3 and h = 0.7, τT = 2.23 ×
10−3 z3/2 = 130 at a redshift of 1,500. Detailed calculations of the ionisation state
of the intergalactic gas with redshift are discussed in Sect. 15.1 where it is shown
that the optical depth of the intergalactic gas became unity at a redshift very close
to 1,000. Therefore, the Universe beyond a redshift of 1,000 is unobservable. Any
photons originating from larger redshifts were scattered many times before they
propagated to the Earth and consequently all the information they carry about their
origin is rapidly lost. Exactly the same process prevents us observing inside the Sun.
There is therefore a photon barrier at a redshift of 1000 beyond which we cannot
obtain information directly using photons.

We will return to the process of recombination and the variation of the optical
depth to Thomson scattering with redshift in Sect. 15.1 because this is a crucial topic
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in evaluating the observability of fluctuations in the Cosmic Microwave Background
Radiation. If there is no further scattering of the photons of the background radiation,
the redshift of 1000 becomes the last scattering surface and therefore the fluctuations
imprinted on the radiation at this epoch determine the spatial fluctuations in the
intensity of the background radiation observed today.

9.4 The Radiation-Dominated Era

At redshifts z � 4×104Ω0h2 ≈ 6000, the Universe was radiation-dominated. If the
matter and radiation were not thermally coupled, they would cool independently, the
hot gas having ratio of specific heats γ = 5/3 and the radiation γ = 4/3. These result
in adiabatic cooling which depends upon the scale factor a as TB ∝ a−2 and Tr ∝ a−1

for the diffuse baryonic matter and radiation respectively. We therefore expect the
matter to cool more rapidly than the radiation and this is indeed what is expected to
take place during the post-recombination era. This is not the case, however, during
the pre-recombination and immediate post-recombination eras because the matter
and radiation are strongly coupled by Compton scattering. As shown in the last
section, the optical depth of the pre-recombination plasma for Thomson scattering
is very large, so large that we can no longer ignore the small energy transfers which
take place between the photons and the electrons in Compton collisions. It turns
out that these Compton scatterings are sufficient to maintain the matter at the same
temperature as the radiation.

The exchange of energy between photons and electrons is an enormous subject
and has been treated by Weymann, by Sunyaev and Zeldovich and by Pozdnyakov
and his colleagues (Weymann, 1966; Sunyaev and Zeldovich, 1980a; Pozdnyakov
et al., 1983). The equation for the rate of exchange of energy between a thermal
radiation field at radiation temperature Tr and a plasma with electron temperature Te

interacting solely by Compton scattering was derived by Weymann in 1965,

dεr

dt
= −dεm

dt
= 4NeσTcεr

(
kTe − kTr

mec2

)
, (9.19)

where εr and εm are the energy densities of radiation and matter. We can understand
the form of this equation by considering the case in which the temperature of the
electrons is greater than that of the radiation. The number of collisions per electron
per second with the photon field is Nγ σTc, where Nγ is the number density of photons.
In each collision, the average energy transfer to the photon field is (4/3)

(
v2/c2

)
hν̄,

where hν̄ is the mean energy of the photons (Longair, 1997b). Since the average
energy of the electrons is 1

2 mev
2 = 3

2 kTe, the rate of loss of energy per electron is

−dE

dt
= 4σTcNγ hν̄

(
kTe

mec2

)
= 4σTcεr

(
kTe

mec2

)
. (9.20)

Equation (9.19) expresses the fact that, if the electrons are hotter than the radiation,
the radiation is heated up by the matter and, conversely, if the radiation is hotter
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than the matter, the matter is heated by the radiation. The astrophysical difference
between the two cases arises from the enormous difference in the number densities of
the photons and electrons Nγ /Ne ≈ 109. Let us look at this difference from the point
of view of the optical depths for the interaction of an electron with the radiation field
and of a photon with the electrons of the intergalactic gas. In the first case, the optical
depth for interaction of an electron with the radiation field is τe = σTcNγ t, whereas
that of the photon with the electrons is τγ = σTcNet where σT is the Thomson
cross-section and t is the age of the Universe. Thus, because Nγ � Ne, it is much
more difficult to modify the spectrum of the photons as compared with the energy
distribution of the electrons because, in the time any one photon is scattered by an
electron, the electron has been scattered ≈ 109 times by the photons. Another way
of expressing this is to say that the heat capacity of the radiation is very much greater
than that of the matter.

We consider two important applications of these results. In the first, we consider
the heating of the electrons by Compton scattering of the photons of the Microwave
Background Radiation. The collision times between electrons, protons and atoms
are always much shorter than the age of the Universe and hence, when energy is
transferred from the radiation field to the electrons, it is rapidly communicated to
the matter as a whole. This is the process by which the matter and radiation are
maintained at the same temperature in the early Universe. Let us work out the
redshift to which Compton scattering can maintain the matter and radiation at the
same temperature.

We rewrite (9.19) for the case in which the plasma is heated by the radiation field.
The thermal energy density of the plasma is εm = 3NekTe, since both the electrons
and protons are maintained at the same temperature, and then

dTe

dt
= 4

3σTεr

(
Tr − Te

mec

)
. (9.21)

As pointed out above, because of the enormous heat capacity of the radiation,
Tr scarcely changes at all and so (9.21) defines the characteristic exponential time-
scale τex for the exchange of energy between the radiation and the plasma. Assuming
z � 1,

τex = Te

dTe/dt
= 3mec

4σTεr
= 3mec2

16σTσT 4
0

(1 + z)−4 = 7.4 × 1019z−4 s . (9.22)

Thus, when the plasma was fully ionised at z � 1000, the time-scale τex was
7.4 × 107 s = 2.7 years, that is, very much shorter than the age of the Universe and
so the matter and radiation were maintained at the same temperature throughout the
radiation-dominated era.

As the temperature fell below 4000 K, most of the protons recombined with
electrons to form neutral hydrogen, but there remained a small, but finite, fraction
of free electrons which did not recombine, x ≈ 2.5 × 10−5, at redshifts z < 700
(see Sect. 15.1). These enabled energy to be transferred from the photons to the gas
even in the post-recombination era. The energy density of the gas was predominantly
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associated with the kinetic energy of hydrogen atoms, εH = 3
2 NHkT , and the number

density of free electrons was x(z)NH. Repeating the above calculation for the post-
recombination era, the rate of change of the temperature of the neutral hydrogen
was

dTH

dt
= 8

3σTεrx(z)

(
Tr − TH

mec

)
, (9.23)

and the characteristic time-scale τex for the exchange of energy was

τex = 3mec2

32σTx(z)σT 4
r

= 3mec2

32σTx(z)σT 4
0

(1 + z)−4 = 1.47 × 1024z−4 s . (9.24)

During the matter-dominated epochs, when Ω0z � 1, the age of the Universe was

t = 2.06 × 1017

hΩ1/2
0

z−3/2 s . (9.25)

Therefore, equating (9.24) and (9.25), the time-scale τex for the exchange of energy
from the background radiation to the neutral hydrogen was equal to the age of the
Universe at a redshift

z = 550 h2/5Ω
1/5
0 ≈ 375 . (9.26)

Thus, there was a period after the epoch of recombination when the matter and
radiation cooled at the same rate but, at redshifts less than about 375, the matter
and the radiation cooled independently, the matter temperature as TH ∝ a−2 and
the radiation temperature as Tr ∝ a−1. Peebles found the decoupling redshift to be
z ∼ 150 in his more detailed calculations (Peebles, 1993).

In the second application, we derive the necessary condition for significant dis-
tortions of the spectrum of the Microwave Background Radiation to take place.
Suppose the electrons are heated to a temperature greater than the radiation temper-
ature by some process. This might result from the dissipation of primordial sound
waves or turbulence, matter–antimatter annihilation, the evaporation of primordial
black holes by the Hawking mechanism or the decay of heavy unstable leptons. If
no photons were created, the spectrum of the radiation would be distorted from its
black-body form by Compton scattering. The interaction of the hot electrons with
the photons results in an average frequency change of Δν/ν = 4kTe/mec2. Thus, to
obtain a significant change in the energy of the photon,Δν/ν ≈ 1, not only must the
optical depth for Thomson scattering be very much greater than one, there must also
be sufficient Compton scatterings to change the energies of the photons significantly
so that Δν/ν ≈ 1. Evidently, the Compton optical depth

τC =
∫ (

kTe

mec2

)
σTcNedt , (9.27)

should be greater or equal to one. We know that the Thomson scattering condition
was satisfied during the pre-recombination era and also that the temperature of the
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electrons was maintained at that of the thermal background radiation. Therefore,
assuming Te = T0(1 + z) and Ne = N0(1 + z)3, the Compton optical depth is

τC =
(

kT0

mec2

)
σTcN0

H0

∫
(1 + z)2

(Ω0z + 1)1/2
dz . (9.28)

For z � 1,

τC =
(

kT0

mec2

)
2σTcN0

5Ω1/2
0 H0

z5/2 . (9.29)

It is convenient to express this result in terms of the density parameter in baryons
at the present epoch ΩB. Assuming that 25% of the baryonic mass is in the form of
helium and that the plasma is fully ionised in the relevant range of redshifts, we find
that ΩB = (64πGmp/21H2

0 )Ne and so

τC =
(

kT0

mec

)
21σT

160πGmp

H0ΩB

Ω
1/2
0

z5/2 = 1.1 × 10−11 hΩB

Ω
1/2
0

z5/2 . (9.30)

Thus, the optical depth was unity at redshift

z = 2.4 × 104
(
Ω0

h2Ω2
B

)1/5

≈ 7 × 104 , (9.31)

for the reference values of Ω0, ΩB and h. To observe a distortion of the black-
body spectrum, the temperature of the electrons must be raised significantly above
the temperature Te = T0(1 + z). If this were to occur, the spectrum would relax
from a Planck to a Bose–Einstein spectrum with a finite dimensionless chemical
potential μ,

Iν = 2hν3

c2

[
exp

(
hν

kTr
+ μ

)
− 1

]−1

.

This is the form of equilibrium spectrum expected when there is a mismatch between
the number of photons and the energy to be distributed among them to create a Planck
spectrum. In the present instance, the photon energies are redistributed by Compton
scattering. At early enough epochs, z ∼ 107, Compton double scattering can create
additional low energy photons and so, at these very large redshifts, the black-body
spectrum is re-established. As discussed in Sect. 2.1.1, there are now very good
upper limits to the value of μ from the COBE spectral observations of the Cosmic
Microwave Background Radiation, |μ| ≤ 10−4. In general terms, this means that
there cannot have been major injections of energy into the intergalactic gas in the
redshift interval 107 ≥ z ≥ 7 × 104, thus providing important constraints on the
processes listed above (Sunyaev and Zeldovich, 1980a). These authors have also
surveyed the types of distortion which would result from large injections of thermal
energy into the intergalactic gas during the post-recombination era.
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9.5 The Speed of Sound as a Function of Cosmic Epoch

One crucial result for understanding the physics of the formation of structure in
the Universe is the variation of the speed of sound with cosmic epoch, particularly
through the epochs when the Universe changed from being radiation to matter-
dominated. All sound speeds are proportional to the square root of the ratio of
the pressure which provides the restoring force to the inertial mass density of the
medium. More precisely, the speed of sound cs is given by

c2
s =

(
∂p

∂	

)

S

, (9.32)

where the subscript S means ‘at constant entropy’, that is, we consider adiabatic
sound waves. The complication is that, from the epoch when the energy densities of
matter and radiation were equal to beyond the epoch of recombination the dominant
contributors to p and 	 change dramatically as the Universe changes from being
radiation to matter-dominated. The key point is that the baryonic matter and radiation
are closely coupled throughout the pre-recombination era and the square of the sound
speed can then be written

c2
s = (∂p/∂T)r

(∂	/∂T)r + (∂	/∂T )m
, (9.33)

where the partial derivatives are taken at constant entropy. It is straightforward to
show that this reduces to the following expression:

c2
s = c2

3

4	r

4	r + 3	m
. (9.34)

Thus, in the radiation-dominated era, z � 4 × 104Ω0h2 ≈ 6000, 	r � 	m and
the speed of sound tends to the relativistic sound speed, cs = c/

√
3. At smaller

redshifts, the sound speed decreases as the contribution of the inertial mass density
of the matter becomes more important. Specifically, between the epoch of equality
of the matter and radiation energy densities and the epoch of the recombination, the
pressure of sound waves is provided by the radiation, but the inertia is provided by the
matter. Thus, the speed of sound decreases from the relativistic value of cs = c/

√
3

to

cs =
(

4c2

9

	r

	m

)1/2

=
[

16σT 4
0 (1 + z)

9Ωm	cc

]1/2

= 106z1/2

(
Ωmh2

)1/2 = 6.3 × 106z1/2 m s−1 .

(9.35)

After recombination, the sound speed becomes the thermal sound speed of the
matter which, because of the close coupling between the matter and the radiation,
has temperature Tr = Tm at redshifts z ≥ 550 h2/5Ω

1/5
0 , as explained above. Thus, at

a redshift of 375, the temperature of the gas was 1000 K. If nothing else happened to
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the matter, we would expect it to be very cold at the present epoch, about 375 times
colder than 2.728 K. In fact, whatever intergalactic gas there is at the present day
must be very much hotter than this – it must have been heated up once the process
of galaxy formation got underway. We will take up this intriguing story in Chap. 18.

9.6 Early Epochs

Let us complete this brief thermal history of the Universe by outlining what happens
at earlier times:

– We can extrapolate back to redshifts z ≈ 3 × 108 at which the radiation tem-
perature was about T = 109 K. This temperature is sufficiently high for the
background photons to have γ -ray energies, ε = kT = 100 keV. At this high
temperature, the high energy photons in the Wien region of the Planck distribu-
tion are energetic enough to dissociate light nuclei such as helium and deuterium.
At earlier epochs, all nuclei are dissociated into protons and neutrons. When we
run the clocks forward, it is at about this epoch that the process of primordial
nucleosynthesis of the light elements takes place. This is a key topic for the
whole of cosmology and we will discuss it in some detail in Chap. 10.

– At redshift, z ≈ 109, electron–positron pair production from the thermal back-
ground radiation took place and the Universe was then flooded with electron–
positron pairs, one pair for every pair of photons present in the Universe now.
When we run the clocks forward from an early epoch, the electrons and positrons
annihilate at about this epoch and their energy is transferred to the photon field –
this accounts for the little discontinuity in the temperature history at the epoch
when the electrons and positrons were annihilated (see Sect. 10.5).

– At a slightly earlier epoch the opacity of the Universe for weak interactions
became unity (see Sect. 10.2). This results is a neutrino barrier, similar to the
photon barrier at z ∼ 1000.

– We can extrapolate even further back in time to z ≈ 1012 when the temperature
of the background radiation was sufficiently high for baryon–antibaryon pair
production to take place from the thermal background. Just as in the case of
the epoch of electron–positron pair-production, the Universe was flooded with
baryons and antibaryons, one pair for every pair of photons present in the Uni-
verse now. Again, there is a little discontinuity in the temperature history at this
epoch. These considerations lead to one of the great cosmological problems, the
baryon asymmetry problem. In order to produce the matter-dominated Universe
we live in today, there must have been a tiny asymmetry between matter and
antimatter in the very early Universe. For every 109 antibaryons, there must have
been 109 + 1 baryons. When we run the clocks forward, 109 baryons annihilate
with the 109 antibaryons, leaving one baryon which becomes the Universe as we
know it with the correct photon-to-baryon number ratio. If the early Universe
were completely symmetric with respect to matter and antimatter, the photon-to-
baryon ratio would be about 109 times greater than it is today and there would
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be equal amounts of matter and antimatter in the Universe (see Sect. 10.6). The
baryon asymmetry must originate in the very early Universe. Fortunately, we
know that there is a slight asymmetry between matter and antimatter because of
CP violation observed in the decays of K 0 mesons – the origin of the baryon
asymmetry is a major industry for theorists of the early Universe.

We can carry this process of extrapolation further and further back into the mists
of the early Universe, as far as we believe we understand high energy particle physics.
Probably most particle physicists would agree that the standard model of elementary
particles has been tried and tested to energies of at least 100 GeV and so we can
probably trust laboratory physics back to epochs as early as 10−6 s, although those of
a more conservative disposition would probably be happier to accept 10−3 s. How far
back one is prepared to extrapolate is largely a matter of taste. The most ambitious
theorists have no hesitation in extrapolating back to the very earliest Planck eras,
tP ∼ (Gh/c5)1/2 = 10−43 s, when the relevant physics was certainly very different
from the physics of the Universe from redshifts of about 1012 to the present day.
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des Raumes” (A Note on the Work of A. Friedmann “On the Curvature of Space”),
Zeitschrift für Physik, 16, 228.

Einstein, A. (1936). Lens-like action of a star by the deviation of light in the
gravitational field, Science, 84, 506–507.

Eisenstein, D.J. and Hu, W. (1998). Baryonic features in the matter transfer function,
Astrophysical Journal, 496, 605–614.



660 References

Eisenstein, D.J., Zehavi, I., Hogg, D.W., Scoccimarro, R., Blanton, M.R.,
Nichol, R.C., Scranton, R., Seo, H.-J., Tegmark, M., Zheng, Z., Anderson, S.F.,
Annis, J., Bahcall, N., Brinkmann, J., Burles, S., Castander, F.J., Connolly, A.,
Csabai, I., Doi, M., Fukugita, M., Frieman, J.A., Glazebrook, K., Gunn, J.E.,
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Halpern, M., Hill, R.S., Jarosik, N., Kogut, A., Komatsu, E., Limon, M., Ode-
gard, N., Meyer, S.S., Page, L., Peiris, H.V., Spergel, D.N., Tucker, G.S., Verde, L.,
Weiland, J.L., Wollack, E., and Wright, E.L. (2007). Three-year Wilkinson Mi-
crowave Anisotropy Probe (WMAP) observations: temperature analysis, Astro-
physical Journal Supplement, 170, 288–334.

Hinshaw, G., Spergel, D.N., Verde, L., Hill, R.S., Meyer, S.S., Barnes, C., Ben-
nett, C.L., Halpern, M., Jarosik, N., Kogut, A., Komatsu, E., Limon, M., Page, L.,
Tucker, G.S., Weiland, J.L., Wollack, E., and Wright, E.L. (2003). First-Year
Wilkinson Microwave Anisotropy Probe (WMAP) observations: the angular
power spectrum, Astrophysical Journal Supplement, 148, 135–159.

Hobson, M., Efstathiou, G., and Lasenby, A. (2006). General Relativity: An Intro-
duction for Physicists. Cambridge: Cambridge University Press.

Hoekstra, H., Yee, H.K.C., and Gladders, M.D. (2004). Properties of galaxy dark
matter halos from weak lensing, Astrophysical Journal, 606, 67–77.

Hogan, C.J. (1997). Big Bang nucleosynthesis and the observed abundances of
light elements, in Critical Dialogues in Cosmology, ed. Turok, N., pp. 50–62.
Singapore: World Scientific.

Hogg, D.W., Blanton, M.R., Brinchmann, J., Eisenstein, D.J., Schlegel, D.J.,
Gunn, J.E., McKay, T.A., Rix, H.-W., Bahcall, N.A., Brinkmann, J., and
Meiksin, A. (2004). The dependence on environment of the color-magnitude
relation of galaxies, Astrophysical Journal, 601, L29–L32.

Hogg, D.W., Eisenstein, D.J., Blanton, M.R., Bahcall, N.A., Brinkmann, J.,
Gunn, J.E., and Schneider, D.P. (2005). Cosmic homogeneity demonstrated with
luminous red galaxies, Astrophysical Journal, 624, 54–58.

Holtzman, J.A. (1998). Microwave background anisotropies and large-scale structure
in universes with cold dark matter, baryons, radiation and massive and massless
neutrinos, Astrophysical Journal Suppllement, 71, 1–24.

Hook, I.M., McMahon, R.G., Boyle, B.J., and Irwin, M.J. (1991). The variability of
a large sample of quasars, in The Space Distribution of Quasars, ed. Crampton, D.,



References 667

vol. 21, pp. 67–75. San Francisco: Astronomical Society of the Pacific Conference
Series.

Hoskin, M.A. (1976). The ‘Great Debate’: what really happened, Journal of the
History of Astronomy, 7, 169–182.

Hoyle, F. (1954). On nuclear reactions occurring in very hot stars: I. The synthesis of
elements from carbon to nickel, Astrophysical Journal Supplement, 1, 121–146.

Hoyle, F. and Tayler, R. (1964). The mystery of the cosmic helium abundance,
Nature, 203, 1108–1110.

Hoyle, F., Vogeley, M., and Gott III, J. (2002a). Two-dimensional topology of the
Two-Degree Field Galaxy Redshift Survey, Astrophysical Journal, 570, 44–53.

Hoyle, F., Vogeley, M., Gott III, J., Blanton, M., Tegmark, M., Weinberg, D., Bah-
call, N., Brinkmann, J., and York, D. (2002b). Two-dimensional topology of the
Sloan Digital Sky Survey, Astrophysical Journal, 580, 663–671.

Hu, E.M., Kim, T.-S., Cowie, L.L., Songaila, A., and Rauch, M. (1995a). The distri-
bution of column densities and B values in the Lyman-alpha forest, Astronomical
Journal, 110, 1526–1543.

Hu, W. (1996). Concepts in CMB anisotropy formation, in The Universe at High-z,
Large-Scale Structure and the Cosmic Microwave Background, eds. Martinez-
Gonzales, E. and Sanz, J.L., pp. 207–240. Berlin: Springer.

Hu, W. and Dodelson, S. (2002). Cosmic microwave background anisotropies,
Annual Review of Astronomy and Astrophysics, 40, 171–216.

Hu, W. and Okamoto, T. (2002). Mass reconstruction with cosmic microwave
background polarization, Astrophysical Journal, 574, 566–574.

Hu, W., Scott, D., Sugiyama, N., and White, M. (1995b). Effect of physical assump-
tions on the calculation of microwave background anisotropies, Physical Review
D, D52, 5498–5515.

Hu, W. and Sugiyama, N. (1995). Anisotropies in the cosmic microwave background:
an analytic approach, Astrophysical Journal, 444, 489–506.

Hu, W., Sugiyama, N., and Silk, J. (1997). The physics of microwave background
anisotropies, Nature, 386, 37–43.

Hu, W. and White, M. (1997). A CMB polarization primer, New Astronomy, 2, 323–
344.

Hubble, E.P. (1926). Extra-galactic nebulae, Astrophysical Journal, 64, 321–369.
Hubble, E.P. (1929). A relation between distance and radial velocity among extra-

galactic nebulae, Proceedings of the National Academy of Sciences, 15, 168–173.
Hubble, E.P. (1936). The Realm of the Nebulae. New Haven: Yale University Press.
Hubble, E.P. and Humason, M. (1934). The velocity–distance relation among extra-

galactic nebulae, Astrophysical Journal, 74, 43–80.
Hudson, M.J., Dekel, A., Courteau, S., Faber, S.M., and Willick, J.A. (1995). Ω

and biasing from optical galaxies versus POTENT mass, Monthly Notices of the
Royal Astronomical Society, 274, 305–316.

Huggins, W. and Miller, W.A. (1864). On the spectra of some of the nebulae; a
supplement to the paper “On the Spectra of Some Fixed Stars”, Philosophical
Transactions of the Royal Society of London, 154, 437–444.



668 References

Hulse, R.A. and Taylor, J.H. (1975). Discovery of a pulsar in a binary system,
Astrophysical Journal Letters, 195, L51–L53.

Ikeuchi, S. and Ostriker, J.P. (1986).
Evolution of the intergalactic medium – what happened during the epoch Z =
3–10?, Astrophysical Journal, 301, 522–543.

Illingworth, G. (1977). Rotation (?) in 13 elliptical galaxies, Astrophysical Journal
Letters, 218, L43–L47.

Inskip, K.J., Best, P.N., Longair, M.S., and MacKay, D.J.C. (2002). Infrared
magnitude-redshift relations for luminous radio galaxies, Monthly Notices of the
Royal Astronomical Society, 329, 277–289.

Irwin, M., McMahon, R.G., and Hazard, C. (1991). APM optical surveys for high
redshift quasars, in ASP Conf. Ser. 21: The Space Distribution of Quasars, ed.
Crampton, D., pp. 117–126.

Jakobsen, P. (1995). Ultraviolet background (theory), in The Extragalactic Back-
ground Radiation, eds. Calzetti, D., Livio, M., and Madau, P., pp. 75–101. Cam-
bridge: Cambridge University Press.

Jakobsen, P. (1996). Intergalactic helium absorption toward quasars, in Science
with the Hubble Space Telescope – II, eds. Benvenuti, P., Macchetto, F.D., and
Schreier, E.J., pp. 153–159. Paris: European Space Agency.

Jakobsen, P., Boksenberg, A., Deharveng, J.M., Greenfield, P., Jedrzejewski, R.,
and Paresce, F. (1994). Detection of intergalactic ionized helium absorption in a
high-redshift quasar, Nature, 370, 35–39.

Jeans, J. (1902). The stability of a spherical nebula, Philosophical Transactions of
the Royal Society of London, 199, 1–53.

Jones, B.J.T. (1973). Cosmic turbulence and the origin of galaxies, Astrophysical
Journal, 181, 269–294.

Jones, B.J.T. and Peebles, P.J.E. (1972). Chaos in cosmology, Comments on Astro-
physics and Space Physics, 4, 121–128.

Jones, B.J.T. and Wyse, R.F.G. (1985). The ionisation of the primeval plasma at the
time of recombination, Astronomy and Astrophysics, 149, 144–150.

Jones, W.C., Ade, P.A.R., Bock, J.J., Bond, J.R., Borrill, J., Boscaleri, A., Cabella, P.,
Contaldi, C.R., Crill, B.P., de Bernardis, P., De Gasperis, G., de Oliveira-Costa, A.,
De Troia, G., di Stefano, G., Hivon, E., Jaffe, A.H., Kisner, T.S., Lange, A.E., Mac-
Tavish, C.J., Masi, S., Mauskopf, P.D., Melchiorri, A., Montroy, T.E., Natoli, P.,
Netterfield, C.B., Pascale, E., Piacentini, F., Pogosyan, D., Polenta, G., Prunet, S.,
Ricciardi, S., Romeo, G., Ruhl, J.E., Santini, P., Tegmark, M., Veneziani, M., and
Vittorio, N. (2006). A measurement of the angular power spectrum of the CMB
temperature anisotropy from the 2003 flight of BOOMERANG, Astrophysical
Journal, 647, 823–832.

Kaastra, J.S., Tamura, T., Peterson, J.R., Bleeker, J.A.M., Ferrigno, C., Kahn, S.M.,
Paerels, F.B.S., Piffaretti, R., Branduardi-Raymont, G., and Böhringer, H. (2004).
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The X-ray luminosity-velocity dispersion relation in the REFLEX Cluster Survey,
Monthly Notices of the Royal Astronomical Society, 348, 325–332.

Osmer, P.S. (1982). Evidence for a decrease in the space density of quasars at z
more Than about 3.5, Astrophysical Journal, 253, 28–37.

Ostriker, J.P. and Cowie, L. (1981). Galaxy formation in an intergalactic medium
dominated by explosions, Astrophysical Journal, 243, L127–L131.

Ostriker, J.P. and Ikeuchi, S. (1983). Physical properties of the intergalactic medium
and the Lyman-alpha absorbing clouds, Astrophysical Journal Letters, 268, L63–
L68.

Ostriker, J.P. and Peebles, P.J.E. (1973). A numerical study of the stability of flattened
galaxies: or, can cold galaxies survive?, Astrophysical Journal, 186, 467–480.

Oswalt, T.D., Smith, J.A., Wood, M.A., and Hintzen, P. (1996). A lower limit of
9.5 Gyr on the age of the galactic disk from the oldest white dwarf stars, Nature,
382, 692–694.



References 679

Ouchi, M., Shimasaku, K., Okamura, S., Furusawa, H., Kashikawa, N., Ota, K.,
Doi, M., Hamabe, M., Kimura, M., Komiyama, Y., Miyazaki, M., Miyazaki, S.,
Nakata, F., Sekiguchi, M., Yagi, M., and Yasuda, N. (2004). Subaru Deep Survey:
V. A census of Lyman break galaxies at z ∼ 4 and 5 in the Subaru Deep Fields:
photometric properties, Astrophysical Journal, 611, 660–684.

Paciesas, W.S., Meegan, C.A., Pendleton, G.N., Briggs, M.S., Kouveliotou, C.,
Koshut, T.M., Lestrade, J.P., McCollough, M.L., Brainerd, J.J., Hakkila, J.,
Henze, W., Preece, R.D., Connaughton, V., Kippen, R.M., Mallozzi, R.S., Fish-
man, G.J., Richardson, G.A., and Sahi, M. (1999). The 4th BATSE Gamma-Ray
Burst Catalog (revised), Astrophysical Journal Supplement Series, 122, 465–495.

Padmanabhan, T. (1993). Structure Formation in the Universe. Cambridge: Cam-
bridge University Press.

Padmanabhan, T. (1996). Cosmology and Astrophysics through Problems. Cam-
bridge: Cambridge University Press. See pp. 437–440.

Padmanabhan, T. (1997). Nonlinear gravitational clustering in the expanding Uni-
verse, in Gravitation and Cosmology: Proc. ICGC-95 Conference, Pune, eds.
Dhurandhar, S. and Padmanabhan, T., pp. 37–52. Dordrecht: Kluwer Academic
Publishers.

Page, L. (1997). Review of observations of the cosmic microwave background, in
Critical Dialogues in Cosmology, ed. Turok, N., pp. 343–362. Singapore: World
Scientific.

Page, L., Hinshaw, G., Komatsu, E., Nolta, M.R., Spergel, D.N., Bennett, C.L.,
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Steidel, Charles 590

Steigman, Gary 140, 294, 296, 298–301
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Storrie-Lombardi, Lisa 601
Subramanian, Kandaswamy 422
Sugiyama, Naoshi 415, 422, 426, 443,

445, 448
Sullivan, Woodruff 514
Sunyaev, Rashid XI, XII, 17, 18, 21, 28,

29, 125, 281, 360, 365, 392, 423, 443,
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Abell 1413 117, 118
Abell 1656 see Coma cluster of galaxies
Abell 2199 109, 110
Abell 2218 96, 130, 131, 136
Abell Catalogues of rich clusters of

galaxies 96–98
comparison with clusters selected from

the Sloan Digital Sky Survey 98–99
complete statistical sample 97
selection criteria for inclusion in 96

compactness criterion 97
distance criterion 97
richness criterion and richness classes

96, 97
space density of clusters in 98

Abell clusters and the large-scale
distribution of galaxies 99–100

superclustering of galaxies about 100
absolute luminosities of galaxies 77
absorption history of the Universe 604
abundances of elements in Lyman-α

absorption systems 598–604
absorption, or scattering, cross-sections

and 600
advantages of determining zinc abundance

601, 602, 606
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and 601
depletion of heavy elements and 601
in redshift interval 0.3 ≤ z ≤ 3.5 601

density parameter ΩHI(z) for neutral
hydrogen 601, 606

corrected for dust extinction and
systems with low column densities
601

density parameter Ωx(z) for species x and
600, 601

determination of average 598
global metallicity ratios and 600
iron abundance in redshift interval

1.7 ≤ z ≤ 4.6 603
uniformity of relative 604
variation of neutral hydrogen abundance

with redshift 602
Acbar experiment 435
acoustic oscillations in galaxy power

spectrum 362, 410–415
Sloan Digital Sky Survey (SDSS)

412–415
first peak and 414

2dF galaxy redshift survey 412–413
cosmological parameters from 413
first and second peaks and 412

acoustic oscillations in the power spectrum
of the cosmic microwave background
radiation

as forced oscillations 446
estimation of cosmological parameters

and 449
acoustic oscillations in the power

spectrum of the cosmic microwave
background radiation 428–430,
436, 443–449

adiabatic temperature oscillations of
446, 447

amplitudes of 444
as forced oscillations 445, 446



702 Index

‘dipole’ contributions to 447, 448, 455,
456, 459
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446, 447

effective temperature perturbation of
447

estimation of cosmological parameters
and 444, 449

even and odd harmonics of 444
first maximum of 427, 443, 444, 449
gravitational redshifting of 447
isocurvature modes and 447
‘monopole’ contributions to 447, 448,

456, 459
relation to adiabatic density perturbations

445
temperature excursions of 448
wavenumbers of maxima of 444

active galactic nuclei 51
ratio of black hole to spheroid masses

610, 617
Type 1 528
unobscured 528

active gravitational mass density 201
adiabatic baryonic perturbations in

the standard Big Bang 350–357,
361–363

as a ‘top-down’ process 363
‘burning of pancakes’ 363
formation of ‘pancakes’ 363
matter-dominated era 353–355
radiation-dominated era 352

adiabatic damping of neutrino velocities
377

adiabatic damping of the sound waves 354
adiabatic expansion of a photon gas 272,

281
adiabatic expansion of a thermal gas 281
adiabatic hot dark matter 396
adiabatic model of structure formation 18
adiabatic sound speed 316
Advanced Camera for Surveys (ACS) 136,

138, 538, 592
age of the Earth 251
age of the Universe T0 13, 16, 242

globular clusters and 250, 251
nucleocosmochronology and 252
white dwarf cooling ages and 251

alignment effect in radio galaxies 254, 256

shock-excitation and 255
Andromeda Nebula 8
Anglo-Australian Telescope 2dF Survey

22, 519
angular diameter distance 130, 157, 264
angular diameter distances between any

two redshifts 228–230
gravitational lens formulae and 229
models with ΩΛ = 0 228–229
models with ΩΛ �= 0 230
reciprocity theorem 229

angular two-point correlation function
34–36, 386

for extragalactic radio sources 42
Antennae galaxies 57–60, 614
anthropic cosmological principle 624–626

existence of sentient beings and 625
strong form of 625

APM galaxy survey 33–36
APM survey of clusters of galaxies 95
Arecibo radio telescope 192
Ariel-V satellite 115, 524
ASCA Large Sky Survey 525
Astro-2 mission 565, 566
astroparticle physics 145
Atacama Large Millimetre Array (ALMA)

598
Atlas of Peculiar Galaxies (Arp) 56
Auger cosmic ray air-shower array 625
autocorrelation function 432, 433

Baade–Wesselink method 261
background radiation 510–513

discrete source contribution to 510–512
effects of evolution 512–513

‘luminosity evolution’ 513
integrated emission of galaxies and 587
Lyman-α emission of the intergalactic gas

562
origin of, in standard world models 512
radio emission at long radio wavelengths

513
source counts and 510
starburst galaxies and 589

independence of cosmological model
589

submillimetre and far-infrared 597
COBE observations of 587
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598
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metal formation and 587

ultraviolet
decrease at large redshifts 595, 596
decrease in intensity from z = 1 to

present epoch 596
from the proximity effect 568–569
from the proximity effect at small

redshifts 568
global star formation rate and 595
integrated emission of quasars and

569
integrated emission of star-forming

galaxies at large redshifts 569
neutral hydrogen in the peripheries of

galaxies and 568
ultraviolet, optical and near-infrared

586
effects of dust 587
from spectra of ultra-high-energy γ -ray

sources 587
baising

antibiasing 402
galactic explosions and 402

Balloon Observations Of Millimetric
Extragalactic Radiation ANisotropy
and Geophysics (Boomerang) 456

bar instability in differentially rotating discs
69

barred spiral galaxies 51, 54
baryogenesis 641–642

baryon number violation of primordial
X, X bosons 642

baryon-asymmetry problem 641
Sakharov’s rules 641

baryon number violation 641
C and CP violation 641
non-equilibrium conditions 641

unification of quarks and leptons and
642

baryon asymmetry problem 23, 286, 307,
622

baryon number violation
generic feature of grand unified theories

641
baryon perturbations in cold dark matter

models 409–410

baryon–antibaryon pair production 23,
622

baryonic theories of galaxy formation
360–364, 383

what went wrong 364–365
Bautz–Morgan classification of clusters of

galaxies 109, 110
Bautz–Morgan effect 253, 254, 544
Bayesian statistical techniques 463
Bell Telephone Laboratories 27
bending of light rays 179–181

by ‘negative mass’ in inhomogeneous
Universe 232, 233

dependence upon the gravitational
potential 181

Beppo-SAX satellite 498
bias parameter 137

gravitational lensing and 138
biasing 21, 401–405

bias parameter 269, 403, 404, 407, 417
bispectrum of galaxy distribution and

403
dependence of luminosity and spectral

type 404, 405
for different classes of galaxy 405
two-point correlation function for

galaxies and 403, 405
Gaussian fluctuations and 402
hot gas in voids 402
mechanisms for 402
non-linear bias parameter 403

Biermann battery 579, 581
Big Bang model of the Universe, history

of 14–16
big crunch 205, 338
big problems of cosmology 466, 621–624
BIMA Millimetre Array 126, 127, 249
black holes 140, 586

formation in early Universe 392
supermassive 140, 471, 488, 492

epoch of maximum quasar activity
517

non-thermal radiation processes and
492

ratio of mass to spheroid mass 488
Bohr’s theory of the hydrogen atom 623
Boltzmann equation 368, 377, 395, 409,

411, 422, 440, 448, 614
Boomerang experiment 435
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Bose–Einstein spectrum 29, 284
Boulby Underground Laboratory 146
bremsstrahlung 95, 115, 128, 248, 547,

561
bolometric luminosity of 119
cooling rate 121, 479
emissivity of 128
spectral emissivity of 115
spectrum of 116, 128, 248
thermal 561

brightest galaxies in clusters 44, 45
brightest members of rich clusters of

galaxies
absolute magnitudes of 109

brown dwarfs 139–141
Butcher–Oemler effect 253, 543–544

changing fractions of galaxy types with
redshift and 543

passive evolution of spheroidal galaxies
and 543

selection criteria and 543

C and CP violation
in decay of neutral K0 and K̄0 mesons

641
Calán-Tololo supernova project 164–166
CalTech Submillimetre Observatory 126
CAMB computer code 422, 430, 440
Cambridge 4C survey 506
Cambridge APM galaxy survey 269, 386
Canada-France Redshift Survey 590
Cartesian coordinates 155
Cartwheel galaxy 56, 58
Cassini spacecraft 191, 192
CBI experiment 435
cD clusters of galaxies 102–103
cD galaxies 51, 82, 96, 102, 103, 109

in small groups 103
central bulge of lenticular galaxies 53
central bulge of spiral galaxies 51
central limit theorem 487, 505, 508
Cepheid variables 7, 246, 247

period–luminosity relation for 7, 8, 246
CfA galaxy survey 38, 39, 41, 400, 401,

406
ChaMP study 525
Chandra Deep Fields 525
Chandra X-ray Observatory 116, 124,

125, 249, 491, 525

chemical potential 284
Chwolson ring 129
Cl 0024+1654 235
classification of galaxies 59
cluster Cl 0024+1654 136, 137
clusters of galaxies 37, 42, 43, 95–146

Butcher-Oemler effect 543–544
central mass density of 107
core radius 103, 105
counts of X-ray clusters 529–532
distribution of galaxies in 101–110

galaxy content and spatial distribution
of galaxies in 101–103

dynamical estimates of masses of
110–114

gravitational lensing by see gravita-
tional lensing by galaxies and clusters
of galaxies

hot gas in see hot gas in clusters of
galaxies

isothermal gas spheres and see
isothermal gas spheres, 103–108

large-scale distribution of 95–100
luminosity function for galaxies in

108–110
mass–luminosity ratios of 99, 117
on a temperature-number density diagram

481
segregation by galaxy type 102
segregation by mass 103
summary of properties of 109–110
Sunyaev–Zeldovich effect in hot intra-

cluster gas see Sunyaev–Zeldovich
effect in hot intracluster gas

two-point correlation functions for 100,
101, 387, 402

velocity dispersions of 99
CMBfast computer code 422, 425, 430,

440
cold dark matter 19–21, 359, 374, 375,

381, 382, 398, 441, 464, 476, 615
perturbations in 367, 374, 376, 380,

382, 396, 437, 557
WIMPs and 375

cold dark matter model of galaxy
formation 20, 21, 349, 380–383,
393–395, 399, 401–403, 409–412,
414, 415, 418, 428, 482, 487, 489

adiabatic 395, 396, 399, 412
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as a ‘bottom-up’ picture for structure
formation 382

broken-scale-invariant 419
concerns about 415
hierarchical clustering in 382
isocurvature 396, 398, 400
mixed hot and 418
open 400, 401, 410, 413, 416–418
standard 401, 409, 415–418, 530, 532,

559, 572, 573
tilted 419
with decaying neutrinos 416–418
with finite cosmological constant

416–418, 572, 613
collisions between galaxies 478, 544, 613
Coma cluster of galaxies 42, 64, 102,

109–114, 547
core radius of 108
mass of 111
mass–luminosity ratio of 111, 113, 267
Sunyaev–Zeldovich effect in 450
X-ray image of 114

comoving angular diameter distance 161
comoving luminosity density 589
comoving radial distance coordinate

159, 160, 161, 168, 170, 172, 203,
218, 219, 221, 226, 228, 232, 243,
244, 316, 336, 339, 341, 342, 424,
425, 494, 501, 507, 511, 631–633

definition of 164
comoving volume 171

variation with redshift 495
Compton double scattering 284
Compton Gamma-ray Observatory

BATSE instrument 498
Compton optical depth of hot diffuse

intergalactic gas 561
Compton scattering 17, 28, 29, 125, 248,

281–284, 301, 352, 357, 359, 561
exchange of energy between photons and

electrons by 281–284
induced 17
inverse 492

Compton scattering in post-recombination
Universe 282, 284

Compton scattering in radiation-dominated
Universe 281–284

Compton scattering optical depth 29, 125,
283, 284

computer simulations
galaxy formation and 472
hydrodynamic, of intergalactic gas 557,

571–574
at redshift z = 2 573
cold dark matter models and 572
feedback processes and 572
predicted column density distribution

of Lyman-α absorption clouds 572,
615

predicted structures of neutral hydrogen
clouds and 572, 615

Single Particle Hydrodynamics 572
star formation and 572
supernova explosions and 572

hydrodynamical simulations of galaxy
collisions 616

large-scale structure and 400, 474, 477,
484, 486, 487, 489, 530

excess of dwarf satellites 486
Press–Schechter mass function 487,

488
large-scale structure formation 613
origin and evolution of cosmic structures

and 614
origin of intracluster magnetic fields by

turbulence 580
predicted spin parameter λ 611
reionisation era 574, 575
semi-analytic models of galaxy formation

583
concentration index C 91, 92
concordance ΛCDM world model 22, 37,

42, 241, 424, 560, 621, 623, 625
conformal diagram 631

including inflation 632
passing through and re-entering the

Hubble sphere 633
conformal Newtonian gauge 348, 349,

445
conformal time 317, 340, 342, 344,

346–348, 445, 458, 631–634, 637
extension to negative values before end of

inflationary era 631
confusion 505
confusion-limited survey 505

systematic overestimation of flux densities
in 505

convergence κ 460
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cooling rate of astrophysical plasma 479,
480

cooling time of astrophysical plasma 479,
481, 486

Copernicus satellite 297
core radius of brightness distribution 61
correlation functions and the spectrum of

the initial fluctuations 385–419
acoustic peaks in the power spectrum of

galaxies 411–415
2dF galaxy redshift survey 412–413
Sloan digital sky survey 412–415

biasing 401–405
evolution of the initial perturbation

spectrum – transfer functions
393–401

adiabatic cold dark matter 393–396
adiabatic hot dark matter 396
isocurvature cold dark matter 396–399
subsequent evolution 399–401

power spectrum
origin of maximum of 415

reconstructing the processed initial power
spectrum 405–410

non-linear development of the density
fluctuations 407–409

redshift biases 406–407
role of baryon perturbations 409–410

the perturbation spectrum 388–392
Harrison–Zeldovich power spectrum

391–392
initial power spectrum 390–391
relation between ξ(r) and the power

spectrum of the fluctuations
388–390

two-point correlation function for galaxies
385–388

variation on a theme of cold dark matter
415

correlation functions for galaxies 363, 405
correlation lengths 404
higher order 386
three-point correlation function 403

Cosmic Anisotropy Polarization Mapper
(CAPMAP) 456

Cosmic Background Explorer (COBE) 15,
21, 27–33, 284, 415, 416, 419, 421,
429, 432, 434, 437, 440, 442, 507,
561, 587

Cosmic Background Imager (CBI) 456
The Cosmic Century: A History of Astro-

physics and Cosmology (Longair) 3,
149, 193, 434, 514

cosmic chemical evolution, equations of
604–607

closed box model 605, 606
conservation of mass 605
infall of material from intergalactic

medium 604–607
inflow model 606
instantaneous recycling approximation

605
loss of heavy elements due to star

formation 605
outflow due to supernova explosions

606
outflow model 606
outflow of processed material 604–607
rate of change of mass of heavy elements

605
rate of infall or outflow Ω̇f 605
rate of star formation 605
role of dust 604, 606
yield y 605

Cosmic Lens All Sky Survey (CLASS)
266

cosmic microwave background radiation
15, 16, 18, 22, 27–33, 241, 275, 467,
624

dipole component of 30, 31
discovery of 17, 362
distortions from a perfect black-body

spectrum 283–284
causes of 283

distortions from a perfect black-body
spectrum 28, 29

energy density of 276
epoch of recombination and 277, 279
estimation of cosmological parameters

from 250, 252, 259, 269, 270, 300
fluctuations in the see fluctuations in

the cosmic microwave background
radiation

horizon problem and 621
isotropy of 29–33, 41, 42, 149, 150,

337
last scattering surface of 325, 631
neutrinos and 369
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number density of photons in 277, 423
polarisation of see polarisation of

the cosmic microwave background
radiation

prediction of 14
specific entropy per baryon of 277
spectrum of 28–29
Sunyaev–Zeldovich distortions of 125,

126, 561
temperature fluctuations in the see

fluctuations in the cosmic microwave
background radiation

temperature of 143, 356, 371, 416, 576
observations of the variation with

redshift 272, 273
variation with redshift 272

temperature of at epoch of recombination
279

thermal history of 278
cosmic star-formation rate

advantages of submillimetre waveband
597

cosmic abundances of the elements and
598–607

maximum at redshifts z ∼ 1–2 610
optical-UV determinations of 606
problem of dust extinction 596, 598
problems with the simple models 606
submillimetre determinations of

596–598, 606
as a function of redshift 598, 599

cosmic time 150, 158–160, 161, 163, 207,
217, 231, 237–239, 252, 317, 339,
344, 438, 445

cosmic variance 434–436, 467
cosmic virial theorem 268, 329
Cosmical Magnetism (ed. Lynden–Bell)

577
cosmological constant Λ 13, 21, 202, 208,

212, 214, 215, 242, 265, 267, 273,
336, 344, 414–418, 425, 630

‘repulsive force of a vacuum’ and 208,
209

dark energy and 23, 24, 207, 208, 210,
626

evidence for finite value of 257
history of 12, 13, 24, 188, 199, 207, 623
zero-point fluctuations of vacuum and

626

Cosmological Constants (Bernstein and
Feinberg) 202

Cosmological Inflation and Large-Scale
Structure (Liddle and Lyth) 313,
629

cosmological parameters, determination
of 241–270, 463–465

ΩΛ and the statistics of gravitational
lenses 263–267

age of the Universe T0 see age of the
Universe T0, 250–252

angular diameter–redshift test 261–263
deceleration parameter q0 see

deceleration parameter q0, 252–263
density parameter Ω0 267–270
Hubble’s constant H0 see Hubble’s

constant, 246–250
number counts of galaxies 259–261

infrared H waveband 260
problems of using to determine q0

259, 260
parameters to be determined 463–465
relative lensing probabilitiesΩΛ and the

statistics of gravitational lenses
relative lensing probabilities 265

see density parameter Ω0 267
testing the Friedman models 242–245
the parameters and relations between

them 241–242
three-year WMAP data and 463–465

Cosmological Physics (Peacock) 209, 313
cosmological principle 149–150, 158,

199, 204, 237, 238, 625
Cosmology Calculator of Dr. Edward Wright

425
COSMOS survey of clusters of galaxies

95
counts of γ -ray bursts 498
counts of active galaxies

evolution in infrared waveband 536
counts of extragalactic radio sources 498,

508, 514–516
excess of faint radio sources 514

evidence for strong cosmological
evolution 514

counts of far-infrared and submillimetre
sources 597

counts of galaxies 537–543
advantages of infrared K waveband 538
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evidence for homogeneity of Universe
493

excess of faint blue galaxies 47, 261,
540

and starburst galaxies 542, 543
nature of 540–543

fluctuations in, due to large-scale
clustering 538–541

for irregular/peculiar/merger systems
542

for spheroidal and spiral galaxies 540,
542

Hubble’s 494
in infrared K band 540
in infrared K waveband 542
in U, B, R, I and K wavebands 541
problems of determining 537–538

counts of galaxies and active galaxies,
predicted 492–507

at submillimetre wavelengths 500–501,
534

normalised differential counts 501,
503

Euclidean 493
differential 493
integral 493

for standard world models 494–500
comparison with Euclidean counts

495
for bolometric luminosities and flux

densities 495
for sources with power-law spectra

495–496
normalised, differential 495–496
optical counts for galaxies 498–500
slopes of integral and differential 496,

498
models with finite ΩΛ 501–504

counts of infrared and submillimetre
sources 532–537

convergence of, at mid-infrared
wavelengths 537

far-infrared wavelengths 533, 534
IRAS galaxies 532, 533

excess of faint sources 532
Spitzer First Look Survey 533

excess of faint sources 533
submillimetre wavelengths 534

excess of faint sources 534

counts of radio-quiet quasars 518, 521,
522

counts of X-ray clusters of galaxies
529–532

counts of X-ray sources 524–532
evidence for evolution of the source

populations 525
hard X-ray energies, 2–10 keV 525,

527, 529
history of 524
problems of interpretation 525
soft X-ray energies, 0.5–2 keV 527

and the integrated X-ray background
emission 527

soft X-ray energies, 0.5–2 keV and 2–10
keV 525

coupling of dark and baryonic matter by
gravity 378

coupling of electrons and protons by
Coulomb collisions 367

coupling of matter and radiation in the
expanding Universe 17, 353, 355,
367

CP violation in decays of K0 mesons 287
Crab Nebula

origin of magnetic field of 580
critial surface density for star formation in

spiral galaxies 554
critical cosmological density 139, 145,

204
in neutrinos with finite mass 143

critical density 439
critical density for star formation 616
Critical Dialogues in Cosmology (ed. Turok)

269, 298, 415
crossing time 111, 474

definition of 63
for a cluster of galaxies 43

Cryogenic Dark Matter Search (CDMS)
146

Cryogenic Dark Matter Search (CDMS II)
373, 374

curvature of space κ 154, 156, 157, 171,
231, 242, 243, 320, 627, 638

condition for flat Euclidean space 210,
211, 364

effect of hyperbolic space on growth of
perturbations 320, 326, 327
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radius of, at the present epoch � 161,
199, 210, 228, 239

relation between Ω0, ΩΛ and 210
variation with scale factor a 160

curvature of space–time 181
curvature perturbations 437

amplitude of 463
cusp catastrophe 135
61 Cygni 5

damped Lyman-α systems in quasar spectra
272, 600–604, 606, 607

dark ages 384, 471, 552, 574, 576
observability through fluctuations in the

neutral hydrogen intensity 577
dark energy 207–211, 216, 230, 243,

245, 327, 331, 335, 344, 345, 414,
623, 634

density parameter ΩΛ of the 21–23,
242, 449, 501, 503, 623

equation of state of 210–211, 267,
465, 630

problem of the 23, 24, 365, 623
dark matter 139–146, 241, 268, 269, 367

astrophysical and experimental limits
144–146

axions and 142, 369
baryonic 139–142
black holes and 140, 141

limits to mass density from gravitational
lensing 140

very low mass 141
brown dwarfs and baryonic 140
clusters of galaxies and 95, 112, 113,

115
density parameter ΩD in the 205, 214
distribution of 235
forms of 139–146
gravitational coupling to baryonic matter

368
gravitational lensing and 130, 136, 137
in clusters of galaxies 113, 117, 119,

136, 137, 267
in early-type galaxies 138
in elliptical galaxies 69
in galaxies 267, 367, 368
in spiral galaxies 69
MACHOs and 141, 142

gravitational microlensing and 141,
142

masses of dark matter particles 145
nature of 24, 301, 625
neutrinos with finite rest mass and 143,

369
non-baryonic 142–144, 301, 335, 364,

365, 367
nature of 368, 369

searches for dark matter particles 145,
146

standard bricks and 139
structure of 137
WIMPs and 143, 144

dark matter and galaxy formation
367–384, 400

evolution of hot and cold dark matter
perturbations 380–384

cold dark matter scenario 381–384
hot dark matter scenario 380–381

forms of non-baryonic dark matter
369–370

free-streaming and damping of hot dark
matter perturbations 375–377

instabilities in the presence of dark matter
377–379

metric perturbations and hot and cold
dark matter 374–375

adiabatic curvature modes 374, 379
curvature modes 374
isocurvature modes 374, 375

WIMPs as dark matter particles
370–374

dark matter haloes
formation according to Press-Schechter

formalism 489
dark matter haloes of galaxies and clusters

137
dark matter particles

collisionless 399
nature of 384
ultraweakly interacting 368

dark matter problem 350, 365
Darkness at Night (Harrison) 510
de Sitter solution 149, 213
de Sitter world model 337, 626, 639
de Vaucouleurs r1/4 law for surface

brightness 61, 62, 108
de Vaucouleurs radius 70
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de Vaucouleurs’ classification of galaxies
54, 55, 93

deceleration parameter q0 216, 241
angular diameter–redshift test 261–263

for compact radio sources 262, 263
for double radio sources 261, 262

number counts of galaxies 259–261
redshift–magnitude relation for brightest

galaxies in clusters 252–254
effects of stellar evolution on 253
infrared 544–545
problems of interpreting at large

redshifts 253
redshift–magnitude relation for radio

galaxies 254–255
advantages of determining in the K

waveband 254, 255
and the alignment effect 254, 256
corrections for effects of stellar

evolution 254
redshift–magnitude relation for Type 1a

supernovae 256–259, 464
evidence for non-zero cosmological

constant 257
relation with Ω0 and ΩΛ 243

decoupling of matter and radiation in the
post-recombination Universe 283

deflection D 505
deformation tensor in Zeldovich approxima-

tion 476, 477
Degree Angular Scale Interferometer

(DASI) 456
density contrast 268, 269, 311, 312, 315,

325, 328, 354, 358, 378, 391, 393,
402, 408, 443, 482, 573

for curvature modes in early Universe
374

growth of 393
density parameter Ω0 204, 241, 243,

267–270, 412, 414
cosmic virial theorem and 268
defined at any epoch 230
infall of galaxies into large-scale

structures and 268, 269, 406, 407,
464

density parameter in baryons ΩB 269,
289, 352, 362, 364, 444, 548, 561,
563, 564, 576, 586, 622

from primordial nucleosynthesis 293,
299, 301, 357

from WMAP power spectrum 300, 464
density parameter in gas Ωg 604–607
density parameter in heavy elements Ωm

604–607
density parameter in intergalactic gas ΩIGG

555
density parameter in neutral hydrogen ΩHI

554
density parameter in stars Ωs 547, 598,

604–607
density parameter of the dark energy ΩΛ

21, 23, 209, 210, 242, 449, 464, 501,
503, 623, 626

density parameter of the dark matter ΩD
464

deuterium D
abundance in Lyman-α absorbers 297
observed primordial abundance

297–298
as a ‘baryometer’ 299

solar abundance 297
deuteron, binding energy of 292
Differential Microwave Radiometers of

COBE 30
disc component of spiral galaxies 51
disc scale length for spiral galaxies 62
discs of spiral galaxies

stability of 612
dissipation processes and galaxy

formation 477–482
radiative processes 478
star formation and 478–479

first generation of stars 478
in very large redshift objects 479

thermal instabilities 478, 481
distance indicators 246, 247
distance measure D 494, 495
distance of the stars 4
distortion matrix 462

shear components of 460, 461
Doppler shift

Newtonian 162, 176
special relativistic 162

‘downsizing’ 614
‘drop-out’ galaxies 543, 593, 594, 607

decrease in luminosity density at large
redshifts 595
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luminosity functions for 595
properties of 593

dust emission and star formation 478, 501
dust extinction 538
dust extinction of galaxy spectral energy

distribution 535, 536
dwarf elliptical galaxies 51
dwarf galaxies 51
dynamical equilibrium 63
dynamical friction 399, 544

early history of cosmology 3–5
early history of galaxies and the structure

of our Galaxy 5–9
The Early Universe (Kolb and Turner) 313
early-type galaxies 50

mass distribution is 138
eclipse expeditions of 1919 190
Einstein angle 130, 132, 136
Einstein radius 129, 132, 134, 264
Einstein ring 130
Einstein X-ray Observatory 116, 123, 507
Einstein’s field equations 12, 13, 149,

188, 199–202, 208, 243, 273, 348,
365, 368, 395, 422, 440, 448

conservation of energy for relativistic and
non-relativistic gases 201

equation of conservation of mass and
200

first law of thermodynamics and 200,
201

monatomic gases and 201
ultrarelativistic gases and 201

Einstein’s static model of the Universe 8,
12, 149, 151, 188, 199, 214

Einstein–de Sitter world model 205,
231–235, 265, 266, 319, 320, 322,
336, 483, 485, 496, 500

as only ‘stable’ model 622
electron–positron annihilation 301
electron–positron pair production 23, 622
elliptical galaxies 50, 51

formation at large redshifts 543
elliptical galaxies as triaxial systems

71–73
linear programming techniques for 73

ellipticities of elliptical galaxies 51
emission history of the Universe 604

energies of the photon and neutrino
backgrounds 302

energy density of the Cosmic Microwave
Background Radiation 33

entropies of the photon and neutrino
backgrounds 301, 302

entropy per baryon
fluctuations in, in isothermal picture of

structure formation 357
Eötvös experiment 173

Eöt-Wash experiment 174, 175
Eötvös ratio 174, 175
epicyclic frequency 554
epoch of baryon–antibaryon pair production

286
epoch of decoupling of matter and radiation

574
epoch of electron-positron pair production

286
epoch of equality of radiation and matter

energy densities 17, 277, 285, 354,
358, 359, 376, 381, 393, 395, 396,
398, 410, 425, 430

including neutrinos 303
epoch of formation of first stars 574
epoch of formation of galaxies, clusters and

superclusters 312, 474, 487
epoch of maximum quasar activity 362
epoch of nucleosynthesis 286
epoch of recombination 17, 33, 277–281,

285, 312, 325, 355, 357, 362, 364,
378–381, 410, 440, 446

epoch of recombination for helium 279
epoch of reheating of the intergalactic gas

286
epoch of reionisation of the intergalactic gas

33, 355, 452, 471, 547, 552, 574–577
role of black holes in nuclei of galaxies

574
equation of continuity 313

relativistic case 331
equation of state

for photons, massless particles and
ultrarelativistic gas 271, 331

equivalence principle see principle of
equivalence

EROS project 141
ESO catalogue of galaxies 44
ESSENCE supernova project 257, 258
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Euclid’s fifth postulate 150
Euler’s equation 313, 440, 448

relativistic case 331
Eulerian coordinate system 314, 476
event horizon 338, 339, 342, 346, 634

definition of 338
evolution of active galaxies with cosmic

epoch 514–532, 569
extragalactic radio sources 514–518

‘luminosity evolution’ 516
cut-off of strong evolution beyond

redshift z ∼ 2–3 516, 517
for sources with steep and flat radio

spectra 516, 517
luminosity-dependent density evolution

516, 518
radio-quiet quasars 518–524

evolution of galaxies and active galaxies
with cosmic epoch 471, 491–545

active galaxies 492, 514–532
extragalactic radio sources 514–518
radio-quiet quasars 518–524
X-ray clusters of galaxies 529–532
X-ray sources 524–529

background radiation
source counts and 510

background radiation and 510–513
effects of evolution and the radio

background emission 512–513
evaluation of 510–512

brief history of evidence for 491–492
clusters of galaxies 543–545
co-evolution of stellar and black hole

properties of galaxies 492
counts of galaxies 537–543
counts of galaxies and active galaxies

492–507
euclidean source counts 493
fluctuations in the background radiation

due to discrete sources 504–507
for standard world models 500
models with finite ΩΛ 501–504
submillimetre counts of dusty galaxies

500–501
counts of galaxies and active galaxies,

predicted
for standard world models 494

infrared and submillimetre number counts
532–537

stellar and gaseous components of
galaxies 492

V/Vmax or luminosity-volume test
507–510

excess dwarf galaxy problem
solution by sweeping out gas by

astrophysical processes 613
excess of faint blue galaxies 46, 591

irregular nature of 593, 594
extragalactic background radiation

due to discrete sources 275
due to galaxies 275
energy density of, in different wavebands

275
in the ultraviolet, optical and infrared

wavebands 275, 276
limits from γγ absorption in spectra of

γ -ray sources 275
number density of photons in different

wavebands 275, 277
spectrum of 273–277

plotted as νIν 275
plotted as Iν 275, 276

extragalactic radio sources 578
depolarisation of 578
luminosity function of

evolution with cosmic epoch 514–518
origin of magnetic fields of 580, 581

active galactic nuclei and 581
supermassive black holes in nuclei of

581

Faber–Jackson Relation for elliptical
galaxies 70–71

Faint Object Camera 564–566, 592
Far Infrared Absolute Spectrophotometer

(FIRAS) of COBE 28
Far Ultraviolet Spectroscopic Explorer

(FUSE) 566, 567
feedback mechanisms in galaxy formation

471
field galaxies 56
fifth force, search for 174, 175
fine-tuning problem 23, 622
‘fingers of God’ 39, 406, 407
FIRST deep VLA survey of radio sources

42
first generation of stars 552

formation of interstellar dust 587
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properties of 574
ultraviolet and X-ray emission of 574

first law of thermodynamics 200, 201
flat two-space, isotropic 154
flatness problem 23, 24, 230–231, 622
fluctuations in the background radiation due

to discrete sources 504–507
spatial correlation technique 506

fluctuations in the cosmic microwave
background radiation 18, 19, 21, 30,
32, 33, 167, 281, 362, 364, 379, 382,
384, 410, 414–416, 419, 421–467,
614, 640

acoustic peaks see acoustic oscillations
in the power spectrum of the cosmic
microwave background radiation

discrete source confusion and 451, 505
epoch of recombination and 430
ionisation of the intergalactic gas through

the epoch of recombination 422–423
physical and angular scales of 424–430

last scattering layer 425–426
particle horizon scales 429–430
Silk damping scale 426
sound horizon at the last scattering layer

427–429
physics of 443
power spectrum of 13, 431–436, 439,

465
cosmological parameters from 444,

463–465, 548
observations of 434–436
other sources of 465–466
statistical description of 431–434

power spectrum on intermediate
scales – acoustic peaks 443–449

power spectrum on large angular scales
436–443

integrated Sachs–Wolfe and Rees–
Sciama effects 440

primordial gravitational waves
440–443

Sachs–Wolfe effect – physical
arguments 436–440

power spectrum on small angular scales
450–452

confusion due to discrete sources
451–452

confusion due to submillimetre sources
452

statistical and Silk damping 426, 450
Sunyaev–Zeldovich effect in clusters of

galaxies 450–451
quadrupole anisotropy of 442
reionised intergalactic gas 452–453
Sunyaev–Zeldovich effect and 450

detection of statistical effect from X-ray
Abell clusters by WMAP 451

Thomson scattering optical depth and
453, 574

Fokker–Planck equation for stars in clusters
107

fold catastrophe 135
four-tensors in relativity 184–187

curvature scalar 188
differentiation of 188
electromagnetic field tensor 186
energy–momentum tensor 188

for dust 186
including pressure 186

Maxwell’s equations 186, 187
Ricci tensor 188
Riemann–Christoffel tensor 188
energy–momentum tensor

for dust 185
four-vectors 185

examples of 185
velocity 185

Fourier integral 389
Fourier series 389, 431
Fourier transformations 431, 462

autocorrelation theorem for 433
of acoustic oscillations in cosmic

microwave background radiation
445

three-dimensional 388
FR2 3CR radio sources 609
fractal Universe 392
free-bound and bound-bound transitions of

hydrogen 479
free-streaming of neutrinos 19
Freeman’s law 62, 74, 612
‘freeze-out’ of hot dark matter particles by

free-streaming 376
‘freeze-out’ of massive particle species in

the early Universe 307
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frequencies of galaxies of different types
54, 56, 541

in different galactic environments 56,
57, 404, 538

Friedman world models 12, 13, 16, 151,
199–239, 621, 624

Friedman world models with Λ = 0
202–207

closed, spherical geometries 205
critical world model 205
curvature–density parameter relation

205
dust models 202
dynamics of 205–207
flat Einstein–de Sitter model 205
Newtonian analogue for 202–204

problems of boundary conditions 203
open, hyperbolic geometries 205
parametric solutions for 207, 321

Friedman world models with Λ �= 0
207–215

bouncing models 212–214
classification of 215
dust models 208, 209
dynamics of 211–216
Eddington–Lemaître models 213, 214,

223, 501
antipodal points of 225, 501, 503, 504
effects of gravitational lensing at

antipodal points 504
number counts in 501, 503
redshift–flux density relation for 501
stationary redshift 214, 223

Lemaître models 214, 501, 503
ghost images in 226

loitering models 214, 223, 226
minimum rate of expansion of 212

Friedman’s equation 199, 200, 320, 326,
638

Friedman: the man who made the Universe
expand (Tropp, Frenkel and Chernin)
204

fundamental observer 150, 158–161, 164,
168, 204, 207, 237, 238, 335, 337,
339–341, 347

fundamental plane for elliptical galaxies
70–71

The Future of Theoretical Physics (eds.
Gibbons, Shellard and Rankin) 643

GADGET computer code 616
GAIA mission, prospects for light deflection

observations 191
Galactic ‘cirrus’ 30
Galactic Astronomy (Binney and Merrifield)

49
Galactic bulge 141
galactic cannibalism 253, 544
Galactic Dynamics (Binney and Tremaine)

49
galactic extinction law 77
Galactic synchrotron radiation 30
galaxies 49

characteristic masses of 480
dependence of types upon environment

613
mean luminosity of 84
mean space density of 84
on a temperature-number density diagram

481
passive evolution of 498, 499

importance of red giant branch 499
starbursts and evolution of 499

Galaxies in the Universe: an Introduction
(Sparke and Gallagher) 49, 64

galaxies, correlations along the
Hubblesequence 84–88

colour–colour diagram and 87, 88
integrated colour 87
luminosity function of HII regions 87
masses and luminosities 84
neutral hydrogen 86
star formation rates and 87
total surface density and surface density

of neutral hydrogen 87
galaxies, old red 542
galaxies, properties of 8, 49
galaxies, red and blue sequences of 63,

88–94, 412
colour–absolute magnitude relation

89–90
colour–Sérsic index relation 91
definitions of 89
effect of the galaxy environment 92–93
mean stellar age–concentration index

relation 91
Galaxy

age of 64
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disc scale length of 62
luminosity of 84
structure of 7–9

galaxy and structure formation, history of
16–19

galaxy formation 583–620
background radiation and element

formation 584–587
energy density of background radiation

and density of metals formed 586
intensity of background radiation and

density of metals formed 586
processes of element formation 584,

585
collisions between galaxies and 614
‘downsizing’ 610
feedback mechanisms and 486, 583,

614
growth of supermassive black holes and

614
Lyman-break galaxies 590

in the general field 590
multicolour technique for discovering

590, 591
observed global star formation rate

587–590
as a function of redshift 583, 589
star-forming galaxies and 587
starburst galaxies at large redshift 589

star and element formation and 583–598
build-up of heavy elements in galaxies

583
numbers of ‘drop-out’ galaxies and

584
numbers of blue star-forming galaxies

and 584
numbers of far-infrared and submillime-

tre galaxies and 584
quasar absorption line systems and

584
star formation and 614
two-stage theory of 482, 611

final radius of disc 612
γ -ray background emission

Comptonisation and 529
spectrum of 526

Garching-Bonn Deep Survey 138
gas dynamics

equations of 313

in Lagrangian form 314
Newton’s second law in 314
relativistic case 331, 332
relativistic case in Lagrangian

coordinates 331
gauge choices

in electrodynamics 347
Lorentz and Coulomb gauges 347

superhorizon scales and 347, 437, 438
gauge-invariant gravitational potential 445
gauge-invariant variables 348
Gaunt factor 116, 121
Gauss’s theorem for Newton’s law of gravity

67, 133, 202
Gauss, Carl Friedrich

theory of surfaces 181
Gaussian curvature see curvature
Gaussian fluctuations 402, 432, 443, 475,

477, 482, 484, 487
Gaussian perturbations with random phases

41, 42
Gemini Deep Deep Survey 607, 608
general relativity 11, 48, 149, 151

introduction to 173–198
further complications 181–184
what Einstein did 187–188

route to 184–188
superhorizon scales and 347–350

general relativity, experimental and
observational tests of 189–197

four tests of general relativity 189–192
advance of perihelion of Mercury 189
deflection of light and radio waves by

the Sun 190, 191
gravitational redshift 189
time delay in Sun’s gravitational field

191, 192
parameterised post-Newtonian (PPN)

formulation of 175, 195
limits to values of the parameters 197
metric potentials in 196
physical significance of 176

pulsars and 192–194
xparameterised post-Newtonian (PPN)

formulation of 197
General Relativity: An Introduction for

Physicists (Hobson, Efstathiou and
Lasenby) 173, 184, 313



716 Index

general theory of relativity see general
relativity, 614

geodesic distance 157
geodesics 149–153, 158, 320
giant molecular clouds 478
globular cluster 47 Tucanae 250, 251
globular clusters 250, 355
Gran Sasso underground laboratory 146
Gravitation and Cosmology (Weinberg)

184
gravitational collapse

timescale of 479
gravitational constant, variation with

cosmic epoch 197–198
helioseismology and 198
limits to 197
lunar laser ranging and 197
primordial nucleosynthesis and 198
pulsar timing and 197

gravitational deflection of light rays 134
by the Sun 128

collision parameter for 128
gravitational lensing by galaxies and

clusters of galaxies 128–139
necessary conditions for 133
astrophysics of galaxies and 136–139
basic theory of 128–131
caustics and cusps in 135, 136
cluster masses from 134
critical surface density for 133
dark matter and 130, 136, 137
distortion of background images by 136
extended deflectors and 133–136
galaxy-galaxy imaging and 138
magnification of images by 130–132
mirror inversion of images in 132
time variations of intensities of images

139
gravitational lensing, strong 138, 235

case of the galaxy IRAS F10214+4724
235

complete sample of radio sources and
quasars 266

magnification of intensities by 235
probability of 264, 266

gravitational lensing, weak 138, 235,
460–463

and cosmic shear 235
shear variance distribution of 461

power spectrum of density perturbations
in the mass distribution and 462

Gravitational Lensing: Strong, Weak and
Micro (Schneider, Kochanek and
Wambsganss) 130, 138

gravitational mass 173, 174
gravitational potential, Newtonian limit

179
gravitational redshift 176–179

dependence upon gravitational potential
177

in general relativity 183
in the Newtonian limit 177
incompatibility with special relativity

178
time dilation in a gravitational field and

178
gravitational relaxation timescale 544
gravitational waves 625

and tilt of spectrum of scalar perturbations
442

dependence upon inflationary potential
442

limits to energy density of primordial
442, 460

polarisation signature of primordial 441
primordial

detection of as the ‘smoking gun’ for
inflationary cosmologies 640

spectral index of primordial 441, 640
from WMAP power spectrum 640

temperature power spectrum of 441,
442

tensor to scalar ratio of primordial 442,
460, 640

limits to 460
gravitons 373
‘Great Attractor’ 268
‘Great Debate’ 7
Great Observatories Origins Deep Survey

(GOODS) 538, 540, 592, 595, 598
‘Great Wall’ 38
Greenbank Catalogue of radio sources at 6

cm 42, 43
grey-body spectrum 535
GUT era, new physics at 643
GUT phase transition 628

half-light radius of light distribution 61
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Harrison–Zeldovich initial power spec-
trum 18, 21, 25, 391–392, 393–396,
399, 433, 439, 441, 465, 484, 485,
559, 560, 624, 630, 640

Hawking radiation 141
He+ Lyman-α absorption clouds in

intergalactic medium 566
HEAO-1 X-ray Observatory 524
HEAO1 A-2 experiment 507
Heaviside–Lorentz units 187
Heisenberg’s uncertainty principle 636
helium abundance

as a thermometer of the early Universe
293

helium-3 He3

observed by radio hyperfine transition
line 298

observed primordial abundance 298
helium-4 4He

observed primordial abundance 296
in low metallicity, extragalactic HII

regions 296
Hercules cluster of galaxies 102
Hertzsprung–Russell (H–R) diagram 250,

251, 584, 585
main sequence termination point 250

hierarchical clustering 18, 59
hierarchical model of the Universe 5
hierarchical models of galaxy formation

old red galaxies and 607
hierarchical scenario for cluster formation

545
Higgs fields and Higgs particles 24, 208,

373, 623, 626, 643
High Energy Astrophysics Vol. 1 (Longair)

126, 544
High Energy Astrophysics, Vol. 2 (Longair)

577
Himalayas 402
Hipparcos astrometric satellite 247, 251
Hipparcos measurements of light deflection

by the Sun 191
Hopkins Ultraviolet Telescope 565, 566
horizon mass 352, 353, 391, 395
horizon problem 22, 24, 337, 631

last scattering surface and 337
solution of in inflationary model of the

early Universe 337, 626, 627, 631
horizon scale 17, 204, 441, 627

horizons and the horizon problem
335–338, 621

hot and cold dark matter model of galaxy
formation 335, 418

hot and cold dark matter, history of
19–22

hot dark matter model of galaxy formation
19–21, 375–377, 380–381, 400–402

formation of galaxies by fragmentation of
large-scale structures 381

late formation of structure in 400
hot gas in clusters of galaxies 114–124

absence of cool gas in 123
associated with heating by radio lobes

124
models to explain the 123

abundance of iron 118
characteristic cooling time for 121
cooling flows in 122, 478

enthalpy of 123
mass inflow rates of 123

cooling time of 122
iron line FeXXVI from 115
sound waves in 125

Hubble Deep and Ultra-Deep Fields 261
Hubble Deep Field 491, 538, 542,

590–593
Hubble Deep Field South (HDFS) 592
Hubble diagram 44
Hubble sequence of galaxies 50
Hubble Space Telescope 58, 59, 130, 131,

138, 249, 254, 257, 297, 464, 491,
538, 540, 543, 550, 552, 564, 565,
568, 590, 593, 595, 601

The Hubble Space Telescope and the High
Redshift Universe (ed. Tanvir) 552

Hubble Space Telescope Science Institute
590

Hubble sphere 342–346, 632–634, 638
definition of 342
distinction between particle horizon and

631
shrinking of 631, 633, 634

Hubble Ultra Deep Field (HUDF) 491,
538, 540, 542, 543, 590, 592, 594–596

filter transmission curves for 594
Hubble’s constant 9, 13, 46, 241

Baade–Wesselink method and 248
brightest stars in galaxies and 246
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Cepheid variables and 246, 247
controversy over value of 246
cosmological distance ladder and 246,

247
defined at any epoch 166, 230
from Sunyaev–Zeldovich effect 128
globular clusters and 246
Hubble Space Telescope Key project and

246, 247
final result of 248, 464

present expansion rate of the Universe
and 167

redshift–magnitude relation for brightest
cluster galaxies and 246

Sunyaev–Zeldovich effect and 248
Tully–Fisher relation and 246
Type 1a supernovae and 246
written as H0 = 100h km s−1 Mpc−1

204
Hubble’s law 9, 10, 44–46, 150, 165, 314,

407
comoving radial distance coordinates and

340
discovery of 150
gravitational lensing and 249
recession velocities exceeding the speed

of light in 341
Hubble’s law and the expansion of the

Universe 44–48, 165
Hubble’s law for surface brightness 61
hydrostatic equilibrium 104, 115
hydrostatic support, equation of 318
hyperbolic two-space, isotropic 154, 155

i-band drop-outs 552
I0 galaxies 54
inertial mass 173, 174, 181
inflationary model of the early Universe

24, 25, 364, 392, 621, 624
accelerated expansion 634
chaotic inflation 626
exponential expansion and 626, 627,

629
role of scalar fields 629
straightening of geometry 627
violation of strong energy condition and

630
historical background 626–629

formation of ‘bubbles’ in original Guth
picture 628

lack of physical realisation of
inflationary picture 629

monpole problem 628
new inflationary model of Linde,

Albrecht and Steinhardt 629
slow rollover model 629
symmetry breaking in Grand Unified

Theories 627
transition from false to true vacuum in

original Guth picture 627
necessary conditions for many e-folding

times 635
necessary tools from theoretical and

particle physics 630
release of ‘latent heat’ 627
scale factor-temperature relation 628
shrinking of Hubble sphere 634
three equivalent conditions 634

violation of the strong energy condition
634

transition to standard radiation-dominated
model 627

inflaton potential 24, 629
infrared luminosity function of galaxies

evolution of 536
comparison with evolution of active

galaxies 537
Infrared Space Observatory (ISO) 532,

533
inhomogeneous world models 231–235
initial mass function

modified 487
initial power spectrum

curvature of 463
modifications of 409
modified 484
reconstruction of 474

interacting galaxies 57, 60, 478
fraction of 59

intergalactic gas, optical depth for Thomson
scattering of 280, 281

intergalactic medium 547–582
absorption by 548
absorption coefficient of 548
background emission of 548
emissivity of 548
epoch of reionisation of 574–577
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Gunn–Peterson test for ionised helium in
564–567, 571

due to integrated effect of Lyman-α
clouds 566–567

feasibility of, for large redshift quasars
564

Gunn–Peterson test for neutral hydrogen
in 547, 549–552, 569, 574

positive detection at z ≥ 6 551, 552,
564, 574

upper limits to neutral hydrogen number
density from 550

lukewarm gas in 555, 560–569
collisional excitation of 562–563
diffuse ultraviolet radiation at large

redshifts and 567–569
emission and absorption of 564–567
proximity effect and 567–569

Lyman continuum opacity of 569–571,
574

Lyman-α absorption clouds in 547,
552–560

evolution of, with cosmic epoch 556
nature of 554–556
power spectrum of forest of 557–560
predicted evolution of, with cosmic

epoch 556
properties of 552–554

modelling the evolution of 571–574
neutral hydrogen at large redshifts 574

fluctuations in observed intensity
574–577

intensity of 576
ionsation by first generation of massive

stars 575
observational challenge of detecting

575
predicted brightness temperature of

576
problem of synchrotron radiation

foregrounds 576
optical depth of 548
origin of magnetic fields 577–582
ultraviolet opacity of 569–571
X-ray background and a cosmic

conspiracy 561
International Linear Collider (ILC) 144
International Ultraviolet Explorer (IUE)

248, 597

intrinsic curvature see curvature
Introducing Einstein’s Relativity (d’Inverno)

184
ionisation fraction through epoch of

recombination 423, 424
ionisation of intergalactic gas through the

epoch of recombination 422–423
IRAS F10214+4724 235
IRAS Faint Source Survey 532
IRAS galaxies 501, 503

catalogue of 532
complete samples of 532
correlation functions for 405
ultraluminous 58

IRAS infrared observatory 478, 491, 532
IRAS Point Source Catalogue 532
Irr II galaxies 54
irregular clusters of galaxies 102–103
irregular galaxies 53
island universes 5
ISO infrared space observatory 478
isocurvature cold dark matter 396–399

fluctuations in local equation of state and
397

isophotal angular diameters 223
isothermal baryonic perturbations in the

standard Big Bang 357–360
isothermal gas spheres 103–108, 134,

264, 611
projected 105, 106
singular 134
tidal radius of 107
truncated 107

isothermal model of structure formation
18, 357–360, 363–364

‘bottom-up’ picture of galaxy formation
364

‘freezing in’ of perturbations 358, 359
early enrichment of heavy elements 363
early formation of globular clusters and

363
hierarchical clustering and 363
radiation drag, effects of 359, 360

isotropic curved spaces 150–154, 159
radius of curvature of 155
three-dimensional 156, 157
two-dimensional 155, 156

isotropic two-space
flat 157
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hyperbolic 157
spherical 154, 157

isotropy of the distribution of extragalactic
radio sources 42

isotropy of Universe on a large scale 32

J0737-3039 (binary pulsar) 193
Jagellonian field 35
James Clerk Maxwell Telescope (JCMT)

452, 534, 597
Jeans’ analysis of damped harmonic

oscillator 638
Jeans’ criterion in an expanding Universe

16, 319
Jeans’ instability 318, 324, 478

growth rate of 324, 358
physical nature of 318

Jeans’ instability criterion 16, 378
for collisionless gas 377

Jeans’ length 16, 17, 318, 332, 351–353,
379, 428, 429

in baryons 352
relativistic case 332

Jeans’ mass 17, 18, 351–355, 360, 361,
377

Jeans’ wavelength 318
Jupiter 4, 5

K-correction 170, 253, 495, 498, 538
in infrared K waveband 538
submillimetre 597
uncertainties in ultraviolet wavebands due

to starbursts 538
K20 sample of galaxies 542
K20 Survey 607, 608

very red galaxies in 608
Keck 10-metre telescope 272, 542, 555,

566, 590
Keck-2 telescope 551, 552
Kelvin–Helmholtz picture of stellar

evolution 251
Kepler’s laws of planetary motion 3

third law 4, 67
King profiles for mass distribution in clusters

107, 111
Kolmogorov spectrum of turbulence 580
Kompaneets equation 126

Lagrangian and comoving coordinate
systems, difference between 314

Lagrangian coordinate system 314, 476
ΛCDM model of galaxy and structure

formation 22, 59, 435, 440, 462,
463, 466, 472, 483, 486, 487, 530,
532, 613–620

problems with 613–614
accounting for Faber–Jackson relation

and Tully–Fisher relation 614, 620
‘downsizing’ problem 614
excess dwarf galaxy problem 613
mass-metallicity correlation 613
predicted cusps in central regions of

galaxies 613
Landau damping 376
Lane–Emden equation 104
Langmuir waves 317
Large Electron–Positron collider (LEP)

300, 371
Large Hadron Collider (LHC) 144, 208,

643
Large Magellanic Cloud (LMC) 54, 141

distance of 248
large-scale distribution of galaxies

33–44
large-scale structure of the Universe

27–48
The Large-Scale Structure of the Universe

(Peebles) 363
Las Campanas redshift survey 41
last scattering layer 444
last scattering layer at z = 1000 621
last scattering surface 33, 333, 357

for neutrinos 292
last scattering surface at the epoch of

recombination 631, 632
last scattering surface for electromagnetic

radiation 624
late-type galaxies 50
laws of conservation of momentum and

energy in relativity 186
Legendre function

associated 431
Legendre polynomials 433, 455
Leiden–Berkeley Deep Survey (LBDS)

516, 518
lens equation 132
lenticular galaxies 52, 55
lepton number L i 301
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Lick counts of galaxies 35, 36
Lick Observatory 550
light distribution in galaxies 59–63

in elliptical galaxies 61
in spiral and lenticular galaxies 61
in spiral galaxies 68
putting the light distributions together

62
light elements, primordial nucleosynthesis

of see nucleosynthesis, primordial
lightest supersymmetric particle 643
limits of observation in cosmology

624–625
fundamental limitations 624
limitations due to cosmic variance 624

lithium 7Li
observed primordial abundance 298,

299
local group of galaxies 51
local supercluster of galaxies 43, 44, 78
Lockman Hole survey field 525
LOFAR project (Netherlands) 576
longitudinal gauge 348
longitudinal plasma oscillations 317
Lorentz invariance 184, 196

form-invariance 184
Lorentz transformations 185, 187, 207,

238, 239
lukewarm intergalactic gas 560–569

collisional excitation of 562–563
‘thermostat’ temperatures of 563
by shock waves 562
emissivity of 562, 563
HI and HeII Ly-α line emission due to

562
ionisation state of 563

diffuse ultraviolet radiation at large
redshifts and 567–569

emission and absorption of 564–567
detectability of redshifted Lyman-α

emission 564
photoexcitation and 564
shock excitation and 564

proximity effect and 567–569, 572
luminosity function of galaxies 77–84,

509
luminosity–metallicity relations for

galaxies 74–76
luminous infrared galaxies

evolution of 536
luminous infrared galaxy N1-015

spectral energy distribution of 535
lunar laser ranging 175
Lyman limit 588, 589, 591
‘Lyman valley’ 570
Lyman-α absorption clouds in in-

tergalactic medium 545, 550,
552–560

confinement of 555
evolution of, with cosmic epoch 556,

569
nature of 554–556

according to large-scale hydrodynamic
simulations 573

observed number density distribution of
554, 555, 566, 600

power spectrum of forest of 557–560
properties of 552–554

column densities of 554
damped Lyman-α systems 554
fractional ionisation of 555
Lyman-α forest 552–554, 556–558,

566–572, 574
Lyman-limit systems 553, 554, 556,

564, 569–571, 590
masses of 555
origin of damped Lyman-α systems

572
two-point correlation function of 557,

558
dark matter perturbations and 559
SiIII absorption features and 557, 558

Lyman-α emission of the intergalactic gas
562

Lyman-α radiation field, colour temperature
of 576

Lyman-α scattering, optical depth for 549
Lyman-α transition

oscillator strength for 549
photo-excitation cross-section for 549

Lyman-break galaxies 479, 607
redshift distribution of 590, 592

Lyman-limit galaxies, decreasing comoving
density at large redshifts 489

α Lyrae 5

M31
luminosity of 84
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rotation curve of 67
M49 (NGC 4472) 69, 116

velocity dispersion of 70
M51 (NGC 5194) 52
M82 54
M86 116
M87 (NGC 4486) 52, 55, 69, 116
Mössbauer effect 178, 189
Mach’s principle 11, 12, 199
MACHO project 141, 142
MACHOs 141

mean mass of 141
Magellanic Clouds 7, 54, 141
Magellanic irregular galaxies 54
magnetic fields

in stars 578
in the interstellar and intergalactic

medium 578
origin of 577–582

amplification mechanisms and 578
amplification of seed field by turbulence

580
dynamo action and 578, 580
emf created by Biermann battery 579
extragalactic radio sources and 581
extragalactic radio sources at large

redshifts 582
laboratory demonstration of dynamo

action 578
magnetic reconnection and 578
problems of dynamo action on large

scales 578
seed field created by Biermann battery

579
seed fields 579

power spectrum of magnetic turbulence
580

predicted power spectrum from magnetic
turbulence 580

role in astrophysics 577
rotation measure synthesis and 580

making real galaxies 583–620
abundances of elements in Lyman-α

absorption systems 598–604
equations of cosmic chemical evolution

604–607
old red galaxies 607–610
origin of rotation 610–613

putting it all together – semi-analytic
models of galaxy formation
613–620

star and element formation 583–598
background radiation and element

formation 584–587
Hubble Deep and Ultra Deep Fields

590–596
Lyman-break galaxies 590
observed global star formation rate

587–590
submillimetre determinations of cosmic

star-formation rate 596–598
Malmquist bias 246
Markarian ultraviolet-excess galaxies 597
mass density of the Universe

in stars at the present epoch 84
mass–luminosity ratio

early-type galaxies 138
for clusters of galaxies 267
for galaxies and clusters 482
for Universe as a whole 83, 267
of elliptical galaxies 69, 84
of spiral galaxies 68, 84

mass–luminosity relation for stars 499
mass–metallicity relations for galaxies

at large redshifts 76
mass-energy relation E = mc2 181
masses of galaxies 63–70
massive galaxies in clusters 617
massive ultra-weakly interacting particles

643
matter-dominated Universe 276
Mattig’s formula 219
MCG catalogue of galaxies 44
‘meatball’ topology 41
Medium Deep Survey of galaxies (MDS)

542
Mercury, advance of perihelion of 189

radar ranging and 189
‘merger trees’, hierarchical clustering and

615
mergers of coalescing galaxies 614
MERLIN long baseline interferometer

266
Mészáros effect 358–359, 381, 393, 396,

398
metallicity Z 74, 600, 605, 606
metric angular diameters 221, 253
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between any two redshifts 228
metric of isotropic two-space 155
metric perturbations 368, 374, 392, 436
metric tensor 155, 186–188

components of as gravitational potentials
187

microlensing, gravitational 132
Millennium Galaxy Catalogue 62, 63, 83
Millennium Simulation 486–488,

613–615, 617–619
first quasar candidate 619

Milne empty world model 207, 237
Minkowski metric 158, 179, 181, 187,

188, 195
‘missing baryon’ problem 547
Modern Cosmology (Dodelson) 313, 422
Monte Carlo Markov chain methods 463
Monte Carlo methods 506
Moon, fluorescent X-rays from 524, 525
morphologies of galaxies 49, 50
Mount Wilson 100-inch telescope 492
multipole moment 432, 433

N galaxies 51
nebulae

cataloguing of 7
nature of 6, 7

‘negative mass’ in inhomogeneous Universe
233

negative pressure equation of state 208,
623, 630, 644

speed of sound for 638
neutralinos 373
neutrino astrophysics 625
neutrino background temperature 301–303
neutrino barrier 286, 292
neutrino chemical potential 301
neutrino interaction cross-sections 291
neutrino oscillations 143
neutrino perturbation

damping by free-streaming 376
free-streaming damping mass 377, 380,

381
neutrinos

astrophysical limits to masses of 20
cosmological limits to masses of 560
cosmological limits to number of species

of 463
cosmological mass density in 463, 465

decoupling of 367
equilibrium number density of 143, 301
free-streaming of 380, 400
laboratory limits to the masses of 143
laboratory limits to the number of species

of 145
massive decaying 417
neutrino background temperature 376
their role in primordial nucleosynthesis

see nucleosynthesis, primordial
time-scale for interaction in the early

Universe 291
with finite rest mass 19, 367, 375, 376,

380
neutrinos, free-streaming of 396
neutron decay 292, 294
neutron stars 586
Newton’s law of gravity 4
Newtonian gravitational potential 348,

350, 438
NGC 1300 53, 54
NGC 2787 55
NGC 3077 54
NGC 4486 52
NGC 4839 114
NGC 4874 111, 114
NGC 4889 111, 114
NGC 5194 52
NGC 5195 52
NGC 520 54
NICMOS infrared camera of Hubble Space

Telescope 140
non-Euclidean geometries 11, 150–152,

173, 492
non-Gaussian fluctuations 432, 466

examples of 432
skewness and kurtosis 466

non-linear collapse of spherical density
perturbations 472–477

spherical top-hat collapse 473–475
maximum scale-factor for 473
redshift of collapse of 473
turn-around epoch 473
violent relaxation and 474

non-linear development of density
fluctuations 407–409

self-similar solution for 408
two-point correlation function 407–409
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NORAS catalogue of X-ray clusters of
galaxies 116

normalised impact parameter 132
nuclear reactions in the Sun 279
nucleocosmochronology 13, 252
nucleosynthesis in stars 14
nucleosynthesis, primordial 14–16, 140,

289, 289–307, 417
baryon-symmetric Universes 303–307

‘freeze-out’ of abundances in 304,
306

equilibrium abundances in the early
Universe 289–290

equilibrium energy densities 290
in the non-relativistic limit 290, 303
neutron–proton ratio 290
relativistic statistical mechanics and

289
evolution of abundances during 293,

294
light elements, abundances of 295–301

comparison of theory and observation
299–301

observations of 296–299
massive neutrinos and 369
neutrino background temperature

301–303
neutrinos, decoupling of 290–292

‘freezing out’ of the n/p ratio and 291
non-standard assumptions concerning

300
lepton asymmetry 300
limits to the number of unknown

neutrino species 300
varying gravitational constant 300

synthesis of the light elements 292–295
dependence upon photon-baryon ratio

294
deuterium formation 292, 293
epoch of nucleosynthesis 292
helium formation 292, 293
lithium formation 293, 294
neutron fraction 292
nuclear reactions involved in 292

number counts of galaxies 46
number counts of submillimetre sources

452
Nyquist frequency 504, 505

O04 survey 595
observable Universe of galaxies 471
observations in cosmology 162–171

age of the Universe T0 171
angular diameter distance 167, 172
angular diameters 167
apparent intensities 168–170

for bolometric luminosities and flux
densities 169

K-corrections 170, 223
cosmological redshift and time dilation

162–166
the meaning of redshift in cosmology

164
distance measure D 167, 172, 218, 243

independence of Ω0 at small redshifts
245

Hubble’s law 165–167
luminosity distance 169, 172
number densities 170–171, 172

comoving number density 171
comoving volume 170

reciprocity theorem 169
observations in cosmology for Friedman

world models 215–228
angular diameter–redshift relations

221–223
for inhomogeneous Friedman world

models 233, 234
for models with ΩΛ = 0 221
for models with ΩΛ �= 0 223
for partially inhomogeneous Friedman

world models 235
comoving volume within redshift z

226–228
models with ΩΛ = 0 226
models with ΩΛ �= 0 228, 263

cosmic time–redshift relation 217–218,
280

age of Universe for flat world models
with ΩΛ �= 0 218

age of Universe for models with
ΩΛ = 0 217

for flat world models with ΩΛ �= 0
218

for models with ΩΛ = 0 217
for models with ΩΛ �= 0 218

deceleration parameter 216
relation to Ω0 and ΩΛ 216
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distance measures as a function of redshift
218–219

for Milne’s empty world model 219
for models with ΩΛ = 0 219
for models with ΩΛ �= 0 219
Mattig’s formula 219

flux density–redshift relations 223–226
for inhomogeneous Friedman world

models 235
for starburst galaxies in the submillime-

tre waveband 501, 503
ghost images 223

Occam’s razor 419
Ohio State University 295
Olbers’ paradox 510

in an infinite, static, Euclidean Universe
511

resolution of, in standard world models
511, 512

old red galaxies 607–610
constancy of masses with redshift 607
early formation of stellar populations of

610
evidence for old stellar populations in

608
evolving stellar mass density and 607
massive 607–610
need for early starbursts 608, 609
selected in the K waveband 607
star-forming galaxies at large redshift and

608
stellar masses as a function of redshift

608
On the Principles of Geometry

(Lobachevsky) 11, 151
optical depth for intergalactic HeII

absorption 564
optical jet in M87 52
The Origin and Evolution of Cosmic

Magnetism (ed. Beck, Brunetti, and
Feretti) 577, 580

origin of the spectrum of primordial
perturbations 629–640

duration of the inflationary phase
630–631

necessary number of e-folding times
631

equation of state 630

freezing of perturbations on passing
through Hubble sphere 634

shrinking Hubble sphere 631–634
OVRO Millimetre Array 126, 127, 249

P(D) distribution 504–506, 514, 525
asymptotic slope of 505
in infrared waveband 507
in ultraviolet waveband 506
in X-ray waveband 507
non-Gaussian statistics and 505
physical meaning of 505
shape of 505

Palomar 200-inch telescope 514, 521
Palomar 48-inch Schmidt telescope 96
Palomar 48-inch Telescope Sky Survey 96
pancakes 20, 363, 400, 402, 476, 477, 480
parallel transport, or parallel displacement

151–153
Parkes Selected Region (PSR) sample

517, 518
Parseval’s theorem 388
particle horizon 22, 335–340, 342, 344,

346–349, 351–354, 361, 362, 376,
377, 379, 380, 391–393, 415, 429,
430, 436, 441, 443, 444, 626–629, 631

definition of 336
radiation-dominated Universe and 337

particle physics and cosmology 624, 625
particle–antiparticle annihilation in the early

Universe 278, 303
collision time exceeds expansion age

306
cross-sections for 304
epoch of decoupling of particles and

antiparticles 305
equilibrium number densities 304

Particles, Nuclei and the Universe, Selected
Works of Yakov Borisevich Zeldovich,
Vol. 2. (Zeldovich) 381

past light cone 159, 335, 339–344, 346,
631–633

Pauli exclusion principle 144
Pavo cluster of galaxies 42
peculiar and interacting galaxies 56–59
peculiar velocities

from polarisation measurements of
the cosmic microwave background
radiation 451
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in the local Universe 268
of galaxies 201
of perturbations 315, 453

Perseus cluster of galaxies 124, 125, 547,
617

perturbations, evolution of, in the
standard cosmological models
311–333

acoustic oscillation and 361–362
conservation of angular momentum and

328
for models with ΩΛ = 0 325
for models with ΩΛ �= 0 326
in terms of conformal time τ 340
Jeans’ instability 317–318

dispersion relation for, in a static
medium 317

growth rate for, in static medium 318
Jeans’ instability in an expanding

Universe 319–327
Einstein–de Sitter case 319
empty Milne world model 320
falling poles 322–324
general solution 324–327
linear growth of 319–327, 332, 351,

354
necessity of finite initial amplitudes

322, 333
perturbing the Friedman solutions

321–323, 476
small perturbation analysis 319–320
spherical perturbations in standard

Friedman models 321
linear 312
non-relativistic wave equation for

313–317
adiabatic perturbations 316
first-order solutions for 315
in terms of conformal time 317
in terms of cosmic time 317
unperturbed solutions for 315

peculiar velocities in the expanding
Universe 327–331

decay of in Ω0 = 0 case 329
evolution of 329, 330
growth of in Ω0 = 1 case 328
potential motions 327, 328, 406
primordial turbulence and 328
rotational motions 328

relativistic case 331–332
growth rate in radiation-dominated case

332
the basic problem 332–333
what the theorists are trying to do

311–313
Petrosian r-band luminosity 91
photon barrier 280
photon diffusion 355

coefficients of thermal conduction and
shear viscosity 355, 356

photon-to-baryon number ratio 23, 277,
622

physics beyond the standard model 372
Planck energy scale 209
Planck era 287, 631, 642–644

need for quantum theory of gravity 642
new physics before reaching 643

Planck mass 209
Planck mission of ESA 421, 450–452,

467, 625
Planck spectral energy distribution

Rayleigh-Jeans region of 455
variation with redshift z 272
Wien region of 278, 279

fraction of photons in 278
Planck time 642
planetary nebula IC418 452
Pleiades star cluster 5
Plummer model for elliptical galaxies 108
Poisson noise 392
Poisson’s equation for gravity 108, 187,

268, 313
linearity of 315
relativistic case 331

polar coordinates 155
polarisation of the cosmic microwave

background radiation 454–463,
625

anticorrelated TE cross correlation power
spectrum of as evidence of adiabatic
perturbations 458

B-modes and 457, 467
B-modes due to gravitational lensing

457
BB power spectrum and 457
EE power spectrum of 456, 457, 459
from the epoch of reionisation 458–459
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angular scale of strongest polarised
signal 458

from the last scattering layer 455–458
physics of 454–455

necessity of quadrupole intensity
distribution 455, 458

polarised galactic radio emission and
456, 457

primordial gravitational waves and
459–460

B-modes 459, 460
E-modes 459
origin in the early Universe 460
polarisation modes of 459
predicted BB power spectrum of 460

TE cross correlation power spectrum of
457–459

TT intensity power spectrum and 456,
457

weak gravitational lensing and 460–463
BB-mode polarisation due to lensing of

EE-mode polarisation 462, 463
distortion matrix 460
E-mode polarisation due to 462

polycyclic aromatic hydrocarbon (PAH)
molecules 535

post-recombination era 384, 471–489
non-linear collapse of density perturba-

tions 472–477
isotropic top-hat collapse 473–475
Zeldovich approximation 475–477

Press–Schechter mass function
482–489

development and recapitulation
485–489

exposition – elementary theory
482–484

role of dissipation 477–482
POTENT reconstruction procedures 269
power spectrum of cosmic microwave

background radiation 434, 436
power spectrum of fluctuations 388–392

relations between different descriptions of
391

power spectrum of initial fluctuations 17,
390–392, 405, 438

modifications of 393–401
power spectrum of temperature fluctuations

432, 433

for non-Gaussian fluctuations 466
precision cosmology 421, 466, 614, 621
Press–Schechter mass function 20, 363,

482, 482–489
‘peaks-within-peaks’ problem 485
critical density contrast for structure

formation 483
evolution of number density of dark

matter haloes with redshift 487, 489
hierarchical clustering and 486, 487,

489
mass function of clusters and 486
problems with simple derivation 485,

486
time evolution of 484, 485

primordial fluctuation problem 23, 25,
472, 623

Harrison–Zeldovich spectrum and 623
primordial gravitational waves 440–443

equation of state of 441
on superhorizon scales 441
quadrupole nature of 441
quantum origin in the early Universe

441
tensor to scalar ratio 441

primordial nucleosynthesis of the light
elements see nucleosysnthesis,
primordial

Principia Mathematica (Newton) 10
principle of covariance 184
principle of equivalence 173–176, 176,

177, 179–181, 184, 196
Einstein’s 174, 175, 196

local Lorentz invariance (LLI) 175
local position invariance (LPI) 175

free-fall 174, 179
weak 174, 175

Principles of Physical Cosmology (Peebles)
313

probability integral 483
Probing Galaxies through Quasar Absorp-

tion Lines (eds. Williams, Shu and
Ménard) 552

problem of the values of the cosmological
parameters 23

prograde orbits 57
projected surface brightness 116
proper radial distance coordinate 339



728 Index

properties of spiral and elliptical galaxies
70–76

proton decay
avoidance of 373

PSR 1913+16 192–195
pulsars and general relativity 192–194

emission of gravitational waves 193,
194

acceleration of binary pulsar due to
194, 195

masses of neutron stars 193, 194

QSO Absorption Lines (ed. Meylan) 552
quadrupole component of the temperature

power spectrum 434
quantised harmonic oscillator 635–637

angular frequency of 636
carrying out a proper calculation 637
energy levels of 635
Hermite polynomials and 636
Schrödinger’s equation for 635
wavefunctions for 635
zero-point energy of 636
zero-point fluctuations of 636

quantum theory of gravity 644
quasar 0957+561 (double quasar) 249
quasar 2345+007 (double quasar) 554
Quasar Absorption Line key project 568
quasar HE 2347-4342 566, 567
quasar HS1700+64 566, 567, 571
quasar OQ 172 570

ultraviolet spectrum of 550
quasar PKS1935–692 564, 571
quasar PSS J1443+2724 273
quasar Q0302–003 564, 566, 571
quasar Q1331+170 272
quasar Q1422+2309 553
quasar Q2237+0305 139
quasar QSO 0013–004 273
quasar spectra

Lyman-α emission line 519, 520
prominent emission lines in 520

quasars
3CR sample of radio 508, 509
cut-off at large redshifts 487, 488
early formation of supermassive black

holes in 610
low-luminosity 521
most luminous 488

radio-quiet see radio-quiet quasars
ratio of black hole to spheroid masses

610, 617
unification scheme with radio galaxies

610

radiation-dominated universe 14, 276
Compton scattering in 281–284
dynamics of 271–273

including neutrinos 302, 303
maintenance of photons and matter at

the same temperature by Compton
scattering 282

time-scale for expansion of 291
total energy density of relativistic species

291
radio galaxies 51, 479

3CR sample of 508, 509
evidence for old stellar populations in

609
radio galaxy 0902+34 609
radio galaxy LBDS 53W069 610
radio galaxy LBDS 53W091 609
radio–far-infrared correlation for galaxies

597
flattening of radio source counts and

537
radio-quiet quasars

counts of 521, 522
cut-off at large redshifts 519, 524, 569
definition of complete samples of

518–521
completeness of 521
dispersion prism-grating techniques

521
multicolour photometric technique

519–520
searches for ‘i-band drop-outs’

520–521, 524
searches for Lyman-α and CIV emission

lines 521
searches for variability of 521
ultraviolet excess technique 519

discovery of 518
evolution of, with cosmic epoch 518,

520, 521, 610
luminosity function of

‘luminosity evolution’ of 522
evolution of 521, 522
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ram-pressure stripping 544, 613
Rayleigh–Jeans region of Planck spectrum

455
Rayleigh–Jeans spectrum 27, 29, 30
The Realm of the Nebulae (Hubble) 50,

492
reciprocity theorem 229
reconstruction of local mass distribution

268, 269
red and blue sequences of galaxies see

galaxies, red and blue sequences of
Red-Sequence Cluster Survey 138
redshift biases 406–407
redshift, definition of 45, 162
redshift–apparent magnitude relation 44
redshift–magnitude relation for brightest

galaxies in clusters
infrared 544–545

cosmic conspiracy and 544, 545
galactic cannibalism and 545
passive evolution and 544

reduced deflection angle 130
Rees–Sciama effect 440
REFLEX catalogue of X-ray clusters of

galaxies 116, 120, 121
regular clusters of galaxies 102–103
reionisation of the intergalactic gas 382
relation between angular and spatial

two-point correlation functions 37,
38

relativistic binary stars 192
relativistic gravity, introduction to

173–198
non-linearity of 181, 182

relativistic jets, heating of the intestellar gas
by 617

relativity of simultaneity 238
Relativity: Special, General, and Cosmolog-

ical (Rindler) 184
revised Hubble sequence for galaxies

50–56
Riemannian geometries 151, 182, 184
Riemannian metric 187
ring galaxies 56, 58
Robertson–Walker metric 149, 150,

158–162, 163, 167, 168, 340, 341
for an empty Milne Universe 237–239
for the critical world model 231
invariant interval ds2 161

ROSAT X-ray Observatory 116, 117, 119,
120, 122, 451, 491, 506, 524, 525

rotation curve of a centrifugally supported
disc in isothermal gas sphere 612

rotation curves of spiral galaxies 66–69
rotation of galaxies, origin of 610–613

damping of primordial rotational
velocities 610

dissipative contraction within dark matter
haloes 611

problem of specific angular momenta
612

problems of theories of primordial
turbulence 610

role of tidal stripping 613
roles of dissipation and tidal stripping

612
tidal torques 611, 612

during linear growth of perturbations
611

slow rotation of the spheroidal compo-
nents of elliptical and spiral galaxies
and 611

Rutherford scattering 190

S0 galaxies 52
Sérsic 159-03 123, 124
Sérsic index 91
Sa galaxies 51
Sachs–Wolfe effect 18, 21, 441, 447, 456

dependence upon angular scale 439
gravitational redshift and 436, 437
integrated 452, 456
physical arguments 436–440

SAGDP99 survey 595
Sakharov oscillations 21, 362
Salpeter initial mass function 500, 588
Sb galaxies 51
Sc galaxies 52
scalar fields 208, 623, 629, 634–635

density and pressure of 634
Einstein’s field equations and 635
fluctuations in 635
negative pressure equation of state and

634
not yet detected experimentally 634
properties of 634–635
slow-roll parameters 635, 640
string theory and 634
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theories beyond the standard model of
particle physics and 634

scale factor a(t) 160, 161, 162, 164, 167,
171, 172

scale factor–redshift relation 164, 201,
271

scaling test for homogeneity of clustering of
galaxies 35–37

Schönberg–Chandrasekhar limit 500
Schechter luminosity function for galaxies

77, 79, 82, 108, 109, 590, 593, 595
break absolute magnitude M∗ of 78, 81
break luminosity L∗ of 77, 78, 81
brightest galaxies in clusters 82
dependence upon galactic environment

79, 81
evolution with redshift 82
for low luminosity galaxies 82
in voids 80, 81
L∗ as a standard candle 80
turnover luminosity L∗ 607

Schwarzschild metric 183, 187
coordinate time in 183
proper time in 183

Schwarzschild radius rg 184
Sco X-1 524
SCUBA submillimetre bolometer array

534, 597
Sd galaxies 52
secular instabilities in rotating stellar discs

616
self-similar model for cluster formation

118, 119
semi-analytic models of galaxy formation

412, 472, 486, 583, 613–620
acoustic peaks in the large-scale galaxy

distribution and 620
as ‘experimental computational

astrophysics’ 615
dust extinction and 617
evolution of mass function of galaxies and

620
formation of supermassive black holes

and 617, 618
in centres of rich clusters 620

heating of the intergalactic gas in clusters
and 617

mergers of galaxies and 616
major 616

minor 616
morphologies of galaxies and 616
nuclear starbursts and 616, 617
objectives of 615
quasars at large redshifts and 618, 619
radiative cooling and star formation 615
spectrophotometric properties of galaxies

and 616
supernova explosions and 616
the epoch of maximum quasar activity

and 620
‘trial and error’ approach to 617
two-point correlation function for galaxies

and 617, 618
for different luminosities and colours

617
Sérsic index 63
Sérsic’s law 62
Seyfert galaxies 51, 516, 521

counts of 521
Shane–Wirtanen catalogue of galaxies 100
Sidereus Nuncius or the Starry Messenger

(Galileo) 5
σ8

definition of 403
two-point correlation function and 403

Silk damping 353, 355, 357, 360, 361,
381, 410, 426, 430, 450

Silk mass 17, 353, 356, 357
singularity theorems of Penrose and

Hawking 644
Sirius 5
Sirius B 177
6C radio galaxies 255
Sloan Digital Sky Survey (SDSS) 22,

35, 36, 40–42, 49, 50, 75, 76, 78, 79,
82–84, 87–91, 93, 95, 99–101, 110,
111, 245, 362, 387, 410–412, 414,
465, 491, 520, 522, 524, 552, 557, 559

power spectrum of galaxies in 412–415
Small Magellanic Cloud 8
Smoluchowski’s envelope 105
Soudan Underground Laboratory 146, 374
sound horizon 443, 444
sound horizon at the last scattering layer
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Preface

This is the second edition of my book Galaxy Formation. Many people liked the first
edition which appeared in 1998, just before the explosion of magnificent new data
which have completely changed the face of astrophysical cosmology. Many of the
agonies which had to be gone through in the first edition have disappeared and, to
many people’s amazement, including mine, there is now a concordance model for
cosmology, the cosmologist’s equivalent of the particle physicist’s standard model.
Just like the standard model, however, the concordance model creates as many
problems as it solves. This is not a cause for concern, but rather one for celebration
because we are now able to ask much better and deeper questions than in the past.
These questions indicate clearly the need for physics and astrophysics ‘Beyond the
Concordance Model’.

The object of this new edition is to bring this amazing story up-to-date, very much
in the spirit of the first edition. To recapitulate some of the points made in the previous
preface about the origin of the book, I was asked by Springer-Verlag to expand the set
of lecture notes that I prepared in 1988 for the First Astrophysics School organised
by the European Astrophysics Doctoral Network into a full-length book. The set of
notes was entitled Galaxy Formation and was published as a chapter of the volume
Evolution of Galaxies: Astronomical Observations (eds. I. Appenzeller, H.J. Habing
and P. Lena, pages 1 to 93, Springer-Verlag Berlin, Heidelberg, 1989). In that chapter,
I attempted to bridge the gap between elementary cosmology and the technical papers
appearing in the literature which can seem quite daunting on first encounter. The
objective was to present the physical ideas and key results as clearly as possible as
an introduction and guide to the technical literature.

In 1993, more lecture notes on The Physics of Background Radiation were
prepared for the 23rd Advanced Course of the Swiss Society of Astrophysics
and Astronomy, the topic being The Deep Universe (A.R. Sandage, R.G. Kron
and M.S. Longair, Springer-Verlag Berlin, Heidelberg, 1995). Then, also in 1993,
I completed a history of twentieth century astrophysics and cosmology, which was
published as Chap. 23 of a three-volume work entitled Twentieth Century Physics
(eds. L.M. Brown, A. Pais and A.B. Pippard, IOP Publications, AIP Press Bris-
tol, and New York 1995). A much enlarged full-length book on this topic entitled
The Cosmic Century: A History of Astrophysics and Cosmology was published by
Cambridge University Press in 2006. That book brought the story of the origin of
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galaxies and the large-scale structure of the Universe up-to-date as of October 2005
and it has been further updated and expanded in the present book. Just as in the
first edition, the present volume is much more than a recycled and concatenated
version of previously published works. I have rewritten and rethought the original
versions, expanded some parts, brought everything up-to-date and included new
material.

I often find that I understand things best, and present them most clearly, when
I have to prepare them for students, at either the undergraduate or the post-graduate
level, and so I have adopted the same form of presentation here. I have intentionally
presented the material in an informal, pedagogical manner, and attempted to avoid
getting bogged down in formalities and technicalities. If the material becomes too
difficult, I simply summarise the key points, give some appropriate references and
pass on. My approach is to reduce the problems to their simplest form and ratio-
nalise from these examples the results of more complete analyses. Wherever it is
feasible without excessive effort, we will attempt to derive exact results. The level
of presentation is intended to be appropriate for a final-year undergraduate or first-
year post-graduate course of lectures. In other words, it is assumed that the reader
has a good grasp of basic physics but does not necessarily have the appropriate
background in astronomy, astrophysics or cosmology. My aim has been to write
a user-friendly book, taking particular care to expound carefully areas where I have
found students have difficulty.

When I wrote the original set of lecture notes on galaxy formation, my objective
was to tell the story of modern astrophysical cosmology from the perspective of
one of its most important and fundamental problems of cosmology – how did the
galaxies come about? I enjoy this approach to the exposition of modern cosmology
because, to do the problem justice, it is essential to introduce the whole of what
I call classical cosmology, as the framework for the discussion. This approach has,
for me, the great advantage of concentrating upon a crucial problem of astrophysical
cosmology rather than regarding the objective of cosmology as being simply the
delineation of a preferred cosmological model, however interesting that is in its
own right. As we will show, the origin of galaxies and larger-scale structures in the
Universe is one of the great cosmological problems and has provided us with unique
and direct information about the physics of the very early Universe.

This new understanding brings with it the question of whether or not the old
structure of the book is really appropriate – do we really need to grind through all
the old story in order to understand the problems raised by the concordance model?
My decision has been to maintain much of the original structure of the book, largely
because the approach was very strongly physics-motivated and the old story reveals
much of the essential physics of the concordance model.

One final warning is in order. I make no claim that this presentation is com-
plete, unbiased or objective. You should regard the book as my own impressions
and opinions of what I consider to be the important issues of modern astrophysi-
cal cosmology. Others would tell the story in a completely different way and put
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emphasis upon different parts of what is unquestionably a multi-dimensional story.
I will endeavour to include as wide a spectrum of ideas and opinions as possible,
but the text will inevitably be incomplete. I do not worry about this – it should
encourage you to read as widely as possible in order to neutralise my prejudices and
biases.

Good Luck!

Venice and Cambridge,
July 2007 Malcolm Longair
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10 Nucleosynthesis in the Early Universe

One of the reasons why the standard Big Bang model is taken so seriously is its
remarkable success in accounting for the observed abundances of the light elements
by primordial nucleosynthesis, meaning the nuclear processes which took place
during the first ten minutes of the cosmic expansion. The results of this analysis
are crucial for a number of aspects of galaxy formation. In particular, primordial
nucleosynthesis provides one of the most important constraints upon the density
parameter in the form of baryonsΩB. In developing these results, we need to study in
some detail the rôle of neutrinos in the early Universe, how they change the dynamics
of the expansion and how they decouple from the electrons and positrons. The
neutrinos provide an example of the type of decoupling process which is important
for other unknown types of weakly interacting particle.

10.1 Equilibrium Abundances in the Early Universe

Consider a particle of mass m at very high temperatures such that its total energy
is much greater than its rest mass energy, kT � mc2. If the time-scales of the
interactions which maintain this species in thermal equilibrium with all the other
species present at temperature T are shorter than the age of the Universe at that
epoch, the equilibrium number densities of the particle and its antiparticle according
to relativistic statistical mechanics are

N = N̄ = 4πg

h3

∫ ∞

0

p2 dp

eE/kT ± 1
, (10.1)

where g is the statistical weight of the particle, p its momentum and the ± sign
depends upon whether the particles are fermions (+) or bosons (−). The photons
are massless bosons for which g = 2, nucleons, antinucleons, electrons and positrons
are fermions with g = 2 and the electron, muon and tau neutrinos are fermions with
helicity for which g = 1. The equilibrium number densities for these particles
and their antiparticles N = N̄ and their energy densities ε can be found from
this expression. For (a) photons, (b) nucleons, electrons and their antiparticles and
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(c) neutrinos and antineutrinos respectively, these are:

(a) g = 2 , N = 0.244

(
2πkT

hc

)3

m−3 , ε = aT 4 ;

(b) g = 2 , N = N̄ = 0.183

(
2πkT

hc

)3

m−3 , ε = 7
8 aT 4 ;

(c) g = 1 , N = N̄ = 0.091

(
2πkT

hc

)3

m−3 , ε = 7
16 aT 4 . (10.2)

To find the total energy density, we add together all the equilibrium energy densities,
that is,

Total energy density = ε = χ(T) aT 4 . (10.3)

When the particles become non-relativistic, kT 	 mc2 and the abundances of the
different species are maintained in equilibrium by interactions between the particles,
the equilibrium number density is given by the non-relativistic limit of the integral
of (10.1),

N = g

(
mkT

h2

)3/2

exp

(
−mc2

kT

)
. (10.4)

Thus, once the particles become non-relativistic, the number density of the species
decreases exponentially with temperature and it no longer contributes to the inertial
mass density which determines the rate of deceleration of the Universe.

Let us consider the simplest case of the abundances of protons and neutrons in
the early Universe. At redshifts less than 1012, the neutrons and protons are non-
relativistic, kT 	 mc2, and their equilibrium abundances are maintained by the
weak interactions

e+ + n ←→ p + ν̄e , νe + n ←→ p + e− , n ←→ p + e− + ν̄e . (10.5)

The values of g for neutrons and protons are the same and so the relative abundances
of neutrons to protons is

[
n

p

]
= exp

(
−Δmc2

kT

)
, (10.6)

where Δmc2 is the mass difference between the neutron and the proton.

10.2 The Decoupling of Neutrinos and the Neutrino Barrier

The following arguments summarise the essential physics of the process of decou-
pling of neutrinos and their influence upon the dynamics of the early Universe.
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The abundance ratio of neutrons to protons ‘freezes out’ when the neutrino interac-
tions can no longer maintain the equilibrium abundances of neutrons and protons.
The condition for ‘freezing out’ is that the time-scale of the weak interactions be-
comes greater than the age of the Universe. Now, the neutrons and protons are
non-relativistic during the era of primordial nucleosynthesis and so their abundances
decrease exponentially, while the electrons and positrons are still relativistic and
so are present with the abundances given by (10.2b). Consequently, the processes
which prevent the neutrinos escaping freely are their interactions with the electrons
and positrons. These interactions are:

e− + e+ ←→ νe + ν̄e , e± + νe ←→ e± + νe , e± + ν̄e ←→ e± + ν̄e .

(10.7)

The time-scale for these interactions is tweak = (σNc)−1, where the cross-section
for the weak neutrino interactions, σ ≈ 3 × 10−49(E/mec2)2 m2, is proportional
to the square of the neutrino’s energy. N is the total number density of electrons
and positrons which decreases as R−3 ∝ T 3 and so, since Ē = 3kT for relativistic
particles, it follows that the time-scale for the weak interactions changes with tem-
perature as T−5. Specifically, using (10.2b) for N and the above estimate for σ , we
find

tweak ≈ 3 × 1040

(
3k

mec2

)2 (2πk

hc

)3

1

T 5
=
(

1.7 × 1010

T

)5

s . (10.8)

This time-scale increases with decreasing temperature much more rapidly than the
expansion time-scale of the Universe, which is given by (9.7). We have to modify
(9.7) to take account of all the types of elementary particles which can contribute to
the energy density ε during these early epochs, that is, we have to use (10.3). During
these epochs, the particles which contribute to the total energy density are the
photons, the electrons, the electron-, muon- and tau-neutrinos and their antiparticles.
Adding together these contributions, we find from (10.2) that

χ = 1 + 2 × 7
8 + 2Nν × 7

16 , (10.9)

if there are Nν neutrino species. If we adopt the known numbers of neutrino species,
Nν = 3, we find that χ = 43/8 and so

ε = χaT 4 = 3c2

32πG
t−2 , T =

(
3c2

32πGχa

)1/4

t−1/2 = 1010 t−1/2 K , (10.10)

where the time t is measured in seconds. It can be seen that the time-scales for the
expansion of the Universe and the decoupling of the neutrinos were the same when
the Universe had temperature T ≈ 1.2 × 1010 K at t = 0.7 s; at this epoch, kT
was almost precisely 1 MeV. Notice the important point that this time-scale and
temperature are determined by fundamental constants of physics.
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As a by-product of the above analysis, we have derived the epoch at which the
Universe became transparent to neutrinos, namely, the epoch when the neutrinos
could no longer maintain the neutrons and protons in thermodynamic equilibrium.
Just as there was a barrier for photons at a redshift of about 1,500, so there is a
neutrino barrier at energy kT = 1 MeV. This means that we would expect the
background neutrinos to be last scattered at the epoch corresponding to kT = 1
MeV, about 1 second from the origin of the Big Bang.

10.3 The Synthesis of the Light Elements

At the epoch when the neutrinos decoupled at kT = 1 MeV, the neutron fraction, as
determined by (10.6), froze out with a n/(n+p) ratio of

[
n

n + p

]
= 0.21 , (10.11)

so that by this epoch, the protons were significantly more abundant than the neutrons.
After this time, the neutron fraction decreased only slowly, although the process of
neutron decay, which has half-life τn = 885.7±0.8 s, needs to be taken into account.
The protons and neutrons now began the process of light element formation through
the following sequence of nuclear reactions:

p + n → D + γ ,

p + D → 3He + γ n + D → 3H + γ ,

p + 3H → 4He + γ n + 3He → 4He + γ ,

D + D → 4He + γ 3He + 3He → 4He + 2p . (10.12)

The net result is that almost all the neutrons were combined with protons to form
4He nuclei so that, for every pair of neutrons which survives, a helium nucleus was
formed.

Most of the nucleosynthesis did not take place immediately after the neutrinos
decoupled, but at a much lower temperature of about 109 K because, at higher
temperatures, the deuterons which were formed by the crucial first interaction of
(10.12) were destroyed by the γ -rays of the background radiation. We can understand
this result from the following calculation. The binding energy of the deuteron is
EB = 2.23 MeV and so this energy is equal to kT at T = 2.6 × 1010 K. Just as
in the case of the recombination of the intergalactic gas (Sect. 9.3), the photons far
outnumbered the nucleons and it was only when the temperature of the expanding
gas had decreased to about 26 times less than this temperature that the number
density of dissociating photons was less than the number of nucleons. Thus, the
bulk of the nucleosynthesis took place after about 100 s when the temperature of the
background radiation had fallen to about 109 K.

The detailed temperature history and evolution of the light elements during the
epoch of nucleosynthesis were worked out in a classic paper by Wagoner, following
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earlier pioneering computations by Wagoner, Fowler and Hoyle (Wagoner, 1973;
Wagoner et al., 1967) (Fig. 10.1). It can be seen that the bulk of the synthesis of the
light elements occurred when the Universe was about 300 seconds old. Although
some of the neutrons had decayed spontaneously by this time, the bulk of them
survived. Detailed calculations show that after 300 s the neutron mass fraction had
fallen to 0.123 (Weinberg, 1972) and so the predicted mass fraction of helium Yp is
expected to be twice the neutron fraction

Yp =
[ 4He

H +4 He

]
≈ 0.25 . (10.13)

In addition to 4He, which is always produced with an abundance of about 23 to 24%,
traces of the light elements deuterium (D), helium-3 (3He) and lithium-7 (7Li) were
created. Tritium (3H) was also created, but it decayed with a radioactive half-life of
only 12.3 years. Heavier elements were not synthesised because of the absence of
stable isotopes with mass numbers 5 and 8. All the heavier elements were synthesised
during the course of stellar evolution, the key step being the rare triple-α process,
which enables carbon nuclei to be formed when three helium nuclei come together.

These are remarkable results. Historically, it was always a problem to understand
why the abundance of helium is so high wherever it can be observed in the Universe.
Its chemical abundance always appears to be greater than about 23%. In addition,
it was a mystery how the deuterium in the Universe could have been synthesised.
It is a very fragile nucleus and is destroyed rather than created in stellar interiors.
The same argument applies to a lesser extent to the lighter isotope of helium, 3He,
and to 7Li. Precisely these elements were synthesised in the early stages of the
Big Bang model. The difference between primordial and stellar nucleosynthesis
is that, in stellar interiors, nucleosynthesis takes place in roughly thermodynamic
equilibrium over very long time-scales, whereas in the early stages of the Big Bang
the ‘explosive’ nucleosynthesis is all over in fifteen minutes.

Note that the physics which determines the abundance of 4He is different from
that which determines the abundance of the other light elements. The above analysis
shows that the synthesis of 4He is essentially thermodynamic, in that it is fixed by the
ratio of neutrons to protons when the neutrinos decoupled from the nuclear reactions
which maintained them in their equilibrium abundances. In other words, the 4He
abundance is a measure of the temperature at which the decoupling of the neutrinos
took place. On the other hand, the abundances of D, 3He and 7Li are determined by
the extent to which the sequence of reactions (10.12) can convert all the neutrons into
4He before the temperature falls below that at which nucleosynthesis can continue to
take place. Thus, in Universes with high baryon number densities, there is time for
essentially all the neutrons to be combined into deuterium nuclei which then combine
to form 4He nuclei and the predicted deuterium abundance is low. On the other hand,
if the baryon number density is low, there is not time for all the intermediate stages
in the synthesis of helium to be completed and the result is a much higher abundance
of deuterium and 3He. Thus, the abundances of the deuterium and 3He are measures
of the present baryon density of the Universe.
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Fig. 10.1. An example of the time and temperature evolution of the abundances of the light
elements according to the standard Big Bang model of the Universe from detailed computer
calculations by Wagoner (Wagoner, 1973). Before about 100 s, no significant synthesis of
the light elements took place because deuterium 2H was destroyed by hard γ -ray photons
in the high energy (Wien) region of the black-body spectrum. As the temperature decreased,
more and more of the deuterium survived and the synthesis of heavier light elements became
possible through the reactions (10.12). Notice that the synthesis of elements such as D, 3He,
4He, 7Li and 7Be was completed after about 15 minutes. The neutrons decayed with a half-life
of 885.7 ± 0.8 s and the 3H with a half-life of 12.3 years

The predicted abundances of the light elements and their uncertainties using the
most recent values of the nuclear interaction cross-sections are shown in Fig. 10.2,
which is taken from the authoritative review by Steigman (Steigman, 2004). The
predicted abundances are displayed as a function of the baryon-to-photon ratio in
the form η = 1010 nB/nγ = 274ΩBh2, which is conserved as the Universe expands
from the epoch of nucleosynthesis to the present day. Yp is the abundance of helium
by mass, whereas the abundances of D, 3He and 7Li are plotted as ratios by number
relative to hydrogen. The widths of the bands reflect the theoretical uncertainties in
the predictions. It can be seen that for the standard Hot Big Bang, the 4He abundance
is relatively insensitive to the present baryon density in the Universe, in contrast to
those of the other light elements.

The variations of D and 3He can be understood in terms of the arguments given
above. The 7Li abundance decreases with increasing values of η, but then increases
at the largest values of η. The reason is that, at low values of η,7Li is principally
synthesised through the 3H(α,γ )7Li reaction but is easily destroyed in collisions with
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Fig. 10.2. The predicted primordial abundances of the light elements as a function of the
present baryon-to-photon ratio in the form η = 1010nB/nγ = 274ΩBh2. Yp is the abundance
of helium by mass, whereas the abundances for D, 3He and 7Li are plotted as ratios by
number relative to hydrogen. The widths of the bands reflect the theoretical uncertainties in
the predictions. The computations were carried out using Big Bang nucleosynthesis codes
developed at Ohio State University (Steigman, 2004)

protons. Therefore, the 7Li/H abundance decreases as the baryon density increases.
At higher values of η however, 7Li is synthesised by a different route. First, 7Be is
created through the reaction 3He(α,γ )7Be, 7Be being a more tightly bound nucleus
than 7Li and therefore more difficult to destroy. As η increases at high values, the
abundance of 7Be increases. Later in the evolution of the Universe, when neutral
atoms began to form, the 7Be nucleus can capture an s-electron and the subsequent
β-decay results in the creation of 7Li.

10.4 The Abundances of the Light Elements

The predictions of the theory of primordial nucleosynthesis are of the greatest
importance for astrophysical cosmology and a great deal of effort has been devoted
to the observational determination of the primordial abundances of the light elements.
This is a far from trivial exercise but there is now good agreement among a number
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of independent estimates of these, although it would be wrong to imply that all the
issues are closed. The key issue is to find means of determining the light element
abundances in systems which have not been contaminated by astrophysical processes
in stars and the interstellar medium. Steigman has provided an excellent summary of
the theory and observations of the light elements, indicating clearly the undoubted
quantitative successes, as well as potential problem areas (Steigman, 2004, 2006).

10.4.1 Determinations of the Observed Abundances of the Light Elements

Helium-4 (4 He). Helium can only be observed in hot stars and in regions of ionised
hydrogen. It is synthesised in the course of stellar evolution and so it is important to
determine the helium abundance in systems which are relatively uncontaminated by
the effects of stellar nucleosynthesis. This can be achieved by determining the helium
abundance as a function of metallicity and then extrapolating to zero metallicity.
Steigman advocates the use of helium and hydrogen recombination lines in low
metallicity, extragalactic HII regions – data are now available for about 100 such
systems. The 4He mass fraction Y as a function of the oxygen abundance for these
systems is shown in Fig. 10.3. It can be seen that the extrapolation to zero metallicity
is rather small. Steigman adopts a mean value for the primordial helium abundance
of Yp = 0.238 ± 0.005, where the errors encompass the small residual differences
between independent estimates.

Fig. 10.3. The helium mass fraction Y as a function of oxygen abundance, derived from the
same data sets, for a large sample of low metallicity extragalactic HII regions (Steigman,
2004)
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Fig. 10.4. The cosmic deuterium abundance (D/H) as a function of the silicon abundance
from observations of quasar absorption line systems (filled circles). Also shown are the D
abundances for the local interstellar medium (ISM, filled square) and the solar system (Sun,
filled triangle) (Steigman, 2004, 2007)

Deuterium (D). The abundance of deuterium is crucial cosmologically because
of its strong dependence upon the present baryon density. The local interstellar
abundance of deuterium in our Galaxy has been well-determined by observations of
the resonance absorption lines of deuterium in interstellar clouds by the Copernicus
satellite and by the Hubble Space Telescope (Linsky et al., 1994). The values found
amount to (D/H) = (1.5 ± 0.2)× 10−5, the point labelled ‘ISM’ in Fig. 10.4. This
is a secure lower limit to the primordial deuterium abundance since deuterium is
destroyed when it is circulated through the hot central interiors of stars. It is not
so different from the deuterium abundance observed in the solar atmosphere, the
point labelled ‘Sun’ in Fig. 10.4. A key issue is the extent to which the process of
deuterium destruction has taken place during the course of the chemical evolution
of interstellar material.

The most important recent results have come from estimates of the deuterium
abundance in the Lyman-α absorbers observed in the spectra of high redshift quasars.
Absorption line systems in the spectra of quasars with redshifts z ≥ 2.5 have suffi-
ciently large redshifts for the deuterium Lyman resonance lines to be redshifted into
the optical region of the spectrum and so accessible to ground-based high resolution
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spectroscopy with large telescopes (see also Chap. 18). These are highly non-trivial
observations and the interpretation depends upon understanding the processes re-
sponsible for line broadening and eliminating the effects of ‘confusion’ by very weak
hydrogen absorbers which may be redshifted to the wavelengths of the deuterium
lines. They have, however, the advantage that absorption line systems with very low
metallicities can be selected, the inference being that there must have been negligible
circulation of the primordial deuterium through stars.

Steigman discusses carefully the best recent determinations of the cosmic deu-
terium abundance and the discrepancies between them. Figure 10.4 taken from his
review indicates the present level of uncertainty, the deuterium abundance being
plotted against the metallicities of the systems studied. Steigman’s preferred value is
(D/H) = (2.6±0.4)×10−5, where the error is the 1-sigma uncertainty. It is important
to note that the uncertainties are now small compared with the large uncertainties
which dogged the subject in the 1980s and 1990s and which are well-illustrated
by the differing positions adopted by Hogan and Steigman at the 1996 Princeton
meeting on Critical Dialogues in Cosmology (Hogan, 1997; Steigman, 1997).

Helium-3 (3He). 3He is observed in the oldest meteorites, the carbonaceous chon-
drites, with an abundance (3He/H) = (1.4 ± 0.4) × 10−5. This value is taken to
be representative of the 3He abundance about 4.6 × 109 years ago when the so-
lar system formed. 3He has also been observed at radio wavelengths through the
equivalent of the 21-cm hyperfine line of neutral hydrogen and the abundances in
interstellar clouds lie in the range [3He/H] = 1.2 to 15 ×10−5. 3He is destroyed
inside stars but it is a more robust isotope than deuterium. There are two important
aspects to its cosmic abundance. First of all, when deuterium is burned, 3He is one
of the products. Second, when 3He is destroyed, it creates 4He which is then burned
to form heavier elements. Thus, the interpretation of the 3He abundance is more
complicated than the deuterium abundance. In view of these complexities, Steigman
suggests that the estimates of the primordial 3He abundances provide a less reliable
means of determining ΩB. Rather, he proposes using his preferred value (3He/H)
= (1.1 ± 0.2)× 10−5 as a consistency check.

Lithium-7 (7Li). 7Li is also a fragile element and so its primordial abundance
can be depleted by circulation through the hot inner regions of stars. It can also,
however, be enhanced by spallation collisions between cosmic ray protons and
nuclei and the cold interstellar gas and by cosmic ray nucleosynthesis interactions
in the interstellar medium. Therefore, the 7Li abundance as a function of metallicity
should reach a ‘plateau’ in metal-poor stars. In 1982, Spite and Spite made the first
estimates of the 7Li abundance for metal-poor halo stars and found that it converged
at low metallicities (Spite and Spite, 1982). Steigman’s recent compilation of 7Li
abundances shows convincingly the ‘Spite plateau’ at metallicities [Fe/H] ≤ −2
(Fig. 10.5). For larger values of [Fe/H], a much wider spread in the lithium abundance
is observed. This reflects the fact that high metallicities correspond to later stages in
Galactic evolution. Steigman adopts a 7Li abundance of [7Li] = 12 + log(Li/H) =
2.1±0.1. The absolute value may be slightly modified by the mixing of 7Li between
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Fig. 10.5. A compilation of data on the cosmic lithium abundance from observations of metal-
poor and metal-rich stars. ε(Li) is defined to be 1012(Li/H) and [Fe/H] is the logarithmic
metallicity relative to the standard solar value. The ‘Spite plateau’ in (Li/H) is observed at
metallicities less than 100 times the solar value, [Fe/H] ≤ −2 (Steigman, 2004)

the central and outer regions of old metal-poor stars, but the effect would be at the
level of 0.1–0.3 dex in the above abundance.

10.4.2 Comparison of Theory and Observations

It is immediately apparent from the estimates of the primordial abundances of the
light elements discussed in Sect. 10.4.1 and the predictions shown in Fig. 10.2 that
there is an excellent match between the predictions and observations for values of
η ≈ 6. The facts that it is so difficult to account for the cosmic abundances of these
elements by astrophysical processes occurring in stars and that they are created so
naturally by primordial nucleosynthesis are compelling pieces of evidence that the
standard Big Bang model must be along the correct lines. How well does the model
survive quantitative scrutiny?

Steigman adopts the approach of using the deuterium abundance as the most
sensitive probe of the baryon density parameter ΩB, what he calls a baryometer,
and then compares the predicted 4He, 3He and 7Li abundances with these. For
(D/H) = (2.6 ± 0.4)× 10−5, η10 = 6.1+0.7

−0.5, corresponding to

ΩBh2 = 0.022+0.003
−0.002 . (10.14)
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As we will discuss in Chap. 15, this value is in quite remarkable agreement with
the entirely independent estimate of ΩBh2 derived from analysis of the WMAP ob-
servations of the temperature fluctuation power spectrum of the Cosmic Microwave
Background Radiation,

ΩBh2 = 0.0224 ± 0.0009 . (10.15)

The expected value of (3He/H) is (1.0 ± 0.1)× 10−5, again in excellent agreement
with the best estimate of the primordial 3He abundance.

The agreement is somewhat less good for 4He and 7Li. For 4He, the predicted
mass fraction is Y = 0.248±0.001 compared with an adopted primordial abundance
of Y = 0.238 ± 0.005; for 7Li, the predicted fraction is [Li] = 2.65+0.09

−0.11 compared
with the observed value of 2.2 ± 0.1. In both cases, the abundances are in agreement
within the 2σ confidence levels. It is largely a matter of opinion how seriously
one views these discrepancies. One might argue that, in view of the difficulty of
extracting reliable information about the primordial abundances, it is extraordinary
that everything hangs together at the 2σ level; it is a challenge to understand the
magnitude of possible residual systematic errors still present in the best estimates of
the primordial abundances.

There are ways of modifying the predictions if non-standard assumptions are
built into the calculations of primordial nucleosynthesis. If the discrepancies proved
to be significant, these might provide clues about physics beyond the standard model
of particle physics. For example, suppose the expansion rate were greater than that
of the standard radiation-dominated Universe during the crucial epochs when the
neutrinos decoupled. This might be the case if, for example, the gravitational constant
changed with time. The cosmic time-scale would also be speeded up if there were
additional unknown neutrino species present during these epochs. In the latter case,
the value of χ would be greater than that given by (10.9). Running through the same
argument given in Sect. 10.2 to determine the dependence of the temperature at which
the weak interaction time-scale is equal to the age of the Universe upon χ, it is found
that the decoupling would take place at a higher temperature when the neutron-to-
proton ratio would be greater than in the standard picture. As a result, a greater 4He
abundance would be predicted as compared with the standard model. This result
goes entirely in the wrong direction in explaining the potential discrepancy between
the observed and predicted 4He abundance. Steigman shows that, leaving the number
of neutrino species Nν as a free parameter, the best-fitting value is Nν = 2.3, less
than the known number of neutrino species Nν = 3, but this discrepancy is only at
about the 1.5σ level. More than three neutrino species is, however, excluded at a high
degree of significance. It is interesting that this limit to Nν was derived from these
cosmological arguments before the number was measured from the energy width of
the decay products of the Z0 boson by the Large Electron–Positron collider (LEP)
at CERN (Opal Collaboration, 1990).

Another way of modifying the predictions of the standard picture would be to
postulate an asymmetry between the number densities of electron neutrinos and
antineutrinos. In this case, the excess would drive the weak interactions (10.5) one
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way or another in favour of either neutrons or protons and so modify the predicted
cosmic helium abundance. For the neutrino flavour i, the asymmetry is parameterised
by the net lepton number L i which can be related to the dimensionless degeneracy
parameter ξi = μi/T , where μi is the neutrino chemical potential. For values of
ξi 	 1, the net lepton number is

L i = nνi − nν̄i

nγ
≈ 0.684ξi . (10.16)

Steigman finds a best-fitting value of ξi of about 0.05, but the null result ξi = 0 is
within about 1.5σ of this estimate. The data are therefore not inconsistent with the
value ξi = 0.

The upshot of this discussion is that the primordial abundances of the light
elements are in remarkable agreement with the predictions of the standard model of
Big Bang nucleosynthesis. Whilst it is right that the experts should continue to worry
about the discrepancies highlighted above, in my view the successes of the theory far
outweigh the relatively small uncertainties. Most striking is the fact that these studies
have provided a very tight constraint on the baryon density parameter, as expressed
by (10.14). Adopting our reference value of Hubble’s constant h = 0.7, the density
parameter in baryons is ΩB = 0.045. Hence, there is insufficient baryonic matter
to close the Universe. Furthermore, since we have argued that the overall density
parameterΩ0 ≈ 0.3, it follows that the dark matter cannot be in the form of baryonic
matter: the matter content of the Universe must be dominated by non-baryonic dark
matter.

10.5 The Neutrino Background Temperature and the Value of χ

Another important piece of physics is associated with the determination of the
temperature of the neutrino background radiation. We showed in Sect. 10.2 that the
weak interactions maintained the equilibrium abundances of the neutrons and protons
until the epoch at which kT ≈ 1 MeV. Prior to this epoch, the photons, neutrinos,
electrons and their antiparticles were the only relativistic species left and all had
the same temperature. Just after neutrino decoupling, at an energy kT ≈ 0.5 MeV,
the electrons and positrons annihilated creating γ -ray photons. These high energy
photons were rapidly thermalised by Compton scattering and so the temperature of
the background electromagnetic radiation became greater than that of the neutrinos.
The expansion was adiabatic and so the entropy per baryon was conserved during
the expansion. Since the electrons and neutrinos were no longer coupled at kT ≈ 0.5
MeV, the temperatures of the neutrinos and photons can be worked out assuming the
entropy of the electrons and positrons was transferred to the radiation background.

As shown by Kolb and Turner, the entropy per unit comoving volume s is
conserved as the Universe expands

ds = d

[
(ε+ p)R3

T

]
= d

[∑
i

giaT 3 R3

]
= 0 , (10.17)
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Table 10.1. The ratios of the energy densities and entropies of photons, electrons, positrons
and neutrinos prior to the epoch of electron–positron annihilation

Energy density εγ (εe− + εe+) (εν + εν̄) (ενμ + εν̄μ) (εντ + εν̄τ )

Entropy per baryon sγ (se− + se+) (εν + εν̄) (sνμ + sν̄μ ) (sντ + sν̄τ )∑
i gi 1 7/4 7/8 7/8 7/8

where ε and p are the equilibrium energy density and pressure respectively (Kolb and
Turner, 1990). Before the epoch at which the electrons and positrons annihilated, the
ratios of the energy densities ε and entropies s of the various equilibrium relativistic
components had the values given in Table 10.1.

After annihilation, the energy and entropy of the electron–positron pairs were
transferred to the radiation field and so the entropy of the radiation increased by a
factor

sγ + se+ + se−

sγ
= 11

4 . (10.18)

Therefore, since
∑

i gi T−3 is conserved and the neutrinos were decoupled from
equilibrium, the temperature of the radiation was increased relative to that of the
neutrinos by a factor (11/4)1/3. This is the process which is responsible for the little
‘kink’ in the temperature history of the Big Bang illustrated in Fig. 9.3 at the epoch
when the electrons and positrons annihilated.

Since the entropy per baryon is conserved throughout the subsequent evolution
of the standard Big Bang, this ratio is also the ratio of the temperatures of the photons
and neutrinos at the present day. Adopting Trad = 2.728 K, the temperature of the
neutrino background radiation is expected to be Tν = (4/11)1/3 Trad = 1.95 K. This
neutrino background was last scattered at the epoch when kT ≈ 1 MeV, that is
t ≈ 1 s. Unfortunately, the detection of the neutrino background is far beyond the
capabilities of the present generation of neutrino detectors.

Although they do not interact with matter, the neutrino background does affect
the subsequent dynamics of the Universe. During the radiation-dominated phase,
the dynamics of the expansion is determined by the total inertial mass density of
massless particles. For massless particles, even when they are decoupled from the
electrons, their energy density decreases as εν ∝ R−4, just like the radiation field, and
so they still contribute to the total inertial mass density which retards the expansion
of the Universe. The energy densities in photons and neutrinos after the epoch of
annihilation of the electron–positron pairs are shown in Table 10.2.

Table 10.2. The energy densities of photons and neutrinos in units of aT 4
ν after the epoch of

electron–positron annihilation

Energy density εγ (εν + εν̄) (ενμ + εν̄μ) (εντ + εν̄τ )

Contribution to (11/4)4/3 7/8 7/8 7/8
energy density ε
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Thus, the total energy density ε is

ε =
[(

11
4

)4/3 + 21
8

]
aT 4

ν = 6.48 aT 4
ν

= 6.48
(

4
11

)4/3
aT 4

rad = 1.68 aT 4
rad . (10.19)

Thus, during the radiation-dominated era after electron–positron annihilation, we
should use a value χ = 1.68 in the expression for the dynamics of the Universe,

ε = χaT 4 = 3c2

32πG
t−2 ; (10.20)

T =
(

3c2

32πGχa

)1/4

t−1/2 = 1.33 × 1010 t−1/2 K . (10.21)

We can therefore rewrite the expression for the epoch at which the Universe changed
from being ‘radiation-dominated’ to ‘matter-dominated’, in the sense that the dy-
namics changed from R ∝ t1/2 to R ∝ Ω

1/3
0 t2/3. Using (9.8) and (10.19), the ratio

of energy densities of massless to non-relativistic matter becomes

	massless

	matter
= 1.68 aT 4

rad(z)

Ω0	c(1 + z)3c2
= 4.2 × 105(1 + z)

Ω0h2
. (10.22)

Therefore, the change-over in the dynamics took place at a redshift z = 2.4 ×
104Ω0h2. Adopting our reference values of Ω0 = 0.3 and h = 0.7, the epoch of
equality of the energy densities in matter and massless particles occurred at a redshift
z = 3530.

10.6 Baryon-Symmetric Universes

The process of neutrino decoupling is similar in many ways to the more general issue
of particle–antiparticle annihilation in the early Universe and the possible existence
of significant fluxes of relic massive particles from these times. Let us consider the
process of particle–antiparticle annihilation in a little more detail. The analyses of
Zeldovich and Novikov and, in more detail, Kolb and Turner can be recommended
(Zeldovich and Novikov, 1983; Kolb and Turner, 1990). It might be imagined that
there would be negligible abundances of baryons and antibaryons in the Universe
now if there were precisely equal numbers of baryons and antibaryons to begin with,
but this is not correct. As discussed in Sect. 10.1, the equilibrium abundance of any
species of mass m in thermal equilibrium at temperature T in the non-relativistic
limit kT 	 mc2 is

N = N̄ = g

(
mkT

2π�2

)3/2

exp

(
−mc2

kT

)
, (10.23)

where for protons, antiprotons, neutrons and antineutrons g = 2. In the present case,
m is the mass of the nucleon and so it might appear that, since T = 2.728 K at
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the present day, the abundances of nucleons and antinucleons would be of the order
10−1012

. This is not correct, however, since the abundances ‘freeze out’ when the
time-scale of the processes which maintain the nucleons and antinucleons in their
equilibrium abundances become greater than the age of the Universe.

Zeldovich and Novikov presented a simple solution for the relic abundances of
nucleons and antinucleons in baryon-symmetric Universes. The problem is to solve
for the nucleon-to-photon ratio η in the non-relativistic regime. The annihilation
cross-section for nucleons and antinucleons in the non-relativistic regime varies as
σpp̄ = σ0c/v where σ0 ≈ 2 × 10−30 m2 and so the probability of annihilation of one
nucleon with an antinucleon per unit time is σpp̄vN = σ0cN . Therefore, the rate of
change of the number density of nucleons is

dN

dt
= −σ0cN2 + ψ(t)− 3N

2t
, (10.24)

where ψ(t) is the pair creation rate and the term −3N/2t describes the decrease in
number density due to the expansion of the Universe in the radiation-dominated era.
This rate of change of nucleons can be compared with the rate at which the number
density of photons changes with time. The number of photons is conserved as the
Universe expands during the relevant epochs and so

dNγ

dt
= −3Nγ

2t
. (10.25)

Therefore, since η = N/Nγ , differentiating N/Nγ , we find that

dη

dt
= −σ0cη2 + ψ(t)

Nγ

. (10.26)

As expected, if there were no annihilation or creation of proton–antiproton pairs, the
right-hand side would be zero and this ratio would remain unchanged.

Following Zeldovich and Novikov, it is convenient to introduce the equilibrium
value of η = ηeq which would be found if the nucleons and antinucleons remained
in equilibrium at all times. In their calculations, they considered the total numbers
of baryons, antibaryons, neutrons and antineutrons. Then, ηeq would be given by the
ratio of (10.4) to (10.2a),

ηeq = Aθ−3/2 exp(−1/θ) , (10.27)

where θ = kT/mc2 and A is a constant of order unity.
Now, in equilibrium, the rate of annihilations must equal the rate of pair produc-

tion and so the right-hand side of (10.26) would be zero, that is

−σ0cη2
eq + ψ(t)

Nγ

= 0 . (10.28)
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Therefore, the equation for η can be written

dη

dt
= −σ0cNγ (η

2 − η2
eq) . (10.29)

We are interested in finding the time at which the value of η began to depart from
its equilibrium value and this occurred when η− ηeq ≈ ηeq, that is, when

dηeq

dt
= −σ0cNγ (η− ηeq)(η+ ηeq) ≈ −2σ0cNγ η

2
eq . (10.30)

Therefore,

1

ηeq

dηeq

dt
= d(ln ηeq)

dt
≈ −2σ0cNγ ηeq . (10.31)

Now,

ln ηeq = −3

2
ln θ − 1

θ
(10.32)

and so, since we are well into the regime in which θ 	 1, we can approximate
ln ηeq = −1/θ. Furthermore, during these radiation-dominated phases, θ ∝ R−1 ∝
t−1/2 and so

d(ln ηeq)

dt
= d(ln ηeq)

dθ

dθ

dt
= 1

2θt
≈ −2σ0cNγ ηeq . (10.33)

Thus, the epoch at which decoupling took place is given by the solution of

4σ0cηeq Nγ θt ≈ 1 or 4σ0ctθ−1/2e−1/θNγ ≈ 1 . (10.34)

Now, from (10.2a) and (10.10), the dependences of Nγ and θ as a function of cosmic
time t are known,

Nγ = 0.244

(
2πkT

hc

)3

= 2.6 × 1046θ3 m−3 ; (10.35)

T = 1010t−1/2 K ; θ = kT

mc2
= 10−3t−1/2 (10.36)

Substituting these values into (10.32), we find the critical value of θ = θd is given
by the solution of

e1/θd = 6.4 × 1019θ
1/2
d . (10.37)

The solution is found by repeated approximation, with the result

θd = kTd

mc2
≈ 1

44
; td = 2.5 × 10−3 s; ηd = 2 × 10−18 . (10.38)
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Fig. 10.6. Illustrating the freeze-out of massive species due to particle–antiparticle annihilation
in the early Universe (Kolb and Turner, 1990). The parameter Y is the specific entropy of the
particle, which is proportional to the number density of particles per unit comoving volume
and so equivalent to the quantity η used in the text. The quantity plotted on the abscissa is
mc2/kT = θ−1. It can be seen that the freeze-out abundance for nucleon–nucleon annihilation,
corresponding to θ−1 = 44, agrees with the calculations presented in the text

Before this time, the particles and antiparticles were maintained in thermal equi-
librium by the baryon–antibaryon annihilation and pair production mechanisms.
At later times, the mean free path for pp̄ collisions exceeded the horizon scale at
that time as may be appreciated by evaluating the optical depth for these collisions
τpp̄ = σ0 Nctd. At that time the nucleon number density was N ≈ 6 × 1023 m3 and
so τpp̄ ≈ 1. Thus, at later times, there were insufficient interactions to maintain the
equilibrium abundances.

We can now work out how the value of η changes after this epoch. Inspection
of (10.25) shows that at later times ηeq decreases exponentially and so (10.27) for η
reduces to

dη

dt
= −σ0cNγ η

2 . (10.39)

Taking the initial conditions to be given by (10.34), the solution is

η

ηd
≈ 1

[1 + 1019ηd(1 − τ−1/2)] , (10.40)

where τ = t/td. Thus, when τ → ∞,

η

ηd
≈ 1

[1 + 1019ηd] ≈ 0.05 . (10.41)
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Therefore, from the time the nucleons decoupled, the value of η only decreased by a
factor of about 20 and so the value of η at the present day should be about 10−19, that
is, about 109 times smaller than its observed value. This is the origin of the baryon
asymmetry problem discussed in Sect. 9.6.

The reason for carrying out this calculation in some detail is that it gives physical
insight into the decoupling of any type of massive particle in the early Universe, a
subject dealt with in some detail by Kolb and Turner and to which we will return in
Sect. 13.3 (Kolb and Turner, 1990). Figure 10.6 shows the results of calculations for
the freeze-out of massive particle species in the early Universe for different values of
the interaction cross-section 〈σv〉. The solid line shows the equilibrium abundances
and the dashed lines the actual abundances when account is taken of the decoupling
of the particles from equilibrium. The physics behind these calculations is precisely
the same as that involved in calculating the relic abundances of particles and their
antiparticles. After decoupling takes place, the abundances freeze-out with more or
less the value at decoupling. As the cross-section decreases, the freeze-out occurs at
higher abundances of the massive species, as illustrated in Fig. 10.6.



11 The Evolution of Perturbations
in the Standard Big Bang

At last, we can begin the study of the origin and formation of galaxies and the large-
scale structure of the Universe. The first two parts of this book have presented the
essential framework within which these problems have to be tackled. Much of this
chapter, and indeed most of Part III, is concerned with understanding how the process
of galaxy and structure formation began. What happened once these structures began
to form is the subject of Part IV.

11.1 What the Theorists Are Trying to Do

As the discussions of Chaps. 3 and 4 have shown, galaxies and clusters of galaxies
are complex systems, but the aim of the cosmologist is not to explain all their detailed
features – that is the job of the astrophysicist. The cosmologist seeks to explain the
origin of large-scale structures in the expanding Universe in the sense that, if δ	
is the enhancement in density of some region over the average background density
	, the density contrast Δ = δ	/	 reached amplitude Δ = δ	/	 ∼ 1 from initial
conditions which must have been remarkably isotropic and homogeneous in the very
early Universe. Once these perturbations have grown in amplitude toΔ = δ	/	 ∼ 1,
their subsequent development becomes non-linear and they rapidly evolve towards
bound structures in which star formation and other astrophysical process lead to the
formation of galaxies and clusters of galaxies as we know them.

The cosmologist’s objectives are therefore twofold: to understand how density
perturbations evolve in the expanding Universe and then to derive and account for
the initial conditions necessary for the formation of structure in the Universe. These
may appear to be rather modest goals but they turn out to lead to some of the
most profound problems of modern cosmology. As we will show, the origin of the
fluctuations must lie in physical processes occurring in the very early Universe, well
before the epochs to which we have ready access, meaning long before the epoch of
nucleosynthesis discussed in Chap. 10. As a result, these studies offer the possibility
of providing powerful tools for exploring physics under physical conditions which
are not accessible in the laboratory. Indeed, they have undoubtedly expanded the
scope of physical enquiry open to theorists and have the potential for constraining
physical theories beyond the standard model of particle physics.
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11.1.1 Why this Programme Is Feasible

Galaxies, clusters of galaxies and other large-scale features of our local Universe
must have formed relatively late in the history of the Universe, as can be deduced
from the following argument. As discussed in Sect. 8.7, the average density of matter
in the Universe today corresponds to a density parameterΩ0 ≈ 0.3. The analyses of
Chaps. 3 and 4 show that the average densities of gravitationally bound systems such
as galaxies and clusters of galaxies are much greater than this value, typically their
densities being about 106 and 1000 times greater than the mean background density
respectively. Superclusters, meaning unbound systems on scales greater than those
of clusters of galaxies, have mean densities a few times the background density.
Therefore, the density contrasts Δ = δ	/	 for galaxies, clusters of galaxies and
superclusters at the present day are roughly 106, 1000 and a few respectively. Since
the average density of matter in the Universe 	 changes as (1 + z)3, it follows
that typical galaxies must have had Δ ∼ 1 at a redshift z ≈ 100. They could not
have separated out as discrete objects at greater redshifts, or else their mean densities
would be much greater than those observed at the present epoch. The same argument
applied to clusters and superclusters suggests that they could not have separated out
from the expanding background at redshifts greater than z ∼ 10 and 1 respectively.
As we will discuss in more detail in Sect. 16.1.1, these are rather generous upper
limits to the redshifts at which these objects could have formed.

We conclude that galaxies and larger-scale structures could only have attained
density contrasts Δ ∼ 1 at redshifts significantly less than 100, in other words, long
after the epoch of recombination at z ≈ 1000 and well into the matter-dominated
phase of the standard Big Bang. These are important conclusions since it means that
the structures we observe today did not attainΔ ∼ 1 in the inaccessibly remote past,
but at redshifts which are in principle accessible by observation. It also means that
these perturbations were certainly in the linear regime at redshifts z > 100 and this
means the calculations of their evolution during the early evolution of the Universe
can be carried out with real precision. This is why we can have some confidence
in making the comparison between the predictions of theory and observations of
large-scale structures. These considerations indicate why it is natural to begin this
study with an analysis of how small density perturbations develop in the expanding
Universe.

11.1.2 A Warning

It is important to issue the warning at the outset that the full analysis of the growth
of perturbations in the standard Big Bang picture is far from trivial. A full general
relativistic analysis is needed to tackle some of the trickier issues which arise and
this can become quite complex. This goes far beyond the ambitions of this book
which is to provide a non-technical guide to the physical content of the theory and
its comparison with observation. Much of the analysis requires tools way beyond
those contained in the standard course in physics and astrophysics and I will try to
elucidate these in simple terms. But, it would be wrong to pretend that what I write
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is other than a simple overview of many complex topics. The enthusiast has little
alternative but than to make a head-on attack on general relativity and quantum field
theory to gain deeper understanding.

Many books attempt to elucidate the physics of these processes. My own view
is that understanding is best achieved by trying all of them and seeing which is
most to the taste of the reader. I would regard the books by Peebles, Kolb and
Turner, Peacock, Liddle and Lyth, Dodelson and Hobson, Efstathiou and Lasenby as
an excellent set of texts from which the reader will undoubtedly gain considerable
enlightenment (Peebles, 1993; Kolb and Turner, 1990; Peacock, 2000; Liddle and
Lyth, 2000; Dodelson, 2003; Hobson et al., 2006). My objectives are much more
modest, but may help in understanding the issues addressed in these more ambitious
narratives.

11.2 The Non-Relativistic Wave Equation for the Growth
of Small Perturbations in the Expanding Universe

Let us begin with the simplest case of the growth of gravitational instabilities in the
non-relativistic regime for scales much less than the horizon scale, which for the
moment we will take to be l ≈ ct. Later, we will deal with the relativistic regime
and superhorizon scales.

The analysis which follows is one of the classics of theoretical astrophysics. The
problem of the growth of small perturbations under gravity dates back to the work
of Jeans in the first decade of the twentieth century and then to a classic paper by
Lifshitz of 1946 (Jeans, 1902; Lifshitz, 1946). We will carry out this analysis in
some detail because of the general importance of the various differential equations
which come out of this analysis.

The problem gets off to a very bad start. Let us first write down the equations
of gas dynamics for a fluid in a gravitational field. These consist of three partial
differential equations which describe (1) the conservation of mass, or the equation of
continuity, (2) the equation of motion for an element of the fluid, Euler’s equation,
and (3) the equation for the gravitational potential in the presence of a density
distribution 	, Poisson’s equation.

Equation of continuity:
∂	

∂t
+ ∇ · (	v) = 0 ; (11.1)

Equation of motion:
∂v
∂t

+ (v · ∇)v = −1

	
∇ p − ∇φ ; (11.2)

Gravitational potential: ∇2φ = 4πG	 . (11.3)

Let us recall the meaning of these equations. They describe the dynamics of a fluid
of density 	 and pressure p in which the velocity distribution is v. The gravitational
potential φ at any point is given by Poisson’s equation (11.3) in terms of the density
distribution 	. In (11.1), (11.2) and (11.3), the partial derivatives describe the varia-
tions of these quantities at a fixed point in space. This description is often referred
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to as an Eulerian system of coordinates. We can imagine setting up a fixed grid of
points in space and then the Eulerian derivatives describe how the properties of the
fluid at these fixed points on the grid change with time.

Another way of writing the equations of fluid dynamics is work in a coordinate
system in which the motion of a particular fluid element is followed. These coordi-
nates are known as Lagrangian coordinates.1 I will write derivatives which follow
a particular fluid element as total derivatives d/dt. It is straightforward to show that

d

dt
= ∂

∂t
+ (v · ∇) . (11.4)

Notice the significance of the operator (v · ∇). There is no ambiguity when this
operator acts upon a scalar quantity. When it operates upon a vector quantity, it means
that the derivative vx∂/∂x + vy∂/∂y + vz∂/∂z should be taken for each component
of the vector. Using the identity ∇ · (	v) = 	∇ · v + v · ∇	, the equations of motion
can be written in Lagrangian form,

d	

dt
= −	∇ · v ; (11.5)

dv
dt

= −1

	
∇ p − ∇φ ; (11.6)

∇2φ = 4πG	 . (11.7)

The expression (11.6) describes the fact that the Lagrangian coordinate system is
the natural system of coordinates in which to write down Newton’s second law of
motion since it describes the forces acting on a particular element of the fluid.

In the cases of isotropic world models, (11.5), (11.6) and (11.7) can be thought of
as being written in comoving form, that is, the properties of a fluid element expanding
uniformly with the Universe are followed, rather than what would be observed if we
were located at a fixed point in space and watched the Universe expand past it. For
such models, ∇ p and ∇φ are zero. Then, writing Hubble’s law in the Eulerian frame
as v = Hr, (11.5) becomes

d	

dt
= −3H	 . (11.8)

Then, since H dt = (ȧ/a) dt, 	 = 	0a−3 as expected. In the case we have to
discuss here, however, there is an important distinction between the Lagrangian and
comoving coordinate systems. The gradients in the gravitational potential and the
pressure result in changes to the comoving distance coordinates of a particular fluid
element; only in the uniform isotropic case do the points preserve the same comoving
distance coordinates for all time.

The standard procedure is first to establish the solution for the unperturbed
medium, that is, a uniform state in which 	 and p are the same everywhere and

1 I have discussed the relation between the Eulerian and Lagrangian systems of coordinates
in the Appendix to Chap. 7 of my book Theoretical Concepts in Physics (Longair, 2003).
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v = 0. Unfortunately this solution does not exist for a stationary medium. Equations
(11.5), (11.6) and (11.7) show that, in the uniform stationary state, the only solutions
is 	 = 0. This is a problem since it means that there is no static solution with finite
density and pressure about which to perturb the medium. Fortunately, we need to
treat the growth of fluctuations in a uniformly expanding medium and this eliminates
the problem.

We first derive the unperturbed solutions for the velocity v0, density 	0, pressure
p0 and gravitational potential φ0 which satisfy (11.5), (11.6) and (11.7). Notice that
we will use the subscripts 0 to refer to the properties of the unperturbed medium
only in this section

d	0

dt
= −	0∇ · v0 ; (11.9)

dv0

dt
= − 1

	0
∇ p0 − ∇φ0 ; (11.10)

∇2φ0 = 4πG	0 . (11.11)

Next, we write down the equations including first-order perturbations, that is,

v = v0 + δv, 	 = 	0 + δ	, p = p0 + δp, φ = φ0 + δφ . (11.12)

These are substituted into (11.5), (11.6) and (11.7), which are expanded to first order
in small quantities and then (11.9), (11.10) and (11.11) are subtracted from each of
them in turn. From the subtraction of (11.9) from (11.5), we find

d

dt

(
δ	

	0

)
= dΔ

dt
= −∇ · δv , (11.13)

where Δ = δ	/	0 is the density contrast. This is an important equation since it
relates the rate at which the density contrast develops to the peculiar velocity δv
associated with the collapse of the perturbation.

To make progress with (11.6), we expand dv/dt to first order in small quantities
using (11.4).

d(v0 + δv)
dt

= ∂v0

∂t
+ (v0 · ∇)v0 + d(δv)

dt
+ (δv · ∇)v0 . (11.14)

In expanding the right-hand side of (11.10), we assume that the initial state is
homogeneous and isotropic so that ∇ p0 = 0 and ∇	0 = 0. We then find, when we
subtract (11.10) from (11.14), that

d(δv)
dt

+ (δv · ∇)v0 = − 1

	0
∇δp − ∇δφ . (11.15)

The third equation results from the subtraction of (11.11) from (11.7). Because
of the linearity of Poisson’s equation (11.7), we find

∇2 δφ = 4πG δ	 . (11.16)
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Equations (11.13), (11.15) and (11.16) are the key differential equations in the
present analysis.

In the cosmological case, the background is expanding uniformly and so it is
convenient to introduce comoving coordinates by writing in the usual way x = a(t)r,
where r is comoving coordinate distance and a(t) is the scale factor. Therefore,

δx = δ[a(t)r] = r δa(t)+ a(t) δr . (11.17)

The velocity can therefore be written

v = δx
δt

= da

dt
r + a(t)

dr
dt
. (11.18)

Thus, we can identify v0 with the Hubble expansion term (da/dt)r and the perturba-
tion to the Hubble flow δv with the term a(t)(dr/dt). In other words, the second term
is associated with the change in comoving distance coordinate under the influence
of gravity and pressure gradients. It is convenient to write the perturbed velocity as
a(t)u so that u is the perturbed comoving velocity. Equation (11.15) then becomes

d

dt
(au)+ (au · ∇)ȧr0 = − 1

	0
∇δp − ∇δφ . (11.19)

It will prove convenient to write the derivatives with respect to the comoving co-
ordinate r rather than x so that d/dx = (1/a)d/dr. Differentials with respect to
comoving coordinates will be written ∇c. Therefore, since (au · ∇)ȧr = uȧ, (11.19)
becomes

du
dt

+ 2

(
ȧ

a

)
u = − 1

	0a2
∇cδp − 1

a2
∇cδφ . (11.20)

Now, let us consider adiabatic perturbations in which the perturbations in pres-
sure and density are related to the adiabatic sound speed c2

s by ∂p/∂	 = c2
s . Thus,

δp can be replaced by c2
s δ	 in (11.20). We now combine (11.13) and (11.19) by

taking the divergence in comoving coordinates of (11.20) and the time derivative of
(11.13),

∇c · u̇ + 2

(
ȧ

a

)
∇c · u = − c2

s

	0a2
∇2

c (δ	)− 1

a2
∇2

c (δφ) . (11.21)

d2

dt2

(
δ	

	

)
= −∇c · u̇ . (11.22)

Therefore,

d2Δ

dt2
+ 2

(
ȧ

a

)
dΔ

dt
= c2

s

	0a2
∇2

c δ	+ 4πGδ	 . (11.23)
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We now seek wave solutions for Δ of the form Δ ∝ exp i(kc · r − ωt) and hence
derive a wave equation for Δ.

d2Δ

dt2
+ 2

(
ȧ

a

)
dΔ

dt
= Δ(4πG	0 − k2c2

s ) , (11.24)

where kc is the wavevector in comoving coordinates. The proper wavevector k is
related to kc by kc = ak. Equation (11.24) is the result we have been seeking and
a number of important conclusions follow from it. I make no apology for deriving
(11.24) in somewhat gruesome detail because it is as important as any equation in
astrophysical cosmology.

I have used cosmic time t as the time variable in this analysis but, in much of the
technical literature, theorists prefer to use the conformal time, τ , which is introduced
in Sect. 12.2. These times are related by dτ = dt/a. It is a straightforward exercise
to show that (11.24) becomes

d2Δ

dτ2
+
(

ȧ

a

)
dΔ

dτ
= Δ(4πG	0a2 − k2

cc2
s ) , (11.25)

where kc is the comoving wavenumber and the derivative ȧ is taken with respect to
conformal time. We will use this result in Sect. 20.5.6.

11.3 The Jeans’ Instability

Let us return first of all to the problem originally studied by Jeans (Jeans, 1902).
The differential equation for gravitational instability in a static medium is obtained
by setting ȧ = 0 in (11.24). Then, for waves of the form Δ = Δ0 exp i(k · r − ωt),
the dispersion relation,

ω2 = c2
s k2 − 4πG	 , (11.26)

is found. Note that we have dropped the subscript 0 on the density 	. This relation
was first derived by Jeans in 1902. The corresponding equation for the electrostatic
case was only derived after the discovery of plasma oscillations by Langmuir and
Tonks in the 1920s, and describes the dispersion relation for longitudinal plasma
oscillations, or Langmuir waves (Tonks and Langmuir, 1929):

ω2 = c2
s k2 + Nee2

meε0
, (11.27)

where Ne is the electron density and me is the mass of the electron. The formal
similarity of the physics may be appreciated by comparing the attractive gravitational
acceleration of a region of mass density 	 and the repulsive electrostatic acceleration
of a region of electric charge density Nee. The equivalence of −G	me and Nee2/4πε0

is apparent.
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The dispersion relation (11.26) describes oscillations or instability depending
upon the sign of its right-hand side:

– If c2
s k2 > 4πG	, the right-hand side is positive and the perturbations are oscilla-

tory, that is, they are sound waves in which the pressure gradient is sufficient to
provide support for the region. Writing the inequality in terms of wavelength, sta-
ble oscillations are found for wavelengths less than the critical Jeans’ wavelength
λJ

λJ = 2π

kJ
= cs

(
π

G	

)1/2

. (11.28)

– If c2
s k2 < 4πG	, the right-hand side of the dispersion relation (11.26) is negative,

corresponding to unstable modes. The solutions can be written

Δ = Δ0 exp(Γt + ik · r) , (11.29)

where

Γ = ±
[

4πG	

(
1 − λ2

J

λ2

)]1/2

. (11.30)

The positive solution corresponds to exponentially growing modes. For wave-
lengths much greater than the Jeans’ wavelength, λ � λJ, the growth rate Γ
becomes (4πG	)1/2. In this case, the characteristic growth time for the instability
is,

τ = Γ −1 = (4πG	)−1/2 ∼ (G	)−1/2 . (11.31)

This is the famous Jeans’ Instability and the time-scale τ is the typical collapse
time for a region of density 	.

The physics of this result is very simple. The instability is driven by the self-
gravity of the region and the tendency to collapse is resisted by the internal pressure
gradient. We can derive the Jeans’ instability criterion by considering the pres-
sure support of a region with pressure p, density 	 and radius r. The equation of
hydrostatic support for the region is

dp

dr
= −G	M(< r)

r2
. (11.32)

The region becomes unstable when the self-gravity of the region on the right-hand
side of (11.32) overwhelms the pressure forces on the left-hand side. To order of
magnitude, we can write dp/dr ∼ −p/r and M ∼ 	r3. Therefore, since c2

s ∼ p/	,
the region becomes unstable if r > rJ ∼ cs/(G	)1/2. Thus, the Jeans’ length is the
scale which is just stable against gravitational collapse. Notice that the expression for
the Jeans’ length is the distance a sound wave travels in a collapse time. The Jeans’
instability is of central importance in understanding the process of star formation in
giant molecular clouds.
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11.4 The Jeans’ Instability in an Expanding Medium

The results of this section are so important that three different versions of the Jeans’
instability in an expanding medium are given, each illustrating different aspects of
the same basic physical process.

11.4.1 Small Perturbation Analysis

We return first to the full version of (11.24) of

d2Δ

dt2
+ 2

(
ȧ

a

)
dΔ

dt
= Δ(4πG	− k2c2

s ) . (11.24)

The second term 2(ȧ/a)(dΔ/dt) modifies the classical Jeans’ analysis in crucial
ways. It is apparent from the right-hand side of (11.24) that the Jeans’ instability
criterion applies in this case also but the growth rate is significantly modified. Let us
work out the growth rate of the instability in the long wavelength limit λ � λJ, in
which case we can neglect the pressure term c2

s k2. We then have to solve the equation

d2Δ

dt2
+ 2

(
ȧ

a

)
dΔ

dt
= 4πG	Δ . (11.33)

Rather than deriving the general solution, let us first consider the special cases
Ω0 = 1 and Ω0 = 0 for which the scale factor–cosmic time relations are a =(

3
2 H0t

)2/3
and a = H0t respectively.

– The Einstein–de Sitter critical model Ω0 = 1, ΩΛ = 0. In this case,

4πG	 = 2

3t2
and

ȧ

a
= 2

3t
. (11.34)

Therefore,

d2Δ

dt2
+ 4

3t

dΔ

dt
− 2

3t2
Δ = 0 . (11.35)

By inspection, it can be seen that there must exist power law solutions of (11.35)
and so we seek solutions of the formΔ = atn . Substituting into (11.35), we find

n(n − 1)+ 4
3 n − 2

3 = 0 , (11.36)

which has solutions n = 2/3 and n = −1. The latter solution corresponds to
a decaying mode. The n = 2/3 solution corresponds to the growing mode we
are seeking, Δ ∝ t2/3 ∝ a = (1 + z)−1. This is the key result

Δ = δ	

	
∝ (1 + z)−1 . (11.37)

In contrast to the exponential growth found in the static case, the growth of
the perturbation in the case of the critical Einstein–de Sitter universe is only
algebraic. This is the origin of the problems of forming galaxies by gravitational
collapse in the expanding Universe.



320 11 The Evolution of Perturbations in the Standard Big Bang

– The empty, Milne model Ω0 = 0, ΩΛ = 0. In this case,

	 = 0 and
ȧ

a
= 1

t
, (11.38)

and hence

d2Δ

dt2
+ 2

t

dΔ

dt
= 0 . (11.39)

Again, seeking power law solutions of the form Δ = atn , we find n = 0 and
n = −1, that is, there is a decaying mode and one of constant amplitude Δ =
constant.

These simple results describe the evolution of small amplitude perturbations,
Δ = δ	/	 	 1 for models withΩΛ = 0. In the early stages of the matter-dominated
phase, the dynamics of the world models are approximately those of the Einstein–de
Sitter model, a ∝ t2/3, and so the amplitude of the density contrast grows linearly
with a. In the late stages of models with Ω0 < 1, ΩΛ = 0, the dynamics of the
Universe become approximately those of theΩ0 = 0 model and then the amplitudes
of the perturbations grow very slowly. In the limit Ω0 = 0, they do not grow at all.

There is another way of understanding this result. We can write Friedman’s
equation in terms of the curvature of space, as in (7.19),

ȧ2 = Ω0 H2
0

a
− c2

�2
= Ω0 H2

0

a
− κc2 . (11.40)

κ is the space curvature at the present epoch and, in the ΩΛ = 0 models, is entirely
determined by the density parameter Ω0,

κ = 1

�2
= (Ω0 − 1)

(c2/H2
0 )

. (11.41)

We are only concerned with models with Ω0 < 1 and so we recover the results
described in Sect. 7.2.3 that the models have finite velocities at infinity. But there
is another way of thinking about this result. We can compare the gravitational
deceleration with the curvature term in (11.40). When Ω0 H2

0 /a � c2/�2, we
obtain the expression (7.29) which we found before. In the opposite case, in which
Ω0 H2

0 /a 	 c2/�2, the dynamics become

ȧ2 = − c2

�2
= −κc2 . (11.42)

Because κ is negative, the spatial geometry of the Universe is hyperbolic and so the
diverging geodesics counteract the attractive force of gravity. The transition between
the two cases occurs at a redshift Ω0z ≈ 1.
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11.4.2 Perturbing the Friedman Solutions

In our second approach, we investigate the behaviour of density perturbations from
the perspective of the dynamics of the Friedman world models. We demonstrated
in Sect. 7.2 how the dynamics of these models could be understood in terms of
a simple Newtonian model. The development of a spherical perturbation in the
expanding Universe can be modelled by embedding a spherical region of density
	 + δ	 in an otherwise uniform Universe of density 	 (Fig. 11.1). Using the same
approach as in Sect. 7.2, the spherical region behaves dynamically like a Universe
of slightly higher density. It is simplest to begin with the parametric solutions (7.25)
and (7.26) for the dynamics of the world models

a = A(1 − cos θ) t = B(θ − sin θ) ; (11.43)

A = Ω0

2(Ω0 − 1)
B = Ω0

2H0(Ω0 − 1)3/2
. (11.44)

First, we find the solutions for small values of θ, corresponding to early stages of
the matter-dominated era. Expanding to third order in θ, cos θ = 1 − 1

2θ
2, sin θ =

θ − 1
6θ

3, we find the solution

a = Ω
1/3
0

(
3H0t

2

)2/3

. (11.45)

This solution is identical to (7.29) and shows that, in the early stages of matter-
dominated models, their dynamics tend towards those of the Einstein–de Sitter

Fig. 11.1. Illustrating a spherical perturbation with slightly greater density than the average in
a uniformly expanding Universe. The region with slightly greater density behaves dynamically
exactly like a model Universe with density 	+ δ	
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model, Ω0 = 1, that is, a = (3H0t/2)2/3, but with a different constant of propor-
tionality.

Now, consider a region of slightly greater density embedded within the back-
ground model. To derive the small amplitude behaviour of the perturbation, we
expand the expressions for a and t to fifth order in θ, cos θ = 1 − 1

2θ
2 +

1
24θ

4 . . . , sin θ = θ − 1
6θ

3 + 1
120θ

5 . . . . The solution follows in exactly the same
manner as (11.45)

a = Ω
1/3
0

(
3H0t

2

)2/3
[

1 − 1

20

(
6t

B

)2/3
]
. (11.46)

We can now write down an expression for the change of density of the spherical
perturbation with cosmic epoch

	(a) = 	0a−3
[

1 + 3

5

(Ω0 − 1)

Ω0
a

]
. (11.47)

The density perturbation may be considered to be a mini-Universe of slightly higher
density thanΩ0 = 1 embedded in anΩ0 = 1 model. Therefore, the density contrast
changes with scale factor as

Δ = δ	

	
= 	(a)− 	0(a)

	0(a)
= 3

5

(Ω0 − 1)

Ω0
a . (11.48)

This result illustrates why density perturbations grow only linearly with cosmic
epoch. The instability corresponds to the slow divergence between the variations of
the scale factors with cosmic epoch of the model with Ω0 = 1 and one with slightly
greater density. This behaviour is illustrated in Fig. 11.2. This slow algebraic growth
of density perturbations was at the heart of the arguments advanced by Tolman and
Lemaître in the 1930s and more generally by Lifshitz in 1946 that there was not
time for galaxies to have formed by gravitational collapse in the expanding Universe
(Tolman, 1934; Lemaître, 1933).

Notice that, if Ω0 = 1, there is no growth of the perturbation. In order to
form structures in a finite time, the perturbations on large scales have to have finite
amplitudes which bring them onto the collapsing trajectory shown in Fig. 11.2.
These cannot be simply statistical fluctuations in the numbers of particles on very
large scales, which would be very small indeed.

11.4.3 Falling Poles

The third argument contains exactly the same physics. Consider a very long, thin
pole of length l and mass m balanced on one end. We all know that the situation is
unstable and that, if perturbed, the pole falls over. This is no more than a gravitational
instability in which there is no restoring force to prevent collapse. We can work out
the growth rate of the instability by conservation of energy in a uniform gravitational
field. In Fig. 11.3, the pole is shown at an angle θ to the vertical and then, by
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Fig. 11.2. Illustrating the growth of a spherical perturbation in the expanding Universe as the
divergence between two Friedman models with slightly different densities

Fig. 11.3. Illustrating a falling pole

conservation of energy, the loss of gravitational potential energy (gml/2)(1 − cos θ)
must equal the increase in rotational energy (1/2)Iω2 about the bottom end of the
pole O, where I is moment of inertia of the pole about O

gml

2
(1 − cos θ) = 1

2 Iω2 . (11.49)

Since I = 1
3 ml2 and ω = θ̇, it follows that

θ̇2 = 3
g

l
(1 − cos θ) . (11.50)

There is an exact non-linear solution for this equation, but let us deal only with the
small angle approximation in which cos θ = (1 − θ2/2 + . . . ). Then, we obtain
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a simple exponential equation for the collapse of the pole

θ̇ =
(

3g

2l

)1/2

θ . (11.51)

The solution θ = θ0 exp(Γt) with Γ = (3g/2l)1/2 is the exact analogue of the
equation for the growth of the Jeans’ instability in the absence of pressure forces in
a static medium.

To modify this result for the case of an expanding Universe, we recall that, in the
absence of pressure gradients, the differential equation (11.24) for the growth rate
of the instability is

d2Δ

dt2
+ 2

(
ȧ

a

)
dΔ

dt
= 4πG	Δ . (11.52)

Notice that the force driving the instability on the right-hand side of this expression
depends upon the product of the gravitational constant G and the density of the
medium 	. Now, in the expanding Universe, 	 ∝ a−3 and, for the critical model
Ω0 = 1,ΩΛ = 0, a ∝ t2/3. Therefore, the driving force is proportional G	 ∝ t−2.
To simulate this case for a collapsing pole, we can assume that the gravitational
acceleration decreases as t−2, in which case the equation of motion of the pole
(11.48) becomes

θ̇ ∝ θ

t
. (11.53)

Inspection of (11.50) shows that the solutions are of power law form, θ ∝ t, rather
than exponentially growing solutions. This calculation illustrates the origin of the
linear algebraic growth of the Jeans’ instability in the expanding Universe. The
gravitational driving force diminishes with time because the mean density of the
Universe decreases as it expands.

11.4.4 The General Solution

The analyses of Sects. 11.4.1 to 11.4.3 give insight into the general solutions of
(11.33). Following Heath, Carroll and his colleagues provide a general solution for
the growth of the density contrast with scale factor for all pressure-free Friedman
world models (Heath, 1977; Carroll et al., 1992). Equation (11.33) can be rewritten
in terms of the density parameter Ω0

d2Δ

dt2
+ 2

(
ȧ

a

)
dΔ

dt
= 3Ω0 H2

0

2
a−3Δ , (11.54)

where, in general,

ȧ = H0

[
Ω0

(
1

a
− 1

)
+ΩΛ(a

2 − 1)+ 1

]1/2

. (11.55)
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The solution for the growing mode can be written as follows:

Δ(a) = 5Ω0

2

(
1

a

da

dt

)∫ a

0

da′
(

da′

dt

)3 , (11.56)

where the constants have been chosen so that the density contrast for the critical
world model,Ω0 = 1ΩΛ = 0, has unit amplitude at the present epoch, a = 1. With
this scaling, the density contrasts for all the examples considered below correspond
to Δ = 10−3 at a = 10−3. Solutions of this integral can be found in terms of
elliptic functions, but it is simplest to carry out the calculations numerically for
a representative sample of world models.

In Fig. 11.4, the development of density fluctuations from a scale factor a =
1/1000 to a = 1 is shown for a range of world models with ΩΛ = 0. These results
are consistent with the calculations carried out in Sect. 11.4.1, in which it was argued
that the amplitudes of the density perturbations vary as Δ ∝ a so long as Ω0z � 1,
but the growth tends to zero at smaller redshifts.

Since the scale factor a = 1/1000 corresponds to the epoch of recombination,
or the last scattering surface of the Cosmic Microwave Background Radiation, the
density perturbations developed by relatively modest factors over an interval of
cosmic time from about 300,000 to 1010 years after the origin of the Big Bang. For
example, if Ω0 = 1, the increase is a factor of 103, as expected from (11.37). In the
case Ω0 = 0.1, the amplitudes of the fluctuations grow as Δ ∝ a over the range of

Fig. 11.4. The growth of density perturbations over the range of scale factors a = 10−3 to 1
for world models with ΩΛ = 0 and density parameters Ω0 = 0.01, 0.1, 0.3 and 1
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scale factors from a = 10−3 to 10−1, but grow only modestly from a = 10−1 to 1. In
this case, the growth of the density contrast is only by a factor of 190 from the epoch
of recombination to the present epoch. If Ω0 were 0.01, the growth of the density
contrast would be even smaller, a factor of only 24.

Similar calculations can be carried out for the cases in which ΩΛ �= 0. Those of
the greatest interest are the flat models for which (Ω0 +ΩΛ) = 1. Figure 11.5 shows
the development of the fluctuations over the range of scale factors from a = 1/30 to
the present epoch a = 1, in all cases, the fluctuations having amplitudeΔ = 10−3 at
a = 10−3. The growth of the density contrast is much greater in the cases Ω0 = 0.1
and 0.3 as compared with the corresponding cases withΩΛ = 0. For example, in the
caseΩ0 = 0.1, the growth of the fluctuation from a = 1/1000 to 1 is 610. Inspection
of Fig. 11.5 shows that the fluctuations continue to grow to greater values of the
scale factor a, corresponding to smaller redshifts, as compared with the models with
ΩΛ = 0.

The reason for the enhanced growth of the perturbations can be understood from
the same line of reasoning presented in the discussion at the end of Sect. 11.4.1
Writing Friedman’s equation with the curvature term shown explicitly, we find

ȧ2 = Ω0 H2
0

a
+ΩΛa2 H2

0 − c2

�2
= Ω0 H2

0

a
+ΩΛa2 H2

0 − κc2 . (11.57)

Fig. 11.5. The growth of density perturbations over the range of scale factors a = 1/30 to 1
for world models with Ω0 +ΩΛ = 1 and density parameters Ω0 = 0.1, 0.3 and 1
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In the model with Ω0 +ΩΛ = 1, the curvature κ is zero, enforcing flat geometry.
Thus, at small values of the scale factor, when the dark energy is less important
than the gravitational influence of the matter, the dynamics of the Universe follow
precisely

ȧ2 = Ω0 H2
0

a
, (11.58)

and so the growth of the instability continues, even if Ω0z 	 1. The continued
growth of the instability can be attributed to the presence of the curvature term
which ensures that the geometry is Euclidean during the expansion, rather than the
hyperbolic geometry which would occur ifΩΛ = 0. Eventually, the repulsive effect
of the dark energy becomes important when the dark energy term becomes greater
than the gravitational term and the growth rate of the instability slows down. From
(11.57), it can be seen that this occurs when Ω0/a = ΩΛa2 = (1 −Ω0)a2, that is,

a ≈
(

Ω0

1 −Ω0

)1/3

or (1 + z) ≈ Ω
−1/3
0 if Ω0 	 1 . (11.59)

These calculations explain the late declines in the growth rates of the instabilities seen
in Fig. 11.5 as compared with those in Fig. 11.4. They also illustrate the importance
of the curvature term in understanding the growth of instabilities in the expanding
Universe.

We have considered only the cases of Friedman models with ΩΛ = 0 and
flat cosmological models with Ω0 + ΩΛ = 1, but the space of conceivable world
models is much greater than these cases. Their evolution can be either worked out
numerically from (11.56) or, more crudely, from the physical arguments developed
above.

11.5 The Evolution of Peculiar Velocities
in the Expanding Universe

The development of velocity perturbations in the expanding Universe can be derived
from (11.20). Let us investigate the case in which we neglect pressure gradients so
that the velocity perturbations are only driven by the potential gradient δφ

du
dt

+ 2

(
ȧ

a

)
u = − 1

a2
∇cδφ . (11.60)

We recall that u is the perturbed comoving velocity. Let us split the velocity vector
into components parallel and perpendicular to the gravitational potential gradient,
u = u‖ + u⊥, where u‖ is parallel to ∇cδφ. The velocity associated with u‖ is
often referred to as potential motion since it is driven by the potential gradient. On
the other hand, the perpendicular velocity component u⊥ is not driven by potential
gradients and corresponds to vortex or rotational motions. We consider the growth
of the velocity perturbations as the gravitational instability develops.
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Rotational velocities. Consider first the rotational component u⊥. Equation (11.60)
reduces to

du⊥
dt

+ 2

(
ȧ

a

)
u⊥ = 0 . (11.61)

The solution of this equation is straightforward u⊥ ∝ a−2. Since u⊥ is a comoving
perturbed velocity, the proper velocity is δv⊥ = au⊥ ∝ a−1. Thus, the rotational
velocities decay as the Universe expands. This is no more than the conservation of
angular momentum in an expanding medium, mvr = constant. This poses a grave
problem for models of galaxy formation involving primordial turbulence. Rotational
turbulent velocities decay and there must be sources of turbulent energy, if the
rotational velocities are to be maintained.

Potential motions. The development of potential motions is most directly derived
from (11.13)

dΔ

dt
= −∇ · δv , (11.62)

that is, the divergence of the peculiar velocity is proportional to minus the rate of
growth of the density contrast. The peculiar velocity δv‖ is parallel to the wave vector
of the perturbation Δ = Δ0 exp i(k · x − ωt) = Δ0 exp i(kc · r − ωt) and so, using
comoving derivatives, (11.13) can be rewritten

dΔ

dt
= −1

a
∇c · (au) = −ikc · u , (11.63)

that is,

|δv‖| = a

kc

dΔ

dt
. (11.64)

Notice that we have written this expression in terms of the comoving wave vector
kc which means that this expression describes how the peculiar velocity associated
with a particular perturbation changes with cosmic epoch. Let us consider separately
the cases Ω0 = 1 and Ω0 = 0.

– Ω0 = 1. As shown above, Δ = Δ0(t/t0)2/3 and a = (3H0t/2)2/3. Therefore,

|δv‖| = |au| = H0a1/2

k

(
δ	

	

)

0
= H0

k

(
δ	

	

)

0
(1 + z)−1/2 , (11.65)

where (δ	/	)0 is the density contrast at the present epoch. This calculation shows
how potential motions grow with cosmic time in the critical model, δv‖ ∝ t1/3.
In addition, it can be seen that the peculiar velocities are driven by both the
amplitude of the perturbation and its scale. Equation (11.65) shows that, if δ	/	
is the same on all scales, the peculiar velocities are driven by the smallest values of
k, that is, by the perturbations on the largest physical scales. Thus, local peculiar
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velocities can be driven by density perturbations on the very largest scales,
which is an important result for understanding the origin of the peculiar motion
of the Galaxy with respect to the frame of reference in which the Microwave
Background Radiation is 100% isotropic and of large-scale streaming velocities.

– Ω0 = 0. In this case, it is simplest to proceed from (11.20) in which there is no
driving term in the equation

du
dt

+ 2

(
ȧ

a

)
u = 0 . (11.66)

The solution is the same as that for u⊥ given above, that is, δv‖ ∝ a−1 – the
peculiar velocities decay with time. This is the same result deduced in Sect. 7.1.

– In the general case, we need the expression for dΔ/dt which is most simply
derived from the numerical solutions of (11.56). There is, however, a useful
approximation which is often used in the context of the cosmic virial theorem for
the magnitude of the peculiar velocities induced by density perturbations, such
as superclusters and other large-scale structures. Suppose we writeΔ = Δ0 f(t),
whereΔ0 is the amplitude of the density perturbation at the present epoch t = t0.
Then, we can write (11.64) as follows:

|δv‖| = a

kc
Δ0

d f

dt
= a

kc
Δ0

d f

da

da

dt
. (11.67)

At the present epoch, t = t0, a = 1, da/dt = H0 and so the peculiar velocity is

|δv‖| = Δ0 H0

kc

(
d f

da

)

0
. (11.68)

For the critical model Ω0 = 1, f = a and we immediately recover (11.65) at
z = 0. Thus, the amplitude of the peculiar velocities at the present epoch depends
upon d f/da. A common approximation for this function is d f/da = Ω0.6

0 , the
result being exact for the case Ω0 = 1 (Gunn, 1978; Peebles, 1980); this is
the origin of (8.33). As discussed in Sect. 8.7, a better analytic approximation,
correct to second order in δ	/	, has been derived by Lightman and Schechter
for Friedman models with ΩΛ = 0 (Lightman and Schechter, 1990),

Δv

v
= −1

3
Ω

4/7
0

(
δ	

	

)

0
+ 4

63
Ω

13/21
0

(
δ	

	

)2

0
. (11.69)

It is straightforward to integrate (11.67) numerically using (11.56) and (11.57).
These solutions are shown in Fig. 11.6 and, as expected, they mirror the behaviour of
the density contrast with scale factor, because of (11.62). In the case of world models
with ΩΛ = 0, the results found from the exact solutions above can account for the
evolution of peculiar velocities with scale factor. So long as Ω0z � 1, velocities
driven by potential gradients grow as a1/2 ∝ t1/3, but at redshifts Ω0z 	 1, the
velocities decrease as a−1. For a given value of Ω0, there is a redshift at which
the peculiar velocities of galaxies selected randomly from the general field have
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Fig. 11.6a,b. The growth of the peculiar velocities over the range of scale factors a = 10−3

to 1 for: a world models with ΩΛ = 0 and density parameters Ω0 = 0.1, 0.3 and 1 and b for
world models withΩ0 +ΩΛ = 1 and density parametersΩ0 = 0.1, 0.3 and 1. In both cases,
the behaviour at small values of the scale factor is given by (11.67) in the limit a 	 1 with
Δ0 H0/kc = 1, |δv‖| ∝ (aΩ0)

1/2
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a maximum value. A similar result is found for the models with Ω0 + ΩΛ = 1.
Because the perturbations continue to grow in amplitude to larger values of the scale
factor, the maximum peculiar velocities occur at a smaller redshifts. The maximum
occurs at the redshift at which the dark energy term begins to dominate the dynamics,
as given by (11.59).

11.6 The Relativistic Case

We investigate next the case of an ultrarelativistic or photon gas because, during the
radiation-dominated era, the primordial perturbations are in a radiation-dominated
plasma, for which the pressure can no longer be neglected and the relativistic equation
of state p = 1

3ε is appropriate. Again, we consider only perturbations on scales much
less than the horizon scale. We require the generalisations of (11.1), (11.2) and (11.3)
for a relativistic gas. There is no simple way of demonstrating the appropriate forms
of these equations except by using the energy–momentum tensor for a relativistic
gas (Weinberg, 1972). Coles and Lucchin present the results of these calculations in
a form similar to those of (11.1), (11.2) and (11.3) (Coles and Lucchin, 1995)

∂	

∂t
= −∇ ·

(
	+ p

c2

)
v ; (11.70)

(
	+ p

c2

)(∂v
∂t

+ v · ∇v
)

= −∇ p −
(
	+ p

c2

)
∇φ ; (11.71)

∇2φ = 4πG

(
	+ 3p

c2

)
. (11.72)

We can recognise the presence of the pressure terms in the continuity equation,
Euler’s equation and Poisson’s equation from the analyses which led to (7.6) and
(7.12).

Substituting p = 1
3	c2 into these equations and converting to Lagrangian deriva-

tives, we find

d	

dt
= − 4

3	(∇ · v) ; (11.73)

dv
dt

= − 1
4
3	

∇ p − ∇φ ; (11.74)

∇2φ = 8πG	 . (11.75)

The net result is that the equations for the evolution of the perturbations in a relativis-
tic gas are of similar mathematical form to the non-relativistic case (11.5), (11.6)
and (11.7). The same type of analysis which was carried out in Sect. 11.2 leads to the
following equation for the growth of density perturbations in the relativistic plasma:

d2Δ

dt2
+ 2

(
ȧ

a

)
dΔ

dt
= Δ

(
32πG	

3
− k2c2

s

)
. (11.76)



332 11 The Evolution of Perturbations in the Standard Big Bang

The only difference is that the constant in front of the gravitational driving term on
the right-hand side is 32π/3 instead of 4π. The relativistic expression for the Jeans’
length is found by setting the right-hand side equal to zero,

λJ = 2π

kJ
= cs

(
3π

8G	

)1/2

, (11.77)

where cs = c/
√

3 is the relativistic sound speed. The result is similar to the standard
expression (11.28) for the Jeans’ length.

On scales much greater than the Jeans’ length, the pressure gradient term in
(11.74) can be neglected and then the following differential equation for the growth
of the instability is obtained,

d2Δ

dt2
+ 2

(
ȧ

a

)
dΔ

dt
= 32πG	

3
Δ . (11.78)

This equation is the same as (11.33) but with a different constant on the right-hand
side. Using the same approach as in Sect. 11.4.1, we seek solutions of the form
Δ = atn , recalling that in the radiation-dominated phases, the scale factor–cosmic
time relation is given by (9.7), a ∝ t1/2 and 	 ∝ a−4. Going through precisely
the same procedure as before, we find solutions n = ±1. Hence, for wavelengths
λ � λJ, the growing solution corresponds to

Δ ∝ t ∝ a2 ∝ (1 + z)−2 . (11.79)

Thus, once again, the unstable mode grows only algebraically with cosmic time.

11.7 The Basic Problem

We will use the results derived above in the analysis of structure formation which
follows. We have concentrated upon deriving a few exact results which will prove
useful in understanding the more complete analyses found in the literature. Padman-
abhan and Coles and Lucchin provide many useful solutions of the equations for the
development of density perturbations in the expanding Universe and their analyses
can be thoroughly recommended (Padmanabhan, 1993; Coles and Lucchin, 1995).

For the moment, let us note one of the most important conclusions of the above
analysis. For the case of our reference cosmological model, Ω0 = 0.3, ΩΛ = 0.7,
the growth of density perturbations depends upon scale factor, or redshift, more or
less as

Δ = δ	

	
∝ a = 1

1 + z
, (11.80)

throughout the post-recombinations era (Fig. 11.5). In the case of the models with
ΩΛ = 0, the growth is significantly less, as can be seen from Fig. 11.4. At redshifts



11.7 The Basic Problem 333

less than 1/Ω0, the instability grew very much more slowly and, in the limitΩ0 = 0,
did not grow at all.

Since galaxies and astronomers certainly exist at the present day a = 1, z = 0,
it follows thatΔ ≥ 1 at z = 0 and so, at the last scattering surface, z ∼ 1000, density
fluctuations must have been present with amplitude at least Δ = δ	/	 ≥ 10−3.
These were certainly not infinitesimal perturbations.

We can look at the results of these calculations in two ways:

– On the one hand, the slow growth of density perturbations is the source of
a fundamental problem in understanding the origin of galaxies – large-scale
structures did not condense out of the primordial plasma by exponential collapse,
in contrast to the formation of stars in dense interstellar clouds. As we will show,
from the time the perturbations came through their horizon scales, these large-
scale features grew by only a modest factor and so there must have been some
mechanism for generating finite amplitude perturbations on large scales in the
early Universe. This is one of the great problems of classical cosmology and was
the reason that Tolman, Lemaître and Lifshitz concluded that galaxies could not
have formed by gravitational collapse.

– On the other hand, because of the slow development of the density perturbations,
we have the real possibility of learning about many aspects of the early Universe
which would otherwise have been excluded. We have the opportunity of studying
the processes of formation of structure on the last scattering surface at a redshift
z ∼ 1000 and, even more important, we can obtain crucial information about
the spectrum of fluctuations which must have been present in the very early
Universe. Thanks to the slow growth of the fluctuations, we have a direct probe
of the physics of the early Universe.



12 More Tools and Problems

The central theme of the last chapter was the evolution of density perturbations under
gravity in the expanding Universe. The attractive force of gravity and the opposing
effect of the dark energy featured prominently in that analysis but we now need to add
in many more physical processes in order to create physically acceptable models for
the formation of structure. In this chapter, the emphasis is upon the role of baryonic
matter. We will spend a little time understanding why purely baryonic models of the
formation of cosmic structures fail to account for the observations, supporting the
view that the dominant dark matter must be in some non-baryonic form. We will
develop the dark matter models in much more detail in Chap. 13, using many of the
tools developed in this chapter. First of all, we need to deal with a number of key
issues concerning cosmological horizons and superhorizon perturbations which we
have glossed over so far.

12.1 Horizons and the Horizon Problem

One of the important concepts in the theory of structure formation in the expanding
Universe is that of particle horizons. At any epoch t, the particle horizon is defined
to be the maximum distance over which causal communication could have taken
place by that epoch. In other words, this is the distance a light signal could have
travelled from the origin of the Big Bang at t = 0 by the epoch t. The Universe
is expanding at a rate which varies with cosmic epoch and we take account of this
by the same reasoning which led to the definition of comoving radial distance co-
ordinate (Sect. 5.4). There, the problem was to define a distance at a single cosmic
epoch, despite the fact that what we observe lies along our past light cone, which
may span a wide range of cosmic epochs. The solution was to project increments
of proper distance forward to a reference epoch t0, taken to be the present epoch.
This projection takes account of the fact that the fundamental observers are sepa-
rating as the Universe expands. The same procedure can be carried out for particle
horizon scales as well. Now, we scale the comoving distance scale r back to the
epoch t by multiplying by the scale factor a(t) according to definition (5.27). These
distances are defined to be proper distances at the epoch corresponding to the scale
factor a.
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The comoving radial distance r corresponding to the distance travelled by a light
signal from the origin of the Big Bang to the epoch t is

r =
∫ t

0

c dt

a(t)
=
∫ t

0
(1 + z)c dt . (12.1)

This integral is similar to that which led to the standard result (7.74), the difference
being that the comoving radial distances in that case were integrated from redshifts
0 to z corresponding to a = 1 to a, whereas in the present case, the integral is
from z = ∞ to z, or a = 0 to a. To find the proper horizon scale at the epoch
corresponding to redshift z, we scale r in (12.1) by the factor a(t) = (1+ z)−1. Thus,
the definition of the particle horizon rH(t) at the cosmic epoch t is

rH(t) = a(t)
∫ t

0

c dt

a(t)
= 1

1 + z

∫ t

0
(1 + z)c dt = a(t)

∫ a

0

c da

aȧ
. (12.2)

In the case of the standard Friedman models with ΩΛ = 0, we use (7.64) for dt so
that, if Ω0 > 1, the integral is

c

H0

∫ z

∞
dz

(1 + z)(Ω0z + 1)1/2
= 2c

H0(Ω0 − 1)1/2

[
tan−1

(
Ω0z + 1

Ω0 − 1

)1/2
]z

∞
.

(12.3)

Putting in the limits to the integral and carrying out a little algebra, we find

rH(t) = c

H0(Ω0 − 1)1/2
a cos−1

[
1 − 2(Ω0 − 1)

Ω0
a

]
. (12.4)

The corresponding result for Ω0 < 1 is

rH(t) = c

H0(1 −Ω0)1/2
a cosh−1

[
1 + 2(1 −Ω0)

Ω0
a

]
. (12.5)

In the critical Einstein–de Sitter case, the particle horizon is

rH(t) = 2c

H0
a3/2(t) = 2c

H0

t

t0
= 3ct . (12.6)

Notice that, at early times, corresponding to small values of a, both (12.4) and (12.5)
reduce to

rH(t) = 2c

H0Ω
1/2
0

a3/2 , (12.7)

similar to (12.6), but with a different constant. This is also true for models with
a finite cosmological constant. For example, in the case of flat world models with
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Ω0 +ΩΛ = 1, we can use (7.69) to determine rH for this case:

rH(t) = c

H0(1 + z)

∫ z

∞
dz[

Ω0(1 + z)3 + 1 −Ω0
]1/2 . (12.8)

In the limit of large redshifts, the term in (1 + z)3 under the square root dominates
and the result (12.7) is recovered. As already noted, at early times, all the Friedman
models, including those with finite values of ΩΛ, tend toward the dynamics of the
critical model, but again with a different prefactor

a = Ω
1/3
0

(
3H0t

2

)2/3

,

and so the particle horizon is rH(t) = 3ct, the same result as (12.6). One might have
expected that the distance which light could have travelled by epoch t to be of order
ct. The factor 3 takes account of the fact that fundamental observers were closer
together at early epochs and so greater distances could be causally connected than ct.

A similar calculation can be carried out for the radiation-dominated era at red-
shifts z � 2.4 × 104Ω0h2 ≈ 3530, during which the dynamics of the expansion
were described by a ∝ t1/2. Performing the integral (12.2) for this case, we find
rH(t) = 2ct. The factor of 2, rather than 3, reflects the difference between the early
dynamics of the radiation-dominated and matter-dominated universes.

We can now use these results to illustrate the origin of the horizon problem
for the standard Friedman models. Let us work out the angle θH which the particle
horizon subtends on the last scattering surface according to an observer at the present
epoch. At a redshift z = 1000, Ω0z � 1 and so according to (7.77) for models with
ΩΛ = 0, the distance measure D converges to the value D = 2c/H0Ω0. Therefore,
from (5.54) and (12.7) we find

θH = rH(t)(1 + z)

D
= Ω

1/2
0

(1 + z)1/2
= 1.8Ω1/2

0 degrees . (12.9)

For our reference model, Ω0 = 0.3, ΩΛ = 0.7, θH is 2.1◦. These results mean that,
according to the standard Friedman picture, regions of the Universe separated by an
angle of more than about a degree on the sky could not have been in causal contact on
the last scattering surface at redshift z ≈ 1000. Why then is the cosmic microwave
background radiation so uniform over the whole sky to a precision of about one part
in 105? In the standard picture, it has to be assumed that the remarkable isotropy of
the Universe was part of its initial conditions. This is one of the major problems of
classical cosmology.

This problem is circumvented in the inflationary model of the very early Universe
because of the exponential expansion of the scale factor which ensures that opposite
directions on the sky were in causal contact in the very distant past, although they
are not today. To illustrate this, consider the de Sitter model (7.55), but now applied
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to the very early Universe between scale factors a1 and a2 when the expansion was
described by a ∝ exp(αt), where α = (Λ/3)1/2. Then, the particle horizon at scale
factor a2 was

rH(a2) = a2

∫ t2

t1

c dt

a
= a2

∫ a2

a1

c da

aȧ
, (12.10)

= c

α

[
eα(t2−t1) − 1

]
. (12.11)

For small time intervals,α(t2−t1) 	 1, the particle horizon reduces to rH = c(t2−t1),
but for large time intervals, α(t2 − t1) � 1, rH can become very much greater
than c(t2 − t1). In the inflationary picture of the very early Universe described in
Sect. 7.3.1, the value of α = (Λ/3)1/2 was quite enormous and so causal communi-
cation could have extended to distances vastly exceeding the scale ct by the epoch
corresponding to a2.

To complete this discussion of horizons, we note that the term event horizon,
introduced by Rindler, also appears in the cosmological literature (Rindler, 1956).
The event horizon is the greatest distance an object can have at a particular cosmic
epoch, if it is ever to be observable, however long the observer waits. Consider a light
ray emitted at time t1 which arrives at the observer at time t. Then, the comoving
radial distance coordinate traversed by the light ray is

∫ t

t1

c dt

a(t)
. (12.12)

The question is whether or not this integral converges as t → ∞ in the open models
or as t → t∞ for the collapsing closed models. The definition of the event horizon
is therefore

rE =
∫ t∞

t1

c dt

a(t)
=
∫ amax

a1

c da

aȧ
. (12.13)

In the standard world models withΩΛ = 0, ifΩ0 ≤ 1, the integral (12.13) diverges,
since a ∝ t2/3 for the Ω0 = 1 model and a ∝ t for Ω0 = 0. Therefore, it is
eventually possible, in principle, to observe every particle there is in the Universe in
these models. If Ω0 > 1, the integral (12.13) converges to a finite comoving radial
distance coordinate. Using (7.22), we find t∞ = 2tmax = πΩ0/H0(Ω0 − 1)3/2. The
integral is the same as (12.3) and, inserting the limits, we find

rE = c

H0(Ω0 − 1)1/2

{
2π − cos−1

[
1 − 2(Ω0 − 1)

Ω0
a(t1)

]}
. (12.14)

As Weinberg pointed out, if Ω0 = 2, the most distant object we would ever be able
to observe before the Big Crunch occurred has comoving radial distance coordinate
14,000 h−1 ≈ 20, 000 Mpc at the present epoch (Weinberg, 1972).

In the case of models with finite values of ΩΛ, which eventually expand to
infinity, the integral (12.13) converges to a finite value because of the ultimate
exponential growth of a(t). We will encounter examples of this behaviour in the next
section.
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12.2 Pedagogical Interlude – Space–Time Diagrams
for the Standard World Models

It is helpful to represent the various scales which we have introduced on space–time
diagrams for the standard world models and to discuss some of their somewhat
surprising features. This section has been inspired by the illuminating papers by
Davis and Lineweaver (Davis and Lineweaver, 2004; Lineweaver, 2005).

12.2.1 Distance and Times

First, let us summarise the various times and distances introduced so far.

Comoving radial distance coordinate. The discussion of Sect. 5.4 indicated how
careful one has to be about the definition of distances in the standard world models.
We recall that to define a self-consistent distance at a specific epoch t, we projected
the proper distances along our past light cone to that reference epoch which we took
to be the present epoch t0. In terms of cosmic time and scale factor, the comoving
radial distance coordinate r is defined to be

r =
∫ t0

t

c dt

a
=
∫ 1

a

c da

aȧ
. (12.15)

Proper radial distance coordinate. We run up against the same problems we en-
countered in defining the comoving radial distance coordinate, in that it only makes
sense to define distances at a particular cosmic epoch t. Therefore, we define the
proper radial distance rprop to be the comoving radial distance coordinate projected
back to the epoch t. From (12.15) we find

rprop = a
∫ t0

t

c dt

a
= a

∫ 1

a

c da

aȧ
. (12.16)

Particle horizon. From the discussion of Sect. 12.1, we note the definition (12.2)
of the particle horizon rH as the maximum proper distance over which there can be
causal communication at the epoch t

rH = a
∫ t

0

c dt

a
= a

∫ a

0

c da

aȧ
. (12.17)

Event horizon. From the discussion of Sect. 12.1, we note the definition (12.13) of
the event horizon rE as the greatest proper radial distance an object can have if it is
ever to be observable by an observer who observes the Universe at cosmic time t1.

rE = a
∫ tmax

t1

c dt

a(t)
= a

∫ amax

a1

c da

aȧ
. (12.18)

Cosmic time. Cosmic time t is defined as time measured by a fundamental observer
who reads time on a standard clock.

t =
∫ t

0
dt =

∫ a

0

da

ȧ
. (12.19)
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Conformal time. We have delayed introducing conformal time τ until now. There
are similarities to the definition of comoving radial distance coordinate in that time
intervals are projected forward to the present reference epoch using the definition

dtconf = dτ = dt

a
. (12.20)

Notice that, according to the cosmological time dilation formula (5.43), the interval
of conformal time is what would be measured by a fundamental observer at the
present epoch t0. Then, the Robertson–Walker metric (5.33) can be written in a form
which makes both the space and time components of the metric change in the same
way with cosmic epoch

ds2 = a2(t)

{
dτ2 − 1

c2

[
dr2 + �2 sin2(r/�)(dθ2 + sin2 θ dφ2)

]}
. (12.21)

At any epoch, the conformal time has value

τ =
∫ t

0

dt

a
=
∫ a

0

da

aȧ
. (12.22)

It immediately follows from (12.17) and (12.22) that, in a space–time diagram in
which the comoving radial distance coordinate is plotted against conformal time, the
particle horizon is a straight line with slope equal to the speed of light.

Another attractive feature of using conformal time is that the growth of perturba-
tions in the radiation- and matter-dominated eras have the same dependence upon τ .

Radiation era:
δ	

	
∝ t ; a ∝ t1/2 ; τ ∝ t1/2 ; δ	

	
∝ τ2 , (12.23)

Matter era:
δ	

	
∝ t2/3 ; a ∝ t2/3 ; τ ∝ t1/3 ; δ	

	
∝ τ2 . (12.24)

12.2.2 The Past Light Cone

This topic requires a little care because of the way in which the standard models
are set up in order to satisfy the requirements of isotropy and homogeneity. As we
showed in Sect. 5.4, these requirements result in the Robertson–Walker metric, even
if we do not understand what determines the kinematics of the models, which are all
subsumed into the variation of the scale factor a(t) with the cosmic epoch.

Let us first demonstrate that, because of the assumptions of isotropy and homo-
geneity, Hubble’s linear relation v = H0r applies at the present epoch to recession
speeds which exceed the speed of light. Notice that r is the comoving radial distance
coordinate. The reasoning of Sect. 5.4 shows that we can imagine measuring this
distance by lining up a very large number of fundamental observers who measure
increments of distance Δr at the present epoch t0 and who are expanding apart at
speed H0Δr. Thus, if we consider fundamental observers who are far enough apart,
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this speed can exceed the speed of light. There is nothing in this argument which
contradicts the special theory of relativity – it is simply a geometric result because
of the requirements of isotropy and homogeneity.

To emphasise this important point, consider the familiar analogue for the ex-
panding Universe of the surface of an expanding spherical balloon. As the balloon
inflates, a linear velocity-distance relation is found on the surface of the sphere,
not only about any point on the sphere, but also at arbitrarily large distances on its
surface. Hence at very large distances, the speed of separation can be greater than
the speed of light, but there is no causal connection between these points – they are
simply partaking in the uniform expansion of what Bondi calls the substratum, the
underlying space–time geometry of the Universe. This feature of the models is built
into the Robertson–Walker metric.

Consider the proper distance between two fundamental observers at some epoch t

rprop = a(t)r , (12.25)

where r is the comoving radial distance. Differentiating with respect to cosmic time,

drprop

dt
= ȧr + a

dr

dt
. (12.26)

The first term on the right-hand side represents the motion of the substratum and, at
the present epoch, becomes H0r. Consider, for example, the case of a very distant
object in the critical world model, Ω0 = 1,ΩΛ = 0. As a tends to zero, (7.75) and
Fig. 7.6a show that the comoving radial distance coordinates tend to r = 2c/H0.
Therefore, the local rest frame of objects at these large distances moves at twice
the speed of light relative to our local frame of reference at the present epoch.
At the epoch at which the light signal was emitted along our past light cone, the
recessional velocity of the local rest frame vrec = ȧr was greater than this value,
because ȧ ∝ a−1/2.

The second term on the right-hand side of (12.26) corresponds to the velocity of
peculiar motions in the local rest frame at r, since it corresponds to changes of the
comoving radial distance coordinate. The element of proper radial distance is adr,
and so if we consider a light wave travelling along our past light cone towards the
observer at the origin, we find

vtot = ȧr − c . (12.27)

This is the key result which defines the propagation of light from the source to the
observer in space–time diagrams for the expanding Universe.

We can now plot the trajectories of light rays from their source to the observer
at t0. The proper distance from the observer at r = 0 to the past light cone rPLC is

rPLC =
∫ t

0
vtot dt =

∫ a

0

vtot da

ȧ
. (12.28)

Notice that initially the light rays from distant objects are propagating away from the
observer; this is because the local isotropic cosmological rest frame is moving away
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from the observer at r = 0 at a speed greater than that of light. The light waves are
propagated to the observer at the present epoch through local inertial frames which
expand with progressively smaller velocities until they cross the Hubble sphere at
which the recession velocity of the local frame of reference is the speed of light. The
definition of the radius of the Hubble sphere rHS at epoch t is thus given by

c = H(t) rHS = ȧ

a
rHS or rHS = ac

ȧ
. (12.29)

Note that rHS is a proper radial distance. From this epoch onwards, propagation is
towards the observer until, as t → t0, the speed of propagation towards the observer
is the speed of light.

It is simplest to illustrate how the various scales change with time in specific
examples of standard cosmological models. We consider first the critical world
model and then our reference Λ model.

12.2.3 The Critical World ModelΩ0 = 1,ΩΛ = 0
It is convenient to present the space–time diagrams with time measured in units
of H−1

0 and distance in units of c/H0. The diagrams shown in Figs. 12.1 and 12.2
follow the attractive presentation by Davis and Lineweaver, but I have truncated
the time axis at the present cosmological epoch (Davis and Lineweaver, 2004). The
advantage of studying this simple case first is that there are simple analytic relations
for all the distances which appear in Fig. 12.1. These are listed in Table 12.1.

Different versions of the space–time diagram for the critical world model are
shown in Fig. 12.1a–c. In all three presentations, the world lines of galaxies having
redshifts 0.5, 1, 2 and 3 are shown. When plotted against comoving radial distance
coordinates in Figs. 12.1b and c, these are vertical lines. The Hubble sphere and
particle horizon, as well as the past light cone, are shown in all three diagrams.
There is no event horizon in this model.

Table 12.1. Dependence of various times and distances upon scale factor a and cosmic time t
for the critical world model Ω0 = 1,ΩΛ = 0. The times and distances are measured in units
of H−1

0 and c/H0 respectively

Age of Universe at present epoch t0 = 2/3
Conformal time τ = 2(t/t0)1/3

Dynamics of world model a = (t/t0)2/3

World lines of galaxies rprop = r(t/t0)2/3

Hubble sphere rHS = (t/t0)
Past light cone rPLC = 2(t/t0)2/3 − 2(t/t0)
Particle horizon rH = 3t
Event horizon There is no event horizon in this model.



12.2 Pedagogical Interlude – Space–Time Diagrams for the Standard World Models 343

Fig. 12.1a–c. Space–time diagrams for the critical cosmological model, Ω0 = 1,ΩΛ = 0.
The times and distances are measured in units of H−1

0 and c/H0 respectively

These diagrams illustrate a number of interesting features.

– Fig. 12.1a is the most intuitive diagram. It illustrates clearly many of the points
discussed above. For example, the Hubble sphere intersects the past light cone
at the point where vtot = 0 and the tangent to the past light cone is vertical.
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Fig. 12.1. (continued)

– In Fig. 12.1b and c, the initial singularity at t = 0 has been stretched out to
become a singular line.

– Figure 12.1c is the simplest diagram in which cosmic time has been replaced by
conformal time. In the critical model, the relations are particularly simple, the
particle horizon, the past light cone and the Hubble sphere being given by

rH(comoving) = τ ,

rPLC(comoving) = 2 − τ ,

rHS(comoving) = τ/2 .

12.2.4 The Reference World ModelΩ0 = 0.3,ΩΛ = 0.7
Having dealt with the simplest case of the critical model, we can appreciate the sim-
ilarities and differences of the reference model with a finite cosmological constant.
Specifically, with Ω0 = 0.3 and ΩΛ = 0.7, the rate of change of the scale factor
with cosmic time in units in which c = 1 and H0 = 1 is

ȧ =
[

0.3

a
+ 0.7

(
a2 − 1

)]1/2

. (12.30)

The diagrams shown in Fig. 12.2a–c have many of the same general features as
Fig. 12.1a–c, but there are significant differences, the most important of these being
associated with the dominance of the dark energy term at late epochs.
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Fig. 12.2a–c. Space–time diagrams for the reference cosmological model, Ω0 = 0.3,ΩΛ =
0.7. The times and distances are measured in units of H−1

0 and c/H0 respectively (Davis and
Lineweaver, 2004)

– First, note that the cosmic timescale is stretched out relative to the critical model.
– The world lines of galaxies begin to diverge at the present epoch as the repulsive

effect of the dark energy dominates over the attractive force of gravity.
– The Hubble sphere converges to a proper distance of 1.12 in units of c/H0.

The reason for this is that the expansion becomes exponential in the future and
Hubble’s constant tends to a constant value of Ω1/2

Λ .
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Fig. 12.2. (continued)

– Unlike the critical model, there is an event horizon in the reference model. The
reason is that, although the geometry is flat, the exponential expansion drives
galaxies beyond distances at which there could be causal communication with
an observer at epoch t. It can be seen from Fig 12.2a that the event horizon tends
towards the same asymptotic value of 1.12 in proper distance units as the Hubble
sphere. To demonstrate this, we need to evaluate the integral

rE = a
∫ ∞

a

da[
0.3a + 0.7(a4 − a2)

]1/2 . (12.31)

For large values of a, terms other than that in a4 under the square root in the
denominator can be neglected and the integral becomes 1/0.71/2 = 1.12, as
found above for the Hubble sphere. In Fig. 12.2b and c, the comoving distance
coordinates for the Hubble sphere and the event horizon tend to zero as t → ∞
because, for example, (12.29) has to be divided by a to convert it to a comoving
distance and a → ∞.

– Just as in the case of the critical model, the simplest diagram is that in which
conformal time is plotted against comoving radial distance coordinates. The
relations for the particle horizon (12.14), the past light cone (12.26) and the
event horizon (12.18) were all given in proper coordinates and so they have to
be divided by a to convert to comoving coordinates. Using these definitions, it
is a simple exercise to show that the various lines are:

rH(comoving) = τ ,

rPLC(comoving) = τ0 − τ , (12.32)

rE(comoving) = r0 − τ .
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where τ0 = 3.305 and r0 = 4.446 for our reference cosmological model. These
forms of the relations in terms of comoving distance coordinate and conformal
time are true for all models.

The paper by Davis and Lineweaver repays close study (Davis and Lineweaver,
2004). Their remarkable Appendix B indicates how even some of the most dis-
tinguished cosmologists and astrophysicists can lead the newcomer to the subject
astray.

12.3 Superhorizon Scales

The major diversion of Sect. 12.2 was partly stimulated by the need to demonstrate
one of the key features of the cosmological models. The particle horizon shrinks to
vanishingly small values as cosmic, or conformal, time tends to zero. In particular,
it is clear from diagrams 12.2b and c, in which the horizon scale is plotted against
the comoving radial distance coordinate, that at early enough epochs the horizon
becomes smaller than the scales of galaxies, clusters of galaxies and other large-
scale structures. This means that we cannot avoid tackling the problem of what
happens to perturbations on scales greater than the particle horizon, what are called
superhorizon scales.

We carried out the small perturbation analysis of Chap. 11 on the basis that
the perturbations had a size much smaller than the particle horizon at all relevant
epochs and so there was an unperturbed background which acts as a reference
frame for the growth of small perturbations. We are also able to synchronise the
clocks of all fundamental observers within the particle horizon by exchanging light
signals. If, however, the scale of the perturbation exceeds the horizon scale, what
do we mean by ‘the unperturbed background’? On superhorizon scales, we can
think of each perturbation carrying its own standard clock, and the whole issue of
the synchronisation of clocks and the selection of the appropriate reference frame
provide real technical challenges.

The Newtonian small perturbation analysis carried out in Chap. 11 is inadequate
to deal with these problems, and a full general relativistic treatment needs to be
undertaken. Not surprisingly, this is highly non-trivial and raises complex technical
issues in general relativity. The nature of the problem is compounded by the issue
of choosing the most appropriate gauge within which to carry out the analysis.
There is a good analogy with the use of the vector potential in electrodynamics. The
vector potential A only appears in classical electrodynamics as a tool for finding the
magnetic flux density B through the relation B = curl A, and so we can add to A the
gradient of any scalar function φ since it will disappear when the curl of A+gradφ is
taken. This is the procedure which results in, for example, the Coulomb and Lorentz
gauges in classical electrodynamics. The different gauges have the same physical
content, but some problems are easier to solve in one gauge than in another.

Exactly the same type of problem occurs in dealing with superhorizon scales
in general relativity. Again, the same result should be found whichever gauge is
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chosen, and some are easier to handle than others. It is best to summarise the results
of these somewhat technical issues in the simple terms we have used throughout this
book. I have found the books by Peacock, Dodelson and Liddle and Lyth helpful
in understanding the issues involved (Peacock, 2000; Dodelson, 2003; Liddle and
Lyth, 2000). Bertschinger has provided an accessible account of the issues involved,
while Ellis and his colleagues provide insight into the physical meaning of the
gauge-invariant variables (Bertschinger, 1996; Bruni et al., 1992).

The first important result is that scalar, vector and tensor perturbations can be
separated out and considered independently. We are primarily concerned with the
evolution of perturbations in the matter and radiation content of the Universe, and so
we need only consider scalar perturbations for the moment. The vector perturbations
correspond to vortex motions and the tensor perturbations to gravitational waves.

A second helpful result comes from writing down the most general form of the
perturbed metric which can encompass the different ways in which the gauge can
be selected. Following Peacock’s presentation (Peacock, 2000), the metric can be
written in the general form

ds2 = a2(τ)
{
(1 + 2φ) dτ2 + 2wi dτ dxi − [

(1 − 2ψ)γij + 2hij
]

dxidx j} ,
(12.33)

where γij is the comoving spatial part of the Robertson–Walker metric. wi is asso-
ciated with the vector modes and hij with the tensor perturbations. τ is conformal
time.

The gauge which bears the closest relation to the calculations in Chap. 11
is the conformal Newtonian gauge or longitudinal gauge. The vector and tensor
components are set equal to zero, and so

ds2 = a2(τ)
[
(1 + 2φ)dτ2 − (1 − 2ψ)

(
dx2 + dy2 + dz2)] , (12.34)

where it has been assumed that the geometry is flat; this will always be a good
approximation in the early Universe. If this metric is inserted into the Einstein field
equations and the energy-momentum tensor has no off-diagonal terms, meaning, for
example, that we are dealing with a perfect fluid, thenφ = ψ and the perturbations are
described by the single scalar function φ, which is just the Newtonian gravitational
potential. The metric then has the familiar form

ds2 = a2(τ)
[
(1 + 2φ)dτ2 − (1 − 2φ)

(
dx2 + dy2 + dz2)] . (12.35)

The importance of this argument is that it demonstrates that the Newtonian gravi-
tational potential provides an accurate description of cosmological perturbations on
scales greater than the particle horizon.

There is considerable freedom in the choice of gauge. In an important paper,
Bardeen demonstrated how it is possible to derive a set of gauge-invariant quanti-
ties for dealing with arbitrary perturbations on superhorizon scales, as well as the
relations needed to transform from one gauge to another (Bardeen, 1980). An alter-
native gauge, which was used in many of the pioneering analyses before Bardeen’s
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paper, is the synchronous gauge in which the term (1 + 2φ) multiplying dτ2 is not
present, with consequent changes of the other components of the metric. Following
the presentation of Liddle and Lyth, the metric in the synchronous gauge can be
written

ds2 = a2(τ){dτ2 − [
(1 + 2D)δij + 2Eij

]
dxidx j} . (12.36)

This different slicing through space–time illustrates the point that the appearance of
the metric depends upon the choice of gauge, although all the metrics contain the
same physics in the end. Which choice is used for calculations is largely a matter
of convenience. For example, for computational purposes, it turns out to be easier
to use the synchronous gauge rather than the conformal Newtonian gauge. Thus,
although the metric may look very different in different gauges, for any well-defined
physical model of the very early Universe and the origin of perturbations, they must
all give the same physical results.

These issues are set out clearly by Ma and Bertschinger in an important paper
in which they worked out in parallel the development of perturbations in both the
conformal Newtonian gauge and the synchronous gauge (Ma and Bertschinger,
1995). An example of the difference the choice of gauge makes can be seen in
Fig. 12.3 which shows the development of the same set of perturbations in the
conformal Newtonian and synchronous gauges. These diagrams reinforce the point
that the development of density perturbations can appear very different in the two
gauges on superhorizon scales, because of the different slicings through space–time.
It can be seen from these diagrams that, once the perturbations come through their
particle horizons, the same evolution is found for all five components.

Fig. 12.3. Evolution of pertur-
bations in conformal Newtonian
and synchronous gauges (Ma and
Bertschinger, 1995). These are
mixed hot and cold dark matter
models with Ων = 0.2 and flat
geometry. The different lines
show the development of pertur-
bations for cold dark matter (solid
line), baryons (dot-dashed line),
photons (long dashed line), mass-
less neutrinos (dotted line) and
massive neutrinos (short dashed
lines). For k = 0.1 Mpc−1,
the perturbations come through
the horizon before the epoch of
equality
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Returning to the conformal Newtonian gauge (12.34), we can crudely estimate
the form of the Newtonian gravitational potential which can be used on superhorizon
scales in both the radiation and matter-dominated eras. According to (11.16) and
(11.75), the perturbed part of the gravitational potential δφ, which is the same as the
φ which appears in (12.35), is

Matter-dominated era: ∇2δφ = 4πGδ	 , (12.37)

Radiation-dominated era: ∇2δφ = 8πGδ	 . (12.38)

These can be written in the approximate forms

Matter era
δφ

L2
= 4πG	Δ , Radiation era

δφ

L2
= 8πG	Δ , (12.39)

where Δ = δ	/	 and L is the scale of the perturbation. In the radiation-dominated
era, Δ = Δ0a2 and 	 = 	0a−4, while in the matter-dominated era, Δ = Δ0a and
	 = 	0a−3. Referring the scale L to the comoving scale at the present epoch through
the relation L = aL0, we see that in the two cases

δφ = 4πG	0Δ0 L2
0 and δφ = 8πG	0Δ0L2

0 , (12.40)

for the radiation- and matter-dominated eras respectively. These are the key results we
have been seeking. The perturbations in the gravitational potential are independent of
scale factor in both the radiation- and matter-dominated eras. These are the potentials
we need to insert into the metric (12.34) and they are ‘frozen in’ on superhorizon
scales. This makes a lot of sense since there cannot be causal connection on the
superhorizon scale L. Thus, from the point of view of understanding how the density
contrastsΔ, rather than the gravitational potentials δφ, evolves with cosmic epoch, we
can use the results we have already derived for the development of the perturbations
on superhorizon scales.

Notice that we have made no attempt to join together the radiation- and matter-
dominated solutions. Dodelson provides a detailed analysis of how the potential
δφ changes between the radiation- and matter-dominated eras for perturbations on
superhorizon scales and finds that the magnitude of the potential, which he denotes
Φ0, decreases by only about 10% as the perturbation evolves through the epoch of
equality of matter and radiation energy densities (Dodelson, 2003).

12.4 The Adiabatic Baryonic Fluctuations
in the Standard Big Bang

In the spirit of building up the tools we need to tackle the current favoured ΛCDM
model of structure formation, let us first treat the case of baryonic models. These
provided the most natural starting point for the pioneering studies of the 1960s and
1970s. During these years, the dark matter problem was well-established and it could
not be excluded that the dark matter could have been in some baryonic form with
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density parameter ΩB ∼ 0.1 or greater. Many of the physical processes involved
in the baryonic models reappear in the ΛCDM models in slightly different guises
and so this analysis is far from wasted effort. It will also become apparent why
the baryonic model, which might be thought of as the most natural model, fails –
this failure in itself provides evidence that additional non-baryonic ingredients are
needed to account for the observed large scale structure of our Universe.

The model is based upon the following results which we have already established.

– From (11.28) and (11.77) the Jeans length is the maximum scale on which
density perturbations can be stabilised by their internal pressure gradients at any
epoch,

λJ = 2π

kJ
= cs

(
π

G	

)1/2

or λJ = cs

(
3π

8G	

)1/2

, (12.41)

in the non-relativistic and relativistic regimes respectively.
– For wavelengths smaller than the Jeans length, the perturbations are sound waves

which evolve according to the solutions of (11.24) and (11.76) for propagating
waves of the form Δ = Δ0 exp i(k · r − ωt).

– For wavelengths greater than the Jeans wavelength, the perturbations are unstable
and, for wavelengthsλ � λJ, the growth rates of the unstable modes are algebraic
with epoch. In the matter-dominated phase, the perturbation grows as

Δ = δ	

	
∝ a = (1 + z)−1 , (12.42)

so long asΩ0z � 1 for models withΩΛ = 0 and (1+z) ≥ Ω
−1/3
0 for flat models

with finiteΩΛ (see Sect. 11.4.4). The growth is much slower at smaller redshifts
and becomes zero in the limit Ω0 = 0. In the radiation-dominated phases of
the standard model, when all the inertial mass and pressure are associated with
relativistic matter or radiation, the growth rate is algebraic with Δ ∝ a2 =
(1 + z)−2.

– The horizon scale is the maximum distance over which information can be
communicated at cosmic epoch t and, as shown in Sect. 12.1, is rH(t) = 3ct in
the matter-dominated era and rH(t) = 2ct in the radiation-dominated era.

Let us use these rules to study the evolution of perturbations of different masses
in the standard baryonic model. We need to relate the wavelength of the perturbation
λJ to the mass of the baryonic object MJ which ultimately forms from it. The
expectation is that this will comprise all the mass within a sphere of radius λJ and
so, for illustrative purposes, we adopt the definition of the Jeans mass as the mass
contained within a region of diameter λJ,

MJ = (
πλ3

J/6
)
	B , (12.43)

recalling that, in the present chapter, all the mass in the Universe is in baryonic form.
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12.4.1 The Radiation-Dominated Era

Let us consider first the radiation-dominated phases, when the inertial mass density
in the radiation and neutrinos was much greater than that in the baryons, εrad � εB.
According to (9.34), the speed of sound to be included in the expression for the Jeans
length is the ultrarelativistic sound speed c/

√
3. The Jeans length in the radiation-

dominated phase is therefore

λJ = c√
3

(
3π

8G	

)1/2

, (12.44)

where 	 is the total mass density including both photons and neutrinos, that is
	 = 4.7 × 10−31χ(1 + z)4 kg m−3, recalling that χ = 1.7 when the neutrinos are
taken into account.

During this era, essentially all the inertial mass of the perturbations was in the
radiation, but the plasma was strongly coupled to it by Compton scattering, as dis-
cussed in Sect. 9.4. Although the Jeans length was determined by the energy density
of radiation, we are interested in the mass of baryons within this scale, since this
is the mass which eventually forms bound objects in the matter-dominated era. The
mass density in baryons varied with redshift as 	B = 1.88×10−26ΩBh2a−3 kg m−3,
where ΩB is the density parameter in baryons at the present epoch. Therefore, the
mass within the Jeans length in baryons in the early stages of the radiation-dominated
phase, z � 2.4 × 104Ω0h2, was

MJ = 8.5 × 1028a3ΩBh2 M� . (12.45)

Several important conclusions can be drawn from this result. The first is that
the baryonic mass within λJ grew as MB ∝ a3 during the radiation-dominated
phases. Thus, for plausible values of ΩB and h, MB was one solar mass at a redshift
z ∼ 3 × 109 and increased to the mass of a large galaxy M = 1011 M� at redshift
z ∼ 106. The second conclusion follows from a comparison of the Jeans length with
the horizon scale rH = 2ct. Using (9.7), the horizon scale can be written

rH = 2ct = c

(
3

8πG	

)1/2

compared with λJ = c

(
3π

24G	

)1/2

. (12.46)

It is apparent that, during the radiation-dominated phases, the Jeans length was of
the same order of magnitude as the horizon scale. This is a key result. Consider
a perturbation containing a galactic mass of baryons, say M = 1011 M�. In the very
early stages of the radiation-dominated phases, its scale far exceeded the horizon
scale and so the amplitudes of the perturbations grew asΔ ∝ (1+ z)−2. At a redshift
z ∼ 106, the perturbation entered the horizon and, at more or less the same time,
the Jeans length became greater than the scale of the perturbation. The perturbations
were therefore stabilised against gravitational collapse at later times and became
sound waves. The variations with redshift of the Jeans mass and the baryonic mass
within the horizon are shown schematically in Fig. 12.4.
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Fig. 12.4. Evolution of the baryonic Jeans mass MJ and baryonic mass within particle horizon
MH with scale factor. Also shown is the evolution of the Silk mass MS, which was damped
by photon diffusion, or Silk damping

12.4.2 The Matter-Dominated Era

After the epoch of equality of matter and radiation, that is at redshifts z 	 2.4 ×
104Ω0h2, the dynamics of the expansion were matter-dominated, but the matter and
the radiation remained strongly thermally coupled so long as the diffuse cosmic
plasma remained ionised. As discussed in Sects. 9.3 and 9.4, at a redshift z ≈ 1500,
the plasma was roughly 50% ionized, and at a redshift z ≈ 550h2/5Ω

1/5
0 , the thermal

coupling between matter and radiation ceased. These changes profoundly altered the
variation of the Jeans mass with cosmic epoch.

Let us first work out the variation of the baryonic mass within the particle horizon
as a function of scale factor during the matter-dominated era. Using (12.7) for the
variation of the particle horizon with scale factor, the baryonic mass within the
horizon was

MB =
(
πr3

H

6

)
	B = 3.0 × 1022

(Ω0h2)1/2
a3/2 M� , (12.47)

that is MB ∝ a3/2 ∝ t. This relation is shown in Fig. 12.4.
To determine the Jeans length, we need to know the variation of the speed of

sound with redshift. As the epoch of equality of the rest mass energies in matter and
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radiation was approached, the sound speed became less than the relativistic sound
speed c/

√
3 and is given by (9.32):

c2
s = c2

3

4	rad

4	rad + 3	m
. (12.48)

During this phase, the pressure within the perturbations was provided by the radiation
but the inertial mass by the matter, and so the appropriate sound speed was

cs = c

(
4	rad

9	B

)1/2

= 106(1 + z)1/2

(ΩBh2)1/2
m s−1 . (12.49)

Inserting this result into the expression for the Jeans mass, we find

MJ = 3.75 × 1015

(ΩBh2)2
M� , (12.50)

that is, the Jeans mass was independent of scale factor during this era. Notice the
important result that adiabatic perturbations with masses greater than the mass given
by (12.50) grew according to the standard result for the matter-dominated eraΔ ∝ a
from the time they came through the horizon. Since Ω0h2 	 1, it follows that
structures on scales much greater than those of a cluster of galaxies continued to
grow in amplitude as Δ ∝ a from the epoch when they came through their particle
horizons.

Next, we need to study the development of the amplitudes of the oscillating
perturbations on scales less than the Jeans mass. We recall that the expression for
the development of the density contrast Δ is

d2Δ

dt2
+ 2

(
ȧ

a

)
dΔ

dt
= Δ(4πG	0 − k2c2

s ) . (12.51)

We need to solve this equation for oscillating solutions when the pressure, represented
by the term k2c2

s , provides the restoring force for the oscillations. The second term on
the left-hand side of (12.51) is associated with the expansion of the substratum and
has the form of a damping term which results in the adiabatic damping of the sound
waves. These calculations have been carried out by Padmanabhan and by Coles
and Lucchin (Padmanabhan, 1993; Coles and Lucchin, 1995), who established the
following results:

– If the perturbations crossed the particle horizon during the radiation-dominated
era, the sound speed is c/

√
3 and the sound waves in the relativistic gas propa-

gated with constant amplitude, Δ = constant, during that era.
– If the perturbations crossed the particle horizon during the matter-dominated era,

or when subhorizon perturbations entered the matter-dominated era, the sound
speed was given by (9.33) and the amplitudes of the oscillating perturbations
decreased as Δ = δ	/	 ∝ t−1/6. These authors show that this result can be
interpreted as the adiabatic energy loss of the acoustic waves as the Universe
expands.
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The next crucial epoch was the epoch of recombination when the primordial
plasma began to recombine and soon after the matter and radiation became decou-
pled thermally. The pressure within the perturbation was no longer provided by the
radiation but by the thermal pressure of the baryonic matter. Because of the close
coupling between the matter and radiation, the matter and radiation temperatures
were more or less the same until a redshift z = 550h2/5Ω

1/5
0 . Therefore, the appro-

priate sound speed to be included in the expression for the Jeans mass is the adiabatic
sound speed for a gas at temperature 3000 K at a redshift of 1000. The sound speed
is cs = (5kT/3mH)

1/2, and so the Jeans mass at the epoch of recombination was

MJ =
(
πλ3

J

6

)
	B = 1.6 × 105 (Ω0h2)−1/2

M� . (12.52)

Thus, the Jeans mass decreased abruptly to masses much less than typical galactic
masses. The consequence is that all perturbations with masses greater than about
105 M� began to collapse and grew according to the standard growth rate Δ ∝ a. It
is intriguing that the Jeans mass immediately following recombination corresponded
roughly to the masses of globular clusters, the oldest stellar systems in our Galaxy.

The evolution of the Jeans mass following recombination depends upon the
subsequent thermal history of the gas. If the gas continued to cool adiabatically as
the Universe expanded, T ∝ a−2, cs ∝ a−1, λJ ∝ a−1/2, and so the Jeans mass
would decrease as MJ ∝ a−3/2. This cannot, however, be the whole story. As we
will discuss in Chap. 18, the intergalactic gas must have been very highly ionised
at epochs corresponding to z ≤ 6 because of the absence of Lyman-α absorption
troughs in the spectra of distant quasars and so the gas must have been reheated and
ionised at redshifts z > 6. The evolution of the various baryonic masses with scale
factor is shown schematically in Fig. 12.4.

12.5 Dissipation Processes in the Pre-Recombination Era

To complete our discussion of the physics of adiabatic baryonic perturbations, we
need to consider dissipative processes during the pre-recombination era. Although
matter and radiation were closely coupled throughout this era, the coupling was
not perfect and photons could diffuse out of the density perturbations. This was
particularly important for perturbations with wavelengths less than the horizon scale
since they were adiabatic sound waves. Radiation pressure provided the restoring
force which maintained these oscillations, and so if the photons diffused out of
the perturbations, the waves would have been damped out. This process was first
described by Silk in 1968 and is often referred to as Silk damping (Silk, 1968).

Just as in the case of sound waves in an imperfect gas, the damping of the pertur-
bations is associated with the finite viscosity and thermal conductivity of the medium
through which the waves are propagated. In the present instance, energy and momen-
tum are transported by the photons. Appropriate expressions for the coefficients of
thermal conduction and shear viscosity are given by Weinberg, whose analysis can



356 12 More Tools and Problems

be strongly recommended (Weinberg, 1972). We can obtain the essential results by
somewhat cruder means by realising that the process which impedes the escape of ra-
diation from the perturbations is Thomson scattering by free electrons in the plasma.
An order-of-magnitude diffusion calculation illustrates the essence of the physics.

At any epoch, the mean free path for scattering of photons by electrons is
λ = (NeσT)

−1, where σT = 6.665 × 10−29 m2 is the Thomson cross-section. As
was shown in Sect. 9.4, the photons and electrons were in close thermal contact
throughout the pre-recombination era. In addition, in a fully ionised plasma, the
protons and electrons are closely coupled electrostatically and so the photons are
closely coupled to the protons as well. To determine how far the photons can diffuse
in time t, it is simplest to work out the diffusion coefficient D for photons which,
according to kinetic theory, is related to their mean free path λ by D = 1

3λc, where
c is the speed of light. Therefore, the radial distance over which the photons can
diffuse is

rS ≈ (Dt)1/2 = ( 1
3λct

)1/2
, (12.53)

where t is cosmic time. The baryonic mass within this radius, MS = (4π/3)r3
S	B,

can therefore be evaluated during the pre-recombination era.
In the early pre-recombination phase, z > 2.4 × 104Ω0h2, the Universe was

radiation-dominated and, from (9.7), the cosmic-time redshift relation was

t =
(

3c2

32πGε

)1/2

=
(

3c2

32πGχa T 4
0

)1/2
1

(1 + z)2
= 2.4 × 1019

(1 + z)2
s , (12.54)

where we have adopted χ = 1.68 and taken the present temperature of the cos-
mic microwave background radiation to be T0 = 2.725 K. The number density of
electrons varied as

Ne = ΩB	c(1 + z)3

mp
= 11ΩBh2(1 + z)3 m−3 , (12.55)

where mp is the mass of the proton. Thus, the damping mass, sometimes referred to
as the Silk mass, is

MS = 4π

3
r3

S	B = 2.4 × 1026 (ΩBh2)−1/2
(1 + z)−9/2 M� . (12.56)

After the epoch of equality of the matter and radiation energy densities, the cosmic
time-redshift relation is given by the matter-dominated relation

t = 2

3H0Ω
1/2
0

1

(1 + z)3/2
= 2.06 × 1017

(
Ω0h2

)1/2
(1 + z)3/2

s . (12.57)

In this case, we find

MS = 2.0 × 1023 (ΩBh2)−5/4
(1 + z)−15/4 M� . (12.58)
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These variations of the damping mass MS with scale factor are shown in Fig. 12.4.
Damping of the perturbations continued until the epoch of recombination, when the
electrons and protons began to recombine. By the redshift of the last scattering surface
at z = 1000, the damping mass had reached the value MS = 1012

(
ΩBh2

)−5/4
M�.

Much more detailed calculations were carried out by Peebles, who took into account
the details of the damping as the primordial plasma recombined and found the
damping mass to be MS = 1.3 × 1012

(
Ω0h2

)−3/2
M� (Peebles, 1981). By the early

1980s, the value of ΩBh2 was known to be significantly less than unity because of
the constraints provided by the primordial nucleosynthesis of the light elements. The
inference was that all masses less than those of very massive galaxies would have
been damped out by the epoch of recombination. Adopting the estimate of the value
ofΩBh2 = 0.022 found in Sect. 10.4, all masses less than about 4 × 1014 M� would
have been damped out.

The upshot of these calculations is that perturbations on scales up to those of
groups and clusters of galaxies would have been damped out by the epoch of recom-
bination. According to the theory of adiabatic baryonic perturbations, only pertur-
bations on these scales and greater would have survived into the post-recombination
era. The perturbations which could have resulted in stars, star clusters and normal
galaxies such as our own were damped to exponentially small amplitudes. It therefore
had to be assumed that structures on these scales were formed by the process of frag-
mentation of the large-scale structures which survived into the post-recombination
era.

12.6 Isothermal Perturbations

In the above analysis of adiabatic perturbations, it was assumed that the density
perturbations were associated with pressure perturbations according to the standard
adiabatic relation

δp

p
= γ

δ	

	
, (12.59)

where γ , the ratio of specific heats, is 5/3 for a monatomic non-relativistic gas and
4/3 for a relativistic gas. At the other extreme are the isothermal perturbations.
During the radiation-dominated phase of the Big Bang model, these are fluctuations
in the baryon density which take place against the uniform cosmic background
radiation. The perturbations are isothermal in the sense that, since the matter is
maintained at the same temperature as the radiation by Compton scattering and the
radiation is assumed to be uniform, they cause no fluctuations in the background
radiation temperature during the radiation-dominated phases. On the other hand,
since the baryon density fluctuates from place to place, there are fluctuations in the
entropy per baryon. This is in contrast to the case of adiabatic fluctuations, which, by
definition, have constant entropy per baryon. In the case of perfect gases, any pressure
and density distribution in the radiation-dominated phases can be represented as the
superposition of a distribution of adiabatic and isothermal perturbations.
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The evolution of the density contrast of the isothermal perturbations before the
epoch of equality of mass densities in the matter and radiation is similar to that which
will reappear in a different guise later – the density contrast is more or less frozen
throughout this era. This problem was originally discussed by Mészáros for the case
of perturbations associated with point masses during the radiation-dominated era
(Mészáros, 1974).

This evolution of isothermal perturbations is pleasantly treated by Efstathiou
and by Coles and Lucchin (Efstathiou, 1990; Coles and Lucchin, 1995). For sim-
plicity, consider a spherical baryonic density perturbation in a smooth expanding
background, similar to the little closed Universe discussed in Sect. 11.4.2. If the
background were not expanding, the characteristic timescale for collapse would be
given by (11.31), τg ≈ (G	B)

−1/2. This timescale can be compared with the char-
acteristic timescale τ for expansion of the Universe during the radiation-dominated
phase, which is readily derived from (9.6):

τ = a

da/dt
=
(

3c2

8πGε0
a4
)1/2

=
(

3

8πG	rad

)1/2

≈ (G	rad)
−1/2 . (12.60)

Since 	rad � 	B during the radiation-dominated phases, the expansion timescale
is very much shorter than the collapse timescale and so, because the radiation is
gravitationally dominant, the perturbation expands with the expanding substratum.

To illustrate this effect more quantitatively, we can adapt (11.24) to study the
growth of the perturbation in the matter density, 	B, embedded in a uniform radiation-
dominated expanding substratum:

d2ΔB

dt2
+ 2

(
ȧ

a

)
dΔB

dt
= 4πG	BΔB . (12.61)

Notice that the perturbations are only present in the baryonic matter while the
dynamical background remains uniform. Following Coles and Lucchin, we introduce
the parameter y = 	B/	rad = a/aeq, where aeq is the scale factor at which the matter
and radiation energy densities were equal (Coles and Lucchin, 1995). From (7.2),
the dynamics of the world model through the radiation- and matter-dominated eras
can be written

ȧ2 = 8πG	

3
a2 − c2

�2
+ 1

3Λa2 . (12.62)

The last two terms of the right-hand side become very small during the early Universe,
and so we can write

ȧ2 = 8πG	

3
a2 , (12.63)

where the density 	 is the sum of the radiation and matter densities which vary with
scale factor as 	rad = 	0ra−4 and 	mat = 	0ma−3. Therefore,

ȧ2 = 8πG

3

(	0r

a2
+ 	0m

a

)
. (12.64)
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At the present epoch, the Universe is matter-dominated by a factor of over 1000, and
so, adopting the critical model for the dynamics of the Universe at the present epoch,
8πG	0m/3H2

0 = 1. It is then straightforward to show that (12.64) can be written in
terms of y as follows:

ȧ = H0

a1/2
eq

(1 + y)1/2

y
. (12.65)

Changing variables from t to y, (12.61) reduces to

d2ΔB

dy2
+ 2 + 3y

2y(1 + y)

dΔB

dy
− 3ΔB

2y(1 + y)
= 0 . (12.66)

The growing solution is

ΔB ∝ 1 + 3y

2
, (12.67)

as can be verified by substitution into (12.66). Thus, in the very early Universe,
y 	 1, ΔB was a constant – the perturbations were frozen into the expanding
background. This important dynamical result is known as the Mészáros effect and
will reappear in a different guise later (Mészáros, 1974). Thus, throughout the entire
radiation-dominated era from y = 0 to y = 1, the initial perturbations grew by only
a factor of 2.5 in amplitude. After the epoch of equality of the radiation and matter
energy densities, y � 1, (12.67) shows that the density perturbations in the matter
grew asΔB ∝ a, the standard result we have obtained by various means in the matter-
dominated era. This is not the whole story, however, because we have neglected the
interaction between the matter of the perturbation in the sea of photons. The above
result would be correct if, for example, the matter component consisted of cold dark
matter particles which do not interact with the radiation field. As we now show, the
fact that the matter is baryonic and fully ionised changes the picture significantly.

We can illustrate the essential physics by the following order of magnitude
calculation. The relation between the rate of growth of the perturbation and the
velocity field v induced by gravitational collapse is given by (11.13),

d

dt

(
δ	

	

)
= dΔ

dt
= −∇ · v . (12.68)

Let us assume that we can ignore the photon field and estimate the velocity of
collapse of the perturbation if it were to grow as Δ ∝ a = (1 + z)−1. Writing
div v = v/λ, we find

v ∼ λ

t

(
δ	

	

)
. (12.69)

The radiation force acting on an electron of the plasma moving at speed v through
the isotropic background radiation is given by the first-order Compton scattering
formula

frad = 4
3σTεrad

v

c
= mev

τ
, (12.70)
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where τ is given by (9.22). This force is communicated to the protons through the
strong electrostatic coupling between electrons and protons. We can compare this
force with the typical gravitational force acting on a proton in the perturbation

fg ≈ Gmp MB

λ2
∼ Gmpλ	B . (12.71)

Therefore,

frad

fg
= me

mp

1

Gtτ	B

(
δ	

	

)
(12.72)

= 3 × 10−5
(
δ	

	

)
(1 + z)5/2

(Ω0h2)1/2
. (12.73)

Because Δ = δ	/	 can at best grow as (1 + z)−1, the value of Δ must have been at
least 10−3 at the last scattering surface at z = 1000. Thus, in the baryon-dominated
picture of the formation of structure, even at the epoch of recombination, the radiation
drag exceeded the gravitational force of attraction. The radiation drag therefore
slowed up the collapse of the perturbation drastically and the net result was that the
isothermal perturbations scarcely grew at all until after the epoch of recombination.
Coles and Lucchin derive a similar result by including the damping force (12.70)
in the equation for the evolution of the amplitude of the perturbations (11.61) and
show that ΔB ≈ constant. After the epoch of recombination, the amplitudes of the
perturbations grew according to the standard formula Δ ∝ a = (1 + z)−1.

Thus, by the epoch of recombination, the spectrum of isothermal density pertur-
bations on large mass scales ended up being not so different from that of adiabatic
perturbations, but there are major differences for small masses. Since the background
radiation is uniform, no Silk damping of the isothermal perturbations took place and
so all mass scales survived to the epoch of recombination. As a result, after the
isothermal perturbations evolved through the epoch of recombination and the Jeans
mass decreased abruptly to the value M = 1.6 × 105(Ω0h2)−1/2 M�, perturbations
on all scales greater than this mass survived and began to collapse to form bound
structures.

12.7 Baryonic Theories of Galaxy Formation

We can now put these ideas together to create baryonic theories of the origin of
galaxies. This story brings back fond memories of the time I spent working with
Zeldovich, Sunyaev, Doroshkevich and their colleagues in Moscow in 1968–69 when
many of these ideas were being hammered out – it was an extraordinary experience.
Zeldovich and his team studied both adiabatic and isothermal perturbations, but put
most effort into the adiabatic scenario. In contrast, Peebles and his colleagues at
Princeton favoured the isothermal picture. These baryonic models resulted in quite
different pictures for the formation of galaxies and the large-scale structure of the
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Universe. Although much of this discussion has been superseded by the ΛCDM
models, it is of more than historical interest since the models contain many of the
ideas which are built into the current picture of structure formation.

12.7.1 The Adiabatic Scenario

In the adiabatic picture developed by Zeldovich and his colleagues, it was assumed
that a spectrum of small adiabatic perturbations was set up in the very early Universe
and their evolution was then followed according to the physical rules developed
above. Only large-scale perturbations with masses M ≥ MS = 1012

(
ΩBh2

)−5/4
M�

survived to the epoch of recombination, all fluctuations on smaller mass scales being
damped out by photon diffusion, as discussed in Sect. 12.5. Perturbations with
masses greater than the Jeans mass, MJ = 3.75 × 1015/

(
ΩBh2

)2
M�, continued to

grow from the time they came through their particle horizons to the present epoch.
Once they came through their particle horizons, those perturbations with masses
less than the Jeans mass were sound waves which oscillated with a small decrease
in amplitude until the epoch of recombination, when their internal pressure support
vanished and the Jeans mass dropped abruptly to MJ = 1.6 × 105

(
Ω0h2

)−1/2
M�.

Zeldovich and his colleagues realised that there would be structure in the power
spectrum of oscillations which survived to the epoch of recombination, as illustrated
in Fig. 12.5a (Sunyaev and Zeldovich, 1970). Those fluctuations on a given mass
scale, which would eventually develop into bound structures at late epochs, were
those which had large positive amplitudes when they came through their particle
horizons. Figure 12.5a shows perturbations on two different mass scales coming

Fig. 12.5a,b. ‘Stability diagram’ of Sunyaev and Zeldovich (Sunyaev and Zeldovich, 1970).
a The region of instability is to the right of the solid line. The two additional graphs illustrate
the evolution of density perturbations of different masses as they come through the horizon
up to the epoch of recombination. b Perturbations corresponding to different masses arrive at
the epoch of recombination with different phases, resulting in a periodic dependence of the
amplitude of the perturbations upon mass
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through their particle horizons. The amplitude of the oscillations at the epoch of
recombination depended upon the phase of the oscillation of the sound waves at
that time. Those oscillations which completed an integral number of oscillations
would be observed with maximum amplitude as they began to collapse freely once
pressure support was removed. On the other hand, those which were π/2 out of
phase with these would have zero amplitude at the epoch of recombination and so
would not form objects at all. The predicted mass spectrum of objects formed is
shown schematically in Fig. 12.5b.

Originally, it was thought that these oscillations might provide a means of creat-
ing a hierarchy of structures on the scales of galaxies, clusters and superclusters of
galaxies. This work was carried out before the smoothness of the two-point corre-
lation function for galaxies was established, as illustrated, for example, in Figs. 2.5
and 2.6. The spectrum of primordial oscillations as a function of angular scale at the
epoch of recombination will reappear later as a crucial part of the favoured picture
for the formation of large scale structures and for the determination of cosmological
parameters. In fact, despite the smoothness of the two-point correlation functions in
Figs. 2.5 and 2.6, evidence has been found for these oscillations at a low level in the
two-point correlation functions derived from the large 2dF and SDSS Galaxy Sur-
veys (Sect. 14.6). In contrast, the temperature fluctuations in the cosmic microwave
background radiation are expected to be much larger and these provide a great deal
of information about basic cosmological parameters (see also Sect. 15.9). These
oscillations are often referred to as acoustic oscillations. Novikov has advocated
referring to these as Sakharov oscillations in recognition of Sakharov’s pioneering
contributions in his paper of 1965, before the discovery of the cosmic microwave
background radiation (Sakharov, 1965; Naselsky et al., 2006).

Following recombination, all the surviving perturbations grew in amplitude as
Δ ∝ (1+ z)−1 until the epoch at whichΩ0z ∼ 1. By the early 1970s, the density pa-
rameter in baryonsΩB was known to be less than about 0.05h−2 from the constraints
provided by primordial nucleosynthesis (Sect. 10.4) and so, even if h = 0.5, the
perturbations would grow very slowly at redshifts z ≤ 5. Therefore, the amplitudes
of the perturbations must have attained Δ ∼ 1 by that epoch in order to ensure the
formation of galaxies and larger-scale structures. This was an appealing result, since
quasars were known to exist at redshifts greater than 2 and the number counts of
quasars and radio sources indicated that these objects had flourished at these early
epochs (see Sect. 17.2). Zeldovich and his colleagues inferred that galaxies and
larger-scale structures formed at relatively late epochs, z ∼ 3 − 5. Since the fluctu-
ations had attained amplitude Δ ∼ 1 at z ∼ 5 and Δ ∝ (1 + z)−1, the amplitude
of the density perturbations at the epoch of recombination must have been at least
Δ ≥ 3 × 10−3.

In the baryonic adiabatic scenario, only large-scale perturbations survived to
z ∼ 5 at which epoch their collapse became non-linear. We will deal with this topic
in more detail in Chap. 16. For the moment, we note that the structures which survived
on the scales of clusters and superclusters of galaxies were unlikely to be perfectly
spherical and, in the simplest approximation, could be described by ellipsoids with
three unequal axes. In 1970, Zeldovich derived an analytic solution for the non-linear
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evolution of these structures and showed that such ellipsoids collapsed most rapidly
along their shortest axis with the result that flattened structures, which Zeldovich
called ‘pancakes’, were formed (Zeldovich, 1970). The density became large in the
planes of the pancakes, and the infalling matter was heated to a high temperature as
the matter collapsed into the pancakes, a process sometimes called the ‘burning of the
pancakes’. Galaxies were assumed to form by fragmentation or thermal instabilities
within the pancakes. In this picture, all galaxies formed late in the Universe, once the
large-scale structures had collapsed. This baryonic pancake theory was developed in
some detail by Zeldovich1 and his colleagues in the 1970s and can be thought of as
a ‘top-down’ scenario for galaxy formation (Sunyaev and Zeldovich, 1972). Among
the successes of the theory was the fact that it accounted naturally for the large-scale
structure in the distribution of galaxies. In three dimensions, the pancakes formed
interconnected, flattened, stringy structures, not unlike the great holes and sheets of
galaxies observed in the local Universe.

12.7.2 The Isothermal Scenario

In contrast, Peebles and his Princeton colleagues favoured the isothermal scenario
in which perturbations on all scales greater than MJ = 1.6 × 105

(
Ω0h2

)−1/2
M�

survived to the epoch of recombination and began to collapse immediately thereafter.
This scenario had the attractive feature that the first objects to form would have
masses similar to those of globular clusters, which are the oldest known objects
in our Galaxy. The process of galaxy and structure formation was ascribed to the
hierarchical clustering of these small-scale structures under the influence of the
power spectrum of density perturbations, which extended up to the largest scales.
One of the attractive features of this picture was that there would be early enrichment
of the chemical abundances of the elements as a result of nucleosynthesis in the first
generations of massive stars. This process could account for the fact that, even in
the largest redshift quasars, the abundances of the elements were not so different
from those observed locally. Many of these ideas were developed by Peebles in his
important monograph The Large-Scale Structure of the Universe (Peebles, 1980).

The process of structure formation by hierarchical clustering was put on a formal
basis by Press and Schechter in 1974 in a remarkable paper which we will study
in Sect. 16.3 (Press and Schechter, 1974). Throughout the 1970s, Peebles and his
colleagues devoted an enormous effort to determining the correlation functions
which describe the statistical properties of the clustering of galaxies (Sects. 2.2 and
14.1). As the power of digital computers increased, it became possible to carry
out numerical simulations of the process of structure formation by hierarchical
clustering, and one of the successes of that programme was the ability to account for
the observed correlation functions for galaxies. We will return to this crucial topic in
more detail in Chap. 14. In contrast to the adiabatic picture, the isothermal scenario

1 Many of the most important papers by Zeldovich and his colleagues are contained in
Volume 2 of Zeldovich’s selected works (Zeldovich, 1993).
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is a ‘bottom-up’ picture, in which galaxies are built up out of smaller objects by
clustering and coalescence.

12.8 What Went Wrong?

Despite some of their undoubted successes, there are major problems with both
scenarios. The most important facts were that the dominant form of matter in the
Universe is dark matter and that it is unlikely to be baryonic. The constraints from
primordial nucleosynthesis of the light elements strongly suggested that the mean
baryonic mass density of the Universe is about an order of magnitude less than the
mean total mass density Ω0 ≈ 0.2–0.3. Since the limits derived from primordial
nucleosynthesis constrain the total amount of baryonic matter in the Universe, what-
ever its form, the difference between the baryonic mass density and the total mass
density must be associated with some non-baryonic form of matter and it must be
dynamically dominant throughout the matter-dominated era.

A major conceptual advance was made by Guth in 1981 when he proposed the
concept of the inflationary expansion of the early Universe as a means of solving
many of the fundamental problems of cosmology (Guth, 1981); we will discuss
various aspects of his proposal throughout the remainder of this book. One of the
immediate consequences of the proposal was that the Universe should have flat
spatial geometry and so, if ΩΛ = 0, it follows that Ω0 = 1. In this case, there
would be no question but that most of the mass in the Universe must be in some
non-baryonic form.

From the perspective of observation, the most important conflict was with the
expected amplitude of the temperature fluctuations in the cosmic microwave back-
ground radiation. During the epoch of recombination, both adiabatic and isother-
mal density perturbations began to collapse and, for masses on the scales of
clusters of galaxies and greater, their behaviour was similar. The problem was
that, in purely baryonic theories, these fluctuations had to have large amplitudes,
Δ = δ	/	 ≥ 3 × 10−3 on the last scattering surface, and these would cause ob-
servable temperature fluctuations ΔT/T in the radiation temperature of the cosmic
microwave background radiation. We will discuss the theory of these temperature
fluctuations in some detail in Chap. 15, and so we simply summarise some of the
key points here.

In 1968, Silk pointed out that adiabatic density perturbations would result in
temperature fluctuations of the matter on the last scattering surface according to the
adiabatic relation

(
δT

T

)
= 1

3

(
δ	

	

)
, (12.74)

recalling that the matter and the radiation are strongly coupled through the recom-
bination epoch (Silk, 1968). This calculation suggested that temperature fluctua-
tions would be expected in the cosmic microwave background radiation at a level
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δT/T ≥ 10−3, which could be excluded from the observational upper limits to the
temperature fluctuations.

As we will show in Chap. 15, the processes by which fluctuations are imprinted
on the background radiation are much more complex than this. The theory of these
processes for both adiabatic and isothermal perturbations was worked out by Sunyaev
and Zeldovich, who found that, for both types of perturbation, the root-mean-squared
temperature fluctuations were predicted to be

〈(
δT

T

)2
〉1/2

= 2 × 10−5

(
MΩ1/2

0

1015 M�

)1/2

(1 + z0) , (12.75)

for masses M ≥ 1015Ω
−1/2
0 M�, where z0 is the redshift at which δ	/	 = 1

(Sunyaev and Zeldovich, 1970). By the early 1980s, the upper limits of the intensity
fluctuations in the cosmic background radiation were in conflict with the predictions
of such purely baryonic theories (Partridge, 1980a,b).

It may seem remarkable that I have spent so much effort developing baryonic
theories of structure formation which have ended up in serious conflict with the
observations. There are two important reasons for this. The first is that we have
developed many new tools and concepts which will be needed in the formulation of
any acceptable theory of galaxy formation. The second is that we have presented the
best that can be achieved assuming that all the matter in the Universe is in baryonic
form. The fact that there are important conflicts with observation is in itself good
reason for taking seriously the proposition that the Universe is dominated by some
unknown form of non-baryonic dark matter.

To some, it may be disappointing that a theory of the origin of structure in the
Universe, based entirely upon known forms of matter and radiation and their inter-
actions, runs into insurmountable contradictions with the observations. We are faced
with including an additional dominant constituent of the Universe, dark matter, the
nature of which is unknown, as well as dark energy in Einstein’s field equations.
Thus, in compensation, there is the exciting prospect of gaining new insights into
fundamental physical processes through the study of the origin of structure in the
Universe. If this programme is successful, it would be yet one more example of as-
tronomical problems leading to an understanding of fundamental physical processes
which cannot as yet be studied in the laboratory.

This is the story we take up now.



13 Dark Matter and Galaxy Formation

13.1 Introduction

The discussion of Chap. 12 concerning the failure of purely baryonic models of
galaxy formation and the compelling evidence presented in Sects. 4.7 and 8.7 that
non-baryonic dark matter must be present in the Universe with density parameter
Ω0 ≈ 0.3 mean that we need to develop models in which dark matter is dominant dy-
namically in structure formation. This complicates the models of structure formation
as illustrated in Fig. 13.1, which is adapted from Dodelson’s highly recommendable
analysis (Dodelson, 2003).

A number of useful points can be made about Fig. 13.1 before we tackle dark
matter models of structure formation.

– The light grey circles indicate the components we have been principally con-
cerned with so far. The protons and electrons were tightly coupled by Coulomb
collisions during the pre-recombination era and so it is an excellent assumption
that they had Maxwellian distributions at the same temperature. Likewise, the
discussion of Sects. 9.3 and 9.4 showed that there was strong thermal coupling
between the baryonic matter and the thermal background radiation throughout
the pre-recombination era. Therefore, for most purposes, we could treat the pre-
galactic material as a radiation-dominated plasma at a single temperature. We
needed, however, to deal with non-equilibrium physics when the decoupling of
various species occurred, for example, when the neutrinos decoupled and when
the light elements were synthesised. The analysis of Sect. 10.6 showed how the
transition to non-equilibrium physics could be treated.

– We touched only lightly upon the fact that the perturbations in the radiation-
dominated plasma are coupled to perturbations in the metric and considered this
issue only in our discussion of superhorizon scales (Sect. 12.3).

– We now need to include perturbations in both the dark matter and the neutrinos.
The discovery that the neutrinos have finite rest mass needs to be included in
the picture of structure formation. We argued in Sect. 4.7 that the masses of the
electron, muon and tau neutrinos are too small to account for the dark matter in
galaxies. Even if they cannot fulfill that role, the impact of a finite neutrino rest
mass needs to be included in the analyses of structure formation.

– Most intriguing of all is that we need to include the dark matter perturbations
without knowing their nature. Figure 13.1 makes the important point that for
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Fig. 13.1. Illustrating how the various components of the Universe interact with each other.
Up till this chapter we have been concerned with baryonic perturbations in which there was
strong coupling between the photons and baryonic matter. The failure of that picture and
compelling evidence for dominance of dark matter mean that we need to include dark matter
and neutrino perturbations in the picture (Dodelson, 2003)

much of the pre-recombination era, the neutrinos and dark matter particles were
only coupled to the baryonic matter and the photons through their gravitational
influence. As indicated on the diagram, it is best to think of the various compo-
nents contributing to perturbations to the metric and then the strongly coupled
radiation-dominated plasma responds to these metric perturbations.

– Whereas we could generally assume that the radiation-dominated plasma be-
haved like a perfect gas, the fact that the dark matter particles and neutrinos are
ultra-weakly interacting means that in bulk they cannot be thought of as behav-
ing like a thermal gas. Therefore, the Boltzmann equation, coupled to Einstein’s
equations of general relativity, needs to be adopted in a rigorous treatment.

The full analysis is complex and beyond the ambitions of this book. The in-
troductions by Peacock and Dodelson give an excellent impression of what is in-
volved (Peacock, 2000; Dodelson, 2003). More mathematical analyses are given
by Mukhanov and by Naselsky, Novikov and Novikov (Mukhanov, 2005; Naselsky
et al., 2006). Our modest aim in this chapter is to identify the key physical features
which come out of the full analyses and carry out a number of simple calculations.
Let us first return to the issue of the nature of the non-baryonic dark matter.
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13.2 Forms of Non-Baryonic Dark Matter

We have already mentioned the three most popular suggestions for non-baryonic
dark matter in Sect. 4.7.2 To recapitulate, these are:

1. Axions. The discussion by Kolb and Turner is recommended for the enthusiast
who wishes to obtain insight into the motivation for the introduction of these
particles into theories of elementary particles (Kolb and Turner, 1990). If these
particles exist, they would have important astrophysical consequences which are
discussed by Kolb and Turner. They show that, if the axions were produced in
thermal equilibrium, they would have unacceptably large masses, which would
result in conflict with observations of the Sun and the supernova SN1987A.
Specifically, if the mass of the axion were greater than 1 eV, the rate of loss
of energy by the emission of axions would exceed the rate at which energy
is generated by nuclear reactions in the Sun and so its centre would need to
be hotter, resulting in a shorter age than is acceptable and greater emission
of high-energy neutrinos. In the case of SN1987A, the key observation was
the duration of the neutrino pulse of about 12 s, consistent with the standard
picture of neutrino emission. If the axions had masses in the range 10−3 to 2 eV,
the cooling of the neutron star would be so rapid that a much shorter pulse
of neutrinos would be expected. There is, however, another, non-equilibrium,
route by which the axions could be created in the early Universe. In this variant,
described by Kolb and Turner, the axions never acquired thermal velocities, as
they were never in equilibrium. The acceptable range of rest mass energies of
the axions is 10−2 −10−5 eV. The axions remained ‘cold’ and, during the epochs
we are interested in, behaved in bulk like the massive particles discussed below.

2. Neutrinos. The investigation into the role of massive neutrinos in the develop-
ment of cosmological perturbations was stimulated by the report of Lyubimov
and his colleagues in 1980 of a mass of 30 eV for the electron antineutrino
(Lyubimov et al., 1980). Although subsequent experiments have not confirmed
this result, the possibility that the rest mass energy of the neutrino was of the
order of εν ∼ 10 eV was of the greatest cosmological interest. As was shown in
Sect. 4.7.2, if all types of relic neutrinos had this mass, they would be sufficient
to close the Universe, Ω0 = 1. Furthermore, such neutrinos would have been
highly relativistic when they decoupled from the electrons at t ≈ 1 s, and so
none of the predictions of standard primordial nucleosynthesis would be af-
fected. As discussed in Sect. 4.7.2, the present upper limit to the mass of the
electron antineutrino is mν ≤ 2 − 3 eV. Furthermore, the discovery of neutrino
oscillations has provided a measurement of the mass difference between the
μ and τ neutrinos of Δm2

ν ∼ 3 × 10−3, suggesting a rest mass of the order of
0.1 eV. Thus, although the neutrinos cannot play the role of the dark matter, their
mass density may well be about 0.03 of that of the dark matter and so may still
have observable consequences in studies of the power spectrum of fluctuations
in the cosmic microwave background radiation.

3. WIMPs. A third possibility is that the dark matter is in some form of weakly
interacting massive particle, or WIMP, with rest mass ε ≥ 1 − 10 GeV. These
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particles might be the gravitino, the supersymmetric partner of the graviton, or
the photino, the supersymmetric partner of the photon, or some other type of
massive neutrino-like particle as yet unknown. Let us investigate their properties
in a little more detail.

13.3 WIMPs as Dark Matter Particles

We discussed limits to the masses of different candidates for the dark matter in
Sect. 4.7.2. An important conclusion was that, if dark matter particles were as
common as neutrinos and photons, their rest mass energies could not be much greater
than 10 eV, or the present density of the Universe would exceed the critical mass
density Ω0 = 1. Therefore, there would have to be some suppression mechanism
to ensure that the massive particles were much less common than the photons and
neutrinos at the present day.

There is a natural way in which this can occur if the decoupling of the WIMPs
from thermal equilibrium took place after they had become non-relativistic, that is,
the decoupling took place after the epoch at which kT ∼ mXc2, where mX is the
mass of the WIMP. This argument is exactly the same as that used in Sect. 10.6
to estimate the number density of baryons and antibaryons which would survive to
the present epoch. The relic abundances ‘froze out’ when the timescale for particle–
antiparticle annihilation exceeded the age of the Universe. Repeating the key steps
of the argument in Sect. 10.6, in the relativistic limit when all types of particle were
maintained in thermal equilibrium, the number densities of the dark matter particles
were given by

NX = NX̄ = 4πgX

h3

∫ ∞

0

p2 dp

eE/kT ± 1
, (13.1)

where gX is the statistical weight of the particle, p its momentum and the ± sign
depends upon whether the particles are fermions (+) or bosons (−). When the
particles became non-relativistic, kT 	 mXc2, but the species were maintained in
thermal equilibrium by interactions between the particles, the non-relativistic limit
of integral (13.1) gives the equilibrium number density

NX = gX

(
mXkT

h2

)3/2

exp

(
−mXc2

kT

)
, (13.2)

independent of whether they were fermions or bosons. Thus, once they became
non-relativistic, the number densities decreased exponentially until the timescale of
the interactions, which maintain the species in equilibrium, exceeded the expansion
age of the Universe. At that point, provided they were stable, the abundances of the
massive particles froze out. Taking the ratio of (13.2) and (13.1), the suppression
factor of the species relative to its relativistic value is

NX

Nrel
≈ 0.04

(
mXc2

kT

)3/2

exp

(
−mXc2

kT

)
. (13.3)
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Decoupling took place when the timescale τX for the interaction of the particles
became of the same order as the cosmological timescale, t ∼ τX, where τX =
(σX Nv)−1, v being the thermal speed of the particles and σX the interaction cross-
section of the WIMPs. We can use these results to estimate the value of the cross-
section σX in order to create the observed density of dark matter particles at the
present epoch, that is, that corresponding to a density parameter Ω0 = 0.3.

This calculation has been carried out by Dodelson. We can use the tools we
have already developed to make a similar estimate. We use the result established
in Sect. 10.6 that the final abundance is about 1/20 of the value when t ∼ τX. The
present generation of particle colliders such as the LEP experiment at CERN have
explored energies up to 100 GeV, and no evidence for WIMPs has been found. In
a typical model for the production of dark matter particles, it is assumed that their
rest masses must have been about 100 GeV or greater. This assumption immediately
means that the decoupling of dark matter particles must have taken place in the early
Universe before the epoch of annihilation of the primordial baryons and antibaryons
which have masses of ∼ 1 GeV.

The calculation is straightforward, but there are some important features which
need to be built into the calculation. First of all, the number density of dark matter
particles which survive from the very early Universe must result in a density pa-
rameter ΩD = 0.3 at the present epoch. Therefore, their number density must be
0.016/x m−3 if the mass of dark matter particles is 100x GeV. This number density
changes with scale factor as 0.016/a3x m−3 back to the epoch when their abundance
froze out.

Now, the particles must have become non-relativistic by the time the decoupling
took place so that the suppression factor represented by (13.3) resulted in a number
density of dark matter particles of 0.016/a3x m−3 when freeze-out was complete.
The number density of relativistic dark matter particles was

Nrel ≈ 0.2

(
2πkT

hc

)3

m−3 . (13.4)

This is where the first complication comes in. We cannot use the temperature-
scale factor relation T = T0a−1 because of the heating of the thermal background
radiation by all the particle–antiparticle annihilations which must have taken place
between the temperature corresponding to kT = 100x GeV and the present temper-
ature of the cosmic microwave background radiation. In other words, we need to
carry out a similar calculation to that of Sect. 10.5 to determine the relation between
the thermal radiation temperature and the total energy density of particles at the
early epochs before the annihilations have taken place. We need to determine χ
in the relation ε = χaT 4 using the same types of arguments as in Sect. 10.5. We
therefore need to guess the number of species present in the Universe at tempera-
tures kT = 100x GeV. Dodelson includes three generations of quarks and leptons,
photons, gluons, weak bosons and ‘perhaps even the Higgs boson’. He estimates that
χ might be of the order of 100, and this means that at T ∼ 100 GeV, the temperature
would be lower by about a factor of 301/3 ≈ 3 compared with T ∝ a−1. We follow
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his recommendation and take T = T0/3a as the temperature of the background ra-
diation during these early epochs, where T0 is the present temperature of the cosmic
microwave background radiation today.

WIMPs of rest mass 100x GeV were relativistic at a temperature T = E/k =
1015x K. At this temperature, the number density of WIMPs was given by (13.4).
We can therefore determine the suppression factor by comparing 0.016/a3x with
(13.4)

NX

Nrel
= 20 × 8.7 × 10−3

x

(
hc

kT0

)3

≈ 2.5 × 10−8

x
, (13.5)

where the factor of 20 takes account of the further annihilations which took place
after the epoch when t ∼ τX. Equating this number to (13.3), we find that the freeze-
out had to begin when T = Trel/18.5. All we need now is the scale factor and cosmic
time at which this took place and we can find the interaction cross-section σX. The
expression for the temperature–cosmic time relation (10.21) has to be modified to
take account of the presence of large numbers of particle–antiparticle pairs, and so,
as discussed above, we adopt the modified temperature history three times lower
than that relation so that

T = 0.44 × 1010t−1/2 . (13.6)

Therefore, the decoupling of the WIMPs began at an epoch when T = 1015x/18.5 K,
that is, when t = 6.6×10−9 s. This is the time which is now set equal to (σX NXv)

−1.
The scale factor at that temperature was 1.7 × 10−14/x, and so NX = 3 × 1039 m−3.
The thermal velocities of the particles were ∼ 108 m s−1, and so we find σX ≈
5 × 10−40 m2. Notice that the result is independent of x and so independent of the
mass of the WIMP. This is the answer we have been seeking. It is not so different
from the result quoted in the literature:

〈σXv〉 = (1 − 2)× 10−32 γ

4ΩXh2
m3 s−1 , (13.7)

where γ is a constant of order unity (Primack et al., 1988). This can be approximated
as

ΩXh2 ≈ 3 × 10−31

〈σXv〉 . (13.8)

There are clearly many rough approximations involved in the above estimates,
which are only indicative of the results of more complete analyses. The impor-
tant point is, however, that the predicted cross-section is very small and so there
is no question but that these particles really must be weakly interacting massive
particles.

The encouraging aspect of this analysis is that various theories of elementary
particles beyond the standard model predict that the cross-section for such parti-
cles should be of this order. According to supersymmetric theories of elementary
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particles, each type of fermion and boson has its supersymmetric counterpart and
these must be very massive since they have not been detected in particle physics
experiments. The particles have to be neutral since they must not interact with other
particles nor can they emit photons. The particles must also be stable. Hence, they
must be the lightest supersymmetric partners of one of the known neutral particles
so that they cannot decay into any lighter particles. Possible candidates for the dark
matter would therefore be the supersymmetric partners of the photon, the Higgs
particles or the graviton. These supersymmetric neutral WIMPs are referred to as
neutralinos.

As has been discussed in Sect. 4.7.2, according to particle theorists, almost all
theories of physics beyond the standard model involve the existence of new particles
at the TeV scale because of the symmetries which have to be introduced to avoid
proton decay and violations of the precision tests of the electro-weak theory. These
considerations lead to the expectation of new particles at the weak energy scale, and
it is encouraging that the above calculations show that the types of cross-sections
needed for the WIMPs are of the same order as those predicted by these theories.

Experiments are under way to search for different types of dark matter particles.
These experiments have not found evidence for the elusive WIMPs, but the sensi-
tivities of the searches are now reaching very impressive limits. The shaded areas
in Fig. 13.2 show the range of possible masses and WIMP–nucleon cross-sections

Fig. 13.2. WIMP–nucleon cross-section upper limits at 90% confidence limit plotted against
WIMP mass. The upper CDMS Ge curve uses data from only a 74.5-d run in 2006; the
lower Ge curve includes data from this experiment and previous runs. The shaded regions
of the diagram show areas allowed by various supersymmetric models. The results of other
dark matter experiments are also shown (Akerib et al., 2006). Notice that the WIMP–nucleon
scattering cross-section is much smaller than the annihilation cross-section (13.8) (Primack
et al., 1988)
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predicted by various versions of supersymmetry theories. The figure also shows the
limits obtained from the Cryogenic Dark Matter Search (CDMS II) at the Soudan
Underground Laboratory. The experiment used both germanium and silicon detec-
tors and was most sensitive to WIMPs with masses of ∼ 60 GeV/c2. No WIMP
signal exceeding the expected background was observed. The 90% confidence up-
per limit to the spin-independent WIMP–nucleon cross-section is 1.6 × 10−47 m2

from the germanium experiment and 3×10−46 m2 from the silicon experiment, both
limits for WIMP masses of 60 GeV/c2.

13.4 Metric Perturbations and Hot and Cold Dark Matter

Let us introduce some of the terminology used in the literature which describes the
connections shown in Fig. 13.1. In the purely baryonic models of Chap. 12, we noted
that the perturbations in the early Universe could be decomposed into isothermal
and adiabatic modes. We now have to deal with perturbations in all the quantities
shown in Fig. 13.1. In view of the fact that the terms ‘isothermal’ and ‘adiabatic’
are scarcely appropriate for systems containing collisionless dark matter particles
and massive neutrinos, it is better to decompose the perturbations into curvature
and isocurvature modes, which bear a number of similarities to the adiabatic and
isothermal perturbations. These terms, however, explicitly indicate that perturbations
in all the components shown in Fig. 13.1 contribute to perturbations in the metric, and
in turn each component then responds to these metric perturbations. These different
perturbation modes can be characterised as follows:

– The curvature modes are similar to the adiabatic modes in that, during the
radiation-dominated era and before the epoch of equality of mass densities in
the matter and radiation, the amplitudes of the perturbations in the radiation,
the baryonic matter and the dark matter were similar and driven by gravitational
potential perturbations in the metric. The relation between the density contrasts
in the various mass-energies δ	/	 is similar to the adiabatic law:
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. (13.9)

The subscripts have their obvious meanings: B = baryons, D = cold dark matter,
rad = radiation and ν = neutrinos. The final term in large brackets is the total
density contrast, which is determined by the curvature perturbations. Thus, there
were variations in the local mass-energy density from point to point in the
Universe, resulting in local perturbations to the curvature of space. The above
relation is known as the adiabatic condition and the perturbations are often
referred to as adiabatic curvature perturbations. One of the attractions of this
picture is that these types of perturbation appear naturally in the inflationary
picture of the origin of cosmological fluctuations, and one of the goals of that
theory is to relate the curvature perturbations to quantum fluctuations associated
with the inflation field.
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– In the isocurvature modes, the total mass-energy density is constant, and so there
are no perturbations of the spatial curvature of the background model, but there
are fluctuations in the mass-energy density of each of the four components of
(13.9) from point to point in the Universe.

As in the adiabatic and isothermal cases, any general distribution of perturbations
can be decomposed into the sum of curvature and isocurvature modes. The adiabatic
curvature modes have received the most attention because they are generated rather
naturally in the inflationary model and so most attention has been devoted to them.

The considerations of Sects. 13.2 and 13.3 show that at least two different types
of dark matter have been identified. We will consider the two most popular forms.

– A realisation of the cold dark matter model involves the WIMPs discussed in
Sect. 13.3. These particles decoupled from other components in the very early
Universe, when the Universe was about 10−14 s old, according to the calculation
of Sect. 13.3. They decoupled when they were already non-relativistic, and this
provided the powerful suppression mechanism which reduced their surviving
number density to the value Ω0 = 0.3 at the present epoch. Although they no
longer interacted with other particles, they cooled as part of the cosmological
expansion to very low temperatures, and so the term cold dark matter seems
entirely appropriate. According to Peebles, Richard Bond introduced the term
cold dark matter in 1982 to encompass many of these exotic types of particle
suggested by the particle physicists (Peebles, 1993). Notice that, once structures
began to form gravitationally bound systems in the post-recombination era, cold
dark matter was responsible for providing the gravitational potentials of the
bound systems and the particles acquired velocities by the process of violent
relaxation so that the systems satisfied the virial theorem.

– A realisation of the hot dark matter model would be one in which the known
types of neutrinos have finite masses. The term ‘hot’ here refers to the fact that
the particles were highly relativistic when they decoupled from the baryonic
matter at t ≈ 1 s. In the original hot dark matter model proposed by Zeldovich
and his colleagues, the rest mass of the neutrino was taken to be about 10 eV. The
neutrinos therefore became non-relativistic relatively late in the Universe and,
when this transition took place, the neutrinos still had very large velocities with
consequences which will be discussed in the next section. In fact, the likely rest
mass of the neutrino is about 100 times smaller than this value, but it is important
to study the physical consequences of the finite rest mass of the neutrino.

Let us develop some more of the tools needed to develop viable dark matter
cosmologies.

13.5 Free Streaming and the Damping
of Hot Dark Matter Perturbations

So long as dark matter particles were strongly coupled in the early Universe, they
behaved no differently from ordinary relativistic or non-relativistic particles. If, how-
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ever, the particles were relativistic at the epoch when they ‘froze-out’ as in the case of
hot dark matter particles, they would continue to travel in ‘straight lines’ at the speed
of light after this time. If the particles were the dominant source of mass-energy
for the density perturbations, the relativistic dark matter particles would continue to
stream freely when they came through the particle horizon, thereby rapidly damping
out perturbations on the horizon scale. The process is similar to the phenomenon of
Landau damping in a collisionless plasma where it is referred to as ‘phase-mixing’.
The same occurs in this case – the unrestrained motion of the particles destroys the
phase coherence of the density perturbation. This damping process was not impor-
tant for cold dark matter perturbations since they were non-relativistic when they
decoupled in the early Universe and were very cold by the time structures on the
scales of galaxies and clusters came through the horizon.

For illustration, consider the case of neutrinos with masses of mνc2 = 10 eV
in the standard critical model with Ω0 = 1. Then the epoch of equality of matter
and radiation energy densities occurred at a redshift z ≈ 104. For neutrinos of rest
mass 10 eV, the particles become non-relativistic when 3kTν ≈ mνc2. We recall
that, in the standard Big Bang scenario, the temperatures of the neutrinos and the
photons are related by Tν = (4/11)1/3 Tr, and so the redshift at which the neutrinos
became non-relativistic was zNR = Tr/T0 = 2 × 104. Thus, the neutrinos became
non-relativistic at about the same time that the matter and radiation energy densities
were the same. In the hot dark matter picture, this is not a coincidence. The reason
is that the energy density in the neutrinos was more or less the same as the energy
density in the photons so long as the neutrinos were relativistic. After the epoch
when the neutrinos became non-relativistic, their inertial mass density decreased
as a−3, whereas that of the photons continued to decrease as a−4. The neutrinos
then became the dominant dark matter particles which make up Ω0 at the present
epoch.

Let us return to the damping of neutrino perturbations by free-streaming. The
masses which were damped out depended upon how far the free-streaming particles
could travel at a given epoch. Let us illustrate the result by the simple treatment of
Kolb and Turner (Kolb and Turner, 1990). It will prove convenient to work in terms
of comoving scales, and so the distance which a free-streaming particle can travel
by the epoch t is

rFS =
∫ t

0

v(t ′)
a(t ′)

dt ′ . (13.10)

Let us split the integral into two parts, the first from time t = 0 to the epoch when
the particles became non-relativistic, t = tNR and the second from t = tNR to teq.

rFS =
∫ tNR

0

v(t ′)
a(t ′)

dt ′ +
∫ teq

tNR

v(t ′)
a(t ′)

dt ′ . (13.11)

The first part of the integral is just the horizon scale during the radiation-dominated
phases while the particle was relativistic, expressed as a comoving coordinate dis-
tance. After the epoch when the particles became non-relativistic, the streaming
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velocities of the particles decreased adiabatically as v = (aNR/a)c, as shown in
Sect. 7.1. Therefore,

rFS = 2
ctNR

aNR
+
∫ teq

tNR

v(t ′)
a(t ′)

dt ′ . (13.12)

During the radiation-dominated era, the dynamics of the expansion were described
by a ∝ t1/2 and so we can write t = tNR(a/aNR)

2. Therefore,

rFS =
(

ctNR

aRN

)[
2 + ln

(
teq

tNR

)]
. (13.13)

In the logarithmic term in (13.13), teq/tNR is of order unity. Therefore, we can take
the free-streaming scale rFS to be the comoving particle horizon, rH = 2ct/aeq, at
zNR. Since we have worked in terms of comoving distances at the present epoch, the
mass within this scale is

MFS ∼ π

6
r3

FS	0 = 2 × 1015 M� . (13.14)

More detailed calculations show that the free-streaming damping mass is

MFS ≈ 4 × 1015
( mν

30 eV

)−2
M� . (13.15)

The key result is that all density perturbations on mass scales less than these very
large masses were damped out as soon as they came through the horizon. Note that
these masses are at least of the order of the most massive clusters of galaxies and so,
in this picture, only structures on these very large scales and larger can survive after
the epoch of equality of matter and radiation energy densities. This is a distinctive
feature of the hot dark matter scenario and bears some resemblance to the baryonic
adiabatic picture in which small masses were damped out by photon diffusion.

13.6 Instabilities in the Presence of Dark Matter

We need to reconsider the concept of the Jeans mass when dealing with weakly
interacting particles. The equations of gas dynamics under gravity need to be replaced
by the collisionless Boltzmann equation. This topic is dealt with by Coles and
Lucchin, who show that the Jeans stability criterion also applies in the case of a
collisionless gas, provided the sound speed cs is replaced by the velocity v∗, where

v−2
∗ =

∫
v−2 f(v) d3v∫

f(v) d3v
(13.16)

(Coles and Lucchin, 1995). f(v) is the velocity distribution of the dark matter
particles, which is assumed to be isotropic. In the case of a Maxwellian distribution
of velocities, v∗ is just the root-mean-squared velocity dispersion of the particles.
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The physics of this result is straightforward. The issue is whether or not the
gravitational pull of the dark matter particles within the perturbation is sufficient
to prevent them escaping from it. Just as in the case of the Jeans analysis, on large
enough scales the mass of the perturbation becomes more than enough to cause the
collapse of the pressure-free, or dust, perturbation.

We need one result which is of particular importance once the matter and radiation
decoupled after the epoch of recombination. As we will show, the baryonic pertur-
bations were of much lower amplitude than those in the dark matter immediately
after recombination, and so we need to understand how the baryonic perturbations
behaved once they were coupled only by gravity to the larger-amplitude dark matter
perturbations. Let us study the development of the gravitational instability in the dark
and baryonic matter when the internal pressure can be neglected. Equation (11.24)
can be written

Δ̈+ 2

(
ȧ

a

)
Δ̇ = A	Δ , (13.17)

where A = 4πG in the matter-dominated case. Let us write the density contrasts in
the baryons and the dark matter as ΔB and ΔD respectively. We have to solve the
coupled equations

Δ̈B + 2

(
ȧ

a

)
Δ̇B = A	BΔB + A	DΔD , (13.18)

Δ̈D + 2

(
ȧ

a

)
Δ̇D = A	BΔB + A	DΔD , (13.19)

where the gravitational driving terms on the right-hand side are the same for both
components. Rather than find a general solution, let us find the solution for the case
in which the dark matter has Ω0 = 1 and the baryon density and its perturbations
can be taken to be negligible compared with those of the dark matter. Then (13.19)
reduces to (13.17), for which we have already found the solution ΔD = Ba, where
B is a constant. Therefore, the equation for the evolution of the baryon perturbations
becomes

Δ̈B + 2

(
ȧ

a

)
Δ̇B = 4πG	D Ba . (13.20)

The background model is the critical model for which a = (3H0t/2)2/3 and 3H2
0 =

8πG	D = 8πG	D(0)a−3, where 	D(0) is the critical density at the present epoch.
Therefore, (13.20) simplifies to

a3/2 d

da

(
a−1/2 dΔ

da

)
+ 2

dΔ

da
= 3

2 B . (13.21)

The solution,Δ = B(a−a0), satisfies (13.21). This is a rather pleasant result because
the perturbation can have ΔB = 0 at the epoch corresponding to a = a0 and yet the
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baryon perturbation grows under the influence of the growing perturbations in the
dark matter. In terms of redshift, the growth of the perturbation can be written

ΔB = ΔD

(
1 − z

z0

)
. (13.22)

Thus, the amplitude of the perturbations in the baryons grows rapidly to the same
amplitude as that of the dark matter perturbations. To express this result more
crudely, the baryons fall into the dark matter perturbations and, within a factor of
two in redshift, have already grown in amplitude to half that of the dark matter
perturbations.

Let us illustrate why this is an important calculation for understanding the forma-
tion of structure. Consider the case of adiabatic curvature perturbations. When they
came through the particle horizon in the radiation-dominated era, the amplitudes of
the perturbations in the four-component system were given by (13.9)

1
3

δ	B

	B
= 1

3

δ	D

	D
= 1

4

δ	rad

	rad
= 1

4

δ	ν

	ν
. (13.23)

The perturbations in the radiation-dominated plasma were quickly stabilised when
they came through the horizon because the Jeans length was of the same order as
the horizon scale and the radiation provided pressure support for the perturbations.
The baryonic perturbations became sound waves which oscillated with more or less
constant amplitude up to the epoch of recombination, when the decoupling of the
matter and radiation took place. After the epoch of equality of the energy densities in
the dark matter and the radiation, the dark matter perturbations grew independently
of those in the radiation-dominated plasma.

We see now why the above calculation is of considerable importance. The baryon
perturbations were stabilised from the redshift at which they entered the horizon to
the epoch of recombination, but the amplitude of the perturbations in the dark mat-
ter grew from zeq to the epoch of recombination as ΔD ∝ (1 + z)−1. Therefore,
the relative amplitudes of the fluctuations in the dark matter and the baryons was
roughlyΔB/ΔD ≈ 1500/zeq, that is, the baryon perturbations were of much smaller
amplitude than those in the dark matter at the epoch of recombination. This is a really
important conclusion for studies of intensity fluctuations in the cosmic microwave
background radiation. The perturbations in the radiation-dominated plasma were
suppressed relative to those in the dark matter at the time the temperature pertur-
bations were imprinted on the cosmic microwave background radiation. Once the
matter was decoupled from the radiation, however, the baryons could collapse into
the dark matter perturbations according to (13.20), thus restoring their amplitudes
to those in the dark matter.

Perturbations on scales larger than those which came through the horizon at
redshift zeq have relatively smaller differences between ΔD and ΔB at the epoch
of recombination. In the limit in which the perturbations came through the horizon
at the epoch of recombination, the amplitudes of the fluctuations were of the same
order of magnitude.
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13.7 The Evolution of Hot and Cold Dark Matter Perturbations

Let us put these concepts together to outline how structure formation comes about
in these rather different dark matter scenarios. We consider first the hot dark matter
scenario which is to some extent of historical interest, but the presence of hot dark
matter has observable consequences in the preferred cold dark matter scenario.

13.7.1 Hot Dark Matter Scenario

If the dark matter was in the form of known types of neutrino with rest masses of
the order 10 eV, these particles became non-relativistic at an energy mνc2 = 3kT ,
which corresponds to a redshift of z ≈ 104, assuming Ω0 = 1. As we have shown,
the fact that the particles were highly relativistic when they decoupled means that
this epoch also corresponded to the epoch at which the Universe changed from being
radiation- to matter-dominated.

It is assumed that all perturbations of astrophysical interest were set up on a
very wide range of scales which far exceeded their particle horizons in the very
early Universe. These perturbations then grew according to the rules established
in Sect. 13.5, until they came through their particle horizons. As we discussed in
Sect. 13.5, if the neutrinos remained relativistic when they came through the horizon,
the perturbations on these scales were rapidly damped out by free-streaming. This
process continued until the epoch of equality of the matter and radiation energy
densities at z ≈ 104 and wiped out all perturbations in the dark matter with masses
less than MFS = 4 × 1015(mν/30 eV)−2 M�.

At this epoch, the perturbations in the neutrinos, baryons and dark matter had
more or less the same amplitude, but now the perturbations in the dark matter
became dynamically dominant and, since they were not coupled to the radiation-
dominated plasma, they continued to grow in amplitude as ΔD ∝ (1 + z)−1. In
contrast, when the perturbations in the radiation-dominated plasma came through
the horizon, they were very quickly stabilised and oscillated with more or less
constant amplitude between the epoch when they came through the horizon to the
epoch of recombination. As discussed in the last section, the amplitudes of the
perturbations in the dark matter became progressively greater than those in the
plasma, and, by the epoch of recombination, the perturbations in the dark matter
with masses M ∼ 4 × 1015(mν/30 eV)−2 M� were greater than those in the plasma
by a factor ΔD/ΔB ≈ (1 + zeq)/(1 + zrec) ≈ 10.

The perturbations in the plasma were subject to the dissipation processes dis-
cussed in Sect. 12.3, and so baryonic perturbations with masses up to about 1012 M�
were damped out, but this is not such an important feature of the hot dark matter sce-
nario – the perturbations which determined the structures which form in the Universe
now are those in the dark matter which survived to the epoch of equality of matter
and radiation energy densities, that is, M ≥ 4 × 1015(mν/30 eV)−2 M�. After the
epoch of recombination when the matter and radiation were decoupled, the baryonic
matter collapsed into the dark matter perturbations. The density perturbations in the
matter then grew rapidly to the same amplitude as those in the dark matter, which
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continued to grow as ΔD ∝ (1 + z)−1, until they became non-linear when ΔD ∼ 1.
At this point, the perturbations separated out as discrete entities and began to form
the large-scale structures we observe today. The hot dark matter scenario avoids
creating excessively large fluctuations in the cosmic background radiation because,
at the last scattering surface, the amplitude of the perturbations in the plasma were
significantly less than those in the dark matter.

A key prediction of the hot dark matter model is that the first structures to form are
those on the largest scales in the Universe. It is assumed that smaller-scale structures
such as galaxies and their contents formed by fragmentation and instabilities once
the structures on the scales of clusters of galaxies and greater began to form. This
picture was developed by Zeldovich and his colleagues in a remarkable series of
papers in 1980, the most important of which are contained in Zeldovich’s selected
works (Zeldovich, 1993). A success of this picture was that it accounted naturally
for the large-scale ‘cellular’ structure in the distribution of galaxies. Indeed, as we
will discuss in the next chapter, the theory is too successful in producing structure
on the very largest scales. The big problem with this scenario was that galaxies can
only form once the large-scale structures have collapsed, and so it is inevitable that
galaxies and their contents formed rather late in the Universe. This poses problems
for topics such as the early heating and ionisation of the intergalactic gas and the
early chemical enrichment of that gas.

13.7.2 Cold Dark Matter Scenario

The standard cold dark matter scenario has become the model of choice for studies
of structure formation in the standard Big Bang. The cold dark matter particles
decoupled early in the Universe after they had already become non-relativistic.
Since the cold dark matter particles decoupled not too long after they became non-
relativistic at t ∼ 10−9 s, the mass within the horizon at these times was very small,
M 	 M�. Free streaming was unimportant as soon as the particles became non-
relativistic and so the cold dark matter scenario begins with the big advantage that
dark matter perturbations on all scales of astrophysical interest survived from the
early Universe.

Cold dark matter must be the dominant form of mass at the present epoch
and, for our reference values of Ω0 = 0.3, ΩΛ = 0.7, h = 0.7, the epoch of
equality of matter and radiation energy densities occurred at a redshift of z =
2.4×104Ω0h2 ≈ 3500. Up till this epoch, the perturbations in the dark matter hardly
grew at all because of the Mészáros effect. After this epoch, the dark matter became
dynamically dominant and the perturbations in the dark matter grew independently
of the behaviour of the perturbations in the radiation-dominated plasma. As in
the standard baryonic picture, adiabatic baryonic fluctuations came through the
horizon and were quickly stabilised by the pressure of the plasma. The diffusion of
photons from these perturbations led to Silk damping of masses up to about MS =
1012(ΩBh2)−5/4 M� ∼ 1014 M� by the epoch of recombination. Perturbations with
greater masses survived as oscillating sound waves up to the epoch of recombination,
when they imprinted their signature on the last scattering surface, just as in the case



382 13 Dark Matter and Galaxy Formation

of the hot dark matter and baryonic scenarios. However, because perturbations on
all mass scales survived in the cold dark matter throughout these epochs, baryonic
perturbations on all scales were regenerated by collapse into the cold dark matter
perturbations very soon after the epoch of recombination when the coupling of matter
and radiation ended. The appropriate Jeans mass for the baryons then corresponded
to the standard Jeans mass for ordinary matter immediately after recombination,
that is, MJ = 106(ΩBh2)−1/2 M� ≈ 7 × 106 M�, which is of the same order as the
masses of globular clusters.

The evolution of the density perturbations in dark matter, baryonic matter and ra-
diation for a mass M = 1015 M� is shown in Fig. 13.3, which contrasts the evolution
of density perturbations in the purely baryonic picture discussed in Chap. 12 with
the preferred cold dark matter scenario discussed here. This helpful diagram from
the book by Coles and Lucchin displays many of the important features we have
developed in the last three chapters (Coles and Lucchin, 1995). Notice in particular:

– The separate evolution of the perturbations in the cold dark matter and the coupled
photon-baryon plasma from the epoch when the perturbations came through the
horizon until after the epoch of recombination.

– The regeneration of large-amplitude perturbations in the baryons after the epoch
of recombination.

– The decay of the perturbations in the photon gas after the epoch of recombination.
This damping is associated with the fact that, as the primordial plasma recom-
bined at a redshift of about 1000, the mean free path of the photons increased
dramatically, and so they diffused out of the baryonic perturbations, resulting in
strong damping of the perturbations in the radiation.

– The growth of the perturbations on superhorizon scales at a < 3 × 10−5. As
shown in Sect. 12.3, although Δ = δ	/	 grew during these early epochs, they
corresponded to gravitational potential perturbations of the metric which were
‘frozen-in’ on superhorizon scales.

Cold dark matter models for galaxy and structure formation have been stud-
ied in great detail by computer simulation. Once a spectrum of initial curvature
perturbations has been adopted, their evolution can be followed rather precisely.
The lowest-mass objects formed first soon after the epoch of recombination, and
these then clustered and coalesced under the influence of the spectrum of perturba-
tions on larger scales. Just like the baryonic isothermal model, this process can be
thought of as a ‘bottom-up’ scenario in which small-scale structures formed first and
subsequently clustered to form galaxies and clusters.

As we will see, the model is remarkably successful in accounting for the power
spectrum of the spatial distribution of galaxies and for the spectrum of fluctuations
in the cosmic microwave background radiation. Furthermore, the formation of stars
and the other contents of galaxies can begin soon after the epoch of recombination,
and so there is no problem in accounting for the early heating and reionisation of
the intergalactic gas and the early chemical enrichment of the gas by the products
of stellar nucleosynthesis. The success of the model in accounting for the large-
scale distribution of galaxies has persuaded most theorists that this is the preferred
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Fig. 13.3a,b. Illustrating the evolution of density perturbations in a baryonic matter ΔB and
radiation Δrad in the standard baryonic adiabatic model and b the baryonic matter ΔB, the
radiation Δrad and the dark matter ΔD according to the cold dark matter scenario. In both
cases, the mass of the perturbation is M ∼ 1015 M� (Coles and Lucchin, 1995)
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framework for studying the processes of galaxy formation. As we will see, although
the model performs extremely well on the large scale, there remain problems in
understanding how to create galaxies and clusters with all the properties we described
in Chaps. 3 and 4. In addition, we have to tackle the difficult problems of the post-
recombination era, what are often called the ‘dark ages’, between the epoch of
recombination and the appearance of the first stars and galaxies.

13.8 Conclusion

We have now made considerable progress towards the development of physically
self-consistent scenarios for galaxy formation. We now need to convert these sce-
narios into quantitative models for structure formation. To do this, we need to study
the development of the spectrum of density fluctuations, and this is the subject of
Chap. 14. Then, in Chap. 15, we confront these theories with observations of the
temperature fluctuations in the cosmic microwave background radiation.

It is worthwhile stressing an important aspect of the discussion of the last two
chapters. We have demonstrated how a purely baryonic picture of galaxy formation
is difficult to reconcile with the observations and that these problems could be
resolved by the introduction of non-baryonic dark matter. From the perspective of
astrophysical cosmology, the incorporation of non-baryonic particles into the models
is essential. This is a really momentous step, because these studies not only indicate
that this new ingredient is present throughout the Universe, but also that we can use
astrophysical arguments to constrain the nature of dark matter particles. The great
interest of the particle physicists in these endeavours is understandable. The types
of dark matter particles needed in the most promising scenarios may well be closely
related to those predicted by theories of elementary particles but which have not yet
been created in terrestrial accelerators.



14 Correlation Functions and the Spectrum
of the Initial Fluctuations

To make a quantitative comparison between theories of galaxy and structure forma-
tion and the observed distribution of galaxies, we need to quantify the spectrum of
density perturbations in the Universe and relate it to the spectrum of fluctuations
from which these structures formed. So far, we have worked entirely in real space
in our analysis of the structure, but the natural way of describing these distributions
is in terms of their power spectra, in other words, working in Fourier, rather than
in real, space. So, our first task is to relate the correlation functions for galaxies
which were introduced in Chap. 2 to their associated power spectra. Then, we need
to derive the power spectrum of initial fluctuations which must have been present in
the very early Universe in order to create the structures we observe today.

The full analysis of these topics is non-trivial and, in the spirit of the present
exposition, we will endeavour to emphasise the important aspects of the physics and
then rely upon the results of supercomputer simulations to make detailed quantitative
comparison between theory and observation. Let us first review the properties of the
correlation function of galaxies at the present day, extending our introduction of
Sect. 2.2. Then we will embark on the quantitative theory of structure formation
through the use of power spectra which will provide the natural link to the resulting
temperature fluctuation power spectra which are the subject of Chap. 15.

14.1 The Two-Point Correlation Function for Galaxies

The simplest quantitative description of the statistical distribution of galaxies on
a large scale is provided by the two-point correlation function, which describes
the excess probability of finding a galaxy at distance r from a galaxy selected at
random over that expected in a uniform, random distribution. The spatial two-point
correlation function ξ(r) was introduced in Sect. 2.2 and describes the number of
galaxies in the volume element dV at distance r from any galaxy in the form

dN(r) = N0 [1 + ξ(r)] dV , (14.1)

where N0 is a suitably defined average background number density of galaxies.
The function ξ(r) can also be written in terms of the probability of finding pairs of
galaxies separated by distance r:

dNpair = N2
0 [1 + ξ(r)] dV1 dV2 . (14.2)
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The two-point correlation function can be directly related to the density contrast
Δ = δ	/	, which has dominated much of the discussion so far. We write 	 =
	0[1 + Δ(x)], and so the pairwise numbers of galaxies separated by distance r, in
the sense of (14.2), is

dNpair(r) = 	(x) dV1 	(x + r) dV2 . (14.3)

Therefore,

dNpair(r) = 	2
0 [1 +Δ(x)] [1 +Δ(x + r)] dV1 dV2 . (14.4)

Taking averages over a large number of volume elements, the mean value of Δ is
zero by definition, and therefore the two-point correlation function becomes

dNpair(r) = 	2
0 [1 + 〈Δ(x)Δ(x + r)〉] dV1dV2 . (14.5)

This calculation shows explicitly the relation between the density contrast Δ(r) on
different scales r and the two-point correlation function for galaxies:

ξ(r) = 〈Δ(x)Δ(x + r)〉 . (14.6)

As discussed in Sect. 2.2.1, observationally the angular two-point correlation
function w(θ) is most readily derived from large galaxy surveys:

N(θ) dΩ = ng [1 +w(θ)] dΩ . (14.7)

w(θ) can be converted into a spatial two-point correlation function by the procedures
described in Sect. 2.2.1. Thus, if ξ(r) were of power-law form ξ(r) ∝ r−γ , thenw(θ)
would be proportional to θ−(γ−1). The success of the scaling procedures described by
(2.5), as applied to the Cambridge Southern Galaxy Survey and illustrated in Fig. 2.5,
suggests that the derived form of ξ(r) represents a stationary, random process.
Although it might seem preferable to work directly with the three-dimensional
correlation function ξ(r), the very large statistics which can be obtained by simply
counting galaxies has proved to be a very effective way of estimating ξ(r).

The spatial two-point correlation function for galaxies is a rather sweeping,
broad-brush description of their spatial distribution, in that it is assumed that, in
taking the averages in (14.5), their distribution is spherically symmetric about any
randomly selected galaxy. Inspection of Figs. 2.7 and 2.8 suggests that this is at best
a rough approximation on large physical scales. Higher-order correlation functions
such as the three- and four-point correlation functions can be defined which take into
account more of the three-dimensional structure seen in the large-scale distribution
of galaxies. These correlation functions have been treated in some detail by Peebles
(Peebles, 1980, 1993). The most effort has, however, been devoted to deriving the
predicted two-point correlation functions from large-scale computer simulations,
and this is entirely reasonable in order to put some simple order into the massive
amount of information contained in the data sets now available.
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To recapitulate the results described in Sect. 2.2, the function ξ(r) can be well
represented by a power law of the form

ξ(r) =
(

r

r0

)−γ
(14.8)

on physical scales from about 100 h−1 kpc to 10 h−1 Mpc with the scale r0 =
5h−1 Mpc and the exponent γ = 1.8. On scales greater than about 10h−1 Mpc, the
two-point correlation function decreases more rapidly than the power law (14.8).

There are several points to be made about this correlation function.

1. Figure 2.5 shows that the correlation function for galaxies is quite smooth. There
are no obvious preferred scales, say, on the scale of rich clusters or superclusters
of galaxies. Of course, any such structures would have been very severely
damped in the averaging process. We will find that there is now evidence for
structure in the correlation function for galaxies at a low level on the largest
scales which were causally connected at a redshift of z = 1000. Nonetheless the
evidence of Fig. 2.5 is that perturbations on a very wide range of scales must
have been present in the initial perturbation spectrum.

2. There is a characteristic scale r0 = 5h−1 Mpc which defines the scale at which
the density of galaxies is greater than that of the background by a factor of
two. This may be interpreted roughly as a measure of the scale on which the
perturbations became non-linear, in the sense that all structures on smaller
scales have ξ(r) > 1. This means that structures on the scales of groups and
clusters of galaxies have certainly become strongly non-linear by the present
epoch, entirely consistent with the formation of these virialised structures by
the present epoch. This cannot be the whole story, however, since the cellular
structure of the large-scale distribution of galaxies extends to scales very much
greater than 5h−1 Mpc.

3. Of particular interest is the behaviour of the two-point correlation function
on large physical scales. Although the amplitude of the two-point correlation
function for galaxies in general is very much less than one, there is cluster-
ing on very large scales. Bahcall and her colleagues have found that Abell
clusters, the richest clusters of galaxies, are correlated with a characteristic
clustering scale of r0 ≈ (15 − 25)h−1 Mpc (Bahcall, 1988, 1997). We de-
scribed their clustering properties in Sect. 4.1.3. The 2dF and SDSS sky surveys
have also provided a wealth of data on the correlation function of quasars on
these very large scales. For example, Croom and his colleagues determined the
two-point correlation function for quasi-stellar objects using over 20,000 ob-
jects from the final 2dF Quasar Redshift Survey (Croom et al., 2005). When
averaged over the redshift range 0.3 ≤ z ≤ 2.2, they found that ξ(r) is some-
what flatter that (14.8) on small scales but steepens on scales greater than
25 h−1 Mpc. For a cosmology with Ω0 = 0.27,ΩΛ = 0.73, they found a
best-fitting power law with r0 = 5.48h−1 Mpc and γ = 1.20 on scales from
r = (1 − 25)h−1 Mpc. Thus, there is no question about the reality of correlated
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structures on these very large scales, although they are still in the linear stage of
development.

14.2 The Perturbation Spectrum

Since we are dealing with a three-dimensional distribution of galaxies, we need
to work in terms of three-dimensional Fourier transforms of Δ(r) so that the am-
plitude of the Fourier components with different wavelengths λ, or wavevectors
k = (2π/λ)ik, can be found. A number of simplifications can, however, be made
since we aim to relate the spectrum of the fluctuations to the two-point correlation
function, which is, by definition, spherically symmetric about each point.

14.2.1 The Relation Between ξ(r) and the Power Spectrum
of the Fluctuations

First of all, we define the Fourier transform pair for Δ(r)

Δ(r) = V

(2π)3

∫
Δk e−ik·r d3k ; (14.9)

Δk = 1

V

∫
Δ(r) eik·r d3x , (14.10)

where V is the volume within whichΔ(r) is defined. We now use Parseval’s theorem
to relate the integrals of the squares of Δ(r) and its Fourier transform Δk:

1

V

∫
Δ2(r) d3x = V

(2π)3

∫
|Δk|2 d3k . (14.11)

The quantity on the left-hand side of (14.11) is the mean square amplitude of the
fluctuation within the volume V , and |Δk|2 is the power spectrum of the fluctuations,
which is often written as P(k). Therefore, we can write

〈
Δ2〉 = V

(2π)3

∫
|Δk|2 d3k = V

(2π)3

∫
P(k) d3k . (14.12)

Since the two-point correlation function is spherically symmetric, the element of
k-space can be written d3k = 4πk2 dk, and so

〈
Δ2〉 = V

2π2

∫
|Δk|2k2 dk = V

2π2

∫
P(k)k2 dk . (14.13)

The final step is to relate
〈
Δ2
〉

to the two-point correlation function through
(14.6). It is simplest to begin with a Fourier series and then transform the series
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summation into a Fourier integral. We write Δ(x) as

Δ(x) =
∑

k

Δk e−ik·x . (14.14)

Δ(x) is a real function, and therefore we can find |Δ(r)|2 by writing |Δ(r)|2 =
|Δ(r)Δ∗(r)|, where Δ∗(r) is the complex conjugate of Δ(r). Taking the average
value of the product of Δ(x) and Δ(x + r) in order to find ξ(r) in (14.6), we find

ξ(r) =
〈∑

k

∑
k′
ΔkΔ

∗
k′ e−i(k−k′)·x eik′·r

〉
. (14.15)

When we multiply out the cross terms in this summation, they all vanish except for
those for which k = k′. Therefore,

ξ(r) =
∑

|Δk|2 eik·r . (14.16)

We now convert this Fourier summation into a Fourier integral:

ξ(r) = V

(2π)3

∫
|Δk|2 eik·r d3k . (14.17)

Finally, we note that ξ(r) is a real function, and so we are only interested in the
integral of the real part of eik·r, that is, the integral over cos(k · r) = cos(kr cos θ).
Because of the spherical symmetry of the two-point correlation function, we integrate
over an isotropic probability distribution of angles θ on a sphere, that is, we integrate
cos(kr cos θ) over 1

2 sin θ dθ. Performing this integral, we obtain the final answer

ξ(r) = V

2π2

∫
|Δk|2 sin kr

kr
k2 dk = V

2π2

∫
P(k)

sin kr

kr
k2 dk . (14.18)

This is the relation between the two-point correlation function ξ(r) and the power
spectrum of the fluctuations P(k) = |Δk|2 we have been seeking. Notice what this
procedure has achieved. The function sin kr/kr allows only wavenumbers k ≤ r−1

to contribute to the amplitude of the fluctuations on the scale r. Fluctuations with
larger wavenumbers, corresponding to smaller scales, average out to zero on the
scale r.

It is straightforward to write the power spectrum as an integral over the two-
point correlation function ξ(r) starting from (14.11). Following through the same
procedure which led to (14.18), we find

P(k) = 1

V

∫ ∞

0
ξ(r)

sin kr

kr
4πr2 dr . (14.19)

In some presentations of the power spectrum of the distribution of galaxies, P(k),
is written in an alternative dimensionless form by multiplying it by k3. The integral
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(14.18) can then be written

ξ(r) = V

2π2

∫ [
k3 P(k)

] sin kr

kr
d(ln k) . (14.20)

In the notation used by Peacock and others, the power spectrum can then be written

Δ2(k) = V

(2π)3
4πk3 P(k) = 2

π
k3
∫ ∞

0
ξ(r)

sin kr

kr
r2 dr . (14.21)

This use ofΔ(k) is not to be confused with our use ofΔ to mean δ	/	. Inspection of
the integral in (14.21) shows that, because of the function sin kr/kr, ξ(r) is averaged
over a volume of roughly k−3, and so if the amplitude of ξ(r) is of order unity, so
also isΔ2(k). This means that ifΔ2(k) is of order one, there are density fluctuations
per unit logarithmic interval of k of order unity about the value k. Thus, although
Δ2(k) seems the more natural counterpart of ξ(r), we will work with P(k) since it is
commonly used in the literature.

14.2.2 The Initial Power Spectrum

The observations described in Sect. 14.1 suggest that the spectrum of initial fluctua-
tions must have been very broad with no preferred scales, and it is therefore natural
to begin with a power spectrum of power-law form

P(k) = |Δk|2 ∝ kn . (14.22)

According to (14.18), the correlation function ξ(r) should then have the form

ξ(r) ∝
∫

sin kr

kr
k(n+2) dk . (14.23)

Because the function sin kr/kr has value unity for kr 	 1 and decreases rapidly
to zero when kr � 1, we can integrate k from 0 to kmax ≈ 1/r to estimate the
dependence of the amplitude of the correlation function on the scale r.

ξ(r) ∝ r−(n+3) . (14.24)

Since the mass of the fluctuation is proportional to r3, this result can also be written
in terms of the mass within the fluctuations on the scale r, M ∼ 	r3:

ξ(M) ∝ M−(n+3)/3 . (14.25)

Finally, to relate ξ to the root-mean-square density fluctuation on the mass scale M,
Δ(M), we take the square root of ξ , that is,

Δ(M) = δ	

	
(M) = 〈

Δ2〉1/2 ∝ M−(n+3)/6 . (14.26)
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The above analysis illustrates the relations between the various ways of de-
scribing the density perturbations. To summarise, a power spectrum P(k) = |Δk|2
of power-law form P(k) ∝ kn corresponds to a two-point correlation func-
tion ξ(r) ∝ r−(n+3) ∝ M−(n+3)/3 and to a spectrum of density perturbations
Δ(M) ∝ M−(n+3)/6. Power spectra and related functions appear in a variety of
different forms in the literature. Sometimes P(k) is plotted against k or M, some-
times P(k)k3 against k or M, sometimes against λ, and so on. The above translations
should help reconcile the different presentations. We will present the results of the
analytic and computational calculations in terms of P(k) and k.

One of the objectives of these studies is to determine the form of the initial
power spectrum of fluctuations which must have been generated in the early phases
of the Big Bang. We will study how the observed power spectrum of the distri-
bution of galaxies can be related to the initial power spectrum, but first let us
consider the important case of what is known as the Harrison–Zeldovich power
spectrum.

14.2.3 The Harrison–Zeldovich Power Spectrum

The Harrison–Zeldovich power spectrum has n = 1 and results in a spectrum of
density perturbations Δ(M) = δ	/	(M) and two-point spatial correlation function
of the forms

Δ(M) ∝ M−2/3 and ξ ∝ r−4 ∝ M−4/3 . (14.27)

This spectrum has the important property that the density contrast Δ(M) had the
same amplitude on all scales when the perturbations came through their particle
horizons. Let us illustrate how this comes about.

Consider the early development of the perturbations on superhorizon scales
before they came through their particle horizons and before the epoch of equality
of matter and radiation energy densities. The density perturbations on these scales
grew as Δ(M) ∝ a2, as discussed in Sect. 12.3. Therefore, the development of the
spectrum of density perturbations can be written

Δ(M) ∝ a2 M−(n+3)/6 . (14.28)

A perturbation of scale r came through the horizon when r ≈ ct, and so the mass
of dark matter within it was MD ≈ 	D(ct)3. During the radiation-dominated phases,
a ∝ t1/2 and the number density of dark matter particles, which will eventually form
bound structures at z ∼ 0, varied as ND ∝ a−3. Therefore, the horizon dark matter
mass increased as MH ∝ a3, or, a ∝ M1/3

H . We can insert this result into (14.28)
in order to find the mass spectrum Δ(M)H when the fluctuations came through the
horizon at different cosmic epochs:

Δ(M)H ∝ M2/3 M−(n+3)/6 = M−(n−1)/6 . (14.29)
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Thus, if n = 1, the density perturbations Δ(M) = δ	/	(M) all had the same
amplitude when they came through their particle horizons during the radiation-
dominated era.

This rather special value, n = 1, is known as the Harrison–Zeldovich spectrum
(Harrison, 1970; Zeldovich, 1972). The names of these authors are associated with
this spectrum for slightly different reasons. Zeldovich stated in his paper:

‘One unique value (approximately 10−4) of non-dimensional amplitude
of metric perturbations, scale-independent, describes two different, most
important properties of the Universe – its structure and its entropy.’

The scale independence of the perturbations was derived from the earlier analysis of
Sunyaev and Zeldovich, who used a variety of constraints to derive the form of the
initial power spectrum of density perturbations as they came through the horizon on
mass scales from 105 to 1020 M� (Sunyaev and Zeldovich, 1970).

Harrison’s paper addressed the issue of the form the primordial spectrum would
have had to have in order to prevent the overproduction of excessively large-
amplitude perturbations on small and large scales. We can understand this problem
from the analysis carried out in Sect. 12.3. The perturbations on superhorizon scales
corresponded to ‘frozen-in’ gravitational potential perturbations of the metric. The
Harrison–Zeldovich spectrum has the property that these perturbations had the same
‘frozen-in’ amplitudes ∼ 10−4 on all scales when they crossed the horizon. If the
spectral index were greater than n = 1, there would have been excessively large
metric perturbations on very small scales in the early Universe, which would in-
evitably have resulted in their collapse to form black holes. The n = 1 spectrum
also does not diverge on large physical scales and so is consistent with the observed
large-scale isotropy of the Universe. It is intriguing that, if n = 1, the Universe is in
a sense fractal – as the Universe expands, we always find density perturbations of
the same amplitude coming through the horizon. One of the challenges for theory
is to account for a value of the spectral index of the initial perturbations n ≈ 1.
Proponents of the inflationary picture of the early Universe find that fluctuations
with the Harrison–Zeldovich spectrum occur rather naturally in that picture (see
Sect. 20.5).

It is interesting to compare the Harrison–Zeldovich spectrum with that expected
for Poisson noise. A natural model would be to consider the mass fluctuations to be
associated with random statistical fluctuations in the numbers of particles N on the
scale r. According to Poisson statistics, the fluctuations in the numbers of particles
is δN/N = 1/N1/2, or, in terms of mass fluctuations, Δ(M) = δM/M = 1/M1/2. It
follows from the relation (14.26) that n = 0, in other words, a ‘white-noise’ power
spectrum with equal power on all scales. The corresponding correlation functions
would be ξ(r) ∝ r−3 and ξ(M) ∝ M−1.

We now need to tackle the issue of the linear and non-linear effects which
must have dramatically modified the form of the initial power spectrum after the
perturbations of different mass came through their particle horizons.
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14.3 Evolution of the Initial Perturbation Spectrum –
Transfer Functions

In Chaps. 12 and 13, we described a number of effects which significantly modify
the initial perturbation spectrum. We now need to put these together to understand
how the initial perturbation spectrum evolved to form the structures we observe in
the Universe today. The first step is to introduce the transfer function T(k), which
describes how the shape of the initial power spectrum Δk(z) in the dark matter is
modified by different physical processes through the relation

Δk(z = 0) = T(k) f(z)Δk(z) . (14.30)

Δk(z = 0) is the power spectrum at the present epoch and f(z) ∝ a ∝ t2/3 is the
linear growth factor between the scale factor at redshift z and the present epoch.
Note that the wavenumbers k are comoving wavenumbers so that they follow the
evolution of a perturbation of a particular dark matter mass. It is assumed thatΔk(z)
is defined at some early epoch before the perturbations came through their particle
horizons and so has the shape of the initial perturbation spectrum. Notice that the
functions in (14.30) refer to the density contrast in the dark matter and that there
are corresponding perturbations in the radiation, which we take to include all forms
of relativistic matter such as neutrinos. Let us give some examples of the expected
forms of the function T(k).

14.3.1 Adiabatic Cold Dark Matter

We adopt an initial power spectrum of standard power-law form

P(k) = |Δk|2 ∝ kn , (14.31)

recalling that the Harrison–Zeldovich spectrum has n = 1. Before the perturbations
entered the horizon during the radiation-dominated era, their density contrasts grew
as Δk ∝ a2 on all scales. If the perturbations came through the horizon during
the radiation-dominated phase, the dark matter perturbations were gravitationally
coupled to the radiation-dominated plasma and their amplitudes were stabilised by
the Mészáros effect (Sect. 12.6). Thus, as soon as the perturbations came through
the horizon, they ceased to grow until the epoch of equality of matter and radiation
energy densities. After that time, all the perturbations grew as Δk ∝ a until very
late epochs. Thus, between crossing their particle horizons at scale factor aH and the
epoch of equality aeq, the amplitudes of the perturbations were damped by a factor
(aH/aeq)

2 relative to the unmodified spectrum. This leads to a flattening of spectrum
of density contrasts as

Δk =
(
δ	

	

)

k

∝ kn/2
(

aH

aeq

)2

. (14.32)



394 14 Correlation Functions and the Spectrum of the Initial Fluctuations



14.3 Evolution of the Initial Perturbation Spectrum – Transfer Functions 395

Fig. 14.1. a Examples of the transfer functions T(k) for different models of structure formation.
These functions are those quoted by Peacock, which were taken from the paper by Bardeen
and his colleagues (Peacock, 2000; Bardeen et al., 1986). b Predicted power spectra P(k) for
models shown in a. In the cases of the cold dark matter models, a Harrison–Zeldovich power
spectrum, n = 1 has been assumed. In the case of the isocurvature model, the value n = −3
has been adopted. The scaling has been chosen so that the power spectra are the same at small
wavenumbers, that is, on very large physical scales. In both cases, the wavenumbers are in
Mpc−1

�

Since k ∝ a−1
H , it follows that the transfer function T(z) has the asymptotic forms

Tk = 1 for M ≥ Meq, k ≤ keq ; (14.33)

Tk ∝ k−2 for M ≤ Meq, k ≥ keq . (14.34)

Thus, for small masses, the ‘processed’ power spectrum P(k) ∝ T 2
k is flatter than

the input spectrum of perturbations by a power k−4:

P(k) = |Δk|2 ∝ kn−4 . (14.35)

Running through the apparatus of Sect. 14.2.2, it follows that the amplitude of the
spatial two-point correlation function is

ξ(r) ∝ r−(n−1) or ξ(M) ∝ M−(n−1)/3 . (14.36)

For the Harrison–Zeldovich spectrum with n = 1, the processed two-point correla-
tion function is flat at small wavelengths.

It can be seen from transfer functions (14.33) and (14.34) that there is a large
change in slope of the predicted power spectrum at the wavenumber keq or the mass
Meq, corresponding to the wavenumbers and masses of the horizon scale at the epoch
of equality of matter and radiation energy densities. Representative values of these
quantities are given in Table 14.1 for our reference model and for a cold dark matter
model with Ω0 = 1, ΩΛ = 0, h = 0.7. These examples make the point that the
location of the maximum of the power spectrum is sensitive to the parameters of the
cosmological model. Notice that the turn-over in the spectrum is expected to occur
on scales of the order of, or greater than, those of clusters of galaxies.

Detailed evaluations of the transfer functions using the full apparatus of the
coupled Boltzmann and Einstein field equations have been carried out for different
adiabatic cold dark matter models by a number of authors (Peebles, 1982; Davis
et al., 1985). It is traditional to provide convenient analytic formulae which describe
accurately the forms of the transfer functions. For the adiabatic cold dark matter
model, the form adopted by Bardeen and his colleagues is

Tk = ln(1 + 2.34q)

2.34q

[
1 + 3.89q + (16.1q)2 + (5.46q)3 + (6.71q)4

]−1/4
,

(14.37)

where q = k/(Ω0h2 Mpc−1) (Bardeen et al., 1986).
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Table 14.1. Properties of adiabatic cold dark matter perturbations which entered the particle
horizon at the epoch of equality of matter and radiation energy densities

Ω0 = 0.3 Ω0 = 1
World model ΩΛ = 0.7 ΩΛ = 0

h = 0.7 h = 0.7

zeq 3,530 11,760
teq 47,500 years 4,277 years
Comoving horizon scale
req = 2cteq/aeq 100 Mpc 26 Mpc

Meq = (π/6)r3
eq	0 2.3 × 1016 M� 1.2 × 1015 M�

It can be seen that the form of the spectrum is in agreement with the physical
arguments presented above. The transfer function shown in Fig. 14.1a indicates that
the curvature of the spectrum between the two asymptotic relations is very gradual,
reflecting the rather slow change in the growth rate of the perturbations according
to the Mészáros formula (12.67). Notice that primordial perturbations on all scales
and masses survive into the post-recombination era in the cold dark matter picture.

This form of processed power spectrum is of particular importance and has
dominated much of the discussion of structure formation. Part of the reason for
this is the fact that the scale-invariant Harrison–Zeldovich spectrum appears rather
naturally in the preferred inflationary scenario for the early Universe. Nonetheless,
let us consider two other dark matter models which have already been mentioned.

14.3.2 Adiabatic Hot Dark Matter

In the case of the adiabatic hot dark matter model with massive neutrinos, small-
scale perturbations are damped by the free-sreaming of neutrinos as soon as they
come through the horizon during the radiation-dominated era. The spectrum cuts
off exponentially below the critical mass given by (13.15). An analytic expression
for the transfer function P(k) quoted by Peacock, following Bond and Szalay and
Bardeen and his colleagues (Bond and Szalay, 1983; Bardeen et al., 1986) is

Tk = exp
(−3.9q − 2.1q2) , (14.38)

where q = k/
(
Ω0h2 Mpc−1

)
. Notice the exponential cut-off of the transfer function

in Fig. 14.1a and the corresponding cut-off in the power spectrum in Fig. 14.1b.
Again the power spectrum has a maximum on scales greater than those of clusters
of galaxies, but all small-scale structure has been washed out by the free-streaming
of the massive neutrinos.

14.3.3 Isocurvature Cold Dark Matter

The isocurvature modes behave quite differently from the adiabatic modes discussed
above. As we asserted earlier, in the early radiation-dominated Universe when the
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perturbations were on superhorizon scales, any perturbation could be decomposed
into curvature and isocurvature modes. Therefore, although most current discussions
of structure formation have concentrated upon the adiabatic curvature modes, the
isocurvature modes may play a role. For these modes, the curvature must take
the same value everywhere at a given epoch and so any perturbation in the dark
matter must be compensated by the opposite perturbation in the radiation. These
perturbations can be thought of as fluctuations in the local equation of state. Kolb
and Turner express this in terms of fluctuations in the ratio of the number density of
the dark matter species X to the entropy density s, that is, the inverse of the entropy
per X particle. As noted in Sect. 10.5, the entropy per unit comoving volume is a
conserved quantity as the Universe expands. For the isocurvature modes,

δ(nX/s) �= 0 , (14.39)

unlike the adiabatic modes for which δ(nX/s) = 0. Following Kolb and Turner, it is
convenient to introduce the fractional fluctuation in (nX/s) through the definition

(δX)i = δ(nX/s)

(nX/s)
. (14.40)

Now s ∝ T 3, and so we find

(δX)i = δnX

nX
− 3

δT

T
. (14.41)

At the same time, the overall perturbation in the energy density must be zero so
that there are no spatial variations of the curvature, that is,

δ	 = δ

(
mXnX + χaT 4

c2

)
= 0 , (14.42)

where mX and nX are the mass and number density of the dark matter species X.
The resulting temperature perturbations are

δT

T
= −1

4

	X

	rad

δnX

nX
. (14.43)

Combining (14.41) and (14.43), we find

δT

T
= − (δX)i

4

[
	X/	rad

1 + (3	X/4	rad)

]
, (14.44)

δnX

nX
= (δX)i + 3

δT

T
. (14.45)

In the very early radiation-dominated era, the inertial mass density in the ra-
diation far exceeded that in the dark matter, and so (14.44) shows that only very
small temperature perturbations were needed to provide the compensation for the
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fluctuations in the cold dark matter. In other words, the perturbations were very
closely isothermal. Equation (14.45) shows that the density contrast in the dark
matter δnX/nX was more or less constant with the primordial amplitude (δX)i .

As the epoch of equality was approached, however, the temperature perturbation
increased according to (14.44) and so, in compensation, δ	X/	X had to decrease.
Specifically, for 	X � 	rad, the temperature fluctuation tended to

δT

T
≈ − (δX)i

3
, (14.46)

and the density contrast in the dark matter changed as

δnX

nX
≈ 4

3
(δX)i

	rad

	X
. (14.47)

These simple calculations enable us to estimate the transfer function for isocur-
vature perturbations. Let us first consider those perturbations which came through
the horizon during the radiation era. Since 	rad/	X � 1, these had more or less their
primordial amplitudes. When they came through the horizon, the overdensity in
the radiation streamed out of the density perturbations leaving density perturbations
which then developed just as in the adiabatic cold dark matter perturbations. Because
of the Mészáros effect, they scarcely grew until the epoch of equality of matter and
radiation energy densities and then grew according to the standard growth function
f(z).

Perturbations with wavelengths greater than the horizon scale at the epoch of
equality behaved somewhat differently. After the epoch of equality, the amplitude
of the perturbations on large scales began to decline, but the temperature fluctua-
tions had amplitude δT/T ≈ (δX)i/3 and remained constant until the perturbation
came through the horizon. Then, the pressure gradients associated with the entropy
perturbations regenerated the perturbations in the cold dark matter until they had
δnX/nX ≈ (δX)i . As Peacock expresses it, as the photons disperse, the perturbation
in the entropy density must be conserved, and so this must be transferred to the mat-
ter. After this time, they grew in amplitude just like the adiabatic cold dark matter
perturbations.

The net result is that the large-scale perturbations lagged behind those on small
scales by a factor of rH/req. The wavelength on the horizon scale is λ = rH =
3ct ∝ a3/2, and so the comoving wavenumber k = 2π/λ0 = 2π/(rH/a) ∝ a−1/2.
Therefore, the transfer function varied as req/rH ∝ a−1 ∝ k2 for small k, that is, on
large physical scales. It is conventional to normalise T(k) to the constant value at
large k, and so the transfer function T(k) is the opposite of that found in the adiabatic
cold dark matter. model. The transfer function for this case is shown in Fig. 14.1a,
which is taken from the analytic form presented by Efstathiou and Bond (Efstathiou
and Bond, 1986):

Tk = (5.6q)2
{

1 + [
15.0q + (0.9q)3/2 + (5.6q)2

]1.24
}−1.24

. (14.48)
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To convert this into a power spectrum of perturbations at the present epoch, we
need to multiply by the initial power spectrum. According to Efstathiou and Bond,
scale-invariant entropy perturbations predicted by the theory of inflation have power
spectrum P0(k) ∝ k−3 and so, running through the apparatus of Sect. 14.2.2, we find
that the power spectrum at the present epoch has slope P(k) ∝ T 2(k)P0(k) ∝ k on
large physical scales, exactly the same result found in the case of adiabatic cold dark
matter perturbations. The expected spectral shape is shown in Fig. 14.1b, normalised
to have the same amplitude at small values of k, like the other curves. It can be seen
that the power spectrum is expected to turn over at somewhat smaller wavenumbers
than in the case of the adiabatic cold dark matter model.

14.3.4 The Subsequent Evolution

The processed power spectra of density perturbations in the dark matter shown in
Fig. 14.1b developed according to relation (14.30) throughout the matter-dominated
era. Linear growth of the spectrum continued until the perturbations became non-
linear, ΔD ∼ 1. Perturbations with the largest amplitudes attained ΔD ∼ 1 first and
then began to collapse to form bound systems. From the analyses of Sects. 14.2 and
14.3, the spectrum of density fluctuations was given by

Δk ∝ [
k3 P(k)

]1/2
. (14.49)

In the case of the adiabatic and isocurvature cold dark matter models, the processed
power spectrum for large values of k was P(k) ∝ kn−4, and so for the Harrison–
Zeldovich spectrum, n = 1, the spectrum of density fluctuationsΔk was independent
of wavelength and extended to very low masses. The spectra steepened for k ≤ 1,
meaning for larger physical scales and for very large masses they tended toΔk ∝ k2.
Thus, perturbations on small scales became non-linear first and collapsed to form
low-mass bound systems.

Most of the mass of the perturbations was in the form of collisionless dark
particles, and so dissipative processes, such as the release of energy by radiation
or by friction and viscosity, were not important in the formation of gravitationally
bound systems, which must satisfy the virial theorem (3.19). In order to achieve
this, the collapsing dark matter perturbations had to lose internal kinetic energy
and this could be achieved through the process of violent relaxation, which was
first described by Lynden-Bell (Lynden-Bell, 1967). As the collapse of the dark
matter perturbation got under way, large gravitational potential gradients developed,
since the collapse was unlikely to be precisely spherically symmetric and there
were equally significant perturbations on smaller scales, as shown by (14.49). The
system relaxed under the influence of these potential gradients, and Lynden-Bell
showed that the system rapidly evolved towards an equilibrium configuration in
which all the masses attained the same velocity distribution. More details of this non-
linear phase of structure formation are discussed in Sect. 16.1. Subsequently, energy
exchange between the dark matter particles could take place by dynamical friction,
the exchange of energy in gravitational encounters between particles, but this is a slow
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process1. According to the cold dark matter picture, these structures then began to be
assembled into larger-scale systems by the processes of clustering and coalescence
under the influence of perturbations on larger scales. This is the process by which
the dark matter haloes of galaxies, groups and clusters were formed. The baryonic
matter collapsed into these structures and, since it could lose energy by dissipative
processes, stars and gas clouds began to form within the dark matter haloes.

The hot dark matter picture is quite different in that masses on scales less than
the maximum of the processed spectra were damped out by the free-streaming of the
massive neutrinos, the lowest-mass objects to form being those on the scale of clusters
of galaxies or greater, as can be seen in Fig. 14.1b. As discussed in Sect. 13.7.1, non-
linear asymmetric collapse led to the formation of flattened ‘pancake’ structures, into
which the baryonic matter collapsed. Instabilities and fragmentation of the infalling
baryonic matter led to the late formation of stars and other structures on small scales.

These models were the subject of an enormous amount of detailed computer
simulation to determine how well they could reproduce the observed large-scale
distribution of matter in the Universe. Beginning in the 1980s, the capabilities of
large-scale computer simulation began to be realized, and it was soon appreciated
that there were problems in reproducing what is observed in the sky. Figure 14.2
shows a sample of the results of some of the pioneering computer simulations of
the hot and cold dark matter models carried out by Frenk and his colleagues (Frenk,
1986). The density parameter was taken to be Ω0 = 0.2 for the cold dark matter
model and Ω0 = 1 for the hot dark matter model, both with ΩΛ = 0 reflecting the
prejudices of the time. The problems with these models were as follows:

– In the hot dark matter picture, elongated and flattened structures were formed
very effectively. The model was, in fact, too effective in producing highly clus-
tered structures (Fig. 14.2b). Essentially everything collapsed into large clusters,
and the observed Universe is not as highly structured as this (Fig. 14.2c). The
baryonic matter formed pancakes within the large neutrino haloes and their evo-
lution was similar to that of the adiabatic baryonic picture. The instabilities and
fragmentation of the baryonic material in the pancakes, which resulted in the
formation of galaxies and smaller structures, must have taken place rather late
in this picture. It is therefore difficult to account for the early formation of stars
and the subsequent early enrichment of the heavy element abundances in the
interstellar media of distant galaxies and quasars.

– In the cold dark matter picture, large-scale structures such as galaxies and
clusters of galaxies were assembled from their component parts by the dynamical
processes discussed above. Figure 14.2a shows that large-scale structures indeed
developed but were not as pronounced on the large scale as is observed in the local
Universe. This is at least partly because gravitational clustering tends to make
more symmetrical structures than the sheets and filaments of galaxies observed,
for example, in the CfA survey (Fig. 14.2c). There were, however, important

1 I have given a simple treatment of dynamical friction in astronomical systems as the
gravitational analogue of the process of ionisation losses in the interactions of charged
particles (Longair, 1997b).
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Fig. 14.2a–c. Simulations of the expectations of a the cold dark matter model withΩ0 = 0.2
and ΩΛ = 0 and b the hot dark matter model with Ω0 = 1 and ΩΛ = 0 for origin of
large-scale structure of the Universe (Frenk, 1986). c These simulations can be compared
with the large-scale distribution of galaxies observed in the Harvard–Smithsonian Center for
Astrophysics Survey of Galaxies (Fig. 2.7). The unbiased cold dark matter model does not
produce sufficient large-scale structure in the form of voids and filaments of galaxies, whereas
the unbiased hot dark matter model produces too much clustering

successes for the cold dark matter picture. In particular, it could account for the
observed two-point correlation function of galaxies ξ(r) ∝ r−1.8 over a wide
range of physical scales. This form of correlation function resulted from further
non-linear interactions once the perturbations had developed in amplitude to
Δk > 1. The cold dark matter picture was favoured by many of the investigators,
but it was not without its problems. For example, in realisations of the cold dark
matter model withΩ0 = 1, the velocity dispersion of galaxies chosen at random
from the field was found to be too large (Efstathiou, 1990).

In both cases, the match to observation could be improved if it was assumed that
the galaxies provided a biased view of the large-scale distribution of mass in the
Universe, and this is the topic we have to tackle next.

14.4 Biasing

So far, it has been implicitly assumed that the visible parts of galaxies trace the
distribution of dark matter, but one can imagine many reasons why this might not
be so. The generic term for this phenomenon is biasing, meaning the preferential
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formation of galaxies in certain regions of space rather than in others. Part of the
motivation behind the introduction of biasing was to improve the agreement between
the predictions of the cold dark matter scenario and the observed distribution of
galaxies. In the hot dark matter picture, anti-biasing would be needed so that the
formation of galaxies was not so highly structured.

Many possible biasing and anti-biasing mechanisms have been described by
Dekel and Rees, who discuss how these can be tested by observations of the nearby
Universe (Dekel, 1986; Dekel and Rees, 1987). Some biasing mechanisms come
about rather naturally in the theory of the formation of galaxies, and we restrict
attention to one or two of the more important of these. Kaiser realised that inherent
in the description of the power spectrum of the perturbations in Sect. 14.2.1 is
the assumption that the fluctuations are Gaussian with variance

〈
Δ2
〉
. Thus, the

probability of encountering a density contrastΔ at some point in space is proportional
to exp

(−Δ2/
〈
Δ2
〉)

(Kaiser, 1984). Kaiser argued that galaxies are most likely to
form in the highest peaks of the density distribution. Thus, if structures are only
formed if the density contrast exceeds a certain valueΔcrit, galaxy formation would be
biased towards the highest-density perturbations over the mean background density.
This process could, for example, account for the fact that the clusters of galaxies are
much more strongly clustered than galaxies in general, which is direct observational
evidence for biasing (Sect. 4.1.2). As Kolb and Turner remark, the reason that all the
highest mountains in the world are in the Himalayas is that they are superimposed
upon the large-scale plateau, or long wavelength perturbation, caused by the plate
supporting the Indian subcontinent crashing into the Asian plate (Kolb and Turner,
1990). This scenario has been worked out in detail by Peacock and Heavens and by
Bardeen and his colleagues (Peacock and Heavens, 1985; Bardeen et al., 1986).

Another example of the type of astrophysics which might result in biasing
involves galactic explosions which sweep gas away from the vicinity of a galaxy.
This process could result in positive or negative biasing. A violent explosion can
remove gas from the vicinity of the galaxy and heat it to too high a temperature for
further star formation to occur in its vicinity. On the other hand, the swept-up gas
may be highly compressed at the interface between the hot expanding sphere and
the intergalactic gas. In the case of galactic supernova remnants, star formation can
be stimulated by the passage of a strong shock wave and the same process might
operate on a galactic scale (Ostriker and Cowie, 1981). This mechanism could also
thicken pancakes in the hot dark matter picture.

Another biasing mechanism might be associated with gas in the voids between
superclusters which might be so hot that stars and galaxies could not condense in
these regions. It is evident from these examples that the understanding of biasing
is an astrophysical problem and that star formation in the early phases of galaxy
formation is of central importance in understanding the role it might play.

In a Gaussian model, Coles and Lucchin described how the spatial two-point
correlation functions in the underlying dark matter ξD(r) and the galaxies ξgal(r)
could be related by

ξgal(r) = b2ξD(r) , (14.50)
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where b is defined to be the bias parameter (Coles and Lucchin, 1995). There are
a number of more-or-less equivalent definitions of the bias parameter b. From the
relations between the two-point correlation function, the power spectrum and the
density contrast, we see that

Pgal(k) = b2 PD(k) and

(
δ�

�

)

gal
= b

(
δ�

�

)

D
or Δgal = bΔD . (14.51)

Another essentially equivalent definition often found in the literature is in terms of
the variance in the counts of galaxies within a sphere of radius 8h−1 Mpc relative to
the variance in the underlying mass distribution in the same sphere

b2 = σ2
8 (galaxies)

σ2
8 (mass)

. (14.52)

The value 8h−1 Mpc has been chosen since that is the scale on which the two-point
correlation function for galaxies has roughly unit amplitude, ξ(r) ∼ 1.

The introduction of the bias parameter b brought with it a number of important
advantages for the cold dark matter model. The numerical simulations described by
Efstathiou illustrate how the density peaks of a Gaussian random field result in a
much more highly structured distribution of galaxies as compared with the underlying
mass distribution (Efstathiou, 1990). Furthermore, since galaxies form preferentially
in peaks of the density distribution, their random velocities are smaller than those
associated with the underlying dark matter distribution. Efstathiou showed how a cold
dark matter model with b = 2.5 could be reconciled with a number of independent
aspects of the large-scale distribution of galaxies, including the amplitude and slope
of the two-point correlation function and the mean velocity dispersion of galaxies in
the general field (Efstathiou, 1990).

The availability of large statistical samples of galaxies such as the 2dF Galaxy
Redshift Survey has enabled bias parameters to be determined for galaxies in general
and for those of different luminosities, types and colours. The advantage of the very
large statistical samples of galaxies in the 2dF survey is that they contain information
about both the mass distribution from the peculiar velocities of the galaxies and their
spatial distribution. Verde and her colleagues have shown how the 2dF redshift
survey can be used to estimate the bias to the second order in the bias parameter b
from these data. In their analysis, the density contrast in the galaxies and dark matter
are written to the second order as

Δgal = b1ΔD + b2Δ
2
D . (14.53)

Their procedure involves determining the bispectrum of the galaxy distribution,
which is related to the Fourier transform of the three-point correlation function
(Verde et al., 2002). The important result of their analysis is that the overall linear
bias parameter b1 is close to unity, specifically b1 = 1.04 ± 0.11, and the non-linear
bias parameter consistent with zero, b2 = −0.054 ± 0.08. This analysis refers to
the distribution of all galaxies on scales between roughly 5h−1 and 30−1 Mpc. As
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Verde and her colleagues remark, it is ironic that the linear bias parameter is so close
to unity, which was the assumption used in early studies of structure formation and
which was only brought into question as a result of the problems of reconciling the
correlation function of galaxies with the predictions of the dark matter models.

Although the distribution of galaxies overall is unbiased on large scales, this
does not exclude the possibility that there is bias on small scales or for different
classes of galaxies, which is inevitably the case in, for example, accounting for
the morphology-clustering relation described by Dressler (see Fig. 3.4) (Dressler,
1980). The analyses by Norberg and his colleagues have demonstrated how the
bias parameter depends upon the luminosities and spectral types of the galaxies
(Norberg et al., 2001, 2002). Figure 14.3a shows the dependence of the clustering
scale r0, defined by the relation ξ = (r/r0)

γ as in (2.7) and (14.1), upon the absolute
magnitudes, or luminosities, of the galaxies. There is a clear variation of the bias
parameter b with absolute luminosity in the sense that the most luminous galaxies
are more strongly correlated than galaxies in general (Norberg et al., 2001). The
correlation can be described by the relation

b/b∗ = 0.85 + 0.15 L/L∗ . (14.54)

Fig. 14.3. a The characteristic correlation length r0 for samples of galaxies of different
luminosities selected from the 2dF Galaxy Redshift Survey (Norberg et al., 2001). The
correlation scales for the Northern and Southern Galactic Pole regions are shown separately.
Solid line: the predicted relation from simulations carried out by Benson and his colleagues
(Benson et al., 2001). b Variation of the bias parameter b as a function of luminosity relative
to the value b∗ for galaxies with ‘break luminosity’ L∗. The dependence on luminosity can
be described by b/b∗ = 0.85 + 0.15 L/L∗ (solid line) (Norberg et al., 2001)
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Norberg and his colleagues also examined the dependence of the bias parameter
upon the spectral type of the galaxies. The sample was divided into galaxies with
strong emission lines, which are associated with spiral, or late-type, galaxies and
those without strong emission lines which are identified with elliptical, or early type,
galaxies. Both classes of galaxy showed the same dependence of bias parameter
upon luminosity as in Fig. 14.3b, although the amplitude of the correlation function
was about 50% higher for the early types as compared with the late-type galaxies
(Norberg et al., 2002).

It is interesting to compare these results with the earlier heroic analysis of
Peacock and Dodds, who used eight separate data sets in their reconstruction of the
power spectrum of galaxies at the present epoch (Peacock and Dodds, 1994). Their
analysis was based upon the assumption that, despite the different amplitudes of
the correlation and cross-correlation functions for galaxies and clusters of galaxies,
these can be derived from a single smooth initial power spectrum which has been
subject to different degrees of bias. Relative bias parameters were derived which
produced a best fit to a smooth power spectrum; the following values were found:

bA : bR : bO : bI = 4.5 : 1.9 : 1.3 : 1 , (14.55)

where the subscripts refer to the bias parameters for Abell clusters (A), radio galaxies
(R), optically selected galaxies (O) and IRAS galaxies (I). We recall that the am-
plitudes of the correlation functions are related by the square of the bias parameter
(14.28), and so these values reflect well-known features of the relative clustering
tendencies of these classes of object. Thus, the clusters of galaxies are much more
strongly correlated than galaxies in general (Sect. 4.1.2), and radio galaxies tend
to belong to groups and clusters of galaxies. The IRAS galaxies are strong dust
emitters and so are preferentially associated with spiral and starburst galaxies. Since
the spiral galaxies tend to avoid groups and clusters of galaxies, the IRAS sample
displays the weakest clustering. These results are consistent with the trends found in
the analysis of Norberg and his colleagues discussed above (Norberg et al., 2001).

14.5 Reconstructing the Processed Initial Power Spectrum

We are now in a position to attempt to invert the observational data to determine the
form of the processed initial power spectrum which was the subject of Sect. 14.3
and compare it with the predictions of models such as those illustrated in Fig. 14.1.
The remarkable results of the 2dF Galaxy Redshift Survey, or 2dF-GRS for short,
are undoubtedly a landmark in these studies, and the major paper by Cole and his
colleagues is essential reading (Cole et al., 2005). A large 2dF-GRS team of expert
collaborators was involved in the analyses of the huge data set, which comprises
221,414 galaxies with measured redshifts. This meant that very thorough investiga-
tions could be made of these data and the analysis procedures. Here, there is only
scope to highlight some of the important features of the analysis.

From the methodological point of view, a key factor in the analysis of the
data was taking proper quantitative account of the many selection effects which
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are inevitably present in such a data set and assessing their impact upon the final
result. The 2dF-GRS team adopted the approach of first estimating all the selection
functions and then understanding the effects of these upon mock catalogues which
had similar clustering and other properties to the galaxies observed in the sample.
This procedure enabled quantitative estimates of the magnitude of many potential
biases to be estimated.

14.5.1 Redshift Biases

An example of the types of bias which had to be taken into account is the use of the
galaxy redshift data. In the simplest picture, the redshifts provide estimates of the
distances of the galaxies according to Hubble’s law r = cz/H0, but these distance
estimates have to be corrected for the effects of redshift bias. This arises in two ways.
First, the ‘fingers of God’ seen in large redshift surveys, such as the Harvard–CfA
survey (Fig. 2.7), significantly alter the cosmological redshifts of the galaxies in
clusters such that the galaxies would be shifted from their true spatial positions,
reducing the amplitude of the correlation function.

The second effect is associated with the fact that large-scale density perturbations
induce potential motions which can be approximated by the expression discussed in
Sect. 11.5,

δv = H0rΩ0.6
0

(
δ	

	

)
. (14.56)

As a result, galaxies are expected to be observed ‘falling into’ large-scale density
perturbations, and so the projected velocity component along the line of sight differs
from that associated with its cosmological redshift. For large scales, on which
the linear relation (14.56) is valid, Kaiser showed how this redshift bias could be
estimated and eliminated from the inferred two-point correlation functions (Kaiser,
1987).

The 2dF data set has been used by Peacock and his collaborators both to measure
the magnitude of redshift distortions and to make an independent estimate of the
value ofΩ0 on scales greater than those of clusters of galaxies (Peacock et al., 2001).
Two-dimensional correlation functions in the radial (π) and transverse (σ) directions
are shown as a two-dimensional plot in Fig. 14.4 for a sample of 141,000 galaxies
from the 2dF-Galaxy Redshift Survey. The stretching of the correlation function
along the central vertical axis is due to the velocity dispersion of galaxies in groups
and clusters, that is, the ‘fingers of God’. If there were no infall of galaxies into large-
scale structures, the contours away from the vertical axis would be circular, meaning
that the correlated structures have the same dimensions in the radial and transverse
directions. It can be seen that the two-dimensional correlation function is flattened
in the radial direction, and this is associated with the infall of galaxies on either side
of the cluster in the radial direction. On the near side of the typical perturbation,
the redshift is increased because of infall, whereas on the far side it is decreased for
the same reason. This means that the distances derived from application of Hubble’s
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Fig. 14.4. The two-dimensional correlation function for galaxies selected from the 2dF Galaxy
Redshift Survey, ξ(σ, π), plotted as a function of the inferred transverse (σ) and radial (π) pair
separation. To illustrate deviations from circular symmetry, the data from the first quadrant
have been repeated with reflection in both axes. This plot shows clearly the redshift distortions
associated with the ‘fingers of God’ elongations along the central vertical axis and the coherent
Kaiser flattening of the correlation function in the radial direction at large radii (Peacock et al.,
2001)

law decrease the actual dimension of the perturbation in the radial direction. From
the observed flattening of the two-dimensional correlation function, Peacock and his
colleagues concluded that

Ω0.6
0 /b = 0.43 ± 0.07 . (14.57)

The analysis of Verde and her colleagues showed that for galaxies in general the bias
parameter b is very close to unity (Verde et al., 2002) and so the dark matter density
parameter can be found, Ω0 = 0.25 ± 0.06, consistent with the estimates discussed
in Sect. 8.7. This is undoubtedly among the most powerful pieces of evidence on the
value of the density parameter Ω0 because it refers to the distribution of gravitating
mass on very large scales, typically ∼ 20h−1 Mpc, in which the perturbations are
still in the linear regime.

14.5.2 Non-Linear Development of Density Perturbations

It is evident from the power-law form of the two-point correlation function
ξ(r) = (r/r0)

−1.8 that on scales much larger than the characteristic length scale
r0, the perturbations are still in the linear stage of development and so provide di-
rectly information about the form of the processed initial power spectrum. On scales
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r ≤ r0, the perturbations become non-linear and it might seem more difficult to
recover information about the processed power spectrum on these scales. An im-
portant insight was provided by Hamilton and his colleagues who showed how it is
possible to relate the observed spectrum of perturbations in the non-linear regime,
ξ(r) ≥ 1, to the processed initial spectrum in the linear regime (Hamilton et al.,
1991).

The idea is that the evolution of the perturbations into the non-linear regime can be
followed using the types of argument used in Sect. 11.4.2 and illustrated in Fig. 11.2.
The perturbation behaves like a little closed universe which reaches maximum size
at some epoch, known as the ‘turnround’ epoch, after which it collapses to form a
bound structure. According to the arguments of Sect. 16.1, a bound structure which
satisfies the virial theorem is formed when a perturbation has collapsed to half the
dimension it achieved at the turnround epoch. By the time the virialised structure
has formed, the density contrast reaches values greater than 100.

Hamilton and his colleagues showed that the evolution from the linear to the
non-linear regime closely follows a self-similar solution which can be found from
the pioneering numerical computations of Efstathiou and his colleagues (Efstathiou
et al., 1988). Figure 14.5a shows how the amplitude of the spatial two-point cor-
relation function changes between the linear and non-linear regimes for different
values of the index of the initial power spectrum. The form of the relations can be
understood from the results already derived. In the linear regime δ	/	 ∝ a, and

Fig. 14.5. a Variation of the spatial two-point correlation function with the square of the scale
factor as perturbations evolve from linear to non-linear amplitudes. b Evolution of the spatial
two-point correlation function as function of redshift. The function has been normalised to
result in a correlation function which resembles the observed two-point correlation function
for galaxies which has slope −1.8. Non-linear clustering effects, as represented by the function
shown in a, are responsible for steepening the processed initial power spectrum (Hamilton
et al., 1991)
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so, from (14.6) or (14.16), ξ ∝ a2. Once the perturbation is virialised, it forms a
gravitationally bound system and so δ	 is a constant while the background density
continues to decrease as 	 ∝ a−3. Hence, once the system has virialised, δ	/	 ∝ a3.
The self-similar solution of Fig. 14.5a shows the evolution between these two asymp-
totic solutions. Hamilton and his colleagues provided a convenient expression for
the relation shown in Fig. 14.5a:

ξ = x + 0.358x3 + 0.0236x6

1 + 0.0134x3 + 0.00202x9/2
, where x = a2ξ0 , (14.58)

which has the asymptotic behaviour discussed above. The numerical simulations also
showed that the assumption of virialisation when the perturbations had collapsed by
a factor of two in radius from the turnround epoch was a good one, the best-fit value
corresponding to a factor of 1.8.

This formula can be used in conjunction with the expression for the evolution of
the power spectrum (14.30) to work out the evolution of the two-point correlation
function from its processed initial form to the present day. This is achieved by setting
ξ0 equal to the T 2(k)P0(k) in (14.58) and then evaluating ξ at different values of
the scale factor a. The results presented by Hamilton and his colleagues are shown
in Fig. 14.5b. This diagram shows rather beautifully the evolution of the processed
initial power spectrum as a function of redshift. The horizontal line at ξ = 1 divides
the linear from the non-linear evolution of the power spectrum. For values of ξ
less than one, the evolution follows the expected linear growth on all scales, but
once the perturbations become non-linear, the spectrum steepens. The example of
the standard cold dark matter picture, with Ω0 = 1, has been chosen so that it
reproduces the observed power spectrum of galaxies in the non-linear regime with
spectral slope −1.8.

Hamilton and his colleagues then showed how the procedure could be inverted
to derive the processed initial mass function from the observed two-point correlation
functions for different samples of galaxies. These authors considered only the critical
world model Ω0 = 1, ΩΛ = 0. The procedures were extended by Peacock and
Dodds for a wider range of world models with ΩΛ = 0 (Peacock and Dodds,
1994). Padmanabhan provides an analytic solution of this problem (Padmanabhan,
1997).

14.5.3 The Role of Baryon Perturbations

So far we have considered only the evolution of perturbations in the cold dark
matter, but there are also perturbations in the baryons. Although we have argued
that the baryons probably constitute only about 20% of the total mass density, they
leave a perceptible imprint upon the galaxy power spectrum. The expected effects
are conveniently illustrated by the analyses of Eisenstein and Hu, who provided
prescriptions for the transfer functions and power spectra for models with mixed
baryons and dark matter (Eisenstein and Hu, 1998).

Eisenstein and Hu’s objective was to provide analytic fitting functions to the
results of numerical solutions of the Boltzmann equation with a number of different
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species. These simulations now agree within an accuracy of about 1% (Bond and
Efstathiou, 1984; Holtzman, 1998; Hu et al., 1995b; Seljak and Zaldarriaga, 1996).
It is best to consider first the case of baryon-only models, which were discussed and
rejected in Sect. 12.7 since they gave rise to excessively large fluctuations in the
cosmic microwave background radiation. The upper panels of Fig. 14.6 show the
predicted transfer functions T(k) for an open model with Ω0 = 0.2 and the critical
model Ω0 = 1, in both cases with ΩΛ = 0. Translating into the language used in
this chapter, it can be seen that the transfer function for small values of k is unity, but
there are acoustic oscillations at larger wavenumbers, as illustrated schematically in
Fig. 12.5. For comparison, these diagrams also show as dotted lines the cold dark
matter transfer function with no baryons present. These diagrams illustrate many
of the features we discussed in our analysis of the baryonic models, including the
gradual damping of the oscillations between the epoch of equality and the epoch
of recombination, and exponential Silk damping at large wavenumbers. Notice also
the difference in the location of the wavenumber keq associated with the horizon
scale at the epoch of equality, which is proportional to Ω0. It can be seen that
the transfer functions for purely baryonic matter would result in very pronounced
oscillations in the power spectrum of the distribution of galaxies at the present
epoch.

The lower pair of diagrams in Fig. 14.6 shows the results of computations
for mixed baryonic and cold dark matter models, again for Ω0 = 0.2 and the
critical model Ω0 = 1 with ΩΛ = 0. In both cases, there are equal amounts
of baryonic and dark matter. From the analysis of Sect. 13.7.2, the perturbations
in the baryons had amplitudes much smaller than those in the cold dark matter
immediately after recombination, but the acoustic oscillations were present in the
baryonic component. After recombination, the perturbations in the baryons were
amplified by the gravitational influence of the perturbations in the dark matter
which have a smooth power spectrum with no acoustic oscillations. As a result, the
amplitude of the acoustic oscillations as observed at the present day are significantly
less pronounced than in the purely baryonic model because of the amplification of
the perturbations on all scales by the perturbations in the dark matter. The acoustic
oscillations are more prominent in the low-density model as compared with the
critical model because the growth of the perturbations declines at redshift z ∼ Ω−1

0 ,
and so there was less time for the baryonic perturbations to be smoothed out by the
growth on ‘null’ scales.

It may seem odd that we have devoted so much attention to models with no
Λ-term, but this is because the models discussed above show most clearly the origin
of the various features which are about to be encountered in the analysis of the
2dF Galaxy Redshift Survey power spectrum and the Sloan Digital Sky Survey. The
considerations of this section make the important point that the detection of acoustic
oscillations in the galaxy power spectrum is a crucial test of the standard picture of
structure formation. They also are some indication of the problems of reconstructing
the initial power spectrum from the observational data.
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Fig. 14.6. Four examples of transfer functions for models of structure formation with baryons
only (top pair of diagrams) and with mixed cold and baryonic models (bottom pair of
diagrams) (Eisenstein and Hu, 1998). Eisenstein and Hu’s primary objective was to present
fitting functions to the transfer functions derived from numerical solutions to the Boltzmann
equation for the development of mixed baryonic and cold dark matter perturbations. The
numerical results are shown as solid lines and their fitting functions by dashed lines. The
lower small boxes in each diagram show the percentage residuals to their fitting functions,
which are always less than 10%

14.6 The Acoustic Peaks in the Power Spectrum of Galaxies

At last, we can tackle the power spectra of galaxies derived from the 2dF Galaxy
Redshift Survey and the Sloan Digital Sky Survey. Before doing that, it is worth-
while paying tribute to the astrophysicists, engineers and technologists involved in
both these very large undertakings. The Anglo-Australian Telescope Board was per-
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suaded to make a very large investment in building the magnificent two-degree field
secondary mirror structure and multi-object spectrograph for the Anglo-Australian
telescope which enabled the huge numbers of redshifts of galaxies to be obtained over
the 7 years of the survey from 1995 to 2002. The same remarks apply to the Sloan
Digital Sky Survey, which has benefitted from the dedicated efforts of a large team
of experts in all aspects of this very ambitious and successful project. Both projects
have resulted in fundamental contributions to astrophysical cosmology which set the
standard for what can be expected of the rigorous analysis of astronomical data and
their interpretation at the beginning of the 21st century.

14.6.1 The 2dF Galaxy Redshift Survey

The analysis by Cole and his colleagues of the 2dF data set incorporates all aspects
of the astrophysics which have been developed in this chapter (Cole et al., 2005). The
paper is an impressive analysis of the data set of 221,414 galaxies, all with measured
redshifts. The final version of the power spectrum and its uncertainties are displayed
in Fig. 14.7. Corrections have been applied for the effects of biasing of different
luminosities and galaxy types and for redshift bias. The overall shape of the power
spectrum is similar to the form shown in Fig. 14.1b for the cold dark matter model,
but it has to be somewhat modified to take account of the baryons, as illustrated
by Fig. 14.6. Both the upper and lower panels show significant ‘ripples’, which are
interpreted as the detection of the acoustic peaks in the power spectrum. They have
the same characteristic form as those shown in the lower panels of Fig. 14.6.

In interpreting the power spectrum, the 2dF team compared the observed spec-
trum with the expectations of a range of cold dark matter models with different
amounts of baryonic matter present. A key consideration is the degree to which the
galaxies trace dark matter. In addition to the corrections for bias discussed above,
semi-analytic models for the formation of galaxies of different types within the dark
matter haloes have been used (Sect. 19.6). These models can account for the differ-
ences between the red and blue galaxy sequences and their associated correlations
and have been thoroughly tested against the observed properties of different classes
of galaxy (Benson et al., 2001). The resulting power spectrum is shown as a grey
line in Fig. 14.7 and as a dark line when convolved with the window function for
the survey. There is evidence that the first and second peaks of the baryon power
spectrum have been detected at wavenumbers 0.06 and 0.12 respectively, correpond-
ing to about 100h−1 and 60h−1 Mpc. Excellent agreement with the observations is
obtained for the set of cosmological parameters listed in Table 14.2. The derived
value of the density parameter is Ω0 = 0.231 ± 0.021, somewhat lower than the
reference value used throughout this book.

14.6.2 Sloan Digital Sky Survey

Equally impressive is the analysis of the power spectrum derived from a large sample
of galaxies from the Sloan Digital Sky Survey by Eisenstein and his collaborators
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Fig. 14.7. The power spectrum of the three-dimensional distribution of galaxies in the 2dF
Galaxy Redshift Survey. The points with error bars are the best estimates of the observed
power spectrum once the biases and corrections for incompleteness are taken into account.
In the lower panel, the data from the upper panel have been divided by a reference cold dark
matter model, with ΩD = 0.2, ΩΛ = 0 and ΩB = 0, which has a smooth power spectrum.
The grey dashed line is a best fitting model before convolution with the window function for
the survey. The solid line shows the best fit once the model is convolved with the window
function (Cole et al., 2005)

Table 14.2. Cosmological parameters derived from analysis of 2dF Galaxy Redshift Survey

Power spectrum spectral index n = 1 assumed
Hubble’s constant h = 0.72 assumed
Neutrino masses mν = 0 assumed
Overall density parameter Ω0h = 0.168 ± 0.016 derived
Baryon fraction ΩB/Ω0 = 0.185 ± 0.046 derived

(Eisenstein et al., 2005). In order to maximise the volume of space available for
study, attention was restricted to a sample of 46,748 luminous red galaxies for which
uniform selection criteria were adopted in the redshift range 0.16–0.47. The selection
criteria and homogeneity of the sample were described by Hogg and his colleagues
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(Hogg et al., 2005). The mean redshift of the sample was about 0.3 compared with
0.1 for the complete 2dF sample. Thus, although the statistics are smaller than in
the 2dF sample, the restriction to luminous galaxies meant that better statistics were
achieved over larger volumes, particularly in the crucial 50h−1 to 200h−1 Mpc range
of scales.

The two-point correlation function is presented in Fig. 14.8 in the form s2ξ(s),
where s is the separation of the galaxies. This form of presentation was adopted to
highlight the curvature of the power spectrum on small physical scales. The clear
maximum observed in the power spectrum at physical scale 100h−1 Mpc corre-
sponds to the first acoustic peak in the power spectrum of primordial fluctuations.
Its location is in good agreement with that inferred from the 2dF Galaxy Redshift
Survey.

From the overall shape of the correlation function, the matter density was found
to correspond to Ω0 = 0.273 ± 0.025, if it is assumed that the dark energy is
associated with the cosmological constant and the global geometry of the Universe
is flat. If the scale of the acoustic peak is included in the estimates, the constraint on
the spatial curvature was found to be Ωκ = (c/H0)

2/�2 = −0.010 ± 0.009. Notice
that these conclusions are independent of the information derived from analyses of
the fluctuations in the cosmic microwave background radiation.

Both the Sloan and 2dF teams recognised the central importance of the discovery
of baryon oscillations in the power spectrum of galaxies. In conjunction with the very
much larger amplitude perturbations observed in the cosmic microwave background

Fig. 14.8. The large-scale redshift-space correlation function of the Sloan Digital Sky Survey
Luminous Red Galaxy sample plotted as the correlation function times s2. This presentation
was chosen to show the curvature of the power spectrum at small physical scales. The models
have Ω0h2 = 0.12 (top), 0.13 (middle) and 0.14 (bottom), all with ΩBh2 = 0.024 and
n = 0.98. The smooth line through the data with no acoustic peak is a pure cold dark matter
model with Ω0h2 = 0.105 (Eisenstein et al., 2005)
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radiation to be discussed in Chap. 15, they are convincing evidence for the grand
design which is the central theme of this book, namely, that the structures we observe
in the Universe today came about as a result of the gravitational collapse of small-
amplitude perturbations generated in the early Universe.

14.7 Variations on a Theme of Cold Dark Matter

The results discussed above are remarkably compelling evidence that the standard
ΛCDM model is in good agreement with the observations, even before we consider
the evidence of the temperature fluctuations in the cosmic microwave background
radiation. There might seem little point in developing alternative models of the for-
mation of large-scale structure in the face of this success. The situation in 2007 is
very different from 10 years ago when there was still uncertainty about whether
or not the cosmological constant Λ was different from zero. Then, a number of
alternative models were developed in order to account for the considerable discrep-
ancies between the standard cold dark matter model with Ω0 = 1 and ΩΛ = 0
and the observations. The problems were sufficiently worrying for some experts that
they published a paper in Nature entitled The End of Cold Dark Matter? (Davis
et al., 1992a). A good impression of the controversial status of the subject dur-
ing the 1990s is contained in the volume Critical Dialogues in Cosmology (Turok,
1997).

The problem facing the theorists is illustrated in Fig. 14.9, which compares
the predictions of various models of structure formation with the power spectrum
of galaxies estimated by Peacock and Dodds (Peacock and Dodds, 1994) and the
normalisation of the power spectrum at very low wavenumbers provided by the
temperature fluctuations in the cosmic microwave background radiation measured
by the COBE satellite (Dodelson et al., 1996). The shape of the power spectra
can be recognised from Fig. 14.2b. The best fit to the power spectrum of galaxies
was provided by an open cosmology with Ω0 ∼ 0.2 if the cosmological constant
was zero. The problem with the favoured standard cold dark matter model with
Ω0 = 1 was that it resulted in too much power at large wavenumbers. Much
ingenuity was devoted to finding variants which produced a power spectrum of
density perturbations similar to that of the open cold dark matter model but which
retained the flat geometry favoured by proponents of the inflationary picture of the
very early Universe.

The origin of the problem can be traced to the physics which determines the
maximum in the power spectrum, namely the wavenumber which corresponds to the
horizon scale at the epoch of equality. As shown in Sect. 10.5, the epoch of equality
occurred at a redshift of

zeq = 3c2Ω0 H2
0

8πGχaT 4
0

, (14.59)

while the particle horizon was rH = 2cteq. Putting these together, Hu and Sugiyama
found the comoving wavenumber corresponding to the maximum of the power
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Fig. 14.9. Examples of the predicted power spectra of galaxies for different models of structure
formation (Dodelson et al., 1996). The models shown involve standard cold dark matter
(sCDM), open cold dark matter (CDM), cold dark matter with a finite cosmological constant
(ΛCDM), cold dark matter with decaying neutrinos (τCDM) and an alternative neutrino dark
matter model (νCDM) described by Dodelson and his colleagues. The models are compared
with the power spectrum of galaxies derived by Peacock and Dodds (Peacock and Dodds,
1994) and the normalisation at small wavenumbers derived from the COBE observations
of the temperature fluctuations in the cosmic microwave background radiation. The ΛCDM
model has been shifted upwards for the sake of clarity. Notice that, in this presentation, the
power spectrum P(k) has dimensions Mpc3 since the authors have not included the term V in
the definition of the power spectrum (see (14.19))

spectrum to be

keq = (
2Ω0 H2

0 zeq/c
2)1/2 = 7.3 × 10−2Ω0h2 Mpc−1 , (14.60)

where the temperature of the cosmic microwave background radiation has been
assumed to be 2.728 K (Hu et al., 1997; Eisenstein and Hu, 1998). It can be seen that
a value of Ω0 = 1 results in the maximum of the power spectrum being shifted to
larger wavenumbers than the observed maximum and so to excess power on small
scales. The trick is to find ways of moving the maximum, which (14.60) shows
depends upon Ω0h2, to smaller wavenumbers. This is achieved in the open CDM
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model with Ω0 = 0.2 and h = 0.7 and in the ΛCDM model, which also has
Ω0 = 0.2 with the advantage that it includes the cosmological constant so that the
geometry remains flat (CDM and ΛCDM models respectively in Fig. 14.9).

A range of these types of model was studied by Kauffmann and her collaborators
(Kauffmann et al., 1999). The evolution of four of these examples is shown in
Fig. 14.10, the initial perturbation spectrum being chosen to reproduce the same
large-scale structure at the present epoch. It can be seen from the last column of
images in Fig. 14.10 that this was successfully achieved. Notice that, although all four
models result in similar large-scale structure at the present epoch, they make quite
different predictions about the evolution of large-scale structure at earlier epochs.

Cold dark matter with a finite cosmological constant (ΛCDM). This model with
Ω0 ≈ 0.25–0.3, ΩΛ ≈ 0.7–0.75, n ≈ 1 has become the industry standard for the
formation of large-scale structure and has been dealt with in extenso in the discussion
earlier in this chapter.

Open cold dark matter (OCDM). As the second row of Fig. 14.10 shows, the open
cold dark matter model with Ω0 ≈ 0.2, ΩΛ = 0 has an evolutionary history very
similar to that of the standard ΛCDM model. The reason for this is that there is not
a great deal of difference in the dynamics of the underlying model as compared with
the open cold dark matter model until late epochs. The concern with this picture
was that proponents of the inflationary Universe much preferred the geometry of the
Universe to be flat.

Standard cold dark matter (SCDM). The standard CDM model with Ω0 = 1,
ΩΛ = 0 could only be made consistent with the present observed large-scale struc-
ture by adopting a low value of Hubble’s constant, h = 0.5, so that a lower value
of Ωh2 is obtained, and a value of σ8 = 0.5, lower than the present best estimates
σ8 = 0.9. Reducing σ8 corresponds to increasing the bias parameter, as was found
by Efstathiou in his reconciliation of the standard cold dark matter model with the
power spectrum of galaxies. The last row of Fig. 14.9 shows that agreement with
the observed large-scale structure at the present day could be achieved, but there is
a very much more rapid evolution of the large-scale structure over the redshift range
3 > z > 0 than in the ΛCDM or open models.

Cold dark matter with decaying neutrinos (τCDM). In this scenario, the objective
was to enhance the radiation to matter energy densities so that the epoch of equality of
matter and radiation energy densities was shifted to lower redshifts as compared with
the SCDM model, mimicking the case of the open cold dark matter picture. Light
element formation by primordial nucleosynthesis should not be violated, and so there
could not have been additional relativistic components present in the Universe during
the epoch of nucleosynthesis or the expansion rate would have increased, resulting
in the excessive formation of helium-4. The trick is to suppose that there existed
massive neutrino-like particles which decayed into relativistic forms of matter after
the epoch of nucleosynthesis (Bond and Efstathiou, 1991; McNally and Peacock,
1995). The result would be to enhance the relativistic energy density relative to the
matter energy density and so delay the epoch of equality. The model has Ω0 = 1,
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Fig. 14.10. Some examples of the predicted large-scale structure in the distribution of galaxies
from supercomputer simulations by the Virgo consortium. Each panel has side 240h−1 Mpc
and the gravitational interactions of 2563 = 1.7 × 107 particles were followed. The four
models shown involve standard cold dark matter (SCDM), open cold dark matter (OCDM),
cold dark matter with a finite cosmological constant (ΛCDM) and cold dark matter with
decaying neutrinos (τCDM). The parameters of the models have been chosen to reproduce the
observed large-scale structure in the distribution of galaxies at the present epoch (Kauffmann
et al., 1999). More details of these computations can be found in the intermediate scale
simulation at http://www.mpa-garching.mpg.de/Virgo

a low value of Hubble’s constant, h = 0.5, and a low value of σ8 = 0.5. The third
row of Fig. 14.9 shows the resulting evolution of the large-scale structure. It is not
surprising that the evolution is similar to the SCDM model with rapid evolution of
the large-scale structure at small redshifts.

Besides the four models illustrated in Fig. 14.10, many other possibilities were
considered. For example, a mixed dark matter (HCDM) model in which Ω0 = 1
and the dark matter was made up of a mixture of hot and cold dark matter could
incorporate the positive features of both the hot and cold dark matter scenarios.
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In the tilted cold dark matter model, the power spectrum of the initial fluctuations
departed from the standard value n = 1 in order to reduce the power on small
physical scales. In one variant on this scenario, there might be additional power on
large physical scales, associated with primordial gravitational waves which would
boost the fluctuations in the cosmic microwave radiation observed by COBE relative
to the fluctuations associated with the galaxies on smaller physical scales. In the
broken-scale-invariant cold dark matter, the initial power spectrum changed slope
at the appropriate wave-number to reduce the power on small scales.

The consensus of astrophysical and cosmological opinion strongly favours the
ΛCDM model as the model of choice for astrophysical cosmology. This change of
perspective over the last decade has been driven by the discovery that the cosmolog-
ical constant is non-zero and positive, by the considerations of large-scale structure
formation discussed in this chapter and by the interpretation of spatial fluctuations in
the cosmic microwave background radiation, which is the subject of the next chapter.
The remaining discussion of this book will concentrate upon theΛCDM model and
its consequences.

Despite this change of perspective, it is salutary to bear in mind the lesson of
Fig. 14.10. There is no limit to the ingenuity of astronomers and astrophysicists
in finding ways of reconciling theory and observation. As more parameters are
included in the models, the easier it will be to effect the reconciliation of theory
with observation. The merit of the standard ΛCDM model is that it can account so
successfully for so many different observations with a remarkably small number of
cosmological parameters, which we will summarise at the end of the next chapter.
We should not forget, however, that in doing so we are making prime application of
Occam’s razor to cosmology.



15 Fluctuations in the Cosmic Microwave
Background Radiation

The power spectrum of angular fluctuations in the cosmic microwave background
radiation and its polarisation properties provide a wealth of information of cosmo-
logical importance, both for the determination of cosmological parameters and for
understanding the formation of structure in the Universe. This information is encoded
in the intensity and polarisation maps obtained by ground-based and balloon exper-
iments and by the outstandingly successful COBE and WMAP space observatories
which were dedicated to these studies.

The objective of this chapter is to relate the models of structure formation
discussed in Chap. 14 to the imprint they leave on the cosmic microwave background
radiation. Observations of the background radiation are now of quite remarkable
precision, and it is not without reason that these, in conjunction with observations
of the large-scale distribution of galaxies discussed in the last chapter and the
independent determination of cosmological parameters discussed in Chap. 8, have
led to the concept of precision cosmology. To the amazement of astrophysicists
of my generation, these observations have enabled cosmological parameters to be
determined to better than 10%, in some cases with even better precision. There is
every prospect that, with the next generation of space missions such as the Planck
mission of ESA, the precision will approach the 1% level.

The remarkable accuracy now achieved and in prospect brings with it a number
of problems of interpretation and of exposition of the physics involved. With a pre-
cision of a few percent or better, the cosmological models, the processes involved in
structure formation and radiative transfer against a general relativistic background
have to be understood with comparable accuracy. At the same time, observations
of the cosmic microwave background radiation pose their own problems of inter-
pretation, particularly in ensuring that foreground emissions are eliminated so that
sensitivities at the microkelvin level can be achieved.

As a result, the theory of the origin of temperature fluctuations in the cosmic
microwave background radiation has become a subject of considerable technical
complexity. In this chapter, we address the issue of relating the fluctuations in the
dark and baryonic matter at the epoch of recombination to the intensity fluctua-
tions which they imprint upon the background radiation. The treatment will be at
an introductory level. For more details of the many complexities involved in carry-
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ing out a detailed analysis, the book Modern Cosmology by Dodelson provides an
excellent introduction (Dodelson, 2003). Many reviews of these topics have been
written, recent examples including those by Challinor, Hu and Dodelson, Subrama-
nian and Zaldarriaga (Challinor, 2005; Hu and Dodelson, 2002; Subramanian, 2005;
Zaldarriaga, 2004).

To obtain the accuracies required by present and future observations, the only
feasible approach is to find numerical solutions of the coupled Einstein, Boltzmann
and fluid dynamic equations. The fact that these computations now agree to a very
high degree of precision is a tribute to a huge endeavour on the part of theorists
and computational astrophysicists. One of the end results has been the creation of
the CMBfast and CAMB computer codes which are publicly available and which
allow the astronomer-in-the-street to study the predictions of their preferred model of
structure formation.1 Hu and Sugiyama made a valiant attempt to explain physically
the origins of the many features of the analysis and gave analytic results which are
accurate to 5 to 10%, and often to much better accuracy, on all angular scales (Hu
and Sugiyama, 1995).

Of crucial importance in these calculations is the ionisation state of the inter-
galactic gas through the key epochs when it changed from being a fully ionised
plasma to a neutral gas. These were the epochs when the primordial perturbations
were imprinted on the background radiation. We have dealt with a number of aspects
of the physics of this process in Sect. 9.3, but now we need to understand them in
more detail.

15.1 The Ionisation of the Intergalactic Gas Through the Epoch
of Recombination

An expression for the optical depth of fully ionised intergalactic gas due to Thomson
scattering was derived in Sect. 9.3,

τ = 0.035
ΩB

Ω
1/2
0

hz3/2 . (15.1)

Using our reference values, Ω0 = 0.3, ΩB = 0.05 and h = 0.7, we find τ =
1.5 × 10−3z3/2, and so if the gas were fully ionised at redshifts z ∼ 103, the
optical depth would be very large. Any radiation originating at redshifts greater
than the epoch of recombination was scattered many times before it could propagate
unimpeded once the primordial plasma had recombined. The angular temperature
fluctuations associated with primordial density perturbations originated in the rather
narrow range of redshifts about that at which the optical depth of the partially ionised
intergalactic gas was unity. This is not so different from the problem of radiative
transfer in stellar atmospheres, the redshifts at which τ ∼ 1 corresponding to the
stellar photosphere. To understand the properties of the fluctuations, we need to

1 For details, see http://www.cmbfast.org/ and http://camb.info/.
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work out the range of redshifts from which the photons of the background radiation
we observe today were last scattered. This probability distribution is given by the
common expression

dp = e−τ dτ or v(z) dz = e−τ dτ

dz
dz . (15.2)

To determine the function v(z), the visibility function, we need to know the ionisation
history of the intergalactic gas through the epoch of recombination in some detail.

The problem, first analysed by Zeldovich, Kurt and Sunyaev and by Peebles, is
that the recombination process was not instantaneous because the electrons could
not cascade directly into the ground state of the hydrogen atom (Zeldovich et al.,
1968; Peebles, 1968). There was a huge optical depth for the Lyman recombination
transitions, particularly for the Lyman-α line and for Lyman continuum transitions
to the ground state. Furthermore, fast reionisations took place out of excited states
because of the huge reservoir of low-energy photons in the cosmic microwave
background radiation. Any transition to the ground state resulted in the emission
of a Lyman line or Lyman continuum photon, which immediately photoexcited or
photoionised another atom in the ground state because there were very few Lyman
photons in the cosmic microwave background radiation at its low temperature of less
than 3000 K by this epoch. The only way the hydrogen atoms could reach the ground
state was either by cosmologically redshifting the Lyman line photons or by means
of the two-photon process in which two photons are liberated from the 2s state of
hydrogen in a rare quadrupole transition. The spontaneous transition probability for
this process is very small, w = 8.23 sec−1, but this turns out to be the dominant
process which determined the rate at which the intergalactic gas recombined.

Since the pioneering studies by Zeldovich, Kurt and Sunyaev and by Peebles,
more refined calculations of the degree of ionisation through the critical redshift
range have been carried out (Jones and Wyse, 1985; Hu and Sugiyama, 1995;
Seager et al., 2000; Chluba and Sunyaev, 2006). In the impressive paper by Seager
and her colleagues, a detailed treatment of H, HeI and HeII recombination was
carried out, following the populations of several hundred atomic energy levels for
these species. Among the many refinements in their calculations, the researchers
allowed the excited atomic level populations to depart from their equilibrium values.
The results of calculations by Chluba and Sunyaev, which included corrections for
induced two-photon decay, are shown in Fig. 15.1 for both the ionisation fraction
and the visibility function. Figure 15.1a formalises the statement that the photons
of the microwave background radiation were not last scattered at a single redshift.
Rather, the maximum of the visibility function occurs at a redshift of z = 1090 and
its half maxima lie at redshifts of z = 1178 and z = 983, corresponding to a redshift
interval of Δz = 195. For our reference world model, the redshift of the maximum
of the visibility function corresponded to an epoch t = 370,000 years from t = 0,
and most of the photons were last scattered between the epochs t = 320,000 and
t = 440,000 years.
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Fig. 15.1. a Ionisation fraction xe = Ne/NH as a function of redshift z for the WMAP
concordance values for cosmological parameters. b Visibility function v(z) = e−τ dτ/dz
normalised to unity at maximum (Chluba and Sunyaev, 2006)

15.2 The Physical and Angular Scales of the Fluctuations

It is helpful to begin by listing the various scales and dimensions which will appear
in the analysis which follows. For the sake of definiteness, we continue to use our
reference set of parameters: Ω0 = 0.3, ΩΛ = 0.7, ΩB = 0.05, h = 0.7. Where
necessary, we will use the spectral index n = 1 for the initial power spectrum.
The element of comoving radial distance coordinate at redshift z during the matter-
dominated era is given by (7.73):

dr = c dz

H0
[
(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)

]1/2 , (15.3)

which can be written

dr = c dz

H0
[
Ω0(1 + z)3 +ΩΛ

]1/2 , (15.4)

if Ω0 + ΩΛ = 1. Strictly speaking, we should also include in this formula the
contribution of the energy density of photons and neutrinos at this redshift, z = 1090,
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which is not much smaller than the redshift of the epoch of equality at z = 3530.
However, because of the convergence of the comoving radial distance coordinate at
very large redshifts (Fig. 7.6b), this is only a small change.2

The estimates which follow must be treated with caution. They are order-of-
magnitude estimates, and some of them, for example the masses, are sensitive to
factors of 2π in relating wavenumbers to physical scales. They also depend upon
whether or nor the relevant horizon scales are ct, 2ct or 3ct, all of which are
appropriate under different circumstances. The precise estimates of the dimensions
and scales can only be derived by running an initial power spectrum of perturbations
through numerical codes such as CMBfast. Nonetheless, the estimates discussed
below reveal a number of interesting physical features of the numerical results.

15.2.1 The Last Scattering Layer

First of all, let us work out the increment of comoving radial distance coordinate
corresponding to the thickness of the last scattering layer. At large redshifts,Ω0z �
1, the term involving the cosmological constant can be neglected, and so

Δr = c

H0

Δz

z3/2Ω
1/2
0

. (15.5)

Taking the thickness of the last scattering layer to correspond to a redshift interval
Δz = 195 at z = 1090, the corresponding comoving radial distance is

Δr = 16.2
(
Ω0h2)−1/2 = 42 Mpc (15.6)

at the present epoch. The dark mass contained within this scale is roughly

M = π

6
(Δr)3	0 = 6.0 × 1014 (Ω0h2)−1/2

M� = 1.6 × 1015 M� , (15.7)

corresponding roughly to the mass of a cluster of galaxies. The comoving scale
Δr = 16.2

(
Ω0h2

)−1/2
Mpc corresponds to a proper distance Δr/(1 + z) at redshift

z and hence to an angular size

θ = Δr

D
= 16.2

(
Ω0h2

)−1/2

rMpc
= 5.8Ω1/2

0 arcmin = 3.2 arcmin . (15.8)

In this calculation, we have used the integral of (15.4) to estimate rMpc at z = 1090
and, since the geometry is flat, D = r.

On comoving scales less than 16.2
(
Ω0h2

)−1/2
Mpc = 42 Mpc at the present

epoch, we expect a number of independent fluctuations to be present along the line

2 The advanced version of the Cosmology Calculator developed by Dr. Edward Wright at
http://www.astro.ucla.edu/∼wright/cosmolog.htm is a useful tool for
understanding the effects of changing the cosmological parameters upon distances and
times.
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of sight through the last scattering layer. Consequently, the random superposition of
these perturbations leads to a statistical reduction in the amplitude of the observed
intensity fluctuations by a factor of roughly N−1/2, where N is the number of
fluctuations along the line of sight.

We have already obtained the important result that, for primordial structures on
scales greater than those of clusters of galaxies, we observe ‘slices’ through these
on the last scattering layer.

15.2.2 The Silk Damping Scale

Next, we evaluate the comoving damping scale for baryonic perturbations at the
epoch of recombination using (12.52) and (12.56) for the case in which the dynamics
of the expansion were determined by the dark matter, t = (2/3H0)Ω

−1/2
0 z−1.5,

λS = ( 1
3λct

)1/2 = 0.867(
ΩBh2

)1/2 (
Ω0h2

)1/4 = 9.0 Mpc . (15.9)

This is a significant underestimate of the damping scale at recombination since it
has not taken account of the dramatic increase in the mean free path of the photons
as the recombination process gets under way. Hu and Sugiyama present a helpful
diagram showing the impact of reionisation upon the Silk damping length (Fig. 15.2)
(Hu and Sugiyama, 1995). Formally the damping scale becomes infinite, but Hu and
Sugiyama convolve the damping scale with the visibility function so that the damping
scale appropriate for baryonic density perturbations remains finite.

Fig. 15.2. Evolution of the Silk damping scale for primordial density perturbations. Dashed
lines: the silk damping length without taking account of recombination. Solid lines: increase
in the silk damping length as the process of recombination takes place at z ≈ 1090 (Hu and
Sugiyama, 1995)
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15.2.3 The Sound Horizon at the Last Scattering Layer

The next key scale is the sound horizon at the last scattering layer, which is defined
to be λs = cst, where cs is the speed of sound and t the age of the Universe. This
is the maximum distance which sound waves could travel and undergo coherent
oscillations. The sound horizon therefore sets an upper limit to the wavelengths
which acoustic waves could have at the epoch of recombination.

The sound speed is given by (9.34), which can be written as

cs = c√
3

(
4	rad

4	rad + 3	B

)1/2

= c√
3(1 + R)

, (15.10)

where R = 3	B/4	rad. Comparing the inertial mass density in the baryonic matter
and the radiation, we find

R = 3	B

4	rad
= 3ΩB	cc3

4aT 4
0 (1 + z)

= 3.046 × 104 ΩBh2

(1 + z)
= 0.685 (15.11)

for our reference set of cosmological parameters at redshift z = 1090 with ΩB =
0.05. In this case, the speed of sound on the last scattering layer was cs = 0.445c.

The expression for the sound horizon therefore depends upon the values of Ω0

andΩB. Using the matter-dominated dynamics of the world model for large redshifts
(7.68), the dependence upon these parameters is

λs = cst = c√
3(1 + R)

2z

3H0Ω
1/2
0

, (15.12)

noting that there should be a small correction to (7.68) for the residual mass-energy
of the radiation. For our reference set of parameters, including both the matter and
the radiation mass-energy densities, the age of the Universe was 370,000 years at
z = 1090 and the sound horizon had comoving distance scale rs = 56 Mpc. The
dark matter mass within a sphere of this diameter was

M = π

6
r3

sΩ0	c = 3.72 × 1015 M� . (15.13)

There are two ways of thinking about the calculation we have just performed. It
can be seen from (15.11) that the sound speed of the acoustic waves at z = 1090 is
cs = 0.445c, which is not so different from the sound speed of a fully relativistic
plasma, cs = c/

√
3 = 0.577c. Thus, from the epoch when the perturbation came

through the horizon to the epoch of recombination, the sound speed was of the order
of 0.5c, and then the wavelength λs = cst corresponds to a single wavelength of
oscillation between entry through the horizon and the epoch of recombination. The
first maximum in the power spectrum of the temperature fluctuations is associated
with this mode of oscillation. This is nicely illustrated by the schematic diagram
published by Lineweaver (Fig. 15.3) (Lineweaver, 2005).



428 15 Fluctuations in the Cosmic Microwave Background Radiation

Fig. 15.3. Origin of the first few acoustic peaks in the power spectrum of the cosmic mi-
crowave background radiation. Circles: the response of the photon-baryon plasma to growing
perturbations in cold dark matter potential wells (Lineweaver, 2005). Dark filled circles:
maximum compression of the perturbations; white filled circles: maximum of rarefaction of
the oscillations. zeq is the epoch of equality and Δz is the thickness in redshift of the last
scattering layer. Many more details of this diagram are discussed in Sects. 15.4 and 15.5

The second way of thinking about the sound horizon is that it is the maximum
coherence length on the last scattering layer, and so we can work out the expected
angular scale of this acoustic peak in the perturbation spectrum,

θs ≈ cst(1 + z)

D
. (15.14)

For our reference set of cosmological parameters, this angular scale is 0.23◦. In terms
of the angular multipole l on the sky, which is introduced in the next section, there
should be a maximum in the power spectrum at multipoles of l ≈ 250, adopting
the relation l ≈ θ−1

s . Indeed, there is a very pronounced maximum in the power
spectrum at this multipole (Fig. 15.4), but in view of the approximations made in
this derivation, the agreement should be regarded as fortuitous.

The sound horizon is more important than the Jeans length in these studies,
but the dispersion relation for baryonic perturbations during the period from the
epoch of equality to the epoch of recombination is important. The interpretation
of the Jeans length given in Sect. 11.3 was that it is the distance which sound
waves can travel in the free-fall collapse time of the perturbation which is of order
τ ∼ (G	)−1/2. The difference between the sound horizon and the Jeans length in
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the cosmological case is that the time scale associated with the expansion of the
Universe is determined by the mass density in the dark matter, whereas the Jeans
time scale for the collapse of the baryonic perturbations depends upon the mass
density of the baryonic component. The acoustic oscillations, which are to play
a key role in the discussion which follows, are supported by the pressure of the
baryon–photon plasma within the larger-amplitude potential wells defined by the
dark matter perturbations.

Inserting our reference baryon density into the expression for the baryonic Jeans
length we find

λJ = cs

(
π

G	

)1/2

= c√
3(1 + R)

(
π

G	

)1/2

= 2.6 × 1022 m , (15.15)

corresponding to a comoving length scale of about 900 Mpc. The fact that the sound
horizon λs is much less than the Jeans length λJ means that we can use the short
wavelength approximation for the dispersion relation of the acoustic waves, that is,
we can write (11.26) in the form

ω2 = c2
s k2 − 4πG	 = c2

s

(
k2 − k2

J

) ≈ c2
s k2 . (15.16)

Thus, the waves were pure acoustic waves by the time they reached the epoch of
recombination.

15.2.4 The Particle Horizon Scales

From (12.7), the proper particle horizon scale at the epoch of recombination in the
matter-dominated limit was

rH = 3ct = 2c

H0Ω
1/2
0

(1 + z)−1.5 = 5.1 × 1021 (Ω0h2)−1/2 = 1.34 × 1022 m ,

(15.17)

corresponding to a comoving scale of about 500 Mpc. If account is taken of the
radiation, this scale is reduced by 22%. Adopting a comoving scale of 500 Mpc, this
subtends an angle of

θH = rH(1 + z)

D
= 2.1◦ (15.18)

at the present day for our reference parameter set, the same result we found in
Sect. 12.1. As noted in that section, this means that regions of the microwave sky
separated by angles greater than 2.1◦ could not have been in causal contact. As
Figs. 2.2 and 2.3 show, despite this the COBE and WMAP experiments demonstrate
that the Universe has the same appearance in all directions on this angular scale to
a precision of better than one part in 105.

Notice also that the baryonic Jeans length is of the same order as the horizon scale
at the last scattering layer. This means that, as perturbations in the dark matter came
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through the horizon, baryonic perturbations on the same scale began to oscillate
as sound waves. Thus, all baryonic perturbations with wavelengths less than the
horizon scale were acoustic waves.

Another useful figure is the particle horizon scale at the epoch of equality. For
our reference values of the cosmological parameters and including the dynamics of
both the matter and radiation, this occurred at an epoch 47,000 years after the initial
singularity. Adopting a horizon scale of 2.5ct as a compromise between the values
2ct and 3ct in the radiation and matter-dominated eras, we find the comoving scale
to be λeq = 40 Mpc.

15.2.5 Summary

In a very real sense, we have been telling this story backwards because we ought to
derive the values of the cosmological parameters from the observations rather than
using the reference set to predict what we already know. My apologia for adopting
this approach is that everyone knows what the denoument is going to be and doing
the analysis in full generality would end up being a complicated and ultimately
unnecessary exercise. The key pieces of information we obtain from this catalogue
of physical and angular scales can be summarised as follows.

– The fluctuations in the cosmic microwave background radiation associated with
primordial perturbations were imprinted at a redshift close to z = 1090 when
the Universe had relatively recently entered the matter-dominated phase.

– Regions of the Universe on angular scales greater than 2◦ were not causally
connected at the last scattering layer and so preserved information about the
primordial perturbation spectrum.

– There is a wealth of structure due to different physical processes on the angular
scales 0.01◦ ≤ θ ≤ 2◦. These include the spectral imprint of the epoch of equal-
ity, the crucial acoustic oscillations on angular scales less than a degree, damping
of the perturbations associated with Silk damping, and the finite thickness of the
last scattering layer. The reason all this information is potentially available is
because the baryonic perturbations were tightly coupled to the radiation but
became sound waves as soon as they entered through their particle horizons.
The amplitudes, phases and wavenumbers of these waves contain the wealth of
information we need to reconstruct what the basic parameters of the Universe
are and what must have happened in the very distant past.

A more detailed analysis of these phenomena can become formidably compli-
cated, and it is not surprising that there is a strong temptation simply to gain insight
by enjoying the remarkable powers of the CMBfast and CAMB programmes. Let us
see how far we can get by simple physical arguments, relying on these programs to
reinforce our intuition.
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15.3 The Power Spectrum of Fluctuations
in the Cosmic Microwave Background Radiation

15.3.1 The Statistical Description of the Temperature Fluctuations

Let us introduce the techniques and nomenclature used in making precise compar-
isons between theories and observations of temperature fluctuations in the cosmic
microwave background radiation. We need to be able to deal with a continuous
spectrum of temperature fluctuations, and the natural way of doing this is to take
the Fourier transform of the intensity distribution. The temperature fluctuations are
distributed over the surface of a sphere, and so we need the two-dimensional spher-
ical polar equivalent of the relation between the density distribution and its power
spectrum, which was given by (14.12) for the case of Fourier series in three Cartesian
dimensions. For the surface of a sphere, the appropriate complete sets of orthonormal
functions are the spherical harmonic functions. The first step is to make a spherical
harmonic expansion of the temperature distribution over the whole sky.

ΔT

T
(θ, φ) = T(θ, φ)− T0

T0
=

∞∑
l=0

m=l∑
m=−l

almYlm(θ, φ) , (15.19)

where the normalised functions Ylm(θ, φ) are given by the expression

Ylm(θ, φ) =
[

2l + 1

4π

(l − |m|)!
(l + |m|)!

]1/2

Plm(cos θ) eimφ (15.20)

×
{
(−1)m for m ≥ 0
1 for m < 0

. (15.21)

Ylm(θ, φ) is called a spherical harmonic function of degree l and order m and
Plm(cos θ) is an associated Legendre function. The polar angle, or colatitude, θ,
falls in the range 0 ≤ θ ≤ π and the longitude φ in the range 0 ≤ φ ≤ 2π. As can
be seen from the double sum in (15.19), l takes integral values from 0 to infinity
and m integral values in the range −l ≤ m ≤ l, in other words, 2l + 1 values for
each degree l. With this normalisation, the orthogonality condition for the spherical
harmonics is ∫

4π
Y∗

lmYl′m′ dΩ = δll′δmm′ , (15.22)

where the asterisk denotes the complex conjugate of the spherical harmonic and the
integral is taken over the whole sky, that is, over dΩ = sin θ dθ dφ, the element of
a solid angle. The δs are delta functions which take the value unity if l = l′ and
m = m′, and are zero otherwise. From the orthogonality condition (15.22) the values
of alm are found by multiplying the temperature distribution over the sphere by Y∗

lm
and integrating over the sphere.

alm =
∫

4π

ΔT

T
(θ, φ)Y∗

lm dΩ . (15.23)
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Peebles provides a physical interpretation of how the power on an angular scale
θ is related to the power in the spherical harmonic l (Peebles, 1980). The zeros of
the real and imaginary parts of Ylm divide the sky into roughly rectangular cells,
the minimum dimension of each cell at low latitude being close to π/l. Near the
poles, the zeros of the azimuthal functions sin mφ and cos mφ are crowded together,
but there the values of Plm are close to zero. The net result is that each spherical
harmonic corresponds to an angular resolution θ ≈ π/l. l is often referred to as the
multipole moment.

In general, the temperature distribution over the sky need not be Gaussian. By
this term, we mean that the phases of the waves which make up the spherical
harmonic decomposition over the sky are random. As expressed by Kogut and
his colleagues, the distribution of the coefficients alm should follow a Gaussian
probability distribution with phases which are uniformly distributed between 0 and
2π (Kogut et al., 1996). Many theories predict that the fluctuations should obey
Gaussian statistics. For example, in the inflation scenario of the early Universe,
density perturbations arose from random quantum fluctuations in the inflationary era
and so the perturbations should have random phases.

The temperature fluctuations on the sky might, however, display non-Gaussian
features such as abrupt temperature discontinuities, intense hot spots, linear struc-
tures and so on. These types of features are predicted by theories in which large-scale
structures are seeded by topological defects, cosmic strings or cosmic textures. These
features would provide an important test of this class of theory. Non-Gaussian fea-
tures would result in strongly correlated values of the coefficients alm rather than
a Gaussian distribution of amplitudes. The analyses which have been made of the
4-year COBE data set found no evidence for non-Gaussian features over regions of
sky away from the galactic plane (Kogut et al., 1996).

In what follows, it is assumed that the perturbations are Gaussian, an assumption
which results in a number of simplifications in interpreting the angular power spectra.
Specifically, if the fluctuations can be represented by a superposition of waves of
random phase, each of the (2l +1) coefficients alm provides an independent estimate
of the amplitude of the temperature fluctuations associated with the multipole l. The
power spectrum Cl is assumed to be circularly symmetric about each point on the
sky, and so the mean value of alma∗

lm , averaged over the whole sky, provides an
estimate of the power associated with the multipole l.

Cl = 1

2l + 1

∑
m

alma∗
lm = 〈|alm |2〉 . (15.24)

Note that, because of the assumption that the fluctuations are Gaussian, the power
spectrum Cl provides a complete statistical description of the temperature fluctua-
tions.

Another way of presenting the results of these statistical analyses is to derive
the autocorrelation function or two-point correlation function for the distribution of
temperature over the sky in angular coordinates, the analogue of determining the
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two-point correlation function for galaxies (Sect. 14.2.1):

C(θ) =
〈
ΔT(i1)

T

ΔT(i2)
T

〉
, (15.25)

where i1 and i2 are unit vectors in directions 1 and 2 and the average is taken over
the sky with a fixed angular separation θ. Because of the orthogonality properties of
the spherical harmonics, it follows that

C(θ) = 1

4π

∑
l

(2l + 1)Cl Pl(cos θ) , (15.26)

where Cl = 〈|alm |2|〉 is the power spectrum of the temperature fluctuations on the
sky as defined by (15.24). In deriving this result, we have used the addition theorem
for spherical harmonics, namely, that

∑
lm

Y∗
lm(i1)Ylm(i2) =

∑
l

2l + 1

4π
Pl(cos θ) , (15.27)

where Pl(cos θ) is the Legendre polynomial of degree l (Matthews and Walker,
1973). Expression (15.24) bears a close resemblance to the autocorrelation theorem
in Fourier transform theory, namely, that if f(x) has Fourier transform F(s), then
its autocorrelation function has Fourier transform |F(s)|2 (Bracewell, 1986). The
exponential has been replaced by the Legendre polynomial associated with multipole
l. Note also the point emphasised by Bracewell that the autocorrelation theorem in
Fourier theory wipes out all phase information (Bracewell, 1986). The same happens
in (15.24) and (15.26), but we do not worry since the phases are assumed to be
random and hence perfectly well-defined for our purposes. As Peebles points out, it
is a matter of convenience whether one works with the angular two-point correlation
function C(θ) or the power spectrum Cl (Peebles, 1993).

In presenting the angular correlation function, the quantity l(l+1)Cl is commonly
plotted, rather than Cl . This is a consequence of the form of the predicted temperature
power spectrum for a Harrison–Zeldovich spectrum of density perturbations. As
shown by Peebles and by White, Scott and Silk, if the power spectrum of the initial
perturbations is of power-law form, P(k) = Akn , the values of Cl are given by

Cl = 2nπ2 A
Γ (3 − n) Γ

(
l + n−1

2

)

Γ 2
( 4−n

2

)
Γ
(
l + 5−n

2

) , (15.28)

where the Γ s are Gamma-functions (Peebles, 1993; White et al., 1994). Recalling
that Γ(z +1) = zΓ(z), the values of Cl for the Harrison–Zeldovich spectrum, n = 1,
are

Cl = 8πA

l(l + 1)
. (15.29)
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Thus, the quantity l(l + 1)Cl is expected to be independent of the multipole l for
the Harrison–Zeldovich spectrum. We will derive this result by simpler means in
Sect. 15.4.

Another way of expressing the amplitude of the temperature fluctuations has
been used by the COBE investigators. They assume the perturbations have a flat
spectrum and then work out the rms temperature fluctuation Qrms - PS, which can
be related to the best estimate of C2, the quadrupole component of the temperature
power spectrum (White et al., 1994).

One important aspect of the above analysis is that it brings out clearly the problem
of cosmic variance, which ultimately limits the precision with which the amplitude
of the temperature fluctuations on any scale can be estimated. The spherical harmonic
analysis shows that we obtain (2l + 1) independent estimates of the value of Cl for
a given multipole l. Thus, for small values of l, we obtain few independent samplings
of the correlation function. Evidently, the precision with which value of Cl is known
is proportional to 1/N1/2, where N is the number of individual estimates. Bennett
and his colleagues quote an uncertainty in the values of Cl of

σ(Cl)

Cl
≈
[

2

2l + 1

]1/2

. (15.30)

(Bennett et al., 1996). According to their analysis of the 4-year COBE data set, the
observations are cosmic-variance limited, rather than noise limited, for multipoles
l < 20. Thus, there is limited prospect of improving the estimates of the power
spectrum on large angular scales. For the WMAP experiment, the observations
are cosmic-variance limited to multipole l = 400, because of the higher angular
resolution of the experiment (Hinshaw et al., 2007).

15.3.2 The Power Spectrum of Fluctuations in the Intensity of the Cosmic
Microwave Background Radiation

After this lengthy introduction, let us review the power spectrum of intensity fluctu-
ations in the cosmic microwave background radiation as it was known in late 2006.
In Fig. 15.4a, the power spectrum derived from the first 3 years of observation by the
Wilkinson Microwave Anisotropy Probe (WMAP) is shown. The project was named
after David Wilkinson, one of the pioneers of observations of the cosmic microwave
background radiation. He was a key member of the project team but died before the
WMAP mission came to fruition.

The power spectrum is shown in Fig. 15.4 in the form l(l+1)Cl/2π against multi-
pole moment l. The WMAP results are extraordinarily impressive and have overshad-
owed the remarkable progress which had been made from ground- and balloon-based
experiments3 before the release of the first-year data in 2003 (Bennett et al., 2003).
There are many important points to be made about Fig. 15.4a. First of all, it can be

3 I have included a summary of the pre-WMAP experiments in my book The Cosmic Century
(Longair, 2006).
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Fig. 15.4. a The binned 3-year angular power spectrum from the WMAP experiment (black
symbols with 1 − σ noise error bars for 2 ≤ l ≤ 1000). The grey band is the binned 1 − σ

cosmic-variance uncertainty (Hinshaw et al., 2007). The curve is the best-fitΛCDM model for
the WMAP data alone (Spergel et al., 2007). The diamonds show the model points when binned
in the same way as the data. b The WMAP 3-year power spectrum and other measurements
of the angular power spectrum extending to larger multipole moments (Hinshaw et al., 2007).
The additional data, which have been restricted to those at large multipoles, are from the
Boomerang (Jones et al., 2006), Acbar (Kuo et al., 2004), CBI (Readhead et al., 2004) and
VSA (Dickinson et al., 2004) experiments. In both diagrams, note the variable logarithmic
scale in multipole moment along the abscissa
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seen that there is unambiguous evidence for the presence of acoustic oscillations in
the power spectrum. The first and second peaks in the power spectrum are defined by
the WMAP observations alone, whilst the third peak is also clearly detected when the
WMAP observations are combined with the results of ground- and balloon-based ex-
periments (Fig. 15.4b). The grey band represents the 1−σ cosmic variance error. The
WMAP team state that observations of the power spectrum are now variance limited
to multipole moments l = 400 and so only marginal improvements in precision are
possible over the first acoustic peak. It can be seen that the cosmic variance increases
at small multipole moments and these are unlikely to decrease significantly in future.

We now need to take apart this remarkable power spectrum. We will deal sepa-
rately with large, intermediate and small angular scales. Our aim is again modest – to
give an impression of the wealth of astrophysics contained in these observations.
The other daunting aspect of these observations is that the power spectrum is defined
with such remarkable precision that theory has to attain a correspondingly high level
of refinement so that effects at the 1 to 2% level are properly understood. This is
a considerable theoretical challenge.

15.4 Large Angular Scales

By large angular scales we mean scales greater than about 2◦. From the considerations
of Sect. 15.2.4, the observed fluctuations on these scales exceeded their particle
horizons at the last scattering layer and so contain unique information about the
form of the unprocessed initial power spectrum. The data for angular scales greater
than 2◦ are rather compressed in Fig. 15.4a, and so it is helpful to view them on
a slightly expanded scale, as shown in Fig. 15.5. It can be seen that the power
spectrum on these large angular scales is rather flat and would be consistent with
the power spectrum in the form l(l + 1)Cl being independent of multipole moment.
It is apparent from both Figs. 15.4 and 15.5, however, that the observations are
cosmic-variance limited, and so it is unlikely that we will obtain a significantly
better estimate of the spectrum on these scales.

15.4.1 The Sachs–Wolfe Effect – Physical Arguments

On the very largest scales, the dominant source of intensity fluctuations results
from the fact that the photons we observe originated from metric perturbations
within the last scattering layer. These have dimensions greater than the thickness
of the last scattering layer (Fig. 15.3). During their subsequent propagation to the
Earth, although the photons pass through gravitational potential fluctuations, what
they gain by falling into them is exactly compensated by the gravitational redshift
coming out, so long as the perturbations continue to grow linearly with redshift, as
we show below. Thus, it is the escape from density perturbations at the epoch of
recombination which provides a first-order effect in the gravitational redshift. This
phenomenon was first analysed by Sachs and Wolfe and is known as the Sachs–Wolfe
effect (Sachs and Wolfe, 1967).
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Fig. 15.5. The WMAP power spectrum from the first year of observation, compared with
data published prior to WMAP, including COBE. The WMAP data are plotted with cosmic
variance plus measurement uncertainties. The COBE and WMAP power spectra are in good
agreement (Hinshaw et al., 2003)

The most straightforward way of approaching the problem is to use (13.9), which
relates the curvature perturbations on superhorizon scales to the density contrasts in
the baryonic matter, the cold dark matter and the radiation,

1

3

δ	B

	B
= 1

3

δ	D

	D
= 1

4

δ	rad

	rad
. (15.31)

Since 	rad = aT 4, it follows that

δT

T
= 1

3

δ	D

	D
. (15.32)

We can illustrate the origin of this relation by a simple Newtonian argument which
also shows how the issue of the choice of gauge enters the problem. According to
the ‘Newtonian’ argument which led to (6.8), for small gravitational perturbations
the frequency shift and the corresponding change in the thermodynamic temperature
of the background radiation can be related to the gravitational redshift zgrav

Δν

ν
= ΔT

T
= zgrav = Δφ

c2
. (15.33)

This result is different from that found in a general relativistic treatment because
we also need to take account of the time dilation of the radiation as it climbs out of



438 15 Fluctuations in the Cosmic Microwave Background Radiation

the density perturbation. This is another aspect of the problem of gauge choice in
that on superhorizon scales we can choose to carry out the calculations in different
gauges, as discussed in Sect. 12.3 and illustrated by (12.35) and (12.36). Because
of the perturbation of the metric, the cosmic time, and hence the scale factor a,
at which the fluctuations are observed, are shifted to slightly earlier cosmic times
and hence to slightly hotter background temperatures. Temperature and scale factor
change as ΔT/T = −Δa/a. In the matter-dominated era a ∝ t2/3, and so the
increment of cosmic time changes as Δa/a = (2/3)Δt/t. But Δν/ν = −Δt/t is the
Newtonian gravitational redshift, with the result that there is a contribution to ΔT/T
of −(2/3)Δφ/c2. The net temperature fluctuation is ΔT/T = 1

3Δφ/c2, recalling
that Δφ is negative. The general relativistic analysis is discussed in some detail by
Sachs and Wolfe, Hu, Padmanabhan and Dodelson (Sachs and Wolfe, 1967; Hu,
1996; Padmanabhan, 1993, 1996; Dodelson, 2003).

We can derive a number of important results by order-of-magnitude calculations
using (14.12) and (14.13), which relate the power spectrum of the initial fluctuations
to the mass spectrum. If the power spectrum of the fluctuations is taken to have
the form P(k) = |Δk|2 ∝ kn , then the mass of an object of dimension d ∼ k−1 is
proportional to k−3, and so taking the integral (14.13) over wavenumber to be

〈
Δ2〉 ∼ V

∣∣Δ2
k

∣∣ k3 = V P(k)k3 , (15.34)

we find that

〈
Δ2〉1/2 = δ	

	
= δM

M
∝ k(n+3)/2 ∝ M−(n+3)/6 . (15.35)

Let us repeat the calculation performed in Sect. 12.3 to find the dependence of
the fluctuation in the gravitational potential Δφ at the epoch of recombination in
terms of the properties of the density perturbations observed at the present epoch.
We assume that the perturbations remain small right up to the present epoch and
that they developed linearly as Δ ∝ (1 + z)−1, as is appropriate for the critical
Ω0 = 1,ΩΛ = 0 model. The size of the perturbation d at redshift z corresponds
to a physical size d0 at the present epoch, such that d(1 + z) = d0. Therefore, the
density perturbation Δ	 at redshift z was

Δ	 = Δ	0

(1 + z)

	

	0
= Δ	0(1 + z)2 . (15.36)

Since ΔM ≈ Δ	 d3 and d = d0/(1 + z), it follows that

Δφ ≈ GΔM

d
≈ Gd2Δ	 ≈ GΔ	0d2

0 . (15.37)

This is the first important result of this analysis – so long as the perturbations
grow as δ	/	 ∝ (1 + z)−1 to zero redshift, the perturbation of the gravitational
potential is independent of the cosmic epoch, since all dependence upon redshift z
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has disappeared from (15.37). This is the same result we derived in Sect. 12.3, which
showed that the superhorizon potential fluctuations were frozen in on very large
scales.

We now incorporate the mass spectrum into the calculation. Since δ	0 ∝
	0 M−(n+3)/6, and M ≈ 	0d3

0 , we find δ	0 ∝ d−(n+3)/2
0 , and hence

Δφ ≈ GΔ	0d2
0 ∝ d(1−n)/2

0 . (15.38)

It follows from (15.32) and the expression relating the physical size d0 of the
perturbation at the present epoch to the angular size it would subtend at a large
redshift, d0 = θD, where D = 2c/H0Ω0, that

ΔT

T
≈ 1

3

Δφ

c2
∝ θ(1−n)/2 . (15.39)

This is the important result we have been seeking. The spectral index of the tem-
perature fluctuations as a function of angular scale depends only upon the spectral
index n of the initial power spectrum. In particular, the amplitude is independent
of angular scale if n = 1, the spectral index of a Harrison–Zeldovich power spec-
trum. It is apparent from Figs. 15.4 and 15.5 that at small multipoles l < 30, the
power spectrum is more or less independent of angular scale, consistent with the
expectations of the Harrison–Zeldovich spectrum.

The power spectrum of temperature fluctuations in the cosmic microwave back-
ground radiation provides the best normalisation of the spectrum of density per-
turbations on very large physical scales. Perturbations on an angular scale of 10◦
correspond to physical dimensions of about 2400 Mpc at the present epoch, more
than an order of magnitude greater than the large holes seen in the distribution of
galaxies in Figs. 2.7 and 2.8 and greater than the angular scales over which the power
spectra have been determined in Figs. 14.7 and 14.9. How this comparison is made is
discussed in detail by Efstathiou, by Peebles and by Peacock and Dodds (Efstathiou,
1990; Peebles, 1993; Peacock and Dodds, 1994; Turner, 1997).

For the purposes of illustration, let us work out roughly the inferred galaxy power
spectrum on very large scales at the present epoch using (15.33) and (15.37). On
a scale of 10◦, the temperature fluctuations are ΔT/T ≈ 2 × 10−5 and hence we
can find the value of Δφ from (15.39). Inserting this value into (15.37) for a scale
of 2400 Mpc, we can find δ	0, which can be compared with the critical density
	c = 1.88 × 10−26h2 kg m−3. We find δ	0/	c = 1.7 × 10−3 for our reference value
h = 0.7. Then we can estimate the power spectrum on scale d0 = 2400 Mpc, or
wavenumber k ≈ π/d0 = 1.3×10−3 Mpc−1, using relation (15.34). In the definition
of the units used in Fig. 14.9, the volume V is not included, and so, omitting that
term from (15.34), the amplitude of the power spectrum becomes

P(k) ∼ k−3 〈Δ2〉 = k−3
(
δ	0

	0

)2

= 1300 Mpc3 . (15.40)
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Inspection of Fig. 14.9 shows that our estimate is fortuitously close to the data
point labelled ‘COBE’ presented by Dodelson and his colleagues (Dodelson et al.,
1996). Obviously, a proper treatment needs to be carried out to relate the observed
values of l(l + 1)Cl/2π presented in Figs. 15.4 and 15.5 to the power spectrum
displayed in Fig. 14.7. The important point is that the COBE and WMAP experiments
provide key information about the normalisation of the power spectrum of density
perturbations on the very largest physical scales accessible to us. Furthermore,
the spectrum of primordial density perturbations on the very largest scales, k ∼
10−3 Mpc−1, must be similar to those shown by the lines in Fig. 14.9 since they all
have n = 1.

15.4.2 The Integrated Sachs–Wolfe and Rees–Sciama Effects

It will be noticed that the independence of the power spectrum upon multipole
moment depends upon the assumption that the development of the perturbations
is linear from the epoch of recombination to the present epoch. For models with
Ω0 �= 1 and in particular for the ΛCDM model, this is no longer true at small
redshifts because the perturbations no longer grow as δ	/	 ∝ (1 + z)−1, as can
be seen from Figs. 11.4 and 11.5. For example, for the flat models with finite
ΩΛ, the growth rate becomes less than δ	/	 ∝ (1 + z)−1 at redshifts less than
(1 + z) ≈ Ω

−1/3
0 . In these cases, we need to integrate the Sachs–Wolfe effect over

all redshifts back to the epoch of recombination. There is also a small residual effect
at redshifts close to the last scattering layer since the dynamics of the Universe still
contain a contribution from the inertial mass density of the radiation. These are quite
small changes compared with the dominant role of the standard Sachs–Wolfe effect,
but they need to be taken into account in the light of the high precision now attained
by the observations of the background radiation.

Another effect which can result in additional contributions to the temperature
fluctuations is the Rees–Sciama effect, which can be important on the very largest
scales (Rees and Sciama, 1968). In this case, the depth of the gravitational potential
wells increase during the time the background photons pass through the perturba-
tions. As a result, there is not exact cancellation of the effects of infall and escape
from the perturbation, causing a further contribution to the temperature power spec-
trum.

These effects are automatically taken into account in the numerical simulations
such as CMBfast and CAMB which involve solving the coupled Einstein, Boltzmann
and Euler equations.

15.4.3 Primordial Gravitational Waves

The inflationary paradigm for the very early evolution of the Universe has a number
of appealing features, among which is the generic prediction that the spectrum of
initial perturbations arose from quantum fluctuations of the field responsible for
the inflationary expansion. As will be demonstrated in Sect. 20.5, the predicted
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spectrum for the simplest model is exactly the Harrison–Zeldovich spectrum, which
in an encouraging result. The importance of considering gravitational waves is that
these too are likely to be generated as a result of quantum fluctuations in the inflation
field. The gravitational waves only interact with matter through their quadrupole
gravitational influence on the space–time through which they travel and so contain
direct information about processes in the very early Universe. If these could be
detected, they would provide compelling evidence in support of the inflationary
paradigm. Gravitational waves behave like massless particles with equation of state
p = 1

3ε, corresponding to a ratio of specific heats γ = 4/3. As a result, after
they came through the horizon when λ ∼ rH, their energy density decreased as
a−4. Thus, unlike the scalar modes in the relativistic plasma, which were stabilised
on coming through the horizon, the amplitudes of the tensor modes were damped
adiabatically.

Just like the scalar perturbations, once the gravitational waves have been in-
flated to wavelengths greater than the horizon scale λ � rH, they are frozen in
and preserve their initial power spectrum until they re-enter their particle horizons
at much later epochs. We are interested in the temperature fluctuations caused by
the gravitational waves at the last scattering layer. It is simplest to think of the
perturbations on superhorizon scales as gravitationally redshifting or blueshifting
everything within the horizon and, as a result, they produce the same type of temper-
ature perturbations on superhorizon scales as those produced by the Sachs–Wolfe
effect. The simplest predictions of inflationary theory is that the spectrum of grav-
itational waves should be scale invariant with spectral index similar to that of the
scalar perturbations n ≈ 1. This is expected to be observed at multipoles less than
about 100, or angular scales greater than θ ≈ 2◦, corresponding to the horizon
scale at the epoch of recombination. For higher multipoles, the primordial gravita-
tional waves decayed adiabatically from the epoch when they entered the horizon,
and so the contribution of gravitational waves decreased as ΔT/Δs = a−1 ∝ l−1

relative to the invariant Sachs–Wolfe power spectrum at multipoles greater than
about 100.

Examples of the predicted temperature perturbation spectrum presented by
Challinor are shown in Fig. 15.6 (Challinor, 2005). In this example, the ratio of
tensor to scalar perturbations is taken to be one. It can be seen that the gravity
wave contribution mimics that of the scalar perturbations at multipoles l ≤ 100
and then decays at larger multipoles, the mean slope of the power spectrum re-
flecting the adiabatic decay of the gravity waves relative to the cold dark matter,
Cl(T)/Cl(s) ∝ Δ2

T/Δ
2
s ∝ l−2. Therefore, it is difficult to distinguish the contribu-

tions of scalar and tensor perturbations at multipoles l ≤ 100 on the basis of their
power spectra alone. Their polarisation signatures are, however, quite different, as
we discuss in Sect. 15.8. The oscillations about the mean relation seen in Sect. 15.6
will be discussed in the next section.

Another way of seeking evidence for primordial gravitational waves is to make
very precise measurements of the spectral index of the initial power spectrum.
The relation between the power spectra in tensor and scalar perturbations depends
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Fig. 15.6. The predicted power spectra of fluctuations in the cosmic microwave background
radiation due to scalar perturbations (density perturbations; top) and tensor perturbations
(gravity waves; bottom) for a tensor-to-scalar ratio r = 1 (Challinor, 2005)

upon the form of the inflationary potential (Starobinsky, 1985; Davis et al., 1992b;
Crittenden et al., 1993). According to these theories, the ratio of the power spectra
depends upon the spectral index of the scalar perturbations as

Δ2
T

Δ2
s

≈ 6(1 − n) , (15.41)

where Δ2
T and Δ2

s are the density perturbations in the tensor and scalar modes
respectively. Peacock provides an accessible introduction to this topic (Peacock,
2000). Thus, an important test of inflation is to measure the spectral index n of
the scalar power spectrum with high precision, and this is now possible with the
availability of the 3-year WMAP data set. To summarise the findings, which are
dealt with in more detail in Sect. 15.9, the best-fit value of n to all the observational
data is n = 0.951+0.015

−0.019 , suggesting that the predicted ‘tilt’ of the power spectrum
may have been observed (Spergel et al., 2007).

We can set limits to the energy density of primordial gravitational waves at the
present epoch from the observed power spectrum of the COBE fluctuations. As
pointed out by Padmanabhan, gravitational waves at the present epoch with wave-
length λ ∼ c/H0 would produce a quadrupole anisotropy in the cosmic microwave
background radiation through the Sachs–Wolfe effect, and so the upper limit to the
amplitude of these waves is the quadrupole anisotropy h ∼ ΔT/T ≈ 10−5 (Padman-
abhan, 1993). Therefore, the upper limit to the energy density of these gravitational
waves is

εG = 	Gc2 ∼ (32πG)−1 (ω2h2c2) , (15.42)
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where ω is their angular frequency and h their amplitude. Setting ω2 = c2k2 =
(4π2c2/λ2) = 4π2 H2

0 , we find that

ΩG = 8πG	

3H2
0

= π2

3
h2 . (15.43)

Thus, the upper limit to gravitational waves on the scale of the horizon corresponds
to ΩG ≤ 3 × 10−10. This figure is far beyond the possibility of detection at the
present time, and so we have to rely upon observations of the large-scale distribution
of matter and radiation to advance these studies.

15.5 Intermediate Angular Scales – the Acoustic Peaks

We have already shown that oscillations in the power spectrum of temperature fluc-
tuations are expected on scales less than the sound horizon at the last scattering layer.
The pioneering papers by Sunyaev and Zeldovich and by Peebles and Yu involved
only baryon cosmologies (Sunyaev and Zeldovich, 1970; Peebles and Yu, 1970).
During the 1980s, corresponding results were developed for various dark matter
cosmologies. Excellent surveys of the physics of temperature fluctuations in the cos-
mic microwave background radiation for dark matter models have been given by Hu,
Sugiyama and Silk, by Efstathiou and by Dodelson (Hu and Sugiyama, 1995; Hu,
1996; Hu et al., 1997; Efstathiou, 1990; Dodelson, 2003). These authors give clear
accounts of the physical origins of the various features of the predicted power spectra.

To begin with, let us ignore the presence of the dark matter perturbations, which
continued to grow in amplitude once they entered the matter dominated era while
perturbations in the radiation-dominated plasma became acoustic waves on the same
scale once they passed through their particle horizons (Fig. 13.3b). As discussed in
Sect. 15.2.3, the first acoustic peak is associated with perturbations on the scale of the
sound horizon at the last scattering layer. Because of the assumption that the small
perturbations are Gaussian, their probability distribution on a given mass scale is

p(Δ) = 1√
2πσ(M)

exp

[
− Δ2

2σ2(M)

]
. (15.44)

The perturbations in the baryonic matter which eventually collapsed to form bound
structures had positive values of the density contrast Δ when the pressure support
by the radiation disappeared after decoupling at the epoch of recombination. The
amplitudes of these perturbations could, however, be positive or negative when they
came through their particle horizons depending upon the number of wavelengths
between that epoch and that of the last scattering layer. Thus, the amplitude of the
baryonic perturbations at the last scattering layer depended upon the phase difference
φ of the waves between these epochs,

∫
dφ =

∫
cs dt . (15.45)
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The first peak in the temperature power spectrum corresponds to waves with half
wavelength

∫
dφ = π between the particle horizon and the last scattering layer.

We have already shown that the angular scale of the first peak is expected to occur
at multipoles of order 250, and this feature has been spectacularly observed in the
WMAP observations (Figs. 15.4 and 15.5).

As discussed in Sect. 15.2.3, expression (15.14)

θ ≈ cst(1 + z)

D

provides a powerful tool for estimating cosmological parameters. The sound horizon
on the last scattering surface is more or less a ‘rigid rod’ which depends only on
the sound speed in the last scattering layer. There is a dependence upon the density
parameter in the baryons ΩB through the appearance of R = 3	B/4	rad in the
expression for the sound speed, but, as we showed in Sect. 15.2.3, its value is
expected to be close to 0.5c. Then, the measured angular scale θ of the first acoustic
peak provides an estimate of D, the distance parameter, at a known redshift z.
Figures 7.6 and 7.7 show how D depends upon the values of the cosmological
parameters. For precise estimates of the cosmological parameters, the dependence
of the sound speed upon ΩB needs to be included in the calculation. We will review
the various ways in which the cosmological parameters influence the features of the
power spectrum of fluctuations in the cosmic microwave background radiation in
Sect. 15.9.

Let us label the wavenumber of the first acoustic peak k1. Then, oscillations
which are nπ out of phase with the first acoustic peak also correspond to maxima in
the temperature power spectrum at the epoch of recombination. There is, however, an
important difference between the even and odd harmonics of k1. The odd harmonics
correspond to the maximum compression of the waves and so to increases in the
temperature, whereas the even harmonics correspond to rarefactions of the acoustic
waves and so to temperature minima. Perturbations with phase differences π

(
n + 1

2

)
relative to that of the first acoustic peak have zero amplitude at the last scattering
layer and correspond to the minima in the power spectra, as discussed in Sect. 12.7.1.
The acoustic peaks occur at wavenumbers corresponding to frequencies

ωtrec = nπ . (15.46)

Adopting the short wavelength dispersion relation (15.16), this condition becomes

cskntrec = nπ kn = nπ

λs
= nk1 . (15.47)

Thus, the acoustic peaks are expected to be evenly spaced in wavenumber in the short
wavelength approximation. The separation between the acoustic peaks corresponds
to Δn = 1, and so Δk = π/λs provides a further estimate of the sound horizon λs.

The next task is to determine the amplitudes of the acoustic peaks in the power
spectrum. Now, we need to take account of the fact that the acoustic oscillations take
place in the presence of growing density perturbations in the dark matter, which have
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greater amplitude than those in the acoustic oscillations. In dark matter scenarios,
the acoustic waves are driven by the larger density perturbations in the dark matter
with the same wavelength, that is, the perturbations are forced oscillations.

Let us develop the equation which describes these oscillations, neglecting the
slow growth of the density perturbations in the dark matter and the time variation of
the ratio of energy densities in the radiation and the matter. We begin with (11.24), but
with the differences that oscillatory terms are associated with the photon-dominated
plasma and the driving potential 4πG	Δwith the dark matter perturbations and that
the expansion, or damping, term in dΔ/dt is neglected:

d2ΔB

dt2
+ΔBk2c2

s = 4πG	DΔD . (15.48)

This procedure is similar to that which led to (13.20), but now we are interested in
wave solutions rather than in growing solutions. The temperature fluctuations are
related to the density perturbations by the standard adiabatic relation

Θ0 = δT

T
= 1

3

δ	B

	B
= 1

3
ΔB , (15.49)

and so

d2Θ0

dt2
= 4πGΔ	D

3
− k2c2

sΘ0 . (15.50)

This equation can be compared with that presented by Hu 4 (Hu, 1996):

d2Θ0

dt2
= −1

3
k2Ψ − k2c2

sΘ0 , (15.51)

whereΨ is the gauge-invariant gravitational potential of the dark matter perturbations
of wavenumber k. When anisotropic stresses are neglected, Ψ is the same asψ in the
conformal Newtonian metric (12.33) and is also equal to φ, which in our notation is
the same as the Δφ used in Sect. 15.4.1. The equivalence of (15.50) and (15.51) is
apparent if we write

−Ψ = −Δφ ∼ +GΔM

d
∼ 4πGd2Δ	D

3
∼ 4πGΔ	D

3k2
, (15.52)

where d ∼ k−1 is the scale of the perturbation, recalling that Ψ and Δφ are negative
quantities. Equation (15.51) is an approximation of the full equations for the evolu-
tion of the spectrum of acoustic oscillations which were derived by Peebles and Yu,
by Hu and Sugiyama and by Dodelson (Peebles and Yu, 1970; Hu and Sugiyama,
1995; Dodelson, 2003). Notice that these authors carry out the analysis in terms of
the evolution of the Fourier components of the acoustic oscillations.

4 Hu writes the derivatives with respect to conformal time rather than cosmic time, but this
is not important since we have removed the expansion of the Universe from our illustrative
calculation.
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The solution of the forced-oscillator equation (15.51) is found by the usual
procedure of adding the solution of the homogeneous equation

d2Θ0

dt2
+ k2c2

sΘ0 = 0 (15.53)

to a particular integral of (15.51). By inspection, a particular integral of (15.51) is
the constant value of Θ0

Θ0 = −1

3

Ψ

c2
s
. (15.54)

Therefore, the complete solution is

Θ0(t) = A cosωt + B sinωt − 1

3

Ψ

c2
s
. (15.55)

If Θ0(0) and Θ̇0(0) are the amplitudes of the initial temperature fluctuation and
its time derivative respectively, we can find the values of the constants A and B.
Recalling that c2

s = c/
√

3(1 + R), we find

Θ0(t) =
[
Θ0(0)+ (1 + R)

c2
Ψ

]
cosωt + 1

kcs
Θ̇0(0) sinωt − (1 + R)

c2
Ψ . (15.56)

We require this solution at the epoch of recombination, t = trec, and then, setting
ωt = kcstrec = kλs, we obtain the result

Θ0(t) =
[
Θ0(0)+ (1 + R)

c2
Ψ

]
cos kλs + 1

kcs
Θ̇0(0) sin kλs − (1 + R)

c2
Ψ .

(15.57)

Expression (15.57) describes adiabatic temperature oscillations of the acoustic waves
in the potential wells of the dark matter. Dodelson makes the important point that,
because the oscillations are forced, they are not symmetrical about Θ0 = 0 but are
displaced to a positive value because of the (negative) forcing term (1 + R)Ψ/c2.

In addition to the purely adiabatic effect, the matter of the perturbation must be
in motion because of the continuity equation (11.13), which can be written

d

dt

(
δ	B

	B

)
= dΔB

dt
= −∇ · δv = −k · δv . (15.58)

The motion of the perturbations also gives rise to temperature fluctuations because
of the Doppler effect such that Θ1 = δT/T0 = δv cos θ/c. Therefore, (15.58) can be
written in terms of the derivative of Θ0 using (15.49):

3Θ̇0(t) = −kcΘ1(t) . (15.59)
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The temperature perturbations due to the Doppler motions at the last scattering
surface are then found by differentiating (15.56) and evaluating it at ωt = kλs:

Θ1(t) = 3cs

c

[
Θ0(0)+ (1 + R)

c2
Ψ

]
sin kλs + 3Θ̇0(0)

kc
cos kλs . (15.60)

The temperature perturbation Θ0(t) is referred to as the ‘monopole’ contribution
to the temperature fluctuation spectrum and Θ1(t) as the ‘dipole’ term. Notice the
important point that the monopole and dipole contributions are π/2 out of phase.
This is illustrated schematically in Fig. 15.3.

As remarked by Hu, (15.57) and (15.60) are illuminating forms for the temper-
ature fluctuation spectrum as a function of wavenumber k and describe ‘the main
acoustic and redshift effects which dominate primary anisotropy formation’. The co-
sine term in (15.57) can be identified with the adiabatic modes since they had finite
amplitudes when they came through the horizon at t = 0. In contrast, isocurvature
modes had decayed to small amplitudes when they crossed the horizon, correspond-
ing to the sine term in (15.60). As a result, the maxima of the two modes are π/2
out of phase.

Let us concentrate on the adiabatic modes, in other words, drop the sine term in
(15.57) and the cosine term in (15.60). The pleasant aspect of (15.57) is that it enables
us to compare the amplitude of the perturbations associated with the acoustic waves
with those of the Sachs–Wolfe effect. Notice that we have not yet taken account of the
gravitational redshifting of the temperature perturbations which originated within
a gravitational potential well of depth Ψ . The temperature fluctuation observed by
the distant observer is Θ0(t) + Ψ/c2, recalling that Ψ is a negative quantity. As
a result, what is observed is the quantity

(
ΔT

T

)

eff
= Θ0(t)+ Ψ

c2
=
[
Θ0(0)+ (1 + R)

c2
Ψ

]
cosωt − R

c2
Ψ , (15.61)

which Hu refers to as the effective temperature perturbation. We recall that the
potential perturbation Ψ = Δφ is independent of cosmic epoch see (15.37). We
can therefore relate the effective temperature perturbation to the amplitude of the
corresponding Sachs–Wolfe perturbation when it came through the horizon at time
t = 0. The monopole fluctuations must result in the Sachs–Wolfe temperature
perturbation (1/3)Ψ/c2. This enables us to relate the value ofΘ0(0) to Ψ/c2. Setting
the effective temperature perturbation equal to (1/3)Ψ/c2 at t = 0, we can eliminate
Θ0(0) and find that

(
ΔT

T

)

eff
= Ψ

3c2
(1 + 3R) cos kλs − R

c2
Ψ . (15.62)

This result illuminates a number of features of the complete solutions.

– First of all, in the limit R → 0, (15.62) reduces to
(

ΔT

T

)

eff
= Ψ

3c2
cos kλs , (15.63)
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corresponding to acoustic oscillations in the photon-dominated plasma in the
relativistic, or radiation-dominated, limit. There is no shift of the zero point of
the oscillations since the baryonic mass is negligible compared with the inertial
mass of the radiation.

– In the same limit, R → 0, the monopole oscillations are accompanied by dipole
oscillations, the amplitude of these being given by the sine term in (15.60). In
fact, we only observe a dipole temperature fluctuation of magnitudeΘ1/

√
3 when

averaged over the radial components of randomly oriented velocity vectors over
the last scattering layer. Therefore, using (15.60) and recalling that cs = c/

√
3

in the limit R → 0, we find
(

ΔT

T

)

eff
= Ψ

3c2
sin kλs . (15.64)

Thus, in the limit R → 0, the monopole and dipole temperature fluctuations are
of the same amplitude, but are π/2 out of phase.

– When the inertia of the baryons can no longer be neglected, the monopole
contribution becomes significantly greater than the dipole term. At maximum
compression, kλs = π, the amplitude of the observed temperature fluctuation is
(1 + 6R) times that of the Sachs–Wolfe effect. Furthermore, the amplitudes of
the oscillations are asymmetric if R �= 0, the temperature excursions varying
between −(Ψ/c2)(1 + 6R) for kλs = (2n + 1)π and

(
Ψ/c2

)
for kλs = 2nπ.

The presence of the baryons causes extra compression of the photon–baryon
fluid at maximum compression, thus enhancing the temperature excursions of
the odd-numbered maxima over the even-numbered maxima, which are asso-
ciated with the maximum rarefaction of the oscillations. These results can ac-
count for the observed asymmetry between the odd and even multipoles seen in
Fig. 15.4.

This simplified discussion, which has closely followed the exposition of Hu,
Sugiyama and Silk, is intended to give some flavour for the various physical phe-
nomena which have to be taken into account in understanding the origin of the
temperature perturbation spectrum on angular scales θ ≤ 1◦ (Hu et al., 1997).
In the full analysis, many other features have to be taken into account. Specifi-
cally:

– The predicted spectrum has to be statistically averaged over a random distribution
of acoustic waves and integrated over all wavenumbers.

– The Doppler (or dipole) contributions to the fluctuation spectrum have to be
included as well as the monopole contributions.

– The acoustic waves evolve in an expanding substratum in which the speed of
sound and the density perturbations in the dark matter vary with time.

– The coupled Boltzmann, Einstein and Euler equations need to be integrated
through the last scattering layer. Hu and Sugiyama demonstrate how results
accurate to better than 5% can be achieved by analytic procedures (Hu and
Sugiyama, 1995), but for the high precision now needed to match the quality of
the data, numerical integration of the equations is essential.
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Some examples of the results of detailed predictions by Challinor are shown in
Fig. 15.7, indicating how different features of the temperature anisotropy power
spectrum are sensitive to variations of the cosmological parameters (Challinor, 2005).
It is a useful exercise to study the power spectra in Fig. 15.7 in some detail and to
use the results we have established in this section to understand the dependences
upon cosmological parameters. For example, the left-hand plot of Fig. 15.7a shows
clearly the strong enhancement of the first acoustic peak as the baryon density
increases.

Fig. 15.7a,b. The dependence of the temperature-anisotropy power spectrum on different
cosmological parameters (Challinor, 2005). In these examples, scale-invariant adiabatic initial
perturbations are assumed. a Top pair of diagrams: dependence on the density parameter in
baryons (left) and total matter density parameter Ω0 (right). Top to bottom at first peak: the
baryon density parameter varies linearly in the range 0.06 ≥ ΩBh2 ≥ 0.005 (left) and the
matter density parameter in the range 0.05 ≤ ΩBh2 ≤ 0.5 (right). b Bottom pair of diagrams:
The dependence on the curvature density parameter Ωκ (left) and the dark energy density
parameter ΩΛ (right). In both cases, the density parameters in baryons and matter were held
constant, thus preserving the conditions on the last scattering layer. The curvature density
parameter varies (left to right) in the range −0.15 ≤ Ωκ ≤ 0.15 and the dark matter density
parameter in the range 0.9 ≥ ΩΛ ≥ 0.0
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15.6 Small Angular Scales

15.6.1 Statistical and Silk Damping

On small angular scales, temperature fluctuations are damped by two effects. The first
is the statistical reduction in the amplitude of the predicted perturbations when the
dimension of the perturbation becomes less than the thickness of the last scattering
layer. As discussed in Sect. 15.2.1, this leads to a reduction in the amplitude of the
predicted fluctuation spectrum by a factor of order N−1/2, where N is the average
number of wavelengths through the last scattering layer.

The second effect is photon diffusion, or Silk damping, discussed in Sect. 12.5.
A convenient way of describing the reduction in amplitude of the temperature per-
turbations is to modify (15.2) to take account of the effects of photon diffusion. The
suppression factor for waves of wavenumber k can then be written

∫
dτ

dz
e−τ(z)e−k/kD(z) dz , (15.65)

where kD = 2π/λD and λD is given by (15.9). The predicted power spectra in
Fig. 15.7 show clearly the effects of damping expected at large multipoles, l ≥ 500.
The effects of damping and the random superposition of the perturbations leads
to a strong damping of all primaeval temperature fluctuations with wavenumbers
greater than about 2000, that is, on the scale of a few arcminutes. Despite the effects
of damping, Fig. 15.7 shows that there is expected to be a wealth of structure in the
temperature fluctuation power spectrum on angular scales 1◦ > θ > 1 arcmin.

15.6.2 The Sunyaev–Zeldovich Effect in Clusters of Galaxies

At the very high sensitivities expected to be achieved by experiments such as the
Planck mission on small angular scales, it is important to take account of small
effects which might contribute to the temperature fluctuations of the background
radiation. One such effect which must be present on angular scales θ ∼ 1 arcmin is
the Sunyaev–Zeldovich effect in the directions of clusters of galaxies which contain
large quantities of hot gas. As shown in Sect. 4.5, the temperature fluctuation due to
the passage of the cosmic microwave background radiation through a region of hot
gas is

ΔT

T
= −2y = −2

∫ (
kTe

mec2

)
σT Nedl , (15.66)

in the Rayleigh–Jeans region of the spectrum. Observations of this effect in 12 clus-
ters at redshifts in the range 0.1 to 0.8 are shown in Fig. 4.17 (Carlstrom et al., 2000).
For these clusters of galaxies, the temperature decrements amount of ΔT/T ∼ 10−4.

An analysis of the 3-year WMAP data found evidence for the Sunyaev–Zeldovich
effect in the direction of the Coma cluster at a level ΔSZ = −0.46 ± 0.16 mK, con-
sistent with the results of ground-based measurements (Hinshaw et al., 2007). The
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team also carried out a statistical analysis of the background intensity in the di-
rection of 242 X-ray emitting Abell clusters selected from the ROSAT All-Sky
Survey and detected a mean decrement at the 2.5σ level. The WMAP team elim-
inated the possible contribution of this effect to the background fluctuations by
excluding the regions about these clusters from the cosmological analysis. With
its higher angular resolution, the effect may be more significant for the Planck
experiment.

In addition to the above effect, known as the thermal Sunyaev–Zeldovich effect,
there is also an effect associated with the peculiar motions of hot gas clouds with
respect to the frame of reference in which the microwave background radiation is
isotropic. For such a gas cloud, the background radiation appears anisotropic in
their rest frames and those photons scattered by the hot electrons are redistributed
isotropically in their moving frames. Sunyaev and Zeldovich showed that first order
Thomson scattering of the background radiation results in temperature perturbations
due to these peculiar motions,

ΔT

T
= σT

∫
Ne
v‖
c

dl (15.67)

(Sunyaev and Zeldovich, 1980b). This effect, known as the kinematic Sunyaev–
Zeldovich effect, is independent of frequency. Inserting typical values for a hot gas
cloud in a rich cluster of galaxies, Ne = 3 × 103 m−3, v‖ = 500 km s−1 and taking
the core radius of the cluster to be 0.4 Mpc, a temperature perturbation of about
30 μK is expected. This effect provides an important means of estimating the radial
component of the peculiar velocities of clusters of galaxies. Sunyaev and Zeldovich
also pointed out that the peculiar motion perpendicular to the line of sight could be
measured from the polarisation of the temperature perturbation associated with the
first-order Thomson scattering process.

15.6.3 Confusion Due to Discrete Sources

At some sensitivity level it is expected that discrete sources will eventually be
the limiting factor in measuring the power spectrum of primordial temperature
perturbations. The problem is that there are no deep all-sky surveys of radio sources
in the crucial 40- to 100-GHz wavebands which are optimal for studies of temperature
fluctuations in the cosmic microwave background radiation.

The analysis of the 3-year WMAP data by Hinshaw and his colleagues resulted
in a catalogue of 323 point sources with flux densities 5σ or greater above the noise
level of the survey (Hinshaw et al., 2007). The earlier analysis of the 1-year data
resulted in a list of 208 sources. Of the sources for which simple decompositions
of the radio spectra could be made, 40% of the 208 sources had flat and inverted
radio spectra, 13% had GHz-peaked spectra, 8% were classical power-law sources
and 7% had a classical low-frequency power law combined with a flat or inverted
spectrum component. Reliable optical identifications have been found for 205 of the
208 sources, 141 being quasars, 29 galaxies, 19 active galactic nuclei, 19 BL Lac
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objects and one planetary nebula, IC418 (Trushkin, 2003). This mix of sources is
what might be expected and will enable projections to be made of the expected levels
at which source confusion will limit the ability to measure the temperature power
spectrum on small angular scales. Regions about these sources were excluded from
the final cosmological analysis of the WMAP data.

A similar problem is present at submillimetre wavelengths. Thanks to the devel-
opment of the submillimetre bolometer array receiver, SCUBA, for the James Clerk
Maxwell Telescope, a population of intense submillimetre sources was discovered
at 850 μm by Smail, Ivison and Blain (Smail et al., 1997). We will have much
more to say about the number counts of these objects in Chap. 17. There is now
reasonable agreement about the form of the number counts of these sources which
are associated with star-forming galaxies, many of them being difficult to identify
because of extinction by interstellar dust in the star forming galaxies themselves. The
number counts of these sources are now in good agreement and, at a flux density of
1 mJy at 850 μm, their surface density amounts to about 104 degree−2 (Cowie et al.,
2002) (Sect. 17.2.3). For the Planck mission, Blain and his colleagues found that the
temperature fluctuations due to submillimetre sources are comparable to those of
the specifications of the instrument itself at frequencies greater than 350 GHz (Blain
et al., 1998).

15.7 The Reionised Intergalactic Gas

At some epoch well after the epoch of recombination, the intergalactic gas must
have been heated and reionised, a topic which we deal with in much more detail in
Chap. 19. From the perspective of the present chapter, the important issue is that
there must therefore be a finite optical depth τ for Thomson scattering between
the epoch of recombination and the present epoch. The effect of this scattering is
to attenuate temperature fluctuations originating from the last scattering layer at
a redshift of about 1000 by a factor e−τ . More detailed calculations of the effects
of Thomson scattering are shown in Fig. 15.8 which were carried out by Challinor
(Challinor, 2005). It can be seen from Fig. 15.8 that there is a general attenuation
of the amplitude of the fluctuations, except at small multipoles where the integrated
Sachs–Wolfe effect originating at small redshifts causes the predicted spectrum to
increase with decreasing multipole.

The optical depth of the intergalactic gas to Thomson scattering was derived in
Sect. 9.3 in the limit of large redshifts Ω0z � 1, z � 1,

τ ≈ 0.035
ΩB

Ω
1/2
0

h z3/2 , (15.68)

which is adequate for our present purposes. Adopting our reference valuesΩ0 = 0.3,
ΩB = 0.05 and h = 0.7, the fully ionised intergalactic gas would have optical depth
τ = 0.1 and 0.2 if it extended out to a redshifts z = 12 and 20 respectively. These
redshifts would then correspond to the epoch at which the intergalactic gas was



15.7 The Reionised Intergalactic Gas 453

Fig. 15.8. The effect of reionisation on the temperature anisotropy power spectrum. The
spectra are (top to bottom) for no reionisation, τ = 0.1 and 0.2. (Challinor, 2005)

reionised, presumably by the earliest generations of massive stars. These redshifts
are not unreasonable values, as we will discuss in more detail in Chap. 18. The
optical depth for Thomson scattering is one of the key cosmological parameters to
be found from detailed analysis of the observed power spectrum of fluctuations in
the cosmic microwave background radiation.

The formation of early generations of objects would necessarily give rise to
significant velocity perturbations during the reionisation epoch, resulting in Doppler
shifts of the background radiation, in exactly the same way that the dipole temperature
perturbations were generated at the last scattering layer. The problem is that these
effects are expected to be small, partly because the optical depth of the perturbations
is small, and also because the random superposition of these perturbations leads to
a statistical decrease of their amplitude. There is, however, a second-order effect
discussed by Vishniac which does not lead to the statistical cancellation of the
velocity perturbations (Vishniac, 1987). These perturbations are associated with
second-order terms in δnev, where δne is the perturbation in the electron density and
v the peculiar velocity associated with the motion of the perturbation. This effect
only becomes significant on small angular scales at which the density perturbations
are large. According to Vishniac’s calculations, in the standard cold dark matter
picture, these temperature fluctuations might amount to ΔT/T ∼ 10−5 on the scale of
1 arcmin. Similar calculations have been carried out by Efstathiou with essentially the
same result (Efstathiou, 1988). These are important conclusions since it is expected
that all primordial perturbations on these scales would have been damped out by the
processes discussed in Sect. 15.6.1.
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15.8 The Polarisation of the Cosmic Microwave
Background Radiation

The measurement of the power spectrum of temperature fluctuations in the cosmic
microwave background radiation, as illustrated in Figs. 15.4 and 15.5, is a wonderful
achievement. The information which can be derived from these observations has
been the subject of the last four sections, and the implications for the determination
of cosmological parameters will be summarised in the next section. Before that,
however, we need to tackle the next great challenge facing theorists and experi-
menters – the polarisation of the cosmic microwave background radiation. This is
an order of magnitude more difficult as compared with the study of temperature
fluctuations, both theoretically and experimentally, but has the potential to produce
unique information about the physics of the origin of structure formation. Even
Dodelson in his admirable book admits that this is a ‘difficult subject’. Besides his
book, the pedagogical review by Hu and White, and the more technical reviews by
Zaldarriaga and by Challinor can be recommended as introductions to the subject
(Hu and White, 1997; Zaldarriaga, 2004; Challinor, 2005).

15.8.1 The Polarisation Mechanism for the Cosmic Microwave
Background Radiation

The mechanism for creating polarisation of the cosmic microwave background ra-
diation is Thomson scattering of the radiation by free electrons. It is well known
that Thomson scattering can create polarised emission from a beam of unpolarised
radiation. A beam of unpolarised radiation incident upon a free electron causes it
to oscillate in the plane perpendicular to the direction of the beam. The acceler-
ated electron radiates with the standard dipole pattern so that the scattered radiation
is 100% polarised when the electron is viewed perpendicular to the direction of
propagation of the beam. In the case of the cosmic background radiation, however,
the distribution of the radiation is highly isotropic and, in the case of complete
isotropy, there would be exact cancellation of the polarised signals. Even in the case
of a dipole distribution of the re-radiated field, which is the polar diagram for the
scattered radiation, there is no net polarisation because of the dipole symmetry of the
Thomson scattering process. The only way of creating a net polarised signal is if the
radiation field incident upon the electron has a quadrupole anisotropic distribution
of intensity.

This important point was clearly made in a perceptive paper by Zeldovich and
Sunyaev in 1980 in which they argued that the detection of a polarised signal in
the cosmic microwave background radiation would be evidence for a quadrupole
component in its intensity (Zeldovich and Sunyaev, 1980). They gave the example
of an incident radiation field

I = I0

[
1 + aμ+ b

(
μ2 − 1

3

)
+

∞∑
n=3

Cn Pn

]
, (15.69)
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where μ = cos θ. The term in a corresponds to a dipole field and that in b to
a quadrupole field, the two terms being written as the first and second Legendre
polynomials for a dipole and quadrupole respectively. The Pns are higher-order
Legendre polynomials. Integrating over all angles of incidence of the incoming
radiation. Zeldovich and Sunyaev found that the fractional polarisation is

p = I‖ − I⊥
I‖ + I⊥

= 0.1bμ2τ , (15.70)

where τ is the optical depth of the region for Thomson scattering. In the Rayleigh–
Jeans region of the spectrum, a, b and Cn are independent of frequency. As Zeldovich
and Sunyaev remarked:

Polarisation is a tensor quantity. Therefore, it is proportional to the
quadrupole term but does not depend upon the dipole or higher terms in the
intensity angular distribution.

15.8.2 Polarisation from the Last Scattering Layer

Let us consider first the polarisation arising from scattering in the last scattering
layer. The radiation field seen by an electron in the last scattering later is anisotropic
because of the Doppler shifts associated with the dipole term Θ1 in the expression
for the power spectrum of temperature fluctuations (15.60). These result in first-
order temperature perturbations ΔI/I = (v/c) cos θ and these are the source of the
quadrupole intensity distribution. Figure 15.9 shows the predicted amplitude of the
Doppler component compared with other contributions to the total power spectrum.
The important points to note are as follows.

– The Doppler component is out of phase with the significantly larger monopole
component, as discussed in the context of (15.57) and (15.60), and its power
spectrum decreases in amplitude with decreasing multipole l. This decrease is
associated with the fact that coherent oscillations cannot exist on scales greater
than the sound horizon in the last scattering layer.

– The formation of the polarised signal involves two Thomson scattering events.
The first created the quadrupolar field through scattering from motions caused by
the oscillating baryon perturbations and the second by scattering of the quadrupo-
lar field. Both of these events occurred within the last scattering layer.

– In consequence, the maximum of the polarised signal occurs at wavelengths
which are of the same order as the mean free path of the photons in the last
scattering layer.

– Notice that it is crucial that these processes take place in the last scattering layer.
If there were many scatterings, the polarisation would be washed out, as takes
place prior to the recombination epoch. It is the fact that the photons stream freely
from the last scattering layer that results in the finite quadrupole anisotropy in
the photon distribution.
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Fig. 15.9. Contributions of various terms to the temperature anisotropy power spectrum for
adiabatic initial density perturbations. At large values of l, the contributions are, (top to
bottom): total power; SW, the Sachs–Wolfe effect including the monopole anisotropy; the
Doppler or dipole term; the integrated Sachs–Wolfe effect (Challinor, 2005)

As a result, the polarisation signal is expected to be much weaker than the
intensity fluctuations. It is therefore a very considerable challenge to measure the
polarisation signal experimentally, but this was first achieved by the ground-based
Degree Angular Scale Interferometer (DASI) in 2002 (Leitch et al., 2002; Kovac
et al., 2002). Subsequent ground-based experiments including the CBI (Readhead
et al., 2004), the CAPMAP (Barkats et al., 2005) and Boomerang (Montroy et al.,
2006) projects reported convincing detections of the polarised background signal.5

From space, the WMAP experiment detected a positive polarisation signal in the
1-year data (Bennett et al., 2003) and this was confirmed with improved signal-to-
noise ratio in the 3-year data release (Page et al., 2007). It is simplest to summarise
the results of these efforts using the 3-year WMAP polarisation data. It is again
appropriate to pay tribute to the outstanding experimental and data analysis skills
which have gone into these extremely demanding experiments. The extraction of
the polarisation signal is particularly challenging because it has to be detected in the
presence of the polarised Galactic radio emission, which has to be removed from the
sky maps to reveal the polarisation associated with the primordial perturbations.

The total intensity fluctuations which were shown in Fig. 15.3 are displayed
as filled dots at the top of Fig. 15.10 and are labelled TT. The polarisation power
spectrum is labelled EE. The oscillating curve, which decreases towards small mul-

5 The reader by now will be aware of my preference to avoid acronyms but I have par-
tially capitulated here: the translations are as follows: CBI = Cosmic Background Imager;
CAPMAP = Cosmic Anisotropy Polarization Mapper; BOOMERanG = Balloon Observa-
tions Of Millimetric Extragalactic Radiation ANisotropy and Geophysics.
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Fig. 15.10. The measured power spectrum of fluctuations in the intensity and polarisation
of the cosmic microwave background radiation. Plots for the total intensity, the polarised
intensity and the cross-correlation between the total intensity and the polarised intensity are
labelled TT, EE and TE respectively. The best fitting model is shown by the corresponding
lines. The dashed sections of the TE curve indicates multipoles in which the polarisation
signal is anticorrelated with the total intensity. The model predictions are binned in l in the
same way as the data. The binned EE polarisation data are divided into bins of 2 ≤ l ≤ 5,
6 ≤ l ≤ 49, 50 ≤ l ≤ 199, and 200 ≤ l ≤ 799. The dotted line labelled BB shows the
expected power spectrum of B-mode gravitational waves if the primordial ratio of tensor
to scalar perturbations was r = Δ2

t /Δ
2
s = 0.3. The WMAP experiment found only upper

limits to this signal, the 1σ upper limit corresponding to 0.17 μK for the weighted average of
multipoles l = 2–10. The B-mode signal due to gravitational lensing of the E-modes is shown
as a dashed line labelled BB(lens). The upturn in the polarised signal at l ≤ 10 is associated
with polarisation originating during the reionisation era. The foreground model for galactic
synchrotron radiation plus dust emission is shown as straight dashed lines labelled EE(fore)
and BB(fore) for the scalar and tensor modes respectively, both being evaluated at ν = 65
GHz (Page et al., 2007)
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tipoles, shows the linear polarisation power spectrum predicted from the best fitting
model, which can also account for the total intensity fluctuation power spectrum.
The points and curve labelled TE are the cross-correlation power spectrum between
the total intensity and the polarised intensity. Because the polarised intensity is
closely associated with the dipole term in the total intensity spectrum, the dipole
and polarisation signals are more strongly correlated than the EE signal on its own.
The polarised component of the radiation is 90◦ out of phase with the dominant
monopole temperature perturbations and so the cross-correlation power spectrum
has twice as many minima as the either the TT or the EE spectra. The dashed lines
in the predicted TE correlation function indicate the anti-correlated regions of the
spectrum. The WMAP team noted the important point that the anticorrelated signal
between multipoles 60 and 200 is the characteristic signature of primordial adia-
batic perturbations. Notice that these remarks refer to multipoles greater than about
10 – for smaller values the increase in the polarised signal is associated with the
reionisation of the intergalactic gas.

15.8.3 Polarisation from the Epoch of Reionisation

One of the exciting results of the 1-year WMAP data was the presence of strongly
polarised signals in the TE cross-correlation power spectrum at small multipoles
(Bennett et al., 2003). This signal is also present in the 3-year WMAP data, as can
be seen in Fig. 15.10, but at a somewhat smaller amplitude than that reported in the
analysis of the 1-year data. It was quickly realised that this was a signature of the
epoch when the intergalactic gas was reheated and reionised, as had been predicted
by Zaldarriaga (Zaldarriaga, 1997). The physics of the generation of linearly po-
larised emission during reionisation is exactly the same as that which resulted in the
formation of polarisation in the last scattering layer. Once the intergalactic gas was
reionised, any quadrupolar component of the background radiation created a linearly
polarised signal. The strongest signal is again expected to occur at those multipoles
for which the mean free path of the background photons is equal to the wavelength
of the perturbations. It follows that, because a significant coherent polarised signal
is observed at low multipoles, the scattering must occur on large physical scales at
rather late epochs.

Zaldarriaga showed that, assuming the intergalactic gas is fully ionised out to
redshift zri, the maximum polarisation occurs for wavenumbers k(τri − τre) ∼ 2,
where τri and τre are the conformal times corresponding to the epochs of reionisation
(ri) and recombination (re) respectively (Zaldarriaga, 1997). The angular scale cor-
responding to the maximum multipole is l ∼ 2(τ0 − τri)/(τri − τre) ∼ 2

√
zri, where

τ0 is the conformal time corresponding to the present epoch and zri is the redshift of
reionisation. Furthermore, the amplitude of the polarisation signal is determined by
the optical depth τ of the intergalactic gas once it is reionised. At the same time, the
amplitude of the acoustic peaks are damped by the factor e−τ . Zaldarriaga makes the
point that the amplitude of the polarisation signal can be predicted rather precisely
for adiabatic perturbations once the initial power spectrum is given. As described in
Sect. 15.5, once the monopole term Θ0 has been found, the dipole term Θ1 is found
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by differentiation and this is the cause of the quadrupole component responsible for
the generation of the linearly polarised signal. This procedure is repeated for the late
reionisation phases and accounts for the predicted linear polarisation ‘bump’ seen
in the EE and TE power spectra in Fig. 15.10. Page and his colleagues point out
that these polarisation observations provide entirely independent information about
the optical depth for reionisation and consequently about the epoch at which it took
place (Page et al., 2007).

15.8.4 Primordial Gravitational Waves

The considerations of Sect. 15.8.1 make it clear that gravitational waves can result
in polarisation of the cosmic microwave background radiation. Because the force of
gravity is always attractive, there are no dipole gravitational waves, only quadrupole
waves.6 As a result, gravitational waves stretch and squeeze the geometry of space
in orthogonal directions, the two independent modes of oscillation, h+ and h×,
being shown in Fig. 15.11 – they are oriented at 45◦ with respect to one another.
There is, however, an important difference between the two modes in that they
have opposite parity on making the translation r → −r. The net result is that the
polarisation signal can be uniquely decomposed into what are known as the electric
E, or gradient, component associated with h+ and a magnetic B, or curl, component
with h×. These result in corresponding orthogonal patterns of polarisation on the
sky. The importance of this decomposition is that, whereas the E components could
be generated by either scalar or tensor perturbations, the B component is a signature
of the presence of a pure curl component.

The importance of these considerations is that they provide another potential
means of investigating physical processes in the very early Universe. Just as the
spectrum of scalar perturbations can be associated with quantum fluctuations of the

Fig. 15.11a,b. The two orthogonal polarisation modes, h+ and h×, of gravitational radiation
(Will, 2006)

6 For a simple introduction to gravitational radiation, see the review by Schutz (Schutz,
2001).
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inflation field, so tensor perturbations can also be created with a similar power spec-
trum. The physics which relates the properties of the B-mode tensor perturbations to
an observable polarisation power spectrum is the same as that which we described
for the scalar perturbations. Specifically, the maximum B-mode signal is expected to
be observed when the wavelength of the gravitational waves is equal to the mean free
path of the photons in the last scattering layer. In addition, once the intergalactic gas
has been reionised, the same physics enhances the detectability of the B modes on
large angular scales. These features of the predicted BB power spectrum are shown
by the dotted line labelled BB in Fig. 15.10. In that figure, it is assumed that the
ratio of tensor to scalar power is r = 0.3. It can be seen that the expected signal
is very weak and below the levels at which it would be detectable by the WMAP
experiment. The best upper limits to primordial gravitational waves at the present
time are obtained at low multipoles, the 1σ upper limit of 0.17 μK being found for
the weighted average of multipoles in the range l = 2–10 (Page et al., 2007). From
the full WMAP analysis, using both the intensity and polarisation data, the WMAP
team quote a limit to the tensor to scalar ratio of r < 0.55 at the 95% confidence
level, corresponding to an upper limit to the density parameter in gravitational waves
of ΩGWh2 < 10−12.

15.8.5 Weak Gravitational Lensing

Another source of polarisation of the cosmic microwave background radiation is
weak gravitational lensing. The potential of this technique for providing information
about the power spectrum of density perturbations was described in a pioneering
paper by Kaiser (Kaiser, 1992). It was only realised observationally by a number
of groups in the early years of the 21st century. An excellent introduction to the
technique and the results of these observations is given in the review by Refregier
(Refregier, 2003).

Gravitational lensing by mass concentrations was discussed in Sect. 4.6 and the
types of distortions resulting from strong lensing were illustrated in Fig. 4.20. In the
case of weak lensing, the images of background galaxies are slightly elongated and
streched, as illustrated in Fig. 15.12a. These distortions are described by a distortion
matrix which Refrigier writes in the form

Ψij ≡ ∂(δθi)

∂θ j
≡
(
κ + γ1 γ2

γ2 κ − γ1

)
, (15.71)

where δθi is the deflection vector produced by weak gravitational lensing as observed
on the sky. The convergence κ is proportional to the projected mass along the line
of sight and describes overall dilations and contractions. The shear terms γ1 and γ2

describe stretches and compressions along and at 45◦ to the x-axis. Figure 15.12a
illustrates the geometrical meaning of the shear components.

The big advantage of the weak gravitational lensing technique is that the lensing
measures directly the distribution of mass rather than the light of galaxies. The
problems of biasing in relating the observed distribution of galaxies to the underlying
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Fig. 15.12. a The significance of the shear components γ1 and γ2 of the distortion matrix in
weak gravitational lensing. b A summary of estimates of the shear variance σ2

γ as a function
of the radius θ of a circular cell (Refregier, 2003)

mass distribution are eliminated. These are, however, very demanding observations
and require very careful understanding of the point spread function of the telescope
optics to obtain convincing results. This has now been achieved, as illustrated by
the shear variance distribution as a function of angular scale shown in Fig. 15.11b,
which is taken from the summary by Refregier (Refregier, 2003). The results are
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expressed in terms of the variance of the shear σ2
γ ≡ 〈

γ̄ 2
〉

in randomly placed cells.
σ2
γ is related to the shear power spectrum by

σ2
γ = 1

2π

∫ ∞

0
dl lCl|W̃l|2 , (15.72)

where W̃l is the Fourier transform of the cell aperture. In turn, the coefficients Cl can
be related to the power spectrum of density perturbations in the mass distribution.
Therefore, the observed distribution of σ2

γ can be compared with the expectations of
the ΛCDM model and the standard primordial power spectrum of density perturba-
tions with the results shown by different solid lines in Fig. 15.11b. zm is the median
redshift of the lensing galaxies. It can be seen that there is encouraging agreement
between theory and observation.

The importance of this analysis for polarisation studies of the cosmic microwave
background radiation is that weak lensing induces a polarisation signal because of the
tensor character of the distortion matrix. As a result, there are quadrupole anisotropies
in the radiation field which give rise to E-mode polarisation of the background
radiation. In addition, gravitational lensing of the EE-mode polarisation results in

Fig. 15.13. The creation of BB-mode polarisation from EE modes by gravitational lensing.
This diagram is an exaggerated example of the expected effect in a 10◦ × 10◦ field in the
computations of Hu and Okamoto (Hu and Okamoto, 2002). Top row, left to right: the unlensed
temperature field, unlensed E-polarisation field and the spherically symmetric deflection field.
Bottom row, left to right: the lensed temperature field, the lensed E-polarisation field and the
lensed B-polarisation field. The intensity scale for the polarisation and temperature fields
differ by a factor of 10
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BB-mode polarisation. This effect is beautifully illustrated by the computations of
Hu and Okamoto, an example of which is shown in Fig. 15.13 (Hu and Okamoto,
2002). In Fig. 15.10, the dashed line labelled BB(lens) shows an estimate of the
B-mode polarisation power spectrum due to the effects of weak gravitational lensing
(Page et al., 2007). It is clear that this is a very weak signal, but it is of the same
amplitude as that expected due to gravitational waves, but on smaller angular scales.
It can be seen that the gravitationally lensed BB-modes interfere with the detection
of the BB signal due to gravitational waves at multipoles greater than about 100.
Once the EE signal has been measured precisely, however, it is possible to remove
the gravitationally lensed BB modes statistically from the total BB power spectrum.

15.9 Determination of Cosmological Parameters

Much of the discussion of this chapter has concerned understanding how various
features of the power spectrum of fluctuations in the cosmic microwave background
radiation enable cosmological parameters to be estimated. On their own, the WMAP
observations provide important limits to many cosmological parameters, but they
become even more impressive when taken in combination with independent data on
the large-scale structure of the Universe. A detailed analysis of the cosmological
implications of the WMAP data on their own and combined with other independent
data sets has been provided by Spergel and his colleagues (Spergel et al., 2007).

The procedure involves first defining the range of parameters to be included
in the simulations in order to reproduce the observed spatial correlation function
for galaxies and the power spectra of the intensity and polarisation fluctuations in
the cosmic background radiation. The original list of 13 parameters employed by
Tegmark and his colleague (Tegmark et al., 2004) has been expanded to span a very
wide range of possible models (Spergel et al., 2007); the list of parameters is shown
in Table 15.1. Many of these parameters have been discussed in previous sections,
for example, ΩB, ΩD, h, τ , ΩΛ, w, Ωk, ns, r, b; the definitions are summarised in
Table 15.1. The additional parameters include fν – the ratio of mass densities in
neutrinos to dark matter, Nν – the effective number of relativistic neutrino species,
Δ2

R – the amplitude of curvature perturbations, α = d(ln ns)/d(ln k) – the curvature
of the initial power spectrum, ASZ – Sunyaev–Zeldovich marginalisation factor
which takes account of the possible presence of Sunyaev–Zeldovich decrements and
zs – the weak lensing source redshift.

The standard analysis procedure is to use Bayesian statistical techniques and
Monte Carlo Markov chain methods to make best estimates of the cosmological
parameters, details of which are included in the papers by Tegmark and by Spergel
and their colleagues (Tegmark et al., 2004; Spergel et al., 2007). First of all, it is
interesting to note how much information can be derived from the 3-year intensity
and polarisation data alone, before other microwave background experiments and
completely independent data sets are included. The values shown in the third column
of Table 15.1 are for a flat ΛCDM model with a single power-law initial power
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Table 15.1. Parameters involved in the construction of cosmological models for the origin of
structure in the Universe (Spergel et al., 2007). The estimates in the third column are for a flat
ΛCDM model with power-law initial perturbation spectrum

Parameter Definition WMAP alone

ωB = ΩBh2 Baryon density parameter 0.0223 +0.0007
−0.0009

ωD = ΩDh2 Cold dark matter density parameter 0.127 +0.007
−0.013

h Hubble’s constant 0.73 +0.03
−0.03

ns Scalar spectral indexa 0.961 +0.018
−0.019

τ Reionisation optical depth 0.09 +0.03
−0.03

σ8 Density variance in 8 Mpc spheres 0.74 +0.05
−0.06

ΩΛ Dark energy density parameter

w Dark energy equation of state

Ωk
b Space curvature

fν = Ων/ΩD Massive neutrino fraction

Nν Number of relativistic neutrino species

Δ2
R Amplitude of curvature perturbations

r Tensor-scalar ratio

As Amplitude of scalar power spectrum

α = d ln K/d ln k Running of scalar spectral index

ASZ SZ Marginalisation factor

b Bias factor

zs Weak lensing source redshift

a ns = 1 is the preferred value according to the standard inflation picture.
b ΩB +ΩD +ΩΛ +Ωk = 1

spectrum. Blank entries in the table mean that they were set to zero or their values
could be deduced from the first six quantities and the assumption of a flat ΛCDM
model.

It is remarkable how closely these values agree with the completely independent
estimates of these parameters which were discussed in Chap. 8. Particularly striking
results are:

– The dark energy density parameter ΩΛ ≈ 0.7 while the dark matter has density
parameter ΩDh2 ≈ 0.127, both in excellent agreement with the estimates from
Type 1A supernovae (Sect. 8.5.3) and from large-scale galaxy surveys (Sect. 8.7).

– The baryonic matter has density parameter ΩBh2 ≈ 0.0223, in excellent agree-
ment with the results of primordial nucleosynthesis (Sect. 10.4.2).

– The inferred value of Hubble’s constant is in excellent agreement with the results
of the Hubble Space Telescope Key Project (Sect. 8.3).
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– The spectral index of the primordial power spectrum is close to ns = 1, but
slightly less than the canonical value, as expected for inflation models of the
early Universe.

Much of the independent information can be incorporated into the analysis, and
then many of the assumptions involved in deriving the values shown in Table 15.1 can
be relaxed. These data include the observations of the cosmic microwave background
radiation to multipoles up to 1500 from other experiments, the two-point galaxy
correlation functions from the SDSS and 2dF Galaxy redshift surveys, the redshift-
distance relation for Type 1A supernovae and the independent determinations of
Hubble’s constant. The many different ways in which these data can be combined
and the resulting parameter estimates can be found at the WMAP website.7

It is helpful to quote some examples of how additional constraints can be obtained
from these data from the summary provided by Spergel and his colleagues (Spergel
et al., 2007). For example, assuming a power-law initial curvature spectrum, the
WMAP data alone set an upper limit to the tensor-to-scalar ratio of r < 0.55 at
the 95% confidence limit at wavenumber k = 0.002 Mpc−1. The combination of
WMAP and the lensing-normalised SDSS galaxy survey results in an improved limit
r < 0.28, again at the 95% confidence limit.

Models which suppress large-scale power through assuming a finite value of the
running spectral index or a large-scale cut-off in the power spectrum provide a some-
what better fit to the WMAP and small-scale CMB data than the power-lawΛCDM
model and would be consistent with a higher amplitude of gravitational waves.

In a flat universe, the combination of WMAP and the Supernova Legacy Survey
data yields a significant constraint on the equation of state of the dark energy,
w = −0.97+0.07

−0.09 . If it is assumed thatw = −1, then the deviations from flat geometry
with curvature density parameterΩκ = 0 are small: the combination of WMAP and
the Supernova Legacy data implyΩκ = −0.015+0.020

−0.016 . The combination of WMAP

3-year data plus the HST key project constraint on H0 implies Ωκ = −0.010+0.016
−0.009

and ΩΛ = 0.72 ± 0.04. Even if we do not include the assumption that the universe
is flat, by combining WMAP, large-scale-structure and supernova data, a strong
constraint is still obtained for the dark energy equation of state, w = −1.06+0.13

−0.08 .
For a flat universe, the combination of WMAP and other astronomical data

yield a constraint on the sum of the neutrino masses,
∑

mν < 0.68 eV, at the 95%
confidence level.

15.10 Other Sources of Primordial Fluctuations

The arguments presented above have been based upon the assumption that the
spectrum of primordial fluctuations was a scale-invariant power law of roughly
Harrison–Zeldovich form with random phases. These properties are naturally ac-
counted for in the inflationary picture of the early Universe, the perturbations arising
as quantum fluctuations during the inflationary phase. The success of the standard

7 http://lambda.gsfc.nasa.gov/product/map/dr2/parameters_info.cfm
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ΛCDM model with adiabatic primordial curvature perturbations in accounting for
so many different types of cosmological observation without any serious conflicts is
quite remarkable. It is therefore not surprising that this model has become the model
of choice for cosmological investigations.

It is worth cautioning, however, that there may well be more to the story than this.
For example, an alternative picture for the origin of primordial density perturbations
is that they are associated with symmetry breaking during phase transitions which
took place during the inflationary era. The process of symmetry breaking can give
rise to topological defects such as cosmic strings, monopoles and textures which
could also seed the process of galaxy formation (Kibble, 1976; Turok, 1989).

An important difference between this class of theory and the standard picture
is that the fluctuations are expected to have a non-Gaussian character. For exam-
ple, cosmic strings would produce line-like discontinuities on the sky, and cosmic
textures would produce distinct non-Gaussian hot and cold spots. A key test of this
class of theory is therefore the presence of non-Gaussian features in the distribution
of the radiation temperature over the sky. If the temperature fluctuations are Gaus-
sian, the higher moments of the temperature distribution, such as its skewness and
kurtosis, should be zero. If the fluctuations are non-Gaussian, these moments will
be significantly different from zero. A variety of different tests for non-Gaussianity
have been used to analyse the 3-year WMAP data sets but no significant departures
from Gaussianity have been found (Spergel et al., 2007).

A second test is the power spectrum of temperature fluctuations, which is ex-
pected to be significantly different from the predictions of the standard ΛCDM
model. The differences arise from the fact that topological defects give rise to
isocurvature perturbations with non-random phases. The result is that the structure
in the acoustic peaks predicted in the standard adiabatic picture are not present. Taken
at face value, this form of spectrum is in poor agreement with the observations. De-
spite this, topological defects are a rather general feature of phase transitions during
symmetry-breaking events in the very early Universe, and so there might well be
a significant contribution from these to the temperature fluctuation spectrum at some
level, which would complicate the interpretation of the observations.

15.11 Reflections

The spectacular results of these experiments and their analysis in the determination of
cosmological parameters are quite remarkable for astrophysicists of my generation
who were brought up to expect that if any cosmological parameter could be reliably
determined within a factor of two, that was a real achievement. Now we are in the era
of precision cosmology, with the values of cosmological parameters determined to
better than 10%, and often significantly better than this. The fact that many different
approaches to their determination result in concordant values is encouraging evidence
that the standard model is the best framework for cosmological investigations. It
would be wrong to pretend, however, that the problems are over. We will return to
the many fundamental questions which this new understanding raises in Chap. 20.
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In the meantime, there is great scope for advancing these studies with the next
generation of experiments dedicated to studies of cosmic microwave background
radiation. The first of these will be the ESA Planck mission, which aims to carry out
definitive observations of the power spectrum of temperature fluctuations throughout
the entire range of multipoles 2 ≤ l ≤ 2500. The higher angular resolution and
wider wavelength coverage as compared with the WMAP project mean that the
observations are expected to be variance limited throughout this range of multipoles.
The anticipated precision with which the power spectrum will be determined is
illustrated in Fig. 15.14. The spacecraft will be launched in 2008.

A second class of experiments concerns the precision measurement of the polari-
sation of the background radiation and in particular the search for the elusive B-mode
signals which could provide key information about the generation of gravitational
waves during the inflationary phase of the expanding Universe. A number of projects
are currently being developed and studied, but they are very demanding and need
superb experimental and data analysis techniques to have any hope of success. This
is a terrific challenge and one which I hope will be realised over the next decade.

Fig. 15.14. The predicted performance of the Planck Surveyor mission of the European Space
Agency. The error bars correspond to the total cosmic and experimental variances expected
from 1 year of observation (Efstathiou et al., 2005)
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16 The Post-Recombination Era

In the final part of this book, we study the post-recombination Universe and the
physical processes responsible for the formation of galaxies and clusters of galaxies
as we know them today. This has been our objective from the beginning. This
part of the story is, however, much more difficult intrinsically than the study of
the pre-recombination era. This is because it necessarily involves the non-linear
evolution of perturbations in the dark and baryonic matter, as well as a host of
astrophysical phenomena associated with the formation and death of stars and the
feedback mechanisms associated with the life cycles of stars and galaxies. In addition,
we need to account for the formation and evolution of the supermassive black holes
which are present in the nuclei of massive galaxies. It is therefore inevitable that this
last part will be somewhat less structured and coherent than the very beautiful story
of the linear evolution of small perturbations, which was the subject of Part III. That
story took us up to epochs corresponding to roughly a redshift of 1000.

The post-recombination era spans the redshift interval from about 1000 to zero
and can be divided rather naturally into two phases. The first corresponds to the
epochs between the epoch of recombination at z ∼ 1000 and the epoch of reioni-
sation when the intergalactic gas was reionised, probably by the ultraviolet ionising
radiation of the first generations of massive stars. This era is often referred to as the
dark ages since it is very difficult to study observationally. Exactly when reionisation
took place is a key issue for contemporary cosmology but it must have occurred at
some epoch in the redshift interval 30 > z > 6. There is no reason to suppose that
the process of reionising the intergalactic gas took place at a single epoch, and one of
the challenges for observational cosmology is to determine its reionisation history.
There is compelling evidence that the intergalactic gas was more or less fully ionised
by a redshift of 6–7, a topic which we take up in some detail in Chap. 18. There is
therefore no doubt that the process of galaxy formation was well underway by these
redshifts at the very latest.

The second phase corresponds to the redshift interval 0 < z < 6–7, what may be
termed the observable Universe of galaxies. Thanks to the remarkable developments
in detector and telescope technology over recent years, this is the range of redshifts
over which luminous galaxies and quasars have now been observed. As we will
show in Chap. 17, there is plentiful evidence that the populations of galaxies and
quasars have evolved dramatically over the redshift interval 0 < z < 6. The same
technological revolution has also enabled the evolution of star formation activity in
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galaxies and the associated evolving abundances of the heavy elements to be studied
over a similar redshift interval. These topics are discussed in Chap. 19.

The great challenge is to synthesise this wealth of observational evidence into
a convincing and coherent picture of galaxy formation. The intrinsically non-linear
nature of the processes involved makes the subject an ideal challenge for large-
scale computer simulations which can be used to obtain clues to the underlying
astrophysics. Ideally, one might hope to study the problem by combining the pre-
ferred ΛCDM model of large-scale structure formation with hydrodynamic codes
which follow the dynamical and thermal histories of the diffuse intergalactic gas.
The latter have had considerable success in accounting for many of the properties
of the intergalactic gas, as we discuss in Chap. 18. Unfortunately, key steps in the
more ambitious programme to continue the simulations to form stars in galaxies as
well are not sufficiently understood for this to be an attainable goal at the moment.
An example of such a problem is the process of star formation. Understanding the
physical processes involved in the formation of stars is not yet at a level at which
it can be adequately built into large-scale hydrodynamical simulations. As a result,
considerable efforts have been devoted to what are known as semi-analytic models
for galaxy formation. These build upon the successes of the standardΛCDM model
and hydrodynamical simulations by including empirical rules for star formation,
supernova rates, element enrichment and so on into very large-scale simulations.
The hope is to be able to learn more about the non-linear processes which are needed
to account for the observed properties of galaxies and clusters described in Chaps. 3
and 4. The results of these endeavours conclude Chap. 19.

Finally, in Chap. 20, we investigate the origins of the primordial perturbations
which gave rise to the structures we observe in the Universe today. We also need
to address the other fundamental problems of astrophysical cosmology which have
been accumulating as our story has developed. As we will show, these provide
very major challenges for the coming generations of theorists, particle physicists,
astrophysicists and cosmologists.

To begin with, let us investigate what we can learn by extrapolation of the
formalisms we have developed so far into the non-linear regime, as well as discussing
physical processes such as the cooling of the baryonic matter in galaxies which must
play a significant part in the story. We will also study the arguments first put forward
by Press and Schechter concerning the evolution of the mass function of bound
systems in hierarchical clustering models. These studies provide the astrophysical
background to the more ambitious efforts which are the subject of the later chapters.

16.1 The Non-Linear Collapse of Density Perturbations

We discussed in Sect. 14.5.2 how the development of dark matter perturbations can
be followed into the non-linear regime following the insights of Hamilton and his
colleagues (Hamilton et al., 1991). There we demonstrated how non-linear effects
resulted in steepening of the two-point correlation function of galaxies to roughly
its observed form. Note that this is far from the end of the story since that analysis
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referred to the correlation function of the dark matter perturbations, what might better
be described as dark matter haloes, rather than to that of the baryonic component
of galaxies, which is what is measured in large-scale galaxy surveys. Let us look at
some aspects of this calculation in a little more detail.

16.1.1 Isotropic Top-Hat Collapse

One calculation, which can be carried out exactly, is the collapse of a uniform
spherical density perturbation in an otherwise uniform Universe, a model sometimes
referred to as ‘spherical top-hat collapse’. As discussed in Sect. 11.4.2, the dynamics
of such a region are precisely the same as those of a closed Universe with Ω0 > 1.
The variation of the ‘scale factor’, or relative size, of the perturbation ap is cycloidal
and given by the parametric solution (7.25) and (7.26)

ap = A(1 − cos θ) t = B(θ − sin θ) , (16.1)

A = Ω0

2(Ω0 − 1)
and B = Ω0

2H0(Ω0 − 1)3/2
.

The perturbation reached maximum size at θ = π, which is labelled ‘turnround’
in Fig. 14.5a, and then collapsed to infinite density at θ = 2π, as illustrated in
Fig. 11.2. To express this result in another way, the perturbation stopped expanding
when ȧp = 0 at θ = π and so can be considered to have separated out of the
expanding background. This occurred at scale factor

amax = 2A = Ω0

Ω0 − 1
at time tmax = πB = πΩ0

2H0(Ω0 − 1)3/2
. (16.2)

We can now work out the density of the perturbation at maximum scale factor
	max relative to that of the background 	0, which, for illustrative purposes, we take
to be the critical model, Ω0 = 1,ΩΛ = 0. Recalling that the density within the
perturbation was Ω0 times that of the background model to begin with,

	max

	0
= Ω0

(
a

amax

)3

= 9π2/16 = 5.55 , (16.3)

where the scale factor of the background model has been evaluated at cosmic time
tmax. Thus, by the time the perturbed sphere had stopped expanding, its density was
already 5.55 times greater than that of the background density.

In the spherical top-hat model, the perturbation had no internal pressure and
so it collapsed to infinite density at time t = 2πB, twice the time it took to reach
maximum expansion. Since a ∝ t2/3, it follows that the relation between the redshift
of maximum expansion zmax and the redshift of collapse zc is

1 + zc = 1 + zmax

22/3
. (16.4)
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This means that the collapse of the perturbation occurred very rapidly once the
perturbation had separated out from the background. For example, if zmax = 20,
then zc = 12, if zmax = 10, then zc = 6, and so on.

Interpreted literally, the spherical perturbed region would collapse to a black
hole, but in practice, this does not happen. Because of the presence of dark matter
density perturbations within the perturbation and the tidal effects of neighbouring
perturbations, it fragmented into subunits which then came to a dynamical equilib-
rium under the influence of large-scale gravitational potential gradients, the process
of violent relaxation described by Lynden-Bell (Lynden-Bell, 1967). In this process,
the system ends up satisfying the Virial Theorem, in which the internal kinetic energy
of the system is half its (negative) gravitational potential energy (Sect. 3.4.1).

We can work out the final dimensions of the virialised dark matter halo by the
following argument. At zmax, the sphere was stationary and all the energy of the
system was in the form of gravitational potential energy. For a uniform sphere of
radius rmax, the gravitational potential energy is −3G M2/5rmax. If the system did not
lose mass and collapsed to half this radius, its gravitational potential energy would
be −3G M2/(5rmax/2) and, by conservation of energy, the kinetic energy of collapse
of the halo would be

Kinetic Energy = 3G M2

5(rmax/2)
− 3G M2

5rmax
= 3G M2

5rmax
. (16.5)

Thus, by collapsing by a factor of two in radius from its maximum radius of expan-
sion, the kinetic energy of collapse became half the negative gravitational potential
energy. Once this energy was randomised by the process of violent relaxation, the
condition for dynamical equilibrium according to the Virial Theorem was satisfied.
Therefore, the density of the perturbation increased by a further factor of 8, while
the background density continued to decrease. From (16.1), the scale factor of the
perturbation reached the value amax/2 at time t = (1.5+π−1)tmax = 1.81tmax, when
the background density was a further factor of (t/tmax)

2 = 3.3 less than at maximum.
The net result of these simple calculations is that, when the collapsing cloud became
a bound virialised object, its density was 5.55×8×3.3 ≈ 150 times the background
density at that time.

Although this is a highly idealised picture, similar results are found from N-
body computer simulations of the process of formation of bound structures in the
expanding Universe. According to Coles and Lucchin, these simulations suggest that
the systems can be considered virialised after a few crossing times, t ≈ 3tmax, when
the density contrast would be closer to 400 (Coles and Lucchin, 1995). This type
of reasoning allowed the initial power spectrum of the density perturbations to be
reconstructed well into the non-linear regime, as discussed in Sect. 14.5.2 (Hamilton
et al., 1991; Peacock and Dodds, 1994). The general rule is that discrete objects
such as galaxies and clusters of galaxies only became distinct gravitationally bound
objects when their densities were at least 100 times the background density.

For illustration, let us see what this means for the redshifts at which galaxies and
other large-scale systems could have separated out of the expanding background.
The factor of order 100 derived above is the minimum enhancement in the density
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of the bound object relative to the background. We can therefore state with some
confidence that the density of the virialised object should be at least 100 times the
background density, that is,

	vir ≥ 100 × 3Ω0 H2
0

8πG
(1 + zvir)

3 , (16.6)

where zvir is the redshift at which the system became virialised. We can make an
estimate of 	vir from the Virial Theorem. If M is the mass of the system and v2 its
velocity dispersion, the condition that the kinetic energy be half the gravitational
potential energy is

1
2 Mv2 = 1

2

G M2

R
, (16.7)

where R is some suitably defined radius. Therefore,

	vir ≈ M

(4π/3)R3
= v6

(4π/3)G3 M2
. (16.8)

Inserting this value into (16.6), we can estimate the redshift at which the object
became virialised:

(1 + zvir) ≤ 0.47

(
v

100 km s−1

)2 ( M

1012 M�

)−2/3 (
Ω0h2)−1/3

. (16.9)

What this calculation amounts to is an improved version of the simple estimate
presented at the beginning of Chap. 11 concerning the relation between the mean
densities of objects relative to the background density and when they first formed.
Let us put in some representative figures. Adopting our reference values Ω0 =
0.3, h = 0.7, we find that, for galaxies having v ∼ 300 km s−1 and M ∼ 1012 M�,
the redshift of formation must have been less than about 7. For clusters of galaxies
for which v ∼ 1000 km s−1 and M ∼ 1015 M�, the redshift of formation cannot have
been much greater than 1. This conclusion follows immediately from the rule that
the density contrast of virialised objects should be at least 100 when they formed,
which is not such a different factor from the ratio of the mean density of clusters of
galaxies to typical cosmological densities at the present day. Thus, typically, clusters
of galaxies must have formed in the relatively recent past.

16.1.2 The Zeldovich Approximation

One of the deficiencies of the top-hat model is the assumption that the perturbations
were precisely spherically symmetric. The next best approximation is to assume
that they were ellipsoidal with three unequal principal axes. Peacock and Heavens
discussed the expected ellipticity distributions for perturbations arising from the
superposition of random Gaussian fields (Peacock and Heavens, 1985). One of the
general rules which comes out of the study of the collapse of ellipsoidal mass
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distributions is that collapse takes place most rapidly along the shortest axis (Lin
et al., 1965). For the case of primordial density fluctuations, Zeldovich showed in
1970 how the collapse could be followed into the non-linear regime in this more
general case (Zeldovich, 1970).

In the Zeldovich approximation, the development of perturbations into the non-
linear regime is followed in Lagrangian coordinates, the same procedure described in
Sect. 11.2. In other words, rather than working out the development of the perturba-
tion in some external Eulerian reference frame, the motion of particles in a comoving
coordinate frame is followed. If x and r are the proper and comoving position vectors
of the particles of the fluid, the Zeldovich approximation can be written

x = a(t)r + b(t)p(r) . (16.10)

The first term on the right-hand side describes the uniform expansion of the back-
ground model and the second term the comoving deviations p(r) of the particles’
positions relative to a fundamnetal observer located at comoving vector position r.
Zeldovich showed that, in the coordinate system of the principal axes of the ellipsoid,
the motion of the particles in comoving coordinates is described by a ‘deformation
tensor’ D:

D =
⎡
⎣

a(t)− αb(t) 0 0
0 a(t)− βb(t) 0
0 0 a(t)− γb(t)

⎤
⎦ . (16.11)

Because of conservation of mass, the density 	 in the vicinity of any particle is

	[a(t)− αb(t)][a(t)− βb(t)][a(t)− γb(t)] = 	̄a3(t) , (16.12)

where 	̄ is the mean density of matter in the Universe. The clever aspect of the
Zeldovich approximation is that, although the constants α, β and γ vary from point
to point in space depending upon the local density distribution, the functions a(t)
and b(t) are the same for all particles. In the case of the critical model, Ω0 = 1,

a(t) = 1

1 + z
=
(

t

t0

)2/3

and b(t) = 2

5

1

(1 + z)2
= 2

5

(
t

t0

)4/3

, (16.13)

where t0 = 2/3H0. The function b(t) has exactly the same dependence upon scale
factor (or cosmic time) as was derived from perturbing the Friedman solutions in
Sect. 11.4.2. This can be demonstrated by expanding (16.12) for small values of b(t)
for the case α = β = γ and comparing it with (11.47).

For the case α > β > γ , collapse occurs most rapidly along the x-axis and
the density becomes infinite when a(t)− αb(t) = 0. At this point, the ellipsoid has
collapsed to a ‘pancake’ and the solution breaks down at later times. Although the
density becomes formally infinite in the pancake, the surface density remains finite,
and so the solution still gives the correct result for the gravitational potential at
points away from the caustic surface. Note that, in the Zeldovich approximation, the
cold dark matter particles move purely under gravity and have no internal pressure.
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Fig. 16.1a,b. A comparison between the formation of large-scale structure according to a
N-body simulations and b the Zeldovich approximation, which began with the same initial
conditions, which were assumed to be Gaussian with power spectrum P(k) ∝ k−1 (Coles
et al., 1993; Coles and Lucchin, 1995). The agreement between the two approaches is very
good, particularly when highly non-linear Fourier modes with k ≥ knl = 8 are truncated, as
has been adopted in Fig. 16.1b

Consequently, collapse of the ellipsoids into pancakes does not give rise to strong
shock waves, which would occur in purely baryonic models.

The results of numerical N-body simulations have shown that the Zeldovich
approximation is quite remarkably effective in describing the non-linear evolution
of large-scale structures up to the point at which caustics are formed. A comparison
between the results of adopting the Zeldovich approximation and those of N-body
simulations is shown in Fig. 16.1 (Coles et al., 1993; Coles and Lucchin, 1995). The
two simulations began with the same Gaussian power spectrum with P(k) ∝ k−1.
In the case of the Zeldovich approximation, the coefficients of the deformation
tensor have to be evaluated at each point in space. Coles and his colleagues found
that the Zeldovich approximation was extremely accurate quantitatively for power
spectra characterized by n = −1 or less; when the approximation was ‘enhanced’
by truncating highly non-linear Fourier modes with k ≥ knl, the approximation was
found to be excellent even for n = +1 (Coles et al., 1993).

16.2 The Role of Dissipation

The analysis of the last section was primarily concerned with the non-linear dynam-
ical evolution of dark matter perturbations. Their characteristic feature was that dark
matter particles are collisionless and so are only detectable in bulk by their gravita-
tional influence. In contrast, the baryonic component of galaxies is what makes them
instantly recognisable optically, the emission being the integrated radiation of stars
and interstellar material. This radiation is a sure sign that dissipative processes are
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at work. The word dissipative is used in the sense that the baryonic matter can lose
energy by a myriad of radiative processes, resulting in the loss of thermal energy
from the system. It is certain that these processes take place and so the baryonic
component of galaxies loses internal energy and shrinks within the dark matter
haloes.

Once the gas within the system is stabilised by thermal pressure, loss of energy
by radiation is an effective way of decreasing the internal pressure, allowing the
region to contract and re-establish pressure equilibrium. If the radiation process is
very effective in decreasing the thermal energy, and hence the pressure support, of
the system, a runaway situation can result which is known as a thermal instability.
This is the process which is responsible for the cooling flows observed in the hot
intracluster gas in the central regions of rich clusters of galaxies (Sect. 4.4).

There are numerous ways in which dissipation plays an important role in galaxy
formation. Undoubtedly star formation is an essential feature of the formation and
evolution of galaxies, and we will study evidence on the cosmic star and heavy
element formation rates in Chap. 19. In our own Galaxy, stars are formed within
cool, dusty regions, most of the star formation occurring within giant molecular
clouds, which pervade the disk of our Galaxy. The likely sequence of events is
that a region within a cool dust cloud becomes unstable, either through the Jeans
instability, described in Sect. 11.3, or the equivalent instability in a differentially
rotating medium (expression (18.8)). The collapse of the gas cloud may also be
stimulated by external influences, such as the passage of the gas cloud through
a spiral arm, by compression of the gas by the blast wave of a supernova remnant
or some other large-scale dynamical perturbation, such as the strong gravitational
interactions, or collisions, of galaxies (see Sect. 3.3).

A star can only be formed if the collapsing protostellar cloud can get rid of its
gravitational binding energy, and the most important means of achieving this is by
radiation. This process continues until the cloud becomes optically thick to its own
radiation. The loss of binding energy from the protostar is then mediated by the dust
grains in the contracting gas cloud. The dust grains are heated to temperatures of
about 60 to 100 K, and then energy can be radiated away at far-infrared wavelengths,
at which the collapsing cloud is transparent to radiation. Observations of star-forming
regions by the IRAS, ISO and Spitzer infrared space observatories and by ground-
based millimetre and submillimetre telescopes make it wholly convincing that this
is the process by which stars are formed at the present day in galaxies.

In the case of the very first generation of stars, there is the problem that there
were no heavy elements present in the primordial gas out of which dust grains could
be formed. In this case, star formation presumably had to take place in a gas of
essentially pure molecular hydrogen. This suggests that the process of formation of
the first generation of stars may well have been somewhat different from what we
observe at the present day in our Galaxy. Once the first generation of massive stars
had formed, however, the fraction of the heavy elements in the interstellar medium
could build up rapidly, and it was out of this enriched gas that dust and subsequent
generations of stars could form. Direct evidence of star formation in very large
redshift objects has been obtained from millimetre and submillimetre observations of
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molecular gas and dust emission in a variety of different types of galaxies, including
quasars, Lyman-break galaxies, radio galaxies, ultraluminous infrared galaxies and
radio-detected submillimetre galaxies (Omont, 1996; Ohta et al., 1996; Omont et al.,
1996; Greve et al., 2005). Greve and his colleagues provide a convenient list of
all the objects detected in the submillimetre lines of carbon monoxide (CO) with
redshifts in the range 1 ≤ z ≤ 6 up to 2005. Further direct evidence for on-going
star formation out to the largest accessible redshifts is summarised by Bergeron in
her survey of all classes of galaxy which can be observed out to redshift z = 7,
and possibly greater redshifts (Bergeron, 2006). Of particular interest are studies of
Lyman-break galaxies, many of which have been observed at redshifts of z ≥ 6.
These are convincingly associated with star-forming galaxies, as will be described
in more detail in Chap. 19. There is therefore no doubt that there must have been
considerable early enrichment of the interstellar media of galaxies.

Dissipative processes thus play a dominant role in the formation and evolution of
stars, and this leads to the question of whether or not similar processes are important
in the formation of larger-scale baryonic structures. The role of dissipative processes
in galaxy formation was elegantly described by Rees and Ostriker, who considered
the cooling of a primordial plasma with the primaeval abundances of hydrogen and
helium (Rees and Ostriker, 1977). Silk and Wyse included in addition cooling by
heavy elements at different levels of enrichment relative to the primordial values
into their cooling curves (Silk and Wyse, 1993). The key relation is the energy loss
rate of the plasma by radiation as a function of temperature (Fig. 16.2). The cooling
rate is presented in the form dE/dt = −N2Λ(T), where N is the number density
of hydrogen ions. In the absence of heavy metals, the dominant loss mechanism
at high temperatures, T > 106 K, is thermal bremsstrahlung, the energy loss rate
being proportional to N2T 1/2. At lower temperatures, the main loss mechanisms are
free-bound and bound-bound transitions of hydrogen at T ≈ 104 K and of ionised
helium at T ≈ 105 K, corresponding to the two maxima in the primordial cooling
curve of Fig. 16.2. As the abundance of the heavy elements increases, the overall
energy loss rate can be more than an order of magnitude greater than that of the
primordial plasma at temperatures T ≤ 106.

For the case of a fully ionised plasma, the cooling time is defined to be the time
it takes the plasma to radiate away its thermal energy

tcool = E

|dE/dt| = 3NkT

N2Λ(T)
. (16.14)

This timescale can be compared with the timescale for gravitational collapse, tdyn ≈
(G	)−1/2 ∝ N−1/2. The significance of these timescales is best appreciated by
inspecting the locus of the equality tcool = tdyn in a temperature-number density
diagram (Fig. 16.3). The locus tcool = tdyn is a mapping of the cooling curve of the
hydrogen-helium plasma loss rate onto the T −N plane. Inside this locus, the cooling
time is shorter than the collapse time, and so it is expected that dissipative processes
are more important than dynamical processes in determining the behaviour of the
baryonic matter. Also shown on Fig. 16.3 are lines of constant mass, as well as loci
corresponding to the radiation loss time being equal to the age of the Universe and to
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Fig. 16.2. The cooling rate per unit volumeΛ(T) of an astrophysical plasma of number density
1 nucleus cm−3 by radiation for different cosmic abundances of the heavy elements, ranging
from zero metals to the present abundance of heavy elements as a function of temperature
T (Silk and Wyse, 1993). In the zero metal case, the two maxima in the cooling curve are
associated with the recombination of hydrogen ions and doubly ionised helium

the perturbations having such low density that they do not collapse gravitationally in
1010 years. It can be seen that the range of masses which lie within the critical locus,
and which can cool in 1010 years, is 106 ≤ M/M� ≤ 1012; this is the important
conclusion of this analysis.

The fact that the masses lie naturally in the range of observed galaxy masses
suggests that they are not only determined by the initial fluctuation spectrum, but also
by dissipative astrophysical processes as well. It is intriguing that there is nothing
in the spectrum of dark matter perturbations which would give rise naturally to the
characteristic masses of galaxies being typically M∗ ∼ 1010 M� – the processed
initial power spectrum is featureless at such masses. We will return to this issue in
the next section.

This diagram can be used astrophysically in the following way. For any theory
of the origin of large-scale structure, the density and temperature of the gas can be
worked out as a function of cosmic epoch. Figure 16.3 can then be used to determine
whether or not cooling by radiative processes is important. A good example was
found in the various versions of the baryonic adiabatic pancake theory. When the
gas cloud collapsed to form a pancake, the matter fell into a singular plane and, as
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Fig. 16.3. A number density-temperature diagram showing the locus defined by the condition
that the collapse time of a region tdyn should be equal to the cooling time of the plasma by
radiation tcool for different abundances of the heavy elements (Silk and Wyse, 1993). Also
shown are lines of constant mass, a cooling time of 1010 years (dotted lines), and the density
at which the perturbations are of such low density that they do not collapse in the age of the
Universe

a result, a shock wave passed out through the infalling matter, heating it to a high
temperature. In this picture, galaxies could form by thermal instabilities in the heated
gas. Inspection of Fig. 16.3 shows that, if the gas were heated above 104 K, there
would be no stable region for masses in the range 109 to 1012 M�.

A second exercise carried out by Blumenthal and his colleagues was to plot the
observed location of galaxies on a temperature-number density diagram similar to
Fig. 16.3, but using velocity dispersion in place of temperature (Blumenthal et al.,
1984). The effective temperature associated with the velocity dispersion of the stars
in a galaxy or the galaxies in a cluster, 1

2 kTeff ≈ 1
2 mv2, was plotted rather than the

thermal temperature of the gas. The irregular galaxies fell well within the cooling
locus and the spirals, S0 and elliptical galaxies all lay close to the critical line. On
the other hand, the clusters of galaxies lay outside the cooling locus. Thus, cooling
is expected to be an important factor in the formation of galaxies.

In the analysis of Rees and Ostriker, it was assumed that all the mass of galaxies
was in the form of baryonic matter. Even at that time, this was a dubious assumption
because of the problems of the large mass-to-luminosity ratios of large galaxies and
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groups and clusters of galaxies. An important advance was made by White and Rees,
who studied the more realistic case in which the galaxies and clusters are dominated
by dark matter, the baryonic matter constituting only about 20% of the total mass
(White and Rees, 1978). The dark haloes were assumed to form according to the
scenario discussed in Sect. 16.1 and so provided the potential wells into which the
baryonic matter could collapse and cool. They referred to this picture as a two-stage
theory of galaxy formation, and it foreshadows the present favoured scenario. At that
time, there were a number of problems with this picture, but these are best discussed
in the context of the evolution of the mass function of the dark matter haloes; this
leads naturally to the study of the Press–Schechter mass function.

16.3 The Press–Schechter Mass Function

According to the cold dark matter scenario for galaxy formation, galaxies and larger-
scale structures were built up by the process of hierarchical clustering. An elegant
description of this process was developed in 1974 in a remarkable paper by Press and
Schechter (Press and Schechter, 1974). Their objective was to provide an analytic
formalism for the process of structure formation once the density perturbations had
reached such an amplitude that they could be considered to have formed bound
objects. Press and Schechter were well aware of the limitations of their approach,
but it has turned out that their mass function and its evolution with cosmic epoch are
in remarkably good agreement with more detailed analyses and with the results of
supercomputer simulations.

16.3.1 Exposition – Elementary Theory

The analysis begins with the assumption that the primordial density perturbations
were Gaussian fluctuations. Thus, the phases of the waves which made up the density
distribution were random and the probability distribution of the amplitudes of the
perturbations could be described by a Gaussian function

p(Δ) = 1√
2πσ(M)

exp

[
− Δ2

2σ2(M)

]
, (16.15)

where Δ = δ	/	 is the density contrast associated with perturbations of mass M.
Being a Gaussian distribution, the mean value of the distribution is zero but its
variance σ2(M), that is, the mean-squared fluctuation, is finite:

〈
Δ2〉 =

〈(
δ	

	

)2
〉

= σ2(M). (16.16)

This is exactly the statistical description of the perturbations implicit in the analysis
of Sect. 14.2, in particular the statistical average (14.12).
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The Press–Schechter analysis begins with the assumption that, when the pertur-
bations had developed to amplitude greater than some critical valueΔc, they evolved
rapidly into bound objects with mass M. Given the considerations of Sect. 16.1.1,
this is an entirely plausible assumption, but it sweeps an enormous amount of de-
tailed astrophysics under the carpet. Let us see where it leads. The problem is now
completely defined since we can assume that the perturbations had a power-law
power spectrum P(k) = kn and we know the rules which describe the growth of the
perturbations with cosmic epoch. Press and Schechter assumed that the background
world model was the critical Einstein–de Sitter model, Ω0 = 1,ΩΛ = 0, so that the
perturbations developed asΔ ∝ a ∝ t2/3 right up to the present epoch. The analysis
for the standard ΛCDM model is a straightforward extension of this argument.

For fluctuations of a given mass M, the fraction F(M) of those which became
bound at a particular epoch were those with amplitudes greater than Δc,

F(M) = 1√
2πσ(M)

∫ ∞

Δc

exp

[
− Δ2

2σ2(M)

]
dΔ = 1

2 [1 −Φ(tc)] , (16.17)

where tc = Δc/
√

2σ and Φ(x) is the probability integral defined by

Φ(x) = 2√
π

∫ x

0
e−t2

dt . (16.18)

Expression (14.26) can be used to relate the mean square density perturbation to the
power spectrum of the perturbations.

σ2(M) =
〈(
δ	

	

)2
〉

= 〈
Δ2〉 = AM−(3+n)/3 , (16.19)

where A is a constant. We can now express tc in terms of the mass distribution

tc = Δc√
2σ(M)

= Δc√
2A1/2

M(3+n)/6 =
(

M

M∗

)(3+n)/6

, (16.20)

where we have introduced a reference mass M∗ = (
2A/Δ2

c

)3/(3+n)
.

Since the amplitude of the perturbation Δ(M) grew as Δ(M) ∝ a ∝ t2/3, it
follows that σ2(M) = Δ2(M) ∝ t4/3, that is, A ∝ t4/3. Therefore,

M∗ ∝ A3/(3+n) ∝ t4/(3+n) , (16.21)

which can be rewritten

M∗ = M∗
0

(
t

t0

)4/(3+n)

, (16.22)

where M∗
0 is the value of M∗ at the present epoch t0.

The fraction of perturbations with masses in the range M to M + dM is dF =
(∂F/∂M) dM. In the linear regime, the mass of the perturbation is M = 	̄V , where
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	̄ is the mean density of the background model. Once the perturbation became non-
linear, collapse ensued and ultimately a bound object of mass M was formed. The
space density N(M) dM of these masses was V−1, that is,

N(M) dM = 1

V
= − 	̄

M

∂F

∂M
dM , (16.23)

the minus sign appearing because F is a decreasing function of increasing M.
We now have everything we need to determine the mass distribution and how it

evolved with time from (16.17), (16.22) and (16.23). Noting that

dΦ

dx
= 2√

π
e−x2

, (16.24)

we find

N(M) = 1

2
√
π

(
1 + n

3

) 	̄

M2

(
M

M∗

)(3+n)/6

exp

[
−
(

M

M∗

)(3+n)/3
]
, (16.25)

in which all the time dependence of N(M) has been absorbed into the variation of
M∗ with cosmic epoch (16.22).

This formalism results in only half the total mass density being condensed
into bound objects because of the fact that, according to this simple analysis, only
the positive density fluctuations of the symmetrical Gaussian distribution (16.15)
developed into bound systems. The underlying cause of this factor of 2 discrepancy
is the fact that the above analysis is based upon the linear theory of the growth of
the perturbations. Once the perturbations developed to large amplitude, mass was
accreted from the vicinity of the perturbation and N-body simulations show that
most of the mass was indeed condensed into discrete structures. Press and Schechter
were well aware of this problem and argued that the mass spectrum (16.25) should
be multiplied by a factor of 2 to take account of the accretion of mass during the
non-linear stages. Efstathiou showed how the problem of the evolution of the mass
function can be formulated in such a way that all the mass is condensed into bound
objects (Efstathiou, 1990).

Thus, the mass function can be written in the somewhat more compact form

N(M) = 	̄√
π

γ

M2

(
M

M∗

)γ/2
exp

[
−
(

M

M∗

)γ]
, (16.26)

where γ = 1+(n/3) and M∗ = M∗(t0)(t/t0)4/3γ . To illustrate how the mass function
changes with cosmic epoch, we need to choose the value of spectral index n. We
are interested in the range of small masses which eventually clustered hierarchically
to form galaxies and clusters of galaxies and so we need the modified initial mass
spectrum which is shown in Fig. 14.1b. As discussed in Sect. 14.3, the appropriate
value of n is −3 if the unprocessed primordial mass spectrum was of Harrison–
Zeldovich form. The variation of the Press–Schechter mass function with time for
n = −3 is shown in Fig. 16.4.
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Fig. 16.4. Illustrating the variation of the form of the Press–Schechter mass function as
a function of cosmic time for the processed Harrison–Zeldovich spectrum in the limit of small
masses, that is, n = −3 (courtesy of Dr Andrew Blain). Note that the ordinate is plotted in
units of M N(M, t) and that the critical Einstein–de Sitter model is assumed

16.3.2 Development and Recapitulation

This remarkable argument has been the subject of a great deal of discussion and
debate over the last 20 years (Monaco, 1998). Schechter has given an amusing and
enlightening history and critique of the mass function which can be thoroughly
recommended (Schechter, 2002). Press and Schechter were well aware of the limi-
tations of the model, and a number of their assumptions turned out to be wrong – for
example, their analysis assumed that all the matter in the Universe is baryonic and
has the critical cosmological density. A pleasant assessment of the procedure was
the statement by Monaco (Monaco, 1999):

There is a simple, effective and wrong way to describe the cosmological
mass function. Wrong, of course, does not refer to the results, but to the
whole procedure.

Monaco described numerous reasons why the calculation should not work. For ex-
ample, there is the ‘peaks-within-peaks’ problem in the sense that a full treatment
would take account of the fact that, in general, any perturbation of a particular
wavenumber k is superimposed upon other longer wavelength perturbations. This
issue has been the subject of intensive study (Bardeen et al., 1986; Efstathiou, 1990;
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Kauffmann and White, 1993). Another problem is the assumption of spherical sym-
metry, which certainly breaks down, as discussed in Sect. 16.1.2 (Sheth et al., 2001).
Monaco’s reasons why it should not work are perhaps most succinctly summarised
in his statement that:

Once the “statistical” problem of achieving the correct normalization is
solved, the worst defect of the Press–Schechter recipe is that it completely
neglects the complexities of gravitational dynamics, which is treated just at
the linear level.

Let us consider a few of the problems highlighted by Schechter in his critical as-
sessment. He emphasised that the formalism describes the hierarchical clustering of
smaller into larger masses, terminating with the formation of the mass spectrum of
clusters of galaxies at the present epoch. A clear success of the theory is the pre-
diction that the mass spectrum of clusters is of power-law form with an exponential
cut-off at high masses, in good agreement with the observed mass function of clus-
ters (Schechter, 2002). In the process of achieving this, however, it was implicitly
assumed that smaller mass structures were wiped out as they coalesced to form more
massive structures. Why then is there a mass, or luminosity, function for galaxies in
clusters?

Early N-body simulations seemed to confirm the wiping out of all small-scale
structures, but this now appears to have been the result of the lack of resolution and
the necessity of softening the 1/r potential at small radii in the numerical simulations.
The most recent massive N-body simulation, the Millennium Simulation, shows that
there is indeed disruption of the coalescing dark matter haloes, but a significant
fraction survives and can populate the haloes of giant clusters (Springel et al., 2005).
In fact, there now appears to be the problem that the mass spectrum of what are
referred to as ‘subhaloes’ has a power-law mass spectrum which results in too many
low-mass systems and no exponential cut-off at high masses. These features differ
from the observed luminosity function of galaxies, but of course the luminosities
of galaxies are determined by their baryonic rather than their dark matter content.
The formation of galaxies as we know them must involve the separation of the
dark from the baryonic matter. Schechter argues that the dimensions of the baryonic
component could be up to ten times smaller in size than the dark matter halo. He
argues that the solution of these problems lies in the baryonic dissipative processes
discussed by Ostriker, Rees and White, as well as feedback processes which can
suppress the formation of baryonic structures within low-mass subhaloes. For large
baryonic masses of low density, inspection of Fig. 16.3 shows that the cooling times
can become of the order of the age of the Universe and this might be the cause of
the exponential cut-off in the luminosity function of galaxies. We will discuss these
issues in more detail in Chap. 19 in the context of semi-analytic models of galaxy
formation.

For the moment, we are only interested in the evolution of the mass function of the
dark matter haloes. Despite the concerns about the validity of the procedure by which
it was derived, the most recent large-scale simulations for the standardΛCDM model
show that the Press–Schechter mass function is a remarkably effective description
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of the form and evolution of the mass function of dark matter haloes with cosmic
epoch. Figure 16.5 shows the results of the massive Millennium Simulation which
involved following the evolution of more than 1010 particles. The symbols show the
results of the computations of the differential mass function as a function of redshift.
Notice that the ordinate is plotted as (M2/	̄) dn/dM and so is one power of M
‘flatter’ than Fig. 16.4. 	̄ is the mean density of the background model. The solid
lines show a parametric fit to the simulations and the faint dotted lines the predicted
Press–Schechter function at redshifts z = 10.07 and z = 0. Although not perfect, the
success of the Press–Schechter formalism is apparent. Springel and his colleagues
caution that at the high-mass end where the ‘exponential’ cut-off occurs, the Press–
Schechter function underpredicts the mass function by up to an order of magnitude,
but, given the nature of exponentials, this is perhaps not too surprising. Notice also
the flatness of the differential multiplicity function over a very wide range of low
masses, of more or less exactly the same form expected from our analysis of the
modified initial mass function.

One may ask why the formalism works so well in light of the concerns about the
whole procedure. Monaco suggests that, because of the large number of dynamical
effects to be considered, some form of ‘central limit theorem’ applies, meaning that
the fluctuations on a given mass scale will end up being approximately Gaussian,
whatever the input physics. Part of the success of the model can also be attributed to
the fact that the perturbations do not become very non-linear before they are assumed
to become bound systems. This assumption is made at all stages of the hierarchical
clustering process.

The Press–Schechter formalism is therefore a useful tool for studying the de-
velopment of galaxies and clusters of galaxies in hierarchical scenarios of galaxy
formation. As an example of the use of the function, Efstathiou matched the Press–
Schechter mass function to the results of N-body simulations of the development of
galaxies and clusters within the context of the standard Ω0 = 1 cold dark matter
model (Efstathiou, 1995). He then used that function to illustrate how the comov-
ing number density of dark matter haloes with masses greater than a given value,
N(≥ M, z), changes with redshift (Fig. 16.6), which is just a different projection of
Fig. 16.5 (Efstathiou, 1995; Efstathiou and Rees, 1988). The present number density
of L∗ galaxies is shown as a dotted line.

Although derived for the Ω0 = 1, ΩΛ = 0 model, the results are similar
for the preferred ΛCDM model. Figure 16.6 illustrates a number of important
aspects of hierarchical clustering models. First of all, it demonstrates vividly how
the most massive systems formed rather late in the Universe. The considerations
of Sect. 16.1.1 suggested that massive galaxies with M = 1012 M� could not have
formed earlier than a redshift of 7 and giant clusters would only form late in the
Universe. These conclusions are reinforced by the evolution of the mass function
shown in Fig. 16.6.

Galaxies with masses M ∼ 1012 M� only appear in substantial numbers at
redshifts z ≤ 4. Efstathiou and Rees used this result to suggest that there would
necessarily be a rather dramatic cut-off to the distribution of quasars at redshifts
z ≥ 4 (Efstathiou and Rees, 1988). The basis of the argument was that supermassive
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Fig. 16.5. Differential halo number density as a function of mass and redshift from the
Millennium Simulation (Springel et al., 2005). The function n(M, z) is the comoving number
density of haloes with masses less than M. What is plotted is the differential halo multiplicity
function in the form (M2/	̄) dn/dM, where 	̄ is the mean density of the Universe. Springel and
his colleagues describe the procedures used to identify bound systems at each epoch. The solid
lines represent an analytic fitting function, while the dotted lines show the Press–Schechter
function at z = 10.07 and z = 0

black holes with M ∼ 109 M� in the nuclei of galaxies are necessary to power the
quasars observed at redshifts of z ∼ 4 and these can only form from the baryonic
component of the galaxy. Since the baryonic matter probably amounts to only about
10% of the mass of the dark matter halo, it follows that, to create a 109 M� black
hole, 1% of the baryonic mass would have to form a black hole in the nucleus of
the galaxy. Among nearby galaxies at the present epoch, supermassive black hole
masses are typically about 0.3% of their halo masses (Kormendy and Richstone,
1995; Magorrian et al., 1998), and so it would be feasible for 1012 M� galaxies
to contain massive enough black holes to power the most luminous quasars. The
comoving number density of galaxies with masses M = 1012 M� decreases rapidly
with increasing redshift beyond z = 4, and so the likelihood of observing quasars as
luminous as those at z ∼ 3–4 decreases dramatically, consistent with the decrease
in their observed comoving space densities at large redshifts (see Sect. 17.5).
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Fig. 16.6. The evolution of the comoving number density of dark matter haloes with masses
greater than M as a function of redshift for a standard cold dark matter model withΩ0 = 1. The
curves have been derived using the Press–Schechter form of evolution of the mass spectrum,
which is a close fit to the results of N-body simulations. The dotted line labelled φ∗ shows the
present number density of L∗ galaxies (Efstathiou, 1995)

Notice also the large number density of low-mass objects present throughout the
redshift interval 0 < z < 10. It is intriguing that, in her review of large redshift
galaxies, Bergeron noted that the Lyman-limit galaxies detected at redshifts of z ∼ 6
have a comoving luminosity function which is an order of magnitude lower than that
at redshift z ∼ 2–3.

These are persuasive arguments that the Press–Schechter formalism provides
a convenient means of parameterising the process of formation of dark matter haloes
through the entire post-recombination era from z = 1000 to the present epoch. The
challenge is now to incorporate the baryonic matter as well; this will not prove so
simple.



17 The Evolution of Galaxies and Active Galaxies
with Cosmic Epoch

17.1 Introduction

Evidence for strong evolutionary changes of the populations of extragalactic objects
with cosmic epoch was first found in surveys of extragalactic radio sources and
quasars in the 1950s and 1960s. An excess of faint sources was discovered in radio
source and quasar surveys as compared with the expectations of uniform world
models. The inference was that these classes of objects were much more common
at earlier cosmic epochs than they are at the present time. During the 1980s, the
first deep counts of galaxies to very faint magnitudes became available thanks to
the CCD revolution in optical detector technology. An excess of faint blue galaxies
was discovered at faint apparent magnitudes and these studies were extended to
extremely faint galaxies by Hubble Space Telescope observations of the Hubble
Deep Field and the Hubble Ultra Deep Field

This pattern of the discovery of excess numbers of faint objects at early cosmic
epochs has been repeated in essentially all wavebands as deep surveys have become
feasible. In the 1990s, the surveys of the X-ray sky carried out by the ROSAT X-ray
Observatory provided evidence for an excess of faint X-ray sources, similar to that
found for the extragalactic radio sources and quasars. These studies were extended
to much fainter X-ray sources by observations with the Chandra and XMM-Newton
X-ray Observatories. The IRAS survey of the mid- and far-infrared sky, although not
extending to as large redshifts as the radio and X-ray surveys, provided evidence for
an excess of faint sources. The deep mid- and far-infrared surveys carried out by the
Spitzer Infrared Space Telescope have confirmed the large excess of faint infrared
sources. Surveys became feasible in the submillimetre waveband in the late 1990s
and a very large excess of faint submillimetre sources was discovered, the objects
being associated with luminous dust-emitting galaxies.

Consequently, the study of the cosmological evolution of all classes of extra-
galactic object with cosmic epoch is now a major industry for those astrophysicists
involved in understanding the origin and evolution of galaxies. These studies have
been enormously advanced by the availability of the current generation of 8- to 10-m
class ground-based optical-infrared telescopes, as well as the large-scale surveys of
galaxies and quasars resulting from the AAT 2dF Survey and the Sloan Digital Sky
Survey.

To generalise rather sweepingly, these studies of changes in source populations
with cosmic epoch can be divided into two overlapping areas. The first is the evolution
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of the stellar and gaseous components of galaxies with cosmic epoch. These studies
include the evolution of the stellar populations and physical properties of galaxies,
the changes in the numbers and chemical composition of the absorption line systems
observed in the spectra of distant quasars, the evolution of the global star formation
rate with cosmic epoch and so on.

The second concerns the evolution of the properties of systems with active
galactic nuclei – the quasars, the Seyfert galaxies, the extragalactic radio and X-ray
sources and their close relatives. These phenomena are associated with the presence
of supermassive black holes in the nuclei of galaxies, and their defining characteristic
is that their intense emission is dominated by non-thermal radiation processes such
as synchrotron radiation and inverse Compton scattering of high-energy electrons.
Undoubtedly, these two aspects of cosmic evolution will eventually converge into an
understanding of the co-evolution of the stellar and black hole properties of galaxies,
but at the moment exactly what that relation might be is not securely established,
although the empirical evidence is accumulating in intriguing ways.

The primary data involved in both aspects of these studies are the availability of
large complete samples of objects with accurately known flux densities or apparent
magnitudes. The simplest way of analysing these data is simply to count the numbers
of objects brighter than different flux density limits and compare these with the
expectations of the standard world models. In itself, this procedure can provide global
evidence for changes in source populations with cosmic epoch. Once redshifts and
spectroscopic evidence become available for large samples of sources, the analysis
can be greatly refined and the nature of the astrophysical changes with cosmic epoch
determined in detail.

The plan of this chapter is to present an overview of what can be learned
empirically from surveys of various classes of astrophysical object. This involves
exploring number counts, redshift surveys and the background radiation and how
these data can be used to constrain cosmological evolutionary changes. In Chap. 18,
we investigate the physics of the intergalactic medium and in Chap. 19 the challenges
of synthesising all these data into a convincing astrophysical picture for the origin
and evolution of galaxies and the black holes in their nuclei.

17.2 Counts of Galaxies and Active Galaxies

In his earliest studies of galaxies as extragalactic systems, Hubble realised that the
number counts of galaxies contain information about the large-scale structure of the
Universe. In his famous monograph The Realm of the Nebulae, he used counts of
galaxies to the limit of the Mount Wilson 100-inch telescope to demonstrate that,
overall, their distribution is homogeneous on the large scale (Hubble, 1936). He also
believed he had found evidence for deviations from the local Euclidean counts at
faint apparent magnitudes, which he interpreted as being due to the non-Euclidean
nature of space–time when galaxies are observed at large distances (Fig. 17.1).
Hubble’s argument concerning the homogeneity of the distribution of galaxies is
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a powerful one and applies to objects studied in any waveband. It is worth repeating
that argument as a preliminary to what follows.

17.2.1 Euclidean Source Counts

Suppose the sources have a luminosity function N(L) dL and that they are uniformly
distributed in Euclidean space. The numbers of sources with flux densities S greater
than different limiting values in the solid angle Ω on the sky is denoted N(≥ S).
Consider first sources with luminosities in the range L to L + dL. In a survey to
a limiting flux density S, these sources can be observed out to some limiting distance
r, given by the inverse square law, r = (L/4πS)1/2. The number of sources brighter
than S is therefore that within distance r in the solid angle Ω,

N(≥ S, L) dL = Ω

3
r3 N(L) dL . (17.1)

Substituting for r, the number of sources brighter than S is

N(≥ S, L) dL = Ω

3

(
L

4πS

)3/2

N(L) dL . (17.2)

Integrating over the luminosity function of the sources,

N(≥ S) = Ω

3(4π)3/2
S−3/2

∫
L3/2 N(L) dL , (17.3)

that is, N(≥ S) ∝ S−3/2, independent of the luminosity function N(L). The result
N(≥ S) ∝ S−3/2 is known as the integral Euclidean source counts for any class of
extragalactic object. In terms of apparent magnitudes, m = constant − 2.5 log10 S,
the Euclidean source counts become

N(≤ m) ∝ 100.6m or log N(≤ m) = 0.6m + constant . (17.4)

This was the homogeneity test carried out by Hubble with the results shown in
Fig. 17.1.

The integral counts N(≥ S) suffer from the disadvantage that the numbers of
sources counted to different limiting flux densities are not independent since bright
objects contribute to the counts at all lower flux densities. It is therefore statistically
preferable to work in terms of differential source counts rather than integral counts,
so that the numbers of sources counted in each flux density interval are independent.
In this case,

dN(S) = N(S) dS ∝ S−5/2 dS . (17.5)

The corresponding expression in terms of apparent magnitudes is

dN(m) = N(m) dm ∝ 100.6m dm . (17.6)

These are useful reference relations and it is convenient to compare the observed
counts and the expectations of various world models with them, as we illustrate
below.
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Fig. 17.1. Hubble’s counts of galaxies (Hubble, 1936). The counts follow the Euclidean
prediction at bright apparent magnitudes but depart from the prediction log N(≤ m) =
0.6m + constant towards the limit of the survey. Hubble interpreted this departure as evidence
for the non-Euclidean nature of the space–time geometry of the Universe at large redshifts

17.2.2 Source Counts for the Standard World Models

We have developed all the tools necessary for predicting number counts and redshift
distributions in Sect. 5.5. The two key relations are (5.64) and (5.73), which relate
flux densities and number densities to redshift for isotropic world models. To repeat
these relations,

S(ν0) = L(ν1)

4πD2(1 + z)
; (17.7)

dN(z) = N(z) dz = ΩD2 N0 dr , (17.8)

where ν0 = ν1/(1 + z) is the frequency of observation at the present epoch, ν1 the
emitted frequency and N0 the local number density of sources. The formula relating
the distance measure D to redshift z for world models with ΩΛ = 0 is given by
(7.77). For models with ΩΛ �= 0, (7.74) can be used to find the dependence of
the comoving radial distance coordinate r upon redshift and then D found from
D = � sin(r/�), where � is given by (7.43).

A number of important differences as compared with the Euclidean formulae are
immediately apparent.
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– The observed flux density now depends upon the spectrum of the source because
the radiation emitted at frequency ν1 is observed at the redshifted frequency
ν0 = ν1/(1 + z). For observations in the optical waveband, the differences
between an inverse square law in luminosity distance and the predictions of the
standard world models, when account is taken of the fact that a different region
of the spectrum is observed, are often expressed in terms of K-corrections, as
described by (5.70) and (5.71). Personally, I find it conceptually preferable to
work directly with integrals over the emitted and observed frequency intervals.

– In the standard world models, the distance measure D tends to a finite limit as
z → ∞ (Figs. 7.6 and 7.7). Unless the spectrum is strongly inverted, as is the
case for dust spectra in the submillimetre waveband, the effects of observing
the source spectrum at a redshifted frequency generally result in the sources
becoming fainter with increasing redshift. To put it another way, the effects of
the K-correction compensate for the fact that D tends to a finite value as z → ∞.

– The volume element per unit redshift interval changes from dN(z) ∝ z2 dz at
small redshifts, z 	 1, to dN(z) ∝ z−3/2 dz at redshifts Ω0z � 1. The volume
elements become smaller and smaller with increasing redshift, resulting in a
‘cut-off’ to the source distribution at redshifts Ω0z � 1.

It therefore becomes progressively more and more difficult to discover large
redshift objects since they are discriminated against both in flux density and observ-
able volume. For these reasons, the number counts of sources in the standard world
models normally predict fewer sources as compared with the expectations of the
Euclidean source counts if the source distribution extends to large redshifts. One of
the great triumphs of observational cosmology has been that means have been found
of overcoming these disadvantages. The study of discrete objects with redshifts up
to z ≈ 6 and beyond is unquestionably one of the most exciting areas of modern
astrophysical cosmology.

For illustrative purposes, let us consider the case of a population of sources
which have power-law spectra, L(ν) ∝ ν−α, which is a good approximation for the
spectra of extragalactic radio sources, X-ray sources and quasars, where α ≈ 1 is
the spectral index. We adopt α = 1 in the numerical examples given below, and
this has the fortunate advantage that the results are then also exact for bolometric
luminosities and flux densities, as can be seen by comparing (5.65) and (5.67). The
flux density–redshift relation (17.7) then becomes

S(ν0) = L(ν0)

4πD2(1 + z)1+α . (17.9)

Differentiating (17.9),

dS

dz
= − L(ν0)

4πD2(1 + z)1+α

⎡
⎢⎢⎣
(1 + α)

(1 + z)
+

2

(
dD

dz

)

D

⎤
⎥⎥⎦ . (17.10)
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For a uniform population of sources of local space density N0(L), (17.8) becomes

dN = N(z) dz = c

H0

ΩN0(L) D2

[(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)]1/2
dz . (17.11)

Now, for a locally Euclidean population of sources, we expect

N0(≥ S) = Ω

3
N0(L)

[
L(ν0)

4πS

]3/2

; dN0 = −Ω
2

N0(L)

[
L(ν0)

4π

]3/2

S−5/2 dS .

(17.12)

Hence

dN

dN0
= (dN/dS)

(dN/dS)0

= 2c(1 + z)−(3/2)(1+α)

H0

[
(Ω0z + 1)−ΩΛ

z(z + 2)

(1 + z)2

]1/2 [
D(1 + α)+ 2(1 + z)

(
dD

dz

)] . (17.13)

In general, this result for dN/dN0 is cumbersome, but there is a simple solution
for the Einstein–de Sitter world model, Ω0 = 1, ΩΛ = 0,

dN

dN0
= (1 + z)−1.5(1+α)
[
(1 + α)(1 + z)1/2 − α

] . (17.14)

To illustrate the expected behaviour of dN/dN0, (17.13) has been evaluated for
some popular world models as a function of flux density and redshift in Fig. 17.2.
The Euclidean prediction dN/dN0 = constant is represented by the abscissa,
log10(dN/dN0) = 0. Figure 17.2a shows the relations for world models withΩΛ = 0
and Fig. 17.2b for models with Ω0 + ΩΛ = 1. The predicted differential counts
depart rapidly from the Euclidean expectation even at relatively small redshifts. For
example, for the caseΩ0 = 1, the source counts at redshift z = 0.5 have differential
slope −2.08 rather than −2.5, corresponding to a slope of the integral source counts
of −1.08 rather than −1.5. Thus, the effects of redshift set in at much smaller red-
shifts than might be expected. Similar results are found for models with finite values
of ΩΛ which are shown in Fig. 17.2b. The three models have Ω0 + ΩΛ = 1 and
Ω0 = 1, 0.6 and 0.3; the world model with Ω0 = 0.3 corresponds to our reference
model. Note that some care needs to be taken in obtaining the correct relations for
some models with finite values of ΩΛ for the reasons explained in Sect. 17.2.4.

In practice, the source populations cannot be represented by a single luminosity,
but rather, the differential counts shown in Fig. 17.2 should be convolved with the
luminosity function N0(L) of the sources. It is evident, however, that because all the
relations shown in Fig. 17.2 are monotonically decreasing functions of decreasing
flux density, convolution with any function must also produce a monotonically
decreasing function of decreasing flux density. In other words, in all viable world
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Fig. 17.2. a The predicted normalised differential source counts for a single luminosity class
of source having spectral index α = 1 for different values of the density parameter Ω0 with
ΩΛ = 0. Top to bottom: the differential counts are for models withΩ0 = 0, 1 and 2 (Longair,
1978). Arrows: redshifts at which the sources are observed. The integration was terminated at
z = 10. b The same as a but for models with Ω0 +ΩΛ = 1 and spectral index α = 1. Top to
bottom: the differential counts are shown for models with Ω0 = 0.3, 0.6 and 1
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models, the slope of the differential and integral source counts must be smaller than
the Euclidean predictions, that is, if N(≥ S) ∝ S−β , β < 1.5.

Historically, this was an important result because the counts of extragalactic
radio sources at high flux densities have integral slope β = 1.8, much steeper than
that expected for any of the standard uniform world models (Fig. 17.9). In the 1960s,
this was strong evidence that extragalactic radio sources were much more common
at large redshifts than expected in uniform, isotropic models, indicating that the
source population must have evolved strongly with cosmic epoch. The argument
holds good for all models in which the flux densities of the sources decrease with
increasing frequency, as is also the case for optically and X-ray selected quasars.

The same type of argument can be used in interpreting the number counts of
γ -ray bursts which were defined by observations with the BATSE instrument of the
Compton Gamma-ray Observatory. Their distribution is uniform over the sky and
the slope of the number counts was found to be somewhat flatter than β = 1.5
(Paciesas et al., 1999). It is natural to assume that they are distant extragalactic
objects, an inference subsequently confirmed by their optical identification through
observations of their afterglows by the Beppo-SAX satellite (Costa et al., 1997; Sahu
et al., 1997).

For galaxies observed in the optical waveband, the predicted number counts
depend upon knowledge of their spectra in the ultraviolet waveband and this is sen-
sitive to their star-formation histories. As an example, Fig. 17.3 shows the results of
computations of the evolution with cosmic epoch of the spectral energy distribution
of a model giant elliptical galaxy in its rest frame The model involves the passive
evolution of the stellar energy distribution in the sense that the stellar population
was formed in an initial starburst of duration 108 years and the subsequent evolution
followed using the stellar synthesis codes of Bruzual and Charlot (Bruzual and Char-
lot, 2003). There is a one-to-one relation between the mass of a star, its luminosity
and the waveband in which it emits most of this luminosity and so stars radiating
in the ultraviolet waveband are massive and have short lifetimes. This is reflected
in the rapid decline of the spectral energy distribution in the ultraviolet regions of
the spectrum with cosmic epoch. Consequently, the K-corrections to be used in the
optical waveband are very sensitive to bursts of star-formation activity. Of course, if
the spectrum of the galaxy is known throughout the ultraviolet, optical and infrared
regions of the spectrum, there is no need to use empirical K-corrections – these can
be found from the ratio S[ν0/(1 + z)]/S(ν0). This may not, however, be feasible if
the galaxies are very faint and the redshifts are unknown.

The situation is somewhat better if the observations are carried out in the infrared
waveband (Inskip et al., 2002). It can be seen from Fig. 17.3 that, if the observations
are made at 2 μm, for example, the corrections for the passive evolution of the
stellar populations are much more stable and systematic as compared with the
optical waveband since even at z = 3, the spectral energy distributions are much
less influenced by star formation events. We will find that star-formation activity
dominates the deep counts of galaxies in the optical waveband.

The form of evolution shown in Fig. 17.3 is known as the passive evolution of
the galaxy spectral energy distribution, in that the stellar population was formed in
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Fig. 17.3. Spectral evolution of a model giant elliptical galaxy in which the stellar population
was formed in an initial starburst of duration 108 years. The computations used the stellar syn-
thesis codes for the spectral energy distribution of galaxies developed by Bruzual and Charlot
(Bruzual and Charlot, 2003). The predicted galaxy spectra are shown in equal logarithmic
intervals of cosmic time up to the present day. The initial stellar population was chosen so
that the observed spectrum of a giant elliptical galaxy at the present epoch was reproduced
(Inskip et al., 2002). The vertical lines show the rest wavelengths which would be observed
at redshifts z = 0, 1, 2 and 3 from right to left respectively if the galaxy were observed at
a wavelength of 2.2 μm

an initial starburst and the resulting evolution is simply the ageing of that population.
We can understand how the results for the infrared waveband come about by simple
astrophysical arguments. As pointed out by Tinsley and Gunn, most of the infrared
luminosity originates from stars on the red giant branch and their luminosities and
colours are essentially independent of the masses of their main sequence progenitors
(Tinsley and Gunn, 1976). The lifetimes of red giant stars are much shorter than the
time their progenitors spend on the main sequence, and so the number of red giant
stars is given by the product of the rate at which stars evolve off the main sequence
onto the giant branch and the time they spend there. We need only know the rate of
evolution of stars off the main sequence for quite a narrow range of masses, as can
be understood from the following argument.

The mass-luminosity relation for stars on the main sequence is assumed to take
the form L/L� = (M/M�)x . Their main sequence lifetimes are determined by
the time it takes the star to burn about 10% of its mass into helium, the well-
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known Schönberg–Chandrasekhar limit. During evolution on the main sequence,
the luminosities of stars of a given mass are remarkably constant (Kippenhahn and
Weigert, 1990; Tayler, 1994). Since the available fuel is proportional to the mass of
the star, it follows that the main sequence lifetime is t = t�(M/M�)−(x−1), where
t� is the main sequence lifetime of the Sun, which is about 1010 years. For stars with
M ∼ M�, x ∼ 5 and so the lifetimes of stars of mass M = 2M� is only 1/16 of the
age of the Sun, that is, about 6 × 108 years. Thus, the range of masses of stars which
contribute most of the light of the old stellar populations of galaxies lie in the range
1 < M� < 2 over the range of redshifts of interest.

Since the time stars spend on the giant branch, tg, and their luminosities are rel-
atively independent of their main-sequence masses, to find the change in luminosity
of a galaxy with redshift, we need only determine the rate at which stars evolve off
the main sequence onto the giant branch as a function of main-sequence mass (Gunn,
1978). It is assumed that all the stars were formed in an initial brief starburst and
that the subsequent luminosity evolution of the galaxy is due to the stellar evolution
of this population. Let us assume that the initial mass function of the stars was of
Salpeter form, dN = N(M) dM ∝ M−y dM, where y = 2.35. It is a straightforward
calculation to show that the number of stars on the giant branch Ng is

Ng = tg
dN

dt
= t g

(
dN

dM

)(
dM

dt

)
. (17.15)

Using the above relation between mass and main-sequence lifetime,
t = t�(M/M�)−(x−1), we find

L(t) = L(t0) t−(x−y)/(x−1). (17.16)

Inserting the values x = 5 and y = 2.35, we find L ∝ t−0.66. For the case of
the critical world model, t/t0 = (1 + z)−3/2, and so, to an excellent approximation,
L ∝ (1+ z). Thus, at a redshift of 1, the old stellar populations of galaxies should be
about twice as luminous as they are at the present epoch, and at redshift z = 3, four
times as luminous. This accounts for the rather systematic behaviour of the decrease
in infrared luminosity of galaxies seen in Fig. 17.3. Typically, if the galaxies evolved
passively, they would only be about a magnitude more luminous at redshifts of
z ∼ 1–2 than they are at the present epoch.

17.2.3 Submillimetre Counts of Dusty Galaxies

The predictions shown in Fig. 17.2 are strongly modified for galaxies which are
intense dust emitters if they are observed in the submillimetre waveband, 0.1 ≤
λ ≤ 1 mm. Examples of the stellar energy distributions from submillimetre to
ultraviolet wavelengths for a sample of infrared galaxies selected at 60 μm are
shown in Fig. 17.4a (Sanders and Mirabel, 1996). The intense far-infrared and
submillimetre emission is the radiation of heated dust grains, either because of
intense star formation or because of heating by the ultraviolet radiation of an obscured
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active galactic nucleus. The observed submillimetre spectra are similar to those of
star-forming regions in our Galaxy and take the form of modified black-body spectra.
The maximum intensity at 50 to 100 μm corresponds to the temperatures to which
the dust grains are heated, which are about 30 to 60 K. To the long-wavelength
side of this maximum, the dust clouds are optically thin and the spectral index of
their thermal emission is typically α ≈ −3 to −4. As can be seen from Fig. 17.4a,
the ‘infrared galaxies’ can have luminosities in the far-infrared waveband which
exceed those in the optical waveband and these types of galaxy are expected to be
the dominant contributors to the counts of sources in the submillimetre waveband.
These ‘inverted’ spectra strongly modify the predicted flux density–redshift relation
and the predicted number counts in these wavebands.

Examples of the flux density–redshift relations at submillimetre wavelengths are
shown in Fig. 17.4b. The relation flattens, or even inverts, at redshifts of z ∼ 1
because of the very large negative K-corrections in these wavebands (Blain and
Longair, 1993, 1996). From the flatness of the flux density–redshift relation at
redshifts z ≥ 1, it can be seen that, once these galaxies are observed at z ∼ 1,
the whole of the redshift range out to z ∼ 5 − 10 becomes observable at about
the same flux density. As a result, there is expected to be a dramatic increase in
the numbers of sources at this flux density and the differential source counts are
quite different from those shown in Fig. 17.2. In Fig. 17.4c, the predicted differential
source counts are shown for a population of far-infrared sources with the far-infrared
luminosity function of IRAS galaxies, which was determined at a wavelength of
60 μm (Saunders et al., 1990) When the source distribution extends to redshifts
z ≥ 1, the source counts are inverted with β > 1.5, even if there is no cosmological
evolution of the source population.

17.2.4 Number Counts in Models with FiniteΩΛ

Differential number counts for world models with ΩΛ �= 0 were presented in
Sect. 7.2.2 but they deserve a little more attention because of the stretching of the
cosmological timescale associated with positive values of ΩΛ. Let us consider the
extreme case in which the Universe almost reached a stationary Eddington–Lemaître
state at some redshift zc (Fig. 7.3c). As discussed in Sect. 7.4.5, the flux density–
redshift relation is strongly modified for those Lemaître models which differ only
slightly from the static Eddington–Lemaître case. It can be seen from Fig. 7.10 and
expression (7.79) that the strictly homogeneous models have an infinite flux density
at those redshifts corresponding to the poles and antipoles in the relation between
comoving radial distance coordinate and redshift.

It takes a little care to work out the number counts in these cases (Longair and
Scheuer, 1970). The example shown in Fig. 17.5 is a Lemaître model which differs
only slightly from an Eddington–Lemaître model, which would be stationary at
redshift zc = 2. The value of the dark energy density parameter isΩΛ = ΩΛ c(1+ε),
where ΩΛc is the value of ΩΛ for the stationary Eddington–Lemaître model and
ε = 0.02. The counts are shown as normalised integral source counts for a single
luminosity class of source with spectral index α = 1. The sharp peaks in these
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Fig. 17.4. a Examples of the stellar energy distributions from submillimetre to ultraviolet
wavelengths for a sample of infrared galaxies selected at 60 μm. The insert shows the energy
distributions for ultraluminous infrared galaxies which have ‘warm’ infrared colours (Sanders
and Mirabel, 1996). b The flux density–redshift relation in the submillimetre waveband
for an infrared galaxy with the spectrum shown in a, assuming the source has far-infrared
luminosity 1013 L� for world models with Ω0 = 1 and 0. For comparison, the flux density–
redshift relations for a population of sources with power-law spectra Sν ∝ ν−1 are also shown.
c The predicted differential normalised counts for a uniform distribution of sources at 450
and 1100 μm assuming the galaxies have spectra similar to those of Fig. 17.4a and that the
far-infrared luminosity function at 60 μm is that of IRAS galaxies (Saunders et al., 1990). The
predicted number counts at 450 and 1100 μm are shown for dust temperatures of 30 and 60 K
(Blain and Longair, 1993)
�

Fig. 17.5. The normalised integral source counts for a Lemaître model which differs only
slightly from a static Eddington–Lemaître model. The value of the dark energy density
parameter is ΩΛ = ΩΛ0(1 + ε), where ΩΛ0 is the value which would result in a static
universe at redshift zc = 2. In this example, ε = 0.02 and the sources are assumed to have
power-law spectra S ∝ ν−1 (Longair and Scheuer, 1970). The vertical dashed lines indicate
the flux densities corresponding to the pole and antipole in the flux density–redshift relation.
The solid line labelled ‘Total counts’ is the integral source count found by summing the
contributions from the ranges of r/� from 0 to π/2, π/2 to π and so on (Fig. 7.10)

relations correspond to the poles and antipoles in the flux density–redshift relation
for this model. It can be seen that the source counts are flatter than the models
with ΩΛ = 0 at high flux densities, but once observations extend to flux densities
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Fig. 17.6. Illustrating the fluctuations in the intensity of the background radiation due to
the superposition of faint sources. The diagram represents a scan across a region of sky.
The ‘noise’ is due to the superposition of faint sources within the telescope beam. In the
P(D) approach to estimating the number counts, individual sources are not identified, but the
deflections D of the record are recorded at the Nyquist frequency, which corresponds to twice
per telescope beam (after a diagram by Hewish (Hewish, 1961))

beyond the coasting phase at z ≈ zc, the counts converge dramatically. To work out
a more realistic source count, the function displayed in Fig. 17.5 would have to be
convolved with the luminosity function of the sources and this would wipe out the
jagged structure in the counts, resulting in a monotonically decreasing function of
decreasing flux density.

In reality, it is unlikely that the sharp maxima in the flux density–redshift relation
would actually be observed. The existence of the poles and antipoles in the flux
density–redshift relation depends upon the Universe being perfectly isotropic and
homogeneous and so acting as a perfect lens for the focussing of the light rays
from the distant source at the observer. As pointed out by Petrosian and Salpeter, if
galaxies were present in the vicinity of the redshifts corresponding to the poles and
antipoles, they would cause gravitational deflections of the light rays, resulting in
the splitting up of background sources into a number of components, qualitatively
similar to those shown in Fig. 4.20 (Petrosian and Salpeter, 1968). These gravitational
deflections would have the effect of blurring the peaks in the predicted source counts.
It is therefore unlikely that the predictions of the perfectly uniform model would be
observed in the real Universe.

17.2.5 Fluctuations in the Background Radiation due to Discrete Sources

A topic of some importance directly related to the number counts of sources is the
amplitude of fluctuations in the background radiation due to discrete sources. This
problem was first solved by Scheuer. for the case of observations made with a radio
interferometer and may be stated as follows (Scheuer, 1957) Suppose the sky is
observed with a telescope of finite beamwidth θ and the integral number counts of
sources are N(≥ S) ∝ S−β. If the survey extends to low enough flux densities, at
some point there will be one source per beam area and then, at fainter flux densities,
the yet more numerous faint sources cannot be detected individually – they simply
add up incoherently within the beam of the telescope. In this circumstance, the noise
level of the survey is determined by the random superposition of faint sources within
the beam of the telescope, as illustrated schematically in Fig. 17.6. The problem
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of detecting radio sources when the ‘noise’ is due to faint unresolved sources in
the telescope beam is referred to as confusion. In a confusion-limited survey, the
flux densities of sources are systematically overestimated because of the random
presence of faint sources within each beam with a power-law intensity distribution.
This problem afflicted the early 2C radio survey and is the reason the slope of
the radio source counts was initially overestimated. Confusion may also limit the
detection of fluctuations in the cosmic microwave background radiation on small
angular scales (Longair and Sunyaev, 1969).

Subsequently, Scheuer solved the problem of interpreting the background fluc-
tuations in a survey made with a single-beam telescope (Scheuer, 1974). In the P(D)
approach, we forget about detecting individual sources and deal directly with the
probability distribution of intensity on the sky. If the map is sampled at the infor-
mation rate, or Nyquist frequency, which corresponds to twice per beamwidth in
a one-dimensional scan, a probability distribution P(D) is found for the deflections
D on the record measured from some zero level. The term ‘deflection’ D is used
since the original radio astronomy surveys were recorded on strip charts and the
‘deflections’ really were the deflections of the recording pen.

Typical P(D) distributions are shown in Fig. 17.7. The distributions are non-
Gaussian with a power-law distribution at large values of D but, according to the
central limit theorem, the noise level due to the fluctuations is given by the standard
deviation of the probability distribution P(D). Very large deflections are identified as
discrete sources and so the P(D) distribution tends asymptotically to the differential
source count P(D) dD ∝ D−(β+1) dD for large values of D. Some criterion for the
reliable detection of discrete sources has to be established, for example, that the
deflection D should exceed five times the standard deviation of the confusion noise,
or equivalently restricting the identification of sources to one source per 20 or 30
beam areas.

Scheuer carried out a statistical analysis of the function P(D) for sources selected
randomly from the differential source count dN(S) ∝ S−(β+1) dS and showed how
the true slope of the source counts could be found without the need to identify
individual sources. Figure 17.7 shows the normalised P(D) distributions for different
value of β. It can be seen that the shape of the P(D) distribution provides a means
of determining the slope of the source counts.

To make order-of-magnitude estimates of the fluctuations, the following argu-
ment can be used. The most probable value of P(D) corresponds to the flux density
at which the sources have a surface density of one source per beam area. This can
be understood as follows, At higher flux densities, the sources are too rare to make
a large contribution to the fluctuations in the background signal. At lower flux den-
sities, many faint sources add up statistically and so contribute to the background
intensity, but the fluctuations are dominated by the brightest source present in each
beam. At roughly one source per beam area, the fluctuations can be thought of as
arising from whether or not a source of that flux density is present by chance within
the beam. Whereas reliable detection of individual sources can only be made at about
five times the confusion noise level, statistical information about the source counts
can be obtained to about one source per beam area,
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Fig. 17.7. Examples of the theoretical P(D) distributions for observations made with
a single-beam telescope for different assumed slopes of the differential source counts
dN(S) ∝ S−(β+1) dS. The zero point of the abscissa is the mean amplitude D and the
areas under the probability distributions have been normalised to unity. The distributions tend
asymptotically to dN(D) ∝ D−(β+1) dD at large deflections D (Scheuer, 1974)

Scheuer’s remarkable analysis of 1957 was entirely analytic, and somewhat
forbidding. Nowadays, it is simpler to use Monte Carlo methods to work out the
functions P(D) for the assumed form of source count. The first study to use Monte
Carlo modelling procedures was carried out by Hewish in his analysis of the original
records of the Cambridge 4C survey (Hewish, 1961). His analysis made Scheuer’s
analytic approach more accessible and provided the first evidence for the convergence
of the radio source counts at low flux densities. These procedures have been used
to determine the radio source counts to the very faintest flux densities, for example,
in the analyses of Fomalont and his colleagues and of Wall (Fig. 17.9) (Fomalont
et al., 1988; Wall, 1996). They have also been successfully used in analysis of the
deep ROSAT surveys by Hasinger and his colleagues (Fig. 17.16) (Hasinger et al.,
1993).

A different approach to interpreting the fluctuations in the background radiation
is to determine the spatial correlation function of the fluctuations. This has been
carried out successfully in the optical waveband by Shectman, who found a clear
signature corresponding to the two-point correlation function for galaxies (Shectman,
1974). The observed fluctuation spectrum is in quite remarkable agreement with the
standard correlation function found in studies of large samples of galaxies.

Another application of this approach in the ultraviolet waveband was carried out
by Martin and Bowyer. In a short rocket flight, they made a survey of a small region
of sky and found a significant correlated signal among the spatial distribution of
the counts (Martin and Bowyer, 1989). With a number of reasonable assumptions,
they were able to show that they had detected the ultraviolet emission from galaxies.
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Similar analyses have been carried out for the fluctuations in the X-ray background
as observed by the HEAO1 A-2 experiment (Persic et al., 1989) and in five deep
Einstein fields (Barcons and Fabian, 1989), but with negative results. The same type
of fluctuation analysis has been carried out by Kashlinsky and his colleagues for
the COBE diffuse background emission in the near-infrared region of the spectrum
(Kashlinsky et al., 1996).

17.3 The V/Vmax or Luminosity-Volume Test

A more direct method of investigating the uniformity of a distribution of objects in
space is to use what is known as the V/Vmax or luminosity-volume test (Schmidt,
1968; Rowan-Robinson, 1968). A sample of objects is selected which is known to
be complete within well-defined flux density and apparent magnitude limits and for
which complete redshift information is available. The essence of the test is to ask
whether or not the distribution of objects is statistically uniform within the accessible
region of space defined by the observational selection criteria. The test has been of
particular value in the study of the space distribution of quasars and we begin by
discussing it in that context.

Suppose a sample of quasars is complete in that all those having flux densities
greater than some limiting value S0 at a particular wavelength have been detected
in some region of the sky. Assume also that redshifts have been measured for all of
them and so distances can be found once a cosmological model has been adopted.
Consider first quasars of a single luminosity L. For each quasar having flux density
S, we can evaluate the quantity V/Vmax, where V is the volume of space enclosed by
the redshift z of the quasar and Vmax is the volume of space within which this source
could have been observed and still be included in the complete sample. The volume
Vmax corresponds to the redshift zmax at which a source of intrinsic luminosity L
would have observed flux density S0. Thus,

V

Vmax
=

∫ r

0
D2 dr

∫ rmax

0
D2 dr

, (17.17)

where D is the distance measure and r and rmax are the comoving radial distance
coordinates corresponding to z and zmax respectively. Notice that the volumes used
in the test are comoving coordinate volumes at the present epoch. Now suppose the
distribution of quasars in space is uniform. The mean value of V/Vmax is then

〈
V

Vmax

〉
=

∫ r0

0

(
V

Vmax

)
D2 dr

∫ r0

0
D2 dr

. (17.18)
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Setting
∫ r

0
D2 dr = X ,

dX

dr
= D2 , (17.19)

and hence

〈
V

Vmax

〉
=

∫ r0

0
X

(
dX

dr

)
dr

X2 (r0)
= 1

2
. (17.20)

As is intuitively expected, for a uniform distribution of quasars, we observe sources
on average half-way volume-wise to the limits of their observable volumes, inde-
pendent of the luminosities of the sources.

Furthermore, the values of V/Vmax should be uniformly distributed between 0
and 1, if the source distribution is uniform, that is, if they have constant comoving
number densities. In the original samples of extragalactic objects such as the 3CR
quasars studied by Schmidt, the statistics of the complete samples were often limited
and so it was normal practice to evaluate the quantity 〈V/Vmax〉 and compare this
with the expected mean value of 0.5. The simplest statistical test for the significance
of departures from the expected mean value of 0.5 can be developed as follows.
For a uniform distribution of V/V max between 0 and 1, the standard deviation is
σ0 = 1/

√
12 = 0.288. When the number of sources N is sufficiently large, the

central limit theorem may be used and so the probability distribution of 〈V/V max〉
approaches a Gaussian distribution with standard deviation N−1/2 of the original
distribution, that is, σ = σ0/N1/2.

Sometimes, the samples of sources are only complete to certain radio and optical
flux density limits – for example, in Schmidt’s original sample of thirty-three 3CR
quasars, the completeness criteria corresponded to a radio flux density limit at
178 MHz of S178 = 9 Jy and to a limiting optical visual magnitude of 18.4 (Schmidt,
1968). Thus, in some cases the limiting volume was determined by the radio flux
density and in others by the optical apparent magnitude. The mean value of V/Vmax

is, however, still expected to be 0.5 for a uniform distribution of sources, provided
the larger of (V/Vmax)radio and (V/Vmax)optical is chosen for each source.

Thanks to the efforts of many astronomers, the redshifts of large complete
samples of galaxies, quasars and active galaxies are now available. An instructive
example is the V/Vmax distributions for 3CR radio galaxies and radio quasars shown
in Fig. 17.8. These objects form complete samples of the brightest radio sources in
the northern sky and they have similar redshift distributions, both of them extending
to redshifts of z ∼ 2 (Longair, 1997a). It can be seen that both distributions are biased
towards values of V/Vmax greater than 0.5. The values of 〈V/Vmax〉 for the quasars
and radio galaxies are 〈V/Vmax〉 = 0.686 ± 0.042 and 0.697 ± 0.031 respectively,
showing that the objects in these samples were more common at large redshifts.
Notice that this is exactly the same result inferred from the number counts of the
radio sources and the root cause is the same – the steep source counts means that
V/Vmax is greater than the mean. The additional information provided by the redshifts
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strengthens the case considerably for the strong evolution of the comoving number
densities of sources with redshift.

The V/Vmax procedure is a very powerful technique for determining the unifor-
mity and space density of any class of object. For example, in Felten’s determination
of the luminosity function of galaxies, he took account of the effects of extinction by
interstellar dust in our Galaxy upon the luminosities and observable volumes within
which galaxies of different intrinsic luminosities could be observed (Felten, 1977).
In this case, the observable volume is not spherically symmetric about the observer –
the key point is that the samples of sources studied should be statistically complete
within well-defined observational selection criteria.

Thus, generalising, we may say that the space density of any object can be written
Ni = 1/Vi , where Vi is the volume of space within which the object could have
been observed and still satisfy the selection criteria of the survey. By summing over
all the objects in the complete sample, the luminosity function of the objects can
be determined. The procedure can be further extended to consider the distribution
of objects within a particular redshift interval, what is referred to as a banded
V/Vmax test and this has been useful in studying whether or not there is a cut-off
in the distribution of quasars at large redshifts (Waddington et al., 2001). These

Fig. 17.8a,b. The V/Vmax distributions for a quasars and broad-line radio galaxies and b
the narrow-line radio galaxies in a complete sample of extragalactic radio sources selected
from the 3CR complete sample (Laing et al., 1983). Redshifts have been measured for all the
objects in the sample, which is complete to a limiting radio flux density of 9.7 Jy at 178 MHz
(Longair, 1997a)
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calculations can be carried out for all objects in the sample within given redshift
limits and so luminosity functions as a function of cosmic epoch derived directly
from the samples. This type of analysis has been carried out with remarkable success
for the 6000 optically selected quasars in the 2dF quasar survey (Fig. 17.14a).

17.4 Background Radiation

It is traditional to refer to the study of the background radiation as the ‘oldest
problem in cosmology’. What is commonly called Olbers’ paradox revolves around
the question

Why is the sky dark at night?

Olbers was one of many scientists who realised that the darkness of the night sky
provides us with general information about the large-scale distribution of matter
and radiation in the Universe. Harrison has written the history of Olbers’ paradox
in his delightful book Darkness at Night (Harrison, 1987). In its modern guise, the
observed integrated background emission from a population of extragalactic objects,
or upper limits to it, can provide useful constraints on their spatial distribution and
it is instructive to carry out some simple illustrative calculations which will be
elaborated in the following sections.

17.4.1 Background Radiation and Source Counts

Let us first consider the relation between the observed source counts and the back-
ground radiation. The background radiation from a population of sources with dif-
ferential source count dN ∝ S−(β+1) dS is

I ∝
∫ Smax

Smin

S dN ∝
∫ Smax

Smin

S−βdS = 1

1 − β

[
S(1−β)]Smax

Smin
. (17.21)

There is therefore a critical value β = 1 for the slope of the integral source counts. If
the slope of the counts is steeper than β = 1, the background intensity Iν ∝ S(1−β)

min ;
if the slope of the integral source counts is less than β = 1, the background intensity
is proportional to S1−β

max . Thus, most of the background radiation originates from that
region of the counts with slope β = 1. A uniform population of sources in Euclidean
space has β = 1.5, but in real-world models the slope decreases with increasing
redshift, as discussed in Sect. 17.2, where we showed that the slope of the integral
counts is about 1 at a redshift z ≈ 0.5. Thus, the bulk of the background radiation
originates from redshifts z 	 1. Let us carry out some more exact calculations.

17.4.2 Evaluating the Background due to Discrete Sources

For illustrative purposes, we assume that the sources have power-law spectra, S ∝
ν−α, and then the usual flux density-luminosity relation is

S(ν0) = L(ν0)

4πD2(1 + z)1+α . (17.22)
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The numbers of sources per steradian in the increment of comoving radial distance
coordinate dr in the case of a uniform distribution of sources is

dN = N0 D2 dr . (17.23)

Therefore, the background intensity I(ν0) due to this uniform distribution of sources
is

I(ν0) =
∫

S(ν0) dN =
∫ ∞

0

L(ν0)

4πD2(1 + z)1+α N0 D2 dr (17.24)

= L(ν0)N0

4π

∫ ∞

0
(1 + z)−(1+α) dr . (17.25)

For the Friedman world models,

dr = c dz

H0
[
(Ω0z + 1)(1 + z)2 −ΩΛz(z + 2)

]1/2 , (17.26)

and so we obtain the result

I(ν0) = c

H0

L(ν0)N0

4π

∫ ∞

0

dz[
(Ω0z + 1)(1 + z)2 −ΩΛz(z + 2)

]1/2
(1 + z)1+α

.

(17.27)

This result can be compared with the Newtonian version of the same calculation
which, from the small redshift limit of (17.27), z → 0, r = cz/H0, becomes

I(ν0) = L(ν0)N0

4π

∫ ∞

0
dr . (17.28)

This is the standard exposition of Olbers’ paradox, namely, that, in an isotropic,
infinite, stationary Euclidean Universe, the background radiation diverges. This
calculation has not taken account of the finite sizes of the sources, nor does it take
account of thermodynamics, since in an infinite static Euclidean Universe all the
matter must come into thermodynamic equilibrium at the same temperature.

Unlike the integral (17.28), (17.27) converges provided α > −1.5. Even if
the spectral index of the sources were more negative than this value, any realistic
spectrum must eventually turn over at a high enough frequency, as can be seen in the
spectra of dusty galaxies in Fig. 17.4a, and so a finite integral is always obtained.
For example, the background intensity for world models with ΩΛ = 0, Ω0 = 0 and
Ω0 = 1 are:

Ω0 = 0 I(ν0) = c

(1 + α)H0

L(ν0)N0

4π
; (17.29)

Ω0 = 1 I(ν0) = c

(1.5 + α)H0

L(ν0)N0

4π
. (17.30)
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Thus, for typical values of α, to order of magnitude, the background intensity is just
that originating within a typical cosmological distance (c/H0), that is,

I(ν0) ∼ c

H0

L(ν0)N0

4π
. (17.31)

A combination of factors leads to the convergence of the integral for the background
intensity. Inspection of integral (17.27) shows that part of the convergence is due
to the factor (1 + z)−(1+α), which is associated with the redshifting of the emitted
spectrum of the sources. The second is the dependence of r and D upon redshift z.
These relations are linear at small redshifts, z 	 1, but, as shown in Figs. 7.6 and 7.7,
r and D converge as z → ∞. This convergence is associated with the fact that the
Friedman models have finite ages and consequently there is a finite maximum radial
distance from which electromagnetic waves can reach the Earth.

Let us look in a little more detail at the origin of the background radiation in the
uniform models. For the critical modelΩ0 = 1,ΩΛ = 0 with α = 1, the background
intensity out to redshift z is

I(ν0) = 2c

20πH0
L(ν0)N0

[
1 − (1 + z)−5/2] . (17.32)

Half of the background intensity therefore originates at redshifts z ≤ 0.31. For
the empty world model, Ω0 = 0, half the intensity originates from redshifts less
than 0.42. Thus, although it might be thought that the background radiation would
probe the very distant Universe, in fact, most of the radiation originates at redshifts
z 	 1. Furthermore, since half of the background is expected to originate at redshifts
less than about 0.5, the principal contributors to the background radiation are not
difficult to identify nowadays, provided their positions are accurately known. If
the main sources of the background are associated with galaxies, there should be
no difficulty in discovering the principal contributors to the background radiation,
provided the sources are uniformly distributed in space. This statement is not correct,
however, if the properties of the sources have evolved strongly with cosmic epoch.

17.4.3 The Effects of Evolution – the Case of the Radio Background Emission

If the luminosity function of the sources evolved with cosmic epoch, the background
intensity is

I(ν0) = c

H0

L(ν0)N0

4π

∫ ∞

0

f(L, z, type, . . . ) dz[
(Ω0z + 1)(1 + z)2 −ΩΛz(z + 2)

]1/2
(1 + z)1+α

,

(17.33)

where the evolution of the comoving luminosity function is described by the func-
tion f(L, z, type, . . . ). For simplicity, let us consider one of the simplest forms of
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evolution of the luminosity function which is a reasonable fit to the observed number
counts and redshift data, ‘luminosity evolution’ of the form

L(z) = L0(1 + z)3 0 < z ≤ 2 ;
L(z) = 27L0 z > 2 .

The integrated background emission from a population of sources which locally has
luminosity L0 and space density N0 is then

I(ν0) = c

H0

N0

4π

∫ ∞

0

L(z) dz

(1 + z)7/2
, (17.34)

where we have assumed that the spectral index of the sources α is 1 and that
Ω0 = 1,ΩΛ = 0. Performing the integral, we find

I(ν0) = c

H0

(
N0 L0

4π

)[
12

5
(1 + zm)

1/2 − 2

]
. (17.35)

The contributions to the background from redshifts 0 to zm and from zm to infinity
are in the ratio 5

[
1 − (1 + z m)

−1/2
] : 1.

In the no-evolution case, L(z) = L0 for all redshifts and the background intens-
ity is

I(ν0) = 2

5

c

H0

(
N0 L0

4π

)
. (17.36)

In contrast, in the evolution case, adopting the simple example of luminosity evo-
lution, the background intensity is [6(1 + zm)

1/2 − 5] times greater than in the
no-evolution case. If we adopt zm = 2, the background intensity is 5.4 times greater
than in the case of no evolution.

This example agrees with what is found in interpreting the background radio
emission at long radio wavelengths. If the effects of cosmological evolution were
neglected, the background brightness temperature due to strong radio sources would
amount to a brightness temperature only a few K at 178 MHz. Once the evolutionary
effects are included in the calculation, however, a brightness temperature of 16 − 19
K is found for the strongly evolving component which gives better agreement with
that of the isotropic radio background emission of about 23 K at 178 MHz, when the
contribution of normal galaxies is included as well (Longair, 1966; Bridle, 1967).

This is a case in which the background emission does indeed originate from the
distant Universe, the bulk of the background coming from redshifts of order 2, but
this only occurs because of the very strong effects of cosmological evolution. The
important point is that the evolution has to be very drastic if objects at redshifts z ≥ 1
are to make a significant contribution to the intensity of the background emission.
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17.5 The Evolution of Active Galaxies with Cosmic Epoch

17.5.1 Number Counts and V/Vmax Tests for Extragalactic Radio Sources

Historically, the number counts of extragalactic radio sources and the V/Vmax tests
for quasars were among the first pieces of direct evidence for the evolution of
certain classes of extragalactic object with cosmic epoch. The history of the early
controversies over the counts of radio sources has been recounted by Scheuer and
by Sullivan and more briefly, in the context of the development of astrophysical
cosmology, in my history of astrophysics and cosmology (Scheuer, 1990; Sullivan,
1990; Longair, 2006). A compilation of counts of radio sources at a wide range of
frequencies throughout the radio waveband is shown in Fig. 17.8 (Wall, 1996).

The cause of the controversies in the 1950s and early 1960s was the steepness of
the radio source counts at high flux densities. These surveys were carried out at low
radio frequencies, the counts at metre wavelengths (0.178 GHz) being the first to
show the ‘inverted’ behaviour with β = 1.8 at high flux densities. The radio spectra
of these sources have mean spectral index α ≈ 0.8 and so the arguments developed
in Sect. 17.2.2, and illustrated in Fig. 17.2, show that there must be many more faint
sources than are predicted according to all uniform world models. By the mid-1960s,
it was known that the majority of these sources were at large redshifts and this led
to the realisation that the source population had to evolve very strongly with cosmic
epoch (Davidson and Davies, 1964; Longair, 1966).

When redshift data for complete samples of the radio quasars in the 3CR sam-
ples became available, Schmidt and Rowan-Robinson showed that these sources
were concentrated towards the limits of their observable volumes, as illustrated in
Fig. 17.8a (Rowan-Robinson, 1968; Schmidt, 1968). The radio galaxies in the 3CR
sample were much more difficult to identify, but this was achieved thanks to the
introduction of CCD cameras on the Palomar 5-metre telescope in the late 1970s
which enabled optical identifications with galaxies to be made to about V = 23.5
(Gunn et al., 1981). Fortunately, many of these radio galaxies have strong narrow
emission lines in their optical spectra and this enabled Spinrad. and his colleagues
to measure their redshifts. The 〈V/Vmax〉 test for the 3CR radio galaxies gave almost
exactly the same result as that for the radio quasars (Fig. 17.8b).

Since these pioneering days, radio source counts have been determined over the
entire radio waveband from low radio frequencies to short centimetre wavelengths
(Fig. 17.9). They all show the same overall features – a steep source count at high
flux densities, a plateau at intermediate flux densities and convergence at low flux
densities. At the very lowest flux densities, S ≤ 10−3 Jy, the source counts flatten
again.

In interpreting the counts of sources, the objective is to find out how the lumi-
nosity function of the sources N(L) has changed with cosmic epoch. The problem
is that, to achieve this, it is necessary to measure the redshifts for large, complete
samples of sources, spanning the range of flux densities shown in Fig. 17.9. This
remains a time-consuming task since high-resolution radio maps are needed in order
to make optical identifications of faint objects which typically have redshifts z ≥ 1.
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Fig. 17.9. The differential, normalised counts of extragalactic radio sources at a wide range
of frequencies throughout the radio waveband. This compilation was kindly provided by
Dr Jasper Wall (Wall, 1996). The points show the number counts derived from surveys of
complete samples of radio sources. The boxes indicate extrapolations of the source counts to
very low flux densities using the P(D) technique described in Sect. 17.2.5
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Then optical spectra and precise multiwavelength photometry are needed to obtain
their redshifts and understand the evolutionary status of the host galaxies.

It is conventional to consider separately the radio sources with steep (α ∼ 0.8)
and flat (α ∼ 0) radio spectra. The former are the extended double radio sources
which are the dominant population at low radio frequencies, ν < 1 GHz; the latter are
the compact radio sources found in high-frequency samples, ν > 1 GHz, and which
often exhibit radio variability and superluminal motions. In order to define how the
luminosity function of radio sources with steep and flat radio spectra have changed
with cosmic epoch, free-form modelling techniques were developed by Peacock and
extended by Dunlop and Peacock (Peacock, 1985; Dunlop and Peacock, 1990). All
the available radio, infrared, optical and redshift data were used in constructing the
models. The radio luminosity function was split into two populations, one consisting
of intrinsically weak radio sources associated with normal and Seyfert galaxies and
the other of the powerful extended and compact radio sources which typify the
strong radio source phenomenon. Two examples of the types of model which were
consistent with all the data available to Dunlop and Peacock are shown in Fig. 17.10.
Both the steep- and flat-spectrum radio sources show the same forms of evolutionary
behaviour.

In the mid-1990s, the changes in the radio luminosity function out to redshifts
z ≈ 2 could be simply described by what is termed luminosity evolution. In this form
of evolution, the radio luminosity function of the powerful radio sources is shifted
to greater radio luminosities with increasing redshift, whilst the normal galaxy
radio luminosity function remains unchanged. These changes could be described
by an increase in the radio luminosities of the strong radio sources with redshift
as L(z) = L0(1 + z)3. It should be emphasised that this is simply a convenient
way of parameterising the changes of the radio luminosity function to account for
all the data. Inspection of Fig. 17.10 shows that, although the shift in luminosity
amounts to a factor of 27 by a redshift of 2, the number density of sources of
a given luminosity increases by a much greater factor. In the functions shown in
Fig. 17.10, the comoving number density of sources of luminosity 1027 W Hz−1 sr−1

increases by a factor of about 1000, indicating how strongly the luminosity function
of extragalactic radio sources has evolved with cosmic epoch. Note also that other
parameterisations of the evolution of the luminosity function can account for the
data equally well. Figure 17.10b shows what is referred to as luminosity-dependent
density evolution, which is also a satisfactory fit to the data.

Both the models shown in Fig. 17.10 indicate that the dramatic changes in the
luminosity function cannot continue to redshifts z > 2. For example, in Fig. 17.10a,
the luminosity function at z = 4 has declined from the maximum at z ≈ 2 − 3. If
this decline at large redshifts did not take place, the observed convergence of the
counts would not be reproduced and the radio background emission at low radio
frequencies would be exceeded (see Sect. 17.4.3) (Longair, 1995).

To address this issue, complete samples of radio sources are needed at low radio
flux densities, as was demonstrated by Dunlop (Dunlop, 1998). A suitable survey for
these purposes was the Leiden–Berkeley Deep Survey (LBDS), which extended to
flux densities about a factor of about 1000 fainter than the 3CRR sample. The radio
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Fig. 17.10a,b. Two examples
of the forms of evolving radio
luminosity function which can
account for the radio source
counts and available redshift and
identification data available in
the mid-1990s (Dunlop, 1998). In
model a, the change in the radio
luminosity function is described
by pure luminosity evolution. In
model b, the changes in the radio
luminosity function involve in
addition negative density evolu-
tion at large redshifts. In both
cases, the changes in the form
of the radio luminosity function
are described in terms of the
number densities of sources per
unit comoving volume (Dunlop,
1998)

luminosity–redshift diagram shown in Fig. 17.11 shows the flux density limits for
the 3CRR and LBDS surveys, as well as the intermediate Parkes Selected Region
(PSR) sample. The flux density limit for the LBDS survey is shown for flat-spectrum
sources by a solid line and the flat spectrum sources in the survey by open circles;
the steep-spectrum source limits are shown by a dashed line and the steep spectrum
sources by solid circles (Waddington et al., 2001). There is a rather abrupt cut-off
to the source distribution for both the flat- and steep-spectrum sources at z ∼ 2
and this is not the result of observational selection or of the decrease in comoving
volume per unit redshift. These results show convincingly that the radio source and
associated black hole activity was at its greatest at redshifts z ∼ 2 and that this activity
decreased rather dramatically at earlier and later cosmological epochs. Waddington
and his colleagues also showed that pure luminosity evolution was not a particularly
good fit to the data when it was extended to low radio luminosities. Specifically, they
found that there is a luminosity dependence of the high redshift cut-off – the lower
luminosity sources with P1.4 GHz ∼ 1024 W Hz−1 sr−1 began to decline in comoving
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Fig. 17.11. The luminosity–redshift plane for radio sources with S1.4 ≥ 2 mJy in the Leiden–
Berkeley Deep Survey Hercules field. The flux density limits for the survey are shown for
flat-spectrum (solid line, open circles) and steep-spectrum (dashed line, solid circles) sources,
together with the limits for samples selected at higher flux densities, the PSR (dotted line)
and 3CRR sample (dot-dash line) samples. Photometric redshifts have been adopted for those
sources without spectroscopic redshifts (Waddington et al., 2001)

number density at redshifts of z ≈ 1–1.5, while higher luminosity sources with
P1.4 GHz ∼ 1025–1026 W Hz−1 sr−1 were in decline in comoving number density
beyond z ≈ 2–2.5.

17.5.2 Radio Quiet Quasars

The quasars were discovered through their identification with extragalactic radio
sources in the early 1960s. In 1965, the radio-quiet counterparts of the radio quasars
were discovered by Sandage and these turned out to be about 50 to 100 times more
common than the radio-loud variety (Sandage, 1965). It was soon established that
they also had a steep source count and a value of 〈V/Vmax〉 much greater than 0.5
(Bracessi et al., 1970; Schmidt and Green, 1983). Subsequent studies have shown
that the optically selected quasars exhibit evolutionary behaviour over cosmological
time scales similar to that established for the radio-loud quasars.

The definition of complete samples of optically selected quasars is somewhat
more complex than that of their radio counterparts because the optical spectra of
quasars are much more complex and varied as compared with the simple power-
law behaviour of the radio emission of radio quasars. Also, the optical emission
of quasars is often found to be time-variable. A major methodological problem
is that the radio-quiet quasars have to be identified in the presence of very large
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numbers of stars belonging to our own Galaxy. Woltjer has given a concise summary
of the relative merits of the different selection procedures for defining complete
samples (Woltjer, 1990). The approaches which have been taken to the definition of
statistically complete quasar samples can be summarised as follows.

– One of the most successful techniques for finding radio-quiet quasars has been
the search for star-like objects which have ultraviolet excesses, one of the char-
acteristics of the first samples of radio quasars. This technique relies upon the
fact that the UV-optical continuum spectrum of quasars is, to a first approxima-
tion, a power law and so they are relatively more intense ultraviolet and infrared
emitters than normal stars. The pioneering studies of Bracessi and his colleagues
first demonstrated convincingly that the UV-excess objects have a much steeper
number count than that expected in a uniform Euclidean world model (Bracessi
et al., 1970). This technique is very successful for discovering quasars with red-
shifts z ≤ 2.2. At this redshift, the Lyman-α emission line is redshifted into the
B filter and so the quasars no longer exhibit ultraviolet excesses in the (U–B)
colour index. At larger redshifts, absorption lines associated with the Lyman-α
forest depress the ultraviolet emission beyond the Lyman-α line so that these
quasars do not exhibit such a strong ultraviolet excess. The ultraviolet excess
technique was exploited by Schmidt and Green, who derived a complete sample
of 114 bright radio-quiet quasars with B, on average, less than 16.16 in a survey
which covered about a quarter of the whole sky (Schmidt and Green, 1983). In-
terestingly, only 114 quasars were confirmed spectroscopically among the 1874
ultraviolet excess objects which satisfied the ultraviolet excess selection criteria.
Most of 1874 objects were hot, hydrogen atmosphere subdwarf stars, the sdB
stars, and white dwarfs.
The ultraviolet excess technique was exploited in the 2dF Quasar Redshift Survey
carried out at the Anglo-Australian telescope. The ultraviolet excesses were
defined from machine scans of plates taken by the UK Schmidt Telescope in
the (u, bJ, r) wavebands. 25,000 quasars were discovered by this technique. The
stacked spectra in the observer’s rest frame are shown in Fig. 17.12. The observed
wavelength is plotted on the abscissa and the redshift on the vertical axis. The
plot shows the characteristic strong emission lines of MgII, CIII], CIV and Lyα
seen in quasar spectra as they are redshifted through the optical waveband. At
the largest redshifts, the Lyman-α line is redshifted into the optical window.

– The extension of this technique involved the use of multicolour photometry to
longer optical wavelengths in order to distinguish objects with the typical spectra
of large redshift quasars from stars. Koo and Kron used (U, J, F, N) photometry
to find radio-quiet quasars with ultraviolet excesses to B = 23 (Koo and Kron,
1982) and found the first evidence for the convergence of the counts of radio-
quiet quasars. The technique was extended by Warren and his colleagues to
four-colour photometry using observations in the U, J, V, R and I wavebands,
providing four colours (U–J, J–V, V–R, R–I) (Warren et al., 1987). Stars lie along
a rather narrow locus in this four-dimensional colour space. By searching for
objects which lay well away from that locus, Warren and his colleagues found
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Fig. 17.12. The observed spectra of 20,000 quasars from the 2dF Quasar Redshift Survey.
The spectra have been stacked in order of redshift from z = 0.1 to z = 3.2. The prominent
emission lines seen in quasar spectra are labelled (courtesy of the 2dF Quasar Redshift (2QZ)
team at www.2dfquasar.org)

the first quasar with a redshift z > 4. This technique for searching for quasars
with redshifts greater than 4 was further refined by Irwin and his colleagues,
who realised that they could be found by means of two-colour photometry from
observations in the (BJ, R, I) wavebands (Irwin et al., 1991). The colours of
these large redshift quasars are very different from those of stars because, at
these very large redshifts, the redshifted Lyman-α forest enters the BJ waveband
and so strongly depresses the redshifted continuum intensities of the quasars at
blue wavelengths.
The largest sample of quasars to date has been found from images taken through
the ugriz filters as part of the Sloan Digital Sky Survey (Richards et al., 2006).
The five filters spanned the complete optical spectrum between the sky cut-off
at ultraviolet wavelengths to the cut-off wavelength of silicon CCD detectors
at about 1.1 μm. These broadband filters were centred on the following wave-
lengths: u – 350 nm, g – 480 nm, r – 625 nm, i – 770 nm and z – 910 nm. From the
third release of the SDSS data, 46,420 spectroscopically confirmed broad-line
quasars were discovered, of which 15,343 formed a complete statistical sample
which has been used to study the evolution of the luminosity function of optically
selected quasars out to redshift z = 5.

– The extension of this colour-selection technique to even larger redshifts has
been carried out using SDSS data by Fan and his colleagues (Fan et al., 2001,
2004). They searched for ‘i-band drop-outs’, meaning that the i-band intensity
was very significantly depressed relative to the z-band intensity. In these cases,
the depression of the continuum intensity to the short-wavelength side of the
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Lyman-α line is shifted to the extreme red end of the optical spectrum. They
discovered nine quasars with redshifts z > 5.7, the maximum redshift being
6.28. These observations constrain the evolution of the luminosity function of
the quasars at the very largest redshifts, as we discuss below.

– Another approach is to make use of the fact that the Lyman-α and CIV emission
lines are always very strong in the spectra of quasars and are superimposed
upon a roughly power-law continuum energy distribution (Fig. 17.12). The use
of a dispersion prism, or grating, in conjunction with a wide-field telescope
has proved to be a very powerful means of discovering quasars with redshifts
z > 2, at which these lines are redshifted into the optical waveband. Pioneering
studies were made by Osmer and his colleagues (Osmer, 1982). Perhaps the
most remarkable use of this technique has been the survey of Schmidt and his
colleagues (Schneider et al., 1991; Schmidt et al., 1995), who used the Palomar
5-metre telescope as a fixed transit instrument in conjunction with a grism and
a large area CCD camera, which was clocked at the siderial rate. In this way, six
narrow bands across the sky were scanned both photometrically in the v and i
wavebands, as well as spectroscopically, resulting in a total scanned area of 62
degree2. Of 1660 candidate emission-line objects, 141 were found to be quasars
in the redshift interval 2.0 < z < 4.7 (Schneider et al., 1991; Schmidt et al.,
1995).

– Finally, one of the most important characteristics of quasars is that they are
variable over timescales which range from days to decades. If a sufficiently
long baseline is used, say, of the order of 10 years, all quasars are found to be
variable. Following the pioneering efforts of Hawkins, it has been confirmed that
this is a successful approach in selecting complete samples of quasars (Hawkins,
1986). It is found that the degree of variability of a quasar is correlated with
its luminosity, but not with redshift (Hook et al., 1991). In one variant of this
approach, Majewski and his colleagues used a combination of variability and
the lack of proper motions to estimate the completeness of various approaches
to defining complete quasar samples (Majewski et al., 1991). They found the
important result that the multicolour surveys miss at most up to 34% of the
quasars and probably far less than this percentage.

The upshot of all these studies is that quasars display a steep number count which
converges at faint magnitudes (Fig. 17.13). The changes of the optical luminosity
function of optically selected quasars with cosmic epoch was derived by Boyle and
his colleagues out to redshift z ∼ 2.3 using a complete sample of 6,000 quasars
from the AAT 2dF Quasar Redshift Survey (Fig. 17.14a) (Boyle et al., 2000). At
zero redshift, the luminosity function of the overall quasar population joins smoothly
on to that of the Seyfert galaxies, an important but natural continuity of the properties
of these classes of active galactic nuclei. It is interesting that Schmidt and Green
classified only 92 of their 114 ultraviolet excess objects as quasars since they had
absolute magnitudes brighter than MB = −23. The 22 lower-luminosity objects
were either Seyfert 1 nuclei or what they termed low-luminosity quasars.
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Fig. 17.13. Differential g-band number counts for quasars from the third data release of the
Sloan Digital Sky Survey. The colour-selection criteria have been matched to those of the 2dF
Quasar Redshift Survey. The cut-off at faint magnitudes in the SDSS sample is due to the
i-band limiting magnitude of the survey. Also shown is a power-law fit to the bright end of
the SDSS–DR3 sample; it has slope 0.99 ± 0.12, compared with the Euclidean expectation
of 0.6 (Richards et al., 2006)

With increasing redshift, there are many more quasars of a given luminosity per
unit comoving volume than expected in uniform world models, as is dramatically
illustrated in Fig. 17.14a. Over the redshift range 0 ≤ z ≤ 2.3, the changes in the
luminosity function can be described by ‘luminosity evolution’, of almost exactly
the same form as that needed to account for the evolution of the radio luminosity

�
Fig. 17.14. a Evolution of the optical luminosity function for 6,000 optically selected quasars
in the redshift range 0.35 ≤ z ≤ 2.3 observed in the 2dF Quasar Redshift Survey carried
out at the Anglo-Australian Telescope (Boyle et al., 2000). b Integrated i-band luminosity
function for quasars more luminous than Mi = −27.6 (Richards et al., 2006). The solid black
line terminating at z ≈ 2 is from the 2dF Quasar Redshift Survey (Boyle et al., 2000). The
dashed and dotted lines are from Fan and Schmidt and their colleagues (Fan et al., 2001;
Schmidt et al., 1995) respectively. The point at z ∼ 6 is the comoving space density estimated
by Fan and his colleagues (Fan et al., 2004)
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function for luminous extragalactic radio sources, namely, L(z) ∝ (1 + z)β out to
z = 2 with β = 3.5.

Systematic surveys have been made to determine the large redshift evolution
of the radio-quiet quasar population by a number of authors (Schmidt et al., 1995;
Fan et al., 2001, 2004) and these provided evidence for a decrease in the comoving
space density of quasars at redshifts greater than 2 to 3. The most recent evidence
on the nature of the large redshift behaviour of the radio-quiet quasar population
has been derived from the Sloan Digital Sky Survey. The use of the five-colour
selection technique has enabled quasars up to z = 5 to be studied. There are,
however, strong redshift-dependent selection effects at z ≥ 2.3 which need to be
understood in quantitative detail before the evolving luminosity function can be
derived (Richards et al., 2006). Richards and his colleagues find that the number
counts and luminosity functions agree well with the results of the Two-degree Field
QSO Redshift Survey (2QZ) at redshifts where these data sets overlap in redshift
and luminosity. At redshifts greater than 2, they find that the comoving number
density of luminous quasars peaks between redshifts 2 and 3 and then converges
rapidly at larger redshifts, in agreement with earlier studies (Fig. 17.14b). In addition,
the slope of the luminosity function of quasars flattens at redshifts z ≥ 2.4. They
also included the results of Fan and his colleagues, who used the i-band drop-out
technique to discover quasars with redshifts greater than z = 5.7 and showed that the
decline in the comoving space density of luminous quasars continues out to redshift
z = 6, as illustrated in Fig. 17.14b.

17.5.3 X-Ray Source Counts

One of the great surprises of the early history of X-ray astronomy was the remarkable
brightness of the diffuse X-ray background emission. The objective of the pioneering
rocket flight by Giacconi and his colleagues was to search for fluorescent X-ray
emission from the Moon, but instead, the bright X-ray source Sco X-1 and the
diffuse X-ray background were discovered (Giacconi et al., 1962). The brightness of
the X-ray background is beautifully illustrated by the dramatic image of the Moon
taken by the ROSAT X-ray Observatory (Fig. 17.15). The bright X-ray emission
from the sunlit side of the Moon is the fluorescent emission which was the original
objective of the 1962 rocket flight. In addition, the dark side of the Moon is seen in
silhouette against the X-ray background radiation.

The history of the number counts of X-ray sources has been surveyed by Brandt
and Hasinger (Brandt and Hasinger, 2005). The number counts for bright sources
were derived from the surveys of the sky carried out by the UHURU, Ariel-V
and HEAO-1 satellite observatories in the 1970s. These pioneering surveys were
followed by the German-US-UK ROSAT mission which surveyed the whole sky in
the X-ray energy band 0.1 to 2.4 keV. The survey contained about 60,000 sources
and provided information about their X-ray spectra in four X-ray ‘colours’. The flux
density limit of the ROSAT survey was about 100 times fainter than that of HEAO-1
survey. The number counts from the first deep ROSAT surveys were described by
Hasinger and his colleagues (Hasinger et al., 1993). The next major advances were
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Fig. 17.15. An X-ray image of the
Moon taken by the ROSAT Ob-
servatory showing the fluorescent
emission from the sunlit side of
the Moon. On the dark side, the
Moon is seen occulting the dif-
fuse X-ray background emission
(courtesy Max Planck Insti-
tute for Extraterrestrial Physics,
Garching)

made by the Chandra and XMM-Newton X-ray Observatories. Deep and wide-field
surveys have been carried out with these telescopes with the results summarised by
Brandt and Hasinger. They describe how number counts of X-ray sources have now
been determined to faint X-ray flux densities throughout the 1 to 10 keV wavebands
(Fig. 17.16). The counts have been extended to even lower flux densities using
the P(D) technique described in Sect. 17.2.5. Most recently, more detailed number
counts, particularly for the hard X-ray energies, ε ∼ 8 keV, were described by
Cappelluti and his colleagues (Cappelluti et al., 2007).

The interpretation of the X-ray source counts in the 0.5- to 10-keV waveband is
more complex than is the case for the extragalactic radio sources and the optically se-
lected quasars because the X-ray spectra of sources selected at, say, 1 and 10 keV can
be quite different. To simplify what is undoubtedly a complex picture, Fig. 17.16a,b
shows that the principal contributors to the number counts to the limits of the Chan-
dra deep surveys are active galactic nuclei. Major efforts have been made to identify
and obtain optical spectra for the X-ray sources in the Chandra surveys and these
are sufficiently complete to enable estimates of the evolution of the comoving space
density of sources of different X-ray luminosities in the 0.5- to 2-keV wavebands
to be determined (Fig. 17.17a,b). These both show the characteristic feature of the
evolution of the population of active galactic nuclei that the most luminous sources
show the strongest cosmological evolution out to redshifts z ≈ 2. The less luminous
sources show much less dramatic evolution of their comoving space densities. Fig-
ure 17.17a,b shows marginal evidence for the decrease in comoving space densities
beyond z = 3, but the statistics are quite limited.



526 17 The Evolution of Galaxies and Active Galaxies with Cosmic Epoch

What the functions displayed in Fig. 17.17 disguise is the fact that the X-ray spec-
tral types change quite dramatically with X-ray energy. This is most easily illustrated
by considering the types of source which make up the total X-ray background inten-
sity from soft (∼ 1 keV) and hard (∼ 10 keV) X-ray energies.The spectrum of the X-
and γ -ray background from 0.1 to 300 keV is shown in Fig. 17.18 from a multitude
of experiments which are described by Gilli and his colleagues (Gilli et al., 2007).
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Fig. 17.16. a Integral number counts of X-ray sources for the 0.5- to 2-keV band. The data
points are derived from the ROSAT Lockman Hole field, the solid black curve from the
Chandra Deep Fields and the grey areas from P(D) analysis of the Chandra Deep Field-
North. The dashed curves show number counts for all active galactic nuclei, type 1 active
galactic nuclei and starburst and normal galaxies. b Integral number counts of X-ray sources
in the 2- to 8-keV band. The black circles are from the ASCA Large Sky Survey, the black
triangles from the ChaMP study, the solid black curve from the Chandra Deep Fields study
and the grey area from a P(D) analysis of the Chandra Deep Field-North. Details of the
sources of these data are given in the review by Brandt and Hasinger from which these figures
were taken (Brandt and Hasinger, 2005)
�

Fig. 17.17. a The comoving space
density of X-ray selected active
galactic nuclei in the 0.5–2 keV
energy band as a function of
redshift. Results are shown for
five luminosity ranges which
are labelled by the logarithm of
the X-ray luminosity in erg s−1.
b The same relation for X-ray
active galactic nuclei selected in
the 2- to 10-keV energy band for
three luminosity ranges (Brandt
and Hasinger, 2005)

It is straightforward to determine how much of the X-ray background intensity
in the 0.5- to 2-keV energy band can be attributed to discrete X-ray sources by
integrating the number counts shown in Fig. 17.16a. There is general agreement
that essentially all the background intensity in this waveband is associated with
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Fig. 17.18. The spectrum of the cosmic X-ray background emission compared with the
predicted contributions from populations of Compton-thin and Compton-thick active galactic
nuclei. The different estimates of the X-ray background intensity are explained by Gilli and his
colleagues, the various instruments involved being listed in the top left of the diagram. Solid
lines show the contributions of different types of active galactic nuclei according to the models
of Gilli and his colleagues. These are: unobscured active galactic nuclei (unabs), obscured
Compton-thin active galactic nuclei (abs), Compton-thick active galactic nuclei (Comp) and
the sum of these three components, including the contribution of clusters of galaxies (Total).
The diamonds (and some of the other data points) show estimates of the background intensity
by counting sources to the limits of the deep surveys (Gilli et al., 2007)

discrete sources and that this population is dominated by active galactic nuclei.
A major fraction of these sources are Type 1 active galactic nuclei in which the
characteristic broad lines and continuum are observed. This means that the majority
of contributors to the X-ray background at these energies are unobscured sources in
which the nuclear regions of the active galaxies are observed directly. If attention
is restricted only to the main contributors in this soft waveband, the typical photon
number spectral index is about 1.9 with a dispersion of about 0.2 to 0.3 about
this mean value. This immediately poses a problem since the spectral index of the
background spectrum is significantly smaller than this value in the 1- to 10-keV
waveband. This problem can be understood by comparing the observed background
spectrum with the predicted spectrum due to unabsorbed sources which are labelled



17.5 The Evolution of Active Galaxies with Cosmic Epoch 529

(unabs) in Fig. 17.18. Therefore, the same population cannot explain the X-ray
background intensity at harder X-ray energies.

Carrying out the same analysis at hard X-ray energies (ε ∼ 10 keV), at least 50%
and probably more of the background is associated with the discrete sources already
detected, but their spectral mix is somewhat different. The most important difference
is that there is a major population of sources which are strongly absorbed at soft
X-ray energies. Sources have now been observed in which photoelectric absorption
strongly suppresses the soft X-ray flux density and so ‘hardens’ the X-ray spectra.
The inferred column densities can be up to 1024 cm−2 and greater. For column depths
greater than 1024 cm−2, the effects of Comptonisation need to be taken into account,
and this process causes major distortions of the X-ray source spectra whatever the
initial input photon spectrum. Gilli and his colleagues provide template spectra for
this wide range of sources which also include the effects of iron lines and reflected
X-ray components from the inner regions of the active galactic nucleus (Gilli et al.,
2007).

At energies greater than 10 keV, the number count data are much sparser, but the
background spectrum continues to be remarkably flat up to about 30 keV, beyond
which it changes slope rather dramatically and continues more or less as a power
law to γ -ray energies. It is assumed that Comptonised sources make a significant
contribution to the background spectrum above 10 keV, as shown in Fig. 17.18.
A detailed discussion of all these effects would take us far from the main thrust
of this chapter. The interested reader should consult the paper by Gilli and his
colleagues to obtain an appreciation of the types of source populations needed to
account for the overall background spectrum (Gilli et al., 2007). Figure 17.18 shows
their best estimate for the types of sources which make up the observed X-ray
background spectrum. Whilst the solid lines are models for the various contributions
to the background, they are also consistent with all the most recent data on the
counts of X-ray sources in the 0.5- to 10-keV waveband reported by Cappelluti and
his colleagues (Cappelluti et al., 2007). Notice also that, even taking account of the
different types of known source, there must still be an additional component at γ -ray
energies E ≥ 100 keV to account for the observed γ -ray background spectrum.
These might be further Compton-thick hard X-ray sources.

17.5.4 X-Ray Clusters of Galaxies

The total X-ray number counts include the clusters of galaxies which are strong X-
ray emitters. They make a small but significant contribution to the counts at high flux
densities, but their fractional contribution at lower flux densities decreases rapidly
relative to that of the active galactic nuclei. Nonetheless, the counts of X-ray sources
associated with clusters of galaxies provide a sensitive test of cosmological models.
The observed number counts of X-ray clusters are shown in Fig. 17.19 in which
they are fitted by a non-evolving X-ray luminosity function with the reference set of
cosmological parameters (Rosati et al., 2002). The significance of this result can be
appreciated in the context of simulations of the development of structure in different
cosmological models.
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Fig. 17.19. The integral number counts for clusters of galaxies which are strong X-ray sources
from a number of different X-ray surveys. The counts are compared with the numbers expected
for a non-evolving distribution of sources for the reference world model with Ω0 = 0.3 and
ΩΛ = 0.7

Fig. 17.20. a The evolution of gravitational clustering simulated using an N-body code for the
standard CDM model (Ω0 = 1,ΩΛ = 0: EdS) and theΛCDM model (Ω0 = 0.3,ΩΛ = 0.7:
L03). The three redshift snapshots show a region 250 h−1 Mpc in size and 75 h−1 Mpc thick
in comoving coordinates. In both cases the amplitude of the power spectrum is consistent
with the number density of nearby galaxy clusters. The circles indicate dense regions where
clusters of galaxies are formed and would be detectable as intense X-ray sources (Borgani and
Guzzo, 2001). b The predicted evolution of the numbers of massive clusters n(≥ M, z) for
three representative world models, illustrating the strong dependence upon the cosmological
model (Rosati et al., 2002)

�

Figure 14.10 shows how the development of the large-scale distribution of galax-
ies depends strongly on the matter-density parameter Ω0. The open and ΛCDM
models predict rather mild evolution of large-scale structures over the redshift inter-
val 0 < z < 2, whereas the standard cold dark matter (SCDM) scenario withΩ0 = 1
shows a much more pronounced development of structure over the same redshift
interval. This is entirely consistent with the considerations of Sect. 11.4.4 in which
it was shown that the growth of the perturbations decreased at redshifts z < Ω−1

0
and similar results were found for the models with finiteΩΛ. The simulations shown
in Fig. 14.10 were designed to create the same large-scale structure at the present
epoch. The numbers of massive clusters of galaxies formed at each epoch can be can
estimated from the N-body simulations, as has been most dramatically illustrated
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by the simulations of Borgani and Guzzo shown in Fig. 17.20a (Borgani and Guzzo,
2001). A relatively modest decrease in numbers of massive clusters is expected with
increasing redshift in the OCDM and ΛCDM models, whereas a much more rapid
decline is expected in the standard CDM model with Ω0 = 1.
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The predicted number density of massive clusters as a function of redshift for
these world models is shown in Fig. 17.20b. This comparison with the observations
is best carried out using X-ray selected clusters of galaxies since they extend to
redshifts of z ≥ 1. This comparison is not trivial since the temperature and mass of
the gas in the clusters need to be well determined and various selections effects need
to be taken into account. These issues are dealt with in some detail in the review
by Rosati and his colleagues (Rosati et al., 2002). The upshot is, however, that the
number density of massive clusters certainly does not decrease as dramatically with
increasing redshift as is predicted by the standard CDM model. The reference model
Ω0 = 0.3,ΩΛ = 0.7, however, provides a good account of the observed numbers
of X-ray clusters of galaxies.

17.6 Infrared and Submillimetre Number Counts

In Sect. 17.5, the evolution with cosmic epoch of different populations of active
galaxies was derived from number counts and their redshift distributions. The same
approach can be adopted in the optical, infrared and submillimetre wavebands but
now the evolution concerns various aspect of stellar populations of galaxies, rather
than their active nuclei. In this section, we discuss the evolving properties of galaxies
and sources selected in the mid-, far-infrared and submillimetre wavebands and deal
with the optical number counts of galaxies in Sect. 17.7.

The IRAS Satellite carried out the first essentially complete sky survey of the
infrared sky in those wavebands which are inaccessible from ground-based sites,
namely, the wavebands between 12.5 and 100 μm. Among the many important
discoveries of the mission was the realisation that many galaxies are intense far-
infrared emitters, the most luminous of these being referred to as ultraluminous
infrared galaxies, or ULIRGs. Examples of the spectra of some of these galaxies were
presented in Fig. 17.4a. The far-infrared emission is the reradiation of heated dust
grains, generally associated with intense bursts of star formation. The catalogue of
IRAS galaxies was important cosmologically because complete samples of galaxies
could be selected which are unaffected by obscuration by interstellar dust. As a result
of a major effort by many astronomers, the redshifts of complete samples of IRAS
galaxies were measured and their local luminosity function at 60 μm determined.

Counts of IRAS galaxies were made at 60 μm from the IRAS Point Source
Catalogue, the IRAS Faint Source Survey and a survey in the region of the ecliptic
poles (Oliver et al., 1992). The normalised differential counts showed that there were
more faint IRAS galaxies than expected, in the same sense as the counts of radio
sources, X-ray sources and quasars, although the range of redshifts sampled was
very much smaller than those of the extragalactic radio sources and quasars. The
normalised differential number counts with flux densities greater than 100 mJy in
Fig. 17.21a were derived from the IRAS survey.

The successor to the IRAS survey was the Infrared Space Observatory (ISO)
of the European Space Agency, which carried out deeper surveys in the mid- and
far-infrared wavebands and confirmed the excesses of faint sources. Most recently,
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Fig. 17.21. a The differential extragalactic source counts at 24 μm from the Spitzer First Look
Survey (filled circles), the verification strip (filled triangles) and the ELAIS-N1 survey (filled
squares) normalised to the Euclidean prediction. The IRAS data points are shown as open
symbols, transformed to 24-μm wavelength. The counts are compared to various predictions of
the evolving luminosity function of galaxies in the mid-infrared waveband. The no-evolution
model normalized to the IRAS counts is shown as a dotted line (Marleau et al., 2004). b
The differential counts of extragalactic sources at 70 μm (left) and 160 μm (right) wavelength
from the Spitzer Extragalactic First Look Survey (Frayer et al., 2006). The solid lines show
an evolutionary model due to Lagache and his colleagues (Lagache et al., 2004)

number counts in these wavebands have been made by the NASA Spitzer Space
Telescope, which is an 85-cm cryogenic telescope with three cryogenically cooled
scientific instruments which provide imaging and spectroscopy capabilities in the
3.6- to 160-μm waveband. These instruments have produced number counts at 24 μm
showing a clear excess of faint sources, as well as a rather dramatic cut-off at low
flux densities (Fig. 17.21a). These observations are consistent with the findings of
the ISO mission. Surveys have also been carried out at longer wavelengths, 70 and
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170 μm, with the results shown in Fig. 17.21b. The now familiar pattern of an excess
of faint sources is apparent in all the diagrams in Fig. 17.21.

Counts of sources have now been made in the submillimetre waveband in which
it was expected that, even if there were no evolution of the population of sources with
cosmic epoch, the normalised differential number counts would show an excess over
the Euclidean prediction because of the ‘inverted’ spectra of dust-emitting sources
in these wavebands, as discussed in Sect. 17.2.3. Counts in these wavebands became
possible thanks to the availability of the SCUBA array detector on the James Clerk
Maxwell Telescope, which resulted in the discovery of a very large population of
submillimetre sources (Smail et al., 1997). Over the succeeding years a major effort
was made to determine their number counts in detail, and this is summarised in
Fig. 17.22, which is taken from the work of Cowie and his colleagues (Cowie
et al., 2002). What Fig. 17.22 disguises is the fact that these number counts greatly
exceed the numbers of sources expected on the basis of the local 60-μm luminosity
function of luminous far-infrared galaxies determined by the IRAS survey. Indeed
the numbers far exceeded the most extreme evolution models discussed by Blain and
me in the early 1990s (Blain and Longair, 1993). The number counts of submillimetre
galaxies must converge rapidly just below those flux densities shown in Fig. 17.22 or
the submillimetre background intensity would be exceeded. The parametric fits to the
counts shown by dashed and dotted lines in Fig. 17.22 converge to the submillimetre

Fig. 17.22. The counts of submillimetre sources at 850 μm (Cowie et al., 2002). The sources of
these data are discussed by Cowie and his colleagues. The filled squares with error bars have
been derived from an analysis of submillimetre sources observed in the vicinity of clusters
of galaxies, which enhances their flux densities because of gravitational lensing. The points
with flux densities greater than about 2 Jy are derived from blank field surveys. The dotted
and dashed lines show parametric fits to the counts which converge to the total extragalactic
background emission observed in the submllimetre waveband
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background intensity estimates by Puget, Hauser and their colleagues (Puget et al.,
1996; Hauser et al., 1998; Hauser and Dwek, 2001).

The complications of interpreting the number counts of infrared galaxies is
illustrated by the example of the spectral energy distribution of one of the luminous
far-infrared galaxies, N1-015 (Sajina et al., 2006). Sajina and her collaborators
showed that the spectrum can be decomposed into a number of components which
are illustrated in Fig. 17.23. At the longest wavelengths, the submillimetre spectrum
can be approximated by a grey-body spectrum, meaning a black-body spectrum with
optically thin emissivity varying as ν1.5 (dotted line). In addition, to account for the
gradual decline from the maximum of the black-body curve to shorter wavelengths,
a warm power-law component is included, associated with dust grains of smaller size
with decreasing wavelength (short-dashed line). In the 5- to 20-μm waveband the
spectrum is dominated by the intense emission of polycyclic aromatic hydrocarbon
molecules, PAHs, which can account for up to 20% of the total infrared luminosity
(long-dashed line). At the shortest wavelengths, the stellar population of the galaxy

Fig. 17.23. An example of the spectral energy distribution of the luminous infrared galaxy
N1-015 between 1 and 1000 μm (Sajina et al., 2006). The components include a grey-body
spectrum in the submillimetre waveband (dotted line), a warm power law (short-dashed
line), PAH emission (long-dashed line), and stellar emission (dot-dashed line) which suffers
extinction e−τν , where τν describes the extinction as a function of wavelength. The total
spectrum is shown by the continuous line and the observed broad-band flux densities by filled
circles
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is dominant (dot-dashed line), but it suffers extinction as e−τν , where τν describes the
attenuation of the spectral energy distribution as a function of wavelength. The total
spectrum is shown by the continuous line and the observed broadband flux densities
by filled circles.

Thus, the interpretation of the number counts is non-trivial since the contribu-
tions of the various components in different classes of infrared galaxy need to be
established. Various template-fitting procedures have been developed which enable
estimates of the evolving luminosity function of galaxies in the infrared waveband
to be established (Lagache et al., 2003, 2004; Babbedge et al., 2006). There is
reasonable agreement about the features needed to account for the number counts
throughout the infrared waveband.

First of all, the number counts in the infrared waveband are dominated by
starburst activity. Babbedge and his colleagues use template fitting to study the
evolution of active galactic nuclei in the SWIRE Legacy sample and find that they
are far outnumbered by starburst galaxies (Babbedge et al., 2006). They find the same
form of evolution in the infrared waveband for the active galactic nuclei as described
in Sect. 17.4. There are certainly some far-infrared sources in which the energy
source is likely to be an active galactic nucleus, but X-ray studies of far-infrared and
submillimetre sources have shown that there are relatively few X-ray active galactic
nuclei in the population of submillimetre sources compared with those which are
assumed to be dominated by starbursts.

The phenomenological model of Lagache and his colleagues provides a simple
picture for the evolutionary behaviour of the starburst population in the mid-infrared
to submillimetre wavebands (Lagache et al., 2003, 2004). The population is split
into two components, a population of normal galaxies which evolves passively with
cosmic epoch and a strongly evolving starburst component which consists of all the
highest luminosity far-infrared sources, L ≥ 3 × 1011 L�. The infrared spectra are
not very different from that shown in Fig. 17.23, although the far-infrared maximum
is somewhat colder for the normal galaxies as compared with the luminous starbursts.
The strong evolution is associated with this luminous starbursting component. The
form of evolution is significantly different from that found for the population of
active galaxies in that all the strong evolution takes place between redshifts 0 and 1
and then remains at roughly the same level from redshifts 1 ≤ z ≤ 5. Specifically,
the evolution of the luminosity function for the luminous star-forming galaxies can
be described by luminosity evolution of the form L ∝ (1+z)3 from z = 0 to z = 1.5,
beyond which the luminosity function remains constant out to redshift z = 5. This
result is similar to that found by Babbedge and his colleagues from their larger
dataset. The various evolutionary predictions are compared with the observations in
Fig. 17.21, where it can be seen that the number counts throughout the mid-infrared
to submillimetre wavebands are in reasonable agreement with this model, which
can be tweaked to obtain better agreement with observation (Lagache et al., 2004).
Lagache and his colleagues show that the abrupt convergence of the counts at low
flux densities seen in Fig. 17.21a is accounted for in their models. The reason for
this is that the strong evolution takes place over the redshift range 0 ≤ z ≤ 1 and
then the comoving space density of sources is constant. As a result, the differential



17.7 Counts of Galaxies 537

number counts change abruptly to the strong converging behaviour at z ≥ 1 seen in
Fig. 17.2.

It is important that this evolutionary behaviour is significantly different from
that of the active galactic nuclei for which the evolving luminosity function has
a maximum at z ∼ 2–3. Notice also that the strong evolution all takes place between
redshifts 0 and 1 and this explains the very large excess of sources observed in
the submillimetre number counts. This evolutionary behaviour is reflected in the
evolution of the star-formation history of the Universe, which will be a major theme
of Chap. 19.

An interesting consequence of the evolution of the far-infrared galaxies results
from the strong correlation between the radio emission of normal and starburst galax-
ies and their far-infrared emission (Helou et al., 1985). The proportionality extends
over many orders of magnitude and can be written S(60μm) = 90 S(1.4 GHz),
where both flux densities are measured in janksys. As a result, it is straightforward
to predict the counts of starburst and normal galaxies in the radio waveband. It turns
out that it is possible to account for the flattening of the radio source counts at
radio flux densities S ≤ 10−3 Jy seen in Fig. 17.9 in terms of the evolution of the
population of far-infrared galaxies (Rowan-Robinson et al., 1993). This conclusion
is supported by the identification content of the millijansky radio sources, many of
which are blue and have spectra similar to those of starburst galaxies (Windhorst
et al., 1987, 1995).

17.7 Counts of Galaxies

Finally, we return to where we started, the counts of galaxies. It is intriguing that
the emphasis has shifted away from counting the numbers of galaxies to much more
targeted studies of physical quantities such as star formation rates, the different forms
of luminosity functions for different classes or sequences of galaxies as a function of
redshift and so on. The change in perspective on galaxy classification discussed in
Chap. 3 has been reflected in the approach to the evolving populations of galaxies.
Therefore, counting galaxies has become a somewhat outmoded approach to the
study of galaxy evolution. Nonetheless, it is important in establishing a complete
picture of the populations of evolving galaxies. The more physical approach will be
dealt with in more detail in Chap. 19, where the emphasis is upon the role of star
formation in the evolution of all types of galaxy.

Ellis has described clearly the complications in determining reliable galaxy
counts and of their interpretation (Ellis, 1997). The reasons for these complications
are manifold. First of all, galaxies are extended objects, often with complex bright-
ness distributions, and care must be taken to ensure that the same types of object
are compared at different magnitude limits and redshifts. Secondly, unlike the radio
and X-ray sources, which are uniformly distributed over the sky, the distribution of
galaxies is far from uniform on scales less than about 50 h−1 Mpc, as illustrated
by the large voids and walls in the local distribution of galaxies (Figs. 2.7 and 2.8).
Even at the faintest magnitudes, this ‘cellular’ structure in the distribution of galaxies
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results in fluctuations in the number counts of galaxies which exceed the statistical
fluctuations expected in a random distribution. Thirdly, Fig. 3.4 shows that the prob-
ability of finding galaxies of different morphological types or sequences depends
upon the environment in which the galaxy is located.

A major complication concerns the K-corrections to be used for galaxies of
different morphological types. In order to estimate the number counts of galaxies
at large redshifts in the optical waveband, their spectra need to be known in the
ultraviolet waveband, and these can only be observed from above the Earth’s atmo-
sphere. It turns out that there have been remarkably few systematic surveys of the
ultraviolet spectra of normal galaxies. The problem is exacerbated by the fact that
the ultraviolet spectra of galaxies can be dominated by bursts of star formation and
these influence very strongly the observability of galaxies at large distances. As Ellis
points out, this fact alone makes the comparison of the optical images of galaxies at
the present epoch with those at redshifts of one and greater problematic.

Matters are somewhat improved if the counts of galaxies are determined in the
infrared K waveband at 2.2 μm. First of all, the galaxy counts in the K waveband are
much less affected by dust extinction. Second, the light of the galaxies in the infrared
waveband is dominated by the majority old, stellar populations in galaxies and so is
not affected by bursts of star formation. Consequently, the K-corrections are much
better known since, even at redshifts of z ∼ 3, the observed light of the galaxies was
emitted at 500 nm in the galaxies’ rest frames, as was illustrated in Fig. 17.3.

These problems are clearly and carefully described in Ellis’s excellent review.
Granted these problems, Fig. 2.12 presented by Metcalfe and his colleagues still
provides a very good impression of the overall counts of galaxies in the B(440 nm),
I(800 nm) and K(2.2 μm) wavebands (Metcalfe et al., 1996). These number counts
were based upon a number of separate determinations by ground-based optical and
infrared telescopes, as well as deep number counts in the Hubble Deep Field. The
number counts of galaxies in the Hubble Deep Field join smoothly onto the ground-
based counts. Furthermore, the Hubble Deep Field observations have enabled counts
to be made in the I waveband, in which the background emission from the Earth’s
atmosphere becomes an increasingly important problem, and so to extend the counts
by about a factor of 100 fainter than is possible from the ground. The lines labelled
‘No evoln.’ show the expectations of uniform world models and include appropriate
K-corrections for the types of galaxy observed in bright galaxy samples.

These studies have been extended to even fainter magnitudes through Hubble
Space Telescope observations of the Hubble Ultra Deep Field (HUDF), which made
use of the wider field capabilities of the Advanced Camera for Surveys (ACS)
(Beckwith et al., 2006). This project resulted in the deepest image ever taken of the
sky and involved 400 orbits of HST observing time, or about a million seconds of
exposure time (Fig. 17.24a). The integral number counts of galaxies were complete
to magnitudes z850 = 28.7 and i775 = 29.2. These counts are compared with those
derived from the Great Observatories Origins Deep Survey (GOODS), which were
complete to z850 = 26.5 in Fig. 17.24b. Interestingly, the number counts in the
HUDF are 10% lower than those in the GOODS field, reflecting the influence of the
large-scale holes and walls of galaxies on the large scale.
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Fig. 17.24. a The Hubble Ultra Deep Field (Beckwith et al., 2006)

A convenient recent survey of a very large number of counts of galaxies has
been presented by Ellis and Bland-Hawthorn (Ellis and Bland-Hawthorn, 2006).
Their Appendix A provides a comprehensive list of galaxy counts in the U, B,
R, I and K wavebands. Interestingly, their objective was not in the use of galaxy
counts for cosmological purposes, but rather to provide reliable number counts and
their standard deviations for use in projects which required the reliable subtraction
of the numbers of background galaxies. Their paper is particularly valuable in
providing a standardised set of number counts for these wavebands and also for
providing estimates of the standard deviations in these numbers, taking account of
both the statistical uncertainties and the variations due to the fact that the large-
scale distribution of galaxies is highly correlated. As a result, the fluctuations in the
number counts depend both upon the depth of the survey and angular scale over
which the counts are made. Table 17.1, taken from their paper, can be recommended
as illustrating both the number counts and the standard deviations of the numbers of
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Fig. 17.24. (continued) b The integral counts of galaxies in the Hubble Ultra Deep Field
compared with the number counts in the GOODS survey. The completeness limit of the
GOODS survey is z850 = 26.5, whereas that of the HUDF is about z850 = 30

galaxies. For illustration, their number counts for observations made in a 15 × 15
arcmin2 field are given in Table 17.1 and shown in Fig. 17.25. Because of the
clustering tendencies of galaxies, it can be seen that the standard deviations are
generally much greater than a N1/2 estimate.

A number of general features of the galaxy counts are apparent from Figs. 2.12, 8.8
and 17.25. In the infrared K waveband (2.2 μm), the counts follow reasonably closely
the expectations of uniform world models with q0 ∼ 0 − 0.5. This is perhaps not
too unexpected since the old stellar populations of galaxies are the principal con-
tributors to the luminosities of galaxies in these wavebands. Even corrections for the
passive evolution of the galaxy population are quite small. In contrast, in the R, B
and U wavebands, there is a large excess of faint galaxies, particularly in the shortest
wavelength bands. The departure from the expectations of the uniform models sets
in at about B = 23 and, at fainter magnitudes, there is a large excess of faint blue
galaxies. The lines on Fig. 2.12 illustrate the results of various modelling exercises
to account for the observed counts.

The nature of the excess of blue galaxies was soon elucidated by studies with the
Hubble Space Telescope. The high-resolution images enabled the morphologies of
galaxies to be classified into spheroidal/compact, spiral and irregular/peculiar/merger
categories. The results of the pioneering analysis of Abraham and his colleagues are
shown in Fig. 17.26 (Abraham et al., 1996). It is apparent that the spheroidal and
spiral galaxies more or less follow the expectations of the uniform-world models,
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Table 17.1. Galaxy counts N and their standard deviations σ for an area of sky 15 × 15
arcmin2 in the U, B, R, I and K wavebands. The standard deviation depends upon the area
of sky observed because of the strongly correlated distribution of galaxies (Ellis and Bland-
Hawthorn, 2006). The numbers N quoted in the table are those between magnitudes mmin

and mlim

mlim N(U) σ U N(B) σB N(R) σ R N(I) σI N(K) σK

mmin 19 15 15 14 13
15 11 5
16 2 2
17 0 1 4 2 144 28
18 32 11
19 6 4 40 10 993 87
20 248 37
21 66 19 50 14 295 36 4890 230
22 1410 100
23 688 76 408 47 1650 110 18,200 510
24 6410 270
25 6020 310 4040 240 8930 360
26 28,710 790
27 27,210 780 20,940 710 39,390 1000
28 74400 1600 101,500 1900
29 63,400 1400

Fig. 17.25. Number counts of galaxies in the U, B, R, I and K wavebands from the survey of
recent counts of galaxies for an area 15 × 15 arcmin2 on the sky (Ellis and Bland-Hawthorn,
2006). The number counts and their standard deviations are given in Table 17.1. Note that,
for the sake of clarity, the number counts in the I waveband have been displaced by −0.5 in
log N , the B-band number counts by −1 in log N and the I-band counts by −1.5 in log N .
For comparison, the Euclidean relation N = 0.6m + constant is also shown
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Fig. 17.26a–d. Number–
magnitude relation for mor-
phologically segregated samples
of galaxies from the Medium
Deep Survey (MDS) and the
Hubble Deep Field (Abraham
et al., 1996). The observations
from the MDS survey are indi-
cated by stars. The other symbols
show the counts based upon mor-
phological classifications carried
out by Ellis, van den Bergh and
by an automated machine-based
classification algorithm. The dot-
ted line in panel a shows the total
counts of galaxies from a field
observed by the Keck Telescope.
The solid lines show the expected
counts of the different morpho-
logical classes assuming their
properties do not change with
cosmic epoch (Glazebrook et al.,
1995)

while the objects classified as irregular/peculiar/merger systems show a distinct
excess relative to their numbers in bright galaxy samples, which amount to only
about 1–2% of the galaxy population.

Part of the problem in understanding the nature of the faint blue galaxies is that,
even with the present generation of 8- to 10-m optical-infrared telescopes, spectro-
scopic observations are limited to mB ≤ 24. According to Cowie and his colleagues,
at this magnitude limit, the population of galaxies is composed of a mixture of nor-
mal galaxies at small redshifts plus galaxies undergoing rapid star formation from
z = 0.2 to beyond z = 1.7 (Cowie et al., 1996). These results are in accord with
the conclusions of Ellis that there is unquestionably an increase in the numbers of
star-forming galaxies with increasing redshift. Equally intriguing, Cowie and his
colleagues find that there is little change in the K-band luminosity function out to
redshifts z ≈ 1, suggesting that most of their stellar populations were already in
place by a redshift of 1. The existence of old, red galaxies at redshifts up to almost
z = 2 has been confirmed by the studies by Cimatti and his colleagues from studies
of the K20 sample of galaxies (Cimatti et al., 2004).

The imaging evidence from the Hubble Deep Field and the HUDF is even
more compelling. There is no question about the fact that most of the faint objects
appearing in Fig. 17.24a bear little resemblance to the classical forms of galaxy.
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This is particularly true if attention is restricted to the sample of galaxies which are
certainly at large redshifts z ≥ 3.5 through the observation of ‘drop-outs’ through
the various filter bands. These are interpreted as star-forming galaxies in which the
Lyman cut-off is redshifted into the optical waveband. The images in the paper
by Beckwith and his colleagues illustrated many of the types of ‘drop-out’ galaxy
observed in the HUDF (Fig. 19.5b). The galaxies are much smaller and much more
irregular than those observed in the nearby Universe. Beckwith and his colleagues
determined luminosity functions and size distributions for different types of drop-out
galaxy. It is therefore apparent that a different approach is needed to the study of the
evolution of galaxies in the optical waveband, and this is the subject of Chap. 19 –
how can we put together this vast amount of data on the distant Universe into
a consistent picture of galaxy formation and evolution?

17.8 Clusters of Galaxies

Butcher and Oemler first presented dramatic evidence for the evolution of galaxies
in rich, regular clusters at relatively small redshifts (Butcher and Oemler, 1978,
1984). They found that the fraction of blue galaxies in such clusters increased
from less than 5% in a nearby sample to percentages as large as 50% at redshift
z ∼ 0.4. The Butcher–Oemler effect has been the subject of a great deal of study
and debate, the major observational problems concerning the contamination of the
cluster populations by foreground and background galaxies, as well as by bias in
the selection criteria according to which the clusters were selected for observation
in the first place (Dressler, 1984).

Observations with the Hubble Space Telescope clarified a number of these issues
(Dressler and Smail, 1997; Dressler et al., 1997; Dickinson, 1997). The colours of
the spheroidal galaxies in clusters have been determined out to redshifts of z = 0.5
and these show remarkably little scatter about the relation expected for passively
evolving elliptical galaxies (Ellis et al., 1997).

The inference is that these galaxies formed their stellar populations at large
redshifts and that there has been little ongoing star formation. Perhaps the most
remarkable result of these studies has been the change in the relative populations
of galaxies of different types at z ∼ 0.5 as compared with a nearby sample. Firstly,
the fraction of spiral galaxies in the large redshift sample is very much greater at
high galaxy densities than in the nearby sample. Secondly, the overall fraction of S0
galaxies is very much less at larger redshifts than in the local sample. At the same
time, the fraction of spheroidal galaxies is at least as large as in the nearby sample,
constituting further evidence that the population of elliptical galaxies was already
fully formed at large redshifts. There is a correlation between galaxy type and galaxy
density for the four highest-concentration, regular clusters in the sample but for the
lower-concentration, irregular clusters, the correlation is not present.

These observations suggest that the elliptical galaxy population was already well
formed at large redshifts and that it is unlikely that the bulk of the ellipticals were
formed by mergers of spiral galaxies which were members of the cluster. On the
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other hand, the population of S0 galaxies must have grown considerably over the
redshift interval 0 < z < 1. The likely origin of these population changes is the
transformation of a significant fraction of the large abundance of spiral galaxies
seen in the large redshift clusters into S0 galaxies. Dynamical interactions between
galaxies, ram-pressure stripping, accretion of mass and collisions between spiral
galaxies are possible means of enhancing the population of S0 galaxies relative to
spiral galaxies. This picture would be consistent with the significant number of blue
irregular, or merging systems observed in the clusters in the sample observed at
z ∼ 0.5.

In contrast to the passive evolution of the elliptical galaxies in rich clusters of
galaxies, the redshift–K apparent magnitude relation for the brightest galaxies in
clusters shows evidence for evolution of their total luminosities. Aragón-Salamanca
and his colleagues showed that the observed relation is consistent with the expec-
tations of standard world models in which their luminosities were unchanged with
cosmic epoch (Aragòn-Salamanca et al., 1993). This must be the result of a cosmic
conspiracy since the stellar populations of the brightest cluster galaxies must have
evolved at least passively with cosmic epoch, and so, according to the considerations
of Sect. 17.2.2, the galaxies should be about one magnitude fainter at the present
epoch as compared with their luminosities at z ∼ 1. The obvious way of account-
ing for the constancy of the absolute magnitudes of these galaxies is to appeal to
dynamical friction and galactic cannibalism, as described by Hausman and Ostriker
in the context of explaining the small dispersion in the absolute magnitudes of the
brightest galaxies in clusters (Hausman and Ostriker, 1977, 1978).

The argument can be understood from the following elementary considerations.
The expression for the gravitational relaxation timescale τg for the exchange of
kinetic energy between the masses M1 and M2 in a cluster of point masses has the
form

τg ∝ v3

M1 M2
. (17.37)

This process of dynamical friction leads to the exchange of kinetic energy between
the point masses as they attempt to establish thermodynamic, as well as dynamical,
equilibrium among the cluster members.1. In the case of a cluster of galaxies, (17.37)
shows that the most massive galaxies lose kinetic energy to less massive members
most rapidly and so the former drift towards the dynamical centre of the cluster.
Expression (17.37) also indicates that relaxation is most rapid among the more
massive galaxies, leading to the most massive galaxies cannibalising the next most
massive galaxies in the clusters. This might be an explanation for the Bautz–Morgan
effect, discussed in Sect. 4.2.3. Obviously, the case of galaxies is much more complex
than the case of point masses, but it can be appreciated that dynamical friction and
cannibalism can naturally account for the increase in mass and luminosity of the
brightest galaxies in clusters.

1 I have given a simple derivation of this relation in the context of ionisation losses in
a plasma (Longair, 1997b)
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Simulations of the merging of galaxies in clusters have been carried out by
Kauffmann and White within the context of the hierarchical scenario for cluster
formation (Kauffmann and White, 1993). On the basis of these simulations, they
have shown that the luminosity of the brightest galaxies in clusters can increase on
average by a factor of between 3 and 5 between redshift z ∼ 1 and the present
epoch, which can account for the cosmic conspiracy which produces an apparently
non-evolving redshift–K magnitude relation for the brightest galaxies in clusters.

It is of the greatest interest to extend these studies to redshifts z ≥ 1. According
to the considerations of Sect. 16.1.1, clusters of galaxies must have formed rather
late in cosmic history and there should not be many fully formed clusters at large
redshifts. Dickinson has given a list of possible associations of galaxies observed
at redshifts z > 2, many of them being discovered as companion galaxies to active
galaxies and quasars, while some of them have been found as clusters of Lyman-α
absorbers (Dickinson, 1997). We will return to many of these issues when we attempt
to put all the evidence on galaxy formation and evolution together in Chap. 19.



18 The Intergalactic Medium

Studies of the intergalactic medium have assumed a central role in astrophysical
cosmology. Diffuse intergalactic gas is present in clusters of galaxies as indicated
by the observation of intense X-ray bremsstrahlung at temperatures of T ∼ 108 K
(Sect. 4.4). In clusters such as the Coma and Perseus clusters, the mass of intergalactic
gas is at least as great as the visible mass of the cluster galaxies. The observation of
strong emission lines of highly ionised iron from the intergalactic gas shows that it
has been enriched relative to its primordial abundance, but the heavy elements are
underabundant relative to the cosmic abundances of the elements. The enrichment
of the gas is inferred to be due to stellar nucleosynthesis within the galaxies of the
cluster, followed by the expulsion of enriched gas into the intergalactic medium.

The study of the intergalactic medium between clusters of galaxies is more
challenging, but the Lyman-α absorption line systems seen in the spectra of distant
quasars show that gas clouds are certainly present in the space between galaxies.
The densest of these absorption systems can be identified with the discs of proto-
spiral galaxies, but there are many more clouds with much lower column densities
which can be used to estimate the power spectrum of baryonic perturbations at
low masses. The study of the chemical abundances in different types of absorption
line systems is proving to be a powerful tool for studying metal production and
feedback processes during galaxy formation, as well as the thermal and ionisation
history of the Universe during and after the epoch of reionisation. Studies of the
absorption line systems in quasar spectra have now been extended to redshifts
greater than z = 6, at which evidence has been found for continuum absorption by
the neutral diffuse intergalactic gas to the short-wavelength side of the redshifted
Lyman-α line, the long-sought-after Gunn–Peterson effect. This is interpreted as
evidence that the reionisation and heating of the neutral primordial intergalactic gas
was nearing completion. This interpretation is consistent with the evidence of the
optical depth of the intergalactic gas to Thomson scattering obtained from the 3-year
WMAP observations (Sects. 15.7 and 15.8). These data suggest that the process of
reionisation of the primordial intergalactic gas took place at epochs corresponding
to 6 ≤ z ≤ 15. Thus, studies of the intergalactic medium now inform many aspects
of the processes of galaxy formation.

It should also be recalled that there is a ‘missing baryon’ problem in the sense
that the most recent estimates of the mass density of the baryonic component of
galaxies is only Ωsh = (2 ± 0.6) × 10−3 (Bell et al., 2003), whereas the overall
baryonic mass density inferred from primordial nucleosynthesis and the spectrum
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of perturbations in the cosmic microwave background radiation is ΩBh2 = 0.0223
(Sects. 15.7 and 15.9). Much of the remaining gas must be in the form of diffuse
intergalactic gas in clusters of galaxies and in the medium between them.

Let us begin by deriving general expressions for the background emission of
diffuse intergalactic gas and its optical depth for the absorption and scattering of the
emission of background sources.

18.1 The Background Emission of and Absorption
by the Intergalactic Gas

We can work out the expression for the background intensity of a uniform distribution
of sources of luminosity L(ν1, z) using (17.7) and (17.8). The background intensity
in W m−2 Hz−1 sr−1 is then

I(ν0) =
∫

S(ν0) dN = 1

4π

∫ ∞

0

L(ν1, z)N0

(1 + z)
dr , (18.1)

where ν0 = ν1/(1 + z) is the frequency of observation at the present epoch. It is
assumed that the comoving number density of sources N0 is conserved, but their
luminosities can change with cosmic epoch. To adapt this expression for the case
of the emission of diffuse intergalactic gas, it is simplest to work in terms of the
proper number density of objects at redshift z, N(z) = N0(1 + z)3. Then, the
luminosity per unit proper volume, that is the emissivity of the intergalactic medium,
is ε(ν1) = L(ν1, z)N(z), and the background intensity is

I(ν0) = 1

4π

∫ ∞

0

ε(ν1)

(1 + z)4
dr . (18.2)

If we adopt the Friedman models with finite ΩΛ, we find

I(ν0) = c

4πH0

∫ ∞

0

ε(ν1)

(1 + z)4[(1 + z)2(Ω0z + 1)−ΩΛz(z + 2)]1/2
dz . (18.3)

In exactly the same way, we can work out the optical depth of the gas at an
observed frequency ν0 due to absorption by intergalactic matter along the line of
sight to redshift z. If α(ν1) is the absorption coefficient for radiation at frequency ν1,
then the increment of optical depth for the photons which are redshifted to frequency
ν0 by the time they reach the Earth is dτ(ν0) = α(ν1) dl = α(ν1)c dt, where c dt = dl
is the element of proper distance at redshift z. Hence, integrating along the path of
the photon, we find

τ(ν0) =
∫
α(ν1) dl =

∫
α(ν1)

dr

1 + z

= c

H0

∫ z

0

α[ν0(1 + z)] dz

(1 + z)[(Ω0z + 1)(1 + z)2 −ΩΛz(z + 2)]1/2
, (18.4)

where ν0 = ν1/(1 + z). Notice that, in the case of an absorption line, the function
α(ν1) describes its line profile.
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18.2 The Gunn–Peterson Test

One of the most important tests for the presence of diffuse intergalactic neutral hydro-
gen was described independently by Gunn and Peterson and by Scheuer, soon after
the first quasar with redshift greater than 2, 3C9, was discovered (Gunn and Peterson,
1965; Scheuer, 1965). I am particularly fond of 3C9 since I made the optical identi-
fication of the quasar as almost my first task for Martin Ryle when I joined the Cam-
bridge Radio Astronomy Group in 1963 (Ryle and Sandage, 1964; Longair, 1965).
The particular feature of quasar spectra used in the test is the fact that their continuum
emission is non-thermal and extends into the far ultraviolet and X-ray wavebands.

The Gunn–Peterson test makes use of the fact that the cross-section for scattering
at the wavelength of Lyman-α photons, 121.6 nm, is very large indeed, and so when
the ultraviolet continuum of distant quasars is shifted to the redshift at which it has
wavelength 121.6 nm, the radiation is absorbed and re-emitted in some random di-
rection many times. Therefore, if there is sufficient neutral hydrogen present at these
redshifts, an absorption trough is observed to the short wavelength side of the red-
shifted Lyman-α line. Before the advent of space observatories with spectrographic
capabilities in the ultraviolet waveband, only when quasars with redshifts of z > 2
were discovered was the Lyman-α wavelength redshifted into the observable visible
waveband. Let us use (18.4) to work out the optical depth for Lyman-α scattering.

The photo-excitation cross-section of the Lyman-α transition is

σ(ν) = e2 f

4ε0mec
g(ν − νLy) , (18.5)

where νLy is the frequency of the Lyman-α transition, f is its oscillator strength,
which is 0.416 for this transition, and the function g(ν−νLy) describes the profile of
the Lyman-α absorption line. In this form, the function g(ν) has been normalised so
that

∫
g(ν) dν = 1. Therefore, inserting α(ν1) = σ(ν1)NH(z) into (18.4), the optical

depth due to Lyman-α scattering is

τ(ν0) =
∫ z

0

σ(ν1)NH(z) dr

(1 + z)

= e2 f

4ε0me H0

∫ ν1

ν0

NH(z)g[ν0(1 + z)− νLy]
ν0[(Ω0z + 1)(1 + z)2 −ΩΛz(z + 2)]1/2(1 + z)

d[ν0(1 + z)] ,

where ν1 = ν0(1 + zmax). Since g(ν) is very sharply peaked at the wavelength of the
Lyman-α line, we can approximate it by a delta function, and then

τ(ν0) = e2 f

4ε0me H0νLy

NH(z)

[(Ω0z + 1)(1 + z)2 −ΩΛz(z + 2)]1/2
. (18.6)

Inserting the values of the constants, we find

τ(ν0) = 4 × 104 h−1 NH(z)

[(Ω0z + 1)(1 + z)2 −ΩΛz(z + 2)]1/2
, (18.7)

where NH(z) is measured in atoms m−3. This continuum absorption trough has been
searched for in those quasars which have such large redshifts that the Lyman-α line
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is redshifted into the observable optical waveband, that is, quasars with redshifts
1 + z ≥ (330 nm)/λLy, z ≥ 2. There is no such redshift restriction for observations
with the Hubble Space Telescope. The typical spectrum of a large redshift quasar
is shown in Fig. 18.1 (Beaver et al., 1992). Although there are numerous narrow
Lyman-α absorption lines present to the short-wavelength side of the Lyman-α line
at 121.6 nm, there is no evidence for a depression of the continuum between these.
Nor is there any depression to the short-wavelength side of the corresponding line
of neutral helium, HeI, which has a rest wavelength of 58.4 nm. Searches have also
been made for the Lyman-α trough in low redshift quasars, which can be observed
beyond the redshifted Lyman-α line from space, by Davidsen and from the HST, but
there is little evidence for any absorption at all (Davidsen, 1993).

Typically, the upper limit to the optical depth to the short-wavelength side of
Lyman-α is τ(ν0) ≤ 0.1. Substituting this value into (18.7), we find that, for a quasar
at a redshift of 3, the upper limit to the number density of neutral hydrogen atoms is
NH ≤ 10−5 m−3. This is a very small value indeed compared to typical cosmological
baryonic densities, which are about 10ΩBh2(1+z)3 m−3 ≈ 15 m−3, assuming z = 3

Fig. 18.1. The ultraviolet spectrum of the quasar OQ 172, which has a redshift z = 3.544,
observed by the Faint Object Spectrograph of the Hubble Space Telescope and at the Lick
Observatory (Beaver et al., 1992). Although there are absorption lines present associated with
the Lyman-α forest, there is no depression of the continuum intensity to the short-wavelength
side of either the Lyman-α line at 121.6 nm nor the HeI line at 58.4 nm. The solid line shows
the expected absorption profile due to HI clouds along the line of sight to the quasar (Sect. 18.5
and Fig. 18.10a)
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and ΩBh2 = 0.0223. Thus, if there is a significant amount of hydrogen in the
intergalactic medium, it must be very highly ionised.

Quasars with redshifts up to z ∼ 5 have shown no evidence for neutral hydrogen
absorption by diffuse intergalactic gas, although the continuum spectrum becomes
more and more ravaged by Lyman-α absorption lines associated with the Lyman-α
forest. At the very largest redshifts, however, a Gunn–Peterson trough has at last

Fig. 18.2. Optical spectra of four very large redshift quasars (z ≥ 5.8) observed with the
Keck-2 telescope. In each spectrum, the wavelengths of prominent emission lines as well
as the Lyman limit are indicated by dashed vertical lines (Becker et al., 2001). The key
observation is the zero continuum flux to the short-wavelength side of the Lyman-α line in the
spectrum of the largest redshift quasar, which can be contrasted with the residual Lyman-α
forest in the lower redshift quasars
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been discovered in the spectrum of the largest redshift quasar discovered as part of
the Sloan Digital Sky Survey (Sect. 17.5.2). Four quasars with redshifts 5.80, 5.82
5.99 and 6.28, discovered by the technique of searching for i-band drop-outs, were
observed by the Keck-2 telescope with the results shown in Fig. 18.2 (Becker et al.,
2001).

The first three quasars show increasing absorption to the short-wavelength side of
the redshifted Lyman-α line, as expected if the absorption were due to an increasing
number of discrete absorbing clouds. At the very largest redshift z = 6.28, however,
the continuum flux drops dramatically to zero to the short-wavelength side of the
Lyman-α line. Becker and his colleagues interpreted this result as showing that
the Gunn–Peterson trough had at last been observed, implying that the fractional
abundance of diffuse neutral hydrogen began to increase with increasing redshift
beyond z ∼ 6. This result was reinforced by observations of the trough to the
short-wavelength side of the Lyman-β line. In their words,

the Universe is approaching the reionisation epoch at z ∼ 6.

The study of the Universe at redshifts z ≥ 6, often referred to as the dark ages,
is one of the great challenges for 21st-century astrophysical cosmology. The first
generations of stars in galaxies must have formed between redshifts of 30 ≥ z ≥ 6.
The ultraviolet radiation of these newly formed stars and any black holes which had
formed in the nuclei of galaxies must have resulted in heating and reionisation of the
intergalactic gas. It is a great observational challenge to determine observationally
the history of structure formation and the evolution of the intergalactic gas during
these critical epochs.

18.3 The Lyman-α Absorption Clouds

The nature and properties of the Lyman-α absorption line systems seen in the
spectra of large redshift quasars are vast subjects and, for more details, reference
should be made to the volumes QSO Absorption Lines (Meylan, 1995), The Hubble
Space Telescope and the High Redshift Universe (Tanvir et al., 1997) and Probing
Galaxies through Quasar Absorption Lines (Williams et al., 2005). An excellent
summary of the current state of understanding of absorption line systems and their
rôle in astrophysical cosmology has be given by Srianand (Srianand, 2006).

18.3.1 The Properties of the Lyman-α Absorption Clouds

It is convenient to follow the standard classification of the types of absorption system
seen in quasar spectra summarised by Srianand. There are three broad classes of
absorption line system which are of direct importance for cosmological studies.

– By far the most common are those belonging to the Lyman-α forest which
dominate the spectra of large redshift quasars, such as that illustrated in
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Fig. 18.3. The spectrum of the quasar Q1422+2309 at emission redshift z = 3.62 showing the
remarkable ‘Lyman-α forest’ on the short-wavelength side of the strong redshifted Lyman-α
emission line, which has an observed wavelength of 560 nm (courtesy Dr. W.L.W. Sargent
(Boksenberg, 1997)). To the long-wavelength side of the Lyman-α line, the spectrum is very
much smoother, only weak metal absorption lines being observed, most of them associated
with the CIV absorption line

Fig. 18.3. These systems have neutral hydrogen column densities1 in the range
NHI ∼ 1016–1021 m−2. In those systems with NHI ≥ 1019 m−2, evidence for
low abundances of the heavy elements, corresponding to about 10−2 of the solar
value, is usually found (Boksenberg, 1997). Systems with lower column densities
do not possess detectable CIV lines, and so it is uncertain whether or not this is
also true for all the weak Lyman-α absorbers. The absorbers responsible for the
Lyman-α forest are interpreted as highly ionised intergalactic clouds, containing
largely unprocessed primordial material. There must, however, be some means
of mildly enriching these primordial clouds, the chemical abundances of which
are similar to those of halo stars in our Galaxy.

– The very much rarer Lyman-limit systems have column densities in the range
NHI ∼ 1021–2 × 1024 m−2. At these column densities, a continuum break is
observed at the redshifted wavelength of the 91.2-nm Lyman limit, and absorption
lines of the common elements are observed. The Lyman-limit systems can be

1 Note that, for consistency, I express column densities in units of m−2, although essentially
all the literature uses units of cm−2.
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associated with the extended gaseous halos of galaxies in which the abundances
of the heavy elements are less than 10% of their cosmic abundances (Bergeron,
1988). These properties are consistent with the inference that the halos are very
extensive, ∼ 50–100 kpc, and so the gas in these regions is not expected to be as
enriched as the gas in the disc of a galaxy.

– The damped Lyman-α systems have the largest column densities, NHI ≥ 2 ×
1024 m−2 and are even rarer, comprising only about 10% of the Lyman-limit
systems. They are so called because the optical depth of the Lyman-α line is
so large that the continuum flux density of the quasar reaches essentially zero
intensity at the line centre, and the profile of the absorption line can be fitted by
a Voigt profile, characteristic of the natural broadening of an absorption line in the
limit τ � 1. These systems almost certainly contain most of the mass density of
neutral gas in the Universe (Lanzetta et al., 1995). Wolfe showed that the damped
Lyman-α systems can be convincingly associated with galactic discs, and in his
pioneering paper he identified them with the progenitors of the stellar discs of
present-day spiral galaxies (Wolfe, 1988). This interpretation was reinforced by
the analysis of Kennicutt, who made detailed observations of a number of nearby
spiral galaxies and showed that active star formation only takes place in their
discs if the column density of neutral gas exceeds 2 × 1024 m−2 (Kennicutt,
1989). It is striking that this criterion is identical to the lower limit at which
absorbers are identified as damped Lyman-α systems. Kennicutt argued that this
criterion is consistent with the stability criterion for rotating thin gaseous discs,
namely, that the disc becomes unstable if the surface density exceeds the critical
value Σcrit, where

Σcrit = A
κcs

3.36G
. (18.8)

κ is the epicyclic frequency, cs is the sound speed in the disc and A ∼ 1. Thus,
the damped Lyman-α systems can provide key information about the chemical
evolution of disc galaxies and their progenitors.

The observed number density distribution of Lyman-α absorbers follows closely
a power-law distribution from the lowest detectable lines with NHI ∼ 2 × 1016 m−2

to the high-density damped Lyman-α systems and can be described by the relation
N(NHI) ∝ H−1.5

HI (Fig. 18.4).

18.3.2 The Nature of the Clouds in the Lyman-α Forest

The very low abundances of metals in the neutral hydrogen clouds of the Lyman-α
forest strongly suggest that they consist of primordial material. Their column den-
sities

∫
NH dl can be determined from the strength of the absorption lines, but there

are only a few cases in which the number density of neutral hydrogen atoms can be
found. A good example is the case of the Lyman-α absorbers observed in front of
the double quasar 2345+007, in which the same clouds are observed along slightly
different lines of sight to each quasar image. Knowing the extent of the clouds,
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Fig. 18.4. Number density distribution of Lyman-α absorbing clouds as derived by Hu and
her colleagues from Keck Telescope observations of large redshift quasars (Hu et al., 1995a)

a number density of neutral hydrogen atoms of about 3 × 10−3 m−3 has been found
(Carswell, 1988). Knowing the intergalactic flux of ionising radiation, the number
density of the ionised hydrogen atoms can be found by balancing the numbers of
photoionisations by the number of the recombinations per second. Typically, the
number density of ionised hydrogen amounts to about 102 m−3, so that the neutral
hydrogen fraction is of the order 3 × 10−5, confirming the statement in Sect. 18.3.1
that the absorbers are associated with rather highly ionised gas clouds. The typical
masses of the Lyman-α clouds are thought to lie in the range 106–109 M�.

The connection with the properties of the diffuse intergalactic gas arises from
considerations of the means by which the clouds are confined. It should be em-
phasised that it is not at all certain how the clouds are held together. The most
likely picture suggested by supercomputer simulations is that the Lyman-α clouds
are in rough pressure balance with a ‘lukewarm’ intergalactic gas at a temperature
of about 3 × 104 K. The intergalactic flux of ionising radiation at a redshift of 2–4
is so intense that the clouds are almost completely ionised. To attain rough pressure
balance, the intergalactic gas at redshifts z ∼ 2–4 would have to be about 102 m−3.
At low redshifts, this would correspond to a density parameter in the intergalactic
gas ΩIGG ∼ 0.1.

The full treatment of this problem is quite complicated. A good example of the
issues involved in these studies is provided by the papers by Ikeuchi and Ostriker
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(Ostriker and Ikeuchi, 1983; Ikeuchi and Ostriker, 1986). A complete study involves
consideration of the stability of the clouds, the role of evaporation, photoionisation
balance within the clouds, and so on.

18.3.3 The Evolution of Lyman-α Absorption Clouds with Cosmic Epoch

The numbers of absorption systems per unit redshift interval for the Lyman-α forest
and the Lyman-limit systems change with redshift. The variation of the number
density of absorbers with redshift can be characterised by a power-law distribution

N(z) dz = A(1 + z)γ dz . (18.9)

Typically, it is found that, for the Lyman-α forest systems, A ≈ 10 and γ = 2–3
whereas, for the Lyman-limit systems A ≈ 1 and γ ∼ 1. These variations with
redshift can be compared with the expected distribution if the properties of the
absorbers were unchanging with cosmic epoch, that is, if the absorbers had the
same proper cross-sections and constant comoving number density. The numbers of
absorbers intercepted along any line of sight in the interval of proper length drprop is

N(z) dz = σA NA(z) drprop , (18.10)

where σA is the cross-section of each absorber and NA(z) is their proper number
density at redshift z. Now, NA(z) = N0(1 + z)3, where N0 is the comoving number
density of absorbers, that is, the number density they would have at the present
epoch, and

drprop = c dt = dr

(1 + z)
= c

H0

dz

[(Ω0z + 1)(1 + z)2 −ΩΛz(z + 2)]1/2(1 + z)
.

(18.11)

For simplicity, let us consider the caseΩ0 +ΩΛ = 1, which we know is a very good
approximation for the best fitting values of the cosmological parameters. Then,

N(z) dz = σA N0
c

H0

(1 + z)2

[(Ω0z + 1)3 − (1 −Ω0)]1/2
dz . (18.12)

Since we are interested in redshifts z > 2, we can neglect the term in (1 −Ω0) in
the denominator. Then, if Ω0 were equal to 1, N(z) ∝ (1 + z)1/2, and, if Ω0 = 0.3,
N(z) varies as a slightly higher power of (1 + z), although there is no simple closed
form for this case. The significance of this calculation is that the observed number
density of Lyman-α forest absorbers changes more rapidly with increasing redshift
than expected according to the uniform absorber model. The sense of the evolution is
that there were more Lyman-α forest systems at large redshifts as compared with low
redshifts. On the other hand, the Lyman-limit systems seem to show a much more
modest variation with redshift, almost as though their cross-sections and comoving
number densities remained unchanged with cosmic epoch.
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18.3.4 The Power Spectrum of the Lyman-α Forest

The statistics of absorbers in the Lyman-α forest are now very large thanks to the
Sloan Digital Sky Survey (SDSS) and their two-point correlation functions and
power spectra can be evaluated as a function of redshift. The importance of these
observations is that they provide information about the distribution of baryonic
perturbations in the redshift interval 2 ≤ z ≤ 4 on physical scales roughly (10h−1 ≥
λ ≥ h−1) Mpc. Since the systems are observed at large redshifts, the perturbations
were significantly less non-linear than they are in the two-point correlation function
for galaxies at the present epoch. What is observed is the distribution of baryonic
absorbers which are presumed to be embedded in cold dark matter haloes. Therefore,
assumptions need to be made to relate the two-point correlation function of the
absorbers to the power spectrum of the underlying dark matter perturbations. This
is where large-scale hydrodynamic simulations of the evolution of the intergalactic
gas are important. We refer to the discussion of Sect. 18.6 in which the low column
density absorbers are associated with a wide range of structures which have low
density contrasts δ	B/	B and have not yet condensed into galaxies. It is therefore
not unreasonable to suppose that there is a close relation between the two-point
correlation function of low column depth absorbers and the initial power spectrum
of perturbations on small scales.

The analysis of McDonald and his colleagues involved a sample of 3035 large
redshift quasars from the SDSS, all of which displayed Lyman-α forest absorption
systems (McDonald et al., 2006). The analysis of this very large data set is highly
non-trivial, particularly in understanding the systematic effects which could bias
the analysis. Some flavour of the challenges posed by these data is provided by the
two-point correlation function in velocity space, which the authors warn should not
be used for quantitative analyses (Fig. 18.5a). This diagram only uses data from the
first six of the nine redshift bins listed in the caption to Fig. 18.5b. The correlation
function is defined as in (14.6) by

ξ(r) = 〈Δ(x)Δ(x + r)〉 , (18.13)

but now x and x + r refer to the relative velocities of the absorption systems along
the line of sight. In Fig. 18.5a, the amplitudes of the correlation functions in different
redshift slices have been normalised to unity at δv ≡ r = 0.

First of all, it can be seen that there is clearly a very strong correlated signal on
scales less than about 1000 km s−1, corresponding to a comoving scale of 10h−1 Mpc.
Second, notice that the correlation functions have similar form in the six redshift
intervals. Third, notice the ‘bump’ in the correlation function at 2271 km s−1 – this
is associated with absorption lines of doubly-ionised silicon, SiIII, in the absorbing
clouds. Corrections to the power spectra have to be made for these Lyman-α–SiIII
correlated features.

The resulting power spectra for the Lyman-α forest in nine separate redshift
intervals are shown in Fig. 18.5b. A different convention has been used for plotting the
power spectra as compared with those of Chap. 14. On the abscissa, the wavenumber
is given in inverse km s−1 – the translations to physical scales are k = 0.001 km s−1
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Fig. 18.5. a The two-point correlation function for the Lyman-α forest for six redshift intervals,
uncorrected for resolution. The correlation functions have been normalised to unity at δv = 0.
The ‘bump’ at 2271 km s−1, and shown in more detail in the inset, is due to the presence
of SiIII absorption lines associated with the Lyman-α clouds. Corrections have to be made
for the presence of this absorber. The authors warn that this diagram should not be used
for quantitative analyses. b The points with error bars show the observed power spectrum
PF(k, z). The lines show the best fit once corrections for SiIII absorption are included. Bottom
to top: the mean redshifts are z = 2.2 (solid line, open square), z = 2.4 (dotted line, crosses),
z = 2.6 (dashed line, filled squares), z = 2.8 (long-dashed line, open triangles); z = 3.0
(dot-dashed line, 3-point star), z = 3.2 (dot-long-dashed line, filled triangle), z = 3.4 (thin
solid line, open pentagon), z = 3.6 (thin dotted line, 5-point star) and z = 3.8 (thin dashed
line, filled pentagon) (McDonald et al., 2006)
�

≡ 10h−1 Mpc and k = 0.01 km s−1 ≡ 1h−1 Mpc. On the ordinate, the power
spectra are plotted as Δ2(k)× k so that the plotted quantities are no longer per unit
wavenumber but provide an estimate of the total power on a particular scale. To
recover our version of the correlation functions per unit wavenumber, we should
divide by k. Then, the power spectra shown in Fig. 18.5b would slope gently in the
opposite direction.

It is important that Fig. 18.5b is free of interpretation and modelling of how the
power spectra of the absorbers can be related to those of the dark matter perturbations
in which they are embedded. The simplest interpretation is that the absorption lines
trace the distribution of the dark matter. There are a number of striking features
of Fig. 18.5b. First of all, although the amplitude of the power spectrum decreases
with decreasing redshift, its shape remains essentially unchanged. Secondly, the
spectral slope matches onto the power spectrum on larger physical scales and is
consistent with the processed primordial power spectrum for the standard adiabatic
cold dark matter model with initial power spectrum of Harrison–Zeldovich form.
This continuity can be appreciated by comparing the predicted spectrum of Fig. 14.1b
over the range of wavenumbers 1 to 10 Mpc−1 with Fig. 18.5b, recalling that the
latter diagram should be divided by k to make this comparison.

Another way of illustrating how the power spectrum of the Lyman-α clouds fits
rather naturally onto other determinations on larger physical scales and matches
the expectations of the processed Harrison–Zeldovich spectrum is provided by the
overall power spectrum presented by Tegmark (Fig. 18.6). The somewhat popular
nature of Fig. 18.6 can be recognised and also the fact that a considerable amount
of modelling and analysis has gone into its construction. The diagram is plotted as
the total power Δ2(k) × k on the physical scale λ, in millions of light years rather
than wavenumber.

A detailed analysis of these SDSS data combined with the 1-year WMAP tem-
perature fluctuation data and the SDSS galaxy power spectrum has been carried
out by Seljak and his colleagues (Seljak et al., 2005). The fact that the Lyman-α
power spectrum extends to smaller linear scales than the other methods means
that it is sensitive to physical processes which could distort the power spectrum
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Fig. 18.6. A compilation of estimates of the power spectrum of density fluctuations showing
how different samples of object provide information on the different physical scales. The
agreement with a processed initial power spectrum of Harrison–Zeldovich form is subject to
interpretation, but overall the agreement with this simple model is impressive (courtesy Dr.
Max Tegmark)

on these scales. Examples include the damping effects which would be expected
if the neutrinos had finite masses of order 1 eV or greater. The agreement of the
observed power spectrum with that predicted by the standard concordance model
means that the sum of the three massive neutrinos families has to satisfy the relation∑

mν < 0.42 eV.

18.4 The Lukewarm Intergalactic Gas

The physical state of the diffuse intergalactic gas and the associated background
ultraviolet ionising radiation field have been the subject of considerable study. It
turns out that the likely temperature and density of the diffuse intergalactic gas make
it very difficult to detect observationally, except by slightly indirect methods.
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18.4.1 The X-Ray Background and a Cosmic Conspiracy

For a number of years, one possibility was that the isotropic X-ray background
emission might be the X-ray bremsstrahlung of very hot intergalactic gas. Marshall
and his colleagues pointed out that the spectrum of the X-ray background emission
in the 1–50 keV energy band shown in Fig. 17.18 can be remarkably well described
by the spectrum of thermal bremsstrahlung at a temperature of kT = 40 keV and
baryon density parameter of ΩBh2 ≥ 0.23 (Marshall et al., 1980).

This simple picture cannot, however, be correct for a number of reasons. First
of all, the considerations of Sect. 17.5.3 show that the X-ray background is due to
the superposition of discrete sources throughout the X-ray waveband rather than
to a diffuse component. The second major concern is that the large quantities of
hot gas, ΩBh2 ≥ 0.23, needed to explain the intensity of the X-ray background
exceed the best estimates of the baryon density parameter ΩBh2 = 0.0223 from
considerations of primordial nucleosynthesis and the 3-year WMAP data. A third
problem is that hot diffuse gas at these high densities and temperatures would give rise
to distortions of the Planck spectrum of the cosmic microwave background radiation.
As discussed by Sunyaev and Zeldovich, Compton scattering of the photons of the
background radiation leads to a characteristic distortion of the spectrum of the
background radiation by redistributing the photon energies (Sect. 4.5). The perfect
Planck spectrum of the background radiation as observed by COBE enabled Mather
to set a powerful constraint to the Compton optical depth of hot diffuse intergalactic
gas

y =
∫

kTe(z)

mec2

σT Ne(z)

(1 + z)
dr ≤ 2.5 × 10−5 (18.14)

(Mather, 1995). The most conservative estimate we can make is to assume that the
hot gas fills the intergalactic medium at the present epoch, in which case we can
make the approximation

y ≈ c

H0
σT Ne(0)

kTe(0)

mec2
. (18.15)

AssumingΩB = 0.23 and kTe = 40 keV, we find y = 5×10−4, already in significant
conflict with (18.14). If we adopt a more realistic picture, in which the heating took
place at a large redshift, the value of y would increase roughly as (1+ z)2.5, resulting
in even greater conflict with the observations. More detailed models of the heating
of the intergalactic gas, which can account for the observed X-ray background
spectrum, come to exactly the same conclusion (Taylor and Wright, 1989). Fabian
and Barcons argued that, although the value of ΩB could be reduced if the hot gas
were clumped, the clumps would result in large fluctuations in the cosmic microwave
background radiation because of the thermal Sunyaev–Zeldovich effect, when the
background radiation passed through the clumps (Fabian and Barcons, 1992). They
concluded that

the perfect bremsstrahlung shape of the X-ray background is just a cosmic
conspiracy.
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18.4.2 The Collisional Excitation of the Intergalactic Gas

The arguments of Sect. 18.4.1 rule out a high-temperature, high-density intergalactic
gas, but it is possible that collisional excitation by shocks could be responsible for its
heating and ionisation. If its temperature lay in the appropriate temperature range,
the gas would be expected to be an emitter of collisionally excited HI and HeII
Ly-α line emission at wavelengths λ = 121.6 nm and λ = 30.4 nm respectively.
The observed intensity of the lines is given by (18.3), in which the emissivity of the
Lyman-α line per unit frequency interval can be written

ε(ν1) = εLy(z) g(ν1 − νLy) , (18.16)

where εLy(z) is the emissivity of the Lyman-α line in W m−3 and g(ν1−νLy) describes
its line profile, normalised so that

∫
g(ν1 − νLy) dν1 = 1. Therefore, the intensity

of the line per unit bandwidth is εLy(z) g(ν1 − νLy). The intensity of background
radiation associated with the Lyman-α emission of the intergalactic gas is therefore

I(ν0) = c

4πH0

∫ ∞

0

εLy(z)g(ν1 − νLy)

(Ω0z + 1)1/2(1 + z)5
dz , (18.17)

where ν1 = νLy = ν0(1 + z) and we have taken ΩΛ = 0 for simplicity. As in
Sect. 18.2, we can take g(ν1 − νLy) to be a δ-function, in which case

I(ν0) = c

4πH0

∫ ∞

0

εLy(z)δ[ν0(1 + z)]
(Ω0z + 1)1/2(1 + z)5

dz

= c

4πH0

εLy(z)

νLy(Ω0z + 1)1/2(1 + z)4
. (18.18)

Notice that, in this calculation, the intensities are in units of W m−2 Hz−1 sr−1. In
ultraviolet astronomy, it is common to quote intensities in terms of the numbers of
photons s−1 m−2 Hz−1 sr−1 or of photons s−1 m−2 nm−1 sr−1. To transform (18.18)
into these units, we note that I(ν0) = hν0 Iph(ν0) and εLy(z) = hνLy NLy(z), where
I(ν0) is the observed intensity in photons per unit frequency interval and NLy(z) is
the emissivity of the intergalactic gas at redshift z in photons m−3. It follows that

Iph(ν0) = c

4πH0

NLy(z)

νLy(Ω0z + 1)1/2(1 + z)3
. (18.19)

Alternatively, in terms of photons per unit wavelength interval, we can write
Iph(λ0) = Iph(ν0)(dν0/dλ0), and so, recalling that λ0 = λLy(1 + z), we find

Iph(λ0) = c

4πH0

NLy(z)

νLy(Ω0z + 1)1/2(1 + z)5
. (18.20)

The emissivity of the intergalactic gas can be written

NLy(z) = N2
0 (1 + z)6γLy(T) , (18.21)
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where N0 = 7.8ΩBh2 m−3 is the number density of neutral hydrogen atoms at the
present epoch andΩB is the baryon density parameter of the intergalactic gas (Jakob-
sen, 1995). γLy is a suitably normalised emission coefficient. Figure 18.7a shows the
variation of γLy as a function of temperature for a standard mixture of hydrogen
and helium in collisional and thermal equilibrium. It is apparent that collisionally
excited HI and HeII Lyman-α lines are particularly intense at what are referred to
as the ‘thermostat’ temperatures of T ≈ 2 × 104 K and T ≈ 8 × 104 K, at which
the ionisation state of the intergalactic gas changes from HI to HII and from HeII to
HeIII respectively. These changes are illustrated by the change in ionisation state as
a function of temperature in Fig. 18.7b. It is immediately apparent from Fig. 18.7b
that, if the intergalactic gas were to be collisionally ionised, the temperature of the
gas would have to be at least 105 K in order that [NHI/NHII] 	 10−5. These tools
were used by a number of authors, including Kurt, Sunyaev and Weymann in the
1960s to show that the ultraviolet background radiation could be used to detect a
‘lukewarm’ intergalactic gas (Kurt and Sunyaev, 1967; Weymann, 1967).

Fig. 18.7. a The emissivity per
hydrogen atom of collisionally
excited HI and HeII Ly-α emis-
sion. The dotted lines show the
equivalent line emission due to
recombination in a fully pho-
toionised gas. b Ionisation struc-
ture of a cosmological mixture
of hydrogen and helium in colli-
sional equilibrium as a function
of temperature. Emission from
HeI is negligible compared with
those of HI and HeII (Jakobsen,
1995)
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18.4.3 The Emission and Absorption of Diffuse Lukewarm Intergalactic Gas

Jakobsen also addressed the question of whether or not the redshifted Lyman-α
emission of lukewarm intergalactic gas would be detectable in the ultraviolet wave-
band (Jakobsen, 1995). The easiest case to consider is that in which the intergalactic
gas is assumed to be kept more or less fully ionised by diffuse ultraviolet ion-
ising background radiation. Jakobsen considered all the possible cases involving
the photoionisation and shock heating of the intergalactic plasma. In the case of
a pure photoionisation model, it is straightforward to show that the diffuse redshifted
Lyman-α background observed at the present epoch would always be significantly
less intense than the ionising background itself and make only a small contribution
to the background radiation. The same conclusion was found for the case in which
the intergalactic gas is heated by shocks. The basic reason that these backgrounds
are so faint is twofold. First, the number density of neutral hydrogen atoms must be
very low because of the null result of the Gunn–Peterson test for neutral hydrogen.
Second, the constraints of primordial nucleosynthesis indicate that the density of the
intergalactic gas is about 20 times less than the critical cosmological density.

An important diagnostic test for the ionisation state of the intergalactic gas is the
search for He+ continuum absorption, the equivalent of the Gunn–Peterson test but
now for the redshifted He+ Lyman-α line, which has rest wavelength 30.4 nm. If the
intergalactic gas were photoionised by a diffuse intergalactic flux of ionising radia-
tion with spectrum Iν ∝ ν−0.5, the He+ ion would be an order of magnitude more
abundant than neutral hydrogen because of its higher ionisation potential and because
it recombines more rapidly, and so the Gunn–Peterson decrement might be observ-
able in large redshift quasars for which the 30.4-nm absorption line is redshifted
into the observable ultraviolet waveband, that is, for quasars with redshifts greater
than 3. The problem is that the 30.4-nm line falls below the Lyman-limit absorption
edge of neutral hydrogen at 91.2 nm and so is attenuated by absorption in Lyman-α
clouds and Lyman-limit systems which lie along the line of sight to the quasar.

HeII absorption troughs in the spectra of two large redshift quasars were discov-
ered by Jakobsen, Davidsen and their colleagues (Jakobsen et al., 1994; Jakobsen,
1996; Davidsen et al., 1996). A remarkable set of observations was carried out by
Jakobsen and his colleagues using the Faint Object Camera of the Hubble Space
Telescope (HST). A survey was made of 25 large redshift quasars to discover the
few examples in which the far-ultraviolet continuum radiation was not absorbed by
intervening Lyman-α clouds. The only quasar which presented an unimpeded view
of the wavebands shorter than HeII Lyman-αwas the quasar Q0302–003 at a redshift
z = 3.286. In the low-resolution spectrum shown in Fig. 18.8a, there is a break in
the continuum intensity at precisely the wavelength of the redshifted HeII line at
30.4 nm. At shorter wavelengths, the continuum intensity falls below the noise level
due to photon counting statistics. At the 90% confidence limit, the optical depth for
HeII absorption was found to be τHeII ≥ 1.7. This limit corresponds to a lower bound
to the diffuse intergalactic number density of HeII ions of NHeII ≥ 1.5h × 10−3 m−3

at redshift z = 3.29. A similar result was found for the quasar PKS1935–692 at a red-
shift of z = 3.185 which was discovered in a similar spectroscopic survey carried
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Fig. 18.8a,b. Evidence for absorption by He+ ions at redshifts z ∼ 3. a The ultraviolet
spectrum of the quasar Q0302—003 observed by the Faint Object Camera of the Hubble
Space Telescope. The solid thin line shows the 1σ uncertainty per wavelength bin of width
Δλ = 10 Å, due to photon statistics. The position of the HeII line at 30.4 nm in the quasar
rest frame is indicated (Jakobsen et al., 1994). b The far-ultraviolet spectrum of the quasar
HS1700+64 observed by the Hopkins Ultraviolet Telescope as part of the Astro-2 mission
of the Space Shuttle. The dotted curve shows an extrapolation of the power-law continuum
spectrum beyond the redshifted HeII emission line. The dashed line shows the statistical error
at each wavelength (Davidsen et al., 1996)
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out by Tytler and his colleagues as discussed in the review by Jakobsen (Jakobsen,
1996). The two surveys discovered only two suitable candidates for this test from
over 110 bright quasars with z > 3 observed by the Faint Object Camera because of
the problems of intervening absorption by Lyman-α clouds. It is reassuring that these
two observations have provided evidence for primordial helium in the intergalactic
gas at large redshifts.

Jakobsen and his colleagues assumed that the absorption was associated with
diffuse intergalactic gas (Jakobsen et al., 1994). In the meantime, observations of the
Lyman-α forest for the same quasar Q0302–003 with the Keck 10-m Telescope by
Cowie and his colleagues indicated that the column density distribution of Lyman-α
clouds extended as a power-law N(NH) ∝ N−1.5

H to column densities as low as 2 ×
1016 m−2, the limit at which line detection became confusion limited (Songaila et al.,
1995; Hu et al., 1995b). Songaila and her colleagues showed that, instead of being
associated with the diffuse intergalactic medium, the HeII absorption trough might be
associated with the integrated effect of these Lyman-α clouds. This argument could
be made in a remarkably model independent way by simply adopting a reasonable
ratio for the optical depths for HeII and HI absorption.

The spectrum of the quasar HS1700+64 at redshift z = 2.743 was observed by
Davidsen and his colleagues with the Hopkins Ultraviolet Telescope as part of the
Astro-2 mission of the Space Shuttle programme in 1995 (Davidsen et al., 1996).
This quasar is by far the brightest known quasar in the far-ultraviolet waveband
at redshifts z > 2, being ten times brighter in these wavebands than Q0302–003
(Reimers et al., 1989; Vogel and Reimers, 1995). The remarkable spectrum obtained
with the far-ultraviolet spectrograph in a 5.4-h exposure is shown in Fig. 18.8b.
The wavelength response extended to the Lyman limit and so much more of the
spectrum to the short-wavelength side of the redshifted HeII Lyman-α line was
observable as compared with that of Q0302–003 and the spectral resolution was
somewhat higher. There is an abrupt depression of the continuum intensity to the
short-wavelength side of the redshifted HeII Lyman-α line, the optical depth for
HeII absorption being τHeII = 1.00±0.07. In addition, the flux density falls abruptly
to zero at the Lyman limit, at which the interstellar gas in our Galaxy becomes
opaque.

The resolution of the issue of the origin of the He+ absorption in these quasars
was provided by the high spectral resolution observations in the far-ultraviolet wave-
length region 100 ≤ λ ≤ 119 nm made by the Far Ultraviolet Spectroscopic Explorer
(FUSE). These challenging observations reported by Kriss and his colleagues for
the quasar HE 2347-4342, which has emission redshift z = 2.885, showed unam-
biguously that, in the redshift interval in which He+ could be observed, most of
the absorption is associated with the He+ Lyman-α forest (Fig. 18.9) (Kriss et al.,
2001). Many of the HeII absorption features could be associated with the HI ab-
sorption lines in the corresponding HI Lyman-α forest and so estimates could be
made of the ratio of He+ to H atoms, η = N(HeII)/N(HI). The mean value of η
was found to be about 80, but with a scatter ranging from 1 to greater than 1000.
According to Davidsen and his colleagues, values of η ∼ 80 are typically predicted
for the ionisation of intergalactic gas clouds by the far-ultraviolet continuum spectra
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Fig. 18.9. The high-resolution spectrum of the quasar HE 2347-4342 obtained with the Far
Ultraviolet Spectroscopic Explorer (FUSE) in the waveband 100 ≤ λ ≤ 119 nm (Kriss et al.,
2001). The near-ultraviolet spectrum obtain at the same time by the Space Telescope Imaging
Spectrograph is shown in grey at wavelengths longer than 118 nm. The straight line shows the
power-law continuum spectrum extrapolated from longer wavelengths, including corrections
for dust extinction. The gap between 107.2 and 108.9 nm is due to gaps between the FUSE
detector segments

of quasars (Davidsen et al., 1996). There must, however, be variations in the UV
ionising flux density to account for the range of values of η ≤ 100. Furthermore,
values of η ≥ 100 require additional softer ionising photons to suppress the neutral
hydrogen abundance. This emission could be associated with starburst galaxies or
with strongly absorbed quasar spectra. The upper limit to diffuse He+ absorption at
redshift z = 2.885 corresponded to τ ≤ 0.11–0.12. Thus, helium must have been
more or less fully ionised by this redshift.

Similar results were obtained in FUSE observations of the quasar HS1700+64
by Fechner and her colleagues, who demonstrated the importance of taking account
of metal absorption lines in the H and He+ Lyman-α forests (Fechner et al., 2006).
The type of ionisation structure of the intergalactic gas implied by these observations
is discussed and illustrated in Sect. 18.6.

18.4.4 The Proximity Effect and the Diffuse Ultraviolet Background
Radiation at Large Redshifts

The Lyman-α forest can also be used to estimate the intensity of the ultraviolet back-
ground radiation through observation of the proximity effect. It was found that there is
a deficit of Lyman-α absorbers with redshifts close to the emission line redshift of the
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quasar relative to the expectations of formulae such as (18.9) (Carswell et al., 1982;
Murdoch et al., 1986). As was shown in Sect. 18.3.2, the Lyman-α forest is interpreted
as low density clouds which are almost fully ionised by the background of ultraviolet
ionising radiation. Close to the quasar, however, the clouds are also ionised by the Ly-
man continuum radiation of the quasar itself. The ultraviolet intensity at any distance
from the quasar can be estimated once its luminosity is known and so the distance at
which the crossover takes place between ionisation predominantly due to the quasar
and to the intergalactic continuum radiation can be estimated. Thus, the proximity
effect enables estimates of the intensity of the intergalactic background ultraviolet
radiation to be made. This approach was pioneered by Bajtlik and his colleagues
who found that, if the background emission spectrum has the form I(ν) ∝ ν−0.5,
the background intensity at the Lyman limit is roughly 10−24 W m−2 Hz−1 sr−1 at
redshift z ∼ 2–3, corresponding to νIν ≈ 3×10−9 W m−2 sr−1 (Bajtlik et al., 1988).
The corresponding photoionisation rate had to lie in the range 0.3 ≤ Γ12 ≤ 2 at red-
shifts z ≈ 2–3, where Γ12 is the HI photoionisation rate in units of 10−12 s−1. More
recently Scott and her colleagues surveyed values of Γ12 in the literature and found
that at redshift z = 3, they varied by almost an order of magnitude, 1.5 ≤ Γ12 ≤ 9
(Scott et al., 2000). The best fit value for I(ν) found by Scott and her colleagues was
7.0+3.4

−4.4 × 10−25 W m−2 Hz−1 sr−1 over the redshift range 1.7 ≤ z ≤ 3.8. The best

fit value for the HI ionisation rate was Γ12 = 1.9+1.2
−1.0 s−1.

The same technique can be used to estimate the flux of intergalactic ionising
radiation at small redshifts from observations of low redshift quasars made with
the Hubble Space Telescope. Kulkarni and Fall found tentative evidence for the
proximity effect in a sample of 13 low redshift quasars observed by Bahcall and his
colleagues as part of the Quasar Absorption Line key project (Kulkarni and Fall,
1993). They found a deficit of Lyman-α absorption clouds close to the redshifts of
these quasars, their estimate of the intergalactic flux of ionising radiation at a typical
redshift z ∼ 0.5 lying in the range 4 × 10−26 to 2 × 10−27 W m−2 Hz−1 sr−1 with
a best estimate of 6 × 10−27 W m−2 Hz−1 sr−1.

It is interesting to compare these values with other methods of estimating
the local far-ultraviolet background radiation. Hα emission has probably been
detected from two high-velocity neutral hydrogen clouds in the halo of our
Galaxy and this provides an upper limit to the local flux of ionising radiation of
Iν ≤ 2 × 10−25 W m−2 Hz−1 sr−1 (Kutyrev and Reynolds, 1989; Songaila et al.,
1989). In 1969, Sunyaev first proposed using the existence of neutral hydrogen in
the peripheries of galaxies to set limits to the flux of intergalactic Lyman-continuum
radiation (Sunyaev, 1969). The results depend somewhat upon the assumptions made
about the spectrum of the ionising radiation and the thickness of the neutral hydrogen
layer in galaxies. Bochkarev and Sunyaev, Corbelli and Salpeter and Maloney found
values in the range (1–10)×10−26 W m−2 Hz−1 sr−1 (Bochkarev and Sunyaev, 1977;
Corbelli and Salpeter, 1993; Maloney, 1993). Thus, the flux of ionising radiation at
redshifts z ∼ 0.5 may well be up to two orders of magnitude less than the intensity
at redshifts z ∼ 2–3.
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An obvious source of ionising photons is the integrated emission of quasars which
have non-thermal spectra which extend into the far-ultraviolet and X-ray wavebands.
To account for the inferred background intensity of about 10−24 W m−2 Hz−1 sr−1 at
z ∼ 2–3, there must be very strong evolution of the quasar population with cosmic
epoch. Bajtlik and his colleagues were able to account for this background intensity
as the integrated ultraviolet emission of the strongly evolving quasar population
(Bajtlik et al., 1988). The same conclusion was reached by Scott and her colleagues
for their larger sample of quasars for the redshift interval 1.7 ≤ z ≤ 3.8. At low
redshifts, the background flux density may well be two orders of magnitude less
than that at large redshifts and so the problem of accounting for the background is
somewhat less severe.

It is not so clear what the sources of the ionising background are at larger
redshifts. The evolving population of luminous quasars at large redshifts seems to
decline abruptly over the redshift interval 3 ≤ z ≤ 6 (see Sect. 17.5.2). Another
possibility is that the ionising radiation of star-forming galaxies or protogalaxies
at large redshifts may make an important contribution. We will return to this issue
in the context of the star formation rate in galaxies as a function of redshift in
Chap. 19.

18.5 The Lyman Continuum Opacity of the Intergalactic Gas

As the redshift of the quasar increases, the Lyman-α forest depresses the continuum
to the short-wavelength side of Lyman-α. As shown by Møller and Jakobsen, the
effect increases dramatically with increasing redshift when account is taken of the
evolution of the number of absorption systems per unit redshift (Møller and Jakobsen,
1990).

The low opacities for HI absorption found in the Gunn–Peterson test suggest that
the diffuse intergalactic gas is remarkably transparent to far ultraviolet radiation. The
cumulative effect of the Lyman-α forest and Lyman-limit systems, however, produces
significant Lyman continuum absorption of the far ultraviolet radiation originating
from large redshifts (Bechtold et al., 1987; Møller and Jakobsen, 1990). The facts
that the number densities of both classes of absorption line systems, the range
of column densities and their evolution with cosmic epoch are well characterised
enabled estimates of the opacity of the Universe to far ultraviolet photons to be
made.

Møller and Jakobsen evaluated the transmission of the intergalactic medium
for large redshift quasars knowing the number density of absorption-line systems
as a function of redshift N(z) and the average absorption per absorber from the
distribution function N(NH) (Møller and Jakobsen, 1990). The absorption coefficient
σH has the form σ0(νH/ν)

3 for all frequencies greater than νH, where νH is the
Lyman limit at 91.2 nm; for longer wavelengths, the absorption is taken to be zero.
An example of the typical transmission as a function of observed wavelength for
a quasar at emission redshift z = 3.2 is shown in Fig. 18.10a; the dashed lines show
the ±1-σ variations in transmission caused by the fluctuations in the numbers and
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Fig. 18.10. a The average transmission of the spectrum of a quasar at redshift ze = 3.2 due to
line blanketing and continuum absorption associated with the Lyman-α forest. Line blanketing
due to Lyman-α and 24 higher Lyman series lines are included. The dashed lines indicate the
±1-σ variations in transmission caused by the numbers and composition of absorbers along
the line of sight (Møller and Jakobsen, 1990). b The average transmission of the ultraviolet
universe out to large redshifts as a function of wavelength. The ‘Lyman valley’ shown in the
figure includes the Lyman continuum opacity due to both the Lyman forest and to Lyman-limit
systems (Jakobsen, 1995)

composition of absorbers along the line of sight. The impact of such a transmission
function on the continuum spectrum is also shown in Fig. 18.1 for the quasar OQ 172
at a redshift of 3.544. Hence, the total optical depth on passing through a distribution
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of clouds N(z) dz is

τtot =
∫ ze

0
N(z)[1 − exp(−〈τ〉)] dz , (18.22)

and the fractional transmitted intensity is E = exp(−τtot).
This expression has been evaluated by Møller and Jakobsen and their results are

displayed in Fig. 18.10b (Møller and Jakobsen, 1990). In the figure, ze is the emission
redshift and the ordinate shows the transmitted fraction of the radiation as observed at
different ultraviolet wavelengths. The diagram can be interpreted as follows. Suppose
we observe at a wavelength of 300 nm. Then, sources at redshifts of 2 or less do
not suffer any Lyman continuum absorption because at a redshift of 2 the emission
wavelength is 100 nm, which is greater than the wavelength of the Lyman limit.
By a redshift of 3, however, the emission wavelength is 75 nm and there is strong
absorption by the clouds in the redshift interval 3 to z = (300/91.2)−1 = 2.29. It can
be seen that the average transmission decreases very rapidly with increasing redshift
and this has important consequences for the observability of sources at the very
largest redshifts. For example, suppose we wished to observe the Gunn–Peterson
decrement for He+ at rest wavelength 30.4 nm or the HeII Lyman-α emission at the
same wavelength at an observing wavelength of 160 nm. The radiation would then
originate from redshift z = (160/30.4)− 1 = 4.3. Inspection of Fig. 18.10b shows
that the intensity of such radiation would be attenuated by a factor of about 100,
rendering its observation very difficult indeed. Empirically, this is confirmed by the
fact that only two good examples out of over 110 quasars with z > 3 were found to
be suitable for the HeII Lyman-α test. It is apparent that the far-ultraviolet Universe
at large redshifts is likely to be heavily obscured. As Jakobsen expressed this result,

Even if the intergalactic medium did go through a phase of intense HeII
emission during reheating, the resulting far-ultraviolet radiation will in all
likelihood remain forever hidden from our view. (Jakobsen, 1995).

There is some relief from this conclusion in that the absorption is due to discrete
clouds rather than to a diffuse medium and the strongest absorbers are the optically
thick Lyman-limit systems. Therefore, along some lines of sight, there may be little
absorption, which is what has allowed observations of the HeII absorption troughs
in Q0302–003, PKS1935–692 and HS1700+64 to be made successfully. A further
consequence is that any large redshift, far-ultraviolet diffuse emission should be
patchy.

18.6 Modelling the Evolution of the Intergalactic Medium

It has been traditional to model the Lyman-α forest in terms of the properties of
‘clouds’, but simulations of the dynamics of the primordial intergalactic gas in dark
matter models for galaxy formation provide a much more realistic picture of the
types of structure which give rise to the absorption systems. Excellent examples of
what can be achieved computationally are provided by the simulations of Hernquist,
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Katz, Miralda-Escudé and their colleagues (Katz et al., 1996; Hernquist et al., 1996;
Miranda-Escudé et al., 1996). The gas evolves dynamically under the gravitational
influence of the large-scale distribution of the dark matter which can be realisti-
cally modelled by large-scale N-body simulations, as illustrated in Fig. 14.10. The
dynamics of the gas is followed using single particle hydrodynamics codes. These
codes include radiative cooling of the optically thin primordial gas which was dis-
cussed in Sect. 16.2. It is assumed that the gas is in ionisation equilibrium with the
background ultraviolet radiation field, which can be specified by the investigator.
A phenomenological description of the process of star formation is adopted accord-
ing to which the cooling gas clouds which are unstable to the Jeans instability are
gradually converted into stars. In addition, energy is returned to the surrounding
medium by supernova explosions. The baryonic matter which collapses into dark
matter potential wells dissipates its thermal energy and forms clumps with masses on
a galactic scale. According to Katz and his colleagues, the results of their simulations
are not sensitive to the assumptions made about the processes of star formation and
supernova feedback. These are necessary features for the successful modelling of
the structure of the intergalactic medium (Katz et al., 1996).

Of particular interest for this chapter are the resulting structures of intergalactic
neutral hydrogen clouds, a good example being shown in Fig. 18.11, which is taken
from the simulations of Hernquist and his colleagues (Hernquist et al., 1996). The
underlying cosmology is a standard cold dark matter model with Ω0 = 1 and
h = 0.5; the baryonic density parameter has been taken to be ΩB = 0.05. In this
simulation, a background ionising radiation flux is assumed to be present which is
consistent with the proximity effect observed in large redshift quasars (Sect. 18.4.4).

Figure 18.11 shows the resulting structure of neutral hydrogen clouds at redshift
z = 2. The simulations result in a network of filaments with dense knots of neutral
hydrogen forming in the vicinity of galaxies. Katz and his colleagues then worked out
the column density distribution of Lyman-α absorption clouds which would be ob-
served along any line of sight through this distribution to a distant quasar, taking into
account the typical spectral resolution of modern spectrographs on large telescopes
(Katz et al., 1996). Remarkably, the column densities found in these simulations
span the range from about 1018 to 1026 m−2, and their number density distribution
follows closely the observed power-law relation N(NH) ∝ N−1.5

H . Similar results
have been obtained by Miralda-Escudé and his colleagues for simulations in the Λ
cold dark matter model (Miranda-Escudé et al., 1996).

These are important results and suggest new ways of tackling the problems
of the formation of galaxies and the hydrogen clouds associated with them. It is
encouraging that the Lyman-α forest can develop rather naturally in the standard
hierarchical picture for the origin of galaxies and larger scale structures. For our
present purposes, the important consideration is the nature of the low column density
systems. According to the simulations, the high column density knots, shown as
white blobs in Fig. 18.11, arise from radiatively cooling gas associated with galaxies
which form in dark matter potential wells. In contrast, the low-density systems are
associated with a wide range of different types of structure. To quote Hernquist and
his colleagues,
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Fig. 18.11. A supercomputer simulation of the expected structure of neutral hydrogen in the
intergalactic medium at a redshift z = 2 in a standard cold dark matter cosmology withΩ0 = 1.
The size of the box corresponds to a comoving scale of 22.22 Mpc. The simulation includes
self-shielding of the neutral hydrogen from the background ultraviolet ionising radiation. The
greyscale is such that the white blobs correspond to column depths N(HI) ≥ 1020.5 m−2. The
faint filamentary structures correspond to column densities of 1019.5 ≥ N(HI) ≥ 1018.5 m−2

and the black ‘voids’ to regions with N(HI) ≤ 1018.5 m−2 (Katz et al., 1996)

. . . the low column density absorbers are physically diverse: they include
filaments of warm gas; caustics in frequency space produced by converging
velocity flows; high-density halos of hot collisionally ionised gas; layers
of cool gas sandwiched between shocks; and modest local undulations in
undistinguished regions of the intergalactic medium. Temperatures of the
absorbing gas range from below 104 K to above 106 K. (Hernquist et al.,
1996)

Of particular interest is the fact that most of the low column density absorbers are
large, flattened structures in which the density constrastΔB = δ	B/	B is low. These
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are present throughout the ‘voids’ seen in Fig. 18.11. From this perspective, the
distinction between the low column density absorbers of the Lyman-α forest and the
continuum Gunn–Peterson effect may be largely academic.

18.7 The Epoch of Reionisation

The next great challenge is to tackle the astrophysical processes involved in the epoch
of reionisation. Strong clues are already provided by the observation of the Gunn–
Peterson decrement in quasars at redshift z ≥ 6 (Sect. 18.2) and the optical depth
τ = 0.09 for Thomson scattering from the intensity and polarisation measurements
of the cosmic microwave background radiation (Sects. 15.7 and 15.9).

The overall picture is well understood but the details are complex. As shown in
Sect. 9.4, the matter and radiation finally decoupled at a redshift of z ∼ 375, after
which epoch the matter and radiation cooled separately and adiabatically until the
first stars formed, probably at a redshift of z ∼ 30. These stars were formed from
pure primordial material and so were probably quite different from the stars we
observe today. The absence of metals meant that they were much stronger sources
of ultraviolet radiation than the stars we observe today. The massive stars would
evolve rapidly, explode as supernovae and give rise to X-ray emission, both from
the supernova remnant and from the compact dead stars formed in the collapse.
Thus, in addition to the ultraviolet radiation of hot stars, there was very likely to be
a contribution from X-rays as well. Once the first stars had completed their life cycles
and returned processed material to the surrounding medium, the next generations
of stars formed with properties progressively more and more similar to those of the
types of star we observe in our Galaxy today. The ultraviolet radiation produced by
the young stars and the X-rays emitted after the end of their lives as normal stars, as
well as the ultraviolet emission of the black holes which began to form in the nuclei
of protogalaxies, began the process of ionising the neutral hydrogen gas. Eventually,
the ‘bubbles’ of hot ionised gas overlapped and the process of reionisation was
completed by a redshift z ≈ 6.

The range of redshifts from z ∼ 1000 to z ∼ 6 is often referred to as the
dark ages since they are very difficult to observe in the optical waveband because of
Lyman-α and Lyman continuum absorption. These redshifts are, however, accessible
by observations of the highly redshifted 21-cm line of neutral hydrogen. Simulations
of the expected distribution of neutral hydrogen through the reionisation epoch have
been carried out by Furlanetto and his colleagues (Furlanetto et al., 2004). Some
of the redshift slices through one of their simulations are shown in Fig. 18.12. At
the largest redshift shown in Fig. 18.12, z = 12.1, most of the gas is still in the
form of diffuse neutral hydrogen, although structure is present due to gas collapsing
into the dark matter potential wells. The average predicted brightness temperature
of the redshifted 21-cm line emission is about 25 mK, but there are also fluctuations
about this value amounting to 〈δT 2

b 〉1/2 ≈ 10 mK. This slice would be observed at
a frequency of 1420/13.1 = 108 MHz.
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Fig. 18.12. A supercomputer simulation of the expected structure of neutral hydrogen in the
intergalactic medium through the epoch of reionisation. The colour scales at the bottom of the
diagrams show the brightness temperature of the 21-cm line at various redshifts as observed
with a bandwidth Δν = 0.1 MHz spanning the range of brightness temperatures from 102

to 10−4 mK. Each panel corresponds to the same slice of the simulation of width 10h−1

comoving Mpc at redshifts z = 12.1, 9.2, 8.3 and 7.6 (Furlanetto et al., 2004)

As the first stars formed, they began to ‘burn holes’ in the neutral hydrogen
distribution. The various feedback processes associated with the life cycle of the
first generations of massive stars resulted in the expansion of these holes until they
overlapped and the intergalactic gas was more or less fully ionised by a redshift
z = 7.6, corresponding to a frequency of 165 MHz. By that redshift, the mean
brightness temperature of the neutral hydrogen had dropped to 0.1 mK and the
brightness temperature fluctuations to 〈δT 2

b 〉1/2 ≈ 0.1 mK.
It is a very major experimental challenge to measure these changes by the

observation of highly redshifted neutral hydrogen at long radio wavelengths. The
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prediction is that there would be a change in the intensity of the radio background
radiation in the frequency range of 50 to 150 MHz, but this is a very difficult obser-
vation in view of the very high brightness temperatures of the various foreground
emissions in the low frequency radio wavebands. There are two features which make
these challenging observations feasible. The first is that the foreground signals are all
expected to be associated with continuum emission processes such as synchrotron
radiation which have no spectral features. Therefore the search for a differential
change in the continuum intensity of about 25 mK can be sought in the 50- to
150-MHz waveband. The second prediction is that there should be a corresponding
decrease in the fluctuations about the mean brightness temperature as the neutral gas
is reionised. These are the objectives of a number of current projects, including the
LOFAR project in the Netherlands. Ultimately, the Square Kilometre Array (SKA)
should be able to map the neutral hydrogen distribution over the sky through the
reionisation era with high angular resolution and very high sensitivity.

There is now a large body of literature on the subject of the intensity and fluc-
tuation power spectrum of the redshifted 21-cm line which is helpfully summarised
by Pritchard and Furlanetto (Pritchard and Furlanetto, 2007). The physics involved
in these studies is reflected in the expression for the brightness temperature Tb of the
21-cm line emission,

Tb = 27 xHI(1 + δB)

(
ΩBh2

0.023

)(
0.15

Ω0h2

1 + z

10

)1/2 (Ts − Tγ
Ts

)
mK . (18.23)

Taking each of the quantities in turn, xHI is the neutral fraction of hydrogen and ΩB

is the overall baryonic density parameter, δB = Δ	B/	B is the fractional overdensity
in baryons, Tγ is the temperature of the cosmic microwave background radiation at
redshift z and Ts is the spin temperature of the neutral hydrogen. The spin temperature
describes the number densities of neutral hydrogen atoms in the 1S singlet and triplet
states, n0 and n1 respectively, through the expression

n1

n0
=
(

g1

g0

)
exp (−T21/Ts) , (18.24)

where g1/g0 = 3 is the ratio of spin degeneracies of the upper and lower levels of
the transition and T21 ≡ hc/kλ21 = 0.0628 K. The spin temperature is determined
by the different physical processes by which the levels of the hyperfine transition
are populated and can be written

T−1
s = T−1

γ + xαT−1
α + xcT−1

K

1 + xα + xc
, (18.25)

where Tα is the colour temperature of the Lyman-α radiation field at the Lyman-α
frequency and is closely coupled to the kinetic temperature of the gas TK by multiple
scatterings. xc is the collisional coupling coefficient and xα is the coupling coefficient
associated with the excitation of neutral hydrogen by the flux of Lyman-α photons,
often referred to as the Wouthysen-Field effect.

Pritchard and Furlanetto provide an illuminating discussion of the importance
of different excitation conditions through the dark ages. While the radiation and
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matter are strongly coupled at z ≥ 200, Ts = Tγ , and so there is no 21-cm signal.
Once the matter and radiation decouple, the kinetic temperature drops below the
temperature of the background radiation TK < Tγ and so the 21-cm line would be
observed in absorption against the background radiation. Notice that the fluctuations
in the absorption signal would be associated with the baryon fluctuations δB and
so the detection of this signal would provide one of the few ways of studying the
redshift interval 30 < z < 150. Once the first stars are formed, there is a competition
between collisional and radiative excitation of the 21-cm line. There are a number
of plausible scenarios for the subsequent thermal history of the gas. Suffice it to
note that, once the heating of the neutral hydrogen elevated the temperature of the
gas above that of the background radiation, the 21-cm line would be expected to be
observed in emission.

As emphasised above, it is not only the mean intensity which is important astro-
physically, but also the fluctuations about the mean background intensity. Furlanetto
and his colleagues write the fluctuations as follows:

δTb = βδ+ βxδx + βαδα + βT δT − δδv , (18.26)

where δ is the fluctuation in the baryon density and can be assumed to be the
same as the underlying density fluctuation in the dark matter; δx is the fluctuation
in the neutral fraction and δα that in the Lyman-α coupling coefficient. δT is the
fluctuation in the thermal temperature of the gas and δδv the line-of-sight peculiar
velocity gradient. The expansion coefficients β are given by Pritchard and Furlanetto
(Pritchard and Furlanetto, 2007).

These considerations present difficult challenges for experimental astrophysi-
cists, but their importance lies in the fact that they provide one of the very few
means of probing the dark ages and so of understanding how the process of galaxy
formation really got under way.

18.8 The Origin of Magnetic Fields

So far, we have had very little to say about magnetic fields, but they are omnipresent
in astronomy. Excellent surveys of the techniques by which magnetic flux densities
can be measured in different astronomical environments, and the results of these
studies can be found in the volume Cosmical Magnetism (Lynden-Bell, 1997) and
the review by Vallée (Vallée, 1997).2 The Bologna Conference on the Origin and
Evolution of Cosmic Magnetism contained much recent information about cosmic
magnetic fields (Beck et al., 2006).

Magnetic fields play a key role in the process of star-formation, in the dynamics
of the interstellar medium and in many different aspects of high energy astrophysics.
These topics are central to any study of the physics of galaxies and active galactic

2 I have given derivations of many of the relevant aspects of the physics of astronomical
magnetic field measurements in Chap. 17 of High Energy Astrophysics, Vol. 2. (Longair,
1997c).
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nuclei. Some impression of the issues involved in understanding the origin of cosmic
magnetic fields is provided by the surveys by Rees, Kulsrud and Parker (Rees, 1994,
1995, 2006; Kulsrud, 1997; Parker, 1997).

To summarise briefly, magnetic fields are present in all astronomical objects.
In stars, the magnetic flux densities range from 108 T in the interiors of neutron
stars, through values ∼ 1 T in sunspots to about 10−7 T in protostellar objects.3

In the case of normal stars, it is probable that the origin and maintenance of their
magnetic fields can be attributed to dynamo action in their interiors associated with
the combination of convective motions and reconnection of the lines of force. The
key point is that the timescale for the amplification of the magnetic field inside
stars can be quite short and so there can be many e-folding times to create a finite
magnetic field strength starting from a tiny seed field. There have been concerted
efforts to study dynamo processes in the laboratory since it turns out that the various
dimensionless parameters encountered in cosmic environments can be replicated in
laboratory experiments. Recently, the first successful laboratory dynamo experiments
were reported and involved the generation of magnetic fields by a strongly turbulent
swirling flow of liquid sodium (Monchaux et al., 2007).

The situation is somewhat different in the case of the large-scale magnetic fields in
the interstellar media in galaxies and in the intracluster medium. In our own Galaxy,
the magnetic flux density in the interstellar medium consists of a large-scale ordered
field of about 2 × 10−10 T superimposed upon which there is a random component
of about one to two times this value (Taylor and Cordes, 1993). In the case of the
intracluster medium in clusters of galaxies, evidence for large-scale fields is provided
by the diffuse synchrotron radio emission observed in a number of clusters, as well as
by the observation of depolarisation of the emission of extended extragalactic radio
sources by the surrounding intracluster medium. Typical magnetic flux densities are
B ∼ 10−10 T. In the case of the intergalactic medium between clusters of galaxies,
there are only upper limits to the strengths of any large-scale magnetic fields from
the lack of depolarisation of the emission of distant radio sources, typical limits
corresponding to B ≤ 10−13 T.

In the case of the large-scale magnetic fields in galaxies and clusters, there is
a problem in understanding their origin, since the characteristic timescales over
which magnetic dynamos could operate are rather long. For example, in the case of
the interstellar field in our own Galaxy, the period of rotation of the interstellar gas
about the Galactic Centre is ∼ 2.5×108 years, and so there have been at most about
50 complete rotations of the gas about the centre. The differential rotation of the
ionised gas in the interstellar medium results in the stretching and amplification of
the magnetic field in the disc so that any primordial magnetic field would be tightly
wound up. This is not sufficient, however, to produce an ordered uniform field since
the winding up of the field lines would result in tightly wound tubes of magnetic flux
running in opposite directions. There needs to be some way of reconnecting the lines
of force to create a large-scale uniform field. The problems with this picture have

3 I use the SI unit of the tesla for magnetic flux densities. 1 tesla = 104 gauss; correspond-
ingly, 1 nT = 10−5 gauss.
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been discussed by Parker, who suggested that a solution may lie in the buoyancy of
the interstellar cosmic ray gas which can inflate loops of magnetic fields which burst
out of the plane of the Galactic disc, reconnect and snap off (Parker, 1997). Even
if this process is effective, there is still the question of the origin of the seed field,
which must be present to get the process going.

A process by which a very weak seed field can be generated was discovered by
Biermann and is known as the Biermann battery (Biermann, 1950). The principles of
operation of the primitive battery are clearly described by Kulsrud (Kulsrud, 1997,
2005). Initially, there was no magnetic field in the plasma, but it is supposed that
there are fluctuations in the pressure of the electrons. The electrons flow to lower
pressure regions, resulting in a charge imbalance in the plasma, which produces an
electric field E opposing the flow of electrons:

−neeE = ∇ pe . (18.27)

As a result, the flow stops and an electromotive force (emf) is created in the plasma.
This emf cannot drive a current, however, since the integral round any closed loop
in the case of a linear gradient in electron density is zero. If, however, there are
also variations in the electron density throughout the plasma, different emfs can be
induced in different regions and then currents can flow in the plasma, as illustrated
schematically in Fig. 18.13 (Kulsrud, 1997). Magnetic fields can then develop and
are eventually limited by the self-inductance of the current loop itself. As Kulsrud
shows, this process saturates when the magnetic flux density is only about 10−25 T,
at least 1015 times less than the strength of the Galactic magnetic field. Thus, the
challenge is to find a means of creating a large scale magnetic field from these

Fig. 18.13a,b. Illustrating the physics of the Biermann battery (Kulsrud, 1997). a In this case,
there is a variation in electron pressure in the y direction which results in a drift of the electrons
which is opposed by the electric field caused by the charge separation of the electrons from the
protons. In this case, a static emf is created. b Expression (18.27) shows that, if the pressure
gradient is fixed, the emf is proportional to n−1

e . If the density of electrons is independent
of y but varies in the x-direction, the emfs at different positions in the x-direction no longer
balance and a current can flow, creating a small-scale seed magnetic field
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tiny random seed fields, which are generated on the scale of the electron density
fluctuations in the plasma. This is not a trivial problem.

In addition to the mechanism described by Parker, Kulsrud has discussed the
amplification of the seed magnetic field in a turbulent medium, characterised by
a Kolmogorov spectrum of turbulence. In a turbulent medium, energy is transferred
from large-scale to small-scale eddies until the motions are dissipated by viscous
forces on the smallest scales. This process has the advantage that, on small scales,
the turnover time of the eddies is short and so effective amplification of the magnetic
field can take place on small scales. The problem is to understand how such a strong
chaotic small-scale field could result in a large-scale ordered field. Kulsrud argues
that, once equipartition is established between the mean kinetic energy density of
the turbulence and the magnetic field energy density, the dominant magnetic fields
are those associated with the large-scale eddies, the smaller-scale structures being
dissipated as energy is transferred to smaller and smaller scales.

There have been important advances in the observation of turbulent magnetic
fields in the intergalactic medium in clusters of galaxies; many of these are sum-
marised in the proceedings of the Bologna conference on the Origin and Evolution
of Cosmic Magnetic Fields. On the observation side, de Bruyn described the devel-
opment of rotation measure synthesis which enables information about the spectrum
of magnetic turbulence in diffuse astronomical environments to be obtained (Brent-
jens and de Bruyn, 2006). Observations of the power spectrum of rotation measures
in the intracluster medium and its comparison with the Kolmogorov spectrum of
turbulence were reported by Govoni (Govoni, 2006).

Equally impressive has been the spectacular growth of studies of the predicted
spectrum of turbulence by computer simulation, for example, the work of Ryu and
his collaborators (O’Neill et al., 2006). While it is straightforward to derive the
Kolmogorov spectrum of turbulence in a few lines of dimensional analysis, it is
encouraging to find it coming directly out of large-scale cosmological simulations.
There are, of course, variations in the exact spectrum, but the overall agreement with
intuitive ideas about the turbulent growth of magnetic fields in clusters is compelling.

An alternative approach to the origin of magnetic fields has been suggested by
Rees (Rees, 1994, 1995). The starting point is the observation that certain high energy
astrophysical objects are undoubtedly capable of generating strong ordered magnetic
fields over substantial scales. In the case of a supernova remnant such as the Crab
Nebula, a convincing case can be made that the magnetic field in the Nebula, which
has magnetic flux density about 10−(7–8) T over scales of a few parsecs, originated
in the rotating dipole field of the central pulsar, which was created in the collapse
of the progenitor star of the neutron star. The origin of the intense magnetic field
of the pulsar can be traced back to the collapse of the magnetic field present in the
progenitor star which in turn can be attributed to some form of magnetic dynamo
action within the star. The big advantage of this picture is that the timescales for the
amplification of the magnetic field within the progenitor star can be very short and
thus there is no problem in principle in generating strong magnetic fields.

The other convincing example of the formation of strong magnetic fields in high
energy astrophysical objects concerns the extragalactic radio sources. The lobes
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of these sources can extend to dimensions of 1 Mpc and greater and the fields
within them are B ∼ 10−10–10−9 T. The standard picture for the origin of these huge
magnetic field energies involves the release of energy from the active galactic nucleus
in the form of intense jets of high energy particles and magnetic field. Precisely how
the fields are amplified is a matter of speculation, but there is no doubt that enormous
energy fluxes are generated in active galactic nuclei and that these are sufficient to
account for the total magnetic field energy requirements of the radio lobes. Again, it
is assumed that, because the jets originate in the compact regions close to the active
nucleus, there is no problem in principle in accounting for the amplification of the
magnetic field because the timescales in these regions are very short. The presence
of a supermassive rotating black hole in the nucleus can result in the generation of
strong magnetic fields by electromagnetic induction if even a tiny magnetic field
threads the black hole (Thorne et al., 1986).

Rees makes the point that these phenomena indicate how magnetic fields can
be generated by high-energy astrophysical processes on the scales of supernova
remnants, galaxies and clusters of galaxies. To fill the volume of a galaxy with
magnetic flux due to supernova explosions, the process would have to be repeated
many times in the early history of the galaxy and the net result could well be
a seed field which could then be amplified by the processes discussed by Parker
and Kulsrud. Notice that a key part of the process involves the smoothing out of the
gross inhomogeneities in the field. In the same way, the magnetic field in clusters
of galaxies might be the result of repeated radio source events. The magnetic fields
created in the radio source events would diffuse through the intracluster plasma and
repeated events would add to the total large scale magnetic flux within the cluster.
Possible scenarios are indicated schematically in Table 18.1, which is taken from
the reviews by Rees (Rees, 1994, 1995).

Table 18.1. The origin of magnetic fields (Rees, 1994, 1995)
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There are good reasons why these issues should be taken rather seriously. One
of the important means of discovering some of the most distant galaxies we know
of is through the identification of extragalactic radio sources, the radio galaxy with
the largest redshift being z = 4.8. The fact that the galaxy is a strong radio source
means that there must already be a strong magnetic field within the galaxy. It seems
plausible that magnetic fields were already present in galaxies and clusters at large
redshifts. This will certainly have an influence upon many aspects of the formation
of subsequent generations of stars and galaxies.
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The final and, in many ways most difficult, part of the story is to put together the
astrophysical concepts we have introduced so far in order to form galaxies as we
know them at the present epoch. Many of the important processes were introduced
in Chap. 16, but there we stopped short of considering, for example, the role of
star formation and feedback mechanisms in accounting for the different Hubble
types or equivalently, the red and blue sequences. The reason for this is simple –
the formation of galaxies as we know them involves a large number of complex
interlocking non-linear effects. Many key parts of the picture are poorly understood,
for example, the appropriate rules for star formation and its dependence upon the
physical conditions within the star-forming region, the role of supernova explosions
in enhancing or inhibiting star formation, the role of the massive black holes which
form in the centres of massive galaxies, and so on.

In many ways, progress is in the hands of the observers in defining empiri-
cally what must have occurred as a function of cosmic epoch. These endeavours
are strongly supported by what is now possible computationally. The large-scale
simulations can now include empirical rules about phenomena such as star forma-
tion and feedback mechanisms in order to find out the types of physics needed to
form galaxies as we know them. This is the realm of semi-analytic models of galaxy
formation and in many ways can be considered an experimental science in the sense
that the numerical experiments provide guidance about the relevance of different
physical processes in galaxy formation.

Central to all these considerations is the rôle of star formation in the evolution
of galaxies, and that is where we begin.

19.1 Star and Element Formation in Galaxies

Some of the most important clues concerning the sequence of events which must have
taken place as galaxies took up the forms they have today come from observations
of the variation of the overall star-formation rate in galaxies with cosmic epoch. This
story is closely related to studies of the rate at which the chemical elements were
built up in the stars and in the interstellar media of galaxies – much of the chemical
enrichment of the interstellar gas is associated with the formation of heavy elements
in short-lived massive stars and their recirculation through the interstellar gas by
supernova explosions. Star and element formation rates can be derived by a number
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of independent methods and these help constrain scenarios for the evolution of
galaxies.

– We can obtain limits to the total amount of element and star formation which
could have taken place in galaxies from the intensity of the isotropic background
radiation in the optical, infrared and submillimetre wavebands.

– The characteristic flat, blue spectra of regions of star formation can be observed
over a wide range of redshifts, and these enable estimates to be made of the rates
of star and element formation as a function of cosmic epoch. These estimates
can be strongly influenced by the effects of dust in the star-forming regions and
in the galaxy itself, but the absorbed energy is reradiated in the far-infrared and
submillimetre wavebands, and so the overall production of heavy elements can
be constrained by observations in these wavebands.

– The characteristic cut-off of the spectra of young stars beyond the Lyman limit
at 91.2 nm has proved to be a very powerful method of detecting star-forming
galaxies out to redshifts z ≈ 6, thanks to the availability of the new generation
of 8- to 10-m telescopes.

– Spectroscopic studies of absorption-line systems in the spectra of quasars provide
estimates of the abundances of the elements in these gas clouds over a wide range
of redshifts and, as we will show, provide direct evidence concerning the build-up
of heavy elements in galaxies.

19.1.1 The Background Radiation and Element Formation

Heavy elements such as carbon and oxygen are formed in the central nuclear-burning
regions of massive stars. In Fig. 19.1, the evolution of the internal chemical structure
of a 5M� star is shown, illustrating the synthesis of oxygen and carbon in its central
regions (Kippenhahn and Weigert, 1990). The first step in the synthesis of these
elements involves the burning of all the hydrogen into helium in the core of the
star. The formation of carbon and oxygen only begins when the central regions have
become sufficiently hot and dense for the triple-α reaction, 3 4He → 12C, to take
place after about 6 × 107 years. By 8 × 107 years, the inner 20% by mass of the
star has been converted into carbon and oxygen, which is recirculated through the
interstellar gas following the demise of the star. During these brief terminal phases,
the star evolves onto the red giant region of the Hertzsprung–Russell (H–R) diagram,
as shown in the lower panel of Fig. 19.1.

Thus, the essential first step in the formation of the heavy elements during
stellar evolution is the conversion of hydrogen into helium within the core of the
star. Inspection of a table of the binding energies of the chemical elements shows
that by far the most important source of energy generation during the processes of
nucleosynthesis is the conversion of hydrogen into helium, in which 0.7% of the rest
mass energy of the hydrogen atoms is liberated. Thus, to produce a given mass of
heavy elements, the energy release during the main-sequence lifetime of a massive
star is just the energy liberated in the hydrogen to helium conversion necessary to
create that mass of heavy elements. In other words, to create a mass MZ = ZM of
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Fig. 19.1a,b. Evolution of the internal structure of a 5M� star, illustrating the synthesis of
carbon and oxygen in its central regions. The abscissa shows the age of the model star after the
ignition of hydrogen in its core in units of 107 years. The ordinate shows the radial coordinate
in terms of the mass m within a given radius relative to the total mass M of the star. The cloudy
regions indicate convective zones. The corresponding positions of the star on an H–R diagram
at each stage in its evolution are shown in the lower panel of the diagram (Kippenhahn and
Weigert, 1990)

heavy elements, an energy 0.007ZMc2 must be liberated during the steady main-
sequence hydrogen-burning phase of the star, where Z is the fraction of the total
mass in the form of heavy elements, or metals, created by stellar nucleosynthesis.
Therefore, taking averages over the lifetime of the star, if a mass of metals ṀZ is
created per unit time, the average luminosity of the star during its main-sequence



586 19 Making Real Galaxies

phase is 0.007ṀZc2, that is,

L = 0.007ṀZc2 . (19.1)

Cowie has argued that this expression should be modified to take account of the
fact that not all the heavy elements become available to be recycled through the
interstellar gas and so incorporated into the next generation of stars (Cowie, 1988).
Some of the mass is locked up in white dwarfs or neutron stars formed at the end
of the star’s lifetime and, if a black hole is formed, the infalling material is lost to
us. If αm is the fraction of the heavy elements which is recycled to the interstellar
medium, which Cowie takes to be 0.67, a greater luminosity is required to create the
observed interstellar abundance of the elements by a factor α−1

m . Integrating over the
lifetime of the galaxy, (19.1) can be written in terms of the total energy density of
radiation ε which is built up in the process of creating a total mass density of heavy
elements 	m,

ε = 0.007	mc2

αm
, (19.2)

where 	m = V−1
∫

ṀZ dt and ε = V−1
∫

L dt. If this energy was liberated at redshift
z, (19.2) describes the energy density of radiation and the mean density of metals
produced at that redshift. The energy density of radiation decreases with redshift
as (1 + z)−4, whereas the average density of metals decreases as only (1 + z)−3.
Writing the energy density of radiation in terms of the intensity, I = εc/4π, we find

I = 0.007	mc3

4παm(1 + z)
. (19.3)

This is the background radiation intensity which should be observed today if a mass
density 	m of heavy elements is observed at the present epoch.

Let us insert some plausible values into (19.3) to illustrate how the present
abundance of the metals is constrained by the intensity of the background radiation.
If the density parameter in baryons is ΩB, 	m = Z	cΩB and the intensity of the
background radiation would be

I = 3.0 × 10−4 ZΩBh2

αm(1 + z)
W m−2 sr−1 . (19.4)

This estimate can be compared with various limits to the isotropic cosmic background
radiation, which are shown in Figs. 9.1b and 9.2. These figures are plotted in units
of νI(ν) and so represent the intensity of the radiation in the same units as (19.4).
Taking as representative values ΩBh2 = 0.0223, Z = 0.01 and αm = 0.67, we find
I = 10−7/(1 + z) W m−2 sr−1. If this radiation were due to the emission of stars,
we would expect this to be the typical intensity emitted over roughly a decade in
frequency. Clearly the result depends upon the redshift at which most of the metals
were formed but it can be seen from Fig. 9.2 that this estimate lies close to the
upper limits to the optical background radiation due to Toller, which is shown by
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square boxes at roughly 440 nm (Toller, 1990). It is also not so different from the
lower limit to the background light due to galaxies found by integrating the counts of
faint galaxies, which is shown by the open boxes. Furthermore, the background is of
the same order of magnitude as the upper limits to the optical-infrared background
intensity inferred from analyses of the spectra of ultra-high-energy γ -ray sources in
which the effects of γγ absorption attenuates the high energy spectrum (Aharonian
et al., 2006). It is interesting that this rather crude estimate of the background
radiation gives a result not too different from what might be expected from the
observed abundances of heavy elements in the Universe today.

The background intensity in the optical waveband would be reduced if a signif-
icant fraction of the optical-UV emission of galaxies were absorbed by dust. Stars
are formed in the coolest, dustiest regions of galaxies and much of the synthesis of
the heavy elements may well have taken place when a much larger fraction of the
baryonic mass of galaxies was in the form of interstellar gas than it is today. The
very first generations of stars must have created a significant abundance of heavy
elements, which would lead to the formation of interstellar dust. In turn, the presence
of dust would facilitate the formation of subsequent generations of stars.

From our present perspective, the absorbed optical-UV radiation would be re-
radiated in the submillimetre–far-infrared wavebands, in which case the same ar-
guments which led to (19.4) can be used, but now applied to the background in-
tensities in these wavebands which have been provided by the COBE experiment
(Fig. 9.1b). At wavelengths longer than 0.5 mm, strong upper limits to the back-
ground intensity are provided by the lack of distortion of the spectrum of the cosmic
background radiation (Fig. 2.1). At shorter wavelengths, the spectrum and intensity
of the cosmic infrared background have been extracted from the COBE observa-
tions by Puget, Hauser and their colleagues. The results are shown schematically
in Fig. 9.1b (Puget et al., 1996; Hauser et al., 1998; Hauser and Dwek, 2001). The
background intensities in the cosmic infrared background are roughly the same as
the upper limits and estimates in the optical waveband. These simple considerations
make the important point that we need to include in our estimates of the cosmic
star formation rate the optical, infrared and submillimetre intensities of star-forming
galaxies.

19.1.2 The Global Star Formation Rate from Optical and Ultraviolet
Observations of Star-Forming Galaxies

Lilly and Cowie first showed how the rate of formation of heavy elements could be
inferred from the flat blue continuum spectra of star-forming galaxies and that these
estimates are independent of the choice of cosmological model (Lilly and Cowie,
1987; Cowie, 1988). The analysis begins with the observation that a prolonged burst
of star formation has a remarkably flat intensity spectrum at wavelengths longer than
the Lyman limit at 91.2 nm. This is illustrated by the model starbursts presented by
White from computations using the spectral synthesis codes of Bruzual for predicting
the spectra of galaxies at different phases of their evolution (White, 1989). Figure 19.2
shows the spectrum of a starburst galaxy as observed at different ages, assuming
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Fig. 19.2. Synthetic spectra for a starburst with constant star-formation rate as observed at
the ages indicated. A Salpeter initial stellar mass function N(M) dM ∝ M−2.35 dM has been
assumed with cut-offs at 75 and 0.08 M�. The spectra were generated by Bruzual using his
evolutionary synthesis programmes (White, 1989)

that the star-formation rate is constant and that the stars are continuously formed
with the same Salpeter initial mass function. The flatness of the spectrum is due
to the fact that, although the most luminous blue stars have short lifetimes, these
are constantly being replaced by new stars. To a good approximation, it can be
assumed that the spectrum of the star-forming galaxy can be described by a power-
law I(ν) ∝ ν−α with α = 0 at wavelengths λ > 91.2 nm, and zero intensity at
shorter wavelengths. Furthermore, the intensity of the flat part of the spectrum is
directly proportional to the rate of formation of heavy elements in the starburst since,
as discussed in Sect. 19.1.1, the conversion of hydrogen into helium is the essential
first stage in the synthesis of the heavy elements in the central regions of massive
stars.

The same assumptions made in Sect. 19.1.1 are adopted, namely that the total
luminosity of the system is 0.007ṀZc2/αm, where ṀZ is the rate at which heavy
elements are synthesised and αm is the fraction of the synthesised elements returned
to the interstellar medium. We now use the result that this radiation has a flat intensity
spectrum α = 0 up to the Lyman limit νLy, so that

∫
Lν dν = LννLy = 0.007ṀZc2/αm , (19.5)
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where Lν is measured in W Hz−1. This can be rewritten in the form

Lν = 2 × 1022
(

ṀZ/αm

1M� year−1

)
W Hz−1 (19.6)

for all wavelengths longer than the Lyman continuum limit at 91.2 nm. It is now
a simple calculation to work out the background intensity of a cosmological distri-
bution of such sources. The integral (17.33) can be used in the form

I(ν0) = 1

4π

∫ ∞

0

L(ν0, z)N0

(1 + z)1+α dr , (19.7)

where we have allowed the luminosity of the sources to be an arbitrary function of
redshift and assumed that they all have the same spectral index α. Now L(ν0, z)N0

is the comoving luminosity density per unit bandwidth due to the formation of heavy
elements. From (19.5), this is just 0.007c2	̇m/αmνL y, where 	̇m is the comoving rate
of formation of heavy elements and the spectral index α = 0. Therefore,

I(ν0) = 0.007c2

4παmνLy

∫ ∞

0
	̇m

dr

(1 + z)
. (19.8)

But dr/(1 + z) = c dt, and so the background intensity is

I(ν0) = 0.007c3

4παmνLy

∫ ∞

0
	̇mdt = 0.007c3

4παmνLy

∫ ∞

0

d	m

dz
dz = 0.007	mc3

4παmνLy
, (19.9)

provided the Lyman limit is not redshifted beyond the observing waveband. This
is the remarkable result found by Cowie and Lilly – the background intensity due
to star-forming galaxies as a function of redshift is directly related to the rate at
which elements are formed and is independent of the cosmological model. Cowie
recommended a correction factor of αm = 0.67 to take account of the fraction of
metals which is not returned to the interstellar medium but is locked up in stellar
remnants (Cowie, 1988). Inserting the values of the constants,

ΔIν(z) = 7 × 10−25
[

Δ	m(z)

10−31 kg m−3

]
W m−2 Hz−1 sr−1 . (19.10)

Notice the pleasant result that ΔIν(z) is the observed background intensity of flat
spectrum star-forming galaxies in some redshift interval Δz and Δ	m(z) is the
density of heavy elements observed at the present epoch which were created by these
galaxies in that redshift interval. The reference density used in (19.10), 10−31 kg m−3

of heavy elements, corresponds roughly to Z = 0.01 in a Universe in which the
density parameter in baryons is ΩB = 0.01.

Cowie, Lilly and their colleagues undertook deep multicolour surveys to dis-
cover flat spectrum star-forming galaxies at large redshifts. Their survey was suc-
cessful in finding such galaxies, which have roughly equal intensities in the U,
B and V wavebands – the background due to such objects amounted to about
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10−24 W m−2 Hz−1 sr−1. They interpreted this result as meaning that a significant
fraction of the heavy elements, about 1.5×10−31 kg m−3, must have been synthesised
at redshifts of about one (Cowie et al., 1988). This type of analysis has also been
used to set limits to star-formation rates in the Canada-France Redshift Survey by
Lilly and his colleagues and in the Hubble Deep Field by Madau and his colleagues
(Lilly et al., 1995; Madau et al., 1996)

19.1.3 The Lyman-Break Galaxies

In a remarkable pioneering set of observations, Steidel and his colleagues extended
the multicolour technique for finding star-forming galaxies to redshifts z > 3. The
idea was similar to that developed by Cowie and Lilly, but now the objective was to
search for star-forming galaxies in which the Lyman limit, clearly seen in the models
of young galaxies shown in Fig. 19.2, is redshifted into the optical waveband. The
technique is illustrated in Fig. 19.3a, in which the spectrum of a star-forming galaxy
at redshift z = 3.15 is observed through carefully chosen filters in the ultraviolet,
blue and red spectral regions. The signature of such a galaxy is that its image
should be bright in the two longer wavebands but should not be present in the
UV waveband. Steidel’s original intention was to use this technique to identify
the galaxies responsible for the Lyman-limit absorption systems in the spectra of
distant quasars, and this programme turned out to be remarkably successful (Steidel
and Hamilton, 1992). It was soon found that the technique was also a remarkably
effective means of discovering star-forming galaxies in the general field at z > 3.
Observations of the Hubble Deep and Ultra Deep Fields have proved to be ideal
for exploiting this approach because, in addition to very precise photometry in four
wavebands spanning the wavelength range 300 < λ < 900 nm, high-resolution
optical images have enabled the morphologies of these galaxies to be studied. HST
images in four wavebands of one of the Lyman-break galaxies in the Hubble Deep
Field are shown in Fig. 19.3b.

The success of Steidel’s programme is illustrated in Fig. 19.4, which shows
the redshift distribution of 68 Lyman-break galaxies found in an area of only 9 ×
18 arcmin2 for which spectroscopic redshifts were obtained with the Keck 10-m
telescope. By 2000, he and his colleagues had accumulated large numbers of star-
forming galaxies at redshifts z ∼ 3 and showed that their luminosity function could
be well-fitted by a Schechter luminosity function (Adelberger and Steidel, 2000).

19.1.4 The Hubble Deep and Ultra Deep Fields

Successive directors of the Hubble Space Telescope Science Institute, Drs. Robert
Williams and Steven Beckwith, took the decision to devote large amounts of the
director’s discretionary time on the Telescope to very deep imaging of single fields
with a view to studying galaxy populations in the very distant Universe. The regions
to be observed were selected in consultation with the astronomical community and
the data were made publically available very soon after they had been secured and
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Fig. 19.3. a Illustrating how the use of multicolour photometry can be used to isolate star-
forming galaxies at redshifts z > 3, at which the Lyman limit is redshifted into the optical
region of the spectrum (Steidel, 1998). b Images of one of the distant star-forming galaxies
appearing in the Hubble Deep Field. Left to right: the images were taken at red (I), green
(V), blue (B) and ultraviolet (U) wavelengths. Because the Lyman limit has been redshifted

calibrated (Ferguson et al., 2000; Beckwith et al., 2006). The Hubble Deep Field
(HDF) was observed in four wavebands with the Wide Field Planetary Camera 2 in
a 0.5-million-s exposure. The field of view was only 2.3 arcmin in angular size, but
within that area there were about 3000 galaxies with apparent magnitudes V ≤ 29
(Williams et al., 1996). The startling result of these observations was immediately
apparent – there were vastly more blue galaxies than would be predicted by uniform
world models and many of them had irregular and complex structures. The excess of
faint blue galaxies was already known (Sect. 17.7), but the HDF observations with
their very high sensitivity and high angular resolution in four wavebands enabled

beyond the U waveband, no image of the galaxy appears in the U image (reprinted from
"Galaxies in the Young Universe", by F. Duccio Macchetto and Mark Dickinson, © 1997 by
 Scientific American, Inc. All rights reserved.)
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Fig. 19.4. Th redshift distribution of Lyman-break galaxies in a single 9′×18′ area of sky, all of
which have spectroscopically confirmed redshifts. The differently shaded histograms reflect
slightly different selection criteria. The dotted curve shows the expected redshift distribution
defined by the colour selection criteria for the complete sample of objects. The ‘spike’ at
z = 3.09 is significant at the 99.9% confidence level (Steidel, 1998)

the nature of the excess to be characterised in some detail and extended to fainter
magnitudes.

The HDF was followed up by observations of a corresponding field in the
Southern Hemisphere, the Hubble Deep Field South (HDFS) (Williams et al., 2000).
The Advanced Camera for Surveys (ACS), which replaced the Faint Object Camera
as part of the 2002 servicing mission, had a wider field of view and improved
sensitivity compared with the WFPC2, and so the opportunity was taken to repeat the
deep field imaging to fainter magnitudes, again in four wavebands. The image of the
Hubble Ultra Deep Field (HUDF), shown in Fig. 17.24a, is the result of a 1-million-s
exposure in four filters. These observations were complemented by those carried out
as part of the Great Observatories Origins Deep Surveys (GOODS), which surveyed
a wider field to a somewhat brighter limiting apparent magnitude (Fig. 17.24b).
Giavalisco and his colleagues have summarised the objectives and the results of the
GOODS project (Giavalisco et al., 2004b).

The community grasped the opportunities offered by these projects to carry
out many important studies of the properties of galaxies at very large redshifts,
many of these being summarised in the papers by Beckwith, Bouwens and their
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colleagues (Beckwith et al., 2006; Bouwens et al., 2006). Of particular interest
for the present study is the analysis of the properties of the ‘drop-out’ galaxies at
progressively larger redshifts. The filters employed in the HUDF observations were
carefully selected to enable Lyman drop-out galaxies to be observed at redshifts
z ∼ 7 (Fig. 19.5a). Beckwith and his colleagues reported that, of the 10,040 objects
appearing in the catalogue in the i775 waveband, there were 504 B435-drop-outs,
204-V204 drop-outs and 54 i775-drop-outs, corresponding to galaxies with redshifts
in the ranges 3.5 ≤ z ≤ 4.7, 4.6 ≤ z ≤ 5.7 and 5.7 ≤ z ≤ 7.4 respectively.

A striking feature of the drop-out galaxies is immediately apparent from
Fig. 19.5b, which shows images of the 24 brightest B435-drop-out galaxies, as well
as simulated images of what four typical nearby galaxies of different morphological
types would look like at the mean redshift of B435-drop-out galaxies, z = 4.1 (Lotz
et al., 2006). The first three simulated galaxies are for early to late type galaxies and
the fourth image is for a merger between two galaxies. It is apparent that most of
the images resemble most closely the last simulation, but on a much more compact
scale.

It is simplest to summarise the results of this comparison in the words of Beckwith
and his colleagues:

Visual inspection of the drop-out sources . . . shows a large number of irreg-
ular structures, along with many compact objects. High-redshift galaxies
appear much smaller and less regular than we see in the local universe,
confirming similar findings from other deep surveys with the resolution of
HST, notably the HDF. The majority of drop-out sources are compact, of
order 1 kpc in extent. They often show multiple components and irregular
structures. Few of the drop-out sources show the regular structures of local
spiral or elliptical galaxies (Beckwith et al., 2006).

The change in physical size with redshift has been characterised by Bouwens and
his colleagues who find that the half-light radius changes with redshift as rhl ∝
(1 + z)−1.05 (Bouwens et al., 2004). At a redshift z ∼ 6, the half-light radius
is 1 kpc, corresponding to an angular size of 170 milliarcsec. The importance of
the diffraction limited capability of the combination of the HST and the ACS is
apparent.

The samples of drop-out galaxies have enabled estimates of the luminosity func-
tions of these galaxies in the different redshift intervals to be determined. The three
samples available from the HUDF can be described by Schechter luminosity func-
tions but with different normalisations (Fig. 19.6) (Beckwith et al., 2006). According
to these data, there is little change in the absolute magnitude M∗ with increasing
redshift, but the number density decreases very significantly between redshifts z = 4
and z = 7. These conclusions are somewhat different from those of Bouwens and
his colleagues who found evidence that the value of M∗ changed with redshift, in
the sense that the typical luminosity increased as the Universe grew older (Bouwens
et al., 2006). In her survey of the cosmic star-formation history as determined by these
observations, Bergeron concluded that the statistics at the largest redshifts were too
small to provide a definite resolution of this issue (Bergeron, 2006). Beckwith and
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Fig. 19.5. a Filter transmission curves for the four bands used in HUDF survey. Also shown is
the spectrum of a model star-forming galaxy at z = 5.8 from the models of Bruzual and Charlot
assuming 0.4 solar metallicity and continuous star formation for 100 Myr (Beckwith et al.,
2006). Intergalactic absorption due to intervening Lyman-α clouds has been incorporated into
the predicted spectrum (Madau, 1995). b Comparison of simulated images of nearby galaxies
(four panels on left) due to Lotz and her colleagues with images of the 24 brightest B435
drop-our sources on the right (Lotz et al., 2006). All the boxes have sizes corresponding to
21 kpc at z = 4.1. The drop-out sources are indicated by the small lines in the centre of each
frame (Beckwith et al., 2006)

his colleagues emphasised how sensitive the derivation of the luminosity functions
are to the details of the selection procedures and the reader should consult the papers
cited here for many more details of the somewhat tricky issues involved. Despite
this uncertainty, there is agreement that the luminosity density decreases by about
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an order of magnitude between redshifts z ∼ 3 and z ∼ 6, as can be appreciated
from the values of φ∗ given in Fig. 19.6.

Returning to the topic which started this discussion, how does the UV luminosity
density, and consequently the global star-formation rate, change with redshift? The
results of the Subaru Deep Surveys, carried out making full use of the outstanding
wide-field capability of the Japanese 8-m Subaru telescope have shown that, if
attention is restricted to the luminous far-UV galaxies with MFUV ≤ −21.3, there is
a factor of ten decrease in the far-UV luminosity density between redshifts z ∼ 3
and z ∼ 6 (Shimasaku et al., 2005). The less luminous sources, with MFUV ≤ −19,
show very much less dramatic evolution, and in fact at the largest redshifts the less

Fig. 19.6a–c. Luminosity functions for drop-out galaxies from the HUDF, GOODS, SAGDP99
(Steidel et al., 1999) and O04 (Ouchi et al., 2004) surveys. a B435 drop-outs (3.5 ≤ z ≤ 4.7).
The lines are the best-fit Schechter functions. For the combined sample M∗ = 20.7 and
φ∗ = 0.0013 Mpc−3. b V606 drop-outs (4.6 ≤ z ≤ 5.7) from the HST samples together with
V606 drop-outs from O04 (squares). The best-fit parameters are M∗ = 20.55 andφ∗ = 0.0009
Mpc−3; c HST i775 drop-outs (5.7 ≤ z ≤ 7.4). The best-fit parameters are M∗ = 21.1 and
φ∗ = 0.0005 Mpc−3 (Beckwith et al., 2006)
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Fig. 19.7. Evolution of the far-UV luminosity density and the corresponding star-formation
rates. The large and small symbols indicate the luminosity density of galaxies brighter than
far-UV absolute magnitudes M = −21.3 and M = −19.0 respectively (Shimasaku et al.,
2005)

luminous sources produce about 30 times more UV luminosity than the luminous
galaxies (Fig. 19.7).

Similar results for the UV luminosity density were found from analyses of
the data from the Hubble Ultra Deep Field, which suggest that it only decreased
slightly from the values found at redshift z ∼ 2 (Giavalisco et al., 2004a; Beckwith
et al., 2006). Beckwith and his colleagues agree with the conclusion that the flatness
of the intensity distribution with increasing redshift is largely associated with the
intrinsically fainter galaxies in the samples. The consequence is that star formation
was certainly well under way by the largest redshifts accessible by the HUDF survey,
which just extend into the redshift range at which the reionisation of the intergalactic
gas was more or less complete.

All researchers in these important areas emphasise the great care needed in
converting the observational data into luminosity densities as a function of cosmic
epoch. It is probably safest to keep an open mind about the exact value of the far-
UV luminosity density at the largest redshifts z ≥ 4. There is general agreement,
however, that there is an order of magnitude decrease in the UV ionising radiation
between redshifts z ∼ 1 and the present epoch, one of the key results of the pioneering
paper in this area by Madau and his colleagues (Madau et al., 1996).

19.1.5 Submillimetre Determinations of the Cosmic Star-Formation Rate

A concern about optical determinations of the cosmic star-formation rate is the
extent to which the statistics are influenced by the effects of dust extinction. Galaxies
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undergoing bursts of star formation are not only sources of intense UV continuum
radiation but are also strong emitters in the far-infrared waveband because of the
presence of dust in the star-forming regions. In a study of star-forming galaxies
in the Markarian catalogues of UV-excess galaxies, Mazzarella and Balzano found
that star-forming galaxies are on average stronger emitters in the far-infrared than
in the UV waveband (Mazzarella and Balzano, 1986). Similarly, in a sample of star-
forming galaxies studied by the International Ultraviolet Explorer, Weedman found
that most of the galaxies emit much more of their luminosity in the far-infrared
rather than in the UV region of the spectrum (Weedman, 1994). Thus, some star-
forming galaxies may well be obscured by dust and so not be present in optical-UV
multicolour surveys. Secondly, a significant fraction of the radiation associated with
the formation of the heavy elements was not radiated in the UV-optical region of the
spectrum, but at far-infrared wavelengths.

As discussed in Sect. 19.1.1, this issue can be addressed by making observations
in the submillimetre waveband in which star-forming regions are intense emitters and
the total millimetre/sub-millimetre luminosity of a galaxy also provides a measure
of the star formation rate. The spectrum of dust is strongly ‘inverted’ in these
spectral regions and so the K-corrections are large and negative. As a result, a typical
star-forming galaxy is expected to have essentially the same flux density in the
submillimetre waveband, whatever its redshift in the range 1 < z < 10 (Fig. 17.4b)
(Blain and Longair, 1993).

Such surveys could not be carried out until array detectors for the submillimetre
waveband became available, specifically the SCUBA camera on the James Clerk
Maxwell Telescope (JCMT). As discussed in Sect. 17.6. a large population of sub-
millimetre sources was discovered by Smail and his colleagues (Smail et al., 1997),
and this led to a number of intensive campaigns which resulted in the submillime-
tre number counts shown in Fig. 17.22. Reasonable extrapolations of the number
counts can account for the total background radiation, but it is a much greater chal-
lenge to determine the redshift distribution of the sources. The problem is that the
angular resolution of about 10 arcsec of the JCMT did not allow the identification
of the submillimetre sources to be made with very faint galaxies. By observing
spectroscopically all the candidates within the SCUBA error boxes, Barger and her
colleagues achieved a success rate of about 25% for the bright SCUBA sources
(Barger et al., 1999). Most of the fainter sources remained, however, unidenti-
fied.

Because of the strong far-infrared–radio correlation of star-forming galaxies,
high-resolution radio observations with the Very Large Array could be used to
provide improved positional accuracy for many of the SCUBA sources. For the
sources with flux densities S ≥ 5 mJy, the identification success rate increased to
60%. Spectroscopic observations of a sample of 70 identifications showed that the
galaxies had redshifts in the expected range, 0.5 ≤ z ≤ 4 with a mean redshift
z = 2.2 (Chapman et al., 2005). These were very considerable achievements, but
the sources with known redshifts at flux densities greater than 2 mJy accounted for
only about 10% of the submillimetre background intensity.
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To tackle this problem, Wang, Cowie and Barger used a stacking technique to
correlate the near-infrared and X-ray flux densities of galaxies in the GOODs survey
areas with their submillimetre flux densities (Wang et al., 2006). By this means
they showed that active galactic nuclei could at most contribute 15% of the total
background, whereas the sources present in the field at 1.6 and 3.6 μm could account
for at least 60% of the 850-μm background intensity. Specifically, the submillimetre
background intensity at 850 μm is about 31 to 42 Jy degree−2, while the stacking of
the infrared galaxies at 1.8 and 3.5 μm gave 24 Jy degree−2. The remarkable result
of their analysis was that most of the submillimetre background radiation was asso-
ciated with Sb and Sc galaxies rather than with the Sd and irregular galaxies, many
of the latter being the types of star-forming galaxy found in the deep optical-infrared
surveys. The data can be converted into a plot of star-formation rate against red-
shift and it has a similar form to that derived from the optical-near-infrared studies,
namely with increasing redshift the star-formation rate increases rapidly from zero
to z ≈ 1 and then remains roughly constant at redshifts up to four (Fig. 19.8).

The submillimetre star formation rates are similar to the estimates from the
optical-UV continuum observations once appropriate extinction corrections are
made, but the surprising result was that the blue star-forming galaxies did not
contribute to the star-formation rates measured in the submillimetre waveband. This
suggests that the extinction corrections must be greater for the galaxies which pro-
duce the bulk of the submillimetre background and lower in the blue star-forming
galaxies (Wang et al., 2006). Notice also that the predicted total mass of stars formed
by the present epoch is in good agreement with estimates of the total baryonic mass
in stars today. Much more insight into these important issues will be obtained with
observations to be carried out with the Atacama Large Millimetre Array (ALMA),
which should be completed about 2012.

19.2 The Abundances of Elements in Lyman-α Absorption
Systems

The cosmic star-formation rate is closely related to the rate at which the cosmic
abundances of the elements are built up in the interstellar media of galaxies. Heavy
elements are undoubtedly present in the most distant quasars observed but it is a com-
plex issue to relate these to their cosmic abundances. More important are the element
abundances observed in the Lyman-α absorption systems discussed in Sect. 18.3.

Fall has emphasised that one of the great attractions of using absorption lines
in Lyman-α absorbers to estimate the relative abundances of any species along the
line of sight to distant quasars is that, provided the absorbers are randomly oriented,
average relative abundances can be found for different species, independent of the
structures or clumpiness of the clouds (Fall, 1997). We can readily adapt (18.10)
for the case in which the optical depth for absorption has been transformed into
a column density Nx for absorption by some species x along an arbitrary line of
sight through a cloud. The subscript x might refer to hydrogen atoms (x = HI), metal
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Fig. 19.8. a The star-formation rate density as a function of redshift derived from various
submillimetre samples discussed in the text. The dashed horizontal line shows the rate
assuming all the sources with 850 μm flux densities greater than 4 mJy lie at 1 ≤ z ≤ 3.
The rectangular region shows the density from the remaining submillimetre background that
is not accounted for by the near-infrared observations, assuming that the sources lie in the
redshift interval 1 ≤ z ≤ 3 (Wang et al., 2006). b Comparison of optical-UV (triangles and
diamonds) and submillimetre (filled squares) estimates of the amount of star formation as
a function of epoch. The ordinate is the star-formation rate multiplied by the cosmic time scale
at that epoch. The open squares joined to the filled squares show the maximum corrections
for incompleteness of the submillimetre data. The dotted lines show the optical-UV data
multiplied by factors of 3 and 5 to take account of the effects of dust extinction. The solid
lines show the cumulative mass of stars formed by different epochs. The filled circle at z = 0
is an estimate of the present mass density in stars (Wang et al., 2006)
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ions (x = m), or dust grains (x = d). Then, for a line of sight of proper length drprop

through the cloud,

N(x)σx drprop = σxNx , (19.11)

where N(x) is the number density of species x in the cloud and σx is the absorption,
or scattering, cross-section for species x, which is known from atomic physics.
Nx = N(x) drprop is the column density of species x through the cloud. Thus, knowing
the atomic cross-sections, the observations provide direct estimates of the column
densities of each species in the clouds intercepted along a particular line of sight.

As illustrated in Fig. 18.4, there will generally be a distribution of column
densities N(Nx) dNx for any species. This is expected to change with cosmic epoch
as gas is condensed into stars and the interstellar gas in galaxies is enriched as a result
of stellar nucleosynthesis and the recycling of processed material to the gas. We can
estimate how the relative abundances of different species change with redshift by the
following procedure. We relate the total column density of species x in the redshift
interval z to z + dz to the density parameter Ωx(z) to which it would correspond at
the present epoch. Notice that this will not be the density parameter of the species
at that epoch – we adopt this procedure simply as a way of comparing abundances
at different cosmic epochs in a self-consistent manner.

First of all, for species x, we define the function N(Nx, z) dNx dz to be the
number of absorbers with column densities in the range Nx to Nx + dNx and in
the redshift interval z to z + dz. Then, the total column density of species x in the
redshift interval dz is

Ntot(x, z) dz = dz
∫ ∞

0
Nx N(Nx, z) dNx . (19.12)

This column density can be related to the average comoving number density of
species x at redshift z and the interval of proper length drprop by introducing the
density parameter Ωx(z) as follows:

Ωx(z) = 8πGmx Nx(z)

3H2
0 (1 + z)3

where Ntot(x, z) dz = Nx(z) drprop . (19.13)

Nx(z) is the average number density of species x at redshift z and mx is the atomic,
ionic or molecular mass of species x. Therefore, using (18.11) for the case ΩΛ = 0,
which is a good approximation for large redshifts, we find

Ωx(z) = 8πGmx

3H0c

(Ω0z + 1)1/2

(1 + z)
Ntot(x, z) . (19.14)

The beauty of this result is that, if we average over many lines of sight, the linearity
of (19.12) and (19.13) means that we average over all systems in all orientations
which contribute to Ωx(z) at that redshift. Furthermore, we can determine how the
global metallicity Z = Ωm/Ωg and other relative abundances change with redshift
by taking appropriate ratios.

The damped Lyman-α systems are of particular importance in understanding the
evolution of neutral gas and the build-up of the heavy elements with cosmic epoch. As
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discussed in Sect. 18.3.1, these are identified with the discs of the progenitors of spiral
galaxies. The studies of Lanzetta, Storrie-Lombardi, Pettini and their colleagues are
excellent examples of what could be achieved using the technologies of the 1990s
(Lanzetta et al., 1995; Storrie-Lombardi et al., 1996; Pettini et al., 1997). The picture
which emerged was that, at redshifts z ∼ 3, the comoving density parameter in
neutral hydrogen wasΩHI ≈ (1−2)×10−3h−1, and this decreased with decreasing
redshift until, at z = 0, its value was only about 2 × 10−4, a value consistent
with independent measures of the amount of neutral hydrogen present in galaxies
and their environs at the present epoch (Fig. 19.9a). As Lanzetta and his colleagues
remarked, although the comoving number density of damped Lyman-α systems does
not change markedly with redshift, the column densities themselves are a strong
function of redshift. Thus, all the systems at z ∼ 3.5 have column densities greater
than NHI = 1025 m−2, whereas only 20% of them exceed this value at z ≈ 1.

In Fig. 19.9a, the crosses with error bars show the estimates of ΩHI in damped
Lyman-α systems at different redshifts. These estimates have been corrected to take
account of the effects of dust extinction (circles) and also for the presence of neutral
hydrogen in systems with lower column densities (boxes). It is striking that the
density parameter in neutral gas at a redshift of z = 2.5 is of the same order of
magnitude as the density parameter corresponding to the mass of stars in galaxies at
the present time, which is indicated by the hatched area in Fig. 19.9a.

The big advantage of studying the damped Lyman-α systems is that they have
such large column densities that relatively rare species can be used to probe the
chemical abundances of the elements. Pettini and his colleagues, for example, made
observations of singly ionised zinc, Zn+ or ZnII, which has a number of advantages
as a tracer of the overall abundance of the heavy elements (Pettini et al., 1997, 1999).
Zinc shows little affinity for dust and is predominantly in the form of Zn+ in HI
regions. As a result, observations of ZnII are likely to provide robust estimates of the
total heavy element abundance as well as a means of determining the depletion of
other elements such as iron into dust grains. Although zinc is a relatively rare species,
the solar system value corresponding to [Zn/H] = 3.8 × 10−8, this has the advantage
that the absorption lines are sufficiently weak for accurate column densities to be
determined. Furthermore, zinc is probably synthesised by nuclear processes similar
to those involved in the formation of iron and so provides a good tracer of the
chemical history of the enrichment of the interstellar gas.

In Fig. 19.9b, the abundance of zinc relative to hydrogen is shown for a number
of large-redshift-damped Lyman-α clouds with redshifts in the range 0.3 ≤ z ≤
3.5. Recalling that we need to take averages to obtain a mean element abundance
as a function of redshift, it can be seen that the heavy element abundances were
typically only about 10% of the present solar values throughout the redshift interval
0.3 ≤ z ≤ 3.5. Intuitively, it might have been expected that there would be a steady
increase in the heavy element abundance with decreasing redshift, but the build-up
of these elements appears to be rather gradual.

A similar result was found by Kulkarni and his colleagues who used Hubble
Space Telescope observations of low redshift absorption-line systems to measure
the relative abundances of zinc and chromium using the ZnII and CrII lines in four
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Fig. 19.9. a Evolution of the mass density of neutral gas as a function of redshift as determined
by mass density of damped Lyman-α absorbers in the spectra of distant quasars (Storrie-
Lombardi et al., 1996). Note that these authors use h50 rather than h = h100. The circles show
estimates ofΩHI corrected for the effects of dust extinction and the boxes are corrected values
which take account of neutral hydrogen not associated with damped Lyman-α systems. The
shaded band indicates estimates of the density parameter in stars, that is, the mass associated
with the visible light of galaxies, at the present day. b The [Zn/H] abundance determined by
Pettini and his colleagues relative to the solar value, which is indicated by the dashed line
(Pettini et al., 1997, 1999). The usual convention is adopted of plotting the logarithm of the
abundance ratio [Zn/H] relative to its present cosmic value on the ordinate
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damped Lyman-α systems with redshifts 0.09 < z < 0.52 (Kulkarni et al., 2005).
Metallicities much lower than the solar value were found, the extrapolated values at
z = 0 corresponding to [Zn/H] in the range −0.7 to −0.75, a similar result to that
found by Pettini and his colleagues. Kulkarni and his colleagues suggested that their
sample of low-redshift-damped Lyman-α systems may be dominated by dwarf or
low-surface-brightness galaxies.

The advent of 8- to 10-m class telescopes has enabled the abundances of many
elements in damped Lyman-α absorption systems to be studied in considerable
detail. Excellent examples of the richness of these data sets are provided by the
analyses of Prochaska and Wolfe and of Dessauges–Zavadsky and her colleagues
(Prochaska and Wolfe, 2002; Dessauges-Zavadsky et al., 2006). An example of the
results for the abundance of iron in the large uniform sample of damped Lyman-α
systems studied by Prochaska, Wolfe and their colleagues is shown in Fig. 19.10.
On averaging, it can be seen that the metal abundance increases quite gradually
over the redshift interval 5 ≥ z ≥ 0.5 (Prochaska et al., 2003). The high resolution
and sensitivity provided by the 8- to 10-m class telescopes has meant that these
studies could be extended to many more atomic and ionic species, for example, the
observations of Dessauges–Zavadsky and her colleagues including abundances of
22 elements, B, C, N, O, Mg, Al, Si, P, S, Cl, Ar, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ge,

Fig. 19.10. The metal abundance relative to hydrogen [M/H] derived from 125 damped
Lyman-α systems with redshifts 0.5 < z < 5. The unweighted mean logarithimc metallicity
in six bins is shown by the solid star with bold ‘error bars’, the vertical bar representing the
95% confidence limit (Prochaska et al., 2003)
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As, Kr. The remarkable results of both papers is that there is little dispersion in the
relative abundances of the elements, which are very similar to the solar abundances,
but at much lower average metallicities. As Dessauges–Zavadsky and her colleagues
remark:

This uniformity is remarkable given that the quasar sightlines cross gaseous
regions with HI column densities spanning over one order of magnitude
and metallicities ranging from 1/55 to 1/5 solar. The uniformity is also
remarkable since damped Lyman-α systems are expected (and observed at
low redshift) to be associated with a wide range of galaxy types. This implies
the respective star formation histories seem to have conspired to yield one
set of relative abundances.

Prochaska and Wolfe suggest that the mixing of the elements in these systems must
have been remarkably efficient.

19.3 The Equations of Cosmic Chemical Evolution

It is useful to have analytic tools for understanding the relation between the cosmic
star-formation rate and the rate at which the elements are built up in galaxies, and
this has been provided by Fall and Pei (Fall and Pei, 1993; Pei and Fall, 1995). The
formalism is based upon what they call the equations of cosmic chemical evolution,
which are similar to those originally derived by Tinsley for the chemical evolution of
galaxies (Tinsley, 1980). Pagel has given many more details of these types of calcula-
tion and of the physics of the chemical evolution of stars and galaxies (Pagel, 1997).

In the approach adopted by Fall and Pei, all mention of galaxies disappears,
all that remains being the global averages of the density parameters for the major
constituents of the Universe. At each stage, reasonable simplifications need to be
made, but this is in the spirit of the approach, which is to provide a framework
for star and metal formation in galaxies, viewed globally. The density parameter
in stars Ωs is zero when star formation begins and builds up to the mean value
Ωs(t0) ≈ (4–8)×10−3 by the present epoch. At the same time, the density parameter
in gas Ωg initially comprised 100% of the baryonic matter in galaxies and has
decreased to only about 5% of its initial value by the present epoch. The density
parameter in heavy elements Ωm was initially zero and has built up to about 1%
of the baryonic mass by the present epoch. Finally, dust was also formed as the
abundance of the heavy elements built up. A typical figure would be that about
50% of the heavy elements in the interstellar media of galaxies is in the form of
dust. Allowance can also be made for the infall of unprocessed material into galaxies
from the intergalactic medium, and also for the expulsion of processed material from
galaxies through supernova explosions and galactic winds.

The objective of the calculation is to relate the absorption history, which provides
a series of snapshots of the values of the various density parameters at different
epochs, to the emission history, which generally provides information about the
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rates of formation of stars and heavy elements, that is, the derivatives of their density
parameters with respect to cosmic time.

The first equation describes the conservation of mass

d

dt

(
Ωg +Ωs

) = Ω̇f , (19.15)

where Ω̇f is the rate of infall into, or of the expulsion of baryonic matter from,
galaxies. If this term is zero, then (19.15) states that Ω̇g = −Ω̇s, that is, the rate at
which gas is depleted is equal to the rate at which mass is condensed into stars.

The second equation describes the rate at which the mass of heavy elements
changes with time. The metallicity of the gas at any epoch is defined to be Z =
Ωm/Ωg, and so we can write the rate of change of Ωm as

dΩm

dt
= d

dt

(
ZΩg

) = y
dΩs

dt
− Z

dΩs

dt
+ ZfΩ̇f . (19.16)

The first term on the right-hand side, y dΩs/dt, describes the rate of increase of
the mass of heavy elements associated with the rate of star formation. The quantity
y is called the yield. Written in this way, the term involves the assumption of
instantaneous recycling of processed material to the interstellar medium. In reality,
there is bound to be some delay between the formation of a generation of stars,
the completion of their evolution and the recycling of processed material to the
interstellar gas. The rationale behind the form of this term is that most of the heavy
element formation is associated with massive stars, which have lifetimes that are
short compared to the typical timescales over which the average abundances change
significantly (Sect. 19.1.1). This term means that, in the time dt, a mass of stars dΩs

is formed per unit comoving volume and these eventually return a mass of heavy
elements y dΩs to the interstellar medium. In the spirit of this analysis, the yield y
is assumed to be independent of cosmic epoch.

The second term on the right-hand side of (19.16) describes the loss of heavy
elements because of the formation of stars from gas which has already attained
a metallicity Z. In the time dt, the loss of heavy elements per unit comoving volume is
−dΩm = −Z dΩs. The third term on the right-hand side represents the enhancement
of the heavy element abundance by the infall of baryonic material from intergalactic
space, assumed to have metallicity Zf . This term can take account of the fact that
the primordial gas might have been enriched by early generations of star formation.
Pei and Fall give some simple illustrative examples of the solutions of (19.15) and
(19.16) (Pei and Fall, 1995).

Closed Box Model. In this example, there is no infall of matter from intergalactic
space, nor is gas expelled from the galaxies, Ω̇f = 0. It is straightforward to show
that

Z = −y ln

[
Ωg(z)

Ωg(∞)

]
, (19.17)

where Ωg(∞) is the initial density parameter in baryons.
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Inflow Model. In the simplest picture, the infalling matter consists of unenriched
primordial gas, Zf = 0. Some simplifying assumptions need to be made about Ω̇f .
Fall and Pei adopted a model in which Ω̇f = νΩ̇s, that is, the rate of infall of
mass is regulated by the rate at which matter is being converted into stars. This is
a plausible picture for the discs of spiral galaxies in which infall of intergalactic
material replenishes gas which is continuously being converted into stars. Larson
noted that, in the case of our own Galaxy, the rate of infall of mass is more or less
the same as the rate at which mass is being converted into stars in regions of star
formation in the disc of our Galaxy (Larson, 1972). This picture can account for the
fact that the interstellar gas in the disc has not all been converted into stars. There is
a simple analytic solution:

Z = y

ν

{
1 −

[
Ωg(z)

Ωg(∞)

]ν/(1−ν)}
. (19.18)

Outflow Model. The formalism employed in the infall model can be adapted to this
case, the assumption being that the rate of loss of mass from a galaxy is proportional
to the supernova rate, which, in the instantaneous recycling picture, is proportional
to the rate at which stars are formed. The mathematical difference as compared with
the inflow model is that, not only is mass lost from galaxies Ω̇f = −νΩ̇s, but also
heavy elements are lost with Zf = Z. This model also has a simple analytic solution:

Z = − y

(1 + ν)
ln

[
Ωg(z)

Ωg(∞)

]
. (19.19)

It should be emphasised that these are simply convenient analytic models for
understanding the build-up of the heavy elements in galaxies. All three have the
useful feature that the models are completely defined once the evolution of the
gaseous content of galaxies as a function of cosmic epoch is prescribed. Fall and
Pei used the formalism to indicate how sensitive the models are to corrections for
dust extinction, particularly as it affects the selection of the quasars for absorption
line studies (Pei and Fall, 1995). By including quite substantial corrections for the
effects of dust in the selection of the samples for observation, they were able to relate
successfully the evolution of the star-formation rate determined by Madau and his
colleagues (Madau et al., 1996) to observations of the heavy element abundances in
the damped Lyman-α systems at z ∼ 2 as they were known in 1995.

Since that time, however, the picture has become more complicated. The problem
is most easily appreciated by the comparison of the change of neutral hydrogen
abundance with redshift (Fig. 19.9a) with the very modest changes in zinc abundance
over the same range of redshifts (Fig. 19.9b). For example, for a simple closed box
model, a linear change of neutral hydrogen abundance by a factor of 20 between
redshifts 3 and 0 would result in an order of magnitude change in metallicity Z over
the same redshift interval, in contradiction to the observations shown in Fig. 19.9b.
There is a similar problem if the star-formation history derived from the optical-UV
and submillimetre surveys are adopted. These suggest that the overall star-formation
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rate was more or less constant over the redshift interval 1 ≤ z ≤ 4. It would then be
expected that there would be greater variation of the build-up in the heavy elements
in galaxies than are displayed by the chemical abundances of the damped Lyman-α
systems. These considerations suggest that the picture is more complicated than the
simple chemical evolution models would predict and they may cast light on the
rather subtle selection effects which go into the selection of complete samples of
damped Lyman-α systems.

19.4 The Old Red Galaxies

The remarkable advances made in the study of Lyman-break or ‘drop-out’ galaxies
out to redshifts z ≈ 6 have provided key evidence about star-forming galaxies, but
these are not the only populations of galaxies present at large redshifts. Various
pieces of evidence indicate that some galaxies were already ‘old’ out to redshifts of
at least z = 2 and so must have formed the bulk of their stellar populations at large
redshifts. In addition, the most massive galaxies seem to have more or less the same
maximum mass over the redshift interval 0 < z < 2, contrary to what might have
been expected if they had increased in mass and luminosity through the process of
hierarchical clustering.

– The plot of stellar mass against redshift for the galaxies in the Gemini Deep Deep
Survey and K20 Survey is shown in Fig. 19.11 (McCarthy, 2006). The galaxies
were selected in the K (2.2 μm) waveband, and so the samples primarily selected
the old stellar populations of galaxies, as indicated by Fig. 17.3. The stellar
masses of the galaxies were derived by fitting the extensive multicolour photo-
metric data from the above surveys to the stellar energy distributions provided by
the galaxy evolution codes of Bruzual and Charlot (Bruzual and Charlot, 2003).
This procedure automatically takes account of the stellar evolution of the pop-
ulations of the galaxies. The importance of this type of survey was empahsised
by McCarthy, who made the point that Fig. 19.11 represents the evolving stellar
mass density which is the complement of the star-formation history discussed
in Sect. 19.1 (McCarthy, 2006). The horizontal solid line at log(M/M�) = 10.9
is the present day value of the stellar mass corresponding to the ‘turnover’ lu-
minosity L∗ of the galaxy luminosity function and the dashed line represents
the detection limit of the survey at K = 20.6. It is apparent that there is little
evidence for any increase in the baryonic masses of the galaxies with deceasing
redshift.
Glazebrook and his colleagues compared the data in Fig. 19.11 with the expected
increase in mass according to the standard hierarchical clustering models of
galaxy formation with decreasing redshift (Glazebrook et al., 2004). As expected
from Fig. 16.6, the observations were inconsistent with these expectations. The
inference is that these galaxies must have completed the formation of their stellar
populations by a redshift z ∼ 2.
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Fig. 19.11. A plot of stellar mass against redshift for galaxies selected from the Gemini Deep
Deep Survey and K20 Survey (McCarthy, 2006). The galaxies were selected in the K (2.2 μm)
waveband. The stellar masses were estimated by fitting the extensive multicolour data to the
stellar energy distribution codes of Bruzual and Charlot (Bruzual and Charlot, 2003)

– In addition to photometry, 20 of the Gemini Deep Deep Survey galaxies with
z > 1.3 were observed spectroscopically with very long exposures (McCarthy
et al., 2004). Among objects with spectroscopic redshifts, 51% of the galaxies
with I − K > 3.5 showed unambiguous evidence for old stellar components
while the redder galaxies with I − K > 4 showed an even greater tendency for
old stellar spectra. McCarthy and his colleagues concluded that for 50 to 80%
of the red galaxies in the sample at z ≥ 1.3 the optical-infrared emission is
dominated by contributions from old stellar populations. Typically, the stellar
populations must have formed by a redshift of 2.4 or greater for the reddest
examples. As a result, the star-formation rates must have been very great during
this initial ‘starburst’ phase, values of the order of 300–500 M� year−1 being
found. They point out that these rates are much greater than those observed in
the Lyman-limit drop-out systems but would be consistent with the observations
of the strongly star-forming galaxies observed at large redshifts in the deep
submillimetre surveys discussed in Sect. 19.1.5.

– Similar results have been reported by Cimatti and his colleagues from their
analyses of the properties of four very red galaxies with redshifts in the range
1.6 ≤ z ≤ 1.9 from the K20 sample (Cimatti et al., 2004). The spectroscopic and
morphological properties of these galaxies indicated that they were ‘old, fully
assembled, spheroidal galaxies’ with masses M > 1011 M�. These objects are
similar to the old red galaxies discussed above and again, comparing the numbers
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of these galaxies with the expectations of the standard hierarchical clustering
picture, Cimatti and his colleagues showed that the build-up of massive early-
type galaxies must have been much faster in the early Universe than expected.

– Qualitatively similar conclusions can be derived from observations of the massive
galaxies associated with the most powerful FR2 radio sources. Until the advent
of the 8- to 10-m class telescopes, the identification of these rare classes of
galaxy was one of the few methods for finding massive, old elliptical galaxies
at large redshifts. The redshifts of the classical double 3CR radio galaxies span
the redshift interval to 0.3 ≤ z ≤ 2 and their mean stellar masses were found
to be remarkably constant over this redshift interval (Best et al., 1998). These
galaxies are among the most luminous known, with luminosities as great as
those of the brightest galaxies in clusters at redshifts z ∼ 1. Their stellar masses
were estimated anew by the multicolour technique by McLure and his colleagues
(Fig. 19.12), and their stellar masses were found to be M ≥ 3 × 1011 M�, that
is, greater than those of the most massive galaxies plotted in Fig. 19.11 (McLure
et al., 2006). If account is taken of the dark matter present in these systems, their
total masses are likely to be about ten times greater. This analysis again suggests
that most of the star formation within these massive galaxies had been completed
at some redshift z ≥ 2.

– Evidence that the stellar populations of the large redshift radio galaxies are
likely to be old was presented by Lilly for the radio galaxy 0902+34 at a redshift
z = 3.4 and by Dunlop and his colleagues for the radio galaxy LBDS 53W091
at redshift 1.55 (Lilly, 1988; Dunlop et al., 1996). In the latter case, the age of its

Fig. 19.12. The stellar masses of the 3CR radio galaxies (black filled circles and squares) and
the black hole masses of the 3CR radio quasars (open circles), both drawn from the complete
sample of 3CR radio sources, as a function of redshift (McLure et al., 2006). The galaxy
stellar masses were deduced from their stellar energy distributions using the galaxy evolution
codes of Bruzual and Charlot (Bruzual and Charlot, 2003)
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stellar population was at least 3.5 × 109 years, so that these stars must have been
formed at large redshifts. A similar result, namely an age of 4.5×109 years, was
found for the radio galaxy LBDS 53W069 at a redshift of z = 1.43 (Dey, 1997).
Radio galaxies with qualitatively the same stellar properties have been observed
to redshifts of greater than 4 by Lacy, Spinrad and their colleagues (Lacy et al.,
1994; Spinrad et al., 1995).

– Finally, as discussed in Sect. 17.5, the quasars were at the peak of activity in the
redshift interval 2 < z < 3. The evidence is compelling that there is a strong
correlation between the mass of the black hole in the quasar nucleus and the
mass of the spheroid of the host galaxy (Magorrian et al., 1998), the ratio of
black hole mass Mbh to the mass of the spheroid Msph being about 0.002. An
example of this relation for the complete sample 3CR radio galaxies and quasars
is shown in Fig. 19.12. Because of the success of unified schemes for radio
galaxies and quasars in this sample, the ratio Mbh/Msph can be estimated from
Fig. 19.12. The spheroid mass must be about ten times greater than the stellar
mass to take account of the dark matter and so it can be seen that these data
would be consistent with a ratio of Mbh/Msph ∼ 0.002. These data are naturally
interpreted as evidence that the host galaxies of the quasars must have had
masses M ≥ 1012 M� and that their stellar populations must already have been
assembled into galaxies, more or less as we know them today, by a redshift of 3.

It therefore seems that a significant fraction of all massive galaxies must have
formed their stellar populations at large redshifts, z ≥ 2.5, and that there was little
subsequent increase in their masses through hierarchical clustering and subsequent
star formation. This contrasts with the inference that the global star-formation rate
was at its peak at redshifts z ∼ 1–2. Most of the star formation must have taken
place in less massive galaxies than those discussed in this section. This phenomenon,
that the massive galaxies formed their stellar populations at early epochs and star
formation continues for lower mass galaxies at much later epochs, is sometimes
referred to as ‘downsizing’. These phenomena need to be built into an overall picture
of galaxy evolution.

19.5 The Origin of Rotation

According to the standard picture of the development of density perturbations in the
Friedman world models, rotational velocities are damped as the Universe expands.
As shown in Sect. 11.5, rotational velocities decrease in amplitude as δv⊥ ∝ a−1,
this result being no more than the conservation of angular momentum in a uniformly
expanding medium. This consideration poses more or less insuperable problems for
theories involving primordial turbulence (von Weizsacher, 1947), many of which
have been discussed in some detail by Jones and Peebles (Jones and Peebles, 1972;
Jones, 1973). As they point out, if the rotation of spiral galaxies at the present day
were the relic of primordial turbulent eddies, these eddies would be highly supersonic
at the epoch of recombination and so be dissipated by shocks.
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The most natural explanation for the rotation of galaxies is that it is induced
by tidal torques acting between perturbations during the linear stages of their de-
velopment (Strömberg, 1934; Peebles, 1993). The perturbations associated with the
superposition of random Gaussian waves are not spherical but, in the lowest approx-
imation, are ellipsoidal and so pairs of ellipsoids experience the mutual effect of
tidal torques. These torques lead to the build up of angular momentum in each of
the bodies, whilst conserving angular momentum overall. This process can continue
so long as the perturbations are in the linear regime. Once the perturbations reach
amplitude Δ	/	 ∼ 1, they rapidly become virialised and the final rotational state
of the object is largely determined by the conservation of the angular momentum it
acquired by the time Δ	/	 ∼ 1.

The angular momentum J of a gravitationally bound object of mass M and grav-
itational binding energy E can be characterised by the dimensionless spin parameter
λ, which is defined to be

λ = JE1/2

G M5/2
. (19.20)

As pointed out by Peebles, the quantity λ is a measure of the degree of rotational
support of the galaxy (Peebles, 1993). The centripetal acceleration acting on unit
mass at a typical radial distance r within the system is a = v2

φ/r and the gravitational
acceleration is g ∼ G M/r2. The angular momentum of the system is J ∼ Mrvφ and
its gravitational binding energy G M2/r. Therefore, eliminating vφ and r from the
ratio a/g, we find

a

g
= v2

φ

r

r2

G M
∼ J2 E

G2 M5
= λ2 . (19.21)

Estimates of the typical value of the spin parameter induced by tidal torques
during the growth of primordial density perturbations is best found from N-body
simulations, the median value found from those of Barnes and Efstathiou being λ =
0.05 (Barnes and Efstathiou, 1987). The implication of (19.21) is that this amount of
rotation is quite inadequate to provide rotational support for the system, which must
be primarily supported by the random velocities of the stars and clouds within the
system. This value of λ would, however, be consistent with the slow rotation of the
spheroidal components of elliptical and spiral galaxies. If tidal torques are the origin
of the angular momenta of spiral discs, it is essential that their baryonic components
contract in the radial direction whilst conserving their angular momenta – in other
words, the discs would have to lose gravitational binding energy at roughly constant
angular momentum.

There is a pleasant solution to this problem within the context of models in which
the spiral discs of galaxies form by dissipative contraction within dark matter haloes,
as pointed out in a pioneering paper by White and Rees and by Fall and Efstathiou
(White and Rees, 1978; Fall and Efstathiou, 1980). If the dark matter halo follows
the density distribution of an isothermal gas sphere at large radii, 	 ∝ r−2, then, as
shown in Sects. 3.5.2 and 4.2.2, the rotation curve of a centrifugally supported disc
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within this potential distribution is vc = constant, consistent with the flat rotation
curves of giant spiral galaxies. Let us assume that the material of the disc initially
attains the same spin parameter due to tidal torques as the spheroidal component,
λ = 0.05 . Then, the initial rotational velocity of the disc vφ can be found from
(19.21),

vφ ∼ λvc . (19.22)

Now, in the dissipative contraction of the disc, the gravitational potential distribution
is fixed by the mass distribution of the dark halo and so the disc can contract,
conserving its angular momentum vφr = constant until it reaches the radius at
which it is in centrifugal equilibrium, that is, when vφ = vc. Thus, the final radius of
the disc is λri . As pointed out by Peebles, this is an attractive scenario to account for
the fact that the typical sizes of the discs of spiral galaxies are very much less than the
inferred sizes of their dark matter haloes (Peebles, 1993). The typical scale length of
the disc of a giant spiral galaxy, such as our own Galaxy, is r ∼ 4 kpc, and, according
to this scenario, this disc would have contracted from a halo of dimensions 4/λ ∼ 100
kpc, typical of the sizes of the spheroidal components of spiral galaxies inferred from
analyses to the shear of background galaxies due to gravitational lensing (Sect. 4.6.4).
This picture is consistent with the arguments developed by Ostriker and Peebles to
account for the stability of the discs of spiral galaxies (Ostriker and Peebles, 1973).

This line of reasoning has been refined by Fall, who considered the role of
both dissipation and tidal stripping to account for the rotational properties of the
discs and spheroids of spiral and elliptical galaxies (Fall, 1983). His improved
version of the above argument results in essentially the same answer, namely that
dissipative contraction of the discs of spiral galaxies in dark matter haloes can
account for their relative dimensions. In addition, he showed that, with reasonable
assumptions, this picture could account for the approximate constancy of the central
surface brightness distributions of spiral galaxies found by Freeman (Sect. 3.4.1)
and the Tully–Fisher relation (Sect. 3.6.3). His conclusion was that this model for
the formation of disc galaxies, involving the conservation of mass and angular
momentum but the dissipation of the binding energy of the disc, can give a good
account of the most important properties of disc galaxies.

There is, however, a problem with the elliptical galaxies. Since angular momen-
tum is conserved in the formation of the disc, the specific angular momentum of the
spiral galaxies, that is, the angular momentum per unit mass, should be the same for
elliptical galaxies and the discs of spiral galaxies. This expectation is not consistent
with his interpretation of the observations of Davies and his colleagues (Davies
et al., 1983). Fall found that the specific angular momenta of spiral discs are about
six times greater than those of elliptical galaxies, the comparison being made for
galaxies of the same mass. He proposed various possible solutions to this problem.
One might be that the tidal torques result in different values of the spin parameter λ
in different galactic environments. For example, elliptical galaxies are found pref-
erentially in regions of high galaxy density and so it might be that the value of λ is
anticorrelated with the density of the large-scale environment in which the galaxy
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is formed. Another possibility is that the outer regions of the collapsing galaxy in
dense regions are stripped by tidal forces. Since most of the angular momentum is
contained in the outer regions, it might be that some stripping of the protospheroid
could reduce the specific angular momentum of the galaxies destined to become
elliptical galaxies. The problem is to reduce the angular momentum by a sufficient
factor without reducing the dimensions of the halo to unacceptably small values.

19.6 Putting It All Together – Semi-Analytic Models
of Galaxy Formation

How well do all these separate pieces of evidence fit together to create a coherent
and convincing picture of the formation and evolution of galaxies? The background
Λ cold dark matter picture is undoubtedly a major triumph, and on the large scale
there is little doubt that this is the correct framework within which the problems of
the formation and evolution of galaxies should be addressed. The problems come
about on much smaller scales and concern the role of astrophysical processes once
galaxies begin their non-linear evolution. The preceding chapters of this last part of
the text aimed to establish the relevant observations and astrophysics which must be
part of the story.

Let us first summarise some of these problems and how they might be resolved.

– As N-body simulations of the development of structure improved in size and
quality, an excess of low-mass dark matter haloes was found, which are presumed
to be the potential wells within which low mass galaxies formed. This is the
excess of dwarf galaxies problem. It might be thought that these low-mass dark
matter haloes could be destroyed by tidal forces, but the Millennium Simulations
have shown that they survive in the haloes of large galaxies. While a number of
radical proposals have been made to resolve this problem, a popular view is that
these systems are of too low mass to retain the gas out of which stars could have
formed within their shallow gravitational potentials wells. The interstellar gas
could be blown out of these potential wells by the cumulative effect of supernova
explosions. Alternatively, the gas might be swept out of the galaxies by ram-
pressure stripping by the intergalactic gas or in collisions between galaxies. There
are evidently a number of plausible astrophysical mechanisms for resolving this
problem.

– Another result of the high-resolution N-body simulations is that there should
be pronounced dark matter cusps in the central regions of galaxies. This is not
a trivial question to answer observationally since high-precision probes of the
mass distribution within galaxies are needed, particularly in their central regions
where the presence of supermassive black holes can complicate the analysis.

– Another puzzling result is that there is a positive correlation between the mass
of a galaxy and its metallicity (Sect. 3.6.4). If massive galaxies resulted from
the coalescence of less massive galaxies, there would have to be additional
mechanisms for promoting the synthesis of the heavy elements in the more
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massive galaxies. This might, for example, be associated with the mergers of the
coalescing galaxies which undoubtedly leads to much enhanced star-formation
rates, as observed in the ‘Antennae’ galaxies (Fig. 3.6b).

– The discussion of Sect. 19.4 indicates that the most massive elliptical galaxies
must have formed their stellar populations at somewhat earlier epochs than those
during which the bulk of star formation in galaxies took place. This problem of
‘downsizing’ suggests that there is unlikely to be a single simple picture for the
formation of galaxies.

– We have not yet accounted for the various correlations between the properties of
galaxies, for example, the Faber–Jackson relation, or equivalently the narrowness
of the fundamental plane, for elliptical galaxies and the Tully–Fisher relation for
spiral galaxies.

Because of the success of the ΛCDM model in accounting for the observed
features of the Universe on large scales, the presupposition is that, to create a fully
fledged theory of galaxy formation, many of these phenomena must be associated
with the astrophysical processes by which the baryonic matter evolved within the
dark matter haloes. This necessarily involves poorly understood processes such as the
dependence of the star-formation rate upon the properties of the interstellar medium,
the role of supernova explosions in sweeping matter away from star-forming regions
and out of galaxies, the role of collisions between galaxies, the formation and growth
of black holes in the nuclei of galaxies and so on. These involve non-linear processes
and feedback mechanisms which can promote or suppress the formation of new stars
and structures.

Computational astrophysics has made enormous contributions to understanding
in considerable detail the origin and evolution of cosmic structures and the observa-
tional fingerprints these leave in the cosmic microwave background radiation. The
elementary discussion of these topics in this book, or the much more sophisticated
treatment given by Dodelson, are attempts to rationalise by physical arguments the
essence of the physics which comes out of large-scale numerical simulations (Do-
delson, 2003). But there is a limit to how far these analytic physical arguments can be
used in the era of precision cosmology when it is essential to take account of the de-
tailed coupling and decoupling of the various constituents of the Universe. To obtain
the requisite precision, the numerical solutions of the coupled Boltzmann equations
for each component within a framework of General Relativity are essential. It is our
great good fortune, and not a coincidence, that the power of high-speed computers
has enabled both vast observational data sets of very high quality to be obtained
and the simulations of structure formation to be carried out with vast numbers of
particles. The Millennium Simulation of the growth of dark matter perturbations
under gravity involved following the evolution of over 1010 particles from a red-
shift z = 127 to the present epoch within a cubical region of comoving dimension
500h−1 Mpc (Springel et al., 2005). We have already made use of the results of these
and similar simulations in comparing the observed distribution of gas and galaxies
with the predictions of these models.
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We described in Sect. 18.6 the success of the models in accounting for the
distribution of Lyman-α absorbers when diffuse baryonic matter is included in the
simulations. Rules had to be set up to describe the conversion of cooled gas into stars
and the impact of subsequent supernova explosions which can strongly influence the
distribution of the gas. In Sect. 18.7, similar simulations were used to predict the
structure in the distribution of neutral hydrogen during the reionisation epoch. The
success of these programmes is very striking and the question is how much further
this type of modelling can be taken in order to address the astrophysical issues listed
above. This is the domain of semi-analytic models of galaxy formation.

This approach to galaxy formation has been particularly promoted by the Virgo
Consortium, a collaboration between British, German, Canadian and US astro-
physicists who masterminded the Millennium Simulations. Excellent surveys of the
procedures and what has been achieved are provided by the reviews by Springel and
his colleagues and by Baugh (Springel et al., 2005; Baugh, 2006). The approach
is based upon the success of large-scale computer simulations in understanding the
distribution of dark matter in the Universe. The high-resolution and dynamic range
of the Millennium Simulation enable the evolution of structures on a vast range of
physical scales to be tracked over the full redshift range of the simulations. Whereas
in the past the resultant ‘merger trees’ had to be simulated by Monte Carlo proce-
dures, they can now be estimated directly from the Millennium Simulation. This
provides the backdrop for the introduction of the baryonic component which reacts
gravitationally to the growing network of dark matter potential wells.

In the semi-analytic approach, rules need to be set up to describe how the baryonic
matter cools, forms stars and completes the full life cycle of stellar evolution. The
supplementary information provided by Springel and his colleagues provides a very
fair assessment of what needs to be done (Springel, 2005). To quote their words:

The term ‘semi-analytic’ conveys the notion that while in this approach the
physics is parameterised in terms of simple analytic models, following the
dark matter merger trees over time can only be carried out numerically.
Semi-analytic models are hence best viewed as simplified simulations of
the galaxy formation process.

In many ways, it is helpful to regard this approach as ‘experimental computational
astrophysics’ in the sense that there are many possible realisations of these models
and the aim is to constrain the necessary and essential physics on a trial-and-error
basis. Only with the vast power of modern high-speed and parallel computing is this
agenda feasible. To give some flavour of what is involved, it is useful to list some
of the necessary ingredients of the most successful models and the reader can judge
how much reliance can be placed upon the results. We follow the clear summary
contained in the supplementary information provided by Springel and his colleagues.

– Central to the whole procedure are the processes of radiative cooling and star
formation. It is assumed that initially the ratio of diffuse baryonic gas to cold
dark matter has a constant ratio everywhere, consistent with the values found
from the WMAP observations and from primordial nucleosynthesis arguments.
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The equations of gas dynamics under the gravitational influence of the growing
dark matter perturbations are solved and include cooling of the gas according
to the recipes discussed in Sect. 16.2. Modified versions of the GADGET code
described by Springel are used in these computations (Springel, 2005). Cold
condensed gas accumulates in the central regions of the dark matter haloes
and is identified with the interstellar medium of the protogalaxy. There is also
a halo of hot gas which is heated by the background UV radiation field and
by the supernova feedback mechanisms discussed below. The cool gas settles
into a disc supported by rotation, the size of the disc being determined by the
spin parameter of the dark matter halo. Once the surface gas density exceeds
the critical density found from observational studies such as those of Kennicutt
(Kennicutt, 1989), star formation is assumed to take place with an efficiency of
10% on the dynamical timescale of the disc. The parameters describing these
processes are chosen to reproduce the phenomenological laws of star formation
and the observed gas fractions in galaxies at small redshifts.

– The most massive stars formed have short lifetimes and explode as supernovae.
Guided by observation, it is assumed that supernovae can blow gas out of star-
forming discs and that the rate of mass ejection is proportional to the total mass
of stars formed. The efficiency of mass ejection depends upon the depth of the
gravitational potential wells – in small galaxies, supernovae may well blow away
all the interstellar gas in a single starburst, whereas large galaxies can retain the
heated gas.

– The morphologies of the galaxies are parameterised by their bulge-to-disc
ratios, which are correlated with their Hubble types. There are two routes to
the formation of bulges. The first is through secular instabilities in the rotating
stellar disc which lead to the formation of bars, as in the case of barred spiral
galaxies, or bulges in the case of normal spirals. As demonstrated by Ostriker and
Peebles, the build-up of bulges or haloes is necessary to ensure the stability of the
discs (Ostriker and Peebles, 1973). The second process is the merger of galaxies.
These are classified as major mergers if the ratio of masses of the galaxies is
greater than 0.3 and minor mergers if it is less than 0.3. In major mergers, the
discs of both galaxies are destroyed and a common spheroid is formed – this is
the process by which elliptical galaxies are created. In the minor mergers, the
disc of the larger galaxy survives and the less massive galaxy is disrupted, its
stars becoming part of the bulge population. Any surviving cold gas collapses
to the nuclear regions of the galaxy where it gives rise to a nuclear starburst.
The parameterisation of the latter process is derived from systematic studies of
hydrodynamical simulations of galaxy collisions (Mihos and Hernquist, 1994,
1996).

– The models should also reproduce the observed spectra of galaxies at different
stages of their evolution. The stellar population synthesis codes enable predic-
tions to be made of the spectrophotometric properties of galaxies (Bruzual
and Charlot, 2003). The bulge and disc components need to be treated separately.
An important element of the spectral evolution of galaxies is the recycling of
processed stellar material through the interstellar gas, both to the hot and cold
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phases – the next generation of stars is formed in the cold phases. Dust extinction
needs to be included, and this depends upon the enrichment of the interstellar
gas with heavy elements and their condensation into dust grains.

– Finally, account needs to be taken of the formation of massive black holes in
the nuclei of galaxies. It is assumed that the growth of these black holes takes
place as a result of galaxy mergers during which cold gas is dragged into the
central regions under the influence of tidal forces. This process creates a nuclear
starburst as well as providing mass which is accreted into the black hole. The
parameterisation of this process is chosen so that the observed relation between
the mass of the central black hole and the mass of the bulge is obtained. The
accretion process results in the huge luminosities of the quasars, so long as
the supply of fuel lasts. The UV radiation of the quasars can contribute to the
ionisation of the interstellar and intergalactic gas in their vicinity. In addition,
the quasars are powerful sources of relativistic jets, and these have a profound
influence upon the surrounding interstellar and intergalactic media, as illustrated
in Fig. 4.15 for the case of the Perseus cluster. The effect of this heating is to
inhibit the further accretion of baryonic mass onto the galaxy. In the modelling,
it is assumed that the heating rate is proportional to the mass of the black hole
and to T 3/2, where T is the temperature of the gas. This is the process which the
modellers adopt to account for the fact that the central cluster galaxies do not
grow indefinitely and so provides a cut-off at the high mass end of the luminosity
function.

This list indicates the types of input physics which the semi-analytic modellers
have to adopt in order to account for the observed properties of galaxies. It is
an ambitious list, but it is hard to argue the proposition that these processes are
not important in the evolution of galaxies. In a sense, all the models are doing is
providing practical realisations of the many different physical processes we have
discussed throughout this book in order to create a self-consistent picture of galaxy
formation. The purist may argue that there are too many assumptions built into the
modelling procedures and it is certainly true that the modellers have to keep a close
eye on the observations and use a ‘trial and error’ approach to find the most plausible
set of assumptions.

Let us give a few examples of the successes of the semi-analytic modelling
procedure.

– Having incorporated all the baryonic physics into the Millennium dark matter
simulations, the two-point correlation function for galaxies, rather than for dark
matter haloes, can be determined. As can be seen from Fig. 19.13, the resulting
two-point correlation function for galaxies is a much better fit to the observations
than that of the dark matter haloes. The dashed line shows the correlation function
for the dark haloes, very similar to the result shown in Fig. 14.5b. The effect of
including the baryon physics has been to decrease the amplitude of the correlation
function at small physical scale. In addition, the models can account for the galaxy
two-point correlation function for galaxies of different luminosities and colours
(Springel et al., 2005).
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Fig. 19.13. The two-point correlation function for galaxies at the present epoch. Filled circles
show estimates of the function for model galaxies brighter than MK = −23 selected from the
Millennium Simulation. The observed relation for the 2dF Galaxy Redshift Survey is shown
as diamonds with error bars. Both the observational data and the simulated galaxies have
correlation functions which are very close to power laws on scales r ≤ 20h−1 Mpc. As in
Fig. 14.5b, the correlation function for the dark matter alone, shown above by a dashed line,
deviates significantly from a power law (Springel et al., 2005)

– The models can account for the formation of quasars at redshifts as large as
z = 6, although there is only one such system in the simulation volume at this
very large redshift. Figure 19.14a shows the region of the simulation containing
a massive galaxy at redshift z = 6.2 as well as the developing cosmic web about
it. The interesting point is that, although these high-density peaks are very rare,
they do occur statistically and lead to the early formation of a galaxy massive
enough to host a supermassive black hole. The same region can be tracked to
the present epoch when it turns out that, not surprisingly, the overdense region
has evolved into a rich cluster of galaxies with a massive galaxy at its centre

�

Fig. 19.14. a The environment of a ‘first quasar candidate’ in the Millennium Simulation at
redshift z = 6.2 and b at the present epoch in a cube of comoving dimension 10h−1 Mpc.
The galaxies of the semi-analytic model are shown as circles overlaid on a greyscale image
of the dark matter density distribution. The volume of the sphere representing each galaxy
is proportional to its stellar mass. At z = 6.2, all the galaxies are blue because of ongoing
star formation, whereas many of the galaxies which have been accreted into the rich cluster
at z = 0 have evolved into red galaxies (Springel et al., 2005)
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(Fig. 19.14b) (Springel et al., 2005). The simulations also indicate that the epoch
of maximum quasar activity occurred at redshifts z ∼ 2–3.

– In the discussion of the detection of the acoustic peaks in the large-scale
galaxy distribution, it was remarked that the semi-analytic models had been
used to convert the dark matter power-spectrum into the galaxy power-spectrum
(Sect. 14.6.1). Besides resulting in excellent agreement with the cosmological
parameter estimations from the WMAP 3-year data, the simulations have con-
firmed the observability of the acoustic oscillations in yet larger surveys of the
distribution of galaxies.

– The models provide clear predictions about the evolution of the mass function of
clusters of galaxies as a function of cosmic epoch, as was illustrated in Fig. 16.5.

There remain some stubborn problems. Examples include accounting for the
zero-point of the Tully–Fisher relation and the details of the fundamental plane for
elliptical galaxies.

From my personal perspective, the exciting thing about the semi-analytic ap-
proach is that it provides a powerful new tool for testing different hypotheses about
the physical processes involved in galaxy formation. The simulations also provided
strong motivations for future programmes of observation and theoretical analysis.
One of the great challenges is to keep track of the non-linear physics involved in these
remarkable simulations and make them an integral part of the toolkit of extragalactic
astrophysics.
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manoulopoulos, D., Espigat, P., Feinstein, F., Fontaine, G., Fuchs, Y., Funk, S.,
Gallant, Y.A., Giebels, B., Gillessen, S., Glicenstein, J.F., Goret, P., Hadjichris-
tidis, C., Hauser, D., Hauser, M., Heinzelmann, G., Henri, G., Hermann, G.,
Hinton, J.A., Hofmann, W., Holleran, M., Horns, D., Jacholkowska, A., de
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References 651

Loveday, J., Munn, J.A., Nichol, R.C., Okamura, S., Schlegel, D.J., Shimasaku, K.,
Strauss, M.A., Vogeley, M.S., and Weinberg, D.H. (2003). The broadband optical
properties of galaxies with redshifts 0.02 ≤ z ≤ 0.22, Astrophysical Journal,
594, 186–207.

Blanton, M.R., Lupton, R.H., Schlegel, D.J., Strauss, M.A., Brinkmann, J.,
Fukugita, M., and Loveday, J. (2005). The properties and luminosity function
of extremely low luminosity galaxies, Astrophysical Journal, 631, 208–230.

Bludman, S. and Ruderman, M. (1977). Induced cosmological constant expected
above the phase transition restoring the broken symmetry, Physical Review Letters,
38, 255–257.

Blumenthal, G.R., Faber, S.M., Primack, J.R., and Rees, M.J. (1984). Formation of
galaxies and large-scale structure with cold dark matter, Nature, 311, 517–525.

Bochkarev, N.G. and Sunyaev, R.A. (1977). Ionizing background radiation and the
hydrogen at the periphery of galaxies, Soviet Astronomy, 21, 542–547.
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Spatially resolved X-ray spectroscopy of cooling clusters of galaxies, Astronomy
and Astrophysics, 413, 415–439.

Kaiser, N. (1984). On the spatial correlations of Abell clusters, Astrophysical Jour-
nal, 284, L9–L12.



References 669

Kaiser, N. (1987). Clustering in real space and in redshift space, Monthly Notices of
the Royal Astronomical Society, 227, 1–21.

Kaiser, N. (1992). Weak gravitational lensing of distant galaxies, Astrophysical
Journal, 388, 272–286.

Kapahi, V.K. (1987). The angular size-redshift relation as a cosmological tool,
in Observational Cosmology, eds. Hewitt, A., Burbidge, G., and Fang, L.-Z.,
pp. 251–265. Dordrecht: Reidel.

Kapteyn, J.C. (1922). First attempt at a theory of the arrangement and motion of the
sidereal system, Astrophysical Journal, 55, 302–328.

Kashlinsky, A., Mather, J.C., Odenwald, S., and Hauser, M.G. (1996). Clustering
of the diffuse infrared light from the COBE DIRBE maps: I. C(0) and limits on
the near-infrared background, Astrophysical Journal, 470, 681–705.

Kaspi, V.M., Taylor, J.H., and Ryba, M.F. (1994). High-precision timing of mil-
lisecond pulsars: 3. Long-term monitoring of PSRs B1855+09 and B1937+21,
Astrophysical Journal, 428, 713–728.

Kassiola, A., Kovner, I., and Blandford, R.D. (1991). Bounds on intergalactic com-
pact objects from observations of compact radio sources, Astrophysical Journal,
381, 6–13.

Katz, N., Weinberg, D.H., Hernquist, L., and Miranda-Escudé, J. (1996). Damped
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Reiprich, T.H. and Böhringer, H. (2002). The mass function of an X-Ray Flux-
limited sample of galaxy clusters, Astrophysical Journal, 567, 716–740.

Richards, G.T., Strauss, M.A., Fan, X., Hall, P.B., Jester, S., Schneider, D.P., Vanden
Berk, D.E., Stoughton, C., Anderson, S.F., Brunner, R.J., Gray, J., Gunn, J.E.,
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Charlot, Stéphane 498, 499, 594, 607–609
Chluba, Jens 423
Chwolson, Orest 128



696 Name Index

Cimatti, Andrea 542, 608, 609
Clausius, Rudolph 64
Clifford, William 11, 151
Cole, Shaun 405
Coles, Peter 331, 332, 354, 358, 360, 377,

382, 402, 474
Colless, Matthew 113
Corbelli, Edvige 568
Cowan, John 252
Cowie, Lennox 272, 534, 542, 566, 586,

587, 589, 590, 598
Crommelin, Andrew 190
Croom, Scott 387

Dashevsky, Vladimir 233
Davidsen, Arthur 550, 564, 566
Davies, Roger 612
Davis, Tamara 339, 342, 347
de Bruyn, Ger 580
de Sitter, Willem 12, 149
de Vaucouleurs, Gérard 49, 51, 54, 246
Dekel, Avni 268, 269, 402
Descartes, René 5
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adiabatic damping of neutrino velocities
377
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background radiation 510–513
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‘luminosity evolution’ 513
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Lyman-α emission of the intergalactic gas
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513
source counts and 510
starburst galaxies and 589

independence of cosmological model
589

submillimetre and far-infrared 597
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586
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baryogenesis 641–642
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Sakharov’s rules 641

baryon number violation 641
C and CP violation 641
non-equilibrium conditions 641
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642
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baryon number violation
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641
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622

baryonic theories of galaxy formation
360–364, 383
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bias parameter 137

gravitational lensing and 138
biasing 21, 401–405

bias parameter 269, 403, 404, 407, 417
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403
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type 404, 405
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galaxies and 403, 405
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mechanisms for 402
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big crunch 205, 338
big problems of cosmology 466, 621–624
BIMA Millimetre Array 126, 127, 249
black holes 140, 586

formation in early Universe 392
supermassive 140, 471, 488, 492

epoch of maximum quasar activity
517

non-thermal radiation processes and
492

ratio of mass to spheroid mass 488
Bohr’s theory of the hydrogen atom 623
Boltzmann equation 368, 377, 395, 409,

411, 422, 440, 448, 614
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bremsstrahlung 95, 115, 128, 248, 547,

561
bolometric luminosity of 119
cooling rate 121, 479
emissivity of 128
spectral emissivity of 115
spectrum of 116, 128, 248
thermal 561
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galaxies
absolute magnitudes of 109

brown dwarfs 139–141
Butcher–Oemler effect 253, 543–544

changing fractions of galaxy types with
redshift and 543

passive evolution of spheroidal galaxies
and 543

selection criteria and 543

C and CP violation
in decay of neutral K0 and K̄0 mesons

641
Calán-Tololo supernova project 164–166
CalTech Submillimetre Observatory 126
CAMB computer code 422, 430, 440
Cambridge 4C survey 506
Cambridge APM galaxy survey 269, 386
Canada-France Redshift Survey 590
Cartesian coordinates 155
Cartwheel galaxy 56, 58
Cassini spacecraft 191, 192
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cD clusters of galaxies 102–103
cD galaxies 51, 82, 96, 102, 103, 109

in small groups 103
central bulge of lenticular galaxies 53
central bulge of spiral galaxies 51
central limit theorem 487, 505, 508
Cepheid variables 7, 246, 247

period–luminosity relation for 7, 8, 246
CfA galaxy survey 38, 39, 41, 400, 401,

406
ChaMP study 525
Chandra Deep Fields 525
Chandra X-ray Observatory 116, 124,

125, 249, 491, 525

chemical potential 284
Chwolson ring 129
Cl 0024+1654 235
classification of galaxies 59
cluster Cl 0024+1654 136, 137
clusters of galaxies 37, 42, 43, 95–146

Butcher-Oemler effect 543–544
central mass density of 107
core radius 103, 105
counts of X-ray clusters 529–532
distribution of galaxies in 101–110

galaxy content and spatial distribution
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dynamical estimates of masses of
110–114

gravitational lensing by see gravita-
tional lensing by galaxies and clusters
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hot gas in see hot gas in clusters of
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isothermal gas spheres and see
isothermal gas spheres, 103–108

large-scale distribution of 95–100
luminosity function for galaxies in

108–110
mass–luminosity ratios of 99, 117
on a temperature-number density diagram

481
segregation by galaxy type 102
segregation by mass 103
summary of properties of 109–110
Sunyaev–Zeldovich effect in hot intra-

cluster gas see Sunyaev–Zeldovich
effect in hot intracluster gas

two-point correlation functions for 100,
101, 387, 402

velocity dispersions of 99
CMBfast computer code 422, 425, 430,

440
cold dark matter 19–21, 359, 374, 375,

381, 382, 398, 441, 464, 476, 615
perturbations in 367, 374, 376, 380,

382, 396, 437, 557
WIMPs and 375

cold dark matter model of galaxy
formation 20, 21, 349, 380–383,
393–395, 399, 401–403, 409–412,
414, 415, 418, 428, 482, 487, 489

adiabatic 395, 396, 399, 412
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concerns about 415
hierarchical clustering in 382
isocurvature 396, 398, 400
mixed hot and 418
open 400, 401, 410, 413, 416–418
standard 401, 409, 415–418, 530, 532,

559, 572, 573
tilted 419
with decaying neutrinos 416–418
with finite cosmological constant

416–418, 572, 613
collisions between galaxies 478, 544, 613
Coma cluster of galaxies 42, 64, 102,

109–114, 547
core radius of 108
mass of 111
mass–luminosity ratio of 111, 113, 267
Sunyaev–Zeldovich effect in 450
X-ray image of 114

comoving angular diameter distance 161
comoving luminosity density 589
comoving radial distance coordinate

159, 160, 161, 168, 170, 172, 203,
218, 219, 221, 226, 228, 232, 243,
244, 316, 336, 339, 341, 342, 424,
425, 494, 501, 507, 511, 631–633

definition of 164
comoving volume 171

variation with redshift 495
Compton double scattering 284
Compton Gamma-ray Observatory
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Compton optical depth of hot diffuse

intergalactic gas 561
Compton scattering 17, 28, 29, 125, 248,

281–284, 301, 352, 357, 359, 561
exchange of energy between photons and

electrons by 281–284
induced 17
inverse 492

Compton scattering in post-recombination
Universe 282, 284

Compton scattering in radiation-dominated
Universe 281–284

Compton scattering optical depth 29, 125,
283, 284

computer simulations
galaxy formation and 472
hydrodynamic, of intergalactic gas 557,

571–574
at redshift z = 2 573
cold dark matter models and 572
feedback processes and 572
predicted column density distribution

of Lyman-α absorption clouds 572,
615

predicted structures of neutral hydrogen
clouds and 572, 615

Single Particle Hydrodynamics 572
star formation and 572
supernova explosions and 572

hydrodynamical simulations of galaxy
collisions 616

large-scale structure and 400, 474, 477,
484, 486, 487, 489, 530

excess of dwarf satellites 486
Press–Schechter mass function 487,

488
large-scale structure formation 613
origin and evolution of cosmic structures

and 614
origin of intracluster magnetic fields by

turbulence 580
predicted spin parameter λ 611
reionisation era 574, 575
semi-analytic models of galaxy formation

583
concentration index C 91, 92
concordance ΛCDM world model 22, 37,

42, 241, 424, 560, 621, 623, 625
conformal diagram 631

including inflation 632
passing through and re-entering the

Hubble sphere 633
conformal Newtonian gauge 348, 349,

445
conformal time 317, 340, 342, 344,

346–348, 445, 458, 631–634, 637
extension to negative values before end of

inflationary era 631
confusion 505
confusion-limited survey 505

systematic overestimation of flux densities
in 505

convergence κ 460
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cooling rate of astrophysical plasma 479,
480

cooling time of astrophysical plasma 479,
481, 486

Copernicus satellite 297
core radius of brightness distribution 61
correlation functions and the spectrum of

the initial fluctuations 385–419
acoustic peaks in the power spectrum of

galaxies 411–415
2dF galaxy redshift survey 412–413
Sloan digital sky survey 412–415

biasing 401–405
evolution of the initial perturbation

spectrum – transfer functions
393–401

adiabatic cold dark matter 393–396
adiabatic hot dark matter 396
isocurvature cold dark matter 396–399
subsequent evolution 399–401

power spectrum
origin of maximum of 415

reconstructing the processed initial power
spectrum 405–410

non-linear development of the density
fluctuations 407–409

redshift biases 406–407
role of baryon perturbations 409–410

the perturbation spectrum 388–392
Harrison–Zeldovich power spectrum

391–392
initial power spectrum 390–391
relation between ξ(r) and the power

spectrum of the fluctuations
388–390

two-point correlation function for galaxies
385–388

variation on a theme of cold dark matter
415

correlation functions for galaxies 363, 405
correlation lengths 404
higher order 386
three-point correlation function 403

Cosmic Anisotropy Polarization Mapper
(CAPMAP) 456

Cosmic Background Explorer (COBE) 15,
21, 27–33, 284, 415, 416, 419, 421,
429, 432, 434, 437, 440, 442, 507,
561, 587

Cosmic Background Imager (CBI) 456
The Cosmic Century: A History of Astro-

physics and Cosmology (Longair) 3,
149, 193, 434, 514

cosmic chemical evolution, equations of
604–607

closed box model 605, 606
conservation of mass 605
infall of material from intergalactic

medium 604–607
inflow model 606
instantaneous recycling approximation

605
loss of heavy elements due to star

formation 605
outflow due to supernova explosions

606
outflow model 606
outflow of processed material 604–607
rate of change of mass of heavy elements

605
rate of infall or outflow Ω̇f 605
rate of star formation 605
role of dust 604, 606
yield y 605

Cosmic Lens All Sky Survey (CLASS)
266

cosmic microwave background radiation
15, 16, 18, 22, 27–33, 241, 275, 467,
624

dipole component of 30, 31
discovery of 17, 362
distortions from a perfect black-body

spectrum 283–284
causes of 283

distortions from a perfect black-body
spectrum 28, 29

energy density of 276
epoch of recombination and 277, 279
estimation of cosmological parameters

from 250, 252, 259, 269, 270, 300
fluctuations in the see fluctuations in

the cosmic microwave background
radiation

horizon problem and 621
isotropy of 29–33, 41, 42, 149, 150,

337
last scattering surface of 325, 631
neutrinos and 369
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number density of photons in 277, 423
polarisation of see polarisation of

the cosmic microwave background
radiation

prediction of 14
specific entropy per baryon of 277
spectrum of 28–29
Sunyaev–Zeldovich distortions of 125,

126, 561
temperature fluctuations in the see

fluctuations in the cosmic microwave
background radiation

temperature of 143, 356, 371, 416, 576
observations of the variation with

redshift 272, 273
variation with redshift 272

temperature of at epoch of recombination
279

thermal history of 278
cosmic star-formation rate

advantages of submillimetre waveband
597

cosmic abundances of the elements and
598–607

maximum at redshifts z ∼ 1–2 610
optical-UV determinations of 606
problem of dust extinction 596, 598
problems with the simple models 606
submillimetre determinations of

596–598, 606
as a function of redshift 598, 599

cosmic time 150, 158–160, 161, 163, 207,
217, 231, 237–239, 252, 317, 339,
344, 438, 445

cosmic variance 434–436, 467
cosmic virial theorem 268, 329
Cosmical Magnetism (ed. Lynden–Bell)

577
cosmological constant Λ 13, 21, 202, 208,

212, 214, 215, 242, 265, 267, 273,
336, 344, 414–418, 425, 630

‘repulsive force of a vacuum’ and 208,
209

dark energy and 23, 24, 207, 208, 210,
626

evidence for finite value of 257
history of 12, 13, 24, 188, 199, 207, 623
zero-point fluctuations of vacuum and

626

Cosmological Constants (Bernstein and
Feinberg) 202

Cosmological Inflation and Large-Scale
Structure (Liddle and Lyth) 313,
629

cosmological parameters, determination
of 241–270, 463–465

ΩΛ and the statistics of gravitational
lenses 263–267

age of the Universe T0 see age of the
Universe T0, 250–252

angular diameter–redshift test 261–263
deceleration parameter q0 see

deceleration parameter q0, 252–263
density parameter Ω0 267–270
Hubble’s constant H0 see Hubble’s

constant, 246–250
number counts of galaxies 259–261

infrared H waveband 260
problems of using to determine q0

259, 260
parameters to be determined 463–465
relative lensing probabilitiesΩΛ and the

statistics of gravitational lenses
relative lensing probabilities 265

see density parameter Ω0 267
testing the Friedman models 242–245
the parameters and relations between

them 241–242
three-year WMAP data and 463–465

Cosmological Physics (Peacock) 209, 313
cosmological principle 149–150, 158,

199, 204, 237, 238, 625
Cosmology Calculator of Dr. Edward Wright

425
COSMOS survey of clusters of galaxies

95
counts of γ -ray bursts 498
counts of active galaxies

evolution in infrared waveband 536
counts of extragalactic radio sources 498,

508, 514–516
excess of faint radio sources 514

evidence for strong cosmological
evolution 514

counts of far-infrared and submillimetre
sources 597

counts of galaxies 537–543
advantages of infrared K waveband 538
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evidence for homogeneity of Universe
493

excess of faint blue galaxies 47, 261,
540

and starburst galaxies 542, 543
nature of 540–543

fluctuations in, due to large-scale
clustering 538–541

for irregular/peculiar/merger systems
542

for spheroidal and spiral galaxies 540,
542

Hubble’s 494
in infrared K band 540
in infrared K waveband 542
in U, B, R, I and K wavebands 541
problems of determining 537–538

counts of galaxies and active galaxies,
predicted 492–507

at submillimetre wavelengths 500–501,
534

normalised differential counts 501,
503

Euclidean 493
differential 493
integral 493

for standard world models 494–500
comparison with Euclidean counts

495
for bolometric luminosities and flux

densities 495
for sources with power-law spectra

495–496
normalised, differential 495–496
optical counts for galaxies 498–500
slopes of integral and differential 496,

498
models with finite ΩΛ 501–504

counts of infrared and submillimetre
sources 532–537

convergence of, at mid-infrared
wavelengths 537

far-infrared wavelengths 533, 534
IRAS galaxies 532, 533

excess of faint sources 532
Spitzer First Look Survey 533

excess of faint sources 533
submillimetre wavelengths 534

excess of faint sources 534

counts of radio-quiet quasars 518, 521,
522

counts of X-ray clusters of galaxies
529–532

counts of X-ray sources 524–532
evidence for evolution of the source

populations 525
hard X-ray energies, 2–10 keV 525,

527, 529
history of 524
problems of interpretation 525
soft X-ray energies, 0.5–2 keV 527

and the integrated X-ray background
emission 527

soft X-ray energies, 0.5–2 keV and 2–10
keV 525

coupling of dark and baryonic matter by
gravity 378

coupling of electrons and protons by
Coulomb collisions 367

coupling of matter and radiation in the
expanding Universe 17, 353, 355,
367

CP violation in decays of K0 mesons 287
Crab Nebula

origin of magnetic field of 580
critial surface density for star formation in

spiral galaxies 554
critical cosmological density 139, 145,

204
in neutrinos with finite mass 143

critical density 439
critical density for star formation 616
Critical Dialogues in Cosmology (ed. Turok)

269, 298, 415
crossing time 111, 474

definition of 63
for a cluster of galaxies 43

Cryogenic Dark Matter Search (CDMS)
146

Cryogenic Dark Matter Search (CDMS II)
373, 374

curvature of space κ 154, 156, 157, 171,
231, 242, 243, 320, 627, 638

condition for flat Euclidean space 210,
211, 364

effect of hyperbolic space on growth of
perturbations 320, 326, 327
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radius of, at the present epoch � 161,
199, 210, 228, 239

relation between Ω0, ΩΛ and 210
variation with scale factor a 160

curvature of space–time 181
curvature perturbations 437

amplitude of 463
cusp catastrophe 135
61 Cygni 5

damped Lyman-α systems in quasar spectra
272, 600–604, 606, 607

dark ages 384, 471, 552, 574, 576
observability through fluctuations in the

neutral hydrogen intensity 577
dark energy 207–211, 216, 230, 243,

245, 327, 331, 335, 344, 345, 414,
623, 634

density parameter ΩΛ of the 21–23,
242, 449, 501, 503, 623

equation of state of 210–211, 267,
465, 630

problem of the 23, 24, 365, 623
dark matter 139–146, 241, 268, 269, 367

astrophysical and experimental limits
144–146

axions and 142, 369
baryonic 139–142
black holes and 140, 141

limits to mass density from gravitational
lensing 140

very low mass 141
brown dwarfs and baryonic 140
clusters of galaxies and 95, 112, 113,

115
density parameter ΩD in the 205, 214
distribution of 235
forms of 139–146
gravitational coupling to baryonic matter

368
gravitational lensing and 130, 136, 137
in clusters of galaxies 113, 117, 119,

136, 137, 267
in early-type galaxies 138
in elliptical galaxies 69
in galaxies 267, 367, 368
in spiral galaxies 69
MACHOs and 141, 142

gravitational microlensing and 141,
142

masses of dark matter particles 145
nature of 24, 301, 625
neutrinos with finite rest mass and 143,

369
non-baryonic 142–144, 301, 335, 364,

365, 367
nature of 368, 369

searches for dark matter particles 145,
146

standard bricks and 139
structure of 137
WIMPs and 143, 144

dark matter and galaxy formation
367–384, 400

evolution of hot and cold dark matter
perturbations 380–384

cold dark matter scenario 381–384
hot dark matter scenario 380–381

forms of non-baryonic dark matter
369–370

free-streaming and damping of hot dark
matter perturbations 375–377

instabilities in the presence of dark matter
377–379

metric perturbations and hot and cold
dark matter 374–375

adiabatic curvature modes 374, 379
curvature modes 374
isocurvature modes 374, 375

WIMPs as dark matter particles
370–374

dark matter haloes
formation according to Press-Schechter

formalism 489
dark matter haloes of galaxies and clusters

137
dark matter particles

collisionless 399
nature of 384
ultraweakly interacting 368

dark matter problem 350, 365
Darkness at Night (Harrison) 510
de Sitter solution 149, 213
de Sitter world model 337, 626, 639
de Vaucouleurs r1/4 law for surface

brightness 61, 62, 108
de Vaucouleurs radius 70
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de Vaucouleurs’ classification of galaxies
54, 55, 93

deceleration parameter q0 216, 241
angular diameter–redshift test 261–263

for compact radio sources 262, 263
for double radio sources 261, 262

number counts of galaxies 259–261
redshift–magnitude relation for brightest

galaxies in clusters 252–254
effects of stellar evolution on 253
infrared 544–545
problems of interpreting at large

redshifts 253
redshift–magnitude relation for radio

galaxies 254–255
advantages of determining in the K

waveband 254, 255
and the alignment effect 254, 256
corrections for effects of stellar

evolution 254
redshift–magnitude relation for Type 1a

supernovae 256–259, 464
evidence for non-zero cosmological

constant 257
relation with Ω0 and ΩΛ 243

decoupling of matter and radiation in the
post-recombination Universe 283

deflection D 505
deformation tensor in Zeldovich approxima-

tion 476, 477
Degree Angular Scale Interferometer

(DASI) 456
density contrast 268, 269, 311, 312, 315,

325, 328, 354, 358, 378, 391, 393,
402, 408, 443, 482, 573

for curvature modes in early Universe
374

growth of 393
density parameter Ω0 204, 241, 243,

267–270, 412, 414
cosmic virial theorem and 268
defined at any epoch 230
infall of galaxies into large-scale

structures and 268, 269, 406, 407,
464

density parameter in baryons ΩB 269,
289, 352, 362, 364, 444, 548, 561,
563, 564, 576, 586, 622

from primordial nucleosynthesis 293,
299, 301, 357

from WMAP power spectrum 300, 464
density parameter in gas Ωg 604–607
density parameter in heavy elements Ωm

604–607
density parameter in intergalactic gas ΩIGG

555
density parameter in neutral hydrogen ΩHI

554
density parameter in stars Ωs 547, 598,

604–607
density parameter of the dark energy ΩΛ

21, 23, 209, 210, 242, 449, 464, 501,
503, 623, 626

density parameter of the dark matter ΩD
464

deuterium D
abundance in Lyman-α absorbers 297
observed primordial abundance

297–298
as a ‘baryometer’ 299

solar abundance 297
deuteron, binding energy of 292
Differential Microwave Radiometers of

COBE 30
disc component of spiral galaxies 51
disc scale length for spiral galaxies 62
discs of spiral galaxies

stability of 612
dissipation processes and galaxy

formation 477–482
radiative processes 478
star formation and 478–479

first generation of stars 478
in very large redshift objects 479

thermal instabilities 478, 481
distance indicators 246, 247
distance measure D 494, 495
distance of the stars 4
distortion matrix 462

shear components of 460, 461
Doppler shift

Newtonian 162, 176
special relativistic 162

‘downsizing’ 614
‘drop-out’ galaxies 543, 593, 594, 607

decrease in luminosity density at large
redshifts 595
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luminosity functions for 595
properties of 593

dust emission and star formation 478, 501
dust extinction 538
dust extinction of galaxy spectral energy

distribution 535, 536
dwarf elliptical galaxies 51
dwarf galaxies 51
dynamical equilibrium 63
dynamical friction 399, 544

early history of cosmology 3–5
early history of galaxies and the structure

of our Galaxy 5–9
The Early Universe (Kolb and Turner) 313
early-type galaxies 50

mass distribution is 138
eclipse expeditions of 1919 190
Einstein angle 130, 132, 136
Einstein radius 129, 132, 134, 264
Einstein ring 130
Einstein X-ray Observatory 116, 123, 507
Einstein’s field equations 12, 13, 149,

188, 199–202, 208, 243, 273, 348,
365, 368, 395, 422, 440, 448

conservation of energy for relativistic and
non-relativistic gases 201

equation of conservation of mass and
200

first law of thermodynamics and 200,
201

monatomic gases and 201
ultrarelativistic gases and 201

Einstein’s static model of the Universe 8,
12, 149, 151, 188, 199, 214

Einstein–de Sitter world model 205,
231–235, 265, 266, 319, 320, 322,
336, 483, 485, 496, 500

as only ‘stable’ model 622
electron–positron annihilation 301
electron–positron pair production 23, 622
elliptical galaxies 50, 51

formation at large redshifts 543
elliptical galaxies as triaxial systems

71–73
linear programming techniques for 73

ellipticities of elliptical galaxies 51
emission history of the Universe 604

energies of the photon and neutrino
backgrounds 302

energy density of the Cosmic Microwave
Background Radiation 33

entropies of the photon and neutrino
backgrounds 301, 302

entropy per baryon
fluctuations in, in isothermal picture of

structure formation 357
Eötvös experiment 173

Eöt-Wash experiment 174, 175
Eötvös ratio 174, 175
epicyclic frequency 554
epoch of baryon–antibaryon pair production

286
epoch of decoupling of matter and radiation

574
epoch of electron-positron pair production

286
epoch of equality of radiation and matter

energy densities 17, 277, 285, 354,
358, 359, 376, 381, 393, 395, 396,
398, 410, 425, 430

including neutrinos 303
epoch of formation of first stars 574
epoch of formation of galaxies, clusters and

superclusters 312, 474, 487
epoch of maximum quasar activity 362
epoch of nucleosynthesis 286
epoch of recombination 17, 33, 277–281,

285, 312, 325, 355, 357, 362, 364,
378–381, 410, 440, 446

epoch of recombination for helium 279
epoch of reheating of the intergalactic gas

286
epoch of reionisation of the intergalactic gas

33, 355, 452, 471, 547, 552, 574–577
role of black holes in nuclei of galaxies

574
equation of continuity 313

relativistic case 331
equation of state

for photons, massless particles and
ultrarelativistic gas 271, 331

equivalence principle see principle of
equivalence

EROS project 141
ESO catalogue of galaxies 44
ESSENCE supernova project 257, 258
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Euclid’s fifth postulate 150
Euler’s equation 313, 440, 448

relativistic case 331
Eulerian coordinate system 314, 476
event horizon 338, 339, 342, 346, 634

definition of 338
evolution of active galaxies with cosmic

epoch 514–532, 569
extragalactic radio sources 514–518

‘luminosity evolution’ 516
cut-off of strong evolution beyond

redshift z ∼ 2–3 516, 517
for sources with steep and flat radio

spectra 516, 517
luminosity-dependent density evolution

516, 518
radio-quiet quasars 518–524

evolution of galaxies and active galaxies
with cosmic epoch 471, 491–545

active galaxies 492, 514–532
extragalactic radio sources 514–518
radio-quiet quasars 518–524
X-ray clusters of galaxies 529–532
X-ray sources 524–529

background radiation
source counts and 510

background radiation and 510–513
effects of evolution and the radio

background emission 512–513
evaluation of 510–512

brief history of evidence for 491–492
clusters of galaxies 543–545
co-evolution of stellar and black hole

properties of galaxies 492
counts of galaxies 537–543
counts of galaxies and active galaxies

492–507
euclidean source counts 493
fluctuations in the background radiation

due to discrete sources 504–507
for standard world models 500
models with finite ΩΛ 501–504
submillimetre counts of dusty galaxies

500–501
counts of galaxies and active galaxies,

predicted
for standard world models 494

infrared and submillimetre number counts
532–537

stellar and gaseous components of
galaxies 492

V/Vmax or luminosity-volume test
507–510

excess dwarf galaxy problem
solution by sweeping out gas by

astrophysical processes 613
excess of faint blue galaxies 46, 591

irregular nature of 593, 594
extragalactic background radiation

due to discrete sources 275
due to galaxies 275
energy density of, in different wavebands

275
in the ultraviolet, optical and infrared

wavebands 275, 276
limits from γγ absorption in spectra of

γ -ray sources 275
number density of photons in different

wavebands 275, 277
spectrum of 273–277

plotted as νIν 275
plotted as Iν 275, 276

extragalactic radio sources 578
depolarisation of 578
luminosity function of

evolution with cosmic epoch 514–518
origin of magnetic fields of 580, 581

active galactic nuclei and 581
supermassive black holes in nuclei of

581

Faber–Jackson Relation for elliptical
galaxies 70–71

Faint Object Camera 564–566, 592
Far Infrared Absolute Spectrophotometer

(FIRAS) of COBE 28
Far Ultraviolet Spectroscopic Explorer

(FUSE) 566, 567
feedback mechanisms in galaxy formation

471
field galaxies 56
fifth force, search for 174, 175
fine-tuning problem 23, 622
‘fingers of God’ 39, 406, 407
FIRST deep VLA survey of radio sources

42
first generation of stars 552

formation of interstellar dust 587
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properties of 574
ultraviolet and X-ray emission of 574

first law of thermodynamics 200, 201
flat two-space, isotropic 154
flatness problem 23, 24, 230–231, 622
fluctuations in the background radiation due

to discrete sources 504–507
spatial correlation technique 506

fluctuations in the cosmic microwave
background radiation 18, 19, 21, 30,
32, 33, 167, 281, 362, 364, 379, 382,
384, 410, 414–416, 419, 421–467,
614, 640

acoustic peaks see acoustic oscillations
in the power spectrum of the cosmic
microwave background radiation

discrete source confusion and 451, 505
epoch of recombination and 430
ionisation of the intergalactic gas through

the epoch of recombination 422–423
physical and angular scales of 424–430

last scattering layer 425–426
particle horizon scales 429–430
Silk damping scale 426
sound horizon at the last scattering layer

427–429
physics of 443
power spectrum of 13, 431–436, 439,

465
cosmological parameters from 444,

463–465, 548
observations of 434–436
other sources of 465–466
statistical description of 431–434

power spectrum on intermediate
scales – acoustic peaks 443–449

power spectrum on large angular scales
436–443

integrated Sachs–Wolfe and Rees–
Sciama effects 440

primordial gravitational waves
440–443

Sachs–Wolfe effect – physical
arguments 436–440

power spectrum on small angular scales
450–452

confusion due to discrete sources
451–452

confusion due to submillimetre sources
452

statistical and Silk damping 426, 450
Sunyaev–Zeldovich effect in clusters of

galaxies 450–451
quadrupole anisotropy of 442
reionised intergalactic gas 452–453
Sunyaev–Zeldovich effect and 450

detection of statistical effect from X-ray
Abell clusters by WMAP 451

Thomson scattering optical depth and
453, 574

Fokker–Planck equation for stars in clusters
107

fold catastrophe 135
four-tensors in relativity 184–187

curvature scalar 188
differentiation of 188
electromagnetic field tensor 186
energy–momentum tensor 188

for dust 186
including pressure 186

Maxwell’s equations 186, 187
Ricci tensor 188
Riemann–Christoffel tensor 188
energy–momentum tensor

for dust 185
four-vectors 185

examples of 185
velocity 185

Fourier integral 389
Fourier series 389, 431
Fourier transformations 431, 462

autocorrelation theorem for 433
of acoustic oscillations in cosmic

microwave background radiation
445

three-dimensional 388
FR2 3CR radio sources 609
fractal Universe 392
free-bound and bound-bound transitions of

hydrogen 479
free-streaming of neutrinos 19
Freeman’s law 62, 74, 612
‘freeze-out’ of hot dark matter particles by

free-streaming 376
‘freeze-out’ of massive particle species in

the early Universe 307
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frequencies of galaxies of different types
54, 56, 541

in different galactic environments 56,
57, 404, 538

Friedman world models 12, 13, 16, 151,
199–239, 621, 624

Friedman world models with Λ = 0
202–207

closed, spherical geometries 205
critical world model 205
curvature–density parameter relation

205
dust models 202
dynamics of 205–207
flat Einstein–de Sitter model 205
Newtonian analogue for 202–204

problems of boundary conditions 203
open, hyperbolic geometries 205
parametric solutions for 207, 321

Friedman world models with Λ �= 0
207–215

bouncing models 212–214
classification of 215
dust models 208, 209
dynamics of 211–216
Eddington–Lemaître models 213, 214,

223, 501
antipodal points of 225, 501, 503, 504
effects of gravitational lensing at

antipodal points 504
number counts in 501, 503
redshift–flux density relation for 501
stationary redshift 214, 223

Lemaître models 214, 501, 503
ghost images in 226

loitering models 214, 223, 226
minimum rate of expansion of 212

Friedman’s equation 199, 200, 320, 326,
638

Friedman: the man who made the Universe
expand (Tropp, Frenkel and Chernin)
204

fundamental observer 150, 158–161, 164,
168, 204, 207, 237, 238, 335, 337,
339–341, 347

fundamental plane for elliptical galaxies
70–71

The Future of Theoretical Physics (eds.
Gibbons, Shellard and Rankin) 643

GADGET computer code 616
GAIA mission, prospects for light deflection

observations 191
Galactic ‘cirrus’ 30
Galactic Astronomy (Binney and Merrifield)

49
Galactic bulge 141
galactic cannibalism 253, 544
Galactic Dynamics (Binney and Tremaine)

49
galactic extinction law 77
Galactic synchrotron radiation 30
galaxies 49

characteristic masses of 480
dependence of types upon environment

613
mean luminosity of 84
mean space density of 84
on a temperature-number density diagram

481
passive evolution of 498, 499

importance of red giant branch 499
starbursts and evolution of 499

Galaxies in the Universe: an Introduction
(Sparke and Gallagher) 49, 64

galaxies, correlations along the
Hubblesequence 84–88

colour–colour diagram and 87, 88
integrated colour 87
luminosity function of HII regions 87
masses and luminosities 84
neutral hydrogen 86
star formation rates and 87
total surface density and surface density

of neutral hydrogen 87
galaxies, old red 542
galaxies, properties of 8, 49
galaxies, red and blue sequences of 63,

88–94, 412
colour–absolute magnitude relation

89–90
colour–Sérsic index relation 91
definitions of 89
effect of the galaxy environment 92–93
mean stellar age–concentration index

relation 91
Galaxy

age of 64
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disc scale length of 62
luminosity of 84
structure of 7–9

galaxy and structure formation, history of
16–19

galaxy formation 583–620
background radiation and element

formation 584–587
energy density of background radiation

and density of metals formed 586
intensity of background radiation and

density of metals formed 586
processes of element formation 584,

585
collisions between galaxies and 614
‘downsizing’ 610
feedback mechanisms and 486, 583,

614
growth of supermassive black holes and

614
Lyman-break galaxies 590

in the general field 590
multicolour technique for discovering

590, 591
observed global star formation rate

587–590
as a function of redshift 583, 589
star-forming galaxies and 587
starburst galaxies at large redshift 589

star and element formation and 583–598
build-up of heavy elements in galaxies

583
numbers of ‘drop-out’ galaxies and

584
numbers of blue star-forming galaxies

and 584
numbers of far-infrared and submillime-

tre galaxies and 584
quasar absorption line systems and

584
star formation and 614
two-stage theory of 482, 611

final radius of disc 612
γ -ray background emission

Comptonisation and 529
spectrum of 526

Garching-Bonn Deep Survey 138
gas dynamics

equations of 313

in Lagrangian form 314
Newton’s second law in 314
relativistic case 331, 332
relativistic case in Lagrangian

coordinates 331
gauge choices

in electrodynamics 347
Lorentz and Coulomb gauges 347

superhorizon scales and 347, 437, 438
gauge-invariant gravitational potential 445
gauge-invariant variables 348
Gaunt factor 116, 121
Gauss’s theorem for Newton’s law of gravity

67, 133, 202
Gauss, Carl Friedrich

theory of surfaces 181
Gaussian curvature see curvature
Gaussian fluctuations 402, 432, 443, 475,

477, 482, 484, 487
Gaussian perturbations with random phases

41, 42
Gemini Deep Deep Survey 607, 608
general relativity 11, 48, 149, 151

introduction to 173–198
further complications 181–184
what Einstein did 187–188

route to 184–188
superhorizon scales and 347–350

general relativity, experimental and
observational tests of 189–197

four tests of general relativity 189–192
advance of perihelion of Mercury 189
deflection of light and radio waves by

the Sun 190, 191
gravitational redshift 189
time delay in Sun’s gravitational field

191, 192
parameterised post-Newtonian (PPN)

formulation of 175, 195
limits to values of the parameters 197
metric potentials in 196
physical significance of 176

pulsars and 192–194
xparameterised post-Newtonian (PPN)

formulation of 197
General Relativity: An Introduction for

Physicists (Hobson, Efstathiou and
Lasenby) 173, 184, 313
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general theory of relativity see general
relativity, 614

geodesic distance 157
geodesics 149–153, 158, 320
giant molecular clouds 478
globular cluster 47 Tucanae 250, 251
globular clusters 250, 355
Gran Sasso underground laboratory 146
Gravitation and Cosmology (Weinberg)

184
gravitational collapse

timescale of 479
gravitational constant, variation with

cosmic epoch 197–198
helioseismology and 198
limits to 197
lunar laser ranging and 197
primordial nucleosynthesis and 198
pulsar timing and 197

gravitational deflection of light rays 134
by the Sun 128

collision parameter for 128
gravitational lensing by galaxies and

clusters of galaxies 128–139
necessary conditions for 133
astrophysics of galaxies and 136–139
basic theory of 128–131
caustics and cusps in 135, 136
cluster masses from 134
critical surface density for 133
dark matter and 130, 136, 137
distortion of background images by 136
extended deflectors and 133–136
galaxy-galaxy imaging and 138
magnification of images by 130–132
mirror inversion of images in 132
time variations of intensities of images

139
gravitational lensing, strong 138, 235

case of the galaxy IRAS F10214+4724
235

complete sample of radio sources and
quasars 266

magnification of intensities by 235
probability of 264, 266

gravitational lensing, weak 138, 235,
460–463

and cosmic shear 235
shear variance distribution of 461

power spectrum of density perturbations
in the mass distribution and 462

Gravitational Lensing: Strong, Weak and
Micro (Schneider, Kochanek and
Wambsganss) 130, 138

gravitational mass 173, 174
gravitational potential, Newtonian limit

179
gravitational redshift 176–179

dependence upon gravitational potential
177

in general relativity 183
in the Newtonian limit 177
incompatibility with special relativity

178
time dilation in a gravitational field and

178
gravitational relaxation timescale 544
gravitational waves 625

and tilt of spectrum of scalar perturbations
442

dependence upon inflationary potential
442

limits to energy density of primordial
442, 460

polarisation signature of primordial 441
primordial

detection of as the ‘smoking gun’ for
inflationary cosmologies 640

spectral index of primordial 441, 640
from WMAP power spectrum 640

temperature power spectrum of 441,
442

tensor to scalar ratio of primordial 442,
460, 640

limits to 460
gravitons 373
‘Great Attractor’ 268
‘Great Debate’ 7
Great Observatories Origins Deep Survey

(GOODS) 538, 540, 592, 595, 598
‘Great Wall’ 38
Greenbank Catalogue of radio sources at 6

cm 42, 43
grey-body spectrum 535
GUT era, new physics at 643
GUT phase transition 628

half-light radius of light distribution 61
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Harrison–Zeldovich initial power spec-
trum 18, 21, 25, 391–392, 393–396,
399, 433, 439, 441, 465, 484, 485,
559, 560, 624, 630, 640

Hawking radiation 141
He+ Lyman-α absorption clouds in

intergalactic medium 566
HEAO-1 X-ray Observatory 524
HEAO1 A-2 experiment 507
Heaviside–Lorentz units 187
Heisenberg’s uncertainty principle 636
helium abundance

as a thermometer of the early Universe
293

helium-3 He3

observed by radio hyperfine transition
line 298

observed primordial abundance 298
helium-4 4He

observed primordial abundance 296
in low metallicity, extragalactic HII

regions 296
Hercules cluster of galaxies 102
Hertzsprung–Russell (H–R) diagram 250,

251, 584, 585
main sequence termination point 250

hierarchical clustering 18, 59
hierarchical model of the Universe 5
hierarchical models of galaxy formation

old red galaxies and 607
hierarchical scenario for cluster formation

545
Higgs fields and Higgs particles 24, 208,

373, 623, 626, 643
High Energy Astrophysics Vol. 1 (Longair)

126, 544
High Energy Astrophysics, Vol. 2 (Longair)

577
Himalayas 402
Hipparcos astrometric satellite 247, 251
Hipparcos measurements of light deflection

by the Sun 191
Hopkins Ultraviolet Telescope 565, 566
horizon mass 352, 353, 391, 395
horizon problem 22, 24, 337, 631

last scattering surface and 337
solution of in inflationary model of the

early Universe 337, 626, 627, 631
horizon scale 17, 204, 441, 627

horizons and the horizon problem
335–338, 621

hot and cold dark matter model of galaxy
formation 335, 418

hot and cold dark matter, history of
19–22

hot dark matter model of galaxy formation
19–21, 375–377, 380–381, 400–402

formation of galaxies by fragmentation of
large-scale structures 381

late formation of structure in 400
hot gas in clusters of galaxies 114–124

absence of cool gas in 123
associated with heating by radio lobes

124
models to explain the 123

abundance of iron 118
characteristic cooling time for 121
cooling flows in 122, 478

enthalpy of 123
mass inflow rates of 123

cooling time of 122
iron line FeXXVI from 115
sound waves in 125

Hubble Deep and Ultra-Deep Fields 261
Hubble Deep Field 491, 538, 542,

590–593
Hubble Deep Field South (HDFS) 592
Hubble diagram 44
Hubble sequence of galaxies 50
Hubble Space Telescope 58, 59, 130, 131,

138, 249, 254, 257, 297, 464, 491,
538, 540, 543, 550, 552, 564, 565,
568, 590, 593, 595, 601

The Hubble Space Telescope and the High
Redshift Universe (ed. Tanvir) 552

Hubble Space Telescope Science Institute
590

Hubble sphere 342–346, 632–634, 638
definition of 342
distinction between particle horizon and

631
shrinking of 631, 633, 634

Hubble Ultra Deep Field (HUDF) 491,
538, 540, 542, 543, 590, 592, 594–596

filter transmission curves for 594
Hubble’s constant 9, 13, 46, 241

Baade–Wesselink method and 248
brightest stars in galaxies and 246



718 Index

Cepheid variables and 246, 247
controversy over value of 246
cosmological distance ladder and 246,

247
defined at any epoch 166, 230
from Sunyaev–Zeldovich effect 128
globular clusters and 246
Hubble Space Telescope Key project and

246, 247
final result of 248, 464

present expansion rate of the Universe
and 167

redshift–magnitude relation for brightest
cluster galaxies and 246

Sunyaev–Zeldovich effect and 248
Tully–Fisher relation and 246
Type 1a supernovae and 246
written as H0 = 100h km s−1 Mpc−1

204
Hubble’s law 9, 10, 44–46, 150, 165, 314,

407
comoving radial distance coordinates and

340
discovery of 150
gravitational lensing and 249
recession velocities exceeding the speed

of light in 341
Hubble’s law and the expansion of the

Universe 44–48, 165
Hubble’s law for surface brightness 61
hydrostatic equilibrium 104, 115
hydrostatic support, equation of 318
hyperbolic two-space, isotropic 154, 155

i-band drop-outs 552
I0 galaxies 54
inertial mass 173, 174, 181
inflationary model of the early Universe

24, 25, 364, 392, 621, 624
accelerated expansion 634
chaotic inflation 626
exponential expansion and 626, 627,

629
role of scalar fields 629
straightening of geometry 627
violation of strong energy condition and

630
historical background 626–629

formation of ‘bubbles’ in original Guth
picture 628

lack of physical realisation of
inflationary picture 629

monpole problem 628
new inflationary model of Linde,

Albrecht and Steinhardt 629
slow rollover model 629
symmetry breaking in Grand Unified

Theories 627
transition from false to true vacuum in

original Guth picture 627
necessary conditions for many e-folding

times 635
necessary tools from theoretical and

particle physics 630
release of ‘latent heat’ 627
scale factor-temperature relation 628
shrinking of Hubble sphere 634
three equivalent conditions 634

violation of the strong energy condition
634

transition to standard radiation-dominated
model 627

inflaton potential 24, 629
infrared luminosity function of galaxies

evolution of 536
comparison with evolution of active

galaxies 537
Infrared Space Observatory (ISO) 532,

533
inhomogeneous world models 231–235
initial mass function

modified 487
initial power spectrum

curvature of 463
modifications of 409
modified 484
reconstruction of 474

interacting galaxies 57, 60, 478
fraction of 59

intergalactic gas, optical depth for Thomson
scattering of 280, 281

intergalactic medium 547–582
absorption by 548
absorption coefficient of 548
background emission of 548
emissivity of 548
epoch of reionisation of 574–577
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Gunn–Peterson test for ionised helium in
564–567, 571

due to integrated effect of Lyman-α
clouds 566–567

feasibility of, for large redshift quasars
564

Gunn–Peterson test for neutral hydrogen
in 547, 549–552, 569, 574

positive detection at z ≥ 6 551, 552,
564, 574

upper limits to neutral hydrogen number
density from 550

lukewarm gas in 555, 560–569
collisional excitation of 562–563
diffuse ultraviolet radiation at large

redshifts and 567–569
emission and absorption of 564–567
proximity effect and 567–569

Lyman continuum opacity of 569–571,
574

Lyman-α absorption clouds in 547,
552–560

evolution of, with cosmic epoch 556
nature of 554–556
power spectrum of forest of 557–560
predicted evolution of, with cosmic

epoch 556
properties of 552–554

modelling the evolution of 571–574
neutral hydrogen at large redshifts 574

fluctuations in observed intensity
574–577

intensity of 576
ionsation by first generation of massive

stars 575
observational challenge of detecting

575
predicted brightness temperature of

576
problem of synchrotron radiation

foregrounds 576
optical depth of 548
origin of magnetic fields 577–582
ultraviolet opacity of 569–571
X-ray background and a cosmic

conspiracy 561
International Linear Collider (ILC) 144
International Ultraviolet Explorer (IUE)

248, 597

intrinsic curvature see curvature
Introducing Einstein’s Relativity (d’Inverno)

184
ionisation fraction through epoch of

recombination 423, 424
ionisation of intergalactic gas through the

epoch of recombination 422–423
IRAS F10214+4724 235
IRAS Faint Source Survey 532
IRAS galaxies 501, 503

catalogue of 532
complete samples of 532
correlation functions for 405
ultraluminous 58

IRAS infrared observatory 478, 491, 532
IRAS Point Source Catalogue 532
Irr II galaxies 54
irregular clusters of galaxies 102–103
irregular galaxies 53
island universes 5
ISO infrared space observatory 478
isocurvature cold dark matter 396–399

fluctuations in local equation of state and
397

isophotal angular diameters 223
isothermal baryonic perturbations in the

standard Big Bang 357–360
isothermal gas spheres 103–108, 134,

264, 611
projected 105, 106
singular 134
tidal radius of 107
truncated 107

isothermal model of structure formation
18, 357–360, 363–364

‘bottom-up’ picture of galaxy formation
364

‘freezing in’ of perturbations 358, 359
early enrichment of heavy elements 363
early formation of globular clusters and

363
hierarchical clustering and 363
radiation drag, effects of 359, 360

isotropic curved spaces 150–154, 159
radius of curvature of 155
three-dimensional 156, 157
two-dimensional 155, 156

isotropic two-space
flat 157
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hyperbolic 157
spherical 154, 157

isotropy of the distribution of extragalactic
radio sources 42

isotropy of Universe on a large scale 32

J0737-3039 (binary pulsar) 193
Jagellonian field 35
James Clerk Maxwell Telescope (JCMT)

452, 534, 597
Jeans’ analysis of damped harmonic

oscillator 638
Jeans’ criterion in an expanding Universe

16, 319
Jeans’ instability 318, 324, 478

growth rate of 324, 358
physical nature of 318

Jeans’ instability criterion 16, 378
for collisionless gas 377

Jeans’ length 16, 17, 318, 332, 351–353,
379, 428, 429

in baryons 352
relativistic case 332

Jeans’ mass 17, 18, 351–355, 360, 361,
377

Jeans’ wavelength 318
Jupiter 4, 5

K-correction 170, 253, 495, 498, 538
in infrared K waveband 538
submillimetre 597
uncertainties in ultraviolet wavebands due

to starbursts 538
K20 sample of galaxies 542
K20 Survey 607, 608

very red galaxies in 608
Keck 10-metre telescope 272, 542, 555,

566, 590
Keck-2 telescope 551, 552
Kelvin–Helmholtz picture of stellar

evolution 251
Kepler’s laws of planetary motion 3

third law 4, 67
King profiles for mass distribution in clusters

107, 111
Kolmogorov spectrum of turbulence 580
Kompaneets equation 126

Lagrangian and comoving coordinate
systems, difference between 314

Lagrangian coordinate system 314, 476
ΛCDM model of galaxy and structure

formation 22, 59, 435, 440, 462,
463, 466, 472, 483, 486, 487, 530,
532, 613–620

problems with 613–614
accounting for Faber–Jackson relation

and Tully–Fisher relation 614, 620
‘downsizing’ problem 614
excess dwarf galaxy problem 613
mass-metallicity correlation 613
predicted cusps in central regions of

galaxies 613
Landau damping 376
Lane–Emden equation 104
Langmuir waves 317
Large Electron–Positron collider (LEP)

300, 371
Large Hadron Collider (LHC) 144, 208,

643
Large Magellanic Cloud (LMC) 54, 141

distance of 248
large-scale distribution of galaxies

33–44
large-scale structure of the Universe

27–48
The Large-Scale Structure of the Universe

(Peebles) 363
Las Campanas redshift survey 41
last scattering layer 444
last scattering layer at z = 1000 621
last scattering surface 33, 333, 357

for neutrinos 292
last scattering surface at the epoch of

recombination 631, 632
last scattering surface for electromagnetic

radiation 624
late-type galaxies 50
laws of conservation of momentum and

energy in relativity 186
Legendre function

associated 431
Legendre polynomials 433, 455
Leiden–Berkeley Deep Survey (LBDS)

516, 518
lens equation 132
lenticular galaxies 52, 55
lepton number L i 301
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Lick counts of galaxies 35, 36
Lick Observatory 550
light distribution in galaxies 59–63

in elliptical galaxies 61
in spiral and lenticular galaxies 61
in spiral galaxies 68
putting the light distributions together

62
light elements, primordial nucleosynthesis

of see nucleosynthesis, primordial
lightest supersymmetric particle 643
limits of observation in cosmology

624–625
fundamental limitations 624
limitations due to cosmic variance 624

lithium 7Li
observed primordial abundance 298,

299
local group of galaxies 51
local supercluster of galaxies 43, 44, 78
Lockman Hole survey field 525
LOFAR project (Netherlands) 576
longitudinal gauge 348
longitudinal plasma oscillations 317
Lorentz invariance 184, 196

form-invariance 184
Lorentz transformations 185, 187, 207,

238, 239
lukewarm intergalactic gas 560–569

collisional excitation of 562–563
‘thermostat’ temperatures of 563
by shock waves 562
emissivity of 562, 563
HI and HeII Ly-α line emission due to

562
ionisation state of 563

diffuse ultraviolet radiation at large
redshifts and 567–569

emission and absorption of 564–567
detectability of redshifted Lyman-α

emission 564
photoexcitation and 564
shock excitation and 564

proximity effect and 567–569, 572
luminosity function of galaxies 77–84,

509
luminosity–metallicity relations for

galaxies 74–76
luminous infrared galaxies

evolution of 536
luminous infrared galaxy N1-015

spectral energy distribution of 535
lunar laser ranging 175
Lyman limit 588, 589, 591
‘Lyman valley’ 570
Lyman-α absorption clouds in in-

tergalactic medium 545, 550,
552–560

confinement of 555
evolution of, with cosmic epoch 556,

569
nature of 554–556

according to large-scale hydrodynamic
simulations 573

observed number density distribution of
554, 555, 566, 600

power spectrum of forest of 557–560
properties of 552–554

column densities of 554
damped Lyman-α systems 554
fractional ionisation of 555
Lyman-α forest 552–554, 556–558,

566–572, 574
Lyman-limit systems 553, 554, 556,

564, 569–571, 590
masses of 555
origin of damped Lyman-α systems

572
two-point correlation function of 557,

558
dark matter perturbations and 559
SiIII absorption features and 557, 558

Lyman-α emission of the intergalactic gas
562

Lyman-α radiation field, colour temperature
of 576

Lyman-α scattering, optical depth for 549
Lyman-α transition

oscillator strength for 549
photo-excitation cross-section for 549

Lyman-break galaxies 479, 607
redshift distribution of 590, 592

Lyman-limit galaxies, decreasing comoving
density at large redshifts 489

α Lyrae 5

M31
luminosity of 84
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rotation curve of 67
M49 (NGC 4472) 69, 116

velocity dispersion of 70
M51 (NGC 5194) 52
M82 54
M86 116
M87 (NGC 4486) 52, 55, 69, 116
Mössbauer effect 178, 189
Mach’s principle 11, 12, 199
MACHO project 141, 142
MACHOs 141

mean mass of 141
Magellanic Clouds 7, 54, 141
Magellanic irregular galaxies 54
magnetic fields

in stars 578
in the interstellar and intergalactic

medium 578
origin of 577–582

amplification mechanisms and 578
amplification of seed field by turbulence

580
dynamo action and 578, 580
emf created by Biermann battery 579
extragalactic radio sources and 581
extragalactic radio sources at large

redshifts 582
laboratory demonstration of dynamo

action 578
magnetic reconnection and 578
problems of dynamo action on large

scales 578
seed field created by Biermann battery

579
seed fields 579

power spectrum of magnetic turbulence
580

predicted power spectrum from magnetic
turbulence 580

role in astrophysics 577
rotation measure synthesis and 580

making real galaxies 583–620
abundances of elements in Lyman-α

absorption systems 598–604
equations of cosmic chemical evolution

604–607
old red galaxies 607–610
origin of rotation 610–613

putting it all together – semi-analytic
models of galaxy formation
613–620

star and element formation 583–598
background radiation and element

formation 584–587
Hubble Deep and Ultra Deep Fields

590–596
Lyman-break galaxies 590
observed global star formation rate

587–590
submillimetre determinations of cosmic

star-formation rate 596–598
Malmquist bias 246
Markarian ultraviolet-excess galaxies 597
mass density of the Universe

in stars at the present epoch 84
mass–luminosity ratio

early-type galaxies 138
for clusters of galaxies 267
for galaxies and clusters 482
for Universe as a whole 83, 267
of elliptical galaxies 69, 84
of spiral galaxies 68, 84

mass–luminosity relation for stars 499
mass–metallicity relations for galaxies

at large redshifts 76
mass-energy relation E = mc2 181
masses of galaxies 63–70
massive galaxies in clusters 617
massive ultra-weakly interacting particles

643
matter-dominated Universe 276
Mattig’s formula 219
MCG catalogue of galaxies 44
‘meatball’ topology 41
Medium Deep Survey of galaxies (MDS)

542
Mercury, advance of perihelion of 189

radar ranging and 189
‘merger trees’, hierarchical clustering and

615
mergers of coalescing galaxies 614
MERLIN long baseline interferometer

266
Mészáros effect 358–359, 381, 393, 396,

398
metallicity Z 74, 600, 605, 606
metric angular diameters 221, 253
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between any two redshifts 228
metric of isotropic two-space 155
metric perturbations 368, 374, 392, 436
metric tensor 155, 186–188

components of as gravitational potentials
187

microlensing, gravitational 132
Millennium Galaxy Catalogue 62, 63, 83
Millennium Simulation 486–488,

613–615, 617–619
first quasar candidate 619

Milne empty world model 207, 237
Minkowski metric 158, 179, 181, 187,

188, 195
‘missing baryon’ problem 547
Modern Cosmology (Dodelson) 313, 422
Monte Carlo Markov chain methods 463
Monte Carlo methods 506
Moon, fluorescent X-rays from 524, 525
morphologies of galaxies 49, 50
Mount Wilson 100-inch telescope 492
multipole moment 432, 433

N galaxies 51
nebulae

cataloguing of 7
nature of 6, 7

‘negative mass’ in inhomogeneous Universe
233

negative pressure equation of state 208,
623, 630, 644

speed of sound for 638
neutralinos 373
neutrino astrophysics 625
neutrino background temperature 301–303
neutrino barrier 286, 292
neutrino chemical potential 301
neutrino interaction cross-sections 291
neutrino oscillations 143
neutrino perturbation

damping by free-streaming 376
free-streaming damping mass 377, 380,

381
neutrinos

astrophysical limits to masses of 20
cosmological limits to masses of 560
cosmological limits to number of species

of 463
cosmological mass density in 463, 465

decoupling of 367
equilibrium number density of 143, 301
free-streaming of 380, 400
laboratory limits to the masses of 143
laboratory limits to the number of species

of 145
massive decaying 417
neutrino background temperature 376
their role in primordial nucleosynthesis

see nucleosynthesis, primordial
time-scale for interaction in the early

Universe 291
with finite rest mass 19, 367, 375, 376,

380
neutrinos, free-streaming of 396
neutron decay 292, 294
neutron stars 586
Newton’s law of gravity 4
Newtonian gravitational potential 348,

350, 438
NGC 1300 53, 54
NGC 2787 55
NGC 3077 54
NGC 4486 52
NGC 4839 114
NGC 4874 111, 114
NGC 4889 111, 114
NGC 5194 52
NGC 5195 52
NGC 520 54
NICMOS infrared camera of Hubble Space

Telescope 140
non-Euclidean geometries 11, 150–152,

173, 492
non-Gaussian fluctuations 432, 466

examples of 432
skewness and kurtosis 466

non-linear collapse of spherical density
perturbations 472–477

spherical top-hat collapse 473–475
maximum scale-factor for 473
redshift of collapse of 473
turn-around epoch 473
violent relaxation and 474

non-linear development of density
fluctuations 407–409

self-similar solution for 408
two-point correlation function 407–409
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NORAS catalogue of X-ray clusters of
galaxies 116

normalised impact parameter 132
nuclear reactions in the Sun 279
nucleocosmochronology 13, 252
nucleosynthesis in stars 14
nucleosynthesis, primordial 14–16, 140,

289, 289–307, 417
baryon-symmetric Universes 303–307

‘freeze-out’ of abundances in 304,
306

equilibrium abundances in the early
Universe 289–290

equilibrium energy densities 290
in the non-relativistic limit 290, 303
neutron–proton ratio 290
relativistic statistical mechanics and

289
evolution of abundances during 293,

294
light elements, abundances of 295–301

comparison of theory and observation
299–301

observations of 296–299
massive neutrinos and 369
neutrino background temperature

301–303
neutrinos, decoupling of 290–292

‘freezing out’ of the n/p ratio and 291
non-standard assumptions concerning

300
lepton asymmetry 300
limits to the number of unknown

neutrino species 300
varying gravitational constant 300

synthesis of the light elements 292–295
dependence upon photon-baryon ratio

294
deuterium formation 292, 293
epoch of nucleosynthesis 292
helium formation 292, 293
lithium formation 293, 294
neutron fraction 292
nuclear reactions involved in 292

number counts of galaxies 46
number counts of submillimetre sources

452
Nyquist frequency 504, 505

O04 survey 595
observable Universe of galaxies 471
observations in cosmology 162–171

age of the Universe T0 171
angular diameter distance 167, 172
angular diameters 167
apparent intensities 168–170

for bolometric luminosities and flux
densities 169

K-corrections 170, 223
cosmological redshift and time dilation

162–166
the meaning of redshift in cosmology

164
distance measure D 167, 172, 218, 243

independence of Ω0 at small redshifts
245

Hubble’s law 165–167
luminosity distance 169, 172
number densities 170–171, 172

comoving number density 171
comoving volume 170

reciprocity theorem 169
observations in cosmology for Friedman

world models 215–228
angular diameter–redshift relations

221–223
for inhomogeneous Friedman world

models 233, 234
for models with ΩΛ = 0 221
for models with ΩΛ �= 0 223
for partially inhomogeneous Friedman

world models 235
comoving volume within redshift z

226–228
models with ΩΛ = 0 226
models with ΩΛ �= 0 228, 263

cosmic time–redshift relation 217–218,
280

age of Universe for flat world models
with ΩΛ �= 0 218

age of Universe for models with
ΩΛ = 0 217

for flat world models with ΩΛ �= 0
218

for models with ΩΛ = 0 217
for models with ΩΛ �= 0 218

deceleration parameter 216
relation to Ω0 and ΩΛ 216
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distance measures as a function of redshift
218–219

for Milne’s empty world model 219
for models with ΩΛ = 0 219
for models with ΩΛ �= 0 219
Mattig’s formula 219

flux density–redshift relations 223–226
for inhomogeneous Friedman world

models 235
for starburst galaxies in the submillime-

tre waveband 501, 503
ghost images 223

Occam’s razor 419
Ohio State University 295
Olbers’ paradox 510

in an infinite, static, Euclidean Universe
511

resolution of, in standard world models
511, 512

old red galaxies 607–610
constancy of masses with redshift 607
early formation of stellar populations of

610
evidence for old stellar populations in

608
evolving stellar mass density and 607
massive 607–610
need for early starbursts 608, 609
selected in the K waveband 607
star-forming galaxies at large redshift and

608
stellar masses as a function of redshift

608
On the Principles of Geometry

(Lobachevsky) 11, 151
optical depth for intergalactic HeII

absorption 564
optical jet in M87 52
The Origin and Evolution of Cosmic

Magnetism (ed. Beck, Brunetti, and
Feretti) 577, 580

origin of the spectrum of primordial
perturbations 629–640

duration of the inflationary phase
630–631

necessary number of e-folding times
631

equation of state 630

freezing of perturbations on passing
through Hubble sphere 634

shrinking Hubble sphere 631–634
OVRO Millimetre Array 126, 127, 249

P(D) distribution 504–506, 514, 525
asymptotic slope of 505
in infrared waveband 507
in ultraviolet waveband 506
in X-ray waveband 507
non-Gaussian statistics and 505
physical meaning of 505
shape of 505

Palomar 200-inch telescope 514, 521
Palomar 48-inch Schmidt telescope 96
Palomar 48-inch Telescope Sky Survey 96
pancakes 20, 363, 400, 402, 476, 477, 480
parallel transport, or parallel displacement

151–153
Parkes Selected Region (PSR) sample

517, 518
Parseval’s theorem 388
particle horizon 22, 335–340, 342, 344,

346–349, 351–354, 361, 362, 376,
377, 379, 380, 391–393, 415, 429,
430, 436, 441, 443, 444, 626–629, 631

definition of 336
radiation-dominated Universe and 337

particle physics and cosmology 624, 625
particle–antiparticle annihilation in the early

Universe 278, 303
collision time exceeds expansion age

306
cross-sections for 304
epoch of decoupling of particles and

antiparticles 305
equilibrium number densities 304

Particles, Nuclei and the Universe, Selected
Works of Yakov Borisevich Zeldovich,
Vol. 2. (Zeldovich) 381

past light cone 159, 335, 339–344, 346,
631–633

Pauli exclusion principle 144
Pavo cluster of galaxies 42
peculiar and interacting galaxies 56–59
peculiar velocities

from polarisation measurements of
the cosmic microwave background
radiation 451
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in the local Universe 268
of galaxies 201
of perturbations 315, 453

Perseus cluster of galaxies 124, 125, 547,
617

perturbations, evolution of, in the
standard cosmological models
311–333

acoustic oscillation and 361–362
conservation of angular momentum and

328
for models with ΩΛ = 0 325
for models with ΩΛ �= 0 326
in terms of conformal time τ 340
Jeans’ instability 317–318

dispersion relation for, in a static
medium 317

growth rate for, in static medium 318
Jeans’ instability in an expanding

Universe 319–327
Einstein–de Sitter case 319
empty Milne world model 320
falling poles 322–324
general solution 324–327
linear growth of 319–327, 332, 351,

354
necessity of finite initial amplitudes

322, 333
perturbing the Friedman solutions

321–323, 476
small perturbation analysis 319–320
spherical perturbations in standard

Friedman models 321
linear 312
non-relativistic wave equation for

313–317
adiabatic perturbations 316
first-order solutions for 315
in terms of conformal time 317
in terms of cosmic time 317
unperturbed solutions for 315

peculiar velocities in the expanding
Universe 327–331

decay of in Ω0 = 0 case 329
evolution of 329, 330
growth of in Ω0 = 1 case 328
potential motions 327, 328, 406
primordial turbulence and 328
rotational motions 328

relativistic case 331–332
growth rate in radiation-dominated case

332
the basic problem 332–333
what the theorists are trying to do

311–313
Petrosian r-band luminosity 91
photon barrier 280
photon diffusion 355

coefficients of thermal conduction and
shear viscosity 355, 356

photon-to-baryon number ratio 23, 277,
622

physics beyond the standard model 372
Planck energy scale 209
Planck era 287, 631, 642–644

need for quantum theory of gravity 642
new physics before reaching 643

Planck mass 209
Planck mission of ESA 421, 450–452,

467, 625
Planck spectral energy distribution

Rayleigh-Jeans region of 455
variation with redshift z 272
Wien region of 278, 279

fraction of photons in 278
Planck time 642
planetary nebula IC418 452
Pleiades star cluster 5
Plummer model for elliptical galaxies 108
Poisson noise 392
Poisson’s equation for gravity 108, 187,

268, 313
linearity of 315
relativistic case 331

polar coordinates 155
polarisation of the cosmic microwave

background radiation 454–463,
625

anticorrelated TE cross correlation power
spectrum of as evidence of adiabatic
perturbations 458

B-modes and 457, 467
B-modes due to gravitational lensing

457
BB power spectrum and 457
EE power spectrum of 456, 457, 459
from the epoch of reionisation 458–459
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angular scale of strongest polarised
signal 458

from the last scattering layer 455–458
physics of 454–455

necessity of quadrupole intensity
distribution 455, 458

polarised galactic radio emission and
456, 457

primordial gravitational waves and
459–460

B-modes 459, 460
E-modes 459
origin in the early Universe 460
polarisation modes of 459
predicted BB power spectrum of 460

TE cross correlation power spectrum of
457–459

TT intensity power spectrum and 456,
457

weak gravitational lensing and 460–463
BB-mode polarisation due to lensing of

EE-mode polarisation 462, 463
distortion matrix 460
E-mode polarisation due to 462

polycyclic aromatic hydrocarbon (PAH)
molecules 535

post-recombination era 384, 471–489
non-linear collapse of density perturba-

tions 472–477
isotropic top-hat collapse 473–475
Zeldovich approximation 475–477

Press–Schechter mass function
482–489

development and recapitulation
485–489

exposition – elementary theory
482–484

role of dissipation 477–482
POTENT reconstruction procedures 269
power spectrum of cosmic microwave

background radiation 434, 436
power spectrum of fluctuations 388–392

relations between different descriptions of
391

power spectrum of initial fluctuations 17,
390–392, 405, 438

modifications of 393–401
power spectrum of temperature fluctuations

432, 433

for non-Gaussian fluctuations 466
precision cosmology 421, 466, 614, 621
Press–Schechter mass function 20, 363,

482, 482–489
‘peaks-within-peaks’ problem 485
critical density contrast for structure

formation 483
evolution of number density of dark

matter haloes with redshift 487, 489
hierarchical clustering and 486, 487,

489
mass function of clusters and 486
problems with simple derivation 485,

486
time evolution of 484, 485

primordial fluctuation problem 23, 25,
472, 623

Harrison–Zeldovich spectrum and 623
primordial gravitational waves 440–443

equation of state of 441
on superhorizon scales 441
quadrupole nature of 441
quantum origin in the early Universe

441
tensor to scalar ratio 441

primordial nucleosynthesis of the light
elements see nucleosysnthesis,
primordial

Principia Mathematica (Newton) 10
principle of covariance 184
principle of equivalence 173–176, 176,

177, 179–181, 184, 196
Einstein’s 174, 175, 196

local Lorentz invariance (LLI) 175
local position invariance (LPI) 175

free-fall 174, 179
weak 174, 175

Principles of Physical Cosmology (Peebles)
313

probability integral 483
Probing Galaxies through Quasar Absorp-

tion Lines (eds. Williams, Shu and
Ménard) 552

problem of the values of the cosmological
parameters 23

prograde orbits 57
projected surface brightness 116
proper radial distance coordinate 339
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properties of spiral and elliptical galaxies
70–76

proton decay
avoidance of 373

PSR 1913+16 192–195
pulsars and general relativity 192–194

emission of gravitational waves 193,
194

acceleration of binary pulsar due to
194, 195

masses of neutron stars 193, 194

QSO Absorption Lines (ed. Meylan) 552
quadrupole component of the temperature

power spectrum 434
quantised harmonic oscillator 635–637

angular frequency of 636
carrying out a proper calculation 637
energy levels of 635
Hermite polynomials and 636
Schrödinger’s equation for 635
wavefunctions for 635
zero-point energy of 636
zero-point fluctuations of 636

quantum theory of gravity 644
quasar 0957+561 (double quasar) 249
quasar 2345+007 (double quasar) 554
Quasar Absorption Line key project 568
quasar HE 2347-4342 566, 567
quasar HS1700+64 566, 567, 571
quasar OQ 172 570

ultraviolet spectrum of 550
quasar PKS1935–692 564, 571
quasar PSS J1443+2724 273
quasar Q0302–003 564, 566, 571
quasar Q1331+170 272
quasar Q1422+2309 553
quasar Q2237+0305 139
quasar QSO 0013–004 273
quasar spectra

Lyman-α emission line 519, 520
prominent emission lines in 520

quasars
3CR sample of radio 508, 509
cut-off at large redshifts 487, 488
early formation of supermassive black

holes in 610
low-luminosity 521
most luminous 488

radio-quiet see radio-quiet quasars
ratio of black hole to spheroid masses

610, 617
unification scheme with radio galaxies

610

radiation-dominated universe 14, 276
Compton scattering in 281–284
dynamics of 271–273

including neutrinos 302, 303
maintenance of photons and matter at

the same temperature by Compton
scattering 282

time-scale for expansion of 291
total energy density of relativistic species

291
radio galaxies 51, 479

3CR sample of 508, 509
evidence for old stellar populations in

609
radio galaxy 0902+34 609
radio galaxy LBDS 53W069 610
radio galaxy LBDS 53W091 609
radio–far-infrared correlation for galaxies

597
flattening of radio source counts and

537
radio-quiet quasars

counts of 521, 522
cut-off at large redshifts 519, 524, 569
definition of complete samples of

518–521
completeness of 521
dispersion prism-grating techniques

521
multicolour photometric technique

519–520
searches for ‘i-band drop-outs’

520–521, 524
searches for Lyman-α and CIV emission

lines 521
searches for variability of 521
ultraviolet excess technique 519

discovery of 518
evolution of, with cosmic epoch 518,

520, 521, 610
luminosity function of

‘luminosity evolution’ of 522
evolution of 521, 522
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ram-pressure stripping 544, 613
Rayleigh–Jeans region of Planck spectrum

455
Rayleigh–Jeans spectrum 27, 29, 30
The Realm of the Nebulae (Hubble) 50,

492
reciprocity theorem 229
reconstruction of local mass distribution

268, 269
red and blue sequences of galaxies see

galaxies, red and blue sequences of
Red-Sequence Cluster Survey 138
redshift biases 406–407
redshift, definition of 45, 162
redshift–apparent magnitude relation 44
redshift–magnitude relation for brightest

galaxies in clusters
infrared 544–545

cosmic conspiracy and 544, 545
galactic cannibalism and 545
passive evolution and 544

reduced deflection angle 130
Rees–Sciama effect 440
REFLEX catalogue of X-ray clusters of

galaxies 116, 120, 121
regular clusters of galaxies 102–103
reionisation of the intergalactic gas 382
relation between angular and spatial

two-point correlation functions 37,
38

relativistic binary stars 192
relativistic gravity, introduction to

173–198
non-linearity of 181, 182

relativistic jets, heating of the intestellar gas
by 617

relativity of simultaneity 238
Relativity: Special, General, and Cosmolog-

ical (Rindler) 184
revised Hubble sequence for galaxies

50–56
Riemannian geometries 151, 182, 184
Riemannian metric 187
ring galaxies 56, 58
Robertson–Walker metric 149, 150,

158–162, 163, 167, 168, 340, 341
for an empty Milne Universe 237–239
for the critical world model 231
invariant interval ds2 161

ROSAT X-ray Observatory 116, 117, 119,
120, 122, 451, 491, 506, 524, 525

rotation curve of a centrifugally supported
disc in isothermal gas sphere 612

rotation curves of spiral galaxies 66–69
rotation of galaxies, origin of 610–613

damping of primordial rotational
velocities 610

dissipative contraction within dark matter
haloes 611

problem of specific angular momenta
612

problems of theories of primordial
turbulence 610

role of tidal stripping 613
roles of dissipation and tidal stripping

612
tidal torques 611, 612

during linear growth of perturbations
611

slow rotation of the spheroidal compo-
nents of elliptical and spiral galaxies
and 611

Rutherford scattering 190

S0 galaxies 52
Sérsic 159-03 123, 124
Sérsic index 91
Sa galaxies 51
Sachs–Wolfe effect 18, 21, 441, 447, 456

dependence upon angular scale 439
gravitational redshift and 436, 437
integrated 452, 456
physical arguments 436–440

SAGDP99 survey 595
Sakharov oscillations 21, 362
Salpeter initial mass function 500, 588
Sb galaxies 51
Sc galaxies 52
scalar fields 208, 623, 629, 634–635

density and pressure of 634
Einstein’s field equations and 635
fluctuations in 635
negative pressure equation of state and

634
not yet detected experimentally 634
properties of 634–635
slow-roll parameters 635, 640
string theory and 634
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theories beyond the standard model of
particle physics and 634

scale factor a(t) 160, 161, 162, 164, 167,
171, 172

scale factor–redshift relation 164, 201,
271

scaling test for homogeneity of clustering of
galaxies 35–37

Schönberg–Chandrasekhar limit 500
Schechter luminosity function for galaxies

77, 79, 82, 108, 109, 590, 593, 595
break absolute magnitude M∗ of 78, 81
break luminosity L∗ of 77, 78, 81
brightest galaxies in clusters 82
dependence upon galactic environment

79, 81
evolution with redshift 82
for low luminosity galaxies 82
in voids 80, 81
L∗ as a standard candle 80
turnover luminosity L∗ 607

Schwarzschild metric 183, 187
coordinate time in 183
proper time in 183

Schwarzschild radius rg 184
Sco X-1 524
SCUBA submillimetre bolometer array

534, 597
Sd galaxies 52
secular instabilities in rotating stellar discs

616
self-similar model for cluster formation

118, 119
semi-analytic models of galaxy formation

412, 472, 486, 583, 613–620
acoustic peaks in the large-scale galaxy

distribution and 620
as ‘experimental computational

astrophysics’ 615
dust extinction and 617
evolution of mass function of galaxies and

620
formation of supermassive black holes

and 617, 618
in centres of rich clusters 620

heating of the intergalactic gas in clusters
and 617

mergers of galaxies and 616
major 616

minor 616
morphologies of galaxies and 616
nuclear starbursts and 616, 617
objectives of 615
quasars at large redshifts and 618, 619
radiative cooling and star formation 615
spectrophotometric properties of galaxies

and 616
supernova explosions and 616
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Preface

This is the second edition of my book Galaxy Formation. Many people liked the first
edition which appeared in 1998, just before the explosion of magnificent new data
which have completely changed the face of astrophysical cosmology. Many of the
agonies which had to be gone through in the first edition have disappeared and, to
many people’s amazement, including mine, there is now a concordance model for
cosmology, the cosmologist’s equivalent of the particle physicist’s standard model.
Just like the standard model, however, the concordance model creates as many
problems as it solves. This is not a cause for concern, but rather one for celebration
because we are now able to ask much better and deeper questions than in the past.
These questions indicate clearly the need for physics and astrophysics ‘Beyond the
Concordance Model’.

The object of this new edition is to bring this amazing story up-to-date, very much
in the spirit of the first edition. To recapitulate some of the points made in the previous
preface about the origin of the book, I was asked by Springer-Verlag to expand the set
of lecture notes that I prepared in 1988 for the First Astrophysics School organised
by the European Astrophysics Doctoral Network into a full-length book. The set of
notes was entitled Galaxy Formation and was published as a chapter of the volume
Evolution of Galaxies: Astronomical Observations (eds. I. Appenzeller, H.J. Habing
and P. Lena, pages 1 to 93, Springer-Verlag Berlin, Heidelberg, 1989). In that chapter,
I attempted to bridge the gap between elementary cosmology and the technical papers
appearing in the literature which can seem quite daunting on first encounter. The
objective was to present the physical ideas and key results as clearly as possible as
an introduction and guide to the technical literature.

In 1993, more lecture notes on The Physics of Background Radiation were
prepared for the 23rd Advanced Course of the Swiss Society of Astrophysics
and Astronomy, the topic being The Deep Universe (A.R. Sandage, R.G. Kron
and M.S. Longair, Springer-Verlag Berlin, Heidelberg, 1995). Then, also in 1993,
I completed a history of twentieth century astrophysics and cosmology, which was
published as Chap. 23 of a three-volume work entitled Twentieth Century Physics
(eds. L.M. Brown, A. Pais and A.B. Pippard, IOP Publications, AIP Press Bris-
tol, and New York 1995). A much enlarged full-length book on this topic entitled
The Cosmic Century: A History of Astrophysics and Cosmology was published by
Cambridge University Press in 2006. That book brought the story of the origin of
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galaxies and the large-scale structure of the Universe up-to-date as of October 2005
and it has been further updated and expanded in the present book. Just as in the
first edition, the present volume is much more than a recycled and concatenated
version of previously published works. I have rewritten and rethought the original
versions, expanded some parts, brought everything up-to-date and included new
material.

I often find that I understand things best, and present them most clearly, when
I have to prepare them for students, at either the undergraduate or the post-graduate
level, and so I have adopted the same form of presentation here. I have intentionally
presented the material in an informal, pedagogical manner, and attempted to avoid
getting bogged down in formalities and technicalities. If the material becomes too
difficult, I simply summarise the key points, give some appropriate references and
pass on. My approach is to reduce the problems to their simplest form and ratio-
nalise from these examples the results of more complete analyses. Wherever it is
feasible without excessive effort, we will attempt to derive exact results. The level
of presentation is intended to be appropriate for a final-year undergraduate or first-
year post-graduate course of lectures. In other words, it is assumed that the reader
has a good grasp of basic physics but does not necessarily have the appropriate
background in astronomy, astrophysics or cosmology. My aim has been to write
a user-friendly book, taking particular care to expound carefully areas where I have
found students have difficulty.

When I wrote the original set of lecture notes on galaxy formation, my objective
was to tell the story of modern astrophysical cosmology from the perspective of
one of its most important and fundamental problems of cosmology – how did the
galaxies come about? I enjoy this approach to the exposition of modern cosmology
because, to do the problem justice, it is essential to introduce the whole of what
I call classical cosmology, as the framework for the discussion. This approach has,
for me, the great advantage of concentrating upon a crucial problem of astrophysical
cosmology rather than regarding the objective of cosmology as being simply the
delineation of a preferred cosmological model, however interesting that is in its
own right. As we will show, the origin of galaxies and larger-scale structures in the
Universe is one of the great cosmological problems and has provided us with unique
and direct information about the physics of the very early Universe.

This new understanding brings with it the question of whether or not the old
structure of the book is really appropriate – do we really need to grind through all
the old story in order to understand the problems raised by the concordance model?
My decision has been to maintain much of the original structure of the book, largely
because the approach was very strongly physics-motivated and the old story reveals
much of the essential physics of the concordance model.

One final warning is in order. I make no claim that this presentation is com-
plete, unbiased or objective. You should regard the book as my own impressions
and opinions of what I consider to be the important issues of modern astrophysi-
cal cosmology. Others would tell the story in a completely different way and put
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emphasis upon different parts of what is unquestionably a multi-dimensional story.
I will endeavour to include as wide a spectrum of ideas and opinions as possible,
but the text will inevitably be incomplete. I do not worry about this – it should
encourage you to read as widely as possible in order to neutralise my prejudices and
biases.

Good Luck!

Venice and Cambridge,
July 2007 Malcolm Longair
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Part IV

The Post-Recombination Universe



20 The Very Early Universe

20.1 The Big Problems

The developments in astrophysical and geometrical cosmology described in this book
represent quite extraordinary progress in understanding the origins and evolution of
our Universe and its contents. The contrast between the apparently insuperable
problems of determining precise values of cosmological parameters up till the 1990s
and the era of precision cosmology of the early years of the 21st century is startling.

The concordance model is undoubtedly remarkably successful, but, like all good
theories, it raises as many new problems as it solves. The picture is incomplete in
the sense that, within the context of the standard Friedman world models, the initial
conditions described by the parameters listed in Table 15.1 have to be put in by hand
in order to create the Universe as we observe it today. How did these initial conditions
arise? As the quality of the observations has improved, a number of fundamental
issues for astrophysical cosmology have become apparent. The resolution of these
problems will undoubtedly give insight into the laws of physics under physical
conditions which at the moment can only be studied by cosmological observations.

Let us review the basic problems which have appeared at various points in the
development.

20.1.1 The Horizon Problem

This problem, clearly recognised by Dicke in 1961 and discussed in Sect. 12.1, can be
restated: ‘Why is the Universe so isotropic?’ (Dicke, 1961). At earlier cosmological
epochs, the particle horizon r ∼ ct encompassed less and less mass and so the
scale over which particles could be causally connected became smaller and smaller.
We can illustrate this by working out how far light could have travelled along the
last scattering layer at z = 1000 since the Big Bang. In matter-dominated models,
this distance is r = 3ct, corresponding to an angle θH ≈ 2◦ on the sky. Thus,
regions of the sky separated by greater angular distances could not have been in
causal communication. Why then is the cosmic microwave background radiation so
isotropic? How did causally separated regions ‘know’ that they had to have the same
temperature to better than one part in 105? As we showed in Sect. 12.1, an early
period of exponential growth of the scale factor with cosmic time, the inflationary
era, can overcome this problem. We will illustrate this process from a different
perspective in Sect. 20.5.3.
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20.1.2 The Flatness Problem

Why is the Universe geometrically flat, Ωκ ≈ 0 (Sect. 7.6)? The flatness problem
was also recognised by Dicke in 1961 and reiterated by Dicke and Peebles in 1979
for standard world models withΩΛ = 0 (Dicke, 1961; Dicke and Peebles, 1979). In
its original version, the problem arises from the fact that, according to the standard
world models, if the Universe were set up with a value of the density parameter
differing even slightly from the critical value Ω = 1, it would diverge very rapidly
from this value at later epochs. As shown in Sect. 7.6, if the Universe has density
parameter Ω0 today, at redshift z, Ω(z) would have been

[
1 − 1

Ω(z)

]
= f(z)

[
1 − 1

Ω0

]
, (20.1)

where f(z) = (1 + z)−1 for the matter-dominated era and f(z) ∝ (1 + z)−2 during
the radiation-dominated era. Thus, since Ω0 ∼ 1 at the present epoch, it must have
been extremely close to the critical value in the remote past. Alternatively, if Ω(z)
had departed from Ω(z) = 1 at a very large redshift, Ω0 would be very far from
Ω0 = 1 today. Thus, the only ‘stable’ value ofΩ0 isΩ0 = 1. There is nothing in the
standard world models that would lead us to prefer any particular value of Ω0. This
is sometimes referred to as the fine-tuning problem.

20.1.3 The Baryon-Asymmetry Problem

The baryon-asymmetry problem arises from the fact that the photon-to-baryon ratio
today is

Nγ

NB
= 4 × 107

ΩBh2
= 1.6 × 109, (20.2)

where ΩB is the density parameter in baryons and the values of ΩB and h have
been taken from Table 15.1. If photons are neither created nor destroyed, this ratio is
conserved as the Universe expands. At temperature T ≈ 1010 K, electron–positron
pair production takes place from the photon field. At a correspondingly higher
temperature, baryon–antibaryon pair production takes place with the result that
there must have been a very small asymmetry in the baryon–antibaryon ratio in
the very early Universe if we are to end up with the correct photon-to-baryon ratio
at the present day. As explained in Sect. 10.6, at these very early epochs, there
must have been roughly 109 + 1 baryons for every 109 antibaryons to guarantee the
observed ratio at the present epoch. If the Universe had been symmetric with respect
to matter and antimatter, we showed in Sect. 10.6 that the photon-to-baryon ratio
would now be about 1018, in gross contradiction with the observed value (Zeldovich,
1965). Therefore, there must have been some mechanism in the early Universe which
resulted in a slight asymmetry between matter and antimatter.
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20.1.4 The Primordial Fluctuation Problem

What was the origin of the density fluctuations from which galaxies and large-
scale structures formed? According to the analyses of Part III, the amplitudes of
the density perturbations when they came through the horizon had to be of finite
amplitude, δ	/	 ∼ 10−5, on a very wide range of mass scales. These cannot have
originated as statistical fluctuations in the numbers of particles on, say, the scales of
superclusters of galaxies. There must have been some physical mechanism which
generated finite amplitude perturbations with a power spectrum close to P(k) ∝ k in
the early Universe.

20.1.5 The Values of the Cosmological Parameters

The horizon and flatness problems were recognised before compelling evidence was
found for the finite value of the cosmological constant, or the density parameter in the
vacuum fields ΩΛ, but these problems remain unchanged. The concordance values
for the cosmological parameters create their own problems. The Universe is very
close to being geometrically flat, Ωk = 0, and so the sum of the density parameters
in the matter and the dark energy must sum to unity, ΩΛ +Ω0 = 0.72 + 0.28 = 1.
Even if the sum of these two parameters were not precisely unity, it is a surprise that
they are of the same order of magnitude at the present epoch. The matter density
evolves with redshift as (1 + z)3, while the dark energy density is unchanging with
cosmic epoch. Why then do we live at an epoch when they have more or less the
same values?

The strange history of the cosmological constant and its modern interpretation
was discussed in Sect. 7.3.1. A key insight resulted from the introduction of Higgs
fields into the theory of weak interactions (Higgs, 1964). The Higgs fields are scalar
fields which have negative pressure equations of state, p = −	c2. We also discussed
how the theoretical value of 	Λ could be estimated from quantum field theory and
found 	v = 1095 kg m−3, about 10120 times greater than the value of 	Λ at the present
epoch, which corresponds to 	Λ ≈ 10−27 kg m−3 (Carroll et al., 1992). This is quite
a problem.

As if these problems were not serious enough, they are compounded by the fact
that the nature of the dark matter and the dark energy is unknown. Thus, one of
the consequences of precision cosmology is the remarkable result that we do not
understand the nature of about 95% of the material which drives the large-scale
dynamics of the Universe. The concordance values for the cosmological parameters
listed in Table 15.1 really are extraordinary – many of my colleagues regard them as
crazy. Rather than being causes for despair, however, these problems should be seen
as the great challenges for the astrophysicists and cosmologists of the 21st century.
It is not too far-fetched to see an analogy with Bohr’s theory of the hydrogen atom,
which was an uncomfortable mix of classical and primitive quantum ideas but which
was ultimately to lead to completely new and deep insights with the development of
quantum mechanics.
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20.1.6 The Way Ahead

In the standard Friedman models, the problems are solved by assuming that the
Universe was endowed with appropriate initial conditions in its very early phases.
It is postulated that our Universe evolved from an initial state which was isotropic
with flat geometry, was slightly matter-antimatter asymmetric, contained fluctuations
with roughly a Harrison–Zeldovich spectrum and had initial values of Ω0 and ΩΛ

such that they ended up being roughly equal at the present day. To put it crudely, we
get out at the end what we put in at the beginning. In a truly physical picture of our
Universe, we should be able to do better than this.

I have suggested five possible approaches to solving these problems (Longair,
1997a).

– That is just how the Universe is – the initial conditions were set up that way.
– There are only certain classes of Universe in which intelligent life could have

evolved. The Universe has to have the appropriate initial conditions and the
fundamental constants of nature should not be too different from their measured
values or else there would be no chance of life forming as we know it. This
approach involves the Anthropic Cosmological Principle according to which it
is asserted that the Universe is as it is because we are here to observe it.

– The inflationary scenario for the early Universe.
– Seek clues from particle physics and extrapolate that understanding beyond what

has been confirmed by experiment to the earliest phases of the Universe.
– Something else we have not yet thought of. This would certainly involve new

physical concepts.

Let us consider each of these approaches.

20.2 The Limits of Observation

Even the first, somewhat defeatist, approach might be the only way forward if it
turned out to be just too difficult to disentangle convincingly the physics responsible
for setting up the initial conditions from which our Universe evolved. In 1970,
McCrea considered the fundamental limitations involved in asking questions about
the very early Universe, his conclusion being that we can obtain less and less
information the further back in time one asks questions about the early Universe
(McCrea, 1970). A modern version of this argument would be framed in terms of the
limitations imposed by the existence of a last scattering surface for electromagnetic
radiation at z ≈ 1000 and those imposed on the accuracy of observations of the
cosmic microwave background radiation and the large-scale structure of the Universe
because of their cosmic variances. It is an interesting challenge to review McCrea’s
arguments in the light of present understanding of the cosmological models.

In the case of the cosmic microwave background radiation, the observations
made by the WMAP experiment are already cosmic variance limited for multipoles
l ≤ 354 – we will never be able to learn much more than we know already about
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the amplitude of the power spectrum on these scales. Observations by the Planck
Satellite will provide independent validation of the results of WMAP for these
multipoles and extend the cosmic variance limit to l ≈ 2000. In these studies, the
search for new physics will depend upon the discovering discrepancies between the
standard concordance model and future observations. The optimists, of whom the
present author is one, would argue that the advances will come through extending our
technological capabilities so that new classes of observation become cosmic variance
limited. For example, the detection of primordial gravitational waves through their
polarisation signature at small multipoles in the cosmic microwave background
radiation, the nature of dark matter particles and even the nature of the vacuum energy
are the cutting edge of fundamental issues for astrophysical cosmology in the 21st
century. These approaches will be accompanied by discoveries in particle physics
with the coming generations of ultra-high-energy particle experiments. There will
undoubtedly be surprises which open up completely new ways of tackling problems
which seem to be intractable today – for example, what will be discovered in ultra-
high-energy cosmic ray experiments, such as those to be carried out with the Auger
array? What will neutrino astrophysics tell us of cosmological importance?

It is folly to attempt to predict what will be discovered over the coming years, but
we might run out of luck. How would we then be able to check that the theoretical
ideas proposed to account for the properties of the very early Universe are cor-
rect? Can we do better than bootstrapped self-consistency? The great achievement
of modern observational and theoretical cosmology has been that we have made
enormous strides in defining a convincing framework for astrophysical cosmology
and the basic problems identified above can now be addressed as areas of genuine
physical enquiry.

20.3 The Anthropic Cosmological Principle

There is certainly some truth in the fact that our ability to ask questions about the
origin of the Universe says something about the sort of Universe we live in. The
Cosmological Principle asserts that we do not live at any special location in the
Universe, and yet we are certainly privileged in being able to make this statement at
all. In this line of reasoning, there are only certain types of Universe in which life
as we know it could have formed. For example, the stars must live long enough for
there to be time for biological life to form and evolve into sentient beings. This line
of reasoning is embodied in the Anthropic Cosmological Principle, first expounded
by Carter in 1974 (Carter, 1974) and dealt with in extenso in the books by Barrow
and Tipler and by Gribbin and Rees (Barrow and Tipler, 1986; Gribben and Rees,
1989). Part of the problem stems from the fact that we have only one Universe to
study – we cannot go out and investigate other Universes to see if they have evolved
in the same way as ours. There are a number of versions of the Principle, some of
them stronger than others. In extreme interpretations, it leads to statements such as
the strong form of the Principle enunciated by Wheeler (Wheeler, 1977),

Observers are necessary to bring the Universe into being.
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It is a matter of taste how seriously one wishes to take this line of reasoning. To
many cosmologists, it is not particularly appealing because it suggests that it will
never be possible to find physical reasons for the initial conditions from which
the Universe evolved or for the values of the fundamental constants of nature.
But some of these problems are really hard. Weinberg, for example, found it such
a puzzle that the vacuum energy density ΩΛ is so very much smaller than the
values expected according to current theories of elementary particles that he invoked
anthropic reasoning to account for its smallness (Weinberg, 1989, 1997). Another
manifestation of this type of reasoning is to invoke the range of possible initial
conditions which might come out of the picture of chaotic inflation (Linde, 1983)
and argue that, if there were at least 10120 of them, then we live in one of the few
which has the right conditions for life to develop as we know it. Again, I leave it
to the reader how seriously these ideas should be taken. I worry about the issue of
observational validation of these ideas. I prefer to regard the Anthropic Cosmological
Principle as the very last resort if all other physical approaches fail.

20.4 The Inflationary Universe – Historical Background

The most important conceptual development for studies of the very early Universe
can be dated to 1980 and the proposal by Guth of the inflationary model for the
very early Universe (Guth, 1981). There had been earlier suggestions foreshadow-
ing his proposal. Zeldovich had noted in 1968 that there is a physical interpretation
of the cosmological constant Λ in terms of the zero-point fluctuations in a vacuum
(Zeldovich, 1968). Linde in 1974 and Bludman and Ruderman in 1977 had shown
that the scalar Higgs fields of particle physics have similar properties to those which
would result in a positive cosmological constant (Linde, 1974; Bludman and Ruder-
man, 1977). A popular account of the history of the development of ideas about the
inflation picture of the early Universe is contained in Guth’s book The Inflationary
Universe: The Quest for a New Theory of Cosmic Origins (Guth, 1997). The ped-
agogical review by Lineweaver can also be recommended. He adopts a somewhat
sceptical attitude to the concept of inflation and our ability to test inflationary models
through confrontation with observations (Lineweaver, 2005). Nonetheless, for good
reasons, this model dominates much of present-day cosmological thinking.

Guth realised that, if there were an early phase of exponential expansion of the
Universe, this could solve the horizon problem and drive the Universe towards a flat
spatial geometry, thus solving the flatness problem at the same time. Suppose the
scale factor, a, increased exponentially with time as a ∝ et/T . Such exponentially
expanding models were found in some of the earliest solutions of the Friedman
equations, in the guise of empty de Sitter models driven by what is now termed the
vacuum energy density ΩΛ (Sect. 7.3.3) (Lanczos, 1922). Consider a tiny region of
the early Universe expanding under the influence of the exponential expansion. Parti-
cles within the region were initially very close together and in causal communication
with each other. Before the inflationary expansion began, the region had physical
scale less than the particle horizon, and so there was time for it to attain a uniform,
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homogeneous state. The region then expanded exponentially so that neighbouring
points were driven to such large distances that they could no longer communicate
by light signals – the causally connected regions were swept beyond their particle
horizons by the inflationary expansion. At the end of the inflationary epoch, the Uni-
verse transformed into the standard radiation-dominated Universe and the inflated
region continued to expand as a ∝ t1/2. More formal demonstrations of how the
exponential expansion can resolve the problem of the particle horizon are given in
Sects. 12.1 and 20.5.3.

In Guth’s original inflationary scenario, the exponential expansion was associated
with the symmetry breaking of grand unified theories of elementary particles at very
high energies through a first-order phase transition, only about 10−34 s after the Big
Bang. Although this picture was soon demonstrated not to work, let us demonstrate
to order of magnitude how the argument runs. The timescale 10−34 s is taken to be the
characteristic e-folding time for the exponential expansion. Over the interval from
10−34 s to 10−32 s, the radius of curvature of the Universe increased exponentially by
a factor of about e100 ≈ 1043. The horizon scale at the beginning of this period was
only r ≈ ct ≈ 3 × 10−26 m and this was inflated to a dimension of 3 × 1017 m by
the end of the inflationary era. This dimension then scaled as t1/2, as in the standard
radiation-dominated Universe, so that the region would have expanded to a size of
3×1042 m by the present day; this dimension far exceeds the present particle horizon
r ≈ cT0 of the Universe, which is about 1026 m. Thus, our present Universe would
have arisen from a tiny region in the very early Universe which was much smaller
than the horizon scale at that time. This guaranteed that our present Universe would
be isotropic on the large scale, resolving the horizon problem. At the end of the
inflationary era, there was an enormous release of energy associated with the ‘latent
heat’ of the phase transition and this reheated the Universe to a very high temperature
indeed (Fig. 20.1).

The exponential expansion also had the effect of straightening out the geometry
of the early Universe, however complicated it may have been to begin with. Suppose
the tiny region of the early Universe had some complex geometry. The radius of
curvature of the geometry Rc(t) scales as Rc(t) = � a(t), where � is its value at
the present epoch t0, and so the radius of curvature of the geometry is inflated to
dimensions vastly greater than the present size of the Universe, driving the geometry
of the inflated region towards flat Euclidean geometry, Ωκ = 0, and consequently
the Universe must have Ω0 +ΩΛ = 1. It is important to note that these two aspects
of the case for the inflationary picture can be made independently of a detailed
understanding of the physics of the inflation. There is also considerable freedom
about the exact time when the inflationary expansion could have occurred, provided
there are sufficient e-folding times to isotropise our observable Universe and flatten
its geometry.

In Guth’s original proposal, the Universe was in a symmetric state, referred to
as a false vacuum state, at a very high temperature before the inflationary phase
took place. As the temperature fell, spontaneous symmetry breaking took place
through the process of barrier penetration from the false vacuum state and the
Universe attained a lower energy state, the true vacuum. At the end of this period
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Fig. 20.1. Comparison of the evolution of the scale factor and temperature in the standard Big
Bang and inflationary cosmologies

of exponential expansion, the phase transition took place, releasing a huge amount
of energy. The problem with this realisation was that it predicted ‘bubbles’ of true
vacuum embedded in the false vacuum, with the result that huge inhomogeneities
were predicted. Another concern about the original proposal was that an excessive
number of monopoles were created during the GUT phase transition. Kibble showed
that when this phase transition took place, topological defects were likely created,
including point defects (or monopoles), line defects (or cosmic strings) and sheet
defects (or domain walls) (Kibble, 1976). Kibble showed that one monopole is
created for each correlation scale at that epoch. Since that scale cannot be greater
than the particle horizon at the GUT phase transition, it is expected that huge
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numbers of monopoles are created. According to the simplest picture of the GUT
phase transition, the mass density in these monopoles in the standard Big Bang
picture would vastly exceed Ω0 = 1 at the present epoch (Kolb and Turner, 1990).

The model was revised in 1982 by Linde and by Albrecht and Steinhardt, who
proposed instead that, rather than through the process of barrier penetration, the
transition took place through a second-order phase transition which did not result
in the formation of ‘bubbles’ and, hence, excessive inhomogeneities (Linde, 1982,
1983; Albrecht and Steinhardt, 1982). This picture, often referred to as new inflation,
also eliminated the monopole problem since the likelihood of even one being present
in the observable Universe was very small.

The original hope that a physical realisation for the inflationary expansion could
be found within the context of particle physics beyond the standard model has not
been achieved, but the underlying concepts of the inflationary picture have been
used to define the necessary properties of the inflaton potential needed to create the
Universe as we know it. The successful realisations are similar to those involved in
the new inflationary picture. Once the inflationary expansion began at some stage
in the early Universe, the change from the false to the true vacuum state took place
through a process of slow rollover, meaning that the inflationary expansion took place
over many e-folding times before the huge energy release took place. An excellent
introduction to these concepts and the changing perspective on the inflationary
picture of the early Universe is contained in the book Cosmological Inflation and
Large-Scale Structure by Liddle and Lyth (Liddle and Lyth, 2000). Many different
versions of the inflationary picture of the early Universe have emerged, an amusing
table of over 100 possibilities being presented by Shellard (Shellard, 2003).

As a result, it cannot be claimed that there is a physical theory of the inflation-
ary Universe, but its basic concept resolves some of the basic problems listed in
Sect. 20.1. What it also does, and which gives it considerable appeal, is to suggest
an origin for the spectrum of initial density perturbations as quantum perturbations
on the scale of the particle horizon, and that is the topic we deal with next.

20.5 The Origin of the Spectrum of Primordial Perturbations

In many ways, the story of inflation up to this point has been remarkably physics
free. All that has been stated is that an early period of rapid exponential expansion
can overcome a number of the fundamental problems of cosmology. The next step
involves real physics, but it is not the type of physics familiar to most astrophysical
cosmologists. The key role is played by scalar fields, which have quite different
properties from the vector and tensor fields familiar in electrodynamics and general
relativity. These fields are, however, common in theories of particle physics and so
the particle theorists are well prepared to take on the problem of putting real physics
into the inflationary paradigm.

The reason these ideas have to be taken seriously is that they suggest a remark-
ably natural origin for the spectrum of primordial perturbations with a spectrum
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close to the Harrison–Zeldovich spectrum. The theory also makes quantitative pre-
dictions about the intensity and spectrum of primordial gravitational waves which
are accessible to experimental validation. According to Liddle and Lyth:

Although introduced to resolve problems associated with the initial condi-
tions needed for the Big Bang cosmology, inflation’s lasting prominence
is owed to a property discovered soon after its introduction: It provides
a possible explanation for the initial inhomogeneities in the Universe that
are believed to have led to all the structures we see, from the earliest objects
formed to the clustering of galaxies to the observed irregularities in the
microwave background.

There are now several recommendable books on this subject (Liddle and Lyth,
2000; Dodelson, 2003; Mukhanov, 2005). For the standard ‘cosmologist in the
street’, these do not make for particularly easy reading, largely because the reader
must feel comfortable with many aspects of theoretical physics which lie outside
the standard tools of the observational cosmologist. They may once have been
understood as examination requirements in theoretical physics, but they rarely appear
in the standard astrophysical literature – ladder operators, quantum field theory, zero-
point fluctuations in quantum fields, all of these developed within the framework
of general relativity. Having battled with various degrees of success with the above
books and many others, I found the essay by Baumann to be the most straightforward
and accessible account of the physical content of the theory (Baumann, 2007); what
follows is a ‘vulgarisation’ of his presentation. Developing the theory of the quantum
origin of density perturbations in detail cannot be carried out with modest effort and
is far beyond the ambitions of the present exposition. There is no question, however,
that these remarkable developments are at the cutting edge of cosmological research
and have the potential to reveal new physics.

Let us list some of the clues about the formulation of a successful theory.

20.5.1 The Equation of State

We know from our analysis of the physical significance of the cosmological constant
Λ in Sect. 7.3 that exponential growth of the scale factor is found if the dark energy
has a negative pressure equation of state p = −	c2. More generally, inspection of
(7.1) shows that exponential growth of the scale factor is found provided the strong
energy condition is violated, that is, if p < − 1

3	c2. To be effective in the very early
Universe, the mass density of the scalar field has to be vastly greater than the value
of ΩΛ we measure today.

20.5.2 The Duration of the Inflationary Phase

In the example of the inflationary expansion given in Sect. 20.4, we arbitrarily
assumed that 100 e-folding times would take place during the inflationary expansion.
A more careful calculation shows that there must have been at least 60 e-folding
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times and these took place in the very early Universe, much earlier than those which
have been explored experimentally by particle physics experiments. It is customary
to assume that inflation got seriously under way not long after the Planck era, but
there is quite a bit of room for manoeuvre.

20.5.3 The Shrinking Hubble Sphere

If these precepts are accepted, there is a natural way of understanding how fluc-
tuations can be generated from processes in the very early Universe. It is helpful
to visit again the conformal diagrams for world models which were discussed in
Sect. 12.2, in particular Fig. 12.2c. Recall that these diagrams are exact in the sense
that the comoving radial distance coordinate and conformal time are worked out
for the reference model with Ω0 = 0.3 and ΩΛ = 0.7, the abscissa being in units
of c/H0 and the ordinate in units ofH−1

0 . The effect of using conformal time is to
stretch out time in the past and shrink it into the future. Notice that, because of the
use of linear scales in the ordinate, the radiation-dominated phase of the standard
Big Bang is scarcely visible.

There are two additions to Fig. 12.2c in Fig. 20.2a. The redshift of 1000 is shown
corresponding to the last scattering surface of the cosmic microwave background
radiation. The intersection with our past light cone is shown and then a past light
cone from the last scattering surface to the singularity at conformal time τ = 0
is shown as a shaded triangle. This is another way of demonstrating the horizon
problem – the region of causal contact is very small compared with moving an angle
of 180◦ over the sky, which would correspond to twice the distance between the
origin and the comoving radial distance coordinate at 3.09.

Let us now add the inflationary era to Fig. 20.2a. Baumann’s insights are helpful
in constructing Fig. 20.2b. He makes the important point that it is useful to regard
the end of the inflation era as the zero of time for the standard Big Bang and then
to extend the diagram back to negative conformal times. In other words, we shift
the zero of conformal time very slightly to, say, 10−32 s, and then we can extend the
light cones back through the entire inflationary era.

This construction provides another way of understanding how the inflationary
picture resolves the causality problem. The light cones have unit slope in the confor-
mal diagram, and so we draw light cones from the ends of the element of comoving
radial distance at τ = 0 from the last scattering surface. These are shown in the
diagram, and it can be seen that projecting far enough back in time, the light cones
from opposite directions on the sky overlap, represented by the dark grey shaded
area in Fig. 20.2b. This is another way of understanding how the inflationary picture
results in causal contact in the early Universe.

There is, however, an even better way of understanding what is going on. We
were at pains to distinguish between the Hubble sphere and the particle horizon
in Sect. 12.2, but now this distinction becomes important. The particle horizon is
defined as the maximum distance over which causal contact could have been made
from the time of the singularity to a given epoch. In other words, it is not just what
happened at a particular epoch which is important, but the history along the past light
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Fig. 20.2. a A repeat of conformal diagram Fig. 12.2c in which conformal time is plotted
against comoving radial distance coordinate. Now, the last scattering surface at the epoch of
recombination is shown as well as the past light cone from the point at which our past light
cone intersects the last scattering surface. b An extended conformal diagram now showing
the inflationary era. The time coordinate is set to zero at the end of the inflationary era and
evolution of the Hubble sphere and the past light cone at recombination extrapolated back to
the inflationary era
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cone. In contrast, the Hubble radius is the distance of causal contact at a particular
epoch. It is the distance at which the velocity in the velocity-distance relation at that
epoch is equal to the speed of light. As shown in (12.29), the Hubble sphere has
proper radius

rHS = c

H(z)
= ac

ȧ
. (20.3)

Writing the exponential inflationary expansion of the scale factor as a = a0 exp[H(t−
ti)], where a0 is the scale factor when the inflationary expansion began at τi,
rHS = c/H and the comoving Hubble sphere has radius rHS(com) = c/(Ha).
Since H is a constant throughout most of the inflationary era, it follows that the
comoving Hubble sphere decreases as the inflationary expansion proceeds.

We now need to join this evolution of the comoving Hubble sphere onto its
behaviour after the end of inflation, that is, join it onto Fig. 20.2a. The expression
for conformal time during the inflationary era is

τ =
∫

da

aȧ
, (20.4)

and so, integrating and using the expression for rHS(com), we find

τ = constant − rHS(com)

c
. (20.5)

This solution for rHS(com) is joined on to the standard result at the end of the
inflationary epoch, as illustrated in Fig. 20.2b. The complete evolution of the Hubble
sphere is indicated by the heavy line labelled ‘Hubble sphere’ in that diagram.

Figure 20.2b illustrates very beautifully how the inflationary paradigm solves the
horizon problem. It will be noticed that the point at which the Hubble sphere crosses
the comoving radial distance coordinate of the last scattering surface corresponds
exactly to the time when the past light cones from opposite directions on the sky
touch at conformal time −3. This is not a coincidence – they are different ways of
stating that opposite regions of the cosmic microwave background were in causal
contact at conformal time t = −3.

But we learn a lot more. Because any object preserves its comoving radial
distance coordinate for all time, as represented by the vertical lines in Fig. 20.2b,
it can be seen that, in the early Universe, objects lie within the Hubble sphere, but
during the inflationary expansion, they pass through it and remain outside it for the
rest of the inflationary expansion. Only when the Universe transforms back into the
standard Friedman model does the Hubble sphere begin to expand again and objects
can then ‘re-enter the horizon’. Consider, for example, the region of the Universe
out to redshift z = 0.5, which corresponds to one of the comoving coordinate lines
in Fig. 20.2b. It remained within the Hubble sphere during the inflationary era until
conformal time τ = −0.4, after which it was outside the horizon. It then re-entered
the Hubble sphere at conformal time τ = 0.8. This behaviour occurs for all scales and
masses of interest in understanding the origin of structure in the present Universe.
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Since causal connection is not possible on scales greater than the Hubble sphere,
it follows that objects ‘freeze out’ when they pass through the Hubble sphere during
the inflationary era, but they come back in again and regain causal contact when
they recross the Hubble sphere. This is one of the key ideas behind the idea that the
perturbations from which galaxies formed were created in the early Universe, froze
out on crossing the Hubble sphere and then grew again on re-entering it at conformal
times τ > 0.

Notice that, at the present epoch, we are entering a phase of evolution of the
Universe when the comoving Hubble sphere about us has begun to shrink again.
This can be seen in the upper part of Fig. 20.2b and is entirely due to the fact that the
dark energy is now dominating the expansion and its dynamics are precisely another
exponential expansion. In fact, the Hubble sphere tends asymptotically to the line
labelled ‘event horizon’ in Fig. 20.2a.

20.5.4 Scalar Fields

As Baumann notes, there are three equivalent conditions necessary to produce an
inflationary expansion (Baumann, 2007):

– The decreasing of the Hubble sphere during the early expansion of the Universe;
– An accelerated expansion;
– Violation of the strong energy condition, specifically, p < −	c2/3.

How can this be achieved physically? It is simplest to quote Baumann’s words:

Answer: scalar field with special dynamics! Although no fundamental scalar
field has yet been detected in experiments, there are fortunately plenty of
such fields in theories beyond the standard model of particle physics. In
fact, in string theory for example there are numerous scalar fields (moduli),
but it proves very challenging to find just one with the right characteristics
to serve as an inflaton candidate.

At this point, I simply quote the results of calculations of the properties of the scalar
field φ(t) which is assumed to be homogeneous at a given epoch. There is a kinetic
energy φ̇2/2 and a potential energy, or self-interaction energy, V(φ) associated with
the field. Putting these through the machinery of field theory results in expressions
for the density and pressure of the scalar field:

	φ = 1

2
φ̇2 + V(φ) (20.6)

pφ = 1

2
φ̇2 − V(φ) . (20.7)

Clearly the scalar field can result in a negative pressure equation of state, provided
the potential energy of the field is very much greater than its kinetic energy. In
the limit in which the kinetic energy is neglected, we obtain the equation of state
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p = −	c2, where I have restored the c2, which is set equal to one by professional
field theorists.

To find the time evolution of the scalar field, we need to combine properties
(20.6) and (20.7) with the Einstein equations. The results are

H2 = 1

3

(
1

2
φ̇2 + V(φ)

)
(20.8)

φ̈ + 3Hφ̇ + V(φ),φ = 0 , (20.9)

where V(φ),φ means the derivative of V(φ) with respect to φ. Thus, to obtain the
inflationary expansion over many e-folding times, the kinetic energy term must be
very small compared with the potential energy and the potential energy term must
be very slowly varying with time. This is formalised by requiring the two slow-roll
parameters ε(φ) and η(φ) to be very small during the inflationary expansion. These
parameters set constraints upon the dependence of the potential energy function
upon the field φ and are formally written as follows:

ε(φ) ≡ 1

2

(
V,φ
V

)2

; η(φ) ≡ V,φφ
V

with ε(φ), |η(φ)| 	 1 , (20.10)

where V(φ),φφ means the second derivative of V(φ) with respect to φ. Under these
conditions, we obtain what we need for inflation, namely,

H2 = 1

3
V(φ) = constant and a(t) ∝ eHt . (20.11)

At this stage, it may appear that we have not really made much progress since we
have adjusted the theory of the scalar field to produce what we know we need. The
bonus comes when we consider fluctuations in the scalar field and their role in the
formation of the spectrum of primordial perturbations.

20.5.5 The Quantised Harmonic Oscillator

The key result can be derived from the elementary quantum mechanics of a harmonic
oscillator. The solutions of Schrödinger’s equation for a harmonic potential have
quantised energy levels

E = (
n + 1

2

)
�ω (20.12)

and the wavefunctions of these stationary states are

ψn = Hn(ξ) exp
(− 1

2ξ
2) , (20.13)
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where Hn(ξ) is the Hermite polynomial of order n and ξ = √
βx. For the simple

harmonic oscillator, β2 = am/�2, where a is the constant in the expression for the
harmonic potential V = 1

2 ax2 and m is the reduced mass of the oscillator. Then,
the angular frequency ω = √

a/m is exactly the same as is found for the classical
harmonic oscillator.

We are interested in fluctuations about the zero-point energy, that is, the stationary
state with n = 0. The zero-point energy and Hermite polynomial of order n = 0 are

E = 1
2�ω and H0(ξ) = constant . (20.14)

The first expression is the well-known result that the oscillator has to have finite
kinetic energy in the ground state. The underlying cause of this is the need to satisfy
Heisenberg’s uncertainty principle.

Part of the package of quantum mechanics is that there must be quantum fluc-
tuations in the stationary states, again because of the need to satisfy Heisenberg’s
uncertainty principle. It is straightforward to work out the variance of the position
coordinate x of the oscillator. First, we need to normalise the wavefunction so that

∫ +∞

−∞
ψψ∗ dx = 1 . (20.15)

Since (20.13) is real, it is straightforward to show that

ψ =
( am

�2π2

)1/8
exp

(− 1
2ξ

2) . (20.16)

To find the variance of the position coordinate of the oscillator, we form the quantity

〈
x2〉 =

∫ +∞

−∞
ψψ∗ x2 dx . (20.17)

Carrying out this integral, we find the important result

〈
x2〉 = �

2
√

am
= �

2ωm
. (20.18)

This result is identical to that derived by Baumann, who sets the particle mass m = 1
‘for convenience’. The reason for this is that the analogy with the next part of the
calculation is clearest for the case of an oscillator with this mass. In this case, we
find

〈
x2〉 = �

2ω
. (20.19)

These are the fluctuations which must necessarily accompany the zero-point energy
of the vacuum fields.
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This elementary calculation sweeps an enormous number of technical issues
under the carpet. Baumann’s clear presentation of the proper calculation, which
involves the definition of the action, the introduction of canonical quantisation and
of creation and annihilation operators and so on, as well as worrying about the issues
of applying the formalism in curved space–time, can be warmly recommended. It is
reassuring that his final answer agrees exactly with the results (20.12) and (20.19)
for the one-dimensional harmonic oscillator.

20.5.6 The Spectrum of Fluctuations in the Scalar Field

We have almost gone as far as is reasonable without becoming involved in seriously
heavy calculation. We need only one more equation – the expression for the evolu-
tion of the vacuum fluctuations in the inflationary expansion. The inflaton field is
decomposed into a uniform homogeneous background and a perturbed component
δφ, which is the analogue of the deviation x of the zero-point oscillations of the har-
monic oscillator. We need to work out the spectrum of these fluctuations, and so we
consider the amplitude of the perturbation associated with a particular wavenumber
k, δφk. If k is taken to be the comoving wavenumber and λ0 the wavelength at the
present epoch, the proper wavelength of the perturbation is λ = aλ0 ∼ a/k and the
proper wavenumber at scale factor a is kprop = k/a. Then the evolution of δφk is
given by the differential equation

¨δφk + 3H ˙δφk + k2

a2
δφk = 0 , (20.20)

where H = ȧ/a. The derivation of this equation is outlined by Baumann, who also
warns of the many technical complexities which need to be dealt with in a rigorous
treatment.

We can understand the form of (20.20) starting from (11.24) and (11.76) for
the density contrast Δ of non-relativistic and relativistic material respectively in
the standard world models. For simplicity, let us consider the non-relativistic case
(11.24) which is

d2Δ

dt2
+ 2

(
ȧ

a

)
dΔ

dt
= Δ

(
4πG	0 − k2c2

s

)
, (20.21)

where k is the proper wavenumber and cs is the speed of sound. The first step is to
convert (20.21) into a differential equation with respect to conformal time τ rather
than cosmic time t. From (11.25) we find

d2Δ

dτ2
+
(

ȧ

a

)
dΔ

dτ
= Δ

(
4πG	0a2 − k2

cc2
s

)
. (20.22)

The next step is to change (20.22) from an equation for Δ into an equation for the
perturbation of the gravitational potential δφk using (11.16) written in comoving
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coordinates:

∇2
c δφk = 4πG 	a2Δ . (20.23)

It is a piece of straightforward manipulation, which is given in Bertschinger’s excel-
lent review, to show that (20.22) and (20.23), combined with Friedman’s equation
and its derivative, reduce to the equation

¨δφk + 3

(
ȧ

a

)
˙δφk + (

k2
cc2

s − 2κ
)
δφk = 0 , (20.24)

where κ is the curvature of space at the present epoch (Bertschinger, 1996). Since we
are interested in flat space solutions, κ = 0. Furthermore, for matter with equation
of state p = −	c2, the speed of sound is the speed of light, which according to
Baumann’s conventions is set equal to unity, and so we obtain an equation of the
form (20.20). A big advantage of Baumann’s proper derivation of (20.20) is that it
can be applied on superhorizon scales as well as for those within the horizon.

We recognise that (20.20) is the equation of motion for a damped harmonic
oscillator. If the ‘damping term’ 3H ˙δφk is set equal to zero, we find harmonic
oscillations, just as in the case of the Jeans analysis of Sect. 11.3. On the other hand,
for scales much greater than the radius of the Hubble sphere, λ � c/H , an order of
magnitude calculation shows that the damping term dominates and the velocity ˙δφk

tends exponentially to zero, corresponding to the ‘freezing’ of the fluctuations on
superhorizon scales.

We now use the results of Sect. 20.5.5. Both x and δφk have zero-point fluctuations
in the ground state. In the case of the harmonic oscillator, we found

〈
x2
〉 ∝ ω−1. In

exactly the same way, we expect the fluctuations in δφk to be inversely proportional
to the ‘angular frequency’ in (20.20), that is,

〈(δφk)
2〉 ∝ 1

k/a
∝ λ , (20.25)

recalling that λ is the proper wavelength. Since λ ∝ a, the ‘noise-power’ 〈(δφk)
2〉

increases linearly proportional to the scale factor until the wavelength is equal to the
dimensions of the Hubble sphere when the noise-power stops growing. Therefore,
the power spectrum is given by the power within the horizon when λ = c/H , that
is, when k = a∗ H∗ where a∗ and H∗ are the values of the scale factor and Hubble’s
constant when the wavelength is equal to the radius of the Hubble sphere. Therefore,
per unit volume, the primordial power spectrum on superhorizon scales is expected
to have the form

〈(δφk)
2〉 ∝ 1

a3∗(k/a∗)
∝ H2∗

k3
. (20.26)

In the simplest approximation, H∗ = H = constant throughout the inflationary era.
Now, (20.26) is the power spectrum in Fourier space, and so to convert it into a real
space power spectrum, we perform the same type of Fourier inversion as in (14.17)
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and (14.18). This amounts to multiplying (20.26) by k3:

〈
(δφ)2

〉 ∝
∫ 〈

(δφk)
2〉 eik·r k2dk =

∫ 〈
(δφk)

2〉
(

sin kr

kr

)
k2dk ≈ 〈

(δφk)
2〉 k3 .

(20.27)

Thus, we obtain the important result
〈
(δφ)2

〉 ∝ H2 . (20.28)

At the end of the inflationary expansion, the scalar field is assumed to decay into
the types of particles which dominate our Universe at the present epoch, releasing
a vast amount of energy which reheats the contents of the Universe to a very high
temperature, as illustrated schematically in Fig. 20.1. The final step in the calculation
is to relate the fluctuations δφ to the density perturbations in the highly relativistic
plasma in the post-inflation era. In the simplest picture, we can think of this transition
as occurring abruptly between the era when p = −	c2 and the scale factor increases
exponentially with time, as in the de Sitter metric, to that in which the standard
relativistic equation of state p = 1

3	c2 applies with associated variation of the
inertial mass density with cosmic time 	 ∝ H2 ∝ t−2 (see (9.7)). Guth and Pi
introduced what is known as the time-delay formalism which enables the density
perturbations to be related to the perturbations of the inflation potential (Guth and
Pi, 1982).

The idea is that the presence of the perturbation in the scalar field δφ results in
a time delay

δt = δφ

φ̇
. (20.29)

This should be evaluated at the time the fluctuation in φ is frozen in at horizon cross-
ing. At the end of the inflationary era, this time delay translates into a perturbation
in the density in the radiation-dominated era. Since 	 ∝ t−2 and H ∝ t−1,

δ	

	
∝ H δt . (20.30)

Since Hubble’s constant must be continuous across the discontinuity at the end of
the inflationary era and must have roughly the same value at horizon crossing, it
follows that

δ	

	
∝ H2∗
φ̇∗

. (20.31)

This order of magnitude calculation illustrates how quantum fluctuations in the
scalar field φ can result in density fluctuations in the matter which all have the
same amplitude when they passed through the horizon in the very early Universe.
They then remained frozen in until they re-entered the horizon much later in the
radiation-dominated era, as illustrated in Fig. 20.2b.
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This schematic calculation is only intended to illustrate why the inflationary
paradigm is taken so seriously by theorists. It results remarkably naturally in the
Harrison–Zeldovich spectrum for the spectrum of primordial perturbations. The
above calculation is a gross simplification of the many complexities involved in the
full calculation, and these are nicely presented by Baumann (Baumann, 2007).

In the full theory of the origin of the perturbations, the values of the small
parameters ε and η defined by (20.10) cannot be neglected, and they have important
consequences for the spectrum of the perturbations and the existence of primordial
gravitational waves. Specifically, the spectral index of the perturbations on entering
the horizon is predicted to be

nS − 1 = 2η− 6ε . (20.32)

Furthermore, tensor perturbations, corresponding to gravitational waves, are also
expected to be excited during the inflationary era, and their spectral index is predicted
to be

nT − 1 = −2ε , (20.33)

where scale invariance corresponds to nT = 0. The tensor-to-scalar ratio is defined
as

r = Δ2
T

Δ2
S

= 16ε , (20.34)

where Δ2
T and Δ2

S are the power spectra of tensor and scalar perturbations respec-
tively.

These results illustrate why the deviations of the spectral index of the observed
perturbations from the value nS = 1 are so important. The fact that the best fit
value nS = 0.961x +0.018

−0,019 is slightly, but significantly, less than one suggests that
there may well be a background of primordial gravitational waves, as was discussed
in Sects. 15.4.3 and 15.8.4. These are really very great observational challenges,
but they provide a remarkably direct link to processes which may have occurred
during the inflationary epoch. To many cosmologists, this would be the ‘smoking
gun’ which sets the seal on the inflationary model of the early Universe.

Whilst the above calculation is a considerable triumph for the inflationary sce-
nario, we should remember that there is as yet no physical realisation of the scalar
field. Although the scale-invariant spectrum is a remarkable prediction, the ampli-
tude of the perturbation spectrum is model dependent. There are literally hundreds of
possible inflationary models depending upon the particular choice of the inflationary
potential. We should also not neglect the possibility that there are other sources of
perturbations which could have resulted from various types of topological defect,
such as cosmic strings, domain walls, textures and so on (Shellard, 2003). Granted
all these caveats, the startling success of the inflationary model in accounting for the
observed spectrum of fluctuations in the cosmic microwave background radiation
has made it the model of choice for studies of the early Universe.
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20.6 Baryogenesis

A key contribution of particle physics to studies of the early Universe concerns
the baryon-asymmetry problem, a subject referred to as baryogenesis. In a prescient
paper of 1967, Sakharov enunciated the three conditions necessary to account for the
baryon–antibaryon asymmetry of the Universe (Sakharov, 1967). Sakharov’s rules
for the creation of non-zero baryon number from an initially baryon symmetric state
are:

– The baryon number must be violated;
– C (charge conjugation) and CP (charge conjugation combined with parity) must

be violated;
– The asymmetry must be created under non-equilibrium conditions.

The reasons for these rules can be readily appreciated from simple arguments (Kolb
and Turner, 1990). Concerning the first rule, it is evident that, if the baryon asymmetry
developed from a symmetric high temperature state, the baryon number must have
been violated at some stage – otherwise, the baryon asymmetry would have to be
built into the model from the very beginning. The second rule is necessary in order
to ensure that a net baryon number is created, even in the presence of interactions
which violate baryon conservation. The third rule is necessary because baryons and
antibaryons have the same mass and so, thermodynamically, they would have the
same abundances in thermodynamic equilibrium, despite the violation of baryon
number and C and CP invariance.

There is evidence that all three rules can be satisfied in the early Universe from
a combination of theoretical ideas and experimental evidence from particle physics.
Thus, baryon number violation is a generic feature of grand unified theories which
unify the strong and electroweak interactions – the same process is responsible for
the predicted instability of the proton. C and CP violation have been observed in the
decay of the neutral K 0 and K̄ 0 mesons. The K 0 meson should decay symmetrically
into equal numbers of particles and antiparticles but, in fact, there is a slight pref-
erence for matter over antimatter, at the level of 10−3, very much greater than the
degree of asymmetry necessary for baryogenesis, ∼ 10−8. The need for departure
from thermal equilibrium follows from the same type of reasoning which led to the
primordial synthesis of the light elements (Sects. 10.3 and 10.6). As in that case, so
long as the timescales of the interactions which maintained the various constituents
in thermal equilibrium were less than the expansion timescale, the number densities
of particles and antiparticles of the same mass would be the same. In thermody-
namic equilibrium, the number densities of different species did not depend upon
the cross-sections for the interactions which maintain the equilibrium. It is only after
decoupling, when non-equilibrium abundances were established, that the number
densities depended upon the specific values of the cross-sections for the production
of different species.

In a typical baryogenesis scenario, the asymmetry is associated with some very
massive boson and its antiparticle, X, X, which are involved in the unification of
the strong and electroweak forces and which can decay into final states which
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have different baryon numbers. Kolb and Turner provided a clear description of the
principles by which the observed baryon asymmetry can be generated at about the
epoch of grand unification or soon afterwards, when the very massive bosons can no
longer be maintained in equilibrium (Kolb and Turner, 1990). Although the principles
of the calculations are well defined, the details are not understood, partly because
the energies at which they are likely to be important are not attainable in laboratory
experiments, and partly because predicted effects, such as the decay of the proton,
have not been observed. Thus, although there is no definitive evidence that this line
of reasoning is secure, well-understood physical processes of the type necessary for
the creation of the baryon–antibaryon asymmetry exist. The importance of these
studies goes well beyond their immediate significance for astrophysical cosmology.
As Kolb and Turner remark,

. . . in the absence of direct evidence for proton decay, baryogenesis may
provide the strongest, albeit indirect, evidence for some kind of unification
of the quarks and the leptons.

20.7 The Planck Era

Enormous progress has been made in understanding the types of physical processes
necessary to resolve the basic problems of cosmology, but it is not clear how inde-
pendent evidence for them can be found. The methodological problem with these
ideas is that they are based upon extrapolations to energies vastly exceeding those
which can be tested in terrestrial laboratories. Cosmology and particle physics come
together in the early Universe and they bootstrap their way to a self-consistent solu-
tion. This may be the best that we can hope for, but it would be preferable to have
independent constraints upon the theories.

A representation of the evolution of the Universe from the Planck era to the
present day is shown in Fig. 20.3. The Planck era is that time in the very remote
past when the energy densities were so great that a quantum theory of gravity is
needed. On dimensional grounds, this era must have occurred when the Universe
was only about tPl ∼ (hG/c5)1/2 ∼ 10−43 s old. Despite enormous efforts on the
part of theorists, there is no quantum theory of gravity and so we can only speculate
about the physics of these extraordinary eras.

Being drawn on a logarithmic scale, Fig. 20.2 encompasses the evolution of the
whole of the Universe, from the Planck area at t ∼ 10−43 s to the present age of the
Universe which is about 4×1017 s or 13.5×109 years old. Halfway up the diagram,
from the time when the Universe was only about 1 ms old to the present epoch,
we can be reasonably confident that the Big Bang scenario is the most convincing
framework for astrophysical cosmology.

At times earlier than about 1 ms, we quickly run out of known physics. This has
not discouraged theorists from making bold extrapolations across the huge gap from
10−3 s to 10−43 s using the current understanding of particle physics and concepts
from string theories. Some impression of the types of thinking involved in these
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studies can be found in the ideas expounded in the excellent volume The Future of
Theoretical Physics, celebrating the 60th birthday of Stephen Hawking (Gibbons
et al., 2003). Maybe many of these ideas will turn out to be correct, but there must
be some concern that some fundamentally new physics will emerge at higher and
higher energies before we reach the GUT era at t ∼ 10−36 s and the Planck era at
t ∼ 10−43 s. This is why the particle physics experiments to be carried with the Large
Hadron Collider at CERN are of such importance for astrophysics and cosmology,
as well as for particle physics. It is fully expected that definite evidence will be found
for the Higgs’ boson. In addition, there is the possibility of discovering new types of
particles, such as the lightest supersymmetric particle or new massive ultra-weakly
interacting particles, as the accessible range of particle energies increases from about
100 GeV to 1 TeV. These experiments should provide clues to the nature of physics
beyond the standard model of particle physics and will undoubtedly feed back into
understanding of the physics of the early Universe.

Fig. 20.3. Schematic diagram illustrating the evolution of the Universe from the Planck era to
the present time. The shaded area to the right of the diagram indicates the regions of known
physics
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It is certain that at some stage a quantum theory of gravity is needed which
may help resolve the problems of singularities in the early Universe. The singularity
theorems of Penrose and Hawking show that, according to classical theories of
gravity under very general conditions, there is inevitably a physical singularity at
the origin of the Big Bang, that is, as t → 0, the energy density of the Universe
tends to infinity. However, it is not clear that the actual Universe satisfies the various
energy conditions required by the singularity theorems, particularly if the negative
pressure equation of state p = −	c2 holds true in the very early Universe. All these
considerations show that new physics is needed if we are to develop a convincing
physical picture of the very early Universe.
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Böhringer, H., Schuecker, P., Guzzo, L., Collins, C.A., Voges, W., Schindler, S.,
Neumann, D.M., Cruddace, R.G., De Grandi, S., Chincarini, G., Edge, A.C.,
MacGillivray, H.T., and Shaver, P. (2001). The ROSAT-ESO flux limited X-
ray (REFLEX) galaxy cluster survey. I. The construction of the cluster sample,
Astronomy and Astrophysics, 369, 826–850.
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Spatially resolved X-ray spectroscopy of cooling clusters of galaxies, Astronomy
and Astrophysics, 413, 415–439.

Kaiser, N. (1984). On the spatial correlations of Abell clusters, Astrophysical Jour-
nal, 284, L9–L12.



References 669

Kaiser, N. (1987). Clustering in real space and in redshift space, Monthly Notices of
the Royal Astronomical Society, 227, 1–21.

Kaiser, N. (1992). Weak gravitational lensing of distant galaxies, Astrophysical
Journal, 388, 272–286.

Kapahi, V.K. (1987). The angular size-redshift relation as a cosmological tool,
in Observational Cosmology, eds. Hewitt, A., Burbidge, G., and Fang, L.-Z.,
pp. 251–265. Dordrecht: Reidel.

Kapteyn, J.C. (1922). First attempt at a theory of the arrangement and motion of the
sidereal system, Astrophysical Journal, 55, 302–328.

Kashlinsky, A., Mather, J.C., Odenwald, S., and Hauser, M.G. (1996). Clustering
of the diffuse infrared light from the COBE DIRBE maps: I. C(0) and limits on
the near-infrared background, Astrophysical Journal, 470, 681–705.

Kaspi, V.M., Taylor, J.H., and Ryba, M.F. (1994). High-precision timing of mil-
lisecond pulsars: 3. Long-term monitoring of PSRs B1855+09 and B1937+21,
Astrophysical Journal, 428, 713–728.

Kassiola, A., Kovner, I., and Blandford, R.D. (1991). Bounds on intergalactic com-
pact objects from observations of compact radio sources, Astrophysical Journal,
381, 6–13.

Katz, N., Weinberg, D.H., Hernquist, L., and Miranda-Escudé, J. (1996). Damped
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Barnes, C., Bean, R., Doré, O., Dunkley, J., Halpern, M., Hill, R.S., Jarosik, N.,
Kogut, A., Limon, M., Meyer, S.S., Odegard, N., Peiris, H.V., Tucker, G.S.,
Verde, L., Weiland, J.L., Wollack, E., and Wright, E.L. (2007). Three-year Wilkin-
son Microwave Anisotropy Probe (WMAP) observations: polarization analysis,
Astrophysical Journal Supplement, 170, 335–376.

Pagel, B. (1997). Nucleosynthesis and Chemical Evolution of Galaxies. Cambridge:
Cambridge University Press.

Pais, A. (1982). Subtle is the Lord . . . : the Science and Life of Albert Einstein.
Oxford: Oxford University Press.

Panagia, N., Gilmozzi, R., Macchetto, F., Adorf, H.-M., and Kirshner, R.P. (1991).
Properties of the SN 1987A circumstellar ring and the distance to the Large
Magellanic Cloud, Astrophysical Journal, 380, L23–L26.

Parker, E.N. (1997). Galactic dynamos and other questions on the origins of magnetic
fields, in Critical Dialogues in Cosmology, ed. Turok, N., pp. 309–327. Singapore:
World Scientific.

Partridge, R. (1980a). Flucutations in the cosmic microwave background radiation
at small angular scales, Physica Scripta, 21, 624–629.

Partridge, R. (1980b). New limits on small-scale angular fluctuations in the cosmic
microwave background, Astrophysical Journal, 235, 681–687.

Peacock, J. (2000). Cosmological Physics. Cambridge: Cambridge University Press.
Peacock, J.A. (1985). The high-redshift evolution of radio galaxies and quasars,

Monthly Notices of the Royal Astronomical Society, 217, 601–631.



680 References

Peacock, J.A., Cole, S., Norberg, P., Baugh, C.M., Bland-Hawthorn, J., Bridges, T.,
Cannon, R.D., Colless, M., Collins, C., Couch, W., Dalton, G., Deeley, K., De
Propris, R., Driver, S.P., Efstathiou, G., Ellis, R.S., Frenk, C.S., Glazebrook, K.,
Jackson, C., Lahav, O., Lewis, I., Lumsden, S., Maddox, S., Percival, W.J., Peter-
son, B.A., Price, I., Sutherland, W., and Taylor, K. (2001). A measurement of the
cosmological mass density from clustering in the 2dF Galaxy Redshift Survey,
Nature, 410, 169–173.

Peacock, J.A. and Dodds, S.J. (1994). Reconstructing the linear power spectrum
of cosmological mass fluctuations, Monthly Notices of the Royal Astronomical
Society, 267, 1020–1034.

Peacock, J.A. and Heavens, A.F. (1985). The statistics of maxima in primordial den-
sity perturbations, Monthly Notices of the Royal Astronomical Society, 217, 805–
820.

Peebles, P. (1981). Primeval adiabatic perturbations – constraints from the mass
distribution, Astrophysical Journal, 248, 885–897.

Peebles, P. (1982). Large-scale background temperature and mass fluctuations due
to scale-invariant primeval perturbations, Astrophysical Journal, 263, L1–L5.

Peebles, P.J.E. (1968). Recombination of the primeval plasma, Astrophysical Jour-
nal, 153, 1–11.

Peebles, P.J.E. (1976). A cosmic virial theorem, Astrophysics and Space Science,
45, 3–19.

Peebles, P.J.E. (1980). The Large-Scale Structure of the Universe. Princeton:
Princeton University Press.

Peebles, P.J.E. (1993). Principles of Physical Cosmology. Princeton: Princeton
University Press.

Peebles, P.J.E. and Yu, J.T. (1970). Primeval adiabatic perturbation in an expanding
Universe, Astrophysical Journal, 162, 815–836.

Pei, Y. and Fall, S. (1995). Cosmic chemical evolution, Astrophysical Journal,
454, 69–76.

Penrose, R. (1997). The Large, the Small and the Human Mind. Cambridge:
Cambridge University Press.

Penzias, A.A. and Wilson, R.W. (1965). A measurement of excess antenna temper-
ature at 4080 MHz, Astrophysical Journal, 142, 419–421.

Perlmutter, S., Aldering, G., della Valle, M., Deustua, S., Ellis, R.S., Fabbro, S.,
Fruchter, A., Goldhaber, G., Groom, D.E., Hook, I.M., Kim, A.G., Kim, M.Y.,
Knop, R.A., Lidman, C., McMahon, R.G., Nugent, P., Pain, R., Panagia, N., Pen-
nypacker, C.R., Ruiz-Lapuente, P., Schaefer, B., and Walton, N. (1998). Discovery
of a supernova explosion at half the age of the universe, Nature, 391, 51–54.

Perlmutter, S., Boyle, B., Bunclark, P., Carter, D., Couch, W., Deustua, S., Do-
pita, M., Ellis, R., Filippenko, A.V., Gabi, S., Glazebrook, K., Goldhaber, G.,
Goobar, A., Groom, D., Hook, I., Irwin, M., Kim, A., Kim, M., Lee, J., Math-
eson, T., McMahon, R., Newberg, H., Pain, R., Pennypacker, C., and Small, I.
(1996). High-redshift supernova discoveries on demand: first results from a new
tool for cosmology and bounds on q0, Nuclear Physics B, 51, 20–29.



References 681

Perlmutter, S., Gabi, S., Goldhaber, G., Goobar, A., Groom, D.E., Hook, I.M.,
Kim, A.G., Kim, M.Y., Lee, J.C., Pain, R., Pennypacker, C.R., Small, I.A., El-
lis, R.S., McMahon, R.G., Boyle, B.J., Bunclark, P.S., Carter, D., Irwin, M.J.,
Glazebrook, K., Newberg, H.J.M., Filippenko, A.V., Matheson, T., Dopita, M.,
and Couch, W.J. (1997). Measurements of the cosmological parameters omega
and lambda from the first seven supernovae at z > 0.35, Astrophysical Journal,
483, 565–581.

Persic, M., de Zotti, G., Boldt, E.A., Marshall, F.E., Danese, L., Franceschini, A.,
and Palumbo, G.G.C. (1989). The autocorrelation properties of fluctuations in the
cosmic X-ray background, Astrophysical Journal Letters, 336, L47–L50.

Petrosian, V. and Salpeter, E.E. (1968). Ghost images in inhomogeneous Friedmann
universes, Astrophysical Journal, 151, 411–429.

Pettini, M., Ellison, S.L., Steidel, C.C., and Bowen, D.V. (1999). Metal abundances
at z ≤ 1.5: fresh clues to the chemical enrichment history of damped Lyman-α
systems, Astrophysical Journal, 510, 576–589.

Pettini, M., King, D.L., Smith, L.J., and Hunstead, R.W. (1997). The metallicity of
high-redshift galaxies: the abundance of zinc in 34 damped Ly-α systems from
z = 0.7 to 3.4, Astrophysical Journal, 486, 665–680.

Phillips, M.M. (1993). The absolute magnitudes of Type IA supernovae, Astrophys-
ical Journal, 413, L105–L108.

Pound, R. and Rebka, G. (1960). Apparent weight of photons, Physical Review
Letters, 4, 337–341.

Pound, R. and Snider, J. (1965). Effect of gravity on gamma radiation, Physical
Review, 140, B788–B803.

Pozdnyakov, L.A., Sobol, I.M., and Sunyaev, R.A. (1983). Comptonization and
the shaping of X-ray source spectra – Monte Carlo calculations, Soviet Scientific
Reviews, Section E: Astrophysics and Space Physics Reviews, 2, 189–331.

Pratt, G.W. and Arnaud, M. (2002). The mass profile of A1413 observed with
XMM-Newton: implications for the M-T relation, Astronomy and Astrophysics,
394, 375–393.

Press, W. and Schechter, P. (1974). Formation of galaxies and clusters of galaxies
by self-similar gravitational condensation, Astrophysical Journal, 187, 425–438.

Primack, J.R., Seckel, D., and Sadoulet, B. (1988). Detection of cosmic dark matter,
Annual Review of Nuclear and Particle Science, 38, 751–807.

Pritchard, J.R. and Furlanetto, S.R. (2007). 21-cm Fluctuations from inhomogeneous
X-ray heating before reionisation, Monthly Notices of the Royal Astronomical
Society, 376, 1680–1694.

Prochaska, J.X. and Wolfe, A.M. (2002). The UCSD HIRES/Keck I damped Lyα
abundance database: II. The implications, Astrophysical Journal, 566, 68–92.

Prochaska, J.X., Gawiser, E., Wolfe, A.M., Castro, S. and Djorgovski, S.G. (2003).
The Age-Metallicity Relation of the Universe in Neutral Gas: The First 100
Damped Lyα Systems, Astrophysical Journal Letters, 595, L9–L12.

Puget, J.-L., Abergel, A., Bernard, J.-P., Boulanger, F., Burton, W.B., Desert, F.-X.,
and Hartmann, D. (1996). Tentative detection of a cosmic far-infrared background
with COBE, Astronomy and Astrophysics, 308, L5–L8.



682 References

Readhead, A.C.S., Mason, B.S., Contaldi, C.R., Pearson, T.J., Bond, J.R., My-
ers, S.T., Padin, S., Sievers, J.L., Cartwright, J.K., Shepherd, M.C., Pogosyan, D.,
Prunet, S., Altamirano, P., Bustos, R., Bronfman, L., Casassus, S., Holzapfel, W.L.,
May, J., Pen, U.-L., Torres, S., and Udomprasert, P.S. (2004). Extended mo-
saic observations with the cosmic background imager, Astrophysical Journal,
609, 498–512.

Rees, M.J. (1994). Origin of the seed magnetic field for a galactic dynamo, in
Cosmical Magnetism, ed. Lynden-Bell, D., pp. 155–160. Dordrecht: Kluwer.

Rees, M.J. (1995). Perspectives in Astrophysical Cosmology. Cambridge: Cambridge
University Press.

Rees, M.J. (2006). Origin of cosmic magnetic fields, Astronomische Nachrichten,
327, 395–398.

Rees, M.J. and Ostriker, J.P. (1977). Cooling, dynamics and fragmentation of massive
gas clouds – clues to the masses and radii of galaxies and clusters, Monthly Notices
of the Royal Astronomical Society, 179, 541–559.

Rees, M.J. and Sciama, D.W. (1968). Large-scale density inhomogeneities in the
Universe, Nature, 217, 511–516.

Refregier, A. (2003). Weak gravitational lensing by large-scale structure, Annual
Review of Astronomy and Astrophysics, 41, 645–668.

Reimers, D., Clavel, J., Groote, D., Engels, D., Hagen, H.J., Naylor, T.,
Wamsteker, W., and Hopp, U. (1989). The luminous Quasar HS1700+6416
and the shape of the ‘Big Bump’ below 500 Å, Astronomy and Astrophysics,
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variation on a theme of cold dark matter
415

correlation functions for galaxies 363, 405
correlation lengths 404
higher order 386
three-point correlation function 403

Cosmic Anisotropy Polarization Mapper
(CAPMAP) 456

Cosmic Background Explorer (COBE) 15,
21, 27–33, 284, 415, 416, 419, 421,
429, 432, 434, 437, 440, 442, 507,
561, 587

Cosmic Background Imager (CBI) 456
The Cosmic Century: A History of Astro-

physics and Cosmology (Longair) 3,
149, 193, 434, 514

cosmic chemical evolution, equations of
604–607

closed box model 605, 606
conservation of mass 605
infall of material from intergalactic

medium 604–607
inflow model 606
instantaneous recycling approximation

605
loss of heavy elements due to star

formation 605
outflow due to supernova explosions

606
outflow model 606
outflow of processed material 604–607
rate of change of mass of heavy elements

605
rate of infall or outflow Ω̇f 605
rate of star formation 605
role of dust 604, 606
yield y 605

Cosmic Lens All Sky Survey (CLASS)
266

cosmic microwave background radiation
15, 16, 18, 22, 27–33, 241, 275, 467,
624

dipole component of 30, 31
discovery of 17, 362
distortions from a perfect black-body

spectrum 283–284
causes of 283

distortions from a perfect black-body
spectrum 28, 29

energy density of 276
epoch of recombination and 277, 279
estimation of cosmological parameters

from 250, 252, 259, 269, 270, 300
fluctuations in the see fluctuations in

the cosmic microwave background
radiation

horizon problem and 621
isotropy of 29–33, 41, 42, 149, 150,

337
last scattering surface of 325, 631
neutrinos and 369
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number density of photons in 277, 423
polarisation of see polarisation of

the cosmic microwave background
radiation

prediction of 14
specific entropy per baryon of 277
spectrum of 28–29
Sunyaev–Zeldovich distortions of 125,

126, 561
temperature fluctuations in the see

fluctuations in the cosmic microwave
background radiation

temperature of 143, 356, 371, 416, 576
observations of the variation with

redshift 272, 273
variation with redshift 272

temperature of at epoch of recombination
279

thermal history of 278
cosmic star-formation rate

advantages of submillimetre waveband
597

cosmic abundances of the elements and
598–607

maximum at redshifts z ∼ 1–2 610
optical-UV determinations of 606
problem of dust extinction 596, 598
problems with the simple models 606
submillimetre determinations of

596–598, 606
as a function of redshift 598, 599

cosmic time 150, 158–160, 161, 163, 207,
217, 231, 237–239, 252, 317, 339,
344, 438, 445

cosmic variance 434–436, 467
cosmic virial theorem 268, 329
Cosmical Magnetism (ed. Lynden–Bell)

577
cosmological constant Λ 13, 21, 202, 208,

212, 214, 215, 242, 265, 267, 273,
336, 344, 414–418, 425, 630

‘repulsive force of a vacuum’ and 208,
209

dark energy and 23, 24, 207, 208, 210,
626

evidence for finite value of 257
history of 12, 13, 24, 188, 199, 207, 623
zero-point fluctuations of vacuum and

626

Cosmological Constants (Bernstein and
Feinberg) 202

Cosmological Inflation and Large-Scale
Structure (Liddle and Lyth) 313,
629

cosmological parameters, determination
of 241–270, 463–465

ΩΛ and the statistics of gravitational
lenses 263–267

age of the Universe T0 see age of the
Universe T0, 250–252

angular diameter–redshift test 261–263
deceleration parameter q0 see

deceleration parameter q0, 252–263
density parameter Ω0 267–270
Hubble’s constant H0 see Hubble’s

constant, 246–250
number counts of galaxies 259–261

infrared H waveband 260
problems of using to determine q0

259, 260
parameters to be determined 463–465
relative lensing probabilitiesΩΛ and the

statistics of gravitational lenses
relative lensing probabilities 265

see density parameter Ω0 267
testing the Friedman models 242–245
the parameters and relations between

them 241–242
three-year WMAP data and 463–465

Cosmological Physics (Peacock) 209, 313
cosmological principle 149–150, 158,

199, 204, 237, 238, 625
Cosmology Calculator of Dr. Edward Wright

425
COSMOS survey of clusters of galaxies

95
counts of γ -ray bursts 498
counts of active galaxies

evolution in infrared waveband 536
counts of extragalactic radio sources 498,

508, 514–516
excess of faint radio sources 514

evidence for strong cosmological
evolution 514

counts of far-infrared and submillimetre
sources 597

counts of galaxies 537–543
advantages of infrared K waveband 538
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evidence for homogeneity of Universe
493

excess of faint blue galaxies 47, 261,
540

and starburst galaxies 542, 543
nature of 540–543

fluctuations in, due to large-scale
clustering 538–541

for irregular/peculiar/merger systems
542

for spheroidal and spiral galaxies 540,
542

Hubble’s 494
in infrared K band 540
in infrared K waveband 542
in U, B, R, I and K wavebands 541
problems of determining 537–538

counts of galaxies and active galaxies,
predicted 492–507

at submillimetre wavelengths 500–501,
534

normalised differential counts 501,
503

Euclidean 493
differential 493
integral 493

for standard world models 494–500
comparison with Euclidean counts

495
for bolometric luminosities and flux

densities 495
for sources with power-law spectra

495–496
normalised, differential 495–496
optical counts for galaxies 498–500
slopes of integral and differential 496,

498
models with finite ΩΛ 501–504

counts of infrared and submillimetre
sources 532–537

convergence of, at mid-infrared
wavelengths 537

far-infrared wavelengths 533, 534
IRAS galaxies 532, 533

excess of faint sources 532
Spitzer First Look Survey 533

excess of faint sources 533
submillimetre wavelengths 534

excess of faint sources 534

counts of radio-quiet quasars 518, 521,
522

counts of X-ray clusters of galaxies
529–532

counts of X-ray sources 524–532
evidence for evolution of the source

populations 525
hard X-ray energies, 2–10 keV 525,

527, 529
history of 524
problems of interpretation 525
soft X-ray energies, 0.5–2 keV 527

and the integrated X-ray background
emission 527

soft X-ray energies, 0.5–2 keV and 2–10
keV 525

coupling of dark and baryonic matter by
gravity 378

coupling of electrons and protons by
Coulomb collisions 367

coupling of matter and radiation in the
expanding Universe 17, 353, 355,
367

CP violation in decays of K0 mesons 287
Crab Nebula

origin of magnetic field of 580
critial surface density for star formation in

spiral galaxies 554
critical cosmological density 139, 145,

204
in neutrinos with finite mass 143

critical density 439
critical density for star formation 616
Critical Dialogues in Cosmology (ed. Turok)

269, 298, 415
crossing time 111, 474

definition of 63
for a cluster of galaxies 43

Cryogenic Dark Matter Search (CDMS)
146

Cryogenic Dark Matter Search (CDMS II)
373, 374

curvature of space κ 154, 156, 157, 171,
231, 242, 243, 320, 627, 638

condition for flat Euclidean space 210,
211, 364

effect of hyperbolic space on growth of
perturbations 320, 326, 327
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radius of, at the present epoch � 161,
199, 210, 228, 239

relation between Ω0, ΩΛ and 210
variation with scale factor a 160

curvature of space–time 181
curvature perturbations 437

amplitude of 463
cusp catastrophe 135
61 Cygni 5

damped Lyman-α systems in quasar spectra
272, 600–604, 606, 607

dark ages 384, 471, 552, 574, 576
observability through fluctuations in the

neutral hydrogen intensity 577
dark energy 207–211, 216, 230, 243,

245, 327, 331, 335, 344, 345, 414,
623, 634

density parameter ΩΛ of the 21–23,
242, 449, 501, 503, 623

equation of state of 210–211, 267,
465, 630

problem of the 23, 24, 365, 623
dark matter 139–146, 241, 268, 269, 367

astrophysical and experimental limits
144–146

axions and 142, 369
baryonic 139–142
black holes and 140, 141

limits to mass density from gravitational
lensing 140

very low mass 141
brown dwarfs and baryonic 140
clusters of galaxies and 95, 112, 113,

115
density parameter ΩD in the 205, 214
distribution of 235
forms of 139–146
gravitational coupling to baryonic matter

368
gravitational lensing and 130, 136, 137
in clusters of galaxies 113, 117, 119,

136, 137, 267
in early-type galaxies 138
in elliptical galaxies 69
in galaxies 267, 367, 368
in spiral galaxies 69
MACHOs and 141, 142

gravitational microlensing and 141,
142

masses of dark matter particles 145
nature of 24, 301, 625
neutrinos with finite rest mass and 143,

369
non-baryonic 142–144, 301, 335, 364,

365, 367
nature of 368, 369

searches for dark matter particles 145,
146

standard bricks and 139
structure of 137
WIMPs and 143, 144

dark matter and galaxy formation
367–384, 400

evolution of hot and cold dark matter
perturbations 380–384

cold dark matter scenario 381–384
hot dark matter scenario 380–381

forms of non-baryonic dark matter
369–370

free-streaming and damping of hot dark
matter perturbations 375–377

instabilities in the presence of dark matter
377–379

metric perturbations and hot and cold
dark matter 374–375

adiabatic curvature modes 374, 379
curvature modes 374
isocurvature modes 374, 375

WIMPs as dark matter particles
370–374

dark matter haloes
formation according to Press-Schechter

formalism 489
dark matter haloes of galaxies and clusters

137
dark matter particles

collisionless 399
nature of 384
ultraweakly interacting 368

dark matter problem 350, 365
Darkness at Night (Harrison) 510
de Sitter solution 149, 213
de Sitter world model 337, 626, 639
de Vaucouleurs r1/4 law for surface

brightness 61, 62, 108
de Vaucouleurs radius 70
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de Vaucouleurs’ classification of galaxies
54, 55, 93

deceleration parameter q0 216, 241
angular diameter–redshift test 261–263

for compact radio sources 262, 263
for double radio sources 261, 262

number counts of galaxies 259–261
redshift–magnitude relation for brightest

galaxies in clusters 252–254
effects of stellar evolution on 253
infrared 544–545
problems of interpreting at large

redshifts 253
redshift–magnitude relation for radio

galaxies 254–255
advantages of determining in the K

waveband 254, 255
and the alignment effect 254, 256
corrections for effects of stellar

evolution 254
redshift–magnitude relation for Type 1a

supernovae 256–259, 464
evidence for non-zero cosmological

constant 257
relation with Ω0 and ΩΛ 243

decoupling of matter and radiation in the
post-recombination Universe 283

deflection D 505
deformation tensor in Zeldovich approxima-

tion 476, 477
Degree Angular Scale Interferometer

(DASI) 456
density contrast 268, 269, 311, 312, 315,

325, 328, 354, 358, 378, 391, 393,
402, 408, 443, 482, 573

for curvature modes in early Universe
374

growth of 393
density parameter Ω0 204, 241, 243,

267–270, 412, 414
cosmic virial theorem and 268
defined at any epoch 230
infall of galaxies into large-scale

structures and 268, 269, 406, 407,
464

density parameter in baryons ΩB 269,
289, 352, 362, 364, 444, 548, 561,
563, 564, 576, 586, 622

from primordial nucleosynthesis 293,
299, 301, 357

from WMAP power spectrum 300, 464
density parameter in gas Ωg 604–607
density parameter in heavy elements Ωm

604–607
density parameter in intergalactic gas ΩIGG

555
density parameter in neutral hydrogen ΩHI

554
density parameter in stars Ωs 547, 598,

604–607
density parameter of the dark energy ΩΛ

21, 23, 209, 210, 242, 449, 464, 501,
503, 623, 626

density parameter of the dark matter ΩD
464

deuterium D
abundance in Lyman-α absorbers 297
observed primordial abundance

297–298
as a ‘baryometer’ 299

solar abundance 297
deuteron, binding energy of 292
Differential Microwave Radiometers of

COBE 30
disc component of spiral galaxies 51
disc scale length for spiral galaxies 62
discs of spiral galaxies

stability of 612
dissipation processes and galaxy

formation 477–482
radiative processes 478
star formation and 478–479

first generation of stars 478
in very large redshift objects 479

thermal instabilities 478, 481
distance indicators 246, 247
distance measure D 494, 495
distance of the stars 4
distortion matrix 462

shear components of 460, 461
Doppler shift

Newtonian 162, 176
special relativistic 162

‘downsizing’ 614
‘drop-out’ galaxies 543, 593, 594, 607

decrease in luminosity density at large
redshifts 595
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luminosity functions for 595
properties of 593

dust emission and star formation 478, 501
dust extinction 538
dust extinction of galaxy spectral energy

distribution 535, 536
dwarf elliptical galaxies 51
dwarf galaxies 51
dynamical equilibrium 63
dynamical friction 399, 544

early history of cosmology 3–5
early history of galaxies and the structure

of our Galaxy 5–9
The Early Universe (Kolb and Turner) 313
early-type galaxies 50

mass distribution is 138
eclipse expeditions of 1919 190
Einstein angle 130, 132, 136
Einstein radius 129, 132, 134, 264
Einstein ring 130
Einstein X-ray Observatory 116, 123, 507
Einstein’s field equations 12, 13, 149,

188, 199–202, 208, 243, 273, 348,
365, 368, 395, 422, 440, 448

conservation of energy for relativistic and
non-relativistic gases 201

equation of conservation of mass and
200

first law of thermodynamics and 200,
201

monatomic gases and 201
ultrarelativistic gases and 201

Einstein’s static model of the Universe 8,
12, 149, 151, 188, 199, 214

Einstein–de Sitter world model 205,
231–235, 265, 266, 319, 320, 322,
336, 483, 485, 496, 500

as only ‘stable’ model 622
electron–positron annihilation 301
electron–positron pair production 23, 622
elliptical galaxies 50, 51

formation at large redshifts 543
elliptical galaxies as triaxial systems

71–73
linear programming techniques for 73

ellipticities of elliptical galaxies 51
emission history of the Universe 604

energies of the photon and neutrino
backgrounds 302

energy density of the Cosmic Microwave
Background Radiation 33

entropies of the photon and neutrino
backgrounds 301, 302

entropy per baryon
fluctuations in, in isothermal picture of

structure formation 357
Eötvös experiment 173

Eöt-Wash experiment 174, 175
Eötvös ratio 174, 175
epicyclic frequency 554
epoch of baryon–antibaryon pair production

286
epoch of decoupling of matter and radiation

574
epoch of electron-positron pair production

286
epoch of equality of radiation and matter

energy densities 17, 277, 285, 354,
358, 359, 376, 381, 393, 395, 396,
398, 410, 425, 430

including neutrinos 303
epoch of formation of first stars 574
epoch of formation of galaxies, clusters and

superclusters 312, 474, 487
epoch of maximum quasar activity 362
epoch of nucleosynthesis 286
epoch of recombination 17, 33, 277–281,

285, 312, 325, 355, 357, 362, 364,
378–381, 410, 440, 446

epoch of recombination for helium 279
epoch of reheating of the intergalactic gas

286
epoch of reionisation of the intergalactic gas

33, 355, 452, 471, 547, 552, 574–577
role of black holes in nuclei of galaxies

574
equation of continuity 313

relativistic case 331
equation of state

for photons, massless particles and
ultrarelativistic gas 271, 331

equivalence principle see principle of
equivalence

EROS project 141
ESO catalogue of galaxies 44
ESSENCE supernova project 257, 258
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Euclid’s fifth postulate 150
Euler’s equation 313, 440, 448

relativistic case 331
Eulerian coordinate system 314, 476
event horizon 338, 339, 342, 346, 634

definition of 338
evolution of active galaxies with cosmic

epoch 514–532, 569
extragalactic radio sources 514–518

‘luminosity evolution’ 516
cut-off of strong evolution beyond

redshift z ∼ 2–3 516, 517
for sources with steep and flat radio

spectra 516, 517
luminosity-dependent density evolution

516, 518
radio-quiet quasars 518–524

evolution of galaxies and active galaxies
with cosmic epoch 471, 491–545

active galaxies 492, 514–532
extragalactic radio sources 514–518
radio-quiet quasars 518–524
X-ray clusters of galaxies 529–532
X-ray sources 524–529

background radiation
source counts and 510

background radiation and 510–513
effects of evolution and the radio

background emission 512–513
evaluation of 510–512

brief history of evidence for 491–492
clusters of galaxies 543–545
co-evolution of stellar and black hole

properties of galaxies 492
counts of galaxies 537–543
counts of galaxies and active galaxies

492–507
euclidean source counts 493
fluctuations in the background radiation

due to discrete sources 504–507
for standard world models 500
models with finite ΩΛ 501–504
submillimetre counts of dusty galaxies

500–501
counts of galaxies and active galaxies,

predicted
for standard world models 494

infrared and submillimetre number counts
532–537

stellar and gaseous components of
galaxies 492

V/Vmax or luminosity-volume test
507–510

excess dwarf galaxy problem
solution by sweeping out gas by

astrophysical processes 613
excess of faint blue galaxies 46, 591

irregular nature of 593, 594
extragalactic background radiation

due to discrete sources 275
due to galaxies 275
energy density of, in different wavebands

275
in the ultraviolet, optical and infrared

wavebands 275, 276
limits from γγ absorption in spectra of

γ -ray sources 275
number density of photons in different

wavebands 275, 277
spectrum of 273–277

plotted as νIν 275
plotted as Iν 275, 276

extragalactic radio sources 578
depolarisation of 578
luminosity function of

evolution with cosmic epoch 514–518
origin of magnetic fields of 580, 581

active galactic nuclei and 581
supermassive black holes in nuclei of

581

Faber–Jackson Relation for elliptical
galaxies 70–71

Faint Object Camera 564–566, 592
Far Infrared Absolute Spectrophotometer

(FIRAS) of COBE 28
Far Ultraviolet Spectroscopic Explorer

(FUSE) 566, 567
feedback mechanisms in galaxy formation

471
field galaxies 56
fifth force, search for 174, 175
fine-tuning problem 23, 622
‘fingers of God’ 39, 406, 407
FIRST deep VLA survey of radio sources

42
first generation of stars 552

formation of interstellar dust 587
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properties of 574
ultraviolet and X-ray emission of 574

first law of thermodynamics 200, 201
flat two-space, isotropic 154
flatness problem 23, 24, 230–231, 622
fluctuations in the background radiation due

to discrete sources 504–507
spatial correlation technique 506

fluctuations in the cosmic microwave
background radiation 18, 19, 21, 30,
32, 33, 167, 281, 362, 364, 379, 382,
384, 410, 414–416, 419, 421–467,
614, 640

acoustic peaks see acoustic oscillations
in the power spectrum of the cosmic
microwave background radiation

discrete source confusion and 451, 505
epoch of recombination and 430
ionisation of the intergalactic gas through

the epoch of recombination 422–423
physical and angular scales of 424–430

last scattering layer 425–426
particle horizon scales 429–430
Silk damping scale 426
sound horizon at the last scattering layer

427–429
physics of 443
power spectrum of 13, 431–436, 439,

465
cosmological parameters from 444,

463–465, 548
observations of 434–436
other sources of 465–466
statistical description of 431–434

power spectrum on intermediate
scales – acoustic peaks 443–449

power spectrum on large angular scales
436–443

integrated Sachs–Wolfe and Rees–
Sciama effects 440

primordial gravitational waves
440–443

Sachs–Wolfe effect – physical
arguments 436–440

power spectrum on small angular scales
450–452

confusion due to discrete sources
451–452

confusion due to submillimetre sources
452

statistical and Silk damping 426, 450
Sunyaev–Zeldovich effect in clusters of

galaxies 450–451
quadrupole anisotropy of 442
reionised intergalactic gas 452–453
Sunyaev–Zeldovich effect and 450

detection of statistical effect from X-ray
Abell clusters by WMAP 451

Thomson scattering optical depth and
453, 574

Fokker–Planck equation for stars in clusters
107

fold catastrophe 135
four-tensors in relativity 184–187

curvature scalar 188
differentiation of 188
electromagnetic field tensor 186
energy–momentum tensor 188

for dust 186
including pressure 186

Maxwell’s equations 186, 187
Ricci tensor 188
Riemann–Christoffel tensor 188
energy–momentum tensor

for dust 185
four-vectors 185

examples of 185
velocity 185

Fourier integral 389
Fourier series 389, 431
Fourier transformations 431, 462

autocorrelation theorem for 433
of acoustic oscillations in cosmic

microwave background radiation
445

three-dimensional 388
FR2 3CR radio sources 609
fractal Universe 392
free-bound and bound-bound transitions of

hydrogen 479
free-streaming of neutrinos 19
Freeman’s law 62, 74, 612
‘freeze-out’ of hot dark matter particles by

free-streaming 376
‘freeze-out’ of massive particle species in

the early Universe 307



714 Index

frequencies of galaxies of different types
54, 56, 541

in different galactic environments 56,
57, 404, 538

Friedman world models 12, 13, 16, 151,
199–239, 621, 624

Friedman world models with Λ = 0
202–207

closed, spherical geometries 205
critical world model 205
curvature–density parameter relation

205
dust models 202
dynamics of 205–207
flat Einstein–de Sitter model 205
Newtonian analogue for 202–204

problems of boundary conditions 203
open, hyperbolic geometries 205
parametric solutions for 207, 321

Friedman world models with Λ �= 0
207–215

bouncing models 212–214
classification of 215
dust models 208, 209
dynamics of 211–216
Eddington–Lemaître models 213, 214,

223, 501
antipodal points of 225, 501, 503, 504
effects of gravitational lensing at

antipodal points 504
number counts in 501, 503
redshift–flux density relation for 501
stationary redshift 214, 223

Lemaître models 214, 501, 503
ghost images in 226

loitering models 214, 223, 226
minimum rate of expansion of 212

Friedman’s equation 199, 200, 320, 326,
638

Friedman: the man who made the Universe
expand (Tropp, Frenkel and Chernin)
204

fundamental observer 150, 158–161, 164,
168, 204, 207, 237, 238, 335, 337,
339–341, 347

fundamental plane for elliptical galaxies
70–71

The Future of Theoretical Physics (eds.
Gibbons, Shellard and Rankin) 643

GADGET computer code 616
GAIA mission, prospects for light deflection

observations 191
Galactic ‘cirrus’ 30
Galactic Astronomy (Binney and Merrifield)

49
Galactic bulge 141
galactic cannibalism 253, 544
Galactic Dynamics (Binney and Tremaine)

49
galactic extinction law 77
Galactic synchrotron radiation 30
galaxies 49

characteristic masses of 480
dependence of types upon environment

613
mean luminosity of 84
mean space density of 84
on a temperature-number density diagram

481
passive evolution of 498, 499

importance of red giant branch 499
starbursts and evolution of 499

Galaxies in the Universe: an Introduction
(Sparke and Gallagher) 49, 64

galaxies, correlations along the
Hubblesequence 84–88

colour–colour diagram and 87, 88
integrated colour 87
luminosity function of HII regions 87
masses and luminosities 84
neutral hydrogen 86
star formation rates and 87
total surface density and surface density

of neutral hydrogen 87
galaxies, old red 542
galaxies, properties of 8, 49
galaxies, red and blue sequences of 63,

88–94, 412
colour–absolute magnitude relation

89–90
colour–Sérsic index relation 91
definitions of 89
effect of the galaxy environment 92–93
mean stellar age–concentration index

relation 91
Galaxy

age of 64
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disc scale length of 62
luminosity of 84
structure of 7–9

galaxy and structure formation, history of
16–19

galaxy formation 583–620
background radiation and element

formation 584–587
energy density of background radiation

and density of metals formed 586
intensity of background radiation and

density of metals formed 586
processes of element formation 584,

585
collisions between galaxies and 614
‘downsizing’ 610
feedback mechanisms and 486, 583,

614
growth of supermassive black holes and

614
Lyman-break galaxies 590

in the general field 590
multicolour technique for discovering

590, 591
observed global star formation rate

587–590
as a function of redshift 583, 589
star-forming galaxies and 587
starburst galaxies at large redshift 589

star and element formation and 583–598
build-up of heavy elements in galaxies

583
numbers of ‘drop-out’ galaxies and

584
numbers of blue star-forming galaxies

and 584
numbers of far-infrared and submillime-

tre galaxies and 584
quasar absorption line systems and

584
star formation and 614
two-stage theory of 482, 611

final radius of disc 612
γ -ray background emission

Comptonisation and 529
spectrum of 526

Garching-Bonn Deep Survey 138
gas dynamics

equations of 313

in Lagrangian form 314
Newton’s second law in 314
relativistic case 331, 332
relativistic case in Lagrangian

coordinates 331
gauge choices

in electrodynamics 347
Lorentz and Coulomb gauges 347

superhorizon scales and 347, 437, 438
gauge-invariant gravitational potential 445
gauge-invariant variables 348
Gaunt factor 116, 121
Gauss’s theorem for Newton’s law of gravity

67, 133, 202
Gauss, Carl Friedrich

theory of surfaces 181
Gaussian curvature see curvature
Gaussian fluctuations 402, 432, 443, 475,

477, 482, 484, 487
Gaussian perturbations with random phases

41, 42
Gemini Deep Deep Survey 607, 608
general relativity 11, 48, 149, 151

introduction to 173–198
further complications 181–184
what Einstein did 187–188

route to 184–188
superhorizon scales and 347–350

general relativity, experimental and
observational tests of 189–197

four tests of general relativity 189–192
advance of perihelion of Mercury 189
deflection of light and radio waves by

the Sun 190, 191
gravitational redshift 189
time delay in Sun’s gravitational field

191, 192
parameterised post-Newtonian (PPN)

formulation of 175, 195
limits to values of the parameters 197
metric potentials in 196
physical significance of 176

pulsars and 192–194
xparameterised post-Newtonian (PPN)

formulation of 197
General Relativity: An Introduction for

Physicists (Hobson, Efstathiou and
Lasenby) 173, 184, 313
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general theory of relativity see general
relativity, 614

geodesic distance 157
geodesics 149–153, 158, 320
giant molecular clouds 478
globular cluster 47 Tucanae 250, 251
globular clusters 250, 355
Gran Sasso underground laboratory 146
Gravitation and Cosmology (Weinberg)

184
gravitational collapse

timescale of 479
gravitational constant, variation with

cosmic epoch 197–198
helioseismology and 198
limits to 197
lunar laser ranging and 197
primordial nucleosynthesis and 198
pulsar timing and 197

gravitational deflection of light rays 134
by the Sun 128

collision parameter for 128
gravitational lensing by galaxies and

clusters of galaxies 128–139
necessary conditions for 133
astrophysics of galaxies and 136–139
basic theory of 128–131
caustics and cusps in 135, 136
cluster masses from 134
critical surface density for 133
dark matter and 130, 136, 137
distortion of background images by 136
extended deflectors and 133–136
galaxy-galaxy imaging and 138
magnification of images by 130–132
mirror inversion of images in 132
time variations of intensities of images

139
gravitational lensing, strong 138, 235

case of the galaxy IRAS F10214+4724
235

complete sample of radio sources and
quasars 266

magnification of intensities by 235
probability of 264, 266

gravitational lensing, weak 138, 235,
460–463

and cosmic shear 235
shear variance distribution of 461

power spectrum of density perturbations
in the mass distribution and 462

Gravitational Lensing: Strong, Weak and
Micro (Schneider, Kochanek and
Wambsganss) 130, 138

gravitational mass 173, 174
gravitational potential, Newtonian limit

179
gravitational redshift 176–179

dependence upon gravitational potential
177

in general relativity 183
in the Newtonian limit 177
incompatibility with special relativity

178
time dilation in a gravitational field and

178
gravitational relaxation timescale 544
gravitational waves 625

and tilt of spectrum of scalar perturbations
442

dependence upon inflationary potential
442

limits to energy density of primordial
442, 460

polarisation signature of primordial 441
primordial

detection of as the ‘smoking gun’ for
inflationary cosmologies 640

spectral index of primordial 441, 640
from WMAP power spectrum 640

temperature power spectrum of 441,
442

tensor to scalar ratio of primordial 442,
460, 640

limits to 460
gravitons 373
‘Great Attractor’ 268
‘Great Debate’ 7
Great Observatories Origins Deep Survey

(GOODS) 538, 540, 592, 595, 598
‘Great Wall’ 38
Greenbank Catalogue of radio sources at 6

cm 42, 43
grey-body spectrum 535
GUT era, new physics at 643
GUT phase transition 628

half-light radius of light distribution 61
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Harrison–Zeldovich initial power spec-
trum 18, 21, 25, 391–392, 393–396,
399, 433, 439, 441, 465, 484, 485,
559, 560, 624, 630, 640

Hawking radiation 141
He+ Lyman-α absorption clouds in

intergalactic medium 566
HEAO-1 X-ray Observatory 524
HEAO1 A-2 experiment 507
Heaviside–Lorentz units 187
Heisenberg’s uncertainty principle 636
helium abundance

as a thermometer of the early Universe
293

helium-3 He3

observed by radio hyperfine transition
line 298

observed primordial abundance 298
helium-4 4He

observed primordial abundance 296
in low metallicity, extragalactic HII

regions 296
Hercules cluster of galaxies 102
Hertzsprung–Russell (H–R) diagram 250,

251, 584, 585
main sequence termination point 250

hierarchical clustering 18, 59
hierarchical model of the Universe 5
hierarchical models of galaxy formation

old red galaxies and 607
hierarchical scenario for cluster formation

545
Higgs fields and Higgs particles 24, 208,

373, 623, 626, 643
High Energy Astrophysics Vol. 1 (Longair)

126, 544
High Energy Astrophysics, Vol. 2 (Longair)

577
Himalayas 402
Hipparcos astrometric satellite 247, 251
Hipparcos measurements of light deflection

by the Sun 191
Hopkins Ultraviolet Telescope 565, 566
horizon mass 352, 353, 391, 395
horizon problem 22, 24, 337, 631

last scattering surface and 337
solution of in inflationary model of the

early Universe 337, 626, 627, 631
horizon scale 17, 204, 441, 627

horizons and the horizon problem
335–338, 621

hot and cold dark matter model of galaxy
formation 335, 418

hot and cold dark matter, history of
19–22

hot dark matter model of galaxy formation
19–21, 375–377, 380–381, 400–402

formation of galaxies by fragmentation of
large-scale structures 381

late formation of structure in 400
hot gas in clusters of galaxies 114–124

absence of cool gas in 123
associated with heating by radio lobes

124
models to explain the 123

abundance of iron 118
characteristic cooling time for 121
cooling flows in 122, 478

enthalpy of 123
mass inflow rates of 123

cooling time of 122
iron line FeXXVI from 115
sound waves in 125

Hubble Deep and Ultra-Deep Fields 261
Hubble Deep Field 491, 538, 542,

590–593
Hubble Deep Field South (HDFS) 592
Hubble diagram 44
Hubble sequence of galaxies 50
Hubble Space Telescope 58, 59, 130, 131,

138, 249, 254, 257, 297, 464, 491,
538, 540, 543, 550, 552, 564, 565,
568, 590, 593, 595, 601

The Hubble Space Telescope and the High
Redshift Universe (ed. Tanvir) 552

Hubble Space Telescope Science Institute
590

Hubble sphere 342–346, 632–634, 638
definition of 342
distinction between particle horizon and

631
shrinking of 631, 633, 634

Hubble Ultra Deep Field (HUDF) 491,
538, 540, 542, 543, 590, 592, 594–596

filter transmission curves for 594
Hubble’s constant 9, 13, 46, 241

Baade–Wesselink method and 248
brightest stars in galaxies and 246
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Cepheid variables and 246, 247
controversy over value of 246
cosmological distance ladder and 246,

247
defined at any epoch 166, 230
from Sunyaev–Zeldovich effect 128
globular clusters and 246
Hubble Space Telescope Key project and

246, 247
final result of 248, 464

present expansion rate of the Universe
and 167

redshift–magnitude relation for brightest
cluster galaxies and 246

Sunyaev–Zeldovich effect and 248
Tully–Fisher relation and 246
Type 1a supernovae and 246
written as H0 = 100h km s−1 Mpc−1

204
Hubble’s law 9, 10, 44–46, 150, 165, 314,

407
comoving radial distance coordinates and

340
discovery of 150
gravitational lensing and 249
recession velocities exceeding the speed

of light in 341
Hubble’s law and the expansion of the

Universe 44–48, 165
Hubble’s law for surface brightness 61
hydrostatic equilibrium 104, 115
hydrostatic support, equation of 318
hyperbolic two-space, isotropic 154, 155

i-band drop-outs 552
I0 galaxies 54
inertial mass 173, 174, 181
inflationary model of the early Universe

24, 25, 364, 392, 621, 624
accelerated expansion 634
chaotic inflation 626
exponential expansion and 626, 627,

629
role of scalar fields 629
straightening of geometry 627
violation of strong energy condition and

630
historical background 626–629

formation of ‘bubbles’ in original Guth
picture 628

lack of physical realisation of
inflationary picture 629

monpole problem 628
new inflationary model of Linde,

Albrecht and Steinhardt 629
slow rollover model 629
symmetry breaking in Grand Unified

Theories 627
transition from false to true vacuum in

original Guth picture 627
necessary conditions for many e-folding

times 635
necessary tools from theoretical and

particle physics 630
release of ‘latent heat’ 627
scale factor-temperature relation 628
shrinking of Hubble sphere 634
three equivalent conditions 634

violation of the strong energy condition
634

transition to standard radiation-dominated
model 627

inflaton potential 24, 629
infrared luminosity function of galaxies

evolution of 536
comparison with evolution of active

galaxies 537
Infrared Space Observatory (ISO) 532,

533
inhomogeneous world models 231–235
initial mass function

modified 487
initial power spectrum

curvature of 463
modifications of 409
modified 484
reconstruction of 474

interacting galaxies 57, 60, 478
fraction of 59

intergalactic gas, optical depth for Thomson
scattering of 280, 281

intergalactic medium 547–582
absorption by 548
absorption coefficient of 548
background emission of 548
emissivity of 548
epoch of reionisation of 574–577
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Gunn–Peterson test for ionised helium in
564–567, 571

due to integrated effect of Lyman-α
clouds 566–567

feasibility of, for large redshift quasars
564

Gunn–Peterson test for neutral hydrogen
in 547, 549–552, 569, 574

positive detection at z ≥ 6 551, 552,
564, 574

upper limits to neutral hydrogen number
density from 550

lukewarm gas in 555, 560–569
collisional excitation of 562–563
diffuse ultraviolet radiation at large

redshifts and 567–569
emission and absorption of 564–567
proximity effect and 567–569

Lyman continuum opacity of 569–571,
574

Lyman-α absorption clouds in 547,
552–560

evolution of, with cosmic epoch 556
nature of 554–556
power spectrum of forest of 557–560
predicted evolution of, with cosmic

epoch 556
properties of 552–554

modelling the evolution of 571–574
neutral hydrogen at large redshifts 574

fluctuations in observed intensity
574–577

intensity of 576
ionsation by first generation of massive

stars 575
observational challenge of detecting

575
predicted brightness temperature of

576
problem of synchrotron radiation

foregrounds 576
optical depth of 548
origin of magnetic fields 577–582
ultraviolet opacity of 569–571
X-ray background and a cosmic

conspiracy 561
International Linear Collider (ILC) 144
International Ultraviolet Explorer (IUE)

248, 597

intrinsic curvature see curvature
Introducing Einstein’s Relativity (d’Inverno)

184
ionisation fraction through epoch of

recombination 423, 424
ionisation of intergalactic gas through the

epoch of recombination 422–423
IRAS F10214+4724 235
IRAS Faint Source Survey 532
IRAS galaxies 501, 503

catalogue of 532
complete samples of 532
correlation functions for 405
ultraluminous 58

IRAS infrared observatory 478, 491, 532
IRAS Point Source Catalogue 532
Irr II galaxies 54
irregular clusters of galaxies 102–103
irregular galaxies 53
island universes 5
ISO infrared space observatory 478
isocurvature cold dark matter 396–399

fluctuations in local equation of state and
397

isophotal angular diameters 223
isothermal baryonic perturbations in the

standard Big Bang 357–360
isothermal gas spheres 103–108, 134,

264, 611
projected 105, 106
singular 134
tidal radius of 107
truncated 107

isothermal model of structure formation
18, 357–360, 363–364

‘bottom-up’ picture of galaxy formation
364

‘freezing in’ of perturbations 358, 359
early enrichment of heavy elements 363
early formation of globular clusters and

363
hierarchical clustering and 363
radiation drag, effects of 359, 360

isotropic curved spaces 150–154, 159
radius of curvature of 155
three-dimensional 156, 157
two-dimensional 155, 156

isotropic two-space
flat 157
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hyperbolic 157
spherical 154, 157

isotropy of the distribution of extragalactic
radio sources 42

isotropy of Universe on a large scale 32

J0737-3039 (binary pulsar) 193
Jagellonian field 35
James Clerk Maxwell Telescope (JCMT)

452, 534, 597
Jeans’ analysis of damped harmonic

oscillator 638
Jeans’ criterion in an expanding Universe

16, 319
Jeans’ instability 318, 324, 478

growth rate of 324, 358
physical nature of 318

Jeans’ instability criterion 16, 378
for collisionless gas 377

Jeans’ length 16, 17, 318, 332, 351–353,
379, 428, 429

in baryons 352
relativistic case 332

Jeans’ mass 17, 18, 351–355, 360, 361,
377

Jeans’ wavelength 318
Jupiter 4, 5

K-correction 170, 253, 495, 498, 538
in infrared K waveband 538
submillimetre 597
uncertainties in ultraviolet wavebands due

to starbursts 538
K20 sample of galaxies 542
K20 Survey 607, 608

very red galaxies in 608
Keck 10-metre telescope 272, 542, 555,

566, 590
Keck-2 telescope 551, 552
Kelvin–Helmholtz picture of stellar

evolution 251
Kepler’s laws of planetary motion 3

third law 4, 67
King profiles for mass distribution in clusters

107, 111
Kolmogorov spectrum of turbulence 580
Kompaneets equation 126

Lagrangian and comoving coordinate
systems, difference between 314

Lagrangian coordinate system 314, 476
ΛCDM model of galaxy and structure

formation 22, 59, 435, 440, 462,
463, 466, 472, 483, 486, 487, 530,
532, 613–620

problems with 613–614
accounting for Faber–Jackson relation

and Tully–Fisher relation 614, 620
‘downsizing’ problem 614
excess dwarf galaxy problem 613
mass-metallicity correlation 613
predicted cusps in central regions of

galaxies 613
Landau damping 376
Lane–Emden equation 104
Langmuir waves 317
Large Electron–Positron collider (LEP)

300, 371
Large Hadron Collider (LHC) 144, 208,

643
Large Magellanic Cloud (LMC) 54, 141

distance of 248
large-scale distribution of galaxies

33–44
large-scale structure of the Universe

27–48
The Large-Scale Structure of the Universe

(Peebles) 363
Las Campanas redshift survey 41
last scattering layer 444
last scattering layer at z = 1000 621
last scattering surface 33, 333, 357

for neutrinos 292
last scattering surface at the epoch of

recombination 631, 632
last scattering surface for electromagnetic

radiation 624
late-type galaxies 50
laws of conservation of momentum and

energy in relativity 186
Legendre function

associated 431
Legendre polynomials 433, 455
Leiden–Berkeley Deep Survey (LBDS)

516, 518
lens equation 132
lenticular galaxies 52, 55
lepton number L i 301



Index 721

Lick counts of galaxies 35, 36
Lick Observatory 550
light distribution in galaxies 59–63

in elliptical galaxies 61
in spiral and lenticular galaxies 61
in spiral galaxies 68
putting the light distributions together

62
light elements, primordial nucleosynthesis

of see nucleosynthesis, primordial
lightest supersymmetric particle 643
limits of observation in cosmology

624–625
fundamental limitations 624
limitations due to cosmic variance 624

lithium 7Li
observed primordial abundance 298,

299
local group of galaxies 51
local supercluster of galaxies 43, 44, 78
Lockman Hole survey field 525
LOFAR project (Netherlands) 576
longitudinal gauge 348
longitudinal plasma oscillations 317
Lorentz invariance 184, 196

form-invariance 184
Lorentz transformations 185, 187, 207,

238, 239
lukewarm intergalactic gas 560–569

collisional excitation of 562–563
‘thermostat’ temperatures of 563
by shock waves 562
emissivity of 562, 563
HI and HeII Ly-α line emission due to

562
ionisation state of 563

diffuse ultraviolet radiation at large
redshifts and 567–569

emission and absorption of 564–567
detectability of redshifted Lyman-α

emission 564
photoexcitation and 564
shock excitation and 564

proximity effect and 567–569, 572
luminosity function of galaxies 77–84,

509
luminosity–metallicity relations for

galaxies 74–76
luminous infrared galaxies

evolution of 536
luminous infrared galaxy N1-015

spectral energy distribution of 535
lunar laser ranging 175
Lyman limit 588, 589, 591
‘Lyman valley’ 570
Lyman-α absorption clouds in in-

tergalactic medium 545, 550,
552–560

confinement of 555
evolution of, with cosmic epoch 556,

569
nature of 554–556

according to large-scale hydrodynamic
simulations 573

observed number density distribution of
554, 555, 566, 600

power spectrum of forest of 557–560
properties of 552–554

column densities of 554
damped Lyman-α systems 554
fractional ionisation of 555
Lyman-α forest 552–554, 556–558,

566–572, 574
Lyman-limit systems 553, 554, 556,

564, 569–571, 590
masses of 555
origin of damped Lyman-α systems

572
two-point correlation function of 557,

558
dark matter perturbations and 559
SiIII absorption features and 557, 558

Lyman-α emission of the intergalactic gas
562

Lyman-α radiation field, colour temperature
of 576

Lyman-α scattering, optical depth for 549
Lyman-α transition

oscillator strength for 549
photo-excitation cross-section for 549

Lyman-break galaxies 479, 607
redshift distribution of 590, 592

Lyman-limit galaxies, decreasing comoving
density at large redshifts 489

α Lyrae 5

M31
luminosity of 84
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rotation curve of 67
M49 (NGC 4472) 69, 116

velocity dispersion of 70
M51 (NGC 5194) 52
M82 54
M86 116
M87 (NGC 4486) 52, 55, 69, 116
Mössbauer effect 178, 189
Mach’s principle 11, 12, 199
MACHO project 141, 142
MACHOs 141

mean mass of 141
Magellanic Clouds 7, 54, 141
Magellanic irregular galaxies 54
magnetic fields

in stars 578
in the interstellar and intergalactic

medium 578
origin of 577–582

amplification mechanisms and 578
amplification of seed field by turbulence

580
dynamo action and 578, 580
emf created by Biermann battery 579
extragalactic radio sources and 581
extragalactic radio sources at large

redshifts 582
laboratory demonstration of dynamo

action 578
magnetic reconnection and 578
problems of dynamo action on large

scales 578
seed field created by Biermann battery

579
seed fields 579

power spectrum of magnetic turbulence
580

predicted power spectrum from magnetic
turbulence 580

role in astrophysics 577
rotation measure synthesis and 580

making real galaxies 583–620
abundances of elements in Lyman-α

absorption systems 598–604
equations of cosmic chemical evolution

604–607
old red galaxies 607–610
origin of rotation 610–613

putting it all together – semi-analytic
models of galaxy formation
613–620

star and element formation 583–598
background radiation and element

formation 584–587
Hubble Deep and Ultra Deep Fields

590–596
Lyman-break galaxies 590
observed global star formation rate

587–590
submillimetre determinations of cosmic

star-formation rate 596–598
Malmquist bias 246
Markarian ultraviolet-excess galaxies 597
mass density of the Universe

in stars at the present epoch 84
mass–luminosity ratio

early-type galaxies 138
for clusters of galaxies 267
for galaxies and clusters 482
for Universe as a whole 83, 267
of elliptical galaxies 69, 84
of spiral galaxies 68, 84

mass–luminosity relation for stars 499
mass–metallicity relations for galaxies

at large redshifts 76
mass-energy relation E = mc2 181
masses of galaxies 63–70
massive galaxies in clusters 617
massive ultra-weakly interacting particles

643
matter-dominated Universe 276
Mattig’s formula 219
MCG catalogue of galaxies 44
‘meatball’ topology 41
Medium Deep Survey of galaxies (MDS)

542
Mercury, advance of perihelion of 189

radar ranging and 189
‘merger trees’, hierarchical clustering and

615
mergers of coalescing galaxies 614
MERLIN long baseline interferometer

266
Mészáros effect 358–359, 381, 393, 396,

398
metallicity Z 74, 600, 605, 606
metric angular diameters 221, 253
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between any two redshifts 228
metric of isotropic two-space 155
metric perturbations 368, 374, 392, 436
metric tensor 155, 186–188

components of as gravitational potentials
187

microlensing, gravitational 132
Millennium Galaxy Catalogue 62, 63, 83
Millennium Simulation 486–488,

613–615, 617–619
first quasar candidate 619

Milne empty world model 207, 237
Minkowski metric 158, 179, 181, 187,

188, 195
‘missing baryon’ problem 547
Modern Cosmology (Dodelson) 313, 422
Monte Carlo Markov chain methods 463
Monte Carlo methods 506
Moon, fluorescent X-rays from 524, 525
morphologies of galaxies 49, 50
Mount Wilson 100-inch telescope 492
multipole moment 432, 433

N galaxies 51
nebulae

cataloguing of 7
nature of 6, 7

‘negative mass’ in inhomogeneous Universe
233

negative pressure equation of state 208,
623, 630, 644

speed of sound for 638
neutralinos 373
neutrino astrophysics 625
neutrino background temperature 301–303
neutrino barrier 286, 292
neutrino chemical potential 301
neutrino interaction cross-sections 291
neutrino oscillations 143
neutrino perturbation

damping by free-streaming 376
free-streaming damping mass 377, 380,

381
neutrinos

astrophysical limits to masses of 20
cosmological limits to masses of 560
cosmological limits to number of species

of 463
cosmological mass density in 463, 465

decoupling of 367
equilibrium number density of 143, 301
free-streaming of 380, 400
laboratory limits to the masses of 143
laboratory limits to the number of species

of 145
massive decaying 417
neutrino background temperature 376
their role in primordial nucleosynthesis

see nucleosynthesis, primordial
time-scale for interaction in the early

Universe 291
with finite rest mass 19, 367, 375, 376,

380
neutrinos, free-streaming of 396
neutron decay 292, 294
neutron stars 586
Newton’s law of gravity 4
Newtonian gravitational potential 348,

350, 438
NGC 1300 53, 54
NGC 2787 55
NGC 3077 54
NGC 4486 52
NGC 4839 114
NGC 4874 111, 114
NGC 4889 111, 114
NGC 5194 52
NGC 5195 52
NGC 520 54
NICMOS infrared camera of Hubble Space

Telescope 140
non-Euclidean geometries 11, 150–152,

173, 492
non-Gaussian fluctuations 432, 466

examples of 432
skewness and kurtosis 466

non-linear collapse of spherical density
perturbations 472–477

spherical top-hat collapse 473–475
maximum scale-factor for 473
redshift of collapse of 473
turn-around epoch 473
violent relaxation and 474

non-linear development of density
fluctuations 407–409

self-similar solution for 408
two-point correlation function 407–409



724 Index

NORAS catalogue of X-ray clusters of
galaxies 116

normalised impact parameter 132
nuclear reactions in the Sun 279
nucleocosmochronology 13, 252
nucleosynthesis in stars 14
nucleosynthesis, primordial 14–16, 140,

289, 289–307, 417
baryon-symmetric Universes 303–307

‘freeze-out’ of abundances in 304,
306

equilibrium abundances in the early
Universe 289–290

equilibrium energy densities 290
in the non-relativistic limit 290, 303
neutron–proton ratio 290
relativistic statistical mechanics and

289
evolution of abundances during 293,

294
light elements, abundances of 295–301

comparison of theory and observation
299–301

observations of 296–299
massive neutrinos and 369
neutrino background temperature

301–303
neutrinos, decoupling of 290–292

‘freezing out’ of the n/p ratio and 291
non-standard assumptions concerning

300
lepton asymmetry 300
limits to the number of unknown

neutrino species 300
varying gravitational constant 300

synthesis of the light elements 292–295
dependence upon photon-baryon ratio

294
deuterium formation 292, 293
epoch of nucleosynthesis 292
helium formation 292, 293
lithium formation 293, 294
neutron fraction 292
nuclear reactions involved in 292

number counts of galaxies 46
number counts of submillimetre sources

452
Nyquist frequency 504, 505

O04 survey 595
observable Universe of galaxies 471
observations in cosmology 162–171

age of the Universe T0 171
angular diameter distance 167, 172
angular diameters 167
apparent intensities 168–170

for bolometric luminosities and flux
densities 169

K-corrections 170, 223
cosmological redshift and time dilation

162–166
the meaning of redshift in cosmology

164
distance measure D 167, 172, 218, 243

independence of Ω0 at small redshifts
245

Hubble’s law 165–167
luminosity distance 169, 172
number densities 170–171, 172

comoving number density 171
comoving volume 170

reciprocity theorem 169
observations in cosmology for Friedman

world models 215–228
angular diameter–redshift relations

221–223
for inhomogeneous Friedman world

models 233, 234
for models with ΩΛ = 0 221
for models with ΩΛ �= 0 223
for partially inhomogeneous Friedman

world models 235
comoving volume within redshift z

226–228
models with ΩΛ = 0 226
models with ΩΛ �= 0 228, 263

cosmic time–redshift relation 217–218,
280

age of Universe for flat world models
with ΩΛ �= 0 218

age of Universe for models with
ΩΛ = 0 217

for flat world models with ΩΛ �= 0
218

for models with ΩΛ = 0 217
for models with ΩΛ �= 0 218

deceleration parameter 216
relation to Ω0 and ΩΛ 216
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distance measures as a function of redshift
218–219

for Milne’s empty world model 219
for models with ΩΛ = 0 219
for models with ΩΛ �= 0 219
Mattig’s formula 219

flux density–redshift relations 223–226
for inhomogeneous Friedman world

models 235
for starburst galaxies in the submillime-

tre waveband 501, 503
ghost images 223

Occam’s razor 419
Ohio State University 295
Olbers’ paradox 510

in an infinite, static, Euclidean Universe
511

resolution of, in standard world models
511, 512

old red galaxies 607–610
constancy of masses with redshift 607
early formation of stellar populations of

610
evidence for old stellar populations in

608
evolving stellar mass density and 607
massive 607–610
need for early starbursts 608, 609
selected in the K waveband 607
star-forming galaxies at large redshift and

608
stellar masses as a function of redshift

608
On the Principles of Geometry

(Lobachevsky) 11, 151
optical depth for intergalactic HeII

absorption 564
optical jet in M87 52
The Origin and Evolution of Cosmic

Magnetism (ed. Beck, Brunetti, and
Feretti) 577, 580

origin of the spectrum of primordial
perturbations 629–640

duration of the inflationary phase
630–631

necessary number of e-folding times
631

equation of state 630

freezing of perturbations on passing
through Hubble sphere 634

shrinking Hubble sphere 631–634
OVRO Millimetre Array 126, 127, 249

P(D) distribution 504–506, 514, 525
asymptotic slope of 505
in infrared waveband 507
in ultraviolet waveband 506
in X-ray waveband 507
non-Gaussian statistics and 505
physical meaning of 505
shape of 505

Palomar 200-inch telescope 514, 521
Palomar 48-inch Schmidt telescope 96
Palomar 48-inch Telescope Sky Survey 96
pancakes 20, 363, 400, 402, 476, 477, 480
parallel transport, or parallel displacement

151–153
Parkes Selected Region (PSR) sample

517, 518
Parseval’s theorem 388
particle horizon 22, 335–340, 342, 344,

346–349, 351–354, 361, 362, 376,
377, 379, 380, 391–393, 415, 429,
430, 436, 441, 443, 444, 626–629, 631

definition of 336
radiation-dominated Universe and 337

particle physics and cosmology 624, 625
particle–antiparticle annihilation in the early

Universe 278, 303
collision time exceeds expansion age

306
cross-sections for 304
epoch of decoupling of particles and

antiparticles 305
equilibrium number densities 304

Particles, Nuclei and the Universe, Selected
Works of Yakov Borisevich Zeldovich,
Vol. 2. (Zeldovich) 381

past light cone 159, 335, 339–344, 346,
631–633

Pauli exclusion principle 144
Pavo cluster of galaxies 42
peculiar and interacting galaxies 56–59
peculiar velocities

from polarisation measurements of
the cosmic microwave background
radiation 451
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in the local Universe 268
of galaxies 201
of perturbations 315, 453

Perseus cluster of galaxies 124, 125, 547,
617

perturbations, evolution of, in the
standard cosmological models
311–333

acoustic oscillation and 361–362
conservation of angular momentum and

328
for models with ΩΛ = 0 325
for models with ΩΛ �= 0 326
in terms of conformal time τ 340
Jeans’ instability 317–318

dispersion relation for, in a static
medium 317

growth rate for, in static medium 318
Jeans’ instability in an expanding

Universe 319–327
Einstein–de Sitter case 319
empty Milne world model 320
falling poles 322–324
general solution 324–327
linear growth of 319–327, 332, 351,

354
necessity of finite initial amplitudes

322, 333
perturbing the Friedman solutions

321–323, 476
small perturbation analysis 319–320
spherical perturbations in standard

Friedman models 321
linear 312
non-relativistic wave equation for

313–317
adiabatic perturbations 316
first-order solutions for 315
in terms of conformal time 317
in terms of cosmic time 317
unperturbed solutions for 315

peculiar velocities in the expanding
Universe 327–331

decay of in Ω0 = 0 case 329
evolution of 329, 330
growth of in Ω0 = 1 case 328
potential motions 327, 328, 406
primordial turbulence and 328
rotational motions 328

relativistic case 331–332
growth rate in radiation-dominated case

332
the basic problem 332–333
what the theorists are trying to do

311–313
Petrosian r-band luminosity 91
photon barrier 280
photon diffusion 355

coefficients of thermal conduction and
shear viscosity 355, 356

photon-to-baryon number ratio 23, 277,
622

physics beyond the standard model 372
Planck energy scale 209
Planck era 287, 631, 642–644

need for quantum theory of gravity 642
new physics before reaching 643

Planck mass 209
Planck mission of ESA 421, 450–452,

467, 625
Planck spectral energy distribution

Rayleigh-Jeans region of 455
variation with redshift z 272
Wien region of 278, 279

fraction of photons in 278
Planck time 642
planetary nebula IC418 452
Pleiades star cluster 5
Plummer model for elliptical galaxies 108
Poisson noise 392
Poisson’s equation for gravity 108, 187,

268, 313
linearity of 315
relativistic case 331

polar coordinates 155
polarisation of the cosmic microwave

background radiation 454–463,
625

anticorrelated TE cross correlation power
spectrum of as evidence of adiabatic
perturbations 458

B-modes and 457, 467
B-modes due to gravitational lensing

457
BB power spectrum and 457
EE power spectrum of 456, 457, 459
from the epoch of reionisation 458–459
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angular scale of strongest polarised
signal 458

from the last scattering layer 455–458
physics of 454–455

necessity of quadrupole intensity
distribution 455, 458

polarised galactic radio emission and
456, 457

primordial gravitational waves and
459–460

B-modes 459, 460
E-modes 459
origin in the early Universe 460
polarisation modes of 459
predicted BB power spectrum of 460

TE cross correlation power spectrum of
457–459

TT intensity power spectrum and 456,
457

weak gravitational lensing and 460–463
BB-mode polarisation due to lensing of

EE-mode polarisation 462, 463
distortion matrix 460
E-mode polarisation due to 462

polycyclic aromatic hydrocarbon (PAH)
molecules 535

post-recombination era 384, 471–489
non-linear collapse of density perturba-

tions 472–477
isotropic top-hat collapse 473–475
Zeldovich approximation 475–477

Press–Schechter mass function
482–489

development and recapitulation
485–489

exposition – elementary theory
482–484

role of dissipation 477–482
POTENT reconstruction procedures 269
power spectrum of cosmic microwave

background radiation 434, 436
power spectrum of fluctuations 388–392

relations between different descriptions of
391

power spectrum of initial fluctuations 17,
390–392, 405, 438

modifications of 393–401
power spectrum of temperature fluctuations

432, 433

for non-Gaussian fluctuations 466
precision cosmology 421, 466, 614, 621
Press–Schechter mass function 20, 363,

482, 482–489
‘peaks-within-peaks’ problem 485
critical density contrast for structure

formation 483
evolution of number density of dark

matter haloes with redshift 487, 489
hierarchical clustering and 486, 487,

489
mass function of clusters and 486
problems with simple derivation 485,

486
time evolution of 484, 485

primordial fluctuation problem 23, 25,
472, 623

Harrison–Zeldovich spectrum and 623
primordial gravitational waves 440–443

equation of state of 441
on superhorizon scales 441
quadrupole nature of 441
quantum origin in the early Universe

441
tensor to scalar ratio 441

primordial nucleosynthesis of the light
elements see nucleosysnthesis,
primordial

Principia Mathematica (Newton) 10
principle of covariance 184
principle of equivalence 173–176, 176,

177, 179–181, 184, 196
Einstein’s 174, 175, 196

local Lorentz invariance (LLI) 175
local position invariance (LPI) 175

free-fall 174, 179
weak 174, 175

Principles of Physical Cosmology (Peebles)
313

probability integral 483
Probing Galaxies through Quasar Absorp-

tion Lines (eds. Williams, Shu and
Ménard) 552

problem of the values of the cosmological
parameters 23

prograde orbits 57
projected surface brightness 116
proper radial distance coordinate 339
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properties of spiral and elliptical galaxies
70–76

proton decay
avoidance of 373

PSR 1913+16 192–195
pulsars and general relativity 192–194

emission of gravitational waves 193,
194

acceleration of binary pulsar due to
194, 195

masses of neutron stars 193, 194

QSO Absorption Lines (ed. Meylan) 552
quadrupole component of the temperature

power spectrum 434
quantised harmonic oscillator 635–637

angular frequency of 636
carrying out a proper calculation 637
energy levels of 635
Hermite polynomials and 636
Schrödinger’s equation for 635
wavefunctions for 635
zero-point energy of 636
zero-point fluctuations of 636

quantum theory of gravity 644
quasar 0957+561 (double quasar) 249
quasar 2345+007 (double quasar) 554
Quasar Absorption Line key project 568
quasar HE 2347-4342 566, 567
quasar HS1700+64 566, 567, 571
quasar OQ 172 570

ultraviolet spectrum of 550
quasar PKS1935–692 564, 571
quasar PSS J1443+2724 273
quasar Q0302–003 564, 566, 571
quasar Q1331+170 272
quasar Q1422+2309 553
quasar Q2237+0305 139
quasar QSO 0013–004 273
quasar spectra

Lyman-α emission line 519, 520
prominent emission lines in 520

quasars
3CR sample of radio 508, 509
cut-off at large redshifts 487, 488
early formation of supermassive black

holes in 610
low-luminosity 521
most luminous 488

radio-quiet see radio-quiet quasars
ratio of black hole to spheroid masses

610, 617
unification scheme with radio galaxies

610

radiation-dominated universe 14, 276
Compton scattering in 281–284
dynamics of 271–273

including neutrinos 302, 303
maintenance of photons and matter at

the same temperature by Compton
scattering 282

time-scale for expansion of 291
total energy density of relativistic species

291
radio galaxies 51, 479

3CR sample of 508, 509
evidence for old stellar populations in

609
radio galaxy 0902+34 609
radio galaxy LBDS 53W069 610
radio galaxy LBDS 53W091 609
radio–far-infrared correlation for galaxies

597
flattening of radio source counts and

537
radio-quiet quasars

counts of 521, 522
cut-off at large redshifts 519, 524, 569
definition of complete samples of

518–521
completeness of 521
dispersion prism-grating techniques

521
multicolour photometric technique

519–520
searches for ‘i-band drop-outs’

520–521, 524
searches for Lyman-α and CIV emission

lines 521
searches for variability of 521
ultraviolet excess technique 519

discovery of 518
evolution of, with cosmic epoch 518,

520, 521, 610
luminosity function of

‘luminosity evolution’ of 522
evolution of 521, 522
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ram-pressure stripping 544, 613
Rayleigh–Jeans region of Planck spectrum

455
Rayleigh–Jeans spectrum 27, 29, 30
The Realm of the Nebulae (Hubble) 50,

492
reciprocity theorem 229
reconstruction of local mass distribution

268, 269
red and blue sequences of galaxies see

galaxies, red and blue sequences of
Red-Sequence Cluster Survey 138
redshift biases 406–407
redshift, definition of 45, 162
redshift–apparent magnitude relation 44
redshift–magnitude relation for brightest

galaxies in clusters
infrared 544–545

cosmic conspiracy and 544, 545
galactic cannibalism and 545
passive evolution and 544

reduced deflection angle 130
Rees–Sciama effect 440
REFLEX catalogue of X-ray clusters of

galaxies 116, 120, 121
regular clusters of galaxies 102–103
reionisation of the intergalactic gas 382
relation between angular and spatial

two-point correlation functions 37,
38

relativistic binary stars 192
relativistic gravity, introduction to

173–198
non-linearity of 181, 182

relativistic jets, heating of the intestellar gas
by 617

relativity of simultaneity 238
Relativity: Special, General, and Cosmolog-

ical (Rindler) 184
revised Hubble sequence for galaxies

50–56
Riemannian geometries 151, 182, 184
Riemannian metric 187
ring galaxies 56, 58
Robertson–Walker metric 149, 150,

158–162, 163, 167, 168, 340, 341
for an empty Milne Universe 237–239
for the critical world model 231
invariant interval ds2 161

ROSAT X-ray Observatory 116, 117, 119,
120, 122, 451, 491, 506, 524, 525

rotation curve of a centrifugally supported
disc in isothermal gas sphere 612

rotation curves of spiral galaxies 66–69
rotation of galaxies, origin of 610–613

damping of primordial rotational
velocities 610

dissipative contraction within dark matter
haloes 611

problem of specific angular momenta
612

problems of theories of primordial
turbulence 610

role of tidal stripping 613
roles of dissipation and tidal stripping

612
tidal torques 611, 612

during linear growth of perturbations
611

slow rotation of the spheroidal compo-
nents of elliptical and spiral galaxies
and 611

Rutherford scattering 190

S0 galaxies 52
Sérsic 159-03 123, 124
Sérsic index 91
Sa galaxies 51
Sachs–Wolfe effect 18, 21, 441, 447, 456

dependence upon angular scale 439
gravitational redshift and 436, 437
integrated 452, 456
physical arguments 436–440

SAGDP99 survey 595
Sakharov oscillations 21, 362
Salpeter initial mass function 500, 588
Sb galaxies 51
Sc galaxies 52
scalar fields 208, 623, 629, 634–635

density and pressure of 634
Einstein’s field equations and 635
fluctuations in 635
negative pressure equation of state and

634
not yet detected experimentally 634
properties of 634–635
slow-roll parameters 635, 640
string theory and 634
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theories beyond the standard model of
particle physics and 634

scale factor a(t) 160, 161, 162, 164, 167,
171, 172

scale factor–redshift relation 164, 201,
271

scaling test for homogeneity of clustering of
galaxies 35–37

Schönberg–Chandrasekhar limit 500
Schechter luminosity function for galaxies

77, 79, 82, 108, 109, 590, 593, 595
break absolute magnitude M∗ of 78, 81
break luminosity L∗ of 77, 78, 81
brightest galaxies in clusters 82
dependence upon galactic environment

79, 81
evolution with redshift 82
for low luminosity galaxies 82
in voids 80, 81
L∗ as a standard candle 80
turnover luminosity L∗ 607

Schwarzschild metric 183, 187
coordinate time in 183
proper time in 183

Schwarzschild radius rg 184
Sco X-1 524
SCUBA submillimetre bolometer array

534, 597
Sd galaxies 52
secular instabilities in rotating stellar discs

616
self-similar model for cluster formation

118, 119
semi-analytic models of galaxy formation

412, 472, 486, 583, 613–620
acoustic peaks in the large-scale galaxy

distribution and 620
as ‘experimental computational

astrophysics’ 615
dust extinction and 617
evolution of mass function of galaxies and

620
formation of supermassive black holes

and 617, 618
in centres of rich clusters 620

heating of the intergalactic gas in clusters
and 617

mergers of galaxies and 616
major 616

minor 616
morphologies of galaxies and 616
nuclear starbursts and 616, 617
objectives of 615
quasars at large redshifts and 618, 619
radiative cooling and star formation 615
spectrophotometric properties of galaxies

and 616
supernova explosions and 616
the epoch of maximum quasar activity

and 620
‘trial and error’ approach to 617
two-point correlation function for galaxies

and 617, 618
for different luminosities and colours

617
Sérsic index 63
Sérsic’s law 62
Seyfert galaxies 51, 516, 521

counts of 521
Shane–Wirtanen catalogue of galaxies 100
Sidereus Nuncius or the Starry Messenger

(Galileo) 5
σ8

definition of 403
two-point correlation function and 403

Silk damping 353, 355, 357, 360, 361,
381, 410, 426, 430, 450

Silk mass 17, 353, 356, 357
singularity theorems of Penrose and

Hawking 644
Sirius 5
Sirius B 177
6C radio galaxies 255
Sloan Digital Sky Survey (SDSS) 22,

35, 36, 40–42, 49, 50, 75, 76, 78, 79,
82–84, 87–91, 93, 95, 99–101, 110,
111, 245, 362, 387, 410–412, 414,
465, 491, 520, 522, 524, 552, 557, 559

power spectrum of galaxies in 412–415
Small Magellanic Cloud 8
Smoluchowski’s envelope 105
Soudan Underground Laboratory 146, 374
sound horizon 443, 444
sound horizon at the last scattering layer

427–429
Space Telescope Imaging Spectrograph

567
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space–time diagram
for an empty Universe 237
for the expanding Universe 170

space–time diagrams for standard world
models 339–347

critical world model Ω0 = 1,ΩΛ = 0
342–344

distances and times 339–340
past light cone 340
reference world model

Ω0 = 0.3,ΩΛ = 0.7 344–
347

space–time metric for isotropic curved
spaces 155–158

‘spaghetti’ topology 41
spatial two-point correlation function 37,

38, 385, 386
special theory of relativity 183, 184, 186
spectral energy distribution of galaxies

evolution of 498–500
in far infrared and submillimetre

wavebands 500, 503
spectrum of primordial perturbations

spectrum of primordial gravitational
waves and 640

spectrum of primordial perturbations in the
scalar field 637–640

constant noise-power on horizon scale
639

damping on superhorizon scales 638
decay of scalar field at end of inflationary

era 639
growth of potential fluctuations in

inflationary expansion 638
applicability on superhorizon scales

638
as an equation of damped harmonic

oscillator 638
damping on superhorizon scales 638

growth of vacuum fluctuations in
inflationary expansion 637

comparison with growth of non-
relativistic density perturbations
637

differential equation for 637
growth of zero point fluctuations 638
relation to perturbations in post-

inflationary relativistic plasma
639

time-delay formalism for 639
zero point fluctuations in the ground state

638
speed of sound as a function of cosmic

epoch 285–286, 354, 427, 444
at constant entropy 285

speed of sound, relativistic 332, 352
spherical harmonic functions 431, 433

addition theorem for 433
spheroidal component of spiral galaxies

51
spin parameter λ 611, 612, 616

as a measure of rotational support of
a galaxy 611

spin temperature of neutral hydrogen 576
spiral galaxies 50, 51

rotation curves of 66
types of 51

spiral-poor clusters of galaxies 102–103
spiral-rich clusters of galaxies 102–103
Spite plateau 298, 299
Spitzer First Look Survey 533
Spitzer infrared space observatory 478,

491, 533
‘sponge’ topology 41, 42
Square Kilometre Array (SKA) 576
stability diagram for adiabatic baryon

perturbations 361
standard cold dark matter model of galaxy

formation 403
star formation in galaxies 472
star-forming galaxies 452

at redshifts z > 3 591
dust extinction and 597
spectrum of 594

starburst galaxies 54, 536, 537
ultraviolet spectra of 587, 588

rate of formation of heavy elements and
588

statistical equilibrium 65
statistical methods into astronomy 5
statistical weight g 289
Stefan–Boltzmann law 272
stellar evolution and element formation

584, 585
energy generation in the conversion of

hydrogen into helium 584, 585
mean stellar luminosity during main

sequence evolution 586
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stellar parallaxes 5
stellar populations, ages of 91
structural index, or structural length 105
sub-dwarf (sdB) stars 519
Subaru 8-metre telescope 595
Subaru Deep Surveys 595
submillimetre background radiation 534
submillimetre bolometer array (SCUBA)

452
submillimetre galaxies

problems of redshift determinations 597
redshifts measurements in CO line 479

substratum 149, 150, 341, 354, 358
Subtle is the Lord . . . (Pais) 184
Sun, quadrupole moment of 189

measured by helioseismology 190
Sunyaev–Zeldovich effect in hot

intracluster gas 95, 125–128, 261
distance estimates using 128
fluctuations in the cosmic microwave

background radiation and 450–451
in the Rayleigh–Jeans limit 126
kinematic 451
spectral shape of distortions 126
SuZIE experiment and measurement of

spectral shape of distortions 126
Sunyaev–Zeldovich marginalisation factor

463
superCDMS experiment 146
superclusters of galaxies 43
supergalactic plane 44, 269
superhorizon scales 347–350, 367, 379,

382, 391, 392, 397, 437
freezing of potential fluctuations on 439

Supernova Cosmology Program 164–166,
258, 259

Supernova Legacy Survey 257, 258, 465
supernova SN1987A 369

distance of Large Magellanic Cloud and
248

supernovae of Type 1a 165, 166, 252
ESSENCE project 165
luminosity–width correlation 164, 165,

256, 257
redshift–apparent magnitude relation for

256–259
stretch factor 166
white dwarfs in binary systems and 256,

257

supersymmetric particles 373
suppression factor 450
SWIRE Legacy sample 536
‘swiss-cheese’ topology 41
symmetry breaking 24

fluctuations associated with 466
synchronous gauge 349
synchrotron radiation 492
synchrotron radio emission in clusters of

galaxies 578

temperature fluctuation on the last scattering
surface

adiabatic 364, 365
temperature of formation of light elements

279
temperature of regions of ionised hydrogen

279
temperature-scale factor relation in the very

early Universe 371, 372
temperatures of the photon and neutrino

backgrounds 301–303
tensor perturbations and gravitational waves

348
tensor virial theorem 64
The Inflationary Universe: The Quest for

a New Theory of Cosmic Origins
(Guth) 626

Theoretical Concepts in Physics (Longair)
173, 184, 314

Theory and Experiment in Gravitational
Physics (Will) 189

theory of the expanding Universe, history
of 10–13

thermal history of the Universe 17, 32,
271–287

early epochs 286–287
epoch of recombination 277–281
matter and radiation content of the

Universe 273–277
radiation-dominated era 271–273,

281–284
speed of sound as a function of cosmic

epoch 285–286
Third Reference Catalogue of Bright

Galaxies (de Vaucouleurs et al) 84
Thomson optical depth for reionisation

459
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Thomson scattering 33, 279, 356, 422,
451–454

conditions for creation of polarised
radiation by 454, 455, 458

cross-section 29, 356
optical depth of intergalactic gas for

452
3CR quasars 610

black holes masses of 609
3CR radio galaxies 254–256, 514, 609,

610
early formation of bulk of stellar

population 609
increase in luminosity with redshift 255
stellar masses of large redshift 609

3CR radio sources 514, 516, 518
tidal forces 613
tidal forces and relativistic gravity 182,

183
tidal radius 137, 138
tidal radius of cluster of galaxies 105
time dilation

cosmological 163
test of 164–166

in a gravitational field 178, 438
in special relativity 163

topological defects
cosmic strings, monopoles and textures

466, 628, 640
isocurvature perturbations and 466
phase transitions in the early Universe

and 466
topology of the distribution of galaxies 41,

42
transfer function 393

adiabatic cold dark matter 393–396
adiabatic hot dark matter 394, 396
isocurvature cold dark matter 394,

396–399
subsequent evolution of different modified

power spectra 399–401
transfer functions

for baryons 410, 411
triaxial velocity distribution in galaxies 69
triple-α reaction 293, 584
tritium, half-life of 293
Tully–Fisher relation for spiral galaxies

73–74, 612
in the infrared waveband 74

‘tuning-fork’ diagram 50
turnround epoch 408, 409
2C radio survey 505
Two Micron All Sky Survey (2MASS) 84,

140
2dF galaxy redshift survey 40–42, 49, 50,

78–83, 87, 88, 93, 245, 266, 269, 362,
387, 403–407, 410–414, 465, 491,
519, 618

final power spectrum of 412–413
2dF quasar redshift survey 387, 510,

519–522, 524
two-dimensional isotropic curved geometry

151, 152
two-photon process 423
two-point correlation function 432

angular 433
two-point correlation function for galaxies

22, 34–38, 150, 268, 362, 385–388,
433

features of 387–388
relation to the density contrast 386
relation to the power spectrum of density

fluctuations 389
Type 1a supernovae 13, 21
types of topology of the distribution of

galaxies 41

UGC catalogue of galaxies 44
UHURU X-ray Observatory 114, 524
UK Schmidt telescope 33, 519
ultraluminous infrared galaxies (ULIRGs)

479, 503, 532
spectra of 532

ultrametal-poor star CS 22892-052
thrium abundance in 252

ultraviolet astronomy
unit used in 562

ultraviolet opacity of the intergalactic
medium 569

V/Vmax or luminosity-volume test
507–510

banded 509
for radio galaxies 514
for radio quasars 514
for radio-quiet quasars 518
space distribution of galaxies, quasars

active galaxies 507–510
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vacuum energy density 207, 208–211,
625

estimate from quantum field theory 209
problem of the magnitude of 209, 623

values of the cosmological parameters
problems of 623

vector perturbations and vortex motions
348

velocity dispersions of elliptical galaxies
69–70

velocity of Solar System through the Cosmic
Microwave Background Radiation
30

velocity–distance relation for galaxies
44–46, 48

in an expanding universe 46, 47
very early Universe 621–644

anthropic cosmological principle
625–626

baryogenesis 641–642
big problems of cosmology 621–624

baryon-asymmetry problem 622
flatness problem 622
horizon problem 621
primordial fluctuation problem 623
values of the cosmological parameters

623
way ahead 624

inflationary Universe – historical
background 22–25, 626–629

limits of observation 624–625
origin of the spectrum of primordial

perturbations 629–640
duration of the inflationary phase

630–631
equation of state 630
fluctuations in the scalar field and

637–640
quantised harmonic oscillator

635–637
scalar fields 634–635
shrinking Hubble sphere 631–634

Planck era 642–644
Very Large Array (VLA) 140, 266, 597
Very Long Baseline Array (VLBA) 266
Viking spacecraft 191, 192
violent relaxation 399
Virgo Cluster Catalogue 117

Virgo cluster of galaxies 43, 52, 102, 110,
116, 117, 246, 248

Virgo consortium 418, 615
Virgo supercluster 268
virial of Clausius 64
virial theorem 63–66, 103, 110, 119, 243,

375, 399, 408, 409, 474, 475
applied to clusters of galaxies 66
problems of applying 66

Vishniac effect 453
visibility function 423, 424, 426
visible matter in the Universe

integrated luminosity of 83
mean mass–luminosity ratio of 83

VLBI measurements of deflection of radio
waves by the Sun 190, 191

voids in the distribution of galaxies 41,
381, 439, 537

Voigt profile 554
VSA experiment 435

walls and voids in the distribution of
galaxies 38–44

weak gravitational lensing 136
Weyl’s postulate 149, 150, 158, 199
white dwarfs 519, 586

cooling times for 251
gravitational redshift and 189

Wide Field Planetary Camera 2 591, 592
Wilkinson Microwave Anisotropy Probe

(WMAP) 21, 32, 33, 231, 300, 421,
429, 434–437, 440, 442, 444, 450,
451, 456–458, 460, 463, 465–467,
547, 559, 561, 615, 620, 624, 625

point sources detected in the WMAP
survey 451

nature of 452
William Herschel’s model of the Galaxy 5
WIMPs

abundance of 289
as dark matter particles 370–374
astrophysical limits to the masses of

144
candidates for 143
decoupling from thermal equilibrium

370
in very early Universe 371

epoch of decoupling of 372
equilibrium abundances of 370
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‘freezing out’ of abundances of 370,
371

interaction cross-section for 371–373
experimental limits for 374

laboratory detection of 145
laboratory limits to the masses of 145
suppression mechanisms for 145,

370–372, 375
world lines 199, 237

of galaxies 342, 345
Wouthysen-Field effect 576
W± and Z0 bosons 145, 208

X-ray background emission 524
at hard X-ray energies

nature of sources contributing to 529
at soft X-ray energies

nature of sources contributing to 527,
529

a cosmic conspiracy and 561
contributions of different classes of source

to 528
spectrum of 526

X-ray clusters of galaxies
number counts as a test of cosmological

models 532

tests of cosmological models and
529–532

X-ray emission of intracluster gas 95
X-ray luminosity–mass relation for clusters

of galaxies 119, 120
X-ray luminosity–velocity dispersion

relation for clusters of galaxies 120
X-ray sources

Comptonisation and 529
evolution of luminosity function of, with

cosmic epoch 527
populations at soft and hard X-ray

energies 526, 528
strongly absorbed 529
template spectra for strongly absorbed

sources 529
XMM-Newton X-ray Observatory 114,

116–118, 123, 124, 491, 525

Z0 boson, energy width of 300
Zeldovich solution for non-linear collapse

under gravity 20, 363
formation of caustics 477

zinc abundance 601, 602
Zwicky catalogue of galaxies 35
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