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To the memory of
Bruno de Finetti (1906-1985)



PREFACE

This book contains selected and refereed contributions to the "Inter-
national Symposium on Probability and Bayesian Statistics" which was orga-
nized to celebrate the 80th birthday of Professor Bruno de Finetti at his
birthplace Innsbruck in Austria. Since Professor de Finetti died in
1985 the symposium was dedicated to the memory of Bruno de Finetti and took
place at Igls near Innsbruck from 23 to 26 September 1986. Some of the pa-
pers are published especially by the relationship to Bruno de Finetti’s
scientific work.

The evolution of stochastics shows growing importance of probability
as coherent assessment of numerical values as degrees of believe in certain
events. This is the basis for Bayesian inference in the sense of modern
statistics.

The contributions in this volume cover a broad spectrum ranging from
foundations of probability across psychological aspects of formulating sub-
jective probability statements, abstract measure theoretical consideratioms,
contributions to theoretical statistics and stochastic processes, to real
applications in economics, reliability and hydrology. Also the question is
raised if it is necessary to develop new techniques to model and analyze
fuzzy observations in samples.

The articles are arranged in alphabetical order according to the family
name of the first author of each paper to avoid a hierarchical ordering of
importance of the different topics. Readers interested in special topics
can use the index at the end of the book as guide.

The editor wants to thank the referees for their anonymous work. Some
of them are also authors in the present volume and their names are not given
here. The following scientists who where not participants at the symposium
or made no contribution to this Proceedings volume were so glad to act as
referees: J.0. Berger, Lafayette, D. Blackwell, Berkeley, L.D. Broemeling,
Arlington, L. Crisma, Trieste, I. Csiszar, Budapest, M. Deistler, Wien,

P. Diaconis, Stanford, L.E. Dubins, Berkeley, R. Dutter, Wien, W. Ettl,
Wien, T.L. Fine, Ithaca, D, Fiirst, Roma, P. Hackl, Wien, W. Jammernegg,
Graz, A. Kandel, Tallahassee, F. Konecny, Wien, D.V. Lindley, Somerset,

M. Luptacik, Wien, G. Marinell, Innsbruck, B. Natvig, Oslo, T. Postelnicu,
Bucuresti, H. Rauch, Wien, P. Revesz, Wien, M. Schemper, Wien, K.D. Schmidt,
Mannheim, A.F.M. Smith, Nottingham, F. Spizzichino, Roma, H. Stadler, Wien,
H. Strasser, Bayreuth, S. Weber, Mainz, G.A. Whitmore, Montreal.

It is the intention of this volume to make Bayesian ideas available
for a broader audience and to present different recent developments in pro-
bability and statistics. I want to thank PLENUM for publishing this volume
in short time which makes it possible to produce an up to date contribution
and especially Ms. M. Carter for her kind advice.

R. Viertl
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STOCHASTIC LINEAR PROGRAMMING WITH RECOURSE UNDER PARTIAL INFORMATION

Peter Abel

Fegro
Praunheimer Str. 5-11
D-6236 Eschborn/Ost, F.R.G.

1. INTRODUCTION

Stochastic programming models with random variables with only incompletely
known distributions were up to now comparatively seldom analysed, although an
attempt to declare probability distribution not always gives a satisfactory
description of factors of influence in a decision model: "In any specific
problem the selection of a definite probability distribution is made on the
basis of a number of factors, such as the sequence of past demands, judgements
about trends, etc. For various reasons, however, these factors may be insuffi-
cient to estimate the future distribution. As an example, the sample size of
the past demands may be quite small, or we have reason to suspect that the
future demand will come from a distribution which differs from that governing
past history in an unpredictable way" (Scarf, 1958).

One of the reasons for the rarely use of stochastic programming models
with only incomplete informations about the distribution of the states in
practise may be that often no numerical methods are available for the compu-
tation of the optimal solutions of such a model.

In this paper we present a stochastic linear programming model with par-
tial informations about the probability distribution of the random coeffi-
cients and have a special look at the possibilities of the numerical compu-
tation of all optimal solutions of the presented model.

2. THE PROBLEM

The stochastic linear programming model with recourse (two-stage model)
with known common probability distribution of the random coefficients is of
the form (see Dantzig, 1955)

inf Ep{c'(w)x + inf{q"(w)y| W(w)y = b{w) - Alw)x,

v

y 2 0}} (1)

subject to x € X

) [}
with random variable (A,b,c,W,q): @ - RIHTHAAIRTN and probability dis-

tribution P.



a constant (m,n)-matrix,
b(w) € R" a constant m-vector,
clw) e R" a constant n-vector,
W) e (Rmn'a constant (m,n')-matrix and
qw) € R a constant n'-vector.
X € R.
+

If P is not exactly known, but there is merely an information Pe®, where
©® is a set of probability distributions, we have to find an optimal x.¢X as

solution of the problem 0
"minimize" EP{c'(w)x + min{q'(@)y| W)y = bl) - Alw)x,
y 2 Ot} (2)
subject to x € X
Peb.

We suppose t\:tﬁt for every P€0 (1) has a finite solution (see Abel, 1984
p. 49f), X :={x | 1<isM} and 2 := {wl,w yeee,0 } are finite sets and 0
is a Linear Partial Information (LPI) (see Eofler et al., 1980)

y, N
0:={peR | £ p.=1, Gp 2 hl
+ j=1 J

with constant matrix G and constant vector h and pJ. 1= P{wj} for 1< KN,

A LPI we get for example, when the probabilities can be put in any
order, e.g.

< < <
pl_ pz,_ eee S pN.

For finding an optimal decision about x we use the minEmax- (or ©-minimax-)
criterion: xoex is accepted as optimal solution of (2), if
max E{c'@)x, + min{q'(w)y| Ww)y = blw) - Alw)x., y20}} =
P 0 0
Pe®
(3)
min max E{c'()x + minlq'(w)y| W)y = blw) - Alw)x, yz20}.

x€X Ped P

For every x(i)ex and p(‘})ee (i=1,2,...,M; j=1,2,...,N) we define

(i)

(1) .
..oi=c'(w, n{q'(w, W(w.,)y = b(w,) - A(w,)x 20} 4)
vij c (wJ)x + min{q (wJ)yI (wJ)y ( 3 ( ; , ¥ (
and have instead of (3)
N N
{z v. .p.| pe®} = min max{ £ v, .p.| ped} =: m_. 5
max{ 2 v, .| p 151 P o (5)

=1 ‘o 1<isM j=1

(i,)
Every x oe X, which fulfills (5), is a minEmax-optimal decision about x for
problem (2).



For the computation of a v, we must solve a linear program of the form
(4). When only the coefficients'df vector b(.) are random, the computation
of the v, .'s can be simplified essentially by using methods of the parametric
linear prbgramming. We also have simplifications in the computation, when
the recourse matrix W(.) contains no random coefficients, especially in case
of a so called model with simple recourse. If only vector c(.) contains random
coefficients, merely one linear program must be solved.

3. SOLVING PROBLEM (5)

For the numerical computation of all solutions of problem (5) we use
an algorithm of Abel(1984), p. 150f (see also Abel, 1985):

STEP 1: Setting the starting values.

k :=1,
Jg = io =1,
e. := max v.,. and
0 1< 1j
rOi ¢t= min v,, for every i=1,2,...,M.

(k)

STEP 2: Find an optimal solution p of the linear program

N
I (6)

max Vi N
ped j=1 ‘k-17

1]
.

j mk.

As upper bound for m, we compute

]
€ i= mln{mk,ek_l};
. R <
g1 ife ;<M
I = and
. . >
lk-l if ek_1 2 mk
N
. (k) .
r = max{rk_l’i,.z Vijpj 1, i=1,2,40.,M.
i=1
STEP 3: Find 1 €{1,2,...,M} with
r. = min r = s, ,
ki 1gin K2k
where sk is a lower bound for Mg
(i)
STEP 4: If e = 5 then x is an optimal solution of (5) and Mg i=e . Other-

wise k-+k+1 and goto STEP 2.

The number of iteration steps, needed to compute an optimal solution of
(5) with this algorithm, is in no case greater than M. In general, clearly
less than M iteration steps are necessary (see Abel(1984), p. 163f).



When © is no LPI only in step 2 other numerical methods must be used
for solving (6).

If (5) has more than one solution, we first choose the proposed algorithm
to compute one solution. Subsequently, the remaining solutions can be computed
simply with an analogous Abel(1984) p. 155 modified version of this algorithm.

4, ONLY FINITE &

In the last section we described a numerical method for the computation
of optimal solutions, when the sets X and £ are finite. In this section we
want to analyse how we can solve (3) numerically, when we assume that X is
a bounded convex polyhedral set as solution set of a linear restriction system
of the form {xeﬂnl Tx2t, x20} with constant matrix T and constant vector t.

In this case we get all minEmax-optimal solutions of (2) as solutions of the
optimization problem

N
. s ] 1)
min max min z pk(c (wk)x +q (wk)y(wk)) (7)
X p y k=1
Tx2t Gp2h Wy=b-Ax
x20 p20 y20

where y := (y'(wl),y'(mz),...,y‘(wN))',

W(wl)
w(wz) 0

0 W(wN)

A := (A‘(wl),A'(mz),...,A'(wN))' and

b := (b‘(ml),b'(wz),...,b'(wN))'.

Using a minimax-theorem of Karlin(1959) p. 28f and the duality theorem of
the linear programming we get the to (7) equivalent linear program

min -h'u (8)

subject to Cx + Qy + G'u £ 0

Ax + Wy =b
Tx 2t
b4 20
y 20

uzo



where C := (c(wl),c(wz),...,?(wN))' and

q'(wl)

a'(wy,) 0

0 q'(wN)

Under this assumption consequently all minEmax-optimal decisions about x
are solutions of linear program (8) and every solution of (8) is a minEmax-
optimal decision. For the numerical solving of (8) we recommend not to use
the standard Simplex-algorithm, but to take the special structure of the
restriction system into consideration and use for example the decomposition
of the dual problem as solution method.

5. THE GENERAL CASE

An essential assumption in the previous sections was the finiteness of
Q2 (and especially in section 4 the presence of a LPI). In this section we
now want to renounce this supposition and analyse problem (3) under the assump-
tion that X is a convex polyhedral set, without requiring the finiteness
of f.

As generalization of the LPI defined in section 2 we have in this case
the so called Stochastic Partial Information (SPI) (see Kofler et al., 1980)

N N
@=1{pPlP= 2 AP, I A =1,
k=1 kk k=1 k

Xk 2 0, k=1,2,...,N},

where for every ke{1,2,...,N} P, is-a probability measure. When only the
coefficients of vector b(.) in %2) are random variables and we have a SPI
for everey coefficient, we can compute the minEmax-optimal decisions about
x analogous Abel(1984) p. 198f.

When we get a © based on informations about the mean respectively the
variance of single coefficients of A(.), b(.), c(.), a(.) and/or W(.) for
example in form of fixed upper and lower bounds (so far as mean and variance
generally do exist), we have, depending on the respective structure of ©, for
several © deterministic optimization models available, which are equivalent
to (3) and solvable with numerical standard methods (see e.g. Dupalova, 1980;
Huelsmann, 1971, 1972, 1972a; Jagannathan, 1977 and Theodorescu, 1972).
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APPLIED GEWR(n,p,q) NORMAL DISCOUNT BAYESIAN MODEL: AN AUSTRIAN ECONOMIC

CASE STUDY

M. Akram

Business And Management Department
Bahrain University
Isa Town, Bahrain

The theory of Generalised Exponentially Weighted Regression (GEWR) and
dynamic Bayesian models has been given previously by Harrison-Akram(1982),
Akram-Harrison(1983) and Akram(1984). This paper breifly reviews some of the
main results and applies them to seasonal data concerned with the disposable
personal income in Austria. For the selection of an appropriate model a new
Stepwise Identification Procedure(SIP) based on a nonparametric measure, called
Average String Length(ASL), is used. Both short and long term full forecasts
and trends are obtained from a single model using on-line Bayesian learning
procedure. The model applied yields optimum forecasts in the senses of
minimum mean square error and whiteness of one step ahead forecast errors.

1. INTRODUCTION

In economic systems we often encounter time series containing additive
coloured noise. For such series Generalised Exponentially Weighted Regression
theory has been developed and given by Harrison-Akram(1982), Akram-Harrison
(1983) and Akram(1984). In their work, they introduced a wide class of
parsimonious dynamic linear models and applied them to data sets from various
walks of life. This theory, which is based on linear filtering using an
exponentially weighted system and Bayesian formulation, is briefly reviewed
in section 2. 1In section 3 a GEWR Normal Discount Bayesian Model is given.
Section 4 introduces on-line Bayesian learning procedure. Section 5 discusses
Stepwise Identification Procedure and section 6 describes a particular form
of the model used to analyse data concerned with disposable personal income
of Austria and presents short and long term forecasts along with trends.

2. GENERALISED EXPONENTIALLY WEIGHTED REGRESSION (GEWR)

2.1 Definition of GEWR

At time t, for forecasting future outcomes Yt+i’ assume a local model



= +
Vg "5 8% ey
where for an integer i £, are (lxn) row vectors of some known functions of

independent variables or constants and € is a sequence of coloured noise.

t+i

By definition, the elements of f, vectors are functions of time, generally

described by constants, polynomiils and trigonometric functions as in Brown
(1962). For time series £= £Ei’ where G is (nxn) transition matrix of full
rank with non zero elements on its main diagonal. The eigenvalues of this
matrix determine the form of forecast function. It is assumed that coloured
noise arises from ARMA(p,q) noise process

0,8 &, = n (B) 8,

p q

where ¢p(B) = i]ll (1- ¢iB) and nq(B) = il=Il(1 - niB) are polynomials in
B, the backward shift operator, of degrees p and q respectively, the roots
of which are assumed to lie outside unit circle; and Gt is a white noise
sequence of random variables, iid with mean zero and variance V. The coloured
noise vector Et' = ( € Epopreeer & ) is such that Et w0 s _I:EIV), where
P, 1is a (txt) precision matrix at time t.

For a discount factor 0 < 8 < min[l | , where A are eigenvalues of

G, defining Eti = diag(l, B &, Byeues B%(t 1)) the GEWR estimate m of 6
based on observations Yer Yeupooo0 Vg is that vector value of 6 ¢ R" which
minimizes

3

3
[
_t€ ﬁt gt _tB _te *

2.2 Recurrence Relations

Defining: ©
- i . =
$(B) = ¢p(B)/nq(B) = ;%o ¥;B 3 ¥y =1
t-1

i
V. (B) = ;E, ¥;B

t-1
ig-l - f B& _G__l i

u = £y, (B 6) = £ 2 v( )
t—l .
= 3 3 i
T8 € B
and one step ahead forecast error e, =z, - dt’ the recurrence relations
for computing m, are
Bt LRy th o
= '
K, =6 gt G'/8
= '
A =K u /(1 +u Lo
-1

Q't = (_I. - é.t_l‘lt)gt'

For these recurrence relations, no matrix inversions are involved, but if



required for any intermediate estimate, they can be found from the expression

' 1. -1
Q =y 8 *BED 9, 8-

2.3 Limiting Results

Under restriction 0 < B < minlkil the following limiting results
exist. As t > =

i) Lim.Et =u, Lim ét =A and Lim gt =Q

n n

ii) Lim { igl (1- )\iB)zt - iEl(l- BB/)ti)et } =0.
The last result is true, irrespective of GEWR is optimal or not. However,
if e, v 0, og) then subject to Box-Jenkins(1976) restrictions on the
eigenvalues Ai (i=l,..., n), Yt has a limiting ARIMA representation. For
more detail see Harrison-Akram(1982) and Akram(1984).

3. GEWR NORMAL DISCOUNT BAYESIAN MODEL (GNDBM)

3.1 Autoregressive Form

An autoregressive form of GNDBM is presented here as in practice this
form is most commonly used owing to the fact that quite often ‘ARMA processes
with invertible moving average part can be modelled as parsimonious finite
AR processes. A GNDBM of order n,p,0, written as GEWR(n,p,0), where n is
the degree of polynomial required to represent low frequency component or
trend and p is as stated earlier, is defined as follows.

Zt =u, 8+ Gt H Gt v N(O 3 V)
where Zt is the series derived from the original observations Yt for t=1,2,..
«.. s such that

t-1

i/2
ifo Y1 B Ve it tsp
z, = )
i/2
ifo V18 Ve it t>p
t-1 .
f 4 -1 .1 .
=45y ¥ (BT 6T if t < p
L P
3 -1 i .
f i§0 ¢i( B G ) if t> p

The AR(p) representation of coloured noise € is ¥(B) € = ¢p(B) €, = 8

.

t
Consequently a GNDBM formulation based upon Zt is { Y G, V, B} which for

t > p becomes a constant GNDBM defined over quadruple { u, G, V, B }.

3.2 Recurrence Relations

For a given prior ( gt_l l Dt-l ) v N( mo_y ), where

St



Dt—l = yt—l’ yt-Z’ cees yl, the posterior ( et | Dt ) v N( Et H Et)’ where

Dt = (yt, Dt-l)’ is computed through the following recurrence relations.

R, =6C,, C'/B

§t SVru Ru
A= Ry ( §t )
Cp = L - A vk
ey T Z T & om,
o m R YA e

3.3 Forecast Function

k-steps ahead forecast function for the original series Yt is

k . i/2
Fo) =8y & mp = 3f) ¥ 870 x (D)
where Yok g} m = E( Zt+k | Dt) s L =min( p, t-1 ) and
Y erked if ks i
xt(k-i) =
Ft(k-i) if k> i

3.4 Seasonality

In case of seasonal time series P(B) for the GNDBM is replaced by
wC(B) which is defined as follows.

_ i, —C i_C
v, (B) = ¢, ( 8°B). S.(B) = ;I; y;B" = I (1 - V;B)
where SS(B) is a polynomial in B of degree s for seasonality such that
s . s
S (B) = .z, S, Bl = NI (1- rp,B
s® j=0 7j J=1( pj)

and Sj are real but occur in complex conjugate pairs and 0 < r' <1

n
j|
is a damping factor . The series Zt and vector u,  are redefined,
replacing p by ¢ =p + s and using the coefficients wi of the

polynomial wC(B). For more detail see Akram(1984).

4. ON - LINE BAYESIAN LEARNING PROCEDURE

For recurrence relations (3.2) if variance V is unknown , then at time

t, it is estimated as:

V, =L/,
Ly = By bpop v (1 - mp A4,
Nt - 8v Nt-l +1
dt = min( ei . §§t )
where 0 < BV < 1 1is a discount factor for variance learning and § is

10



a confidence factor, corresponding to distance between some ¢ -limits, say
20 or 30 . For example § = 4 for 2¢ limits and § = 6 for 3¢ limits.
For most practical situationms, Bv close to one and § = 4 1is recommended.

For more detail see Akram(1984).

Comment

If there is no original information in the system then no contribution
to the estimaEe of Vt is made duringﬁthe first few points. For this period
in place of Vt theﬁprior estimate V0 is used. As a rule of thumb, it is
recommended to use Vt after n+p+q observations, where n,p and q are as

defined earlier, and minimum values of L0 and NO'

5.  STEPWISE IDENTIFICATION PROCEDURE

In practice the noise process for a GEWR application is well represented
by an AR(p) process of order p=1 or p=2. For identification of type of noise
and subsequent selection of some appropriate GEWR(n,p,0) model, various
approaches may be used, such as, Yule-Walker equations (Yule(1927) and
Walker(1931) ), Autocorrelation, Partial Autocorrelation and Durbin-Watson
(1950). However, here a simple nonparameteric procedure, called Stepwise
Identification Procedure (SIP), introduced by Akram (1984) is briefly reviewed.
This approach is based on Average String Length (ASL), the mean distance
between successive peaks or troughs of residuals or one step ahead forecast
errors obtained by applying some GEWR(n,p,0) model to the time series of
interest. The steps involved in the identification procedure are as follows.

A GNDBM GEWR(n,0,0) is applied to the data with some appropriate values
of n,f, Band V or B if variance is estimated on-line using Bayesian
Learning Procedure (4). YASL of one step ahead forecast errors is computed
and compared with the theoretical values of ASLs given in Appendix B. This
comparison gives us approximate value of ¢ , the AR coefficient, which in
turn helps us to identify the nature of residuals with respect to colour or
whiteness and the suitability of the model applied. For whiteness of
residuals the computed value of ASL should not be significantly different
from 2 ( a value corresponding to ¢ = 0 ) at a certain level of significance.
We see this by formulating a null hypothesis ASL = 2 ( i.e. the residuals
form a white noise sequence ) against some alternative hypothesis, say ASL#0.
The null hypothesis is accepted or rejected according to the critical region
bounded by the the critical values

21/ +z Y N)

where for large N+l observations Z; is a standard normal variate value

at certain o , the level of significance. Acceptance of null hypothesis
ensures whiteness of residuals, whereas, the rejection confirms the presence
of colour in the residuals. Subsequently, the whiteness of residuals tell us
that the model GEWR(n,0,0) is suitable for the series under study. This
gives us green light to go ahead to find forecasts and trends, both short
and long term.

In case of rejection of null hypothesis , i,e. the computed value of
ASL is significantly different from 2, we look at the AR(1l) coefficient
corresponding to the computed value of ASL in Appendix B and adopt an
approximate value of this coefficient for GEWR(n,1,0) model. The values
of ' n, f, G, B, V and B_ are taken as selected before. This new model is
applied to the data, residuals are obtained and ASL is computed again as
before and checked the whiteness of the residuals. We go on cycling the
identification procedure until we see whiteness of the residuals or in

1



turn confirm the suitability of the model applied. In case of unsatisfactory
results of GEWR(n,1,0), we move to GEWR(n,2,0) with AR(2) coefficients
suggested by the computed ASL values. For moving forward we go on retaining
the identified AR coefficients in a successive manner. First we estimate

¢1, then¢, and ¢3and so on.

6. CASE STUDY

A quarterly seasonal data set concerned with the disposable personal
income in Austria, consisting of 104 observations (1954-79)(appendix A) is
analysed by applying GEWR(n,p,0) Normal Discount Bayesian Model (3.1), i.e.

Zt=2t3 + ét H Gtm N(0; V)
with n = 2. For low frequency or trend, which shows a continually decreasing
growth rate following an asymptotic S-shaped growth curve, Gompertz function

t
yt-abp sy a>0, 0 <b,p <1

is used . 1In order to establish a link between this function and the GNDBM,
a log analogue of this function is used. Following the procedure explained
by Akram (1984), for our GEWR model, the following setting is considered for
operation.

£f=( 1), G =diag(l, 0.994), B =0.98 and r = 0.998 %.
The dynamic system of the model is initiated by using prior

6 1 -1.1

S I
-3 -1.1 1

On-line variance learning is used by setting Bv = 0.99, V0 =1 and No = 5.

For first 2+s+p observations V., and after that Vt are used. Zt and u,

0
are derived by using formulation (3.1).

For quarterly seasonal data, seasonal polynomial (3.4) is considered
as follows.

S3(B) = (1 + rZBz)(l + rB).

This seasonal polynomial gives us full harmonic representation for the
quarterly data under study.

First GEWR(2,0,0) form of the GNDBM is applied by considering ¢(B
and ¢3(B) = S,(B). One step ahead forecasts along with residuals are
obtained using~the recurrence relations (3.2). The residuals give us ASL 217,
a figure significantly different from 2 (at 5% level of significance). This
reflects inadequacy of model for the data under study. Looking at the table
of theoretical ASL values (Appendix B) it is decided to comsider ¢ = 0.9
for onward use.

Following SIP we proceed to GEWR(2,1,0) form of the GNDBM choosing
¢, = 0.9 and derive Zt and u again considering

vy (B) = (1 - ¢lén>.s3<s).

This model yields one step ahead forecast errors having ASLz 3. Still a
value significantly different from 2. For this approximate value we select
¢ = 0.5 for onward use. This reflects incapability of the GEWR(2,1,0) to

filter whole coloured noise. It has filtered quite a lot but not all.

%B)=1

In the light of information provided by ASL, it is decided to move
a step forward and formulate GEWR(2,2,0) form of GNDBM by choosing AR(2)
coefficients ¢;= 0.9 and ¢, = 0.5. For this selection Z_and u_ are
. . t -t
derived again by considering
3

b5 = (1 - 418831 - 4,8°m).5,(B).
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As usual, one step ahead forecasts are obtained along with residuals. This
time ASL computed for the residuals is 2.2, a value not significantly
different from 2. It indicates that the residuals form a sequence of white
noise, a confirmation of suitability of the model. Other than this, the model
GEWR(2,2,0) with the identified AR coefficients yields one step ahead
forecasts with less than 0.06% Mean Square Error and 1.5% Mean Average
Deviation, lowest in its class of models.

After ensuring the suitability of GEWR(2,2,0) model, all short and long
term forecasts along with trends are obtained from this model. One step
ahead forecasts along with observations are displayed in fig.a and one step
ahead trend is shown in fig.b. Long term forecasts (10 and 20 steps ahead)
and trends are displayed in figures c to f.

COMMENT

For analysis of data, log transformation is used in line with the log
form of Gompertz function and all forecasts and trends are obtained from a
single GEWR(2,2,0) model. The results show that a joint modelling scheme
where low frequency (trend), medium frequency (seasonal variations) and
high frequency (coloured noise) components are incorporated within same
framework, the low frequency is well protected from the high frequency,
especially in the long rum.

Fig.a Fig.b

Fig.c Fig.d

Austrian Disposable Personal Income (1954-79)--Continued next page
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Fig.e Fig.f

Austrian Disposable Personal Income (1954-79)-~Continued
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APPENDIX A

Year 1 2 3 4
1954 17.62 18.86 20.58 23.51
1955 19.31 21.42 23.93 26.91
1956 21.98 24.00 25.96 27.66
1957 23.34 25.80 27.23 29.87
1958 24,19 26.70 28.47 31.65
1959 25.41 27.94 29.61 32.98
1960 27.40 29.40 32.04 35.37
1961 29.52 31.51 33.94 38.06
1962 30.70 32.87 34.75 38.76
1963 31.22 35.12 36.44 41.44
1964 33.72 36.77 37.71 43.61
1965 34.96 38.47 39.15 45.05
1966 36.57 40.68 41.10 46.43
1967 37.88 41.79 42.36 47.74
1968 40.61 43.93 43.92 49.01
1969 42.08 46.31 45.94 51.38
1970 44.53 48.65 47.99 54.08
1971 48.25 52.21 51.51 58.11
1972 50.90 55.29 54.00 60.62
1973 53.14 58.74 57.69 65.01
1974 57.71 62.36 59.88 66.60
1975 - 57.78 63.93 61.07 68.43
1976 60.37 66.05 63.47 72.19
1977 64.69 69.50 64.46 73.80
1978 66.02 70.48 65.35 74.70
1979 68.33 72.94 67.74 77.31
Unit: Billions of Schillings

Source: Austrian Institute of Economic Research,
Vienna, Austria.
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APPENDIX B
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Average String Lengths of Autoregressive Type Coloured Noise
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USING INFLUENCE DIAGRAMS TO SOLVE

A CALIBRATION PROBLEM

R. E. Barlow
University of California
Berkeley, CA 94720

R. W. Mensing and

N. G. Smiriga

Lawrence Livermore National Laboratory
Livermore, CA 94550

INTRODUCTION

A measuring instrument measures a unit and records an
observation y. The non-measurable variable of interest, the
"true" measurement, x, of the unit is to be inferred from vy,
the measurable variable. If p(ylx) is the likelihood of y
given x and x has prior p(x), then by Bayes' Theorem

p(xly) = p(yIx)p(x).

Let x, and G,2 be the mean and variance of p(x). We will
assess the likelihood, p(ylIx), using a linear regression model

y = o+ B(x-x*) + € (1.1)

where x* is specified and a priori (o,PB) L xle and € is
N(0,62) with O specified. (These assumptions could, of course,
be relaxed; e.g. 62 unknown, € dependent on X, etc. However,

our assumptions are convenient and sufficiently general to
provide conclusions of general interest.) It follows that

p(ylo, B, x-x*) is N(0+B(x-x*),02).

The "center", x*, of the likelihood model and the prior for
x are intertwined. The natural choice for x* is the mean of
the prior for x, namely x* = x,. This is reasonable since our

attention is focused on calculating p(x|y). The line, with x*
= xo, is y = & + P(x-x,) where atandPare unknown and of course
y cannot be observed without error. Of course, the prior for
(0,B) depends on x* = x, and it is natural to assume that

p(o,Blxo) = p(aiP, %) p(B) since only & depends on X,.
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Figure 1.1is an influence diagram describing the logical and
statistical dependencies between unknown quantities, decision
alternatives and values (losses or utilities). The decision
may be an estimate for x given y. If the value or loss is

w(d,x) = (d-x)2

then the optimal decision will be the posterior mean for x
given y. The next section will discuss influence diagrams in
more detail.

The Calibration Experiment

The purpose of the calibration experiment is to learn about
(a,B) so that given a future observation y¢ we can reduce our
uncertainty about a future "true" measurement x;. To calibrate
our measuring instrument, we record n measurements

Y = (yi, ¥Y2r + - -4 ¥Ypn)
on n units all of whose "true" measurements,
X = (X1, X2, . .« «; Xp)

are specified before hand. Based on our prior, p(xg), and our

regression model (1.1), our problem is to determine x =
(%1, X3, - . . , X,) (subject to feasibility constraints) so as

to minimize some overall loss function. The experimental
design for the calibration experiment is called x.

The following assumptions will be made relative to the
calibration experiment.

Assumption 1. The future "true value", x¢, is independent of
(a,B), x, and y. The future observation, yes is independent
of (x,y) given (c,B).

Assumption 2. The value function w(d,x¢) is a loss function
and depends only on d (the decision regarding x¢ taken at the
time we observe y¢) and the "true value" x¢. For example, we
are ignoring the cost of performing the experiment.

Assumption 3. The feasible region, R, for the experimental
design, x, is bounded. That is, infinite x; values are not

allowed in practice.

Figure 1.2 is an influence diagram representation for our
problem. We seek an optimal experimental design subject to
x € R. For a more detailed discussion of this problem and

references to other approaches see Chapter 10 of Aitchison and
Dunsmore (1980). Hoadley (1970) discusses the calibration
inference problem in some detail and points out the _
difficulties with the maximum likelihood estimator for x¢ given
an observation ys¢ and data [(xi,y3), i =1, 2, . . .,n] from a

calibration experiment. Brown (1982) and Brown and Sundberg
(1985) extend Hoadley's results using a multivariate

18
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Fig. 1.1 Influence diagram for the inference calibration problem
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Fig. 1.2 The calibration experimental design problem
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formulation. However, they do not consider the problem of
optimal Bayesian experimental design. The definitive
reference for Bayesian design for linear regression is
Chaloner (1984). The objective of this paper is to discuss
the calibration experimental design problem.

Summary of Results

Based on the likelihood it is shown that the experimental
design may be summarized by

n,

and

where

If fis known, the optimal experimental design depends only on
n and corresponds to taking n as large as possible. The
values of x are immaterial. If ois known, the value of the

experimental design depends only on vy and is decreasing in vy

for fixed n. If both & and P are unknown, the optimal design

can be found by performing a three dimensional search over
(n, X-x,,Vy) .

USING INFLUENCE DIAGRAMS

Influence diagrams are discussed by Shachter (1986). He
also provides an influence diagram solution algorithm for
decision problems.

In Figures 1.1 and 1.2 circles denote random quantities
while rectangles denote decision alternatives. Diamonds
denote deterministic functions of their immediate input
variables. The arrows denote influence. Thus the two input

arrows to ys indicate that ys; depends on both x¢ and (o,B). 1In
this case the assessed probability function for yg¢ given (a,P)

and x¢ is N[a+B(xg-x,),02]. Each circle node has a weight

attached. This weight is a conditional probability function
which only depends on immediate predecessor nodes.

The influence diagram is first of all an acyclic directed
graph. As such there always exists an ordered list of nodes
which preserves the graph ordering. For example, in Figure
1.2 an ordered list is

(n,x) < (o,B)<y< xe< ys<d<w.

From the ordered list and the weights attached to circle nodes
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we can calculate a unique representation for the joint
probability function corresponding to probability nodes. From
Figure 1.2, for random quantities,

a, B, vy, Xfr Y

the joint probability function is

pla,B)p(ylapBn,x)p(xe)p(ysla, B, x¢)

It can be easily verified that if two probability nodes
have only output arrows, then they are unconditionally

independéent. From Figure 1.2 we see that (a,B) and x¢ are
unconditionally independent as required by assumption 1.

Since there is no arc connecting (x,y) and y¢ it follows that
(x,¥) lys given the status of their immediate predecessor
nodes, namely (o,B) and X¢. But, since (x,y) 1l x¢ it follows
that (x,y) 1 yg¢ given (a,P).

To find the optimal experimental design, we will reduce
Figure 1.2 to just two nodes, namely the decision node (n,x)
and the value node w(d,x¢). The value node is deterministic;

i.e. the value is determined given d and X¢. The value node has
only input arrows.

The solution algorithm starts with the value node. The
nearest decision node in the ordered list is d. Fix the
immediate predecessors of node d; namely, (n,x), y and yg¢.

These denote information available at the time of decision.
Next, eliminate all other probabilistic predecessors of the

value node; namely, x¢ and (o,B). This is done by arc
reversal and Bayes' Theorem. Figure 1.3 shows the influence
diagram after reversing the arc from (a,B) to y. Note that

the posterior distribution for (o,B) now depends on both
(n,x) and y.

The next step is to reverse the arc from (o,P) to ys.
After reversal, node (c,P) has only input arcs; i.e. all the
information in this node relative to our design problem has

been extracted. Hence, at this point node (a,B) is deleted
leaving the influence diagram of Figure 1.4.

Before the decision node can be eliminated, we must first
eliminate node xf by reversing the arc from x¢ to ygf and the

arc from xf; to w. Figure 1.5 shows the influence diagram after
reversing the arc from x¢ to yg. The next step is to reverse
the arc from x¢ to w. After this reversal, node w has value

oo

J w(d, 2 )P (% 1y, ¥,n,x)dx,

-0

- Exfiyf.,y,n,x[w(d' ) 1Y Y0, %],
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Fig. 1.3 The calibration problem after arc reversal

Fig. 1.4 The influence diagram after elimination of node (a, 8)
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Xg

Py In,x,y)

P(xflyf:Y,ﬂ,x)

Fig. 1.5 The influence diagram after reversing the arc from
Xf to yf

To eliminate the decision node we calculate

oo

Min jw(d,xf)p(xflyf,y,n,x)dxf
d

where
P(xelys ¥,/n, %) =< p(yelxe, ¥,n,X)p(Xg)
and
P(yelxe, ¥/n, X)) = I p(ysloB, xe)p(aBly, n, x) dadp.

Finally, we compute

W(x) = Eynnx Eyfw,n,x Mtn EXHYpYﬂLx [w(d,xf)lyf,y,n,x] (2.1)

where

plyely,n,x) = | plyelxe, v, n,%)p(xe)dxe.
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The optimal design is the minimizer of W(x). If we take
squared error loss, (d-xg)2 , as our value function then the
posterior mean is the minimizer of

2
EXlef,Y,n,x[ (d-xf) |yleI n, x]

and W(x) becomes

W(x) = Eyln,xEyflyln'xVar(xflyf,y,n,x) .

LIKELIHOOD AND THE OPTIMAL EXPERIMENTAL DESIGN

Under the assumption that observation errors, {€;1i = 1,

2, ..., n} are independent N (0, 62), but without specifying
prior distributions, we can determine some of the structure of
the optimal experimental design. This can be done using the

sufficient statistics for (a, B) corresponding to our likelihood
model. As noted before, the purpose of the calibration
experiment is to learn about (®, B). The likelihood for (a, )
given the data is

Lo, B) |Data,x°) o< exp {- Z[yi - o - B(xi-xo)]2/20'2}.
1

A priori assumea Ll le and letE(0)=a, E(B)=b, Var (a)=0,2,
and Var(f)=0,2. Define

e = yi = a = blxg=xo)
and rewrite
yi = O - B(xj-x5) = [y; - a - b(xj-%5)] - (0-a) = (B-b) (x4-x,)
=e; - (aa) - (B-b) (x1-%o)
so that

L (o, BIData, x,)
o exp{-[n(0-a)2 + (B-b)2 X (x;-%,)2 -2Xe;[(0-a) +

(B-Db) (x5-%5)1 + 2(0-a) (B-b) T (x3-%x,) 1/202}. (3.1)

n n 2 n n
Clearly n, Z(xi—xo), Zl(xi—xo) r 2z, = Zei and z, = Zei(xi-xo) are

sufficient statistics for (o,B) since Xor @, b and © are spec-
ified. It follows that the posterior density for (o,f) also

n n
2
depends on the data only through n, Z(xi-xo), Z (xi—xo) r oz and z,-
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Theorem 3.1

W(x) depends on x only through

n,
n
X-x =Z(xi- x.)/n
and n ,
v, = Z'(xi_x°)

N. B. This is true for all value functions w(d,x¢) and priors

on (o,B) and x¢. Were w to also depend on x but only through
n, ¥-x, and vy, theorem 3.1 would still hold.

Proof:

The purpose of the calibration experiment is to learn
about (0,P)so that, in the future, we may make a “"good"
decision about xg¢. Since n, %-x,, Vg, z; and z, are sufficient

statistics for (o,PB), the test results, y, may be summarized
by z; and z,.

If we examine the derivation of (2.1) carefully, we see
that (2.1) can be rewritten as

W(x) =

- E Min E w(d,x z.,2.,0
2172210 R Ve Ko YelZ 1z 20 R Vi Ko g Xel¥er21,2200, %, Vyo X (w(d, f)lyf’ 1 e

RIVXIXO] (3«2)
Hence, from (3.2), we need only show that the joint distri-
bution of (zj,z;) depends on x only through n, X-x, and vy. It

is easy to show that (z1,z3), given (aﬁ), is bivariate normal
where zj given (a,B) is

N{n(a-a) + (ﬁ-b)}:(xi—xo), n02]
1

and zp, given (a,f), is
NL(0-a) ), (x,-x) + (B-b) 21, (x,-% )% 0221, <xi-x°)2]
1
while

Cov(z,, zzlu,B) = 62§:(x{-x°). QED

Corollary 3.2

If O, = 0, i.e. we are certain that B = b, then W(x)
depends on x only through n. The "levels" (xXy, X3, ..., Xp)
are immaterial and we might just as well take
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X1 T X2 T .0 T X T Xg
or any other values that we like.

Proof:

If we are certain that f = b; i.e. 6, = 0, then (3.1)
becomes

L(aIData,xo) oc exp{-[n(a-a)2 - 2§5ei(a-a)]/202}.
1

n n
Hence n and z, = };ei = };[yi -a- b(xi-xo)] are sufficient for q.

Since zj given (a,f=b) is
N[n(®-a), nG?]

it follows that W(x) depends on x only through n. QED

Corollary 3.3
If oo is known, i.e. 0, = 0, then W(x) depends
on x only through vy, Further, for fixed n, W(x) is decreasing

in wvy.

In this case, W(x) is minimized for those x belonging to R for
which vy is maximum.

Proof:
If o,= 0, then (3.1) becomes

L(BIData,x ) o exp{—[(B-b)ZZ(xi-xo)z- 2(B-b) Ye, (x,-x,)1/20°}.

n n
2
Hence };(xi—xo) and z, = };ei(xi-xo) are sufficient for . Since
zp given (o = a, B) is
n n
2 2 2
N{(B-0) X (=% ), O (x=x )]

it follows that when 00=a is known, W(x) depends on x only
through vy.

Suppose

n n
2 2 .
};(xi-xJ < :;(x{—xo) . Clearly we can find x _, such that

, 2 & 2
Zl(xi -.xo) =21(Xi"xo) + (xn+1_ xo)

2
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ntl

=21, (xi-xo)z.

By the expected information inequality [see Raiffa and
Schlaifer (1961)], the expected value function can only
decrease if we perform additional calibration experiments.

Hence W(x) is decreasing in vy for fixed n. QED
Determining the Structure of the Optimal Experimental
Design

Since

n
2
Y (x,~%) /n 2 0
1
it follows that
5i -2, _ % 2 - 2
4 (xi-x°+x°-x) /n = Z(xi-xo) /n - (x-xo) 20

and

Consequently, the minimization problem with respect to x
can be transformed to a minimization problem with respect to
only three variables, namely n, X-x,, Vy where

jX=x |€ Jv/n .
] X

Since X-x, and v, are symmetric functions of an experi-

mental design x, it follows that, for fixed n, any permutation
of the coordinates of an experimental design solution is also

a solution (if allowed by the feasibility constraints).

Figure 3.1 shows the nature of the possible (xj;, xX3) solutions

for vy fizxed and n = 2. The darkened arcs on the circum-
ference show the possible designs for a fixed vy (up to
permutations of coordinates). For fixed vy, possible solutions

are traced out by the intersection of the line X-x, = c with

2 2
the circumference of the circle ®-x)) + (x,7x)) = ‘/2vx/n

as ¢ varies from - / vx/n to fv,/n

The optimal experimental design x can, in theory, be
found through a three dimensional search over the feasible
region R. One strategy would be to fix n and, using a
computer, calculate a three dimensional plot of W(x), as given
by (3.2), versus X-x, and vy. Figure 3.2 illustrates the 3

dimensional plot for a fixed n. The plot shows the surface of

W(x) as a function of X - xol < 1/vx/n
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Suppose we are uncertain about both & and B. From (3.1)
we see that if x) = x, = ... = x, = X, then

Lo, BiData) « exp(-[n(0-2)’ - De, (@-a)1/20")

so that in this case the data provide no direct information
about B. 1If, in addition, the prior for (a,P) satisfies

p(o,Bixy) < pl(alxy) p(P)
i.e. o and B are a priori independent given x,, then
p(a,P) IData, x,) o« L(a|Data,x,) p(®ix,) p(P)

and the posterior marginal for P is the same as the prior

marginal for PB. 1Intuitively, if B is unknown and Gy >> O,, the
experimental design

X1 = X2 ¥ ... = X T Xg

is a local maximum for the final expected value since values
of x; near x, will provide information about P and hence tend
to reduce the final expected value.

Computational Considerations

The calculation of W(x) as expressed in (3.2) assumes
that p(x¢lysr21,22/0,%-Xo,Vy) and plyglzy,2zo,0n,%X-%X,,Vy) are
available. To obtain these densities, we must first calculate
the posterior density for («,p) given n, ®-x, and vy. 1In
the case of a bivariate normal prior for (a,fB), the

posterior density will again be bivariate normal and
p(yelXge,21,22,0,%-Xy,Vy) will be univariate normal. 1In a

future paper we investigate the computational problems in more
detail.

INFLUENCE DIAGRAMS AND THE SURE THING PRINCIPLE

The Sure Thing Principle [Savage (1954)] asserts that if
decision d is preferred to d* for any possible value of a
quantity, say O, then d is also preferred to d* when o is
unknown. Suppose n is fixed for our calibration experimental
design. By Corollary 3.3 and the Sure Thing Principle we
might at first infer that the optimal experimental design

corresponds to those x € R for which vy is maximum regardless

of whether o is known or unknown. This reasoning is easily

seen to be incorrect, since by Corollary 3.2 and the Sure
Thing Principle we would also have concluded that the optimal
experimental design depends only on n.
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The resolution of this seeming contradiction can be seen
from the influence diagram, Figure 1.2. There are two
decision nodes, say d; and d,. Hence the correct statement of

the Sure Thing Principle would require that a decision pair
(d1'd2) be preferred to (d:,d:) for any value of ao. In fact, the

decision node corresponding to estimating x¢ will depend on
o0 = a when o is known and on B = b when B is known.

kno m
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RELIABILITY OF A COMPLEX SYSTEM FROM BAYESIAN VIEWPOINT

*

Asit Basu Ghasem Tarmast
University of Missouri Ahwaz University
Columbia, Missouri, U.S.A. Iran

1. INTRODUCTION

Let X and Y be two random variables with cumulative distribution
functions F(x) and G(y) respectively. Let Y be the strength of a component
subject to a stress X. Then the component fails if at any moment the
applied stress (or load) is greater than its strength or resistance.
Reliability of the component is then given by

R=PEX <Y) (1.1)

The above model has been useful in a number of areas, specially in
the structural and aircraft industries. As an example consider the follow-
ing. A solid propellant rocket engine is successfully fired provided the
chamber pressure X generated by ignition stays below the burst pressure Y
of the rocket chamber., If X > Y, the engine blows up and the operation
is a failure.

From practical considerations it is desirable to draw inference about
R and other similar measures. In many situations, the distribution of X
(or of both X and Y) will be completely known except possibly for a few
unknown parameters and it is desired to obtain parametric solutions. The
problems of estimating the reliability functions, both for simple and com-
plex systems, have been corsidered by many. For a bibliography of avail-
able results see Basu (1977a, 1977b, 1981, 1985) and Bhattacharyya and
Johnson (1975). However, most results are based on sampling theory
approach. Enis and Geisser (1971) and Zacks (1977) have considered the
troblem from Bayesian point of view. In this paper we consider Bayesian
approach fcr general systems.

A number of complex systems are described in Section 2. Bayesian
analysis, assuming noninformative prior and conjugate prior distributions,
are given in Sections 3 and 4. Finally a model based on multivariate
normal distribution is discussed in Section 5.

*This research was funded by a grant from the Research Council of the
Graduate School, University of Missouri-Columbia. Part of this research
was carried out while A.P. Basu was visiting the University of Warwick,
Coventry, England.
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2. COMPLEX SYSTEMS

Consider a physical system. A system is called simple if it consists
of a single component. Otherwise it is called a complex system. a complex
system, consisting of p components, is called a k-out-of-p system if it func-
tions if and only if at least k of these p components functions successfully.
Such a system occurs quite naturally in many physical and biomedical models.
As an example of a 2-out-of-3 system, consider an airplane which can func-~
tion satisfactorily if and only if at least two of its three engines are
functioning. When k = p (or k = 1) we obtain series (or parallel) systems
as special cases of k-out-of-p systems. 1In this section we shall consider
three k-out-of-p systems.

First, consider a simple system of strength Y which is subjected to
p different stresses X1,X2,..., An example of interest is the case where
a beam of strength Y is subJecteg to p different stresses X{,X9,...,
Let us assume that the Xi's are independently and identically distributed
with a common dlstrlbutlon function F(x) F(x;04). Let the cdf of Y be
G(y) =G(y,07) and assume that the X;'s and Y are independent. Then the
reliability of the system is given by

R

1 Prob(at least k of the X 's < Y)

P
) (;’)J (P PL1-F(y) P dac(y) . (2.1)
k —00

Assume that F and G satisfy the Lehmann alternative, that is, assume
X and Y tc have proportional failure rates. Let
61/62
[1- G(x;ez)] =[1 F(x,e )] . (2.2)

The exponential distributions and the Weibull distributions with common
shape parameter satisfy (2.2). From (2.1) and (2.2) we obtain

z€>uj+nrw+l-JNUP@+l+1n

=r(p+1) Tp+3+1-K) /{T(p+1-1)T@+F+D} (2.3

where A-1= 6 /62. The last expression is obtained using the result

(a : E I 1) + (a +bb - l) - (a ; b). (2.4)

Next a p-component system with strengths Y1,Y2,...,Yp respectively is
considered where each component is subjected to the same stress X. As an
example, let X denote the flow of current through an electric component
assembled from several subcomponents with abilities to accommodate currents
Y9,¥95...,Y,. As before X and Yv s are assumed independent. Let the cdf of
X be F(x) and the common cdf of the Y;'s be G(y) where F and G satisfy
(2.2). Here the reliability of the system is given by

Ry

P(at least k of the Yi‘s > X)

P w .
I j teed P - e ar. (2.5)
=k 2 o

For Lehmann alternatives
dF(x) = AM{1 - G(x)}}‘-l dG(x). (2.6)
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In this case, using (2.4), R, can be shown to be given Lty

2

_ I'(k + \) T'(p +1)
Ry = l-Tosrs D) TH (2.7)

Finally, consider a rore general p-component system where the ith
component of strength Yi is subject to stress (shock) Xi, i=12,...,p.
Assuming as before that Xi's and Yi's are independent with Xi ~ F(x) and
Yi ~ G(y), the reliability R3 for this k-out-of-p system is given by

Ry = b Oexen)¥ e > P, (2.8)
2y J
j=k
In the special case, whenX ~ e(6.) and Y ~ e(6,) with cdf's
1 2
—x/el -y/62
F(x;el) =1-e , and g(y;ez) =1-e , we have
] 0
_ 2 _ A _ 1 _ 1
PR <Y) g5 =743 M PE>Y) =5—5 ~1yx 29
1 2 1 2
In this case (2.8) reduces to
P P Aj
R3 = ) . (2.10)

jek 3@+ 0P

3. BAYESIAN ESTIMATION BASED ON NONINFORMATIVE PRIORS

In this section we shall consider Bayesian estimation of Rl’RZ and R3.
Considerable literature exists about the choice of a suitable prior distri-
bution., In Sections 3 and 4 noninformative priors, and conjugate priors
are considered.

For simplicity X and Y are assumed to have independent exponential
distributions with cdf's

-x/e1
1l-e , x 20, 61 > 0,

F(x;el)
.1
18, (3.1)

G(y;ez) =1-e ,y20,6,>0.
A reasonable noninformative prior distribution for Si is given by

=L -
h(,) = 5, 6, >0, (i =1,2). (3.2)

Let Xl,Xz,...,Xn and Yl’YZ""’Yn be two independent random samples
from F and G respectively. Then the ma%imum likelihood estimator of

% ~ % 3 - 1 v -
A= T is given by A === = < wywhere x = — z X ., y analogous.
- n i
1 6 X 11
1
The maximum likelihood estimators of Rl’RZ’ and R3 can be readily obtained

by replacing 6.,6,, and A by their respective estimators in (2.3), (2.7)
1°°2
and (2.10).
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Lemma 3.1. The posterior density of A = 6,/6,, based on the noninformative
T . . . . 2 1
prior distributions (3.2), is given by

) n -1
- F(nl + nz)u A 1
h(AIX’Y) = F(nl) r(nz) nl+n2 » A > 0. (3.3)
(A + u)
where u = n2y/nlx.
Proof: Straightforward.
The Bayes estimators of R1, RZ’ and R3 are given by

Theorem 3.1. The Bayesian estimator of Rl, using the noninformative priors
(3.2), is given by

~

fL " T)T@)T(p + 1 - 1)

y 1-y) dy,

+ e Y - -
I‘(n1 n2)F(p + 1) Il I (p+1-k+ ) nl 1 n, 1
(3.4)

1=y
0 T(p+1+ uy)

where u = nzy/nlx.

Proof: E

1 E(Rlldata)

00
[ R, h(A|x,y)dA.
0 1

Substituting for Rl from (2.3), and integrating out A (3.4) is obtained.

Theorem 3.2, Bayesian estimatcr of RZ’ using the noninformative prior
(3.2), is given by

u nl-l n2-1
o e eI+ Jl Ttk + 30y~ A=y) ©

Proof: Similar to proof of Theorem 3.1.

Theorem 3.3. Bayesian estimator of R3 in (2.10) using the noninformative
prior (3.2), is given by

T'(n, + uj 1 " +i-1 n

R = E ® _S_l_._n_g_)_ Jr Ll 1-y)

3 j=k 3 r(“l)r(nz) 0 [1+ (u-1ylP?

2+p-3-l

dy. (3.6)

Proof: Similar to that of Theorem 3.1.

Numerical comparisons of Bayesian and maximum likelihood estimates of
Ry, Ry, and Ry are carried out through simulation. Estimates of the mean
square error (MSE) and bias with nq=n, =20 are obtained from 1000 trials
for the k-out-of-3 and k-out-of-4 systems with A=1,2,3, and 4.

The tables 1, 2, and 3 show the estimated bias and MSE. The bias and

MSE of both the maximum likelihood and Bayes estimates appear to be nearly
equal.
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Table 1
The maximum likelihood and Bayesian estimators of the reliability of
k-out-of-p system when a simple system with strength Y is subjected to the
stresses X1,X2,...,Xp under the assumption that the Xi and Y are
independent exponential distributions.

p=3

Bias Mean Sq. Error
k Lamda R(k,p) MLE Bayesian Sm Sb
1 1 0.75 0.022 - 0.012 0.0011 0.0044
2 1 0.5 Cc.044 0.0033 0.0038 0.01
3 1 0.25 0.041 0.012 0.0039 0.0087
1 2 0.86 - €.006 -0.011 0.0019 0.0021
2 2 0.69 - 0.0018 - 0.0077 0.0063 0.0065
3 2 0.46 - 0.00033 =~ 0.0019 0.01 0.01
1 3 0.9 - 0.0044 - 0.008 0.0012 0.0013
2 3 0.77 - 0.0084 - 0.014 0.0041 0.0041
3 3 0.58 - 0.007 - 0.011 0.0097 0.0093
1 4 0.92 - 0.0027 - 0.0057 0.00078 0.00082
2 4 0.82 - 0.0039 - 0.0092 0.0031 0.0032
3 4 0.66 - 0.0083 - 0.013 0.0084 0.0081

_p=4

Bias Mean Sq. Error
k Lamda R(k,p) MLE Bayesian Sm Sb
1 1 0.8 0.017 - 0.017 0.00067 0.0035
2 1 0.6 0.036 - 0.0053 0.0026 0.0085
3 1 0.4 0.037 ~ 0.0078 0.0034 0.0099
4 1 0.2 0.039 0.015 0.004 0.0076
1 2 0.89 -0.0059 - 0.011 0.0013 0.0016
2 2 C.76 - 0.0064 - 0.014 0.0045 C.0051
3 2 0.61 - 0.0042 - 0.01 0.0092 0.0097
4 2 c.41 0.00064 0.00065 0.011 0.01
1 3 0.92 - 0.0049 - ¢.008 0.00069 0.00073
2 3 0.83 - 0.0091 - 0.015 C.0033 0.0035
3 3 0.71 - 0.01 - 0.016 0.0069 0.0068
4 3 0.53 - 0.00045 - C.0036 0.011 0.011
1 4 0.94 - 0.0029 - 0.0054 0.00044 0.00047
2 4 0.87 - 6.0079 - 0.013 0.0022 0.0023
3 4 0.77 - 0.0074 = 0.013 0.0052 0.0052
4 4 0.62 - 0.011 - 0.016 0.0092 0.0088
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Table 2
The maximum likelihood and Bayesian estimators of the reliability of
k-out-of-p system when the system with strength Y = [Y1,Y2,...,Yp] is
subjected to the stress X under the assumption that the Yi and X are
independent exponential distributions.

p=3

Bias Mean Sq. Error
k Lamda R(k,p) MLE Eayesian Sm Sb
1 1 0.75 0.035 - 0.013 0.0022 0.0092
2 1 0.5 0.044 0.0076 0.0041 0.01
3 1 0.25 C.026 0.0035 0.0018 C¢.0043
1 2 0.9 - 0.012 - 0.021 0.0031 0.0036
2 2 0.7 - 0.0061 - 0.012 0.0085 0.0088
3 2 0.4 0.0075 C¢.0086 0.0071 0.0071
1 3 0.95 = 0.0095 - 0.0l16 0.0013 0.0014
2 3 0.8 = 0.011 - 0.018 0.006 0.0058
3 3 6.5 0 0 0.007 0.0067
1 4 0.97 - 0.0057 = 0.011 0.00063 0.00072
2 4 0.86 = 0.0068 = 0.014 0.0041 0.0041
3 4 0.57 0.00058 = 0.001 0.0067 0.0064

p=4

Bias Mean Sq. Error
k Lamda R(k,p) MLE Bayesian Sm Sb
1 1 0.8 0.029 - 0.016 0.0018 0.0071
2 1 0.6 0.042 = 0.0039 0.0039 0.011
3 1 0.4 0.037 0.0055 0.0034 0.0082
4 1 0.2 0.025 0.0096 0.0017 0.0035
1 2 0.93 = 0.01 = 0.02 0.002 0.0026
2 2 0.8 = 0.011 = 0.019 0.0073 0.0075
3 2 0.6 0.0039 0.0012 0.0095 0.0095
4 2 0.33 0.003 0.0055 0.0054 0.0055
1 3 0.97 - 0.0073 = 0.0013 0.00085 0.00098
2 3 0.89 - 0.012 = 0.02 0.0041 0.0041
3 3 0.71 = 0.0053 - 0.01 0.008 0.0076
4 3 0.43 < 0.0017 =~ 0.00017 0.0075 0.0072
1 4 0.99 =~ 0.0048 < 0.0092 0.00026 0.00033
2 4 0.93 = 0.011 = 0.018 0.0024 0.0024
3 4 0.79 = 0.011 = 0.017 0.0078 0.0075
4 4 0.5 =~ 0.0021 ~ 0.0021 0.0077 0.0073

4, BAYESIAN ESTIMATION USING CONJUGATE PRIORS

In this section informative priors, which are natural conjugate priors
for exponential distributions, are considered. As in Section 3, let the
cdf of X and Y be given by (3.1). The prior distribution of 9 is assumed
to be the inverted gamma distribution with density
Vi
o, -al/e v, +1

h(e;) = ﬁTj e L(1/6. ) o 8, >0, v, >0, a,>0, (i=1,2).

(4.1)
Here the parameters . and vi are chosen to reflect prior information.

Lemma 4.1. The posterior density of A~=62/91 is given by

T(n, +n, +v, +v,) T2tV m*Vy7l
hOIR,) = et 2 8 A (4.2)
F(n + \)1)1"(n2 + \)2) 40, +V; +V, ’ :
(A + u)
2 + 2y
where u = m
1 1

Proof: Straightforward.

Using h(AI%,y), as in Section 3, the Bayesian estimates of Rl’ R,
and R3 are obtained as given by the following theorem.
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Table 3
The maximum likelihood and Bayesian estimators of the reliability of
k-out-of-p system when the system with strength Y = [¥1,Y2,...,Yp] is
subjected to the stress X = [X1,X2,...,Xp] under the assumption that the
Xi and the Yi are independent exponential distributions.

p=3

Biag Mean Sq. Error
k Lamda _ R(k,p) MLE Bayesian Sm Sb
1 1 0.87 0.87 0.011 0.0008 0.0008
2 1 0.5 0.057 0.054 0.0065 0.006
3 1 C.12 0.032 0.041 0.0025 0.0023
1 2 0.96 - 0.0077 - 0.014 0.0008 0.0009
2 2 0.74 - 0.0073 - 0.0l6 0.0097 0.0093
3 2 0.3 0.0079 0.012 0.0099 0.0093
1 3 G.98 - 0.0048 - 0.0088 0.0003 0.0004
2 3 0.84 - 0.013 - 0.023 0.0055 0.0054
3 3 0.42 - 0.0031 - 0.0026 0.011 0.011
1 4 0.99 - 0.0027 - 0.0052 0.0001 0.0002
2 4 0.9 - 0.0076 = 0.016 0.0034 0.0035
3 4 0.51 - 0.0059 - 0.0081 0.011 0.011

p=4

Bias Mean sq. Error
k Lamda R(k,p) MLE Bayesian Sm Sb
1 1 0.94 0.011 0.002 0.0002 0.0003
2 1 6.94 0.011 0.0021 0.0002 0.0003
3 1 0.31 C.054 0.06 0.0069 0.0062
4 1 0.062 0.023 0.033 0.0015 0.0015
1 2 G.99 =~ ¢.0044 -~ 0.0088 0.0002 0.0002
2 2 0.89 = 0.015 - 0.026 0.0052 0.0053
3 2 6.59 = 0.0074 -~ 0.012 0.016 0.015
4 2 0.2 0.006 0.014 0.0079 0.0075
1 3 1 = 0.0026 ~ 0.0049 0.0001 0.0001
2 3 0.95 - 0.01 = 0.019 0.0019 0.0021
3 3 .74 = 0.012 - 0.022 0.012 0.011
4 3 0.32 0.0016 0.0054 0.012 0.011
1 4 1 0.0011 . 0.0001 0 0
2 4 0.97 - 0.0091 < 0.0l6 0.001 0.0011
3 4 0.82 - 0.0081 ~ 0.019 0.0065 0.0065
4 4 0.41 ~ 0.0015 ~ 0.0009 0.013 0.012

Theorem 4.1. Bayesian estimators of Rl’RZ and R3, using the conjugate

prior distributions (4.1), are given by RI’R and R3 respectively, where

1-
F(n + n, + vl + Vv )F(p + 1) (1 T(p+l-k+ 3

2124
1
X

1 F(nl + \)l)F(n2 + Vz) F(p+l'k) 0 I‘(p+l+ —a-}-)

n_+y_-1 n_+v -1
yr P et g (4.3)
, Y
-8 = Tap +ny + v + V)T + 1) Jl T + ) x
2 T(nl + \)l)l"(nz + \)2) I'(k) 0 T(p+1+ :—Ll-l:%
n_+v_-1 n_+v_-1
11
v 1y 2 % gy, (4.4)
and
r A .
ﬁ ) Z ( ) (nl + nz + vl + vz) uJ s
3 jk 37 Tiny + v )Tn, + v,)
1 Xil + vl + 3 - l(l- )nz + vz +p-~-j-1
J ; dy. (4.5)
0 [1+ (u- 1)yl

Proof: Starting out with (4.2) instead of (3.3) the results follow immedi-
ately from (3.4), (3.5), and (3.6).
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5. ESTIMATION FOR p~COMPONENT SERIES SYSTEMS

In this section we derive the Bayesian estimator of the reliability
of a p-component series system. Let Y; denote the strength of the i-th
component which is subject to stress X., i = 1,2,...,p. Then the reliabi-
lity of the system is given by t

R4 = P(Xi<Yi, i=1,2,...,p) = P(Z2>0), (5.1)

where X = (Xl,...,Xp)', Y = (Yl,...,Yp)', Z=Y - X. Let Zl’ ZZ’ and
Zn, be a random sample. Assume that Z follows the multivariate normal

distribution with mean vector p and covariance matrix I. We want to
obtain the Bayesian estimator of R&' It is well known that the vague

prior distribution of py and I is given by
-1 -1 pl
pu,IH = p(pETH) = 1I1Z . (5.2)

The posterior distribution of u and Z-l in this case is given by
n-p-1 7 ~
-1 -1, 2 1 -1 = .z
p(p,X “ldata) = KIZ 7| x exp[-f tr I "((0-1)S+n(Z-p) (Z-p) )1, (5.3)
where n-1
2

2?21 - D)s
K = ~ ,

n
r(l<n - i))
1 2

ohp
5 2 P+ /4

i

L=~
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Abstract

The experiment in which a selection sample is drawn from some
distribution invoiving an unknown parameter 8 is compared according to various
criteria with the usual experiment in which an unrestricted random sample is
drawn from that distribution. The Fisher information is studied for several of
these experiments, and conditions under which the experiments are ordered with
respect to the criterion of sufficiency or pairwise sufficiency are presented.
Standard problems involving selection samples from the normal, binomial, and
Poisson distributions are discussed in detail. Some results for general
exponential families and for selection models involving bivariate observations are

also considered.

1. Introduction

In many situations, experimenters are not able to draw a random sample
from the population in which they are interested, and statistical models that
incorporate the restrictions under which the observations were obtained must be
developed. In this paper, we consider problems in which observations are
obtained only from certain selected portions of the population, either because
experimental conditions make it impossible to obtain data from the whole
population or because the experimenter chooses to restrict the observations in

this way.

Consider a random variable X that is distributed over a certain population
according to the (generalized) density g(xlﬂ) and suppose that it is desired to
make inferences about the unknown value of the parameter 8(8¢Q). The usual
statistical analysis assumes that a random sample from g(xlﬁ) is obtained. In
this paper we will assume, however, that each observation is restricted to lie in
a specified subset S of the sample space. so the analysis is based on a random
sample from the following density:
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_ghle
fly|o) = Bxeslyr T YeS - (1.1)

and f(y|0) = 0 otherwise. It is assumed that Pr(XeS|8) > 0 for all 8¢Q. The
model (1.1) is called a se/ection model or a truncation mode/, and a random
sample from (1.1) is called a selection sample.

Selection samples occur frequently in practice, and several examples were
given in Bayarri and DeGroot (1986a) together with a Bayesian analysis of these
models. The name "selection models” in this context is due to Fraser (1952,
1966), although the term “selection” was used in a more general setting by Tukey
(1949).

In this paper, our main interest is in comparing the experiment in which a
selection sample is obtained with that in which an unrestricted random sample
from g(x|0) is obtained. In some problems, this comparison is carried out by
studying the Fisher information in each type of experiment. In certain cases,
stronger results are obtained based on the theory of the comparison of statistical
experiments as developed originally by Blackwell {1951, 1953). His method can

be described as follows:

Let Ex = {X, X; g('|0), 0¢Q} denote a statistical experiment in which a
random variable or random vector X defined on some sample space X is to be
observed, and the distribution g(-l()) of X depends on a parameter 8 taking values
in the parameter space Q. Also, let .‘:'Y = {Y, V; f({0), 8¢Q} denote another
statistical experiment with the same parameter space Q. Then the experiment .‘.-')<
is said to be sufficient for the experiment EY {denoted Ex z EY) if there exists a
stochastic transformation of X to a random variable Z{(X) such that, for each
6¢Q, the random variables Z(X) and Y have identical distributions. The
relationship Ex ?v 1:'Y holds if and only if for every decision problem involving 6
and every prior distribution on €, the expected Bayes risk from Ex is not greater
than that from EY.

Some other properties of the relationship Ex z EY should be noted. Let E;
denote the experiment in which Ex is independently performed n times so that a
random sample )(1,...,Xn is obtained, and let E:; be defined analogousiy. Then
E, 2 EY implies E; 2 Es for every value of n.

The experiment Ex is said to be pairwise sufficient for the experiment EY
(denoted £, > _ £.) if for every pair of values 0, 0_¢Q, E_ is sufficient for £
X a2 Y 1 2 X Y
when the parameter space is restricted to contain just the two values 01 and 02.
Clearly if £, > E_then £, >_ E_. However, the converse does not necessarily
XA~ Y X ~2 Y
hold.

If 8 is a k-dimensional vector and Q i1s an open subset of R, we shall let
lx(ﬂ) and IY(G) denote the kxk Fisher information matrices for the experiments Ex
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and .‘.’Y respectively, under the standard regularity conditions. We shall use the
notation Ex e EY whenever Ix(ﬁ) - IY(0) is nonnegative definite for all 8¢Q. The
~
relationship Ex > EY implies a similar ordering in terms of Fisher information;
~
i.e., if E_ > E_ then E, >_E . However, the converse does not necessarily hold.
XA Y X AF Y
Moreover, since the Fisher information can be obtained from the Kullback-Leibler
information by considering pairs of values of 8 that are arbitrarily close to each
other, it can be shown that if Ex )2 E_ then £ >_ E . Some of these relations
L2y X AF Y

and other properties of the comparison of experiments are described in Stein
{1951), Stone (1961), Kullback (1968, pages 26-28), Torgersen {1970, 1972, 1976),
Hansen and Torgersen (1974), and Goel and DeGroot (1979). Some new examples

and counterexamples will be given in this paper.

In Section 2, the relation Ex ZF EY is studied for problems in which X has
a normal distribution with unknown mean € and Y is restricted to lie in different
selection sets, as well as for problems in which X has a binomial or Poisson
distribution and Y has the corresponding truncated distribution with the zero class
missing. In these cases, when the selection set is the upper tail of the
distribution it is found that Ex Z,F Ey.

In Section 3, we study the conditions under which a selection sample from
an exponential family provides greater Fisher information than an unrestricted
random sample. When the selection set is the upper tail, these conditions can be
determined by the behavior of the hazard-rate function.

In Section 4, we consider some examples of other types of selection
involving bivariate observations in which the selection mechanism restricts the

values of one of the variables.

In Section 5, we study the relations Z, and ,)vz for different experiments
involving unrestricted and selection samples from the normal distribution with an
unknown mean and known precision. It is shown that Ex 22 Ev when the
selection set is the upper tail and that EY 2, Ex when the parameter space
contains just two points and the selection set contains both tails of the normal
distribution chosen symmetrically with respect to those points.

In Section 6, we study the relations Z and 12 for the truncated binomial
and Poisson distributions with the zero class missing. It is shown that the
relation Ex Z EY does not hold for either of these distributions, where Ex is the
experiment in which an unrestricted random sample is observed and EY is the
corresponding selection experiment. It is also shown that for the binomial
distribution with n = 2, Ex 2,2 EY, thus providing an interesting example in which
the parameter space is an open subset of the real line and one experiment is
pairwise sufficient but not sufficient for another one.

Due to restrictions of space, most of the results are presented in this paper
without any derivation or proof. Full details can be found in Bayarri and
DeGroot (1986b).
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2. Fisher information for selection models

In this section we will study the Fisher information for selection samples
from some standard distributions in order to compare this information with that
obtained from unrestricted random samples. Here and throughout the paper we
shall let Ex denote the experiment in which an observation X is obtained from an
unrestricted density g(168) and let EY denote the experiment in which an
observation Y is obtained from a selection model for which the density f(-lB) is

of the form given in {1.1).

We shall begin by considering various selection sets for problems in which
X has a normal distribution with unknown mean 8 and known precision which,
without loss of generality, we take to be 1. Suppose first that for a specified
value of 7, the observation Y is restricted to the set Y > 7. Then the p.d.f. of
Y is

_ ply-0)
f(ylﬁ) = m for y2r7, (2.1)

where ¢() and ®(} denote the standard normal p.d.f. and d.f. respectively. Under
the usual regularity conditions, the Fisher information about a real-valued
parameter 6 obtained from an arbitrary random variable U with density h{ulf) is

given by
az
o = { - S5 1og o) }. (2.2)

In the example we are considering it is well known that lx(o) = 1 for
-00< 8 <o0o. Furthermore, it can be found that

1
1(0) = 1+ TNt 07 [(r-0M(r-6) - 1] , (2.3)
where M(}X) is Mills’ ratio defined by
1-®(\)
M(A) = ——  for -00< X <00 . (2.4)
p{A)

It follows from the properties of M() that IY(0) < 1. Hence, £, 2 E, for any

selection point 7.

The analysis for a selection sample from the lower tail of the normal
distribution is similar. Suppose next that the observation Y is restricted to the

set S={y;y<r < T, are specified real numbers. Then

the p.d.f. of Y is

ory > 72}, where 7

1 1
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ply-0)
1-4’(12-0)+<l>(r 1-0)

flyl8) = forygr ory>r,. (2.5)

2

It can be shown that IY(B) < nx(e) for some values of § and that this inequality is
reversed for other values of 0, so neither of the relationships Ex >F EY nor
~

Ev ?VF Ex holds.

Finally, suppose that the observation Y is restricted to the interval

T, < Y < L% The p.d.f. of Y is now

_ ply-0)
f(y|0) = <l>(12-0)-<l>(r1- ] forr, <y<r7,. (2.6)

For this selection model, it can be shown that Ix(ﬂ) > |Y(0) for all 8. Hence,

Ex )F Ey. It is noteworthy that an unrestricted random sample provides greater
~

Fisher information for all possible values of 8 than a selection sample from any

bounded interval irrespective of its location or its length.

Other selection models that have been widely treated in the statistical
literature are the truncated binomial and Poisson distributions in which the zero
class is missing (David and Johnson, 1952; Irwin, 1959; Cohen, 1960; Dahiya and
Gross, 1973; Sanathanan, 1977; Blumenthal and Sanathanan, 1980; and Blumenthal,
1981). It can be shown that for both the binomial and the Poisson distributions
an unrestricted random sample provides greater Fisher information than a
selection sample with the zero class missing.

3. Selection from an exponential family

In this section we will consider the question of whether we gain or lose
Fisher information when a selection sample rather than a random sample is
obtained from a distribution belonging to an exponential family. We begin by
considering an arbitrary density g('|0) indexed by a real-valued parameter 8 lying
in an open subset Q of the real line and an arbitrary specified selection set S,
so the selection model f('Iﬁ) is given by (1.1). If we let

s(8) = PriXes|6) (3.1)
then under the usual regularity conditions

82 d2
o = - S 109 5o 1+ = 109 st0) . (3.2)

Suppose now that the unrestricted model for an observation X is
represented by a density h(-lw) of the following form:

hide) = alxiblwlexp{ubivie)} . (3.3)
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In other words, we are assuming that h(xlw) belongs to an exponential family for
which the natural parameter is § = v(e). If we now reparametrize the family in
terms of 6, the density of X becomes

giq8) = alxiciBlexp{bulx} (3.4)
and
32 d2
- i log g(x|0) o log c(6) . {3.5)

Since (3.5) is a constant that does not depend on X, it follows that lx(ﬁ) as
well as the expectation on the right-hand side of (3.2) are given by (3.5). Hence,

d2
IY(0) = lx(0) e log s(f) , (3.6)

so that IY(0) > Ix(ﬂ) for all @ if and only if log s(f) is convex and IY(0) < Ix(0)
for all 8 if and only if log s(f) is concave.

It is well known that under the usual conditions, since # = v(w) the Fisher
information 1(8) about § and the Fisher information 1*(w) about « satisfy the
following relation for any experiment:

*a) = n(er)(:_‘;)2 . 3.7)

Thus, I;(w) > I;(w) for all values of « if and only if IY(0) > Ix(0) for all values of
8. In other words, a relation of the form EY Z,F Ex is defined unambiguously
regardless of the parametrization used. It follows that in order to determine
whether the experiments Ex and EY are ordered with respect to the relationship
?VF' we need only determine whether the function log s(f) is convex or concave.
In the remainder of this section we will consider selection sets of the form

Y > 7 so that s{f) = 1 - G(f|0), where G('Iﬂ) is the d.f. corresponding to the

density g('|0).

Suppose that the distribution G('Iﬁ) is absolutely continuous and @ is either
a location parameter (i.e., G(x|0) = Go(x-ﬂ)) or a scale parameter (i.e., G(xIG) =
Go(0x)). Then the convexity or concavity of log s(f) can be easily studied in

terms of the hazard-rate or failure-rate function

. gn(x)

. (3.8)
1-G 0(x)

ro(x)

It follows that for both types of families, £, 2 Ex if and only if ro(x) is a
decreasing function of x.
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For example, consider again the normal distribution with unknown mean 6
and precision 1, so that g(xlﬂ) = ¢(x-8). In this problem, & is a location
parameter and the distribution Go is the standard normal distribution, for which it
is known that the hazard-rate function is increasing. Hence, Ex Z,F Ey.

On the other hand, suppose that the mean of the normal distribution is
known to be 0 and the precision & is unknown, so that

gifo) = 6% ¢ (6%x) . (3.9

In this case, @ is the natural parameter and although it is not a scale parameter,
it can be shown ;hat log sl(f) is convex. Hence, EY ZJF Ex' which means that in
this case a selection sample provides greater Fisher information than a random
sample from the whole population.

It should be noted that if 7 = 0 in this example, the experiments Ex and EY
are equivalent not only in the sense that Ix(ﬁ) = IY(0) for all values of 6, but also
in the sense that both Ex z EY and EY ?« Ex'
As another example, suppose that X has a gamma distribution for which the

shape parameter ¢ is known and the scale parameter 6 is unknown; that is

0“
g(x|0) = ) x‘z'1e"9x for x > 0 . (3.10)

For this exponential family, § is the natural parameter and, as its name implies,
it is a scale parameter. It is known (Barlow and Proschan, 1975, Chapter 3) that
a gamma distribution has an increasing hazard-rate function if ¢ > 1 and a
decreasing hazard-rate function if 0 < @ < 1. Therefore, if ¢ > 1, then Ex Z,F I.-'Y,
whereas if ¢ < 1, then EY zF Ex‘ Of course, if ¢ = 1, the gamma distribution
reduces to the exponential distribution for which the hazard-rate function is

constant and the experiments Ex and Ev are equivalent.

4. Other types of selection

We will now consider briefly some selection models involving bivariate
observations in which the selection mechanism restricts the values of one of the
variables. One example that has been extensively discussed in the literature
(Blackwell and Girshick, 1954, Chapter 12; Lehmann, 1986, p. 87-88; and DeGroot,
1970, p. 444-445) compares the experiments in which a selection sample can be

drawn from one of four different subpopulations.

We will consider a continuous version of this type of problem. Suppose
that U and V have a bivariate normal distribution for which the means x, and 4,

and the variances af and ag are known, and the correlation 8 is unknown.
Without ioss of generality, we shall take ByEHy S 0 and af = dg = 1. Consider

the following two experiments:
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() A random sample of n bivariate observations is drawn from the

bivariate normal distribution.

(EV) A random sample of n observations is drawn from the conditional
distribution of U given V = v. This sample can be regarded as a selection
sample from the subpopulation for which V = v.

Let 1(6) and IV(G) denote the Fisher information in the experiments £ and
EV , respectively. Then it can be shown that for all 4,

o) > 1(6) if v,
e) < 1(6) if vZy 1, (4.1)

6) = 1(6) it v2= 1.

It is interesting to note, as indicated in {4.1), that the Fisher information obtained
from an unrestricted random sample is identical to that obtained from a sample
from the conditional distribution of U given V = 1 or given V = -1, It is also
interesting to note, as indicated in {4.1), that £ ?VF Ev whenever -1 < v < 1 and
Ev ZF E whenever v ¢ -1 or v > 1. We do not know if these experiments are
ordered by the sufficiency relation ?v

A general class of selection models that includes these examples is the
following: Suppose that the random vector {U, V) has a joint distribution that
depends on the parameter § and that observations can be obtained only when V
lies in some selection set. In some problems, an observation may consist of
the pair (U, V), while in others just U is observed. Some examples in
econometrics are studied by Heckman (1976), Amemiya (1984) and Little (1985).

5. Sufficiency in normal experiments

Consider again the problem discussed at the beginning of Section 2 in
which X has a normal distribution with unknown mean 6 and precision 1, and the
observation Y is restricted to the set Y > 7. It was shown there that Ex zF Ey.
We will now prove the stronger result that Ex 22 EY. Because of the comments
in Section 1, it is sufficient to consider experiments based on just one

observation.

Suppose then that the parameter space contains just two values 00 and 01.
For any experiment £ and any value of ¢ (0 < ¢ < 1), let ﬂ(aIE) denote the
probability of a type 2 error when the likelihood ratio test for distinguishing
between 00 and 01 is carried out with the specified probability ¢ of a type 1
error. It was shown by Torgersen (1970, 1976) that for any two experiments £
and £* with the same parameter space Q = {00. U'}, £ 2 £* if and only if
ﬂ(alE) < ﬂ(alE*) for all values of 2 (0 < e ¢ 1). Hence, n the problem we are

now considering, the desired conclusion that Ex 2, Ev can be obtained by
“~
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showing that, for any pair of values 0 and 6 ,+ the function ,ﬂ (e) is not larger
than the function ﬂ {ez) over the mterval 0 < e ¢ 1, where ﬂ (a) ﬂ(aIE ) and
Ble) = Blale).

Without loss of generality we will assume that 00 = 0 and 01 > 0. The

likalinood ratio test at level ¢ based on the experiment £, rejects the hypothesis
Ho: g = 00 when X > cx(a), where

¢, la) = d (1-a) . (5.1)

Similarly, the likelihood ratio test at the same level ¢ based on the selection

experiment £, rejects H, when Y > cY(a), where

c le) = ® [ 1-2+eP(7)] . (5.2)

For any given value of ¢, let Lx(a) denote the likelihood ratio for the
observation X evaluated at X = cx(a), and let LY(a) be defined similarly. In order
to establish that ﬂx(a) < ﬂY(a) for 0 ¢ @ < 1, it is sufficient to show that

' fa) L le)
E—Y-— =Y __ = A exp{f [cle) - c le)]} {5.3)
g e} L (e) vy X

X X
is an increasing function of «. In (6.3), A is a constant not involving <. In turn,
since 01 > 0 it is sufficient to show that D(e) = cY(a) - cx(a) is an increasing
function of e, which follows from the fact that for any given value of a, the
function b/g[®” '(eb)] is an increasing function of b for 0 < b < 1. Hence,

EX 242 EY'

A similar argument shows that if E is a selection experiment of the same

type as E but with a larger selection pomt 7, then E >2 EZ We do not know

whether the experiments Ex Ev' and Ez are ordered by the sufficiency relation >.
~

Consider next the problem in which X again has a normal distribution with
unknown mean 6 and precision 1, but in which Y is now restricted to lie in the

two-tailed selection set Y < Ty OF Y > T, Suppose again that the parameter

space contains just two values 00 and 01, and that the selection points o and

T, are symmetrically placed with respect to 00 and 01 so that T, " 01 =

00 T Ty Without loss of generality we can assume that 01 = -00 =4 >0 and

T ETG T > 0. We will show that EY > Ex in this particular problem. It
should be noted that it is not true that EY 2/2 Ex when the parameter space Q is

the entire real line because, for fixed values of 7_ and T when we restrict the

0
parameter space to contain just two points, the relation EY > Ex will not hold
~

for all pairs of values of 4.

To establish that l:'Y > Ex' we will again compare the functions ﬂx(a) and
,BY(a). In this problem, we must show that ﬂy(a) < ﬂx(“) for 0 < a < 1. For
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testing the hypotheses Ho: 6 =-p and H1: 6 = p, the likelihood ratio test at
level ¢ based on the experiment E}{ rejects H6 when X 2 me' where

c le) = ¢ (1-2)-p . (5.4)

Similarly, the likelihood ratio test at the same level ¢ based on the selection
experiment Ev rejects H0 when Y > cY(a). Let

B=2-®r-p) - ®r+p) (5.5)
and let
e = -é- [1-®(r+6)] . (5.6)
Then
¢~ 1(1-2B)-p fore < e,
cY(a) = (5.7

¢ '[(1-e)B]-px  for a > e .

For e < e the relation ﬂY(a) < ﬂx(a) is equivalent to the relation

é¢[2,,+<r1(a3>] > 12449 Ha)] . (5.8)

In turn, (56.8) follows from the fact that the left-hand side is a decreasing
function of B over the interval 0 < B < 1. A similar argument applies for
e > a_, Thus, EY Z, Ex' Furthermore, if EZ is a selection experiment of the

0
same type as L-'Y but with a larger value of 7, then EZ 2 EY.

6. Sufficiency in binomial and Poisson experiments

In this section we will consider again the truncated binomial distribution
with the zero class missing. It was stated in Section 2 that if X has a binomial
distribution with parameters n and 6 and Y has this truncated binomial
distribution, then Ex ZF Ey. We will now give a simple argument which shows
that the relation E ) E, does not hold.

In order for the relation Ex > E to hold, there must exist a stochastic

transformation h(ny) such that for all values of 6 in the interval 0 < & < 1,

Z_, hiylgido) = fiyfo) = 0>" ™ 16" for y = len . (6.1

The stochastic transformation h(ylx) must be a nonnegative function such that

n
3:___1 hiy|x) = 1 for x = 0,1,..,n . (6.2)
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Since for any given value of y and any possible stochastic transformation
h, the left-hand side of (6.1) must be a polynomial in § whereas the right-hand
side, is not a polynomial, it follows immediately that (6.1) cannot be satisfied
for all values of 6. Hence, it cannot be true that Ex Z, EY . Of course, it also
cannot be true that £, > £  since £, >_ £_ and the experiments are not
YA X X AF Y
equivalent.

Next, consider the problem in which X has a Poisson distribution with mean
0 and Y has a truncated Poisson distribution with the zero class missing. Again,
the following argument shows that the relation Ex 2’ EY does not hold even
though Ex })vF Ey.

In order to have Ex 2 EY, there must exist a stochastic transformation hly|x)
defined for x = 0,1,2... and y = 1,2,.. such that for all values of 8 > 0,

®©  plae-fox i LY

>
9

for y = 1,2,.. (6.3)
x=0 x! yl(1-e

By expanding 1-e'0 in a Taylor series, it can be shown that no such stochastic

transformation can exist.

To conclude this paper we return to the truncated binomial experiment and
we will show that when n = 2, Ex 2/2 EY. We will do this by explicitly
constructing a stochastic transformation that satisfies (6.1) and (6.2).

Suppose then that the parameter space contains just two values 00 and
01 (0 < 00 < 01 < 1) When n = 2, Y can just take the values y = 1 and y = 2.
Since h(ylx) must be such that h{2x} = 1 - h(1|x) for x = 0, 1, 2, we just have to
find three numbers h(1|x) (x = 0, 1, 2) such that 0 < h(1|x) < 1 and satisfying the
two equations

h(1Jox1-6)2 + hi1] 1260 (1-6) + ni1]2162 = ?STG) fori=0, 1. (6.4)

i

It can be shown that there are infinitely many solutions of the system (6.4)
satisfying the restriction 0 < h(1|x) < 1 for x = 0, 1, 2. One simple solution is
obtained by taking h(1|2) = 0 and solving (6.4) for h{110) and h{1|1). In this way it
is found that

8,6
-1 - 2%
hi1fo) = 1 CENTEN
(1-8 )16 )
P AL
hitl) = 1 PR (6.5)
hiif2) = o,
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provides the desired stochastic transformation. Thus, we have developed an
interesting example of experiments in which the parameter space is an open
subset of the real line and £, >_ £ but it is not true that £, > £

X A2 Y XAy
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APPROXIMATIONS IN STATISTICS

FROM A DECISION-THEORETICAL VIEWPOINT

José M. Bernardo
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Burjassot, Valencia, Spain

SUMMARY

The approximation of the probability density p(.) of a ran-
dom vector x€X by another (possibly more convenient)
probability density g(.) which belongs to a certain class Q is
analyzed as a decision problem where the action space is the
class Qof available approximations, the relevant uncertain
event is the actual value of the vector x and the utility
function is a proper scoring rule. The logarithmic divergence is
shown to play a rather special role within this approach. The
argument lies entirely within a Bayesian framework.

1.APPROXIMATION AS A DECISION PROBLEM

Let p(.) be the probability density of a random vector xeX
with respect to some dominating measure, simply denoted dx, and
suppose one is interested in approximating p(.) by a density
g(.) which belongs to a class Q of possibly more tractable
distributions. For instance, one may wish

e To approximate a complicated probabilistic model p(ﬂe)
by a member g(xl®), 0=0(0)eQ of a more tractable family
(for example, a multivariate normal)

e To describe prior opinions in a mathematically tractable
form (for example, a finite mixture of distributions which
are conjugate to some probabilistic model)

e To approximate posterior distributions by distributions
which satisfy specific additional restrictions, (for
example, reference posteriors, or posteriors within a class
of easily integrable distributions)

From a Bayesian decision-theoretical viewpoint, the problem
posed may be seen as a decision problem where the action space
is the class Q of available approximations, the relevant
uncertain event is the particular value of x which eventually
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obtains and the loss function represents the loss suffered when
p(.),the true distribution of x, is replaced by a member g{(.)
of the class Q.

Without loss of generality, we may write such (opportunity)
loss as the difference

I{g(.),x} = u{p(.),x} - u{q(.),x} (1)

between the utility u{p(.),x} which obtains if the true distri-
bution is used and the utility u{qg(.),x} obtained if g(.) is
used instead. Since u{g(.),x} measures the reward, or score,
attained if if g(.) is predicted and x obtains, utility
functions of the type u{qg(.),x} are often referred to as
scoring rules (see e.g. Savage 1971, Lindley 1985).

It is only natural to require that, before x is actually
observed, the expected loss of using an approximation g(.),
rather than the true distribution p(.), must be non-negative and
zero if, and only if, g(.)=p(.) almost everywhere. Indeed, it
would seem strangely perverse to expect a net gain by using the
wrong distribution!. Thus, we assume,

1{q(.)} = Ix p(x) I{qg(.),x} dx 20 (H1)

with 1{qg(.)}=0 iff g(.)=p(.) a.e. Using (1), this assumption
implies that, for all g¢(.),

Ix u{q(.),x} p(x) dx < Ix u{p(.),x} p(x) dx

which is the definition of a proper scoring rule, where the
reward is maximized if, and only if, the selected distribution
g(.) 1s equal (a.e.) to the true distribution. Examples of
proper scoring rules include

u{g(.),x} = A log g(x) + B(x), (logarithmic)

u{q(.),x} = A {2q(x) - Iq(.) 1.} + B(x), (quadratic)
_g(x) ot

u{qg(.),x} = lq(. )l -1 + B(x), (spherical),

where

lq() 1, = {jqa(x) dx}.a , o>1

is the Lynorm. Those scoring rules are respectively associated
to the names of Good(1952); Brier (1950) and de Finetti (1962)
and Good (1971). The spherical utility functions contain the
logarithmic as their limit as a—1L.

Summing up, the approximation of p(.) by some g(.) in Q is
a decision problem whose optimal solution is to choose that
density g(.) in Q which maximizes

J p(x) u{g(.),x} dx
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where u{qg(.),x} is any proper scoring rule. We shall now find
the conditions under which the appropriate utility function is
precisely the logarithmic function defined above.

2 .LOGARITHMIC DIVERGENCE

In a problem of inference, it is often the case that the
utility obtained when g(.) has been predicted and x has been
observed only depends on the probability density g(x) attached
to the value actually observed. Thus, we may further assume,

u{g(.),x} = u{qg(x),x}. (H2)

A scoring rule which satisfies (H2) is called a local scoring
rule.

It should be obvious that (H2) does not carry the same
normative weight as (H1), but it does describe however a large
class of interesting situations. Indeed, if one is trying to
approximate the probabilistic model p(x|0) which is supposed to
describe the behaviour of x by another model p(x|®), w=w(0)cQ
which belongs to some convenient family of distributions, the
assumption u{g(.),x}= u{q(x),x} is nothing but a version of the
likelihood principle, in that the utility of the prediction g(.)
depends on the data x obtained, but not on the data which could,
have been obtained but was not.

Theorem 1. If x is a random vector which may take three or more
distinct values, a differentiable proper local scoring rule is
necessarily of the form

u{qg(.),x} = A log g(x) + B(x), A>0

Proof. The discrete version of this result was proved by
Good (1952) for the binomial case, mentioned by McCarthy (1956),
proved by Aczel and Pfanzagl (1966) and generalized by Savage
(1971); a continuous version was stated by Bernardo (1979a).

Theorem 2. Let Q be a class of strictly positive densities on
the support of p(.). Under (H1l) and (H2), the loss to be

expected if p(.) is approximated by a member g(.) of Q is of
the form
(%)
l{q(.)}=AIp(x) logg—dx, A >0 (2)
q(x)

Moreover,1{g(.)} 1s (i) non-negative, (ii) invariant wunder
one-to-one transformations of x and, (iii) additive in the
sense that if x=(x,,x,), p(X)=p(x))p(x,) and g(x)=q(x,)q(x,),
then 1{qg(x)}=1{g(x,)}+1{qg(x,)}.

Proof. By Theorem 1, assumptions (Hl1) and (H2) imply that
u{g(.),x} = A log g(x) + B(x) and the required expression then
obtains from substitution into (H1l). But (2) is the well-studied
logarithmic divergence of g(.) from p(.), which is known to have
the stated properties (see, e.g. Kullback, 1959).

Theorem 2 implies that the utility function used has an
attractive information theoretical interpretation; indeed, with
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the definition of information provided by Shannon (1948) and
further discussed within a statistical context by Lindley (1956)
and Good (1966), the expected loss (2) may be regarded as the
amount of information which has been lost in the approximation.

Theorem 2 also implies that whenever a local utility
function is appropriate, the expected loss of an approximation
to p(.) which gave probability zero to non-null sets under p(.)
would be infinite. Thus, we obtain as a corollary another
version of Lindley's Cromwell's rule: never approximate by
probability zero something which is not logically impossible!.

We have established that, under (H1l) and (H2) the optimal
approximation of p(.) by some g(.) in Q is provided by that
density in Q which minimizes the logarithmic divergence (2). We
shall explore now some of the consequences of this result.

3.EXAMPLES

3.1. Estimation

Maximum likelihood estimation within a class of models can
be viewed in a new light from this perspective. Indeed, if the
true distribution p(.) of a random vector x is to be
approximated by a member g(.|0) of a class of distributions
indexed by 0e®using the information provided by a random sample
{%,,%,,...,%x }, one should minimize in ® the value of

1(9)=Ip(x) log _px®) dx
q(x10)

Since p(.) is not known, this integral cannot be computed, but
using a standard Monte Carlo technique, it may be approximated

by
- :E: log ————— (x )

i1 q(x,19)

which is minimized by that value of Owhich maximizes

z log gq(x,10),
i=1

i.e. by the maximum-likelihood estimator.

This is the best available approximation if one insists on
using a member of the family g(.|0) in order to predict the
value of x. However, standard exchangeability arguments about
the x,'s would typically imply that p(x) must be of the form

p(x) = J q(x10) 7m(0) db.

If the prior distribution m(0) is then assumed to belong to a
class m(0|®w) indexed by ®, then the best approximation to p(x)
will be obtained as
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p(x|®)= [ (x10) m(Bl®) db

where ® should be replaced by the value which minimizes
p(x)

Ip(x) log dx

IQ(XIG)E(GKD)dG

or approximately, again using a Monte Carlo argument, by that
value of ® which maximizes

n

Y, 10 [aix,10) z010) a

i=1

which is a form of non-naive empirical Bayes estimator.
Obviously, the argument may be extended to deeper hierarchies.

3.2 Poisson Approximation of a Binomial Model

The best Poisson approximation to a Binomial model
p(x)=Bi(x|n,0) is that which minimizes

Bi(xin,0

1(Mn,0) = Z Bi(x|n,0) log ————— Bilx|n.9)

Po(x|A)

where

Bi(x|n,0) = (n) 9"(1—9)n_X

X

X
Po(x|A) = A .
x!
This corresponds to that value of A which maximizes

2 Bi(xIn,0) {x logh—A-1logx!} = nBlogh—-A-E{log x!}

x=0

which, as could be expected, is A=n®. The resulting minimum
expected loss is increasing in 0 and decreasing in n; numerical
computation shows, however, that the condition '0 small' is far
more important than the condition 'n large' for the quality of
the approximation.

3.3 Normal Approximation
The best normal approximation N(x|J,h) to a probability
density p(x) is obtained by minimizing

p(x)
(i, h) = | p(x) logm dx.

It is easily seen that
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au,

Thus, with this criterion, the best normal approximation to any
distribution is obtained by fitting the first two moments. This
may well be another characterization of the normal distribution
since, typically, different solutions are obtained with other
probability models. For instance, the best Beta approximation
Be(xl|a,b) to a distribution p(x) on ]0,1[ is the solution to the
system of equations

J(logx)p(x)dx = ¢(a) - ¢(ath)

J{log(l-x)}p(x)dx = @(b) - @(a+b)

where ¢ is the digamma function, i.e. that obtained by fitting
E[logx] and E[log(l-x)].

3.4. Transformations to Normality

Suppose that given a random quantity x with density p(x) it
is desired to find a tractable monotone tranformation y=f (x)
whose distribution p(y)= p(x)/|f'(x)| is as close to normality
as possible.

Thus, a function f is desired which minimizes

p(y)
N{y|E[y]l,VIy]}

1(f) = Jp(y) log dy

since, from 3.3, the best normal approximation to p(y) is that
normal with the same first two moments as p(y). The 1loss
function 1(f) may be rewritten as

1
1(f) = fp(y) log ply) dy + Elog{ZneV[y]}

where p(y)= p(x)/If'(x)|. It follows that the result depends
both on the entropy and the variance of the resulting
distribution.

If, say, p(x)=Be(xla,b), 0<x<l, and we consider the class
of transformations

y=f®); £ x) =x2(1-x) ", a0, B0

which contains as particular cases the standard transformations

y=x  (0=B=0, no transformation)
-1
y= 2 sin Vx (0=P=0.5, Fisher transformation)

X
y = log - (0=P=1, logit transformation)
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we find that, for a and b large compared to the transformation
parameters O and B,

1 _ az . - (a+b)3-—2a—2|3
—— = -5 109 ply g ——
Viyl oy* y = Mode [y] al % pl2B
and
I'(a+b)
1(o,B) = ——— + (a+a-1) [¢p(a)-@(at+h)]
I'(a)T'(b)

1
+ (b+B-1) [@(b)-@(a+tb)] + E-log{2neV[y]}

which is decreasing in both o andf.It follows that progressively
better normalizing transformations are obtained for larger
values of oandpP,provided a and b are large enough for the first
two moments of y to exist. For instance, for 0=f=2 one has

2x-1
X X (1-x)

X
= 2 lo
y gl-

a correction to the logit transformation which should be better
than any of the transformations listed above.

3.5. Sensitivity Analysis

In Bayesian inference, when either the prior information is
rather vague or the sample size very large, the posterior
distribution 1is typically insensitive to reasonably large
changes in the prior. In these cases, it 1is possible to
approximate the posterior distribution by a reference posterior
(Bernardo, 1979b), thus bypassing the need for a more careful
specification of the prior.

In terms of the model described in this paper, the loss
which may be expected by performing such approximation is given
by
p(01D)
7(01D)

J p(0|D) log db

where 0 is the parameter of interest, D the available data and
m(0|D) the corresponding reference posterior distribution. Thus,
if P is the class of prior distributions which are compatible
with elicited prior information,

d(P) = sup Ip(D) jp(elD) logg(e—le-)- dd dp
P (0| D)

is an appropriate measure of the maximum expected loss of the
proposed approximation. The consequences of this view are
explored in Bernardo (1986).

4. DISCUSSION

The basic ideas developed in this paper have long been part
of Bayesian folklore. Thus, it has often been recognized that
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approximation problems should be treated as decision problems,
that scoring rules provide interesting utility functions in
inferential problems and that the ubiquitous 1logarithmic
divergence 1is often a sensible measure of discrepancy. This
paper is an attempt to organize this material from a strictly
Bayesian decision-theoretical viewpoint, and to explore some of
its most obvious implications.

We have argued that optimal approximation in statistics
necessarily results from maximizing the expected value of a
proper scoring rule, and we have characterized the conditions
under which this reduces to minimizing the logarithmic
divergence. Further work is necessary to characterize precisely
those situations where other proper scoring rules are appro-
priate. We believe, however, that the systematic exploitation of
the 'principle' of minimizing the logarithmic divergence in the
myriad statistical problems where approximations are used will
prove to be rewarding.
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ABSTRACT

Let 8 = (61,~~',6k) be the parameters for k indepen-
dent binomial random variables. We wish to estimate 6 wunder
the restriction 8 € R where R is a k-dimensional subset of
the full parameter space {8; 0 ¢ Gi ¢ 1, i =1,¢+,k}. Bayes
estimators (means of posteriors) are developed for 8 which
correspond to prior distributions that assign probability one to
the set R. Since the support of the resulting posterior is R,
the posterior mean will be in R if R 1is a convex set. A
bioassay example is given where the parameters are assumed to be

increasing, or increasing and S-shaped.

INTRODUCTION

In many estimation problems it may be a priori assumed that
the parameters satisfy certain relationships. For example, in a
bioasséy experiment where 91,'~~.9k are probabilities of death
at increasing dosage levels of a certain toxin, we may safely

assume that 91 < *ee ¢ Gk. Maximum likelihood estimation of @

*This research was partially supported by an NSERC grant
from the Canadian government while the author was a visiting
professor in the Department of Statistical and Actuarial
Sciences, University of Western Ontario, London, Ontario.
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under this restristishn, commonly called isotonic estimation, has
been well researched, and the estimates are often computed using

the pool-adjacent-violators algorithm, see Barlow et al. (1972).

Restrictions of a more complex nature understandably lead
to more difficult computational problems. Schmoyer (1984)
computed the "sigmoid” mle of 8 for a set of bioassay data.
The sigmoid restriction assumes the parameters are increasing
convex to the left of a certain point, and increasing concave

to the right of that point. Such parameters will be called
S-shaped.

A small amount of research has appeared on restricted Bayes
estimation. Smith (1977) developed the Bayes estimator of Gk
under the isotonic assumption 91 § v g Bk. In his applica-
tion, § represented the reliability of a system measured at
different stages of development. Broffitt (1984, 1986) found
isotonic Bayes estimators for a fairly general model that were
useful in estimating mortality rates. Sedransk et al. (1986)
used importance sampling to compute the restricted Bayes esti-
mate of the mean of a finite population. Their restriction
specified that the population proportions be unimodal, i.e.,

91 g oo ¢ et 2 et+1 2 eee > @

k-
In this paper attention is centered on the binomial data

model, and Bayes estimators are developed under a general

restriction. The main difficulty in applications is the numer-

ical computation of the estimates. Direct calculation is used

for the isotonic restriction while importance sampling is
employed to compute the Bayes estimates under the S-shaped

restriction. These techniques are applied to the bioassay data
studied by Schmoyer.

NOTATION

Throughout this paper h(x|a,b) will denote the beta pdf
with parameters a and b, and h(§|g,k) will denote

k
iglh(xilai.bi) where x = (x1,~~~,xk), a = (a1,°°°.ak), and
b = (bl.‘°°,bk). We will also use g(i) to represent a k-

dimensional vector with a one in the ith position and zeros
elsewhere.
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BAYES ESTIMATORS

Let z; be the observed value of a binomial random
variable with parameters ni.Gi, i =1,+++,k. The likelihood

function is

where R 1is a k-dimensional subset of
i=1,¢°,k}.

[}
-~
RD@
o
(7%
D
"
—

Since we believe 6 € R, we should select a prior dis-
tribution that assigns probability one to R. Let Yi have pdf
h(°|ai,ﬁi) and let Y1,~~~,Yk be independent. The prior

distribution is specified by 8 2 (XIX € R), and accordingly
the prior pdf is

prior(8) = h(8lz.B)/p(R) . @ €R (2)
where p(R) = P[Y € R].
Combining (1) and (2) provides the posterior pdf,
post(8) = h(8la.b)/pP(R) . 8 € R, (3)

here a. = a_,+z, b, = B.+n.-z,
v i i i’ i Bl i “i

From (3) it is clear that (8]z)

and p(R) = Sph(xlz.b)dx.

D (X|X € R) where X, has pdf

h(*Iai,bi) and X1,~°°,Xk are independent. This demonstrates
that the prior in (2) is conjugate.

Denote the posterior mean by QB(R) = (9?(R)"°"GE(R))’
Then;

02 (R) = S xh(xla.b)dx/p(R). (4)
Since xh(x|a,b) = [a/(a+b)]h(x|a+1l,b), (4) reduces to

e3(r) = o® s (D (m)p(m). (5)

where 9? = 9?(9) = ai/(ai+bi) is the unrestricted Bayes esti-

mator of 8, %(i) = g+g(i) and p(i)(R) = IRh(ﬁlg(i),h)d§.

The fundamental result given in (5) expresses the re-

stricted Bayes estimator in a seemingly simple form. In appli-

cations, p(R), and consequently p(i)(R), can be quite dif-

ficult to compute. An inspection of (5) provides no apparent
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indication that QB(R) € R; however, since the posterior dis-
tribution has support R, it follows that QB(R) € R as long

as R 1is a convex set.

m
There may be a natural partition of R, i.e., R = UR

where the k-dimensional Lebesgue measure of Rs n Rt is 0 if
s # t. In this case it may be desirable to assign prior proba-
bilities for each subset Rt’ and to use different prior param-
eters over different subsets. Let L be the prior probability
of Rt’ i.e., m,o= P[@ € Rt]' and let the pdf of 8, condi-
tioned on § € Rt' be

k

prior(glRt) « igl h(eilait,ﬁit).

RD

€ Rt

= 1(8 € ROh(Blg, .B,)/p,(R,).

where I(+) is the indicator function, g = (a; .***.q ),
By = (Byg»o"Byy). and

p (R, = IRth(§|gt,§t)d§-

The subscript on p indicates that the prior parameters g

t
and Qt depend on t. Then
m
prior(8) = 3 L prior(glRt)
t=1
m
Combining (1) and (6) we have
m
post(8) = 3 (8 € R)wen(Bla k)/pe(R). (D)
t=
where a, = a;.+z;. by = Bi4mimzi. g = (agccteag).
Ry = (byyaoocuby). and
. - g Ta; +By IT(a; )T (b; )
t ‘s _ )
1=1 T(a; IT(B; )T (2, *b; )
Therefore
m
ERISSLELICINE VN
post(8) = - , (8)
tzlwtctpt(kt)/bt(Rt)
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where P, (R ) = I h(xlat ~t)dx The posterior mean of Bi is

A CC A S LR VINCR
6 (R) = “— : (9)
2 Tee P (R)/p(R)

I M3

t

- S hxla! p)ax From (5). 0, (R () = o], p£1’<Rt>,

B _ (1) _ (1) (1)
where 6/ = ait/(ait+bit)‘ g, ' =g +u ', and p "7(R))

which, when substituted into (9), yields

B n B
Gi(R) = 3 wteit(Rt)’ (10)
t=1
7.c.p (R)/p(R,)
where w, = : . This demonstrates that the

m
3w p (R)/p (R)
t=1
Bayes estimator GE(R) is a weighted average of the Bayes

estimators ?t(Rt). t =1,°*+,m, where the weight w equals

t
P[8 € R, [z]1. the posterior probab11ty of R . Either (9) or
(10) may be useful for computing 9 (R)
If we assume a;, = a5, ﬁit = ﬁi' i=1,°k, t=1,
eee.m, so that the same set of prior parameters is used for

each partition, then the subscript t may be removed from

[
t
Pes Py and eit’ Then (9), e.g., becomes

ERRIRILRVILR

; . (11)
f 7. p(R.)/p(R,)

o3(R) = 67 *

We close this section with the remark that posterior second
moments are easily obtained in a similar manner.
under the assumptions that led to (5),

2 a. a.+1 (11)(R)
E(9i|§) = [a,+;,][a.+;.+1]p p(R)
i i 1 1

In particular,

where %(ii) = a + 22(1) and p(ii)(R) = Iy h(ﬁlg(ii),k)dﬁ.
Also, with R in partition form and aj, = oy ﬂit = ﬁi'
m
(ii)

a a +1 3 wp (R)/p(R))
E(92|Z) _ [ i ][ i ] t=1

it = ai+bi ’ai+bi+1 m

tElvtp(Rt)/p(Rt)
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ISOTONIC RESTRICTION
When R = {8: 0 ¢ 6; g<°-c 8, ¢ 1}. the Bayes estimate

BE(R) may be computed using (5). This requires the computa-
tion of p(R) = P[X1 $ eve ¢ Xk] {(and the similar probability

p(i)(R)) which may be done using the following result.

Let X, have pdf h(°[ai,bi). X °~°,Xk be independent,

i 1’
k

a,,***,a, be integers, and c, = 2 (a_+b _-1) for j =1,

2 k i n=j+1 n n
eee . k-1. Then P[X1$°°°5Xk] =
ak—l ik_1+ak_1—1 i2+a2—1
. 3 _ofk—l(ik-l) . 2_0 fk—2(1k-2)”‘ iz_ f1(11), (12)

k-1" k-2 1~
where

r{(i+ F(b.,+c.-i)I'(c.+1)I'(a_+b
L O L O LT LG
J

T(i+1)T(a )T (e +1-1)T(b )T (a +b e )

The proof of (12) is similar to that of Corollary 2.1 in
Broffitt (1984).

S-SHAPED RESTRICTION

Suppose 0 is a function of an independent variable d.
Although numerous examples are possible, in bioassay d refers
to dosage level and 6(d) 1is the corresponding probability of
death (or whatever event is being recorded). In practical
examples it may or may not be appropriate to assume 6(0) = O.
Schmoyer (1984) assumed 6(0) = 0, and accordingly for the
presentation in this section and the example to follow, we shall
assume 6(0) = 0. If this assumption is not desired, a slight

modification is necessary, which is given in the appendix.

Without loss of generality let O = do < d1 ¢ eee ¢ dk’
and let Gi = 9(di). i =0,°,k. Also let
s; = (Bi—ei_l)/(di—di_l) , 1= 1,%%,k,

and define

Rl = {9; S; 2 et 2 S 2 0},
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=
n

¢ {8: 0 ¢ _PEESRAANE S PO SR LS 0}, t = 2,¢¢¢,k-1,
and
R, ={8: 0 ¢ s ¢ o ¢ 5}
ke
Then 8 1is said to be S-shaped if § € U Rt' If 8 |is
t=1

S-shaped its elements must be nondecreasing and either convex

(Rk), concave (Rl)' or convex to the left and concave to the

right (R2.'°°,Rk_1).

Unfortunately, R 1is not a convex set (if k 2 3). For

example, let k =3, d,-d, , =1, 1i=1,2,3, 8, = (0.30,
0.44,0.56), and @, = (0.14,0.30,0.60). Then § € R, and
3

Q2 € R3, but .5(Q1+g2) ¢ ? Rt' Since the posterior pdf has

support R, which is not convex, the posterior mean, QB(R),
need not be in R. This is a bit unsettling and should it
happen, § must not be estimated by the posterior mean. An
alternative would be to subtract from R that subset with the
smallest posterior probability, and then recompute the poster-

ior mean of 6. This process could be repeated if necessary.
In the example to follow, 9?(R) is computed using (11),

which requires p(Rt). p(Rt), and p(l)(Rt). Since these three
probabilities differ only in the parameters used in the beta
densities, the process of computation is the same for each.

Thus for simplicity our discussion will focus on p(Rt).

Because of the complexity of Rt' some form of Monte Carlo
is suggested as the computational method, but since p(Rt) is
extremely small, a rejection technique would be highly ineffi-
cient. These considerations suggest importance sampling as a

viable solution.

The technique of importance sampling stems from the follow-
ing observation: Let X be a random vector with support R

t
and pdf f(+), and for simplicity let h(x) = h(xla.b). Then

P(R) = fp_ h(x)dx

Jp [h(x)/f(x)1£(x)dx
t

Ex[h(X)/£(X)].

The procedure is to generate n independent observations on X,
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X100 X, and approximate p(Rt) by

» -1
p(Rt) =n

n
3 h(x.)/f(x.),

~i ~i
i=1
which is clearly an unbiased estimate. If possible, f(°)
should be chosen so that h(%)/f(%) has a minimal variance.
Our algorithm for generating x is based on the one given by
Sedransk et al. (1986), and is detailed below:

1. Generate Ul,"'.Uk+1 iid with pdf g(u) = e v,
u > O.
3 2
2. Find i (1 ¢ i ¢ k) so that U,x » U, for
5 i i
i=1,¢°°,k.
3. Exchange Ui* and Ut'
4. Sort Ul,”',Ut in increasing order.
5. Sort Ut,~~~,Uk in decreasing order.
6. Let U(l) ¢ e ¢ U(t) 2 U(t+1) 2 e 2 U(k), Uk+1
be the result of steps (1) to (5).
r.U +eeetr U .
7. Let Xi = 1 (1) 2 (1) , i=1,+°9,k,
rlU(1)+---+rkU(k)+rUk+1
_ k
where r., =d,-d, ;, and T = 151 ri/k.

It can be shown that the resulting vector X = (X1.~~~,Xk) has
pdf
(t-1)!(k-t)!'k!k X1

£(x) = —;
r1~~~rkr 1

+

97¥ X=Xy 1 l—xk]—(k+1)
2 Tk T

X € Rt'
Notice that if Ty = ccc =T, i.e., the d's are evenly
spaced, then X has the uniform density, f(x) =
(t-1)!'(k-t)!'k!k. In any case h(x)/f(x) 1is bounded, so the

variance of p(Rt) is finite and may be made arbitrarily small

by taking n large enough.

EXAMPLE

Table 1 lists the bioassay data and the resulting
estimates. The superscripts M and B refer to maximum
likelihood and Bayes respectively, while the arguments I and

S denote the isotonic and S-shaped restrictions. Thus
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GM = z/n is the unrestricted mle, OM(I) was obtained via the

|

pool-adjacent-violaters algorithm, and 67 (S) was taken from

Schmoyer's paper. The Bayes estimates GB(I) were computed
using (5) and (12) with the prior parameters a; = ﬁi =1,
i =1,++,k. These same values of ay and Bi together with

o= 1/k, i =1,+*+,k were used to compute GB(S). For this

selection of prior parameters, QB(S) € R4, and the approxima-
tion of the posterior probabilities P[§ € Rtlg], t =1,k
are 0.00, 0.00, 0.00, 0.58, 0.29, 0.12, 0.00, and 0.00,

respectively. Plots of these five estimates are displayed in
figures 1 and 2.

Table 1. Data and estimates for the bioassay example.

4, n, 1z of oty o) e%(n) 65(s)
8 30 0 0.000 0.000 0.000 0.016  0.009
16 40 1 0.025 0.025 0.025 0.043  0.036
24 40 2  0.050 0.050 0.050 0.088  0.105
28 10 5 0.500 0.425  0.390  0.357  0.299
32 30 12 0.400  0.425  0.448  0.456  0.439
48 20 16 0.800 0.733  0.677  0.680  0.715
64 10 6 0.600 0.733  0.892  0.752  0.838
72 10 10  1.000  1.000  1.000  0.930  0.871

To compute GB(S) we used (11) together with the impor-
tance sampling algorithm described in the preceding section.

Ten sets of 1000 observations on X were generated. The

quantities p(Rt), p(Rt), and p(i)(Rt) were computed for each
of these sets. Using (11) this provided 10 unbiased approxima-

tions of each estimate 9?(8), i =1,¢+¢,k, from which means
and variances were computed. The means were used as the final

S-shaped Bayes estimates and are reported in table 1.

The variances, denoted by SVi, provided a check on the
accuracy of the importance sampling procedure. These are given

in table 2 along with twice the corresponding standard errors,

2SEi = 2(SVi/10)1/2. Since the largest of these is 0.0096, we
are reasonably sure that the differences between the computed
estimates and the exact posterior means are less than 0.01.

B

Table 2 also contains the posterior variances of Gi.
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B B
Gi(I), and Gi(S), denoted by V., V.(I), and Vi(S),

R 2
respectively. Of course Vi = aibi/[(ai+bi) (ai+bi+1)]' Vi(I)
was computed by exact formula, and Vi(S) was approximated by
importance sampling. Finally the ratios Vi/Vi(I) and
Vi/Vi(S) furnish measures of the efficiency gained by imposing

the isotonic or S-shaped restrictions.

Table 2. Variances and Efficiencies

svx10®  2sE vx10? v(1)x10* v(s)x10* va(1) vAV(S)
0.009  0.0006 9.17 1.94 0.53 4.7 17.3
0.043  0.0013  10.55 5.15 3.25 2.0 3.2
0.434  0.0042  15.43  14.43  15.60 1.1 1.0
2.324  0.0096 192.31  77.17  75.27 2.5 2.6
1.995  0.0089  73.09  57.07  71.41 1.3 1.0
0.2904  0.0034 76.36  62.08  38.47 1.2 2.0
0.333  0.0036 186.97  57.71  34.11 3.2 5.5
0.464  0.0043  58.76  34.80  46.18 1.7 1.3
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APPENDIX

If the assumption 6(0) = O is not made, then @ is said

k

to be S-shaped if 6 € U Rt' where

t=2

Ry = {8: sy 2 *++ 2 5, 2 0},
R, ={8: 0 ¢ 55 ¢ ccc g5 2 ¢°° 25 20}, t=3,-+-k-1,
and
Ry ={8: 0 ¢ s5 ¢ =°* ¢ 5/}
The algorithm for generating an observation with support Rt
as follows:
1. Generate U1'°°°’Uk+1 iid with pdf g(u) = e v,
u > 0.
| % %
2. Find i (2 ¢ i ¢ k) so that U.* 2 Ui'
i=2,°°°,k.
3. Exchange Ui* and Ut'
4. Sort U2,°~°.Ut in increasing order.
5. Sort Ut,-",Uk in decreasing order.
6. Let Ul' U(2) £ e ¢ U(t) 2 e 2 U(k). Uk+1 be
the result of steps (1) to (5).
U +r U, +°++r U
7. Let X, = — 1" 27(2) i (i) L= 1,eee.k,
rU1+r2U(2)+-o-+rkU(k)+rUk+1
_ k
where r, =d,-d, ; and T = 3 ri/(k-l).
i=2
The resulting vector X = (Xl.’°°.Xk) has pdf
(t=2) ' (k-t)'k!(k-1) x, x,-X Xy ~X, 1-x, 1-(k+1)
£(x) = [_1_+2 1o ..k k-1, k] '
~ Troeeer, r T To Ty T
2 k
X €R_.
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BAYESIAN PREVISION OF TIME SERIES
BY TRANSFER FUNCTION MODELS (9)

Francesco Carlucci Gino Zornitta
University of Rome University of Venice
" La Sapienza " " Ca Foscari "

Italy Italy

1. Introduction

Given the time series {yy}, teT={1,2,...,n}, which is assumed
to be caused by the series {x}, t€T, according to the transfer
function model

(1.1) y,.= s’l(B)m(B)xt+ ¢'1(B)e(B)ut

where B is the usual back-shift operator, and w(B)=mO-mlB+;.:m§ﬁ
§ (B)=1-8;B+...=8 BT, 0(B)=1-01B+...-04BY, ¢(B)=1-¢)B+...~¢BP
where {xt}is assumed to be generated by the ARMA process

(1.2) ¢x(B)xt—6x(B)at ) q,

with ¢x(B)—l ¢xlB+... ¢ng ’ ex(B)—l exlB+... equB and given
a set H information regarding the unknown values of ¥,..(%and
in+T,T€T*§{1,2,...,m}, in this work previsions of these values
are determined in de Finetti's sense, so that both the sample
In=(¥1:¥2s0¢s¥n)"y Ep=(xX1,%5,...,%,)" and the information H are
taken into account. In the case of economic time series, this
information may concern, for instanceé, either the causal re-
lationship from the variable xi to y¢, or the period of the
business cycle which influences the autoregressive schemes in
submodels (1.1) and (1.2), or even the ARMA schemes on residuals.
Furthermore, information H may concern the orders (s,r,p,q) and
(Px,9x) of submodels according to the opinion and experience of
the model builder. Taking this information into account,
"previsions" in de Finetti's (1974) subjective meaning rather

(°) This paper is due to common efforts of the two authors;
nevertheless, Sections 3-4-6 may be attributed to G.Zornitta and
Sections 5-7-8 to F.Carlucci. The remaining ones are common. A
financial support by Consiglio Nazionale delle Ricerche

(CTB N. 83.00075.10) has to be acknowledged.

(°°) A tilde (*) over a variable denotes that its random
character is taken into consideration.
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than "projections" in the traditional sense are formulated.

Analytically, by use of a quadratic loss function, such
previsions are defined as the mean values E(yn_,_len,xn H), TeT,
of the conditional distributions of Yn+1' TeT%,given yn, ¥pand H.

Bayesian estimation in a transfer function model was
developed by P. Newbold (1973), but he did not consider the
prevision problem. On the other hand, Bayesian projection was
studied by Monahan (1983) in the context of ARMA models. So,the
present work's objectives could be reached by extending Monahan's
results (which produce exact posterior distributions) to the case
of transfer function models. But this way is not followed here
for two reasons: firstly, posterior distributions are determined
by means of non informative priors and therefore they loose de
Finetti's subjective meaning; secondly, posterior distributions
have an uncommon form and need a numerical cumbersome evaluation
to be used. Therefore, in order to determine the previsive
distributions, we prefer to utilize prior densities that are
fully informative, as developed by F. Carlucci (1977) for a
particular class of time series models, even if this procedure
forces the likelihood function to be approximated.

The plan of the paper is asfollows. Firstly, assumptions
used in the work are specified, and then the likelihood function
for parameters is determined following Newbold (1973) and
supposing the orders of submodels as known. In Section 4 such
orders are calculated by means of a Bayesian procedure grounded
on probability odds. In order to make this procedure usable, it
is necessary to reduce the likelihood function to a known form,
and the transformation is performed in Section 5 by use of the
usual Gauss-Newton method. In Section 6, posterior marginal
distributions for the unknown parameters of the previsive model
are determined on the ground of non-informative prior densities.
Sections 7 and 8 concern previsions which are evaluated on the
base of informative distributions, for the ARMA and the transfer
function models, respectively.

2. Assumptions

For the model (1.1) - (1.2) let us make the following
assumptions:
I - {{iy} and {3} are mutually uncorrelated normally distributed
white noise processes, each with zero mean and variances ou and
05, respectively.
IT - All stationarity and invertibility conditions are satisfied.
IIT - All required initial values for xi, t<O, are known.
IV - Information H affects only the parameter prior density in
the following way: If parameters, assumed independent, are
referred to the representative model in the sample period, then
their prior density is locally uniform. If parameters are
referred to the previsive model, then their prior density is the
Raiffa-Schlaifer natural conjugate one, in the normal-inverted
gamma form; furthermore, parameters in submodels (1.1) and (1.2)
are a priori independent.
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3. Derivation of the likelihood function

In order to calculate the likelihood functions, it is

firstly convenient to congider the model (1.1) - (1.2) weitteés,
by virtue of Assumption II, in the approximate form

(3.1) yt=Q(B)xt+@(B)ut
(3.2) xt=@X(B)at

where G_l(B)~w(B)=Q(B)=QO-QlB+...-QkBk,¢-l(B)-e(B)=O(B) =
=1-01B+...-00B%, ¢;1(B)-ex(B)zex(B)=1-ex13+...-erxBQx with k,Q,

Oy sufficiently large so to get the desired approximation level.
By following Newbold (1973) and setting u*—(ul Q,...,uq_,uo)

u*(u*',ul,...,u ) X —fxl e X_gr¥g )' we obtain

(3.3) u=L,y +L,x +L.x +E4E*

where Ll’ LZ’ L and L are suitable matrices whose elements are

functions of parameters Q (Q0rQ7/s¢..,0) " and Q—(Ol,oz,... O ) !
By virtue of Assumptlon I, the density for § is N(Q, o4 n+Q)

and since the transformation from y to u has unitary Jacoblan,

the joint den51ty for Y and u is -n

(3.4) py ,u¥|g.gs0 sk 5= (210" " /2
where -
(3.5) S (Q O)=u'u=S(Q O)+(u - A )'L'L (u - ﬁ )

exp(-S, (2,0)/20.)

where u* is the value for u*that minimizes S (g,g) and S(g,g)=
== o1 Q[ (_tly X X 0)]2 is the mlnlmum.
By taking (3 5) into account, we can factorize(3.4) into the

two following densities

(3.6) by 2,00 % x)=(2100) 2 |Ln, | 7 2expi-5(,9) /202}
(3.7) p(u%]y ,2/0s0, /% g*)=(2no )‘Q/ZIL L, Paexplﬁ(u-ﬁ*) 'L,L,
u*-u*)/Zo B T

By use of the same argument as above, we can determine the
density for x . By writing a ‘(akk-Qx"°'a—ﬁ"
a= (a ,al k,...,ao,...,a )! in analogy to (3.3) we obtain
(3.8) a = Lox +L x*+L7ax
where L 'L ,and L_, are suitable matrices whose elements are
functions of parameters O-(Gx ,@ ,...,0 )'.

By virtue of Assumption I, the dens:.ty fora isN(Q, 02 )

a-n+k+Qx
and since the transformatlon from xr1t° a has unitary Jacobiany
the density for § is , by use of the same reasoning as before
and of Assumption III,

-1/2
(3.9) P(y18,10, 1% *)=(2102) LY

2
where S(O )= :%Zl k-0, EE(atlx 'X ,gx)] .

The same approach as above can be applied to submodels (1l.1)
and (l1.2), obtaining

(3.10) p(y,|8s0,. 5, 55 =(2102) /2L

-n/2

2
IL exp{-S(gx)/Zoa}

L, | -1/2

exp{—s(g)/20§}
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t N 2, -n/2,_, -1/2 _ 2
(3.11) p(x |y, ,x )=(2Mo)) |LiL. | exp{-s(y)/20_}
where B =(Bl,62,...,Bs+r+p+q)'=(g',g':i':2')' and
Y =(Y1,Y2,...,Y '=(2; ,2;)' are the parameters of submodels

px+qx
(1.1) and (1.2), respectively, and

(3.12) S(B)= > [E@, | * 8)]°
. 2T BE1-gF Nt InEnrE e

(3.13) s(v)-g [ra, |z,
S a—y

. *
with X (xl_s,...,x 1,xo)' vector of known values (°).

Now, by combining (3.10) and (3.11), we get

0]

(11-

* * *
(3.14) p(znlzn!glxlouldal}:( )=p(znl=310ul}__<nl)={ )'p(?__‘nl lloal}é,

which is the likelihood function for the parameters of the
complete model (1.1) - (1.2).

4, Model identification

The determination of the order for the model (1.1)-(1.2)
that better fits time series {yy and {x, }in the sample period,is
performed separately for the submodels (1.1) and (1.2), by
assuming that probability evaluations are independent. Furthermore,
it may be observed that submodel (1.2) is a particular case of
(1.1), with w(B)=0 identically: then, the procedure for the
identification of submodel (1.1l) can be used even for submodel
(1.2).

Such a procedure starts from the consideration of a transfer
function model of the least order (§5,%,B,3)and one of the largest
(s,r,p q), with the orders subjectlvely evaluated so that one can
reasonably believe that §<s<§, T<r<r, p<p<p, and q<q<q. Each
model is denoted by Mh 3k where indexes correspond to s,r,p, and
g, respectively.

The best model is chosen by using the principle of minimizing
the prevision of the loss #

(4.1) min E(% —mln E:jgjiiim( | ).
h'i'j'k’ th j'k! 'k' Mhljk Mh'l'j'k'
%
D IUNPNNAVE W 92 0
where S<h'<S, r<i'<E, p<j'<p, q<k'<q, and Mh ,k,lndicates the
action of choosing the model Mh 3k and E(Mhijkth i,j,k,)ls
the loss associated with action Mh ,k,when the true model is

Mhl K finally, p(Mhi]kly -9 1 X, H) is the posterior probability
of model MhiJk

(°) In Newbold (1973) the argument of this point is developed
with x* vector of unknown values.
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Loss functions are subjectively evaluated and the posterior
probability for Mhi " is given by Bayes' theorem

*
(4.2) p(Mhljklz lx X IH)¢P(X |Mhijk' ' X IH) p(Mhl le)
for every h, i, j, k, where p(Mh..k|H) is the prior probability

for model Mh 3k and p(y |Mhl k%0 X ,H) is the likelihood. Since
this function is formally equivalent to the density of yn under

the hypothesis that Mhi.kis the true model, with parameters

(B Boreoes )' and o

hijk’ it may be written in the

Bpik” Bheitik

form
* *
(4.3) P(zn'Mh-jkl§ ' X H) =S P(g |Bhijk' ljk’_n X ).

-1
P35k Onisk En e M)A 319%5 5% % %1 kP Pn Bhijk’Onijk EnrE .
Brisk” Ynijx = Thisk
where p(znléhijk’chijk’gn’g ) is not conditional on H because

random sample does_ not depend on this information, and

P(ghl]k' hijk‘x X ,H) is the locally uniformlprior density for

parameters of model Mhi ‘! proportional to Chijk
Then, the posterior probability of Mh 3k’ given by (4.2), is

(4.4) p(Mhlely rx 'X IH)“ p(Mh k‘H) hijk

so that, if ph'jk = p(Mhijle)/p(M.._.lH), for every h,i,j,k,are

the prior probability odds on My hijk against M_ 57

==, Subjectively
evaluated, the posterioronesare pq
*

(4.5) phijk= P(Mhijk|y IX ' X ,H)/P(Msf§§|¥ 2. ,X +H)

[T b J——
ocphijk hijk / srpq
for every h,i,j,k. By means of these posterior odds it is
straightforward to compute the posterior probabilities
* Y
p(Mhijklzn'én’g H) and the minimum (4.1).

Unfortunately, the computation of integrals in (4.5) is not
an easy task because density (3.10) is not of a known type.
Therefore, it has to be approximated, as it will be shown in the
next Section.

5. Transformation of the sum of squares function and computation
of the posterior odds

In order to reduce (3.10) and (3.11) to known density
functions, it is convenient to transform the sums of squares
(3.12) and (3.13) by using the classical Gauss-Newton procedure
based on the expansion into a Taylor's series truncated at the
first term around preliminary approximated values g°and y'(°).

(%) To be determined subjectively, for instance.
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Then,by denoting by [u] and [a] the conditional expectations for

=(u
1-q
we have [u] [u°]+D°(B-§ )and [a] [a°]+ G°(Y-y ) where [u°]—

vee,u a u ee.,u )'and ;= ; ces ; a,3,00.,a)
’ Ill Ill l) (1Sq, Illolll In)l

_E(E|Zn,§n,§ ,g“),[§°]=E(g| ,x 'y %) ,and D°,G°,are(n+q)x(s+r+p+q)
and (n+s+q )x (p +q )matrices, whose elements d;’_tand gg_tare given by
d° -[-a[ut] /9B, ] ,i=1,2,...,s+r+p+q, t=1,2,...,n+q,

g; =[-9J[a t]/)y ] - %,1—1 2,...,p +q , t=1 2,...,n+s+q
Going on w1th the usual iterative procedure, we get
(5.1 s(p)=[g] " [gl=v =7+ (¢-B '2'Dig-)
(5.2) s(y)=[a] " [a]=v_z2+(x-1) '¢'G(y-Y)
where vy—n-(s+r+p+q), v =n-(p_+q ), z2 v'l[uo] [g°] z2 2=y l[ao] [alo:l,
and E’l'= and g are the values for E,l 2 ,and =° obtalned at the

last iteration.
The approximation (5.1) can be inserted in (3.10), so that
we obtain

(5.3) Jo 1/2
u

-(n+l)

exp{-tvyzi-(g-é)‘g‘l_) (8-B) /20 }d6d0°<|z (D'D) 1|
on integrating firstly with respect to 9y and then to E,by'u31ng

the properties of multivariate Student t distribution.
Since integrals Jy ;. in (4.3) are of the type (5.3),
posterior odds (4.5) become
-1 -1,1/2
(5.4) hi k hijk §f§q hijkl—hljk—hijk(—gfﬁq §f§§)

for every h,i,j,k, where z§f§q’9§f§q’ and zhijk ik are

associated with models Mgrpq and Mhijk' respectively.

As noted before, the same procedure can be utilized for the
determination of the order (px,qx) for the submodel (1.2). If it

i B <p <p § <g <g
is believed that px px P, and q qx qx, and if Mjk.iS'the submodel
with px=j,qx=k, then posterior odds are

1.1/2
(5.5) p..P. z. _ z.t|G" @G _ 6. )Y

jk "3k PG 25 €5k 3k =p,a,=P,a

for ever k, where z_ _ ,G_ . and z, G are associated
Y J.k, pqul_pqul ik’ 24k

with the models M_ . and M. , respectively.
qux jk

6. Posterior marginal densities for the parameters of the
previsive model

Having identified the orders (s,r,p,q,)and(p,,q,)of the best
submodels {l.1l)and(l.2), before evaluating the previsions it is
necessary to determine the posterior densities for Bryso 194 of
the previsive model, by use of Bayes'theorem and of prior

densities. These are in the normal-inverted gamma form by virtue
of the second part of Assumption IV
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- (Vy+s+r+p+q+ -
(\’ysrpql) p{[\)

. (8-B)'N_ (8- 3)1/20 }
- (Vg +Py+ay+1)

%,"

(6.1) p(g,oulH)mo - g
(-D'N (1] /202

(6.2) p(y,o |H)“0 « expl{-[v Lt

for parameters 6 g and 1,0 respectively, where v Uy Ey v z are

values that, toqether with the vectors E,x, and the matrlces Ey,
(str+p+q)x (s+r+p+q), N, (P +q )x(p_+q ),are initially sub-
jectively assigned in consequence of prior information H.

By virtue of the factorization (3.14) for the likelihood,
Bayes theorem can be applied separately to the densities of B Gu
and Y,c . As for the former one, we get

(6.3) p(g,0 |y rx /% * H)ep (8,0 G B Py 8,0 ,x ,x)<|L,L

n u
‘Uu-(v +s+r+P+q+n+l) exp{-[V z +(3 5) EY(E E).wyzv.'-(E
-B1/20%=1g,L, |72 °u'(vy+s+r+p+q+n+l)exp{'[Gy23+vyz
_3 ) (B B+)]/2° }

where gy D'D+N B R Lio'p B s), > —B N B+f' D'DB- B RyB

On integratlng (§ 3) with respect to Gu’ the posterior
marginal density for B is obtained

% = + +. =2
(6.4) p( X ,X ,H)<!y +(8=B )'R (B- Z
P8Iy, M) =[5+ (a8 V'R, (B8 /7, )
where V =V +n and V. _Z =v 2 +v_2z +c_, in the multivariate Student
y vy Yy vy y

_ Yy
t form, with GY degrees of freedom.

-(3y+s+r+p+q)/2

As for the posterior densities for Y and Oa' the procedure

is the same. The joint density is the following

(6.5) p(Y,9_lx .x ,H)«IL L r1/2 . = (Vg+pytay+n+l)

’exp{ [V 22+V zz+€ +(Y Y+YR (Y—Y"’)]/Z0

whilst the marglnal one for i is

X oS ,
(6.6) p(xlx ,x ,H)«[v +(x-x"y R (y_y ) /% 2] (VP ta,)/

]

where R =G'G+N_, y* R'l(G G ¥+n 1), e =I'N 7+1'6'61-Y RY .
= = =2 = =2 2 0 &0 -
V=vi4n, VZ=9Vz+vz +c¢
X X X X X X X X X
7. Previsions for the ARMA submodel
In order to evaluate the previsions E(§ |y !X ,§f,H),T€T?

it is firstly necessary to compute the previsions associated
with the ARMA submodel (1.2), that is E(Xpyr|Xn,x*,H)

To this end, we observe that variables x,4¢,T€T can be
expressed as functions of the sample and of residuals (current
and past), according to the recursive relation

*
-— ]
(7.1) x__ =n_+ iTng TET
Where_ gT=(an+l'an+2"‘°'an+T) ', 2?(‘1)1._1[\[)1-_2'0-.[(,)0) 'l

wj=#=:l¢xiwj-i- ej r 3 =0,1,..., T‘l,With \Uo=l,¢xi=o for i>Px,and
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0, z§ X
0 for i>q .As forn .+ if we set A= 5= T¢x3 -5 J=rexjan+ -

-1 px
C= 2:;¢XJnT-J F= = 1¢x3 =9’ it is
A+B+C for T<qx ™p
_ -B+F " T<qx T>p§
N A +C " ™>q_, T<p
F " gt opt
X X

S .
Now, if a =(a Jees,d ) 'is the vector of future

residuals with distribution N(g,cggm) by Assumption I, by virtue

of (6.6) the joint density for éf and parameters of the ARMA
submodel (1.2) is -

f * £
(7.2) pl(a ,l,oalgn,g JH)ep(a|y,0 2% X ,H)op(I,G |x 'X X H)«
aca-(vx+px+qx+n+m+l)exp%[gféf+v zz+v zz+s-H1-x YR (x-Y ]/2oa}
which, integrated firstly with respect to y and then with respect
to 05, becomes
= -(7 +
(7.3) P(gflgn,gxrﬂ)“[vx@f'gf }2{] (V m) /2

lict \

in the multivariate Student form with V d.o.f. £

By virtue of (7.3) even the distributlons ofvectorsaT,TeT
are in the same form, and owing to the propertles of such
distributions the linear combinatlon y a fis distributed as an
univariate Student t with Vx d.o.f., and since the Jacobian ofx
the transformation (7.1) is unitary, the den51ty for Xp4r, TET

. (5, +1)/2
(7.4) px , |y/x % ,H)oc[vx+(x TN y] /

is in the univariate Student t form with vx d.o.f., conditional
on y also, since this parameter vector is a part of nT.
Mean values of the distributions with density (7.4) are
KX n+T|x,§n,x*,H) =n_ /s TE T, so that the previsions of X n+t’ TET '
x
unconditionally on X, are E (xn+r|§n'§ ,H)—fnT°p(l|§n,§ ,H)dz,

TeTx, where p(llgn,gﬁ,ﬂ) is given by (6.7).

8. Previsions for the transfer function model

The evaluation of previsions E(y +r|y XX ,H) is similar

to the one illustrated in the previous Section. Firstly, we write
the transfer function submodel (1.1) in the form

(8.1) a(B)yt= k(B)xt + u(B)ut

where a(B)=¢(B) *6(B)=1-a.B+...~-0_, B , k(B)=¢(B) *w(B)

p+s 1 prr r+q
=k0-k1B+...-kp+sB ’ u(B)=6(B)oe(B)=1-ulB+...-ur+qB , are
polynomials in the backshift operator B. Furthermore, we observe
that variables yn+T,‘teT*, can be expressed as functions of the

sample, of the:q:and of residuals Uy according to the recursive

pt+xr
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relation
(8.2) Y,

where gf=(u

=I +&gx_ +zu
T T §}=T LN

é‘f:(g‘l"‘l' gT_2I°° 'Igo). ’ '—C'T=(C

u eeesl ', x=(x
n+l’ n+2' ! n+T) " =g (

T-l’CT'

TGT*
f ]
n+l'xn+2'°'°'xn+1)
2,...,co)'and

J J
& l_l lg] 1 ej[ Cj= Eaicj-l-uj' for J=O,l,ooo,T-1;Wlth Co=l,

€O=k0 o.=0 for i>p+r; H,=0 for i>g+r; and ki=0 for i>p+s. As
ptr p+s +r
Il = o = =
for I, if we set M ;E; jyn+T-j'U %Z;ijn+T-j v ?é;ujun+T—j'

=1 §E§
W= Iao ., 2= O,
3§“J =i 7 I -

, it is
M=-U=-V+W T€g+r, TLP+r, TLPp+s
M VW T€g+r, T<p+r, T>p+s
=U-V+2 1$gq+r, T>pt+r, TSpP+s
-V+2 T£g+r, T>p+r, T>p+s
HT = M-U +W T>q+r, TEp+r, T<p+s
M +W T>g+r, TEpt+r, T>pts
-U +Z T>q+r, T1>ptr, T<pts
Z 1>q+r, T>ptr, T>p+s

At this point we cannot go on as in the ARMA case, because

the term & gf

is in (8.2) but not in (7.1): we have, therefore

to transform it in function of residuals gf in the following

manner
£ . f f - f
(8.3) §T§T § n +§ (yf l,v az,...,y a V X a. ngT
where AT=(A1,A2,...,A )' and Aj—fgzgj le -3 and (8.2) may be

changed as follows

(8.4) Y.
with X

£ £ £
= ' =
T f 'lf.'-ETg 'lf.“é Tg T+£Tg T 5 T+§T2 T+ZT¥T

=) and wi(afuf) . vow if G-

Y e '
Ue1Ynapr et rUn )
is the vector .of future residuals with distribution N(g,oulm)by

Assumption I, the joint density for gf, éf and the parameters of
the model (1.1)-(1.2) is, by virtue of parameters independence.

£ f
(8.5) p(u '8 IB YI a’ Y IY anIX /H)“P(u ' lB Y, 0 '
(B 0 Iy XX ,H) p(Y,

*
|}=<nl}={ +H)
By integrating (8.5) with respect to Y and E, and then to
ou and Oa’ we obtain

(8.6) p(gf,gflg X1 Oy r O r X rX o X rH)“[V tuu
5

[5 +afef/zz] m)/2

and if we assume that : =

*
a'zn’}én'}é’H).

ff -2]- (%ym) /2

the density for &f—(ﬁf,ﬁf)'

o [(Fruf uf/z ) (Beaf'af/52)] - (F4m/2

3X=3
(8.7) p(¥, IB,Y,O 1O 1Y, X X%

is of the multivariate Student t form with v d.o.f.
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Owing to the properties of such a distribution the linear
combination é'ﬁf is distributed as an univariate Student t with

v d.o.f. and, as the Jacobian of the transformation (8.4) is
unitary, the densities p(yn+T|£’l’cu’0a'zn’§n'§*’n)' are of the

same form, with mean values
~ * *
(8.8) E(yn+Tl§’l’¥n’§n'§ 'H)=HT+§}2T TET
so that the previsions of §n+r’ TGT*, unconditional on g and y,
are
~ * _ .
(8.9) E(F . |y % & H)=/(L +g n )dpdy

9. Concluding remarks

In the previous analysis, the identification and estimation
of the transfer function model that better fits the time series
{yt} and {xt} are performed by following a Bayesian procedure.
By use of the same approach, previsions are evaluated in de
Finetti's sense, so that both the sample and the prior
information are taken into account. The results of the analysis
are simple and easy utilizable because they are based on
distributions of the multivariate Student t typve; therefore,
even previsions are computed on the basis of Student's t.
Subjective information can be introduced in a detailed manner,
in such a way to modify, even substantially, the extrapolations
based on the sample.
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PRIORS FOR EXPONENTIAL FAMILIES WHICH MAXIMIZE THE ASSOCIATION

BETWEEN PAST AND FUTURE OBSERVATIONS

Donato M. Cifarelli Eugenio Regaizini

Istituto Metodi Quantitativi Dipartimento di Matematica
Universitd L. Bocconi Universitid degli Studi
Milano, Italy Milano, Italy

1. INTRODUCTION

Throughout the present paper, {X } denotes a sequence of random
quantities which are regarded as exchangeable, and which are assessed with
a probability measure P(+) which is a member of the mixture-exponential
family. To be precise, it will be presumed that the assessment P(+) for
any finite subsequence (Xl,...,Xn) can be represented using the product
of an identical non-degenerate parametric measure for each X Pg(*)=
P('|3¥6), determined by

(1.1) dPe=exp{6x-M(9)}du

M beinga o-finite measure on the class B of Borel sets of IR. It will
always be assumed that the interior X° of the convex hull X of the support
of U (in symbols:supp(i))is a nonempty open set (interval) in IR and that
{PG;GEG} is a regular exponential family (cf. Barndorff - Nielsen 1978,
p.116). The latter condition implies that © = {6:M(8)<x} is an open
interval in IR. Moreover, we will suppose that the set of the logically
possible values of ¥ coincides with 0. Given such a particular frame, the
present paper deals with the choice of a prior for (1.1); an excellent
treatment of the same topic is included in Diaconis and Ylvisaker (1979,
1985). Our approach bases itself on the obvious remark that the choice

of a prior establishes the strength of the dependence among the elements
of the sequence {X } and, consequently, the strength of the influence
exercised by experilence on our future predictions. This subjective
standpoint is skilfully expounded in de Finetti (1937). More precisely,
we will deal with the problem of singling out priors which maximize &hat
influence when no attempt to quantify possible prior opinions about O is
made and one searches for priors for which there exists a function ¢n:IRn
+IR satisfying
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. < coe < = < = e
(1.2) P(XN <x, ¢n(X1, ’Xn) < x) P(XN < x) P(¢n(X1, ,Xn)f'x)
for all N>n, n = 1,2,..., X € R,

Equalities (1.2) express a condition of perfect association between X
and (Xl,...,Xn). In fact, if the probability distribution(p.d.) function

of Xy is proper[i.e. lim P(XNi x) =1- 1lim P(XN <x) =01, then

-
X>= X >+ ©

(1.2) holds iff:
p(|xN - ¢n(x1,...,xn)|>e)- 0 for all € > 0.

Whilst, if the same distribution is improper [i.e. lim P(XN < x)>0,
X->—00 -

or/and lim P(X < x)< 11 , (1.2) states that:
X >+ ©

p(|xN - ¢n(x1,...,xn)|>e and |XN|<A) =0 for all €> 0 and A € X°;

consequently, the p.d. of (X, ¢n(X se05Xy)) will present masses concen-—
trated on or adherent to (inf X, in% X) and (supX, supX);cf. de Finetti
(1970).

It is worth stressing that our research does not aim at granting a
particular logical status to the prior distributions characterized via
(1.2). In fact, we deem it necessary to assess a prior distribution
according to the actual information of an individual on 6 and to the
strength of the dependence that he wishes to establish between past and
future observations (cf. de Finetti and Savage, 1962). Even more so, (1.2)
cannot be seen as an "objective" principle in order to fix prior distri-
butions. On the other hand, the adherence to the subjective Bayesian point
of view does not lessen the interest in knowing priors which, by
characterizing extremal attitudes such as that described by (1.2),
may be considered as terms of a comparison in any actual assessment of a
prior.

We conclude this section by summarizing the structure of the present
paper. Section 2 describes a procedure in order to assign (finitely addi-
tive) priors, according to de Finetti's theory. Section 3 proves that the
method is general enough to yield distributions satisfying (1.2). Section
4 includes some remarks about the application to a definition of the
concept of noninformative prior and to a Bayesian justification of some
classical inferential results. The Appendix contains the proofs of the
theorems stated in the previous sections.

2. FINITELY ADDITIVE PRIORS FOR THE EXPONENTIAL FAMILY

The present section includes some preliminary remarks about the
analytical representation of a class of priors that we will employ in the
next sections. It is founded on a paper by Regazzini (1987) which assumes
de Finetti's coherence condition (dF-coherence) as sole "axiom" for the
theory of statistical inference.
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Let p be a o-finite measure on (0,B.), where B, = BNO, and let {I } be
an increasing sequence in B converging to O such that:

O<p(1m)<°° for all m = 1,2,... . The sequence {pm} defined by

(2.1) pm(B) =p(BO Im)/p(Im) , Be Be ,m=1,2,,.,

is a sequence of probability measures on (@, B.). Hence, in view of the
hypotheses of the previous section, one can define an extension P of
Py toB R B via the usual rule

mn%m%w@wnwmhgquumﬂwwm.

n
YU(dxj)} . O (d9),

n

where A and B are elements of B and B respectively, and x =Zx,/n.

Further extensions to " t
J={Blx:Be B@’ X is any realization of (Xl,...Xn)}\J

U { X € C}| x : C € B, x is as above and N > n}
can be obtained according to the following rules of probability calculus:
v - -1
(2.3)p B¢ B| (XppeeX ) = %) = { IIm exp [n(6 x - M(e))me(de)}

'%nle@[MS%-MGD]%MMw

m
1= qim) (8),

(2.4) B (X € cl(xl,...,xn) =x) = flm{f exp [6x - M (G)]u(dx)}q (de)

By virtue of the results expounded in Regazzini (1985, 1987), (1.1) and
(2.1)-(2.4) define a coherent probability Pm (in the sense of de Finetti)
on

-8"a B,UJ U {c|0:ceB,0e0}.

The employment of the probability law Pm is appropriate to assign
inferences when one supposes that . constitutes the parameter space. In
order to obtain assessments corresponding to © , one could consider P =
lim P_, provided that such a limit exists. To make this idea precise,
let us define the class L € K on which the previous limit exists. In
view of Theorem 5 in Regazzini (1985), P is a coherent probability on L
and it can be extended to K by preserving coherence (cf. Theorem 4 in
Regazzini 1985). Since 0-additivity can be destroyed in passing to the
limit, P need not be ¢ -additive. This circumstance, in view of the
developments of the next sections, induces us to revisit the concept of
perfect association. For the sake of clearness, we will avail ourselves
of an example from De Groot (1970, p.192):

85



i, 0= o (= 7 (0)} o B8 = T, X = T,
I = (-0 ,0) a 4 =,
m m m m

p = Lebesgue measure.
Then, for Z = vn(X-8), one obtains

2
P(Z < z|X =x) =1lim P (Z < zIX =x) = (2m) 1/2f exp [- —-] dx
A aam ez
Y
=lim P (Z2<z|8=0)=P(2 f_zle =
(2.5) o o
=lin P(Z2<2) =P (2<2)

and it is easy to show that equalities of the same kind hold when {Z<5z}
is replaced by {ZeA}, A being any element of B. Now, if one decides to
consider Z independent of X(e) whenever P(ZsAlX-x)-P(ZsA) (-P(Z€A|3-6))
for all A,BeB and x, 6cIR, then (2.5) states independence. De Groot
reaches similar results by employing a "uniform improper prior" over IR
and he maintains that they are inconsistent since
"under any proper bivariate distribution of X and 6 for which...Z and 6
are independent, it would not be possible for the random variables Z and
X also to be independent, unless the random variable Z is equal to a
constant with probability 1".

This last circumstance can be described by saying that a constant c
exists such that

(2.6)1 P()_{ < x and (é'i X-c)= P(iﬁ x)=P('é:<_x-c) for all xeIR.

- v
This description of the perfect linear correlation between X and 0 is
equivalent to the following condition

-
(2.6), P(|X-8-c|>€)= O for all >0

provided that the involved distributions are proper. Here the terms proper
and improper (cf. Section 1 and de Finetti 1970 I, 6.4.11) are employed
in a sense different from that commonly considered by most statisticians,
according to which a prior distribution is improper if it turns out to be
unbounded. According to the meaning employed by us, in the framework of
finitely additive probabilities, improper distributions are real probabil
ity distribution functions which assign probabililies adherent to the ex-
treme points of X.Having said that, one notices that condition (2.6); can
be employed in order to define perfect linear correlation in the improper
case also, whilst thls does not occur for condition (2.6). In our example,
the distributions of X and § are indeed improper (P(ék x)-P(X<x)= i =
P(#>x) = P(X>x) for all x €IR) and it is easy to verify that they satisfy
(2.6) .. Hence, the inconsistency pointed out by De Groot does not arise
w.r.t. definition (2.6);, the only one which, besides being equivalent

to the traditional one in the proper case, is meaningful in the improper
case also. Obviously, we succeeded in reaching such a conclusion because
we introduced the "uniform prior on IR" through p and aprocedure which
permits to evaluate the probability of a class of events larger than the

86



domain of the posterior distribution. Such a procedure presents a few
points of contact with Rényi's (1955) axiomatic theory of probability.

On the contrary, the employment of improper priors following traditional
statisticians' usage, does not generally enable one to obtain these
evaluations, even if it produces coherent posteriors.

3. PRIORS MAXIMIZING THE ASSOCIATION BETWEEN XN AND (Xl,.....,Xn)

The present section shows that one can choose priors for (1.1) such
that there exists a function ¢n: IR"™ > R for which (1.2) holds. It is
clear that, under the hypotheses expounded in the first part of Section 1,
if the distribution of § is proper, then no function ¢ exists satisfying
(1.2). Hence, we look for a prior yielding (1.2) withig the class of
priors described in Section 2, and accept to compute the involved probabi-
lities through the limit of Pm under the condition:

(3.1) p(®) = » and for any compact interval Ie€ O, m, exists such that
IDI
_m?)_

The main result of the present paper is represented by the following the-
orem, which provides a complete solution of the problem stated above.

Theorem 3.1: Let P be assessed on L according to the previous section in
such a way that (3.1) holds. Let w be any real-valued increasing function
defined on X such that:

%i?nfx wn(x) = infX , wn(x) = supX 3

x*supx
then (1.2) holds with ¢n (xl,...,xn) = wn(;n).

This theorem points out that there are very many priors satisfying
(1.2). Among them it is interesting to analyse the case in which p is
determined by

(3.2) p(a) = fA exp{néxoe - M(6))1}do for all A ¢ Bg.

Diaconis and Ylvisaker (1979) have considered such a prior with p(@)<w
(prior distribution conjugate to (1.1)) and they have shown that it is
characterized through_the property of linear predictive expectation:

E(X IX seeesX ) = a, X + b . Cifarelli and Regazzini (1983) have proved
that tﬁe same prlor is characterlzed through the property of maximizing the
dependence of on X (measured via Pearson's correlation ratio) among the
priors which yield a Pixed value in (0,1) for the ratio: Var(E(ang))/
Var(Xn). The following theorems state that analogous results hold even if p
is determined by (3.2) with p(@)=», The first deals with the calculus of
the regression function:

Theorem 3.2; If P is assessed on L according to the previous section and
o is given by (3.2) with xo e X (the closure of X), then,for (n+no)>0 and
N>n:
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inf X, if x < n_]’[(n+n )+infX -n x }
n— o oo
= = = 1 < -1 -
(3.3) E(XN[X1 xl,...,Xn xn) Sup X, if antl {(n+no)-supX noxo}

(n+n )-1-(n§ +n x ), elsewhere.
) n oo

From this it follows that E(X |X =x

yeessX = xn) can be a candidate to
represent the function w of Theorem % 1.

We will deal with the converse to Theorem 3.2 under special alterna-
tive assumptions about supp(u) , i.e.:

A : supp(M) contains an open interval in IR;
B : supp(u) is a subset of [0,%) or of (—,0] such that u({0})>0.

Condition A coincides with the one considered in Theorem 3 by Diaconis and
Ylvisaker (1979). On the other hand, condition B is both weaker than that
of their Theorem 4, and weaker than condition C of Theorem 1 in Cifarelli
and Regazzini (1983), but it suffices to characterize (3.2) when (3.3) is
demanded to hold for all n. In fact, in Theorem 1 by Cifarelli and Regazzi-
ni (1983), condition C is redundant; as a matter of fact, B implies that
M(8) is monotonic and that exp{-M(6)} is bounded. Consequently, the next
theorem is a generalization of Theorem 1 in our paper of 1983.

Theorem 3.3: Let U satisfy A or B; furthermore, let P be assigned according
to Section 2 with a p such that a positive integer vV and a sample (x*,...,
x*) exist for which

(3.4) 0 < /g exp{\)(e;\i; - M(6)) }p(d) <,
Under these conditions, if (3.3) holds for all n>v, then:
p(d9)=C°exp(no{xoe - M(8) })dse.

In particular, Theorems 3.2-3.3 enable us to characterize the classical
"improper uniform" prior; in fact:

if u satisfies A or B, if P is assigned according to Section 2 in such

a way that a pOS1t1ve integer vV and a sample (xl,.. ’Xv) exist for which

(3.4) holds, then E(X IX ,e..5X ) = X for all n>v, iff p is defined by
n n

p(d8)=cdb.

4, CONCLUDING REMARKS
The attitude described in the previous sections, according to which

one adopts priors maximizing the association between past and future
observations, in our opinion, represents the kernel of almost all attempts
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made to define the concept of noninformative prior. In our view, any prior
which emphasizes the role of observations by satisfying (1.2) can be
considered as a candidate to represent vague prior information (cf. De Groot
1970, Ch. 10). Moreover it seems to us that condition (1.2) is more simple
and natural than most requirements considered by the modern approaches to
this problem (see Berger 1985, Ch. 3, and Dawid 1983, for recent reviews
of them). In any case, since these formulations generally lead to consider
priors represented through unbounded measures, the procedure expounded in
Section 2 could be employed to frame them into de Finetti's theory of
probability.

We conclude by stressing that the last:statement of Section 3 provides
a Bayesian justification of the "orthodox" estimator X of M'(8)=E(X L} =0).
In fact, since E(X |X seeesX )=E(M'(%)|X1,...,Xn) fro% that statement we
deduce that X is the Bayesian estimator of’M'(%), for squared error
loss, provideg that P is assigned according to Section 2 with p(df)=cdb.
Results on the conditions for numerical equivalence between classical and
Bayesian inference are generally founded on the use of priors with infinite
mass. We think that the conclusions reached in the previous sections, suitably
extended to general statistical models, will enable us to provide a substan-
tial justification for this equivalence [via condition (1.2) which, in fact,
could be interpreted as an attempt to provide a subjective probabilistic
formulation of the paradigm of the sampling theory of inference, according
to which only the observed data are taken into account] and to substitute
priors with infinite mass by real p.d.'s according to Section 2. We will
deal with these topics in a forthcoming paper.

APPENDIX
Proof of Theorem 3.1

After recalling that © =(a,B), we will split the argument into several
steps:

(1) for every €>0 and any compact interval I <€ X°, there exist a, b € R
such that o<a<b<f, for which
/s exp{0x-M(0) Ju(dx)<e, for all 6e(a,a)V (b,B):=q.
If B= + o, then from inequality (2.4) of Diaconis and Ylvisaker (1979):
fI exp{6x-M(0) Ju(dx) < u(Ay)-l' fI exp{0 (x-y) hu(dx)

where y € (sup I, sup X). Hence, from dominated convergence:

lim [_ exp{6x-M(8) }u(dx)=0.
0->+o0 1

If B<+», then lim_ M(6) = + ® (cf. Diaconis and Ylvisaker 1979, p. 273) and
6B
from exp{6x}< exp{|0|max(|inf I|, |sup I|)} , one deduces

0< légggp,&exp{ex-M(O)}u(dx)= 0.
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Hence, in any case, given €>0, b exists such that
0< fI exp{0x-M(8) hu(dx)<e, for all 6 €(b,B).
A similar argument applies in order to determine a.

(2) 0= 1lim P (X €I)=P(X €I) for all N=1,2,...
mo m N N

In fact, if Q' denotes the complement of Q w.r.t.O :

Pm(xNeI) =/ P (1) o (d9)+f 1r nQ Pe(I)pm(de)

InQ'

where, by virtue of (3.1), the first integral converges to O and, for the
second one, (1) implies

0< flm(\Q Pe(I)pm(d6)<€ for all m > 1.

3) 0 = lim Pm(XneI)=P(XneI) for all n=1,2...

m>o

The proof of (3) is analogous to that of (2) since

Pe(XnEI) = II exp{n[Gx-M(e)]}un(dx)

where un is the image of P induced by in'
(4) Given £>0 and X X, € R, Q=(a,a)V (b,B) exists such that
Pe(XNi X, and Xn 2_x2), P (XN > X, and Xn §_x2) <g

for all 6 € Q and N>n. In fact:

P (X €A and X €B)=P (X €A)P (i €B) for all A,B e B and 6 € O

0N n 0N O n
furthermore, arguing as in (1) and (3):
< < = > > x)=

lim_ Pe(X x)= &ﬂg P (X X) &1m P (X X)= 11m P (X x)=0.

08~

= > = > < s
5) O P(XN < X and Xn > xz) P(XN 2% and Xn < xz),

in fact:

Pm(XN j_xl and Xn > xz) = fI rlQ PO(X < x )P (Xn > xz)pm(d6)+

+fI ('\QPB(XN<X)P (X >x)o (d8)

and the thesis follows from (4) by arguing as in (2).
In view of the previous results, we can state that the distribution of
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(X ,X) assigns the whole probability partly adherent and/or partly
concentrated at the points (infX, infX), (supX,supX); hence, given any
monotonic function Y such that ¢ (infX)=infX in the first case, Y, (supX)=
=supX in the second gne, we see that (1.2) holds for ¢n(X1,...Xn)=wn(X£).

Proof of Theorem 3.2

Since n+n > O and
o

- -1
Pm(xN <x |X1 = xl,...,Xn=xn) = {fImexp{G(n xn+noxo)-(n+no)M(9)} de} -

* [ P ((~,x]) exp{6(n x +n x )-(n+n )M(8)} db,
Im 0 n oo o

-1 -
if the denominator converges (m>), then (n+no) (nx,+n x )eX°(cf. Theo-
rem 1 of Diaconis and Ylvisaker 1979) and, in view of Tﬁegrem 2 of the
same paper:

-1 _
E(XN|X1=x ,...,Xn=xn)-(n+no) (nxn+n0x0).

1
_1 _

On the other hand, if the demominator diverges, then (n+n0) (DX +ngXe) ¢X°

Suppose that (n+n )_1.(nxh+noxo) > supX; in such a case x, = supX <«,Then,

for 0e(a,B) = O

exp{M(8)} = S exp{Ox}u(dx) + / exg{ex}u(dx)
Lo,x;

-oo,o

and, if the first integral converges for a €(o,B), then it converges for
all 9>uo; as far as the second one is concerned, one obtains

J exp{6x}u(dx) < sup e exp([o,xll)«o for all 8e R
Lo,xq1] XE Eo,xll

since u(A)< » for every compact subset of IR (cf. Diaconis and Ylvisaker

1979, p. 272). Hence: B = + ©, An analogous argument yields:infX>-® =>g=—w,
Now, in view of inequality (2.4) of Diaconis and Ylvisaker (1979):

lim S exp{6t-M(8)}u(dt)=0, for all xeX°.
fr  (~oo,x]

Then, since for m> o

B - =1
B (K <x| X =x . ,% =X )n{f . exp{8(ax_+n_x )-(atn JM(8)}dO} .

B

.& - Pe((-w,x]) exp{8(n ;n + noxo)-(n+no)M(6)}d6

one deduces: P(X j.x|X1=x s...X =x ) = 0 for all x eX°.

Hence, the whole probablli%y is partly concentrated on and/or partly
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< : X=x,...X=x)= f
adherent to supX<+», consequently E(XNI ) X Xn xn) supX for all
(%15+++5%,) such that ;‘n > n'l{(n+n°).supX- ngXol.

If (1'1+1'10)'1(m'2n + noxo)_<_ infX, an analogous argument shows that

EX ]Xl—xl,...x =x ) = infX , if ;(n <L n'l{(n+no)ian - noxo}.

The second part of the proposition follows from the previous conclusions
and from the obvious inequalities

n.infX < (n+n )infX - n .x < (n+n )'supX - n x < n sup X.
- o oo o oo -

Proof of Theorem 3.3

It consists of three steps.

(1) 1lim M' (8)=inf X, lim M'(0)=supX.

640 048
Firstly suppose B < @, In such a case: supX = + ® (cf. the proof of
Theorem 3.2) and é#@ M(8) = + ®, Hence, if M'(B )< , then, given a€&(0,B):

oo>f§ M'(G)d9=M(B_)-M(a) (a contradiction!).

In other words: B<+o => gupX = é*tg M'(B) = + w0,
An analogous argument shows that
o>~ => infX = éim M'(0) = -

Yo,

Suppose now B= +» and let x be an element of X°. Then:

u'(e) >x {1- {’“’”‘o) exp{6x-M(6) Ju(dx)} + f(_m’xo)

and, in view of inequality (2.4) of Diaconis and Ylvisaker (1979), one can
determine x N s(xo, supX )N A such that

x exp{6x-M(8) hu(dx)}

0 f-(_m x4 )°%P {6x-M(8)} n(dx) < {u(A)} g{e(x-xA) Hu(ax)

-1
< (_odf’xo)lxl exp{ 6x-M(8) } u (dx) <{u(a)} {-m,xo), Xlexp{e(x—xA)}U(dx)

Hence, by monotone convergence: supX iM'(B-) > x_and the thesis follows
from the arbitrariness of x . An analogous argument applies to M'(-®)
when o=-» , in order to stafe:infX < M'(Ot+) < xo for all xoe X°.

(2) If B holds, then M (6) is strictly monotonic and exp{ -M(8)} is bounded
on O, Indeed, (1) and M" (8) > 0, for all 6, imply:
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M' (' )=0< M'(8')<M'(8")< M' (8 )= supX for all 68' <@",
if B holds with supp() € R';

M'(a')=infX <M'(8')< M'(6")< M'(B)=0  for all 8'< 8",

if B holds with supp(u)C{IR+}'U{O}

In both cases M(0) turns out to be strictly monotonic and, from the in-
equalities:

exp{M(0)} = fx exp{0xhu(dx)>u({oh> o,

one deduces that exp{-M(8)} is bounded on O.

(3) In view of (3.4) and Theorem 1 by Diaconis and Ylvisaker (1979) s Ve

Z;Ze for all samples (x ,...,x* LR "’x\)+k)’ k>1, such that ik=i-§-1xv+i/k
 >f exp{v(e?g:; M(8)) Yexp {k(Bx,_ -M(8))}0(d6)=
O 2+ 5 x ) - (WOM(©) }p(dd)
= + - (V+ ;
‘6 exp 1 xj 4 x\)+j p ;
hence, without loss of generality, we can suppose:
nx + \)}-t\’;
(*)n+v>0,zgeX°,°° e X° .
° V +n
v(6x* - M(6
Now, if (3.3) holds, we obtain for N>V+k and q_*(de) =e ( 0 m( ))p(de):
xV
* _ ) =
E(X |x1 1,...,xv =X, 5 X 0T Fugpe e Xy T Fusk

Jo 1'(8) explk(ex, - M(O)}q, (@) (0 X X

- \)

fe exp {k(E)xk - M(0)} q}_{\,;(de) vV +k+ n_

where the latter equality holds if:

= 1
{ (v+k+ infX - < < +k+ X -
TR (v+k no) in noxo} X T e {(v+k no) sup. noxo} ,
i.e.
- -
i nEX V+n e } < Vo noxo+\)x:
+ i - < < -—
inf {infX T X, supX + k {supX TS }
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In view of (*), these inequalities are always satisfied and consequently:

fenv(e) exp {k (exk - M (0))} axx (d9) _ k ., v§3 +ngx

Viktn, K vtkin,

Iy explk (0x - M (8))} q§: (d8)

for all k >1 and ik € X .

Therefore, if supp(u) satisfies A, from Theorem 3 by Diaconis and Ylvisaker
(1979) we deduce

= T* - .
qis (d8) = c.expi{® (vxv +n xo) (v+n0)M(6)}d6,
on the other hand, if supp(u) satisfies B, the same conclusion is reached
through point C of Theorem 1 by Cifarelli and Regazzini (1983) and step
(2) of the present proof.

Hence, in both cases:

Qe (d9)
v

exp{ v (® x> -M(8)) }p(do)

c exp{ 8 (v is + noxo) - (v+no)M(9)}de,

which yields the thesis.
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INTRODUCTION

Imagine a decision maker who has heard from one or more information sources regarding
the probability of some future event and who desires to use this information to revise his
personal beliefs concerning the event. One approach to this problem involves the decision
maker treating the probabilities as data in a Bayesian inferential problem, the output of which
is an updated probability regarding the event in question. The thorniest part of the Bayesian
combination procedure is the assessment of a likelihood function by the decision maker to
represent his beliefs regarding the quality of the information and, in the case of multiple
sources, the nature of the dependence among the sources.

The Bayesian approach to the use of probabilities from various sources is now well
established. Morris (1974, 1977) was the first to characterize the problem in Bayesian terms.
Lindley, Tversky, and Brown (1979), French (1980), and Lindley (1982) developed models
for the specific case of a single information source. Models for multiple information sources
have been provided by French (1981), Winkler (1981), Lindley (1983, 1985), Agnew
(1985), Chang (1985), Genest and Schervish (1985), and Clemen (1987), to name a few.

Excellent reviews and critiques of this literature are available in French (1985) and Genest and
Zidek (1986).

In this paper, we apply a Bayesian model for adjusting and combining discrete
probabilities in the context of forecasting tomorrow's weather. Since 1966 the National
Weather Service (NWS) of the United States has provided probability of precipitation (PoP)
forecasts as the official precipitation forecasts. Meteorologists have studied these forecasts
extensively (e.g., Murphy, 1985) and have shown consistently that the forecasts generally are
well-calibrated (i.e., when the PoP forecast is x, the long-run frequency of measurable
precipitation is approximately x). The NWS also uses a numerical-statistical model of the
global atmospheric system to prepare "guidance” PoP forecasts about twelve hours prior to
the issuance of the official forecasts. Thus, local forecasters may use guidance forecasts in
the formulation of official PoP forecasts. Meteorologists have studied the relative
performance of guidance and official forecasts; a review of this literature as well as a more
complete overview of the forecasting process can be found in Murphy and Winkler (1984).

The fact that the guidance forecast is available for use by the official forecaster might lead
us to suspect that the guidance and official forecasts are highly dependent, perhaps to the
extent that the information provided by the guidance forecast is completely incorporated by the
local forecaster in his formulation of the official PoP forecast. This issue was recently
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addressed by Clemen (1985) and Clemen and Murphy (1986a) with the conclusion that, while
the official forecast apparently incorporates most of the information (in a statistical sense), it
may be possible to improve the performance of the official forecast by combining the guidance
and official forecasts theough joint calibration (DeGroot and Fienbers, 1082, 1983), A
follow-up study by Clemen and Murphy (1986b) showed that joint calibration indeed
produced somewhat better forecasts, although the level of improvement was about the same as
that obtained through individual frequency calibration of the official forecasts. In contrast,
simply averaging the two forecasts, with or without calibration, performed somewhat better
than joint calibration.

One problem with the joint calibration procedure is that it requires massive amounts of
data to estimate the joint calibration function reliably. Thus, there is some motivation to turn
to a modeling approach, using tractable probability models with known properties to represent
the stochastic nature of the official and guidance forecasts. Lindley (1982) provided a model
for the Bayesian calibration of discrete probabilities, using as likelihood functions normal
distributions for the log odds of the stated probabilities, conditioned on the occurrence or
non-occurrence of the event. Lindley (1985) and Chang (1985) extended this model to the
case of probabilities from multiple sources.

Our objective in this paper is to apply the normal log-odds model to the calibration and
combination of official and guidance PoP forecasts. Thus, we require two normal
distributions for the forecast log odds of rain, one given that it rains tomorrow and one given
that it does not rain. The prior probability is simply the climatological probability (long-run
frequency) of precipitation. The analysis includes some measures of the degree to which the
calibrated and combined forecasts improve on the official forecast and how well they perform
relative to the uncalibrated forecasts and simple combinations thereof.

The paper is organized as follows. First, we discuss the calibration of individual
probabilities via the normal log-odds model, describe the data, and present the analysis of the
uncalibrated and calibrated probabilities. Next, we deal with models and empirical results
regarding the combination of probabilities. We conclude with a discussion of the results and
their implications.

CALIBRATING PROBABILITIES
The Normal Log-Odds Model

Suppose that an information source provides probability p, his probability that measurable.
prwpltatlon (rain) will occur tomorrow. We will be interested in the corresponding log odds
= log[p /(1-p )]. If the prior probability of rain is the chmatologlcal probability of ram,

denoted by ¥, the posterior log-odds q* of rain can be found using Bayes' theorem in
log-odds form:

1) q* = log[P(rain|g) / P(no rain|g)]
= log[L(glrain) / L(gIno rain)] + log[y /(1-Y)],

where L(glrain) and L(g|no rain) are the likelihood functions given rain and no rain,
respectively.

Following Lindley (1982), we model the likelihood functions L(gjrain) and L(g|no rain)
with normal distributions having means p; and Mg and variances 012 and 002, respectively.

Substituting the expressions for the two normal distributions into (1) and manipulating the
expression algebraically, we obtain an expression that is quadratic in ¢ :

@ q* = {log( 5%/ 642) - <°1 2-052)g %+ 20012y - 0652 no)g
01202+ 052 g2 3/ 2+ logly (1-9)].
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If 6, = 6= 0, the expression simplifies to a linear formin g :
3) g* = {2(1; - Mp)q - (112 - 1D}/ 207 + logly /(1-y)].

The parameters K1 B Op and ) (or 6) can be estimated from historical data and

substituted into the expression. When these estimates are supplied, (2) or (3) provides a way
to find g*, which represents the calibrated log odds. [We use the term "calibrated" in the
same subjective sense as Lindley (1982).] This approach yields essentially the same results as
a full Bayesian analysis with a diffuse prior distribution on the normal parameters.

Table 1. NWS offices for which guidance and official forecasts were analyzed in this study.
Also shown are the overall sample climatological probabilities of measurable
precipitation in the cool and warm seasons in the respective locations.

Climatological probabilities

of precipitation

Cool Warm
Office season season
Albany, NY 24 24
Atlanta, GA .20 .19
Boston, MA 23 22
Dallas, TX 13 13
Denver, CO 12 .16
Des Moines, IA .18 23
Phoenix, AZ .08 .04
Portland, OR 40 21

The Data

The data analyzed in this paper consist of guidance and official PoP forecasts for eight
NWS offices in various parts of the United States. These data, covering the period from April
1972 through September 1983, were provided by the NWS Techniques Development
Laboratory. The offices are shown in Table 1, along with the climatological probabilities of
measurable precipitation in the respective areas for the warm (April-September) and cool
(October-March) seasons. Guidance and official forecasts are made twice each day, in the
morning and evening (in conjunction with the so-called 0000 and 1200 GMT cycle times).
On each occasion, forecasts are formulated for three consecutive 12-hour periods, or lead
times. These lead times are 12-24 hours, 24-36 hours, and 36-48 hours after the guidance
forecast is issued.

Meteorologists traditionally analyze the warm and cool seasons separately because of
differences in weather patterns. Moreover, the characteristics of the forecasts vary
considerably with lead time (e.g., forecasts are less accurate as the lead time increases).
While there may be some circumstances under which the characteristics of forecasts vary with
cycle time, Clemen and Murphy (1986a) found virtually no such differences. Thus, forecasts
for both cycle times were aggregated for our analysis. For each station, then, we analyzed six
different kinds of forecasts, corresponding to six combinations of season and lead time.

For the analysis, the data set was divided into two subsets. The first seven years of data

(April 1972 - March 1979) were used to fit the log-odds model, and this fitting was done
separately for each combination of station, season, and lead time. The sample means and
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Table 2. Average quadratic scores (MSEs) for climatology, uncalibrated, and calibrated

forecasts.
Official Official Guidance Guidance
Calibrated Calibrated Calibrated Calibrated
Variances Variances Variances Variances Sa@ple
Forecast type:Climatology Official Equal Unequal  Guidance Equal Unequal Size
COOL SEASON
12-24 hours

Albany 0.1720 0.1022 0.1016 0.0928 0.0976 0.1004 0.0931 894
Atlanta 0.1631 0.0740 0.0794 0.0748 0.0811 0.0904 0.0808 1058
Boston 0.1641 0.0822 0.0871 0.0753 0.0721 0.0825 0.0705 911
Dallas  0.1005 0.0632 0.0635 0.0654 0.0658 0.0676 0.0654 1036
Denver 0.1045 0.0593 0.0617 0.0588 0.0596 0.0643 0.0594 1061
Des Moines  0.1341 0.0805 0.0827 0.0804 0.0778 0.0803 0.0778 1030
Phoenix  0.0656 0.0329 0.0341 0.0308 0.0399 0.0430 0.0378 1002
Portland 0.2442 0.1172 0.1352 0.1185 0.1301 0.1559 0.1352 1036

24-36 hours
Albany 0.1690 0.1104 0.1100 0.1039 0.1181 0.1173 0.1137 894
Atlanta 0.1605 0.0932 0.0959 0.0935 0.1011 0.1062 0.1002 1058
Boston 0.1682 0.0945 0.1001 0.0912 0.0937 0.1013 0.0924 911
Dallas 0.1000 0.0782 0.0770 0.0791 0.0719 0.0754 0.0738 1036
Denver 0.0939 0.0672 0.0674 0.0684 0.0692 0.0706 0.0690 1061
Des Moines 0.1336 0.0878 0.0922 0.0881 0.0878 0.0943 0.0904 1030
Phoenix 0.0624 0.0405 0.0415 0.0407 0.0466 0.0491 0.0460 1002
Portland 0.2434 0.1512 0.1629 0.1512 0.1582 0.1765 0.1604 1036

36-48 hours

Albany 0.1688 0.1218 0.1187 0.1157 0.1250 0.1224 0.1211 894
Atlanta 0.1505 0.0964 0.1006 0.0967 0.1074 0.1093 0.1078 1058
Boston 0.1608 0.1036 0.1089 0.1037 0.1107 0.1144 0.1117 911

Dallas 0.1039 0.0817 0.0811 0.0807 0.0833 0.0863 0.0865 1036
Denver 0.1001 0.0789 0.0795 0.0782 0.0820 0.0840 0.0820 1061

Des Moines 0.1274 0.1019 0.1032 0.1021 0.0995 0.1038 0.1048 1030
Phoenix 0.0622 0.0460 0.0472 0.0460 0.0520 0.0533 0.0516 1002
Portland 0.2433 0.1639 0.1739 0.1633 0.1696 0.1881 0.1754 1036

WARM SEASON
12-24 hours

Albany 0.1867 0.1094 0.1165 0.1089 0.1112 0.1194 0.1138 794
Atlanta 0.1507 0.0995 0.1056 0.1033 0.1028 0.1096 0.1066 1156
Boston 0.1749 0.1107 0.1165 0.1101 0.1125 0.1200 0.1144 927
Dallas 0.1053 0.0790 0.0814 0.0821 0.0805 0.0846 0.0842 1171
Denver 0.1329 0.0959 0.1006 0.1005 0.0971 0.1051 0.1038 1282
Des Moines 0.1676 0.1206 0.1288 0.1237 0.1225 0.1305 0.1275 1205
Phoenix 0.0420 0.0366 0.0355 0.0354 0.0368 0.0358 0.0359 1320
Portland 0.1563 0.0932 0.1013 0.0941 0.1030 0.1164 0.1055 1335

24-36 hours
Albany 0.1755 0.1239 0.1261 0.1207 0.1309 0.1307 0.1253 794
Atlanta 0.1462 0.1057 0.1088 0.1111 0.1112 0.1131 0.1092 1156
Boston 0.1678 0.1244 0.1234 0.1198 0.1242 0.1263 0.1218 927
Dallas 0.1072 0.0906 0.0911 0.0934 0.0913 0.0928 0.0917 1171
Denver 0.1323 0.1074 0.1088 0.1100 0.1060 0.1098 0.1097 1282
Des Moines 0.1618 0.1282 0.1312 0.1282 0.1268 0.1321 0.1287 1205
Phoenix 0.0360 0.0356 0.0347 0.0381 0.0351 0.0342 0.0345 1320
Portland 0.1538 0.1122 0.1200 0.1123 0.1160 0.1226 0.1188 1335

36-48 hours
Albany 0.1731 0.1400 0.1361 0.1340 0.1390 0.1383 0.1351 794
Atlanta 0.1519 0.1098 0.1158 0.1161 0.1170 0.1208 0.1202 1156
Boston 0.1622 0.1284 0.1267 0.1257 0.1266 0.1288 0.1263 927
Dallas 0.1036 0.0932 0.0928 0.0936 0.0898 0.0924 0.0912 1171
Denver 0.1336 0.1118 0.1140 0.1170 0.1117 0.1165 0.1148 1282
Des Moines 0.1554 0.1302 0.1325 0.1309 0.1285 0.1336 0.1329 1205
Phoenix 0.0394 0.0377 0.0368 0.0397 0.0375 0.0356 0.0359 1320
Portland 0.1513 0.1178 0.1248 0.1187 0.1178 0.1237 0.1201 1335

100



Table 3. Average percentage improvements in MSE for the uncalibrated and calibrated
forecasts. The upper (lower) figure in each cell gives improvement relative to the
official forecast (climatology).

Official  Official Guidance Guidance
Calibrated Calibrated Qalibrated Calibrated
Variances Variances Variances Variances
Forecast type: Climatology Official Equal Unequal Guidance  Equal  Unequal
COOL SEASON
12-24 hours -87.34 0.00 -4.89 2.37 -3.32 -12.49 -2.13
0.00 45.94 43.51 47.20 44.39 39.75 45.06
24-36 hours -54.76 0.00 -2.81 0.67 -3.68 -9.29 -3.50
0.00 34.74 33.05 35.11 32.54 28.97 32.59
36-48 hours -39.07 0.00 -2.11 0.85 -5.09 -8.62 -6.37
0.00 27.57 26.16 28.20 24.04 21.52 23.07
WARM SEASON ‘
12-24 hours -46.67 0.00 -4.77 -1.48 -2.80 -9.43 -5.77
0.00 30.77 27.73 29.78 28.97 24.70 26.99
24-36 hours -27.57 0.00 -1.59 -1.42 -1.41 -3.38 -1.11
0.00 20.76 19.65 19.43 19.80 18.35 20.02
36-48 hours -21.38 0.00 -1.02 -1.36 0.16 -1.81 -0.50
0.00 17.06 16.35 15.90 17.32 15.81 16.86
Overall
Average -46.13 0.00 -2.86 -0.06 -2.69 -7.50 -3.23
Improvement 0.00 29.47 27.74 29.27 27.84 24.85 27.43

variances of the relative frequency distributions of log odds corresponding to official and
guidance probabilities conditional on rain and no rain were used as estimates of the model
parameters. For each lead time/season combination at each station, forecasts and observations
for over 2000 occasions were available for the April 1972-March 1979 period. The remaining
four and one-half years of data (April 1979-September 1983) were used to evaluate the
calibrated probabilities generated from the mode] as well as the official and guidance forecasts.
Even though no fitting was necessary for the official and guidance forecasts, their evaluation
was based only on the April 1979-September 1983 period to facilitate comparison with the
performance of the calibrated probabilities.

Calibrating Probabilities: Empirical Results
In our analysis of individual forecasts, we investigated the following probabilities:

1) Official and guidance forecasts.

2) Calibrated official and guidance forecasts using the normal log-odds model with
equal variances.

3) Calibrated official and guidance forecasts using the normal log-odds model with
unequal variances.

For each type of forecast, we computed average scores for each of the six combinations of
season and lead time using a quadratic scoring rule. The average quadratic score is equivalent
to a mean square error (MSE); a lower score therefore indicates better performance.

The MSEs are presented in Table 2, and average percentage improvements for the
different types of forecasts over the official forecast and climatology are given in Table 3.
First, note from Table 3 that every type of forecast easily outperformed climatology. As
anticipated, the improvements over climatology were greater as the lead time decreased and for
the cool season as opposed to the warm season.

Next, in looking at the raw, uncalibrated probabilities, we see from Table 3 that the
guidance forecasts generally performed worse than the official forecasts. Overall, the
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guidance forecasts performed 2.60% worge than the offieial foreaasts, The differences in the
table may not seem large, but they are equivalent to changes that have occurred over a period
of a few years as forecasts have improved (see Murphy and Sabin, 1986). Recall that the
local forecasters have access to the guidance forecasts before they formulate the official
forecasts; hence the better performance of the official forecasts is not surprising.

Tables 2 and 3 also show that for both official and guidance forecasts, the raw forecasts
outperformed the calibrated forecasts. The calibrated forecasts using the normal log-odds
model with equal variances were particularly weak, resulting in a 2.86% overall increase in
MSE for the calibrated official forecasts as compared with the raw official forecasts and a
4.68% increase for the calibrated guidance forecasts as compared with the raw guidance
forecasts. Relaxing the assumption of equal variances led to improvements, resulting in
forecasts only slightly worse than the raw forecasts.

In comparing the models with equal and unequal variances, it is helpful to look at the
means and standard deviations of log odds conditional on rain and no rain. The differences
between the means and the ratios of the standard deviations for the two conditional
distributions are given in Table 4. The standard deviations given no rain were, for the most
part, larger than those given rain. For example, with a 12-24 hour lead time in the cool
season at Portland, these standard deviations for the official forecast were 2.361 and 1.750.
The two normal distributions of log odds in this case are shown in Figure 1.

Of course, the unequal-variances model offers more flexibility than the equal-variances
model. From (3), the equal-variances model gives calibrated log odds linear in the
uncalibrated log odds. This implies calibration curves shaped like the solid curve in Figure 2,
which shows calibration curves (in probabilities, not log odds) for the case of the official
forecast at Portland during the cool season and for the 12-24 hour lead time. The
unequal-variances model given by (2) adds a quadratic term and is less restrictive in terms of
the shape of the resulting calibration curve. In Figure 2, the dashed curve (the
unequal-variances model) seems much more consistent with typical frequency calibration
curves for PoP forecasts (e.g., Murphy, 1985) than does the solid curve. The corresponding
frequency calibration data are included in Figure 2 for comparative purposes.

In summary, among the calibrated and uncalibrated forecasts, the official forecasts
performed best. Overall, the guidance forecasts were not quite as good as the local forecasts.
Calibration via the equal-variances model produced the worst results. The unequal-variances
model did better, producing forecasts that were roughly comparable to the raw probabilities.

No rain

9 -8 -7 6 -5 -4 3 2 -1 0 1 2 3 4 5 6
Log odds

Figure 1. Distributions of official forecast log odds conditional on rain and no rain at Portland
(cool season, 12-24 hour lead time).
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Table 4.

Albany

Atlanta

Boston

Dallas

Denver

Des Moines

Phoenix

Portland

Differences between estimated means and ratios of estimated standard deviations
for the distributions of log odds conditional on rain and no rain. The upper figure
in each cell gives the difference between the means (U1 - Hg), and the figure in

parentheses gives the ratio of the standard deviations (G/0).

OFFICIAL FORECAST

COOL SEASON
12-24 24-36 36-48
hours hours hours

369 285 209
(0.92) (0.90) (0.81)

482 374 285
0.94) (0.76) (0.13)

457 360 266
(0.94) (0.88) (0.83)

374 294 213
(1.02) (1.00) (0.90)

360 260 197
(0.97) (0.80) (0.73)

351 226 137
(1.14) (1.02) (0.97)

416 331 283
(0.85) (0.71) (0.76)

373 278 2.00
(0.74) (0.73) (0.74)

WARM SEASON
12-24 24-36 36-48
hours hours hours

318 237 161
(0.83) (0.81) (0.79)

260 206 150
0.76) (0.63) (0.67)

326 246 178
(0.85) (0.84) (0.76)

232 L7l 116
0.70) (0.72) (0.75)

185 131 096
(0.86) (0.85) (0.79)

244 158 097
(0.96) (0.78) (0.90)

262 210 176
(0.57) (0.57) (0.63)

371 285 221
(0.83) (0.75) (0.77)

GUIDANCE FORECAST

COOL SEASON
12-24 24-36 36-48
hours hours hours

340 282 2.08
(0.86) (0.92) (0.79)

395 325 204
(0.89) (0.70) (0.63)

402 339 238
(0.95) (0.95) (0.80)

290 227 183
(0.96) (0.80) (0.71)

272 220 170
(0.77) (0.75) (0.74)

314 221 150
(0.98) (0.88) (0.77)

3.18 265 237
(0.65) (0.75) (0.74)

262 216 159
(0.66) (0.71) (0.64)

WARM SEASON
12-24 24-36 36-48
hours hours hours

260 194 134
0.77) (0.80) (0.77)

193 168 116
0.77) (0.71) (0.74)

251 203 139
(0.92) (0.93) (0.80)

163 123 085
(0.79) (0.86) (0.83)

164 131 114
0.97) (0.92) (0.78)

1718 136 096
(0.94) (0.86) (0.86)

180 167 114
(0.92) (0.74) (0.95)

303 236 185
0.77) (0.77) (0.79)

Figure 2. Calibration curves for the official forecast at Portland (cool season, 12-24 hour lead
time). The solid line is the calibration curve from the equal-variances model, and
the dashed line is the calibration curve from the unequal-variances model. For
comparison, the direct frequency calibration data (represented by x's) are included.
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COMBINING PROBABILITIES
The Multivari -

The multivariate log-odds model is a straightforward generalization of the univariate
log-odds model discussed above. Let p; denote information source i's probability of rain, g;

the corresponding log odds, and ¢ = (qy, . . . , )’ the vector of log odds from k experts,
where a prime indicates transposition. The likelihood functions L(g|rain) and L(g|no rain) are
modeled with normal distributions having mean vectors M; and M) and covariance matrices

Zl and ZO, respectively. Now the multivariate counterparts of (2) and (3) are
@) q* = {log(Zyl / £ - 4,1 - Ty g + 24 1M, - 257 1M

MM+ MpZ Mg 32+ logly /(1)
and

®) g =q=1 My - M) - M + M= M - M)/ 2+ Togly (1),

These models assume unequal and equal (Z; = Z) = X) covariance matrices, respectively.
For brevity, we will refer to the models as having unequal or equal variances.

TheData

The data set is as described above, as is the separation into subsets for fitting and for
evaluation of the different approaches. For the combination of forecasts through the
multivariate log-odds model, the correlations between the log odds from the official forecasts
and the log odds from the guidance forecasts, conditional on rain and no rain, were estimated
in addition to the means and variances. These estimates are shown in Table 5. Table 6 gives
sample sizes used in estimating the parameters of both likelihood functions for each
combination of station, season, and lead time

Combinin, babilities; Empiri esul

In the analysis of combined forecasts, we considered the following combination
techniques:

1) Simple averages of probabilities and simple averages of log odds (subsequently
transformed back into probabilities).

2) Simple averages of calibrated probabilities and simple averages of calibrated log
odds.

3) The combined forecast using the multivariate normal log-odds model with equal
variances.

4) The combined forecast using the multivariate normal log-odds model with
unequal variances.

Again, we computed the average quadratic scores (MSEs) for each combining technique for
the six season/lead time combinations. These MSEs are presented in Table 7, and the average
percentage improvements for the different techniques over the official forecast and over
climatology are shown in Table 8.

The simple averages of the raw, uncalibrated probabilities and log odds performed well
relative to the other techniques. The average of log odds consistently performed slightly better
than the average of probabilities, with average percentage improvement over the official
forecast performance ranging from 1.42% to 4.14%, depending on the season and lead time.
Overall, the MSE for the average of log odds was 2.79% lower than that of the official
forecast.
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Table 5. Estimated correlations for the multivariate distributions of {og odds conditional on
rain and no rain. The upper (lower) figure gives the estimated correlation of the
official and guidance log odds conditional on rain (ne rain),

COOL SEASON WARM SEASON
12-24 24-36 36-48 12-24 24-36 36-48
hours hours hours hours hours hours
Albany 0.75 0.70 0.70 0.65 0.66 0.69
0.60 0.62 0.59 0.68 0.68 0.64
Atlanta 0.66 0.72 0.69 0.68 0.69 0.64
0.69 0.70 0.65 0.68 0.72 0.69
Boston 0.76 0.77 0.74 0.72 0.66 0.67
0.65 0.68 0.61 0.70 0.66 0.65
Dallas 0.64 0.57 0.57 0.54 0.54 0.45
0.65 0.60 0.55 0.53 0.55 0.47
Denver 0.48 0.62 0.59 0.70 0.61 0.61
0.69 0.62 0.59 0.61 0.62 0.56
Des Moines 0.69 0.75 0.70 0.70 0.77 0.72
0.66 0.63 0.62 0.71 0.72 0.69
Phoenix 0.62 0.64 0.68 0.52 0.40 0.23
0.73 0.69 0.66 0.58 0.55 0.48
Portland 0.61 0.64 0.63 0.68 0.74 0.69
0.78 0.78 0.75 0.72 0.67 0.61

Table 6. Sample sizes used to estimate the parameters of the normal distributions conditional
on rain and no rain. The upper (lower) figure gives the number of occurrences
when rain (no rain) occurred.

COOL SEASON WARM SEASON
12-24 24-36 36-48 12-24 24-36 36-48
hours hours hours hours hours hours
Albany 458 465 468 498 497 494
1487 1480 1477 1556 1557 1560
Atlanta 416 422 416 423 425 424
1714 1708 1714 1809 1807 1808
Boston 487 491 508 471 469 456
1639 1635 1618 1698 1700 1713
Dallas 266 271 268 303 293 294
1831 1826 1829 1893 1903 1902
Denver 263 263 266 383 372 370
1885 1885 1882 1879 1890 1892
Des Moines 386 391 397 514 507 505
1773 1768 1762 1733 1740 1742
Phoenix 179 178 177 81 80 74
1915 1916 1917 2074 2075 2081
Portland 865 868 871 471 465 463
1296 1293 1290 1781 1787 1789

105



Table 7. Average quadratic scores (MSEs) for the combined forecasts.

Average Average Combined Combined
Average Calibrated Average Calibrated Variances Variances Sample
Forecast type:  Prob. Prob. Log Odds Log Odds Equal Unequal Size
COOL SEASON
12-24 hours

Albany 0.0934 0.0882 0.0934 0.0884 0.0939 0.0900 894
Atlanta 0.0737 0.0735 0.0729 0.0727 0.0780 0.0736 1058
Boston 0.0716 0.0681 0.0710 0.0676 0.0780 0.0681 911
Dallas  0.0607 0.0612 0.0606 0.0610 0.0616 0.0643 1036
Denver 0.0554 0.0540 0.0554 0.0538 0.0584 0.0551 1061
Des Moines  0.0760 0.0759 0.0754 0.0754 0.0773 0.0769 1030
Phoenix  0.0354 0.0323 0.0353 0.0321 0.0341 0.0314 1002
Portland 0.1177 0.1423 0.1171 0.1208 0.1346 0.1165 1036

24-36 hours
Albany 0.1079 0.1048 0.1067 0.1042 0.1180 0.1068 894
Atlanta 0.0933 0.0928 0.0933 0.0929 0.0953 0.0968 1058
Boston 0.0882 0.0870 0.0870 0.0861 0.0939 0.0873 911
Dallas 0.0713 0.0725 0.0719 0.0724 0.0732 0.0770 1036
Denver 0.0646 0.0642 0.0638 0.0632 0.0651 0.0658 1061
Des Moines 0.0851 0.0868 0.0846 0.0862 0.0882 0.0852 1030
Phoenix 0.0422 0.0411 0.0421 0.0410 0.0414 0.0408 1002
Portland 0.1482 0.1499 0.1483 0.1501 0.1621 0.1486 1036

36-48 hours
Albany 0.1170 0.1145 0.1166 0.1171 0.1142 0.1184 894
Atlanta 0.0975 0.0981 0.0968 0.1023 0.0987 0.1039 1058
Boston 0.1004 0.1028 0.1001 0.1078 0.1040 0.1074 911
Dallas 0.0785 0.0809 0.0781 0.0816 0.0790 0.0800 1036
Denver 0.0771 0.0771 0.0775 0.0803 0.0783 0.0778 1061
Des Moines 0.0983 0.1011 0.0982 0.1018 0.0999 0.1023 1030
Phoenix 0.0476 0.0472 0.0475 0.0497 0.0475 0.0476 1002
Portland 0.1611 0.1645 0.1610 0.1647 0.1734 0.1609 1036

WARM SEASON
12-24 hours

Albany 0.1062 0.1083 0.1055 0.1073 0.1113 0.1074 794
Atlanta 0.0980 0.1029 0.0969 0.1019 0.1027 0.1023 1156
Boston 0.1070 0.1091 0.1061 0.1084 0.1126 0.1081 927
Dallas 0.0762 0.0810 0.0757 0.0807 0.0783 0.0810 1171
Denver 0.0933 0.0999 0.0925 0.0991 0.0974 0.0981 1282
Des Moines 0.1178 0.1228 0.1182 0.1225 0.1259 0.1212 1205
Phoenix 0.0358 0.0351 0.0355 0.0350 0.0347 0.0359 1320
Portland 0.0930 0.0936 0.0927 0.0932 0.1004 0.0908 1335

24-36 hours
Albany 0.1232 0.1202 0.1229 0.1199 0.1236 0.1202 794
Atlanta 0.1057 0.1062 0.1053 0.1058 0.1073 0.1151 1156
Boston 0.1192 0.1168 0.1187 0.1163 0.1203 0.1198 927

Dallas  0.0878 0.0889 0.0977 0.0883 0.0887 0.0921 1171
Denver 0.1039 0.1071 0.1038 0.1070 0.1054 0.1124 1282
Des Moines  0.1251 0.1263 0.1250 0.1261 0.1279 0.1277 1205
Phoenix  0.0345 0.0346 0.0341 0.0341, 0.0341 0.0379 1320
Portland 0.1088 0.1097 0.1084 0.1096 0.1159 0.1080 1335

36-48 hours
Albany 0.1352 0.1320 0.1353 0.1321 0.1330 0.1356 794
Atlanta 0.1102 0.1143 0.1097 0.1139 0.1136 0.1249 1156
Boston 0.1230 0.1228 0.1230 0.1228 0.1234 0.1327 927
Dallas 0.0885 0.0899 0.0885 0.0894 0.0896 0.0919 1171
Denver 0.1091 0.1134 0.1091 0.1135 0.1109 0.1158 1282
Des Moines 0.1269 0.1298 0.1269 0.1297 0.1294 0.1302 1205
Phoenix 0.0367 0.0364 0.0362 0.0359 0.0358 0.0398 1320
Portland 0.1139 0.1142 0.1141 0.1152 0.1194 0.1162 1335
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Table 8. Average percentage improvements in MSE for the combined forecasts. The upper
(lower) figure in each cell gives improvement relative to the official forecast

(climatology).
Average Average Combined Combined

Average Calibrated Average Calibrated Variances Variances

Forecast type:  Prob. Prob. Log Odds Log Odds Equal Unequal

COOL SEASON

12-24 hours 3.70 5.87 4.14 6.42 -0.36 5.55
48.08 49.25 48.31 49.52 46.03 48.95

24-36 hours 2.79 3.22 3.22 3.68 -1.15 1.80
36.66 36.90 36.92 37.20 34.16 35.90

36-48 hours 1.71 0.74 1.95 0.94 0.07 -0.91
28.85 28.14 29.01 28.28 27.72 27.03

WARM SEASON

12-24 hours 2.34 -0.71 2.93 -0.13 -1.79 0.08
32.41 30.33 32.82 30.72 29.78 30.78

24-36 hours 2.45 2.16 1.42 2.60 0.88 -1.35
22.75 22.47 21.88 22.85 21.59 19.50

36-48 hours 2.91 1.87 3.07 2.04 1.81 -2.52
19.53 18.70 19.67 18.87 18.70 15.07

Overall

Average 2.65 2.19 2.79 2.59 -0.09 0.44

Improvement 31.38 30.96 31.44 31.24 29.66 29.54

A somewhat more sophisticated approach to combining the probabilities involves first
calibrating them separately and then averaging. We first calibrated both official and guidance
log odds using the fitted calibration functions from the unequal-variances model given by
(2). Then we calculated the average of the log odds and the average of the probabilities.
From Tables 7 and 8, these combinations performed slightly worse than the averages of the
uncalibrated forecasts. The average of calibrated log odds was the better performer of the
two, with average percentage improvement over the official forecasts ranging from -0.13% to
6.42% and an overall average improvement of 2.59%

Finally, we combined the official and guidance forecasts using the multivariate log-odds
model. As with calibration of the individual forecasts, we used the model with and without
the assumption of equal variances. The results in Tables 7 and 8 indicate that the

unequal-variances model was the better of the two models, with overall performance about the
same as that of the official forecasts.

The explanation for the difference in performance between the two models is similar to
that given above for the calibration models. We have already argued that the variances do not
appear to be equal, and those arguments apply here as well. Examination of the estimated

correlations in Table 5 reveals no discernable patterns due to station, season, lead time, or the
occurrence of rain.

The equal-variances model results in a linear combination of the forecast log odds. On the
other hand, the unequal-variances model includes quadratic terms, resulting in more flexibility
in the shape of the combining function. As an example, the estimated combining functions for
Portland in the cool season and with a 12-24 hour lead time are shown in Figure 3. The
contours for the equal-variances model demonstrate a two-dimensional version of the curve
seen in the case of the equal-variances calibration model (Figure 2). For the
unequal-variances model, the slope of the combining function is quite steep for large values of
the guidance forecast. In fact, suppose the guidance forecast is large and the official forecast
takes a value around 0.5. In this region, an increase in the guidance probability could lead to
a substantial decrease in the combined probability. While this behavior appears to be
counterintuitive, it occurs primarily in areas of the grid where observations are unlikely; most
often the official and guidance forecasts are not too dissimilar. Indeed, the behavior of the
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unequal-variances model near the 45° line appears to be quite reasonable, considerably more
so than the behavior of the equal-variances combining function in this area.

To summarize, the simple average of the uncalibrated log odds performed the best of the
combining techniques, followed by the average of uncalibrated probabilities. Calibrating the
log odds or probabilities and then averaging performed slightly worse. Finally, using the full
multivariate log-odds model gave the poorest results of the combining techniques, roughly
equivalent to the official forecasts.

DISCUSSION

In our analysis of individual probability of precipitation forecasts, the official forecasts
were better than the guidance forecasts. Moreover, calibration of either type of forecast via a
log-odds model failed to yield performance improvements. The model with unequal variances
was preferable to that with equal variances, but the raw forecasts were still just as good or
better. This contrasts with Clemen and Murphy (1986b), who found that direct frequency
calibration, as opposed to the modeling approach, led to very slight performance
improvements (roughly on the order of 1%).

The results from the analysis of the combined forecasts indicated that modeling failed to
improve forecast performance. In this case, simple averages (no modeling) performed best.
Averaging the calibrated forecasts represents a moderate amount of modeling, and this
approach performed slightly worse than no modeling. Finally, the full multivariate log-odds
model gave the poorest results. In contrast, Clemen and Murphy (1986b) found that a simple
combining method, averaging not the raw forecasts or the model-calibrated forecasts, but
instead the frequency-calibrated forecasts, performed slightly better than any other combining
technique (with the average of raw forecasts being next best).

What went wrong with the normal model? It is tempting to suggest that the multivariate
normal model for log odds does not provide an adequate fit to the data, and this is probably a

Figure 3. Combined PoP forecasts for Portland (cool season, 12-24 hour lead time). The
contours show the combined PoP forecast given official and guidance probabilities.
The contour interval is 0.10, with the 0.50 contour marked.
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relevant consideration. Figure 4 shows the actual and modeled distributions of official
forecast probabilities given rain and no rain for Portland in the cool season with a 12-24 hour
lead time. Note that the actual empirical distributions are skewed, but the normal log-odds
model yields distributions that are even more skewed.

Despite the apparent non-normality of the empirical distributions in this case, however,
the normal log-odds calibration technique with unequal variances resulted in calibrated
probabilities close for the most part to the frequency-calibrated probabilities (see Figure 2).
Nevertheless, a different family of distributions might yield more promising results.

Another possible factor contributing to the relatively poor performance of the models is
that weather forecasters are already well calibrated (Murphy, 1985). Thus, any attempt to
improve on their performance via calibration could be expected to yield small improvements at
best. In a similar vein, if the official forecasts were able to incorporate fully the information
contained in the guidance forecasts, then combinations of the two forecasts should not be
expected to improve on the official forecasts. Clemen and Murphy (1986a) found that official
forecasts incorporated most of the information contained in the guidance forecasts; hence,
combining techniques might result in only slight performance improvements (the averaging

techniques), no improvement (the multivariate log-odds model), or possibly performance
deterioration.

Our finding that simple forecasting methods do better empirically than more complex
methods is one that has been reported elsewhere and in other contexts. For example,
Armstrong (1984) surveyed empirical results regarding the performance of various forecasting
models and concluded that simpler methods tend to do better. Results by Makridakis and
Winkler (1983), Clemen and Winkler (1986), and others indicate that simply averaging
forecasts is a robust combination technique; averaging seems to perform well compared to
more complex approaches in a large variety of forecasting situations.

In the weather forecasting situation, a more detailed investigation, possibly with models
other than the normal log-odds model, might provide more insight into the calibration and
combination of probabilities. The question of whether our results with precipitation
probabilities would generalize to other situations, possibly with forecasts that are less
well-calibrated and less similar, is difficult to answer. Unfortunately, large sets of probability
forecasts are not readily available for analysis. Perhaps, in the spirit of de Finetti, the use of
personal probabilities to quantify beliefs regarding observable events and variables will
become more widespread and we will eventually be able to learn more about the relative merits
of modeling vis-a-vis non-modeling approaches under various circumstances.

Figure 4. Empirical (solid line) and modeled (dashed line) relative frequency distributions for
official PoP forecasts, conditional on rain and no rain, at Portland (cool season,
12-24 hour lead time).
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SUMMARY

A Bayesian test of the simple null hypothesis H_:8=8_ versus the
composite alternative H :0#90 is performed using finitéiy aéﬁitive prior
distributions in order éo investigate the so-called Lindley's paradox. In
particular two priors for 8 under H, are considered. The first represents
a coherently non-informative distribution which is shown to correctly
yield the "paradox" because of the overall induced distribution of 8. The
second, through the use of adherent masses to 90, does instead avoid
Lindley's paradox.

1. INTRODUCTION

1.1 Let Xl’ X,...,X be, given 8 ¢ R , independently and identically
distr%buted (i.i.d.) normal random variables with mean 6 and known varian-
ce 0°. We consider a Bayesian test of the simple null hypothesis H :9-90
versus the composite alternative H :9#90. Henceforth we shall "take,
without loss of generality, 6.=0. fb avoid a trivial solution it is
necessary to assign a positive mass, € say, to 6=0. Furthermore it is
common practice todistribute the remaining mass (l1- €) on an intervalIeR
according to a continuous cumulative distribution function (cdf) G, see
DeGroot (1970, pp. 238-239). Letting X= X x,/n, the result of this
Bayesian analysis is typically summarized by the posterior odds Q(Ho|§)=
=P(8=0|%) /P(8#0| %) which can also be usefully written as ¢ L, /((1-"€)L,)

where € /(1- €) are the prior odds and LO/L1 is the so called likelihood

0 is the likelihood of HO and L1 is the overall likelihood

®
f nl/z/a' ¢(n1/2(§-9)/o )dG(8)
-0

ratio, where L
of Hl’ i.e.

with ¢ (x) denoting the density of the standard normal evaluated at x.

To decide in favour of either hypothesis one needs a loss function.

If a>0 is the loss of rejecting H 6 when Ho is true and b>0 that of

accepting H. when H_ is false, the corresponding loss function will be
denoted by Zab’ and a Bayesian test will reject Ho if Q(H0|x)<b/a. (When

* Research supported by Ministero Pubblica Istruzione (60% grants) and
Consiglio Nazionale delle Ricerche.



a=b=1 we have a "0-1 loss function" which implies rejection of H. when
the posterior odds are less thgg one). In a sampling theory context Hg

will be rejected if |x| 2z, o/n® where z, 1s the sultable quantile &

the standard normal corresponding to significance level «a .

Suppose now,that we observe a value of X just significant at level a,
i.e. x=k,o/n* where k, is either z, or -z, , then Lindley (1957), see
also Jeffreys (1948), showed thatlfor n — oo a Bayesian test would firmly
accept H_ , since P(G=0|x—ka,a/n ) tends to one, and this occurs for
any a and any € . This is referred to as Lindley's paradox. Actually
Lindley's paradox arises whenever the prior distribution of 6 under H, is
fairly flat relative to the likelihood independently of the value taken
on by n, see Shafer (1982) and Hill (1982). Nevertheless when n is
sufficiently large this condition is typically satisfied since in this
case only a small set of parameter values is strongly suggested by the
data.

1.2 As it is known no paradox appears when the null hypothesis is
modified into H,:-d<6<d for some positive small d. Indeed such a
hypothesis seems t%e most natural in many applications, where the real
issue is not whether 6 is actually zero but, rather, whether it is very
small, This implies that values which are negligibly different from zero
are conceptually indistinguishable from it. Nevertheless there seems to
be instances where the null hypothesis must be simple since the specific
value zero of @ arises naturally and "is fundamentally different from any
value 6#0, however near to zero it might be", see Lindley (1957, p. 189).
Examples of this situation may be found in parapsychology and genetics
(Lindley, 1957).

This paper will examine the problem of testing H0:9=0 versus HI:O#O from

a Bayesian viewpoint using coherent finitely-additive prior distributions
which will be shown to be particularly suitable to handle such a type of
problem. Furthermore the analysis will be generally performed under the
assumption that the observable random variables Xl,...X are, given 6,
i.i.d. according to the exponential family.

Basically, we first discuss the purported non-informativity of a
traditional prior on 6, next we suggest a coherent prior which seems
especially relevant in this case and which does not necessarily lead to
the paradox.

More specifically section 2 reviews basic aspects of finitely
additive distributions; section 3 discusses the use of an "improper"
prior under the alternative hypothesis and reveals its inadequacy for
testing purposes, section 4 suggests a suitable coherent prior, derives
the corresponding posterior probability of H_. (which does not yield
Lindley's paradox) and finally illustrates in detail the special case in
which the statistical model is assumed to be normal.

2, FINITELY ADDITIVE DISTRIBUTIONS ON THE PARAMETER SPACE

Two basic aspects of de Finetti's (1974) approach to probability
theory are represented by a betting scheme and a coherence principle,
which only requires finite-additivity, so that the usual assumption
of o -additivity, though acceptable, is not necessary.

A typical feature of finitely-additive distributions is that they may
present so-called adherent masses. In order to clarify their nature,

let X be a random variable and let F(x)=P(¥<x) be its cdf. It is worth
noticing at this stage that F need not be right-continuous, contrary to

what happens in the traditional o -additive framework, Similarly

Fy(x)=P(X<x) need not be left-continuous. Thus in order to characterize the
probability distribution of X both F and F; are necessary.
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If PG )= lim_ F(t), and F(x)= lin _ F(t)
t—x t—x

then one can show that for all xeR: F(x-)iFZ(x)ﬁF(x.'-). From this set of
inequalites it is possible to define the concept of adherent mass.

More precisely if F7 (x)-F(x )=p, (x)>0, then p, (x) is said to be the
prokability adherent to the left %f x (briefly: léft-adherent to x); if
F(x )—F(x)=pr(x)>0, then pr(x) is said to be the probability right-adhe-

rent to x; finally if F(x)—FZ(x)=pc(x)>0, then pc(x) is said to be the
probability concentrated on x. Futher if F(x)=p0 for all xixo (say), then
F presents (right) adherent mass Py to = 3 if P(X>x)=1-F(x)=p1

for all x>x, (say), then F presents (left) adherent mass p, to .

In order to perform a Bayesian test of hypothesis we shall need to assign
a prior distribution on the parameter space ® C R . Since we shall not
restrict our attention to o -additive priors, we briefly describe below
a way to assign coherent prior distributions on © . The basic idea of
this method, originally proposed by de Finetti (1974), is to employ a
gradual procedure consisting in assigning a prior to proper subsets Ok

of ® , and then obtaining the prior on ©® by passing to the limit. This
procedure is justified since coherence is always preserved when passing
to the limit. If the limit does not exist, the distribution of 6 will
have to be assigned directly making sure that it is consistent with
previous assignments on @k. ’
Following the approach described in Regazzini and Cifarelli (1986), let
N be the Borel class of ©® and let {©. }k=1,2,... be a sequence
of elements of 35@ converging from below to @, i.e. © 10 , Further let
f be a non-negative ﬂse—measurable function such that, for a given
o -finite measure 7 on (O, 33@),

0<L=[  f£(6)d7 ()< for each k>,
@k -

and with the understamnding that

x * -1 ¢ £(0)d T (8)
P, (00 )=F @k(e )=(1,)"" *

0,0 (-o,6"] 2.1

* *
represents, for each real 6 , the probability of (6<8 ) conditional on
the hypothesis that 0 ¢ @k. It can be seen that, for each fixed @k, F@
k
is a distribution function that can generate on (O ,$g) a probability
measure. This probability measure will be taken as the distribution on

conditional on (8€ ®,). If now 1lim F_ (8) exists, then we shall take®

this limit as the distribution function of 6.

Notice that the function f which appears in (2.1) is not in general the
density of O, although it is the density of 6 conditional on (8€0. ).

In the sequel we shall have © =(A,B) -<A<B{o and shall take
@k=(ak,bk) with ak——A and bk—-B for k—o, For simplicity we shall

omit the subscript k and consider intervals of type (a,b) with a—A and
b—B. A device which will prove useful consists in linking a and b by
setting, say, b=b(a) for a suitable function b. In this case we shall
write ©,= 0 =(a,b(a)) with a—A and b(a)—B for a—A. For an
application to © =(-o, o) which gives rise to a finitely-additive
analog of the so-called "uniform prior over the real line" see Consonni
and Veronese t§1986).

Let now XL ¢ R be the sample space and { P,:0 €O} a family of
o -additive probability distributions on the clgss of Borel sets of I,
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35:&, dominated by a o ~-finite measure u defined on (m,fﬁm ). The
denisity of P, with respect to (w.r.t.) u will be denoted by p,.

The distribution function of 6 given x e X conditional on the
hypothesis (0 e @k) is as usual represented by

[ co,0%] 6, £@pg(r® .
s 8 €@and xe L (2.2)

*
P, (68 | x)=
0, |

/ o, (@)@

As for the prior on O, the posterior distribution function of 8, i.e.
conditional on the sure event 8 €® , will be obtained by a passage to the
limit (if it exists) for k — o in (2.2).

3. BAYESIAN TEST USING AN "IMPROPER" PRIOR UNDER THE ALTERNATIVE HYPO-
THESIS

3.1 It is a well-known fact that wusing a diffuse improper prior over
under the alternative hypothesis H, leads to unsatisfactory results. This
fact was discovered, under a normal sampling distribution, by Jeffreys
(1948) who argued that "even if H were true, it would not ordinarily be
the case that 9=00 exactly, and any discrepancy between 0 and 90 would

for large n (...) lead to rejection of HO", see Hill (1982, p. 346).

On the other hand he went on remarking that the choice of a proper
uniform distribution on any finite interval (-K,K), with K sufficiently
large, was also unsatisfactory although for an opposite reason. Indeed,
in this case, any data would lead to acceptance of Ho, see again Hill
(1982, p. 346).
The discrepancy between the conclusions obtained under the two cases
mentioned above is suspicious, for it would seem sensible that, at least
for large K, the uniform over (-K,K) should offer results similar to the
ones which hold under a "uniform" prior over X . The impropriety of the
prior on O under H, is particularly relevant in this case since, when
considering the posterior odds

P(6=0) L
e — . 0

the term L., which should represent the density of x given Hl’ can be
taken to be any positive constant.

This remark was made by DeGroot (1982) who went on arguing that improper
priors "are never appropriate for tests of significance. Under no
circumstances should they be regarded as representing ignorance".

While agreeing on the fact that improper priors are not appropriate, we
wish to remark that, if employed in a suitable context, diffuse priors can
indeed be said to represent ignorance see Veronese and Consonni (1986).
The point that must be made absolutely clear, however, is the distinction
between the distribution of 6 under Hl’ which can represent ignorance,

and that of 6 overall, which, when G|H0 is degenerate, will be

shown to become strongly informative as indeed it ought to be. This
distinction was overlooked also by Shafer (1982, p. 326) who apparently
did not realize that the more non-informative the distribution of 6 under
H  is, the more informative the overall distribution of O becomes: this
is indeed perfectly sensible and not paradoxical. By using only finitely
additive priors, we shall reexamine the whole issue and i) study the
nature of the prior on @ when & under H; is assumed to be "uniform over
R"and ii) see how this prior naturally implies strong acceptance of HO
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contrary to Jeffreys's claims thus providing a reconciliation between the
conclusions under the "uniform" over R -case and the uniform over
(-K,K)=-one.

3.2 As usual let ¢ be the mass concentrated on 6=0, so that it
remains to distribute the remaining mass 1- € over R -{0} .
Clearly the cdf of 9|H0 is 0 for 6*%<0 and 1 for 8*>0. In order to assign

the cdf 9|H1 we shall follow the method described in section 2, so that

on each finite interval (-a,a) we assume a uniform distribution. We thus
have

0 08*%<-a
* * *
P, (6<0 |0£0)= | (9 +a)/2a -a<@ <a
1 0">a
* *
whence, since P_(6<8 | 0=0)=P (6<68" |8=0), we have

P,(6<0")=_(6<6"|0=0) ¢ + P_(6<0”| 640) (1- )=

0 0*<-a
(1- e)(9*+a)/2a -a§9*<0
- € +(1- e)(0*+a)/23 QSQ*<a
1 0" >a

Consequently the prior cdf on 8 is given by

(1- €)/2  8'<0
P(o™)= lim P (6<0") = (3.1)
a—o a+e)/2 80

Notice that (3.1) is a finitely additive cdf which presents a mass
concentrated on 8=0 and equal adherent mass (l-€¢)/2 to = and o .
Having written down explicity the prior of 6 it is immediate to realize
that this prior is highly informative since, while concentrating a mass on
the origin, it assigns probability zero to any finite interval not
including the origin. We thus have a prior distribution which is markedly
different from the traditional non-informative priors employed for
inferential purposes in order to emphasize the role of the observatioms.
Indeed with a prior of type (3.1), all the data can do is to change the
value of the three masses, but obviously the posterior distribution of ©
will still assign probability zero to any finite interval not including
the origin.

If in particular the model is assumed to belong to the exponential

family written in the natural parametrization whose density w.r.t. a
o -finite measure u is expressed by

pe(x)=exp(9x- M(8)) 6eOcR, xeLc R (3.2)

then we can further specify the structure of the posterior distribution
of 8 when the prior is of type (3.1). Because of a well known result, if
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Xl""’xn are, given 0, i.i.d. according to (3.2), then T= ZXi is

sufficient and T has density of type (3.2) (with M(8) replaced by nM(8))
w.r.t. the convolution measure of order n, Mo

First of all consider the posterior cdf of @ conditional on 0 € (-a,a)
and on T=t, and let pe(t) be the sampling distribution of T. Then because
of (2.2)

*
0 0 <-a
of
I Za pg(t)de %
P -a<o <0
2a ep,(t) p,(t)de
I a4 [ Py
P_(6<0[t)= e Za (3.3)
6
2262008 4 [ py(e)a .
1- € -a 0<8 <a
a
2200 4 [ pg(t)ee
1-¢€
1 O*Za

To obtain the posterior distribution of © one must compute the limit for
a— oof (3.3). If I(a)= f fa pe(t)de——C<oo » then one immediately

concludes that the posterior distribution 1is degenerate on 6=0. If
however I(a) diverges for a— o, then it becomes essential to check
whether also the numerator of (3.3) diverges. When this is the case the
limit operation can be easily carried out invoking de 1'Hospital's rule
and using the following results valid whenever Pg is as in (3.2):

Plg| (x)—0 for 8] — (3.4)

for all x € i except when x=c=minJ, or x=d=max )} , ¢ and d finite,
with up{c} and pu{d} positive. In this case we have

Palc) — 1/ ufci for 8— -~ and
Pe(d) — 1/ upid} for 6 — .

For a proof see Veronese and Consonni (1986).

One can thus conclude that the posterior distribution of 6 is always

degenerate on zero except when t=nc or t=nd. (Notice that this case may

arise if and only if X, is discrete and the x, 's are respectively either
i i

all c or all d).

So, going back to our hypothesis test, if the X,('s are continuous, then H

is always accepted whatever the data and the sample size. Similarly H, is

always accepted if the X.,'s are discrete except when all observations

are equal to either of thé (finite) boundary values, In this case indeed

the posterior distribution of @ will generally exhibit, beyond a

concentrated mass on 0, an adherent mass to either - or o . For an

illustration of these points see Consonni and Veronese (1986).

0

4, A FINITELY ADDITIVE PRIOR ON 6 (UNDER THE ALTERNATIVE HYPOTHESIS)
WHICH AVOIDS LINDLEY'S PARADOX

4.1 As we mentioned in the introduction to this paper, Lindley's
paradox arises whenever the prior distribution of O under Hl is fairly
flat relatively to the likelihood.

Suggestions to overcome Lindley's paradox have been proposed, for
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example, by Bernardo (1980) and Shafer (1982). Both however are not
immune from criticism, see Dempster (1980), Jaynes (1980) and Hill
(1982), Lindley (1982). Surely, as already recalled in subsect. 1.2, it
is possible to avoid Lindley's paradox by turning the null simple
hypothesis into one composite. When this is not possible, however, it
means that the value 6=0 has a special status with respect to all other
points. As a consequence one must ensure that numerical proximity be not
mixed up with logical proximity which, because of the very nature of the
problem, is nonsensical.

We can therefore conclude that data generated by values of 6 close to,
but distinct from, zero should not provide evidence in favour of H_ , but
rather be interpreted in favour of H.. In order to achieve this we need to
reconsider the prior distribution of © and, as it will appear, the notion
of adherent probability will play a significant role.

4,2 From the remarks of the previous subsection it follows that the
prior distribution on © must take into special consideration the point
zero and points very close to zero; specifically let c,e be the mass

concentrated on zero, and ClEs Cq€ (ciZO, c1+c2+c3=1) the mass

adherent, respectively, to the left and to the right of zero.
As usual, let H0:6=0 and H1:6¢0. We thus have P(9=0)=c2 € , while the

distribution of 9|H will present adherent mass (c.+c,) e /(l-c,€ ) to
zero and will distribute the remaining mass according to~a continuous cdf
G, Notice that if c, =1 the standard Bayesian setting is recovered.

If ¢, <1, then our ‘set-up amounts to a weakening of Ho because of the
presence of adherent masses to zero which favour H

The prior cdf of O can thus be described as: 1
* *
(1-€)G(8 ) 0 <0
* *
P(6<8 )= ; (1- e)G(0)+(cl+c2)e 6 =0 (4.14)
(1- €)G(8")+ ¢ 8*>0
and
(1- €)6(e™) 07<0
P(O<8)= | (1- €)G(0)+e, e 6"=0 (4.1B)
* %
(1- €)G(8 )+ € e >0

*
Furthermore the conditional cdf of 6 given HO,G (+ |8=0),is degenerate on

zero, while the cdf of 6 given H. is

1
- * *
1€ 6" 8"<0
1-026
* % * 1 *
G (8 |0#0)=P(6<0 |640)= (1- €)6(0)+c € 9 =0
l-c, ¢
2
€ (l1-c,)
—=€ gE") + ——Z %0
l-c, ¢ l-c, e
2 2
To obtain the posterior odds
P(6=0) L0 <, LO
Q(H | x) = T - -
0 P (0#0) L, l-cye L,
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we have to compute L0 and Ll' If the density w.r.t. to a o -finite

measure of the sample X given 0 is pe(x), then

o0
L= | pgt)de” (8]6=0)= p,(x) (4.2)
and -
@ *
L= [ pe0ddc (0] 640) (4.3)
- - o
| ) pet , L ° J pg(x)dG(8)
l-c e 1"‘026 -

Setting the last integral equal to p(x) we thus have

c2e (1-025 )PO(X)
1-c ¢ € (1-c2)p0(x)+(1- €)p(x)

QHy| %)= (4.4)

It can be easily checked that if c2§1/2, then Q(Holx)<1, i.e. Ho is

rejected under a 0-1 loss function. Notice that this result holds for any
model p,, for any sample realization x and for any value of € ,

It follows that a prior for which the proportion ¢, of mass concentrated

on =0 is less than that adherent to the same point (c1+c3) leads always

to posterior odds which are less than unity and so Ho is always rejected
under a 0-1 loss function.

More generally under an Zab loss function (see subsect. 1.1) if
cng/(a+b),Q(H0|x) is always less than b/a, which leads to rejection of
HO' Since data play no role when cng/(a+b) it follows in particular that
Lindley's paradox does not arise, so that given a just significant
observation both a sampling theory statistician and a Bayesian will
reject HO' Actually one does reject Ho independently of the data not only

when czsb/(a+b) but also for greater values of this threshold depending

on the model, the prior and the sample size. For an illustration relative
to the normal case see Consonni and Veronese (1986).

4.3 In this subsection we shall pursue the analysis assuming that a
just significant X has been observed and implicitly accepting that
c2>b/(a+b), so that ¥ is offered a chance to play a role.

Suppose that observations Xl’ X ’Xn are conditionally on 0 i.i.d.

g3eee
according to the natural exponential family (3.2), so that it is meaning-~
ful to speak of a just significant sample statistic, in particular X.

Remembering that Ee(Xi)=M'(9) and Vare(X1)=M"(9), for n large X will be

approximately normally distributed with mean M'(8) and variance M"(8)/n,

we shall now derive the approximate expression for L, and L. and compute
. 0 1

the approximate posterior odds for large n.

Recalling that ¢ (x) is the density of the standard normal evaluated at

x and using a prior like (4.1) we have

1 b
Ly~ ——— ¢ ( —r &M (o>)>
o (0)) % " (0)) %
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and

1 nks nks
Ll = {l-cz)e lp( =-M' (0)))+ (4.5)

L-eye ar )%\ o)
00}
+(1-€) [ N %t;»( s 5 (f-M'(O)))dG(G)
- (M"(8)) (M"(8))

Resorting to arguments similar to those of Jeffreys's and Hill's (1982),
we shall provide an approximation for the integral appearing in (4.5).
Since n is large and M"(8)/n is small for each 6, the integral can be
regarded as a normal distribution for M'(8) centred on X and with
negligible variance. As a consequence M'(8) will be approximately

degenerate on X and so O will be approximately degenerate on M'-l(i)
(notice that since M" (9)-Vare(Xi)>0 for each 8, M' is strictly increasing

and so M' -1 is well defined). Thus, letting g be the density of G the
integral in (4.5) can be seen to become g(M'~1(§)).

We can finally write the approximate expression for the posterior odds

nk nk
c, 6 —— ‘P< (x-M' (0))>

ar )% \or(o)*
Q| ) =
s W ~Lg
(1-c,) w0 (s, oo @)+a-e) e @)
o)\ (o)

If now X is just significant at level a , i.e. X=M'(0)+k, (M"(O)/n)li,
then for n— o, Q(H0|x) tends to ce / € (l-cz) =c2/(1-c2), i.e. P(6=0|%)

tends to c,. We thus see that the only presence of an adherent mass to
zero in e prior 1is sufficient to avoid the paradox which implied
P(8=0 Ii) —1.

Indeed if cng/(a+b) then HO

consistently with the result of subsection 4.2 which held true
independently of the observations. If, however, c,>b/(at+b), then H K is
accepted under the previous loss function but not nécessarily in gene‘%:al,
contrary to Lindley's result.

is rejected under an Zab loss function,

Remarks

i) An appreciation of the sensitivity to n and ¢ of the rejection
region for the normal case may be found in Consonni and Veronese (1986).
In that paper, moreover, assuming a just significant observation at
level o« , the highest value of c, which leads to rejection of H,A is
derived for selected sample sizes, Typically agreement between sampling
and Bayesian theory is easier (i.e. no restriction is imposed on c2)
when o is small (e.g. 0.0l or 0.001) and n is not very large.

ii) As we have seen the value of CZ’ which implicitly gives c1+c3, is

particularly relevant throughout the analysis. As we know c, represents

the proportion of the mass concentrated on, whereas c1+c3 is that of the

mass adherent to, 6=0. By assigning directly the probability that 6=0 and
the probability that 6 is adherent to zero according to the definitions

of sect. 2, one can recover 02 and c1+c3=1-c2.
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On the other hand it is sometimes more natural to start from the mass
€ and then to subdivide it into two components, i.e. the concentrated
and the adherent one., This wusually occurs when 6 is a measurable
quantity, so that its prior distribution can be assigned on the basis of
an empirical distribution function of available data before any further
statistical processing (e.g. hystogram smoothing) has occurred.

Because of several considerations (e.g. provenance, quality, reliability
of data) one is typically led not to give full credit to the distribution
as such, although it remains the only empirical source which can be
usefully exploited. So if prior knowledge does not allow one to modify the
basic structure of the data (e.g. to transfer portions of frequencies
from one datum to another), the only option which is able to incorporate
this natural skepticism on data quality is to lower the amount of
concentrated mass on each single point by transferring a part of it into
adherent mass. These considerations have implications on the prior
distribution on 6 with special reference to the point 8=0, because it is
only there that we have to distinguish carefully between zero and values
which are only approximately zero.

In practice if € is the frequency of 6=0, then c, can be regarded as the
discounting factor which summarizes our opinion”on the quality of the
data.

This type of reasoning can, in our opinion, be usefully applied to the
forensic case discussed in Lindley (1977) and Shafer (1982), since the
role of c, is easily understood and its value can be reasonably supplemen-
ted by an”expert witness.

Finally notice that, under an Za loss function, it will be wusually

b
sensible to assign a value of ¢, higher than b/(a+b), in order to allow
the data to influence our decision. Typically this condition should be
satisfied if enough credence is given to the available data.

Acknowledgments: We wish to thank E. Regazzini for constant advice and
useful discussions.
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1. INTRODUCTION

Roughly speaking risk theory in insurance concerns the survival of
(a branch of) an insurance company over some specified time horizon.* The
key goal variable is usually the ruin probability of the company along that
time horizon. While practical everyday problems involve mid term (e.g. five
or ten years) horizon, theoretical models are mainly concerned with single
period problems, or at the other extreme with (asymptotic) evaluations
over an infinite time horizon. The usually relevant control variables are
the initial reserve fund and the safety loading coefficient placed to obtain
tariff insurance premiums. A third prominent control variable, sometimes
implicitly considered, is the reinsurance strategy of the firm.

In some sense reinsurance turns out to be at least in the short period
the only one really manageable, as is not easy to adequate the reserve fund
and on the other side the market conditions dictate loading charges at least
under more or less perfect competition. Undoubtedly a milestone in the ana-
lysis of the role of proportional reinsurance in controlling ruin probabili-
ty of an insurance company is B. de Finetti's paper (de Finetti, 1940).

The author's treatment concerns both the single period and the infinite
horizon problem. As regards the first point de Finetti's solution is based
on a two stage model, where efficiency and optimality goals are clearly
defined and separatedly pursued, each on its respective stage (see chapter 2).

As we shall see in chapter 3 de Finetti's paper is to be seen as an
early anticipation of H. Markovitz (Markovitz, 1952) well known two stage
mean variance approach to the portfolio selection problem. The relevance
of the theoretical reinsurance model to practical companies behaviour is

* An exhaustive treatment of the really involved subject matter of risk
theory is given e.g. in Buhlmann (1970), Gerber (1979), Seal (1969).
An historical very interesting resume with claryfying comments is offered
by chapter 18 in Borch (1974).
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shortly discussed in para 4. To solve the infinite horizon problem de Fi-
netti exploits old classical results of probability theory going back to
De Moivre and concerning the so called gambler's ruin problem. The key
idea, recalled in chapter 6, is to properly transform the original unfair
sequence (due to loading charges) of random gains of the insurance compa-
ny so as to obtain a fair process, or with modern terminology to derive a
martingale from a submartingale process.

As we shall see later while accomplishing this goal a constant B8
representing the risk level of a portfolio (as well as of single contracts)
is rather naturally derived, such that an evaluation of the asymptotic ruin
probability is exp(-Ggy/B), with G as the initial reserve of the company.
Then de Finetti's risk level turns out to be a simple and meaningful coun-
terpart of the "adjustment coefficient" well known in Lundberg's collec-
tive risk theory.* It is well known that besides ruin probability another
prominent decision criterion to solve economic problems under uncertainty
is the expected utility one.**

Another goal of this paper is to show and discuss elegant and intere-
sting connections between the expected utility approach (especially in case
of exponential utility) and de Finetti's solutions both for the single
period (chapter 5) and for the asymptotic approach (para 7). There is another
interesting connection between the risk level 8 and the risk tolerance B,
characterizing the utility function of the company will be derived and
discussed .

2. DE FINETTI'S TREATMENT OF THE SINGLE PERIOD PROBLEM

Let us shortly recall de Finetti's approach to the solution of the
single period retention problem (in case of proportional reinsurance) of
an insurance company. The company has a portfolio with n insured risks,
whose respective claims are described by random variables X , h=1,.....,n.
Suppose that insurance and proportional reinsurance markets follow working
rules (conveniently simplifying reality) such that the expected value and
the mean square deviation of the single risk retained are homogeneous
linear functions of the retained quotas q, ***, so that formally denoting

by Gh(qh) the above random profit and by: m = E(Gh (1)) and o =0 (Gh(1)l
it 1 : E = e = .
it is (Gh(qh)) qm 3 U(Gh(qh)) 9 %

* See the previously referred resume in Borch (1974)

%% Of course it is impossible to give account of the applications of utility
theory to insurance problems. Several chapter e.g. in Buhlmann (1970) and
Gerber(1979)are devoted to the point, while almost the entire treatment in
Borch (1974) is based on modern utility theory.

**%Alternatively a non homogeneous linear function such that E(G, (q )) =
=q W + T with W, as the reinsurer expected gain in case of complete
reinsurance and Ty as the difference (possibly negative) -u o,
could be used. Results later derived are not altered, except for tBe
obvious formal variatioms.
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Writing G(q) = Gh (q,)), if the usual simple no correlation assumption
among the Xh is accepted we have:

2 1/2
EC@ - Tam s SC@) - (Zq, V) 2,
h

An efficient proportional retention strategy is defined by de Finetti
as one that minimizes the ruin probability of the company for any given
value of the expected profit retained. Now the single period ruin probability
is, leaving aside financial factors and keeping account only of technical
ones, simply the probability that the losses (negative profits) are greater
than the initial reserve Gy of the company or formally that: G(e)L - G
The above probability is that of the event: (G -E(G))/ s@G) ¢« - (© +E(G))?d(G)

that the standardized overall gain is lesser than the opposite of the so
called stability index of the company.

As stressed by de Finetti if the distribution of the overall profit is
of the '"same type" for any choice of gq the above probability is for any
given value of E(G) an increasing function of &'(G). After that an effi-
cient retention strategy is found as the one that minimizes the variance of
the company's single period profit for any given value of the expected profit
retained, and the whole set of efficient strategies is obtained by solving
the following set of constrained minimization problems:

2
min X 9, v,

0ggg 1 (1

b =E
sul Zthmh

de Finetti offers a (rather involved) proof that the optimal solution
is given by: _
. {1(E)(mh/Vh) if <1

9% 1 otherwise

(2)
with 1 (E) a, common for any h, piecewise linearly increasing function of E.

Today, the same results are obtained as a simple exercise on Kuhn Tucker
conditions in quadratic programming problems. Once the efficient set has been
found, there is still to select a single point among the efficient ones. To
this purpose de Finetti suggests to fix the maximum value of ruin probability
judged as acceptable by the company and choose the efficient solution corres-
ponding to that level. He offers an exhaustive discussion of the connections
between ruin probability and the behaviour of the 1 function. The point is
bypassed here.

3. CONNECTIONS AMONG DE FINETTI'S SOLUTION AND MARKOVITZ MEAN VARIANCE APPROACH

We claim that the approach so far quickly resumed is with some minor
differences the same applied, more than a dozen years later, by H. Markovitz
to solve the portfolio selection problem, now universally known as mean va-
riance criterion. Indeed even if forced by the need to keep as the key goal
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variable the ruin probability, de Finetti operationally follows a two
stage approach, where in the first stage a mean variance (formally
a mean-ruin probability) efficient set is defined on purely objective
basis, while the second stage is devoted to select on the basis of a
subjective tradeoff between the two parameters involved the optimal
subjective solution as a specific point of the efficient set.

Going back now to the solution (2) , it is interesting to look
at what happens if we consider the restriction of the efficient set
to its interior, that is where q belongs to the open (0,1) hyper-
cube. It is immediate to check that solutions belonging to this
restriction are characterized by constant ratios among the optimal
retention quotas (relative retentions) , independent from E, and
given by:

/4] = @ V) /@) ¥ i,j i4] (3)
In turn this is a partial (provided its validity is restricted
as above punctualized) reinsurance counterpart of the existence of an
unique optimal risky portfolio in financial theory. Moreover something
partially corresponding to the well known separation theorem is
reached. * The optimal retention quotas are chosen according to (3)
and then absolute retention limits are chosen. The first choice does
not involve (is separated from) any preference evaluation about the
risk return tradeoff. In our opinion these facts open the way to gain
some new insights about the working of markets for proportional rein-
surance and their links (allready stressed elsewhere) with the C.A.P.M.
model of equilibria on asset markets. We do not enter here into
details concerning this point. The interested reader is referred to
Pressacco (1986).

4, THEORY AND PRACTICE IN PROPORTIONAL REINSURANCE

It is convenient to introduce here another simple assumption, that
direct collected premiums are computed on the basis of the mean value prin-

ciple with a common loading coefficient , so that m = )\E(Xh), and

moreover that the random claims of the portfolio are distributionally
obtained by homogeneous linear transforms of a base variable or formally

h h h the maximum pos-

sible loss for contract h, and keeping account that m = A thE(Xj)for any h,

that X d tﬁ&, t. >1, h=2,....., n. Denoting by S

expression (3) of the optimal ratios between retention quotas becomes (as

* Fundamental papers concerning mutual fund separation in financial theory
are those of Cass and Stiglitz (1970) and Ross (1978). Resuming roughly,
financial separability means that the choice of the risky portfolio is
the same for any investor belonging to some family of decision makers.
Thus this choice is independent or separated from the particular prefe-
rence system (parameter of the utility function) characterizing an in-
vestor within the family. Any efficient portfolio is then obtained as a
proper combination of the sure prospect and the risky portfolio.
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easily checked) :
at/dl = t./t S /8. (4)
93795 j i

But for an efflcient restricted solution this means nothing but
the constance for any h of the product Sh * at some level RY,
In reinsurance practice R* is known as retention level and the above
reasoning makes clear under what conditions a practical proportional rein-
surance strategy based on the choice of a single retention level enyois
efficiency properties in a mean variance environment.

5. CONNECTIONS BETWEEN EXPECTED UTILITY APPROACH AN DE FINETTI SOLUTIONS
FOR THE SINGLE PERIOD PROBLEM

0f course the expected utility criterion could be generally applied
without restrictions as.a different tool to solve the optimal retention
problem. Alternatively, if we want it to be coherent witha mean variance
approach, so that to be specifically useful in the second stage of the pro-
cedure determining indirectly a risk return tradeoff schedule, some restric-
tions ought to be placed either on utility functions or (and) on claims di-
stributions. Concerning this point it is well known that coherence is surely
granted either by assuming that utility functions are quadratic or that
claims distribution is multivariate normal.* In the last case simple formu-
las are derived provided moreover that the utility function of the company's
gain belongs to the exponential family.

For a detailed treatment of the quadratic case the reader is referred
to e.g. Daboni (1986), we shall treat here in some detail the combined normal
exponential case, that is with utility function: u(G) = B(1-exp(-G/B)), B>0,
where as well known B is the constant value of the risk tolerance function,
that is the risk tolerance parameter of the insurance company. Being:

E(u(G) ) = B(1-E(exp(-( X Gh(qh)/B))) (5)

the constrained maximization for any fixed B is found minimizing the
expectation:

E(exp - ( & Gh(qh)/B))=E( ™ exP-(Gh(qh)/B)) (6)

Owing to the no correlation assumption, this gives rise to a set of n
univariate constrained problems:

min v (-1/B)
0gq, <1 ERCR) (7

with \*' (.) as the moment generating function of the retained random gain
on the h—th contract. Keeping account of the normality of Gh** and after

* See Tobin (1958) and Markovitz (1952)

%% Alternatively relaxing the normality assumption, and keeping expansion
of the cumulant function of G, (g, ) truncated at the third degree, we
obtain the following approximation holding for the general case:

-1
Bm (1- /2V ) V if < 1
+ _
qh i mh1J‘ ige

with Jﬁ as the asymmetry coeff1c1ent og G (qh)
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some simple computation the solution is given by:

\') if <
q; = B mh/ h t 1 (8)
1 otherwise

It is interesting to note that a two side reading is offered by this
solution. For a given value of B it provides an answer to the question of
selecting the optimal solution (absolute retention) in the efficient set,
while leaving B undermined it gives immediately a compact expression for
the whole efficient set that looks like the one obtained by de Finetti
(compare with (2) ) . Of course this way relative retentions are immedia-
tely derived.

6. DE FINETTI'S TREATMENT OF THE INFINITE HORIZON PROBLEM

As previously said de Finetti's idea is to make recourse to old results
of probability theory, concerning the gambler's ruin problem. Indeed de
Finetti suggests to look at an insurance company as a gambler playing an
infinite sequence G _, t=1,..... of independent unfair (due to safety loading
charges) bets, so tﬁat the story of its fortune is described by a submartin-
gale process. To manage computationally the problem de Finetti needs fair
transforms Yt of Gt and looks for that purpose to Yt = exp (- aLth) -1.

Given Gt’ there is (under not binding restrictions) an unique value cL:(#O)

providing the desired fairness for Y ; it satisfies ol ¥+ E(G )<0. Moreover
a sum of unfair independent random numbers with a common "fairness coeffi-
cient" o , has in turn exactly o, as its "fairness coefficient". After
that an evaluation of the asymptotic ruin probability of an insurance
company, seen as playing a sequence of games with the same fairness coeffi-

cient aLt = &t for any t, is given by:
- d” d+ >
p+ - exp( GO) 0 )
1 otherwise

Then the surprisingly simple end of the story is that to reach a given
goal p+ concerning the asymptotic ruin probability, the company may apply
to any future contract a retention strategy such that the retained random
gain Gh(qh) has a fairness coefficient:

oL = - (1/6) 1 p" . (10)

+ +
In his paper de Finetti prefers to work with another index GB =1/d .
The reason is simple: given G_, the ruin probability is an increasing norma-
lized function of GB + , going from 0 to 1 as goes from 0 to «,
so that G5 deserves the name of "livello di rischiosita" (hence risk
level) of a random variable or of a portfolio whose contracts all have the
same risk level. As said in the introduction, + appears a meaningful
counterpart of the "adjustment coefficient" well known in scandinavian
collective risk theory approach to ruin probability evaluations.

Finally and before passing to next para 7 it is convenient to remark
that under normality of the Gh(qh) the optimal single absolute retention
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quotas, indirectly derived through the request that the retained random
gain have risk level not greater then the one associated to the fairness
coefficient oA* appearing in (10) are given by:

+
~ 2p my/Vy if <1
4% T ) otherwise an

+

7. EXPONENTIAL UTILITY AND ASYMPTOTIC RUIN PROBABILITY

The somewhat astonishing similarity of (8) and (11) reveals another
interesting link between two+key parameters of the reinsurance problem, that
is the final risk level {5 of a group of retained contracts granting
that a given asymptotic ruin probability goal is reached, and the constant
risk tolerance B of that company. Indeed comparison of (8) and (11)
makes clear a one to one correspondence between the B coefficient guiding
company's decision based+on a (myopic) expected utility criterion, and the
goal riskness level of the retained quotas of the single contracts,
and thus finally with the ruin probability goal. Couples of (B, ﬁ ) obtained
on this basis induce exactly the same absolute retention strategy either if
decisions are aimed to utility maximization or to ruin probability control.
That happens because a choice based on exponential utility grants (as revea-
led by (8) , at least under normality and independence assumptions) that
any contract is reduced to a common risk level ( see (11) ), and thus in-
directly but unambiguously determines an asymptotic evaluation of a ruin
probability.

Conversely a goal expressed in ruin p£obability terms, to be traduced
through the derived common risk level /3 » 1s coherent with an exponential
utility approach and determines a unique value of the risk tolerance coeffi-
cient, such that an optimal utility based decision strategy attains the
ruin probability chosen as starting point. It is interesting to remark that
even if generally referred to an infinite horizon problem, the above results
are formally still holding for whatever temporal horizon provided that:

.) the risk tolerance coefficient remains invariant throughout the whole
period considered, and:

..) the number of the contracts on the horizon is high enough, so that the
asymptotic evaluation of the ruin probability is a good proxy of the true
value for a finite number of contracts. In principle then the horizon could
be even a single period one. But be cautious that, this being the case, the
ruin probability obtained is not simply the probability to be insolvent at
the end of the year with all contracts expired, as in classical risk theory;
on the contrary ruin may appear after any number of contracts, irrespective
of the results of the next ones.

Obviously at the time de Finetti was writing his fundamental paper the
modern utility theory was still in mind of J. Von Neumann and O. Morgenstern.
To complete our picture we want to signal that even without spending some
room for any formal or verbal proof, in another paper some years later (see
de Finetti (1952) ), he shows to be well aware of the crucial connections
previously discussed. Indeed after a short discussion of the properties of
the exponential utility and undoubtedly with this idea in mind, he says
explicitly that: "the risk level criterion derived by the ruin probability
criterion induces the same behaviour coming from the expected utility in the
exponential case'.
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INTRODUCTION

The linear simultaneous equation model (SEM) is one of the best known
models in econometrics. It is used in several areas, for instance, in
micro-economic modelling for the description of the operation of a market
for a particular economic commodity and in macro-economic modelling for
the description of the interrelations between a large number of macro-
economic variables. [See, e.g., Hausman (1983) for a recent survey of the
linear SEM.]

A linear simultaneous equation model contains, usually, some exactly
known structural coefficients and some unrestricted structural
coefficients. Suppose that the prior information on the unrestricted
coefficients is taken from a noninformative approach. Then one can derive
that the kernel of the posterior density of the unrestricted coefficients
has the same functional form as the so-called concentrated likelihood
function [see, e.g., Dr2&ze and Richard (1983) or Zellner (1971, p. 272)].
This kernel is, however, not proportional to a density with known
properties. In an earlier paper [Van Dijk (1985), hereafter referred to as
HVD] I studied the global properties of this posterior kernel (or
likelihood function) in the structural parameter space. One of the results
of the HVD paper is that, given certain conditions, the posterior kernel
of the unrestricted structural coefficients of a linear simultaneous

equation model is dominated by a matricvariate Student t density,

* 1 am indebted to Luc Bauwens and Teun Kloek for helpful discussions. Any
errors are my own responsibility.
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multiplied by a constant. [For details on properties of this density, see
Dickey (1967) or Zellner (1971, Appendix B5).] However, in the derivation
of this result I did not make full use of the zero restrictions that
appear in many simultaneous equation models. Consider, for instance, the
case of a market model for an agricultural commodity. Weather conditions
will, probably, appear in a supply equation for this commodity, but, in
most cases, not in a demand equation. Personal income may appear in a
demand equation but, in most cases, not in a supply equation.1 So, zero
restrictions reflect a priori considerations on the variables that are

excluded from the different equations.

In the present paper I make explicit use of the zero restrictions
mentioned above. As a result one can derive that under certain conditions
the matricvariate Student t bound can be replaced by an other upper bound
function that is a product of multivariate Student t densities that are
defined, in a certain sense, in a recursive way. This bound has as an
advantage that the multivariate Student t density possesses known
properties [see, e.g., Zellner (1971, Appendix B2)] and it is comparable
with the bound derived by Dr2ze and Richard (1983, p. 596).

PRELIMINARIES

The linear simultaneous equation model (SEM) can be written as
XA=1U (2.1)

where X is a Tx(G+K) matrix of T observations on G+K variables and A is a
(G+K)xG matrix of parameters some of which are known a priori [see below];
U is a TxG matrix of disturbances. The matrices X and A are partitioned as

follows.
B
X=(Y 2), A= (r) (2.2)
where Y is a TxG submatrix of X that refers to G endogenous variables and
Z is a TxK submatrix of X that refers to the K predetermined variables.
The matrix A has been partitioned in a similar way as the matrix X so that
the left hand side of (2.1) can be written as

XA := YB + 2T (2.3)

1. For a viewpoint that (almost) all variables should appear in all equations
see, e.g., Sims (1980).
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I shall make use of the set of standard assumptions with respect to the
linear SEM [see, e.g., Hausman (1983), and the references cited there].
These assumptions may be summarized as follows. (i) The determinant of B
does not vanish. (ii) The T rows of U are independently distributed with a
common normal dietribution that hac mean sers and pasitive definite
covariance matrix I. (iii) Current values of the disturbances are
independently distributed from current and lagged values of predetermined
variables. (iv) The data matrix X has full column rank. So, T 2> GHK.

The prior information on the structural parameters is summarized as
follows. The elements of A are partitioned into two subsets. The first
subset contains the a priori restricted elements, which are denoted by the
vector ¢. The second subset contains the unrestricted elements of A,

denoted by the vector 6. So, one has
A= A8, ¢ = "’0) (2.4)

where ¢ = % indicates that the elements ¢ take a particular value ¢y. The
stochastic prior information on (@, I) is given as
-4h

p(e, I) « |I| t (h>1) (2.5)
where h is usually taken as an integer. Well known values for h are h =
G+l, h = 2G or h = G+K+1. In HVD I derived a bound on h given as h > 2G +
K as a condition for existence of the zero-th order moment of the vector
6. The marginal posterior density of the unrestricted coefficients 9,

given the data X and the exactly known elements ¢p»> can be written as

) « 1pg¥ |yry| H(THC-D) (2.6)

P(elxs ¢0
For details, see HVD, Zellner (1971, Chapter 9) or Dr2ze and Richard
(1983, p.562).

Before we start with the main result of this paper we need the

following theorem. For a proof, see HVD, Theorem 4.

THEOREM 1. Given R(X) = G+K, it follows that U'U is a positive definite
symmetric matrix and

IBIIT|U'U|-HT+h-G-1) < cIU'UI-%(h-G-l) (c > 0) (2.7)

if and only if R(A) = G.
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Some comments on the role of the positive constant c are given in tt

next cection. One can uee (2.6) and (2.7) and write

'U|'Kh'c"1) (2.8)

p(8]X, ¢4) < c|U
The upper bound function given at the right hand side of (2.8) is the
starting point for the analysis of this paper.

A DOMINATING FUNCTION FOR THE POSTERIOR DENSTTY OF ©

Let ajs j=1,...,G, be the j-th column of the matrix of structural
coefficients [see equation (2.1)]. The typical j-the equation of the mode

(2.1) can be written as
(j = l’coo,G) (3.1)

Suppose that the exact restrictions with respect to the elements of aj ar
either zero restrictions or the normalization restriction. One can make

use of the following notation.

-WG =u glccoG 3.2
Yj j j j (j ’ 9 ) ( )
The T-vector yj is the j-the column of the matrix Y of (2.2) and it
consists of T observations on the j-the endogenous variable. I assume tha
the diagonal elements of the matrix B of (2.2) are equal to unity due to
the normalization restrictions. The matrix Wj is defined as

W, := (Y, Z 3.3

f (j j) (3.3)

where the T x gj matrix Yj contains observations on gj current endogenous
variables that are present as explanatory variables in equation (3.2). So
G - 85 = 1 endogenous variables are excluded from this equation. The T x
kj matrix Zj contains the T observations on the kj predetermined variable
present in the j-equation. So, K - kj predetermined variables are exclude
from this equation. The matrix (yj wj) has full column rank. The

parameter vector ej contains the £, = gj + kj parameters of interest. Not

h|
that the f-vector @ is given as

et = (ei, DX Y 6', ecey GG), L= (3.4)

3

[N xK~]
o
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Next, I construct a proof of the proposition that under certain
conditions the posterior kernel p(9|X, ¢0) fequation (2.6)] is dominated
by a constant times a Product of multivariate Student t densities that are

defined in a recursive way.

The first step of the proof is as follows. Start with the right hand
side of (2.8). The matrix U is restricted to have full column rank so that
U'U is a positive definite symmetric matrix [see Theorem 1]. Partition the

matrix U as

U= (Uj Uj) (3.5)

where uy is the T-vector of disturbances of the j-th equation [see (3.1)]
and Uj is the remaining submatrix of U after uy has been deleted. Note
that one may reorder the columns of U in such a way that the j-th column
is moved to the position of the first column without affecting the value
of |U'U|. Make use of

juru] |(uj Uj)'(uj UJ.)I (j=1,00.,6)

L (3.6)
u?Uj
3%

uj;]uj
U35

103051 Ce )

with

M ww )y o (3.7)

3= o U050 Ty

Given that U'U is PDS, it follows that U&U , u'u, and u'M, u, are PDS.

im 3

As a second step, substitute u, = y,6 - WjejJ[equation (3.2)]
in uBMﬁuj. A well known decomposition yields

uijuj = (yj - Wjej)'Mj(yj - wjej) (3.8)

- “2 - 2 Tyt - “

with

PO * =1

Oj = (WijWj) Wijyj (3.9)
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A2 "~ -~
W.0.)'™ -W 3.10
o (yj jj) j(yj jej) ( )
under the condition that W'M W, is a positive definite matrix. In the next
section I discuss conditions under which W&M W, is a PDS matrix and ;2 is
positive. By making use of these properties and by using (3.5)-(3.10), one

can derive in a straightforward way that

v ~H(h=G=1) _ oo =$(hG-1) -
|utu] lUjUjl p(ejlej, Vis A9 (3.11)
-4,
' -%,%2 i1
R I Cr
with
AWM W AWMLV 1y
ICH le o j. A = €A ' | (3.12)
. AWM W . -%(A.+£j)
x[a, + (ej j)'[ % ](e)j - ej)] J
%

and

Aj-h-G-l-zj (3.13)
and

ris(a; + 2]
¢ ._.TI—L (3.14)
= Irchy)

Equation (3.12) is equal to a multivariate Student t density of the zj-

vector ej under the following conditions
~2
W'M.W. is PDS . >0 . >0 3.15
iggcs » 952 00 Ny ( )

[see, e.g., Zellner (1971, Appendix B2)]. The location parameters are
denoted by ej’ which is defined in (3.9), and the scale parameters are
denoted by the matrix Vj’ which is given as

~

Vj = oj(AjWBMjo) (3.16)

By making use of the definition of Mj, equation (3.7), and by redefining
Uj as Uy = (uj+1, ey ug) [compare the text below (3.5)], it is seen
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that sj and Vj depend on the unrestricted parameters ej+1’ v eG, of the
j) is a
conditional multivariate Student t density of ej given values of aj+1’

simultaneous equation system (2.1). Therefore, p(ejlaj, Vj, A

LI Y eG'

As a third step, the second line in (3.11) is analyzed. The
determinant of w&mjwj can be rewritten by making use of a well known rule
for the evaluation of the determinant of a partitioned matrix. That is,

given W'Wj and U'U, are PDS matrices, it follows that

k| i3
LAY WU
33 373
| = |utu, | WM W, | (3.17)
u'w u'u |
LF LE b N LI T
= |W'W,||U'M,U
[W3¥ oo,
where
- -1
M, =1-W/(W'W W' 3.18
3 (W3 y) W (3.18)
One can use (3.17) and derive that
-3 - Yo ot
WIM.W = |W'W u'u U'™M.U 3.19
Wi |5 = g fugug oo, (3.19)
where |W3Wj| > 0. Substitution of (3.19) in (3.11) yields
-$(h-G-1) -4(h-G-2) ~ :
] = ]
[v'y [v3u;1 P804, Vs A (3.20)
2
R ¥ il -1
U'M.U C.,” |W'W
ol A L IR P L LY
In the next section I discuss the conditions under which
- _% A2 -*Aj _1
'™M.U C K 3.21
UgMyu5] "o ey <Ky (3.21)
where Kj is a positive number. Then one can write
-3(h-G-1) -4 (hG-2) .~
u'u < K,({U'U .y V. ) . 3.22
|vro] <Ry |ugyy P(8;]055 Vys A9 (3.22)
One can use this inequality for j =1, ..., G-1. This yields
G-1
-3(=G-1) A - -4(h-26)
L L
|uru] <K 321 p(ejlej, Vs Aj)(uGuG) (3.23)
G-1 .
where K = nj=1 Kj is a positive number and Aj =h-G-3j- lj. Note the

difference with (3.13). The sum of squared posterior residuals of the G-th
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equation can be decomposed in a similar way as done in (3.8). Then one can

obtain
-%(h~2G) ~1 P
' =
(utu,) C p(8 055 Voo AQ) (3.24)
where p(eG|BG, GG’ AG) is a marginal Student t density with parameters
" -1 o ~2 -1
= 1 1 = 1 = - - .
0 = (WeWo) Wiy, Vo = o (AWIWL) 5 Ao = h = 26 = &, (3.25)
and
A2 _ _ Y ' _ -~
o5 = (55 = We8.) ' (5, = W,00) (3.26)

The numerical constant C is the same as given in (3.14) with index G
instead of index j. Note that the location and scale parameters of
p(eGIOG, VG’ AG) depend only on the given data yg, We and the degrees of
freedom parameter AG.

As a final step, one makes use of (2.8), (3.23) and (3.24). Then one

can obtain that
* G-l ~ ~
p(8]X, ¢y) < K 321 P(05]04(8 1y 5eees80)s V(0o seeesBl)s A5)  (3.27)

where K* is a positive number. In (3.27) it is explicitly indicated that
the location and scale parameters of the conditional multivariate Student
t density of the parameters ej of the j=-th equation depend on the values
of the unrestricted parameters ej+1, seey B of the equations j+l, ..., G.

INTEGRABILITY CONDITIONS

Apart from the standard set of assumptions for the linear SEM, I have
made use of the following conditions [compare Theorem 1, (3.15), (3.21)
and the line below (3.23)].

(1)  R(A) = G, (ii) 3; 50, (3= 1,000,6-1)
(ii1) wgujwj is PDS, (iv) U;]MjUj is PDS, (J = 1,e..,G-1) (4.1)

(V) Aj=h.G-j-zj>0 Y (j= l,ooo,G).
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The conditions (i) and (ii) are not independent. That is, if (i)
holds then it follows that usM u, > 0 and hence, in particular,
Q% = ;3 M ;j > 0, with ;j= yj - wjaj’ [See (3.8) and (3.10)]. Conditiomns
(i1i) and (iv) are related in the sense that if (iii) holds, then it
follows that (iv) holds. This can be derived using (3.17). Given
|U30j| > 0 and |W3Wj| is a positive constant, it follows that
|U3MjUj| >0 if |w§i Mjwj| > 0.
Condition (iii) may be interpreted as follows. Let

~ ~ -~ -1
V,=W,=-U,A., A, = (U'U,) U'W, 4.2
3 3 i3’ 3 ( h| J) i3 (4.2)

The restriction V&Vj = W'Mjw is PDS implies that the explanatory

variables in the j-th eqiatign cannot linearly depend on the posterior
residuals of the disturbances of equations j+l,...,G. This condition has
to be verified in practice for particular models.

One may distinguish between two classes of simultaneous equation
models. In the first class of models one has that R(A) = G everywhere in
the prior region of 9§ and |w3Mjo| 2 € > 0 everywhere in the prior region
of 0 for j=1l,..., G-1. One may verify this for, e.g., Johnston's model
[see Johnston (1963)] and for Klein's Model I [see Klein (1950)). In the
second class of models it may occur that R(A) becomes less than G and
|W3Mjw.| tends towards zero in the prior region of 6. [See Dr2ze and
Richard (1983,p.533) for an example of a market model where this may
occur.] Then one can make use of the following solution. Truncate the
uniform prior of 6 in such a way that it is zero on an open subset of the
prior region where |A'X'XA| < gg, ¢y > O and |W3Mjw.| < €5 € > 0, j=1,
eesy G-1. This implies that the positive constant K [see (3.27)] depends
on gy and € 4> j=l,¢¢¢, G-1. One may investigate the sensitivity of £ by
varying the value of €9 and SELETI-AR which may be an unattractive
approach in practice. Therefore, the first class of models, where the
"constant K is a given positive number everywhere in the prior region of ¢
is the more relevant case.

Another condition is the degrees of freedom restriction Aj >0,

j=1y.44,G. This implies a bound on the prior parameter h given as
h > sup {(G+j+2j), j=1y000,G} (4.3)
This bound is essentially the same as a degrees of freedom bound derived

by Dr2ze and Richard (1983,p.566). In the HVD paper I derived the bound
h > 2G+K. A sufficient condition for (4.3) is h > 2G + fpa4. It follows

137



that the bound in the HVD paper is larger then the present bound if K >

fpaxs Which can be restated as K = ky.. > gp., In the equation with ...
This condition is equal to the classical order condition for

identification for the equation with the largest number of explanatory

variables.

I conclude this paper with two remarks. First, the results of this
paper may be extended to a linear SEM with identities. This analysis has
been deleted from the present paper due to space limitations. Second, the
results of the paper are part of a larger project on existence conditions
for posterior moments of simultaneous equation model parameters. In a
forthcoming revision and extension of the HVD paper I shall discuss the
use of the results of this paper for the existence of the moments

mentioned above.
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A COMMON MODEL SELECTION CRITERION

N.R. Draper and
I. Guttman

University of Wisconsin
University of Toronto

1. INTRODUCTION
We consider the linear model situation

y=XB te (1.1)

where y= (yl,yz,...,yn)' is an n X 1 vector of response observations,
§t is an n x P, matrix of predictor variable values, n > pt, §t is a
P, X 1 vect;r of regression parameters to be estimated and Et is distrib-
uted N(gt,o In). We shall distinguish between problems in which (a) §t =0
for all t, and (b) §t = (Q',gé)', for all t, where the elements of the
a, are non-zero and each a, vector is size k x 1 where, typically,
k << n/2. The generic notation t denotes a general indexing which will be
made specific for particular problems to be discussed below. Each choice of
t will provide a model Mt’ say, defined by (1.1). The general problem,
given a specific indexing system for t, is to decide, from data made avail-
able on y and the §t's, which Mt "best represents" the data.

Among the multitude of problems covered by the above, we distinguish
four specific areas.

a., Outlier problems with spuriousity caused by shift of mean. Suppose

we fear the presence of k spurious observations, k fixed and pre-se-
lected. Then the indexing t runs over all possible choices of k from n
observations, and the Xt's are permutations of n specified rows of a

matrix X wused to generate the data. We may write

— — —

y = Zl = %lt B+ Elt (1.2)
y X €
22 2t ~2t_|
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X & '« 1 i
where the k X 1 vactor y, s (yil,yiz,...,yik) 1 12 R ¢ ik, ie
associated with the k spurious observations, and the (n-k)xX1 vector Y1
is y, but with the elements of ¥, deleted. Assuming E(elt) =0,
E(gyy) =

b. Change point problems. We partition items of length n into two

at now brings us into case (b), with P, = P.

parts of lengths m and (n-m) to express (l.1l) as

Zl—l gm: Q §1 Elt
= + . (1.3)
) 9 2ot ) €2t
where §mt is m x p;, §n-m,t is (n-m) x Py and §i is p; X 1, i=1,2.
The index t runs sequentially over m, 12 <m < n-p,. We shall define
§lt = (§mt,9), §2t = (Q’gn-m,t) for notational purposes. Assuming
E(elt) =0, i=1,2, now brings us into case (a), with P, =P + P, = P-

c. Join Problem. Consider the following motivating example. Suppose,
in one dimension x, we wish to fit a quadratic model in x for x <a
and a straight line model in x for x > a, with continuity x = a. (An
alternative description is the fitting of a quadratic and straight line
spline continuous at the join a.) There are three parameters in the
quadratic, two parameters in the straight line, and one parameter «, making
a total of six, in addition to 02. However, continuity at o imposes one
restriction.

Suppose, given an o, m observations (xl,yl), (xz,yz),...,(xm,ym)
are such that X, j_xz < e £ xmii 0, while (xm+1,ym+1),...,(xn,yn) are

such that o < X <o L X . Then by applying the continuity restriction

2 _
Y, + Y, + Y 0° = 60 + 61a (1.4)

and eliminating 60 =, + (Yl-él)a + quz, we can rewrite the model,
conditional on «, in the form (1.2) with B = (YO,Yl,Yz,Gl)',

— ) _]
_ 11 x b4 0
glt = 1 1 (1.5)
1 x x2 0
L m m
—1 a az X ,.=0
§2t = m+1 (1.6)
1 o o X =0
| n

Assuming E(git) 0, i=1,2, produces case (a) with P.=P= 4, The in-

dexing t 1is related to the possible choices for values of ¢. For example,
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if the x, are equally spaced, one value of 0, for example, the midpoint,

1

may be chosen in each gap between successive x's, so that the choices are
equally spaced. For unequally spaced xi's, the number of values of o in
each gap can be chosen proportional to the gap width and equally spaced
throughout. Or, the values of o can be very densely spaced, approximating
a continuous functional choice of .

Note that, in problems (1)-(3) listed above, P, =P for all Mt' For
our fourth problem below, this will not be true.

d. Variable selection problem. Suppose we are given a set

X= (}’El""’fq) of (q+l) predictor variable vectors and an associated
response vector y, all vectors being of dimension n X 1 and with

1 = (1,1,...,1)'. Let model Mt be defined by a selected submatrix

~t (1 X 1,...,§ir), 0<r<q. Thus t indexes the 24 possible choices
of models, which can all be described in form (1.1), with

ét = (60,611,...,Bir)' and P, = r+l. Assuming E(Eit) = 0, i=1,2, produces

case (a).

2. THE CASE p_=p

For cases (1), (2) and (3) of Section 1, we may proceed as follows.
Because it includes case (a), we treat case (b). We obtain a posterior prob-
ability for model Mt in the general situation. Maximization of this prob-
ability over the indexing set of t will determine our choice of "best"
model, and/or the entire set of probabilities can be reviewed.

From the case (b) assumptions in section (1.1), we obtain the likelihood
function as proportional to

o e"p{_[st'r(.@t'B )X X (Bym Blt)

(2.1)

+ (a y2+X2tB) (a -y, X )]/(20) s

2t~t

- | - 1 [N
where glt is (n-k) x P> §2t is k X pt, and §t (§1t’§2t) . Also we

partition y' = (yi,yé)' correspondingly. Furthermore,

Bre = Blekie) X1ty1’
(2.2)
= - ' -
St (Zl §1t§1) (Zl gltﬁl)‘
Assuming the prior information to be non-informative and of the form
2 -2
P(M,.,B,,07,a) =0 (2.3)

we obtain the posterior p(Mt,Bt,oz,gtlz) by combining (2.1) and (2.3).

Integrating out successively 25 @t, 02 yields the marginal posterior
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'% n—k—p)/Z (2.4)

P |y) = Cl(X; % 0"
where the constant C 1is such that the sum of terms on the right hand side,
summed over index t, is one. Note that, if k = 0, §1t = §t. Also, if
desired, a conjugate prior could replace (2.3), with appropriate changes
throughout. The result (2.4) has wide applicability. In Sections 3-5 we
turn to its use in the specific applications (1)-(3) already mentioned. When
P, # p as in case (4), care must be taken in specifying the prior distrib-

ution p(Mt,Bt,Oz,at). This is discussed in Section 6.

3. OUTLIER PROBLEMS

As we see from subparagraph (1) of Section 1, the notation for this case
corresponds exactly with the general notation in Section 2, given P, = P. A
special case of the probability (2.4) was previously given by Guttman (1973)
for the no-predictor-variables case and by Guttman, Dutter and Freeman (1978)
for the regression case, and used by them (a) for given k, to determine
which k observations were most likely to be spurious, (b) for given k, as
weights in determining estimates for Et and 02 and also their posterior
distributions, and (c) to develop a procedure for estimating k. For related
comments, see Beckman and Cook (1983, pp. 138-139).

4, CHANGE POINT PROBLEMS

For these problems, k = 0, pt = p, and the X1 are as defined in sub-

paragraph (2) of Section 1. Eq. (2.4) simplifies to

I} ‘(n-p)/Z (4.1)

p(M ly) = c'{|x' X |[x! ,

mt~mt n-m, t n-m, t

where C' is the appropriate normalizing constant. For the special case of
change of mean value only, §mt and §n-m,t are vectors of 1's of length
m and (n-m) respectively. This problem has been discussed by Guttman and
Menzefricke (1982). Formula (4.1) now enables more general change point

problemé to be tackled, but we do not discuss them here.

5. A JOIN PROBLEM

Because of the difficulty in stating the join problem in its full
generality (but see below) we first give a numerical example for the specific
join problem outlined in subparagraph (3) of Section 1 which involves one
predictor variable x, one join, and quadratic and straight line functions

continuous at their join.
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Example 1.

Our data consist of 32 observations on y = boy's height/weight ratio
taken at equally spaced values of the predictor variable x = age in months,
for x = 0.50(1)31.5. These are part of a larger set of Eppright et al.
(1972), which were used by Gallant and Fuller (1973) and by Draper and Smith
(1981, p. 286). The actual y values, multiplied by 100 and corresponding
to ascending x, are 46, 47, 56, 61, 61, 67, 68, 78, 69, 74, 77, 78, 75,
8o, 78, 82, 77, 8o, 81, 78, 87, 80, 83, 81, 88, 81, 83, 82, 82, 86, 82, and 85.

In view of the equal spacing of the x-values, we choose to evaluate
(2.4) at the intergers o = 2,...,30. Twenty-nine values of (2.4) can thus
be found, of which nine are essentially zero and eight more lie below 0.01.

The remaining 12 values Py for o = 6(1)17 are as follows:

o= 6 7 8 9 10 11 (continued)
P, = 0.047 0.187 0.157 0.106 0.114 0.104 (continued)
o= 12 13 14 15 16 17
P, = 0.084 0.063 0.046 0.032 0.023 0.015

We see from these numbers that the modal estimate of the join appears to lie
to the right of the seventh observation. This estimate of a could be
further refined by using a grid finer than the integer values we have
chosen. It must be remembered that, in this problem, unlike the change point
problem, the tabled values are simply an approximation to a continuous poste-
rior distribution. The latter can be evaluated to any accuracy desired. The
present accuracy appears adequate for the problem at hand. The solution is
compatible with those of Gallant and Fuller (1973) in which an additional

40 observations for x = 32.5(1)71.5 are used and continuity of the spline
function and of the slope of the spline function are assumed at the join, and
of Draper and Smith (1981, pp. 582-583) for both 72 and 32 observations which

apply to straight line and straight line functions continuous at their join.

Generalizations

1. If only one predictor x is involved, generalization consists of
a spline function with r joins, r > 2, Op50pseees® 5 S3Y. Eq. (2.4)
then defines an r-dimensional posterior probability function whose maximum
and/or characteristics may be obtained. The polynomial functional forms
between the joins , and the restrictions at the join points, affect the form
of the X-matrices in (2.4), but not the dimemsionality of the posterior
(2.4).
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2. For an f-dimensional predictor space X sXgseeesXp with rj joins

in the x, space, Eq. (2.4) represents a posterior I dimensions,

5 j=1 T3

whatever the polynomial functional forms may be between the joins.

6. VARIABLE SELECTION PROBLEM

In this application, the Mt are the 29 regression models alluded to
in (4) of Section 1. An alternative description of Mt in which the specif-
ication of the prior plays an important role is as follows: Suppose y is

generated as usual by

<
]

X8+ €= [Lx),e0x 1(B 8,000 0B)" + € (6.1)

where € ~ N(Q,Ozln), but that we may write

y=[B1+, x, + ...+ B, x ]+[B X oo + B X, J+¢
% o~ 11~1l 1r j1 jq-r~Jq-r =
(6.2)
=X Bt REte
where our prior information is such that
P(M,,8 ,B:,0%) = p(o7)p(B, . B=[M )DL, ) (6.3)
t’2e’<t’ b9 AT t
with
Yo
-(— +1)
pe)) = @D 2 emplv k20t (6.3a)
(t) % Lin 1o ()
P88 IM) ey | expl-4a(B -8, )¢, (BB, )}
(t) % ple(t) o
x |67 |* exp{-}8:C, " 8L} (6.3b)
and
t 1
pu) = {7, (6.3¢)
where vo, sg, Bt and Cit), i=1,2, are all given, and where C(t) and
Cét) are such that C(t) , (C(t)) =0, i.e., their elements are all

small. Thus M implles through (6 2) together with (6.3 a,b,c), that
x11’°“’xi are "important" variables, and that with high probability, the
effects Bjs of the st’ s=1,...,q-r, are expected to be zero. [Of
course (il,...,ir)U(jl,...,jq_r) = (1,...,9)]. The prior distribution of

(B, ,...,Bj _ )' is concentrated about zero with high precision given
by C(Zg and the gegree of belief of the experimenter that Mt holds,

given the parameters Bt, BE’ is proportional to the square root of the
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generalized precision matrix of @-, as stated in (6.3c).

We further assume that git), gét) are such that Ig{t)l x Igz(t)| is
constant, independent of t, which is to say that the prior gemneralized
precision for gt and §E’ and hence the generalized variance, is the same
for all Mt' We believe that this is a sensible requirement in view of the
fact that the experimenter does not know which model Mt holds, so that for
any Mt’ his knowledge about the PB's, as measured by the generalized pre-
cision, should be the same as for any other model, say Mt"

We now combine the prior (6.3 a,b,c) with the likelihood specified by
Mt in (6.2), to find the posterior of Mt’ §t’ QE, 02. We then integrate
over the same (q+l) dimensional estimation space. Of course, as we range
over the different Mt's, the order of integration of the (q+l) B's varies,
but nevertheless, we do integrate over all of the estimation space of
dimension q+l1, and this integration is done with respect to proper priors.

After the integrating out of Bt’ @t, the resulting posterior of
M, ,0 ) depends on C( t) and C(t) We then approximate p(M o Idata)
by taking limits as C(t) + 0, C(t) > ® IC(t)||C(t)| constant, as assumed
earlier. For the non-lnformatlve case for ¢~ (i.e., letting v, 0,
si + o such that vosi + 0) this provides (all details are given in Draper
and Guttman (1986))

n=p

t
pM Idata) = Ky(n;p )IX'X l-% S— 2 (6.4)
t el 1ltet t
with
s, = y'[I-X (X% ) %'y (6.4a)
t 2 by R vt S A A
-pt/2 n-p,
Y(nsp) = 2 ) (6.4b)
. - n_pt
-1 _ . ' -4 2
K -Evcn,pt)lgctgctl S, , (6.4c)

and where P, is the dimension of the estimation space defined by the span
of the columns of §t (e.g., for (6.2), P, = r+l, etc.).

Equation (6.4) provides us with a model selection procedure.
For other related recent work on comparing two linear models, one of which
includes the other, see Smith and Spiegelhalter (1980) and Spiegelhalter
and Smith (1982), Mitchell and Beauchamp (1986), and Trader (1983).
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7. DISCUSSION

We have received many comments on an earlier draft of this paper, in-
cluding the comment that "the primary conclusion (6.4)... is not invariant
to scale changes in either dependent or independent variables." This is
true. The underlying reason is to be found in the prior assumptions on the

model parameters which are conditions on the fR's in the metrics in which

they are defined. We argue that (6.4) is a perfectly reasonable outcome of

the prior assumptions, while understanding that some readers will object to
an answer that varies if the metrics are changed. It would of course be
theoretically possible to present prior information in an invariant way
(e.g., in terms of the Bixi rather then the Bi) but that approach, which
is currently under study, also presents difficulties.

In general, if we change scales by factors fi so that x: = xi/fi’
B: = Bifi’ the effect is eventually transmitted to (6.4) as a factor Hfi,

the product being taken over those f, whose subscripts are included in

the notation "subscript t"; see underi(6.3c). This non-constant Hfi also
affects (6.4c). (The value of St is unchanged if y is not transformed
from the original metric, but the prior conditions on the C§t) matrices
are affected by making scale changes in the x's.)

Note that exactly the same difficulty appeared in Spiegelhalter and
Smith (1982, p. 378), in which only two models MO and Ml were considered.
In that paper, a "thought experiment" led to the fixing of a ratio co/cl
which corresponds, in our notation, to the choice of the factor ratio fl/f2
when only two models are considered.

The effects of rescaling can be large as we see in an example using the

Hald data.

Example 2. (Hald data)

This well-known set of 13 observations on a response and four predictors
has proved to be exceptionally popular for illustrative examples, perhaps
because it is small and yet awkward. See, for example, Hald (1952, p. 647),
Daniel and Wood (1980, p. 89), and Draper and Smith (1981, p. 630).

Evaluating (6.4) for all 16 possible models using the metrics of the
original data, we obtain nine values which are essentially zero and seven

others as follows:

Py, = 0.335, p,, = 0.086,

Pyp3 = 0-161, py,, = 0.153, p;,, = 0.123

> Pygy = 0.022, (7.1)

P1gsy = 0-120,
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where denotes p(M123[y) and M is the model

123
and so on. The probabilities add to 1.000.

P123
E(y) = Bo + lel + 82 + B3X3,
We see that, in the original metrics, our method favors, in order, the sets
12, 123, 124, 134, 14, 234, Most other selection procedures also favor 12
first.

Suppose, however, we decide (for example) to code all the x's to

*l
x 's so that

n

321 (x:j - 3P =1, (7.2)
Then

* n -2, %

B = Bi{jil (x5 = %)7/a}", (7.3)

* % *
and x, = xiBi/Bi’ so that fi = Bi/Bi as expressed in (7.3). TFor the
Hald data, fl = 5,6516, f2 = 14,9504, f3 = 6,1538, and f4 = 16.0815. The
prior information formulas (6.3b) and (6.3c) are now re-phrased in terms of
%
the Bi not the Bi. In place of (7.1) we now find that (the others are

zero to three decimal places):

Py, = 0.020, = 0.006,

P14

= 0.058 = 0.145 = 0.048 = 0.023, (7.4)

P123 » P1og » P134 » gy

P1234 = 0.701.

The change in emphasis is interesting, and makes it clear that, in the new

*
metric, it is unreasonable to regard any of the Bi

smaller than the others, because the model with highest posterior probability

as being substantively

involves. all four predictor variables.

There is, however, for the Hald data, substantial reason to regard the
original predictor variable metrics as eminently sensible ones. The original
x's are four cement ingredients expressed as percentages of a mixture and,
in fact, in = 100%, approximately. Changing the metrics to satisfy (7.2)
would not make much practical sense.

We now look at another set of data where the predictor variable metrics

appear to be natural ones.

Example 3. (Rutting Data)

Thirty-one observations were taken on six predictor variables and a
response. The data are given by Daniel and Wood (1980, p. 109) and are used
as an exercise by Draper and Smith (1981, p. 375). Sixty-four values of
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(6.4) can thus be evaluated; 39 are essentially zero, and 17 more lie below

0.01. The remaining 8 are as follows:

Py, = 0.140,

Pypq = 0.021, p.,, = 0.041, p .. = 0.490,

Pip3g = 0:070, pyy . = 0.165, po,o. = 0.018,
P1p346 = 0-035.

We see that our method favors, in order, the sets 126, 1246, 12, 1236, 124,
12346, 123, 1256, the emphasis being on the first three. The superiority of
sets 126 and 1246 also emerges from the other selection procedures used in

the references quoted. The ambiguity of whether or not to include the dummy
variable 4 with variables, 1, 2, and 6 has been discussed by Daniel and Wood
(1980, pp. 96-100).

Again, our method works well compared with other proceedures and, as in the

Hald case, the predictor variables seem to be in sensible and natural units:
X = log (viscosity of asphalt), Xys X35 Xg, and Xg are percentages of

material or voids, while x, is a dummy.

In summary, our Bayesi:n selection procedure has both virtues and draw-
backs. On the one hand, we have avoided the problems that arose in some
previous Bayesian work because of the different dimensionalities of the
B-spaces as different models are considered, and we have developed a proce-

dure valid for any given specification of the metrics of the Bi' On the

other hand our procedure is not invariant to these choices of metrics. One
could argue that it need not be; such a viewpoint would pérhaps not appeal
to those used to thinking in terms of the standard types of selection proce-
dures, because these are based on quantities (such as extra sums of squares)
that are invariant to x-metric choice. A Bayesian procedure parallel to
these would thus need to have prior information specified and incorporated
in a similarly invariant manner. However, we can argue that our method
accurately reflects the prior information in the chosen metrics. We can
also question whether prior information should be invariant in the metrics
used. For a related discussion of Bayesian difficulties see .Atkinson (1978).
Two other selection procedures (discussed, for example, by Stone, 1979)

use criteria of the form

Cq = fn(maximum likelihood) - qp (7.5)
where p is the number of parameters in the model being considered. When
q = %n n, we have Schwarz's (1978) criterion; when q = 1, Akaike's (1973).

Cq simply "penalizes" the likelihood for the number of parameters. When the

errors € ~N(0,102), these criteria reduce to
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constant -%[nfn{Residual SS} + 2qp]. (7.6)

For the Hald data, and for models in the subscript order [see (7.1)], -; 1,
2, 3, 4; 12, 13, 14, 23, 24, 34; 123, 124, 134y 234; 1234, the values of the
square bracket quantity in (7.6) are as below. (Smaller is better here. All
figures have been rounded to integers except when necessary to establish re-

lative sizes.)

Schwarz' Criterion

105; 98, 94, 104, 93; 60.46, 100, 64, 86, 96, 75; 60.62, 60.58, 72, 66; 63.

Akaike's Criterion

105; 96, 92.5, 102, 92.2; 59, 98, 62, 84, 94, 73; 58.4, 58.3, 69, 64; 60.

We see that Schwarz's criterion favors models in order 12, 124, 123, 1234,
14, 234,..., while Akaike's order is 124, 123, 12, 1234, 14, 234, .... 1In
both cases there is not much to choose between 12 and 1234, Models 1, 2, 3,
4, 13, and 24 are decisively excluded by both criteria.
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PREDICTIVE SCREENING METHODS IN BINARY RESPONSE MODELS

Ian R. Dunsmore Richard J. Boys

University of Sheffield University of Newcastle upon Tyne
U.K. U.K.

SUMMARY

Screening procedures are used in order to improve the 'quality' of
individuals retained in some way. In this paper we present a Bayesian
predictive approach to screening for binary response data. We discuss its
relationship with diagnosis and classification problems. The methods are
illustrated by an example of medical screening for Conn's syndrome.

INTRODUCTION

Discrimination and classification problems form an important area of
both statistical theory and practice. Since the linear discriminant method
was introduced by Fisher (1936), much has been written and developed.
Extensive accounts are given, for example, by Anderson (1958) and Hand
(1981). One field of application 1is the medical situation, where the
problem of diagnosis of the form of disease from which a patient suffers is
often of paramount importance. A discussion of such problems with
consideration of criteria for evaluation of the discriminant rules is
provided in a series of papers by Habbema, Hilden and Bjerregaard in 1978
and 1981, whilst a comparison of different techniques in a particular
application is given in Titterington et al. (1981).

In diagnosis problems the aim is to assess the category t of a
future individual who has provided us with a set x of feature variables.
A data set (gl,tl),(gz,tz),...,(gn,tn) is available for n individuals

whose categories are known with certainty. Since we are concerned with
statements or forecasts about an observable quantity, a predictive
approach seems to be the most sensible avenue of attack. We extend here
the predictive methods developed by Geisser (1964) and Aitchison and
Dunsmore (1975, Ch.1l), where the basic aim is to derive a diagnostic
probability function p(t|x,data).

We illustrate the methodology within the framework of a data set
described in Aitchison and Dunsmore (1975,Ex.1.7). Conn's syndrome is a
rare form of hypertension. Two forms of the syndrome exist, namely:

A: benign tumour in the adrenal cortex, (adenoma),

B: a more diffuse condition of the adrenal glands, (bilateral
hyperplasia).
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The treatment for A is a surgical operation to remove the adrenal gland.
For B drug therapy is the recognised treatment, and surgery is inadvisable.
For the purpose of illustration we wish to diagnose the form of disease
(t=1 for A, t=0 for B) on the basis of the three concentrations (meq/%) in
blood plasma:sodium (Na), potassium (K) and carbon dioxide (CO,). The
data are given in table 1, and we use log (concentrations) for“the basic
variables x, as this transformation removes much of the skewness apparent
in the data. For the undiagnosed patient we wish to assess which form of
the disease is appropriate. It is clearly important that we are fairly
sure that patients for whom surgery is decided do in fact have form A of
the syndrome.

Table 1 : Conn's Syndrome Data

log(concentrations,meq/%) in blood plasma

Na K CO2
Patient x1 x2 x3
1 4.9459 0.8329 3.4112
2 4.9628 1.1314 3.2995
3 4.9416 1.0986 3.2958
4 4.9836 1.0296 3.4965
5 4.,9323 1.2809 3.1822
6 4.9677 1.1314 3.3322
7 4.9222 0.9163 3.3878
8 4.9488 0.9163 3.4012
9 4.9684 0.8755 3.4720
Type 10 4.9740 1.0647 3.3844
A 11 4.9381 0.8329 3.2581
12 4.9698 0.7885 3.5175
13 4.9767 0.9933 3.4965
14 4.9431 1.1314 3.3707
15 4.9747 1.0647 3.3105
16 4.9345 1.1314 3.4468
17 4.9754 0.6419 3.5116
18 4,9816 1.3083 3.3105
19 4.9698 0.7885 3.4965
20 4.9663 0.9933 3.3142
21 4.9438 1.4586 3.1527
22 4.9488 1.1632 3.2189
23 4.9502 1.2809 3.2504
Type 24 4.9558 1.0986 3.0910
B 25 4.9663 1.4351 3.3250
26 4.9395 1.2238 3.3322
27 4.9495 1.2809 3.2189
28 4.,9488 1.3350 3.2581
29 4.9452 1.1939 3.2958
30 4.9416 1.2809 3.2581
31 4.9416 1.4816 3.2426

SCREENING

The predictive approach developed in Aitchison and Dunsmore (1975,
Ch.11l) evaluates the diagnostic probabilities P(Alg,data) and P(Blg,data).
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An assignment is then made on the basis of the predictive odds - perhaps
diagnosing the form of disease corresponding to the larger probability.
Misclassification costs could be incorporated in a decision theoretic
approach, and within the Conn's syndrome context these could be large
because of the radically different nature of the relevant treatments. An
equivalent procedure, and the criterion which we develop here, is to
formulate a decision rule which ensures that the predictive probability
that a patient for whom we decide on surgery is in fact of type A takes
some prespecified value &p’ which will be close to 1} 1.e. we make

P(A|decide on surgery) = Gp. (1
Clearly we would also be interested in P(A|decide on drug therapy).

Such a decision rule lies within the context of predictive screening
as derived in Boys and Dunsmore (1986,1987). We wish to use the feature
vector X to attempt to screen out the B cases (t=0) and to retain the A
cases (t=1). Retention corresponds to deciding on surgery in (1), and so
we need to determine a specification region Cy such that

~

p(t=1|x€C_,data) = 8, (2)

We frame the problem in terms of linear models by restricting attention
to specification regions of the form

Cy = x:2a'zx2w} ,

where constants a and w are to be determined to satisfy (2). In the deriva-
tion of C we use standardized variables in order to eliminate problems

of dlmen31ona11ty or scale. Without loss of generality we impose the
restriction a'a=l, since clearly an indeterminacy would result otherwise.
The problem of multiple solutions does however remain, and so we seek the
values of a and w which satisfy (2) and which minimize the (predictive)
error probability

= p(t=1|§€Cx, data) . (3)

Two modelling approaches for the joint distribution of t and x have
been discussed; see Dawid (1976) and Aitchison and Begg (1976). These are
the sampling paradigm and the diagnostic paradigm. In the former models
of the form p(x|t,n)p(t|y) are used, whilst in the latter attention is
concentrated on p(t|x,§) p(x|g) The sampling framework is more useful
for situations in which polynomial or interaction effects are required,
whilst the diagnostic model is more robust against selection biases.

SAMPLING MODEL

Within the sampling framework the conditional predictive probability
of t required is given by
p(t=1|data)| p(x|t=1,data)dx
c
X
p(t=1|§€Cx,data) = ?

) p(t=i|data)f p( x|t=i,data)dx
i=o c

—

X

~
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so that for the evaluation of CX from (2) and (3) we require both the
predictive forms p(x|t,data) and p(t|data).

For the Conn's syndrome data an underlying normality assumption within
the two groups for the log(concentration) vector seems reasonable, i.e.

P(%It=1,n) ~ N(Uiaz-) (1=0,1)

Summary statistics from the data set are

n, = 20 no =11
4.96 4.95
X =11.00 s §O= 1.29 s
3.38 3.24
and
0.035 -0.028 0.073 x10-2 0.006 0.000 0.003 10-2
§1= -0.028 2.974 -1.026 s gcf 0.000 1.546 0.186)*
0.073 -1.026 0.920 0.003 0.186 0.503

There appears to be no strong reason to assume that the covariance matrices

Zl and Zo are equal. With vague prior assumptions on Q the predictive

densities are of Student form (see Boys and Dunsmore, 1987), namely

- -%
p(x|t=1i,data) oc{1 + N (x-g.)'g.l(x-gi} i (i=0,1).
n.2-1
i
Similarly with a vague prior on the arrival parameter | the predictive
function for t is given by
11

p(t=0|data) = =

p(t=1|data) = 31

20
31 °

The solution of (2) and (3) for § '0 95 then provides the optimal
specification region

{g : 0.91x) - 0.24x, + 0.34x, 2 5.34)

1 3

Although we have achieved a value of § =0.95 we note that ep is rather
large at 0.25. The predictive probability B —P(XEC |data) that an
individual is assigned to surgery is 0.56. W1thout screening the predictive

probability yp=p(t=1|data) that an individual is of type A is 0.65.

The dimensionality of the problem and therefore the scale of the
computational effort can be reduced significantly if we summarize the feature
vector initially through some linear score function D(x), such as Fisher's
linear discriminant, a principal component or the first crimcoord
(Gnanadesikan, 1977,p.86). The specification region C, is then of the form

~

¢.={x : D(x) 2 constant} (4)

~

where only the constant is now unknown.

For example suppose we use Fisher's linear discriminant

D(x) = (Z-X)' 15 ,
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where § is the pooled covariance matrix based on the data. This reduces

the problem to l-dimension, and the assumption of normali&y of D within

the two groups, albeit with different variances oy and Oy, seems reason-
able.

In table 2 we compare the specification regions and summary statistics
for the two methods - I: full multivariate, II: univariate with Fisher's
linear discriminant. We notice that although the form of C_, seems rather
different, the values of €ps B, and y, are remarkably consi¥tent. It is
not surprising that the form is different since it is well known that D
is not as good a discriminator when 21# g Out of interest we show in
table 2 the forms of regions if we use IIT: full multivariate with 1= Ip,
and IV: univariate with Fisher's linear discriminant with o = 9g-

Whilst III provides an almost identical Cﬁ to II the summary statistics
€p »Bp and yp vary considerably.

DIAGNOSTIC MODEL

Within the diagnostic framework the conditional predictive probability
of t required is given by

[ p(t=1]|x,data) p(x|data)dx
C
p(t=1|x€C_,data) = X ,

f¢ p(xldata)dx
X

~

so that for the evaluation of Cyx from (2) and (3) we require both the
oredictive forms p(t|x,data) anﬁ p(x|data).

The linear logistic model with

E*Ey &
p(t=1|x,8) = —=

r !
gdzlﬁ
1 +e
is the popular candidate for the condidtional probability. Copas' (1983)

plots suggest that linearity inthe xi's is not too unreasonable an assumption
to make for the Conn's syndrome data, although we return to this point later.

No simple analytically tractable prior for § presents itself in this
logistic model. We must resort to numerical integration for a specificed
p(E) - in four dimensions for the Conn's syndrome data - or consider some
approximations. Here we follow the second approach, and use the
approximate (asymptotic) normality of the posterior p(§|g,data). Further
discussion is provided in Boys and Dunsmore (1987), where a third approach,
suggested by Bernardo (1983), in which p(t=1 x,data) is forced to logistic
form, is also mentioned.

The assumption of normality for p(g]é) appears to be reasonable here -
although of course strictly this is at odds with the normality assumptions
in the sampling approach. A vague prior on ¢ leads to a Student
predictive density.

[ | -kn
p(x|data) « { 1+ —EE__(E'ﬁT) R (§’§T{i

n -1
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where iT and 5, are the sample mean vector and sample covariance matrix
of the complete data set of n=31 individuals, namely

_ [u.96 0.027 -0.092 0.081\x10"2
% = (110 $p =(-0.092 4.476 -1.600 :
3.33) 0.081 -1.600 1.244

The solution of (2) and (3) for 8§ =0.95 then provides the optimal
spec1f1cat10n region shown in table 2Pas method V. Whilst the form of C
is similar to the multivariate sampling method I, the performance, X
especially of sp, is disappointing.

Table 2 Optimal specification regions of form {x : a; 1+azx2+a3x32w}

together with summary measures ep’Bp’Yp‘

a, a, ay W ep Bp Yp

Sampling
I : multivariate 0.91 -0.24 0.34 5.34 0.25 0.56 0.65
IT : linear discriminant 0.76 -0.43 0.48 | 4.87 0.26 0.56 0.65
I1I : multivariate, 21=ZO 0.77 -0.43 0.47 | 4.95 0.39 0.46 0.65
IV : linear discriminant 0.76 -0.43  0.48 | 4.94 | 0.39 0.46  0.65

0,=0

170
Diagnostic
V : multivariate 0.96 -0.18 0.22 | 5.30 0.38 0.49 0.66
VI @ £ +Erx 0.93 -0.26  0.26 |5.23 | 0.38 0.49  0.66

We again consider reducing the dimensionality of the analysis by
summarizing the data X to produce a specification region as in (4). One
obvious candidate here is

- z A'
D(E) = EO + 'g’l?‘{‘ ’

where EO,§1 are the maximum likelihood estimates of 50 51‘ The results are

shown in VI in table 2. It is very gratifying in this example to find
that the results for V and VI are comparatively close, since the reduction
in computing time achieved through VI is quite considerable.

It is perhaps not too surprising that the diagnostic model used has
not performed as well as the multivariate sampling model I. There was
evidence there that I. #I.. For such situations a quadratic logistic
model would be more appropriate (Anderson, 1975). The Copas plots do in
fact suggest that there may be a quadratic effect in variable X1» 8O that
the logistic model could be improved by incorporating terms
xlz,xlx2 and X Xqe The computational aspects of the analysis then become
most unwieldy.
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EXTENSIONS

The predictive screening models used here can be adapted for use in
other situations. Within the diagnostic setting it may be that the
categorization t=1 or t=0 is based on some underlying (perhaps latent)
variable y such that there exists a specification region Cy with

t=1 > y€Cy s
t=0 ¢—> yECy

Then we observe (y,x) and need to choose C, such that

P(y€Cy|§€C§, data) =
perhaps so as to minimize

ep=P(y€Cy l‘gﬁcﬁ, data).

The analysis within a normal model framework for (y,x) is given in Boys
and Dunsmore (1986).

Other extensions which are at present under investigation deal with
the sequential selection of screening variables and decision theoretic
models with criteria involving expected utilities.

An important point to emphasize from the paper is that we are using
a predictive approach. We plead guilty however to using a global approach
in that we condition over the region x€Cx In effect we average
p(t”llx, data) over a conditonal distribution on x. The pure predictive
approach should be local, i.e.

select Cx such that

~

f
p(t=1{§,data) 1'26 for x€C,»
<§

for x€C

ZN 4]

We are at present investigating such models, and in defence of using the
global approach we appeal to the mind of Sherlock Holmes, who said

'While the individual man is an insoluble puzzle, in the aggregate he
becomes a mathematical certainty. You can, for example, never foretell
what one man will do, but you can say with precision what an average
number will be up to.'

(A. Conan Doyle. 'The Sign of Four')
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The rational expectations revolution has re-proposed the necessity
of a deeper analysis of the role expectations play in economic model
building. It would be an "intellectual fraud" to claim that the expect-
ations controversy" was triggered by the debate generated by the rational
expectations hypothesis. The beginning of such a controversy can be
located in the 20's and 30's with the issue of the works of Keynes, Knight
and of the Austrian and Swedish schools.

In this paper we shall show Bruno de Finetti's contribution to this
controversy and put it in an updated perspective.

His contribution was timely, constant and extremely original. de
Finetti supplied a definitive account of the neo-Bayesian approach in
"Probabilismo" (1931b) where the notion of exchangeability was re-presented
and clarified within a thorough introduction to the philosophical under-
pinnings of the subjectivist paradigm. His survey of the other "points
of view" (Richard von Mises, Keynes, Jeffreys, Borel, Reichenbach,
Kolmogorov, Wald) offered critical hints for subsequent research (as well
as providing refined polemical strategies), whereas his sharp treatment
of utility analysis enhanced the operational and pragmatic content of his
approach.

Unfortunately, de Finetti's contribution was largely neglected and, at
the time, almost passed unnoticed in the economic profession, because most
of his works were published in Italian and those which were published in
French were not easily accessible in that they were written for mathemat-
icians.

Many economists refer to de Finetti's neo-Bayesianism as only an
historical and cultural curiosity and reveal a preference for those "ad-
hockeries for mathematical convenience" harshly criticized by de Finetti.

In this paper it will be shown how de Finetti's approach, in addition
to the occasional citations, can be a powerful tool for interpreting the
methodological debate triggered by rational expectations and also offers
a broader perspective for solving the crucial difficulties characterizing
the research agenda on the theory of expectationms.

1. Arrow (1951, ch.l, pp.2-4) identifies three "dramatic breaks"
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characterizing the modern formal approach to the theory of decision making
under uncertainty: Von Neumann and Morgenstern's view which, resuming
Ramsey's pioneering works, leads to a new understanding of the role of
expected utility maximization; the modern theory of statistical inference
as developed by Neymann, Pearson and Wald; the "new formulation" of the
whole problem of uncertainty suggested by Shackle.

These fundamental insights came at about the same time as the technical
developments of the mathematical theory of probability (in particular
Kolmogorov's axiomatic treatment of probability as a branch of measure theory)
which caused a paradoxical departure from the results relevant to behaviour
in the face of uncertainty.

In this very perspective, de Finetti's approach to the calculus of
probability and decision making under uncertainty takes on a crucial role
and fulfils Arrow's wish for "a much clearer understanding of the problem".

2. In "Probabilismo," de Finetti (1931b) gives a definitive account of the
subjectivist approach to probability theory(l). In that paper, de Finetti
puts his approach in a broad epistemological perspective by referring to the
influence of Italian pragmatism(2), Mach's positivism(3) and certain insights
of Poincaré on his thinking(4), while carrying out an in depth analysis of
concepts which are still essential to current research programmes on the
theory of expectations.

In "Probabilismo," probability theory emerges as an unique and general
method for dealing with decision making under uncertainty. Probability
is no longer "a thing in itself"”, but a purely epistemological concept
with a relative and subjective value, relevant also for those who are only
concerned with practical applications (de Finetti, 1931b, p.26).

Within this framework de Finetti removes "the fetish" of true or false
probability, as a meaningless statement claiming that the observation of

(1)This long essay provides an exhaustive discussion of the foundations of
probability theory and springs from a shorter paper (completed by April
1928) which was set aside by de Finetti because of the many difficulties
encountered in getting his point of view understood let alone accepted
(c.f. de Finetti, 1931b, p.5, note 2). "Probabilismo", although written
without formulae and mathematical expressions, utilizes and discusses
analytical results previously obtained by de Finetti (1929, 1930b, 1931a).

(2)As suggested by Papini the cultural position of Italian pragmatists,
such as Caleroni and Vailati, can be summarized by their concern "to
teach the prudence and tricks by means of which it is possible to
succeed in formulating propositions that have a meaning". According
to the pragmatist approach the meaning of each statement is given by the
set of predictions and expectations, embodied in it (c.f. Calderoni and
Vailati, 1909). For an interpretation of de Finetti's pragmatism c.f.
De Felice, 1981.

(3)"My point of view is ... the analogue of Mach's positivism, where by
'positive fact' we mean that we can use our own subjective opinions"
(de Finetti, 1931, p.3; authors' translation).

(4)With respect to some subjects that we shall discuss in due course, it
is important to point out that de Finetti (1931b, p.6) quotes Poincaré
so as to strengthen his claims that probability calculus, and not logic
is the key to an understanding of scientific method.
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a frequency can prove a probability assessment(5). Rather it is correct to
speak in terms of the probability of a single event, since the concept of
proofs of the same phenomenon is arbitrary, as is that of elements of the
same class in logic (de Finetti 1931b, p.16). Thus probability, as the
psychological perception of an individual, can be measured and subjected to
mathematical formalization (de Finetti, 1931b, pp.39-41). de Finetti's
frame work is completed by the introduction of the notion of exchangeability,
relating the concept of subjective probability to the problems of classical
statistical inference while removing all the metaphysical apparatus of
constant but unknown probabilities, of independent proofs and of hypothetical
values of probability (de Finetti 1931b, p.36).

3. The approach of "Probabilismo" is corroborated and enhanced by de
Finetti's reviews of other probability theorist's writings. In these
papers he often reaffirms the "total" (i.e. general and universal) nature
of probability calculus as opposed to the "incomplete" (i.e. partial and
specific) points of view which aim to limit its applicability to specific
fields and problems (de Finetti, 1938a, p.1l5; 1941, (p.2). Subjectivism is
defended as a natural and irremovable concept(6) and the absurdity of the
verification of a probability assessment through the observation of a
frequency is again discussed with respect to Borel's "Traitée"(de Finetti,
1939, pp.8-12), von Mises's notion of 'kollectiv' (de Finetti 1937a; in
particular the section "La frequenza limite e il teorema di Bernoulli) and
Wald's critiques (de Finetti 1938a, pp.8-12). The axiomatic approaches are
analysed in great detail (de Finetti 1949, 1951) and criticized for their
lack of practical sense(7).

There is instead a substantial area of agreement with Cambridge
Probability Theorists (de Finetti, 1938b). For de Finetti, as for Keynes
and Jeffreys, probability is a conditional concept so that "... the
probability of an event makes sense only if it is relative to a specific
body of knowledge" (p.351l) and "opinion is not generated by experience, but
experience tells us the circumstances in which we find ourselves, from which
we may select an opinion related to experience" (p.355).

However, in spite of this similarity of views essentially concerning
the problem of induction, de Finetti disagrees with Keynes and Jeffreys
about the subjective meaning of the notion of probability. In fact both
Cantabrigian authors, as members of the logical school, claim that
probability expresses a degree of implication between a proposition and a
specific body of knowledge (or between two propositions) and that this
degree of implication is unique. Moreover Keynes, in contrast with
Jeffreys (1931, pp.222-4), holds the opinion that not all probabilities are
quantifiable and that they cannot always be ordered. For Keynes given two
probabilities we may face three distinct kinds of situations: one in which
we can assign a numerical measure to our degrees of belief, one in which,
although we cannot measure them, we can still assert that one is bigger than

(5)In de Finetti's perspective as well, no concept pertaining to probability
can be introduced a priori but must always be defined with respect to the
probability assessment, e.g. you cannot attach an a priori meaning, as an
hypothesis, to the notion of independent events.

(6)"I do not care whether an individual is normal and thinks equally probable
the ninety numbers in a lottery or whether he is superstitious and assignes
a higher probability to the numbers he dreamed about; what is essential
are the mathematical laws with which these evaluations are combined in order
to obtain other evaluations" (de Finetti 1937a,p.14; authors' translation).

(7)This critique is resumed in de Finetti's treatise (1970, p.728)
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the other and finally one in which no comparison of magnitude is possible
(Keynes, 1929,p.36). Thus probabilities are only partially ordered. When
numerical values can be assigned Keynes subscribes a frequentist view and
appeals to the principle of insufficient reason (Keynes, 1921,p.44).
Keynes's approach, vis-a-vis de Finetti's subjectivistic framework, is not
capable of fully translating probability theory in probability calculus and
does not envisage probability theory as a unique and general method for
dealing with decision making under uncertainty (de Finetti, 1938b,p.359).

4, In 1931 de Finetti also tackles the problem of the mean from Chisini's
point of view and among other results obtains the general expression for
associative means (de Finetti-Nagumo-Kolmogerov theorem) (8). Exploiting
this result, he suggests an approach to utility theory alternative and
symmetric to the Von Neumann and Morgenstern's axiomatic one (9), so com-
pleting the subjectivist approach to decision making in the face of un-
certainty (10). In fact the introduction of the utility function "helps to
reconcile the more general coherent behaviour in a probabilistic sense with
classical behaviour based on mathematical expectation (i.e. on the notion
of fair bet)" (de Finetti, 1952,p.18, authors' translation).

5. de Finetti's critique of Neyman and Pearson's theory, discussed with
reference to Abraham Wald's work, is consistent with the basic tenets of
"Probabilismo".

The aim of the Neyman-Pearson school is that of developing a theory
of statistical induction based on purely objectivistic foundations so that
probability has no other meaning - "not even for distraction or convenience
sake" - than that of a long run frequency.

de Finetti's critical analysis (1951, 1959) focuses on the foundations
of the programme and emphasises the lack of practical meaning of the method.
From a frequentist point of view "to accept a hypothesis ... is not to
attribute to it any kind of probability or plausibility; such acceptance is
a mechanical act, based not on a judgement of its actual validity, but on
the frequent validity of the method from which it was derived". 1In other
words it is "the criterion followed by the man who buys a suit of brand A
that he considers defective instead of buying a suit of brand B that he
considers non-defective, because he knows from statistics that A has a
smaller percentage of defective suits than B. For him, the direct com-
parison of the two suits has no value at all, since it concerns only in-
dividual cases (de Finetti, 1959, p.33).

Wald's 'involuntary' revolutionary work goes beyond the objectivist
approach.(11) It identifies the fundamental characteristic of a decision
in its economic effect, makes effective Neyman's concept of inductive
behaviour and discloses that the choice is between decisions rather than
hypotheses (de Finetti, 1951,p.190). But from the point of view of

(8)de Finetti: (1931b) pp.381-383, c.f. in particular notes 5 and 6.
(9)This approach is developed and enhanced by Daboni (1984).

(10)In Von Neumann and Morgenstern's approach the notion of probability is
accepted as something already known. They use "the perfectly well
founded interpretation of probability as frequency in long runs which
gives directly the necessary numerical foothold." For criticism of
this approach c.f. de Finetti (1952, p.l1l5).

(11)In a sense Wald, in order to find a conceptual framework for objectivist

statistics wound up by destroying it rather than justifying it (c.f.
de Finetti, 1959, p.37).
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subjectivism another step is required; the choice of an initial distribu-
tion(12). To choose an admissible decision rule simply means to choose a
Bayesian rule, that is, at least implicitly, an initial opinion (13): "Wald
should have asked himself whether ... such a rule should be chosen not
arbitrarily but as reflecting a real initial opinion", (de Finetti, 1959, p.48).

6. At this stage it is clear that the "dramatic breaks" identified by
Arrow were already present and well-posed (devoid of inconsistencies and
misunderstandings) in de Finetti's neo-Bayesian and neo-Bernoullian view.
As many years before(14) the difficulty of accepting and correctly under-
standing was still there but on a larger scale. It is exactly in this
sense that the "new formulations", such as that suggested by Shackle, are
justifiable only in an historical perspective, since they appeared during a
period of total bewilderment in the field of probability. A bewilderment
that, as de Finetti pointed out (1952, p.14), discouraged those who should
have envisaged in probability theory the foundations of their doctrines

Although during the last twenty years econometricians and economists
have been very interested in Bayesian ideas and methods (c.f. Zellner, 1985),
that same bewilderment expressed by de Finetti in the early fifties is still
creating the crucial difficulties characterizing many research programmes in
the theory of expectations in economics.

7. It is paradoxical that the Austrian school upholds the role of subject-
ivism in economic method yet at the same time considers probability calculus
inapplicable because economic events are single and non-repetitive.

Lachman's itinerary (1976) is sufficient to clarify this paradox(15);
the cultural climate and references of the Austrian research programme are
the same as those of "Probabilismo" (the references to Mach and Poincare,
the recognition that Schumpeter applied Mach's positivistic methodology to
economics, the relevance assigned to pragmatically based methodological
instruments) (16) . The role of uncertainty, as a basic feature of the
economic world, is crucial(l7); events are singular and the standard of
subjectivism is extended from tastes to expectations so that "the formation
of expectations is an act of our mind by means of which we try to catch a
glimpse of the unknown; each one of us catches a different glimpse".
Nevertheless this attitude towards uncertainty, instead of leading to a
spontaneous application of the subjectivistic approach to probability in its
"total" view, leads to a flat refusal of the calculus of probability. The
frequentist mistake creates an unsurmountable obstacle. Shackle (1972)
summarises his position in the title of section 34.40, "Probability concerns
groups of events, not single critical choice". Ludwig von Mises shows a

——.

(12)We conform to de Finetti's terminology and use the word initial instead
of a priori.

(13)For a superb discussion of the technical and epistemological issues
involved in the problem of intial probabilities c.f. de Finetti and
Savage (1962).

(14)c.f. note 1.

(15)Further insights are to be found in Lachman (1977, pp.20-34) and in
Kirzner (1982).

(16)c.f. Lachman (1976, p.56).
(17) By paraphrazing Shackle and von Mises, we may say that we live in a

kaleidic world and there is no stability in the course of human events
and consequently no safety, c.f. Lachman (1976), p.67).
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similar preoccupation when he distinguishes between class and case proba-
bility: "Case probability is a peculiar feature of our dealing with problems
of human action. Here any reference to frequency is inappropriate, as our
statements always deal with unique events which as such ... are not members
of any class ... Case probability is not open to any kind of numerical
evaluation." (18)

This lack of understanding about foundations neutralizes the potent-
ialities of the Austrian method and leads to either operational impotence
in the face of uncertainty or to those falsifications de Finetti warned us
about. Shackle's solution(19) is founded on fictitous arguments (such as
the distinctions between "unique trial", "isolated trial" and "crucial
trial" or the hypothesis that economic agents make decisions by focusing
their attention on the consequences of the most favourable and the most
unfavourable of the possible cases) and is empty of any empirical content:"
rather than a criterion it is more an attempt at describing certain specific
behaviours; as such I do not know how much it conforms to reality" (de
Finetti, 1969, p.120; authors' translation)

8. As we have pointed out above, closely related to the rejection of the
"total" view of probability theory is the distinction between risk and
uncertainty. This distinction, originally suggested by Keynes (1921),
part 1; 1937) and Knight (1921, ch.7) is once again of some interest in
framing the contemporary research agenda in the theory of expectations(20),
in spite of Stigler's specification(2l) and Friedman's critique (which
explicitly refer to de Finetti's subjectivist and "total" approach(22).

(18) The same problem is put forth by Hicks (1984, p.14): "An experimental
science can make use of the probability calculus, which makes it
possible to enunciate useful laws in terms of ...... numerical proh-
abilities. There is no clear meaning of a numerical probability
except in relation to a sequence of experiments, experiments which are
willing to treat as cases of the same phenomenon." Moreover, elsewhere
Hicks (1979, p.l1l05) agrees with the position of Cambridge probability
theorists and in particular "on those points where Xeynes and Jeffreys
appear to differ, I generally find myself on the side of Keynes."

(19)This "solution" has found some support in the economic profession: e.qg.
Turvey believes that Shackle defines a new treatment of uncertainty and
van de Graaf & Baumol claim that he "develops a quite devastating
criticism of the orthodox probhability approach to expectations to be
found in most theoretical discussions by professional economists".
(c.f. Turvey et.al. 1949)

(20)An illuminating example is Frydman & Phelps's treatment (1983) of the
distinction between measurable uncertainty and true uncertainty.

(21)stigler in the "Introduction" to the 1971 edition of Knight's work
claims "... tradition has assigned a distinction between risks (capable
of actual treatment) and uncertainty (stochastic events not capable
of such treatment) as Knight's contribution. Fortunately this is an
extreme caricature of his work, because modern analysis no longer views
the classes as different in kingd". (Stigler 1971, p.XIV). Also LeRoy
and Singell (1986) have rejected the distinction between measurable
and unmeasurable probabilities as correctly representing Knight's
approach.

(22)c.f. Pelloni (1986a)
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The modern role of the Knight-Keynes tradition is clearly expressed by
Lucas's view (1976, 1977) (23) which supports risk as an explanatory and
operational tenet of his equilibrium theory of business cycle and of his
critique of standard economic policy evaluation(24). According to Lucas
the rational expectations hypothesis(25) makes sense only when it refers to
recurrent events, thus only in a frequentist context. The neo-Bayesian

approach is rejected a priorl because of 1ts lack of "empirisal &sntant"

in the sense that "without some way of inferring what an agent's subjective
view of the future is, this hypothesis is of no help in understanding his
behaviour." (Lucas, 1977, p.l15). In these terms subjective Bayesianism

is reduced to an empirical psychological theory of degrees of belief, which
can accommodate for psychotic behaviour given a sufficiently abnormal view
of relevant probabilities.

Actually Lucas in interpreting neo-Bayesianism in this way, rather
than as a theory of decision making under uncertainty, makes a common inter-
pretative mistake. (26) The identification and the rebuttal of this fallacy
(and its implications) are present in de Finetti's writings, though referr-
ing to different contexts.(27) The psychotic behaviour argument is in
reality a fictitious problem entailing a non "total" view of probability
calculus. (28) Possible references to insurability are logically and op-
erationally irrelevant since in theory any random prospect can be covered
by transferring it to another individual or institute willing to take it on;
in a concrete practical sense references to insurability might be appropriate
and well-posed but empty of any general conceptual meaning, since they would
reflect contingent or institutional situations (c.f. de Finetti & Emanuelli,
1967) .

The essence of the question is that we are dealing with a problem of
decision theory and from a subjectivist viewpoint a decision making criterion
must have general validity since it is deduced not from specific empirical
hypothesis but from general logical conditions of coherence (c.f. de Finetti,
1969, p.35). It is nonsense to restrict the criterion validity (particu-
larly on the basis of uncessary and ill-defined hypthesis) to the situations
of risk, since for the remaining situations decisions would be left to
intuition or to arbitrary choices from among more or less fictitious criteria

(23)Meltzer (1982) as well sees the Knight-Keynes tradition as an alternative
model that can be combined with the method of rational expectations, in
this way subscribing as conceptually discriminant the existence of
insurable and uninsurable risks.

(24) LeRoy and Singell (1986) label Lucas as Keynesian from a methodological
point of view. Ironically, in a different perspective, Lucas can be
viewed as a neo-Austrian, c.f. Laidler (1982).

(25)Muth's (1961, p.316) original definition states that "expectations of
firms (or, more generally, the subjective probability distribution of
outcomes) tend to be distributed, for the same information set about the
prediction of the theory (or, the "objective" probability distribution

of outcomes)".

(26)A similar misinterpretation is due to Solow (1984).

(27)C.£f. Pelloni (1986b) for a discussion of the REH in a neo-Bayesian
perspective.

(28)de Finetti discussed this point several times, e.g. the aforementioned

(note 6) remark about superstition and de Finetti (1937b, p.71, note (e)).
For further details c.f. Furst (1978, pp.l14-120).
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expressing partial reasons of possible preference. If the situations of
risk are these which show more "reqularity" and less "dissimilarity” of

evaluation between individuals then the risk-uncertainty distinction has a
purely descriptive (and accessory) meaning and is incapable of distinguishing
a priori the applicability or not of an operational scheme.

9. Muth's reference to an "objective" probability as a standard of
rationality has a methodological content which goes beyond the frequentist
interpretation. It can be seen as a situation of "consensus" of expect-
ations, guaranteed, for instance, by economic theory or by a public
prediction structure such as that of Grunberg and Modigliani. (29) In other
words, it might refer to a situation of consensus with respect to a fore-
casting system and imply a judgement about the goodness (in the sense of
fitting the facts) of forecasts generated by this forecasting system. (30)

In this perspective the issue of rational expectations is linked with the
problem of empirical evaluation of models. In particular, research on
calibration as the natural criterion of empirical validity can suggest a way
to define in a less ambiguous manner "the correct objective probability
forecasts". (31)

It is well known that, from the point of view of subjectivism, prob-
ability, as a measure of degrees of belief, cannot be corroborated or
falsified by facts(32) as "a scientific theory, in the sense of law, is not
a statement whose truth or falsity is objectively decidable" (de Finetti,
1971, p.88). All this does not mean that subjectivists do not recognize
the important role of the problem of giving a clear and unambiguous meanlng
to the concept of measure of success, as a measure of the goodness of
evaluation of a prediction (either an individual or a forecasting system).
The method is implicit in the definition of probability as betting odds.

The method of employing scoring rules (to which also David (1984) refers,
pp.21-24) "gives, in fact, a direct behavioural meaning to the familiar
expression of a belief in terms of a numerical probability, leads auto-
matically to an overall comparison between the outcomes of different personal
evaluations" and so "the accumulated loss ... is indeed a thoroughly con-
crete measure of success" (de Finetti, 1962, p.360). Consistent with the
approach foundations, the operational meaning of this measure is guaranteed:
"I find no difficulty in admitting that any form of comparison between prob-
ability evaluations (of myself or of other people) and actual events may be
an element influencing my further judgement, of the same status as any other
kind of information" (de Finetti, 1962, p.360).

The critical and recurrent remark that the subjectivist paradigm, when
facing situations of interpersonal evaluations and collective choice, is

(29)A suggestion for a non-frequentist interpretation of Muth's hypothesis
can be found in De Felice & Pelloni (1982, pp.68 - 71).

(30) About these issues Box (1980) is of extreme interest. Illuminating
remarks can be found in Zellner (1985).

(31)Dawid's research programme on calibration (1982, 1984a, 1984b) shows
similarities with the REH which might be interesting for further research.
For discussion and criticism of Dawid's work c.f. Lindley (1980,
pp. 31-32; 1982) and Oakes (1985).

(32)This problem is thoroughly discussed in de Finetti's treatise (ch.5,
section 9). However he had already dealt with it in his critique of
Borel and von Mises (de Finetti, 1937, 1939). Thus if Lad (1984) is
right in locating the origins of the calibration question in Frechet
then paradoxically some of the answers and cbjections are antecedent
to the origins.
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impotent (since from this extreme viewpoint, it would seem that any set of
forecasts is as good as any other) was already rebutted by de Finetti,
without adding or modifying anything of his original approach as presented
in "Probabilismo". Thus even for the problem of goodness of evaluation,
which is still unsettled and represents the heart of the methodological
debate triggered by rational expectations, de Finetti supplied if not the
answer at least a broader perspective useful in avoiding dangerous pitfalls.
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SOME CHARACTERISTICS OF BAYESIAN DESIGNS

Klaus Felsenstein

Technische Universitdt Wien
Wien, Austria

1. INTRODUCTION

A considerable number of stochastic models comprise the
potentiality of selecting the experimental conditions. A control-
variable influences the observations and likewise the gained
information about some parameter or in a more Bayesian mode
of expression the 'state of nature'. Reaching our goal of in-
creasing the information demands a model-formulation with in-
dependence between the parameter and the chosen control variable
or with a concrete functional connection that seems defendable.
The choice of an appropriate likelihood is aggraviated by speci-
fying how the distribution of the observations is altered by
different levels of the control variable. An even more difficult
problem is the valuation of information and precision. Each
fmeasure of information has to stand many discussions about its
shortcomings and hardly any can be employed generally.

It's again the Bayesian approach that offers a reasonable
conception of experimental design. Especially decision theory
covers rational methods of solving design problems. We give a
brief survey of posing the problem and use entropy as a measure
of information.

2. THE MODEL

The distribution of some observable (multivariate) random
quantity X, depends upon a number of controlled factors sum-
marized as an element out of a set of designs v€Y and upon
a parameter 6. f(x|6,V) denotes the density of X,

A function §(x,v) into a space of strategies A is called
a decision rule and a nonnegative function L(6,a),a€A , repre-
sents a loss-function. A strategy consists of the choice of a
design v and a decision rule 6§, therefore the loss could be
written as L(6,v,8(.,v)).
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The goal of experimental design is to minimize the result-
ing Bayes~-risk with respect to a prior distribution of 6 with
density m(9).

r(m,a) = r(w,v,8(.,v)) ==]EX1; eL(ervIG(xvlv))

(:Exv 9 denotes the expectation with respect to the joint
14
distribution of (Xy,0). )

A Bayes-strategy a* fulfills the equation
r(m,a*) = in r(m,a) .

The task of finding a Bayes-strategy can be decomposed into
two optimization problems. If §*(.,V) is the Bayes-decision
for a concrete design Vv then the design ¥* that minimizes the
posterior Bayes-risk

f'("Tr"’) =]EX eL(elvls*(le ))
v
leads to the Bayes-strategy a*= (v*,8*(,,v%)) .

Subjectivity enters this fairly general concept through
the prior distribution and the loss-function. The latter
measures the error in the decision on the parameter as well
as the drawback of a specified design. Overall high costs and
effort due to v are punished with the loss. Often L is de-
composed into the decision loss and costs

L(elvls('lv)) = L(GIG(-IV)) + C(V) .

Example. Most of the research concerning design problems
has been done for linear regression models. In this case the
design determines the moments of the random quantity X.

var(x,le) = (@A),
where VGVGRm, P r" - ]Rr, 6€IRr .00> 0 is some unknown constant
called the precision of the regression model. The known func-
tion A: R »+ IRt measures the efficiency of the design v. A
vector of observations Xy= (XV1,...,XV ) leads to
n

Xp = F O+ g (2.1)

with v = (v1,...,vn), the design matrix F=F, = (V(v ),..,w(v ).
The vector of errors ey is supposed to have a multivariate
normal distribution N(0,0”!I) with I = diag( X™Yv,),...,A"%v )).
The actual parameter is (6,0). Estimation of © represents a
decision § and the loss L is a quadratic form

L(6,0,8) = h(a) (6-8)*'A(6=-3)
with h>0 and A€ R™*T and positive definite.
Both of the following assumptions I) or II) concerning
the prior distribution of (6,0)

I) The conditional prior 6|a is normal N(u,a”*® ).
IT) Only linear estimators are examined and the prior distri-
bution satisfies E(8|a) =u and Cov(f|a) = a~! & .

yield the Bayes-estimation GB of the Parameter 0.
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$ (F's”F + 07171,

The inverse of the posterior covariance % is called the Bayes-
information matrix.

& (P': '1§v + o=y ) where

Now the interest centers around the characteristics of
a Bayes-design which has smallest risk.

T(T,v) = r(m,v,05) = EXu,e,ah(a)(e-eB)'A(e_e~B)
]Ee,ah(a) E (6,-0* - 83071 (u=-6))'A(Bg-6* -3 0"1(u-0)) =
Eq Jh(o) E tr[A(85-6%) (8,-6%) ' + A3o~t (u-0) (u-6)'2723]

Xyl0,0
Xy|0,0
with 6*
Since

=Eyol0,0(%8) -
g, |00 (0pm0%) (95-0%) " = % 3P I7'rd it follows
I

£(n,9) =B, h(a)a™! tr[A@(F'T7IF + 071)0)]
= tr(A8) B, h(a) o™,
Thus the prior of a and the function h(.) should satisfy

Eg h(a) a=! < »
Under these conditions the Bayes-design corresponds to an A-
optimal design in the usual sense applied to the posterior
covariance matrix multiplied by the loss matrix A.

that

nt and M denote the set of positive and non-negative

definite rxr matrices respectively. The function A(M)=tr(AM
is convex for MeM . A is bounded on the open subset of matrices
{M+1/20"1|MeN*} and therefore continuous. Hence the function
B(M) = tr[A(M+®~')"!] is continuous on M. If now § and X are
continuous and V is a compact subset of R™ then a Bayes-design
and a corresponding information matrix exist since a continuous
function attains its infimum over a compact set.

_1)

3. ENTROPY

In the Bayesian point of view the choice of a distribution
p(9) for the parameter describes a decision procedure. The
Bayes rule p* minimizes the posterior Bayes-risk, indicated by

Eg|y L(O,p(.)) .

If we try to advance coherently the posterior distribution
ﬂ(elx) should be the Bayes-decision p*. Hence a loss-function

with inf EqL(0,p) = By L(0,T)
is deemed appropriate for the prior m. Assuming differentability

of L it is well known that there are a constant ¢ and a real
function T such that L(6,p(8)) = ¢ log p(8) + T(6).

All suitable loss-functions lead to a Bayes-risk which
is related to Shannon’s measure of information for a density
p. The entropy of a density p is defined by

H(p) := [ -log p(6) p(B) ad .

In that context L can take negative values too. We should better
use utility functions and keep L in conformity with the notation.
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The concept of entropy loses some of its shortcomings if it
is not used as an absolute measure of information but as a
distance measure of distributions.

We return to the design problem and choose the loss

L(6,v,m(8|Xy)) = 1log m(6|Xy) - log m(8) .
Then the posterior Bayes-risk can be written as
g(m,v) = E&Fﬂxﬁpgmﬂxw - log m(6)

EXU-H(“('IXV)) + H(w) .

The Bayes-risk coincides with the expectation with respect
to the marginal distribution of Xy of the reduction of entropy
comparing the prior and the posterior distribution. Since the
inequality

S log £(t) g(t) d&t £ J log g(t) g(t) dt

holds for densities f and g it follows that the Bayes-risk
is non-negative.

Naturally the Bayes-design v* has to maximize the expected
increase of information,
P(m,0*) = igf £(m,v) .

v* is called entropy-optimal design for the prior 7. An imme-
diate consequence of that definition is

Theorem 3.1. If E,jglog m(6|Xyx) 2 I, .log 7(8|X,) holds
for all designs v téég v¥* is entropy-opt%&gl.

Of course replacing the observation Xy by a sufficient
statistic for 6 leaves the entropy information unchanged. De-
fine two designs 01 and 02 by Xv = (X,t) and sz = t where

t(X) is a sufficient statistic then
0
£(m,0,) = S/ log £é§§%%yl £(x,t]0) m(8) A0 d(x,t)

£(x|t,0)£(t,6)
g(x[t) g(t)

/S log fé%%%%%l £(x,t[8) T(8) a0 d(x,t)

/T log ﬁé%%?l £(t]6) m(8) 4o dt .

Since t is sufficient the densities fulfill f(x|t,0) = g(x]|t)
and only the second integral remains which is the Bayes-risk
of the design 02.

Sl log f(x,t|8) w(O) a6 d(x,t)

+

Similarly the entropy-information of a design v for 6
and another parameter 6° which is a bijective transformation
of 8, 6= T(6), is the same. This is an obvious consequence
of the transformation of densities.

Example. We consider the classical regression model (2.1)

and want to characterize an entropy-optimal design v*., It turns
out that in the Bayesian sense D-optimal designs are entropy-
optimal. The parameter of interest is ® and no prior distribu-
tion of the precision o is specified now.
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Theorem 3.2. If the parameter 6 in the regression model
(2.1) has a normal prior distribution N(u,®) then v* is entropy-
optimal iff det ¢,, is minimal. ¢,, is the posterior covariance
matrix.

Proof: The posterior is a normal distribution with the mean
6 = $(F'Z7'X, + 07'n) and the covariance
3 = (F'Z7F + o"Y)T1 |

Hence log m(8]X,) « =-1/2 log det® - 1/2 (e-eB)'é'l(e- 6.)
and B
~ . aeyn

Eelx log m(8]x,) = C - 1/2 log det & - 1/21Eelxtr(<b 3).

Interchange of expectation and trace yields
E@[x log ﬂ(elxv) = C -1/2 log detd - r/2

where C is independent of ¥. The right_term is independent of
X. Thus v* is entropy-optimal iff det Qv* is a minimum.

4. NON-INFORMATIVE PRIORS

Many techniques have been proposed for specifying a prior
even when hardly any usable information is available. In this
case the determination of the prior should not insert uninten-
tional restrictions for the parameter. The entropy concept is
adapted for the construction of such prior densities.

We are looking for a distribution that maximizes the
information of the data
I{m) := -IEeH(f(.le)) + H(m) .

The prior f is said to be non-informative if I(m) is maximal
for fi. This solution f can be described by

f(0) « exp(-H(f£(.]|6)) . (See Zellner(1977).)

If the observations are derived from a location family
then the non-informative prior density is constant. The data
density f(x|0) depends on 6-x only and therefore H(f(.len is
constant. Location-scale families with density

1 x=-0
have the non-informative prior
- 1
ﬁ(61,62) = .

62

Now interest centers on the optimal design under non-in-
formative prior. In case of location families ¥* turns out
to be the design that maximizes the entropy of the marginal
density of the data. The observations shouldn’t contain any
other systematical structure but the location parameter in
order to avoid confounding of different effects.

Theorem 4.1. Suppose Xy has a location distribution and
the prior is non-informative then v* is entropy-optimal iff
it maximizes H(mv(x)) where mv(x) represents the marginal
density of xv.
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Proof: Ey H( 7(.|Xy)) = = [flogm(6|x) w(6|x) A6 m (x) dx
v v

==~ fm(0) [ SE(x|6,v) logm(0) + £(x|6,v) log £(x|6,v)
-f(x|6,v) log m,(x) dx ] do .

m(6) and I(m) are constant and the entropy H(f(.|8)) is in-
dependent of 6. Hence the integral equals

c, + SI£(x]6,v) log m,(x) dx c, dé
c, + c4 J mv(x) log mv(x) dx .

The constants c,,c, and c, don“t depend on v and the integral
is maximal if H}mv%x)) is“maximal.

-1
Example. Since Yy:= (F'F) F'Xy has a normal distribution
with mean 8 and is a sufficient statistic the regression model
described in (2.1) belongs to a location family. The constant
(improper) prior leads to a normal posterior with

(F'F) 'F'X,

o 1(F'F)? if =1 .

Following the ideas in theorem 3.2 we obtain a similar compar-
ison. In this case the entropy-optimal design coincides with

a D-optimal design in the classical approach.

mean 0*

and covariance o]
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ABSTRACT

Multiple choice tests are much, but not exclusively, used in the British
public examinations system., The analysis of results from such tests has
been subject to much debate, particularly concerning the appropriateness of
latent trait models.

In this paper I adopt an entirely subjectivist approach. I believe the
purpose of a public examination is not to measure in some objective sense the
performances of candidates, but rather to report the judgements of examiners
as to those performances. It is the examiners' judgements that are modelled
by marks and grades, not something directly about the candidates themselves.
Adopting this viewpoint, I make two groups of comments pertinent to multiple
choice tests.

First, if one is to use latent trait models to analyse candidate re-
sponses, then one must be clear as to the meaning of parameters within the
models, I argue that latent trait variables are technical devices which
encode certain expectations about the data, but other than that they have no
physical meaning. Because of this view, I shall argue that latent trait
models are appropriate for critically evaluating assumptions about examina-
tion data, but are inappropriate for the purpose of ranking candidates' work
to report and grade individual performances.

Second, one should consider in what form to elicit responses from the
candidates. De Finetti suggested that candidates should respond with their
probability of the correctness of each possible answer to an item and that
these responses should be assessed by means of a scoring rule. However,
such schemes have many problems: the difficulty of getting candidates, still
at school, to accept the inevitability of uncertainty in their lives; the
problem of calibration, because they are unlikely to be equally good prob-
ability assessors. Perhaps more serious is the difficulty that a scoring
rule which encourages a candidate to honestly reveal his beliefs may not
reflect the manner in which the examiners wish to judge the candidate.
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INTRODUCTION

As Bayesians we pride ourselves that our approach to analyses is co-
herent - both in the technical sense of coherence and its everyday sense.
Yet, sometimes we confine our attention to the analysis of a model without
considering the implications of our philosophy for the generation of the
model itself: indeed, for our conception of the context in which the model
is developed and analysed. The essence of the Bayesian or subjectivist
approach, it seems to me, is the recognition that, as individuals, we con-—
tinually have to express beliefs, preferences, etc. and behave according to
these judgements. We wish these judgements to be as rational, as consist-
ent, and, perhaps, as fair as possible and we seek ways of thinking which
help us achieve this, A Bayesian is not simply someone who updates a prior
by a likelihood and then maximises an expected utility. He is someone who
thinks carefully about how to encourage - he hopes, ensure - consistency and
coherence in his judgements and actionms.

In the following, I wish to explore the implications of this view for
the manner in which we should conceive of certain aspects of the British
public examination system. The British system of GCE, CSE and, from 1988,
GCSE examinations is subject-based. There is no requirement to pass in
groups of subjects; each candidate is awarded a separate grade for each
subject taken. The form of examination, naturally, varies from subject to
subject. Apart from sitting formal examination papers, candidates may be
required to submit coursework or projects, or to be assessed practically or
orally., Within the formal papers, they may be required to write essays;
answer short, structured questions; or - this will be our concern - answer
multiple choice items. Given my prejudices expressed above, I shall not
refer to multiple choice testing by its other name: objective testing.

The interested reader may find descriptions of the British examination
system in Christie and Forrest (1981) and Mathews (1985).

Theories of educational assessment and the concepts they use seem to
have been developed, by and large, from the psychometric theories used to
analyse psychological tests, i.e. IQ tests, etc. They have at their base a
belief that inside every candidate lies something that might be called his
'ability or level of achievement in the subject being examined', that this
entity can be quantified on an objective unidimensional scale, and that the
purpose of the examination is to gather evidence from which it may be esti-
mated. The overall mark or grade awarded is an estimate of the candidate's
ability or achievement. I and others do not accept this: we have been
arguing for another, entirely different view of the examination process.

Our arguments may be found in French (1981, 1985), French et al (1986a, b)
and Vassiloglou (1982, 1986): here I only summarise our conclusion.

Firstly, the purpose of a public examination is not to measure in some
objective sense something directly about the candidate; but rather it is to
report the judgements of the examiners. Secondly, the examiners do not
make judgements about something that they postulate to exist within the
candidate, his ability or achievement or what-have-you; but rather they are
concerned with the quality of performance within the candidate's script and,
in the case of practicals, coursework and orals, within the processes
observed during the assessment.

That examinations are meant to report examiners' judgements is a view
that is entirely consistent with the subjectivist approach, and I shall
support that no further here. It does, of course, only make some sort of
operational sense if there is a general consensus among examiners, but that
I believe to exist and to be engendered by various procedures within the
examination system and, indeed, the wider educational context. However,
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the view that it is performances that are judged and not some intrinmsic
quality of the candidate does require brief comment.

Behind many other conceptions of the examination process is the belief
that one should allow for the day-to-day variability of candidates. Some
days a candidate will be 'on form' and others he will not. I find it con-
ceptually impossible, however, to attribute some of the qualities and flaws
within a candidate's script to his general achievement or lack of it, and
others to his day to day variability. Hence I believe it is impossible for
the examiners to do other than assess the performance that they have ob-
served. Whether one says it is the candidate's achievement on the day or
the quality of performance in his script which is assessed is perhaps a
finer point of language. I do have a distinct preference for the latter
terminology, however: it reduces the temptation to construct a model of the
mental processes of the candidate.

When judging the quality of a performance, the examiners express some-
thing very akin to a value judgement. To do this fairly and consistently
they need normative techniques akin to those used to assess multi-attribute
value functions to guide decision makers' preferences (French, 1981, 1985;
and Vassiloglou, 1984). Before they can make such judgements, though, they
need to understand how their examination components performed. Were there
any unforeseen biases; e.g. were any optional questions distinctly 'harder'
than the alternatives? To foster such understanding the examiners may
investigate their data statistically., How should any parameters within
such an analysis be interpreted? It is to answering this question that the
next section is directed, but considering only the case of a multiple choice
components.

LATENT TRAIT MODELS

Consider then the case of a multiple choice component. On this there
are a number of questions or items, for each of which several alternative
answers are offered. Candidates must select the one that they believe to
be the correct answer. Usually there is only one truly correct answer
among those offered: however, in variants some incorrect answers are
designed to be more 'sensible' than others: in yet other variants candi-
dates have to select several answers each of which satisfies some given
condition. Given that candidates' scripts take such simple forms, essenti-
ally sequences of ticks and crosses, it is not surprising that many statisti-
cal models have been developed to describe, analyse and summarise them: see
Lord and Novick (1968) and Weiss and Davison (1981). Moreover, such models
invariably contain candidate parameters which are highly correlated with the
number of correct answers that a candidate is expected to give. These
parameters have naturally been called abilities, and there is a strong temp-—
tation for examiners to fit the models to their data, thus estimating candi-
dates' abilities, and then to grade candidates according to these. Whether
they should do so has been a matter of some controversy (see e.g. Goldstein,
1979; Wood, 1978; and Wright, 1977). I believe that a Bayesian approach
can explicate matters greatly.

Before the examiners see any candidates' scripts, they have certain
expectations. Precisely what expectations will depend on many circum—
stances and will certainly vary from examination to examination. Since
these expectations will influence the judgements that the examiners eventu-
ally make of candidates' scripts, it is important the expectations are
critically examined in the light of the data. To do this, the examiners
must first formulate their expectations as clearly and as explicitly as
possible. For instance, they might argue as follows.
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The data will essentially be a two-way layout of responses with the
rows corresponding to candidates and the columns to items. Since the exam-
iners as yet know nothing about individual candidates, they may hold the
rows to be exchangeable: i.e. that a particular data matrix and any row
permutation of that matrix are equally likely. They might also hold the
columns to be exchangeable either because the items were designed to be of
equal difficulty or because, although the items were designed to be unequal-
ly difficult, the examiners do not know their order on the question paper.
In practice, colummn exchangeability is unlikely to be reasonable, examiners
usually design papers with a few easy questions at the beginning so that
candidates are not disheartened early on. Moreover, questions are commonly
grouped according to subject area. Some restricted version of column
exchangeability may be reasonable, nonetheless. The point that matters is
that some of the examiners' expectations can often be summarised by exchange-
ability or symmetry conditions.

Now exchangeability conditions have important implications for the form
that one's subjective probability distribution may take. The classic
result is De Finetti's Representation Theorem (De Finetti, 1937). He
showed essentially that, if one considers an infinite sequence of 0-1 vari-
ables to be exchangeable (i.e. if attention is focussed on a finite sub-
sequence, that subsequence and all permutations of it are considered equally
likely), then one's probability for a particular finite subsequence must be
given by a mixture of Bernoulli sequences. Put precisely, one's probability
for the subsequence, 01001l...01, in which there are r 1's and (n-r) O's
must have the form:

1
Pr(01001...01) = J 6% (1-8) ™) 5 (o) de. (*)
0

The precise density p(.) 1is not given by the exchangeability conditioms,
but the same p(.) applies whatever finite subsequence is considered.
Furthermore, if a finite subsequence is observed, p(.) should be updated
through Bayes' Theorem and this updated density used to form mixtures as in
(*) to predict further subsequences.

Expression (*) may be interpreted naively as saying that, as a Bayesian
believing in this exchangeability, one must use a Bernoulli model with un-
known parameter © and express one's beliefs in the value of 6 through
the prior distribution p(.). But this interpretation fails for a Bayesian
because it suggests that the parameter 6 has some physical interpretation,
here the probability of a 1 at any given position in the sequence. A
more satisfactory interpretation is that exchangeability and coherence imply
that various relations must hold between the probabilities Pr(...) that
model one's beliefs about the various subsequences. The functional form
(*) ensures that these relations do hold. The indeterminacy of p(.)
provides the degree of freedom that is left before the probabilities Pr(...)
are completely determined. The parameter 6 has no physical inter-
pretation: it is purely a technical device to ensure that exchangeability
holds. (See, e.g., Dawid, 1982.) 1In particular circumstances, one might
construct an appropriate p(.) by considering what one would expect the
mean number of 1's to be in a sequence and how confident one was in this
by specifying a variance. A beta distribution could be fitted to these
values to serve as p(.). Any subsequent analysis would, of course, in-
clude a check on the sensitivity of the conclusions to the particular choice
Of p(')o

Recently, much has been done to extend De Finetti's Theorem to
exchangeable situations other than infinite sequences of 0=l variables
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(Aldous, 1985; Diaconis and Freedman, 1982; and Goldstein 1986a,b).
Alwvays the conclusion is the same. Exchangeability and similar symmetry
requirements imply that beliefs should be modelled as mixtures of proba-
bility models. The parameters in these models act simply as 'indices' so
that the mixture may be taken and exchangeability ensured. Other than that,
parameters have no physical meaning. Much work still has to be done, but
there is little doubt that it will lead to the same conclusion. Unfor-
tunately, the two-way layout is one of the situations that still has to be
fully investigated. So the comments and interpretations that may be made
must be general rather than specific., None the less, some work has been
done (e.g. Aldous, 1981). Perhaps most important in this context is that
conditions leading to mixtures of Rasch models have been identified
(Lauritzen, 1982).

From the above it may be seen that the general interpretation of a
'latent trait model' in the examination context would be the following.
The examiners have some expectations about the data. These expectations,
expressed as exchangeability conditions, demand that they represent their
beliefs as a mixture of particular probability models. The parameters in
these models, which are known as latent traits within the classical theory,
have no physical significance; they are simply technical devices to ensure
the exchangeability. If the examiners are to judge candidates fairly, it
is important that their expectations are reasonable., Their reasonableness
may be tested simply by fitting the model to the data and checking its
goodness of fit: the Criticism phase of Bayesian analysis (Box, 1980).
If the model fits, then they have reasonable expectations; but they should
take care to note any outliers. Outliers may indicate either candidates
who perform atypically and so will need careful, individual consideration or
items which are atypical, perhaps easily misunderstood by certain categories
of candidates.

Latent trait models are therefore important tools with which examiners
may check their expectations. However, that is all they are. Parameters
within the models do not have 'true' values and to estimate them is nonsense.
Certainly estimates of 'ability' parameters do not provide measures of a
candidate's performance. So when judging an individual candidate's
performance, examiners should consider which items he got correct, not an
estimated 'ability' parameter.

THE FORM OF CANDIDATE RESPONSES

The above discussion assumes that candidates should say which answer to
an item they believe to be correct. De Finetti (1965) suggested that,
since they are unlikely to be certain in their beliefs, they should respond
with their probability of the correctness of each possible answer. So that
they are encouraged to reveal their beliefs honestly, he notes that they
should know that their responses will be assessed by a proper scoring rule.

What can be said about this scheme? The first point to note is that
its adoption would in no way invalidate the discussion of the previous
section. One would need to adopt exchangeability conditions appropriate to
a two-way layout in which the responses could be any value between O and 1,
rather than being limited to two possible values: but that is all. The
same interpretation of latent trait parameters, etc. would still hold.

Also, since candidates are allowed more possible responses, one might
hope that the examiners can judge their performances better. But this will
only be true if the candidates are fluent in the language in which they have
to respond: that of uncertainty. Unfortunately few school leavers are.
While Lindley (1984) is undoubtedly right that one of our most pressing
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needs in society is to train more people to appreciate uncertainty and co-
herent ways of reacting to it. I cannot but help feel that it is forlorn to
hope that more than a minority of school leavers will understand the purpose
of probability assessment sufficiently to answer items meaningfully. Part
of the reason that multiple choice tests were introduced into the British
public examination system was to allow candidates' knowledge and ability
within a subject to be assessed, even though they might have poor powers of
expression in English. Would weak candidates be better able to understand
how to express their knowledge through probabilities? However, for the
right candidature, knowing they had to sit multiple choice tests in this
form might be an excellent incentive to learn to represent their strengths
of belief as probabilities and to behave coherently. Indeed, in the Open
University some courses on risk and professional judgement do use such tests
and find many pedagogic advantages from doing so.

It is perhaps worth remarking at this point that, while it is clear to
me that probabilities undoubtedly provide the most suitable framework in
which an individual may think about his uncertainty (French, 1986), it is not
clear to me that they necessarily are the most suitable medium in which he
may communicate his uncertainty to another. Probabilities are subjective.
They are part of an individual's thought processes. They are not part of a
public language. Although they may have a role to play in communication,
that is not their primary purpose and there is no reason to suppose that they
are a particularly efficient means of communication. So asking candidates
to reveal their knowledge and uncertainty by responding in terms of prob-
abilities may not be quite such the ideal that it appears.

However, suppose that it is. Moreover, suppose that the candidates
understand what is required of them and try to the best of their ability to
answer in probabilities. Then there is still a difficulty. They will
differ in their skills as probability assessors. Some will be better cal-
ibrated than others. This might not be a problem if it were possible to
assess their calibration separately from assessing their performance in the
subject examined. But such is unlikely to be the case. The fifty or so
items asked in a typical test will not provide sufficient evidence to sep-
arate calibration effects from the substantive part of the candidate's
performance, particularly since it is known that calibration in such tests
depends on item difficulty (Lichtenstein et al, 1982)., In short, one
candidate might be graded higher than another in, say, biology simply be-
cause he was the better probability assessor. To be fair, whatever the
style of questioning, there is always the problem that a candidate may be
disproportionately rewarded for his examination technique: but, neverthe-
less, I do feel it is a significant issue here.

Apart from these practical difficulties in asking for probability re-
sponses, there is also a conceptual difficulty, at least there is in the
scheme suggested by De Finetti. Who does the scoring rule belong to?

De Finetti suggests that to encourage the candidate to state his prob-
abilities honestly, he must be trained so that maximising a proper scoring
rule becomes an end in itself. The rule must become his utility function.
To ensure this, the rule must be used to give the aggregate mark on the test.
But the aggregate mark on a component is a representation of the examiner's
judgement of the quality of performance on that component (French, 1981,
1985). So the rule must also belong to the examiner: it represents one of
his judgements. Why should it? Perhaps items in the test fall into a
number of contexturally distinct areas and the examiner feels that a sound
performance in a few of these areas is more worthy than a more mediocre
performance in all of them. Modelling such judgements is unlikely to lead
to a proper scoring rule. The examiner may not judge all the wrong answers
in an item to be equally serious. Since scoring rules apply in circum-
stances in which one of a set of mutually exclusive events must happen,
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it is again not clear that the examiner's judgements would lead to a proper
scoring rule.

However, this conceptual difficulty may disappear if one asks why the
candidates need encouraging to give honest probabilities. When candidates
are asked to write essays, examiners seldom consider that the candidates
might deliberately or subconsciously misrepresent their knowledge. Why
should they when responding in probabilities? Perhaps there is no need to
tell candidates precisely what scoring rule will be used . . . or perhaps a
Bayesian's awareness of the problems inherent in eliciting probability
responses is pointing to problems that are also inherent when responses are
elicited in other forms.
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ABSTRACT

The inference of survival functions based on information from censored
observations is considered. The hazard function is assumed to be piecewise
constant along intervals. The parameters are updated via a Bayesian
conjugate analysis and information is passed through intervals via dynamic
relations of the parameters. Inference is then made for the survival
function of an individual (from the same population) conditioned on the
observed data. Comparison with the product limit estimator, tools to
criticise a model and some numerical examples are also provided.

1. INTRODUCTION

In this paper, I consider the statistical analysis of survival
functions with no specific parametric family assumption. This problem has
received a great deal of attention from both medical statistics and
reliability areas and has often been referred to as nonparametric
estimation. Here both words are to be avoided. The former because the
Bayesian analysis pursued here gives meaning to the parameters modelling
the sampling distribution and the latter because the problem is shown to be
more of prediction than estimation. The distinction of this paper is in its
use of a dynamic approach which filters the information collected up to a
time passing it to future times.

The problem considered is that of a sample Y=(Y1,...,Y ) drawn from a
population and interest lies in making inference about the populational
survival (or reliability) function S(u)=P(Y>u). The product-limit (PL)
estimator (Kaplan & Meier, 1958) is obtained by estimating conditional
probabilities at failure times by the observed conditional frequencies
leading to

§(u) = I 1 -—= (1)

i:yi<u _ i

where y. is the ith ordered failure time and d, and r, are the number of
observa%ions that fail in v; and the number of observations that are known
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to be alive just prior to y,, respectively. Susarla & Van Ryzin (1976)
porposed a Bayesian analysis in which the survival function itself is
treated as parameter and, after assuming a Dirichlet process prior, its
posterior distribution can be obtained and inference made. This estimation
approach to inference on survival functions is widely used in Bayesian
statistics (Martz & Waller, 1982; Mashhoudy, 1985). It seems, however,
that the survival function is a characteristic far more related to the
individuals of the population than to the parameters of the model
entertained. So, after observing Y=y say, one should be obtaining

S(ul¥=y) = / S(u8,Y=y)p(8]|¥=y)de (2)

for a new individual rather than the posterior distributions of S(u|§) as
functions of 9, the parameter of the model, for all u.

Both Susarla & Van Ryzin and the PL estimators have jumps at the
observed failure times, although the former is smoother than the piecewise
constant PL estimator, and they are dependent on a time factorisation at
these points. In order to avoid these problems, Kalbfleisch & Prentice
(1973) put forward a model for the observations that partitions the
interval (0,») in intervals I =(t0,tl), Ii=(t'- ,ti],i=2,...,n-1 and
I=(t .,»),(0=t <t1<...<t _1}, having constant hazards A ,...,\ ,
respegtlvely. Tgis model 1s adopted here. In addition, the haz3rd function
is generally expected to be smooth and therefore information gathered in an
interval should exert some influence in the adjacent intervals. The dynamic
approach enables the flow of information through intervals and smoothness
assumptions on the hazard function can be implemented via dynamic relations
between the A's.

2. OUTLINE OF THE ANALYSIS

Censoring is the main feature of reliability and survival data. In
the former, data is often co%&ected from industrial experiments that are
designed to stop after the k= observed failure or after a certain amount
of time (Barlow & Wu, 1981). In medical data, random censoring occurs
due to loss to follow-up of patients being discharged from hospital, moving
to other places and others.

In all those cases and indeed in the case of complete sample, the
likelihood is

n .
I A" e (3)

where d, and a, are the number of failures observed in I, and total
observed time through I,. This likelihood is a product &f likelihood
factors for each A (baéed on information collected in I,) conditioned on
prior information. N

The analysis is such that information is passed sequentially through
intervals. Also, the A's are assumed to be (marginally) Gamma distributed
so that after updated they remain Gamma distributed due to the form of the
likelihood. Let [A,_ IDi 1]'\aG(a._ s Yy 1) where D, is the information
collected up to the end of inter%ai I The (Gam&a) distribution for A, is
constructed in such a way that it retgins the mean of A, . reflecting ofe's
expectations about the smoothness of the sampling distribution in the
absence of any other relevant information but has a larger variance to
account for extra uncertainty as the analysis evolves in time. This implies
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that [AilD Jv G(c TN o l), c.<l and after updating through the

likelihood, one gets 4] c.o, +d and Y +a, and the cycle can

i %% =cqYi-17%y

restart for next interval. The values of the c¢'s should take into account
things like interval lengths and plausible expressions are suggested in the
sequel.

The survival function for an individual with failure time X drawn
from the same population is

i-1
S(xIDn)=S(x|X>ti_1,Dn)jElS(tj|X>tj_l,Dn), x€L, (4)
o -\ (x-t; ) i-1 o =), (t.-t._1)
= je i p(x ID_,x>t;_)dh, T fe 33 37V p00 1D %o, ),
0 1J 10 j n =177

because the distribution of X does not depend on D_, the total information
obtained from observing Y. The distributions for Tl |D X>t ] have not
been specified yet but are provided in section 5.

3. MODEL CRITICISM

A particular model can be assessed by its marginal likelihood. This
is obtained after integrating out the parameters from the likelihood and
gives the relative likelihoods of different entertained models by
comparison. It can be readily obtained after integrating (3) with respect

to the prior distributions for [AilDi_l] giving
n -di a; i d
I {(e,y,_ ta,) 1+ ————— il (c +j-1) (5)
i=1 iti-1""i CiYi-1 j=1 i%i-1

This is the main tool to criticise a model although some graphical
comparisons could help. One could be interested in monitoring the
smoothness of the survival of the population in which case a plot of the
prediction obtained from different models is useful. Also, in some special
cases, agreement with the data itself can be checked and this is related to
some model assumptions.

4. COMPARISON WITH THE PL ESTIMATOR

In order to make this comparison, one has to assume that no initial
information is available, there is no passage of information through
different intervals and that the intervals I,,i=l,...,n are determined by
the ordered failure times. Those assumptions are implicit in the derivation
of the PL estimator. They imply that the only relevant information for
Ai is in its likelihood so that [A |D ,X>t ]w[k }Dl D1— ]%G(di,a ) since

ci+0. The survival function for eri is

-d — -d
X=y._ i i-1 3

(6)

H
+
P

where bj = length (I,). This is a strictly decreasing continuous function

N
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with piecewise continuous first derivative. For the sake of clarity
suppose further that all censored times coincide with any one of the
(uncensored) failure times, so that a, = b.r,. In moderate and large
samples, each of the multiplying factors in_ 6) can be approximated by the
leading terms in its Taylor expansion for 2% around 0, ksi. This gives

d. (x-y, i-1 d
1- ;i (- L 1 1 |- ;1 (7
1 P j=1 3

Comparing (7) with (1), it can be seen that this non-informative
approach is approximately equal to the PL estimate for x*y., from the right,
for all i. Elsewhere, it is an approximately piecewise linear function
joining these points whereas the PL estimate change by jumps at failure
times. The approximation (7) gets poorer as k approaches n (see figure 2)
and as sample size decreases.

These non-informative models provide mainly a smooth continuous version
of the PL estimate which has merit on its own. They can not, however, be
compared with other ones in the terms of section 3 due to the extremeness
of its prior assumptions. Dynamic models avoid those problems while
offering a wider choice to the modeller.

5. INFERENCE FOR THE SURVIVAL FUNCTION

As was previously said, the distribution of [A.]D st, ], for all i
are needed for the evaluaiton of the predictive survival function. A
specific stochastic model is necessary to establish the relations between
the A's. To do this directly via a joint distribution for the A's would
impose unnecessary numerical complications and a simple alternative is
proposed.

One solution can be obtained using the structure of dynamic survival
analysis developed by Gamerman (1985). This analysis is designed to be
used with covariates and the study of random samples can be treated as a
special case when the only covariate takes the value 1 for all observatioms.
There, the system parameter n undergoes a random walk ni=ni_1+wi where the

w's are independent errors with zero mean and variances W., i=l,...,n,
respectively. The n's are only partially defined throughltheir means and
variances that are obtained by relating n to log A. This transformation

is used to minimise the effect of skewness of the Gamma distribution in

the evolution. A linear approximation as in West and Harrison (1986) can

be used first to construct (ni_llDi_I]N[mi_l,Pi_l] where m,_; = ln(ai_l/Yi_l)

and Pi-l = “;il and then, after evolution, back to
-1 -1

(A D, InGI(R,_ +W)) ,(Pi_l+wiz1 exp(-m, ;)

c; = Pi—l/(Pi-1+w%) : (1+ai_lwi) . Recursive smoothing is then used to

obtain [ni|Dn]«{mi,Pi] with

] implying the values of

n n
my = mptey (@) &)
n 2 n
17 PmCipn Byt Piy).
. n n . n n,~-1 n n,-1 n
This gives [Ai|Dn]NG(ai,yi) with ay (Pi) and Y (Pi) exp(-mi) and

those are in fact the distributions that are used in the applications since
the contributions of the events [X>t. .] are negligible. They can be
replaced in (4) giving, after integrationm,

P
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x-ti_1 -0y i-1 b, | -o.
S(x|D ) |1 4+ — n |1+ L J s, for xel, 9
n n . n i
Yi j=1 YJ

6. NUMERICAL EXAMPLES

In all_tjhe examples, analysis starts with a vague prior [}.OIDO]'\»G(G,G)
with § = 10 °. This implies V[AOIDO] = 107 representing ignorance as to the
value of A,. Also the values of W, for the evolution are taken as
proportional to b,. This is in line with an equivalent continuous-time
model for n having a Brownian motion process (Cox & Miller, 1965, pg. 206).

Figure 1. Hazard functions (in the log scale)
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A sample of size 30 was generated from the Weibull (3,100), Weibull
(.5,100) and logistic (2,100) distributions. These have hazard functions

¢ 12 e 70 (t/100)
.03(log 2) |—| , .005(log 2)|— and .02 — t>0
100 100 1+(t/100)

respectively, shown in Figure 1. Their common median (and scale parameter)
is 100 and they represent quite different failure patterns. For each
sample, a dynamic, a non-informative and the PL survival functions were
obtained and are shown in Figure 2, along with the respective generating
survival functions. The comparisons made in section 3 can be best
appreciated in the figures. It is clear that although the non-informative
model smooths the PL estimator, a proper smooth solution can only be
obtained through a dynamic model. The values for W (.2b ,.lb and .05b,,
respectively) were set on an illustrative basis and can ge changed at tﬁe
modeller's will giving more flexibility to the inference. The marginal
likelihood can be called to assess model choices with respect to factors
like interval lengths and values of the W's.

Figure 2(i). Survival functions for the Weibull (3,100).
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Figure 2(ii). Survival functions for the Logistic (2,100).
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Figure 2(iii). Survival functions for the Weibull (.5,100).

The leukemia data from Gehan (1965) can be used to illustrate this
point. They consist of remission times of patients in two groups (treat-
ment and control) of equal size with heavy censoring in the treatment
group (12 censored out of 21 patients). Each group is analysed here
independently of the other. For each of them, a number of combinations
of interval divisions and values for W are used and the corresponding
marginal likelihood for each model are given in Tables 1 and 2.

It seems that a finely divided grid of points gives a better fit at
least for this set of data. Also there is some preference manifested for
the values W, = 0O corresponding to c, = 1. This supports the model with
no evolution for A, that is, exponen%ial distribution. In this special
case, there is no need for a dynamic analysis since Ai = ) and

n n
[x|D_1vG(d,a) where d = £ d,, a = I a, and the predictive survival for
n =1 1 i=1 1

time t is [1+(t/a)]_d. The value otherwise obtained with a dynamic

analysis
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-d -d

-t i-1 b
]+ —3it 1 |1+ , tel,
a j=1 a 1

is close to that one specially for small values of the b's.

Table 1
Marginal likelihoods for treatment group

Data :6,6,6,6%,7,9%,10,10%,11%,13,16,1 7% 19* 20*,22,23,25* 32* 32* 34* 35*

Interval division
Wl
b, {uncensored times} {5,10,15,20,25,30,35} {1,2,3,...,34,35}
0 -48.11 -49.26 -49.26
.05 -48.71 -49.90 -49.75
.10 -49.13 -50.29 -50.07
.20 -49.78 -50.85 -50.54
*. censored
Table 2
Marginal likelihoods for control group
Data: 1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,12,12,15,17,22,23
Interval division
Wl
b, {uncensored times} {4,8,12,16,20,24} {1,2,3,...,22,23}
0 -73.86 -73.86 -73.86
.05 -74.92 -74.68 -74.54
.10 -75.68 -75.25 -75.11
20 -76.82 -76.09 -76.01
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Gerhard Gerlich

Institut fiir Mathematische Physik
Technische Universit&dt Braunschweig
Mendelssohnstr. 3, D-3300 Braunschweig

INTRODUCTION

There are extensive fields in physics where probability
theory and statistics are of great importance. It cannot be the
intention of this lecture to describe the role of probability
and statistics in the whole field of statistical physics.

Many parts of physics have got special statistical fields:
statistical mechanics (ergodic theory, quantum statistics),
statistical (magneto)hydrodynamics (theory of turbulence),
statistical plasmaphysics (kinetic theory), statistical optics
(partial coherence). Though all these fields are my specialities,
I do not intend to talk about the success or failures of the
probabilistic and statistical descriptions in these fields of
physics.

The aim of my lecture is to show you that probability
theory and statistics provide us with the essential mathematical
structures in those fields of physics which do not have the
attribute "statistical": axiomatic classical mechanics and
axiomatic quantum theory. For the latter, it seems to be evident
that probability and statistics play an important role as all
students must learn the "statistical" or "probabilistic inter-
pretation" of quantum theory. Nonetheless, as a student I had
difficulty in connecting the mathematical structures of quantum
theory on the one side and probability theory and statistics on
the other side.

I suppose that it could be useful to tell you the story how
I started my investigations of the mathematical foundations of
quantum theory. I was concerned with the theory of the hydro-
magnetic dynamo (generation of the magnetic field of the earth
or the sun). Very soon one could see that modern theories of the
dynamo make an essential use of the statistical theory of
turbulence. It is wellknown that the statistical theory of
turbulence is very poor in successful mathematical technics
whereas quantum theory has a lot of them giving accurate and
excellent descriptions of very precise measurements. Therefore
I told myself that it should only be neccessary to find out the
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mathematical statistical structure of quantum theory which is
independent of the special physical situation. Then one should
have a successful mathematical structure for the statistical
theory of turbulence. I think that I found this mathematical
structure. The result is a new system of axioms (laws) for
classical and quantum mechanics containing both fields as spe-
cial cases. The new aspect of this system is that one adds three
statistical axioms to the usual (mechanical or guantum mechani-
cal) axioms (for instance to the Newtonian axioms).

But what were the results for the statistical theory of
turbulence? They are a great disappointment: the mathematical
statistical structure of quantum theory is useless for the
statistical theory of turbulence. At a first glance the cause
sounds rather paradoxical: the probabilistic or statistical
structure of quantum theory is more general than the conven-
tional measure theoretic probability theory. The models of quan-
tum theory give more precise probability distributions than the
conventional probability theory. Using this structure in the
statistical theory of turbulence is like using a steam hammer
to crack a nut., In this connection the following historical
remark could be of interest. The mathematically rigorously
founded probability theory was published by A. N. Kolmogoroff
in 1933 after the famous book of J. v. Neumann in 1932. Perhaps
it is worthwhile to notice that, though Lebesgue measure was
known for many years, a general "abstract" measure theory for
o-finite measures was established in those years. I suppose
that this theory was first written down by E. Hopf in his famous
book "Ergodentheorie" (1937). Thus the rigorously founded
"classical" probability theory followed the "nonclassical"
quantum theory. Therefore the following observation has a
rather simple explanation. In the book of J. v. Neumann you
can find only a few passages where measure theoretic concepts
were used (the separability of the L4- spaces, equivalence
of the Heisenberg and Schrédinger picture of quantum theory).
His intention was to give an algebraic and geometric formulation
of the mathematical foundations of quantum theory.

My approach to the mathematical foundations of quantum
theory is formulated with the measure theoretic probability
theory, though the resulting structure is a bit more general.
The generalization concerns a formula which is very closely
related to Bayes'’ formula the thematic connecting link of this
symposium.

THE STATISTICAL AXIOMS

Let us begin with the three statistical axioms:

(A1) The statements of physics are statements about spaces of
events. These statements about events are formulated with
probability measures for pairs of events: g(A,B) is the
probability observing the event B if one knows the event A.
q(A,B) is called transition probability.

For the axiom (A2) one needs some technical definitions.
They are not difficult, but awkward. I hope that in this lecture
a very simplified definition is sufficient.
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(D) We call a model for a physical experiment a unitary pair
if it is possible to write the formula of the transition
probability in the form

_ {U(xa)iPBU(x4))
94B) = TG

where U is a unitary map of the natural Hilbert spaces.

Xa® characteristic function of a set A, v measure on a o-algebra
A" over X2 u measure on a co-algebra B over Y, natural Hilbert
spaces L%(X,v), LZ(Y,u), Pgil, = Xz (MY (¥).

(A2) General probability distributions are given by (convex
linear combinations of) the transition probability of a
unitary pair.

(A3) The time dependence of unitary pairs is given by

., U,
zha—t'=H,oU,

H being (essential) self-adjoint operators defined on the
natural Hilbert space in the decision.

The first axiom summarizes two empirical facts. Every physical
theory is finally tested by reading numbers of a scale with
error bounds. We call this the observation of events in the
decision, where events are elements of a class of subsets of a
certain set; %n this example the observed event is a certain
interval of R’ (real line). The value of such measured numbers
is meaningless if one does not know how the experiment was
performed. In particular, this knowledge could be given by an
observed or assumed event (in the condition). An event A one
knows to predict the event B. You could consider the motion of
a car on an inclined plane or the movement of the planets. The
measurements of the space and velocity coordinates alone are
not physics. Physics begins to predict the values at a later
instant of time (with error bounds) with a model. Statements
of measured values with error bounds are typical probability
statements. For instance, with probability 0.999 the measured
value should be found in a certain interval performing the
experiment the same way. This means that you have to choose the
same event in the condition.

Spaces of events are sets X respectively Y with o-algebras
A respectively B. Elements of ¢-algebras are usually called
measureable sets or, in the measure theoretic probability
theory, events. In this sense, in (A1), very conventional con-
cepts of the measure theoretic probability theory founded by
Kolmogoroff are used. Only the concept of the transition proba-
bility g(A,B) is introduced as a fundamental concept and not as
a derived concept.

In conventional probability theory, with two spaces of

events (X,A) and (Y,B) one constructs a new common space of
events (XxY,4®B) . XxY is the cartesian product of the sets,
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A® B the product o-algebra generated by the sets AXB with
AeA, BeB. The events A are replaced by AXxY, the events B are
replaced by XxB. With a probability measure P on A®B

one calculates the tran31t10n probability as a conditional
probability

P(A X B)

i i [
P(AXY) (This gives Bayes’ formula),

91(4,B) =
For AnA'=0 you get
ga(AU A', B) = Mga(4, B) + Aagu(4’, B) with M+A=1,08 1,2 <1.

(CL) The transition probability of a union of disjoint events
in the condition is a convex linear combination of the
individual classical transition probabilities.

I hope that you will allow me a short digression. Then I
can touch the fields of physics I had originally excluded in my
introduction. I would like you to remember that in some sense
you can read the theory of stochastic processes as a theory of
hidden variables.

Often one can find the following description of a
stochastic process (1st picture): A stochastic process is not

an ordinary function of time such that you have for an arbitrary
set of n time values (for all n) the n function values

$x

|ty ]

i, t,

t, t

but you only know the probability distributions for the function
values. You have the probability that the values x are elements
of certain sets (I call them windows) at an arbitrary set of

n time values.
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For instance you can write with densities

P(tl,Al;tz,Az;u.;t,,,A,)://.../f(tl,zl,tz,xz,.,.,t“,z,,) deidzs - -dzy .
Ag A2 Aa

What has produced these probabilities? This gives us the second
picture of a stochastic process (Kolmogoroff’s definition). We
assume that the probability distribution is produced by a set

of curves (paths) meeting the windows with a certain probability
distribution. We index each curve with the parameter w . The
value of this parameter is usually unknown. I call « the
hidden variable of the stochastic process.

4

In this picture a stochastic process is a function depending

on two variables: the time t and the hidden variable w , for
which a probability distribution is given. We write for the
function values xt(w). It is a wellknown fact:

KOLMOGOROFF'S THEOREM

Under certain mathematical assumptions both pictures are
equivalent.

Résumé:

If you use Kolmogoroff’s definition of a stochastic process,

you use a certain theory of hidden variables, which are elements
of one probability space Q.

A theory of stochastic processes (with differential paths!)
is hidden behind the following catchwords:

Liouville equation, (n-time) BBGKY-hierarchy, classical Zwanzig
formalism, Mori formalism, microscopical density correlation
function, response function, van Hove’s scattering formula, test
particle diffusion, microscopical fluctuations, statistical
theory of turbulence (E. Hopf), ergodic theory, Vlasov equation,
Klimontovich formalism, Rostoker formalism, generalized
Stratonovich method (best method for systems governed by a system
of stochastic differential equations for ishort prediction times).

Let x (w) be a family of stochastic processes on one

probability~ space (Q,A,P). Then you can take as a rather
general formula for a transition probability

197



% i P( (4 nz, " (B)
dci(A,B) = ;w‘ )

with OSW;jSl,w;=Zw;j,ZW5=1.
J §

Also with this formula you can prove (CL). For the
transition probability of (A2) this formula is wrong:

AnA'=0, AUA'=X, BnB' =0, BUB' =Y
1

u(B) = u(B' )=V(A)=V(A')=§

U(xa) = cos¢ xp +sinyp xp:

U(xar) = —sing xp +cosy xp

a(4, B) =°°52‘P , q(4',B)= Sinz‘f 1 Q(AvB') =5in2¢

q(AvA',B)=

-—

o
2| -

sin2p (=0forp = ;;-)

Ma(4,B)+ Jag(d', B) = hycos* o + Dpsin®g (= T org=T)

Now we have our non-existence statement about quantum
theories with hidden variables:

The conventional theory of stochastic processes is not
sufficient to give the formulas for the quantum theoretic
transition probabilities.

The precise predictions of the quantum theoretic models are
the problem, not certain uncertainty relations!

Our axiom (A2) suggests a formulation of Dirac’s super-
position principle:

(AQSP) The unitary maps of the unitary pairs can be written as
integral transformations of the natural Hilbert spaces of
the events.

One should notice that our formulation of Dirac’s superpo-
sition principle does not contain the assumption that all oper-
ators of the mathematical model can be written as integral trans-
formations which was criticized by J. v. Neumann in Dirac'’s
representation of the mathematical structure of quantum theory.
Restricting this property to the operators of the unitary pairs
I consider this assumption justifiable.

Let us go back to the first axiom. It contains an algebraic
structure which can be worked out. Unlike classical probability
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theory, the pairs of events (A,B) are not automatically identi-
fied with the cartesian products A x B. Usually incompatible
events are disjoint sets. Therefore one could ask how one could
define the incompatibility of pairs of events. Such a situation
is given in the physical praxis if an experimental physicist
says that he cannot verify the experiment of his colleague.
Excluding events in the decision are meaningful only if the
events in the condition are equal (meaningful comparison) :

(MC) Pairs of events are comparable iff the events in the
condition are equal.

With this, in the cartesian product of the o-algebras A xB
one can define a partial ordering € setting

(PO) (A,B) 2 (a’,B’) iff A=A’ and BnNB’=B,
an orthocomplementation by
(POC)  (a,B)" = (A, LB) ,

and an equivalence relation for the impossible and sure pairs
of events

(A,B) ~ (A'",B") © (B=B’'=@ or B=B’=Y) or (A=A’ and B=B’').

With v as the supremum and A as the infimum this poset
is an orthocomplemented, orthomodular, quasimodular, not modular,
not distributive lattice. Usually these are the general proper-
ties which were listed for a "quantum logic", the lattice of all
closed linear subspaces of an infinite dimensional Hilbert space.
But this is not the same lattice (the covering law is missing).

THE PHYSICAL AXIOMS

If one intends to reproduce the conventional theories of
classical mechanics and quantum theory, one has to treat these
fields with different formulations of the next axioms. These
axioms fix the spaces of events for particles, thus the natural
Hilbert spaces and the self-adjoint operators H.

(aQs1)

Schrédinger’s equation without and with external fields
(AQS2)
(AQD1)

Dirac’s egation without and with external fields
(AQD2)
(AMN1)

Newton’s equation without and with external fields
(AMN2) (1st and 2nd axiom)

(AQS1) The space of events of the space measurements of a free
particle is R3 with the Lebesgue measure on the

Lebesgue o-algebra AL‘ The self-adjoint operator of the
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(AQS2)

(AQD1)

(AQD2)

(AMN1)

(AMN2)

200

time evolution for this system is given by

2 # & &
He=-mb ) A=gztsatsn

defined on a suitable dense linear subspace of the
natural Hilbert space Lz(HUR3).

The operator of the time evolution of a particle of
charge Ze and mass m in an external electromagnetic field
with the potential (A,-V) is given by

H= E}n-(-snv - Zed) - (—ihV — Zed) + ZeV

defined on a suitable dense linear subspace of the
natural Hilbert space defined in (AQS1) (with the same
space of events).

The space of §vents of the space measurements of a free
electron is R® with the Lebesgue measure y on the
Lebesgue ¢-algebra éL' The operator of the time evolu-
tion for this system is given by

H=m,?B - icha -V

difined on a suitable dense linear subspace of the
C*-valued natural Hilbert space.

The operator of the time evolution of an electron in an
external electromagnetic field (A,-V) is given by

H=m,?B—ichg -V +eca-A—eV

defined on a suitable dense linear subspace of the
natural Hilbert space defined in (AQD1) (with the same
space of events).

The space of events of the space and velocity measure-
ments of a free particle is R6 with the Lebesgue measure
u,. on the Lebesgue o-algebra A;. The self-adjoint
o%erator of the time evolution is given by

. (] 8 8
=-thy-V, 9.V =v,£+v,,5;+v,‘-9-z-

defined on a suitable dense linear subspace of the
natural Hilbert space Lz(uL,R ).

The operator of the time evolution in an external
acceleration field is given by

hobE(r,e) L8 . 3
H= —15—‘—(-’—-1 — iho* — — inb¥(r, v)a—v—"

vk ork



defined on a suitable dense linear subspace of the
natural Hilbert space defined in (AMN1) (with the same
space of events).

GENERALIZED QUANTUM THEORIES

Systems of axioms should give hints for possible general-
izations and appreciable modifications of a theory. Let us look
at the system of axioms:

(A1)
1
(A|2)
(A3)
(AMN1) (AQS1) (A%D1)
| l
(AMN2) (AQS2) (AQD2)

If you take the statistical structure seriously, the very
general three statistical axioms should be left unchanged, only
the last two lines are candidates for a change of the mathemat-
ical structure. This picture suggests looking for new axioms
(A4) and (A5) containing all different fields in a single
formulation. This is really possible taking the spaces of events
from (AMN1) and adding the operators H. With this formulation
one gets a generalization of quantum mechanics containing
classical mechanics or vice versa a generalization of classical
mechanics containing quantum mechanics. One gets field equations

for the pilot waves.

We hope that these generalized Schrédinger or Dirac equa-
tions could solve some mathematical problems involved with the
standard apparatus of quantum theory.

This generalization is suggested by the probabilistic
and statistical structure of the mathematical foundations
of quantum mechanics and classical mechanics.
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CAN WE BUILD A SUBJECTIVIST STATISTICAL PACKAGE?

Michael Goldstein

Department of Statistics
University of Hull
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1. INTRODUCTION

This paper concerns the practical implementation of subjectivist theory,
and in particular the conceptions of Professor de Finetti, in the form of a
statistical package. We begin by briefly considering certain features which
distinguish de Finetti's approach from that of standard Bayesian methodologies.

Subjectivist theory can be characterised as the examination of the
reasonableness of our modes of thought. In this study "Everything is
essentially the fruit of a thorough examination of the subject matter,
carried out in an unprejudiced manner, with the aim of rooting out nonsense."
What is important is "...the systematic and constant concentration on the
unity of the whole, avoiding piecemeal tinkering about, which is inconsistent
with the whole; this yields, in itself, something new. "(Both these
quotations are from de Finetti (19TL:preface)).

This spirit is embodied in the content of de Finetti's work. As an
example, he makes expectation, or prevision, fundamental instead of
probability, because, once we can free ourselves from historical conventions,
there are many advantages, practical, logical and philosophical in this
choice. For example, we can now make directly those expectation statements
that we require without exhaustive consideration of limiting partitions.

De Finetti repeatedly emphasises the need to remain within the bounds of
realism. He expresses this as a fundamental requirement as follows. "The
fact is the possibility of expressing all that can legitimately be said by
arguing solely in terms of the events (and random quantities) whose prevision
is known, That is to say, without leaving the linear ambit determined by

the latter, without imagining already present a probability distribution

over larger ambits, those in which the extension is possible, albeit in an
infinite number of ways. The criterion lies in the commitment to systematically
exploiting this fact; the commitment considered as the expression of a
fundamental methodological need in the theory of probability (at least in the
conception which we here maintain). All this is not usually emphasised."

(de Finetti (197k)).

As a second example, statistical models are constructed not in terms of
unobservable {and ultimately undefinable) parameters, but instead through
the notion of exchangeability, so that any such model can be explicated
purely in terms of simple, verifiable statements of uncertainty about
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observable quantities. As de Finetti (1975:p.221) writes: "If we step
out of this ambit, we not only find ourselves unable to reach out to some-
thing more concrete, but we tumble into an abyss, an illusory and meta-
physical kingdom, peopled by Platonic shadows."

As a final example, in the Bayesian approach prior probabilities are
transformed into "posterior" probabilities by Bayes theorem. However
Bayes theorem actually evalutes "conditional" probabilities. Conditional
beliefs are those based on "assumed knowledge", and are expressed as bets
to be made now but to become operative only if certain events actually occur,
Posterior beliefs are based on acquired knowledge, and are expressed as bets
made after certain events are seen to occur, at terms which then seem fair.
Logically, these are different concepts. De Finetti (1972:p.19L) summarises
the interpretation of conditioning as follows. "What emerges is this: only
the predictive interpretation (according to which H is a proposition assumed,
not acquired) is free of inextricable perplexities."

Each of the above quotations relates essentially to the difference in
spirit between a full subjectivist formulation and the Bayesian implementation,
In most Bayesian analyses it does not seem to matter whether beliefs are
elicited in terms of previsions or probabilities, whether we view probability
models as constructed from exchangeability arguments or from genuine beliefs
in unknown parameters, whether we are dealing with conditional probabilities
or posterior probabilities and so forth. This is because the language and
ideas of "belief revision" are being used, in the main, to describe and
support the process of "data analysis". However Bayesian methods appear to
be tackling a quite different problem, namely how should you ''reasonably"
modify your beliefs in the light of (statistical) data.

To develop a subjectivist approach to the problems of learning from
evidence, we must return to the roots of the theory and decide which elements
are essential, which are peripheral and which are, possibly, wrong. This
paper describes one such subjectivist approach, taking as a starting point the
foundations set out in de Finetti (1974,1975). We shall concentrate upon
general issues, as basic disagreements about the content and purpose of the
theory can only be resolved when we view the whole structure in a unified
manner. Thus we must clarify the substantitive content of the theory
before we can describe the technical content of our methods.

The plan of the paper isas follows. In section (2), we suggest informal
criteria for a subjectivist statistical package and set out various reasons
why fully subjectivist approaches are needed. In section (3), we describe
informally our approach to such a package, with particular emphasis on the
role of exchangeability, the nature of inference and the organising principles
for input and output. In section (4), we describe our first steps towards
implementing these ideas. Finally, in section (5), we make very brief
concluding comments relating to the problems and potential for the general
development of subjectivist packages.

2. WHAT IS A SUBJECTIVIST STATISTICAL PACKAGE AND WHY SHOULD WE BUILD ONE?

2.1 What Is A Subjectivist Statistical Package?

A subjectivist package is primarily concerned with the judgements,
however expressed, of an individual. The package is intended to facilitate
the reasonable elicitation and modification (at least in part by "statistical"
data) of beliefs by subjectivist principles. Let us identify some features
which would distinguish a full subjectivist package from a package which
applies subjectivist ideas in an informal fashion, for example as data-
analytic tools. (Thus, we will not emphasise the features that both types
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of package might share, such as the fundamental matter of recognising that
beliefs can be set in probabilistic form and constitute important inputs into
the analysis.)

(1) Control over belief specification

All belief inputs should be genuine. We should not be forced to input
hypothetical belief statements simply because the package demands more than
we can meaningfully provide, Thus, we need control over the level of detail
that is required by the program., The package should provide both automatic
coherence checks and the identification of those aspects of our beliefs which
require the most care and detail in specification.

(2) Specifications should relate to observable quantities

Beliefs should be specified for actual, not hypothetical, quantities.
It should be possible (in practice, not merely in principle) to conduct the
entire analysis in terms of such specifications for observable quantities.
This means firstly that we will not comsider "parameters" as primary
quantities of interest and secondly that we are not forced into specifying
beliefs about "underlying parametric models" solely in order to allow us to
perform analyses upon observables.,

(3) Output should relate to actual posterior beliefs

Just as the inputs to the program are (a portion of) initial beliefs,
the output should relate to (a portion of) revised beliefs. The strongest
possible relationship wouldbe that the output was our actual revised beliefs.
However, this is not usually possible (or even desirable!). Instead, we aim
for output which has a useful and clearly defined relationship with such
posterior belief. In particular, we should analyse "open" systems, for which
we do not need to pretend that all considerations concerning all conceivable
eventualities have been fully formulated a priori.

(4) Input and output should be governed by clear organising principles

A subjectivist package deals not with isolated belief inputs but with
organised collections of such inputs. All that theory provides is the
additional structure imposed by coherence. We require two organising
principles to make this structure explicit. Firstly, we need to identify
the kinds of belief input which will generate conclusions of interest.
Secondly, we need to represent how the entire collection of beliefs is
modified by the analysis, emphasising the most important features of the
revision.

2.2 Why Do We Need Fully Subjectivist Packages?

(i) We are what we believe. Any help in examining our beliefs is valuable,
from simple common-sense checks upon our ideas to an improved understanding
of our whole reasoning process. Indeed it is because beliefs are fundamental
that we must be scrupulous in our development. It is easy to make exaggerated
or misleading claims for belief analyses, quite apart from the more insidious
dangers involved in surrendering our reasoning to the computer.

(ii) Subjectivist ideas may offer both clear logical methods for integrating
raw data into our belief systems, and also an efficient medium for the
communication of such beliefs (and the basis for such beliefs) between
individuals. In particular, in complicated situations, involving many
sources of uncertainty, a theory which pays careful attention to the actual
abilities of the individual to express beliefs (rather than treating this
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as a purely technical issue) may be expected to provide improved approaches
to the handling of complexity.

(iii) Because the theory will be different, models within the theory will
be different. The kinds of simplification which can be justified and
exploited by the theory form the basis for a systematic approach to model
formulation, specification and evaluation,

(iv) Theory suggests practice which, in turn, modifies theory. When
theory directs us to perform taskswhich turn out to be unclear, useless or
impossible, this provides a stimulus for re-examining the basis of the
theory. The creation of computer software is a stringent application of this
principle. Because we must describe all procedures in precise detail, we
cannot treat the theory as a collection o f heuristic prescriptions, There
is a danger, however, that theory may be arbitrarily frozen around whatever
methods happen to be easy to program and so we must apply the same standards
of stringency to the algorithm as we do to any other part of the theory.
Indeed this is one of the fundamental issues in the subjectivist theory -

to what extent can our modes of thought be reduced to formal routines?

We now turn to more speculative (but fundamental!) reasons for our
enterprise. Subjectivist theory can be interpreted at two different levels.,
The first concerns an individual making a conscious effort to externalise
various of his beliefs in numerical form. In this view, the beliefs are
pre-existent and are given numerical values by some mysterious but conscious
process, However, we can reverse this process by considering the numerical
codings to be pre-existent, and our beliefs to be externalisations of these
codings.

In describing such a structure, we must distinguish between process and
implementation. The subjectivist theory is separate from the medium in which
it is implemented. The theory describes the interface between an external
reality and an internal representation of that reality, in a form which is
(in principle) independent of both sides of the interface. (That is, we
could rewrite the laws of physics without changing our theory. Similarly,
we can switch from considering us, i.e. biological organisms, to it, i.e.
a mechanical device such as a "machine intelligence", and though the
implementation would be totally different, the theory would remain unchanged.)
This internal/external interface establishes the logical parameters for
understanding any "thought" process, and provides the ultimate subject
matter of subjectivism. When we talk about, for example, exchangeability,
we are considering one of the basic operations by which we cope with our
environment, namely the simplification of giving many different objects the
same "name". Most of our statements (for example, this one) can be repre-
sented strictly in terms of the exchangeability constructionsthat we will
put forward (although to do so may be complicated in somewhat convoluted
statements such as this one).

Thus, our ostensible statistical description of certain classes of
situations allows us in principle to analyse the mechanisms of thought.
Such study may find concrete application in the design of artificial
intelligence systems, in which detailed numerical analyses (at levels both
physically inaccessible and psychologically incomprehensible to users of the
system) are converted into simple "verbal" summaries at the user interface.
Here we have an explicit representation of beliefs as externalisations of
pre-existent codings. Beyond this, however, the purpose of such investiga-
tion is self-knowledge. Fundamental questions as to the nature of and
relationship between our conscious and subconscious processes and the inter-
action between these processes and external stimuli may be given precise
algorithmic representations - at the least, we have a natural language in
which to formulate these questions.

206



3. A FRAMEWORK FOR A SUBJECTIVIST STATISTICAL PACKAGE

We now describe our approach to the construction of a subjectivist
statistical package, avoiding technicalities as much as possible., Instead,
we summarise the various choices made, the reasons for these choices and
the implications for managing the system. Clearly, a genuine subjectivist
statistical package, as we have described it, is an ideal. I believe that
it is an achievable ideal, but that is a long-term goal. We here provide
a few steps towards this goal, Our concern is with the total structure
rather than the individual operations of the system. Thus, we elicit beliefs
in a form for which we can offer simple organising principles which are
compatible with direct exchangeability constructions, which can be handled
by our inferential principles, which in turn yield simple organising
principles for the revisions of belief. It is the inter-relationship
between organising principles (for input and output), exchangeability
principles and inferential principles which constitutesthe heart of the
system, Although we can justify each principle individually, the ultimate
justification for each ingredient lies in the role it plays in the overall
structure,

3.1 Prevision Is the Fundamental Expression of Belief

Probability is too restrictive a concept to give us control over the
level of detail in our belief specifications. The obvious alternative is to
make expectation fundamental. (Probability specifications become expecta-
tions for the corresponding indicator functions.) De Finetti provides a
full account as to how and why expectation, or prevision as he terms it, can
and should be made the foundation of the subjectivist theory. Thus, we
consider prevision (as operationally defined in de Finetti (1974, chapter 3))
to be the primitive quantity in terms of which we elicit beliefs., For any
random (i.e. unknown to us) quantity X, we write P(X) for the prevision of
X. (This may be thought of as expectation but elicited directly.) Our
justification for this choice is that we can build a subjectivist system
based on prevision, whereas we cannot satisfy the general requirements of
section (2) by a system rooted in probability.

3.2 Previsions Should Be Organised into Inner Product Spaces

Collections of probabilities typlcally are organised into JOlnt probab-
1llty distributions. Is there an organising principle for prevision which
is fundamentally different from that for probability? The difficulty with
most possible organisations of beliefs is that they commit us to making far
too many belief statements. Of course if a particular analysis genuinely
requires a very large number of belief inputs, and we are both willing and
able to provide these inputs, then there is no problem. However, for most
situations, we may suspect that the majority of these inputs are largely
irrelevant, and in any case are beyond our ability to specify.

Only if our method of organisation of previsions reflects the underlying
structure of the subjectivist language will it, in general, generate inter-
esting consequences. The essential property of prevision is linearity. The
specification of previsions for some collection C = [X,Y,Z,...] of random
quantities fixes previsions over the collection of all linear combinations
of these quantities (and, in general, fixes no other previsions). Thus,
it is natural to view C as generating a vector space L (where each element
of C is a vector in L and linear combinations of vectors are the corresponding
linear combinations of the elements in C).

Prevision is basic because linearity, i.e. adding quantities, is

basic, We build multiplicative structure into L by defining an inner product
over L, for each X,Y in L by (X,Y) = P(XY), We call any collection of
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previsions organised to define an inner product space with this inner product
a BELIEF STRUCTURE. Thus, we form a belief structure by first specifying
some collection C = [X,Y,Z,...] of random quantities, termed the BASE of

the belief structure, and then specifying the values P(XY) for each pair of
elements in C. (We restrict C to elements with finite squared prevision.

We usually require that the constant is an element of C. Compare the
geometric interpretation of prevision given in de Finetti (1974: Section §.17).)

Different elements of C may refer to the same (mathematical) variable
e.g. X and log(X) are different random quantities, as they are not linearly
related, If we wish to specify beliefs relating to log (X) thenwe introduce
log(X) into C. 1In many situations, we will introduce only a few such
functions into the base of our belief structures. If we introduce all
functions (and products) of all quantities of interest then the corresponding
belief structure is equivalent to that given by the usual Bayesian prior
specification. (The Bayesian specification concerns a probability measure
over some space, while a belief structure is any subspace of the Hilbert
space of square integrable functions over that space, with respect to the
probability measure, under the usual product integral norm; further discussion
in Goldstein (198L4)). Of course, we could choose different methods of
organisation for previsions. However, any such choice would be constrained
by our requirements as to the use of the belief inputs, and, in particular, by
the need for simple organising principles for output, a practical exchange-
ability principle and a satisfactory approach to the revision of belief.

3.3 Exchangeability Generates Statistical Models

Statistical models relate to quantities that carry the same "name" in a
variety of situations (e.g. measurements of "height" on different individuals).
Exchangeable beliefs for sequences are those which are not affected by
permuting the order of the sequences. Exchangeable belief structures are
those generated as follows.

Begin with a sequence C¥ = [X,Y,Z,...] of "names" (for example X,Y,Z,...
might be "blood pressure", "log blood pressure", "temperature", etc.). This
system of names is applied to a series of situations (e.g. the examination
of a sequence of patients), to generate a sequence By, Bp, B3,... of belief
structures, one for each situation. The base of Bj is [Xi’Yi’Zi"'°]’ where
Xj is the value of X in situation i and so forth (e.g. X; might be the blood
pressure of patient i). Exchangeability denotes the case where

(1) each belief structure is essentially the same i.e. for any X,Y in C¥,
and any i, (X;,Y;) = (X,Y), (a constant for all i).

(2) the relationship between each pair of belief structures is essentially
the same, i.e. for any X,Y in C¥* and any iz j (Xi,Yj) = (X,Y)*, (a constant
for all i=zj).

Specification of all the values (X,Y) and (X,Y)¥ uniquely specifies the
belief structure B with base consisting of all the observable quantities
under consideration (i.e. the base generated by all quantities of form Zi5 Z
in C¥, and any i). Thus, we say that a collection of belief structures is
EXCHANGEABLE if it is generated in the above manner, with inner product
satisfying constraints (1) and (2) above.

As a simple illustration, consider tossing coins. C* might be [1,H],
where 1 is the unit constant and H is 1 for a head, O for a tail. Bj has
base [1,H;], where H; is 1 if toss i is heads otherwise 0. Conditions (1)
and (2) become: (1) we assign the same probability p that each individual
toss will show heads; (2) we assign the same probability q that any two

different tosses will show heads. We can make as detailed specifications
as we like, by adding further quantities to C¥. However, if the values p and
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and q, and the above conditions (1) and (2) are all that we are prepared
to specify, then we should be able to obtain and analyse the implied model,
without having to pretend to the infinite number of further specifications
required by the usual exchangeability construction,

The standard exchangeability results concern in principle an infinite
number of exchangeable situations, 1i.e. where there is no limit to the
number of cases to which exchangeability relates, If we are considering, in
principle, an infinite number of belief structures, then we may make a
similar construction. For each X in C, we construct the quantity X¥* which is
the Cauchy limit of the partial sums (X{+...+X;)/n, as n tends to infinity.
(So, X* is an element of B¥, the closure of the overall belief structure B.)
We now form the belief structure M whose base is all the quantities X¥ for X
in C. M functions as the underlying "model" for our beliefs. We formalise
this by creating a sequence of mutually orthogonal belief structures M, Rq,
Ry, R3s... for which, for each i, B; is a subspace of M+Rj. Each Rj has, in
a natural sense, the same belief structure. So, instead of constructing, from
a sequence of exchangeable probability specifications, a further probability
measure, conditional on which the sequence is iid, we construct, from a
sequence of exchangeable belief structures, a further belief structure "given
which" all of the residual belief structures, R, are individually the<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>