

Human-Computer Interaction Series

Editors-in-chief
John Karat
IBM Thomas Watson Research Center (USA)

Jean Vanderdonckt
Université catholique de Louvain (Belgium)

Editorial Board
Gregory Abowd, Georgia Institute of Technology (USA)
Gaëlle Calvary, LIG-University of Grenoble I (France)
John Carroll, School of Information Sciences & Technology, Penn State University (USA)
Gilbert Cockton, University of Sunderland (UK)
Mary Czerwinski, Microsoft Research (USA)
Steve Feiner, Columbia University (USA)
Elizabeth Furtado, University of Fortaleza (Brazil)
Kristiana Höök, SICS (Sweden)
Robert Jacob, Tufts University (USA)
Robin Jeffries, Google (USA)
Peter Johnson, University of Bath (UK)
Kumiyo Nakakoji, University of Tokyo (Japan)
Philippe Palanque, Université Paul Sabatier (France)
Oscar Pastor, University of Valencia (Spain)
Fabio Paternò, ISTI-CNR (Italy)
Costin Pribeanu, National Institute for Research & Development in Informatics (Romania)
Marilyn Salzman, Salzman Consulting (USA)
Chris Schmandt, Massachussetts Institute of Technology (USA)
Markus Stolze, IBM Zürich (Switzerland)
Gerd Szwillus, Universität Paderborn (Germany)
Manfred Tscheligi, University of Salzburg (Austria)
Gerrit van der Veer, University of Twente (The Netherlands)
Schumin Zhai, IBM Almaden Research Center (USA)

Human-Computer Interaction is a multidisciplinary field focused on human aspects of the development of
computer technology. As computer-based technology becomes increasingly pervasive - not just in
developed countries, but worldwide - the need to take a human-centered approach in the design and
development of this technology becomes ever more important. For roughly 30 years now, researchers and
practitioners in computational and behavioral sciences have worked to identify theory and practice that
influences the direction of these technologies, and this diverse work makes up the field of human-
computer interaction. Broadly speaking it includes the study of what technology might be able to do for
people and how people might interact with the technology.
In this series we present work which advances the science and technology of developing systems which
are both effective and satisfying for people in a wide variety of contexts. The human-computer interaction
series will focus on theoretical perspectives (such as formal approaches drawn from a variety of behavioral
sciences), practical approaches (such as the techniques for effectively integrating user needs in system
development), and social issues (such as the determinants of utility, usability and acceptability).

Author guidelines: springer.com > Authors > Author Guidelines

Also in this series

Gill, S. (Ed.)
Cognition, Communication and Interaction –
Transdisciplinary Perspectives on Interactive
Technology
ISBN 978-1-84628-926-2, 2008

Law, E., Hvannberg, E., Cockton, G. (Eds.)
Maturing Usability – Quality in Software,
Interaction and Value
ISBN 978-1-84628-940-8, 2008

Lieberman, H., Paternò, F., Wulf, V. (Eds.)
End User Development
Vol. 9, ISBN 978-1-4020-4220-1, 2006

Lieberman, H., Paternò, F., Wulf, V. (Eds.)
End User Development
Vol. 9, ISBN 978-1-4020-5309-2, 2006 (softcover)

Seffah, A., Gulliksen, J., Desmarais, M.C. (Eds.)
Human-Centred Software Engineering –
Integrating Usability in the Software Development
Lifecycle
Vol. 8, ISBN 978-1-4020-4027-6, 2005

Ruttkay, Z., Pelachaud, C., (Eds.)
From Brows to Trust – Evaluating Embodied
Conservational Agents
Vol. 7, ISBN 978-1-4020-2729-1, 2004

Ardissono, L., Kobsa, A., Maybury, M.T. (Eds.)
Personalized Digital Television – Targeting
Programs to Individual Viewers
Vol. 6, ISBN 978-1-4020-2147-3, 2004

Karat, C.-M., Blom, J.O., Karat, J. (Eds.)
Designing Personalized User Experiences in
eCommerce
Vol. 5, ISBN 978-1-4020-2147-3, 2004

Ivory, M.Y.
Automating Web Site Evaluation – Researchers’
and Practitioners’ Perspectives
Vol. 4, ISBN 978-1-4020-1672-1, 2004

Blythe, M.A., Overbeeke, K., Monk, A.F., (et al.)
(Eds.)
Funology – From Usability to Enjoyment
Vol. 3, ISBN 978-1-4020-2966-0, 2004 (softcover)

Blythe, M.A., Overbeeke, K., Monk, A.F., (et al.)
(Eds.)
Funology – From Usability to Enjoyment
Vol. 3, ISBN 978-1-4020-1252-5, 2003

Schreck, J.
Security and Privacy in User Modeling
Vol. 2, ISBN 978-1-4020-1130-6, 2003

Chi, E.H.
A Framework for Visualizing Information
Vol 1, ISBN 978-1-4020-0589-2, 2002

Gustavo Rossi • O •

Editors

Web Engineering: Modelling and
Implementing Web Applications

scar Pastor Daniel Schwabe •
Luis Olsina

Gustavo Rossi
Technical University of Valencia
Valencia, Spain

British Library Cataloguing in Publication Data
A catalogue record for this book is available from the British Library

Library of Congress Control Number: 2007935105

Human-Computer Interaction Series ISSN 1571-5035
ISBN: 978-1-84628-922-4 e-ISBN: 978-1-84628-923-1

Printed on acid-free paper

© Springer-Verlag London Limited 2008

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as
permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced,
stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers,
or in the case of reprographic reproduction in accordance with the terms of licences issued by the
Copyright Licensing Agency. Enquiries concerning reproduction outside those terms should be sent to the
publishers.

The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a
specific statement, that such names are exempt from the relevant laws and regulations and therefore free
for general use.

The publisher makes no representation, express or implied, with regard to the accuracy of the information
contained in this book and cannot accept any legal responsibility or liability for any errors or omissions
that may be made.

9 8 7 6 5 4 3 2 1

Springer Science+Business Media
springer.com

Oscar Pastor
Technical University of Valencia
Valencia, Spain

Daniel Schwabe
PUC-Rio
Brazil

Luis Olsina
National University of La Pampa
Argentina

PREFACE

In this first part of the 21st century, a large portion of the global data
infrastructure is built upon World Wide Web technology. This network of
data users and providers has become as critical a part of our everyday lives
as those networks that provide our electrical power and communications. We
are informed, educated, and entertained by Web applications and services.
The Web provides us with an international mall where we can shop for every
imaginable item.

This infrastructure is held together by a complex interconnection of
hardware, software, international standards, aesthetics, and accepted
practices. Its intricacy is not unlike that found in the engineering and design
of highway systems, buildings, and bridges. To address the growth of Web
systems and to ensure their efficiency, reliability, and maintainability, the
discipline of Web Engineering was defined. Web Engineering combines
traditional project management and software development practices with a
process that will evolve just as Web technology evolves into the future via
such innovations as the Semantic Web and Web 2.0.

Modeling and Implementing Web Application is a definitive book on all
of the crucial elements of Web Engineering by the international researchers
and practitioners who are shaping the discipline. There is no other book
available at this time that covers Web Engineering so comprehensively. As
the field evolves, this book will certainly always be viewed as a fundamental
reference. Its completeness illustrates the premise that Web Engineering is
an important and critical engineering practice for designing, implementing,
and maintaining Web services and applications. The book will provide a
valuable resource for Web professionals, researchers, and students at the
undergraduate and graduate levels.

Bebo White
Stanford Linear Accelerator Center (SLAC)
Stanford, California
April 2007

CONTENTS

Part I: Web Engineering and Web Applications Development

1 Introduction ... 3
 Gustavo Rossi, Daniel Schwabe, Luis Olsina, Oscar Pastor

2 Web Application Development: Challenges

 and the Role of Web Engineering .. 7
 San Murugesan

3 The Web as an Application Platform .. 33
 Martin Gaedke, Johannes Meinecke

Part II: Web Design Methods

4 Overview of Design Issues for Web Applications Development........ 49
 Gustavo Rossi, Daniel Schwabe, Luis Olsina, Oscar Pastor

5 Applying the OOWS Model-Driven Approach for
 Developing Web Applications. The Internet Movie
 Database Case Study ... 65
 Joan Fons, Vicente Pelechano, Oscar Pastor, Pedro Valderas, Victoria Torres

6 Modeling and Implementing Web Applications with OOHDM.......109
 Gustavo Rossi, Daniel Schwabe

7 UML-Based Web Engineering

 An Approach Based on Standards
 Nora Koch, Alexander Knapp, Gefei Zhang, Hubert Baumeister

8 Designing Multichannel Web Applications
 as “Dialogue Systems”: The IDM Model... 193
 Davide Bolchini, Franca Garzotto

 ... 157

9 Designing Web Applications with WebML and WebRatio 221
 Marco Brambilla, Sara Comai, Piero Fraternali, Maristella Matera

10 Hera .. 263
 Geert-Jan Houben, Kees van der Sluijs, Peter Barna, Jeen Broekstra,
 Sven Casteleyn, Zoltán Fiala, Flavius Frasincar

11 WSDM: Web Semantics Design Method... 303
 Olga De Troyer, Sven Casteleyn, Peter Plessers

12 An Overview of Model-Driven Web Engineering and the MDA 353
 Nathalie Moreno, José Raúl Romero, Antonio Vallecillo

Part III: Quality Evaluation and Experimental Web Engineering

13 How to Measure and Evaluate Web Applications
 in a Consistent Way... 385
 Luis Olsina, Fernanda Papa, Hernán Molina

14 The Need for Empirical Web Engineering: An Introduction.......... 421
 Emilia Mendes

15 Conclusions .. 449
 Oscar Pastor, Gustavo Rossi, Luis Olsina, Daniel Schwabe

Contentsviii

Index ... 455

LIST OF CONTRIBUTORS

Peter Barna
Technische Universiteit
Eindhoven, PO Box 513, 5600
MB Eindhoven, The Netherlands
Email: p.barna@tue.nl

Hubert Baumeister
Informatik og Matematisk
Modellering, Danmarks Tekniske
Universitet, Lyngby, Denmark
Email: hub@imm.dtu.dk

Davide Bolchini
TEC-Lab, Faculty of
Communication Sciences,
University of Lugano, Via G.
Buffi 13 6900 Lugano,
Switzerland
Email: davide.bolchini@lu.unisi.ch

Marco Brambilla
Dipartimento di Elettronica e
Informazione, Politecnico di
Milano, P.zza L. da Vinci 32,
20133, Milano, Italy
Email: mbrambil@elet.polimi.it

Jeen Broekstra
Technische Universiteit
Eindhoven, PO Box 513, 5600
MB Eindhoven, The Netherlands;
and Aduna, Prinses Julianaplein
14b, 3817 CS Amersfoort,

Email: j.broekstra@tue.nl

Sven Casteleyn
Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels,
Belgium
Email: Sven.Casteleyn@vub.ac.be

Sara Comai
Dipartimento di Elettronica e
Informazione, Politecnico di
Milano, Piazza L. da Vinci 32,
20133, Milano, Italy
Email: sara.comai@polimi.it

Zoltán Fiala
Technische Universität Dresden,
Mommsenstr. 13, D-01062,
Dresden, Germany
Email: zoltan.fiala@inf.
tu-dresden.de

Joan Fons
Research Group OO-Method
Department of Information
Systems and Computation,
Valencia University of
Technology, Camí de Vera s/n,
E-46022, Valencia, Spain
Email: jjfons@dsic.upv.es

The Netherlands

Olga De Troyer
Research Group WISE,
Department of Computer Science,
Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussel,
Belgium
Email: Olga.DeTroyer@vub.ac.be

List of Contributors

Piero Fraternali
Dipartimento di Elettronica e
Informazione, Politecnico di
Milano, P.zza L. da Vinci 32,
20133, Milano, Italy
Email: fraterna@elet.polimi.it

Martin Gaedke

Franca Garzotto
HOC (Hypermedia Open Centre),
Department of Information and
Electronics, Politecnico di
Milano, Milan, Italy
Email: garzotto@elet.polimi.it

Geert-Jan Houben
Technische Universiteit Eindhoven,
PO Box 513, 5600 MB Eindhoven,
The Netherlands; and Vrije
Universiteit Brussel, Pleinlaan 2,
1050 Brussels, Belgium
Email: Geert-
Jan.Houben@vub.ac.be

Alexander Knapp
Institut für Informatik, Ludwig-
Maximilians-Universität
München, Munich, Germany
Email: knapp@pst.ifi.lmu.de

Nora Koch
Institut fur Informatik,
Ludwig-Maximilians-Universität
München, and F.A.S.T. GmbH,
Munich, Germany
Email: kochn@pst.ifi.lmu.de

Maristella Matera
Dipartimento di Elettronica e
Informazione, Politecnico di
Milano, Pizza L. da Vinci 32,
20133, Milano, Italy
Email: matera@elet.polimi.it

Johannes Meinecke

Emilia Mendes
WETA Research Group,
Computer Science Department,
The University of Auckland,
Private Bag 92019, Auckland,
New Zealand
Email: emilia@cs.auckland.ac.nz

Hernán Molina
GIDIS_Web, Engineering School,
Universidad Nacional de La
Pampa, Calle 9 y 110, (6360)
General Pico, LP, Argentina
Email:
hmolina@ing.unlpam.edu.ar

Nathalie Moreno
Dept. Lenguajes y Ciencias de la
Computación, University of
Málaga, Málaga, Spain
Email: vergara@lcc.uma.es

x

Chemnitz University of
Technology, Faculty of Computer
Science, Distributed and
Self-Organizing Systems Group,
Straße der Nationen 62,
09111 Chemnitz, Germany

Chemnitz University of
Technology, Faculty of Computer
Science, Distributed and
Self-Organizing Systems Group,
Straße der Nationen 62,
09111 Chemnitz, Germany

Flavius Frasincar
Erasmus Universiteit Rotterdam,
PO Box 1738, 3000 DR
Rotterdam, The Netherlands
Email: frasincar@few.eur.nl

Email: martin.gaedke@informatik.
tu-chemnitz.de Email: johannes.meinecke@informatik

.tu-chemnitz.de

Luis Olsina
GIDIS_Web, Engineering School,
Universidad Nacional de La
Pampa, Calle 9 y 110, (6360)
General Pico, LP, Argentina
Email: olsinal@ing.unlpam.edu.ar

Fernanda Papa
GIDIS_Web, Engineering School,
Universidad Nacional de La
Pampa, Calle 9 y 110, (6360)
General Pico, LP, Argentina
Email: pmfer@ing.unlpam.edu.ar

Oscar Pastor
Research Group OO-Method,
Department of Information
Systems and Computation,
Valencia University of
Technology, Camí de Vera s/n,
E-46022, Valencia, Spain
Email: opastor@dsic.upv.es

Vicente Pelechano
Research Group OO-Method,
Department of Information
Systems and Computation.
Valencia University of
Technology, Camí de Vera s/n,
E-46022, Valencia, Spain
Email: pele@dsic.upv.es

Peter Plessers
Research Group WISE, Department
of Computer Science, Vrije
Universiteit Brussel, Pleinlaan 2,
1050 Brussel, Belgium
Email: Peter.Plessers@vub.ac.be

José Raúl Romero
Dept. Informática y Análisis
Numérico, University of Córdoba,
Cordoba, Spain
Email: jrromero@uco.es

Gustavo Rossi
LIFIA, Facultad de Informatica,
Universidad Nacional de La Plata,
Calle 5º y 115, La Plata,
Argentina and Conicet
Email:
gustavo@lifia.info.unlp.edu.ar

Daniel Schwabe
Departamento de Informática,
PUC-Rio, Rua Marquês de São
Vicente, 225 RDC
CEP 22453-900 Gávea Rio de
Janeiro, Brazil
Email: dschwabe@inf.puc-rio.br

Victoria Torres
Research Group OO-Method,
Department of Information
Systems and Computation,
Valencia University of
Technology, Camí de Vera s/n,
E-46022, Valencia, Spain
Email: vtorres@dsic.upv.es

Pedro Valderas
Research Group OO-Method,
Department of Information
Systems and Computation,
Valencia University of
Technology, Camí de Vera s/n,
E-46022, Valencia, Spain
Email: pvalderas@dsic.upv.es

List of Contributors xi

San Murugesan
Southern Cross University, Coffs
Harbour NSW 2452, Australia
Email: san.murugesan@scu.edu.au

List of Contributors

Antonio Vallecillo
Dept. Lenguajes y Ciencias de la
Computación, University of
Málaga, Málaga, Spain
Email: av@lcc.uma.es

Kees van der Sluijs
Technische Universiteit
Eindhoven, PO Box 513, 5600
MB Eindhoven, The Netherlands
Email: k.a.m.sluijs@tue.nl

Gefei Zhang
Institut für Informatik,
Ludwig-Maximilians-Universität
München, Munich, Germany
Email: zhangg@pst.ifi.lmu.de

xii

PART I

WEB ENGINEERING AND WEB
APPLICATIONS DEVELOPMENT

Chapter 1

INTRODUCTION

Gustavo Rossi1, Daniel Schwabe2, Luis Olsina3, Oscar Pastor4

Argentina, gustavo@lifia.info.unlp.edu.ar

2Departamento de Informática, PUC-Rio, Rio de Janeiro, Brazil, dschwabe@inf.puc-

rio.br

3GIDIS_Web, Engineering School, Universidad Nacional de La Pampa, Calle 9 y 110, (6360)
General Pico, LP, Argentina, olsinal@ing.unlpam.edu.ar

4DSIC, Valencia University of Technology, Valencia, Spain, opastor@dsic.upv.es

1LIFIA, Facultad de Informatica, Universidad Nacional de La Plata (also at CONICET)

This book presents the major Web application design methods currently
being developed and used in both academia and industry. The book is the
main result of the IWWOST (International Workshop on Web-Oriented
Software Technology) series, celebrated under the auspices of the WEST
project, sponsored by CYTED (a Spanish organization supporting research
and development in Ibero-America).

Since 2001, IWWOST has been an international forum for discussing state
of-the-art modeling approaches, methods, and technologies for Web
applications. The first workshop was held in Valencia, Spain, in 2001; the
second in Malaga, Spain, together with the European Conference on Object-
Oriented Programming (ECOOP) in 2002; the third in Oviedo, Spain; and the
fourth in Munich, Germany [both co-located with the International Conference
on Web Engineering (ICWE) in 2003 and 2004, respectively]. The fifth was
organized in Porto, Portugal, in the context of the International Conference on
Advanced Information Systems Engineering
IWWOST went back to ICWE, in Como, Italy.

-CAiSE 2005. Finally, in 2007

At the same time, many of the authors of this book got involved in the
Web Engineering Network of Excellence (WEE-NET), a project funded by
the European Commission under the ALFA program, which provided
invaluable support for research and students meetings following the spirit of
IWWOST. The project itself was another source of inspiration for the book’s
contents.

nontrivial, Web application and were asked to fully design and, if possible,
implement this application using their proposed methods.

In the workshop each group presented its solution, which was compared
with other solutions and discussed among all participants. During these
discussions a large number of issues that must be addressed by design
methods were raised. In this way, IWWOST attendees could compare their
own approaches with other colleagues’, and they could discuss strengths and
weaknesses of each approach, following a very fruitful theoretical and
practical approach.

In the same spirit, we have put this idea into this book, presenting a
common problem, selecting the most widely known methods dealing with
Web Engineering issues, and asking the authors to work on this same
problem from their different points of view, each supported by their own
methods or design approaches.

With this strategy in mind, our objective is to provide a practical book
where both students and practitioners can find a precise view on how the
different approaches work and provide their corresponding solutions. We do
not intend to provide new cutting-edge technical solutions but rather mature,
consolidated approaches to develop complex applications.

4 G. Rossi et al.

To make the book a complete handbook on Web Engineering issues and
techniques, we have included a set of chapters that address different aspects
of the engineering endeavor.

The book is divided into three parts and is organized as follows. The first
part contains two chapters in addition to this one: Chapter 2 by San
Murugesan describes the evolution of the Web and introduces the discipline
of Web Engineering. Chapter 3 by Martin Gaedke and Johannes Meinecke
discusses the Web as a platform for application development, focusing in
particular on distributed applications.

Part II focuses on development approaches, emphasizing design
methods: Chapter 4 by Gustavo Rossi, Daniel Schwabe, Luis Olsina, and
Oscar Pastor presents the most important issues Web design methods must
consider and introduces the common problem to be solved. Chapter 5 by
Joan Fons, Vicente Pelechano, Oscar Pastor, Pedro Valderas and Victoria
Torres presents the Object-Oriented Web Solutions Approach (OOWS).
Chapter 6 by Gustavo Rossi and Daniel Schwabe focuses on the use of the
Object-Oriented Hypermedia Design Model (OOHDM). Chapter 7 by Nora
Koch, Alexander Knapp, Gefei Zhang and Hubert Baumeister discusses the

Usually, all participants received a problem statement of a typical,

These workshops and meetings were historically organized in order to
stimulate a discussion and an exchange of ideas and experiences. They were
conceived as a place for methodologists, designers, and developers to meet and

of building complex Web applications. exchange their experiences in the process

presents a solution to the problem using Hera. Chapter 11 by Olga De
Troyer, Sven Casteleyn, and Peter Plessers introduces the Web Semantic
Design Method (WSDM) Finally in Chapter 12, Nathalie Moreno, José
Raúl Romero, and Antonio Vallecillo discuss the concept of model-driven
Web Engineering.

Part III deals with quality evaluation and experimental Web Engineering
and the book’s conclusions. It contains three chapters: Chapter 13 by Luis
Olsina, Fernanda Papa, and Hernán Molina analyzes the problem of
measurement and evaluation of Web software. Chapter 14 by Emilia Mendes
discusses empirical methods for Web Engineering. Finally, in Chapter 15,

the book and present some conclusions.
We hope you will enjoy the reading of this book as much as we enjoyed

the process of writing and editing it.

5

Oscar Pastor, Gustavo Rossi, Luis Olsina, and Daniel Schwabe summarize

Jeen Broekstra, Sven Casteleyn, Zoltán Fiala, and Flavius Frasincar

1. Introduction

UML-based Web Engineering approach (UWE). Chapter 8 by Davide
Bolchini and Franca Garzotto presents the Interactive Dialogue Model
(IDM) approach. Chapter 9 by Marco Brambilla, Sara Comai, Piero
Fraternali, and Maristella Matera presents WebML, the Web Modeling
Language. Chapter 10 by Geert-Jan Houben, Kees van der Sluijs, Peter Barna,

Chapter 2

WEB APPLICATION DEVELOPMENT:
CHALLENGES AND THE ROLE

San Murugesan
University of Western Sydney, Sydney, Australia,

2.1 INTRODUCTION

The World Wide Web, more commonly known as the Web, is increasingly
pervading every aspect of our lives. In the 15 years since the Web came into
existence, our lives and work have been inexorably changed. It has
dramatically influenced us in several ways and has matured to become a
very attractive and dominant platform for deploying business and social
applications and organizational information systems. It has also become a
universal user interface to business applications, information systems,
databases, and legacy systems. It supports document and workflow
management, cooperative work, and distributed knowledge and media
(photo, audio, and video) sharing.

between 400 and 750 billion pages. The interaction between a Web system
and its back-end information systems, as well as with other Web systems,
has become tighter and complex. Many organizations have extended, and
still continue to extend, the scope and functionalities of their Web-based
applications and are also beginning to provide mobile and wireless access to
them. As a result, Web-based systems and applications now offer an array of
content and functionality to a huge population of users and serve many
different purposes. The Web has become a mainstay, and it is perhaps

The growth of the Web has been exponential. A recent estimate put the
size of the public Web at 40 billion pages, and the size of the “deep Web”—
where the pages are assembled on the fly in response to users’ request—

OF WEB ENGINEERING

san1 @internode.on.net

S. Murugesan8

appropriate to say that our civilization “runs” on the Web as individuals,
organizations, and nations rely on a multitude of Web-based systems.

The Web, and the Internet that supports it, has become one of the most
important and most influential developments not only in computing history
but in the history of mankind. For instance, Web sites such as google.com,
yahoo.com, myspace.com, wikipedia.org, amazon.com, ebay.com,
youtube.com, napster.com, blogger.com, and saloon.com are considered as
the top 10 Web sites (in no particular order) that changed the world
(Naughton, 2006). Some of these sites have over 100 million users
(myspace.com, ebay.com, yahoo.com), about 1 billion visits a day
(wikipedia.org), and over 1 billion searches per day (google.com).

Users expect Web applications to be more usable, more reliable, and
more secure, personalized, and context-aware. As our dependence and
reliance on Web-based applications have increased dramatically over the
years, performance, reliability, quality, maintainability, and scalability of
Web applications have become paramount importance. And most Web-based
systems are tightly integrated with other, traditional information systems
such as databases and transaction processing systems. Some of the newer
applications are also linked with other Web applications/services that
facilitate information exchange. As a result, the design, development,
deployment, and maintenance of Web-based applications have become
inherently complex and challenging. The complexity of Web-based systems
is, however, not apparent, as the Web interface presents an illusion of
simplicity by hiding the complexity.

But most Web developers don’t recognize and take into consideration
many multifaceted, unique requirements of Web applications. They also fail
to recognize that characteristics and requirements of Web-based systems
significantly differ from traditional software, and so does their development.
They need to recognize these differences and take appropriate measures to
fulfill the unique requirements of Web applications.

But many developers and their clients still continue to view Web
development as just simple Web page creation using HTML or Web
development software such as Front Page and Dreamweaver, embodying
few images and hyperlinking documents and Web pages, or as Internet/Web
programming (scripting). They overlook system-level requirements and key
design considerations and don’t make use of Web design and development
methodologies and processes. Further, they also mistakenly carry out Web
systems’ development in the same manner as software development. Many
Web development projects are carried out in ad hoc manner and fail to adopt
sound design methodologies, resulting in poor design of Web systems. As a
consequence, they fail to successfully and effectively develop Web-based
systems that are complex and/or demand high performance.

Of course, there is more to Web application development than visual

design and user interface. It involves planning, selection of an appropriate
Web architecture, system design, page design, coding, content creation and
its maintenance, testing, quality assurance, and performance evaluation. It
also involves continual update and maintenance of the Web system as the

well as post-launch operational review of the system.
To successfully build complex Web-based systems and applications, both

large and small, Web developers need to adopt a disciplined development
process and sound design methodologies and use better development tools.

The discipline of Web Engineering advocates a holistic, disciplined
approach to successful Web development, taking into account the unique
characteristics and requirements of Web-based systems. Web Engineering
“uses scientific, engineering, and management principles and systematic
approaches to successfully develop, deploy, and maintain high-quality Web
systems and applications” (Murugesan et al., 1999). The essence of Web

serious implications.
Web Engineering is receiving greater interest and significance as Web-

based systems become mainstream and we increasingly rely on them. While
Web Engineering shares with software engineering some common
objectives, goals, and general principles and, where appropriate, adopts soft
engineering techniques, it is aimed at addressing characteristics and
requirements that are unique to Web applications.

This chapter outlines the role of Web in the design and
development of Web applications. It traces the evolution of Web
applications and discusses key challenges in developing Web applications as
well as some of the key aspects that differentiate development of Web
applications from other types of software or computer applications. It also
examines the problems and limitations of current Web development
practices and their implications and provides an overview of Web

processes and discusses the role of Web design in successful Web
application development.

9

requirements change, new functionalities are introduced, and usage grow, as

application development and, hence, avoid potential failures that could have

This book comprehensively deals with a key aspect of Web Engineering —
design of Web systems and applications. It describes various Web design
methodologies that developers could use, such as OOHDM and the OO
method, and illustrates them using one common example.

Engineering. It then briefly describes key elements of Web Engineering

Engineering is to successfully manage the diversity and complexity of Web

Engineering

2. Web Application Development

2.2 EVOLUTION OF THE WEB

AND WEB APPLICATIONS

The Web has evolved beyond anyone’s imagination within a short span of
15 years, since Tim Berners-Lee conceived and publicized, on August 6,
1991, a system for turning the Internet into a publishing medium for sharing
and dissemination of scientific data and information, which he called the
“World Wide Web.” It has become indispensable and essential to many
people and organizations around the world.

The evolution of the Web has brought together some disparate disciplines
such as media, information science, and information and communication
technology, facilitating the easy creation, maintenance, sharing, and use of
different types of information from anywhere, any time, and using a variety
of devices such as desktop and notebook computers, pocket PCs, personal
digital assistants (PDAs), and mobile phones.

The evolution of the Web could be traced and discussed along a few
different dimensions and from a few different perspectives: the growth
(number) of Web sites and Web pages; the number of Web users; the
number of Web visits; the functionality and interactivity that Web
applications offer; the technologies used for the creation of Web
applications; the social and business impact of the Web; or a combination of
these.

While the scope of this chapter is not to comprehensively discuss the
evolution, in the context of Web design, it is helpful to classify Web systems
and applications based on their key features and technology used for their
creation as follows (see Figure 2.1):

Figure 2.1. Classification of the Web.

Web

Shallow Web
(Static Web) Mobile WebWisdom Web

(Web 2.0)
Deep Web

(Dynamic Web) Semantic Web

Web

Shallow Web
(Static Web) Mobile WebWisdom Web

(Web 2.0)
Deep Web

(Dynamic Web) Semantic Web

10

1. the Shallow Web (Static Web)
2. the Deep Web (Dynamic Web)
3. the Wisdom Web (Web 2.0)
4. the Mobile Web
5. the Semantic Web

S. Murugesan

2.2.1 Web 1.0

The Shallow Web, also known as the Static Web, is primarily a collection of
static HTML Web pages providing information about products or services
offered. To start with, most Web sites were just a collection of static Web

created on the fly. The ability to create Web pages from the content stored
on databases enabled Web developers to provide customized information to
visitors. These sites are known as the Deep Web, or the Dynamic Web.
Though a visitor to such Web sites gets information tuned to his or her
requirements, these sites provide primarily one-way interaction and limited
user interactivity. The users have no role in content generation and no means
to access content without visiting the sites concerned. The Shallow Web
sites and Deep Web sites, which have no or very little user interaction, are
now generally termed as Web 1.0.

2.2.2 Web 2.0: The New Face of the Web

In the last few years a new class of Web applications, known as Web 2.0 (or
Service-Oriented Applications), has emerged. These applications let people
collaborate and share information online in seemingly new ways—examples
include social networking sites such as myspace.com, media sharing sites

(Levy and Stone, 2006), the People-Centric Web, and the Read/Write Web,
offers smart user interfaces and built-in facilities for users to generate and
edit content presented on the Web and thereby enrich the content base.
Besides leveraging the users’ potential in generating content, Web 2.0
applications provide facilities to keep the content under the user’s own
categories (tagging feature) and access it easily (Web feed tool). These new
breeds of Web applications are also able to integrate multiple services under
a rich user interface.

With the incorporation of new Web technologies such as AJAX
(Asynchronous JavaScript and XML), Ruby, blog, wiki, social bookmarking,
and tagging, the Web is fast becoming more dynamic and highly interactive,
where users can not only pick content from a site but can also contribute to
it. The Web feed technology allows users to keep up with a site’s latest
content without having to visit it. Another feature of the new Web is the
proliferation of Web sites with APIs (application programming interfaces).
An API from a Web service facilitates Web developers in collecting data
from the service and creating new online applications based on these data.

11

pages. After a while, the Web became dynamic, delivering Web pages

such as youtube.com, and collaborative authoring sites such as wikipedia.
The new- (second-) generation Web, also known as the Wisdom Web

2. Web Application Development

The Web 2.0 is a collection of technologies, business strategies, and social

trends. The Web 2.0 is a highly interactive, dynamic application platform than

wide array of Web 2.0 applications has been launched (for a list of these
applications, refer to www.listible.com/list/complete-list-of-web-2-0-products-
and-services; www.econsultant. com/web2/index.html; www. koolweb2.com).

For further information on Web 2.0, see Murugesan (2007a, b), O’Reilly
(2005), and articles available at en.wikipedia.org/wiki/Web_2.0, www.

levels of Web 2.0 features.

2.2.3 Mobile Web

Advances in mobile computing and wireless communications and
widespread worldwide adoption of mobile devices, such as smart mobile

access the Web using handheld devices.
Mobile phones may soon challenge personal computers as the dominant

platform for accessing the Web/Internet. According to a survey by Ipsos
(2006), 28% of mobile phone owners worldwide browsed the Internet on a
wireless handset in 2005, up from 25% in 2004. Almost all wireless device
activities—information access and search, mobile commerce (i.e.,
purchasing a product or service via a mobile device), conducting financial
transactions, mobile ticketing, etc.—experienced growth in 2005. Accessing
the Internet on a wireless handheld device is becoming a common everyday
occurrence for many people in some advanced and developing countries.
This will become increasingly prevalent as high-end (smart) mobile phones
and Pocket PCs become affordable, a higher number of people start using
these more capable handheld devices, and more Web applications migrate to
the wireless/mobile Web. Considering the adoption of mobile Web and its
huge potential, the World Wide Web Consortium has established a new
initiate called the Mobile Web.

Mobile Web applications could offer some additional features compared
to traditional desktop Web applications such as location-aware services,
context-aware capabilities, and personalization. Mobile Web applications
have, however, some unique requirements and pose additional challenges, as
outlined later in this chapter.

2.2.4 The Semantic Web

In current Web applications, information is presented in natural language,
which humans can process easily. But computers can’t manipulate natural

12

its predecessor, Web 1.0, for fielding new kinds of applications. Recently, a

whatsweb20.com, and www.readwriteweb. O’Reilly (2006) also defines four

phones, PDAs, and Pocket PCs, are enabling a growing number of users to

S. Murugesan

language information on the Web meaningfully. The Semantic Web is aimed
at overcoming this barrier.

The Semantic Web is an extension of the current Web in which
information is given a well-defined meaning, better enabling computers and

universal medium for information exchange by putting documents with
computer-processable meaning (semantics) on the Web. Adding semantics
radically changes the nature of the Web—from a place where information is
merely displayed to one where it is interpreted, exchanged, and processed.
Associating meaning with content or establishing a layer of machine-
understandable data enables a higher degree of automation and more
intelligent applications and also facilitates interoperable services.

The ultimate goal of the Semantic Web is to support machine-facilitated
global information exchange in a scalable, adaptable, extensible manner, so
that information on the Web can be used for more effective discovery,
automation, integration, and reuse across various applications. The three key
ingredients that constitute the Semantic Web and help achieve its goals are

2.2.5 Rich Internet Applications

Rich Internet applications (RIA) are Web-based applications that run in a
Web browser and do not require software installation, but still have the
features and functionality of traditional desktop applications. The term
“RIA” was introduced in a Macromedia whitepaper in March 2002. RIA
represents the evolution of the browser from a static request-response
interface to a dynamic, asynchronous interface. Broadband proliferation,
consumer demand, and enabling technologies, including the Web 2.0, are
driving the proliferation of RIAs. RIAs promise a richer user experience and
benefits—interactivity and usability that are lacking in many current
applications. Some prime examples of RIA frameworks are Adobe’s Flex
and AJAX, and examples of RIA include Google’s Earth, Mail, and Finance
applications.

Enterprises are embracing the promises of RIAs by applying them to user
tasks that demand interactivity, responsiveness, and richness. Predominant
techniques such as HTML, forms, and CGI are being replaced by other
programmer- or user-friendly approaches such as AJAX and Web services.

Building a Web application using fancy technology, however, doesn’t
ensure a better user experience. To add real value, developers must address

13

people to work in cooperation (Berners-Lee et al. 2001). It intends to create a

semantic markup, ontology, and intelligent software agents. For further
information on the Semantic Web, refer to Antoniou and Harmelen (2004),
Berners-Lee (2001), and Shadbolt (2006).

2. Web Application Development

14

users’ real needs and implement structured testing techniques to understand
and validate the appropriate use and design of RIAs.

2.3 UNIQUE ASPECTS OF WEB APPLICATIONS

demands placed on Web applications is essential for designing better Web
systems and applications.

Web applications have certain unique intrinsic characteristics that make
Web development different and perhaps more challenging compared to
traditional software development. Web applications’ operational
environment and their development approach and the faster pace in which
these applications are developed and deployed differentiate Web
applications from those of traditional software. Further, greater emphasis is

• Most Web applications are evolutionary in their nature, requiring
(frequent) changes of content, functionality, structure, navigation,
presentation, or implementation. They particularly evolve in terms of
their requirements and functionality (instability of requirements),
especially after the system is put into use. In most Web applications,
frequency and degree of change are much higher than in traditional
software applications, and in many applications it is not possible to
specify fully their entire requirements at the beginning. The frequency
and degree of change of information content can be quite high. Thus,
successfully managing the evolution, change, and newer requirements
of Web applications is a major technical, organizational, and
management challenge—more demanding than traditional software
development.

• Web applications are meant to be used by a vast, diverse, remote
community of users who have different requirements, expectations, and
skill sets. Therefore, the user interface and usability features have to
meet the needs of a diverse, anonymous user community. Furthermore,
the number of users accessing a Web application at any time is

problems—there could be a “flash crowd” triggered by major events or
promotions.

• Web-based applications demand presentation of a variety of content—

integrated with procedural processing. Hence, their development

The Web is different. Hence, a good understanding of the characteristics and

placed on the security of Web applications, which are more susceptible to
security breaches than traditional computer applications. Key characteristics
of Web applications are (Murugesan and Ginige, 2005)

unpredictable and could vary quite considerably, creating performance

text, graphics, images, audio, and/or video—and the content may also

S. Murugesan

15

includes the creation and management of the content and their
presentation in an attractive manner, as well as a provision for
subsequent content management (changes) on a continual basis after the
initial development and deployment.

• Web-based systems, in general, demand good aesthetic appeal—“look

• Web applications, especially those meant for a global audience, need to
adhere to many different social and cultural sentiments and national
standards—including multiple languages and different systems of units.

• Security and privacy needs of Web-based systems are in general more
demanding than those of traditional software. Hence, there is a greater
demand on the security of Web applications.

• Web applications need to cope with a variety of display devices and
formats and support hardware, software, and networks with vastly
varying access speeds.

• Ramifications of failure or dissatisfaction of users of Web-based
applications can be much worse than conventional IT systems. Also,
Web applications could fail for many different reasons.

•
significantly influences the design and development methodology and
process, if any, that are adopted for their development.

• Proliferation of new Web technologies and standards and competitive
pressure to use them bring its own advantages and also additional
challenges to development and maintenance of Web applications.

• The evolving nature of Web applications necessitates an incremental
developmental process.

For a detailed and comprehensive discussion on differences between

Mendes et al. (2006).

2.4 WEB SYSTEM DEVELOPMENT: CHALLENGES

Web system design and development is a complex and a challenging activity,
as it needs to consider many different aspects and requirements, some of
which may have conflicting needs (Cloyd, 2001; Ivory and Hearst, 2002;
Siegel, 2003).

Scalability refers to how well a system copes with the new requirements
and features, increases in content, increases in usage and the number of users,
and higher security needs. Developing Web applications that scale well is a
challenge. As Web sites grow and new functionalities are added, failures
(reliability problems), usability problems, and security breaches could creep
in. Today’s Web-savvy consumers don’t tolerate failures or slow responses.

and feel”—and easy navigation.

Web applications’ development timeframes are shorter, and this

Web development and software development along 12 dimensions, see

2. Web Application Development

customers—probably permanently. As Web applications are becoming
mission-critical, there is a greater demand for their improved reliability,
performance, and security.

On the Web there is virtually no control over visitor volumes and when
and how visitors access a Web system. This makes developing Web
applications that exhibit satisfactory performance even under a sudden surge
in the number of users a nebulous and challenging task and calls for capacity
planning.

Meeting the diverse expectations and needs of many different users with
varying skills is hard. When users find a site unfriendly, confusing, or hard or
that presents too much information or they are unable to find the
information they need, they will leave that site feeling frustrated. The
features that determine Web usability are (Becker and Berkemeyer, 2002)
design layout, design consistency, accessibility, information content,
navigation, personalization, performance, security, reliability, and design
standards (naming conventions, formatting, and page organization). User
feedback reveals features such as search functionality, consistent navigation
structure throughout, site maps, and answers to frequently asked questions
(FAQ) aid most sites’ usability.

The need to making the majority of Web sites universally accessible—
accessible by both the able and disabled users—places additional
development challenges. However, very little has been done in practice to
aid disabled Web users, such as the visually impaired (those who are blind or
color blind), and there is a growing number of retired surfers who seek
design features such as color contrasts, text-to-speech, and resizable text.
Though there have been standards and technologies to support disabled Web
users, their adoption is slow. There have been lawsuits against enterprises
and Web developers for not providing Web access to the visually impaired.
Several countries have legal requirements to make most public Web sites
accessible to the visually impaired. Web developers need to meet the legal
requirements in terms of Web accessibility.

Localization of Web applications is the process of adapting Web
pages/applications (often written in English and targeted for users in a
particular country) for use in other countries, considering their culture,
standards, regulations, and technological conditions. It is more than just
language translation and Web applications that need to be specifically
designed to accomplish this multifaceted requirement.

Terms like scalability, reliability, availability, maintainability, usability,
and security are used to describe how well the system meets current and
future needs and service-level expectations. These ilities characterize
(Williams, 2000) a Web system’s architectural qualities. In the face of

16

Any system slowdown, failure, or security breach might result in loss of its

S. Murugesan

increasingly complex systems, these system qualities are often more
daunting to understand and to incorporate.

Web systems should be up and running 24 hours a day, 7 days a week,
and each day of the year—24/7/365. Furthermore, Web applications should
function properly when accessed from diverse browsers. This necessitates
that Web sites must adopt their presentation and code to work with all major
browsers and client computers.

Design and development of Web applications for mobile and device-
independent operations is very complex and challenging, as it needs to address
many additional aspects compared to traditional Web applications. Testing and
validation of Web applications for access by mobile devices is a challenge, as
there are many types of devices with varying shapes and sizes. We need to
make sure that applications work as intended on many different makes and
models of mobile devices and evaluate their usability. Design guidelines and
usability methods that work for desktop systems do not necessarily work for
mobile systems. New approaches might be required to test and validate mobile
Web applications. For a detailed discussion on the challenges of mobile Web
application development, see Murugesan and Venkatakrishnan (2005).

Thus, the challenge is to design and develop sustainable Web systems for
better

A Web-based system also has to satisfy many different stakeholders
besides the diverse range of the system’s users: persons who maintain the
system, the organization that needs the system, and also those who fund the
system development. These may pose some additional challenges to Web-
based system design and development.

2.4.1 Web System Complexity

Complexity is an omnipresent phenomenon in many Web systems. A Web
application fits the general characteristics of a complex system—consists of
a large number of heterogeneous, highly interacting components,
interactions among the components result in nonlinear behavior, and the
systems often evolve. Many factors contribute to the complexity of Web
systems, as shown in Figure 2.2.

17

•
• comprehension
• performance (responsiveness)
• security and integrity
• evolution, growth, and maintainability
• testability
• mobility

usability, interface design, and navigation

2. Web Application Development

CWeb System

Interface

Security

InteractivityBackend

Diversity of
content

Delivery on
Different Devices,

Mobile Web
Diverse Users

Performance,
Scalability
No of users

Web System Complexity

Info
Architecture

Design/
Code

CWeb System

Interface

Security

InteractivityBackend

Diversity of
content

Delivery on
Different Devices,

Mobile Web
Diverse Users

Performance,
Scalability,
No of users

Web System Complexity

Info
Architecture

Design/
Code

Figure 2.2. Landscape of Web systems.

Web applications become more complex as they deal not only with
technological issues but also with organizational issues largely beyond a
Web project team’s control. Developers need to understand the dimensions
of Web project complexity and how they affect project outcome. Complexity
could be addressed by taking a holistic, engineering approach. Web
developers need to simplify the system, meeting the given requirements
rather than increasing its complexity.

2.5 STATE OF PRACTICE OF WEB

Web development has a very short history, compared to software
development, information system development, or other computer
application development. But within a period of a few years, a large number
of Web systems and applications have been developed and put into
widespread use. The complexity of Web applications has also grown
significantly—from information dissemination [consisting of simple text and
images to image maps, forms, common gateway interface (CGI), applets,
scripts, and style sheets] to online transactions, enterprise-wide planning and
scheduling systems, Web-based collaborative work environments, and now
multilingual Web sites, Web services, and mobile Web applications.

Nevertheless, many pursue Web development primarily as an authoring
work (content/page creation and presentation) rather than an application
development requiring planning, system/architecture design, coding, Web

18

.

DEVELOPMENT: CONCERNS

S. Murugesan

page creation, navigation design, and testing and evaluation. They often get
carried away by the myth that Web development primarily deals with “media
manipulation and presentation”. Sure, Web development has an important
artistic side, but Web developers need to follow a disciplined and systematic

“hacking” together a few Web pages.
Several attributes of quality Web-based systems such as usability,

navigation, accessibility, scalability, maintainability, compatibility and
interoperability, security, and reliability are not given the due consideration
they deserve during development. Many Web applications also fail to
address cultural and regional considerations and privacy, moral, and legal
obligations and requirements. Most Web systems also lack proper testing
and evaluation and design documentation.

Many developers, while designing and developing a Web application, fail
to acknowledge that Web systems’ requirements change and evolve, and
hence don’t take this into consideration while developing Web systems.
Web-based systems development is not a one-off event as perceived and
practiced by many; it is a process with an iterative life cycle.

Another problem is that most Web application development activities
heavily rely on the knowledge and experience of individual (or a small group
of) developers and their individual development practices rather than
standard practices.

Poorly developed Web-based applications have a high probability of low
performance and/or failure. In enterprise applications, a system failure can
propagate broad-based problems across many functions, causing a major
Web disaster. Bad design, shabby development, poor performance, and/or
poor content management for Web-based applications could have serious
implications.

Thus, there are concerns about the manner in which complex Web-based
systems are created as well as the level of performance, quality, and integrity
of these systems.

The primary causes of these failures are a lack of vision, short-sighted
goals, a flawed design and development process, and poor management of

way we address these concerns is key to successful deployment and
maintenance of Web applications.

2.6 WEB FAILURES

Web failure is defined as the inability of a Web application to correctly
function or deliver information or documents required by the users. While

19

process during the entire life cycle of a Web project, rather than simply

development efforts—not technology (Ginige and Murugesan, 2001a). The

2. Web Application Development

the success of a Web application hinges on whether or not it is usable and

serves the intended purpose, Web failures could arise due to many different
reasons. They include

The Web system/application failures could also be caused by failure of a
supporting infrastructure such as host hardware or software, network, and
browser, or Web software/application failure such as information source
failure or individual page failures.

There is a need for a better way of doing things, a Web design and
development methodology—an established way of delivering projects that
meet the client’s needs on time and on budget. Performance problems could
be caused by any number of things: a poorly designed Web architecture,
poorly designed Web software or Web page, an underpowered CPU,
limited network bandwidth, or a combination of several factors. A higher
load can easily overwhelm a system’s resources and cause performance
problems. For instance, in September 2006, when news of the “crocodile
hunter” Steve Irwin’s sudden and bizarre death broke, too many people
logged on to news Web sites, these sites showed signs of strain, and
some, including the CNN and Australian ABC Web sites, had to switch to
a “lite” mode, in which bandwidth-hungry elements on the home page were
removed in order to cope with the surge in usage. However, a higher
volume is not always required to cause performance problems. Poorly
designed software that does not handle resource allocation and contention
properly can easily cause deadlocks that eventually lead to performance
problems even at a normal load.

Although performance problems can have many causes, the outcome is
always the same—slow response. To resolve such problems, a holistic
approach—also known as an all-out systems approach—is needed where the
application software, the network, and the underlying computing hardware
are all considered and evaluated.

Web project failures are often attributed to projects running overtime,
budgets blowing up, and applications not meeting the intended purpose and
failing to meet the business needs. There could be many reasons for failure,
including developers interpreting a client’s requirements differently from the

20

• not meeting functionality and the users’ needs
• poor usability
• poor performance
• security breaches
• not functioning properly, including errors and crashes
• poor maintainability
• poor scalability
• schedule and cost over-runs
• abandoned projects—poor project management

S. Murugesan

client’s own interpretation, underestimation of work required to do the
project, poor project management, poor staffing, ad hoc development
strategy, underdeveloped or non-existent design paradigm, and poor or no
code reuse within a project or between projects.

Many Web sites have suffered site crashes, performance failures, security
breaches, and outages—resulting in irate customers, lost revenue, devalued
stocks, a tarnished reputation (bad publicity, lack of customer confidence),
permanent loss of customers, and lawsuits (Williams, 2000). Stock prices
have become inextricably linked to the reliability of a company’s e-
commerce site. There are also legal implications when Web applications go
bad; refer to Verdon (2006) for details.

2.7 WEB ENGINEERING

Can adding engineering rigor to Web development address the challenges
facing developers in developing and deploying complex Web systems and
applications? We and many other researchers and practitioners believe it
will, and practical experience and evidence support this claim.

Web Engineering seeks to address the problem of Web application
development by building a foundation for the systematic creation of Web-
based systems. This foundation will consist of a body of theoretical and
empirical knowledge for development, deployment, and support of continual
evolution of Web applications.

Web Engineering is the application of scientific, engineering, and
management principles and disciplined and systematic approaches to the
successful development, deployment, and maintenance of Web-based

21

Ad hoc methods are no longer capable of delivering high-quality complex
Web applications, which are becoming more and more important and
mission-critical. Complex interdependencies of Web systems challenge our
ability to comprehend, create, maintain, and control these systems. Also, as
failure of a Web application could be costly, there is a growing demand for
methodologies, models, and tools that can improve Web design and the Web
quality and reliability. There is also a pressing need for better
methodologies, techniques, and tools for testing Web applications.

In the absence of a disciplined approach to Web-based systems
development, we will find sooner or later that:

• Web-based applications are not delivering required functionality and
desired performance and quality.

• The Web application development process becomes increasingly complex
and difficult to manage and also expensive and grossly behind schedule.

2. Web Application Development

systems and applications (Murugesan et al., 1999; Kappel et al., 2006). It is a
systematic way of managing the complexity and diversity of Web
applications. It is also concerned with the development and organization of
new knowledge about Web application development and application of that
knowledge to develop Web applications and to address new requirements
and challenges facing Web developers.

A Web-based system is a living system—it grows, evolves, and changes.
An appropriate infrastructure is necessary to support the growth of a Web-
based system in a flexible and controlled manner. Web Engineering helps to
create an infrastructure that will allow evolution and maintenance of a Web
system and also support creativity.

Web Engineering could also be viewed as a holistic and proactive
approach to the development of complex Web-based systems. In a holistic
approach, all aspects of the development processes, functional requirements,
the application’s operational environment, the supporting IT and other
infrastructure, and the linkages and interactions among them are identified,
analyzed, prioritized, implemented, and evaluated. It is important for
developers to understand “the wider context in which a Web-based system or
application will be used, and design an architecture that will support the
development, operation and maintenance as well as evolution of the Web
application in that context, addressing the key issues and considerations”
(Murugesan and Ginige, 2005).

Web development is a process, not simply a one-time event. Thus, Web
Engineering deals with all aspects of Web-based systems development,
starting from conception and development to implementation, performance
evaluation, and continual maintenance. Web Engineering, therefore, covers a
range of areas: requirements elicitation and analysis; Web system modeling;
Web architecture; Web system design; Web page design; scripting/coding;
interface with databases, ERP systems, and other Web-based systems; Web
quality; Web usability; Web security; Web system performance evaluation;
Web testing; Web development methodologies; Web development process;
Web metrics; and Web project management.

“Contrary to the perception of some professionals, Web Engineering is
not a clone of software engineering although both involve programming and
software development” (Ginige and Murugesan, 2001a). While Web

approaches, methodologies, tools and techniques, and guidelines to meet the
unique requirements of Web-based systems. In many respects, development
of Web-based systems is much more than traditional software development.
As highlighted in previous sections, there are subtle differences in the nature
and life cycle of Web-based systems and traditional software systems and
the way in which they are developed and maintained.

22

Engineering uses software engineering principles, it encompasses new

S. Murugesan

The nature and characteristics of Web-based applications and their

development demand Web Engineering to be multidisciplinary,
encompassing inputs from diverse areas such as systems analysis and design,
software engineering, hypermedia/hypertext engineering, requirements
engineering, human-computer interaction, user interface, information
engineering, information indexing and retrieval, testing, modeling and
simulation, project management, and graphic design and presentation
(Deshpande et al., 2002).

A well-engineered Web system (Murugesan and Ginige, 2005)

Since its origin and promotion as a new discipline in 1998, Web

developers, academics, and clients.

2.8 WEB DEVELOPMENT

Development of high-quality Web applications is not an accident; it calls for
a systematic plan for development and implementation as well as
architectural design, testing, and evaluation, incorporation of security
safeguards, and adoption of sound implementation polices. The design and
analysis of Web systems, however, presents a significant challenge: Systems
need to be understood at many different levels of abstraction and examined
from many different perspectives. Web systems modeling and architecture
play an important role in the development of today’s complex Web systems.

23

• is functionally complete and correct
• is usable
• is robust and reliable
• is maintainable
• is secure
• performs reasonably even under flash and peak loads
• is scalable
• is portable, where required (perform across different common

platforms), compatible with multiple browsers
• is reusable
• is interoperable with other systems
•

disabilities)
• is well-documented

has universal accessibility (access by people with different kinds of

Engineering has been receiving growing interest among researchers,

2. Web Application Development

2.8.1 Web Architecture

Following the IEEE Standard 1471-2000 definition of software
architecture, Web architecture may be defined as “the fundamental
organization of a system, embodied in its components, their relationships to
each other and the environment, and the principles governing its design and
evolution.” It uses abstractions and models to simplify and communicate
complex structures.

Architecture presents a framework, describes the structure, and makes the
system understandable. It helps in making the transition from analysis to
implementation (Eichinger, 2006). Architecture of some high-volume Web
sites is presented by Dantzing (2002).

In Web system architecture design, various components of the system
and how they are linked are decided.

Web subsystem architecture is composed of the following:

Several factors influence the choice of a Web architecture, including the
following:

2.8.2 Web Design

Design plays an important role in the development of high-performance,
high-quality Web applications. Web design has to cater to many different
requirements, some of which might pose conflicting demands:

24

• an overall system architecture that describes how the network and the
various servers such as Web servers, application servers, and database
servers interact

• an application architecture that depicts various information modules
and the functions available

• a software architecture that identifies various software and database
modules required to implement the application architecture

• functional requirements
• quality, security, and performance considerations
• technical aspects
• experience

• design for usability—interface design, navigation
• design for comprehension
• design for performance—responsiveness
• design for security and integrity
• design for evolution, growth, and maintainability
• design for testability

S. Murugesan

2.8.3 Web Security

As more and more applications—everything from email and buying and
selling to banking and business-to-business interactions and their associated
data—are now running on the Web, hackers and criminals are increasingly
targeting Web applications. Hence, Web security is under the spotlight.
Information is one of the very important assets in almost all organizations.
Once the internal networks of those organizations are connected to the
Internet and Web, it becomes a potential target for cyber attacks. The
number of Web-based vulnerabilities keeps increasing; in the first half of
2005, for the first time, reported Web-based vulnerabilities (61% of
vulnerabilities) outpaced those of all other platforms (www.symantec.com/
enterprise/threat report).

Data and information have to be protected from unauthorized access as
well as from malicious corruption. A recent article (Meier, 2006) looks at the
Web from an empirical perspective and, using a direct “do’s and don’ts”
approach, identifies security-specific activities that developers can integrate
throughout the Web development life cycle. It also presents basic concepts
to focus on while developing Web applications.

Programming flaws top the list of Web application security problems
(Mimoso, 2003). No matter how good your process or design is, bugs will
slip into the code—it’s up to quality assurance (QA) and testing to weed
them out. For a good survey of Web application security assessment tools,
see Curphey and Araujo (2006).

A wide range of legal and regulatory issues surrounds Web development,
including the need to protect sensitive business and consumer information. A
good set of security policies and practices will limit Web security breaches
and unintended exposure of information. A good review of several real-
world security incidents, of how the law and regulations view such incidents,
and how the right kind of policies and best practices can provide legal
coverage for a company if (or when?) someone breaches its Web application
is provided by Verdon (2006). For a discussion on who is liable for bugs and
security flaws in the Web, refer to Cusumano (2004).

25

• design for universal accessibility
• design for localization
• graphics and multimedia design
• Web page design

Design methodologies and models described later in this book are aimed
at helping developers tackle the complexity of Web application development
and achieve the above multifaceted goals.

2. Web Application Development

Glisson (2006) supports the need to establish a comprehensive security

improvement approach (SIA) for Web applications and identifies six security
criteria for Web application development based on empirical evidence:

2.8.4 Web Testing and Evaluation

Testing plays a crucial role in the overall Web development process.
However, more often than not, testing and evaluation is a neglected aspect of
Web development. Many developers test the system only after the system
meets with failures or after limitations have become apparent, resorting to
what may be called retroactive testing, whereas what is desired in the first
place is proactive testing at various stages of the Web development life
cycle. Benefits of proactive testing include assurance of proper functioning
and guaranteed performance levels, avoidance of costly retroactive fixes,
optimal performance, and lower risk.

Testing and validating a large complex Web system is a difficult and
expensive task. Testing shouldn’t be done only near the end of the
development process. Developers and their managers need to take a broader
view and follow a more holistic approach to testing—from design all the
way to deployment and maintenance and continual refinement.

The test planning needs to be carried out early in the project’s life cycle.
A test plan provides a road can be evaluated through
requirements or design statements. It also helps to estimate the time and
effort needed for testing, establishing a test environment, getting test
personnel, and writing test procedures before any testing can actually start.

Lam (2001) groups Web testing into the following broad categories and
provides helpful practical guidelines on how to test Web systems:

26

1. active organizational support for security in the Web development
process

2. proper controls in the development environment
3. security visibility throughout all areas of the development process
4. delivery of a cohesive system, integrating business requirements,

software, and security
5. prompt, rigorous testing and evaluation
6. trust and accountability

1. browser compatibility
2. page display
3. session management
4. usability
5. content analysis
6. availability

 map so that the Web site

S. Murugesan

Experience shows that there are many common pitfalls in Web testing
(Lam, 2001), and attempts should be made overcome them. Testing and
evaluation of a Web application may be expensive, but the impact of failures
resulting from a lack of testing could be more costly or even disastrous. A
chapter in this book is devoted to a framework for measurement and
evaluation of the quality of Web applications.

While rich Internet applications (RIAs) promise improved experiences
for users, they are newer and more complex than their HTML counterparts,
making them vulnerable to well-known—and potentially undiscovered—
usability flaws. To ensure that RIAs don’t frustrate users with problems that
could have been avoided, designers should look for common pitfalls and test
their applications—in the context of the full site experience—throughout the
design and implementation phases of an RIA.

2.9 KNOWLEDGE COLLABORATION

The creation of large Web systems requires knowledge from a wide range of
domains such as Web programming, Web architecture, Web design,
multimedia, Web security, and Web performance and usability. Since hardly
a few Web developers may have all the required knowledge, the
development of Web-based systems is no longer confined to an individual
but has to rely on a group of people who can collaboratively work on
developing and implementing a Web system or a Web application.
Knowledge collaboration has thus become an important aspect of Web
development.

Development of a Web application requires a team of people with diverse
skills and backgrounds: programmers, graphic designers, Web page
designers, usability experts, content developers, database designers and
administrators, data communication and networking experts, and Web server
administrators. A Web development team is multidisciplinary and must be
more versatile than a traditional software development team.

27

7. backup and recovery
8. transactions
9. shopping, order processing

10. internalization
11. operational business procedures
12. system integration
13. performance
14. login and security

2. Web Application Development

2.10 WEB PROJECT MANAGEMENT

The purpose of project management is to ensure that all the key processes
and activities work in harmony. Building successful Web-based applications
requires close coordination among various efforts involved in the Web
development cycle. Successfully managing a large, complex Web
development is a challenging task requiring multidisciplinary skills and is, in
some ways, different from managing traditional IT/software projects.

Various aspects of Web project management and how Web project
management differs from software/IT project management are outlined in
Mayr (2006).

2.11 WHY DO WEB PROJECTS FAIL?

Many studies reveal that poor project management is the major cause of
Web failures both during development and subsequently in the operational
phase. Poor project management will defeat good engineering; good project
management is a recipe for success. The 10 most common factors that
contribute to Web project failure, in no particular order, are (adopted from
Charette, 2005)

Project managers need to address these project management problems.

28

1. unrealistic, unarticulated, poorly articulated project goals and
requirements

3. sloppy development practices and lack of development methodology (a
road map from conception to deployment)

4. poor communication among developers and between developers and
clients

5. inability to handle the project’s complexity
6. poor project management
7. use of immature technology
8. stakeholder politics
9. commercial pressures

10. poor reporting and monitoring of project progress

2. inaccurate estimate of time, effort, and resources needed for
development of Web applications

S. Murugesan

2.12 STEPS TO SUCCESSFUL DEVELOPMENT

Ten key steps for successful development and deployment of Web
applications are (Ginige and Murugesan, 2001c)

2.13 CONCLUSIONS

As Web applications continue to grow in importance and extend into new
territories, a disciplined approach to their development becomes mandatory.
With advances in various aspects of Web Engineering, we know now how to
do Web applications well. It is time to act on what we know. This book and
other publications in Web Engineering would help Web developers in this
important endeavor.

29

1. Understand the system’s overall function and operational environment,
including the business objectives and requirements, organization
culture, and information management policy.

2. Clearly identify the stakeholders—that is, the system’s main users and
their typical profiles, the organization that needs the system, and who
funds the development.

3. Elicit or specify the (initial) functional, technical, and nontechnical
requirements of the stakeholders and the overall system. Recognize that
these requirements may not remain the same; rather, they are bound to
change and evolve over time during the system development.

4. Develop an overall system architecture of the Web-based system that
meets the technical and nontechnical requirements.

5. Identify subprojects or subprocesses to implement the system
architecture. If the subprojects are too complex to manage, further
divide them until they become a set of manageable tasks.

6. Develop and implement the subprojects.
7. Incorporate effective mechanisms to manage the Web system’s

evolution, change, and maintenance. As the system evolves, repeat the
overall process or some parts of it, as required.

8. Address the nontechnical issues such as revised business processes,
organizational and management policies, human resources
development, and legal, cultural, and social aspects.

9. Perform periodic post-implementation audit. Measure and evaluate the
system’s performance, analyze the usage of the Web application from
Web logs, and review and address users’ feedback and suggestions.

10. Refine and update the system.

2. Web Application Development

REFERENCES

Antoniou, G.F., and Harmelen, F., 2004, A Semantic Web Primer. The MIT Press,
Cambridge, MA.

Becker, A.S., and Berkemeyer, A., 2002, Rapid application design and testing for usability.
IEEE Multimedia, October–December, pp. 38–46.

Berners-Lee, T. et al., 2001, The semantic Web. Scientific American, May, pp. 34–43.
Charette, R.N., 2005, Why software fails. IEEE Spectrum, September, pp. 36–43.

http://www.spectrum.ieee.org/print/1685.
Cloyd, M.H., 2001, Designing user-centered Web applications in Web time. IEEE Software,

January, pp. 62–69.
Curphey, M., and Araujo, R., 2006, Web application security assessment tools, IEEE Security

& Privacy, July–August, pp. 32–41.
Cusumano, M.A., 2004, Who is liable for bugs and security flaws in software?

Communications of the ACM, March, 47(3): 25–27.
Dantzing, P., 2002, Architecture and design of high volume Web sites. Proceedings of

International Conference on Software and Knowledge Engineering, 2002, Ischia, Italy.
Deshpande, Y. et al., 2002, Web Engineering. Journal of Web Engineering, 1(1): 3–17.
Eichinger, C., 2006, Web application architecture. In Web Engineering: The Discipline of

Systematic Development of Web Applications, Kappel, G. et al. (eds.)., John Wiley and
Sons, New York, pp. 65–84.

30

• Adopt a sound strategy and follow a suitable methodology to
successfully manage the development and maintenance of Web
systems.

• Recognize that, in most cases, development of a Web application is not
an event, but a process, since the application’s requirements evolve. It
will have a start, but it will not have a predictable end as in traditional
IT/software projects.

• Within the continuous process, identify, plan, and schedule various
development activities such that they have a defined start and finish.

• Remember that planning and scheduling of the activities are very
important to successfully manage the overall development, allocate
resources, and monitor progress.

• Consider the big picture during context analysis and planning and
designing of the Web application. If you do not, you may end up
redesigning the entire system and repeating the process all over. If you
address the changing nature of requirements early on, you can build
into the design cost-effective ways of managing change and dealing
with new requirements.

• Recognize that the development of a large Web application calls for
teamwork and shared responsibility among the team members, and
motivate a team culture.

To successfully develop and implement a large, complex Web
application:

S. Murugesan

Ginige, A., and Murugesan, S., 2001a, Web Engineering: An introduction. IEEE Multimedia,

January–March, 8(1): 14–18.
Ginige, A., and Murugesan, S., 2001b, The essence of Web Engineering: Managing the

diversity and complexity of Web application development, IEEE Multimedia, April–June,
8(2): 22–25.

Ginige, A., and Murugesan, S., 2001c, Web Engineering: A methodology for developing
scalable, maintainable Web applications. Cutter IT Journal, July, 14(7): 24–35.

Glisson, W.B., 2006, Web Engineering security: A practitioner’s perspective, Proceedings of
the International Conference on Web Engineering, pp. 257–264.

Ipsos, 2006, Mobile phones could soon rival the PC as world’s dominant Internet platform.
Online version: www.ipsosna.com/news/pressrelease.cfm?id=3049.

Ivory, M.Y., and Hearst, M.A., 2002, Improving Web site design. IEEE Internet Computing,
March–April 2002, pp. 56–63.

Kappel, G. et al. (eds.), 2006, Web Engineering: The Discipline of Systematic Development of
Web Applications. John Wiley and Sons, New York.

Lam, W., 2001, Testing e-commerce systems: A practical guide. IT Professional, March,
pp. 19–27.

Mayr, H., 2006, Web project management. In Web Engineering: The Discipline of Systematic
Development of Web Applications, Kappel, G. et al. (eds.), John Wiley and Sons, New
York, pp. 171–195.

Meier, J.D., 2006, Web application security engineering. IEEE Security & Privacy, July–
August, pp. 16–24.

Mendes, W. et al., 2006, The need for Web Engineering: An introduction. In Web
Engineering, E. Mendes and N. Mosley (eds.), Springer, Berlin, pp. 1–27.

Mimoso, M.S., 2003, Top Web application security problems identified. Online version:
searchsecurity.techtarget.com/originalContent/0,289142,sid14_gci873823,00.html?NewsE
L=9.25.

Murugesan S. et al., 1999, Web Engineering: A new discipline for development of Web-based
systems. Proceedings of the First ICSE Workshop on Web Engineering, Los Angeles, pp.
1–9.

Murugesan, S., and Ginige, A., 2005, Web Engineering: Introduction and perspectives. In
Web Engineering: Principles and Techniques, W. Suh (ed.). Idea Group Publishing,
Hershey, PA.

Murugesan, S., and Venkatakrishnan, B.A., 2005, Addressing the challenges of Web
applications on mobile handheld devices. Proceedings of International Conference on
Mobile Business, pp. 199–205.

Murugesan, S., 2007a, Business uses of Web 2.0: Potential and prospects. Cutter Business-IT
Strategies Executive Report, 10(1), January.

Murugesan, S., 2007b, Understanding Web 2.0, IEEE IT Professional, July–Aug., 9(4).
Naughton, J., 2006, 10 Web sites that changed the world. Good weekend. The Sydney

Morning Herald, September 9, p. 38.
O’Reilly, T., 2006, Levels of the game: The hierarchy of Web 2.0 applications. Online

version: radar.oreilly.com/archives/2006/07/levels_of_the_game.html.
O’Reilly, T., 2005, What is Web 2.0? Design patterns and business models for the next

generation of software. Online version: www.oreillynet.com/pub/a/oreilly/tim/news/
2005/09/30/what-is-web-20.html.

312. Web Application Development

Shadbolt, N., 2006, The Semantic Web revisited. IEEE Intelligent Systems, May–June, 21(3):

96–101.
Siegel, D.A., 2003, The business case for user-centred design: Increasing your power.

Software, 18(1): 62–69.
Verdon, D, 2006, Security policies for the software developer. IEEE Security & Privacy,

July–August, pp. 42–49.
Wikipedia-1, Web 2.0, http://en.wikipedia.org/wiki/Web_2.0.
Wikipedia-2, Rich Internet applications, http://en.wikipedia.org/wiki/Rich_Internet_application.
Williams, J., 2000, Correctly assessing the “ilities” requires more than marketing hype. IT

Professional, November, 2(6): 65–67.
Williams, J., 2001, Avoiding the CNN moment. IT Professional, Nov–Mar., 3(2): 72, 68:70.

32 S. Murugesan

Chapter 3

THE WEB AS AN APPLICATION PLATFORM

Martin Gaedke and Johannes Meinecke

3.1 PARADIGM SHIFT IN WEB HISTORY

When Tim Berners-Lee invented the Web in 1990 at the European Particle
Physics Laboratory (CERN) (Berners-Lee, 1990), he did so in the context of
a development that had started long before. One idea that considerably
influenced the nature and intended purpose of the early Web had its roots in
the concept of hypertext, which had come up about half a decade before.
Coined by Ted Nelson, the term hypertext can be understood as “nonlinear
writing,” i.e., creating documents that can be read not only from the
beginning to the end, but rather in an order that is preferred and controlled
by the reader, who navigates through the text by following associative links.
On Web pages, the associative link is reflected by the concept of the anchor
tag <a> used in HTML. As a precondition for realizing a large-scale
hypertext system, Tim Berners-Lee first proposed a unique addressing
scheme for all documents at CERN to be linked universally, the Universal
Document Identifier (UDI). With this concept, he created the predecessor of
the Web’s Uniform Resource Identifiers (URI) and their prominent subset,
the Uniform Resource Locators (URL), which provide a means of locating
resources by describing their primary access mechanisms (Berners-Lee et al.,
2005). As a result of the hypertext roots, everything about the early Web was
characterized by a focus on documents, including HTML and the first Web
browser prototype. More precisely, the intension was to support the
publication and exchange of documents by scientists, who initially were the
main audience.

“

“

Chemnitz University of Technology, Faculty of Computer Science, Distributed and Self-
Organizing Systems Group, Straße der Nationen 62, 09111 Chemnitz, Germany

Due to the described evolution of the Web and its manifold applications,
its shape has been influenced by different, partially competing perspectives
on how it is or should be used. In 1995, Guay distinguished between several
publishing paradigms present in the early Web. The print paradigm, for
example, is reflected in sites that do not make use of hypertext concepts at
all and instead present their linear content in ways similar to how it is
traditionally presented in print media. This approach, which was partially a
result of a transitional phase toward the Web as a new medium, is gradually
being replaced by the mentioned hypermedia paradigm. Another
development impacting the Web is the multimedia paradigm, which took
advantage of the increase in bandwidth as well as improving hardware
capabilities to deliver not only text, but all sorts of media, including images,
audio, and video. Ted Nelson’s docuverse (Nelson, 1987) can be seen as a
paradigm for the Web, describing the idea of a global library of
interconnected documents. Finally, the interactive paradigm recognizes the
potential of users influencing the sites they visit beyond merely deciding
upon where to navigate next. Whereas formerly the author supplied
information and the reader controlled the flow of information, now the
author provides application logic and the reader controls the program flow.

As the interaction paradigm began to spread and the Web technology
adjusted to the new requirements, new forms of Web sites evolved, which
resembled applications more than documents. While many aspects of these
applications can be compared to conventional software programs, there are
also a number of characteristics typical for the Web platform that distinguish

M. Gaedke and J. Meinecke34

What followed during the next 10 years was a period of continuous
growth. As the scope of application quickly exceeded CERN, its popularity
contributed greatly to the advance of the Internet as a whole, of which it
became the major driving application. Along with the increase in available
sites and servers, more and more end users started to join the Web with an
Internet-capable computer. The content, which was originally published by
scientists, was now also coming from professional enterprises as well as
private individuals, who established their Web presence in the form of
homepages, covering a wide variety of topics. Consequently, Web
technology advanced to meet the requirements of the new emerging
scenarios, which included, in particular, commercial applications. As a
means for reaching vast numbers of consumers with comparatively low
investments, the Web partially changed its focus from a forum for the
publication of information toward an electronic marketplace. While
overrated expectations and lack of concentration on business values during
the new economy boom of the late 1990s resulted in disillusion and crashing
stock prices, market consolidation followed and the Web has now returned
to its period of growth.

them from other platforms (Deshpande et al., 2002). These characteristics
are challenging for the process of developing applications, but also offer
innovative opportunities for business and society as a whole that were
impossible to realize before. An important factor is the potential audience of
the software, which, once deployed, can be accessed by millions of users
from whole different regions, countries, or cultures. At the same time, this
also applies for the competition, making user satisfaction a vital success
factor. Unlike on other platforms, software on the Web is always operating
and does not depend on time-consuming processes of rolling out new
releases. Hence, scenarios can be supported that require constantly up-to-
date information. In addition, there is an evolving set of technologies and
standards that opens new advantages to applications that adopt them,
including many specifications recommended by the World Wide Web
Consortium (W3C). In contrast to common applications, the Web is also
repeatedly influenced by emerging trends that encourage (if not enforce) a
large number of sites to follow them. Together, these factors, among many
others, have led to the emergence of a huge variety of different applications
and as such contribute to the still ongoing growth of the Web.

3.2 WEB APPLICATION CONCERNS

3.2.1 Data

From the viewpoint of the early Web’s paradigms, the data are the content of
the documents to be published. Although content can be embedded in the
Web documents together with other concerns like presentation or navigation,
the evolution of Web applications often demands a separation, using data
sources such as XML files, databases, or Web services. Traditional issues
include, for example, the structure of the information space as well as the

35

In order to develop software for the Web platform with respect to its specific
nature, a number of engineering issues have to be addressed every time an
application is constructed. For the sake of clarity, such problems can be
allocated to multiple concerns (Dijkstra, 1982) that may then be treated
separately in design and implementation. In the following sections we
distinguish between concerns related to the data being processed (Data), the
interface experienced by the user (Presentation, Navigation, Dialogue), and
the distributed system acting in between (Process, Communication) (Gaedke,
2000). The concerns reappear in the Web Engineering methods presented in
this book that comprise approaches to deal with them in a systematic,
disciplined, and quantifiable way.

3. The Web as an Application Platform

definition of structural linking. In the context of the dynamic nature of Web
applications, additional dimensions have to be considered. For instance, one
can distinguish between static information that remains stable over time and
dynamic information that is subject to changes. Depending on the media

the case of a video stream. Moreover, metadata can also describe other data,
e.g., following the de facto standard of the Dublin Core Metadata Initiative
(Andresen, 2003). Such descriptions facilitate the usefulness of the data
within the global information space established by the Web. The machine-
based processing of information is further supported by Semantic Web
approaches that apply technologies like the Resource Description
Framework (RDF) to make metadata statements (e.g., about Web page
content) and express the semantics about associations between arbitrary
resources worldwide.

3.2.2 Presentation

Besides the question of what to publish, an import matter is also how to
present it, especially in the context of the large number of competing
information sources on the Internet. The task of communicating content in
an appropriate way combines artistic visual design with engineering
disciplines. Usually, there are numerous factors to be considered, many of
them related to the assumed audience of the Web site. For example, in the
international case, cultural differences may have to be accounted for,
affecting not only languages but also, for example, the perception of color
schemes. Further restrictions may originate from the publishing
organizations themselves that aim at reflecting the company’s brand with a
corresponding corporate design or legal obligations with respect to
accessibility [The World Wide Web Consortium (W3C), 1997]. Although
presentation technologies have advanced over time, such as in terms of
multimedia capabilities, the core technology of the Web application
platform, the Hypertext Markup Language (HTML), has remained relatively
stable. Consequently, application user interfaces have to be mapped to
document-oriented markup code, causing a gap between design and
implementation.

3.2.3 Navigation

Given the data and the presentation methods to communicate it, an
additional challenge lies in the task of making the information easily
accessible to the user. Because of the potential complexity of arbitrarily

36

type being delivered, either data can be persistent, i.e., accessible
independently of time, or it can be transient, i.e., accessible as a flow, as in

M. Gaedke and J. Meinecke

linked resources on the Web, a lack of systematic design may result in what
it referred to as the “lost in hyperspace” syndrome. This holds true even
though the Web makes use of only a subset of the rich capabilities of
hypertext concepts, e.g., allowing only unidirectional links. Over time, a set
of common patterns has evolved [cf. repositories like Lowe (1999)] that,
being familiar to many users, aids them in navigating through new Web sites
they have not visited before. Applied to Web application development,
navigation concepts can be extended for accessing not only static document
content, but also application functionality. Today, there are several Web
Engineering approaches with a hypermedia background that cover
navigational aspects with dedicated models and methodologies.

3.2.4 Dialogue

As expressed within the interaction paradigm, the execution of a Web
application is usually characterized by a degree of user control that goes
beyond the free choice of navigation. Interactive elements in Web
applications often appear in the shape of forms that allow users to enter data
that are used as input for further processing. More generally, the dialogue
concern covers not only interaction between humans and the application, but
rather between arbitrary actors (including other programs) and the
manipulated information space. The flow of information is governed by the
Web’s interaction model, which, due to its distributed nature, differs
considerably from other platforms. The interaction model is subject to
variations, as in the context of recent tendencies toward more client-sided
application logic and asynchronous communication between client and
server, for example. This trend, based on technologies referred to as AJAX
(Asleson and Schutta, 2006), focuses on user interfaces that provide a look
and feel that resembles desktop applications.

3.2.5 Process

Beneath the user interface of a Web application lies the implementation
of the actual application logic, for which the Web acts as a platform to make
it available to the affected stakeholders. The process concern relates to the
operations performed on the information space that are generally triggered
by the user via the Web interface and whose execution is governed by the
business policy. Particular challenges arise from scenarios with frequently
changing policies, demanding agile approaches with preferably dynamic
wiring between loosely coupled components. In case the application is not
distributed, the process concern is hardly affected by Web-specific factors,
allowing for standard non-Web approaches to be applied, such as

373. The Web as an Application Platform

Component-Based Software Engineering (CBSE) (Heineman and Councill,
2001). Otherwise, service-oriented approaches account for cases where the
wiring extends over components that reside in different locations on the
Web, as covered by the next section.

3.2.6 Communication

Due to the Web’s foundation on the Internet with its distributed and
heterogeneous architecture of clients and servers, communication is
obviously the underlying success factor for the Web as well as a major
source of complexity challenging Web application development. To begin
with, this applies to the message exchange between user agents (e.g.,
browsers) and server-sided applications. In this context, issues to be
addressed are closely related to the dialogue concern and include, for
example, caching strategies as well as session handling to overcome the
stateless nature of the underlying communication protocols. More
complexity arises when applications are involved that go beyond isolated
monolithic sites, connected only on the surface via HTML links. Such
application-to-application communication scenarios allow multiple
distributed autonomous and loosely coupled services to interact with each

3.3 PLATFORM FOR DISTRIBUTED APPLICATIONS

As mentioned before, the Web is still growing in size and simultaneously
changing in terms of how it is put to use. In order to highlight some recent
paradigm shifts, this section elaborates solely on the communication aspect
to show how the Web is increasingly turning into a platform for distributed
applications, whereas the following chapters mainly focus on the remaining
five aspects.

3.3.1 Technological Trends

Many concepts found in the state of the art of distributed Web applications
are not completely new, but can also be found in earlier approaches. Pre-
Web communication standards like message-oriented mechanisms or
remote procedure call (RPC) have been applied by technologies such as
CORBA or (D)COM. As an equivalent specification for the Web, the

38

other within the scope of a service-oriented architecture (SOA) (Booth
et al., 2003). Together with the means to describe, publish, and find
services, this architecture paves the way for extending the application idea
on a global scale.

M. Gaedke and J. Meinecke

Simple Object Access Protocol (SOAP) (Box et al., 2000) emerged,
governing the invocation of Web services. Being an application of the
XML, this protocol is independent of platform technology and transport
mechanism, as required by the heterogeneous environment of the Web. A
diversity of transport alternatives, including HTTP over port 80, mail, or
even fax, makes it suitable for innovative end-to-end communication
scenarios involving the invocation of services worldwide. As such, SOAP,
together with WSDL as a specification to define service interfaces, and
UDDI as a specification of a registry service for advertising these, provide
a basic infrastructure for distributed applications on the Web. To account
for additional messaging needs, further specifications have been developed
as protocol extensions, covering issues such as message security,
reliability, and transactions.

The first fields of application for the Web service concept were mostly
restricted to the intranet of individual companies. Seen as a means for
integrating legacy systems that may be distributed over multiple platforms
and company sites, this technology can be applied to rigidly connect
applications that may not be related to the Web at all. From the perspective
of the Web as a platform, more interesting scenarios involve a larger number
of services that are as publicly available as Internet Web sites and that are
combined to create additional value. Today, tendencies in the Web to this
end, together with many other emerging concepts, can collectively be
referred to as Web 2.0 (O’Reilly, 2005). As a simple form of service, the
XML-based RSS feed has already become relatively popular, often in the
shape of Weblogs (short form: blog). The resulting kinds of applications are
characterized by a new style of collaborative development, e.g., Wikipedia
or interorganizational business applications. In this context, a growing
number of Web services are published that give access to massive data stores
or process logic as a new business concept, such as the functionality
belonging to Amazon or Google. The sum of available services, also referred
to as the API-Cloud, has the potential to add value to other Web applications
that could not provided by locally deployed components.

3.3.2 Selected Aspects of Distributed Web Applications

Returning to the matter of Web application development with special emphasis
on distribution and the mentioned technological advances, this section presents
some problem aspects of corresponding applications. For the purpose of
visualization, architecture illustrations are given for each case, using the

Gaedke, 2005). WAM is specialized on the description of distributed
interorganizational Web applications and comprises an easy-to-communicate

39

notations of the WebComposition Architecture Model (WAM) (Meinecke and

3. The Web as an Application Platform

“pen & paper” graphical notation. Figure 3.1 contains, as the most basic case of
a Web application model, the symbol for a single Web portal that is not
distributed in any way.

In the subsequent sections, this abstract example is gradually extended to
outline a selection of possibilities that arise from the integration of
distributed artifacts over the Web. More specifically, the presented subjects
of integration are services, access policies, federation partners, and devices.

3.3.3 Service Integration

As a first alternative of distribution, a Web portal can invoke Web services
that either offer functionality formerly included in the monolithic Web
application or serve as access points to external data sources and systems.
Hence, the service-oriented approach offers a way of decomposing
functionality into reusable parts with defined interfaces. The invoked
services may in turn invoke others to perform the requested operation and
afterwards combine the obtained results. This is also the case in the scenario
in Figure 3.2, in which a composite Web service aggregates the functionality
of three atomic services.

Figure 3.1. WAM symbol for a single Web application.

Figure 3.2. Example involving the integration of legacy data sources and process units.

40 M. Gaedke and J. Meinecke

Depending on the concrete realization, service composition may vary

from a hardwired approach up to a completely loosely coupled binding of
exchangeable services. On a higher detail level, one can distinguish between
the service and the component that provides the actual functionality to be
integrated. In the example, there are two data providers that, from the
model’s point of view, only act as components for storing and retrieving
data, as well as a process unit that, when triggered by the wrapping Web
service, performs additional operations.

3.3.4 Identity and Access Management

The need for identity and access management arises in situations where the
offered services and applications are not intended to be publicly available in
an uncontrolled manner. For example, payment might be charged for the
usage of a service, up to the point where a company’s business model
depends exclusively on rendering services over the Web. Other reasons
include the necessity of confidentiality due to legal obligations or the need
for an established identity to enable service personalization. Unlike, for

diversity of proprietary approaches built into individual applications and
services, additional security- and identity-related protocols have to be
applied (Scavo and Cantor, 2005). In the example in Figure 3.3, a common
security zone has been established (defining a uniform access control policy
for Company A), surrounding all services and applications of the company.

User identities are managed with the help of an identity provider that
facilitates a central login form and account database, allowing for single
sign-on (SSO) across multiple portals. This concept can also be extended for

Figure 3.3. Example involving a uniform access control context (realm).

41

example, an operation system platform, the Web does not include the
concept of a uniform user identity (Cameron, 2005). Hence, to overcome the

3. The Web as an Application Platform

controlling accesses on Web services by obliging requestors to include
security tokens (obtained from the identity provider) into their SOAP
messages. Further security-related design decisions include the distinction
between different access profiles that specify the allowed protocols and
scope of visibility for individual services and applications.

3.3.5 Federation

problems, many are related to identities that have multiple accounts for
accessing resources from multiple realms, causing security vulnerabilities
and unnecessary administration efforts. In contrast, identity federation
approaches assume only one account per identity, accepting requestors with
external accounts based on explicit trust relationships between the federation
partners. As one of several issues related to “portal federation,” this topic is
receiving growing attention in science and industry (Gootzit and Phifer,
2003). Figure 3.4 depicts the architecture of an application that extends
across two companies.

Here, the two partners agreed upon a unidirectional trust relationship,
allowing users at Company A to sign on at Web Portal 2 with their native
account as a form of interorganizational single sign-on. Furthermore, Web
Service 4, which is otherwise not accessible to the general public, is made
available. In both cases, the authorization is governed by predefined rules
that map the foreign identities to locally meaningful access control decisions.

Figure 3.4. Example involving the sharing of resources from autonomous partners.

42

Situations in which the necessity for the integration of external services (as
in Section 3.3.3) coincides with requirements for established identities and
access control (as in Section 3.3.4) raise a set of new problems. Among these

M. Gaedke and J. Meinecke

3.3.6 Device-Spanning Applications

Regarding distribution from a more hardware-oriented point of view, Web
applications can be enriched by the use of nontraditional platforms other
than the personal computer. To this end, the vision of the Embedded Web is
to extend the common use of the Web by integrating Web server technology
into all sorts of equipment to improve their overall intelligence, functional
capability, and interactivity (Lee et al., 1997). This can take the form of Web
user interfaces, integrated into car radios, for example, or Web service
interfaces that expose device functionality to be integrated into device-
spanning Web applications. A challenging question in this context is how the
concepts and technologies targeted at the common Web can be applied to
Web applications enriched with devices. As an example, Figure 3.5
a federated scenario in which sensors and actuators belonging to multiple
organizations are being integrated as physical components into the distributed
Web application, allowing for innovative kinds of business concepts.

available, only in this case to provide control over an underlying air-
conditioning system. This allows Company A, which possesses a network of
meteorological stations and temperature sensors providing accurate weather
forecasts, to regulate the indoor climate at Company B very efficiently. The
involved Web services are either integrated into the devices themselves or
deployed on computers that are connected to the devices with non-Web
technologies—allowing for these new kinds of service provider solutions.

Figure 3.5. Example involving a device-spanning federation.

43

Like in the scenario in Section 3.3.5, a foreign Web service is made

describes

3. The Web as an Application Platform

3.4 SUMMARY

This chapter gave an overview of the development of the Web, seen as a
platform for delivering applications to users worldwide. Originally focused
on the publications of documents, the Web has been used in different ways,
reflected by changing paradigms such as the print paradigm, the hypertext
paradigm, the multimedia paradigm, the docuverse paradigm, and the
interactive paradigm. During this development, the Web application has
emerged as a new form of interaction between humans and machines. For
the disciplined construction of such Web applications, one can distinguish

communication. As the Web continues to grow, new types of applications
evolve. Among the current tendencies that are often referred to as Web 2.0,
one is the trend toward applications that compose functionality from
distributed sources using Web service technology. Resulting from this new
paradigm, applications can integrate data and software systems via service
interfaces, share access policies, extend safely across organizational
boundaries, and include the functionality of devices as integral parts.

REFERENCES

Andresen, L., 2003, Dublin Core Metadata Element Set, Version 1.1: Reference Description.
http://dublincore.org/documents/dces/.

Asleson, R., and Schutta, N.T., 2006, Foundations of Ajax. Apress, Berkeley, CA.
Berners-Lee, T., 1990, Information Management: A Proposal. http://www.w3.org/

Proposal.html (10.10.1998).
Berners-Lee, T., Fielding, R., et al., 2005, Request for Comments: 3986, Uniform Resource

Identifier (URI): Generic Syntax. http://www.ietf.org/rfc/rfc3986.txt (10.05.2006).
Booth, D., Champion, M., et al., 2003, Web Services Architecture - W3C Working Draft 14

May 2003. http://www.w3.org/TR/2003/WD-ws-arch-20030514/.
Box, D., Ehnebuske, D., et al., 2000, Simple Object Access Protocol (SOAP) 1.1.

http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ (12.05.2000).
Cameron, K., 2005, The Laws of Identity. http://msdn.microsoft.com/library/en-us/

dnwebsrv/html/lawsofidentity.asp (29.10.2005).
Deshpande, Y., Murugesan, S., et al., 2002, Web Engineering, Journal of Web Engineering,

1(1): 3–17.
Dijkstra, E.W., 1982, How do we tell truths that might hurt? SIGPLAN Notices, 17(5): 13–15.
Gaedke, M., 2000, Komponententechnik für Entwicklung und Evolution von Anwendungen im

World Wide Web. Shaker Verlag, Aachen, Germany.

44

between different concerns, i.e., Web-specific aspects of the design and
implementation: data, presentation, navigation, interaction, process, and

M. Gaedke and J. Meinecke

Gootzit, D., and Phifer, G., 2003, Gen-4 Portal Functionality: From Unification to
Federation. Stamford, CT.

Guay, T., 1995, WEB Publishing Paradigms. http://www.faced.ufba.br/~edc708/biblioteca/
interatividade/web%20paradigma/Paradigm.html (06.02.2006).

Heineman, G.T., and Councill, W.T. 2001, Component-Based Software Engineering—Putting
the Pieces Together. Addison-Wesley, Boston.

Lee, B., Houtchens, S., et al., 1997, WWW6 Workshop on Embedded Web Technologies.

Meinecke, J., and Gaedke, M., 2005, Modeling federations of Web applications with WAM.
Third Latin American Web Congress (LA-WEB 2005), Buenos Aires, Argentina, IEEE
Computer Society.

Nelson, T., 1987, All for one and one for all. Hypertext ‘87 Proceedings, The Association for
Computing Machinery, Chapel Hill, NC.

O’Reilly, T., 2005, What Is Web 2.0—Design Patterns and Business Models for the Next
Generation of Software. http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-
is-web-20.html (18.10.2005).

Scavo, T., and Cantor, S., 2005, Shibboleth Architecture—Technical Overview Working Draft
02, 8 June 2005. http://shibboleth.internet2.edu/shibboleth-documents.html (02.11.2005).

The World Wide Web Consortium (W3C), 1997, Web Accessibility Initiative (WAI).
http://www.w3.org/WAI/ (10.05.2006).

45

Lowe, D., 1999. Hypermedia Patterns Repository (HPR). Version 1.0, http://www.
designpattern.lu.unisi.ch (23/03/99).

3. The Web as an Application Platform

PART II

WEB DESIGN METHODS

Chapter 4

OVERVIEW OF DESIGN ISSUES FOR WEB
APPLICATIONS DEVELOPMENT

Gustavo Rossi,1 Daniel Schwabe,2 Luis Olsina,3 Oscar Pastor4

1LIFIA, Facultad de Informatica, Universidad Nacional de La Plata (also at CONICET)
Argentina, gustavo@lifia.info.unlp.edu.ar

2Departamento de Informática, PUC-Rio, Rio de Janeiro, Brazil, dschwabe@inf.pucrio.br
 3GIDIS_Web, Engineering School, Universidad Nacional de La Pampa, Calle 9 y 110, (6360)

General Pico, LP, Argentina, olsinal@ing.unlpam.edu.ar

4DSIC, Valencia University of Technology, Valencia, Spain, opastor@dsic.upv.es

4.1 INTRODUCTION

In this part of the book we will focus on design issues in Web applications
development. To make the book useful both for practitioners and for
researchers, we decided (following the successful style of the IWWOST
series) to use a common example throughout the rest of the chapters in
which each design method is presented. In the following two sections we
summarize the most important aspects that development approaches should
consider, and then we briefly present the example that will be solved
subsequently in each chapter. The aspects we introduce in Sections 4.2 and
4.3 will be refined in each subsequent chapter of the book.

4.2 ISSUES FOR DESIGN METHODS

For discussion purposes, we have grouped the issues under four headings; in
Section 4.7 we discuss some additional issues.

1. data/information, with issues relating to data representation
2. navigation, with issues relating to navigation structure and behavior

50 G. Rossi et al.

3. functionality, with issues relating to application functionality beyond

navigation
4. presentation/interface, with issues relating to interface and

presentation design

This order reflects to some extent the historical evolution of Web

applications over time—from simple “read-only” applications to full-
fledged information systems—and also reflects the nature of the methods
themselves.

This is in contrast with a more software engineering-centered view,
which might place “functionality” first, since it is an aspect of applications
that all traditional software design methods have taken into account,
followed by navigation, which was the “new” abstraction introduced by
hypermedia and the Web.

The issues presented here address different aspects of Web applications,
which exist to a greater or lesser extent in any such application. Any method
purporting to help design Web applications should, therefore, address a
significant number of such issues, if not all.

4.3 DATA/INFORMATION/CONTENT—WHAT IS THE
SUBJECT MATTER OF THE APPLICATION?

Web applications, like any application, must deal with information items that
constitute the problem domain, i.e., the subject matter of the application. The
first aspect that a method must define is how to characterize such
information items, providing a data model.

This is not a new problem; it has been dealt with in software development
as well as in database design methods. Among the most popular are the
entity–relationship (E/R) model and the relational model, which are clear
examples of widely used extended data models. Also, the data counterparts
of popular object-oriented (OO) models, such as UML and ORM, address
this same problem. Although differing in details, they all provide for the
definition of information items as composed of attributes, which characterize
individual properties of such items. Most methods provide means to describe
sets of items with the same attributes, usually through concepts such as
“classes” or “entities.” In addition, generalization and specialization
hierarchies can typically be defined among classes or entities.

While Web-based applications do not present additional requirements for
the expressiveness of such models, some methods offer additional
abstraction mechanisms that allow one to deal with specific issues of the

r Web Applications Development 51

contents of Web applications, such as multimedia data types, or with
multiple representations for the same information item.

Besides the information items, relations must also be represented. While
some methods allow a single relation type, others provide specialized types
such as aggregation and composition relations. In addition, cardinality
constraints must also be expressed.

When applications must deal with extensive domains, model
specification may become very large. Some methods provide modularization
primitives that allow the specification to be broken into smaller parts.

The application itself may be represented in many ways. In some models,
it is the union of all items; in others, there is a special element that stands for
the application itself. For example, in object-oriented methods, it is
sometimes called an “application singleton” since it is a single object
instance of its class.

4.4 NAVIGATION

On the other hand, most current Web application design methods
recognize navigation as an outstanding feature of Web applications and
provide models and notations to specify it. Briefly stated, characterizing
navigation aspects of a Web application entails defining the “things” being
navigated and specifying how the navigation space is structured—what items
are reachable from any given item. Since the semantics of navigation is
better understood, it justifies providing specialized notations that help users
describe this functionality on an appropriate level of abstraction.

Much in the same tradition as in the database world, design method
proposers have realized that the items being navigated (variously called
nodes, objects, etc.) are different from the conceptual items that make up the
problem domain. Whereas conceptual items represent the information in a
task- and user-independent way, navigation items are defined taking into
account user requirements, providing a view over conceptual items. The idea
is that this abstraction mechanism allows the hiding of unwanted details as
well as the grouping of interrelated items, with respect to the user profile and

4. Overview of Design Issues fo

Although it might seem obvious, given the widespread experience people
have using the Web, many authors do not distinguish navigation from other
application functionalities or, frequently, equate it with any event that causes
changes in the interface. It is clear that navigation is a salient feature of Web
applications, but such authors don’t consider it worthy of particular
attention during application design; it is simply “another application
functionality,” and the notion of linking is simply ignored.

52

the task being supported. This is analogous to the “external views” as related
to “conceptual views” in traditional database design, where users actually
manipulate (external) views over the conceptual objects.

Once navigation items have been characterized, methods must also allow
the definition of the navigation space. For any reasonably sized application,
defining the navigation space topology directly in terms of only “nodes-and-
links” is too restrictive, since the amount of information quickly overwhelms
both designers and users. Furthermore, descriptions at this low level miss the
opportunity to exploit typically occurring regularities in the navigation space
topology.

Many methods introduce higher-level abstractions that allow the
navigation space to be defined in a more concise way, such as sets or
(indexed, ordered) lists, navigation chains, etc. Such abstractions play an
analogous role with respect to navigation topology as classes do with respect
to object instances—they allow one to refer to the navigation properties of a
large number of nodes (respectively, the structure and behavior properties of
objects) with a single primitive (respectively, classes).

Such specifications will, in most cases, translate straightforwardly into
implementation mechanisms for dynamic Web sites, where pages are not
stored explicitly but are generated dynamically, on demand, combining
HTML or XML templates with the appropriate data directly retrieved or
computed from application data stored in databases.

The initial focus of most novice designers is on the navigation items that
will be made available to users. More experienced designers have realized
that equally important are the access structures that will lead users to the
desired information items—there is no point in having elaborate, detailed
information if the user can’t reach it!

Consequently, defining the navigation space of Web applications
necessarily entails defining its access structures. Once again, higher-level
abstractions are necessary, such as (ordered) lists, guided tours, etc. For
example, in our exemplar application described at the end of the chapter, we
find indexes for accessing films by each of its specific features, such as
genres or actors, or film directors, etc. More opportunistic indexes such as
top-selling DVDs or today’s recommendations are increasingly being used
as well. Additionally, some methods also provide the means to specify items
that are always accessible, i.e., items that can be reached from anywhere in
the navigation space. For example, easy access to each key functionality is
usually provided, for example, television movies, DVDs, access to the user’s
account or shopping cart, and so on.

G. Rossi et al.

53

4.5 FUNCTIONALITY (BEYOND NAVIGATION)
AND TASKS

When the first applications were deployed in the WWW, they were mostly
“read-only,” meaning they allowed users to browse information (hence the
name “Web browsers”!), but not to create or change information items. With
the increased sophistication of the run-time environments of Web servers,
applications have become increasingly more complex, reaching the current
stage where browsers are really interfaces to full-fledged applications
allowing the creation and modification of information items, often in a
distributed, asynchronous fashion.

Since navigation is recognized as a special kind of functionality, most
methods must allow the characterization of navigation states, i.e., the
dynamic behavior of the application as the user navigates from node to node.
The original browse-only applications had, therefore, only navigation states.

As additional functionality was added, the need arose to deal with its
associated states and state changes. Stateful applications were already the
norm outside the Web, and design methods proposed a variety of
mechanisms to specify them. Web application design methods must allow
the specification of such applications and integrate the application states
with the navigation states. For example, the check-out operation in electronic
stores represents a task that the user must fulfill; it is represented as a set of
subtasks, although finally it consists of filling in a set of forms accessed as a
sequence of nodes.

The added complexity arises from the combination of this functionality
with navigation operations and the sometimes subtle interplay between them.
For example, some application functions may only be accessed in certain
navigation states, or, more generally, accessible functions may change
depending on the navigation state. Conversely, certain navigation
alternatives may only be available in certain functionality states; for
example, personal data may only be accessed after the user has logged in.

The inclusion of states, coupled with the distributed nature of the WWW,
naturally leads to the notion of non-atomic processes and transactions. Many
applications allow functionality to be accessed as a sequence of steps, which
may sometimes be interspersed with navigation operations. Conversely,
some applications have the notion of transactions, which must be
implemented over an essentially stateless run-time environment. Design
methods must allow the specification of both types of run-time behavior,
preferably independently of the run-time environment.

Another source of complexity is the inclusion of multimedia data, which
are often combined with elaborate timing and synchronization requirements
that must be integrated with the other functionalities.

r Web Applications Development 4. Overview of Design Issues fo

54

To deal with these aspects, some methods propose new mechanisms, but
many rely on integrating with or extending existing methods that have
already been successfully applied to such aspects of application design.

4.6 INTERFACE AND PRESENTATION

Web applications are, obviously, interactive applications. Users access the
application functionality, including navigation, through the interface. For
some authors, the interface directly presents the conceptual information
items and exposes the application functionality. In fact, applications
typically react to some interface event (such as a link or button being
clicked), triggering the corresponding functions, which in turn cause the
interface elements to change in some way. Even for non-Web environments,
many design methods already decouple interface design from functionality
design as a way to modularize and reduce the complexity of the design task.

In contrast, for many design methods, a distinction should be made
between interface transformations and navigation operations in Web
applications. In other words, some interface events that trigger application
functionality do not correspond to any navigation operation, even if the
interface changes in some way. This is true even if there is access to the
server as a result of the interface operation. A simple example is an update
operation to an order being made, changing, for instance, the quantity of
some item in the order. Even though this causes an access to the server,
which triggers some script that updates the internal data structure
representing the order (and possibly reflecting it in a database), there is no
associated navigation—the item being “navigated” is still the same order.

Consequently, Web design methods must provide a way for the designer
to specify the interface—which elements compose it and how it reacts to all
possible events. The interface behavior must necessarily be tied to the
application functionality, including navigation.

Web application interface design must deal with another dimension,
namely graphic design. In contrast with non-Web applications, where the
complete design is carried out by software engineers, the interface
appearance of Web applications is mostly defined by graphic (or, in current
parlance, user experience) designers, who determine the actual “look and
feel” of the application. Design methods must allow the clear separation
between the so-called abstract interface design, where interface functionality
is defined, and the concrete design, where layout and graphical appearance
are defined.

In addition, the existence of an abstract interface design is also useful
because of the rapidly evolving technological platforms upon which Web

G. Rossi et al.

55

applications are implemented. New standards are issued and new versions of
Web browsers are released almost every six months. Having an abstract
interface design allows a more stable part of the design that remains
unchanged by such technological evolution to be encapsulated. Besides this
type of evolution, market reasons tend to pressure many Web applications to
periodically completely change their graphical appearance; the abstract
interface designs also help to cope with this requirement.

The rapid introduction of new devices used to access the Web, such as
palmtops and cell phones, presents yet another dimension of requirements.
Since such devices provide radically different run-time environments, with
more limited display and interaction capabilities, some design methods strive
to identify a “device-independent” portion of the interface design that
remains unchanged regardless of the device being used to access it.

4.7 FURTHER ISSUES

4.7.1 Design Process

The discussion so far has focused mostly on the representational needs of
Web application design methods. Beyond that, methods must also address
the design process itself. The Web environment presents additional demands
on the development process, caused by factors such as

1. the specific target environment, which is a hypermedia, distributed

client-server environment
2. the rapid evolution and constant change in the implementation

environment
3. the accelerated design cycle
4. the broader and sometimes harder-to-characterize audience (or

intended target user categories)
5. the multidisciplinary nature of the development team, involving

other professional skills such as communicators, content experts,
graphics designers, etc.

Some methods provide additional tools to capture or model requirements

that are better suited for this environment; typically, they are also more
focused on user (or stakeholder) needs, as opposed to focusing on the
designer or contractor alone.

Although a very large number of applications are available on the WWW
(basically, most moderately sized Web sites can be considered Web
applications of some sort), it is also true that several of their characteristics

r Web Applications Development 4. Overview of Design Issues fo

56

can be found repeatedly across many applications. In other words, many
subproblems recur, thereby presenting an opportunity for design reuse. After
all, if a certain subproblem has been faced and resolved, why not reuse its
solution, perhaps adapting it to the situation at hand?

There are several approaches to deal with this, some directly incorporated
into the design methods themselves, others complementary to them. In this
latter category, mechanisms such as design patterns are employed, allowing
known problems and their solutions to be characterized in an easily used
format.

On a higher abstraction level, it is also possible to recognize that certain
types of applications, in given domains, also exhibit recurring structures. For
example, most institutional Web sites are similar, as are many online stores.
Some methods can be extended to allow the characterization of families of
similar applications, effectively forming Web application design
frameworks. Starting with such frameworks, it is possible to rapidly
instantiate specific applications in the given domain, by appropriately
instantiating the framework’s hotspots.

As the number of different applications being deployed on the WWW
increases, software engineers have identified a number of recurring
functionalities. In addition to the various forms mentioned above, another
approach to leverage this accumulated experience is to encapsulate these
functionalities in components that can be composed to form a more complex
application. More generally, complex applications can eventually be defined
as the composition of simpler ones. In some methods, the notion of a
component is available as a primitive, together with language specifying
how a component can be composed.

4.7.2 Model Representation

An integral part of any method is the definition of the notation used to
describe its models. Such a notation has many uses, as it must support the
communication between

1. customers and designers
2. designers and end users
3. designers and other designers
4. designers and implementor
5. implementor and end users

and so on. Each of these communications poses different requirements on
the notation. For example, the client–designer communication must allow
the client to express himself as closely as possible to his own world and

G. Rossi et al.

57

vocabulary; the designer–implementor communication must be precise and
unambiguous to ensure that the implementation adheres to the specified
application. Notations may be graphical, textual, or both.

Most methods propose a new notation, extend some existing notation, or
use existing notation directly. The advantages of directly using or extending
existing notation are that, in most cases, users do not have to relearn entirely
new conventions, and existing tools may be used directly or extended as
needed. On the other hand, if the existing notation is too limited in its
expressive power, extending it may require so much that the additions offset
these advantages, and it may be more effective to use an entirely new
notation.

Since many methods propose different models for describing different
aspects of the application, different notations are used, and the relations
between the models must also be represented.

Other considerations for notations regard their adequacy for automated
tool support and legibility in printed form.

4.7.3 Implementation

Designing and implementing applications using methods produces several
documents and, as with any larger software development, is best supported
by computer-aided software engineering (CASE) tools. Such tools may
support only the specification and help manage the documentation but may
also include the generation of the final running implementation. This may be
achieved in a completely automatic fashion or may be semi-automated,
requiring the designer to manually fill in implementation details that cannot
be automatically determined by the CASE environment.

Most complex Web applications involve dynamic processing of
information, which in turn requires extensions to the server. The CASE
environment may only generate the application targeted at a specific run-
time environment, for example, Apache server with PhP scripting, or may be
configured to generate the application for various such environments. In
some cases, run-time environments are part of a larger framework, such as
J2EE.

In addition, it may be further customized to also take into account the
various access devices possible, such as cellular phones or handhelds, and
provide environment information to support ubiquitous applications.

Dynamic Web applications rely heavily on databases to store and manage
their data. An important part of the generated application is its interface to
the DBMS. Typically, this involves establishing a mapping between the
information items in the application and the data items stored in the
database. Once more, this interface may be automatically generated and

r Web Applications Development 4. Overview of Design Issues fo

58

managed by the CASE environment, or it may require the manual
intervention of the designer. In some cases, the CASE environment may also
provide support for performance tuning and for maintenance and evolution
of the application.

However, the task of implementing Web applications is increasing in
complexity day by day due to the continuous emergence of new platforms
and technologies. Specific needs are also arising for the development of
several kinds of Web applications: Web data systems, interactive systems,
transactional systems, workflow-based systems, collaborative systems, site-
oriented systems, social systems, ubiquitous systems, or Semantic Web
applications.

In this context, Web Engineering methods are evolving to be properly
adapted to the continuous evolution of Web system requirements and
technology. Web Engineering is a domain where model-driven software
development (MDSD) principles can be used to address the evolution and
adaptation of Web software to new platforms and technologies in order to
achieve technological independence.

The Model-Driven Architecture (MDA®) initiative from the Object
Management Group (OMG™) proposes defining the software building
process based on a set of models. Depending on the level of abstraction,
these models are dependent or independent of technological issues. One of
the major benefits that introduce this separation of concerns is that system
definitions can be reused for generating the system implementation in
different technologies. On the other camp, Software Factories promote the
systematic reuse, the application of the product lines philosophy, the model-
driven development, the definition and use of domain-specific languages, the
development of frameworks, and the generation of incremental code.

Recent Web Engineering approaches have made real advances in the
prospects that are offered by model-driven software development (MDSD).
This becomes more evident if we consider that some Web Engineering
methods have successfully adopted the MDSD principles. They address
different concerns using separate models (navigation, presentation, data,
etc.) and are supported by model compilers that produce most of the
application’s Web pages (using PHP, JSP, ASP.NET, etc.). Moreover, they
also take into account the possibility of accessing these systems via different
devices, such as cellular phones or handhelds, and business logic (using
COM+, EJB, J2EE, Web services) based on the models. This may be
achieved either completely automatically or semi-automatically, requiring
the designer to manually fill in implementation details that the tool cannot
automatically determine.

Several signs point out that the use of the MDSD approach is going to
rapidly increase. First, MDSD has received significant support from both the

G. Rossi et al.

59

MDA and the Software Factories. Second, the proliferation of CASE tools
that support MDSD-based approaches that claim to be “MDA-compliant” is
widespread. Third, technologies and tools for developing “your own” DSDM
tools (graphical editors, model transformers, code generators, etc.) have also
become abundant. In this category of tools we can find a set of projects
developed under the Eclipse Modeling Project (EMF, GMF, GMT, etc.) and
the DSL tools that are integrated with the MS Visual Studio 2005 Team
System Edition. In this context, companies and research groups are
considering the development of their own CASE tool for supporting their
own Web Engineering method (following the MDA, Software Factories,
Product Lines, Generative Programming of whatever other, more specific
proposal) using one of these tools.

Although current Web Engineering methods still present some limitations
when it comes to modeling further concerns, such as architectural styles or
distribution, the adoption of MDSD principles can help achieve a real
technological independence. In this way, methods are ready to be adapted to
the second (Web 2.0) or third (Web 3.0) generation of Web applications,
giving support to AJAX-based (Asynchronous Javascript and XML) Rich
Client applications, Mashups, folksonomies, REST or XML Web Services to
integrate current Web applications with third-party services, portals, as well
as legacy systems.

4.7.4 Evolution and Maintenance

The dynamic nature of the current Web environment, and of the Internet in
general, means that applications evolve very rapidly, as does the
environment in which they run. Some methods provide direct support for the
evolution of Web applications or provide support for tracing design
decisions at various levels, easing the maintenance problem.

The resilience of applications designed with such methods with respect to
changes is in good part determined by the abstraction levels supported by the
method. If the adequate abstraction levels have been provided, the
magnitude of changes in the application should be directly proportional to
the magnitude of the changes in their requirements or of their run-time
environments.

4.7.5 Role of Standards

Perhaps the main reason for the success of the Web was its establishment
and adherence to standards. Following this tradition, some methods adopt
some of the more recent standard notations such as UML at the design level
or XML at the data level, some with direct support from CASE tools. In such

r Web Applications Development 4. Overview of Design Issues fo

60

cases, adopting such standards may also affect the target run-time
environments, since several of them already provide direct support for these
standards. The adoption of these standards may also facilitate model
interchange between tools supporting different methods, such as XMI for
UML-based notations.

Although standards such as XML address the syntactical aspect of model
specifications, it may also be possible to use other standards that advance
further into the semantic realm, such as RDF, RDFS, or OWL.

4.7.6 Personalization and Adaptation

Personalization has become a very important issue in the Internet, as a
consequence of the increasing sophistication of Web sites, driven by the
unabated competition between sites to attract viewers. Even though almost
from the beginning browsers allowed personalization of presentation
features, the current ubiquity of the World Wide Web, together with the
myriad of platforms that support some kind of browsing, has reshaped this
problem toward building applications customized to the individual.

Designing personalized Internet applications may mean building different
interfaces, customized to a particular device; providing different navigation
topologies to different persons; recommending specific products according
to the user’s preferences; implementing different pricing policies, and so on.
All these facets of personalization share the need of modeling the user and
his preferences, building profiles, finding algorithms for best linking options,
etc., and integrating them in a cohesive design.

Several types of personalization must be accommodated:

1. role-based personalization, where the user sees different items and has
different options depending on his role

2. link personalization, where the actual navigation topology depends on
the individual and her access rights

3. content personalization, where actual contents of information items
change depending on the person accessing the content

4. behavior or functionality personalization, where the functions the user
can activate, and their behavior, change depending on the user

5. structure personalization, where the entire application may be
customized according to the user’s preferences or profile

6. presentation personalization, where the appearance (look and feel) of
the content is adapted to the user, not the content itself

Many methods provide primitives that directly support personalization

design, whereas others provide only guidelines.

G. Rossi et al.

61

Personalization can be seen as a special case of a more general behavior,
adaptation. This behavior allows Web applications to alter some of their own
characteristics as a function of various possible parameters. Personalization
is really adaptation in which the input parameter is the user’s identity and
role. Other possible parameters are geographic location, available
bandwidth, input device, past browsing history, etc.

Adaptation is paramount in the case of ubiquitous Web applications, i.e.,
applications that can be accessed anywhere, anytime. This means that they
must be context-aware, in the broadest sense—not only must the logical
context be taken into account, but also the physical and geographical
environments as well. Such awareness may be directly expressible by some
primitives in certain methods or implemented by lower-level primitives in
others.

4.7.7 Quality Assurance Issues

Current Web applications can be very complex products and critical assets
for an organization, so their quality can, to some extent, determine the
organization’s success or failure.

Quality assurance is a key support process and strategy mainly at the
organization’s software project level, in order to assure high-quality products
and services by providing the main project stakeholders with the appropriate
visibility, control, and feedback on resources, processes, and associated
products throughout the software and Web life cycle.

Quality assurance applies to evaluation not only of products, processes,
and services but also of resources as development methods, development
teams, among others. To be effective, the quality assurance strategy should
be planned and integrated to the main processes in the early phases of a
project: That is, plans, activities, and procedures that will add value to the
project and satisfy functional and nonfunctional requirements should be
established from the very beginning. Quality assurance as a support process
deals ultimately with preventive, evaluative, and corrective actions.

To measure, evaluate, verify, and validate functional and nonfunctional
requirements from the quality assurance standpoint, different classes of
methods can be categorized, including, for example, testing, inspection,
simulation, and surveys, among others. In turn, for each category, particular
methods and techniques can be applied (e.g., feature analysis method,
heuristic guidelines inspection, Web usage analyses, white box testing, and
user testing, among many possibilities) regarding the specific evaluation
objectives and information needs.

Functional requirements actually represent what the Web application
must do and provide (i.e., the scope) in terms of functions, contents, and

r Web Applications Development 4. Overview of Design Issues fo

62

services for the intended users. Nonfunctional requirements actually specify
the capabilities, properties, and constraints that those functions, contents, and
services should satisfy under certain conditions, for the intended users and
contexts of use. The former are supported by different Web development
methods by providing constructors and models at the conceptual,
navigational, or presentational level, etc., as introduced in earlier sections
here (and illustrated throughout this book). These models usually serve as
input to many evaluation, verification, and validation activities, in addition
to particular models for functional testing as test cases models, among
others. The latter are currently supported to some extent by a couple of Web
development methods; moreover, very often methods are not well integrated
with quality assurance activities.

For instance, in order to measure and evaluate the external quality or
quality in use of a Web application (or its components), models for quality,
or quality in use, or subcharacteristics such as usability, security, reliability,
etc. should be specified. These models, which represent nonfunctional
requirements, can be performed by means of characteristics and attributes, or
by means of heuristic guidelines, or by categories and questionnaire items.

Therefore, as the reader can surmise, conceptual frameworks for
evaluation (as we will discuss in Chapter 13) that allow specifying
nonfunctional requirements at different stages, in addition to the
measurement (e.g., based on metrics) and the evaluation (e.g., based on
indicators) components, might be necessary in order to support the analyses
and recommended actions. In fact, some of the measurement, evaluation, and
verification activities may be integrated and even automated in software and
Web development methods in a sounder way.

4.8 THE PROBLEM STATEMENT

We deliberately kept the specification of the example for this book simple to
make it more understandable for a broad audience. The requirements of the
proposed application case are just described textually to leave place for each
author to express it using the corresponding method’s primitives.

The goal is to model an Internet site like www.imdb.com (the Internet
Movies Database). The site allows users to explore movies and television
programs, their actors, directors, and producers. Movies descriptions contain
director, actors, genre(s), user comments, user ratings, country of origin,
qualification, etc. Information about soundtracks can also be obtained.
Relationships with related movies can be explored. External links (such as
the official movie Web site) are also provided. Actors and directors are
described by a short bio, a photograph, and his/her filmography (as actors,

G. Rossi et al.

63

producers, writers, directors, and other related roles). For example, for each
actor one can explore all the movies he participated in.
Photo galleries of the actor/director can also be explored. The filmography
can be explored according to different criteria: awards, user's votes, genre,
etc.

The site provides daily information on new movies, biographies of
selected actors, and news on the world of movies. Regarding
nonnavigational behaviors, it is possible to add comments to films (in the
style of sites such as www.amazon.com). It is also possible to explore show
times and to buy tickets in selected cinemas. In this regard it is possible to
select a city and a movie (currently on exhibition) and get the list of cinemas
in that city that are showing the film. It is possible to select one show time of
a given cinema and buy a ticket to see the chosen movie. The site maintains
a list of films currently playing, giving a short description, together with
access to user comments.

In a similar sense, the site maintains a list of upcoming movies,
information on festivals, awards (like Emmy, Oscar, etc.), and miscellaneous
news. It is also possible to buy DVDs for some movies online, with the usual
functionality for online stores. Search facilities are also provided for movies,
actors, companies, etc.

r Web Applications Development 4. Overview of Design Issues fo

Chapter 5

APPLYING THE OOWS MODEL-DRIVEN
APPROACH FOR DEVELOPING WEB
APPLICATIONS. THE INTERNET MOVIE
DATABASE CASE STUDY

Joan Fons, Vicente Pelechano, Oscar Pastor, Pedro Valderas, Victoria Torres
Research Group OO-Method. Department of Information Systems and Computation. Valencia
University of Technology. Camí de Vera s/n, E-46022, Spain,

5.1 INTRODUCTION

A decade after the emergence of the Web Engineering (Murugesan and
Desphande, 2001) discipline, the development of complex Web applications
is still a relevant research topic. For many years, Web Engineering
approaches have done an excellent job adapting software engineering
(Pressman) methods that were initially conceived to support traditional (non-
Web) software development to provide solutions for the development of
Web applications.

All of these Web Engineering methods were based on a similar principle:
Web applications must be developed by starting with a sound, precise, and
non-ambiguous description of an information system in the form of a
conceptual schema (CS). Then, the CS must be properly transformed into its
corresponding software product by defining the mappings between
conceptual primitives and software representations. To achieve this,
traditional conceptual schemas, which were mainly focused on capturing the
static structure and the system behavior, were extended with new models and
abstraction mechanisms to capture the new aspects introduced by Web
applications. There are basically two aspects: navigation aspects and
presentation aspects. Some representative efforts to introduce these aspects
into traditional conceptual modeling approaches are the Object-Oriented

jjfons@dsic.upr.es

66 J. Fons et al.

Hypermedia Design Model (OOHDM) (Rossi and Schwabe, 2001), WebML
(Ceri et al., 2002), UML-base Web Engineering (UWE) (Knapp et al., 2004),

In this context, recent Web Engineering approaches have made real
advances in the prospects that are offered by the model-driven strategy
(Mellor et al., 2003). This becomes more evident if we consider that some
Web Engineering methods have successfully adopted the Model-Driven
Architecture (MDA) proposed by OMG (MDA, 2004). In accordance with
the MDA approach, CSs are compared to Platform-Independent Models
(PIM). Then, these PIMs are transformed into Platform-Specific Models
(PSM) by the application of model-to-model transformations.

Our proposal provides a very specific contribution within this context.
We have adapted the Web Engineering method, Object-Oriented Web
Solutions (OOWS), to be compliant with MDA. OOWS proposes a PIM that
allows us to fully describe the different aspects that define Web applications.
This PIM extends the conceptual schema of a traditional object-oriented
development method called OO-Method (Pastor et al., 2001) by introducing
new models for describing the navigational and presentational aspects that
characterize Web applications.

The PIM proposed by the OOWS method provides all the information
needed to perform what MDA calls an “automatic transformation.” This
transformation is made using a tool to transform a PIM directly into
deployable code. This can be done since the PIM is computationally complete.
To achieve this transformation, we extend the OO-Method code generation
strategy by presenting a precise transformational process for obtaining code
from the new models introduced by OOWS. This process introduces a set of
correspondences between the PIM abstractions and the final software
components. We have also extended the commercial tool that supports OO-
Method in the code generation process (OlivaNova Model Execution, CARE
Technologies) by integrating mechanisms that allow us to incorporate the
transformational process into the automatic code generation process.

We also explain how the transformational process proposed to obtain
code from the PIM has been defined taking into account the unique
characteristics of Web applications that have not been dealt with in the past
by the software engineering community. In particular, we focus on the
increased emphasis on user interfaces that has emerged in the development
of Web applications. In a world where success is measured in terms of
number of visits, Web applications need to provide attractive user interfaces
in order to engage users. Therefore, development companies need to involve
not only software engineers [as occurs in traditional development projects
(Reifer, 2000)] but also graphic designers who are able to design more
attractive interfaces. We explain how our approach allows software

and Web Site Design Method (WSDM) (De Troyer, 2001).

tabase Case Study 67

engineers and graphic designers to work in a collaborative way through the
entire development process.

The structure of this work is the following: Section 5.2 introduces an
MDA-based view of the OOWS approach. It also describes the OO-Method
foundations on which the OOWS is based. The new models that OOWS
introduces in the PIM model are of special relevance. Section 5.3 presents a
discussion of the model transformation strategy used to obtain code from
these models. This section also presents an implementation framework that
helps in the development of the final solution. Section 5.4 presents the
Internet Movie Database case study in which all of these ideas are put into
practice.

5.2 OOWS: AN MDA-BASED WEB ENGINEERING
METHOD

OOWS is a Web Engineering method that provides methodological support
for Web application development. OOWS is the extension of an object-
oriented software production method called OO-Method. Nowadays, the
OO-Method approach has an industry-oriented implementation named
OlivaNova (OlivaNova Model Execution, CARE Technologies) that has
been developed by CARE Technologies S.A.

Section 5.2.1 presents the OO-Method approach that deals with “classic”
software development using model-driven techniques for software
development. Section 5.2.2 presents OOWS, introducing the diagrams that
are needed to capture Web-based applications requirements.

5.2.1 OO-Method Conceptual Modeling

OO-Method (Pastor et al., 2001) (see left side in Figure 5.1) is an OO
software production method that provides model-based code generation
capabilities and integrates formal specification techniques with conventional
OO modeling notations.

OO-Method provides a PIM where a system’s static and dynamic aspects
are captured by means of three complementary views, which are defined by
the following models:

• a Structural Model that defines the system structure (its classes,
operations, and attributes) and relationships between classes
(specialization, association, and aggregation) by means of a class diagram

• a Dynamic Model that describes the valid object-life sequences for each
class of the system using state-transition diagrams. Object interactions

5. The Internet Movie Da

68

(communications between objects) are also represented by sequence
diagrams in this model

• a Functional Model that captures the semantics of state changes to
define service effects using a textual formal specification

OlivaNova, a commercial product, provides an operational, MDA-
compliant framework, where a Model Compiler transforms a PIM into its
corresponding Software Product. On one hand, the OlivaNova Modeller
(OlivaNova Modeller, CARE Technologies) allows us to graphically define
the different views that describe a system (the structural, dynamic and
functional models). On the other hand, a set of OlivaNova Transformation
Engines (OlivaNova Transformation Engines, CARE Technologies) compile
these views in order to translate the conceptual primitives defined in the PIM
into a specific implementation language. According to MDA, each
OlivaNova Transformation Engine is a tool that automatically performs
PIM-to-PSM transformations and PSM-to-Code transformations.

J. Fons et al.

Figure 5.1. The MDA-based OO-Method/OOWS process development.

69

A three-tier architectural style has been selected to generate software

applications:

• Presentation tier: It includes the graphical user interface components for
interacting with the user.

• Application tier: This tier is divided into the Business façade, which
publicizes the interfaces provided by the Business Logic, which
implements the structure and the functionality of the classes in the
conceptual schema.

• Persistence tier: It implements the persistence and the access to
persistent data to hide the details of data repositories from the upper tiers.

As stated in Murugesan and Desphande (2001), Web applications
introduce additional properties that are not addressed by software methods
during the development process. In this sense, OO-Method is not an
exception and requires some extensions in order to cope with them. These
new properties refer to aspects such as navigation, presentation, and other
advanced features such as user personalization. To achieve this, OOWS (see
right side in Figure 5.1) introduces three new models into the PIM supported
by the OlivaNova Modeller: the user model, the navigational model, and
the presentation model.

These three new models allow one to fully describe Web applications at
the PIM level. The code generation process implemented by the OlivaNova
Transformation Engines must also be extended in order to automatically
generate code from the OOWS models. However, this extension must be
performed in a conservative way with respect to the transformation engines
to assure compatibility with already developed software.

In order to achieve this conservative extension, we have defined a
parallel translation process that generates code from the OOWS models.
Then, the integration of both translation processes (OO-Method and OOWS)
are performed at the implementation level.

The parallel translation process is supported by a tool that generates
Web-based interfaces from the OOWS models. These interfaces are directly
implemented from the OOWS models since these models contain all the
necessary information to generate code. In accordance with MDA, we
perform an automatic transformation.

The Web-based interface constitutes the presentation tier of the Web
applications. To obtain full Web applications, this tier must be integrated
with the application and persistent tiers generated by the OlivaNova
Transformation Engine (the two tiers that implement the functionality of the
system from the static and dynamic aspects described in the OO-Method
models). To achieve this integration, we have developed a framework that
allows us to implement Web-based interfaces and connect them with the

tabase Case Study 5. The Internet Movie Da

70

services provided by the application tier generated by the OlivaNova
Transformation Engine.

The following sections explain in detail the set of models introduced by
the OOWS extension.

5.2.2 OOWS: Extending Conceptual Modeling

In order to fill the gap left by conventional software methods, the OOWS
(Fons et al., 2003) approach defines the three new models mentioned above.
The first model (the User Model) allows us to specify a categorization about
the kind of users that can interact with the system as well as the inheritance
relationships among these kinds of users. The second model (the Navigation
Model) allows us to specify the system visibility (in terms of data and
functionality) and the valid paths to traverse the system structure
(navigational semantics) for each type of user. Finally, the third model (the
Presentation Model) is introduced to specify presentation requirements for
the elements defined in the Navigation Model.

5.2.3 User Model: User Identification and Categorization

A user diagram allows us to specify the types of users that can interact with
the system. Types of users are organized in a hierarchical way by means of
inheritance relationships, which allow us to specify navigation specialization
(MDA, 2004). Child types of users can inherit the navigational semantics
associated to their parent, which allows us to reuse navigational descriptions.
This model categorizes types of users into three groups:

• Anonymous users (depicted with the ‘?’ symbol). They represent users
who are not logged into the system.

• Registered users (depicted with a pad-lock symbol). They represent users
who are identified (logged) in the system as valid users.

• Generic users (depicted with a cross symbol). They are used to represent
abstract users (users who cannot be instantiated).

An example of a graphical representation of this model is depicted in
Figure 5.2. As this figure shows, the Management Personnel user has been
defined as a generic user. This means that this kind of user will have an
associated navigational model that will be enriched by the models defined by
their inherited types of users. This inheritance mechanism allows different
users to reuse navigational models.

J. Fons et al.

to Web Environments

71

Figure 5.2. User diagram.

5.2.4 Navigational Model: Representing Navigation

The Navigational model was introduced in the OOWS approach to specify
the view over the system in terms of classes, class attributes, and operations
and relationships between classes for each kind of user defined in the User
Model. This model is built in two phases. The first phase defines a global
view over the navigation. This global representation is called “Authoring-in-
the-large.” The second phase makes a detailed description of the elements
defined in the previous phase. This detailed view is called “Authoring-in-
the-small.”

5.2.5 The “Authoring-in-the-Large” Phase

The “Authoring-in-the-large” phase involves describing the navigation
allowed for each kind of user by means a Navigational Map. Figure 5.3
depicts this map graphically by means of a directed graph whose nodes
represent navigational contexts or navigational subsystems and whose arcs
represent navigational links that define the valid navigational paths over the
system.

Figure 5.3. Navigational map and navigational subsystem.

tabase Case Study 5. The Internet Movie Da

Chief Secretary

Anonymous

Management
Personnel

«context»
exploration

context

E

«subsystem»
subsystem

E

Registered User 1

« subsystem »
subsystem 1

«context»
exploration
context 1

E

«context»
sequence
context 2

S
«context»
sequence
context 1

S

«subsystem»
subsystem 1

E

Registered User 1

H

72

Navigational contexts correspond to nodes from the navigational map

and represent user interaction units that provide a set of cohesive data and
operations to perform certain activities. Navigational subsystems are used
to structure the navigational map when these get highly complex. They allow
us to define subgraphs within the graph recursively.

Both Navigational contexts and navigational subsystems can be
categorized depending on their reachability in

• Exploration navigational contexts/subsystems (depicted with an “E” label)
are reachable from any other node. They define implicit navigational
links. which are represented as dashed arrows pointing to these contexts.

• Sequence navigational contexts/subsystems (depicted with an “S” label)
are nodes that can only be accessed following a predefined path. These
paths are defined by linking different nodes using sequence links.

The home context (the context displayed by default when the user logs
into the system) is defined as an exploration context whose implicit link is
labeled with an “H.”

Navigational links correspond to arcs from the navigational map and are
used to define reachability paths among different nodes. There are two types
of navigational links:

• Sequence links or “contextual links” (represented using solid arrows)
involve a semantic navigation between two contexts and understand
semantic navigation as the activity of carrying some information from a
source context to a target context.

• Exploration links or “noncontextual links” (represented using dashed
arrows) represent valid navigation paths through different contexts. In
contrast to the navigation defined by sequence links, this navigation does
not involve carrying information between contexts. These links are
implicitly defined by exploration contexts or exploration subsystems.

5.2.6 The “Authoring-in-the-Small” Phase

Once navigational maps are built, the “Authoring-in-the-small” phase details
the specification of the previously built navigational contexts. Navigational
contexts are made up of a set of Abstract Information Units (AIU), which
represent the requirement of retrieving a chunk of related information.
Contextual AIUs (labeled with a circled C in Figure 5.4) filter this
information using the information that is related to a sequence link.
Noncontextual AIUs (labeled with a circled NC) do not depend on sequence
links.

J. Fons et al.

73

Figure 5.4. Navigational context.

Navigational classes are related by unidirectional binary relationships
called navigational relationships. These relationships are defined over
existing association or inheritance relationships defined in the Class
Diagram. To eliminate any possible ambiguity in the case of multiple
relationships between two classes, navigational relationships must include
the role name of the relationship (depicted graphically as /role-attribute/) as
well as the attribute used as an anchor to move between navigational
contexts. Moreover, depending on the navigational capability of the
navigational relationship, these can be of two types:

1. A context dependency relationship (graphically represented using
dashed arrows) represents a basic information retrieval by crossing a
structural relationship between classes. When a context dependency
relationship is defined, all the object instances related to the origin class
object are retrieved.

2. A context relationship (graphically represented using solid arrows)
represents the same information recovery as a context dependency
relationship does plus a navigation capability to a target navigational
context, creating a sequence link in the navigational map. Context
relationships have the following properties:

tabase Case Study 5. The Internet Movie Da

+operation1()
+operation2()

-attribute1
-attribute2

«view»
ManagerClass

population condition

+operation3()
+operation4()

-attribute3
-attribute4

«view»
Compl.Class

+operation6()
+operation7()

-attribute5

«view»
Compl.Class

/role-attribute/

link attribute
/role-attribute /

[context attribute]

«AIU»
AIU name 1

C

«AIU»
AIU

name n
NC

«AIU»
AIU

name 2
NC

«context»
context name

[target context]

...

AIUs are made up of navigational classes, which represent views over

the classes defined in the Class Diagram (see Figure 5.4). These views are
represented graphically as UML classes that are stereotyped with the «view»
keyword and that contain the set of attributes and operations that will be
available to the user.

Each AIU must include one navigational class (called the manager class)
and can optionally include a set of complementary class views (called
complementary classes) to complete the information retrieved by the
manager class.

74

• a context attribute that indicates the target context of the navigation

(depicted as [target context]).
• a link attribute that specifies the attribute used as the “anchor” to

activate the navigation to the target context. The link attribute is usually
an attribute of the target navigational class. For usability reasons, it is
sometimes interesting to define the anchor as a “label” (static text).

Apart from attributes and operations, navigational classes can also define
conditions to filter the retrieved objects. These filters are called population
condition filters and are specified by means of OCL formulas at the bottom
section of the class view primitive.

These are the core primitives for navigational specifications. However,
this specification can be enriched by introducing mechanisms to help the
user explore and filter the huge amount of information inside a context. The
following section explains how to introduce advanced navigational features
to the OOWS navigational model.

5.2.6.1 Advanced Navigational Features

Navigational contexts retrieve the population of classes defined in the
conceptual schema. We define the cardinality of a navigational context as
the number of instances that should be retrieved. Sometimes, the retrieved
information is difficult to manage mainly due to its size. To help users
browse through that amount of information, we have defined mechanisms
for browsing and filtering in a navigational context. There are two main
search mechanisms: indexes and filters. Those features are described in a
dashed-line box at the bottom of each AIU.

An index is a structure that provides an indexed access to the population
of the manager class. Indexes create a list of summarized information by
using an attribute or a set of attributes. If the indexed property belongs to the
manager class, it is defined as an attribute index. If the indexed property
belongs to any complementary class, the index is defined as a relationship
index, and the relationship must be specified. When an index is activated, a
list of all possible values for the indexed attribute(s) is created. By choosing
one of these values, all objects that have the same value for this property will
be shown in a search view. This search view describes the information that
will be available to the user to aid him in selecting an instance. This selected
instance will be activated in the navigational context.

J. Fons et al.

A Service Link defines a navigation that will automatically be performed
after the execution of a navigational operation of a navigational class. Figure 5.4
shows an example of a service link in the ManagerClass that defines a
navigation to the target context that will be performed each time the
“operation1()” is executed inside this context.

75

A filter defines a population condition to restrict the object instances to

be retrieved. If the filter condition is applied to attributes of the manager
class, it is defined as an attribute filter. If the filter condition is applied to
attributes of complementary classes, it is defined as a relationship filter.
There are three types of filters:

• exact filters, which take one attribute value and return all the instances
that match it exactly.

• approximate filters, which take one attribute value and return all the
instances whose attribute values include this value as a substring.

• range filters, which take two values (a maximum and a minimum) and return
all the instances whose attribute values fit within the range. If we specify
only one value, it is only bounded on that side (upper or lower bounded).

Moreover, it is possible to predefine the values of the filter conditions at
the modeling stage. This sort of filter is called a static population condition.
The main difference between a population condition filter and a static
population condition is that the former is always active while the latter has to
be activated by the user. When a static filter is activated, the instances that
fulfill the condition are displayed in a search view that behaves the same
way as the exact filter defined above.

5.2.7 Presentational Modeling

Presentation requirements are specified by means of patterns that are
associated to the primitives of the navigational context (navigational classes,
navigational links, searching mechanisms, etc.). The basic presentation
patterns are as follows:

Information Paging. This pattern allows us to specify information
“scrolling.” All the retrieved instances are broken into logical blocks so that
only one block is visible at a time. Mechanisms to move forward or
backward are provided. This pattern can be applied to the manager class, to
a navigational relationship, or to an index or a filter. The required
information is

• Cardinality, which represents the number of instances that make a block.
• Access mode, which can be defined as Sequential, providing mechanisms

to go to the next, previous, first, and last logical block or Random, where
the user can directly access any block.

tabase Case Study 5. The Internet Movie Da

Once the navigational model is built, we must specify presentational
requirements of Web applications using a Presentation Model (see Figure 5.1).
This model is strongly dependent on the navigational model since it uses
navigational contexts (system–user interaction units) to define the
presentation properties.

76

• Circularity. When this property is active, the set of blocks behaves as a

circular buffer.

Ordering Criteria. This pattern defines a class population ordering
(ASCendant or DESCendant) using the value of one or more attributes. It can
be applied to either navigational classes or access structures, specifying how
the retrieved instances will be ordered.

Information Layout. We provide three basic layout patterns and one
layout operator. The three patterns are: register, tabular (vertical and
horizontal), and tree. The operator pattern (master-detail) is applied to
many-to-many relationships using one of these basic layout patterns to show
the detail portion. Any of these layout patterns can be applied either to the
manager class or to a navigation relationship.

These presentation patterns, together with the specified navigation
features, capture the essential requirements for the construction of Web
interfaces.

5.3 DEVELOPING THE WEB SOLUTION

This section presents the development strategy defined in OOWS to
implement Web application interfaces extending and using the OO-Method
approach. The development strategy is based on the following principles:

• Integrating OOWS code generation with the OO-Method software
solution. Web application interfaces developed with the OOWS approach
must be integrated within the OO-Method implemented applications
architectural style. Section 5.3.1 explains in more detail this requirement
and the software artifacts offered by the OO-Method implemented
applications for integration purposes.

• Building Web-based user interfaces. We defined a taxonomy of Web
pages and contents by analyzing many implemented Web pages. This
taxonomy allows us to build Web pages using “contents” as page
components. Section 5.3.2 provides more details about this approach.

• Implementation strategy. We implemented a framework that provides us
with a more abstract interface to develop Web pages. This framework
produces HTML pages that use OO-Method implemented applications.
The most relevant primitives of this framework are presented in Section
5.3.6.

• Dealing with graphical design. To cope with the look and feel of the
implemented Web interfaces, we have defined a strategy that allows us to
define visualization rules to improve Web page aesthetics. These rules

J. Fons et al.

77

are categorized within two groups of rules: domain-dependent and
domain-independent. Section 5.3.9 provides detailed information about
this strategy and how it is applied by the framework.

5.3.1 Integrating OOWS Code Generation

As explained in Section 5.2.1, OO-Method uses a three-tier architectural
style to generate software applications: a presentation tier, an application
tier, and a persistence tier.

The information (persistence tier) and functionality (application tier) of
the Web application are generated by the OlivaNova Model
Transformation Engines taking as basis the OO-Method’s structural and
behavioral models.

Taking into account the navigational and presentation features
introduced by the OOWS models, the generation process is enriched by
providing a new translation process to generate the presentation tier for
Web applications.

Applications generated with the OlivaNova Transformation Engines
provide the following two integration mechanisms:

1. Components. The code generated by the ONME1 is accompanied by two
types of components for each domain class: querying and business logic
components. Querying components provide operations for querying class
population (retrieving instances by their identifiers or by filtering
conditions, etc.) and operations for retrieving the population of related
classes. Business logic components provide the functional operations for
each class. Depending on the target technologies, those components are
COM+ (VisualBasic), .NET components (C#), and EJB3.0 (Java).

2. Web services. The generated Web services encapsulate the previous
components. These Web services decouple integrating applications from
the ONME code technology. OlivaNova generates the following Web
services: (1) a Web service for each domain class, which provides an
interface for querying and for accessing business logic functionality, and
(2) a generic Web service (XML_Listener) in an SOA architectural style;
the port type of this Web service is implemented using the inversion of
control pattern that provides an operation for each querying and business
logic domain operation (see Figure 5.5).

1 Acronym for OlivaNova Model Execution strategy

tabase Case Study 5. The Internet Movie Da

with the OO-Method Software Solution

78

Figure 5.5. XML_Listener Web service definition provided by OlivaNova.

5.3.2 Building Web-Based User Interfaces

Before defining Web page implementation, we started by analyzing many
implemented Web pages. Our objective was to define what types of Web
pages are commonly implemented as well as the contents that these should
include. The idea was to try to define a strategy to decompose Web pages
into different types of contents and, then, to try to map conceptual modeling
primitives into these different contents.

This strategy also allows us to define different types of Web pages
depending on the objective of each Web page. As an example, the following
subsections show that there are Web pages whose purpose is to structure
navigation, such as the “home” Web page.

Section 5.3.3 analyzes the different types of Web pages used to
implement Web applications by defining the main objectives or goals of
each one. Next, Section 5.3.4 defines the different types of contents that are
used to define a Web page. Finally, Section 5.3.5 relates the Web page
taxonomy with Web contents by defining which types of contents should or
must appear in each type of Web page.

<?xml version="1.0" encoding="UTF-8"?>
<definitions name="XML_Listener">

 <message name="XML_Listener.XMLRequestInput">
 <part name="xmlRequest" type="xsd:string"/>
 </message>
 <message name="XML_Listener.XMLRequestOutput">
 <part name="return" type="xsd:string"/>
 </message>

 <portType name="XML_ListenerPortType">
 <operation name="XMLRequest" parameterOrder="xmlRequest">
 <input name="XMLRequestRequest" message="tns:XML_Listener.XMLRequestInput"/>
 <output name="XMLRequestResponse" message="tns:XML_Listener.XMLRequestOutput"/>
 </operation>
 </portType>

 <binding name="XML_ListenerBinding" type="tns:XML_ListenerPortType">
 <soap:binding style="rpc" transport="http://schemas.xmlsoap.org/soap/http"/>
 <suds:class type="ns0:XML_Listener" rootType="ServicedComponent">
 </suds:class>
 <operation name="XMLRequest">
 <soap:operation/>
 <suds:method attributes="public"/>
 <input name="XMLRequestRequest">
 <soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output name="XMLRequestResponse">
 <soap:body use="encoded" encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>
 </binding>

 <service name="XML_ListenerService">
 <port name="XML_ListenerPort" binding="tns:XML_ListenerBinding">
 <soap:address location="http://ascalon.dsic.upv.es:80/WSIMDb/IMDbWebSpace.XML.XML_Listener.soap"/>
 </port>
 </service>
</definitions>

J. Fons et al.

79

5.3.3 Web Page Taxonomy

After analyzing many implemented Web pages, we have categorized them
into three basic types of Web pages: navigation structuring, informational,
and data input. Each one of these types has a different objective within the
Web application.

• Navigation structuring Web pages. This type defines some kind of
navigation organization. When a user reaches a Web page of this type,
the page provides the user with a set of links to the natural navigational
links that she can follow. Web pages of this type should appear when
there are a lot of navigation capabilities.

• Informational Web pages. This type provides the user with information
and functionality related to an instance or group of instances of the
system. With these Web pages, the system provides the user with
information about the system state and the operations that are available in
that state. Also, these Web pages can define navigation capabilities to
other Web pages by “clicking” on some of their contents. These Web
pages are the most common pages within a Web application.

• Data input Web pages. Web pages of this type are related to an operation
execution (whenever the system needs some data from the user). When a
user invokes an operation, if this operation requires additional arguments,
the system displays a Web page of this type to the user. This Web page
basically contains a form that includes an input mechanism for each
argument that must be introduced.

A final consideration must be made with regard to this taxonomy. As the
following section shows, each Web page can provide different types of
contents, for instance, navigation content. This might lead to a
misconception such as the following: All Web pages that have navigation
contents are navigation structuring Web pages. However, this is not always
true. We consider that a Web page has only one main objective and may
have other objectives, but those are secondary. This reasoning is explained in
more detail in Section 5.3.5.

5.3.4 Web Page Contents

At first glance, the types of Web pages described above appear to include
totally different contents. However, a more careful analysis shows that this is
not really true; in most cases, there exist different “pieces” of Web pages
that are basically the same within many other Web pages, and other “pieces”

tabase Case Study 5. The Internet Movie Da

80

that appear in all Web pages. For instance, most Web pages have a zone2
where a navigational menu (made of navigational links) is provided.

After defining the different types of Web pages, we analyze the different
types of contents of those Web pages. Following the same approach, we
encountered the following zone contents:

• Navigation zone. It provides the user with a set of navigable links that
can be activated within the Web page.

• Location zone. It provides the user information about where the user is
and the navigation path (sequence of navigational pages) that he has
followed to reach that location.

• Information zone. It provides information about the system (usually in a
database).

• Services zone. It provides access to the operations that can be activated.
This zone is contained inside an information zone, and all the operations
are related to that information.

• User information zone. It shows identification information about the
logged user. This zone only appears for registered users.

• Data entry zone. It is responsible for providing the user with a form to
input data to execute certain operations. Then, a submit-like button links
the input data with the associated functionality.

• Application links zone. It contains some common Web functionalities
such as Login, Logout, and Home.

• Access structures zone. It contains search mechanisms to help in
browsing data. In fact, this zone is always related to one information
zone. For this reason, this zone always appears inside an information
zone.

• Custom zone. It contains information regarding other types of contents
that cannot be catalogued in the other zones. This zone is normally used
for domain-independent content, such as advertisements, other related
Web applications, external applications, etc.

To complete the approach, these content zones should be joined to
compose Web pages. The next section discusses how these contents can be
appropriately combined to build Web pages.

2 We refer to “Web page zone” or simply “Web zone” as a cohesive data and functionality

that has a meaning of its own.

J. Fons et al.

• Institutional zone. It contains information about the institution
(company, entity, organization, etc.) that is responsible for the Web
application. It usually shows information regarding the name of the
institution, the logo, etc.

81

5.3.5 Relating Web Page Taxonomy to Web Page Contents

Once Web page types and content zones have been defined, a relationship
between them must be established by indicating which type of contents
should or must appear in each type of Web page and how many times these
contents can appear. We can mark a content zone as being mandatory,
recommended, optional, and not recommended. We have followed a quality
strategy to define what content zones appear to ensure that this particular
type of Web page provides the user with the minimum information needed to
accomplish the objective of that Web page type.

Moreover, there is a basic rule that is applied: A Web page must always
provide the user with information regarding where the user is, how the user
arrived there (navigational path), and the places where the user can move
from there. This rule implies that any Web page must contain navigation and
location zones.

Taking into account these basic principles, we have defined Table 5.1,
which combines Web pages with content zones, indicating the suitability of
including each content zone within each Web page category.

Table 5.1. Web Page Taxonomy Related to Web Page Contents

- Mandatory
 - Recommended

- Not recommended
 - Optional

- It can appear more than once

 Information
Web Page

Navigation
Web Page

Data Entry
Web Page

Navigation zone , , ,

Location zone

Information zone ,

Services zone , ,

User info. zone

Institution zone , , ,

Link app. zone

Data entry zone

Access struct. zone

Custom zone , , ,

tabase Case Study 5. The Internet Movie Da

82

The not recommended tag is intended to mark contents that can overload

a type of Web page with different objectives, possibly causing the user to get
confused about or deviate from the main objective of that type of Web page.
For instance, in a navigation Web page, content zones regarding information
or data entry are not recommended, so that the main objective of this Web
page is only to structure navigation.

Finally, note that this table has been used to define the types of Web
pages that must be implemented as well as the types of contents that these
pages should have. We have built an HTML framework that implements this
table (see Section 5.3.6).

5.3.6 Implementation Strategy

The OOWS Tool provides a code generator that takes two PIM models (the
OO-Method model and the OOWS models) and translates them into Web
application code. This code defines the interface tier for Web application
environments (see Figure 5.1). The generation process is only possible by
having a set of predefined transformation rules that represents abstract
concepts of the PIM model into specific code.

The following subsections explain the implementation strategy based on
an implementation framework in detail. This framework raises the level of
abstraction of the HTML code to a set of implementation patterns that define
correspondences between conceptual modeling primitives and the
implementation framework components. This framework also provides
facilities to integrate with the OlivaNova generated code.

5.3.7 Implementation Framework

By following a pure MDA approach, we have defined a PSM model of the
HTML language, which we implemented using PHP, creating an
implementation framework that allows us to implement Web pages at a more
abstract level of abstraction. We have implemented this Web page definition
and implementation framework applying the taxonomy of Web pages and
content zones presented in Section 5.3.2. This framework basically provides
us with a set of primitives for defining two types of objects: a Web
application and Web pages.

The Application object contains all the information about the application.
It needs a name and the reference to the component that implements the
functionality interface (provided by OlivaNova). This object provides the
following operations:

J. Fons et al.

83

• AddRol(User, UserAlias, ValidationMethod, inheritsFrom). This

operation defines the different types of users that can interact with the
Web application. If a validation method is specified (by means of the
OlivaNova generated user validation primitive), the user is registered.
The final argument is used to specify user inheritance.

• AddPageGroup(GroupName, GroupAlias, Group, User, Visibility). This
operation defines a group of pages that will only be visible when
navigating inside the group. The third (optional) argument specifies the
group that this group is in. The fourth argument refers to the user who
owns the page. The last argument can take the following values:
“always” (a Web page that is always accessible) and “fromPage” (a Web
page that is only accessible through another Web page).

• AddPage(PageName, PageAlias, Group, User, Visibility). This operation
defines a Web page (that can be inside a group) for a user. The last
argument has the same meaning as in the AddPageGroup operation.

• SetDefaultStyle(StyleName). This operation specifies the default style
that will be used. If no style is defined, no style will be applied. More
information about Web page visualizations is included in Section 5.3.9.

• SetHomePage(PageName, User). This operation allows specifying the
page that will be used as the user’s home page.

These application primitives define the properties of the entire Web
application. These primitives also implicitly define other properties. For
instance, the navigational menu of every Web page is automatically created
by using the AddPage and AddPageGroup operations (by using the visibility
argument) and with the AddRol operation (for inheritance specification).

Figure 5.6 shows an excerpt of the code that implements a Web
application using the proposed implementation framework. Both
AnonymousUser and RegisteredUser are allowed to access the Web site
(AddRol), and registered users also have access to the Web pages of the

tabase Case Study 5. The Internet Movie Da

Figure 5.6. Example of an excerpt of a Web application definition.

<?php
include_once "../Framework/ApplicationBegin.php";

 $Application = new Application("OrderThingsDemo", "SimpleOrders");

 $Application->AddRol("Anonymous","","","");
 $Application->AddRol("RegisteredUser","RegisteredUser",
 "RegisteredUser_MVAgentValidation","AnonymousUser");

 $Application->AddFirstLevelPage("MembersList","Clients","AnonymousUser");
 $Application->AddFirstLevelPage("ItemsList","Products","AnonymousUser");
 $Application->AddFirstLevelPage("OrdersList","Client's Orders","AnonymousUser");
 ...
 $Application->AddFirstLevelPage("MembersList","Clients","RegisteredUser");
 $Application->AddPage("memberDetail","Detailed Information","RegisteredUser");

 $Application->SetDefaultStyle("UPV-like");

 $Application->SetHomePage("MembersList","AnonymousUser");
 ...

include_once "../Framework/ApplicationEnd.php";
?>

84

AnonymousUser (through inheritance). There are five Web pages, three of
which are separate and two of which are in a group. The three separate Web
pages belong to the AnonymousUser (MemberList, ItemsList, and
OrdersList), and the remaining two (MemberPersonalInfo and
memberDetail) belong to the RegisteredUser. All of these Web pages are
always accessible through the navigational menu. However, the
memberDetail for the RegisteredUser isn’t visible from the navigational
menu. It can only be reached by navigating from another Web page. The
UPV-like visualization style (SetDefaultStyle) has been selected. Finally, the
home Web pages for the AnonymousUser and RegisteredUser are specified
(SetHomePage).

Once each Web page has been defined, it must be described. The
framework provides primitives to describe the content zones of these Web
pages. Following the conclusions obtained in Section 5.3.5, the navigation
and location zones must appear in every Web page. As the links in the
navigation zone are derived from the Web application configuration and the
location zone is derived from the user navigation path, the framework does
not provide explicit primitives to define these zones. It calculates them
automatically.

The framework provides a primitive to introduce the other type of
content. Some examples are AddInformationZone, AddInstitutionZone,
AddUserInfoZone, etc. The information zone is based on a manager class
and provides operations for adding fields (AddField, class attributes), linking
to other pages using a field as the anchor (AddInternalLink), and sorting by
using a field (SetSorted) in “ascendant” or “descendant” mode, etc. The
AddDetailedRelationship retrieves related data from a related class. Each
one of these zones is implemented using HTML DIV containers.

Figure 5.7. Example of an excerpt of a Web page definition using the framework.

<?php
include_once "../Framework/PageBegin.php";

 $Page = new Page("MemberList","RegisteredUser");

 $UserZone = $Page->AddUserInfoZone();

 $InfoZone = $Page->AddInformationZone("MembersList","Member");
 $InfoZone->AddField("Username","Name");
 $InfoZone->Username->AddInternLinkTo("memberDetail");
 $InfoZone->Username->AddDynamicFilter("Approach");
 $InfoZone->Username->SetSorted("Ascendant");
 $InfoZone->AddField("Adress","Adress");
 $InfoZone->AddField("City","City");
 ...

 $ServicesZone = $InfoZone->AddServicesZone("MemberServices","Operations for Registered Users");
 $ServicesZone->AddServiceReference("RegisteredUser_create_instance","New");
 $ServicesZone->AddServiceReference("RegisteredUser_MVChangePassword","Change password");
 ...

include_once "../Framework/PageEnd.php";
?>

J. Fons et al.

Figure 5.7 presents an excerpt of the MemberList Web page definition
for the RegisteredUser. It is made up of the following zones: (1) the
navigation zone (implicit); (2) the location zone (implicit); (3) a user zone

85

(AddUserInfoZone) in which information about the user is displayed; (4) an
information zone called MemberList that provides information about the
Member class and its Username, Address, and City attributes (sorted by
Username “ascendant”). The username has been defined as an anchor to
navigate to the memberDetail Web page (Username->AddInternalLinkTo).
Finally, (5) the service zone has been included inside this information zone
(InfoZone->AddServicesZone) to allow RegisteredUsers to execute the
RegisteredUser_create_instance and RegisteredUser_MVChangePassword
operations. These operations come from the OlivaNova specification (see
Section 5.3.1 for more details about integration with OlivaNova).

5.3.8 Implementation Patterns Using the Framework

Finally, correspondences between the OOWS conceptual modeling
primitives with the implementation framework primitives must be defined.
This step is automatically applied by a model-to-code generator. The first
rule always creates a Web application project by defining the application
(name) and the default visualization style (see the Figure 5.6 primitive new
Application). Then several groups of transformation rules are applied to
complete this transformation process, taking the OOWS models as input.

tabase Case Study 5. The Internet Movie Da

(1) Transformation rules referring to the user diagram:
(1.1) User rule: For each user defined in the navigational map, an

AddRol operation is created in the Web application definition file. If it is
an anonymous type of user, the validation operation is not specified. If a
user is a specialization of another user, it is specified using this AddRol
operation.

(2) Transformation rules referring to the navigational map:
(2.1) Page group rule: For each navigational subsystem that appears

in the navigational map, an AddPageGroup operation with the “always”
visibility argument is created. It is specified to belong to the user of the
navigational map in which it is defined. If it is inside a subsystem, the
group that is related to that subsystem is specified.

(2.2) Page rule: For each exploration navigational context that
appears in the navigational map, an AddPage operation with the “always”
visibility argument is created. For each sequence navigational context, an
AddPage instruction with the “fromPage” visibility argument is created.
All these pages are specified to belong to the user of the navigational
map in which they are defined. When these nodes are inside a subsystem,
the group that is related to that subsystem is specified.

(2.3) Home page rule: A home navigational node can be defined in a
navigational map. The generation process establishes this page as the

86

5.3.9 Dealing with the Graphical Design of Web Interfaces

The graphical design, or “look and feel,” of a Web application is a
requirement that must be properly managed when building Web
applications. Nowadays, Web application graphical design is usually built by
means of visual styling rules defined in specific languages such as the CSS
language (cascade style sheet), which is standardized by the W3C.

The OOWS implementation strategy objective is to deal with a few basic
principles with regard to graphical design:

• Separation of concerns. System designers should not take graphical
design into account when designing the system. Only graphical designers
should deal with these graphical designs.

• Reusability. Graphical designs should be reusable for any application.

J. Fons et al.

home page with the SetHomePage operation. If no node has been defined
as the home page, a new page is created using AddFirstLevelPage and
marking SetHomePage. Each navigational subsystem must have a home
page. The same algorithm is applied recursively, treating each
navigational subsystem as if it were a navigational map.

(3) Transformation rules from the navigational node specifications
Each navigational node has been specified as a Web page by the (2.1)

rule in the Web application definition file. In this step, the transformation
process creates a Web page definition file for each one of these specified
Web pages. Depending on the type of the navigational node, one of the
following rules is applied:

(3.1) Navigational context rule: An informational web page (see
taxonomy in Section 5.3.3) file is created. A new information zone is
created for each AIU. Then an AddField is invoked for each navigational
attribute of the manager class. A (sub)zone is created using the
AddServicesZone if the manager class has at least one operation. This
(sub)zone includes a service reference (AddReference) for each operation
of the manager class. Finally, an AddDetailedRelationship operation is
created for each navigation relationship. Each attribute, operation, or
relationship is also defined.

(3.2) Navigational subsystem rule: A navigation structuring Web page
file is created. As the pages inside this subsystem have already been
created with the (2.1) rule, the framework automatically creates a
navigation zone containing the links to all these related Web pages.
The transformation process has more rules than the ones just mentioned

(for instance, it includes rules regarding the presentation model). However,
for reasons of brevity, these transformation rules are not presented.

87

• Adaptability. Graphical designs should be easily adapted for specific

applications so that specific visualization rules can be defined.
• Visualization patterns. On the World Wide Web, visualization patterns

are used now and then in Web applications. Those visualization patterns
that are widely used must facilitate the graphical design description.
These visualization patterns should be used.

OOWS follows this strategy to apply these principles to define Web
interfaces:

The implementation framework is responsible for marking up the Web
pages and linking to the two graphical design files (domain-dependent and
domain-independent files). Section 5.3.10 discusses the markup strategy that
must be undertaken in each implemented Web page. Section 5.3.11 explains
how to define domain-independent and domain-dependent visualization
rules.

5.3.10 Web Page Markup

The framework implements a Web page markup strategy that divides the
tags into two groups: domain-dependent tags and domain-independent tags.

The domain-independent tags are based upon the OO-Method/OOWS
primitives and terms that come from the Web page and content taxonomy
discussed in Section 5.3.2. Each specific content zone has its own tags. This
group of tags defines generic visualization rules that can be applied to every
Web application implemented with the framework since the concepts they
use are domain- and platform-independent.

The domain-dependent tags are based upon domain-specific terms.
These group of tags can appear anywhere in the Web page where the term
related to the tag is used. This markup defines visualization rules for that

tabase Case Study 5. The Internet Movie Da

1. Use specific languages for the definition of the visualization rules
(CSS) and do it in separate files: None of the implemented Web pages
should include visualization rules (we use XHTML to define Web
pages).

2. Define a markup of Web pages based upon conceptual terms and not
on implementation terms.

3. Create two files for defining visualization rules: a domain-dependent file
that includes rules that can only be used in Web pages of the same
domain, and a domain-independent file that includes generic rules that can
be applied to any Web page, independently of the application domain.

4. Publicize a repository of graphical designs and visualization patterns.
This repository should be used by the implemented Web pages to
obtain the visualization rules.

88

specific application. However, as the following section discusses, the
visualization rules that use these tags won’t be reusable.

The following list shows the most representative Web zones as well as
the domain-independent (DI) and domain-dependent (DD) tags that are used
within those zones. This markup is shown in Figure 5.8.

• Web page body. The following tags can be applied to the HTML BODY
construct:

DI tags: Context, Subsystem
DD tags: the name of the context or the subsystem

• Location zone
DI tags: LocationZone, Path, PathStep, PathStepSeparator
DD tags: the name of the contexts or subsystems related to each PathStep

• Navigation zone
DI tags: NavigationZone, NavigationLink, NavigationGroup
DD tags: the name of the contexts or subsystems related to each

NavigationLink
• Information zone. This is the most complex zone. The tags are

structured into the different DIVs that define this zone.
DI tags: InformationZone, AIU, ManagerClass, ComplementaryClass,

AttributeName, AttributeValue, Operation, etc.
DD tags: the AIU name, the name of the OOWS navigational classes

related to the ManagerClass and ComplementaryClass tags, etc.

CSS provides two types of tags that can be used for marking up the
HTML code: class and id. Domain-independent tags are defined using the
class construct. Domain-dependent tags are defined with the id construct.

Figure 5.8 shows an example of a Web page excerpt that has been
implemented using this markup strategy. This Web page has been generated
using the OOWS implementation framework for the Movie.Overview.
MainDetails Web page that appears in Section 5.4.5 (Figure 5.20).

5.3.11 Visualization Rules

The visualization rules define how elements of the Web page must be
visualized, referring to their location, size, color (background, text, etc.),
type, etc. depending on the element type and tag used. These rules are
defined in separate files from the HTML content using CSS as its definition
language.

J. Fons et al.

89

Figure 5.8. Web page with both domain-dependent and domain-independent tags.

As discussed in Section 5.3.10, we define two types of visualization
rules: domain-independent and domain-dependent rules, so there are two
files with two groups of rules.

By combining those ideas with the markup strategy, we can define really
complex visualization rules, even those that involve both domain-dependent
and domain-independent tags (in this case, the rule must be considered
domain-dependent).

Graphical designers focus their efforts on defining these files. There is no
need to interact with system developers because the graphical designers
know a priori which tags will be used to implement the Web application. In
addition, it is more effective to define the visualization rules based on

<?xml version="1.0" encoding="iso-8859-1"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en-US">
<head>
<title></title>
<link rel="stylesheet" type="text/css" href="style/dd-IMDb.css" />
<link rel="stylesheet" type="text/css" href="http://ascalon.dsic.upv.es/Styles/IMDb/di-IMDb.css" />
</head>

<body class="Context" id="NC_Movie_Overview_MainDetails">

<div class="LocationZone">
 <div class="Path">
 <div class="PathStep"><span
 class="PathStep" id="NS_Movie">Movie</div>
 <div class="PathStepSeparator></div>
 <div class="PathStep"><span
 class="PathStep" id="NS_Overview">Overview</div>
 <div class="PathStepSeparator></div>
 <div class="PathStep"><span
 class="PathStep" id="NC_MainDetails">main details</div>
 </div>
</div>

<div class="NavigationZone">

<div class="NavigationGroup">
 <div class="NavigationLink" id="NC_NowPlaying"><a class="NavigationLink" id="NC_NowPlaying"
 href="NowPlaying.php">NOW PLAYING</div>
<div class="NavigationLink" id="NC_MovieNews"><a class="NavigationLink" id="NC_MovieNews"
 href="MovieNews.php">MOVIE/TV NEWS</div>
<div class="NavigationLink" id="NC_MyMovies"><a class="NavigationLink" id="NC_MyMovie"
 href="MY Movies.php">MY MOVIES</div>
...
</div>

<div class="InformationZone">

<div class="AIU" id="AIU_Movie_Main_Details">
<table class="ManagerClass" id="Class_Movie">
 <tr><th class="AttributeName" id="Class_Movie_Title"><span class="AttributeName"
 id="Class_Movie_Title">Title</th>
 <td class="AttributeValue" id="Class_Movie_Title"><span class="AttributeName"
 id="Class_Movie_Title">The Godfather</td></tr>
 <tr><th class="AttributeName" id="Class_Movie_Year"><span class="AttributeName"
 id="Class_Movie_Year">Year</th>
 <td class="AttributeValue" id="Class_Movie_Year"><span class="AttributeName"
 id="Class_Movie_Year">1972</td></tr>
...
</table>
</div>

<div class="AIU" id="AIU_User_Comments">
...
</div>

...

</div>

</body>
</html>

tabase Case Study 5. The Internet Movie Da

90

conceptual terms rather than defining or converting these rules into solution-
dependent terms (HTML, etc.).

Here we present two examples of visualization rules:

• “Put the navigation zone of each Web page at the top of the page. Put a
vertical bar between each navigational link. All IMDb Web pages must
show the IMDb logo.” These are three examples of domain-independent
visualization rules.

• “Movie titles must appear in large-sized, bold type.” This is an example
of a domain-dependent visualization rule.

Figure 5.9 shows the representation of these visualization rules using
CSS markup language. These visualization rules come from the IMDb
visualization rules used in the implementation discussed in Section 5.4.

Figure 5.9. Example of domain-independent (left panel; di-IMDb.css) and
domain-dependent visualization rules (right panel; dd-IMDb.css), respectively.

5.4 CASE STUDY: THE IMDB INTERNET MOVIE
DATABASE

The IMDb Internet Movie Database (IMDb) is an online repository of
information related to the movie world. As stated in its official Web site
(www.imdb.org), it is “the Earth’s Biggest Movie Database.” Any kind of
information regarding a specific movie can be found in the IMDb: movie
details (production notes, duration, format, trailers, photo galleries,
soundtracks, memorable quotes, etc.); movie participants (credited cast,
directors, writers, and producers, etc.); and information about current
showtimes (where those movies are being played). Moreover, registered
users are allowed to introduce movie reviews and ratings, and they can also
introduce their votes in the daily poll. Anonymous users can also interact
with this Web application to search and browse through the movie catalogue,
but they cannot introduce their opinions, votes, etc. However, they can
register at any time to access this functionality.

...
.Context {

background-image: url("logo.jpg");
}

.NavigationZone {
 z-index:1;
 position: absolute; top:35px; left: 170px;
 font-weight: bold;
 font-size: 9px;
}

.NavigationGroup div.NavigationLink + div.NavigationLink {
 border-left-style: solid;
 border-width: thin;
 padding-left: 5px;
}

...

...

#Class_Movie_Title {
 font-weight: bold;
 font-size: 15px;
}

...

J. Fons et al.

91

The purpose of this section is to describe the conceptual model that leads

to the implementation at www.imdb.org. Following the OO-Method approach,
Section 5.4.1 describes the conceptual model of the IMDb Web application
by defining (1) the structural and behavioral parts of the system and (2) the
system navigational and presentation properties using the OOWS approach.
Those (PIM) models are taken as the input for the development process to
apply a Model-Driven Development strategy. An MDA-based code
generator produces the final application by implementing a set of predefined
model-to-code transformation rules. The results of this step are presented in
Section 5.4.2.

Due to the size of the application, it is not possible to present all the
concepts in detail. Therefore, we have selected a representative part of this
system to present in depth.

5.4.1 The IMDb Conceptual Model

Following the OO-Method/OOWS approach described in Figure 5.1, the first
step is to describe the structural and behavioral aspects of the Web
application. These requirements are gathered by means of a class diagram,
state-transition diagrams, and a functional model, which are presented in
Section 5.4.2.

Section 5.4.3 presents the navigational properties of the IMDb Web
system by means of a user diagram, which describes the different types of
users who can use the application. This section also presents the navigational
model, which is related to each kind of user and describes its accessibility
through the system. Finally, Section 5.4.4 introduces some abstract
presentation requirements, which are related to the specified navigational
model to complete the Web interface specification.

5.4.2 The IMDb OO-Method Conceptual Model

The first step in building an OO-Method conceptual model is to describe its
structural model (by means of a class diagram) and its behavioral model
(using a dynamic and functional model). According to the main objectives of
the IMDb Web application, the structural model must capture information
about the movies, their main participants, showtimes, user reviews, ratings,
and daily polls. Figure 5.10 presents the IMDb class diagram.

This figure focuses on the portion of the system that is related to movie
information. As the figure shows, Movie is the central main class. The
system provides a lot of information about a movie: its title and production
year, a brief general description, the official URL Web site, its production
state (“filming,” “post-production,” etc.), a main photo, languages, color,

tabase Case Study 5. The Internet Movie Da

92

sound, etc. Also, a movie can be checked with different flags to indicate that
it is the “movie of the day” or a “watch this” recommendation. By using the
“firstExhibitionTime” property, the system can also dynamically derive the
“coming soon” movies. Multimedia contents (soundtracks, trailers, and
photoGallery) are also collected for each movie. The system organizes the
movies within a set of Genres and lists the different places where the movies
are being shown (Exhibition).

A movie has many participants (MovieParticipant), and they can play
different roles in different movies. These participant roles include Directors,
Writers, Producers, and Actors. For instance, Harrison Ford appears in the
IMDb system as an actor, a producer, and a writer. Each time an
actor/actress participates in a movie, he or she interprets a specific
Character. This character can have a set of memorable quotes (interesting
dialogue) within the movie.

The IMDb also has RegisteredUsers. These users are allowed to
introduce comments (UserComment) about the movies they have seen and to

J. Fons et al.

Figure 5.10. Class diagram of the IMDb Web application.

93

rate the comments (CommentRate) provided by other users. With this
information, IMDb provides an easy way of sharing the “non-expert”
opinions of the users. Moreover, the IMDb publicizes a DailyPoll asking for
user opinions on a certain topic, and registered users can introduce their own
opinions for that specific question.

5.4.3 The IMDb Navigational Model

Once the structural and functional requirements have been determined, the
next step is to specify the navigational capabilities of the system. Following
the OOWS approach, the following diagrams must be specified: (1) a user
diagram; (2) a navigational map; and (3) a presentation model.

There are two visible types of users: AnonymousUsers and
RegisteredUsers. Both types can explore the movie database, but only
RegisteredUsers are allowed to introduce their opinions and votes.

Figure 5.11 shows the User diagram. The AnonymousUsers are labeled
with a “?” mark to specify that they do not need identification to access the
system. RegisteredUsers have been specialized from AnonymousUsers to
inherit their navigational maps (Fons et al., 2003). These RegisteredUsers
are labeled with a padlock symbol to represent the fact that they need to be
identified to enter the system. Following the OO-Method point of view, the
RegisteredUsers are directly related to one class (RegisteredUser class) of
the class diagram (Figure 5.10).

The next step involves the definition of a navigational map for each type
of user. This navigational map defines the user accessibility within the
system. Figure 5.12 presents the navigational map for the RegisteredUsers.
The navigational map for the RegisteredUsers is made up of 18 navigational
contexts and 1 navigational subsystem. Each of these navigational contexts
provides a different view over the class diagram. The “Now Playing”
navigational context shows information about the movies that are currently
being shown, and the “Showtime & Tickets” navigational context shows
where these movies are being exhibited. The figure shows a link (solid

tabase Case Study 5. The Internet Movie Da

Figure 5.11. The IMDb user diagram.

AnonymousUser

?

RegisteredUser

94

Figure 5.12. RegisteredUser navigational map.

At the center of the navigational map is a navigational context (named

Home) that has its explorational link (dashed-arrow) labeled with an “H.”
That means that this context will be the default node that the
RegisteredUsers will reach when they connect to the system. This context is
responsible for providing the user with information about: current movies
(trailers and more), daily poll, the movies of the day, top at the box office,
“opening this week,” and “coming soon” movies. Figure 5.13 shows the
Home navigational context. Due to the amount of information that this

<< context >>

Home

E

<< context >>

Now Playing

E

<< subsystem >>

Movie

S

<< context >>

Movie / TV News

E

<< context >>

DVD/Video

E

<< context >>

My Movies

E

<< context >>

Top Movies

E
<< context >>

IMDb TV

E

<< context >>
Message
Boards

E

<< context >>

Showtime &
Tickets

E

<< context >>

Game Base

E

H

<< context >>

Photos

E

<< context >>
Independent

Film

E

<< context >>

Browse

E

<< context >>

Help

E

<< context >>

MovieParticipant

S

<< context >>
User Messages

Board

S

<< context >>

Genre

S

RegisteredUser

J. Fons et al.

arrow) from the “Now Playing” context to the “Showtime & Tickets”
context. This link represents the capability of navigating from the “Now
Playing” context to the “Showtime & Tickets” to obtain the current
showtimes and ticket information.

Another example is the “My Movies” navigational context, which allows
RegisteredUsers to mark their preferred movies.

Fourteen of these navigational nodes are labeled with an “E”
(exploration). This means that these nodes are always accessible for
RegisteredUsers. They appear in the navigational map as the target of a
dashed arrow. The other nodes are labeled with an “S” (sequence), meaning
that they are only reachable by following a predefined navigational path
(solid arrows).

95

Figure 5.13. Home navigational content.

The AIU “Watch This: Trailers and More …” provides the users with the

titles of the movies that are marked as being “watchThis” (see class diagram
in Section 5.4.1). This requirement has been defined by specifying the
Movie class view with the title attribute and a population filter condition
“watchThis = TRUE.” Two navigational capabilities are defined within this
AIU by means of two context relationships (solid arrows). The first context
relationship defines a navigation capability to the Trailer navigational
context, which is inside the Promotional subsystem, which is inside the
Movie subsystem (see Figure 5.14). This capability allows users to select a
specific movie to see its available trailer. The second context relationship
defines a navigation capability to the Main Details context, which is inside
the Overview subsystem, which is inside the Movie subsystem. This
capability allows users to obtain more detailed information about a movie by
clicking on its title (anchor).

tabase Case Study 5. The Internet Movie Da

context provides, it has been defined as having a set of AIUs, each of which
provides a part of the information.

96

The AIU “Today IMDb Poll Question is:” provides the use with the

DailyPoll, whose date is equal to today().3 This AIU also allows
RegisteredUsers to vote() for the poll.

In the same way, the other AIUs provide the users with other information
of interest using different conditions (movie of the day, top at the box office,
opening this week, and coming soon). All these AIUs are marked as
noncontextual because they do not need any contextual information for
filtering with. Figure 5.19 shows the final Web page that implements the
Home context.

Since there is so much information about a movie, it has been organized
inside the Movie subsystem of the navigational map. This subsystem is
responsible for providing different views for the same movie. This
subsystem has also been organized using different subsystems: Overview,
Awards & Reviews, Plot & Quotes, Fun Stuff, Other Info, Promotional, and
External Links subsystems (see Figure 5,15). For example, the Overview
subsystem is labeled with an “H,” which converts it to the default node.

 An expanded view of the Promotional and Overview subsystems, which
are inside the Movie subsystem, are shown in Figure 5.15. The
Movie.Promotional subsystem allows users to navigate through the Taglines,
Trailers, Posters, and Photo Gallery of a specific movie (for instance, the
Trailer context inside the Promotional subsystem can be accessed from the
Home context using the “Watch This: Trailers and More…” AIU; see Figure
5.13). The Movie.Overview subsystem provides the main information about
a movie (it can be considered as the main part of the IMDb movie database):
Main Details, Full Cast & Crew, Combined Details, and Company Credits.

3 Today() is an environment operation that returns the current system date.

J. Fons et al.

Figure 5.14. Movie navigational subsystem.

<< subsystem >>
Overview

E

<< subsystem >>
Awards &
Reviews

E

<< subsystem >>
Plot & Quotes

E

<< subsystem >>
Fun Stuff

E

<< subsystem >>
Other Info

E

<< subsystem >>
Promotional

E

<< subsystem>>
Movie

<< subsystem >>
External Links

E

H

RegisteredUser

97

Figure 5.15. Promotional and Overview navigational subsystems
inside the Movie subsystem.

Within the Movie.Overview subsystem is the Main Details context, which
is responsible for retrieving the main information about a movie: title,
plotOutline, runtime, country, languages, etc. It also provides information
about the Directors, Writers, and Producers. It presents the characters and
memorable quotes for each actor and actress in the movie (Figure 5.16).

Figure 5.16. Movie.Overview.Main Details navigational content.

tabase Case Study 5. The Internet Movie Da

<< subsystem>>
Movie.

Overview

<< context >>

Main Details

E

<< context >>

Company Credits

E

<< context >>

Combined
Details

E

<< context >>

Full Cast & Crew

E

H

RegisteredUser

<< subsystem>>
Movie.

Promotional

<< context >>
Taglines

E

<< context >>
Trailers

E

<< context >>
Photo Gallery

E

<< context >>
Posters

E

H

RegisteredUser

This Main Details context is made up of four contextual AIUs
(depending on the selected movie) and one noncontextual AIU (Message

98

Board), which provides user comments about the movie. The Movie Main
Details AIU is the main contextual AIU and provides information about the
movie (title, year, plotSummary, run time, country, languages, color, and
sound). It also allows users (1) to add movies to “My Movies” (remember
that context at the navigational map of Figure 5.12), (2) to rate the movie,
and (3) to write a movie review.

Figure 5.16 shows the Movie.Overview.MainDetails context, specifying
how to retrieve the name of the Directors, Writers, and Actors, as well as the
characters, memorable quotes, and the name of the involved genres for each
movie. The name of the genre is the anchor for exploring more information
about that genre within the Genre navigational context. This is the case
because there is a context relationship between the Movie and the Genre
view classes. In the same way, the plotOutline value is the anchor for
exploring more details of that plot summary in the
Movie.Plot&Quotes.PlotSummary context, and the static text “Photos” leads
to the Movie.Promotional.PhotoGallery context.

5.4.4 The IMDb Presentation Model

Once the navigational model has been built, we specify presentational
requirements using the presentation model. IMDb follows a very simple,

J. Fons et al.

homogeneous way for displaying the information: For each entity, all related
subentities are shown in a register. One-to-one relationships also use the
register pattern. One-to-many relationships use the master-detail pattern,
with the detail in a register way. This leads to a basic presentation model
description.

Figure 5.17 shows a representative example of the IMDb presentation
model (see Movie.Overview.MainDetails).

5.4.5 The IMDb Implemented Web Application

This section presents the IMDb generated prototype. Figure 5.18 shows the
generated application configuration file using the framework. Note that the
IMDb default style has been applied in the prototype. The domain-
independent version of this style has been implemented by hand so that it has
the same look and feel as the real IMDb Web application.

This configuration file defines the two different roles (AddRol) specified
in the user diagram shown in Figure 5.11. As this file shows,
RegisteredUsers inherit from AnonymousUsers (see the last argument of the
AddRol operation).

99

Figure 5.18. Generated IMDb Web Application configuration file.

<?php
include_once "../Framework/ApplicationBegin.php";

$Application= new Application("IMDB","IMDB");

$Application->AddRol("AnonymousUser","","","");
$Application-

>AddRol("RegisteredUser","RegisteredUser","RegisteredUser_MVAgentValidation","AnonymousUser");

$Application->AddPage("NowPlaying","NOW PLAYING","","AnonymousUser","always");
$Application->AddPage("MovieTVNews","MOVIE/TV NEWS","","AnonymousUser","always");
$Application->AddPage("MyMovies","MY MOVIES","","AnonymousUser","always");
$Application->AddPage("DVD/Video","DVD/VIDEO","","AnonymousUser","always");
$Application->AddPage("IMDbTV","IMDb TV","","AnonymousUser","always");
$Application->AddPage("MessageBoards","MESSAGE BOARDS","","AnonymousUser","always");
$Application->AddPage("Showtime&Tickets","SHOWTIME&TICKETS","","AnonymousUser","always");
$Application->AddPage("GameBase","GAME BASE","","AnonymousUser","always");

$Application->AddPage("Home","Home","","AnonymousUser","always");
...

$Application->AddPageGroup("PG_BrowseMovie","Movie","","AnonymousUser","always",);

$Application->AddPageGroup("PG_Overview","Overview","Movie","AnonymousUser","always",);
$Application->AddPage("MainDetails","main details","PG_Overview","AnonymousUser","always");
$Application->AddPage("CombinedDetails","combined details","PG_Overview","AnonymousUser","always");
$Application->AddPage("FullCastAndCrew","full cast and crew","PG_Overview","AnonymousUser","always");
$Application->AddPage("CompanyCredits","company credits","PG_Overview","AnonymousUser","always");

$Application->AddPageGroup("PG_Awards&Reviews","Awards & Reviews","Movie","AnonymousUser","always",);
$Application->AddPage("UserComments","user comments","PG_Awards&Reviews","AnonymousUser","always");
...

$Application->SetDefaultStyle("IMDB")

$Application->SetHomePage("Home","AnonymousUser");

include_once "../Framework/ApplicationEnd.php";
?>

tabase Case Study 5. The Internet Movie Da

Figure 5.17. Movie.Overview.Main Details presentation context.

100

Figure 5.19. Implemented IMDb home Web page.

J. Fons et al.

to the AnonymousUser. Since RegisteredUsers are a specialization of
AnonymousUsers, they can also access these Web pages. The Home
navigational context has been defined as the Home Web page.

A Web page is created (AddPage) for each navigational context defined
in the navigational map (Figure 5.12). A Web page group (AddPageGroup)
is also created for each navigational subsystem. All these Web pages belong

As specified in its definition context (see Figure 5.13), this Web page
retrieves six different types of information, each of which comes from a
different AIU: Watch this, Today’s poll, IMDb movie of the day, Top box
office, Opening this week, and Coming soon. Following its definition, the
Watch this (AIU) portion of the Web page shows the title of movies that are
marked as watch this. The title is the anchor to navigate to the
Movie.Overview.MainDetails Web page. A link named “Trailers” is attached
to each title (as specified in the AIU) to navigate to the
Movie.Promotional.Trailers navigational context.

101

The IMDb Movie of the day AIU shows the title, photo, and description

of the movie with its movieOfDay set to true. The photo has been defined as
the anchor for navigating to the Movie.Overview.MainDetails. If that photo
is clicked on, the MainDetails Web page is shown.

The MainDetails Web page comes from the MainDetails navigational
context, which is inside the Overview subsystem, which is inside the Movie
subsystem. This requirement can be seen in the Web application
configuration file (Figure 5.18). This page has been generated by the OOWS
tool as shown in Figure 5.20.

Figure 5.20. Generated code for the Movie.Overview.MainDetails
with the implementation framework.

This Web page, Movie.Overview.MainDetails, retrieves all the
information specified in its related context for the selected movie (title, year,
photo, plotOutline, etc.). This is represented by the AddField operator to the
manager class of the AIU (AIU-1). The plotOutline attribute is used as the
anchor for navigating to the Movie.Plot&Quotes.PlotSummary page
(plotOutline->AddInternalLinkTo). This page finally leads to the
implemented Web page shown in Figure 5.21.

<?php
include_once "../../Framework/PageBegin.php";

$Page=new Page("Movie Overview Main Details","RegisteredUser");
$Page->AddUserInfoZone();

$InfoZone = $Page->AddInformationZone("AIU-1","Movie Main Details.","Movie");
$InfoZone->AddField ("title","Title");
$InfoZone->AddField("year","Year");
$InfoZone->AddImageField ("photo","Photo");
$InfoZone->AddField("plotOutline","Plot");
$InfoZone->AddField("country","Country");
$InfoZone->AddField("languages","Languages");
$InfoZone->AddField("runtime","Runtime");
$InfoZone->AddField("color","Color");
$InfoZone->AddField("sound","Sound");
$InfoZone->plotOutline->AddInternLinkTo("Movie_Plot&Quotes_PlotSummary");
$InfoZone->photo->AddInternLinkTo("Movie_Promotions_PhotoGallery");

$ServiceZone = $InfoZone->AddServicesZone("movieServices","");
$ServiceZone->AddServiceReference("Movie_AddToMyMovies","Add to my Movies");
$ServiceZone->AddServiceReference("Movie_rate","Rate it");
$ServiceZone->AddServiceReference("Movie_review","Add a Review");

$InfoZone->AddDetailRelationship("Director");
$InfoZone->RelatedDirector->AddRelatedField("name","Name","MovieParticipant");
$InfoZone->RelatedDirector->MovieParticipant_name->AddInternLinkTo("Movie_Participant");

$InfoZone->AddDetailRelationship("Writer");
$InfoZone->RelatedWriter->AddRelatedField("name","Name","MovieParticipant");
$InfoZone->RelatedWriter->MovieParticipant_writer->AddInternLinkTo("Movie_Participant");

$InfoZone->AddDetailRelationship("Genre");
$InfoZone->RelatedGenre->AddField("name","");
$InfoZone->RelatedGenre->name->AddInternLinkTo("Genres");

$InfoZone->AddDetailRelationship("Character");
$InfoZone->RelatedActorParticipant->AddField("character_name","Character");
$InfoZone->RelatedActorParticipant->AddRelatedField("name","Name","Actor.Character");
$InfoZone->RelatedActorParticipant->Actor_Character_name->AddInternLinkTo("Movie_Participant");

$InfoZone->AddDetailRelationship("MemorableQuote");
$InfoZone->RelatedMemorableQuote->AddField("quote","Quote");
$InfoZone->RelatedMemorableQuote->AddRelatedField("character_name","Character","Character");
$InfoZone->RelatedMemorableQuote->AddRelatedField("name","Name","Character.MovieParticipant");
$InfoZone->RelatedMemorableQuote->Character_MovieParticipant_name->AddInternLinkTo("Movie_Participant");

 $InfoZone = $Page->AddInformationZone("AIU-2","User Comments.","User");
 ...

include_once "../../Framework/PageEnd.php";
?>

tabase Case Study 5. The Internet Movie Da

102

Figure 5.21. Implemented Movie.Overview.MainDetails Web page.

As stated in Section 5.3.11, we have manually implemented the
visualization rules to recreate the IMDb look and feel (see Figure 5.9).

To demonstrate the reusability of the graphical designs, we have applied
a graphical design that we had previously used in another Web application.
This design implements the visualization of the UPV Web site
(www.upv.es). The visualization view can be changed by simply changing
the SetDefaultStyle in the Web application definition file to

$Application->SetDefaultStyle(“UPV-like”);

and a visualization like the one in Figure 5.22 will be obtained.

5.5 METHOD EXTENSIONS

During the last few years, the OOWS approach has evolved by including
features to support some new extensions. These extensions cope with the
following topics: Web requirements modeling, adaptive systems modeling,
business process modeling, applications of the semantic Web technologies,
and service-oriented architectures.

J. Fons et al.

103

Figure 5.22. IMDb using the UPV graphical design.

5.5.1 Web Requirements Modeling

This extension proposes the use of a requirements model for Web
applications development (Valderas et al., 2006). This model is based on the
concept of a task that has been reoriented to capture not only structural and
behavioral requirements (as happens in non-Web applications) but also
navigational requirements.

This OOWS requirements model is created in three main stages:

tabase Case Study 5. The Internet Movie Da

1. In the first stage, a task taxonomy is created. This task taxonomy
hierarchically specifies the tasks that users should achieve when
interacting with the Web application. There are general and specific
tasks. Structural and temporal decompositions are proposed to perform
the task refinement.

104

Then, a strategy to specify and to apply model-to-model transformations
to obtain partial navigational models from the requirements model has been
defined. The code generation process allows us to obtain prototypes in a
multidisciplinary environment by defining the different roles (graphical
designers, usability experts, etc.) and responsibilities. Model-to-model and
model-to-code transformations provide us with a high level of traceability
between code and requirements. This characteristic facilitates the
management of volatile requirements and application evolution.

5.5.2 Adaptive Systems Modeling

Most of the research efforts in the field of adaptive hypermedia have focused
on implementing adaptivity concepts to solve specific problems and on
developing and improving adaptation strategies and algorithms, which are
introduced at later stages of the software development process.

Providing a higher level (more general and domain-independent)
perspective of adaptive hypermedia applications development, different
model-driven approaches have been proposed. However, important problems
are still related to the poor conceptual support to multiple adaptive
techniques and to the lack of a complete methodological support.

The approach that OOWS proposes for the development of adaptive Web
applications provides conceptual tools to describe different adaptive
techniques, at a high abstraction level. To provide methodological support,
the main parts of this OOWS extension are the following:

J. Fons et al.

2. In the second stage, each leaf task is described by analyzing the
interaction that users require from the Web application. A strategy
based on activity diagrams is used. Each activity diagram is defined
using system actions and interaction points that represent the moments
during a task where the system and the user exchange information (this
information allows us to capture navigational semantics at the
requirements level).

3. In the third stage, a set of information templates is described. These
templates describe the information that is exchanged in each
interaction point.

1. A user modeling strategy based on the description of the intended
users of the application as a domain concept, considering their
personal characteristics, their relationships with the application
domain, and the description of their interaction with the application
(Rojas and Pelechano, 2006).

2. A set of conceptual structures and properties, incorporated into the
OOWS navigational model, that give support to well-known adaptive

105

5.5.3 Business Process Modeling

The increasing widespread use of the Web service technology makes the
Internet the most adequate platform for the development of business
applications (many companies are already providing services to third parties
by means of this technology).

Some of the challenges that arise with these kind of applications are the
following: (1) Sometimes the description of these business applications is
highly related to a business process (BP) definition, where the objective of
these applications is not only information management but also process
management; (2) real BPs do not only include automated activities and
system participants; in fact, they can also include human participants
(participants who require a user interface to interact with the process) and
manual activities (activities that are not automated at all; for instance, “to
make a phone call” or “to review a document”).

From the OOWS approach, we propose the automatic generation of Web
applications that give full support to the execution of BPs (Torres and
Pelechano, 2006). To achieve this goal, we propose to generate from a BP
definition (1) the required graphical user interface to launch and complete
process activities, as well as (2) the equivalent executable definition of the
process. However, this approach enforces us to revise the OOWS approach
not only from the modeling point of view but also from the architectural one
(in some cases the execution of the process is going to be performed by a
process engine). This proposal allows us to obtain BP implementations that
are totally integrated within the Web application. This integration is
achieved at three levels: data/content, functionality, and graphical user

tabase Case Study 5. The Internet Movie Da

techniques, such as link-hiding, link-ordering, or conditional fragments
(Rojas et al., 2005).

3. A requirements specification approach including capabilities to define
the requirements relative to the distinct users of the application (user
classification, information, and functionality requirements).
Furthermore, it provides us with tools to describe the set of
adaptivity requirements of the application, in terms of the adaptive
characteristics of the system tasks (discussed in Section 5.5.1). In this
way, the decisions about adaptivity that are taken in the conceptual
modeling phase are supported by their corresponding user-related and
adaptivity requirements (Rojas et al., 2006).

4. A systematic approach to derive conceptual specifications of
adaptivity characteristics from their corresponding requirements
specifications, through the definition of mapping rules to the structures
of the OOWS conceptual models (Rojas et al., 2006).

106

interface. For this purpose we have defined an extension to the OOWS
navigational model that allows us to model the graphical interfaces that are
necessary to allow interaction between human participants and the business
process.

5.5.4 Application of the Semantic Web Technology

In this sense, Web Engineering methods should now be prepared to
provide solutions that tackle the modeling of this new dimension, which
refers to the view over the system from the Semantic Web point of view.
This new dimension allow us to generate applications intended not only for
humans, but also for automated software agents, which can understand the
application contents (data and functionality) because they are expressed in a
language that provides a vocabulary along with a formal semantics.

We propose generating part of the system specification that is going to be
accessible through the use of the Semantic Web technology (Torres et al.,
2006). This generation can be performed since the OO-Method/OOWS
approach includes a set of models that specify in a sound and precise way
the system structure and behavior in the form of a conceptual schema. The
OO-Method/OOWS approach has been enriched with a mechanism to
define—at the modeling level—the system in terms of the Semantic Web
point of view. This new dimension specifies the view/access over the system
for external agents by defining two models: The first model specifies the
system domain (tourism, health, news, education, etc.), and the second
model describes how external entities/agents should use the system
functionality exposed in business settings.

5.5.5 Service-Oriented Architectures

A main objective of Service-Oriented Architectures (SOA) is to solve
integration problems between heterogeneous applications in a distributed
environment. Architectures of this kind provide appropriate scenarios to
integrate Web applications. Web

J. Fons et al.

Engineering methods should provide

In order to turn the vision of the Semantic Web into reality (Berners-Lee et al.,
2006), it is necessary to provide developers with guides, methods, and tools
that encourage them to make use of semantic technologies for the
development of real-world applications. The development of the Semantic
Web involves not only the generation of semantic content (defining specific
domains using ontologies) but also the semantics of some functionality that
allows external users and software agents to discover, invoke, compose, and
monitor this functionality with a high degree of automation.

107

mechanisms to apply SOA architectures to support the use of external Web
services to develop new services.

In accordance with SOA, a methodological guidance to automatically
design and implement fully operative Web services from OO-
Method/OOWS models has been defined. In order to design and implement
these Web services, the OO-Method/OOWS models are used as the key
point. In this strategy, we have first determined which models are useful to
identify Web services operations, and then we have proposed a guidance to
design these operations (Ruiz et al., 2005, 2006).

This extension is supported by an additional tool that takes the
conceptual model as input and applies the guide to obtain Web services
operation descriptions. This tool finally generates the code for this Web
services operation automatically (Ruiz et al., 2006).

REFERENCES

CARE Technologies. OlivaNova Model Execution. http://www.care-t.com, accessed 2007.
CARE Technologies. OlivaNova Modeller. http://www.care-t.com/products/modeler.html,

CARE Technologies. OlivaNova Transformation Engines. http://www.care-t.com/products
/transengine.html, accessed 2007.

Ceri, S., Fraternali, P., and Matera, M., 2002, Conceptual modeling of data-intensive Web
applications. IEEE Internet Computing, 6(4): 20–30.

De Troyer, O., 2001, Audience-driven Web design. In Information Modeling in the New
Millennium, Eds. Matt Rossi and Keng Siau, Publ. IDEA Group Publishing, Hershey, USA,

Fons, J., Pelechano, V., Albert, M., and Pastor, O., 2003, Development of Web applications
from Web enhanced conceptual schemas. ER’2003, Springer Lecture Notes in Computer
Science, 2813: 232–245.

Knapp, A., Koch, N., Zhang, G., and Hassler, H.M., 2004, Modeling business processes in
Web applications with ArgoUWE. UML 2004, Springer Lecture Notes in Computer
Science, 3273: 69–83.

Mellor, S.J., Clark, A.N., and Futagami, T., 2003, Model-driven development—Guest editor,s
introduction. IEEE Software, Sept.–Oct., 20(5): 14–18.

Murugesan, S., and Desphande, Y., 2001, Web Engineering. Software Engineering and Web
Application Development. Lecture Notes in Computer Science—Hot Topics, Springer,
New York.

Object Management Group, 2004, Model Driven Architecture (MDA). www.omg.org/mda.
Pastor, O., Gomez, J., Insfran, E., and Pelechano, V., 2001, The OO-Method approach for

information systems modeling: From object-oriented conceptual modeling to automated
programming. Information Systems, 26: 507–534.

Pressman, R.S., 2005 A Practitioner’s Approach. MacGraw-Hill, New
York, ISBN: 0-07-285318-2.

Reifer, D.J., 2000, Web development: Estimating quick-to-market software. IEEE Software,
Nov.–Dec., 17(6): 57–64.

tabase Case Study 5. The Internet Movie Da

Berners-Lee, T., Hendler, J., and Lassila, O., 2001, The Semantic Web. Scientific American, May.

, Software Engineering:

accessed 2007.

ISBN: 1-878289-77-2, pp. 442–462.

108

Rojas, G., and Pelechano, V., 2005, A methodological approach for incorporating adaptive

navigation techniques into Web applications. Proceedings Sixth International Conference
on Web Information Systems Engineering (WISE 2005), New York.

Rojas, G., Pelechano, V., and Fons, J., 2005, A model-driven approach to include adaptive
navigational techniques in Web applications. Proceedings Fifth International Workshop

Advanced Information Systems Engineering (CAiSE 05)], Porto, Portugal.
Rojas, G., Valderas, P., and Pelechano, V., 2006, Describing adaptive navigation

requirements of Web applications. Proceedings Fourth International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems (AH2006), Dublin, Ireland.

Rossi, G., and Schwabe, D., 2001, Object-oriented Web applications modeling. In
Information Modeling in the New Millennium, IGI Publishing, USA, ISBN: 1-878289-77-2,

Ruiz, M., Valderas, P., and Pelechano, V., 2005, Applying a Web engineering method to
design Web services. Proceedings Third International Conference on Service-Oriented
Computing (ICSOC), pp. 576–581.

Ruiz, M., Pelechano, V., and Pastor, O., 2006a, Designing Web services for supporting user
tasks: A model driven approach. Proceedings of Conceptual Modeling of Service-Oriented
Software Systems (CoSS).

Ruiz, M., Valverde, F., and Pelechano, V., 2006b, Desarrollo de servicios Web en un método
de generación de código dirigido por modelos. II Jornadas Científico-Técnicas en
Servicios Web (JSWEB) [in Spanish].

Torres, V., and Pelechano, V., 2006, Building business process driven Web applications.
Proceedings Fourth International Conference on Business Process Management (BPM
2006),.Vienna, Austria, pp. 322–337.

Torres, V., Pelechano, V., and Pastor, O., 2006, Building Semantic Web services based on a
model driven Web engineering method. Workshop on Conceptual Modeling of Service-
Oriented Software Systems (CoSS2006), Tucson, Arizona.

Valderas, P., Pelechano, V., and Pastor, O., 2006, A transformational approach to produce
Web application prototypes from a Web requirements model. Submitted to International
Journal on Web Engineering and Technology (IJWET).

J. Fons et al.

on Web-Oriented Software Technologies (IWWOST’05) [within The 17th Conference on
’

pp. 463–484.

Chapter 6

MODELING AND IMPLEMENTING WEB
APPLICATIONS WITH OOHDM

Gustavo Rossi1 and Daniel Schwabe2

1LIFIA, Facultad de Informatica,Universidad Nacional de La Plata, (also at CONICET),
Argentina, gustavo@lifia.info.unlp.edu.ar

2Departamento de Informática, PUC-Rio, Rio de Janeiro, Brazil, dschwabe@inf.

puc-rio.br

6.1 INTRODUCTION

The Object-Oriented Hypermedia Design Method (OOHDM) (Schwabe and
Rossi, 1998) is a model-based approach to develop Web applications. It
allows the designer to specify a Web application, seen as an instance of a
hypermedia model, through the use of several specialized meta-models. Each
model focuses on different aspects of the application. Once these models
have been specified for a given application, it is possible to generate run-
time code that implements the application. The examples shown in this
chapter use the HyperDE environment (Nunes and Schwabe, 2006) for this.

OOHDM uses different abstraction and composition mechanisms in an
object-oriented framework to allow, on the one hand, a concise description
of complex information items and, on the other hand, the specification of
complex navigation patterns and interface transformations. The principles of
OOHDM have also been applied in another version of the method, SHDM
(Schwabe et al., 2004), in which the data model used is based on RDF and
RDFS (Brickley and Guha, 2004).

In OOHDM a Web application is built in a five-step process supporting
an incremental or prototype process model. Each step focuses on a particular
design concern, and an appropriate model is built. Classification and

110 G. Rossi and D. Schwabe

generalization/specialization are used throughout the process to enhance
abstraction power and reuse opportunities. We next summarize the five
activities.

6.1.1 Requirements Gathering

The first step is to gather the stakeholder requirements. To achieve this, it is
necessary to first identify the actors (stakeholders) and the tasks they must
perform. Next, scenarios are collected (or drafted) for each task and type of
actor. The scenarios are then collected to form use cases, which are
represented using User Interaction Diagrams (UIDs). These diagrams
provide a concise graphical representation of the information flow between
the user and the application during the execution of a task. The UIDs are
validated with the actors, and redesigned if necessary. In sequence, a set of
guidelines is applied to the UIDs to extract a basic conceptual model.

6.1.2 Conceptual Design

In this step a conceptual model of the application domain is built using well-
known object-oriented modeling principles. There is no concern for the types
of users and tasks, only for the application domain semantics. A conceptual
schema is built out of subsystems, classes, and relationships. OOHDM uses
UML (Fowler, 1997), with slight extensions, to express the conceptual
design.

6.1.3 Navigational Design

In OOHDM, an application is seen as a navigational view over the
conceptual model. This reflects a major innovation of OOHDM [also
adopted by other methods such as UWE (Koch and Kraus, 2002)] and
WebML (Ceri et al., 2002), which recognizes that the objects (items) the
user navigates are not the conceptual objects, but other kinds of objects that
are “built” from one or more conceptual objects, to suit the users and tasks
that must be supported.

In other words, for each user profile we can define a different
navigational structure that reflects the objects and relationships in the
conceptual schema according to the tasks this kind of user must perform.
The navigational class structure of a Web application is defined by a schema
containing navigational classes. In OOHDM there is a set of predefined
basic types of navigational classes: nodes, links, anchors, and access
structures. The semantics of nodes, links, and anchors are the usual in
hypermedia applications. Nodes in OOHDM represent logical (or “windows”

6. Modeling and Implementing Web Applications with OOHDM 111

views) over conceptual classes defined during conceptual design. Links are
the hypermedia realization of conceptual relationships as well as task-related
associations. Access structures, such as indexes, represent possible ways for
starting navigation.

Different applications (in the same domain) may contain different linking
topologies according to the various users’ profile. For example, in the
Internet Movie Database (IMDB) application, a rental store view of a certain
DVD may indicate for each available copy when it is due to be returned,
whereas the customer view may omit this information.

The navigational structure of a Web application is described in terms of
navigational contexts, which are sets of related nodes that possess similar
navigation alternatives (options) and are meaningful for a certain step in
some task the user is pursuing. Navigation contexts play an analogous role
with respect to navigation that classes play with respect to the structure and
behavior of objects—they provide a way to talk about the navigation
alternatives for sets of nodes without requiring talking about individuals, the
same way as classes allow talking about the structure and behavior of objects
without requiring talking about individuals objects. For example, we can
model the set of actors in a film, the set of films directed by a director, the
set of DVD copies of a film, and so on.

6.1.4 Abstract Interface Design

The abstract interface model is built by defining perceptible objects—also
called widgets—that contain information (e.g., a picture, a city map, etc.) in
terms of interface classes. Interfaces are defined as recursive aggregations of
primitives classes (such as exhibitors or capturers) or of other interface
classes. Interface objects map to navigational objects, providing them with a
perceptible appearance, or to input values. Interface behavior is defined by
specifying how to handle external and user-generated events and how
communication takes place between interface and navigational objects.

6.1.5 Implementation

Implementation maps interface and navigation objects to run-time objects
and may involve elaborate architectures, e.g., client–server, in which
applications are clients to a shared database server containing the conceptual
objects. A number of DVD-ROM–based applications, as well as Web–sites,
have been developed using OOHDM, employing various technologies such
as Java (J2EE), .NET (aspx), Windows (asp), Lua (CGILua), ColdFusion,
and Ruby (Ruby on Rails). In this chapter, we will illustrate the
implementation using HyperDE, an environment based on Ruby on Rails

112

that is freely available on the Internet (see http://server2.tecweb.inf.puc-
rio.br:8000/hyperde).

In the following sections we show some details of the OOHDM notation
using an example that can be considered a simplified version of the Internet
Movie Database (www.imdb.com) together with an associated site such as
www.amazon.com where one can buy a DVD. For the sake of simplicity, we
will focus mainly on the process of finding movies, i.e., in the store
catalogue; less emphasis is put in the buying and check-out process (see
Schmid and Rossi, 2004). This example is somewhat archetypical as many
different Web applications can be modeled using the ideas we will show
next.

6.2 REQUIREMENTS GATHERING
AND SPECIFICATION

6.2.1 Identifying Actors

In OOHDM we build a different navigational model for each user profile; in
this application we clearly have at least two different user profiles: the
customer, who is looking for a movie to buy or just for information about the
movie, and the administrator, who maintains the movies database. We will
mostly discuss the application for the customer profile. Once we have
identified the actors, we must identify the tasks the user will accomplish
using the application, in order to obtain usage scenarios.

Clearly, there are many tasks to be supported in our application scenario.
Some of the typical tasks for the customer user profile are

• Find a movie given its title.
• Find a movie given an actor’s name.
• Find information about an actor or actress.
• Find movies of a particular genre.
• Find recently released movies.
• Choose movies to buy given one of the above criteria.

6.2.2 Use Case Specification

We next describe the usage scenarios. A scenario represents the set of
subtasks the user has to perform to complete a task. Scenarios are specified
textually using the point of view of the final user, in our case a customer.
Whenever possible, the user scenarios should be obtained from a sample of
real users who are representative of the intended audience. When this is not

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 113

possible, this role can be played by members of the design team or by other
stakeholders. More than one scenario can be defined for the same task.

As an example of the first task (“Find a movie given its title”), a possible
scenario would be

“I enter the movie title or part of it, and I see a list of matching movie
titles. For each movie matching the title, I get some information such
as a picture of the DVD cover, the year the movie was released, and
its main actors. I can get additional information such as all the actors,
director, soundtrack information, user comments, etc. For some films,
I can also see a short trailer.
“After reading the information, I can decide to buy it or to quit.”

After collecting several such scenarios, a generalization is captured in a
use case, defined next. We use the following heuristics:

1. Identify those scenarios related with the task at hand. In our case we

will use the previous scenario.
2. For each scenario, identify information items that are exchanged by

the user and the application during their interaction.
3. For each scenario, identify which data items are associated among

themselves; they typically appear together in the text of the use case.
4. For each scenario, identify those data items organized as sets.

Usually, the use case text refers to them explicitly as sets.
5. The sequences of actions appearing in scenarios should also appear

in the use case.
6. All operations on data items that appear on scenarios should be

included in the use case.

After defining the data involved in the interaction, the sequence of
actions, and the operations, we can specify the use case. A use case will be
constructed based on the sequence of actions, detailed with the information
about the data items and operations involved. Use cases can also be enriched
with information from other use cases or provided by the designer. The
resulting use case for the previous scenario is the following:

Use case: Find a movie given its title.

1. The user enters the movie title (or part of it).
2. The application returns a list of movies matching the data entered or

the information about the movie (if only one movie matches, see

3. In case the user wants to see more information on the movie, he
selects it.

step 4). For each movie, the title, main actor, and cover art are shown.

”

114

4. The system returns detailed information for the movie: title, cover,
availability, actors’ names, director, and other technical information.
If the user wants to buy the movie, he can include it in the shopping
cart to buy later (use case: Buy a DVD given its title). If he wants, he
can watch a trailer of the movie.

5. If the user wants to know information about an actor who had a role
in the movie, he can select the actor and the application will return
his name, date of birth, a photograph, and a list of movies in which
he participated.

The specification of other use cases follows a similar process.

6.2.3 User Interaction Diagrams

1. Initially, the use case is analyzed to identify the information
exchanged between the user and the application. Information
provided by the user and information returned by the system are
tagged accordingly. Next, the same information is identified and
made evident in the use case.

2. Items that are exchanged during the interaction are shown in UID
states. Information provided by the user and that provided by the
system are always in separate states. Information that is produced
from computations should be in separate states from the information
used as input to this computation. The ordering of states depends on
the dependencies between data provided by the user and returned by
the application. In Figure 6.1, we show the first draft of the UID
where parts of the use case are transcribed; information exchanged is
shown in italics.

3. After identifying the data items exchanged, they must be clearly
indicated in the UID. Data entered by the user (for example, the
movie title) are specified using a rectangle; if it is mandatory, the
border is a solid line; if it is optional, the border is a dashed line, as
shown in Figure 6.2. Ellipsis (…) in front of a label indicates a list
(e.g., …Movie indicates a list of Movies). The notation Movie (Title,
Actor(Name), Cover) is called a structure. A shaded ellipsis
represents a separate UID.

G. Rossi and D. Schwabe

Use cases are described using a graphical notation called a User Interaction
Diagram (UID) (Vila et al., 2000), which captures the flow of information
and helps detail the information items and choices made by the user.

The specification of UIDs from use cases can be done following the
guidelines described below. For illustration purposes, we detail the process
of building the UID for the use case “Find a movie given its title,” as
described above.

6. Modeling and Implementing Web Applications with OOHDM 115

<1>

The user enters the
movie title (or part of
it).

The application returns a list of
movies matching the data entered
or the information about the movie
(if only one movie matches, see
step 4). For each movie, the title,
main actor, and cover are shown.

<2>

The system returns detailed
information for the movie: title,
cover, availability, actors, names,
director user comments, and other
technical information.

<3>

<4>

If the user wants to know information

movie, he can select the actor and the
application shows his name, date of
birth, a photograph, and a list of
movies in which he participated

Figure 6.1. Defining the UID.

<1>

Movie Title

…Movie (Title, Actor(name), Cover)

<2>

Movie (Title, Cover, Availability,
…Actor(Name), Director(name),
Trailer, …Comment(text, user),
Technical Information)

<3>

<4>

Actor(name, date of birth,
photograph,…Movie(name))

Figure 6.2. Refining interaction states in UIDs.

4. Transitions between interaction states must be indicated using
arrows. Multiple paths as indicated in the use cases might arise as
shown in Figure 6.3. Labels between brackets indicate conditions
(e.g., [2..N] indicates more than one result); a label indicating
cardinality represents a choice. (In the example, “1” indicates only
one option may be chosen. For any choice, the source of the arrow is
the list from which the option is selected, or the whole state if it is
not ambiguous.)

about an actor who participated in the

.

116

Movie Title

…Movie (Title, Actor(name), Cover)

Movie (Title, Cover, Availability, …Actor(Name),
Director(Name), Trailer, …Comment(text, user)
Technical Information)

Actor(name, date of birth,
photograph,…Movie(name))

[1]

[2..N]

1

1

Figure 6.3. Transitions between interaction states in UIDs.

5. Finally, operations executed by the user are represented using a line
with a bullet connected to the specific information item to which it is
applied, as shown in Figure 6.4. The name of the operation appears
in parentheses.

Movie Title

…Movie (Title, Actor(name), Cover)

Movie (Title, Cover, Availability, …Actor(Name),
Director, …Comment(text, user), Technical
Information)

[1]

[2..N]

1

1

[include in shpping cart]

[include in shpping cart]

Actor(name, date of birth,
photograph,…Movie(name))

[play trailer]

Figure 6.4. Complete specification of the UID for the use case “Find movie given its title
(including the buying operation).”

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 117

6.3 CONCEPTUAL MODELING

The conceptual model in OOHDM comprises a set of classes (their attributes
and behaviors) and their relationships using UML. To develop a conceptual
model, the information gathered from use cases and UIDs can help to
identify core information classes that can later be refined. We next describe a
set of guidelines to derive classes from UIDs, and we illustrate them using
the UID in Figure 6.4 (“Find movie”). These guidelines are especially useful
in aiding less experienced designers.

1. Class definition. For each data structure in the UID, we define a

class. In the example: Movie, Actor, Director.
2. Attribute definitions. For each information item (provided by the

user or returned by the system) appearing in the UID, an attribute is
defined according to the following validations:
(a) If, given an instance of the class X, it is possible to obtain the

value of attribute A, then A can be an attribute of X (provided
X is the only class fulfilling this condition).

(b) If, given classes X and Y, it is possible to obtain the value of
attribute A, then A will be an attribute of an association
between X and Y.

(c) If the attribute corresponding to a data item does not depend on
an existing class, or combination of classes, this indicates the
need to create a new one.

The following attributes were identified from the information
returned by the system as shown in the UID in Figure 6.4:

Movie: title, cover, availability, trailer, user comments,
technical information.

Actor: name, date of birth, photograph, list of movies
Director: name

3. Definition of associations. For each UID, for attributes appearing in
a structure that does not correspond to their class, include the
association if there is a relationship between its class and the class
representing the structure.

4. Definition of associations. For each UID, for each structure s1
containing another structure s2, create an association between the
classes corresponding to structures s1 and s2.

5. Definition of associations. For each transition of interaction states in
each UID, if different classes represent the source interaction state
and the target interaction state, define an association between
corresponding classes.

118

The following associations were identified by applying
guidelines 3, 4, and 5 to the UID in Figure 6.4:

Movie-Actor
Movie-Director

6. Operation definition. For each option attached to a state transition
in each UID, verify if there is an operation that must be created for
any of the classes that correspond to the interaction states.

The following operations were identified from this last
guideline:

Movie: includeInShoppingCart
Movie: PlayTrailer

In Figure 6.5, we show an initial conceptual model derived from the UID
“Find movie given its title.”

+playTrailer()
+includeInShoppingCart()

+availability
+trailer
-release date
+technical information

Movie

-name
-birthdate
-photo

Actor

-name
Director

*

*

*

*

Figure 6.5. Initial conceptual model.

While the process and guidelines described above can help in defining a
preliminary model, several refinements have to be made by hand,
incorporating the designer’s understanding of the domain. Among other
concepts, the designer must identify

• Generalization and specialization hierarchies—for example, Actor and
Director can be recognized as subclasses of Person.

• Association classes—for example, Role of an Actor in a Movie.
• Hidden classes—for example, Order. In fact, the Shopping Cart is not

really a class by itself, but rather the set of Items that are part of an Order.
Similarly, there is a User class, who is the buyer and also makes
comments.

• Redundant classes.
• The arity of relations.

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 119

Besides these adjustments, it is worth noticing that this conceptual model
might need further improvements as the application evolves, since these
classes are “just” the ones we derive from the requirements gathering
activity. However, this evolution belongs more to the general field of object-
oriented design and is not as relevant for the current discussion.

After analyzing the complete set of UIDs and performing needed
adjustments, we can obtain the conceptual model of Figure 6.6. Notice that
we have included a Series class to stand for TV Series, and a generalization
class Feature, abstracting both Series and Movies.

+playTrailer()

+availability
+trailer
+technical information
-release date

Movie

-name
-birthdate
-photo

Person

-place
-city
-country

Exhibition

-date
-starting_time
-ending_time
-duration_mins
-price
-room

Session

+includeInShoppingCart()

+title
+picture
+description
+website

Feature

+seasons
+launch date

SeriesActor

Director

Writer

Producer

Acts on

Directs

Writes

Produces

character
Role

shows

-login
-pwd
-email
-address
-city
-country

RegisteredUser

quantity
SalesItem

quantity
DVD Sale

-Release Date
-Price
-title

DVD
DVD Release

comment
rating
date

UserComment

Figure 6.6. Conceptual model for the Movies Web site.

6.4 NAVIGATION DESIGN

To help understand the OOHDM approach to navigation design, we draw an
analogy with supermarkets. Let’s suppose you want to get some ground
coffee, and you go to a supermarket you’ve never been to before. Not
knowing where each type of merchandise is kept, you look up at the signs
hanging from the ceiling, where the various categories of products are listed.

120

The signs establish a simple taxonomy of product types which is widely
understandable, at least in Western society. Following the signs, you go to
the aisle and section where ground coffee is kept.

However, looking at the shelves around the section, you notice that there
are also coffee filters, jars, mugs, etc. Clearly, these items are not of the
same category as ground coffee. The supermarket management put them
here because they know that the user needs them to make coffee—just the
grounds are not enough. One may regard the ground coffee, filters, jars, etc.
as a “virtual” product, a “coffee making kit.” What enables defining this kit
is the knowledge that the user’s task (or goal) in this case is to make coffee
(there are no other obvious uses for ground coffee). Thus, if the management
knows what the user is looking for, it may create “kits” containing the
needed items; when management doesn’t have prior knowledge, it provides a
generic organization that is “task-neutral,” based on a taxonomy of products
that is culturally shared. In OOHDM, navigation nodes are equivalent to
such “kits.”

Continuing with the analogy, products must be organized in shelves,
deployed along aisles that have a certain topology. Product placement in
aisles is not random; for example, commonly bought items such as milk and
bread are normally placed at the rear. The rationale is that since these are
items that most people will buy, placing them at the rear of the store forces
users to traverse several aisles, thus exposing users to more products and
encouraging them to buy additional products, sometimes by impulse. A
similar rationale justifies placing related product types near each other, such
as beverages and snacks. The same can be said about placing children’s
products on the lower shelves, where children can easily see and reach them.
Defining the application’s navigation topology is analogous to establishing
the aisles and product placement in the supermarket—the navigation paths
should reflect the various goals and tasks of all stakeholders involved.

Thus, the goal of navigation design is to characterize the navigation
objects and how they are organized into a navigation space. These are
specified, respectively, through the navigation class schema and the
navigation context schema. The latter indicates possible navigation
sequences to help the user complete her task, and the former specifies the
navigation objects (nodes and links) being processed. Whereas designers
may create both schemas from different sources, User Interaction Diagrams,
use cases, and the conceptual model are the natural sources from which to
derive a sound navigational model. In addition to these, designers use their
own experience or that from other designers, for example, using navigation
patterns, as described in Section 6.7.

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 121

6.4.1 From Conceptual Modeling to Navigation Design

One of the cornerstones of the OOHDM approach is the fact that
navigational objects—nodes and links—are explicitly defined as views on
conceptual objects, according to each different user profile. These views are
built using an object-oriented definition language that allows one to “copy
and paste” or to filter attributes of different related conceptual classes into
the same node class and to create link classes by selecting the appropriate
relationships.

6.4.2 Navigational Schema

For each set of user profiles, we define a different navigational class schema
and context schema. The navigational schema contains the nodes and links
of the application. Nodes contain perceivable information (attributes) and
anchors for links. Anchors are objects that allow triggering links. Links,
meanwhile, are the hypermedia realization of conceptual relationships.

6.4.2.1 Nodes and Anchors

Nodes are derived from conceptual classes by selecting those classes we
want that the user to perceive; attributes are defined in an opportunistic way
according to usage needs. Sometimes it is necessary to combine attributes
from different objects to describe a node.

In the example we may want nodes representing Movies to contain an
attribute with the names of all the actors that participated in the movie,
eventually using the names as anchors to each Actor’s page.

As shown in the conceptual model of Figure 6.6, the name of the actor is
an attribute of Class Actor and should not be included in Class Movie.
Meanwhile, in a different application (for example, the application for
administrators), we may want to filter out some attributes (such as detailed
data of the movie) or include new relationships as links.

Node classes are defined using a query language similar to the one in
Kim (1994). Nodes possess single-typed attributes, link anchors, and may be
atomic or composite. Anchors are instances of Class Anchor (or one of its
subclasses) and are parameterized with the type of link they host. In fact,
since navigation always occurs within some context, as will be explained
later, the Anchor specification must also include the destination context.

From an object-oriented point of view, nodes implement a variant of the
Observer design pattern (Gamma et al., 1995) as they express a particular
view on application objects. Changes in conceptual objects are broadcast to
existing observers, while nodes may communicate with conceptual objects to
forward events generated in the interface to them.

122

As an example we define the Node class Movie, including as one of its
attributes the name of the director and an anchor for the link that connects
both nodes. We say that the conceptual class Movie is the subject of Node
class Movie. In OOHDM we defer the definition of how objects will be
perceived until the interface design activity.

NODE Movie [FROM Movie:m]
director: String [SELECT Name] [FROM Director:d WHERE D

.... (other attributes “preserved” from the conceptual class Movie}
directedBy: Anchor [DirectedBy, Directors in Alphabetical order]

In the definition above, we express that attribute Director contains the
name of the instance of the Director class corresponding to the director of
the actual movie. Similarly, directedBy is a link to the Director node, in the
context Directors in Alphabetical order. The notation above can be easily
mapped into a query to a relational database of the implementation. We may
combine both in case we want to have an anchor whose label is the
Director’s name, which would be expressed as

NODE Movie [FROM Movie:m]
directedBy: Anchor [DirectedBy, Director in Alphabetical order] label

[SELECT Name]
 [FROM Director:d WHERE d Directs m]

.... (other attributes “preserved” from the conceptual class Movie}

Nodes may also possess attributes that are used to trigger operations in
their object counterparts in the conceptual model.

6.4.2.2 Links

Links connect navigational objects. The result of traversing a link is
expressed either by defining the navigational semantics procedurally as a
result of the link,s behavior or by using an object-oriented state-transition
machine similar to Statecharts (Turine et al., 1997). Since Web applications
usually implement simple navigation semantics (closing the source page and
opening the target), we do not discuss this issue further.

The syntax for defining Link classes also allows one to express queries
on relationships as shown in the example below in which, for the sake of
simplicity, we omit link attributes.

G. Rossi and D. Schwabe

Directs m]

6. Modeling and Implementing Web Applications with OOHDM 123

LINK DirectedBy
SOURCE: Movie: M
TARGET: Director: D
WHERE S.D directs S.M
END

Notice that in a running implementation, links may not exist as full-
fledged objects. For example, they may be just the result of selecting an
anchor (that in fact might be simply a URL). However, expressing the
navigational diagram considering nodes and links as object classes allows us
to express the intended navigation semantics in a better way.

In Figure 6.7 we show the navigational class diagram of the Movie site,
using a UML-like syntax. (Notice that the semantics of links are different
from the semantics of UML associations.)

+playTrailer()
+addToShoppingCart()

+trailer : video
+technical information : string
-release date : date

Movie

-name : string
-birthdate : date
-photo : image

Person

-place
-city
-country
-sessions : Idx(Session by Exihibition)

Exhibition

-date : date
-starting_time : time
-ending_time : time
-duration_mins : float
-price : float
-room : string

Session

+includeInShoppingCart()

+title : string
+picture : image
+description : string
+website : url
-actors : Idx Actor by Feature(self)
-director : Anchor(d: Director where d directs f, Director Alpha)
-writer : Anchor(w: Writer where d writes f, Writer Alpha)
-producer : Anchor(p: Producer where p produces f, Producer Alpha)
-comments : sequence(idl) c: UserComment; c.comment, c.author, c comments f

Feature | from f: Feature

+seasons : int
+launch date : date

Series

-features : Idx Features by Actor(self)
Actor

-features : Idx Features by Director(self)
Director

-features : Idx Features by Writer(self)
Writer

-features : Idx Features by Producer(self)
Producer

Acts on

Directs

Produces

shows

-login : string
-pwd : string
-email : email
-address : string
-city : string
-country : string

RegisteredUser

-release date : date
-price : float
-availability : bool
-title : string

DVD

character : string
RoleHas Role

Has Character

Writes

comment : string
rating : int
date : date
author : string, u: RegisteredUser, u.name, u makes c

UserComment | from u: UserComment

Comments

Makes

quantity : int
SalesItem

Ticker for

Bought by

quantity : int
DVD Sale

DVD bought

Bought by

DVD Release

orderNumber : int
saleDate : date
billingAddress : string
deliveryAddress : string
DVDitems : Idx DVDSale by Order (self)

Order

DVDItems

TicketItems

Figure 6.7. Navigational class diagram of the Movies Web site.

124

It is important to stress the similarities and differences among the
conceptual and navigational schema. They are similar because both are
abstract and implementation-independent and they represent concepts of the
underlying application domain using objects. However, while the former
should be neutral with respect to navigation, the latter expresses a particular
user’s view (in the navigation sense) that is strongly influenced by the tasks
he is supposed to perform. OOHDM enforces a clear separation between the
specification of navigation and other application behavior. However, in
complex Web applications it may be necessary to integrate both kinds of
behaviors, such as the process of buying the DVD of a movie.

This difference between navigation classes and conceptual classes can be
seen in the diagram, where we can see that, while similar to the conceptual
classes, navigation classes contain additional information. For instance, the
navigation class Feature has several attributes that contain navigation
information, such as “actors.” This attribute contains an index to the Actors
by Feature (for this Feature) context. Another example is the attribute
“director,” which is a link to this (indicated by the self parameter) Movie’s
Director in the Directors in Alphabetical Order context. The meaning of
indexes and contexts will be explained next. Notice also that the
UserComment has an attribute, “author,” which is the name of the
RegisteredUser who made the comment; this is an example of a mapped
attribute from a different class.

6.4.2.3 Navigational Contexts

Most tasks supported by Web applications usually involve manipulating sets
of objects that represent similar concepts, such as books by an author, CDs
performed by a group, hotels in a city, movies of a genre, etc. These
collections may be explored in different ways, according to the task the user
is performing. For example, in an electronic bookstore a user may want to
explore books by one author, books on a certain period of time or literary
movement, etc. Sometimes it is also desirable to give the user different kinds
of information or detail in different contexts, while allowing her to move
easily from item to item. For example, it is not reasonable that if she wants
to explore the set of all books written by Shakespeare, she has to backtrack
to the index (the result of a keyword search, for example) to reach the next
book in the set. In our example we might want to explore the set of movies
in which an actor participated, the set of movies directed by a specific
director, and so on.

As a result of organizing navigation objects into sets, several new
navigation operations arise; these operations are called intraset navigation,
such as next, previous, and up. Therefore, we have to define links that
allow such navigations; these links have no direct counterparts in the

G. Rossi and D. Schwabe

“ ” ” ”“ “

6. Modeling and Implementing Web Applications with OOHDM 125

conceptual model. In other words, there is no conceptual relationship that
directly translates into intraset navigation links.

Unfortunately, most modeling approaches (for example, the UML) ignore
sets as first-class citizens, and therefore operations such as “next” and
“previous” are not common while traversing sets. To complicate matters, the
same node may appear in different sets: For instance, a movie directed by
Spielberg may appear in the set of Comedies or in the set of movies acted by
Tom Hanks. We may intend to include some comments about the movie in
the corresponding context, such as when accessed as a comedy or some
comments about comedies.

OOHDM structures the navigational space into sets, called navigational
contexts, represented in a context schema. Each navigational context is a set
of nodes, and it is described by specifying its elements, indicating its internal
navigational structure (e.g., if it can be accessed sequentially) and associated
indexes. Generally speaking, contexts are defined by properties of its
elements, which may be based on their attributes or on their relations, or
both. Navigational contexts usually induce associated access structures
called indexes, which are collections of links pointing to each of the
context’s elements.

Another way to understand contexts is that they provide an abstraction
mechanism that allows us to specify the navigation opportunities available to
sets of objects all at the same time, without having to do so for each
individual element within the context. In this respect, contexts play a role
with respect to navigation that is analogous to the role classes play with
respect to object structure and behavior—they allow us to specify navigation
properties that are common to all its elements without requiring individual
specification.

Consider a movie directed by Peter Jackson. While looking at its details,
the user may want to see details of its actors or details of one of the songs in
the soundtrack. In fact, these navigation alternatives are true not only for that
particular movie, but also for the set of all movies directed by Peter Jackson.
It is possible then to specify the navigation alternatives for any movie in the
set in a more abstract way using navigational contexts. In this case, the
navigational context would be “Movies by Peter Jackson.” Additional
reflection about this problem shows that one could generalize even further,
since there is nothing particular about Peter Jackson in these alternatives —
they are the same for any director. Therefore, we can define a group of
navigational contexts as “Movies by director,” where the particular director
is a parameter, and all movies in any navigational context in this group share
the alternatives of seeing the details of its actors or of songs in its
soundtrack.

126

Figure 6.8 contains a portion of the navigational context diagram for our
example; we will use it to explain the notation.

Feature

Movie

Series

Person

Actor

Movies Alphabetical

Series Alphabetical

Actors

Directors

Roles

Actor Alphabetical

Main Menu
By Feature

Director
Director Alphabetical

By Person

By Actor

Movies

TV Series

Figure 6.8. Partial navigation context diagram for the example.

The small black boxes within some contexts in Figure 6.8 indicate that
these contexts have associated indexes. Instead of drawing them as dashed
rectangles, this notation is used to prevent cluttering the diagram, making it
graphically evident that these indexes are associated with the enclosed
context.

The arrows with solid circles in the origin indicate landmarks, or places
in the navigation space that are accessible from every other place. Typically,
these landmarks are implemented as options included in a global navigation
bar that is present on all pages of the application.

The details of each context and access structure are described by a
context (respectively, access structure) specification card as shown in
Figures 6.9 and 6.10.

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 127

Context: Feature by Person

Type: static

Parameters: p: Person

Elements: f: Feature WHERE a ActsIn m

In context Classes:

Ordering: by name, ascending

Internal navigation: by index (Feature by Actor)

Operations:

Users: Client Permissions: read

Comments:

Figure 6.9. The context specification card.

Access structure : Feature by Actor

Type: simple

Parameters: a: Actor

Elements: m: Movie WHERE a ActsIn m

Attributes Target
title: m.name................Ctx Feature by Artist (self)

role: r.character, WHERE a HasRole r and m HasCharacter r
cover: m.cover
“Play Trailer”................ play_trailer()
“Buy DVD”................. buy()

Ordering: by name, Ascending

Users: Client Permission: read

Comments:

Figure 6.10. The access structure specification card.

Consider the access structure specification for Movie by Artist. Since this
is an index induced by a context (Movies by Artist), it will contain one entry
for each element in the context. Each entry has four attributes—the (movie)
title, which is an anchor to the Movie by Artist context (for the movie

128

corresponding to this entry); the artist’s role in this movie; an activation that
allows one to play the movie’s trailer; and an activation that allows one to
buy the movie’s DVD. The former two attributes are calls to methods which
will have to be mapped to active interface elements that can trigger the
associated operations when activated by the user. This also illustrates how
we separate application functionality from its interface rendering.

The reader will notice that both the context and the access structure
specification cards also include information on access restrictions. Although
we will not elaborate on this here, it is possible to restrict access to
navigation objects by specifying the conditions in the corresponding
specification cards.

6.4.3 Deriving Navigational Contexts

Navigation design is, to a large extent, the definition of the various
navigational contexts that the user will be traversing while performing the
various tasks the applications purports to support. Therefore, the natural
place to look for them is in the task descriptions, as described in the UIDs.

For each task, we define a partial navigational context representing a
possible navigational structure to support the task. As an example, we detail
the derivation of the navigational contexts corresponding to the use case
“Find Movie given its title,” whose UID we repeat in Figure 6.11 for
convenience.

Movie Title

…Movie (Title, Actor(name), Cover)

Movie (Title, Cover, Availability, …Actor(Name),
Director, …Comment(text, user), Technical
Information)

[1]

[2..N]

1

1

[include in shpping cart]

[include in shpping cart]

Actor(name, date of birth,
photograph,…Movie(name))

[play trailer]

Figure 6.11. Complete specification of the UID for use case “Find Movie given its title

(including the buying operation).”

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 129

First, each structure that has been represented in the UID (and the
corresponding class in the conceptual model) is analyzed to determine the
type of primitive that it will give raise to, e.g., an access structure, a
navigational context, or a list. The following guidelines can be used to derive
a navigational context:

1. When the task associated with the UID requires that the user inspects

a set of elements to select one, we map the set of structures into an
access structure. An access structure is a set of elements, each of
which contains a link, and is represented by a rectangle with a
dashed border. In Figure 6.12 we show the partial diagram for access
structures Movies and Artists.

 Movies

Artists

Figure 6.12. Access structures.

2. When the task does not require such inspection but requires the
elements to be accessed simultaneously, map the set into a list, e.g.,
the list of Songs in the soundtrack of a DVD (see Figure 6.13).

 Movie

title, cover, availability, director, technical information,

 Actors: Idx Artists by Movie (self),
Comments: c: UserComment, c.comment WHERE

u makes c and c about self

 includeShoppingCart ()

Figure 6.13. List for DVD soundtrack.

3. After mapping the different sets of structures, we analyze singular
structures in the UID using the following guideline: When the task
requires that the information about an element be accessed by the
user, we map the structure into a navigational context, represented

130

by a rectangle with solid borders. In Figure 6.14 we show the partial
context diagram from this example.

 Movie

Alphabetical
Order

Artist

by Movie

Movie Alphabetical Order

title, cover, availability, director, technical information,
 Actors: Idx Artists by Movie (self)
 includeShoppingCart ()
 listenExcerpt()

Artist by Movie

 name, date of birth, photograph, short
bio, Movies: Idx Movies by Actor(self)

Movies

Figure 6.14. Partial context for the UID “Find Movie given its title.”

In the example, both Movies in Alphabetical Order and Artist by Movie
are contexts, which correspond to sets of elements. The elements and their
attributes making up each set are described in the gray boxes.

Following an analogous reasoning, Figure 6.15 shows the navigation
diagram for the task “Find Actor information (including movies) given the
Actor name.”

 Movie

by Artist

Artist

In Alphabetical
Order

Movie by Artist

title, cover, availability, director, technical information,
 Actors: Idx Artists by Movie (self)
 includeShoppingCart ()
 listenExcerpt()

Artist in Alphabetical Order

 name, date of birth, photograph, short bio,
Movies: Idx Movies by Actor(self)

Artist

Figure 6.15. Partial context for the UID “Find Actor information (including movies)
given the Artist name.”

This process is repeated for each collected UID, resulting in a set of
partial navigation diagrams supporting all intended tasks. The next step is to
integrate these partial diagrams by unifying them, to arrive at a single
diagram for the whole application. The unification process identifies
contexts and indexes that are composed of either the same kind of elements
or elements that could be substituted by elements of a more abstract (super)
class. In addition, each time a partial diagram is integrated into the evolving
final diagram, navigation between the various contexts in each partial
diagram must also be considered and included when relevant.

Considering the diagrams in Figures 6.14 and 6.15, one would obtain the
unified diagram shown in Figure 6.16.

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 131

Movie

Artist

Alphabetical Order

by Movie

Movie Alphabetical Order, by Artist

title, cover, availability, director, technical information,
 Actors: Idx Artists by Movie (self)
 includeShoppingCart ()
 listenExcerpt()

Artist by Movie, Alphabetical Order

 name, date of birth, photograph, short bio,
Movies: Idx Movies by Actor(self)

Movies

by Artist

Alphabetical Order Artist

Figure 6.16. Unification of diagrams in Figures 6.14 and 6.15.

Notice that the navigation from the context “Artist in Alphabetical
Order” to the “Movie by Artist” has been generalized to the “Artist by
Movie” context—hence the arrow leaving the gray box “Artist,” the Artist
scope. The same reasoning applies to the contexts within the “Movies”
scope.

The dashed lines within each scope in Figure 6.16 indicate that it is not
possible to move freely between contexts separated by the lines. In other
words, if one is looking at an Artist in the “Alphabetical Order” context, it is
not possible to navigate to the next “Artist by Movie.” If there was another
context such as “Artist by Nationality,” it could make sense to allow the user
to navigate to the next artist of the same nationality, instead of the next artist
in alphabetical order, so that these two contexts would not be separated by a
dashed line in the corresponding diagram.

Another result from the unification process is the identification of
generalizations. Consider the diagram in Figure 6.15. The reasoning that
leads to the creation of the “Movie by Artist” context also applies to
directors; similarly, for all contexts for TV series with respect to contexts
with movies. The generalization becomes the “Feature by Person” context.
Notice that scopes may be nested, as in Figure 6.8, to represent the subclass
hierarchy of the classes for the corresponding elements (e.g., Movie and TV
Series within Feature, and Artist and Director within Person).

132

6.4.4 InContext Classes

When the same node (e.g., Movie, Actor, etc.) may appear in more than one
set (context), we need to express the peculiarities of this node within each
particular context. We may take as a default that “next” and “previous”
anchors and links are automatically defined for traversing each set; but we
may also want that some context-sensitive information appears when
accessing a Movie by genre context (for example, giving access to some
comments on movies on that specific genre).

In OOHDM this is achieved with InContext classes; for each node class
and each context in which it appears, we can define an InContext class that
acts as a decorator (Gamma et al., 1995) for nodes when accessed in that
particular context. Decorators provide a good alternative to subclassing and
prevent us from defining multiple subclasses of the base node class.
InContext classes are organized in hierarchies with some base classes
already provided by the design framework; for example, InContext classes
defined as subclasses of InContextSequential inherit anchors for sequential
navigation and for backtracking to the context index. When we do not define
InContext classes, a default one is assumed according to the type of context
defined.

Notice that the navigational contexts schema complements the
navigational schema by showing the way in which nodes are grouped into
navigable sets. Additional nodes’ behavior can be implemented in InContext
classes; in amazon.com, for example, when we access a book in the context
of a query, we have an option to move it to the shopping basket. When we
access the same book in the context of the shopping basket, we should have
other, different, operations to perform.

6.5 INTERFACE DESIGN

Any hypermedia (Web) application must exchange information with its
environment in order to fulfill its tasks. The functions implemented by the
application all receive some information, process it, and trigger changes in
the interface, restarting the cycle. Very often the cycle is triggered by user
actions at the interface, but sometimes the cycle is started by some other
event, such as a timeout.

From this point of view, the role of the interface is to make the
navigation objects and application functionality perceptible to the user,
which is the goal of the interface design. From the application business
logic’s point of view, all that is needed regarding the interface is the
definition of the information exchange between the application and the user,

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 133

including activation of functionalities. In particular, from the standpoint of
the interface, navigation is just another (albeit distinguished) application
functionality.

Since the information exchange is driven by the tasks, it is reasonable to
expect that it will be less sensitive to run-time environment aspects, such as
particular standards and devices being used. The design of this task-related
aspect of the interface can be carried out by interaction designers or software
engineers and is almost totally independent of the particular hardware and
software run-time environment. The concrete appearance of the interface,
defining the actual look and feel of the application, including layout, font,
color, and graphical appearance, is typically carried out by graphics
designers. The result of this separation of concerns, specifying the
information exchange at the interface separately from its look and feel, leads
to isolating the essence of the interaction design from inevitable
technological platform evolution, as well as from the need to support users in
a multitude of hardware and software run-time environments.

The most abstract level is called the abstract interface and focuses on the
various types of functionality that can be played by interface elements with
respect to the information exchange between the user and the application.
The vocabulary used to define the abstract interface is established by an
abstract widget ontology (Moura and Schwabe, 1994), shown in Figure 6.17,
which specifies that an abstract interface widget can be any of the following:

• SimpleActivator, a widget capable of reacting to external events, such as

mouse clicks.
• ElementExhibitor, a widget able to exhibit some type of content, such as

text or images.
• VariableCapturer, a widget able to receive (capture) the value of one or

more variables. Examples are input text fields, selection widgets such as
pull-down menus and checkboxes, etc. It generalizes two distinct (sub-)
concepts.

 AbstractInterfaceElement

SimpleActivator ElementExhibitor VariableCapturer

IndefiniteVariablePredefinedVariable

ContinuousGroup DiscreteGroup MultipleChoices SingleChoices

CompositeInterfaceElement

Figure 6.17. Abstract widget ontology.

134

It becomes evident from this ontology the essential roles that interface
elements play with respect to the interaction—they exhibit information, or
they react to external events, or they accept information. Composite
elements allow us to build more complex interfaces out of simpler building
blocks. The abstract interface design should be carried out by the software
designer, who understands the application logic and the kinds of information
exchanges that must be supported to carry out the operations. This software
designer does not have to worry about usability issues, or look and feel,
which will be dealt with during the concrete interface design, typically
carried out by a graphics (or “experience”) designer.

Each element of the abstract interface must be mapped onto both a
navigation element, which will provide or receive its contents, and a
concrete interface widget, which will actually implement it in a given run-
time environment. Figure 6.18 shows an example of an interface showing the
information about an artist in the Artist in Alphabetical Order context, and
Figure 6.19 shows an abstract representation of this interface as a
composition of widgets from the vocabulary defined above.

Before proceeding to show how this is achieved, we must first define the
concrete widget ontology, which characterizes the actual widgets available
in concrete run-time environments.

The concrete interface is specified in terms of actual widgets commonly
available in most graphical interface run-time environments. Examples of
concrete widgets include text boxes, radio buttons, pull-down menus, check
boxes, etc., as illustrated in Figure 6.18.

Actual abstract interface widget instances are mapped onto specific
navigation elements (in the navigation model) and onto concrete interface

G. Rossi and D. Schwabe

• IndefiniteVariable, a widget allowing one to enter hitherto unknown values,
such as a text string typed by the user.

• PredefinedVariable, a widget that allows the selection of a subset of values
from a predefined set of possibilities; quite often this selection must be a
singleton. Specializations of this concept are ContinousGroup,
DiscreteGroup, MultipleChoices, and SingleChoice. The first allows one to
select a single value from an infinite range of values; the second is
analogous, but for a finite set; the remainder are self-evident.

• CompositeInterfaceElement, a widget composed of any of the above.

6. Modeling and Implementing Web Applications with OOHDM 135

IMDB

Main Menu

Movies
Actors
Directors

Search

 Movies
 Actors
 Directors

Artist A to Z

Johnny Depp
June 9, 1963

Movies:

• Pirates of the Caribbean: Dead Man's Chest (2006)
• Corpse Bride (2005) (voice) Victor Van Dort
• Charlie and the Chocolate Factory (2005)
• Finding Neverland (2004)

 Previous | Next

Short bio
Born John Christopher Depp in Owensboro, Kentucky, on
June 9, 1963. Raised in Florida, he dropped out of school at
age 15 in the hopes of becoming a rock musician. He fronted
a series of garage bands including The Kids, which once
opened for Iggy Pop. Depp got into acting after a visit to Los

▲

▼

Figure 6.18. An example concrete interface.

a_ElementExihibitor

a_IndefinitiVariable

a_SimpleActivator

a_CompositeInterfaceElement

a_SimpleActivator

a_CompositeInterfaceElement

a_CompositeInterfaceElement

a_ElementExihibitor

a_SimpleActivator

a_AbstractInterface

a_ElementExihibitor

a_ElementExihibitor

a_ElementExihibitor

a_ElementExihibitor

a_ElementExihibitor

a_CompositeActivator

a_SimpleActvator

a_ElementExihibitor a_Composite
Activator

a_SimpleActivator

a_SimpleActivator

a_SimpleActivator

a_CompositeActivator

a_ElementExhibitor

a_CompositeInterfaceElement

a_CompositeInterfaceElement

a_MultipleChoices

a_MultipleChoices

a_MultipleChoices

Is repeated = true

Figure 6.19. Abstract widget instance for the example in Figure 6.18.

136

widgets. Figure 6.20 shows an example illustrating how application
functionality is integrated, giving the OWL (Smith et al., 2002) specification
of the “Search” abstract interface element. It is composed of two abstract
widgets, “ElementExhibitor” (lines 9–12) and “CompositeInterfaceElement”
(lines 14–46). The first shows the “Search” string, using a “Label” concrete
widget. The second aggregates the four elements used to specify the field in
which the search may be performed, namely, three “MultipleChoices”—
SearchMovies (lines 25–29), SearchArtists (31–35), and SearchDirectors
(37–41)—and one “IndefiniteVariable”—“SearchTextField” (lines 43–45).

 ...
1 <awo:CompositeInterfaceElement rdf:ID="Search">
2 <awo:fromIndex>idxSearch</awo:fromIndex>
3 <awo:mapsTo rdf:resource="&cwo;Composition"/>
4 <awo:isRepeated>false</awo:isRepeated>
5 <awo:hasInterfaceElement rdf:resource="#TitleSearch"/>
6 </awo:CompositeInterfaceElement>
8
9 <awo:ElementExihibitor rdf:ID="TitleSearch">
10 <awo:visualizationText>Search</awo:visualizationText>
11 <awo:mapsTo rdf:resource="&cwo;Label"/>
12 </awo:ElementExihibitor>
13
14 <awo:CompositeInterfaceElement rdf:ID="SearchElements">
15 <awo:fromIndex>idxSearch</awo:fromIndex>
16 <awo:abstractInterface>SearchResult</awo:abstractInterface>
17 <awo:mapsTo rdf:resource="&cwo;Form"/>
18 <awo:isRepeated>false</awo:isRepeated>
19 <awo:hasInterfaceElement rdf:resource="#SearchMovies"/>
20 <awo:hasInterfaceElement rdf:resource="#SearchArtists"/>
21 <awo:hasInterfaceElement rdf:resource="#SearchDirectors"/>
22 <awo:hasInterfaceElement rdf:resource="#SearchTextField"/>
23 </awo:CompositeInterfaceElement>
24
25 <awo:MultipleChoices rdf:ID="SearchMovies">
26 <awo:fromElement>SearchMovies</awo:fromElement>
27 <awo:fromAttribute>section</awo:fromAttribute>
28 <awo:mapsTo rdf:resource="&cwo;CheckBox"/>
29 </awo:MultipleChoices>
30
31 <awo:MultipleChoices rdf:ID="SearchArtists">
32 <awo:fromElement>SearchArtists</awo:fromElement>
33 <awo:fromAttribute>section</awo:fromAttribute>
34 <awo:mapsTo rdf:resource="&cwo;CheckBox"/>
35 </awo:MultipleChoices>
36
37 <awo:MultipleChoices rdf:ID="SearchDirectors">
38 <awo:fromElement>SearchDirectors</awo:fromElement>
39 <awo:fromAttribute>section</awo:fromAttribute>
40 <awo:mapsTo rdf:resource="&cwo;CheckBox"/>
41 </awo:MultipleChoices>
42
43 <awo:IndefiniteVariable rdf:ID="SearchTextField">
44 <awo:mapsTo rdf:resource="&cwo;TextBox"/>
45 </awo:IndefiniteVariable>

Figure 6.20. Example of the OWL specification of the “Search” part of Figure 6.19.

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 137

The CompositeInterfaceElement element, in this case, has the properties
fromIndex, isRepeated, mapsTo, abstractInterface, and hasInterfaceElement.
The fromIndex property in line 2 indicates to which navigational index this
element belongs. This property is mandatory if no antecessor element of type
CompositeInterfaceElement has declared it. The association with the
“idxSearch” navigation element in line 2 enables the generation of the link to
the actual code that will run the search. Even though this example shows an
association with a navigation element, it could just as well be associated with
a call to application functionality such as “buy.”

The isRepeated property indicates if the components of this element are
repetitions of a single type (false in this case). The mapsTo property
indicates which concrete element corresponds to this abstract interface
element. The abtractInterface property specifies the abstract interface that
will be activated when this element is triggered. The hasInterfaceElement
indicates which elements belong to this element.

The ElementExhibitor element has the visualizationText and mapsTo
properties. The former represents the concrete object to be exhibited, in this
case the string “Search.”

The MultipleChoices element has the fromElement, fromAttribute, and
mapsTo properties. The fromElement and fromAttribute properties indicate
the corresponding element and navigational attribute in the navigational
model, respectively. The IndefiniteVariable element has the mapsTo
property.

6.6 FROM DESIGN TO IMPLEMENTATION

Mapping design documents into implementation artifacts is usually time-
consuming, and, in spite of the general acceptance about the importance of
software engineering approaches, implementers tend to overlook the
advantages of good modeling practices.

A model here can be seen as a simplified, textual, or graphical
description of the artifact being designed. Preferably, a model should have
precise, non-ambiguous semantics that enables understanding of the artifact
being modeled. Software development, according to the model-driven design
approach (MDD), is a process whereby a high-level abstract model is
successively translated into increasingly more detailed models, in such a way
that eventually one of the models can be directly executed by some platform.
The model that is directly executed by a platform that satisfies all the
requirements, including the nonfunctional ones, is also called “code” and is
usually the last model in the refinement chain.

138

Although this approach has been used for a number of years, its adoption
is not completely widespread, at least not in its pure form. A major
stumbling block has been the problem that the mapping between models,
especially into actually executing code, has had little or no support from
tools. Therefore, designers may use the models mostly as thinking tools, and
at some stage they are forced to manually map these models into code. This
process is error-prone, and once the code has been generated, changes or
updates to the application are directly implemented in the code, instead of
adjusting the models and re-generating the code.

On the other hand, several more recent proposals have attempted to
alleviate this problem by having automated translations (or transformations)
between models, supported by appropriate tools. Among the most prominent
are MDA (Miller and Mukerji, 2003) and Software Factories (Greenfield and
Short, 2004).

 Adheres to

HyperDE

HTML pages

SHDM Navigation
Vocabulary

(RDFS)
Navigational

Model

Interface Definition
(extended HTML

templates)

Uses

Creates/Edits
and Uses

Creates/Edits
and Uses Instance Data

Is Instance Of

Modified Ruby
on Rails

Framework

Sesame RDF
Database

Creates/Edits
and Uses generates

Figure 6.21. The architecture of the HyperDE environment.

G. Rossi and D. Schwabe

Following the MDD approach, we have developed the HyperDE
environment (freely available at http://server2.tecweb.inf.puc-rio.br:8000/
HyperDe), based on the MNVC framework, which extends the MVC
framework with navigation primitives. It allows the designer to input
OOHDM navigational models (the “model” in the MVC framework) and
interface definitions (the “view” in the MVC framework), and it generates
complete applications adherent to the specification. It also provides an
interface to create and edit instance data, although, strictly speaking, this
should actually be part of the generated application. Figure 6.21 shows the
architecture of HyperDE. The actual version of OOHDM used in HyperDE
is SHDM (Schwabe et al., 2002), which uses an object model derived from
the RDF data model (Brickley and Guha, 2004) that has been proposed for
describing data and meta-data on the Semantic Web.

6. Modeling and Implementing Web Applications with OOHDM 139

HyperDE is implemented as a modification of the Ruby on Rails
framework (http://www.rubyonrails.com), where the persistence layer
(ActiveRecord) has been replaced by another one based on the Sesame RDF
database. The SHDM meta-models, the user-defined navigation models, as
well as the application instance data are all stored as RDF data.

Applying the MDD approach, designing a Web application using
OOHDM (or SHDM) corresponds to instantiating its meta-model, which is
supported by the HyperDE environment. Before giving an example, we
briefly outline the meta-model used by HyperDE, so it will be clear from the
example how it is being instantiated during a particular design.

6.6.1 SHDM Meta-Model

Figure 6.22 shows the SHDM meta-model, with the main classes
highlighted. The class NavClass models the navigation nodes, and the class
Link models the links between them. Each NavClass has NavAttributes,
NavOperations, and links and can be a specialization of a BaseClass.
Contexts are sets of objects belonging to a NavClass. This set is defined
through a query whose expression is specified in one of the context
attributes; this query may have a parameter. Indexes are made out of
IndexEntries, which contain either anchors to other indexes or anchors to
elements within a context. Landmarks are anchors to either Indexes or to
Context elements. Views allow one to exhibit the contents of NavClass
instances within some context or to exhibit Indexes.

All HyperDE functions can be accessed via Web interfaces. In addition,
HyperDE also generates a domain-specific language (DSL) as an extension
of Ruby, allowing direct manipulation within Ruby scripts of both the model
and SHDM’s meta-model.

To give an idea of HyperDE functionalities, we give a brief description
of the example application. First, we show a couple of screen dumps of the
generated application, and then we show how some of the model elements
that generated this application are specified. It should be noted that HyperDE
generates a default simple interface for models whose interface has not yet
been fully specified; the examples below use this default interface.
Evidently, the designer has all the freedom to override this default and define
sophisticated interfaces with complex layouts.

140

ContextParameterParameter

Index

ArbitraryIndex ContextIndexQueryIndex

IndexAttribute
IndexEntry

ContextAnchorIndexAttribute

IndexAnchorIndexAttribute

IndexEntryAttribute

IndexAnchorIndexEntryAttribute

AnchorIndexEntryAttribute

ContextAnchorIndexEntryAttribute

Context

target

target

BaseClass

Link
source
target

Inverse_link

View

ContextViewIndexView GenericView

Index

layout

layout

NavigationController action: context

action: show_index

Landmark

ContextLandmark

IndexLandmark

target

target

NavOperation

NavAttribute

NavClass

Figure 6.22. The SHDM meta-model.

Figure 6.23 shows the interface for a node “Movie” in the “Movies in
Alphabetical Order” context. Notice the index for the context on the left and
the contextual navigation (in this case, only the “previous” link, to “The Da
Vinci Code,” is defined, since it is the last node in the context). Suppose the
user clicks on “Ian McKellen,” leading to the interface shown in Figure 6.24.
Notice that the link followed carries a parameter (the “Feature”), shown in
the detail of the context, right beneath the Actor’s name.

This particular actor has played roles in other movies, e.g., “The Da
Vinci Code” (the “Sir Leigh Teabing” role). Following the link to this movie
brings the user to the interface shown in Figure 6.25. Notice that this
instance has more data defined than the one in Figure 6.23; HyperDE
handles this because it is supported by the underlying RDF data model,
which is more flexible than strict object-oriented models. Notice also that the

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 141

context index that appears in the column on the left, automatically generated
by HyperDE, is different in this case since the context is different.

Figure 6.23. An interface showing a movie in the “Movies in Alphabetical Order” context.

Figure 6.24. An interface for a node of type “Actor” in the “Actor by Feature” context.

142

Figure 6.25. An interface for another “Feature” in the “Feature by Actor” context.

If we go into the meta-model editor of HyperDE and edit the “Actor”
class, we get the interface shown in Figure 6.26. It allows us to specify the
class name, its parent class if there is one (“Person” in this case), and its
attributes and links. It also shows the inherited attributes.

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 143

Figure 6.26. HyperDE interface to edit a navigational class.

As explained earlier, a navigational class may have attributes that are
derived from other classes, and attributes that contain navigation
information. An example here is the “feature” attribute of an actor, which is
an index to the “Features by Actor” context (thus allowing navigation from
an actor to one of the features he has acted in). Figure 6.27 shows the
interface for defining the “Features by Actor” context.

There are two related aspects worth observing in this definition. The first
is the use of a simplified query language to express the context selection.
Since the vast majority of contexts found in practice fall into the “x by y”
pattern—e.g., “Actor by Feature,” “Feature by Director,” etc., HyperDE uses
a simple notation allowing the specification of the source class, the
destination class, the relation (link) name, and the ordering. If desired, it is
possible to specify a full query in the RQL query language, or to specify a
Ruby expression using the generated domain-specific language that
HyperDE provides. The second aspect to be noted is that this context is
actually a group of contexts, since it is parameterized—there is one context
for each actor, which is passed as a parameter.

144

Figure 6.27. HyperDE interface to edit a context definition.

It should be recalled that the “feature” attribute of an “actor” is an index
into the context defined in Figure 6.27; entries in this index will have links to
the actual nodes in the context.

Figure 6.28 shows the interface for defining the “Features by Actor”
index.

G. Rossi and D. Schwabe

The query definition for the index specified in this figure uses the
generated DSL to compute the elements of the index. In this case, the
expression first finds the Actor object whose id was passed as a parameter.
Then it takes the list of features this actor has acted on (“aa.act_on”), and,
for each feature in it, it generates a hash table of three keys: “feature,”
“role,” and “actor.” The value for the key “feature” is the feature itself; the
value for the “role” key is the intersection between the list of roles the actor
has played and the list of characters of the feature; and the value for the
“actor” key is the actor that was passed as a parameter to the context. This
hash table is used by HyperDE to generate the index entries, each of which
will have two attributes: a role and a feature. This generates the list of “role,

6. Modeling and Implementing Web Applications with OOHDM 145

Figure 6.28. HyperDE interface to define an index.

feature” pairs seen in the “Feature” attribute of an actor illustrated at the
bottom of Figure 6.24. A similar definition is used to generate the list of
“role, actor” pairs seen in the “Actors” attribute of a feature, illustrated in
Figures 6.23 and 6.25.

146

HyperDE allows easy customization of interfaces. For example, it is
possible to define a different layout to be used to exhibit nodes of a given
class in a certain context, such as a movie in the Movies in Alphabetical
Order context. Figure 6.29 shows an alternative layout for the interface
shown in Figure 6.23.

Figure 6.29. An alternative interface to exhibit a movie in the Movies in Alphabetical order
context. This is the same node as the one in Figure 6.23.

To define this interface, a new view is defined, as shown in Figure 6.30.
This interface uses HTML interspersed with expressions in the generated
DSL, which allows one to access the model elements to be exhibited. For
instance, the expression @node.name retrieves the “name” attribute of the
node being exhibited (a “Movie”) in this case.

Application functionality is implemented through operations associated
to the various navigational classes. The code for these operations also uses
the generated DSL, which allows the data model to be updated as well as the
values of existing instances of navigation objects to be created or altered.

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 147

Figure 6.30. The interface definition for the layout shown in Figure 6.29.

Let us briefly consider what happens when, while navigating in a
“Movie” object, the user invokes the addToShoppingCart operation, which
has the following (simplified) code:

148

 1 o = Order.find_all.first
2 dvd = self.has_dvd.first
3 s = DVDSale.new
4 s.quantity = 1
5 s.orderNumber = o.number
6 s.dvd_bought << self
7 o.order_has_dvd_sale << s

In line 1, we obtain the latest Order placed—we assume this is the current
open order, but this could be handled differently. Line 2 finds the DVD
associated with the current Movie; lines 3–5 create a new DVDSale item;
line 6 associates this DVDSale to the DVD (i.e., creates an instance of the
DVD_Bought relation); and line 7 includes the DVDSale item in the
(current) Order (i.e., creates a new instance of the Order_Has_DVD_Sale
relation). Once this code has been executed, the Order data, as well as the
DVD_Sale data, may be changed through operations made available at a
suitable interface, oftentimes during the check-out process.

HyperDE has many additional features that cannot be detailed here, for
reasons of space. The reader is encouraged to explore more details and
download them from the site http://server2.tecweb.inf.puc-rio.br:8000/
HyperDe.

We have also implemented another development environment, SHDM
.Net (Ricci and Schwabe, 2006), which extends Microsoft Visual Studio
2005 to allow SHDM models to be created and edited and generates code
running on the .Net environment.

6.7 IMPROVING DESIGN WITH PATTERNS

Web applications are usually built from scratch, which is not surprising
given the relative youth of the Web Engineering discipline. However, the key
reason why Web components are not systematically reused is that most
design approaches are not completely effective in helping the designer to
reason about the composition of existing structures. While reuse can be
obtained at the application model level, less has been achieved in the domain
of navigation structures. In this section we argue in favor of a high-level
kind of reuse: the reuse of design experience.

Expert Web application designers typically do not solve every problem
from scratch. Most of the time, they reuse solutions that they have used
previously. It is common, however, that critical design decisions made while
defining, for example, the interaction and navigational styles of an

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 149

application usually remain hidden in code or are poorly documented. It is
widely accepted that reusability of either design experience or design
structures is the most valuable kind of reuse (Gamma et al., 1995). From the
expert’s point of view, it helps communicate the decisions made or discuss
the different alternatives with the rest of the working team in a simple and
accurate way.

Consider the question of how a Web designer can guarantee (in the
context of our Movies site) that the user always knows that there are new
films in the site. A good solution for this general problem would be to devote
a space in the home page to inform users about novelties, including a link to
new movies.

Note that in the simple example above we are not using any particular
design notation though such a notation may be useful for expressing in a
non-ambiguous way the relationships among objects in the solution. In this
section we motivate the use of patterns to record design solutions in the Web
applications domain. Reasoning about abstract design structures in terms of
Web patterns is a key step toward reuse of Web applications design
experience.

6.7.1 A Brief Summary of Design Patterns

Design patterns are being increasingly used in software design. They
systematically name, explain, and evaluate important and recurrent designs
in software systems. They describe problems that occur repeatedly, and
describe the core of the solution to that problem, in such a way that we can
use this solution many times in different contexts and applications.

A design pattern is described by stating the context in which the pattern
may be applied, the problem and interacting forces that bring it to life, and
the collaborating elements that make up the reusable solution. These
elements are described in an abstract way because patterns are like templates
that can be applied in many different situations. Patterns allow
communication to be improved within and across software development
teams, by providing a shared vocabulary. They help to capture explicitly the
knowledge that designers use implicitly.

The patterns movement began in the area of architectural design 30 years
ago with the work of Christopher Alexander (Alexander et al., 1977). In the
1990s, the object-oriented community started using patterns to capture and
convey object-oriented micro-architectures. Hypermedia patterns were
introduced in Rossi et al. (1997), and an interesting corpus of hypermedia
(The Hypermedia Patterns, 2002) and Web patterns (van Duyne et al., 2002)
already exists.

There is no fixed format to describe patterns, although the essential
elements must always appear: name, problem, solution, consequences. We

150

next give a framework to describe and discuss patterns, and then we present
some examples of Web patterns, exemplifying them in the context of our
exemplary application.

6.7.2 A Pattern Taxonomy

In our research we have identified different categories in which patterns can
be classified and organized. As a direct consequence of the activities in the
OOHDM design space (similar to other methods), we can classify patterns in

• Conceptual or design patterns. These patterns appear during conceptual

design and, as a consequence, are similar to traditional design patterns
such as those in Gamma et al. (1995) or Fowler (2004).

• Navigation patterns. These patterns address the problem of organizing the
navigational space of an application.

• User interface patterns. These deal with recurrent decisions in the layout
and interaction styles of Web software. See, for example, Rossi et al.
(2000).

• Implementation patterns. These patterns tend to be specific to a concrete
run-time environment, such as J2EE, Struts, .Net, Ajax, XML, etc. See,
for example, Ajax Patterns (2004) and XML Patterns (2004).

Patterns can be general or domain-specific. General-purpose patterns can
be used in any application, while domain-specific patterns arise in a
particular domain and are usual in that domain, such as e-commerce [see
Lyardet et al. (2000)]. In other specific domains such as e-learning, other
patterns may arise.

6.7.3 Examples

To illustrate the subject, we will next describe some of the patterns we
discovered in the past, by mining design structures in successful Web
applications. For each one, we indicate the kind of pattern and the intended
domain. Patterns are described using a simple template that indicates the
intent of the pattern, the problem being addressed, and the solution including
examples. Complete descriptions of these patterns can be found in Rossi
et al. (1999).

Landmark (Navigational, Generic)
Intent:
Provide easy access to different though unrelated items or sets of items in

a hypermedia or Web application.

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 151

Problem:
Suppose we are building a Web Information System for a complex

electronic shopping store such as www.amazon.com. By entering the site,
we can build many different products such as videos, books, or CDs. We can
explore the products and provide links to recommendations, comments on
the products, news, etc. When we build the navigational schema, we try to
follow closely those relationships existing in the underlying object model;
for example, we can navigate from an author to his books, from a DVD to
the list of songs it includes. We can go from a book to some comments
previous readers made, read about related books, etc. However, we may
want the reader to be able, at any moment, to jump to the music or book
(sub-) stores or to her shopping basket.

Solution:
Define a set of landmarks and make them accessible from every node in

the network. Make the interface of links to a landmark look uniform, so that
users have a consistent visual cue about the landmark. We may have
different levels of landmarking according to the hypertext area we are
visiting. In Figure 6.31 we can see an example of landmarks in
www.imdb.com, where we have landmarks to Showtime and tickets,
DVD/Video, TV Movies, etc.

Figure 6.31. Landmarks in www.imdb.com.

152

News (Navigational, Generic)

Intent:
Given a large and dynamic Web application, provide the users with

information about new items that have been added.
Problem:
Most large Web sites are tree-structured, which, though not perfect,

offers a simple mechanism to organize considerable amounts of information.
These information spaces tend to be large and are hardly ever completely
navigated by a single user. In our example, each new movie is added in the
corresponding branch of a huge tree (according, for example, to film genre
taxonomies). However, the user has no way to know that there is a novelty.
In e-commerce sites, for example, there is a need to make the user aware of
the addition of new products. This problem poses a design challenge for
Web designers, who must balance between a well-structured Web site where
information is organized in items with subitems, etc. and a structure-less,
star-shaped navigational structure where all information is reachable from
the home page. The latter approach is clearly not desirable because the site’s
usability is greatly reduced and it may become unmanageable as it grows.
Therefore, how is the user provided with instant feedback of any recent
changes or additions to the information available while maintaining a well-
structured Web site?

Solution:
Structure the home page in such a way that space is devoted to the newest

additions, presenting descriptive “headlines” regarding them. Use those
headlines as anchors to link them with their related pages. This approach
allows the designer to preserve good organization of the information while
giving users feedback of the changes that take place within the Web site.
Implement shortcuts to information that may be located in the leaves of a
tree-structured site, without compromising the underlying structure. Notice
that the navigational structure of the application is slightly affected by the
addition of (temporary) links from one node to others. In Figure 6.32 we
show an example of news in www.imdb.com.

G. Rossi and D. Schwabe

6. Modeling and Implementing Web Applications with OOHDM 153

Figure 6.32. News pattern in www.imdb.com.

6.8 CONCLUSIONS

Work on OOHDM and SHDM has been taking place since 1995. OOHDM
rrently common separation of

nd academia, in applications that

Based on this continuous experimentation and evaluation in practice, it is
an evolving method, and several new aspects are being constantly added, and
improvements and refinements of earlier versions are being made.

One of the first improvements of OOHDM was in the area of
personalization (see Schwabe et al., 2002). More recent work has
generalized these concepts, extending SHDM to include user modeling and
adaptivity, and HyperDE has also been extended accordingly (Assis et al.,
2006).

This work also integrates with the original OOHDM primitives in allowing
specification of access restrictions to navigation objects and contexts.

Another important aspect dealing with reuse is the study of design
rationale, which allows one to capture entire reasoning structures behind a
given design. Once this rationale has been recorded, it is possible to reapply

was one of the first methods to identify the cu
concerns into contents, navigation, presentation, and (business) functionality.
It has been extensively used in industry a
are running to this day.

154

it to similar problems encountered in new designs, thus achieving an even
higher level of reuse. More details can be found in Medeiros et al. (2005). A
more recent trend in Web applications is the so-called Web 2.0, where
applications have rich interfaces (closer in interaction power to desktop
applications) and can make use of “mash-ups,” i.e., integrating APIs of
various services to provide new application functionality. SHDM and
HyperDE are being extended once again to be able to easily model such
applications.

ACKNOWLEDGEMENTS

.

REFERENCES

Ajax Patterns, 2004. http://www.ajaxpatterns.org.
Alexander, ., Ishikawa, S., Silverstein, M., Jacobson, M., Fiksdahl-King, I., and Angel, S.,

1977, A Pattern Language, Oxford University Press, New York.
Assis, P.A., Schwabe, D., and Nunes, D.A., 2006, ASHDM—Model-driven adaptation and

meta-adaptation. Proceedings Fourth International Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems, Dublin, Ireland, June 21-23, pp. 213–222.

Brickley, D., and Guha, R.V., 2004, RDF Vocabulary Description Language 1.0, RDF
Schema, W3C Recommendation, February 10. http://www.w3.org/TR/2004/REC-rdf-
schema-20040210/.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Matera, M., 2002,
Designing Data-Intensive Web Applications, Morgan Kaufmann, San Francisco.

Fowler, M., 1997, UML Distilled, Addison-Wesley, Reading, MA.
Fowler, M., 2006, Analysis Patterns. http://www.martinfowler.com/articles.html.
Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995, Design Patterns, Elements of

Reusable Object-Oriented Software, Addison-Wesley, Reading, MA.
Greenfield, J., and Short, K. 2004, Software Factories, Assembling Applications with

Patterns, Frameworks, Models & Tools, Wiley, New York.
Hypermedia patterns repository. http://www.designpattern.lu.unisi.ch/.
Kim, W., 1994, Advanced Database Systems, ACM Press, New York.
Koch, N., and Kraus, A., 2002, The expressive power of UMLbased Web engineering.

Proceedings Second International Workshop on Web-Oriented Software Technology
(IWWOST02), Málaga, Spain, June.

Lyardet, F., Rossi, G., and Schwabe, D., 2000, Patterns for E-commerce applications.
Proceedings of EuroPLoP.

Medeiros, A.P., Schwabe, D., and Feijó, B., 2005, Kuaba ontology, design rationale
representation and reuse in model-based designs. Proceedings 24th International
Conference on Conceptual Modeling (ER 2005), Klagenfurt, Austria, pp. 241–255.

G. Rossi and D. Schwabe

The authors wish to thank Adriana Pereira de Medeiros for her invaluable
assistance in reviewing, revising, and improving this chapter. Daniel
Schwabe has been partially supported by grants from CNPq–Brazil, UOL,
and Microsoft Research. Gustavo Rossi has been partially supported by
Secyt under project PICT 13623.

C

6. Modeling and Implementing Web Applications with OOHDM 155

Moura, S.S., and Schwabe, D., 2004, Interface development for hypermedia applications in

the Semantic Web. Proceedings LA Web 2004, Ribeirão Preto, Brazil, pp. 106–113.
Nunes, D.A., and Schwabe, D., 2006, Rapid prototyping of Web applications combining

domain-specific languages and model-driven design. Proceedings Sixth International
Conference on Web Engineering (ICWE’06), pp. 153–160.

Ricci, L., and Schwabe, D., 2006, An authoring environment for model-driven Web
applications. XII Simpósio Brasileiro de Sistemas Multimídia e Web—Webmedia 2006,
Sociedade Brasileira de Computação, pp. 11–19.

Rossi, G., Schwabe, D., and Garrido, A., 1997, Design reuse in hypermedia applications
development. Proceedings of Hypertext 1997, pp. 57–66.

Rossi, G., Schwabe, D., and Lyardet, F., 1999, Patterns for designing navigable information
spaces. In Pattern Languages of Programs IV, Addison-Wesley, Reading, MA.

Rossi, G., Schwabe, D., and Lyardet, F., 2000, User interface patterns for hypermedia
applications. Proceedings of AVI00, Advanced Visual Interfaces, Palermo, Italy.

Schmid, H., and Rossi, G., 2004, Modeling and designing processes in e-commerce
applications. IEEE Internet Computing, January–February.

Schwabe, D., and Rossi, G., 1998, An Object Oriented Approach to Web-Based Application
Design. Theory and Practice of Object Systems, 4(4). Wiley and Sons, New York.

Schwabe, D., Guimarães, R., and Rossi, G., 2002, Cohesive design of personalized Web
applications. IEEE Internet Computing, March.

Schwabe, D., Szundy, G., de Moura, S.S., and Lima, F., 2004, Design and implementation of
Semantic Web applications. Proceedings of the Workshop on Application Design,
Development and Implementation Issues in the Semantic Web (WWW 2004), CEUR
Workshop Proceedings, 105, May.

Smith, M., McGuiness, D., Volz, R., and Welty, C., 2002, Web Ontology Language (OWL)
Guide Version 1.0. W3C working draft, November 4. http://www.w3.org/TR/owl-guide/.

Turine, M.A.S., de Oliveira, M.C.F., and Masiero. P.C., 1997, A navigation-oriented
hypertext model based on statecharts. Proceedings Eighth ACM International Hypertext
Conference, Southampton, UK.

van Duyne, D.K., Landay, J.A., and Hong, J.I., 2002, The Design of Sites, Patterns,
Principles, and Processes for Crafting a Customer-Centered Web Experience, Addison-
Wesley, Reading, MA.

Vilain, P., Schwabe, D., and de Souza, C.S., 2000, A diagrammatic tool for representing user
interaction in UML. Proceedings UML 2000. York, UK, pp. 133–147.

XML Patterns Web page, 2004. www.xmlpatterns.com.

Miller, J., and Mukerji, J., 2003, The MDA Guide. Draft version 2, OMG doc. ab/2003-01-03.

Chapter 7

UML-BASED WEB ENGINEERING
An Approach Based on Standards

Nora Koch,1, 2 Alexander Knapp,1 Gefei Zhang,1 Hubert Baumeister3

1Institut für Informatik, Ludwig-Maximilians-Universität München, Germany,
{kochn, knapp, zhangg }@pst.ifi.lmu.de

2F.A.S.T. GmbH, Germany, koch@fast.de

3Informatik og Matematisk Modellering, Danmarks Tekniske Universitet, Lyngby, Denmark,
hub@imm.dtu.dk

7.1 OVERVIEW

UML-based Web Engineering (UWE; www.pst.ifi.lmu.de/projekte/uwe)
came up at the end of the 1990s (Baumeister et al., 1999; Wirsing et al.,
1999) with the idea to find a standard way for building analysis and design
models of Web systems based on the then-current methods of OOHDM
(Schwabe and Rossi, 1995), RMM (Isakowitz et al., 1995), and WSDM (de
Troyer and Leune, 1998). The aim, which is still being pursued, was to use a
common language or at least to define meta-model-based mappings among
the existing approaches (Koch and Kraus, 2003; Escalona and Koch, 2006).

At that time the Unified Modeling Language (UML), which evolved
from the integration of the three different modeling techniques of Booch,
OOSE, and OMT, seemed to be a promising approach for system modeling.
Since those early integration efforts, UML became the “lingua franca” of
(object-oriented) software engineering (Object Management Group, 2005).
A prominent feature of UML is that it provides a set of aids for the definition
of domain-specific modeling languages (DSL)—so-called extension
mechanisms. Moreover, the newly defined DSLs remain UML-compliant,
which allows the use of all UML features supplemented, e.g., with Web-
specific extensions.

Both the acceptance of the UML as a standard in the development of
software systems and the flexibility provided by the extension mechanisms

158 N. Koch et al.

are the reasons for the choice of the Unified Modeling Language instead of
the use of proprietary modeling techniques. The idea followed by UWE to
adhere to standards is not limited to UML. UWE also uses XMI as a model
exchange format (in the hopes of future tool interoperability enabled by a
truly portable XMI), MOF for meta-modeling, the model-driven principles
given by OMG’s Model-Driven Architecture (MDA) approach, the
transformation language QVT, and XML.

UWE is continuously adapting, on the one hand, to new features of Web
systems, such as more transaction-based, personalized, context-dependent,
and asynchronous applications. On the other hand, UWE evolves to
incorporate the state of the art of software engineering techniques, such as
aspect-oriented modeling, integration of model checking using Hugo/RT
(Knapp et al., 2002; www.pst.ifi.lmu.de/projekte/hugo), and new
model transformation languages to improve design quality.

The remainder of this chapter is structured as follows: The features
distinguishing UWE’s development process, visual notation, and tool
support are briefly outlined below. UWE’s modeling techniques are
discussed step by step in Section 7.2 by means of the online movie data-
base case study. The UWE extensions of the UML meta-model are
outlined in Section 7.3. UWE’s model-driven process and, in particular, the
model transformations integrated into the process are described in
Section 7.4. The CASE tool ArgoUWE, which supports the UWE notation
and method, is described in Section 7.5. Finally, we give an outlook on
future steps in the development of UWE.

7.1.1 Characteristics of the Process

The development of Web systems is subject to continuous changes in user
and technology requirements. Models built so far in any stage of the
development process have to be easily adaptable to these changes. To cope
efficiently with the required flexibility, UWE advocates a strict separation of
concerns in the early phases of the development and implements a model-
driven development process, i.e., a process based on the construction of
models and model transformations. The ultimate challenge is to support a
development process that allows fully automated generation of Web
systems.

7.1.1.1 Separation of Concerns

Similarly to other Web Engineering methods, the UWE process is driven by
the separate modeling of concerns describing a Web system. Models are
built at the different stages of requirements engineering, analysis, design,
and implementation of the development process and are used to represent

7. UML-Based Web Engineering 159

different views of the same Web application corresponding to the different
concerns (content, navigation structure, and presentation). The content
model is used to specify the concepts that are relevant to the application
domain and the relationships between these concepts. The hypertext or
navigation structure is modeled separately from the content, although it is
derived from the content model. The navigation model represents the
navigation paths of the Web system being modeled. The presentation

presentation and user–machine communication
tasks.

UWE proposes at least one type of UML diagram for the visualization of
each model to represent the structural aspects of the different views.
However, in addition, very often UML interaction diagrams or state
machines are used to represent behavioral aspects of the Web system.

dimensions: development stages, systems’ views, and aspects.

Another concern also handled separately is adaptivity. Personalized and
context-dependent Web systems provide the user with more appropriate
information, links, or pages by being aware of user or contextual features.
We propose to view adaptivity as a cross-cutting concern and thus use
aspect-oriented techniques to model adaptive Web systems. It can be seen as
a fourth dimension influencing all other Web modeling dimensions: views,
aspects, and phases. Requirements models and architecture models focusing
on specific Web aspects complete the specification of the Web system.
Separation of concerns offers advantages in the maintenance and re-
engineering of a Web system as well as for the generation of Web systems
for different contexts and platforms.

Figure 7.1. Modeling aspects in UWE (from Schwinger and Koch, 2006).

model takes into account re

Figure 7.1 shows how the scope of modeling spans these three orthogonal

160

7.1.1.2 Development Driven by Models

The model-driven development (MDD) approach not only advocates the use
of models (as those described above) for the development of software, but
also emphasizes the need of transformations in all phases of the
development, from requirements specification to designs and from design
models to implementations. Transformations between models provide a
chain that enables the automated implementation of a system in successive
steps from the different models.

The development of Web systems is a field that lends itself to applying
MDD due to the Web-specific separation of concerns and continuous
changes in technologies in the Web domain.

Meta-model-based methods such as OO-H (Gómez et al., 2001) and
UWE constitute a good basis for the implementation of a model-driven
process for the development of Web systems. They included semiautomated
model-based transformations even before MDD concepts became well-
known. For the first guidelines for a systematic and stepwise construction of
models for UWE, we refer to Hennicker and Koch (2001) and Koch (2001).

UWE emphasizes the relevance of requirements engineering starting with
modeling activities in this early development phase (Escalona and Koch,
2006). Therefore, the UWE meta-model includes a set of modeling
primitives that allows for simpler and more specific specification of the
requirements of Web systems.

7.1.2 Characteristics of the Notation

As the saying goes, a picture is worth a thousand words. Visual models are
naturally used not only for documentation purposes but also as the crucial
chain link in the software development process. The trend is the production
of domain-specific visual models. Conversely, the importance of the
selection of the modeling language is not self-evident.

From our point of view, a modeling language has to

1. provide powerful primitives to construct expressive, yet intuitive models
2. offer wide CASE tool support
3. facilitate extension
4. provide a formal or at least a semiformal semantics
5. be easy to learn

Although UML fulfills only the first three requirements, it seems that
UML is currently the best approach. UML and various UML extensions are
successfully used in many different application domains. However, there is
no formal semantics covering the whole UML, and the fifth requirement can

N. Koch et al.

7. UML-Based Web Engineering 161

only be satisfied if we restrict ourselves to a subset of the modeling
constructs of UML.

7.1.2.1 Modeling with UML

The distinguishing feature of UWE is its UML compliance since the model
elements of UWE are defined in terms of a UML profile and as an extension
of the UML meta-model (Koch and Kraus, 2002, 2003).

Although the UML is expressive enough to model all requirements that
arise in modeling Web systems, it does not offer Web domain-specific
elements. To ease the modeling of special aspects of Web applications, we
define in UWE special views—using UML’s extension mechanisms—
graphically represented by UML diagrams, such as the navigation model and
the presentation model (Koch, 2001; Koch et al., 2001).

UML modeling techniques comprise the construction of static and
dynamic views of software systems by object and class diagrams, component
and deployment diagrams, use case diagrams, state and activity diagrams,
sequence and communication diagrams. The UML extension mechanisms
are used to define stereotypes that we utilize for the representation of Web
constructs, such as nodes and links. In addition, tag definitions and
constraints written in OCL (Object Constraint Language) can be used. This
way we obtain a UML-compliant notation—a so-called UML lightweight
extension or better known as a UML profile. UWE notation is defined as
such a UML profile.

The advantage of using UML diagrams is the common understanding of
these diagrams. Furthermore, the notation and the semantics of the modeling
elements of “pure” UML, i.e., those modeling elements that comprise the
UML meta-model, are widely described in the OMG documentation (Object
Management Group, 2005). For any software designer with a UML
background, it is easy to understand a model based on a UML profile, such
as the extension that UWE suggests. We observe that UML extensions
“inherit” the problems of UML, e.g., the lack of a complete formal semantics
covering all modeling elements.

UWE focuses on visual modeling together with systematic design and
automatic generation. The aim is to cover the entire development life cycle
of Web systems, providing techniques and notations to start with
requirements models, moving through design models, as well as including
architecture and aspect models. All these models are visualized using UML
diagrammatic techniques.

7.1.2.2 Meta-Modeling

Meta-modeling plays a fundamental role in CASE tool construction and is as
well the core of the model-driven process. A meta-model is a precise

162

definition of the elements of a modeling language, their relationships, and
the well-formedness rules needed for creating syntactically correct models.

Tool-supported design and model-based system generation are becoming
essential in the development process of Web systems due to the need for
rapid production of new Web presences and Web applications. CASE tools
have to be built on a precisely specified meta-model of the modeling
constructs used in the design activities, providing more flexibility if
modeling requirements change. Meta-models are essential for the definition
of model transformations and automatic code generation.

The UWE meta-model is defined as a conservative extension of the UML
meta-model (Koch and Kraus, 2003). It is the basis for the UWE notation
and UWE tool support. “Conservative” means that the modeling elements of
the UML meta-model are not modified, e.g., by adding additional features or
associations to the UML modeling element Class. OCL constraints are used
to specify additional static semantics (analogous to the well-formedness
rules in the UML specification). By staying thereby compatible with the
MOF interchange meta-model, we can take advantage of meta-modeling
tools based on the corresponding XML interchange format (XMI).

In addition, the UWE meta-model is “profileable” (Baresi et al., 2002),
which means that it is possible to map the meta-model to a UML profile. A
UML profile consists of a hierarchy of stereotypes and a set of constraints.
Stereotypes are used for representing instances of metaclasses and are
written in guillemets, like «menu» or «anchor». The definition of a UML
profile has the advantage that it is supported by nearly every UML CASE
tool either automatically, by a tool plug-in, or passively when the model is
saved and then checked by an external tool. The UWE meta-model could
also be used as the basis for building a common meta-model (or ontology) of
the concepts needed for the design in the Web domain (cf. Koch and Kraus,
2003; Escalona and Koch, 2006). Using for this purpose the standardized
OMG meta-modeling architecture would facilitate the construction of meta-
CASE tools.

7.1.3 Characteristics of the Tool Environment

The UML compliance of UWE has an important advantage: All CASE tools
that support the Unified Modeling Language can be used to build UWE
models. For this purpose it is sufficient to name stereotypes after the names
of the UWE modeling concepts. Many tools offer additional support with an
import functionality of predefined UML profiles. In such a case, the profile
model elements can be used in the same way as the built-in UML model
elements.

N. Koch et al.

7. UML-Based Web Engineering 163

7.1.3.1 CASE Tool Support

A wider developer support is achieved by the open source plug-in ArgoUWE
(www.pst.ifi.lmu.de/projekte/uwe) for the open source CASE tool
ArgoUML (www.argouml.org). In addition to providing an editor for the
UWE notation, ArgoUWE checks the consistency of models and supports
the systematic transformation techniques of the UWE method. Using the
UWE profile, models designed with other UML CASE tools can be
exchanged with ArgoUWE. The use of tools that support not only the
modeling itself but also a model-driven approach shortens development
cycles and facilitates re-engineering of Web systems.

7.1.3.2 Model Consistency Check

ArgoUWE also checks the consistency of models according to the OCL
constraints specified for the UWE meta-model. Consistency checking is
embedded into the cognitive design critiques feature of ArgoUML and runs
in a background thread. Thus, model deficiencies and inconsistencies are
gathered during the modeling process, but the designer is not interrupted.
The designer obtains feedback at any time by taking a look at this
continuously updated list of design critiques, which is shown in the to-do
pane of the tool.

In the following, we exemplify how UWE’s model-driven process,
notation, and tool support are used to develop Web applications.

7.2 METHOD BY CASE STUDY

We use a simple online movie database example that allows users to explore
information about movies and persons related to the production of the
movies. This example is inspired by www.imdb.org and named the “Movie
UWE Case Study” (MUC). Movies are characterized, among other things,
by their genre, the cast, memorable quotes, trailers, and a soundtrack.
Persons related to the movie production include the director, producer,
composer, and the actors. The user interested in watching a movie can access
information on theaters that show the movie. Registered users—identified by
an email address and a password—can provide comments, rate comments,
vote movies, manage “their movies,” and buy tickets in theaters of their
preference. The MUC online movie database personalizes the application,
giving some recommendations about movies and providing personalized
news to the user.

164

The focus in the following is on the models built for the different views

of the analysis and design phases (see Figure 7.1). Model transformations are
described as part of the model-driven process in Section 7.4.

7.2.1 Starting with Requirements Specification

The first step toward developing a Web system is the identification of the
requirements for such an application that are specified in UWE with a
requirements model. Requirements can be documented at different levels of
detail. UWE proposes two levels of granularity when modeling Web system
requirements. First, a rough description of the functionalities is produced,
which are modeled with UML use cases. In a second step, a more detailed
description of the use cases is developed, e.g., by UML activity diagrams
that depict the responsibilities and actions of the stakeholders.

7.2.1.1 Overview of Use Cases

Use case diagrams are built with the UML elements Actor and UseCase.
Actors are used to model the users of the Web system. Typical users of Web
systems are the anonymous user (called User) in the MUC case study, the
registered user (RegisteredUser), and the Web system administrator. Use
cases are used to visualize the functionalities that the system will provide.
The use case diagram depicts use cases, actors, and associations among
them, showing the roles the actors play in the interaction with the system,
e.g., triggering some use cases.

In addition to the UML features, UWE distinguishes among three types
of use cases: navigation, process, and personalized use cases. Navigation use
cases are used to model typical user behavior when interacting with a Web
application, such as browsing through the Web application content or
searching information by keywords. The use case model of Figure 7.2, for
example, includes the «navigation» () use cases ViewMovie, Search, and
GoToExternalSite. Process use cases are used to describe business tasks that
end users will perform with the system; they are modeled in the same way as
it is done for traditional software. These business tasks normally imply
transactional actions on the underlying database. We use “pure” UML
notation for their graphical representation. Typical examples for business use
cases are Register, CommentMovie, and BuyTicket. A third group of use
cases are those that imply personalization of a Web system, such as
ViewRecommendations and ViewLatestNews. They are denoted by a
stereotype «personalized» (). Personalization is triggered by user
behavior.

All UML elements for modeling use case diagrams are available, such as
system boundary box, package, generalization relationship, stereotyped

N. Koch et al.

7. UML-Based Web Engineering 165

dependencies «extend» and «include» among use cases. Figure 7.2 illustrates
the use case diagram for the MUC case study restricted to the functional
requirements from the User and RegisteredUser viewpoint.

7.2.1.2 Detailed View of Use Cases

The level of detail and formality of requirements specifications depends on
project risks and the complexity of the Web application to be built. But very
often a specification based only on use cases is not enough (Vilain et al.,
2000). Analysts use different kinds of refinement techniques to obtain a
more detailed specification of the functional requirements, such as
workflows, formatted specifications, or prototypes. These representations
usually include actors, pre- and postconditions, a workflow description,
exceptions and error situations, information sources, sample results, and
references to other documents. In particular, for the development of Web

Figure 7.2. UWE use case model for MUC.

166

systems, the informational, navigational, and process goals have to be
gathered and specified. Informational goals indicate content requirements.
Navigational goals point toward the kind of access to content, and process
goals specify the ability of the user to perform some tasks within the Web
system (Pressman, 2005).

Following the principle of using UML whenever possible for the
specification, we refine requirements with UML activity diagrams. For each
nontrivial business use case, we build at least one activity diagram for the
main stream of tasks to be performed in order to provide the functionality
indicated by the corresponding use case. Optionally, additional diagrams can
be depicted for exceptions and variants. Activity diagrams include activities,
shareholders responsible for these activities (optional), and control flow
elements. They can be enriched with object flows showing relevant objects
for the input or output of those activities.

Figure 7.3 illustrates the activity diagram for the use case BuyTicket of
our MUC case study. The UWE profile includes a set of stereotypes adding
Web-specific semantics to UML activity and object nodes. For example, a
distinction is made between the objects that define content, nodes of the
application, and presentation elements. Visualization is improved by the use
of the corresponding icons: for «content», for «node», and for Web
user interface («WebUI»). Stereotypes of activities are used to distinguish
possible actions of the user in the Web environment: browse, search, and
transactional activities that comprise changes in at least one database. To this
category of stereotypes belong for «browse», for «query», and for
transactional actions.

Figure 7.3. MUC case study: UWE activity diagram detailing the buy-ticket use case.

N. Koch et al.

7. UML-Based Web Engineering 167

7.2.2 Defining the Content

Analysis models provide the basis for the design models, in particular the
content model of a Web system. The aim of the content model is to provide a
visual specification of the domain-relevant information for the Web system
that mainly comprises the content of the Web application. However, very
often it also includes entities of the domain required for customized Web
applications. These entities constitute the so-called user profile or user
model.

Customization deals not only with adaptation to the properties of users or
user groups, but also with adaptation to features of the environment. A so-
called context profile or context model is built in such a case. The objects
occurring in the detailed view of the use cases provide natural candidates of
domain entities for the content and user model.

The separation of content and user model (or context model) has proven
its value in practice. Both are graphically represented as UML class
diagrams. The content model of MUC is depicted in Figure 7.4; the user
model is shown in Figure 7.5. The entities representing content and

Figure 7.4. MUC case study: content model.

168

user or context properties respectively, are modeled by classes, i.e., instances
of the UML metaclass Class. Relationships between content and user
properties are modeled by UML associations. In particular, movies are
modeled by a class Movie with a set of properties, such as title and genre
forming the attributes of the class Movie, or as classes associated to Movie

like Trailer and ExternalReview. Stakeholders of the film production, e.g., a
movie’s producer, composer, and cast, are modeled as roles of associations
to the class Person. Note that Performance and Ticket were inferred from the
activity diagram in Figure 7.3.

The user model contains the user data (again see Figure 7.3) needed for
the login of the user and the comments and rating of the movies. All these
data are provided by the users themselves during registration or use of the
Web application. In addition, the system collects information on users by
observing their behavior. The collected data are used for adaptation and are
modeled as a cross-cutting aspect and woven into the user model and other
parts of the system (see Section 7.2.6 on aspect-oriented modeling of
adaptivity).

7.2.3 Laying Down the Navigation Structure

Based on the requirements analysis and the content modeling, the navigation
structure of a Web application is modeled. Navigation classes (visualized as

) represent navigable nodes of the hypertext structure; navigation links
show direct links between navigation classes. Alternative navigation paths

Figure 7.5. MUC case study: user model.

N. Koch et al.

There is no need for the definition of additional elements as there is no
distinction to modeling of non-Web applications. We use “pure” UML
notation and semantics. All the features provided by the UML specification
for constructing class diagrams can be used, in particular, packages,
enumerations (e.g., Genre in Figure 7.4), generalizations, compositions, and
association classes (e.g., Cast in Figure 7.4).

7. UML-Based Web Engineering 169

are handled by «menu» (). Access primitives are used to reach multiple
instances of a navigation class («index» , or «guided tour») or to select
items («query»). In Web applications that contain business logic, the
business processes must be integrated into the navigation structure. The
entry and exit points of the business processes are modeled by process
classes () in the navigation model, the linkage between each other and to
the navigation classes is modeled by process links. Each process class is
associated with a use case that models a business process. Navigation

structures are laid down in stereotyped UML class diagrams with navigation
and process classes, menus, and access primitives extending the UML
metaclass Class, and navigation and process links extending the UML
metaclass Association.

7.2.3.1 Initial Navigation Structure

UWE provides methodological guidelines for developing an initial sketch of
the navigation structure from the content model of a Web application (see
also Koch and Kraus, 2002; Knapp et al., 2003): Content classes deemed to
be relevant for navigation are selected from the content model, and these
classes as well as their associations are put into a navigation model as
navigation classes and navigation links, respectively. Navigation links
represent possible steps to be followed by the user, and thus these links have
to be directed; if navigation back and forth between two navigation classes is

Figure 7.6. MUC case study: navigation from Movie (fragment).

170

desired, an association is split into two. Menus are added to every navigation
class that has more than one outgoing association. Finally, access primitives
(index, guided tours, and queries) allow for selecting a single information
entity, as represented by a navigation class. An index, a guided tour, or a
query should be added between two navigation classes whenever the
multiplicity of the end target of their linking association is greater than 1.
The properties of the content class corresponding to the navigation class over
which the index or the query runs are added as navigation attributes to the
navigation class.

The result of applying these steps of the UWE method to the content
model of the MUC case study in Figure 7.4 is shown in Figure 7.6.

From the home page Home the user can, by means of a query
SearchMovie, search for movies of his interest by criteria like movie name,
actors, or directors, etc. Soundtrack is directly reachable through MovieMenu
as there may be at most one soundtrack for each movie whereas there may
be several directors among which to select from DirectorsIndex. As an
example for a bidirectional linkage between navigation classes, the actors of
a movie can be selected from CastIndex reaching a Person, where,
conversely, one can choose from all movies this person has contributed to.
The navigation structure has been refined by adding a home node () as the
initial node of the MUC Web application, as well as a main menu.

The UWE profile notation for menus and access primitives provides a
compact representation of patterns frequently used in the Web domain.
Figure 7.7 (right) shows the shorthand notation for indexes. Using “pure”
UML for modeling an index would instead require an additional model
element: an index item as depicted in Figure 7.7 (left). The result would be
an overloaded model if it contains many such indexes.

7.2.3.2 Adding Business Processes

In a next step, the navigation structure can now be extended by process
classes that represent the entry and exit points to business processes. These
process classes are derived from the nonnavigational use cases. In Figure 7.8
the business processes Register (linked to the use case Register) and Login
(linked to the use case Login) have been added. The integration of these
classes in the navigation model requires an additional menu (MainMenu),

Figure 7.7. “Pure” UML (left) and shorthand notation (right) for index.

N. Koch et al.

7. UML-Based Web Engineering 171

which provides links to Register, Login, and SearchMovies. A user may only
manage her movies if she has logged in previously. Finally, a user can buy
tickets for a selected movie and a selected performance by navigating to
BuyTicket.

A single navigation structure diagram for a whole Web application would
inevitably lead to cognitive overload. Different views to the navigation
structure should be produced from the content model focusing on different
aspects of the application, like navigation to particular content or integration
of related business processes.

Figure 7.8. MUC case study: integration of business processes into navigation (fragment).

7.2.4 Refining the Processes

Each process class included in the navigation model is refined into a process
model consisting of a process flow model and optionally of a process
structure model. The control and data flow is modeled in the process flow
model in the form of a UML activity diagram. It is the result of a refinement
process that starts from the workflow in the requirements model.

Figure 7.9 illustrates the result of the refinement process applied to
Figure 7.3. This process mainly consists of the integration of the main
stream of the actions with alternatives, such as Enter new credit card info in
case of invalid card numbers or exception handling (not included in this
example). Control elements are added with the purpose of providing the
business logic. Activities and objects can be added to the activity diagram. A
process structure model has the form of a class diagram and describes the
relationship between a process class and other classes whose instances are
used to support the business process.

172

7.2.5 Sketching the Presentation

The presentation model provides an abstract view of the user interface (UI)
of a Web application. It is based on the navigation model and abstracts
from concrete aspects of the UI, like the use of colors, fonts, and the
location of UI elements on the Web page; instead, the presentation model
describes the basic structure of the user interface, i.e., which UI elements
(e.g., text, images, anchors, forms) are used to present the navigation
nodes. The advantage of the presentation model is that it is independent of
the actual techniques used to implement the Web site, thus allowing the
stakeholders to discuss the appropriateness of the presentation before
actually implementing it.

The basic elements of a presentation model are the presentation classes,
which are directly based on nodes from the navigation model, i.e., navigation
classes, menus, access primitives, and process classes. A presentation class
() is composed of UI elements, like text («text»), anchor («anchor»),
button («button»), image («image»), form («form»), and anchored
collection («anchored collection»).

Figure 7.9. MUC case study: UWE process flow model for the buy-ticket process.

N. Koch et al.

7. UML-Based Web Engineering 173

Figure 7.10 shows an example of a presentation class for the navigation
class Movie. Note that to ease the identification of which navigation node is
presented by a presentation class, the presentation class uses by default the
same name as the corresponding navigation node. Each attribute of a
navigation class is presented with an appropriate UI element. For example, a
text element is used for the title attribute, and an image element is used for
the photo attribute. The relationship between presentation classes and UI
elements is that of composition. For presentation models, composition is
pictured by drawing the component, i.e., the UI element, inside the
composite, i.e., the presentation class; note, however, that this notation is not
supported by all CASE tools.

Figure 7.10. MUC case study: presentation class Movie.

Usually, the information from several navigation nodes is presented on

one Web page, which is modeled by pages («page») in UWE. Pages can
contain, among other things, presentation classes and presentation groups
(«presentation group»). A presentation group can itself contain presentation
groups and presentation classes. An excerpt of the presentation model of the
movie page is shown in Figure 7.11. It contains a presentation class for the
main menu, which in turn contains a link (represented by the anchor UI
element) to home, a presentation class for the SearchMovie query, and
button UI elements to start the login and registration processes. The
SearchMovie query also provides an example of the form UI element to
enter the movie name to search for. The presentation class for MovieMenu
contains links to the presentation classes of the corresponding indexes—
based on the navigation model in Figure 7.6—providing additional
information on the movie.

The presentation classes of these indexes plus the presentation classes for
movie are assembled in a presentation group. The use of the stereotypes
«default» and «alternative» for the associations from Movie, ProducersIndex,
etc. to MovieMenu indicates that the elements of the presentation groups are
alternatives, i.e., only one of them is shown depending on which link was

174

followed from the movie menu, with the presentation class Movie being
shown by default. For example, when the user follows the producers link in
the MovieMenu, the ProducersIndex is shown, containing the list of the
producers of that film.

Figure 7.11. MUC case study: the presentation model of the movie page.

7.2.6 Aspect-Oriented Modeling of Adaptivity

Adaptivity is an increasingly important feature of Web applications.
Adaptive Web applications provide more appropriate pages to the user by
being aware of user or context properties. An example of adaptivity is
recommendations based on user behavior, like movie of favorite actors in
our MUC case study. In general, adaptivity is orthogonal to three views:
content, navigation structure, and presentation (see Figure 7.1). In order to
model adaptive features of Web applications non-invasively, we use
techniques of aspect-oriented modeling (AOM; cf. Filman et al., 2004) in
UWE.

We introduce a new model element named aspect. An aspect is
composed of a pointcut part and an advice part. It is a (graphical) statement
expressing that, in addition to the features specified in the principal model,
each model element selected by the pointcut also has features specified by
the advice. In other words, a complete description, including both general
system functionality and additional, cross-cutting features of the quantified
model elements, is given by the composition of the principal model and the
aspect. The process of composition is called weaving.

N. Koch et al.

7. UML-Based Web Engineering 175

UWE defines several kinds of aspects for modeling different static and
run-time adaptivity (Baumeister et al., 2005). In order to model the
recommendation feature modularly, we use on the one hand a model aspect
and a run-time aspect for keeping track of the number of visits to movie
pages. On the other hand, another run-time aspect integrates the
recommendation feature into the login process: A list of movies is presented
ranked according to the appearing actors, who in turn are ranked according
to their relevance in the visited movies.

The static model aspect for extending the user model (see Figure 7.5) by
an operation that returns the number of visits of a registered user to a movie
page is shown in Figure 7.12 (left). The pointcut is a pattern containing a
special element, the formal parameter, which is annotated by a question
mark. The pointcut selects all model elements in the base model that match
the pattern, thereby instantiating the formal parameter. In our case the formal
parameter is a class in which only the name RegisteredUser is specified. The
pointcut therefore selects all classes (actually, there is exactly one such
class) in the navigation model with the name RegisteredUser. The advice
defines the change to the selected model elements. After weaving, our
RegisteredUser class is thus extended by the operation visited (see Figure
7.12, right); no other elements are affected by this aspect.

Model aspects are a special case of aspect-oriented class diagrams
(AOCDs), which are also defined in a lightweight UML extension and are
therefore UML-compatible; see Zhang (2005). Since a model aspect
specifies a static modification of the base model, other, standardized model
transformation languages such as the Atlas Transformation Language (ATL;
Jouault and Kurtev, 2005), QVT-P (QVT-Partners, 2003), or QVT (QVT-
Merge Group, 2004) may also be used. The advantage of AOCD compared
with these languages is, however, that it does not require the modeler to have
expert knowledge of the UML meta-model, which may make AOCD easier
to use (cf. Section 7.4).

Figure 7.12. MUC case study: model aspect (left) and the weaving result (right).

The dynamic behavior of our MUC system is extended by two run-time
aspects. Figure 7.13 shows a link traversal aspect, used to ensure that visited
returns the correct result: The pointcut selects all links from any

176

object—note that neither the name nor the type of the object to the left is
specified and thus it matches any object—to some Movie object. The advice
defines with an OCL constraint the result of the action fired when such a link
is visited: If the current user is logged in, the system increases his respective
record by 1. After weaving, the system’s behavior is thus enriched by
counting user visits to the movie pages.

Figure 7.13. MUC case study: link traversal aspect for counting movie visits.

Figure 7.14 shows how the business process Login is extended by a flow
aspect. The base model depicted in Figure 7.14 (top) defines the normal
workflow without considering adaptivity: The user is asked to input her
email address and password, and then the system verifies the input and
responds accordingly.

Figure 7.14. MUC case study: flow aspect (bottom) extending business process Login (top).

The adaptive feature of generating recommendations for the user is added

by the aspect shown in Figure 7.14 (bottom). The pointcut selects every (in

N. Koch et al.

7. UML-Based Web Engineering 177

this concrete example, exactly one) control flow edge from a decision point
to the OK action, which is guarded by the condition valid. The advice deletes
this edge by crossing it out and adds an action for recommendation
generation and two new control flow edges to bind it into the process.

7.3 UWE META-MODEL

The UWE meta-model is defined as a conservative extension of the
UML 2.0 meta-model. “Conservative” means that the model elements of the
UML meta-model are not modified. Instead, all new model elements of the
UWE meta-model are related by inheritance to at least one model element of
the UML meta-model. We define additional features and relationships for
the new elements. Analogous to the well-formedness rules in the UML
specification, we use OCL constraints to specify the additional static
semantics of these new elements. The resulting UWE meta-model is
profileable, which means that it is possible to map the meta-model to a UML
profile (Koch and Kraus, 2003). In particular, UWE stays compatible with
the MOF interchange meta-model and therefore with tools that are based on
the corresponding XML interchange format XMI. The advantage is that all
standard UML CASE tools that support UML profiles or UML extension
mechanisms can be used to create UWE models of Web applications. If
technically possible, these CASE tools can further be extended to support the
UWE method. ArgoUWE (see Section 7.5) presents an instance of such
CASE tool support for UWE based on the UWE meta-model.

Figure 7.15. Overview of the UWE meta-model.

The UWE extension of the UML meta-model consists of adding two top-
level packages, Core and Adaptivity, to the UML (cf. Figure 7.15). The
separation of concerns of Web applications is reflected by the package

178

structure of Core and the cross-cutting of adaptation by the dependency of
Adaptivity on Core (see Figure 7.1). The package Requirements comprises
the UWE extensions on UseCase for discerning navigational from business
process and personalized use cases and the different markings for
ActivityNode («browse», «query», and «transaction») and ObjectNode
(«content», «node», and «WebUI») (see Escalona and Koch, 2006).

The navigation and presentation packages bundle UWE’s extensions for
the corresponding models. Figure 7.16 details a part of the meta-model for
Navigation with the connection between Node and Link and their various
subclasses. NavigationClass and ProcessClass with the related
NavigationLink and ProcessLink as well as Menu and the access primitives
Index, GuidedTour, and Query provide the Web domain-specific metaclasses
for building the navigation model. The packages Contents and Process are
currently only used as a stub, reflecting the fact that UWE allows the
designer to develop content and process models using all UML features.
Finally, Adaptation contains UWE’s aspect facilities by representing Aspect
as a UML Package with two subpackages, Pointcut and Advice.

Figure 7.16. UWE navigation meta-model.

In order to transfer the UWE meta-model into a UML profile, we use

UML’s extension mechanisms (see Section 7.1). Figure 7.17 shows how the
metaclasses of the UWE navigation meta-model are rendered as a stereotype
hierarchy, forming the UWE navigation profile: Node becomes a stereotype
of Class, NavigationAttribute a stereotype of Property, and Link a stereotype
of Association.

N. Koch et al.

7. UML-Based Web Engineering 179

Figure 7.17. UWE navigation profile.

The associations of the UWE navigation meta-model, e.g., connecting

Link to Node, cannot be represented by meta-associations (see Object
Management Group, 2005) and have to be added either by stereotyping the
UML metaclass Dependency or by using the association from the UML
meta-model from which the association is derived. The latter approach is
used for representing the composition between NavigationClass and
NavigationAttribute using the association ownedAttributes; for the association
between AccessPrimitive and NavigationAttribute and the association
between NavigationClass and Menu, we stereotype Dependency, leading,
e.g., to the following constraint:

context Dependency
inv: self.stereotypes->
 includes("Primitive2Attribute") implies
 (self.client.stereotypes->
 includes("AccessPrimitive") and

 self.supplier.stereotypes->
 includes("NavigationAttribute"))

where client and supplier denote the ends of the Dependency relationship.

180

7.3.1 Consistency Rules

Following the UML, we use OCL to state more precisely the static
semantics of UWE’s new meta-model elements as well as the dependencies
of meta-model elements both inside a single meta-model package and
between packages. As an example, the following constraint states that every
use case that is neither a navigation nor a personalized use case needs a
process class and that the converse direction holds as well (cf. Figure 7.18):

Figure 7.18. UWE process meta-model.

context ProcessClass
inv: not self.useCase.oclIsKindOf(NavigationUseCase) and
 not self.useCase.oclIsKindOf(PersonalizedUseCase)

context UseCase
inv: (not self.oclIsKindOf(NavigationUseCase) and
 not self.oclIsKindOf(PersonalizedUseCase)) implies
 ProcessClass.allInstances()->
 exists(pn | pn.useCase = self)

7.4 MODEL-DRIVEN DEVELOPMENT IN UWE

The UWE approach includes the specification of a process for the
development of Web systems in addition to the UML profile and the UWE
meta-model. The UWE process is model-driven following the MDA
principles and using several other OMG standards, like MOF, UML, OCL,
and XMI, and forthcoming standards, like QVT (QVT-Merge Group, 2004).
The process relies on modeling and model transformations, and its main
characteristic is the systematic and semiautomatic development of Web
systems, as detailed in Chapter 12 by Moreno et al. on model-driven Web

transformation, which, in each step, is based on transformation rules.

N. Koch et al.

Engineering. The aim of such an MDD process is automatic model

7. UML-Based Web Engineering 181

Focusing on model transformations, the UWE process is depicted in
Figure 7.19 as a stereotyped UML activity diagram (Meliá et al., 2005).
Models are shown as objects, and transformations are represented with
stereotyped activities (special circular icon).

Figure 7.19. Overview of model transformations in the UWE process.

The process starts with the business model, which MDA calls the

computational independent model (CIM), used to specify the requirements.
Platform-independent models (PIMs) are derived from these requirement
models. The set of design models represents the different concerns of the
Web applications, comprising the content, the navigation, the business
processes, the presentation, and the adaptation of the Web system
(summarized as FunctionalModels in Figure 7.19). In a next step, the
different views are integrated into a “big picture” model of the Web systems,
which can be used for validation (Knapp and Zhang, 2006) and also for
generation of platform-dependent models (see below). A merge with
architectural modeling features, either of the “big picture model” or of the
design models directly, results in an integrated PIM covering functional and

182

architectural aspects. Finally, the platform-specific models (PSMs) derived
from the integration model are the starting point for code generation.

7.4.1 Transformations from Requirements to Functional Models

The overall objective of modeling the requirements is the specification of the
system as a CIM and providing input for the construction of models in the
other development phases (see Figure 7.1, Schwinger and Koch, 2006, and
Section 7.2). In particular, specific objectives for Web systems are the
specification of content requirements, the specification of the functional
requirements in terms of navigation needs and business processes, the
definition of interaction scenarios for different groups of Web users, and, if
required, the specification of personalization and context adaptation. The
first model transformation step of the UWE process consists of mapping
these Web system requirements models to the UWE functional models.
Transformation rules are defined therefore as mappings from the
requirements meta-model package to the content, navigation, presentation,
process, and adaptivity packages of the meta-model. How these packages
depend on each other is shown in Figure 7.15.

For example, UWE distinguishes in the requirements model between
different types of navigation functionality: browsing, searching, and
transactional activities. Browse actions can be used to enforce the existence
of a navigation path between a source node and a target node. An action of
type search indicates the need for a query in the navigation model in order to
allow for user input of a term, and the system responds with a resulting set
matching this term (see Section 7.2.1).

Figure 7.20 shows the Search2Query transformation rule specified in
QVT’s graphical notation (QVT-Merge Group, 2004). The source and target
of the transformation are the UWE meta-model defined as checkonly and
enforce, respectively (identified with a “c” and “e” in Figure 7.20). For each
search with content p2 in the requirements model, a query in the navigation
model is generated with an associated navigation attribute p2. For the
associated node object in the requirements model, an index and objects of a
navigation class, as well as corresponding links, will be generated.

For more details about the UWE meta-model for Web requirements, we
refer the reader to Escalona and Koch (2006). A detailed description of the
transformation rules between CIMs and PIMs for the functional aspects of
Web applications has been presented in Koch et al. (2006). A meta-model of
the nonfunctional requirements for Web applications and mappings of
nonfunctional requirements to architectural model elements are subject to
future work.

N. Koch et al.

7. UML-Based Web Engineering 183

7.4.2 Refinement of Functional Models

The transformations for refining the functional models comprise mappings
from content to navigation model, refinements of the navigation model, and
from the navigation into the presentation model. In UWE, an initial
navigation model is generated based on classes of the content model marked
as navigation-relevant (see Section 7.2.3). This generation step can be
rendered as a transformation Content2Navigation. From a single content
model, different navigation views can be obtained, e.g., for different
stakeholders of the Web system like anonymous user, registered user, and
administrator. The generation of each navigation view requires a set of
marks on elements of the content model that form a so-called marking model
kept separately from the content model. The development process cannot be
completed in an entirely automatic way, as the designer has to make the
decision about the “navigation relevance” marks; the Content2Navigation
transformation is applied once the marks have been set.

Conversely, the remaining transformation steps for navigation models
mentioned in Section 7.2.3 are turned into transformation rules that can be
applied fully automatically. These rules include, for example, the insertion of
indexes and menus. Presentation elements are generated from navigation
elements. For example, for each link in the navigation model, an appropriate
anchor is required in the presentation model. The main difficulty is the
introduction of the “look and feel” aspects.

Figure 7.20. Transformation rule Search2Query.

184

All these transformations are defined as OCL constraints (by precondi-

tions and postconditions) in UWE and are implemented in Java in the CASE
tool ArgoUWE.

7.4.3 Creation of Validation and Integration Models

The UWE MDD process comprises two main integration steps: the
integration of all functional models and the integration of functional and
nonfunctional aspects; the latter integration step is related to architectural
design decisions.

The aim of the first step is the creation of a single model for validating
the correctness of the different functional models and that allows seamless
creation of PSMs. This “big picture” model is a UML state machine,
representing the content, navigation structure, and business processes of the
Web application as a whole (presentation aspects will be added in the
future). The state machine can be checked by the tool Hugo/RT (Knapp et
al., 2002)—a UML model translator for model checking, theorem proving,
and code generation.

The transformation rules Functional2BigPicture are defined based on a
meta-model graph transformation system. For the implementation of the
graph transformation rules, any (non-Web-specific) tool for graph trans-
formations can be used. An example of the graph transformation of a
navigation node to a state of the validation model is sketched in Figure 7.21.
The aim of the second step is the merge of the validation model elements
with information on architectural styles. Following the WebSA approach
(Meliá et al., 2005), we propose merging functional design models and
architecture models at the PIM level. For example, the elements of the
WebSA models provide a layer view and a component view of the
architecture, which are also specified as PIMs. Transformation rules are
defined based on the UWE and WebSA meta-models.

Figure 7.21. Transformation rule Node2State.

N. Koch et al.

7. UML-Based Web Engineering 185

7.4.4 Generation of Models and Code for Specific

Platforms

In order to transform PIMs into PSMs, additional information about the
platform is required. It can be provided as an additional model or it can be
implicitly contained in the transformations. For mappings from UWE design
models (PIMs) to PSMs for Web applications, we tested different model
transformation languages. The query-view-transformation languages we use
are ATL (Jouault and Kurtev, 2005), QVT-P (QVT-Partners, 2003), and
QVT (QVT-Merge Group, 2004). For example, the following QVT-P
transformation tackles the generation of J2EE elements from Java server
pages of the integration model:

relation ServerPage2J2EE {

 domain { (IM.IntegrationModel)

 [(ServerPage)

 [name = nc,

 services = { (WebService) [name = on,

 type = ot] },

 views = { (View) [name = vn] }]] }

 domain { (JM.J2EEModel)

 [(JavaServerPage)

 [name = nc,

 forms = { (Form) [name = on,

 type = ot] },

 beans = { (JavaClass) [name = vn] }]] }

 when { services->forAll(s |

 WebService2Form(s, F1set.toChoice()))

 views->forAll(v |

 View2Bean(v, J1set.toChoice())) }

}

The ATL code below exemplifies a transformation rule that maps the
element Anchor of the UWE presentation model to a JSP element. Note that
the transformation rule also involves elements of the navigation model
(NavigationLink).

186

rule Anchor2JSP {

 from

 uie : UWE!Anchor

 (not uie.presentationClass.oclIsUndefined() and

 not uie.navigationLink.oclIsUndefined())

 to

 jsp : JSP!Element

 (name <- 'a',

 children <- Sequence { hrefAttribute,

 contentNode }),

 hrefAttribute : JSP!Attribute

 (name <- 'href',

 value <- thisModule.createJSTLURLExpr

 (uie.navigationLink.target.name,'objID')),

 contentNode : JSP!TextNode

 (value <- uie.name)

}

7.5 CASE TOOL ARGOUWE

We have extended the CASE tool ArgoUML into a tool for UWE-based
Web application development, called ArgoUWE (Knapp et al., 2003;
www.pst.ifi.lmu.de/projekte/argouwe). We decided to extend
ArgoUML as it is a feature-rich, open source tool and offers a plug-in
architecture. The drawback of this decision is that the UWE meta-model
cannot be used directly since ArgoUML is based on UML 1.3/4. However, a
UML 1.x-compatible profile can easily be derived from the UWE meta-
model along the same lines as sketched in Section 7.3.

ArgoUML provides support for designing Web applications in the phases
of requirements elicitation and content, navigation, business process, as well
as presentation modeling. It provides not only tailored editors for UWE
diagrams, but also semiautomatic model transformations defined in the
UWE development process. As these model transformations are based on the
UWE meta-model, the tool ensures both consistency between the different
models and integrity of the overall Web application model with respect to
UWE's OCL constraints. ArgoUWE fully integrates the UWE meta-model
(Koch and Kraus, 2003), provides XMI export, and thus facilitates data
transfer with other UML-compliant tools. Design deficiencies, such as
violations of the OCL constraints, are reported by an extension of the
cognitive design critiques of ArgoUML and can also be checked upon
request (see Section 7.5.2).

N. Koch et al.

7. UML-Based Web Engineering 187

Working with ArgoUWE is intuitive for ArgoUML users, as ArgoUWE
makes use of ArgoUML’s graphical interface. In particular, the UML model

elements and diagrams are structured in a tree view in the explorer [(1) in
Figure 7.22]; the diagrams are edited in the editor pane (2); to-do items of
the designer are listed in the to-do pane (3); tagged values, constraints, and
documentation of the currently selected model as well as automatically
generated code skeletons are shown in the details pane (4).

7.5.1 Model Transformations

ArgoUWE implements some of the aforementioned model transformations
as semiautomatic procedures.
• In the content model, the designer may mark classes as navigation-

relevant. ArgoUWE can then generate an initial navigation model by
creating for each navigation-relevant class a navigation class and for each
association between navigation-relevant classes a link between the
corresponding navigation classes.

Figure 7.22. MUC case study: ArgoUWE screenshot of a fragment of the use case
model.

188

• In the navigation model, ArgoUWE can add indexes and menus

automatically. The designer may add queries and guided tours between
navigation nodes manually or, alternatively, by selecting a generated
index and changing it into a query or a guided tour.

• From the navigation model, ArgoUWE can generate a first draft of a
presentation model. For each navigation class and each of its attributes, a
presentation class is created. The presentation classes of attributes are
associated to those of the navigation classes by composition.
The generation of Web applications from the presentation model is out of

scope for ArgoUWE. This is done either by hand by the Web designer or
semiautomatically by using frameworks for the implementation of Web
applications, such as Struts (struts.apache.org).

7.5.2 Model Consistency

An important requirement of any CASE tool is to support the modeler to
keep his models consistent. Upon model inconsistency, the tool may either
interrupt the modeler and force him first to correct it before continuing
modeling or simply give a warning. We implemented ArgoUWE to do the
latter since we believe that the usability of the modeler being warned yet not
interrupted outweighs the drawback of the model being inconsistent for a
short time. Moreover, the ArgoUML feature of design critiques provides an
excellent starting point for the implementation of the non-interruptive
warnings for UWE models.

The “cognitive design critiques” of ArgoUML is one of its distinguishing
features compared to other modeling tools (cf. Robbins, 1999). During run
time, a thread running in the background keeps checking if the current model
shows deficiencies. For each deficiency found, a design critique item is
created and added to the to-do pane. Design critiques not only warn the user
that her design may be improved but can also, by means of a wizard, lead to
a better design. The design critique items range from incompleteness, such
as unnamed model elements, to inconsistency, such as name collisions of
different attributes or operations in a class. Furthermore, design critiques
also suggest the use of certain design patterns (Gamma et al., 1995). The
issues of design critiques can be sorted by several criteria like priority or the
model element causing the design critique. Design critiques are only
warnings and do not interrupt the designer.

ArgoUWE inherits the feature of design critiques from ArgoUML. In
fact, all well-formedness constraints of UWE have been fully integrated and
are continuously checked by ArgoUWE in the background at run time. In
Figure 7.22 the highlighted design critique indicates that the use case
CommentMovie does not show a corresponding process class yet; this
critique corresponds to the meta-model constraints shown in Section 7.3.

N. Koch et al.

7. UML-Based Web Engineering 189

7.6 OUTLOOK

The UML-based Web Engineering (UWE) approach is continuously
evolving. Evolution is due to improvement of existing features, such as
personalization of Web systems; adaptation to new technologies, e.g.
asynchronous client-server communication; and introduction of new
software engineering techniques, like aspect orientation and model-driven
principles. The challenge in all these cases is to provide a more intuitive and
useful tool for the methodological development of Web systems, to increase
Web systems quality, and to reduce development time.

The evolution we can currently observe is driven by a set of
improvements that are being addressed and a set of extensions we are
planning for UWE. The most important are

• specification of the transformations (at the meta-model level) of
(nonfunctional) requirements to architecture models

• implementation of the “weaving” process for the integration of the
aspect-oriented features in UWE models

• engineering of Rich Internet Applications (RIAs), e.g., Web applications
based on asynchronous communication such as using AJAX (Garrett,
2005)

• tool support for transformations from CIM models to PIM models and for
the UML 2.0 features in UWE

• integration of a QVT engine (when available) in the tool environment
• extension of UWE with test models

Our higher-level goal is the convergence of Web design/development
methods. It is the only way to obtain a powerful domain-specific modeling
and a development language that benefits from the advantages of the
different methods. Obviously, there is a trend toward using UML as the
common notation language. Some methods are moving from their
proprietary notation to a UML-compliant one and introduce a UML profile;
others define an MOF-based meta-model. It is currently hard to predict how
far this converging trend will go and whether it will eventually lead to a
“Unified Web Modeling Language.”

ACKNOWLEDGEMENTS

Thanks go to Andreas Kraus for providing the ATL transformation rule and
fruitful discussions. This work has been partially supported by the MAEWA
project, “Model Driven Development of Web Applications” (WI841/7-1) of
the Deutsche Forschungsgemeinschaft (DFG), Germany, and the EC 6th
Framework SENSORIA project, “Software Engineering for Service-
Oriented Overlay Computers” (FET-IST 016004).

190

REFERENCES

Baresi, L., Garzotto, F., Mainetti, L., and Paolini, P., 2002, Meta-modeling techniques meet
Web application design tools. In R.-D. Kutsche and H. Weber, eds., Proceedings Fifth
International Conference on Fundamental Approaches to Software Engineering
(FASE’02), pp. 294–307.

Baumeister, H., Knapp, A., Koch, N., and Zhang, G., 2005, Modelling adaptivity with
aspects. In D. Lowe and M Gaedke, eds., Proceedings Fifth International Conference on
Web Engineering (ICWE’05), pp. 406–416.

Baumeister, H., Koch, N., and Mandel, L., 1999, Towards a UML extension for hypermedia
design. In R. France and B. Rumpe, eds., Proceedings Second International Conference on
Unified Modeling Language (UML’99), pp. 614–629. .

de Troyer, O., and Leune, C.J., 1998, WSDM: A user centered design method for Web sites.
Computer Networks, 30(1–7): 85–94.

Escalona, M.J., and Koch, N., 2006, Metamodeling the requirements of Web systems.
Proceedings Second International Conference on Web Information Systems and
Technologies (WebIST’06), Setubal, Portugal.

Filman, R.E., Elrad, T., Clarke, S., and Aksit, M., eds., 2004, Aspect-Oriented Software
Development, Addison-Wesley, Reading, MA.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., 1995, Design Patterns, Addison-
Wesley, Reading, MA.

Garrett, J.J., 2005, Ajax: A New Approach to Web Applications. http://www.
adaptivepath.com/publications/essays/archives/000385.php.

Gómez, J., Cachero, C., and Pastor, O., 2001, Conceptual modeling of device-independent
Web applications. IEEE Multimedia, 8(2): 26–39.

Hennicker, R., and Koch, N., 2001, Systematic design of Web applications with UML. In K.
Siau and T.A. Halpin, eds., Unified Modeling Language: Systems Analysis, Design and
Development Issues, Idea Group, Hershey, PA, pp. 1–20.

Isakowitz, T., Stohr, E.A., and Balasubramanian, P., 1995, MM: A methodology for
structuring hypermedia design. Communications of the ACM, 38(8): 34–44.

Jouault, F., and Kurtev, I., 2005, Transforming models with ATL. In J.-M. Bruel, ed., Revised
Selection of Papers on Satellite Events at the MoDELS 2005 Conference, pp. 128–138.

Knapp, A., Koch, N., Moser, F., and Zhang, G., 2003, ArgoUWE: A CASE tool for Web
applications. Proceedings First International Workshop on Engineering Methods to
Support Information Systems Evolution (EMSISE’03), Geneva.

Knapp, A., Merz, S., and Rauh, C., 2002, Model checking timed UML state machines and
collaborations. In W. Damm Werner and E.R. Olderog, eds., Proceedings Seventh
International Symposium on Formal Techniques in Real-Time and Fault Tolerant Systems,
pp. 395–416.

Knapp, A., and Zhang, G., 2006, Model transformations for integrating and validating Web
application models. In H.C. Mayr and R. Breu, eds., Proceedings Modellierung 2006
(MOD’06), pp. 115–128.

Koch, N., 2001, Software engineering for adaptive hypermedia systems: Reference model,
modeling techniques and development process. PhD thesis, Ludwig-Maximilians-
Universität, München.

Koch, N., and Kraus, A., 2002, The expressive power of UML-based Web engineering. In D.
Schwabe, O. Pastor, G. Rossi, and L. Olsina, eds., Proceedings Second Internatioanl
Workshop on Web-Oriented Software Technology (IWWOST’02), pp. 105–119.

Koch, N., and Kraus, A., 2003, Towards a common metamodel for the development of Web
applications. In J.M.C. Lovelle, B.M.G. Rodríguez, L.J. Aguilar, J.E.L. Gayo, and M. del

N. Koch et al.

7. UML-Based Web Engineering 191

Puerto Paule Ruiz, eds., Proceedings Third International Conference on Web Engineering
(ICWE’03), pp. 495–506.

Koch, N., Kraus, A., and Hennicker, R., 2001, The authoring process of the UML-based Web
engineering approach. In D. Schwabe, ed., Proceedings First International Workshop on
Web-Oriented Software Technology (IWWOST’01). http://www.dsic.upv.es/
˜west2001/iwwost01/.

Koch, N., Zhang, G., and Escalona, M.J., 2006, Model transformations from requirements to
Web system design. In D. Wolber, N. Calder, C. Brooks, and A. Ginige, eds., Proceedings
Sixth International Conference on Web Engineering (ICWE’06), pp. 281–288.

Lowe, D., and Gaedke, M., eds., 2005, Proceedings Fifth International Conference on Web
Engineering (ICWE’05).

Meliá, S., Kraus, A., and Koch, N., 2005, MDA transformations applied to Web application
development. In D. Lowe and M. Gaedke, eds., Proceedings Fifth International
Conference on Web Engineering (ICWE’05), pp. 465–471.

Object Management Group (2005). Unified Modeling Language. www.uml.org.
Object Management Group (2005). Unified Modeling Language: Superstructure, version 2.0.

Specification, OMG. http://www.omg.org/cgi-bin/doc?formal/05-07-04.
Pressman, R., 2005, Software Engineering—A Practitioner’s Approach, 6th edition, McGraw-

Hill, Boston.
QVT-Merge Group (2004). Revised Submission for MOF 2.0 Query/Views/Transformations

RFP (ad/2002-04-10). Submission, OMG. http://www.omg.org/cgi-bin/doc?ad/
04-04-01.pdf.

QVT-Partners (2003). Revised Submission for MOF 2.0 Query/Views/Transformations RFP,
version 1.1. http://qvtp.org/downloads/1.1/qvtpartners1.1.pdf.

Robbins, J.E., 1999, Cognitive support features for software development tools. PhD thesis,
University of California, Irvine.

Schwabe, D., and Rossi, G., 1995, The object-oriented hypermedia design model.
Communications of the ACM, 38(8): 45–46.

Schwinger, W., and Koch, N., 2006, Modeling Web applications. In G. Kappel, B. Pröll, S.
Reich, and W. Retschitzegger, eds., Web Engineering: Systematic Development of Web
Applications, John Wiley, Hoboken, NJ, pp. 39–64.

Vilain, P., Schwabe, D., and de Souza, C.S., 2000, A diagrammatic tool for representing user
interaction in UML. In A. Evans, S. Kent, and B. Selic, eds., Proceedings Third
International Conference on Unified Modeling Language (UML’00), pp. 133–147.

Wirsing, M., Koch, N., Rossi, G., Garrido, A., Mandel, L., Helmerich, A., and Olsina, L.,
1999, Hyper-UML: Specification and modeling of multimedia and hypermedia
applications in distributed systems. In Proceedings Second Workshop on German-Argen-
tinian Bilateral Programme for Scientific and Technological Cooperation, Königswinter,
Germany.

Zhang, G., 2005, Towards aspect-oriented class diagrams. In Proceedings 12th Asia Pacific
Software Engineering Conference (APSEC’05), pp. 763–768.

Chapter 8

DESIGNING MULTICHANNEL WEB
APPLICATIONS AS “DIALOGUE SYSTEMS”:
THE IDM MODEL

Davide Bolchini1 and Franca Garzotto2
1TEC-Lab, Faculty of Communication Sciences, University of Lugano, Via G. Buffi, 13 6900
Lugano, Switzerland
2HOC (Hypermedia Open Centre), Department of Information and Electronics, Politecnico di
Milano, Milan, Italy

8.1 BACKGROUND

IDM, the design method discussed in this chapter, is the distillation of a long
experience of building, using, and teaching models for hypermedia design.
At the beginning of the 1990s, we started with HDM (Hypertext Design
Model), (Garzotto el al., 1991; Garzotto and Paolini, 1993) which was the
first model for the conceptual design of this class of applications that
appeared in the literature. HDM was relatively simple and, in some respects,
naïve. Still, it proposed some core concepts that inspired many subsequent
models for (Web-based) hypermedia that we and other researchers proposed:
the distinction among different conceptual design “dimensions” (content,
navigation/interaction, presentation) and the proposal, for complex
applications, of a “schema-based” design process, as opposed to “design-by-
page” (or “design-by-instance”), which was the common practice at the time.

HDM progressively evolved into models (named HDM+, HDM2, and
W2000) (Garzotto et al., 1994, 1995, 1999; Baresi et al., 2001a) that, to
address the increasing complexity of hypermedia applications, were
significantly richer and more sophisticated than their ancestor. These models
provided a rich set of primitives that enabled designers to specify a wide
spectrum of design solutions, at both a general level and a very detailed

194 D. Bolchini and F. Garzotto

We like to quote the following sentence, attributed to Albert Einstein:
“… A complex ,phenomenon, … cannot be modeled as simple, but we
(scientists) should try at least to give it a representation that is as simple as
possible.” Designing a complex hypermedia application is not simple. Our
hope is that IDM makes it as simple as possible.

8.2 THE DIALOGICAL APPROACH OF IDM

“Design” (from the Latin designare = to mark out) is the process of
developing plans or schemes; more particularly, a design may be a
developed plan or scheme, …, set forth as a drawing or model. … A
design is ordinarily conceived with a number of limiting factors in
mind: the capacities of the material employed; ….; the effect of the end
result on those who may see it, use it, or become involved in it.

The above quotation, from the Encyclopaedia Britannica, captures some
essential aspects of the concept of “design”(which different authors defined
in so many different ways) and provides us with a reference definition to
better explain IDM.

level. Unfortunately, the increase in expressive power had some drawbacks.
In many graduate courses in different faculties (computer engineering,
industrial design, and communication sciences), the difficulty of learning the
theory and practice of our models did not completely pay off in terms of the
increased design quality delivered by students’ designs. Building design
documentation in industrial projects became more and more time-consuming
(since design specifications were more and more detailed), while its power
as a communication medium among project stakeholders dramatically
decreased (especially among persons who had no formal training in
modeling). An empirical survey we carried on in the industrial arena
confirmed that usability in general, and learnability and effectiveness in
particular, are crucial factors for the acceptability and adoption of the design
models and methods in the real world (Garzotto and Perrone, 2003).

Thus, after moving from simplicity (HDM) to complexity (W2000), we
progressively moved back to simplicity, as oftentimes occurs in scientific
research (in art, too). IDM (Bolchini and Paolini, 2006) is the “end” of this
“parabola.” It focuses on design concepts that are truly fundamental for
making a design process cost-effective. It makes the “deep” meaning of
design concepts more intuitive. It does not simply offer a specification tool
for designers to render their creative design solutions: It helps them to create
abstract, minimal, but expressive representations and, above all, to
understand how they may think when they do design.

8. Designing Multichannel Web Applications as “Dialogue Systems” 195

Next, we should define the scope for design in the specific domain of

hypermedia. Unfortunately, also in this restricted domain, the definition of
the design scope is not obvious, being strongly related to the profile of who
is making a design, to the goal of a design artifact, and to its users.

For a graphic designer, the scope of hypermedia design is the appearance
of “pages.” The goal of a design artifact is to convey a brand and identity
“image,” for discussing it with the customer: “Design” means defining (a
schema for) the visual, directly perceivable properties of a hypermedia
interface. For an interaction designer, the design scope is the definition of
the interaction modalities available to the user to interact with the “pages”
(e.g., form filling, menu selection, icons and direct manipulation capability,
etc.); the goals of a design artifact are to render the tangible experience of
the user with the application and to provide both the interaction requirements
for the implementers and a preliminary “prototype” to be evaluated by
usability experts. For an information architect, the scope is the
organizational structures for the content delivered by the application; the
goal is to provide both the content requirements for authors and the data
requirements for implementors. For a computer engineer, the design scope is
the definition of both the data structures for the contents and the functions
provided by the systems. And so on.

For IDM, the “designer” is anyone who is translating the problem space
represented by users’ and stakeholders’ requirements into a solution space
represented by a design artifact. The goals of design are to reify
requirements in terms of general properties of the application, to support
early brainstorming among the different profiles of designers listed above
(who must later add details to the design specs), as well as to discuss general
solutions among them and among other stakeholders (customers and users).

To achieve these goals, we use a dialogue metaphor: We conceive user
interactions with a hypermedia as a sort of dialogue, namely, as a sequence
of question-answering “acts”: The selection of a link is the operational
counterpart to a question that the user “asks” herself and turns to “the
system” (e.g., “who is the director of this movie?”). The effect of link
selection, i.e., the display of the link destination page, is the answer is the
system materially offers, according to the designers, on how to respond to
the user’s question. The scope of hypermedia design is therefore to shape the
possible dialogues between the users and the system, and the design is the
process concerning the construction of a dialogue plan. The different design
activities are progressive steps in forming this plan, from a more general
level of abstraction, to a more concrete level where the various limiting (or
contextual) factors for the execution of the plan are progressively taken into
account (including, among others, the characteristics of the delivery device,
the actual context of use, the specific user’s characteristics).

196

In general, we can say that a dialogue-based design offers a number of

advantages:

• It is conceptually simple even for people who are not used to design (e.g.,
content experts and newcomer designers). We have experienced (as we
will discuss in the conclusions) that a dialogue-metaphor is far more
intuitive and natural (especially for the above profiles) than an
information-navigation metaphor.

• It is very close to the way requirements are specified and therefore allows
for better traceability, i.e., keeping track of how the different requirements
were taken into account during the definition of the various design
solutions.

• It captures the “essence” of the dialogues that the user can establish, easily
avoiding all the details connected to technology and implementation.

• As a special case of the last point, it is suitable for paving the ground for
specific versions of the dialogue aiming at users with special needs (e.g.,
aural interaction for visually impaired users).

8.3 IDM ACTIVITIES

The design process envisioned by IDM comprises three main activities:
conceptual design, logical design, and page design. Each addresses different
aspects of the application under design, at different levels of abstractions.
For each activity, IDM provides a set of concepts and notations, as discussed
and exemplified in the rest of this section.

8.3.1 Conceptual IDM (or C-IDM)

Assuming a dialogue-oriented perspective, the first set of issues that the
designer should try to address can be summarized by the following
questions:

1. What are the dialogue subjects, i.e., what can (should) the application
say to the user?

2. What are the relevant shifts of subjects to be supported during the
user/application dialogue?

3. What are the possible different ways to organize the dialogue, i.e., to
group the different subjects through which the user may start the actual
flow of conversation?

Precise and detailed answers to the above questions can be provided only
when a specific channel of delivery has been chosen (determining factors

D. Bolchini and F. Garzotto

197

like screen size, pointing mechanisms, available media, performances, etc.).
Still, important decisions can be made in advance, in what we call
“conceptual design.”

In this initial phase, a conceptual schema of the interactive application
must be defined to convey all the necessary “dialogue strategies,” without
(and before) digging into details that may depend on technical issues of the
actual delivery device (and should be addressed in the following design
activities).

At this stage, a conceptual schema has multiple uses:

1. to support brainstorming among designers
2. to allow traceability and comparison with requirements (e.g., needs

and goals of the stakeholders) and therefore to support discussion with
stakeholders (are we making the most appropriate design decisions?)

3. to provide a firm suggestion to the technical designers, who must add
details to it

C-IDM (Conceptual IDM) is a model for the definition of conceptual
schemas. It is simple to grasp and effective in representing the most relevant
features of the application in terms of content of the dialogue and dialogue
moves. Indeed, three basic design elements characterize C-IDM: “topic,”
“relationship,” and “group of topics.”

An interactive application may “talk about” a “topic” (e.g., a “movie” or
an “actor”), or it may allow the user to switch the dialogue focus to a
“related topic” (e.g., switching from the “actor” to the “movies” in which he
starred), or it may allow the user to start from a “group of topics” (e.g., “the
top at the box office movies” or “movies of 2006”) and then lead the
dialogue among the different topics within the group.

The “informative” quality of the dialogue comes from the choice of the
topics and the “objective ways” of relating and grouping topics; the
“argumentative” quality of the dialogues is based upon the choice of the
specific content associated to each topic, upon the “subjective ways” of
relating topics and grouping them.

More precisely, the above simple ideas have been translated into the
following C-IDM design primitives:

• Topic: something that can be the subject of conversation between the

user and the interactive application. “Mission: Impossible III,” “Tom
Cruise,” and “Paramount Pictures” are examples of topics, i.e., possible
subjects of a dialogue between the user and the application.

8. Designing Multichannel Web Applications as “Dialogue Systems”

198

• Kind of topic: the category of possible subjects of conversation.
“Movie,” “Actor,” and “Company” are kinds of topics. “Tom Cruise” is
an example of “Actor.”

• Change of subject (or relevant relation): it determines how the
dialogue can switch from one kind of topic to another one. “Produced
by” is a possible change of subject relating any Movie to one Company.

• Group of topics: it determines a specific group of topics, possible
subjects of conversation. Announced Movies is a specific group of
Movies, while All 2006 movies is another, larger, group.

• Multiple group of topic: it determines a family of group of topics. It
could be nice, for example, to group the Movies according to genres.
All the movies of the same genre are a group of topics; “Movies by
Genre,” overall, is a family of groups of topics (as many as there are
Genres). Each multiple group of topics has a corresponding “higher-
level” group of topics (e.g., “all genres”), which allows one to select the
specific group of topics of interest (e.g., “Movies of the genre
Comedy”).

The above list of terms and concepts has a number of advantages over

most of the current design models and methods:

1. The number of concepts is short and therefore easy to teach (and to

learn).
2. Despite their limited number, the concepts are expressive enough

for describing the content of most (information-intensive)
applications.

3. The concepts (and terms) relate to the “human” dialogue experience,
rather than to informatics; therefore, they can be more effectively
conveyed to people without a computer science or engineering
background.

The concepts are of the proper “level” to allow an in-depth comparison

between requirements and design decisions (if requirements have been
explicitly stated, of course).

D. Bolchini and F. Garzotto

199

Writer

Movie

Director

Actor

Connected to
0:n

Directed By

1:1

Directed

1:1

Starred in

1:n

Casted
1:n

Written by
1:nWrote

1:n

Company
1:n

Top 10 Trailers

Now Playing By Month

Tops at the box office by Country

Tops at the box office by Year

Tops on Video this week

Tops on Video this year by Day

Tops on Video Archive by Day

Tops 100 Sellers DVD, VHS

Tops 100 Upcoming DVD, VHS

Future Releases DVD, VHS

Top Rated Movies by Genre

Top Rated Movies by Decade

Photo Gallery

My Movies
Indipendent Films

Showtime

Showtime & Tickets
by US City & Movie

Movies by Rating

Movies by Year

Movies by Country

Movies by Language

Movies by Genre

Movies by Location

Movies by Business info

Movies by Award

Movies by Keyword

Movies by Co-Stars

All biographies by letter

Prolific Biographies by Role

Top Biographies by Role

www.imdb.com
IDM Conceptual Map
May 2006

1

2

3

4

1 2 3 4

5

1 2 3 4 5

Goofs by Movie

Quotes by Movie

Produced/Distributed/with Special Effects by

Produced/Distributed/Made Special Effects for

1:n

How to advertise on IMDB

Add IMDb content
to Your site

Terms of Use

Figure 8.1. Conceptual IDM modeling of www.imdb.com.

Figure 8.1 describes a potential conceptual design for the IMDB (Internet
Movie Database) Web site (www.imdb.com), presenting it as a possible
modeling result through C-IDM. The graphical primitives of C-IDM are
illustrated in Figure 8.2.

8. Designing Multichannel Web Applications as “Dialogue Systems”

200

Figure 8.2. IDM conceptual design: key.

The reader should notice how the schema simply and effectively
communicates the basic dialogue strategies underlying the application. Some
of the information conveyed, for example, includes the following: The
dialogue can be about “movies,” “actors,” “writers,” etc. In addition, the
dialogue can concern the “terms of use,” “how to add content to your site,”
etc. If a “movie” is the subject, the dialogue can move to the corresponding
“actor,” to the “director,” or to the “writer,” and so on. The dialogue about a
movie can start in various ways: “Independent Films,” “My Movies,” or
selecting movies by rating, by country, by genre, the “now playing” movie,
and so on. Guessing the rest is left to the reader as a simple exercise.

This schema, however, is not fully sufficient: Additional information
needs to be provided for a fully satisfactory design document. Here is an
outline of suggested additional information:

• Topic: description of the motivations (i.e., why has it been considered?;

what’s its purpose?); description of the content (i.e., what can be said
when the topic is “selected” as subject of the dialogue?)

• Kind of topic: description of the motivations (see above); description of
the content (see above); cardinality (i.e., an indication of the expected
number of topics instances or exemplars: e.g., how many movies do we
expect to have?)

• Change of subject (relevant relation): description of the semantics (i.e.,
what is the actual meaning of the relations?) and motivations (i.e., why is

Multiple Topic (kind of topic)

Single topic

Group of topics

Multiple group of topics

Relevant Semantic Relation

Conceptual IDM (C-IDM)

D. Bolchini and F. Garzotto

201

it considered important?); cardinality (i.e., an indication of the expected
numbers; e.g., changing subject from a writer to the movie, how many
movies should we expect to have—on average—for a given writer?)

• Group of topics: description of the motivations (i.e., why is this group of
topics useful or interesting and to whom?); cardinality (i.e., expected
number of topics to be part of the group)

Design documents do not always need to be complete. Designers often
want to negotiate strategic decisions with stakeholders and to document
those decisions, without being forced to commit on premature details early
in the development. Nor do all the different choices need an adequate
explanation: They may be obvious in a given context. In many situations
design documents can be left “unfinished,” still fulfilling their role of
conveying most of the “crucial” ideas about the application. Even with the
above enrichments indicated, a conceptual design document can be kept very
simple, easy to write, and effective for the reader.

In synthesis, the main advantages of the dialogue map shown in

1. The schema is quite simple, and it does not take too much time to
write it down (any common editor tool may fit).

2. The schema expresses all the most relevant aspects of a “real-life”
interactive application.

3. The schema conveys the basic interaction ideas, without commitment
to a specific “channel” of delivery (whether it is the Web technology, a
PDA, a Car Navigator System).

4. The schema can be used to brainstorm, debate alternatives, and discuss
preliminary decisions.

As we will see in the next section, the conceptual schema can be
translated into one or more logical schemas, according to the choices made
for a specific channel of communication.

8.3.2 L-IDM Logical Design

Unlike conceptual design, logical design starts by making decisions that are
typically dependent on a specific fruition channel through which the
application may be conveyed (be it the traditional Web, an oral channel, an
interactive TV, or a mobile channel).

Whereas a C-IDM conceptual design schema defines the overall
interaction strategy to be supported during the dialogue of the application
with the user, designers can develop one or more “logical” designs, one for
each specific channel they want to design the application for. IDM “logical”
design can be seen as a detailed version of the conceptual design, where

Figure 8.1 may be summarized as follows:

8. Designing Multichannel Web Applications as “Dialogue Systems”

202

details are decided on the basis of a variety of channel-dependent factors,
such as the constraints imposed by the type of device available on a given
channel (e.g., screen size), the pointing devices (e.g., keyboard, smart pen,
mouse, scroller, audio input, touch pointers, eye-tracking pointers), the
media that can be used (e.g., audio, visual text, images, graphics, or video),
the expected performance, and—of utmost importance—the typical
scenarios of use (e.g., home or office desktop use, walking or standing
contexts, mobile use on car, etc.).

All these “technicalities” may influence key decisions for the user
experience, which concern at the logical level the ways detailed pieces of
content are split and structured and how and when navigation possibilities
are made available and may be traversed.

Starting from C-IDM, logical design (called L-IDM) for a specific
channel may be defined by answering two basic questions: What are the
units of dialogue? How can units of dialogue be combined in a user
experience? A unit of dialogue is an atomic object, in the sense that it will be
delivered to the user in its totality.

These two basic questions, in order to be addressed, need a number of
technical steps:

1. Organize each (kind of) topic into dialogue units, and organize the

possible dialogue flows across them.
2. Organize the needed dialogue units that allow the shift of subjects.
3. Organize the dialogue units that allow the exploration of a group of

topics

In order to provide all the answers, we have developed the design
primitives of L-IDM, explained below.

• Dialogue act: a unit of the dialogue within a topic. The content of a topic

is represented by either a single dialogue act or several of them.
Decisions are based both on technical considerations (the relevant
features of the channel) and on user profiles and/or needs.

• Structural strategy: the possible development of a dialogue for
exploring a topic with more than one dialogue act. What must be
specified are the initial dialogue act and the possibilities for changing the
dialogue from one act to another one.

• Transition act: when changing the subject from a (kind of) topic (e.g.,
“movie”) to another (kind of) topic (e.g., “director”), no additional
dialogue is need, since the dialogue can immediately switch, upon
request. When the new subject is multiple (e.g., switching from “movie”
to its “actors”), an additional part of dialogue is needed, which we call

D. Bolchini and F. Garzotto

203

the transition act. A transition act is, in essence, a list of possible new
topics (e.g., a list of actors who starred in that movie).

• Transition strategy: the existence of the transition act, as explained
above, does not entirely solve all the problems. A dialogue substrategy
must be developed to explain the way a user can explore all the new
topics (all the “actors” starring in the movie, in the example).

• Introductory act: a piece of dialogue that allows the application (and the
user) to consider the group of topics as a whole. It consists, in general, of
an introduction followed by a list of the topics belonging to the group.
Introductory acts are the unique starting points for the dialogue, in the
sense that any dialogue starts with an introductory act. For example, the
list of “Top of the Box Office Movies” may be introduced by some
engaging text and a representative picture.

• Subject strategy: as was the case for transitions, creating introductory
acts does not solve the problem of “engaging a conversation” about the
group of topics. There must be a dialogue strategy coordinating how the
conversation can involve the introductory act and support the exploration
of all the topics belonging to the group.

• Multiple introductory acts: an introductory act corresponding to a
“Multiple Group of Topics.” It is a strange technicality, not difficult to
explain: If there is a group of “movies” for each “genre,” we need an
introductory act for each genre (listing all the movies belonging to that
genre), but we also need another introductory act listing all the genres (to
let the user choose one genre), possibly with an introduction and/or an
explanation accompanying that list. In other words, for a multiple group
of topics we need a family of introductory acts (one for each theme, in
the example) and a further introductory act (the list of genres in the
example), holding the family together.

On the basis of the same C-IDM schema, Figure 8.3 provides the L-IDM
graphical primitives, while Figure 8.4 illustrates L-IDM design for the
IMDB Web site.

Whereas the C-IDM conceptual schema represents the utmost degree of
interactivity potential (resembling the richest channel of the ones available,
such as the Web, for example), the L-IDM design defines a subset of
interactions that are sound and suitable for the channel at issue.

On the basis of our project experience, the common activities that can be
undertaken to specialize the conceptual schema into a “channel-dependent”
version are the following:

• Dialogue acts or entire topics may be removed.
• Relevant relations may be removed.
• Groups of topics may be removed or simplified.
• … Other adaptations are possible.

8. Designing Multichannel Web Applications as “Dialogue Systems”

204

Figure 8.3. IDM logical design: key.

Based on the results of these decisions, the design should be refined
without totally changing the overall dialogue pattern. In fact, the user should
perceive that she is dealing with the same application across different
channels. Design decisions made at this stage should cope with the trade-off
between a unifying user experience and the constraints imposed by each
specific channel.

As a demonstrative example, let us now assume to design a palm-held
version of IMDB to support the following scenarios:

• A person waiting for the movie to start (outside the theater or not yet in

the projection room) wants detailed information, anticipation, and trivia
about the movie he is going to watch.

• A person wants to go to the movies tonight. She does not know yet which
movie to watch. She would like to get an idea about the latest releases,
browse the movies, and then see the showtimes in her town.

• A person has decided which movie to watch and wants to know the
showtimes in his town.

Dialogue Act Name

Content Dialogue Act

Default Dialogue Act

Transition Dialogue Act

Logical IDM (L-IDM)

Introductory Dialogue Act

Dialogue Act Name * Multiple Dialogue Act

Multiple Introductory Dialogue Act

Relevant Relation with
Transition strategy to be defined

D. Bolchini and F. Garzotto

205

Writer

Movie

Director

Actor

Connected to
0:n

Directed By

1:1

Directed

1:n

Starred in

1:n

Casted
1:n

Written by
1:nWrote

1:n

Company

Produced/Distributed/with Special Effects by

1:n

Produced/Distributed/Made Special Effects for

1:n

Top 10 Trailers

Now Playing By Month

Tops at the box office by Country

Tops at the box office by Year

Tops on Video this week

Tops on Video this year by Day

Tops on Video Archive by Day

Tops 100 Sellers DVD, VHS

Tops 100 Upcoming DVD, VHS

Future Releases DVD, VHS

Top Rated Movies by Genre

Top Rated Movies by Decade

Photo Gallery

My Movies
Indipendent Films

Showtime

Showtime & Tickets
by US City & Movie

Movies by Rating

Movies by Year

Movies by Country

Movies by Language

Movies by Genre

Movies by Location

Movies by Business info

Movies by Award

Movies by Keyword

Movies by Co-Stars

All biographies by letter

Prolific Biographies by Role

Top Biographies by Role

www.imdb.com
IDM Logical Map
May 2006

1

2

3

4

1 2 3 4

5

1 2 3 4 5

Goofs by Movie

Quotes by Movie

• Presentation
• Photos
• Full Cast & Crew
• User Comments
• External reviews
• Newsgroup reviews
• Awards & nominations
• User ratings
• Recommendations
• Message board
• Plot summary
• Plot keywords
• Amazon.com summary
• Memorable quotes
• Trivia
• Goofs
• Soundtrack listing
• Crazy credits
• Alternate versions
• Merchandising links
• Box office & business
• Release dates
• Filming locations
• Technical specs
• Laserdisc details
• DVD details
• Literature listings
• News articles
• Taglines
• Trailers
• Posters
• Official Sites
• External photo galleries
• Sound Clips
• Video Clips

• Presentation
• Biography
• Other works
• Publicity
• Contact information
• Photo gallery
• Resume
• News articles
• Message board

• Presentation
• Biography
• Other works
• Publicity
• Contact information
• Photo gallery
• Resume
• News articles
• Message board

• Presentation
• Biography
• Other works
• Publicity
• Contact information
• Photo gallery
• Resume
• News articles
• Message board

• Hours, Theathre

• Company Profile

Figure 8.4. IDM logical modeling of www.imdb.com.

Figure 8.5 shows the IDM logical schema for a PDA-version IMDB
application that we have designed to support the scenarios described above.

With respect to the conceptual design, the logical schema for the PDA
shows that there have been changes “in-the-large” concerning the
simplification of the content and the navigation possibilities, with the aim of
supporting the above-described scenarios and focusing on those that are
potentially the most “appealing” and useful for the situations of use
envisioned. In particular, two multiple topics have been removed (company
and writer) along with the attached relevant relations. The set of groups of
topics has been dramatically reduced, decreasing from more than 20 to 5,
thus offering few relevant options to browse the movies.

In comparison with the logical design for the Web, the logical schema for
the PDA have been simplified in the perspective of offering a more usable,
straightforward access to content and fewer but more relevant details about a
movie and the correlated topics. Namely, the many dialogue acts for the

8. Designing Multichannel Web Applications as “Dialogue Systems”

206

multiple topic “Movie” have been left out (e.g., soundtrack listing, crazy
credits, alternate versions, etc.) with the aim of offering the user a selection
of suggested content to browse. This design choice has also taken into
account the fact that managing a huge set of dialogue acts (more than 25 in
the Web version) would have made navigation within the topic very
cumbersome in the PDA version, thus negatively affecting the usability of
the application. Similarly, the decision to reduce the number of introductory
acts for the PDA will have a positive effect on the page’s design, which will
have to provide access to fewer options.

Figure 8.5. IDM logical schema for the PDA version of the IMDB application.

Movie

Director

Actor

Connected to
0:n

Directed By

1:1

Directed

1:n

Starred in

1:n

Casted
1:n

Now Playing

Tops on Video this week

Top Rated Movies by Genre

My Movies

Showtime

Showtime & Tickets
by US City & Movie

Movies by Genre

IMDB PDA
IDM Logical Map
May 2006

3

4

5

• Presentation
• Photos
• Full Cast & Crew
• User Comments
• Plot summary
• Trailers
• Posters
• Official Sites
• External photo galleries
• Sound Clips
• Video Clips • Presentation

• Biography
•Message board

• Presentation
• Biography

• Hours, Theathre

D. Bolchini and F. Garzotto

207

8.3.3 P-IDM: From Logical Design to Pages

IDM page design (P-IDM) means defining the elements to be communicated
to the user in a single dialogue act. With respect to previous decisions (see
the L-IDM schema), designers now have to craft the actual pages containing
the necessary elements to sustain the dialogue.

Note that page design should not yet go into wireframe design (defining
the visual page grid) or into layout design (how elements are physically
arranged in the grid) or into graphic design (actual rendering of the visual
elements in the page). Whereas all these aspects contribute to define the
visual communication strategy of the application, page design should
provide the proper input to these activities just by specifying the important
elements to be presented in the page.

In this view, there are simple guidelines for transitioning from L-IDM
(channel design) to P-IDM (page design):

• Each dialogue act becomes a page type.
• Each introductory act becomes a page type.
• Each transition act becomes a page type.
• Relevant topics become landmarks [i.e., links present in (almost) any

page]. Landmarks are usually either single topics or important groups of
topics that are always accessible.

• Relevant groups of topics become landmarks.

Different page types can be easily derived from dialogue acts,
introductory acts, and transition acts. We have a set of specific guidelines for
page derivation. Let us consider the following excerpt of the guidelines,
namely those specific for the page design of the dialogue acts. A page for a
dialogue act (e.g., Presentation) for a kind of topic (e.g., Movie) should
basically contain the elements listed in Table 8.1.
Table 8.1 Page Elements for a Dialogue Act

Page Element Description

Content The actual content of the dialogue act (e.g., text, graphics,
voice, video, audio, or any combination of these)

Structural links (if any) To pages of the other dialogue acts of the same topic

Transition links (if any) To pages of related topic (1:1) or to pages of transition acts (1:n)

Group of topic links Next-previous (in case of guided tour) or to pages of
introductory acts/introductory act I came from

Orientation info (if any) Messages communication “where I am”

Landmarks To relevant sections of the site (pages of single topics) or a
group of topics

8. Designing Multichannel Web Applications as “Dialogue Systems”

208

These hints serve as a reminder for the designer about the elements to

consider when building a page. Visual communication designers can then
make layout and graphic decisions on the basis of this input to create mock-
up prototypes or the final rendered page.

Figures 8.6 and 8.7 describe two Web pages of the IMDB Web site,
displaying, respectively, a Dialogue Act (“Presentation,” of the multiple
topic Movie) and an Introductory Act. Figure 8.8 shows the same dialogue
act as it is rendered in the PDA version of the application.

Figure 8.6. IDM page design elements on an instance of the multiple topic
“Movie”—Dialogue Act “Presentation” (www.imdb.com—accessed June 2006).

D. Bolchini and F. Garzotto

209

Figure 8.7. IDM page design elements for the Introductory Act “Movies Now Playing
(www.imdb.com—accessed June 2006).

Figure 8.8. IDM page design elements on an instance of the multiple topic
“Movie”—Dialogue Act “Presentation”—PDA version.

8. Designing Multichannel Web Applications as “Dialogue Systems”

“

210

8.4 IDM IMPLEMENTATION TOOLS

By their very nature, IDM design specifications are “abstract” and
semiformal: The main purpose of IDM is to act as a communication and
brainstorming tool among the project stakeholders involved in the design
process, and a number of details, especially those related to layout, are
omitted. Therefore, generating running applications from IDM specifications
cannot be performed in a totally automatic way. Still, we have built a
number of tools that support the development of IDM applications and
exploit some key concepts of the model. The last version of these tools is
called CHEF, which stands for Cultural Heritage Enterprise Framework
since it was originally built for a specific class of applications, in the
cultural heritage domain, as described in Garzotto and Megale, 2006.

CHEF can be regarded as an IDM application framework. It provides a
reusable implementation architecture for content-intensive multichannel
hypermedia that are designed using IDM, and it supports an IDM-based
design and development process. CHEF can be regarded as an application
“skeleton” that can be customized to produce a specific application.

Domain experts know the requirements of the end users of the product
under development, and they plan, select, structure, edit, and revise the
actual contents. Indeed, they can be considered among the “owners of
problems” for hypermedia frameworks and, therefore, the main target users
for this class of systems.

CHEF’s ultimate goal is therefore to empower application domain
experts to create and maintain the hypermedia artifacts built to communicate
their domain know-how, without the need for shoulder-by-shoulder trained
programmers. As such, CHEF is a particularly appropriate tool for
companies or institutions that cannot rely upon in-house programmers or IT
departments; it helps them to avoid expensive outsourcing aid so that they

D. Bolchini and F. Garzotto

The main originality of CHEF stems from its “philosophy,” which makes
it rather different from most of the existing hypermedia application
frameworks and development tools. The latter are traditionally designed by
software professionals and are conceived as tools for programmers. In
contrast, CHEF applies the concept of end-user development, which is
“about taking control” by non-computer professionals, “not only of
personalizing computer applications and writing programs, but of designing
new computer based applications without ever seeing the underlying
program code” (Wulf, 2004). In other words, CHEF shifts the perspective
from hypermedia application programmers to application domain experts:
professionals who lack technological expertise and usually remain in the
background of the development process, but are obviously crucial players.

211

can focus their financial resources on design and on high-quality content,
rather than on code production.

CHEF has been conceived for and with domain specialists in different
knowledge-intensive fields (e.g., cultural heritage, tourism, e-learning,

understand the (domain-independent) aspects of their process of information
production, communication, and management. CHEF provides a user-
friendly, easy-to-use, visual environment where domain experts can design
“by reuse” their applications, instantiate the resulting design schemas with
the proper multimedia contents (built using conventional multimedia
authoring tools), and generate high-quality multidevice hypermedia
applications without learning any specific implementation technology.

A simple interface guides the design process, which is carried on through
the customization of a general design space. The systematic instantiation of
the customized design is performed by a data entry interface that is
automatically customized to become consistent with the actual schemas,
without any implementation effort by the framework users. The paradigms
of learning-by-examples and immediate visual feedback are supported by
CHEF to facilitate the creation of a shared understanding within the
development team of what is achievable and of the effects of the different
design choices, leading to new insights, new ideas, and new artifacts.

More precisely, CHEF provides the following set of tools.

8.4.1 Customization Design Tool

This allows the domain expert to define IDM information, navigation, or
presentation schemas. This work can be regarded as a customization process
and comprises various activities.

During the definition of the information and navigation schemas, the
designer can specialize a set of general design data structures, which are
defined in the CHEF meta-model. This meta-model captures the general
IDM abstractions needed to specify the actual information and navigation
properties of the application under development. Information and navigation
design involves various tasks:

• the definition of (kinds of) topics by selecting, in the corresponding meta-
structure, the proper combination of attributes and cardinalities for the
(kind of) topics under definition; definition of relevant associations, by
specifying the association name and the kind of topics involved in the
relationship.

• the definition of (multiple) groups of topics, by selecting the kinds of
topic involved in each group under definition.

e-commerce), during a requirements elicitation process that has tried to

8. Designing Multichannel Web Applications as “Dialogue Systems”

212

• the definition of the various categories of acts (Dialogue, Introductory,
and Transition Acts), by mapping the attributes of the different kinds of
topics (Topics) into the different acts.

For page design, CHEF provides a library of Presentation Meta
Templates—basically abstract layout “grids” such as the ones adopted by
graphic designers during the very early stage of design. CHEF users can map
acts and patterns to the different Meta Template components, also specifying
landmarks elements and orientation information. The “concrete” layout can
be defined by decorating the so-instantiated meta-template with specific
visual or typographical properties (color, shape, size, etc.) and application-
specific elements (e.g., logos) to meet the “corporate image” requirements of
the application under development.

8.4.2 Instantiation Tool

This is a schema-driven data entry tool that supports the instantiation of the
various types of information and navigation structures defined as conceptual
and logical design in the different delivery devices.

For each instantiation task, the tools provide the editorial author with the
proper data entry “form” that is consistent with the current C-IDM and L-
IDM schemas of the application under development (and the proper delivery
channel). These forms are automatically generated by CHEF according to
the current design specifications (i.e., the parameters provided by the
customization tool).

8.4.3 Feedback Tools

Two original tools are offered in CHEF to meet the need for continuous
feedback during the design and instantiation activities process: the
Mockupper and the Previewer.

The Mockupper is used at design time. It exploits a fictitious set of
multimedia contents and links (prestored in CHEF) to automatically
instantiate the schemas of the current design and, by means of the generation
tool (discussed below), produces a fictitious application after a design
schema has been defined. The result can be regarded as a running demo that

D. Bolchini and F. Garzotto

• the definition of the various strategies, by mapping each (kind of) topic,
(multiple) group, and relevant association to the proper navigation
pattern (Garzotto et al., 1999). For this task, CHEF provides a pattern
library that includes the most popular navigation design patterns (Index,
GuidedTour, Index+GuidedTour, All-to-all), i.e., generic topologies that
are acknowledged as successful solutions to allow users to navigate
across groups of hypermedia “objects.”

213

allows the designer to experiment with the user interaction that results from
his design choices, helping him to decide how to adjust or improve them.

The Previewer is used during the instantiation activity. When a new
instance is created or updated, the Previewer allows developers to inspect the
effects of their work. The developer can see and navigate across the pages
for the instances created or updated with the same layout and navigation
capability that appears in the end-user application.

8.4.4 Generation Tool

CHEF supports both the dynamic generation of the online application pages
and the “batch” generation of “static” pages, which can be exploited for
offline use of the application, e.g., when the application is delivered on CD-
ROM or, more generally, when it cannot rely upon a client-server Web
architecture.

Dynamic generation is triggered by HTTP requests when a page is needed
during Web-based use of the application. In contrast, the generation tool
creates a static version of the entire application, by repeatedly simulating a
link activation and the corresponding page requests, invoking the dynamic
generation capability of the framework, and storing all pages of the
applications as they are generated.

The software architecture that implements CHEF tools is sketched in
Figure 8.9. In this figure we highlight different user profiles for the CHEF
framework:

• the editorial designer, i.e., the domain expert who shapes the general

properties of the application and takes the main design choices (for the
different channels)

• the editorial author, i.e., the domain expert who is responsible for
identifying the proper “cultural objects” of the domain and for
instantiating the design with the proper multimedia contents; the end
users of the final application, who may use it on different technological
contexts—Web-enabled or offline stationary workstation, and online or
offline PDA

Indeed, the CHEF software environment is the same for all these profiles,
since it serves both the execution of the customization and instantiation
operations and the dynamic generation of the final application on the
different technological contexts.

8. Designing Multichannel Web Applications as “Dialogue Systems”

214

Figure 8.9. The architecture of CHEF—an IDM application framework.

As highlighted in Figure 8.9, the framework architecture is modeled
according to the Model-View-Controller (MVC) design pattern. The MVC
pattern divides an application into three logical categories of objects: model,
view, and controller.

Model objects (collectively referred to as “Model”) represent application
domain data and the business rules that govern access and updates to this
data. View objects are responsible for rendering the contents of the Model
and forwarding user commands to the Controller.

Controller objects (collectively referred to as Controller) are responsible
for mapping user requests to operations on the Model, for executing them,
for building the proper View, and for returning them to the client. In Web
applications, user “commands” appear as HTTP page requests.

View objects typically correspond to HTML pages. Based on the page
request, the results of the operations on the Model, and the state of, the
Model, the Controller generates the next HTML page.

D. Bolchini and F. Garzotto

215

The main logical components of CHEF comprise

• a module for the configuration tool. This component creates the

configuration parameters for the customized design schemas and data
entry forms (stored in the Application Profile component) and selects the
proper navigation and presentation templates that will be used by the
customized instantiation tools and by the final application.

• a static compiler that implements the functionalities of the static pages
generation tool.

• a set of components for the dynamic generation of the pages requested by
the editorial manager, during the instantiation activities, and by the end
users of the final application. The dynamic generation approach exploits
a well-known approach in Web Engineering, separating the application
business logic from its presentation and control logic. The presentation
logic, delegated to the client side, manages user interaction and data
(dis)play. The control logic, delegated to the server side, interprets the
requests from the presentation level, manages the functionality defined
by the business logic (e.g., data retrieval or update, composition of the
required HTML page), and returns an HTML page to the presentation
level via the network infrastructure using the HTTP protocol.

So far, CHEF has been successfully implemented in three large projects,
where, in most cases, the framework users had limited or no programming
know-how:

• the EC project MEDINA #314 (MEDiterranean by INternet Access),

which is developing the “Portal on Mediterranean Cultural Heritage” for
Web-based stationary PCs (www.medinataproject.net) and PDAs, with
the contribution of Ministries of Tourism and Culture, Cultural Tourism
Associations, National Tourism Agencies, Museums and Cultural
Institutions, of 9 countries in the Mediterranean basin (Morocco, Tunisia,
Algeria, Cyprus, Malta, Lebanon, Palestinian Authority, Syria, Jordan)

• the Bramantino project, which produced hypermedia about the current
exhibition on Bramantino’s Adorations held in December 2005 at the
Biblioteca Ambrosiana Museum in Milan, available on the Web
(www.bramantino.it) and on CD-ROM for exhibition visitors

• SYRIA DGAM, which is developing the new Web site for the General
Directorate of Syrian Antiquities and Musuem, sponsored by the Syrian
Ministry of Tourism and the Syrian Ministry of Cultural Heritage, with
the partial contribution of the European Union.

8. Designing Multichannel Web Applications as “Dialogue Systems”

216

8.5 DISCUSSION AND CONCLUSIONS

Lightweight design processes and usability are being recognized, more and
more, as relevant for all the design methodologies, and for the design of
interactive applications in particular. Different factors are being implied
here:

• It should be easy to teach the design methodology (and the design model)

to anyone (from students to practitioners). Professionals, especially, do
not have the time and resources to invest in learning new methodologies;
one of the success factors of the “entity relationship” (probably the most
successful design model, ever) stems from the fact that it was very easy
to transmit its basic concepts, both in academia and in a professional
environment.

• It must be possible to use the design model for brainstorming, i.e., for
generating and discussing ideas among developers, with stakeholders,
and with potential users. It is of little use to have a design model capable
of representing only fully developed solutions.

• It must take little time to write down design ideas: Developers do not like
to spend too many resources on preliminary activities.

• It must be possible to move, smoothly, from a general design to a more
detailed design, without the need for excessive reworking and for
completeness; in other words, even an incomplete design document must
be useful and understandable.

IDM may appear to be an oversimplified model, with respect to other
models discussed in this book. Still, its simplicity has been gained not at the
expense of expressiveness, but at the expense of “technical details.”

IDM is mainly intended as a model for brainstorming design, where
people with different backgrounds (content experts, communication experts,
computer scientists, graphic designers, marketing people, etc.) throw in
ideas, which they then evaluate and discuss. A number of experiences (both
in academia and in industry environments) have proved that IDM, by
eliminating technical details and encouraging the expression of more
semantic features, works beautifully for this purpose: It can be used from the
very early stage of design (when decisions are still in the clouds) down to the
moment when details start to surface.

Other, more technical models (e.g., W2000 and WEBML, for example)
do not allow semantic annotation, but rather require the expression of a
number of details that cannot be known at the brainstorming phase: They can
be used to record decisions already made, rather than helping to make
decisions.

D. Bolchini and F. Garzotto

217

A second point is that the simplicity and the dialogue-oriented
terminology of IDM do not intimidate anyone and allow everybody around
the table to discuss design issues. A more tech-oriented model, in the best
case, may be used to “communicate” a design to nontechnical people, but
nontechnical people cannot use it to freely discuss ideas.

A third, crucial, point is about the usability of a design model, which
entails at least two key performance indicators: the amount of time required
for teaching the model and the amount of time necessary to sketch the design
of an application. The reduction in the time spent teaching the model has
been astonishing: In an engineering environment the time has been cut down
to 25% (moving from either W2000 or WEBML), with no loss at all in
understanding the issues. The reduction of time required to sketch the design
of an application (by several groups of students) can be estimated at
approximately 50% (with a similar reduction in the amount of paper
documentation being produced). Also, a few experiments in the “transfer” to
industry have shown that a half-day is enough to convey effectively all
important ideas in details, compared with the 1.5 or 2 days usually required
for training on our previous models.

The fourth, and perhaps most important, issue of all is about the quality of
design. We have verified something that was initially only a hypothesis:
Simplifying the technique and encouraging brainstorming (besides being less
“expensive” in terms of time) generally produce better design, in the sense of
requirements and goals satisfaction. Designers can focus on and discuss the
possible choices and their trade-offs, which leads to better solutions.

Currently, IDM is being used in seven different courses at Politecnico di
Milano (three undergraduate and four graduate ones) and five different
courses at the University of Lugano (two undergraduate and three graduate
ones): It has shown to be tremendously effective, significantly reducing the
teaching-learning effort and dramatically improving the quality of design.

We will discuss one example, to give an idea of what happened. TEC-CH
(Technology-Enhanced Communication for Cultural Heritage) is an
international master’s program (in English) awarded by the University of
Lugano (first edition: October 2004). We have enrolled 11 students (from
Switzerland, Italy, Romania, Sri Lanka, Ghana, Nigeria, and the United
States), 8 of whom have never designed an interactive application and only 1
of whom has experience in computer programming. An 8-hour lecture on
IDM was sufficient to convey the technique; in a 3-week-long intensive
class, these students were able to produce 3 complete projects (for real-life
problems) that were technically correct and, above all, superb in terms of
design solutions.

8. Designing Multichannel Web Applications as “Dialogue Systems”

218

As far as non-academic environments are concerned, we had a number of

episodes of transferring the methodology to industries (in the area of Milan,
Rome, and Southern Italy): In all situations IDM was highly appreciated for
its simplicity, expressiveness, and “efficiency.” In these contexts we also
used IDM for “reverse engineering,” i.e., conceptualizing what existing
applications do. Industry people were pleased by the possibility of easily
visualizing a complex application and, through the IDM notation, discussing
how their applications worked. As far as we know, those companies have
plans for extensive internal use of IDM, outside the groups that initially
cooperated with us.

APPENDIX: ONLINE APPLICATIONS DESIGNED
USING IDM

IDM has been validated in both the academic and industry environments, in
the design of a large number of content-intensive Web applications. The
most recent and relevant are listed below:

• MEDINA: a multichannel transnational portal for cultural tourism in the

Mediterranean, connecting the national Web sites for cultural tourisms of
nine Mediterranean countries; see an example at http://www.
medinaproject.net/tunisia/pages/

• MUNCH: a multichannel Web application for the Munch’s Prints
exhibition (State Museums of Berlin, April 2003); Web version:
http://www.munchundberlin.org; PDA version: http://munchpda.sytes.
net/simulatore.html (user id: 1)

• TEC-Lab: the Web site of the Technology-Enhanced Communication
Laboratory at the University of Lugano (Faculty of Communication
Sciences); http://www.tec-lab.ch

• SeRiAC: Web site for promoting accessibility research results and
initiatives for the Public Administration in Italy; http://www.seriac.net

• BRAMANTINO: a multichannel Web application for the exhibition on
Bramantino’s Adorations (Museo Ambrosiano di Milano, Dec. 2005–
Feb. 2006); http://hoc.elet.polimi.it/bramantino

• SYRIA TOURISM: official Web site of the Syrian Ministry of Tourism
(under redesign); http://www.syriatourism.org

• UNIVERSITY OF LUGANO: Web site for the Faculty of
Communication Sciences at the University of Lugano; http://www.com.
unisi.ch

D. Bolchini and F. Garzotto

219

REFERENCES

Baresi, L., Garzotto, F., and Paolini, P. 2001a, Extending UML for modeling Web
applications. In Proceedings IEEE 34th International Conference on System Sciences,
Maui, January.

Baresi, L., Garzotto, F., and Paolini, P., 2001b, Supporting reusable Web design with HDM-
Edit. In Proceedings IEEE 34th International Conference on System Sciences, Maui,
January.

Bolchini, D., and Paolini, P., 2006, Interactive dialogue model: A design technique for multi-
channel applications. IEEE Transactions on Multimedia, 8(3).

Garzotto, F., Mainetti, L., and Paolini, P., 1994, HDM2: Extending the E-R approach to
hypermedia application design. In Proceedings ER’04—International Conference on the
Entity Relationship Approach, R.A.-E. Vram Kouramajian and B. Thalheim, eds.

Garzotto, F., Mainetti, L., and Paolini, P., 1995, Hypermedia design, analysis, and evaluation
issues. Communications of the ACM, 38(8).

Garzotto, F., and Megale, L., 2006, CHEF: A user-centered perspective for cultural heritage
enterprise frameworks. In Proceedings ACM AVI’06, Venice, Italy, May.

Garzotto, F., and Paolini, P., 1993, A model-based approach to hypertext application design.
ACM Transactions on Information Systems, 11(1): 1–26.

Garzotto, F., Paolini, P., Bolchini, D., and Valenti S., 1999, “Modeling-by-patterns of Web
applications. In Proceedings WWWCM'99—World-Wide Web and Conceptual Modeling,
ER’99 Workshop, Paris.

Garzotto, F., Paolini, P., and Schwabe, D., 1991, HDM—A model for the design of hypertext
applications. In Proceedings ACM Hypertext '91, San Antonio, TX.

Garzotto, F., and Perrone, V., 2003, On the acceptability of conceptual design models for
Web applications. In Conceptual Modeling for Novel Application Domains—ER’03
Workshops Proceedings, M. A. Jeusfeld and Ó. Pastor, eds., Chicago, October.

“

8. Designing Multichannel Web Applications as “Dialogue Systems”

Wulf, V., Jarke, M., 2004, The Economics of End-User Development, Communication of
the ACM, 47(49): P.31

Chapter 9

DESIGNING WEB APPLICATIONS WITH
WEBML AND WEBRATIO

Dipartimento di Elettronica e Informazione, Politecnico di Milano, Pizza L. da Vinci 32,
20133, Milan, Italy

9.1 INTRODUCTION

The Web Modeling Language (WebML) is a third-generation Web design
methodology, conceived in 1998 in the wake of the early hypermedia models
and the pioneering works on hypermedia and Web design, like HDM
(Garzotto et al., 1993) and RMM (Isakowitz et al., 1995). The original goal
of WebML was to support the design and implementation of so-called data-
intensive Web applications (Ceri et al., 2002), defined as Web sites for
accessing and maintaining large amounts of structured data, typically stored
as records in a database management system, like online trading and e-
commerce applications, institutional Web sites of private and public
organizations, digital libraries, corporate portals, and community sites.

To achieve this goal, WebML reused existing conceptual data models
and proposed an original notation for expressing the navigation and
composition features of hypertext interfaces. WebML’s hypertext model
took an approach quite different from previous proposals: Instead of offering
a high number of primitives for representing all the possible ways to
organize a hypertext interface that may occur in data-intensive Web
applications, the focus was on inventing a minimal number of concepts,
which could be composed in well-defined ways to obtain an arbitrary
number of application configurations.

Marco Brambilla, Sara Comai, Piero Fraternali, Maristella Matera

222 M. Brambilla et al.

This initial design choice deeply influenced the definition of the language
and its evolution toward more complex classes of applications. Four major
versions of WebML characterize the progression of the language:

• WebML 1: The original version comprised only a fixed set of primitives
for representing read-only data-intensive Web sites; the focus was on the
modular organization of the interface, navigation definition, and content
extraction and publication in the interface.

• WebML 2: It added support for representing business actions (called
operations) triggered by the navigation of the user; in this way, the
expressive power was extended to support features like content
management, authentication, and authorization.

• WebML 3: The introduction of the concept of model plug-ins
transformed WebML into an open language, extensible by designers with
their own conceptual-level primitives, as to widen the expressive power
to cover the requirements of new application domains. This transition
emphasized the role of component-based modeling and was the base of
all subsequent extensions.

• WebML 4: The notion of a model plug-in was exploited to add
orthogonal extensions to the core of WebML, covering sectors and
applications not previously associated with model-driven development.
For example, Web service interaction and workflow modeling primitives
were added as plug-in components, to enable the modeling and
implementation of distributed applications for multi-actor workflow
enactment (Manolescu et al., 2005; Brambilla et al., 2006); other
extensions pointed in the direction of multichannel and context-aware
Web applications (Ceri et al., 2007).

A distinctive trait of the WebML experience is the presence of an

industrial line of development running in parallel to the academic research.
One of the original design principles of WebML was implementability,
with the ultimate goal of bringing model-driven development (MDD) to
the community of “real” developers. To achieve this objective, Politecnico
di Milano spun off a company (called Web Models) in 2001, with the
mission of implementing and commercializing methods and tools for
model-driven development of Web applications, based on WebML. Even
before then, WebML had been used for modeling and automatically
implementing an industrial project, the Acer-Euro system (http://www.
acer-euro.com), comprising the multilingual B2B and B2E content
publishing and management applications of Acer, the number 4 PC vendor
in the world.

9. Designing Web Applications with WebML and WebRatio 223

The major result of the industrial R&D is WebRatio (WebModels, 2006),
an integrated development environment supporting the modeling of
applications with WebML and their implementation with model-driven code
generators. Today WebRatio is a consolidated industrial reality: More than
100 applications have been developed by WebModels’ customers, over
4,000 trial copies are downloaded per year, and many universities and
institutions worldwide use the tool in their Web Engineering courses. In
retrospect, the most fruitful and challenging aspect of the interplay of
academic and industrial activity has been the continuous relationship
between researchers and “real–world,” “traditional” developers, which
produced essential feedback on the definition of a truly usable and effective
model-driven development methodology, which is (hopefully) reflected in
the current status of WebML and its accompanying tools.

In this chapter we will overview the core features of WebML and some
of its extensions and briefly comment on the usage experience. The chapter
is organized as follows: Section 9.2 presents an overview of the WebML
methodology and, in particular, introduces the WebML notations for the
definition of conceptual schemas. Section 9.3 describes the implementation
of the methodology and the architecture of the development tool supporting
it. Section 9.4 presents extensions of WebML for supporting Web service
composition and publication, workflow-driven Web applications, and
context-aware Web applications. Section 9.5 shortly summarizes some of the
lessons learned in the application of model-driven development with
WebML in industrial projects. Finally, Section 9.6 presents the ongoing and
future work and draws the conclusions.

9.2 THE WEBML METHODOLOGY

WebML is a visual language for specifying the content structure of a Web
application and the organization and presentation of such content in a
hypertext (Ceri et al., 2000, 2002).

224 M. Brambilla et al.

Figure 9.1. Phases in the WebML development process.

As reported in Figure 9.1, the WebML approach to the development of
Web applications consists of different phases. Inspired by Boehm’s spiral
model (Boehm, 1988) and in line with modern methods for Web and
software applications development (Beck, 1999; Booch et al., 1999;
Conallen, 2000), the WebML process is applied in an iterative and
incremental manner in which the various phases are repeated and refined
until results meet the application requirements. The product life cycle
therefore undergoes several cycles, each producing a prototype or a partial
version of the application. At each iteration, the current version of the
application is tested and evaluated and then extended or modified to cope
with the previously collected requirements as well as the newly emerged
requirements. Such an iterative and incremental life cycle appears
particularly appropriate for the Web context, where applications must be
deployed quickly (in “Internet time”) and requirements are likely to change
during development.

Out of the entire process illustrated in Figure 9.1, the “upper” phases of
analysis and conceptual modeling are those most influenced by the adoption
of a conceptual model. The rest of this section will introduce the WebML
notations for the definition of conceptual schemas. It will then illustrate the
different activities in the WebML development process, with special
emphasis on conceptual modeling activities. Some issues about
implementation through automatic code generation will be discussed in
Section 9.3, by showing how conceptual schemas defined during the
design phases can be translated into a running application using WebRatio.

Requirements
Analysis

Data Design

Hypertext Design

Conceptual Modeling
Business Requirements

Implementation

Testing &
Evaluation Deployment

Maintenance and
Evolution

9. Designing Web Applications with WebML and WebRatio 225

9.2.1 Requirements Analysis

Requirements analysis focuses on collecting information about the
application domain and the expected functions and on specifying them
through easy-to-understand descriptions. The input to this activity is the set
of business requirements that motivate the application development. The
main results of this phase are

• the identification of the groups of users addressed by the application.
Each group represents users having the same characteristics or playing
the same role within a business process, i.e., performing the same
activities with the same access rights over the same objects. The same
individual user may play different roles, thus belonging to different
groups.

• the specification of functional requirements that address the functions
to be provided to users. For each group of users, the relevant activities to
be performed are identified and specified.

• the identification of core information objects, i.e., the main information
assets to be accessed, exchanged, and/or manipulated by users.

• the decomposition of the Web application into site views, i.e., different
hypertexts designed to meet a well-defined set of functional and user
requirements. Each user group will be provided with at least one site
view supporting the functions identified for the group.

Analysts are expected to use their favorite format for requirements

specification; for instance, tabular formats can be used for capturing the
informal requirements such as group or site view descriptions; UML use
case diagrams and activity diagrams can also be used as standard
representations of usage scenarios and activity synchronization. In particular,
functional requirements might be captured by activity flow, showing
sequence, and parallelism and synchronization among the activities to be
performed by different user groups.

9.2.2 Conceptual Modeling

Conceptual modeling consists of defining conceptual schemas, which
express the organization of the application at a high level of abstraction,
independently from implementation details. According to the WebML
approach, conceptual modeling consists of data design and hypertext
design.

226 M. Brambilla et al.

Data design corresponds to organizing core information objects
previously identified during requirements analysis into a comprehensive and
coherent data schema, possibly enriched through derived objects.

Hypertext design then produces site view schemas on top of the data
schema previously defined. Site views express the composition of the
content and services within hypertext pages, as well as the navigation and
the interconnection of components. For applications where different user
groups perform multiple activities, or for multichannel applications, in which
users can adopt different access devices, hypertext design requires the
definition of multiple site views, addressing the user groups involved and
their access requirements.

The models provided by the WebML language for data and hypertext
design are briefly described in the following. A broader illustration of the
language and its formal definition can be found in Ceri et al. (2000, 2002)
and at http://www.webml.org.

9.2.2.1 WebML Data Model

Data design is one of the most traditional and consolidated disciplines of
information technology, for which well-established modeling languages and
guidelines exist. For this reason, WebML does not propose yet another data
modeling language; rather, it exploits the entity-relationship data model, or
the equivalent subset of UML class diagram primitives. The fundamental
elements of the WebML data model are therefore entities, defined as
containers of data elements, and relationships, defined as semantic
connections between entities. Entities have named properties, called
attributes, with an associated type. Entities can be organized in
generalization hierarchies and relationships can be restricted by means of
cardinality constraints.

In the design of Web applications it is often required to calculate the
value of some attributes or relationships of an entity from the value of some
other elements of the schema. Attributes and relationships so obtained are
called derived. Derived attributes and relationships can be denoted by adding
a slash character (/) in front of their name, and their computation rule can be
specified as a logical expression added to the declaration of the attribute or
relationship, as is customary in UML class diagrams (Booch et al., 1999).
Derivation expressions can be written using declarative languages like OQL
or OCL.

9. Designing Web Applications with WebML and WebRatio 227

RegisteredUser

UserName
Password
EMail

UserComment

Comment
Rate
Title
Comment_Date

0:N0:N

Movie

Title
Year

Description
Official_site

1:10:N

Actor

FirstName
LastName
BirthPlace
BirthDate
Photo

0:N

1:N

Month

OID

OID

OID OID

/NumOfComments

/NumOfComments {Count(Movie.MovieToUserComment}
Derived attribute:

Figure 9.2. A fragment of data schema of the Movie database Web application.

Figure 9.2 shows a small fragment of the data schema of the Movie
database example, containing the entities Movie, UserComment,
RegisteredUser, Actor, and their relationships. The entity Movie contains
one derived attribute /NumOfComments, which is computed as the value of
the expression Count(Movie.MovieToUserComment). This expression counts
the number of comments associated with a movie according to the
MovieToUserComment relationship role between the entities Movie and
UserComment.

9.2.2.2 WebML Hypertext Model

The hypertext model enables the definition of the front-end interface, which
is shown to a user in the browser. It enables the definition of pages and their
internal organization in terms of components (called content units) for
displaying content. It also supports the definition of links between pages and
content units that support information location and browsing. Components
can also specify operations, such as content management or user’s
login/logout procedures. These are called operation units.

The modular structure of an application front end is defined in terms of
site views, areas, pages, and content units. A site view is a particular
hypertext, designed to address a specific set of requirements. It consists of
areas, which are the main sections of the hypertext, and comprises
recursively other subareas or pages. Pages are the actual containers of
information delivered to the user.

Several site views can be defined on top of the same data schema, for
serving the needs of different user communities or for arranging content as
requested by different access devices like PDAs, smart phones, and similar
appliances.

228 M. Brambilla et al.

MOVIE DB

ShoppingCart Area

HomePage H

L

Movies Area

ShoppingCart Data

RecentMoviesList SearchMovies

D

D

InsertComment

Figure 9.3. Example of site view modularization based on areas and pages.

Figure 9.3 gives an example of the organization of pages and areas in a

site view, considering a fragment of the Movie database Web application.
The site view is composed of a home page, which is the first page accessed
when the user enters the application. The site view also comprises two areas:
the Shopping Cart area, including only one page through which the user
manages his current shopping cart; and the Movies area, including three
pages that show the list of recent movies, support the search of movies, and
allow the user to enter comments.

Pages and areas are characterized by some relevance properties, which
highlight their “importance” in the Web site. In particular, pages inside an
area or site view can be of three types:

• The home page (denoted with a small “h” inside the page icon) is the

page at the default address of the site view, or the one presented after the
user logs into the application; it must be unique.

• The default page (denoted with a small “d” inside the page icon) is the
one presented by default when its enclosing area is accessed; it must be
unique within an area. In the example in Figure 9.3, the Shopping Cart
Data page and the Recent Movies List page are default pages for their
enclosing areas. This implies that the two pages are entry points for the
two areas.

• A landmark page (denoted with a small “l” inside the page icon) is
reachable from all the other pages or areas within its enclosing module.
For example, in Figure 9.3 the home page is also a landmark page,
meaning that a link to it will be available from any other page of the site
view.

9. Designing Web Applications with WebML and WebRatio 229

Table 9.1. The Five Predefined Content Units in WebML

Data Unit Multidata
Unit

Index Unit Scroller Unit Entry Unit

Page composition. Pages are made of content units, which are the

elementary pieces of information, possibly extracted from data sources,
published within pages. Table 9.1 reports the five WebML predefined
content units, representing the elementary information elements that may
appear in the hypertext pages.

Units represent one or more instances of entities of the structural schema,
typically selected by means of queries over the entity attributes or over
relationships. In particular, data units represent some of the attributes of a
given entity instance; multidata units represent some of the attributes of a set
of entity instances; index units present a list of descriptive keys of a set of
entity instances and enable the selection of one of them; scroller units enable
the browsing of an ordered set of objects. Finally, entry units do not draw
content from the elements of the data schema, but publish a form for
collecting input values from the user.

Data, multidata, index, and scroller units include a source and a selector.
The source is the name of the entity from which the unit’s content is
retrieved. The selector is a predicate, used for determining the actual objects
of the source entity that contribute to the unit’s content. The previous
collection of units is sufficient to logically represent arbitrary content on a
Web interface (Ceri et al., 2002). However, some extensions are also
available, for example, the multichoice and the hierarchical indexes reported
in Table 9.2. These are two variants of the index unit that allow one to
choose multiple objects and organize a list of index entries defined over
multiple entities hierarchically.

Link definition. Units and pages are interconnected by links, thus
forming a hypertext. Links between units are called contextual, because they
carry some information from the source unit to the destination unit. In
contrast, links between pages are called noncontextual.

Entity
[conditions]

Data unit Multidata unit

Entity
[conditions]

Index unit

Entity
[conditions]

Scroller unit

Entity
[conditions]

Entry unit

230 M. Brambilla et al.

Table 9.2. Two Index Unit Variants

Multichoice

Unit
Hierarchical

Unit

In contextual links, the binding between the source unit and the

destination unit of the link is formally represented by link parameters,
associated with the link, and by parametric selectors, defined in the
destination unit. A link parameter is a value associated with a link between
units, which is transported as an effect of the link navigation, from the
source unit to the destination unit. A parametric selector is, instead, a unit
selector whose condition contains one or more parameters.

Figure 9.4. Example of contextual and noncontextual navigation.

As an example of page composition and unit linking, Figure 9.4 reports a
simple hypertext, containing two pages of the Movies Area. The page
Recent Movies List contains an index unit defined over the Movie entity,
which shows the list of movies shown in the last month, and a data unit also

Multichoice Index

Entity
[conditions]

HierarchicalIndex

Entity1
[Selector1]

NEST Entity2
[Selector2]

 RecentMoviesList SearchMovies

Movie
[Year=system.year()]

[Month=system .month()]

Movie
[OID=CurrMovie]

CurrMovie:OID

Movie
[Title contains keyword]

RecentMovies
Index Movie details Entry unit Scroller unit

Movies
multidata

Movie
[OID in BlockMovies]

keyword

BlockMovies:{OID}D

9. Designing Web Applications with WebML and WebRatio 231

defined over the Movie entity, which displays the details of the movie
selected from the index. Two selectors ([Year=system.year()],
[Month=system.month()]) are defined to restrict the selection only to the
movies of the current month and year. The arrow between the two units is a
contextual link, carrying the parameter CurrMovie, containing the object
identifier (OID) of the selected item. The data unit includes a parametric
selector ([OID=CurrMovie]), which uses the input OID parameter to retrieve
the data of the specific movie.

OIDs of the objects displayed or chosen from the source unit are
considered the default context associated with the link. Therefore, OID
parameters over links and parametric selectors testing for OID values can be
omitted and simply inferred from the diagram.

An example of a noncontextual link is shown from the Recent Movies
List page to the Search Movies page: This link does not carry any
parameter, because the content of the destination page does not depend on
the content of the source page.

The page Search Movies shows an interesting hypertext pattern; it
contains three units: an entry unit denoting a form for inserting the keyword
of the title to be searched, a scroller unit defined over the Movie entity and
having a selector for retrieving only the movies containing that keyword in
their titles ([Title contains keyword]), and a multidata unit displaying a
scrollable block of search results. Through the scroller unit it is possible to
move to the first, previous, next, and last blocks of results.

Automatic and transport links. In some applications, it may be necessary
to differentiate a specific link behavior, whereby the content of some units is
displayed as soon as the page is accessed, even if the user has not navigated
its incoming link. This effect can be achieved by using automatic links. An
automatic link, graphically represented by putting a label “A” over the link,
is “navigated” in the absence of a user’s interaction when the page that
contains the source unit of the link is accessed.

Also, there are cases in which a link is used only for passing contextual
information from one unit to another and thus is not rendered as an anchor.
This type of link is called a transport link, to highlight that the link enables
only parameter passing and not interaction. Transport links are graphically
represented as dashed arrows.

232 M. Brambilla et al.

Figure 9.5. Example of automatic and transport links.

Consider the example in Figure 9.5, extending the content of the page
Recent Movies List shown in Figure 9.4. The link between the index and
the data unit has been defined as automatic: When the page is accessed, the
details of the first movie appearing in the index will be shown to the user,
without the need for her interaction. A multidata unit has been added to
show the names of the actors playing in the selected movie. A transport link
is used to pass the OID of the current movie to the multidata unit. This OID
is used by the multidata unit in a parametric selector associated with the
MovieToActor relationship defined between the entities Movie and Actor to
retrieve only the actors associated with the current movie. Note that the
automatic link admits the user’s interaction for selecting a different movie
and is thus rendered as an anchor; conversely, the output link of the data unit
does not enable any selection and thus is defined as transport and is not
rendered as an anchor.

Global parameters. In some cases, contextual information is not
transferred point to point during navigation but can be set as globally
available to all the pages of the site view. This is possible through global
parameters, which abstract the implementation-level notion of session-
persistent data.

Parameters can be set through the Set unit and consumed within a page
through a Get unit. The visual representation of such two units is reported in
Table 9.3. An example of use of the get unit will be shown in the next
subsection.

Operations. In addition to the specification of read-only Web sites, where
user interaction is limited to information browsing, WebML also supports
the specification of services and content management operations requiring
write access over the information hosted in a site (e.g., the filling of a
shopping trolley or an update of the users’ personal information). WebML
offers additional primitives for expressing built-in update operations, such as
creating, deleting, or modifying an instance of an entity (represented through
the create, delete, and modify units, respectively) or adding or dropping a

 RecentMoviesList

RecentMovie Movie
[OID=CurrMovie]

CurrMovie:OID
RecentMovies

Index Movie details Actors multidata

Actor
[MovieToActor (CurrMovie)]

CurrMovie:OID
A

9. Designing Web Applications with WebML and WebRatio 233

relationship between two instances (represented through the connect and
disconnect unit, respectively). The visual representation of such units is
reported in Table 9.4.

Table 9.3. The WebML Global Parameter Units

Table 9.4. The WebML Operation Units

Other utility operations extend the previous set. For example, login and

logout units (see Table 9.5) are respectively used (1) for managing access
control and verifying the identity of a user accessing the application site
views and (2) for closing the session of a logged user.

Operation units do not publish the content to be displayed to the user but
execute some processing as a side effect of the navigation of a link. Like
content units, operations may have a source object (either an entity or a
relationship) and selectors, may receive parameters from their input links,
and may provide values to be used as parameters of their output links. The
result of executing an operation can be displayed in a page by using an
appropriate content unit, for example, a data or multidata unit, defined over
the objects updated by the operation.

Get Unit Set Unit

Get unit

Parameter

Set unit

Parameter

Create
Unit

Modify
Unit

Delete
Unit

Connect
Unit

Disconnect
Unit

Create

Entity
<param := value>

Modify

Entity
[Conditions]

<param := value>

Delete

Entity
[conditions]

Connect

Relationship

Disconnect

Relationship

234 M. Brambilla et al.

Table 9.5. Login and Logout Operations, Supporting Site View Access Control

Regardless of their type, WebML operations may have multiple incoming

contextual links, which provide the parameters necessary for executing the
operation. One of the incoming links is the activating link (the one followed
by the user for triggering the operation), while the others just transport
contextual information and parameters, for example, the identifiers of some
objects involved in the operation.

Two or more operations can be linked to form a chain, which is activated
by firing the first operation. Each operation can have two types of output
links: one OK link and one KO link. The former is followed when the
operation succeeds; the latter when the operation fails. The selection of the
link to follow (OK or KO) is based on the outcome of the operation
execution and is under the responsibility of the operation implementation.

InsertComment

Entry unit

Movie

Movie details

Get unit

CurrentUser

Create

UserComment

Connect

UserCommentTo
RegisteredUser

Connect

UserCommentTo
Movie

OK OK OK
Comment

Figure 9.6. Example of content management.

The example in Figure 9.6 shows the content of the Insert Comment page

in the Movies area. Through the entry unit the user can insert a comment for
the movie currently displayed by the Movie details data unit. A get unit is
defined to retrieve the data of the currently logged user, which have been
stored in a global parameter after the login. When the user submits a comment,
a chain of operations is triggered and executed: First, a new comment instance
is created in the UserComment entity, containing the text inserted by the user;
then, the new comment is associated to the current user (by creating a new

Login Unit Logout Unit

Login Logout

9. Designing Web Applications with WebML and WebRatio 235

instance of the relationship UserCommentToRegisteredUser) and to the
current movie (relationship UserCommentToMovie). In the example, KO links
are not explicitly drawn: By default, they lead the user to the page from which
the operation chain has been triggered.

9.2.3 Other Development Phases
The phases following conceptual modeling consist of implementing the
application, testing and evaluating it in order to improve its internal and
external quality, deploying it on top of a selected architecture, and
maintaining and possibly evolving the application once it has been deployed.

As described in more details in Section 9.3, the WebRatio development
environment (WebModels, 2006) largely assists the implementation phase.
First of all, it offers a visual environment for drawing the data and hypertext
conceptual schemas. Such visual specifications are then stored as XML
documents, which are the inputs for the WebML code generator, which then
produces the data and hypertext implementation.

For space reasons, the remaining phases of the application life cycle are
only hinted at in this chapter, but they are nonetheless well supported by
WebML and WebRatio. In particular:

• The model-driven approach benefits the systematic testing of

applications, thanks to the availability of the conceptual model and the
model transformation approach to code generation (Baresi et al., 2005).
With respect to the traditional testing of applications, the focus shifts
from verifying individual Web applications to assessing the correctness
of the code generator. The intuition is that if one could ensure that the
code generator produces a correct implementation for all legal and
meaningful conceptual schemas (i.e., combinations of modeling
constructs), then testing Web applications would reduce to the more
treatable problem of validating the conceptual schema. The research
work conducted in this area has shown that it is possible to quantitatively
evaluate the confidence in the correctness of a model-driven code
generator, by formally measuring the coverage of a given test set (that is,
of a set of sample conceptual schemas) with respect to the entire universe
of syntactically admissible schemas. Different notions of coverage have
been proposed, and heuristic rules have been derived for minimizing the
number of test cases necessary to reach the desired coverage level of the
testing process.

• Model-driven development also fosters innovative techniques for quality
assessment. The research in this area has led to a framework for the
model-driven and automatic evaluation of Web application quality
(Fraternali et al., 2004; Lanzi et al., 2004; Meo and Matera, 2006). The

236 M. Brambilla et al.

framework supports the static (i.e., compile-time) analysis of conceptual
schemas and the dynamic (i.e., run-time) collection of Web usage data to
be automatically analyzed and compared with the navigation dictated by
the conceptual schema. The static analysis is based on the discovery in
the conceptual schema of design patterns and on their automatic
evaluation against quality attributes encoded as rules. Conversely, usage
analysis consists of the automatic examination and mining of enriched
Web logs, called conceptual logs (Fraternali et al., 2003), which correlate
common HTTP logs with additional data about (1) the units and link
paths accessed by the users, and (2) the database objects published within
the viewed pages.

• In a model-driven process, maintenance and evolution also benefit from
the existence of a conceptual model of the application. Requests for
changes can in fact be turned into changes at the conceptual level, either
to the data model or to the hypertext model. Then, changes at the
conceptual level are propagated to the implementation. This approach
smoothly incorporates change management into the mainstream
production life cycle and greatly reduces the risk of breaking the software
engineering process due to the application of changes solely at the
implementation level.

9.3 IMPLEMENTATION

Application development with WebML is assisted by WebRatio
(WebModels, 2006), a commercial tool for designing and implementing
Web applications. The architecture of WebRatio (shown in Figure 9.7)
consists of two layers: a design layer, providing functions for the visual
editing of specifications, and a run-time layer, implementing the basic
services for executing WebML units on top of a standard Web application
framework.

The design layer includes a graphical user interface (shown in Figure 9.8)
for data and hypertext design, which produces an internal representation in
XML of the WebML models. A data mapping module, called Database
Synchronizer, maps the entities and relationships of the conceptual data
schema to one or more physical data sources, which can be either created by
the tool or pre-existing. The Database Synchronizer can forward- and
reverse-engineer the logical schema of an existing data source, propagate the
changes from the conceptual data model to the physical data sources, and
vice versa.

9. Designing Web Applications with WebML and WebRatio 237

Style sheet library

Built-in tag
libraries

HTML

Third party
authoring

tools

XML XSL

Data Mapping

Data Design Site Design Presentation

WebRatio Design Layer

Code Generator

Application Server

WebRatio Runtime Layer

Data
Sources

Unit library

Custom
components

Custom unit
library

Figure 9.7. The WebRatio architecture.

Figure 9.8. WebRatio’s graphical user interface.

238 M. Brambilla et al.

A third module (called EasyStyler Presentation Designer) offers
functionality for defining the presentation style of the application, allowing
the designer to create XSL stylesheets from XHTML mock-ups, associate
XSL styles with WebML pages, and organize page layout, by arranging the
relative position of content units in each page.

The design layer is connected to the run-time layer by the WebRatio code
generator, which exploits XSL transformations to translate the XML
specifications visually edited in the design layer into application code
executable within the run-time layer, built on top of the Java2EE platform.
In particular, a set of XSL translators produces a set of dynamic page
templates and unit descriptors, which enable the execution of the application
in the run-time layer. A dynamic page template (e.g., a JSP file) expresses
the content and markup of a page in the markup language of choice (e.g., in
HTML, WML, etc.). A unit descriptor is an XML file that expresses the
dependencies of a WebML unit from the data layer (e.g., the name of the
database and the code of the SQL query computing the population of an
index unit).

The design layer, code generator, and run-time layer have a plug-in
architecture: New software components can be wrapped with XML
descriptors and made available to the design layer as custom WebML units,
the code generator can be extended with additional XSL rules to produce the
code needed for wrapping user-defined components, and the components
themselves can be deployed in the run-time application framework. As
described in the following section, such a plug-in architecture has been
exploited to extend WebRatio to support new WebML constructs that have
been recently defined for covering advanced modeling requirements.

9.4 ADVANCED FEATURES

The core concepts of WebML have been extended to enable the specification
of complex applications, where Web services can be invoked, the navigation
of the user is driven by process model specifications, and page content and
navigation may be adapted (like in a multichannel, mobile environment). In
the next subsections we briefly present the extensions that have been
integrated in the WebML model for designing service-enabled, process-
enabled, and context-aware Web applications.

9. Designing Web Applications with WebML and WebRatio 239

9.4.1 Service-Enabled Web Applications
Web services have emerged as essential ingredients of modern Web
applications: They are used in a variety of contexts, including Web portals
for collecting information from geographically distributed providers or B2B
applications for the integration of enterprise business processes.

To describe Web services interactions, WebML has been extended with
Web service units (Manolescu et al., 2005), implementing the WSDL (W3C,
2002) classes of Web service operations.

We start by recalling some basic aspects of WSDL, providing the
foundation of the proposed WebML extensions. A WSDL operation is the
basic unit of interaction with a service and is performed by exchanging
messages.

Two categories of operations are initiated by the client:

• One-way operations consist of a message sent by the client to the service.
• Request-response operations consist of one request message sent by the

client and one response message built by the service and sent back to the
client.

Two other operation categories are initiated by the service:

• Notification operations consist of messages sent to the service.
• Solicit and response operations are devised for receiving request

messages sent to the service and providing messages as responses to the
client.

WebML supports all four categories of operations. In particular, we

interpret the operations initiated by the service as a means for Web services
publishing. Therefore, we assume that these operations will not be used
within the traditional hypertext schemas representing the Web site, but
within appropriate Service views, which contain the definition of published
services. The operations initiated by the client are instead integrated within
the specification of the Web application. In the following subsections we
will see how they can be specified in WebML and present some examples
applied to the Movie database running case.

9.4.1.1 Modeling Web Applications Integrated with Web Services

The specification of Web service invocation from within a Web application
exploits the request-response and one-way operations. Here we show an
example of a request-response operation. Suppose we want to extend the
Movie database Web application with the possibility of retrieving books
related to a particular movie from a remote Web service (e.g., the Amazon

240 M. Brambilla et al.

Web service). Assume that the request-response operation SearchBooks
allows one to obtain a list of books meeting search criteria provided as input
to the service (e.g., keywords contained in the title). The remote Web service
responds with the list of books meeting the given search criteria.

The WSDL request-response operation is modeled through the request-
response unit, whose graphical notation is shown in Figure 9.9. This
operation involves two messages: the message sent to the service and the
message received from the service. The corresponding unit is labeled with
the Web service operation name and includes two arrows that represent the
two messages. This operation is triggered when the user navigates one of its
input links; from the parameters transferred by these links, a message is
composed and then sent to a remote service as a request. The user waits until
the arrival of the response message from the invoked service; then she can
resume navigation from the page reached by the output link of the Web
service operation unit.

Figure 9.9. Example of usage of the request-response operation.

In the example in Figure 9.9, the user can browse to the Search page,

where an entry unit permits the input of search criteria, preloaded from the
currently selected movie. From this information, a request message is
composed and sent to the SearchBooks operation of the Web service
exposed by the service provider. The user then waits for the response
message, containing a list of books satisfying the search criteria. From these
options, a set of instances of the Book entity is created through the XML-in
operation unit (which receives as input XML data and transforms them into
relational data) and displayed to the user by means of the Book Index unit;
the user may continue browsing, e.g., by choosing one of the displayed
books. Further details about data transformations and about the storage of
data retrieved from Web services can be found in recent publications
(Manolescu et al., 2005).

One-way operations are modeled in a similar way: The main difference is
that the service will not provide any response. Therefore, once the message
is sent to the service, the user continues navigation without waiting for the
response.

 Search page
Enter data

keyword

SearchBooks

Book page
BookIndex

Book
Movie

Movie details

Book

XML-in
XML

9. Designing Web Applications with WebML and WebRatio 241

9.4.1.2 Modeling Web Services Publishing

WebML also supports the publication of Web services that can be invoked
by third-party applications. From the application point of view, no user
interaction is required in a published Web service. The actions to be
performed when the notification or the solicit-response operations are
triggered are not specified through pages, but as a chain of operations (e.g.,
for storing or retrieving data, or for executing generic operations such as
sending emails). Therefore, the publishing of Web services can be specified
separately from the site view of a Web application. We introduce the
following concepts:

• Service view: a collection of ports that expose the functionality of a Web

service through WSDL operations
• Port: the individual service, composed by a set of WSDL operations;

each individual WSDL operation is modeled through a chain of WebML
operations starting with a solicit-response and/or notification operation

Therefore, the business logic of a WSDL operation is described by a

chain of WebML operations, specifying the actions to be performed as a
consequence of the invocation of the service, and possibly building the
response message to be sent back to the invoker. Each WSDL operation
starts with a solicit unit, which triggers the service, and possibly ends with
the response unit, which provides a message back to the service. Here we
show an example of a solicit-response operation.

Suppose we want to extend the Movie database application with the
publication of a service providing the list of movies satisfying search
criteria. The WSDL operation is modeled through a chain of WebML
operations starting with the solicit unit (SearchSolicit), shown in Figure
9.10. The solicit unit receives the SOAP message from the requester and
decodes the search keywords, passing them as parameters to the next
WebML operation in the sequence. This is a so-called XML-out (Manolescu
et al., 2005) operation unit, which extracts from the database the list of
movies that correspond to the specified conditions and formats it as an XML
document. After the XML-out operation, the composition of the response
message is performed through the response unit (SearchResponse).

Figure 9.10. Example of usage of the solicit-response operation.

SearchMovies

SearchSolicit

SearchMovies

SearchResponse

Movie
[Attributes match Keywords]

XML-out

XML

Keywords

242 M. Brambilla et al.

Notice that the schema of Figure 9.10 can be seen as the dual specification
of the SearchBooks service invocation pattern, represented in Figure 9.9.

In addition to the above-mentioned examples, WebML also supports the
exchange of asynchronous messages (Brambilla et al., 2004) and complex
Web service conversations (Manolescu et al., 2005).

From the implementation standpoint, the deployment and publishing of
Web services required the extension of the run-time WebRatio with a SOAP
listener able to accept SOAP requests.

9.4.2 Process-Enabled Web Applications

Today the mission of Web applications is evolving from the support of
online content browsing to the management of full-fledged collaborative
workflow-based applications, spanning multiple individuals and
organizations. WebML has been extended for supporting lightweight Web-
enabled workflows (Brambilla, 2003; Brambilla et al., 2003, 2007), thus
transferring the benefits of high-level conceptual modeling and automatic
code generation also to this class of Web applications.

Integrating hypertexts with workflows means delivering Web interfaces
that permit the execution of business activities and embodying constraints
that drive the navigation of users. The required extensions to the WebML
language are the following:

• Business process model: A new design dimension is introduced in the

methodology. It consists of a workflow diagram representing the
business process to be executed, in terms of its activities, the precedence
constraints, and the actors/roles in charge of executing each activity.

• Data model: The data model representing the domain information is
extended with a set of objects (namely, entities and relationships)
describing the meta-data necessary for tracking the execution of the
business process, both for logging and for constraints evaluation
purposes.

• Hypertext model: The hypertext model is extended by specifying the
business activity boundaries and the workflow-dependent navigation
links.

Besides the main models, the proposed extension affects the following

aspects of the WebML methodology:

• Development process: Some new phases are introduced in the
development process, to allow the specification of business processes
and their integration in the conceptual models (see Figure 9.11).

9. Designing Web Applications with WebML and WebRatio 243

• Design tools: A new view shall be introduced for supporting the design

of the workflow models within the WebML methodology.
• Automatic generation tools: A new transformer is needed for translating

workflow diagrams into draft WebML specifications of the Web
applications implementing the process specification.

Figure 9.11. Steps of the proposed methodology: Square boxes represent the design steps and
the involved tools; bubbles represent the expected results of each step.

The following sections present the details of the process-related

extensions, by referring to a specific aspect of the Internet movie database
case study, namely the subscription process. Details will be provided about
the new features of the development process, the business process modeling,
and the data and hypertext modeling.

9.4.2.1 Extensions to the Development Process

The development process is enriched by a set of new design tasks and
automatic transformations that addresses the workflow aspects of the
application. Figure 9.11 shows the expected steps of the development, the
results of each steps, and the involved tools: Through a visual workflow
editor, the analyst specifies the business process model to be implemented;
the designed workflow model can be processed by an automatic
transformation that generates a set of hypertext skeletons implementing the
specified behavior; the produced skeletons can be modified by designers by
means of CASE tools for conceptual Web application modeling; the
resulting models can be processed by automatic code generators that produce
the running Web application.

9.4.2.2 Workflow Model and Design Tool

Many standard notations have been proposed to express the structure of
business processes. For our purposes, we adopt the Business Process
Management Notation (BPMN), which covers the basic concepts required by
WfMC (Workflow Management Coalition) and is compatible with Web
service choreography languages (e.g., BPEL4WS) and standard business
process specification languages (e.g., XPDL). A visual design tool for
business processes has been implemented for covering this design phase.
The tool is an Eclipse plug-in and allows one to specify BPMN diagrams.

Worflow
editor

WF-driven
hypertext
generator

Business
process
models

WebML
hypertext
skeletons

WebML
hypertext
models

Running
web

application

WebML
editor

WebRatio
code

generator

244 M. Brambilla et al.

Figure 9.12 shows a subscription process that could apply to the Movie
database scenario (the case study has been extended to avoid a simplistic
example): The user specifies whether he is a private customer or a company,
then he alternatively submits the company or his own personal information,
and finally a user manager accepts the subscription.

Figure 9.12. Subscription process represented in BPMN in the BP design tool.

9.4.2.3 Data Model Extensions: Workflow Meta-Data

The extensions to the data model include some standard entities for
recording activities instances and process cases, thus allowing one to store
the state of the business process execution and enacting it accordingly. The
adopted meta-model is very simple (see Figure 9.13): The Case entity stores
the information about each instantiation of the process, while the Activity
entity stores the status of each activity instance executed in the system. Each
activity belongs to a single case. Connections to user and application data
can be added, for the purpose of associating domain information to the
process execution. Typical requirements are the assignment of application
objects to activity instances and the tracking of the relation between an
activity and its executor (a user).

Notice that the proposed meta-model is just a guideline. The designer can
adopt more sophisticated meta-data schemas or even integrate with
underlying workflow engines through appropriate APIs (e.g., Web services)
for tracking and advancing the process instance.

9. Designing Web Applications with WebML and WebRatio 245

Figure 9.13. Workflow meta-data added to the data model.

9.4.2.4 Hypertext Model Extensions: Activities and Workflow Links

The hypertext model is extended with two new primitives:

• Activity: An activity is represented by an area tagged with a marker “A.”
The whole hypertext contained in the area is the implementation of the
activity.

• Workflow link: Workflow links are links that traverse the boundary of
any activity area. They are used for hypertext navigation, but their
behavior includes workflow logic, which is not explicitly visible in the
hypertext. Every link entering an activity represents the start of the
execution of the activity; every outgoing link represents the end of the
activity. The actual behavior of the workflow links is specified by a
category associated with the link.

Incoming links can be classified as Start link, allowing an existing

activity to start from scratch; Start case link, allowing one to create a new
case and a new activity and to start them; Create link, allowing one to create
a new activity and start it; Resume link, allowing one to resume the
execution of an activity once it has been suspended.

Outgoing links can be classified as Complete link, which closes the
activity and sets its status to completed; Complete case link, which closes the
activity and the whole case, setting their status to completed; Suspend link,
which suspends the execution of an activity (that can be resumed later
through a resume link); Terminate link, which closes the activity and sets its
status to terminated (e.g., for exception management).

Notice that if and switch units can be used to express navigation
conditions. Moreover, a specific approach has been studied for managing
exceptions within workflow-based Web applications (Brambilla et al., 2005;
Brambilla and Tziviskou, 2005), but it is not discussed here for the sake of

 Activity

ActivityID
ActivityName
ActivityStatus
ActivityType
/CaseID
/CaseName
StartTimestamp
EndTimestamp

Case

CaseID
CaseName
CaseStatus
StartTimestamp
EndTimestamp

1:1 0:N

Derived attributes:
/CaseID {Self.Activity2Case.CaseID}
/CaseName {Self.Activity2Case.CaseName}

246 M. Brambilla et al.

brevity. Moreover, by combining workflows and Web services extensions,
the design of distributed processes can be obtained (Brambilla et al., 2006).

9.4.2.5 Mapping Workflow Schemas to Hypertext Models

Workflow activities are realized in the hypertext model by suitable
configurations of pages and units, enclosed within an activity area.
Workflow constraints must be turned into navigation constraints among the
pages of the activities and into data queries on the workflow meta-data for
checking the status of the process, thus ensuring that the data shown by the
application and user navigation respect the constraints described by the
process specification. The description of how the precedence and
synchronization constraints between the activities can be expressed in the
hypertext model is specified in Brambilla et al. (2003), which describes the
mapping between each workflow pattern and the corresponding hypertext.

A flexible transformation, depending on several tuning and style
parameters, has been included in the methodology for transforming
workflow models into skeletons of WebML hypertext diagrams.

The produced WebML model consists of an application data model,
workflow meta-data, and hypertext diagrams. The transformation supports
all the main WfMC precedence constraints, which include sequences of
activities, AND-, OR-, XOR- splits and joins, and basic loops.

Since no semantics is implied by the activity descriptions, the generated
skeleton can only implement the empty structure of each activity and the
hypertext and data queries that are needed for enforcing the workflow
constraints. The designer remains in charge of implementing the interface
and business logic of each activity. Additionally, it is possible to annotate
the activities with a set of predefined labels (e.g., create, update, delete,
browse), thus allowing the transformer tool to map the activity to a coarse
hypertext that implements the specified behavior.

Once the transformation has been accomplished, the result can be edited
with WebRatio (WebModels, 2006), thus allowing the designer to refine the
generated hypertext and to implement the internal behaviour of each activity.

9.4.2.6 Workflow-Based Hypertext Example

Figure 9.14 shows the hypertext diagram for the Personal Data
Submission activity, which is part of the example process depicted in Figure
9. Notice that the shown implementation is the final result of the two steps
of automatic hypertext skeleton generation and of hypertext refinement by
the designer. The link marked with the “…” label may come from any
hypertext fragment in the site view.

12.

9. Designing Web Applications with WebML and WebRatio 247

Before starting the activity, a condition is checked for verifying that the
Company data submission activity is not started yet, since it is defined
as mutually exclusive with respect to the Personal Data Submission
activity (a corresponding XOR-split decision gateway is shown in Figure
9.14). Hence, the condition to be checked before starting Personal Data
Submission is that the instance of Company data submission activity
within the current case has a status not yet Active. Notice that we assume an
ordered set of possible values for the status (Created < Inactive < Active <
Suspended < Resumed < Completed), and at most one instance of the activity
Company data submission exists within a case, because of the construction
rules of the instances of the workflow. Therefore, the condition extracts the
activity of type Company data submission not yet started. If this instance
exists, the Start link is followed and the Personal Data Submission
activity is started (i.e., its status in the database is set to Active). The user
submits his own information and the Modify unit updates the database, then
the Complete link closes the activity and redirects the user to the home page.

Figure 9.14. Example of hypertext representing the Personal data submission activity.

9.4.3 Context-Aware Web Applications
WebML has also been applied to the design of adaptive, context-aware Web
applications (Ceri et al., 2003, 2006, 2007). The overall design process for
context-aware applications follows the activity flow typically used for
conventional Web applications. However, some new issues must be
considered for modeling and exploiting the context at the data level and for
modeling adaptive behaviors in the hypertext interface.

 User siteview

Personal data submission activity
Home page

Personal data submission page

[CurrentCase .CaseToActivity .
Status < “Active” AND

CurrentCase .CaseToActivity .
ActivityID = “CompanySubm”]

If unit
Data entry Modify

User

H

S
...

C
false

true

A

248 M. Brambilla et al.

9.4.3.1 Modeling User and Context Data

During data design, the user and context requirements can be translated into
three different subschemas complementing the application data (see Figure
9.15):

• The User subschema, which clusters data about users and their access

rights to application data. In particular, the entity User provides a basic
profile of the application’s users, the entity Group allows access rights for
a group of users to be managed, and the entity SiteView allows users
(and user groups) to be associated with specific hypertexts. In the case of
adaptive context-aware applications, users may require different
interaction and navigation structures, according to the varying properties
of the context.

• The Personalization subschema, which consists of entities from the
application data associated with the User entity by means of relationships
expressing user preferences for some entity instances, or the user’s
ownership of some entity instances. For example, the relationship
between the entities User and UserComment in Figure 9.15 enables the
selection and the presentation to the user of the comments she has posted.
The relationship between the entities User and Movie represents the
preferences of the user for specific movies. The role of this subschema is
to support the customization of contents and services, which is one
relevant facet of adaptive Web applications.

Figure 9.15. Three subschemas representing context data.

1:N 1:N
UserComment
Comment
Rate
Title
Comment_Date

Personalization
sub-schema Basic user sub-schema

Activity
Name
Handycap
Description

0:N

Context sub-schema

Group
GroupName

SiteView
SiteViewID

Movie
Title
Year
Description
Official _Site

1:N0:N
User

UserName
Password
EMail

0:N 1:N

1:1

0:N

0:N

Cinema
Name
Address
Description
Picture

Location
MinLon
MaxLon
MinLat
MaxLon

1:1
0:N

Device
CPU
InputDevice
Display
Memory

1:N

1:1

1:N 1:1

9. Designing Web Applications with WebML and WebRatio 249

• The Context subschema, including entities such as Device, Location,

and Activity, which describe context properties relevant for providing
adaptivity. Context entities are connected to the entity User to associate
each user with his (personal) context.

9.4.3.2 Identifying Context-Aware Pages

During hypertext design, adaptive requirements are considered to augment
the application’s front end with reactive capabilities. As illustrated in Figure
9.16, context-awareness in WebML can be associated with selected pages,
and not necessarily with the whole application. Location-aware applications,
for example, adapt “core” contents to the position of a user, but typical
“access pages” (including links to the main application areas) might not be
affected by the context of use.

We therefore tag adaptive pages with a C label (standing for “Context-
aware”) to distinguish them from conventional pages. This label indicates
that some adaptivity actions must be associated with the page. During
application execution, such actions must be evaluated prior to the
computation of the page, since they can serve to customize the page content
or to modify the navigation flow defined in the model.

Siteview

Context-aware Page

Source

Data Unit

P: Context Parameter

OID: Object
 Identifier

C

Conventional
Page 1

Conventional
Page 2

Figure 9.16. Hypertext schema highlighting context-aware pages. Context-aware pages are
labeled with a “C” and are associated with a context cloud.

As shown in Figure 9.16, adaptivity actions are clustered within a context

cloud. The cloud is external to the page, and the adaptivity actions that it
clusters are kept separate from the page specification. Such a notation
highlights the different roles played by pages and context clouds: The former

250 M. Brambilla et al.

act as providers of content and services, the latter act as modifiers of such
content and services.

In order to monitor the state of the context and execute adaptivity actions,
C-pages must be provided with autonomous intervention capabilities. The
standard HTTP protocol underlying most of today’s Web applications
implements a strict pull paradigm. In the absence of a proper push
mechanism, reactive capabilities can therefore be achieved by periodically
refreshing the viewed page and by triggering the execution of adaptivity
actions before the computation of the page content. This polling mechanism
“simulates” the active behavior necessary for making pages sensitive to the
context changes.

9.4.3.3 Specifying Adaptivity Actions in Context Clouds

Context clouds contain adaptivity actions expressed as sequences of WebML
operations and are associated with a page by means of a directed arrow, i.e.,
a link, exiting the C label. This link ensures communication between the
page logic and the cloud logic, since it can transport parameters derived from
the content of the page, useful for computing the actions specified within the
cloud. Vice versa, a link from the cloud to the page can transport parameters
computed by the adaptivity actions, which might affect the page contents
with respect to a new context.

The specification of adaptivity actions relies both on the use of the
standard WebML primitives and on a few novel constructs, related to the
acquisition and use of context data:

1. Acquisition and management of context data. This may consist of the

retrieval of context data from the context model stored within the data
source, or of the acquisition of fresh context data provided by device-
or client-side-generated URL parameters, which are then stored in the
application data source. These are the first actions executed every time
a C-page is accessed, for gathering an updated picture of the current
context.

2. Condition evaluation. The execution of some adaptivity actions may
depend on some conditions, e.g., evaluating whether the context has
changed and hence triggering some adaptivity actions.

3. Page content adaptivity. Parameters produced by context data
acquisition actions and by condition evaluation can be used for page
computation. They are sent back to the page by means of a link exiting
the context cloud and going to the page. The result is the display of a
page where the content is adapted to the current context.

4. Navigation adaptivity. The effect of executing the adaptivity actions
within the context cloud can be the redirection to a different page. The

9. Designing Web Applications with WebML and WebRatio 251

specification of context-triggered navigation just requires a link exiting
the context cloud to be connected to pages other than the cloud’s
source page.

5. Adaptivity of the hypertext structure. To deal with coarse-grained
adaptivity requirements, e.g., the change of device, role, or activity, the
adaptivity actions may lead to the redirection toward a completely
different site view.

6. Adaptivity of presentation properties. To support finer-grained
adjustments of the interface, the adaptivity actions may induce the run-
time modification of the presentation properties (look and feel, content
position and visibility, and so on).

Figure 9.17. The WebML specification of adaptivity actions providing users with context-
aware information about cinemas.

Figure 9.17 illustrates an example of adaptivity actions, applied to the

Current Area Cinemas page. Upon page access, some adaptivity actions in
the cloud are executed, which may change the content of the page based on
the geographical position of the user. Specifically, the user’s Latitude and
Longitude are retrieved by the Get Longitude and Get Latitude units,
which are examples of the GetClientParameter operation unit, introduced in
WebML to access context data sensed at the client side. In the example, the
two parameters Longitude and Latitude represent the position coordinates
sensed through a user’s device equipped with a GPS module. The retrieved
position values are used by the Get Location unit to identify a (possible)

Current Area Cinemas Page C

Get Longitude

Longitude

@
Get Latitude

Latitude

@

Get Location

Location
[minLat < Lat < maxLat]

[minLon < Lon < maxLon]

Lon Lat

Location.OID

IF

[Location.OID != null]

[result=true]

[result=false]

OK

OK

Alert Page C

L: Location.OID

Cinemas IndexTo Showtimes
Page

Cinema
[Location_Cinema(L)]

L

252 M. Brambilla et al.

location stored in the database for the current user’s position. Get Location
is a Get Data unit, a content unit for retrieving values (both scalars and sets)
from an entity of the data model without displaying them on a page. The
location OID is evaluated through an If unit: If it is not null (i.e., the sensed
coordinates fall into a location stored in the application data source), the list
of cinemas in that location is visualized in the Current Area Cinemas page;
otherwise, the user is automatically redirected to the Alert page, where a
message notifies of the absence of information about cinemas in the current
area.

Figure 9.17 also models the Alert page as context-aware; in particular,
this page shares its adaptivity actions with the Current Area Cinemas page.
Therefore, as soon as an automatic refresh of the Alert page occurs, the
shared actions are newly triggered and the application is adapted to the
user’s new position.

More details on the WebML extensions for adaptivity and context-
awareness and on their implementation in WebRatio can be found in Ceri

9.5 INDUSTRIAL EXPERIENCE

We conclude the illustration of WebML with an overview of the most
significant aspects of transferring model-driven development to industrial
users. The reported activities are based on WebML and WebRatio, but we
deem that the achieved results demonstrate the effectiveness and economic
sustainability of MDD in a more general sense. As a case study, we focus on
the applications developed by Acer EMEA, the Europe, Middle East, and
South Africa branch of Acer, for which five years of experience and data are
available. In particular, we will review some of the realized projects,
highlighting their functional and nonfunctional requirements, their
dimensional parameters, and the key aspects of their development,
deployment, evolution, and economic evaluation. The experience started
with the first version of the Acer-Euro application (http://www.acer-
euro.com), which aimed at establishing a software infrastructure for
managing and Web-deploying the marketing and communication content of
an initial group of 14 countries out of the 31 European Acer national
subsidiaries. The content of Acer-Euro 1.0 included the following main
areas: About Acer, Products, News, Service & Support, Partner Area, and
Where to buy.

et al. (2003, 2006, 2007).

9. Designing Web Applications with WebML and WebRatio 253

Figure 9.18. The WebML specification of the home page of a national site of Acer-Euro (left)
and its rendition in HTML (right).

Figure 9.18 shows the home page of a national site of Acer-Euro (left)
and its rendition in HTML generated by WebRatio. The Acer-Euro 1.0
system supported two main functions:

Figure 9.19 shows the schedule and milestones of the Acer-Euro 1.0

project. Only 7 weeks elapsed from the approval of the new site map and
visual identity to the publishing of the 14 national Web sites and to the
delivery of the CMS to Acer employees. In this period, two distinct
prototypes were formally approved by the management: Prototype 1, with
50% of functionality, was delivered at the end of week 2; prototype 2, with
90% of functionality, at week 5. Overall, nine prototypes were constructed in
six weeks: two formal, seven for internal assessment.

The development team consisted of four persons: one business expert and
one junior developer from Acer, and one analyst and one Java developer
from Politecnico di Milano.

1. Content publishing: comprising the architecture, tools, and processes

to make content about the Acer European Web sites available on the
Web to the users of the target countries.

2. Content management: comprising the architecture, tools, and
processes needed to gather, store, update, and distribute to the
destination countries the content related to the Acer European Web
sites.

254 M. Brambilla et al.

Figure 9.19. The schedule and milestones of the Acer-Euro 1.0 project.

of development plus one week of testing were sufficient for analyzing,
designing, implementing, verifying, documenting, and deploying a set of
midsized, functionally complex, multilingual Web applications. As illustrated

 1. The high degree of automation brought to the process by the use of
the model-driven approach: More than 90% of the application and
database code were synthesized automatically by the WebRatio
development environment from the WebML models of the
applications, without the need to manually intervene on the produced
code.

2. The overall productivity of the development process: The productivity
value is obtained by counting the number of function points (FPs) of
the project and dividing this value by the number of staff-months

Figure 9.19 shows the most relevant figures of the project: only six weeks

by the dimensional and economic parameters reported in Table 9.6, such result
has to be ascribed to

9. Designing Web Applications with WebML and WebRatio 255

employed in the development. The result is an average productivity
rate of 131.5 FP/staff month, which is 30% greater than the maximum
value expected for traditional programming languages in the Software
Productivity Research Tables (SPR, 2006). This latter result is a
consequence of the former: High automation implies a substantial
reduction of the manually written repetitive code and a high reuse of
design patterns.

Table 9.6 Main Dimensional and Economic Parameters of the Acer-Euro Project

Class Dimension Value

Number of elapsed workdays 49

Number of development staff-months

(analysts and developers)

6 staff-months (6 weeks × 4

persons)

Total number of prototypes 9

Average elapsed man days between consecutive

prototypes

5,4

Time &

effort

Average number of development man days per prototype 15,5

Number of localized B2C Web sites 14

Number of localized CMS applications 4 (Admin, News, Product, Other)

Number of supported languages 12 for B2C Web sites, 5 for CMS

Number of data entry masks 39

Number of automatically generated database tables 46

Number of automatically generated database views 82

Number of automatically generated database queries 279 for extraction, 89 for update

Number of automatically generated JSP page templates 48

Number of automatically generated or reused Java classes 250

Size

Number of automatically generated Java lines of code 12,500 Noncommented lines of

code

Number of manually written SQL statements 17 (SQL constraints)

Percentage of automatically generated SQL code 96%

Number of manually written/adapted Java classes /JSP

templates

10% JSP templates manually

adapted

Degree of

automation

Percentage of automatically generated Java and JSP code 90% JSP templates, 100% Java

classes

Number of function points 177 (B2C web site) + 612 (CMS) =

789

Productivity

Average number of FP delivered per staff-month 131.5

Another critical success factor has been the velocity in focusing the

requirements, thanks to the rapid production of realistic prototypes. At the
end of week 2, the top management could already evaluate an advanced

256 M. Brambilla et al.

prototype, which incorporated 50% of the requested functionality, and this
initial round of requirement validation proved essential to the delivery of a
compliant solution in such a limited time. With respect to traditional
prototyping, which exploits a simplified architecture, WebRatio generates
code directly for the actual delivery platform; in this way, stress test and
architecture tuning could already start at week 1 on the very first prototype,
greatly improving the parallelism of work and further reducing time to
market.

The benefits of MDD were manifested not only in the development of the
first version, but were even more sensible in the maintenance and evolution
phase. Figure 9.20 shows the timeline of the additional releases and spin-off
projects of Acer-Euro. Four major releases of Acer-Euro were delivered
between 2001 and 2006, and the number of applications grew from the initial
5 to 13 intranet and Internet applications, serving more corporate roles and
supporting more sophisticated workflow rules.

Figure 9.20. The evolution of the Acer-Euro project in five years.

At the end of 2005, Acer-Euro was rolled out in 26 European countries

and extended also to the Acer Pan-American subsidiaries, including Latin
America and the United States. As early as June 2001, an extension of the
Acer-Euro platform was scheduled, to address the delivery and management
of content for the channel operators (Acer partners). This spin-off project,
called Acer Connect, is a multi-actor extranet application targeted to Acer
partners, characterized by the following features:

1. the segmentation of the users accessing the site into a hierarchy of

groups corresponding to both Acer’s and partners’ business functions
2. the definition of different access privileges and information visibility

levels to groups

9. Designing Web Applications with WebML and WebRatio 257

3. the provision of an Acer European administration role, able to
dynamically perform via the Web all administrative and monitoring tasks

4. the provision of an arbitrary number of nation-based and partner-based
administration roles, with responsibility for local content creation and
publishing, and local user administration

5. a number of group-tailored Web applications (e.g., sales, marketing)
targeting content to corporate-specific or partner-specific user
communities

6. the management of administrative and business functions in multiple
languages flexibly set by administrators and users

7. a security model storing group and individual access rights into a
centrally managed database, to enforce global control over a largely
distributed application

8. content personalization based on group-specific or user-specific
characteristics, for ensuring one-to-one relationships with partners

9. advanced communication and monitoring functions for the effective
tracking of partners’ activity and of Acer’s quality of services

The first version of Acer Connect was deployed in Italy and the UK in

December 2001, after only seven months of development and with an effort
of 24 staff-months. Today, Acer Connect is rolled out in 25 countries and
hosts 65,000 registered partners, delivering content and services to a
community of over 80,000 users. Acer Connect and Acer-Euro share part of
the marketing and communication content, and therefore the former project
was realized as an evolution of the latter; starting from the data model of
Acer-Euro, the specific functions of Acer Connect were added, and new
applications were modeled and automatically generated. The model-driven
approach greatly reduced the complexity of integration, because the high-
level models of the two systems were an effective tool for reasoning about
the functionality to reuse and develop.

Besides Acer Connect, several other projects were spun off, to exploit the
customer and partner communities gathered around these two portals. Figure
9.21 overviews the delivered B2C projects, which collectively total over
10,800,000 visits per month.

As a remark on the long-term sustainability of MDD, we note that,
despite their complexity and multinational reach, both Acer-Euro and Acer
Connect are maintained and evolved by one junior developer each, working
on the project at part time. In total, only 5 junior developers, allocated to the
projects at part time, maintain the 56 mission-critical Web applications
implemented by Acer with WebML.

258 M. Brambilla et al.

Figure 9.21. The main applications developed in Acer with WebML.

On the negative side of MDD, the initial training and switching costs

have been reported as the most relevant barrier. MDD requires nontechnical
knowledge on the modeling of software solutions, which must be acquired
with a mix of conventional and on-the-job training. Furthermore, developers
have their own previous consolidated skills and professional history, and
switching to a completely new development paradigm is felt to be a potential
risk. Acer estimates that it takes developers from 4 to 6 months to become
fully acquainted and productive with MDD, WebML, and WebRatio.
However, Acer’s figures demonstrate that the initial investment in human
capital required by MDD pays off in the mid-term. The number of
applications developed and maintained per unit of development personnel
increases with the developers’ expertise and exceeds 10 fully operational,
complex, and distributed Web applications per developer.

9.6 CONCLUDING REMARKS

In this chapter we have described the Web Modeling Language, a conceptual
notation for specifying the design of complex, distributed, multi-actor, and
adaptive applications deployed on the Web and on service-oriented
architectures using Web services. WebML was born in academia but soon
spun off to the industrial battlefield, where it faced the development of
complex systems with requirements often exceeding the expressive power of
the language. This fruitful interplay of academic design and industrial
experience made the language evolve from a closed notation for data-centric

9. Designing Web Applications with WebML and WebRatio 259

Web applications to an open and extensible framework for generalized
component-based development. The core capability of WebML is expressing
application interfaces as a network of collaborating components, which sit
on top of the core business objects. WebML incorporates a number of built-
in, off-the-shelf components for data-centric, process-centric, and Web
service-centric applications and lets developers define their own
components, by wrapping existing software artifacts and reverse-engineering
them. In other words, the essence of WebML boils down to a standard way
of describing components, their interconnection and passage of parameters,
their exposition in a user interface, and the rules for generating code from
their platform-independent model.

This flexibility allowed several extensions of the language, in the
direction of covering both new application requirements and deployment
architectures. The ongoing work is pursuing a number of complementary
objectives:

1. Extending the model-driven approach to all the phases of the

application life cycle: WebML is being used as a vehicle to investigate
the impact of MDD on development activities like business
requirement elicitation and reengineering, cost and effort estimation,
testing, quality evaluation, and maintenance.

2. Extending the capability of the user interface beyond classical
hypertexts: The expressive power of WebML is presently inadequate
to express Rich Internet Applications and classical client-server
applications; research is ongoing to identify the minimal set of
concepts needed to capture the Web interfaces of the future.

3. Broadening the range of deployment platforms: WebML and
WebRatio are being extended to target code generation for
nonconventional infrastructures. A version of WebRatio for digital
television has been already built, and experimentation is ongoing for
deploying applications on top of embedded systems and mobile
appliances for the DVB-H standard.

REFERENCES

Baresi, L., Fraternali, P., Tisi, M., and Morasca, S., 2005, Towards model-driven testing of a
Web application generator. Proceedings 5th International Conference on Web
Engineering (ICWE'05), Sydney, Australia, pp. 75–86.

Beck, K., 1999, Embracing change with extreme programming. IEEE Computer, 32(10): 70–77.
Boehm, B., 1988, A spiral model of software development and enhancement. IEEE

Computer, 21(5): 61–72.
Booch, G., Rumbaugh, J., and Jacobson, I., 1999, The Unified Modeling Language User

Guide (Object Technology Series), Addison-Wesley, Reading, MA.

260 M. Brambilla et al.

Brambilla, M., 2003, Extending hypertext conceptual models with process-oriented

primitives. Proceedings Conceptual Modeling (ER 2003), Chicago, IL, pp. 246–262.
Brambilla, M., Ceri, S., Comai, S., Fraternali, P., and Manolescu, I., 2003, Specification and

design of workflow-driven hypertexts. Journal of Web Engineering, 1(2): 163–182.
Brambilla, M., Ceri, S., Comai, S., and Tziviskou, C., 2005, Exception handling in workflow-

driven Web applications. Proceedings World Wide Web International Conference
(WWW'05), Chiba, Japan, May 10–13, pp. 170–179.

Brambilla, M., Ceri, S., Fraternali, P., and Manolescu, I., 2007, Process modeling in Web
applications. ACM Transactions on Software Engineering and Methodology. In print.

Brambilla, M., Ceri, S., Passamani, M., and Riccio, A., 2004, Managing asynchronous Web
services interactions. Proceedings ICWS 2004, pp. 80–87.

Brambilla, M., and Tziviskou, C., 2005, Fundamentals of exception handling within
workflow-based Web applications. Journal of Web Engineering, 4(1): 38–56.

Ceri, S., Daniel, F., Facca, F., Matera, M., and the MAIS Consortium, 2006, Front-end
methods and tools for the development of adaptive applications. In Mobile Information
Systems. Infrastructure and Design for Flexibility and Adaptivity, B. Pernici, ed., Springer-
Verlag, pp. 209–246.

Ceri, S., Daniel, F., and Matera, M., 2003, Extending WebML for modelling multi-channel
context-aware Web applications. Proceedings WISE '03 Workshops, IEEE Press, pp. 225–
233.

Ceri, S., Daniel, F., Matera, M., and Facca, F., 2007, Model-driven development of context-
aware Web applications. ACM Transactions on Internet Technology, 7(1), Article No. 2.

Ceri, S., Fraternali, P., and Bongio, A., 2000, Web Modeling Language (WebML): A
modeling language for designing Web sites. Computer Networks, 3(1–6): 137–157.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Matera, M., 2002,
Designing Data-Intensive Web Applications, Morgan Kaufmann, San Francisco.

Conallen, J., 2000, Building Web Applications with UML (Object Technology Series),
Addison-Wesley, Reading, MA.

Fraternali, P., Lanzi, P.L., Matera, M., and Maurino, A., 2004, Model-driven Web usage
analysis for the evaluation of Web application quality. Journal of Web Engineering, 3(2):
124–152.

Fraternali, P., Matera, M., and Maurino, A., 2003, Conceptual-level log analysis for the
evaluation of Web application quality. Proceedings LA-WEB 2003, IEEE Press, pp. 46–57.

Garzotto, F., Paolini, P., and Schwabe, D., 1993, HDM—A model-based approach to
hypertext application design. ACM Transactions on Information Systems, 11(1): 1–26.

Kruchten, P., 1999, The Rational Unified Process: An Introduction, Addison-Wesley,
Reading, MA.

Isakowitz, T., Sthor, E.A., and Balasubranian, P., 1995, RMM: A methodology for structured
hypermedia design. Communications of the ACM, 38(8): 34–44.

Lanzi, P.L., Matera, M., and Maurino, A., 2004, A framework for exploiting conceptual
modeling in the evaluation of Web application quality. Proceedings ICWE 2004, Springer-
Verlag, pp. 50–54.

Manolescu, I., Brambilla, M., Ceri, S., Comai, S., and Fraternali, P., 2005, Model-driven
design and deployment of service-enabled Web applications. ACM Transactions on
Internet Technology, 5(3): 439–479.

Meo, R., and Matera, M., 2006, Designing and mining Web applications: A conceptual
modeling approach. In Web Data Management Practices: Emerging Techniques and
Technologies, A. Vakali and G. Pallis, eds., Idea Group Publishing, Hershey, PA.

SPR (Software Productivity Research), 2006, SPR Programming Language Table—Version
PLT2005a. Retrieved February 2006 from http://www.spr.com.

9. Designing Web Applications with WebML and WebRatio 261

WebModels, 2006. WebRatio Tool Suite. Retrieved October 2006 from

http://www.webratio.com.
W3C, 2006, WSDL Web Service Description Language. Retrieved October 2006 from

https://www.w3.org/2002/ws/desc.

Chapter 10

HERA

Geert-Jan Houben,1,2 Kees van der Sluijs,1 Peter Barna,1 Jeen Broekstra,1,3

Sven Casteleyn,2 Zoltán Fiala,4 Flavius Frasincar5
1Technische Universiteit Eindhoven, PO Box 513, 5600 MB Eindhoven, The Netherlands,
{g.j.houben, k.a.m.sluijs, p.barna, j.broekstra}@tue.nl
2Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium, {Geert-Jan.Houben,
Sven.Casteleyn}@vub.ac.be
3Aduna, Prinses Julianaplein 14b, 3817 CS Amersfoort, The Netherlands, jeen@aduna.biz
4Technische Universität Dresden, Mommsenstr. 13, D-01062, Dresden, Germany,
zoltan.fiala@inf.tu-dresden.de
5Erasmus Universiteit Rotterdam, PO Box 1738, 3000 DR Rotterdam, The Netherlands,
frasincar@few.eur.nl

10.1 INTRODUCTION

This chapter illustrates a method for Web information systems (WIS) design
that found its origins in an approach for hypermedia presentation generation.
It was also this focus on hypermedia presentation generation that gave the
first engine complying with this method its name, HPG (Frasincar, 2005).
The method distinguishes three main models that specify the generation of
hypermedia presentations over available content data. With a model for the
content, a model for the hypermedia navigation construction, and a model
for the presentation construction, the method enables the creation of a
hypermedia-based view over the content. Originally, in the first generation
of the method and its toolset, the models specified a transformation from the
content to the presentation. The engine that was compliant with this
definition was based on XSLT and is therefore known as HPG-XSLT.

One of the characteristic aspects that HPG-XSLT supported was
adaptation. As an illustrative example, we show in Figure 10.1 how the

264 G.-J. Houben et al.

engine could produce different presentations from a single design in which
the “translation” to formats such as HTML, SMIL, and WML was dealt with
generically.

Figure 10.1. Hera models.

Characteristic for the Hera models was not only their focus on user- and
context-adaptation support, but also the choice to base the models on the
resource description framework (RDF) (Klyne and Carrol, 2004) and RDF
schema (RDFS) (Brickley and Guha, 2004). The use of Web standards such
as RDF and RDFS as a modeling paradigm facilitates easy deployment on
very heterogeneous data sources: The only assumption made is that a
semistructured description (in RDF) of the domain is available for
processing. Not only is such a representation less costly to develop than any
alternative, but it also enables the reuse of existing knowledge and flexible
integration of several separate data sources into a single hypermedia
presentation.

During further research into the development of the method, support was
extended for more advanced dynamics. Whereas the first XSLT-based
approach primarily transformed the original content data into a hypermedia
document, with which the user could interact by following links with a Web
browser, the subsequent engine version allowed the inclusion of form
processing, which led to the support of other kinds of user interaction while
retaining the hypermedia-based nature. Out of this effort, a Java-based
version of the engine became available that used RDF queries to specify the
data involved in the forms.

Context
Data

Content

Domain
Model

Application
Model

AM-Page PM-Page

Data Flow
Instance of
Uses

Context
Model

Presentation
Model

10. Hera 265

The experience from these HPG-based versions and the aim for further
exploitation of the RDF-based nature of the models have led to a further
refinement of the approach in what is now termed Hera-S. The Hera-S-
compliant models do combine the original hypermedia-based spirit of the
Hera models with more extensive use of RDF querying and storage.
Realizing this, RDF data processing using the Sesame framework (Broekstra
et al., 2002) and its query language SeRQL (Broekstra, 2005) caters for extra
flexibility and interoperability.

In the current version of the Hera method that we present in this chapter,
we aim to exemplify the characteristic elements included in the method. As
we mentioned before, there is the RDF-based nature of the models. There is
certainly also the focus on the support for adaptation in the different model
elements. Adapting the data processing to the individual user and the context
that the user is in (in terms of application, device, etc.) is a fundamental
element in WIS design and one that deserves the right attention: Managing
the different design aspects and thus controlling the complexity of the
application design is crucial for an effective design and implementation.

In this chapter we first address the main characteristics of the method and
then we explain the models, i.e., the main design artifacts, for the book’s
running example. We present the implementation of the hypermedia
presentation generation process induced by the models. We also consider
some extensions to the basic approach that can help the design process in
certain scenarios.

10.2 METHOD

We discuss the Hera approach and illustrate it by means of examples from
the Hera models for the running example (in this case we use Hera-S-
compliant versions of those models). In this section we will capture the main
elements of the key models used in the example before we go into details in
the next section.

The purpose of Hera is to support the design of applications that provide
navigation-based Web structures (hypermedia presentations) over semantically
structured data in a personalized and adaptive way. The design approach
centers on models that represent the core aspects of the application design.
Figure 10.2 gives an overview of these models. With the aid of a tool for
executing those models (e.g., HPG-XSLT or Hera-S), we can also generate the
application, as depicted in this figure. Thus, the appropriate pipeline of models
captures the entire application design, leaving room for the designer to change
or extend the implementation where desired. In this section we give a short

266

overview over the different models and associated modeling steps, while each
of them is presented in more detail in subsequent sections.

Presentation
Engine

Hera-S
Engine

Context
Data

Content

Domain
Model

Application
Model

AM-Page PM-Page

Data Flow
Instance of
UsesContext

Model

Presentation
Model

Browser

Rendering

Figure 10.2. Hera-S models and tool pipeline.

Before we can create a model to specify the core design of the
application, we need as a starting point in Hera a domain model (DM) that
describes the structure of the content data. The sole purpose of the DM is to
define how the designer perceives the semantical structure of the content
data: It tells us what we need to know about the content over which we want
the application to work. Based on this DM, the designer creates an
application model (AM) that describes a hypermedia-based navigation
structure over the content. This navigation structure is devised for the sake of
delivering and presenting the content to the user in a way that allows for
(semantically) effective access to the content.

In turn, this effective access can imply the personalization or adaptation
that is deemed relevant. Hera allows dynamic personalization and adaptation
of the content. For this purpose, context data are maintained (under control
of the application) in a so-called context model (CM). These context data are
typically updated based on the (inter)actions of the user as well as on
external information.

Thus, on the basis of DM and CM, the AM serves as a recipe that
prescribes how the content is transformed into a navigational structure. To
be more precise, instantiating the AM with concrete content results in AM
(instance) pages (AMP). These AMPs can be thought of as pages that
contain content to be displayed and navigation primitives (based on
underlying semantic relations from the DM) that the user can use to navigate
to other AMPs and thus to semantically “move” to a different part of the
content. An AMP itself is not yet directly suitable for a browser, but can be

G.-J. Houben et al.

10. Hera 267

transformed into a suitable presentation by a presentation generator, i.e., an
engine that executes a specification, for example, a presentation model (PM)
of the concrete presentation design in terms of layout and other (browser-
specific) presentation details. In Section 10.7 we demonstrate that both
proprietary and external engines can be used for this task. For the Hera
method, this presentation-generation phase itself is not specific and may be
done in whatever way is preferred. So, the AM specifies the (more
conceptual or semantical) construction of the navigational structure over the
content, while the subsequent presentation phase, possibly specified by a
PM, is responsible for the transformation of this structure into elements that
fit the concrete browsing situation.

AMP creation is conceptually pull-based, meaning that a new AMP is
constructed in the Hera pipeline only upon request (in contrast to
constructing the whole instantiation of the AM at once, which was done, for
example, in the implementation by the HPG-XSLT engine). Through
navigation (link-following) and forms submission, the user triggers the
feedback mechanism, which results in internally adapting (updating) the
Web site navigation or context data and the creation of a new AMP.

As indicated in the introduction, Hera models use RDF(S) to represent
the relevant data structures. In the next sections we will see this for the
specification of the data in DM, CM, and AM. In the engines these RDF(S)
descriptions are used to retrieve the appropriate content and generate the
appropriate navigation structures over that content. In HPG-XSLT the actual
retrieval was directly done by the engine itself, whereas in HPG-Java this
was done with the aid of expressions that are based on SeRQL (Broekstra,
2005) queries. In Hera-S the actual implementation exploits the fact that we
have chosen to use RDF(S) to represent the model data and allows us to use
native RDF querying to access data, for example, the content (DM) and
context (CM) data. For this Hera-S allows the application (AM) to connect
to the content and context data through the Sesame RDF framework. This
solution, combining Hera’s navigation design and Sesame’s data processing
by associating SeRQL queries to all navigation elements, allows us to
effectively apply existing Semantic Web technology and a range of its
solutions that is becoming available. We can thus include background
knowledge (e.g., ontologies, external data sources), and we can connect to
third-party software (e.g., for business logic) and to services through the
RDF-based specifications. We can also use the facilities in Sesame for
specific adaptation to the data processing and to provide more extensive
interaction processing (e.g., client-side, scripting). The dynamics and
flexibility required in modern Web information systems can thus be met by
accommodating the requirements that evolve from an increasing demand for
personalization, feedback, and interaction mechanisms. We point out that

268

Hera-S models in principle are query- and repository-independent. We only
require a certain type of functionality; if a repository fulfills these
requirements, it can be used for implementation of Hera-S models.

10.3 DATA MODELING

Before the application design can consider the personalized navigation over
the domain content, the relevant data need to be specified. As a necessary
first step in the approach, the data modeling step leads to the construction of
the data models for the domain content and the context of the user.

The modeling of the domain content uses RDF(S) and is primarily
targeted toward capturing the semantical structure of the domain content.
With the Hera-S engine we even allow the model to be an OWL (Dean and
Schreiber, 2004) ontology (without restrictions). If we look at the UML
representation for the IMDb example that is used throughout the book, this
can be easily modeled as an RDFS or OWL definition. In this case this could
be done by using a UML-to-OWL conversion process (several papers have
been written on the relations between UML and OWL) (Hart et al., 2004).
We could, however, also create this model ourselves, e.g., by using an
ontology editor like Protégé.1 Figure 10.3 contains a screenshot of the UML
model translated into an RDFS hierarchy together with its properties and
OWL restrictions in Protégé. We divided the UML model into four parts.
One part, with the prefix imdb, contains the “core” of the movie domain,
describing the movies and the persons involved with those movies. Another
part, with the prefix cin, models the cinemas that show the movies that are
modeled in the imdb part.

In this figure we also see prefixes starting with cm. They relate to the
context modeling. The CM is modeled and implemented in a similar way as
the DM. The main difference between the two is that the content data are
meant to be presented to the user, while the context data are meant to support
the context-dependent adaptation of the application. So, the content data
typically contain the information that in the end is to be shown to the user,
while the context data typically contain information used (internally) for
personalization and adaptation of content delivery. This distinction might not
always be strict, but as it is only a conceptual distinction in Hera-S, the
designer may separate content and context in whatever way he desires. As a
consequence, we assume that context data are under direct control of the
engine, while the content often is not. In the IMDb example, the context
model is modeled in the same way as the domain. We first maintain a model,

1 http://protege.stanford.edu.

G.-J. Houben et al.

10. Hera 269

with the prefix cm1, that contains users and their comments on movies in the
imdb part. The second part, with the prefix cm2, contains a description of
tickets bought by the user for a particular movie showing in a particular
cinema.

Figure 10.3. Protégé screenshot for the IMDb data modeling.

Considering the role and function of the context data, we can identify
different aspects of context. We will come back to context data later when
we discuss adaptation in the AM, but we now address the context data
modeling. Even though the designer is free to choose any kind of context
data, we discern three types in general: session data, user data, and global
data.

• Session data are relevant to a certain session of a certain user. An

example of such data is the current browsing context, such as the device
that is used to access the Web application or the units browsed in the
current session.

• User data are relevant to a certain user over multiple sessions (from
initial user data to data collected over more than one session). User
(profile) data can be used for personalization (even at the beginning of a

270

new session). Note that for maintaining these user data over time, the
application needs some authentication mechanism.

• Global data are usage data relevant to all users over all sessions. Global
data typically consist of aggregated information that gives information
about groups of people. Examples include “most visited unit” or “people
that liked item x, also browsed item y.”

In Figure 10.4 we show part of an RDF-graph representation of the
domain data model that we will use as a basis for the examples in this
chapter. It shows the main classes and a selection of relationships between
those classes, while omitting their data type properties.

Figure 10.4. RDF-graph representation of IMDb domain and context data.

Both the DM and CM data are implemented in Hera-S using a Sesame
repository. For the CM, which is under direct control of the application, this
allows the application to manage and update the context as it perceives this
context. Next to this, it also provides the means for other processes to use
and update (parts of) this information. The context data could, for instance,
be manipulated by business logic software for the sake of adaptation, or by
external user-profiling software.

Another great advantage of using Sesame is the possibility to combine
several data sources (both content and context data) at the same time. In this

G.-J. Houben et al.

10. Hera 271

way, designers can couple additional data sources to the already existing
ones and can thus easily extend the domain content. This also offers
possibilities to exploit additional knowledge when performing a search.
Currently, we are involved in the exploitation of the WordNet ontology2
(Miller, 1995), time ontologies (Hobbs and Pan, 2004), and geographic
ontologies3 (Chipman et al., 2005). In this way, a keyword search can be
extended with synonyms extracted from the WordNet ontology, or a search
for a city can be extended with surrounding cities from a geographic
ontology. By supporting unrestricted RDFS or OWL DMs, Hera-S is
particularly suited to (re-)use existing domain ontologies. Moreover, many
existing data sources that are not yet available in RDFS or OWL format can
be used via Semantic Web wrapping techniques4 (Thiran et al., 2005). In the
latter case Sesame can be used as a mediator between such a data source and
Hera-S.

As we will see in detail in the next section, the access to the data from the
DM or CM is part of the application definition. It means that the access to
the RDF data is part of the model. In principle, we assume that the concepts
from the DM and CM are associated with concrete data elements in the data
storage structure. As we use the Sesame RDF framework as our back-end
repository, these data can be exploited and reasoned upon. Accessing the
content data in Hera-S will be done via explicit SeRQL queries; by making
them explicit in the models, we support customizable access via
customizable SeRQL queries. Thus, the full potential of the SeRQL query
language can later be used in the AMP creation. For the purpose of defining
the content and context, we can abstract from the SeRQL queries, but for the
support of different types of adaptation, we benefit from making this SeRQL
access explicit.

10.4 APPLICATION MODELING

Based on the domain definition, application modeling results in the
application model (AM) that specifies the navigational behavior of the Web
application. The AM enables designers to specify how the (navigational)
access to the data (dynamically retrieved from the domain) is structured by
describing which data are shown to the user and what Web pages the user
can navigate to. At the same time, the AM allows this specification to be
dynamic, such that the navigational access to the data can be personalized to
a user and adapted for a specified context.

2 http://www.semanticweb.org/library/.
3 http://reliant.teknowledge.com/DAML/Geography.owl.
4 http://simile.mit.edu/RDFizers/.

272

Since in the AM we use Turtle and SeRQL syntax, we first highlight in
Section 10.4.1 the most relevant elements from those languages. In Section
10.4.2 we present the basic AM constructs and exemplify them based on the
IMDb example as discussed in the previous section. In Section 10.4.3 we
give examples of adaptation expressed in the AM. Section 10.4.4 contains a
number of more advanced modeling primitives. In Section 10.4.10 we
illustrate a model builder that offers designers a visual tool to help create the
domain models and the AM and produce the correct RDF serialization for
those graphical representations.

10.4.1 Queries and Syntax

10.4.1.1 Turtle
Turtle (Terse RDF Triple Language) (Beckett, 2004) is an RDF syntax
format designed to be compact, easy to use, and easy to understand by
humans. Although not an official standard, it is widely accepted and
implemented in RDF toolkits.

In Turtle, each part of the triple is written down as a full URL or as a
qualified name (using namespace prefixes). In our examples, we will mostly
use the latter form, for brevity. For example,

my:car rdf:type cars:Volvo

denotes the RDF statement “my car is of type Volvo.” “my:” and “cars:” in
this example are namespace prefixes that denote the vocabulary/ontology
from which the term originates. Turtle also introduces the predicate “a” as a
shortcut for the “rdf:type” relation.

my:car a cars:Volvo

denotes the same RDF statement as the first example.
In order to list several properties of one particular subject, we can use the

semicolon to denote branching:

my:car a cars:Volvo ;
 my:color “Red”

denotes two statements about the car: that it is of type “Volvo” and that its
color is red (denoted by a string literal value in this example).

When the value of a property is itself an object with several properties,
we can denote this by using square brackets ([and]). In RDF terms, such

G.-J. Houben et al.

10. Hera 273

brackets denote a blank node (which can be thought of as an existential
qualifier). For example:

my:car a cars:Volvo ;
 my:hasSeat [
 a my:ComfortableSeat ;
 my:material “Leather”
]

denotes that the car has a seat that is “something” (a blank node) that has as
its type “my:ComfortableSeat” and that has leather as the material.

In the next sections, we will regularly use Turtle syntax forms in various
examples.

10.4.1.2 SeRQL
SeRQL (Broekstra et al., 2002; Broekstra, 2005) (Sesame RDF Query
Language) is an RDF query and transformation language that uses graph
templates (in the form of path expressions) to bind variables to values
occurring in the queried RDF graph. It is an expressive language with many
features and useful constructs.

An SeRQL query consists of a set of clauses (SELECT, FROM, and
WHERE). As in SQL, the SELECT clause describes the projection, i.e., the
ordered set of bound values that is to be returned as a query result. The
FROM clause describes a graph template that is to be matched against the
target graph, and the WHERE clause specifies additional Boolean
constraints on matching values. A simple example query that selects all
instances of the class “Volvo” is

SELECT aCar
FROM {aCar} rdf:type {cars:Volvo}

As one can see, the path expression syntax bears a strong resemblance to

Turtle syntax, except that in SeRQL, each node in the graph is surrounded by
braces ({ and }). In the above query, “aCar” is a variable that is to be
matched in the target graph against all statements that conform to the pattern,
i.e., those that have “rdf:type” as their predicate and cars:Volvo” as their
object.

As in Turtle, SeRQL paths can be branched (using a semicolon) as well
as chained. For example, in the following query we use both chaining and
branching to select a car, its color, its owner, and the address of that owner:

”

274

SELECT aCar, color, owner, address
FROM {aCar} rdf:type {cars:Volvo} ;
 my:color {color} ;
 my:owner {owner} my:address {address}

Additionally, we can use the WHERE clause to specify additional

constraints on the results. To adapt the above query to return results only for
those cars whose color is red, we could add a WHERE clause:

WHERE color = “Red”

10.4.2 Units, Attributes, and Relationships

Now we will discuss the constructs that we provide in our AM. We will start
in this section with the basic constructs that are sufficient to build basic Web
applications and then move on to more complex constructs for realizing
richer behavior.

The AM is specified by means of navigational units (shorthand: units)
and relationships between those units. The instantiation of units and
relationships is defined by (query) expressions that refer to the (content and
context) data, as explained in Section 10.3.

The unit can be used to represent a “page.” It is a primitive that
(hierarchically) groups elements that will be shown to the user together.
Those elements shown to the user are called “attributes,” and so units build
hierarchical structures of attributes.

An attribute is a single piece of information that is shown to the user.
This information may be constant (i.e., predefined and not changing), but
usually it is based on information inside the domain data. If we have a unit
for a concept c, then typically an attribute contained in this unit is based on a
literal value that is directly associated with c (for example, as a data type
property). Note that literals may denote not only a string type, but also other
media by referring to a URL. Furthermore, we offer a built-in media class
(denoted as hera:Mime) that can be used to specify an URL and the MIME
type of the object that can be found at the URL. This can be used if the
media type is important during later processing.

Below we give an example of the definition of a simple unit, called
MovieUnit,” to display information about a movie. We mention two

elements in this definition:

• From the second until the seventh line, we define which data instantiate
this unit. These data are available as input (am:hasInput) from the

”

G.-J. Houben et al.

10. Hera 275

environment of this unit, e.g., passed on as a link parameter or available
as a global value. In this case we have one variable, “M”: The fourth line
specifies the (literal) name of the variable, while the fifth line indicates
the type of the variable. In this case, a value from the imdb:Movie class
concept from the domain will instantiate this unit.

• In the 8th until the 14th line, starting with am:hasAttribute, we decide to
display an attribute of this movie, namely a title. We label this attribute
Title” (so that later we can refer to it), and we indicate (with
am:hasQuery”) how to get its value from the data model. This query

uses the imdb:movieTitle (datatype) property applied to the value of M.
Note that in the query “$M” indicates that M is a Hera variable, i.e.,
outside the scope of the SeRQL query itself. The output of the SeRQL
query result is bound to the Hera variable T (implicitly derived from the
SELECT list).
In our RDF/Turtle syntax the definition looks like the following:

:MovieUnit a am:NavigationUnit ;
 am:hasInput [
 am:variable [
 am:varName “M” ;
 am:varType imdb:Movie
]
] ;
 am:hasAttribute [

 rdfs:label “Title” ;
 am:hasQuery
 “SELECT T
 FROM {$M} rdf:type {imdb:Movie};
 imdb:movieTitle {T}”
]

For the attribute value instead of the simple expression (for which we can

even introduce a shorthand abbreviation), we can use a more complicated
query expression, as long as the query provided in am:hasQuery” returns a
data type property value.

Relationships can be used to link units to each other. We can use
relationships to contain units within a unit, thus hierarchically building up
the “page” (we call these aggregation relationships), but we can also exploit
these relationships for navigation to other units (we call these navigation
relationships).

”
”

”

276

As a basic example, we include in the unit for the movie not only its title
but also a (sub)unit with the name and photo of the lead actor and a
navigational relationship that allows us to navigate from the lead-actor
information to the full bio-page (unit) for that actor. Note that from now on
we omit namespaces in our text when they appear to be obvious.

• We have separated here the definitions of MovieUnit” and ActorUnit”
(which allows later reuse of the ActorUnit), but we can also define
subunits inside the unit that contains them.

• In the definition of the MovieUnit, one can notice, compared to the
previous example, that we have an additional subunit with its label
LeadActor, with its type ActorUnit, and with the query that gives the
value with which we can instantiate the subunit.

• In the definition of the ActorUnit. one can notice its input variable, two
attributes, and a navigation relationship. This navigation relationship has
a label “Actor-Bio,” targets a “BioUnit,” and, with the query based on the
“imdb:actorBio” property, determines to which concrete BioUnit this
ActorUnit offers a navigation relationship. Note that in this case the
variable $B is passed on with the navigational relationship (it is also
possible to specify additional output variables that are passed on with the
relationship).

:MovieUnit a am:NavigationUnit ;
 am:hasInput [am:variable [am:varName “M”;
 am:varType imdb:Movie]] ;
 am:hasAttribute [rdfs:label “Title” ; …] ;
 am:hasUnit [
 rdfs:label “LeadActor” ;
 am:refersTo :ActorUnit ;
 am:hasQuery
 “SELECT L
 FROM {$M} rdf:type {imdb:Movie};
 imdb:movieLeadActor {L} rdf:type {imdb:Actor}”
]

:ActorUnit a am:NavigationUnit ;
 am:hasInput [am:variable [am:varName “A” ;
 am:varType imdb:Actor]] ;
 am:hasAttribute [
 rdfs:label Name ;
 am:hasQuery
 “SELECT N
 FROM {$A} rdf:type {imdb:Actor};
 imdb:actor_name {N}”] ;

””

“

“

G.-J. Houben et al.

10. Hera 277

 am:hasAttribute [
 rdfs:label Photo ;
 am:hasQuery
 “SELECT P
 FROM {$A} rdf:type {imdb:Actor};
 imdb:actorPhoto {P}”] ;
 am:hasNavigationRelationship [
 rdfs:label “Actor-Bio” ;
 am:refersTo :BioUnit ;
 am:hasQuery
 “SELECT B
 FROM {$A} rdf:type {imdb:Actor};
 imdb:actorBio {B}”
]

Thus, in these examples we see that each element contained in a unit,

whether it is an attribute, a subunit, or a navigational relationship, has a
query expression (hasQuery) that determines the value used for retrieving
(instantiating) the element.

Sometimes we know that in a unit we want to contain subunits for each
of the elements of a set. For example, in the MovieUnit we might want to
provide information for all actors from the movie (and not just the lead
actor). Below we show a different definition for MovieUnit that includes a
set-valued subunit element (am:hasSetUnit). In its definition, one can notice

• the label “Cast” for the set unit
• the indication that the elements of the set unit are each an “ActorUnit”
• the query that determines the set of concrete actors for this movie to

instantiate this set unit, using the imdb:movie_actor object property

:MovieUnit a am:NavigationUnit ;
 am:hasInput [am:variable [am:varName “M” ;
 am:varitype imdb:Movie]] ;
 am:hasAttribute [rdfs:label “Title” ; …] ;
 am:hasSetUnit [
 rdfs:label “Cast” ;
 am:refersTo ActorUnit ;
 am:hasQuery
 “SELECT A
 FROM {$M} rdf:type {imdb:Movie} ;
 imdb:movieActor {A}”
]

“ ”

278

So, we see that a set unit is just like a regular unit, except that its query
expression will produce a set of results, which will cause the application to
arrange for displaying a set of (in this example) ActorUnits.

Likewise, we can have set-valued query expressions in navigational
relationships, and with am:tour and am:index we can construct guided tours
and indexes, respectively. With these the order of the query determines the
order in the set, and with the index an additional query is used to obtain
anchors for the index list.

10.4.3 Adaptation Examples

Adaptation and personalization are important aspects within the Hera
methodology. For this purpose, the query expressions can be used to include
conditions that provide control over the instantiation of the unit. Typically,
these conditions use data from the context model (CM) and thus depend on
the current user situation. For example, we can use U as a (global) variable
that denotes the current (active) user for this browsing session (typically, this
gets instantiated at the start of the session). Let us assume that in the CM for
each Actor there is a cm:actorRating property that denotes U’s rating of the
actor (from 1 to 5 stars) and that the user has indicated to be interested only
in actors with more than 3 stars. We could then use this rating in adapting
the Cast definition in the last example:

 am:hasSetUnit [
 rdfs:label “Cast”;
 am:refersTo ActorUnit ;
 am:hasQuery
 “SELECT A
 FROM {$U} cm:actorRating {} cm:stars {V} ;
 cm:ratingOnActor {A} imdb:playsIn {$M}
 WHERE V > 3”
]

Here we see how we can influence (personalize) the input to an element

(in this case a set) by considering the user context in the query that
determines with which values the element is constructed. To be precise, in
this example we state inside the movie unit what actors of the cast this user
will be provided with, i.e., which values we “pass on.”

Another user adaptation example would be that the user has indicated not
to be interested in photos from actors. We could then change the query for
the photo attribute accordingly:

G.-J. Houben et al.

10. Hera 279

:ActorUnit a am:NavigationUnit ;
 am:hasInput [am:variable [am:varName “A” ;
 am:varType imdb:Actor]] ;
 …
 am:hasAttribute [
 rdfs:label “Photo” ;
 am:hasConditionalQuery [
 am:if “SELECT *
 FROM {$U} cm:showElement {}
 cm:showAbout {imdb:actorPhoto}

 am:then “SELECT P
 FROM {$A} imdb:actorPhoto {P}”
]
] ;
 … .

Here we see that with “am:hasConditionalQuery” the attribute becomes

“conditional,” i.e., the photo attribute is only shown when the condition
(am:if) query produces a non-empty result. We can also add an am:else”
part here and display, for example, the string “no photo displayed.” We point
out that this query can be written in one single (nested) SeRQL query, but
for the clarity of adaptation specification we use this syntax sugaring.

Finally, we present a more complex example of adaptation. Consider
again the ActorUnit from the previous section, which showed an actor’s
name, his picture, and a link to his bio. Now imagine we would like to add
the list of movies in which the actor played. However, because some movies
are age-restricted, we would like to restrict this list so that adult-rated movies
are only shown to registered users that are 18 or older. As in the previous
adaptation examples, this adaptation can be achieved by tweaking the
SeRQL query that computes the list of movies:

:ActorUnit a am:NavigationUnit ;
 am:hasInput [am:variable [am:varName “A” ;
 am:varType imdb:Actor]] ;
 …
 am:hasSetUnit [
 rdfs:label “Movies Played In”;
 am:refersTo MovieUnit ;
 am:hasConditionalQuery [
 am:if “SELECT *
 FROM {$U} cm:age {G}
 WHERE G > 17”

”

”

280

 am:then “SELECT M
 FROM {$A} imdb:actorMovie {M},
 {M} rdf:type {imdb:Movie}”
 am:else “SELECT M
 FROM {$A} imdb:actorMovie {M},
 {M} rdf:type {imdb:Movie}; imdb:mpaaRating {R}
 WHERE R != “NC-17””
]]

First, notice in the code excerpt the am:hasSetUnit, which represents the

list of movies for the active actor (A). This list is defined by a conditional
query, in which it is verified whether the active user (U) is registered and
whether his age is over 17 (am-if). If this condition holds (am:then), all
movies of the particular actor are computed. If the condition does not hold
(am:else), the computed movie list is restricted to movies that are not MPAA
(Motion Picture Association of America)-rated as “NC-17” (No Children
Under 17 Admitted).

10.4.4 Other Constructs

Earlier we explained the basic constructs. In this section we will look at
some additional features of Hera-S that also allow designers to use some
more advanced primitives in order to construct richer applications.

10.4.5 Update Queries
For the sake of adaptation, we need to maintain an up-to-date context model.
In order to do so, we need to perform updates to this data. For this, we have
the functionality to specify an am:onLoad update query and an am:onExit
update query within every unit; these are executed on loading (navigating to)
and exiting (navigating from) the unit. Furthermore, we allow an update
query to be attached to a navigation relationship so that the update query is
executed when a link is followed. In all cases, the designer may also specify
more than one update query.

In our example we could, for instance, maintain the number of page
views (visits) of a certain movieUnit and update this information if the
movieUnit is loaded using the “onLoad” query:

:MovieUnit a am:NavigationUnit ;
 …
 am:onLoad [
 am:updateQuery

G.-J. Houben et al.

10. Hera 281

 “UPDATE {V} cm:amount {views+1}
 FROM {$U} rdf:type {cm:RegisteredUser};
 cm:userMovieViews {V} cm:amount {views};
 cm:viewsOfMovie {$M}”
];
 … .

10.4.6 Frame-Based Navigation
We explained earlier that units can contain other units. The root of such an
aggregation hierarchy is called a top-level unit. The default semantics of a
navigational relationship (that is defined somewhere inside the hierarchy of a
top-level unit) is that the user navigates from the top-level unit to the top-
level unit that is the target of the relationship. In practice, this often means
that in the browser the top-level unit is replaced by the target unit. However,
we also allow specify that the navigation should only consider the (lower-
level) unit in which the relationship is explicitly specified, so that only that
unit is replaced while the rest of the top-level unit remains unchanged.

This behavior is similar to the frame construct from HTML. We specify
this behavior by explicitly indicating the source unit for the relationship.
Inspired by the HTML frame construct, we allow the special source
indications “_self” (the unit that contains the relation), “_parent” (the unit
that contains the unit with the relation), and “_top” (the top-level unit—the
default behavior). Alternatively, relations may also indicate another
containing unit by referring to the label of the contained unit. An example of
a navigational relationship with a source indication looks like

am:hasNavigationRelationship [
 …
 am:source am:_self ;
 …]

10.4.7 Forms
Besides using relationships (links) for navigation, we also support
applications that let the user provide more specific feedback and interact. For
this we provide the form unit. A form unit extends a normal unit with a
collection of input elements (that allow the user to input data into the form)
and an action that is executed when the form is submitted. In a form a
navigational relationship typically has a button that activates the submission.

Below we give an example of a form that displays the text “Search
Movie:” (line 3) with one text input field (lines 5 to 11) to let the user enter

282

the movie she wants to browse to. If the user enters a value in this field, it is
bound to the variable movieName (line 9). After submitting the form via a
button with the text “Go” (lines 14 and 15), the user navigates to the
MovieUnit (line 14) that will display the movie for which the name was
entered in the input field, which is specified in the query (starting in line 20)
using the variable movieName.

:MovieSearchForm a am:FormUnit ;
 am:hasAttribute [

 am:hasValue “Search Movie: ”
];
 am:formElement [
 rdfs:label “Search Input”;
 am:formType am:textInput;
 am:binding[
 am:variable [am:varName “movieName” ;
 am:varType xsd:String]]
];
 am:formElement [
 rdfs:label “Submit Button”;
 am:formType am:button;
 am:buttonText “Go”;
 am:hasNavigationRelationship [
 rdfs:label “Search Form-Movie” ;
 am:refersTo :MovieUnit ;
 am:hasQuery
 “SELECT M
 FROM {M} rdf:type {imdb:Movie};
 imdb:movieTitle {X}
 WHERE X = $movieName”
]
]

10.4.8 Scripting Objects
Current Web applications offer users a wider range of client-side
functionality by different kinds of scripting objects, like Javascript and
VBscript, stylesheets, HTML+TIME timing objects, etc. Even though WIS
methods like Hera concentrate more on the creation of a platform-

G.-J. Houben et al.

10. Hera 283

independent hypermedia presentation than a data domain, and these scripts
are often (but not always) browser-/platform-specific, we still provide the
designer a hook to insert these kinds of scripting objects.

The designer can specify within a scripting object whatever code she
wants, as this will be left untouched in generating the AMPs out of the AM.
Furthermore, the designer can add an am:hasTargetFormat property to
specify one or more target formats for format-specific code, e.g., HTML or
SMIL. This allows us later in the process to filter out certain format-specific
elements if these are not wanted for the current presentation. The scripting
objects can use the variables that are defined within the scope of the units.
Scripting objects can be defined as an element within any other element (i.e.,
units and attributes). Furthermore, it can be specified whether or not the
script should be an attribute of its superelement (e.g., similar to elements in
HTML that have attributes and a body). The need to place some specific
script on some specific place is, of course, decided by the designer.

10.4.9 Service Objects
An application designer might want to use additional functionality that
cannot be realized by a client-side object but that involves the invocation of
external server-side functionality. Therefore, we provide so-called service
objects (am:serviceObject) to support Web services in the AM. The use of a
service object and the reason to provide support for it are similar to that of
scripting objects. The designer is responsible for correctness and usefulness
of the service object.

Think of utilizing a Web service from an online store selling DVDs in
order to be able to show on a movie page an advertisement for buying the
movie’s DVD. A service object needs three pieces of information:

• a URL of the Web service one wants to use
• a SOAP message that contains the request to the Web service
• a definition of the result elements

A service object declaration can be embedded as a part of every other
element. If a unit is navigated to (“created”), first the service objects will be
executed. The results of the service object either will be directly integrated
into the AM and treated as such, or the result can be bound to variables.
Service objects can use unit variables in their calls.

284

10.4.10 Model Builders

In most RDF serializations it can become difficult to see which structures
belong together and what the general structure of the document is, especially
as the documents get larger. This also applies to the Hera models and has the
consequence that manually creating them can become error-prone. It is
therefore beneficial to offer the designer tool support for creating those
models graphically. Based on a given HPG version, Hera Studio (Figure
10.5) contains a domain, context, and application model editor in which the
designer can specify the models in a graphical way. All these models can
subsequently be exported to an RDF serialization that can be used by Hera.

Figure 10.5. Hera Studio.

Note that Hera Studio is not a general-purpose OWL or RDF(S) editor
such as Protégé, for instance; rather, it is a custom-made version specialized
for Web applications designed through Hera models.

In the DM editor (Figure 10.6), designers can define classes and object
properties between those classes. For every class, a number of data type
properties can be given that have a specified media type (e.g., String, Image,
etc.). Furthermore, inheritance relations for classes and properties can be

G.-J. Houben et al.

10. Hera 285

denoted. In addition, instances of the classes and properties can be specified.
Note that if more complex constructs are needed, the designer could also use
a general-purpose OWL/RDF editor like Protégé.

Figure 10.6. DM example.

The AM editor provides a graphical way for specifying an AM (Figure
10.7 gives an example). It specifically allows organizing the units and the
relationships between them. Per unit, elements can be defined and displayed.
Detailed information like queries is hidden in the graphical view and can be
configured by double-clicking the elements. For the simpler constructs, the
editor provides direct help: For example, when defining a data type property,
the editor gives the designer a straightforward selection choice from the
(inherited) data type properties of the underlying context and domain
models. However, for the more complex constructs, the designer has the
freedom to express his own queries and element properties. In addition, the
designer can control the model’s level of detail to get a better overview of
the complete model.

286

Figure 10.7. AM example.

Currently, the AM editor is being extended to support the more specific
Hera-S constructs mentioned in this section. In this process, we will also
extend the model-checking functionality that allows the designer to check if
the Web application fulfills certain requirements. Furthermore, we plan to
extend the builders with an optional lightweight presentation component.

10.5 ASPECT ORIENTATION IN MODEL DESIGN

Before we continue with presentation design and implementation, we make a
side step and turn to an element of design support that we are currently
working on and that uses principles from aspect orientation.

As described in the previous sections, Hera-S provides conceptual WIS
design support on the basis of data contained in an RDF repository like
Sesame and that are accessed and manipulated through an RDF query
language like SeRQL. In this setting, adaptation is specified by SeRQL
queries that, based on (DM and) CM data, conditionally instantiate
navigational units in the AM. Examples of such an adaptation can be found
in Section 10.4.3. In most cases, the desired adaptation is expressed by
expressions that are embedded in the SeRQL query and that have the explicit

G.-J. Houben et al.

10. Hera 287

purpose of restricting the set of instances; we can call these expressions
adaptation conditions. We observe that often these adaptation conditions can
conceptually be detached from the rest of the SeRQL queries and explicitly
specified at (AM) model level. In this way, with each AM modeling element
(i.e., units, relationships) we can nicely associate its adaptation conditions
that explicitly denote the restriction of this element according to the user
model’s attributes/values.

Typically, in a Web application several adaptation issues need to be taken
into account in parallel (e.g., age-group restriction, accessibility, device
dependence). Adaptation engineering thus constitutes a significant effort in
specifying the application’s functionality. Moreover, although the adaptation
conditions for an adaptation issue can occur at one specific place in the
design (e.g., to restrict adult-rated material on a certain page), it is (more)
often the case that they cannot be pinpointed to one particular element (e.g.,
when one does not want anything on the site to show adult-rated material to
minors) and need to be applied at different places in the design (models).
Concretely, consider the last example from Section 10.4.3, which restricts
the list of movies starring a particular actor. Obviously, the designer may be
required to specify other lists of movies (e.g., in the am:CinemaUnit, to
denote the movies played in a particular cinema) also at other places in the
design. To enforce the age-group restriction policy throughout the
application or Web site, the designer thus needs to incorporate the necessary
conditions in all SeRQL queries involving the selection of movies (or any
other content that may be age-restricted, e.g., adult actors).

A similar observation was made in (regular) software development, when
considering different design concerns of an application: Some concerns
cannot be localized to a particular class or module; instead they are
inherently distributed over the whole application. Such a concern is called a
cross-cutting concern. To cleanly separate the programming code addressing
this concern from the regular application code, aspect-oriented programming
(Kiczales et al., 1997) was introduced. Inspired by the principles of aspect
orientation, Hera-S provides (adaptation) design support to specify, in an
aspect-oriented way, the different cross-cutting adaptation concerns by
means of an aspect-oriented adaptation specification.

Applying aspect orientation to extend an AM with different additional
adaptation concerns is thus done by modeling each concern as an aspect.
Each aspect is composed of a number of advice-pointcut pairs. In this
setting, the notions of advice and pointcut are as follows:

• Advice: Advice specifies a particular transformation in terms of

modifications to the different (navigational) elements of the AM. In most
cases, a single modification will add a single adaptation condition to

288

certain navigational units or relationships in the form of an SeRQL
query.

• Pointcut: A pointcut defines a query on the set of navigational units and
relationships of an application model, which specifies exactly the
elements to which certain advice should be applied.

These advice-pointcut pairs can thus be used to inject adaptation
conditions to (certain elements of) the AM. It is a current research topic to
investigate the limitations of this process of transforming these adaptation
conditions in the corresponding SeRQL queries, a restricted form of what is
called weaving in aspect terminology.

To exemplify this approach, we illustrate how two additional adaptation
concerns, age-group (restriction) and device dependence, can be specified in
an aspect-oriented way over an (existing, in this case non-adaptive) AM. For
the first adaptation aspect, namely age-group (restriction), let us express the
motivating example mentioned earlier in this section: Restrict visibility of all
adult-rated, i.e., NC-17-rated, content throughout the application, and only
show it when the user’s age has been confirmed to be above 17. In an aspect-
oriented way, this adaptation strategy is specified as follows:

POINTCUT SET WITH PARENT cm:movie
ADVICE
 SELECT M
 FROM {M} am:MPAA-rating {R}; rdf:type {imdb:Movie}
 WHERE R != 'NC-17'
 OR EXISTS
 (SELECT * FROM {$U} cm:age {G}
 WHERE G > 17)

This pointcut-advice pair specifies first the pointcut: wherever in the AM

a navigational unit is used that represents a set of movie elements (i.e., the
pointcut part). In all these places (in the advice) a condition is added in the
form of an SeRQL expression, which denotes that the age (an attribute from
the CM) should be over 17 to view NC-17-rated material. Similar pointcut-
advice pairs can be specified to restrict visibility of items with other MPAA
ratings. Note that any movie set, wherever it appears in the AM, is restricted:
The adaptation is not localized to one particular navigational unit and is thus
truly cross-cutting.

The semantics of this condition addition is that this query expression is
performed after the one that was defined originally for this element.
Concretely, interpretation and execution of the above aspect result in
modification of the SeRQL queries instantiating (a set of) movies. Note that
the last example of Section 10.4.3 is one particular occurrence of such a set

G.-J. Houben et al.

10. Hera 289

of movies, for which the adaptation was manually specified by the
designated SeRQL query. However, to achieve automatic weaving of
aspects, a more generic pipeline approach is best suited. In this approach,
the original (non-adaptive) query expression Q producing the set of instances
(i.e., movies in this case) is taken as a starting point. Subsequently, each
adaptation condition Ci specified for this set gives rise to an SeRQL query Qi
that takes as input the result of the previous query Q(i-1) and filters from this
result the element according to the adaptation condition Ci. For adaptation
conditions C1 … Cn specified for a set, and possibly originating from
different adaptation issues, the resulting query will thus be of the form Qn○
Q(n–1) ○ … ○ Q1 ○ Q. Evidently, other approaches, such as query rewriting or
query merging, are possible.

A second example concerns device dependence: In order not to overload
small-screen users (e.g., PDA users), we decided not to show pictures.
Therefore, we can specify the following pointcut-advice pair:

POINTCUT ATTRIBUTE
ADVICE
 SELECT P
 FROM {P} hera:Mime {} hera:mimeType {T}
 WHERE T != ‘image*’
 OR EXISTS
 (SELECT * FROM {$U} cm:device {D}
 WHERE D != ‘pda’)

In the pointcut, all attributes from the AM are selected. For these

attributes, in the advice part, the picture attributes (denoted by the mime-type
specification as mentioned in Section 10.4.2) are filtered out for PDA users,
restricting their visibility for these PDA users. Note that, once again, our
example addresses a truly cross-cutting concern: Anywhere in the AM where
a picture attribute is used, it will be filtered out for PDA users.

To conclude this section on aspect-oriented adaptation support, we would
like to point out that the primary way of defining adaptation, namely to
manually specify it in the AM by means of SeRQL queries, as was
illustrated in Section 10.4, is still available to the designer. The aspect-
oriented support presented here merely offers the designer an additional and
alternative means of specifying, in a straightforward and distributed way, the
adaptation conditions for (sets of) AM elements.

290

10.6 IMPLEMENTATION

After illustrating the AM design, we now turn to the engine implementing
the model, i.e., generating the hypermedia views over the content according
to what is specified in the AM. As explained in Section 10.1, we distinguish
three implementations for the Hera models. The Hera-S implementation is
based on our previous experiences with the Hera Presentation Generator
(HPG) (Frasincar, 2005), an environment that supports the construction of
WIS using the Hera methodology. Considering the technologies used to
implement Hera’s data transformations, we distinguish two variants of the
HPG: HPG-XSLT, which implements the data transformations using XSLT
stylesheets, and HPG-Java, which implements the data transformations using
Java. In HPG-XSLT we employed as an XSLT processor Saxon, one of the
most up-to-date XSLT processors implementing XSLT 2.0. In HPG-Java we
used two Java libraries, the Sesame library for querying the Hera models and
the Jena library for building the new models. Hera-S resembles in many
ways HPG-Java, but it is based on the revision of the Hera models presented
in this paper.

10.6.1 HPG-XSLT and HPG-Java

First we take a look at the tools for HPG-XSLT and HPG-Java that build the
foundation for Hera-S. HPG-XSLT has an intuitive designer’s interface,
visualizing the Hera pipeline for the development of a Web application (see
Figure 10.8). The user is guided in a sequence of steps to create the complete
Web application, which, generated with XSLT stylesheets, results in a
concrete, but static, Web site for a given platform. In the interface we see
that each step in this advanced HPG view is associated with a rectangle
labeled with the step’s name (e.g., Conceptual Model, Unfolding AM,
Application Adaptation, etc.). In each step a number of buttons are
connected with within-step arrows and between-step arrows that express the
data flow. Such a button represents a transformation or input/output data
depending on the associated label (e.g., Unfold AM is a transformation,
Unfolding sheet AM is an input, and Unfolded AM is an output). The arrows
that enter into a transformation (left, right, or top) represent the input, and
the ones that exit from a transformation (bottom) represent the output. The
last step is the generation of the presentation in the end format (e.g., HTML).

G.-J. Houben et al.

10. Hera 291

Figure 10.8. Screenshot from HPG-XSLT.

The models for HPG-XSLT can be created by hand but also with the help
of Microsoft Visio templates, which provide a graphical environment to aid
the correct construction of the different models (see Figure 10.9 for an
example of the corresponding AM builder).

Figure 10.9. Visio templates HPG-XSLT.

292

HPG-XSLT is an effective demonstration tool and sufficient for simple
Web site applications. However, WIS may require more flexibility and more
dynamics, for the application to be able to dynamically change in an ever-
changing environment. A standalone client creating static Web pages was
not enough for this purpose, so we created a server-side engine that evaluates
every page request and dynamically creates an adapted (e.g., personalized)
page; this engine was called HPG-Java. HPG-Java is a Java Servlet that can
be run within a Servlet container Web server like Apache Tomcat. The
application can be configured by the Hera models and a basic configuration
file that indicates where on the server these models are provided (and some
additional database settings). The server-side version allows data to be
updated based on the user behavior, providing data for the sake of
personalization. HPG-Java does not provide a designer platform, but the
designer can use an adapted version of the Visio templates to create the
models.

In order to give the reader some indication of the dynamics (based on
queries) provided by HPG-Java, we use the example from Figure 10.10.

Figure 10.10. Web application served by HPG-Java.

On the left-hand side of the figure is the current page, while on the right-
hand side is the next page that needs to be computed. When the user presses
the “Add order” button, two queries are executed. The first query builds a
new order, and the second query adds the currently created order to the
trolley. Based on this newly computed data, the next page is generated. This
new page displays the list of ordered paintings (based on the orders in the

G.-J. Houben et al.

10. Hera 293

trolley) and also provides two forms. The first form allows the user to select
the next painting, and the second form enables the user to delete an order
previously added to the trolley.

10.6.2 Hera-S

As we have explained earlier, the architecture of the Hera-S version is
similar to that from the earlier HPG-Java version, but obviously it
accommodates the newer Hera-S AMs with their SeRQL queries. A major
difference is that the AM is less tightly coupled to the domain, in the sense
that the designer has more freedom to select elements and concepts in the
domain by the use of the SeRQL queries. Furthermore, we allow the domain
to be any repository of RDF data (i.e., no proprietary data model). Note that
this does not only apply to the domain, but also to the context. The
implementation is again a Java servlet; however, storage and manipulation of
all the meta-models are now handled by different Sesame repositories.

Furthermore, the Hera-S implementation concentrates on the application-
model level only. Several presentation modules exist (Section 10.7 will go
into more details) that can configure the presentation of AM data, each with
outstanding features that might be more appropiate in different situations.
Having separate implementations allows a presentation module to be
plugged into the pipeline that fits the situation, thus also making Hera-S
more platform-independent.

In Figure 10.11 we see the main components that make up the Hera-S
implementation architecture. The domain model (DM), application model
(AM), and all context data are realized as Sesame repositories, exploiting
Sesame’s capability that enables storage, reasoning, and querying of RDF
and OWL data.

The content is interfaced to the rest of the system through the DM
repository. A major advantage of this approach is that integrated querying of
both schema and instance data becomes possible. To enable this, the content
has to be represented as RDF statements. For non-RDF content repositories,
this can be achieved in various ways. The simplest and most straightforward
case is an offline translation of the data to RDF and simply storing that RDF in
a Sesame repository. However, this approach has a drawback for certain cases
by duplicating data, which means that updates to the data need to happen in
two places. An alternative way of realizing the link between DM and data is
by creating a wrapper component around the actual data source that does
online back-and-forth translation. The Sesame architecture caters for this
scenario by having a storage abstraction layer called the SAIL API (Broekstra
et al., 2002). A simple wrapper component around virtually any data source

294

can be realized as a SAIL implementation and then be integrated effortlessly
into the rest of the Sesame framework and thus into our Hera-S environment.

Figure 10.11. Hera-S architecture.

The entire system has an event-driven architecture. When a request for a
certain page comes in at the PresentationServer component, the request is
translated to a request for an AMP. At the same time, the UserManager and
SessionManager components are informed of the request. These two
manager components can then take appropriate actions in updating the
context data repositories [specifically, the UM (user model) Repository, and
the Session Repository].

Independently from this, the so-called AMPGen component retrieves the
requested part of the AM that contains the conceptual specification that is
the basis for the next AMP. It then starts the AMP creation process by
following that specification.

The actual AMP is internally implemented as a volatile (in-memory)
Sesame repository, which means that all transformation operations on it can
simply be carried out as RDF queries and graph manipulations using the
SeRQL query language. When the AMP has been fully constructed, it is sent
back to the presentation-generation component. This presentation-generation
component can then transform the AMP into an actual page (in terms that a
thin client such as a Web browser can understand, e.g., XHTML). The result
is then finally sent back to the client (as the response).

In the Hera-S system, SeRQL query expressions are extensively used to
define mappings and filters between the different data sources and the
eventual AMP. Since all these data are expressed as RDF graphs, an RDF
query/transformation language is a natural choice as a mapping tool.

G.-J. Houben et al.

10. Hera 295

In Section 10.7 we will describe a presentation-generation process that
uses the AMP as input to generate a presentation for different user platforms.
It will also show a screenshot from an application that can be generated with
the Hera-S engine in combination with that presentation-generation solution.
Via the feedback mechanism, built-in as parameters in the links, user actions
will trigger subsequent actions in the Hera-S engine (i.e., presentation
generation typically does not interfere with this process).

10.7 PRESENTATION DESIGN

In this section we address one particular approach to presentation design.
The presentation design step of Hera bridges the gap between the logical
level from the AM and the actual implementation. If needed, the presentation
model (PM) can specify the details of this transformation. Complementary to
the AM, where the designer is concerned with the structure of the
information and functionality as it needs to be presented to the user (by
identifying navigational units and relationships), the PM specifies how the
content of those navigation units is displayed. According to these
specifications, AMPs can be transformed to a corresponding Web
presentation in a given output format, e.g., XHTML, cHTML, WML, etc.
We do stress that we foresee multiple alternative ways to render AMPs in
specific output formats, and the designer is free to choose a way to configure
this transformation of AMPs into output. In this section we illustrate one
particular way, which uses a PM to detail the presentation design and which
is implemented using a particular document format for adaptive Web
presentations.

10.7.1 Presentation Model Specification

The PM is defined by means of so-called regions and relationships between
regions. Regions are abstractions for rectangular parts of the user display and
thus satisfy browsing platform constraints. They group navigational units
from the AM; like navigation units, regions can be defined recursively. They
are further specified by a layout manager, a style, and references to the
navigational units that they aggregate. We note that the usage of layout
managers was inspired by the AMACONT project’s component-based
document format (Fiala et al., 2003), adopting its abstract layout manager
concept in the Hera PM. As will be explained in Section 10.7.2, this enables
us to use AMACONT’s flexible presentation capabilities for the generation
of a Web presentation.

296

Figure 10.12 shows an excerpt of the PM for the running example, i.e.,
the regions associated to the MovieUnit navigational unit and its subregions.

MovieUnit

Unit

title

year

MovieRegionFull (BoxLayout1, DefaultStyle)

CinemaUnit

Set

 name A

 place

CastUnit

Set

A

description

official_site

A

photo

status

trailer A

MovieRegionLeftTop (BoxLayout4)

MovieRegionLeft (BoxLayout2) MovieRegionRight (BoxLayout3)

A

A

MovieRegionLeftBottomMiddle (GridLayout1)

MovieRegionLeftBottom (BoxLayout5)

A

A

A

A

name

Figure 10.12. Presentation model for the MovieUnit navigational unit.

The MovieUnit navigational unit is associated with the region called
MovieRegionFull. It uses the layout manager BoxLayout1 for the
arrangements of its subregions (MovieRegionLeft and MovieRegionRight)
and the style given by DefaultStyle. BoxLayout1 is an instance of the layout
manager class BoxLayout that allows us to lay out the subregions of a region
either vertically or (as in this case) horizontally. The style describes the font
characteristics (size, color), background (color), hyperlink colors, etc. to be
used in a region. The definition of styles was inspired by Cascading Style
Sheets (CSS) (Bos et al., 2005). We chose to abstract the CSS formatting
attributes because (1) not every browser supports CSS at the current moment
and (2) we would like to have a representation of the style that can be
customized based on user preferences.

G.-J. Houben et al.

10. Hera 297

Both MovieRegionLeft and MovieRegionRight use BoxLayout’s with a
vertical organization of their inner regions. For the title and year attributes,
BoxLayout4 is used, which specifies a horizontal arrangement. For photo,
description (the region containing the names in the cast), status, official_site,
and trailer, BoxLayout5 is used, which indicates a vertical arrangement. The
names in the cast are organized using GridLayout1 (an instance of the layout
manager class GridLayout), a grid with four columns and an unspecified
number of rows. The number of rows was purposely left unspecified, as one
does not know a priori (i.e., before the presentation is instantiated and
generated) how many names the cast of a movie will have. The regions that
do not have a particular style associated with them inherit the style of their
container region. Note that in Figure 10.12 we have omitted constant units
[e.g., (,), Cast, etc.] in order to simplify the explanation.

Besides the layout manager classes exemplified in Figure 10.12, the
definition of PM supports additional ones. BorderLayout arranges
subregions to fit in five directions: north, south, east, west, and center.
OverlayLayout allows us to present regions on top of each other.
FlowLayout places the inner regions in the same way as words are placed on
a page: The first line is filled from left to right, and the same is done for the
second line, etc. TimeLayout presents the contained regions as a slide show
and can be used only on browsers that support time sequences of items, e.g.,
HTML+TIME (Schmitz et al., 1998) or SMIL (Bulterman et al., 2005). Due
to the flexibility of the approach, this list can be extended with other layout
managers that future applications might need.

The specification of regions allows us to define the application’s
presentation in an implementation-independent way. However, to cope with
users’ different layout preferences and client devices, Hera-S also supports
different kinds of adaptation in presentation design. As an example, based on
the capabilities of the user’s client device (screen size, supported document
formats, etc.), the spatial arrangement of regions can be adapted. Another
adaptation target is the corporate design (the “look-and-feel”) of the
resulting Web pages. According to the preferences and/or visual
impairments of users, style elements like background colors, fonts (size,
color, type), or buttons can be varied. For a thorough elaboration of
presentation-layer adaptation, the reader is referred to Fiala et al. (2004).

Turning back to our running example, we now consider how to adapt the
PM for the MovieUnit navigational unit to the typical small display size and
horizontal resolution of a handheld device. In this respect, we aim at replacing
the layout managers BoxLayout1 and GridLayout1 with BoxLayout’s
specifying vertical arrangements for their containment elements. Note that the
PM facilitates specifying such adaptations by the assignment of multiple
layout or style alternatives (variants) as simple conditions attached to “region-

298

layout manager assignments,” in correspondence with the adaptation
conditions of the AMACONT document format. These conditions are simple
Boolean expressions consisting of constants, arithmetic and logical operators,
as well as references to context model parameters.

10.7.2 Presentation Generation Implementation

After the specification of the PM, we now turn to its implementation. As
mentioned above, we illustrate it by using the AMACONT project’s
component-based document model, which is perfectly suited for this task as
this PM was based on AMACONT presentation principles in the first place.
This approach aims at implementing personalized ubiquitous Web
applications by aggregating and linking configurable document components.
These are instances of an XML grammar representing adaptable content on
different abstraction levels. Media components encapsulate concrete media
assets (text, structured text, images, videos, HTML fragments, CSS) by
describing them with technical meta-data. Content units group media
components by declaring their layout in a device-independent way.
Document components define a hierarchy from content units to fulfill a
semantic role. Finally, the hyperlink view defines links that are spanned over
components. For more details on the AMACONT document model, the
reader is referred to Fiala et al. (2003).

 Whereas the AMACONT document model provides different adaptation
mechanisms, in this chapter we focus on its presentation support. For this
purpose it allows us to attach XML-based abstract layout descriptions
(layout managers) to components. Document components with such abstract
layout descriptions can be automatically transformed to a Web presentation
in a given Web output format. As mentioned above, the PM was specified by
adopting AMACONT’s layout manager concept to the model level. This
enables the automatic translation of AMPs to a component-based Web
presentation based on a PM specification. The corresponding presentation
generation pipeline is illustrated in Figure 10.13.

In a first transformation step (AMP to component) the AMPs are
translated to hierarchical AMACONT document component structures. In
doing so, both the aggregation hierarchy and the layout attributes of the
created AMACONT components are configured according to the PM
configuration. Beginning at top-level document components and visiting
their subcomponents recursively, the appropriate AMACONT layout
descriptors (with adaptation variants) are added to each document
component. This transformation can be performed in a straightforward way
and was already described in detail by Fiala et al. (2004). The automatically
created AMACONT documents are then processed by AMACONT’s

G.-J. Houben et al.

10. Hera 299

document generation pipeline. In a first step, all adaptation variants are
resolved according to the current state of the context model. Second, a Web
presentation in a given Web output format (e.g., XHTML, XHTML Basic,
cHTML, or WML) is created and delivered to the client.

Web
page

Document Generation
Rendering
XHTML
cHTML
WML

Transform
Adaptation
to context
data

Context Model

AMP
AMP to

Component

PM

Figure 10.13. Presentation generation with AMACONT.

Figure 10.14 illustrates the XHTML page generated for the PC version of
our running example. It represents an instantiation of the Movie navigational
unit with data used for “The Matrix” movie. It also shows the cinemas that
are currently playing this movie.

Note that the presentation of content elements corresponds to the PM
specification that was illustrated in Figure 10.12.

Figure 10.14. Presentation on a PC.

300

Figure 10.15. Presentation on a PDA.

As an alternative, Figure 10.15 shows the same page as presented on a
PDA, exemplifying the layout adaptation. As can be seen, the resulting
presentation is in correspondence with the PM adaptation specified above,
i.e., all content elements are displayed below each other.

10.8 SUMMARY

In this chapter we have discussed on the basis of the running example the
models and tools that make up the Hera approach to WIS design. This
approach is characterized by a focus on adaptation in the navigation design,
and a number of the facilities are motivated by the goals of this adaptation
support. The most characteristic element of the approach is the choice to use
RDF as the main language for expressing the domain and context data and the
application model (AM) that defines the context-based navigation over and
interaction with the content. Since the storage and retrieval of the RDF data
involve the manipulation of RDF data, we have chosen to use a Sesame-based
approach, i.e., making the different RDF data models available as Sesame
repositories. Consequently, we use SeRQL query expressions in the definition
of the AM. With the RDF and SeRQL expressions, we have models that allow
a more fine-grained specification of adaptation and context dependency. Also,
we can more extensively exploit the interoperability of RDF data, for example,
when integrating data sources (e.g., for background knowledge) and
interfering with the data processing independently from the navigation. This
enables a clean separation of concerns that helps in personalization and
adaptation and in the inclusion of external data sources.

G.-J. Houben et al.

10. Hera 301

REFERENCES

Beckett, D., 2004, Turtle: Terse RDF Triple Language. Technical report.
http://www.dajobe.org/2004/01/turtle/.

Bos, B., Çelik, T., Hickson, I., and Lie, H.W., 2005, Cascading Style Sheets, level 2 revision
1, CSS 2.1 specification, W3C Working Draft, June 13.

Brickley, D., and Guha, R.V., 2004, RDF Vocabulary Description Language 1.0: RDF
Schema. W3C Recommendation, Feb. 10. http://www.w3.org/TR/rdf-schema/.

Broekstra, J., Kampman, A.. and van Harmelen, F., 2002, Sesame: An architecture for storing
and querying RDF and RDF schema. Proceedings First International Semantic Web
Conference, ISWC2002, Sardinia, Italy, June 9-12, Springer-Verlag Lecture Notes in
Computer Science (LNCS) no. 2342, pp. 54–68. http://www.openrdf.org/.

Broekstra, J., 2005, SeRQL: A second-generation RDF query language. Chapter 4 in Storage,
Querying and Inferencing for Semantic Web Languages, PhD thesis, Vrije Universiteit
Amsterdam, ISBN 90-9019-236-0. http://www.openrdf.org/doc/SeRQLmanual.html.

Bulterman, D., Grassel, G., Jansen, J., Koivisto, A., Layaïda, N., Michel, T., Mullender, S.,
and Zucker, D., 2005, Synchronized Multimedia Integration Language (SMIL 2.1), W3C
Recommendation Dec. 13.

Chipman, A., Goodell, J., Harpring, P., Beecroft, A., Johnson, R., and Ward, J., 2005, Getty
Thesaurus of Geographic Names: Editorial Guidelines. Available at http://www.getty.edu/
research/conducting_research/vocabularies/guidelines/tgn_1_contents_intro.pdf.

Dean, M., and Schreiber, G., 2004, The OWL Web Ontology Language Reference. W3C
Recommendation, Feb. 10. http://www.w3.org/TR/owl-ref/.

Fiala, Z., Frasincar, F., Hinz, M., Houben, G.J., Barna, P., and Meissner, K., 2004,
Engineering the presentation layer of adaptable Web information systems. International
Conference on Web Engineering, ICWE 2004, July 28-30, Munich, Germany, Springer-
Verlag Berlin Heidelberg, LNCS 3140, pp. 459–472.

Fiala, Z., Hinz, M., Meißner, K.. and Wehner, F., 2003, A component-based approach for
adaptive, dynamic Web documents. Journal of Web Engineering, 2(1&2): 58–73.

Frasincar, F., 2005, Hypermedia Presentation Generation for Semantic Web Information
Systems, PhD thesis, Chapter 4 (Hera Presentation Generator), Eindhoven University of
Technology Press Facilities, ISBN 90-386-0594-3, pp. 67–87.

Hart, L., Emery, P., Colomb, B., Raymond, K., Taraporewalla, S., Chang, D., Ye, Y.,
Kendall, E., and Dutra, M., 2004, OWL full and UML 2.0 compared.
http://www.itee.uq.edu.au/~colomb/Papers/UML-OWLont04.03.01.pdf.

Hobbs, J.R., and Pan, F., 2004, An ontology of time for the Semantic Web. ACM
Transactions on Asian Language Information Processing, TALIP, 3(1): 66–85.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C., Loingtier, J.M., and Irwin,
J., 1997, Aspect-oriented programming. Proceedings 11th European Conference on
Object-Oriented Programming, ECOOP’97, Jyväskylä, Finland, pp. 220–242.

Klyne, G.. and Carrol, J., 2004, Resource Description Framework (RDF): Concepts and
Abstract Syntax. W3C Recommendation, Feb. 10. http://www.w3.org/TR/rdf-concepts/.

Miller, G.A., 1995, Wordnet: A lexical database for English. Communications of the ACM,
38(11): 39–41.

Schmitz, P., Yu, J., and Santangeli, P., 1998, Timed Interactive Multimedia Extensions for
HTML (HTML+TIME), W3C Note Sept. 18.

Thiran, P., Hainaut, J.L., and Houben, G.J., 2005, Database wrappers development: Towards
automatic generation. Ninth European Conference on Software Maintenance and
Reengineering, CSMR’05, Manchester, UK, IEEE CS Press, pp. 207–216.

Chapter 11

WSDM: WEB SEMANTICS DESIGN METHOD

Olga De Troyer, Sven Casteleyn, Peter Plessers
Research Group WISE, Department of Computer Science, Vrije Universiteit Brussel,
Pleinlaan 2, 1050 Brussels, Belgium

11.1 WSDM OVERVIEW

WSDM was introduced by De Troyer and Leune in 1998 (De Troyer and
Leune, 1998). At that time the acronym stood for Web Site Design Method
and only targeted information-providing Web sites. In the meantime, the
method has evolved a great deal and now also allows traditional Web
applications as well as Semantic Web applications to be designed, hence the
renaming of the method into Web Semantics Design Method.

More than other Web design methods, WSDM is a methodology, i.e., it
not only provides modeling primitives that allow a Web developer to
construct models that describe the Web site/application from different
perspectives and at different levels of abstraction, but it also provides a
systematic way to develop the Web application. Developing a Web
site/application with WSDM starts with the formulation of the so-called
mission statement and follows a well-defined design philosophy that offers
the designer the necessarily support to structure the Web site. The method
consists of a sequence of phases. Each phase has a well-defined output. For
each phase, a (sub)method describing how to derive the output from its input
is provided. The output of one phase is the input of a following phase. As
already indicated, currently the method allows the development of Web sites
as well as Web applications. For the sake of simplicity, we will use the term
“Web systems” to indicate both Web sites and Web applications. It is also
important to notice that WSDM allows us to develop Web systems that are
semantically annotated, in this way effectively enabling the Semantic Web.
Content-related (semantic) annotations as well as structural annotations can
be generated. Content-related annotations make the semantics of the content

304 O.

explicit. Structural annotations are annotations that explicitly describe the
semantics of the different structural elements of the Web systems. Structural
annotations can be exploited by third parties to transcode the Web system to
a different format, for example to formats appropriate for a screen reader, or
they can be exploited by search engines for their page segmentation [see,
e.g., Deng et al. (2004) for an overview of page segmentation by search
engines].

WSDM follows an audience-driven design approach. An audience-driven
design philosophy means that the different target audiences (visitors) and
their requirements are taken as starting point for the design and that the main
structure of the Web site is derived from this. Concretely, this results in
different navigation paths (called audience tracks) offered from the home
page, one for each different kind of visitor.

Figure 11.1 shows an overview of the different phases of WSDM. The
different phases are shown sequentially. However, in practice, the design
process is rather iterative. In this section a brief description of the different
phases is given. In the following sections the different phases are explained
into more detail and illustrated with examples from this book’s common
example, the Internet Movies Database Web site,1 or IMDb for short. Note
that it is not realistic and also not the purpose to redesign the entire system
here. Simplifications made were necessarily to reduce the size of the
drawings and the examples.

In the first phase of the method, the mission statement specification, the
mission statement for the Web system is formulated. The goal of this phase
is to identify the purpose of the Web system, as well as the subject and the
target users. Without giving due consideration to the purpose, there is no
proper basis for making design decisions or for evaluating the effectiveness
of the Web system. The target users are the users whom we want to address
or who will be interested in the Web system. The subject of the Web system
is, of course, related to the purpose and the target users of the Web system.
The subject must allow fulfilling the purpose of the Web system, and it must
be adapted for the target users. The output of this phase is the mission
statement. It is formulated in natural language and must describe the
purpose, subject, and target users of the Web systems. In fact, the mission
statement establishes the borders of the design process. It allows (in the
following phases) deciding which information or functionality to include or
exclude, how to structure it, and how to present it.

1 http://www.imdb.com.

De Troyer et al.

11. WSDM: Web Semantics Design Method 305

Figure 11.1. WSDM overview.

The next phase is the audience modeling phase. The target users
identified in the mission statement are refined into audience classes. This
means that the different types of users are further identified and classified
into audience classes. The classification is based on the requirements of the
different users. Users with the same information and functional requirements
become members of the same audience class. Users with additional
requirements form audience subclasses. In this way a hierarchy of audience
classes is constructed. For each audience class, relevant characteristics (e.g.,
age, experience level) are given.

The next phase, the conceptual design, is used to specify the information,
functionality, and structure of the Web system at a conceptual level. A
conceptual design makes an abstraction from any implementation
technology or target platform. The information and functionality are
specified during the task & information modeling subphase. The overall
conceptual structure including the navigational possibilities for each
audience class is specified during the navigational design subphase.

During the implementation design phase, the conceptual design models
are complemented with information required for an actual implementation. It
consists of three subphases: site structure design, presentation design, and

306

logical data design. During site structure design, the conceptual structure of
the Web system is mapped onto pages, i.e., is the designer decides which
components (representing information and functionality) and links will be
grouped onto Web pages. For the conceptual design, different site structures
can be defined, targeting different devices, contexts, or platforms. The
presentation design is used to define the look and feel of the Web system as
well as the layout of the pages. The logical data design is only needed for
data-intensive Web systems. In case the data will be maintained in a
database, a database schema is constructed (or an existing one can be used),
and the mapping between the conceptual data model and the actual data
source is created. Evidently, other types of data sources are possible (XML,
RDF, OWL, etc.).

The last phase is the implementation. The actual implementation can be
generated automatically from the information collected during the previous
phases.

11.2 MISSION STATEMENT SPECIFICATION

In the first phase of the method, the mission statement for the Web system
should be formulated. To develop a successful Web system, it is necessary to
first reflect on the purpose of the Web system; otherwise, there will be no
proper basis for making design decisions or for evaluating the effectiveness
of the Web system. For example, for a company, the purpose may range
from simply “having an identity on the Web,” to “advertising some of its
products,” to “provide a full-fledged e-shop”; for public and local
authorities, it may range from providing general information to a full-fledged
e-government system that allows users to arrange official matters (e.g., apply
for official documents) using the Web. The purpose should be established in
consultation with the different stakeholders.

The different stakeholders should also agree on the topics that should be
covered by the Web system. Even if the purpose is clear, it may be necessary
to explicitly name the topics the system will deal with. For example, a
company may decide to offer online information about products but only for
their products in a higher price range. Another example is a high school that
decides only to offer information about its educational system and courses,
but not about its research activities.

Furthermore, the target users should also be identified. In principle,
everybody can visit a public Web site, including people for whom the Web
site is not relevant. However, it is impossible to satisfy the expectations of
each possible visitor. It is better to focus on the users needed to make the
Web system successful, called the target users. For example, consider a
company that only sells very specialized technical items. In this case, the

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 307

Web site should focus on the people who need these products. These people
are likely not the general public but instead probably very technical and
specialized people. When building a Web system for a university, an
important group of users you probably want to address are potential students.

It is clear that the purpose, subject (topics), and the target users are highly
related. The subject and the target users of the Web system must allow the
purpose to be fulfilled, and the subject must be suitable for the target users.
So, one may argue that if the purpose is stated, the topics and target users are
implicitly stated as well. However, to avoid misunderstandings, it is better to
explicitly identify all three aspects of the mission statement. The mission
statement is formulated in natural language.

Later on, in the following phases, the mission statement serves as the
basis to decide what information or functionality to include (or not), how to
structure it, and how to present it. Information or functionality that is not
needed for the purpose or is not covered by the subject should not be
considered. How to present and structure information and functionality is
highly dependent on the target users, e.g., information should be presented
and organized differently to professionals than to a common public. In
addition, the mission statement can be used during validation to check if the
Web system has indeed achieved the formulated purpose.

To illustrate this phase, we have formulated a mission statement for the
example Web system. Currently, imdb.com mainly focuses on movies, but
there is also a part about games. Therefore, the mission statement is
formulated as follows:

To be the biggest and best movie and game site on earth. For movies, this
will be achieved by providing as much information as possible on
movies, including their actors, directors, and producers, as well as to
provide news, allow exploring show times, buy tickets in selected
cinemas, and to share personal opinions about movies. For games,
information about games is offered as well as news, and game lovers
should be able to exchange information.

This mission statement defines the purpose, subject, and target users as
follows:

• Purpose: to be the biggest and best movie and game site by (1) providing
information and news on movies and games, (2) allowing users to
explore show times of movies and to buy tickets, and (3) allowing movie
lovers and game lovers to share personal opinions and exchange
information.

• Subject: movies and related information such as actors, directors, and
producers; selected cinemas; games.

• Target users: movie lovers and game lovers.

308

As you may have noticed, the purpose may involve multiple goals. Here,
the stakeholders want to realize their long-term purpose (to be the biggest
and best movie and game site) by means of three (related) goals. The subject
may also deal with different topics. Here, movies as well as cinemas and
games are considered. Also, the target users may be composed of different
groups. Here, two different groups of users are involved: movie lovers and
game lovers.

11.3 AUDIENCE MODELING

The mission statement formulated in the first phase is only a first and very
incomplete description of the system that should be developed. Because
WSDM is an audience-driven design method, the first concern that is
elaborated is the set of target users. The target users identified in the mission
statement are refined into audience classes. This is done by means of two
subphases: the audience classification and the audience characterization.
During audience classification, the different types of users are identified in
more detail and classified into so-called audience classes. During audience
characterization, relevant characteristics are specified for each audience
class. We describe each subphase in more detail in the following subsection,
but first we discuss why it is important to distinguish between different types
of users.

In general, a Web system has different types of visitors who may have
different needs. Consider as an example a university’s Web site. Typical users
of such a Web site are potential students, enrolled students, and researchers.
Potential students are looking for general information about the university and
the content of the different programs of study. The enrolled students need
detailed information about the different courses, timetables, and contact
information of the lecturers (telephone extension, room number, and contact
hours). Researchers look for information on research projects and publications
and general information on the researchers (full address, research interests, and
research activities). This illustrates that different types of users (WSDM uses
the term audience class) may have different information and/or functional
requirements. To ensure good usability, this should be reflected in the Web
system. For example, a student should be able to follow a navigation path that
leads him to the information he is interested in without having to travel
through pages of other (for him) nonrelevant information. If this is not the case
and all information is provided to all users, a user has to scan the page(s) in
order to find the links, the pages, and the pieces of information or functionality
that are relevant for him. Providing too much nonrelevant information
enhances the lost-in-hyperspace syndrome.

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 309

Next to the fact that different types of users may have different
informational and functional requirements, it may be necessary to represent
the (same) information or functionality in different ways to different kinds of
users. This depends on the characteristics of the users. As an example, we
again consider the university example. Potential students, especially
secondary school students, are not familiar with the university jargon and
should be addressed in a young and dynamic way. Also, by preference, the
information should be offered in the native language. The enrolled students
are familiar with the university jargon. They also prefer to have the
information in the native language; however, for foreign students (e.g., who
follow exchange programs) English should be used as the communication
language. For researchers, it may be sufficient to use English. When the
information and functionality are grouped based on the requirements of the
different types of users, it is also possible to adapt the presentation to the
characteristics of the different type of users without the need to rely on
adaptive Web systems or personalization (Brusilovsky, 1996). Although for
some situations, personalization may be undoubtedly the best solution, in
other situations it may be less appropriate.

11.3.1 Audience Classification

The target users informally identified in the mission statement are the input
for the audience classification. These target users are refined and classified
into audience classes based on differences in their informational and
functional requirements. All members of an audience class must have the
same set of informational and functional requirements.

Sometimes, the set of informational and functional requirements of one
audience class is a subset of the set of requirements of another audience
class. To accommodate such situations, the concept of audience subclass is
used. Figure 11.2 gives the graphical representation of an audience class and
an audience subclass. Audience class B is an audience subclass of audience
class A, which means that audience class B has all the same informational
and functional requirements as audience class A but also some extra
requirements. In other words, the set of requirements of audience class A is a
subset of the set of requirement of audience (sub)class B. From the point of
view of their populations, the population of the audience subclass is a subset
of the population of the audience superclass. Indeed, the members of the
audience subclass have more requirements than the members of the audience
superclass, so these can only be fewer people.

310

 A

 B

Figure 11.2. Graphical representation of audience class and subclass.

WSDM prescribes two alternative methods for discovering the audience
classes. The first method uses the activities of the organization for which the
Web system needs to be developed and the role people play in these
activities. Only activities that are related to the subject of the Web system
are considered. Each activity involves people, who may be potential users
for the Web system. These people should be identified. If they belong to the
target users of the Web system, their requirements (informational as well as
functional, usability, and navigational requirements) are formulated (in an
informal way and at a high level). Users with the same informational and
functional requirements become members of the same audience class.
Whenever the informational and functional requirements of a set of users
differ, a new audience class is defined or, if possible, an audience subclass is
introduced. If possible, the activities are decomposed in order to refine the
audience classes. This may introduce audience subclasses. The
decomposition stops if no new subclasses emerge or if decomposition is not
possible anymore. In summary, the method is as follows:

Step 1: Consider the activities of the organization related to the purpose
of the Web system.
Step 2: For each activity,

1. Identify the people involved.
2. Restrict them to the target users.
3. Identify their requirements.
4. Divide them into audience classes based on different informational

5. Decompose the activity if possible, and repeat Step 2.

In this way a hierarchy of audience classes is constructed. At the top of

this audience class hierarchy we always place the audience class Visitor.
The Visitor audience class represents all target users. The requirements
associated with the Visitor class are the requirements that are common to all
users.

The second method starts with identifying all possible informational and
functional requirements of the target users, without wondering how to

or functional requirements.

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 311

classify them into audience classes. The different audience classes and the
subclass relations between them are derived from a matrix that is constructed
using the different requirements as dimensions of the matrix. The cells in the
matrix answer the question, “Does every user who has the requirement of
this row also (always) have the requirement of this column?” Informally,
every row i of such a matrix characterizes the users having the requirement
associated with this row in terms of the other requirements they have. From
this requirements matrix, the audience class hierarchy can be (automatically)
derived as follows.

If two or more rows are exactly the same, this means that the users
represented by these rows are the same in terms of possible requirements,
and thus the users having these requirements should belong to the same
audience class. If the set of “Y” entries of a row k is a subset of the “Y”
entries of another row l, this means that the users represented by row l have
the same requirements as the users represented by row k and some extra
requirements. So, the audience class represented by row l is an audience
subclass of the audience class represented by the row k.

This algorithm is formally specified in Casteleyn and De Troyer (2001).
In summary, it looks as follows:

Step 1. Construct the audience class matrix based on all the requirements
formulated for the Web system to be built.
Step 2. Determine the equivalence rows. Each set of equivalence row
represents an audience class. The user requirements for this audience
class are the requirements associated with the rows. Meaningful names
should be given to the audience classes.
Step 3. Identify subset relations between the rows of the different
equivalence classes. These subset relations result in audience subclass
relations.
Step 4. Construct the integrated audience class hierarchy (using the
audience classes and the audience subclass relations).

We now illustrate the audience classification phase for the IMDb

example. We first illustrate the activity-based method and then the method
based on the requirements matrix.

We suppose that IMDb is run by a separate organization. In this case, the
activities of this organization could be

• Provide information about movies and games.
• Sell cinema tickets.
• Maintain information about movies and games.

312

The people (and other organizations) involved in these activities are
movie lovers, game lovers, cinemas, and the organization’s database
administrators. Figure 11.3 illustrates this.

Figure 11.3. Activity diagram for the IMDb example.

The organization’s database administrators are not part of the target
users, and maintaining the information about movies and games is also not
part of the purpose of the Web system. Therefore, the database
administrators are not considered in the audience classification. The cinemas
are involved in the activity “Sell cinema tickets” because the information
about the movies, show times, and available seats must be synchronized with
the ticket information of the cinemas. However, we suppose that this
synchronization is done by means of interactions with the cinemas’
information systems, for which no manual intervention is needed. Therefore,
cinemas can also be discarded. This leaves us with the movie lovers and the
game lovers. The requirements for these users can be specified as follows:

Movie lovers

1. To get an overview of the movies currently playing
2. To get an overview of the movies coming soon
3. To find a movie by means of a search function
4. To browse the movie database
5. To get an overview of new DVDs
6. To get an overview of DVDs coming soon
7. To obtain information about a movie
8. To obtain information about a person involved in a movie
9. To read news about movies
10. To have links to other interesting sites in relation to movies

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 313

11. To explore show times at different cinemas of movies currently
playing

12. To buy tickets for a show time in a selected cinema
13. To manage a personal movie list
14. To post messages on the movie message boards
15. To enter a comment about a movie

Game lovers
1. To get an overview of games
2. To get information about a game
3. To read news about games
4. To have links to other interesting sites in relation to games
5. To post messages on the game message boards

The requirements for these two groups are sufficiently different to put

them in separate audience classes. This results in two different audience
classes: Movie Lover and Game Lover. Note that these classes don’t need to
be disjoint: A person may be a movie lover as well as a game lover.
However, such a person will in general not want to look for movie
information and game information at the same time. Also, in general, a
movie lover is not necessarily a game lover, and vice versa.

There is no useful further decomposition for these activities. The
resulting audience class hierarchy is shown in Figure 11.4. Note that Visitor
is the top of the hierarchy.

Figure 11.4. Audience class hierarchy for the IMDb example.

Some parts in the IMDb system require authorization to access and are
protected by a login. Therefore, additional (authorization) requirements are
needed. A user must be able to register; once he is registered, he is able to
log in. Also logout must be possible. These are requirements common to
the movie lovers and the game lovers and are therefore assigned to the
Visitor class.

Visitor

Game LoverMovie Lover

314

Visitor
1. To register
2. To log in
3. To log out

To use the matrix method to derive the (final) audience class hierarchy,

we first have to list all informational and functional requirements of the
target users, here being movie lovers and game lovers. These are defined as
follows:

1. To get an overview of the movies currently playing
2. To get an overview of the movies coming soon
3. To find a movie by means of a search function
4. To browse the movie database
5. To get an overview of new DVDs
6. To get an overview of DVDs coming soon
7. To obtain information about a movie
8. To obtain information about an actor
9. To obtain information about a director
10. To read news about movies
11. To obtain links to other interesting sites in relation to movies
12. To explore show times at different cinemas of movies currently playing
13. To buy tickets for a show time in a selected cinema
14. To manage a personal movie list
15. To post messages on the movie message boards
16. To enter a comment about a film
17. To get an overview of games
18. To get information about a game
19. To read news about games
20. To obtain links to other interesting sites in relation to games
21. To post messages on the game message boards
22. To register
23. To log in
24. To log out

Then the requirements matrix is constructed. For each requirement, a row

and a column are created. Then the cells are filled by answering the question,
“Does every user who has the requirement of this row also (always) have the
requirement of this column?” For example, for row 1 (requirement 1), we
obtain the following answers:

• For columns 1 to 16: “Y”
• For columns 17 to 21: “N”
• For columns 22 to 24: “Y”

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 315

The other cells are filled in a similar way. Table 11.1 shows a reduced
version of the matrix where equal rows and columns are displayed as a
single row or column.

Table 11.1. Reduced Requirements Matrix

 1–16 17–21 22–24
1–16 Y N Y
17–21 N Y Y
22–24 N N Y

The following audience classes can be derived from this matrix (equal rows):

• Rows 1 to 16: Movie Lover
• Rows 17 to 21: Game Lover
• Rows 22 to 24: Visitor (this audience class only has the requirements that

are common to all users)

The following subclass relations can be derived (subset between rows):

• Movie Lover (rows 1–16) is an audience subclass of Visitor (rows 22–24).
• Game Lover (rows 17–21) is an audience subclass of Visitor (rows 22–24).

This result is the same audience hierarchy as the one given in Figure 11.4.
Once the audience classes are identified, it should be investigated if the

members of those audience classes have special usability or navigational
requirements. Different examples of navigational requirements can be found
in the IMDb example. For example, for the Movie Lover audience class, we
can formulate the following navigational requirements:

• The user should be able to navigate directly from the information of a

movie to the show times and the ordering of tickets when the movie is
currently played.

• If more information about some item shown is available, then the user
should always be able to directly navigate to this information; e.g., from
the movie information to the information about its directors, its actors, its
genre, etc.

11.3.2 Audience Characterization

In the second subphase of the audience modeling, the audience
characterization, relevant characteristics should be specified for each
audience class. Examples of characteristics are level of experience with Web
sites in general, frequency of use, language issues, education/intellectual

316

abilities, age, income, lifestyle, etc. Some of the characteristics may be
translated into usability requirements, while others may be used later on in
the implementation design phase to guide the design of the “look and feel”
of the navigation tracks of the different audience classes, e.g., choice of
colors, fonts, graphics, etc.

The target users of the IMDb example are a very broad audience; they
don’t have very specific characteristics. There are also no differences worth
mentioning between the characteristics of the audience class Game Lover
and the audience class Movie Lover. Therefore, the characteristics for all
audience classes are specified as follows:

Characteristics for all audience classes in the IMDb example :
• Able to communicate in English
• Have reasonable experience with the Web
• Are young people or adults

11.4 CONCEPTUAL DESIGN

So far in the method, the informational, functional, usability, and
navigational requirements as well as the characteristics of the potential
visitors have been identified and different audience classes have been
defined. The goal of the conceptual design is to turn these informal
requirements into high-level, formal descriptions that can be used later on to
generate (automatically or semiautomatically) the Web system.

During conceptual design, we concentrate on the conceptual “what and
how” rather than on the visual “what and how.” The conceptual “what” is
covered by the task & information modeling subphase and deals with the
modeling of the content and functionality of the Web system; the conceptual
“how” is covered by the navigational design subphase and specifies the
conceptual structure of the Web system and the navigation. We describe
these two subphases in more detail in the next subsections.

11.4.1 Task and Information Modeling

Instead of starting with an overall conceptual data model, like most Web
design methods do, WSDM starts by analyzing the requirements of the
different audience classes. This will result in a number of tiny conceptual
descriptions, called object chunks, which model the information and
functionality needed to satisfy these requirements. These conceptual
descriptions are integrated into an overall conceptual model. This approach
is used because WSDM follows the audience-driven design philosophy. It
has the following advantages:

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 317

• The developer is forced to concentrate on the actual needs of the users

rather than on the information (and functionality) already available in the
organization. In this way, the chance that information is missing in the
actual system will be less than in a data-driven approach where the
available data are taken as the starting point. In addition, the information
and functionality already available in the organization are not necessarily
what the users need. Also, the way the information is organized and
structured in the organization is not necessarily the way external users
need it.

• It gives consideration to the fact that different types of users may have
different requirements and that it may be necessary to use different
structures or terminology for different types of users. By modeling the
requirements for each audience class separately, we can give due
consideration to this.

The output of the task & information modeling subphase is a collection
of task models and associated object chunks. We first explain the task
modeling and afterwards the information modeling.

11.4.1.1 Task Modeling

The purpose of task modeling is to model in detail the different tasks the
members of each audience class need to be able to perform and to formally
describe the data and functionality that are needed for those tasks. The tasks
that a member of an audience class needs to be able to perform are based on
the requirements formulated for the audience class during audience
classification, i.e., for each informational and functional requirement
formulated for an audience class, a task is defined that should allow one to
satisfy this requirement. Each task is modeled into more details using an
adapted version of the task-modeling technique CTT (Paterno et al., 1997;
Paterno, 2000). Essentially, in CTT, tasks are decomposed into subtasks
until elementary tasks are obtained. In addition, temporal relationships
between subtasks are specified to indicate the order in which the subtasks
need to be performed. The result is a task model.

CTT was developed in the context of human–computer interaction to
describe user activities. CTT looks like hierarchical task decomposition, but
it distinguishes four different categories of tasks (user tasks, application
tasks, interaction tasks, and abstract tasks). CTT also has an easy-to-grasp
graphical notation. However, we do not completely follow the original
specifications of CTT, but have adopted them slightly to better satisfy the
particularities of the Web and Web design:

1. WSDM does not consider user tasks. User tasks are tasks performed by
the user without using the application (such as thinking on or deciding

318

about a strategy). They are not useful to consider at this stage of the
design. This means that we only use the following categories of tasks
(see Figure 11.5 for the graphical notation):

• Application tasks: tasks executed by the application. Application tasks
can supply information to the user or perform some calculations or
updates, e.g., checking username and password is typically an
application task.

• Interaction tasks: tasks performed by the user by interaction with the
system, e.g., entering information using a form.

• Abstract tasks: tasks that consist of complex activities and thus require
decomposition into subtasks, e.g., ordering tickets for a movie.

2. A (complex) task is decomposed into (sub)tasks. The same task can be
used in different subtrees. Tasks are identified by means of their name.
CTT prescribes that if the children of a task are of different categories,
then the parent task must be an abstract task. WSDM does not follow this
rule. We use the category of the task to explicitly indicate who will be in
charge of performing the task. For an interaction task, the user will be in
charge; for an application task, the application will be in charge. In this
way, we can indicate at a conceptual level who will initiate a subtask, or
who will make a choice between possible subtasks.

3. CTT has a number of operators to express temporal relations among
tasks. For some of the operations, we have changed the meaning slightly
and an extra operator for transactions has been added:

• Order-independent (T1 |=| T2): The tasks can be performed in any
order.

• Choice (T1 [] T2): One of the tasks can be chosen and only the
chosen task can be performed.

• Concurrent (T1 ||| T2): The tasks can be executed concurrently.
• Concurrent with information exchange (T1 |[]| T2): The tasks can be

executed concurrently, but they have to synchronize in order to
exchange information.

• Deactivation (T1 [> T2): The first task is deactivated once the second
task is started.

• Enabling (T1 >> T2): The second task is enabled when the first one
terminates.

• Enabling with information exchange (T1 []>> T2): The second task is
enabled when the first one terminates, but, in addition, some
information is provided by the first task to the second task.

• Suspend-resume (T1 |> T2): This indicates that T1 can be interrupted
to perform T2; when T2 is terminated, T1 can be reactivated from the
state reached before the interruption.

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 319

• Iteration (T*): The task can be performed repetitively. In CTT the
meaning is that the action is performed repetitively: When the action
terminates, it is restarted automatically until the task is deactivated by
another task. The interpretation in WSDM is that the task can be
repeated several times and ends when the one in charge decides not to
repeat the task (e.g., the user who decides not to redo the task but to
continue with the next task).

• Finite iteration (T(n)): indicates if the task has to be repeated a fixed
number of times (number known in advance).

• Optional ([T]): indicates that the performance of the task is optional.
• Recursion: occurs when the subtree that models a task contains the

task itself. This means that performing the task can be a recursive
activity.

• Transaction (-> T <-): The task must be executed as a transaction.
This means that if the task, or in case of a complex task one of the
tasks in the task’s subtree, is not completed successfully, the whole
task will not be successful and all activities should be rolled back
(i.e., “all or nothing”).

4. In WSDM, the level of detail provided in the task model is less than in the
original CTT method. The reason for this is the use of the object chunks.
As we will explain, with each elementary task, an object chunk can be
associated that further describes the task in terms of informational and
functional needs.

Figure 11.5. Graphical notation for the different types of tasks.

We illustrate the task modeling for some of the requirements formulated
for the IMDb example. Figure 11.6 shows the task model for the tasks
defined for the requirement “To find a movie by means of a search function”
of the audience class Movie Lover. For this requirement, the task “Search
IMDB” is defined. This abstract task is decomposed into three sequential
tasks: “Specify Query,” “View Results,” and “Show Movie.” The task
“Show Movie” is optional and is further decomposed into “Show Movie
Info” (to show information like title, director, etc.) and “Provide Extras.”
This task allows the user to choose among “Show Photos” (to display photos
of the movie), “Add to My List” (to add the movie to the user’s personal
movie list), and “Post Message” (to post messages on the message boards
associated with the movie). The task “Add to My List” is composed of an

320

application task “Update My List” that will add the movie to the user’s
personal movie list and to the task “Manage My List.” In order not to
overload the figure, the abstract tasks “Manage My List” and “Post
Message” are not further elaborated in this CTT.

Figure 11.6. Task model for the task “Search IMDB.”

Figure 11.7 shows the task model for the task defined for the
requirements “To obtain show times of movies currently playing” and “To
buy tickets for a show time in a selected cinema” of the audience class
Movie Lover. We decided to support both requirements by a single task, as
buying tickets requires knowing the show time, and offering the possibility
to buy tickets while exploring show times may stimulate the sale of tickets.
The task “Showtimes & Buy Tickets” is decomposed into two sequential
tasks. First, the location must be specified using the “Specify Location” task.
This is done by means of an interaction task to enter the location and the
movie(s) (task “Enter Location Movie”), optionally followed by an
interaction task to choose the location if more than one location exists for the
information entered (task “Choose Location”). Next, the user can explore the
show times and optionally buy tickets by means of the task “Select
Showtime & Buy Tickets.” This task is decomposed into the task “Explore
Show Times,” which can be repeated, followed by the optional task “Buy
Tickets.” For the task “Explore Show Times,” first the show times associated
with the requested location, movie(s), and date are showed (“View

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 321

Showtimes”), and then the user may change these parameters (“Change
Parameters”) and obtain the show times again.

The task models created in this way allow a first-level description of the
functionality to be provided by the Web system (i.e., they describe a kind of
workflow). More details are given by means of the object chunks. The object
chunks are described in the next section.

Figure 11.7. Task model for the task “Show Times & Buy Tickets.”

11.4.1.2 Information Modeling

When a task model is completed, an object chunk is created for each
elementary task in this model. The main purpose of an object chunk is to
formally describe the information and functionality needed by the user when
he has to perform the associated task. If the requirement associated with the
task is a pure informational requirement (i.e., the user is only looking for
information; she doesn’t need to perform actions), then the object chunk can
be considered as the conceptual description of the information that will be
displayed on (a part of) the screen. For this purpose, a standard conceptual
modeling language is sufficient. However, to be able to deal with functionality
(e.g., filling in a form and processing it), a data manipulation language is also
needed. We first discuss the modeling of informational requirements and then
discuss what is needed to allow modeling functionality.

WSDM uses OWL2 to model the information needs. OWL is becoming the
standard for the Semantic Web. Its use as a specification language for the
object chunks allows an easy integration with and use of existing domain
ontologies and allows making the object chunks available as local application

2 www.w3.org/TR/owl-features.

322

ontology in case no relevant domain ontology already exists. It also provides
the basis for the generation of semantic annotations (see Section 11.6). Note
that, as there isn’t yet a generally used and compact graphical notation for
OWL, we use the ORM graphical notation (Halpin, 2001) to give a graphical
representation of OWL. We have opted for the ORM notation because ORM
is very close to OWL, and therefore the mapping from ORM to OWL is
straightforward. In addition, because of the purpose of the object chunks, there
is no need to specify any of the advanced types of restrictions supported by
OWL. An ORM data type is graphically represented as a dotted circle, an
ORM object type is represented as a solid circle, an ORM subtype is
connected to its supertype object type by means of an arrow, roles are
represented as boxes connected to their respective data type or object type, a
mandatory constraint on a role is represented as a black dot on its connection,
and a uniqueness constraint is represented as an arrow over one or two role
boxes. See Figure 11.8 for some examples. The mapping from ORM to OWL
is sketched in Table 11.2. Suppose L is an ORM data type; N, N’, N1, and N2
are ORM object types; and r and r’ are roles. Informally, we can state that an
ORM object type is mapped onto an OWL class; an ORM role connected to a
data type is mapped onto an OWL data type property; and an ORM role

As already indicated, the use of OWL allows an easy way of coupling the
concepts used in the object chunks to concepts in existing (external)
ontologies. This coupling is later on (in the implementation phase—see
Section 11.6) used to generate semantic annotations. The namespace
mechanism of OWL is used to refer in an object chunk to concepts defined
in ontologies. To refer to a concept in an ontology, the identifying prefix of
the ontology is used to qualify the names of the concept. For example,
“FOAF:Person” refers to the class Person defined in the ontology identified
by the prefix FOAF.

Figure 11.8 shows an example object chunk “ShowMovie.” This object
chunk is associated with the elementary task “Show Movie Info” of the task
model “Search IMDB” given in Figure 11.6. In this object chunk the use of
two external ontologies is illustrated: a basic IMDB ontology3 (prefixed with
“IMDB”) and the well-known FOAF ontology4 (prefixed with “FOAF” and
used to describe persons). For example, the classes “IMDB:Movie,”
“FOAF:Image,” “IMDB:Genre,” and “FOAF:Person” refer to classes from
these ontologies. Also, properties can refer to properties defined in
ontologies; e.g., “IMDB:genres” refers to such a property.

3 http://www.csd.abdn.ac.uk/~ggrimnes/dev/imdb/IMDB.rdfs.
4 http://www.foaf-project.org/.

connected to an object type onto an OWL object property.

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 323

Table 11.2

ORM OWL
N <Class rdf:ID=“N”/>
N’ subtype of N <Class rdf:ID=“N’”>

 <subClassOf rdf:resource=“#N”/>
</Class>

(N1, r, L) <DatatypeProperty rdf:ID=“r”/>
<Class rdf:about=“#N1”>
 <subClassOf>
 <Restriction>
 <onProperty rdf:resource=“#r”/>
 <allValuesFrom rdf:resource=“L”/>
 </Restriction>
 </subClassOf>
</Class>

(N1, r’, N2) <ObjectProperty rdf:ID=“r”/>
<Class rdf:about=“#N1”>
 <subClassOf>
 <Restriction>
 <onProperty rdf:resource=“#r’”/>
 <allValuesFrom rdf:resource=“N2”/>
 </Restriction>
 </subClassOf>
</Class>

(r,r’) <Property rdf:about=“#r”>
 <inverseOf rdf:resource=“#r’/>
</Property>
(for object properties only)

Mandatory role r …
 <Restriction>
 <onProperty rdf:resource=“#r”/>
 <someValuesFrom
rdf:resource=“…”/>
 </Restriction>
…

Uniqueness constraint of role r …
 <Restriction>
 <onProperty rdf:resource=“#r”/>
 <maxCardinality> 1
</maxCardinality>
 </Restriction>
…

To allow communication between tasks, parameters (input as well as

output parameters) can be specified for object chunks. For example, the
object chunk “ShowMovie” (Figure 11.8) has an instance of type
“IMDB:Movie” as input parameter (represented by *m). Input parameters
are used in general to restrict the information that should be presented to the

. Mapping Between ORM and OWL

324

user. For instance, the input parameter *m of type IMDB:Movie is used to
express that only the information related to this particular movie should be
shown. This is graphically represented by putting this parameter in the
corresponding class. In fact, placing the parameter *m in the class
“IMDB:Movie” restricts the complete schema to a view.

Figure 11.8. Object chunk “ShowMovie.”

To be able to deal with functionality (e.g., fill in a form or update, add, or
delete information), a (conceptual) data manipulation language is needed.
WSDM provides a graphical conceptual data manipulation language.
However, notice that this language has limited expressive power and does
not intend to allow complex functionality to be specified. We don’t believe
that a graphical language is appropriate for this. However, using the
primitives provided by the language, most commonly used functionalities for
Web systems, such as adding, deleting, and changing information, can be
specified. For more complex functionality, WSDM supports the use of
(external) Web services. More in particular, the conceptual data
manipulation language of WSDM provides support for

• specifying that the user can select one or several instances from a class or

a property (e.g., to allow the user to select an actor from the list of
available actors in the IMDb example). For this, the symbols “!” (single
selection) and “!!” (multiple selection) are used.

• expressing interactive input (e.g., needed to fill in a form). The symbol
“?” is used for the input of a single value, while “??” is used for

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 325

expressing interactive input of more than one value. Note that these
symbols can only be applied to value types (data type properties). Class
instances cannot be entered directly. They should be created using the
“NEW” operator (see next bullet).

• To manipulate the data itself, a number of primitive operators are
available. “NEW” indicates the creation of a new class instance;
“REMOVE” is used to indicate the removal of one or more class
instances; the symbol “+” above a relation indicates the addition of a
property (and its inverse), and the symbol “-” indicates the removal of
properties.

• Furthermore, an assignment operator (“=

“

) is available to assign values to
variables (also called referents), as well as several built-in functions and
default referents. For example, *USER is available to refer to the current
user of a session.

A more detailed description of this graphical language can be found in

De Troyer and Casteleyn (2001) and De Troyer et al. (2005).
Figure 11.9 shows an object chunk involving functionality: adding a

movie to the personal movie list of the user. This object chunk is created for
the elementary (application) task “Update My List” in the task model
“Search IMDB” given in Figure 11.6. The movie instance that needs to be
added to the personal list is given by means of the input parameter *m (and
passed to this task after the user has opted for the task “Add to My List” in
the task “Show Movie” where the user was viewing a certain movie). The
list to which the movie needs to be added is denoted by the referent *l and
refers to the “My List” instance that “belongs to” the “User” instance
*USER (which is the predefined referent used to refer to the current user).
The “+” below the object properties “is in” and “has” specified the addition
of the relationship (i.e., instantiation of both object properties for *l and *m).
Note that *l is returned as output parameter because in the task “Add to My
List” this information need to be passed to the task “Manage My List.”

Figure 11.9. Object chunk “Add Movie to My List.”

326

11.4.2 Navigational Design

The goals of the navigational design are to define the conceptual structure of
the Web system and to model how the members of the different audience
classes can navigate through the Web system and perform their tasks.
Because of the audience-driven approach of WSDM, a navigation track is
created for each audience class. Such an audience track can be considered as
a subsystem containing all and only the information and functionality needed
by the members of the associated audience class. The internal structure of an
audience track is derived from the task models made for this audience class.
In addition, navigational requirements formulated during audience modeling
are also taken into account. In the next subsection we explain in detail how a
navigational track is created. Next, all audience tracks are combined into a
basic conceptual navigation structure by means of structural links (see
Section 11.4.2.2). In WSDM, the structure defined between the audience
tracks corresponds to the hierarchical structure defined between the audience
classes in the audience class hierarchy.

Once the main conceptual navigation structure has been derived,
semantic and navigational aid links are added (see also Section 11.4.2.2).
Semantic links are navigational links based on semantic relationships that
exist between objects in the domain and that are modeled in the object
chunks by means of object properties. Semantic links express task-
independent navigation (which may have been expressed in the form of
navigational requirements during audience modeling). Navigational aid links
are links that enhance navigation, such as home links, landmarks, quick
links, etc. In contrast to structural links and semantic links, navigational aid
links are strictly speaking not necessary but are added to enhance the
usability of the Web system. A more detailed discussion on the different
types of links used in WSDM can be found in De Troyer and Casteleyn
(2003a, 2003b).

The output of the navigational design phase is the navigational model.
The navigational model is expressed in term of components and links
between components. Components can be considered as (conceptual)
navigation units that group the information/functionality conveyed in one or
more object chunks. As indicated, WSDM distinguishes between structural
links, process logic links, semantic links, and navigational aid links. The
process logic links express part of a workflow or the invocation of (external)
functionality (e.g., a Web service). In general, a link may be defined from
one component to one (other) component (one-to-one link), but also from
one component to a set of components (one-to-many link), or from a set of
components to one single component (many-to-one link), or from a set of
components to a set of components (many-to-many link). As typical

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 327

implementation formats, such as HTML, do not support one-to-many, many-
to-one, or many-to-many links, these kinds of links need to be implemented
as a collection of one-to-one hyperlinks when generating (HTML) output.
However, these kinds of links are useful to consider during conceptual
design because they allow abstracting from the current implementation
limitations and provide more semantics. For example, in the presentation
design (see Section 11.5.2) a one-to-many link can be represented as a single
menu, and structural annotations can be generated to indicate the semantics
of the links (see Section 11.6).

Note that the links specified in the navigational model are actually link
types. That means that even a one-to-one link may result in different
hyperlinks in the actual Web system. For example, if we specify in the
navigational model that the user can navigate from a “Movie” component to
an “Actor” component, this is modeled by means of a one-to-one link
between these two components. However, a movie may involve several
actors; therefore, for each individual movie, the one-to-one link may give
rise to several hyperlinks, one to each of its actors.

Links can have parameters to indicate that relevant information should be
passed from the source component to the target component when a user
follows the link. A parameter is usually an output parameter from an object
chunk connected to the source component.

Next to parameters, conditions can also be specified for links. A
condition allows restricting the availability of the link to different users,
devices, or timeframes. For example, a link may become unavailable after
a certain date, or only users who are logged in are presented certain
links. To some extent, conditional links allow for adaptation of the Web
system.

The graphical representation of components and the different kinds of
links are given in Figure 11.10. An external component refers to an external
system or a Web service.

Note that the navigational model only provides the conceptual structure
(including navigation) of the Web system. The mapping of this conceptual
structure onto (Web) pages and hyperlinks is specified during site structure
design, which is part of the implementation design phase (see Section
11.5.1).

328

Figure 11.10. Graphical representation of components and links.

11.4.2.1 Creating the Navigational Tracks

To create a navigational track for an audience class, for each task a task
navigational model is created. A task navigational model is the translation of
the task model (represented by means of a CTT) into a navigational
structure.

A task navigational model is created by defining a component for each
elementary interaction task defined in the hierarchical decomposition of the
task. The object chunk that was created for the elementary task is connected
to this component. See Figure 11.11 for the graphical representation. Also,
object chunks created for application tasks can be attached to components. In
fact, components are a kind of placeholder for the object chunks (which
represents the actual information and/or functionality). By linking
components instead of object chunks, it is possible to use the same object
chunk in different task navigational models and even in different
navigational tracks without losing the modeling context of the different
links.

Next, process logic links between components are used to express the
workflow or process logic, which is expressed in the task model by means of
the temporal CTT relations. In fact, the temporal CTT relations are translated
into links (one-to-one, one-to-many, many-to-one, or many-to-many links;
conditional or nonconditional links). Components and process logic links
can be grouped into a transaction to indicate that they constitute a
conceptual unit (for which the all-or-nothing property holds). To avoid
complex diagrams, complex subtasks may be modeled separately, in subtask
navigational models.

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 329

Figure 11.11. An object chunk connected to a component.

Until now, we permitted the designer to neglect the fact that not all
information and functionality should be freely available. In many Web
systems, parts of the information and functionality need to be protected in
some way. This can be modeled during the navigational design by means of
a protection area. Graphically, this is represented by including the
component(s) (together with their associated object chunks) that need to be
protected into a named box labeled with a key symbol (an example can be
found in Figure 11.12). In a similar way, it is possible to indicate that some
information transfer needs to be secure. This protection area concept for
expressing security and validation allows abstracting (in the different
navigational models) from how to achieve the validation or security. If
relevant, how this must be achieved can be specified by means of a separated
navigational model. An example is given in Figure 11.14 and is explained
later on.

Figure 11.12. Task navigational model for the task “Search IMDB.”

We illustrate the task navigational models by means of some examples.
Figure 11.12 shows the task navigational model for the task “Search IMDB.”
Its task model was given in Figure 11.6. The navigational subtask models
“Add to My List” and “Post Message” are protected by the “Validation”
protection area. These parts of the Web system can only be accessed after

330

the user has been authorized. How this must be done is specified in the task
navigation model given in Figure 11.14, which has been derived from the
task model given in Figure 11.13.

Figure 11.13. Task model “Validation.”

Figure 11.14. Task navigational model for “Validation.”

Figure 11.15 gives the task navigational model for the task “Show Time
& Buy Tickets” for which the task model was given in Figure 11.7. Note the
use of an external component “Buy Tickets” to indicate that this is handled
by an external service. Link parameters as well as input and output
parameters are omitted in this diagram.

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 331

Figure 11.15. Task navigational model for the task “Show Time & Buy Tickets.”

Once the task navigational models are constructed for the different tasks
of an audience class, they should be composed into a navigational track
using structural links. This can be done by first making a task model of how
the members of the audience class are allowed to select the different tasks
and then translating this task into a task navigational model. In the simple
case that, at any moment in time, a member of the audience class can freely
select between the different tasks, this modeling process can be reduced to
the introduction of a new component that is linked to the different task
navigational models by means of a one-to-many link. This principle is
illustrated in Figure 11.16, which shows the navigational track for the Game
Lover audience class of the IMDb example. For the sake of simplicity, the
navigational models are represented by means of their shorthand notation
(dotted double-lined rectangles). The newly introduced component is not
connected to an object chunk, because it does not provide any information or
functionality itself. Instead, its sole role is to allow navigation to the
different tasks. In the actual Web system, this may result in a menu that
provides links to the different tasks. However, if there are a lot of tasks for
an audience track, it may be better (from a usability point of view) to
structure the tasks in some way and to provide groups of tasks (which may
result in groups of menus).

332

Figure 11.16. Navigational track for the Game Lover audience class.

11.4.2.2 Creating the Navigational Model

Once the navigational tracks for the different audience classes are
constructed, they need to be composed into a single structure. This will be
the main conceptual structure of the Web system. Because WSDM is
audience-driven, the structure between the audience tracks must correspond
to the hierarchical structure defined between the audience classes in the
audience class hierarchy. We illustrate this with the IMDb example. The
navigational model for the IMDb example is given in Figure 11.17. Note that
for space limitations the different task navigational models are given by
means of their shorthand notation and that the navigational track for the
Movie Lover is also given by means of its shorthand notation (a double-lined
rectangle). Note the correspondence with the audience class hierarchy given
in Figure 11.4.

During navigational design, we also define semantic links that will
enhance the navigation. Semantic links are based on semantic relationships
that exist between objects in the application domain and that are modeled in
the object chunks by means of object properties. For example, in the IMDb
example, there are semantic relationships between movie and actor, between
movie and director, and between movie and cinema. Also, in the
navigational requirements for the Movie Lover audience class, it was stated

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 333

Figure 11.17. Main conceptual navigation structure for the IMDb example.

that the user should be able to navigate directly from the movie to the
information of each of these related items. This facility can be modeled by
means of semantic links. A semantic link is a link between two object
chunks and must be based on the existence of a semantic relationship
between two classes (e.g., movie having director). The source object chunk
should contain the object property that expresses this semantic relationship
between the two classes (movie having director). The target object chunk
should provide the request information (information about director). We
illustrate this with an example. Consider the object chunk “ShowMovie” as
shown in Figure 11.8. For a movie we decided to provide the name of the
director (modeled in “ShowMovie”). Suppose that the object chunk
“Director Info” models the information provided for a director. Then, based
on the object property “IMDB:director,” we can define a semantic link from
the object chunk “ShowMovie” to the object chunk “Director Info.” See
Figure 11.18 for a graphical representation. If needed, the link can be labeled
with the name of the property used. Semantic links are independent of a
particular task. This means that in each task where the chunk “ShowMovie”
is used, the link will be available. Therefore, they don’t need to be
represented in the different task navigation models, and they will not
overload these diagrams.

334

Figure 11.18. Graphical representation of a semantic link.

In the IMDb example many semantic links are possible. In Figure 11.19,
a selection of possible semantic links is given. Note that in this example all
links are bidirectional because the user must always be able to navigate to
more information if this is available. For example, a link from the movie
page to the director page must be available, and vice versa.

Figure 11.19. Some example semantic links for the IMDb example.

On top of the conceptual structure defined by means of the structural
links, and the navigation possibilities defined by the process logic links and
the semantic links, navigational aid links can be added to ease the navigation
even more and to enhance the usability. From the viewpoint of being able to
reach information and functionality, they are strictly speaking not needed; all
information and functionality should also be reachable by means of the
navigational tracks. Navigational aid links can be compared to adding an
index and post-it pointers to chapters in a book: The information in and the
structure of the book stay the same, but the user is provided with shortcuts to
access the information more easily. A typical example of a navigational aid
link is the home link, which can often be found on each page of a Web site.
Also, landmarks are examples of navigational aid links. Not to overload the
diagrams, the home component and the landmark components are
represented by means of a symbol. Later on, during the implementation
phase, home links and landmark links can be generated. In Figure 11.20 the
conceptual structure of the IMDb example is enhanced with navigational aid
links (home and landmarks and a link from the “Login” navigational task
model to the “Register” navigational task model).

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 335

Figure 11.20. Navigational aid links.

11.5 IMPLEMENTATION DESIGN

The goal of the implementation design is to complement the conceptual
design with the necessary details for the implementation. In principle, it
would be possible to generate an implementation from the conceptual
design, but this is not realistic for several reasons. First, the Web is very
visually oriented, and the standards for presentation have become very high
in recent years. Professional Web systems need to have a professional look
and feel, and graphical designers are usually involved to achieve this. If the
Web system is generated directly from the conceptual design, only standard
and rather simplistic presentations can be obtained. Therefore, a presentation
design is needed. Second, the information provided on the Web system may
already be available from some data source (e.g., a relational database). In
this case, no new data source needs to be created, but a mapping should be
defined from the conceptual description of the information (the object
chunks) to the actual data source. Third, Web users don’t like to make
unnecessary clicks (clicks that don’t lead to new information), but, on the
other hand, too much information on a single page will overload the page
and also decrease the usability. Therefore, information and functionality
should be grouped onto pages in such a way that a good balance is reached
between the amount of information on a page and the number of clicks
needed to reach information.

336

For these reasons, WSDM has an implementation design phase consisting
of three subphases: the site structure design, the presentation design, and the
logical data design. The following subsections describe these subphases into
more detail.

11.5.1 Site Structure Design

During site structure design, the designer decides how the components from
the navigational model will be grouped into pages. The characteristics of the
different audience classes may be taken into account when deciding which
information to group on a page. For example, for an audience class with the
characteristic that the average age is over 50, the designer might want to
limit the amount of information on a single page. It is also possible to define
different site structures for the same design, each supporting a different
device. For a device with a small screen (e.g., a PDA), it may even be
necessary to distribute the information related to a single component onto
different pages.

By default, each component (with its associated object chunks and links)
is placed on a single page. However, the designer can decide to group
different components on a single page or to use different pages for a single
component. When components are grouped on a page, the designer should
respect the conceptual structure expressed by means of the different links;
e.g., if a component cannot be reached by a link from another component,
these two components cannot be placed on the same page.

The output of this phase is the site structure model. The site structure is
graphically presented by drawing pages over the components that should be
grouped. Figure 11.21 illustrates a part of the site structure design for the
IMDb example. The Home component and the links from this component
are placed on a single page; Register and Login are each on a different page;
and the components “Find a Game” and “Game Links” and all links coming
from the “Game Lover Track” component are also put together on a single
page. The rest has been left unspecified in this figure.

Note that the pages defined during the site structure design are abstract
pages. Each abstract page will give rise to one or a set of concrete pages
when the actual implementation is generated. For example, the page
containing the “ShowMovie” object chunk will result (in the case of a static
Web site) in many different concrete pages, one for each movie.

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 337

Figure 11.21. Part of the site structure design for the IMDb example.

11.5.2 Presentation Design

During presentation design, the look and feel of the Web system, as well as
the layout of the pages (i.e., positioning of page elements), is defined. To
enhance a consistent look and feel, templates are used. Therefore, page
templates are defined. Typically, a Web system may require different kinds
of pages, e.g., a home page, a title page, leaf page. For each of these page
types, a template can be created. These templates are subsequently used in
the page design, where the layout is defined for each of the pages defined in
the site structure model. The layout describes how the information and
functionality (modeled by means of the object chunks) and assigned to a
page (by means of the components) should be laid out on the page.

For both the template and page design, a number of presentation-
modeling concepts are available. To position information, the concept of a
grid is used. A grid contains rows with cells. A cell contains a multimedia
value, another grid (nesting of grids), or a referent from an object chunk
assigned to the page [remember that a referent refers to an instance/value (or
a set of instances/values) from a class or a property]. Absolute and relative
height and width can be specified for grids, rows, and cells. By nesting grids,

338

specifying the width and height of the different grids, rows, and cells,
information can be positioned on the page.

The value of a cell can be associated with a hyperlink (which must be
based on a link contained in the page and defined during navigational
modeling). Furthermore, when a grid or cell is associated with a referent that
represents a set (of object instances or values), then, in the actual
implementation, the grid will be repeated for each instance of this set.

To display multimedia values correctly, additional properties may be
required. For instance, an image and a video require a height and width
property.

Furthermore, a number of high-level presentation-modeling concepts are
also provided. The high-level presentation-modeling concepts are more
powerful and more intuitive for the designer. They also are useful to capture the
semantics of a presentation element. Most of the concepts have a well-known
meaning: OrderedBulletList, BulletList, Table, Menu, TableOfContent,
BreadcrumbTrail, Section, Banner, Copyright, Advertisement, Figure, Icon,
Logo, Marquee (a string or an image that scrolls horizontally across the screen).

Forms are widely used in Web systems. To support them the following
control concepts are available: a select control to model that a selection can
be made out of multiple options, an input control to model that a value can
be entered, and an action control to specify that an action should be
performed. These controls can be associated with a presentation concept.
Types of select controls are a RadioButton, a CheckBox, a ListBox, and a
DropDown box. An input control is either a TextBox or a SecretTextBox
(typically used for entering passwords). A typical action control is a
PushButton. The behavior associated with an action control is defined by
associating an event and an action to the control. It expresses the fact that
when the specified event occurs for the associated presentation concept, the
specified action will be performed. Possible events are OnClick, OnLoad,
and onHoover; possible actions are PopUp, Show, Scroll, Reset, Submit, and
Cancel. A popup menu, for instance, can be defined using the Menu
presentation concept with associated OnClick event and associated PopUp
action; an expandable menu can be defined using the Menu presentation
concept, where the elements of the menu are associated with the event
OnClick and the action Show.

Templates are specified using the presentation-modeling concepts
mentioned. A template can also be composed out of a Header, Footer,
SideBar, and/or ContentPane. Each template furthermore contains at least
one editable region. An editable region denotes an area that one needs to
specify further when the template is used for a page design. An editable
region can be placed anywhere in a grid.

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 339

To specify style, WSDM currently relies on Cascading Style Sheets
(CSS).5 This allows style specification for any particular element and has
enough expressive power to describe most styles commonly found in Web
systems.

For each page, the designer chooses a template and then specifies how
the links and the information (specified by means of the object chunks) will
be positioned in the editable regions of the template. This is done using the
presentation-modeling concepts mentioned. For each object chunk connected
to a component included in the page, a grid is constructed. Each data type
property of an object chunk is placed in a cell of the grid. For functionality,
control concepts are used. If needed, multimedia values can be added to
enhance the presentation (e.g., titles, labels, graphics, etc.).

For each link contained in the page, the designer needs to specify the
anchor. This is done by adding the link to the relevant cell of the grid. Note
how this linking mechanism does not differentiate between the type of
anchors (e.g., a text element, an image, a table): A link is uniformly
specified on a cell of a grid, no matter what its content is.

The characteristics and usability requirements of the audience classes
should be taken into account when designing the different templates and
pages.

The output of this phase is the presentation model consisting of a set of
templates, a set of styles, and, for each page defined in the site structure
model, a page model.

Figure 11.22 shows a simple example template and Figure 11.23 a simple
example page model.

Figure 11.22. Example template for the IMDb example.

5 www.w3.org/Style/CSS/.

340

Figure 11.23. Template page model for the IMDb example.

11.5.3 Logical Data Design

The information provided by the Web system is described by means of the
different object chunks made during task & information modeling. The
different object chunks are related by means of the reference ontology that
contains the different concepts used in the different object chunks. The
object chunks are views on the reference ontology that is incrementally
constructed during information modeling. The reference ontology may be
based on one or more external ontologies or created from scratch. This
reference ontology can be considered as the conceptual schema for the data
to be provided by the Web system. In case no data storage is already
available, a logical data schema needs to be created from this conceptual
schema. This is comparable to the creation of a relational database schema
from a conceptual ER schema or UML schema. The logical data schema can
be a relational database schema, an XML schema, an RDF schema, or even
the OWL schema of the reference ontology itself. While generating the
logical data schema, it is important to keep track of the mapping between the
reference ontology and the logical data schema, because later on (in the
implementation phase) the conceptual queries and updates expressed in the
object chunks need to be translated into queries and updates onto the logical
database schema. Because of space limitations, it is not possible to describe
in this chapter how a logical data schema can be generated from a reference
ontology and how the mappings can be expressed. Normally, this process
should be supported by a CASE tool, in which case the designer is not
burdened with the creation of the logical data schema and the mappings.

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 341

In a second scenario, an existing data store is available. In this case it is
only needed to define the mapping between the reference ontology and this
data store.

The output of this phase is a logical data schema and a data source mapping.

11.6 IMPLEMENTATION

The actual implementation can be generated automatically from the information
collected during the different design phases by means of the different design
models. As proof-of-concept, a transformation pipeline (using XSLT) has been
defined, which takes as input the object chunks (with corresponding data source
mapping), navigational, site structure, style & template, and page models and
outputs the actual implementation for the chosen platform and implementation
language. This transformation is performed fully automatically. A description of
this transformation pipeline is out of the scope of this chapter. An overview can
be found in Plessers et al. (2005b). An example of a page (showing game
details) is given in Figure 11.24.

Figure 11.24. Example page from the IMDb example.

342

Important to notice is that, based on the design information collected,
semantic annotations can be generated. More in particular, the use of one or
more external ontologies during the conceptual design allows expressing
explicitly the semantics of the presented data by means of content-related
semantic annotations using these ontologies. However, it is also possible to
annotate the Web system such that the semantics of its structure are also
made explicit. Dedicated ontologies [e.g., the WAfA ontology (Yesilada et
al., 2004) developed in the context of accessibility for visually impaired
user] can be used to make the semantics of the different structural elements
(e.g., a navigation menu, a logo, an advertising banner) explicit. These so-
called structural annotations can be exploited by third parties that require
specific knowledge about the Web system’s structure: page transcoders to
transcode a Web page in, for example, a format more appropriate for screen
readers or search engine indexers. Structural annotations can be generated
without any additional effort from the designer by exploiting the design
information captured by means of the design models. How the content-
related and structural annotations are generated is outside the context of this
chapter. A description of this can be found in Plessers et al. (2005a, b) and
Plessers and De Troyer (2004a, b).

As an example, consider (a part of) the generated content-related
semantic annotations for a Web page showing the movie details for “The
Terminator” movie, based on the object chunk “ShowMovie” (recall Figure
11.8):

<IMDB:Movie rdf:ID=“23”>
<hasTitle>The Terminator</hasTitle>
<IMDB:year>1984</IMDB:year>
<FOAF:plot>A human-looking cyborg from the future …<FOAF:plot>
…
</IMDB:Movie>

When generating the actual data on a Web page, span tags enclose the

data originating from the data source. For the example above, the generated
movie title and year are as follows:

The Terminator
1984

Finally, exploiting the mapping between the reference ontology and the

actual data source (defined in the logical data design subphase), the (HTML)
code and the generated annotations are linked together:

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 343

page.html#xpointer(id(“1”))<=>page.owl#xpointer(id(“23”)/hasTitle)
page.html#xpointer(id(“2”))<=>page.owl#xpointer(id(“23”)/IMDB:year)

11.7 FURTHER ISSUES

WSDM has been extended in different directions. The most important ones
are the extensions to support localization (De Troyer and Casteleyn, 2004)
and the extensions for adaptation (Casteleyn, 2005). We will briefly describe
the principles used for these extensions.

11.7.1 Localization of Web Systems

Public Web systems are accessible from all over the world. This offers
opportunities for companies and organizations to attract visitors from across
international borders and to do business with them. Two different
approaches are possible to address this issue: Develop one single Web
system to serve everyone, or develop “localized” Web systems for particular
localities. The “one-size-fits-all” approach may be appropriate for particular
communities (e.g., researchers), but in general it will be less successful. In
general, it is recommended to localize a global Web system, i.e., to create
different versions and adapt those versions to the local communities they
target. Members of a community share not only a common language, but
also common cultural conventions. Since measurement units, keyboard
configurations, default paper sizes, character sets, and notational standards
for writing time, dates, addresses, numbers, currency, etc. differ from one
culture to another, it is self-evident that local Web systems should address
these issues. Some jokes, symbols, icons, graphics, or even colors may be
completely acceptable in one country but trigger negative reactions in
another country. Sometimes even the style or tone of the site’s text might be
considered offensive by a particular cultural entity, resulting in the text’s
needing to be rewritten rather than merely translated. Next to cultural
differences, it may also be necessary to adapt the content to regional
differences, such as differences in the services and products offered,
differences in price, and differences in regulations.

As for classical software, Web system localization is often done once the
Web system is completely developed and available for a particular
community. We believe that the globalization process6 could benefit from

6 According to LISA (Localization Industry Standards Association; http://www.lisa.org),

localization of a thing is adapting it to the needs of a given locality. Globalization is about
spreading a thing to several different countries, and making it applicable and usable in
those countries.

344

taking localization requirements into consideration while designing the Web
system. Then it may be easier to actually realize globalization because the
internationalization activities7 may already be considered and prepared for
during the design process. For this reason, WSDM was extended to support
Web localization. We shortly explain how the different (sub)phases have
been adapted.

11.7.1.1 The Mission Statement Specification

To be able to take localization into account during the design process, the
mission statement should also mention the different localities for which the
Web system needs to be developed. A locality describes a particular place,
situation, or location. Localities are identified by means of a name and a
label. Examples of localities are the Unied States, Japan, and the Flemish
community in Belgium.

As an example, suppose that next to the English version (which is
targeted to Americans), we also want localized versions of the IMDb Web
system for France and Germany. Then, the mission statement can be
reformulated as follows:

To be the biggest and best movie and game site on earth. For movies,
this will be achieved by providing as much information as possible on
movies including their actors, directors, and producers, as well as to
provide news, allow exploring show times, buy tickets in selected
cinemas in the United States, and to share personal opinions about
movies. For games, information about games is offered as well as news,
and game lovers should be able to exchange information. Next to the
U.S. version, localized versions for France and Germany should be
offered; information dependent on the country, such as the movies
currently playing, should be adapted for each version. Exploring show
times and buying tickets are only available for the United States.

Here, the localities that are targeted are the United States, France, and
Germany.

11.7.1.2 Audience Modeling

To support localization, a distinction is made between requirements and
characteristics typical for an audience class and those typical for a locality.

The requirements and characteristics that are typical for a locality are
related to the language, culture, habits, or regulations of the locality. Some
examples of locality requirements are that an address should always include
the state; for each price it should be indicated if tax is included and, if not,

7 Internationalization consists of all preparatory tasks that will facilitate subsequent

localization.

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 345

the percentage of tax that needs to be added should be mentioned. Locality
characteristics will typically deal with issues such as language use, reading
order, use of color, and use of symbols.

Then the localities are linked to the different audience classes. An
audience class may span different localities. For example, in the IMDb
example all classes identified so far are applicable for all localities, but in
fact only people within the United States should be able to explore show
times and buy tickets. Therefore, we can refine the audience class hierarchy
and introduce a new subclass for the people who can explore show times and
buy tickets. Then this class only needs to be supported in the U.S. locality.

11.7.1.3 Conceptual Modeling

During task modeling, a task model is defined for each requirement. Now,
we also have requirements formulated for the different localities. These
requirements also need to be considered during task modeling. When
constructing the task models, we need to inspect the locality requirements to
check if additional or different steps are needed when decomposing a task. If
a task must be completely different for a specific locality (which is rarely the
case), a different CTT must be created and labeled with this locality. If only
some additional steps are needed, then these steps are labeled with the
localities for which they are needed.

Also, when constructing the object chunks, we need to inspect the
locality requirements to check if additional information is needed. If this is
the case, this information is added to the object chunk and labeled with the
locality for which it is needed. In the object chunks, we should also indicate
which information is dependent on the locality. For example, in the IMDb
example, the description of a movie needs to be given in the language of the
locality, and the movies currently played and the movies coming soon will
be different for each locality. Labeling the classes and properties that are
locality-dependent indicates this. In the navigational design, the audience
tracks are labeled with all the localities for which they are applicable.

11.7.1.4 Implementation Design

Usually, the site structure design will be independent of the locality, i.e., for
each locality the site structure will be the same. However, if some task
models are very different for different localities, a different site structure
may be needed.

During the presentation design, the localization characteristics formulated
during audience modeling need to be taken into consideration. Different
templates should be created for different localities if this is needed (e.g.,
different colors, different labels).

When creating a logical data schema, we need to take into account that
the information may be different for different localities, as indicated by the

346

labeling of and within the object chunks. Depending on the situation,
different data sources for each locality may be needed or only different fields
for some properties. Many different solutions are possible; we will not go
into details here. More information can be found in De Troyer and Casteleyn
(2004).

11.7.2 Adaptation

WSDM provides flexible design support for the specification of (automatic)
reorganization of structure and content of the Web system (at run time),
based on the way users access and use the Web system. Note that this type of
adaptation, also called optimization (Perkowitz and Etzioni, 1997), differs
from personalization (which is what is usually intended when the term
“adaptation” is used): Optimization improves the Web system as a whole
(for all users), whereas personalization adapts the Web system for a single
user (i.e., the current user). The possibility to take into account and
anticipate during design the actual use of the Web system at run time offers
the following advantages:

1. Anticipate and react on run-time browsing behavior: For example,

make popular pages more directly available (add navigational aids
links).

2. Evaluate and use design alternatives automatically: For example,
merge audience tracks if their separation seems to be less useful.

3. Detect and correct design flaws: For example, detect and correct
misplaced information.

4. Better tailor the Web system to satisfy business goals: For
example, add or replace strategic business information in such a way
that it appears on the most popular pages.

To specify this type of adaptive behavior, a dedicated language, called

the Adaptation Specification Language (ASL), was introduced. ASL is a
high-level, rule-based adaptation specification language that allows the
designer to specify adaptation strategies (i.e., which adaptation needs to be
done) and adaptation policies (i.e., when adaptation needs to be done). ASL
is event-based: User-generated events (e.g., clicking a link, visiting a page,
starting a session) will trigger the adaptation strategies. The strategies
themselves are specified using rules (e.g., iterations, conditional execution of
an action, predefined transformations on the relevant design models). By
allowing the designer to specify which event(s) need(s) to be tracked, and
when and how adaptation should be performed based upon these events, the
designer has a powerful mechanism to specify how the organization and

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 347

structure of the Web system should be improved (at run time) based on the
actual use of the Web system. The remainder of this section explains an
example of a useful adaptation strategy (and policy) and highlights some
interesting features of ASL. For an in-depth discussion of ASL (including
formal specification, example strategies, experimentation results), we refer
to Casteleyn (2005).

Consider as an example adaptation strategy the promotion strategy,
discussed in the context of WSDM in Casteleyn et al. (2003). Promotion of a
component makes the component easier to find by moving it closer to the
root (e.g., the home page) of the Web system. Here, the promotion is based
on the popularity of the components: The most popular component(s) [the
component(s) with the highest number of accesses] are promoted. ASL
allows specifying for which components the number of accesses needs to be
tracked and how this should be done (i.e., per session, per load, per click).
For the IMDb example, a useful adaptation strategy might be to promote the
movie and game visited most often (overall) during the past month.
Therefore, the accesses to each individual movie and game need to be
counted. A general script for counting the access to the elements of some set
(of design elements) is used for this. This script can be used in different
adaptation strategies:

script trackAmountOfAccesses(Set) :
 forEach element in Set
 begin
 addTrackingVariable element.amountOfAccesses ;
 monitor load on element do element.amountOfAccesses :=

 element.amountOfAccesses + 1
 end

Intuitively, the for-each rule in this script states that a tracking variable

amountOfAccesses is declared (i.e., addTrackingVariable) and attached to
each element of the given set. Furthermore, load events on the elements (i.e.,
for all users and for all sessions) will give rise to the increment of the
amountOfAccesses tracking variable of that particular element.

The actual promotion in this case consists of linking the most popular
movie and game to the root of the Web system. First, a script implementing
the general principle of promotion is given. Here, the original links to the
promoted component are kept (so only a navigational aids link is added).
Alternative promotion strategies can be defined. The promotion script is
specified as follows in ASL (note that in ASL the shorter term “node” is
used instead of “component”):

348

script promoteNode(Set, promoteTo) :
 begin
 let promoteNodeMaxAccesses be

max(Set [MAP on element: element.amountOfAccesses]);
 forEach node in Set :

if node.amountOfAccesses = promoteNodeMaxAccesses
then addLink (navigationAid, promoteTo, node)

 end

Having defined the adaptation strategy, we are able to specify the

adaptation policy, i.e., when the adaptation should be performed. In this
example, we collect the accesses to movies/games for one month and
perform a promotion once every month:

when initialization do
 begin
 call trackAmountOfAccesses(ALL MovieDetailNode);
 call trackAmountOfAccesses(ALL GameDetailNode)
 end

when 1 month from now do
 begin
 call promoteNode(ALL MovieDetailNode, root);

 call promoteNode(ALL GameDetailNode, root)
 reset(ALL MovieDetailNode
 [MAP on element: element.amountOfAccesses]);

 reset(ALL GameDetailNode
 [MAP on element: element.amountOfAccesses]);
 end

Note that the ALL keyword is used to obtain a set of all instances of a

particular (conceptual) component. In this case, all concrete Movie and
Game Detail nodes (i.e., each individual movie or game detail page) are the
subjects of the adaptation strategy. The first part of the adaptation policy
specifies that when the Web system is initialized, the number of accesses to
Movie and Game Detail nodes is initialized. The second policy specifies that
after one month (note that this will be repeated each month), the promotion
strategy is applied, and the components containing the most popular movie
and game are promoted to the root. Finally, all tracking variables are reset
for the next month of tracking.

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 349

11.8 SUMMARY

WSDM is a Semantic Web design method based on an audience-driven
design philosophy. This means that the requirements of the target audience,
rather than the data available in the organization or its internal organization,
are the starting point of the modeling process. The different audience classes
and their different requirements are also reflected in the actual structure of
the Web system. This approach is used to offer the designer a well-defined
method to identify the information and functionality needed for a Web
system and to structure it in an appropriate way. This must prevent the
developers from only providing information that happened to be available
and structuring it in a way that is obvious only for them. The method is
based on the principle that a Web system should be designed for and adapted
to its target audiences.

The method also makes a clear distinction between the conceptual design
and the implementation design. Issues like grouping of information and
functionality in pages and graphical presentation and layout are not
considered to be conceptual issues but implementation design issues,
because more than one grouping into pages or more than one presentation
design is possible for the same conceptual design.

Last but not least, WSDM allows developing Web systems that are
semantically annotated by means of one or more ontologies. Next to the
regular content-related semantic annotations, structural annotations can also
be generated. These are annotations that describe the semantics of the
different structural elements of the Web system and can be exploited by
other applications to transcode the Web system to formats more suitable for
purposes other than human reading.

Furthermore, the clear separation of design concern by means of different
design concepts and models as well as a clear separation between conceptual
issues and implementation issues have shown to pay off: The modeling of a
new design concern can easily been added. This has been demonstrated for
adding localization and adaptation.

REFERENCES

Brusilovsky, P., 1996, Methods and techniques of adaptive hypermedia. User Modeling and
User-Adapted Interaction, 6(2–3), Springer Science+Business Media B.V., New York,
ISSN 0924-1868, pp. 87–129.

Casteleyn, S., 2005, Designer specified self re-organizing Web sites, PhD thesis, Vrije
Universiteit, Brussels.

Casteleyn, S., and De Troyer, O., 2001, Structuring Web sites using audience class
hierarchies. Conceptual Modeling for New Information Systems Technologies, ER 2001

350

Workshops, HUMACS, DASWIS, ECOMO, and DAMA, Lecture Notes in Computer
Science, 2465, Springer-Verlag, ISBN 3-540-44-122-0, pp. 198–211.

Casteleyn, S., De Troyer, O., and Brockmans, S., 2003, Design time support for adaptive
behavior in Web sites. Proceedings 18th ACM Symposium on Applied Computing, ACM,
ISBN 1-58113-624-2, pp. 1222–1228.

Deng, C., Yu, S., Wen, J.-R., and Ma, W.-Y., 2004, Block-based Web search. SIGIR 2004:
Proceedings 27th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval, Sheffield, UK, July 25-29, M. Sanderson, K.
Järvelin, J. Allan, and P. Bruza, eds., ACM, ISBN 1-58113-881-4, pp. 456–463.

De Troyer, O., and Casteleyn, S., 2001, The conference review system with WSDM. First
International Workshop on Web-Oriented Software Technology, IWWOST’01 (also
http://www.dsic.upv.es/~west2001/iwwost01/), O. Pastor, ed., Valencia University of
Technology, Spain.

De Troyer, O., and Casteleyn, S., 2003a, Modeling complex processes for Web applications
using WSDM. Proceedings Third International Workshop on Web-Oriented Software
Technologies (held in conjunction with ICWE2003), IWWOST2003 (also
http://www.dsic.upv.es/~west/iwwost03/articles.htm), D. Schwabe, O. Pastor, G. Rossi,
and L. Olsina, eds., Oviedo, Spain.

De Troyer, O., and Casteleyn, S., 2003b, Exploiting link types during the conceptual design
of Web sites. International Journal of Web Engineering Technology (IJWT), 1(1): 17–40.

De Troyer, O., and Casteleyn, S., 2004, Designing localized Web sites. Proceedings 5th
International Conference on Web Information Systems Engineering (WISE2004), X. Zhou,
S. Su, M.P. Papazoglou, M.E. Orlowska, and K.G. Jeffery, eds., Springer-Verlag,
Brisbane, Australia, ISBN 3-540-23894-8, pp. 547–558.

De Troyer, O., Casteleyn, S., and Plessers, P., 2005, Using ORM to model Web systems. On
the Move to Meaningful Internet Systems 2005: OTM 2005 Workshops, International
Workshop on Object-Role Modeling (ORM’05), Lecture Notes in Computer Science, 3762,
Springer, ISBN 3-540-29739-1, pp. 700–709.

De Troyer, O., and Leune, C., 1998, WSDM: A user-centered design method for Web sites.
Computer Networks and ISDN Systems, Proceedings 7th International World Wide Web
Conference, Elsevier, Brisbane, Australia, pp. 85–94.

Halpin, T., 2001, Conceptual Schema and Relational Database Design: From Conceptual
Analysis to Logical Design, Morgan Kaufmann, San Francisco.

Paterno F., 2000, Model-Based Design and Evaluation of Interactive Applications, Springer-
Verlag, New York.

Paterno, F., Mancini, C., and Meniconi, S., 1997, ConcurTaskTrees: A diagrammatic notation
for specifying task models. Proceedings INTERACT 97, Chapman & Hall, pp. 362–366.

Perkowitz, M., and Etzioni, O., 1997, Adaptive Web sites: An AI challenge. Proceedings 15th
International Joint Conference on Artificial Intelligence, Morgan Kaufmann, pp. 16–23.

Plessers, P., Casteleyn, S., and De Troyer, O., 2005a, Semantic Web development with
WSDM. Proceedings 5th International Workshop on Knowledge Markup and Semantic
Annotation (SemAnnot 2005), Galway, Ireland.

Plessers, P., Casteleyn, S., Yesilada, Y., De Troyer, O., Stevens, R., Harper, S., and Goble, C.,
2005b, Accessibility: A Web engineering approach. Proceedings 14th International World
Wide Web Conference (WWW2005), A. Ellis and T. Hagino, eds., ACM, Chiba, Japan,
ISBN 1-59593-046-9, pp. 353–362.

Plessers, P., and De Troyer, O., 2004a, Web design for the Semantic Web. Proceedings
WWW2004 Workshop on Application Design, Development and Implementation Issues in
the Semantic Web, CEUR Workshop Proceedings, Vol. 105 Web, WWW2004 Workshop, C.
Bussler, S. Decker, D. Schwabe, and O. Pastor, eds., ISBN 1613-0073, New York.

O. De Troyer et al.

11. WSDM: Web Semantics Design Method 351

Plessers, P., and De Troyer, O., 2004b, Annotation for the Semantic Web during Web site

development. Proceedings ICWE 2004 Conference, Lecture Notes in Computer Science,
3140, N. Koch, P. Fraternali, and M. Wirsing, eds., Springer, Munich, Germany, ISBN 3-
540-22511-0, pp. 349–353.

Yesilada, Y., Harper, S., Goble, G., and Stevens, R., 2004, Screen readers cannot see
(ontology-based semantic annotation for visually impaired Web travelers). Web
Engineering, 5th International Conference, ICWE 2005, Sydney, Australia, July 27-29,
2005, Proceedings, Lecture Notes in Computer Science, 3579, Springer, ISBN 3-540-
27996-2, pp. 445–458.

Chapter 12

AN OVERVIEW OF MODEL-DRIVEN WEB
ENGINEERING AND THE MDA

Nathalie Moreno,1 José Raúl Romero,2 Antonio Vallecillo1
1Dept. Lenguajes y Ciencias de la Computación, University of Málaga, Spain
2Dept. Informática y Análisis Numérico, University of Córdoba, Spain

12.1 INTRODUCTION

Model-Driven Software Development (MDSD) is becoming a widely
accepted approach for developing complex distributed applications. MDSD
advocates the use of models as the key artifacts in all phases of development,
from system specification and analysis to design and implementation. Each
model usually addresses one concern, independently from the rest of the
issues involved in the construction of the system. Thus, the basic
functionality of the system can be separated from its final implementation;
the business logic can be separated from the underlying platform technology,
etc. The transformations between models enable the automated
implementation of a system from the different models defined for it.

Web Engineering is a specific domain in which MDSD can be
successfully applied. Most of the technology is here to implement systems
that exploit the Web paradigm, but the effective design of Web applications
is still a concern: The complexity and requirements of Web applications are
constantly growing, while the supporting technologies and platforms rapidly
evolve.

Existing model-driven Web Engineering (MDWE) approaches already
provide excellent methodologies and tools for the design and development
of most kinds of Web applications. They address different concerns using
separate models (navigation, presentation, data, etc.) and are supported by
model compilers that produce most of the application’s Web pages and
logic based on the models. However, these proposals also present some

354 N. Moreno et al.

limitations, especially when it comes to modeling further concerns, such as
architectural styles or distribution. Furthermore, current Web systems need
to interoperate with other external applications, something that requires
their integration with third-party Web services, portals, and also with
legacy systems. Finally, many of these Web Engineering proposals do not
fully exploit all the potential benefits of MDSD, such as complete platform
independence, model transformation and merging, or meta-modeling.
Miller and Mukerji (2003) from the Object Management Group (OMG™)
have introduced a new approach for organizing the design of an application
into (yet another set of) separate models so that portability,
interoperability, and reusability can be obtained through architectural
separation of concerns. MDA covers a wide spectrum of topics and issues
(MOF-based meta-models, UML profiles, model transformations,
modeling languages and tools, etc.) and also promises the interoperability
required between models and tools from separate vendors. On the other
camp, Software Factories (Greenfield and Short, 2004) provide effective
concepts and resources for the model-based design and development of
complex applications, and it is our belief that they can be successfully used
for Web Engineering, too.

In this chapter we will introduce the main concepts involved in MDWE
and discuss its current strengths, weaknesses, and major challenges,
especially in the context of the MDA initiative.

12.2 DOMAIN-SPECIFIC MODELING

Domain-specific modeling (DSM) is a way of designing and developing
systems that involves the systematic use of domain-specific languages
(DSLs) to represent the various facets of a system. Such languages tend to
support higher-level abstractions than general-purpose modeling languages
and are closer to the problem domain than to the implementation domain.
Thus, a DSL follows the domain abstractions and semantics, allowing
modelers to perceive themselves as working directly with domain concepts.
Furthermore, the rules of the domain can be included in the language as
constraints, thereby disallowing the specification of illegal or incorrect
models.

DSLs play a cornerstone role in DSM. In general, defining a modeling
language involves at least two aspects: the domain concepts and rules
(abstract syntax), and the notation used to represent these concepts (concrete
syntax—let it be textual or graphical). Each model is written in the language
of its meta-model. Thus, a meta-model will describe the concepts of the
language, the relationships between them, and the structuring rules that

12. An Overview of Model-Driven Web Engineering and the MDA 355

constrain the model elements and combinations in order to respect the
domain rules. We normally say that a model conforms to its meta-model
(Bézivin, 2005).

Meta-models are also models, and therefore they need to be written in
another language, which is described by its meta-meta-model. This recursive
definition normally ends at that level, since meta-meta-models conform to
themselves.

A typical example of a meta-model-defined DSL is ATL (Jouault and
Kurtev, 2006b), which is a transformation language. A large library of ATL
transformations is available from the Eclipse meta-model open source
library. The interested reader can consult the work by Bézivin (2005) for a
more complete and detailed introduction to these topics.

DSM often also includes the idea of code generation: automating the
creation of executable source code directly from the DSM models. Being
free from the manual creation and maintenance of source code implies
significant improvements in developer productivity, reduction of both
defects and errors in programs, and a better resulting quality. Moreover,
working with models of the problem domain instead of models of the code
raises the level of abstraction, hiding unnecessary complexity and
implementation-specific details, while putting the emphasis on already
familiar terminology.

A DSM environment may be thought of as a meta-modeling tool, i.e., a
modeling tool used to define a modeling tool or CASE tool. The domain
expert only needs to specify the domain-specific constructs and rules, and
the DSM environment provides a modeling tool tailored for the target
domain. The resulting tool may either work within the DSM environment or,
less commonly, may be produced as a separate standalone program. Using a
DSM environment can significantly lower the cost of obtaining tool support
for a DSM language, since a well-designed DSM environment will automate
the creation of program parts that are costly to build from scratch, such as
domain-specific editors, browsers, and components.

Examples of DSM environments include commercial ones such as
MetaEdit+; open source environments, such as the Generic Eclipse
Modeling System; or academic ones such as the Generic Modeling
Environment (GME; http://www.isis.vanderbilt.edu/projects/gme/). The
increasing popularity of DSM has led to DSM frameworks being added to
existing integrated development environments, such as the Eclipse Modeling
Project (EMP) and Microsoft’s DSL Tools for Software Factories.

356

12.3 MDA

One of the best known MDSD initiatives is called Model-Driven
Architecture (MDA®), which is an approach to software development
produced and maintained by the OMG, a consortium that produces and
maintains computer industry specifications for interoperable enterprise
applications. MDA is a registered trademark of the OMG, together with its
related acronym, model-driven development (MDD), another OMG
trademark.

The goal of MDA is one that is often sought: to separate business and
application logic from its underlying execution platform technology so that
(1) changes in the underlying platform do not affect existing applications and
(2) business logic can evolve independently from the underlying technology.
A tool that implements the MDA concepts will allow developers to produce
models of the application and business logic and also generate code for a
target platform by means of transformations.

The major benefit of this approach is that it raises the level of abstraction
in software development. Instead of writing platform-specific code in some
high-level language, software developers focus on developing models that
are specific to the application domain but independent of the platform. In a
nutshell, MDA is a broad conceptual framework that describes an overall
approach to software development.

MDA is not to be confused with MDSD. MDA is the OMG
implementation of MDSD, using the set of tools and standards defined by
OMG. These OMG standards include UML® (Unified Modeling Language),
MOF (Meta-Object Facility), XMI (XML Metadata Interchange), and
MOF/QVT (Query/View/Transformations), among others. All these
standards can be obtained from the OMG Web site (www.omg.org).

12.3.1 The MDA Framework

The MDA framework is basically organized around the so-called platform-
independent models (PIMs) and platform-specific models (PSMs) and on the
model transformations between them. The PIM is a specification of a system
in terms of domain concepts. These domain concepts exhibit a specified
degree of independence of different platforms (e.g., CORBA, .NET, and
J2EE). The system can then be compiled using any of those platforms as a
target by transforming the PIM to a platform-specific model (PSM). Thus,
the PSM specifies how the system uses a particular type of platform. Finally,
the application’s code is considered a form of PSM (at the lowest level).

In MDA, a platform is a set of subsystems and technologies that provides
a set of functionality through interfaces and specified usage patterns, which

N. Moreno et al.

12. An Overview of Model-Driven Web Engineering and the MDA 357

any application supported by that platform can use without concern for the
details of how the functionality provided by the platform is implemented
(Miller and Mukerji, 2003). As in MDSD, each model in MDA conforms to
a meta-model, which in MDA can be defined using MOF.

Figure 12.1. The MDA pattern.

In addition to models, transformations are also at the heart of MDA.
Model transformation is the process of converting one model to another
model of the same system (see Figure 12.1). Such transformations can be
done following many ways: using types, marks, templates, etc. In MDA,
software development becomes an iterative model transformation process:
Each step transforms one PIM of the system at one level into one PSM at the
next level, until a final system implementation is reached, with the
particularity that each PSM of a transformation can become the PIM of the
next transformation (within another level of abstraction). In this context, the
implementation is just another model, which provides all the information
necessary to construct the system and put it into operation.

12.3.2 OMG Approaches for Defining DSLs

Both PIMs and PSMs are models and are therefore defined using modeling
languages. Although in theory MDA’s models can be defined using any
modeling language, OMG strongly suggests that models are specified using
UML or any other MOF-compliant language (i.e., whose meta-meta-model
is MOF). This interest for being MOF- and UML-compliant arises from the
increasing need to be able to interoperate with other notations and tools, and
to exchange data and models, thus facilitating and improving reuse.

358

OMG defines three main possible approaches for defining domain-
specific languages. The first solution is to develop a meta-model that is able
to represent the relevant domain concepts. This means creating a new
domain language, an alternative to UML, using the MOF meta-modeling
facilities provided by OMG for defining object-based visual languages (i.e.,
the same mechanisms that have been used for defining UML and its meta-
model). In this way, the syntax and semantics of the elements of the new
language are defined to faithfully match the domain’s specific
characteristics. The problem is that standard UML tools will not be able to
deal with such a new language (to edit models that conform to the meta-
model, compile them, etc.). This approach is the one followed by languages
such as the CWM (Common Warehouse Metamodel) or the W2000 (Baresi
et al., 2006b) notations, since the semantics of some of these languages’
constructs do not match the semantics of the corresponding UML model
elements.

The second and third solutions are based on extending UML. Extensions
of the UML can be either heavyweight or lightweight. The difference
between lightweight and heavyweight extensions comes from the way in
which they extend the UML meta-model. Heavyweight extensions are based
on a modified UML meta-model with the implication that the original
semantics of modeling elements is changed, and therefore the extension
might no longer be compatible with UML tools.

Lightweight extensions are called UML profiles and are based on the
extension mechanisms provided by UML (OMG, 2005b; Fuentes and
Vallecillo, 2004) (stereotypes, tag definitions, and constraints) for
specializing its meta-classes, but without breaking their original semantics.
UML profiles may impose new restrictions on the extended meta-classes, but
they should respect the UML meta-model without modifying the original
semantics of the UML elements (i.e., the basic features of UML classes,
associations, properties, etc. will remain the same, only new constraints can
be added to the original elements). Syntactic sugar can also be defined in a
profile, in terms of icons and symbols for the newly defined elements. One
of the major benefits of profiles is that they can be handled in a natural way
by UML tools.

In UML profiles, stereotypes define particularizations of given UML
elements, adding some semantics to them. For instance, we can define the
stereotype <<persistent>> that extends UML classes to represent persistent
elements in a particular domain. Tag definitions specify the possible
attributes of stereotypes (e.g., the name of the table where the persistent
element should be stored). Finally, constraints define the domain rules that
the stereotyped UML elements should obey in order to make up correct

N. Moreno et al.

12. An Overview of Model-Driven Web Engineering and the MDA 359

models (e.g., suppose that we do not want abstract classes to be stereotyped
as persistent). Figure 12.2 graphically shows the UML specification of this
example stereotype.

Figure 12.2. An example of a UML 2.0 stereotype specification.

Constraints on stereotypes are normally specified using OCL (Object
Constraint Language) (OMG, 2006), whose current version (2.0) is fully
aligned with UML. Constraints can be either directly attached to the
modeling elements (as shown in the figure) or separately specified and then
related to the element to which they apply by identifying their context:

context Persistent inv:

self.baseClass.isAbstract = false

Perhaps the best-known example of customizing UML for a specific

domain is SysML, a DSL for systems engineering (www.sysml.org). In
addition, there is a whole set of UML profiles that customize UML to deal
with the specific concepts required in several relevant application domains
(e.g., real-time, business process modeling, finance, etc.) or implementation
technologies (such as .NET, J2EE, or CORBA).

The main advantage of UML profiles is probably not the extension of the
UML meta-model (which is already too large and complex to be used in full)
but that they allow “restricting” the set of UML elements that need to be
used in a given domain, particularizing the semantics of those elements in
order to capture the semantics and structuring rules of the domain-specific
elements they represent. It is important to repeat that such a particularization
can only be done by refinement, and without changing the original semantics
of UML elements.

Finally, meta-transformations that transform back and forth from the
profile definition to the meta-model definition can also be specified, as
shown in Figure 12.3.

360

Figure 12.3. Example of transformation between a “profilable” meta-model and a profile.

12.3.3 Model Transformations

A model transformation can be viewed as a transformation between two
models that describes how elements in the source model are converted into
elements in the target model. This is done by relating the appropriate meta-
model elements in the source and target meta-models and defining
constraints and guards on such relations (e.g., the preconditions on the
transformation to take place). It is important to notice that model
transformations are also models, and therefore they conform to a meta-model
that describes the language in which they are expressed.

MDA describes a wide variety of models and transformations between
models. While there are many kinds of transformations, they can fit broadly
into two main categories:

• Vertical mappings (or refinements), which relate system models at

different levels of abstraction—such as PIM to PSM mappings, or
reverse-engineering mappings. Until now, vertical transformations have in
most cases been developed within modeling tools using Web tool-specific
proprietary languages. For the same reason that domain know-how should
not be tied to a particular platform, it is thus critical that model
transformations are not dependent on a given CASE tool.

• Horizontal mappings, which relate or integrate models covering different
aspects or domains within a system, but at the same level of abstraction.
Horizontal mappings maintain the consistency between levels,
guaranteeing that an entity needs to be consistent with what is said about
the same entity in any other specification at the same level of abstraction.
This includes the consistency of that entity’s properties, structure, and
behavior.

In MDA, OMG proposes MOF-QVT (Query/View/Transformation)

(OMG, 2005a) as the standard language for specifying model
transformations. Many other model transformation languages, like VIATRA

N. Moreno et al.

12. An Overview of Model-Driven Web Engineering and the MDA 361

by the University of Budapest, ATL by INRIA, RubyTL (Sánchez and
García-Molina, 2006) by the University of Murcia, etc., are also available,
with different levels of compliance to the QVT standard (Jouault and Kurtev,
2006a). The interested reader can visit the “Model Transformation” Web site
(www.model-transformation.org) for a complete listing of model
transformation languages and tools.

12.4 MODEL-DRIVEN WEB ENGINEERING
PROPOSALS

As mentioned in the introduction, Web Engineering is a specific domain in
which MDSD can be successfully applied, due to its particular
characteristics: There is a precise set of concerns that need to be addressed
(navigation, presentation, business processes, etc.); the basic kinds of Web
applications is well known (Kappel et al., 2006) (document-centric,
transactional, workflow-based, collaborative, etc.); and the set of
architectural patterns and structural features used in Web systems is reduced
and precisely defined. In fact, existing model-based Web Engineering
approaches—most of which have been described in this book—already
provide excellent methodologies and tools for the design and development of
most kinds of Web applications.

These approaches come basically from two main areas. First, a few
proposals are based on hypermedia design methods, introducing the required
expressiveness and mechanisms to capture relevant Web-specific elements,
such as navigation. Prominent examples of these initiatives are HDM
(Garzotto et al., 1993), RMM (Frasincar, 2001), WebML (Ceri et al., 2002),
W2000 (Baresi et al., 2006b), WSDM (De Troyer and Leune, 1998), Hera
(Vdovjak et al., 2003), and Webile (Di Ruscio, 2004), the majority of which
are based on the classic E/R model or on extensions of it. Another group of
more recent approaches emerged as extensions of conventional object-
oriented development techniques, adapting them to cope with the particular
characteristics of Web systems. In this group we can find methods such as
EORM (Lange, 1994), OOHDM (Schwabe et al., 1999), UWE (Koch, 2001),
OOWS (Pastor et al., 2006), OO-Method (Pastor et al., 2001), OO-H
(Gómez and Cachero, 2003), and MIDAS (De Castro et al., 2006).

These proposals are model-driven because they address the different
concerns involved in the design and development of a Web application using
separate models (such as content, navigation, and presentation) and then are
supported by model compilers that produce most of the application’s Web
pages and logic from the original models. Furthermore, most of them count
with development processes that support their notations and tools and have

362

been successfully used in commercial environments for building many
different kinds of Web systems. And although all methodologies adopt
different notations and propose their own constructs, they all share a
common ground of concepts—and thus they might be considered as
somehow based on a common meta-model, as suggested by Koch and Kraus
(2003).

However, as the complexity of Web applications grows (to be able to
deliver, e.g., large e-commerce, e-learning, or e-government applications),
and new requirements are imposed on Web systems, most of these proposals
show some limitations:

• They are usually tied to particular architectural styles and technologies,

i.e., they do not allow the parameterizable construction of Web
applications using different platform technologies and architectural
styles—they typically build client-server applications only, and based on
very specific platform technologies (PHP, ASP, EJB, or JSP). The
problem is that these architectural styles and target technologies are no
longer relevant when, for example, mobility and nomadic features are
required for some types of Web applications.

• Most of these proposals were originally conceived to deal with particular
kinds of Web applications (such as Web information systems,
hypermedia applications, or adaptive Web applications), so they deal
with a fixed set of common concerns (navigation, presentation, etc.).
Therefore, they are very good at modeling certain aspects, but very weak
at modeling others. In addition, they are difficult to extend to model
further aspects (such as internal processes, distribution, and some other
extra-functional concerns) in a natural, modular, and independent way.

Finally, Web applications currently need to interoperate with other

external systems. This requires their integration with third-party Web
services, portals, and legacy systems—meaning, among other things, that
their processes, choreography, and part of their business logic must be
explicitly available for integration with these external systems (Moreno and
Vallecillo, 2005a). Not all MDWE proposals address this issue at the model
level; the integration is mostly achieved at the implementation level.

Solving all these limitations is not a trivial task. We are currently
observing how some Web Engineering proposals are evolving to cope with
some of these issues. For instance, some of them are developing extensions
to address more and more aspects. Examples include UWE and OO-H,
which have incorporated a process model into their original approaches
(Koch et al., 2004) and are working to deal with the architectural style of the
final application, too (Cáceres et al., 2006). WebML has also evolved to be
able to deal with legacy systems and for context-awareness (Ceri et al.,

N. Moreno et al.

12. An Overview of Model-Driven Web Engineering and the MDA 363

2007). The problem with these incremental extensions is that, unless their
efforts to include new concerns are made in a very well-organized and
interoperable manner, we may end up with proposals that have grown by
adding too many new features in an unnatural and artificial way, and
therefore may become too complex and brittle.

Another problem that some of these proposals are also facing is their use
of proprietary notations and tools. This forces customers and developers to
buy and use “yet-another” modeling tool (with the learning costs and efforts
involved in the process) if they want to take advantage of them. Even worse,
these proprietary tools do not interoperate with the rest of the tools being
used by the customer, which forces him to work with a whole set of isolated
development environments, each one different (and incompatible) from the
rest—something that the customer is not going to tolerate.

Thus, we are witnessing how the Web Engineering community considers
the use of standard UML notation, techniques, and supporting tools for
modeling Web systems, including the adaptation of their own modeling
languages, representation diagrams, and development processes to UML.
There is a need to be able to be compatible and to interoperate with other
notations and tools, and to seamlessly exchange data and models with them.
This is the case for WebML, which is defining UML-based representations
of its modeling language so that the WebML notation and its development
process can be smoothly integrated into standard UML development
environments (Moreno et al., 2006; Schauerhuber et al., 2006).

The advent of the model-driven architecture (MDA) initiative may also
bring significant benefits here and may help to address most of the
limitations cited above in a natural way. As mentioned in the preceding
section, MDA provides an approach for organizing the design of an
application into separate models so that portability, interoperability, and
reusability can be achieved through architectural separation of concerns. In
addition, the new modeling notation UML 2.0 incorporates a whole new set
of diagrams and concepts that are more appropriate for modeling the specific
structure and behavior of software systems, in particular of Web applications
(e.g., the new structuring mechanisms, or the improved specification and
semantics of state machines and activities).

Of course, the use of UML and MDA for model-driven Web Engineering
is not free from problems. As any other initiative, it brings along both
benefits and drawbacks and also has both supporters and detractors. The next
two sections are dedicated to explaining these ideas in detail.

364

12.5 MDA-BASED WEB ENGINEERING

MDA provides several interesting opportunities to improve current Web
Engineering approaches, helping them to overcome some of the limitations
cited above.

12.5.1 Becoming UML- and MOF-Compliant

As previously mentioned, there is an increasing need to be able to
interoperate and be compatible with other notations and tools, and to
integrate with already existing modeling environments—in particular, with
the UML tools that today are commonplace in many customer settings. Of
course, other DSM environments are already being developed—some of
them probably much better than those supporting the UML notation—but the
problem is that they have not reached the level of acceptance and are not as
widespread as UML modeling tools are today. And we are faced with the
need to be able to offer a solution to our customers today.

In this sense, a very promising approach is the definition of UML profiles
for representing proprietary Web Engineering modeling languages. This is
the case with WebML, which has recently defined a meta-model and a UML
profile (Moreno et al., 2006; Schauerhuber et al., 2006) for its notation. This
allows the WebML language and its development process (supported by the
WebRatio tool) to be smoothly integrated with standard UML development
environments.

In addition, counting on a meta-model for WebML will allow its
integration with other MDA tools as soon as they are available (editors,
validators, metric evaluators, etc.) and also with other MDSD approaches
and tools (using model transformations that allow the conversion of MOF-
meta-models to other meta-modeling approaches, such as KM3 or Ecore).

12.5.2 Organizing Models According to the MDA Principles

We are also witnessing how other approaches that were originally UML-
based are making use of the new MDA principles to reorganize their models
in a modular manner, in such a way that each model focuses on one specific
concern and then formulates its development processes in terms of model
transformations and model merges.

Probably the most representative example is UWE, which has
successfully restructured its original set of models (which represented the
different concerns involved in the design and development of a Web
application) in terms of meta-models, and the UWE development process in
terms of transformations between them (Koch, 2006; Kraus, 2007). This has

N. Moreno et al.

12. An Overview of Model-Driven Web Engineering and the MDA 365

significantly enhanced the original proposal with better modularity,
expressiveness, and reuse. Furthermore, the use of specification techniques
for the transformations will allow UWE to redefine and improve many of the
aspects of its development process, especially those that were originally
hard-coded in the UWE supporting CASE tool, in order to benefit from
model transformation rules defined at a higher abstraction level, e.g., using
graph transformations or transformation languages.

Another interesting outcome of the work done by the UWE group when
adopting the MDA principles into their proposal is the analysis of the models
(and model transformations) that comprise the MDSD process for Web
applications, focusing on the classification of the model transformations in
terms of type, complexity, number of source models, involvement of
marking models, implementation techniques, and execution type (Koch,
2006). This analysis could be very useful to other model-based Web
Engineering methods if they decide to reformulate their proposals in terms of
independent models and transformations between them. Other proposals,
such as MIDAS, have also started to adopt such an approach by specifying
the development process of Web information systems in terms of
(meta)models and transformations between them (Cáceres et al., 2006).

12.5.3 Adding New Concerns

This reformulation of model-based Web Engineering proposals is also
proving other benefits, such as the modular addition of further aspects into
their designs. Most of these concerns were not contemplated originally, and
integrating them was difficult because of the (usually ad hoc) internal
structure of their supporting processes and tools.

One representative example is OO-H, whose authors realized that they
had to be able to deliver Web applications with different software
architectures and to different platforms, depending on the customers’
specific requirements—in this case the customers were the ones demanding
such features. The OO-H team managed to successfully reformulate part of
their internal structure and methods, making the representation of the
software architecture of the system a separate concern that could be captured
as a separate model, and then merged (using QVT transformations) with the
rest of the models of the system (such as navigation, presentation, etc.)
(Meliá and Gómez, 2006).

UWE and OO-H have also investigated the explicit representation of the
business processes of a Web application, as separate models (Koch et al.,
2004). Their joint findings are very encouraging, because they managed to
define a common way for modeling them for both proposals. This shows that
reuse of meta-models across Web Engineering proposals is feasible.

366

Finally, UWE has also shown recently how other concerns, such as the
user requirements (Koch et al., 2006), can be expressed as UML models and
connected to the approach. This is one of the benefits they obtained once
they fully reorganized their proposal as a set of separate models, related
through model transformations (Kraus, 2007).

All these findings support the thesis that a common meta-model is
possible for Web Engineering, as originally proposed by Koch and Kraus
(2003). Furthermore, in the next section we will see how the existence of a
common meta-model could allow the definition of a framework for building
Web applications, which in the context of the MDA would also enable the
exchange of models and tools between MDWE proposals.

12.6 WEI: A MODEL-BASED FRAMEWORK
FOR BUILDING WEB APPLICATIONS

In this section we shall identify a general set of common concerns involved
in the development of Web applications and present a model-driven Web
architectural framework (WEI) for organizing and relating the different
models that represent these concerns. Each WEI model focuses on one
particular concern (navigation, presentation, architectural style, distribution)
and at different levels of abstraction (platform-independent, platform-
specific). The set of meta-models that define such models can be considered
as a common meta-model for WEI.

MDWAF is also supported by a development methodology for building
Web applications, which conforms to the MDA principles—in the sense that
it is defined in terms of models and the relationships between them, so
transformations can be easily formalized among the models until the final
implementation is reached.

12.6.1 Identifying Reference Models for Web Applications

In general, the kinds of concerns involved in the development of a Web
application will directly depend on the type of Web application being
designed and also on the project requirements. Web applications have
already been classified by complexity and development history (Kappel
et al., 2006):

1. Document-centric Web sites, which are hierarchical collections of

static HTML documents (basically, plain text and images) that offer
read-only information based on a set of structured content, navigation
patterns, and presentation characteristics designed and stored a priori.

N. Moreno et al.

12. An Overview of Model-Driven Web Engineering and the MDA 367

The simplicity and stability of these systems limit the scope of Web
modeling to three models: a user interface structure model that deals
with the content of the information delivered to the client; a
navigation model that points out the network of paths within the Web
application; and a presentation model that refers to the visual
elements that comprise the Web pages.

2. Transactional Web applications, which incorporate support for
persistent data store, information location, concurrency control, failure,
and configuration management. In addition to the navigation aspects of
any hypermedia application, development of transactional Web
applications implies the need for an effective information structure
model, which is capable of capturing the processes of inserting,
updating, and deleting data, and also a distribution model, which
enables the establishment of alternatives for carrying out transactions.
A clearer separation between data design, among behavioral aspects of
the application, and from the user interface concerns is required.

3. Interactive Web applications, which are browser-based applications
that allow dynamic content of Web pages, hence providing users with
personalized information. This feature requires a process model that
describes how business classes manage the information stored (i.e., the
elements of the information structure model) and also requires that the
navigation and presentation models are parameterizable to provide
tailor-made information to individual users according to their
preferences, goals, and knowledge. Furthermore, this type of
application emphasizes modeling not only the information structure
itself and its future consumers (i.e., the users model), but also the
relationships or bridges between the information structure model,
navigation model, and business model.

4. Workflow-based Web applications, which provide support for
modeling structured business processes, activity flows, business rules,
interactions among actors, roles, and a high-performance infrastructure
for data storage (content management). Information is needed not only
for the system actors but also for its processes. For this kind of Web
applications, at a minimum the following models are required: a user
interface structure model, a navigation model, a presentation model, an
information structure model, a business model (i.e., the description of
how functionality is encapsulated into business components and
services), a process model (with a description of the behavior of the
internal processes), and a software architecture model identifying the
subsystems, components, and connectors (software and hardware) the
application should have.

5. Collaborative Web applications, which are those executed by different
groups of users that access Web resources to accomplish a specific
task. They entail a modeling decomposition of the Web application

368

design into views or workspaces based on different user roles. For
each group of users, the functional requirements, task, and activities to
be performed must be specified. These issues involve modularity and
distribution requirements on the process model. Finally, the
information assets to be manipulated by views must also be modeled.

6. Portal-oriented Web applications, which integrate resources (data,
applications, and services) from different sources in a single point.
From an end-user perspective, a portal is a Web site with pages that
are organized by some form of navigation. Pages can display either
static HTML content or complex Web services. Personalization,
behavior tracking of users, as well as message flows in Web service
collaborations are extremely relevant in portal-oriented Web
applications. Therefore, a choreography model needs to express the
expected behavior of both the system processes and the external
services in order to check their compatibility and interoperability to
compose them to build the portal aggregated.

7. Ubiquitous Web applications, which need to be accessible at any time,
from anywhere, and in any media, i.e., they must run on a variety of
platforms, including mobile phones, personal digital assistants (PDAs),
desktop computers, etc. This implies that their presentation and
navigational models should be adaptable not only to different kinds
of users, but also to different kinds of platforms and contexts.
Consequently, this kind of application requires modeling the
separation between platform-independent and platform-specific
concerns.

Based on the set of concerns identified above, each one represented by

one model, we have built an architectural framework for model-driven Web
application development (WEI). Its basic structure is depicted in Figure 12.4.
It is organized in three main layers (User Interface, Business Logic,
and Data), each one corresponding to a viewpoint. In turn, each layer is
composed of a set of models, which specify the entities relevant to each
concern.

Far from being “yet another Web methodology,” the aims of WEI can be
summarized as follows:

1. to be able to represent, in terms of models and relationships between

them, the concerns required for designing and developing Web
applications—following an architectural separation of concerns as
prescribed by MDA

2. to integrate and harmonize the models and practices proposed by
existing approaches, addressing their concerns

3. to be extensible so that new concerns could be easily added

N. Moreno et al.

12. An Overview of Model-Driven Web Engineering and the MDA 369

4. to provide as a common framework (and meta-model) in which current
proposals could be integrated and formulated in terms of the MDA
principles, hence allowing them to smoothly interoperate (by defining,
e.g., interoperability bridges between compatible models coming from
different proposals, whenever this is possible) and complement each
other, share tools, etc.

At a high architectural design level, the whole WEI concept space is

captured by 13 meta-models, organized in 3 main packages as shown in
Figure 12.4. It is important to note that the models that comprise the
framework have not been arbitrarily chosen but are based on the concerns
covered by existing Web Engineering proposals (see also Table 12.1 later
on) and our previous experience with the development of large distributed
applications.

Figure 12.4. Models representing the concerns involved in the development of Web
applications.

At the bottom level, the Data Structure package describes the
organization of the information managed by the application (by means of,

370

e.g., a database system) and provides a mechanism for storing it persistently.
Information is depicted in terms of the data elements that constitute its
information base and the semantic relationships between these elements.
This level is organized in two models:

(i) The Information Structure model deals with the information that has

to be made persistent, i.e., stored in a database.
(ii) The Information Distribution model describes the distribution and

replication of the data being modeled, since information can be
fragmented in nodes or replicated in different locations.

Then, the User Interface focuses on the facilities provided to the end user

for accessing and navigating through the information managed by the
application and describes how this information is presented depending on the
context and the user profile. The User Interface level is responsible for
accepting persistent, processed, or structured data from the Process and Data
viewpoints, in order to interact with the end user and deliver the application
contents in a suitable format. Originally, Web applications were specifically
conceived to deal mainly with navigation and presentation concerns, but
currently they also need to address other relevant issues:

(i) The User Interface Structure model encapsulates the information that

the rest of the models at this level have about the information handled
by the system (i.e., it is the view of such information from this
viewpoint).

(ii) The Navigation model represents the application navigational
requirements in terms of access structures that can be accessed via
navigational links.

(iii) Navigational objects are not directly perceived by the user; rather, they
are accessed via the Presentation model. This model captures the
presentational requirements in terms of a set of PresentationUnits.

(iv) The User model describes and manages the user characteristics with the
purpose of adapting the content and the presentation to the users’ needs
and preferences.

(v) The Context model deals with Device, Network, Location, and Time
aspects and describes the environment of the application. These are
needed to determine how to achieve the required customization.

(vi) The Adaptation model captures context features and user preferences
to obtain the appropriate Web content characteristics (e.g., the number
of embedded objects in a Web page, the dimension of the base-Web
page without components, or the total dimension of the embedded
components). Adaptation policies are usually specified in terms of ECA
rules.

N. Moreno et al.

12. An Overview of Model-Driven Web Engineering and the MDA 371

Finally, the Business Logic package encapsulates the business logic of
the application, i.e., how the information is processed and how the
application interacts with other computerized systems.

(i) The Business Logic Structure model describes the major classes or
component types representing services in the system
(BusinessProcessInformation), their attributes (Attributes), the signature
of their operations (Signature), and the relationships between them
(Association). The design of the Structure model is driven by the needs
of the processes that implement the business logic of the system, taking
into account the tasks that users can perform.

(ii) The Internal Processes model specifies the precise behavior of every
BusinessProcessInformation or component as well as the set of
activities that are executed in order to achieve a business objective. For
a complete description of a business process, apart from the Structure
model, we need information related to the Activities carried out by the
BusinessProcessInformation, expressing their behavior and the Flows
that pass around objects or data.

(iii) The Choreography model defines the valid sequences of messages and
interactions that the different objects of the system may exchange. The
choreography may be individually oriented, specifying the contract a
component exhibits to other components (PartialChoreography), or it
may be globally oriented, specifying the flow of messages within a
global composition (GlobalChoreography).

(iv) The Distribution model describes how its basic entities, the nodes, are
connected by means of point to point connections or links. While the
Information Distribution model of the Data layer specifies the
distribution of the data, this model describes the distribution of the
processes that achieve the business logic of the system.

(v) The Component+Architectural Style model defines the fundamental
organization of a system in terms of its components, their relationships,
and the principles guiding its design and evolution, i.e., how
functionality is encapsulated into business components and services.

The emphasis in each of these levels will depend on the kind of Web
application being modeled (data-intensive, user interface-oriented, etc.).

A central model of the WEI framework is the Conceptual Model,
which can be used for specifying the basic structure and contents on the Web
application (so the rest of the “views” can relate to the elements of that
model) and also for maintaining the consistency of the model specifications,
establishing how the different viewpoints merge and complement each other.

Note that, in addition to the models, the framework predefines some
dependencies between the models which determine those cases in which the
definition of a model requires the previous specification of some other

372

models. At a different level, the dependencies may also imply how the
framework instantiation process should be carried out. Furthermore, these
dependencies also specify correspondences between the elements from
different models of the framework, especially when they may have been
independently developed by different parties, or when they represent the
system from different viewpoints, and therefore the same element is
specified in different ways in different models (each one offering a partial
view of the whole). In these cases, correspondences between model elements
may also be subject to certain consistency rules, which check that the views
do not impose contradictory requirements on the elements they share.

12.6.2 Modeling These Concerns

In order to formally define the framework, we have built an MOF meta-
model for each model, which describes its entities and their relationships
(http://www.lcc.uma.es/~nathalie/WEI/). MOF was selected as a meta-
modeling language because of our interest in being MDA-compliant. Other
alternatives were, of course, possible (using, e.g., KM3 or Ecore), but it was
important for us to try to use OMG’s notations and tools, to exercise the
MDA approach. MagicDraw was selected as a modeling tool. The selection
of a UML tool is really important, because they do not interoperate well, and
therefore the tool you use may greatly condition your project.

Figure 12.5. The WEI Presentation profile.

N. Moreno et al.

12. An Overview of Model-Driven Web Engineering and the MDA 373

But the meta-models are just one part of the puzzle. Unlike other
approaches, OMG does not provide a solution for directly building correct
models from meta-models. Instead, you have to define your own DSL
associated to these meta-models. In our case we defined lightweight
extensions of UML, i.e., UML profiles, for representing these models
(Moreno et al., 2005). As an example of it, Figure 12.5 shows the profile for
the WEI presentation meta-model.

12.6.3 How the Framework is Used

 Web applications both from scratch
and based on existing models (including those defined using other
methodologies, e.g., UWE, WebML, or OO-H).

12.6.3.1 Building Applications from Scratch with WEI

The straightforward application of the framework in the context of MDA to
develop a Web system from scratch has already been documented in detail
(Moreno et al., 2005a, b; Moreno and Vallecillo, 2005c) and successfully
applied to define and implement several kinds of Web applications such as
the Conference Review System or the Travel Agency Application.

As a brief summary, the WEI methodology process involves the
definition of at least three PIMs, each one corresponding to a viewpoint, as
illustrated in Figure 12.6(b). Each PIM is composed of the set of models
described in the previous section and is developed following the process
depicted in Figure 12.6(a).

Once the three top-level PIMs have been appropriately defined, we need
to mark them using the appropriate profile(s) for the target platform(s) and
technologies. Once marked, we need to follow the MDA transformation
process from PIMs to PSMs, applying a set of mapping rules (one for each
mark and for each marked element). The result of the application of such
mapping rules is a set of UML models of the application according to the
target technologies (e.g., Java, JSP, Oracle, etc.). Finally, the PSMs are
translated to code, applying a transformation process again.

It is important to note that bridges should be specified among the three
PIMs and among their corresponding PSMs, and for which transformations
are also required. Bridges are the key elements to maintain consistency
between the different models at the same level of abstraction and to be able
to provide links between them. A very interesting work by the group of
Alfonso Pierantonio at the University of L’Aquila (Chicchetti et al., 2006)
shows how model weaving can be effectively used to specify and implement
such bridges, being able to connect the different artifacts and models
produced during the development of Web applications—in particular, the

WEI can be instantiated to build

374

models describing the data, navigation, and presentation aspects, whose
connections are usually defined in an ad hoc manner, and their consistency
manually maintained. Although their work is carried out using non-OMG
notations and standards, it can be easily ported to the MDA context, using
MOF meta-models and QVT transformations for establishing
correspondences between elements from different views.

Figure 12.6. The WEI process.

12.6.3.2 Designing Web Applications by Reusing Models
from Other Methodologies

One of the major advantages of our proposal is its ability to design and
implement applications reusing both models and tools (e.g., model
compilers) defined by other Web methodologies. Thus, a Web application
developer could use, for instance, UWE or OO-H for designing the models
of the User Interface layer, and WebML for designing the Data layer, or vice
versa. Furthermore, models could be already defined for other applications
and reused here for building fast prototypes.

N. Moreno et al.

12. An Overview of Model-Driven Web Engineering and the MDA 375

Reusing models conforming to other Web methodologies requires the
definition of interoperability bridges between “compatible” models coming
from different methodologies and the appropriate models of our framework.
Usually, the source and target entities defined in different approaches do not
differ much. In addition, neither the models nor the entities described in our
framework were arbitrarily chosen: Instead, they try to generalize the entities
and models defined by most Web Engineering proposals (see Table 12.1).
Thus, the interoperability bridges between models from different proposals
are a priori feasible and even quite straightforward using WEI as a
reference framework.
Table 12.1 Concerns and Models Covered by Current Web Engineering Proposals

Layer Model OOHDM W2000 UWE WebML WSDSM OOWS OOH

Structure √ ~ √ ~ ~ √ √
User ~ √ √ √ √
Context ~ √ √
Adaptation √ √ √
Navigation √ √ √ √ √ √ √

User
Interface

Present. √ √ √ √ √ √ √
Structure ~ ~ √ √ ~
Processes √ √ √ √
Choreogr. √
Architect. √ √ √

Business
Logic

Distribution
Inf. Struct. √ √ √ √ √ √ Data
Inf. Distrib.

There are, however, some issues that need to be addressed, which are

similar to the traditional problems that appear when integrating models that
represent different views of the same system. First, we may find models
using different names to refer to the same elements. Second, we may find
that one model may assume the existence of other models that either provide
some services (e.g., the precise behavior that needs to be executed when a
navigation link is traversed) or represent external systems or legacy
applications that our Web system should be able to work with (by, e.g.,
exchanging data or invoking services). Third, the majority of Web
Engineering proposals apply (almost the same) separation of concerns, but
the problem is that their levels of abstraction and granularity do not always
coincide. Fourth, some of the models that we want to reuse may deal with
more than one of our framework concerns. And finally, we may find some
aspects and concerns that have not been modeled, because they are implicitly
assumed in the proposals’ models (the most typical example is behavior).

376

The way in which we address the first four issues is by specifying bridges
(either correspondences or transformations) between the elements living in
different models. Such bridges have been defined using QVT relations. The
last issue, i.e., the lack of models for representing some concerns, needs to
be addressed by the explicit specification of such elements, in order to
supply the “missing” information. This case currently happens when models
to be reused come from methodologies that do not have all their information
explicitly modeled, but that is hardwired into their supporting CASE tools.
Thus, the models to be reused assume some information and semantics that
are not available if we try to use them in a different environment. This
problem is alleviated by the explicit representation of all concerns in the

rmation has to be supplied there.

12.7 ISSUES AND CHALLENGES FOR MDWE AND MDA

So far we have discussed how MDA and its related concepts and
mechanisms can help in the effective design and development of Web
applications. This section describes the major challenges faced by the
introduction of MDA in the Web Engineering domain.

12.7.1 Maturity of MDA Standards and Tools

One of the major problems that any person approaching MDA discovers is
the lack of maturity of the current standards and tools. For example, some
standards considered key to MDA are not currently supported by tools, and
some others have not even been finalized. Probably the most representative
example is QVT, for which there is not a complete implementation available
as of today. This is really frustrating and needs to be urgently addressed in
order to avoid the dissatisfaction it produces to potential users.

12.7.2 Lack of Interoperability Between UML Tools

Despite the interoperability goals of the OMG, current UML modeling tools
cannot properly interoperate, and exchanging models and diagrams between
them is almost impossible. XMI is supposed to provide the solution to this
problem, but most UML tool vendors fail to generate fully XMI-compliant
specifications of the models they produce. What we currently see is that
most vendors add proprietary extensions to the XMI tags, which cannot be
understood by other tools. This is another sign of the current immature status
of the MDA initiative, which we expect can be resolved soon (otherwise the
vendors may kill this opportunity with their incompatibilities).

N. Moreno et al.

WEI framework, because all the info

12. An Overview of Model-Driven Web Engineering and the MDA 377

12.7.3 Need to Improve the Support for DSLs

As mentioned above, UML profiles are a very interesting option to define
DSLs, not only because they are relatively simple to define, but also
because, once defined, they can be (in theory) used by any UML tool to
produce models that conform to that profile.

The current situation is not so bright, however. Actually, most UML tools
provide support for defining UML profiles (in terms of their corresponding
stereotypes, tag definitions, and constraints) but fail to be able to guarantee
the constraints on the models because they do not support OCL checks.
Therefore, you can specify a UML profile that represents a given application
domain (that is, a DSL for that domain), but then there is no way of checking
that the models users produce respect the structuring rules of that DSL, i.e.,
users can easily create wrong models. It is similar to defining a language but
without providing a compiler that could check the grammar of the programs
produced.

Another improvement that is also required is a better support for relating
MOF meta-models with profiles, i.e., to map the meta-model of a DSL to its
corresponding profile, as suggested at the end of Section 12.3.2. This would

although this kind of mechanism should be implemented in most UML tools
as part of their profiling facilities.

12.7.4 The Complexity of UML

The size and technical complexity of UML have been held responsible for
hampering its wide adoption in many industrial environments. UML is a
general-purpose modeling language for software-intensive systems that is
designed to support many kinds of applications. Consequently, in contrast to
specific DSM languages, UML is used for a wide variety of purposes across
a broad range of domains. Thus, it counts with many modeling elements and
diagrams, and even provides support to cope with different semantic
variants, through the semantic variation points defined for some of its
elements. This mechanism increases the potential adoption of UML in many
different kinds of environments, but at the high cost of increasing its
complexity and introducing a lack of focus and precision (“maximizing
reuse minimizes use”). This kind of mechanism also has a strong impact on
the learning curve of UML, and on the efforts required by system modelers
to master and effectively use the UML notation.

allow meta-models to be imported from other sources as well as our being
able to use standard UML tools to easily draw models that conform to them.
There are some academic proposals in this respect (Abouzahra et al., 2005),

378

12.7.5 The Ways in Which Modelers Work

Many of today’s modelers are still casual in their approach; MDSD (and in
particular MDA) requires increased rigor to produce models that are
amenable to automatic generation of code. This means that users need to be
very precise when designing their models—which in MDA implies plenty of
training in UML modeling.

Note that this issue and the previous one could be greatly alleviated by
the use of UML profiles that restricted the set of UML elements that can be
used to model a domain-specific application and only allowed users to draw
correct models with regard to the DSL meta-model (i.e., the profile). This is
why very compact, precise, and specific UML-based DSLs, with a reduced
number of elements and strong structuring rules, are being perceived as a
key factor to the success of MDSD (Bézivin et al., 2005). However, current
UML tools do not provide complete support for UML profiles (including the
validation of their OCL constraints) as mentioned above. In addition, the use
that average modelers make of UML stereotypes and profiles is not always
correct, especially because this extension mechanism is not as simple as it
might seem at first sight. Different studies have tried to analyze the way in
which stereotypes are currently used, and the most common mistakes made
by modelers when defining and using them (Atkinson et al., 2003;
Henderson-Sellers and González-Pérez, 2006).

Another tendency that we also perceive in normal modelers is the use of
DSLs that support agile methodologies and rapid prototyping for designing
and developing Web applications. For instance, the use of Ruby is gaining
acceptance in many areas (Schwabe, 2006), and experience shows that the
increase in development performance and reduction in costs might be worth
its use, especially when combined with frameworks such as Rails (Thomas
et al., 2006).

12.7.6 MDA is not Just About Modeling

It is unrealistic to expect 100% code generation for every computing problem,
and no vendor today can realistically offer a complete MDA solution. Thus, if
you expect too much of MDA, it will fail. What MDA offers is just a way of
approaching the design and development of systems, using a set of standard
notations and tools to achieve interoperability and reuse across vendors and
platform independence. But to realize the full benefits of MDA, organizations
should not just introduce some modeling practices in their development
processes; they must support the full software lifecycle development process,
from analysis and requirements management through design, development,
implementation, deployment, and maintenance. Otherwise, the full advantages
of MDA will be lost.

N. Moreno et al.

12. An Overview of Model-Driven Web Engineering and the MDA 379

12.7.7 Modeling Further Concerns

Finally, and especially in the case of more data-intensive Web applications
(usually called Web-based information systems), we see a trend toward the
incorporation of emerging initiatives like the Semantic Web, with supporting
technologies such as (Semantic) Web services, and (Semantic) Web rule
languages, which aim at fostering application interoperability. Semantic
Web languages [e.g., RDF(S) or OWL] facilitate the description of models
for such domains. However, the integration of all these models with the rest
of the model-based Web Engineering approaches is still unresolved. This is
not only a problem for MDA, but for any MDSD approach.

Further concerns, such as user requirements, as well as the role that the
computation-independent model (CIM) defined by MDA plays in MDWE,
need to be investigated, too.

12.8 CONCLUSIONS

In this chapter we have presented an overview of the current state of model-
driven software development, and of model-driven Web Engineering in
particular, especially in the context of MDA. We have analyzed the key
concepts and mechanisms that these approaches provide and how the
development of Web systems can benefit from them. Apart from introducing
the advantages and opportunities that MDA can bring to MDWE, we have
also discussed the current problems and threats that MDA faces for its
successful adoption in industrial settings. Addressing and resolving them
properly is possibly the major challenge for MDA today.

In summary, we have seen that there is a real need to integrate with UML
environments, which are the ones currently demanded in many customer
settings, and that MDA can help reformulate and reorganize current Web
Engineering proposals in terms of models and transformations between
them. MDWE can significantly benefit from the facts that each model can
address a concern, that these concerns can be explicitly represented, and that
they can be specified in a platform-independent manner—hence achieving
the modularity, portability, reusability, and interoperability required for any
competitive Web Engineering proposal. MDWE solutions cannot survive
isolated any longer; they need to interoperate among themselves and be
integrated into the customers’ development environments. And these are
precisely the issues that MDA can help them address in a very successful
way.

380

ACKNOWLEDGMENTS

We would like to acknowledge the work of many MDSD, MDA, and
MDWE experts who have been involved in investigating and addressing the
problems of model-Web Engineering. Although the views in this chapter are
the authors’ solely responsibility, they could not have been formulated
without the many long and clarifying discussions with these experts. In
particular, we would like to thank Nora Koch, Jaime Gómez, Vicente
Pelechano, Piero Fraternali, Oscar Pastor, Daniel Schwabe, Gustavo Rossi,
Geert-Jan Houben, Joaquin Miller, Jean Bézivin, Alfonso Pierantonio, Bryan
Wood, and many others too numerous to be named here. We would also like
to thank both the organizers and the participants of the past editions of the
Model-Driven Web Engineering (MDWE) workshop at the last ICWE
conferences, where some of the issues presented here were originally raised
and discussed.

This work has been supported by Spanish Projects TIN2005-25886-E and
TIN2005-09405-C02-01.

REFERENCES

Abouzahra, A., Bézivin, J., Del Fabro, M.D., and Jouault, F., 2005, A practical approach to
bridging domain specific languages with UML profiles. Proceedings Best Practices for
Model Driven Software Development (OOPSLA’05), San Diego, CA.

Atkinson, C., Kühne, T., and Henderson-Sellers, B., 2003, Systematic stereotype usage.
Software and Systems Modelling, 2(3): 153–163.

Baresi, L., Colazzo, S., Mainetti, L., and Morasca, S., 2006a, Model-based Web application
development. In Web Engineering, Springer, Heidelberg, pp. 303–334.

Baresi, L., Colazzo, S., Mainetti, L., and Morasca, S., 2006b, W2000: A modelling notation
for complex Web applications. In Web Engineering: Theory and Practice of Metrics and
Measurement for Web Development, Springer, New York, pp. 335–408.

Bézivin, J., Jouault, F., Rosenthal, P., and Valduriez, P., 2005, Modelling in the large and
modelling in the small. Proceedings European MDA Workshops: Foundations and
Applications (MDAFA 2003 and MDAFA 2004), Springer, LNCS 3599, pp. 33–46.

Bézivin, J., 2005, On the unification power of models. Software and Systems Modelling
(SoSym), 4(2): 171–188.

Cáceres, P., De Castro, V., Vara, J.M., and Marcos, E., 2006, Model transformations for
hypertext modelling on Web information systems. Proceedings ACM/SAC 2006 Track on
Model Transformations (MT2006), Dijon, France, pp. 1256–1261.

Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., and Matera, M., 2002,
Designing Data-Intensive Web Applications, Morgan Kaufmann, San Francisco.

Ceri, S., Daniel, F., Matera, M., and Facca, F., 2007, Model-driven development of context-
aware Web applications. ACM Transactions on Internet Technology (TOIT), 7(1).

Chicchetti, A., Di Ruscio, D., and Pierantonio, A., 2006, Weaving concerns in model-based
development of data-intensive Web applications. Proceedings ACM/SAC 2006 Track on
Model Transformations (MT2006), Dijon, France, pp. 1256–1261.

N. Moreno et al.

12. An Overview of Model-Driven Web Engineering and the MDA 381

De Castro, V., Marcos, E., and López Sanz, M., 2006, A model-driven method for service

composition modelling: A case study. International Journal of Web Engineering and
Technology, 2(4): 335–353.

De Troyer, O., and Leune, C.J., 1998, WSDM: A user centered design method for Web sites.
Proceedings 7th International Conference on World Wide Web, Amsterdam, Elsevier
Science Publishers B.V., pp. 85–94.

Di Ruscio, D., Muccini, H., and Pierantonio, A., 2004, A data modelling approach to Web
application synthesis. International Journal of Web Engineering and Technology, 1(3):
320–337.

Frasincar, F., Houben, G., and Vdovjak, R., 2001, An RMM-based methodology for
hypermedia presentation design. Proceedings 5th East European Conference on
Advances in Databases and Information Systems (ADBIS ‘01), London, Springer-Verlag,
pp. 323–337.

Fuentes, L., and Vallecillo, A., 2004, An introduction to UML profiles. UPGRADE, The
European Journal for the Informatics Professional, 5(2): 5–13.

Garzotto, F., Paolini, P., and Schwabe, D., 1993, HDM—A model-based approach to
hypertext application design. ACM Transactions on Information Systems, 11(1): 1–26.

Gómez, J., and Cachero, C., 2003, OO-H Method: Extending UML to Model Web Interfaces,
Idea Group Publishing, Hershey, PA, pp. 144–173.

Greenfield, J., and Short, K., 2004, Software Factories: Assembling Applications with
Patterns, Frameworks, Models & Tools, Wiley, New York.

Henderson-Sellers, B., and González-Pérez, C., 2006, Uses and abuses of the stereotype
mechanism in UML 1.x and 2.0. Proceedings MODELS 2006, Italy.

Jouault, F., and Kurtev, I., 2006a, On the architectural alignment of ATL and QVT.
Proceedings ACM Symposium on Applied Computing, Dijon, France, ACM Press.

Jouault, F., and Kurtev, I., 2006b, Transforming models with ATL. Proceedings Model
Transformations in Practice Workshop at MoDELS 2005, Montego Bay, Jamaica.
Springer, LNCS 3844, pp. 128–138.

Kappel, G., Pröll, B., Reich, S., and Retschitzegger, W., 2006, Web Engineering—The
Discipline of Systematic Development of Web Applications, Wiley, New York.

Koch, N., 2001, Software engineering for adaptive hypermedia systems: Reference model,
modelling techniques and development process. Softwaretechnik—Trends, 21(1).

Koch, N., and Kraus, A., 2003, Towards a common metamodel for the development of Web
applications. Proceedings 3rd International Conference on Web Engineering (ICWE
2003). Springer, LNCS 2722, pp. 497–506.

Koch, N., Kraus, A., Cachero, C., and Meliá, S., 2004, Integration of business processes in
Web applications models. Journal of Web Engineering (JWE), 3(1): 22–49.

Koch, N., Zhang, G., and Escalona, M.J., 2006, Model transformations from requirements to
Web system design. Proceedings 6th International Conference on Web Engineering
(ICWE 2006), Palo Alto, CA, ACM Press, pp. 281–288.

Koch, N., 2006, Transformation techniques in the model-driven development process of
UWE. Proceedings 2nd Model-Driven Web Engineering Workshop (MDWE 2006), Palo
Alto, CA.

Kraus, A., 2007, Model-driven software engineering for Web applications, PhD Thesis.
Institut für Informatik, Ludwig-Maximilians-Universität, Munich.

Lange, D.B., 1994, An object-oriented design method for hypermedia information systems.
Proceedings 27th Annual Hawaii International Conference on System Sciences (HICSS-
27), Maui, IEEE Computer Society, pp. 366–375.

Meliá, S., and Gómez, J., 2006, The WebSA approach: Applying model-driven engineering to
Web applications. Journal of Web Engineering (JWE), 5(2): 121–149.

382

Miller, J., and Mukerji, J., 2003, The MDA Guide. Draft v. 2.0, OMG doc. ab/2003-01-03.
Moreno, N., and Vallecillo, A., 2005a, A model-based approach for integrating third-party

systems with Web applications. Proceedings 5th International Conference on Web
Engineering (ICWE 2005), Springer, LNCS 3579, pp. 441–452.

Moreno, N., Romero, J.R., and Vallecillo, A., 2005b, Incorporating cooperative portlets in
Web application development. Proceedings 1st Model-Driven Web Engineering
Workshop (MDWE 2005), Sydney, Australia, pp. 70–79.

Moreno, N., and Vallecillo, A., 2005c, Modelling interactions between Web applications and
third-party systems. Proceedings IWWOST 2005, Porto, Portugal, pp. 441–452.

Moreno, N., Fraternalli, P., and Vallecillo, A., 2006, A UML 2.0 profile for WebML
modelling. Proceedings 2nd Model-Driven Web Engineering Workshop (MDWE 2006),
Palo Alto, CA.

OMG, 2005a, MOF QVT Final Adopted Specification, OMG doc. ptc/05-11-01.
OMG, 2005b, UML 2.0 Superstructure Specification v. 2.0, OMG doc. formal/05-07-04.
OMG, 2006, OCL 2.0, OMG doc. ptc/06-05-01.
Pastor, O., Gómez, J., Insfran, E., and Pelechano, V., 2001, The OO-Method approach for

information systems modelling: From object-oriented conceptual modelling to automated
programming. Information Systems, 26(7): 507–534.

Pastor, O., Fons, J., Abrahao, S., and Pelechado, V., 2006, Conceptual modelling of Web
applications: The OOWS approach. In Web Engineering, E. Mendes and N. Mosley, eds.,
Springer, New York, pp. 277–302.

Sánchez, J., and García-Molina, J., 2006, A plugin-based language to experiment with model
transformation. Proceedings 9th International Conference MoDELS 2006, Genova, Italy,
Springer, LNCS 4199, pp. 336–350.

Schauerhuber, A., Wimmer, M., and Kapsammer, E., 2006, Bridging existing Web modelling
languages to model-driven engineering: A metamodel for WebML. Proceedings 2nd
Model-Driven Web Engineering Workshop (MDWE 2006), Palo Alto, CA.

Schwabe, D., 2006, Rapid prototyping of Web applications combining domain specific
languages and model driven design. Proceedings 6th International Conference on Web
Engineering (ICWE 2006), Palo Alto, CA, ACM Press.

Schwabe, D., Pontes, R.A., and Moura, I., 1999, OOHDMWeb: An environment for
implementation of hypermedia applications in the WWW. SigWEB Newsletter, 8(2).

Thomas, D., and Heinemeier, D., 2006, Agile Web Development with Rails: A Pragmatic
Guide, 2nd ed., Pragmatic Bookshelf, Raleigh, NC.
Vdovjak, R., Frasincar, F., Houben, G., and Barna, P., 2003, Engineering Semantic Web

information systems in Hera. Journal of Web Engineering (JWE), 2(1–2): 3–26.

N. Moreno et al.

PART III

QUALITY EVALUATION AND
EXPERIMENTAL WEB

ENGINEERING

Chapter 13

HOW TO MEASURE AND EVALUATE WEB
APPLICATIONS IN A CONSISTENT WAY

Luis Olsina, Fernanda Papa, Hernán Molina
GIDIS_Web, Engineering School, Universidad Nacional de La Pampa, Calle 9 y 110, (6360)
General Pico, LP, Argentina, {olsinal,pmfer,hmolina}@ing.unlpam.edu.ar

13.1 INTRODUCTION

A recurrent challenge many software organizations face is to have a clear
establishment of a measurement and evaluation of a conceptual framework
useful for quality assurance processes and programs. While many useful
approaches for and successful practical examples of software measurement
programs exist, the inability to clearly and consistently specify measurement
and evaluation concepts (i.e., the meta-data) could unfortunately hamper the
progress of the software, and Web Engineering as a whole, and could hinder
their widespread adoption.

Software and Web organizations introducing a measurement and
evaluation program—maybe as part of a measurement and analyses process
area and quality assurance strategy (CMMI, 2002)—need to establish a set
of activities and procedures to specify, collect, store, and use trustworthy
measurement and indicator data sets and meta-data. Moreover, to ensure, for
analysis purposes, that measurement and indicator data sets are repeatable
and comparable among different measurement and evaluation projects,
appropriate meta-data of metrics and indicators should be adapted and
recorded.

Therefore, in the present chapter we argue that at least three pillars are
necessary to build, i.e., to design and to implement, a robust and sound
measurement and evaluation program:

386 L. Olsina et al.

1. a process for measurement and evaluation, i.e., the main managerial
and technical activities that might be planned and performed

2. a measurement and evaluation framework that must rely on a sound
conceptual (ontological) base

3. specific model-based methods and techniques in order to carry out the
specific project’s activities

A measurement or evaluation process prescribes or informs a set of main
phases, activities, and their input and output that might be considered.
Usually, it says what to do but not how to do it; that is, it says nothing about
the particular methods and tools in order to perform the specific activities’
descriptions. Regarding measurement and evaluation processes for software,
the International Standard Organization (ISO) published two standards: the
ISO 15939 document issued in 2002 (ISO, 2002), which deals with the
software measurement process, and the ISO 14598-5 issued in 1998 (ISO,
1998), which deals with the process for evaluators in its part 5. On the other
hand, the CMMI (Capability Maturity Model Integration) initiative is also
worthy of mention as another source of knowledge, in which specific
support process areas such as measurement and analyses, decision analyses
and resolution, among others, are specified. The primary aim of these
documents was to reach a consensus about the issued models, processes, and
practices. However, in Olsina and Martin (2004) we observe that very often
a lack of consensus exists about the used terminology among the ISO
standards.

Considering our second statement, we argue that in order to design and
implement a robust measurement and evaluation program, a sound
measurement and evaluation conceptual framework is necessary. Very often
organizations start measurement programs from scratch more than once
because they did not pay too much attention to the way metrics and
indicators should be designed, recorded, and analyzed.

A well-established framework has to be built on a sound conceptual base,
that is, on an ontological base. In fact, an ontology explicitly and formally
specifies the main concepts, properties, relationships, and axioms for a given
domain. In this direction, we have built an explicit specification of
measurement and indicator meta-data, i.e., an ontology for this domain
(Olsina and Martin, 2004). The sources of knowledge for this ontology
stemmed from different software-related ISO standards (ISO, 1999, 2001,
2002) and recognized research articles and books (Briand et al., 2002;
Kitchenham et al., 2001; Zuse, 1998), in addition to our own experience
backed up by previous works on metrics and evaluation processes and
methods (Olsina et al., 1999; Olsina and Rossi, 2002).

However, the metrics and indicators ontology itself is not sufficient to
model a full-fledged measurement and evaluation framework but rather is

13. How to Measure and Evaluate Web Applications in a Consistent way 387

the ground and rationale to building it. In Olsina et al. (2006b), the INCAMI
framework (Olsina et al., 2005) is thoroughly analyzed in the light of its
ontological roots. INCAMI is an organizational purpose-oriented
measurement and evaluation framework that enables consistently saving not
only meta-data of metrics and indicators but also values (data sets) for
concrete real-world measurement and evaluation projects. It is made up of
five main conceptual components, namely: the requirement, measurement,
and evaluation of projects definition; the nonfunctional requirements
definition and specification; the measurement design and execution; the
evaluation design and execution; and the conclusion and recommendation
components. We argue that this framework can be useful for different
qualitative and quantitative evaluation methods and techniques with regard
to the requirements, measurement, and evaluation concepts and definitions
(Olsina et al., 2008).

On the other hand, the growing importance the Web currently plays in
such diverse application domains as business, education, government,
industry, and entertainment have heightened concerns about the quality and
quality of delivered Web applications. It is necessary to have not only robust
development methods to improve the building process (one of the main aims
of this book) but also consistent ways to measure and evaluate intermediate
and final products as well. In this sense measurement and evaluation
methods and tools that are grounded on the quoted conceptual framework are
the third pillar of our proposal.

There are different categories of methods (e.g., inspection, testing,
inquiry, simulation, etc.) and specific types of evaluation methods and
techniques such as the heuristic evaluation technique (Nielsen et al., 2001),
the Web Quality Evaluation Method (WebQEM) (Olsina and Rossi, 2002) as
a concept model-centered evaluation methodology for the inspection
category, to name just a few. We argue that a method or technique is usually
not enough to assess different information needs for diverse evaluation
purposes. In other words, it is true that one size does not fit all needs and
preferences, but an organization might at least adopt a method or technique
in order to know the state of its quality and quality in use for understanding
and improving purposes.

In order to illustrate the above three main points, this chapter is organized
as follows. In Section 13.2 we present an abridged overview of the state-of-
the-art of measurement and evaluation processes as well as a basic process
that is akin to our framework. In Section 13.3 we analyze the main
components of the INCAMI framework regarding the metrics and indicators
ontological base; at the same time, as proof of these concepts, an external
quality model to measure and evaluate the shopping cart component of a
typical e-commerce site is employed. In Section 13.4, using the specific

388

models, procedures, and processes, the WebQEM inspection methodology is
illustrated with regard to the previous case study. Finally, additional
discussions about the flexibility of the framework as well as concluding
remarks are drawn in Section 13.5.

13.2 OVERVIEW OF MEASUREMENT
AND EVALUATION PROCESSES

As previously mentioned, a measurement or evaluation process specifies a
set of main phases, activities, their input and output, and sometimes control
points that might be considered. Usually, a process says what to do but not
how to do it.

For instance, the ISO 14598-5 standard prescribes an evaluation process
to assess software quality which is a generic abstract process customizable
for different evaluation needs; however, it does not prescribe or inform about
specific evaluation methods and tools in order to perform the activities’
descriptions.

On the other hand, it is important to remark that no unique ISO standard
that integrates in one document the measurement and evaluation process as a
whole exists. Instead, there are two separate standards: one for the evaluation
process, issued in 1998 (ISO, 1998), and another for the measurement
process, issued in 2002 (ISO, 2002). Regarding the former, in an
introductory paragraph it says, “The primary purpose of software product
evaluation is to provide quantitative results concerning software product
quality that are comprehensible, acceptable to and can be dependable on by
any interested party”; it continues, “This evaluation process is a generic
abstract process that follows the model defined in ISO/IEC 9126.”

In the ISO 14598-5 standard, the evaluation process comprises the five
activities listed in Figure 13.1 (see ISO, 1998, for a detailed description):

1. establishment of evaluation requirements
2. specification of the evaluation based on the evaluation requirements and on

the product provided by the requester
3. design of the evaluation, which produces an evaluation plan on the basis of

the evaluation specification
4. execution of the evaluation plan, which consists of inspecting, modeling,

measuring, and testing the products and/or its components according to the
evaluation plan

5. conclusion of the evaluation, which consists of the delivery of the
evaluation report

Figure 13.1. The main activities specified in the ISO 14598-5 evaluation process standard.

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 389

The ISO 15939 standard that deals with the measurement process says,
“Software measurement is also a key discipline in evaluating the quality of
software products and the capability of organizational software processes”;
in addition,

Continual improvement requires change within the organization.
Evaluation of change requires measurement. Measurement itself does not
initiate change. Measurement should lead to action, and not be employed
purely to accumulate data. Measurement should have a clearly defined
purpose. . . , This standard defines the activities and tasks necessary to
implement a software measurement process ... each activity is
comprised of one or more tasks. This International Standard does not
specify the details of how to perform the tasks included in the activities.

In this standard two activities (out of four) are considered to be the core
measurement process, namely: plan the measurement process, and perform
the measurement process. These two activities are comprised of the
following tasks (see Figure 13.2 and also ISO, 2002, for a detailed
description):

1. Plan the Measurement Process:

1.1 Characterize organizational unit
1.2 Identify information needs
1.3 Select measures
1.4 Define data collection, analysis, and reporting procedures
1.5 Define criteria for evaluating the information products and the

measurement process
1.6 Review, approve, and provide resources for measurement tasks
1.7 Acquire and deploy supporting technologies

2. Perform the Measurement Process:
2.1 Integrate procedures
2.2 Collect data
2.3 Analyze data and develop information products
2.4 Communicate results

Figure 13.2. The two core measurement processes specified in the ISO 15939
measurement process standard.

Lastly, the CMMI (CMMI, 2002) initiative1 is also worthy of mention.
This initiative specifies support process areas such as measurement and
analyses, among others. It says, “The purpose of measurement and analysis
is to develop and sustain a measurement capability that is used to support
management information needs ,” Figure 13.3 shows the two specific goals

1 There is a related ISO 15504 initiative named SPICE (Software Process Improvement

and Capability dEtermination).

390

for this process area and its specific practices (which can be considered as
activities or specific actions).

1 Align Measurement and Analysis Activities
1.1 Establish measurement objectives
1.2 Specify measures
1.3 Specify data collection and storage procedures
1.4 Specify analysis procedures

2 Provide Measurement Results
2.1 Collect measurement data
2.2 Analyze measurement data
2.3 Store data and results
2.4 Communicate results

Figure 13.3. The two specific goals and related practices for the CMMI Measurement
and Analyses process area.

As the reader could observe in the previous figures, there is in principle no
clear integrated proposal about measurement and evaluation activities even
though both are closely intertwined, as we discuss in our framework later on.
However, a common denominator between activities and tasks outlined in the
previous figures can be observed. For instance, there are the definition and
specification of requirements, e.g., activities 1 and 2 in Figure 13.1 deal with
the establishment and specification of evaluation requirements; tasks 1.1 and
1.2 in Figure 13.2 are about measurement requirements, as is practice 1.1 in
Figure 13.3. There are also design activities, i.e., defining, specifying, or
ultimately planning activities; then, execution or implementation activities of
the designed evaluation or measurement; and lastly, activities about the
conclusion and communication of results.

On the other hand, we have been developing the WebQEM methodology
since the late 1990s (Olsina et al., 1999; Olsina and Rossi, 2002). The
underlying WebQEM process integrates activities for requirements,
measurement, evaluation, and recommendations. Figure 13.5 shows the
evaluation process, including the phases, main activities, input, and output.
This model followed to some extent the ISO’s process model for evaluators
(ISO, 1998). The main activities are grouped into the following four major
technical phases (see Figure 13.4):

1. Nonfunctional Requirements Definition and Specification
2. Measurement and Elementary Evaluation (both Design and Implementation

stages)
3. Global Evaluation (both Design and Implementation stages)
4. Conclusion and Recommendations

Figure 13.4. The four phases underlying the WebQEM methodology and the INCAMI
framework. Note that the specific activities are not listed in the figure.

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 391

Figure 13.5. The basic measurement and evaluation process underlying the WebQEM
methodology. The technical phases, main activities, and their input and output are represented

(it might be assumed that some activities are iterative).

In the next section we thoroughly discuss the measurement and
evaluation framework (the second pillar proposed in Section 13.1) in the
light of its conceptual root and the above measurement and evaluation
process. As an additional remark, in Olsina and Martin (2004) we observed
that very often there is a lack of consensus about the used terminology
among the quoted ISO standards, and some terms used mainly for the
evaluation domain are missing.

13.3 FRAMEWORK FOR MEASURING AND
EVALUATING NONFUNCTIONAL REQUIREMENTS

The proposed INCAMI (Information Need, Concept model, Attribute,
Metric, and Indicator) framework (Molina et al., 2004; Olsina et al., 2005) is
based upon the assumption that for an organization to measure and evaluate
in a purpose-oriented way it must first specify nonfunctional requirements

Quality Requirements
Definition

Metric Definition Elementary
Indicator Definition

Global Indicator
Definition

Measurement
Implementation

Elementary Indicator
Implementation

Global Indicator
Implementation

Requirements
Specification

ISO 9126-1 Quality Models or others

Information Need (User Viewpoint /
Evaluation Purpose / Context Info)

Contextual
Decision
Criteria

Measure
Value

Indicator
Value

D
es

ig
n

 o
f

th
e

Ev
al

ua
tio

n

Measurement and Evaluation Documentation / Conclusion

Partial/Global
Results

Re
co

m
m

en
da

tio
n

Non-functional Requirements Elementary Evaluation Partial/Global Evaluation

Web Product
Descriptions

Ex
ec

ut
io

n
of

th
e

Ev
al

ua
tio

n

Elementary
Indicator
Specification

Web Product
Components

Global
Indicator
Specification

Metric
Specification

D
es

ig
n

 o
f

Re
qu

ire
m

en
ts

392

starting from information needs, then it must design and select the specific
set of useful metrics for measurement purpose, and lastly it must interpret
the metrics values by means of contextual indicators with the aim of
evaluating or estimating the degree to which the stated requirements have
been met and, ultimately, to draw conclusions and give recommendations.

As aforementioned, the conceptual framework is made up of five main
components: the nonfunctional requirements definition and specification; the
measurement design and execution; the evaluation design and execution; the
conclusion and recommendation component; and the project definition itself.
Currently, most of the components are supported by many of the ontological
concepts, properties, and relationships defined in previous works (Olsina and
Martin, 2004). For instance, to the nonfunctional requirements definition
component, concepts such as Information Need, Calculable Concept,
Concept Model, Entity, Entity Category, and Attribute intervene (all these
terms are defined and illustrated in Section 13.3.4.1). Some other concepts
were added to the framework in order to design and implement it as a Web
application (the INCAMI_Tool).

In Sections 13.3.1 to 13.3.3 we give an abridged description of the first
three components listed above. In Section 13.3.4 we thoroughly discuss the
main terms for these components; in addition, each term is illustrated using
as an example the external quality model to assess the shopping cart feature
of the www.amazon.com site.

13.3.1 Information Need, Concept Model, and Attribute

First, for the nonfunctional requirements definition and specification
component, the Information Need to a measurement and evaluation Project
must be agreed upon. Information need is defined as the insight necessary to
manage objectives, goals, risks, and problems. Usually, information needs
come from two organizational project-level sources: goals that decision
makers seek to achieve, or obstacles that hinder reaching the goals; e.g.,
obstacles involve basically risks and problems. The InformationNeed class
(see Figure 13.6) has three properties: the purpose, the user viewpoint, and
the contextDescription. (Note that from the process standpoint, outlined in
the previous section, and particularly for the Nonfunctional Requirements
Definition and Specification phase, we can represent an activity named
Identify Information Needs and in turn tasks such as Establish
measurement/evaluation purpose; Establish the user viewpoint; and Specify
the context of the measurement/evaluation.)

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 393

Additionally, the InformationNeed class has two main relationships with
the CalculableConcept and the EntityCategory classes, respectively. A
calculable concept can be defined as an abstract relationship between
attributes of entities’ categories and information needs; in fact, internal
quality, external quality, cost, etc. are instances of a calculable concept. In
turn, a calculable concept can be represented by a ConceptModel; for
example, ISO 9126-1 specifies quality models for the internal quality,
external quality, and quality in use, respectively.

On the other hand, a common practice is to assess quality by means of the
quantification of lower abstraction concepts such as Attributes of entities’
categories. The attribute term can be defined in brief as a measurable
property of an EntityCategory (e.g., categories of entities of interest to
software and Web Engineering are resource, process, product, service, and
project as a whole). An entity category may have many attributes, though
only some of them may be useful just for a given measurement and
evaluation project’s information needs.

In summary, this component allows the definition and specification of
nonfunctional requirements in a sound and well-established way. It has an
underlying organizational strategy that is purpose-oriented by information
needs and is concept model-centered and evaluator-driven by domain experts
and users.

13.3.2 Metrics and Measurement

Regarding the measurement component, purposeful metrics should be
selected in the process. In general, each attribute can be quantified by one or
more metrics, but in practice just one metric should be selected for each
attribute of the requirements tree, given a specific measurement project.

The Metric concept contains the definition of the selected Measurement
or Calculation Method and the Scale (see Figure 13.8). For instance, the
measurement method is defined as the particular logical sequence of
operations and possible heuristics specified for allowing the realization of a
metric description by a measurement; while the scale is defined as a set of
values with defined properties. Thus, the metric m represents a mapping m:
A->X, where A is an empirical attribute of an entity category (the empirical
world), X is the variable to which categorical or numerical values can be
assigned (the formal world), and the arrow denotes a mapping. In order to
perform this mapping, a sound and precise measurement activity definition is
needed by explicitly specifying the metric’s method and scale. We can apply
an objective or subjective measurement method for Direct Metrics;
conversely, we can perform a calculation method for Indirect Metrics, that
is, when a Formula intervenes.

394

Once the metric has been selected, we can perform (execute or
implement) the measurement process, i.e., the activity that uses a metric
definition in order to produce a measure’s value (see Figure 13.5). The
Measurement class allows the date/time stamp, the information of the owner
in charge of the measurement activity, and the actual or estimated yielded
value to be recorded.

However, since the value of a particular metric will not represent the
elementary requirement’s satisfaction level, we need to define a new
mapping that will produce an elementary indicator value. One fact worthy of
mention is that the selected metrics are useful for a measurement process as
long as the selected indicators are useful for an evaluation process in order to
interpret the stated information need.

13.3.3 Indicators and Evaluation

For the evaluation component, contextual indicators should be selected.
Indicators are ultimately the foundation for the interpretation of information
needs and decision making. There are two types of indicators: elementary
and global indicators (see Figure 13.9).

In Olsina and Martin (2004) the indicator is described as “the defined
calculation method and scale in addition to the model and decision criteria in
order to provide an estimate or evaluation of a calculable concept with
respect to defined information needs.” In particular, we define an elementary
indicator as one that does not depend upon other indicators to evaluate or
estimate a concept at a lower level of abstraction (i.e., for associated
attributes to a concept model). On the other hand, we define a partial or
global indicator as one that is derived from other indicators to evaluate or
estimate a concept at a higher level of abstraction (i.e., for subconcepts and
concepts). Therefore, the elementary indicator represents a new mapping
coming from the interpretation of the metric’s measured value of an attribute
(the formal world) into the new variable to which categorical or numerical
values can be assigned (the new formal world). In order to perform this
mapping, elementary and global model and decision criteria for a specific
user information need should be designed.

Therefore, once we have selected a scoring model, the aggregation
process follows the hierarchical structure defined in the concept model, from
bottom to top. Applying a stepwise aggregation mechanism, we obtain a
global schema; this model lets us compute partial and global indicators in the
execution stage. The global indicator’s value ultimately represents the global
degree of satisfaction in meeting the stated requirements (information need)
for a given purpose and user viewpoint.

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 395

13.3.4 Definition and Exemplification of the INCAMI Terms

In this section (from Sections 13.3.4.1 to 13.3.4.3) we define the main terms
that intervene in the above INCAMI framework’s components, i.e., the
requirement, measurement, and evaluation components. Each one is modeled
by a class diagram (Figures 13.6, 13.8, and 13.9), where many (but not all)
terms in the diagrams come from the metrics and indicators ontology. Note
that for space reasons, we do not define each class attribute and relationships
among classes, as is done in Olsina and Martin (2004).

In addition, for illustration purposes, we use an external quality model
with associated attributes specified to the shopping cart of Web sites. We
have conducted a case study in order to assess the shopping cart feature of
the www.amazon.com site (details of this study will be given in Section
13.4).

13.3.4.1 Requirements Definition and Specification Model

As shown in Figure 13.6, this model includes all the necessary concepts for
the definition and specification of requirements for measurement and
evaluation projects. Nonfunctional requirements are the starting point of the
measurement and evaluation process, so that a requirement project should be
defined.

Definition 13.1. RequirementProject is a project that allows us to specify
nonfunctional requirements for measurement and evaluation activities.

In our example the project name is “ExternalQuality_Amazon_05”; the
description is “requirements for evaluating the external quality for the
shopping cart feature of the www.amazon.com site”; with a starting date
“2005/12/19” and an ending date “2005/12/30” and in charge of “Fernanda
Papa” with the “pmfer@ing.unlpam.edu.ar” contact email.

Next, the information need should be specified. For this study, a basic
information need may be “understand the external quality of the shopping
cart component of a typical e-store, for a general visitor viewpoint, in order
to incorporate the best features in a new e-bookstore development project.”

Definition 13.2. InformationNeed is the insight necessary to manage
objectives, goals, risks, and problems.

In our example the information need is stated by the purpose (i.e., to
understand), the user viewpoint (i.e., a general visitor), in a given context of use
(e.g., bandwidth constraints, among other contextual descriptions). In addition,
an entity category, which is the object under analysis, and the calculable
concept, which is the focus of the information need, must be defined.

Definition 13.3. Entity Category is the object category that is to be
characterized by measuring its attributes.

396

Project
name
description
beginDate
endDate
director
contactInfo

type =
{own,standard,mixture}

Entity
name
description

EntityCategory
name
description
superCategory

1

1..*

-entityCategory 1

1..* belongs_to

Attribute
name
definition
objective

1..*

1..*

-entityCategories 1..*

1..*

asociated_with

RequirementProject

1..*

1..*

-attributes

1..*

1..*

identifies

InformationNeed
purpose
viewpoint
contextDescription 1

1-informationNeed

1

1

satisfies

1

1

-object

1

1

specifies

ConceptModel
name
specification
references
type
constraints

CalculableConcept
name
definition
references

0..*1..* -subConcepts
0..*

subconcept

1..*

1..*

1

1..*

1 combines

1..*

1..*

-concepts1..*

1..*

describes

1..*

1

-foci

1..*

1

described_by

0..* 1

-models

0..* 1represented_by

There are some other classes for design and reuse
purposes, not essential for the conceptual model,
such as AttributeNode and CalculableConceptNode

Figure 13.6. Key terms and relationships that intervene in the INCAMI requirements
component for the definition and specification of nonfunctional requirements.

Definition 13.4. Entity, synonym Object, is a concrete object that belongs
to an entity category.

Therefore, given the entity category (i.e., an e-commerce application, of
which superCategory is a product), a concrete object name that belongs to
this category is the “Amazon’s shopping cart” Web component.

Definition 13.5. CalculableConcept, synonym Measurable Concept in
ISO (2002), defines the abstract relationship between attributes of entity
categories and information needs.

In the example the calculable concept name is “external quality” and its
definition is “the extent to which a product satisfies stated and implied needs
when used under specified conditions” (ISO, 1999). The external quality
concept has subconcepts such as “usability”, “functionality”, “reliability”,
“efficiency”, “portability”, and “maintainability”.

For instance, the “functionality” subconcept is defined in ISO (2001) as
“the capability of the software product to provide functions which meet stated
and implied needs when the software is used under specified conditions”. In
turn, the calculable concept (characteristic) “functionality” is split into five
subconcepts (subcharacteristics): “suitability”, “accuracy”, “interoperability”,
“security”, and “functionality compliance.” Suitability is defined as “the
capability of the software product to provide an appropriate set of functions
for specified tasks and user objectives”; and accuracy as “the capability of the
software product to provide the right or agreed results or effects with the

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 397

needed degree of precision.” See Figure 13.7, where these two subconcepts in
the requirements tree are included as “Function Suitability” and “Function
Accuracy”, respectively (we used the name “function suitability” instead of
“suitability” alone, in order to distinguish it from the name “information
suitability”, which is a subconcept of the Content characteristic).

On the other hand, the calculable concept can be represented by a concept
model.

Definition 13.6. ConceptModel, synonym Factor or Feature Model, is the
set of subconcepts and the relationships between them, which provide the
basis for specifying the concept requirement and its further evaluation or
estimation.

As mentioned earlier, INCAMI is a concept model-centered approach;
the concept model type can be either a standard-based model or an
organization own-defined model, or a mixture of both. The concept model
used in the example is of the “mixture” type that is based mainly on the ISO
external quality model (reference “(ISO, 1999)”), and the specification is
shown in Figure 13.11 (note that the model also shows attributes combined
to the subconcepts).

Definition 13.7. Attribute, synonym Property, Feature, is a measurable
physical or abstract property of an entity category.

Note that the selected attributes are those properties relevant to the
agreed-upon information need. The abridged representation in Figure 13.7
shows attribute names such as “Capability to delete items” (2.1.2) and
“Precision to recalculate after deleting items” (2.2.2), among others.

2. Functionality

2.1. Function Suitability
2.1.1. Capability to add items from anywhere
2.1.2. Capability to delete items
2.1.3. Capability to modify an item quantity
2.1.4. Capability to show totals by performed changes
2.1.5. Capability to save items for later/move to cart

2.2. Function Accuracy
2.2.1. Precision to recalculate after adding an item
2.2.2. Precision to recalculate after deleting items
2.2.3. Precision to recalculate after modifying an item quantity

Figure 13.7. An excerpt (taken from Figure 13.11) of an instance of the external quality
model with associated attributes specified for measurement and evaluation of the shopping

cart component; for instance, the 2.1 and 2.2 codes represent specific calculable concepts and
subconcepts; and the rest (in italic) are associated attributes to the above subconcepts. The

model as a whole is depicted as a requirements tree.

For instance, the “Capability to delete items” attribute is defined (see the
field definition in the Attribute class in Figure 13.6) as “the capability of the

398

shopping cart to provide functions in order to delete appropriately items one
by one or to the selected group at once.”

The INCAMI_Tool, which is a prototype tool that supports this
framework, currently implements concept models in the form of
requirements trees. It also allows partially or totally previously edited
requirements trees to be imported for a new project.

13.3.4.2 Measurement Design and Execution Model

The measurement model (see Figure 13.8) includes all the necessary
concepts for the design and implementation of the measurement as a part of
the Measurement and Elementary Evaluation phase shown in Figure 13.4.
First, a measurement project should be defined.

Definition 13.8. MeasurementProject is a project that allows us, starting
from a requirement project, to select the metrics and record the values in a
measurement process.

Once the measurement project has been created, with similar information
as that of a requirement project, the attributes in the requirements tree can be
quantified by direct or indirect metrics.

Consider that for a specific measurement project just one metric should
be selected for each attribute of the concept model. In the INCAMI_Tool,
each metric is selected from a catalogue (Molina et al., 2004).

On the other hand, note that many measurement projects can rely on the
same requirements, for instance, in a longitudinal analysis. In this case the
starting and ending dates should change for each project.

Definition 13.9. Metric2 is the defined measurement or calculation
method and the measurement scale.

Definition 13.10. DirectMetric
of an attribute that does not depend on a metric of any other attribute.

2 The “metric” term is used in ISO (1999, 2001) but not in ISO (2002). Furthermore, ISO

(1999, 2001) uses the terms “direct measure” and “indirect measure” (instead of “direct”
or “indirect metric”), while ISO (2002) uses “base measure” and “derived measure.” In
some cases we could state that they are synonymous terms, but in others such as “metric”,
which is defined in ISO (1999) as “the defined measurement method and the measurement
scale”, there is no term with exact matching meaning in ISO (2002). Furthermore, we
argue that the measure term is not synonymous with the metric term. The measure term is
defined in ISO (1999) (the meaning we adopted) as “the number or category assigned to an
attribute of an entity by making a measurement” or in ISO (2002) as the “variable to which
a value is assigned as the result of measurement” reflects the fact of the measure as the
resulting value or output for the measurement activity (or process). Thus, we argue that the
metric concept represents the specific and explicit definition of the measurement activity.

L. Olsina et al.

, synonym Single, Base Metric, is a metric

13. How to Measure and Evaluate Web Applications in a Consistent way 399

CategoricalScale
allowedValues
allowedValuesDescription

Unit
name
description
acronym

NumericalScale
representation

1

1..*

-unit

1

1..*
expresed_in

MeasurementMethod
type = {objective, subjective}

DirectMetric

1

1

-measurementMethod 1

1
measured_using

SoftwareTool
name
description
version
provider

Method
name
specification
references

0..*

1..* #tools
0..*

1..*

automated_by

Project
(from incami)

scaleType =
{nominal,restricted
ordinal,unrestricted
ordinal,interval,ratio,absolute

type =
{objective,subjective

representation =
{continuous,discrete}

Function
specification

CalculationMethod

Measure
measureValue
type = {actual,estimated}

Scale
scaleType
valueType

Attribute
(from requirements)

IndirectMetric
11

-function
11

specified_by

1

1

-calculationMethod1

1

calculated_using

Measurement
date_timestamp
dataCollectorName
collectorContactInformation

1

1

-measure
1

1
produces

RequirementProject
(from requirements)

Metric
name
valueInterpretation
objective
references
accuracy

11

#scale

11 contains

1

1..*

#quantifiedAttribute 1

1..*
quantifies

2..n

0..*

-relatedMetrics
2..n

0..*

related_metric

1

0..*

-metric 1

0..*

refers_to

Entity
(from requirements)

0..*
1 -measurements

0..*
1

generates

MeasurementProject

1

0..*

-incaProject
1

0..*

based_on

1..*
1..*

-metrics

1..*
1..*

1..*

1

-entities 1..*

1
identifies

Figure 13.8. Key terms and relationships that intervene in the INCAMI measurement

component for the definition of metric and measurement concepts.

For example, to the “Capability to delete items” attribute (coded 2.1.2 in
Figure 13.7) we designed a direct metric named “Degree of the capability to
delete items” that specifies four categories, namely:

0. Does not delete items at all
1. Delete just all at once
2. Delete one by one
3. Delete one by one or delete the selected group at once

Definition 13.11. IndirectMetric, synonym Hybrid, Derived Metric, is a
metric of an attribute that is derived from the metrics of one or more other
attributes.

400

Definition 13.12. Function, synonym Formula, Algorithm, Equation, is
an algorithm or formula performed to combine two or more metrics.

There are two key terms in Definition 13.9: Method and Scale. For the
latter, two types of scales have been identified: Categorical and Numerical
Scales:

Definition 13.13. Scale is a set of values with defined properties.
The type of scales (scaletype attribute in the Scale class in Figure 13.8)

depends on the nature of the relationship between values of the scale. The
types of scales commonly used in software and Web Engineering are
classified into nominal, ordinal (both restricted and unrestricted), interval
(and quasi-interval), ratio, and absolute. The scale type3 of measured and
calculated values affects the sort of arithmetical and statistical operations
that can be applied to values, as well as the admissible transformations
among metrics.

Definition 13.14. CategoricalScale is a scale where the measured or
calculated values are categories and cannot be expressed in units, in a strict
sense.

Definition 13.15. NumericalScale is a scale where the measured or
calculated values are numbers that can be expressed in units, in a strict sense.

Definition 13.16. Unit is a particular quantity defined and adopted by
convention, with which other quantities of the same kind are compared in
order to express their magnitude relative to that quantity.

The scale type of the above direct metric (see the example in Definition
13.10) is “ordinal” represented by a categorical scale with a “symbol” value
type. The allowedValues for the ordinal categories are from 0 to 3, and the
allowedValuesDescription are the names of the categories such as “Delete
just all at once.” Note that because the type of the scale is ordinal, a mapping
of categories to numbers can be made, whereas the order is preserved.

As stated earlier, two key terms appear in the metric definition: method
and scale. In the sequel, the method-related terms are defined.

Definition 13.17. Method, synonym Procedure, is a logical sequence of
operations and possible heuristics, specified generically, for allowing the
realization of an activity description.

Definition 13.18. SoftwareTool, synonym Software Instrument, is a tool
that partially or totally automates a measurement or calculation method.

For example, the INCAMI_Tool, the current prototype tool that supports
the WebQEM methodology, allows us to calculate indirect metrics (from
direct metrics and parameters) in addition to calculating elementary and
global indicators from elementary and global models. A previous tool for
WebQEM was the WebQEM_Tool (Olsina et al., 2001). Different

3 See a deeper discussion about type of scales in Chapter 14, Section 14.2.

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 401

commercial tools for data collection of direct metrics are widely well known
and available for download.

Definition 13.19. MeasurementMethod, synonym Counting Rule,
Protocol, is the particular logical sequence of operations and possible
heuristics specified for allowing the realization of a metric description by a
measurement.

To the exemplified direct metric (see the example in Definition 13.10),
the counting rule was clearly specified as well as the measurement method
type. The type of method can be either “subjective” i.e., where the
quantification involves human judgment, or “objective” i.e., where the
quantification is based on numerical rules. Generally, an objective
measurement method type can be automated or semiautomated by a software
tool. Nevertheless, for our example of a direct metric, even though the type
is objective, no tool can automate the collection of data, and so a human
must perform the task.

Definition 13.20. CalculationMethod is the particular logical sequences
of operations specified for allowing the realization of a formula or indicator
description by a calculation.

Definition 13.21. Measurement is an activity that uses a metric definition
in order to produce a measure’s value.

Definition 13.22. Measure is the number or category assigned to an
attribute of an entity by making a measurement.

A measurement activity must be performed for each metric that
intervenes in the project. It allows the date/time stamp, the collector
information in charge of the measurement activity, and the measure, the
“actual” or “estimated” value type, and the yielded value itself to be
recorded.

Ultimately, for a specific measurement project, at least all the above
concepts and definitions of the measurement model are necessary in order to
specify, collect, store, and use trustworthy metrics’ values and meta-data.

13.3.4.3 Evaluation Design and Execution Model

As introduced in Section 13.3.2, the value of a particular metric will not
represent the elementary requirement’s satisfaction level. Thus, we need to
define a new mapping that will produce an elementary indicator value.

As aforementioned, the selected metrics are useful for designing and
performing the measurement process as long as the selected indicators are
useful for designing and executing the evaluation process for the stated
information need, which is represented specifically in the concept model.
The main concepts involved in the elementary and global evaluation are
depicted in the model in Figure 13.9.

402

Definition 13.23. EvaluationProject is a project that allows us, starting
from a measurement project and a concept model of a requirement project, to
select the indicators and perform the calculations in an evaluation process.

Project
(from INCAMI)

Metric
(from Measurement)

ElementaryIndicator1 1
-metric

1 1
interprets

Range
name
description
upper_threshold
lower_threshold

ElementaryModel
name
specification

1

1

-elementaryModel 1

1

modeled_by

DecisionCriteria

1..*

1

-ranges 1..*

1

has 1

1..*

-decisionCriteria

1

1..*

has

GlobalModel
name
specification
weighted
parameters []
operators []

1 1..*
-decisionCriteria

1 1..*has

Scale
(from Measurement)

CalculationMethod
(from Measurement)

GlobalIndicator
operator
parameters_values[]

1

1..*

-globalModel 1

1..*
modeled_by

ConceptModel
(from Requirements)

MeasurementProject
(from Measurement)

Indicator
name
weight
accuracy
references []

1
1

1
1

contains

1 11 1
includes

1..*

1

-relatedIndicators
1..*

1

related_indicators11
evaluates/estimates

IndicatorValue
value
type = {actual,estimated}

EvaluationProject

1

1

-measurementProject

1

1

based_on

0..*

1..*

-indicators 0..*

1..*

defines

Calculation
date_timeStamp
responsibleName

0..*

1

0..*

1

implements

1 0..*
-indicator
1 0..*

related_to

1

1

1

1

produces

Entity
(from Requirements)

0..*

1 -evaluatedEntities

0..*

1

identifies

0..*

1

0..*

1

quantified_by

Figure 13.9. Key terms and relationships that intervene in the INCAMI.evaluation component
for the definition of indicators and related concepts.

Once a measurement project has been created, one or more evaluation
projects can in turn be created, relying on the recorded measurement values
and meta-data, by adding related information with indicators.

Definition 13.24. Indicator, synonym Criterion, is the defined calculation
method and scale in addition to the model and decision criteria in order to
provide an estimate or evaluation of a calculable concept with respect to
defined information needs.

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 403

Definition 13.25. ElementaryIndicator, synonym Elementary Preference,
Elementary Criterion, is an indicator that does not depend upon other
indicators to evaluate or estimate a calculable concept.

Therefore, an elementary indicator for each attribute of the concept
model, i.e., for each leaf of the requirements tree, can be defined. For
instance, to the 2.1.2 attribute of Figure 13.7, the name of the elementary
indicator is “Performance Level of the Capability to Delete Items”
(CDI_PL).

The elementary indicator interprets the metric’s value of the attribute. To
this end, an elementary model is needed.

Definition 13.26. ElementaryModel, synonym Elementary Criterion
Function, is an algorithm or function with associated decision criteria that
model an elementary indicator.

The specification of the elementary model can look like this: CDI _PL =
(0.33 * CDI) * 100; where CDI is the direct metric for the Capability to
Delete Items attribute (see Definition 13.10).

Note that, like a metric, an indicator has a Scale (see Definition 13.13).
To the above example we considered a numerical scale where the Unit (see
Definition 13.16) can be a normalized “percentage” scale. As mentioned, the
elementary indicator interprets the metric’s value of an attribute (an attribute
as an elementary requirement). Then, the above elementary model interprets
the percentage of the satisfied elementary requirement.

Definition 13.27. DecisionCriteria, synonym Acceptability Levels, are
the thresholds, targets, or patterns used to determine the need for action or
further investigation, or to describe the level of confidence in a given result.

Definition 13.28. Range is the threshold or limit values that determine
the acceptability levels.

The decision criteria that a model of an indicator may have are the
agreed-upon acceptability levels in given ranges of the scale; for instance, it
is “unsatisfactory” if the range (regarding lower_threshold and
upper_threshold) is “0 to 45”, respectively; “marginal” if it is “greater than
45 and less or equal than 70”; otherwise, “satisfactory.” A description or
interpretation for “marginal” is that a score within this range indicates a need
for improvement. An “unsatisfactory” rating means change actions must take
high priority.

Definition 13.29. GlobalIndicator, synonym Global Preference, Global
Criterion, is an indicator derived from other indicators to evaluate or
estimate a calculable concept.

Definition 13.30. GlobalModel, synonym Aggregation Model, Scoring
Model, or Function, is an algorithm or function with associated decision
criteria that model a global indicator.

404

In order to enact the concept model (see Definition 13.6) for elementary,
partial, and global indicators, an aggregation model and decision criteria
must be selected. The quantitative aggregation and scoring models aim at
making the evaluation process well structured, objective, and
comprehensible to evaluators. For example, if our procedure is based on a
“linear additive scoring model,” the aggregation and computing of
partial/global indicators (P/GI), considering relatives weights (W), is based
on the following specification:

P/GI = (W1 EI1 + W2 EI2+ ... + Wm EIm); (13.1)

such that if the elementary indicator (EI) is in the percentage scale and unit,
the following holds:

0 ≤ EIi ≤ 100;

and the sum of weights for an aggregation block must fulfill

(W1 + W2 + ... + Wm) = 1

if Wi > 0; for i = 1, . . ., m, where m is the number of subconcepts at the same
level in the tree’s aggregation block (see Figure 13.11).

The basic arithmetic aggregation operator for input in Eq. (13.1) is the plus
(+) connector. Besides, this model lets us compute partial and global
indicators in the execution stage. Other nonlinear aggregation models or
functions can be used such as logic scoring of preference (Dujmovic, 1996),
fuzzy model, and neural models, among others.

Definition 13.31. Calculation, synonym Computation, is an activity that
uses an indicator definition in order to produce an indicator’s value.

Definition 13.32. Indicator Value, synonym Preference Value, is the
number or category assigned to a calculable concept by making a
calculation.

As a final remark, for a specific evaluation project, all the above concepts
and definitions of the evaluation model are necessary in order to specify,
calculate, store, and use trustworthy indicator values and meta-data. When
the execution of the measurement and evaluation activities for a given
project has been performed, decision makers can analyze the results and
draw conclusions and recommendations with regard to the established
information need. Ultimately, we argue that this framework can be useful for
different qualitative and quantitative evaluation methods and techniques with
regard to the requirements, measurement, and evaluation concepts and
definitions discussed previously.

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 405

13.4 ASSESSING WEB QUALITY USING WEBQEM:

A CASE STUDY

In Section 13.1, we stated that in order to build a robust and clear
measurement and evaluation program, at least three pillars are necessary,
namely (1) a process for measurement and evaluation, which is outlined in
Section 13.2, (2) a measurement and evaluation framework based on an
ontological base, which is analyzed in Section 13.3, and (3) specific model-
based methods and techniques in order to perform the specific program or
project’s activities, which are the aim of this section.

While a measurement or evaluation process specifies what to do (i.e., a
clear specification of activities’ descriptions, input and output, etc.), a
method specifies how to do and perform such activities’ descriptions relying
on specific models and criteria.

As mentioned, there are different categories of methods (for example,
categories for inspection, testing, inquiry, simulation, etc.) and specific types
of evaluation methods and techniques such as the heuristic evaluation
technique, analyses of log files, or concept model-centered evaluation
methods, among many others.

In this section we present the Web Quality Evaluation Methodology
(WebQEM) (Olsina and Rossi, 2002) as a model-centered evaluation
methodology for the inspection category, that is, inspection of concepts,
subconcepts, and attributes stemming from a quality or quality-in-use
requirement model, among others. In addition, WebQEM relies on the metric
and indicator concepts for measurement and evaluation in order to draw
conclusions and give recommendations. We have been developing the
WebQEM methodology since the late 1990s. It has been used to evaluate
Web sites in several domains, as documented elsewhere (Olsina et al., 1999,
2000, 2006a), in addition to evaluating some industrial Web sites.

In order to illustrate WebQEM and its applicability, we conducted an e-
business case study by evaluating the external quality of the shopping cart
feature of the Amazon Web site, taking into account a general visitor
standpoint. Note that users are redirected to the Amazon Web site
(www.amazon.com) from the IMDb, the Internet Movie Database Web site
(www.imdb.com), when trying to buy a DVD.

13.4.1 External Quality Requirements Specification

Many potential attributes, both general and domain-specific, can contribute
to the Web’s external quality. However, as mentioned earlier, evaluation
must be organizational, purpose-oriented for an identified information need.
Let us establish that the purpose in the present study is to understand the

406

external quality of the shopping cart component of a typical e-store, for a
general visitor viewpoint, in order to incorporate the best features in a new e-
bookstore development project. For this aim, a successful international site
such as Amazon was chosen. On the other hand, recall that the ISO 9126-1
standard models the software quality from three related approaches, which
can be summarized as follows:

• Internal quality, which is specified by a quality model (ISO, 2001;

prescribing a set of six characteristics and a set of subcharacteristics for
each characteristic) and can be measured and evaluated by static
attributes of documents such as specification of requirements,
architecture, or design; pieces of source code, and so forth. In the early
phases of a software or Web life cycle, we can evaluate and control the
internal quality of these early products, but assuring internal quality is not
usually sufficient to assure external quality.

• External quality, which is specified by a quality model (likewise as in the
previous cited model) and can be measured and evaluated by dynamic
properties of the running code in a computer system, i.e., when the
module or full application is executed in a computer or network
simulating the actual environment as closely as possible. In the late
phases of a software life cycle (mainly in different kinds of testing, or
even in the acceptance testing, or furthermore in the operational state of a
software or Web application), we can measure, evaluate, and control the
external quality of these late products, but assuring external quality is
usually not sufficient to assure quality in use.

• Quality in use, which is specified by a quality model (ISO, 2001;
prescribing a set of four characteristics) and can be measured and
evaluated by the extent to which the software or Web application meets a
specific user’s needs in an actual, specific context of use.

A point worthy of mention is the important difference between measuring
and evaluating external quality and quality in use; see Olsina et al. (2006a)
for an in-depth discussion on Web quality and these ISO models. The former
generally involves no real users but rather experts, as long as the latter
always involves real end users. The advantage of using expert evaluation
without extensive user involvement is minimizing costs and time, among
other features. Deciding whether or not to involve end users should be
carefully planned and justified. On the other hand, without the end user’s
participation, it is unthinkable to conduct a task testing in a real context of
use for quality-in-use evaluation. Nielsen et al. (2001) indicate that it is
common for three to five subjects in the testing process for a given audience
to produce meaningful results that minimize costs; however, they
recommend running as many small tests as possible.

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 407

Figure 13.10. A screenshot of Amazon’s shopping cart page with several attributes highlighted.

Considering the present study, Figure 13.10 shows a screenshot of
Amazon’s shopping cart page with several highlighted attributes, which
intervene in the quality requirements tree of Figure 13.11.

To the external quality requirements definition, we considered 4 main
characteristics: Usability (1), Functionality (2), Content (3), and Reliability
(4), and 32 attributes related to them (see Figure 13.11). For instance, the
Usability characteristic splits into subcharacteristics such as Understandability
(1.1), Learnability (1.2), Operability (1.3), and Attractiveness (1.4).

Instead of previous quoted case studies, we now consider two separate
characteristics: Functionality and Content. The Functionality characteristic
splits into Function Suitability (2.1) and Accuracy (2.2), while the Content
characteristic splits into Information Suitability (3.1) and Content
Accessibility (3.2). As the reader can observe in Figure 13.11, we relate five
measurable attributes to the Function Suitability subcharacteristic and three
to Function Accuracy. In the latter subcharacteristic, we mainly consider
precision attributes to recalculate values after making supported operations.
On the other hand, in Olsina et al. (2006a) we also justified the inclusion of
the Content characteristic for assessing the Web.

The following categories can help to evaluate information quality
requirements of Web sites and applications (see also Lee et al., 2002):

408

1. Usability

1.1. Understandability
1.1.1. Shopping cart icon/label ease to be recognized
1.1.2. Shopping cart labeling appropriateness

1.2. Learnability
1.2.1. Shopping cart help (for first-time visitor)

1.3. Operability
1.3.1. Shopping cart control permanence
1.3.2. Shopping cart control stability
1.3.3. Steady behavior of the shopping cart control
1.3.4. Steady behavior of other related controls

1.4. Attractiveness
1.4.1. Color style uniformity (links, text, etc.)
1.4.2. Aesthetic perception

2. Functionality
2.1. Function Suitability

2.1.1. Capability to add items from anywhere
2.1.2. Capability to delete items
2.1.3. Capability to modify an item quantity
2.1.4. Capability to show totals by performed changes
2.1.5. Capability to save items for later/move to cart

2.2. Function Accuracy
2.2.1. Precision to recalculate after adding an item
2.2.2. Precision to recalculate after deleting items
2.2.3. Precision to recalculate after modifying an item quantity

3. Content
3.1. Information Suitability

3.1.1. Shopping Cart Basic Information
3.1.1.1. Line item information completeness
3.1.1.2. Product description appropriateness

3.1.2. Shopping Cart Contextual Information
3.1.2.1. Purchase Policies Related Information

3.1.2.1.1. Shipping and handling costs information completeness
3.1.2.1.2. Applicable taxes information completeness
3.1.2.1.3. Return policy information completeness

3.1.2.2. Continue-buying feedback appropriateness
3.1.2.3. Proceed-to-check-out feedback appropriateness

3.2. Content Accessibility
3.2.1. Readability by Deactivating the Browser Image Feature

3.2.1.1. Image title availability
3.2.1.2. Image title readability

3.2.2. Support for text-only version
4. Reliability

4.1. Nondeficiency (Maturity)
4.1.1. Link Errors or Drawbacks

4.1.1.1. Broken links
4.1.1.2. Invalid links
4.1.1.3. Reflective links

4.1.2. Miscellaneous Deficiencies
4.1.2.1. Deficiencies or unexpected results dependent on browsers
4.1.2.2. Deficiencies or unexpected results independent of browsers

Figure 13.11. Specifying the external quality requirements tree to the shopping cart
component from a general visitor standpoint.

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 409

• Information accuracy. This subcharacteristic addresses the very intrinsic

nature of the information’s quality. It assumes that information has its
own quality per se. Accuracy is the extent to which information is
correct, unambiguous, authoritative (reputable), objective, and verifiable.
If a Web site becomes famous for inaccurate information, the Web site
will likely be perceived as having little added value and will result in
reduced visits.

• Information suitability. This subcharacteristic addresses the contextual
nature of the information quality. It emphasizes the importance of
conveying the appropriate information for user-oriented goals and tasks.
In other words, it highlights the quality requirement that contents must be
considered within the context of use and the intended audience.
Therefore, suitability is the extent to which information is appropriate
(appropriate coverage for the target audience), complete (relevant
amount), concise (shorter is better), and current (see the specified
attributes in Figure 13.11).

• Accessibility. It emphasizes the importance of technical aspects of Web
sites and applications in order to make Web contents more accessible for
users with various disabilities (see the specified attributes in Figure
13.11).

• Legal compliance. The capability of the information product to adhere
to standards, conventions, and legal norms related to contents and
intellectual property rights.

The INCAMI_Tool records all the information for a measurement and
evaluation project. Besides the data in the project itself, it also saves to the
InformationNeed class (see Figure 13.6) the purpose, user viewpoint, and
context description meta-data; for the CalculabeConcept and Attribute
classes, it saves all the names and definitions, respectively.

The ConceptModel class permits us to instantiate a specific model, that
is, the external quality model in our case, allowing evaluators to edit and
relate specific concepts, subconcepts, and attributes (the whole instantiated
model looks like that in Figure 13.11, and an INCAMI_Tool screenshot of it
appears in Figure 13.12).

13.4.2 Designing and Executing the Measurement
and Elementary Evaluation

As mentioned in Section 13.2, the evaluators should design, for each
measurable attribute of the instantiated external quality model, the basis for the
measurement and elementary evaluation process by defining each specific
metric and elementary indicator for the information needed accordingly.

410

L. Olsina et al.

Figure 13.12. INCAMI_Tool screenshot to the instantiated concept model. Attributes are
labeled with “A” on the left side of the tree; concepts and subconcepts with “C.” In addition,

“+C” and “+A” mean adding concepts or attributes, respectively, and “-” removing them.

In the design phase we record all the information for the selected metrics
and elementary indicators regarding the conceptual schema of the Metric and
Elementary Indicator classes shown in Figures 13.8 and 13.9, respectively.
In addition, in Sections 13.4.2 and 13.4.3 the metric and indicator meta-data
for the “Capability to delete items” attribute were illustrated. Finally, Figure
13.13 shows the name of the attributes and the name of each metric that
quantifies them. Note that we can assign a metric for a given attribute by
selecting it from the semantic catalogue (Molina et al., 2004); see the
“Assign Metric” link in the figure.

Lastly, in the execution phase, we record for the Measurement and
Calculation classes’ instances the yielded final values for each metric and
indicator. The data collection for the measurement activity was performed
from December 19 to 30, 2005. From the metrics’ values, the elementary
indicators’ values were calculated according to the respective elementary
models.

13. How to Measure and Evaluate Web Applications in a Consistent way 411

Figure 13.13. INCAMI_Tool screenshot of the metric selection process.

Figure 13.14 shows the selection process of a measurement value from a
specific measurement project, which will be the input to the respective
elementary indicator function in order to produce the indicator value (recall
that for the same measurement project we can record measurement values at
different times).

Once evaluators have designed and implemented the elementary
evaluation, they should consider not only each attribute’s relative importance
but also whether the attribute (or subcharacteristic) is mandatory, alternative,
or neutral. For this global evaluation task, we need a robust aggregation and
scoring model, described next.

13.4.3 Designing and Executing the Partial/Global
Evaluation

In the design of the global evaluation phase we select and apply an
aggregation and scoring model (see GlobalModel class in Figure 13.9).
Arithmetic or logic operators will then relate the hierarchically grouped
attributes, subconcepts, and concepts accordingly.

412

As mentioned earlier (see Definition 13.30), the INCAMI_Tool supports
a linear additive or a nonlinear multicriteria scoring model (even other
models can be used for designing the global evaluation such as fuzzy logic
or neural networks not supported currently by the tool). We cannot use the
additive scoring model to model input simultaneity (an and relationship
among inputs) or replaceability (an or relationship), however, because it
cannot express, for example, simultaneous satisfaction of several
requirements as input. Additivity assumes that the insufficient presence of a
specific attribute (in an input) can always be compensated for by the
sufficient presence of any other attribute. Furthermore, additive models
cannot model mandatory requirements; that is, a necessary attribute’s or
subcharacteristic’s total absence cannot be compensated for by another’s
presence.

A nonlinear multicriteria scoring model lets us deal with simultaneity,
neutrality, replaceability, and other input relationships using aggregation
operators based on the weighted-power-means mathematical model. This
model, called Logic Scoring of Preference (LSP) (Dujmovic, 1996), is a
generalization of the additive scoring model and can be expressed as
follows:

P/GI(r) = (W1 EIr
1 + W2 EIr

2 + ... + Wm EIr
m)1/r, (13.2)

L. Olsina et al.

Figure 13.14. INCAMI_Tool screenshot of the selection process of a measure value
for a given elementary indicator.

13. How to Measure and Evaluate Web Applications in a Consistent way 413

The power r is a parameter selected to achieve the desired logical
relationship and polarization intensity of the aggregation function. If P/GI(r)
is closer to the minimum, such a criterion specifies the requirement for input
simultaneity. If it is closer to the maximum, it specifies the requirement for
input replaceability. Equation (13.2) is additive when r = 1, which models
the neutrality relationship; that is, the formula remains the same as in the
first additive model. Equation (13.2) is supra-additive for r > 1, which
models input disjunction or replaceability, and it’s sub-additive for r < 1
(with r! = 0), which models input conjunction or simultaneity.

For our case study (as in previous ones), we selected this last model and
used a 17-level approach of conjunction–disjunction operators, as defined by
Dujmovic. Each operator in the model corresponds to a particular value of
the r parameter. When r = 1, the operator is tagged with A (or the + sign).
The C conjunctive operators range from weak (C–) to strong (C+) quasi-
conjunction functions, i.e., from decreasing r values, starting from r < 1.

In general, the conjunctive operators imply that low-quality input
indicators can never be well compensated for by a high quality of some other
input to output a high-quality indicator (in other words, a chain is as strong
as its weakest link). Conversely, disjunctive operators (D operators) imply
that low-quality input indicators can always be compensated for by the high
quality of some other input.

Designing the LSP aggregation schema requires answering the following
key basic questions (which are part of the Global Indicator Definition task in
Figure 13.5):
• What is the relationship among this group of related attributes and

subconcepts: conjunctive, disjunctive, or neutral [for instance, when
modeling the attributes’ relationship for the Function Suitability (2.1)
subcharacteristic, we can agree they are neutral or independent of each
other]?

• What is the level of intensity of the logic operator, from a weak to strong
conjunctive or disjunctive polarization?

• What is the relative importance or weight of each element in the
aggregation block or group?

Figure 13.15 shows some details of the enacted requirements tree for
amazon.com as generated by our tool. Particularly, in the top part of Figure
13.15 we can see LSP operators, weights, and final values for elementary,
partial, and global indicators; the bottom part shows only the indicator
values and the respective colored bars in a percentage scale.

where
–∞ ≤ r ≤ +∞ ; P/GI (–∞) = min (EI1 , EI2 , ... , EIm),

P/GI (+∞) = max (EI1 , EI2, ... , EIm).

414

Figure 13.15. Once the weights and operators (in this case for the LSP aggregation model)
were agreed on, the INCAMI_Tool yields elementary partial and global indicators in the
execution phase, as highlighted in the figures. The top figure shows details of weights and

operators, while the bottom figure shows just indicator values and the respective colored bars
in the percentage scale.

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 415

13.4.4 Analyzing and Recommending

Once we have performed the final execution of the evaluation, decision
makers can analyze the results and draw conclusions and recommendations.
As stated in Section 13.4.1, we established (for illustration reasons) that the
purpose in this study is to understand the external quality of the shopping
cart component of a typical e-store, for a general visitor viewpoint in order
to incorporate the best features in a new e-bookstore development project.
The underlying hypothesis is that at the level of calculable concepts
(characteristics in the ISO 9126 vocabulary) they accomplish at least the
satisfactory acceptability range.

Table 13.1 shows the final results for the Usability, Functionality,
Content, and Reliability characteristics and subcharacteristics, as well as
partial and global indicator values for the amazon.com shopping cart.

Table 13.1. Summary of Partial and Global Indicators’ Values for the Amazon.com Shopping Cart

Code Concept/Subconcept Name Indicator
Value

 External Quality 83.44
1 Usability 88.75
1.1 Understandability 75.00
1.2 Learnability 100.00
1.3 Operability 100.00
1.4 Attractiveness 82.33
2 Functionality 87.61
2.1 Function Suitability 76.40
2.2 Function Accuracy 100.00
3 Content 71.40
3.1 Information Suitability 81.21
3.1.1 Shopping Cart Basic Information 81.70
3.1.2 Shopping Cart Contextual Information 80.47
3.1.2.1 Purchase Policies related Information 77.89
3.2 Content Accessibility 56.79
3.2.1 Readability by Deactivating the Browser Image

Feature
 67.75

4 Reliability 97.16
4.1 Nondeficiency (Maturity) 97.16
4.1.1 Link Errors or Drawbacks 94.35
4.1.2 Miscellaneous Deficiencies 100

The colored quality bars in the bottom part of Figure 13.15 indicate the

acceptability ranges and clearly show the quality level each shopping cart
feature has reached. In fact, the final indicator value to the external quality of

416

the Amazon shopping cart was satisfactory getting a rank of 83.44 [that is a
similar global indicator value for the study made in late 2004 (Olsina et al.,
2006), using the same requirements and criteria, which ranked 84.32%].
Notice that a score within a yellow bar (marginal) indicates a need for
improvement actions. An unsatisfactory rating (red bar) means change
actions must take high priority. A score within a green bar indicates
satisfactory quality of the analyzed feature.

Looking at the Usability, Functionality, Content, and Reliability
characteristics, we can see that the scores fall in the satisfactory level, so that
we can emulate these features in a new development project. However, none
of them is 100%. For instance, if we look at the Functionality characteristic
and particularly at the Function Suitability subconcept, which ranked 76.40,
we can observe that the reason for this score is in part due to the Capability
to Delete Items (2.1.2) attribute, which is not totally suitable (the indicator
value was 66%).

In order to make a thorough causal analysis, we must look at the
elementary indicator and metric specification. Regarding the INCAMI_Tool,
the following elementary indicator model specification (see Definition
13.26) was edited: CDI _PL = (0.33 * CDI) * 100, where CDI is the direct
metric for the Capability to Delete Items attribute.

In the example of Definition 13.10, the scale of the direct metric was
specified in this way:

1. Does not delete items at all.
2. Delete just all at once.
3. Delete one by one.
4. Delete one by one or delete the selected group at once.

Thus, the resulting indicator value in the execution phase was 66% because
the Amazon shopping cart allows users to delete only one item at once, but
does not allow the selected group to be deleted at once.

Ultimately, we observe that the state-of-the-art of the shopping cart quality
of this typical site is rather high, but the wish list is not empty, because of
some weak-designed attributes. Notice that elementary, partial, and global
indicators reflect results of these specific requirements for this specific
audience and should not be regarded as generalized rankings. Moreover,
results themselves from a case study are seldom intended to be interpreted as
generalizations (in the sense of external validity).

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 417

13.5 DISCUSSION AND FINAL REMARKS

Our experience suggests that it is necessary to select metrics for purpose-
oriented attributes as well as to identify contextual indicators in order to start
and guide a successful measurement and evaluation program. In fact,
organizations must have sound specifications of metric and indicator meta-
data associated consistently to data sets, as well as a clear establishment of
frameworks and programs in order to make measurement and analyses and
quality assurance useful support processes to software and Web development
and maintenance projects. Ultimately, the underlying hypothesis is that
without appropriate recorded meta-data of information needs, attributes,
metrics, and indicators, it is difficult to ensure that measure and indicator
values are repeatable and comparable among an organization’s projects;
consequently, analyses and comparisons can be carried out in an inconsistent
way as well.

Throughout this chapter we have stated that in order to build a robust and
flexible measurement and evaluation program, at least three pillars are
necessary: (1) a process for measurement and evaluation (outlined in Section
13.2); (2) a measurement and evaluation framework based on an ontological
base (analyzed in Section 13.3); and (3) specific model-based methods and
techniques for the realization of measurement and evaluation activities (a
particular inspection method was illustrated in Section 13.4).

As a matter of fact, in the present chapter we have emphasized the
importance of counting with a measurement and evaluation conceptual
framework. The discussed INCAMI framework is based on the assumption
that for an organization to measure and evaluate in a purpose-oriented way,
it must first specify nonfunctional requirements starting from information
needs, then it must design and select the specific set of metrics for
measurement purposes, and last it must interpret the metric values by means
of contextual indicators with the aim of evaluating or estimating the degree
to which the stated information need has been met. Thus, consistent and
traceable analyses, conclusions, and recommendations can be drawn.

Regarding other initiatives, the GQM (Goal-Question-Metrics) paradigm
(Basili and Rombach, 1989) is a useful, simple, purpose-oriented
measurement approach that has been used in different measurement projects
and organizations. However, as Kitchenham et al. pointed out (2001), GQM
is not intended to define metrics at a level of detail suitable to ensure that
they are trustworthy, in particular, whether or not they are repeatable.
Contrary to our approach, which is based on an ontological
conceptualization of metrics and indicators, GQM lacks this conceptual base,
and so it cannot assure that measurement values (and the associated meta-
data like scale, unit, measurement method, and so forth) are trustworthy and
consistent for ulterior analysis among projects.

418

On the other hand, GQM is a weak framework for evaluation purposes,
i.e. GQM lacks specific concepts for evaluation in order to interpret
attributes’ measures. For instance, elementary and global indicators and
related terms are essential for evaluation as shown in the previous sections.
Conversely, GQM is more flexible than INCAMI in the sense that it is not
always necessary to have a concept model specification in order to perform a
measurement project.

In our humble opinion, an interesting improvement to the GQM approach
that considers indicators has recently been issued as a technical note
(Goethert and Fisher, 2003). This approach uses both the Balance Scorecard
technique (Kaplan and Norton, 2001) and the Goal-Question-Indicator-
Measurement method in order to purposely derive the required enterprise
goal-oriented indicators and metrics. It is a robust framework for specifying
enterprise-wide information needs and deriving goals and subgoals and then
operationalizing questions with associated indicators and metrics. It says,
“The questions provide concrete examples that can lead to statements that
identify the type of information needed. From these questions, displays or
indicators are postulated that provide answers and help link the measurement
data that will be collected to the measurement goals” (Goethert and Fisher,
2003). However, this approach is not based on a sound ontological
conceptualization of metrics and indicators as ours; furthermore, the terms
“measure” and “indicator” are sometimes used ambiguously, which can
result in data sets and meta-data being recorded inconsistently.

On the other hand, there exist other close initiatives to our research, such
as the Kitchenham et al. (2001) conceptual framework as well as the cited
ISO standards related to software measurement and evaluation processes. In
summary, we tried to strengthen these contributions not only from the
conceptual modeling point of view, but also from the ontological point of
view, including a broader set of concepts.

Lastly, we argue that the INCAMI framework can be a useful conceptual
base and approach for different qualitative and quantitative evaluation
methods and techniques with regard to the requirement, measurement, and
evaluation concepts and definitions analyzed in Section 13.3. Apart from
inspection or feature analyses methods (like WebQEM), this framework can
be employed for some other methods, such as neural networks and fuzzy
logic, when they are intended to measure and evaluate quality, quality in use,
and cost, among other calculable concepts.

Finally, due to the importance of managing the acquired enterprise-wide
contextual knowledge during measurement and evaluation and during
quality assurance projects, a semantic infrastructure that embraces contextual
information and organizational memory management is currently being
considered in the INCAMI framework. This will be integrated to the

L. Olsina et al.

13. How to Measure and Evaluate Web Applications in a Consistent way 419

INCAMI_Tool and framework, also making sure that ontologies and the
Semantic Web are enabling technologies for our previous (Molina et al.,
2004) and current research aims as well.

ACKNOWLEDGEMENTS

This research is supported by Argentina’s UNLPam-09/F037 project, as well
as the PICTO 11-30300 and PAV 127-5 research projects.

REFERENCES

Basili, V., and Rombach, H.D., 1989, The TAME project: Towards improvement-
oriented software environments. IEEE Transactions on Software Engineering,
14(6): 758–773.

Briand, L., Morasca, S., and Basili, V., 2002, An operational process for goal-driven
definition of measures. IEEE Transactions on Software Engineering, 28(12):
1106–1125.

CMMI, 2002, Capability Maturity Model Integration, Version 1.1, CMMISM for
Software Engineering (CMMI-SW, V. 1.1) Staged Representation CMU/SEI-
2002-TR-029, CMMI Product Team, SEI Carnegie Mellon University (available
online).

Dujmovic, J., 1996, A method for evaluation and selection of complex hardware and
software systems. Proceedings 22nd International Conference for the Resource
Management and Performance Evaluation of Enterprise CS (CMG 96), Vol. 1, pp.
368–378.

Goethert, W., and Fisher, M., 2003, Deriving enterprise-based measures using the
balanced scorecard and goal-driven measurement techniques. Software
Engineering Measurement and Analysis Initiative, CMU/SEI-2003-TN-024
(available online).

ISO/IEC 14598-5, 1998, Information technology—Software product evaluation—
Part 5: Process for evaluators.

ISO/IEC 14598-1, 1999, International standard, information technology—Software
product evaluation—Part 1: General overview.

ISO/IEC 9126-1, 2001, International standard, software engineering—Product
quality—Part 1: Quality model.

ISO/IEC 15939, 2002, Software engineering—Software measurement process.
Kaplan, R., and Norton, D., 2001, The Strategy-Focused Organization, How

Balanced Scorecard Companies Thrive in the New Business Environment. Harvard
Business School Press, Boston.

Kitchenham, B.A., Hughes, R.T., and Linkman, S.G., 2001. Modeling software
measurement data. IEEE Transactions on Software Engineering, 27(9): 788–804.

Lee, Y.W., Strong, D.M., Kahn, B.K., and Wang, R.Y., 2002, AIMQ: A
methodology for information quality assessment. Information & Management,
40(2): 133–146.

420

Molina, H., Papa, F., Martín, M., and Olsina, L., 2004, Semantic capabilities

for the metrics and indicators cataloging Web system. In Engineering Advanced
Web Applications, M. Matera and S. Comai, eds., Rinton Press Inc., Princeton,
NJ, pp. 97–109, ISBN 1-58949-046-0.

Nielsen, J., Molich, R., Snyder, C., and Farrell, S., 2001, E-Commerce User
Experience, NN Group.

Olsina, L., Godoy, D., Lafuente, G., and Rossi, G., 1999, Assessing the quality of
academic Websites: A case study. New Review of Hypermedia and Multimedia
(NRHM) Journal, 5: 81–103.

Olsina, L., Lafuente, G., and Rossi, G., 2000, E-commerce site evaluation: A case
study. Proceedings 1st International Conference on Electronic Commerce and
Web Technologies (EC-Web 2000), London, Springer LNCS 1875, pp. 239–252.

Olsina, L., Papa, M.F., Souto, M.E., and Rossi, G., 2001, Providing automated
support for the Web quality evaluation methodology. Proceedings 4th Workshop
on Web Engineering, at the 10th International WWW Conference, Hong Kong, pp.
1–11.

Olsina, L., and Rossi, G., 2002, Measuring Web application quality with WebQEM.
IEEE Multimedia, 9(4): 20–29.

Olsina, L., and Martin, M., 2004, Ontology for software metrics and indicators.
Journal of Web Engineering, 2(4): 262–281, ISSN 1540-9589.

Olsina, L., Papa, F., and Molina, H., 2005, Organization-oriented measurement and
evaluation framework for software and Web Engineering projects. Proceedings
International Congress on Web Engineering (ICWE05), Sydney, Australia,
Springer, LNCS 3579, pp. 42–52.

Olsina, L., Covella, G., and Rossi, G., 2006, Web quality. Chapter 4 in Web
Engineering, E. Mendes and N. Mosley, eds., Springer, New York, ISBN 3-540-
28196-7.

Olsina, L., Papa, F., and Molina, H., 2008, Ontological support for a measurement
and evaluation framework. To appear in the Journal of Intelligent Systems

Zuse, H., 1998, A Framework of Software Measurement, Walter de Gruyter, Berlín.

L. Olsina et al.

.

Chapter 14

THE NEED FOR EMPIRICAL WEB
ENGINEERING: AN INTRODUCTION

Emilia Mendes
WETA Research Group, Computer Science Department, The University of Auckland, Private
Bag 92019, Auckland, New Zealand

14.1 INTRODUCTION

The World Wide Web (Web) was originally conceived in 1989 as an
environment to allow for the sharing of information (e.g., research reports,
databases, user manuals) among geographically dispersed individuals. The
information itself was stored on different servers and was retrieved by means
of a single user interface (a Web browser). The information consisted
primarily of text documents interlinked using a hypertext metaphor1 (Offutt,
2002).

Since its original inception, the Web has changed into an environment
employed for the delivery of many different types of applications. Such
applications range from small-scale information-dissemination-like
applications, typically developed by writers and artists, to large-scale
commercial,2 enterprise-planning and scheduling, collaborative-work
applications. The latter are developed by multidisciplinary teams of people
with diverse skills and backgrounds using cutting-edge, diverse technologies
(Gellersen and Gaedke, 1997; Ginige and Murugesan, 2001; Offutt, 2002).

1 http://www.zeltser.com/web-history/.
2 The increase in the use of the Web to provide commercial applications has been motivated

by several factors, such as the possible increase of an organization’s competitive position,
and the opportunity for small organizations to project their corporate presence in the same
way as that of larger organizations.

422 E. Mendes

Numerous current Web applications are fully functional systems that provide
business-to-customer and business-to-business e-commerce, and numerous
services to numerous users (Offutt, 2002).

Industries such as travel and hospitality, manufacturing, banking,
education, and government have utilized Web-based applications to improve
and increase their operations (Ginige and Murugesan, 2001). In addition, the
Web allows for the development of corporate intranet Web applications, for
use within the boundaries of their organizations (Houghton, 2000). The
remarkable spread of Web applications into areas of communication and
commerce makes it one of the leading and most important branches of the
software industry (Offutt, 2002).

To date the development of industrial Web applications has been in
general ad hoc, resulting in poor-quality applications that are difficult to
maintain (Murugesan and Deshpande, 2001). The main reasons for such
problems are unawareness of suitable design and development processes,
and poor project management practices (Ginige, 2002). A survey on Web-
based projects, published by the Cutter Consortium in 2000, revealed a
number of problems with outsourced, large Web-based projects (Ginige,
2002):

• Eighty-four percent of surveyed delivered projects did not meet business
needs.

• Fifty-three percent of surveyed delivered projects did not provide the
required functionality.

• Seventy-nine percent of surveyed projects presented schedule delays.
• Sixty-three percent of surveyed projects exceeded their budget.

As the reliance on larger and more complex Web applications increases,
so does the need for using methodologies/standards/best practice guidelines
to develop applications that are delivered on time and within budget, have a
high level of quality, and are easy to maintain (Lee and Shirani, 2004; Ricca
and Tonella, 2001; Taylor et al., 2002). To develop such applications, Web
development teams need to use sound methodologies, systematic techniques,
quality assurance, rigorous, disciplined, and repeatable processes, better
tools, and baselines. Web Engineering3 aims to meet such needs (Ginige and
Murugesan, 2001).

Web Engineering is described as (Murugesan and Deshpande, 2001) “the
use of scientific, engineering, and management principles and systematic

3 The term “Web Engineering” was first published in 1996 in a conference paper by Gellersen

et al. (1997). Since then this term has been cited in numerous publications, and numerous
activities devoted to discussing Web Engineering have taken place (e.g., workshops,
conference tracks, entire conferences).

14. The Need for Empirical Web Engineering: An Introduction 423

approaches with the aim of successfully developing, deploying and
maintaining high quality Web-based systems and applications.”

Engineering is widely taken as a disciplined application of scientific
knowledge for the solution of practical problems. A few definitions taken
from dictionaries support that:

Engineering is the application of science to the needs of humanity. This
is accomplished through knowledge, mathematics, and practical
experience applied to the design of useful objects or processes.
(Wikipedia, 2004)

Engineering is the application of scientific principles to practical
ends, as the design, manufacture, and operation of structures and
machines. (Houghton, 1994)

The profession of applying scientific principles to the design,
construction, and maintenance of engines, cars, machines, etc.
(mechanical engineering), buildings, bridges, roads, etc. (civil
engineering), electrical machines and communication systems
(electrical engineering), chemical plant and machinery (chemical
engineering), or aircraft (aeronautical engineering). (Harper, 2000)

In all of the above definitions, the need for “the application of scientific

principles” has been stressed, where scientific principles are the result of
applying a scientific process (Goldstein and Goldstein, 1978). A process in
this context means that our current understanding, i.e., our theory
(hypothesis) of how best to develop, deploy, and maintain high-quality Web-
based systems and applications, may be modified or replaced as new
evidence is found through the accumulation of data and knowledge. This
process is illustrated in Figure 14.1 and described below (Goldstein and
Goldstein, 1978):

• Observation: To observe or read about a phenomenon or set of facts. In

most cases the motivation for such observation is to identify cause-and-
effect relationships between observed items, since these entail predictable
results. For example, we can observe that an increase in the development
of new Web pages seems also to increase the corresponding development
effort.

• Hypothesis: To formulate a hypothesis represents an attempt to explain an
observation. It is a tentative theory or assumption that is believed to
explain the behavior under investigation (Fenton and Pfleeger, 1997). The
items that participate in the observation are represented by variables (e.g.,
number of new Web pages, development effort), and the hypothesis
indicates what is expected to happen to these variables (e.g., there is a
linear relationship between the number of Web pages and the

424 E. Mendes

development effort, showing that as the number of new Web pages
increases, so does the effort to develop these pages). These variables first
need to be measured; to do so, we need an underlying measurement
theory.

• Prediction: To predict means to predict results that should be found if the
rationale used in the hypothesis formulation is correct (e.g., Web
applications with a larger number of new Web pages will use a larger
development effort).

• Validation: To validate requires experimentation to provide evidence to
either support or refute the initial hypothesis. If the evidence refutes the
hypothesis, then the hypothesis should be revised or replaced. If the
evidence is in support of the hypothesis, then many more replications of
the experiment need to be carried out in order to build a better
understanding of how variables relate to each other and their cause-and-
effect relationships.

Figure 14.1. WSDM overview.

The scientific process supports knowledge building, which in turn
involves the use of empirical studies to test hypotheses previously proposed
and to assess if current understanding of the discipline is correct.
Experimentation in Web Engineering is therefore essential (Basili, 1996;
Basili et al., 1999).

The extent to which scientific principles are applied to developing and
maintaining Web applications varies among organizations. More mature
organizations generally apply these principles to a larger extent than less
mature organizations, where maturity reflects an organization’s use of sound

No

Yes

Observation

Hypothesis

Prediction

Validation

Valid?

Theory

14. The Need for Empirical Web Engineering: An Introduction 425

development processes and practices (Fenton and Pfleeger, 1997). Some
organizations have clearly defined processes that remain unchanged
regardless of the people who work on the projects. For such organizations,
success is dictated by following a well-defined process, where feedback is
constantly obtained using product, process, and resource measures. Other
organizations have processes that are not so clearly defined (ad hoc), and
therefore the success of a project is often determined by the expertise of the
development team. In such a scenario, product, process, and resource
measures are rarely used, and each project represents a potential risk that
may lead an organization, if it gets it wrong, to bankruptcy (Pressman,
1998).

The variables used in the formulation of hypotheses represent the
attributes of real-world entities that we observe. An entity represents a
process, product, or resource. A process is defined as a software-related
activity. Examples of processes are Web development, Web maintenance,
Web design, Web testing, and Web project. A product is defined as an
artifact, deliverable, or document that results from a process activity.
Examples of products are Web application, design document, testing scripts,
and fault reports. Finally, a resource represents an entity required by a
process activity. Examples of resources are Web developers, development
tools, and programming languages (Fenton and Pfleeger, 1997).

In addition, for each entity’s attribute that is to be measured, it is also
useful to identify if the attribute is internal or external. Internal attributes can
be measured by examining the product, process, or resource on its own,
separate from its behavior. External attributes can only be measured with
respect to how the product, process, or resource relates to its environment
(Fenton and Pfleeger, 1997). For example, usability is in general an external
attribute since its measurement often depends upon the interaction between
user and application. An example of classification of entities is presented in
Table 14.1.

The measurement of an entity’s attributes generates quantitative
descriptions of key processes, products, and resources, enabling us to
understand behavior and results. This understanding lets us select better
techniques and tools to control and improve our processes, products, and
resources (Pfleeger et al., 1997).

The measurement theory that has been adopted in this chapter is the
representational theory of measurement (Fenton and Pfleeger, 1997). It
drives the definition of measurement scales, presented in Section 14.2, and
the measures presented in Chapter 13.

426 E. Mendes

Table 14.1. Classification of Process, Product, and Resources for Tukutuku4 Data Set

Entity Attribute Description
PROCESS ENTITIES
PROJECT
 TYPEPROJ Type of project (new or enhancement)
 LANGS Implementation languages used
 DOCPROC If project followed defined and documented process
 PROIMPR If project team is involved in a process improvement

program
 METRICS If project team is part of a software metrics program
 DEVTEAM Size of project’s development team
WEB DEVELOPMENT
 TOTEFF Actual total effort used to develop the Web application
 ESTEFF Estimated total effort necessary to develop the Web

application
 ACCURACY Procedure used to record effort data
PRODUCT ENTITY
WEB APPLICATION
 TYPEAPP Type of Web application developed
 TOTWP Total number of Web pages (new and reused)
 NEWWP Total number of new Web pages
 TOTIMG Total number of images (new and reused)
 NEWIMG Total number of new images your company created
 HEFFDEV Minimum number of hours to develop a single

function/feature by one experienced developer that
is considered high (above average)

 HEFFADPT Minimum number of hours to adapt a single
function/feature by one experienced developer that
is considered high (above average)

 HFOTS Number of reused high-effort features/functions
without adaptation

 HFOTSA Number of adapted high-effort features/functions
 HNEW Number of new high-effort features/functions
 FOTS Number of low-effort features off the shelf
 FOTSA Number of low-effort features off the shelf adapted
 NEW Number of new low-effort features/functions
RESOURCE ENTITY
DEVELOPMENT TEAM
 TEAMEXP Average team experience with the development

language(s) employed

14.2 MEASUREMENT SCALES

When we gather data associated with the attributes of entities we wish to
measure, they can be collected using different scales of measurement. The

4 The Tukutuku project collects data on industrial Web projects, for the development of effort

estimation models and to benchmark productivity across and within Web companies. (See
http://www.cs.auckland.ac.nz/tukutuku.)

characteristics of each scale type determine the choice of methods and

14. The Need for Empirical Web Engineering: An Introduction 427

statistics that can be used to analyze the data and how to interpret their
corresponding measures. In this section we describe the five main scale
types (Fenton and Pfleeger, 1997):

• Nominal
• Ordinal
• Interval
• Ratio
• Absolute

14.2.1 The Nominal Scale Type

The Nominal scale type represents the most primitive form of measurement.
It identifies classes or categories where each category groups a set of entities
based on their attribute’s value. Here entities can only be organized into
classes or categories, and there is no notion of ranking between classes.
Classes can be represented as symbols or numbers; however, if we use
numbers, they do not have any numerical meaning. Examples using a
Nominal scale are given in Table 14.2.

Table 14.2. Examples of Nominal Scale Measures

Entity Attribute Categories
Web application Type e-Commerce, academic, corporate, entertainment
Programming
language

Type ASP (VBScript, .Net), Coldfusion, J2EE (JSP,
Servlet, EJB), PHP

Web project Type New, enhancement, redevelopment
Web company Type of service 1, 4, 5, 7, 9, 34, 502, 8

14.2.2 The Ordinal Scale Type

The Ordinal scale supplements the Nominal scale with information about the
ranking of classes or categories. As with the Nominal scale, it also identifies
classes or categories, where each category groups a set of entities based on
their attribute’s value. The difference between an Ordinal scale and a Nominal
scale is that here there is the notion of ranking between classes. Classes can be
represented as symbols or numbers; however, if we use numbers, they do not
have any numerical meaning and represent ranking only. Therefore addition,
subtraction, and other arithmetic operations cannot be applied to classes.
Examples using an Ordinal scale are given in Table 14.3.
Table 14.3. Examples of Ordinal Scale Measures

Entity Attribute Categories
Web application Complexity Very low, low, average, high, very high
Web page Design quality Very poor, poor, average, good, very good
Web project Priority 1,2,3,4,5,6,7

428 E. Mendes

14.2.3 The Interval Scale Type

The Interval scale supplements the Ordinal scale with information about the
size of the intervals that separate the classes or categories. As with the
Nominal and Ordinal scales, it also identifies classes or categories, where
each category groups a set of entities based on their attribute’s value. As
with the Ordinal scale, there are ranks between classes or categories. The
difference between an Interval scale and an Ordinal scale is that here there is
the notion that the size of intervals between classes or categories remains
constant. Although the Interval scale is a numerical scale and numbers have
a numerical meaning, the class zero does not mean the complete absence of
the attribute we measured. To illustrate that, let’s look at temperatures
measured using the Celsius scale. The difference between 1 °C and 2 °C is
the same as the difference between 6 °C and 7 °C: exactly 1°. There is a
ranking between two classes; thus, 1 °C has a lower rank than 2 °C, and so
on. Finally, the temperature 0 °C does not represent the complete absence of
temperature, where molecular motion stops. In this example, 0 °C was
arbitrarily chosen to represent the freezing point of water. This means that
operations such as addition and subtraction between two categories are
permitted (e.g., 50 °C − 20 °C = 70 °C − 40 °C; 5 °C + 25 °C = 20 °C + 10
°C); however, calculating the ratio of two categories (e.g., 40 °C/20 °C) is
not meaningful (40 °C is not twice as hot as 20 °C), so multiplication and
division cannot be calculated directly from categories. If ratios are to be
calculated, they need to be based on the differences between categories.
Examples using an Interval scale are given in Table 14.4.

Table 14.4. Examples of Interval Scale Measures

Entity Attribute Categories
Web project Number of days relative to start of project 0,1,2,3,4,5,...
Human body Temperature (Celsius or Fahrenheit) Decimal numbers

14.2.4 The Ratio Scale Type

The Ratio scale supplements the Interval scale with the existence of a zero
element, representing the total absence of the attribute measured. As with the
Interval scale, it also provides information about the size of the intervals that
separate the classes or categories. As with the Interval and Ordinal scales,
there are ranks between classes or categories. As with the Interval, Ordinal,
and Nominal scales, it also identifies classes or categories, where each
category groups a set of entities based on their attribute’s value. The
difference between a Ratio scale and an Interval scale is the existence of an
absolute zero. The Ratio scale is also a numerical scale, and numbers have a

14. The Need for Empirical Web Engineering: An Introduction 429

numerical meaning. This means that any arithmetic operations between
two categories are permitted. Examples using a Ratio scale are given in
Table 14.5.

Table 14.5. Examples of Ratio Scale Measures

Entity Attribute Categories
Web project Effort Decimal numbers
Web application Size Integer numbers
Human body Temperature in Kelvin Decimal numbers

14.2.5 The Absolute Scale Type

The Absolute scale supplements the Ratio scale with restricting the classes
or categories to a specific unit of measurement. As with the Ratio scale, it
also has a zero element, representing the total absence of the attribute
measured. As with the Ratio and Interval scales, it also provides information
about the size of the intervals that separate the classes or categories. As with
the Interval and Ordinal scales, there are ranks between classes or categories.
As with the Ratio, Interval, Ordinal, and Nominal scales, it also identifies
classes or categories, where each category groups a set of entities based on
their attribute’s value.

The difference between an Absolute scale and the Ratio scale is the
existence of a fixed unit of measurement associated with the attribute being
measured. For example, using a Ratio scale, if we were to measure the
attribute effort of a Web project, we could obtain an effort value that could
represent effort in number of hours, or effort in number of days, and so on.
In case we want all effort measures to be kept using number of hours, we can
convert effort in number of days to effort in number of hours, or effort in
number of weeks to effort in number of hours. Thus, an attribute measured
using a given unit of measurement (e.g., number of weeks) can have its class
converted into another using a different unit of measurement, but keeping
the meaning of the obtained data unchanged. Therefore, assuming a single
developer, a Web project’s effort of 40 hours is equivalent to a Web project
effort’s of a week. Thus, the unit of measurement changes, but the data that
have been gathered remain unaffected. If we were to measure the attribute
effort of a Web project using an Absolute scale, we would need to determine
in advance the unit of measurement to be used. Therefore, once the unit of
measurement is determined, it is the one used when effort data are being
gathered. Using our example on Web project’s effort, if the unit of
measurement associated with the attribute effort had been number of hours,
then all the effort data gathered would have represented effort in number of
hours only. Finally, as with the Ratio scale, operations between two

430 E. Mendes

categories, such as addition, subtraction, multiplication, and division, are
also permitted. Examples using an Absolute scale are given in Table 14.6.

Table 14.6. Examples of Absolute Scale Measures

Entity Attribute Categories
Web project Effort, in number of hours Decimal numbers
Web application Size, in number of HTML files Integer numbers
Web developer Experience developing Web applications, in

number of years
Integer numbers

14.2.6 Summary of Scale Types

Table 14.7 presents one of the summaries we are providing regarding Scale
types. It has been adapted from Maxwell (2005). It is also important to note
that the Nominal and Ordinal scales do not provide classes or categories that
have numerical meaning, and for this reason their attributes are called
Categorical or Qualitative. Conversely, given that the Interval, Ratio, and
Absolute scales provide classes or categories that have numerical meaning,
their attributes are called Numerical or Quantitative (Maxwell, 2005).

Table 14.7. Summary of Scale Type Definitions

Scale Type Is Ranking
Meaningful?

Are Distances Between
Classes the Same?

Does the Class Include
an Absolute Zero?

Nominal No No No
Ordinal Yes No No
Interval Yes Yes No
Ratio Yes Yes Yes
Absolute Yes Yes Yes

In relation to the statistics relevant to each measurement scale type, Table

14.8 presents a summary adapted from Fenton and Pfleeger (1997).

Table 14.8. Summary of Scale Type Definitions

Scale Type Examples of Suitable Statistics Suitable Statistical Tests
Nominal Mode, frequency Nonparametric
Ordinal Median, percentile Nonparametric
Interval Mean, standard deviation Nonparametric and parametric
Ratio Mean, geometric mean, standard

deviation
Nonparametric and parametric

Absolute Mean, geometric mean, standard
deviation

Nonparametric and parametric

14. The Need for Empirical Web Engineering: An Introduction 431

14.3 OVERVIEW OF EMPIRICAL ASSESSMENTS

Validating a hypothesis or research question encompasses experimentation,
which is carried out using an empirical investigation. This section details the
three different types of empirical investigation that can be carried out, which
are survey, case study, or formal experiment (Fenton and Pfleeger, 1997):

• Survey: a retrospective investigation of an activity in order to confirm

relationships and outcomes (Fenton and Pfleeger, 1997). It is also known
as “research-in-the-large”, as it often samples over large groups of
projects. A survey should always be carried out after the activity under
focus has occurred (Kitchenham et al., 1995). When performing a survey,
a researcher has no control over the situation at hand, i.e., the situation
can be documented, compared to other similar situations, but none of the
variables being investigated can be manipulated (Fenton and Pfleeger,
1997). Within the scope of software and Web Engineering, surveys are
often used to validate the response of organizations and developers to a
new development method, tool, or technique, or to reveal trends or
relationships between relevant variables (Fenton and Pfleeger, 1997). For
example, a survey can be used to measure the success of changing from
Sun’s J2EE to Microsoft’s ASP.NET throughout an organization,
because it can gather data from numerous projects. The downside of
surveys is time. Gathering data can take many months or even years, and
the outcome may only be available after several projects have been
completed (Kitchenham et al., 1995).

• Case study: an investigation that examines the trends and relationships
using as its basis a typical project within an organization. It is also known
as “research-in-the-typical” (Kitchenham et al., 1995). A case study can
investigate a retrospective event, but this is not the usual trend. A case
study is the type of investigation of choice when wishing to examine an
event that has not yet occurred and for which there is little or no control
over the variables. For example, if an organization wants to investigate
the effect of a programming framework on the quality of the resulting
Web application but cannot develop the same project using numerous
frameworks simultaneously, then the investigative choice is to use a case
study. If the quality of the resulting Web application is higher than the
organization’s quality baseline, it may be due to many different reasons
(e.g., chance, or perhaps bias from enthusiastic developers). Even if the
programming framework had a legitimate effect on quality, no
conclusions outside the boundaries of the case study can be drawn, i.e.,
the results of a case study cannot be generalized to every possible
situation. Had the same application been developed several times, each

432 E. Mendes

time using a different programming framework5 (as in a formal
experiment), then it would have been possible to have had a better
understanding of the relationship between framework and quality, given
that these variables were controlled. A case study samples from the
variables, rather than over them. This means that, in relation to the
variable programming framework, a value that represents the framework
usually used on most projects will be the one chosen (e.g., J2EE). A case
study is easier to plan than a formal experiment, but its results are harder
to explain and, as previously mentioned, cannot be generalized outside
the scope of the study (Kitchenham et al., 1995).

• Formal experiment: rigorous and controlled investigation of an event
where important variables are identified and manipulated such that their
effect on the outcome can be validated (Fenton and Pfleeger, 1997). It is
also known as “research-in-the-small” since it is very difficult to carry
out formal experiments in software and Web Engineering using
numerous projects and resources. A formal experiment samples over the
variable that is being manipulated, such that all possible variable values
are validated, i.e., there is a single case representing each possible
situation. If we apply the same example used when explaining case
studies above, this means that several projects would be developed, each
using a different object-oriented programming language. If one aims to
obtain results that are largely applicable across various types of projects
and processes, then the choice of investigation is a formal experiment.
This type of investigation is most suited to the Web Engineering
research community. However, despite the control that needs to be
exerted when planning and running a formal experiment, its results
cannot be generalized outside the experimental conditions. For example,
if an experiment demonstrates that J2EE improves the quality of
e-commerce Web applications, one cannot guarantee that J2EE will also
improve the quality of educational Web applications (Kitchenham et al.,
1995).

Other concrete issues related to using a formal experiment or a case study

may impact the choice of study. It may be feasible to control the variables,
but at the expense of a very high cost or a high degree of risk. If replication
is possible, but at a prohibitive cost, then a case study should be used
(Fenton and Pfleeger, 1997). A summary of the characteristics of each type
of empirical investigation is given in Table 14.9.

5 The values for all other attributes should remain the same (e.g., developers, programming
experience, development tools, computing power, and type of application).

14. The Need for Empirical Web Engineering: An Introduction 433

Table 14.9. Summary Characteristics of the Three Types of Empirical Investigations

Characteristic Survey Case Study Formal Experiment
Scale Research-in-the-

large
Research-in-the-
typical

Research-in-the-small

Control No control Low level of control High level of control
Replication No Low High
Generalization Results

representative of
sampled
population

Only applicable to
other projects of
similar type and
size

Can be generalized within
the experimental conditions

A set of steps broadly common to all three types of investigations is

described below.
Define the goal(s) of your investigation and its context. Goals are crucial

for the success of all activities in an investigation. Thus, it is important to
allow enough time to fully understand and set the goals so that each is clear
and measurable. Goals represent the research questions, which may also be
presented by a number of hypotheses. By setting the research questions or
hypotheses, it becomes easier to identify the dependent and independent
variables for the investigation (Fenton and Pfleeger, 1997). A dependent
variable is a variable whose behavior we want to predict or explain. An
independent variable is believed to have a causal relationship with, or have
influence upon, the dependent variable (Wild and Seber, 2000). Goals also
help determine what the investigation will do, and what data are to be
collected. Finally, by understanding the goals we can also confirm if the type
of investigation chosen is the most suitable type to use (Fenton and Pfleeger,
1997).

Each hypothesis of an investigation will later be either supported or
rejected. An example of hypotheses is given below (Wild and Seber, 2000):

H0 Using J2EE produces the same quality of Web applications as using
ASP.NET.

H1 Using J2EE produces a different quality of Web applications than
using ASP.NET.

H0 is called the null hypothesis and assumes the quality of Web
applications developed using J2EE is similar to that of Web applications
developed using ASP.NET. In other words, it assumes that data samples for
both groups of applications come from the same population. In this instance,
we have two samples, one representing quality values for Web applications
developed using J2EE, and the other, quality values for Web applications
developed using ASP.NET. Here, quality is our dependent variable, and the
choice of programming framework (e.g., J2EE or ASP.NET) is the
independent variable.

434 E. Mendes

H1 is called the alternative or research hypothesis and represents what is
believed to be true if the null hypothesis is false. The alternative hypothesis
assumes that samples do not come from the same sample population.
Sometimes the direction of the relationship between dependent and
independent variables is also presented as part of an alternative hypothesis.
If H1 also suggested a direction for the relationship, it could be described as

H1 Using J2EE produces a better quality of Web applications than using
ASP.NET.

To confirm H1 it is first necessary to reject the null hypothesis and,
second, to show that quality values for Web applications developed using
J2EE are significantly higher than quality values for Web applications
developed using ASP.NET.

We have presented both null and alternative hypotheses since they are
both equally important when presenting the results of an investigation, and,
as such, both should be documented.

To see if the data justify rejecting H0 we need to perform a statistical
analysis. Before carrying out a statistical analysis it is important to decide
the level of confidence we have that the data sample we gathered truly
represents our population of interest. If we have 95% confidence that the
data sample we are using truly represents the general population, there still
remains a 5% chance that H0 will be rejected when, in fact, it truly represents
the current situation. Rejecting H0 incorrectly is called the Type I error, and
the probability of this occurring is called the Significance level (α). Every
statistical analysis test uses α when testing whether or not H0 should be
rejected.

14.4 ISSUES TO CONSIDER WITH EMPIRICAL
ASSESSMENTS

In addition to defining the goals of an investigation, it is also important to
document the context of the investigation (Kitchenham et al., 2002). One
suggested way to achieve this is to provide a table, similar to Table 14.1,
describing the entities, attributes, and measures that are the focus of the
investigation.

14.4.1 Prepare the Investigation

It is important to prepare an investigation carefully to obtain results from
which one can draw valid conclusions, even if these conclusions cannot be
scaled up. For case studies and formal experiments, it is important to define

14. The Need for Empirical Web Engineering: An Introduction 435

the variables that can influence the results and, once these are defined,
decide how much control one can have over them (Fenton and Pfleeger,
1997).

Consider the following case study, which would represent a poorly
prepared investigation.

The case study aims to investigate, within a given organization, the effect
of using the programming framework J2EE on the quality of the resulting
Web application. Most Web projects in this organization are developed using
ASP.NET, and consequently all members of the development team have
experience with this language. The type of application representative of the
majority of applications this organization undertakes is in electronic
commerce (e-commerce), and a typical development team has two
developers. Therefore, as part of the case study, an e-commerce application
is to be developed by two developers using J2EE. Because we have stated
that this is a poorly executed case study, we will assume that no other
variables have been considered or measured (e.g., developers’ experience,
development environment).

The e-commerce application is developed, and the results of the case
study show that the quality of the delivered application, measured as the
number of faults per Web page, is worse than that for the other similar Web
applications developed using ASP.NET. When questioned as to why these
were the results obtained, the investigator seemed puzzled, and without a
clear explanation.

What is missing?
The investigator should have anticipated that other variables can also

affect the results of an investigation and should therefore also be taken into
account. One such variable is the developers’ programming experience.
Without measuring experience prior to the case study, it is impossible to
discern if the lower quality is due to J2EE or to the effects of learning J2EE
as the investigation proceeds. It is possible that one or both developers did
not have experience with J2EE and that lack of experience interfered with
the benefits of its use.

Variables such as developers’ experience should have been anticipated
and, if possible, controlled, or risk obtaining results that will be incorrect.

To control a variable is to determine a subset of values for use within the
context of the investigation from the complete set of possible values for that
variable. For example, using the same case study presented above, if the
investigator had measured developers’ experience with J2EE (e.g., low,
medium, high) and was able to control this variable, then he could have
determined that two developers experienced with J2EE should have
participated in the case study. If there were no developers with experience in
J2EE, two would have been selected and trained.

436 E. Mendes

When conducting a case study, if it is not possible to control certain
variables, they should still be measured, and the results documented. If,
however, all variables are controllable, then the type of investigation to use
is a formal experiment.

Another important issue is to identify the population being studied and
the sampling technique used. For example, if a survey was designed to
investigate the extent to which project managers use automatic project
management tools, then a data sample of software programmers is not going
to be representative of the population that has been initially specified.

With formal experiments, it is important to describe the process by which
experimental subjects and objects are selected and assigned to treatments
(Kitchenham et al., 2002), where a treatment represents the new tool,
programming language, or methodology you want to evaluate. The
experimental object, also known as experimental unit, represents the object
to which the treatment is to be applied (e.g., development project, Web
application, code). The control object does not use or is not affected by the
treatment (Fenton and Pfleeger, 1997). In software and Web Engineering it
is difficult to have a control in the same way as in, say, formal medical
experiments. For example, if you are investigating the effect of a
programming framework on quality, and your treatment is J2EE, you cannot
have a control that is “no programming framework” (Kitchenham et al.,
2002). Therefore, many formal experiments use as their control a baseline
representing what is typical in an organization. Using the example given
previously, our control would be ASP.NET, since it represents the typical
programming framework used in the organization. The experimental subject
is the “who” applying the treatment (Fenton and Pfleeger, 1997).

As part of the preparation of an investigation we also include the
preparation and validation of data collection instruments. Examples are
questionnaires, automatic measurement tools, timing sheets, etc. Each has to
be prepared carefully such that it clearly and unambiguously identifies what
is to be measured. For each variable it is also important to identify its
measurement scale and measurement unit. So, if you are measuring effort,
then you should also document its measurement unit (e.g., person hours,
person months) or else obtain incorrect and conflicting data. It is also
important to document at which stage during the investigation the data
collection takes place. If an investigation gathers data on developers’
programming experience (before they develop a Web application), size and
effort used to design the application, and size and effort used to implement
the application, then a diagram, such as the one in Figure 14.2, may be
provided to all participants to help clarify what instruments to use and when
to use them.

14. The Need for Empirical Web Engineering: An Introduction 437

Functional
Requirements

Data and
Navigation

Design Implementation

Testing

Evaluation

1st data collection point
questionnaire 1

2nd data collection point
questionnaire 2

3rd data collection point
questionnaire 3

Figure 14.2. Plan detailing when to apply each project.

It is usual for instruments to be validated using pilot studies. A pilot
study uses similar conditions to those planned for the real investigation, such
that any possible problems can be anticipated. It is highly recommended that
those conducting any empirical investigations use pilot studies, as they can
provide very useful feedback and reduce or remove any problems not
previously anticipated.

Finally, it is also important to document the methods used to reduce any bias.

14.4.2 Analyzing the Data and Reporting the Results

The main aspect of this final step is to understand the data collected and to
apply statistical techniques that are suitable for the research questions or
hypotheses of the investigation. For example, if the data were measured
using a nominal or ordinal scale, then statistical techniques that use the mean
cannot be applied, as this would violate the principles of the representational
theory of measurement. If the data are not normally distributed, then it is
possible to use nonparametric or robust techniques, or transform the data to
conform to the normal distribution (Fenton and Pfleeger, 1997). Further
details on data analysis are presented later in this chapter.

When interpreting and reporting the results of an empirical investigation,
it is also important to consider and discuss the validity of the results
obtained. There are three types of threats to the validity of empirical
investigations (Kitchenham et al., 1995; Porter et al., 1997): construct
validity, internal validity, and external validity. Each is described below.

Construct validity represents the extent to which the measures you are
using in your investigation really measure the attributes of entities being
investigated. For example, if you are measuring the size of a Web
application using IFPUG function points, can you say that the use of IFPUG
function points is really measuring the size of a Web application? How valid
will the results of your investigation be if you use IFPUG function points to

438 E. Mendes

measure a Web application’s size? As another example, if you want to
measure the experience of Web developers developing Web applications and
you use as a measure the number of years they worked for their current
employer, it is unlikely that you are using an appropriate measure since your
measure does not also take into account their previous experience
developing Web applications.

Internal validity represents the extent to which external factors not

controlled by the researcher can affect the dependent variable. Suppose that,
as part of an investigation, we observe that larger Web applications are
related to more productive teams, compared to smaller Web applications.
We must make sure that team productivity is not being affected by using, for
example, highly experienced developers to develop larger applications and
less experienced developers to develop smaller applications. If the researcher
is unaware of developers’ experience, it is impossible to discern whether the
results are due to developers’ experience or due to legitimate economies of
scale. Typical factors that can affect the internal validity of investigations are
variations in human performance, learning effects where participants’ skills
improve as the investigation progresses, and differences in treatments, data
collection forms used, or other experimental materials.

External validity represents the extent to which we can generalize the

results of our investigation to our population of interest. In most empirical
investigations in Web Engineering the population of interest often represents
industrial practice. Suppose you carried out a formal experiment with
postgraduate students to compare J2EE to ASP.NET, using as experimental
object a small Web application. If this application is not representative of
industrial practice, you cannot generalize the results of your investigation
beyond the context in which it took place. Another possible problem with
this investigation might be the use of students as subject population. If you
have not used Web development professionals, it will also be difficult to
generalize the results to industrial practice. Within the context of this
example, even if you had used Web development professionals in your
investigation, if they did not represent a random sample of your population
of interest, you would also be unable to generalize the results to your entire
population of interest.

14.5 DETAILING FORMAL EXPERIMENTS

A formal experiment is considered the most difficult type of investigation to
carry out since it has to be planned very carefully such that all the important
factors are controlled and documented, enabling its further replication. Due

14. The Need for Empirical Web Engineering: An Introduction 439

to the amount of control that formal experiments use, they can be further
replicated and, when replicated under identical conditions, if results are
repeatable, they provide a better basis for building theories that explain our
current understanding of a phenomenon of interest. Another important point
related to formal experiments is that the effects of uncontrolled variables
upon the results must be minimized. The way to minimize such effects is to
use randomization. Randomization represents the random assignment of
treatments and experimental objects to experimental subjects.

In this section we are going to discuss the typical experimental designs
used with formal experiments (Wohlin et al., 2005); for each typical design,
we will discuss the types of statistical analysis tests that can be used to
examine the data gathered from such experiments.

14.5.1 Typical Design 1

There is one independent variable (factor) with two values and one
dependent variable. Suppose you are comparing the productivity between
Web applications developed using J2EE (treatment) and Web applications
developed using ASP.NET (control). Fifty subjects are participating in the
experiment, and the experimental object is the same for both groups.
Assuming other variables are constant, subjects are randomly assigned to
J2EE or ASP.NET (see Figure 14.3).

Figure 14.3. Example of one-factor design.

Once productivity data are gathered for both groups the next step is to
compare the productivity data to check if productivity values for both
development frameworks come from the same population (H0) or from
different populations (H1). If the subjects in this experiment represent a large
random sample or the productivity data for each group are normally
distributed, you can use the independent samples t-test statistical technique
to compare the productivity between both groups. This is a parametric test;
as such, it assumed that the data are normally distributed or that the sample
is large and random. Otherwise, the statistical technique to use would be the

J2EE Group
(25)

ASP.NET Group
(25)

50 subjects

440 E. Mendes

independent samples Mann–Whitney test, a nonparametric equivalent to the
t test. Nonparametric tests make no assumptions related to the distribution of
the data, and that is why they are used if you cannot guarantee that your data
are normally distributed or represent a large random sample.

14.5.2 Typical Design 1: One Factor and One

There is one independent variable (factor) with two values and one
dependent variable. Suppose you are comparing the productivity between
Web applications developed using J2EE (treatment) and Web applications
developed using ASP.NET (control). Fifty subjects are participating in the
experiment, and the experimental object is the same for both groups. A
second factor (confounding factor)—gender—is believed to have an effect
on productivity; however, you are only interested in comparing different
development frameworks and their effect on productivity, not the interaction
between gender and framework type on productivity. The solution is to
create two blocks (see Figure 14.4), one with all the female subjects, and
another with all the male subjects, and then, within each block, randomly
assign a similar number of subjects to J2EE or ASP.NET (balancing).

Figure 14.4. Example of blocking and balancing with one-factor design.

Once productivity data have been gathered for both groups, the next step

is to compare the productivity data to check if productivity values for both
groups come from the same population (H0) or from different populations
(H1). The mechanism used to analyze the data would be the same one
presented previously. Two sets of productivity values are compared, one
containing productivity values for the 10 females and the 15 males who used
J2EE, and the other containing productivity values for the 10 females and the
15 males who used ASP.NET. If the subjects in this experiment represent a
large random sample or the productivity data for each group are normally
distributed, you can use the independent samples t-test statistical technique

J2EE Group
(10)

50 people

ASP.NET
Group
(10)

J2EE Group
(15)

ASP.NET
Group
(15)

Females Males (30)

Confounding Factor

14. The Need for Empirical Web Engineering: An Introduction 441

to compare the productivity between both groups. Otherwise, the statistical
technique to use would be the independent samples Mann–Whitney test, a
nonparametric equivalent to the t test.

There is one independent variable (factor) with two values and one
dependent variable. Suppose you are comparing the productivity between
Web applications developed using J2EE (treatment) and Web applications
developed using ASP.NET (control). Fifty subjects are participating in the
experiment using the experimental object. You also want every subject to be
assigned to both the control and the treatment. Assuming other variables are
constant, subjects are randomly assigned to the control or the treatment and
then swapped around (see Figure 14.5).

Figure 14.5. Example of Typical Design 2.

Once productivity data have been gathered for both groups, the next step
is to compare the productivity data to check if productivity values for both
groups come from the same population (H0) or from different populations
(H1). Two sets of productivity values are compared: The first contains
productivity values for 50 subjects when using J2EE; the second contains
productivity values for the same 50 subjects when using ASP.NET. Given
that each subject was exposed to both control and treatment, you need to use
a paired test. If the subjects in this experiment represent a large random
sample or the productivity data for each group are normally distributed, you
can use the paired samples t-test statistical technique to compare the
productivity between both groups. Otherwise, the statistical technique to use
would be the two related samples Wilcoxon test, a nonparametric equivalent
to the paired samples t test.

50 people

J2EE Group
(25)

ASP.NET
Group
(25)

J2EE Group
(25)

ASP.NET
Group
(25)

14.5.3 Typical Design 2

442 E. Mendes

14.5.4 Typical Design 3

There is one independent variable (factor) with more than two values and
one dependent variable. Suppose you are comparing the productivity among
Web applications designed using Methods A, B, and C. Sixty subjects are
participating in the experiment, and the experimental object is the same for
all groups. Assuming other variables are constant, subjects are randomly
assigned to one of the three groups (see Figure 14.6).

Method A
(20)

Method B
(20)

Method C
(20)

60 people

Figure 14.6. Example of Typical Design 3.

Once productivity data have been gathered for all three groups, the next
step is to compare the productivity data to check if productivity values for all
groups come from the same population (H0) or from different populations
(H1). Three sets of productivity values are compared: The first contains
productivity values for 20 subjects when using Method A; the second
contains productivity values for another 20 subjects when using Method B;
the third contains productivity values for another 20 subjects when using
Method C. Given that each subject was exposed to only a single method, you
need to use an independent samples test. If the subjects in this experiment
represent a large random sample or the productivity data for each group are
normally distributed, you can use the one-way ANOVA statistical technique
to compare the productivity among groups. Otherwise, the statistical
technique to use would be the Kruskal–Wallis H test, a nonparametric
equivalent to the one-way ANOVA technique.

14.5.5 Typical Design 4

There are at least two independent variables (factors) and one dependent
variable. Suppose you are comparing the productivity between Web
applications developed using J2EE (treatment) and Web applications
developed using ASP.NET (control). Sixty subjects are participating in the
experiment, and the experimental object is the same for both groups. A

14. The Need for Empirical Web Engineering: An Introduction 443

second factor—gender—is believed to have an effect on productivity, and
you are interested in assessing the interaction between gender and
framework type on productivity. The solution is to create four blocks (see
Table 14.10) representing the total number of possible combinations. In this
example each factor has two values; therefore, the total number of
combinations would be given by multiplying the number of values in the
first factor by the number of values in the second factor (2 multiplied by 2,
which is equal to 4). Then, assuming that all subjects have similar
experience using both frameworks, within each gender block, subjects are
randomly assigned to J2EE or ASP.NET (balancing). In this scenario each
block will provide 15 productivity values.

Table 14.10. Example of Typical Design 4

 Gender
 Female Male

J2EE Female, J2EE (15)
Block 1

Male, J2EE (15)
Block 2

ASP.NET Female, ASP.NET (15)
Block 3

Male, ASP.NET (15)
Block 4

Once productivity data have been gathered for all four blocks, the next

step is to compare the productivity data to check if productivity values for
males come from the same population (H0) or from different populations
(H1), and the same has to be done for females. Here productivity values for
blocks 2 and 4 are compared; and productivity values for blocks 1 and 3 are
compared. If the subjects in this experiment represent a large random sample
or the productivity data for each group are normally distributed, you can use
the independent samples t-test statistical technique to compare the
productivity between groups. Otherwise, the statistical technique to use
would be the Mann–Whitney test, a nonparametric equivalent to the
independent samples t test.

14.5.6 Summary of Typical Designs

Table 14.11 summarizes the statistical tests to be used with each of the
typical designs previously introduced. Each of these tests is explained in
detail in statistical books, such as Wild and Seber (2000).

Fr
am

ew
or

k

444 E. Mendes

Table 14.11. Examples of Statistical Tests for Typical Designs

Typical Design Parametric Test Nonparametric Test
Design 1: no explicit
confounding factor

Independent samples t test Independent samples
Mann–Whitney test

Design 1: explicit
confounding factor

Independent samples t test Independent samples
Mann–Whitney test

Design 2 Paired samples t test Two-related samples Wilcoxon
test

Design 3 One-way ANOVA Kruskal–Wallis H test
Design 4 Independent samples t test Mann–Whitney test

14.6 DETAILING CASE STUDIES

It is often the case that case studies are used in industrial settings to compare
two different technologies, tools, or development methodologies. One of the
technologies, tools, or development methodologies represents what is
currently used by the company, and the other represents what is being
compared to the company’s current situation. Three mechanisms are
suggested to organize such comparisons to reduce bias and enforce internal
validity (Wohlin et al., 2005):

• To compare the results of using the new technology, tool, or development

methodology to a company’s baseline. A baseline generally represents an
average over a set of finished projects. For example, a company may
have established a productivity baseline against which to compare
projects. This means that productivity data have been gathered from past
finished projects and used to obtain an average productivity (productivity
baseline). If this is the case, then the productivity related to the project
that used the new technology, tool, or development methodology is
compared against the existing productivity baseline, to assess if there was
productivity improvement or decline. In addition to productivity, other
baselines may also be used by a company, e.g., usability baseline or
defect rate baseline.

• To compare the results of using the new technology, tool, or development
methodology to a company’s sister project, which is used as a baseline.
This means that two similar and comparable projects will be carried out,
one using the company’s current technology, tool, or development
methodology, and the other using the new technology, tool, or
development methodology. Once both projects are finished, measures
such as productivity, usability, and actual effort can be used to compare
the results.

14. The Need for Empirical Web Engineering: An Introduction 445

• Whenever the technology, tool, or development methodology applies to
individual application components, it is possible to apply at random the
new technology, tool, or development methodology to some components
and not to others. Later measures such as productivity and actual effort
can be used to compare the results.

14.7 DETAILING SURVEYS

There are three important points to stress here. The first is that, similarly to
formal experiments and case studies, it is very important to define
beforehand what is it that we wish to investigate (hypotheses) and what is
the population of interest. For example, if you plan to conduct a survey to
understand how Web applications are currently developed, the best
population to use would be the one of Web project managers, as they have
the complete understanding of the development process used. Interviewing
Web developers may lead to misleading results, as it is often the case that
they do not see the forest for the trees.

The second point is related to piloting the survey. It is important to ask
different users, preferably representative of the population of interest, to read
the instrument(s) to be used for data collection to make sure questions are
clear and no important questions are missing. It is also important to ask these
users to actually answer the questions in order to have a feel for how long it
will take them to provide the data being asked for. This should be a similar
procedure if you are using interviews.

Finally, the third point relates to the preparation of survey instruments. It is
generally the case that instruments will be either questionnaires or interviews.
In both cases instruments should be prepared with care and avoid misleading
questions that can bias the results. If you use ordinary mail to post
questionnaires to users, make sure you also include a self-addressed prepaid
envelope to be used to return the questionnaire. You can also alternatively
have the same questionnaire available on the Web. Unfortunately, the use of
email as a means to broadcast a request to participate in a survey has been
impaired by the advent of spam emails. Many of us today use filters to stop the
receipt of unsolicited junk emails; therefore, many survey invitation requests
may end up being filtered and deleted.

14.8 CONCLUSIONS

This chapter discussed the need for empirical investigations in Web
Engineering and introduced the three main types of empirical
investigation—surveys, case studies, and formal experiments. Each type of

446 E. Mendes

investigation was described, although greater detail was given to formal
experiments as they are the most difficult type of investigation to conduct.

REFERENCES

Basili, V.R., 1996, The role of experimentation in software engineering: Past, current, and
future. Proceedings 18th International Conference on Software Engineering, March
25−30, pp. 442−449.

Basili, V.R., Shull, F., and Lanubile, F., 1999, Building knowledge through families of
experiments. IEEE Transactions on Software Engineering, July−Aug., 25(4): 456−473.

Fenton, N.E., and Pfleeger, S.L., 1997, Software metrics: A rigorous and practical approach,
2nd ed., PWS Publishing Company, Boston.

Gellersen, H., Wicke, R., and Gaedke, M., 1997, WebComposition: An object-oriented
support system for the Web engineering lifecycle. Journal of Computer Networks and
ISDN Systems, September, 29(8−13): 865−1553. Also (1996) in Proceedings Sixth
International World Wide Web Conference, pp. 1429−1437.

Gellersen, H.-W., and Gaedke, M., 1999, Object-oriented Web application development.
IEEE Internet Computing, Jan.–Feb., 3(1): 60−68.

Ginige, A., 2002, Workshop on Web Engineering: Web Engineering: Managing the
complexity of Web systems development. Proceedings 14th International Conference on
Software Engineering and Knowledge Engineering, July, pp. 72−729.

Ginige, A., and Murugesan, S., 2001, Web Engineering: An introduction. IEEE Multimedia,
Jan.–Mar., 8(1):. 14−18.

Goldstein, M., and Goldstein, I.F., 1978, How We Know: An Exploration of the Scientific
Process, Plenum Press, New York.

Harper Collins Publishers, 2000, Collins English Dictionary.
Houghton Mifflin Company, 1994, The American Heritage Concise Dictionary, 3rd ed.
Kitchenham, B., Pickard, L., and Pfleeger, S.L., 1995, Case studies for method and tool

evaluation. IEEE Software, 12(4): 52−62.
Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones, P.W., Hoaglin, D.C., El Emam, K.,

and Rosenberg, J., 2002, Preliminary guidelines for empirical research in software
engineering. IEEE Transactions on Software Engineering, August, 28(8): 721−734.

Lee, S.C., and Shirani, A.I., 2004, A component based methodology for Web application
development. Journal of Systems and Software, 71(1−2): 177−187.

Maxwell, K., 2005, What you need to know about statistics. In Web Engineering, E. Mendes
and N. Mosley, eds., Springer, New York, pp. 365–407.

Murugesan, S., and Deshpande, Y., 2001, Web Engineering, Managing Diversity and
Complexity of Web Application Development, Lecture Notes in Computer Science 2016,
Springer-Verlag, Heidelberg.

Murugesan, S., and Deshpande, Y., 2002, Meeting the challenges of Web application
development: The Web Engineering approach. In Proceedings 24th International
Conference on Software Engineering, May, pp. 687−688.

Offutt, J., 2002, Quality attributes of Web software applications. IEEE Software, Mar.–Apr.,
19(2): 25−32.

Pfleeger, S.L., Jeffery, R., Curtis, B., and Kitchenham, B., 1997, Status report on software
measurement. IEEE Software, Mar.–Apr., 14(2): 33−43.

14. The Need for Empirical Web Engineering: An Introduction 447

Porter, A.A., Siy, H.P., Toman, C.A., and Votta, L.G., 1997, An experiment to assess the
cost-benefits of code inspections in large-scale software development, TSE, 23(6): 329–
346.

Pressman, R.S., 1998, Can Internet-based applications be engineered? IEEE Software, Sept.–
Oct., 15(5): 104−110.

Ricca, F., and Tonella, P., 2001, Analysis and testing of Web applications. In Proceedings
23rd International Conference on Software Engineering, pp. 25−34.

Taylor, M.J., McWilliam, J., Forsyth, H., and Wade, S., 2002, Methodologies and Website
development: A survey of practice. Information and Software Technology, 44(6):
381−391.

Wikipedia, http://en.wikipedia.org/wiki/Main_Page (accessed on 25 October 2004).
Wild, C., and Seber, G., 2000, Chance Encounters: A First Course in Data Analysis and

Inference, John Wiley & Sons, New York.
Wohlin, C., Host, M., and Henningsson, K., 2005, Empirical research methods in Web and

software Engineering. In Web Engineering, E. Mendes and N. Mosley, eds., Springer,
New York, pp. 409–430.

Chapter 15

CONCLUSIONS

Oscar Pastor,4 Gustavo Rossi,1 Luis Olsina,3 Daniel Schwabe2

1LIFIA, Facultad de Informatica,Universidad Nacional de La Plata, (also at CONICET)
Argentina, gustavo@lifia.info.unlp.edu.ar

2Departamento de Informática, PUC-Rio, Rio de Janeiro, Brazil, dschwabe@inf.

puc-rio.br

3GIDIS_Web, Engineering School, Universidad Nacional de La Pampa, Calle 9 y 110, (6360)
General Pico, LP, Argentina, olsinal@ing.unlpam.edu.ar

4DSIC, Valencia University of Technology, Valencia, Spain, opastor@dsic.upv.es

Historically, software engineering’s main challenge has been to provide
those processes, methods, and supporting tools capable of producing quality
software. Given that the Web is, nowadays, the major delivery platform, and
an important development support platform, it is only natural that it should
evolve toward Web Engineering.

In the chapter written by San Murugesan (Chapter 2), we have covered
different issues of the Web Engineering discipline. In this introductory
chapter, San outlines the evolution of the Web and the unique aspects of
Web applications and discusses some of the key challenges present in Web
application development. It also examines what differentiates development
of Web applications from other types of software or computer application
development. It then reviews the problems and limitations of current Web
development practices and their implications. Finally, it outlines key
elements of a Web Engineering process and discusses the role of Web
Engineering in successful Web application development.

These ideas are properly complemented with Chapter 3 by Martin
Gaedke and Johannes Meinecke, which extends the view of the Web as the
right platform to build distributed applications, with all the particular
problems of these environments.

In this context, our perception is that well-known problems that have
been identified in the so-called conventional software engineering

4 O. Pastor et al.

community are translated in a natural and evolutionary way into a Web
Engineering context. In particular, model-based software production
processes, methods, and tools are strongly required by the Web Engineering
community, to make true the MDA basic statement of producing Web
applications through an adequate model transformation process, from
requirements to the final software product.

Several evolutionary technologies related with Web Engineering are
being proposed based on the Model-based Web Application Development
Process. Another strong need is to properly fit all the pieces of this apparent
Web Engineering puzzle, where we can find issues related with Web
services, the Semantic Web, ontologies definition and management,
adaptivity, conceptual modeling of Web applications, electronic commerce,
and so on. Too often, these technologies are developed and evolve
independently, while a sound Web Engineering process will require all of
them to be properly aligned and connected.

In this context, it is true that many approaches have already been
proposed, providing answers to some of the problems related with all these
issues. But more than ever, we think that we need a place where all those
approaches that share common roots are presented, their particularities
analyzed, and their solutions presented in the context of a common example.
Such material will let readers understand commonalities and their
differences between the approaches, allowing them to make informed
choices that best fit their own needs and situation. This is the spirit of this
book.

The Web Engineering discipline is in constant evolution, and over the
last few years a set of methods to model, design, and implement Web
applications has been proposed. The central core of this book is the
presentation of some of these relevant approaches. Clearly, not all such
approaches have been presented, but we attempted to present the ones that
have been discussed the most in the literature. The methods selected cover a
very relevant and big spectrum of what Web application development
methods currently mean, addressing the main issues and concepts that are
critical in producing good Web applications.

The list of selected methods includes UWE, IDM, WebML, Hera,
WSDM, OOWS/OO-Method, and OOHDM. Each one is presented in its
own chapter, covering the main aspects of the method, the models used, the
expressiveness provided, and the relevant parts of their software process.
This is done with the support of a common example: a popular online
repository of information related to the movie industry. We have selected an
example that is both well-known and easy to interpret in terms of how every
method manages it. The proposed requirements included both information
recovery (such as, for instance, queries on films or actors) and service

50

15. Conclusions 451

execution (such as, for instance, buying tickets to see a particular film). We
did that to cover contents and functionality, to make it possible to analyze
how the methods deal with these aspects.

Furthermore, this Web application was designed to be used by different
types of users (anonymous, registered, system administrators, etc.), each one
with a particular behavior and accessing some information and functionality;
adaptivity must therefore be properly faced. Thus, a distinguishing feature of
this book is precisely the exercise of applying each method to the same
problem.

It is our feeling that the ultimate evaluation of each method will be made
by the readers. Nevertheless, a preliminary side-by-side comparison shows
some noticeable points that raise interesting questions. First, all the methods
use different notations to deal with similar concepts. Could a common,
standard notation be used? This is an interesting open question for the
audience. All the methods share some relevant points of view:

• A clear separation of concerns with respect to conceptual modeling for
Web applications, focusing basically on contents, functionality,
navigation, and presentation. An interesting task for any reader is to
compare how each method represents and manages these different
modeling perspectives.

• The modeling and code generation tools developed to support the
methods (such as WebRatio, ONME, ArgoUWE, HyperDE) emphasize
the use of Model-Driven Software Development strategies as the right
approach. It seems that, logically, model transformation technologies are
also strongly present in the Web Engineering community.

As stated before, working on the same example, the readers can
understand the basic models and primitives provided by the methods and can
even personally evaluate the different solutions provided by them. As a
matter of fact, it has been interesting for us to verify that all of them share
some common conceptual constructs, but at the same time each one orders
them in different ways, emphasizing some particular aspects considered
more or less relevant. A strong value of this book is in providing adequate
material to allow you—our reader—to reach your own conclusions about
each method and how they compare.

It has also been remarkable to see how all these approaches are in
constant evolution. They are extending their expressive capabilities, to give
support to the most advanced characteristics required by modern Web
applications. New aspects encompass, among other things, supporting
business process execution, the development of adaptive Web applications,
the proper use of Semantic Web representations in the Web application
construction process, the use of Web services, the multidevice-oriented

452 O. Pastor et al.

development of Web applications, etc. This simply emphasizes the fact that
research continues, constantly extending the material already presented here.

Model transformation is present throughout the book, and it is behind all
the presented methods for Web application design and implementation. To
delve further into this, the chapter written by Antonio Vallecillo et al.
provides a precise view on the current status of what we call Model-Driven
Web Engineering (MDWE) in the context of MDA. Apart from introducing
the main concepts and mechanisms related to MDWE and MDA, it also
discusses the strengths and benefits of the use of MDA for MDWE, as well
as its major limitations and the challenges it currently faces for wider
adoption. We think that this is the right point to anchor the ideas introduced
in this book addressing the applicability of model transformation to obtain a
sound Web development process.

We would like to close these conclusions by commenting on interesting
aspects that we have learned during the editing process. First, it should be
realized that the development of private notations to model Web applications
can make the wider adoption and acceptance of these methods by the
industry more difficult. Representing the same concepts in the same way
would improve the understanding of the models used by the different
approaches, which would help their use in practice

Standards are being continuously updated, especially in the context of
Web services definition languages and Semantic Web-oriented languages. It
could be argued that we should have sound solutions before having their
associated standards. But looking at the methods presented, we can easily
conclude that they already provide solutions that are sound enough to be
incorporated in appropriate standards for Web application development
methods. This is probably a task to be accomplished in the near future, not
unlike the context where UML was initially proposed, as an attempt to unify
the diverse set of notations for object-oriented analysis and design that were
present in the mid-1990s. For instance, if the required conceptual primitives
for specifying Web navigation were fixed, a proper notation to represent
them in a clear way could be proposed with major agreement.

Furthermore, as we are talking about engineering, we cannot forget those
aspects related to quality evaluation and with empirical Web Engineering.
Luis Olsina et al. analyzed in their chapter the rationale to measure and
evaluate software and Web applications or products, from different
perspectives. To complement this view, there is a strong need to evaluate the
software artifacts obtained with the methods presented in the book together
with their associated tools. Empirical studies and techniques such as those
presented in the chapter written by Emilia Mendes are very relevant when
the objective is to demonstrate the quality and precision of the generated
software product. We feel that this provides the proper tone to end our book.

15. Conclusions 453

Readers interested in such aspects will find basic information and pointers to
further reading in these two final chapters.

So, this is all folks… . If you have reached this point, which could mean
that you have read the whole book, first of all, congratulations!, and second
and more important, we really hope we have been able to provide interesting
and fruitful material that will help anyone better understand what modern
Web Engineering means, and how all the ideas involved can be successfully
put into practice, from both an academic and an industrial point of view.

INDEX

Abstract Information Unit, 72
Abstract Interface, 54, 55, 76, 133,

134, 136, 137
Abstract Interface Design, 54, 55,

111, 134
Abstraction Mechanisms, 50, 65
Accessibility, 16, 19, 23, 25, 36, 91,

93, 287, 342, 407, 409
Access Management, 41
Access Primitives, 169, 170, 172, 178
Access Structure, 52, 76, 80, 110, 111,

125, 126, 127, 128, 129, 370
Activity Diagram, 104, 161, 164,

166, 168, 171, 181, 225, 312
Adaptation, 60–61, 178, 263–264,

278–280, 346–348, 370
Adaptation Model, 382
Adaptive Hypermedia, 104
Adaptive Systems Modeling, 116
Adaptivity, 104, 105, 153, 159, 168,

174–178, 182, 249–252, 450, 451
Advice, 174, 175, 176, 177, 178,

287–289
AJAX, 13, 37, 59, 150, 189
Analysis, 22, 23, 24, 26, 30, 61, 79,

157, 158, 164, 167, 168, 224,
225, 226, 236, 353, 365, 378,
385, 389, 390, 395, 398, 416,
417, 434, 437, 439, 452

Anchor, 33, 73, 74, 84, 85, 95, 98,
100, 101, 110, 121–123, 132,
139–140, 152, 162, 172, 173,
183, 185, 186, 231, 232, 278,
339, 452

API-Cloud, 39
Application tier, 69, 70, 77

Architectural style, 59, 69, 76, 77,
184, 354, 362, 366, 371

ArgoUWE, 158, 163, 177, 184,
186–188, 451

Aspect-Oriented, 158, 159, 168,
174–175, 189, 287, 288, 289

Association, 36, 67, 73, 111,
117–118, 123, 137, 162, 164,
168, 169–170, 178–179, 187,
211, 212, 215, 280, 358, 371

Attribute, 75, 117, 226, 274–278,
404–405

Attribute Filter, 75
Audience

Classification, 308, 309, 311,
312, 317

Modeling, 305, 308, 315, 326,
344–345

Subclass, 305, 309, 310, 311, 315

Bramantino, 215, 218
Business Logic package, 371
Business Process, 29, 102, 105–106,

169, 170–171, 176, 178, 181,
182, 184, 186, 225, 239, 242–244,
359, 361, 365, 367, 371, 451

Calculable Concept, 392, 393, 394,

395, 396, 397, 402, 403, 404,
415, 418

CASE, 57, 163, 186–187
CHEF, 210–214, 215
CIM, 181, 182, 189, 379
Class Attribute, 71, 84, 395
Classification, 105, 109, 305,

365, 425

456 Index

Client-server, 55, 111, 189, 213,

259, 362
CMMI (Capability Maturity Model

Integration), 385, 386, 389
Measurement and Analyses, 390

Code Generation, 66, 67, 69, 76, 77,
104, 162, 182, 184, 224, 235,
242, 259, 355, 378, 451

ColdFusion, 111
Components, 77, 215, 310, 326
Concept Model, 387, 391, 392, 393,

394, 397, 398, 401, 402, 403,
404, 405, 418

Conceptual Design, 110, 111, 150,
193, 196, 197, 201, 205, 305,
306, 316, 327, 335, 342, 349

Conceptual IDM (C-IDM), 200
Conceptual Model, 110, 117, 118,

119, 120, 121, 122, 125, 129,
224, 235, 236, 290, 371

Conceptual Modeling, 65, 67, 70, 78,
82, 85, 105, 117, 121, 224, 225,
235, 242, 321, 345, 418, 450, 451

Conceptual Schema, 65, 66, 69,
74, 106, 110, 197, 201, 203,
223, 224, 225, 235, 236,
340, 410

Concrete Interface Design, 134
Conditional Fragments, 105
Consistency Rules, 180, 372
Content Model, 159, 167, 168, 169,

170, 171, 183, 187
Context Model, 167, 250, 266, 268,

278, 280, 298, 299, 370
Context Profile, 167
Context Relationship, 73, 95, 98
Context Schema, 120, 121, 125
Controller Object, 214
CSS, 66, 86, 87, 88, 89, 90, 296,

298, 339
Customization Design, 211

Data, 35, 50–51, 79, 140, 226–227,

242, 244, 248–249, 268–271
Data-entry tool, 212
Data Representation (see Information

Content)
Data Structure package, 369

Decorator, 132
Deep Web, 7, 10, 11
Design Consistency, 16
Design Layout, 16
Design Pattern, 56, 121, 149, 150,

188, 212, 214, 236, 255
Design Process, 55, 193, 194,

196, 210, 211, 216, 247, 265,
304, 344

Design Standards, 16
Dialogue, 37, 193–218
Dialogue Act, 202, 203, 204, 205,

206, 207, 208, 209
Dialogue Metaphor, 195, 196
Dialogue Subject, 196
Docuverse Paradigm, 44
DSL (Domain Specific Languages),

58, 59, 139, 144, 146, 157, 354,
355, 357, 359, 373, 377–378

DSM (Domain-Specific Modeling),
157, 189, 354–355, 364, 377

Dynamic Model, 67
Dynamic Web, 11, 52, 57, 152

Effort, 26, 28, 211, 217, 257, 259,

264, 287, 342, 423, 424, 429,
436, 444, 445

Embedded Web, 43
Empirical Investigation

Case Study, 431–432
Formal Experiments, 432
Survey, 431

Empirical Process
Hypothesis, 423–424
Observation, 423
Prediction, 424
Validation, 424

Entity
Entity Category, 392, 393, 395,

396, 397
Evaluation

Design, 387, 392, 401
Execution, 386, 388, 390, 391,

394, 395, 401, 402, 404, 405,
409, 418

Experimental Design, 439
Exploration Navigational

Contexts, 72

Index 457

Federation, 40, 42
Filter, 72, 74–75, 77, 95, 96, 120,

121, 283, 289, 294, 445
Functionality, 53–54, 118, 396, 397
Functional Model, 68, 91, 182,

183, 184
Functional Requirements, 22, 24,

61–62, 93, 165, 182, 225, 305,
308, 309, 310, 314, 368

Generalization/Specialization, 110
GQM (Goal Question Metric),

417–418
Guided Tour, 52, 169, 170,

188, 278

HDM+, 193
HDM2, 193
Hera, 263–300
HyperDe, 109, 111, 112, 138, 139,

141, 142, 143, 144, 146, 148,
153, 154, 451

Hypermedia Paradigm, 34
Hypothesis, 217, 415, 417, 423–424,

431, 433, 434

IDM, 193–230
IEEE Standard 1471–2000, 24
IMDB, 90–102
Implementation design, 57, 305, 316,

327, 335, 336, 345, 349
Implementation Patterns, 82, 85, 150
InContext class, 132
Index, 35, 86, 182
Indicator

Aggregation Model, 403, 404
Calculation, 394, 401, 404, 411,

413, 415–417
Decision Criterion, 391, 394–395,

403, 404
Elementary, 391, 394, 401, 403,

404, 409, 410, 411, 412, 416
Global, 391, 394, 400, 403, 404,

413, 414, 415, 416, 418
Information Content, 14, 16, 50
Information Layout, 76
Information Modeling, 107, 305, 316,

317, 321, 340

Information Need, 61, 66, 81, 200,
321, 325, 387, 389, 391, 392–
397, 401, 404, 405, 409, 417, 418

Information Paging, 75
Interaction Model, 37
Interaction State, 115, 116, 117, 118
Interactive Paradigm, 34, 44
Interface, 54–55, 132–137
Interface Patterns, 150
Introductory Act, 203, 206, 207,

208, 209
ISO Standard

14598, 386, 388
15939, 386, 389
9126, 391, 393, 406, 415

IWWOST, 3, 4, 49

Landmark, 126, 139, 140, 150, 151,

207, 212, 228, 326, 334
L-IDM, 201, 202, 203, 204, 207
Link, 86, 111, 122–124, 229–230
Logical Design, 196, 201, 202, 205,

207, 212
Lua, 111

MagicDraw, 372
MDA (Model-Driven Architecture),

58, 66, 67, 158, 353–380, 464
MDD, 137, 138, 139, 160, 180, 184,

222, 252, 256, 257, 258, 259, 356
MDSD (Model-Driven Software

Development), 58, 59, 353, 354,
356, 357, 361, 364, 365, 378,
379, 380, 451

MDWAF (Model-Driven Web
Architectural Framework), 366

MDWE (Model-driven Web
engineering), 353, 354, 362,
366, 376, 379, 380, 452

Measure, 385–419
Measurement

Design, 387, 392, 398
Execution, 386, 388, 389, 394, 398

Measurement and evaluation
INCAMI framework, 387, 390,

395, 417, 418–419
INCAMI tool, 392, 398, 400, 409,

412, 416, 419

458 Index

Process, 386, 387, 388, 395, 418
Program, 385, 386, 405, 417
Project, 385, 387, 392, 393, 395, 409

Measurement Method, 393, 401,
417, 418

Measurement Theory, 424, 425
Medina, 215, 218
Metadata, 36, 138, 242, 244, 245,

246, 298, 385, 386, 387, 356,
401, 402, 404, 409, 410, 417, 418

Meta-models, 109, 139, 162, 293,
354, 355, 360, 364, 365, 366,
369, 373, 374, 377

Metric
Direct, 393, 398, 399, 400, 401,

403, 416
Indirect, 393, 398, 400

Mission Statement, 303, 304, 305,
306, 307, 308, 309, 344

Mobile Web, 10, 12, 17, 18
Mockupper, 212
Model Object, 214
Model Representation, 56
Model Transformation, 66, 67, 77,

104, 158, 162, 164, 175, 180,
181, 182, 185, 186, 187, 235,
354, 356, 357, 360, 361, 364,
365, 366, 450, 451, 452

MOF (Meta-Object Facility), 158,
162, 177, 180, 189, 227, 354,
356, 357, 358, 361, 364, 372,
374, 377

Multimedia Paradigm, 34, 44
Multiple Introductory Act, 203
Multiple Topic, 205, 206, 208
Munch, 218
MVC, 138, 214

Navigation, 36–37, 51–52, 53–54, 79,

80, 88, 119–120, 169–171, 281
Navigational Classes, 73, 74, 75, 76,

88, 110, 146
Navigational Contexts, 71, 72, 73,

74, 75, 85, 86, 93, 94, 95, 100,
101, 111, 124, 125, 128, 129, 132

Navigational Design
Navigational Links, 71, 72, 75, 79,

80, 326, 370

Navigation Track, 326
Semantic Links, 326, 332, 333, 334
Structural Links, 326, 331, 334

Navigational Map, 71–72, 85, 86, 93,
94, 96, 98

Navigational Model, 69, 70, 71, 74,
75, 91, 93, 98, 104, 106, 112,
120, 134, 137, 138, 159, 161,
169, 171, 172, 173, 178, 178,
182, 183, 185, 187, 188, 326,
327, 328, 329, 330, 331, 332,
333, 336, 338, 367, 368, 370

Navigational Patterns, 109, 120,
150, 366

Navigational Relationship, 73, 75,
276, 277, 278, 281

Navigational Structure, 16, 49, 110,
111, 125, 128, 148, 152, 159,
168–169, 170, 171, 174, 184,
212, 248, 266, 267, 326, 328

Navigational Subsystems, 71, 72, 97
Navigational View, 110
Navigation Class Schema, 120
Navigation Patterns, 53, 111, 125
Navigation Space, 51, 52, 120, 126
Navigation Use Case, 164
News, 20, 63, 89, 99, 106, 151, 152,

163, 252, 307, 312, 313, 314, 344
Node, 53, 72, 85, 86, 94, 96, 121,

122, 125, 132, 140, 146, 151,
152, 170, 173, 178, 179, 182,
184, 273, 347, 348

Non-Functional Requirements, 391
Notation, 40, 56, 57, 114, 122, 126,

143, 149, 158, 160, 161, 162,
163, 164, 168, 170, 173, 182,
189, 218, 221, 240, 243, 249,
258, 317, 318, 319, 322, 331,
332, 354, 363, 364, 377,
451, 452

Object-oriented, 122, 140, 149, 157,

432, 452
Observer, 121
OCL (Object Constraint Language),

74, 161, 162, 163, 176,
177, 180, 184, 186, 226, 359,
377, 378

Index 459

OMG (Object Management Group),

356, 357, 358, 359, 360, 372,
373, 374, 376

OMT, 157
Ontology

Metrics and Indicator, 386, 387, 395
OO-H, 160, 361, 362, 365, 373, 374
OOHDM, 4, 9, 66, 109, 110, 111,

112, 117, 119, 120, 121, 122,
124, 125, 132, 138, 139, 150,
153, 157, 361, 450

OO Method, 82, 87, 91, 93, 106, 107,
361, 450

OOSE, 157
OOWS, 4, 66, 67, 69–71, 74, 76–77,

82, 85, 86, 87, 88, 91, 93, 101,
102, 103, 104, 105, 106, 107,
361, 450

Orientation Info, 207, 212
OWL, 60, 136, 268, 271, 284, 285,

293, 306, 321, 322, 340, 343, 379

Page Design, 9, 22, 25, 27, 196, 207,

212, 337, 338
Patterns, 37, 75, 76, 82, 85, 148–150,

170, 356, 361, 366, 403
People-Centric Web, 11
Performance, 8, 9, 14, 16, 17, 19, 20,

21, 22, 24, 26, 27, 29, 58, 168,
171, 197, 202, 217, 319, 367,
378, 403, 438

Persistence Tier, 69, 77
Personalization, 12, 16, 41, 60–61,

69, 153, 164, 182, 189, 248,
257, 266, 267, 268, 278, 292,
300, 309, 346, 368

Personalized use case, 164, 178, 180
PHP, 57, 58, 82, 83, 84, 89, 99,

101, 362
P-IDM, 207
PIM, 66, 67, 68, 69, 82, 91, 181,

182, 184, 185, 189, 356, 357,
360, 373

Pointcut, 174, 175, 176, 178, 287,
288, 289

Presentation, 15–19, 36, 54–55,
75–76, 98

Presentation Model, 69, 70, 75, 86,
93, 98, 159, 161, 172, 173, 183,
188, 264, 266, 267, 295, 339,
367, 370

Presentation Modeling, 186, 338, 339
Presentation Tier, 69, 77
Print Paradigm, 34, 44
Proactive Testing, 26
Process, 49, 55–56, 105–106, 243
Process Class, 169, 170, 171, 172,

180, 188
Process Flow Model, 171
Process Model, 102, 105, 109, 171,

178, 238, 242, 243, 359, 362,
367, 368, 390

Process Use Case, 164
PSM, 66, 68, 82, 182, 184, 185, 356,

357, 360, 373

Quality Assurance, 8, 25, 61, 62, 385,

417, 418, 422
QVT, 158, 175, 180, 182, 185, 189,

356, 360, 361, 365, 374, 376

RDFS, 60, 109, 264, 268, 271, 275,

276, 277, 278, 279, 282
Read/Write Web, 11
Recommendation, 52, 92, 151, 163,

164, 174, 175, 176, 177, 387,
390, 391, 392, 404, 405, 417

Relationship Filter, 75
Reliability, 15, 16, 19, 21, 39, 62,

396, 407, 415, 416
Requirement Modelling, 181, 405
Retroactive Testing, 26
Rich Internet Applications (RIA), 13
RMM, 157, 221, 361
Ruby, 11, 111, 139, 143, 361, 378
Rules, 42

Scale Type, 412, 427, 428, 429, 430

Absolute, 429–430
Categorical Scale, 400
Interval, 428
Numerical Scale, 400, 403, 428
Ordinal, 427
Ratio, 428–429

460 Index

Security, 14, 15, 16, 17, 19, 20, 21,

39, 41, 42, 62, 257, 329, 396
Semantic Web, 10, 12–13, 36, 58,

102, 106, 138, 267, 271, 303,
321, 349, 379, 450, 451, 452

Separation of Concerns, 58, 86, 133,
153, 158–159, 160, 177, 300,
354, 363, 368, 451

Sequence Navigational Contexts, 72
Service, 24, 40, 74, 106–107,

239–242, 283
Service Integration, 40–41
Service Link, 74, 330
Service-Oriented Applications, 11
Service-Oriented Architecture

(SOA), 38, 39, 106
Shallow Web, 10, 11
SHDM, 110, 138, 139, 148, 153, 154
Simple Object Access Protocol

(SOAP), 39
Single Topic, 200, 207
Site Structure Design, 305, 306, 327,

336, 345
Software Engineering, 9, 22, 23, 38,

50, 57, 65, 66, 137, 157, 158,
189, 236, 449

Software Factories, 58, 59, 138,
354, 355

Specification Card, 126, 127, 128
Statecharts, 122
Static Web, 11, 290, 292, 336
Stereotypes, 161, 162, 166, 173, 179,

358, 359, 377, 378
Structural Link, 36, 326, 331, 334
Structural Model, 67, 91
Structural Strategy, 202
Subject Strategy, 203
Syria, 215, 218

Tag, 33, 82, 87, 88, 161, 249, 358, 377
Task, 48, 115, 125, 316–321, 340
Task Modeling, 317, 319, 345
Task Taxonomy, 103
Topic, 42, 65, 93, 197, 198, 200, 202,

206, 207, 208, 211, 212, 288
Topic Link, 219
Transformation Rules, 82, 85, 86, 91,

181, 182, 183, 184, 365

Transition Act, 202, 203, 207, 212
Transition Link, 207
Transition Strategy, 203, 204
Tukutuku dataset, 426

UDDI, 39
UDI, 34
UML, 122, 129, 157–189, 364, 377
UML profiles, 162, 177, 354, 358,

359, 364, 373, 377, 378
Unit, 202, 293
Use Case, 112, 113, 114, 128, 161,

164, 165, 166, 169, 170, 180,
188, 225

User Diagram, 70, 85, 91, 93, 98
User Interaction Diagram (UID), 114
User Interface package, 7, 9, 11, 14,

23, 36, 37, 43, 66, 69, 76, 78,
105, 150, 166, 172, 236, 259,
367, 368, 370, 371, 374, 375, 421

User Model, 69, 70, 71, 104, 153,
167, 168, 175, 287, 294, 370

User Profile, 51, 110, 112, 121, 167,
202, 213, 370

UWE, 66, 158, 161, 175, 177, 180–182

Validity

Construct, 437
External, 416, 437, 438
Internal, 437, 438, 444

View Object, 214
Visualization Patterns, 87
Visualization Rules, 76, 87, 88, 89,

90, 102

W2000, 193, 194, 216, 217, 358,

361, 375
Weaving, 174, 175, 176, 189, 288,

289, 373
Web 1.0, 11, 12
Web 2.0, 10, 11, 12, 13, 39, 44, 59, 154
Web Architecture, 9, 20, 22, 24, 27, 213
Web-based Applications, 7, 8, 13,

14–15, 21, 23, 28, 50, 67, 422
Web-based Systems, 7, 8, 9, 15, 19,

21, 22, 27, 423
WEbComposition Architecture

Model (WAM), 39

Index 461

Web Design, 4, 8, 9, 10, 20, 21, 24,

27, 54, 189, 221, 303, 316, 317,
349, 425

Web Development, 8, 9, 14, 15, 18,
19, 21, 22, 23, 24, 26, 27, 28,
62, 417, 422, 425, 438, 449, 452

Web Engineering
Definition, 9, 21–22, 363, 422
Empirical Investigation,

431–432, 433
Web Failure, 19–20
WebML, 222, 223–224, 226–227, 450
Web Project Management, 22, 28
WebQEM (Web Quality Evaluation

Methodology), 387, 388, 390,
391, 400, 405, 418

Inspection methodology, 388
Web Quality

Content, 79–80, 416
External Quality Model, 387, 392,

395, 397, 409
Information Accuracy, 409
Information Suitability, 397, 407,

409, 415
Internal Quality Model, 393, 406

Quality in Use Model, 62, 387, 406
Usability, 104, 217, 444

Web Security, 22, 25, 27
Web Services, 2, 89, 239–242, 464
Web Usability, 16, 22
Web User Interfaces, 43
Widget Ontology, 133, 134
Wisdom-Web, 10, 11
World Wide Web Consortium

(W3C), 35, 36
WSDL, 39, 239, 240, 241
WSDM

Audience-Driven Design
Approach, 304

Web Semantics Design Method, 303
Web Site Design Method, 303

XHTML, 87, 89, 238, 294, 295, 299
XMI (XML Metadata Interchange),

60, 158, 162, 177, 180, 186,
356, 376, 388

XML, 39, 52, 60, 162, 235,
238, 368

Zone, 80

	184628922X
	Contents
	Part I: Web Engineering and Web Applications Development
	1. Introduction
	2. Web Application Development: Challenges and the Role of Web Engineering
	3. The Web as an Application Platform

	Part II: Web Design Methods
	4. Overview of Design Issues for Web Applications Development
	5. Applying the OOWS Model-Driven Approach for Developing Web Applications. The Internet Movie Database Case Study
	6. Modeling and Implementing Web Applications with OOHDM
	7. UML-Based Web Engineering An Approach Based on Standards
	8. Designing Multichannel Web Applications as "Dialogue Systems": The IDM Model
	9. Designing Web Applications with WebML and WebRatio
	10. Hera
	11. WSDM: Web Semantics Design Method
	12. An Overview of Model-Driven Web Engineering and the MDA

	Part III: Quality Evaluation and Experimental Web Engineering
	13. How to Measure and Evaluate Web Applications in a Consistent Way
	14. The Need for Empirical Web Engineering: An Introduction
	15. Conclusions

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

