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To the memory of 
Bruno de Finetti (1906-1985) 



PREFACE 

This book contains selected and refereed contributions to the "Inter
national Symposium on Probability and Bayesian Statistics" which was orga
nized to celebrate the 80th birthday of Professor Bruno de Finetti at his 
birthplace Innsbruck in Austria. Since Professor de Finetti died in 
1985 the symposium was dedicated to the memory of Bruno de Finetti and took 
place at Igls near Innsbruck from 23 to 26 September 1986. Some of the pa
pers are published especially by the relationship to Bruno de Finetti's 
scientific work. 

The evolution of stochastics shows growing importance of probability 
as coherent assessment of numerical values as degrees of believe in certain 
events. This is the basis for Bayesian inference in the sense of modern 
statistics. 

The contributions in this volume cover a broad spectrum ranging from 
foundations of probability across psychological aspects of formulating sub
jective probability statements, abstract measure theoretical considerations, 
contributions to theoretical statistics and stochastic processes, to real 
applications in economics, reliability and hydrology. Also the question is 
raised if it is necessary to develop new techniques to model and analyze 
fuzzy observations in samples. 

The articles are arranged in alphabetical order according to the family 
name of the first author of each paper to avoid a hierarchical ordering of 
importance of the different topics. Readers interested in special topics 
can use the index at the end of the book as guide. 

The editor wants to thank the referees for their anonymous work. Some 
of them are also authors in the present volume and their names are not given 
here. The following scientists who where not participants at the symposium 
or made no contribution to this Proceedings volume were so glad to act as 
referees: J.O. Berger, Lafayette, D. Blackwell, Berkeley, L.D. Broemeling, 
Arlington, L. Crisma, Trieste, I. Csiszar, Budapest, M. Deistler, Wien, 
P. Diaconis, Stanford, L.E. Dubins, Berkeley, R. Dutter, Wien, W. Ettl, 
Wien, T.L. Fine, Ithaca, D. Furst, Roma, P. Hackl, Wien, W. Jammernegg, 
Graz, A. Kandel, Tallahassee, F. Konecny, Wien, D.V. Lindley, Somerset, 
M. Luptacik, Wien, G. Marinell, Innsbruck, B. Natvig, Oslo, T. Postelnicu, 
Bucuresti, H. Rauch, Wien, P. Revesz, Wien, M. Schemper, Wien, K.D. Schmidt, 
Mannheim, A.F.M. Smith, Nottingham, F. Spizzichino, Roma, H. Stadler, Wien, 
H. Strasser, Bayreuth, S. Weber, Mainz, G.A. Whitmore, Montreal. 

It is the intention of this volume to make Bayesian ideas available 
for a broader audience and to present different recent developments in pro
bability and statistics. I want to thank PLENUM for publishing this volume 
in short time which makes it possible to produce an up to date contribution 
and especially Ms. M. Carter for her kind advice. 

R. Viertl 
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STOCHASTIC LINEAR PROGRAMMING WITH RECOURSE UNDER PARTIAL INFORMATION 

Peter Abel 

Fegro 
Praunheimer Str. 5-11 
D-6236 Eschborn/Ost, F.R.G. 

1. INTRODUCTION 

Stochastic progranuning models with random variables with only incompletely 
known distributions were up to now comparatively seldom analysed, although an 
attempt to declare probability distribution not always gives a satisfactory 
description of factors of influence in a decision model: "In any specific 
problem the selection of a definite probability distribution is made on the 
basis of a number of factors, such as the sequence of past demands, judgements 
about trends, etc. For various reasons, however, these factors may be insuffi
cient to estimate the future distribution. As an example, the sample size of 
the past demands may be quite small, or we have reason to suspect that the 
future demand will come from a distribution which differs from that governing 
past history in an unpredictable way" (Scarf, 1958). 

One of the reasons for the rarely use of stochastic programming models 
with only incomplete informations about the distribution of the states in 
practise may be that often no numerical methods are available for the compu
tation of the optimal solutions of such a model. 

In this paper we present a stochastic linear programming model with par
tial informations about the probability distribution of the random coeffi
cients and have a special look at the possibilities of the numerical compu
tation of all optimal solutions of the presented model. 

2. THE PROBLEM 

The stochastic linear programming model with recourse (two-stage model) 
with known common probability distribution of the random coefficients is of 
the form (see Dantzig, 1955) 

inf Ep{C'(W)x + inf{q'(w)yl W(w)y = b(w) - A(w)x, 

y ~ on 

subject to x E X 

(1) 

with random variable (A,b,c,W,q): Q -+ mmn+m+n+mn'+n' and probability dis
tribution P. 



For every 00 € S'! is A(oo) € IRmn a constant (m,n)-matrix, 

b(oo) € IRm a constant m-vector, 

c (00 ) € [Rn a constant n-vector, 

W(oo) mn' 
€ IR a constant (m,n' )-matrix and 

n' q (w) E IR a constant n'-vector. 

If P is not exactly known, but there is merely an information PEa, where 
a is a set of probability distributions, we have to find an optimal xO~X as 
solution of the problem 

"minimize" Ep{c'(oo)x + min{q'(w)yl W(w)y = b(w) - A(oo)x, 

y ~ O}} 

subject to x E X 

P Ii a . 

(2) 

We suppose ~h~t for every pea(1) has a finite solution (see Abel, 1984 
p. 49f), X := {x 1 I l$iSM} and S'! := {oo 1 ,oo , ••• ,wJ are finite sets and a 
is a Linear Partial Information (LPI) (see ~ofler et al., 1980) 

N a := {p € IR I 
+ 

N 
L 

j=1 
p. = 1, Gp ;:: h} 

J 

wi th constant matrix G and constant vector hand p. := P{w J for 1'S.~N. 
J J 

A LPI we get for example, when the probabilities can be put in any 
order, e.g. 

P1 ~ P2 ~ ••• ~ PN· 

For finding an optimal decision about x we use the minEmax- (or a-minimax-) 
criterion: XOEX is accepted as optimal solution of (2), if 

max Ep{C'(W)xo + mirnq'(w)yl W(w)y = b(w) - A(w)xO' nO}} 
Pea 

min max Ep{C'(w)x + mirnq'(w)yl W(oo)y b(w) - A(w)x, ~O}}. 
xEX Pea 

For every x(i)EX and pUka (i=1,2, ••• ,M; j=1,2, ••• ,N) we define 

(3) 

(.) (i) 
v .. := c'(oo.)x 1 + min{q'(w.)Y1 W(oo.)y = b(w.) - A(oo.)x , y~O} (4) 

1J J J J J J 

and have instead of (3) 

N 
max{ L v .. p.1 p~a} 

j=1 1 0J J 
min 

1$iSM 

N 
max{ L v .. p.1 pea}-. 

j=1 1J J 
( 5) 

(iO) 
Every x c;: X, which fulfills (5), is a minEmax-optimal decision about x for 
problem (2). 

2 



For the computation of a v .. we must solve a linear program of the form 
(4). When only the coefficients1df vector b(.) are random, the computation 
of the v .. 's can be simplified essentially by using methods of the parametric 
linear pfdgramming. We also have simplifications in the computation, when 
the recourse matrix W(.) contains no random coefficients, especially in case 
of a so called model with simple recourse. If only vector c(.) contains random 
coefficients, merely one linear program must be solved. 

3. SOLVING PROBLEM (5) 

For the numerical computation of all solutions of problem (5) we use 
an algorithm of Abel(1984), p. 150f (see also Abel, 1985): 

STEP 1: Setting the starting values. 

k := 1, 

jo .- iO .- 1, 

eO .- max v1j and 
l~j~ 

r Oi := min v .. for every i=1,2, ••• ,M. 
l~j~ 1J 

STEP 2: Find an optimal solution p(k) of the linear program 

N 
max L v .. p.-.mk • 
pEe j=l 1k_1J J 

As upper bound for me we compute 

ek := min{mk,ek_1 }; 

r-' if ek_1 < ~ 

jk .-

1k_1 if ek_1 ~ mk 

(k) r ki := max{rk_1 ., L v .. p. }, 
,1 i=l 1J J 

N 

STEP 3: Find i kE{1,2, ••• ,M} with 

r k . min r . - • s , 
1k lSiSM k1 k 

where sk is 

and 

i=1,2, ••• ,M. 

(6) 

STEP 4: If ek = sk 

a lower bound for me' 

(ik ) 
then x is an optimal solution of (5) and me:=ek • Other-

wise k-.k+1 and goto STEP 2. 

The number of iteration steps, needed to compute an optimal solution of 
(5) with this algorithm, is in no case greater than M. In general, clearly 
less than M iteration steps are necessary (see Abel(1984), p. 163f). 

3 



When e is no LPI only in step 2 other numerical methods must be used 
for solving (6). 

If (5) has more than one solution, we first choose the proposed algorithm 
to compute one solution. Subsequently, the remaining solutions can be computed 
simply with an analogous Abel(1984) p. 155 modified version of this algorithm. 

4. ONLY FINITE n 

In the last section we described a numerical method for the computation 
of optimal solutions, when the sets X and n are finite. In this section we 
want to analyse how we can solve (3) numerically, when we assume that X is 
a bounded convex polyhedral set as solution set of a linear restriction system 
of the form {xean, Tx~t, x~O} with constant matrix T and constant vector t. 
In this case we get all minEmax-optimal solutions of (2) as solutions of the 
optimization problem 

min max min 
x p y 

Tx~t Gp~h Wy=b-Ax 
x~O p~O y~O 

W .-

N 
t Pk(c'(wk)x + ql(Wk)y(wk » 

k=l 

o 

o 

Using a minimax-theorem of Karlin(1959) p. 28f and the duality theorem of 
the linear programming we get the to (7) equivalent linear program 

min -h'u 

subject to ex + Qy + G'u ~ 0 

Ax + Wy = b 

Tx ~ t 

x ~ 0 

y ~ 0 

u > 0 

4 

(7) 

(8) 



where C .- (c(w1),c(w2),···,c(wN»' and 

q' (001 ) 

q' (002 ) 
0 

• 
Q .-

o 

Under this assumption consequently all minE max-optimal decisions about x 
are solutions of linear program (8) and every solution of (8) is a minEmax
optimal decision. For the numerical solving of (8) we recommend not to use 
the standard Simplex-algorithm, but to take the special structure of the 
restriction system into consideration and use for example the decomposition 
of the dual problem as solution method. 

5. THE GENERAL CASE 

An essential assumption in the previous sections was the finiteness of 
n (and especially in section 4 the presence of a LPI). In this section we 
now want to renounce this supposition and analyse problem (3) under the assump
tion that X is a convex polyhedral set, without requiring the finiteness 
of n. 

As generalization of the LPI defined in section 2 we have in this case 
the so called Stochastic Partial Information (SPI) (see Kofler et al., 1980) 

N N 
a 1 , Ak ~ 0, k=l, 2, ••• , N} , 

where for every k&{1,2, ••• ,N} Pk is"a probability measure. When only the 
coefficients of vector b(.) in (2) are random variables and we have a SPI 
for everey coefficient, we can compute the minEmax-optimal decisions about 
x analogous Abel(1984) p. 198f. 

When we get a a based on informations about the mean respectively the 
variance of single coefficients of A(.), b(.), c(.), q(.) and/or W(.) for 
example in form of fixed upper and lower bounds (so far as mean and variance 
generally do exist), we have, depending on the respective structure of a, for 
several a deterministic optimization models available, which are equivalent 
to (3) and solvable with numerical standard methods (see e.g. Dupacova, 1980; 
Huelsmann, 1971, 1972, 1972a; Jagannathan, 1977 and Theodorescu, 1972). 
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APPLIED GEWR(n,p,q) NORMAL DISCOUNT BAYESIAN MODEL: AN AUSTRIAN ECONOMIC 

CASE STUDY 

M. Akram 

Business And Management Department 
Bahrain University 
Isa Town, Bahrain 

The theory of Generalised Exponentially Weighted Regression (GEWR) and 
dynamic Bayesian models has been given previously by Harrison-Akram(1982), 
Akram-Harrison(1983) and Akram(1984). This paper breifly reviews some of the 
main results and applies them to seasonal data concerned with the disposable 
personal income in Austria. For the selection of an appropriate model a new 
Stepwise Identification Procedure(SIP) based on a nonparametric 'measure, called 
Average String Length(ASL), is used. Both short and long term full forecasts 
and trends are obtained from a single model using on-line Bayesian learning 
procedure. The model applied yields optimum forecasts in the senses of 
minimum mean square error and whiteness of one step ahead forecast errors. 

1. INTRODUCTION 

In economic systems we often encounter time series containing additive 
coloured noise. For such series Generalised Exponentially Weighted Regression 
theory has been developed and given by Harrison-Akram(1982), Akram-Harrison 
(1983) and Akram(1984). In their work, they introduced a wide class of 
parsimonious dynamic linear models and applied them to data sets from various 
walks of life. This theory, which is based on linear filtering using an 
exponentially weighted system and Bayesian formulation, is briefly reviewed 
in section 2. In section 3 a GEWR Normal Discount Bayesian Model is given. 
Section 4 introduces on-line Bayesian learning procedure. Section 5 discusses 
Stepwise Identification Procedure and section 6 describes a particular form 
of the model used to analyse data concerned with disposable personal income 
of Austria and presents short and long term forecasts along with trends. 

2. GENERALISED EXPONENTIALLY WEIGHTED REGRESSION (GEWR) 

2.1 Definition of GEWR 

At time t, for forecasting future outcomes Yt +i , assume a local model 

7 



Yt +i = fi ! + ct +i 
where for an integer i f. are (1xn) row vectors of some known functions of 

-1 

independent variables or constants and C . is a sequence of coloured noise. t+1 
By definition, the elements of f. vectors are functions of time, generally 

-1 

described by constants, polynomials and trigonometric functions as in Brown 

(1962). For time series f.= f Gi , where G is (nxn) transition matrix of full 
-1 -- -

rank with non zero elements on its main diagonal. The eigenvalues of this 

matrix determine the form of forecast function. It is assumed that coloured 

noise arises from ARMA(p,q) noise process 

~ (B) ct = n (B) 6 
p. q t 

P q 
where ~ (B) = .n1 (1- ~iB) and p 1= nq (B) = i~1 (1 - niB) are polynomials in 

B, the backward shift operator, of degrees p and q respectively, the roots 

of which are assumed to lie outside unit circle; and 6t is a white noise 

sequence of random variables, iid with mean zero and variance V. The coloured 

noise vector £~ = ( ct ' c t _l ' ••• , c1 ) is such that ~ ~ (Q; Kt1V) , where 

P is a (txt) precision matrix at time t. 
-t 

2 
For a discount factor 0 < e < minlAil ,where Ai are eigenvalues of 

g, defining e! = diag(l, e!, e , ••• , ~(t-l) the GEWR estimate m of a 
~ ~ -

based on observations Yt' Yt-l"'" Yl is that vector value of a C Rn which 

minimizes 

c' e! P e! C 
-t: - t -t -t: -t: 

2.2 Recurrence Relations 

Defining: 

1/I(B) ~ (B)/n (B) 
p q 

t-l 
1/It(B) = i~O 1/Ii Bi 

u -t = f 1/1 - t 
( e! g-l) 

1 

t-1 
e! g-l)i = f . LO 1/1. ( - 1= 1 

t-1 
e!B )Yt 

! i 
Zt = 1/1 ( i~O 1/Ii ( e ) Yt - i t 

dt = u G m 1 -t - -t-

and one step ahead forecast error et 
for computing mare -t 

m -t =Gm 1 +A - -t- -t 
et 

!t =G~lG'/e - -1-

A = K u' 1(1 + u K u') -t -t -t -t-t-t 
-1 

Slt = (.!. - ~2.t)~· 

Zt - dt , the recurrence relations 

For these recurrence relations, no matrix inversions are involved, but if 
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required for any intermediate estimate, they can be found from the expression 

, -1 ' -1 
.Q.t = ~t ~t + B(£ ) .Q.t-1 Q 

2.3 Limiting Results 
2 

Under restriction ° < B < min\A.\ 
1 

exist. As t + ~ 

i) Lim~ Lim ~ = A and 

n n 

the following limiting results 

Lim ~ = .Q. 

ii) Lim { i~l (1- AiB)Zt - i~l(l- BB/Ai)et } = 0. 

The last result is true, irrespective of GEWR is optimal or not. However, 

if e ~ (0, 0 2) then subject to Box-Jenkins(1976) restrictions on the 
t e 

eigenvalues Ai (i=l, ••• , n), Yt has a limiting ARIMA representation. For 

more detail see Harrison-Akram(1982) and Akram(1984). 

3. GEWR NORMAL DISCOUNT BAYESIAN MODEL (GNDBM) 

3.1 Autoregressive Form 

An autoregressive form of GNDBM is presented here as in practice this 

form is most commonly used owing to the fact that quite often"ARMA processes 

with invertible moving average part can be modelled as parsimonious finite 

AR processes. A GNDBM of order n,p,O, written as GEWR(n,p,O), where n is 

the degree of polynomial required to represent low frequency component or 

trend and p is as stated earlier, is defined as follows. 

Z = u e + 0t t -t-
V) 

where Zt is the series derived from the original observations Yt for t=1,2, •• 

'" , such that 

Zt 

t-1 
1/1. Si/2y . 

=[':0 
1 t-1 

1/1. Si/2y . i~O 1 t-1 

t-l 

[
i.E 1/I.(slG-I)i 

1=0 1 -

f ~ (! -l)i _ i';-O 1/Ii B G 

if t;:;; p 

if t > P 

if t ~ P 

if t > P 

The AR(p) representation of coloured noise Et is 1/I(B) Et = ~ (B) E = 0 • 
P t t 

Consequently a GNDBM formulation based upon Zt is { ~t' Q, V, S} which for 

t > p becomes a constant GNDBM defined over quadruple { ~, Q, V, B }. 

3.2 Recurrence Relations 

For a given prior (!t-l \ Dt _1 ) ~ N( ~-l '£t-l ), where 
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Dt _l = Yt - l , Yt - 2 , ••• , Yl , the posterior ( at I Dt ) 'V N( ~t ; .9.t ), where 

D (y, D 1)' is computed through the following recurrence relations. t t t-

R = G C G'/e -t - -t-l -

Yt = V + u R u' 
-t -t -t 

A -1 
_At = R u' (Y ) -'t -t t 

z - u G m t -t - -t-l 

m = G m 1 + A e. 
-t - -t- -t t 

3.3 Forecast Function 

k-steps ahead forecast function for the original 

k R. i/2 . 
Ft(k) = ~+k ~ ~t - i~l ~i e xt(k-~) 

where k 
~t+k ~ ~t = E( Zt+k I Dt ) , R. = min( p, t-l ) 

[ Yt +k- i 
if k ~ i 

xt(k-i) = 
Ft(k-i) if k > i 

3.4 Seasonality 

series Yt is 

and 

In case of seasonal time series ~(B) for the GNDBM is replaced by 

~ (B) which is r; defined as follows. 

~ (B) = ~ ( e!B). S (B) = r; p s 

r; i 
i~O ~iB 

r; 
.n10 - Y.B) 
~= ~ 

where S (B) is a polynomial in B of degree s for seasonality such that 
s 

s . s 
Ss(B) = j~O Sj BJ = j~l 0- rJ.ljB) 

and Sj are real but 

is a damping factor 

J.lj occur in complex conjugate pairs and 0 < r"< 1 

The series Z and vector u are redefined, 
t -t 

replacing 

polynomial 

P by r; 
~ (B). r; 

P + s and using the coefficients ~i of the 

For more detail see Akram(1984). 

4. ON - LINE BAYESIAN LEARNING PROCEDURE 

For recurrence relations (3.2) if variance V is unknown, then at time 

t, it is estimated as: 

Vt 

Lt 

Nt 

dt 

where 0 

10 

L/N t 

ev Lt _l + (1 - ~t ~)dt 

e N 1 + 1 v t-

min( e~ §Yt 

< ev < 1 is a discount factor for variance learning and is 



a confidence factor, corresponding to distance between some cr -limits, say 

2cr or 3cr. For example § = 4 for 2cr limits and § = 6 for 3cr limits. 

For most practical situations, ev close to one and § = 4 is recommended. 

For more detail see Akram(1984). 

Comment 

If there is no original information in the system then no contribution 

to the estimate of V is made during the first few points. For this period 
t A 

in place of Vt the prior estimate Vo is used. As a rule of thumb, it is 

recommended to use Vt after n+p+q observations, where n,p and q are as 

defined earlier, and minimum values of LO and NO. 

5. STEPWISE IDENTIFICATION PROCEDURE 

In practice the noise process for a GEWR application is well represented 
by an AR(p) process of order p=l or p=2. For identification of type of noise 
and subsequent selection of some appropriate GEWR(n,p,O) model, various 
approaches may be used, such as, Yule-Walker equations (Yule(1927) and 
Walker(1931) ), Autocorrelation, Partial Autocorrelation and Durbin-Watson 
(1950). However, here a simple nonparameteric procedure, called Stepwise 
Identification Procedure (SIP), introduced by Akram (1984) is briefly reviewed. 
This approach is based on Average String Length (ASL), the mean distance 
between successive peaks or troughs of residuals or one step ahead forecast 
errors obtained by applying some GEWR(n,p,O) model to the time series of 
interest. The steps involved in the identification procedure are as follows. 

A GNDBM GEWR(n,O,O) is applied to the data with some appropriate values 
of n,f, e and V or e if variance is estimated on-line using Bayesian 
Learning Procedure (4). vASL of one step ahead forecast errors is computed 
and compared with the theoretical values of ASLs given in Appendix B. This 
comparison gives us approximate value of ~ , the AR coefficient, which in 
turn helps us to identify the nature of residuals with respect to colour or 
whiteness and the suitability of the model applied. For whiteness of 
residuals the computed value of ASL should not be significantly different 
from 2 ( a value corresponding to ~ = 0 ) at a certain level of significapce. 
We see this by formulating a null hypothesis ASL = 2 ( i.e. the residuals 
form a white noise sequence) against some alternative hypothesis, say ASL~O. 
The null hypothesis is accepted or rejected according to the critical region 
bounded by the the critical values 

2(N+1)/(N + Z I N) - a. 
where for large N+1 observations Za. is a standard normal variate value 
at certain a. , the level of significance. Acceptance of null hypothesis 
ensures whiteness of residuals, whereas, the rejection confirms the presence 
of colour in the residuals. Subsequently, the whiteness of residuals tell us 
that the model GEWR(n,O,O) is suitable for the series under study. This 
gives us green light to go ahead to find forecasts and trends, both short 
and long term. 

In case of rejection of null hypothesis , i,e. the computed value of 
ASL is significantly different from 2, we look at the AR(l) coefficient 
corresponding to the computed value of ASL in Appendix B and adopt an 
approximate value of this coefficient for GEWR(n,l,O) model. The values 
of' n, f, G, e, V and e are taken as selected before. This new model is 
applied-to-the data, resid~als are obtained and ASL is computed again as 
before and checked the whiteness of the residuals. We go on cycling the 
identification procedure until we see whiteness of the residuals or in 
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turn confirm the suitability of the model applied. In case of unsatisfactory 
results of GEWR(n,1,0), we move to GEWR(n,2,0) with AR(2) coefficients 
suggested by the computed ASL values. For moving forward we go on retaining 
the identified AR coefficients in a successive manner. First we estimate 
'1' then '2 and '3 and so on. 

6. CASE STUDY 

A quarterly seasonal data set concerned with the disposable personal 
income in Austria, consisting of 104 observations (1954-79)(appendix A) is 
analysed by applying GEWR(n,p,O) Normal Discount Bayesian Model (3.1), i.e. 

Z = u 6 + c5 c5 '" N(O; V) t -t- t t 
with n = 2. For low frequency or trend, which shows a continually decreasing 
growth rate following an asymptotic S-shaped growth curve, Gompertz function 

t 

y = a b P a > 0, ° < b,p < 1 t 
is used. In order to establish a link between this function and the GNDBM, 
a log analogue of this function is used. Following the procedure explained 
by Akram (1984), for our GEWR model, the following setting is considered for 
operation. 

i=(l 1), ~ = diag(l, 0.994), 13 = 0.98 and ! r = 0.9913 • 

The dynamic system of the model is initiated by using prior 

~"'N(6)( 1 -1 1.1) ) 
-3 -1.1 

On-line variance learning is used by setting f3v 
For first 2+s+p observations Vo and after that 

are derived by using formulation (3.1). 

0.99, Vo = 1 and NO = 5. 

Vt are used. Z and u 
t -t 

For quarterly seasonal data, seasonal polynomial (3.4) is considered 
as fo11ows. 

2 2 
S3(B) = (1 + r B )(1 + rB). 

This seasonal polynomial gives us full harmonic representation for the 
quarterly data under study. 

First GEWR(2,0,0) form of the GNDBM is applied by considering ,(f3!B)=l 
and W3(B) = S3(B). One step ahead forecasts along with residuals are 
obtained using the recurrence relations (3.2). The residuals give us ASL~ 17, 
a figure significantly different from 2 (at 5% level of significance). This 
reflects inadequacy of model for the data under study. Looking at the table 
of theoretical ASL values (Appendix B) it is decided to consider $ = 0.9 
for onward use. 

Following SIP we proceed to GEWR(2,1,0) form of the GNDBM choosing 
'1 = 0.9 and derive Zt and ~ again considering 

Wit (B) = (1 -$IJB).S/B). 

This model yields one step ahead forecast errors having ASL ~ 3. Sti11 a 
value significantly different from 2. For this approximate value we select 
$ = 0.5 for onward use. This reflects incapability of the GEWR(2,1,0) to 

filter whole coloured noise. It has filtered quite a lot but not all. 

In the light of information provided by ASL, it is decided to move 
a step forward and formulate GEWR(2,2,0) form of GNDBM by choosing AR(2) 
coefficients $1= 0.9 and $2 = 0.5. For this selection Zt and ~ are 
derived again by considering 

i ! Ws(B) = ( 1 - $113 B)(l - $213 B),S3(B). 
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As usual, one step ahead forecasts are obtained along with residuals. This 
time ASL computed for the residuals is 2.2, a value not significantly 
different from 2. It indicates that the residuals form a sequence of white 
noise, a confirmation of suitability of the model. Other than this, the model 
GEWR(2,2,O) with the identified AR coefficients yields one step ahead 
forecasts with less than 0.06% Mean Square Error and 1.5% Mean Average 
Deviation, lowest in its class of models. 

After ensuring the suitability of GEWR(2,2,0) model, all 
term forecasts along with trends are obtained from this model. 
ahead forecasts along with observations are displayed in fig.a 
ahead trend is shown in fig.b. Long term forecasts (10 and 20 
and trends are displayed in figures c to f. 

COMMENT 

short and long 
One step 

and one step 
steps ahead) 

For analysis of data, log transformation is used in line with the log 
form of Gompertz function and all forecasts and trends are obtained from a 
single GEWR(2,2,0) model. The results show that a joint modelling scheme 
where low frequency (trend), medium frequency (seasonal variations) and 
high frequency (coloured noise) components are incorporated within same 
framework, the low frequency is well protected from the high frequency, 
especially in the long run. 
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APPENDIX A 

Year 1 2 3 4 

1954 17.62 18.86 20.58 23.51 
1955 19.31 21.42 23.93 26.91 
1956 21.98 24.00 25.96 27.66 
1957 23.34 25.80 27.23 29.87 
1958 24.19 26.70 28.47 31.65 
1959 25.41 27.94 29.61 32.98 
1960 27.40 29.40 32.04 35.37 
1961 29.52 31.51 33.94 38.06 
1962 30.70 32.87 34.75 38.76 
1963 31.22 35.12 36.44 41.44 
1964 33.72 36.77 37.71 43.61 
1965 34.96 38.47 39.15 45.05 
1966 36.57 40.68 41.10 46.43 
1967 37.88 41. 79 42.36 47.74 
1968 40.61 43.93 43.92 49.01 
1969 42.08 46.31 45.94 51.38 
1970 44.53 48.65 47.99 54.08 
1971 48.25 52.21 51.51 58.11 
1972 50.90 55.29 54.00 60.62 
1973 53.14 58.74 57.69 65.01 
1974 57.71 62.36 59.88 66.60 
1975 57.78 63. i93 61.07 68.43 
1976 60.37 66.05 63.47 72.19 
1977 64.69 69.50 64.46 73.80 
1978 66.02 70.48 65.35 74.70 
1979 68.33 72.94 67.74 77 .31 
--------------------------------------------------------------

Unit: Billions of Schillings 

Source: Austrian Institute of Economic Research, 
Vienna, Austria. 
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USING INFLUENCE DIAGRAMS TO SOLVE 

A CALIBRATION PROBLEM 

INTRODUCTION 

R. E. Barlow 
University of California 
Berkeley, CA 94720 

R. W. Mensing and 
N. G. Smiriga 
Lawrence Livermore National Laboratory 
Livermore, CA 94550 

A measuring instrument measures a unit and records an 
observation y. The non-measurable variable of interest, the 
"true" measurement, x, of the unit is to be inferred from y, 
the measurable variable. If p(ylx) is the likelihood of y 
given x and x has prior p(x), then by Bayes' Theorem 

p(xly) oc p(ylx)p(x). 

Let Xo and cro2 be the mean and variance of p(x). We will 
assess the likelihood, p(ylx), using a linear regression model 

y = a + ~(x-x*) + ,E ( 1.1) 

where x* is specified and a priori (a,~) .1 x.l E and E is 
N(0,cr2) with cr specified. (These assumptions could, of course, 
be relaxed; e.g. cr2 unknown, E dependent on x, etc. However, 
our assumptions are convenient and sufficiently general to 
provide conclusions of general interest.) It follows that 
p(Yla,~,x-x*) is N(a+~(x-x*),cr2). 

The "center", x*, of the likelihood model and the prior for 
x are intertwined. The natural choice for x* is the mean of 
the prior for x, namely x* = xo' This is reasonable since our 
attention is focused on calculating p(xly). The line, with x* 
= xo' is y = a + ~ (x-xo) where a and ~ are unknown and of course 
y cannot be observed without error. Of course, the prior for 
(a,~) depends on x* = Xo and it is natural to assume that 

p(a,~lxo) = p(al~,xo)p(~) since only a depends on xo' 
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Figure 1.1 is an influence diagram describing the logical and 
statistical dependencies between unknown quantities, decision 
alternatives and values (losses or utilities). The decision 
may be an estimate for x given y. If the value or loss is 

w(d,x) = (d-x)2 

then the optimal decision will be the posterior mean for x 
given y. The next section will discuss influence diagrams in 
more detail. 

The Calibration Experiment 

The purpose of the calibration experiment is to learn about 
(a,p) so that given a future observation Yf we can reduce our 
uncertainty about a future "true" measurement xf' To calibrate 
our measuring instrument, we record n measurements 

Y = (Yl' Y2' ... , Yn) 

on n units all of whose "true" measurements, 

are specified before hand. Based on our prior, P(xf), and our 
regression model (1.1), our problem is to determine x = 
(xl' x2' . . . , xn) (subject to feasibility constraints) so as 
to minimize some overall loss function. The experimental 
design for the calibration experiment is called x. 

The following assumptions will be made relative to the 
calibration experiment. 

Assumption 1. The future "true value", xf' is independent of 

(a,p), x, and y. The future observation, Yf' is independent 

of (x,y) given (a,p). 

Assumption 2. The value function w(d,xf) is a loss function 
and depends only on d (the decision regarding xf taken at the 
time we observe Yf) and the "true value" xf' For example, we 
are ignoring the cost of performing the experiment. 

Assumption 3. The feasible region, R, for the experimental 
design, x, is bounded. That is, infinite xi values are not 
allowed in practice. 

Figure 1.2 is an influence diagram representation for our 
problem. We seek an optimal experimental design subject to 
x E R. For a more detailed discussion of this problem and 
references to other approaches see Chapter 10 of Aitchison and 
Dunsmore (1980). Hoadley (1970) discusses the calibration 
inference problem in some detail and points out the 
difficulties with the maximum likelihood estimator for xf given 
an observation Yf and data [(xi,Yi), i = 1, 2, ... ,n] from a 
calibration experiment. Brown (1982) and Brown and Sundberg 
(1985) extend Hoadley's results using a multivariate 

18 



p (a,p) 

Decision 
d 

Fig. 1.1 Influence diagram for the inference calibration problem 

Experimental 
Design 

n,x 

~ 
Decision 

d 

E - N(O,a~ 

Fig. 1.2 The calibration experimental design problem 
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formulation. However, they do not consider the problem of 
optimal Bayesian experimental design. The definitive 
reference for Bayesian design for linear regression is 
Chaloner (1984). The objective of this paper is to discuss 
the calibration experimental design problem. 

Summary of Results 

Based on the likelihood it is shown that the experimental 
design may be summarized by 

and 

where 

n, 
n 

X - X = ~ (x. - x ) / n , 
o +' ~ 0 

n 

V ~(x.- X )2 
x ,., ~ 0 

I x-x 1< r;;;: o - V v x' u 

If ~ is known, the optimal experimental design depends only on 
n and corresponds to taking n as large as possible. The 
values of x are immaterial. If ais known, the value of the 
experimental design depends only on vxand is decreasing in Vx 

for fixed n. If both a and ~ are unknown, the optimal design 
can be found by performing a three dimensional search over 
(n, x-xo' vx ) • 

USING INFLUENCE DIAGRAMS 

Influence diagrams are discussed by Shachter (1986). He 
also provides an influence diagram solution algorithm for 
decision problems. 

In Figures 1.1 and 1.2 circles denote random quantities 
while rectangles denote decision alternatives. Diamonds 
denote deterministic functions of their immediate input 
variables. The arrows denote influence. Thus the two input 
arrows to Yf indicate that Yf depends on both xf and (a,~). In 

this case the assessed probability function for Yf given (a,~) 

and xf is N[a+~(xf-xo),cr2l. Each circle node has a weight 
attached. This weight is a conditional probability function 
which only depends on immediate predecessor nodes. 

The influence diagram is first of all an acyclic directed 
graph. As such there always exists an ordered list of nodes 
which preserves the graph ordering. For example, in Figure 
1.2 an ordered list is 

(n,x) < (a,~)< y< xf<Yf<d<w. 

From the ordered list and the weights attached to circle nodes 
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we can calculate a unique representation for the joint 
probability function corresponding to probability nodes. From 
Figure 1.2, for random quantities, 

fl., ~, y, xf' Yf 

the joint probability function is 

P (fI.,~) P (y I fI.,~,n, x) P (Xf) P (Yf I fI.,~, Xf) 

It can be easily vQrified that if two probabIlIty nodes 
have only output arrows, then they are unconditionally 
independent. From Figure 1.2 we see that (fI.,~) and xf are 
unconditionally independent as required by assumption 1. 
Since there is no arc connecting (x,y) and Yf it follows that 

(x,y) ~Yf given the status of their immediate predecessor 

nodes, namely (fI.,~) and xf' But, since (x,y) ~ xf' it follows 

that (x,y) ~ Yf given (fI.,~). 

To find the optimal experimental design, we will reduce 
Figure 1.2 to just two nodes, namely the decision node (n,x) 
and the value node w(d,xf)' The value node is deterministic; 
i.e. the value is determined given d and xf' The value node has 
only input arrows. 

The solution algorithm starts with the value node. The 
nearest decision node in the ordered list is d. Fix the 
immediate predecessors of node d; namely, (n,x), y and Yf. 
These denote information available at the time of decision. 
Next, eliminate all other probabilistic predecessors of the 
value node; namely, xf and (fI.,~). This is done by arc 
reversal and Bayes' Theorem. Figure 1.3 shows the influence 
diagram after reversing the arc from (fI.,~) to y. Note that 
the posterior distribution for (fI.,~) now depends on both 
(n,x) and y. 

The next step is to reverse the arc from (fI.,p) to Yf. 

After reversal, node (fI.,~) has only input arcs; i.e. all the 
information in this node relative to our design problem has 
been extracted. Hence, at this point node (fI.,~) is deleted 
leaving the influence diagram of Figure 1.4. 

Before the decision node can be eliminated, we must first 
eliminate node xf by reversing the arc from xf to Yf and the 
arc from xf to w. Figure 1.5 shows the influence diagram after 
reversing the arc from xf to Yf. The next step is to reverse 
the arc from xf to w. After this reversal, node w has value 

E I [w(d,x f ) lyf,y,n,xJ. 
Xf Yf.Y,n,x 
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n,x 

-"' . 
.... 

p(y In,x) 

p (a,illn,x, y) 

Decision 
d 

Fig. 1.3 The calibration problem after arc reversal 

n, x 

.... .... 
'" 

' " 

'" 

p(y l n, x ) 

" " 
" 

.. 

" 
" 

Decision 
d 

·· · · ·· ····· · ·············D~ 
P(Yf I n,x,y, )tf) 

Fig. 1.4 The influence diagram after elimination of node (a, B) 
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p(yln,x) 

n, x 
Decision 

d 

P(Yf In,x,y) 

Fig. 1.5 The influence diagram after reversing the arc from 
xf to Yf 

To eliminate the decision node we calculate 
00 

M~n fW(d,Xf)P(XfIYf,y,n,X)dXf 

where 

and 

Finally, we compute 

w (x) = E E Min E [w (d x ) I Y Y n xl 
Yln,x Yfly,n,x d xflYf,y,n,x 'ff'" 

(2.1 ) 

where 

P(Yfly,n,x) 
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The optimal design is the m~n~m~zer of W(x). If we take 
squared error loss, (d-Xf)2 , as our value function then the 
posterior mean is the minimizer of 

2 
E I [(d-xf) 1Yf,y,n,x] 

Xf Yf,Y,n,x 

and W(x) becomes 

W(x) = E I E I var(xflyf,y,n,x). 
Y n,x Yf Y,n,x 

LIKELIHOOD AND THE OPTIMAL EXPERIMENTAL DESIGN 

Under the assumption that observation errors, {Ei1i = 1, 

2, ... , n} are independent N (0, 0'2), but without specifying 
prior distributions, we can determine some of the structure of 
the optimal experimental design. This can be done using the 
sufficient statistics for (a, ~)corresponding to our likelihood 
model. As noted before, the purpose of the calibration 
experiment is to learn about (a, ~). The likelihood for (a, ~) 

given the data is 
n 

'" 2 2 L(a,~) IData,x) oc exp {- £.. [Yl.' - a - ~(x.-x )] /20' }. 
o 1 l. 0 

A priori assume a.l ~ .1 E and let E (a) = a, E (~) = b, Var (a) = O'a 2, 

and Var (~) = O'b2 . Define 

and rewrite 

so that 

L (a, ~ I Data, xo) 

Clearly n, f (x.-x ), f (x.-x ) 2, 
1 l. 0 1 l. 0 

n 

Zl = Le. and Z2 
1 l. 

(3.1 ) 

sufficient statistics for (a,~) since xo' a, band 0' are spec
ified. It follows that the posterior density for (a,~) also 

n n 2 

depends on the data only through n, L(Xi-x), L(x.-x), zl and Z2' 
1 0 1 l. 0 
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ThQorQID 3.1 

W(x} depends on x only through 

n, 
n 

x-x =)(x.-x )/n 
o ~ ~ 0 

and n 

V = L,(x.-X)2 
x 1 ~ 0 

N. B. This is true for all value functions w(d,xf) and priors 

on (a,~) and xf' Were w to also depend on x but only through 
n, x-xo and vx ' theorem 3.1 would still hold. 

Proof: 

The purpose of the calibration experiment is to learn 
about (a,~)so that, in the future, we may make a "good" 
decision about xf' Since n, x-xo ' vx , zl and z2 are sufficient 

statistics for (a,~), the test results, y, may be summarized 
by zl and z2' 

If we examine the derivation of (2.1) carefully, we see 
that (2.1) can be rewritten as 

W(x) 

E _ E Min E [w(d,x f ) ly f ,zl,z2,n, 
ZII z2In,x,vx,xo Yflzl,z 2,n ,11 'V x ,Xo d XfIYf,zl,z2,n,lt,vx,xo 

x,vx,xo ] (3.2) 

Hence, from (3.2), we need only show that the joint distri
bution of (zl,z2) depends on x only through n, x-xo and vx ' It 

is easy to show that (zl,z2)' given (a,~), is bivariate normal 

where zl given (a,~) is 
n 

N[n(a-a) + (~-b)L.(x.-x), ncr2] 
1 ~ 0 

and z2, given (a,~), is 
n n n 

N [(a-a) L, (x.-x) + (~-b) L, (X,-xo)2, cr2 L, (x.-x ) 2] 
1 ~o 1· 1 ~o 

while 
n 

cr2L, (X.- x ) . 
, ~ 0 

QED 

Corollary 3.2 

If crb = 0, i.e. we are certain that ~ = b, then W(x) 
depends on x only through n. The "levels" (Xl' x2, ... , xn) 
are immaterial and we might just as well take 
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or any other values that we like. 

Proof: 

If we are certain that ~ 

becomes 

0, then (3.1) 

n 

oc exp{-[n(a-a)2 - 2~e,(a-a)]/2cr2}. 
1 ~ 

n n 

Hence nand zl = Le, 
1 ~ 

L[Y, - a - b(x,-X )] are sufficient for a. 
1 ~ ~ 0 

Since 21 given (a,~=b) is 

N [n (a-a), ncr2] 

it follows that W(x) depends on x only through n. QED 

Corollary 3.3 

If a is known, i.e. cra = 0, then W(x) depends 

on x only through vx • Further, for fixed n, W(x) is decreasing 

in vx ' 

In this case, W(x) is minimized for those x belonging to R for 
which Vx is maximum. 

Proof: 

If cra = 0, then (3.1) becomes 

2 n 2 n 2 
L(~IData,x) oc exp{-[(~-b) L(x,-x) - 2(~-b)Le,(x,-x )]/2cr}. o 1 ~o l~~o 

Hence ~(Xi-Xo)2 and z2 = ~ei(Xi-XO) are sufficient for~. Since 

z2 given (a = a,~) is 

it follows that when a = a is known, W (x) depends on x only 
through vX' 

Suppose 
n n 

L (x -x ) 2 < L (x'- x ) 2. Clearly we can find xn+1 such that 
1 i 0 1 i 0 

n 2 n 2 
~(x: -X) = ~ (x, -X) + (x 1 - X ) 2 

1 J.. 0 1 J. 0 n+ 0 
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n+1 =L (X,_X)2 
1 ~ 0 • 

By the expected information inequality [see Raiffa and 
Schlaifer (1961)], the expected value function can only 
decrease if we perform additional calibration experiments. 
Hence W(x) is decreasing in Vx for fixed n. QED 

Determining the Structure of the Optimal Experimental 
Design 

Since 

it follows that 

and 

I x-x I::;; r;;-;;:. o VVX/U 

Consequently, the minimization problem with respect to x 
can be transformed to a minimization problem with respect to 
only three variables, namely n, x-xo' Vx where 

Ix-x I::;; r;-;;:. o "Vy/ll 

Since x-xo and Vx are symmetric functions of an experi
mental design x, it follows that, for fixed n, any permutation 
of the coordinates of an experimental design solution is also 
a solution (if allowed by the feasibility constraints) . 
Figure 3.1 shows the nature of the possible (xl, x2) solutions 
for Vx fixed and n = 2. The darkened arcs on the circum
ference show the possible designs for a fixed Vx (up to 
permutations of coordinates). For fixed vx' possible solutions 
are traced out by the intersection of the line x-xo = c with 

the circumference of the circle (xl-xo ) 2 + (x2-Xo ) 2 = J2vx/~ 

as c varies from -J v/n' to FP· 
The optimal experimental design x can, in theory, be 

found through a three dimensional search over the feasible 
region R. One strategy would be to fix n and, using a 
computer, calculate a three dimensional plot of W(x), as given 
by (3.2), versus x-xo and vx . Figure 3.2 illustrates the 3 
dimensional plot for a fixed n. The plot shows the surface of 

W(x) as a function of Ix - x I ::;; ~n . 
o "vx '· 

27 



Fig. 3.1 N = 2 

W(x ) 

x-Xo -.,j V.Jn 

("t - x 2 - • • • - x n ) 

Fig. 3.2 0b # 0, n ~ 2 and fixed 
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Suppose we are uncertain about both a and~. From (3.1) 
we see that if xl = x2 = ... = xn xo' then 

n 

L(a, ~IData) ~ exp{-[n(a-a)2 - ~ei(a-a)1/2cr2} 
1 

so that in this case the data provide no direct information 
about~. If, in addition, the prior for (a,~) satisfies 

i.e. a and ~ are a priori independent given xo' then 

and the posterior marginal for ~ is the same as the prior 
marginal for~. Intuitively, if ~ is unknown and crb » cra, the 
experimental design 

is a local maximum for the final expected value since values 
of xi near Xo will provide information about ~ and hence tend 
to reduce the final expected value. 

Computational Considerations 

The calculation of W(x) as expressed in (3.2) assumes 
that P(xf 1Yf,zl,z2,n,x-xo'vx) and P(Yf1zl,z2,n,x-xo'vx) are 
available. To obtain these densities, we must first calculate 
the posterior density for (a,~) given n, x-xo and vx ' In 

the case of a bivariate normal prior for (a,~), the 
posterior density will again be bivariate normal and 
p(Yflxf,zl,z2,n,x-xo'vx) will be univariate normal. In a 
future paper we investigate the computational problems in more 
detail. 

INFLUENCE DIAGRAMS AND THE SURE THING PRINCIPLE 

The Sure Thing Principle [Savage (1954») asserts that if 
decision d is preferred to d* for any possible value of a 
quantity, say a, then d is also preferred to d* when a is 
unknown. Suppose n is fixed for our calibration experimental 
design. By Corollary 3.3 and the Sure Thing Principle we 
might at first infer that the optimal experimental design 
corresponds to those x e R for which vxis maximum regardless 

of whether a is known or unknown. This reasoning is easily 
seen to be incorrect, since by Corollary 3.2 and the Sure 
Thing Principle we would also have concluded that the optimal 
experimental design depends only on n. 
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The resolution of this seeming contradiction can be seen 
from the influence diagram, Figure 1.2. There are ~ 
decision nodes, say dl and d2' Hence the correct statement of 
the Sure Thing Principle would require that a decision pair 

... ... 
(d1,d2 ) be preferred to (d1 ,d 2 ) for any value of 0.. In fact, the 

decision node corresponding to estimating xf will depend on 

0. = a when 0. is known and on ~ = b when ~ is known. 
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RELIABILITY OF A COMPLEX SYSTEM FROM BAYESIAN VIEWPOINT 
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Let X and Y be two random variables with cumulative distribution 
functions F(x) and G(y) respectively. Let Y be the' strength of a component 
subject to a stress X. Then the component fajls if at any moment the 
applied stress (or load) is greater than its strength or resistance. 
Reliability of the component is then given by 

R = r(X < Y) (1.1) 

The above model has been useful in a number of areas, specially in 
the structural and aircraft industries. As an example consider the follow
ing. A solid propellant rocket engine is successfully fired provided the 
chamber pressure X generated by ignition stays below the burst pressure Y 
of the' rocket chamber. If X > Y, the engine blows up and the operation 
is a failure. 

From practical considerations it is desirable to draw inference about 
R and other similar measures. In rr~ny situations, the distribution of X 
(or of both X and Y) will be completely known except possibly for a few 
unknown parameters and it is desired to obtain parametric solutions. The 
problems of estimating the reliability functions, both for simple and com
plex systems, have been corsidered by many. For a bibliography of avail
able results see Basu (1977a, 1977b, 1981, 1985) and Bhattacharyya and 
Johnson (1975). However, most results are based on sampling theory 
approach. Enis and Geisser (1971) and Zacks (1977) have considered the 
Froblem from Bayesian point of view. In this paper we consider Bayesian 
approach fer general systems. 

A number of complex systems are described in Section 2. Bayesian 
analysis, assuming noninformative prior and conjugate prior distributions, 
are given in Sections 3 and 4. Finally a model based on multivariate 
normal distributjon is discussed in Section 5. 

*This research was funded by a grant from the Research Council of the 
Graduate School, University of Missouri-Columbia. Part of this research 
was carried out while A.P. Basu was visiting the University of Warwick, 
Coventry, England. 
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2. COMPLEx SYSTEMS 

Consider a physical system. A system is called simple if it consists 
of a single component. Otherwise it is called a complex system. a complex 
system, consisting of p components, is called a k-out-of-p system if it func
tions if and only if at least k of these p components functions successfully. 
Such a system occurs quite naturally in many physical and biomedical models. 
As an example of a 2-out-of-3 system, consider an airplane which can func
tion satisfactorily if and only if at least two of its three engines are 
functioning. When k = p (or k = 1) we obtain series (or parallel) systems 
as special cases of k-out-of-p systems. In this section we shall consider 
three k-out-of-p systems. 

First, consider a simple system of strength Y which is subjected to 
p different stresses X1'X2"",Xp ' An example of interest is the case where 
a beam of strength Y is subjected to p different stresses X1,X2""'Xp ' 
Let us assume that the Xi's are independently and identically distributed 
with a common distribution function F(x) == F(x;6 1). Let the cdf of Y be 
G(y)==G(y,62) and assume that the Xi's and Yare independent. Then the 
reliability of the system is given by 

Prob(at least k of the Xi's < Y) 

I (~) [F(y)Jj[l-F(y)JP-JdG(y) 
p f 00 • 

j=k J -00 

(2.1) 

Assume that F and G satisfy the Lehmann 
X and Y tc have proportional failure rates. 

61/6 2 

alternative, that is, assume 
Let 

[1 - G(x;6 2)] = [1 - F(x;6 l )] (2.2) 

The exponential distributions and the Weibull distributions with COUllllon 
shape parameter satisfy (2.2). From (2.1) and (2.2) we obtain 

where 

Rl = I (~) f(j + 1) f(p + t - j)/{A f(p + t + I)} 
j=k J 

= f (p + 1) 

-1 A = 6/82, 

(a + b - 1) + 
b - 1 

1 f(p + I + 1 - k) / {r(p + 1 - k) f(p 

The last expression is obtained using the result 

(2.3) 

(2.4) 

Next a p-component system with strengths Y1,Y2,""Yp respectively is 
considered where each component is subjected to the same stress X. As an 
example, let X denote the flow of current through an electric component 
assembled from several subcomponents with abilities to accommodate currents 
Y1,Y2, ••• ,Yp ' As before X and Yi's are assumed independent. Let the cdf of 
X be F(x) and the common cdf of the Yi's be G(y) where F and G satisfy 
(2.2). Here the reliability of the system is given by 

R2 = P(at least k of the Yi's > X) 

I (~) f OO[G(X)] P-j[l - G(x)]j dF(x). 
j=k J 0 

(2.5) 

For Lehmann alternatives 
A-I dF(x) = A{l - G(x)} dG(x). (2.6) 

32 



In this case, using (2.4), R2 can be shown to be given ty 

_ r(k + A) r(p + 1) 
R2 - 1 - r(p + A + 1) r(k) (2.7) 

Finally, consider a wore general p-component system where the ith 
component of strength Y. is subject to stress (shock) X., i = 1,2, ••• ,p. 

~ ~ 

Assuming as before that X. 's and Yi's are independent with X. ~ F(x) and 
~ ~ 

Yi ~ G(y), the reliability R3 for this k-out-of-p system is given by 

R3 = ~ ( ~)[ p ( X < y ) Jj [p (X > Y) jP- j • 
j=k J 

In the special case, when X ~ e(8 l ) 
-x/8l 

F(x;81 ) = 1 - e , and g(y;8 2) = 

and Y ~ e(8 2) with cdf's 
-y/82 

1 - e , we have 

82 A 
81 + 82 = 1 + A 

P(x < y) 
81 1 

and P(X > Y) = = --81 + 82 1 + A· 

In this case (2.8) reduces to 
p . 

L (~) AJ 

j=k J (1 + >.)p 

3. BAYESIAN ESTIMATION BASED ON NONINFORMATIVE PRIORS 

(2.8) 

(2.9) 

(2.10) 

In this section we shall consider Bayesian estimation of Rl ,R2 and R3 • 

Considerable literature exists about the choice of a suitable prior distri
bution. In Sections 3 and 4 noninformative priors, and conjugate priors 
are considered. 

For simpliLity X and Yare assumed to have independent exponential 
distributions with cdf's 

-x/8l 
= 1 - e , x ~ 0, 91 > 0, 

-y/8l 
= 1 - e , y ~ 0, 82 > O. 

(3.1) 

A reasonable noninformative prior distribution for 8. is given by 
~ 

1 
h(9.) = e' (li> 0, (i = 1,2). 

~ i 
(3.2) 

Let Xl 'X2' ••• 'Xnl and Yl 'Y2' ••• 'Yn2 be two independent random samples 

from F and G respectively. Then the maximum likelihood estimator of 

is given by " L 

x 
where ~ 

n 
1 

=- I Xi' Y analogous. 
n1 1 

The maximum likelihood estimators of Rl ,R2, and R3 can be readily obtained 

by replacing 81,82, and A by their respective estimators in (2.3), (2.7) 
and (2.10). 
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Lemma 3.1. The posterior density of A = 62/6 1, based on the noninformative 
prior distributions (3.2), is given by 

where u = n2Y/nlx. 
Proof: Straightforward. 

n -1 
A 1 
~--n~+n:-- , A > o. 
(A + u) 1 2 

The Bayes estimators of R1, R2, and R3 are given by 

(3.3) 

Theorem 3.1. The Bayesian estimator of Rl , using the noninformative priors 
(3.2), is given by 

where u = n2Y/n1x. 
Proof: R1 = E(R1Idata) 

= I: R1h(Alx,Y)dA• 

[(p+1-k+ I-v) 
uy 

r(p+1+ l-y) 
uy 

n -1 n -1 
y 1 (l-y) 2 dy, 

(3.4) 

Substituting for ~ from (2.3), and integrating out A (3.4) is obtained. 

Theorem 3.2. Bayesian estimator of R2, using the noninformative prior 
(3.2), is given by 

n -1 n -1 
r(k +~) 1 (1-) 2 __ --=l'-'-y'--y ____ y ___ dy. 

r(p + 1 + ~; ) (3.5) 

Proof: Similar to proof of Theorem 3.1. 

Theorem 3.3. Bayesian estimator of R3 in (2.10) using the noninformative 
prior (3.2), is given by 

(1 n +j-1 n +p-j-1 
y 1 (l-y) 2 d 

J y. 
o [1 + (u - l)yJ p 

(3.6) 

Proof: Similar to that of Theorem 3.1. 

Numerical comparisons of Bayesian and maximum likelihood estimates of 
Rl, R2' and R3 are carried out through simulation. Estimates of the mean 
square error (MSE) and bias with nl = n2 = 20 are obtained from 1000 trials 
for the k-out-of-3 and k-out-of-4 systems with A = 1,2,3, and 4. 

The tables 1, 2, and 3 show the estimated bias and MSE. The bias and 
MSE of both the maximum likelihood and Bayes estimates appear to be nearly 
equal. 
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Table 1 
The maximum likelihood and Bayesian estimators of the reliability of 
k-out-of-p system when a simple system with strength Y is subjected to the 
stresses Xl,X2, ••• ,Xp under the assumption that the Xi and Yare 
independent exponential distributions. 

12=3 

Bias Mean sq. Error 
k Lamda R(k'l2) MLE Ba;lesian Sm Sb 
1 1 0.75 0.022 - 0.012 0.0011 0.0044 
2 1 0.5 0.044 0.0033 0.0038 0.01 
3 1 0.25 0.041 0.012 0.0039 0.0087 
1 2 0.86 - 0.006 - 0.011 0.0019 0.0021 
2 2 0.69 - 0.0018 - 0.0077 0.0063 0.0065 
3 2 0.46 - 0.00033 - 0.0019 0.01 0.01 
1 3 0.9 - 0.0044 - 0.008 0.0012 0.0013 
2 3 0.77 - 0.0084 - 0.014 0.0041 0.0041 
3 3 0.58 - 0.007 - 0.011 0.0097 0.0093 
1 4 0.92 - 0.0027 - 0.0057 0.00078 0.00082 
2 4 0.82 - 0.0039 - 0.0092 0.003l 0.0032 
3 4 0.66 - 0.0083 - 0.013 0.0084 0.0081 

12-4 
Bias Mean Sq. Error 

k Lamda R(k'12) MLE Ba;lesian 8m Sb 
1 1 0.8 0.017 - 0.017 0.00067 0.0035 
2 1 0.6 0.036 - 0.0053 0.0026 0.0085 
3 1 0.4 0.037 - 0.0078 0.0034 0.0099 
4 1 0.2 0.039 0.015 0.004 0.0076 
1 2 0.89 - 0.0059 - 0.011 0.0013 0.0016 
2 2 0.76 - 0.0064 - 0.014 0.0045 C.0051 
3 2 0.61 - 0.0042 - 0.01 0.0092 0.0097 
4 2 0.41 0.00064 0.00065 0.011 0.01 
1 3 0.92 - 0.0049 - 0.008 0.00069 0.00073 
2 3 0.83 - 0.009l - 0.015 C.0033 0.0035 
3 3 0.71 - 0.01 - 0.016 0.0069 0.0068 
4 3 0.53 - 0.00045 - 0.0036 0.011 0.011 
1 4 0.94 - 0.0029 - 0.0054 0.00044 0.00047 
2 4 0.87 - 0.0079 - 0.013 0.0022 0.0023 
3 4 0.77 - 0.0074 - 0.013 0.0052 0.0052 
4 4 0.62 - 0.011 - 0.016 0.0092 0.0088 

35 



Table 2 
The maximum likelihood and Bayesian estimators of the reliability of 
k-out-of-p system when the system with strength Y = [Yl,Y2, ••• ,Yp] is 
subjected to the stress X under the assumption that the Yi and X are 
independent exponential distributions. 

p=3 
Bias Mean Sq. Error 

k Lamd~ R(k'12 l MLE-- Eayesian Sm Sb 
1 1 0.75 0.035 - 0.013 0.0022 0.0092 
2 1 0.5 0.044 0.0076 0.0041 0.01 
3 1 0.25 C.026 0.0035 0.0018 0.0043 
1 2 0.9 - 0.012 - 0.021 0.0031 0.0036 
2 2 0.7 - 0.0061 - 0.012 0.0085 0.0088 
3 2 0.4 0.0075 0.0086 0.0071 0.0071 
1 3 0.95 - 0.0095 - 0.016 0.0013 0.0014 
2 3 0.8 - 0.011 - 0.018 0.006 0.0058 
3 3 0.5 0 0 0.007 0.0067 
1 4 0.97 - 0.0057 - 0.011 0.00063 0.00072 
2 4 0.86 - 0.0068 - 0.014 0.0041 0.0041 
3 4 0.57 0.00058 - 0.001 0.0067 0.0064 

12=4 
~ Mean Sg;. Error 

k Lamda R(k,e l MLE Baxesian Sm sb 
1 1 0.8 0.029 - 0.016 0.0018 0.0071 
2 1 0.6 0.042 - 0.0039 0.0039 0.011 
3 1 0.4 0.037 0.0055 0.0034 0.0082 
4 1 0.2 0.025 0.0096 0.0017 0.0035 
1 2 0.93 - 0.01 - 0.02 0.002 0.0026 
2 2 0.8 - 0.011 - 0.019 0.0073 0.0075 
3 2 0.6 0.0039 0.0012 0.0095 0.0095 
4 2 0.33 0.003 0.0055 0.0054 0.0055 
1 3 0.97 - 0.0073 - 0.0013 0.00085 0.00098 
2 3 0.8!/ - 0.012 - 0.02 0.0041 0.0041 
3 3 0.71 - 0.0053 - 0.01 0.008 0.0076 
4 3 0.43 - 0.0017 - 0.00017 0.0075 0.0072 
1 4 0.99 - 0.0048 - 0.0092 0.00026 0.00033 
2 4 0.93 - 0.011 - 0.018 0.0024 0.0024 
3 4 0.79 - 0.011 - 0.017 0.0078 0.0075 
4 4 0.5 - 0.0021 - 0.0021 0.0077 0.0073 

4. BAYESIAN ESTIMATION USING CONJUGATE PRIORS 

In this section informative priors, which are natural conjugate priors 
for exponential distributions, are considered. As in Section 3, let the 
cdf of X and Y be given by (3.1). The prior distribution of 6. is assumed 

1 to be the inverted gamma distribution with density 
V. 

1 a. -a./6. 
1 

nv. ) h(6.) 
1 

e 1 1(1/6.) 
1 

V.+l 
1 6.>0, v.>O, a 1.>0, (i=1,2). 

1 1 
1 

(4.1) 
Here the parameters a. and v. are chosen to reflect prior information. 

1 1 

Lemma 4.1. The posterior density of >.. = 62/61 is given by 

r(nl + n2 + VI + V 2) 
n2+v2 nl+vl-l 

h(>"li,y) u >.. (4.2) r(nl + vl )r(n2 + V 2) nl +n2+vl +v2 
, 

a2 + n2y 
(A+ u) 

where u = 
+ nIX a l 

Proof: Straightforward. 

Using h(>"lx,y), as in Section 3, the Bayesian estimates of Rl , R2 
and R3 are obtained as given by the following theorem. 
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Table 3 
The maximum likelihood and Bayesian estimators of the reliability of 
k-out-of-p system when the system with strength Y = [Yl,Y2,.oo,Yp] is 
subjected to the stress X = [Xl,X2,.oo,Xp] under the assumption that the 
Xi and the Yi are independent exponential distributionso 

k Lamda R(k,p) 

1 
2 
3 
1 
2 
3 
1 
2 
3 
1 
2 
3 

1 
1 
1 
2 
2 
2 
3 
3 
3 
4 
4 
4 

k Lamda 
1 1 
2 1 
3 1 
4 1 
1 2 
2 2 
3 2 
4 2' 
1 3 
2 3 
3 3 
4 3 
1 4 
2 4 
3 4 
4 4 

0.87 
0.5 
0.12 
0.96 
0.74 
0.3 
0.98 
0.84 
0.42 
0.99 
0.9 
0.51 

R(k,p) 
0.94 
0.94 
0.31 
0.062 
0.99 
0.89 
0.59 
0.2 
1 
0.95 
0.74 
0.32 
1 
0.97 
0.82 
0.41 

p=3 

IUilU 
MLE 6ayesian 

0.87 
0.057 
0.032 

- 0.0077 
- 0.0073 

0.011 
0.054 
0.041 

- 0.014 
- 0.016 

0.0079 0.012 
- 0.0048 - 0.0088 
- r.013 - 0.023 
- 0.0031 - 0.0026 
- 0.0027 - 0.0052 
- 0.0076 - 0.016 
- 0.0059 - 0.0081 

p=4 
Bias 

MLE Bayesian 
0.011 0.002 
0.011 0.0021 
0.054 0.06 
0.023 0.033 

- 0.0044 - 0.0088 
- 0.015 - 0.026 
- 0.0074 - 0.012 

0.006 0.014 
- 0.0026 - 0.0049 
- 0.01 - 0.019 
- 0.012 - 0.022 

0.0016 0.0054 
0.0011 _ 0.0001 

- 0.0091 - 0.016 
- 0.0081 - 0.019 
- 0.0015 - 0.0009 

Mean &:I. Error 
SIn Sb 

0.0008 
0.0065 
0.0025 
0.0008 
0.0097 
0.0099 
0.0003 
0.0055 
O.Oll 
0.0001 
0.0034 
0.011 

0.0008 
0.006 
0.0023 
0.0009 
0.0093 
0.0093 
0.0004 
0.0054 
0.011 
0.0002 
0.0035 
0.011 

Mean Sq. Error 
Sm Sb 

0.0002 0.0003 
0.0002 0.0003 
0.0069 0.0062 
0.0015 0.0015 
0.0002 0.0002 
0.0052 
0.016 
0.0079 
0.0001 
0.0019 
0.012 
0.012 
o 
0.001 
0.0065 
0.013 

0.0053 
0.015 
0.0075 
0.0001 
0.0021 
0.011 
0.011 
o 
0.0011 
0.0065 
0.012 

Theorem 4.1. Bayesian estimators of R1'~2 ~nd R3,_using the conjugate 

prior distributions (4.1), are given by R1,R2 and R3 respectively, where 

f(n l + n2 + VI + V )f(p + 1) (1 l-y f(p+l-k+ -) 
Rl V~) f(P+l-k)J o 

uy 
f(n l + Vl )f(n2 + l-y f(p+l+ -) 

uy 

------~~~---------- x 

n1+v1-l n2+v2-1 
y (l-y) dy (4.3) 

f(nl + n 2 + VI + \.'2)f(p~ r f(k + uy ) 

l-R l-y x 
2 f(nl + Vl )f(n2 + V2) f(k) 0 f(p + 1 + lUY) -y 

nl+Vl-l n2+v2-1 
y (l-y) dy, (4.4) 

and 
p f(n l + n2 + \'l + V2 ) 

uj R3 I (~) r(nl +v l )f(n2 
x 

j=k J + \' ) 
2 

(1 
nl + Vl + j 1 n2 + V2 + P - j - 1 

J 0 y 
(l-y) 

dy. 
[1 + (u - l)y]P 

(4.5) 

Proof: Starting out with (4.2) instead of (3.3) the results follow immedi
ately from (3.4), (3.5), and (3.6). 
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5. ESTIMATION FOR p-COMPONENT SERIES SYSTEMS 

In this section we derive the Bayesian estimator of the reliability 
of a p-component series system. Let Yi denote the strength of the i-th 
component which is subject to stress X., i = 1,2, ••• ,p. Then the reliabi-
lity of the system is given by 1 

R4 P(x. <Y., i = 1,2, ... ,p) = P(Z>O), (5.1) 
1 1 

where X (Xl, ... ,Xp)', Y = .(Yl, ... ,Yp)', Z = Y - X. Let Zl' Z2' and 

Z , be a random sample. Assume that Z follows the multivariate normal 
n 

distribution with mean vector ~ and covariance matrix L. We want to 
obtain the Bayesian estimator of R4• It is well known that the vague 

prior distribution of ~ and L is given by 

-1 -1.P.!.!. 
p(~,~ ) = p(~)p(~ ) ~ I~I 2 • (5.2) 

The posterior distribution of ~ and 
n-p-l 

-1 -1 -2- 1 
p(~,~ Idata) = KI~ 1 x exp[-Z 

where n-l 
nP/ 2 1(n _ 1)SI--2--

K 

-1 L in this case is given by 

P 

II 
i=l 

r(i(n - i») 
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INFORMATION IN SELECTION MODELS 

Abstract 

M. J. Bayarri 
Dep. Estadlstica e 10 
Fac. Matematicas 
Univ. de Valencia 
Burjasot. Valencia 
Spain 

M. H. DeGroot 
Dept. of Statistics 
Carnegie-Mellon Univ. 
Pittsburgh, PA 15213 
U.S.A. 

The experiment in which a selection sample is drawn from some 

distribution involving an unknown parameter 8 is compared according to various 

criteria with the usual experiment in which an unrestricted random sample is 

drawn from that distribution. The Fisher information is studied for several of 

these experiments, and conditions under which the experiments are ordered with 

respect to the criterion of sufficiency or pairwise sufficiency are presented. 

Standard problems involving selection samples from the normal, binomial, and 

Poisson distributions are discussed in detail. Some results for general 

exponential families and for selection models Involving bivariate observations are 

also considered. 

1. Introduction 

In many situations, experimenters are not able to draw a random sample 

from the population in which they are interested, and statistical models that 

incorporate the restrictions under which the observations were obtained must be 

developed. In this paper, we consider problems in which observations are 

obtained only from certain selected portions of the population, either because 

experimental conditions make it impossible to obtain data from the whole 

population or because the experimenter chooses to restrict the observations in 

!hlS way. 

Consider a random variable X that is distributed over a certain population 

according to the (generalized) density g(~8) and suppose that it is desired to 

lTlake inferences about the unknown value of the parameter 8(8 fO). The usual 

statistical analysis assumes that a random sample from g(~8) is obtained. In 

this paper we will assume, however, that each observation is restricted to lie in 

a specified subset S of the sample space. so the analysis is based on a random 

sample from the following density: 
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( 10) - g(yjO) 
fy - pr(xfSIO) for yES. ( 1.1) 

and f(yIO) = 0 otherwise. It is assumed that PrIX f SIO) > 0 for all 0 fO. The 

model (1.1) is called a selection model or a truncation model. and a random 

sample from (1.1) is called a selection sample. 

Selection samples occur frequently in practice. and several examples were 

given in Bayarri and DeGroot (1986a) together with a Bayesian analysis of these 

models. The name "selection models" in this context is due to Fraser (1952. 

1966). although the term "selection" was used in a more general setting by Tukey 

(1949). 

In this paper. our main interest is in comparing the experiment in which a 

selection sample is obtained with that in which an unrestricted random sample 

from g(~()) is obtained. In some problems. this comparison is carried out by 

studying the Fisher information in each type of experiment. In certain cases. 

stronger results are obtained based on the theory of the comparison of statistical 

experiments as developed originally by Blackwell (1951. 1953). His method can 

be described as follows: 

Let Ex = {X. X; g(·IO). 0 to} denote a statistical experiment in which a 

random variable or random vector X defined on some sample space X is to be 

observed. and the distribution g(·I()) of X depends on a parameter () taking values 

in the parameter space O. Also. let E y = {Yo Y; f(·I0l, () to} denote another 

statistical experiment with the same parameter space O. Then the experiment Ex 

is said to be sufficient for the experiment Ey (denoted Ex ~ E) if there exists a 

stochastic transformation of X to a random variable Z(X) such that. for each 

() to. the random variables Z(X) and Y have identical distributions. The 

relationship Ex ~ E y holds if and only if for every decision problem involving () 

and every prior distribution on O. the expected Bayes risk from Ex is not greater 

than that from E y' 

Some other properties of the relationship Ex ~ E y should be noted. Let E~ 

denote the experiment in which Ex is independently performed n times so that a 

random sample X 1 ••••• Xn is obtained. and let E~ be defined analogously. Then 

Ex ~ Ey implies E~ ~ E~ for every value of n. 

The experiment Ex is said to be pairwise sufficient for the experiment Ey 

(denoted Ex ~2 Ey) if for every pair of values () l' () 2 t O. Ex is sufficient for Ey 

when the parameter space is restricted to contain just the two values () 1 and () 2' 

Clearly if Ex ~ Ey then Ex ~2 Ey• However, the converse does not necessarily 

hold. 

If () is a k-dimensional vector and 0 f& an open subset of Rk, we shall let 

I x(() and Iy(()) denote the kxk Fisher information matrices for the experiments Ex 
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and Ey respectively. under the standard regularity conditions. We shall use the 

notation Ex ~F Ey whenever Ix(O) - ly(O) is nonnegative definite for all 0 fO. The 

relationship Ex ~ Ey implies a similar ordering in terms of Fisher information; 

i.e .• if Ex ~ Ey then Ex ~F Ey. However. the converse does not necessarily hold. 

Moreover. since the Fisher information can be obtained from the Kullback-Leibler 

information by considering pairs of values of 0 that are arbitrarily close to each 

other. it can be shown that if Ex ~2 Ey then Ex ~F Ey• Some of these relations 

and other properties of the comparison of experiments are described in Stein 

(1951). Stone (1961). Kullback (1968. pages 26-28). Torgersen (1970. 1972. 1976). 

Hansen and Torgersen (1974). and Goel and DeGroot (1979). Some new examples 

and counterexamples will be given in this paper. 

In Section 2. the relation Ex ~F Ey is studied for problems in which X has 

a normal distribution with unknown mean 0 and Y is restricted to lie in different 

selection sets. as well as for problems in which X has a binomial or Poisson 

distribution and Y has the corresponding truncated distribution with the zero class 

missing. In these cases. when the selection set is the upper tai I of the 

distribution it is found that Ex ~F E y. 

In Section 3, we study the conditions under which a selection sample from 

an exponential family provides greater Fisher information than an unrestricted 

random sample. When the selection set is the upper tail. these conditions can be 

determined by the behavior of the hazard-rate function. 

In Section 4. we consider some examples of other types of selection 

involving bivariate observations in which the selection mechanism restricts the 

values of one of the variables. 

In Section 5, we study the relations> and> 2 for different experiments 
"" "" involving unrestricted and selection samples from the normal distribution with an 

unknown mean and known precision. It is shown that Ex ~2 Ey when the 

selection set is the upper tail and that Ey ~ Ex when the parameter space 

contains just two points and the selection set contains both tai Is of the normal 

distribution chosen symmetrically with respect to those points. 

In Section 6, we study the relations > and > 2 for the truncated binomial 
"" "" and Poisson distributions with the zero class missing. It is shown that the 

relation Ex ~ E y does not hold for either of these distributions. where Ex is the 

experiment in which an unrestricted random sample is observed and Ey is the 

corresponding selection experiment. It is also shown that for the binomial 

distribution with n = 2, Ex ~2 E y' thus providing an interesting example in which 

the parameter space is an open subset of the real line and one experiment is 

pairwise sufficient but not sufficient for another one. 

Due to restrictions of space. most of the results are presented in this paper 

without any derivation or proof. Full details can be found in Bayarri and 

DeGroot (1986b). 
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2. Fisher information for selection models 

In this section we will study the Fisher information for selection samples 

from some standard distributions in order to compare this information with that 

obtained from unrestricted random samples. Here and throughout the paper we 

shall let Ex denote the experiment in which an observation X is obtained from an 

unrestricted density g(·IO) and let Ey denote the experiment in which an 

observation Y is obtained from a selection model for which the density f(·IO) is 

of the form given in (1.1). 

We shall begin by considering various selection sets for problems in which 

X has a normal distribution with unknown mean 0 and known precision which, 

without loss of generality, we take to be 1. Suppose first that for a specified 

value of T, the observation Y is restricted to the set Y ~ T. Then the p.d.f. of 

Y is 

;(y-O) 

1-<1>( T -0) 
for y ~ T , (2.1) 

where ;H and <1>(.) denote the standard normal p.d.f. and d.f. respectively. Under 

the usual regularity conditions, the Fisher information about a real-valued 

parameter 0 obtained from an arbitrary random variable U with density h(uIO) is 

given by 

1(0) { a2 } 
E - log h(uIO) . 7 

(2.2) 

In the example we are considering it is well known that Ix(O) 1 for 

- 00 < 0 < 00 • FUrthermore, it can be found that 

1 
ly(O) = 1 + [M(T-0)]2 [(T-O)M(T-O) - 1] , 

where M('\) is Mills' ratio defined by 

1-<1>('\) 
M(X) = -- for - 00 < X < 00 • 

;(X) 

(2.3) 

(2.4) 

It follows from the properties of M(X that ly(O) < 1. Hence, Ex ~F Ey for any 

selection point T. 

The analysis for a selection sample from the lower tail of the normal 

distribution is similar. Suppose next that the observation Y is restricted to the 

set S = {y; y ~ T 1 or y ~ T 2}, where T 1 < T 2 are specified real numbers. Then 

the p.d.f. of Y is 
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for y :s; T, or y ~ T 2 (2.5) 

It can be shown that ly(O) < Ix(O) for some values of 0 and that this inequality is 

reversed for other values of 0, so neither of the relationships Ex ~F Ey nor 

Ey ~F Ex holds. 

Finally, suppose that the observation Y is restricted to the interval 

T, :s; Y :s; T 2' The p.d.f. of Y is now 

f(~O) = ,(y-O) , 
~(T 2 -O)4>(T ,-8) for T, :s; Y :s; T 2 . (2.6) 

For this selection model, it can be shown that Ix(O) ~ ly(O) for all O. Hence, 

Ex ~F Ey. It is noteworthy that an unrestricted random sample provides greater 

Fisher information for all possible values of 0 than a selection sample from any 

bounded interval irrespective of its location or its length. 

Other selection models that have been widely treated in the statistical 

literature are the truncated binomial and Poisson distributions in which the zero 

class is missing (David and Johnson, 1952; Irwin, 1959; Cohen, 1960; Dahiya and 

Gross, 1973; Sanathanan, 1977; Blumenthal and Sanathanan, 1980; and Blumenthal, 

1981). It can be shown that for both the binomial and the Poisson distributions 

an unrestricted random sample provides greater Fisher information than a 

selection sample with the zero class missing. 

3. Selection from an exponential familv 

In this section we will consider the question of whether we gain or lose 

Fisher information when a selection sample rather than a random sample is 

obtained from a distribution belonging to an exponential family. We begin by 

considering an arbitrary density g('IO) indexed by a real-valued parameter 0 lying 

in an open subset 0 of the real line and an arbitrary specified selection set S, 

so the selection model f(·IO) is given by (1.1). If we let 

then under the usual regularity conditions 

Suppose now that the unrestricted model for an observation X is 

represented by a density h(·ICII) of the following form: 

h(~CII) = a(x)b(CII)exp {U(X)V(CII}} . 

(3.1) 

(3.2) 

(3.3) 
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In other words, we are assuming that h(~w) belongs to an exponential family for 

which the natural parameter is 0 = v(w). If we now reparametrize the family in 

terms of 0, the density of X becomes 

g(~O) = a(x)c(O)exp{ Ou(x)} (3.4) 

and 

a2 d2 - 7 log g(~O) = - (j8T log c(O) • (3.5) 

Since (3.5) is a constant that does not depend on x, it follows that Ix(O) as 

well as the expectation on the right-hand side of (3.2) are given by (3.5). Hence, 

so that ly(O) ~ Ix(O) for all 0 if and only if log s(O) is convex and ly(O) S Ix(O) 

for all 0 if and only if log s(O) is concave. 

It is well known that under the usual conditions. since 0 = v(w) the Fisher 

information 1(0) about 0 and the Fisher information I*(w) about w satisfy the 

following relation for any experiment: 

( dw)2 
I*(w) = 1(0) dO (3.7) 

Thus. I~(w) ~ I;(w) for all values of w if and only if ly(O) ~ Ix(O) for all values of 

O. In other words. a relation of the form Ey ~F Ex is defined unambiguously 

regardless of the parametrization used. It follows that in order to determine 

whether the experiments Ex and E yare ordered with respect to the relationship 

~F' we need only determine whether the function log s(O) is convex or concave. 

In the remainder of this section we will consider selection sets of the form 

y ~ T so that s(O) = 1 - G(TIO). where G(·IO) is the d.f. corresponding to the 

density g(·IO). 

Suppose that the distribution G(·IO) is absolutely continuous and 0 is either 

a location parameter (j.e .• G(~O) = Go(x-O)) or a scale parameter (i.e .• G(~O) = 

Go(Ox)). Then the convexity or concavity of log s(O) can be easily studied in 

terms of the hazard-rate or failure-rate function 

(3.8) 

It follows that for both types of families. Ey ~F Ex if and only if ro(x) is a 

decreasing function of x. 
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For example. consider again the normal distribution with unknown mean fJ 

and precision 1. so that g(~fJ) = , (x-fJ). In this problem. fJ is a location 

parameter and the distribution Go is the standard normal distribution. for which it 

is known that the hazard-rate function is increasing. Hence. Ex ~F Ey. 

On the other hand. suppose that the mean of the normal distribution is 

known to be 0 and the precision (J is unknown. so that 

(3.9) 

In this case. (J is the natural parameter and although it is not a scale parameter. 

it can be shown that log s(8) is convex. Hence. Ey ~F Ex' which means that in 

this case a selection sample provides greater Fisher information than a random 

sample from the whole population. 

It should be noted that if T = 0 in this example. the experiments Ex and Ey 

are equivalent not only in the sense that Ix(8) = ly(fJ) for all values of fJ. but also 

in the sense that both Ex ~ Ey and Ey ~ Ex' 

As another example, suppose that X has a gamma distribution for which the 

shape parameter a is known and the scale parameter fJ is unknown; that is 

(3.10) 

For this exponential family, fJ is the natural parameter and, as its name implies, 

it is a scale parameter. It is known (Barlow and Proschan, 1975, Chapter 3) that 

a gamma distribution has an increasing hazard-rate function if a > 1 and a 

decreasing hazard-rate function if 0 < a < 1. Therefore, if a > 1, then E > E, X NF y 
whereas if a < 1, then Ey ~F Ex' Of course, if a = 1, the gamma distribution 

reduces to the exponential distribution for which the hazard-rate function is 

constant and the experiments Ex and Ey are equivalent. 

4. Other types of selection 

We will now consider briefly some selection models involving bivariate 

observations in which the selection mechanism restricts the values of one of the 

variables. One example that has been extensively discussed in the literature 

(Blackwell and Girshlck, 1954, Chapter 12; Lehmann, 1986, p. 87-88; and DeGroot, 

1970, p. 444-445) compares the experiments in which a selection sample can be 

drawn from one of four different subpopulations. 

We will consider a continuous version of this type of problem. Suppose 

that U and V have a bivariate normal distribution for which the means f'1 and 1'2 

and the variances O'~ and O'~ are known, and the correlation (j is unknown. 

Without loss of generality, we shall take 1', = }J2 = 0 and O'~ = O'~ = 1. Consider 

the following two experiments: 
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(E) A random sample of n bivariate observations is drawn from the 

bivariate normal distribution. 

(E ) A random sample of n observations is drawn from the conditional 
v 

distribution of U given V = v. This sample can be regarded as a selection 

sample from the subpopulation for which V = v. 

Let HB) and I (B) denote the Fisher information in the experiments E and 
v 

E ,respectively. Then it can be shown that for all B, 
v 

HB) > I (B) if v2 < 1 , 
v 

HB) < I (B) if v2 > 1 , 
v 

I{B) = I (B) if v2 = 
v 

(4.1) 

It is interesting to note, as indicated in (4.1), that the Fisher information obtained 

from an unrestricted random sample is identical to that obtained from a sample 

from the conditional distribution of U given V = 1 or given V = -1. It is also 

interesting to note, as indicated in (4.1), that E > F E whenever -1 < v < 1 and 
N v 

E > F E whenever v < -1 or v > 1. We do not know if these experiments are 
v N 

ordered by the sufficiency relation >. 
N 

A general class of selection models that includes these examples is the 

following: Suppose that the random vector (U, V) has a joint distribution that 

depends on the parameter B and that observations can be obtained only when V 

lies in some selection set. In some problems, an observation may consist of 

the pair (U, V), while in others just U is observed. Some examples in 

econometrics are studied by Heckman (1976), Amemiya (1984) and Little (1985). 

5. Sufficiency in normal experiments 

Consider again the problem discussed at the beginning of Section 2 in 

which X has a normal distribution with unknown mean () and precision 1, and the 

observation V is restricted to the set V ~ T. It was shown there that Ex ~F Ev. 

We will now prove the stronger result that Ex ~2 Ev. Because of the comments 

in Section 1, it is sufficient to consider experiments based on just one 

observation. 

Suppose then that the parameter space contains just two values () 0 and (),. 

For any experiment E and any value of a (0 < a < 1), let ,8(aIE) denote the 

probability of a type 2 error when the likelihood ratio test for distinguishing 

between () 0 and (), is carried out with the specified probability a of a type 1 

error. It was shown by Torgersen (1970, 1976) that for any two experiments E 

and E* with the same parameter space 0 = {(I o' til}. E ~ E* if and only if 

,8(aIE) :S; ,8{alE*) for all values of a (0 < a < 1). Hence, '" the problem we are 

now considering, the desired conclusion that Ex ~:2 E y can be obtained by 
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showing that, for any pair of values (J 0 and (J I' the function px(a) is not larger 

than the function pyla) over the interval 0 < a < 1, where px(a) = p(aIE) and 

pyla) = p(aIEyl-

Without loss of generality we will assume that (J 0 = 0 and (J 1 > O. The 

likolihood r~tio t@it ilt I~vel II based on the experiment E y.. rejects the hypothesis 

Ho: (J = (J 0 when X 2: cx(a), where 

(5.1) 

Similarly, the likelihood ratio test at the same level a based on the selection 

experiment Ey rejects Ho when Y 2: cy(a), where 

C (a) = 4>-1 [1-a+a4>(7)] • 
y (5.2) 

For any given value of a, let Lx(a) denote the likelihood ratio for the 

observation X evaluated at X = Cx(a), and let Ly(a) be defined similarly. In order 

to establish that px(a) ~ fJy(a) for 0 < a < 1. it is sufficient to show that 

p'yIa) 

fJ' (a) 
X 

L (a) 
=::::L.......:.. = A exp{(J [c (a) - C (a)]} 

L (a) 1 y X 
X 

(5.3) 

is an increasing function of a. In (5.3), A is a constant not involving a. In turn, 

since (J 1 > 0 it is sufficient to show that D(a) = cy(a) - cx(a) is an increasing 

function of a, which follows from the fact that for any given value of a, the 

function b/tp [4>-I(ab)] is an increasing function of b for 0 < b ~ 1. Hence, 

Ex ~2 Ey• 

A similar argument shows that if Ez is a selection experiment of the same 

type as Ey but with a larger selection point 7, then Ey ~2 Ez. We do not know 

whether the experiments Ex' Ey' and Ez are ordered by the sufficiency relation ~. 

Consider next the problem in which X again has a normal distribution with 

unknown mean 8 and precision 1, but in which Y is now restricted to lie in the 

two-tailed selection set Y ~ TO or Y 2: 7 l' Suppose again that the parameter 

space contains just two values 80 and 8 l' and that the selection points 70 and 

T 1 are symmetrically placed with respect to (J 0 and (J 1 so that 71 - 8 1 = 
(J 0 - 7 0, Without loss of generality we can assume that (J 1 = -8 0 = p > 0 and 

71 = -7 0 = 7 > O. We will show that Ey ~ Ex in this particular problem. It 

should be noted that it is not true that Ey ~2 Ex when the parameter space 0 is 

the entire real line because, for fixed values of 70 and 7 I' when we restrict the 

parameter space to contain just two points, the relation Ey ~ Ex will not hold 

for a" pairs of values of (J. 

To establish that Ey ~ Ex' we wi" again compare the functions fJx(a) and 

fJy(a). In this problem, we must show that py(a) ~ fJt(a) for 0 < a < 1. For 
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testing the hypotheses Ho: () = - p and H,: () = p. the likelihood ratio test at 

level a based on the experiment Ev.. rejects HO when X 2 Cx(lil. where 

(S.4) 

Similarly. the likelihood ratio test at the same level a based on the selection 

experiment Ey rejects Ho when Y ~ cy{a). Let 

B = 2 - 4>{r-p) - 4>{T+p) 

and let 

Then 

a = 1 [l-4>{r+())) o B 

{ 
4>-'{l-aB)-p 

cy{a) = 
4>-' [(l-a)B]-p 

for a ~ aO • 

for a > ao . 

For a ~ ao' the relation pyla) ~ px{a) is equivalent to the relation 

(s.s) 

(S.6) 

(S.7) 

(S.8) 

In turn. (S.8) follows from the fact that the left-hand side is a decreasing 

function of B over the interval 0 < B ~ 1. A similar argument applies for 

a > aO. Thus. Ey ,( Ex. Furthermore. if Ez is a selection experiment of the 

same type as Ey but with a larger value of T. then Ez ~ Ey. 

6. Sufficiency in binomial and Poisson experiments 

In this section we will consider again the truncated binomial distribution 

with the zero class missing. It was stated in Section 2 that if X has a binomial 

distribution with parameters nand 8 and Y has this truncated binomial 

distribution. then Ex ~F Ey. We will now give a simple argument which shows 

that the relation Ex ~ E y does not hold. 

In order for the relation Ex ,( Ey to hold. there must exist a stochastic 

transformation h{ylx) such that for all values of () in the interval 0 < 8 < 1. 

for y = 1 •...• n . (6.1) 

The stochastic transformation h{ylx) must be a nonnegative function such that 

~=1 h{~x) = 1 for x = O.l •...• n . (6.2) 
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Since for any given value of y and any possible stochastic transformation 

h, the left-hand side of (6.1) must be a polynomial in (J whereas the right-hand 

side, is not a polynomial, it follows immediately that (6.1) cannot be satisfied 

for all values of (J. Hence, it cannot be true that Ex ~ Ey • Of course, it also 

cannot be true that Ey ~ Ex since Ex ~F Ey and the experiments are not 

equivalent. 

Next, consider the problem in which X has a Poisson distribution with mean 

(J and V has a truncated Poisson distribution with the zero class missing. Agatn, 

the following argument shows that the relation Ex ~ Ey does not hold even 

though Ex ~F E y' 

In order to have Ex ~ Ey' there must exist a stochastic transformation h(~X) 
defined for x = 0,1,2 ... and y = 1,2, ... such that for all values of (J > 0, 

for y = 1,2, .... (6.3) 

By expanding l-e-(J in a Taylor series, it can be shown that no such stochastic 

transformation can exist. 

To conclude this paper we return to the truncated binomial experiment and 

we will show that when n = 2, Ex ~2 Ey. We will do this by explicitly 

constructing a stochastic transformation that satisfies (6.1) and (6.2). 

Suppose then that the parameter space contains just two values (J 0 and 

(J, (0 < (J 0 < (J, < 1.) When n = 2, V can just take the values y = , and y = 2. 

Since h(ylx) must be such that h(2Ix) = 1 - h(llx) for x = 0, 1, 2, we just have to 

find three numbers h(llx) (x = 0, 1, 2) such that 0 S; h(llx) S; 1 and satisfying the 

two equations 

I I I 2(1-(J) 
h(l 0)(1-(Jj2 + h(l 1)28 (1-(J) + h(l 2)(J2 = -----L(J 

I I I I 2-. 
I 

for = 0, 1 . (6.4) 

It can be shown that there are infinitely many solutions of the system (6.4) 

satisfying the restrictIon 0 S; h( llx) s; , for x = 0, 1, 2. One simple solution is 

obtained by taking h(112) = 0 and solving (6.4) for h(110) and h(lj1). In this way it 

is found that 

_ (1-(J p)(l-(J ,) 

(2-(J o)(2-(J ,) , 
(6.5) 
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provides the desired stochastic transformation. Thus, we have developed an 

interesting example of experiments in which the parameter space is an open 

subset of the real line and EX ~2 Ey but it is not true that EX ~ Ey. 
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APPROXIMATIONS IN STATISTICS 

FROM A DECISION-THEORETICAL VIEWPOINT 

SUMMARY 

Jose M. Bernardo 

Departamento de Estadistica 
Universidad de Valencia 
Burjassot, Valencia, Spain 

The approximation of the probability density p(.) of a ran
dom vector xe X by another (possibly more convenient) 
probability density q(.) which belongs to a certain class Q is 
analyzed as a decision problem where the action space is the 
class Q of available approximations, the relevant uncertain 
event is the actual value of the vector x and the utility 
function is a proper scoring rule. The logarithmic divergence is 
shown to playa rather special role within this approach. The 
argument lies entirely within a Bayesian framework. 

1.APPROXIMATION AS A DECISION PROBLEM 

Let p(.) be the probability density of a random vector xeX 
with respect to some dominating measure, simply denoted dx, and 
suppose one is interested in approximating p(.) by a density 
q(.) which belongs to a class Q of possibly more tractable 
distributions. For instance, one may wish 

• To approximate a complicated probabilistic model p(xI9) 
by a member q(xl co), co=co(9)eQ of a more tractable family 
(for example, a multivariate normal) 

• To describe prior opinions in a mathematically tractable 
form (for example, a finite mixture of distributions which 
are conjugate to some probabilistic model) 

• To approximate posterior distributions by distributions 
which satisfy specific additional restrictions, (for 
example, reference posteriors, or posteriors within a class 
of easily integrable distributions) 

From a Bayesian decision-theoretical viewpoint, the problem 
posed may be seen as a decision problem where the action space 
is the class Q of· available approximations, the relevant 
uncertain event is the particular value of x which eventually 
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obtains and the loss function represents the loss suffered when 
p(.) ,the true distribution of x, is replaced by a member q(.) 
of the class Q. 

Without loss of generality, we may write such (opportunity) 
loss as the difference 

l{q(.),x} = u{p(.),x} - u{q(.),x} (1) 

between the utility u{p(.),x} which obtains if the true distri
bution is used and the utility u{q(.),x} obtained if q(.) is 
used instead. Since u{q(.),x} measures the reward, or score, 
attained if if q ( .) is predicted and x obtains, utility 
functions of the type u {q ( . ) , x} are often referred to as 
scoring rules (see e.g. Savage 1971, Lindley 1985) . 

It is only natural to require that, before x is actually 
observed, the expected loss of using an approximation q ( . ) , 
rather than the true distribution p(.), must be non-negative and 
zero if, and only if, q(.)=p(.) almost everywhere. Indeed, it 
would seem strangely perverse to expect a net gain by using the 
wrong distribution!. Thus, we assume, 

1 { q ( . )} = Ix p (x) 1 { q ( . ) , x } dx ~ 0 (Hl ) 

with l{q(.)}=O iff q(.)=p(.) a.e. Using (1), this assumption 
implies that, for all q(.), 

Ix u{q(.) ,x} p(x) dx ~ Ix u{p(.) ,x} p(x) dx 

which is the definition of a proper scoring rule, where the 
reward is maximized if, and only if, the selected distribution 
q(.) is equal (a.e.) to the true distribution. Examples of 
proper scoring rules include 

where 

u{q(.),x} A log q(x) + B(x), (logarithmic) 

2 
u{q(.),x} A {2q(x) - Iq(.)1 2 } + B(x), (quadratic) 

u {q(.) , x} = ~ I { 
a-I 

q(x) 

I q( . ) I 
a 

a-I ] 
} - 1 + B (x), (spherical), 

lIa 

I q( .) I a = {f qa (x) dx}. , a> I 

is the La norm. Those scoring rules are respectively associated 
to the names of Good(1952); Brier (1950) and de Finetti (1962) 
and Good (1971). The spherical utility functions contain the 
logarithmic as their limit as a~l. 

Summing up, the approximation of p(.) by some q(.) in Q is 
a decision problem whose optimal solution is to choose that 
density q(.) in Q which maximizes 

f p(x) u{q(.),x} dx 
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where u{q(.),x} is any proper scoring rule. We shall now find 
the conditions under which the appropriate utility function is 
precisely the logarithmic function defined above. 

2.LOGARITHMIC DIVERGENCE 

In a problem of inference, it is often the case that the 
utility obtained when q(.) has been predicted and x has been 
observed only depends on the probability density q(x) attached 
to the value actually observed. Thus, we may further assume, 

u{q(.),x} = u{q(x),x}. (H2) 

A scoring rule which satisfies (H2) is called a local scoring 
rule. 

It should be obvious that (H2) does not carry the same 
normative weight as (H1), but it does describe however a large 
class of interesting situations. Indeed, if one is trying to 
approximate the probabilistic model p(xIS) which is supposed to 
describe the behaviour of x by another model p (x I (0), oo=oo(S)e Q 
which belongs to some convenient family of distributions, the 
assumption u{q(.),x}= u{q(x),x} is nothing but a version of the 
likelihood principle, in that the utility of the prediction q(.) 
depends on the data x obtained, but not on the data which could. 
have been obtained but was not. 

Theorem 1. If x is a random vector which may take three or more 
distinct values, a differentiable proper local scoring rule is 
necessarily of the form 

u{q(.),x} = A log q(x) + B(x), A>O 

Proof. The discrete version of this result was proved by 
Good(1952) for the binomial case, mentioned by McCarthy (1956), 
proved by Aczel and Pfanzagl (1966) and generalized by Savage 
(1971); a continuous version was stated by Bernardo (1979a). 

Theorem 2. Let Q be a class of strictly positive densities on 
the support of p(.). Under (H1) and (H2), the loss to be 
expected if p(.) is approximated by a member q(.) of Q is of 
the form 

f p (x) 
l{q(.)} = A P (x) log -- dx, 

q(x) 
A >0 (2) 

Moreover, 1 {q(.)} is (i) non-negative, (ii) invariant under 
one-to-one transformations of x and, (iii) additive in the 
sense that if x=(X1 ,X2 ), p(x)=p(X1 )P(X2 ) and q(x)=q(X1 )q(X2 ), 

then l{q(x) }=1{q(x1 ) }+1{q(x2 )}. 

Proof. By Theorem 1, assumptions (H1) and (H2) imply that 
u{q(.),x} = A log q(x) + B(x) and the required expression then 
obtains from substitution into (H1). But (2) is the well-studied 
logarithmic divergence of q(.) from p(.), which is known to have 
the stated properties (see, e.g. Kullback, 1959). 

Theorem 2 implies that the utility function used has an 
attractive information theoretical interpretation; indeed, with 
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the definition of information provided by Shannon (1948) and 
further discussed within a statistical context by Lindley (1956) 
and Good (1966), the expected loss (2) may be regarded as the 
amount of information which has been lost in the approximation. 

Theorem 2 also implies that whenever a local utility 
function is appropriate, the expected loss of an approximation 
to p(.) which gave probability zero to non-null sets under p(.) 
would be infinite. Thus, we obtain as a corollary another 
version of Lindley I s Cromwell's rule: never approximate by 
probability zero something which is not logically impossible!. 

We have established that, under (HI) and (H2) the optimal 
approximation of p (.) by some q(.) in Q is provided by that 
density in Q which minimizes the logarithmic divergence (2). We 
shall explore now some of the consequences of this result. 

3.EXAMPLES 

3.1. Estimation 

Maximum likelihood estimation within a class of models can 
be viewed in a new light from this perspective. Indeed, if the 
true distribution p (.) of a random vector x is to be 
approximated by a member q(. I e) of a class of distributions 
indexed by eeE> using the information provided by a random sample 
{X1 ,X2, .•. ,xn }, one should minimize in E> the value of 

J p(x) 
1 (e) = p (x) log -=.~~ 

q(xle) 
dx 

Since p(.) is not known, this integral cannot be computed, but 
using a standard Monte Carlo technique, it may be approximated 
by 

which is minimized by that value of ewhich maximizes 

i=l 

i.e. by the maximum-likelihood estimator. 

This is the best available approximation if one insists on 
using a member of the family qt. Ie) in order to predict the 
value of x. However, standard exchangeability arguments about 
the xi's would typically imply that p(x) must be of the form 

p (x) = J q(x I e) n(e) de. 

If the prior distribution n(e) is then assumed to belong to a 
class n(elro) indexed by ro, then the best approximation to p (x) 
will be obtained as 
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p(xICO)= f q(xIO) 1r(Olro) dO 

where CO should be replaced by the value which minimizes 

J p(x) 
p(x) log dx f q(x I 0) 1r(Olco) dO 

or approximately, again using a Monte Carlo argument, by that 
value of co which maximizes 

n L log fq(Xi'O) 1r(OICO) dO 
i=l 

which is a form of non-naive empirical Bayes estimator. 
Obviously, the argument may be extended to deeper hierarchies. 

3.2 Poisson Approximation of a Binomial Model 

The best Poisson approximation to a Binomial model 
p(x)=Bi(xln,O) is that which minimizes 

where 

Bi(xln,O) 

PO(XIA) 

x=O 

Bi(xln,O) 
Bi(xln,O) log 

PO(xIA) 

( :) Ox (1-0) n-x 

.2L -I. e 
x! 

This corresponds to that value of A which maximizes 

! Bi(xln,O) {x 10gA-A-logx!} nO logA - A - E {log x!} 
x=o 

which, as could be expected, is A=nO. The resulting m~n~mum 
expected loss is increasing in e and decreasing in n; numerical 
computation shows, however, that the condition '0 small' is far 
more important than the condition 'n large' for the quality of 
the approximation. 

3.3 Normal Approximation 

The best normal approximation N(xl~,h) to a probability 
density p(x) is obtained by minimizing 

l(~,h) = f p(x) log p(x) dx. 
N(xl~,h) 

It is easily seen that 
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al 
-=0 
aIL 

~ IL = Jxp (x) dx = E [x] 

al 
-=0 
ah 

~ 1 J 2 h = (x-IL) p (x) dx = v [x] 

Thus, with this criterion, the best normal approximation to any 
distribution is obtained by fitting the first two moments. This 
may well be another characterization of the normal distribution 
since, typically, different solutions are obtained with other 
probability models. For instance, the best Beta approximation 
Be(xla,b) to a distribution p(x) on ]O,I[ is the solution to the 
system of equations 

J(lOgX)P(X)dX = <p(a) - <p(a+b) 

J{lOg(l-X)}P(X)dX = <P(b) - <p(a+b) 

where <p is the digamma function, i.e. that obtained by fitting 
E[logx] and E[log(l-x)]. 

3.4. Transformations to Normality 

Suppose that given a random quantity x with density p(x) it 
is desired to find a tractable monotone tranformation y=f(x) 
whose distribution p(y)= p(x)/If' (x) I is as close to normality 
as possible. 

Thus, a function f is desired which minimizes 

1 (f) f ( ) 1 p(y) d 
P y og N{yIE[y],V[y]} y 

since, from 3.3, the best normal approximation to p(y) is that 
normal with the same first two moments as p (y). The loss 
function l(f) may be rewritten as 

l(f) = J p(y) log p(y) dy + ~ 10g{21teV[y]} 

where p (y) = p (x) / If' (x) I. It follows that the result depends 
both on the entropy and the variance of the resulting 
distribution. 

If, say, p(x)=Be(xla,b), O<x<l, and we consider the class 
of transformations 

y = f (x) ; 
-ex -p • 

f' (x) =x (I-x) , a~, ~~O 

which contains as particular cases the standard transformations 
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y=x (a=~=O, no transformation) 
-1_1 

Y = 2 sin "'IX 
x 

y= log
I-x 

(a=~=O.5, Fisher transformation) 

(a=p=l, logit transformation) 



we find that, for a and b large compared to the transformation 
parameters a and ~, 

and 

1 i 
== - - log 

V [y] dy1 p (y) I 
r(a+b) 

r(a)r(b) 

y = Mode [y] 

(a+b) 3-2(X-2~ 

a 1-2a b I - 2/3 

1 
+ (b+~-l) [<p(b)-<p(a+b)] + "2 log {21teV[y]} 

which is decreasing in both aand~.It follows that progressively 
better normalizing transformations are obtained for larger 
values of a and~, provided a and b are large enough for the first 
two moments of y to exist. For instance, for a:P=2 one has 

x 2x-1 
y = 2 log-- + 

1-x x (l-x) 

a correction to the logit transformation which should be better 
than any of the transformations listed above. 

3.5. Sensitivity Analysis 

In Bayesian inference, when either the prior information is 
rather vague or the sample size very large, the posterior 
distribution is typically insensitive to reasonably large 
changes in the prior. In these cases, it is possible to 
approximate the posterior distribution by a reference posterior 
(Bernardo, 1979b), thus bypassing the need for a more careful 
specification of the prior. 

In terms of the model described in this paper, the loss 
which may be expected by performing such approximation is given 
by 

J p (9 1 D) log p (91 D) d9 
n(9ID) 

where 9 is the parameter of interest, D the available data and 
n(9ID) the corresponding reference posterior distribution. Thus, 
if P is the class of prior distributions which are compatible 
with elicited prior information, 

O(P) = sup Jp(D)Jp(9ID) 109P(9I D) d9dD 
P 1t(9ID) 

is an appropriate measure of the maximum expected loss of the 
proposed approximation. The consequences of this view are 
explored in Bernardo (1986). 

4. DISCUSSION 

The basic ideas developed in this paper have long been part 
of Bayesian folklore. Thus, it has often been recognized that 
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approximation problems should be treated as decision problems, 
that scoring rules provide interesting utility functions in 
inferential problems and that the ubiquitous logarithmic 
divergence is often a sensible measure of discrepancy. This 
paper is an attempt to organize this material from a strictly 
Bayesian decision-theoretical viewpoint, and to explore some of 
its most obvious implications. 

We have argued that optimal approximation in statistics 
necessarily results from maximizing the expected value of a 
proper scoring rule, and we have characterized the conditions 
under which this reduces to minimizing the logarithmic 
divergence. Further work is necessary to characterize precisely 
those situations where other proper scoring rules are appro
priate. We believe, however, that the systematic exploitation of 
the 'principle' of minimizing the logarithmic divergence in the 
myriad statistical problems where approximations are used will 
prove to be rewarding. 
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RESTRICTED BAYES ESTIMATES FOR BINOMIAL PARAMETERS 

ABSTRACT 

James D. Broffitt* 

University of Iowa 
Iowa City. Iowa 

Let ~ = (al.···.ak ) be the parameters for k indepen

dent binomial random variables. We wish to estimate ~ under 

the restriction a € R where R is a k-dimensional subset of 
N 

the full parameter space {~; 0 ~ ai 1. i = 1.···.k}. Bayes 

estimators (means of posteriors) are developed for ~ which 

correspond to prior distributions that assign probability one to 

the set R. Since the support of the resulting posterior is R. 

the posterior mean will be in R if R is a convex set. A 

bioassay example is given where the parameters are assumed to be 

increasing. or increasing and S-shaped. 

INTRODUCTION 

In many estimation problems it may be a priori assumed that 

the parameters satisfy certain relationships. For example. in a 

bioassay experiment where al.···.ak are probabilities of death 

at increasing dosage levels of a certain toxin. we may safely 

assume that a < ••• < a 
1 - - k' Maximum likelihood estimation of ~ 

* This research was partially supported by an NSERC grant 
from the Canadian government while the author was a visiting 
professor in the Department of Statistical and Actuarial 
Sciences. University of Western Ontario. London. Ontario. 
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under thii fQQtpieti6n, commonly caiied isotonic estimation. has 

been well researched. and the estimates are often computed using 

the pool-adjacent-violators algorithm. see Barlow et al. (1972). 

Restrictions of a more complex nature understandably lead 

to more difficult computational problems. Schmoyer (1984) 

computed the "sigmoid" mle of ! for a set of bioassay data. 

The sigmoid restriction assumes the parameters are increasing 

convex to the left of a certain point. and increasing concave 

to the right of that point. Such parameters will be called 

S-shaped. 

A small amount of research has appeared on restricted Bayes 

estimation. Smith (1977) developed the Bayes estimator of 9k 
under the isotonic assumption 91 S s 9k . In his applica-

tion. ! represented the reliability of a system measured at 

different stages of development. Broffitt (1984. 1986) found 

isotonic Bayes estimators for a fairly general model that were 

useful in estimating mortality rates. Sedransk et al. (1986) 

used importance sampling to compute the restricted Bayes esti

mate of the mean of a finite population. Their restriction 

specified that the population proportions be unimodal. i.e .• 

9 1 < •••• < 9 > 9 > ••• > 9k . . t· t+l· . 

In this paper attention is centered on the binomial data 

model. and Bayes estimators are developed under a general 

restriction. The main difficulty in applications is the numer

ical computation of the estimates. Direct calculation is used 

for the isotonic restriction while importance sampling is 

employed to compute the Bayes estimates under the S-shaped 

restriction. These techniques are applied to the bioassay data 

studied by Schmoyer. 

NOTATION 

Throughout 

with parameters 

k 
IT h(x.la .• b.} 

i=l 1 1 1 

this paper h(xla.b} will denote the beta pdf 

a and b. and h(?SI~.!2) will denote 

where ?S = (xl' •••. xk ) . ~ = (a l · •••• a k ) . and 

We will also use (i) 
~ to represent a k-

dimensional vector with a one in the ith position and zeros 

elsewhere. 
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BAYES ESTIMATORS 

Let zi be the observed value of a binomial random 

variable with parameters ni.a i . i = 1.···.k. The likelihood 

function is 

k 
L(~) ex: U 

i=1 

z. n.-z. 
a.1(I-a.) 1 1 

1 1 
~ € R (1 ) 

where R is a k-dimensional subset of n = {~; 0 5 a i 5 1. 

i = 1. ···.k}. 

Since we believe ~ € R. we should select a prior dis

tribution that assigns probability one to R. Let Yi have pdf 

h(· lai.P i ) and let Y1 .···.Yk be independent. The prior 

distribution is specified by ~ ~ (rlr € R). and accordingly 

the prior pdf is 

prior(~) = h(~I~.~)/p(R) • ~ € R (2) 

where p(R) = PEr € R]. 

Combining (1) and (2) provides the posterior pdf. 

post(~) = h(~I~.~)/p(R) • ~ € R. (3) 

where a i = ai+z i • b i = Pi+ni-z i • and p(R) = JRh(~I~.~)d~. 
From (3) it is clear that (~I~) ~ (~I~ € R) where Xi has pdf 

h(· lai.b i ) and X1 .···.Xk are independent. This demonstrates 

that the prior in (2) is conjugate. 

Denote the posterior mean by 

Then; 

B 
9.(R) = J R x.h(xla.b)dx/p(R). 1 1 ~ ~ ~ ~ 

(4) 

Since xh(xla.b) = [a/(a+b)]h(xla+l.b). (4) reduces to 

B B (i) I 9.{R) = 9. P (R) p{R). 
1 1 

(5) 

where a~ = a~(n) = 
1 1 

ai/(ai+b i ) 

= ~+~(i} 
is the unrestricted Bayes esti-

{i} 
mator of a i • ~ and 

The fundamental result given in (5) expresses the re

stricted Bayes estimator in a seemingly simple form. In appli-

cations. p(R). and consequently p(i)(R). can be quite dif

ficult to compute. An inspection of (5) provides no apparent 
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indication that ~B(R) € R: however. since the posterior dis

tribution has support R. it follows that ~B(R) € R as long 

as R is a convex set. 

m 
There may be a natural partition of R. i. e .• R = U Rt 

t=l 
where the k-dimensional Lebesgue measure of R n Rt is 0 if s 
s ~ t. In this case it may be desirable to assign prior proba

bilities for each subset Rt . and to use different prior param-

eters over different subsets. Let u t be the prior probability 

and let the pdf of ~. condi-of Rt • i.e .• u t = P[~ € Rt ]. 

tioned on ~ € Rt • be 

k 
prior{~IRt) ~ U h{9 la .~ ). 

i=l i it it 

where I{·) is the indicator function. ~t = (a1t .···.akt ). 

~t = (~lt·····~kt)· and 

pt{R t ) = fR h{~I~t·~t)d~. 
t 

The subscript on p indicates that the prior parameters ~t 

and ~t depend on t. Then 

m 
prior{~) = ~ u t prior(~IRt) 

t=l 

m 
= ~ I(~ € Rt)uth{~I~t'~t)/pt(Rt). (6) 

t=l 

Combining (1) and (6) we have 

m 
post{~) ~ ~ I(~ € Rt)utcth(~I~t'2t)/pt{Rt)' (7) 

t=l 

where a it = ait+z i · bit = ~it+ni-zi' ~t = (a1t ·····akt )· 

2t = (b1t ····.bkt )· and 

Therefore 

post(~) = 

64 

k r(ait+~it)r(ait)r{bit) 
U 

i=l r{ait)r{~it)r{ait+bit) 

m 

~ I(~€Rt)utcth(~I~t'2t)/pt(Rt) 
t=l (8) 



where The posterior mean of 

(9) 

(lO) 

where This demonstrates that the 
m 
] Ttctpt(Rt}/pt(Rt} 

t=I 

is a weighted average of the Bayes Bayes estimator e~(R) 
B estimators eit(R t ). t = I.···.m. where the weight wt equals 

P[~ € Rtl~]. the posterior probabilty of Rt . Either (9) or 
B 

(IO) may be useful for computing ei(R}. 

If we assume ait = a i • 13 it = 13 i • i = I.···.k. t = 1. 

···.m. so that the same set of prior parameters is used for 

each partition. then the subscript t may be removed from Ct' 

and Then (9). e.g .• becomes 

m (i) 

e~(R} 
1 

] TtP (Rt}/p(R t ) 
= eB ~t=~1 ______________ _ 

i m 
] T tp(Rt}/p(R t } 

t=I 

(II) 

We close this section with the remark that posterior second 

moments are easily obtained in a similar manner. In particular. 

under the assumptions that led to (5). 

2 [ai )[ ai+I)p(ii}(Rl 
E(eil~} = ai+b i ai+bi+I peR} • 

where ~(ii) = ~ + 2~(i} and p(ii}(R} = SR h(~I~(ii).2}d~. 
Also. with R in partition form and a it = a i · 13 it = 13 i • 

m (ii) / 
1 ] TtP (R t ) peRt} 

E( e 2
1
• I~) _ [~) [ a i + ) .....::.;t=;;;,;1=-_______ _ 

- ai+b i ,ai+bi+I m 
] T tp(Rt>/p(R t > 

t=I 
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ISOTONIC RESTRICTION 

When R = t~: 0 _( 9 ( ••• ( 9 (_ I}, 
1 - • - k the Bayes estimate 

9~(R) may be computed using (5). This requires the computa-
1 

tion of peR) = P[X1 ~ ••• ~ Xk ] (and the similar probability 

p(i)(R» which may be done using the following result. 

Let 

where 

have pdf be independent, 

be integers, and for j = 1, 

f .(i) = 
J 

f(i+a.)f(b.+c.-i)f(c.+1)f(a.+b.) 
J J J J J J 

f(i+1)f(a.)f(c.+1-i)f(b.)f(a.+b.+c.) 
J J J. J J J 

(12) 

The proof of (12) is similar to that of Corollary 2.1 in 

Broffitt (1984). 

S-SHAPED RESTRICTION 

Suppose 9 is a function of an independent variable d. 

Although numerous examples are possible, in bioassay d refers 

to dosage level and 9(d) is the corresponding probability of 

death (or whatever event is being recorded). In practical 

examples it mayor may not be appropriate to assume 9(0) = O. 

Schmoyer (1984) assumed 9(0) = 0, and accordingly for the 

presentation in this section and the example to follow, we shall 

assume 9(0) = o. If this assumption is not desired, a slight 

modification is necessary, which is given in the appendix. 

Without loss of generality let 0 = dO ( d 1 ( ••• ( dk , 

and let 9 i = 9(d i ), i = O,···,k. Also let 

i = 1,···.k, 

and define 
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Rt = {f!; 0 ~ sl ~ ... s St ~ ~ sk O}. t = 2 ••••. k-l . 

and 

Rk = {f!; 0 ~ sl s s sk} . 

R 
Then ~ is said to be S-shaped if f! € U Rt . If f! is 

t=1 
S-shaped its elements must be nondecreasing and either convex 

(Rk ). concave (R 1 ). or convex to the left and concave to the 

right (R2 .···.Rk _ 1). 

Unfortunately. R is not a convex set (if k ~ 3). For 

~1 = (0.30. 

~ € R1 and 

example. let 

O. 44. 0·. 56) . 

but 

k = 3. d.-d. 1 = 1. i = 1.2.3. 
1 l-

and ~2 = (0.14.0.30.0.60). Then 
3 

.5(f!1+f!2) ( U Rt · Since the posterior pdf has 
1 

support R. which is not convex, the posterior mean. ~B(R). 
need not be in R. This is a bit unsettling and should it 

happen. f! must not be estimated by the posterior mean. An 

alternative would be to subtract from R that subset with the 

smallest posterior probability. and then recompute the poster

ior mean of ~. This process could be repeated if necessary. 

In the example to follow. 9~(R) is computed using (11). 
1 

and p(i)(R t ). Since these three 

probabilities differ only in the parameters used in the beta 

densities. the process of computation is the same for each. 

Thus for simplicity our discussion will focus on peRt)' 

Because of the complexity of Rt . some form of Monte Carlo 

is suggested as the computational method. but since p{R t ) is 

extremely small. a rejection technique would be highly ineffi

cient. These considerations suggest importance sampling as a 

viable solution. 

The technique of importance sampling stems from the follow

ing observation: Let ~ be a random vector with support Rt 
and pdf f(·). and for simplicity let h(~) = h(~I~.2). Then 

peRt) = JR h(~)d~ 
t 

= JR [h(~)/f(~)]f(~)d~ 
t 

= E~[h(~)/f(~)]. 

The procedure is to generate n independent observations on ~. 
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x ••• x and approximate 'V1 t ''''D by 

n 
}; h(x.)/f(x.). 

. "'1 ""1 1=1 

which is clearly an unbiased estimate. If possible. f(·) 

should be chosen so that h(~)/f(~) has a minimal variance. 

Our algorithm for generating ~ is based on the one given by 

Sedransk et al. (1986). and is detailed below: 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

Generate U1 ·····Uk+1 iid wi th pdf g(u) 
-u 

= e 
u > O. 

Find .* ( 1 * k) 1 S i S so that U.* ~ U. for 
i 1 .•••. k. 1 1 = 
Exchange U.* 1 and Ut · 

Sort U1 • •••• Ut in increasing order. 

Sort U t' •••• Uk in decreasing order. 

Let U < ••• < U > U > ••• 
(1) - - (t) - (t+1)-

be the result of steps (1) to (5). 

Let 
r1U(1)+···+riU(i) 

i = l,···.k. 
r1U(1)+···+rkU(k)+rUk +1 

k 
where r i = d i -d i _ 1 and r = i:l ri/k. 

It can be shown that the resulting vector ~ = (X1.···.Xk ) has 

pdf 

l-Xk ]-(k+1) 
+ --=- . 

r 

x € R . 
~ t 

Notice that if r 1 = = r k • i.e .. the d's are evenly 

spaced. then ~ has the uniform densi ty. f{~) = 

(t-l)!(k-t)!k!k. In any case h(~)/f(~) is bounded. so the 
"-

variance of peRt) is finite and may be made arbitrarily small 

by taking n large enough. 

EXAMPLE 

Table 1 lists the bioassay data and the resulting 

estimates. The superscripts M and B refer to maximum 

likelihood and Bayes respectively. while the arguments I and 

S denote the isotonic and S-shaped restrictions. Thus 
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aM = z/n is the unrestricted mle. aM(I) was obtained via the 

pool-adjacent-violaters algorithm. and OM(S) was taken from 

Schmoyer's paper. The Bayes estimates aB(I) were computed 

using (5) and (12) with the prior parameters a i = 13 i = 1. 

i = 1. ···.k. These same values of and 13 i together with 

Vi = 11k. i = 1.···.k were used to compute OB(S). For this 

B selection of prior parameters. 2 (S) € R4 • and the approxima-

tion of the posterior probabilities P[2 € Rtl~]. t = 1.···.k 

are 0.00. 0.00. 0.00. 0.58. 0.29. 0.12. 0.00. and 0.00. 

respectively. Plots of these five estimates are displayed in 

figures 1 and 2. 

Table l. Data and estimates for the bioassay example. 

d i n. z. O~ O~(I) O~(S) O~(I) O~(S) 
1 1 1 1 1 1 1 

8 30 0 0.000 0.000 0.000 0.016 0.009 
16 40 1 0.025 0.025 0.025 0.043 0.036 
24 40 2 0.050 0.050 0.050 0.088 0.105 
28 10 5 0.500 0.425 0.390 0.357 0.299 
32 30 12 0.400 0.425 0.448 0.456 0.439 
48 20 16 0.800 0.733 0.677 0.680 0.715 
64 10 6 0.600 0.733 0.892 0.752 0.838 
72 10 10 1.000 1.000 1.000 0.930 0.871 

To compute OB(S) we used (11) together with the impor

tance sampling algorithm described in the preceding section. 

Ten sets of 1000 observations on 

quantities p(R t ). p(R t ). and 

~ were generated. The 

p(i)(R) were computed for each 
t 

of these sets. Using (11) this provided 10 unbiased approxima

B tions of each estimate 0i(S), i = 1.···.k. from which means 

and variances were computed. The means were used as the final 

S-shaped Bayes estimates and are reported in table 1. 

The variances. denoted by SV i . provided a check on the 

accuracy of the importance sampling procedure. These are given 

in table 2 along with twice the corresponding standard errors. 

/ 112 2SE. = 2(SV. 10) . 
1 1 

Since the largest of these is 0.0096. we 

are reasonably sure that the differences between the computed 

estimates and the exact posterior means are less than 

Table 2 also contains the posterior variances of 

0.0l. 

B 
°i' 
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B B 9.(1). and 9 1.(S). denoted by V .• V.(I). and V.(S). 
1 1 1 1 

respectively. Of course Vi = aibi/[(ai+bi)2(ai+bi+1)]. Vi(I) 

was computed by exact formula. and Vi(S) was approximated by 

importance sampling. Finally the ratios Vi/Vi(l) and 

Vi/Vi(S) furnish measures of the efficiency gained by imposing 

the isotonic or S-shaped restrictions. 

Table 2. Variances and Efficiencies 

SVx104 2SE Vx104 V(I)x104 V(S)x104 V/V( I) V/V(S) 

0.009 0.0006 9.17 1.94 0.53 4.7 17.3 
0.043 0.0013 10.55 5.15 3.25 2.0 3.2 
0.434 0.0042 15.43 14.43 15.60 1.1 1.0 
2.324 0.0096 192.31 77.17 75.27 2.5 2.6 
1.995 0.0089 73.09 57.07 71.41 1.3 1.0 
0.294 0.0034 76.36 62.08 38.47 1.2 2.0 
0.333 0.0036 186.97 57.71 34.11 3.2 5.5 
0.464 0.0043 58.76 34.80 46.18 1.7 1.3 
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APPENDIX 

If the assumption B(O} = 0 is not made. then ~ is said 

k 
to be S-shaped if ! € U Rt' where 

t=2 

Rt = {~ .• 0 <. s2 ~ ••• < S ) 
~- .: - t- sk ~ O}. t = 3.···.k-1. 

and 

The algorithm for generating an observation with support Rt is 

as follows: 

1. Generate 
u ) O. 

iid with pdf g(u} -u = e 

2. Find i* (2 S i* 

4. 

5. 

6. 

7. 

i = 2.··· .k. 

Sort 

Sort 

Let 

the 

Let 

U2 · •••. Ut in increasing order. 

Ut·····Uk in decreasing order. 

U1 · U(2) S S U(t) ~ ... ~ U(k} . 
result of steps (1) to (5). 

rU1+r2U(2)+···+rkU(k}+rUk+1 

k 

Uk+ 1 be 

i = 1. ···.k. 

r 1· = d.-d. 1 and r = ~ r 1./(k-1). 
1 1- i=2 

where 

The resulting vector ~ = (X 1 .···.Xk ) has pdf 

= (t-2}~(k-t}!k~(k-1) [X: +X2~X1 
rr2 ···rk r r 2 
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BAYESIAN PREVISION OF TIME SERIES 

BY TRANSFER FUNCTION MODELS (0) 

Francesco Carlucci 

University of Rome 
" La Sapienza " 
Italy 

1. Introduction 

Gino Zornitta 

University of Venice 
" Ca Foscari " 
Italy 

Given the time series {Yt}, tET::{l,2, ••• ,n}, which is assumed 
to be caused by the series {Xt}, tET, according to the transfer 
function model 

-1 -1 
(1.1) Yt= ° (B)w(B)Xt + <I> (B)S(B)Ut 
where B is the usual back-shift operator, and w(B)=wO-wlB~ •• ~Jf, 
o(B)=l-olB+ ••• -OrBr, S(B)=l-SlB+ ••• -SqBq, <I>(B)=l-<I>lB+ ••• -<I>pBP 
where {xt} is assumed to be generated by the ARMA process 

(1. 2) <I> (B) xt=S (B) a 
x x t P qx 

with <I> (B)=l-<I> lB+ ••• -<I> B x, S (B)=l-S lB+ ••• -S B and given 
x x xPx x x xqx 

a set H information regarding the unknown values of Yn+T~~and 
Xn+T,TET~::{1,2, ••• ,m}, in this work previsions of these values 
are determined in de Finetti's sense, so that both the sample 
¥n= (Yl 'Y2"" 'Yn)', ~n= (xl ,x2'" • ,xn )', and the information Hare 
taken into account. In the case of economic time series, this 
information may concern, for instanc~, either the causal re
lationship from the variable Xt to Yt, or the period of the 
business cycle which influences the autoregressive schemes in 
submodels (1.1) and (1.2), or even the ARMA schemes on residuals. 
Furthermore, information H may concern the orders (s,r,p,q) and 
(Px,qx) of submodels according to the opinion and experience of 
the model builder. Taking this information into account, 
"previsions" in de Finetti's (1974) subjective meaning rather 

(0) This paper is due to common efforts of the two authors; 
nevertheless, Sections 3-4-6 may be attributed to G.Zornittaand 
Sections 5-7-8 to F.Carlucci. The remaining ones are common. A 
financial support by Consiglio Nazionale delle Ricerche 
(CTB N. 83.00075.10) has to be acknowledged. 
(00) A tilde (-) over a variable denotes that its random 
character is taken into consideration. 
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than "projections" in thp. traditional sense are formuiat@d. 
Analytically, by use of a quadratic loss function, such 

previsions are defined as the mean values E(Yn+TIXn,~,H), TET~, 
of the conditional distributions of Yn+T, TET~ ,given Xn' ~n and H. 

Bayesian estimation in a transfer function modeL was 
developed by P. Newbold (1973), but he did not consider the 
prevision problem. On the other hand, Bayesian projection was 
studied by Monahan (1983) in the context of ARMA models. So,the 
present work's objectives could be reached by extending Monahan's 
results (which produce exact posterior distributions) to the case 
of transfer function models. But this way is not followed here 
for two reasons: firstly, posterior distributions are determined 
by means of non informative priors and therefore they loose de 
Finetti's subjective meaning; secondly, posterior distributions 
have an uncommon form and need a numerical cumbersome evaluation 
to be used. Therefore, in order to determine the previsive 
distributions, we prefer to utilize prior densities that are 
fully informative, as developed by F. Carlucci (1977) for a 
particular class of time series models, even if this procedure 
forces the likelihood function to be approximated. 

The plan of the paper is as follows. Firstly, assumptions 
used in the work are specified, and then the likelihood function 
for parameters is determined following Newbold (1973) and 
supposing the orders of submodels as known. In Section 4 such 
orders are calculated by means of a Bayesian procedure grounded 
on probability odds. In order to make this procedure usable, it 
is necessary to reduce the likelihood function to a known form, 
and the transformation is performed in Section 5 by use of the 
usual Gauss-Newton method. In Section 6, posterior marginal 
distributions for the unknown parameters of the previsive model 
are determined on the ground of non-informative prior densities. 
Sections 7 and 8 concern previsions which are evaluated on the 
base of informative distributions, for the ARMA and the transfer 
function models, respectively. 

2. Assumptions 

For the model (1.1) - (1.2) let us make the following 
assumptions: 
I - {Ut} and {at} are mutually uncorrelated normally distributed 
white noise processes, each with zero mean and variances cr~ and 
cr~, respectively. 
II - All stationarity and invertibility conditions are satisfied. 
III - All required initial values for xt ' t,O, are known. 
IV - Information H affects only the parameter prior density in 
the following way: If parameters, assumed independent, are 
referred to the representative model in the sample period, then 
their prior density is locally uniform. If parameters are 
referred to the previsive model, then their prior density is the 
Raiffa-Schlaifer natural conjugate one, in the normal-inverted 
gamma form; furthermore, parameters in submodels (1.1) and (1.2) 
are a priori independent. 
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3. Derivation of the likelihood function 

In order to calculate the likelihood functions, it is 
firstly conv@ni@nt to congidgr thg rnodQ1 (1.1) - (1.2) W¥ltt~n, 
by virtue of Assumption II, in the approximate form 

(3.1) Yt=n(B)xt +0(B)Ut 
(3.2) x =0 (B)a txt 

-1 k -1 
where 0 (B)'w(B)~n(B)=nO-n1B+ ••• -nkB,~ (B)·e(B)~0(B) = 
=1-01B+ ••• -0QBQ, ~i1(B).ex(B)~0x(B)=1-0x1B+ ••• -0xQxBQx with k,Q, 

Qx sufficiently large so to get the desired approximation level. 
By following Newbold (1973) and setting M~= (u1_N ••• ,u~,uo) I 

- ( ~ I ) I x~- ( ) I bt' '>l ~-u ,u1 , ... ,un ,=-x1_k ,,,,,x_1 ,xO weo al.n 

(3.3) ~=~1~n+~2~n+~3~~+~4~~ 
where ~1' ~2' ~3 and ~4 are suitable matrices whose elements are 
functions of parameters ~=(nO,n1, ••• ,nk) I and §=(01,82""28Q) I. 

By virtue of Assumption I, the density for ~ is N(Q,cru~n+Q) 
and since the transformation from ~ to u has unitary Jacobian, 
the joint density for l and u~ is-n = 

-n = 
~ ~ 2 - (n+Q) /2 2 

(3.4) p(~n'~ I~,~,cru'~n'~ )=(2TIcr ) exp{-So(~,~)/2cru} 
where 
(3.5) So(~,~)=~I~=S(~,~)+(~~- ~~)1~4~4(~~- ~~) 
wh~re g~ is the value for ~~that minimizes So(~,~) and S(~,~)= 
= ~ [E (~t I ~ ,~ ,~* ,g,§)] 2 is the minimum. 

1:=I-Q - -n -n - --
By taking (3.5) into account, we can factorize(3.4) into the 

two following densities 
~ 2 -n/2 -1/2 2 

(3.6) p(~nl~,~,cru'~n'~ )=(2TIcru ) 1~4~41 exp{-s(~,~)/2cru} 

(3.7~.P(~~I~n,~,~,cru'~n,~~)=(2TIcr~)-Q/21~4~41~exp~(~~-~~) '~4~4 
(u~-u"')/2cr2} = = u 

By use of the same argument as above, we can determine the 
density for ~n' By writing g~= (al-k-Qx"" ,a_JJ I, 
g=(g~,al_k, ••• ,aO, .•. ,an)' in analogy to (3.3) we obtain 

~ ~ 
(3.8) g = ~5~n+~6~ +~7g 

where ~5'~6,and ~7' are suitable matrices whose elements are 
functions of parameters § =( 8 ,8 , ••• ,8 Q ) I • 

-x Xl x2 x x 2 
By virtue of Assumption I ,the density for ~ is N (~,q a~n+k+Q ) 

and since the transformation from x to a has unitary Jacobian~ 
- =n = the density for ~n is , by use of the same reasoning as before 

and of Assumption III, 

(3.9) p(~ IB,cr ,~~)=(2TIcr2)-n/21~7'~7r1/2exp{-s(~ )/2cr2} 
-n'-x a - a - - -x a 

n [ _ I ~ ]2 
where S(~x)==t;l-k-Qy E(at ~n'~ r~x) • 

The same approach as above can be applied to submodels (1.1) 
and (1.2), obtaining 
(3.10) P(Xnl~,cru'£n,£~)=(2TIcr~)-n/21~4~41-l/2exp{-S(~)/2cr~} 
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where 8 =(81 ,82 , ••• ,8 )'=(w',o',<P',6')' and = s+r+p+q = = = = 
1 =(Yl'Y2' ••• 'Y + )' =(<P' ,6')' are the parameters of submodels - p q =x =x 

x x 
(1.1) and (1.2), respectively, and 

(3.12 ) 
n x 2 

S(~)= ~l_q[E(\\I~n'~n'~ ,~)J 

n r. ~ I x J2 
S(~)= f=l-S-q L~(at ~n'~'~) 

x 

W~th xx( )' t r f k values (0). ~ = xl_s, ••• ,x_l'xO vec 0 0 nown 

Now, by combining (3.10) and (3.11), we get 
x x x 

(3.14) p(:l ,x 18,1,0" ,0" ,x )=p(:l 18,0" ,x ,x )·p(x I y,O" ,x , -n =n = - u a = -n = u =n = =n = a = 
which is the likelihood function for the parameters of the 
complete model (1.1) - (1.2). 

4. Model identification 

The determination of the order for the model (1.1)-(1.2) 
that better fits time series {yJ and {Xthn the sample period,is 
performed separately for the submodels (1.1) and (1.2), by 
assuming that probability evaluations are independent. Furthermore, 
it may be observed that submodel (1.2) is a particular case of 
(1.1), with w(B)=O identically: then, the procedure for the 
identification of submodel (1.1) can be used even for submodel 
(1. 2) • 

Such a procedure starts from the consideration of a transfer 
f~n£t!o~ model of the least order (s,r,p,q)and one of the largest 
(s,r,p,q), with the orders subjectively evaluated so that one can 
reasonably believe that 9<S<5, r<r<r, p<p<p, and q<q<q. Each 
model is denoted by ~" ok' where indexes correspond to s,r,p, and 
q, respectively. ~J 

The best model is chosen by using the principle of minimizing 
the prevision of the loss i 

( 4 • 1) min E ( i 11\, " , " 'k ' ) =min b. ~ % 2: R, (~" "k I ~ , " , " 'k ' ). 
h'i'j'k' ~ J h'i'j'k' h ~ J k ~J ~ J 

.p (M. " "k l:l ,x ,xx ,H) - h~J -n =n = 

where s~h'~5, r~i'~r, p~j'~P, q~k'~q, and ~'i'j'k,indicates the 

action of choosing the model ~'i' j 'k' and R,(~ijk I~, i' j 'k') is 

the loss associated with action ~'i'j'k,When the true model is 

~~" ok: finally, p(M. ""kl y ,x ,X~H) is the posterior probability 
ll~Jh~J -n =n = 

of model ~ijk. 

(0) In Newbold (1973) the argument of this point is developed 
with 2x vector of unknown values. 
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Loss functions are subjectively evaluated and the posterior 
probability for ~i'k is given by Bayes' theorem 

J Z Z 
(4.2) p(M.. , 'k l y ,~ ,~ ,H)«p(y 1M.., 'k'~ ,~ ,H). p(M.. , 'k IH) h1J -n -n - -n h1J -n -h1J 
for every h, i, j, k, where P(~ijkIH) is the prior probability 

for model M.. "k and p(y 1M.., 'k'x ,xZ,H) is the likelihood. Since -n1J -n -n1J =n = 
this function is formally equivalent to the dene1ty of i under 

-n 
the hypothesis that ~ijkiS the true model, with parameters 

~hijk = «31 , S2'· •• , fh+i+j+k)' and 0hijk' it may be written in the 

form 
Z Z 

(4.3) p(y 1M.., 'k'~ ,~ ,H) =! p(y I~h' 'k,ah , 'k'~ ,~ )0 -n h1J -n - -n - 1J 1J -n-
Z -1 lie 

P(Sh' 'k,oh' 'k Ix ,x ,H)dSh , 'kdah' 'k«!Oh' 'kP(Y fth' 'k'o} "k'x ,x ). = 1J 1J =n = = 1J 1J 1J =n - 1J 11J =n = 

dfth' 'k· dOh' 'k = J h , 'k - 1J 1J 1J 
where p(y I~h' 'k,ah , 'k'~ ,~x) is not conditional on H because -n - 1J 1J -n-
random sample does not depend on this information, and 
p(fth , 'k,oh' 'kl~ ,~Z,H) is the locally uniform prior density for 

- 1J 1J -n - -1 
parameters of model ~ijk' proportional to Chijk • 

Then, the posterior probability of ~ijk' given by (4.2), is 
x 

(4.4) p(M.., 'k ly ,~ ,~ ,H) a: p(M.., 'kIH)' J h , 'k h1J -n -n - h1J 1J 

so that, if Ph' 'k = p(M.., ,kIH)/P(M----IH), for every h,i,j,k,are 1J h1J srpq 
the prior probability odds on Mhijk against M ____ , subjectively 
evaluated, the posterior ones are srpq 

(4.5) Ph' 'k= p(M.. "k ly ,x ,Xz,H)/p(M ____ ly ,x ,Xz,H) 
1J -h1J -n =n = srpq -n =n = 

a: P 'k oJ 'k / J ___ _ 
hiJ hiJ srpq 

for every h,i,j,k. By means of these posterior odds it is 
straightforward to compute the posterior probabilities 
p(M.., 'k lY ,x ,xZ,H) and the minimum (4.1). h1J -n =n = 

Unfortunately, the computation of integrals in (4.5) is not 
an easy task because density (3.10) is not of a known type. 
Therefore, it has to be approximated, as it will be shown in the 
next Section. 

5. Transformation of the sum of squares function and computation 
of the posterior odds 

In order to reduce (3.10) and (3.11) to known density 
functions, it is convenient to transform the sums of squares 
(3.12) and (3.13) by using the classical Gauss-Newton procedure 
based on the expansion into a Taylor's series truncated at the 
first term around preliminary approximated values ~oand ~o(o). 

(0) To be determined subjectively, for instance. 
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Then,by denoting by [~1 and [g1 the conditional expectations for 

U=(UI , ••• ,u 1,uO,ul, ••• ,li )'anda=(al , ••• ,a "ada" ... ,a )', = -q - n = -s-q -.1..1. n 
we have [~]=[~oJ+~o (~-~O)and [~]=[gO]+ gO (f-~O) where [gO]= 

=E(~ly ,~ ,~%,~O),[~O]=E(~I~ ,~%,yO),and QO ,gO ,are (n+q) x (s+r+p+q) 
- -n -n - - - - -n - - --

and (n+s+q ) x (p +q ) matrices, whose elements d ~ tand g~ tare given by x xx 1. 1. 
d~t=[-c)[UtJ /~S ,J ° ,i=1,2, ••• ,s+r+p+q, t=1,2, ••• ,n+q, 

1. 1. S,=S1 
g~t=[-()[at]/Jy,] 1. o,i=1,2, ••• ,p +q , t=1,2, ••• ,n+s+q • 

1. 1. Y i =y , x x x 
Going on with tEe usual iterative procedure, we get 

2 A A 

(5.1) S (~) = [~] , [~] =VyZy + (~-~) '!r~ (~-~) 

(5.2) S(X)=[g]' [gJ=vxZ~+(X-i) '~'~(~-i) 
where v =n- (s+r+p+q), v =n- (p +q ), z2=v-l[uO], [UO] , z2= v-I [~~'[cfJ, 

y x xx yy= = x x== 
and g,y,D and G are the values for S,y,DO ,and GO obtained at the === = === = 
last iteration. 

The approximation (5.1) can be inserted in (3.10), so that 
we obtain 

(5.3) fo -(n+l)exp{_tv z2-(S-8)'D'D(S-Sll /202}dSdOttlz2(D'D)-1-l/2 
u yy == ==== u = y 

on integrating firstly with respect to 0 and then to ~,byusing 
u -

the properties of multivariate Student! distribution. 
Since integrals J h1jk in (4.3) are-of the type (5.3), 

posterior odds (4.5) beco.me 
-1 -1 1/2 

(5.4) Ph" kttPh' 'k Z ____ zh' 'k I Dh' , 'k Dh , 'k (D! ___ D ____ ) I 1.J 1.J srpq 1.J = 1.J = 1.J =srpq =srpq 
for every h,i,j,k, where z ____ ,D ____ ,and zh' 'k,Dh , 'k are 

srpq =srpq 1.J = 1.J 
associated with models M~rp~ and ~ijk' respectively. 

As noted before, the same procedure can be utilized for the 
determination of the order (p ,q ) for the submodel (1.2). If it 

x x 
is believed that p <p <p and ~ <q <q , and if MJ' k is the submodel x x x x x x 
with P =j,q =k, then posterior odds are 

x x -1 -1 1/2 
(5.5) P'kttP'kz- - z'klg~k§'k(g! - §- -) I 

J J Pxqx J -J -J -Pxqx-pxqx 

for every j,k, where z __ ,G __ , and z'k' G'k are associated 
Pxqx =Pxqx J =J 

with the models M_ _ and M'k' respectively. 
Pxqx J 

6. Posterior marginal densities for the parameters of the 
previsive model 

Having identified the orders (s,r,p,q,)and(px,qx)of the best 
submodels {l.l)and(l.2), before evaluating the prev~s~o~s _it is 
necessary to determine the posterior densities for ~,r,o ,0 of 
the previsive model, by use of Bayes'theorem and of-prio~ a 
densities. These are in the normal-inverted gamma form by virtue 
of the second part of Assumption IV 
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(6.1) 

(6.2) 

1 - (vy+s+r+p+q+l) [- - 2 - - ] 2 p(S,cr H)a:cr oexpt- v z +(S-S)'N (8-S) /2cr } 

P(~,cruIH)a:cr-(Vx+Px+qx+l) 0 exp{_[vYZ~+(Y:Y~N=~:Y~]/2cr2u} 
= a ~ ~ ~ ~ x x = = =x = = a 

'Q. Fa.ameters B,g and r,a reBpectively; where U ,I ,u ,I ar@ = u - a y y x x 
values that, together with the vectors ~'X' and the matrices ~y' 

(s+r+p+q) x (s+r+p+q), N , (p +q ) x (p +q ) I are initially sub -=x x x x x 
jectively assigned in consequence of prior information H. 

By virtue of the factorization (3.14) for the likelihoog,~ 
Bayes'theorem can be applied separately to the densities of S,cr 

~ ~ = u 
and r,cr • As for the former one, we get 

- a 
~ ~ -1/2 

(6.3) p(~,crul~n'~n'B ,H)a:p(~,cruIH)op(Ynl~,cru'~n'~ )a:1~'4~41 0 
-(v +s+r+p+q+n+l) - -2 - - 2 • 

ocru y oexp{-[v z +(S-8) 'N (S-S)+v z +(8-S)'D'D(8-
y Y = = =y = = y v = = = = = 

-§)]/2cr2}=lv L l-l / 2 0cr -(Vy+s+r+p+q+n+l)exp{_[v z2+v z2+€ +(8-
= u =4=4 u -- Y Y Y Y Y = 

_8T ) 'R (8-S+)]/2cr2} 
= =y = = u + -1 A - _ +' + 

where R = D' D +-N , J3 = R (D'D 8+N B), € =S'N S+S'D1 DS-8 R 8 
=y = = =y = =y = = = =y= y = =y= = = == = =y= • 

On integrating (6.3) with respect to cr I the posterior 
marginal density for ~ is obtained u (= )/2 

= 2 - v +s+r+p+q 
(6.4) p(~ly ,~ ,~~,H)a:[v +(~-~+)'E C1r-~+)/z J y 

- -n -n - y - - -y - - y 
where v =v +n and v z2=v z2+v z2+€ , in the multivariate Student 

y y y y y y y y Y 
t form, with v degrees of freedom. 

y 
As for the posterior densities for ~ and (J , 

a 
is the same. The joint density is the following 

(6.5) p(y (J Ix x~ H)a:IL'L rl/2(J -(Vx+Px+qx+n+1) • 
=' a =n'=' =7=7 a 

oexp{-[V z2+v z2+€ +(Y-Y~'R (y_yt)]/2cr2} 
x x x x x = = =x = = a 

whilst the marginal one for r is _ 

the procedure 

x [= +- + =2]-(V +p +q )/2 
(6.6) p(rl~n'~ ,H)a: vx+(r-~ )' ~x(r-r )/zx x x x 
h R G' G N Y + R-1 (G' G Y+N 'V), -, _., , • +' + were =x= = = + =x' = = =X = = ...L E:x=;X ~x;X+;X ~ ~;X -;X ~x;X , 

= _ = =2 - -2 2 = =x-
V =v +n, v z = v z + v z + E: 

X X X X X X X X X 

7. Previsions for the ARMA submode1 

In order to evaluate the previsions E(y IY,~ ,~~,H)'T€T; 
, , f' t1 t h ,ntT -n -n -, d 1t 1S 1rs y necessary to compu e t e prev1s10ns assoc1ate 
with the ARMA submode1 (1.2), that is E(~n+TI~n,~~,H)~ 

To this end, we observe that variables Xn+T,TET can be 
expressed as functions of the sample and of residuals (current 
and past), according to the recursive relation 

T E T 
~ 
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p-- qx 
8 0=0 for i>q .As for n "if1we set A= * <I> oX o,B=~ 8 oa 0' 

X1 X P T J=T xJ n+T-J J= T xJ n+ T-J 
T-l x 

c= Pl<l> on 0' F= ~l<l> on 0' it is J= XJ T-J J= XJ T-J 

{ A+B+C for T<:q , T>P 
-B+F " 

x x T<q , T>P 
nT = x x A +C " T>q , T<P 

F " 
x X T>q , T>P 
X x 

Now, if _f C - -) I 0 the vector of future a = a I,a 2, ••• ,a 1S = n+ n+ n+m 
residuals with distribution N(0,02 I ) by Assumption I, by virtue = a=m 
of (6.6) the joint density for af and parameters of the ARMA 
submodel (1. 2) is 

f * f * * (7.2) pea ,y,o Ix ,x ,H)«p(a Iy,o ,x ,x ,H)op(y,o Ix ,x ,H)« 
= - a =n = = - a =n = - a =n = 

- (v +p +q +n+m+l) [ f' f - -2 2 + + ~ 2 
exOa x x x exp{- ~ ~ +Vxzx+Vxzx+€x+(~-~ )I~X(~_~ )/20a } 

which, integrated firstly with respect to ~ and then with respect 
to 0a' becomes 

fl * [= f' f =2J-(V +m)/2 
(7.3) p(~ ~n'~ ,H)ex vx+~ ~ /zx x 

in the multivariate Student ~ form with ~x d.o.f. f 
By virtue of (7.3) even the distributions of vectors a , UT*, =T 

are in the same form, and owing to the properties of such 
distributions the linear c~mbination ~T~~iS distributed as an 
univariate Student t with Vx d.o.f., and since the Jacobian of* 
the transformation (7.1) is unitary, the density for xn+T' TET 

* [_ =2 - (v +1) /2 
(7.4) p(x + 11,X ,x ,H)ex 'J +(x -n )/~I z ~1 x n T - =n = x n+T T -T x -TI 
is in the univariate Student t form with Vx d.o.f., conditional 
on 1 also, since this parameter vector is a part of n • 

- Mean values of the distributions with density (7~4) are 

EXx Iv,x ,x*,H)=n ,TE T~ so that the previsions of x , TET*, n+T ::!: =n = T n+T 
unconditionally on ~, are E (Xn+Tlgn,g*,H)=fnTop(~I~n,~*,H)d~, 
TET~, where p(11~ ,~~,H) is given by (6.7). 

- -n -

8. Previsions for the transfer function model 

The evaluation of previsions E(y Iy,x ,x~,H) is similar n+T -n =n = 
to the one illustrated in the previous Section. Firstly, wewrite 
the transfer function submodel (1.1) in the form 

(8.1) a(B)Yt= k(B)Xt + P(B)Ut 

where a(B)=<I>(B) oo(B)=l-alB+ ••• -a BP+r , k(B)=<I>(B) °w(B) p+r 
=ko-klB+ ••• -k BP+s , \.1(B)=o(B) 08(B)=1-\.11B+ ••• -\.1 Br +q , are p+s r+q 
polynomials in the backshift operator B. Furthermore, we observe 
that variables Yn+T' T€Tlt, can be expressed as functions of the 
sample, of the xt and of residuals u t ' according to the recursive 
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relation 

(8.2) f f 
Y = TI + ~'x + r' U n+T T ~T=T ~T=T 

h f_( )' f_( )' were u - u +l'u +2' ••• 'u + ' x - x +l'x +2' ••• 'x =T n n n T =T n n n+T 
g; = ( t; 1 ' t; 2' ••• , t;o)' , 1;; = ( 1;; 1 ' 1;; 2 ' ••• , 1;;0)' and -T T- T- =T T- T-

j j 
t;,= ~la.,t;, 1-E:" 1;;,= ::E::::a.,1;;, 1-11" for j=0,1, ••• ,T-1;with 1;;0=1, J 1= 1 J- J J i=l 1 J- J 
t;O=ko' 0.,=0 for i>p+r; 11,=0 for i>q+r; and k,=O for i>p+s. As 1 1 1 

p+r p+s q+r 
for TI.,. if we set M= go. ,y , ,U= ~k ,x ,V= '5?11, u t ' , 

T-i rf=' J n+T-J J=T J n+T-J' J='r J n+ -J 

W= ~a.,TI "Z= a.,TI" it is 
~'J T-J J= J T-] 

TI 
T = 

M-U-V+W 
M -V+W 

-U-V+z 
-v+z 

M-U +W 
M +W 

-U +z 
z 

T(q+r, T(p+r, T~p+S 

T(q+r, T'p+r, T>p+S 
T~q+r, T>p+r, T(P+S 
T~q+r, T>p+r, 
T>q+r, T~p+r, 

T>q+r, T~p+r, 

T>q+r, T>p+r, 
T>q+r, T>p+r, 

T>P+S 
T~P+S 

T>p+S 
T,(P+S 
T>P+S 

At this point we cannot go on as in the ARMA case, because 
the term g ~f is in (8.2) but not in (7.1): we have, therefore 
to transfoimTit in function of residuals a f in the following 

=T 
manner 

(8.3) ~T~~=~T~T+~',(~h' ~i'~2g;,·· ·'~Tg~)' = ~'Tg~+~T~T 
T where 1.=(1.1 ,1.2 , ••• ,1. )' and A,=,~t;, 11/J ,and (8.2) may be 

= T T J 1=J J - T-J 
changed as follows 

(8.4) y =TI +t: n +1.' af+r: uf=TI +t: n +:v' wf 
n+T T =T=T =T=T =T=T T =T=T ~T=T 

with )t! =(1.' ,t:) and wf=(af',uf~'. Now if uf=(u l'u 2' ••• 'u )' =T =T =T =T =T =T = n+ n+ n+m 
is the vector.of future residuals with distribution N(0,a2r )by 

= u=m 
Assumption I, the joint density for uf , af and the parameters of 
the model (1.1)-(1.2) is, by virtue of parameters'independence. 

f f I :t f fl :t (8.5) p(u ,a ,13,y,a,a y ,x ,x ,H) ex:p(u,a l3,y,a,a,y',x ,x,H)· 
= = = = u a -n =n = = = = = u a -n =n = 

p (13, a Iy ,x ,x:t ,H) .p (y, a Ix ,x:t ,H) 
= u -n =n = = a =n = 

By integrating (8.5) with respect to y and 13, and then to = = a and a , we obtain u a 
f fl !t r= f'f=2]-(v+m)/2 (8.6-) p(u,a l3,y,a,a,y,x,x ,H) ex: "+u u /z y = = = = u a -n =n = y = = y 

r:=; f' f/=2]- (v +m) /2 
L." +a a z x 

x = = x = = = _f _f' _ f' 
and if we assume that " = " =", the density for w = (a ,u )' y X =T =T =T 
(8.7) p (~'-r I~, J, au' a a' ~n '~n ,~:t, H) ex: [( \i+~f,' I /z~) (\i+gf' g f/z~~ - (~+m)/2 

is of the multivariate Student ~ form with v d.o.f. 

81 



Owing to the properties of such a distribution the linear 
combination x'wf is distributed as an univariate Student t with - =T=T v d.o.f. and, as the Jacobian of the transformation (8.4) is 
unitary, the densities p(y IS,r,a,a,y,x ,x*,H), are of the 

n+T = - u a -n =n = 
same form, with mean values 

(8.8) E(Yn+TI~'l'~n'~n,~*,H)=rrT+~T~T * 'rET 

th t th 'i f - * dit' 1 S d so a e prev~s ons 0 Yn+T' TET , uncon ~ona on = an l, 
ar~ 

(8.9) E(Yn+TI~n'~n,~*,H)=f(rrT+~T~T)d~dl 

9. Concluding remarks 

In the previous analysis, the identification and estimation 
of the transfer function model that better fits the time series 
{ y t} and {x t } are performed by following a Bayesian procedure. 
By use of the same approach, previsions are evaluated in de 
Finetti's sense, so that both the sample and the prior 
information are taken into account. The results of the analysis 
are simple and easy utilizable because they are based on 
distributions of the multivariate Student E type; therefore, 
even previsions are computed on the basis of Student's t. 
Subjective information can be introduced in a detailed manner, 
in such a way to modify, even substantially, the extrapolations 
based on the sample. 
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PRIORS FOR EXPONENTIAL FAMILIES WHICH MAXIMIZE THE ASSOCIATION 

BETWEEN PAST AND FUTURE OBSERVATIONS 

Donato M. Cifarelli 

Istituto Metodi Quantitativi 
Universita L. Bocconi 
Milano, Italy 

1. INTRODUCTION 

Eugenio Regazzini 

Dipartimento di Matematica 
Universita degli Studi 
Milano, Italy 

Throughout the present paper, {X } denotes a sequence of random 
quantities which are regarded as exch~ngeable, and which are assessed with 
a probability measure p(.) which is a member of the mixture-exponential 
family. To be precise, it will be presumed that the assessment P(·) for 
any finite subsequence (Xl, ••• ,X ) can be represented using the product 
of an identical non-degenerate p~rametric measure for each Xi' PS(·)= 
p(·I~=S), determined by 

(1.1) 

~ being a a-finite measure on the class B of Borel sets of IR. It will 
always be assumed that the interior XO of the convex hull X of the support 
of ~ (in symbols:supp(~»is a nonempty open set (interval) in IR and that 
{Pe;eE8} is a regular exponential family (cf. Barndorff - Nielsen 1978, 
p.116). The latter condition implies that 8 = {S:M(S)<oo} is an open 
interval in IR. Moreover, we will suppose that the set of the logically 
possible values of ~ coincides with 8. Given such a particular frame, the 
present paper deals with the choice of a prior for (1.1); an excellent 
treatmentof the same topic is included in Diaconis and Ylvisaker (1979, 
1985). Our approach bases itself on the obvious remark that the choice 
of a prior establishes the strength of the dependence among the elements 
of the sequence {X } and, consequently, the strength of the influence 
exercised by exper~ence on our future predictions. This SUbjective 
standpoint is skilfully expounded in de Finetti (1937). More precisely, 
we will deal with the problem of singling out priors which maximize that 

tV 
influence when no attempt to quantify possible prior opinions about S is 
made and one searches for priors for which there exists a function ~ :IRn 

n 
+IR satisfying 
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(1.2) P(X < x, ~ (Xl' ••• ,X ) < x) = P(X < x) 
N- n n - N- P(~ (Xl' ••• ,X )< x) n n-

for all N>n, n = 1,2, .•• , x £ IR. 

Bqualities (1.2) express a condition of perfect association between X 
and (Xl' ••• ,Xn). In fact, if the probability distribution(p.d.) func~ion 

is proper[i.e. lim P(x< x) 
x-+-oo -~-

(1.2) holds iff: 

1 - lim 
x -++ 00 

P(X < x) 
N-

for all £ > o. 

o ], then 

Whilst, if the same distribution is improper [i.e. lim P(X < x» 0, 
x-+-oo N -

or/and lim P(X ~ x)< 1] , (1.2) states that: 
x-++ 00 

p(lx - ~ (Xl' ••• ,X )1>£ and Ix I<A) = 0 for all £> 0 and A £ Xo. 
N n n N ' 

consequently, the p.d. of (XN, ~ (Xl, ••• ,xn» will present masses concen
trated on or adherent to (inf X,ninf X) and (supX, supX);cf. de Finetti 
(1970). 

It is worth stressing that our research does not aim at granting a 
particular logical status to the prior distributions characterized via 
(1.2). In fact, we deem it necessary to assess a prior distribution 

IV 
according to the actual information of an individual on 8 and to the 
strength of the dependence that he wishes to establish between past and 
future observations (cf. de Finetti and Savage, 1962). Even more so, (1.2) 
cannot be seen as an "objective" principle in order to fix prior distri
butions. On the other hand, the adherence to the subjective Bayesian point 
of view does not lessen the interest in knowing priors which, by 
characterizing extremal attitudes such as that described by (1.2), 
may be considered as terms of a comparison in any actual assessment of a 
prior. 

We conclude this section by summarizing the structure of the present 
paper. Section 2 describes a procedure in order to assign (finitely addi
tive) priors, according to de Finetti's theory. Section 3 proves that the 
method is general enough to yield distributions satisfying (1.2). Section 
4 includes some remarks about the application to a definition of the 
concept of noninformative prior and to a Bayesian justification of some 
classical inferential results. The Appendix contains the proofs of the 
theorems stated in the previous sections. 

2. FINITELY ADDITIVE PRIORS FOR THE EXPONENTIAL FAMILY 

The present section includes some preliminary remarks about the 
analytical representation of a class of priors that we will employ in the 
next sections. It is founded on a paper by Regazzini (1987) which assumes 
de Finetti's coherence condition (dF-coherence) as sole "axiom" for the 
theory of statistical inference. 
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Let p be a a-finite measure on (0,80), where 8e = 8n8, and let {1m} be 
an increasing sequence in 8e converg~ng to e such that: 

O<p(I )<00 for all m = 1,2, •••• The sequence {p} defined by 
m m 

(2.1) p (B) = p(Bn I )/p(I ) , B £ 8e ' m = 1,2, ••• m m m -

is a sequence of probability measures on (e, 8e). Hence, in view of the 
hypotheses of the previous section, one can define an extension P of 
p to Ef& 8~ via the usual rule m 
m 0 

'" (2.2) P ({(Xl".,X )£A} n {e £B}) 
m n 

• ny j.J(dx.)}. p (de), 
J m 

~ {i exp [n(exn - M (e»] • 

n 

where A and B are elements of 8n and 8e respectively, and in = L x./n. 
Further extensions to 1 ~ 

J = {BI ~ : B £ 8e, x is any realization of (Xl, ••• xn)}lI 

l){{ X £ e}1 x : e £ 8, x is as above and N > n} 
N - -

can be obtained according to the following rules of probability calculus: 

'" (2.3) P (e £ BI (Xl' ... ,X) =~) m n 
- -1 

{f exp [n(e xn- M(6»]p (de)} • 
1m m 

. f" exp[ n(e ~ - M(e»] p (de): = 
B. ,I n m 

m 
: = ~m) (B), 

By virtue of the results expounded in Regazzini (1985, 1987), (1.1) and 
(2.1)-(2.4) define a coherent probability P (in the sense of de Finetti) 

m 
on 

The employment of the probability law P is appropriate to assign 
• m • 
~nferences when one supposes that ~ const~tutes the parameter space. In 
order to obtain assessments corresponding to ~ , one could consider P = 
lim P , provided that such a limit exists. To make this idea precise, 
let u~ define the class Lc K on which the previous limit exists. In 
view of Theorem 5 in Regazzini (1985), P is a coherent probability on L 
and it can be extended to K by preserving coherence (cf. Theorem 4 in 
Regazzini 1985). Since a-additivity can be destroyed in passing to the 
limit, P need not be a -additive. This circumstance, in view of the 
developments of the next sections, induces us to revisit the concept of 
perfect association. For the sake of clearness, we will avail ourselves 
of an example from De Groot (1970, p.192): 
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8Ef) ii IR X ~ IR . \ . 
I = (-0. ,a. ) 
m m m 

a. t co, 
m 

p = Lebesgue measure. 
r - 'V 

Then, for Z = vn(X-6), one obtains 

P(Z ~ zli = x) = lim 
m--

P (Z < zli = x) 
m -

2 
(2~)-1/2~ exp [- ~] dx 

(2.5) 
= lim 

ur+co 

'V 'V 
P (Z < zle = e) = P(Z < zle = e) 
m - -

= lim P (Z < z) = P (Z < z) 
m-+co m - -

and it is easy to show that equalities of the same kind hold when {~z} 
is rep~aced by {ZeA}, A be!n~ any element of B~ Now, if one decides to 
consider Z independent of X(e) whenever p(zeAlx=x)=p(ZeA) (=p(zeAI~=e» 
for all A,BeB and x, eeIR, then (2.5) states independence. De Groot 
reaches similar results by employing a "uniform improper prior" over IR 
and he maintains that they are inconsistent since 

- 'V 'V 
"under any proper bivariate distribution of X and e for which ••• Z and e 
~re independent, it would not be possible for the random variables Z and 
X also to be independent, unless the random variable Z is equal to a 
constant with probability 1". 

This last circumstance can be described by saying that a constant c 
exists such that 

- 'V - 'V 
P(X < x and e~ x-c)= P(X~ x)=p(e~x-c) for all x e IR. 

- 'V 
This description of the perfect linear correlation between X and e is 
equivalent to the following condition 

-'V 
p(lx-e-cl>e)= 0 for all E>O 

provided that the involved distributions are proper. Here the terms proper 
and improper (cf. Section 1 and de Finetti 1970 I, 6.4.11) are employed 
in a sense different from that commonly considered by most statisticians, 
according to which a prior distribution is improper if it turns out to be 
unbounded. According to the meaning employed by us, in the framework of 
finitely additive probabilities, improper distributions are real probabi! 
ity distribution functions which assign probabililies adherent to the ex
treme points of X.Having said that, one notices that condition (2.6)1 can 
be employed in order to define perfect linear correlation in the improper 
case also, whilst this does not occur for condition (2.6~. In our example, 
the distributions of X and ~ are indeed improper (P(~< x)=P(X<x)= ! = 
P(~>x) = P(X>x) for all x eIR) and it is easy to verify that they satisfy 
(2.6)1' Hence, the inconsistency pointed out by De Groot does not arise 
w.r.t. definition (2.6)1' the only one which, besides being equivalent 
to the traditional one in the proper case, is meaningful in the improper 
case also. Obviously, we succeeded in reaching such a conclusion because 
we introduced the "uniform prior on IR" through p and a procedure which 

m 
permits to evaluate the probability of a class of events larger than the 
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domain of the posterior distribution. Such a procedure presents a few 
points of contact with Renyi's (1955) axiomatic theory of probabilitl' 

6n the contrary, the employment of improper priors following traditional 
statisticians' usage, does not generally enable one to obtain these 
evaluations, even if it produces coherent posteriors. 

3. PRIORS MAXIMIZING THE ASSOCIATION BETWEEN XN AND (Xl' ••••• ,Xn) 

The present section shows that one can choose priors for (1.1) such 
that there exists a function ~ : IRn + IR for which (1.2) holds. It is 
clear that, under the hypothes~s expounded in the first part of Section 1, 
if the distribution of ~ is proper, then no function ~ exists satisfying 
(1.2). Hence, we look for a prior yielding (1.2) withi~ the class of 
priors described in Section 2, and accept to compute the involved probabi
lities through the limit of P under the condition: 

m 

(3.1) p (G) = co and for any compact interval I c: G, ma exists such that 
I~ I -mo-

The main result of the present paper is represented by the following the
orem, which provides a complete solution of the problem stated above. 

Theorem 3.1: Let P be assessed on L according to the previous section in 
such a way that (3.1) holds. Let ~ be any real-valued increasing function 
defined on X such that: n 

li~ ~ (x) = infX 
xt1nfX n 

I' ~ (x) xf~upX n 
sup X 

then (1.2) holds with ~ (xl' ••• ,x) = ~ (x ). n n n n 

This theorem points out that there are very many priors satisfying 
(1.2). Among them it is interesting to analyse the case in which p is 
determined by 

(3.2) p(A) = J. exp{n(xo6 - M(6»}d6 
A 0 

for all A e: BG• 

Diaconis and Ylvisaker (1979) have considered such a prior with p(G)<co 
(prior distribution conjugate to (1.1» and they have shown that it is 
characterized through the property of linear predictive expectation: 
E(xNlx , ••• ,X ) = ~ X + b • Cifarelli and Regazzini (1983) have proved 
that tfie samenprior ~snchar~cterized through the property of maximizing the 
dependence of ~ on X (measured via Pearson's correlation ratio) among the 
priors which yield a ¥ixed value in (0,1) for the ratio: var(E(Xnl~»/ 
Var(~). The following theorems state that analogous results hold even if p 

is determined by (3.2) with p(G)=co. The first deals with the calculus of 
the regression function: 

Theorem 3.2: If P is assessed on L according to the previous section and 
p is given by (3.2) with x e: X (the closure of X), then,for (n+n »0 and 

o 0 
N>n: 
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x ) 
n 

From this it follows that E(X Ix = x!, ••• ,x = x ) can be a candidate to 
• ,II .~ 1 n n 

represent the funct10n 0/ of Theorem .1. 
n 

We will deal with the converse to Theorem 3.2 under special alterna
tive assumptions about supp(~) , i.e.: 

A supp(~) contains an open interval in IR; 

B supp(~) is a subset of [O,~) or of (~,O] such that ~({O}»O. 

Condition A coincides with the one considered in Theorem 3 by Diaconis and 
Ylvisaker (1979). On the other hand, condition B is both weaker than that 
of their Theorem 4, and weaker than condition C=of Theorem 1 in Cifarelli 
and Regazzini (1983), but it suffices to characterize (3.2) when (3.3) is 
demanded to hold for all n. In fact, in Theorem 1 by Cifarelli and Regazzi
ni (1983), condition C is redundant; as a matter of fact, B implies that 
M(S) is monotonic and that exp{-M(S)} is bounded. Conseque~tly, the next 
theorem is a generalization of Theorem 1 in our paper of 1983. 

Theorem 3.3: Let ~ satisfy A or B; furthermore, let P be assigned according 
to Section 2 with a p such that a=positive integer v and a sample (xi"'" 
x*) exist for which 
v 

(3.4) 0 < f exp{v(Si* - M(S»}p(de)<~. e V 

Under these conditions, if (3.3) holds for all n>v, then: 

p(dS)=c.exp(n {x S - M(S)})d8. 
o 0 

In particular, Theorems 3.2-3.3 enable us to characterize the classical 
"improper uniform" prior; in fact: 

if ~ satisfies A or B; if P is assigned according to Section 2 in such 
a way that a po~itiv~ integer V and a sample (xi, ••• ,x~) exist for which 
(3.4) bolds, then E(X IX , ••• ,X ) = X for all n>v, iff p is defined by 
p(d8)=cd6. N 1 n n 

4. CONCLUDING REMARKS 

The attitude described in the previous sections, according to which 
one adopts priors maximizing the association between past and future 
observations, in our opinion, represents the kernel of almost all attempts 
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made to define the concept of noninformative prior. In our view, any prior 
which emphasizes the role of observations by satisfying (1.2) can be 
considered as a candidate to represent vague prior information (cf. De Groot 
1970, Ch. 10). Moreover it seems to us that condition (1.2) is more simple 
and natural than most requirements considered by the modern approaches to 
this problem (see Berger 1985, Ch. 3, and Dawid 1983, for recent reviews 
of them). In any case, since these formulations generally lead to consider 
priors represented through unbounded measures, the procedure expounded in 
Section 2 could be employed to frame them into de Finetti's theory of 
probability. 

We conclude by stressing that the last"" "statement of Section 3 provides 
a Bayesian justification of the "orthodox" estimator X of M'(6)=E(XA~ =6). 
In f~ct, since E(X Ix , ••. ,X )=E(M'(~)IX1"",Xn)~ fro~ that statement we 
deduce that X is 'helBayesi~n estimator of 'M'(6), for squared error 
loss, providea that P is assigned according to Section 2 with p(d6)=cd6. 
Results on the conditions for numerical equivalence between classical and 
Bayesian inference are generally founded on the use of priors with infinite 
mass. We think that the conclusions reached in the previous sections, suitably 
extended to general statistical models, will enable us to provide a substan
tial justification for this equivalence [via condition (1.2) which, in fact, 
could be interpreted as an attempt to provide a SUbjective probabilistic 
formulation of the paradigm of the sampling theory of inference, according 
to which only the observed data are taken into account] and to substitute 
priors with infinite mass by real p.d.'s according to Section 2. We will 
deal with these topics in a forthcoming paper. 

APPENDIX 

Proof of Theorem 3.1 

After recalling that e =(a,S), we will split the argument into several 
steps: 
(1) for every 8>0 and any compact interval Ie Xc, there exist a, b 8 IR 
such that a<a<b<S, for which 

J exp{9x-M(9)}j.l(dx)<E, for a1l9e:(a.,a)V(b,B) :=Q. 
I 

If 8= +~, then from inequality (2.4) of Diaconis and Ylvisaker (1979): 

-1 
f exp{6x-M(6)}j.l(dx) < j.l(A) . f exp{6(x-y)}j.l(dx) 

I - Y I 

where y 8 (sup I, sup X). Hence, from dominated convergence: 

lim f exp{6x-M(6)}j.l(dx)=0. 
6++00 I 

If 8<~, then lim M(6) = + ~ (cf. Diaconis and Ylvisaker 1979, p. 273) and 
6+8-

from exp{6x}~ exp{16Imax(!inf II, Isup II)} , one deduces 

o < limsup f exp{6x-M(6)}j.l(dx)= O. 
- 6+S- I 
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Hence, in any case, given £>0, b exists such that 

0<1 exp{Sx-M(S)}~(dx)<£, for all S £(b,S). 
- I 

A similar argument applies in order to determine a. 

(2) o = lim P (X £I)=P(X £1) 
m~ m N N 

for all N=1,2, ••• 

In fact, if Q' denotes the complement of Q w.r.t.0 : 

P (X £1) = In' P (I) Rm (dS)+ I n Ps (I)Pm (dS) 
mN I Q S IQ 

m m 

where, by virtue of (3.1), the first integral converges to 0 and, for the 
second one, (1) implies 

0< I PS(I)p (dS)<£ 
- I nQ m 

m 

for all m > 1. 

- -
(3) o = lim Pm(Xn£I)=P(Xn£I) for all n=1,2 ..• 

m--

The proof of (3) is analogous to that of (2) since 

where ~ is the image of ~ induced by X • 
n n 

(4) Given £>0 and xl ,x2 £ IR, Q=(a,a)U (b,S) exists such that 

Pe(X < x and X > x2), P (X > xl and X < x2) <£ 
N- I n- N- n-

for all a £ Q and N>n. In fact: 

- -
Pa(X £A and X £B)=PS(X £A)Pa(X £B) for all A,B £ B and a £ 0; 

N n N n 

furthermore, arguing as in (1) and (3): 

lim Pa(X < x)= li~ Pa(X < x) = lim Pa(X >x)=lim Pa (X > x)=O. 
- N-· a+Jj- n - a+a+ N- a+a+ n -

~ - -
·(5) 0 = P(X < x and X > x ) = P(X > x and X < x ); 

N- 1 n- 2 N- 1 n- 2 

in fact: 

Pm(XN ~ xl and Xn ~ x2) = II nQ,Pa(X~ xl)Pa(Xn ~ x2)Pm(da)+ 
m 

+ II nQ Pa(XN ~ xl)Pa(Xm ~ x2)Pm(da) 
m 

and the thesis follows from (4) by arguing as in (2). 
In view of the previous results, we can state that the distribution of 
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(X ,X ) assigns the whole probability partly adherent and/or partly 
co~cegtrated at the points (infX, infX), (supX,supX); hence, given any 
monotonic function ~ such that ~ (infX)=infX in the first case, ~(supX)= 
=supX in the second gne, we see tRat (1.2) holds for ~ (X , .•• X )=w C[ ). 

n 1 n n n 

Proof of Theorem 3.2 

Since n+n > 0 and 
o 

- -1 
P (X < x IX = x , ••• ,X =x ) = {fI exp{S(n x +n x )-(n+n )M(S)} dS} . 
mN- lInn m noo 0 

fI PS«-oo,x]) exp{S(n ~ +n x )-(n+n )M(S)} dS, 
n 0 0 0 

m 

-1 -
if the denominator converges (m+oo), then (n+n) (DXn+n x )EXO(cf. Theo-
rem 1 of Diaconis and Ylvisaker 1979) and, inoview of Tge8rem 2 of the 
same paper: 

-1 
E(X Ix =x , ••• ,X =x )=(n+n) (nx +n x). 

NIl nn 0 noo 

On the other hand, if the denominator diverges, then (n+n )-l(nxn+noxo)tXO 
1 - 0 Suppose that (n+n )- .(nr +n x ) > supX; in such a case Xl = supX <~.Then, 

o n 0 0 -
forSe(a.,S) = e : 

exp{M(S)} = f exp{Sx}~(dx) + f exp{Sx}~(dx) 
(-00,0) [0,x1] 

and, if the first integral converges for a. s(a.,S), then it converges for 
all S>a. ; as far as the second one is conc~rned, one obtains 

o 

f exp{Sx}~(dx) < 
[0,x1] 

sup e eX~([o,xl])<~ 
xs [o,xl ] 

for all Ssm. 

since ~(A)< ~ for every compact subset of lR (cf. Diaconis and Y1visaker 
1979, p. 272). Hence: S = + ~. An analogous argument yie1ds:infX>-oo =>0.=-00. 
Now, in view of inequality (2.4) of Diaconis and Ylvisaker (1979): 

lim f exp{St-M(S)}~(dt)=O, for all xsXo. 
S-- (-co,x] 

Then, since for m+ co: 

Sm - -1 P (X <xl X =x ,.,X =X )N{f exp{S(nx +n x )-(n+n )M(S)}dS} . 
mN- 11 nn a. noo 0 

Sm -.f PS«-oo,x]) exp{S(n x + n x )-(n+n )M(S)}dS 
a. n 00 0 

one deduces: P(X < xlXl=x , ••• X =x ) = 0 for all x sXo. 
Hence, the wholeNp~obabl1i!y is ~ar~ly concentrated on and/or partly 
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adherent to supX<+oo, consequently: E(X IX =xl""X =x )=supX for all --N 1 n n 
- 1 (xl""'Xn) such that Xu ~ n- {(n+no)'supX - noxoL 

If (n+no)-l(nXn + noxo)~ infX, an analogous argument shows that 

E(X Ixl=x , ... X =x) = infX, if i < n-l{(n+no)infX - noxoL N 1 n n n-

The second part of the proposition follows from the previous conclusions 
and from the obvious inequalities 

n.infX < (n+n )infX - n·x < (n+n )'supX - n x < n sup X. 
o 00 0 00-

Proof of Theorem 3.3 

It consists of three steps. 

(1) lim M' (a)=inf X, lim M'(a)=supx. 
a+a ats 

Firstly suppose S < ~. In such a case: supX = + ~ (cf. the proof of 
Theorem 3.2) and 9t~ M(a) = +~. Hence, if M'(S-)<~ , then, given ae:(a,S): 

~>/S M' (a)da=M(S-)-M(a) (a contradiction!). a 

In other words: S<+~ > supX = M~ M' (a) 

An analogous argument shows that 

a>~ => infX = ~t~ M' (a) = - ~ 

Suppose now S= +00 and let x be an element of Xc. Then: 
o 

M' (a) ~ Xo h- {_~ x ) exp{ax-M(a) }jl(dx)} + f(~ x ) x exp{ax-M(a) }ll(dx)} 
, 0 ' 0 

and, in view of inequality (2.4) of Diaconis and Ylvisaker (1979), one can 
determine xA e:(xo' supX )() A such that 

Hence, by monotone convergence: supX > M'(S-) > x and the thesis follows 
from the arbitrariness of x • An anal~gous arg~egt applies to M'(~) 
when a=~ , in order to sta~e: infX < M' (a"') < x for all x e: XO. 

- - 0 0 

(2) If B holds, then M (a) is strictly monotonic and exp{ -M(a)} is bounded 
on 0. I~deed, (1) and Mil (a) > 0, for all a, imply: 
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+ -
M'(a )=0< M'(a')<M'(an)< M'(S )= supX for all a' <an, 

+ 
if B holds with SUPP(l1) C IR ; .. 

+ -
M'(a )=infX <M'(a')< M'(an)< M'(S )=0 for all a'< an, 

if B holds with sUPP (11) C {IR +1U{0} 
= 

In both cases M(a) turns out to be strictly monotonic and, from the in
equalities: 

exp{M(a)} = IX exp{ax}l1(dx»l1({O}» 0, 

one deduces that exp{-M(a)} is bounded on e. 
(3) In view of (3.4) and Theorem 1 by Diaconis and Ylvisaker (1979)'kwe 
have for all samples (xt, ... ,x~,xv+1, ... ,xv+k)' k~l, such that xk=ihxv+i/k 
e:Xo : 

v * k = J exp {a (L x. + .Ll x .) - (V+k)M(a) }p(da); 
"0 1 J J= v+J 

hence, without loss of generality, we can suppose: 

n x + V~* 
o 0 V n + V >0, ~* e: XO , ____ _ 

o v v + n 
o 

. v(6x* - M(6» 
Now, if (3.3) holds, we obtain for N>v+k and qx*(d6) = e V p(d6): 

V 

* * E(xNlxl=xl,···,xv =xv ' XV+l= xV+l "'" XV+k = Xv+k) = 

Ie M'(6) exp{k(6ik - M(6»}q_*(da) 
x 

\I 

where the latter equality holds if: 

(V+k) x +n x 
v+k 0 0 

v + k + n 
o 

1 - 1 -""---- {(V+k+n ) infX - n x }< x < -- {(V+k+n) supX - n x } , 
v + k 0 0 0 v+k v + k 0 0 0 

i.e. 

n x +vi* V+ n x +V~* 
infX + 

o 0 V - no 0 0 V 
{infX - } < x < supX + -- {supX - } • V+n k k V+n 

o 0 
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In view of (*), these inequalities are always satisfied and consequently: 

feM'(6) exp {k (6ik - M (6»} q~ (d6) 

f" exp{k (6i - M (6»} q_* (d6) 
o k x 

V 

for all k > 1 and i e: X • 
- k 

k 
x + 

k 

vi* + n x 
V 0 0 

v+k+no 

Therefore, if supp()J) satisfies A, from. Theorem 3 by Diaconis and Ylvisaker 
= (1979) we deduce 

(d6) c.exp{6 (vx* + n x ) - (v+n )M(8)}d6. 
V 0 0 I 

on the other hand, if supp(~) satisfies B, the same conclusion is reached 
= 

through point C of Theorem 1 by Cifarelli and Regazzini (1983) and step 

(2) of the present proof. 

Hence, in both cases: 

(d6) = exp{ V (6 x* -M(6» }P(d6) 
V 

= c exp{ 6 (v i* + n x ) - (v+n )M(6)} d6, 
V 0 0 0 

which yields the thesis. 

ACKNOWLEDGEMENTS 

Research supported in part by Ministero della Pubblica Istruzione (40%, 
Progetto di Ricerca "Modelli probabilistici") and by CNR - GNAFA. 

REFERENCES 

Barndorff-Nielsen, 0., 1978, "Information and exponential families in stati
stical theory", J. Wiley, New York. 

Berger, James, 0., 1980, "Statistical decision theory", Springer-Verlag, 
New York. 

Cifarelli, Donato Michele and Regazzini, Eugenio, 1983, Qualche osserva
zione sull'uso di distribuzioni iniziali coniugate alIa famiglia 
esponenziale, Statistica, 43:415. 

Dawid, A.P., 1983, Invariant prior distributions in "Encyclopedia of 
statistical sciences" vol. 4 (S.Kotz and N.L. Johnson eds-in
chief) J. Wiley, New York. 

de Finetti, Bruno, 1937, La prevision: ses lois logiques, ses sources 
subjectives, Annales de l'Inst. Henri Poincare, 7:1. 

de Finetti, Bruno, 1970, "Teoria della probabilita", Einaudi Editore, 
Torino. 

94 



de Finetti, Bruno and Savage, Leonard J., 1962, Sul modo di scegliere le 
probabilita iniziali, Biblioteca del ''Metron'', serie C: Note e 
Commenti, 1:81. 

De Groot, Morris H., 1970, "Optimal statistical decisions", Mc Graw-Hill, 
New York. 

Diaconis, Persi and Ylvisaker, Donald, 1979, Conjugate priors for exponen
tial families, Ann. Statist., 7:269 

Diaconis, Persi and Ylvisaker, Donald, 1985, Quantifying prior opinion in 
"Bayesian Statistics 2. Proceedings of the second Valencia 
international meeting", September 6/10, 1983 (Bernardo, J.M., 
De Groot, M.H. Lindley, D.V., Smith, A.F.M. eds) North-Holland, 
Amsterdam. 

Regazzini, ~ugento, 1~a5, Finitely additive conditional probabilities, to 
appear in Rendiconti del Seminario Matematico e Fisico di Milano, 
55. 

Regazzini, Eugenio, 1987, de Finetti's coherence and statistical inference, 
to apper in The Annals of Statistics,15, No 2. 

Renyi, Alfred, 1955, On a new axiomatic theory of probability, Acta Math. 
Acad. Sci. Hung., 6:285. 

AMS (1980 subject classification): 62E10, 62A15, 60A05 
Keywords and phrases: conjugate prior, de Finetti's coherent probabilities, 
(regular) exponential families, finitely additive probabilities, 
noninformative priors. 

95 



CALmRATING AND COMBINING 

PRECIPITATION PROBABILITY FORECASTS 

Robert T. Clemen 

College of Business 
University of Oregon 
Eugene, OR 97403 
U.S.A. 

INTRODUCTION 

Robert L. Winkler 

Fuqua School of Business 
Duke University 
Durham, NC 27706 
U.S.A. 

Imagine a decision maker who has heard from one or more information sources regarding 
the probability of some future event and who desires to use this information to revise his 
personal beliefs concerning the event. One approach to this problem involves the decision 
maker treating the probabilities as data in a Bayesian inferential problem, the output of which 
is an updated probability regarding the event in question. The thorniest part of the Bayesian 
combination procedure is the assessment of a likelihood function by the decision maker to 
represent his beliefs regarding the quality of the information and, in the case of multiple 
sources, the nature of the dependence among the sources. 

The Bayesian approach to the use of probabilities from various sources is now well 
established. Morris (1974,1977) was the fIrst to characterize the problem in Bayesian terms. 
Lindley, Tversky, and Brown (1979), French (1980), and Lindley (1982) developed models 
for the specific case of a single information source. Models for multiple information sources 
have been provided by French (1981), Winkler (1981), Lindley (1983, 1985), Agnew 
(1985), Chang (1985), Genest and Schervish (1985), and Clemen (1987), to name a few. 
Excellent reviews and critiques of this literature are available in French (1985) and Genest and 
Zidek (1986). 

In this paper, we apply a Bayesian model for adjusting and combining discrete 
probabilities in the context of forecasting tomorrow's weather. Since 1966 the National 
Weather Service (NWS) of the United States has provided probability of precipitation (poP) 
forecasts as the official precipitation forecasts. Meteorologists have studied these forecasts 
extensively (e.g., Murphy, 1985) and have shown consistently that the forecasts generally are 
well-calibrated (i.e., when the PoP forecast is x, the long-run frequency of measurable 
precipitation is approximately x). The NWS also uses a numerical-statistical model of the 
global atmospheric system to prepare "guidance" PoP forecasts about twelve hours prior to 
the issuance of the offtcial forecasts. Thus, local forecasters may use guidance forecasts in 
the formulation of official PoP forecasts. Meteorologists have studied the relative 
performance of guidance and official forecasts; a review of this literature as well as a more 
complete overview of the forecasting process can be found in Murphy and Winkler (1984). 

The fact that the guidance forecast is available for use by the offIcial forecaster might lead 
us to suspect that the guidance and offIcial forecasts are highly dependent, perhaps to the 
extent that the information provided by the guidance forecast is completely incorporated by the 
local forecaster in his formulation of the offtcial PoP forecast. This issue was recently 
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addressed by Clemen (1985) and Clemen and Murphy (l986a) with the conclusion that, while 
the official forecast apparently incorporates most of the information (in a statistical sense), it 
may be possible to improve the performance of the official forecast by combining the guidance 
and official forecasts through joint calibration (DeGroot and Fienberg, 1982, 1983), A 
follow-up study by Clemen and Murphy (1986b) showed that joint calibration indeed 
produced somewhat better forecasts, although the level of improvement was about the same as 
that obtained through individual frequency calibration of the official forecasts. In contrast, 
simply averaging the two forecasts, with or without calibration, performed somewhat better 
than joint calibration. 

One problem with the joint calibration procedure is that it requires massive amounts of 
data to estimate the joint calibration function reliably. Thus, there is some motivation to turn 
to a modeling approach, using tractable probability models with known properties to represent 
the stochastic nature of the official and guidance forecasts. Lindley (1982) provided a model 
for the Bayesian calibration of discrete probabilities, using as likelihood functions normal 
distributions for the log odds of the stated probabilities, conditioned on the occurrence or 
non-occurrence of the event. Lindley (1985) and Chang (1985) extended this model to the 
case of probabilities from multiple sources. 

Our objective in this paper is to apply the normal log-odds model to the calibration and 
combination of official and guidance PoP forecasts. Thus, we require two normal 
distributions for the forecast log odds of rain, one given that it rains tomorrow and one given 
that it does not rain. The prior probability is simply the climatological probability (long-run 
frequency) of precipitation. The analysis includes some measures of the degree to which the 
calibrated and combined forecasts improve on the official forecast and how well they perform 
relative to the uncalibrated forecasts and simple combinations thereof. 

The paper is organized as follows. First, we discuss the calibration of individual 
probabilities via the normallog-odds model, describe the data, and present the analysis of the 
uncalibrated and calibrated probabilities. Next, we deal with models and empirical results 
regarding the combination of probabilities. We conclude with a discussion of the results and 
their implications. 

CALIBRATING PROBABILITIES 

The Normal Lo~-Odds Model 

Suppose that an information source provides probability p, his probability that measurable. 
precipitation (rain) will occur tomorrow. We will be interested in the corresponding log odds 
q = logfp 1(I-p )]. If the prior probability of rain is the climatological probability of rain, 
denoted by y, the posterior 199-odds q* of rain can be found using Bayes' theorem in 
log-odds form: 

(1) q* = log[p(rainlq) I P(no rainlq)] 

= 10g[L(qlrain) I L(qlno rain)] + log[y 1(I-y)], 

where L(qlrain) and L(qlno rain) are the likelihood functions given rain and no rain, 
respectively. 

Following Lindley (1982), we model the likelihood functions L(qlrain) and L(qlno rain) 
with normal distributions having means ~1 and ~O and variances (J12 and (J02, respectively. 
Substituting the expressions for the two normal distributions into (1) and manipulating the 
expression algebraically, we obtain an expression that is quadratic in q : 

(2) q* = {log( (J02 I (J12) - «J1-2 - (JO-2)q 2+ 2( (J1-2 ~1 - (JO-2 ~)q 

- (J1-2 ~12 + (JO-2 ~2} 12+ log[y l(l-y)]. 
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If cr 1 = cro = cr, the expression simplifies to a linear form in q : 

The parameters Ill' IlOI cr 11 and cr 0 (or cr) can be estimated frQm hi~t9ri~"1 Il"''' "ml 
substituted into the expression. When these estimates are supplied, (2) or (3) provides a way 
to find q*, which represents the calibrated log odds. [We use the term "calibrated" in the 
same subjective sense as Lindley (1982).] This approach yields essentially the same results as 
a full Bayesian analysis with a diffuse prior distribution on the normal parameters. 

Table 1. NWS offices for which guidance and official forecasts were analyzed in this study. 

The Data 

Also shown are the overall sample climatological probabilities of measurable 
precipitation in the cool and warm seasons in the respective locations. 

Office 

Albany,NY 
Atlanta,GA 
Boston,MA 
Dallas, TX 
Denver, CO 
Des Moines, IA 
Phoenix,AZ 
Portland, OR 

Climatological probabilities 
of precipitation 

Cool Warm 
season 

.24 

.20 

.23 

.13 

.12 

.18 

.08 

.40 

season 

.24 

.19 

.22 

.13 

.16 

.23 

.04 

.21 

The data analyzed in this paper consist of guidance and official PoP forecasts for eight 
NWS offices in various parts of the United States. These data, covering the period from April 
1972 through September 1983, were provided by the NWS Techniques Development 
Laboratory. The offices are shown in Table 1, along with the climatological probabilities of 
measurable precipitation in the respective areas for the warm (April-September) and cool 
(October-March) seasons. Guidance and official forecasts are made twice each day, in the 
morning and evening (in conjunction with the so-called 0000 and 1200 GMT cycle times). 
On each occasion, forecasts are formulated for three consecutive 12-hour periods, or lead 
times. These lead times are 12-24 hours, 24-36 hours, and 36-48 hours after the guidance 
forecast is issued. 

Meteorologists traditionally analyze the warm and cool seasons separately because of 
differences in weather patterns. Moreover, the characteristics of the forecasts vary 
considerably with lead time (e.g., forecasts are less accurate as the lead time increases). 
While there may be some circumstances under which the characteristics of forecasts vary with 
cycle time, Clemen and Murphy (1986a) found virtually no such differences. Thus, forecasts 
for both cycle times were aggregated for our analysis. For each station, then, we analyzed six 
different kinds of forecasts, corresponding to six combinations of season and lead time. 

For the analysis, the data set was divided into two subsets. The first seven years of data 
(April 1972 - March 1979) were used to fit the log-odds model, and this fitting was done 
separately for each combination of station, season, and lead time. The sample means and 
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Table 2. Average quadratic scores (MSEs) for climatology, uncalibrated, and calibrated 
forecasts. 

Official Official Guidance Guidance 
Calibrated Calibrated Calibrated Calibrated 
Variances Variances Variances Variances Sample 

Forecast type: Climatology Official Equal Unequal Guidance Equal Unequal Size 

COOL SEASON 
12-24 hours 

Albany 0.1720 0.1022 0.1016 0.0928 0.0976 0.1004 0.0931 894 
Atlanta 0.1631 0.0740 0.0794 0.0748 0.0811 0.0904 0.0808 1058 
Boston 0.1641 0.0822 0.0871 0.0753 0.0721 0.0825 0.0705 911 
Dallas 0.1005 0.0632 0.0635 0.0654 0.0658 0.0676 0.0654 1036 
Denver 0.1045 0.0593 0.0617 0.0588 0.0596 0.0643 0.0594 1061 

Des Moines 0.1341 0.0805 0.0827 0.0804 0.0778 0.0803 0.0778 1030 
Phoenix 0.0656 0.0329 0.0341 0.0308 0.0399 0.0430 0.0378 1002 
Portland 0.2442 0.1172 0.1352 0.1185 0.1301 0.1559 0.1352 1036 

24-36 hours 
Albany 0.1690 0.1104 0.1100 0.1039 0.1181 0.1173 0.1137 894 
Atlanta 0.1605 0.0932 0.0959 0.0935 0.1011 0.1062 0.1002 1058 
Boston 0.1682 0.0945 0.1001 0.0912 0.0937 0.1013 0.0924 911 
Dallas 0.1000 0.0782 0.0770 0.0791 0.0719 0.0754 0.0738 1036 
Denver 0.0939 0.0672 0.0674 0.0684 0.0692 0.0706 0.0690 1061 

Des Moines 0.1336 0.0878 0.0922 0.0881 0.0878 0.0943 0.0904 1030 
Phoenix 0.0624 0.0405 0.0415 0.0407 0.0466 0.0491 0.0460 1002 
Portland 0.2434 0.1512 0.1629 0.1512 0.1582 0.1765 0.1604 1036 

36-48 hours 
Albany 0.1688 0.1218 0.1187 0.1157 0.1250 0.1224 0.1211 894 
Atlanta 0.1505 0.0964 0.1006 0.0967 0.1074 0.1093 0.1078 1058 
Boston 0.1608 0.1036 0.1089 0.1037 0.1107 0.1144 0.1117 911 
Dallas 0.1039 0.0817 0.0811 0.0807 0.0833 0.0863 0.0865 1036 
Denver 0.1001 0.0789 0.0795 0.0782 0.0820 0.0840 0.0820 1061 

Des Moines 0.1274 0.1019 0.1032 0.1021 0.0995 0.1038 0.1048 1030 
Phoenix 0.0622 0.0460 0.0472 0.0460 0.0520 0.0533 0.0516 1002 

Portland 0.2433 0.1639 0.1739 0.1633 0.i696 0.1881 0.1754 1036 

WARM SEASON 
12-24 hours 

Albany 0.1867 0.1094 0.1165 0.1089 0.1112 0.1194 0.1138 794 
Atlanta 0.1507 0.0995 0.1056 0.1033 0.1028 0.1096 0.1066 1156 
Boston 0.1749 0.1107 0.1165 0.1101 0.1125 0.1200 0.1144 927 
Dallas 0.1053 0.0790 0.0814 0.0821 0.0805 0.0846 0.0842 1171 
Denver 0.1329 0.0959 0.1006 0.1005 0.0971 0.1051 0.1038 1282 

Des Moines 0.1676 0.1206 0.1288 0.1237 0.1225 0.1305 0.1275 1205 
Phoenix 0.0420 0.0366 0.0355 0.0354 0.0368 0.0358 0.0359 1320 
Portland 0.1563 0.0932 0.1013 0.0941 0.1030 0.1164 0.1055 1335 

24-36 hours 
Albany 0.1755 0.1239 0.1261 0.1207 0.1309 0.1307 0.1253 794 
Atlanta 0.1462 0.1057 0.1088 0.1111 0.1112 0.1131 0.1092 1156 
Boston 0.1678 0.1244 0.1234 0.1198 0.1242 0.1263 0.1218 927 
Dallas 0.1072 0.0906 0.0911 0.0934 0.0913 0.0928 0.0917 1171 
Denver 0.1323 0.1074 0.1088 0.1100 0.1060 0.1098 0.1097 1282 

Des Moines 0.1618 0.1282 0.1312 0.1282 0.1268 0.1321 0.1287 1205 
Phoenix 0.0360 0.0356 0.0347 0.0381 0.0351 0.0342 0.0345 1320 
Portland 0.1538 0.1122 0.1200 0.1123 0.1160 0.1226 0.1188 1335 

36-48 hours 
Albany 0.1731 0.1400 0.1361 0.1340 0.1390 0.1383 0.1351 794 
Atlanta 0.1519 0.1098 0.1158 0.1161 0.1170 0.1208 0.1202 1156 
Boston 0.1622 0.1284 0.1267 0.1257 0.1266 0.1288 0.1263 927 
Dallas 0.1036 0.0932 0.0928 0.0936 0.0898 0.0924 0.0912 1171 
Denver 0.1336 0.1118 0.1140 0.1170 0.1117 0.1165 0.1148 1282 

Des Moines 0.1554 0.1302 0.1325 0.1309 0.1285 0.1336 0.1329 1205 
Phoenix 0.0394 0.0377 0.0368 0.0397 0.0375 0.0356 0.0359 1320 
Portland 0.1513 0.1178 0.1248 0.1187 0.1178 0.1237 0.1201 1335 
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Table 3. Average percentage improvements in MSE for the uncalibrated and calibrated 
forecasts. The upper (lower) figure in each cell gives improvement relative to the 
official forecast (climatology). 

Official Official Guidance Guidance 
CaHhfllted CIHhrlied Calihrated CaHhrated 
Variances Variances Variances Variances 

Forecast type: Climatology Official Equal Unequal Guidance Equal Unequal 

COOL SEASON 
12-24 hours -87.34 0.00 -4.89 2.37 -3.32 -12.49 -2.13 

0.00 45.94 43.51 47.20 44.39 39.75 45.06 

24-36 hours -54.76 0.00 -2.81 0.67 -3.68 -9.29 -3.50 
0.00 34.74 33.05 35.11 32.54 28.97 32.59 

36-48 hours -39.07 0.00 -2.11 0.85 -5.09 -8.62 -6.37 
0.00 27.57 26.16 28.20 24.04 21.52 23.07 

WARM SEASON 
12-24 hours -46.67 0.00 -4.77 -1.48 -2.80 -9.43 -5.77 

0.00 30.77 27.73 29.78 28.97 24.70 26.99 

24-36 hours -27.57 0.00 -1.59 -1.42 -1.41 -3.38 -1.11 
0.00 20.76 19.65 19.43 19.80 18.35 20.02 

36-48 hours -21.38 0.00 -1.02 -1.36 0.16 -1.81 -0.50 
0.00 17.06 16.35 15.90 17.32 15.81 16.86 

Overall 
Average -46.13 0.00 -2.86 -0.06 -2.69 -7.50 -3.23 
Improvement 0.00 29.47 27.74 29.27 27.84 24.85 27.43 

variances of the relative frequency distributions of log odds corresponding to official and 
guidance probabilities conditional on rain and no rain were used as estimates of the model 
parameters. For each lead time/season combination at each station, forecasts and observations 
for over 2000 occasions were available for the April 1972-March 1979 period. The remaining 
four and one-half years of data (April 1979-September 1983) were used to evaluate the 
calibrated probabilities generated from the model as well as the official and guidance forecasts. 
Even though no fitting was necessary for the official and guidance forecasts, their evaluation 
was based only on the Apri11979-September 1983 period to facilitate comparison with the 
performance of the calibrated probabilities. 

Calibrating Probabilities: Empirical Results 

In our analysis of individual forecasts, we investigated the following probabilities: 

1) Official and guidance forecasts. 
2) Calibrated official and guidance forecasts using the normal log-odds model with 

equal variances. 
3) Calibrated official and guidance forecasts using the normal log-odds model with 

unequal variances. 

For each type of forecast, we computed average scores for each of the six combinations of 
season and lead time using a quadratic scoring rule. The average quadratic score is equivalent 
to a mean square error (MSE); a lower score therefore indicates better performance. 

The MSEs are presented in Table 2, and average percentage improvements for the 
different types of forecasts over the official forecast and climatology are given in Table 3. 
First, note from Table 3 that every type of forecast easily outperformed climatology. As 
anticipated, the improvements over climatology were greater as the lead time decreased and for 
the cool season as opposed to the warm season. 

Next, in looking at the raw, uncalibrated probabilities, we see from Table 3 that the 
guidance forecasts generally performed worse than the official forecasts. Overall, the 
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guidmIc@ forecllSts perfonned 2.69% worse than the offieial foreeasts. The differences in the 
table may not seem large, but they are equivalent to changes that have occurred over a period 
of a few years as forecasts have improved (see Murphy and Sabin, 1986). Recall that the 
local forecasters have access to the guidance forecasts before they formulate the official 
forecasts; hence the better performance of the official forecasts is not surprising. 

Tables 2 and 3 also show that for both official and guidance forecasts, the raw forecasts 
outperformed the calibrated forecasts. The calibrated forecasts using the normal log-odds 
model with equal variances were particularly weak, resulting in a 2.86% overall increase in 
MSE for the calibrated official forecasts as compared with the raw official forecasts and a 
4.68% increase for the calibrated guidance forecasts as compared with the raw guidance 
forecasts. Relaxing the assumption of equal variances led to improvements, resulting in 
forecasts only slightly worse than the raw forecasts. 

In comparing the models with equal and unequal variances, it is helpful to look at the 
means and standard deviations of log odds conditional on rain and no rain. The differences 
between the means and the ratios of the standard deviations for the two conditional 
distributions are given in Table 4. The standard deviations given no rain were, for the most 
part, larger than those given rain. For example, with a 12-24 hour lead time in the cool 
season at Portland, these standard deviations for the official forecast were 2.361 and 1.750. 
The two normal distributions of log odds in this case are shown in Figure 1. 

Of course, the unequal-variances model offers more flexibility than the equal-variances 
model. From (3), the equal-variances model gives calibrated log odds linear in the 
uncalibrated log odds. This implies calibration curves shaped like the solid curve in Figure 2, 
which shows calibration curves (in probabilities, not log odds) for the case of the official 
forecast at Portland during the cool season and for the 12-24 hour lead time. The 
unequal-variances model given by (2) adds a quadratic term and is less restrictive in terms of 
the shape of the resulting calibration curve. In Figure 2, the dashed curve (the 
unequal-variances model) seems much more consistent with typical frequency calibration 
curves for PoP forecasts (e.g., Murphy, 1985) than does the solid curve. The corresponding 
frequency calibration data are included in Figure 2 for comparative purposes. 

In summary, among the calibrated and uncalibrated forecasts, the official forecasts 
performed best. Overall, the guidance forecasts were not quite as good as the local forecasts. 
Calibration via the equal-variances model produced the worst results. The unequal-variances 
model did better, producing forecasts that were roughly comparable to the raw probabilities. 

, iii iii i i 

-9 -7 -6 -5 -4 -2 -1 0 1 2 
Log odds 

Figure 1. Distributions of official forecast log odds conditional on rain and no rain at Portland 
(cool season, 12-24 hour lead time). 
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Table 4. Mterences between estimated means and ratios of estimated standard deviations 

Albany 

Atlanta 

Boston 

Dallas 

Denver 

Des Moines 

Phoenix 

Portland 
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0 
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for the distributions of log odds conditional on rain and no rain. The upper figure 
in each cell gives the difference between the means (J.ll -1lO), and the figure in 
parentheses gives the ratio of the standard deviations (crl/crO)' 

OFFICIAL FORECAST GUIDANCE FORECAST 
COOL SEASON WARM SEASON COOL SEASON WARM SEASON 

12-24 24-36 36-48 12-24 24-36 36-48 12-24 24-36 36-48 12-24 24-36 36-48 
hours hours hours hours hours hours hours hours hours hours hours hours 

3.69 2.85 2.09 3.18 2.37 1.61 3.40 2.82 2.08 2.60 1.94 1.34 
(0.92) (0.90) (0.81) (0.83) (0.81) (0.79) (0.86) (0.92) (0.79) (0.77) (0.80) (0.77) 

4.82 3.74 2.85 2.60 2.06 1.50 3.95 3.25 2.04 1.93 1.68 1.16 
(0.94) (0.76) (0.73) (0.76) (0.63) (0.67) (0.89) (0.70) (0.63) (0.77) (0.71) (0.74) 

4.57 3.60 2.66 3.26 2.46 1.78 4.02 3.39 2.38 2.51 2.03 1.39 
(0.94) (0.88) (0.83) (0.85) (0.84) (0.76) (0.95) (0.95) (0.80) (0.92) (0.93) (0.80) 

3.74 2.94 2.13 2.32 1.71 1.16 2.90 2.27 1.83 1.63 1.23 0.85 
(1.02) (1.00) (0.90) (0.70) (0.72) (0.75) (0.96) (0.80) (0.71) (0.79) (0.86) (0.83) 

3.60 2.60 1.97 1.85 1.31 0.96 2.72 2.20 1.70 1.64 1.31 1.14 
(0.97) (0.80) (0.73) (0.86) (0.85) (0.79) (0.77) (0.75) (0.74) (0.97) (0.92) (0.78) 

3.51 2.26 1.37 2.44 1.58 0.97 3.14 2.21 1.50 1.78 1.36 0.96 
(1.14) (1.02) (0.97) (0.96) (0.78) (0.90) (0.98) (0.88) (0.77) (0.94) (0.86) (0.86) 

4.16 3.31 2.83 2.62 2.10 1.76 3.18 2.65 2.37 1.80 1.67 1.14 
(0.85) (0.71) (0.76) (0.57) (0.57) (0.63) (0.65) (0.75) (0.74) (0.92) (0.74) (0.95) 

3.73 2.78 2.00 3.71 2.85 2.21 2.62 2.16 1.59 3.03 2.36 1.85 
(0.74) (0.73) (0.74) (0.83) (0.75) (0.77) (0.66) (0.71) (0.64) (0.77) (0.77) (0.79) 
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Figure 2. Calibration curves for the official forecast at Portland (cool season, 12-24 hour lead 
time). The solid line is the calibration curve from the equal-variances model, and 
the dashed line is the calibration curve from the unequal-variances model. For 
comparison, the direct frequency calibration data (represented by x's) are included. 
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COMBnuNGPROBABarDES 

The Multivariate Lo~-Odds Model 

The multivariate log-odds model is a straightforward generalization of the univariate 
log-odds model discussed above. Let Pi denote information source i's probability of rain, qi 
the corresponding log odds, and q = (ql' ... , qk)' the vector of log odds from k experts, 
where a prime indicates transposition. The likelihood functions L(q\rain) andL(q\no rain) are 

modeled with normal distributions having mean vectors Ml and MO and covariance matrices 

1:1 and 1:0, respectively. Now the multivariate counterparts of (2) and (3) are 

(4) q* = {log(\1:0\/\1:1D - q'(1:1-1 _1:0-1)q + 2q'(1:1-1M 1 -l:o-IMO) 

-Ml'1:(IMl +MO'1:0-1Mo}/2+ 10g[y/(l-y)] 
and 

These models assume unequal and equal (1:1 = 1:0 = 1:) covariance matrices, respectively. 
For brevity, we will refer to the models as having unequal or equal variances. 

The Data 

The data set is as described above, as is the separation into subsets for fitting and for 
evaluation of the different approaches. For the combination of forecasts through the 
multivariate log-odds model, the correlations between the log odds from the official forecasts 
and the log odds from the guidance forecasts, conditional on rain and no rain, were estimated 
in addition to the means and variances. These estimates are shown in Table 5. Table 6 gives 
sample sizes used in estimating the parameters of both likelihood functions for each 
combination of station, season, and lead time 

Combining Probabilities: Empirical Results 

In the analysis of combined forecasts, we considered the following combination 
techniques: 

1) Simple averages of probabilities and simple averages oflog odds (subsequently 
transformed back into probabilities). 

2) Simple averages of calibrated probabilities and simple averages of calibrated log 
odds. 

3) The combined forecast using the multivariate normal log-odds model with equal 
variances. 

4) The combined forecast using the multivariate normal log-odds model with 
unequal variances. 

Again, we computed the average quadratic scores (MSEs) for each combining technique for 
the six season/lead time combinations. These MSEs are presented in Table 7, and the average 
percentage improvements for the different techniques over the official forecast and over 
climatology are shown in Table 8. 

The simple averages of the raw, uncalibrated probabilities and log odds performed well 
relative to the other techniques. The average oflog odds consistently performed slightly better 
than the average of probabilities, with average percentage improvement over the official 
forecast performance ranging from 1.42% to 4.14%, depending on the season and lead time. 
Overall, the MSE for the average of log odds was 2.79% lower than that of the official 
forecast. 
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Table 5. Estimated correlations for the multivariate distributions ofiog odds conditional on 
rain and no rain. The upper (lower) figure gives the estimated correlation of the 
official and guidance log WQ~ CQnQiti9nW 9n l1in (n9Iiin). 

COOL SEASON WARM SEASON 
12-24 24-36 36-48 12-24 24-36 36-48 
hours hours hours hours hours hours 

Albany 0.75 0.70 0.70 0.65 0.66 0.69 
0.60 0.62 0.59 0.68 0.68 0.64 

Atlanta 0.66 0.72 0.69 0.68 0.69 0.64 
0.69 0.70 0.65 0.68 0.72 0.69 

Boston 0.76 0.77 0.74 0.72 0.66 0.67 
0.65 0.68 0.61 0.70 0.66 0.65 

Dallas 0.64 0.57 0.57 0.54 0.54 0.45 
0.65 0.60 0.55 0.53 0.55 0.47 

Denver 0.48 0.62 0.59 0.70 0.61 0.61 
0.69 0.62 0.59 0.61 0.62 0.56 

Des Moines 0.69 0.75 0.70 0.70 0.77 0.72 
0.66 0.63 0.62 0.71 0.72 0.69 

Phoenix 0.62 0.64 0.68 0.52 0.40 0.23 
0.73 0.69 0.66 0.58 0.55 0.48 

Portland 0.61 0.64 0.63 0.68 0.74 0.69 
0.78 0.78 0.75 0.72 0.67 0.61 

Table 6. Sample sizes used to estimate the parameters of the normal distributions conditional 
on rain and no rain. The upper (lower) figure gives the number of occurrences 
when rain (no rain) occurred. 

COOL SEASON WARM SEASON 
12-24 24-36 36-48 12-24 24-36 36-48 
hours hours hours hours hours hours 

Albany 458 465 468 498 497 494 
1487 1480 1477 1556 1557 1560 

Atlanta 416 422 416 423 425 424 
1714 1708 1714 1809 1807 1808 

Boston 487 491 508 471 469 456 
1639 1635 1618 1698 1700 1713 

Dallas 266 271 268 303 293 294 
1831 1826 1829 1893 1903 1902 

Denver 263 263 266 383 372 370 
1885 1885 1882 1879 1890 1892 

Des Moines 386 391 397 514 507 505 
1773 1768 1762 1733 1740 1742 

Phoenix 179 178 177 81 80 74 
1915 1916 1917 2074 2075 2081 

Portland 865 868 871 471 465 463 
1296 1293 1290 1781 1787 1789 
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Table 7. Average quadratic scores (MSEs) for the combined forecasts. 

Average Average Combined Combined 
Average Calibrated Average Calibrated Variances Variances Sample 

Forecast type: Prob. Prob. Log Odds Log Odds Equal Unequal Size 

COOL SEASON 
12-24 hours 

Albany 0.0934 0.0882 0.0934 0.0884 0.0939 0.0900 894 
Atlanta 0.0737 0.0735 0.0729 0.0727 0.0780 0.0736 1058 
Boston 0.0116 0.0681 0.0710 0.0676 0.0780 0.0681 911 
Dallas 0.0607 0.0612 0.0606 0.0610 0.0616 0.0643 1036 
Denver 0.0554 0.0540 0.0554 0.0538 0.0584 0.0551 1061 

Des Moines 0.0760 0.0759 0.0754 0.0754 0.0773 0.0769 1030 
Phoenix 0.0354 0.0323 0.0353 0.0321 0.0341 0.0314 1002 
Portland 0.1177 0.1423 0.1171 0.1208 0.1346 0.1165 1036 

24-36 hours 
Albany 0.1079 0.1048 0.1067 0.1042 0.1180 0.1068 894 
Atlanta 0.0933 0.0928 0.0933 0.0929 0.0953 0.0968 1058 
Boston 0.0882 0.0870 0.0870 0.0861 0.0939 0.0873 911 
Dallas 0.0713 0.0725 0.0719 0.0724 0.0732 0.0770 1036 
Denver 0.0646 0.0642 0.0638 0.0632 0.0651 0.0658 1061 

Des Moines 0.0851 0.0868 0.0846 0.0862 0.0882 0.0852 1030 
Phoenix 0.0422 0.0411 0.0421 0.0410 0.0414 0.0408 1002 
Portland 0.1482 0.1499 0.1483 0.1501 0.1621 0.1486 1036 

36-48 hours 
Albany 0.1170 0.1145 0.1166 0.1171 0.1142 0.1184 894 
Atlanta 0.0975 0.0981 0.0968 0.1023 0.0987 0.1039 1058 
Boston 0.1004 0.1028 0.1001 0.1078 0.1040 0.1074 911 
Dallas 0.0785 0.0809 0.0781 0.0816 0.0790 0.0800 1036 
Denver 0.0771 0.0771 0.0775 0.0803 0.0783 0.0778 1061 

Des Moines 0.0983 0.1011 0.0982 0.1018 0.0999 0.1023 1030 
Phoenix 0.0476 0.0472 0.0475 0.0497 0.0475 0.0476 1002 
Portland 0.1611 0.1645 0.1610 0.1647 0.1734 0.1609 1036 

WARM SEASON 
12-24 hours 

Albany 0.1062 0.1083 0.1055 0.1073 0.1113 0.1074 794 
Atlanta 0.09S0 0.1029 0.0969 0.1019 0.1027 0.1023 1156 
Boston 0.1070 0.1091 0.1061 0.10S4 0.1126 0.10Sl 927 
Dallas 0.0762 0.0810 0.0757 0.0807 0.0783 0.OS10 1171 
Denver 0.0933 0.0999 0.0925 0.0991 0.0974 0.0981 1282 

Des Moines 0.1178 0.1228 0.1182 0.1225 0.1259 0.1212 1205 
Phoenix 0.035S 0.0351 0.0355 0.0350 0.0347 0.0359 1320 
Portland 0.0930 0.0936 0.0927 0.0932 0.1004 0.090S 1335 

24-36 hours 
Albany 0.1232 0.1202 0.1229 0.1199 0.1236 0.1202 794 
Atlanta 0.1057 0.1062 0.1053 0.1058 0.1073 0.1151 1156 

Boston 0.1192 0.1168 0.1187 0.1163 0.1203 0.1198 927 
Dallas 0.0878 0.0889 0.0977 0.0883 0.0887 0.0921 1171 
Denver 0.1039 0.1071 0.1038 0.1070 0.1054 0.1124 1282 

Des Moines 0.1251 0.1263 0.1250 0.1261 0.1279 0.1277 1205 
Phoenix 0.0345 0.0346 0.0341 0.034l. 0.0341 0.0379 1320 
Portland 0.1088 0.1097 0.1084 0.1096 0.1159 0.1080 1335 

36-48 hours 
Albany 0.1352 0.1320 0.1353 0.1321 0.1330 0.1356 794 
Atlanta 0.1102 0.1143 0.1097 0.1139 0.1136 0.1249 1156 
Boston 0.1230 0.1228 0.1230 0.1228 0.1234 0.1327 927 
Dallas 0.0885 0.0899 0.0885 0.0894 0.0896 0.0919 1171 
Denver 0.1091 0.1134 0.1091 0.1135 0.1109 0.1158 1282 

Des Moines 0.1269 0.1298 0.1269 0.1297 0.1294 0.1302 1205 
Phoenix 0.0367 0.0364 0.0362 0.0359 0.0358 0.0398 1320 
Portland 0.1139 0.1142 0.1141 0.1152 0.1194 0.1162 1335 
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Table 8. Average percentage improvements in MSE for the combined forecasts. The upper 
(lower) figure in each cell gives improvement relative to the official forecast 
(climatology). 

Average Average Combined Combined 
Average Calibrated Average Calibrated Variances Variances 

Forecast type: Prob. Prob. Log Odds Log Odds Equal Unequal 

COOL SEASON 
12-24 hours 3.70 5.87 4.14 6.42 -0.36 5.55 

48.08 49.25 48.31 49.52 46.03 48.95 

24-36 hours 2.79 3.22 3.22 3.68 -1.15 1.80 
36.66 36.90 36.92 37.20 34.16 35.90 

36-48 hours 1.71 0.74 1.95 0.94 0.07 -0.91 
28.85 28.14 29.01 28.28 27.72 27.03 

WARM SEASON 
12-24 hours 2.34 -0.71 2.93 -0.13 -1.79 0.08 

32.41 30.33 32.82 30.72 29.78 30.78 

24-36 hours 2.45 2.16 1.42 2.60 0.88 -1.35 
22.75 22.47 21.88 22.85 21.59 19.50 

36-48 hours 2.91 1.87 3.07 2.04 1.81 -2.52 
19.53 18.70 19.67 18.87 18.70 15.07 

Overall 
Average 2.65 2.19 2.79 2.59 -0.09 0.44 
Improvement 31.38 30.96 31.44 31.24 29.66 29.54 

A somewhat more sophisticated approach to combining the probabilities involves first 
calibrating them separately and then averaging. We fIrst calibrated both official and guidance 
log odds using the fitted calibration functions from the unequal-variances model given by 
(2). Then we calculated the average of the log odds and the average of the probabilities. 
From Tables 7 and 8, these combinations performed slightly worse than the averages of the 
uncalibrated forecasts. The average of calibrated log odds was the better performer of the 
two, with average percentage improvement over the official forecasts ranging from -0.13% to 
6.42% and an overall average improvement of 2.59% 

Finally, we combined the official and guidance forecasts using the multivariate log-odds 
model. As with calibration of the individual forecasts, we used the model with and without 
the assumption of equal variances. The results in Tables 7 and 8 indicate that the 
unequal-variances model was the better of the two models, with overall performance about the 
same as that of the official forecasts. 

The explanation for the difference in performance between the two models is similar to 
that given above for the calibration models. We have already argued that the variances do not 
appear to be equal, and those arguments apply here as well. Examination of the estimated 
correlations in Table 5 reveals no discernable patterns due to station, season, lead time, or the 
occurrence of rain. 

The equal-variances model results in a linear combination of the forecast log odds. On the 
other hand, the unequal-variances model includes quadratic terms, resulting in more flexibility 
in the shape of the combining function. As an example, the estimated combining functions for 
Portland in the cool season and with a 12-24 hour lead time are shown in Figure 3. The 
contours for the equal-variances model demonstrate a two-dimensional version of the curve 
seen in the case of the equal-variances calibration model (Figure 2). For the 
unequal-variances model, the slope of the combining function is quite steep for large values of 
the guidance forecast In fact, suppose the guidance forecast is large and the official forecast 
takes a value around 0.5. In this region, an increase in the guidance probability could lead to 
a substantial decrease in the combined probability. While this behavior appears to be 
counterintuitive, it occurs primarily in areas of the grid where observations are unlikely; most 
often the official and guidance forecasts are not too dissimilar. Indeed, the behavior of the 
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unequal-variances model near the 450 line appears to be quite reasonable, considerably more 
so than the behavior of the equal-variances combining function in this area. 

To summarize, the simple average of the uncalibrated log odds performed the best of the 
combining techniques, followed by the average of uncalibrated probabilities. Calibrating the 
log odds or probabilities and then averaging performed slightly worse. Finally, using the full 
multivariate log-odds model gave the poorest results of the combining techniques, roughly 
equivalent to the official forecasts. 

DISCUSSION 

In our analysis of individual probability of precipitation forecasts, the official forecasts 
were better than the guidance forecasts. Moreover, calibration of either type of forecast via a 
log-odds model failed to yield performance improvements. The model with unequal variances 
was preferable to that with equal variances, but the raw forecasts were still just as good or 
better. This contrasts with Clemen and Murphy (1986b), who found that direct frequency 
calibration, as opposed to the modeling approach, led to very slight performance 
improvements (roughly on the order of 1 %). 

The results from the analysis of the combined forecasts indicated that modeling failed to 
improve forecast performance. In this case, simple averages (no modeling) performed best. 
Averaging the calibrated forecasts represents a moderate amount of modeling, and this 
approach performed slightly worse than no modeling. Finally, the full multivariate log-odds 
model gave the poorest results. In contrast, Clemen and Murphy (1986b) found that a simple 
combining method, averaging not the raw forecasts or the model-calibrated forecasts, but 
instead the frequency-calibrated forecasts, performed slightly better than any other combining 
technique (with the average of raw forecasts being next best). 

What went wrong with the normal model? It is tempting to suggest that the multivariate 
normal model for log odds does not provide an adequate fit to the data, and this is probably a 
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Figure 3. Combined PoP forecasts for Portland (cool season, 12-24 hour lead time). The 
contours show the combined PoP forecast given official and guidance probabilities. 
The contour interval is 0.10, with the 0.50 contour marked. 
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relevant consideration. Figure 4 shows the actual and modeled distributions of official 
forecast probabilities given rain and no rain for Portland in the cool season with a 12-24 hour 
lead time. Note that the actual empirical distributions are skewed, but the normallog-odds 
model yields distributions that are even more skewed. 

Despite the apparent non-normality of the empirical distributions in this case, however, 
the normal log-odds calibration technique with unequal variances resulted in calibrated 
probabilities close for the most part to the frequency-calibrated probabilities (see Figure 2). 
Nevertheless, a different family of distributions might yield more promising results. 

Another possible factor contributing to the relatively poor performance of the models is 
that weather forecasters are already well calibrated (Murphy, 1985). Thus, any attempt to 
improve on their perfonnance via calibration could be expeeted t6 yield small improvements at 
best. In a similar vein, if the official forecasts were able to incorporate fully the information 
contained in the guidance forecasts, then combinations of the two forecasts should not be 
expected to improve on the official forecasts. Clemen and Murphy (1986a) found that official 
forecasts incorporated most of the information contained in the guidance forecasts; hence, 
combining techniques might result in only slight performance improvements (the averaging 
techniques), no improvement (the multivariate log-odds model), or possibly performance 
deterioration. 

Our finding that simple forecasting methods do better empirically than more complex 
methods is one that has been reported elsewhere and in other contexts. For example, 
Arni.strong (1984) surveyed empirical results regarding the performance of various forecasting 
models and concluded that simpler methods tend to do better. Results by Makridakis and 
Winkler (1983), Clemen and Winkler (1986), and others indicate that simply averaging 
forecasts is a robust combination technique; averaging seems to perform well compared to 
more complex approaches in a large variety of forecasting situations. 

In the weather forecasting situation, a more detailed investigation, possibly with models 
other than the normal log-odds model, might provide more insight into the calibration and 
combination of probabilities. The question of whether our results with precipitation 
probabilities would generalize to other situations, possibly with forecasts that are less 
well-calibrated and less similar, is difficult to answer. Unfortunately, large sets of probability 
forecasts are not readily available for analysis. Perhaps, in the spirit of de Finetti, the use of 
personal probabilities to quantify beliefs regarding observable events and variables will 
become more widespread and we will eventually be able to learn more about the relative merits 
of modeling vis-a-vis non-modeling approaches under various circumstances. 

No rain Rain 

0.0 0 .2 0.4 0.6 0 .8 1.0 0.0 ·0.2 0.4 0.6 0.8 
Forecast probability 

, , , 
r 
I 
I 
I , , 

r , 

1.0 

Figure 4. Empirical (solid line) and modeled (dashed line) relative frequency distributions for 
official PoP forecasts, conditional on rain and no rain, at Portland (cool season, 
12-24 hour lead time). 
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SUMMARY 

A Bayesian test of the simple null hypothesis H :9=9 v.ersus the 
composite alternative H1:9,90 is performed using finite~y a~ditive prior 
distributions in order fo investigate the so-called Lindley's paradox. In 
particular two priors for 9 under HI are considered. The first represents 
a coherently non-informative distribution which is shown to correctly 
yield the "paradox" because of the overall induced distribution of 9. The 
second, through the use of adherent masses to 90, does instead avoid 
Lindley's paradox. 

1. INTRODUCTION 

l....l Let Xl' X2 ••• ,X be, given 9 E.1t , independently and identically 
distr~buted (i.i.d.) no~l random variables with mean 9 and known varian
ce a • We consider a BayeSian test of the simple null hypothesis HO:9=90 
versus the composite alternative HJ :9,90• Henceforth we shall take, 
without loss of generality, 90=0. To avoid a trivial solution it is 
necessary to assign a positive mass, f say, to 9=0. Furthermore it is 
common practice to distribute the remaining mass (1- f) on an intervalIE.1t 
according to a continuous cumulative distribution function (cdf) G, see 
DeGroot (1970, pp. 238-239). Letting x= ! xiln, the result of this 
Bayesian analysis is typically summarized by the posterior odds Q(Holx)= 
=p(9=Olx)/P(9,0Ix) which can also be usefully written as E LO/«l- f)L 1) 

where f 1(1- f) are the prior odds and LOlLI is the so called likelihood 

ratio, where LO is the likelihood of HO and Ll is the overall likelihood 
of HI' Le. 00 1/2 1/2 f n la rp(n (x-9)la)dG(9) 

-00 

with rp(x) denoting the density of the standard normal evaluated at x. 
To decide in favour of either hypothesis one needs a loss function. 
If a>O is the loss of rej ecting H.o when HO is true and b>O that of 
accepting HO when HO is false, tne corresponding loss function will be 
denoted by lab' and a Bayesian test will reject HO if Q(Holx)<b/a. (When 

* Research supported by Ministero Pubblica Istruzione (60% grants) and 
Consiglio Nazionale delle Ricerche. 
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a=b=l we have a "0-1 loss function" which implies rejection of Ho when 
the posterior odds are less th~ o~e). In a sampling ,theory cont~xt ~O 
will be rejected if Ixl ~za u/n where Za 1s the su~tahle quantlle of 
the standard normal corresponding to significance level a . 
Suppose now1that we observe a value of x just significant at level a, 
i.e. x=kau/n'2 where ka is either za or -za' then Lindley (1957), see 
also Jeffreys (1948), showed that~for n --~ a Bayesian test would firmly 
accept HO' since p(9=Olx=k a u/n) tends to one, and this occurs for 
any a and any E • This is referred to as Lindley's paradox. Actually 
Lindley's paradox arises whenever the prior distribution of 9 under HI is 
fairly flat relative to the likelihood independently of the value taken 
on by n, see Shafer (1982) and Hill (1982). Nevertheless when n is 
sufficiently large this condition is typically satisfied since in this 
case only a small set of parameter values is strongly suggested by the 
data. 

~ As it is*known no paradox appears when the null hypothesis is 
modified into H :-d<9<d for some positive small d. Indeed such a 
hypothesis seems t~e moSt natural in many applications, where the real 
issue is not whether 9 is actually zero but, rather, whether it is very 
small. This implies that values which are negligibly different from zero 
are conceptually indistinguishable from it. Nevertheless there seems to 
be instances where the null hypothesis must be simple since the specific 
value zero of 9 arises naturally and "is fundamentally different from any 
value 9+0, however near to zero it might be", see Lindley (1957, p. 189). 
Examples of this situation may be found in parapsychology and genetics 
(Lindley, 1957). ' 
This paper will examine the problem of testing HO:9=O versus H1:9+0 from 

a Bayesian viewpoint using coherent finitely-additive prior distributions 
which will be shown to be particularly suitable to handle such a type of 
problem. Furthermore the analysis will be generally performed under the 
assumption that the observable random variables Xl"" X are, given 9, 
i.i.d. according to the exponential family. n 
Basically, we first discuss the purported non-informativity of a 
traditional prior on 9, next we suggest a coherent prior which seems 
especially relevant in this case and which does not necessarily lead to 
the paradox. 

More specifically section 2 reviews basic aspects of finitely 
additive distributions; section 3 discusses the use of an "improper" 
prior under the alternative hypothesis and reveals its inadequacy for 
testing purposes, section 4 suggests a suitable coherent prior, derives 
the corresponding posterior probability of H (which does not yield 
Lindley's paradox) and finally illustrates in ~tail the special case in 
which the statistical model is assumed to be normal. 

2. FINITELY ADDITIVE DISTRIBUTIONS ON THE PARAMETER SPACE 

Two basic aspects of de Finetti' s (1974) approach to probability 
theory are represented by a betting scheme and a coherence principle, 
which only requires finite-additivity, so that the usual assumption 
of u -additivity, though acceptable, is not necessary. 
A typical feature of finitely-additive distributions is that they may 
present so-called adherent masses. In order to clarify their nature, 
let X be a random variable and let F(x)=P(X<x) be its cdf. It is worth 
noticing at this stage that F need not be right-continuous, contrary to 
what happens in the traditional u -additive framework. Similarly 
FZ(x)=P(X<x) need not be left-continuous. Thus in order to characterize the 
probability distribution of X both F and FZ are necessary. 
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If F(x-)= lim F(t), 
t~x 

and + F(x)= lim + F(t) 
t~x 

- + then one can show that for all x E :It: F (x ) iF Z (x) iF (x ). From this set of 
inequalites it is possible to define the concept of adherent mass. 
More precisely if FZ (x)-F(x -)=P1. (x»O, then Pz (x) is said to be the 
pro~ability adherent to the left 6f x (briefly: left-adherent to x); if 
F(x )-F(x)=p (x»O, then p (x) is said to be the probability right-adhe-

r r 
rent to x; finally if F(x)-FZ(x)=p (x»O, then p (x) is said to be the 

c c 
probability concentrated on x. Futher if F(x)=PO for all xixO (say), then 

F presents (right) adherent mass PO to -00; if P(X>x)=I-F(x)=Pl 

for all x~xl (say), then F presents (left) adherent mass PI to 00. 
In order to perform a Bayesian test of hypothesis we shall need to assign 
a prior distribution on the par~eter space e s.:It • Since we shall not 
restrict our attention to a -additive priors, we briefly describe below 
a way to assign coherent prior distributions on e • The basic idea of 
this method, originally proposed by de Finetti (1974), is to employ a 
gradual procedure consisting in assigning a prior to proper subsets e k 
of e , and then obtaining the prior on e by passing to the limit. This 
procedure is justified since coherence is always preserved when passing 
to the limit. If the limit does not exist, the distribution of 9 will 
have to be assigned directly making sure that it is consistent with 
previous assignments on e k. 
Following the approach described in Regazzini and Cifarelli (1986), let 
$ e be the Borel class of e and let 1 e k f k= 1,2, • • • b~ a sequence 
of elements of $ e converging from below to e, 1. e. e k 1 e • Further let 
f be a non-negative $e-measurable function such tnat, for a given 

a -finite measure T on (e, $e)' 

O<Ik= f f(9)d T (9)< 00 for each k~l, ek 

and with the understaRding that 

P £,;I (9i9*)=F £,;I (9*)=(Ik)-1 J~ n * f(9)d T (9) 
Ok Ok Ok (-00,9 J 

* 

(2.1) 

* represents, for each real 9 , the probability of (9<9 ) conditional on 
can be seen that, for each fixed ek , Fe 

k 
is a distribution function that can generate on (e, $e) a probability 
measure. This probability measure will be taken as the distribution on$e 
conditional on (9 E e k). If now lim F£,;I (9) exists, then we shall take 

k-oo Ok 

the hypothesis that e E e k . It 

this limit as the distribution function of 9. 
Notice that the function f which appears in (2.1) is not in general the 
density of e, although it is the density of 9 conditional on (geek). 
In the sequel we shall have e =(A,B) -oo<A<B< 00 and shall taKe 
ek=(ak,bk) with ak-A and bk-B for k-ex,. For simpliCity we shall 

omit the subscript k and consider intervals of type (a,b) with a--A and 
b-B. A device which will prove useful consists in linking a and b by 
setting, say, b=b (a) for a suitable function b. In this case we shall 
write e k= e =(a,b(a» with a-A and b(a)-B for a-A. For an 
application t8- e =(- 00, 00) which gives rise to a finitely-additive 
analog of the so-called "uniform prior over the real line" see Consonni 
and Veronese ~1986). 
Let now:X: <; :It be the sample space and { P e: e e e} a family of 

a -additive probability distributions on the class of Borel sets of :x: , 
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ffox, dominated by a (J -finite measure f1 defined on (X, $:x: ). 
density of P9 with respect to (w.r.t.) f1 will be denoted by P9' 

The distribution function of 9 given x E X conditional on 
hypothesis (9 E e k) is as usual represented by 

The 

the 

* I (_ 00,9*] n e k f(9)P9(x}dT(9} * 
P e (9~9 I x)= ---------"-------, 9 E e and x E X (2.2) 

k f a f(9)P9(x)dT(9) 
Ok 

As for the prior on 9, the posterior distribution function of 9, 1. e. 
conditional on the sure event 9Ee , will be obtained by a passage to the 
liinit (if it exists) for k - 00 in (2.2). 

3. BAYESIAN TEST USING AN "IMPROPER" PRIOR UNDER THE ALTERNATIVE HYPO
THESIS 

1..1 It is a well-known fact that using a diffuse improper prior over 
under the alternative hypothesis HI leads to unsatisfactory results. This 
fact was discovered, under a normal sampling distribution, by Jeffreys 
(1948) who argued that "even if HO were true, it would not ordinarily be 
the case that 9=90 exactly, and any discrepancy between 9 and 90 would 

for large n ( ... ) lead to rejection of HO'" see Hill (1982, p. 346). 

On the other hand he went on remarking that the choice of a proper 
uniform distribution on any finite interval (-K,K), with K sufficiently 
large, was also unsatisfactory although for an opposite reason. Indeed, 
in this case, any data would lead to acceptance of HO' see again Hill 
(1982, p. 346). 
The discrepancy between the conclusions obtained under the two cases 
mentioned above is suspicious, for it would seem sensible that, at least 
for large K, the uniform over (-K,K) should offer results similar to the 
ones which hold under a "uniform" prior over.1t • The impropriety of the 
prior on 9 under HI is particularly relevant in this case since, when 
considering the posterior odds 

P(9=0} 
Q(HO/x) = P(9~0) 

LO 
L ' I 

the term L1, which should represent the density of x given HI' can be 
taken to be any positive constant. 
This remark was made by DeGroot (1982) who went on arguing that improper 
priors "are never appropriate for tests of significance. Under no 
circumstances should they be regarded as representing ignorance". 
While agreeing on the fact that improper priors are not appropriate, we 
wish to remark that, if employed in a suitable context, diffuse priors can 
indeed be said to represent ignorance see Veronese and Consonni (1986). 
The point that must be made absolutely clear, however, is the distinction 
between the distribution of 9 under HI' which can represent ignorance, 

and that of 9 overall, which, when 91HO is degenerate, will be 

shown to become strongly informative as indeed it ought to be. This 
distinction was overlooked also by Shafer (1982, p. 326) who apparently 
did not realize that the more non-informative the distribution of 9 under 
HI is, the more informative the overall distribution of 9 becomes: this 
is indeed perfectly sensible and not paradoxical. By using only finitely 
additive priors, we shall reexamine the whole issue and i) study the 
nature of the prior on 9 when 9 under HI is assumed to be "uniform over 
jC'and ii) see how this prior naturally implies strong acceptance of HO 
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contrary to Jeffreys's claims thus providing a reconciliation between the 
conclusions under the "uniform" over 3t -case and the uniform over 
(-K,K}-one. 

3.2 As usual let f be the mass concentrated on 9=0, so that it 
remains to distribute the remaining mass 1- f over 3t - { 0 f • 
Clearly the cdf of 91HO is 0 for 9*<0 and 1 for 9*~0. In order to assign 

the cdf 91H1 we shall follow the method described in section 2, so that 

on each finite interval (-a,a) we assume a uniform distribution. We thus 
have 

o 
oJ. 

P (9<9 19;1:0)= a - * (9 +a}/2a 

1 

whence, since 

9*<-a 

* -a<9 <a 

* 9 >a 

we have 

* *1 * P (9<9 }=P (9<9 9=0) f + P (9<9 19;'0) (1- f ) = a - a - a -

0 9*<-a 
* * (1- f )(9 +a) /2a -a<9 <0 

= * * 
E +(1- f )(9 +a) /2a 0<9 <a 

* 1 9 >a 

Consequently the prior cdf on 9 is given by 

* P(9~9}= lim 
a - 00 

(1-f}/2 

* P (9<9 ) a -
(1+ £}/2 

* 9 <0 

* 9 >0 

(3.1) 

Notice that (3.1) is a finitely additive cdf which presents a mass 
concentrated on 9=0 and equal adherent mass (1- f) /2 to - 00 and 00 • 

Having written down explicity the prior of 9 it is immediate to realize 
that this prior is highly informative since, while concentrating a mass on 
the origin, it assigns probability zero to any finite interval not 
including the origin. We thus have a prior distribution which is markedly 
different from the traditional non-informative priors employed for 
inferential purposes in order to emphasize the role of the observations. 
Indeed with a prior of type (3.1), all the data can do is to change the 
value of the three masses, but obviously the posterior distribution of 9 
will still assign probability zero to any finite interval not including 
the origin. 

If in particular the model is assumed to belong to the exponential 
family written in the natural parametrization whose density w.r.t. a 
u -finite measure fl is expressed by 

P9(x}=exp(9x- M(9}} (3.2) 

then we can further specify the structure of the posterior distribution 
of 9 when the prior is of type (3.1). Because of a well known result, if 
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X1"",Xn are, given 9, i.i.d. according to (3.2), then T= IXi is 

sufficient and T has density of type (3.2) (with M(9) replaced by nM(9» 
w.r.t. the convolution measure of order n, p • 

n 

First of all consider the posterior cdf of 9 conditional on 9E (-a,a) 
and on T=t, and let P9(t) be the sampling distribution of T. Then because 
of (2.2) 

o * 9 <-a 

P9(t)d9 
* 

a -a5.9 <0 

* P (9<9 It)= a -

2a f PO(t) 

1- f 

+ J P9(t)d9 
(3.3) -a 

2a f PO(t) 

1- f 

1 

To obtain the posterior distribution 

9 
+ J P9(t)d9 

-a 
a 

+ I-a P9(t)d9 

of 9 one must compute 

* 05.9 <a 

* 9 La 

the limit for 

a-alof (3.3). If I(a)= .r~a P9(t)d9-C<al, then one immediately 

concludes that the posterior distribution is degenerate on 9=0. If 
however I(a) diverges for a - al, then it becomes essential to check 
whether also the numerator of (3.3) diverges. When this is the case the 
limit operation can be easily carried out invoking de l'Hospital's rule 
and using the following results valid whenever P9 is as in (3.2): 

p 191 (x)-O for 191 - al (3.4) 

for all x E X except when x=c=minX or x=d=max X • c and d finite, 
with p { c land p {d l positive. In this case we have 

for Q--oo 
for Q - 00. 

For a proof see Veronese and Consonni (1986). 

and 

One can thus conclude that the posterior distribution of 9 is always 
degenerate on zero except when t=nc or t=nd. (Notice that this case may 
arise if and only if Xi is discrete and the Xi's are respectively either 
all c or all d). 
So, going back to our hypothesis test, if the Xi's are continuous, then HO 
is always accepted whatever the data and the sample size. Similarly HO is 
always accepted if the Xi's are discrete except when all observat10ns 
are equal to either of the (finite) boundary values. In this case indeed 
the posterior distribution of 9 will generally exhibit, beyond a 
concentrated mass on 0, an adherent mass to either - 00 or 00 • For an 
illustration of these points see Consonni and Veronese (1986). 

4. A FINITELY ADDITIVE PRIOR ON 9 (UNDER THE ALTERNATIVE HYPOTHESIS) 
WHICH AVOIDS LINDLEY'S PARADOX 

4. 1 As we mentioned in the introduction to this paper, Lindley's 
paradox arises whenever the prior distribution of Q under HI is fairly 
flat relatively to the likelihood. 

Suggestions to overcome Lindley's paradox have been proposed, for 
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example, by Bernardo (1980) and Shafer (1982). Both however are not 
immune from criticism, see Dempster (1980), Jaynes (1980) and Hill 
(1982), Lindley (1982). Surely, as already recalled in subsect. 1.2, it 
is possible to avoid Lindley's paradox by turning the null simple 
hypothesis into one composite. When this is not possible, however, it 
means that the value 9=0 has a special status with respect to all other 
points. As a consequence one must ensure that numerical proximity be not 
mixed up with logical proximity which, because of the very nature of the 
problem, is nonsensical. 
We can therefore conclude that data generated by values of 9 close to, 
but distinct from, zero should not provide evidence in favour of HO' but 
rather be interpreted in favour of HI' In order to achieve this we need to 
reconsider the prior distribution of 9 and, as it will appear, the notion 
of adherent probability will play a significant role. 

4.2 From the remarks of the previous subsection it follows that the 
prior distribution on 9 must take into special consideration the point 
zero and points very close to zero; specifically let C2f be the mass 
concentrated on zero, and c1f , c3f (ci~O, c1+c2+c3=1) the mass 

adherent, respectively, to the left and to the right of zero. 
As usual, let HO:9=0 and H1:9;0. We thus have P(9=0)=c2 f ,while the 

distribution of 91 HI will present adherent mass (c1+c3) f 1(I-C2f ) to 
zero and will distriBute the remaining mass according to a continuous cdf 
G. Notice that if c2=1 the standard Bayesian setting is recovered. 
If c2<I, then our set-up amounts to a weakening of HO because of the 
presence of adherent masses to zero which favour HI' 
The prior cdf of 9 can thus be described as: 

* * (1- f )G(9 ) 9 <0 
* * 

P(9~9 )= (1- f )G(0)+(c1+c 2) f 9 =0 
* * (1- f )G(9 )+ f 9 >0 

(4.1A) 

and 
* * (1- f )G(9 ) 9 <0 

* * P(9<9 )= (1- f )G(0)+C1 f 9 =0 
* * (1- f )G(9 )+ f 9 >0 

(4.1B) 

* Furthermore the conditional cdf of 9 given HO ,G (. 19=0), is degenerate on 
zero, while the cdf of 9 given HI is 

1- f * * G(9 ) 9 <0 
l-c f 

* * *1 12 * G (9 19+0)=p(9~9 9;0)= (I- f )G(0)+c 1 f 9 =0 
l-c f 2 

1- f * 
f (l-c2) 

* 
1-c f G(9 ) + 1-c2f 

9 >0 
2 

To obtain the posterior odds 

P(9=0) 

P(9;0) 
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we have to compute LO and L1• If the density w. r. t. to a u -finite 

measure of the sample X given e is Pe(x) , then 

00 * 
LO= f Pe(x)dG (9Ie=0)= PO(x) (4.2) 

and -00 

00 * L1= .r Pe (x)dG (ele;,O) (4.3) 
-00 

00 

= f Pe(x)dG(e) 
-00 

Setting the last integral equal to p(x) we thus have 

(4.4) 

It can be easily checked that if c2~1/2, then Q(Holx)<l, i.e. HO is 

rejected under a 0-1 loss function. Notice that this result holds for any 
model Pe' for any sample realization x and for any value of € • 

It follows that a prior for which the proportion c2 of mass concentrated 

on e=o is less than that adherent to the same point (c1+c3) leads always 

to posterior odds which are less than unity and so HO is always rejected 
under a 0-1 loss function. 
More generally under an tab loss function (see subsect. 1.1) if 

c2~b/(a+b),Q(Holx) is always less than bla, which leads to rejection of 

HO' Since data play no role when c2~b/(a+b) it follows in particular that 

Lindley's paradox does not arise, so that given a just significant 
observation both a sampling theory statistician and a Bayesian will 
reject HO' Actually one does reject HO independently of the data not only 

when c~b/(a+b) but also for greater values of this threshold depending 

on the model, the prior and the sample size. For an illustration relative 
to the normal case see Consonni and Veronese (1986). 

4.3 In this subsection we shall pursue the analysis assuming that a 
just significant x has been observed and implicitly accepting that 
c2>b/(a+b), so that x is offered a chance to playa role. 

Suppose that observations Xl' X2"",Xn are conditionally on 9 i.i.d. 

according to the natural exponential family (3.2), so that it is meaning
ful to speak of a just significant sample statistic, in particular x. 
Remembering that E9 (Xi )=M'(e) and Var9 (Xi )=M"(9), for n large X will be 

approximately normally distributed with mean M' (9) and variance M" (9) In, 
we shall now derive the approximate expression for LO and L1 and compute 
the approximate posterior odds for large n. 
Recalling that ~(x) is the density of the standard normal evaluated at 
x and using a prior like (4.1) we have 
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n~ 
LO""----

(M" (O»~ 
( 

n~ 

If! (M"(O»~ 
(X-M' (0») 



and 

n~ (n~ 

(M"(O»~ IfJ (M"(O»~ 
(4.5) 

+(1- €) f n~ (n~ 
-00 (M"(9»~ IfJ -(M-"-=-(9-)--')~- (X-H' (0) » dG(O> I 

Resorting to arguments similar to those of Jeffreys's and Hill's (1982), 
we shall provide an approximation for the integral appearing in (4.5). 
Since n is large and M" (9) In is small for each 9, the integral can be 
regarded as a normal distribution for M' (9) centred on x and with 
negligible variance. As a consequence M'(9) will be approximately 

degenerate on x and so 9 will be approximately degenerate on M,-l(x) 
(notice that since M"(9)=Var9(Xi »0 for each 9, M' is strictly increasing 

and so M' -1 is well defined). Thus, letting g be the density of G the 
-1 integral in (4.5) can be seen to become g(M' (x». 

We can finally write the approximate expression for the posterior odds 

(x-M' (O)~ 
Q(HO I X) '" --------------------

€(1-c 2) n~ L cP ( n~ L (lc-M' (0»)+(1- €) g(M,-1(x» 
(M" (0) ) '2 (M" (0» '2 

If now x is just significant at level a , Le. x=M' (O)+k a (M"(O)/n)\ 
then for n - 00, Q(Hol x) tends to c2€ I *' (l-c2) =c21 (1-c2), Le. p(9=0Ix) 

tends to c2• We thus see that the only presence of an adherent mass to 
zero in the prior is sufficient to avoid the paradox which implied 
p(9=0Ix) -1. 
Indeed if c2~b/(a+b) then HO is rejected under an lab loss function, 

consistently with the result of subsection 4.2 which held true 
independently of the observations. If, however, c2>b/(a+b), then HO is 
accepted under the previous loss function but not necessarily in general, 
contrary to Lindley's result. 

Remarks 

i) An appreciation of the sensitivity to nand c2 of the rejection 
region for the normal case may be found in Consonni and Veronese (1986). 
In that paper, moreover, assuming a just significant observation at 
level a , the highest value of c2 which leads to rejection of HO is 
derived for selected sample sizes. Typically agreement between sampling 
and Bayesian theory is easier (i.e. no restriction is imposed on c2) 
when a is small (e.g. 0.01 or 0.001) and n is not very large. 
ii) As we have seen the value of c2, which implicitly gives c1+c3, is 

particularly relevant throughout the analysis. As we know c2 represents 
the proportion of the mass concentrated on, whereas c1+c3 is ~hat of the 

mass adherent to, 9=0. By assigning directly the probability that 9=0 and 
the probability that 9 is adherent to zero according to the definitions 
of sect. 2, one can recover c2 and c1+c3=1-c2• 
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On the other hand it is sometimes more natural to start from the mass 
E and then to subdivide it into two components, i.e. the concentrated 
and the adherent one. This usually occurs when e is a measurable 
quantity, so that its prior distribution can be assigned on the basis of 
an empirical distribution function of available data before any further 
statistical processing (e.g. hystogram smoothing) has occurred. 
Because of several considerations (e.g. provenance, quality, reliability 
of data) one is typically led not to give full credit to the distribution 
as such, although it remains the only empirical source which can be 
usefully exploited. So if prior knowledge does not allow one to modify the 
basic structure of the data (e. g. to transfer portions of frequencies 
from one datum to another), the only option which is able to incorporate 
this natural skepticism on data quality is to lower the amount of 
concentrated mass on each single point by transferring a part of it into 
adherent mass. These considerations have implications on the prior 
distribution on e with special reference to the point e=o, because it is 
only there that we have to distinguish carefully between zero and values 
which are only approximately zero. 
In practice if E is the frequency of e=o, then c2 can be regarded as the 
discounting factor which summarizes our opinion on the quality of the 
data. 
This type of reasoning can, in our opinion, be usefully applied to the 
forensic case discussed in Lindley (1977) and Shafer (1982), since the 
role of c2 is easily understood and its value can be reasonably supplemen
ted by an expert witness. 
Finally notice that, under an lab loss function, it will be usually 

sensible to assign a value of c2 higher than b/(a+b), in order to allow 
the data to influence our decision. Typically this condition should be 
satisfied if enough credence is given to the available data. 

Acknowledgments: We wish to thank E. Regazzini for constant advice and 
useful discussions. 
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1. INTRODUCTION 

Roughly speaking risk theory in insurance concerns the survival of 
(a branch of) an insurance company over some specified time horizon.* The 
key goal variable is usually the ruin probability of the company along that 
time horizon. While practical everyday problems involve mid term (e.g. five 
or ten years) horizon, theoretical models are mainly concerned with single 
period problems, or at the other extreme with (asymptotic) evaluations 
over an infinite time horizon. The usually relevant control variables are 
the initial reserve fund and the safety loading coefficient placed to obtain 
tariff insurance premiums. A third prominent control variable, sometimes 
implicitly considered, is the reinsurance strategy of the firm. 

In some sense reinsurance turns out to be at least in the short period 
the only one really manageable~ as is not easy to adequate the reserve fund 
and on the other side the market conditions dictate loading charges at least 
under more or less perfect competition. Undoubtedly a milestone in the ana
lysis of the role of proportional reinsurance in controlling ruin probabili
ty of an insurance company is B. de Finetti's paper (de Finetti, 1940). 
The author's treatment concerns both the single period and the infinite 
horizon problem. As regards the first point de Finetti's solution is based 
on a two stage model, where efficiency and optimality goals are clearly 
defined andseparatedly pursued, each on its respective stage (see chapter 2). 

As we shall see in chapter 3 de Finetti's paper is to be seen as an 
early anticipation of H. Markovitz (Markovitz, 1952) well known two stage 
mean variance approach to the portfolio selection problem. The relevance 
of the theoretical reinsurance model to practical companies behaviour is 

* An exhaustive treatment of the really involved subject matter of risk 
theory is given e.g. in Buhlmann (1970), Gerber (1979), Seal (1969). 
An historical very interesting resume with claryfying comments is offered 
by chapter 18 in Borch (1974). 
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shortly discussed in para 4. To solve the infinite horizon problem de Fi
netti exploits old classical results of probability theory going back to 
De Moivre and concerning the so called gambler's ruin problem. The key 
idea, recalled in chapter 6, is to properly transform the original unfair 
sequence (due to loading charges) of random gains of the insurance compa
ny so as to obtain a fair process, or with modern terminology to derive a 
martingale from a submartingale process. 

As we shall see later while accomplishing this goal a constant B 
representing the risk level of a portfolio (as well as of single contracts) 
is rather naturally derived, such that an evaluation of the asymptotic ruin 
probability is exp(-GOIB) , with GO as the initial reserve of the company. 
Then de Finetti's risk level turns out to be a simple and meaningful coun
terpart of the "adjustment coefficient" well known in Lundberg's collec
tive risk theory.* It is well known that besides ruin probability another 
prominent decision criterion to solve economic problems under uncertainty 
is the expected utility one.** 

Another goal of this paper is to show and discuss elegant and intere
sting connections between the expected utility approach (especially in case 
of exponential utility) and de Finetti's solutions both for the single 
period (chapter 5) and for the asymptotic approach (para 7). There is another 
interesting connection between the risk level B and the risk tolerance B, 
characterizing the utility function of the company will be derived and 
discussed. 

2. DE FINETTI'S TREATMENT OF THE SINGLE PERIOD PROBLEM 

Let us shortly recall de Finetti's approach to the solution of the 
single period retention problem (in case of proportional reinsurance) of 
an insurance company. The company has a portfolio with n insured risks, 
whose respective claims are described by random variables Xh , h=1, ••••• ,n. 
Suppose that insurance and proportional reinsurance markets follow working 
rules (conveniently simplifying reality) such that the expected value and 
the mean square deviation of the single risk retained are homogeneous 
linear functions of the retained quotas q ***, so that formally denoting 
by Gh(qh) the above random profit and by:h ~ = E(Gh (1» and 0h = ° (Gh(1)~ 
it is: E(Gh(qh» = qhmh; o(Gh(qh»= qh 0h • 

* See the previously referred resume in Borch (1974) 

** Of course it is impossible to give account of the applications of utility 
theory to insurance problems. Several chapter e.g. in Buhlmann (1970) and 
Gerber(1979)are devoted to the point, while almost the entire treatment in 
Borch (1974) is based on modern utility theory. 

***Alternatively a non homogeneous linear function such that E(G (q » = 
'h h' d .. h h 
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Writing G(~ = IibGh (qh»' if the usual simple no correlation assumption 
among the Xh is accepted we have: 

E (G(~l.) = r q m 
h h h 

An efficient proportional retention strategy is defined by de Finetti 
as one that minimizes the ruin probability of the company for any given 
value of the expected profit retained. Now the single period ruin probability 
is, leaving aside financial factors and keeping account only of technical 
ones, simply the probability that the losses (negative profits) are greater 
than the initial reserve GO of the company or formally that: G(S)~ - GO • 
The above probability is that of the event: (GO -E(G» / d(G) ~ - (GO +E(G» / (S'(G) 

that the standardized overall gain is lesser than the opposite of the so 
called stability index of the company. 

As stressed by 
of the "same type" 
given value of E(G) 

de Finetti if the distribution of the overall profit is 
for any choice of S the above probability is for any 

an increasing function of c(G). After that an effi-
cient retention strategy is found as the one that minimizes the variance of 
the company's single period profit for any given value of the expected profit 
retained, and the whole set of efficient strategies is obtained by solving 
the following set of constrained minimization problems: 

min 

(1) 

sub 

de Finetti offers a (rather involved) proof that the optimal solution 
is given 

if < 1 

otherwise 
(2) 

with 1 (E) a, common for any h, piecewise linearly increasing function of E. 

Today, the same results are obtained as a simple exercise on Kuhn Tucker 
conditions in quadratic programming problems. Once the efficient set has been 
found, there is still to select a single point among the efficient ones. To 
this purpose de Finetti suggests to fix the maximum value of ruin probability 
judged as acceptable by the company and choose the efficient solution corres
ponding to that level. He offers an exhaustive discussion of the connections 
between ruin probability and the behaviour of the 1 function. The point is 
bypassed here. 

3. CONNECTIONS AMONG DE FINETTI'S SOLUTION AND MARKOVITZ MEAN VARIANCE APPROACH 

We claim that the approach so far quickly resumed is with some minor 
differences the same applied, more than a dozen years later, by H. Markovitz 
to solve the portfolio selection problem, now universally known as mean va
riance criterion. Indeed even if forced by the need to keep as the key goal 
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variable the ruin probability, de Finetti operationally follows a two 
stage approach, where in the first stage a mean variance (formally 
a mean-ruin probability) efficient set is defined on purely objective 
basis, while the second stage is devoted to select on the basis of a 
subjective tradeoff between the two parameters involved the optimal 
sUbjective solution as a specific point of the efficient set. 

Going back now to the solution (2) , it is interesting to look 
at what happens if we consider the restriction of the efficient set 
to its interior, that is where S belongs to the open (O,l) hyper
cube. It is immediate to check that solutions belonging to this 
restriction are characterized by constant ratios among the optimal 
retention quotas (relative retentions), independent from E , and 
given by: 

(m. IV,) /(m.!V.) 
1. 1. J J 

JV i,j i ;I j (3) 

In turn this is a partial (provided its validity is restricted 
as above punctualized) reinsurance counterpart of the existence of an 
unique optimal risky portfolio in financial theory. Moreover something 
partially corresponding to the well known separation theorem is 
reached. * The optimal retention quotas are chosen according to (3) 
and then absolute retention limits are chosen. The first choice does 
not involve (is separated from) any preference evaluation about the 
risk return tradeoff. In our opinion these facts open the way to gain 
some new insights about the working of markets for proportional rein
surance and their links (allready stressed elsewhere) with the C.A.P.M. 
model of equilibria on asset markets. We do not enter here into 
details concerning this point. The interested reader is referred to 
Pres sacco (1986). 

4. THEORY AND PRACTICE IN PROPORTIONAL REINSURANCE 

It is convenient to introduce here another simple assumption, that 
direct collected premiums are computed on the basis of the mean value prin
ciple with a common loading coefficient A , so that ~ = A E(Xh). and 

moreover that the random claims of the portfolio are distributionally 
obtained by homogeneous linear transforms of a base variable or formally 

that Xh ~ t hX1• th > 1, h = 2 •.•..•• n. Denoting by Sh the maximum pos

sible loss for contract h. and keeping account that ~ = A t hE(X 1}for any h. 

expression (3) of the optimal ratios between retention quotas becomes (as 

* Fundamental papers concerning mutual fund separation in financial theory 
are those of Cass and Stiglitz (1970) and Ross (1978). Resuming roughly, 
financial separability means that the choice of the. risky portfolio is 
the same for any investor belonging to some family of decision makers. 
Thus this choice is independent or separated from the particular prefe
rence system (parameter of the utility function) characterizing an in
vestor within the family. Any efficient portfolio is then obtained as a 
proper combination of the sure prospect and the risky portfolio. 
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easily checked) 
q;/q; = t./t. S./S. 
~ J J ~ J ~ 

(4) 

But for an efficient restricted solution this means nothing but 
the constance for any h of the product Shq+ at some level R+. 
In reinsurance practice R+ is known as rete~tion level and the above 
reasoning makes clear under what condit~ons a practical proportional rein-, 
surance strategy based on the choice of a single retention level enyois 
efficiency properties in a mean variance environment. 

5. CONNECTIONS BETWEEN EXPECTED UTILITY APPROACH AN DE FINETTI SOLUTIONS 
FOR THE SINGLE PERIOD PROBLEM 

Of course the expected utility criterion could be generally applied 
without restrictions as.a different tool to solve the optimal retention 
problem. Alternatively, if we want it to be coherent wit h a mean variance 
approach, so that to be specifically useful in the second stage of' the pro
cedure determining indirectly a risk return tradeoff schedule, some restric
tions ought to be placed either on utility functions or (and) on claims di
stributions. Concerning this point it is well known that coherence is surely 
granted either by assuming that utility functions are quadratic or that 
claims distribution is multivariate norma1.* In the last case simple formu
las are derived provided moreover that the utility function of the company's 
gain belongs to the exponential family. 

For a detailed treatment of the quadratic case the reader is referred 
to e.g. Daboni (1986), we shall treat here in some detail the combined normal 
exponential case, that is with utility function: u(G) = B(1-exp(-G/B», B>O, 
where as well known B is the constant value of the risk tolerance function, 
that is the risk tolerance parameter of the insurance company. Being: 
E(u(G) ) = B(1-E(exp(-( I: Gh(qh)/B») (5) 

the constrained maximization for any fixed B is found minimizing the 
expectation: 
E(exp - ( ~ Gh(qh)/B»=E( 7r exp-(Gh(qh)/B» (6) 

Owing to the no correlation assumption, this gives rise to a set of n 
univariate constrained problems: 

(7) 

with I..p G (.) as the moment generating function of the retained random gain 
on the h-th contract. Keeping account of the normality of Gh** and after 

* See Tobin (1958) and Markovitz (1952) 
** Alternatively relaxing the normality assumption, and keeping expansion 

of the cumu1ant function of Gh(q ) truncated at the third degree, we 
obtain the following approximatign holding for the general case: 

q+ = ~ B~ (1~ ( /2\) v~1 if < 1 

~ ~ 1 . otherwise 
w~th J' as the asymmetry coeff~c~ent ot Gh(qh)' 
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some simple computation the solution is given by: 

+ f'y. if < 1 
(8) qh 

otherwise 

It is interesting to note that a two side reading is offered by this 
solution. For a given value of B it provides an answer to the question of 
selecting the optimal solution (absolute retention) in the efficient set, 
while leaving B undermined it gives immediately a compact expression for 
the whole efficient set that looks like the one obtained by de Finetti 
(compare with (2» • Of course this way relative retentions are immedia
tely derived. 

6. DE FINETTI'S TREATMENT OF THE INFINITE HORIZON PROBLEM 

As previously said de Finetti's idea is to make recourse to old results 
of probability theory, concerning the gambler's ruin problem. Indeed de 
Finetti suggests to look at an insurance company as a gambler playing an 
infinite sequence G , t=1, ••••• of independent unfair (due to safety loading 
charges) bets, so tfiat the story of its fortune is described by a submartin
gale process. To manage computationally the problem de Finetti needs fair 
transforms Y of G and looks for that purpose to Y = exp (- .l G ) - 1 • 

t t t t t 
Given G , there is (under not binding restrictions) an unique value cl +(fO) 

t t 

providing the desired fairness for Y ; it satisfies J.. +. E(G )<0. Moreover 
. . t b . h t" .t . a sum of unfa1r 1ndependent random num ers W1t a common fa1rness coeff1-

cient" J... • has in turn exactly J.. as its "fairness coefficient". After 
that an evaluation of the asymptotic ruin probability of an insurance 
company, seen as playing a sequence of games with the same fairness coeffi-
cient J.. + = ol+ for any t, is given by: 

t 

+ p 
oL + > 0 

otherwise 

(9) 

Then the surprisingly simple end of the story is that to reach a given 
+ goal p concerning the asymptotic ruin probability, the company may apply 

to any future contract a retention strategy such that the retained random 
gain Gh(qh) has a fairness coefficient: 

oL+ + = - (1/GO) In p . ( 10) 

t2. + --1 I ,+ In his paper de Finetti prefers to work with another index ~ I~ 

The reason is simple: given GO' the ruin probability is an increasing norma
lized function of @ + , going from 0 to 1 as @ + goes from 0 to 00, 
so that @ + deserves the name of "livello di rischiosita" (hence risk 
level) of a random variable or of a portfolio whose contracts all have the 
same risk level. As said in the introduction, @ + appears a meaningful 
counterpart of the "adjustment coefficient" well known in scandinavian 
collective risk theory approach to ruin probability evaluations. 

Finally and before passing to next para 7 it is convenient to remark 
that under normality of the Gh(qh) the optimal single absolute retention 
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quotas. indirectly derived through the request that the retained random 
gain have risk level not greater then the one associated to the fairness 
coefficient c;J...+ appearing in (10) are given by: 

+ 

.: = 1: ~ "h/Vb if < 1 
( 11) otherwise 

7. EXPONENTIAL UTILITY AND ASYMPTOTIC RUIN PROBABILITY 

The somewhat astonishing similarity of (8) and (11) reveals another 
interesting link between two key parameters of the reinsurance problem. that 

+ 
is the final risk level ~ of a group of retained contracts granting 
that a given asymptotic ruin probability goal is reached. and the constant 
risk tolerance B of that company. Indeed comparison of (8) and (11) 
makes clear a one to one correspondence between the B coefficient ~uiding 
company's decision based on a (myopic) expected utility criterion. and the 
goal riskness level ~ + of the retained quotas of the single co~tracts, 
and thus finally with the ruin probability goal. Couples of (B, ~ ) obtained 
on this basis induce exactly the same absolute retention strategy either if 
decisions are aimed to utility maximization or to ruin probability control. 
That happens because a choice based on exponential utility grants (as revea
led by (8) , at least under normality and independence assumptions) that 
any contract is reduced to a common risk level (see (11) ), and thus in
directly but unambiguously determines an asymptotic evaluation of a ruin 
probability. 

Conversely a goal expressed in ruin probability terms, to be traduced 
through the derived common risk level (3 + , is coherent with an exponential 
utility approach and determines a unique value of the risk tolerance coeffi
cient, such that an optimal utility based decision strategy attains the 
ruin probability chosen as starting point. It is interesting to remark that 
even if generally referred to an infinite horizon problem, the above results 
are formally still holding for whatever temporal horizon provided that: 
.) the risk tolerance coefficient remains invariant throughout the whole 
period considered, and: 
.. ) the number of the contracts on the horizon is high enough, so that the 
asymptotic evaluation of the ruin probability is a good proxy of the true 
value for a finite number of contracts. In principle then the horizon could 
be even a single period one. But be cautious that, this being the case, the 
ruin probability obtained is not simply the probability to be insolvent at 
the end of the year with all contracts expired, as in classical risk theory; 
on the contrary ruin may appear after any number of contracts, irrespective 
of the results of the next ones. 

Obviously at the time de Finetti was writing his fundamental paper the 
modern utility theory was still in mind of J. Von Neumann and O. Morgenstern. 
To complete our picture we want to signal that even without spending some 
room for any formal or verbal proof, in another paper some years later (see 
de Finetti (1952) ), he shows to be well aware of the crucial connections 
previously discussed. Indeed after a short discussion of the properties of 
the exponential utility and undoubtedly with this idea in mind, he says 
explicitly that: "the risk level criterion derived by the ruin probability 
criterion induces the same behaviour coming from the expected utility in the 
exponential case". 
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The linear simultaneous equation model (SEM) is one of the best known 

models in econometrics. It is used in several areas, for instance, in 

micro-economic modelling for the description of the operation of a market 

for a particular economic commodity and in macro-economic modelling for 

the description of the interrelations between a large number of macro

economic variables. [See, e.g., Hausman (1983) for a recent survey of the 

linear SEM.J 

A linear simultaneous equation model contains, usually, some exactly 

known structural coefficients and some unrestricted structural 

coefficients. Suppose that the prior information on the unrestricted 

coefficients is taken from a noninformative approach. Then one can derive 

that the kernel of the posterior density of the unrestricted coefficients 

has the same functional form as the so-called concentrated likelihood 

function [see, e.g., Dr~ze and Richard (1983) or Zellner (1971, p. 272)J. 

This kernel is, however, not proportional to a density with known 

properties. In an earlier paper [Van Dijk (1985), hereafter referred to as 

HVDJ I studied the global properties of this posterior kernel (or 

likelihood function) in the structural parameter space. One of the results 

of the HVD paper is that, given certain conditions, the posterior kernel 

of the unrestricted structural coefficients of a linear simultaneous 

equation model is dominated by a matricvariate Student t density, 

* I am indebted to Luc Bauwens and Teun Kloek for helpful discussions. Any 
errors are my own responsibility. 
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multiplied by a constant. [For details on properties of this density, see 

Dickey (1967) or Zellner (1971, Appendix B5).] However, in the derivation 

of this result I did not make full use of the zero restrictions that 

appear in many simultaneous equation models. Consider, for instance, the 

case of a market model for an agricultural commodity. Weather conditions 
will, probably, appear in a supply equation for this commodity, but, in 

most cases, not in a demand equation. Personal income may appear in a 

demand equation but, in most cases, not in a supply equation. 1 So, zero 

restrictions reflect a priori considerations on the variables that are 

excluded from the different equations. 

In the present paper I make explicit use of the zero restrictions 

mentioned above. As a result one can derive that under certain conditions 

the matricvariate Student t bound can be replaced by an other upper bound 

function that is a product of multivariate Student t densities that are 

defined, in a certain sense, in a recursive way. This bound has as an 

advantage that the multivariate Student t density possesses known 

properties [see, e.g., Zellner (1971, Appendix B2)] and it is comparable 

with the bound derived by Dr~ze and Richard (1983, p. 596). 

PRELIMINARIES 

The linear simultaneous equation model (SEM) can be written as 

XA = U (2.1) 

where X is a Tx(G+K) matrix of T observations on G+K variables and A is a 

(G+K)xG matrix of parameters some of which are known a priori [see below]; 

U is a TxG matrix of disturbances. The matrices X and A are partitioned as 

follows. 

X = (Y Z), A = (~) (2.2) 

where Y is a TxG submatrix of X that refers to G endogenous variables and 

Z is a TxK submatrix of X that refers to the K predetermined variables. 

The matrix A has been partitioned in a similar way as the matrix X so that 

the left hand side of (2.1) can be written as 

XA := YB + zr (2.3) 

1. For a viewpoint that (almost) all variables should appear in all equations 
see, e.g., Sims (1980). 
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I shall make use of the set of standard assumptions with respect to the 

linear SEM [see, e.g., Hausman (1983), and the references cited there]. 

These assumptions may be summarized as follows. (i) The determinant of B 

does not vanish. (ii) The T rows of U are independently distributed with a 

common normgl digtribution that hag m~An ~~PO Aft4 ,6!itiv! definite 
covariance matrix t. (iii) Current values of the disturbances are 

independently distributed from current and lagged values of predetermined 

variables. (iv) The data matrix X has full column rank. So, T > GtK. 

The prior information on the structural parameters is summarized as 

follows. The elements of A are partitioned into two subsets. The first 

subset contains the a priori restricted elements, which are denoted by the 

vector ,. The second subset contains the unrestricted elements of A, 

denoted by the vector a. So, one has 

A = A(a, , = '0) (2.4) 

where , = '0 indicates that the elements , take a particular value '0. The 

stochastic prior information on (a, t) is given as 

(h 2 1) ( 2.5) 

where h is usually taken as an integer. Well known values for hare h = 
Gtl, h = 2G or h = GtK+l. In HVD I derived a bound on h given as h 2 2G + 

K as a condition for existence of the zero-th order moment of the vector 

a. The marginal posterior density of the unrestricted coefficients a, 
given the data X and the exactly known elements '0' can be written as 

(2.6) 

For details, see HVD, Zellner (1971, Chapter 9) or Dr~ze and Richard 

(1983, p.562). 

Before we start with the main result of this paper we need the 

following theorem. For a proof, see HVD, Theorem 4. 

THEOREM 1. Given R(X) GtK, it follows that U'U is a positive definite 

symmetric matrix and 

(c > 0) (2.7) 

if and only if R(A) = G. 

131 



Some comments on the role of the positive constant c are given in t~ 

noxt Qoetion. OnQ can U~@ (1.6) ind (1.7) ind writ@ 

(2.8) 

The upper bound function given at the right hand side of (2.8) is the 

starting point for the an~lysis of this paper. 

A DOMINATING FUNCTION FOR THE POSTERIOR DENS1TY OF e 

Let aj' j = 1, ••• ,G, be the j-th column of the matrix of structural 

coefficients [see equation (2.1)]. The typical j-the equation of the mode 

(2.1) can be written as 

(j = 1, ••• ,G) (3.1) 

Suppose that the exact restrictions with respect to the elements of aj aI 

either zero restrictions or the normalization restriction. One can make 

use of the following notation. 

(j 1, ••• ,G) (3.2) 

The T-vector Yj is the j-the column of the matrix Y of (2.2) and it 

consists of T observations on the j-the endogenous variable. I assume tha 

the diagonal elements of the matrix B of (2.2) ate equal to unity due to 

the normalization restrictions. The matrix Wj is defined as 

W. := (Y. Z.) 
J J J 

(3.3) 

where the T x gj matrix Yj contains observations on gj current endogenous 

variables that are present as explanatory variables in equation (3.2). So 

G - gj - 1 endogenous variables are excluded from this equation. The T x 

kj matrix Zj contains the T observations on the kj predetermined variable 

present in the j-equation. So, K - kj predetermined variables are exclude 

from this equation. The matrix (Yj Wj ) has full column rank. The 

parameter vector 8J• contains the f.. g. + k. parameters of interest. Not 
J J J 

that the f.-vector 8 is given as 
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Next, I construct a proof of the proposition that under certain 

conditions the posterior kernel p(8lX, .0) [equation (2.6)J is dominated 

by a constant times a product of multivariate Student t densities that are 

defined in a recursive way. 

The first step of the proof is as follows. Start with the right hand 

side of (2.8). The matrix U is restricted to have full column rank so that 

U'U is a positive definite symmetric matrix [see Theorem IJ. Partition the 

matrix U as 

(3.5) 

where Uj is the T-vector of disturbances of the j-th equation [see (3.1)J 

and Uj is the remaining submatrix of U after Uj has been deleted. Note 

that one may reorder the columns of U in such a way that the j-th column 

is moved to the position of the first column without affecting the value 

of IU'UI. Make use of 

IU'Ul I(u j Uj)'(u j Uj) I (j = 1, ••• ,G) 

IUjUj UjUjl 
Ujuj UjUj 

(3.6) 

IU~Uj l(ujM.uJ 
J J J 

with 

M. = I - Uj (UjUj )-IUj 
J 

(3.7) 

Given that U'U is PDS, it follows that UjUj , uju j and ujMjUj are PDS. 

~s a second step, substitute uj = Yj - Wj 8j [equation (3.2)J 
in ujMjUj • A well known decomposition yields 

(3.8) 

with 

(3.9) 
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(3.10) 

under the condition that WjMjWj is a positive definite matrix. In th: next 

section I discuss conditions under which WjMjWj is a PDS matrix and a~ is 

positive. By making use of these properties and by using (3.5)-(3.10), one 

can derive in a straightforward way that 

(3.11) 

with 

(3.12) 

and 

L=h-G-l-.t. 
J J 

(3.13) 

and 

(3.14) 

Equation (3.12) is equal to a multivariate Student t density of the .tj

vector 6j under the following conditions 

(3.15) 

[see, e.g., Zellner (1971, Appendix B2)]. The location parameters are 
A 

denoted by 6j , which i~ defined in (3.9), and the scale parameters are 

denoted by the matrix Vj , which is given as 

(3.16) 

By making use of the definition of Mj , equation (3.7), and by redefining 

Uj as Uj = (Uj+l' ••• , uG) [compare the text below (3.5)], it is seen 
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that 9j and Vj depend on the unrestricted parametersA9j+l' ••• 9G, of the 

simultaneous equation system (2.1). Therefore, p( 9j I9 j , Vj , Aj) is a 

conditional multivariate Student t density of 9j given values of 9j+1' 

••• , 9G· 

As a third step, the second line in (3.11) is analyzed. The 

determinant of W~MjW, can be rewritten by making use of a well known rule 
J J 

for the evaluation of the determinant of a partitioned matrix. That is, 

given WjWj and UjUj are PDS matrices, it follows that 

where 

IUjUj IIWjMjWj I 

= IWjW j IIUjMjU j I 

One can use (3.17) and derive that 

where IW~W.I > O. Substitution of (3.19) in (3.11) yields 
J J 

IU'UI-t (h-G-1) = IUjUjl-t(h-G-2)p(9jI9j' Vj , Aj) 

I - I-t A2 -tAj -11 -t 
x UjMjUj (aj ) Cj WjWj I . 

In the next section I discuss the conditions under which 

where Kj is a positive number. Then one can write 

One can use this inequality for j = 1, ••• , G-1. This yields 

(3.17) 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

G-1 where K = fl j=l Kj is a positive number and Aj = h - G - j - !j. Note the 

difference with (3.13). The sum of squared posterior residuals of the G-th 
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equation can be decomposed in a similar way as done in (3.8). Then one can 

obtain 

(3.24) 

A 

where p(sGlsG, VG, AG) is a marginal Student t density with parameters 

(3.25) 

and 

(3.26) 

The numerical constant C is the same as given in (3.14) with index G 

instead of index j. Note that the location and scale parameters of 
A A 

p(SGlsG, VG, AG) depend only on the given data YG' WG and the degrees of 

freedom parameter AG• 

As a final step, one makes use of (2.8), (3.23) and (3.24). Then one 

can obtain that 

(3.27) 

A A 

x p(sGlsG, VG, AG) 

where K* is a positive number. In (3.27) it is explicitly indicated that 

the location and scale parameters of the conditional multivariate Student 

t density of the parameters Sj of the j-th equation depend on the values 

of the unrestricted parameters Sj+l' ••• , SG of the equations j+l, ••• , G. 

INTEGRABILITY CONDITIONS 

Apart from the standard set of assumptions for the linear SEM, I have 

made use of the following conditions [compare Theorem 1, (3.15), (3.21) 

and the line below (3.23)]. 

(i) R(A) 
A2 

G, (if) C1 j > 0, (j = 1, ••• ,G-1) 

( 4.1) 

(v) Aj = h-G-j-tj > 0 , (j 1, ••• ,G). 
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The conditions (i) and (ii) are not independent. That is, if (i) 

holds then it follows that Uj'MjUj > 0 and hence, in particular, 
""2 A". A A 

OJ = uj M uj > 0, with uj= Yj - Wj 6j • [See (3.8) and (3.10)]. Conditions 

(iii) and (iv) are related in the sense that if (iii) holds, then it 

follows that (iv) holds. This can be derived using (3.17). Given 

IUjUjl > 0 and IWjWjl is a positive constant, it follows that 

IUjMjUjl > 0 if IWj MjWjl > O. 
Condition (iii) may be interpreted as follows. Let 

(4.2) 

The restriction V!V. = Wj'M.Wj is PDS implies that the explanatory 
J J J 

variables in the j-th equation cannot linearly depend on the posterior 

residuals of the disturbances of equations j+1, ••• ,G. This condition has 

to be verified in practice for particular models. 

One may distinguish between two classes of simultaneous equation 

models. In the first class of models one has that R(A) = G everywhere in 

the prior region of 6 and IWjMjWjl 2 E > 0 everywhere in the prior region 
of 6 for j=1, ••• , G-1. One may verify this for, e.g., Johnston's model 

[see Johnston (1963)] and for Klein's Model I [see Klein (1950)]. In the 

second class of models it may occur that R(A) becomes less than G and 

IW~M.W.I tends towards zero in the prior region of 6. [See Dr~ze and 
J J J 

Richard (1983,p.533) for an example of a market model where this may 

occur.] Then one can make use of the following solution. Truncate the 

uniform prior of 6 in such a ~ay that it is zero on an open subset of the 

prior region where IA'.X'XAI < EO' EO> 0 and l~jMjWJI < Ej , Ej > 0, j=1, 
••• , G-1. This implies that the positive constant K [see (3.27)] depends 

* on EO and Ej' j=l, ••• , G-l. One may investigate the sensitivity of K by 

varying the value of EO and E1, ••• ,EG-l' which may be an unattra~tive 
approach in practice. Therefore, the first class of models, where the 

'constant K* is a given positive number everywhere in the prior region of 6 

is the more relevant case. 

Another condition is the degrees of freedom restriction Aj > 0, 

j=l, ••• ,G. This implies a bound on the prior parameter h given as 

h > sup {(Gtj+lj), j=l, ••• ,G} (4.3) 

This bound is essentially the same as a degrees of freedom bound derived 

by Dr~ze and Richard (1983,p.566). In the HVD paper I derived the bound 

h > 2G+K. A sufficient condition for (4.3) is h > 2G + !max. It follows 
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that the bound in the HVD paper is larger then the present bound if K > 
Lmax, which can be restated as K - ~ax > &max in the equation with Lmax. 
This condition is equal to the classical order condition for 

identification for the equation with the largest number of explanatory 

variables. 

I conclude this paper with two remarks. First, the results of this 

paper may be extended to a linear SEM with identities. This analysis has 

been deleted from the present paper due to space limitations. Second, the 

results of the paper are part of a larger project on existence conditions 

for posterior moments of simultaneous equation model parameters. In a 

forthcoming revision and extension of the HVD paper I shall discuss the 

use of the results of this paper for the existence of the moments 

mentioned above. 
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A COMMON MODEL SELECTION CRITERION 

N.R. Draper and 
1. Guttman 

University of Wisconsin 
University of Toronto 

1. INTRODUCTION 

We consider the linear model situation 

x S + E: 
-t-t -t 

(1.1) 

where ~ = (Yl'Y2""'Yn)' is an n x 1 vector of response observations, 

~t is an n x Pt matrix of predictor variable values, n > Pt' ~t is a 

p x 1 vector of regression parameters to be estimated and E: is distrib-
t 2 -t 

uted N(?'t'cr I). We shall distinguish between problems in which (a) 0 = 0 
-- n -t -

for all t, and (b) ~t = (~',~~)', for all t, where the elements of the 

a are non-zero and each a vector is size k x 1 where, typically, 
-t -t 
k «n/2. The generic notation t denotes a general indexing which will be 

made specific for particular problems to be discussed below. Each choice of 

t will provide a model Mt , say, defined by (1.1). The general problem, 

given a specific indexing system for t, is to decide, from data made avail

able on ~ and the ~t' s, which Mt "best represents" the data. 

Among the multitude of problems covered by the above, we distinguish 

four specific areas. 

a. Outlier problems with spuriousity caused by shift of mean. Suppose 

we fear the presence of k spurious observations, k fixed and pre-se

lected. Then the indexing t runs over all possible choices of k from n 

observations, and the x 's 
-t 

are permutations of n 

matrix X used to generate the data. We may write 

y 

specified rows of a 

(1.2) 
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whiI@ thi k X 1 v@ctOI 
associated with the k 

~2 • (yil·yi2·····yik)'· i l ( i2 ( ... (ik , ig 
spurious observations, and the (n-k)xl vector rl 

is ~> but with the elements of r2 deleted. Assuming E(~lt) 0, 

E(~2t) a 
-t 

now brings us into case (b), with Pt = p. 

b. Chan~e Eoint Eroblems. We partition items of length n into two 

parts of lengths m and (n-m) to express (1.1) as 

Q ] [~lJ + [~ltJ 
!n-m, t ~2 ~2t 

(1.3) 

where X t is m x PI' X t is (n-m) x P2' and S. is p. x 1, i=1,2. -m -n-m, -1. 1. 

The index t runs sequentially over m, PI < m < n-P2. We shall define 

~lt = (~mt'2)' ~2t = (Q'!n-m,t) for notational purposes. Assuming 

E(:lt) = Q, i=1,2, now brings us into case (a), with Pt = PI + P2 = p. 

c. Join Problem. Consider the following motivating example. Suppose, 

in one dimension x, we wish to fit a quadratic model in x for x < a 

and a straight line model in x for x ~ a, with continuity x = a. (An 

alternative description is the fitting of a quadratic and straight line 

spline continuous at the join a.) There are three parameters in the 

quadratic, two parameters in the straight line, and one parameter a, making 

a total of six, in addition to 0 2• However, continuity at a imposes one 

restriction. 

Suppose, given an a, m observations (xl'Yl)' (x2'Y2), ••• ,(xm'Ym) 

are such that xl ~ x2 ~ ••• ~ xm ~ a, while (xm+l'Ym+l), ••• ,(xn'Yn) are 

such that a < xm+l ~ ••• ~ xn • Then by applying the continuity restriction 

Yo + yla + y2a2 = 00 + ala (1.4) 

and eliminating ° 
2 

o = Yo + (yl-ol)a + y2a , 
conditional on a, in the form (1.2) with 

X = [1 Xl 
2 

:] 
Xl 

-It 

1 
2 

x x m m 

[> 
2 

xm+l-a l 
~2t 

a a 

J a a x -a n 

we can rewrite the model, 

~ = (Yo ,yl ,y2,01)', 

(1.5) 

(1.6) 

Assuming E(£.t) = 0, i=1,2, 
-1. -

produces case (a) with Pt = p = 4. The in-

dexing t is related to the possible choices for values of a. For example, 
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if the x. are equally spaced, one value of a, for example, the midpoint, 
1 

may be chosen in each gap between successive x's, so that the choices are 

equally spaced. For unequally spaced xi's, the number of values of a in 

each gap can be chosen proportional to the gap width and equally spaced 

throughout. Or, the vahles of a can be very densely spaced, approximating 

a continuous functional choice of a. 

Note that, in problems (1)-(3) listed above, Pt p for all Mt • For 

our fourth problem below, this will not be true. 

d. Variable selection problem. Suppose we are given a set 

X = (l,xl, ••• ,x) of (q+l) predictor variable vectors and an associated 
- - -q 

response vector r, all vectors being of dimension n x 1 and with 

be defined by a selected submatrix 1 = (1,1, ••• ,1)'. Let model Mt 
Xt = (l,x~ , ••• ,xi ), 0 < r < q. 
- - -"'1 - r --

Thus t indexes the 2q possible choices 

of models, which can all be described in form (1.1), with 

S = (SO,Si "",Si )' -t 1 r 
and Pt = r+1. Assuming E(£'t) = 0, i=1,2, produces 

-~ 
case (a). 

2. THE CASE Pt = p 

For cases (1), (2) and (3) of Section 1, we may proceed as follows. 

Because it includes case (a), we treat case (b). We obtain a posterior prob

ability for model Mt in the general situation. Maximization of this prob

ability over the indexing set of t will determine our choice of "best" 

model, and/or the entire set of probabilities can be reviewed. 

From the case (b) assumptions in section (1.1), we obtain the likelihood 

function as proportional to 

(2.1) 

where ~lt is (n-k) x Pt' ~2t is k x Pt' and ~~ = (~it'~2t)" Also we 
partition ¥.' = (y',y')' correspondingly. Furthermore, 

- -1 -2 

~lt (~it~lt)-l~itrl' 
(2.2) 

Assuming the prior information to be non-informative and of the form 

2 -2 
p(Mt'~t'cr '~t) a: cr (2.3) 

we obtain the posterior P(Mt'~t,cr2'~tly) by combining (2.1) and (2.3). 

Integrating out successively ~t' ~t' cr2 yields the marginal posterior 
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P(M Iy) = cl(x' x )-ll~ S-(n-k-p)/2 
t ~ -It-lt t ' (2.4) 

where the constant C is such that the sum of terms on the right hand side, 

summed over index t, is one. Note that, if k = 0, ~lt = ~t' Also, if 

desired, a conjugate prior could replace (2.3), with appropriate changes 

throughout. The result (2.4) has wide applicability. In Sections 3-5 we 

turn to its use in the specific applications (1)-(3) already mentioned. When 

Pt ~ P as in case (4), care must be taken in specifying the prior distrib-
2 

ution p(Mt'~t,a '~t)' This is discussed in Section 6. 

3. OUTLIER PROBLEMS 

As we see from subparagraph (1) of Section 1, the notation for this case 

corresponds exactly with the general notation in Section 2, given Pt = p. A 

special case of the probability (2.4) was previously given by Guttman (1973) 

for the no-predictor-variables case and by Guttman, Dutter and Freeman (1978) 

for the regression case, and used by them (a) for given k, to determine 

which k observations were most likely to be spurious, (b) for given k, as 

weights in determiaing estimates for ~t and a2 and also their posterior 

distributions, and (c) to develop a procedure for estimating k. For related 

comments, see Beckman and Cook (1983, pp. 138-139). 

4. CHANGE POINT PROBLEMS 

For these problems, k 

paragraph (2) of Section 1. 

0, Pt = p, and the X are as defined in sub
-It 

Eq. (2.4) simplifies to 

p(M Iy) = c'{lx' X I lx' X I}-~ s-(n-p)/2 , 
t - -mt-mt -n-m,t-n-m,t t 

(4.1) 

where C' is the appropriate normalizing constant. For the special case of 

change of mean value only, X and X are vectors of l's of length -mt -n-m, t 
m and (n-m) respectively. This problem has been discussed by Guttman and 

Menzefricke (1982). Formula (4.1) now enables more general change point 

problems to be tackled, but we do not discuss them here. 

5. A JOIN PROBLEM 

Because of the difficulty in stating the join problem in its full 

generality (but see below) we first give a numerical example for the specific 

join problem outlined in subparagraph (3) of Section 1 which involves one 

predictor variable x, one join, and quadratic and straight line functions 

continuous at their join. 
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Example L 

Our data consist of 32 observations on y = boy's height/weight ratio 

taken aF equally spaced values of the predictor variable x = age in months, 

for x = 0.50(1)31.5. These are part of a larger set of Eppright et al. 

(1972), which were used by Gallant and Fuller (1973) and by Draper and Smith 

(1981, p. 286). The actual y values, multiplied by 100 and corresponding 

to ascending x, are 46, 47, 56, 61, 61, 67, 68, 78, 69, 74, 77, 78, 75, 

80, 78, 82, 77, 80, 81, 78, 87, 80, 83, 81, 88, 81, 83, 82, 82, 86, 82, and 85. 

In view of the equal spacing of the x-values, we choose to evaluate 

(2.4) at the intergers a = 2, ••• ,30. Twenty-nine values of (2.4) can thus 

be found, of which nine are essentially zero and eight more lie below 0.01. 

The remaining 12 values Pa' for a = 6(1)17 are as follows: 

a = 6 7 8 9 10 11 (continued) 

p = a 0.047 0.187 0.157 0.106 0.114 0.104 (continued) 

a = 12 13 14 15 16 17 

P = a 0.084 0.063 0.046 0.032 0.023 0.015 

We see from these numbers that the modal estimate of the join appears to lie 

to the right of the seventh observation. This estimate of a could be 

further refined by using a grid finer than the integer values we have 

chosen. It must be remembered that, in this problem, unlike the change point 

problem, the tabled values are simply an approximation to a continuous poste

rior distribution. The latter can be evaluated to any accuracy desired. The 

present accuracy appears adequate for the problem at hand. The solution is 

compatible with those of Gallant and Fuller (1973) in which an additional 

40 observations for x = 32.5(1)71.5 are used and continuity of the spline 

function and of the slope of the spline function are assumed at the join, and 

of Draper and Smith (1981, pp. 582-583) for both 72 and 32 observations which 

apply to straight line and straight line functions continuous at their join. 

Generalizations 

1. If only one predictor x is involved, generalization consists of 

a spline function with r joins, r ~ 2, a l ,a2, ••• ,ar , say. Eq. (2.4) 

then defines an r-dimensional posterior probability function whose maximum 

and/or characteristics may be obtained. The polynomial functional forms 

between the joins, and the restrictions at the join points, affect the form 

of the X-matrices in (2.4), but not the dimensionality of the posterior 

(2.4) • 
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2. For an ~-dimensional predictor space xl.x2 ••••• x~ with r. joins 
~ ] 

in the x. space. Eq. (2.4) represents a posterior E. 1 r. dimensions. 
] ]= ] 

whatever the polynomial functional forms may be between the joins. 

6. VARIABLE SELECTION PROBLEM 

In this application. the Mt are the 2q regression models alluded to 

in (4) of Section 1. An alternative description of Mt in which the specif

ication of the prior plays an important role is as follows: Suppose y is 

generated as usual by 

where 

y = XS + E = [l.xl ••••• x ](S .Sl •••.• S )' + E 
- -- - - - -q 0 q 

2 
E - N(O.O I ). 

- n 
but that we may write 

= X S- + X-S- + E. 
-t-t -t-t -

where our prior information is such that 

with 

and 

2 2 exp{-v s /(20 )}. o 0 

(6.1) 

(6.2) 

(6.3) 

(6.3a) 

(6.3b) 

(6.3c) 

where v. s2. St and c(t) i=1.2. are all given. and where C(t) and 
o 0 - 0 -i' -1 

C(t) h h c(t) 0 (c(t»-l O' h' 1 11 -2 are suc t at -1 '" _. -2 '" _, 1.e., t e1r e ements are a 

small. Thus Mt implies through (6.2) together with (6.3 a,b,c), that 

Xi:!:' ••• ,XiI are "important" variables, and that with high probability, the 

effects Sjs of the xjs ' s = l ••••• q-r, are expected to be zero. [Of 

course (il, •.. ,i )U(jl •••. 'j ) = (l •••. ,q)]. The prior distribution of r q-r 
S- = (S .•.••• S]. )' is concentrated about zero with high precision given 
-t JI q-r 
by C(2) and the degree of belief of the experimenter that Mt holds. 

-t 
given the parameters ~t' ~t' is proportional to the square root of the 
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generalized precision matrix of S-, as stated in (6.3c). 
-t 

We further assume that e(t) e(t) are such that le(t)1 x Ie (t) I is 
-1 '-2 -1-2 

constant, independent of t, which is to say that the prior generalized 

precision for ~t and ~t' and hence the generalized variance, is the same 

for all Mt • We believe that this is a sensible requirement in view of the 

fact that the experimenter does not know which model Mt holds, so that for 

any Mt , his knowledge about the S's, as measured by the generalized pre

cision, should be the same as for any other model, say Mt ,. 

We now combine the prior (6.3 a,b,c) with the likelihood specified by 

Mt in (6.2), to find the posterior of Mt , ~t' ~t' 02 We then integrate 

over the same (q+l) dimensional estimation space. Of course, as we range 

over the different Mt's, the order of integration of the (q+l) S's varies, 

but nevertheless, we do integrate over all of the estimation space of 

dimension q+1, and this integration is done with respect to proper priors. 

After the integrating out of @' @t' the resulting posterior of 

(Mt ,02) depends on cit) and eit)~ We then approximate p(M ,02Idata) 

by taking limits as ~(t) + 0, e(t) + 00 le(t)1 le(t)1 constant,tas assumed 
-1 - -2 ) _1 _2 

earlier. For the non-informative case for 02 (i.e., letting v + 0, 
2 2 0 

s + 00 such that V s + 0) this provides (all details are given in Draper 
o 0 0 

and Guttman (1986» 

p(Mtldata) 

with 

-p /2 n-p 
2 t r( __ t) 

2 

(6.4) 

(6.4a) 

(6.4b) 

(6.4c) 

and where Pt is the dimension of the estimation space defined by the span 

of the columns of X (e.g., for (6.2), Pt = r+1, etc.). 
-t 

Equation (6.4) provides us with a model selection procedure. 

For other related recent work on comparing two linear models, one of which 

includes the other, see Smith and Spiege1ha1ter (1980) and Spiege1ha1ter 

and Smith (1982), Mitchell and Beauchamp (1986), and Trader (1983). 
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7. DISCUSSION 

We have received many comments on an earlier draft of this paper, in

cluding the comment that "the primary conclusion (6.4) ••. is not invariant 

to scale changes in either dependent or independent variables." This is 

true. The underlying reason is to be found in the prior assumptions on the 

model parameters which are conditions on the SIS in the metrics in which 

they are defined. We argue that (6.4) is a perfectly reasonable outcome of 

the prior assumptions, while understanding that some readers will object to 

an answer that varies if the metrics are changed. It would of course be 

theoretically possible to present prior information in an invariant way 

(e.g., in terms of the Sixi rather then the Si) but that approach, which 

is currently under study, also presents difficulties. 

In general, if we change scales by factors fi so that 

Sifi' the effect is eventually transmitted to (6.4) as 

* xi = x/fi , 

a factor IIf., 
~ 

the product being taken over those fi whose subscripts are included in 

the notation "subscript t"; see under (6.3c). This non-constant IIf. also 
~ 

affects (6.4c). (The value of St is unchanged if y is not transformed 

from the original metric, but the prior conditions on the c~t) matrices 
J 

~ affected by making scale changes in the XIS.) 

Note that exactly the same difficulty appeared in Spiegelhalter and 

Smith (198Z, p. 378), in which only two models MO and Ml were considered. 

In that paper, a "thought experiment" led to the fixing of a ratio cOlc l 

which corresponds, in our notation, to the choice of the factor ratio fl/fz 

when only two models are considered. 

The effects of rescaling can be large as we see in an example using the 

Hald data. 

Example 2. (Hald data) 

This well-known set of 13 observations on a response and four predictors 

has proved to be exceptionally popular for illustrative examples, perhaps 

because it is small and yet awkward. See, for example, Hald (195Z, p. 647), 

Daniel and Wood (1980, p. 89), and Draper and Smith (1981, p. 630). 

Evaluating (6.4) for all 16 possible models using the metrics of the 

original data, we obtain nine values which are essentially zero and seven 

others as follows: 

PIZ = 0.335, P14 0.086, 

P1Z3 0.161, P124 = 0.153, P134 = 0.123, PZ34 0.02Z, (7.1) 

P1234 = O.lZO, 
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where P123 denotes P(M123 1!) and M123 is the model 

E(y) = So + SlX1 + S2 + S3X3' and so on. The probabilities add to 1.000. 

We see that, in the original metrics, our method favors, in order, the sets 

12, 123, 124, 134, 14, 234. Most other selection procedures also favor 12 

first. 

Suppose, however, we decide (for example) to code all the x's to 

* x 's so that 

n 
* -* 2 L (xij - xi) In 1. 

j=l 
(7.2) 

Then 

* 
n 

- 2 ~ 
Si S.{ L (xij - x.) In} 

~ j=l ~ 
(7.3) 

* * * and xi = xiSi/Si, so that fi = Si/Si as expressed in (7.3). For the 

Ha1d data, f1 = 5.6516, f2 = 14.9504, f3 = 6.1538, and f4 = 16.0815. The 

prior information formulas (6.3b) and (6.3c) are now re-phrased in terms of 

* the Si not the Si. In place of (7.1) we now find that (the others are 

zero to three decimal places): 

0.020, P14 = 0.006, 

P123 0.058, P124 0.145, P134 0.048, P234 = 0.023, (7.4) 

P1234 = 0.701. 

The change in emphasis is interesting, and makes it clear that, in the new 

* metric, it is unreasonable to regard any of the Si as being substantively 

smaller than the others, because the model with highest posterior probability 

involves. all four predictor variables. 

There is, however, for the Ha1d data, substantial reason to regard the 

original predictor variable metrics as eminently sensible ones. The original 

x's are four cement ingredients expressed as percentages of a mixture and, 

in fact, LXi = 100%, approximately. Changing the metrics to satisfy (7.2) 

would not make much practical sense. 

We now look at another set of data where the predictor variable metrics 

appear to be natural ones. 

Example 3. (Rutting Data) 

Thirty-one observations were taken on six predictor variables and a 

response. The data are given by Daniel and Wood (1980, p. 109) and are used 

as an exercise by Draper and Smith (1981, p. 375). Sixty-four values of 
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(6.4) can thus be evaluated; 39 are essentially zero, and 17 more lie below 

0.01. The remaining 8 are as follows: 

Pl2 0.140, 

P123 0.021, P124 0.041, P126 0.490, 

P1236 0.070, P1246 0.165, P1256 0.018, 

P12346 0.035. 

We see that our method favors, in order, the sets 126, 1246, 12, 1236, 124, 

12346, 123, 1256, the emphasis being on the first three. The superiority of 

sets 126 and 1246 also emerges from the other selection procedures used in 

the references quoted. The ambiguity of whether or not to include the dummy 

variable 4 with variables, 1, 2, and 6 has been discussed by Daniel and Wood 

(1980, pp. 96-100). 

Again, our method works well compared with other proceedures and, as in the 

Hald case, the predictor variables seem to be in sensible and natural units: 

Xl = log (viscosity of asphalt), x2' x3' x5' 

material or voids, while x4 is a dummy. 

and are percentages of 

In summary, our Bayesian selection procedure has both virtues and draw-

backs. On the one hand, we have avoided the problems that arose in some 

previous Bayesian work because of the different dimensionalities of the 

S-spaces as different models are considered, and we have developed a proce

dure valid for any given specification of the metrics of the Si. On the 

other hand our procedure is not invariant to these choices of metrics. One 

could argue that it need not be; such a viewpoint would perhaps not appeal 

to those used to thinking in terms of the standard types of selection proce

dures, because these are based on quantities (such as extra sums of squares) 

that are invariant to x-metric choice. A Bayesian procedure parallel to 

these would thus need to have prior information specified and incorporated 

in a similarly invariant manner. However, we can argue that our method 

accurately reflects the prior information in the chosen metrics. We can 

also question whether prior information should be invariant in the metrics 

used. For a related discussion of Bayesian difficulties see Atkinson (1978). 

Two other selection procedures (discussed, for example, by Stone, 1979) 

use criteria of the form 

c 
q 

~n(maximum likelihood) - qp (7.5) 

where p is the number of parameters in the model being considered. When 

q = ~~n n, we have Schwarz's (1978) criterion; when q = 1, Akaike's (1973). 

C simply "penalizes" the likelihood for the number of parameters. When the 
q 2 

errors £ -N(~,!cr), these criteria reduce to 

148 



constant -~[nin{Residual SS} + 2qp]. (7.6) 

ior thQ HJld dltl, 4nd for mod@ls in the subscript order [see (7,1)]i -i 1. 
2, 3, 4; 12, 13, 14, 23, 24, 34; 123, 124, 134, 234; 1234, the values of the 

square bracket quantity in (7.6) are as below. (Smaller is better here. All 

figures have been rounded to integers except when necessary to establish re

lative sizes.) 

Schwarz' Criterion 

105; 98, 94, 104, 93; 60.46, 100, 64, 86, 96, 75; 60.62, 60.58, 72, 66; 63. 

Akaike's Criterion 

105; 96, 92.5, 102, 92.2; 59, 98, 62, 84, 94, 73; 58.4, 58.3, 69, 64; 60. 

We see that Schwarz's criterion favors models in order 12, 124, 123, 1234, 

14, 234, ••• , while Akaike's order is 124, 123, 12, 1234, 14, 234, •••• In 

both cases there is not much to choose between 12 and 1234. Models 1, 2, 3, 

4, 13, and 24 are decisively excluded by both criteria. 
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SUMMARY 

Screening procedures are used in order to improve the 'quality' of 
individuals retained in some way. In this paper we present a Bayesian 
predictive approach to screening for binary response data. We discuss its 
relationship with diagnosis and classification problems. The methods are 
illustrated by an example of medical screening for Conn's syndrome. 

INTRODUCTION 

Discrimination and classification problems form an important area of 
both statistical theory and practice. Since the linear discriminant method 
was introduced by Fisher (1936), much has been written and developed. 
Extensive accounts are given, for example, by Anderson (1958) and Hand 
(1981). One field of application is the medical situation, where the 
problem of diagnosis of the form of disease from which a patient suffers is 
often of paramount importance. A discussion of such problems with 
consideration of criteria for evaluation of the discriminant rules is 
provided in a series of papers by Habbema, Hilden and Bjerregaard in 1978 
and 1981, whilst a comparison of different techniques in a particular 
application is given in Titterington et al. (1981). 

In diagnosis problems the aim is to assess the category t of a 
future individual who has provided us with a set ~ of feature variables. 
A data set (~1,tl)'(~2,t2), ... ,(~,tn) is available for n individuals 

whose categories are known with certainty. Since we are concerned with 
statements or forecasts about an observable quantity, a predictive 
approach seems to be the most sensible avenue of attack. We extend here 
the predictive methods developed by Geisser (1964) and Aitchison and 
Dunsmore (1975, Ch.ll), where the basic aim is to derive a diagnostic 
probability function p(tl~,data). 

We illustrate the methodology within the framework of a data set 
described in Aitchison and Dunsmore (1975,Ex.l.7). Conn's syndrome is a 
rare form of hypertension. Two forms of the syndrome exist, namely: 

A: benign tumour in the adrenal cortex, (adenoma), 
B: a more diffuse condition of the adrenal glands, (bilateral 

hyperplasia). 
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The treatment for A is a surgical operation to remove the adrenal gland. 
For B drug therapy is the recognised treatment, and surgery is inadvisable. 
For the purpose of illustration we wish to diagnose the form of disease 
(t=l for A, t=O for B) on the basis of the three concentrations (meq/~) in 
blood plasma:sodium (Na), potassium (K) and carbon dioxide (C02), The 
data are given in table 1, and we use log (concentrations) for the basic 
variables x, as this transformation removes much of the skewness apparent 
in the dat~. For the undiagnosed patient we wish to assess which form of 
the disease is appropriate. It is clearly important that we are fairly 
sure that patients for whom surgery is decided do in fact have form A of 
the syndrome. 

Table 1 : Conn's Syndrome Data 

log(concentrations,meq/~) in blood plasma 

Na K CO2 

Patient Xl x2 x3 

1 4.9459 0.8329 3.4112 
2 4.9628 1.1314 3.2995 
3 4.9416 1.0986 3.2958 
4 4.9836 1.0296 3.4965 
5 4.9323 1. 2809 3.1822 
6 4.9677 1.1314 3.3322 
7 4.9222 0.9163 3.3878 
8 4.9488 0.9163 3.4012 
9 4.9684 0.8755 3.4720 

Type 10 4.9740 1.0647 3.3844 
A 11 4.9381 0.8329 3.2581 

12 4.9698 0.7885 3.5175 
13 4.9767 0.9933 3.4965 
14 4.9431 1.1314 3.3707 
15 4.9747 1.0647 3.3105 
16 4.9345 1.1314 3.4468 
17 4.9754 0.6419 3.5116 
18 4.9816 1. 3083 3.3105 
19 4.9698 0.7885 3.4965 
20 4.9663 0.9933 3.3142 
21 4.9438 1.4586 3.1527 
22 4.9488 1.1632 3.2189 
23 4.9502 1.2809 3.2504 

Type 24 4.9558 1.0986 3.0910 
25 4.9663 1. 4351 3.3250 

B 26 4.9395 1. 2238 3.3322 
27 4.9495 1. 2809 3.2189 
28 4.9488 1. 3350 3.2581 
29 4.9452 1. 1939 3.2958 
30 4.9416 1.2809 3.2581 
31 4.9416 1. 4816 3.2426 

SCREENING 

The predictive approach developed in Aitchison and Dunsmore (1975, 
Ch.11) evaluates the diagnostic probabilities p(AI~,data) and p(BI~,data). 
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An assignment is then made on the basis of the predictive odds - perhaps 
diagnosing the form of disease corresponding to the larger probability. 
Misclassification costs could be incorporated in a decision theoretic 
approach, and within the Conn's syndrome context these could be large 
because of the radically different nature of the relevant treatments. An 
equivalent procedure, and the criterion which we develop here, is to 
formulate a decision rule which ensures that the predictive probability 
that a patient for whom we decide on surgery is in fact of type A takes 
some prespecified value 0 , which will be close to I; i.e. we make 

p 

P(Aldecide on surgery) = 8 . (1) 
p 

Clearly we would also be interested in P(Aldecide on drug therapy). 

Such a decision rule lies within the context of predictive screening 
as derived in Boys and Dunsmore (1986,1987). We wish to use the feature 
vector ~ to attempt to screen out the B cases (t=O) and to retain the A 
cases (t=l). Retention corresponds to deciding on surgery in (1), and so 
we need to determine a specification region C such that 

~ 

p( t=ll xEC , data) = 0 • 
I'V :s p 

We frame the problem in terms of linear models by restricting attention 
to specification regions of the form' 

C = {x: a'x;e:w} x ,...., ("OJ '" 

~ 

where constants ~ and ~ are to be determined to satisfy (2). In the deriva
tion of C~ we use standardized variables in order to eliminate problems 

of dimensIonality or scale. Without loss of generality we impose the 
restriction ~'~=l, since clearly an indeterminacy would result otherwise. 
The problem of multiple solutions does however remain, and so we seek the 
values of a and w which satisfy (2) and which minimize the (predictive) 
error probability 

£ = p(t=llx~c ,data). 
p ~ ~ 

(3) 

Two modelling approaches for the joint distribution of t and ~ have 
been discussed; see Dawid (1976) and Aitchison and Begg (1976). These are 
the sampling paradigm and the diagnostic paradigm. In the former models 
of the form p(~lt'll)p(tl~) are used, whilst in the latter attention is 
concentrated on p(tl~,1) p(~I~). The sampling framework is more useful 
for situations in which polynomial or interaction effects are required, 
whilst the diagnostic model is more robust against selection biases. 

SAMPLING MODEL 

Wfthin the sampling framework the conditional predictive probability 
of t required is given by 

p(t=llxEC ,data) 
~ x 

~ 
1 

p(t=lldata)f p(~lt=l,data)d~ 
C 
~ 

L p(t=ildata)f p( ~It=i,data)d~ 
i=o C 

x 
~ 
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so that for the evaluation of C from (2) and (3) we require both the 
~ 

predictive forms p(~lt,data) and p(tldata). 

For the Conn's syndrome data an underlying normality assumption within 
the two groups for the log(concentration) vector seems reasonable, i.e. 

N(IJ ., L.) 
....... 1 "'1 

(i=0,1) 

Summary statistics from the data set are 

and 

~ 0.035 
S = -0.028 
""1 0.073 

n = 11 

o (4.95) 
~ 0 = 1. 29 , 

-0.028 
2.974 

-1.026 

3.24 

O.073)XlO-2 
-1.026 , 
0.920 

(
0.006 

S = 0.000 
""0 0.003 

0.000 
1.546 
0.186 

0.003) 10-2 
0.186 x 
0.503 

There appears to be no strong reason to assume that the covariance matrices 
L1 and LO are equal. With vague prior assumptions on ~ the predictive 

densities are of Student form (see Boys and Dunsmore, 1987), namely 

p(~lt=i,data) cr {1 + ni (X-X')'S~1(X-X'1-~ni (i=0,l). 
-2- "' ...... 1 -1 '" "'1 

n. -1 
1 

Similarly with a vague prior on the arrival parameter $ the predictive 
function for t is given by 

I 20 p(t=l data) = --
31 

11 p(t=Oldata) = --31 

The solution of (2) and (3) for 0 =0.95 then provides the optimal 
specification region p 

{~ : 0.91x1 - 0.24x2 + 0.34x3 ~ 5.34} 

Although we have achieved a value of 0 =0.95 we note that € is rather 
p p 

large at 0.25. The predictive probability S =p(XEC Idata) that an 
p "" x 

individual is assigned to surgery is 0.56. Without""screening the predictive 

probability y =p(t=lldata) that an individual is of type A is 0.65. 
p 

The dimensionality of the problem and therefore the scale of the 
computational effort can be reduced significantly if we summarize the feature 
vector initially through some linear score function D(~), such as Fisher's 
linear discriminant, a principal component or the first crimcoord 
(Gnanadesikan, 1977,p.86). The specification region C is then of the form 

~ 

C ={x : D(x) ~ constant} (4) 
~ '" '" 

where only the constant is now unknown. 

For example suppose we use Fisher's linear discriminant 
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where ~ is the pooled covariance matrix based on the data. 
the problem to I-dimension, and the assumption of normali~y 
the two groups, albeit with different variances Gi and GO' 
able. 

This reduces 
of D within 
seems reason-

In table 2 we compare the specification regions and summary statistics 
for the two methods - I: full multivariate, II: univariate with Fisher's 
linear discriminant. We notice that although the form of C seems rather 
different, the values of Ep' ep and yP are remarkably consiftent. It is 
not surprising that the form is different since it is well known that D 
is not as good a discriminator when El:f EO Out of interest we show in 
table 2 the forms of regions if we use III: full multivariate with El = Eo, 
and IV: univariate with Fisher's linear discriminant with Gl = 00' 
Whilst III provides an almost identical C~ to II the summary statistics 
Ep ,ep and yP vary considerably. 

DIAGNOSTIC MODEL 

Within the diagnostic framework the conditional predictive probability 
of t required is given by 

Ic p(ASldata)dAS 
~ 

so that for the evaluation of ex from (2) and (3) we require both the 
oredictive forms p(tl~,data) ana p(~ldata). 

The linear logistic model with 

is the popular candidate for the condidtional probability. Copas' (1983) 
plots suggest that linearity in the xi'S is not too unreasonable an assumption 
to make for the Conn's syndrome data, although we return to this point later. 

No simple analytically tractable prior for ~ presents itself in this 
logistic model. We must resort to numerical integration for a specificed 
p(~) - in four dimensions for the Conn's syndrome data - or consider some 
approximations. Here we follow the second approach, and use the 
approximate (asymptotic) normality of the posterior P(~II,data). Further 
discussion is provided in Boys and Dunsmore (1987), where a third approach, 
suggested by Bernardo (1983), in which p(t=1 ~,data) is forced to logistic 
form, is also mentioned. 

The assumption of normality for p(~I~) appears to be reasonable here -
although of course strictly this is at odds with the normality assumptions 
in the samp1:i.ng approach. A vague prior on ~ leads to a Student 

predictive density. t _ '-1 } -!:in 

p(~ldata)« 1 + ~(~-~) ~T (!-~) 
n -1 

15f) 



whrfr iT and \. U~ th8 umpb m8in v~ctor ind ~ampl@ covJriJncQ IDJtrix 
of the complete data set of n=3l individuals, namely 

~T = (i:i~) 
3.33 

_~0.027 -0.092 0.08l)XlO-2 
~T - -0.092 4.476 -1.600 

0.081 -1.600 1.244 

The solution of (2) and (3) for 0 =0.95 then provides the optimal 
specification region shown in table 2Pas method V. Whilst the form of C 
is similar to the multivariate sampling method I, the performance, ~ 
esppcially of E , is disappointing. 

p 

Table 2 Optimal specification regions of form {~ 

together with summary measures E ,S ,Y . 
P P P 

a1 a2 a3 w 

Sampling 

I : multivariate 0.91 -0.24 0.34 5.34 

II : linear discriminant 0.76 -0.43 0.48 4.87 

III : multivariate, L1=LO 0.77 -0.43 0.47 4.95 

IV : linear discriminant 0.76 -0.43 0.48 4.94 
°1=°0 

Diagnostic 

V: multivariate 0.96 -0.18 0.22 5.30 
A A 

VI : E;0+1i.l5 0.93 -0.26 0.26 5.23 

t f3 Yp p P 

0.25 0.56 0.65 

0.26 0.56 0.65 

0.39 0.46 0.65 

0.39 0.46 0.65 

0.38 0.49 0.66 

0.38 0.49 0.66 

We again consider reducing the dimensionality of the analysis by 
summarizing the data x to produce a specification region as in (4). One 
obvious candidate her; is 

~ 

D(~) = ~O + fai~ 

where ~O'~l are the maximum likelihood estimates of ~O ~l' The results are 

shown in VI in table 2. It is very gratifying in this example to find 
that the results for V and VI are comparatively close, since the reduction 
in computing time achieved through VI is quite considerable. 

It is perhaps not too surprising that the diagnostic model used has 
not performed as well as the multivariate sampling model I. There was 
evidence there that Ll " r O. For such situations a quadratic logistic 
model would be more appropriate (Anderson, 1975). The Copas plots do in 
fact suggest that there may be a quadratic effect in variable xl' so that 
the logistic model could be improved by incorporating terms 

2 xl ,xl x2 and xl x3. The computational aspects of the analysis then become 

most unwieldy. 
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EXTENSIONS 

The predictive screening models used here can be adapted for use in 
other situations. Within the diagnostic setting it may be that the 
categorization t=l or t=O is based on some underlying (perhaps latent) 
variable y such that there exists a specification region C with 

y 

t=l ~ yEC , 
y 

t=O +-> y(/.C 
y 

Then we observe (y,~) and need to choose Cx such that 

P(yEC IxEC , data) = 0 
y ~ ~ p 

perhaps so as to minimize 

E =P(yEC Ix(/.c , data). 
p y ~ ~ 

The analysis within a normal model framework for (y,~) is given in Boys 
and Dunsmore (1986). 

Other extensions which are at present under investigation deal with 
the sequential selection of screening variables and decision theoretic 
models with criteria involving expected utilities. 

An important point to emphasize from the paper is that we are using 
a predictive approach. We plead guilty however to using a global approach 
in that we condition over the region xECx. In effect we average 
p(t=llx, data) over a conditonal dist;ib~tion on x. The pure predictive 
approach should be local, i.e. ~ 

select C such that 
~ 

r >0 
p(t=llx,data) t -p 

- <0 
P 

for xEC , 
~ x 

for xf/..C~. 
~ ~ 

We are at present investigating such models, and in defence of using the 
global approach we appeal to the mind of Sherlock Holmes, who said 

'While the individual man is an insoluble puzzle, in the aggregate he 
becomes a mathematical certainty. You can, for example, never foretell 
what one man will do, but you can say with precision what an average 
number will be up to.' 

(A. Conan Doyle. 'The Sign of Four') 
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The rational expectations revolution has re-proposed the necessity 
of a deeper analysis of the role expectations play in economic model 
building. It would be an "intellectual fraud" to claim that the expect
ations controversy" was triggered by the debate generated by the rational 
expectations hypothesis. The beginning of such a controversy can be 
located in the 20's and 30's with the issue of the works of Keynes, Knight 
and of the Austrian and Swedish schools. 

In this paper we shall show Bruno de Finetti's contribution to this 
controversy and put it in an updated perspective. 

His contribution was timely, constant and extremely original. de 
Finetti supplied a definitive account of the neo-Bayesian approach in 
"Probabilismo" (193lb) where the notion of exchangeability was re-presented 
and clarified within a thorough introduction to the philosophical under
pinnings of the subjectivist paradigm. His survey of the other "points 
of view" (Richard von Mises, Keynes, Jeffreys, Borel, Reichenbach, 
Kolmogorov, Wald) offered critical hints for subsequent research (as well 
as providing refined polemical strategies), whereas his sharp treatment 
of utility analysis enhanced the operational and pragmatic content of his 
approach. 

Unfortunately, de Finetti's contribution was largely neglected and, at 
the time, almost passed unnoticed in the economic profession, because most 
of his works were published in Italian and those which were published in 
French were not easily accessible in that they were written for mathemat
icians. 

Many economists refer to de Finetti's neo-Bayesianism as only an 
historical and cultural curiosity and reveal a preference for those "ad
hockeries for mathematical convenience" harshly criticized by de Finetti. 

In this paper it will be shown how de Finetti's approach, in addition 
to the occasional citations, can be a powerful tool for interpreting the 
methodological debate triggered by rational expectations and also offers 
a broader perspective for solving the crucial difficulties characterizing 
the research agenda on the theory of expectations. 

1. Arrow (1951, ch.l, pp.2-4) identifies three "dramatic breaks" 
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characterizing the modern formal approach to the theory of decision making 
under uncertainty: Von Neumann and Morgenstern's view which, resuming 
Ramsey's pioneering works, leads to a new understanding of the role of 
expected utility maximization; the modern theory of statistical inference 
as developed by Neymann, Pearson and Waldl the "new formulation" of the 
whole problem of uncertainty suggested by Shackle. 

These fundamental insights came at about the same time as the technical 
developments of the mathematical theory of probability (in particular 
Kolmogorov's axiomatic treatment of probability as a branch of measure theory) 
which caused a paradoxical departure from the results relevant to behaviour 
in the face of uncertainty. 

In this very perspective, de Finetti's approach to the calculus of 
probability and decision making under uncertainty takes on a crucial role 
and fulfils Arrow's wish for "a much clearer understanding of the problem". 

2. In "Probabilismo," de Finetti (193lb) gives a definitive account of the 
subjectivist approach to probability theory(l). In that paper, de Finetti 
puts his approach in a broad epistemological perspective by referring to the 
influence of Italian pragmatism (2) , Mach's positivism(3) and certain insights 
of Poincare on his thinking (4) , while carrying out an in depth analysis of 
concepts which are still essential to current research programmes on the 
theory of expectations. 

In "Probabilismo," probability theory emerges as an unique and general 
method for dealing with decision making under uncertainty. Probability 
is no longer "a thing in itself", but a purely epistemological concept 
with a relative and subjective value, relevant also for those who are only 
concerned with practical applications (de Finetti, 1931b, p.26). 

within this framework de Finetti removes "the fetish" of true or false 
probability, as a meaningless statement claiming that the observation of 

(l)This long essay provides an exhaustive discussion of the foundations of 
probability theory and springs from a shorter paper (completed by April 
1928) which was set aside by de Finetti because of the many difficulties 
encountered in getting his point of view understood let alone accepted 
(c.f. de Finetti, 1931b, p.S, note 2). "Probabilismo", although written 
without formulae and mathematical expressions, utilizes and discusses 
analytical results previously obtained by de Finetti(1929, 1930b, 1931a). 

(2)As suggested by Papini the cultural position of Italian pragmatists, 
such as Caleroni and Vailati, can be summarized by their concern "to 
teach the prudence and tricks by means of which it is possible to 
succeed in formulating propositions that have a meaning". According 
to the pragmatist approach the meaning of each statement is given by the 
set of predictions and expectations, embodied in it (c.f. Calderoni and 
Vail~ti, 1909). For an interpretation of de Finetti's pragmatism c.f. 
De Felice, 1981. 

(3)"My point of view is ••• the analogue of Mach's positivism, where by 
'positive fact' we mean that we can use our own subjective opinions" 
(de Finetti, 1931, P.31 authors' translation). 

(4)With respect to some subjects that we shall discuss in due course, it 
is important to point out that de Finetti (1931b, p.6) quotes Poincare 
so as to strengthen his claims that probability calculus, and not logic 
is the key to an understanding of scientific method. 
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a frequency can prove a probability assessment (5) • Rather it is correct to 
speak in terms of the probability of a single event, since the concept of 
proofs of the same phenomenon is arbitrary, as is that of elements of the 
same class in logic (de Finetti 1931b, p.16). Thus probability, as the 
psychological perception of an individual, can be measured and subjected to 
mathematical formalization (de Finetti, 1931b, pp.39-41). de Finetti's 
frame work is completed by the introduction of the notion of exchangeability, 
relating the concept of subjective probability to the problems of classical 
statistical inference while removing all the metaphysical apparatus of 
constant but unknown probabilities, of independent proofs and of hypothetical 
values of probability (de Finetti 1931b, p.36). 

3. The approach of "Probabilismo" is corroborated and enhanced by de 
Finetti's reviews of other probability theorist's writings. In these 
papers he often reaffirms the "total" (Le. general and universal) nature 
of probability calculus as opposed to the "incomplete" (Le. partial and 
specific) points of view which aim to limit its applicability to specific 
fields and problems (de Finetti, 1938a, p.151 1941,(p.2). Subjectivism is 
defended as a natural and irremovable concept (6)· and the absurdity of the 
verification of a probability assessment through the observation of a 
frequency is again discussed with respect to Borel's "Traite" (de Finetti, 
1939, pp.8-12), von Mises's notion of 'kollectiv' (de Finetti 1937a1 in 
particular the section "La f~equenza limite e il teorema di Bernoulli) and 
Wald's critiques (de Finetti 1938a, pp.8-12). The axiomatic approaches are 
analysed in great detail (de Finetti 1949, 1951) and criticized for their 
lack of practical sense(7). 

There is instead a substantial area of agreement with Cambridge 
Probability Theorists (de Finetti, 1938b). For de Finetti, as for Keynes 
and Jeffreys, probability is a conditional concept so that " ••• the 
probability of an event makes sense only if it is relative to a specific 
body of knowledge" (p.351) and "opinion is not generated by experience, but 
experience tells us the circumstances in which we find ourselves, from which 
we may select an opinion related to experience" (p.355). 

However, in spite of this similarity of views essentially concerning 
the problem of induction, de Finetti disagrees with Keynes and Jeffreys 
about the subjective meaning of the notion of probability. In fact both 
Cantabrigian authors, as members of the logical school, claim that 
probability expresses a degree of implication between a proposition and a 
specific body of knowledge (or between two propositions) and that this 
degree of implication is unique. Moreover Keynes, in contrast with 
Jeffreys (1931, pp.222-4), holds the opinion that not all probabilities are 
quantifiable and that they cannot always be ordered. For Keynes given two 
probabilities we may face three distinct kinds of situations: one in which 
we can assign a numerical measure to our degrees of belief, one in which, 
although we cannot measure them, we can still assert that one is bigger than 

(5)In de Finetti's perspective as well, no concept pertaining to probability 
can be introduced a priori but must always be defined with respect to the 
probability assessment, e.g. you cannot attach an a priori meaning, as an 
hypothesis, to the notion of independent events. 

(6)"1 do not care whether an individual is normal and thinks equally probable 
the ninety numbers in a lottery or whether he is superstitious and assignes 
a higher probability to the numbers he dreamed about1 what is essential 
are the mathematical laws with which these evaluations are combined in order 
to obtain other evaluations" (de Finetti 1937a,p.141 authors' translation). 

(7)This critique is resumed in de Finetti's treatise (1970, p.728) 
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the other and finally one in which no comparison of magnitude is possible 
(Keynes, 1929,p.36). Thus probabilities are only partially ordered. When 
numerical values can be assigned Keynes subscribes a frequentist view and 
appeals to the principle of insufficient reason (Keynes, 1921,p.44). 
Keynes's approach, vis-a-vis de Finetti's subjectivistic framework, is not 
capable of fully translating probability theory in probability calculus and 
does not envisage probability theory as a unique and general method for 
dealing with decision making under uncertainty (de Finetti, 1938b,p.359). 

4. In 1931 de Finetti also tackles the problem of the mean from Chisini's 
point of view and among other results obtains the general expression for 
associative means (de Finetti-Nagumo-Kolmogerov theorem) (8). Exploiting 
this result, he suggests an approach to utility theory alternative and 
symmetric to the Von Neumann and Morgenstern's axiomatic one (9), so com
pleting the subjectivist approach to decision making in the face of un
certainty (10). In fact the introduction of the utility function "helps to 
reconcile the more general coherent behaviour in a probabilistic sense with 
classical behaviour based on mathematical expectation (i.e. on the notion 
of fair bet)" (de Finetti, 1952,p.18, authors' translation). 

5. de Finetti's critique of Neyman and Pearson's theory, discussed with 
reference to Abraham Wald's work, is consistent with the basic tenets of 
"Probabilismo". 

The aim of the Neyman-Pearson school is that of developing a theory 
of statistical induction based on purely objectivistic foundations so that 
probabili ty has no other meaning - "not even for distraction or convenience 
sake" - than that of a long run frequency. 

de Finetti's critical analysis (1951, 1959) focuses on the foundations 
of the programme and emphasises the lack of practical meaning of the method. 
From a frequentist point of view "to accept a hypothesis ••• is not to 
attribute to it any kind of probability or plausibility; such acceptance is 
a mechanical act, based not on a judgement of its actual validity, but on 
the frequent validity of the method from which it was derived". In other 
words it is "the criterion followed by the man who buys a suit of brand A 
that he considers defective instead of buying a suit of brand B that he 
considers non-defective, because he knows from statistics that A has a 
smaller percentage of defective suits than B. For him, the direct com
parison of the two suits has no value at all, since it concerns only in
dividual cases (de Finetti, 1959, p.33). 

Wald's 'involuntary' revolutionary work goes beyond the objectivist 
approach. (11) It identifies the fundamental characteristic of a decision 
in its economic effect, makes effective Neyman's concept of inductive 
behaviour and discloses that the choice is between decisions rather than 
hypotheses (de Finetti, 1951,p.190). But from the point of view of 

(8)de Finetti: (193lb) pp.38l-383, c.f. in particular notes 5 and 6. 

(9)This approach is developed and enhanced by Daboni (1984). 

(lO)In Von Neumann and Morgenstern's approach the notion of probability is 
accepted as something already known. They use "the perfectly well 
founded interpretation of probability as frequency in long runs which 
gives directly the necessary numerical foothold." For criticism of 
this approach c.f. de Finetti (1952, p.15). 

(ll)In a sense Wald, in order to find a conceptual framework for objectivist 
statistics wound up by destroying it rather than justifying it (c.f. 
de Finetti, 1959, p.37). 

162 



sUbjectivism another step is required; the choice of an initial distribu
tion(12). To choose an admissible decision rule simply means to choose a 
Bayesian rule, that is, at least implicitly, an initial opinion (13): "Wald 
should have asked himself whether ••• such a rule should be chosen not 
arbi trarily but as reflecting a real initial opinion", (de Finetti, 1959, p. 48) • 

6. At this stage it is clear that the "dramatic breaks" identified by 
Arrow were already present and well-posed (devoid of inconsistencies and 
misunderstandings) in de Finetti's neo-Bayesian and neo-Bernoullian view. 
As many years before(14) the difficulty of accepting and correctly under
standing was still there but on a larger scale. It is exactly in this 
sense that the "new formulations", such as that suggested by Shackle, are 
justifiable only in an historical perspective, since they appeared during a 
period of total bewilderment in the field of probability. A bewilderment 
that, as de Finetti pointed out (1952, p.14), discouraged those who should 
have envisaged in probability theory the foundations of their doctrines 

Although during the last twenty years econometricians and economists 
have been very interested in Bayesian ideas and methods (c.f. Zellner, 1985), 
that same bewilderment expressed by de Finetti in the early fifties is still 
creating the crucial difficulties characterizing many research programmes in 
the theory of expectations in economics. 

7. It is paradoxical that the Austrian school upholds the role of subject
ivism in economic method yet at the same time considers probability calculus 
inapplicable because economic events are single and non-repetitive. 

Lachman's itinerary (1976) is sufficient to clarify this paradox (15) i 
the cultural climate and references of the Austrian research programme are 
the same as those of "Probabilismo" (the references to Mach and Poincare, 
the recognition that Schumpeter applied Mach's positivistic methodology to 
economics, the relevance assigned to pragmatically based methodological 
instruments) (16) • The role of uncertainty, as a basic feature of the 
economic world, is crucial(17); events are singular and the standard of 
subjectivism is extended from tastes to expectations so that "the formation 
of expectations is an act of our mind by means of which we try to catch a 
glimpse of the unknown; each one of us catches a different glimpse". 
Nevertheless this attitude towards uncertainty, instead of leading to a 
spontaneous application of the subjectivistic approach to probability in its 
"total" view, leads to a flat refusal of the calculus of probability. The 
frequentist mistake creates an unsurmountable obstacle. Shackle (1972) 
summarises his position in the title of section 34.40, "Probability concerns 
groups of events, not single critical choice". Ludwig von Mises shows a 

(12)We conform to de Finetti's terminology and use the word initial instead 
of a priori. 

(13)For a superb discussion of the technical and epistemological issues 
involved in the problem of intial probabilities c.f. de Finetti and 
Savage (1962). 

(14)c.f. note 1. 

(15)Further insights are to be found in Lachman (1977, pp.20-34) and in 
Kirzner (1982). 

(16)c.f. Lachman (1976, p.56). 

(17)By paraphrazing Shackle and von Mises, we may say that we live in a 
kaleidic world and there is no stability in the course of human events 

and consequently no safety, c.f. Lachman (1976), p.67). 
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similar preoccupation when he distinguishes between class and case proba
bility: "Case probability is a peculiar feature of our dealing with problems 
of human action. Here any reference to frequency is inappropriate, as our 
statements always deal with unique events which as such ••• are not members 
of any class ••. Case probability is not open to any kind of numerical 
evaluation." (18) 

This lack of understanding about foundations neutralizes the potent
ialities of the Austrian method and leads to either operational impotence 
in the face of uncertainty or to those falsifications de Finetti warned us 
about. Shackle's solution(19) is founded on fictitous arguments (such as 
the distinctions between "unique trial", "isolated trial" and "crucial 
trial" or the hypothesis that economic agents make decisions by focusing 
their attention on the consequences of the most favourable and the most 
unfavourable of the possible cases) and is empty of any empirical content:" 
rather than a criterion it is more an attempt at describing certain specific 
behaviours; as such I do not know how much it conforms to reality" (de 
Finetti, 1969, p.120; authors' translation) 

8. As we have pOinted out above, closely related to the rejection of the 
"total" view of probability theory is the distinction between risk and 
uncertainty. This distinction, originally suggested by Keynes (1921), 
part 1; 1937) and Knight (1921, ch.7) is once again of some interest in 
framing the contemporary research agenda in the theory of expectations (20) , 
in spite of Stigler's specification(21) and Friedman's critique (which 
explicitly refer to de Finetti's subjectivist and "total" approach(22). 

(18)The same problem is put forth by Hicks (1984, p.14): "An experimental 
science can make use of the probability calculus, which makes it 
possible to enunciate useful laws in terms of •••••. numerical proh
abilities. There is no clear meaning of a numerical probability 
except in relation to a sequence of experiments, experiments which are 
willing to treat as cases of the same phenomenon." Moreover, elsewhere 
Hicks (1979, p.10S) agrees with the position of Cambridge probability 
theorists and in particular "on those points where Keynes and Jeffreys 
appear to differ, I generally find myself on the side of Keynes." 

(19)This "solution" has found some support in the economic profession: e.g. 
Turvey believes that Shackle defines a new treatment of uncertainty and 
van de Graaf & Baumol claim that he "develops a quite devastating 
criticism of the orthodox pronability approach to expectations to be 
found in most theoretical discussions by professional economists". 
(c.f. Turvey et.al. 1949) 

(20)An illuminating example is Frydman & Phelps's treatment (1983) of the 
distinction between measurable uncertainty and true uncertainty. 

(21)Stigler in the "Introduction" to the 1971 edition of Knight's work 
claims ..... tradition has assigned a distinction between risks (capable 
of actual treatment) and uncertainty (stochastic events not capable 
of such treatment) as Knight's contribution. Fortunately this is an 
extreme caricature of his work, because modern analysis no longer views 
the classes as different in kind". (Stigler 1971, p.XIV). Also LeRoy 
and Singell (1986) have rejected the distinction between measurable 
and unmeasurable probabilities as correptly representing Knight's 
approach. 

(22)c.f. Pelloni (1986a) 
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The modern role of the Knight-Keynes tradition is clearly expressed by 
Lucas's view (1976, 1977) (23) which supports risk as an explanatory and 
operational tenet of his equilibrium theory of business cycle and of his 
critique of standard economic policy evaluation(24) • According to Lucas 
the rational expectations hypothesis(2S) makes sense only when it refers to 
recurrent events, thus only in a frequentist context. The neo-Bayesian 
approach is rejected a priod because ot Us lack of "empirioal Mft~C!l.!" 
in the sense that "without some way of inferring what an agent's subjective 
view of the future is, this hypothesis is of no help in understanding his 
behaviour." (Lucas, 1977, p.lS). In these terms subjective Bayesianism 
is reduced to an empirical psychological theory of degrees of belief, which 
can accommodate for psychotic behaviour given a sufficiently abnormal view 
of relevant probabilities. 

Actually Lucas in interpreting neo-Bayesianism in this way, rather 
than as a theory of decision making under uncertainty, makes a common inter
pretative mistake. (26) The identification and the rebuttal of this fallacy 
(and its implications) are present in de Finetti's writings, though referr
ing to different contexts. (27) The psychotic behaviour argument is in 
reality a fictitious problem entailing a non "total" view of probability 
calculus. (28) Possible references to insurability are logically and op
erationally irrelevant since in theory any random prospect can be covered 
by transferring it to another individual or institute willing to take it on; 
in a concrete practical sense references to insurability might be appropriate 
and well-posed but empty of any general conceptual meaning, since they would 
reflect contingent or institutional situations (c.f. de Finetti & Emanuelli, 
1967) • 

The essence of the question is that we are dealing with a problem of 
decision theory and from a subjectivist viewpoint a decision making criterion 
must have general validity since it is deduced not from specific empirical 
hypotheSis but from general logical conditions of coherence (c.f. de Finetti, 
1969, p.3S). It is nonsense to restrict the criterion validity (particu
larly on the basis of uncessary and ill-defined hypthesis) to the situations 
of risk, since for the remaining situations decisions would be left to 
intuition or to arbitrary choices from among more or less fictitious criteria 

(23)Meltzer (1982) as well sees the Knight-Keynes tradition as an alternative 
model that can be combined with the method of rational expectations, in 
this way subscribing as conceptually discriminant the existence of 
insurable and uninsurable risks. 

(24)LeRoy and Singell (1986) label Lucas as Keynesian from a methodological 
point of view. Ironically, in a different perspective, Lucas can be 
viewed as a neo-Austrian, c.f. Laidler (1982). 

(2S)Muth's (1961, p.316) original definition states that "expectations of 
firms (or, more generally, the subjective probability distribution of 
outcomes) tend to be distributed, for the same information set about the 
prediction of the theory (or, the "objective" probability distribution 
of outcomes)". 

(26)A similar misinterpretation is due to Solow (1984). 

(27)C.f. Pelloni (1986b) for a discussion of the REB in a neo-Bayesian 
perspective. 

(28)de Finetti discussed this point several times, e.g. the aforementioned 
(note 6) remark about superstition and de Finetti (1937b, p.71, note (e». 
For further details c.f. Furst (1978, pp.114-120). 
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expressing partial reasons of possible preference. If the situations of 
risk are these which show more "reCfllarity" and l~§~ "g~liliimllQrity" of 
evaluation between individuals then the risk-uncertainty distinction has a 
purely descriptive (and accessory) meaning and is incapable of distinguishing 
a priori the applicability or not of an operational scheme. 

9. Muth's reference to an "objective" probability as a standard of 
rationality has a methodological content which goes beyond the frequentist 
interpretatiE>n. It can be seen as a situation of "consensus" of expect
ations, guaranteed, for instance, by economic theory or by a public 
prediction structure such as that of Grunberg and Modig1iani.(29) In other 
words, it might refer to a situation of consensus with respect to a fore
casting system and imply a judgement about the goodness (in the sense of 
fitting the facts) of forecasts generated by this forecasting system. (30) 
In this perspective the issue of rational expectations is linked with the 
problem of empirical evaluation of models. In particular, research on 
calibration as the natural criterion of empirical validity can suggest a way 
to define in a less ambiguous manner "the correct objective probability 
forecasts" • (31) 

It is well known that, from the pOint of view of subjectivism, prob
ability, as a measure of degrees of belief, cannot be corroborated or 
falsified by facts(32) as "a scientific theory, in the sense of law, is not 
a statement whose truth or falsity is objectively decidable" (de Finetti, 
1971, p.88). All this does not mean that subjectivists do not recognize 
the important role of the problem of giving a clear and unambiguous meaning 
to the concept of measure of success, as a measure of the goodness of 
evaluation of a prediction (either an individual or a forecasting system) • 
The method is implicit in the definition of probability as betting odds. 
The method of employing scoring rules (to which also David (1984) refers, 
pp.21-24) "gives, in fact, a direct behavioural meaning to the familiar 
expression of a belief in terms of a numerical probability, leads auto
matically to an overall comparison between the outcomes of different personal 
evaluations" and so "the accumulated loss ••• is indeed a thoroughly con
crete measure of success" (de Finetti, 1962, p.360). Consistent with the 
approach foundations, the operational meaning of this measure is guaranteed: 
"I find no difficulty in admitting that any form of comparison between prob
ability evaluations (of myself or of other people) and actual events may be 
an element influencing my further judgement, of the same status as any other 
kind of information" (de Finetti, 1962, p.360). 

The critical and recurrent remark that the subjectivist paradigm, when 
facing situations of interpersonal evaluations and collective choice, is 

(29)A suggestion for a non-frequentist interpretation of Muth's hypothesis 
can be found in De Felice & Pelloni (1982, pp.68 -71). 

(30)About these issues Box (1980) is of extreme interest. 
remarks can be found in Zellner (1985). 

Illuminating 

(31)Dawid's research programme on calibration (1982, 1984a, 1984b) shows 
similarities with the REH which might be interesting for further research. 
For discussion and criticism of Dawid's work c.f. Lindley (1980, 
pp. 31-32; 1982) and Oakes (1985). 

(32)This problem is thoroughly discussed in de Finetti's treatise (ch.5, 
section 9) • However he had already dealt with it in his critique of 
Borel and von Mises (de Finetti, 1937, 1939). Thus if Lad (1984) is 
right in locating the origins of the calibration question in Frechet 
then paradoxically some of the answers and objections are antecedent 
to the origins. 
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impotent (since from this extreme viewpoint, it would seem that any set of 
forecasts is as good as any other) was already rebutted by de Finetti, 
without adding or modifying anything of his original approach as presented 
in "Probabilismo". Thus even for the problem of goodness of evaluation, 
which is still unsettled and represents the heart of the methodological 
debate triggered by rational expectations, de Finetti supplied if not the 
answer at least a broader perspective useful in avoiding dangerous pitfalls. 
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1. INTRODUCTION 

A considerable number of stochastic models comprise the 
potentiality of selecting the experimental conditions. A control
variable influences the observations and likewise the gained 
information about some parameter or in a more Bayesian mode 
of expression the 'state of nature'. Reaching our goal of in
creasing the information demands a model-formulation with in
dependence between the parameter and the chosen control variable 
or with a concrete functional connection that seems defendable. 
The choice of an appropriate likelihood is aggraviated by speci
fying how the distribution of the observations is altered by 
different levels of the control variable. An even more difficult 
problem is the valuation of information and precision. Each 
measure of information has to stand many discussions about its 
shortcomings and hardly any can be employed generally. 

It's again the Bayesian approach that offers a reasonable 
conception of experimental design. Especially decision theory 
covers rational methods of solving design problems. We give a 
brief survey of posing the problem and use entropy as a measure 
of information. 

2. THE MODEL 

The distribution of some observable (multivariate) random 
quantity Xv depends upon a number of controlled factors sum
marized as an element out of a set of designs VE~ and upon 
a parameter 8. f(xI8,V) denotes the density of X • 

> V 

A function o(x,V) into a space of strategies A is called 
a decision rule and a nonnegative function L(8,a) ,aEA , repre
sents a loss-function. A strategy consists of the choice of a 
design v and a decision rule 0, therefore the loss could be 
written as L(8,v,0(.,v». 

169 



The goal of experimental design is to m1n1m1ze the result
ing Bayes-risk with respect to a prior distribution of 6 with 
density IT(6). 

r(lT,a) = r(lT,V,o(.,V)) :=lEx 6L(6,v,0(Xv,V)) 
v' 

( lEXv ,6 denotes the expectation with respect to the joint 

distribution of (Xv ,6). ) 

A Bayes-strategy a* fulfills the equation 

r(lT,a*) = iRf r(lT,a) 

The task of finding a Bayes-strategy can be decomposed into 
two optimization problems. If o*(.,V) is the Bayes-decision 
for a concrete design V then the design V * that minimizes the 
posterior Bayes-risk 

r(lT,V) =lEX 6L(6,V,0*(X,V)) 
V' 

leads to the Bayes-strategy a*= (V*,o*(.,V*)) • 

Subjectivity enters this fairly general concept through 
the prior distribution and the loss-function. The latter 
measures the error in the decision on the parameter as well 
as the drawback of a specified design. Overall high costs and 
effort due to V are punished with the loss. Often L is de
composed into the decision loss and costs 

L(6,V,0(.,V)) = L(6,0(.,V)) + C(V) • 

Example. Most of the research concerning design problems 
has been done for linear regression models. In this case the 
design determines the moments of the random quantity X. 
Assume lE (X I 6) = 1/1 (v) , 6 

v and 

Var(X Ie) = (a.A(v))-1 , 

where vEVc::Rm, 1/1: lRm + vmr , 6ElRr .a> 0 is some unknown constant 
called the precision of the regression model. The known func
tion A: lRm + lR+ measures the efficiency of the design v. A 
vector of observations X:v= (Xv , ••• ,Xv) leads to 

- 1 n 

~V = F 6 + ~v (2.1) 

with V= (v1 , ••• ,vn), the design matrixF=Fv = (1/I(v,), •• ,1/I(v ))'. 
The vector of errors eV is supposed to have a multivariate n 
normal distribution N(O,a-lE) with E = diag( A-l (V1), ••• ,A- l (V )). 
The actual parameter is (6,a). Estimation of 6 represents a n 
decision ° and the loss L is a quadratic form 

L(6,a,0) = heal (6-0)'A(6-0) 

with h> 0 and AE lRrxr and positive definite. 

Both of the following assumptions I) or II) concerning 
the prior distribution of (6,a) 
I) The conditional prior ela is normal N(~,a-l~ ). 
II) Only linear estimators are examined and the prior distri
bution satisfies lE(6Ia) = ~ and cov(6Ia) = a-l cI> 

yield the Bayes-estimation 6B of the Parameter 6. 
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6B = ~ (F'E -lX + ~_1~ ) -v 
~ (F'E-1F + ~-1)-1. 

where 

The inverse of the posterior covariance ~ is called the Bayes
information matrix. 

Now the interest centers around the characteristics of 
a Bayes-design which has smallest risk. 

r(1T,V) =r(1T,V,6B) = Exv,6,ah(a)(6-6B)'A(6-6B) = 

lE6 ,ah (a) lEx 16 ,a (6 B-6* - ~ ~-1 (~-6)) I A (Ela-6I< - ~ ~-1 (~-6)) = 

lE6 ,ah (a) lEx: 16 ,a tr[A (6B-6*) (6 B-6*) I + A h-1 (~-6) (~-6) I ~-l~] 
with 6* =lExv I6 ,a(6B). 
Since 

that 

lE I (6 -6*) (6 -6*) I ..!. ~ F'E-1F ~ it follows Xv 6,a B B a 
r(1T,V) = E h(a)a-1 tr[A(~(F'E-1F + ~-1)~)] a 

~ -1 
= tr (M) lEa h (a) a • 

Thus the prior of a and the function h(.) should satisfy 

lEa h(a) a- 1 < ~ • 
Under these conditions the Bayes-design corresponds to an A
optimal design in the usual sense applied to the posterior 
covariance matrix multiplied by the loss matrix A. 

m+ and m denote the set of positive and non-negative 
definite rxr matr!ces respectively. The function A(M)=tr(AM-1) 
is convex for MEm • A is bounded on the open subset of matrices 
{M+1/2~-1IMEm+} and therefore continuous. Hence the function 
B(M) = tr[A(M+~-l)-l] is continuous on m. If now ~ and A are 
continuous and V is a compact subset of Ern then a Bayes-design 
and a corresponding information matrix exist since a continuous 
function attains its infimum over a compact set. 

3. ENTROPY 

In the Bayesian point of view the choice of a distribution 
p(6) for the parameter describes a decision procedure. The 
Bayes rule p* minimizes the posterior Bayes-risk, indicated by 

lE6 ] X L (6 ,p ( • )) • 
If we try to advance coherently the posterior distribution 
1T(6]x) should be the Bayes-decision p*. Hence a loss-function 
with . 6 

~~f lE6L( ,p) = lE6 L(6,1T) 
is deemed appropriate for the prior 1T. Assuming differentability 
of L it is well known that there are a constant c and a real 
function T such that L(6,p(6)) = clog p(6) + T(6). 

All suitable loss-functions lead to a Bayes-risk which 
is related to Shannon's measure of information for a density 
p. The entropy of a density p is defined by 

H(p):= f -log p(6) p(6) d6. 

In that context L can take negative values too. We should better 
use utility functions and keep L inconformity with the notation. 
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The concept of entropy loses some of its shortcomings if it 
is not used as an absolute measure of information but as a 
distance measure of distributions. 

We return to the design problem and choose the loss 

L(a,u,w(alxu» = log w(alxu ) - log w(a) • 
Then the posterior Bayes-risk can be written as 

f'(w,u) = lExulEalxulOg w(alxu) - 10g'IT(a) 

= lEx - H ('IT ( • I Xu) ) + H ( w ) • 
u 

The Bayes-risk coincides with the expectation with respect 
to the marginal distribution of Xu of the reduction of entropy 
comparing the prior and the posterior distribution. Since the 
inequality 

flog f(t) g(t) dt ~ flog g(t) g(t) dt 

holds for densities f and g it follows that the Bayes-risk 
is non-negative. 

Naturally the Bayes-design U*has to maximize the expected 
increase of information, 

f'(w,u*) = iUf r(w,u) • 
U* is called entropy-optimal design for the prior w. An imme
diate consequence of that definition is 

Theorem 3.1. If lExlalog w(alxu*) ~ lExlalog w(alxu) 
for all designs u toem u* is entropy-opt~lttal. 

holds 

Of course replacing the observation Xu by a sufficient 
statistic for a leaves the entropy information unchanged. De
fine two designs u1 and u2 by Xu = (X,t) ~nd XU2 = t where 
t(X) is a sufficient statistic tJen 

r('IT,u,) = ff log f(x,tla) f(x,tle) 'IT (e) de d(x,t) g(x,t) 

ff log f(xlt,a)f(t,a) f(x tla) w(a) da d(x,t) 
g(xlt) g(t) , 

= ff log f~~~ft~) f(x,tla) TI(a) da d(x,t) 

+ ff log f~~~f) f(tla) W(a) da dt. 

Since t is sufficient the densities fulfill f(xlt,a) = g(xlt) 
and only the second integral remains which is the Bayes-risk 
of the design u2• 

Similarly the entropy-information of a design u for a 
and another parameter a" which is a bijective transformation 
of a, a"= T(a), is the same. This is an obvious consequence 
of the transformation of densities. 

Example. 
and want 
out that 
optimal. 
tion of 
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We consider the classical regression model (2.1) 
to characterize an entropy-optimal design u*. It turns 
in the Bayesian sense D-optimal designs are entropy
The parameter of interest is a and no prior distribu
the precision a is specified now. 



Theorem 3.2. If the parameter 8 in the regression model 
(2.1) has a norm~l prior distribytion N(~,~) then ~* is entropy
opti~al iff det ~~* is minimal. ~~* is the posterior covariance 
matr~x. 

Proof: The posterior is a normal distribution with the mean 
8B = ~(FIE-1X + ~-l~) and the covariance _v 

= (F'E-1F + ~-l)-l 

Hence 
and 

cc -1/2 log det 4> - 1/2 (8-8B ).;r;-1 (8- 8B ) 

E81x log ~(8Ixv) = c - 1/2 log det ~ - 1/2E8Ixtr(~-1~). 
Interchange of expectation and trace yields 

JE8 1x log ~(8Ix~) = C -1/2 log det~ - r/2 

where C is independent of V. The right_term is independent of 
x. Thus ~* is entropy-optimal iff det ~~* is a minimum. 

4. NON-INFORMATIVE PRIORS 

Many techniques have been proposed for specifying a prior 
even when hardly any usable information is available. In this 
case the determination of the prior should not insert uninten
tional restrictions for the parameter. The entropy concept is 
adapted for the construction of such prior densities. 

We are looking for a distribution that maximizes the 
information of the data 

I(~) := -JE8H(f(.18» + H(~). 

The prior ~ is said to be non-informative if I(~) is maximal 
for ~. This solution * can be described by 

*(8) cc exp(-H(f(.18». (See Zellner(1977).) 

If the observations are derived from a location family 
then the non-informative prior density is constant. The data 
density f(xI8) depends on 8-x only and therefore H(f(.18» is 
constant. Location-scale families with density 

f(xI8 1,8 2) = 1 g(~1) g> 0 
82 2 

have the non-informative prior 

*(8 1 ,8 2) cc i 
2 

Now interest centers on the optimal design under non-in
formative prior. In case of location families v* turns out 
to be the design that maximizes the entropy of the marginal 
density of the data. The observations shouldn't contain any 
other systematical structure but the location parameter in 
order to avoid confounding of different effects. 

Theorem 4.1. Suppose X~ has a location distribution and 
the prior is non-informative then ~* is entropy-optimal iff 
it maximizes H(mv(x» where m~(x) represents the marginal 
density of XV. 
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Proof: EX H( ~(.IX~)) = - fflog~(elx) ~(elx) de m~(x) dx 
~ 

= - f~(e) [ !f(xle,~) log~(e) + f(xle,~) log f(xle,~) 
-f(xle,~) log m~(x) dx ] de 
~(e) and I(~) are constant and the entropy H(f(.le)) is in
dependent of e. Hence the integral equals 

c 1 + !!f(xle,~) log m~(x) dx C2 de 

C1 + c 3 ! m~(x) log m~(x) dx. 
= 

The constants c1,c2 and c 3 don~t depend on ~ and the integral 
is maximal if H m~lx)) is maximal. 

_1 
Example. Since y~:= (F'F) F'X~ has a normal distribution 
with mean e and is-a sufficient statistic the regression model 
described in (2.1) belongs to a location family. The constant 
(improper) prior leads to a normal posterior with 

mean e* = (F'F)-1F'~v 
and covariance ~ = u-1 (F'F)-1 if E = I r 
Following the ideas in theorem 3.2 we obtain a similar compar
ison. In this case the entropy-optimal design coincides with 
a D-optimal design in the classical approach. 
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ABSTRACT 

Simon French 
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Department of Mathematics 
University of Manchester 
Manchester Ml3 9PL, U.K. 

Multiple choice tests are much, but not exclusively, used in the British 
public examinations system. The analysis of results from such tests has 
been subject to much debate, particularly concerning the appropriateness of 
latent trait models. 

In this paper I adopt an entirely subjectivist approach. I believe the 
purpose of a public examination is not to measure in some objective sense the 
performances of candidates, but rather to report the judgements of examiners 
as to those performances. It is the examiners' judgements that are modelled 
by marks and grades, not something directly about the candidates themselves. 
Adopting this viewpoint, I make two groups of comments pertinent to mUltiple 
choice tests. 

First, if one is to use latent trait models to analyse candidate re
sponses, then one must be clear as to the meaning of parameters within the 
models. I argue that latent trait variables are technical devices which 
encode certain expectations about the data, but other than that they have no 
physical meaning. Because of this view, I shall argue that latent trait 
models are appropriate for critically evaluating assumptions about examina
tion data, but are inappropriate for the purpose of ranking candidates' work 
to report and grade individual performances. 

Second, one should consider in what form to elicit responses from the 
candidates. De Finetti suggested that candidates should respond with their 
probability of the correctness of each possible answer to an item and that 
these responses should be assessed by means of a scoring rule. However, 
such schemes have many problems: the difficulty of getting candidates, still 
at school, to accept the inevitability of uncertainty in their lives; the 
problem of calibration, because they are unlikely to be equally good prob
ability assessors. Perhaps more serious is the difficulty that a scoring 
rule which encourages a candidate to honestly reveal his beliefs may not 
reflect the manner in which the examiners wish to judge the candidate. 
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INTRODUCTION 

As Bayesians we pride ourselves that our approach to analyses is co
herent - both in the technical sense of coherence and its everyday sense. 
Yet, sometimes we confine our attention to the analysis of a model without 
considering the implications of our philosophy for the generation of the 
model itself: indeed, for our conception of the context in which the model 
is developed and analysed. The essence of the Bayesian or subjectivist 
approach, it seems to me, is the recognition that, as individuals, we con
tinually have to express beliefs, preferences, etc. and behave according to 
these judgements. We wish these judgements to be as rational, as consist
ent, and, perhaps, as fair as possible and we seek ways of thinking which 
help us achieve this. A Bayesian is not simply someone who updates a prior 
by a likelihood and then maximises an expected utility. He is someone who 
thinks carefully about how to encourage - he hopes, ensure - consistency and 
coherence in his judgements and actions. 

In the following, I wish to explore the implications of this view for 
the manner in which we should conceive of certain aspects of the British 
public examination system. The British system of GCE, CSE and, from 1988, 
GCSE examinations is subject-based. There is no requirement to pass in 
groups of subjects; each candidate is awarded a separate grade for each 
subject taken. The form of examination, naturally, varies from subject to 
subject. Apart from sitting formal examination papers, candidates may be 
required to submit coursework or projects, or to be assessed practically or 
orally. Within the formal papers, they may be required to write essays; 
answer short, structured questions; or - this will be our concern - answer 
multiple choice items. Given my prejudices expressed above, I shall not 
refer to multiple choice testing by its other name: objective testing. 
The interested reader may find descriptions of the British examination 
system in Christie and Forrest (1981) and Mathews (1985). 

Theories of educational assessment and the concepts they use seem to 
have been developed, by and large, from the psychometric theories used to 
analyse psychological tests, i.e. IQ tests, etc. They have at their base a 
belief that inside every candidate lies something that might be called his 
'ability or level of achievement in the subject being examined', that this 
entity can be quantified on an objective unidimensional scale, and that the 
purpose of the examination is to gather evidence from which it may be esti
mated. The overall mark or grade awarded is an estimate of the candidate's 
ability or achievement. I and others do not accept this: we have been 
arguing for another, entirely different view of the examination process. 
Our arguments may be found in French (1981, 1985), French et al (1986a, b) 
and Vassiloglou (1982, 1986): here I only summarise our conclusion. 

Firstly, the purpose of a public examination is not to measure in some 
objective sense something directly about the candidate; but rather it is to 
report the judgements of the examiners. Secondly, the examiners do not 
make judgements about something that they postulate to exist within the 
candidate, his ability or achievement or what-have-you; but rather they are 
concerned with the quality of performance within the candidate's script and, 
in the case of practicals, coursework and orals, within the processes 
observed during the assessment. 

That examinations are meant to report examiners' judgements is a view 
that is entirely consistent with the subjectivist approach, and I shall 
support that no further here. It does, of course, only make some sort of 
operational sense if there is a general consensus among examiners, but that 
I believe to exist and to be engendered by various procedures within the 
examination system and, indeed, the wider educational context. However, 
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the view that it is performances that are judged and not some intrinsic 
quality of the candidate does require brief comment. 

Behind many other conceptions of the examination process is the belief 
that one should allow for the day-to-day variability of candidates. Some 
days a candidate will be 'on form' and others he will not. I find it con
ceptually impossible, however, to attribute some of the qualities and flaws 
within a candidate's script to his general achievement or lack of it, and 
others to his day to day variability. Hence I believe it is impossible for 
the examiners to do other than assess the performance that they have ob
served. Whether one says it is the candidate's achievement on the day or 
the quality of performance in his script which is assessed is perhaps a 
finer point of language. I do have a distinct preference for the latter 
terminology, however: it reduces the temptation to construct a model of the 
mental processes of the candidate. 

When jUdging the quality of a performance, the examiners express some
thing very akin to a value judgement. To do this fairly and consistently 
they need normative techniques akin to those used to assess multi-attribute 
value functions to guide decision makers' preferences (French, 1981, 1985; 
and Vassi10g10u, 1984). Before they can make such judgements, though, they 
need to understand how their examination components performed. Were there 
any unforeseen biases; e.g. were any optional questions distinctly 'harder' 
than the alternatives? To foster such understanding the examiners may 
investigate their data statistically. How should any parameters within 
such an analysis be interpreted? It is to answering this question that the 
next section is directed, but considering only the case of a mUltiple choice 
components. 

LATENT TRAIT MODELS 

Consider then the case of a mUltiple choice component. On this there 
are a number of questions or items, for each of which several alternative 
answers are offered. Candidates must select the one that they believe to 
be the correct answer. Usually there is only one truly correct answer 
among those offered: however, in variants some incorrect answers are 
designed to be more 'sensible' than others: in yet other variants candi
dates have to select several answers each of which satisfies some given 
condition. Given that candidates' scripts take such simple forms, essenti
ally sequences of ticks and crosses, it is not surprising that many statisti
cal models have been developed to describe, analyse and summarise them: see 
Lord and Novick (1968) and Weiss and Davison (1981). Moreover, such models 
invariably contain candidate parameters which are highly correlated with the 
number of correct answers that a candidate is expected to give. These 
parameters have naturally been called abilities, and there is a strong temp
tation for examiners to fit the models to their data, thus estimating candi
dates' abilities, and then to grade candidates according to these. Whether 
they should do so has been a matter of some controversy (see e.g. Goldstein, 
1979; Wood, 1978; and Wright, 1977). I believe that a Bayesian approach 
can explicate matters greatly. 

Before the examiners see any candidates' scripts, they have certain 
expectations. Precisely what expectations will depend on many circum
stances and will certainly vary from examination to examination. Since 
these expectations will influence the judgements that the examiners eventu
ally make of candidates' scripts, it is important the expectations are 
critically examined in the light of the data. To do this, the examiners 
must first formulate their expectations as clearly and as explicitly as 
possible. For instance, they might argue as follows. 
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The data will essentially be a two-way layout of responses with the 
rows corresponding to candidates and the columns to items. Since the exam
iners as yet know nothing about individual candidates, they may hold the 
rows to be exchangeable: i.e. that a particular data matrix and any row 
permutation of that matrix are equally likely. They might also hold the 
columns to be exchangeable either because the items were designed to be of 
equal difficulty or because, although the items were designed to be unequal
ly difficult, the examiners do not know their order on the question paper. 
In practice, column exchangeability is unlikely to be reasonable, examiners 
usually design papers with a few easy questions at the beginning so that 
candidates are not disheartened early on. Moreover, questions are commonly 
grouped according to subject area. Some restricted version of column 
exchangeability may be reasonable, nonetheless. The point that matters is 
that some of the examiners' expectations can often be summarised by exchange
ability or symmetry conditions. 

Now exchangeability conditions have important implications for the form 
that one's subjective probability distribution may take. The classic 
result is De Finetti's Representation Theorem (De Finetti, 1937). He 
show~d essentially that, if one considers an infinite sequence of 0-1 vari
ables to be exchangeable (i.e. if attention is focussed on a finite sub
sequence, that subsequence and all permutations of it are considered equally 
likely), then one's probability for a particular finite subsequence must be 
given by a mixture of Bernoulli sequences. Put precisely, one's probability 
for the subsequence, 01001 ••• 01, in which there are r l's and (n-r) O's 
must have the form: 

Pr(OlOOl ••• Ol) • Jl er(l-e) (n-r)p(e)de. 
o 

(*) 

The precise density p(.) is not given by the exchangeability conditions, 
but the same p(.) applies whatever finite subsequence is considered. 
Furthermore, if a finite subsequence is observed, p(.) should be updated 
through Bayes' Theorem and this updated density used to form mixtures as in 
(*) to predict further subsequences. 

Expression (*) may be interpreted naively as saying that, as a Bayesian 
believing in this exchangeability, one must use a Bernoulli model with un
known parameter e and express one's beliefs in the value of e through 
the prior distribution p(.). But this interpretation fails for a Bayesian 
because it suggests that the parameter e has Some physical interpretation, 
here the probability of a 1 at any given position in the sequence. A 
more satisfactory interpretation is that exchangeability and coherence imply 
that various relations must hold between the probabilities Pr( ••• ) that 
model one's beliefs about the various subsequences. The functional form 
(*) ensures that these relations do hold. The indeterminacy of p(.) 
provides the degree of freedom that is left before the probabilities Pr( ••• ) 
are completely determined. The parameter e has no physical inter
pretation: it is purely a technical device to ensure that exchangeability 
holds. (See, e.g., Dawid, 1982.) In particular circumstances, one might 
construct an appropriate p(.) by considering what one would expect the 
mean number of l's to be in a sequence and how confident one was in this 
by specifying a variance. A beta distribution could be fitted to these 
values to serve as p(.). Any subsequent analysis would, of course, in
clude a check on the sensitivity of the conclusions to the particular choice 
of p(.). 

Recently, much has been done to extend De Finetti's Theorem to 
exchangeable situations other than infinite sequences of 0-1 variables 
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(Aldous, 1985; Diaconis and Freedman, 1982; and Goldstein 1986a,b). 
Always the conclusion is the same. Exchangeability and similar symmetry 
requirements imply that beliefs should be modelled as mixtures of proba
bility models. The parameters in these models act simply as 'indices' so 
that the mixture may be taken and exchangeability ensured. Other than that, 
parameters have no physical meaning. Much work still has to be done, but 
there is little doubt that it will lead to the same conclusion. Unfor
tunately, the two-way layout is one of the situations that still has to be 
fully investigated. So the comments and interpretations that may be made 
must be general rather than specific. None the less, some work has been 
done (e.g. Aldous, 1981). Perhaps most important in this context is that 
conditions leading to mixtures of Rasch models have been identified 
(Lauritzen, 1982). 

From the above it may be seen that the general interpretation of a 
'latent trait model' in the examination context would be the following. 
The examiners have some expectations about the data. These expectations, 
expressed as exchangeability conditions, demand that they represent their 
beliefs as a mixture of particular probability models. The parameters in 
these models, which are known as latent traits within the classical theory, 
have no physical significance; they are simply technical devices to ensure 
the exchangeability. If the examiners are to judge candidates fairly, it 
is important that their expectations are reasonable. Their reasonableness 
may be tested simply by fitting the model to the data and checking its 
goodness of fit: the Criticism phase of Bayesian analysis (Box, 1980). 
If the model fits, then they have reasonable expectations; but they should 
take care to note any outliers. Outliers may indicate either candidates 
who perform atypically and so will need careful, individual consideration or 
items which are atypical, perhaps easily misunderstood by certain categories 
of candidates. 

Latent trait models are therefore important tools with which examiners 
may check their expectations. However, that is all they are. Parameters 
within the models do not have 'true' values and to estimate them is nonsense. 
Certainly estimates of 'ability' parameters do not provide measures of a 
candidate's performance. So when jUdging an individual candidate's 
performance, examiners should consider which items he got correct, not an 
estimated 'ability' parameter. 

THE FORM OF CANDIDATE RESPONSES 

The above discussion assumes that candidates should say which answer to 
an item they believe to be correct. De Finetti (1965) suggested that, 
since they are unlikely to be certain in their beliefs, they should respond 
with their probability of the correctness of each possible answer. So that 
they are encouraged to reveal their beliefs honestly, he notes that they 
should know that their responses will be assessed by a proper scoring rule. 

What can be said about this scheme? The first point to note is that 
its adoption would in no way invalidate the discussion of the previous 
section. One would need to adopt exchangeability conditions appropriate to 
a two-way layout in which the responses could be any value between 0 and 1, 
rather than being limited to two possible values: but that is all. The 
same interpretation of latent trait parameters, etc. would still hold. 

Also, since candidates are allowed more possible responses, one might 
hope that the examiners can judge their performances better. But this will 
only be true if the candidates are fluent in the language in which they have 
to respond: that of uncertainty. Unfortunately few school leavers are. 
While Lindley (1984) is undoubtedly right that one of our most pressing 
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needs in society is to train more people to appreciate uncertainty and co
herent ways of reacting to it. I cannot but help feel that it is forlorn to 
hope that more than a minority of school leavers will understand the purpose 
of probability assessment sufficiently to answer items meaningfully. Part 
of the reason that multiple choice tests were introduced into the British 
public examination system was to allow candidates' knowledge and ability 
within a subject to be assessed, even though they might have poor powers of 
expression in English. Would weak candidates be better able to understand 
how to express their knowledge through probabilities? However, for the 
right candidature, knowing they had to sit mUltiple choice tests in this 
form might be an excellent incentive to learn to represent their strengths 
of belief as probabilities and to behave coherently. Indeed, in the Open 
University some courses on risk and professional judgement do use such tests 
and find many pedagogic advantages from doing so. 

It is perhaps worth remarking at this point that, while it is clear to 
me that probabilities undoubtedly provide the most suitable framework in 
which an individual may think about his uncertainty (French, 1986), it is not 
clear to me that they necessarily are the most suitable medium in which he 
may communicate his uncertainty to another. Probabilities are subjective. 
They are part of an individual's thought processes. They are not part of a 
public language. Although they may have a role to play in communication, 
that is not their primary purpose and there is no reason to suppose that they 
are a particularly efficient means of communication. So asking candidates 
to reveal their knowledge and uncertainty by responding in terms of prob
abilities may not be quite such the ideal that it appears. 

However, suppose that it is. Moreover, suppose that the candidates 
understand what is required of them and try to the best of their ability to 
answer in probabilities. Then there is still a difficulty. They will 
differ in their skills as probability assessors. Some will be better cal
ibrated than others. This might not be a problem if it were possible to 
assess their calibration separately from assessing their performance in the 
subject examined. But such is unlikely to be the case. The fifty or so 
items asked in a typical test will not provide sufficient evidence to sep
arate calibration effects from the substantive part of the candidate's 
performance, particularly since it is known that calibration in such tests 
depends on item difficulty (Lichtenstein et aI, 1982). In short, one 
candidate might be graded higher than another in, say, biology simply be
cause he was the better probability assessor. To be fair, whatever the 
style of questioning, there is always the problem that a candidate may be 
disproportionately rewarded for his examination technique: but, neverthe
less, I do feel it is a significant issue here. 

Apart from these practical difficulties in asking for probability re
sponses, there is also a conceptual difficulty, at least there is in the 
scheme suggested by De Finetti. Who does the scoring rule belong to? 
De Finetti suggests that to encourage the candidate to state his prob
abilities honestly, he must be trained so that maximising a proper scoring 
rule becomes an end in itself. The rule must become his utility function. 
To ensure this, the rule must be used to give the aggregate mark on the test. 
But the aggregate mark on a component is a representation of the examiner's 
judgement of the quality of performance on that component (French, 1981, 
1985). So the rule must also belong to the examiner: it represents one of 
his judgements. Why should it? Perhaps items in the test fall into a 
number of contexturally distinct areas and the examiner feels that a sound 
performance in a few of these areas is more worthy than a more mediocre 
performance in all of them. Modelling such judgements is unlikely to lead 
to a proper scoring rule. The examiner may not judge all the wrong answers 
in an item to be equally serious. Since scoring rules apply in circum
stances in which one of a set of mutually exclusive events must happen, 
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it is again not clear that the examiner's judgements would lead to a proper 
scoring rule. 

However, this conceptual difficulty may disappear if one asks why the 
candidates need encouraging to give honest probabilities. When c'andidates 
are asked to write essays, examiners seldom consider that the candidates 
might deliberately or subconsciously misrepresent their knowledge. Why 
should they when responding in probabilities? Perhaps there is no need to 
tell candidates precisely what scoring rule will be used • • • or perhaps a 
Bayesian's awareness of the problems inherent in eliciting probability 
responses is pointing to problems that are also inherent when responses are 
elicited in other forms. 
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The inference of survival functions based on information from censored 
observations is considered. The hazard function is assumed to be piecewise 
constant along intervals. The parameters are updated via a Bayesian 
conjugate analysis and information is passed through intervals via dynamic 
relations of the parameters. Inference is then made for the survival 
function of an individual (from the same population) conditioned on the 
observed data. Comparison with the product limit estimator, tools to 
criticise a model and some numerical examples are also provided. 

1. INTRODUCTION 

In this paper, I consider the statistical analysis of survival 
functions with no specific parametric family assumption. This problem has 
received a great deal of attention from both medical statistics and 
reliability areas and has often been referred to as nonparametric 
estimation. Here both words are to be avoided. The former because the 
Bayesian analysis pursued here gives meaning to the parameters modelling 
the sampling distribution and the latter because the problem is shown to be 
more of prediction than estimation. The distinction of this paper is in its 
use of a dynamic approach which filters the information collected up to a 
time passing it to future times. 

The problem considered is that of a sample Y=(Y1, •.• ,Y ) drawn from a 
population and interest lies in making inference about the Wopulational 
survival (or reliability) function S(u)=P(Y>u). The product-limit(PL) 
estimator (Kaplan & Meier, 1958) is obtained by estimating conditional 
probabilities at failure times by the observed conditional frequencies 
leading to 

S(u) (1) 

where y. is the ith ordered failure time and d. and r i are the number of 
observations that fail in Yi and the number of~observations that are known 
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to be alive just prior to y., respectively. Susar1a & Van Ryzin (1976) 
porposed a Bayesian ana1ysi§ in which the survival function itself is 
treated as parameter and, after assuming a Dirichlet process prior, its 
posterior distribution can be obtained and inference made. This estimation 
approach to inference on survival functions is widely used in Bayesian 
statistics (Martz & Waller, 1982; Mashhoudy, 1985). It seems, however, 
that the survival function is a characteristic far more related to the 
individuals of the population than to the parameters of the model 
entertained. So, after observing !=L say, one should be obtaining 

(2) 

for a new individual rather than the posterior distributions of S(ul~ as 
functions of !, the parameter of the model, for all u. 

Both Susar1a & Van Ryzin and the PL estimators have jumps at the 
observed failure times, although the former is smoother than the piecewise 
constant PL estimator, and they are dependent on a time factorisation at 
these points. In order to avoid these problems, Kalbfleisch & Prentice 
(1973) put forward a model for the observations that partitions the 
in~erva1 (O,ro) _in intervals I 1=(tO,t1), I i =(t i _1,ti ],i=2, ••• ,n-l and 
I -(t 1,ro),(O-tO<t 1< ••• <t 1)' having constant hazards Al, ••• ,A , 
rgspegt~ve1y. Tuis model ~s adopted here. In addition, fhe haz~rd function 
is generally expected to be smooth and therefore information gathered in an 
interval should exert some influence in the adjacent intervals. The dynamic 
approach enables the flow of information through intervals and smoothness 
assumptions on the hazard function can be implemented via dynamic relations 
between the A's. 

2. OUTLINE OF THE ANALYSIS 

Censoring is the main feature of reliability and survival data. In 
the former, data is often cotflected from industrial experiments that are 
designed to stop after the k observed failure or after a certain amount 
of time (Barlow & Wu, 1981). In medical data, random censoring occurs 
due to loss to follow-up of patients being discharged from hospital, moving 
to other places and others. 

In all those cases and indeed in the case of complete sample, the 
likelihood is 

n 
II 

i=1 
(3) 

where d. and a. are the number of failures observed in I. and total 
observea time through Ii' This likelihood is a product 5f likelihood 
factors for each A. (based on information collected in I.) conditioned on 

. . f . ~ ~ 
pr~or ~n ormat~on. 

The analysis is such that information is passed sequentially through 
intervals. Also, the A's are assumed to be (marginally) Gamma distributed 
so that after updated they remain Gamma distributed due to the form of the 
likelihood. Let [A. liD. 1]~G(~. l'Y' 1) where D. is the information 
collected up to the~~nd 5£ inter~a I:: The (GamJa) distribution for Ai is 
constructed in such a way that it retains the mean of A. 1 reflecting one's 
expectations about the smoothness of the sampling distribution in the 
absence of any other relevant information but has a larger variance to 
account for extra uncertainty as the analysis evolves in time. This implies 

184 



one gets a i = c.ai l+d. and Y.=c.Y. l+ai and the cycle can 
, ~ - ~ ~ ~~-

likelihood, 

restart for 
things like 
sequel. 

next interval. The values of the c's should take into account 
interval lengths and plausible expressions are suggested in the 

The survival function for an individual with failure time X drawn 
from the same population is 

i-I 
S(xID )=S(xlx>t. I,D) n S(t.lx>t. I,D ), xEI. n ~- n. J J- n ~ J=1 

(4) 

0) -A. (x-t. 1) i-1 0) -A.(t.-t. 1) 
~ ~- f J J J-fe p(A.ID ,X>t. l)dA. II e p(A.ID ,X>t. l)dA. 

o ~ n ~- ~j=l 0 J n r J 

because the distribution of X does not depend on D , the total information 
obtained from observing Y. The distributions for fA.ID ,X>t. 11 have not 
been specified yet but are provided in section 5. ~ n ~-

3. MODEL CRITICISM 

A particular model can be assessed by its marginal likelihood. This 
is obtained after integrating out the parameters from the likelihood and 
gives the relative likelihoods of different entertained models by 
comparison. It can be readily obtained after integrating (3) with respect 
to the prior distributions for [A.ID. 1] giving 

~ ~-

n (c.Yi_1+a.) ~ 1+ ~ n { -d. [ a. 

i=1 ~ ~ ci Yi-l 

d. } 
n\c.a. l+j -l) 

j=1 ~~-
(5) 

This is the main tool to criticise a model although some graphical 
comparisons could help. One could be interested in monitoring the 
smoothness of the survival of the population in which case a plot of the 
prediction obtained from different models is useful. Also, in some special 
cases, agreement with the data itself can be checked and this is related to 
some model assumptions. 

4. COMPARISON WITH THE PL ESTIMATOR 

In order to make this comparison, one has to assume that no initial 
information is available, there is no passage of information through 
different intervals and that the intervals I i ,i=I, ••• ,n are determined by 
the ordered failure times. Those assumptions are implicit in the derivation 
of the PL estimator. They imply that the only relevant information for 
A. is in its likelihood so that [A.ID ,X>t. 11~[A. ID.-D. 1]~G(d.,ai) since 
~ ~ n ~- ~ ~ ~- ~ 

c.+O. The survival function for xeI. is 
~ ~ 

(6) 

where bj length (I.). This is a strictly decreasing continuous function 
J 
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with piecewise continuous first derivative. For the sake of clarity 
suppose further that all censored times coincide with anyone of the 
(uncensored) failure times, so that a. = b.r .• In moderate and large 
samples, each of the multiplying fact6rs i~_t6) can be approximated by the 
leading terms in its Taylor expansion for r k around 0, ~i. This gives 

(7) 

Comparing (7) with (1), it can be seen that this non-informative 
approach is approximately equal to the PL estimate for x+y. from the right, 
for all i. Elsewhere, it is an approximately piecewise li~ear function 
joining these points whereas the PL estimate change by jumps at failure 
times. The approximation (7) gets poorer as k approaches n (see figure 2) 
and as sample size decreases. 

These non-informative models provide mainly a smooth continuous version 
of the PL estimate which has merit on its own. They can not, however, be 
compared with other ones in the terms of section 3 due to the extremeness 
of its prior assumptions. Dynamic models avoid those problems while 
offering a wider choice to the modeller. 

5. INFERENCE FOR THE SURVIVAL FUNCTION 

As was previously said, the distribution of [AiID ,X>ti _ ], for all i 
are needed for the evaluaiton of the predictive survivRI function. A 
specific stochastic model is necessary to establish the relations between 
the A's. To do this directly via a joint distribution for the A's would 
impose unnecessary numerical complications and a simple alternative is 
proposed. 

One solution can be obtained using the structure of dynamic survival 
analysis developed by Gamerman (1985). This analysis is designed to be 
used with covariates and the study of random samples can be treated as a 
special case when the only covariate takes the value 1 for all observations. 
There, the system parameter n undergoes a random walk ni =ni _1+wi where the 

w's are independent errors with zero mean and variances W., i=l, ••• ,n, 
respectively. The n's are only partially defined through 1their means and 
variances that are obtained by relating n to log A. This transformation 
is used to minimise the effect of skewness of the Gamma distribution in 
the evolution. A linear approximation as in West and Harrison (1986) can 
be used first to construct (ni-1IDi-1]~[mi_1,Pi_1] where mi _1 = In(ai _1/Yi_1) 

-1 and Pi - 1 = ai _1 and then, after evolution, back to 
I -1-1 [Ai Di_1]~G[(Pi_1+Wi) ,(Pi - 1+Wi ) exp(-mi _1)] implying the values of 

-1 . 
ci = Pi-1/(Pi-1+Wi) = (1+ai _1Wi ) Recurs1ve smoothing is then used to 

obtain [n.ID ]~mni'p~] with 
1. n 1. 

n n 
mi = mi+ci+1(mi+1-mi) 

n 2 n 
Pi = Pi-ci+1(Pi+Wi+1-Pi+1)' 

(8) 

This gives [AiIDn]~G(a~,y~) with a~ = (p~)-1 and Y~ = (p~)-1exp(-m~) and 

those are in fact the distributions that are used in the applications since 
the contributions of the events [X>ti _1] are negligible. They can be 
replaced in (4) giving, after integration, 
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n -a. 
S(xID ) • 

n 
l. 

6. NUMERICAL EXAMPLES 

i-I 
II 

j=1 

~ b.J-a~ 
~+ ~ J, for (9) 

In all_She examples, analysis starts ~ith a vague prior [AOID01~G(o,o) 
with 0 = 10 • This implies V[AOIDOl = 10 representing ignorance as to the 
value of AO' Also the values of W. for the evolution are taken as 
proportional to bi' This is in like with an equivalent continuous-time 
model for n having a Brownian motion process (Cox & Miller, 1965, pg. 206). 
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Figure 1. Hazard functions (in the log scale) 
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A sample of size 30 was generated from the Weibull (3,100), Weibull 
(.5,100) and logistic (2,100) distributions. These have hazard functions 

.03(10g 2) f--=-T 
llOOj 

.005(log 2)[~1-'5 and 

100J 

(t/100) 
.02 2 ' t>O 

1+(t/100) 

respectively, shown in Figure 1. Their common median (and scale parameter) 
is 100 and they represent quite different failure patterns. For each 
sample, a dynamic, a non-informative and the PL survival functions were 
obtained and are shown in Figure 2, along with the respective generating 
survival functions. The comparisons made in section 3 can be best 
appreciated in the figures. It is clear that although the non-informative 
model smooths the PL estimator, a proper smooth solution can only be 
obtained through a dynamic model. The values for W.(.2bi ,.lb. and .05bi , 
respectively) were set on an illustrative basis and~can De ch!nged at tlie 
modeller's will giving more flexibility to the inference. The marginal 
likelihood can be called to assess model choices with respect to factors 
like interval lengths and values of the W's. 
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Figure 2(i). Survival functions for the Weibull (3,100). 
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Figure 2 (ii) . Survival functions for the Logistic (2,100). 
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Figure 2(iii). Survival functions for the Weibull (.5,100). 

The leukemia data from Gehan (1965) can be used to illustrate this 
point. They consist of remission times of patients in two groups (treat
ment and control) of equal size with heavy censoring in the treatment 
group (12 censored out of 21 patients). Each group is analysed here 
independently of the other. For each of them, a number of combinations 
of interval divisions and values for Ware used and the corresponding 
marginal likelihood for each model are given in Tables 1 and 2. 

It seems that a finely divided grid of points gives a better fit at 
least for this set of data. Also there is some preference manifested for 
the values Wi = 0 corresponding to c. = 1. This supports the model with 
no evolution for A, that is, exponential distribution. In this special 
case, there is no need for a dynamic analysis since Ai = A and 

n n 
[Aln ]~G(d,a) where d = L d., a = L ai and the predictive survival for 

n i=l ~ i=l 
time t is [l+(t/a)]-d The value otherwise obtained with a dynamic 
analysis 
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~ + t-:i _1] -d i~l L t] -d 

L j=l L tEL 
1. 

is close to that one specially for small values of the bls. 

Table I 

Marginal likelihoods for treatment group 

Data :6,6,6,6*,7,9*,10,10*,11 * ,13,16,17*,19*,20*,22,23,25* ,32* ,32* ,34* ,35* 

W, 
-

b, 

0 

.05 

.10 

.20 

*- censored 

W, 
-

b, 

0 

.05 

.10 

.20 
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THE ROLE OF PROBABILITY AND STATISTICS IN PHYSICS 

Gerhard Gerlich 

Institut fUr Mathematische Physik 
Technische Universitat Braunschweig 
Mendelssohnstr. 3, 0-3300 Braunschweig 

INTRODUCTION 

There are extensive fields in physics where probability 
theory and statistics are of great importance. It cannot be the 
intention of this lecture to describe the role of probability 
and statistics in the whole field of statistical physics. 

Many parts of physics have got special statistical fields: 
statistical mechanics (ergodic theory, quantum statistics) , 
statistical (magneto)hydrodynamics (theory of turbulence), 
statistical plasmaphysics (kinetic theory), statistical optics 
(partial coherence). Though all these fields are my specialities, 
I do not intend to talk about the success or failures of the 
probabilistic and statistical descriptions in these fields of 
physics. 

The aim of my lecture is to show you that probability 
theory and statistics provide us with the essential mathematical 
structures in those fields of physics which do not have the 
attribute "statistical": axiomatic classical mechanics and 
axiomatic quantum theory. For the latter, it seems to be evident 
that probability and statistics play an important role as all 
students must learn the "statistical" or "probabilistic inter
pretation" of quantum theory. Nonetheless, as a student I had 
difficulty in connecting the mathematical structures of quantum 
theory on the one side and probability theory and statistics on 
the other side. 

I suppose that it could be useful to tell you the story how 
I started my investigations of the mathematical foundations of 
quantum theory. I was concerned with the theory of the hydro
magnetic dynamo (generation of the magnetic field of the earth 
or the sun). Very soon one could see that modern theories of the 
dynamo make an essential use of the statistical theory of 
turbulence. It is wellknown that the statistical theory of 
turbulence is very poor in successful mathematical technics 
whereas quantum theory has a lot of them giving accurate and 
excellent descriptions of very precise measurements. Therefore 
I told myself that it should only be neccessary to find out the 
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mathematical statistical structure of quantum theory which is 
independent of the special physical situation. Then one should 
have a successful mathematical structure for the statistical 
theory of turbulence. I think that I found this mathematical 
structure. The result is a new system of axioms (laws) for 
classical and quantum mechanics containing both fields as spe
cial cases. The new aspect of this system is that one adds three 
statistical axioms to the usual (mechanical or quantum mechani
cal) axioms (for instance to the Newtonian axioms). 

But what were the results for the statistical theory of 
turbulence? They are a great disappointment: the mathematical 
statistical structure of quantum theory is useless for the 
statistical theory of turbulence. At a first glance the cause 
sounds rather paradoxical: the probabilistic or statistical 
structure of quantum theory is more general than the conven
tional measure theoretic probability theory. The models of quan
tum theory give more precise probability distributions than the 
conventional probability theory. Using this structure in the 
statistical theory of turbulence is like using a steam hammer 
to crack a nut. In this connection the following historical 
remark could be of interest. The mathematically rigorously 
founded probability theory was published by A. N. Kolmogoroff 
in 1933 after the famous book of J. v. Neumann in 1932. Perhaps 
it is worthwhile to notice that, though Lebesgue measure was 
known for many years, a general "abstract" measure theory for 
a-finite measures was established in those years. I suppose 
that this theory was first written down by E. Hopf in his famous 
book "Ergodentheorie"(1937). Thus the rigorously founded 
"classical" probability theory followed the "nonclassical" 
quantum theory. Therefore the following observation has a 
rather simple explanation. In the book of J. v. Neumann you 
can find only a few passages where measure theoretic concepts 
were used (the separability of the L2- spaces, equivalence 
of the Heisenberg and Schrodinger picture of quantum theory) • 
His intention was to give an algebraic and geometric formulation 
of the mathematical foundations of quantum theory. 

My approach to the mathematical foundations of quantum 
theory is formulated with the measure theoretic probability 
theory, though the resulting structure is a bit more general. 
The generalization concerns a formula which is very closely 
related to Bayes' formula the thematic connecting link of this 
symposium. 

THE STATISTICAL AXIOMS 

Let us begin with the three statistical axioms: 

(A1)The statements of physics are statements about spaces of 
events. These statements about events are formulated with 
probability measures for pairs of events: q(A,B) is the 
probability observing the event B if one knows the event A. 
q(A,B) is called transition probability. 

For the axiom (A2) one needs some technical definitions. 
They are not difficult, but awkward. I hope that in this lecture 
a very simplified definition is sufficient. 
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(D) We call a model for a physical experiment a unitary pair 
if it is possible to write the formula of the transition 
probability in the form 

where U is a unitary map of the natural Hilbert spaces. 

XA: characteristic function of a set A, v measure on a a-algebra 
A over X~ ~ measure on a a-algebra B over Y, natural Hilbert 
- ~ 2 I -spaces L (X,v), L (Y,~), PB$y = XB(y)$(y). 

(A2) General probability distributions are given by (convex 
linear combinations of) the transition probability of a 
unitary pair. 

(A3) The time dependence of unitary pairs is given by 

Ht being (essential) self-adjoint operators defined on the 
natural Hilbert space in the decision. 

The first axiom summarizes two empirical facts. Every physical 
theory is finally tested by reading numbers of a scale with 
error bounds. We call this the observation of events in the 
decision, where events are elements of a class of subsets of a 
certain set; tn this example the observed event is a certain 
interval of R (real line). The value of such measured numbers 
is meaningless if one does not know how the experiment was 
performed. In particular, this knowledge could be given by an 
observed or assumed event (in the condition). An event A one 
knows to predict the event B. You could consider the motion of 
a car on an inclined plane or the movement of the planets. The 
measurements of the space and velocity coordinates alone are 
not physics. Physics begins to predict the values at a later 
instant of time (with error bounds) with a model. Statements 
of measured values with error bounds are typical probability 
statements. For instance, with probability 0.999 the measured 
value should be found in a certain interval performing the 
experiment the same way. This means that you have to choose the 
same event in the condition. 

Spaces of events are sets X respectively Y with a-algebras 
A respectively B. Elements of a-algebras are usually called 
measureable sets or, in the measure theoretic probability 
theory, events. In this sense, in (Al), very conventional con
cepts of the measure theoretic probability theory founded by 
Kolmogoroff are used. Only the concept of the transition proba
bility q(A,B) is introduced as a fundamental concept and not as 
a derived concept. 

In conventional probability theory, with two spaces of 
events (X,A) and (Y,B) one constructs a new common space of 
events (X x Y,,4®B) • - X x Y is the cartesian product of the sets, 
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A® B the product a-algebra generated by the sets A x B 
AEA-; BEB. The events A are repla::::ed by A x Y, the events 
replaced by X x B. With a probability measure P on A ® B 
one calculates the transition probability as a conditional 
probability 

with 
Bare 

P(A x B) 
qcl(A,B) = P(A x Y) (This gives Bayes' formula). 

For AnA' =0 you get 

with 

(eL) The transition probability of a union of disjoint events 
in the condition is a convex linear combination of the 
individual classical transition probabilities. 

I hope that you will allow me a short digression. Then I 
can touch the fields of physics I had originally excluded in my 
introduction. I would like you to remember that in some sense 
you can read the theory of stochastic processes as a theory of 
hidden variables. 

Often one can find the following description of a 
stochastic process (1st picture): A stochastic process is not 
an ordinary function of time such that you have for an arbitrary 
set of n time values (for all n) the n function values 

xct.,) X('t.a.) 

i.. t 

but you only know the probability distributions for the function 
values. You have the probability that the values x are elements 
of certain sets (I call them windows) at an arbitrary set of 
n time values. 

-tIl t 
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For instance you can write with densities 

P(tl, Al; t2,A2jo 0 oj t,.,A.) = / / 000/ j(t1J:Et,t2,:E2, ooo,t.,:E .. ) U1U2 000 U. 0 

AlA.. A. 

What has produced these probabilities? This gives us the second 
picture of a stochastic process (Kolmogoroff's definition). We 
assume that the probability distribution is produced by a set 
of curves (paths) meeting the windows with a certain probability 
distribution. We index each curve with the parameter w • The 
value of this parameter is usually unknown. I call w the 
hidden variable of the stochastic process. 

" "'f 
IeIt 

~J 

tv&. 

~. 

In this picture a stochastic process is a function depending 
on two variables: the time t and the hidden variable w, for 
which a probability distribution is given. We write for the 
function values xt(w). It is a wellknown fact: 

KOLMOGOROFF'S THEOREM 

Under certain mathematical assumptions both pictures are 
equivalent. 

Resume: 
If you use Kolmogoroff's definition of a stochastic process, 
you use a certain theory of hidden variables, which are elements 
of one probability space Q. 

A theory of stochastic processes (with differential paths!) 
is hidden behind the following catchwords: 

Liouville equation, (n-time) BBGKY-hierarchy, classical Zwanzig 
formalism, Mori formalism, microscopical density correlation 
function, response function, van Hove's scattering formula, test 
particle diffusion, microscopical fluctuations, statistical 
theory of turbulence (E. Hopf) , ergodic theory, Vlasov equation, 
Klimontovich formalism, Rostoker formalism, generalized 
Stratonovich method (best method for systems governed by a system 
of stochastic differential equations for ;short prediction times). 

Let x!(w) be a family of stochastic processes on one 
probability space (Q,A,P). Then you can take as a rather-
general formula for a transition probability 
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E W'iP(~;' (A) n zt;' (B» 

9c,(A, B) = 'J E W,~;' (A) 
I 

wi th 0 S wli S 1 , WI = E Wlj , E WI = 1 . 
j I 

Also with this formula you can prove (CL). For the 
transition probability of (A2) this formula is wrong: 

A n A' = 0, A U A' = X, B n B' = 0, BUB' = Y 

1 
p(B) = p(B') = II(A) = II(A') = -

2 

U(;u) = COSI(J XB + sinl(J XB' 

q(A, B) = COS2 I(J, q(A', B) = sin2 I(J, q(A, B') = sin2 1(J 

Now we have our non-existence statement about quantum 
theories with hidden variables: 

The conventional theory of stochastic processes is not 
sufficient to give the formulas for the quantum theoretic 
transition probabilities. 

The precise predictions of the quantum theoretic models are 
the problem, not certain uncertainty relations! 

Our axiom (A2) suggests a formulation of Dirac's super
position principle: 

(AQSP) The unitary maps of the unitary pairs can be written as 
integral transformations of the natural Hilbert spaces of 
the events. 

One should notice that our formulation of Dirac's superpo
sition prinCiple does not contain the assumption that all oper
ators of the mathematical model can be written as integral trans
formations which was criticized by J. v. Neumann in Dirac's 
representation of the mathematical structure of quantum theory. 
Restricting this property to the operators of the unitary pairs 
I consider this assumption justifiable. 

Let us go back to the first axiom. It contains an algebraic 
structure which can be worked out. Unlike classical probability 
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theory, the pairs of events (A,B) are not automatically identi
fied with the cartesian products A x B. Usually incompatible 
events are disjoint sets. Therefore one could ask how one could 
define the incompatibility of pairs of events. Such a situation 
is given in the physical praxis if an experimental physicist 
says that he cannot verify the experiment of his colleague. 
Excluding events in the decision are meaningful only if the 
events in the condition are equal (meaningful comparison): 

(MC) Pairs of events are comparable iff the events in the 
condition are equal. 

With this, in the cartesian product of the a-algebras A x B 
one can define a partial ordering e setting 

(PO) (A,B) ~ (A' ,B') iff A=A' and B n B'=B, 

an orthocomplementation by 

(POC) .J. (A,B) = (A, «B) , 

and an equivalence relation for the impossible and sure pairs 
of events 

(A,B) ... (A' ,B') *> (B=B'={lj or B=B'=Y) or (A=A' and B=B'). 

With v as the supremum and A as the infimum this poset 
is an orthocomplemented, orthomodular, quasimodular, not modular, 
not distributive lattice. Usually these are the general proper
ties which were listed for a "quantum logic", the lattice of all 
closed linear subspaces of an infinite dimensional Hilbert space. 
But this is not the same lattice (the covering law is missing). 

THE PHYSICAL AXIOMS 

If one intends to reproduce the conventional theories of 
classical mechanics and quantum theory, one has to treat these 
fields with different formulations of the next axioms. These 
axioms fix the spaces of events for particles, thus the natural 
Hilbert spaces and the self-adjoint operators H. 

(AQS 1) 

(AQS2) 
Schrodinger's equation without and with external fields 

(AQD1 ) 

(AQD2) 

(AMN1) 

Dirac's eqation without and with external fields 

Newton's equation without and with external fields 
(AMN2) (1st and 2nd axiom) 

(AQS1) The space of events of the space measurements of a free 
particle is R3 with the Lebesgue measure ~L on the 
Lebesgue a-algebra ~L. The self-adjoint operator of the 
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time evolution for this system is given by 

defined on a suitable dense linear subspace of the 
natural Hilbert space L2(~R3). 

(AQS2) The operator of the time evolution of a particle of 
charge Ze and mass m in an external electromagnetic field 
with the potential (~,-V) is given by 

H = ..!...(-iliV - ZeA)" (-iliV - ZeA) + ZeV 
2m 

defined on a suitable dense linear subspace of the 
natural Hilbert space defined in (AQS1) (with the same 
space of events). 

(AQD1) The space of ~vents of the space measurements of a free 
electron is R with the Lebesgue measure ~L on the 
Lebesgue a-algebra ~L. The operator of the time evolu
tion for this system ~s given by 

d~fined on a suitable dense linear subspace of the 
C -valued natural Hilbert space. 

(AQD2) The operator of the time evolution of an electron in an 
external electromagnetic field (~,-V) is given by 

defined on a suitable dense linear subspace of the 
natural Hilbert space defined in (AQD1) (with the same 
space of events). 

The space of events of the space and velocity measure
ments of a free particle is R6 with the Lebesgue measure 
~L on the Lebesgue a-algebra~. The self-adjoint 
operator of the time evolution is given by 

H = -ili!l." V, 
888 

!l."V = v .. -+v,-+v.-8x 8y 8z 

defined on a suitable dense linear subspace of the 
natural Hilbert space L2(~L,R6). 

(AMN2) The operator of the time evolution in an external 
acceleration field is given by 

H "Ii~(r,v) "Ii" 8 OU,,( ) 8 = -'2" 8v" -, v 8r" -1'Wt r,v 8v" 
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defined on a suitable dense linear subspace of the 
natural Hilbert space defined in (AMN1) (with the same 
space of events). 

GENERALIZED QUANTUM THEORIES 

Systems of axioms should give hints for possible general
izations and appreciable modifications of a theory. Let us look 
at the system of axioms: 

(AMN1) 
I 

(AMN2) 

----
(An 

I 
(A2) 

I 
(A3) 

I 
(AQS1 ) 

I 
(AQS2) 

- ~---
(AQD1 ) 

I 
(AQD2) 

If you take the statistical structure seriously, the very 
general three statistical axioms should be left unchanged, only 
the last two lines are candidates for a change of the mathemat
ical structure. This picture suggests looking for new axioms 
(A4) and (AS) containing all different fields in a single 
formulation. This is really possible taking the spaces of events 
from (AMN1) and adding the operators H. With this formulation 
one gets a generalization of quantum mechanics containing 
classical mechanics or vice versa a generalization of classical 
mechanics containing quantum mechanics. One gets field equations 
for the pilot waves. 

We hope that these generalized Schrodinger or Dirac equa
tions could solve some mathematical problems involved with the 
standard apparatus of quantum theory. 

This generalization is suggested by the probabilistic 
and statistical structure of the mathematical foundations 
of quantum mechanics and classical mechanics. 
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CAN WE BUILD A SUBJECTIVIST STATISTICAL PACKAGE? 

Michael Goldstein 

Department of Statistics 
University of Hull 
England 

1. INTRODUCTION 

This paper concerns the practical implementation of sUbjectivist theory, 
and in particular the conceptions of Professor de Finetti, in the form of a 
statistical package. We begin by briefly considering certain features which 
distinguish de Finetti' s approach from that of standard Bayesian methodologies. 

Subjectivist theory can be characterised as the examination of the 
reasonableness of our modes of thought. In this study "Everything is 
essentially the fruit of a thorough examination of the subject matter, 
carried out in an unprejudiced manner, with the aim of rooting out nonsense." 
What is important is " ••• the systematic and constant concentration· on the 
unity of the whole, avoiding piecemeal tinkering about, which is inconsistent 
with the whole; this yields, in itself, something new. "(Both these 
quotations are from de Finetti (1974:preface)). 

This spirit is embodied in the content of de Finetti's work. As an 
example, he makes expectation, or prevision, fundamental instead of 
probability, because, once we can free ourselves from historical conventions, 
there are many advantages, practical, logical and philosophical in this 
choice. For example, we can now make directly those expectation statements 
that we require without exhaustive consideration of limiting partitions. 
De Finetti repeatedly emphasises the need to remain within the bounds of 
realism. He expresses this as a fundamental requirement as follows. "The 
fact is the possibility of expressing all that can legitimately be said by 
arguing solely in terms of the events (and random quantities) whose prevision 
is known. That is to say, without leaving the linear ambit determined by 
the latter, without imagining already present a probability distribution 
over larger ambits, those in which the extension is possible, albeit in an 
infinite number of ways. The criterion lies in the commitment to systematically 
exploiting this fact; the commitment considered as the expression of a 
fundamental methodological need in the theory of probability (at least in the 
conception which we here maintain). All this is not usually emphasised." 
(de Finetti (1974)). 

As a second example, statistical models are constructed not in terms of 
unobservable (and ultimately undefinable) parameters, but instead through 
the notion of exchangeability, so that any such model can be explicated 
purely in terms of simple, verifiable statements of uncertainty about 
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observable quantities. As de Finetti (1975:p.221) writes: "If we step 
out of this ambit, we not only find ourselves unable to reach out to some
thing more concrete, but we tumble into an abyss, an illusory and meta
physical kingdom, peopled by Platonic shadows." 

As a final example, in the Bayesian approach prior probabilities are 
transformed into "posterior" probabilities by Bayes theorem. However 
Bayes theorem actually evalutes "conditional" probabilities. Conditional 
beliefs are those based on "assumed knowledge", and are expressed as bets 
to be made now but to become operative only if certain events actually occur. 
Posterior beliefs are based on acquired knowledge, and are expressed as bets 
made after certain events are seen to occur, at terms which then seem fair. 
Logically, these are different concepts. De Finetti (1972:p.194) summarises 
the interpretation of conditioning as follows. "What emerges is this: only 
the predictive interpretation (according to which H is a proposition assumed, 
not acquired) is free of inextricable perplexities." 

Each of the above quotations relates essentially to the difference in 
spirit between a full subjectivist formulation and the Bayesian implementation. 
In most Bayesian analyses it does not seem to matter whether beliefs are 
elicited in terms of previsions or probabilities, whether we view probability 
models as constructed from exchangeability arguments or from genuine beliefs 
in unknown parameters, whether we are dealing with conditional probabilities 
or posterior probabilities and so forth. This is because the language and 
ideas of "belief revision" are being used, in the main, to describe and 
support the process of "data analysis". However Bayesian methods appear to 
be tackling a quite different problem, namely how should you "reasonably" 
modify your beliefs in the light of (statistical) data. -

To develop a subjectivist approach to the problems of learning from 
evidence, we must return to the roots of the theory and decide which elements 
are essential, which are peripheral and which are, possibly, wrong. This 
paper describes one such subjectivist approach, taking as a starting point the 
foundations set out in de Finetti (1974,1975). We shall concentrate upon 
general issues, as basic disagreements about the content and purpose of the 
theory can only be resolved when we view the whole structure in a unified 
manner. Thus we must clarify the sUbstantitive content of the theory 
before we can describe the technical content of our methods. 

The plan of the paper is as follows. In section (2), we suggest informal 
criteria for a subjectivist statistical package and set out various reasons 
why fully subjectivist approaches are needed. In section (3), we describe 
informally our approach to such a package, with particular emphasis on the 
role of exchangeability, the nature of inference and the organising principles 
for input and output. In section (4), we describe our first steps towards 
implementing these ideas. Finally, in section (5), we make very brief 
concluding comments relating to the problems and potential for the general 
development of subjectivist packages. 

2. WHAT IS A SUBJECTIVIST STATISTICAL PACKAGE AND WHY SHOULD WE BUILD ONE? 

2.1 What Is A Subjectivist Statistical Package? 

A subjectivist package is primarily concerned with the judgements, 
however expressed, of an individual. The package is intended to facilitate 
the reasonable elicitation and modification (at least in part by "statistical" 
data) of beliefs by subjectivist principles. Let us identify some features 
which would distinguish a full subjectivist package from a package which 
applies subjectivist ideas in an informal fashion, for example as data
analytic tools. (Thus, we will not emphasise the features that both types 

204 



of package might share, such as the fundamental matter of recognising that 
beliefs can be set in probabilistic form and constitute important inputs into 
the analysis.) 

(1) Control over belief specification 

All belief inputs should be genuine. We should not be forced to input 
hypothetical belief statements simply because the package demands more than 
we can meaningfully provide. Thus, we need control over the level of detail 
that is required by the program. The package should provide both automatic 
coherence checks and the identification of those aspects of our beliefs which 
require the most care and detail in specification. 

(2) Specifications should relate to observable quantities 

Beliefs should be specified for actual, not hypothetical, quantities. 
It should be possible (in practice, not merely in principle) to conduct the 
entire analysis in terms of such specifications for observable quantities. 
This means firstly that we will not consider "parameters" as primary 
quantities of interest and secondly that we are not forced into specifying 
beliefs about "underlying parametric models" solely in order to allow us to 
perform analyses upon observables. 

(3) Output should relate to actual posterior beliefs 

Just as the inputs to the program are (a portion of) initial beliefs, 
the output should relate to (a portion of) revised beliefs. The strongest 
possible relationship would be that the output was our actual revised beliefs. 
However, this is not usually possible (or even desirable!). Instead, we aim 
for output which has a useful and clearly defined relationship with such 
posterior belief. In particular, we should analyse "open" systems, for which 
we do not need to pretend that all considerations concerning all conceivable 
eventualities have been fully formulated a priori. 

(4) Input and output should be governed by clear organising principles 

A subjectivist package deals not with isolated belief inputs but with 
organised collections of such inputs. All that theory provides is the 
additional structure imposed by coherence. We require two organising 
principles to make this structure explicit. Firstly, we need to identify 
the kinds of belief input which will generate conclusions of interest. 
Secondly, we need to represent how the entire collection of beliefs is 
modified by the analysis, emphasising the most important features of the 
revision. 

2.2 Why Do We Need Fully Subjectivist Packages? 

(i) We are what we believe. Any help in examining our beliefs is valuable, 
from simple common-sense checks upon our ideas to an improved understanding 
of our whole reasoning process. Indeed it is because beliefs are fundamental 
that we must be scrupulous in our development. It is easy to make exaggerated 
or misleading claims for belief analyses, quite apart from the more insidious 
dangers involved in surrendering our reasoning to the computer. 

(ii) Subjectivist ideas may offer both clear logical methods for integrating 
raw data into our belief systems, and also an efficient medium for the 
communication of such beliefs (and the basis for such beliefs) between 
individuals. In particular, in complicated situations, inVOlving many 
sources of uncertainty, a theory which pays careful attention to the actual 
abilities of the individual to express beliefs (rather than treating this 
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as a purely technical issue) may be expected to provide improved approaches 
to the handling of complexity. 

(iii) Because the theory will be different, models within the theory will 
be different. The kinds of simplification which can be justified and 
exploited by the theory form the basis for a systematic approach to model 
formulation, specification and evaluation. 

(iv) Theory suggests practice which, in turn, modifies theory. When 
theory directs us to perform taskswhich turn out to be unclear, useless or 
impossible, this provides a stimulus for re-examining the basis of the 
theory. The creation of computer software is a stringent application of this 
principle. Because we must describe all procedures in precise detail, we 
cannot treat the theory as a collection 0 f heuristic prescriptions. There 
is a danger, however, that theory may be arbitrarily frozen around whatever 
methods happen to be easy to program and so we must apply the same standards 
of stringency to the algorithm as we do to any other part of the theory. 
Indeed this is one of the fundamental issues in the subjectivist theory-
to what extent can our modes of thought be reduced to formal routines? 

We now turn to more speculative (but fundamental!) reasons for our 
enterprise. Subjectivist theory can be interpreted at two different levels. 
The first concerns an individual making a conscious effort to externalise 
various of his beliefs in numerical form. In this view, the beliefs are 
pre-existent and are given numerical values by some mysterious but conscious 
process. However, we can reverse this process by considering the numerical 
codings to be pre-existent, and our beliefs to be externalisations of these 
codings. 

In describing such a structure, we must distinguish between process and 
implementation. The subjectivist theory is separate from the medium in which 
it is implemented. The theory describes the interface between an external 
reality and an internal representation of that reality, in a form which is 
(in principle) independent of both sides of the interface. (That is, we 
could rewrite the laws of physics without changing our theory. Similarly, 
we can switch from considering us, i.e. biological organisms, to it, i.e. 
a mechanical device such as a "machine intelligence", and though the 
implementation would be totally different, the theory would remain unchanged.) 
This internal/external interface establishes the logical parameters for 
understanding any "thought" process, and provides the ultimate subject 
matter of subjectivism. When we talk about, for example, exchangeability, 
we are considering one of the basic operations by which we cope with our 
environment, namely the simplification of giving many different objects the 
same "name". Most of our statements (for example, this one) can be repre
sented strictly in terms of the exchangeability constructions that we will 
put forward (although to do so may be complicated in somewhat convoluted 
statements such as this one). 

ThUS, our ostensible statistical description of certain classes of 
situations allows us in principle to analyse the mechanisms of thought. 
Such study may find concrete application in the design of artificial 
intelligence systems, in which detailed numerical analyses (at levels both 
physically inaccessible and psychologically incomprehensible to users of the 
system) are converted into simple "verbal" summaries at the user interface. 
Here we have an explicit representation of beliefs as externalisations of 
pre-existent codings. Beyond this, however, the purpose of such investiga
tion is self-knowledge. Fundamental questions as to the nature of and 
relationship between our conscious and subconscious processes and the inter
action between these processes and external stimuli may be given precise 
algorithmic representations - at the least, we have a natural language in 
which to formulate these questions. 
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3. A FRAMEWORK FOR A SUBJECTIVIST STATISTICAL PACKAGE 

We now describe our approach to the construction of a sUbjectivist 
statistical package, avoiding technicalities as much as possible. Instead, 
we summarise the various choices made, the reasons for these choices and 
the implications for managing the system. Clearly, a genuine subjectivist 
statistical package, as we have described it, is an ideal. I believe that 
it is an achievable ideal, but that is a long-term goal. We here provide 
a few steps towards this goal. Our concern is with the total structure 
rather than the individual operations of the system. Thus, we elicit beliefs 
in a form for which we can offer simple organising principles which are 
compatible with direct exchangeability constructions, which can be handled 
by our inferential principles, which in turn yield simple organising 
principles for the revisions of belief. It is the inter-relationship 
between organising principles (for input and output), exchangeability 
principles and inferential principles which constitutes the heart of the 
system. Although we can justify each principle individually, the ultimate 
justification for each ingredient lies in the role it plays in the overall 
structure. 

3.1 Prevision Is the Fundamental Expression of Belief 

Probability is too restrictive a concept to give us control over the 
level of detail in our belief specifications. The obvious alternative is to 
make expectation fundamental. (Probability specifications become expecta
tions for the corresponding indicator functions.) De Finetti provides a 
full account as to how and why expectation, or prevision as he terms it, can 
and should be made the foundation of the subjectivist theory. Thus, we 
consider prevision {as operationally defined in de Finetti (1974, chapter 3)) 
to be the primitive quantity in terms of which we elicit beliefs. For any 
random (i.e. unknown to us) quantity X, we write P{X) for the prevision of 
X. (This may be thought of as expectation but elicited directly.) Our 
justification for this choice is that we can build a subjectivist system 
based on prevision, whereas we cannot satisfy the general requirements of 
section (2) by a system rooted in probability. 

3.2 Previsions Should Be Organised into Inner Product Spaces 

Collections of probabilities typically are organised into joint probab
ility distributions. Is there an organising principle for prevision which 
is fundamentally different from that for probability? The difficulty with 
most possible organisations of beliefs is that they commit us to making far 
too many belief statements. Of course if a particular analysis genuinely 
requires a very large number of belief inputs, and we are both willing and 
able to provide these inputs, then there is no problem. However, for most 
situations, we may suspect that the majority of these inputs are largely 
irrelevant, and in any case are beyond our ability to specify. 

Only if our method of organisation of prev1s10ns reflects the underlying 
structure of the subjectivist language will it, in general, generate inter
esting consequences. The essential property of prevision is linearity. The 
specification of previsions for some collection C = [X,Y,Z, ••• ] of random 
quantities fixes previsions over the collection of all linear combinations 
of these quantities (and, in,general, fixes no other previsions). Thus, 
it is natural to view C as generating a vector space L (where each element 
of C is a vector in L and linear combinations of vectors are the corresponding 
linear combinations of the elements in C). 

Prevision is basic because linearity, i.e. adding quantities, is 
basic. We build multiplicative structure into L by defining an inner product 
over L, for each X,Y in L by (X,Y) = p(XY). We call any collection of 
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prev1s10ns organised to define an inner product space with this inner product 
a BELIEF STRUCTURE. Thus, we form a belief structure by first specifying 
some collection C = [X,Y,Z, ••• ] of random quantities, termed the BASE of 
the belief structure, and tt.en specifying the values P(XY) for each pair of 
elements in C. (We restrict C to elements with finite squared prevision. 
We usually require that the constant is an element of C. Compare the 
geometric interpretation of prevision given in de Finetti (1974: Section 4.17).) 

Different elements of C may refer to the same (mathematical) variable 
e.g. X and log(X) are different random quantities, as they are not linearly 
related. If we wish to specify beliefs relating to log (X) thenwe introduce 
10g(X) into C. In many situations, we will introduce only a few such 
functions into the base of our belief structures. If we introduce all 
functions (and products) of all quantities of interest then the corresponding 
belief structure is equiValent to that given by the usual Bayesian prior 
specification. (The Bayesian specification concerns a probability measure 
over some space, while a belief structure is any subspace of the Hilbert 
space of square integrable functions over that space, with respect to the 
probability measure, under the usual product integral norm; further discussion 
in Goldstein (1984». Of course, we could choose different methods of 
organisation for previsions. However, any such choice would" be constrained 
by our requirements as to the use of the belief inputs, and, in particular, by 
the need for simple organising principles for output, a practical exchange
ability principle and a satisfactory approach to the revision of belief. 

3.3 Exchangeability Generates Statistical Models 

Statistical models relate to quantities that carry the same "name" in a 
variety of situations (e.g. measurements of "height" on different individuals). 
Exchangeable beliefs for sequences are those which are not affected by 
permuting the order of the sequences. Exchangeable belief structures are 
those generated as follows. 

Begin with a sequence C* = [X,Y,Z, ••• ] of "names" (for example X,Y,Z, ••• 
might be "blood pressure", "log blood pressure", "temperature", etc.). This 
system of names is applied to a series of situations (e.g. the examination 
of a sequence of patients), to generate a sequence B1, B2, B3, ••• of belief 
structures, one for each situation. The base of Bi is [Xi'Yi,Zi' ••• ]' where 
Xi is the value of X in situation i and so forth (e.g. Xi m1ght be the blood 
pressure of patient i). Exchangeability denotes the case where 

(1) each belief structure is essentially the same i.e. for any X,Y in C*, 
and any i, (Xi,Yi) = (X,Y), (a constant for all i). 

(2) the relationship between each pair of belief structures is essentially 
the same, i.e. for any X,Y in C* and any i;t j (Xi'Yj) = (X,Y)*, (a constant 
for all i;t j ) • 

Specification of all the values (X,Y) and (X,Y)* uniquely specifies the 
belief structure B with base consisting of all the observable quantities 
under consideration (i.e. the base generated by all quantities of form Z·, Z 
in C*, and any i). Thus, we say that a collection of belief structures i~ 
EXCHANGEABLE if it is generated in the above manner, with inner product 
satisfying constraints ( 1) and (2) above. 

As a simple illustration, consider tossing coins. C* might be [1,H], 
where 1 is the unit constant and H is 1 for a head, 0 for a tail. Bi has 
base [1,Hi], where Hi is 1 if toss i is heads otherwise o. Conditions (1) 
and (2) become: (1) we assign the same probability p that each individual 
toss will show heads; (2) we assign the same probability q that any two 
differe~t tosses w~ll show heads. ~e.can make as detailed specifications 
as we l1ke, by add1ng fUrther quant1t1es to C*. However, if the values p and 
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and q, and the above conditions (1) and (2) are all that we are prepared 
to specifY, then we should be able to obtain and analyse the implied model, 
without having to pretend to the infinite number of further specifications 
required by the usual exchangeability construction. 

The standard exchangeability results concern in principle an infinite 
number of exchangeable situations, i.e. where there is no limit to the 
number of cases to which exchangeability relates. If we are considering, in 
principle, an infinite number of belief structures, then we may make a 
similar construction. For each X in C, we construct the quantity X* which is 
the Cauchy limit of the partial sums (X1+ ••• +Xn)/n, as n tends to infinity. 
(So, x* is an element of B*, the closure of the overall belief structure B.) 
We now form the belief structure M whose base is all the quantities X* for X 
in C. M functions as the underlying "model" for our beliefs. We formalise 
this by creating a sequence of mutually orthogonal belief structures M, R1, 
R2' R3, ••• for which, for each i, Bi is a subspace of M+Ri. Each Ri has, in 
a natural sense, the same belief structure. So, instead of constructing, from 
a sequence of exchangeable probability specifications, a further probability 
measure, conditional on which the sequence is iid, we construct, from a 
sequence of exchangeable belief structures, a further belief structure "given 
which" all of the residual belief structures, Ri, are individually the same, 
and mutually uncorrelated. (The details with modifications for finite exchange
ability, are given in Goldstein (1986b).). As all the spaces Ri are mutually 
orthogonal, all the relationships that we have expressed between the various 
belief structures Bi are "explained" by the common relationship of each 
structure to the "model" M. 

For example, in our coin example, we form M with base [1 ,H*], where H* is 
the Cauchy limit of the quantities Pn , the proportion of heads in the first 
n tosses. We write each H. = H*+ri, where the quantities ri are mutually 
uncorrelated with the same~variance, and so forth. H* acts as our primitive 
concept of a "limiting frequency of heads", and our previsions for this 
quantity are determined by our previsions for the individual tosses (for 
example P(H*2) = q). (Note that exchangeability generates large numbers of 
beliefs from consideration of simple situations (in this case two coin tosses), 
using our perception of symmetries to extend these assessments to all of the 
cases that we might consider. One of the problems with the probabilistic 
formulation is that we must explicitly consider all the situations because we 
must specify all of the joint probabilities.) 

Exchangeable belief systems form our basic models. Collections of 
sequences of belief structures which are mutually co-exchangeable (a natural 
extension of our definition of exchangeability) give the general model 
structure. (Details in Goldstein (1986b)). Themutual orthogonality relations 
between the spaces R· are fundamental, beyond their intuitive interpretation, 
because of the way tfiat beliefs are revised within our system. We now consider 
~he basis of our inferential arguments. 

3.4 Temporal Coherence 

What explicit, checkable, justifiable conditions can we impose upon our 
beliefs which will yield systematic approaches to the revision of belief 
structures? Our conditions must be stringent enough to provide a satisfactory 
account of the revision of models generated through exchangeability arguments 
while not treating statistical models as if they possessed some logical 
validity external to our specifications. The conditions should be sufficiently 
reasonable that breaching these conditions would suggest the situation to be 
sufficiently untypical that no standard analysis would be likely to cover it. 
(The Bayesian coherence condition is not particularly reasonable; we are 
supposed to be able to anticipate our reactions to all conceivable eventual
ities, and we intend our anticipated reactions to become our actual reactions 
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without further consideration.) Our framework is as follows. 

We suppose that at each particular moment our current beliefs should be 
coherent. This has two implications for our current beliefs about our 
future beliefs. Firstly we should now believe that our future beliefs (as 
specified by us at the future time point) should be coherent (at that time). 
Secondly, our current beliefs about our future beliefs should be coherent 
when we treat our future specifications simply as random quantities. 

Further, we interpret coherence as an argument that we should avoid (or 
at least be wary of) finite collections of actions with the property that we 
can provide some automatic mechanical rule which, if we followed it, would 
automatically lead us to lower loss. This is fairly clear when applied to 
actions which are all taken at the same time. It is more subtle for collec
tions of acts taken at several time points. These subtleties are certainly 
worthy of careful investigation. However, as long as our coherence require
ments are clear and generally useful, then they may be applied in most 
situations. In those special circumstances when they do not seem so 
compelling, we will not expect our methods to apply. We do not view coherence 
as representing a fundamental rationality requirement, but rather as an 
efficient way of identifying wide classes of situations in which we may 
exploit certain useful structural properties of the subjectivist language. 
The coherence conditions outlined in skeletal form above seemtobe reasonable 
for most statistical applications. They can be (loosely) reformulated that 
there is no information that we would pay money not to receive (that is, in 
practice there are plenty of reasons to avoid receiving information but none 
of them are related to the usual rationality requirements that statisticians 
are concerned with). 

The above conditions are applied as follows. Suppose that we now 
consider our prevision, p(X), for a random quantity X. Suppose that at time 
t we intend to consider this problem again, at which time we will announce 
a new value for the prevision of X. At the present moment we do not know 
what value we will assign for this prevision, so that it is for us a random 
quantity, Pt(X) say. This quantity is a genuine posterior prevision. Such 
future assignments are random quantities which are currently of interest to 
us. Stating beliefs about our future beliefs is not logically different from 
belief specifications for any of the other quantities over which we have some 
measure of control but for which we are prepared to specify beliefs. Some
times, we may find these beliefs hard to specify, but that is why we need 
guidance from the theory. Given the above coherence conditions, we can show 
that our present and future previsions for any bounded random quantity X 
must satisfy the fundamental relation p(Pt(X)) = p(X). (This result is 
derived in Goldstein (1983), although the nature of the temporal constraints 
is dealt with rather briefly. Note that t can be a fixed or a random time -
e.g. tomorrow at noon, after the experiment is finished, etc.). 

The above relation is somewhat similar to the relation that the 
expectation of a conditional expectation is equal to the original expectation. 
However, the relationship for conditional expectations is fundamentally 
different, in that it refers exclusively to beliefs revised by conditioning. 
The relationship for Pt(X) is derived without making any assumptions about 
the way that Pt(X) will be evaluated, excepting our requirement that at the 
future time when it is assigned, this assignment is consistent with any other 
specifications made at that time. Our beliefs are not revised, even in 
principle, by determining some limiting partition and then conditioning on a 
single outcome. Just as previsions made at one time point obey a single basic 
property, namely linearity, beliefs specified at different time points 
satisfy a single temporal property, namely p(Pt(X)) = P(X). To build an 
inferential system exploiting this property, we must first consider what we 
require of such a system. 
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3.5 Inferential Framework - Preliminary Comments 

The Bayesian revision of probabilistic beliefs, exclusively by condition
ing, is inadequate for our purposes, for two reasons. Firstly, we may only 
condition upon events. This forces us back into consideration of limiting 
partitions, and so into impossible problems both in the anticipation of 
possibilities and in belief specification over these possibilities. Secondly, 
conditional beliefs are inherently different from posterior beliefs. Condition
al prevision on some conditioning event A cannot be considered to be the 
value we would express were we to learn that A has occurred and nothing else, 
as if we happened to receive no other relevant evidence at the time that we 
happened to learn A (which would itself be a sUbjective judgement),thenthis 
would itself be relevant to our revision of belief. Further, even if we 
could give some sUbstantitive meaning to learning only A, we still could not 
equate conditional previsions given A with posterior previsions on learning 
"only A", as conditional previsions relate to "called-off" bets or penalties 
for which posterior considerations under the special case of learning "only 
A" have no particular relevance. (For example, how do we interpret likelihood
type probability statements made "conditional" on models built from exchange
ability arguments?) 

The alternative description of the inferential process is based on such 
properties as can be justified by careful temporal accounting. Relations of the 
type p(pt(X)) = P(X) place no logical constraints upon actual future beliefs, 
but instead concern current attitudes to future beliefs. At any time point 
we may make probabilistic statements about our future beliefs. At a future 
time point, all that such statements can offer is guidance as to what conclu
sions we may reasonably reach. Sometimes we will take such guidance to be 
strongly suggestive, while,at other times, all it may provide is preliminary 
guidance as to which data to collect and which features of the data to give 
close scrutiny, with no implication whatever as to final decisions. 

As an introduction to our formulation we now discuss further the relation
ship between conditional and posterior prevision. DeFinetti (1974, Chapter 4) 
defines the conditional prevision of X given E in terms of the "called off 
penalty" version of the definition of prevision, i.e. P(XIE) is the number x 
that we would choose if confronted with a certain kind of penalty if E occurs, 
with no penalty otherwise. As with all tight definitions of conditioning this 
refers to an assignment of beliefs now, before the occurrence or otherwise of 
E is established. We must explicitly construct links between conditional 
previsions and any prevision we might specify on observing E. 

Thus suppose that before time t we shall certainly observe an event whose 
possible values can be represented by the partition H = [H" ••• Hk]' We can 
show from the basic temporal relations of section (3.4) that, for any bounded 
random X, we may currently write pt(X) = P(XIH) + R. Here P(XIH) is the 
prevision of X conditional on the partion H, which can be written, re~lacing 
each Hi by the indicator function for the corresponding event, as P(XIH) = 
P(XIH1)Hl + ••• + P(XIHk)Hk' and R is a random quantity satisfying P(R) = 
P(R Hl) = ... = p(RIHk) = 0, and for which var(R) is not greater than var(X) -
var(P(XIH)). (Details in Goldstein (1986a).) 

In the relation Pt(X) = P(XIH) + R, pt(X) is somewhat like a posterior 
prevision for X "having seen Hit. However, we index this by t rather than H 
because we can precisely define t, so that Pt(X) is a well defined quantity 
which can be analysed by the methods of the theory, whereas we can give no 
substantive meaning to phrases like "having seen H and nothing else." (If we 
want to emphasise H, then we write t as t(H).) Further, the crux of the 
relation is that if t is any well defined time point by which H will certainly 
have been observed, then conditional and posterior beliefs will be so related. 
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Our beliefs as to what else we might observe or reflect on are expressed in 
the random component R. 

The use that we make of such relationships depends upon the context. 
When the simplification is harmless, we can operate a deterministic inference 
system governed by conditioning. Indeed, we now have a logical justification 
for so doing in that this is acceptable as a sUbjective judgement when we 
make the further sUbjective judgement that the random components of our 
uncertainty equations are unimportant to the case at hand. We replace a 
theory which concerns "perfect" inferential systems (but for which assessment 
of the relevance of the inferential procedures to the matter at hand lies 
outside the theory) with an approach in which judgements as to the adequacy 
of the deterministic inferential system are incorporated into the body of 
the theory (and can thus be analysed by the methods of the theory). In 
most cases the non-deterministic elements of the inferential procedure will 
be just as important as the deterministic elements; the interplay between 
these two aspects constitutes the subjectivist analysis. However, before 
we can discuss this interplay we must describe the revision of beliefs for 
a general belief structure. 

3.6 Belief Revision Is Organised by Self-Adjoint Operators 

What features are common to every revision of beliefs over a belief 
structure, A1 We must specify, at the future timet at which beliefs are to 
be revised, the new inner product over A, i.e. for every pair of elements 
X,Y in the base of A, the quantities pt(XY) will be specified. In a stochas
tic system of inference, we must describe the stochastic rules governing the 
structure of our collection of revisions of belief. We can establish, using 
the temporal constraints, that for any revision of beliefs, we can construct 
an associated BELIEF TRANSFORM T, where T is a bounded, self-adjoint linear 
operator on A. The belief transform summarises the revision of beliefs as 
follows. 

Denote the ordered eigenvalues of T by m1, m2, ••• with corresponding 
eigenvectors V1, V2, ••• , normalising each Vi to unit norm. The collection 
V = [V1,V2' ••• ] imposes an orthogonal coordinate frame over A which expresses 
all of the effects of the belief revision. For example, the expected 
reduction in variance for each Vi is mi. Take any element X in A, with zero 
prevision and unit norm. Resolve X along each coordinate axis. Then the 
expected reduction in variance for X is simply the sum of the reductions 
in variance along each coordinate axis (i.e. the sum of terms mi(X,Vi)), 
with similar expressions for revisions of covariance. 

The belief transform gives a simple geometric picture of expected 
revisions of belief. Elements of A with large components in the directions 
corresponding to large eigenValues are those about which we expect to learn 
a lot, elements lying substantially in subspaces spanned by small eigenvalues 
are those which we do not expect to learn much about. (Details in Goldstein 
(1981).) In this picture all secondary features have been eliminated. 
The belief transform expresses changes in beliefs, not the reasons for these 
changes. Thus, if we want to compare various different ways of collecting 
information (fixed or variable sample sizes, how many auxiliary variables. 
how much pre-testing or whatever), then although the notional sample spaces 
for the different approaches (even if we can construct them) may be very 
different, the belief transform for each approach will be directly compar
able, and will summarise the effectiveness of each approach in modifying our 
beliefs. The belief transform plays a fundamental role by virtue of its 
relationship with the inferential and exchangeability principles for the 
system. We now discuss these links. 
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3.7 Probabilistic and Deterministic Components of Belief Transforms 

We now describe the general decomposition of the belief transform into 
probabilistic and deterministic components. The deterministic component 
relates to explicit data-based revisions of belief. We term a "data 
structure" (with respect to time t) to be any belief structure D with the 
property that everyone of its base elements will certainly be known by time t. 
There is no single belief specification D which can, in general, carryall of 
the information that we receive by t. Further, even if there was such a 
structure, we WOuld, in general, have no interest in specifying beliefs to 
such an extreme level of detail. Instead, just as we select certain beliefs 
of primary interest by our choice of belief structure A, we then specify , 
those aspects of our beliefs about the evidence which we wish to explicitly 
introduce into our analysis by our choice of D. 

In order to relate D to A, we construct the combined belief structure 
C = A+D. The effect of this specification upon the uncertainties of the 
elements of A evaluated at time t may be represented in terms of the space 
[A/D], the space A ADJUSTED by D, where [A/D] is the orthogonal complement of 
D in the combined space C. (Essentially, we replace each X in A by the 
corresponding quantity (x -PD(X)), where PD is the orthogonal projection 
operator·into D. A simple interpretation of [A/D] is as a summary of the 
"residual" variability for each element of A after we subtract from each of 
the base elements of A the corresponding "linear Bayes rule" selected from 
the base of D. Details in Goldstein (1985b).) In a Bayesian specification, 
D corresponds to a full probability specification over some sample space, and 
PD(X) is the conditional prevision of X given the sample. Our choice of 
"quotient space" notation emphasises that the adjustment of one belief 
structure by another is analogous to such probabilistic conditioning. How
ever, there is nothing fundamental about the process of conditioning. The 
arguments apply to ~ data structure, with conditioning replaced by orthog
onal projection. 

Each general belief adjustment [A/D] carries an associated belief 
transform TD = PAPD (where PA' PD are orthogonal projections into A,D). The 
essential property of TD is that it splits the overall belief transform over 
A, that is we may write T = TD + TR, where TR is also a bounded self adjoint 
"belief transform" over A, and the overall belief transform is the sum of TD 
and TR' To assess our change in information about a general element X in A, 
we see how much we expect to learn about X according to TD and TR separately 
and our overall expected change in beliefs about X is the sum of the two 
quantities. (A derivation is given in Goldstein (1986b), although emphasis 
is placed on changes in beliefs about the individual quantities). 

We construct and compare the two transforms TD and TR, either directly. 
or by comparison of ~ with direct eValuation of T. We term TD the 
AUTOMATIC BELIEF T~FORM induced by D, as it is explicitly determined by our 
previsions over A and D, and term TR the posterior belief transform comple
mentary to D. Quantities in A which relate to large eigenvalues in TD but 
small values in TR are essentially those for which we expect our automatic 
procedures to extract most of the relevant information without any further 
reflection on our part. Those corresponding to large eigenvalues in TR but 
small eigenvalues in To are those for which we judge posterior reflection to 
be important. We increase the relative importance of the eigenstructure of 
TD as compared to TR by adding new quantities into D, both by observing more 
and also by specifying in greater detail our beliefs. The automatic transform 
induced by each D expresses the efficiency of the corresponding automatic 
procedure. 

How we specify the various belief transforms will depend upon the 
situation. Sometimes, we start with little idea about our global revisions 
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of belief, but detailed ideas about how to specify the elements needed to 
!Valuat! ~D' MAny atanda~d atatiatieal p~6DleMa fall into this 6ategO~Y, 
and interest may focus on the conversion of plausible automatic procedures 
into genuine posterior procedures. In many other problems, we begin with 
detailed notions as to our global revisions of belief but little quantitive 
idea as to the factors which tend to lead us to such beliefs. For example, 
a doctor routinely diagnosing patients might find it easy to describe the 
kinds of information that he expected from the examination, but might find 
it very difficult to break this information down into specific inferences from 
particular diagnostic procedures, particularly as he would not expect the 
examination to develop in the same way for each patient. In such cases, we 
might try to identify those areas for which judgements can be reduced to an 
automatic routine, and those areas which appear to rely intrinsically on 
posterior jUdgements. 

Our final step in describing the framework is to relate the belief 
transforms, and their separation, to the general statistical models which 
we have generated via exchangeability. 

3.8 Belief Transforms and Exchangeable Systems 

Suppose that we will observe a sample of individual cases from an 
exchangeable system of belief structures. We intend to revise our beliefs 
about further cases that we might observe. We want to treat the associated 
statistical model for the system as though it were an observable, rather 
than hypothetical, belief structure, revise our beliefs about the model using 
the methods for revising belief structures described above, and then use our 
representation theorem to revise beliefs about each further observable case 
(by writing each such case as the sum of the revised model space and the 
original, unrevised residual structure). In this way we could reduce a 
large number of difficult revisions of belief into a single, straightforward 
revision. 

However, we must be careful in our formulation. Firstly, we will not 
simplY observe a sequence of n individual cases "and nothing else". Secondly, 
at any moment we may abandon our belief in exchangeability for the sequence, 
at which point the model ceases to exist. We must determine those additional 
constraints that our beliefs must satisfy in order that the inferential 
arguments of the preceding sections may be applied to our models. 

These conditions are as follows. Begin with the sequence of names 
C* = [X,Y, ••• ] which generate the exchangeable sequence, B1, B2, •••• 
Create the new sequence C*t = [Pt (X),Pt(Y), ••• ] which generates the sequence 
Bt1 , Bt 2"" of belief structures, where the base of Bti is [Pt(Xi),Pt(Yi), .. ] 
where pt(Z) is the prevision for Z that we will express at time t. (All 
assignments are made now, so that all future assessments are currently 
random quantities.) It can be shown that we are justified in using our 
model analysis to make statements about future observables if there is some N 
for which the collection of all structures Bti, i > N, is an exchangeable 
system. This condition is a precise expression of the informal requirement 
that at present we cannot identify any particular subsequence of the future 
situations about which we already expect that, by time t, we will have 
received a different amount of information than any other subsequence. (We 
exclude the first N situations as these will form part of our sampling 
procedure) • 

Orthogonality between the residual structures and the model structure is 
crucial to these results. For example, if we consider the adjustment of Bi 
by observation on B(n) = B1+" .+Bn, (the belief structure corresponding to the 
first n situations), where i > n, then just as we may write Bi as a subspace 
of M + Ri, we can write the adjusted space [Bi/B(n)], as the corresponding 
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subspace of [M/B(n)J + Ri. 
adjust a future observable 
representation theorem). 

(Notice that this is just what we want. We 
by adjusting the model and then applying the 

The key quantity is the belief transform. We must evaluate transforms 
over belief structures corresponding to future observables, based on observ
ation of structures exchangeable with the structures of interest. Given the 
above conditions on our beliefs, we can decompose such a transform into the 
sum of a transform over the model structure, plus an (essentially random) 
transform over the residual spaces. The model analysis has a very simple 
form. For example if we construct the automatic belief transform over M 
induced by the data structure B(n), then it is essentially the same for 
eacn value of n (i.e. the eigenvectors are the same for all n, and the 
eigenvalues for different n are related by simple formulae). If we look 
instead at the automatic belief transform over Bi induced by B(n), i > n, 
then we find that it is essentially the same as the transform over M (the 
eigenvectors are the same, and the eigenvalues are related by simple 
formulae). Thus the model analysis preserves all the information for the 
analysis of future observables. 

To summarise our development, the argument is as follows. Working with 
belief structures gives us automatic access to intuitive, easily programmed 
and interpreted summaries of our revisions of belief in the form of belief 
transforms. For exchangeable structures these transforms have much extra 
structure that we can easily exploit to understand in detail the effect of 
increasing quantities of information upon our beliefs. These transforms can 
be considered to operate upon simple models of our system. These models are 
directly constructed from our statements about observables. We have sound 
logical reasons for relating our hypothetical model analysis to our actual 
posterior beliefs about future observables. In this way, all the features 
of a proper SUbjectivist system work together. (The results referred to in 
this section will be reported more fully elsewhere.) 

4. IMPLEMENTATION 

Having been awarded a three year grant (by the Science and Engineering 
Research Council) to produce a sample program, we decided to concentrate on 
certain limited aspects of the theory in order to have a useful working 
module by the end of the period (we being ~self and David Wooff, who is 
converting the general theory to matrix form and writing the computer imple
mentation). Thus our program focuses upon the analysis of exchangeable and 
co-exchangeable belief structures by means of direct evaluation of the 
automatic belief transforms for the structure. (A brief discussion of the 
program, with examples, is given in Goldstein (1987).) 

To illustrate the type of questions we might address, suppose that there 
are some basic quantities of interest (e.g. effectiveness of various drugs 
for individual patients). We want good "estimates" for certain effects, and 
we can list a further collection of possible covariates. We do not want to 
use them all, for reasons of cost, difficulties in specifYing all the 
required beliefs, desire for simplicity etc.. Thus we want guidance as to 
how adding or deleting these quantities from our formal structure changes 
our state of information concerning the primary quantities of interest, 
given a sample of n upon whichever elements we decide to include in our 
analysis. We collect the primary quantities of interest into an exchangeable 
belief system A. We view A as a subspace of the larger exchangeable belief 
structure B corresponding to all the quantities under consideration. The 
automatic transform over B for a sample of n induces an automatic transform, 
TA, over A, which summaries the information provided by observation of the 
sample of elements from B. We compare the eigenstructure of TA for varying 
choices of B and n, until we find a satisfactory choice. 
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The simplest choice criterion is the trace of TA which is a scale free 
measure of information gained over A. We might, for example, proceed in a 
stepwise fashion, adding terms to B one at a time to stepwise maximise the 
trace. (This approach, for a collection of m possible candidates for B, 
reduces the number of belief specifications from order m2 down to order m). 
Alternately, we may decompose a large system Bi into orthogonal components, 
each of which makes a "separate" contribution to the trace of TA, for 
various choices of n. We can then see how the quantities in B are combining 
to provide the information that we receive, and how this is affected by 
sample size. We then select those combinations of elements in B which 
seem to be most informative. 

As time permits, we are adding various further facilities; gene~al 
analysis of co-exchangeable structures; data diagnostics (highly informative 
components of the belief transform modify our beliefs while apparently 
uninformative components form the diagnostic system, rather like residual 
plots); basic model specification (corresponding to constraints upon belief 
specifications beyond those imposed by coherence). Although hopefully this 
program will provide useful and interesting output in its own right, it is 
not an end in itself. Rather, it is a module within a larger system, 
namely (at least the skeleton of) a fully articulated SUbjectivist system. 

In our implementation, we have concentrated on the automatic transform. 
Partly, this is for simplicity - we can easily extract rich output from 
this transform. However, partly this is because given a fully developed 
system for analysing this transform, we can "bootstrap" ourselves into 
constructing the random components of such transforms, in many situations. 
This is because the random components will tend to be informative precisely 
in those situations where we have experience of making similar jUdgements. 
For example, we may place our procedure online, monitoring actual posterior 
jUdgements and using these jUdgements as the base of a further exchangeable 
system. The automatic transform for this system directly reduces the 
random component of the original transform for future jUdgements of a 
similar nature. By relating our theory directly to actual posterior judge
ments, these judgements themselves become available to us as raw material 
to which we can apply the full SUbjectivist methodology. 

Given the caveat that currently our program is very much in an embryo 
form for which the usermust provide the "subjectivist environment", we 
would welcome enquiries from people interested in trying it. 

5. CONCLUDING COMMENTS 

There are various technical problems involved in the construction of 
SUbjectivist statistical systems. However, for the most part these problems 
can be overcome by careful analysis. More intractable are those questions 
relating to the objectives of the analysis. 

We have argued that our beliefs are worth serious study, and that it is 
intrinsically worthwhile to step back from our activities and reflect 
systematically upon the reasoning which underpins our lives. However, while 
many people might informally agree with such a proposition (while reserving 
a natural scepticism as to whether this is actually possible), there are 
few individuals to whom such an activity would appear to have direct 
professional relevance. To the extent that any group uses Bayesian methods, 
then such use is always subordinate to some specific application. It often 
seems that belief examination methodology is being used to examine everything 
except our beliefs. However, subjectivist theory has enormous and currently 
untapped potential for integrating information into our belief systems, in a 
clear and logically justifiable fashion (quite apart from its philosophical 
and mathematical appeal). We have described one possible attempt to realise 
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some of this potential, and argued that this approach is not arbitrary, but 
rather is directed by our view of the intrinsic nature of the sUbjectivist 
language. These are simply first steps - an exploration of possibilities 
demonstrating that there are alternative ways to establish the foundations of 
our subject, that these choices have important practical consequences and 
that foundations and implementation can and should be developed in a unified 
manner. 
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1. INTRODUCTION 

In reliability analysis the Weibull distribution and other standard 
distribution functions have successfully been used to describe the 
probability of failure of a system as a function of its age, operational 
time or some other measure of its life time. One is led to choose such 
distributions because of their fit to experimental data. For systems with 
extended life times one is confronted with the question how to estimate 
life time distributions beforehand. The method of accelerated life testing 
deals with this problem, see Viertl (1983). One has to extrapolate from 
life time distributions of systems under stress by constructing appropriate 
acceleration functions. Because of the uncertainty in the validity of the 
extrapolation, it is worth to use available information about the system in 
the process of estimating life times under normal and under stress con
ditions. 

In our presentation we analyse stochastic dynamical systems and try 
to extract from their statistical properties an approximation for the shape 
of the life time distribution. The inverse Gaussian distribution, used in 
reliability, illustrates this strategy, see Martz and Waller (1982). It is 
the distribution of first passage time for a Brownian motion process with 
drift. It describes failure due to wearout and chance. The stochastic 
differential equation for this process p(t) reads 

dP = adt + r dW, p(o) = 0, ( 1.1) 

where W(t) is a Wiener process. The first passage time distribution at 
P = 1 is 

f(t;a,r) (1.2) 

which is equivalent with the inverse Gaussian distribution. 

2. STOCHASTIC FORCING OF SYSTEMS WITH UNKNOWN INTERNAL DYNAMICS 

When a system is put under stress, it is indeed so that wearout fastens 
and life time decreases as argued in the introduction. In order to let 
accelerated life tests gain in predictive power, we will model more closely 
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the way stress is acting upon the system •. Let us assume that in its normal 
operation mode the system is stable in the sense that, if the system is 
perturbed, it returns to its operation mode. Let this restoring force have 
a relaxation time constant b. Stress means that at frequent time instances 
the system is pushed against this restoring force. Assuming that these 
external perturbations have a stochastic nature and are of a type known 
as white noise, we arrive at an Ornstein-Uhlenbeck process for modeling the 
response of the system: 

dX = -bX dt + s dW, (2.1) 

where W(t) denotes a Wiener process. The state variable X can be seen as the 
deflection in the direction of the eigenvector related with the real eigen
value -b of the system (for oscillatory damping the meaning is slightly 
different). The size of the stress is measured by s. Let for Ixi = L the 
deflection be so large that it significantly influences the life time of 
the system. Then assuming that the life time is proportional with the first 
passage time of arriving at X = ±L, we may concentrate ourselves on the 
solution of this well-known problem in the theory of stochastic processes. 
Let us first apply a scaling such that L = 1. Then for (2.1) with 

X(O) = x, Ixl < 1 (2.2) 

we may study the first passage at X = ±1. The Laplace transform of the 
distribution function f(t;x) of the first passage time T(x) can be expressed 
in terms of parabolic cylinder functions, see e.g. Capocelli and Ricciardi 
(1971). However, this expression is too complicated for the practical use 
in accelerated life testing. It suffices to find the first statistical 
moments T.(x) of this distribution: 

1. 00. 

T.(x) = J t1.f (t;x)dt. (2.3) 
1. 0 

The expected value of T(x) satisfies Dynkin's equation 

2 dZT1 dT 1 
~s -2- - bx dx = -1, Tl (±1) = 0 

dx 

or 
2 x Y {b( 2 2)} T1(x) = -Z J J exp y ;z dz dy, 

s -lOs 
(2.4) 

see Gardiner (1983). For the second moment we obtain 

2 
2 d TZ dT2 

h ---bx-=-ZT1(X), 
dx2 dx 

or 

4 x Y {b( 2 2)} T2(x) = -2 J J T1(z) exp y ;z dz dy. 
s -10 s 

(Z.5) 

Because of the scaling the stress parameter s will be small compared with 
unity and so we may expand (2.4) and (2.5) with respect to s giving 

with 
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E{T(O)} = T1(O) = P, 

Var{T(O)} = T2(0) - T~(O) ~ p2 - R 

Z 
P =.!!....~ bls Zb be, 

2 R = 2~.{- ebls • 
b 

(2.6a) 

(2.6b) 

(Z.7) 



Since R is small with respect to p2, one may approximate the life time 
function by an exponential distribution with A = IIp. However, in order not 
to lOOg~ Info~tion that ii contain@d in Rs we prOpOBG t~ U~~ ~be ~~~ 
distribution with 

A = IIp and 2 
Ci. = 1 + RI:£ • (2.8) 

Let in experiments on accelerated life tests the physical stress be measured 
by 0. Assuming that 0 is proportional with the mathematical stress parameter 
s, we can estimate the life time under normal conditions as follows. For 
given 0 the mean and variance of the life time of N samples in the 
experi~~~ under stress are computed or a Gamma distribution is fitted to 
the outcome of the experiment. Then by using (2.6)-(2.8) we derive the 
values for band s • Since it is assumed that 

S exp 
s = exp 0 (2.9) 
norm 0 norm' exp 

we can compute the Gamma distribution approximating the life time distri
bution under normal conditions. 

The first passage time problem for the parameter P of the introduction 
and the analogous problem for the state variable X above, can be combined: 

T = min(T ,T ) P x 

with T having a mixed distribution 

f(t) = q f (t) + (l-q)f (t), 
p x 

00 

q = Prob(T < T ) = f F (s){l-F (s)}ds. 
P x 0 P x 

(2.10) 

However, it is expected that changes in P will affect the dynamics of X, 
like the change in stiffness of a spring will influence its deflection. A 
correct modelling of the interaction between system parameters and system 
variables requires a better knowledge of the internal dynamics. 

3. THE FIRST PASSAGE TIME PROBLEM FOR SYSTEMS WITH CHANGING PARAMETERS 

In this section we give the general formulation of the class of 
dynamical systems for which the first passage time problem can be analyzed. 
We assume that the change of the parameters is described by a Brownian 
motion process with a drift depending on the parameter values only. Then 
the system is written as 

m 
dX. = F.(X,P)dt + ~ s.k(X,P)dWk• 

l. l. k=l l. 
n 

dP. = G.(P)dt + ~ r. 1(P)dW1, 
J J 1=1 J 

i 

j 

1 •••• ,m. 

1, ... ,n, 

(3.1a) 

(3.1b) 

where Wk(t) and WI(t) denote independent Wiener processes. The diffusion 
coefficl.ents s.k and r. l may vanish in some of the equations. Moreover, 
forcing by c016ured noise may be included, see Grasman (1985). Since P 
changes slowly compared with X. G. and r. 1 will be small. However, intro
duction of multi-time scales wi11Jnot beJnecessary, as we may employ the 
smallness of coefficients in the asymptotic analysis of Dynkin's equation. 
If G. and r. 1 are allowed to depend on X, an averaging technique has to be 
applied, seJ Freid1in and Wentzell (1984). Since this brings about a 
considerable complication in the analysis, we exclude this possibility in 
our present investigations. For (3.1) with starting values within a domain 
n of the x,p-space we consider the time T(x,p) of reaching the boundary an. 
The statistical moments of T(x,p) satisfy a recurrent system of partial 
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differential equations: 

LT = -qT 1 (x,p) in n q q-

T = 0 at an, q = 1,2, ••• , 
q 

where L denotes the elliptic partial differential operator 
m 2 a2 n 2 a2 man a 

! L s 'k .".,,""':"',,:-- +! L r'l.... .... + L F, -.... - + L G, -.... -, 
i,k=l 1 oxioXk j,l=l J oPjoPl i=l 1 OXi j=l J OPj 

(3.2a) 

(3.2b) 

see Gardiner (1983). In the next section we will work out this problem in 
a particular example. 

4. RELIABILITY OF A SWITCH 

A switch is assumed to satisfy the differential equation 

d2z dz dV 
dt2 + c dt + dz = F(t), 

where parameter c is sufficiently large and 

V(z) = z4 _ z2. 

Fig. 1. A point mass in the potential field V(z) describing 
the dynamics of the switch with two stable positions 
z_l and zl' 

(4.1) 

(4.2) 

In fig. 1 it is observed that the system has only two stable stationary 
states. By the external force F(t) it may be put from one position in 
the other. The reliability of the switch depends on the parameter c and on 
the effect of external unintended perturbations upon the system. In order 
to investigate these factors we formulate the first passage time problem 
of the switch starting in position z with random perturbations (white 
noise) for slowly decreasing c (stiflness). In the form (3.1) the system 
(4.1) becomes 
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dX1 = K~ dt, 
d~ = {-PX2-V' (Xl )}dt + s dW2, 

dP = -adt + r dWl , 

~1 {Q} = ?Ol' 
~(O) = 0, 

p(O) = cO' 

{4!2a} 

(4.2b) 

(4.2c) 

The domain n is bounded by xl = 0 (switch changes spontaneously from 
position) and p = c. (switch does not pass the quality requirments), see 
fig. 2. Since in th~!nproblem Eq. (3.2a) is parabolic, the boundary condition 
differs from (3.2b): T = 0 for p = c. and for xl = 0 with x2 < O. q mm 

o Co p-

Fig. 2. The domain n for the first passage time problem (4.2). 

In the present formulation we can also solve the problem of finding the 
right criterion to decide about replacement of the switch in order that exit 
through xl = 0 (failure) has a probability of a or less. Let the system have 
initial values 

{X(O),P(O)} = (x,p) 

Then the probability u(x,p) of exit through Xl = 0 satisfies 

Lu = 0 in n, 

u = {ci at Xl = 0, x2 < 0, 
at p = cmin ' 

Consequently, the probability of failure depends only on c. if one starts min with a new switch in position 1: 

a(cmin) = u(zl'O,cO)' 

,see fig. 3. From this relation one derives the value c. at which the 
switch should be replaced such that the probability ofmfiilure is a or less. 

i~ 
o cmln-

Fig. 3. Probability of failure as a function of the minimal stiffness 
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Calibrative densities for the unknown neutron dose Df of an 

individual accidentally exposed to high doses ()2Q rad) of neutrons 

are derived. These densities incorporate prior dose information 

(e.g .• from a dosimeter reading. or from dose reconstruction efforts). 

information from an in vitro calibration experiment with neutrons of 

the same energy. and information from the number of dicentric 

chromosome aberrations Yf observed shortly « 4 weeks) after exposure 

in a sample of nf lymphocytes from the exposed individual. If Y. the 

number of dicentric aberrations induced by a known neutron dose d in n 

lymphocytes is assumed to be Poisson distributed (Y- Po(nad}) and if 

Df and the parameter a are assumed to have gamma priors it is possible 

to give an analytic solution for the calibrative density f(dfl~). ~ 

consists of the calibration data and the observed aberrations in a 

sample of lymphocytes from the exposed individual. This density 

characterizes the remaining uncertainty about Df after consideration 

of the prior information about Df and a and of the data ~. 

INTRODUCTION 

After accidental exposures to low or high LET radiation it is 

desirable to obtain dose estimates for the accident victims. 

Estimation of doses is also mandated by regulations dependent on the 
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severity of the accident. Personal dosimeters and dose reconstruction 

by health physicists can provide initial information about the 

.magnitude of the radiation doses. In this paper we take the view that 

this prior dose information should be combined with data on chromosome 

aberrations observed in a sample of lymphocytes from the accident 

victim(s) to reduce the uncertainty about the rad1~tion doses to which 
the accident victims were exposed. Data on chromosome aberrations can 

be used to make inferences about radiation doses with the help of data 

from in vitro calibration experiments. In such experiments 

n.(i=l.2 •... N) lymphocytes are exposed in vitro to several fixed doses 
1 

di and the reSUlting aberrations y. are scored under the 
1 

microscope. The resulting reduction in the dose uncertainty helps 

physiCians to decide if and how the victim(s) should be treated. 

DERIVATION OF THE CALIBRATIVE DENSITY 

We are interested in obtaining an expression for the calibrative 

densityl f(dfIW). W stands for all the data and consists of the 

following observed events: 

The first N events correspond to the data from the "controlled" 

calibration experiment. In this experiment ni cells are exposed to 

a neutron dose di which is accurately controlled by the 

experimenter. In the n. cells so exposed y. chromosome 
1 1 

aberrations are observed. The last event consists of the observation 

of Yf chromosome aberrations i~ nf cells of the accident victim 

who was exposed to an unknown neutron dose Df . The subscript f is 

mnemonic for "future" and indicates that Yf is observed after the 

calibration experiment has been performed. 

Derivation of the calibrative density for Df • f(dfIW) involves 

expressing this density in terms of other densities and probabilities 

using the rules of probability. First. we will give a general 

derivation without a specific model and priors. This derivation 

involves a model parameter a which will later be identified as the 

rate at which chromosome aberrations are produced after neutron 

irradiation. 
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co 
f(dfl~} = f f(df,al~} da 

o 

= f f(dfla'Yf'~'} f(aIYf'~'} da 
(, 

(1) 

Where ~' = ~ - {Yflnf } stands for the calibration data and 

{Yflnf } is abbreviated by Yf in Equ. (1). Since conditional on a, 

Df is independent of ~' • we can rewrite the last line of Equ. (1): 

co 
f(dfl~) = f f(dfla,yf } f(aIYf'~'} da 

o 
co p(yfldf,a} f(dfla} =! p(Yfla} • f(aIYf'~'} da 

co p(yfldf,a} f(df } 

=! p(Yfla} 

p(Yfla,~'} f(al~'} 

P(Yf I~'} da 

co 
a: f(df } f p(yfldf,a} f(al~'} da (2) 

o 

Equ. (2) states that the calibrative density is proportional to the 

prior density for Df and the predictive density for a future number 

of chromosome aberrations Yf. The predictive distribut~on 

incorporates, of course, the information from the calibration 

experiment through the posterior distribution f(al~'}. For the 

derivation of Equ. (2) we assumed that the prior for Df does not 

depend on a. We proceed now to insert the appropriate model and the 

prior distributions used into Equ. (2) to obtain the special form of 

f(dfl~} which applies to dose estimation after neutron irradiation. 

In the literature on cytogenetic dosimetry (see e.g. Ref. 2) we 

found that a Poisson model for Y, the number of chromosome 

aberrations induced, is used for all types - high or low LET - of 

ionizing radiation. In the case of neutron exposure this model is: 

yl(a,n,d) ,., Po(nad} (3) 

In words the Poisson mean is proportional to the neutron dose d 

delivered to the n cells. This simple model neglects the background 

rate of chromosome aberrations. Since the background frequency is in 
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the range ot t to ~ per thousand cells.3 it can be neglected for doses 

of 20 rads and more. We judged garnma. priors for a and Df : 

a ~Ga(a.b}. Df ~ Ga(A.B}. The gamma family of distributions is 

rich enough to be able to express a multitude of judgements about the 

uncertainty surrounding a and Df and in addition it provides for 

the Poisson model the usual mathematical conveniences of a family of 

conjugate prior distributions. 

Inserting the Poisson model for Y and the priors for a and 

Df into Equ. (2) one finds: 

(4) 

where 

N N 
a = a + }; nid. and b. = }; y + Yf + b 

i=1 1 i=1 i 

The mode of f(dfl~} occurs at 

<1t = [-'€ + J(~ + 4k4(~-1} ]I2A 

with '€ = ~ + b. + 1 - ~ 

In the following section we will use Equ. (4) for a particular 

calibration experiment and show graphs of f(dfl~} for different 

observed Yf and nf 

EXAMPLE 

The example is based on a hypothetical radiation accident with a 

210Po_Be neutron source. Readout of the neutron dosimeter worn by 

the victim and subsequent calculations by Bayesian health physicists 

based on calibration data for the neutron dosimeter and the geometry 

of the accident yielded a calibrative density f(df } for the unknown 

dose Df to the lymphocytes of the victim which could be apprOXimated 

by a Ga(A = .1. B = 10}. This garnma. density becomes the prior for 

the subsequent analysis of dicentric chromosome aberrations in a 
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sample of lymphocytes from the victim. In nf = 104 metaphases a 

cytogenetic technician se6fea Yf ; S4 d{e6~tf{e !~6ff!t{6~s sA6ftly 
after the accident. Based on calibration experiments with other types 

of radiation the prior distribution for a was judged to be 

Ga(a = 1000 , b = 10) . As stated already earlier Y ~ Po(nad) is 

the statistical model. This model is thought to be valid for a wide 

2 range of neutron doses. If this model, the gamma priors for a and 

TABLE 1. Calibration data for Po-Be Neutrons 

(from reference 2) 

dose Cells Dicentrics 

d. (rad) n. Yi 1 1 

50 269 109 

75 78 47 

100 115 94 

150 90 114 

200 84 138 

250 59 125 

300 37 97 

D£ and the calibration data2 shown in Table 1 are used one obtains 

the calibrative density shown in Fig. 1 from Equ. (2). Fig. 1 shows 

also the prior density for Df . Both densities are divided by 

f(~I~) where ~ is the modal dose. Fig. 2 shows £(dfl~) for 

Yf = 8 dicentrics in nf = 13 metaphases. This density is clearly 

wider than f{dfl~) shown in Fig. 1. In practice the calibrative 

densities could be updated sequentially and scoring of metaphases 

could stop whenever the physician is satisfied by the obtained 

precision. 
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SUMMARY 

We derived calibrative densities for the unknown neutron dose Df 
of a hypothetical accident victim and pointed out that it is possible 

to obtain analytic solutions for this type of radiation if gamma 

priors and the "public" Poisson model from the cytogenetic literature 

are used. OUr calculations n@gl@ct@d the small background frgqugncy 
and are therefore only valid for doses which evidence a much greater 

number of aberrations. Incorporation of a background rate a into o 
the analysis would extend the results to lower doses. This extension 

is presently under investigation. -Another extension involves exposure 

to so-called low LET radiation like ~- and X-rays. For this case the 

public model2 is Y - Po[n(ao+ad+Pd2)] and f(dfl~) cannot be given 

in closed form. 

It is standard practice to estimate doses for accident victims by 

deterministic procedures using a maximum likelihood estimate for the 
A A 

model parameters. In our example this would give df = Yf/(nfa) as 

our estimate of the neutron dose. With this procedure the uncertainty 

about Df cannot be specified and other information about Df from a 

personal dosimeter or from dose reconstruction efforts cannot be 

incorporated. 
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ON SOME BAYES AND EMPIRICAL BAYES 

SELECTION PROCEDURES 
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1. INTRODUCTION 

A common problem faced by an experimenter is one of comparing several 
populations (processes, treatments). Suppose that there are k(~ 2) popula
tions 1f l' ••• , 1f k and for each i, 1f i is charac terized by the value of a param-

eter of interest, say e .• The classical approach to this problem is to test 
~ 

the homogeneity hypothesis HO:el = •.• = ek • However, the classical tests 

of homogeneity are inadequate in the sense that they do not answer a fre
quently encountered experimenter's question, namely, how to identify the 
"best" population or how to select the more promising (worthwhile) subset of 
the populations for further experimentation. These problems are known as 
ranking and selection problems. The formulation of ranking and selection 
procedures has been accomplished generally using either the indifference 
zone approach (see Bechhofer (1954» or the subset selection approach (see 
Gupta (1956, 1965». A discussion of their differences and various modifi
cations that have taken place since then can be found in Gupta and 
Panchapakesan (1979). 

In many situations, an experimenter may have some prior information 
about the parameters of interest, and he would like to use this information 
to make an appropriate decision. In this sense, the classical ranking and 
selection procedures may seem conservative if the prior information is not 
taken into consideration. If the information at hand can be quantified into 
a single prior distribution, one would like to apply a Bayes procedure since 
it achieves the minimum of Bayes risks among a class of decision procedures. 
Some contributions to ranking and selection problems using Bayesian approach 
have been made by Deely and Gupta (1968), Bickel and Yahav (1977), Chernoff 
and Yahav (1977), Goel and Rubin (1977), Gupta and Hsu (1978), Miescke 
(1979), Gupta and Hsiao (1981), Gupta and Miescke (1984), Gutpa and Yang 
(1985), and Berger and Deely (1986). 

Now, consider a situation in which one is repeatedly dealing with the 
same selection problem independently. In such instances, it is reasonable 
to formulate the component problem in the sequence as a Bayes decision prob
lem with respect to an unknown prior distribution on the parameter space, 
and then, use the accumulated observations to improve the decision at each 
stage. This is the empirical Bayes approach due to Robbins (1956, 1964, and 
1983). Empirical Bayes procedures have been derived for subset selection 
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igal~ by ue~ly (1~6j), Recently, Gupta and H~iao (1983) ~nd GUpti ind 
Liang (1984, 1986) have studied some selection problems using the empirical 
Bayes approach. Many such empirical Bayes procedures have been shown to be 
asymptotically optimal in the sense that the risk for the n-th decision 
problem converges to the optimal Bayes risk which would have been obtained 
if the prior distribution was fully known and the Bayes procedure with re
spect to this prior distribution was used. 

In the present paper, we describe selection and ranking procedures 
using prior distributions or using the information contained in the past 
data. Section 2 of this paper deals with the problem of selecting the 
best population through Bayesian approach. An essentially complete class 
is obtained for a class of reasonable loss functions. We also discuss 
Bayes-P* selection procedures which are better than the classical subset 
selection procedures in terms of the size of selected subset. In Section 3, 
we set up a general formulation of the empirical Bayes framework for selec
tion and ranking problems. Two selection problems dealing with binomial and 
uniform populations are discussed in detail. 

2. BAYESIAN APPROACH 

2.1 Notations and Formulation of the Selection Problem 

Let 9i E e c JR denote the unknown characteristic of interest associ-

ated with population n., i = l, •• ,k. 
~ 

Let Xl""'~ be random variables re-

presenting the k populations ni' i = l, ••• ,k, respectively, with ~ having 

the probability density function (or probability frequency function in 
discrete case) f.(xI9.). In many cases, X. is a sufficient statistic for 

~ ~ ~ 

9i • It is assumed that given ~ = (9l , ••• ,9k), ~ = (Xl""'~) have a joint 

k 
probability density function f(xI9) = IT fi(xiI9.), where x = (xl""'~)' 

- - - i=l ~ -
Let 9[1] ~ 9[2] ~ ••• ~ 9[k] denote the ordered values of 9i 's and let n[i] 

denote the unknown population associated with 9[i]' The population n[k] 

will be called the best population. If there are more than one population 
satisfying this condition, we arbitrarily tag one of them and call it the 
best one. Also let ~ = {919. EO, i = l, •• ,k} denote the parameter space - ~ 
and let G(') denote a prior distribution on 9 over ~. 

Letj be the action space consisting of all the 2k - 1 nonempty subsets 
of the set {l, ••• ,k}. When action S is taken, we mean that population n. is 

~ 

included in the selected subset if i E S. For each § E ~ and S Ej, let 
L(9,S) denote the loss incurred when 9 is the true state of nature and the 

action S is taken. A decision procedure d is defined to be a mapping from 
X x A into [0,1], where X is the sample space of ~ = (Xl""'~)' 

Let D be the set of all decision procedures d(x,S). For each dE D, 

let B(d,G) denote the associated Bayes risk. Then, B(G) = inf B(d,G) is the 
dED 

minimum Bayes risk. An optimal decision procedure, denoted by dG, is ob-

tained if dG has the property that 

(2.1) B(G) • 
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Such a procedure is called Bayes with respect to G. Under some regularity 
condi tions , 

(2.2) B(d,G) I~ L d(x,S) In L(e,S) f(xle)dG(e)dx. 
"'seA ~ ~ 

Now let 

(2.3) 

(2.4) AG(x) = {S EAlrG(x,S) = min rG(x,S')}. 
~ ~ S' E A ~ 

Then, a sufficient condition for (2.1) is that dG satisfies 

(2.5) 

2.2 An Essentially Complete Class of Decision Procedures 

In this subsection, we consider a class of loss functions possessing 
the following properties: 

Let H denote the group of all permutations of the components of a 
k-component vector. 

Definition 2.1: A loss function L has property T if 

(a) L(e,S) = L(he,hS) for all e E g, S EA and hE H, and 

(b) L(e,S') 2 L(e,S) if the following holds for each pair (i,j) with 
~ 

e. < e.: i E s, j E Sand S' = (S - {i}) u {j}. 
1 - J 

The property (a) assures the invariance under permutation and property 
(b) assures the monotonicity of the loss function. In many situations, a 
loss function satisfying these assumptions seems quite natural. 

We now let x(l) ~ x(2) ~ ••• ~ x(k) denote the ordered observations. 
Here the subscript (i) can be viewed as the (unknown) index of the popula
tion associated with the observation x(i). For each j = 1, ••• , k, let 

S. = {(k), ••• ,(k - j + I)}, and the remaining subsets S. be associated one-
J J 

to-one with j = k + 1, ••. ,2k - 1, arbitrarily. Also, letA = {S EAII SI = 
k m 

m}, m = l, •• ,k, and Dl = {d E DI L d(x,S.) = 1 for all x EX}. 
j = 1 ~ J ~ 

Theorem 2.1: Suppose that f.(x. Ie.) = f(x. Ie.), i = l, ••• ,k, where the 
1 1 1 1 1 

pdf f(xle) possesses the monotone likelihood ratio (MLR) property, and the 
prior distribution G is symmetric on n. Also, suppose that the loss func
tion has property T. Then, 

(a) for each m = l, ••• ,k, rG(:,Sm) ~ rG(:,S) for all S EAk-m+l' 

x E;/;, and 

(b) D is an essentially complete class in D. 
1 
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Proof: The proof for part (a) is analogous to that of Theorem 3.3 of 
Gupta.and Yang (1985). For part (b), let d be any decision procedure in D. 
Consider the decision procedure d* defined as: for x E X, 

d*(x,S) = L d(x,S), m = l, ••• ,k; 
~ m S E --f 

~k-m+l 

d*(x,S) = 0, S ; S , m = l, ••• ,k. 
~ m 

Then, d* E Dl • Also, by part (a) and (2.2), one can see that B(d*,G) < 

B(d,G), which completes the proof. 

Let AG(~) = {Sjll ~ j ~ k, rG(~'Sj) 

the condition of Theorem 2.1, any Bayes 

I dG(x,S.) = 1 for all x EX. 
SJ' E A' (x) ~ J G ~ 

2.3 Bayes-P* Selection Procedures 

min rG(x,s.). 
1 < i < k ~ ~ 

Then, under 

procedure-dG satisfies 

A selection procedure ~ = (~l' ••• '~k) is defined to be a mapping from X 
to [O,l]k, where ~i(~): X + [0,1] is the probability that ni is included in 

the selected subset when X = x is observed. A correct selection (CS) is de

fined to be the selection of any subset that includes the best population. 

In the decision-theoretic approach, a Bayes decision (selection) pro
cedure always provides a decision with the minimum risk under a certain loss. 
However, in practive, one always has the difficulty in figuring out what 
the loss may be and the Bayesian result is quite sensitive to the loss 
used; in this sense, a Bayes procedure does not mean that its quality is 
good enough to pass a certain level. For guaranteeing the quality of a 
decision (selection) procedure one would like to have a "quality control" 
criterion about the class of all possible decision (selection) procedures. 
That is, any procedure with lower quality will be removed, even though it 
might be the cheapest one under some losses. Analogous to the classical 
subset selection approach, Gupta and Yang (1985) set up a control criterion 
using the Bayesian approach. Let 

(2.6) p.(x) = P(n. is the best IX = x) = P(6i is the largest Ix = x) 
~ ~ ~ ~ ~ 

be the posterior probability that population ni is the best population when 

X = x is observed. Then, for selection procedure ~, the posterior probabil

ity of a correct selection given X = x is 

(2.7) P(CS I~,~ = x) 

-1 Definition 2.2: Given a number P*, k < p* < 1, and a prior G on n, 
we say a selection procedure ~ satisfies the PP*-condition (posterior P*
condi tion) if 
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(a) 

(b) 

~.(x) = 1 for at least some i, 1 ~ i ~ k, and 
~ ~ 

p(CSI~,X = x) > p* for all x E X. 



k 
Note that L p.(x) = 1 for all x E X; hence this kind of selection 

i=l ~ - -
procedures always exist. We let C = C(P*) be the class of all selection 
procedures satisfying the PP*-condition. 

Let P[l](:) ~ ••• ~ P[k](:) be the ordered Pi(:)'s and let n(i) be the 

population associated with P[i](~)' i = l, ••• ,k. Then a selection procedure 

~ can be completely specified by {~(l)""'~(k)}' where 

(2.8) ~(i)(~) = P(n(i) is selected I~,~ = x}, i = l, ••• ,k. 

-1 For a given number P*, k < p* < 1, and an observation X = x, let 

k 
j = max{ml L p['](x) ~ p*}. Gupta and Yang (1985) proposed a selection 

i=m ~ -
G G G 

procedure ~ = (~l""'~k) defined as below: 

G 
~ (k) (x) 

G 
~ (i) (x) 

1, and for 1 < i < k - 1, 

if i > j, 
if i j, 
if i < j, 

where the constant A is determined so that 

k 

AP[J'](:) + L p[ ](x) = P*. 
m=j+1 m -

It is clear tnat ~G E C. In the following, optimality of this selec

tion procedure is investigated. 

Definition 2.3: A selection procedure ~ is called ordered if for 

every x EX. x. < x. implies W.(x) < W.(x). It is called monotone or just 
~-J ~--J-

if for every i = l, ••• ,k, and x, y E X, ~.(x) < ~.(y) whenever Xi < y., - ~--~- -~ 
x. > y. for any j I i. 

J - J 

G Sufficient conditions for ~ to be ordered and monotone are given below: 

Theorem 2.2: Let G(alx) be the posterior cdf of a, given X = x. Let 

G(alx) be absolutely continuous and have the generalized stochastic increas

ing property, that is: 

k 
(1) G(alx) = IT G.(a. Ix), G.(·lx) = posterior cdf of ai • 

- - i=l ~ ~ - ~ -

(2) Gi(tlx) ~ G.(tlx) for any t, whenever x. < x .• 
- J - ~- J 

Then, ~G is ordered and monotone. 
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Gupta and Yang (1985) also investigated some optimal behavior of this 
procedure through the decision-theoretic approach over a class of loss func
tions. 

Definition 2.4: A loss function L has proporty T' if 

(a) L has property T, and 

(b) L(e,S) ~ L(e,S') if S c S' • 

Theorem 2.3: Under the assumption of Theorem 2.2, the selection pro

cedure ~G is Bayes in C provided that the loss function has property T'. 

Gupta and Yang (1985) investigated the computation of P.(x) for the 
~ -

"normal model" by using normal and non-informative priors. Berger and Deely 
(1986) have considered another selection problem, and given a more detailed 
discussion about the computation of P.(x) under several different priors. 

~ -

3. EMPIRICAL BAYES APPROACH 

In this section, we continue with the general setup of Section 2. 
However, we assume only the existence of prior distribution G on n, and the 
form of G is unknown or partially known. In Section 3.1, we consider de
cision procedures for general loss functions. In Sections 3.2 and 3.3, 
empirical Bayes selection procedures are concerned. 

3.1 Formulation and Summary of the Empirical Bayes Selection Problems 

For each i, i = l, ••• ,k, let X .. denote the random observation from TI. 
~ ~ 

at stage j. Let 0ij denote the random characteristic of TIi at stage j. 

Conditional on 0~J. e .. , X .. Ie .. has the pdf (or pf in discrete case) 
... ~J ~J ~J 

f.(xle .. ). 
~ ~J 

Let X. = (Xlj, ••• ,X .) and e. = (el., ••• ,ek .). Suppose that 
-J -1<J -J J J 

independent observations Xl' ••• ,X are available and e., 1 ~ j ~ n, have the _ _n -J 
same distribution G for all j, though e. are not observable. We also let 

-J 
X (Xl""'~) denote the present random observation. 

Consider an empirical Bayes decision procedure d. Let B(d ,G) be the 
n n 

Bayes risk associated with the decision procedure d. Then 
n 

B(d ,G) = J E J L d «x; Xl' ••• ,X ),S)L(e,S)f(xle)dxdG(e), 
n n z SEA n - - _n - - - - - -

where d «x;Xl, ••• ,x ),S) (=d (x,S» is the probability of selecting the n _ _ _n n _ 

subset S when (x;X., ••• ,X ) is observed, and the expectation E is taken with __ ~ _n 
respect to (Xl' ••• ,X). Note that B(d ,G) - B(G) > 0, since B(G) is the _ _n n-
minimum Bayes risk. This nonnegative difference may be used as a measure of 
the optimality of the decision procedure d • 

n 

Definition 3.1: A sequence of decision procedures {d }oo 1 is said to be 
n n= 

asymptotically optimal relative to the prior distribution G if B(d ,G) ~ B(G) 
n 

asn~oo. 
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Let L(a) = max IL(a,S) I and assume that I L(a)dG(a) <~. Following 
sEd 

Robbins (1964), one can see that a sufficient condition for the sequence 
p 

{d } to be asymptotically optimal is that d (x,S) ~ dG(X,S) for all x E X 
n P n ~ ~ 

and sEd, where II _" means convergence in probability (with respect to 
(Xl'···,X ». 
~ ~n 

Let G be a distribution function on the parameter space n. Suppose G 
n n 

is a function of (Xl' ••• ,X ) such that p{ lim G (a) = G(a) for every con-
~ ~n n ~ ~ n ~ ~ 

tinuous point a of G} = 1, where the probability is with respect to 

(Xl' ••• ,X ). 
~ ~n 

Let the loss function L(a.S) and the density f(xla) be such 

that L(a.S)f(xla) is bounded and continuous in a for every sEd. Then 

{dG } is asymptotically optimal with respect to G if In L(~)dG(~) < ~. 
n 

where dG is a Bayes procedure with respect to the distribution Gn • 
n 

To find G • we may assume G to be a member of some parametric family r 
n 

with unknown hyperparameters, say ~ = (Al' •••• Ak). Suppose now an estimator 

A (AI ••••• Ak ) depending on the previous observations (Xl ••••• X ) can be 
~n n n ~ _n 
found such that G converges to G with probability one. Note that G is 

n n 
also a member in r. We then follow the typically Bayesian analysis and 
derive the Bayes procedure dG with respect to the estimated prior distribu

n 
tion G • 

n 
Then. according to the result of Deely (1965). the sequence of 

empirical Bayes procedures {dG } is asymptotically optimal. This approach 
n 

is referred to as parametric empirical Bayes. Deely (1965) has derived 
the empirical Bayes procedures through the parametric empirical Bayes 
approach in several special cases among which are (a) normal-normal, 
(b) normal-uniform. (c) binomial-beta. and (d) Poisson-gamma. 

In another approach. called nonparametric empirical Bayes. one just 
assumes that e .• j = 1,2, ••• , are independently and identically distributed; 

-J 
however. the form of the prior distribution G on n is completely unknown. 
In this situation. one may represent the Bayes procedure in terms of the 
unknown prior and then use the data to estimate the Bayes procedure directly. 
This approach has been used by Van Ryzin and Susarla (1977), Gupta and Hsiao 
(1983)". and Gupta and Liang (1984, 1986), among others. 

In the following sections. we consider some selection problems with 
underlying populations having binomial or uniform distributions. We will 
use the nonparametric empirical Bayes approach. 

3.2 Empirical Bayes Procedures Related to Binomial Populations 

In this section. two selection problems related to binomial populations 
are discussed: selecting the best among k binomial populations and select
ing populations better than a standard or a control. For each i. the obser
vations Xi can be viewed as the number of successes among N independent 

trials taken from rri • and the parameter 8i as the probability of a success 

for each trial in rr .• Then x.le. has probability function f.(xle.) = 
1. 1. 1. 1. 1. 
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(:) a~ (1 - ai)N-X, x = O,l, ••• ,N. 

bution of 6i and assume that G(6) 

We let Gi (') denote the prior distri
k 
II G.(6.). 

i=l 1. 1. 

3.2.1 Selecting the Best Binomial Population. Gupta and Liang (1986) 
considered the loss function 

(3.1) 

for the problem of selecting the largest binomial parameter ark] among k 

binomial populations. 

1 1 
Let fi(x) = l f i (xI6) dGi (6). Wi(x) l efi (xl 6) dGi (6) and <Pi (x) = 

Wi(x)/fi(x). Then, from (3.1), following a straightforward computation, a 
B B B 

randomized Bayes selection procedure. say ~ (~l""'~k)' is given below: 

(3.2) 
B {IS(x)l-l 

~ (x) = N 

i N 0 

if i E S(x), 

otherwise, 

where 

(3.3) S(x) 

Here, ~~(x) is the probability of selecting w1.. as the best population 
1. N 

given X = x. 

Note that IP.(x) is the Bayes estimator of the parameter 6. under the 
1. 1. 

squared error loss given Xi = x. One can see that <Pi(x) is increasing in 

x for i = l, ••• ,k and hence ~B is a monotone selection procedure. 

Due to the surprising quirk that ~.(x) cannot be consistently estimated 
1. 

in the usual empirical Bayes sense (see Robbins (1964) and Samuel (1963», 
an idea of Robbins in setting up the empirical Bayes framework for binomial 
populations is used below. 

For each i, i = l, ••• ,k, at stage j, consider N + 1 independent trials 
from w .• Let X .. and Y .. , respectively, stand for the number of successes 

1. 1.J 1.J 

in the first N trials and the last trial. Let Z. = «X .. ,Y .. ),oo.,(X. .,Yk .» 
NJ 1.J 1.J -KJ J 

denote the observations at the jth stage, j = l, ••• ,n. We also let ~n+l = 
X = (Xl •••• '~) denote the present observations. 

By the monotonicity of the estimators <P. (x), 1 < i < k. in terms of the 
1. --Bayes risk, one can see that all monotone procedures form an essentially com-

plete class in the set of all selection procedures. In view of this fact, 
it is reasonable to require that the appropriate empirical Bayes procedures 
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possess the above mentioned monotone property. For this purpose, we first 
need to have some monotone empirical Bayes estimators for ~i(x), 1 ~ i ~ k. 

For each x = 0, 1, ••• ,N, and n = 1, 2, ••• , define 

(3.4) 
1 n . -1 

fi (x) = - L I{} (X4J.) + n , 
n n j=l x ... 

(3.5) 
1 n -1 

W. (x) =- L Yi.I{} (X .• ) +n , 
~n n j=l J x ~J 

Also, let Vij = Xij + Yij , j = 1,2, ••• Define 

(3.6) Vl. (x) 
~n 

x + 1 n 1 n -1 
{[n(N + 1) 1: I{x+])(V .. )] A [- 1: I{ }(X .. )]}+n , 

j=l ~J n j=l x ~J 

where a 1\ b = min{a,bL Let 

(3.7) ~. (x) = W. (x)/f. (x), 
~n ~n ~n 

(3.8) ~. (x) = W. (x)/f. (x), 
~n ~n ~n 

and for each 0 .s.. X.s.. N, define 

t 
(3.9) ~tn (x) max min { 1: ~. (y)/(t - s + 1)}, 

0 N ~n 
< s < x s < t < y=s 

t ~ 

(3.10) ~~ (x) max min { L ~. (y)/(t - s + 1)}. 
~n ~n 0 < S < x s < t < N y=s 

By (3.9) and (3.10), one can see that both ~~ (x) and ~*. (x) are in-
~n ~ ~n 

creasing in x. Gupta and Liang (1986) proposed ~~ (x) (or ~~ (x» as an 
~n ~n 

estimator of ~i(x). They also propos:d two~empiric~l Bayes selection pro-

cedures, say ~* = (~1* ""'~k* ), and ~ = (~1 ""'~k ), which are given 
~n n n ~n n n 

below, respectively: 

(3.11) 

where 

(3.12) 

(3.13) 

where 

S*(x) n _ 

1jJ. (x) 
~n _ 

{i I~i* (x.) n ~ 

o 

if i E S*(x), n _ 

otherwise, 

max ~~ (x.)}, 
1 < . < k In J _J_ 

if i E S (x), n _ 

otherwise, 
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~ 

(3.14) S (x) = {il~~ (x.) n ~ 1.n 1. max ~"': (x,)} 
l<'<k In J _J_ 

It is easy to verify that ~* and ~ are both monotone selection procedures. 
~n ~n 

Without ambiguity, we still use B(~,G) to denote the Bayes risk associ

ated with the selection procedure 0/ when G is ~h~ tfije pI~gr di6tribution, 

Gupta and Liang (1986) proved that the two sequences of selection pro

cedures {~*} and {~ } have the following asymptotically optimal property: 
~n ~n 

for some positive constants cl and c2• 

3.2.2 Selecting Populations Better Than A Control. Let 60 E (0,1) 

denote a control parameter. Population n. is said to be good if 6i > 6 1. - 0 

and bad if 6. < 6. Gupta and Liang (1984) considered the loss function 1. 0 

(3.15) L(6,S) = L (6 - 6.)1(0 6 )(6.) + L (6. - 6 )1(6 1)(6.), 
~ iES 0 1. , 0 1. iE S 1. 0 O. 1. 

for the problem of selecting (excluding) all good (bad) populations. The 
value of the control parameter 6 is either known or unknown. When 6 is o 0 

unknown. a sample from the control population, say n • is needed. To be 
o 

consistent with the notation used in earlier sections. we assume 6 is known. o 
We note that Gupta and Liang (1984) have studied the case when 6 is unknown. 

o 

B 
a 

For the loss function (3.15), a nonrandomized Bayes selection procedure 
( B B).. b al, ••• ,ak 1.S g1.ven y 

(3.16) B {I a. (x) = 
1. ~ ,0 

if ~.(x.) > e , 1. 1. - 0 

otherwise, 

B where a.(x) is the probability of selecting n. as a good population given 1. ~ 1. 
X = x. 

B Note that a is also a monotone selection procedure. Hence, based on 
~ 

the estimators ~~ (x) and ~i* (x), two intuitive empirical Bayes procedures, 1.n n ~ ~ 

say a* = (al* •••• ,ak* ) and a = (~l , ••• ,ak ) can be obtained where 
~n n n ~n n n 

(3.17) a i* (x) nN otherwise; 
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0.18) -- {Ol a.. (x) 1.n _ 
otherwise. 

As before, one can show that these two sequences of selection pro

cedures {a.*} and {a. } have the following asymptotically optimal property: _n _n 

B 
B(a.*,G) - B(a. ,G) ~ o (exp(-c3n», _n 

B(a. ,G) - B(a.B,G) ~ o (exp(-c4n», _n 

for some positive constants c3 and c4• 

3.3 Empirical Bayes Procedures Related to Uniform Populations 

In this section, we assume that the random variables Xi' 1 ~ i ~ k, 

have uniform distributions U(0,6i ), 6i > 0 and unknown. The parameter space 

is n = {~16i > 0, 1 ~ i ~ k}. It is also assumed that the prior distribu-

k 
tion G on n has the form G(6) .IT Gi (6i ), where Gi (·) is a distribution 

1.=1 

on (0,00), i = l, ••• ,k. 

Let 6 > 0 be a known control parameter. Gupta and Hsiao (1983) con
o 

sidered the problem of selecting populations better than the standard 

using the loss function 

(3.19) 

where L., i = 1, 2, are positive and known. 
1. 

Let mi(x) be the marginal pdf of Xi and Mi(x) be the marginal distribu

tion of Xi. Then we have 

(3.20) foo 1 
x e dGi (6) for x > 0, 

(3.21) M.(x) = foX r:!6 dG.(6)dt = xm.(x) + Gi(x). 
1. t 1. 1. 

Note that the marginal pdf m.(x) is continuous and decreasing in x. 
1. 

B B B 
By a direct computation, a Bayes procedure ~ = (~l' ••• '~k) for this 

selection problem is given by 

(3.22) B -_ {01 ~. (x) 1. _ 

otherwise, 

where 
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Since mi(x), 1 ~ i ~ k are decreasing in x, one can see that ~iG(x), 

1 < i _<k, are increasing in x for x <8 ; and hence, the Bayes procedure 
B 0 

~ has the monotone property. 

To derive an empirical Bayes procedure, we first need to have some 
estimators, say min(x) and Min(x), for mi(x) and Mi(x) , respectively. Due 

to the decreasing property of m.(x). we require that the estimators mi (x), 
~ n 

n = 1, 2, ••• , possess the same property. Once an estimator min(x) is ob
tained, we let 

(3.24) M. (x) = fox m. (y)dy, 
~n ~n 

(3.25) ~. (x) = L2m. (x)(x-8 )+L2[M. (8 )-M. (x»)+L1[1-M. (8 »). 
~n ~n 0 ~n 0 ~n ~n 0 

Then, an empirical Bayes procedure ~ = (~1 ""'~k ) can be given as 
follows: ~n n n 

'in(~) - g (3.26) 
if (x. > 8 ) or (x. < 8 and ~i (x.) _> 0), 

~- 0 ~ 0 n ~ 

otherwise. 

This empirical Bayes procedure ~ is a monotone procedure if mi (x), 
~n n 

1 < i < k, are decreasing in x. We use the method of Grenander (1956) to 
obtain-such an estimator having the decreasing property. 

n n n 
Let Xi(l) ~ Xi (2) ~ ••• ~ Xi(n) be the ordered observations of the 

first n observations taken from Wi' Let Fin be the empirical distribution 

based on Xi1 , ••• ,Xin• For each j, 1 ~ j ~ n, let 

(3.27) 
Fin(X~(t» - Fin(~(s» 

n n 
Xi(t) - Xi(s) 

n 
when Xi(O) = 0, and define 

(3.28) m. (x) 
~n 

for x ~ 0, 
n 

for Xi (j_1) 
n 

<x<X.(.), - ~ J 
n 

for x > Xi(n)' 

From (3.27) and (3.28), one can see that the estimator m. (x) is 
~n 

decreasing in x. Thus, the empirical Bayes procedures ~ defined by 
~n 

(3.24 - 3.28) is a monotone procedure. It is known that both estimators 
M. (x) and mi (x) have strong consistency property. Hence,~. (x) is a 
~n n ~n 

strongly consistent estimator of ~iG(x). Then by Theorem 2.1 of Gupta and 

Hsiao (1983), the sequence of empirical Bayes procedures {~ } is asymptoti-
~n 

cally optimal provided f~ 8dGi (8) < w for each i = l, ••• ,k. 
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BAYESIAN ASPECTS IN THE THEORY OF COMPARISON 

OF STATISTICAL EXPERIMENTS 

INTRODUCTION 

Herbert Heyer 

Mathematisches Institut der Universitat 
Auf der Morgenstelle 10 
74 TUbingen 
Deutsche Bundesrepublik 

The purpose of this paper is to present some aspects of the theory 
of comparison of experiments where in an efficient way the Bayesian concept 
of apriori knowledge can be applied in order to enrich the motivation and 
the understanding of the mathematical analysis involved. There are various 
kinds of comparisons of experiments based on orderings of decision functions 
and their risks. Of particular interest in the applications are the B~esian 
orderings introduced by De Groot and elaborated by Feldman. See [4], L3] 
and also [lOJ, [llJ. In the following we shall adopt the comparison invented 
by Blackwell and generalized by LeCam. Although this comparison is rather 
strong it has proved to be an important tool in asymptotic decision theory. 
Basic knowledge of the Blackwell-LeCam theory can be obtained from the text 
books [7J and [13]. We recall a few key notions. An experiment is determined 
by three data: a list of possible outcomes (the sample space (E,~ », a 
collection of possible explaining theories (the parameter set I), and a 
correspondence which to every explaining theory associates the random 
mechanism governing the random outcome (a mapping i + P. from I into the Set 

1-

~ 1 (E, 01. ) of probability measures on (E, en. ». We shall consider experiments 
~ = (E,~ ,{P.:i€I})with fixed parameter set I. Since there is no explicit 

1. 

definition of the information contained in an experiment, we content our
selves with the comparison of information whenever two experiments 
t. and ~ = (F, <P.>, {Qi: i€I}) are given. The question then arises how 

much information gets lost, under the worst possible circumstances, if the 
experiment ~ receives preference with respect to the experiment ~ . In 
order to measure this loss of information LeCam in 1964 introduced the 
notion of deficiency p ('E. ,CJ ) between the experiments 't and c; . In 
the case of a sUbexperiment l' of 'f. which is defined by a subalgebra (P., 
of ot. the relationship p (Cf ,'E.. ) = 0 means that ~ is sufficient for 
'to 

A rather abstract setting for the Bayesian model has been proposed 
in [1]. In order not to lose the readers among our fellow statisticians 
we shall work in moderate generality. The first encounter with the notion 
of minimal Bayes risk will be produced in Section 1 where the comparison 
of binary experiments appears in the context of the Neyman-Pearson theory. 
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Section 2 is devoted to the generalized comparison. In particular we 
describe the comparison of Bayes risks in the case of k-decision problems 
and finite parameter sets. In Section 3 we study Bayesian sufficiency and 
compare it with classical sufficiency. Section 4 contains properties of 
totally informative and totally noninformative experiments. They play an 
important role in the B~esian eompariaon o£ SAetioft 5 ~hGrG ~G rGport on 
some work of Torgersen L1S] of 1976 which was the basis of our presentation 
in Chapter X of [7]. Finally we include in Section 6 a few results on the 
comparison of powers of experiments. In the special case of finite ex
periments the asymptotic behavior of the corresponding minimal Bayes risks 
can be related to some early work of Chernoff [2J. Recent progress concerning 
the statistical information contained in additional observations is due 
to He~geland [SJ and Mammen [a]. 

1. COMPARISON OF BINARY EXPERIMENTS 

Let t = (E, ~ ,{P1,P2}) denote a binary experiment. By 

1nt(1) ( ~ ) we abbreviate the set of all ~ -measurable functions on E 

with values in [0,1]. The error function g't. of t is defined by 

g C. (a):= inf [(1-aHtdP1+aftdP2] 
te 'm.. (OCt) 

for all ae[0,1], where the right side of the equality equals the minimal 

Bayes risk corresponding to the apriori measure (1-a)€1+a€2' We note that 

the above inf is attained exactly for the Neyman-Pearson test 

The following well-known result motivates the desired order relation 

between experiments. 

1. 1 Proposition. For binary experiments !. and or = (F, ~ , {Q1 ,Q2}) 

with error functions g t and g 'i resp. and for a tolerance value €~o 

the following statements are equivalent: 

(i) :,; g - "J 

(ii) For every se 'In.. (0 ("J' ) there exists a te '\"/l (1) (t ) such that 

{ 
ftdP1 

ftdP2 ~ 

€ 
~ fsdQ1 + '2 and 

€ 
fsdQ2 - '2 

In presence of statement (i) we say that!. is €-deficient with 

respect to "I and abbreviate by C. > s . One observes that> := > is 
€ 0 

an order relation giving rise to an equivalence relation ~ between binary 

experiments and leading to the notion of types of experiments. More 
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generally one introduces the deficiency 

p (c. , ~ ) : = inf {e:~o 't > ~ } 
e: 

and the pseudo distance 

ll(c. , 'f ) := p('t ,~ )v p(~ ,1. ) 

between experiments ~ and «§' , and one obtains that 

t. ",1 <=> ll('f,~ ) = o. 

2. GENERALIZED COMPARISON 

Let t = (E,OI- ,{P. :i€I}) and CJ = (F, (V;, ,{Q. :i€I}) be two 
1 1 

experiments with arbitrary but fixed parameter set I. We denote by (D, ~ ) 
an arbitrary decision space, by ~ (c. ) = Stoch «E, 01. ), (D, ~ )) the set 
of randomized decision functions for ~ , and by'\T the set of bounded 
measurable loss functions on IxD. For given V€ '\r and O€ tI (t.) the 
risk function associated with ~ is the mapping 

i + R~(i) := fV(i,t)o(Pi)(dt) 

on I. Finally we are given a tolerance function i + e:(i) on I. 

Definition. 1: is said to be e:-deficient with respect to ~ 

ct > Of ) if for all decision spaces (D, £J ) with \D\<oo, all V€'ll' , given 
e: 

o€ £S ('f ) there exists o€ b (!. ) such that 

R~ ;;;R~ + e:\\V\\. 

The notion of deficiency p and the related pseudo metric II are defined 
as in the binary case above. In the case of \DI=k one talks about e:
deficiency for k-decision problems. 

2.1 Theorem (LeCam 1964). We make the following standard hypotheses: Let 

(a) 

(b) 

{P.:i€I} be dominated and let 
1 

(F, (V;,I) be a standard Borel space. 

Then the subsequent statements are equivalent: 

(i) 

(ii) 

(iii) 

'f. > ~ e: 
For every o€ tr (~ ) there exists a o€ ~ (t ) such that 

\ \ o (P{-O(Qi)\ \;;;e:(i) for all i€I. 

There exists an N€ Stoch«E,~ ),(F,~ )) satisfying 

I\N(P.)-Q.\\;;;e:(i) for all i€I. 
1 1 

~oreover 

p(t..,ca:) = inf sup \IN(P.)-Q.\\, 
Nil 1 

where N runs through Stoch «E , Ql.. ) , (F, <JI;, )) and i through I. 

249 



2.2 Remark. Under the additional assumptions III = m and IDI = k the e
deficiency of t with respect to ~ is equivalent to the comparison of 
Bayes risks: 

(iv) Given an apriori probability measure A on I with A({i}»o for all 

ieI, for each ve 'If and each ae ~ (Of ) there exists a oe CC ( t ) 
such that 
m m m 
L R~(i)A({i}) ~ L RV(i)A({i}) + L (e(i)supIV(i,t)I)A({i}). 

i=l i=l a i=l t 

Since the implication (i) ~ (iv) is trivial, it remains to prove the 
implication (iii) ~ (ii). This, however, is done following an idea of 
Torgersen's of 1970 by applying the minimax theorem to the mapping 

m 
(V,o) + .L [R~(i)-R~(i)- ~(i)maxlv(i,t)I]A(di) 

1=1 t 
which is concave in V and convex in 0. 

3. BAYESIAN SUFFICIENCY 

Let 1 : = (E, IP.> ,{Res ~ Pi: ieI}) be a sUbexperiment of c. defined by 

a sub-a-algebra ~ of ~ • Then a specialization of Theorem 2.1 yields the 
equivalence of the following two statements: 

(i) p ("! ,t. ) = 0 «~ II ('t ,Cf ) = 0) 

(ii) (P" is sufficient (in the sense of Halmos and Savage) for t. , Le. 

there exists a conditional probability on en. given W> which is 

independent of i in I. 

For further characterizations and generalizations of sufficiency the 
reader is referred to [6J and [7], § 22. In [6] the notion of Bayesian 
sufficiency has been mentionned. 

Intuitively Bayesian sufficiency says that given any prior probability 

Ae J\L 1 (I, 'J ) the posterior probability on I given 0\. is the same as the 
posterior probability on I given ~ • Mathematically we start with a 
stochastic kernel peStoch«I,~ ),(E,~» and we put P.(.) := P(i,.) for 

1 

all ieI. Given Ae .I\l1 (I, 'l ) we define the mixture poAe .l\.L. 1 (EXI, CJI, 0 'l) 
by 

PoA(AxC) := J P.(A)A(di) 
C 1 

for all AxC e Ql, ® 'J • In what follows we shall work with the projected 
a-algebras Ex'J = {ExC:Ce"J}, 0\.. x I, (p,' x I and similarly with the 

* lifted functions f on ExI defined by 

* . f (X,1) := f(x) 

for all (x,i)eExI whenever f is a function on E. 

Definition. ~ is B-sufficient for c.. if for all ce IJ 
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3.1 Propositon. The following statements are equivalent: 

(i) ~ is B-sufficient for t.. 
(ii) ()I.. x I and E x:l are conditionally independent given <P.> x I on 

(EXI, 0\. 0 j , PoA) for all Ae til 1 (1,":1 ). 

(iii) For every bounded OJ, -measurable f on E there exists a ~ -measurable 

g on E such that 

* * g = EPoA (f I ~ 0 'l ) 

for all Ae .l\l1 (I, 'J ). 
For the definition of conditional independence and a proof of the 

equivalences see [9J. 

3.2 Theorem. Under the standard hypotheses of Theorem 2.1 the following 
statements are equivalent: 

(i) <P., is sufficient for t . 
(ii) ~ is B-sufficient for t 

For the proof of (i) ~ (ii) one takes a bounded ~ -measurable 
function f on E and notes that by (i) there exists a version of Ep. (fl~) 

1. 

which is independent of ieI. But then for all ieI 

Ep. (f) = Ep. (g), 
1. 1. 

where for all Ae J\.L 1 (I, 'J 
tion 3.1 yields (ii). 

* * ), g is a version of EpoA(f I ~ Xl). Proposi-

In order to show that (ii) ~ (i) we let A := aE. +(1-a)E. with 
1.1 1.2 

i 1,i2eI and ae[o,1]. For each bounded OJ, -measurable function f on E it 

* * follows from (H) that EPoA (f I <l!> Xl) is a version of EPoA (f 1 ':) ® ~). 
Thus for ie{i1,i2} and all Be ~ 

* !fdP i = fEPoA (f I <J\ XI)dP i • 
B B 

Hence EPOA (f*1 ~ Xl) is a version of Ep. (fl ~ ) for ie{i1,i2} which 
1. 

means that ~ is pairwise sufficient 

to be dominated, this implies (i). 

for C. • Since {P.: ie!} is assumed 
1. 

3.3 Remark. If the family {P.:i€I} defining the experiment ~ is not 
1. 

dominated, then the crucial implication (ii) ~ (i) is not true even if 
the a-algebras ~ and ~ are count ably generated. If, however, the 
latter is the case, then (ii) appears to be equivalent to 

(iii) For every A€ .I\l 1 (I, "3 ) there exists a cAe 'J 

such that ~ is sufficient for C C : = (E, (h. 
A 

For a proof of this statement see [12]. 

with A(CA) = 

,{Pi:i€C A})· 
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4. EXTREMELY INFORMATIVE EXPERIMENTS 

An experiment t is said to be totally informative if for each pair 
(i,j)eIxI, i + j we have p.lp .. Clearly any two such experiments are 

1: J 
equivalent; the class or type will be denoted by 't . 't is the experiment a a 
which consists of observing the underlying parameter i. We note that 

4.1 p('f. ,'t)=o, a 
but for dominated t. and uncountable I 

4.2 t:,( ~ , C ) = p( 't , 'f. ) = 2 • 
a a 

An experiment t is 

independent of ieI. Again 

4.3 p("t, c. ) = 0 
n 

holds. 

said to be totally uninformative if P. 
1. 

~ defines a class C. , for which 
n 

P 

Obviously c. > 't > c.. , and it appears well motivated to a n 
introduce the information numbers 

p (~.) := p(C., 't ) 
a a 

and 

4.4 Statistical interpretation 

From Theorem 2.1 follows that 

sup N(P.)( t {i}), 
1. 

N i 

and f Pa(~ ) is the minimax risk in the problem of estimating i on the 

basis of C. when the loss is 0 or 1 according to success or failure of 
the estimator. 

Ana10guously we obtain 

p (t ) = min sup II P. - Q II, 
n 1. 

Q i 

and p (~ ) is the minimax risk in the estimation problem where no obser
n 

vations are available and the loss is given by the statistical distance. 

5. BAYESIAN DEFICIENCY 

In this section we want to discuss the Bayesian comparison of experi
ments in greater generality. Let c.. be an experiment (E, 0\. , {P. : ieI}) with 

1 1 1. 
measurable parameter space (I, "J ). By Jl f (I, 'J ) and JIL. c (1,"1 ) we 

denote the spaces of probability measures of (I, ~ ) with finite and 
countable support respectively. 

Given the data (D, 'e ) and ve tr we introduce 

Definition for any 1\e l\.L 1 (I, 'j ) the Bayes risk 

r (D,V,8,1\):= fR~(i)A(di) 
'f. 
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incurred by the choice of a decision function <Sa tJ (t. ), and the 
minimal Bayes risk 

r t (D,V,A) := inf rC. (D,V,c5,A). 

c5 

5.1 Theorem (Bayes criterion). Under the standard hypotheses of Theorem 2.1 

sup 

IDI <00 

Ivl~1 

(r t (D, V ,A) - r -=& (D, V ,~» 

1 
Ae Alf(r" ) 

For the proof one notes that for every e:>p (t ,c;r ), given cre Ci:J ('& ) 
there exists a c5e 'ts (1.. ) such that 

R~ ~ R! + e:llvil 

implies 

r t (D,V,A) ~ r~ (D,V,cr,A) + e: Ilvll . 

But then 

p( c. ,~ ) ~ s:p ~(r'f.. (D,V,A)-r ~ (D,V,cr,A» 

= ~(rt. (D,V,A)-r~ (D,V,A». 

5.2 Specialization to 0-1 estimation as related to PaC ~ ) yields that for 

a11 Ae l\l 1 (r, '1 ) 
c 

r(l. IA) := r'E. (D,V,A) 1-11 V A({i})P.II, 
1 

ier 

in particular, for Irl=2 

r ('t IA) = IIA({1})P t 1\ A({2})P211. 

Moreover, A + r('E.IA) determines the type of l . From minimax theory 
fo11ows that 

~ act ) = sup r ( t I A) 

Ae .lL ~ (r,' ) 

5.3 Remark. Torgersen in [15J studies also for a given AS Jk.~(r" ) the 

A-weighted deficiency of 1: with respect to ~ defined by 

p( l. ,cr IA) := inf { 1: A({i})e:(i) : C > ':f }. 
e: 

ier 

One immediately notes that 

sup p ( 't.., , 1 A) = p ( 't " ). 
t Ae lL f(r, 'J ) 
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6. APPLICATION TO POWERS OF EXPERIMENTS 

In general the deficiency between two experiments is difficult to 
calculate. For translation experiments it suffices to evaluate the infimum 
of the representation 

p(l. ,~ ) = inf supIIN(P.) - Q.II 
Nil 1 

within the set of invariant randomized decision functions. See [7}, 
Chapter VIII. For efficient computations one still needs more speciali
zation, f.e. to the n-th power 

t n : = (En, (), ® n, {P. ® n: i e I}) 
1 

of an experiment 't. = (E, QI, , {P.: ieI}) which gives rise to the quanti-
1 

fication of the statistical information contained in additional oberserva-

t ions. For powers of 't we have '!. n < 'f. m whenever n .::. m. The question 

arises of how much more informative than ~ n is C. m or, in other words, 

of what is p( ~ n, ~ m). Knowing this quantity can be useful in planning 
replicated experiments in case the decision problem is not fully determined. 
We shall now motivate the method of attacking the problem of estimating 

p ( tn, 'f.. m), give some history and develop a few recent results. 

6.1 Let K( l.. ) be the cost of performing 't and V a loss function. Then 
the (global) risk function under the decision function lSe tr (t,) is 

R'(. := R~ + K('t ). 

Let IIVII~1. We prefer C n to c.. n+1 if 

p(!. n, 't... n+1) ~ K( C. n+1) _ K( C. n) 

and C. n+1 to 'eo n if 

p(t n, 't n+1) ~ K( 't. n+1) - K( 'l n). 

~ n is better than 'E. m means that to every risk function R 

exists a risk function R 
t.n 

R ~ R • 
t n t m 

such that t m 

Already in 1972 Torgersen established for normal experiments 

there 

1: = (rR, ~ , {N(a,cr2) : aeIR}), where cr2>0 is known, the asymptotic 
equivalence 

p ( 't. n, C. n+ 1) IV .! Ir.-. 
n 'Ire 

If K( 't n) : = k + nk1, then n 
o 0 

:= ;'2 Ik1 is the optimal sample size. 
'Ire 

Intuition suggests that ~ n becomes more and more informative as n 
increases, i.e. that one additional observation becomes more and more 
unimportant. In fact, for III<~ one obtains 

lim p ( ~ n) = o. 
n-+co a 

Moreover, one has 
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6.2 (Torgersen 1981). There exists a constant C( t. )e[o, 1J (independent of 

the special decision problem) such that for any apriori measure Ae AL1(I,~ ) 
with A({i}»o for all ieI, 

1 

C(c. ) , 

where 

C( t ) = max inf f dP. 1-tdP7 = inf H( c.. It). 
i+j te1o,1[ ~ J te]o,l( 

This last relationship between the constant C( C. ) and the Hellinger 
transform H(C. It) is due, in the binary case, to Chernoff [2]. 

6.3 (Helgeland 1982). Let I be a compact subset of the parameter set of a 
one-dimensional exponential family, and let I contain a nondegenerate inter-

val. Let (r ) >1 be a sequence of real numbers satisfying 1~r ~~Ifor some n n= n 
8<1. Then 

/ 2 ~ lim~6. C. n, c.. n+r 
( n) 

'lTe --r n n 

n t n+r / 2 -n ( C. n) 2 ~ lim - A ~ r 'lTe n n 

The lower bound has been extended by Mammen [8] to experiments 1: which 
can be locally approximated in a point of their parameter set by a Gaussian 

experiment Ot For all (r ) >1 with r = o(n) 
(J n n= n 

lim ~ 6. 
-r 

n n 
lim ~ 6. 

r 
n 

n 

6.4 (Mammen 1986). Let 1: be an experiment which is finite-dimensional in 
the sense of Dacunha-Castelle. Then there exists a constant C depending 
only on the dimension of ~ such that for all nand r 

I::.( tn, 't n+r) ~ C E.. 
n 

A few additional explanations seem to be in order. Let d(i,j): 
= H(P.,P.) denote the Hellinger pseudo metric on I. The dimension of I is 

~ J 
the smallest natural number n such that for every 0>0 every subset of I 

of diameter 0 can be covered by 2n sets of diameter o/?. 

The method of proof of the above inequality consists in applying a 
stochastic kernel N which describes the following chance mechanism: 

Estimate i by an estimator t which depends only on some of the ovservations 
available. Then observe a random variable with distribution Pi and mix 

this random variable randomly under the remaining observations. Then 

sup II N(P~) - p~+l II = 0(1.). 
1 ~ n i 
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MAXIMAL SEMIGROUPS AND THE SUPPORT OF GAUSS - SEMIGROUPS 

Joachim Hilgert 

Technische Hochschule Darmstadt 

D-6100 Darmstadt, FRG 

The purpose of this note is to describe a connection between the theory 
of probability measures on Lie groups and the Lie theory of semigroups. 
The objects under consideration will be one parameter semigroups of proba
bility measures on Lie groups and their supports. We start by giving the 
basic definitions. 

Let G be a connected topological group. A family (~) of 
t t>o 

probabili ty measures on G is called a Gauss-semigroup, if no ~t is a 

point measure, ~ = ~ * ~ with the usual convolution and lim t-1~ (G\U)=O 
t+s t s 1-0 t 

for every open neighborhood U of the identity, in G. The Gauss-semigroup 
(~) is called absolutely continuous if each ~ is absolutely continuous 

t t>o t 
with respect to a, once and for ever fixed, left Haar measure on G. 

If G is a Lie group we can associate with any Gauss-semigroup 
(~t)t>o an infinitesimal generator N of the form: 

n 
N = L 

i=l 

r 

L 
i=l 

where {x" '~i~n} is a basis of the Lie algebra L(G) of G, viewed as left 

invariant first order differential operators on G. The 

M is the Lie algebra generated by {x1 ' ••• ,xr } and Xo 

the carrier of (~) • We have (cf.[ S i82] ) : 
t t>o 

pair (M,x ), where 
o 

n 
I aix. is called 

i=l ~ 

THEOREM 1. Let G be a Lie group and (~t) t>o be a Gauss-semigroup on G with 
carrier (M,x ). Then 

m 0 -1 n _ 
(i) Supp ~ = (lJ, (GMexp n tx» , where Supp ~ is the support of the 

t ~ 0 t 
measure ~t and GM is the analytic subgroup of G with Lie algebra M. 

(11) (Supp ~t)(Supp ~s) C Supp ~t+s for all s, t>O. 0 

It is clear from this theorem that the sets S = (V Supp ~t)- are 
~, a t>a 

semigroups for any a~O. The semigroups S~,a will in general not contain 

the identity and hence are not sui ted too well to the Lie theory of semigroups 
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which studies subsemigroups 
identity (see below for the 

of Lie groups via their tangent object at the 
precise definitions). But 5 = 5 does contain 

)J )J,o 
the identity and it will be this semigroup we will concentrate on. 

Let L be the Lie algebra in L(G) generated by {xo ' x1 , ••• ,xr } and GL 
the corresponding analytic subgroup of G. We will call a Gauss-semigroup 
generating if G = GL• By [5i82] Theorem 2, we know that )Jt(G\GL) = 0 for 

all t>O. Thus, for the purpose of studying the support behaviour of Gauss
semigroups, it is no serious loss of generality to assume that G = GL• 

It is necessary to have some control over the interior points int(5 ) 
)J 

of 5 in order to apply the techniques developed in [HHL85] and [La86]. 
)J 

We find: 

LEMMA 2. Let ()J) be a Gauss-semigroup with carrier (M,x ) then we have 
t t>o 0 

(i) The interior int(5 ) of 5 is dense in 5 • 
)J)J )J 

(ii) 5 is equal to the closed subsemigroup S of G generated by exp(M) 
}1 + 

and exp(lR x ). 
o 

Proof. Note first that Theorem 1 implies that exp(lR+x ) is contained in 5 • 
o )J 

Moreover GM is contained in 5 as well. In fact, let yeM then 

(exp(n-'y)exp«mn)-l x »ne S~PP()Jl/ ) c 5 so that the Trotter product o m)J 
formula shows exp( y) c S = 5 for y small enough. Therefore S contains a 

)J )J J.I 
neighborhood of the identity in GM and hence all of GM• But by [J572] the 

semigroup 5 generated by exp(M) and exp(lR+x ) satisfies (int(5)j = S since 
o 

M and x generate L(G) by our assumptions. Note finally that Theorem o 
shows that 5 c S = (int(5»-c (int(5 »-c 5 • 0 

)J )J )J 

Lemma 2 allows us to conclude that 5 is contained in some maximal subsemi-
11 

group S of G unless S = G (cf[La86]). Here by maximality we mean that max )J 
Smax is no group and Smax and G are the only subsemigroups of G containing 

S max 

Now suppose that ()J)t is a generating Gauss-semigroup and S is 
t >0 )J 

contained in a maximal semigroup S which is proper, i.e. 5 * G. max max 
Recall from Lemma 2 that GM is contained in 5max ' This implies that_1 
exp(lRK ) can not be contained in the group of uni ts H = 5 (\ S o max max 
of S • Now suppose that H is normal in G then L(H) is a subalgebra of max 
L(G) which contains M and is ad(xo)-invariant. Thus the following remark, 
taken from [Si82], shows that ()J)t> can not be absolutely continuous. 

t 0 

REMARK 3. A Gauss-semigroup is absolutely continuous 
if and only if the only ad(xo ) - invariant subalgebra of 
L(G) containing M is all of L(G). 

We collect the obtained information in 

PROPOSITION 4. 
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semi group and s~ is ~1proper semi group contained ln a maxlmal semlgroup ~max 

then H = 8 ,,8 can not be not be normal in G. 0 
max max 

Maximal subsemigroups of Lie groups may look very different and the theory 
describing them is by no means complete, but there are large classes of 
groups where they can be handled quite well (cf.[La86],[Hi86a]). The way 
these semigroups are described is typical for the Lie theory of semigroups 
in so far as it proceeds via their tangent object. 

Given a closed subsemigroup 8 of a Lie group G we define the tangent 
cone L(8) of 8 by L(8) = {x £ L(G): exp(lR+x) C 8}. It turns out (cf[HL83]) 
that L(8) is a closed convex cone satisfying 

ead(x)L(8) = L(8) for all x £ L(8)" -L(8). 

A closed subsemigroup 8 of a Lie group G is called a halfspace semi group 
if L(8) is a half space. We give some examples: 

The subsemigroup lR+ of non-negative real numbers in lR is a half space 
semigroup in ~ Let Aff+ be the group of real 2 x 2 - matrices of the form 

{ [: :1 a > 0 } 

and 

{ a > 0, b ~ O}. 

Then Aff++ is a halfspace subsemigroup of Aff+ • 

Let 81(2,00'" be the .simply connected covering group of 81(2,lR) and 0+ be 
the closed subsemigroup of Sl(2,lR)'" generated by expOR+u), expORh) and 
exp(]Rp) where 

u [~ -:] h p 

in sl(2,JR). Then 0+ is a halfspace semigroup in Sl(2,lR)'" (cf[HH85a]). 

Note that for any half space in a Lie algebra bounded by a subalgebra 
there is a closed half space semigroup in the simply connected group 
corresponding to the Lie algebra whose tangent wedge is just the halfspace 
we started with (cf[Hi86b], ~La86]). Moreover this halfspace semigroup is 
maximal and its group of units is the analytic subgroup corresponding to 
the hyperplane contained in the half space. 

We are now ready to prove a converse to Proposition 4 in the case that G 
is simply connected: 

PROPOSITION 5. suppose that G is simply connected and let (~ )t>o 
generating Gauss-semigroup which is not absolutely continuous: 2'hen 
is contained in a halfspace semi group S whose group of units max 
8 n 8 -1 is a closed normal subgroup in G of codimension 1. max max 

be a 
S 
~ 
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Proof. Note first that by hypothesis there exists an ad(x )-invariant 
subalgebra of L(G) cont~ining M which is not all of L(G). £et P be such 
an algebra of maximal dimension. We claim that P must be a hyperplane in 
L(G). In fact, suppose that codim(P) > 1 then P + mx is a subalgebra of 
L(G) containing M which is ad(x )- invariant, but notOall of L(G). But on 
the other hand we assumed M andox to generate the whole algebra which 
contradicts our earlier statement? Thus P is a hyperplane and by the argu
ment given above it cannot contain x • Therefore the ad(x )- invariance 

o 0 

of P shows that P is an ideal in L(G). Let Gp be the analytic subgroup of 

G corresponding to P then Gp is the group of units of a maximal halfspace 

semigroup 5 containing also exp(m+x ). Since P is an ideal we know 
max 0 

that Gp is normal in G. Finally we note that 5 contains exp(P), hence max 
exp(M), so that Lemma 2 implies that 5 contains 5 • [] 

max ~ 

Of course one wonders how serious the assumption in Proposition 5 that G~ 
be simply connected is. Let G be the simply connected covering group of G 
and ,: G~ - G be the covering morphism. If (at)t>o is a Gauss-semigroup 

on G with infinitesimal generator N then (,a )t> ' consisting of the image 
t 0 

measures, is the Gauss-semigroup on G with 
Exp: L(G) - G~ be the exponential function 

subsemigroup of G~ generated by Exp(M) and 

infinitesimal generator N. Let 
for G~ • Then Sa is the closed 

ExpQR+x ) by Lemma 2. Therefore 
o 

we get ,(int(S » is open dense in 5 again by Lemma 2. Thus practically a ~ 

all the information on the support of Gauss-semigroups we can expect to 
obtain via the Lie theory of semigroups, we can already get from the simply 
connected case. 

Proposition 4 and 5 have some immediate consequences. For instance, Pro
position 5 says that any generating Gauss-semigroup on Sl(2~)~ is abso
lutely continuous and, since the absolute continuity of a Gauss-semigroup 
depends only on its infinitesimal generator, the same is true for Sl(2)R). 
On the other hand Proposition 4 shows that any generating absolutely 
continuous Gauss-semigroup on a nilpotent Lie group satisfies S = G the 

~ 

group of units of maximal semigroups in nilpotent Lie groups contains the 
commutator subgroup (cf[HHL85]). Of course all of this, and more, is well 
known (cf[Mc84],[McW83]), but the methods given above are quite general so 
any kind of information one has on the maximal subsemigroups of a Lie group 
will yield some information on the support of Gauss-semigroups on this group. 

Note that for any subsemigroup S of G containing the identity there is a 
largest normal subgroup contained in 5 (cf[La86]). It is denoted by Core(S). 
The core of a closed semigroup 5 is closed, so it makes sense to talk about 
the reduced pair (GR,SR) where GR = G/Core(S) and SR = S/Core(S). If 5 is 

a closed ha1fspace semigroup then we have a complete description of (GR,SR): 

THEOREM 6. (cf.[P077]). Let 5 be a closed halfspace semi group in a 
connected Lie group G • Then for the reduced pair (GR,SR) one of the 
following cases occurs: 

(i) (GR,SR) is topologically isomorphic to (R,R+) 

(ii) (GR,SR) is topologically isomorphic to (Aff+,Aff++) 

(iii) (GR,SR) is topologically isomorphic to (Sl(2,R)~ ,0+). 

0 
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Theorem 6 tells us that the group of units of a closed half space semigroup 
S is normal if and only if the reduced pair (GR,SR) is equal to (R,R+). 

Thus if we, for some reason, know that any maximal semigroup S in G has to 
be a halfapac6 86MigP6Up with rgduc@d piir (GR,SR) ~ (R,R+) then Propofiition 
4 tells us that for any absolutely continuous Gauss-semigroup (~t) the t>o 
semigroup S has to be all of G. 

~ 

In this context we recall the following theorem from [La86]: 

THEOREM 7. Let G be a Lie group such that G/Rad(G) is compact, where 
Rad(G) is the radical ofG. If S is a maximal subsemigroup of G with 
non-empty interior, then S is a halfspace semi group containing every 
semisimple analytic subgroup and for the reduced pair (GR,SR) one of 
the following two cases occurs 

(0 (GR,SR) is topologically isomorphic to (R,R +) 

( ii) (GR,SR) is topol ogi call y isomorphic to (Aff+,Aff++). 

From this we derive 

COROLLARY 8. Let G be a Lie group such that Rad(G) is nilpotent and 
G/Rad(G) is compact, then for every absolutely continuous Gauss-
semi group (~) we have S = G. 

t t>o ~ 

0 

Proof. It remains to show that case (ii) of Theorem 7 cannot occur. To this 
end note that the conjugate of a semisimple analytic subgroup is again semi
simple so that the subgroup of G generated by all semisimple analytic sub
groups of G is a normal subgroup and, by Theorem 7, contained in the core 
of any maximal semigroup. Thus GR is nilpotent which excludes case (ii) of 
Theorem 7. 0 
COROLLARY 9. Let G be a Lie group such that L(Rad(G» = Rad(L(G» carries 

the structure of a complex Lie algebra and G/Rad(G) is compact, then 
for every absolutely continuous Gauss-semigroup (~) we have 
S G. t t>o 
~ 

Proof. As in Corollary 8 we see that any Levi complement of G is contained 
the core C of an arbitrary maximal semigroup with nonempty interior. Thus GR= 
G/C ~ Rad(G)/(Rad(G) n C) and GR contains a half space semigroup. Taking the 

inverse image in Rad(G) this shows that Rad(G) contains a halfspace semi
group. If we look at the tangent cone of this semigroup it follows from 
[HH8Sb] that it contains the commutator algebra of Rad(L(G» because of 
the complex structure. Thus Rad(G) II C contains the commutator subgroup of 
Rad(G) so that GR is abelian which again excludes case (ii) of Theorem 7. 

o 
Let us draw a short resume of what has been said in this note: The supports 
of the measures in a Gauss-semigroup give rise to subsemigroups of the Lie 
groups involved. These semigroups can be studied by methods from the Lie 
theory of semigroups. The results will in general not be results on the 
supports of the single measures but on the semigroups one associates to them. 
In special cases, however, as in the case of decreasing supports it is 
possible to derive results on the supports of the single measures. 

It has not been my intention to give a polished exposition of all the re
sults that can be obtained using the methods indicated, but rather I wanted 
to explain the methods themselves. It is clear that one can construct many 
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examples along these lines and it seems reasonable to believe that many 
related results could be obtained without a lot of extra effort. 
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SUFFICIENCY COMPLETENESS PRINCIPLE 

Julian de la Horra 

Dep. Matematicas, Univ. Aut6noma Madrid 
28049-Madrid 
Spain 

1. INTRODUCTION 

Different sensible principles have been considered in Statistics: 
likelihood, weak conditionality, weak sufficiency •.• Many papers have been 
writen on these topics, after the pioneer work by Birnbaum (1962). Berger 
and Wolpert (1984) is a good reference for the study of different principles 
and relations between them. These principles generally work on rather vague 
concepts: Evidence (Birnbaum (1962», Inference patterns (Dawid (1977», ••• 
We shall work on the somewhat more concrete concept of generalized estimator 
or inferences (Eaton (1982), De la Horra (1987». 

In Section 2 we state the sufficiency completeness principle (stronger 
than the weak sufficiency principle). Its relation with posterior distribu
tions is researched (Jeffreys' rule is compatible with the sufficiency 
completeness principle). In Section 3, the relation with other principles 
is studied. 

2. THE SUFFICIENCY COMPLETENESS PRINCIPLE 

Let E=(X,e,{Pe }eE8 ) be an experiment, consisting of a realization of 
the random variable X (taking values on the sample space X, where l is a 
Borel set oflRk ), with distribution given by the probability measure Pe ' 
for 8 € 8 (Borel set of lRP ) • If the family {Pe}e ~ 8 is absolutely continuous 
with respect to a a-finite measure ~, we shall denote their densities by 

{fe}e~8· 

Definition 2.1 

A generalized estimator or inference is a function H mapping the sample 
space l into the set of probability measures on 8. 

Point estimators are generalized estimators: they assign a degenerate 
distribution to each x£~. In this case, H(x) will denote the only mass 
point. Generalized estimators are closely related to the work by Dawid (1977) 
on Inference patterns based on E and x. Also of interest are the studies by 
Blyth (1970) and Gatsonis (1984). 

We shall consider principles as tests which a given generalized esti-
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mator must undergo. We shall start with the weak sufficiency principle 
(Dawid (1977}) applied to generalized estimators: 

Weak Sufficiency Principle (WSP) 

A generalized estimator H satisfies the WSP when for all sufficient 
statistic T: 

H(x)=g(T(x}}, a.s.-{Pe}e€e 

Therefore, this principle demands that an estimator be a function of 
any sufficient statistic, but it does not use all the information contained 
in the concept of sufficiency. An example can add ligth to this question: 
let x=(Yl' ••• 'Yn} be a sample, where Yl' ••• 'Yn are i. i. d. observations 
from a distribution N(e,O} (0 known). y is a minimal sufficient statistic. 
Let H be an estimator defined as: 

{ 
10 

H(x}= y 
if Y (8, 12) 

otherwise 

H satisfies the WSP. But, what reason is there for reaching the same conclu
sion, for all the samples with y (8, 12)? There is no reason for doing so 
(by invoking sufficiency). I think that different conclusions must be reached 
if different y's are obtained. This is the idea leading to the following 
principle: 

Sufficiency Completeness Principle (SCP) 

A generalized estimator H satisfies the SCP when: 

H(x}=g(T(x}} a.s.-{Pe}eEe if and only if T is sufficient. 

More generally, a statistical procedure giving generalized estimators 
satisfies the SCP, when all these estimators satisfy the principle. Clearly, 
the SCP is stronger than the WSP. We shall next see that posterior distribu
tions verify the SCPo 

Theorem 2. 1. 

Let H(x} be the posterior distribution obtained from the experiment 
E=(X, e, {f8}e~8} and the prior distribution with density g(e}>O, for all 
e~e. Then, a satisfies the sufficiency completeness principle. 

Proof: It is obvious, by observing that this theorem states (with other 
words) the equivalence between classical and Bayesian definitions of the 
sufficiency. See De Groot (1970, p. 156) [] 

We remark that the application of Jeffreys' rule is compatible with the 
SCPo This interesting property does not hold true for the likelihood princi
ple (see Berger and Wolpert (1984, p. 20}). Of interest could be additional 
research to find what principles are needed for posterior distributions to 
be the only sensible estimators. 

There is an easy characterization for estimators satisfiing the SCP: 

Lemma 2.1. 

Let E=(X, e, {Pe}eEe} be an experiment and let TO be a minimal suffi
cient statistic. A generalized estimator H satisfies the sufficiency 
completeness principle if and only if H is a function of TO a.s.-{Pe}eee 
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and H distinguishes values of TO a.s.-{P9}9E0. 

Proof: The proof is easy and is omitted 0 

3. RELATION WITH OTHER PRINCIPLES 

Next, we shall study the relation between the SCP and other principles 
(namely, likelihood and weak conditionality). 

a) The likelihood principle (LP) does not imply th~ sep, ag QxamplQ 3.1 
below shows: 

Example 3.1 

Let x=(Y1' ••• 'Yn) be a sample, where Y1' ••• 'Yn are i. i. d. observations 
from the distribution with A-density (A being the Lebesgue measure): 

-1 29-1 
f 9(y)=9(1-9) exp( 1-9 log y) I(O,1] (y) , for 9€0= [1/2, 1] 

n TO(x)= E'-1 log Yi is a minimal sufficient statistic. The maximum likelihood 
estimatof- is: 

{
n/(n- E~"'1 

H(x)= 
1/2 

if this amount is greater than 1/2 

otherwise 

The inequality n/(n- E~=1 log Yi)~1/2 is equivalent to IT~=1 Yi~1/en . Thus, 
n n 

for all x=(Y1' •.• 'Yn) such that IT i =1 Yi~1/e , H(x)=1/2, but TO(x) takes 
different values. H does not distinguish values of TO ' and therefore, 
H does not verify the SCP (from the lemma 2.1). Of course, H verifies the LP. 

b) As a consequence, the weak conditionality principle (WCP) does not 
imply the SCP (from the fact that the LP is equivalent to the WCP and the 
WSPj see Birnbaum (1962) and Berger and Wolpert (1984, p. 27». 

c) On the other hand, the SCP does not imply the LP. This is proved 
by observing that Jeffreys' rule is compatible with the SCP, but is not 
compatible with the LP. 

d) As a consequence, the SCP does not imply the WCP. 
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ON THE INTERPRETATION OF HYPOTHESIS TESTS FOLLOWING NEYMAN AND PEARSON" 

David Johnstone 
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1. HYPOTHESIS TESTS AS METHODS FOR DECISION 

Neyman and Pearson 

To begin with, Neyman and Pearson agreed with Fisher that the result in a 
hypothesis test is a measure of evidence. In their first joint paper, which 
was published in 1928, they declared that the level of significance (P-level) 
attained in a likelihood ratio test is a measure of evidence against the null 
hypothesis [1928, pp.28-9], and that a hypothesis test is a method with which 
to "accept" or "reject" the null hypothesis " .. with a greater or less degree 
of confidence" or certainty [1928, pp.1, 67]. This was clearly an inferential 
interpretation. 1 However, in 1933, in their celebrated joint paper to the 
Royal Society, they introduced the notion that a hypothesis test is simply a 
"rule of behavior", i.e. a rule for decision between alternate courses of 
action. This was Neyman's idea. Pearson, it seems, retained the position that 
a hypothesis test is a legitimate method for inference. Indeed, in a paper of 
his own published in 1955, Pearson agreed explicitly with Fisher that a test 
is a "means for learning" [1955, p.206]. Furthermore, in this same paper, he. 
disclaimed any association with Neyman's idea that tests are methods merely 
for "inductive behavior" or decision [1955, pp.206-7]. Moreover, there seems 
a commitment to inference throughout Pearson's writing. For example, consider 
his statement in a joint paper with Clopper [1934, pp.404-5) that some confi
dence interval (PI,P2) with "confidence coefficient" 1-a entails a degree of 
confidence or certainty (probabilitY1)2 of I-a that the true paramater e lies 
in the interval PI to P2' i.e. probl (9f(PI,P2))=1-a. More recently, commenting 
in a paper by Barnard et.al. [1962, p.363], Pearson explained clearly that the 

*1 have benefited from the comments of H.E. Kyburg, D.V. Lindley, J.W. Pratt 
and participants in the Popper Seminar at the London School of Economics. 

lSpecifically, Neyman and Pearson [1928, p.4] state that our confidence in 
hypothesis A depends on the likelihood f(E/A) of the sample E under A, or 
moreover on the likelihood ratio f(E/A)/f(E/B), although [p.67] the " .. confi
dence with which we form a judgement" cannot be based entirely on the likeli
hood ratio, or " .. any single numerical criterion .•. because there will nearly 
always be present certain a priori conditions and limitations which cannot be 
expressed in exact terms." These remarks were apparently Bayesian, for to 
speak of the likelihood ratio and subjective prior information determining 
the confidence we place in hypotheses presumes (implies) both Bayes' theorem 
and a subjective probabilitY1 interpretation of "degree.of confidence". 

2The abbreviations "probabilitY1" (degree of certainty) and "probabilitY2" 
(relative frequency) are from Carnap [1962, pp.23-5). 
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"action" or "decision" in a hypothesis test may be cognitive (inferential) 
rather than behavioral. His example is one of "deciding that for the moment 
there is not enough evidence to justify the claim that some "difference" has 
been established". 

Neyman's Logic 

The result in a hypothesis test is to either "reject how or "accept ho"' 
Neyman declared that the terms "reject ho" and "accept ho" designate courses 
of action A and B, not states of inference or belief: 

The terms "accepting" and "rejecting" a statistical hypothesis are very 
convenient and are well established. It is important, however, to keep 
their exact meaning in mind and to discard various additional implica
tions which may be suggested by intuition. Thus, to accept a hypothesis 
Hmeans only to decide to take action A rather than action B. This does 
not mean that we necessarily believe that the hypothesis H is true. 
Also, if the application of a rule of inductive behavior [a hypothesis 
test] "rejects" H, this means only that the rule prescribes action B 
and does not imply that we believe that H is false. [1950, pp.259-60] 

Thus, for Neyman, the result in a hypothesis test is a decision between the 
alternate courses of action A and B. These are labelled "reject ho" and 
"accept ho"' yet there is strictly no inference about the hypothesis ho' 
express or implied. Thus, Neyman's logic is a logic merely for decision. 
Inference is specifically denied. 

Decision without inference (behavioralism) has no apparent logic. Moreover, 
it seems that decision presumes (requires) inference. This is of course the 
Bayesian position. To quote Lindley: 

Whilst it is possible to make inferences without considering decisions, 
the implementation of decision-making requires an earlier calculation 
of the appropriate inference, pre/x). [1977, pp.5l-2] 

For example, a judge decides that the accused should hang only once he bel
ieves, or comes to the inference, that the accused is quite certainly guilty. 
Neyman, however, denied inference. His logic is that if we decide (in each 
case) to "reject ho" or "accept ho" with a hypothesis test (or "rule of behav
ior") with low error frequencies (a,~), then we will not in any case learn 
whether the hypothesis ho is true (probably) or false, but we will rest ass
ured that in "the long run" our decisions will mostly be correct. Consider, 
for example, his statement below, from a paper written with Pearson: 

Without hoping to know whether each separate hypothesis is true or 
false, we may search for rules to govern our behavior with regard to 
them, in following which we ensure that, in the long run of experience, 
we shall not be too often wrong. Here, for example, would be such a 
"rule of behavior": to decide whether a hypothesis, H, of a given type 
be rejected or not, calculate a specified character, x, of the observed 
facts; if x>xo reject H, if x~xo accept H. Such a rule tells us nothing 
as to whether in a particular case H is true when x~xo or false when 
x>xo' But it may often be proved that if we behave according to such a 
rule, then in the long run we shall reject Hwhen it is true not more, 
say, than once in a hundred times, and in addition we may have evidence 
that we shall reject H sufficiently often when it is false. 
[1933, p.142] 

Here Neyman explained that if we use good hypothesis tests, i.e. tests with 
low error frequencies, then in "the long run" we will usually make the right 
decision. He did not say that we will make the right decision in any particu
lar single case, or that there is a high probability that we will make the 
right decision in any single case. To the contrary, Reyman was a frequentist 
in the strictest sense. He maintained that we can not be concerned with any 
single case. On his account, the best that we can do is to control the freq
uencies (a,~) with which we make errors in a sequence of tests described as 
the "long run"; cf. de Finetti [1972, p.172]. To wit: 
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It would be nice if something could be done to guard against errors in 
each particular case. However, as long as the postulate is maintained 
that the observations are subject to variations affected by chance (in 
the sense of frequentist theory of probability), all that appears poss
ible to do is to control the frequencies of errors in a sequence of 
situations (sn J, whether similar, or very different. [1971, p.13) 

Neyman's Philosophy 

Neyman was a deductivist, i.e. one who maintains that there is no reasonable 
method for inductive inference. Perhaps his strongest statement is one he made 
with Pearson in 1933. Here he claimed that no test which makes use of the 
probability calculus, which surely any reasonable test must, can provide 
ev~~ence for or asainst an1 particular hypothesis: 

We are inclined to think that as far as a particular hypothesis 
is concerned, no test based upon the theory of probability can by 
itself provide any valuable evidence of the truth or falsehood of that 
hypothesis. [1933, pp.14l-2] 

Thus, for Neyman, there is no method with which we can say that the result 
in a hypothesis test constitutes evidence (in any degree) for or against any 
particular hypothesis. This includes the methods of inverse probabilitYl (such 
as those of Carnap, Jeffreys, Savage and de Finetti) and the methods of like
lihood inference (such as those of Barnard, Hacking and Edwards) as well as 
tests of significance following R.A. Fisher. Neyman abandoned the methods of 
inverse probabilitYl generically. These methods all employ Bayes' theorem, 
which Neyman [1941, p.378) thought logical but not often useful. Only if the 
probability distribution a priori is a frequency (probabilitY2) distribution 
derived theoretically would Neyman use Bayes' theorem. But theoretical priors 
are hard to find. And Neyman abhorred both subjective priors, and priors based 
on rules such as "Bayes' postulate", i.e. the Laplacean "principle of insuffi
cient reason". Hence, he decided with Pearson to abandon Bayes' theorem alto
gether; e.g. Neyman and Pearson [1928, p.69). 

Despite his belief that there is no reasonable method for inference, Neyman 
was hardly despondent. He maintained that the role of statistics, and science 
in general, is to enable decision between alternate courses of action [1957, 
p.16], and that the methods he developed with Pearson enable decision without 
recourse to inference. Specifically, these methods enable "inductive behav
ior", which is decision (behavior) such that in the "long run" the courses of 
action decided upon are most often for the best [Neyman (1961) p.148). Thus, 
Neyman had no need for inference. He professed concern merely with results in 
actual practical decisions, specifically results in the "long run". In this 
respect, he was a sort of instrumentalist. Indeed, he was especially close to 
the mathematician and philosopher C.S. Peirce, who anticipated his concern 
with results on average in the "long run". 

2. HYPOTHESIS TESTS AS METHODS FOR INFERENCE 

Neyman's Practice 

During all the years from 1933 until his death in 1981, Neyman insisted more 
and more that a hypothesis test is simply a "rule of behavior", i.e. a method 
for decision, but not inference. However, in practice, he was less than con
vincing. Both Kempthorne [1976, p.773) and Rosenkrantz [1977, p.19l) have 
suggested that Neyman's practice seemed distinctly Fisherian, i.e. "eviden
tial", rather than "behavioristic". It is not difficult to find signs of 
inference in Neyman's practice. Let me cite one or two examples: 

(i) In 1936, in a joint paper with Tokarska, Neyman said that in practice the 
decision in a hypothesis test rests on evidence gained in that test for or 
against the hypothesis tested. For example, the decision to accept a consign
ment of electric lamp bulbs rests on evidence against the hypothesis that the 
lamp bulbs in that consignment are generally defective: 
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The consignment is accepted when the trial of a sample of lamps 
furnishes sufficient evidence for the rejection of the hypothesis 
tested. [1936, p.239] 

(ii) In a more recent paper, Neyman [1969, pp.1060-1] reported the results 
from one study not as decisions to "reject how or "accept ho·' but as levels 
of significance (P-levels) in the manner following Fisher. He had conceded 
already that in practice the procedure is not to ·reject how or ·accept how in 
accord with some critical level of significance a, but to assess the ·signifi
~~n~e· gf tbe 6~mple, preBumably in th@ i@n§@ dUQ to Fi~hQr, uoing ~h~ bench
marks which Fisher established (e.g. 1%, 5% etc.): 

In practice, •• it is likely that the level of significance will not be 
fixed so rigidly. In most cases we should probably consider a result 
significant whenever it is above the 0.01 level. In cases when the 
criterion (t or z) is in between 1% and 5% points, we should probably 
remain in some doubt, and finally, if the criterion is below 5%, we 
should judge the result as non-significant. [1935, p.229]. 

If the result in a hypothesis test is merely a decision between two courses of 
action, it seems hardly sensible to think of that result, in some sense, as 
more or less significant. Moreover, ·significance· (like support) is a contin
uous measure, between 0 and 1, whereas a decision is simply one way or the 
other; cf. Johnstone [1987]. 

Neyman's Theory 

In the English translation of his Theory of Probability, de Finetti [1974a, 
p.14] claimed that Neyman's solution to the problem of scientific inference, 
whereby the ·logical formulation· (Bayes' theorem and subjective probability) 
is eschewed, resorts sometimes to ·particular tricks (which are sometimes 
rather contrived)·. More specifically, de Finetti intimated that the behavior
istic doctrine attributable to Neyman is semantic humbug, meretricious, and 
even deceitful: 

In order to be able to provide 'conclusions'- but without being able to 
state that they are certain, because they are undoubtedly not so, and 
not wanting to say that they are probable, because this would involve 
admitting subjective probability - a search is made for words that 
appear to be expressing something meaningful, it is then made clear 
that they do not, in fact, mean what they say, and then, finally, a 
strenuous attempt is made to get people to believe that it is wise to 
act as if the words did, in fact, have some meaning (though what it is 
heaven only knowsl). [1975, p.200] 

This was strong criticism, but not without reason. Neyman's writing on the 
interpretation of hypothesis tests is equivocal, if not evasive and tenden
tious. Let me support this claim with reference to specific passages: 

(i) In 1975, at the Annual Meeting of the Institute of Mathematical Statis
tics, Neyman took part withas the result in a hypothesis test is a decision 
between alternate courses of action. Similarly, a distinction was made between 
nce?". During this discussion, Kempthorne [1976, pp.764-7, 768, 770] 
distinguished conceptually between tests interpreted as methods for decision, 
which he labelled "hypothesis tests·, and tests interpreted as methods for 
inference, which he labelled ·significance tests·. 3 In his terms, the result 

3This distinction was neither new nor controversial, tracing at least to 
Barnard [1949, p.116]. Indeed, Tukey [1960, p.433] distinguished between 
·tests of significance (conclusions)· and ·tests of hypotheses (decisions)" 
in the same terms exactly as Kempthorne. It matters not of course which tests 
are labelled which. The need is merely to distinguish semantically between 
tests interpreted as methods for inference and tests interpreted as decision 
rules. It is sensible, however, to attach the term "hypothesis test" to tests 
interpreted as decision rules, for this was the term which Neyman himself 
introduced to distinguish his tests from those of Fisher. 
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in a significance test (the level of significance P) is a measure of evidence, 
whereas the result in a hypothesis test is a decision between alternate 
courses of action. Similarly, a distinction was made between decision and 
conclusion, where, following Tukey [1960, p.425), conclusion means inference 
or belief. But Neyman would not admit any such distinction, not even concept
ually. He responded: 

[I am) not aware of a conceptual difference between a "test of a 
statistical hypothesis" and a "test of significance" and [I use] these 
terms interchangeably. [1976, p.737] 

A similar remark applies to the use of the words "decision" or 
"conclusion". It seems to me that at our discussion these particular 
words were used to designate only something like a final outcome of 
complicated analysis involving several tests of different hypotheses. 
In my own way of speaking, I do not hesitate to use the words 
"decision" or "conclusion" every time they come handy. [p.750) 

This is abhorrent. It is one thing to deny any logic or program for inference, 
but quite another to deny inference as a concept distinct from decision. More
over, if there is no conceptual distinction between inference and decision, 
what sense does it make to write, as Neyman did consistently, that hypothesis 
tests are methods for decision rather than inference. 

(ii) Neyman maintained that to "accept ho" is merely to choose action A, and 
to "reject ho" is merely to choose action B. But he failed to identify these 
actions A and B. Tukey [1960, pp.424-S] suggested that to "accept ho" is to 
act (in the present situation) as if the hypothesis ho is true, and to "reject 
ho" is to act as if the hypothesis ho is false. This well known interpretation 
was due initially to Neyman, but Neyman was by no means as definite as Tukey. 
For example, consider his remarks below concerning the interpretation of 
confidence intervals: 

.. after observing the values of the x's in a case where the a's are 
unknown and calculating [the confidence limits] ~(E' ) and a(E' ), we 
may decide to behave as if we actually knew that the true v~lue 91 
of al were between ~(E') and aCE'). This is done as a result of our 
decision and has nothing to do with 'reasoning' or 'conclusion'. 
The above process is also devoid of any 'belief' concerning the value 
91 of a1 . Occasionally we do not behave in accordance with our beliefs. 
Such, for example, is the case when we take out an accident insurance 
policy while preparing for a vacation trip. In doing so, we surely act 
against our firm belief that there will be no accident; otherwise we 
would probably stay at home. [1941, pp.379-80] 

Here Neyman said that given the confidence interval f(X), we may decide to act 
as if we know or believe that the interval f(X) includes the true a. However, 
then he added that it can be reasonable to act in a way which is inconsistent 
with propositions which we firmly believe. This seems effectively an escape 
clause, and thus it is hard to know how Neyman would act given the confidence 
interval f(X), or given the result in a hypothesis test. He might act in a way 
which is consistent with that result f(X) being true, and then again he might 
not. Unlike Tukey, he seemed not to commit himself either way. 4 

(iii) Neyman maintained that the term "accept ho" ("reject han) is merely a 
label for a particular course of action. However, in his discussion with 
Kempthorne et.a1. [1976, p.749], he admitted that rather than the label 
"accept h " he preferred the locution "no evidence against ho is found". 
Surely thfs expression can not be merely a label for a course of action. More
over, on any reasonable interpretation, the expression "no evidence against ho 

'wisely so perhaps, for to act as if ho is true, or as if ho is false, 
precludes any repetition of the experiment. Moreover, if we know that ho is 
true, or false, we can not rationally run another experiment. Thus, the 'act 
as if' interpretation of hypothesis tests is incompatible with the doctrine 
of experimental repetition; cf. de Finetti [1972, pp.176-7]. 
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is found" is a statement of a measure of evidence, which is of course a state
m~n~ Qf ~nference. 
(iv) On careful inspection, there is scope for an inferential interpretation 
in much of Neyman's writing, including some of the most unlikely passages. For 
example, consider the passage below: 

•• the theory of testing hypotheses has no claim of any contribution to 
the "inductive reasoning." ••• The application of the Bayes' formula and 
of its consequences, as advocated by Jeffreys, when the problem treated 
does not contain in its conditions the probabilities a priori interp
retable in terms of frequencies, does not lead to results having any 
clear frequency interpretation. Instead it measures the "intensity of 
our belief". On the other hand, the theory of testing statistical 
hypotheses predicts relative frequencies - in so far as it is possible 
to do so - but does not claim to measure directly the confidence. 
[1942, p.301] 

Here Neyman states that his theory for hypothesis tests "does not claim to 
measure directly the confidence". Thus, he denies any direct measure of confi
dence in the hypothesis tested, but not an indirect or elliptical (intuitive) 
measure. If strictly a behavioralist, he would deny any measure of confidence 
whatever, direct or otherwise. That is, he would not have qualified his 
disclaimer with the adverb "directly". By including this qualifier, Neyman 
admits frequency based evidential interpretations such as Birnbaum [1977, 
pp.24-5], whereby the result in a hypothesis test, being described by a triple 
of the form (reject hl for h2 , a, ~) or (reject h2 for h1 , a, ~), is interp
reted on an intuitive notion of evidence (known as the "confidence concept") 
as a measure of evidence against hl for h2 , or against h2 for h1. 

(v) Neyman found respite in equivocacy, especially ~n "difficult" company. 
Consider, for example, his remarks below, taken from his contribution to the 
meeting of the International Statistical Institute in 1963: 

.•. an experiment will be performed yielding a value, say x, of X and 
the statistician will be faced with the necessity of taking a practical 
step, which I shall describe as "concluding step." The description and, 
probably, also the essence of the concluding step varies greatly from 
one section of our literature to the next. Some of us speak of "infer
ence" regarding e. Some others prefer the term "decision." I wish to 
emphasize that for purposes of the present discussion these differences 
are not material and that the term "concluding step" is meant to desig
nate the final outcome of the work that the statistician does with 
reference to his problem in instance In' Thus, this term is meant to 
apply to the decision, say, to institute or not to institute an immu
nization campaign using a given vaccine, to the decision to treat two 
galaxies as forming a physical system or an optical pair and, equally, 
to Professor Barnard's "inference that Y10 is N(1.047,1)." 
[1963, p.929] 

Here Neyman acknowledges the inference (conclusion) mentioned by Barnard that 
the variate y is distributed N(1.047,l). Professor Barnard has always distin
guished inference from decision. For example, in a well known discussion with 
Savage et.al., he wrote: 

Before continuing with the discussion of statistical inference it is 
necessary to refer to a topic which, in my opinion, is distinct from 
inference, namely, decision-making. That there is a distinction seems 
to me to follow from the fact that in decision-making it is necessary 
to specify a goal to be aimed at in the result of the decision, whereas 
inferences can be made without reference to any such goal. [Barnard 
(1962) p.40] 

In Barnard's terms, the "inference that y is N(1.047,1)" means something like 
N(1.047,1) is the most probable, credible or best supported hypothesis, e.g. 
perhaps 1.047 is the value of ~ with maximum likelihood f(X/~). Faced with 
this interpretation, there was little chance that Neyman would succeed in 
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describing Barnard's inference as a decision. But rather than admit inference, 
he played down any distinction between inference and decision, and invented 
(without definition) the vacuous catchall "concluding step" to cover both 
inference and decision alike. This merely confused (suppressed) the issue. 

(vi) In his paper on "inductive behavior", Neyman [1957, p.16) wrote that the 
result in a hypothesis test is a decision, always a decision. However, he 
allowed that this result might be the decision "to assume a particular atti
tude towards the various sets of hypotheses mentioned". Thus, the result in a 
hypothesis test might be to "assume the attitude" that the hypothesis ho is 
true, or that the hypothesis ho is false. But what does it mean to "assume the 
attitude" that ho is true (or that ho is false)? Does it mean to believe that 
ho is true, or that ho is probably true? Typically, Neyman didn't say. But it 
would seem that to "assume the attitude" that the hypothesis ho is true is not 
to believe that ho is true, but merely to deem that ho is true for the purpose 
of decision; decision between courses of action, the best of which depends on 
whether hQ is in fact true. For example, to "assume the attitude' that the 
Salk vaCC1ne is effective against polio is merely to deem the vaccine effect
ive, thereby enabling a decision to recommend the vaccine. This interpretation 
is tenable if there happens to be a decision pending between courses of action 
of which the best depends on whether ho is in fact true. But this is not 
always to be. Indeed, Neyman [1957, p.16) conceded that whilst research is 
often " .• for purposes of some immediate practical action (e.g. should one use 
the Salk vaccine against polio?)", there is also research purely " .. for the 
sake of scientific curiosity (e.g. does our Universe expand?)". However, if 
the hypothesis ho is tested purely out of curiosity, it seems pointless to 
assume any particular attitude toward ho other than an epistemic or cognitive 
attitude, e.g. the attitude that the hypothesis ho is true (probably) or 
false, which is of course a conclusion or inference. 

(vii) In relation to a test comparing the effects of two types of insulin, 
Neyman [and Pearson (1936) p.204) maintained that the scientist must make the 
decision to report either that "I can detect no indication that the cheaper 
insulin is worse than the more expensive one .•. • or alternatively that 'The 
cheaper insulin seems to be of inferior quality ... •. Extensibly, these are 
statements of inference. Hence, if the scientist follows Neyman's instruc
tions, surely he must admit inference (either inference or sham). Mercifully, 
Erich Lehmann, a leading statistician in Neyman's school, put matters 
straight. He explained that the result in a hypothesis test is very often an 
inference, and thus not a decision in any ordinary literal sense: 

Frequently it is a question of providing a convenient summary of the 
data or indicating what information is available concerning the unknown 
parameter or distribution. This information will be used for guidance 
in various considerations but will not provide the sole basis for any 
specific decision. In such cases the emphasis is on the inference 
rather than on the decision aspect of the problem, although formally it 
can still be considered a decision problem if the inferential statement 
itself is interpreted as the decision to be taken. [1959, pp.4-5)s 

Neyman's Logic for Inference 

Notwithstanding his insistent deductivism, there are threads in Neyman's 
opus of a logic for inference. In one passage, Neyman condones inference 
explicitly, with something of a logic attached. Specifically, he suggests that 
if the power of the test concerned is uniformly high, say 0.95 or better, then 
it is reasonable intuitively (indirectly) to interpret the result "accept ho" 
as logical confirmation (his word) of the hypothesis ho' and as a basis for 

SBirnbaum [1977, pp.25-6) explained that to interpret (dress) an inference as 
a decision, we need merely preface that inference with the words "decide 
that". For example, he suggested that we may • 'decide that' a certain 
hypothesis is true or supported by strong evidence.' 
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confidence in that hypothesis [1955, pp.40-1]. This is clearly an inferential 
or evidential interpretation, a slip of the pen perhaps amid Neyman's behav
ioralist strictures. 

Further evidence of inference in Neyman's writing, although more subtle, 
concerns his interpretation of probabilities2 , specifically the error proba
bilities (a,~). If the probabilities (a,~) are interpreted as probabilities1 
in the single case, then the result in a hypothesis test constitutes an infer
ence. 6 Of course, Neyman liked to say that (a,~) are not probabilities1 but 
strictly probabilities2' e.g. [1963, p.929-30]. However, despite his frequen
tist testimony, he tended (like most) to treat probabilities2 as probabili
ties l in the single case, at least intuitively. For example: 

(i) On appeal to Bernoulli's law, Neyman [1955, p.18] declared that it is 
almost certain, i.e. the probabilitYl is near 1, that in the "long run" the 
error frequencies (a,~) will pertain, at least approximately. Yet Bernoulli's 
law entails only that the probabilitY2 is near 1 that those frequencies will 
pertain. Thus, Neyman interpreted Bernoulli's probabilitY2 as a probabilitY1 
in the single case, i.e. in the single "long run". This has been noted by 
Hacking [1965, p.105] and Seidenfeld [1979, pp.65-6]. 

(ii) Neyman liked to speak of. the probabilities (a,~) in terms of "chance". 
Specifically, he often referred to the power of a test, i.e. l-~(h), as the 
chance in that test of detecting the alternative hypothesis h, if in fact h is 
true [e.g. (1935) p.227; (1977) p.107]. However, unlike the term probability, 
which Neyman defined very carefully, the word "chance" is not defined in any 
of Neyman's writing. Some philosophers and statisticians have defined "chance" 
strictly as relative frequency (probabilitY2)' But more often, "chance" is 
interpreted in the sense of Popper's word "propensity", which entails both 
probabilitY2 and probabilitYl in the single case. In The Grammar of Science, 
Karl Pearson [1892, pp.174-5] defined chance as both degree of belief or 
certainty (probabilitYl)' which he called "subjective chance", and relative 
frequency (probabilitY2)' which he called "objective chance". On this inter 
pretation, which is not uncommon, to say that the ·chance· that a die will 
turn up an ace is 1/6 is to say both that the probabilitY2 of an ace is 1/6 
and that the probabilitY1 of an ace in the single case is 1/6. That is, the 
word chance has definite probabilitYl connotations, at least in the context of 
mechanical "games of chance", where probabilities2 are natural probabilities1 . 
Hence, it is interesting that Neyman likened hypothesis tests, and systems of 
confidence intervals, to gambling mechanisms. For example: 

... the situation of a statistician who decided to use the 95 per 
cent confidence intervals is exactly the same as that of a gambler 
participating in a game with probability of winning equal to 0.95. 
[1963, p.930] 

Suppose we interpret the chance l-~(h) of detecting the alternative h as both 
a relative frequency and a probabilitYl in the single case. 1 After all, this 
is the way we interpret the chance that a die will turn up an ace, or the 
chance that a chocolate wheel will win us a prize. Moreover, if Neyman intend
ed that "chance" be interpreted strictly and unequivocally as relative freq
uency (probabilitY2) he ought not to have spoken of the chance of detecting 
alternatives h in any particular single case (test). Alternatively, he might 
have kept to the less equivocal term "frequency", or even ·probability", which 
he defined strictly as probabilitY2' 

6Specifically, if the probability a is interpreted as a probabilitY1' then the 
result t(X) in a hypothesis test of size a entails a confidence interval f(X) 
such that prob1(et£(X))-1-a, where e is the unknown paramater and X is the 
sample observed. 

1Note that Giere, who interprets the probabilities (a,~) in N-P theory as 
propensities in the single case, refers to (a,~) as measures of "chance"; 
e.g. [1976, p.84]. 
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De Finetti (1974) uses payoffs through promissory notes, bets, 
or scoring rules in the elicitation of an expert's probabilities and 
introduces his "hypothesis of rigidity" to argue that as long as the 
payoffs are small, nonlinearities in the expert's utility function can 
be ignored for practical purposes. In an analysis considering not just 
the elicitation-related payoffs, but all uncertainties related to the 
expert's fortune, we find that the hypothesis of rigidity is not suffi
cient to eliminate the impact of the utility function in probability 
elicitation. We propose an "extended hypothesis of rigidity" that adds 
an extra condition to de Finetti' s hypothesis. The extra assumption 
is that, ignoring elicitation-related payoffs, the fortune of the expert 
is independent of the events for which probabilities are being elicited. 

The purpose of the paper, then, is to investigate the implications 
of de Finetti' s hypothesis of rigidity and our extended hypothesis of 
rigidity. We focus specifically on de Finetti' s method of eliciting 
probabilities in terms of price ratios but note that similar results 
can be derived for a variety of elicitation methods used by de Finetti 
and others (Kadane and Winkler, 1986). First, we show that the original 
hypothesis of rigidity is not sufficient to provide price ratios equal 
to the expert's odds ratios. The extended hypothesis of rigidity is 
presented and shown to be sufficient in this sense. Next, we take a 
slightly deeper look at the relationship between price ratios and odds 
ratios by considering a second-order analysis that reveals some systematic 
shifts in elicited probabilities. We then ask when the extended hypothe
sis of rigidity might be justified and find that it seems quite fragile, 
and we close with a brief summary of our conclusions. 

ELICITATION AND THE HYPOTHESIS OF RIGIDITY 

To make everything as simple as possible, we consider the elicitation 
of a probability by an expert for a single event A. Let N be a promissory 
note that pays r if A occurs and nothing otherwise, where r > O. De 
Finetti's approach (de Finetti, 1974) implies that if p is the largest 
price the expert will pay for N (Le., the price that makes the expert 
indifferent between buying N and not buying it, then. the ratio p!(r-p) 
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equals the expert's odds in favor of A. 
A is therefore p/r. 

The expert's probability for 

Suppose that the densities g(fIA) and g(fIA) represent the probabil
~ty distributions of the expert's fortune f given A and its complement 
A,. respectively, without the promissory note N. Then if U denotes the 
expert's utility function for f, the expert's expected utility without 
N is 

E[U(f)] = ~ J U(f)g(fIA)df + (1-~) J U(f)g(fIA)df, (1) 

where ~ represents the expert's probability that A will occur. If the 
expert buys N at price p, the expected utility becomes 

E[U(f)IN] = ~ J U(f-p+r)g(fIA)df + (1-~) J U(f-p)g(fIA)df. (2) 

The expert's indifference price for N is the value of p for which 

E[U(f») = E[U(f)IN]. (3) 

Equating (1) with (2) as required by (3) yields 

~ J [U(f-p+r)-U(f»)g(fIA)df = (1-~) J [U(f)-U(f-p)]g(fIA)df, (4) 

which simplifies to 

~/(1-~) = [p/(r-p»)c, (5) 

where 

J {[U(f)-U(f-p)]/p}g(fIA)df 
c (6) 

J {[U(f-?+r)-U(f»)/(r-p)}g(fIA)df 

From (5), we see that the price ratio p/(r-p) equals the expert's odds 
ratio ~/(1-~) iff 

c = 1. (7) 

As expected, (7) is satisfied when U is linear. The case of primary 
interest here, however, is that of nonlinear utility, since the main 
purpose of the hypothesis of rigidity is apparently to enable us to 
ignore utility considerations in the elicitation of probabilities. 
De Finetti states that his hypothesis of rigidity 

••• is acceptable provided the amounts in question are "not 
too large." Of course, the proviso has a relative and approximate 
meaning relative to you, to your fortune and temperament (in 
precise terms, to the degree of convexity of your utility function 
U); approximate, because, in effect, we are substituting in place 
of the segment of the curve U which is of interest, the tangent 
at the starting point. (de Finetti, 1974, p. 80) 

To see what happens when the amounts are not large, we consider 
the limit of (6) as r approaches zero (implying that p and r-p also 
approach zero): 
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lim c 
r+O 

J U' (f)g(f IA)df 

J U'(f)g(fIA)df 
(8) 



where the prime is used to denote differentiation. For small amounts, 
then, c is approximately equal to the right-hand-side of (8). 

If U is not linear, then c clearly depends on gUIA) and gUIA). 
For a simple example, suppose Stat g(fIA) and g(flA') are degenerate, 
placing probability one at f1 and f2' respectively, and 

U( f) = - e 
-df 

with d > 0 (risk-averse exponential utility). In this situation we have 

U'(f2 ) = e d(f1-f2). 

U'(f1) 

Thus, Co is a strictly increasing function of fJ.-f 2 • For any fixed 
d > 0, however small (Le., however weak the nsk aversion), Co can 
differ considerably from one if If1-f21 is large. 

A sufficient condition for c O=l is 

g(fIA) = g(fIA) for all f. (9) 

Since de Finetti apparently does not rely on linear utility to get cO=l, 
he must be assuming that (9) holds, although we have found no expllcit 
discussion of this assumption in his writing. Of course, to assume 
(9) is to assume that, apart from the possible purchase of the promissory 
note N, no part of the expert's fortune is contingent on whether or 
not A occurs. This assumpt ion is close to Ramsey's (1931) assumpt ion 
of ethical neutrality. We call the combination of both assumptions, 
de Finetti's hypothesis of rigidity and g(fIA) = gUIA) for all f, the 
~xtended hypothesis of rigidity. 

As illustrated by the above example, violations of this extended 
hypothesis of rigidity associated with the dependence of an expert's 
fortune on the events of interest [violations of (9)] can cause substan
tial differences between the expert's odds ratio and price ratio. Clearly 
de Finetti' s claim that "the hypothesis of rigidity .•• is acceptable 
in practice ••• provided the amounts in question are not 'too large'" (de 
Finetti, 1974, p. 80) should be clarified in view of (6) and (8). If 
U is not linear, it may not be sufficient for r (and hence p) to be 
small, because the entire range of values of f implied by g(fIA) and 
g(f IA) is relevant. This range reflects all of the many uncertainties 
related to the expert's fortune. 

SECOND-ORDER ANALYSIS 

The limiting analysis in the previous section leading to (9) as 
a condition of interest shows what happens as the stakes approach zero. 
For finite stakes, approximating U(f-pu) and q(f-p) in (2) by a first
order expansion gives equivalent results: c is approximately equal 
to cO' In this section we take a deeper look at the relationship between 
odds ratios and price ratios by considering the impact of including 
second-order terms in the exp-ansion. This yields 

2 3 
UU-pu) = U(f) + (r-p)U'(f) + [(r-p) /2]U"(f) + O(r ) (10) 

and 

U(f-p) (11 ) 
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Substituting (10) and (11) in (2) and equating (2) with (1) gives 

IT(r-p) f U'(f)g(fIA)df + [IT(r_p)2/2] f U"(f)g(fIA)df + 0(r3 ) 

= (1-IT)p f U' (f)g(f IA)df - [(1_IT)p2 /2] f U"(f)g(f IA)df + 0(r3 ), 

which reduces to 

IT/(l-IT) = [p/(r-p)]c, (12) 

where 

f U'(f)g(fIA)df - (p/2) f U"(f)g(fIA)df + 0(r2 ) 

c = -------------------------------------~--
f U'(f)g(fIA)df + [(r-p)/2] f U"(f)g(fIA)df + 0(r2 ) 

(13 ) 

Now the ratio p/(r-p) equals the expert's odds if c=l. Let r+O 
(so a fortiori p+O and r-p+O), so that p/r has a limit s, with O<s<l. 
Expanding c in a Taylor series in r around zero, we find it has the 
form 

with 

and 

2 
c = Co + rC 1 + OCr ), 

c = o 
f U' (f)g(f IA)df 

f U' (f)g(f IA)df 

[ f U' (f)g(f IA)df][ (-s/2) f U"(f)g(f IA)df] 

- [ J U'(f)g(fIA)df][(1-s)/2][ J U"(f)g(fIA)df] 

[J U' (f)g(f IA)df]2 

(14) 

(15) 

(16) 

Note that cO' the zeroth-order term of the expansion of c, is the limiting 
value of c as given by (8). 

The first-order term c 1 can be rewritten as follows: 

c = - -- s + (1-s) -------
Co [ J U"(f)g(fIA)df J U"(f)g(fIA)df ] 

1 2 f U'(f)g(fIA)df f U'(f)g(fIA)df 

Let 

w(f) = -U"(f)/U'(f) 

be the Pratt-Arrow risk-aversion function (Pratt, 1964). Also, define 

and 

gA(f) = U'(f)g(fIA)/ J U'(f)g(fIA)df, 

gA(f) = U'(f)g(fIA)/ f U'(f)g(fIA)df, 

(17) 

(18) 

(19) 

(20) 

(21) 

Since we assume that U'(f) > 0 (the expert prefers more to less), gA(f) 
and gX(f) are probability densities, as is the convex combination h{f). 
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Using (18)-(21), we can rewrite (16) as 

c 1 = (cO/2)Eh(w) 

and (14) as 

(22) 

From (23), we see that (9) may not be sufficient for c=l. In fact, 
if U' > 0 (more is preferred to less) and U" < 0 (the expert is strict ly 
risk averse), then independence of N and the rest of the expert's pros
pects, as given by (9), implies that c 1 > O. Then there is a region 
of values of r, close to zero, for whicIi c > 1. In this region, a risk
averse expert satisfying (9) will understate the odds in favor of A. 
That is, the expert's odds in favor of A are greater than the odds implied 
if the ratio p/(r-p) is taken at face value and the impact of nonlinear 
utility is ignored. On the other hand, a strictly risk-taking expert 
will have U" > 0, implying that c < 0, so that in a region of values 
of r near zero, p/(r-p) overstates the expert's odds in favor of A. 

Thus, working with finite stakes can lead to systematic shifts 
in the elicited probabilities. The extent of the shifts depends on 
how much the expert's utility function deviates from linearity, on the 
distributions g(fIA) and g(fIA), and on the magnitude of the stakes. 
Even if (9), the extra assumption in the extended hypothesis of rigidity, 
is satisfied, c can differ from one, although the discrepancy between 
c and one is reduced as the stakes become smaller. If (9) is not satis
fied, then all bets are off regarding how close c is to one. 

WHEN IS THE EXTENDED HYPOTHESIS OF RIGIDITY JUSTIFIED? 

Essentially, the extended hypothesis of rigidity requires two condi
tions. First, as in de Finetti's original hypothesis of rigidity, the 
stakes in the elicitation-related bets, scores, or other payoffs must 
be small. Second, the extension of the hypothesis of rigidity requires 
that aside from elicitation-related payoffs, the expert's fortune should 
be independent of the events for which probabilities are being elicited. 
The first condition can be controlled somewhat in the design of the 
elicitation procedure, keeping in mind that an acceptable size for the 
stakes depends on the perceived degree of nonlinearity of the expert's 
utility function and on the desired degree of accuracy in terms of poten
tial deviations of the elicited probability from the expert's judgments 
about the events. We will set aside more detailed questions about "how 
small is small" and concentrate here on the second condition, which 
is the primary focus of this paper. 

One way of viewing the problem posed here is that de Finetti does 
not ask whether, or to what extent, the expert is already making bets 
on the very stochastic events for which the expert's probabilities are 
to be elicited. In many instances, the experts concerning certain events 
are likely to already have significant stakes relating to these events. 
These stakes may be difficult to untangle, but nonetheless bear an impor
tant weight in the further bets the expert might make. Without studying 
these, with no "conflict of interest" statement, de Finetti-style elici
tations could make serious errors. This is admittedly speculation, 
but in many cases the impact of vio lat ions of (9) seems like ly to be 
much greater than the impact of violations of de Finetti' s original 
hypothesis of rigidity. In this sense, the extended hypothesis of rigid
ity is more fragile than the original hypothesis, and elicitation proce
dures should be reexamined carefully with this extended hypothesis in mind. 
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CONCLUSION 

be Plnettl (1974, p. 79) ~e~~ him~61£ AS h!lftA 1ft th~ RDmg~y-S~u~g~ 
tradition of expected utility maximization, which is surely correct. 
However, his proposed simplification via the hypothesis of rigidity 
is not innocuous and does not necessarily allow the utility aspects 
of choice to be suppressed. De Finetti may well have been aware of this 
problem. Although he seems not to have addressed the issue directly, 
a broad interpretation of "everyday affairs" in the following quote 
to include not just elicitation-related payoffs but also other stakes 
would make it relevant to the concerns discussed in this paper. 

Essentially, our assumption amounts to accepting as practically 
valid the hypothesis of rigidity with respect to risk: in other 
words, the identity of monetary value and utility within the 
limits of "everyday affairs" ••• actually, it seems safe to say 
that under the heading of "everyday affairs" one can consider 
all those transactions whose outcome has no relevant effect on 
the fortune of an individual (or firm, etc.), in the sense that 
it does not give rise to substantial improvements in the situa
tion, nor to losses of a serious nature. (de Finetti, 1974, 
p. 82) 

In any event, it would be sounder to maintain the full decision
theoretic structure in the analysis from the beginning. The problem 
impacts not just de Finetti's method of eliciting probabilities in terms 
of price ratios, but other elicitation methods as well. In Kadane and 
Winkler (1986), we explore further the separation of probability elicita
tion from utilities and indicate that probability elicitation procedures 
need to be reassessed in view of possible utility-related complications. 
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BAYESIAN ESTIMATION OF DESIGN FLOODS UNDER REGIONAL AND 

SUBJECTIVE PRIOR INFORMATION 

INTRODUCTION 

Robert Kirnbauer, Sylvia Schnatterand Dieter Gutknecht 

Institut fuer Hydraulik, Gewaesserkunde und 
Wasserwirtschaft 
Technische Universitaet Wien 

Usually design floods are estimated as certain quanti1es of a cumu
lative distribution function (CDF) fitted to a sample of yearly maxima of 
floods observed at a gauging station. If such observations do not exist 
at a site where a hydraulic structure is to the built, the hydrologist 
can collect flood data for several years during the planning phase. This 
small new sample, however, will not be sufficient for estimating the 
design flood by means of common flood statistics but it fits as one source 
of information to be combined with some prior information within the 
BAYESIAN estimation procedure. Prior information can be taken from long 
time flood records observed at stations of the same region to be 
incorporated in a data-based a-priori density function of the parameters. 

In other cases a non-data-based a-priori density function can be 
derived from interviews with experts in hydrology concerning their 
estimation of the statistical properties of floods at the project site. 

If the short flood record accidentally is taken from a period of 
extremely wet or dry years, sample information can be "put in the right 
place". This can be done by examining the longer records and modifying 
the likelihood function following a method proposed by Bardossy (1982). 

In the sequel for each of the three above mentioned estimation pro
cedures an example is given using data from Upper Austrian streams and 
taking advantage of a method proposed by Cunnane and Nash (1971). This 
method yields not only a point estimate of the design flood but its whole 
CDF. Under the hydrological point of view this procedure is better than 
calculating a point estimate because the final security of a hydraulic 
structure not only depends on the probability of non exceedance of the 
design flood but also on the accuracy of its estimation. 

The integration procedures had to be performed numerically because 
no natural conjugate a-priori probability density function (PDF) of the 
likelihood function was used. For this purpose a computer algorithm 
provided by Schnatter (1982) could be applied. 
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FLOOD STATISTICS UNDER THE BAYESIAN POINT OF VIEW 

Common Flood Statistics 

In common flood statistics a PDF f(x/Q) is fitted to a sample of 
yearly maxima by calculating a point estimate Q* of the parameter vector 
Q. The design value then is found by choosing a particular recurrence 
interval T and solving equation (1) with respect to XT 

Xr 

1- ~ = j!(XI,e") dx (1) 

-III> 

Using a two parameter PDF this solution can be noted as 

(2) 

with kT being the frequency factor, dependent only on the recurrence 
interval T and the type of the distribution, andp and Cy being estimates 
of the mean and coefficient of variation derived from the sample. 

Incorporation of Parameter Uncertainty 

Within the Bayesian framework the parameters are assumed to be random 
variables, the distribution of which can be derived from two sources of 
information: The sample information is contained in the sample vector! = 
(X1,X2""X~",XN)T and quantified by the likelihood function: 

(3) 

The second source of information is the a-priori PDF f'(p,cvIIp) of the 
parameters ~ and Cy , given some prior information Ip.The combination of 
those two kinds of information yields the a-posteriori PDF f"(~,cYI!,Ip) 
of the parameters t' and cy • 

fl/(/!"c,/!, IpJ = L(f·c.IX).f'(~.c .. lle) 
jjL(e-,cv I5J I'(~.c.II,.) dcrde 
e c, 

(4) 

It contains both the sample information and the prior information. If the 
a-priori PDF is a natural conjugate of the likelihood function (see e.g. 
Zellner, 1971) these calculations can be done in closed form, and the a
priori PDF can be called a "convenient prior" (Vicens et al., 1974). 

Evaluation of the Cumulative Distribution Function of XT 

It would to some exent be contradictory to the Bayesian way of 
thinking to calculate a point estimate of the quantile XT by means of the 
a-posteriori PDF and thus ignoring the randomness of the parameters. 
Therefore a method proposed by Cunnane and Nash (1971) was used to derive 
the cumulative distribution function of the quantile XT' 

If we assume any value Xj as a fixed flood discharge, the probability 
of the quantile XT being less than or equal to the value Xj can be found 
by the following considerations: kT be the frequency factor of the chosen 
distribution of the floods of the recurrence interval T, then in the 
(e-,cy)-plane 

Xj - ~ 
C .. (j) = - (5) 

kr-/! 
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Cv(j) forms a hyperbola. Every (f,cv)-combination between the or1g1n and 
the hyperbola represents a flood less than Xj. Hence the probability of XT 
being less than or equal to Xj can be found by integrating the a
posteriori PDF over the region between the origin and the hyperbola. 

00 ('.(f) 

P(XT ~ X-.i)= J!lf"(~,c~/1.,lp) dc.,]d6l' 
-tR 0 

(6) 

Variation of Xj yields the CDF of XT. 

REAL WORLD APPLICATION OF THE ESTIMATION PROCEDURE 

The Sample 

Five yearly maxima of floods at the Upper Austrian river Krumme 
Steyrling at the gauging station Molln, catchment area AE = 129,4 km 2 , 

were taken as the sample. As a longer record of 57 years existed at the 
gauging station Molln it was possible to test the performance of the 
Bayesian estimation procedure. 

In order to eliminate the influence of the catchment size, especially 
with regard to the planned' combination of sample and regional information, 
the flood discharge values HQ~(m3/s) of 1973 to 1977 were divided by the 
catchment area AE so that the sample vector resulted in K = (0.723, 0.420, 
0.702, 0.231, 0.835)~ 

Probability Density Function and Likelihood Function. 

The double exponential or Gumbel-I distribution was chosen as the 
model distribution. Its PDF is given by 

((x/e,er) =ct. exp{(- «(x-a) - exp(-u. . (x-a))) 
rEi u=f--cx-' 

From the PDF the likelihood function can be derived 

7r '" N ) L(e-,c,J5.)=exp(N. Ln(-c . ..a) -[:.y; -?erp(-y;) 
if· ~,o ,-, ,.f 

tE is Euler's constant (~E = 0,5772157). 

(7a) 

(7b) 

(8a) 

(8b) 

No natural conjugate ("convenient prior") of this likelihood function was 
found, so that there were no mathematical restrictions influencing the 
choice of the a-priori PDF, and only hydrological aspects had to be 
considered. 

The integrations in equations (4) and (6), however, had to be 
performed numerically, taking advantage of an integration procedure 
provided by Schnatter (19a2). It is based on a two dimensional Gaussian 
integration and automatically restricts the integration area from an 
infinite to a finite region considering requirements of accuracy. 

Data-Based Regional Prior Information 

Investigations reported in Kirnbauer (1981) showed that regional 
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prior information yields suitable results only if the data are taken from 
a region which is similar to the catchment where the sample is taken from 
with respect to its hydrological conditions. Thus the data were taken 
from longer flood records at twelve gauges in surrounding catchments in 
Upper Austria. In spite of the homogeneity of the region considerable 
variability appeard especially with respect to the mean flood ~ (not so 
with respect to the coefficient of variation cv ). Therefore investigations 
had to be performed to find a morphological parameter in order to reduce 
the variability. Many attempts failed: Yearly mean precipitation, sums of 
precipitation causing the floods, land use, fall of slopes and rivers did 
not differ enough to explain different mean values of the flood records. 
The density of streams (GD) remained as the parameter with the strongest 
influence on the mean flood. This influence was quantified in the form of 
a regression model (see fig. 1) 

In?- = a"GD' + af,GD ~ a. 

lntt=O,f13,GD L +()'416,GD -1,43" fe, 

(9a) 

(9b) 

which allowed to estimate the expected mean flood at the gauge "Molln" 
with the stream density in the catchment upstream of the gauge (GD=1,13 
km/km2): In 7=-0,752, ;;""= 0,471m 3 /(s.km 2 ). The standard deviation was 
estimated from the (M=12) residuals of the regression model: 

(10a) 

(10b) 

Due to the logarithmic form of the regression model the mean flood at 
MolIn is distributed log-normal with mean p*and standard deviation 0e1. 
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This distribution is a marginal distribution of the a-priori PDF 

(11 a) 

( 11b) 

For the coefficient of variation cv it was impossible to find a 
regionalisation parameter, and thus the marginal distribution of Cy was 
directly estimated from the M c~-values of the regional flood records. The 
distribution was assumed to be log-normal with mean and standard deviation 
estimated from the regional sample: 

11'1:" ,,11 
cv= -;;;-[lncVK 

Ie·f 

( " '11 I\t)')4/L 
~2= H-1. L.,lnc"" - Cv . 

( 12a) 

( 12b) 

The marginal ditribution of Cy , therefore, has density 

CPt (cvl rIO) = IN (~* ; o,z. ) = LN (IJ, I, 68 i &,4(,4) ( 13a) 

CPI. ('vlr,.)= : . G: "rfi . eXf (- 2: a . {in c. - {f1 cv#f r). 
r II.' 1T' "et 

( 13b) 

As the cv-values appeared to be independent from the residuals 8 1 of the 
regression model (9b) the a-priori PDF of~ and Cy was found by multiplying 
the marginal distributions (see next page). 

la) Li ke lihoodfunctionl 

X= 1-1 • ••• mean flood 
Y=cv • .. coeff . of. var. 

I c) Posterior PDF of t'" Cv I 

6 . 3 

34 . 1 

Prior PDF of ~, cv l 

Sample: N=5 

Prior Information : 

From surroundi ng 
catchments (sharp) 

Fig. 2. Bayes' estimation. Distributions of parameters. 
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(14 ) 

Likelihood function. a-priori PDF and the (not yet normalized) a-posteri
ori PDF are shown in fig. 2. The small information content of the small 
sample and the relatively sharp regional information can be observed in 
this figure. Likelihood function and a·· priori PDF were combined to achieve 
the a-posteriori PDF following equation (4) and the cumulative distri
bution function of the design flood xT=HQ100 with recurrence interval of 
T=100 years was calculated due to equation (6). 

Non-Data-Based Subjective Prior Information 

In order to test the performance of subjective prior information five 
experts in hydrology were interviewed about their opinion concerning 
floods at the "project site" Molln. Preliminary interviews showed that the 
hydrologists were not accustomed to the Bayesian way of thinking so that 
they could not give a numerical assessment about the distribution 
parameters mean and coefficient of variation and their PDF. Therefore. the 
interviews had to concentrate on values the experts were familiar with. 
Those values were quantiles of the flood distribution of 10 or 1 percent 
probability of exceedance respectively (recurrence intervals T1 = 10 or 
T2 = 100). They were asked for the most likely. the highest probable and 
the lowest probable value of the above mentioned quantiles. 
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The result or those interviews can be characterized by the latin 
proverb "QUOT CAPITA TOT SENTENTIAE". As shown in fig. 3 flood values, 
judged by one expert to be the "highest probable", were lower than those 
estimated as "most likely" by another. Therefore the discrimination into 
the three categories was abandoned, and each value was used equally, as 
if 1S experts woulJ have been Interviewed about HQ.o and HQ.oo. 

Thus two distributions resulted from the interviews: One for HQ.o and 
one for HQ.oo. With the index x standing for the expert's statements about 
HQ.o and y for HQ.oo a joint normal distribution in x and y was fitted 
(with the parameters ft., i5f., th, IS" S1,J estimated by the method of 
moments from the two times 15 statements). 

. (_ ( I( J( - ~_)l _ 2 (X - <!(,,) (.1....:...h) ex? 2(1-r:y) \1 ($_ fxy (flf . 0', + 

.+P-I);t)l)) (15a) 

t!~ .. 0, 151S j ~ =0, 1917 j 1:',= 1,1999; oy = 0,2'159 j f~'i - 0, 9814. (15b) 

This distribution implicitly contains the subjective a-priori PDF in and 
Cv if we consider that 

X= t' + k"IJ' t£. c .. 
Y=u+k . .u..c 

(,.- 1()() l. " 

( 16a) 

( 16b) 

(with k.o = 1.30455 and k.oo = 3.13667 being the frequency factors of the 
standardized Gumbel-I distribution). The equations (16) are the transfor
mation equations to transform the joint density of x and y to the a
priori PDF, which results in 

with g( ... ) given in equations (15). 

The calculation of the cumulative distribution function of the design 
flood followed equations (4) and (6). 

Modified Likelihood Function 

It is a well known phenomenon, that big floods can occur in a series 
of consecutive years, or that during several years no remarkable flood can 
be observed. If the sample at the project site was taken from such a 
period, the design flood would be over- or underestimated respectively. 

Past experience has shown that the floods in a whole region are 
rather homogeneous, either big or small. Therefore the relative magnitude 
of the sample floods can be estimated from the corresponding floods in 
surrounding catchments. A distribution of regional frequency factors can 
be derived from the regional information gauges (their number be M, their 
index j) for each of the N years the sample values are taken from, 
utilizing mean and standard deviation of the longer records at the 
regional information gauges. 

For the year i of the sample a set of M frequency factors can be 
calculated as follows 

k .. = 
JJI 

j" 1 (IJM ( 18) 
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with Yj1 be~ni tb~ '~994 3t g~~ge j observed in the rear i, and~7~ and 
6YJ being mean and standard deviation of the (long) flood record at gauge 
j. Then a PDF can be fitted to that set of frequency factors, with mean 
and standard deviation according to equation (19) 

- ,( If 

kYi= ~ [;; k yj; (19a) 
J 

M _ 1 

( [ (kyji - kyJ )Ill 
~. t 

(20a) 

(20b) 

This likelihood function has to be combined with the data-based 
regional a-priori PDF (equation (14», and the distribution of the design 
flood can be calculated following equations (4) and (6). 

Cumulative Distribution Function of the Design Flood 

The cumulative distribution functions of the design flood XT (with 
T=100 years) are plotted in fig. 4 in normal probability paper. The 
following numbers in the circles correspond to the line-numbers in fig. 4. 
The different sources of information leading to the respective line are 

(DSample information alone, estimation procedure due to common flood 
statistics: point estimate of parameters by method of moments, 
calculation of the expected value of XT and estimation of the 
confidence intervals following Kaczmarek (1957). 

GDSample Information (equation (8» combined with a subjective a
priori PDF (equation (17» by Bayes' theorem (equation (4» and CDF 
of XT calculated following equation (6). 

CD Sample information (equation (8» combined with data-based regional 
a-priori PDF (equation (14» by Bayes' theorem (equation (4» and 
CDF of XT calculated following equation (6). 

QDModified sample infofmation (equation (20) combined with data based 
a-priori PDF (equation (14» by Bayes' theorem (equation (4» and 
CDF of XT calculated following equation (6). 

CD "true" CDF of XT, estimated by common flood statistics from the 
whole flood record of 57 annual maxima. 

It can been seen from fig. 4 that sample information alone gives just 
vague information about the design flood. (No civil engineer should dare 
to design e.g. a dam based on a design value derived from such a 
distribution. ) 

If the sample information is combined with subjective prior informa
tion given by five experts there is much information yield, though the 
experts' opinion tends towards overestimating the design value. Maybe they 
are biased by including a factor of safety in their opinion. 
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Fig. 4. Cumulative distribution functions of the design flood HQ~oo due to 
different sources of information. 

The use of data-based regional prior information combined with sample 
information to a large extent compensates the lack of information 
contained in the small sample. 

If the hydrological characteristics of the years the sample is taken 
from are considered in addition to the regional information, there is some 
more information yield. 

The cumulative distribution function of the design value estimated 
from a relatively large sample of 57 elements can be looked upon as the 
standard of comparison. It can be used to test the performance of the 
estimation procedures. 

CONLUSIONS 

The Bayesian way of thinking meets many requirements of hydrology and 
of design problems in civil engineering. To consider a design value as a 
random variable makes it clear, that designing a structure is a decision 
problem and not merely the result of mathematical calculations. Every 
uncertainty should be taken into consideration within the decision 
procedure. From this point of view some more work has to be done in 
hydrology: There is a considerable amount of uncertainty hidden in the 
data the hydrologist is compelled to calculate with. The influence of this 
uncertainty on the accuracy of design values should be made evident. 
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BAYESIAN METHODS IN MULTI PERIOD 

FINANCIAL DECISION MAKING 

Peter Kischka 

Universitat Karlsruhe, FRG 

INTRODUCTION 

Bayesian methods are applied in financial decision making 
in order to incorporate estimation risk and/or to incorporate 
subjective elements in the decision process. In both cases 
it is assumed, that the distributions of the rates of return 
depend on some parameter and there is a diffuse or an infor
mative prior distribution for this parameter.From a decision 
theoretic point of view this approach is justified in Klein 
et al. (1978), the strong economic reasins to do so are de
monstrated e.g. in Bawa et al. (1979), Kischka (1984). 

Most work in this field is done with respect to single
period decision problems. Whereas the theory for the single 
period is well developed only few papers consider the multi
period approach; special Bayesian aspects are considered in 
Winkler/Barry (1976), Kischka (1984), Jammernegg (1985). 
Of course, financial decision making is a multiperiod problem 
for every investor has the possibility to change his portfolio 
within his planning horizon. In this paper we show the impli
cations of the Bayesian approach with respect to the first 
period decision. We compare this decision to the one of a 
so called classical investor who assumes the rates of return 
to be identical and independently distributed during the 
planning horizon. The analysis is done using expected utility 
maximization; the main result shows that whether a "Bayesian 
investor" acts more or less risky than a classical one depends 
on his relative risk aversion in the sense of Pratt (1964). 
A similiar problem in another context and with a linear uti
lity function is examined in Tonks (1984). 

THE MODEL 
We use the following notations 
Wo initial wealth 
T planning horizon 
Wt wealth at the end of period t 
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p ( I y) 

¢ = 1jJ o 

U 

random vector denoting the 
rates of return of assets in 
period t, n being the number 
of assets available 

portfolio chosen in period t; 
ait is the amount invested 

in asset i in period t 

given y Rt is i.i.d. with p(ly) 

prior distribution of the pa
rameter y 

posterior distribution of the 
parameter depending on the 
realizations r 1, ••• ,rt of 

rates of return 

predictive distribution in 
period t 

concave utility function for 
wealth 

As usual we assume that the first asset is riskless 

R1t :: r st • 

Of course the amounts ait invested in period t sum up to total 

wealth available 

n 
,L 1ait = Wt - 1 • 
~= 

Therefore starting with Wt - 1 and investing the amounts ait 
we have at the end of period t the random wealth 

n 
Wt = (1+r t)a t + L (1+R't)a't 

s 1 i=2 ~ ~ 

n 
= (1+rst )Wt _1 + L (R't-r t)a't. 

i=2 ~ s ~ 

The problem is to maximize expected wealth at the end of the 
planning horizon 

max E(U(WT)). 

We neglect the problem of intermediate consumption. The func
tional equations derived from this problem can be written as 

B 
¢T-1(WT- 1,1jJT-1) = wax ET(U(WT)) 

T 

1) 1jJt+1 is determined by 1jJt and Rt +1;Wt +1 by wt ,at +1 and Rt+1 
(see Kischka (1984), pp106). 
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The expectations Et are taken with respect to the distribution 

Pt of Rt . 

The Arrow-Pratt measure of absolute risk aversion is 

_ U"(W) 
A (W) - - u' (W) , 

and of relative risk-aversion it is 

R(W) = W A(W) • 

There is strong empirical evidence for absolute risk aversion 
to be decreasing (A'<O); no such evidence is given for the 
sign of the derivative of relative risk aversion. 

We consider the class U of utility functions exhibiting a li
near tolerance function 

11= {Ul (A(W»-1 = d + bW} 

This class contains logarithmic, exponential and power 
functions (see e.g. Bertsekas (1976) pp 89). 

NO RESTRICTIONS FOR BORROWING AND SHORT-SELLING 

In this section we assume that there are no restrictions for 
borrowing and short-selling, i.e. the investor can borrow 
money paying the interest rate rst or he can sell short the 

risky assets. Formally, we have: ait€lR. We compare the opti
mal first period decision of the Bayesian, given by 

B B 
a 1 := arg max E1 (~1(W1'W1» a 1 

with the optimal decision a~ of investor C(lassical) who as

sumes the rates of return to be i.i.d. according to P1• I.e. 
in the first period both investors assume that the distribution 
of the rates of return is P1, but Investor B(ayesian) will 

change this distribution according to realized returns. 
Let ~~(Wt) denote the derived utility functions for investor C: 

C 
~T-1 (WT- 1) = wax E1 (U(HT» 

T' 

We have the following simple condition for the initial deci
sions to coincide 

Proposition 1 

Assume there is some constant e > 0 and a function f s.t. 
B C 
~1(W1'W1) = e~1(W1) + f(W1) 

C B Then: a 1 = a 1 
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For utility functions Ue~the solution for investor C is given 
in Bertsekas (1976),pp 90. From this analysis it follows that 
for UeZ(the tolerance functions of the derived utility 

function ~~ are independent of ~t. This can be used to prove 

Proposition 2 

For Uel{there is a vector-valued function gt such that the 

optimal portfolio a~ depending on Wt - 1 and ~t-1 is given as 

T -1 
= gt(~t-1) (d( II (1+r .» + b(1+rst )Wt _1) 

i=t+1 S1: 

for t=1, •• ,T-1 
B B 

aT = aT(WT-1,~T-1) = gT(~T-1) (d+b(1+rST )WT_1) 

where d and b are constants determining the function UeU. 
The important point in proposition 2 is the independence of 

wealth of the first factor determining a~. We apply this re

sult to the special utility function U(W) = In (W+d), W>-d. 

These functions are elements of V , with b=1, exhibiting de
creasing absolute risk aversion while the relative risk aver
sion depends on the sign of d. 

Corollary 

For utility functions U(W) = In(W+d) we have a~ = a~, i.e. the 

Bayesian and the classical investor take the same initial de
cision. 

Proof: 

Inserting the solution of proposition 2 into the functional 
equation we get 

The first summand doesn't depend on the distribution of Rt +1 • 
Therefore for the classical investor we have 

C T 1 
~t(Wt) = In(Wt + d( IT (1+r .»- ) + const. 

i=t+1 S1. 

and therefore the corollary follows from proposition 1. 

For other functions out of the class 2( a similiar result 
doesn't hold; e.g. in Kischka (1984), pp 123, it is shown 
that for an exponential utility function the Bayesian investor 
behaves less risky than the classical one. 

RESTRICTIONS FOR BORROWING AND SHORT-SELLING 

The result of proposition 2 depends on the first order condition 
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for the solution of the maximization problem. If we take into 
account restrictions for borrowing and short-selling there may 
be no interior solutions. Especially in the Bayesian case the 
predictive distributions may adjust in a way that it is optimal 
to invest all in the risky assets at time t having wealth W 
while it would be not optimal to do so if the "old" distri-t 
bution P1 for the rates of return is applied. 

This situation is more complicated than the unrestricted case. 
In order to simplify the analysis we make some additional 
assumptions: 

n = 2 There are only one risky and 
one riskless asset 

P ( IY) is a two-point distribution 
with realizations z,v 

T = 2 There is only one possibility 
for portfolio revision 

To exclude trivial situations we assume z<rsi<v for i = 1,2. 

Furthermore we assume that there are only two parameters y,y' 
(e.g. with the interpretation that the business conditions 
are good or bad). 

If there is no borrowing and no short selling we have the re
striction for the amount invested in the risky assets 

We assume that investor C chooses an interior solution in 
both periods 1). Under these conditions it follows from 
Bertsekas (1976), p 94, that for UEU the initial problem is 

( *) max E 1 (U [ (1+r 2) W 1 ]). a 21 s 
Now consider the decision problem at t=1 for investor B. There 
are two possible predictive distributions in period 2, which 
we denote by 

P2 (lz), P2 (lv) 

depending on the realization -z or v- of the risky asset in 
the first period. 
E.g. it is possible that investor B invests nothing in the 
risky asset if z is realized in the first period, and he 
chooses an interior solution if v is realized.In this case 
one can show, that for logarithmic utility functions the ini
tial decisions coincide. 
In the following we make an assumption which implies that the 
learning effect is essentially compared to the assumptions 
of i.i.d. rates of return. 

1) sufficient for this assumption is 
zP 1 (z) + vP 1 (v) > min {rs1 ,rS2 } 

zU' (Wt - 1 (1+z) )P1 (z) + vU' (Wt - 1 (Hv) )P1 (v) 

<rst (U' (Wt - 1 (Hz» + u' (Wt - 1 (1+v») (t=1,2) 
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We assume 

zP2(zlz) + vP2 (rlz) ~ r s2 
(A) and 

zU' (H(1+z»P2 (zlv) + vU' (H(1+v»P2 (vlv) 

~rs2 (U' (H(1+z» + u' (H(1+v» 

with H = (1+z)Wo 
The first assumption assures that investor B will invest no
thing in the risky asset if in the first period z is realized. 
As mentioned above one can assume absolute risk aversion to 
be at least non-increasing; in this case the second assumption 
assures that total wealth will be invested in the risky asset 
if v is realized, for (1+z)Wo is the minimal wealth possible 
at t = 1 and non-increasing risk aversion implies that the 
investor will not invest less in the risky asset if wealth 
increases. 
With this assumption we have 

B {U«1+rS2 )W1) ljJ=ljJ(lz) 
cp 1 (W 1 ' ljJ) = if 

U( (1+v)W1 )P2 (vlv)+U( (1+z)W1 )P2 (z Iv) ljJ=ljJ <Iv) 

The initial problem for investor B therefore is 

wax {U ( (1+rs2 )W1)P 1 (z) 
21 

(**) + U«1+v)W1)P1 (v)P2 (vlv) 

+ U«1+z)W1)P1 (v)P2 (zlv)} 

Proposition 3 
Assume relative risk aversion R of an utility function UeU 
is smaller than 1 for all possible values of wealth. Then, 
for every prior distribution cp there exists some constant k<1, 
such that: . 

If P(vly»k, P(zly'»k and assumption (A) is fulfilled, then 
the optimal amount to be invested in the risk¥ asset for (*) 

is smaller than for (**), i.e. a~1 > a~1. 

Proof: 

Consider the following function of 0 and a21 
H(o,a21 ) :=U[ (1+rs2 ) «1+rs1 )wo+(z-rs1 )a21 ) ]P1 (z) 
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Maximization of H with respect to a21 is equivalent to (*) 

for 0 = 0 and to (**) for 0 = 1. 
In order to simplify the formulas we assume without loss of 
generality: 

r s1 = r s2 = O. 

For given 0 the necessary (and sufficient) condition for an 
interior maximum a~1 is 

a * aa21 H (0, a 21 ) = 0 • 

a2 H Because of the concavity of U we have --2 < 0 a 21 

and therefore from the implicit differentiation theorem it 
follows 

~~~1 (o'~1) > 0 .. ~1 > ~1 
we have 

~ H = U'(WO+za21 )ZP1(z) 
a~1 

and 

+ u' [,<1+vo) (WO~~1l.!(1+vO)vP1 (v)P2 (vlv) 
A 

+ u' [,(1+zo) (WO+V~1)~ (1+zo)vP1 (v)P2(zlv) 
• 
B 

aO~~1 = U" [A]V(WO+~1) (1+Vo)vP1 (v)P2 (vlv) + U' [A]V~1 (v)P2 (vlv) 

+ U"[B]Z(WO~1)(1+zo)vP1(v)P2(zlv) + U'[B]z vP1(v)P2(zlv) > 0 

< > U' [A]vP2(vlv) (1-R[A]) + U' [B]ZP2(z Iv) (1-R[B]) > 0 

R denotes relative risk-aversion as defined above. Since 
z<rs1 = 0 and R<1 this condition is satisfied for P2 (vlv) 
greater some constant m. 
From Bayes' theorem we have 

and 

p(vly) ~ 1, p(vly') ~ 0 .. P2 (vlv) ~ 1. 
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Therefore there exists some k, depending on $ ,s.t. 

P(vJy) > k, P(vJy') < 1-k • P2 (vJv) > m. 

From this proof it is obvious that for relative risk aversion 
R > 1 there exists some constant k as in proposition 3 im
plying 

B C 
a 21 < a 21 • 

Finally we will consider the case of 'total Bayesian learning' 
assuming 

(T) P(vJy) = 1 = P(zJy') 1). 

In this case Bayes' theorem implies for all prior distribu
tions $: P2 (vJv) = I = P2 (zJz). 

Total learning therefore means that after observing the high 
or the low rate of return in the first period the investor 
is sure that this rate of return will occur in the second 
period. 

Corollary 

Assume (T). Then for every UE Uwith relative risk aversion R 
and every prior distribution $ we have 

> B < C 
R < 1 • a 21 > a 21 

The first condition has to be fulfilled for all possible 
values of wealth. 

Proof: 

Under assumption (T) we have P2 (vlv) = 1 and therefore the 

. a2H 
s~gn of aoa is determined by relative risk aversion only. a 21 

CONCLUSION 

The Bayesian approach in multiperiod financial decision ma
king avoids the strong classical assumption that investors 
will assume rates of return to be i.i.d. over the whole 
planning period. Furthermore -contrary to arbitrary Marko
vian approaches- no additional assumptios have to be made 
compared to the single-period case. 

If there are no restrictions for borrowing and short-selling 
there are utility functions-expressing all types of empiri
cally relevant risk aversion- s.t. there is no difference 
in the initial decision between a Bayesian investor and a 
classical one. The reason is, that new information can be 
totally exploited in a new period, since there are no finan
cial restrictions. 

1 ) 
Every distribution P1 can be derived from this assumption 
by choosing an appropriate prior. 
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For the restricted case we have shown that relative risk aver
sion is decisive for the comparison of initial decisions. 
Loosely speaking, if the Bayesian assumes a relatively high 
probability for the rates of return depending on the parameter, 
then his relative risk aversion is the crucial point deciding 
whether he behaves more or less risky than a classical investor. 
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1. INTRODUCTION 

1.1 Mapping Knowledge into Subjective Probabilities 

wnen asked for the meaning of subjective probability, Bayesian 
statisticians refer to concepts like confidence, feeling of uncertainty, 
incomplete knowledge, partial knowledge, or degrees of belief. Usually these 
concepts are taken as primitives, i.e. their meaning is not interpreted 
within a theory. Often subjective probabilities are "defined" by betting 
behavior. But such "definitions" are in the spirit of Bridgman's 
operationalism and black box thinking. These paradigms were dominant around 
1930 when the fundamentals of subjective probability theory were first 
developed by de Finetti. 

During the last twenty years there has been extensive research on the 
representation and processing of knowledge. The work was done mainly within 
psychology and artificial intelligence. Do the recent cognitive models of 
knowledge representation provide a framework for the interpretation of 
subjective probabilities? Imagine the following thought-experiment: down-load 
the description of a person's (incomplete) knowledge about a given domain 
from th~ human brain onto a computer. The resulting representation in the 
computer is a frozen but "objective" snap-shot of a human knowledge base. Can 
we find a rule which maps such a knowledge structure into betting ratios and 
probability distributions? And furthermore, if such a rule can be found, what 
is the justification for calling the resulting probabilities "subjective"? At 
present we are far from realizing such an experiment and, perhaps, it can 
principally never be done. But there are many attempts to day to describe 
common-sense and expert knowledge in an objective way. Theories and models 
showing how such descriptions can be made are first steps in this direction. 

The aim of the present paper is to review some of the work done on the 
cognitive representation of knowledge and to discusss its relation to the 
interpretation of subjective probability as incomplete knowledge. Subjective 
probabilities will be interpreted as summary descriptions of partial 
knowledge states. I will first discuss a fundamental difference between the 
way in which knowledge systems and in which Bayesian probability theory 
processes new data. Knowledge systems process new information in a 
constructive additive way, Bayesian probability theory process new 
information in a suppresive subtractive way. 
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1.2 Suppression of Incompatible Alternatives 

An idea that always impressed me in de Finetti' s work is IUS two stage 
model of induction: We begin the inductive process with a large set of 
possibilities, later each incoming piece of information logically suppresses 
some of these possibilities, namely those which are incompatible with the new 
information and which should thus be excluded from further analysis. This 
first stage reminds me of the work of a sculptor: he begins with a large 
square stone and uses his chisel to remove more and more of those pieces of 
the stone which are incompatible with his ideas. 

The second stage of induction deals with the according probabilities. 
Given a possibility space together with a probability distribution defined on 
it; the removal of possibilities leads also to a loss of probability mass. To 
fit the new situation the probabilities must be re-standardized to sum up to 
one. De Finetti showed that this re-standardization - if done in a coherent 
way - "automatically" follows Bayes-Theorem (de Finetti, 1974, I, 141). 

According to this model a learning system should start with a wide 
possibility space and reduce it according to the incoming experience. Only 
the very first prior probabilities really matter because at all the later 
stages they are completely determined logically. 

1.3 Constructive Composition of Facts 

The psychological processes seem to be reversed. We do not represent 
possibility spaces in our memory but store the actual experiences. We try to 
keep track of the facts instead. We do not work like a sculptor but like a 
painter who puts colours on a sheet of paper: the picture is created by 
adding new shapes and colours to those already existing. This is a 
constructive composition process and not a suppression of incompatible 
alternatives. Large possibility spaces impose unrealistically high processing 
loads on human memory and thought. Common-sense thinking is guided by 
positive knowledge, not by the "up until now not excluded possibilities". 

We also do not normally store negative properties like "the hero is not 
bad", "ants are not big" (Graesser and Clark, 1985). Again, " ... Storing 
negative expressions would rapidly clutter a data base because thousands of 
true negative expressions could be potentially stored in every ••• " knowledge 
structure (Graesser and Clark, 1985, 138). Young children have no concept of 
ambiguous information. "Their strategy is to make the best interpretation 
they can on the basis of prior assumptions and expectations." (Robinson and 
Robinson, 1982, 279) 

An important advantage of storing facts instead of possibilities is that 
facts can be re-analysed in different models and under changed conditions. 
Multi-purpose data processing is a vital advantage for a complex system 
striving for multiple goals in a complex environment. 

2. KNOWLEDGE REPRESENTATION 

The most important concepts in cognitive science are "representation" 
and "process". 

A cognitive representation is the mentally coded content of information. 
A taxonomy according to the representational format is given in Fig. 1. 

The denotational formats work on the basis of static structures. The 
processes which operate on these structures are not part of the represented 
knowledge and are well separated from it. The declarative formats are the 
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Representation Format 

Denotational 

I 

Declarative Analogical Procedural 

Fig. 1. i-lain types of representational formats. 

most frequently investigated forms of knowledge representation. Typical 
examples are propositional systems, semantic networks, and frames. Analogical 
formats contain a homomorphism between the external objects and their 
internal representation. Mental images are the best examples. Procedural 
formats represent knowledge by dynamic structures or small "programs". The 
knowledge of how to ride a bicycle or how to tie shoe laces is stored in a 
procedural format. 

A cognitive process is an activity which changes and manipulates the 
representations in a cognitive system. In the present context the distinction 
between processes which operate on the object-knowledge level and processes 
which operate on the meta-knowledge level will be important. 

3. DECLARATIVE REPRESENTATION 

3.1 Logical Systems 

Famous philosophers like Boole or John Stuart Mill considered the laws 
of logic as fundamental for human reasoning. We don't agree today (e.g. 
BLaine, 1978). But even if natural reasoning does not follow formal logic -
wouldn't it be a first powerful approximation to model human thinking and 
knowledge representation on a logical system? No wonder that the first 
knowledge representation systems in artificial intelligence (AI) followed 
closely first order propositional calculus. 

Logical data bases. Logical systems of knowledge representation were 
mainly developed for data bases. PROLOG (e.g. \varren, 1979; Clark and HcCabe, 
1979; Futo et al., 1978) is the best known example for a logical data base. 
In a logical data base knowledge is translated into a set of well formed 
formulas in predicate calculus, e.g.(Robinson, 1979, 105): 

for all X, if X is human then X is fallible 
Socrates is human 
Aristotle is human 
Socrates is Athenian 

The user of a data base may interact with the system by asK1ng questions like 
Are there any Z, such that Z is Athenian and Z is fallible? 

A question is treated as goal statement. T1le system answers the question by 
YES if the questioned formula can be shown to be a theorem of the data base. 

Z = Socrates. 
It's answer is NO SOLUTION if the query is not a theorem of the data base. 

Aristotle is Athenian? 
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Such a system is an automated deductive inference device. Technically, the 
answer is often computed by a machine-orientated refutation procedure known 
as the resolution method (Robinson, 1979, 1982). It consists of three steps: 
the transformation of the original formulas into standardized clause forms, 
the main resolution process, and a final test. 

Automated deductive inference devices provide only two principles to 
process incomplete knowledge: (i) If the missing information consist of not 
stated axioms then the set of possible YES-answers (derivable theorems) is 
reduced and the NO SOLUTION set grows larger: (ii) if there are missing 
elements within one of the axioms this leads to an error condition and a 
break down of the process. The explicit admittance of non-stated axioms (case 
i) is the most fundamental way to deal with incomplete knowledge. We will 
turn to this question next. 

Note that the assignment of probabilities to quantified propositions is 
rather unusual. The only example I know in which probabilities are attached 
to expressions containing existential and universal quantifiers is Nilsson 
(1986). He considers the convex hull of a polyeder built by the truth values 
of the constituents and derives upper and lower bounds for coherent 
probabilities. His treatment is completely within the de Finetti's 
Fundamental Theorem (1974, I, p. 112; Kleiter, 1981, p.83). 

Closed and open worlds. A fundamental decision is whether we explicitely 
allow for the lack of knowledge in the representation of a knowledge domain. 
If we declare a knowledge base to contain all relevant knowledge we say that 
we work under the closed world assumption, when we admit lack of knowlege we 
work under the open world assumption (Collins et al., 1975: Reiter, 1978). If 
a data base runs under the open world assumption and if an item cannot be 
found or a deduction cannot be proven, the output of the system is a DON'T 
KNOW; there may be more to know. A consequence of the closed world assumption 
is that " ••• certain answers are admitted as a result of failure to find a 
proof." (Reiter, 1978, 56) 

In probability theory we work under the closed world assumption. This is 
a consequence of the basic event-structures to which probabilities are 
assigned; t~hey are closed under Boolean operators or some other principle. A 
theory that was developed to process uncertainty partly relies on the 
assumption of complete knowledge. 

From a psychological viewpoint the closed world assumption is realistic 
in many cases because it relieves memory from the problem of storing negative 
facts: the negative facts can eaSily be computed at the time when they are 
needed. "People do not store most things that are not true, for example, that 
11exico has no king. Therefore, deciding that something is not true normally 
requires an inference." (Collins et al. 1975, 386/7) Decomposing a problem 
space and searching for closed subsets is an efficient strategy in problem 
solving. But the decision to close a possibility space is always critical. 
Only too often we feel safe under the closed world assumption but, at a later 
time, we painfully realize that we overlooked one or more possibilities. This 
is a well known phenomenon in the assessment and evaluation of technological 
and natural hazards. 

Learning. non-monotonic inference. and circumscription 

When I tell you that Tweety is a bird, you will conclude that 
Tweety can fly. When you later learn that Tweety is a penguin, you 
will withdraw your prior conclusion. 

In this example additional knowledge invalidated the previous inference. 
This is commen-sense reasoning; but in a deductive system this is forbidden 
because we are not allowed to suppress old theorems in the light of new 
evidence. 
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Let q be a formula and let A and B be sets of formulas, then 
if A ~ q and A is a subset of B then B I- q. 

In the Tweety-example the original set of formulas (A = Tweety is a bird) is 
extended by an additional formula (Tweety is a penguin); but from the list 
"Tweety is a bird, Tweety is a penguin" we do not want to derive that Tweet}' 
can fly. Deductive systems are so 'permissive' that new data (axioms) cannot 
invalidate old theorems. The corpus of theorems, therefore, can only 
monotonically grow larger. In a deductive system learning leads to a blow-up 
of the set of inferences. The inability to modify or delete old inferences is 
such a devastating feature for any data base that the problem of non
monotonic reasoning was vigorously attacked by a number of mathematical 
logicians (e.g. McCarthy, 1980a, 1980b, 1986; McDermott and Doyle, 1980; 
Reiter, 1980; Ginsberg, 1984; Moore, 1985). Before starting the inference 
process tests can be performed to check whether all relevant aspects are 
normal or abnormal ("would the exceptions please stand up!"). Abnormal 
results may be written on a SOMEI'HING-WRONG-LIST. A circumscription 
(McCarthy, 1980a) declares that if the SOMETHING-WRONG-LIST is empty no 
exceptions are present and everything is just normal and o.k. 

A circumscription is a rule that selects the minimal set of all known 
objects having a certain property as long as no exceptions are explicitly 
derivable. It draws a contour-line around the things which are allowed 
because they are not explicitly forbidden. Exceptions should be stated or 
derivable; as long as they are not you may safely trust you are in a normal 
world. McCarthy (1986) argues that circumscriptions are closely related to 
qualitative probabilities. Circumscriptions are "a very streamlined 
expression of probabilistic information when numerical probabilities, 
especially conditional probabilities, are unobtainable." (1986, 91) 
The qualitative probabilities take on three values: 
(i) Infinitesimally close to one. 

Given Tweety's S(}mTHING-WRONG-LIST for the aspect FLY is known to be 
empty, i.e., as long as we do not know that Tweety is a penguin, the 
probability that Tweety can fly is infinitesimally close to one. 

(ii) Intermediate. 
Given the SOMETh~NG-WRONG-LIST for the aspect FLY is not known the 
probability that Tweety can fly is intermediate. 

(iii)Infinitesimally close to zero. 
Given Tweety's SO~llITHING-WRONG-LIST for aspect FLY contains IS A 
PENGUIN, the probability that Tweety can fly is infinitesimally close to 
zero. 

McCarthy (1986) emphasized that his "circumscriptional probabilities" do 
not need a possibility space. In this respect, his formalization is, indeed, 
radically different from other proposals of probabilistic thinking. 
Circumscriptions are an interesting candidate for the cognitive 
representation of some forms of incomplete knOWledge. They may prevent 
infinitely long testing procedures. Applied to domains where we do not have 
much experience to distinguish what is normal and what is abnormal it may 
lead to the error of declaring the SOMETHING-WRONG-LIST as being empty. This 
may happen in the case of rare events. A discussion of the relationship 
between circumscriptions and closed world assumptions if found in Lifschitz 
(1985) • 

Autoepistemic knowledge and meta-inference. Autoepistemic knmoT1edge 
evolves from "reasoning about one's own knowledge or belief" (Hoore, 1985, 
78). Autoepistemic knowledge may be used to explain non-monotonic reasoning. 
Take the following (slightly adjusted) example of Moore: 

I know, I don't lave a younger brother. 
How do I know that? My parents never explicitly assured me that I do not have 
a younger brother. I also do not infer my knowledge from other "object level" 
facts. But a hi~h1y plausible explanation of my knowledge is the following 
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Auto~pi~t~mi~ eount~p£AetuAl! 
If I did have a younger brother I would know about it. 

The example demonstrates that we make inferences from lack of knowledge. Our 
common-sense model of memory assumes that we store positive information. We 
seem to apply an inference rule like: 

From "someone should know q but his memory search fails to find q" 
infer "not q". 

Psychologists have tried to answer the question how we decide that we 
don't know something without performing an extensive memory search. Norman 
described the first stage of such a process: "There appears to be a 
preliminary rapid, cursory search of the information presented to determine 
if anything at all is known about the query. If this rapid search fails, then 
the reason for the failure determines the type of response made to the 
question." (Norman, 1973, p.138) 

When you watch a quiz on TV or listen to BBC's Brain of Britain you will 
observe two kinds of of don't know answers: 
a. Slow and low-confidence don't-no-responses or just time-outs, e.g. 

What was Harry Truman's middle name? - Let me think for a while! Was is 
••• no, I don't know. 

b. Fast and high-confidence don't knows, e.g. responses to 
What is Professor Viertl's telephone number? - I have absolutely no 
idea; why on earth would I know his phone number? (Such examples are due 
to George Mandler). 

These two types of don't-know-responses were investigated in three 
reaction time experiments by Glucksberg & HcCloskey (1981). The authors found 
good evidence in favor of a two stage decision process. In the first 
preliminary stage we search memory for stored information that may be 
relevant to the question. If we do not find relevant information we respond 
with a rapid don't know answer. If we find potentially relevant facts the 
second stage is entered in which these facts are evaluated in detail. If the 
evaluation in the second stage fails to provide a sufficient result a slow 
and low-confidence don't know response is given. 

Gentner & Collins (1981) investigated the questions what we infere when 
someone else states that he does not know something. This is of importance 
when we want to apply expert knowledge. Take this example: 

Fred H. Tschirley (1986), an expert in the toxicality of dioxin, in a 
recent Scientific American paper states that he does not know of any 
investigation in which it was shown tilat dioxin caused a chronic desease 
in humans? 

Gentner & Collins showed that similar lack-of-knowledge statements in a 
written text constitute strong evidence against a fact in the reader. "The 
more important the assertation and the more expert the person who lacks 
knowledge, the more certain is the lack-of-knowledge inference, as measured 
by a decrease in the rated likelihood of the assertation." (1981, p.434) 
Autoepistemic processes save time by preventing exhaustive memory search and 
they save memory space by allowing reasonable inferences from lack-of
knowledge. A system with well developed autoepistemic strategies can thus 
handle incomplete knowledge without explicitely representing it. 

Space limitations do not atlow to discuss incomplete knowledge 
representation in primitive features and quantitative dimension. Some aspects 
are treated in Slovic and Phillamy (1974), Yates et ale (1978), Huber (1983), 
or Kiihberger (1986). 

3.2 Conceptual Prototypes 

The representation of concepts is a traditional and important subject 
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matter both in psychology and artificial intelligence. Often declarative 
knowledge is centered around conceptual entities with associ?teQ ~e§~riptionB 
{"object-centared factorization of knowledge", Bobrow and Winograd, 1977). 
According to the classical view "all instances of a concept share common 
properties that are necessary and sufficient conditions for defi~ing the 
concept." (Medin and Smith, 1984, 115) An example for the classical view is 
the definition of a BACHELOR as an adult unmarried male human. 

In a series of experiments Rosch (1975) showed that the instances of a 
concept vary in their typicality. There are typical instances (a robin is a 
typical bird) and atypical instances (like the penguin Tweety). The 
typicality of instances predicts several experimental effects like the speed 
of categorization. Amstrong et al. (1983) demonstrated that typicality
effects are not restricted to natural concepts but are also found within 
integer-judgments. The integer 4 is a more typical even number than 18 and 7 
is a more typical odd number than 501 (Amstrong et al., 1983, 276). Attempts 
were made to explain the typicality-effects by fuzzy set theory, especially 
by membership functions (Zadeh, 1982). But Osher son and Smith (1981, 1982) 
argued that the conceptual combination of two concepts does not follow the 
laws of fuzzy set operators. 

A prototype is a summary representation (Hedin and Smith, 1984, 117) of 
a concept consisting of its most typical attribute values. Often the most 
typical attribute values are defined by salient features or by averages. The 
instances of concepts may now be categorized by a critical distance measure; 
the similarity between the instances and the prototypes can be determined by 
simple feature counts or by complex linear discriminant functions. A summary 
representation is the result of an abstraction process, it should be 
applicable to all relevant test items, but it need not correspond to a 
particular instance (Smith and Hedin, 1981, 132). 

Typicality effects with well-defined concepts like even and odd numbers 
&~ould warn us that human subjects may report superficial, unessential, or 
even misleading characteristics of their knowledge representations when they 
answer our questions. The typicality may easily be used as a heuristic for 
judging probabilities. The representativeness heuristic of Kahneman and 
Tversky (1972) demonstrates that the similarity between a data sample and its 
parent data generating process may lead human subjects to unreasonable 
probability assessments in important cases. 

3.3 Frames and Scripts 

"As you are walking through an unfamiliar house, you come to a normal 
interior-type door, open it, and walk through. At the moment that you open 
the door, your (entirely reasonable) expectations have already brought a 
'room' frame to mind." (Kuipers, 1975, 154) The frame (Hinsky, 1975) contains 
information about the standard arrangement of the walls, windows etc •• A 
fraille is a predefined default description of a scenario. The default values 
are standard values suggested unless there is contradictory evidence. The 
function of a frame is to write its default values into the missing slots of 
an as yet incomplete individual scenario representation. Frames help to 
explain how we can understand stories and other forms of verbal 
communication. Especially in AI frames made it obvious, that language 
comprehension is not possible without an appreciable amount of world 
knowledge and about what is normal and usual. Psychologically, special 
effects may result from the interaction of the expected default values and 
actually observed values. Let me illustrate this by an example taken from 
Tversky and Kahneman (1983) investigation on the "conjunction fallacy": 

A health survey was conducted in a representative sample of adult males 
in British Columbia of all ages and occupations. 
Hr. F. and Hr. G. were both included in the sample. They were unrelated 
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and were selected by chance from the list of participants. 

Which of the following statements is more probable? 
A = Mr. F. has had one or more heart attacks. 
B = Mr. G. has had one or more heart attacks and t{r. G. is over 55 years 
old. 

In both examples many subjects judge B to be more probable than A. This 
is a violation of a fundamental principle of probability theory, Tversky and 
Kahneman call it tile principle of extensionality: 

if B is a subset of A then p(B) ~ p(A) 
Because a conjunction of two events A and B is a subset of B it follows that 

p(A and B) S p(B). 
Intuitive probability judgments do not follow the extension rule but are 
trapped by the conjunction fallacy. The conjunction fallacy occurs if a 
default value is explicitly confirmed and emphasized. 

Another example of the interaction between default values and actual 
information is our Tweety example. As we hear that Tweety is a penguin the 
default value CAN FLY is explicitly denied with the effect that the original 
inference is withdrawn by non-monotonic reasoning. In the case a hierarchy of 
low, intermediate anu high level frames exists a "specialization-of slot is 
used to establish a property inheritance hierarchy among the frames, which in 
turn allows information about the parent frarr~ to be inherited by its 
children, much like the ISA link in semantic net representations ••• " (Barr 
and Feigenbaum, 1981, 218). 

Scripts are memory structures which store standard event sequences. They 
were introduced by Schank and Abelson (1977) and are in many respects similar 
to frames. More recently Schank (1982) dropped the assumption that scripts 
are homogenuous memory structures. Instead, he hypothesized a hierarchical 
memory structure from low level (like events) to high level (like situations) 
information. A basic function of memory is the prefiguring of the knowledge 
system for the interpretation and understanding of future information. It is 
a self-organizing growing structure. 

Bobrow and Winograd (1977, 1979; Lehnert and Wilks, 1979) designed a 
complex knowledge representation language (KRL). It is a hybride of many 
representational formats and makes extensive use of prototypes, frames and 
procedures. 

3.4 Network Systems 

A network is represented by a finite labelled graph consisting of nodes 
and labelled liaks. Networks belong to the most popular sysLems used in AI 
and psychology to represent knowledge in long term memory. Psycholinguists 
like Chomsky or Fillmore had a strong influence on the semantic network 
models in psychology (Quillian, 1968; Anderson and Bower 1973; Rumelhart, 
Lindsay, and Norman, 1975; Anderson, 1976, 1983). A critical review of 
discrimination networks is given by Barsalou and Bower (1984). Often, the 
models were simulated by computer programs written in LISP. The main research 
interest was to model language comprehension. The encoding of information by 
semantic elements and relations is often called a propositional 
representation. 

Fig. 2 represents a net-structure in the Anderson-Bower-style for the 
sentence "Last night in the city a ganster shot a policeman". The surface 
structure of the sentence is rewritte by elementary semantic relations like 
LOCATION and TIME (building the CONTEXT), SUBJECT and PREDICATE (building 
the FACT), RELATION and OBJECT (building the PREDICATE), MEMBERSHIP RELATION, 
SUBSET RELATION, QUANTIFIERS, INDIVIDUAL OBJECTS etc •• 
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Fig. 2: A proposition tree corresponding to the proposition 
"Last night in the city a gangster shot a policeman", as 
represented in the Anderson and Bower (1973) model; loc=location, 
subj=subject, pred=predicate, rel=relation, obj=object. 

In a Lindsay-Norman-Rumelhart-representation the structure of 
propositional representation is derived from the verb-structure. For example, 
the verb GIVE is characterized by three arguments: GIVE 'AGENT, RECIPIENT, 
OBJECT. An important link in a LNR-net is the ISA-link 
expressing the class membership relation between a concept and its 
SUPERORDINATE category; the P~S-link is used for the assignment of properties 
to concepts. The reverse direction of ISA indicates an EXAl1P.LE node or a 
SUBORDINATE category. 

Incomplete knowledge in propositional networks has not been the subject 
of major concern. But the networks provide the simple possibility to 
introduce predicates like UNCERTAIN(X) or PROBABLE(X) and to add them, for 
example, to the CONTEXT description of a HAM-structure. The result is an 
explicit declarative representation of uncertainty about facts or events. 
Psychological investigations indicate that such a representation of 
incomplete knowledge seems to be an exception which is used only in rare 
cases. 

In the case of missing nodes incomplete knowledge on low levels may be 
resolved by top-down property inheritance through the ISA-1inks. A similar 
principle may work in the bottom-up directiGn, i.e. from instances to 
categories. Missing links or link-labels may lead to a loss of availability. 
Spreading activation models introduce assumptions on the dynamic flow of 
information in the network and on various strength parafueters (Co1lions and 
Loftus, 1975; Anderson, 1983) but there is not enough space to treat them 
here. 

Graesser and Clark (1985) tried to model the essential cognitive 
structures and processes which underlie story comprehension. They focussed 011 

the representation of general world knowledge and not on the problems of 
language comprehension. They employ "conceptual graph structures" (O:;S) to 
represent all the knowledge a subject has on a concept. A CGS is a very rich 
structure, containing 160 nodes on the average. Incomplete knowledge may 
enter the theory il1 several ways: 
1) A O:;S may contain a description in a slot filler that specifies not just 
one but a distribution of acceptable values. 
2) Uncertainty may be expressed by meta nodes. A meta node refers to an 
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embedded set of nodes and may comment on the embedded information. A 
substructure may thus explicitely be declared as more or less partial. Other 
kinds of propositonal attitutes may also be expressed that way. 
Another form of uncertainty may enter the system via the story comprehension 
process: 
3) The comprehension process leads to a sequential updating. The kind of 
updating and information integration depends on the matching process between 
the two conceptual Imowledge structures in the working memory. Many shared 
nodes lead to many exact matches. 

The number of matches in two consecutive conceptual Imowledge structures 
may be used to explain base rate fallacies in diagnostic classification 
problems - one of the classical Kahneman and Tversky examples (Kahneman, 
Slovic, and Tversky, 1982). The problems are described and presented by short 
stories. The diagnostic alternatives are stated first, the specific case 
descriptions are given next. If the subjects claSSify the case description on 
the basis of its number of matching nodes in the conceptual Imowledge 
structures the base rates will be ignored. 

Extensive use of network systems was also made in AI and expert systems. 
PROSPECTOR (Duda et al., 1978; Duda et al., 1979) is an expert system 
designed to aid geologists in the diagnosis of the favorability of a region 
for the occurrence of an ore deposit. Its architecture is general, however, 
and may easily be exported to other domains. PROSPECTOR represents its 
knowledge in an inference network. The nodes of the network consist of 
assertations; there are two types of assertations, evidence and hypothesis. 
The network has a hierarchical tree-like structure. At the lowest level, the 
"leaves" of the tree, the user provided evidence is located, at the highest 
level, the "origin" of the tree, the top-hypothesis is located. The diagnosis 
of the system is inferred according to Bayesian or quasi-Bayesian principles. 
Before the system can start its routine work it must be supplied with prior 
probabilities and likelihood ratios. The prior probabilities are attached to 
the hypothesis nodes and the likelihood ratios are attached to the links 
connecting a lower level assertation to a higher level assertation. As a 
consequence, the effect of telling the system that a number of lower-level 
assertations are true, leads to an updating of the probabilities of all the 
directly or indirectly linked higher-level assertations. When the user inputs 
his pieces of evidence he may express his certainty for each piece on a scale 
from -5 (virtually certainly absent) to 5 (virtually certainly present). A 
value of 0 does not change the probabilities of the hypothesis and is 
equivalent to no information. The values -5 and 5 lead to a "full" Bayesian 
updating; the intermediate values (-4,-3,-2,-1,1,2,3,4) lead to a degraded 
updating only. The logic of "certainty factors" was adapted from Shortliffe' s 
(1976) pioneering work on expert systems. 

The pieces of evidence are processed under the assumption of conditional 
independence. There was a debate on the possibility to change the 
probabilities of hypothesis with incoming data in PROSPECTOR under the 
conditional independence assumption (Pednault et al., 1981; Glymour, 1985). 
An interesting proposal to rewrite the Bayes Theorem in a linear form was 
made by Kadesch (1986). He defines a "relevance parameter" as the difference 
of the two posteriori probabilities which result from the occurence of an 
event and from its complement. The concept is similar to what has been called 
"diagnosticity". The advantage of the given formulas is that they make 
transparent the impact of the data probabilities upon the posterior 
probabilities. Kadesch treats the case of multiple evidence in general, under 
the assumption of mutual independence of the pieces of evidence, and under 
the additional assumption of relevance independence. Pearl (1986) described 
two updating techniques for trees and general graph hierarchies; conditional 
independence is assumed throughout. The first technique performs the updating 
by a normalization phase. The second technique works by propagation-based 
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updating where an impacted hypothesis transmits "messages" to its neighbors. 
The messages finally result in probability changes of the hypotheses. The 
propagation is analogous to a spreading activation process in a semantic 
network. 

4. ANALOGICAL REPRESENTATION 

How much do you know about Austrian geography? How sure are you that 
Innsbruck is north of Vienna? Answers to these questions are typically given 
on the basis of mental images and mental maps. Parts of the information 
stored in human memory are coded in such a way that they can eaSily be 
transformed into a visual format and be depicted on an "internal screen". 
Mental images are a subject of high interest in recent psychological research 
(Paivio, 1971; Shepard and Cooper, 1982; Kosslyn, 1980; Finke, 1986). 
To see how incomplete knowledge my be represented in mental images let '.s 
first have a look at visual perception. 

A countryman of de Finetti, professor Maffei at the University of Pisa 
(Maffei, 1978) and the English professor Campbell at the Cambridge University 
(Campbell and Robson, 1968) performed a remarkable theoretical 
"transplantation": they took the frequency concept - which usually is defined 
in the time danain - and re-defined it in the space domain. The result was 
the spacial frequency theory. Spacial frequency is measured by the number of 
contrast maxima per degree in the visual field. The contrast - comparable to 
the amplitude of a wave - is defined by the ratio of intensities (maximum
minimum)/(maximum+minimum). A picture is processed by a set of spacial 
frequency filters. Each filter performs a Fourier analysis. Each filter is an 
operator which generates a convolution of the whole picture (Marr, 1982). 

Harvey (1986) applied spacial frequency concepts to mental imagery. He 
showed how introspective intuitions about the representation of incomplete 
knowledge in images can be experimentally investigated. Mental imagery is 
perhaps the most natural medium to deal with incomplete knowledge. Mental 
pictures allow for different degrees of resolution and clarity they allow for 
continuous mappings, independent foreground and background handling, mental 
rotation, efficient symmetry handling, zooming-in, local modifications etc •• 
Although classes cannot be depicted directly (Kosslyn, 1934, 106) it is well 
known, that imagery processes are also used to represent abstract and non
pictorial information. 

It may be suspected that numbers are sometimes represented on an imagery 
"number line". Shepard et a1. (1975, 113) showed that the subjective spacing 
between numbers follows a logarithmic Weber-Fechner type of relationship: the 
subjective distance between 1 and 2 is larger than that between 9 and 10. 
This may lead to confusion in direct numerical assessment techniques: A 
logarithmic utility scale obtained from a direct rating by numbers my tell 
us more about the cognitive representation of numbers than about the 
utilities. The same effect my distort direct probability estimates. 

Another example of analogical representations is the solution of linear 
orderIng tasks like the following three-term series problem: 

George is older than Peter. 
George is younger than Donald. 
What about Peter and Donald? 

Do you place George, Peter and Donald on a mental scale and then derive your 
judgment? The example shows some of the difficulties connected with imagery 
codes. While the task does only require a linear order, the visual code does 
more than that, it must introduce a spacing (for a discussion see Evans, 
1982, 49 ff.). But all we can say from experiments is that the order 
information is easily used serially and nothing is known about spacing. 
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Often imagery updating is simple : " ••• if we add a new city to a map, we 
need only put it in the right place." (Barr and Feigenbaum, 1981, 201) But 
Barr and Feigenbaum a1ao give an interesting coun~er-exam,le in which th~ 
imagery code does not allow the representation of incomplete knowledge: " ••• 
analogical representations become unwieldy for certain kinds of incomplete 
information. That is, if a new city is added to a map, its distance from 
other cities is obtained easily. But suppose that its location is known only 
indirectly, for example, that it is eqUidistant from cities Y and Z. Then the 
distance to other cities must be represented as equations, and the power of 
the analogue has been lost." (206) 

5. PROCEDURAL REPRESENTATION 

5.1 Production Systems 

I am sure you know how to bind your shoe-laces, but try to give a verbal 
description of it! For some parts of our knowledge it is much easier to 
demonstrate it by doing than to give a description in a declarative form. 
Here, knowledge is represented in a process-code. "In a procedural 
representation, knowledge about the world is contained in procedures - small 
programs that know how to do specific things, how to proceed in well
specified situations." (Barr and Feigenbaum, 1981, 155) 

In cognitive psychology most research work focuses on the perceptual 
input and the internal symbol processing. Much less research work has beeon 
done on the behavior and action generating processes. One exception, of 
course, is decision ~~eory, which tries to explain choice behavior. Another 
exception are production systems. "Productions provide the connection between 
declarative lalOwledge and behavior." (Anderson, 1983, 215) A production 
system consists of a set of condition-action pairs of the form 

IF <condition> lli&'i ~action>. 
If the left-hand-side condition is fulfilled in the working memory the right
hand-side action is triggered. The interaction between rules is minimized, 
one rule does not call forth another one; the rules are autonomous, modular, 
tiny pieces of data-action pairs. 

The main architectural components of a production system are its working 
memory, its production memory and its control structure. A classical 
production system does not contain a separate declarative data base (long 
term memory) containing facts or another type of knowledge. All permanent 
information is contained in the productions. A "psychological" exception is 
Anderson's ACT or ACT* model; it contains not only the working memory and the 
production memory but also an additional declarative memory (Anderson, 1976, 
1983). The action part of a production adds, deletes, or modifies data 
elements in Lhe working memory. The control structure determines the methods 
of conflic~ resolution and of matching. 

A conflict results if the left hand side of more than one production is 
instantiated by the data in the working memory. Conflict resolution methods 
define tile selection of just one production (lll a serial system) out of the 
conflict set. McDermott and Forgy (1978) distinguish five major categories of 
different conflict resolution strategies: 
1. Crder rules use a pre-established priority ordering (total or partial) on 
the productions; 
2. Specificity rules prefer those productions which are more specific; there 
are three subtypes: (i) priority is given to the more specific left hand side 
of productions, (ii) priority is given to the more specific data in the 
working memory and (iii) priority is given to both the more specific data and 
tile more specific left hand side of the production taking also negated 
condition elements into account. 
3. Recency rules use the amount of time that elements have been in working 
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memory; the time is measured by the number of actions that have been 
performed or by interpreter cycles. 
4. Distinctiveness rules select productions on the basis of their similarity 
or dissimilarity to previously fired productions; they avoid repetition and 
prohibit doing things twice. 
5. RQlldom QQl@ction jUit Ui@g rindomizition in th@ Cii8i of tiei. 

We usually keep track on the conflict resolution strategies we apply. 
Thus, we have knowledge about the size of the conflict set and an intelligent 
assessor of betting ratios may just use this size to adjust his betting 
ratios. We know how complex the conflict resolution strategies in a task 
were, how much time and effort we needed to resolve the conflict, or how 
distinct or unique was the information we processed. This indicates that we 
make extensive use our auto-control knowledge in the quantification of 
incomplete knowledge. 

5.2 Partial programs 

When you buy a new computer you get a description of its processor, its 
memory, its instruction set and so on. This is a description of the possible 
states and the actions of the machine. Call, for a moment, a function from 
the possibles states to the legal actions, an abstract machine. The abstract 
machine contains all the programs which may be writte for it. This list of 
all the possible programs is, in fact, a maximally incomplete program. You 
may start now reducing the incompleteness by writing down commands in an 
arb~rary language. Each command introduces a number of constraints upon the 
previous states and actions. The more commands you write down the more 
constraints are introduced. Reducing incompleteness works by the method of 
subtraction or suppression. 

This idea was elaborated by Genesereth (1984). It is faSCinating to see 
how closely it resembles de Finetti's first stage of induction described at 
the beginning of this paper. The psychological knowledge about partial 
programs in human information processing is not only incomplete but 
completely missing. 

6. CONCLUSIONS 

1) There are many local and highly specialized prinCiples by which 
incomplete knowledge is handled by both man and machine. There is not just 
one lDli-dimensional global "feeling of uncertainty" that is used in the 
processing of probabilities; different effects upon the decoding, enconding 
and internal combination of probabilities are predicted for different 
representational formats. 

2) Subjective probabilities are not subjective in the sense of being 
opaque and scientifically unaccessible. They are subjective only in the sense 
of belonging to one knowledge system only. As knowledge structures become 
more and more describable they also become more and more "objective". This is 
cOI!1pletely in the spirit of de Finetti. Why shouldn't machines have 
subjective probabilities? 

3) Subjective probability assessments are a summar~z1ng auto-description 
of a knowledge state. They need an appreCiable amount of de-coding of 
internal information and - most important - of meta-knowledge. 

4) The probability assessor may be trapped by fallacies through 
superficial or misleading heuristics. Beside hunting for fallacies it is also 
interesting to look for the fundamental cognitive principles of knowledge 
processing in some detail. 
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5) Once partial knowledge states are de-coded and summarized by bettin~ 
ratios, probability distributions etc. they are ready for communication and 
for entering a scientific community or a group of decision makers. The 
probabilities now take on the role of an inter-lingua and are public. The 
process of understanding communicated probabilities, which is the inverse of 
the assessme~t process, may lead to the activation of already stored mental 
models and prototypes. Only with a considerable amount of training will the 
probabilities, through abstraction processes, become more and more 
autonomous. An explicit declarative representation of uncertainty is only 
possible when this level has been reached (compare Humphreys and Berkeley, 
1983; Hogarth, 1975). 
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COMPARISON OF SOME STATISTICAL METHODS 

FOR COUNTING PROCESS OBSERVATIONS 

ABSTRACT 

Giorgio Koch 

Dept. Mathematics "Guido Castelnuovo" 
University of Roma - La Sapienza 
Rome, Italy 

In reliability theory and survival analysis, the problem often aris
es of estimating unknown parameters affecting the failure rate,. or equi
valently the intensity process for the observed counting process. 

In the infinite dimensional parameter case, classical methods in 
statistics lead to maximum likelihood estimators (MLE), or to the heuris
stic but powerful Aalen estimators. 

Bayesian methods are also quite effective and take advantage from 
the semimartingale theory and the filtering theory for counting process 
observations. 

In the paper the three estimators are compared both on theoretical 
ground and application to specific examples. Conditions are provided for 
the coincidence of Aalen estimators and MLE. Then they are compared to 
the output of bayesian estimators (filters) with a convenient choice of 
the a priori distribution. 

INTRODUCTION 

The estimation problem. In reliability and survival analysis we of
ten consider nonnegative random variables T1 ,T 2, ... ,T , •.• with the mean

n 
ing of failure (birth, death, ... ) times. 

Denoting by T1 ,T 2 •.• the ordered statistics (to keep notation simple 
enough!), we also assume that: 

F (t) = 1 - F (t) = P(T >tlTl ,T2 , •.. T ) 
n+1 n+1 n+1 n 

( 1 ) 

is absolutely continuous with respect to Lebesgue measure, n=O,1,2 .•. and 
is given by 

F (t) 
n+1 

t 
exp (- J Ads) 

T s 
n 

t > T 
n 

t < T 
n 

(2) 
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Eg. (2) can be reversed: 

f (t) 
n+1 

A 
t F (t) 

n+1 
,T <t<T 

n - n+1 
(3) 

where f is the density of F 
n+1 n+1 

death, ••• ) rate, and of course A 
t 

The quantity At is the failure (birth, 
= A corresponds to the happy case of 

{T. -T. } i. i. d. with exponential A distribution. 
~ ~-1 

Quite often, however, we have to face the situation where: 

A A (X ) 
t t 

(4) 

in which A is a known function and X an unknown quantity (for instance 
t 

a stochastic process). This happens if we have an estimation problem for 
the failure rate, or if the "system" affects the failure rate by its 
"state" X • The latter may play the role of an underlying disturbance pa-

t 
rameter, or be attached 

course, the case At 
finition: 

X 
t 

a physically meaningful value on its own. Of 
is also possible. Then (1) deserves a new de-

F (t) 
n+1 

• 
PIT > tITpT2I ..• T ; X , s.::.t) 

n+1 n s 
t 

exp (- J A (X ) ds, t > T 
T s - n 

n 
t <T 

n 

(5) 

The problem now arises of estimating X (or A (X » given Tj , T2 , .•. T 
t t n 

< t (and T > t) . 
n+1 

Here we prefer to discuss the above problem by looking at it from 
a dynamical point of view (Bremaud, 1981; Koch, 1985). That is, we sub
stitute sequences {T.} of nonnegative random variables by trajectories . ~ 
of a count~ng process Y defined as: 

t 

Y = 1: I 
t i (T. < t) 

~-

(6) 

Given now a pr.obability space (n,F ,P) supporting X and Y, and the 
flow of a-algebras (filtration) {F }, F c:.F: 

t t 

F = a(Y ,X , s < t) 
t s s -

we know that (6) enjoys the decomposition (Liptser and Shiryaev, 1978; 
Bremaud, 1981; Jacobsen, 1982; Del Grosso et al. 1986): 

t 
Y 

t 
~ A(X )ds + M 

s t 

In (7), M is a {F } martingale, and therefore is such that 
t t 

E(M IF ) = M 
t s s 

Thus the compensator A 
t 

A 
t 

t 
fo A (X ) ds 

s 

t > S 

(7) 

(8) 

(9) 

fully accounts for the mean increment of Y conditioned upon the past. 
t 
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It follows that if we consider the smaller flow of a -algebras {r y}: 
t 

rY = a(Y , s <t) 
t s 

then (Liptser and Shiryaev, 1978; Bremaud, 1981): 

. {I--y . where M' 1S a } mart1ngale. Also: 
t t 

t 
E(Y ) = E(A ) = I E(A(X »ds 

t t 0 s 

(10) 

( 11) 

The fact that the compensator of a counting process Y is a random 
process with absolute continuous (with probability one) tra3ectories, as 
in (9), is equivalent to the existence of a density for F , n=0,1,2, ••• 

n+1 
And its derivative A (x.,.) is then by definition the intensity (process) 
of Yt (with respect to the flow {Ft }. From (10) it follows that E[A(Xt ) IFE] 
is the intensity of Yt with respect to {Ft }. 

Again, by a theorem due to Watenabe, A ~Xt) = A corresponds to the 
case of Yt Poisson process with mean value 10 Ads = A t (Bremaud, 1981). 
This dynamical point of view is clearly equivalent to the more traditional 
one, which uses sequences of nonnegative random variables. But it offers the 
advantage of direct and natural exploitation of results in the theory of 
martingales and stochastic processes, to the fullest convenient extent. 

Taking this point, in this paper we discuss 
- a heuristic estimator (Aalen) 
- an instance of maximum likelihood estimator 
- a bayesian estimator (filter) 

All of them enjoy a recursive structure and (of course) offer inter
esting features. But, as it will be evident, the sounder the statistical 
meaning of the estimator is, the heavier the effort is requested in the 
modeling of the problem and computing of the solution. The nice thing is 
that even in the bayesian estimator this effort still appears to be 
quite feasible. In some cases the estimators coincide, giving some clues 
for a more comprehensive analysis to be carried out. 

The product model. For sake of simplicity, we take the following 
product model (Aalen, 1978; Jacobsen, 1982) as a reference model for all 
estimators (but most results do hold in wider generality) : 

x is one-dimensional, yt 
t 

Y (y(1), y(2), .•• ,y(r» 
t t t t 

(i) 
each component Y , i 

t 

is an r-dimensional counting process, 
with independent components. 

For 1,2 .•• r the intensity has the structure 

A (i) = X z(i) 
t t t 

(i) 
(i) 

where Z is measurable with respect to rY 
sible interpretation is that we run r inde~ndent 
of them the intensity depends on the past of the 
a common proportionality quantity ("unitary" rate) 

Let us introduce the notations: 

( 12) 

(i) 
a {Y , s < t}. A pos-

s -
"experiments"; in each 
experiment itself, via 

Xt · 
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'" Y 
t 

r (i) 
1: i Yt 
1 

'" Z 
t 

r (i) 
1: i Zt 
1 

'" '" 

( 13) 

Then A (X ) = X • Z is the intensity for Y (Jacobsen, 1982). By R 
t t t t t 

we denote the risk set at time t: 

Let T, 
~ 
We 

be the i-th jump time for Y • 
, t 

shall denote by R, the r~sk set at T, and by IR, I its cardinality. 
~ 

Finally 
+ ~ , ~ 

by a we denote the generalized ~nverse: 

+ 
a 

- t 
a I (a> 0) 

-1 

a 

= 0 

a t 0 
( 14) 

, a = 0 

The following technical requirements are introduced on Z (Jacobsen, 
1982) : 

( , ) (i) 
Z~ <a+bY 

t t 
, TV t, i = 1,2, ••• r for some nonnegative 

constants a,b (15) 

(this prevents Y from explosion in a finite time) 
t 

Iz(i)I+< (i) 
TV T >0, i = 1,2, ••• for some nonnegative sup t- - KT ' 

O<t < T constant K (16 ) 
T 

Let us mention some (classical) examples to support the relevance 
of the model. 

(i) 
( 1 ) 

T is a failure time with distribution 

(1) t 
F(t) = P(T 2 t) = 1 - exp(- ~ X ds) 

s 
( 1 ) ( 1 ) 

Y jumps from 0 to 1 at T ,being constant otherwise. Then 
t 

y(1) = I (1) 
t (T < t) 

and (12) holds with r 1 and 

( 17) 

( 18) 

( 19) 

( ii) k (1) (2) (r), d d f 'I ' 'd ' 11 d' •• Ta e T ,T , .•. T ~n epen ent a~ ure t~mes ~ ent~ca y ~s-

tributed according to (17). Repeat (i) for 1,2, ... r. Then again (12) 
holds for all components of Y and (13) yields: 

t 

'" y 
t 

r 
1: 'I ( , ) 

i (T ~ < t) 
1 -

'" Z 
t 

'" r - Y 
t 

(20) 

(iii) Take U1 ,U 2 , ••• U (known) censoring times and consider again the ex-
r , 
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ample (ii), with each ~-th component censored at U,. Then we easily 
check that: ~ 

'" y 
t 

r 

1: i I (T(i) < tAU,) 
1 - ~ 

'" Z 

r , 

t 
1: i I (i)A 
1· (T U i > t) 

(21 ) 



THE AALEN ESTIMATOR 

The definition. In a classical statistical framework, X is taken 
as an unknown deterministic function with very weak constraints described 
by the assumption: 

XEH, H = {f : [0,"') ... (0,"'), f right continuous with left limits, 

It X ds < '" , y t _> O} 
o s 

Thus we assume we virtually know nothing about X. 

(22) 

Due to the same reasons that suggest us to switch from the estimation 
problem of a probability density to the estimation problem of its dis
tribution function (the estimate will eventually be a discontinuous dis-

t 
tribution function), we look for an estimate of I X ds. Going one step 
further, the following quantity is taken as a mor; se~sible goal for our 
estimation problem (Jacobsen, 1982): 

It X I ~ ds 
o s (Z > 0) f,;t (23) 

s 
Indeed, being the constraints on X so weak, no information can be 

~ 

obtained on Xt if Zt = 0 so that all components 
sity anyway. The following estimate of (23) is 

of Yt have zero inten
suggested on heuristic 

bases: 

t 1 ~ 
~ =I--I~ dY 

t 0 ~ (Z > 0) s 
Z s-
s-

I: 

T < t 
i-

~+ 
Z 

T -
i 

(24) 

Notice how in (24) we stay "neutral" in between jump times, while 
the information carried by jumps is immediately used in the estimate, to 
update its actual (and therefore future) value. But we never "look back
ward" (no smoothing). 

Properties of the estimator. Now it can be proved from martingale 
theory (Aalen, 1978; Jacobsen, 1982) that y X, ~ - f,; is a P martingale 

t t x 
where P is the measure induced by Y , whose components have intensities 

x t 
(12), on the space of r-dimensional counting process trajectories. In 
particular (E being the mean value with respect to P ): 

X X 

E (f,; - ~ ) = 0 
x t t 

Also, we can obtain estimates for the variance: 

t ~ + ~ 
~ I (Z2 ) dY 

o s- s 
~2+ 

I: Z 
T -

T < t i 
i-

and consequently build an asymptotic theory and hypothesis testing. 

(25) 

(26) 

As we said, such an estimator of f,; is quite heuristic. Indeed, 
t 

rather than X we estimate: 
t 

t 
E (f,; ) = E (I X 

x t x 0 s 

In the case of example 
(27) leads to: 

I ~ ds) 
(Z > 0) 

s 
(ii) above, 

(27) 

it is not difficult to show that 
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for r = 

for r > 1 : 

E (F; ) 
x t 

E (F; ) 
x t 

1 - exp(- It X ds) 
o s F 1 (t) 

r 

k 

But clearly t has the advantage of a very easy computation with a 
t 'V 'V 

recursive feature (notice how Z , Y , s <t are sufficient statistics): 
s s -

t is constant for T < t < T 
t i-1 - i 

and updated at T, by: 
1. 

'1.+ 
Z 

_1 

In the above examples, (28) reduces to IR, I 
1. 

at 
T, 

1. 
T -

i 

(28) 

Notice however that we estimate a continuous process F; by a (piece
t 

discontinuous quantity t . Indeed, the original model, de
t 

wise constant) 
fined by 

has been implicitely extended to: 

where: 

(i) 
A 

t 
/ z(i) dX 

o s- s 

X EH 
s 

X E H 
s 

(29) 

(30) 

H {f [0,00) + [0,00), f(O) 0, right continuous, nondecreasing 
bounded variation 

'V 
Then t is an estimate of X over the set it: Z > OJ. 

t t t-
The data obviously follow a model as in (29), which corresponds to 

an absolutely continuous compensator, and therefore to inaccessible jump 
times for Y . On the contrary, the extended model allows for discontin
ous compens}tors, and therefore for not inaccessible jump times. Moreover 
differently from (29) the model (30) allows for nonzero probability for 
more than one component of Y jumping at the same time# 

A MAXIMUM LIKELIHOOD ESTIMATOR 

The estimator. For each X E H, and t> 0, let P be the restriction 
of P to rY; and let P be the similar restriction ~ttthe measure induced 

x t t 
by an r-dimensional standard Poisson process. 

Since A is absolutely continuous, P is dominated by P and we 
txt t 

can define the likelihood functional L = dP jdP, which, for each Y, 
t x,t t 

takes the value: 
dP r 

x,t t (i) (i) t (i) 
L (Y) =--(Y) n exp {! tn ). dY - I (). -1) ds} 

t 0 s- s o s 
dP i=l (31 ) 

t {It 'V t 'V 
C • exp tnX dY - f X z ds} 

0 s- s 0 s s 

where c is a constant which does not depend on ,x. 'V 'V 

Expression (31) evidentiates the sufficiency of Z , Y , s < t. How
s s 
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ever, if we attempt to maX1m1ze the value of L , at the observed trajec-
t 

tory Y, over H to achieve a maximum likelihood estimate of X, we would 
find an X which vanishes outside the set {T, } of jump times for Y, while 

1 
XT, _ diverges to + Q), i = 1,2 ..• 

1 Thus, again, we better switch to the model (30). As a matter of fact, 
(30) does not define compensators correctly, since we have to prevent 
compensators to have jump of size larger than 1 (Liptser and Shiryaev, 
1978). Moreover, we have to enlarge the trajectory space for Y, and in
clude trajectories with more than one component jumping at the same time. 

We adopt the model: 

A(i) __ 1 t z(i) 
t 0 s- I(z(i)llX <1) dXs (32) 

s- s-

which now for each X EH properly defines a (unique) probability measure 
p- on the enlarged trajectory space. Let P_ be the restriction of P_ 

X - X t X 
up to time t. For a discontinuous X, P- (Y nas more than one component 

X 
jumping at the same time) > 0; thus P_ is not dominated by Poisson 

X t 
measure any more and a new definition of ' maximum likelihood estimate is 
called for (Jacobsen, 1984). 

Let us introduce the notation: 

C,C{1,2, ... r}: jEC, <=;> llyT(j)= +1 
11, 

1 

(C, is the index set of those components which jump at T,) 

(33) 

1 -c , - 1 
Also, X denotes the cont1nuous part of X, and we use the shorthand 

notation: 

(i) ( , ) z (X) = z 1 I (i) -
s- s- Z II X < 1) 

Then we obtain from (32): 

P- (Y) 
X,t 

II, [{exp(- / 
J T 

m 

s- s-

T<s<t 
m 

(34) 

II 

jER -C 
m m 

(1 - z(j) 6{) llX ) 0 

T - T 
(36) 

m m 

II OIIj[{exp (- 1: 
m-1 T < s<T 

oII,[{exp(-llz(j) (X)dXc )} II 
J 0 s- S 

0< s<T 1 

m-1 m 
(1-Z (j) (X)llX ), 

s 
T < t< T 
m- m+1 

From (36) it appears that for any trajectory X in the enlarged tra
jectory space (except for trajectories su~h tEat z~~~ = 0, for some i and 
some j E C,) and for any t, there is an X E H such that P- (Y) > o. As a 

1 " - X,t 
matter of fact 1t 1S enough to take X such that: 

llX 'I 
(Z(j»-I 

TV j ER, -C, ; II X 'I (z(j» -1, jER , T < S < T 
T, T - ' 1 1 S s- T, i i+1 

1 i , 1 
O<llX < ( max 

(J) -I 
(37) z ) 

T T -
i jEC, i 

1 
~ 

We then define the maximum likelihood estimate of X as an XEH for 
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which at the observed Y: 

p~ (Y) > p~ (Y) , TV X E H 
x,t - X,t 

(38) 

Again, in order to get uniqueness, we consider: 

t 
E; = 1 I '" dX (39) 

t 0 (Z > 0) s 
s-

and we notice that, TV X, the model (32) generates the same measure P- as 
X 

(and therefore is indistinguishable from) the model: 

A (i) = / Z (i) I (i) - d E; 
t 0 s (Z il E; < 1) s 

(40) 
s- s-

We then substitute E; for X in (35) and look for the estimate E; such 
t t 

that 

p~ (Y) > P- (Y) , TV E; of the type (39) 
E;,t - E;,t 

(41 ) 

The maximization. Looking for the maximum value of P- (Y) immedi
E;,t 

ately leads to: 

~ = constant 
s 

T <s < T 
i-1 i 

(42) 

We are then left, for each T" with the maximization problem for: 
J. 

IT (Z (j) (~) il"i IT ( 1 -Z ( j) ("i) il E; ) 
T - T T - T, 

'EC i i jER,-C, i J. 
(43) 

J i "J.J. 
Due to (37), (43) is posJ.tJ.ve only for ilE; belonging to one of the 

T, 
intervals: J. 

(O,Xl ), (xl'x 2 ),··· (Xk 'xk+1 ] 

(j) _ 1 

wheJ;'e x = (,max ZT _) and Xl ,X2 , ••• x are those (ordered) values 
(J) k+ 1 J E C, i k 

(Z )-1, jER,- C, J.which occur to fall in (0, x ]. 
T - J. J. k+1 

i NOW, if R,-C, = ~, the maximum of (43) is achieved at: 
J. J. 

(j) -1 
ilE; = (max Z ) 

T, T -
J. ' ER i J i 

(44) 

Otherwise, in the first interval (O,x l ), the factor (43) becomes: 

IT (z(j) il"i IT 
T - T 

(45) 
j E C, i i j ER, -C, 

and its 
,J. J.J. 

maxJ.mum is achieved (Del Grosso et al., 1986) at the unique solu-
tion of: 

IR,I = 
J. 

[1 - Z (h) 
T -

i 

~ 

ilE; ]-1 
T, 

J. h=R -C 
ii, , 

In each of the addJ. tJ.onal intervals 
factor (43) would appear to be: 

IT 

j EC, 
J. 
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(46) 

(x , x ), ll. 
ll. ll. +1 

1,2 .•. k, the 

(47) 



denotes the index set of all those components for which 
> 0, ll~ E (x ,x ). And the supremum of (47) is achieved at the 

T, t t+1 
of: ~ 

E 
hER (t)_e 

[1-Z (h) ll~ 
T - T 

i i 

-I 

I (48) 

or coincides with 
i i 

the value of (47) at x if (48) does not have a solu-
t 

tion. But we shall not consider the maxima of (43) outside (O,x l ), since 
it is only in (O,x l ) that the risk set of the original product model (30) 
coincides with that one of the model (32) which is not a product model. 
Additional maxima of (43) outside (O,x l ) are then to be taken as arti
facts introduced by (32). 

as: 
Summing up, the maximum likelihood estimate of ~ may be represented 

t =/1'" f t 0 (Z > 0) s-
s-

'" dY 
s 

(49) 

where f is a real ponnegative 

ll~ T, 
f ~ 

-y process,{f }-measurable, such that: 
t 

T- =lCT 
i ~ 

(50) 

~ (j) -I 
and ll~ T, is the solution of (46) in (O,(max Z ) ). (We refer to Jacob-
sen, 19~ for another approach). JERi Ti-

each 
sive 
only 

The estimate (49) is a little less easy to be computed than (24) (at 
T" we must solve a nonlinear equation). Still, it enjoys a~-
~ 

feature (now the sufficient statistics are Y , Z , s < t) and the 
difference from (24) is in the jump size. s s 
However, it is clear from (46) that anytime we have: 

Z (j) = z, , TV jER, - e, 
T - ~ ~ ~ 

i 
(51 ) 

(that is any time the Y-dependent factbr i.n the intensity is the same for 
all components at risk which do not jump) it follows: 

le,l 
~ 

Af;T =-",--- (52) 
i Z T.- ~ A 

that is the maximum likelihood estimate ~ and the Aalen estimate ~ 
t t 

coincide. This trivially occurs, for instance, whenever Y is one dimen-
sional. (Also notice that for a trajectory following the original model 
(29), le,l = 1). 

~ 

Some examples. Let us go back to example (ii) of the previous sec
tion, with ~ and ~ given by (20). Assume we only observe Y (one dimen
sional). Then both estimators yield: 

'" Y A r 
t 

E, 
~ (i) 1~ r-(i-1) 

T -
that is the popular Nelson estimator (Jacobsen, 1982). 

The same result is achieved if we observe the whole 
process Y, since (51) holds with z, = 1. 

~ 

(53) 

r-dimensional 

But suppose now that the r components of Yare put in two groups, 
and we are only able to observe (r l + r 2 = r): 
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"'(i) 
Y 

t 

r. (i) 
1: Y 
1 i t 

r +r 
"'(2) • 2 (i) 
y = 1: Y 
tit 

r.+1 
(54) 

Then (51) is not auaranteed anr more1 '" (1) "'( 1 '" (2 
two processes (54) are A = X Z ,A 

since ~he intensities for the 
= X z() with: 

t t ' t t t t 
"'(1) "'(1) "'(2) ",(2) 
Z = r. - Y ,Zt = ~2 - Y t t t 

The Aalen estimator again yields: 
'" 1 Y A r 
f .. 

~t '" Z (i) 
T -

i 

while (46) is solved by: 

A 

11~ 
T. 
~ 

for hER. - C., 
~ ~ 

" 

(55) 

(56) 

(57) 

and 11~ 
T. 
~ 

11~ if R -c =~. Similarly, if we observe 
T. i i 

we get: 

'" (1 ) 
Y 

t 

r. 
1: y(1) 
it' 

1: ---= 
T(i)~it 

while (46) is solved by: 

for h.,h 2ER. - C. 
~ ~ .. 

'" (2) 
Y 

t 

~ 

'" (3) 
Y 

t 

'" (1) '" (2) '" (3) r -y +r -Y +r-Y 
T - 2 T - 3 T
iii 

r. +r2 +r3 

1: 

r.+r2 +1 

y(i) (58) 
t 

(59) 

(60) 

if IR. -C. I = 2, and 11 t as in the previous examples if IR. -C. I 
~ ~ ~ ~ ~ 

1 or 
o. 

The censored case may be dealt with in a similar way. 

A BAYES ESTIMATE (FILTER) 

The model for X. To set up a Bayes estimator, we now need to supple
ment the model with a distribution on the trajectory space for Y. 

In the usual formulation of non parametric Bayes problem (Ferguson, 
1973, Leonard, 1978; Thorburn, 1986), one puts a distribution on a space 
of probability measures and then finds (possibly analytically) the poste-
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rior distribution of the measure ~ given the data and assumed the latter 
ones to be i.i.d. with distribution ~. 

In the filtering set up, we circumvent the problem of assigning a 
distribution or an infinite dimensional space, such as the space of \.I. 

Rather, we model a finite dimensional parameter X (the state) by assuming 
it to be (for instance) a Markov process, a semi-martingale, a solution 
for a stochastic differential equation. Then we link the distribution of 
y to X , s < t by a suitable model for Y and we look for an estimate of 

t s 
X itself rather than of the distribution of Y (the state value is inter

t 
esting on its own). 

Possible dynamical (Markov) models for X are obtained by assuming 
it to be the solution of (t ~ 0) : 

a) X X , that is X = const, with a given distribution 11 for 
t 0 t 

X 
t t 0 

b) X 10 b(X )ds + 10 c (X ) dw , that is a diffusion 
t s s s 

/ 
process) 

c) X 1 K(X ,u)N(ds,du) , that is a jump process 
t 0 U s-

random measure) 
d) a linear combination of a), b), c). 

0 

(w Wiener 
t 

(N Poisson 
t 

This model accomodates for any Markov additive semimartingale (Cin
lar et al., 1980). 

General conditions for existence and uniqueness of solutions are 
found in Gikhman and Skorokhod, 1979; Liptser and Shiryaev, 1978; Jacod, 
1979; Athreya, Kliemann and Koch, 1986. 

Of course, in our case, provisions are 
X or on its boundary conditions, in order to 

required on the equation for 
guarantee X > 0, V t > O. 

t-

The filtering problem. Taking for Y the model (7) suffices to define 
the distribution of its jump times and therefore the probability measure 
on the space of its trajectories (given X) . 

Let us introduce the notation 11 for the conditional distribution _y ___ t 
of X given f • From now on by fIX ) we shall denote the conditional mean 

t t t 
with respect to 11 t: 

(i) 

(ii) 

----fIX ) 
t 

I£(x) d1l (x) 
t 

The following remarks are worthwhile: 
the solution of the filtering problem is 

(61) 

11 
t 

since now X is given a dynamical model, 11 does not stay constant 
t 

in between jump times of Y (we don't stay "neutral") 
(iii) since now X is given a dynamical model, its estimate turns out to 

be smooth: there is no need here of using integrals of X, nor of ar
tificially extend its trajectory space. -(iv) 11 provides us with estimates of A(X ), such as A (Xt-) , and therefore 
wIth the failure rate of Y given Its own past as it follows from 

t 
( 1 0) and ( 5) : 

t 
exp (- 1 A('X'J ds, T < t < T 

T s n- n+1 
(62) 

n 

(v) again, the estimate does not look backward (no smoothing). 
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The solution. Assume 11' 
t 

has a density p {otherwise we deal with 
t 

weak solutions). Then p enjoys the following 
t 

representation {Liptser and 
Shiryaev, 1978, Bremaud, 1981): 

In between J'ump times, T < t < T : 
i-1 - i 

p (x) = P 
t T 

i-1 
(x)+ / 

T 
i-1 

-/ 
T. 
~-1 

po{x) = density of 11'0 

At jump times: 

t 
L*p {x)ds - I 

s T. 
~-1 

'" t x Z p {X)ds+1 
ssT 

i-1 

R*p (x)ds -
s 

A '" X Z P {x)ds 
s s s 

(63) 

P (x) = (X Z (j» -1 (xZ (j) p (x)+ R*p (x», j EC. (64) 
T. T. T T T T. ~ 
~ ~- i- i- i- ~-

In (63) L denote~ the generator of X, and L* its adjoint; R* is the 
{adjoint of the) quadratic covariance operator between martingale/parts of 
X and Y, which is zero if x, Y do not jump at the same time (with proba
bility 1). In (64) j is the only index in C., since admissible trajecto-

~ 
ries for the model (7) do jump once at a time. 

Eq. (63) is in general a nonlinear (because of the term in X) deter
ministic integro-differential equation; (64) provides a nonlinear instan
taneous updating. 

In Kliemann et al., 1986, eq. (63), (64) are proved to have a unique solu-
tion. In addition it is shown that this solution p can be obtained via 

t 
a linearization-normalization procedure: 

- Solve for the linear problem: 

(x) + It L*q {x)ds 
Ti _1 s 

_ It 
T 

i-1 

_ It R*q {x)ds -
Ti _1 s 

'" x Z q (x)ds 
s s 

qo{x) =Po{X){j) 
q (x) = x Z qT 

T. T. 
~ ~- i-

(x) + R*q (x) 
T. 
~-

- Normalize: 

p (x) = q {x)11 q (x)dx 
t t t 

It clearly follows from the above that: 
- the filter estimator provides a recursive estimate; 

(65) 

(66) 

(67) 

- besides updating at jump times, the estimate evolves according to (65). 
The solution of (65) may well require a significant computational burden, 
(especially as compared to the no computation case of previous estimates) 
but its deterministic and linear character do keep it at a feasible level; 
- again, Y , Z , s <t provide a sufficient statistic. 

s s -

A finite dimensional example. In some cases, (65), (66) admit a fi
nite dimensional solution. Let us consider the following problem (r 1): 
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X 
t 

X o 
(68) 



t 
Y = I x (n - Y )ds + M 

t 0 sst 
(69) 

and take for the initial distribution Wo of Xo a gamma distribution r ~,6) 
with parameter ex and 6 (for a motivation of this example see Koch and 
Spreij,1983). Then L* = R* = 0 and (65), (66), (67) easily lead to the 
solution: 

Y 
t 

E • 
1 J. 

T.) 
J. 

(70) 

Thus the two parameters in the gamma distribution (70) are enough 
to describe the evolution of the whole w • Furthermore, the mean value 

.t X of (70) can be checked to be the solutJ.on of: 
t 

~ 

dX 
t 

Y 
t -I 

(6 + (n-Y )t + E T) 
t i i 

1 

~ 

(dY - X (n-Y )dt) 
t t t 

(71) 

Therefore, in this case we get an equation involving just the con
di tioned mean value. And for t > 0, the solution of (71) with ex = 6 = 0 
coincides with the maximum likelihood estimate of X • 

o 

CONCLUSIONS 

We were able to find a general connection between the Aalen esti
mator and the maximum likelihood estimator, which hinges on the compari
son between (24) and (49). 

It would be interesting to further explore connections between 
maximum likelihood and filter estimators, in various distances of models 
for X and prior distributions fo Xo' This would permit achieving a gener
al framework for estimators with counting process observations. 
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BAYES INFERENCE IN LIFE TESTS WHEN SAMPLES SIZES ARE FIXED OR RANDOM 

SUMMARY 

G.S. Lingappaiah 

Department of Mathematics 
Sir George Williams Campus 
Concordia University 
Montreal, Canada 

This paper predicts the order statistics in the future sample in 

terms of order statistics in the earlier sample in a life test based on 

the exponential model. The sizes of the samples are either fixed or 

random variables, having the Poisson distribution. For the prediction 

purpose, predictive distributions are obtained. Three situations are 

considered such as (a) both the sample sizes are random (b) size of one 

sample is fixed while that of the other is a random variable (c) both 

sizes are fixed. For each of these three cases, Bayesian Prediction 

Regions (BPR) are obtained, and also, the variance of these predictive 

distributions for all these three situations, is put in closed forms. 

1. INTRODUCTION 

This paper deals with the problem of prediction in life tests based 

on exponential model. This problem is to predict the order statistics in 

future samples in terms of order statistics in the earlier samples, when 

a series of independent samples are drawn from a life test which has 

exponential distribution as the model. This problem has received much 

attention in recent years. Lawless [6], Lingappaiah [7,8], and Kaminsky 

& Nelson [5] deal with this problem from the classical point of view, 

while Dunsmore [3], Lingappaiah [9, 10, 11, 12, 13] and Padgett [14] 
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approach the same problem from Bayesian point of view. Dunsmore [3) and 

Padgett [14) are for two sample case only while Lingappaiah [9-13) extends 

to more than two samples. In all these works, sample size at all stages 

(of all samples) is fixed. This paper attempts this prediction problem 

when the sample sizes are fixed or random. This new aspect of randomness 

of the sample size has been dealt with by Burnham [1), Raghunandan and 

Pati1 [15), Consul [2), and Gupta & Gupta [4). In all these works, 

distribution of order statistics, when the sample size is a random 

variable, is given when the sample size has various distributions like 

Poisson, generalised Poisson, or generalised negative binomial. What is 

being done in this paper is to combine these two concepts such as predic

tion and randomness of the sample size. For this purpose three different 

situations are considered with three samples. They are, (a) predicting Y2 

(k2-th order statistics in sample 2 of size n2) in terms the Y1 (k1-th 

order statistics in the sample 1 of size n1) and the tota1-test-time e 
from sample 0 of size nO' when the sample sizes in samples 1 and 2 are 

A 

both random variables (b) predicting Y2 in terms Y1 and C when the size 

of sample 1 is fixed while that of sample 2 is random (c) predicting Y2 

when the sample sizes of both samples 1 and 2 are fixed. The case (c) is 

already treated in Lingappaiah [10). Concentration is on cases (a) and 

(b). For this prediction purpose, predictive distribution of Y2 is 

obtained for cases (a) and (b) and the Bayesian Prediction Regions (BPR) , 

P(Y2 ~ z) = S are evaluated for all three cases so that the comparison 

can be made. Also, the variance of the predictive distributions in all 

the three cases are put in closed forms. 

2. PREDICTIVE DISTRIBUTIONS 

Let three independent samples, 0, 1, 2 of sized no' n1 , n2 
respectively, be drawn from a life test based on the exponential model 

f (x) = e exp (-ex), e > 0, x > 0 (1) 

Then from sample 0, tota1-test-time to the r-th failure be represented by 

"-e = 
r 

I X(i) + (n - r)x( ) 
i= 1 0 0 r 0 

where x(i)j represents the i-th order statistic in the j-th sample, 

j = 0, 1, 2. 

"-

Now it is well known that e has the pdf 
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A 

f(8,8) = e-88 (8S)r-1 8/r(r) (3) 

If the prior for 8 is 

(4) 

Then from (3) and (4), we have 

(5) 

where H = h + 8 , G = g + r , 

2a: Both the sample sizes are random 

Now, let the size of the sample 1 be a random variable having its pdf 

as the Poisson distribution, given by 

-A x f(x) = e A Ix! ,x=O,1,2, .. , 

A > 0, 

The distribution of the k1-th order statistics Y1 = x(k )1' when the 

sample size is a random variable is (Gupta and Gupta) 1 

00 

f(y1 1 8) = P(n 1> k) L f(Y1 1 k)P(n1 = k) 
1 - 1 k= k1 

-A k where P(n1 = k) = e A Ik! 

k! k1 -1 k - k1 
f ( 1 k) - F (1 - F) dF y 1 - (k - k1) ! (k1 - 1) ! 

(6) 

(7) 

(7a) 

where F is the distribution function and F = (1- e -8x) for the exponential 

case (I), 

Using (7a), (7) reduces to 

f(Y1 1 8) = 

u 
Q(j1)A 18 -8y '(1 +u + j ) 

1 1 1 
I e u1 , (8) 

Now, from (5) and (8), we get 
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with al = ul + jl + 1 and from (9), we get 

A 

f(Yl ' 6) = 

Now suppose the size of the second sample is also a random variable 

following the ~ Poisson distribution (6), we have from (8), 

(9) 

(10) 

(11) 

where Y2 = x(k )2' k2-th order statistics in the sample 2. a2 = 1+u2 + j 2, 
2 -).. k2 

and C2 similar to Cl and C2 = e ).. / <p (k2)(k2 - I)! From (9) and (10) 

we have 

(l1a) 

Now uSing (lla) and (11), we get 

r 
2 S",l(j.»)..Ui ] 
II L L 1, 

i= 1 u. j. U i • 
1 1 

(12) 

From (12), the predictive distribution of the k2-th order statistics in 

sample 2 is 

(13) 

and from (13), we get 
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It is easy to see from (14) 

n 
using I 

i= 0 
( ni ) (-1) i -,-:1=:---7"" 

(i + 1) 

and (15) is equal to 1. 

n! 
n 
II (i+1) 

i= 0 

From (14), we get P(YZ > z) = S as 

1 

From (16), one can calculate S for given A, k1 , kZ and 8 

Zb: First sample size is fixed, second sample size is a variable 

(14) 

(15) 

(lSa) 

(16) 

Now, suppose the size of sample 1, n, is fixed, the distribution of 

the k1-th order statistics Y1 = x(k )1 is 
1 

( 
-8y ) k1 - 1 (-8Y ) n1 - k1 

f (y 1 I 8) = c~ 1 - e 1 • e 1 

-8y (n - k + j + 1) 
f(Y1 I 8) = c~ .I r.l(j1)8e 1 1 1 1 

J1 

-8y 
8e 1 (17) 

(18) 
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Now from (5) and (18) one gets 

(19) 

where b1 = n1 - k1 + j1 + 1 and (19) gives 

(20) 

Now suppose the size of second sample is a random variable following the 

Poisson distribution (6), then the distribution of the k2-th order 

statistics in this sample 2 is given by (11). Now from (20) and (11), we 

get 

(21) 

where a2 = u2 + j2 + 1, b1 , C2 as before. From (21) predictive distribution 

of k2-th order statistics follows as 

and from (22), P(Y2 > z) = S is 

(23) 

From (23), it is easy to see that if z = 0, (23) reduces to 
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(23a) 

using (15a) 

(23b) 

and (23b) is equal to 1. 

2c: Both the sample sizes are fixed 

Suppose both n1 and n2 are fixed, the predictive distribution of 

Y2 = x(k )2' k2-th order statistics in the sample 2 is given in 
2 

Lingappaiah [9] as 

(24) 

where C~ = n2!/(n2 -k2)!(k2 -1)!, b2 = n2-k2+j2+1 and from (24), 

P(Y2 > z) = S is 

(25) 

Obviously if z: 0 in (25), then (25) reduces to 

C~ ,L n(j2)(1/b2), using (1Sa) , 
J 2 

(2Sa) 

and (2Sa) is equal to 1. 

3. SPECIAL CASES: (Prediction of Minimum) 

Suppose we set k1 = k2 = 1, then we are predicting Y~ = x (1) 2' the 

minimum in the sample 2 in terms of minimum in the sample 1, Y~ = x(l)l 

and e. Now the corresponding distributions of Y~ from (14), (22) and 

(24) are 
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r(G+ 2) 

(26) 

- -A -A 0 
wHere C2 = C2 when k2= 1, that is C2 = e A/(l-e ) and ai = (1+ui ), 

i= 1, 2 (a~ is ai when k. = 1) i= 1,2. Now (22) reduces to 
1. 1. 

f(Y~ I Y~ , 8) = (27) 

where b~= n. (bO
i = b. when k. = 1, i= 1, 2) and similarly (26) reduces to 

1. 1. 1. 1. 

(28) 

o From (26), (27) and (28), So = P(Y2 > zo) can be evaluated. Now (26) gives 

(29) 

1 ] 

and (27) gives 

G+1 

(30) 

(31) 
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4. VARIANCES 

From (26), we get for random-random case 

r-1 
E(Y~) 

B(r, G+2-r)(G+1) (32) 

Similarly (27) gives for fixed-random case, 

r-1 
E(Y~) (33) 

G+1 
where Qo = (H+b~y~), <Po(H'y~)=~ l/(H+b~y~) f. 
In the same way (28) gives for fixed-fixed case 

r-1 
E(Y~) (34) 

It is easy to see that if r= 1, then (32), (33) and (34) reduce to 1. 
o From these three equations, Var Y2 can be evaluated. From (30), we get 

- u+u 
o ~ 2 C2 A 1 2 1 

Var(y ) = L L , , ---=--.,-----
2 G(G-1) u1·u2. ( ,+ 1)3QG-l ,f.(H 0) 

~~ u 2 ~ ,~ 

(35) 

Similarly for the case where the size of the first sample fixed and 

that of second, a variable, is from (33) 

z Cz 
Var (Y~) = G(G - 1) 

-«g (36) 

343 



and finally for both the sample sizes fixed case, we get from (34), 

Var yO = 2 \ ~;j' -I ::,J' 2 G(G - 1) 
(37) 

2 
\ G+ 1 1 (Q/n2) 

G2 (G - 1) 
(37a) 

Comments: 1. Obviously, the simplest case of prediction is for 

k1 = k2 = 1, that is, predicting minimum in the second sample in terms of 

the minimum in the first samp1~. In this case, second set of sums on 

j1' j2 vanish. 2. In the case of predicting any other statistics k2 > 1, 

then two sets of sums, one on u. 's and another on j . 's have to be taken 
~ ~ 

care of. This means more computation. For large A, sums may run longer. 

3. Though the workload in the case of k1 = k2 = 1 is simpler, the 

prediction procedure remains the same for the general case k1' k2 > 1. 

4. A in f(n1) and f(n2) need not be the same. It could just as well be 

A1 and A2 in which case, sums on u1 , u2 have to be run on A1 and A2 

respectively. This separate A1 , A2 does not affect the analysis in any 

other way except more tables for S and variances for different values of 

A1 and A2• 5. The values of hand g affect the results, expecia11y large 

g. Bu~ h may not have too much effect unless it is very large since 

H= h+8. 6. If need be, much complex f(x) other. than Poisson can be 

chosen such as Generalised Poisson or generalised negative binomial and 

the like. In this case, only computation will be more and analysis 

procedure remains the same. The complexity of f(x) in (6) may depend on 

the nature of randomness of the sample sizes. Again, these complex f(x) 

add more parameters to analysis and hence more tables of S and variances, 

for different values of these new parameters introduced. 7. As can be 

seen easily, the case of both sample sizes fixed is the simplest while the 

case when both sample sizes are variable is the hardest as far as 

computation is concerned. In this case two sets of sums have to be 

evaluated one set on ui's and another on ji's. The case of first sample 

size fixed and the second random needs medium size computation only on u2 
and j1' j2' 8. The gamma prior for 8 in sample 0 is taken for simplicity 

sake. It can be replaced by a complex prior if need arises. Again, the 

procedure of analysis remains the same. 9. In Section 2b, it could as 

well, the first sample size is variable while that of second sample is 

fixed. Then in (22), it will be a1 and b2 instead of a 2 and b1 and 

instead of C2 we have C1• The analysis remains virtually the same. In 

the denominator of (22), there will be two sums, one on u1 and another on 
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jl' 10. In the case 2b in section 2, variable u2 could have been just a 

dummy variable u. But it is taken as u2 just because it is for sample 2. 

No special meaning for subscript 2 in u2• 
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ON COX'S CONFIDENCE DISTRIBUTION 

SUMMARY 

Jochen Mau 

Statistics Project 
Institute of Medical Biometry 
University of Tubingen 
Hausserstr. 11, D-7400 Tubingen, F.R.G. 

A confidence distribution function is a graphical tool 
for flexible statistical analyses. It provides one- and two
sided tests of simple and interval hypotheses for any size, 
central and symmetrical confidence intervals of any level. 
Given an interval of equivalent values, it quantifies the 
strength of evidence for "no material difference" between two 
populations in a set of data, but is independent of the 
particular choice of such an interval. 

1. INTRODUCTION 

To. describe the context of observation, let 
(1) (O,.A ,IP) be the underlying probabi li ty space in the 

usual triple notation, 
(i i ) (.~, ~) be the sample space, where'! is a Poli sh space 

and ~~ its c-algebra of Borel sets, and 
(iii) X : Q ~X a measurable mapping which is observable. 

Thus X represents the data. 

The statistical problem is introduced via the distri
bution X(~) of X. Assume thatkit depends on a vector of 
unknown parameters (e, ~) € E x ~ , E C ~ an interval, e € E, 
and consider the family of one-sided test problems for e, 

H'I : e • -r versus K r : e > '" (-r € E). (1.1 ) 

For inference about 9, one will define a random distribution 
on the measure space (E, ~~), using a test statistic 
j: E x~~~ for (1.1). I! represents nuisance parameters. The 
choice of 7 may be based either on convention (e.g. from a 
particular application) or on some optimality criterion (e.g. 
uniformly most powerful unbiased tests in a context of multi
parameter exponential familiesj cf. Lehmann, 1959, Sect.4.4). 

The confidence distribution - a term coined by Cox 
(1958) - permits 
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(1) the statement of an observed confidence level as a 
measure of the strength of evidence for a hypothesis 

(1. 2) 

with some given 1'1< 1', for any data x- X(w) and a 
selected test statistic (Section 2), and 

(ii) the simple construction of observed central or symme
trical confidence intervals for e at any level l-Q, 
~([a, e) ~ e} ~ l-Q, aided by a plot of the observed 
confidence distribution function (Section 3). 

(iii) In the light of further data, the confidence distri
bution from a previous data set may be "updated" to 
provide a measure of the strength of evidence from the 
combined data (Section 4). 

2. CONSTRUCTION OF THE CONFIDENCE DISTRIBUTION 

One first needs some notation and assumptions. Let 7e 
and ~ denote the e- and the x-sect i on of :r for any 9 € E and x 
€ X, respectively. 

ASSUMPTIONS 2.1. 
(i) For anil € E~ 7 1 : 3E ... 1R is continuous, 
(ii) For ani X€~ • .7"1\: E ... IR is nonincreasin9 and left-

continuous with riQht-hand limits, 
(iii) If e = ,,(, i.e. l' is the. true value of e, the law of 

~t (X) is independent of the particular values of (e, 
fl. If G(tl, t €~, denotes its distribution function, 
assume G(:r 't (x» ... 1 as l' ... inf E, for any x€ J! and 
whatever (e, el. 

REMARK 2.1. By (i) and (ii), T is 03: GIl (Sol - (BfI. - measurable 
(cf. Rudin, 1970, Chap. 7, Ex. 8). 

THEOREM 2.1. There exists a random measure e on ~Z' such that 
for any x E 3!, 

~ ( x ) I,. • .T e [ X (IP ) Ell , 1 [7,. ( x), + 00 [ 

.. 1 - G(T~(x», l' € E 

gives a distribution on E~ Ir • linf 5, l' [. 
~(X) is called a confidence distribution on ~%' 

(2.1) 

PROOF: Denote the righthand side of (2.1) by P(l;x). Then, 
P(l'} .) : ~ ... [0, 1] are measurable, P(.; xl : 5 ... [0, 1] are 
measurable, nondecreasing, and leftcontinuous with P(ljX) ... 0 
as l' ... inf E, for any l' € E and x €~, respectively. By Rudin 
(1970, Theo. 8.14) there exists a unique Borel measure ~(x) 
on E for any x € ~ such that (2.1) holds. 
Let ~ be the set of all Borel measures ~ on E, ~ E ~ 1, and 
the o-algebra ~ generated by the mappings ~ ... ~B, ~ € m, for 
any B € ~:£. Hence, t( x) € m for any x € )t. It remains to show 
that t is f,~-Jt-measurable (cf. Kallenberg, 1976). 
The projections 'ltB' 'ltB~ • B, ~ € m, are ,)(.-(8ro. 1] -measurable 
for any B € f>:;:.. Since 'Ita 'e. (x) .. P('¥zi xl - P(1'1; x) for any 
'¥11 1'2 € E, )'1 < 1'2' B • l'¥l' '¥2(' and X€.l, it follows Ithat 
x ... rt:B'e(x) is 6A'- t!I[0.11- measurable for any B € (l):£. The 
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desired property now follows from a standard result (cf. 
Bauer, 1968, Theo. 7.4) .• 

The construction of t as a random measure implies the 
consideration of concepts like the distribution of e, its 
intensity in the sense of Kallenberg (1976) and its Laplace 
transform. In particular, the distribution of e on m is 

and its intensity, again a measure on ~%, turns out to be the 
expectation of the confidence distribution: 

I X 'e B d X UP ) (5) , • I A I dP ( .; X) d IP e , 

IE el t (X) B, B E If>%. 

With B = Ie' 

lEe,'e(X) Ie· fA [1 - G(.Te(X))] d IPe, . 

But this is, by Assumption 2.1 (iii), the expectation of a 
random variable with a uniform distribution on [0, 1]. This 
proves the main theoretical justification for the construc
tion of the confidence distribution: the true parameter e is 
the median of the expectation of the confidence distribution. 

COROLLARY 2.1. IE e, I:(X) Ie = y. 

The following result represents the principal justifi
cation for the use of the confidence distribution in practice 
and suggests its interpretation as an objective measure of 
the strength of evidence for an interval hypothesis (1.2). 
For any fixed .1' .2 E E, .1 < .2' and 0 < ~ < 1/2 consider 
the problem of testing the null hypothesis, H, against the 
alternative hypothesis, K, 

H (2.2) 

K (2.3) 

and apply the following decision rule in terms of the confi
dence distribution of e 

"reject H, if 

~(x) ITt < ~/2 and 't(x) 11'2 > 1 - ~/2, (2.4) 

and accept H, otherwise." 

LEMMA 2.1. The level of the test of H a9ainst K based on 
(2.4), does not exceed ~/2. 

PROOF: In Section 3, central confidence intervals of e for a 
confidence level of 1-~ will be introduced. By (3.1), 
decision rule (2.4) is equivalent to an »inclusion rule«: 
reject H, if the central (l-~)-confidence interval is com
pletely contained in [.1' .2]' and accept H, otherwise. This 
confidence-interval test obviously has a level of at most 
0,/2 •• 

By this rule, e(x) [.1' .2] 2 1 - ~ is a necessary 
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condition for rejection of H. The smaller the value of ~ can 
be without accepting H for a given data set, the stronger is 
the evidence for K in terms of the observed confidence dis
tribution, and vice versa (with the qualification that the 
confidence mass outside of the interval is roughly equal on 
both sides). This interpretation has much in common with the 
well-established interpretation of an observed significance 
level in usual hypothesis testing: the latter quantifies the 
strength of evidence against a null hypothesis in the light 
of given data, cf. Cox (1977). In either case, the quantifi
cation depends on the chosen test statistics. 

REMARK 2.2. If 12 > 0, 11 = - 12 in (2.2) and (2.3), then one 
can replace (2.4) by 

e(x) [')'1' 1'2] > 1 - IX, 

which is equivalent to a confidence-interval test based on an 
inclusion rule with a symmetrical (1-cx)-confidence interval. 
This test has a level of at most IX. 

3. CENTRAL AND SYMMETRICAL CONFIDENCE INTERVALS 

We call those confidence intervals central which have equal 
probability outside either endpoint. Confidence intervals 
which are symmetrical around zero, playa role in some appli
cations where zero is contained in E (cf. Mandallaz and Mau, 
1981). The observed confidence intervals of either kind are 
easily read from a plot of the observed confidence distri
bution function. 

ASSUMPTION 3.1. W{ ~(X) e = 1} • 1 and the 
function G is continuous. 

distribution 

PROPOSITION 3.1. Let 0 < IX < 1/2, then the equations 

} (3.1) 
t (X) I V" = 1X/2, " E E, 

1" < 'Y"} have unique (random) solutions 91L < 9 0 in E, IP-
almost-surely. Further, 

k whatever the values of C9, e) E E x ~ • 

(3.2) 

PROOF: Existence follows from Assumptions 2.1 (iii) and 3.1, 
since 3 is an interval. By the measurability of the ,-section 
of P (cf. proof of Theorem 2.1), the sets 

A(l) = {x EX: elL.i. l' .i. eo} 
{x E ~ : ~(x) I ell .i. e(x) I 

are in I&~ for any l' E 3. Then, X(lP)es A(e) L. 1-1X •• 

REMARK 3.1. Continuity of G is not necessary to prove (3.2), 
if one defines the endpoints of the confidence interval by 
supremum and infimum of ~ (X) I.,. below 0{/2 and above 
1 - 0{/2, respectively. 
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ASSUMPTION 3.2. 3 is a symmetrical interval around zero, and 
G is continuous. 

PROPOSITION 3.2. Let 0 ( ~ < 1/2. Then, the equation 

'e(X) [-1', 1'J • 1 - o£, "( E t!, l' > 0, (3.3) 

has a unique (random) solution Els in E, ~-almost surely. 
Further, 

IP eJ {[- Els' 9 S J39} 1.1 - ~ 

whatever the values of 19, e) E 3 x ~k. 

PROOF: By the detinition of 9 s , one has for 9 > 0 

(3.4) 

{- El$ .i El .i El s } .. {'e(X)[- 9, 9J .i 1 - cd :> {1 - t(X)!$ 1. o,} 
except on an w-set of P-measure zero. The result follows from 
Assumption 2.1. (iii). Treat 9 ( 0 analogously .• 

REMARK 3.2. Again, continuity of G is not necessary to prove 
(3.4) when Elsis defined as inf{t(X)[-1', 1'J 1. 1 - a}. 

EXAMPLE 3.1. To demonstrate a typical application, assume 
that we conduct an experiment twice, each repetition compri
sing two series, A and B, of Bernoulli experiments of equal 
size: Firstly, data x, nA=n.,,150 replications, estimated pro
babilities of a success in A and B of ~A -0.50 and n .. -0.55, 
secondly, data y, nA -ns -150, nA -0.50 and na -0.70. 

The commonly used test statistic for (1.1) with ~ • ~A -
~B is .1'1'(x)-(0-o)/u, where &2-n,,(1-1lA )/nA+tt .. (1-tt a)/n., which 
is approximately standard normally distributed under Hr. 
The observed confidence distribution functions, P(1'; x) or 
P(o; y)= l-t o 1[(0 - o)/~J, l' € 3, are shown in Fig. 1, their 
densities are plotted in Fig. 2. (Here, to 1 denotes the 
standard normal distribution function.) , 

Let the interval [-0.15, 0.15J represent practically 
irrelevant values of El. Its observed co~fidence levels are, 

e(x) [-0.15, 0.15J - 0.958 
~(y) [-0.15, 0.15] • 0.183, 

which is visualized by the areas under the respective 
densities in Fig. 2. The observed 95%-confidence intervals 
and their overlap with [-0.15, 0.15J are shown in Fig. 1. 
This situation is typical of many clinical trials which 
compare successful treatment with two competitive drugs, say, 
in samples of patients. An interval of clinical equivalence 
can often be stated, though not unanimously. However, the 
plot of the observed confidence distribution function is 
independent of the choice of such an interval. 

4. ANALYSIS'OF ACCUMULATING DATA 

To investigate the potential of the confidence distri
bution concept for the analysis of data which accumulates in 
batches, e.g. sequential clinical trials with interim ana
lyses, assume that one observed a data set x - X (00 1 ) and is 
completing observation of a further data set y. X(w 2 ). In 
Assumption 2.1 (111), the law of .7r (X) was only given for El-,... 
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Fig. 1. Observed confidence distribution functions, central 
(Cx, Cy) and symmetrical (SYHx, SYHy) 0.95-confidence 
intervals for the true difference, based on data x 
(slim line) and y (bold line). The interval of prac
tical equivalence is [-0.15, +0.15] (shaded area). 
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Fig. 2. Observed confidence densities for the true diffe
rence, based on data x (right) and y (left), with an 
interval of practical equivalence as in Fig. 1. 
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Upon observation of y, one has already derived t(x) as a 
measure on (E, $~). Thus, 

W 2 E (Q,...4, IP) 

1 X 
Y 
1ft 

(E x ~, ~];e~, t:Cx) ~ XUP» .... (lR, ~ ). 

By Remark 2.1. T introduces a measure T[ ~(x) ~ X(IP») on ~IR' In 
view of (2.1), one agrees on 

DEFINITION 4.1. If x- XCw 1 1 and y= X(w 2 1 are observed values 
of X, the observed confidence distribution on E from V qiven 
x is 

e(ylx) It· 7(t(x) ~ X(lP) )(jr(Y), <D[ 

for any '1 E :S. 

Denote the observed confidence distribution functions of 
t(yIX), t(x), and t(y) by P(.; ylx), P(.; x), and P(.; y),' 
respectively. 

PROPOSITION 4.1. With the assumptions of Definition 4.1., 

P(y; ylx) • P(~; y), ~ E S. 

PROOF: Recall first that f(x) represents a distribution of 
the true e given x. Hence, for any B E ~m' 

[by Assumption 2.1 (iii») 

dXOP) e>1 c:e.(x) (de) 

led G(t) 

= IBdG(t) 

In particular, B • [Tr(y), <D[ implies by (2.1) 

P(.; ylx) c [1 - G(T~(y»] 

• PC"O y) 

for whatever value of 0'. 

REMARK 4.1. 
quired. The 
(iii). 

Note that independent observations are not 
result is essentially due to Assumption 

re-
2.1. 

4.2. As a consequence of the proposition, the joint 
confidence distribution of 8 2 based on x and y, ~(x, y), can 
be represented as a product of the marginals, ~(x) and 
~(y). Considering ~(x, y) only on the diagonal, then gives 
P(~; x) PCy; y), y E 8, as a possible choice for a confidence 
distribution function with density 

p(y,x) P(y;y)+p(~;y) P(y;x), Y E 8, (4.1) 

where p(.; x) and p(.; y) denote the densities (w. r. t. 
Lebesgue measure) of ~(x) and ~(Y)J respectively. 
4.3. Considering the bivariate observed confidence density 
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function associated with e(x, y) also on the diagonal, gives 
rise to yet another distribution via a density 

p(l' ;x) p(l'; y) 
p(l'; x, y) • -------------------------, l' £ E, (4.2) 

IE p(l"; x) p(l"; y) dy' 

with distribution function 

I II' P ( 1"; x) p ( 1"; y ) dl' ' 
x, y) .. , l' E E. 

IE p(l"; x) p(),'; y) dl" 

4.4. A third way to combine the evidence 
experiments was mentioned by Mandallaz and 
based on a chi-square criterion and is seen 
results as the above methods in an example 
(1986). 
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TRUE DIFFERENCE 

from independent 
Mau (1981). It is 
to give similar 
considered in Mau 

-0'.1 - 0.2 

Fig. 3. Observed confidence densities, for the true diffe
rence, based on - from left to right - the pooled 
data z and the updating formulae (4.2) and (4.1). 

EXAMPLE 4.1. For the data x and y from Example .3.1, the 
observed confidence densities according to (4.1) and (4.2) 
are plotted in Fig. 3. For a comparison, the distribution 
function and density of ~(z) are also shown, where z is 
obtained from pooling the data contained in x and y, data z: 
nA· ne· 300, ~A • 0.50, ~". 0.625. 
The observed confidences for [-0.15, 0.15), the interval of 
practically irrelevant differences 9, are 
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with (4.1): 0.966, 
with (4.2): 0.710, 
with ~(z): 0.733. 

This underlines the nature of the "updating" formula (4.1): 
it is not an averaging, as it is obtained by the analysis of 
the pooled data z and by (4.2). 

REMARK 4.5. Note that (4.1) is not a useful way of combining 
evidence for an interval of practical equivalence, [Yl' Y2]' 
Obviously, this formula will always give more weight to the 
distribution located right most. As an extreme situation, 
consider two very steep distribution functions based on x and 
y, 'one located at zero (01 < 0 < 02)' the other far to the 
right from Y2' The combined distribution function would be 
practically identical to the latter! 

5. DISCUSSION 

Though the confidence distribution was derived from a 
pure frequentist's viewpoint, its implications are close to 
those of Bayesian analysis except for the explicit use of 
subjective prior distributions. In fact, Mandallaz and Mau 
(1981) obtained it as a Bayesian posterior distribution for 
an improper vague prior and Mau (1983) derived it as a 
fiducial distribution along the outline of Pedersen (1978), 
with standard two-sample tests for multiplicative and addi
tive effects in a normal theory linear model, respectively. 

If the likelihood of 9, given observation of X = y, is 
proportional to the density of ~(y), 

then (4.2) is essentially Bayes' formula. 

The wide-spread applicability of the confidence distri
bution concept rests upon its computational simplicity with 
at least approximately normally distributed test statistics 
for shift alternatives and a symmetrical interval hypothesis 
as in (1.2). This situation is frequently met in comparative 
clinical trials, where up to now it has mostly been exploited 
for sample size determinations (cf., e.g., Spiegelhalter and 
Freedman, 1986). 

The confidence distribution is specifically important 
for a quantitative assessment of clinically equivalent effi
cacy after non-significant tests with two differently treated 
groups of patients (cf. Mau, 1986, for a more detailed consi
deration of this application). 

Plots of the confidence distribution functions provide a 
useful summary of the main features of the data in reports on 
experimental results, since any reader can try his own be
liefs about the proper size of an important difference, 
captured analytically by Y1 and l2' This aspect might be 
appealing to regulatory authorities and review bodies. 
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A BAYESIAN ANALYSIS OF A GENERALIZED 

SLOPE RATIO BIOASSAY 

M. Mendoza 

Departamento de Matematicas,UNAM, Fac. Ciencias, 
Mexico/Departamento de Estadistica, Univ.de Valencia, 
Spain 

SUMMARY 

The reference posterior distribution for the parameter of 
interest in a widely used class of biological assays is obtained. 
This class contains as a particular instance the very well known 
slope ratio assay. The results obtained avoid the classical dif
ficulties associated to the frequentist estimation of ratios and 
generalize some previous analysis. 

1. INTRODUCTION 

In a previous paper (Mendoza 1986) a Bayesian analysis was 
provided for the simplest version of the slope ratio bioassay. 
There, an experiment was considered where p doses (X11 , ... ,X1p) of 
a first stimulus and,q doses (X21 , .. ~,X2q) of a second stimulus 
were assayed to obta~n a set {Y1jk ; J=l, .. ,Pi k=l, .. ,n; Y2jk ; 
j=l, ... ,q; k=l, ... ,n} of n(p+q) conditionally independent Normal 
observations with common variance cr2 and such that 

E (Y1jk) 

E (Y2jk ) 

k=l, ... ,n 

k=l, ... ,n 

j=l, ... ,p 
(1 ) 

j=l, ... , q 

In order to assess the relative potency of these stimuli 
(the main objective of a comparative assay) it suffices to pro
duce inferences about the slope ratio p = p~/~ since, under the 
assumptions stated, this parameter describes the ratio of the 
first to the second stimulus for every pair of doses leading to 
the same expected response (equivalent doses). In Mendoza (1986) 
a reference posterior distribution was obtained for p and some of 
its properties were discussed. 

In this paper, a natural, well known extension of (1) (see 
Finney 1978, chap.7) is considered. Suppose that an experiment is 
performed where p doses ( X11 , ... ,X1p) of a first stimulus and q 
doses (X21 , ~",X2q) of a second stimu~us are assayed to obtain a 
set {Y1jk ; J=l, .. ,p; k=l, .. ,n; Y2jk ; J=l, .. ,q; k=l, .. ,n} of n(p+q) 
conditonally independent Normal observations with common variance 
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0'2 and such that 

E (Yljk ) a + ~ (Xlj ) A. k=l, ... ,n j=l, ... ,p 

p~ (X2j ) A. 
(2) 

E (Y2jk ) a + k=l, ••• 1 n j=l, ... ,q 

This structure is the same as (1) except for the inclusion 
of the parameter A which is assumed to have a positive value a~d 
contains the previous model as a particular instance (A=l). As 
usually, the doses are assumed to be non-negative (Xij ~ 0) . 

This extension allows the experimenter t.o deal with a 
variety of curves for the dose-response relationship with 
respect to the relative potency it can be easily shown that if Xl 
is a dose of the first stimulus and X2 is a dose of the second 
stimulus, suc~ that the associated expected responses are equal, 
then (Xl /X2 ) = p, so that the~ relative p'otency of these two 
stimuli may be defined as cjI = pllA = (p~/~) lrA and then, the assay 
still is of the slope ratio type. As an initial approximation, in 
what follows the analysis of the assay will be developed condi
tional on A (i.e. A will be assumed to have a known value). In 
the absence of additional assumptions the existency of cjI, at 
least for some cases, may be disputed. It will be argued, 
however, that a very natural restriction on p can be imposed to 
avoid such a problem. 

For the sake of simplicity and in order to make the paral
lelism with the results obtained in Mendoz.a (1986) more evident, 
let us define Wij = (Xij)A.Therefore, for a given set of data D, 
the likelihood function of (p,a,~,O') is given by 

2.THE REFERENCE POSTERIOR DISTRIBUTION 

In order to produce inferences about the parameter of inter
est, the information provided by the experiment must be combined, 
via Bayes' theorem, with the available initial information des
cribed by means of an appropiate prior distribution. However, in 
many cases the experimenter has only relatively vague initial 
information or thinks that he must let the experimental informa
tion 'speak by itself'. Whatever the cause may be, in such si
tuation the use of a 'non-informative' or reference prior distri
bution may be the solution. 

Bernardo's (1979) procedure already considered in Mendoza 
(1986) can be used here to obtain a reference posterior distri
bution for the relative potency. However, two points must belmade 
initially: firstly, the model described is parametrized by t~e 
vector 6 = (p,a,~,O')t but the parameter of interest is cjI = pl/ i 
secondly, cjI can always be considered as a well defined transfor
mation (one-to-one) of p since/without loss of generality, p can 
be assumed to have a positive value. 
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The rationale for the second point is as follows. A negative 
value for p impXies that the slopes have an opposite sign. Hence, 
and since W = X is an increasin9 funtion of the (non-negative~ 

dose X for every possible value of A, it follows that the stimuli 
have an opposite effect in the response i.e. a dose increase of 
one stimulus causes an increase on the expected response whereas 
a dose increase of the other stimulus causes a decrease of the 
expected response. It is clear that a comparison, based on the 
idea of relative potency, of such a pair of stimuli has no sense. 

We may therefore, assume that the experimenter is assaying 
two stimuli with the same qualitative effect in the response and 
that,consequently, p is positive. This restriction for the values 
of p guarantees that ~ exists and may be considered a one-to-one 
transformation of p. Under such circumstances, the reference pos
terior distribution for ~ can be obtained. It must be recalled 
that the procedure proposed by Bernardo(1979) is invariant under 
one-to-one transformations of the parameter of interest, in the 
sense that the desired distribution is simply derived by the ap
propiate change of variable, if a priori the nuisance parameters 
and the parameter of interest are independent.Moreover,the effect 
of a truncation of the parameter space can be accomplished by im
posing the truncation on the original reference distribution. 
Hence, the reference posterior distribution for ~ can be derived 
from that for p obtained in Mendoza(1986) replacing Wij by Xij , 
imposing the restriction p > 0 and then applying the appropriate 
change of variable from p to ~. 

As in section 4 of Bernardo 1979, we have that if n(p) and 
n(a,~,aIP) are defined as the operational priors which respect
ively maximize the missing information about p and the missing 
residual information about (a,~,a) given p, associated to the ex
periment described in the previous section, then 

n(a,~,alp) cc: exp{-Jp(Dla,~,a'P)H[p*(a,~,aIP,D)]dD}, 
n(p) cc: exp{ -J p(DIP)H[p* (PID) ]dD}, 

where H[.] is the well known entropy operator whereas p*(PID) and 
p*(a,~,alp,D) respectively represent the asymptotic posterior 
distribution of p and the asymptotic posterior distribution of U, 
~ and cr given p.The asymptotic Normality of the joint posterior 
distribution can be verified so that after some calculus we have 
that 

n(p,a,~,cr) n(a,~,crIP)n(p) 

where, 

Q (P) 

{ a-3 } {Q (P) } -1/2 

(P+q)Lj(W2j )2 - (W2·)2, 

-2W1 ·W2 " 

(p+q) Lj (W1j ) 2 - (WI.) 2 , 

(4 ) 
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Combination of this prior distribution with the likelihood 
function (3) leads to the posterior reference distribution 

1t(P,a.,13,crID) oe{Q(P) }-1/2 cr- M exp{-[LjLk(Yljk-a.-13wlj)2 

+ LiLj (Y2jk-a.-P13W2j) 2] / (2cr2) } 

for every peR, a.eR, 13eR, cr > 0; (M = n (p+q) +3) . 

(5) 

The marginal density of p is obtained integrating out from 
1t(P,a.,13,crID) the nuisance parameters a., 13 and cr so that, 

1t(PID) = fJJ 1t(p,a,13,crID) da.d13dcr 

for every peR and where, 

m n(p+q)/2 v = (p+q)/n ; 

S 2 LiLjLk (yijk)2 - (LiLjLk Yijk ) 2 / (2m) ; Y 

SWYl LjLk YljkWlj (LiLjLk Yijk) (LjW1j ) / (p+q) 

SWY2 LjLk Y2jkW2j (LiLjLk Yijk) (LjW2j ) / (p+q) 

As discussed in Mendoza (1986), 1t(PID) is a proper distri
bution whenever p+q ~ 3 and n ~ 2, and may have one or two modes. 
If the positiveness restriction on p is imposed we have that 

{
C{Q(p)}(m-l) / {Q(P)S/ - v[SWYl + pSWY2]2}m; p>O 

1t(PID) = 
o elsewhere. 

where C is ~n adequate constant such that J 1t (P I D) dp = 1. Now, 
since <I> = pll , we have p = <1>'" and hence, the derivative of p with 
respect to <\l is given by p '= 1..<1> (},,-1) so that the reference 
posterior distribution for the relative potency <I> can finally be 
written as 

'" {C*{<\lO"-l) [Q(<\lA)] (m-l) }/{Q(<\lA)S/ -v[SWYl+<\lASWy2 ]2}m; <\l>0 
1t('YID) = 

o elsewhere, 

where, C* is an adequate constant such that J 1t(<\lID)d<\l = 1. 

The most important result is that obviously, 1t(<\lID) is also 
a proper distribution whenever p+q ~3 and n ~ 2 so that infer
ences about the parameter of interest may be obtained without any 
difficulty for any sensible design. It is worthwhile to recall 
that this is not the situation with the frequentist approach 
where the procedures applied to produce the so-called 'confidence 
intervals' have proved to be rather controversial (Fieller,1954). 

Some other characteristics of 1t(<\lID) may depend upon the 
specific value of A; the next section includes some examples 
which may provide some insight on the behaviour of 1t(<\lID) . 

3.NUMERICAL EXAMPLES 

As has been stated in the previous section, the reference 
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posterior n(~ID) is a proper distribution for any sensible exper
imental design. However,the constant of proportionality cannot be 
determinated analytically so that implementation of the procedure 
described requires the use of computer routines for numerical in
tegration. In this section, two simulated examples are considered 
in order to contribute to the understanding of the general be
haviour of n (~I D). For the first example a set of parameter 
values (a=1,p=5,p=0.75,cr=1,A=0.5) have been selected to simulate 
a convex dOBe-reBponBe relationship. Figure 1 shows the curves 
associated to the expected responses. 

Two independent samples (D1 and D2) with the same experimen
tal design were generated using these parametric values. The re
sulting data is shown in Table 1. The respective reference pos
terior distributions,n(~ID1) and n(~ID2)' are shown in Figure 2. 

18 

15 

12 ~~ 

9 

6 

3 

0 
0 2 4 6 8 10 

Figure 1. Expected responses first example (--: first stimulus, 
--:second stimulus) . 

Table 1. Simulated data, example 1 (n=3, p=q=4 

Stimulus 1 2 

Doses 1 4 7 10 2 4 6 8 

6.588 8.593 13.279 16.395 5.122 9.253 11. 606 12.765 
Dl 6.889 11. 473 14.465 15.974 7.273 8.559 11.634 11. 050 

5.664 10.692 15.815 17.888 3.614 9.596 10.469 12.059 

4.959 10.980 14.721 17.954 5.678 9.062 9.327 11. 679 
D2 6.070 11.176 13.416 17.642 5.170 7.958 13.197 11.104 

5.084 10.215 15.459 17.686 5.545 9.178 8.692 11.553 

361 



Recalling that the true value of the parameter of interest 
is given by <1>= p2 = 0.5625, we have that both unimodal 
distributions concentrate the mass of probability near the true 
value of <1> even though the variation among samples seems to be 
appreciable for this Qxp9rimental design. 

The data for the second example was generated using a set of 
parameter values such that, as opposed to the first example, the 
obtained dose-response relationship is described by a concave 
curve (a=10,~=0.5fp=2,cr=1,A=2). Figure 3 shows the expected res
ponse curves for both stimuli. Again, two independent samples 
were generated according to this model.The information(D3 and D4 ) 

is displayed in Table 2. 
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Figure 2.Reference posterior distributions(--:~(~ID1),--:~(~ID2»' 
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Figure 3. Expected responses second example (--:first stimulus, 
--:second stimulus) . 
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Table 2. Simulated data, example 2 

Stimulus 1 

Doses 1 3 

12.135 16.993 
0 3 11.035 14.381 

11. 697 13.531 

11. 015 13.849 
0 4 10.380 13.644 

9.384 12.789 

16 
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0 
1.3 1.35 

4 

17.512 
18.381 
17.220 

17.872 
17.434 
17.533 

I 

~ 
~ 

I , 

I 

I 
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5 

22.275 
22.348 
21. 627 

23.090 
22.717 
21.706 

~, , 
I ' I , 

I , 

I ' I , 
I , 

I \ 
I , 

I \ 

1.4 1.45 1.5 

\ 
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1 

9.702 
11.792 
11.830 

8.825 
10.145 
10.314 

\ 
\ 
\ 
\ 
\ 

\ , , , , , , 

I. 55 

, 

(n=3, p=q=4) 

, , 

3 

19.460 
19.818 
20.039 

18.957 
20.851 
19.391 

1.6 

2 

4 5 

28.564 35.786 
25.746 35.835 
24.939 36.826 

26.865 34.946 
25.028 35.324 
25.198 35.496 

1.65 ) .7 

Figure 4.Reference posterior distributions (--:n(~ID3),--:n(~ID4)) 

Since ~ = pl/2 = i2, it follows from Figure 4 that similar 
conclusions to those obtained in example 1 can be produced. Both 
posterior distrrbutions are unimodal and concentrate the mass of 
probability on a neighborhood of the true value of ~. Another no
ticeable similarity is that for the selected design the variation 
among samples may be again considered appreciable. 

4. CONCLUDING REMARKS 

The procedure described in this paper can be used to deal 
with a large class of biological assays of the slope ratio type. 
However, it requires the value of the parameter A to be known. An 
additional effort may be necessary in order to investigate the 
situation where A is unknown and, hence, has to be considered as 
another nuisance parameter. An alternative approach which is al
ready available using only the results contained in this paper 
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may be based on the idea of a sensitivity analysis of the pos
terior distribution X(~ID) for a range of values of A. Indeed, it 
often happens that the experimenter's prior information about A 
reduces to the specification of a lower bound and an upper bound 
for this parameter. Under such circumstances, particularly if the 
interval defined is rather narrow, it may suffice to produce a 
(usually small) number of conditional analysis for a given set of 
A-values within the interval to obtain a useful idea of the be
haviour of X(~ID) . 
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ON ABSOLUTE CONTINUITY OF MEASURES DUE TO 

GAUSSIAN LOCALLY STATIONARY PROCESSES 

Jifi Michalek 

Institute of Information Theory 
and Automation 
Prague, Czechoslovakia 

The notion of a locally stationary process was intro

duced and first studied by Silvermann1• His results were gen

eralized by Michalek2 where a spectral decomposition of a 

locally stationary harmonizable process is investigated. The 

notions of a harmonizable covariance function and of a har

monizable process were introduced by Loeve; a short note on 

a spectral theory of harmonizable processes is given e. g. 

in Loeve 3 • 

Let x(t), t ETc R1 be a locally stationary harmonizable 

process with a spectral density function h(A,~). The prop

erty of local stationarity enables to express 

where h(A,~) is a locally stationary covariance again, i. e. 

h1 ~ 0 and h2 is a stationary covariance. Such a process, 

see Michalek2, can be expressed in the form of a stochastic 

integral understood in the quadratic mean sense 

J+OO itA 
x(t) = -00 e z(A)dA 

where Z(A) is a locally stationary process again having 

h(A,~) as its covariance function. Further, let us suppose 

that the process x(t), t E T is Gaussian; with respect to 

a measure Po Eo{x(t)} = 0 for every t e T and with respect 

(1) 
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to another measure P1 E1 {x(t)} = aCt) on T under assumption 

E1{x(s)x(t) - a(s)a(t)} = Eo{x(s)x(t)} 

holding for every pair (s,t) E TxT. At once the following 

question arises: under which conditions put on the function 

aCt), t E T the measures Po, P1 shall be equivalent? 

Let us consider a linear set U = {u: u = l~=l ckx(tk), 

ck complex, tk E T, k = 1,2, ••• ,n} of all linear combinations 

defined by means of values x(t), t E T. Thanks to the spec

tral decomposition (1) one can immediately write 

and hence there exists a one-to-one-mapping among the el

ements of U and the functions from S = {l~=l ckeitkA} if 

we identify such elements U1, U2 E U for which 

when U1 

In this way we can introduce a scalar product <U1,U2> on U, 

namely 

Let U be the closure of U with respect to the norm 

IIull = <u,u>~. Then U is a Hilbert space because U is a sub

space in L2 (n,E,p o ) where the process x(t), t E T is defined. 
By means of the one-to-one mapping between U and S we can 

construct a closure S of S under the norm 
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when f, g £ S then the scalar product induced by that one-to

one mapping into S has the form 

Thus, for every random variable n € U there exists an element 
f (A) € S such that 

n 

I
+~ 

n = f (A)z(A)dA 
-m n 

and 

It follows from the construction of the closure S that S 
is a subspace in the space L2 (h 1 ,h2 ) of all complex functions 

of a real variable for which 

II:: 
exists. A general theory of absolute continuity of Gaussian 

measures presented in Rozanov~ gives then a necessary con

dition for absolute continuity of Po, P1 • 

Theo~em. A necessary condition for absolute continuity 

of measures Po, P 1 corresponding to Gaussian locally station

ary harmonizable processes distinguishing in expected values 
only is a possibility to express the difference aCt), t € T 
of these expected values in the following form 

aCt) 

If f(A) € S then this condition is sufficient too. It means 

when the closure U is izometric to the whole space L2 (h 1 ,h2 ) 

then this condition will be necessary and sufficient. This 

situation occurs, e. g. if T = (-~,+m) because then an in

version formula 

I I+~ Z(A) = --2n 
-~ 

expressing Z(A) by means of x(t), t € T holds and hence the 

both processes x(t), t € T and Z(A), A € (-m,+~) have the 
same range of values. 
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BAYESIAN ADAPTIVE DECISION THEORY VERSUS DYNAMIC GAMES AS MODELS FOR ECONOMIC 

PLANNING AND POLICY-MAKING UNDER UNCERTAINTY 

INTRODUCTION 

Reinhard Neck 

University of Economics, Vienna 
Vienna, Austria 

One of the main problems in theoretical and applied studies of quan
titative economic policy and planning is concerned with the potential 
achievements of stabilization policies aimed at controlling a dynamic 
economic system and guided by an intertempora1 objective function, which 
exhibits trade-offs between different target variables. Optimization methods, 
particularly those of optimal control theory and dynamic programming 
including adaptive control theory, have been applied to many theoretical and 
empirical models in order to obtain insights into this question. During the 
last years, however, this research has come under increasing attack from 
several authors. One of the main arguments against these optimization studies 
is the assertion that optimizing stabilization policies cannot achieve their 
aims because of the high degree of uncertainty inherent in socio-economic (as 
opposed to physical) systems. But if the basic decision-theoretic framework 
of the theory of economic policy is accepted, this claim is largely lacking a 
theoretical foundation. In particular, it can be shown by methods of adaptive 
(dual) optimal control theory that a combination of cautious active po1icy
making and learning about the system response in general can improve the 
performance to be achieved, even under substantial uncertainties of several 
kinds (see, e. g., Kendrick, 1981). 

One possible justification of the critical attitude of some opponents to 
active stabilization policies may be found in the idea that in economic 
systems there is not only uncertainty in a stochastic sense, but also 
uncertainty arising from strategic reactions of other (public and private 
sectors') decision-makers upon economic policies planned by the government. 
Although this position by itself need not substantiate a verdict against 
stabilization policies, it may lead to the methodological consequence of 
abandoning decision theory, including Bayesian adaptive control theory, in 
favor of dynamic game models, resulting in a different theoretical framework 
for analyzing stabilization policies. In this paper we will investigate 
whether subjectivist decision theory becomes obsolete in a game-theoretic 
framework and whether stochastic and adaptive decision and control theory or 
dynamic game theory are more adequate as models for economic planning and 
policy-making under uncertainty. These issues will be discussed first on a 
general methodological level and then illustrated with the help of a simple 
analytical economic model. 
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METHODOLOGICAL CONSIDERATIONS 

From the perspective of methodology, the main question concerns the 
relative advantages and disadvantages of subjectivist decision theory and 
game theory, especially in a dynamic framework. This is a more general 
problem not confined to the theory of economic planning and policy, which has 
been discussed recently in a series of papers following Kadane and Larkey 
(1982; §@@ algo th9ir QXChnng9 with Hnr~nnyi; lAhAft, 1993; R~th a~d 
Schoumaker, 1983; Rothkopf, 1983; Kadane and Larkey, 1983, and the comments 
by Shubik). Although so far no consensus has been reached about appropriate 
research strategies, the main arguments of this discussion concerning the 
purpose of the investigation at hand, the presumption of rati'onality, and the 
necessity of specifying strategic interactions and particular solution 
concepts can be applied to the framework of economic policy as well. Some of 
these consequences will be discussed in the present section. 

Purpose of the Study 

The first issue to be clarified by a researcher is the purpose of the 
investigation he (she) is carrying out. In particular, a fundamental 
distinction can be made between positive studies, concerned with 
"is"-statements, and normative ones, concerned with "ought"-statements. 
Positive theories may be descriptive (e. g., describing institutions carrying 
out stabilization policies), explanatory (specifying possible causal 
relations; e. g. influences of economic policy variables on targets), or 
predictive (e. g., giving forecasts about future developments of target 
variables contingent upon specific policy actions), although usually more 
than one of these purposes will be pursued in a positive investigation. 
Normative theories, on the other hand, may be speculative (specifying only a 
criterion, e. g., an objective function for an economic policy-maker) or 
prescriptive (providing also some procedure to obtain the "optimal" or at 
least a "better" value of the criterion; e. g., specific policy measures to 
be adopted); furthermore, normative theories may serve as an advice for an 
actual decision-maker (for economic planning in this case it should contain 
also informations on how to implement the policy recommendations) or merely 
for comparing different institutional arrangements or outcomes of actual and 
hypothetical policies, including those for previous periods. 

In general, normative and positive statements will be different unless 
one believes that the way decisions are made is always the best one possible. 
Both kinds of theories are useful, but they serve different research 
purposes. Kadane and Larkey (1983), however, maintain that they are often 
confused in developing and applying theories of decision-making in the social 
sciences, especially in game theory. Although it is true that one must 
carefully distinguish between normative game theory, which may serve to 
advise particular players or to get qualitative insights into results of 
recommended behavior, and positive theories of actual behavior in game 
situations, this applies mutatis mutandis to subjectivist decision theory, 
which is also prima~ily prescriptive; whether either of the two approaches 
can be used as a good predictive theory is primarily an empirical question. 
This might be one of the reasons why so far attempts to develop a positive 
theory of 'economic policy and planning on the basis of either decision or 
game theory had only limited success. and most studies in this area show (at 
least implicitly) a normative orientation: Empirically reliable positive 
theories of actual policy-makers' behavior are largely lacking. This is 
unfortunate, because even if the advice-perspective of a normative theory of 
economic policy is accepted, at least some elements of such a positive theory 
are required to assess the feasibility (with respect to implementation) of 
policy recommendations. 

A particular problem arises, however. in a game theoretic approach, 
namely that of the behavior of the opponents to a specific decision-maker. 
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Here we have to distinguish between the perspective of an outside observer of 
the game (the scientist) and the perspective of a single player or his (her) 
adviser. For the purposes of a normative theory usually only the latter will 
be relevant. in the context of economic policy in most cases as an advice to 
the government or a specific politician. However. both for positive and for 
~!lle!i'tivl ,U!,e'lu ,&Uitivo !hoo!ioo of tha 6ohAViof of thA othar plAyo,g 
and of the interaction between the players are required. An adviser needs not 
only a prescriptive theory to guide the government's decisions. but also a 
predictive theory about other decision-makers, which may be different from 
the recommended decision procedure of the government. Since both predictions 
and prescriptions of government behavior must be conditional on the behavior 
of the others, behavioral differences must be recognizable in a model of game 
theory for economic policy. Whether the assumptions about the other players 
include their rationality is primarily an empirical question; Bayesian 
decision theory could also allow for revisions of those assumptions during 
the course of accumulation of information about the game. However, as Shubik 
has correctly pointed out, game theory cannot be blamed for neglecting this, 
because different assumptions about the rules of the game and about the 
solution concept also allow for a variety of possible behaviors of the other 
players. Investigating the consequences of different solution concepts for a 
given problem of economic planning with more decision-makers can provide 
useful insights, both for positive and for normative purposes; whether this 
procedure results in a loss of information about possible behavior of the 
opponents depends on the scope of the solution concepts considered and to 
some extent also on the specific problem at hand. 

Rationality 

As in other fields of the social sciences. the task of modeling human 
behavior creates tremendous problems for a positive theory of economic 
policy: Cognitive processes are highly complex, experiments are usually not 
feasible, and decision processes must be recovered from data about behavior 
in nonrepetitive situations, which may depend on the context in an essential 
way. Psychological experiments of decisions in laboratory situations have 
shown that human beings often are not able to conform with the coherence 
postulates of Bayesian prescriptions, and the same is true for game-theoretic 
concepts such as the minimax strategy. On the other hand, there exist a few 
successful applications of game theory to experimental negotiations. One of 
the reasons for the mixed evidence is the impossibility of deriving unique 
models of decision processes from data about behavior, even under "ideal" 
experimental conditions. Already Simon (1956) has shown that we must 
distinguish between subjective rationality (given the goals and perceptions 
of the decision-maker) and objective rationality (judged from the 
experimenter or the observer): There may be subjective without objective 
rationality if decisions are rational given perceptions which themselves may 
be irrational. For a predictive theory this results in a loss of forecasting 
capability, since a model of the decision-maker's view of the alternatives 
and their consequences would be required. The difficulty of objectifying 
subjective probabilities and utilities may be responsible for the seemingly 
"irrational" behavior of decision-makers as seen by an outside observer. 

Although this gives some support to the approach of subjectivist 
decision theory, it is not necessarily an argument against game theory, 
because for both theories the same basic model of "rational man" is 
fundamental, and not every game-theoretic analysis needs the assumption of 
well-defined utility functions about uncertain alternatives with objective 
probabilities. Whereas for a normative analysis the concept of rationality 
(both in a game-theoretic and a decision-theoretic context, depending upon 
whether strategic interactions are essential or not) seems unquestionable, at 
least for the decision-maker to be advised, for a positive theory different 
methodological views are possible. Harsanyi's position, which claims that 
behavior must be interpreted either as rational or as psychologically 
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economic policy, but some positive theory of behavior is certainly required, 
and often subjectively rational optimization will be more appropriate than an 
incompletely specified alternative theory. Furthermore, rational theories of 
decision-making may help the decision-maker in better understanding the 
problem and the situation, both his (her) own problem and that of his (her) 
opponents. This didactic value of both subjectivist decision fheory and game 
theory can be particularly important in economic planning, where repeated 
normative uses of concepts of rationality may contribute to more widespread 
rationality of actual decisions and may hence improve their usefulness for a 
positive theory. Research on elicitation of prior probabilities and pre
ferences, for instance, and training of planners in these abilities may help 
closing the gap between normative rationality and actual decision-making. 

Nevertheless theories of "bounded rationality" or "semirationa1" 
behavior should not be discarded as alternatives to both decision and game 
theory. There may be situations where costs of obtaining and processing 
informations enforce using a simpler decision procedure than optimization. 
But even then it would be desirable to formulate this kind of behavior in a 
theoretically satisfactory way, in particular to deduce it from more general 
assumptions and principles (including that of using the "optimal" decision 
procedure in the presence of informational costs), before it should be 
applied to a particular problem of modeling economic policies. "Applied 
modeling is an art" (Rothkopf, 1983: 1345) is not sufficient if one wants to 
avoid "methodological anarchism". Modeling should be directed towards showing 
that empirically observed behavior can be explained systematically by a 
general theory, which often (though not always) will contain some elements of 
(at least subjective) rationality. This does not preclude a careful con
sideration of details for concrete modeling, but points to the necessity of 
having an organizing principle for analysing these details. Economic 
policy studies based on ad-hoc schemes of bounded rationality (e. g. Mosley, 
1976) could be critizised for lacking such a principle. 

Strategic Interactions 

The main difference between Bayesian decision theory and game theory is 
the explicit recognition of strategic interactions between different 
decision-makers (players) by the latter. Decisions by other players are 
regarded not as results of random processes but of conscious deliberations; 
the decision variables of the other players are given to each decision-maker, 
but endogenous with respect to the game model. Every player decides on the 
basis of his (her) expectations about the expectations of the other rational 
players. In situations where there is such an essential interaction which is 
understood by all participants, game theory can provide the adequate model. 
On the other hand, the interactive structure may be inessential if there are 
too many other players, or if the other players do not react upon the 
decisions of one player, or if there is substantial uncertainty about the 
"rules of the game". In these cases the situation may be modeled as a 
one-person game against "nature", 1. e. against the aggregate of the passive 
or unknown other players, and a Bayesian approach may be appropriate (cf. 
Kahan, 1983). For economic policy problems this may be true if the government 
is confronted with a private sector composed of a great number of households 
and firms who do not react strategically on government policies. When "big" 
institutions (firms, unions, associations) or other policy-makers on a 
national (e. g., the central bank) or an international level (governments of 
other countries, especially if they are "big" in the sense of theoretical 
international economics) are involved, then usually a game-theoretic model 
will be required. 

Subjectivist one-person decision theory may also be applied if, for some 
interaction structure, it is known that the other players do not act 
rationally, provided there is a theory (supported by empirical or other 
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evidence) about probable strategies of these irrational players (or about the 
probable "error5" ii\ the:i.~ Atntagiu), inYCUlilln objontionll llgllim~t giID@ 
theory thus have some relevance for asymmetrical situations, where the 
decision-maker does not expect his (her) opponents to react rationally. But 
even then, not any subjective probability should be acceptable as prior; some 
(psychological or other) theory is required, and game-theoretic results may 
be used as reference standards. It may be dangerous for a policy-maker to 
underestimate the rationality of the other players; some of the policy 
ineffectiveness and time inconsistency results of economic theory are due to 
government's neglect of strategic' reactions of the private sector. This means 
that there is a theoretical shortcut; the recursion of "I think that he (she) 
thinks that I think ••• " is cut off by arbitrarily assuming the other players 
not to be fully rational. Unless there are convincing reasons for this lack 
of rationality, subjectivist decision theory can serve at most as a sub
stitute for a game-theoretic analysis when the latter cannot (yet) be used 
due to mathematical intractability (see also Lindley, 1982: 217). 

Solution Concepts 

Even if there are rational, strategically interacting decision-makers, 
the problem remains whether the structure of the interaction and hence the 
solution concept of the game is unambiguous from the outset. The theory of 
games has developed a great number of solution concepts, both for non
cooperative and for cooperative games. Although game theorists universally 
agree that their most important theoretical task is to develop exact 
definitions of rational behavior in situations of strategic interactions, 
there is much less agreement about the requirement of a single solution 
concept valid for all such situations. Whereas some game theorists (notably 
Harsanyi) aim at developing a general solution concept leading to a unique 
and predictable outcome for all situations of strategic interactions, most 
game theorists confine their task to restricting possible outcomes to a 
certain range and to developing several solution concepts. For instance, in a 
two-person zero-sum (or constant-sum) game the minimax solution is nor
matively compelling if the other player also acts rationally and hence plays 
also minimax. However, if the other player is irrational, or if the game is 
not two-person constant-sum, or if it is a game against nature, then game 
theorists will readily accept the Bayesian argument of minimax being 
inconsistent for such situations (though not necessarily the conclusion that 
only subjectivist decision theory provides the adequate analytical tool). 

Since there are rarely situations in economic policy where a two-person 
constant-sum game could be regarded as a correct model, the lack of a 
universally accepted solution concept for other games is relevant for 
assessing game versus decision theory models of economic policies. Game 
theorists respond to this challenge by emphasizing the importance of modeling 
the assumptions and rules of the game prior to specifying the solution 
concept. First it has to be determined whether the game is assumed to be 
cooperative or noncooperative. The former will be better suited for inter
actions between a few players who can easily communicate and agree on "fair" 
commitments. If there are more players and communication possibilities are 
low, the choice of the solution concept becomes more complicated. But unless 
all but one player can be aggregated into a fictitious "passive" player, 
one-person games against nature or subjectivist decision theory will not 
solve the problem, especially because of the infinite recursion problem. 
Moreover, for games against nature with uncertainty concerning the payoffs 
and the strategies there exists no universally accepted behavioral theory so 
far. Thus in general there is no easy way to bypass the requirement of 
carefully modeling the interactions between the players and examining several 
solution concepts for each particular problem. 

One of the complications behind the multitude of solution concepts lies 
in the formation of expectations by decision-makers, in particular about the 
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other players' actions and expectations. If the solution concept is not 
obvious to all participants in the strategic interaction, it must rely on 
their expectations about possible actions of the others. Assuming rationality 
for the other players, however, restricts the class of prior probability 
distributions for each player in a Bayesian approach. Neglecting rational 
actions of other players and their reciprocal expectations of rational 
actions amounts to throwing away essential informations, as Harsanyi has 
correctly pointed out. Therefore for rational players it is necessary to 
eliminate systematically those priors which contradict certain classes of 
solution concepts which seem relevant for the problem under consideration. 
The extremely subjectivist point of view, which insists on Bayesian methods 
also for the elicitation of prior beliefs, is not adequate for situations 
where one or several solution concepts seem potentially applicable. But the 
extremely deterministic point of view requiring a unique solution to every 
game is not adequate either, unless there are strong arguments for a 
particular solution concept to be applied. Experiments (Roth and Schoumaker, 
1983) have shown that expectations and hence subjective probabilities become 
relevant for determining the outcomes of many games, where further assump
tions about the behavior and the expectations of the players are required to 
define rational behavior. Thus informations from the solution concept(s) and 
(empirical or theoretical) informations about expectations of other players 
should be combined in forming priors in a subjectivist decision theory 
approach; conversely, in a game-theoretic analysis more than one solution 
concept could be tried, the outcomes could be compared and assessed with the 
help of additional problem-specific informations. 

Accepting a Bayesian approach to the analysis of a situation of 
strategic interaction amounts to assuming that the policy-maker has sub
jective probabilities about the actions of his (her) opponents and their 
consequences, including their expectations about his (her) own actions, and 
so on. Particular solution concepts in this framework generate special prior 
distributions and vice versa. From a theoretical point of view it is 
interesting to know how a rational player would choose his (her) prior 
probability distribution of the opponents' strategies if he (she) expects 
that they will act rationally and that they also expect every player to act 
rationally. In particular, which restrictions upon the prior beliefs of the 
players and on their behavior given prior beliefs are implied by the 
assumptions or axioms of different solution concepts? This problem has been 
studied recently by Tan and Werlang (1986), who transform a simultaneous game 
in normal form into a Bayesian decision problem, assume for each player a 
space of uncertainty over the strategic choices of the other players with 
priors over the sets of strategies of the other players, over their priors 
and so on for the infinite recursion of beliefs, and derive the noncooper
ative solution concepts of iterative elimination of strictly dominated 
strategies, of rationalizable equilibrium, of Nash equilibrium, and of 
correlated equilibrium from explicit assumptions about behavior, information 
and beliefs of the players. The results show that iterative elimination of 
strictly dominated strategies is the solution concept for Bayesian players if 
it is only assumed that rationality is "common knowledge", that is, if every 
player knows the structure of the model, the rules of the game and the 
rationality of all players, and every player knows that every player knows 
the above, and so on. Rationalizable strategies are obtained when, in 
addition, common knowledge of independent actions of all players is assumed, 
whereas for Nash and correlated equilibrium additional assumptions about the 
players' priors are required, which can be interpreted as demanding some 
coordination between them. In a much simpler approach Kadane (1985) has shown 
that in a two-person zero-sum game both players act in accordance with 
Bayesian decision theory if their utilities express opposite interests (have 
constant sum) and their prior probabilities coincide. These results show that 
widely used solution concepts, such as the Nash equilibrium, impose non
trivial restrictions on the priors of a Bayesian player, which should be 
taken into account for applications of these solution concepts. 
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For problems of economic policy and planning an additional complication 
arises from the dynamics usually inherent in them. In a Bayesian approach 
this means that not only probabilities have to be coherent over time 
according to Bayes' theorem and the likelihood principle of Bayesian 
statistics, but also the principle of optimality of dynamic programming must 
hold for the sequence of decisions. Dynamic one-person decision problems 
under uncertainty can be formulated as stochastic control problems; when 
learning about the economic system is explicitly allowed, adaptive control 
methods are required, which again may use Bayesian estimates of unknown 
states, parameters, etc. Unfortunately, a full analytical solution of an 
adaptive control problem for an optimal closed-loop policy cannot be obtained 
so far, even for extremely simple models. Only approximations are available, 
obtained for example by simplifying the information structure or by 
restricting the admissible control law, sometimes supported by a sensitivity 
analysis with respect to approximation and model errors. On the other hand, 
the theory of dynamic games has developed several feasible solution methods, 
but a full characterization of equilibria for closed-loop information 
structures with memory strategies is also not available so far. Furthermore, 
the problem of multiple equilibrium solutions is aggravated in a dynamic game 
model by "informational nonuniqueness", implying the existence of a continuum 
of Nash equilibria for closed-loop information structures, for example. 
However, there are some solution concepts, notably the memoryless feedback 
Nash equilibrium, which have desirable properties (subgame perfectness) and 
can be obtained analytically or numerically, at least for simple (e. g., 
linear-quadratic) models. Thus from the point of mathematical tractability, 
in a dynamic context both Bayesian decision (control) theory and game theory 
at the present state of the art put severe limitations on the complexity of 
an economic policy problem that can be solved; the previous considerations 
about the appropriateness of either Bayesian decision theory or game theory 
apply, nevertheless, also for the dynamic case. 

AN ECONOMIC POLICY EXAMPLE 

The methodological discussion, although providing some hints to 
situations where a subjectivist decision-theoretic analysis could be more 
useful than a game-theoretic one and vice versa, does not give a clear-cut 
conclusion for deciding between the two approaches for problems of economic 
policy-making and planning. But it suggests that for problems where strategic 
interactions are essential but the solution concept cannot be determined 
unambiguously a priori, a combination of Bayesian and game-theoretic insights 
might be most helpful. Many economic policy problems are of this type, 
especially when their dynamic nature and hence the ambiguity with respect to 
the information structure are taken into account. This may be illustrated 
with the help of a simple example from the theory of stabilization policy. 
For reasons of lack of space, it is only sketched here; a more extensive 
discussion of its different solutions is given in Neck (1986). 

We consider the following analytical model of the trade-off between 
unemployment and inflation in a closed economy: 

pet) = Ah(t) + p*(t), A > 0, 

aCt) u(t) - ~ = -6h(t), 6 > 0, 

h(t) B[m(t) - pet)] + yg(t), B > 0, Y > 0, 

p*(t) = n[p(t) - p*(t)], n > 0, p*(O) = p* > O. 
o 

Here pet) is the actual rate of inflation, p*(t) the expected rate of 
inflation, h(t) aggregate excess demand, u(t) the rate of unemployment, UN 
the constant natural rate of unemployment, met) the growth rate of money 
supply, and get) the growth rate of real public expenditures for goods and 
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services. get) is a policy variable of the government (player 1 in a game, or 
"the decision-maker" in a Bayesian setting), and met) is the policy variable 
of the central bank. The government aims at minimizing 

00 

J 1 = (1/2) t exp(-rt)[a1u2(t) + b1P2(t) + c1g2(t)]dt, (5) 

and the central bank wants to minimize 
00 

J 2 = (1/2) l exp(-rt)[a2u2(t) + b2P2(t) + d2m2(t)]dt. (6) 

Extensions to models with stochastic disturbances are given in Neck (1986). 

The outcomes of several solution concepts for the above dynamic game 
have been determined analytically; here we consider only a cooperative 
Pareto-optimal solution and the feedback Nash equilibrium without memory. 
Pareto-optimal policies can be obtained by minimizing J = aJ l + (1-a)J2 for 
some a E (0,1), yielding linear feedback policy rules: 

P P P 
(g,+g2V ) 

P p_p 
(m, + m2\1) 

p* (t) , 

p*(t), 

(7) 

(8) 

where the gl, mi, i = 1,2, and vP are constants to be calculated from the 
parameters of the model and the objective functions. For the feedback Nash 
equilibrium solution, we get similar feedback rules: 

N N N N N [g, + g2V, + g3V2]P*(t), 

N N_N N-_N 
[m, + m2\1i + m3\1i]p*(t), 

but with different coefficients g~, m~, i = 1,2,3, ~, j = 1,2. Also the 
optimal values of the objective functions can be calculated in each case, 
giving Jr* and J~*, i = 1,2, as functions of the parameters. 

1. 1. 

(9) 

(10) 

If we assume that the government does not know exactly whether its 
interaction with the central bank is cooperative or noncooperative, but only 
considers a (particular) Pareto-optimum and the feedback Nash equilibrium as 
possibilities, it may have a subjective probability of p for the cooperative 
solution being played (or for the central bank to cooperate) and probability 
of I-p for the noncooperative equilibrium. Then without learning the 
government could minimize, over g(t), pJl + (l-p)J~ subject to a system 

(11) 

where e., i=1,2,3, are the coefficients of the reduced form of the model (1) 
- (4), ind J1 and J~ are functions of {get), t E [O,=)} obtained from (5) by 
inserting met) = mP(t) and met) = mN(t), respectively. A more realistic 
assumption would be that the government reoptimized periodically after some 
time interval, simultaneously revising its prior probability p in the light 
of the results achieved so far, according to the Bayes formula. Although 
there may be analytical problems in obtaining revised estimates of p, this 
approach is more flexible than relying on one particular solution concept, 
since it allows for the possibilities of both cooperative and noncooperative 
behavior of the opponent (the central bank). Extensions to the introduction 
of subjective probabilities about the parameters of the model (including a) 
and of J2 as well as to allowing for other solution concepts (like 
Stacke1berg equilibrium) and other information structures (like open-loop, 
memory, etc.) could also be conceived of. The point to be made by this 
example is that even in an economic policy problem with clearly strategic 
interactions, Bayesian adaptive decision theory can be used in addition to 
dynamic game methods when the solution concept is not beyond dispute. For 
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more sophisticated models analytical calculations will be prohibitively 
difficult, but we hope to have shown that developing feasible procedures to 
solve such problems, which combine methods of Bayesian decision theory and 
game theory, can be an intersting task for further research. 
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Econometrics can be viewed as applying statistics in economics. 
Applied statistics is a toolbox of coherent methods to deal with 
empirical uncertainties. Therefore a reasonable conjecture is that any 
Bayesian statistical method is applicable to some economic problem. 
Statistical methods in econometrics are breaking new grounds in two 
areas with very specific problems: a) the non-experimental nature of 
almost all economic data, and b) simultaneous equation systems. 

For this reason we concentrate on foundational statistical issues 
in the first part of the paper and switch to a brief survey on new 
econometric developments in the second part. The review follows the 
"search approach" to econometrics, proposed for non-experimental data 
by Leamer (1978). This includes robust Bayesian methods, or in more 
fashionable term the extreme bound analysis (EBA) , hierarchical models, 
smoothness priors for multivariate time series models, and Bayesian 
regression diagnostics. Furthermore, we review recent developments of 
numerical integration techniques (importance functions) in Bayesian 
simultaneous equation systems. Finally we discuss the acceptance of 
Bayesian methods in econometrics and possible future developments. 

1. INTRODUCTION 

D. Bume (1739, p4S) introduces his philosophy in the following 
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way: "All perceptions of the human mind resolve themselves into two 
distinct kinds, which I shall call impressions and ideas. The 
difference betwixt these consist in the degrees of force and 
liveliness, with which they strike upon the mind, and make their way 
into our thought or consciousness. Those perceptions which enter with 
most force and violence, we may name impressions; ... By ideas I mean 
the faint images of these in thinking and reasoning .... Everyone of 
himself will readily perceive the difference betwixt feeling and 
thinking." 

From a statistical point of view D. Hume introduction into his 
philosophical work is actual and modern as 250 years ago. About the 
same time as Th. Bayes designed his solution to the inference problem 
we find a similar approach by D. Hume. Despite many technical 
progresses since that time, some basic issues remain the same: Shall we 
trust more our impressions (data) or our ideas (prior knowledge). Also 
the distinction between data (likelihood) and the prior is sometimes 
very fuzzy, especially in hierarchical (prior) structures, and often we 
have the problem: Shall we believe in our data-impressions or shall we 
stick more to our prior-ideas? 

2. CHALLENGES 

As a young science, econometrics was founded in the 30's and 
40's, and the basic groundwork was layed up to 1960. The first 
booming decade was the 60's, followed by a critical wake-up period, 
which does not seem to have ended. The early beliefs were, that 
because econometrics has found its genuine research subject 
"simultaneous equation systems", it could be decoupeled from other 
empirical sciences. Almost all recent developments in statistics can 
be found in modern econometric textbooks (like e.g. Amemiya 1985 or 
Judge et al. 1985): time series analysis, asymptotics, qualitative 
choice models, etc. What are the challenges in econometrics, what 
makes the subject so difficult? 

Up to now econometrics might be characterized as a semi-empirical 
science. Usually empirical sciences are data-driven, but for largely 
historical reasons econometrics is theory-driven. Econometrics means 
measuring economics by theoretical concepts which are entirely embedded 
in economics. This attitude would seem to be a fruitful nourishing 
field for Bayesian econometrics. But this is not the case, since there 
are substantial doubts for the measurement process. One finds the 
curious attitude that whole models are simply ignored or dismissed, 
because variables are 'wrong' or wrongly measured. Only those methods 
anq economic variables are celebrated which fit to prevailing theories. 

Is it an immature or even lack of scientific attitude? A similar 
desperate search for confirmations of theories by data can be found in 
medical sciences. 

Given this background it is not surprising that crises in 
econometrics are more severe than in ordinary empirical sciences. 
'Ordinary' means: compiling data evidence in endless measurements, 
cautiously creating hypotheses until new theories are formed. 
Econometricians like the character of a brilliant genius, who comes up 
with a completely new idea and smashes the audiences around the world 
by having found a data set which matches his theory perfectly. While 
there is still the desire for such heroic ideals, people have found out 
some major sources of practical inconvenience: 
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(1) Forecasting performances of many new models are generally poor, 
up@cilllly "out of 6i111~hn ~i Qn~ has to add nowadays. Comparison is 
made via "thresholds" of naive models, like no-change or constant change 
models. 

(2) Causality gap in multivariate time series models. While it is 
generally acknowledged that economics is a difficult science, because 
everything is interrelated with each other, large scaled economic 
models don't payoff in better explanatory powers, like substantial 
improvements in causality or forecasting. 

(3) Simple use of time series models face problems of too many 
parameters and non-stationarities. Classical models assume constant 
variances and parameters, Kalman filter models are few. From a 
Bayesian view these problems are ideally solvable by the information 
updating mechanism of Bayes theorem (West, Harrison and Migon 1985). 

The paper deals in the first part with those foundational 
arguments in Bayesian statistics, which are frequently found in 
discussions about foundational issues in econometrics. My claim is 
that the desire for true models and objectivity is paradoxically more 
pronounced in econometrics, because of the historical and 
nonexperimental nature of data in economics. Hardly any econometric 
textbook addresses this issue, but in general we find a strong tendency 
to more technical and complicated models. 

The only book which draws consequences for the modeling process is 
Leamer's (1978) concept of 'specification searches'. Therefore recent 
developments in econometrics will be viewed from the "search 
perspective" and is discussed in section 6. Section 3 summarizes the 
discussion on the objectivity versus subjectivity controversy. Section 
4 deals with probabilty interpretation problem and its consequences on 
statistical methods. Section 5 gives a critical review for the scope of 
Bayesian methods in econometrics. A final section summarizes the 
present and speculates abou the future state of the art in Bayesian 
econometrics. 

3. THE SUBJECTIVE-OBJECTIVE CONTROVERSY 

How can subjective methods ever outdate the objective statistical 
procedures? Objectivity is the goal of science: true knowledge has to 
be found. Honesty is the silent moral codex of all science. 
Subjectivity is the laymans domain, objectivity can only be obtained by 
accumulating knowledge. Why don't Bayesians stick to all these ideas? 
Why can they be proud too be subjective, personalistic, etc. Only 
renegades of the true science, sects of the pure religion of wisdom can 
adhere to this fanatism! 

All Bayesians stick to this ideal as well! How is this possible? 
By the nature of the (Bayesian) learning process every prior 
information can be overruled by data. Only dogmatic (the word stemming 
obviously from many religious examples in the history of science, where 
religion forces you to ignore data) or orthodox priors (degenerate 
priors with variance 0) cannot be changed by data at all. 

3.1 Probabilistic Reductionism 

Stegmueller (1972) calls a major difference between the classical 
and the subjective interpretation of probabilities the "probabilistic 
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reductionism" argument. This implies the claim that the notion of 
statistical probabilities have to be explained by already known terms. 
The main advocats of this position can be seen in B. deFinetti or the 
predictive school which want to express everything in terms of 
observables. 

Stegmueller (1972, p.224): "Only if the probabilistic reductionism 
argument is valid, the subjectivists are right. But is this 
reductionism valid?". Stegmueller argues that the notion of chance is 
not definable by observables, but is partially interpretable as a 
theoretical term. This means that there is no contradiction between 
objectivism and subjectivism but a controversy between reductionist and 
non-reductionist. "Subjectivists are only victorious if the pendulum 
swings in favour to the first alternative (i.e. reductionism)". 
Further: "The times for a general belief in reductionistic programs 
have passed. In discussions of foundations of sciences the position 
prevails that theoretical terms play an important role in those 
disciplines." But this doesn't imply that reductionism doesn't work in 
statistics and therefore the notion of chance has to be a theoretical 
term. Partial intepretable theoretical terms are not concepts which 
are welcomed but have to be considered as a necessary evil. "In one 
decisive aspect the personalist finds himself in a better position than 
his reductionistic collegues in other faculties: the question of proof. 

It has to be shown that those terms cannot to be introduced into 
the scientific language as fully understandable notions." The 
subjective school claims that they have a theory available to introduce 
probabilities as a non-theoretical quantities. 

Stegmueller points out that there are many variations of the 
reductionist arguments, a famous one being the mathematical branch of 
constructivism. A predictive type of reductionism has been found 
recently in the Bayesian discussion, called the 'Greek hinterland 
controversy'. Lindley (p6) in his reply to Efron (1986) notes: 
"Sampling-theory statistics takes place in a Greek hinterland (see 
below) that diminishes this connection with reality." The implied 
reductionist version in this statement is: Reduce the Bayesian 
controversy to observables and forget about the concept of theoretical 
and unobservable parameters (written generally in Greek alphabet). 

3.2 The High Ground Of Objectivity 

A widespread common belief is: Objectivity guarantees that one can 
solve empirical problems once and forever. But Bayesians have 
scruples: If everything depends on your subjective knowledge, maybe you 
have forgotten something to specify, maybe you should have done 
something else? Are the observations really independent and is the 
likelihood correct? 

Using classical methods one sleeps well: If you have used the 
recent most powerful objective procedures there are no sleepless 
nights. You have achieved something, what hasn't been around before 
and therefore it must be something real and good. At least as long as 
the methods are modern this result will hold, what could be better! 

Efron (1986) notes in the summary of his article 'Why not everyone 
is a Bayesian' that "Objectivity: the high ground of scientific 
objectivity has been seized by the frequentists." This view was 
heavily attacked by Lindley in his comment: "It is not true that 
'strict objectivity is one of the crucial factors seperating scientific 
thinking from wishful thinking'. The objective element is the data: 
interpretation of the data is subjective, as anyone who has interacted 
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with scientists knows. Furthermore the Bayesian view accepts the data, 
whereas the sampling-theory has to make a subjective embedding of them 
in a sample space." 

Objectivity is defined differently by Bayesians. It rests on the 
notion of empirical learning. By accumulating data people with 
different prior opinions will converge finally to the same value. 
Objectivity can be obtained if prior information is dominated enough by 
the data. Subjectivity is just a lack of appropriate or enough data 
information. 

4. THE PROBABILITY INTERPRETATION CONTROVERSY 

Despite the technical progress which statistical methods have 
experienced in the last 50 years, there is no common accepted 
definition of probability. The Kolmogorov axioms are a nice device for 
how to use probabilities, but do not say how to measure or assign 
them. Bayesians and philosophers of science agree that all concepts so 
far proposed are circular, and therefore not valid (classicals need 
equiprobable atomic events, frequentists the notion of a probabilty 
limit). The Bayesian solution is that everything depends on You and 
therefore Your attitude has simply to be measured directly, by bets, 
lotteries, etc. Orthodox Bayesians think that You have certainly one 
definite attitude towards uncertainty in a particular real situation, 
which can be elicited to any degree of accuracy if necessary. This 
measurement process can take very long, but one would argue that if You 
need a result in a certain situation or experiment, then it is very 
well worthwile to find out about your prior information. 

Again it pays to adopt a very tolerant position. Statistical 
clients are quite different in attitudes and utilities toward numerical 
and statistical results. While some want to know it very precisely, 
some like just a quick overview and don't want to be asked about prior 
opinions at all. 

It is fascinating to speculate if the present definitions of 
probabilities and the associated interpretation of statistical 
inference results are really the ultima ratio of our profession. Will 
different fields of empirical sciences develop their own measurement 
devices or will a more appropriate new interpretation concept emerge? 
I think a similar situation and development has been going on for 
almost 250 years (since D. Hume) about the notion of causality. I 
don't think we have made too much progress for a general accepted 
causality definition, will probability definitions have a similar fate? 

Frequentist and therefore the asymptotic interpretation seem to be 
very appealing, at least in experimental sciences. What can be wrong 
if one has only enough data? It is simply the forecasting problem: Why 
should something which is correct in the limit, happen to be correct in 
the next instance?" (Stegmueller 1973, p.246). 

On the other side all these problems have been raised many times, 
but people don't seem to worry. They are happy with the results, else 
one cannot explain the heavy demand for statistical methods and advice. 

The theoretical unsolved problem how to justify the transition from a 
sequence of results to a single event is solved in practice daily. And 
it works, or at least seems to. Why? 

Maybe our theoretical tools are still inappropriate. Our state of 
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the art is a "proxy-solution" and we are still away from a right 
statistical language. E.g. 100 years ago differential calculus was in 
a similar position until the notion of limiting sequences has been made 
precise, which puzzeled mathematicians for decades. Therefore the only 
explanation for me how to justify asymptotic results is that practical 
results seem to justify the procedure, despite theoretical 
insuffi~iencies. If the results were useless, other methods will 
replace them pretty soon. 

Nevertheless by pointing out these insufficiencies we should 
encourage researchers to replace our present knowledge by better 
methods. 

4.1 Statistics: Normative (Prescriptive) or Descriptive? 

Is statistics a science which has for every data problem one and 
only one solution or are several ways possible? The general tendency 
to objectivity would certainly prefer the unique statistical data -> 
method mapping. I think this is also the underlying but never 
questioned assumption of todays developments of expert systems. They 
follow a classical principle: If we only think hard enough we will find 
a special question-answering system which lead us to a unique answer to 
a data problem. And of course, since it is the computer who gives the 
answer based on expert knowledge, this will be objective as well. 

This is another challenge to Bayesian statistics: Since the first 
working expert systems will be non-Bayesian, classical statistics will 
be perpetuated even more and longer. The demand for subjective 
judgement will be found obscure, since now 'the computer' tells all 
these results. 

But lets turn to the other problem. Suppose we don't agree that 
there is only one solution to a data problem. How different can 
solution be? I think that we are more often confronted with the latter 
case and we have to face the problem that if theory offers you a range 
of methods, people can choose their methods according to a utility 
function. But we should make clear that we can communicate results. 
This is also the rational behind the demand of Leamer et al. (1983) 
that the "reporting style" of empirical studies matters. If we cannot 
agree to a common statistical approach to solutions, we should at least 
try to propagate a common reporting style. 

But even inside a Bayesian framework we are often confronted with 
the problem: Shall we act normatively (= prescriptively) or 
descriptively? Is there only one likelihood function for a problem and 
only one prior, or do we have a choice between several likelihood 
functions and more priors? This leads to the problems of classical and 
Bayesian robustness. 

Robustness is another area of common interests in classical and 
Bayesian statistics, but hardly noticed. Bayesian robustness is a 
descriptive device. Given the knowledge that prior opinions can differ 
in a certain range, what can be said about the resulting class of 
posterior distributions? It has two advantages: it solves some aspects 
of the communication problem and it narrows the gap between too much 
subjectivity and heroic objectivity. Summarizing I think that a 
descriptive or robust Bayesian approach is a plus for the Bayesian 
position. It allows to explain why different persons can end up with 
different conclusions for the same data set, but allow you at the same 
time to point out where your position relative to others is. 
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5. THE SCOPE OF BAYESIAN STATISTICS 

There exists a frequent misunderstanding about the scope of 
Bayesian statistics. In- and outsiders usually overemphasize the 
inference aspect. E.g. Lindley (1986, p6) notes: "It is not true that 
'Bayesian theory concentrates on inference.' If it concentrates on 
anything, it is decision analysis and has often been unjustly accused 
of marketplace philosophy. It embraces all of the topics mentioned, 
including randomisation and experimental design. It is a way of 
'thinking about things'; it is relevant to everyone (Lindley 1985)." 

Unfortunately in econometrics it seems to be true that all 
Bayesian results concentrates on inference. While design of 
experiments was not a subject up to now, economic decision theory, 
which has an enjoyable subjective character, is a subject only in 
management science or economic utility theory. 

5.1 Personal or Main Frame Statistics? 

Personal statistics allows You to solve Your personal problems. 
You are the decison maker, You are faced with unknowns, You can update 
you information, nobody else is involved except some family member or 
good friends. 

Main frame statistics is concerned with your analysis and the rest 
of the world. The hostile environment forces you to make your analysis 
look good even in the worst circumstances. Therefore you share a main 
frame methodology with the rest of the world, which reduces 
communication to normed interfaces like 1% or 5% significances, 
accepted acronyms like BLUE, MMSE, UMPIU, BAN, etc. Personal judgments 
are considered as weakness in a frustrated scientific society looking 
for sublimed heroes. Objectivity can only be obtained if your personal 
involvement is minimized, but general acceptance in the storage of 
mainframe libraries is maximized. 

Consultancies may of course involve personal judgements, but these 
are personal rewards obtained by the licence of previous objective 
masterpieces. Therefore as an offspring of your objective knowledge it 
is of course feasable to get your advice in one single circumstance. 
But personal consulting doesn't mean that one has to elicit the clients 
needs and utitlities. They are of course happy to follow the latest 
state of the art in the subject, where you are the celebrated (and 
objective) representative. 

Can Bayesian methods be accepted in the memory of mainframe 
statistics? It turns out yes, to a certain degree. Recent progress of 
this kind has been made with econometric forecasts by Litterman (1986a) 
using smoothness priors. Smoothness priors are a special case of 
hierarchical priors, where many first stage parameters are "smoothed" 
into fewer hyperparameters which are assigned diffuse priors. So they 
are some kind of semi-objective priors, recently also called "of-the
shelf priors". 

Akaike (1986) also developed the notion of Bayesian Information 
Criteria (BIC or ABIC) which can viewed as an approach to model 
selection by some semi-objective priors: BIC can be obtained as 
limiting expression of posterior odds ratios for regression models (see 
Leamer 1978 or Zellner 1978). ABIC is an selection criterion based on 
type II likelihoods: Hyperparameters are estimated in such a way that 
the resulting prior has a minimum effect on the data (or likelihood). 
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A further example is the smoothness approach adopted for seasonal 
adjustement in BAYSEA (Akaike 1980). To be most flexible, there are in 
the first stage more parameters than observations, which are restricted 
by estimated hyperparameters. 

5.2 Prior Information Yes, But Not About Parameters 

It is interesting that the existence of prior information is 
usually accepted by objectivists, but they don't think that it is on 
the same level as the likelihood information. Classical prior 
information is of the 0/1 type, like the inclusion/exclusion 
restriction problems in the identification problem of simultaneous 
equation system. Parameters are the holy secrets of statistical 
inference, their holy nature cannot reveiled by mortals. Therefore 
they are not on the same level as error measurements. 

Up to now Bayesian statistics was concerned only with 
probabilistic prior information, should there also be a deterministic 
version? Following the principle "thinking about things" would 
partially imply this. Is Bayesian statistics a general language for 
empirical reasoning or just a probabilistic one? Research in this area 
of "metastatistics" has been scarce so far. 

6. THE LEAMER CLASSIFICATION 

Leamer (1978) has given a constructive review of the current state 
of econometrics by observing the discrepancy between deeds and talks of 
econometricians, even by the high priests in this discipline. He 
proposes a system of "metastatistics", called specification searches, 
based on Bayesian theory, and suggested a new search-type 
classification for econometric problems. This classification has not 
been challenged so far until recently, only a special application of 
the sensitivity analysis for variable selection problem in encompassing 
models has been disputed recently by McAleer et al.(1985). The 
econometric modeling process for nonexperimental d~ta is divided into 6 
searches: 

1) Hypothesis testing searches: How to choose a true model. 

2) Interpretative searches: Interprete multidimensional (regression) 
evidence. 

3) Simplification searches: How to construct a "fruitful model". 

4) Proxy searches: Find adequate substitutes for variables, which 
cannot be observed directly. 

5) Data-selection search: Select an appropriate data set. 

6) Postdata model construction: Improve an existing model 

In the following we try to fit recent advances in Bayesian 
econometrics into this framework. To start with the easy part: there 
had been no new suggestions for modeling nonexperimental data. Most 
people work in their educated schools, deserters are rare. 

Also there had been no new approaches to data instigated models 
and hypothesis searches. Posterior odds ratios are pushed heavily by 
Zellner (1984), but applications in econometrics seem to be rare. 
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Leamer (1978) and Zellner (1978) have shown that BIC can be obtained as 
limiting case for posterior odds in nested regression models, but 
except for time series it has not found any applications. AIC is more 
pursued by the "Japanese school of statistics" (Sakamoto et al. 1986), 
and is accepted rather by appiied statisticians than by 
econometricians. 

Most progress has been made in interpretative searches. Bayesian 
techniques for simultaneous equation systems have been elaborated by 
Dreze and Richard (1983), Richard (1984). Computational limits are 
given by the analytical intractability of posterior distributions, and 
Monte Carlo integration is seen as only alternative (K1oek and VanDijk 
1985, Stewart 1985, Smith 1986). But there are also Bayesian claims 
that 'Monte Carlo integration is fundamentally unsound' (O'Hagan 1986), 
mainly because on principal grounds that sampling theory is used 
without taking into account the available prior information. Also 
there is Lindley's argument that doing something analytically gives 
more insights, than simple reporting of numerical results. 

6.1 Importance Functions 

An increasingly important numerical integration technique, 
developed by Hammersley and Handscomb (1964), is the so-called 
"importance sampling method" which was first applied in econometrics by 
Kloek and VanDijk (1978). An importance function is a density function 
with the following two properties: 

1) It must be a good approximation for (the kernel) of a posterior 
density, and 
2) it must be possible to generate random numbers for that density 
easily. 

If such a function can be found, then the posterior moments can be 
calculated as a quotient of two sums. In a recent book Bauwens (1984, 
pp26) has compared 3 types of importance functions, called poly-t fixed 
condition (PTFC), poly-t drawn condition (PTDC), and po1y-t student ( 
PTST). Comparison of importance functions with respect to different 
econometric models led Bauwens to the following conclusion: "No 
importance function is uniformly more efficient; conversely PTDC is 
always least efficient" (p. 65). If initial checks are not 
satisfactory, Bauwens recommends to start with a student importance 
function, and then to switch to PTFC or to PTST; this assures "robust" 
bahaviour for unfavorable alternatives. 

As Stewart has pointed out, importance sampling is also preferable 
by comparing computing costs per analysis: 
Importance sampling: 2$ Sample from prior: 10-250$ 

6.2 Bayesian Robustness 

A further area of rapid development is Bayesian sensitivity 
analysis and Bayesian robustness. An excellent review is given by 
Berger (1984) in a special volume covering that topic edited by Kadane 
(1984). This is different from the classical robustness concept, which 
relies on ad hoc assumptions of influence functions. Smith (1983) 
showed that these can be derived by derivatives of proper posterior 
densities. Since Leamer's (1983) provocative article this version of 
Bayesian robustness analysis has become known as extreme bound analysis 
(EBA). An EBA analysis reports the set of all possible posterior 
means, if one specifys the conjugate normal prior distribution in a 
regression framework only partially. Given a fixed prior mean, but any 
positive definite prior covariance matrix, then the posterior mean is 
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constrained to lie in an ellipsoid. The projections of the ellipsoid 
onto the coordinate axis are the extreme bounds for every coefficient. 

If one can restrict the class of prior covariance matrices by an 
upper or an lower bound, then it can be shown that the ellipsoids 
shrink in size within the original feasible ellipsoid. This property 
of prior covariance restrictions arises almost naturally in a 
hierarchical (prior) framework. Polasek (1984,1986) has formulated 
this hierarchical approach for multivariate regression systems. Models 
which can be easily analysed by a hierarchical extreme bound analysis 
(HEBA) are seasonal distributed lag models (Polasek 1985) and 
multivariate regression systems with exchangeability properties. 

Such hierarchical or exchangeabilty assumptions can be often made 
for so-called 2-dimensional models. In Leamer's framework this problem 
is of the "data-selection search"-type, but the methods of inferences 
are related strongly to "interpretative" methods. Hierarchical models 
lead to 'shrinkage estimates', mainly in form of a matrix weighted 
average between prior and ML-location. Such set-ups can always be 
analysed by EBA or HEBA. Recently Poetzelberger (1986) developed a 
method which describes the set of posterior distributions by so-called 
high fiduciary (HiFi-) contours, or envelope curves of the union of HPD 
regions of size a . 

6.3 Local Sensitivity Analysis 

The local sensitivity concept has two applications in Bayesian 
statistics. First, it is a tool to find out if posterior results react 
sensitive to (prior) input parameters. Second, it can be used for 
Bayesian regression diagnostics, as e.g. in Polasek (1985) or Zellner 
and Moulton (1985). If a model specification is changed because of 
diagnostic warnings, then we are in the framework of data instigated 
models (Leamer 1978). A satisfactory treatment of the inference 
problem when samples are re-used still not available. 

Further methods belonging to the data-selection class are outlier 
identification (Petit and Smith 1984) and time varying parameters, like 
discount Bayesian modeling (West et al. 1985). All these areas are 
currently highly active research fields. 

6.4 Bounding the Influence of Proxies 

Research in this area has seen contributions from different fields 
in recent years. The results are interesting, but a homogeneous and 
practical useful general approach is not in sight. The underlying 
econometric problem, the error-in-variables problem, is "very deep and 
nontrivial" (Kalman 1982a) and challenges the present use of 
regression models. While Kalman (1982a) thinks that the whole 
statistical paradigm breaks down in the general case and has therefore 
to be replaced by a less 'prejudiced' method, like system-realisation 
theory, I think the robust Bayesian framework is flexible enough, to 
adjust also to this challenge: Even if the set of estimates and linear 
relations can be described easily, one has to make at some point a 
decison what model has to be used in a certain situation. Klepper and 
Leamer (1983) have shown how to attack the problem by Bayesian 
techniques. Krasker and Pratt (1986) and Kroch (1985) are working in 
similar areas. Causality analysis will get a different flavour if 
these methods will become practicable. But it will not solve the non
stationarity problem. Present pilot studies (by Kalman) show, that the 
set of functional relations react sensitive to inclusion of different 
data points. 
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7. CONCLUSIONS 

Stegmueller (1972, p76) notes: "In at least two respects 
statistics resembles philosophy. Firstly, numerous directions exist 
fighting against each other and declaring other ones as nonsense. 
Secondly, there is a strong tendency in both fields for thinking in 
schemes. In statistics as in philosophy this is realised in such a 
way, that questions which extends into different dimensions are treated 
as questions of one and only one type." 

Statistics is full of unsolved foundational issues, and 
econometrics shares a similar fate. If data are not informative enough 
(to convince strong prior view) then philosophical aspects matter. So 
I disagree with D. Lindley by claiming that Bayesian issues provoke 
philosphical issues. Econometric conferences are often a marketplace 
for philosophies, and I see the Stegmueller statement confirmed year by 
year. Since prior views by econometricians seems to be particularly 
strong, convergence and learning speed is slow. 

In theoretical terms, Bayesian econometrics is developing in about 
the same speed as the remaining statistical methods. But on the 
practical side I would like to see more convincing applications. 
Except for recent progresses in Bayesian forecasting, like West et al. 
(1985) or Litterman (1986) other successful applications are few. 
Simulations, asymptotics, test principles, time series and qualitative 
models dominate econometrics in a classical style. 

Another strong influencing fo~ce would be Bayesian econometric 
program packages. Except Leamer's SEARCH, Litterman's RATS, and 
Zellner's BRAP program, no 'canned' Bayesian econometric programs are 
on the market; big omnibus packages (SAS, SPSS, S) contain no Bayesian 
methods at all. While econometric estimation could be done by most 
other (Bayesian) packages as well, there is a psychological barrier. 
Econometricians have a tendency to a personal type of application, and 
therefore personal econometrics would help. In summary we need: More 
convincing examples and more Bayesian software! 

In general one has to admit, that Bayesian methods are more 
difficult to understand, need more tedious input requirements, like the 
elicitation of your prior, and takes often longer to compute. In 
business and economics, where 'time is money', this is a serious 
constraint. Most econometricians are only part time statisticians and 
are pressed to get often a quick answer. For such purposes classical 
statistics is more handy than Bayesian statistics. This side 
constraints will challenge the Bayesian 'thinkers about things' quite a 
long time, which will make a 21th century of Bayesian econometrics a 
long way to go. 
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HPD-REGIONS FOR THE LINEAR REGRESSION MODEL 

Klaus Potzelberger 

Technische Universitat Wien 
Wien, Austria 

INTRODUCTION 

In this paper we are concerned with the influence of the 

a-priori precision of e on the HPD-regions for the linear reg

ression model y = xe + E • For fixed a-priori mean the set of 

a-posteriori means of e has been examined in detail by Leamer 

and Chamberlain (1976) and Polasek (1984). It has been shown 

that this set forms an ellipsoid, the so-called feasible ellip

soid. 

HPD-regions give more information about the parameter e 

than the a-posteriori mean. We shall examine the union of all 

HPD-regions of fixed level a. This set may be viewed as a robust 

alternative for HPD-regions (if H stands for high, not highest). 

We shall show that this union is most often not much larger than 

the HPD-region with noninformative prior. We shall compute its 

Lebesgue measure and give a representation of its boundary. 

Surprisingly, it may have edges. 

First, some notation. The linear regression model is given 

by 

y = xe + E, (1) 

where y,E E Rr,e E Rn and X is a rxn matrix of full rank. 

A-priori, E and e are normally distributed, E with mean 0 and 

precision matrix P and e with mean b o and precision matrix E, 

so that the posterior distribution of e is N(b(E), E + X'PX), 

where E + X'PX is the posterior precision and b(E) is the poster

ior mean, given by 
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( 2) 

Throughout the paper we shall assume b o = 0, so that (2) reduces 

to 
b ( E ) = ( E + X I PX) -1 X I Py • ( 3 ) 

The closure of the set of posterior means is denoted by F, 

F closure { b (E) I E positive definite & symmetric}. (4) 

This set is the feasible ellipsoid mentioned above. For a E (0,1) 

na(E), the HPD-region of level a is characterized by 

PE(8 E na(E)) = a and PE(8 1) ~ PE(8 2) for 81 E na(E) and 

82 ~ na(E), where PE(8) denotes the posterior density of 8. A 

S ~ ° exists, such that 
n a (E) = { 8 I ( 8 - b ( E ) ) I (E + X I PX) (8 - b (E) ):;; S 2} • ( 5) 

This S is independent of E and given by S2 = X2 , where X2 
2 n,a n,a 

denotes the a-fractile of the X -distribution with n degrees 

of freedom. The closure of the union of all n (E) is denoted by a 

Ha = closure U n (E). 
E a 

(6) 

The dependence of F, H , n (E) on XlpX and XIPy is indicated by a a 
subscripts, if n~cessary. The boundary of one of these sets is 

denoted by a, such as aF. The Lebesgue measure of any Borel set 
A eRn is denoted by A(A) and the determinant of a matrix M by 

det(M) • 

REDUCTION OF THE PROBLEM 

To simplify the computations for Ha and A(Ha ), we transform 
the set H linearly. Let Yo = (1,0, ••• ,0)1, t = II(X'PX)-1/2x,pYJT1, 

U an orthogonal nxn matrix with u- 1yo = t(X'PX)-1/2x,Py and 

V = U(XlpX) 1/~ Then 

b(E) = (E + XIPX)-1xIPy = (E + XlpX)-1(X IPX) 1/2t-1u- 1yo 
= (tV)-1 (V , - 1EV- 1+ VI-1XIPXV-1)-1yo = (tV)-1(~ + I)-1 yo 
=: (tV)-1b(~), 

where ~ -1 -1 = VI EV. Additionally, we get 
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z E rl a , X ' PX , x ' Py ( E ) if f (z - b (E) ) , (E + X, PX) (z - b (E» ~ a 2 

iff (tVz - b(f» , (f + I) (tvz - 'b(f» ~ (at)2 

iff tvz E rl~ I(E), a,yo, 

where (at) 2 2 = x ,...". n,a We conclude 

tVFx'px,x'Py = FI,yo' 

ana 
tVH , , = H~ 

a,X PX,X Py a,I,yo -1 
A (H X'PX X'P ) = A (H~ I )det(tV). a., , Y IlL, ,':10 

( 7) 

(8) 

(9) 

Robustness is a conditional feature, depending on the data. Note 

that H~ I depends on X,P and y only through a. a, ,Yo 

GEOMETRY OF Ha 

Prior distributions can hardly ever be quantified exactly. 

Therefore it is important to know how sensitive the posterior 

distribution is about changes of the prior. If no prior infor

mation is available, the use of noninformative priors is indi
cated. There is no agreement what prior is noninformative. 

Beside this fact non informative priors are informative, they are 

chosen with the intention to give maximum weight to the data and 

minimum weight to the prior, for instance. If dime = 1, it may 

happen that Ha = rla(O) (rla(O) is the HPD-region for the non
informative prior). Thus rla(O) is the largest HPD-region, not 

only in terms of its Lebesgue measure. It contains all others. 

If a fixed vector z does not belong to the HPD-region, when no 
prior information is available, it does not, if prior information 
is at hand. If dime ~ 2, this will never happen. A certain vector 
z may belong to some HPD-region (with informative prior), but not 
to that with noninformative prior and not to that with highly 

informative prior. 

We shall now describe the geometrical features of H • Let 

for n ~ 2 

( 10) 

Lemma 1.Let X'PX = I, X'Py = Yo, w E Wand define a set S(w) to 

be the closure of {s E R I 3E: b(E) = sw}. Then 

2 S (w) = [0,1/ I/WII ]. ( 11) 
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Proof: It is easy to see that S(w) is an interval with 0 E S(w). 

If s E S(w), then b(L) = (L + I)-l yo = sw implies Yo = (L + I)sw, 

so that 1 = wlyo = SWI (L + I)w ~ SIlWI/2, showing S(w) ~ [0,1//1w,,2]. 

To prove the lemma, we have to show that precision matrices Lk 

exist with b(Lk ) -+ (1/I1wU2)w. Let Lk = (k + 1/k)I - (k/llwU2)ww , • 

Then b(Lk ) = k/(k2+k+1)Yo + (k/(k+1)-k/(k 2+k+1»//lwU 2w and 

b (L k ) -+ (1 I I/w 112) w. 

corollar~.If Xlpx = I, XIPy = Yo, then aF, the boundary of F, is 

given by 

a F { ( 1 I J/w ,,2 ) w I w E W } U {O} 

= {z I 1/ z - O. 5y 0 II = 0.5 }. ( 12) 

Lemma 2.Let XlpX = I, XIPy = Yo. If z E aH , then a sequence of a 
precision matrices (L k ), abE F and a $ E ~ exist, such that 

and 

b(Lk ) -+ b, 

(z - b(Lk » I (L k + I)(z - b(Lk » -+ (32 

b = $z. 

Proof: If z E aH , then for all preC1S10n matrices L, 

( 13) 

(14 ) 

(15) 

a 2 
(z - b(L» I (L + I) (z - b(L» ~ (3 holds. A sequence (L k ) exists, 

such that (14) holds. (b(Lk » is a sequence of vectors in F, a 

compact subset of ~n. By passing to a subsequence, if necessary, 

we can assume that (13) holds for abE F. We shall show that 
(15) holds for this b and a $ E R. 

Suppose, this is not true. A u E ~n exists, such that 

lIull = 1, ulz = 0 and u'b f O. Let 0 < h < 1 and define ~k by 

~k = Lk + huu ' • We have u'b(~k) = u'b(Lk ) - hu ' (L k + I)uu'b(Lk ) 

and (32 ~ (z - b(~k» I (~k +I)(z - b(~k» = -hu'b(~k)u'b(Lk) 
+ (z - b (L k ) ) I (L k + I) (z - b (L k » = 

2 -1 
= -h(u'b(Lk » (1 - hu'O::k + I) u) +(z - b(Lk»I(Lk + I) (Z-b(Lk » 
Then (14) implies 0 ~ lim (-h(u ' b(Lk »2(1 - h U'(Lk + I)-lu» 

~ (u ' b)2(-1 + hu'u) < 0, a contradiction. 

Lemma 3. Let XlpX = I, XIPy = Yo and z E aHa. If a sequence (L k ) 
of precision matrices satisfies (14) and if b(Lk ) -+ 0, then 

Yo and z are orthogonal (YoIZ = 0). 
Proof. Orthogonal matrices Uk and positive diagonal matrices 

Dk = diag(d~~~ .• ,d~k» exist, such that Lk = UkDkUk • We may 

assume that Uk -+ V for an orthogonal matrix V. Let VYo = v and 

Vz = u (v = (vl' ••• ,vn ) I, u = (u 1 ' ••• ,un) I). We have to show that 
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u'v = o. b (L k ) -+ 0 implies IIUk (Df + I) -1 UkYo II = II(Dk + I) -1UkYoJI 

-+ 0, so that v~ ~ 0 implies d~k -+ m (for k -+ m). (14) implies 
... ~ 2 

z, (Lk + I)z - 2y~z + bILk) 'Yo -+ 8 , so that a constant C exists 

with z, (L k + I) z ~ C. (Ukz)' (Dk + I) (Ukz) ~ C means 

limksup (dlk ) + 1) u~ < m for 1 ~ i ~ n, which gives dlk ) f m if 

u~ ~ 0, so that u. ~ 0 implies d~k) f m, which again implies ... ~ ~ 

vi = O. Thus u'v = O. 

Theorem. Let X'PX = I, X'Py = Yo, 8 = (2 ) 1/2 ~ 1 • Xn,a 
Then aHa = closure of aH+ u aH-, where a a 

aH+ { + = y (w)w a w E W } , (16 ) 

aH~ = { -y (w)w I w E W}, ( 17) 

+ y (w) 1/lIwU2 + 8'/ uwll (18 ) 

and 2 
- 8/lIwll if 2 ~ 8 or 2/8 ~ IIwl/ y-(w) = f/ llwlI 

-8 2/4 else. ( 19) 

Proof: Let z E aH , w E W, r E R with z = rw. We shall show that 
+ 0._ 

r = y (w) or r = y (w) holds. If z and Yo are not orthogonal, 

then such rand w exist. Furthermore, we can find a sequence 

(L k ), a vector b E F and a $ E R, such that in addition to (13), 

(14) and (15) $ ~ 0 holds. Let 1jJ = 1/$, so that z = 1jJb. (14) 

implies (1jJ - 1) 2 = l~m 82/b (L k ) '(Lk + I) b (L k ) = l~m 82/y ~ (L k+I)-1yo , 
+ -1 -1/2 which gives 1 - 8(Y~(L~ + I) Yo) -+ 1jJ, so that 

z = l~m (1 ± 8(Y~(Lk + 1)- yo)-1/2)b(Lk ). We have r = ry~w = y~z 
= l~m (1 ± 8(Y~(L~ + I)-1Yo)-1/2)Y~(Lk + I)-1 yo = 

= l~m (Pk ± 8Pk1/ ) with Pk = y~(Lk + I)-1 yo • Note that 

Pk = y~b(Lk)· If z ~ aHa' then 

r = sup { p + 8p1/2 3S+ E IR, L : p = y~b(L) and z = S+b{L)} 

(20) 

or r = inf { p - 8p1/2 3s E IR,L: p = y~b(L) and z S-b(L)} 

(21) 
which means that r = sup { P +8p1/2 I p E S(w) } or 

r = inf { p - 8p1/2 I p E S(w)}. Lemma 1 tells us that 

sup { p + 8p1/2 I p E S(w) } = 1/lIw1l2 + 8/lIwll, which is y+(w). 

To compute (21), we note that inf { p - 8p1/2 I p E S(w)} = 
= - 82/4, if 82/4 E S(w), and 1/lIw1l2 - 8/lIw!l, if 82/4 ,. S(w). 
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13 2/4 E S(w) is equivalent to IIwll~ 2/13. This and IIwll;;: 1 implies 

that in the case of (21), r = y-(w). 

Remark. (a) If 1 ~ 13 < 2, the set { y-(w)w I wE W, "wI! = 2/13 } 

= { -(f3 2/4)w I w E W, /lw/l = 2/S } is an "edge". 

(b) For z = ( z 1 ' ••• , zn)' E IRn let 

PF (z) 
2 2 (22) = z1 + ... + Z - Z 1 ' 

2 2 n 
13 2 , = + ... + Z - (23 ) Pn (z) z1 + 1 -2z 1 

2 n 2 13 2).(24) PH(z) z2 2 2 -2z = + (z1 + ... + zn) (z1 + . .. + zn -1 1 

If S ;;: 2, then 

and 

SIZE OF Ho, 

= { Z I 
{ Z I 

= { Z I 

PF(Z) 

Pn(z) = 
PH (z) = 

o }, 
o } 
o }. 

In this section we shall compute A(H ), the Lebesgue 
0, 

(25) 

(26) 

(27) 

measure of H , for the case 13 ;;: 2. Let X'PX = I, X'Py = Yo, 
13 = (X~,a) 1/~ ;;: 2 and fa = A(Ha ). Then 

+ 
fa = fl wny+(w)n- 1tt (w) I dw2 ···dwn 

+ JIWny-(W)n-1~~:(W) I 

Partial integration gives 

dw 2 ••• dw • . n (28) 

Lemma 4.For n ;;: 2 we define I(s,n) by I(s,n) = JllwU-2S dw 2 ".dwn • 

If I ( s) = I (s , 2), then I (1) = 1T, I ( 3/2) = 2, 

I(s+1) = (1 - 1/2s)I(s) and for n ;;: 3 

n-2 
I (s,n) = II I (s-i/2) • 

i=O 

Useful expressions for fare: a 

f = ~ ~ (~) 
a n 1<=0 

n-k S I«n+k)/2,n), 

k f 2IN o 
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n 
~ 

k=O 

n-k n-2 
(3 II I ( (n+k+i) /2) • (32) 

i=O 

To compare fa and A(na(O)), the Lebesgue measure of the HPD

region in the noninformative case, we have computed fa and 

A(na(O)) for n = 2, 3, 4. For large (3, fa and A(na(O) do not 

differ much. 

Table 1. f and A(n (0)) a a 

n f A(na(O)) a 

2 1T((32 + 1) 
2 

1T(32 

3 41T((33 + (3) 
41T(33 

3 -3-

2 3(32 1 1T2(34 
4 .'!!. ( (3 4 

2 +""2 + 8) -2-

Table 2. f and A (n (0)) for a 0.95 a a 
and for (3 = 2 

n a (3 f A(na(O)) a 

2 0.87 2.00 14.14 12.57 

0.95 2.45 20.43 18.86 

3 0.74 2.00 41.89 33.51 
0.95 2.80 103.68 91.95 

4 0.20 2.00 109.18 78.96 

0.95 3.08 514.93 444.09 
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A VERY GENERAL DE FINETTI-TYPE THEOREM 

INTRODUCTION 

Paul Ressel 

Math.-Geogr. Fakultat 
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8078 Eichstatt, W. Germany 

A few years ago it turned out that De Finetti's famous theorem 
concerning exchangeable 0 - 1 valued random variables can also be proved 
by harmoni~ analysis means, applied to the special semigroup 
{(k,n) EIDoik ~ n}. This is no pure coincidence; a careful inspection 
of the new proof revealed that many other De Finetti-type theorems, old 
and new ones, could be shown the same way, among them Schoenberg's 
representation of spherically symmetric random sequences, Hewitt and 
Savage's far-reaching generalisation of De Finetti's original result, 
and numerous characterisations of mixtures of i.i.d.-sequences with 
concrete prescribed distributions. 

So far we only considered countable infinite random sequences. More 
recently, some interesting results concerning mixtures of stochastic 
processes could be proved, among them characterizations of mixtures of 
Brownian motions, Brownian bridges and Poisson processes. It was tempting 
to look for one general De Finetti-type theorem from which all above 
mentioned results would follow straightforwardly. Finally this goal 
is achieved now, and De Finetti's invention turns out to be the prototype 
of a powerful integral representation theorem in commutative harmonic 
analysis. 

Starting with the classical result we will extend it in three 
steps, providing detailed proofs that each time a proper generalization 
is obtained. 

DE FINETTI'S THEOREM 

In 1931 De Finetti proved the following result: 

Let X = (X1,X2, ..• ) be an infinite sequenae of {O,1}-

vaLued ~andom variabLes whiah is exahangeabLe in the sense that 
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holds fo!' aU n E]N. x. E {0.1} and aU pemutations 1T of 
~ 

{l •...• n} • Then the!'e is a unique p!'Obabi~ity measU!'e ~ on 
[0.1] such that 

1 LX. n-Lx. 
P(X1 = xl ... · 'Xn = xn) = ~ P ~(l-p) ~ dll(p) 

o!'~ equiva~entLy~ V(X) = fl B(l,p)~ d~(p); in othe!' ~0!'d8: 
o 

X is a unique mixtU!'e of coin tossing p!'Ocesses. 

Condition (*) may be reformulated this way: 

n 
= qJ( E 

i=l 

n 

n 
= cp (E x.) = 

n i=l ~ 

(x .• l» = qJ( E v(x.» 
~ i=l ~ 

n 
cp( E 

i=l 
x •• n) 
~ 

with v(x) := (x,l), 

subsemigroup of ]N2 
o 

qJ being defined on S:= {(k.n)!E:N2 k;;; n}. the 
o 

generated by v({O.l}) = {(0.1).(1.1)}. and De 

Finetti's result shows qJ to have the form 

Le. 

1 
qJ(k.n) = f pk(l_p)n-k d~(p). 

o 
k n-k qJ is a mixture of the functions p (k.n):= p (l-p) • and 

p 
these p 's are characters on S. that is they are multiplicative. 

p 

k n-k An arbitrary character p on S has the form p(k.n) = u v • 

u.v E~. so that S*. the set of all characters, can be 

R2; the non-negative characters S: then correspond to 

bounded characters S may be identified with [-1.1]2. 

identified with 

:&2 and the 
+' 

Note that only the "small" part W. - {( u. v) E S I u + v = 1} enters 

in the above representation of qJ. 
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A FIRST EXTENSION 

v 

r--- --1 -----, 
I 
I 
I 
I 

I 
I 
I 
I 
I 

-_-1~----------4---------~~--U 

I 
L' _____ -1 

I 
I 

____ -1 

where S = {(k,n)} E:JN2 1k ~ n} 
o 

Let X be an at most countable set, S an abelian semigroup, 

v : X --+ S a mapping such that v(X) generates S, abbreviated, 

S = $(v(X». 

Theorem 1. A ppobabiLity measupe P E M!(X~) has the ppopepty 

n 
P(x1, ... ,x) = ~(E v(x.» 

n j=1 J 

fop aLL n E:JN, x1 , ••• ,xn E X if and onLy if the function ~ has the 
(unique) peppesentation 

~(s) = f p(s) d~(p) 
w 

whepe ~ is a ppobabiLity measupe on 

EquivaLentLy: P = fw K; d~(p) with 

W := {p E s+1 E p(v(x» = 
xEX 

K ({x}) := p(v(x». 
p 

1}. 

405 



Example 1. 

Example 2. 

Example 3. 

De Finetti's theorem. 

n n 
X =lli , P(x1 , .•• ,x ) = ~ (E x.) = ~(E (xi ,l», 

o n n i=l ~ i=l 

S = $(v(X» = $ON x {l}) = ON x lli) U {(O,O)}. 
* 0 0 k n 

pES - 3 u,v E JR : p(k,n) = u v 

pEW - u,v ~ 0 

- u E [O,l[ 

co k 
and Ek=O u v = 1 

and v = 1-u . 

Hence geometrically distributed i.i.d.-sequences are the 

extreme points in the integral representation of P . 

X =lli, P(x1 , ... ,x) = ~ (max xi) = ~(*(x.,l» 
n n l~i~n ~ 

[with t(xi,x.) := (max x., E y.)] 
2 1. ~ ~ 

S = lli U {(l,O)} c ON,v) x ON ,+) 
- 0 * "- n pES - 3 J Elli, v EJR : p(k,n) = 1{1 "}(k)v 

pEW - v ~ 0 and E~=l p(k,l) = 1 
, ••. ,J 

_ j < co and v= l/j. 

Hence i.i.d.-sequences with a unifo~ distribution on one 

of the discrete intervals {l, ... ,j}, j Elli, are the 

extreme solutions. 

A SECOND EXTEN8ION 

(8,+,*) is a *-semigroup if (8,+) is a semigroup and *: 8 --+ 8 

fulfills (s + t)* = s* + t*, s** = s. We always assume that 8 is 

abelian and contains a neutral element O. 

A character p on S is then by definition a function p 8 ~ ~ 

such that 

(1) 

(2) 

(3) 

p(s + t) = p(s) p(t) 

p(s*) = p(s) 

p(O) = 1 

If * = id, then all characters are real-valued. Any abelian group is 

* f. ex. a .-semigroup if we put s .- -so Another example is 

(8,+,*) := (~,.,-). 
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A function ~ S --- ~ is positive definite iff 

V n E~, c. E ~, s. E S . Let P(S) denote the set of all positive 
J J 

definite functions on S; then S* c P(S) because 
- * 2- * ~ c. c~ p(s. + s~) = I~ c. p(s.)( ~ 0 for pES 

]J\] J\ ]] 

(i) 

(ii) 

We note the following fundamental result: 

If ~ E P(S) is bounded then 3! IJ. E ]0\+(5) urith 
~(s) = J p(s) dlJ.(p) , s E S. (Lindahl and Maserick, 1971) 

Let us list a few examples: 

S =~ , S* = {n- xnlx ElR} "'lR , S '" [-1,1]. Bounded positive 
o 

definite functions on ~ are moment functions on [-1,1] 
o 

S = lR , S* "not known", S = {s 1--+ e- AS 10 :;; >.. :;; oo}, where 
_00. s + 

e := l{O}(s). Bounded positive definite functions on lR+ are 

the "usual Laplace transforms". 

(iii) If S is a (discrete) abelian group, then S* = S is the usual 

dual group; the above characterization reduces to Bochner's theorem. 

Let (X,B) denote a measureable space and let F be a set of 

complex-valued measurable functions on X, bounded by 1, stable under 

mUltiplication as well as conjugation, and containing the constant 1 

(in other words, F is itself a *-semigroup w.r. to pointwise mUltipli

cation and conjugation). 

Let (Q,A,p) be a probability space and ~, ~, .•• : Q - X a 

sequence of random variables. Let S be another *-semigroup and 

v : F- S a mapping such that v(l) = 0, va) = (v(f»* v f E F 

and S = $(v(F»). 

Theorem 2. If E(rrj=l fj 0 Xj ) only depends on ~j=l V(fj)~ i.e. 
E(rr~ 1 f. 0 X.) = ~(L:~ 1 v(f.» where ~: S - ~ is some function. 

J= J J J= J ' 
then ~ is positive definite (and automatically bounded)~ and in fact 
a mixture of those pES for which p 0 v E P(F). 
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Both Theorem 1 and (a slightly different version of) Theorem 2 have 

been proved in Ressel (1985). Before giving some examples we shall show 

how to get Theorem 1 from Theorem 2: put F:= {1{x}lx E X} U {0,1}, en

large the semigroup S from Theorem 1 by an absorbing eZement ~, i.e. 

consider T := S U {~} together with the rules s + ~ = ~ + s = ~ + ~ = ~ 

for all s E S ; extend v: X - S to w : F - T by 

w(1{x}) := v(x), w(O).- ~ and w(1) .- 0, and finally extend ~ to 

T by ~(~) := 0 . The assumption P(x1, •.• ,x) = ~(E v(x.» then n ~ 
n translates into E(ITj =1 fj 0 ~ ~ = ~O: w(fj ». By Theorem 2 the extended 

~ is a mixture of those • E T for which • 0 w E P(F). It is easy to 

see that a function g F -~ is positive definite iff g(f) ~ g(O) ~ 0 
A 

for all f E F . If ~ is the measure on T representing ~ then 

o = ~(~) = f .(~) d~(')' so .(~) = 0 for all • E supp(~). Therefore 

~ concentrates on those • for which TOW ~ .( w (0» = T( ~) = 0; such 

• may be identified with its restriction p to S, hence ~ may be 
A 

considered as a measure on S+' Since 

= f[ E p(v(x»]n d~(p) 
xEX 

A 

for n = 1,2, •.. , we see that indeed ~ is carried by those p E S+ 

for which ExEX p(v(x» = 1. 

Example 4. Let X =~, F = {eit . It E~} the group of complex exponentials, 

v(eit .) := t 2, S = ~ . Then E(IT~ 1 eitj'Xj) = E(ei<t,x» = 
+ J= 

~O:I? 1 t~) = ~(" t It) for some <p on lR means that 
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F J + 
X = (X1,X2, ... ) is spherically symmetric. From Theorem 3 we 

get ~(x) = ~ e- As d~(A) for some probability measure ~ on 

~+ ' translating into E(ei<t,X» = f e -A.1lt1l2 d~(A.) for all 

t = (t1.t2 •... ) with only finitely many tj * O. and thus 

V(X) = f~ N(0,2A.)~ d~(A.), i.e. X is a variance mixture of 

centred normal i.i.d.-sequences. In some disguise this result 

goes back to Schoenberg (1938). 

We may replace the function t 2 here by ItI P• 0 < P < ~. 
Then if p ~ 2 we get symmetric stable distributions instead 

of centred normal ones. whereas for p > 2 only the trivial 

solution X:: 0 exists, since for no A. > 0 the function 

exp(-A.ltI P) is positive definite on ~ . 



Example 5. Let X and F be as before but let now v(t) = (t,t2). If 

X = (X1,X2, •.• ) is a sequence of real-valued random variables 
i<t x> 2 such that E(e ' ) = ~(E t., E t.) then there is a unique 

] ] 
~ E M!OR x~+) with ~(u,v) = f exp(i u a - Av) d~(a,A), i.e. 

V(X) = f N(a,2A)~ d~(a,A). See Ressel (1985), pp. 916-918 for 

the technical details. The semigroup S is in this case 

OR x ]O,~[) U {(O,O)} with the involution (x,y)* = (-x,y). 

Example 6. Let X =~+' F = {1[ [Ia ~ o}, v(l[ [) = a, S =~ . If 
a,~ a,~ + 

X = (X1'X2' ... ) is a sequence of non-negative random variables 

such that E(TI~ 1 1[ [0 X.) = P(X. ~ a., j = 1, ... ,n) = 
n J = a i ,'" J -As J J 

~(Ej=l aj ) then ~(S7 = f[o,~] e d~(A) for some probability 

measure ~ on [O,~], or V(X) = f[o,~] €~ d~(A) where €A 

denotes the exponential distribution with parameter A (€~ is 

the Dirac measure in 0). 

Example 7. Let X be any compact Hausdorff space and F the semigroup 

of all [O,l]-valued continuous functions on X. Let further 

Q = X~ and denote by XI,X2, .•• the canonical projections on 

Q If P E ~(Q) is exchangeable the expectation 

E(TIj=l fj 0 Xj ) can be written as ~(Ej=l Of.) with Of the 
(F) J 

Dirac meas ure in f, i. e. 0 f E S : = IN 0 ' the free abelian 

semigroup over F. With a little extra work (Ressel (1985), 

pp. 904 / 905) we get the theorem of Hewitt and Savage (1955), 

namely the unique representation P = f Koo d~(K) of P as a 

mixture of product measures, where ~ E M!<M!<X». 

THE THIRD EXTENSION 

Let A be a nonempty set, S a *-semigroup. An S-valued kernel 

~ : A x A --+ S will be called aZmost additive iff given {sl""'s }cS, n-
ix1, ••• ,x } C A and N ElN there exist {x. Ij:> n,p:> m, a:>N} c A 

m - Jpa-
such that 

= s. + sk* + ~(x ,x ) 
J P q 

for (j,p,a) * (k,q,T) . 
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ThQODQrn 3. Lat w: A x A ~ g ba almoot additiv~ and ~ ~ ~ --4 ID b~ 

bounded. Then ~ 0 ~ is a positive definite ke~eZ iff ~ is a positive 
definite function and in faat a mixture of those pES for whiah p 0 ~ 

is positive definite. 

Before looking to some applications we'll show how to derive 

Theorem 2 from Theorem 3 (the proof of the latter is given in Ressel, 1986). 

Put A:= F(~) = {f = (f1 ,f2 , ••• ) If. E F, f. = 1 for all but finitely 
- l l 

many i} and define ~: A x A -S by ~(i,_g) .- E v(f.g.). Then 
l l 

i.e. ~'o ~ is a positive definite kernel. We'll see that ~ is 

almost additive: let sl, ••. ,sn E S, i(l), ..• ,i(m) E A, then fip ) = 1 

for all i > I and all p ~ m, if I E~ is suitably chosen. We have 

s· = E~ v(f. 0) with f. 0 E F by assumption. Given N E ~ define 
] -l.=1 ],-l. ],-l. 

f(jpo) E A by 

f~P) , i = 1, ... ,I 
l 

f f i running through N. j ,1' ... , j, L ' ] po 
1 else 

with pairwise disjoint subsets N. 0 c~, {l, ••. ,I} of cardinality 
JP -

IN. 01= L(j ~ n,p ~ m,O ~ N). For (j,p,o) * (k,q,T) we get ~(!(jpcr», 
JP 

!(kqT» = ~(lp) ,i(q» + Sj + s: ' Le. ~ "is indeed almost additive. 

By Theorem 3 ~ is a mixture of those pES for which p 0 ~ is positive 

definite. Since P(~(f,g» = p(L v(f.g.» = IT P(v(f.g.», using Schur's 
-- II II 

lemma, this property is equivalent with positive definiteness of p 0 v 

We shall now describe some applications of Theorem 3 to stochastic 

processes. Let T be an infinite (time-)set and consider a stochastic 

process X = (Xt,t E t) indexed by T. The distribution P = V(X) is 

then a (Baire-) probability measure on ~T , and is determined by all its 

finite dimensional marginals. The aharaateristia funationaZ P of P 

may be defined on MoHT), the vector space of all real-valued "molecular" 

measures on T (i.e. measures with finite support) by 

P(v) := E{exp[i f Xt dv(t)]} ,v E MoHT) 
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and evidently determines p. i.e. P = Q iff P = Q . 

If f.ex. X is a centred gaussian process with covariance K(s.t) = 
E(XsXt ). then f Xt dv(t) is a normal r.v. with mean 0 and variance 

f f K(s.t) dv(s) dv(t). whence 

p(v) = exp(-~ f K dv 181 v) , v E Mol(T). 

If PA denotes the law of the centred gaussian process with covariance 

A.K, A ~ 0, then a mixture 

00 

• where 

will have the characteristic functional 

00 00 

F(V) = f FA (v) d].l(A) = f exp(-~ f K dv 181 v) d].l(A) 
o 0 

depending only via the "quadratic form" f K d\l 181 \I on v. 

It turns out that this is a characteristic property of such mixtures 

if we impose on K the natural (and evidently necessary) condition to be 

"non-degenerate" in the sense that for any n E IN there exist t l' ••• , tn ET 

such that the matrix (K(t.,tk». k/ is non-singular. (Equivalently: 
] ], ;"n 

the RKHS of K is infinite dimensional.) 

Theorem 4. Let P E ~ORT) be a pT'obabiUty measU2'e whose chaT'acteT'istic 

functional- onl-y depends on f K dV 9 \I, K denoting a non-degeneT'ate 
positive definite ker-nel on T x T(T =1= ~). Then P is a "scale mixtuI'e" 
of centT'ed gaussian pT'ocesses with covaT'iances lI,·K, lI, ~ 0 • 

Example 8. T = lR+, K(s,t) = sAt 

If X = (xt,t ~ 0) is a process whose characteristic 

functional depends on f sAt dv( s) d\l( t) then X is a 

mixture of centred Brownian motions. 

Example 9. T = [0,1], K(s,t) := SAt - s·t 

If X = (Xt,O ~ t ~ 1) is a process whose characteristic 

functional depends on f (s A t - st) d\l( s) d\l( t) then X is 

a mixture of centred Brownian bridges. 
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With some extra effort the following can be shown: 

Examples 8' ,9'. Let X = (Xt't ~ 0), resp. (\,0 ::; t ::; 1) be a process 

whose characteristic functional depends on f t dV(t) and 

f sAt dV(s) dV(t), resp. f t dV(t) and f (s A t - s . t) 

dV(s) dv(t). Then X is a unique "scale/ddft"-mixture 

of Brownian motions resp. bridges, or: 

where Y is a real, V a non-negative r.v., Z is standard 

Brownian motion resp. bridge, and (Y,V) is independent of Z 

Out last application concerns Poisson processes and related random 

measures. Let X be locally compact (second countable) with a fixed 

reference measure V E M+(X) of infinite mass, f.ex. X =Rn and V the 

Lebesgue measure. Let b : R+ --+ R+ be any non-trivial Bernstein 
. n (n+1) function (i.e. b is cont~nuous, b(O) = 0, (-1) b (x) ~ 0 for 

n = 0,1,2, ••• ,x > 0). An important example is given by b(s) = 1 - e-s • 

A random measure on X is by definition a probability measure P 

on M+ (X), and its Lap£.ace. iuncUona! P is defined on C~(X) by 

P(f) := f exp(-f f dK) dP(K) • 

For example the Poisson process with intensity measure V has the Laplace 

functional exp[-f(1-e-f )dv]. Likewise for any Bernstein function b 

there is a corresponding Laplace functional exp(-J b 0 f dv) whose 

underlying random measure Pb is characterized in the following way: 

denoting ~B(K) := K(B) the random mass given to a bounded Borel 
1 subset B eX, and letting (TA)A~O = M+OR+) be the convolution semigroup 

determined by b - i.e. exp(-Ab) is the Laplace transform of LA for 

all l ~ 0 - we have 

ii) ~B ""'~B are independent for pairwise disjoint B1,···,Bn • 
1 n 
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Theorem 5. Let P be a random measUl'e whose LapLace funationaL depends 

onLy on f b 0 f dv. Then P is a unique scaLe mixtUl'e of the underLying 

Pb" i.e. P = f~ P).b d)l(A) for some unique probabiLity )l on :R+ • 

For the proofs of Theorems 4 and 5 we again refer to Ressel (1986). 
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A BAYESIAN APPROACH TO ESTIMATING THE PARAMETERS 

OF A HYDROLOGICAL FORECASTING SYSTEM 

SUMMARY 

Sylvia Schnatter, Dieter Gutknecht and Robert Kirnbauer 

Institut fur Hydraulik, Gewasserkunde und Wasserwirtschaft 
Technische Universitat Wien 
Vienna, Austria 

In this paper certain aspects of estimating model parameters in hydro
logical short term forecasting are dealt with. In estimating parameters of 
hydrological flood routing models difficulties arise when the input-output 
relationship of the model is affected by violations of the mass condition. In 
this paper an estimation procedure is presented which can handle this problem. 
The procedure is based upon a Bayesian algorithm for recursive estimation of 
the parameters of a dynamic linear model. The unknown volume increase is 
dealt with a volume correction coefficient which is estimated using the 
Kalman Filter. Finally, an application of the model to a real world example 
is given. 

HYDROLOGICAL SHORT TERM FORECASTING 

Hydrological short term forecasting is applied to predict the future 
runoff in a river system some hours or days ahead. Forecasting models are 
frequently based upon rainfall-runoff models and flood routing models. 

Flood Routing Models 

Flood routing models describe how an inflow is transformed into an ~ut
flow by flowiRg through a river reach. The relationship between inflow q (t) 
and outflow q (t) is based upon a time independent and linear (in the system 
theoretical sense) impulse response function h(,): 

00 

qA(t) = .fh(') • qZ(t_,)d, 
o 

(1) 

Nash (1958) was the first to introduce a gamma probability density function 
for h(,): 

_-"-_ 0:-1 -,/13 , e (2) 

whose parameters 0: and 13 have an interesting hydrological meaning: the para
meters' product tL = 0:.8 is the mean travel time of the flood wave between 
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inflow and outflow section of the river reach. As tL can be associated with 
hydraulic properties of the river bed, prior information about the range of 
tL is available. 

Model (1) is based upon two main assumptions: 
- Firstly, the assumption of constant mass, meaning that inflow and outflow 

volumes have the same amount. This assumption is often violated especially 
if there are unknown inflows from small tributaries to the main stretch. 

- Secondly, the assumption, that the transformation does not depend upon 
time (time invariance) and upon inflow (linearity). In case of inundation 
this assumption might be invalid. In order to compensate for this effect a 
second transfer function model of type (1) is introduced (see formula(16)). 

A DYNAMIC LINEAR MODEL FOR HYDROLOGICAL SHORT TERM FORECASTING 

As the assumption of constant mass normally is violated, the fore
casting model has to estimate the actual increase of volume. In the model 
proposed this is done by updating a coefficient ck of volume increase in a 
one-dimensional state space formulation: 

system equation: 

A observation equation: qk 

wk - 1 '" N(O,Q) 
(3a) 

where q~ is the runoff observed at the end of the reach at time tk and Hk 
is the runoff at this point assuming that the condition of constant mass is 
valid: 

00 

~= Jh(T,a.,S) 
o 

z 
q (tk-T)dT (3b) 

For hydrological reasons ~ will depend upon the current runoff rate: 

(4) 

Therefore system (3a) has to be modified to a conditionally gaussian sequence: 

system equation: wk _1 '" N(O,Q) 

* 
(5) 

vk '" N(O,l) 

It can be sh~~ (Liptser and Shirayayev(1977)) that the conditional distri
bution p(cklq , ) is Gaussian: 

I A k .... 
p(ck q , ) '" N(ck,Pk ) 

A,k I 1 Troughout the paper q will denote the entire sequence of va ues from 
up to k: 

A,k 
q ( A,k-l A) 

q ,qk 

Liptser and Shirayayev(1977) give a closed system of recursive equations for 
ek and ~k: 

(6) 
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(Pk - 1 + Q) 

(Pk - 1 + Q) 

The application of (5) and (6) to real world problems requires 
- knowledge of the initial distribution of ck 
- knowledge of the statistical properties of the error terms, i.e. the 

values of Q and d 
- knowledge of the values of the parameters a and 6 in (3b) 

The initial value Co was choosen to be assuming no volume increase at 
starting time. The variance Po can be set to any plausible number since it 
turns out that the final result is insensitive to the choice of Po. 

Reasonable values of Q and d were derived by simulation stud~es. 
Choosing certain quantities d and Q runoff hydrographs were generated by 
(5). By judging the hydrological plausibility of the computed outflow hydro
graphs values of d about 0.01 and of Q about (0.01)2 or (0.02)2 were found to 
suite quite well. 

Knowledge of a and 6 is rather fuzzy: as mentioned above information 
concerning the range of tL = a.6 could be found by hydraulic considerations, 
but usually it is not possible to determine the parameters precisely. To 
handle this uncertainty the dynamic linear model (5) was combined with a 
Bayesian algorithm for estimating the current posterior density of the para
meters. In the following investigations we will estimate (tL ,6) instead of 
(a, 6) • 

A BAYESIAN ALGORITHM FOR ESTIMATING ~ AND ck 

As e = (t ,6) is assumed to be a random variable also the term Hk in 
system (5) witl be random. Any estimation of c has to take this uncertainty 
inio account. If the measurement noise were no~ depend upon the observation 
qk-l one could use the algorithm for adaptive Kalman filtering given by 
Mag~11(1965), Lainiotis(1971), Harrison and Stevens(1976) or Sz6l16si-Nagy 
and Wood(1976). Similar results can be found for a conditionally Gaussian 
sequence. 

We start with a probability density function (p.d.f) P(Ck_l,~lqA,k-l) 
of ck_1 and ~ which can be expressed in the following form: 

I A k-l I A k-l I A k-l P(ck_l'~ q' ) = P(ck_1 ~,q' ). p(~ q' ) (9) 

with P(Ck_ll~,qA,k-l) GaussiaR ~~rr mean ek_1 (~) and variance Pk-l (~) and 
an arbitrary p.d.f. for p(~lq , • Using tfieAs~~rrm equation ~n (5) it can 
be easily shown that the prior p.d.f. p(ckl~,q' of ck given ~ ~nd obser
vations until k-l is also Gaussian with mean ~k-l (~) and variance Pk- 1 (~)+Q: 

I A,k-l A A 
p(Ck ~,q ) 'V N(ck_1 (~) ,Pk- 1 (~) + Q) (10) 

The posterior p.d.f. P(Ck'~ qA,k) ofckand ~ given observations until 
k can be calculated by means of the Bayesian theorem: 

I A A,k-l AI A,k-l I A,k-l p(ck 'i1. qk,q ) '" P(qk ck ,i1.,q ). p(ck ,i1. q ) 

(11 ) 
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The likelihood function P(q~ICk,!,qA,k-l) is given by the observation equa
tion in (5): 

(12) 

Using the prior p.d.f. (10) and the 
p.d.f. (11) can be expressed by the 

likelihood function (12) the posterior 
following form: 

with 

(Pk- 1 (~) + Q) 

(Pk- 1 (~) -I: Q) 

(Pk-l (!l) + Q) 

A 2 
(qk - Hi ck) 

A 2 
(d'qk_l) 

+ 

2 
(ck - ek _1 (~)) 

) } 
Pk - 1 (!) + Q 

(13) 

p(c ,~lqA,k) can therefore be split up in the same way as (9) as a product 
of the ~-conditional posterior p.d.f of ck which is Gaussian and a posterior 
p.d.f of ~ independ of ck: 

p(ck,~ll"~ =p(ckl~,qA,k). p(~lqA,k) (14) 

The marginal p.d.f. of ck is no more Gaussian: 

I Ak I Ak IAk p(ck q , ) = ,P(Ck ~,q , ).p(! q , ) d~ 

An optimal adaptive estimate of ck with respect to a quadratic loss function 
is given by the weighted ~-contional means: 

(15) 

Model Modification: The Inundation Case 

If inundation occurs the parameters tL and B will change suddenly. In 
this case the linear transformation (1) is no longer appropriate. We over
come this difficulty by using two impulse-response functions: 
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00 

S min(qZ(tk-T), 
Z . hi (T, 1 81)dT ~ qAUS) t L, 

0 

(16 ) 
00 

+ S max(qZ(tk-T) Z 
0) - qAUS' 

0 

• h2 (T, t 2 
L' 82)dT 

q!US is the threshold value of runoff above which inundation starts. It can 
be computed approximately from the shape and size of the riverbed. The un
known parameters i = (tL1 ,81, t L2,82) are estimated by means of the Bayesian 
algorithm pr~g~nt~d abov~. It ghould b~ not~d that th~ Bay~gian approach 
yields posterior distribution of tL2 and 82 , although prior information 
about these parameters is very poor and thus is particularly well suited to 
this problem. 
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A REAL WORLD APPLICATION 

The model presented above was applied to real world data. Short term 
forecasting based on flood routing was performed for certain rivers in 
Carinthia (Austria). Starting with a diffuse prior of travel time tL and 8 
within a reasonable range the posterior probability density function was 
calcu7ated for each time step k uSing (6) and(13). As ~(~) is a nonlinear 
funct~on of ! (see (2) and (3b)) no closed form for the posterior p.d.f. 
could be found. Therefore the parameter space was discretized. The poste
rior value (13) was calculated for each parameter. 

As an example fig. 1 shows the observed inflow and the observed out
flow of the reach between the gauging stations Oberdrauburg and Greifenburg 
at the river Drau for the flood event of may 1978. Starting with a diffuse 
prior at t = 20, the marginal posteriors of tL and 8 are shown at t = 28, 
t = 36 and t = 56. The marginal posterior of tL converges rather quickly 
while the marginal posterior of 8 hardly changes. 

For the event of July 1981 inundation is observed. Prior information 
concerning the parameters tL2 and 82 of the second impulse-response function 
(see (1 )) is rather poor. Therefore the prior was chosen within a wide 

'range (see fig. 2). The updating algorithm starts at t = 48 when inundation 
sets in. While the marginal posterior p.d.f. of tL2 converges within a few 
hours, the marginal posterior p.d.f. of 82 changes more slowly (see fig.2)). 
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,5 ,S 

o 10 o 5 10 15 B 

,5 ,5 

o 10 'L 0 5 10 IS B 

Figure 2. Flood event of July 1981 

Evaluating the result obtained it may be concluded that the method is 
well suited for being incorporated in an operational forecasting model for 
the river Drau. 
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THE EXTENDED BAYES-POSTULATE, ITS POTENTIAL EFFECT ON 

STATISTICAL METHODS AND SOME HISTORICAL ASPECTS 

Friedrich Schreiber 

Aachen University of Technology 

Summary 

The principal problem of statistics is considered where the value of a single parameter or of 
a parameter vector is a priori unknown. In this case the extended Bayes-postulate requiring the 
statement of two prior uniform distributions provides a unique parameter representation (leaving 
no freedom for nonlinear parameter transformations) and unique posterior statements which are 
useful for small as well as for large sample sizes. A short survey is given of recent work in this field 
which has been named the "Bayes-Laplace-statistics" and of its historical background. 

1. Bayes-Postulate and Fisher's Transformation Argument 

1.1 For introductory purposes we consider the principal task of statistics in its most elementary 
form: a given stationary random process is described by a known convolutional type prediction 
p.f. P(y I 1'), where the sum-r.v. 

.. 
y = ~>I i E{yln} = I' (1) 

1=1 

will be gained from the random vector (:1:10 :1:2, ••• ,:1: .. ) to be measured in n independent trials 
and where the expectation I' is the only parameter whose value is unknown and shall be determined 
from the value of y. Due to the Bayes-postulate the prior situation "value of I' unknown" means in 
accordance with logical insight that all values of I' must be equally possible. Therefore the prior 
knowledge about I' has to be described within the given limits /Jl $ /J $ I'll by the uniform 
distribution with density 

f(/J) = C,. = 1/(/JII - /Jl) • (2a) 

After y has been measured and since f(/J) is a constant C,. the inversion law for conditional 
probabilities (Bayes-theorem) yields the well defined posterior density 

f(/J I y) = P(y I 1')1 J P(y I /J)d/J . (3) 
,. 

This posterior knowledge statement with respect to the value of the expectation I' whose formal 
simplicity corresponds to its fundamental importance has been given by Laplace [11] following 
Bayes [1]. 

1.2 About 65 years ago in his address to the Royal Society [5] Fisher argued that any nonlinear 
parameter transformation ~(/J) leads to an equivalent description ofthe r.v. y by the p.f. P(y I ~) 
instead of P(y I /J)i that the parameter ~ could be considered to be unknown as well as I' and 
could therefore also be described by a prior uniform distribution with constant density f(d = c, 
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aJ classical binomial distribution, bJ multinomial distribution 
in case k = 2, [19] see Eq. (2a, b) with J..1. : P: 

I+-____________ ~ 

f{P,t 

o+-------------~ 

0.2 

P{y,t 

o ---P 

o +--+---f--+--f-
o 2 f. ----Y 

2 'f{po.PIJ~ ...... 
oI~ I --

as I 
............. 0 0 0.5 

P, ~ 
Po 

Fig. 1 Examples of the extended Bayes-postulate with two prior uniform distributions. 

and that the resulting posterior density f(~ I y) = P(y I d/ f P(y I dd~ would be obviously 
r 

inconsistent with eq.(3). Fisher concluded that any result obtained on the basis of the Bayes-
postulate suffers from total ambiguity and is therefore worthless. 

This transformation argument against the Bayes-postulate has been commonly accepted and 
seems to be the cause for the emergence of different statistical schools and is the main root of 
subjective Bayesianism: if the parameter representation could be chosen arbitrarily then indeed 
we also seem to be free to choose the description of the prior knowledge about a parameter according 
to our personal judgement. Moreover it can be shown that by acceptance of the transformation 
argument the application range of any statistical inference method is reduced to the large sample 
case. 

1.3 In [17] the author has pointed out that the prior situation is characterized by two unknown 
quantities each to be described by a uniform distribution: the parameter JL by f(JL) = C,.. eq.(2a) 
and the future value of the sum-r.v. Y eq.(l) by the prior prediction p.f. 

P(y) = c,.. ! P(y I JL)dJL = C" = 1/(1 + YII - YI) , (2b) 
,.. 

assuming y to be discrete in the range y = YI, YI + 1, ... , YII. The requirement for the 
simultaneous existence of eq.(2a) and eq.(2b) being called the extended Bayes-postulate is only 
fulfilled if the parameter is uniquely chosen to be the expectation JL (see Fig.1a) and any nonlinear 
parameter transformation dJL) is ruled out. Therefore the expectation JL might be called the 
"natural parameter". 

The extended Bayes-postulate is applicable only to convolutional type p.f.'s P(y I JL) resp. 
densities I(y I JL) i.e. to the processing of a measured x-sequence by the sum operation eq.(l). 
It is unalteredly valid for those important distributions where the parameter JL is defined on the 
half or total real axis: the uniform distributions for JL and Y are then described by constants 
C,.. -+ 0 resp. C" -+ 0 ( see Renyi [14] ) and also in this limit case C,.. will cancel in the inversion 
formula as usual. In [19] it has been shown that the extended Bayes-postulate is also applicable to 
k-dimensional cases like the multinomial-distribution where in the prior situation the expectation 
parameter vector (po, Pl, ... , Pk) and the sum random vector (Yo, Yl> ... , Yk) have to be described 
by k-dimensional uniform distributions, see Fig.1b. 

424 



The extended Bayes-postulate has been found to be true"in all cases investigated so far" and 
it represents presumably a general law whose proof will follow sooner or later. 

1.4 Following the above insights it is also advisable to make eventual nonuniform prior sta
tements f(l-') :f: a,. with respect to the expectation parameter I-' only; this would ease the com
parison of different prior assumptions. 

In this case we should always check whether the associated prior prediction statement about 
y corresponding to eq.(2b) 

P(y) = f P(y I 1-') . I(I-')dl-' :f: all (4) 
,. 

is really in accordance with our prior intuition, see the examples for "prejudices" in [17]. Obviously 
P(y) is not merely a formal normalizing expression in the denominator of the inversion formula 
which needs no further attention but is equally important as 1(1-') and it is the pair of prior 
functions 1(1-'), P(y) which must be justified. These considerations indicate the problematic nature 
of intuitive prior assumptions (see also section 2.2) and that it is preferable - wherever possibly -
to ignore intuitive prior information about I-' resp. Y and rather retreat to the objective prior pair 
a,., all eq.(2a,b). 

2. The Bayes-Laplace-Statisticsl 

This name can be attributed to all statistical methods based on the extended Bayes-postulate. 
The BL-statistics provide for any sample size unique posterior statements of the type eq.(3) for all 
important distributions with discrete or continuous sum-r.v. y including finite population cases 
like the hypergeometric distribution and also for multi-parameter cases including Markov chains. 
Within the immense variety of different posterior formulae which might be offered due to different 
subjective prior assumptions the posterior formulae of the BL-statistics are distinguished by the 
fact that they constitute the objective principal case where the natural parameter representation 
I-' is mandatory and where any prior information about I-' and y does not exist resp. has been 
ignored. A few guide lines shall be given for the typical use and the future development of this 
statistical concept. 

2.1 Usually simple formulae for the j-th order moment M;{I-' I y} can be derived from the 
posterior density of the type f(1-' I y) eq.(3). Mainly we need the mean parameter value /1, the 
absolute error (mean quadratic deviation from /1) 17,. and the relative error (coefficient of variation) 
d,. = 17,.1/1: 

- - M· - (M M 2)1/2. d - (M 1M2 )1/2 I-' - 1, 17,. - 2 - 1 ,,. - 2 1 - 1 . (Sa, b, c) 

It is recommended to use the error measure 17,. resp. d,. instead of confidence interval sta
tements, which contain subjective elements [161. 

2.2 Sometimes the small sample case cannot be avoided due to the cost of an experiment. 
Then the formulae eq.(3) and eq.(5) represent the unbiased, conservative posterior statements 
not affected by subjective prior assumptions. This shall be explained by the following example 
of considerable practical importance: the sum-r.v. y eq.(l) is described by the normal density 
f(y II-', v) with the expectation p. and the variance v = 172 being both a priori unknown. Then as 
shown in [15] the posterior knowledge of I-' is described by the objective t-distribution with density 

( ) . _ r[(n - 2)/2] [2/( _ )]-(n-2)/2. . } 
f t - [1I'(n _ 1)]1/2 r[(n _ 3)/2] 1 + t : 1 , n ~ 4 , 

t = (p. - Yln)/[ ('1 ) ]1/2; '1 = "\:' xl - y2 In nn-1 L...J .=1 

(6) 

and not by the commonly used Student's t-distribution [7], [9] whose density we denote by f* (t). 

1 Abbreviation: BL-statistic8. The term "objective Bayes- statistics" being used in some former publications 

has been abandoned. Nevertheless all statements concerning a principal problem in statistics which are based on 

the extended Bayes-postulate and which can be verified by a proper computer random experiment (see section 3) 

might be qua.lified to be "objective" beca.use they do not depend on subjective prior assumptioDs. 
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Fig.2 Small sample case: comparison of Student's t-distribution density f*(t) with the density 

f(t) Eq.(6) of the objective t-distribution [15). 

The comparison of both densities in Fig.2 reveals that for small samples 2 f(t) is much 
broader than f*(t) i.e. that any error measure derived from f*(t) would represent an optimistic 
delusion. It is interesting that Box and Tiao [2) derive student's density 1* (t) on basis of the prior 
assumption flu) - 00- 1 which they believe to be "noninformative" and all this shows exemplarily 
how questionable the results of subjective assumptions might become for small samples.s 

2.3 In the large sample case we usually have 'ji s:::l Yin independently from the prior assumption. 
Then the relative error formula eq.(5c) becomes our main interest in order to control the evaluation 
of a large data volume. The LRE-algorithm 4 for obtaining the empirical d.f. Fn(x) of independent 
x-sequences [18) gives a useful example for this. A more elaborate version of this algorithm for 
correlated x-sequences can be derived from the statistical analysis of Markov chain models. 

2.4 The investigation of multidimensional problems with correlation phenomena etc. might 
lead to troublesome mathematical barriers. Then - irrespective of a personal philosophy concerning 
prior assumptions - the relative simplicity of all formulae derived from posterior densities of the 
fundamental type eq.(3) can be of great help. 

2 In typical applications like the "batch means"-method [6[ the aample size n II often oman. e.g. n=lO. 

S h should be menlioned that under the rulel of the BL-Italislica the proper prior atatement cannot be made 

with relpect to the standard deviation ~ but only with respect to the variaDce v=~' = E{,,/(n-l)} being the 

natural parameter of the X'-diltribution with prediction density I(,,[v). lee [151. 

4 LRE = l<imited R,elalive Krror. 

426 



Statement math. Description 

a) "", unknown" t fl",) : Cp. : 1 /1"'1I - "'1) 
CM 

"Uniform DistribvtiOfl" 

0 
0 "'1 "'1I 

~ 

'" b) "", relatively t ff",) 
known" 

"Nonuniform Distribution" 

0 
0 "'1 "'II -----'" cJ "", known" t PI",) : { 1, '" : "'1 q else 

1 
"Deterministic Distribution" 

0 
0 "'1 ~ 

'" 
Fig. 3 Terminology Bknowledge probability" with respect to the value of a parameter p.. 

2.5 Mter the value y = y,. eq.(l) has been measured in n trials, the BL-statistics allow 
objective prediction statements for the outcome Ym of m future trials of the same random process 

P(Ym 1 y,.) = J P(Ym 1 p.) • 1(p.1 y,.)dp. . (7) 
,.. 

A posterior statement of this type has been given for the first time by Laplace in his early 
period 1101 and has been extended to the multinomial distribution by Lubbock 1131, see also 1191. 

s. Computer Random Experiments 

In queueing theory, computer performance analysis, physics and in many other fields sta
tistical simulation techniques on large computers (BMonte Carlo methodsB) are used to find the 
random behaviour of a complex system 161. But beyond this practical aspect it is of great interest 
that such computer random experiments may provide a universal experimental background for the 
introduction and verification of statistical concepts and may thus help to reduce subjective influ
ences on our reasoning and to overcome certain historical controversies on fundamental principles 
in statistics. This is possible due to the following properties of computer random experiments 5 

1171· 

5 The r_domne •• of .uch experiment. may rely on pseudo raadom generato .... (6) or better on a quasi-ideal 

table generator which contains a large volume of .tored random bit. gained from a ph:yalcal source, preferably a 

radioactive material (8). 
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3.1 Flexibility: they are universally applicable for the modelling and implementation of any type 

of Jlllndom PJlMllftft "D" Plftd&ft\ !l~tw6pkl 

3.2 High speed: they allow a true and effective verification of statements in probability and 
statistics; 

3.3 Independent intelligence: they are autonomously executed without intervention and human 
influences from outside; 

3.4 Reproduction: they can be repeated any time at different locations by different observers. 

Due to property 3.3 the computer is able to carry out a complete statistical experiment 
including the prior generation of the value of a parameter p. according to a given prior density I (p.) 
and it will not disclose this value of p. to the external world. Thus we have a perfect simulation 
of the prior situation where the observer must describe his knowledge about a physically existing 
parameter p. by means of the density I(p.) being known to him and the whole domain of "knowledge 
probability" is no longer a fictitious idea but is firmely related to a random experiment (and can 
therefore be verified by frequency investigations if desired) in much the same way as the common 
domain of "prediction probability" [17]. 

Also as shown in Fig.3 we see that the statement" p. unknown" can be described mathemati
cally and experimentally only by the uniform distribution, and any nonuniform distribution must 
be associated with the statement" p. relatively known" resp. "p. known". The terminology used 
here might be replaced by another one; important is only that we do have three categories of 
knowledge probability statements and that the uniform distribution is uniquely distinguished from 
all other distributions. 

4. Some Historical Aspects (Fig.4) 

Quite independently from [17] Stigler has recently pointed out [20] that possibly Bayes himself 
has expressed in [1] the need for the two prior uniform distributions 6 as expressed by eq.(2a,b). 
Obviously only eq.(2a) concerning the parameter has been understood by the posterity and it is the 
neglect of eq.(2b) that has caused so much misunderstanding and dispute. Nevertheless following 
Laplace the Bayes-postulate has been correctly applied by Gauss (1809), Lubbock (1830) [13], 
Poisson (1837), De Morgan (1845) and others. The criticism of the postulate began with Boole 
(1854) and Venn (1866). Chrystal (1895) condemned the principle of inverse probability totally; 
Fisher (1922) did the same with great effect [5] taking no notice of the strong opposition against 
Chrystal by E.T. Whittaker, Lidstone (1920) and by other members of the Edinburgh faculty of 
actuaries, see literature in [19]. 

Three decades before Fisher the parameter transformation problem has been stated very 
clearly by Edgeworth (1885) [4] who in a way seems to be the first entering the path to the 
subjective Bayesianism of our time which later on has been elaborated by De Finetti, Savage and 
others [12], [3]. 

5. Final Remark 

Many participants of the Innsbruck symposium will remember the song "Bayesians in the 
Night" which was introduced at the end of the conference dinner by the gentlemen B. Natvig 
and M.H. DeGroot alias "Frank Sinatra". This song might be interpreted as a subtle, charming 
parody of the relationship between subjective and objective bayesians. Perhaps some day a further 
discussion of the issues involved will take place. 
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6 Stigler believes that the principle with two prior uniform distribution. introduced by Bayes is restricted to the 

binomial case; but· as we have seen - under the conditioDs "Bum operation eq.(l); expectation parameter p" this 

principle is generally applicable to all distributions with prediction p.f. P(III,.) resp. density 1(111,.). 
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Fig. 4 Chronology of names indicating the changing appreciation of Thomas Bayes' principles 
for statistical inference. 
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THE ANALYSIS OF WEIBULL LIFETIME DATA INCORPORATING EXPERT OPINION 

Nozer D. Singpurwa11a Mao Shi Song 
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Abstract 

In this paper, we present a new approach for the analysis of lifetime 
data that are assumed to be described by a two-parameter Weibu11 distribu
tion. The novel feature of our approach pertains to the incorporation of 
expert opinion into the analysis. Provision is also made for incorpora
ting our own opinions on the expertise of the experts and also on the 
lifetimes of items. Our approach involves the use of Laplace's approxima
tion and this results in formulae which are easy to compute. 

1. INTRODUCTION AND OVERVIEW 

The use of expert opinion in several practical applications of 
reliability and risk analysis is on the increase. One can look at some 
recent articles in the engineering and scientific journals to get an 
appreciation for the above - see for example, Okrent (1975), Aposto1akis 
and Mos1eh (1979), Martz and Bryson (1984), and Mos1eh and Aposto1akis 
(1986), to name a few. Unfortunately little has been written on this 
important topic in the statistical journals which addresses reliability 
problems; an exception is Lindley and Singpurwa11a (1986). Here, we 
develop a procedure for undertaking the reliability assessment of biologi
cal and engineering items whose life lengths can be described by the 
Weibu11 distribution. The key features of our approach are: 

1. The elicitation, codification and modulation of expert 
opinion in a formal manner; 

2. The use of historical data, on identical copies of the 
item, in conjunction with 1 above; and 

3. The use of approximations which greatly facilitate our 
ability to undertake the necessary computations and 
make our approach attractive to a user. 

The methodology here is based on a theme described by Lindley (1983). 
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2. PRELIMINARIES 

Let T denote the time to failure of a fresh unit. We wish to make 
statements of uncertainty about T conditional on the information that we 
have. If H, the background information, is all that we have then we are 

able to specify R(tIH) def peT ~ tlH), the reliability of the unit for a 
mission of duration t. To facilitate a specification of the above, we 
extend the conversation to a scale (shape) parameter a(8) and introduce 
the Weibu11 as a chance distribution for T. That is 

(2.1) 

where ~(a,8Iw) describes our uncertainty about a and 8 conditional on a 
vector of specified parameters w, and peT > tla,8,w) = peT > tla,8) = 
exp(-a (t/a)8), with a = tn2. in writing ~he abov~ we are of course 
making the assertion that given the median a and 8, T is independent of 
w. 

The usual way of parameterizing the Weibu11 distribution is via a 
scale (shape) parameter a(8), so that peT > tla,8) = exp(-(t/a)8). The 
reason for our parameterization in terms of a is that it is easier to 
elicit expert opinion about the median life than about an arbitrary scale 
parameter a. 

The focus of our paper is the elicitation and the codification of 
expert opinion to enable us specify ~(a,8Iw) and the development of 
approximations which facilitates its use. -If we do not have any lifetime 
data on units which can be judged exchangeable with the unit in question, 
then all that we have to go by is ~(a,8Iw) and the resulting R(tlw), 
given by (2.1). Note that R(tlw) = E[R(tla,8»), where E(x) denotes 
expectation of X. If a statement of uncertainty about R(tla,8) is also 
desired, then this is provided by 

* * * * p{R(tla,8) < c} =f * f •. ~(a ,8 IW)d8 da , 
B 8~ -

where (2.2) 

* * * * {(a ,8): R(tla,8) ~ c}, for 0 < c < 1. 

If and when we obtain d, failure data on items which are exchangeable 
with the item in question,-then expert opinion as exemplified by ~(a,81~) 
must be updated to obtain ~(a,81~, ~), where 

(2.3) 

and L(dla,8) is the likelihood of a and 8 given d. If d = (t1, ••. ,tn), 
where the t~s denote the observed times to failure, then 

~ 

(2.4) 

Once we obtain ~(a,8Id,w) we update our assessment about the reli
ability from R(tl~) to --

R(tld,~) = fa f8 exp(-a(tla)8) ~(B,(3I~,~)d(3da, 
where (2.5) 

I def I R(t ~,~) === peT > t ~,~) 

432 



If an updated statement of uncertainty about R(tle,8) is also 
desired, then this is provided by 

* * * * p{R(tle,8,~) :: c} = le* 18* 7T(e ,8 1~,~)d8 de , 

* * I * * 
(2.6) 

where {(e,8): R(t e ,8 ) < c}, for 0 < C < 1. 

A comparison of (2.1) with (2.5) and (2.2) with (2.6) indicates 
the effect of the data on our assessment of reliability based on expert 
opinion alone. 

Note that once the expert op~n~on is solicited and codified, the 
assessments R(tlw) and p{R(tla,S) < c} remain the same over all time, for 
any mission of duration t. Howeve~, since Q changes over time, the 
quantities R(tIQ'~) and p{R(tle,8,~) < c} also change with time giving 
their plots (as a function of t), a dynamic feature. 

The foregoing material describes the overall strategy underlying our 
procedure. The principle though simple and straightforward, poses 
difficulties with respect to computation. These difficulties have been 
overcome using a recently proposed approximation. 

3. THE ELICITATION, MODULATION, AND CODIFICATION OF 
EXPERT OPINION 

In the published literature on a Bayesian analysis of the Weibull 
distribution, the priors used have been chosen for their analytical 
convenience rather than their ability to meaningfully represent expert 
op~n~on: see for example Soland (1969), Tsokos (1972), Barlow and 
Proschan (1981) and Erto (1982). A departure from the above is 
Singpurwalla (1986); however the latter approach emphasizes computer 
graphics, and yields results which are not in closed form. A possible 
reason for choosing priors based on analytical convenience stems from 
the fact that a Weibull distribution is typically parameterized in terms 
of a general scale parameter a which conceptually difficult to interpret. 
Expert opinion about measures of central tendency, such as the median e, 
is easier to come by [cf. Martz, Bryson and Waller (1984)] and this is 
what we will do. The shape parameter S characterizes ageing, and opinion 
on it from engineers and scientists is easy to elicit. 

3.1 Elicitation of Expert Opinion on Median Life 

Suppose that an expert E conceptualizes his/her uncertainty about 
the unknown e via some distribution with mean m and standard deviation s. 
This means that in E's view, 50 percent of similar units if observed 
until failure are most likely to fail by m. The quantity s is a measure 
of the expert's uncertainty in specifying m. 

Suppose that E declares to an analyst A, two numbers m and s which 
describe E's uncertainty about e. It is not essential that A be cognizant 
of E's conceptualized distribution; A only needs to be told that m is a 
measure of location and s a measure of scale. Given m and s, A's judgment 
about e can be described, using Bayes law, in terms of the probability 
distribution 

p(elm,s) ~ p(m,sle) p(e), (3.1) 

where p(e) describes A's view of e before the receipt of E's advice, and 
p(m,sle) is the likelihood of e. It is to be emphasized that (3.1) is 
specified by A not E, and for convenience H, A's background information, 
has been suppressed. The likelihood p(m,sle) will also be specified by A, 
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and is written to describe A's judgment of the expeptise of the expept. 
For convenience, we write the likelihood as 

p(m,sle) = p(mls.e) p(sle). (3.2) 

and consider some possible assumptions that A can make about the right 
hand side of (3.2). 

Assumption 1 (AI). p(sla) does not depend on a. 

This says that in A's view. s on its own gives no information about 
a. 

Assumption 2 (A2). For some c + 0 and V > 0 

2 2 
c V~ tV i(v/s) 

sm 

2 where the notation "X tV X (n)" denotes the fact that X has a chi-square 
distribution with n degrees of freedom. The constants c and V are 
specified by A, and they reflect A's view of E's biases and precision in 
dealing with m and s. The assumption A2 implies that 

( I a ) avIs -«v/s)+l) _(c~va2/2sm2) 
p m s, ,v,c ex: m e 

and a way to conceptualize the above is to say that were a to be known to 
E, then having specified s, E (in the opinion of A) would specify m in 
such a manner that with probability of .95, log m E[logc+loga) +l2S7VT. 

-1 ~ -
or that m E[w ca. wca] where log w = v2s/V. The term log c denotes a 
bias in E's specification of log m. Specifically. c=l implies that there 
is no bias, whereas c < 1 (>1) implies that E underestimates (overestimates) 
e in specifying m. The parameter V allows A to express opinion on how 
precise E is. With V < (» 1/2, A thinks E tends to exaggerate (is 
overcautious about) the precision of his/her assessment. 

If A has full faith in the expertise of E or if A does not wish to 
modulate E's inputs, then A will set c=l and V=1/2. 

Assumption 3 (A3). p(a) is effectively constant. 

This says that A's initial knowledge of a, before receiving expert 
testimony, is weak. 

The assumptions A1 and A3 say that p(sla) and p(a) are constant, 
making p(alm,s) ex: p(mls.a). and this together with A2 gives us the result 
that in A's opinion 

Theorem 3.1 

1c2v/sm2 e tV X «v/s)+l), where the notation "X tV X(v)" denotes the 
fact that X has a chi distribution with V degrees of freedom. 

Assumption 1, which states that s on its own gives no information 
about a, may not be true. The following alternate assumption may be a 
more appropriate one to consider. 
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Assumption l' (A1'). * For some V > 0 

A1' implies that were a to be known to E, then in the opinion of A, 
E would specify s in such a manner that with probability 95%, 

-1 r:--:7< * s €[w 1 a, wla], where log w1 = v2/v. Thus V > 0 captures A's opinion 

about E's uncertainty in specifying a. For example, if A feels that 
given a, E has a wide (narrow) range of values for s, then v* will be 

* -12 12 * small (large). Thus V = 1 implies that s E[ae ,ae], V = 2 implies 
-1 * -2 2 that s E[ae ,ae], and V = .5 implies that s €[ae ,ae]. Such a 

scheme allows us to model the proportional effect of a; for large a we 
may want to choose small v* and vice versa. 

If A does have some prior information about a, then A3 may not be 
meaningful and the following alternate assumption may be plausible. 
Assumption 3' (A3'). p(a) is Gaussian with mean ~ and variance T2, 
where L is chosen in such a manner that p(a < 0) is very small. 

The new assumptions A1' and A3' would lead to results analogous to 
Theorem 3.1. These are: 

Theorem 3.2. Under the assumptions A1', A2, and A3, A's opinion about a 
can be described as 

~* cV V V * 2 + 2 a 'V x (6 + V + 1). 
sm s 

Theorem 3.3. Under the assumptions AI', A2, and A3', A's opinion about a 
can be described as 

V * * -+v A 2 
p(alm,s,v,v ,C,~,L) ~ as exp{- 2 (a-B) }, a > 0, 

where 
2 * 

A = c V + ~ + ~ and 
2 2 2 sm s L 

In Theorems 3.1 - 3.3 we see how A has modulated E's testimony on a 
to reflect A's judgment on the expertise of E. Extensions to cover the 
case of several experts is straightforward except that now we have to 
incorporate into our mathematics A's perceived correlations between the 
experts declared values. 

3.2 The Codification of Expert Opinion on the Weibu11 
Shape Parameter 

As is well known, the shape parameter S of the W~ibul1 distribution 

characterizes ageing, in the sense that S >«) 1 implies that ~ (~)B-l , 

the failure rate increases (decreases) in x; it is a constant for S=l. 
Thus if expert opinion suggests that the item degrades (improves) with 
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age, then S is likely to be greater (less) than 1, and if the item 
neither degrades nor improves with age, then S is more likely to be in 
the vicinity of 1. In principle, we should use a methodology analogous 
to that described in Section 3.1, for eliciting and modulating expert 
opinion on S. However, in the interest of simplicity we choose to model 
the uncertainty about S via a gamma density. We have 

Assumption 4 (A4). For some A > 0 and p > 0 

I p-1 -A8 p(8 A,p) « S e , S > O. 

The parameters A and p are specified by A and are based upon E's 
view and conviction of the ageing characteristics of the item. A conve
nient way for A to specify A and p is to use the fact that the mean, mode, 
and variance of the kernel in A4 are given by piA, (p-1)/A, and p/A2, 
respectively. 

3.3 The Distribution Induced by Expert Opinion on the 
Weibu11 Parameters 

The elicitation (and modulation) of expert op~n~on discussed in the 
previous two sections has resulted in the distributions determined by 
Theorems 3.1 - 3.3 and Assumption 4. If we assume that 8 is independent 
of 6, then the joint densities at 6 and 8, corresponding to Theorems 
3.1 - 3.3 are given by: 

and 

I V I s p-l c 2V6 2 I TIl (6,S m,s,V,c,A,p) « 6 8 exp(-AS - --2-) = TIl (6,S '). 
~ + v* 2sm 2 2 * 

(6 al *') - 6s ap-l exp(-' a _.!L (c V + ~» TI2 ,~m,s,v,v ,C,A,P ~ ~ A~ 2 2 2 

~ + V* 
TI3(6,Slm,s,v,v*,C,V,l,A,P) « 6s 

sm s 

p-l A 2 S exp(-AS- -(6-B) ) 
2 

respectively. 

The above joint prior densities at 6 and S, based on expert opinion 
alone. When the data g becomes available, we will obtain the joint 
posterior density using (2.3). Suppressing the conditioning arguments 
in TIl' TI 2, and TI3 the joint posterior densities at 6 and 8 corresponding 
to TIl' TI 2, and TI3 are given by: 

~ -nS 2 2 n t. n 
TI1(6,SI~,') oc 6s Sn+p-1exp{-A8-~ -a E (~)8 + (S-l) E ~nt.} 

2sm2 i=l 6 i=l ~ 
= TIl (6,81~,')' 

V 'it 
S + V -n8 n -1 62 c 2v V * 

6 S +p exp{-A8- -(- +-) 2 2 2 sm s 

n t. e n 
- a E ( e) +(S-l) E ~nt.} 

i=l i=l ~ 
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v * n s + v -nS n+ -1 A 2 n t. S 
asP exp{-A(3- l(a-B) - a ~ ( ~) + 

i=l 
«(3-1) ~ tnt.} 

i=l ~ 

= ~3(a,(3I~,·), respectively. 

The use of w.(a,(3I·) and w.(6,(3ld,·), i=1,2,3, for estimating 
~ ~-

reliabilities is discussed in Section 4. 

3.4 Assessing the Impact of Data on Expert Opinion 

In order to rate and score the expert and also A's assessment of 
the expertise of the expert, or otherwise to enhance the expertise of the 
expert (for future use), it is of interest to provide feedbaak to the 
expert based on the observed d. For the parameter S this is done via a 
comparison of p«(3IA,p) with -

w.«(3ld,.) = fa TI.(a,(3ld,·)da, i=1,2,3. 
~ - ~-

(3.3) 

For the median a, the effect of ~ is assessed via a comparison of 
the results of Theorems 3.1 through 3.3 with 

TI.(ald,·) = faTI.(a,sld,·)dS, i=1,2,3, respectively. 
~ - iJ~ -

(3.4) 

The computation of (3.3) and (3.4) is discussed in Section 5. 

4. BAYESIAN ESTIMATION OF THE RELIABILITY FUNCTION 

As outlined in Section 1, an estimation of the reliability function 
can be undertaken using expert opinion alone or using both, expert opinion 
and failure data. To see how the above can be done, let to denote the 

mission time, and recall that R(tola,s) = exp(-a(tola)S), where a = tn2. 

Then, based on expert opinion alone, we have from (2.1) 

(4.1) 

and based on both failure data and expert opinion, we have from (2.5) 

To discuss an evaluation of the above quantities, let us focus 
attention on (4.1). We first note that for i=1,2,3, 

fafs R(tola,S) ~i(a,SI')dSda, 
Ri (tol') fa f STIi (a,sl' )dSda 

and write 

(4.2) 

(4.3) 
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N L.(8,S) def log [~. (8,sl')], and N is an integer which reflects 
~ ~ 

A's guess about the number of previous observations* upon which E has 
based the declared values m and s. 

The ratio of the two integrals in (4.3) is difficult to evaluate 
analytically. An approximation due to Laplace, described in De Bruijan 
(1961), and recently studied by Tierney and Kadane (1986) works very well 
for large values of N. Following the material in Section 2 of Tierney 
and Kadane (1986), we are able to say. that for large N 

where 8. and S 
~ i 

* Since the functions Li and L. are continuously differentiable, 

(4.4) 

A* A* ~ aLi aLi aL~ 
8,S, 8* and S are solutions to the equations as- = 0, as- = 0, a8~ = 0, 

aL. a2 a2 
and as ~ = 0, respectively. The quantities Li,H = -2 Li , Li ,12= a8as Li , 

a2 * a2 * * a2 * a8* a2 * 
Li ,22 ;: -2 Li , Li,H = a8 2 Li , Li ,12 = a8as Li and Li ,22 = aQ2 Li 

as A A A* A* ~ 
evaluated at 8, Sand 8 ,S , respectively, expressions for these are given 
in Singpurwa11a and Song (1986). 

The strategy for evaluating (4.2) is analogous to the above except 

* * that now L.(8,S) and L.(8,S) are replaced by L.(8,Sld) and L.(8,Sld), 
~ ~ df ~ - ~ -

respectively, where nL~(8,Sld) e log [R(tole,s)~.(e,sld,.)], and 
~ - ~ -

nLi (8,Sld) ~ log [~.(e,sld·)]. The quantities L. 'k and L*i 'k' 
- ~ - ~,J,J 

i=1,2,3, j,k=1,2, are defined like the L. 'k and L~ jk' mutatis-mutandis. 
~,J ~, 

Here the n denote the number of failure times which go into making up the 
likelihood, and the ensuing approximation to be used is valid for large n. 

Having evaluated 

Ri(tol~,·) ~ * * *2 e [
Li ,ll Li,22 - L~'12J1/2 n[L~(e~,S:) - Li(ei'Si)] (4.5) 

Li ,ll Li ,22 - Li ,12 

we may compare R.(tol·) and R.(told,·), i=1,2,3, to assess the impact of 
~ ~-

Q on expert opinion. Such a comparison can also be used as a basis for 
calibrating expert opinion and its codification by A. Note that 
- - -* -* * 8i and S. (e. and S.) maximize the function L.(8,S) (L.(8,S)). 

~ ~ ~ ~ ~ 

There is no simple approximation which enables us to evaluate (2.2) 
and (2.6) in closed form; the only recourse available to us is via 
numerical integration. 

* In the case of multiple experts, N could represent the number of 
experts consulted. 
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5. POSTERIOR DISTRIBUTIONS OF MEDIAN LIFE AND THE 
SHAPE PARAMETER 

In order to evaluate ~i(al~,')' the marginal posterior distribution 

of a - see (3.4), we first note that for i=1,2,3, 

f ifi (a,sl~, ')dS 

~i(el~,') =fajsiTi(a,SI~")dSda 
and write 

f enLi(a,S) dS 
~ (aid .) = S , where 

i -' faiSenLi(a,S)dSda 
(5.1) 

NLi(a,s) ~ 10g(if.(a,sld,·». 
l. -

The ratio of the integrals in (5.1) is again difficult to evaluate 
analytically. However, following the material in Section 2 of Tierney 
and Kadane (1986), we are able to say, that for large n 

[
Li,n Li,22 - L~,12 ]1/2 n[Li(a'~i) - Li(ai'Si)] (5.2) 

~i(al~,') RI (2~7n) Li ,22(S) e 

where 6i and Si maximize the function Li(S,S) and 8i maximizes the 

function LiCa,S) for a fixed value of S. The quantities Li,jk' i=1,2,3, 

j,k = 1,2 have been defined in Section 4. The quantity Li ,22(a) 

d2 
= -2 Li(S,S)1 ;::;. 

dS S =Si 

The marginal posterior distribution of the shape parameter S is 
obtained via the approximation 

2 J1/2;::; - -
[

Li,ll Li,22 - Li ,12 n[Li(ai,S) - Li(Si,Si)], (5.3) 
1£i(SI~,') RI (21£/n) Li 11(S) e , 
'" where Si maximizes the function Li(S,S) for a fixed value of S, and 

a2 
Li,ll(S) = ~S2 Li(S,S) 

a S = ~ • 
i 

6. ILLUSTRATIVE EXAMPLE 

We illustrate the approach of this paper via an example involving 
simulated data from a Weibull distribution. Suppose that A elicits 
expert opinion on S, the median life of a component whose life length 
can be meaningfully described by a Weibull distribution. Suppose that 
E gives two numbers m=500 and s=200 as measures of location and scale, 
respectively, of the distribution describing E's uncertainty about S. 
Suppose that A uses A2, and assuming no bias in E's assessment of a, 
chooses c=l, v=1/2 and arrives at the result (via Theorem 3.1) that 

-4 1 
10 S 'V X<400 + 1); this implies that 
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1 -8· 
- 2 

(81 ) .5516 8400 e-10 . 8 /2 pm,s, \J,c = 

A feature of the above distribution for 8 is that it is nearly a 

constant, taking a value of approximately .55 x 10-4, for values of 8 
in the range 0 to 1000. 

Suppose that expert opinion about 8 is described via A4 with p=6.25 
and A=12.5. Then -8 2 

1/400 5.25 -(12.58+10 8 /2) _ 
1T1 (8,8Im,s,v,c,A,p) 0: 8 S e = 1T1 (8,81'), 

and thus 

1 
1 -8 2 NL1 (8,8) = 10g[TI1(8,8 .)] = 400 log 8 + 5.2510g8-12.5B-10 8 /2. 

It is a straightforward matter to verify, that the maximum of the above 

function occurs at 81 = 500 and 61 = .42. 

2x10-8 
and L1,11 N L1,12 = 0, and L1>22 

Thus NL1 (81,81) = - 9.79009, 

29.7619 
N ' so that 

59.5238 x 10-8 
2 

N 

If the mission time to is 100 (hrs), then 

. NL~(8,8) = NL1 (8,8) - (10g2) (1~0)8, and the maximum of this function 
A* A* * 

occurs at 81 = 2719 and 81 = .439. Thus NL1 (8,S) = - 9.9894, 
-8 -4 

L* 2.432 x 10 L* =.269x10 dL* 29.015 
I,ll = - N 1,12 N an 1,22 N 

* * *2 70.2368 x 10-8 
so that L1 ,11 L1 ,22 - L1,12 N 

Using the above, we can obtain as an approximation to the Bayes 
estimator of the r~liabi1ity for a mission of 100 hours, using on expert 
opinion alone - see (4.4)- as 

1/2 

( 
59 5238 10-8 ) -9.9894+9.7901 

R1 (100 I,) ~ . x -8 e = 
70.2368 x 10 

.6943. 

Suppose now that a sample of size n=50 life-lengths is simulated 
from a Weibu11 distribution with 8 = 10,000 and 6 = .8. These data are 
shown in Table 1. 

we 
-* 

Undertaking the computations analogous to tbe ones described above 
obtain (following the notation of Section 4) 81 = 13304, 61 = .869, 

-* 81 = 13303, and 81 = .870. Also, nLl (81 ,Sl) = - 54.5.73, 

-2.4189 x 10-7 * -2.4233 x 10-7 * -* -* nL1 (8 1,81) 

.0032 =--
n 
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545.74, L1,n 

* .00322 
L1,12 n L1 22 , 

.2792 x 10-4 
~C-:--2::-'-----'- and 

n 

n L1,n n 

-157.99 * -158.22 
n ' and L1 ,22 = n . Thus 

*2 
L1 ,12 

.27995 x 10-4 
2 

n 



Thus a Bayes estimator of the reliability for a mission of 100 
hours, based on expert opinion and failure data, is, from (4.5) 
approximated as 

1/2 

R1 (100 I d, .) ::::: -4 e = (
0.27922 x 10-4 ) -545.74 + 545.73 

- 0.27995 x 10 

Compare the above to the "true" reliability 

R(100) 

100 .8 
-a(lO 000) 

e ' 

TABLE I 

.9827. 

Simulated Values of 50 Life Times from a Weibu11 
Distribution with Median 10000 and Shape .8 

No Life No Life No Life No Life No 
Time Time Time Time 

1 9533 11 16242 21 6708 31 15598 41 
2 15338 12 14464 22 17219 32 7987 42 
3 32897 13 116212 23 9645 33 1958 43 
4 3956 14 39 24 36082 34 22188 44 
5 8909 15 8316 25 48546 35 10315 45 
6 1371 16 8281 26 27563 36 23081 46 
7 3954 17 48547 27 85619 37 .6001 47 
8 4554 18 4969 28 6536 38 6653 48 
9 14222 19 16270 29 46673 39 18208 49 

10 16519 20 18426 30 8495 40 30311 50 
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Recent modifications to the Cochran-Armitage statistic used to test 
for trend in binomial proportions in carcinogenicity bioassays for which 
a series of historical control data is available employ a beta distribution 
for the between study variation in the binomial response rate in the 
control group. In this paper, the use of robust distributions with heavier 
tails than the beta is proposed as a means of accommodating the uncertainty 
as to the actual historical distribution of the binomial response rate. 
The robust distributions are selected from within a class of mixed distri
butions using a r-minimax criterion to select the most appropriate value 
of the mixing proportion. These tests are shown to be more robust than 
the existing tests with respect to inclusion or exclusion of individual 
historical control data points. 

1. Introduction 

Bioassay of small rodents is an important step in identifying chemi
cals with carcinogenic potential. These studies involve groups of animals 
exposed to different levels of the test agent as well as unexposed con
trols (Bickis and Krewski, 1985). Although such concurrent controls 
constitute the most appropriate reference group against which to compare 
the exposed groups, historical controls obtained from other studies contain 
some information regarding the spontaneous rate of occurrence of the lesion 
of interest and may therefore aid in evaluating results in the exposed 
groups in the experiment at hand (Haseman et a1., 1984). In particular, 
historical controls may be useful in assessing rare tumours or interpret
ing a marginally significant result relative to the concurrent controls. 

The first formal statistical procedure for utilizing historical con
trol data in testing for carcinogenic effects in rodent bioassays was 
proposed by Tarone (1982). Extensions to this procedure have subsequently 
been proposed by Krewski et a1. (1985) and Yanagawa and Hoe1 (1985). In 
this paper, we consider several robust alternatives to the existing tests 
based on the concept of r-minimax estimation (Albert, 1983). 

2. Tests for Trend in Binomial Proportions 

Consider an experiment with k+1 dose levels 0 
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in which xi of the ni animals at dose di respond (i=O,l, ••• ,k). We assume 
that xi follows a binomial distribution where the response probability 
Pi = P(di) is given by the logistic dose response model. 

P(d) = [1 +exp{-(a+bdl}]-l ( 2.1) 

(_00 < a,b < +00) for d > O. Treating a as a nuisance parameter, the score 
statistic for testing the null hypothesis HO : b = 0 against the one
Bided alternative HI i b > 0 ~6 g~ven QY 

T = Lx.d. -p Ln.d. , 
CA ~~ ~~ 

(2.2) 

(Tarone and Gart, 1980), where p = x/n with 
The variance of this statistic is 

x = LX. 
~ 

and n = Ln .• 
~ 

-1 -1 {2 2 } 2 n V (TCA) = n p(l-p) Ln.d.-(Ln.d.) /n ~p(l-p)ad ' 
~ ~ ~ ~ 

(2.3) 

2 - 2 -
where a = LA. (d.-d) , d =LA.d., and ~ denotes asymptotic equivalence as 

d ~ ~ ~ ~ 

n + 00 with n./n + A. > o. The standardized test statistic SCA = 
~ ~ 

TCA/[V(TCA)J~, commonly called the Cochran-Armitage statistic, converges 

in distribution to the standard normal as n + 00 under the null hypothesis. 

To incorporate information from historical controls, we regard 
p [l+exp(-a)]-l as a random variable, following the beta density 

I r(a+S) a-l S-l 
f(p a,S) = r(a)f(S) p (l-p) (2.4) 

(0 < P < 1; a,S> 0). For later applications, it will also be convenient_l 
to parametrize this distribution in terms of 8 = a/(a+S) and p = (a+S) . 
The former quantity represents the mean of the distribution while the 
latter provides a measure of dispersion with p = 0 representing the 
limiting case of a degenerate distribution concentrated at 8. 

The score statistic based on the marginal likelihood obtained after 
integrating out p is now given by 

(2.5) 

where p (x+a)/(n+a+S). Note that p coincides with the Bayes estima
tor of the binomial response probability p in the concurrent control 
group under the beta prior in (2.4). This statistic has mean zero and 
variance 

-1 a§ { 2 1 2} 
n (a+S) (a+S+l) Lnidi - n+a+S (Lnidi ) 

as 2 
(a+S) (a+S+l) ad (2.6) 

Although the asymptotic null distribution of is a 

mixture of normal distributions with mean zero and variance one, this 
misture is well approximated by a standard normal distribution (Krewski 
et al., 1985). 

3. Robust Distributions 

The methods outlined in section 2 employ a beta distribution for the 
binomial response probability p in the concurrent control group. In 
order to allow for some uncertainty in the specification of this distri
bution, we consider three classes of modified distributions having heavier 
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tails than the original beta distribution. These modified distributions 
reflect our relative ignorance of the distribution of p in these regions, 
and may be robust against misspecification of the distribution as a beta 
distribution. 

Class I 

Consider the class of distributions given by 

(3.1) 

The densities f € rl are thus mixtures of beta and uniform densities 
defined on the i~terval (0,1). For S > 0, these mixed distributions will 
have heavier tails than a pure beta distribution, reflecting our uncertain
ty as to the tail behaviour of the distribution of p. 

Consider the marginal distribution of xo under the mixture 
given by 

f s 

(3.2) 

The special cases £ = 0 and 1 correspond to the beta-binomial and discrete 
uniform distributions respectively, with 

(3.3) 

and 

The Bayes estimator of the value of p in the concurrent control group 
under the prior fs is then given by 

(3.5) 

where 

(3.6) 

and po(a,S) = (xo+a)/(no+a+S) is the Bayes estimator of p under a 

pure beta prior based on the data from the concurrent control group only. 

The Bayes risk of any estimator O(xo) of p is given by 
nO 2 

r(f£,O) I (O(xo)-p) m£(xo)' (3.7) 
xo=o 

where the Bayes risk of ° S 
satisfies 

r = ref ,0 ) = inf. r(f~,o) • 
£ £ £ u" 

(3.8) 

In order to find the best distribution in the class f l , the f-minimax 
criterion may be used to determine the most suitable value of the 
mixing proportion £. Thus, we seek £ = £* such that 

R = inf sup {r(f£"o£)-r£,} 
0<£<1 0<£'<1 

(3.9) 
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is attained at E 5 E*. The m1xlng proportion can be tound ~terat~vely 
by solving the equation 

r(fo,os*)-ro = r(fl,os*)-rl (3.10) 

for s*. (Although we have not examined the uniqueness of s* analytically, 
s* has been found to be unique in all of the examples we have considered to 
date.) We note that once s* is determined by minimizing the maximum Bayes 
risk of o(xO)' no further use of Bayesian ideas is required in the subse
quent analysis. 

Using the mixed density fs*€r l in place of fO leads to the score 
statistic 

where 

with the joint marginal null distribution of x under 

k (n,) 1 m (x) = IT ~ J pX(l_p)n-xf (p)dp. 
S - i=O xi 0 s 

In the special cases s = 0 and 1 we have 

and 

-1 k 
ml (~) = (n+l) IT 

i=O 

r(X-Kl)r(n-x+S) 
f (n-Kl+S) 

f s 

(3.11) 

(3.12) 

given by 

(3.13) 

(3.14) 

(3.15) 

respectively. It follows from (3.12), (3.14) an~ (3.15) that Al(~) in 
fact depends on the data ~ only through x. S~nce THC(l,l) ~ TCA , Tl 

may be essentially viewed as a linear combination of Tarone's statistic 
THC(a,S) and the Cochran-Arndtage statistic TCA • 

An exact expression for the variance of Tl is given in the Appendix. 
Asymptotically, we also have 

-1 as 2 
n V(Tl ) -+- [(l-s*) (a+S) (a+S+l) + S*/6]Od (3.16) 

in probability, given that f s * represents the underlying distribution 
of p. 

Class II 

When s* is large, f * will have relatively heavy tails. In order 
not to alter the mass in th~ central portion of the distribution, we 
consider the restricted class 

where are chosen so that 
c l J f(ple,p)dp 

o 

1 
J f(ple,p)dp = t 

(3.17) 

(3.18) 

(0 < y < 1). Thus, all densities fs € f2 assign mass (l-y) to the 
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It follows from (3.17) and (3.18) that 

c 2 
(l-Y) - J f(pla,p')dp 

c l 
e:=----=--------c 2 

(c2-Cl ) - J f(ple,p')dp 
c l 

(3.19) 

so that e: determines p' and vice versa. If p' = p, then e: = Oi as 
p' + p, e: + Y[1-(c2-cl )]-1 = e:0. Thus, we have 0 ~ e: ~ e:0. The priors 

fa and f~o are the e~treme~ ~n tb~ Cla66 r2 having the lightest and 
heaviest tails respectively. 

The Bayes estimator of p is now given by 

(3.20) 

where a' = a/p', S' (1-8) /p' and 

(3.21) 

with mO(xO) now defined as in (3.3), but (a',S') replacing (a,S). 
In analogy with (3.10), the value of e: = e:* using the r-minimax criter
ion is obtained by solving the equation 

(3.22) 

for e:*. The score statistic is then 

(3.23) 

where A2(!) has the same form as (3.21) with e:.= e:* and (a*,S*) 
corresponds to (e*,p*) with p* being the value of p' obtained from 
(3.19) with e: = e:*. 

Class III 

Although the mixed densities in r 2 maintain the same mass in the 
central part of the distribution as the original beta density, the mean 
of the mixed distribution will be greater than the mean of a pure beta 
distribution whenever 8 < 1/2. Thus, we consider a third class of 
priors defined by 

c 
r3 = {f (p) = (1-e:)f(pla,p')+e:f(pI8,e) :P'~, J f (p)dp=l-y}, 

e: 0 e: 

where c is chosen so that 
c 

As in (3.19), we have 

where ~** (1-6) 16. 

J f(ple,p)dp = l-y • 
o 

c 
(l-y)-l f(pI8,p')dp 

e: = ------------------S** c 
[l-(l-c) l-l f(pI8,p')dp 

(3.24) 

(3.25) 

(3.26) 
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In this -15** p' -+ 0 that 0 < e: < e: with case, e: -+ Y(l-c) =e:O as so 
- 0 

fo and f 
e:O 

being the extreme elements in r3• 

The Bayes estimator of p is given by 

(3.27) 

Here, A3(XO) is defined as in (3.21) with ml(XO) now being a beta
binomial distribution as in (3.3) with parameters a = 1 and S = S**. 

After finding the value of e:* as in (3.22), the score statistic is 

(3.28) 

4. Applications 

In order to illustrate the use of the methods developed in section 3, 
consider the two examples in Table 1 previously analyzed by Smythe et ale 
(1986) and Dempster et al. (1983) respectively. The values of 8 and p 
used in these two examples were estimated by maximum likelihood using 
actual historical control data. Although these estimates are subject to 
sampling error, we will assume for purposes of illustration that they are 
known constants which characterize the distribution of p. Note that while 
the means of the prior distributions are comparable in these two examples, 
the dispersion of the prior distribution as measured by p is much greater 
in example 2. 

The results of applying the tests for trend discussed in section 2 
and 3 to these data are summarized in Table 2. In the absence of prior 
information on the control response rate p, no strong evidence of an 
increasing trend in tumour occurrence with dose is provided by the 
Cochran-Armitage statistic TCA in example 1. With an informative beta 
prior for p, however, Tarone's statistic THC is indicative of a 
significant trend. 

Because this latter test may be expected to perform well only when 
the assumed beta prior is correct, we reanalyzed these data using robust 
mixed priors selected from classes I, II and III discussed in section 3. 

Table l. Two Examples of Experimental Data 

Example 
Parameters of Doses: dO' ••• '~ = 1 
Beta Prior 

8 p Response Rates: xo/no' •.• '~/~ 

l. Smythe et al. 0.085 0.004 0 0.5 1 
(1986) 2/20 6/49 10/49 

2. Dempster et al. 0.094 0.024 0 0.003 0.1 1 
( 1983) 3/55 3/57 5/60 10/55 
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Table 2. Tests for Trenda in Examples 1 and 2 

Test 
Example Statistic 

1 

2 

Prior 
Mean 

0.085 

0.347 

0.128 

0.085 

0.094 

0.321 

0.142 

0.094 

a Y = 0.10 in T2 and T3 

b (c1 'c2) = (0.0592,0.1131) 

c (O,c) = (0,0.1061) 

d (c1 'c2) = (0.0333,0.1769) 

e (O,c) = (0,0.1543) 

Prior 
Variance 

0.0003 

0.0929 

0.0252 

0.0020 

0.002 

0.088 

0.027 

0.004 

E* 

0.62 0.43 

0.11 0.86 

0.34 0.40 

0.56 0.86 

0.12 0.99 

0.50 0.81 

p-va1ue 

0.103 

0.003 

0.030 

0.002 

0.009 

0.004 

0.005 

0.017 

0.011 

0.005 

With T1, the p-va1ue in example 1 is greatly increased due both to the 
prior mean being shifted to the right (thereby reducing the linear trend 
estimated by T1) and the larger prior variance. 

With T2, which maintains the same mass in the central part of the 
mixed prior distribution as the original beta prior, the prior mean is 
again shifted slightly to the right, but far less so than with T1 • 
Although the mixed prior has larger variance than the original pure beta 
prior, the constraint on the mass in the central part of the mixture 
implies p* < p. Because of the larger weight assigned to the first 
component of this statistic (A2 = 0.86), T2 leads to a slightly more 
significant result than THe. 

with T3' mixing in a light tailed beta distribution highly skewed 
to the right rather than a uniform distribution leads to a relatively 
small prior variance. Because most of the weight (1-A3 = 0.60) is 
assigned to the component of T3 with the larger prior variance, the 
significance level is somewhat greater than that for T2 . 

The prior distributions for example 1 are illustrated graphically in 
Figure 1. Note that the prior for Tl is much more diffuse than the prior 
for THe due to the lack of any constraints on the mass in the central portion 
of the distribution. The priors for T2 and T3 are more peaked than that 
for THe in the central portion of the distribution, but have heavier tails. 
The left tail for T3 is notably heavier than that for T2 due to the 
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greater weight placed on small values of p in the former case. 

In example 2, the mean and variance of the three mixed priors demon
strate similar effects as observed in example 1. Although both TCA and THC 
lead to similar significance because of the larger dispersion of the orig
inal beta prior, the results provided by the robust test statistics Tl and 
T2 are somewhat less significant. With Tl, this is again largely due to 
the notably larger prior mean. 

5. Robustness Properties 

One problem with the use of a pure beta distribution to model the vari
ability in the historical control data is that the estimates of the para
meters a and S in (2.4) can be strongly influenced by the inclusion or 
exclusion of a single data point. This was pointed out by Tamura and Young 
(1986) in an early draft of their paper, although direct discussion of this 
issue was deleted from the published version in the interests of brevity. 

To illustrate this point, consider the hypothetical sequence of histor
ical controls given in Table 3. Note that the estimated values of a and S 
are somewhat sensitive to the deletion of individual data points, as pre
viously noted by Tamura and Young (1986). Although the estimated values 
of e are more stable, the estimates of p remain somewhat variable. 

consider now the hypothetical bioassay data in Table 4, which, by 
themselves, provide little evidence of a dose response relationship. Using 
TCA without historical controls, the p-value is 0.20. With the full set of 
historical control data from Table 3, however, the p-value based on THC is 
0.046. 

Table 3. Estimates of the Parameters in the Beta Prior Based on a Hypo-
thetical Sequence of Historical Controls Deleting Individual Data Points 

Historical Control Frequency Parameter Estimates 
Response of Deleting One Observation 

Rate Occurrence A S A A 

a e p 

0/50 7 2.9 89.8 0.032 0.011 

1/50 4 2.0 62.2 0.030 0.016 
2/50 4 1.8 59.6 0.029 0.016 
3/50 3 1.9 66.4 0.028 0.015 
4/50 1 2.4 84.0 0.027 0.012 
5/50 1 3.7 136.1 0.026 0.007 

Table 4. A Hypothetical Example of Experimental Data 

Example Parameters of Beta Prior Doses: dO""'~ = 1 

e p Response Rates: xo/no""'~/~ 

3 0.030 0.013 0 0.5 1 

2/50 3/50 4/50 
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In order to explore the robustness of the latter statistic, we re
computed the p-values after deleting in turn each of the six distinct 
historical control data points (Table 5). Depending on the point excluded, 
the resulting p-values for THC ranged from 0.017 to 0.053, casting some 
doubt on whether or not the original result with THC should be considered 
significant at the nominal 5% level of significance. An examination of 
the corresponding results for Tl' T2 and T3 reveals less variation in the 
p-values obtained after deleting a point with T2 and T3• 

6. Summary and Conclusions 

The tests for trend in carcinogen bioassay data for use with histori
cal controls proposed to date have been based largely on the assumption 
that the binomial response rate in the control group varies among studies 
in accordance with a beta distribution. Because this distribution has 
relatively light tails, we considered several classes of mixed distribu
tions having heavier tails than the beta. The optimum value of the mixing 
parameter is obtained using the r-minimax criterion. TWo of these 
statistics (T2 and T3) were also shown to be more robust than the tradi
tional statistic (THC ) with respect to deletion of an individual historical 
control data point. 

Appendix A: Variance of the Score Statistic with Mixed Historical Control 
Distributions 

Consider the general form of the mixed distribution for the response 
probability in the control group given by 

(A. 1) 

Note that all of the mixed distributions in the classes r l , r 2 and r3 in 
section 3 are special cases of (A.l). Note also that under (A.l) the 
test statistic can be written as 

(A.2) 

where A(~) is defined as in (3.12). This statistic can be expressed as 

Table 5. 

Historical Control 
Response Rate 

0/50 

1/50 

2/50 

3/50 

4/50 

5/50 

Tests for Trend in Example 3 After Deleting 
One Historical Control Observationa 

p-values 
THC Tl T2 

0.048 0.119 0.025 

0.053 0.139 0.024 

0.049 0.144 0.021 

0.041 0.132 0.017 

0.030 0.110 0.013 

0.017 0.079 0.009 

a y 0.10 in T2 and T3 
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T3 

0.029 

0.035 

0.035 

0.031 

0.025 

0.019 



T = Ex.d.-nd H(x) 
J J n -

where d = En.d./n and 
n ~ ~ 

x+a x+a* 
H(~) = A(~) n+a+S + (l-A(~» n+a*+S* 

Note that H(~) dep~nd~ Qn the ~~t~ Qn.y throijgh x. 

From (A.3), we have 

- - 2 VeT) = V(Ex.d.)-2(nd )Cov(Ex.d.,H(x» +(ndn) V(H(~», 
JJ n JJ-

where 

V(Ex.d.) = ECV(Ex.d.lp)] + VCE(Ex.d.lp)] 
JJ JJ JJ 

(En.d~)ECP(l-P)] + (ndn)2V[Pl. 
J J 

Under (A.l), 

and 

E(p) a a* 
(l-e) a+S + e a*+S* 

2 (a+l) 
E(p ) = (l-e) (a+S) (a+S+l) -:.....,..;a::.,*:-'(~a'-:*..:..+l~):..,,---:-.,+ e (a*+S*) (a*+S*+l) , 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

(A.8) 

from which ECp(l-p)] and vCp] can be calculated easily. Further, 

Cov(Ex.d.,H(x» =Ed. Cov(x.,H(x» 
JJ - J J-

(A.9) 

with 

Cov(x.,H(x» = E x.(H(x)-E(H(x»)m (x), 
J - x J - - e-

(A.10) 

where 

a a* 
ECH(~)] = (l-e) a+S + e a*+S* ' (A.ll) 

and me(~) is the marginal null distribution of ~ under (A.l) defined 
as in (3.13). Note that m£(~) can be written as 

where 
1 

M(x) = f pX(l_p)n-xf (p)dp 
o £ 

depends only on x. Noting that (A.4) also depends on 
follows from (A.10) that 

x only, it 

COV(X.,H(x» = I (H(~)-E(H(~»)M(x) I x.[~ (:~J] 
J - x=o x : Ex . =x J ~ ~ 

- J 
n 

= n. I (H(~)-E(H(~»M(x) (~) ; 
J x=o 

(A.12) 

(A.13) 
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Thus, (A.9) can be easily evaluated using (A.13). Finally, it can be 
easily shown that 

V(H(~» 

n 
L (H (~) -E (H (~) » 2M (x) (~). 

x=O 
(A.14) 

V(T) can now be calculated using (A.5), (A.6), (A.9) and (A.14). 
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DECOMPOSITION OF WEIBULL MIXTURE-DISTRIBUTIONS 

IN ACCELERATED LIFE TESTING BY BAYESIAN METHODS 

INTRODUCTION 

Harald Strelec 

Institute of Statistics 
Technical University of Vienna 
Vienna, Austria 

Practical reliability analysis shows that in most cases a bathtub like 
hazard rate function best fits real life time data. This fact can be ex
plained by a succession of time intervals in which early failures dominate 
in the first one, random failures in the second one and wear-out failures 
in the last part (see fig.1). But whereas there are many probability distri
butions which can describe monotonic hazard rate functions unfortunately 
there are only few ones which have bathtub like hazard rate functions. Per
haps the best one among the latter ones is the model of Hjorth (1980). He 
used three parameters to treat the problem. But the applicability of this 
model seems to be constrained. 

Roughly speaking there are two simple models for describing bathtub 
like hazard rate functions which are using compositions of simple probabi
lity distributions. In one case this is done using an own probability 
distribution for each of the three time intervals where the starting points 
of these distributions equal the break points of the time area. This model 
is of certain mathematical simplicity but can only describe the fact of 
bathtub like hazard rate functions and not explain it. 

1.0 

0.5 

o 
o 2 3 4 5 6 7 8 9 10 11 

t 
12 (X10 3h) 

Fig. 1. Bathtub like hazard rate function h(t) (mean life 
time: 2 300 h). Region I corresponds to early type 
failures, region II to completely random and region 
III to wear-out failures. 
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On the other hand the life time distribution may be given by a super
position of three simple probability distributions (for instance Weibull 
distributions) where each of the latter ones describes one of the above 
mentioned failure types. Using this model we are able to explain the pheno
m9non of bathtub likQ hazard rat9 functions in an almost 9xact way. Th9 dQfi
nition and analysis of this model is given in the following chapters. 

THE MIXTURE MODEL 

As mentioned before a mixture model seems to be an appropriate way of 
describing and explaining life time distributions with bathtub like hazard 
rate functions. Corresponding to the three different failure modes a mixture 
of three life time distributions seems to fit best where the first one has 
decreasing failure rate, the second one (nearly) constant and the last one 
increasing failure rate function. The cumulative distribution function for 
the global life time is now given by 

F(t) 
3 
E 

i=1 
p .• Pr (T~t I G . ) l. l. 

3 
E 

i=1 
p .• F.(t) l. l. for t>o (1) 

where G1,G2 ,G3 are the three subgroups of the total production corresponding 
to early, random or wear-out failing with portion p. (i=1,2,3). The (condi
tional) life time distribution for each subgroup isl.given by the cumulative 
distribution function F. (i=1,2,3). l. 

The hazard rate function h(t) in the mixture model (1) is now 

f(t) 3 Ri (t) 
h (t) = R(t) = E hi (t) .p i.""R('t") for t> 0 

i=1 
(2) 

with R(t) = 1-F(t) (resp. R. (t) = 1-F. (t» being the reliability function 
(survival function). It showsl.a weight~d mean of single hazard rate func
tions h. (t) with (time dependent) weights w. (t) = p.R. (t) IR(t). 

l. l. l. l. 

As it is possible to describe increasing, decreas~ng and constant 
failure rate functions by special Weibull-distributions the mixture (1) may 
be assumed to consist only of Weibull components. The cumulative distribu
tion function is therefore given by 

F(t) 1 -
3 
E 

i=1 

Tl i 
p .• exp(- (t/l'.) ) 

l. l. 
for t>O (3) 

with scale parameters 0 < 1'1 < 1'2 < l' 3 and shape parameters 0 < Tl1 < 1 < Tl3 
and Tl2=1 (or close to 1). The hazard rate function is therefore of the 
form 

h(t) 

Tl i 
3 Tl i t Tl i -1 exp(- (t/l'i) ) 

E (:r.-) (T.) .Pi·~3----~---
. 1 TlJ. l.= l. l. " ( (I ) ) '" p .• exp - t 1'. 

j=1 J J 

corresponding to relation (2). 

for t>O (4) 

Unfortunately using this Weibull-mixture the resulting hazard rate 
function is not quite of the form shown in fig.1 but is decreasing after 

456 



R(t) h(t) 
(x 10- 3 ) 

1.0 0.5 

0.8 0 . 4 

0 . 6 0 . 3 

' -
0 . 4 0 . 2 

0 . 2 0.1 R (t) I 

-- - - .-~ I (x10 3h) ~ .. - ... - - ~ I " j- - ,. -
0 234 5 6 7 8 9 10 11 12 13 14 15 t 

x 3 

Fig. 2. Hazard rate function and reliablity function of a Weibull-mixture 
with weights Pl=O.l, P2=0.6, P3=0.3, scale parameters '1=1000h, 
'2 =2000 h, '3=6000 h and shape parameters n1 =0.5, n2 =1. 0, n3 =2.0 

the bathtub like period and tends to zero for increasing t (see fig.2). 
This fact is caused by the dominance of Rl (t) over R2 (t) and of R2 (t) over 
R3 (t) for large t so that 

lim w2 (t)/w1 (t) = lim w3(t)/w2 (t) = 0 • 
t-- t--

(5) 

But in spite of that it does not matter from a practical point of view as 
long as the bathtub like period 0 < t ::0 t' is important enough in the 
sense -that 

t' 
R(t') = exp(-fO h(t)dt) 

is close to ~~ro. For instance if R(t')::o 0.01 should be fulfilled there 
must hold fo h(t)dt~4.6 • 

Therefore to ensure the above requirement some analytical conditions 
on the parameters of the mixture model must be imposed: these are 

• the three subpopulations should be evidently seperated by the scale 
pa~ameters (characteristic life times) where '3 should be at least 
tw~ce '2; 

• the portion P2 must not exceed P3 for a greater amount and it is all 
the better the more P3 exceeds P2; 

• the portion Pl should be small. 

Simulation studies show that the influence of changes of the mixture para
meters on the hazard rate function of the mixture is moderate which is 
important for the Bayesian analysis of this model. 

ACCELERATED LIFE TESTING AND DECOMPOSITION 

For products of high reliability (e.g. semiconductor technology) often 
mean life times of 10 6 hours and more can be found. For these items life 
testing under environmental conditions is unsatisfactory. Because either it 
takes too long time and is therefore senseless from an economical or tech
nical point of view on the one hand or life tests have to be performed 
highly c~nsored on the other hand. In the latter case the estimations of 
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the life time distribution are then comrarativelr bad because of the ~reat 
influence of the early failures observed at censored life testing at an 
obviously higher rate. 

Accelerated life testing is almost the only efficient possibility to 
treat the above mentioned problem. If it is possible to find the dependence 
between life time distribution and the stress level under which the items 
are tested and have to work, results found for high stress levels within a 
comparatively short time of te~t may be used to describe the life time dis
tribution under a low usual stress. A rough survey is given by Strelec 
(1984), more details are found in a monography by Viertl (1987). 

Of course life testing and especially accelerated life testing is per
formed to get information about the whole life time distribution. But when 
considering the decomposition problem at life time distributions with bath
tub like hazard rate function most attention is put to that part of life 
time distribution which corresponds to early failures. Questions are of 
great interest concerning the portion of early failures and life time cha
racteristics of that set of items. But it is almost impossible to get esti
mates for these parameters at usual stress and highly censored sampling 
because almost only early failures could be observed during this starting 
phase of sampling and these would then influence any estimation of life 
time characteristics very strongly and make them senseless. On the other 
hand sensibly organized accelerated life testing can reduce observed life 
times to a great amount so that it is possible to get information not only 
by the early part of the life time distribution but instead of that infor
mation is obtained from (almost) the whole range of the life time distri
bution. Therefore it is possible to find good estimations for the distri
bution of early failures (i.e. the first component of the mixture) for high 
stress levels which may be evaluated for usual stress by known relationships. 

In order to describe the above mentioned relationship of life time 
characteristics and the stress level under which a certain device has to 
work parametric models for all life time and mixture characteristics of the 
underlying mixture distribution (3) are assumed in the following way: 

(i) The portions p. are stress independent for i=1,2,3, that means that 
there is (almo§t) no influence to the proportion of failure types 
caused by the underlying stress level. 

(ii) For the scale parameter T. = T . (s) 
~ ~-

generally a model of the form 

(6) 

with some (stress independent) parameters c. 1, ••• ,c. (i=1,2,3) is 
given. Examples are given by some of the cl~ssical ~ri parametric 
models like Arrhenius model, Eyring model or power rule. 

(iii) The shape parameters n. are described by 
~ 

n.(s} =exp(b.l!sll) 
~ - ~ - (7) 

with b1 < 0, b = 0, b3 > 0 so that n. may either increase or decrease 
with ra~sing stress level. Of course~this simple model is admissible 
only in a reasonably (that means practically) constrained area of 
stress levels which is no real constraint because in life time ana
lysis generally acceleration models of course are not appropriate for 
the whole area of possible but not senseful stress levels. 

Within the above relations ~ = (s1' ... ,sk) I is the vector of stress compo-
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nents (like voltage, temperature, humidity or the like) and II~ \I stands for 
some appropriate norm for this stress vector (e.g. Euclidian, weighted sum 
of abo lute components or similar). A slight simplification of the above 
model may be achieved when (iii) is substituted by 

(iii') The shape parameters n1 and n3 are stress independent. 

A further great advantage of the above model especially in connection 
with Bayesian analysis is given by the fact that it is not necessary to con
sider an own prior distribution for any of the parameters t, (~) and probably 
n,(s) (i=1,2,3) for each stress level s what is tedious if there are many 
different stress levels at which life time data are observed. Contrary to 
that the above model reduces the number of unknown parameters to c, ,and b, 
for which prior distributions are necessary anylonger. So life dat~Junder~ 
different stress levels may be analysed easily within one single step. 

BAYESIAN ANALYSIS IN ACCELERATED LIFE TESTING 

For the following analysis the power rule model 

t, (s) 
~ -

is assumed for the scale parameter ti (i=1,2,3) so that the number m of 
parameters to be estimated is at most 10, namely 

2 
6 
2 

for the 
for the 
for the 

mixture P?rtions P1 and P2' 
cil ,ci2 (~=1,2 ,3) , 
b1 and b3 for the shape parameters 

(8) 

This analysis is based on a set of r (an) samples 1;;1 = (tl1 , ••. , tl )' of 
life data observed at life tests under stress level ~l. The choicenl of 
these stress levels depends on economic and precision arguments and is a 
problem of experimental design. 

The likelihood function for such a set of life data received from 
uncensored experiments is then given by 

with 

n, (sl) 
bill~lll 

e 
~ -

and 

c'2 
T, (sl) cil ·1\ ~lll ~ 
~ -

for i=1,2,3 • This typical form of likelihood for mixture models makes suf
ficiency completely impossible so that only numerical solutions can be 
achieved. 

A set of assumptions is put to possible prior distributions for the 
parameters of the considered model (9) which should be taken into account 
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at the first step of analysis. These are 

(Pl) A Dirichlet distribution D(~) for the portions p. (i=1,2,3) with 
~ 

~ = (a1 ,a2 ,(3) , is assumed so that 

(P2) 

a.-I 
~ 

3 Pi 
f(a ) II f( ) 

o i=l ai 

The domain of n1 is restricted to 0 < n < 1 
hold. In the same way n3> I resp. b3 ~ 0 
distributions y(a1 ,SI) and y(a3 ,S3) for 
good approximation for prior distributions. 
a 1 = a3 = Sl = S3 = 1 is suggested. 

so that b 1 < 0 should 
has to be fulfilled. Gamma 
!b1 ! and b3 seem to be a 
For the first step 

(P3) The shape parameters n1 and n3 are mutually independent and independent 
from all the other parameters. 

(P4) The prior distributions for the parameters c .. are independent for 
different failure modes and restricted to po§1tive real numbers. For 
the first step uniform priors for suitable domains could be assumed. 

Considering the 
the 10 parameters of 
meters given the set 
of the form 

above noted assumptions on the prior distributions for 
the model (9) the posterior distribution of these para
(t1 , •.• ,t ) of samples at different stress levels is 
- -r 

3 
(10) 

with £ = (Pl ,P2 ,P3) " ~ = (b1 ,b3) " ~ = (cll ,c12 ,c21 ,c22 ,c31 ,c32 ) '. This 
relation is of a form where only numerical metfiods are poss~ble for the 
solution. Of course the above mentioned assumptions are not valid for the 
posterior distribution anylonger. Because of the complexity of the model 
the assumptions about independence of some parameters are at least slightly 
disturbed and the posterior density cannot be factorized sensefully any
longer. Then numerical analysis would become slower because of the given 
number of function calls a computer program would need and therefore 
Bayesian analysis would lose much of attractivity. 

One possibility to treat the last mentioned problem is to make use of 
the fact that generally speaking dependencies caused by evaluating the 
posterior distribution (10) are comparatively small. Doing so the assump
tions (PI) - (P4) have only to be updated by the information given by the 
posterior distribution. For instance updating of the assumed distribution 
for p is possible by finding a good approximation of the posterior distri
bution by an appropriate Dirichlet distribution. If equal mean values and 
variances for p are required new values for a are given by 

a . = p .• k 
new,~ ~ 

i=I,2,3 

where 

k 
3 -2 _ 2 3 2 _ _ 
E p. (l-p.) / E 0 .p. (l-p.) - I 

i=l ~ ~ i=l Pi ~ ~ 

with 

P. =E(P.!t1, ••• ,t) and 0 2 =var(p.!t1,···,t ) 
~ ~ - _r Pi ~ - -r 
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In a similar way the posterior distribution for b and b3 may be redefined. 
If the same requirements are put to the approximations as above a and a of 
the Gamma-distributions are given by 

2 -a new,i 0b lb. 
• 1. 
1. 

and i=1,3 . 
anew,i = 

-2 2 
b./°b 1. • 

1. 

If needed the distribution of c may be redefined too in the same way. Any 
further analysis like Bayesian-point or interval estimation or the determi
nation of prediction intervals (e.g. for early failures) may now be con
tinued. 

The integration procedure for the evaluation of posterior distributions 
and posterior characteristics may be of a simple type because of the smooth 
form of prior distributions and likelihood without any singularities or 
other difficulties. An appropriate procedure is given in the following way: 

• Define a multidimensional rectangle (at most 10 dimensions) so that 
the posterior distribution (10) vanishes (at least almost) outside this 
area. 

• Take a sequence of grids where each of them is created from the prece
ding one by doubling the number of pOints of support. 

Evaluate an approximation to the integral for any grid using rectangu
lar rule. 

Perform a modified Rhomberg-integration by interpolating those approxi
mate integral values by rational functions using Stoer-algorithm (see 
Stoer, 1972). 

This method may be applied within a broad spectrum of computer configura
tions. If memory is great enough so that a great part of function values may 
be stored computer time can be reduced significantly especially when using 
the redefinitions of the posterior distribution. On the other hand such a 
program works also at an AT-compatible personal computer without any memory 
demands but with a comparatively great amount of computer time. In any case 
senseful results can be achieved by a senseful effort. 
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ROBUST BAYESIAN METHODS 

Daniel Thorburn 

Department of Statistics 
University of Stockholm 
Stockholm, Sweden 

1. INTRODUCTION 

With robust statistics we mean methods that work well, if a chosen 
model is true and that are acceptable if the model is only an approxima
tion. But if the model is far from the true one robust methods may be very 
bad (Huber 1980, Hampel & al 1986). Thus robust statistics should be used 
whenever we know that the chosen model is only an approximation to the true 
model. 

A true Sayesian should describe his beliefs in his prior. He should 
then use his prior to compute his posterior. The uncertainty about a pro
bability distribution (density function) could be modelled in the following 
way. The true distribution, ~(x,e), is the product of a chosen model 
fo(xle) and a small random multiplicative noise exp(£(x». The noise 
£(x) is a priori a stochastic process, which fluctuates around zero. Note 
that the distribution of the noise may be modelled to depend on the unknown 
parameter e, and that both x and e may be multidimensional. 

In a normal Bayesian model the parameter e has a prior, ~(e), and the 
objective of the calculations is to compute the posterior ~(elxl,x2, .•. ,xn). 
The posterior is proportional to 

~(e) E{f(xl,x2, .•. ,xnle)lxl,x2, •.• ,xn,e} 

~(e) rr~ fO(xile) E{exp(E~£(xi)~xl,x2, .•• ,xn,e} 
(1.1) 

We have here assumed that the observations are exchangeable or, in other 
words, that they are independent given £ and e. In this paper we do not 
consider robustness against the exchangeability assumption. Nor do we con
sider robustness against misspecifying the prior. 

The expression (1.1) is often difficult to compute. In this paper we 
shall derive a first order approximation, which is good as long as the noise 
£(x) is small. We shall also give some examples of its performance in the 
location parameter case. 
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2. THE GENERAL CASE 

If e had been a Gaussian process with mean m(x) and covariance 
o(x,y), the expected value in (1.1) would have been exactly 

exp {E(E~e(xi» + Var(E~e(xi»/2} 

exp {E~m(xi) + E~E~0(xi'Xj)/2}. 

Unfortunately, e cannot be exactly Gaussian, since 

(2.1) 

(2.2) 

is a nOh-linear restriction on the sample space. But if e is small, this 
restriction can approximately be replaced by the linear restriction 

In the following we will assume that e is a Gaussian process subject 
to the condition (2.2). Thorburn (1986) showed that this is a valid prior 
distribution. We also assume that the covariance function is so small that 
(2.2) can be replaced by (2.3). Under that condition we get from standard 
theory of conditional normal distributions 

Jo(x,s)fo(sIS)dsJfO(sIS)m(s)ds 
ml (x) = E(dx)I') = m(x) - JJo(s,tHo(slsHO(tIS)dsdt (2.4a) 

0 1 (x,y) = Cov(dx) ,dy) I,) = 

Jo(x,s)fo(sls)dsJo(y,s)fO(sls)ds 
=o(x,y) - JJo(s,t)fo(sIS)fO(tIS)dsdt 

These approximations and (2.1) give the following result. 

(2. 4b) 

Result 2.1 Let xl,x2, .•• ,xn be independent and identically distributed 
random variables given the density ~(x,S)=fo(xIS)exp(e(x)). Further S 
has a prior ~(a) and e is a small Gaussian process with mean value 
function m(x) and covariance o(x,y) conditioned by J~(x,S)dx=l. The 
posterior of a is then approximately proportional to 

~(S) II~fO(xils)exp (E~m'{xi)+E~E~a'(xi,xj»' 

where ml and 0 1 are given by (2.4). 

With this formulation a is not a unique function of the true density 
'(x,a~ since the random fluctuations may take different fo{xls) into 
the same ~(x,S). In many applications, however, S should be uniquely 
determined by the true distribution, e.g. be its mean or median. This can 
easily be solved by adding further conditions to the distribution of the 
no i se, e. g. 

(2.5) 

or 
S 
ffo{sla)exp{e{s»ds = 0.5. (2.6) 

Let C denote all the conditions imposed on e, {e.g. (2.2) and 
(2.5», and C1 be the corresponding linearized versions (e.g. (2.3) and 
Jsfo{sle)e{s)ds = 0). Correspondingly we let m~ and a~ be the condi
tional mean and covariance of e given CI. We then have the more general 
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result that the posterior is approximately proportional to 

7f(S)III'I1fO (x.ls)exp O::1'I1ml (x.)+~nlLnlol (x.,x.)I2). 
I c I C I J 

(2.7) 

Remark 2.1 This is an approximation, which can be used only when the 
deviations from the model fO are small. What is meant by small may de
pend on the size of the sample. If n is five the noise E may be bigger 
than if n is one hundred. It should also be noted that the approximation 
may be very bad when a is far from e. As a consequence the approximated 
posterior may falsely become large far out in the tails. 

3. THE GAUSSIAN LOCATION PARAMETER CASE 

In this section we assume that 

fo(xla) = exp(-(x-a)2/2)/!:fIT, 

and that the no i se dx+e) is independent of 
simplicity we assume the diffuse prior for a 

a a priori. For 
i.e. 7f(e)a:l. 

The posterior distribution is thus approximately proportional to 

exp(-tE~(xi-e)2+~~m~(xi-a)+}E~E~0~(xi-e'Xj-e», 
where m~ and a~ are the conditional mean and covariance function of E. 

A natural choice of the mean value function, m, is zero, i.e. that 
the most likely log distribution is the model InfO' Another choice is 
m(x)=-02(x)/2 which implies that the expected value of the density is fO' 
The second choice is probably not so good if the true distribution might 
have thicker tails than the normal one, since that choice implies that the 
most likely log density has thinner tails. We mostly use the first choice. 

The choice of the covariance function requires a little more care. It 
should both reflect the prior opinion on possible departures from the model, 
fO(x,a), and be mathematically and computationally convenient. We will 
first give one simple example, that is unacceptable from many points of 
view but still gives some insight. 

Example 3.1 "Stationary, differentiable noise": 

0(x,y)=oexp(-k(x-y)2). 

If C is the condition (2.2), simple calculations show that 
k 2 2 

2 oexp(- 2k+l «x-a) +(y-a) » 
01 (x,y)=oexp(-k(x-y) ) - ° 5 
c (2k+l)/(4k+l) . 

The exponent in the posterior is thus proportional to 

1 2 (4k+ 1 ) 0. 5 k 2 2 
E(-z(X(e) )- 2(2k+1) o(~exp(2k+T(xj-e) » 

J 

The maximum value is obtained for a e, that is a weighted average of the 
observations x. with the following weights: 

I 

1 - 2k(4k+l)o.5 o(Eexp( ___ k __ (x._S)2» exp(-2k~1(x'l- 6)2). 
(2k+l)2 2k+l J 
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The observations far from 6 have thus larger weights than those near 6. 
When one is uncertain about the central part of the density, but knows that 
the tails should be similar to the normal distribution this covariance 
function can be used. 

The variance cr(x,x} should increase faster than xl in order to 
give smaller weights to the observation far from x. On the other hand the 
covariance function should not increase so fast that the far tails might 
contain a large part of the probability mass. If cr(x,x}>xlnl for large 
x, the posterior density gets false maxima in plus and minus infinity. 

It is often believed that if the tail is thicker three standard 
deviations away, it is probably thicker than the model fO five or ten 
standard deviations away too. It is thus sensible to model larger corre
lations in the tails than in the centre of the distribution. 

4. NUMERICAL EXAMPLES 

The examples in this section are all computed numerically on a com
puter. We have not been able to find covariance functions which reflect 
all the properties we want to model, such that it is possible to do all 
the integrations exactly. 

In the numerical examples below we have used the covariance function 

(b+l}lx,ly,l (d+l}x (d+l}y 
cr(x,y}=a«b+x') (b+y,)}exp(-cl d+x' - d+y' I), 

where x ' =max(l,lxl) and y ' =max(l,lyl). The parameters of this function 
could be interpreted in the following way. The variance cr(x,x)=a in the 
interval (-1,1). The variance cr(x,x) then increases roughly as x4 
immediately outside this interval. The rate of increase smoothly changes 
to xl at plus or minus infinity. The change takes place at about the 
points b and -b. The correlation near origin decreases exponentially as 
exp(-clxl). Finally the dependence of the extreme tails increases with d 
and c. An approximate rule says that the tails start at ±cd2 . 

Our experience from the numerical computations is that the magnitude 
of the noise is the most important parameter, but that the posterior dis
tribution is changed in the same direction for all levels of a. For large 
values of a the approximations sometimes break down, particularly if b 
is chosen large and c small. However, it is very clear from the result, 
when the method works and when it does not. For most sample sizes and 
situations an a below 0.01 seems to work. The other parameters can be 
chosen rather freely, without affecting the result too much. The best 
choice for robustness against outliers, seems to be a large c and a small 
cdl . 

In the four examples below four different robust posteriors are com
puted. The first three assumes that m=O and the fourth assumes that 
m=-crl/l. In the first and fourth case we only condition by (l.l). In the 
second and third case we also condition by (l.S) or (l.6) so that mean 
and median, respectively, is preserved. 
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Example 4.1 A correct model 

One hundred normal random numbers were generated. Their sample mean and 
standard deviation were 4.90 and 0.94. The parameters of the prior co
variance were chosen to be a=O.Ol, b=10, c=l and d=5. The resulting 
posteriors are given in Fig. 4.1. The standard posterior and the robust 
ones, where the mean and median are fixed are impossible to distinguish 
from the figure. The two other robust posteriors are a little wider. 

4.4 4.6 4.8 5.0 5.2 

Figure 4.1 Posterior distributions of 6 after 100 random normal 
numbers. Thick line: Standard normal and robust with 
median or mean fixed by the true density. Thin line: 
Robust with m=O. Broken line: Robust with m=-cr2/2. 

Example 4.2 Bimodal distribution 

Twenty normal random numbers with mean zero and ten with mean two were 
generated. The sample mean and deviation became 0.71 and 1.44. The para
meters of the prior mean and covariance were chosen to be a=O.Ol, b=5, 
c=2 and d=l. The resulting posteriors are given in Fig. 4.2. All the 
robust posteriors are flatter than the standard normal one, but they are 
still centered around the same point. 
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Figure 4.2 Posterior distributions after 30 random numbers from a 
mixed normal distribution with means 0 and 2. Thick line: 
Standard posterior. Thin line: Robust with m=O. Broken 
line (long dashes): Robust with fixed mean. Dotted line: 
Robust with fixed median. Broken line (short dashes): 
Robust with m=-cr2/2. 

Example 4.3 An outlier 

We constructed a data set with one outlier: 0, 1, 1.5,2,2.5,3,3.5,4, 
5, 22.5. The sample mean is 4.5. The parameters of the prior covariance 
were chosen to be a=0.005, b=10, c=5 and d=O.S. The resulting poster
iors are given in Fig. 4.3. In all the cases with m=O, the robust proce
dures moved the posterior to the left, i.e. they gave less weight to the 
outlier. The robust procedure with m=cr2/2 did not give a sensible answer. 

Figure 4.3 Posterior distributions after ten observations with one 
large outlier. Thick line: Standard posterior. Thin line: 

468 

Robust with m=O. Broken line: Robust with fixed mean. 
Dotted line: Robust with fixed median. 



1. 5 -

1.0 

0.5 

I 
-1.0 -0.5 0.0 0.5 

Figure 4.4 Posterior distributions after 50 Cauchy distributed random 
variables. Thick line: Standard normal posterior. Thin 
line: Robust with m=O. Broken line (long dashes): Robust 
with fixed mean. Dotted line: Robust with fix~d median. 
Broken line (short dashes): Robust with m=-cr /2. 

Example 4.4 Cauchy distribution 

Fifty observations were generated from a standard Cauchy distribution. The 
extreme outliers were -23.10 and -18.67. The sample mean and deviation be
came -0.85 and 5.06. The parameters of the covariance function were chosen 
to be a=0.005, b=5, c=10 and d=0.5. The posteriors are given in Fig.4.4. 
All the robust procedures shift the posterior towards the median -0.20. 
An interval based on the 19th and 32nd ordered observation is (-0.83, 0.18). 

These examples can be summarized in the following way. This method to 
obtain robust posterior distributions works quite well if the true model 
is in the neighbourhood of assumed model. However, in many situations where 
robust models are considered in the literature (Andrews & al 1972, Hampel 
& al 1985) the deviations are sometimes too large for the present method. 
In such cases the present method only indicates the direction in which 
the posterior should be shifted. 

5. CONCLUDING REMARKS 

In this paper only second order approximations were studied. It is 
possible to include fourth order corrections in Result 2.1. However, in 
order to get fully satisfactory results also for more distant alternatives 
other models must be considered. 

In this paper numerical results were only given for the simple case 
with a standard normal distribution with known variance. The method works 
equally well for other one-parameter models, such as Poisson. The multi
dimensional case is numerically a little more tedious, since a multi-
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dimensional posterior must be computed, but no new theoretical problems 
are involved. 

Consider a more general model e.g. the linear model where 

In that case it is not reasonable to assume that the distribution of 
Yi-E(Yile) is dependent of e. This may be assumed as a first approxima
tion in the underlying model, but not in the robust version. For that 
situation further developments must be made. 
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IS IT NECESSARY TO DEVELOP 

A FUZZY BAYESIAN INFERENCE ? 

ABSTRACT 

Reinhard Viertl 

Institut fUr Statistik und Wahrscheinlichkeitstheorie 
Technische Universitat Wien 
1040 Wien, Austria 

In applications data used for updating a-priori information are often 
fuzzy. These fuzzy data are usually not described by standard Bayesian in
ference. Statistical analysis has to take care of this fuzzyness which can 
be described by fuzzy numbers. Therefore the resulting fuzzyness of a-post
eriori distributions has to be modelled and an analogue of predictive di
stributions under fuzzyness must be developed. Moreover for a fuzzy obser
vation it is not always possible to decide if it is a member of a certain 
event. This kind of uncertainty states the following question: Is additivity 
for the measurement of uncertainty in general valid or a generalization of 
probability, postulating superadditivity, necessary. 

1. INTRODUCTION 

The elements of standard Bayesian statistical analysis with stochastic 
model x~f(xle), eEO are 

a) subjective a-priori information 
b) objective data 

where the a-priori information is expressed by the a-priori distribution 
and the data are considered as fixed numbers or vectors. 

But in reality for nondiscrete observations usually fuzzyness is ob
served. This fuzzyness can be modelled by fuzzy numbers x* which are gene
ralizations ~(x) of numbers x and indicator functions IA(x). Typical exam
ples of fuzzy numbers x* =~(x) are given in figure 1 on the next page. 

Fuzzy data D* = (~1 (x), ••• '~n (x» are consisting of n fuzzy observations 
~l(x), ••• ,~(x). This data set has to be used for statistical inference. 

One could think of using probability densities instead of fuzzy obser
vations. The reason why this is not generally reasonable is the probably 
insufficiency of probability measures to model uncertainty in general as 
described in section 3. 
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0.0 0.0 
1 

3.9 4.0 4.1 4.2 4.3 4.4 3.9 4.0 4.1 4.2 4.3 4.4 
Observation x* Observation x* 

Figure 1. Examples of fuzzy numbers x* = (j)(x) as model for fuzzy observations 

2. BAYESIAN INFERENCE FOR FUZZY DATA 

Starting with an a-priori distribution n(8) for the parameter 8 des
cribed by a stochastic quantity e Bayes# theorem 

n(8ID) « n(8).1(8;D) 

for precise data D can be used for fuzzy data D* = «(j)1 (x) , ••• ,(j)n (x» 
with xEIR in the univariate case. 

One possibility is to 

* n x = (j)(x) = n (j). (x, ) 
- - i=l 1 1 

use the combined fuzzy sample 

for n 
x=(x1' ••• ,x )EJR • - n 

For fixed 8 by variation of x with corresponding grade of membership (j)(x) 
a fuzzy number ~6(Y)' which forms the fuzzy value of n*(6ID*) for the -
argument 8, is obtained. 

The fuzzy a-posteriori distribution n*(6ID*) could be used for the 
construction of an analogue to HPD-regions. These regions will be fuzzy 
subsets of the parameter space e. The construction and interpretation of 
fuzzy HPD*-regions would be an interesting problem. 

Moreover it should be possible to use n*(8ID*) for an analogue to 
predictive distributions. In order to do that an adapt ion of the equation 

f(xID) = ff(xI8)n(8ID)d8 
e 

for fuzzy a-posteriori distributions n*(8ID*) is necessary. 

3. FUZZY PROBABILITY MEASURES 

Probability as a degree. of believe that certain events occur is usu
ally supposed to be additive. For fuzzy observations it is not determini
stically decidable if an observation falls into an event or not. Therefore 
on the margins of an 'event A there may be uncertainty also after observa
tion. In figure 2 on the next page this is depicted for one-dimensional 
observations. 
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A 

Figure 2. Uncertainty of membership for fuzzy observations q>(x) 
and 1jJ(x), and nonfuzzy event A 

Using the example from figure 2 for two different events A and B it cannot 
be expected that probabilities as degrees of believe are always additive. 
This is explained in figure 3 and figure 4 for the union of the events A 
and B. 

In figure 3 the uncertainty of membership of observations exists on 
all four endpoints of the two events A and B. For this situation additi
vity of degrees of believe seems to be an appropriate feature. 

If the union of A and B becomes one interval, as in figure 4 on the 
next page, the uncertainty on the right end of A and on the left end of B 
vanishes. Therefore for a measure p(.) of degree of believe that a fuzzy 
measurement is a member of AUB it is possible that 

p(AUB) >p(A) +p(B) • 

This is also supported by the superadditive nature of the relative frequency 
of observations which are certainly members of corresponding events. 

1.0 

1 l IJ \1 1\ 1 I 
0.0 

I 

A B 

Figure 3. Uncertainty of membership after observation on four endpoints 
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1.0 

I I II I } I" 1\ I" I -I \i I I I ... ..... .. 0.0 
A B 

Figure 4. Argument against additivity of degrees of belief 

Natural requirements for a measure of uncertainty in connection with 
fuzzy observations on a measurable space (M,A) are 

(1) ~(0) = ° and ~(M) = 
(2) A~B => ~(A) ~~(B) 
(3) An.j. A => ~ (An) ... ~ (A). 
(4) AnB = 0 => ~(AUB) ~~(A) +~(B). 

A set function ~: A ... [0,1] obeying the conditions (1) to (4) could be called 
a fuzzy probability measure • These fuzzy probability measures are special 
forms of so called fuzzy measures which are defined as set functions on a 
measurable space (M,A) fulfilling conditions (1) to (3) above (compare [2]). 

Related to a dynamic interpretation of probability from the Bayesian 
view fuzzy probabilities should be subjective uncertainty judgements obey
ing the conditions (1), (2) and (4) above in conditional form and the co
herence condition. Therefore fuzzy subjective probabilites Pr(AIH) condi
tional on information H have to fulfill the following rules for general 
event systems A,B,E, •••• 

(1*) (B =>A) => Pr(AIH) ~ Pr(BIH) 
(2*) (A disjunct B) => P(AABIH) ~ Pr(AIH) + Pr(BIH) 
(3*) Pr(AABIH) = Pr(AIBAH).Pr(BIH) • 

In order to formalize the incorporation of new information to update 
fuzzy probability measures ~(.) a generalization of Bayes' theorem for 
fuzzy probability measures in form of an information transformation for
mula is necessary. 

4. CONCLUSIONS 

By the different problems in describing uncertainty it seems to be 
necessary to consider other measures than classical probability measures. 
Looking to the evolution of modelling real phenomena a path of development 
could be the following possible evolution diagram for modelling uncertainty 
which is depicted in figure 5 on the next page. 
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The mean squared-errors of forecasts (MSEF) is a statistic used to 
evaluate post-sample prediction performance. The MSEF has been used as 
a descriptive measure. but its exact distribution can be derived either 
from a sample theoretical or from a Bayesian perspective if the MSEF is 
computed from a linear regression model. In this paper. Bayesian and 
sampling distributions of the MSEF are derived. and it is suggested that 
the MSEF may be used as a statistic for linear model selection. Using 
sampling experiments. we compare the MSEF criterion with other model 
selection criteria. The organization of the paper is as follows. In 
section 2. we give the Bayesian and sampling distributions of the MSEF. 
In section 3. after presenting Akaike's information criterion. AIC. 
[Akaike (1974)]. Efron's confidence interval for the mean squared 
errors. the N- and J- tests. we make sampling experiments to compare the 
Bayesian MSEF criterion with these other criteria. 

2. BAYESIAN AND SAMPLING DISTRIBUTIONS OF THE MSEF 

Let the linear model be given by 

y = XJ3 + u. (1) 

where y is an (nxl) vector of observations on the dependent variable. X 
is an (nxk) matrix of observations on the explanatory variables with 
rank k. u is an (nx1) vector of error terms. and J3 is a (kx1) vector of 
unknown regression coefficients. Assume that u N N(O.a21 ) and that J3 is 

-1 n 
estimated by J3 = (X'X) X'y. 

The mean-squared-error for the post-sample period. n+l ••••• n+m is 
computed using the post-sample actual observations on y and X. Let y* 

and X* be, respectively, an (mxl) vector and an (mxk) matrix of post

sample observations and assume that the rank of X* is min(m,k). Then 
the MSEF is 

1 ~ ~ 

MSEF = m(y*-y*)'(y*-y*). 

where y* X*J3. Given equation (1) and J3 
-1 13+ (X'X) X'u. equation 

(2) 
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(2) can be written as 

MSEF = !E'B'BE 
111 * * 

1 m L 11.E~, 
m i=l ~ ~ 

-1 
where: E*=(U' ,u~)', B=(A,-Im), A=X*(X'X) X~, and the ~i's are the 

nonzero characteristic roots of B'B. The &i are elements of &=c'&*, 

where c is the matrix of characteristic vectors of B'B. In passing, 

(3) 

let us note that the ~is are given by ~i=l+Ai' i=l, .•• ,m for m~~, and ~i=l+ 

A., i=l, ••• ,k; ~.=l, i=k+l, ••• ,m, for m>k, where A. is the ith nonzero 
~ ~ ~ 

characteristic root of AA'. 
Since E. '" NID(O, 02 ), m'MSEF is a quadratic form in normal variables. 

~ 

The distribution of quadratic forms or ratios of quadratic forms has 
been investigated by many; some of the earlier works are by McCarthy 
(1939), von Neumann (1941), and Bhattacharyya (1943). Bhattacharyya 
(1954) and Hotelling (1948) employed Laguerre expansion, and Gurland 
(1953) and Johnson and Kotz (1970) refined further the convergent 
Laguerre expansions. In this paper we use the degenerate hyperbolic 
function, which is convenient for computational purposes. Theorem 1 
belows summarizes the derivation. 

Theorem 1: Let x = m·MSEF/02• Then the distribution of x is given by 

f(x) 
-x/2~m 1/2m-l ~ 

e x I c(m,p) xP 

21/2m 1/2 mn 1/2 p=O 
TT ~. 

i=l ~ 

where c(m,p) is the recursive coefficient given by 

m-l p c(m-l,j) ap- j 

c(m,p) 
r (p+ -2-) 

I m for m > 2, m 
r(p + 2-) j=O (p-j) ! = 

1 1 1 
and c(l,O)=l, c(l,j)=O for j~l; am= Z(jl - ~--), ~l ~ ~2 ~ 

m m-l 
> ~m' 

1 0 
for m ~ 2, al = 2~1 ' and a i 1 for all i=l, ••• ,m. 

Remark 1: If m > k, then equation (4) becomes 

f(x) 

-x/2 m/2-1 
e x 

k 
2m/2.;:;; n ~~/2 

i=l 

where ~+l = ~(l - ~k)' 
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k 
~ r (2 + p) 

I m 
p=O r (2 + p) 

p 

i 
j=O 

c(k,j) {~I xP 

(p-j) ! 

(4) 

(5) 

(6) 



Remark 2: Equation (4) is the pdf of x=m.MSEFla2 • The pdf of z=MSEF 
1 

may be obtained by transforming z = ~--)x, and this becomes m 

f( I 2) - 112m l/2m-l -m m -2 ~ P P -2p z m,a - cl m z a exp(- Z--z a ) L c(m,p)m z a 
]lm p=O (7) 

. 112m liZ m lIZ where cl is the constant g~ven by cl = 1/(Z n IT]l.). 
i=l ~ 

Equations (4) and (7) have upper and lower bounds that are' 
chisquare distributions, and this'is stated in the following lemma. 

Lemma 1: Let the pdf of z be denoted by f(zlm,a 2 ) as in equation (7). 

Then 

[(liZ) 112m l/Zm-l -m (mza -2) 
;. cl m z a exp - -Z-- • 

[ (I!...) III 
Z 

A predictive density of the MSEF will be given by 

p(zldata) = Ji: £(zlcr',m)p(cr'ldata)do' 

where p(a2Idata) is the posterior pdf of a2 , which may be given by 

(8) 

(9) 

-(v+1) vs2 
p(a2 1 data) '" a exp( - -) (10) 

2a 2 

where v=n-k, and vs2=y' (I-X(X'X)-lX')y. Carrying out the integration 
in (9) we obtain 

Z l/2m-l 
p(zls ,v,m) '" ___ ~z ____ _ 

( 2 + I ) (m+v)/Z vs mz ]lm 

. I [(m;v + p) zP c(m,p) [ Z mz ]P 
p=o vs + mz/]l 

m 

Using equation (8) we can show that the predictive pdf of z is 
bounded by two F distributions: 

(11) 
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r(1/2)r(m+2V) 1/2m 1/2m-l 2(m+v)/2-l __ m ___ z ___ _ 

(vs 2 + mz/~ )(m+v)/2 
m (12) 

r(1/2)r (~) 1/2 1/2m-l ____ 2_ 2 (m+v) /2-1 __ m __ z ___ _ 

r(~-) (vs2 +mz/lJ.) (m+v)/2 
~ 

The equalities hold if lJ =~.. When m=l, the predictive density of the 
m ~ 

squared root of the MSEF is identical to the predictive density for 
one period ahead forecast [Zellner (1971, pp.72-73)], which in turn 
is equal to the predictive density in the sampling theory framework. 

In Theorem 1 we used the degenerate hyperbolic function. The 
distribution of quadratic forms is often given by the Laguerre poly
nomials. If we rearrange the Laguerre expansions given in Johnson 
and Kotz (1970, pp.159-l60) to fit more conveniently in our case, 

the distribution of x=m'MSEF/a2 is given by 

00 (-2) -p 
I p!r (p+l!2m) 

p=O 

3. COMPARISON OF CERTAIN MODEL SELECTION CRITERIA 

(13) 

The Bayesian predictive density of the MSEF that is given in (11) 
may be used as a criterion for selecting linear models. For each model 
we may draw the predictive density, and choose the model that has the 
mass of its density closest to zero. Or, we may chpose the model that 
minimizes an expected loss. The choice of a quadratic loss function 
leads to the mean of the MSEF as the selection criterion. 

The Bayesian criterion above belongs to the class of model selection 
criteria that are based on measures of how well each model explains data. 
Akaike's (1974) information criterion (AIC) and Efron's (1984) confidence 
interval for the mean squared errors also belong to this class. 

Efron's confidence interval for the mean squared errors may be 
interpreted as an inferential procedure for the C that is suggested by 

p 
11allows (1973). Let two linear regression models be given by 

Model A: y = XASA + € 

Model B: y = ~SB + € 

where y is an (nxl) vector of observations on the dependent variable; 
X. is an (nxk.) matrix of observations on the k. explanatory variables 
~ ~ ~ 

(14) 

of model i (i=A,B) and S. is a (k.xl) vector of regression coefficients 
~ ~ 

of model i (i=A,B), and € is an (nxl) vector of error terms, The unbiased 
estimator of the difference of the mean squared errors (MSE) of models 
A and B, ~ = MSEB - MSEA, is given by 
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(15) 

where IYBol2 = 8lXl~XA8A' IYAol2 = 8~X~MAXB8B' Mi = I - Xi(XiXi)-lXi, 

i = A,B, 02 = y' [I-XX+]y, X = [XA' ~], and di is the dim:nsion of 

model i. Efron decomposes the MSE (6) and its estimate (6) in a 
symmetric coordinate system and proposes to compute confidence 
intervals in the symmetric coordinate system. The computation of 
confidence intervals is suggested either by parametric bootstrapping 
or by non-parametric bootstrapping. 

In contrast to the class of model selection criteria based on 
measures of 'goodness of fit', Cox's tests of separate families [Cox 
(1962)] are based on the translation of non-nested models into hypothesis 
testing on parameters. Pesaran (1974, 1982) proposes the N-tests. 
Davidson and MacKinnon (1981) suggest the J-tests. The N-tests are 
given by 

n 
NO = 2 log (16) 

" A A 

where of = y'Miy/n (i=A,B), and o~A = 01 + (alX~~XAaA)/n. The NO test 

is computed using model A in (17) as the null hypothesis. By using 
model B as the null hypothesis, one obtains the Nl test the formula of 

which is given by interchanging subscripts A and B in (19). The J test 
by Davidson and MacKinnon is the t-test on parameter A in 

(17) 

where bA = (l-A)aA• Again, a symmetric test can arise by interchanging 

subscripts A and B in (20). 

The N- and J- tests give rise to cases where one either rejects or 
accepts both models. Table 1 gives four possible cases. 

Table 1. Four Cases of N- and J- Tests 

NO (JO) - Test 

Case 1 Case 2 

Accept Model A Rej ec t Model A 

Reject Model B Accept Model B 

Nl (Jl )-
(PI) (P2) 

Test Case 3 Case 4 

Reject Model A Accept Model A 

Reject Model B Accept Hodel B 
(P3) (P4) 

Note: Pi is the probability of case i,(i=1, ••• ,4). 
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As is obvious from equation (16), the N-tests can only be defined 

if XA~MA~XA 1 O. Sufficient conditions for making this quantity zero 

are ~XA = 0 or ~XA = XA• ~xA = 0 occurs if the columns of XA are 

linear combination of the columns of XE, and ~XA = XA occurs if XBXA 0 

(i.e. when the explanatory variables of the two models are orthogonal.) 
As for the J-tests, they cannot be defined if linear dependence exists 
between XA and XB• 

Let us make sampling experiments to compare the powers of the 
Bayesian MSEF criterion, the AIC, Efron's confidence interval, N-tests, 
and J-tests. In evaluating these tests we need to develop a measure of 
nearness of competing two models. Pesaran (1981) introduces a 
sequence of local alternatives 

(18) 

where C and Dare kAxkB and nxkB nonzero matrices of constants, and 

D'MAD/n exists. Pesaran uses the local alternatives (18) so that he can 

derive asymptotic non-null distributions of the test statistics. 

Instead of (18), the measure of nearness of two models may be 
given by the measure of correlation among non-overlapping explanatory 
variables of the two models. Let models A and B be written as 

y = XISAI + X1SAl + £ 

Y = XISBI + ZSBl + £ 

so that XA = [Xl' Xl] and XE = [Xl' Z]. The non-overlapping explanatory 

variables of the two models are Xl and Z, and the measure of nearness of 

the two models may be given by 

P!s = Min(A~) 

where A~ is the square of the i-th nonzero cannonical correlation 
l. 2 coefficient between X2 and Z. PAB is bounded between o and 1, and 

if P!B = 1, the models A and B can be thought to be identical, whereas 
2 = 0 indicates that the two models are farthest apart. PAB 

Sampling experiments are made by specifying the two models as 

Model A: 

Hence, the models A and B have (1, xtl) as the common variables, 

whereas x t2 and Zt2 are uncommon variables. As in Pesaran's (1982) 

experiments, xti's are drawn from N(O, 1), and Zt2 is generated by 
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Az is controlled by the correlation between ZtZ and xt2 : 

where P2 = Corr(xt2 , ZtZ)· 

The model selection criteria are also influenced by the 'fit' of 

the true model as measured by the coefficient of determination of the 

true model (model A in our experiments), R2, and by the relative sizes 

2 2 In our experiments, we set R at .5 (R =.5), and in 

Table 2 we set al and a2 to be (1.0, .5), respectively, whereas in 

Table 3 the values of al and a2 are switched: (.5, 1.0). The constant 

term aO is set at 1.0 in both tables. The number of replications for 

each value of P~ is 500. 

The following observations can be made from Table 2 and 3: 

(1) As the sample sizes increase the powers of all the criteria tend to 
increase for given values of P~. 

(2) Comparing Table 3 with Table 2, we see that the powers in Table 3 
are larger than those in Table l. 

(3) The N-test tends to perform better than the J-test. For P~ = 0.1 

or 0, the powers of the N-test decline. This is due to the fact 

that for low values of P~, the nonoverlapping variables xt2 and 

Zt2 tend to be orthogonal, and this brings the N-test'closer to the 

case in which it is not defined (i.e. x~~ = 0). 

(4) The powers of the Bayesian MSEF criterion tend to dominate those of 
the other criteria, especially for the cases of sample size 20. 
For lareer sample sizes, the AIC performs as good as the Bayesian 
MSEF criterion. 

(5) Efron's 90% confidence interval (CI) appears to be too conservative, 
and for small sample sizes, the powers are substantially lower 
than the other criteria. 

For the N- and J- tests we presented two measures of power, PI and 

l-S ,respectively. The probability of Type II error is a, and I-a is 
the conventional concept of power in a nested hypothesis. As Pesaran 
(1974) states, however, for a non-nested hypothesis, a suitable concept 
of power is the probability of making correct decision, which is Pl. 

Pesaran (1982) uses I-a as the measure of power in his experiments. 
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Efron (1984) suggests a non-parametric bootstrapping procedure in 
addition to a parametric bootstrapping procedure. Since the non
parametric bootstrapping procedure requires considerable computational 
time in generating empirical powers, we did not carry it out in our 
experiments. Confidence intervals that are generated by non-parametric 
bootstrapping tend to be larger than those by parametric bootstrapping, 
and their powers are in general lower than those by parametric 
bootstrapping. 

In our sampling experiments, we set the prediction period, m, at 10. 
We varied m at different values, and the results are comparable to 
those of m = 10. 

Complete paper is available from authors upon request. 

0 

P~=l.O 0 
.9 2 
.7 6 
.5 10 
.3 14 
.1 18 
0 20 

P~=1. 0 0 
.9 6 
.7 18 
.5 30 
.3 42 
.1 54 
0 bO 

P~=1. 0 0 
.9 10 
.7 30 
.5 50 
.3 70 
.1 90 
0 100 
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Table 2. Empirical Powers of Model Selection 

Criteria [R2 = .5, (81,82)=(1.0, .~)] 

N-Test J-Test Difference Difference 

(2) 1-8 (3) p (2) 1_8(3) 
of Predic- of AIC's 

PI tive Means (5) 1 (4) 

n=20 

ND(7) ND(7) ND(7) ND(7) 1 (8) 1 (8) 
.216 .218 .054 .084 .84 .662 
.402 .402 .15 .17 .932 .782 
.466 .470 .138 .156 .964 .828 
.668 .702 .318 .336 .978 .859 
.680 .724 .308 .334 .988 .872 
.722 .898 .418 .452 .982 .848 

n=60 

ND ND ND ND 1 1 
.262 .272 .182 .200 .710 .752 
.600 .604 .392 .414 .876 .884 
.770 .778 .638 .652 .936 .936 
.880 .946 .772 .824 .972 .982 
.548 1 .902 .928 .990 .990 
.812 1 .888 .936 .994 .990 

n=100 

ND ND ND ND 1.0 1.0 
.406 .418 .288 .310 .790 .800 
.700 .712 .570 .592 .920 .916 
.906 .946 .834 .866 .972 .962 
.940 1.0 .928 .974 .992 .964 
.906 1.0 .946 .996 1.0 1.0 
.566 1.0 .952 .998 1.0 1.0 

Efron's 
90% CI 

(6) 

0(0) 

0 
.002 
.024 
.028 
.078 
.154 

0 
0 

.004 

.114 

.182 

.574 

.642 

0 
0 

.040 

.450 

.702 

.812 

.962 



Table 3. Empirical Powers of Hodel Selection 

Criteria [R2 = .5, (S l'S 2)=(.5, 1. 0)] 

N-Test J-Test Difference Difference Efron's 
0 PI 1- S PI 1- S of Predic- of AIC's 90% CI 

tive Means 

n=20 

p~=1.0 0 ND ND ND ND 1 1 0 
.9 2 .308 .412 .110 .128 .888 .822 0 
.7 6 .784 .808 .474 .504 .972 .930 .076 
.5 10 .862 .914 .694 .718 .996 .976 .248 
.3 14 .884 .962 .746 .876 1.0 .986 .316 
.1 18 .872 .966 .812 .852 1.0 .996 .456 
0 20 .846 .998 .906 .962 1.0 1.0 .696 

n=60 

p~=1.0 0 ND ND ND ND 1.0 1.0 0 
.9 6 .600 .608 .502 .516 .920 .896 .002 
.7 18 .946 .978 .926 .958 .992 .992 .428 
.5 30 .906 .998 .914 .996 .998 .998 .808 
.3 42 .964 1.0 .960 .998 1.0 1.0 .900 
.1 54 .698 1.0 .970 1.0 1.0 1.0 .998 
0 60 .876 1..0 .948 1.0 1.0 1.0 lrO 

n=lOO 

p~=1.0 0 ND ND ND ND 1 1 0 
.9 10 .858 .874 .814 .836 .922 .942 .174 
.7 30 .954 .998 .952 .998 .998 .998 .774 
.5 50 .956 1.0 .948 1.0 1.0 1.0 .978 
.3 70 .952 1.0 .966 1.0 1.0 1.0 .998 
.1 90 .936 1.0 .950 1.0 1.0 1.0 1.0 
0 100 .714 1.0 .954 1.0 1.0 1.0 1.0 

Notes: For each vale of P2' the number of replications in 500. 

(1) P2=corr(xt2 , Zt2)' and 0 is the measure of the distance of two 

models, D, in equation (21), and it is given by 

o = lim D'MAD/lim(X~XB/n). In our experimental design becomes 
n__ n ... co 

o = n(l-p~). 

(2) PI is the probability of accepting model A and rejecting model B. 

(3) S is the probability of Type II errors, and it is given by 
S = P2+P3 in Table 1. 

(4) The predictive mean is computed by E(MSEFI·) = fzp(zldata)dz for 
each model, and the difference is E(MSEFAI') - E(MSEFBI .). 

(5) The difference of the AIC's is AICA - AICB. 

(6) Efron's 90% confidence interval (CI) is computed by assuming that 
the sample estimate, 02 is true (hence dE = ~ in Efron's notation), 

and by the Edgeworth expansions for the parametric bootstrap 
distribution without resorting to Monte Carlo. 
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(7) For P~ 1.0 the N- and J-I tests are not defined. 

(8) For P~ 1.0, the difference of the predictive means and the 

difference of the AIC's both become 1 by construction. Efron's 
CI becomes zero by construction. 

(9) For all the sample sizes, the period of prediction, m, is set at 10. 
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From the perspective of applied statistical modelling, binary time 
series analysis and forecasting are relatively undeveloped areas. This 
paper reports on preliminary investigations of the use of some Bayesian 
models, discussing a variety of mathematical and practical modelling issues. 
A flexible class of models is that based on logistic linear regressions 
which, with an emphasis on sequential forecasting, are provided as a subset 
of the class of dynamic generalised linear models (West, Harrison and Migon, 
1985). Special cases are Markov chains, considered here in detail, and 
non-stationary Markov chains with time evolving transition probabilities. In 
Sections 2 and 3 we discuss the use of low order Markov chains to model the 
non-Markov structure of binary series derived as qualitative summaries of 
underlying quantitative processes. An example concerns binary data 
indicating when a real valued process exceeds a specified threshold level. 
Such eZipped processes arise naturally in monitoring problems in, for 
example, river flow and dam water level management; pollution emission 
regulation; clinical measurements such as blood pressure, in patient care; 
financial and economic time series forecasting; and so forth. In the context 
of an underlying gaussian process generated by a simple, yet widely used, 
dynamic linear model we show how simple Markov models can approximate derived 
binary processes. 

In section 4 we extend the autoregressive Markov chain model to include 
independent variable information using logistic linear models. An example 
concerns forecasting the rise/fall (i.e. turning point) behaviour of a 
financial exchange rate series using external probability forecasts from an 
advisor as regressor information. The approach follows West (1986 a,b) and 
provides: (a) probability forecasting using external probabilities as 
independent variables; (b) data-based assessment of predictive accuracy of 
such external forecasts; and (c) reeaZibration of such forecasts to correct 
for systematic biases, optimism/pessimism, and deficiencies in 
autocorrelation structure. 

2. STOCHASTIC STRUCTURE OF SIMPLE CLIPPED PROCESSES 

To obtain insight into the structure of clipped processes we consider 
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a real valued series following the simplest, yet most widely used and 
applicable, dynamic linear model, namely the first order polynomial. The 
series Zt' (t = 1,2, ••• ), is given by 

with 
the 

Zt at + vt ' vt '" N[O, 

at at _1 + wt ' wt '" N[O, 

V, W > O. Suppose we observe 
indicator series 

= { 1, 

0, 

if Yt ~ 0; 

if Yt < 0, 

v] ; 

VW] , 

only the rise/fall behaviour of Zt via 

where Yt = Zt - Zt_1. Xt is said to be obtained by clippingY t at level 0; 

clearly Xt = 1 if and only if the Z series rises at time t. Two basic 
questions of interest are (A) can we model Xt using simply estimated Markov 
models, and (B) if so what do these models say about the original model for 
Zt? 

A: Probability structure and Markov approximations 

From the model for Zt it follows that the differenced series Y is a 
stationary gaussian process whose autocorrelation structure is MA(lr. In 
fact the lag-1 correlation is just p = corr(Y , Yt - 1 ) = -1/(2 + W) and 
higher lag correlations are zero. Note that !O.S < P < 0 whereas more 
general MA(l) processes have -0.5 < P < 0.5. Results in Kedem (1980) can be 
used to show that Xt is stationary though not Markov with first and second 
order transition probabilities defined as follows. For Xt _1 and Xt _2 taking 

values 0 or 1, define quantities P. = P[Xt = 11Xt 1 = i] and P .. 
• 1 - 1) 

P[Xt = 11Xt_ = i, Xt _2 j], and let a = 0.5 + arcsin(p)/~, for -1 < P < 1. 
Then we can aeduce, uS1ng the considerable symmetry in the model for Xt , that 

PI 1 - Po a, P11 1 - POO = 1-1/(4a), P10 = 1-P01 = 1/[4(1-a)]. 

Note that these, and higher order, probabilities depend only on p, and also 
that this dependency is via a alone. Figure 1 displays PI' P10 and P1I as 
functions of p (recall Ipl<o.s in our model); PO' POl and POO are simply 
reflections of these. Apparently the second order dependence is small away 
from the extremes of p, with, for example, P10 and P11 being close to Pl' 
This is supported analytically by way of Taylor series exp~nsions about 
a = 0.5, corresponding to p = 0, which give P .. = P. + 0(p2). This suggests 
that first order dependencies alone may in pri~tice1provide adequate 
approximations to the second order Markov model, the latter generally being 
sufficient to capture the structure of the series. This is supported 
empirically be experience with simulations, some of which is reported in 
Section 3 below. As an aside, note that similar features are found when Yt 
follows an AR(l) process with correlation p. 

B: Inference about p from binary series 

In applications concerning many similar Y series and/or fast data 
rates, binary indicators are economic and easily processed summaries. 
Questions then arise about the information content of the indicator series 
relative to the underlying process. Kedem (1980) discusses this in the 
context of AR(l) models for Yt , demonstrating the usefulness of first order 
Markov approximations to the Xt process in making inferences about p. In 
our MA(l} model, an observed series of length n + 1 provides a log likelihood 
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1 

T log(a) + (n - T) log(l - a) where T = E[Xt Xt-l + (1 - Xt) (1 - Xt-l)] is 
the number of runs of length 2. Substituting a as a function of p, we 
deduce a likelihood for p whose expected (Fisher) information is given by 
I(p) where I(p)-l = n2 a(l - a) (1 - p2). Relative to the information 
expected from the actual Yt data, measured by the square root of Fisher 
information, the binary series is roughly 60% as informative when Ipl ~ 0.2, 
decaying to less than 30% when Ipl > 0.4. Figure 2 provides a plot of the 
relative information as a function of p; clearly there is always some loss 
of precision. Experience with simulations, however, suggest that the 
location of the likelihood is often close to that from the full data. A 
typical example appears in Figure 3. Here 200 observations were generated 
from an MA(l) model with p = -0.48, near the boundary where the Markov model 
is expected to do worst. The dashed line represents the reference prior 
proportional to 'I(p), (proper over the range Ipl < 0.5 of interest), the 
full line is the posterior from this example, with mode at -0.47. A 
posterior based on a second order Markov model is similar, being slightly 
more peaked at the mode. We return to this data in the next section. 

3. SEQUENTIAL AUTOREGRESSION MODELS 

A subset of dynamic generalised linear models (DGLM's) provides suitable 
models for binary time series. These are used in West (1986a and b), where 
further technical details appear, and here in the context of second order 
Markov chains. We define the quantities Dt = {Xt , Xt-l' ••• , Xl}; 

T T T 
~ = [~, B1 , B2 ]; It = [1, Xt - 1 , Xt _2]; nt = ft ~ = ~ + B1Xt _1 + B2Xt _2 , 

and nt = 1/[1 + exp(-n t )] so that nt = log[nt/(l-nt)]. We can express a 
second order Markov chain via the logistic linear model P[Xt = 1 I 6, Dt - 1 ] 
= nt. Note the emphasis on sequential prediction here, nt is conditional on 
past data Dt - l . 
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The DGLM technique applies, as in the above references, to give the 
following ingredients: (a) at any time t - 1, the prior information about 
.~ is summarised in terms of a mean ~-1 and variance matrix Ct - 1 , denoted 

(~IDt_l) ~ [IDt-l'Ct - 1]; (b) (wtIDt_1) is constrained to be a Beta prior with 

parameters appropriately matching the moments of nt implied in (a); (c) 
forecasts are based on P[Xt = I IDt - t] = E[wtIDt_1]; and (d) linear Bayes' 
techniques are used to update to (~ Dt ) on observing Xt • The plots in 
Figures 4, Sand 6 are based on this model applied to the simulated data of 
Section 2. With a relatively vague prior (IDO = O,Co = I) we sequentially 
compute mt and Ct for t = 1,2, ••• , 200. For each of the three elements of 
~, the figures display posterior means, and two standard deviation intervals 
about the means, for each t; ~ and SI are significantly non-zero, but 82 is 
not. Final values at t = 200, with standard deviations, are ~ : 0.61 (0.26); 
81 : -1.27 (0.30); S2 : -0.38 (0.30). The sign of SI is appropriately 
negative and the insignificance of 82 further supports a first order Markov 
model for the non-Markov process Xt • 

As a follow up consider inference for p. We have a final posterior 
(ftID200) ~ [m200 , C200 ] to which we apply two constraints. First, we impose 
82 = 0 via a linear constraint (0, 0, 1}6 o. Secondly, if the first order 
transition probabilities are to agree with the true values PI and Po of 
Section 2, then, logically, log[P1/(1 - PI)] = ~ + SI and log[Po/(l - Po)] 

=~. However, since PI = 1 - Po = a, we have a second constraint 2~ + 81 

= 0 or (2, 1, 0}6 = O. These two linear constraints are used to condition 
the posterior moments, revising them to m~OO and C~OO' the latter now of 
rank 1 rather than 3. This conditioning uses linear Bayes theory, as in the 
DGLM, and is thus similar to standard normal theory, applying as if Q were 
normal. Finally, the DGLM analysis leads to a Beta posterior for a = 
1/[1 + exp(~)] with parameters determined by the conditioned mean and 
variance of~. Transforming to p = sin[w(a - O.S}] leads to the posterior 

o 25 50 75 100 125 150 175 200 

Fig. 4. Posterior intervals for ~ 
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for p plotted as a dotted line in Figure 3 closely agreeing with that 
calculated in Section 2. This agreement validates the sequential DGLM 
procedure, and restresses our conclusion about the utility of first order 
Markov approximations to the non-Markov process producing the binary series. 

4. REGRESSION ON EXTERNAL FORECASTS 

The logistic linear model of Section 3 allows obvious extension to 
include further regression terms. One such extension is considered in West 
(198Gb) in the context of assessing and recalibrating probability forecasts 
of individuals or models. Suppose we have a series of probability forecasts 
qt for Xt generated sequentially over time. We can simply extend the 
regression vector Ft to include a further independent variable log[qt/(l -
qt)]' similarly extending ~ to include an associated coefficient y, say. 
Sequential analysis within the DGLM framework provides assessment of the 
accuracy of the qt forecasts via inference about 61 ~ allows for systematic 
Zocation bias in the qt, y for scaZe bias, and the autoregressive 
coefficients 61 and 62 allow for deficiencies in correlation structure. The 
sequential forecasts from this model, P[Xt = 1 I Dt - 1], now represent data
based recaZibrations of the qt' Such an approach provides a formal, model 
based alternative to empirical recalibration methods such as in Dawid (1984). 
Additionally, these models can be given Bayesian foundation using the 
framework of Lindley (1985). Specifically, a forecaster may model the way 
in which the qt sequence is generated such that ut is his/her own posterior 
probability for Xt = 1, conditional on ft, Dt - 1 and qt. 

As an illustration, the model was applied to a series of 114 
observations based on the monthly British Pound/Italian Lira exchange rate 
(January 1975 - August 1984). Here Xt = 1 indicates, as in Section 2, a 
rise in the rate in month t. An analyst provides the naive forecasts 
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rg
• 

if Xt - l Xt - 2 1; 

qt = 0.1, if Xt - l Xt - 2 0; 

0.5, otheruise. 

The asterisks in Figure 7 are the corresponding points on the analyst's 
empirical calibration curve (the relative frequency of occurrences of Xt = 1 
when the forecast is qt) indicating that the forecasts 0.1 and 0.9 are rather 
extreme. We report some features of a regression model in which ~ = 82 = 0 
so that, redefining 8 = 81 , we have Dt = log[nt/(l-nt )] = 8Xt_l + 
ylog[qt/(l-qt)]. This is chosen as the best predictive model in terms of 
aggregate predictive probability over the series, and clearly out-performs 
the raw qt with a log-Bayes' factor of more than 3. Final means and 
standard deviations at t = 114 are 8 : 0.68(0.36) and y : 0.38(0.15), with 
correlation 0.59. The posterior mean of 0.38 for y indicates that, whilst 
in positive accord with the data (y > 0), the naive forecasts tend to be 
overly extreme, confirming the message from the calibration plot. Figure 8 
is a recaZibration curve for the qt' with an associated interval. The full 
line is the predictive probability from the DGLM model for (Xt = 1 I Xt - l , 
qt)' simply the posterior mean of Dt converted to the probability scale. 
The dotted and dashed lines provide an interval about this probability 
calculated similarly from 1.65 standard deviations limits for Dt • The 
shrinkage of extreme values towards 0.5 is clear from this curve, correcting 
the scale bias (over precision) in the naive forecasts. For the AR term, the 
posterior for 8 indicates residual positive dependence in the series over and 
above the structure predicted by qt. A similar recalibration curve with 
Xt - l = 1 appears in Figure 9. 

The utility of our models is evident here. Further discussion and 
illustration appear in West(1986b), where parameters such as 8 and yare 
modelled as dynamic. This allows for the possibility of time-varying biases 
and relationships, providing in particular for non-stationary Markov 
transition probabilities, and more fully exploits the time series modelling 
concepts underlying the DGLM framework. Other extensions appear in West 
(1986a) where more than one qt forecast sequence are available, providing 
an approach to comparison and aggregation of probability forecasts from 
several sources. 
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SEMI-SUFFICIENCY IN ACCELERATED LIFE TESTING 

INTRODUCTION 

Rudolf Willing 

Institut fUr Statistik und Wahrscheinlichkeitstheorie 
Technische Universit~t Wien 
1040 Wien, Austria 

Extremely long testing time causes a well known problem in reliability 
analysis. The most successful method of treating it is the application of 
accelerating stress. S. S is a vector of physical effects like temperature, 
voltage or pressure. The lifetime of an object put under stress S is de
scribed by a stochastic quantity TS. The distribution belongs to a family 
parameterized by 8(S), the vector of statistical parameters given stress S. 
In practice the relation between these parameters and the stress components 
is often known to be of some functional form W with unknown physical para
meters c=(c , ••• ,c ) 

1 n 

8(S) = W(S,c). (1) 

All knowledge about these physical parameters c before the experiment is 
put into the prior density n(c). Now we can make stochastically independent 
observations on m different stress levels S. i=l(l)m. On each of these we 
get a sample of size k .• Using the life tim~ densities f(.) we get the like· 
lihood function 1(C;D)1given the data D=(t .. , i=l(l)m, j=l(l)k.) 

1J 1 

m k. 
1 l(c;D) = IT IT f(t .. IS.,c). 

i=l j=l 1J 1 

Calculating the posterior density ~(cID) via Bayes~ theorem 

~(cID) cr ~(c) l(c;D) 

(2) 

(3) 

we can make estimates about the physical parameters c, the statistical para· 
meters given the usual stress S 

u 

8(S ) = W(S ,c) 
u u 

(4) 

or the predictive density f(tlS ) of an object under usual stress S • If 
we think of quadratic loss the Hest way to do that, is to calculateUthe 
posterior expectations of these quantities. For instance the statistical 
parameters at usual stress S can be estimated by 

u 
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where the swung dash denotes the stochastic quantity that describes the 
unknown. 

(5) 

Only in the case of using exponential families as life time models and 
their natural conjugate priors these integrations can be done analytically. 
But exponential families are very restrictive. To apply Bayesian analysis 
we need a broader class of distributions. These distributions should be easy 
to handle but allow for a variety of different models. Therefore the author 
wants to introduce a new set of distributions. 

THE CONCEPT OF SEMI SUFFICIENCY 

Definition: Let X be a stochastic quantity, the distribution of which 
is depending on a parametervector 6=(6 1,62), where 61 and 62 are two sub
vectors of 6. A statistic S(XI62) is called semisuff1cient for 6 , iff the 
posterior distribution of ~1 given ~2:62 depends on X only through S(XI62) 
no matter what prior distriBution of 6 1S used. 

(6) 

The subvector 62 is not considered to be a nuisance parameter like in 
Dawid (1979) who def1ned other concepts of relaxed sufficiency. 

Theorem: S(XI62) is a semisufficient statistic for 6 iff the condional 
density f(xI6) factors like 

where h depends on both subparametervectors 61 and 62 but only through 
S(xI62) on x and i depends on x but only on 62• 

Proof: Using Bayes' theorem we obtain 

where 

J 

The marginal density of 62 given the data x equals to 

i(xI62) 
TI(62 Ix) = f TI(6 1,62) h(S(xI62)16 1,62) d6 1 K 

- ~ 

(7) 

so that the conditional density of 61 given 62=62 after the data x is ob-
served equals to 

TI(6 1,62 Ix) 

TI(62 Ix) 

On the other hand given 
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~(61162'x) ~(62Ix) f(x) g(61162,S(xI62»~(62Ix) f(x) 
f(xI6,,62) = -....;....~--~--- = 

so we can choose 

and 

~(61'62) 

g(61162,S(xI62» 

~(61,62) 

where f(x) is the prior predictive density. 

SEMI-EXPONENTIAL FAMILIES 

Now we want to use this result. If f(xI6) does not belong to an expo
nential family but 9 consists of two subvectors 91 and 62 such that (7) is 
valid and additionally if f(xI6 1,92) belongs to an exponential family in 6f given 62, then S(xI62) is a sem1sufficient statistic of a fixed dimensiona -
ity for 9. That means the dimension of the statistic does not increase when 
we switch from the stochastic quantity to a random sample. 

Definition: A family of distributions of a stochastic quantity X forms 
a semi-exponential family of dimension k with parametervector 6 iff 6 con
sists of 6, and 92 so that the density can be written in the form 

k 
f(xI9,,92) = G1(6,19Z) G2(92) H(xI92) exp(-,E ~,(91192)T,(xI62»' (8) 

J=1 J J 

Theorem: Let X=(X1, ••• ,X ) be a sample of iid. stochastic quantities 
belonging to the semi-exponen~ial family in (8), then we can immediately 
write down a natural conjugate family of prior distributions for the para
metervector 6=(61,92) 

That is a fairly extensive family because p(9Z) can be any marginal density 
for 9Z' K(ao,aj(92), ••• ,~(92),92) is the normalizing factor for ~(91192)' 
where aO,a1t92), ••• ,~(9Zr are the hyperparameterfunctions depending on 92, 
After tfie observation of D=(x1, ••• ,x) we get the following posterior den-

- n sity for 9 

with the new hyperparameterfunctions 

ao = aO + n 

aj (92) = a j (92) + 
n 
E T,(x,192) 

i=1 J 1 

(10) 

j=1 (Ok 
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'This is a generalized way of updating hyperparameters. 

Proof: Straight forward calculation. 

All this expense pays only profit if K(aO,a1(62), ••• ,~(62),62) can be 
evaluated analytically. 

Example: Let X=(X1, ••• ,X ) be a sample of Weibull-distributed stochastic 
quantities with density funct~on 

n n S-1 n S 
f(x 1, ••• ,xn IA,S) = An S ( IT x.) exp(-A Ex. ). (11) 

i=1 1 i=1 1 

Now let us take 

61 = A 

62 = S 

and we obtain the factorization (7) with the functions 

w~ere ~1 and S2 are the two components of the semisufficient statistic of 
dimension two 

n S 
8(XI62) = (n, E X. ) = (8 1,82) • 

i=1 1 

The Weibull-distribution does not belong to an exponential family but it be
longs to a semi-exponential family as can be seen by putting 

k = 1 

G1(6 1162) =nA S-1 
H(x162) = IT x. 

i=1 1 

..-
For the Weibull-distribution a choice of a natural conjugate family for A 
and E is 

r 
a r-1 

1T(A,S) = -- S 
r(r) 

The connexion with the former definitions (9) can be seen as 
r 

(6 ) = a Sr-1 -as 
P2 fTr) e 
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which is a Gamma-distribution with hyperparameters a and r, 

Ci.o = Ci.O 

Ci. 1(62 ) = Ci.1 

where Ci.1 does not a-priori depend on 62=S, 

0.0+1 Ci.1 
K(Ci.O,Ci. 1 (62)"" ,Ci.k (62) ,62) = --'--

r(Ci.O+1) 

,., ,., 
The posterior distribution of A and S given the data D=(x1, ••• ,xn) of 
life time observations is given by 

7f(A,SID) 

n 
Qr+n-1 -(a- E ln x.)S n S -Ci. -n-1 
IJ e i=1 1 (Ci. 1+ E x.) 0 

i=1 1 

------------------------------------------ X n 
n 

J Qr+n-1 -(a- E ln x.)S ( E S)-o.O-n-1 dQ 
IJ e i=1 1 Ci. 1+ x. IJ 

i=1 1 

with the new hyperparameters 

n 
Qr+n-1 -(a- L ln x.)S n S -0. -n-1 
fJ e i=1 1 (Ci. 1+ E x.) 0 

i=1 1 

n 

J orT n-1 -(a- E In x.)(3 (Ci. 1+ ~ ~.(3)-Ci.0-n-1 dO 
IJ e i=1 1 IJ 

i=1 1 

(13) 

And so the conditional distribution of r given S=(3 is a Gamma with the up
dated hyperparameters ~O and ~1(62)' 

APPLICATION IN THE ANALYSIS OF PRESSURE BEARINGS 

The computational simplifications of this method had been put into pra
xis for the problem investigated by Viertl and Willing(1985). The abrasion 
of bearings put under higher pressures was measured to get their life times. 
Their distribution was assumed to be Weibull with parameters A and (3. These 
depend on the accelerating stress the pressure S in the following way 

A(S) A eOS3 

(3(S) = S • (14) 

This corresponds to the relation (1) with the vector C=(A,(3,O). Collecting 

501 



data D=(t .. ,i=1(1)m,j=1(1)k.) on m different stress levels S .• We get the 
likelihoo~lfunction (2) 1 1 

with 

m 3 
l(c.,D) = An an e L k.oS. ..., i=1 1 1 

m 
n = L k. 

i=1 1 

m ki 8-1 
II II t •. 

i=1 j=1 1J 

8 OS.3 
-A L t .. e 1 

e .. 1J 
1,J 

(15) 

the total number of objects tested. Now this belongs to a semi-exponential 
family (8) of dimension k=1 with parameters 6=c and 

6 = A 
1 

6 = (8) 
2 o. 

The semi sufficient statistic S a function of D depending on 8 and 0 equals 
to 

The other functions in (8) become 
m 3 

(6) an L k.oS. 
G2 2 =..., e i=1 1 1 

Taking a non informative prior distribution of the natural conjugate family 
(9) with 

we get an improper prior density 
1 

1T(A,8,o) ex: ---

A 8 0 

This leads to the posterior density 

3 L k.oS. 
e i 1 1 

(16) 

( 17) 

where the conditional density of A given 8 and 0 is a Gamma-distribution 
with parameters nand 

L t .. 8 e ~ oSi 
3 

i,j 1J 1 
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and the marginal density of 8 and 8 

Bn- 1 II 8-1 L k.oS. 
t. . e. 1 1 

3 

•• 1J 1 
1T (8, 0 I D) <X: __ .;:.1~, J<---__ -,;-__ _ 

3 8 o( L t .. 
.• 1J 
1,] 

oS. )n e 1 

( 18) 

Now it is easier to calculate the expectations in (5) because only a two 
dimensional integration is necessary. The computation time for the analysis 
in Willing(1985) has been reduced by 95%. This allows for a more detailed 
study of acceleration models and higher dimensional models become treatable. 
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