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Preface 

In the last fifteen years there has been an upsurge of interest and activity in 
the general area of nonparametric smoothing in statistics. Many methods 
have been proposed and studied. Some of the most popular of these are 
primarily 'data-analytic' in flavour and do not make particular use of 
statistical models. The roughness penalty approach, on the other hand, 
provides a 'bridge' towards classical and parametric statistics. It allows 
smoothing to be incorporated in a natural way not only into regression 
but also much more generally, for example into problems approached by 
generalized linear modelling. In this monograph we have tried to convey 
our personal view of the roughness penalty method, and to show how it 
provides a unifying approach to a wide range of smoothing problems. 

We hope that the book will be of interest both to those coming to 
the area for the first time and to readers more familiar with the field. 
While advanced mathematical ideas have been valuable in some of the 
theoretical development, the methodological power of roughness penalty 
methods can be demonstrated and discussed without the need for highly 
technical mathematical concepts, and as far as possible we have aimed 
to provide a self-contained treatment that depends only on simple linear 
algebra and calculus. 

For various ways in which they have helped us, we would like to 
thank Tim Cole, John Gavin, Trevor Hastie, Guy Nason, Doug Nychka, 
Christine Osborne, Glenn Stone, Rob Tibshirani and Brian Yandell. 
Preliminary versions of parts of the book have been used as the basis of 
courses given to successive classes of MSc students at the University of 
Bath, and to graduate students at Stanford University and at the University 
of Sao Paulo; in all cases the feedback and reactions have been most 
helpful. The book was mainly written while one of us (BWS) held a post 
at the University of Bath, and he would like to pay grateful tribute to the 
intellectual and material environment provided there. 

Peter Green and Bernard Silverman 
Bristol, September 1993 



CHAPTER 1 

Introduction 

1.1 Approaches to regression 

The main theme of this book is the application of the roughness penalty 
approach to problems in regression and related fields. Before going on to 
introduce roughness penalties in Section 1.2, it is helpful to set the scene 
by briefly discussing linear regression first of all. 

1.1.1 Linear regression 

Linear regression is one of the oldest and most widely used statistical 
techniques. Given data pairs (t;, Y;), i = 1, ... , n, the natural way to view 
linear regression is as a method fitting a model of the form 

Y = a + bt + error (1.1) 

to the observed data. Of course, linear regression is often applied rather 
blindly to data without any particular aim in mind. It is helpful, however, 
to identify two of the main purposes for which linear regression is useful. 
The distinction between these is not at all rigid and often both of them 
will apply. 

The first main purpose of regression is to provide a summary or reduc­
tion of the observed data in order to explore and present the relationship 
between the design variable t and the response variable Y. It is obvious 
and natural, when given a plot of data displaying an approximate linear 
trend, to draw a straight line to emphasize this trend. Linear regression 
automates this procedure and ensures comparability and consistency of 
results. 

The other main purpose of regression is to use the model (1.1) for 
prediction; given any point t, an estimate of the expected value of a new 
observation y at the point tis given by a+ bt, where a and b are estimates 
of a and b. Prediction is the usual context in which elementary textbooks 
introduce the idea of linear regression. While prediction is undoubtedly 
an important aspect of regression, it is probably a much more accurate 
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reflection of statistical practice to consider regression primarily as a 
model-based method for data summary. 

The model-based foundation of regression distinguishes it somewhat 
from the more exclusively data-based ideas underlying more purely ex­
ploratory techniques such as those presented by Tukey (1977). Adopting 
an approach based on a model has both advantages and disadvantages. 
One advantage is that the methodology can be extended to a wide range 
of alternative data structures, for example along the lines of generalized 
linear models as discussed by McCullagh and Neider (1989). 

1.1.2 Polynomial regression 

There are very many data sets where it is clearly inappropriate to fit a 
straight line model of the form ( 1.1) and where a model of the form 

y = g(t) + error (1.2) 

is called for, where g is a curve of some sort. The classical approach is to 
use for g a low order polynomial, the coefficients of which are estimated 
by least squares. This approach is widely used in practice and is easily 
implemented using a multiple regression approach. 

Polynomial regression is a popular technique but it does suffer from 
various drawbacks. One of these is that individual observations can exert 
an influence, in unexpected ways, on remote parts of the curve. An­
other difficulty is that the model elaboration implicit in increasing the 
polynomial degree happens in discrete steps and cannot be controlled 
continuously. A third point, not necessarily a drawback, is that polyno­
mials of a given degree form a 'hard-edged' finite-dimensional class of 
models and that there may be some advantage in allowing the data to 
determine the fitted model in a somewhat more flexible way. 

1.2 Roughness penalties 

1. 2.1 The aims of curve fitting 

In its simplest form the roughness penalty approach is a method for 
relaxing the model assumptions in classical linear regression along lines 
a little different from polynomial regression. 

Consider, first, what would happen if we were to attempt to fit a model 
of the form (1.2) by least squares, without placing any restrictions on the 
curve g. It is then, of course, the case that the residual sum of squares 
can be reduced to zero by choosing g to interpolate the given data; for 
example one could join the given points to obtain the function g shown 
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Figure 1.1. Synthetic data joined by straight lines. 
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Figure 1.2. Synthetic data interpolated by a curve with continuous second deriva­
tive. 
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in Figure 1.1. All the figures in this section are constructed from the 
same synthetic set of data. Placing smoothness conditions on the g does 
not make any essential difference; the curve shown in Figure 1.2 has 
continuous second derivative and passes through all the points (ti, Yi). 

What is it that makes the functions shown in these two curves unsat­
isfactory as explanations of the given data? At the outset, it should be 
stressed that in some situations they are not at all unsatisfactory. It may 
well be that the phenomenon under study is known to vary rapidly and 
that the given observations are known to be extremely accurate; however 
even in this case it is of interest to regard the very local variation in the 
curve as random 'noise' in order to study the more slowly varying 'trend' 
in the data. 

The curves in Figures 1.1 and 1.2 underline the point that a good 
fit to the data is not the one and only aim in curve fitting; another, 
often conflicting, aim is to obtain a curve estimate that does not display 
too much rapid fluctuation. The basic idea of the roughness penalty 
approach is to quantify the notion of a rapidly fluctuating curve and then 
to pose the estimation problem in a way that makes explicit the necessary 
compromise between the two rather different aims in curve estimation. 

1.2.2 Quantifying the roughness of a curve 

Given a curve g defined on an interval [a,b], there are many different 
ways of measuring how 'rough' or 'wiggly' the curve g is. An intuitively 
appealing way of measuring the roughness of a twice-differentiable curve 

g is to calculate its integrated squared second derivative J: {g" (t) Jldt. 
There is a variety of ways of motivating this measure of roughness. 

Particularly in the context of regression, it is natural for any measure 
of roughness not to be affected by the addition of a constant or linear 
function, so that if two functions differ only by a constant or a linear 
function then their roughness should be identical. This leads naturally to 
the idea of a roughness functional that depends on the second derivative of 
the curve under consideration. Of course, one could conceivably consider 
the maximum of lg''l or the number of inflection points in g, but the 
integrated squared second derivative is a global measure of roughness 
that has, as we shall see, considerable computational advantages. 

One attractive motivation arises from a formalization of a mechanical 
device that was often used (in the age before computer graphics) for 
drawing smooth curves. If a thin piece of flexible wood, called a spline, 
is bent to the shape of the graph of g then the leading term in the strain 
energy is proportional to J g"2• 
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Figure 1.3. Synthetic data with the curve that minimizes S(g) with a= 1. 

1.2.3 Penalized least squares regression 

The roughness penalty approach to curve estimation is now easily stated. 
Given any twice-differentiable function g defined on [a, b ], and a smooth­
ing parameter a > 0, define the penalized sum of squares 

S(g) = t {Yi- g(ti)}2 +a 1b {g"(x)}2dx. (1.3) 
~I a 

The penalized least squares estimator g is defined to be the minimizer of 
the functional S(g) over the class of all twice-differentiable functions g. 
In Chapter 2 we shall explain how g can be characterized and computed. 
Some remarks about particular software implementations are made in 
Chapter 8. 

The addition of the roughness penalty term af g''2 in (1.3) ensures 
that the cost S(g) of a particular curve is determined not only by its 
goodness-of-fit to the data as quantified by the residual sum of squares 
I: { Y, - g(ti) V but also by its roughness J g"2 . The smoothing parameter 
a represents the 'rate of exchange' between residual error and local 
variation and gives the amount in terms of summed square residual error 
that corresponds to one unit of integrated squared second derivative. For 
the given value of a, minimizing S(g) will give the best compromise 
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Figure 1.4. Synthetic data with the curve that minimizes S(g)for a large value of 
a. 

between smoothness and goodness-of-fit. An example of this approach 
applied to the synthetic data of Figure 1.1 is given in Figure 1. 3. 

If a is large then the main component in S(g) will be the roughness 
penalty term and hence the minimizer g will display very little curvature. 
An example is given in Figure 1.4; in the limiting case as a tends to 
infinity the term J g"2 will be forced to zero and the curve g will approach 
the linear regression fit. 

On the other hand if a is relatively small then the main contribution 
to S(g) will be the residual sum of squares, and the curve estimate g 
will track the data closely even if it is at the expense of being rather 
variable. For an illustration see Figure 1.5. In the limit as a tends to 
zero, g will approach the interpolating curve shown in Figure 1.2. The 
whole question of how to choose the value of a most appropriate to a 
given data set is of course an important one which will be addressed 
in Chapter 3. Many other aspects of the roughness penalty approach to 
one-dimensional regression smoothing are discussed in Chapters 2 and 
3. 

One of the reasons that roughness penalty methods are not as widely 
taught or used as they might be is the mistaken impression that they re­
quire deep technical mathematical knowledge for their development and 
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Figure 1.5. Synthetic data with the curve that minimizes S(g)for a small value of 
a. 

understanding. In fact all that is required to deal with the mathematical 
background to the practical aspects of the methods discussed in this book 
is some elementary calculus and numerical linear algebra. In some of 
the more advanced technical literature there is much mention of con­
cepts such as Sobolev spaces, reproducing kernels, Hilbert spaces and 
the calculus of variations, but we shall not be mentioning any of these 
explicitly, nor shall we be discussing any detail of the asymptotic theory 
of the estimators. 

1.3 Extensions of the roughness penalty approach 

Our main theme is the applicability of the roughness penalty approach 
in a wide variety of contexts. For example, in Chapter 4 we discuss 
semiparametric modelling, a simple application of roughness penalties 
to multiple regression. Suppose we observe a variable Y that depends on 
a multivariate explanatory variable. In multiple linear regression it would 
be assumed that this dependence was linear, and the familiar theory 
of the general linear model would be used to estimate it. The idea of 
semiparametric models, in their simplest form, is to relax the assumption 
of linearity on just one of the explanatory variables, which we shall call 
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t, but to retain the linear dependence on the vector x of the remaining 
variables. This yields a model of the form 

Y = g(t) + xT f3 + error, (1.4) 

where g(t) is a smooth curve and f3 a vector of parameters, both to be 
estimated. As well as describing the way in which the roughness penalty 
approach can be applied to serniparametric modelling, we give a number 
of examples that illustrate the method. 

One of the most important developments in statistics in the last 25 
years has been the introduction and widespread use of generalized linear 
models (GLMs), as formulated by Neider and Wedderburn (1972). In 
Chapter 5 we review the GLM structure, and explain how a roughness 
penalty approach allows some of the linear dependences in Neider and 
Wedderburn's structure to be relaxed to dependence on variables through 
smooth curves g. In Chapter 6, we discuss further extensions both to the 
basic one-dimensional smoothing method, and to the methodology based 
on generalized linear models. 

The natural extension of the model (1.4) is to allow the dependence 
on all the explanatory variables to be nonlinear. Suppose that t is a d­
dimensional vector of explanatory variables ft .... , td. The full extension 
would be to a model of the form 

Y = g(t) + error, (1.5) 

where g is a d-dimensional surface. The estimation of g by a roughness 
penalty method is discussed in Chapter 7, with particular emphasis on 
the two-dimensional case. 

Mention should also be made here of the additive model approach 
set out in the monograph by Hastie and Tibshirani (1990). This can be 
viewed as a 'half-way house' between multiple linear regression and the 
full surface-fitting approach implied by (1.5).1t is assumed that the mean 
response is a sum of functions of the individual explanatory variables, 

d 

Y = L #tj) + error, 
]=I 

where all or some of the d functions gj are smooth curves, and the 
remainder, if any, are assumed to be linear. We shall discuss the additive 
model approach and its ramifications for GLMs briefly in Sections 4.8 
and 5.6, but for full details we refer the reader to Hastie and Tibshirani 
(1990). 
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1.4 Computing the estimates 

It is our hope that readers will be stimulated to apply the methods de­
scribed in this book to their own data. In principle, we have given enough 
information for readers to write their own programs, and would recom­
mend students (and others) to produce their own implementations as 
a valuable exercise. However, the existence of publicly-available soft­
ware is of course essential for the widespread application of statistical 
techniques. Because of the variety and rapid development of computing 
facilities, we have discussed specific software implementations sepa­
rately, in Chapter 8. We describe routines available within the statistical 
language S (Becker, Chambers and Wilks, 1988) and the FORTRAN 
package GCVPACK of Bates, Lindstrom, Wahba and Yandell (1987). 

1.5 Further reading 

In this book we have not attempted to survey the subject of roughness 
penalty methods exhaustively, because we believe that in many ways 
a 'personal view' is more useful. Other recent books and monographs 
which provide a variety of treatments of roughness penalty methods in 
particular, and of statistical smoothing methods more generally, include 
Eubank (1988), Wahba (1990), Hardie (1990), Hastie and Tibshirani 
(1990) and Rosenblatt (1991). 



CHAPTER2 

Interpolating and smoothing splines 

2.1 Cubic splines 

In this chapter we explain how the curve g that minimizes the penalized 
sum of squares (1.3) can be found. A pivotal role in our discussion is 
played by cubic splines. We shall first describe what a cubic spline is, and 
then explain how cubic splines arise in interpolation and nonparametric 
regression. Some algorithmic material will also be presented. 

There is an enormous literature on splines, most of it concerning their 
numerical-analytic rather than statistical properties. Books on splines 
include, for example, Ahlberg, Nilson and Walsh (1967), Prenter (1975), 
De Boor (1978) and Schumaker (1993). Although the notation is at 
times somewhat cumbersome, we reiterate that our treatment requires no 
mathematics beyond simple linear algebra and calculus. 

2.1.1 What is a cubic spline? 

Suppose we are given real numbers ft, ... , tn on some interval [a, b], 
satisfying a < tt < t2 < ... < tn < b. A function g defined on [a,b] 
is a cubic spline if two conditions are satisfied. Firstly, on each of the 
intervals (a, tt). (tt. t2), (t2, t3), ... , (tn. b), g is a cubic polynomial; secondly 
the polynomial pieces fit together at the points ti in such a way that g 
itself and its first and second derivatives are continuous at each ti, and 
hence on the whole of [a, b]. 

The points ti are called knots. There are many essentially equivalent 
ways of specifying a cubic spline. One obvious way is to give the four 
polynomial coefficients of each cubic piece, for example in the form 

g(t) = di(t- ti)3 + ci(t- tii + bi(t- ti) + ai forti ~ t ~ ti+l (2.1) 

for given constants a;, bi, Ci, di, i = 0, ... , n; we define to =a and tn+l = b. 
The continuity conditions on g and on its first two derivatives imply 

various relations between the coefficients. For example, the continuity of 
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gat ti+I yields, fori= 0, ... , n- 1, 

di(ti+I - ti)3 + ci(ti+I - tii + bi(ti+I - ti) + ai =a;+ I (2.2) 

since both expressions are equal to g(t;+1). 

A cubic spline on an interval [a, b] will be said to be a natural cubic 
spline (NCS) if its second and third derivatives are zero at a and b. These 
conditions are called the natural boundary conditions. They imply that 
do = co = dn = Cn = 0, so that g is linear on the two extreme intervals 
[a,td and [tn,b]. 

2.1.2 The value-second derivative representation 

In fact it turns out that (2.1) is not the most convenient representation 
of a natural cubic spline either for computation or for mathematical 
discussion. We shall instead specify a NCS by giving its value and second 
derivative at each of the knots ti. This representation will be called the 
value-second derivative representation. Suppose that g is a NCS with 
knots t1 < ... < tn. Define 

gi = g(ti) and '}1 = g" (t;) fori= 1, ... , n. 

By the definition of a NCS the second derivative of g at t1 and at tn is 
zero, so that YI = Yn = 0. Let g be the vector (gi, ... , gnl and let 1 be 
the vector (/'l, ... , Yn-Il· Note that the entries 11 of the (n- 2)-vector 1 
are numbered in a non-standard way, starting at i = 2; this will make for 
considerable simplification later on. 

The vectors g and 1 specify the curve g completely, and it is possible 
to give explicit formulae in terms of g and 1 for the value and derivatives 
of g at any point t. This enables g to be plotted to any desired degree of 
accuracy. Details of these formulae will be given in Section 2.4 below. 

It turns out to be the case that not all possible vectors g and 1 represent 
bona fide natural cubic splines. We shall now discuss a necessary and 
sufficient condition for the vectors genuinely to represent a natural cubic 
spline on the given knot sequence. 

The condition depends on two band matrices Q and R which we now 
define. Let hi = ti+I - ti for i = 1, ... , n - 1. Let Q be the n x (n - 2) 
matrix with entries qij. fori= 1, ... , n andj = 2, ... , n - 1, given by 

h-I h-I h-I d h-I {jj-I,J = 1-I• qn =- j-I - 1 • an qi+l,J = i 

for j = 2, ... , n- 1, and qij = 0 for li- jl 2:: 2. The columns of Q are 
numbered in the same non-standard way as the entries of 1. starting at 
j = 2, so that the top left element of Q is q12. 
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The symmetric matrix R is (n - 2) x (n - 2) with elements r;j. for i 
andj running from 2 to (n- 1), given by 

ru = t<hi-1 +h;) fori= 2, ... ,n- 1, 

ri.i+l = r;+J,, = ih; fori= 2, ... ,n- 2, 

and rij = 0 for I i - jl 2: 2. 
The matrix R is strictly diagonal dominant, in the sense that ir;,l > 

I:jfi irvl for each i. Standard arguments in numerical linear algebra (e.g. 
Todd (1962), Section 8.19) show that R is strictly positive-definite. We 
can therefore define a matrix K by 

(2.3) 

The key property can now be stated, together with two important results 
that will be used later. 

Theorem 2.1 The vectors g and 'Y specify a natural cubic spline g if and 
only if the condition 

(2.4) 

is satisfied.lf(2.4) is satisfied then the roughness penalty will satisfy 

lb g11(t)2dt = "fTR"f = gTKg. (2.5) 

The proof of the theorem, for readers interested in the details, is given in 
Section 2.5 below. 

2.2 Interpolating splines 

Although our main emphasis in this book is on smoothing problems, it is 
helpful to spend a little time on the closely related problem of interpola­
tion. The subject of interpolation is perhaps more familiar to numerical 
analysts than to statisticians, and our primary reason for introducing it 
here is to simplify and clarify the subsequent discussion of the smoothing 
problem. Nevertheless, the interpolation problem is of course of enor­
mous importance in its own right. 

Suppose we are given values Zt, ... , Zn at the points It, ... , tn. We wish 
to find a smooth curve g such that g interpolates the points (t;, z;), that 
is to say g(t;) = Z; for all i = 1, .. . , n. Obviously there are many ways 
of constructing a sensible interpolating function g. The simplest, and 
probably the most widely used, approach would be to join the given 
points (t;, z;) by straight lines. Whilst this undoubtedly suffices for many 
purposes, it does not yield a smooth curve, since the resulting function 
g has discontinuous derivative at each data point. The objections to this 
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piecewise linear function are not just aesthetic; if the points are taken from 
a true underlying smooth curve, then it can be shown mathematically 
that a suitably chosen smooth interpolant will do a much better job of 
approximating the true underlying curve than will the piecewise linear 
interpolant. 

Of course, just restricting attention to smooth interpolants does not give 
a unique answer. In a technical drawing office, smooth curves through 
given points are often drawn using French curves, which work by joining 
pieces of smooth curves together smoothly at points chosen subjectively 
in the light of the data. The success of this approach depends largely on 
the skill of the draftsman. Particularly because of the subjective nature 
of the choice both of the joins between the curves and of the curves 
themselves, it is a method that is not easy to formalize or automate. 

An approach that is easier to define mathematically can be developed 
from our definition of roughness penalties in Section 1.2 above. Let 
S[ a, b] be the space of all functions g on [a, b] that have two continuous 
derivatives, and call a function smooth if it is in S[a, b]. If we wanted 
the 'smoothest possible' curve that interpolated the given points, then 
a natural choice would be to use as our interpolant the curve that had 
the minimum value of I g"2 among all smooth curves that interpolate the 
data. 

It turns out that among all curves g in S[a, b] interpolating the points 
(ti, Zi), the one minimizing I g112 is a natural cubic spline with knots ti. 
Furthermore, provided n 2: 2, there is exactly one such natural cubic 
spline interpolating the data. Thus the problem of finding the interpolant 
with minimal I g"2 is precisely that of finding the unique natural cubic 
spline that has knots at the points ti and values g(ti) = Zi for all i. We shall 
prove these assertions below and also demonstrate how the natural spline 
interpolant can be found by solving a system of linear equations. 

The natural cubic spline interpolant has a mechanical motivation al­
ready alluded to in Section 1.2.2 above. Suppose a thin piece of flexible 
wood, a mechanical spline, is constrained to pass through the given points 
(ti, Zi) but is otherwise free to fall into any shape. Mechanical splines are 
rather unusual nowadays, but were once in common use particularly for 
laying out the hulls of ships and for planning railway lines. In practice the 
mechanical spline is equipped with a number of pivoted sliding weights, 
called ducks. Placing the ducks at the points (ti, Zi) on the drawing board 
will constrain the spline in the necessary way, and the spline will take 
up a position of minimum energy subject to the constraints. Provided the 
points lie reasonably close to a straight line, the spline's position will, to 
first order, describe a curve g minimizing I g"2 over curves interpolating 
the data. 
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2.2.1 Constructing the interpolating natural cubic spline 

The result that it is always possible to interpolate a given set of values by 
a natural cubic spline, in a unique way, is so important that we shall give 
it as a theorem. 

Theorem 2.2 Suppose n 2: 2 and that t1 < ... < tn. Given any values 
Z!, ... , Zn, there is a unique natural cubic spline g with knots at the points 
ti satisfying 

g(ti) = Zi fori= 1, ... , n. (2.6) 

Proof. Let z be the vector with components Zi. In terms of the representa­
tion of a natural cubic spline in terms of its values and second derivatives, 
the condition (2.6) will be satisfied provided g = z. By Theorem 2.1, such 
a natural cubic spline will exist provided we can find a vector 1 such that 
QT g = R1. Since R is strictly positive-definite, there will be a unique 1. 
given by 1 = R-1 QT g, satisfying the required condition. 0 

The theorem can now be used as the basis for a practical algorithm 
for finding the natural cubic spline interpolant to a set of n data points 
in O(n) operations. The matrix R is a tridiagonal matrix, in other words 
rij = 0 if li - jl 2: 2, and hence the vector equation R1 = x can be solved 
for 1 in a linear number of operations without finding R-1; for details 
see any standard numerical linear algebra computer package or textbook. 
The tridiagonal nature of Q means that QT g can be found from g in a 
linear number of operations. Probably the easiest way to calculate QT g 
is to notice that, for i = 2, ... , n - 1, 

(QT ) gi+!- gi gi- gi-l 
g i = - , 

h, hi-! 
(2.7) 

so that premultiplication by QT is achieved by differencing, dividing 
componentwise by the values h1, and differencing again. 

We can now conclude that the following algorithm will yield the natural 
cubic spline interpolant to n points (ti, z;) in O(n) computer floating point 
operations, provided an appropriate numerical method is used in Step 2. 

Algorithm for natural cubic spline interpolation 

Step 1 Set gi = Z; fori= 1, ... , n. 

Step 2 Set x = QT g (by using the formula (2.7)) and solve R1 = x for f. 

2.2.2 Optimality properties of the natural cubic spline interpolant 

It has already been pointed out in Section 2.2 that the natural cubic spline 
interpolant has the important property of having the minimum value of 
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I g"2 among all smooth curves that interpolate the data. In the present 
section we shall give a proof of this assertion using simple calculus; the 
reader prepared to take the mathematical details on trust should feel free 
to skip over them. 

It should be stressed that the spline nature of the minimizing curve is a 
mathematical consequence of the choice of roughness penalty functional 
I g"2. One of the attractions of the natural cubic spline interpolation 
method is, of course, the happy combination of circumstances both that 
the estimate is the solution of a neatly expressed and intuitively attractive 
minimization, and that it can be calculated in linear time and stored easily 
as a piecewise polynomial. Neither the natural spline structure itself, nor 
the positioning of the knots at the points ti, is imposed on the minimizing 
curve. 

For mathematical completeness, we shall show that the natural cubic 
spline interpolant is optimal over an even larger class of smooth func­
tions than that considered in Section 2.2. Let 52[a,b] be the space of 
functions that are differentiable on [a, b] and have absolutely continuous 
first derivative; this means that g is continuous and differentiable every­
where on [a, b] with derivative g', and that there is an integrable function 
g" such that J: g" ( t)dt = g' (x) - g' (a) for all x in [a, b]. This condition is 
automatically satisfied if g is continuously twice differentiable on [a, b ], 
and so 52 [a, b] contains all the functions in S[ a, b]. 

We can now state and prove the main theorem of this section, which 
shows that the natural cubic spline interpolant is the unique minimizer of 
I g"2 over the class of all functions in 52[a, b] that interpolate the data. 

Theorem 2.3 Suppose n ~ 2, and that g is the natural cubic spline 
interpolant to the values Zt, ... , Zn at points tt, ... , tn satisfying a < tt < ... < 
tn < b. Let g be any function in 52[a, b ]for which g(ti) = zdor i = 1, ... , n. 
Then fg"2 ~I g"2, with equality only if g and g are identical. 

Proof. Let h be the function in 52[a, b] given by h = g - g. Both g 
and g interpolate the values Zi, and so h is zero at all the points ti for 
i = 1, ... , n. Since, by the natural boundary conditions, g" is zero at a and 
b, integration by parts yields 

1b g" (t)h" (t)dt = -1b g"' (t)h' (t)dt 

= - I: g"' (tj) Jt,.t h' (t)dt 
J=l r, 

n-1 

= - L:g"'(tj){h(tj+!)- h(tj)} = 0. (2.8) 
j=l 



SMOOTHING SPLINES 17 

We have used the fact that g111 is zero on each of the intervals (a, tt) and 
Ctn. b), and is constant on each interval (tj. ti+t) with value g111(tj). 

It follows, substituting (2.8), that 

lb g"2 = lb (g" + h"f = lb g"2 + 21b l' h" + lb h"2 

= lb g"2 + lb h"2 ;;:: lb g"2' (2.9) 

as required. Equality will hold in (2.9) only if J h"2 is zero, so that h is 
linear on [a, b]. But since his zero at the points tt. ... , tn, and since n;;:: 2, 
this can only happen if h is identically zero, in other words if g and g are 
the same function. This completes the proof of the theorem. 0 

2.3 Smoothing splines 

We now return to the more statistical question of constructing an estimate 
of a curve whose values are observed subject to random error. As in 
Section 2.2, suppose that lt, ... ,tn are points in [a,b] satisfying a < 
t1 < ... < tn < b. Suppose that we have observations ft. ... , Yn. We shall 
assume throughout this section that n ;;:: 3, in order to ensure that none of 
the matrices or conditions in Theorem 2.1 are vacuous, but some remarks 
about n = 1 and 2 are made in Section 2.3.4 below. Given any function g 
in 52[a, b], let S(g) be the penalized sum of squares 

as defined in (1.3), with positive smoothing parameter a. 
The curve estimate g will be defined to be the minimizer of S(g) over 

the class 5l[a, b] of all sufficiently smooth curves on [a, b ]. In this section 
we shall explore the properties of g and explain one way in which it can 
be calculated. We shall not, for the moment, discuss the choice of the 
smoothing parameter a; this question will be considered in detail later 
on. 

In the next two sections we shall develop the properties of g and then 
summarize these in a formal theorem at the end. 

2.3.1 Restricting the class of functions to be considered 

Our work in Section 2.2 on interpolating splines was somewhat laborious 
but it now enables us to obtain, with very little effort, important properties 
of the estimate g. First of all we can show that g is necessarily a natural 
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cubic spline with knots at the points ti, and this will be done in the next 
paragraph. 

Suppose g is any curve that is not a natural cubic spline with knots at 
the ti. Let g be the natural cubic spline interpolant to the values g( ti); since, 
by definition, g(ti) = g(ti) for all i, it is immediate that I: { Yi - g(ti) F = 
I: { Yi- g(ti) V Because of the optimality properties of the natural cubic 
spline interpolant,Ig112 <I g"2, and hence, since a> 0, we can conclude 
that S(g) < S(g). This means that, unless g itself is a natural cubic spline, 
we can find a natural cubic spline which attains a smaller value of the 
penalized sum of squares (1.3); it follows at once that the minimizer g of 
S must be a natural cubic spline. 

It is important to notice that we have not forced g to be a natural 
cubic spline. Just as in the case of interpolation, the natural cubic spline 
properties of g arise as a mathematical consequence of the choice of I g"2 

as a roughness penalty. 
Knowing that g is a natural cubic spline is an enormous advance. We 

can specify g exactly by finding a finite number of constants because 
we now only need to minimize S(g) over a finite-dimensional class of 
functions, the natural cubic splines with knots at the ti, instead of consid­
ering the infinite dimensional set of smooth functions 51[a, b]. In the next 
section we shall show how the minimizing spline curve can be found by 
solving a set of linear equations. 

2.3.2 Existence and uniqueness of the minimizing spline curve 

Suppose, now, that g is a natural cubic spline defined as in Section 2.1.2, 
with vectors g and /. and matrices Q and R, as defined there. In this 
section were-express S(g) in terms of these vectors and matrices. We 
shall be able to conclude that the minimizer g exists and is unique, 
and furthermore we shall be able to give a linear time algorithm for its 
calculation. 

Let Y be the vector (Y,, ... , Ynf.It is immediate that the residual sum 
of squares about g can be rewritten 

:L: {Yi- g(ti)}2 = (Y- gl(Y- g) 

since the vector g is precisely the vector of values g(ti). Express the 
roughness penalty term I g"2 as gT Kg from (2.5) to obtain 

S(g) = (Y- gl(Y- g)+ agTKg 

= gT (/ + aK)g - 2YT g + yTy (2.10) 

Since aK is non-negative definite, the matrix I + aK is strictly positive­
definite. It therefore follows that (2.10) has a unique minimum, obtained 
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by setting 
g =(I+ aK)-tY. (2.11) 

To see this, rewrite (2.10) as 

{g- (I+ aK)-tyy (I+ aK) {g- (I+ aK)-tY} (2.12) 

plus a constant that depends only on Y; because I+ aK is strictly positive­
definite, the expression (2.12) is always strictly positive except when g 
satisfies (2.11 ), when it is zero. 

We know from Theorem 2.2 that the vector g defines the spline g 
uniquely. Thus, over the space of all natural cubic splines with knots at 
the points ti, S(g) has a unique minimum given by (2.11 ). This completes 
the characterization of the solution to the minimization of the penalized 
sum of squares; for convenience of reference we summarize the work of 
the last two sections in the following theorem. 

Theorem 2.4 Suppose n ~ 3 and that tt, ... , tn are points satisfying 
a < It < ... < tn < b. Given data points Yt • ... , Yn, and a strictly positive 
smoothing parameter a, let g be the natural cubic spline with knots at 
the points tt. ... , tnforwhich g =(I+ aK)-tY. Then,forany gin .52[a, b], 

S(g) :::; S(g) 

with equality only if g and g are identical. 

In practice it is inefficient to use (2.11) directly to find the vector g and 
hence the curve g. In the next section we shall use (2.11) to develop a 
much more efficient algorithm. 

2.3.3 The Reinsch algorithm 

In this section an algorithm due to Reinsch (1967) for finding the smooth­
ing spline will be obtained. 

The basic idea of the Reinsch algorithm is to set up a non-singular 
system of linear equations for the second derivatives n of g at the knots 
ti. These equations have a banded structure and can be solved in O(n) 
arithmetic operations. Explicit formulae then give the values gi in terms 
of then and the data values Yi. In our discussion, we shall use various 
ideas from numerical linear algebra such as the Cholesky decomposition 
of a band matrix; readers unfamiliar with these concepts are referred to 
Section 2.6.1 below. 

A matrix is said to be a band matrix if all of its non-zero entries 
are concentrated on some small number of diagonals; the number of 
non-zero diagonals is called the bandwidth of the matrix. Thus if B is a 
symmetric band matrix with bandwidth 2k + 1, the element BIJ is zero 
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if ji- jj > k. Band matrices are economical to store since there is no 
need to allocate storage for the diagonals known to be zero. Diagonal 
and tridiagonal matrices are of course band matrices with bandwidths 1 
and 3 respectively. The matrices R and Q as defined in Section 2.1.2 both 
have bandwidth 3. 

Define the (n- 2)-vector '"Y as in Section 2.1.2. From (2.3) and (2.11) 
we have 

(I+ aQR-!QT)g = Y. (2.13) 

Rearrange (2.13) to obtain 

g = Y- aQR-!QT g; 

now substitute QT g = R-y and simplify to give an explicit formula for g 
in terms of Y and '"Y 

g = y- aQ-y. 

Again using the condition QT g = R-y we obtain 

QTY- aQT Q-y = R-y, 

which gives the equation for '"Y 

(R + aQT Q)'"Y = QTY. 

(2.14) 

(2.15) 

This equation is the core of the algorithm. By contrast to the equation 
(2.13) for g, it can be solved in linear time using band matrix techniques. 

The matrix (R + aQT Q) is easily seen to have bandwidth 5, and also to 
be symmetric and strictly positive-definite. Therefore it has a Cholesky 
decomposition of the form 

R+aQTQ=WLT 

where D is a strictly positive diagonal matrix and L is a lower triangular 
band matrix with Lij = 0 for j < i- 2 andj > i, and Lu = 1 for all i. The 
matrices Q and R can all be found in O(n) algebraic operations, provided 
only the non-zero diagonals are stored, and hence the matrices L and D 
require only linear time for their computation. 

The Reinsch algorithm can now be set out. Because the matrices in­
volved are all band matrices, each step can be performed in 0( n) algebraic 
operations. 

Algorithm for spline smoothing 

Step 1 Evaluate the vector QTY, by using the formula (2.7). 

Step 2 Find the non-zero diagonals of R+aQT Q, and hence the Cholesky 
decomposition factors Land D. 
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Step 3 Write (2.15) as we -y = QTY and solve this equation for -y by 
forward and back substitution. 

Step 4 From (2.14), use 

g =Y- aQ-y 

to find g. 

It is worth remarking that Step 1 need be performed only once for each 
data set; it does not need to be repeated if a new value of the smoothing 
parameter a is used. Furthermore if new data values Y are used, but the 
design points left unchanged, then Step 2 can be omitted. 

2.3.4 Some concluding remarks 

A close inspection of Theorem 2.4 and of the Reinsch algorithm reveals 
that none of the vectors and matrices considered in the Reinsch algorithm 
depend on the choice of the interval [a, b]. In fact it is not difficult to see 
why the minimizing curve g essentially does not depend on a and b, 
beyond the condition that all the data points lie between a and b. Suppose 
that (a*, b*) is an extension of the range (a, b), and that g is extended 
to (a*, b*) by linear extrapolation at each end. Since g" is zero outside 

{tt, tn). J:.· g112 = J: g"2, and so S(g) will remain the same. For any other 
function g, extending the range of integration of g"2 will if anything 
increase J g"2 , and hence g will still miminize S. Indeed if g is extended 
linearly to ( -oo, oo) at each end, then g will minimizeS over .52[a, b] for 
any a and b with -oo ::::; a ::::; t1 and tn ::::; b ::::; oo. Of course just because 
it is mathematically possible to extrapolate g beyond the range of the 
data does not mean that extrapolation is statistically desirable. But it is 
interesting, and comforting, to know that essentially the same smoothing 
spline will be obtained no matter what the interval containing the data is 
taken to be. 

We have concentrated on the case where there are at least three distinct 
data points, and a few words should be said about the cases n = 1 and 2, 
which are of course of little practical interest. If n = 2, it is immediately 
clear that, whatever the value of a, setting g to be the straight line 
through the two points (tJ, YJ) and (t2, Y2) will, uniquely, reduce S(g) 
to zero. Thus the minimization problem has a unique solution, but an 
algorithm is scarcely required to find it! In the (even more absurd) case 
n = 1, the minimizer of S is no longer unique, because any straight line 
through (tJ, Y1) will yield a zero value of S(g). 
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2.4 Plotting a natural cubic spline 

Suppose that g is a natural cubic spline with knots tt < t2 < ... < tn. Let 
g be the vector of values of g at the knot points and let 'Y be the vector 
of second derivatives at the knot points. In this section we explain in 
detail how the vectors g and 1 can be used to find the value of g at any 
point t, and hence to plot a graph of g to any desired degree of accuracy. 
(Of course, for some purposes it will be perfectly satisfactory to join the 
points (t;, g;) by straight lines.) 

Concentrate, to start with, on the interval between any successive pair 
of knots tj and tj+ 1· On this interval, g is a cubic polynomial, and its value 
and second derivative are specified at the ends of the interval. In the next 
section we describe how to use this information to construct the cubic on 
the entire interval. 

2.4.1 Constructing a cubic given values and second derivatives at the 
ends of an interval 

Suppose g is a cubic on the interval [tL, tR] and that 

g(tL) = gL, g(tR) =gR. g"(t!) = n. and g"(tJi) = YR· (2.16) 

Define h = tR - fL. Since g is a cubic, it follows at once that g" is linear 
on [tL, tR]. Therefore we have 

"( ) (t- fL)YR + (tR - t)YL g t = -'-----'-------"-
h 

(2.17) 

and, by differentiating, 

(2.18) 

To get expressions for the value and derivative of g is a little more 
complicated. It can be shown that 

g(t) = (t - tL)gR : (tR - t)gL (2.19) 

- i (t - tL)(tR - t) { ( 1 + t ~ tL) YR + ( 1 + ~; t) YL} . 
It is immediately clear that the expression given in (2.19) is a cubic and 
has the required values at tL and tR. By straightforward calculus it can be 
checked that the second derivatives are also correct; the details are left as 
an exercise for the reader. 

We shall not give an explicit expression for the derivative of f at a 
general point, but note that (again leaving the details as an exercise) it 
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follows from (2.19) that 

g'(tl) = 8R ~ 8L - ~h(2n + YR) (2.20) 

and 
'( -) 8R- 8L I h( 2 ) g tR = h + 6 YL + YR . (2.21) 

2.4.2 Plotting the entire cubic spline 

Now return to the full cubic spline g. The expression (2.19) can be used 
on each interval [t;, t;+t] in turn to plot g on the interval [tt, tn] delimited 
by the knots. Fori= 1, ... , n- 1 define h; = t;+t - t;. We then have 

(t - t;)gi+l + (ti+l - t)g; 
g(t) = 

h; 

- ~(t- t;)(ti+l - t) { ( 1 + t ~/i) 1'i+l + ( 1 + t;+~~ t) 1'i} 

fort; ~ t ~ t;+t• i = 1, ... , n- 1. (2.22) 

Similarly, the expressions (2.17) and (2.18) give the second and third 
derivative on each interval. 

If t ~ tt or t 2: tn then the definition of a NCS implies that g" (t) = 
g'"(t) = 0. To get an expression for g(t) itself, we use the fact that g is 
linear outside the range of the knots. The derivatives of g at t1 and tn are, 
by substituting into (2.20) and (2.21), given by 

and 

1 82 -g! I 
g (t,) = -- - 6(t2- ft)'Yl 

tz- tt 

'( ) 8n - 8n-! 1 ( ) g tn = + 6 tn- tn-t Yn-l· 
tn- tn-t 

Once these values have been calculated, the linearity of g outside the 
range of the knots gives 

g(t) = g, - (tt - t)g' (tJ) fort ~ tt (2.23) 

and 

(2.24) 

It should be noted that these expressions do not depend on the overall 
interval [a, b] of interest, provided this interval contains all the knots. 

Any reader interested in computer graphics is advised, as an exercise, 
to write a program that plots the cubic spline g given the values of the 
knots and the vectors g and -y. 
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2.5 Some background technical properties 

In Theorem 2.1 it was stated that the vectors g and 1 specify a natural 
cubic spline if and only if QT g = R1, and expressions were given for the 
integrated squared second derivative of the resulting NCS if the condition 
is satisfied. In this section we prove this theorem. 

2.5.1 The key property for g to be a natural cubic spline 

Given g and 'Y· define g(t) to be the piecewise cubic polynomial defined 
by (2.22) for t1 ~ t ~ tn and by (2.23) and (2.24) outside this range. 
It is immediate from the construction that g is everywhere continuous, 
that g" (tj) = g" (ti-) = 11 for each j and that g' is continuous at t1 and 
tn. The only way in which g can fail to be a natural cubic spline is if 
the cubic pieces do not fit together at the internal knots t2, ... , tn-l in a 
differentiable way. 

Foreachj, 2 ~ j ~ n-1, it follows from (2.21) and (2.20) respectively 
that 

'(-) gj-gj-1 lh ( 2) g tj = h + 6 j-1 11-1 + 11 
j-1 

(2.25) 

and 
'( +) gj+l - gj I h (2 ) 

g tj = h· - 6 j 11 + 11+1 . 
J 

(2.26) 

Thus the derivative of the piecewise polynomial g will be continuous at 
all the knots (and hence g will be a natural cubic spline) if and only if, for 
j = 2, ... , n- 1, the expressions (2.25) and (2.26) are equal; rearranging, 
this yields 

gJ+l- gl gl- gJ-1 lh l(h I 
=---:---=-"- - h = 6 j-1 11-1 + 3 J-1 + hl)11 + 6hf~'+l• 

hj J-1 
(2.27) 

precisely the condition QT g = R1 as in (2.4), as required. 

2.5.2 Expressions for the roughness penalty 

Now suppose that the condition (2.4) is satisfied. Just as in (2.8), integrate 
by parts, use the facts that g"(a) = g"(b) = 0, and that g111 is constant on 
each interval (t1, tj+J) and zero outside [tJ, tn], to obtain 

1b {g"(t)} 2dt = -1b g"'(t)g'(t)dt 

= - ~ g111 u;) jt'+l g' <r)dt 
j=l t, 
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n-! 

" ('J?+i - 'J?) ( ) = ~ h· gj - gj+! 
j=l J 

(2.28) 

by substituting (2.18) for the third derivative of g. Since n = Yn = 0, it 
follows by rearranging (2.28) that 

n-! ( ) " . gi+l- g, _ gi- gi-l _ TQT 
~ Yi h· h· - 'Y g 
i=2 I 1-J 

= "{TR"{ = gT QR-1QT g = gTKg, 

making use of the property Qr g = R"{ and the definition (2.3) of K. This 
completes the proof of Theorem 2.1. 

2.6 Band matrix manipulations 

The fast algorithms for calculating the cubic spline interpolant and the 
spline smoother make use of band matrix manipulations. 

For the benefit of readers unfamiliar with band matrices, we briefly 
review some of their properties in this section. We do not attempt a 
complete treatment, but concentrate on the techniques used in algorithms 
for spline smoothing and interpolation. Routines for manipulating band 
matrices are given in most mathematical subroutine packages, and so 
anybody contemplating the implementation of the techniques described 
here should first of all check whether the required routine is already 
available. The algorithms we describe are known to be numerically stable; 
for details and references to further reading see, for example, Golub and 
Van Loan (1983). 

In our treatment we shall focus attention on the case of bandwidth 5, 
since this is the value relevant to the matrices that arise in constructing the 
smoothing spline, for example using the Reinsch algorithm; see Section 
2.3.3 above. 

2.6.1 The Cholesky decomposition 

Suppose, now, that B is a positive-definite symmetric n x n band matrix. 
It is then possible to express B as 

B=We (2.29) 

where D is a diagonal matrix with diagonal elements D,, and L is a 
lower triangular band matrix with diagonal elements all equal to 1. The 
decomposition (2.29) is called the Cholesky decomposition, and is useful 
for a number of purposes, particularly for solving systems of linear 
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equations as described in Section 2.6.2 below. 
In order to perform the decomposition, we equate the non-zero ele­

ments of B and WLT on and below the main diagonal, row by row in the 
order (1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3), ... , (n, n- 2), (n, n- 1), (n, n). 
In the particular case of bandwidth 5, this gives, after some rearrange-
ment, 

D1 = Bn, ~~ = B21/ D1, D2 = B22- ~1D1 
and, fori= 3, ... , n successively, 

L1,i-2 = Bi,i-21 D;-2, 

Li.i-1 = (B,,;-1 - L;-1,i-2Li,t-2D;-2)1 D;-I, and 

D; = Bu- Lf,;_1D;-1- Lf,;_2Dt-2· 

Since each element of B is referred to only once in the procedure we 
have described, the decomposition can be performed 'in place' with 
D, placed in the location occupied by Bu and L,,,_2 and L,,,_1 placed 
in the locations of B;,,-2 and B;,z-1· It can be seen by counting up the 
operations required that the entire decomposition can be carried out in 
O(n) arithmetic operations; 8n- 13 multiplications/divisions are needed 
for the calculations as set out above in the case of bandwidth 5. 

2.6.2 Solving linear equations 

Suppose, as in Section 2.6.1, that B is a positive-definite symmetric n x n 
band matrix. Suppose that z is a known n-vector, and that it is of interest 
to solve the system of equations 

Bx=z (2.30) 

for the unknown n-vector x. The Cholesky decomposition makes it easy 
to solve these equations very quickly. As in (2.29), decompose Bas LDLT 
and introduce vectors u and v satisfying 

Lu = z, Dv = u and LT x = v. 

Next, find the components of u in order: 

U; = Z1 - L1,1-1Uz-1- L1,1-2Uz-2 fori= 3, ... ,n; 

then set v, = u,l D, for each i; and finally equate coefficients in reverse 
order to find x: 

Xn = Vn, Xn-1 = Vn-1 - Ln,n-]Xn, and 
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Any or all of these three steps can be performed in place with the com­
ponents, for example, of u, v and x all occupying the same locations 
successively. Once the Cholesk.y decomposition has been performed, it 
can be seen at once that the number of operations required to solve the 
equations (2.30) is again O(n); for the case of bandwidth 5 that we have 
described in detail, the number of multiplications/divisions needed is 
5n -6. 

The cubic spline interpolation algorithm described in Section 2.2 in­
cludes the solution of a set of equations of the form (2.30) with B a 
tridiagonal matrix, that is a matrix whose bandwidth is 3. We leave as 
an exercise the simplification to this case of the procedures we have set 
out above; altogether the number of multiplications/divisions required is 
3n - 3 for the decomposition and an additional 3n - 2 for the solution 
itself. 



CHAPTER3 

One-dimensional case: further topics 

3.1 Choosing the smoothing parameter 

The problem of choosing the smoothing parameter is ubiquitous in curve 
estimation, even if in certain cases it is swept under the carpet in the way 
a method is specified. For example, if one is fitting curves by polynomial 
regression, the choice of the degree of the fitted polynomial is essentially 
equivalent to the choice of a smoothing parameter. In the spline smoothing 
methodology set out in Chapter 2 above, the smoothing parameter is of 
course explicit in the method. 

There are two different philosophical approaches to the question of 
choosing the smoothing parameter. The first approach is to regard the 
free choice of smoothing parameter as an advantageous feature of the 
procedure. By varying the smoothing parameter features of the data that 
arise on different 'scales' can be explored, and if a single estimate is 
ultimately needed it can be obtained by a subjective choice. It may well 
be that such a subjective approach is in reality the most useful one. 

The other, to some extent opposing, philosophical view is that there 
is a need for an automatic method whereby the smoothing parameter 
value is chosen by the data. It is fairer to use the word automatic rather 
than objective for such a method, because-as in almost any statistical 
procedure-there are arbitrary decisions involved in the choice of the 
method itself. Nevertheless it is of course the case that conditionally on 
the automatic method being used the choice of smoothing parameter is 
indeed objective. 

Automatic methods need not be used in an uncritical way; they can 
of course be used as a starting point for fine tuning. They are almost 
essential if the estimated curve is to be used as a component part of a 
more complicated procedure, or if the method is being used routinely 
on a large number of data sets. In the latter context it may well be that 
there is a preference for using the same value of the smoothing parameter 
across different data sets in order to aid comparison, or simply because a 
particular value is known from experience to give good results! 
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There are a number of different automatic procedures available. Prob­
ably the most well known is cross-validation, which will be described in 
the next section. 

3.2 Cross-validation 

The basic motivation behind the cross-validation method is in terms 
of prediction. Assuming that the random error has zero mean, the true 
regression curve g has the property that, if an observation Y is taken at a 
point t, the value g(t) is the best predictor of Y in terms of mean square 
error. Thus a good choice of estimator g(t) would be one that gave a small 
value of { Y - g(t) } 2 for a new observation Y at the point t. 

Of course in practice, when the smoothing method is applied to a 
single data set, no new observations are available. The cross-validation 
technique manufactures the 'new observation' situation from the given 
data as follows. 

Focus attention on a given smoothing parameter value a. Let us con­
sider the observation Yi at ti as being a new observation by omitting it 
from the set of data used to estimate the curve itself. Denote by g< -i>(t; a) 
the curve estimated from the remaining data, using the value a for the 
smoothing parameter, so that g<-i>(t; a) is the minimizer of 

~ {Y;- g(tj)}2 +a j g'12 . 

Jt-1 

(3.1) 

The quality of g<-i) as a predictor on a new observation can be judged 
by how well the value gH>(ti) predicts Yi. Since the choice of which 
observation to omit is arbitrary, the overall efficacy of the procedure with 
the smoothing parameter a can be quantified by the cross-validation score 
function 

n 

CV(a) = n- 1 L {Yi- gH>(ti; a)}2. (3.2) 
i=l 

The basic idea of cross-validation is to choose the value of a that mini­
mizes CV(a).lt cannot be guaranteed that the function CV has a unique 
minimum, so care has to be taken with its minimization, and a simple grid 
search is probably the best approach. Whatever minimization method is 
used, it will involve calculating CV(a) for a number of values of a, and 
therefore an efficient method of calculating CV is important. 
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3.2.1 Efficient calculation of the cross-validation score 

At first sight, it would appear from (3.2) that to work out CV(a) it is 
necessary to solve n separate smoothing problems, in order to find the 
n curves g<-0. However, we shall see in this section that this is by no 
means the case. 

The first step in the simplification is to recall from Theorem 2.4 that the 
values of the smoothing spline g depend linearly on the data Y; through 
the equation 

g =A(a)Y 

where the matrix A( a) is defined by 

A( a)= (1 + aQR-!QT)-1. 

(3.3) 

(3.4) 

The matrix A( a) is called the hat matrix because it maps the vector of 
observed values Y; to their 'predicted values' g(t;) or Y;. 

The first key result in the development of an economical way of cal­
culating the cross-validation score is as follows. 

Theorem 3.1 The cross-validation score satisfies 

CV(a) = n-1 t ( Y,- g(t,) ) 2
, 

t=l 1 -A;,( a) 
(3.5) 

where g is the spline smoother calculated from the full data set { (t;, Y;)} 

with smoothing parameter a. 

This theorem shows that, provided the diagonal entries A,;(a) are 
known, the cross-validation score can be calculated from the residu­
als Y; - g(t,) about the spline smoother calculated from the full data set. 
Therefore no additional smoothing problems have to be solved. However, 
it would appear from (3. 4) that the computation of the diagonal entries of 
the hat matrix could be a burdensome task, because of the matrix inver­
sions involved in its definition. In fact this is not the case, and in Section 
3.2.2 below we shall describe an ingenious algorithm that yields all the 
diagonal elements of A(a) in O(n) operations, and hence, since the Rein­
sch algorithm gives the values g(t;) in linear time, the cross-validation 
score itself can be found in linear time for each value of a. 

Proof of Theorem 3.1 

The proof of Theorem 3.1 follows immediately from a lemma that is 
very well known in other contexts, and gives as a corollary an expression 
for the 'deleted residual' Y, - g<-•>(t,) in terms of Y, - g(t,) and the ith 
diagonal element of the hat matrix. The result itself is identical in form 
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to that obtained in the development of the PRESS criterion for deciding 
the complexity of a parametric multivariate regression; see Cook and 
Weisberg (1982) for example. However we shall give a proof of the 
lemma, because the details in the smoothing context are slightly non­
standard. 

Lemma 3.1 For fixed a and i, let g< -I) denote the vector with components 
gJ-i> = g<-il(tj; a), and define a vector Y* by 

Then 

~* = Y, for j I= i 
Y1* = gH>(ti)-

g<-l) = A(a)Y*. (3.6) 

Proof For any smooth curve g, 

i?Y,* - g(tj)}2 +a j g''2 ~ ~ {~* - g(tj)}2 +a j g"2 

> L Ft - g<-o(tj)}z + ajg<·-1)112 
ff.i 

= t {~* _ g<-i>(tj)}2 +a j g<·-i)112 

j=l 

by the definition ofg(-i) and the factthat Yt = g<-1>(ti).It follows thatg<-i) 
is the minimizer ofL:;=1 {~*- g(tj)}2 + afg"2 so that g<-i) = A(a)Y*, 
as required. 0 

As a corollary, we can obtain an expression for the deleted residual 
Yi- gH>(ti)- We have (writing A for A( a) throughout) 

n 

gH>(ti)- Yi = LAiil';*- Yi = LAiiY; +AugH>(ti)- Yi 
j=l jf.i 

n 

= LAiiY;- Yi +Au{g<-1>(ti)- Yi} 
j=l 

= g(ti)- Yi +Au{g<-ll(ti)- Yi}- (3.7) 

It follows at once from (3.7) that 

y - ~<-i>(t·) = yl - g(tl) 
1 g 1 1 - A1i( a) 

(3.8) 
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Squaring (3.8) and summing over i gives 

CV(a) = n-' t ( yi- g(ti) )2' 
i=l 1- Au( a) 

completing the proof of Theorem 3 .1. 

3.2.2 Finding the diagonal elements of the hat matrix 

33 

In this section we describe an algorithm due to Hutchison and de Hoog 
(1985) for finding the diagonal elements of the hat matrix A(a). The 
method finds all the elements of the diagonal in O(n) operations. There 
are two important components of the method, the first a general method 
for finding the central diagonals of the inverse of a band matrix, and the 
second a re-expression of the hat matrix in a form that can be calculated 
without inverting any full matrices. Both of these components apply to 
matrices of arbitrary bandwidth, but will be described here only for the 
special case of relevance to cubic spline smoothing, where the bandwidth 
is 5. The extension to the general case takes the obvious form. 

The central diagonals of the inverse of a band matrix 

Suppose that B is a symmetric positive-definite band matrix with band­
width 5, so that the (i,j) element of B is zero if li-Jl > 2. The problem of 
finding B- 1 requires O(n2) operations, but there is a linear time algorithm 
for finding just the central five diagonals of B-1, which we describe in 
this section. 

Decompose B as B = WLT where Lis a lower triangular band matrix 
with unit diagonal, and Dis a diagonal matrix with elements d,. Suppose 
that B-1 has elements hw Then, by definition, 

B-1 =L-TD-!L-1, 

so that 

from which it follows that 

B-1 = D-!L-1 +B-1 - LTB-1 = D-!L-1 + (/- LT)B-1. (3.9) 

The matrix L -I is a lower triangular matrix with unit diagonal, and 
therefore D-1 L -! is lower triangular with diagonal elements dj 1. Fur­
thermore (I- LT) is upper triangular with zero diagonal. Hence it follows 
from (3.9), equating elements in the main and two leading upper diago­
nals, and using the symmetry of B-1 to write b,, = b,, whenever i > j, 
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that, fori= 1, ... ,n- 2, 

bii = d-:-1 - Li+t,ihi,i+t - Li+2,ibi.i+2• I 

bi,i+! = - Li+l.i[ji+t,i+t - Li+2,i+tbi+l,i+2• and 

bi,i+2 = - Li+t,ibi+2,i+2 

and that 

bn-!,n-1 

These formulae can be applied in an appropriate order to find the five 
central diagonals of s-t . The order in which the elements can be found 
is (n, n), (n -1,n), (n- 2,n); (n -1,n -1), (n- 2,n-1), (n- 3,n -1); ... ; 
(2, 2), (2, 1); (1, 1). Once the elementsdj1 andLij have been found, all the 
elements bij for I i- jl :::; 2 can be found in 6n - 10 arithmetic operations. 
It should be stressed again that the elements of s-t further from the 
diagonal are not zero, in general; but we shall see below that they are not 
relevant to our purposes. 

Expressing the hat matrix in suitable form 

From equations (2.14) and (2.15) in the description of the Reinsch algo­
rithm in Section 2.3.3 above, the spline smoother is defined by vectors g 
and 1 that satisfy 

and 

g = Y- aQ1 = Y- aQ(R + aQT Q)-!QTY 

= {I- aQ(R + aQT Q)-!QT}Y. (3.10) 

It can be seen from (3 .1 0) that the hat matrix has the alternative expression 

A( a)= I- aQ(R + aQr Q)-1Qr 

so that 

(3.11) 

It is of course the diagonal elements of I- A( a) that are needed in the 
expression (3.5) for the cross-validation score. It can easily be checked 
by direct matrix manipulations that (3.11) and (3.4) are consistent with 
one another. 

Now define B to be the symmetric band matrix (R + aQT Q), which has 
bandwidth 5. Denote by bij the elements of s-1• Since Q is a tridiagonal 
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matrix, it follows that, for each i == 1, ... ,n (defining all 'out of range' 
elements to be zero) 

2 - 2- 2 - -
= qi,i-lbt-l.t-1 + qubu + qt,t+lbt+l,t+I + 2q,,,_Iqiibi-1,i 

+ 2qi,t-1qt,i+1bi-1,t+1 + 2qiiqt,t+1bi.i+1· (3.12) 

It is clear from (3.12) that only those elements bij with li-Jl ::; 2 need to 
be known in order to find the diagonal elements of QB-1 QT, and hence 
the values 1 - Ai1(a) needed to calculate the cross-validation score. 

3.3 Generalized cross-validation 

3.3.1 The basic idea 

Generalized cross-validation (GCV), a modified form of cross-validation, 
is a popular method for choosing the smoothing parameter. An important 
early reference is Craven and Wahba (1979). 

Equation (3.8) above shows that the deleted residuals required for the 
calculation of the cross-validation score can be obtained from the ordinary 
residuals by dividing by the factors 1 - Ai1(a). The basic idea of GCV 
is to replace these factors by their average value, 1 - n-1 tr A( a). The 
generalized cross-validation score is then constructed, by analogy with 
ordinary cross-validation, by summing the squared residuals corrected by 
the square of this factor. Since the factor is the same for all i, we obtain 

GCV(a) == n-1 E~=dYt- g(t;)}2 
{1- n-1 tr A(a)}2' 

(3.13) 

the residual sum of squares about g divided by a correction factor of 
n{1- n-1 tr A(a)V Just as in ordinary cross-validation, the GCV choice 
of smoothing parameter is then carried out by minimizing the function 
GCV(a) over a. 

If all the A;1(a) were equal, for example if the t1 were equally spaced 
on an interval subject to periodic boundary conditions, then of course the 
GCV score would be identical to CV(a). More generally, there will be 
some difference between the two approaches. 

3.3.2 Computational aspects 

One of the reasons for the original introduction of GCV was computa­
tional. By using the alternative expression for the trace of a matrix as 
the sum of its eigenvalues, it is possible to find the trace of A(a) without 
finding all its diagonal elements. Suppose that the matrix QR- 1 QT has 
eigenvalues mv; then it follows from (3.4) that A( a) will have eigenvalues 
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(1 + am,)-1, and hence that 

n{1-n-1 trA(a)}2 =n (1-n-1 t 1 
1 )

2 

v=l +am, 
(3.14) 

Thus once the eigenvalues mv have been found, the GCV score can 
be found from the residual sum of squares for any a by carrying out 
the simple calculation (3 .14 ). For efficient computational approaches 
to the exact and approximate calculation of the eigenvalues see Utreras 
( 1980) and Silverman ( 1984b ). Suppose that the design points have 'local 
density' f(t) on the interval [a, b], in that the proportion of ti in an interval 
of length dt near t is approximately f(t)dt. (There is no need to assume 
that the t; are in any way random, though of course ti that are randomly 
distributed with density f(t) would satisfy the condition.) If the ti are 
equally spaced then f is just the constant 1/ (b- a) while more generally 
f can be estimated in some way. Define the constant c by 

c = n~ n--11b f(t)idt. 

Then it can be shown that rot = 0>2. = 0 and that rov ""c-·4(v- 1. 5)4 , so 
that 

n 

tr A( a)"" 2 + L {1 + c-4a(v- 1. 5)4} -I, 

v=3 

a very simple calculation to carry out. 
To some extent these economies of calculation have been superseded 

by increasing computing power and by the Hutchison-de Hoog algorithm 
set out in Section 3.2.2 above. Since the individual diagonal elements of 
the hat matrix can be found very rapidly it is easy to find tr A(a) directly, 
and there is little computational advantage to be gained by the alternative 
calculations set out in this section. Choice between GCV and ordinary 
cross-validation should be based on statistical rather than computational 
grounds. 

3.3.3 Leverage values 

In the standard regression literature, for example Cook and Weisberg 
(1982), the diagonal elements Au of the hat matrix are called leverage 
values. They determine the amount by which the predicted value g(ti) 
is influenced by the data value Yi at the point t;. At points with a high 
leverage value the predicted value needs to be treated with some care, 
because it is particularly sensitive to the observation made at that point. 
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When the cross-validation score was constructed, all the squared 
deleted residuals were added together with equal weight. The GCV score 
can be written in the form 

GCV( ) = -1 ~ { ( 1- Aii(a) ) 2 {.Y:-- A(-tl(t·)}2} 
a n ~ 1 - n-1 tr A( a) ' g ' ' 

1=1 

so that GCV can be seen as a modification of cross-validation in which the 
deleted residuals at points with large leverage values are downweighted 
somewhat. 

3.3.4 Degrees of freedom 

The connections with classical regression motivate a calculation of 'equiv­
alent degrees of freedom' that give an indication of the effective number 
of parameters-in some sense-that are fitted for any particular value of 
the smoothing parameter. Suppose, for a moment, that we were fitting 
a curve or function g to the data by parametric regression, by assuming 
g(t) to be of the form '2:~1 fJjg/t) for some fixed functions gj and fitting 
the parameters ~ by least squares. (For example, ordinary linear regres­
sion is of this form, with k = 2, g1(t) = 1 and g2(t) = t.) Assuming the 
parameters are identifiable on the basis of the available observations, the 
hat matrix A is then a projection onto a space of dimension k, the number 
of parameters fitted, and so its trace is equal to k. Thus the model degrees 
of freedom, k, are equal to trace of A, while the degrees of freedom for 
noise, n- k, are equal to tr (/-A). 

Return now to nonparametric regression. By analogy with the para­
metric case, we define the equivalent degrees of freedom for noise (EDF) 
by 

EDF = tr {I- A( a)} (3.15) 

where, now, A( a) is the hat matrix associated with spline smoothing with 
smoothing parameter a. The equivalent degrees of freedom for noise 
increase from 0 when a= 0 (interpolation, hat matrix A the identity) to 
n - 2 when a = oo (linear regression). It follows immediately from the 
definitions that the GCV score can be written in the form 

GCV(a) = n x residual sum of squares 
(equivalent degrees of freedom)2 · 

The question of definition of equivalent degrees of freedom has been 
discussed at greater length by Buja, Hastie and Tibshirani (1989); see 
also Hastie and Tibshirani (1990, Appendix B). In the context of model 
comparison, they argue for use, not of EDF as defined above, but of 
EDF* = tr {(/-AT)(/- A)}. Nevertheless, it is EDF that is appropriate 
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in defining the GCV score. If A is a projection, as in ordinary linear 
models, the two definitions agree; in other cases, Hastie and Tibshirani 
suggest a linear approximation (n - EDF*) "" 1. 25(n- EDF) - 0. 5 that 
can be used to avoid an expensive direct calculation of EDF*. 

3.4 Estimating the residual variance 

In practice it is very unusual for the residual variance to be known, but 
for a number of reasons it may be of interest to estimate it. Suppose that 
our model for the observed data is 

(3.16) 

where the €i are uncorrelated with zero mean and variance a2 . There are 
essentially two different approaches to the estimation of a2 that might be 
considered. 

3.4.1 Local differencing 

The first possible approach is to transform the observations in such a way 
that the trend function g is eliminated, to all intents and purposes. For 
example Rice (1984) suggested using first differences of the data, and 
hence estimating the variance by 

n 

a;= !<n- 1)-1 ~)ri- Yi-1)2. (3.17) 
t=2 

The rationale behind this estimator is, of course, that for a smooth curve 
g the first difference Yi - Yi-1 has squared mean {g(ti)- g(ti-1 )}2 that is 
small relative to its variance 2a2. This will be a reasonable approximation 
provided the gradient of g is never very large. The use of differencing to 
eliminate trend is of course very well known in the time series and spatial 
analysis contexts. 

Rice (1984) also suggested a second estimator, based on weighted 
second differences of the data, that will be invariant under the addition 
of a linear function to g. This is constructed by fitting a least squares line 
to successive triples of points. The residual sum of squares about each of 
these locally fitted lines gives a one degree-of-freedom estimate of a2 , 

and averaging these estimates gives the overall estimate of the variance. 
This is exactly equivalent to an estimate suggested by Gasser, Sroka and 
Jenner (1986), 

(3.18) 
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where €; is the difference between Y; and the value at t; of the line joining 
(t;-J, Y;-J) and (t;+i• Y;+I); the constants ct are chosen to ensure that 
E(ct€t) = d2 for all i when g is linear. The conceptual advantage of these 
approaches over (3.17) is that it is natural in the spline smoothing context 
to assume that the second derivative of g will never be so large as to 
introduce significant bias into the local estimates ct€t of d2. 

3.4.2 Residual sum of squares about a fitted curve 

The other main class of approaches is to base an estimate of d2 on the 
residual sum of squares about some fitted curve. In parametric regression 
the standard practice, yielding an unbiased estimator, is to divide the 
residual sum of squares by the degrees of freedom for noise. The natural 
analogue in the spline smoothing context is to divide the residual sum 
of squares by the equivalent degrees of freedom, as defined in Section 
3.3.4 above. If the value of the smoothing parameter is a, this yields the 
estimator a: = 2:;{ Y, - g(t;) F 

a tr {/-A( a)} 
(3.19) 

where g is the spline smoothing estimate calculated with smoothing 
parameter a.lt is easy to show-see, for example, Buckley, Eagleson and 
Silverman (1988)- that, in the particular case where the true regression 
function g is a straight line, the estimator a; is an unbiased estimator of d2 
for all a. This provides further motivation for using the term 'equivalent 
degrees of freedom' for tr {/-A( a)}. 

Intuitively, it would seem appropriate to use the same smoothing pa­
rameter when constructing a variance estimator as when estimating the 
curve itself, so that the estimate of the variance would be obtained as a by­
product of the curve estimate. However there might be an argument for 
smoothing a different amount when estimating the variance. See Besag 
and Kempton (1986) for discussion of this in the context of agricultural 
field trials. This question is considered from a slightly different point of 
view by Buckley, Eagleson and Silverman (1988) and by Carter, Eagle­
son and Silverman (1992). Their calculations suggest that there may be 
some merit in basing the variance estimate on a slightly undersmoothed 
curve estimate, but that little is lost by using the smoothing parameter 
that is optimal for the estimation of the curve itself. 

3.4.3 Some comparisons 

Buckley, Eagleson and Silverman (1988) and Carter, Eagleson and Sil­
verman (1992) also make some comparisons between estimators of the 
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form (3.19) and those discussed in Section 3.4.1 above. Consider the 
asymptotic situation where a large number n of independent normally 
distributed observations are taken uniformly spaced on a fixed interval, 
the true regression curve g and the sample variance remaining fixed. It 
is shown that, for any reasonable choice of smoothing parameter a, the 
asymptotic mean square error of the estimator a~ is 2a4n-1 ., the effect of 
the choice of smoothing parameter being only on lower order terms. On 
the other hand, the estimator fi&s1 of (3.18) has asymptotic mean square 
error ~a4n- 1 , almost twice as large. Rice's estimator a~ as defined in 
(3.17) has asymptotic mean square error 3a4n-1• 

The intuitive reason for the higher mean square error of the estimators 
based on local differencing is that they eliminate bias by placing emphasis 
on high-frequency effects. They do have the advantage of not requiring 
any choice of smoothing parameter, and having much smaller bias than 
a;, vanishingly small in large samples. However it must be borne in mind 
that short-range serial correlation in the data will introduce serious bias 
into a~ and (even more) into fi&s1 , while hardly affecting a; at all. 

3.5 Weighted smoothing 

Up to now, the penalty term J g"2 has always been added to the ordinary 
residual sum of squares I: { Yi - g(t,) V. In this section, we consider a 
more general form, in which the residuals are weighted. Suppose that 
w1, ... , Wn are strictly positive weights, and define the weighted residual 
sum of squares to be 

n 

L w,{Yi- g(t,)}2. (3.20) 
!=1 

There is a number of contexts in which it is appropriate to assess the fit 
of the curve g to the points (ti, Yi) by a weighted residual sum of squares. 
The obvious application is to data where the Yi are distributed with mean 
g(ti) but the variances of the f; are not equal. In this case it is natural 
to set the weights to be inversely proportional to the variances of the 
observations. However, we shall see in Chapter 5 below that smoothing 
based on the weighted residual sum of squares has far wider potential 
applicability. 

3.5.1 Basic properties of the weighted formulation 

In the subsequent discussion, define the matrix W to be the diagonal 
matrix with diagonal elements wi. Given any function gin 52.[a, b ], define 
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the penalized weighted sum of squares Sw(g) by 

Sw(g) = t w;{ Y;- g(t;)}2 +a j g"2, 

i=l 

(3.21) 

where, as usual, a is a positive smoothing parameter. Let g now be the 
minimizer of Sw(g ). The results of Section 2.3 can all be easily extended to 
apply to the weighted formulation. The result corresponding to Theorem 
2.4 is the following. 

Theorem 3.2 Suppose n ~ 3 and that a < tt < ... < tn < b. Suppose 
that the smoothing parameter a and the weights w;, i = 1, ... , n are all 
strictly positive. Given data values Yt, ... , Yn. the penalized weighted sum 
of squares Sw(g) is uniquely minimized over gin Sl[a, b] by the natural 
cubic spline with knots at the points t; having 

g = (W + aK)-1 WY. (3.22) 

Proof The proof is exactly parallel to the argument set out in Sections 
2.3.1 and 2.3.2, replacing the residual sum of squares by the weighted 
residual sum of squares. In Section 2.3.2, we replace (Y- gf (Y- g) by 
(Y- g)TW(Y- g), and make consequential changes thereafter, leading 
to the expression (3.22). The details are left as an exercise for the reader. 

Just as in the unweighted case, it is not appropriate to use (3.22) directly 
for calculation, and in the next section we set out the extension of the 
Reinsch algorithm to incorporate weights. 

3.5.2 The Reinsch algorithm for weighted smoothing 

It is easy to modify the derivation of the Reinsch algorithm in Section 
2.3.3 to incorporate the weight matrix W. From (3.22) we have 

g = y- aW-1QR-1QT g, 

and hence 
(3.23) 

As before, substituting QT g = Rr we obtain, after some manipulation, 

(R + aQTW- 1Q)'y = QTY. (3.24) 

Because W is a strictly positive-definite diagonal matrix, the matrix 
(R + aQTW-1Q) is a band matrix with k = 2 and has a Cholesky de­
composition LDLT where, as before, Lis a lower diagonal band matrix 
with unit diagonal and D is a strictly positive diagonal matrix. The re­
sulting algorithm, all of whose steps can be performed in O(n) algebraic 
operations, can now be set out. 
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Algorithm for weighted spline smoothing 

Step 1 Evaluate the vector QTY, by using the formula (2.7). 

Step 2 Find the non-zero diagonals of R + aQTw-1 Q, and its Cholesky 
decomposition factors Land D. 

Step 3 Write (3.24) as WLT '"'( = QTY and solve this equation for '"'I by 
forward and back substitution. 

Step 4 From (3.23), use g = Y- aw-1Q'"'( to find g. 

3.5.3 Cross-validation for weighted smoothing 

The method of cross-validation is easily extended to deal with the 
weighted case. As usual, let g(-O(t;) be the curve estimated omitting 
the data point (t;, Y,). The weights on all the other observations are as­
sumed to be left alone. It is natural to calculate the cross-validation score 
taking the weights into account, so that more account is taken of points 
with high weight, giving the cross-validation function 

n 

CV(a) = L w;{Y;- g(-•l(t,; a)}2, (3.25) 
•=1 

which would, as usual, be minimized to give the choice of a. 
Just as in the unweighted case, it is not in fact necessary to solve 

n smoothing problems to find CV(a). Let Aw(a) be the hat matrix for 
the weighted case. Straightforward manipulations from (3 .23) and (3 .24) 
show that 

(3.26) 

By exactly the same arguments as in the proof of Theorem 3.1 the cross­
validation score can be written 

(3.27) 

where g is the minimizer of the penalized weighted sum of squares 
based on the full data set. By making minor modifications to Section 
3.2.2 above to incorporate the diagonal matrix W where necessary, the 
diagonal elements of I- Aw(a) can be found from (3.26) in linear time, 
using the algorithm set out there to find the central diagonals of the matrix 
(R + aQTw-1Q)-1. 
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3.5.4 Tied design points 

One obvious application of the weighted formulation is to the case where 
there is more than one observation at each distinct point ti, or equivalently 
there are ties among the original design points. Suppose that we have 
observation points t1 < t2 < ... < tn and that at the point ti, independent 
observations Yij.j = 1, ... , m; are taken all with mean g(t;). Let Yi be the 
mean of the observations at t;, 

m, - -1" Yi=mi ~Yij. 
j=I 

Let S(g) be the penalized sum of squares constructed from the original 
data 

S(g) = ~ L {Yij- g(ti)}2 +a j g''2; 

I J 

(3.28) 

then the problem of minimizing S(g) is easily shown to be equivalent to 
that of minimizing the penalized weighted sum of squares 

Sw(g) = ~ mi{Yi- g(ti)}2 +a j g''2. 

I 

(3.29) 

It should be noted that although the problems of minimizing (3.28) 
and (3.29) are equivalent, there is a difference to be taken into account 
if cross-validation scores are calculated. The weighted formulation of 
cross-validation discussed in Section 3.5.3 above would correspond to 
leaving out all the observations at each t; simultaneously. A more natural 
way of applying cross-validation to (3.28) is to leave out each of the 
observations Yij individually. 

To construct such a score, let g<-W be the minimizer of the penalized 
sum of squares constructed from all the data omitting the observation 
Y ij. Let Aw be the hat matrix corresponding to the weighted formulation 
(3.29). Let N = 2:: m;, the total number of data points, and letS~ be the 
sum of squares about their mean of the observations at t;, 

m, 

2 " - 2 S; = ~(Yij - Y;) . 
j=I 

The natural cross-validation score for the 'tied design point' case is 
n m, 

CVr(a) = N-1 L L {Yij- g<-ij>(ti)}2. 

i=l j=I 

(3.30) 

As usual, there is a computationally simpler version of (3.30). The natural 
modifications of the usual arguments show that the deleted residual can 
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be expressed as 

Y - A(-i})(t·) - Yg - g(ti) 
I} g I - I 

1- mi (Aw)ii 
(3.31) 

Substituting (3.31) into (3.30) and simplifying yields 

n {- A }2 2 
CVr(a) =N-1 L m, Y,- g~ti) +Si. 

. {1-m-:- (Aw)··}2 •=I t u 

(3.32) 

We have already described in Section 3.5.3 the way in which the diagonal 
of Aw can be found in O(n) operations. Hence, once the quantities Y, and 
S~ have been found, only O(n) operations are required to find the function 
CVr(a) for each a. 

One interesting property of the methods described in this section is that 
they provide formulae that are continuous in the design points ti. Suppose, 
for example, that by rounding off the t,, additional ties are introduced. If 
the formula (3.32) is used for the cross-validation score, then individual 
values of CV(a) will only be altered by amounts due to the rounding. 
The coalescing of previously distinct points into tied design points will 
not, of itself, have any effect. 

We return to problems involving weights and ties in the design points 
in Section 4.3. There we will adopt a more unified approach using a 
matrix notation. 

3.6 The basis functions approach 

In this section, we return to the fundamental problem of computing the 
minimizer of the penalized sum of squares S(g). The discussion up to 
now, particularly in Section 2.3, has been based on the use of a particular 
roughness penalty, J g112 , that is amenable to a very complete and elegant 
mathematical analysis. Its properties reduce the problem of choosing the 
smoothing or interpolating g from being infinite-dimensional to finite­
dimensional. The quadratic form S(g) over a function space is replaced 
by a vector quadratic form such as that given in (2.1 0), and the smoothing 
problem can then be solved by linear algebra, for example through the 
Reinsch algorithm. In a certain sense, the non parametric regression prob­
lem becomes a parametric one, though this is not the appropriate way 
of looking at it because there are essentially as many 'parameters' -the 
elements of the vector g-as observations. We shall see in Chapter 7 that 
these remarks extend to a wider range of roughness penalties, both in the 
univariate and the multivariate case, though it is not always possible to 
use band matrix methods to solve the linear equations in O(n) operations. 



THE BASIS FUNCTIONS APPROACH 45 

However, this type of approach may be unsatisfactory for one of three 
reasons: 

• the quantity of data may be so large that the systems of linear equa­
tions for the exact solution are too expensive to solve, and a cheaper 
approximation may be preferred; computational expense is not likely 
to be a problem with the Reinsch algorithm, but in very large systems 
it can become numerically unstable, particularly if the points t, are 
irregularly distributed; 

• there may be difficulties in interpreting a curve or surface g that 
requires a large number of parameters in its description; or 

• there may be a preference for some other form of roughness penalty 
for which the required analysis is not available. 

In any of these situations, one solution is to deliberately impose a 
finite-dimensional structure on the problem, by restricting the choice of 
g to the span S8 of a prescribed set of basis functions, f3t, ... , /3q, say. Thus 
we only consider functions g that can be expanded in the form 

q 

g(t) = I: 8jf3j{t) (3.33) 
j=l 

for some numbers OJ, ... , oq. Of course, if the roughness penalty is f g"2 

and the basis functions span the space of natural cubic splines with knots 
at the data points, then we would get the same solution as before. In other 
cases, we will be imposing a genuine constraint by restricting attention 
tog in S8 , and the minimizer of S(g) over Sn will not be identical to the 
minimizer over the space of all smooth functions. However it is intended 
that any difference will not be statistically important. The basis functions 
will be chosen so that their span includes good approximations to most 
smooth functions. 

One popular choice for the basis functions is the set of cubic B-splines 
on a fixed grid of knots St < s2 < ... < Sq, usually taken to be equally 
spaced to cover the range of the points t,. The B-splines form a set of 
natural cubic splines that are non-negative and have only limited support: 
for 3 ::; j ::; q- 2 the function /31 is zero outside (sj-2. s1+2), whilst f3t, /32, 
/3q-! and /3q are similar, but linear outside (st. Sq). 

Another possible approach, particularly appropriate if the function g 
is naturally required to be periodic, is to expand g in terms of a basis of 
trigonometric functions. 
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3.6.1 Details of the calculations 

We can now set out the details of the calculations required for the basis 
functions approach. Consider the penalized weighted sum of squares 

n 

Sw(g) = L w;{Y;- g(t;)}2 + aJ(g), (3.34) 
i=l 

where J(g) is a quadratic roughness functional, such as J g112 • We seek a 
function g of the form (3.33) to minimize Sw(g). In order to minimize the 
unweighted penalized sum of squares S(g), proceed in exactly the same 
way setting the diagonal matrix W of weights to be the identity. 

Since J(g) is quadratic, there will be a q x q matrix K such that, for 
any g of the form (3.33), 

J(g) = dTKd, 

where d is the q-vector of coefficients D;. For example, if J(g) = J g"2, 

then 

Kjk = J f3j'(t)f3~'(t)dt. 
If we let X denote then x q matrix with Xij = 8;(t;), then (3.34) can 

then be re-expressed as 

Sw(g) = (Y- X&)TW(Y- X&)+ a&TK&. 

By standard arguments that are by now familiar, this quadratic form is 
minimized by 

(3.35) 

Of course, details of the efficient numerical evaluation of 3 will depend on 
the structure of K and X. Notice that there is no need to take explicit note 
of ties among the points t;, nor is the order of the t; relevant. Furthermore, 
once the matrix xTwx and the vector XTWY have been calculated, the 
linear system to be solved is of size q rather than n. 

If the B-spline basis is used and J(g) = J g"2 then the matrices X 
and K are both banded, so that xTwx and XTWY can be found in O(n) 

operations and the equations (3.35) then solved in O(q) operations. As 
well as being economical, this algorithm is also stable numerically. In 
fact, if the knots Sj are taken to be the ordered distinct values among { t;}, 
it is a rival to the Reinsch algorithm for computing the ordinary cubic 
smoothing spline precisely; this is the approach used by the S routines 
described in Section 8.1 below. Although the workload is still linear in n 

(once the {t;} are ordered) the operation count for the B-spline method 
is rather larger than for the Reinsch algorithm, but it does achieve greater 
numerical stability and therefore accuracy. In our experience, however, 
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the difference in accuracy is not material in the context of statistical 
regression analysis, with sensible values of a and moderately evenly 
spaced ti. 

3. 7 The equivalent kernel 

3. 7.1 Roughness penalty and kernel methods 

The roughness penalty approach set out in this book is of course only one 
of a number of curve estimation procedures that are available. The main 
conceptual advantage of the roughness penalty method is that it allows 
explicit specification of the way in which goodness-of-fit to the data is 
to be measured. So far, we have concentrated attention on penalizing 
the residual sum of squares 2:: { Y, - g(ti) F for roughness, but we shall 
see below that the approach is applicable to a much wider range of 
possibilities. Of course, a price that has to be paid for this versatility is 
that the estimator is obtained by solving a minimization problem, rather 
than by calculating an explicit formula. 

Weight function, or kernel, methods start from a different point of 
view, and in general define the estimate at each point t as being an explicit 
function, usually a weighted average, of 'local' observations Yi. We shall 
not discuss kernel methods in detail, but refer readers to other texts that 
concentrate on them, such as Hardie (1990). An interesting exposition of 
some subtle issues to do with the way in which kernel estimates can be 
constructed is given by Chu and Marron (1992); see the contribution to 
the discussion by Silverman (1992) for some remarks about roughness 
penalty methods in this context. 

3. 7.2 Approximating the weight function 

It is interesting to note that there is a relationship between the spline 
smoothing estimate and a particular kernel estimate that may be of 
some conceptual value in providing a deeper understanding of the spline 
smoothing method. For fuller details of the discussion of this section, see 
Silverman (1984a). 

It follows immediately from the quadratic nature of the penalized sum 
of squares S(g) that the spline smoother g is linear in the observations Y,, 
in that there exists a weight function G(s, t) such that the estimate can be 
written 

n 

(3.36) 

For each t,, the weight function G(-, t,) is the curve estimate that would 
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Figure 3.1. The effective kernel function IC 

be obtained-with the same value of a-if Y; = n and lJ = 0 for j f. i. 
Thus the weight function may be thought of as a smoothed-out version 
of a delta-function at t;. The weight function clearly depends on all the 
design points tt, ... , tn and on the smoothing parameter, but it does not 
depend on the observation values Y;. 

It is possible to show that the weight function has an approximate 
form that is of some intuitive interest. Suppose that n is large, and that the 
design points have local density f(t). Provided s is not too near the edge 
of the interval on which the data lie, and a is not too big or too small, we 
then have the approximation 

1 1 (s- t) 
G(s, t) "" f(t) h(t) K h(t) · (3.37) 

The kernel function K is plotted in Figure 3.1 and is given by the formula 

1 ( lui ) . ( lui rr) K(u) = 2 exp - v'2 sm v'2 + 4 . (3.38) 

The local bandwidth h(t) satisfies 

(3.39) 
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If we examine the approximation (3.37) in detail we can see that the 
spline smoother is approximately a convolution--or weighted moving 
average-smoothing method. Nearby observations Y; contribute most to 
the estimate, and the speed with which the influence of data points dies 
away is governed by the value (3.39) of the local bandwidth h(t). The 
following general comments can be made: 

• The form of K: demonstrates that the observation at t; has an influ­
ence on nearby parts of the curve g that dies away exponentially-a 
favourable comparison with some other curve fitting methods such 
as polynomial regression. A refinement of the approximation near 
the boundary of the interval on which the data lie (see Silverman, 
1984a) shows that the weight function is distorted there, though its 
exponential decay away from the boundary is not affected. 

• Altering the smoothing parameter a affects the local bandwidth in the 
same multiplicative way everywhere. Note that the local bandwidth 
is proportional to the fourth root of a. We should not be surprised if 
the appropriate numerical value of a varies widely between different 
problems, particularly if the scale of the design variable is different. 

• The dependence of the local bandwidth on the local density f of data 
points is intermediate between fixed-width convolution smoothing 
(no dependence on f) and smoothing based on an average of a fixed 
number of neighbouring points (effective local bandwidth proportional 
to 1 I f). Theoretical considerations discussed in Silverman (1984a) 
suggest that such intermediate behaviour is desirable, and that it will 
provide almost ideal adaptivity to effects caused by variability in the 
density of design points t,. 

In conclusion, it should be stressed that the importance of the equivalent 
kernel formulation is conceptual, in helping to give intuition about what 
the spline smoother actually does to the data. It should go almost without 
saying that it is not intended to be used for calculation! 

3.8 The philosophical basis of roughness penalties 

In this section, we expand on the discussion of Section 1.2.1 and set out 
a number of approaches that have been used to motivate the roughness 
penalty approach to nonparametric smoothing, and discuss some ramifi­
cations of them. The various approaches have a very long history indeed, 
dating back beyond Whittaker (1923). For some historical remarks, see 
Whittle (1985). 
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3.8.1 Penalized likelihood 

The idea set out in Section 1.2.1 was the direct concept that there are two 
aims in curve estimation, which to some extent conflict with one another, 
to maximize goodness-of-fit and to minimize roughness. Penalizing the 
residual sum of squares by adding a roughness penalty term is an obvious 
way of making the necessary compromise explicit. The approach can 
be seen as a particular case of the more general concept of penalized 
likelihood, first discussed in the modern literature by Good and Gaskins 
(1971). 

To describe the penalized likelihood approach in general, suppose that 
the distribution of a set of observed data X is governed by a curve g, 
say. In Good and Gaskins (1971) attention is concentrated on the case 
where the data are independent observations with underlying probability 
density function g. Let l(g) be the log-likelihood of g given the data-in 
the probability density estimation context E log g(X;). In the regression 
case, if it is assumed that the data are independently normally distributed 
with means g(t;) and equal variances dl, then the log-likelihood is given 
(up to a constant) by 

1 '"' 2 l(g) =- 2<12 ~{X;- g(ti)} . 
I 

The unconstrained maximization of l(g) does not provide a sensible 
estimate of g. In the case of probability density estimation as discussed 
by Good and Gaskins (1971, 1980), the likelihood is unbounded above, 
and tends to infinity as g approaches a sum of delta functions at the 
data points. In the regression case, the likelihood is maximized by any 
curve that interpolates the data. Arguing from a Bayesian point of view 
that will be discussed in more detail in Section 3.8.3, Good and Gaskins 
( 1971) suggested subtracting from the log-likelihood a roughness penalty 
or, in their terminology, a 'flamboyancy functional', that measures the 
local variation in g. In the regression context, if the roughness penalty is 
~A. J g112 , then the penalized likelihood is equal to 

(3.40) 

If the parameter A. is set to a/ a 2, where a is a smoothing parameter, 
then it is immediate that the maximization of lp is precisely equivalent 
to the minimization of the penalized sum of squares S(g) as defined in 
(1.3). 
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3.8.2 The bounded roughness approach 

The motivation of Reinsch (1967), in discussing spline smoothing, was 
somewhat different. Suppose we are trying to fit a curve g to a set of ob­
servations Y; in the usual regression context. A possible way of avoiding 
the difficulties that arise if the residual sum of squares I: { Y; - g(t,) f 
is maximized in an unconstrained way is to consider the constrained 
optimization problem 

mjn L {Y;- g(t;)}2 subject to j g112 ~C. (3.41) 

A standard Lagrangian argument shows that the function g that solves 
the minimization problem (3.41) can be found by adding a Lagrange 
term a J g"2 to the residual sum of squares and then minimizing in an 
unconstrained way. This will give exactly the penalized sum of squares 
S(g), with smoothing parameter equal to the Lagrange multiplier a. In 
order to solve (3.41) for a particular C, it is necessary to search on a 
until the optimizing function g satisfies the constraint J g"2 = C. Since 
J g"2 can easily be shown to be a decreasing function of a, this search 
is not prohibitively expensive since it can be carried out by a binary 
search procedure. However, it is unusual for the value C to be directly 
meaningful, and the usual practical approach in statistics is to regard the 
Lagrange multiplier a as the controlling parameter for the smoothing 
method. 

3.8.3 The Bayesian approach 

It is relatively rare for statistical writers to justify penalized least squares 
or maximum likelihood via a constrained maximum likelihood argument. 
Those who are not satisfied with regarding the method as an attractive 
ad hoc device usually appeal to a Bayesian justification. For example, 
Whittle (1985) wrote 

It is plain that one cannot discuss these matters without being prepared to 
consider a Bayesian formulation (which I am understanding in a frequentist 
non-personal sense) ... it should be recognized that, with the exception of a 
short historical interlude, the [Bayesian] approach has always been considered 
a perfectly natural one. 

Intuitively speaking, the Bayesian justification of penalized maximum 
likelihood is to place a prior density proportional to exp( -1 A J g"2) over 
the space of all smooth functions. In a certain sense that we shall discuss 
below, the larger the value of A, the more weight is put on functions 
with smaller roughness. With this prior, the posterior log density of the 
function g is then, in the regression context, equal to fp(g) as defined in 
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(3.40) above, and so the spline smoother g is the posterior mode given 
the data. Wahba (1978, 1983), drawing on earlier work ofKimeldorf and 
Wahba (1970), developed this approach in regression, and suggested the 
use of pointwise error bands for the curve estimate based on the posterior 
distribution. We now summarize some results of these papers in the next 
section. 

A Gaussian process prior 

Both the prior and the posterior log densities are quadratic forms in the 
function g, and so they correspond to a Gaussian process structure. The 
prior distribution is 'partially improper', in that it is invariant under the 
addition of a constant or linear function to g. One way of visualizing the 
prior distribution is to write 

g(t) =A+ Bt+ A.-! lot W(s)ds (3.42) 

where A and B have improper uniform distributions on ( -=, oo) and W(s) 
is a Brownian motion on ( -oo, oo ). 

Since the posterior distribution is also a Gaussian process, the estimate 
g is the posterior mean as well as being the posterior mode. It can 
be shown that the posterior distribution of the vector g of values g(t;) is 
multivariate normal with variance matrix equal to cr2 A( a), where a = a2 A. 
as above, and A( a) is the hat matrix as defined in Section 3.2.1. Thus 
a 95% Bayesian posterior probability interval for each g(t;) is given by 
g(t;) ± 1. 96crA( a);;, giving another application of the algorithm described 
in Section 3.2.2 for finding the diagonal elements of the hat matrix. 

In practice, the standard deviation a is usually estimated from the data, 
for example using one of the methods discussed in Section 3.4 above. The 
recommendation in Wahba's papers is to choose the smoothing parameter 
abyGCV. 

An example of inference regions obtained by a minor modification 
of this approach is given in Figure 3.2, taken from Silverman (1985). 
The measurements plotted in this figure are the logarithms (to base 10) 
of the population count per millilitre of the organism Staphylococcus 
aureus in a heart infusion broth. They were taken in a microbiological 
experiment carried out at the ARC Meat Research Institute, Langford, 
Bristol. The pointwise 95% probability intervals are calculated at each t; 
and interpolated linearly between these points. 
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Figure 3.2. Microbiological data, with estimated growth curve and probability 
intervals. Reproduced from Silverman (1985) with the permission of the Royal 
Statistical Society. 

A paradox 

The space of curves g within which we wish to choose a regression fit to 
the data is, of course, infinite dimensional, even if we restrict attention 
to curves on a bounded interval [a, b] that are smooth in some sense, 
for example having J: g"2 finite. This formulation leads to a paradox, 
alluded to by Wahba (1983). 

To set out this paradox, suppose that the interval [a, b] is [0, 1], and let 
S be the space of functions on [0, 1] for which J0

1 g"2 is finite. There is an 
infinite sequence tf!v of orthonormal functions and an increasing sequence 
of eigenvalues Pv• with 0 = Pt = P2 < Pv for v 2:: 3, such that 

• every function gin Scan be expanded in the form 2::: gvtf!v for suitable 
coefficients gv; and 

• fd g"2 = 2::: Pvg~ for ginS. 

The prior density (up to a constant of proportionality) exp( -!A.J g"2) 

can be written as 

exp(-!Jt LPv8~) = IJ exp(-!APv8~). 
v2::3 v:0::3 
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Thus a function from the prior process can be constructed by specifying 
its expansion in terms of the functions tPv: the coefficients g1 and g2 
would each have improper prior uniform distributions on ( --oo, oo ), while 
for v 2 3 the gv would have independent normal distributions with mean 
zero and variances (APv)- 1• 

Suppose, now, that g is drawn from this prior distribution. What is 
the distribution of the roughness J g"2? We have, writing N(O, ·)to denote 
normal random variables with the specified variances independent within 
each sum, 

fg'' 2 = I:>vg~=LPvN(O,(Jtpv)- 1 )2 
v=3 v=3 

= A -I L N(O, 1)2 = +oo with probability 1. 
v=3 

Thus, although we set out to construct a prior distribution over the 
space S of smooth functions, the prior distribution (and also the posterior 
distribution) is entirely supported outside this space! This does not, in 
itself, contradict the result that g is the posterior mean, because the op­
eration of taking the expectation over the posterior is, in a certain sense, 
a smoothing operation that yields a smooth mean g even though any 
individual realization from the posterior would not have finite smooth­
ness. However, it demonstrates that a careful limiting argument would be 
needed to justify the Bayesian inference in the infinite dimensional space 
s. 

One possible approach might be to perform the inference on the space 
spanned by the first N functions tPv, and let N tend to infinity. For any 
finite N the argument given above shows that the prior distribution of 
roughness is x~_21 A, according with the notion that more weight is put 
on functions with lower smoothness if A is large. However it would still 
be the case that, in the limit, the prior and posterior probabilities that J g"2 

is finite is zero and so the normalizing constant in the likelihood would 
be zero. 

3. 8.4 A finite-dimensional Bayesian formulation 

Another way of resolving the paradoxes and difficulties involved in the 
infinite-dimensional Bayesian formulation is to work on a fixed finite­
dimensional space rich enough to allow the inferences set out by Wahba 
to be exactly correct. See Silverman (1985) for any details not given here. 

Given distinct points t1, ... , tn, let SNcs be the space of natural cubic 
splines with knots at the t,. An obvious way of parametrizing the space 
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SNcs is by the vector g of values g(ti), which will specify a natural cubic 
spline g uniquely. Using ,g, to denote equality up to a constant, take the 
prior log density over SNcs to be 

fprior(g) ,g, -!A. J g"2 = -!A.gTKg, (3.43) 

defining the matrix K as in Theorem 2.1. The matrix K is singular, with 
rank n - 2. Its two zero eigenvalues correspond to constant and linear 
functions g. Were it not for these the prior would be multivariate normal 
over g with covariance matrix K-1; as it is, the prior is 'partially improper' 
with infinite variance given to these two eigenvectors of K. 

Assuming that the observations Yi are independently normally dis­
tributed with means g(ti) and variance dl, the posterior log-likelihood 

will then be (allowing the constant in ,g, to depend on the data) 

c 
-!A.gTKg- !0'-2(Y- gl(Y- g) 

c -!0'-2{gT A(a)-tg- 2gTY}. (3.44) 

It follows from (3.44) that the posterior distribution of g will be multi­
variate normal with mean g = A(a)Y, and variance matrix dlA(a), just 
as in the infinite-dimensional case discussed above. The posterior mean 
curve will be precisely the element of SNcs satisfying g =A( a)Y, namely 
the spline smoother g. 

3.8.5 Bayesian inference for functionals of the curve 

Very many important questions in curve estimation involve quantities 
such as the gradient or maximum of g rather than the curve g itself. 
The Bayesian formulation allows posterior probability distributions to be 
found for any functional of g that is well defined for g in SNcs. The basic 
approach depends largely on whether the functional of interest is linear 
or nonlinear. 

Linear functionals 

Consider, first of all, the estimation of a linear functional 1/f(g) such as 
g'(t) for a particular t. Define constants ll'i such that 

1/f(g) = L 1/figi for any g in SNcs. 

Then, by standard properties of the multivariate normal distribution, the 
posterior distribution of 1/f(g) will be normal with mean ,pTA( a)Y = 1/f(g), 
and variance 0'21/JT A(a)'I/J. 
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Figure 3.3. Estimated growth rate for microbiological data, with probability 
intervals. Reproduced from Silverman ( 1985) with the permission of the Royal 
Statistical Society. 

For each i, the quantity lfli can be found by evaluating the functional 
1f1 on the natural cubic spline satisfying g(t;) = 1 and g(t1) == 0 for j f. i. 
Alternatively it may be helpful to use a different basis for SNcs, such 
as B-splines. For details of the calculations in this case, see Silverman 
(1985). 

In the growth curve example presented in Figure 3 .2, the rate of growth 
was of particular interest. In Figure 3.3 the methodology of this section 
is used to produce an estimate of the growth rate g' together with point­
wise 95% posterior probability intervals. It can be seen-as one would 
expect-that the growth rate cannot be considered to have been estimated 
with particular accuracy. 

Nonlinear functionals: simulation from the posterior 

Now suppose that lfl(g) is a nonlinear functional, such as maxg'(t), a 
quantity of interest in the growth curve example. In contrast to the linear 
case, the exact posterior distribution of lfl(g) is unlikely to be tractable, but 
progress can be made by a Monte Carlo approach. Simulate curves g from 
the posterior distribution, by simulating vectors g from the multivariate 
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normal distribution with mean g and variance a-2 A( a); for each realization 
g find the corresponding curve g and evaluate lJI(g). By repeating a large 
number of times, a series of independent realizations from the posterior 
distribution of lJI(g) may be found, and the posterior mean and any other 
statistics of the posterior may be estimated from these. Just as in the 
linear case, it may be more convenient to work in terms of a different 
parametrization of SNcs; see Silverman (1985). 

As an illustration, this technique was applied to the estimation of the 
maximum growth rate for the microbiological data. A naive approach 
would estimate this quantity by the maximum value (0. 77) of the solid 
curve in Figure 3.3. Simulation from the posterior indicates that the 
posterior mean is 0.84 and the standard deviation 0.06. The discrepancy 
between 0.84 and 0.77 is important, and not at all surprising; by Jensen's 
inequality one has 

Epos1maxg'(t) > maxEpos1g'(t) = maxg'(t). 
t t t 

In more informal terms, the solid curve in Figure 3.3 is the average of 
a population of curves, each of which will tend to have maximum value 
higher than the maximum of the mean curve. 

Another example of the estimation of a nonlinear functional is de­
scribed in the next section. 

3.9 Nonparametric Bayesian calibration 

An example of the estimation of a nonlinear functional arises in cali­
bration, for a detailed recent survey of which see, for example, Osborne 
(1991). Suppose that g is a monotonically increasing function, that is es­
timated on the basis of a calibration set of observations Yi taken at points 
ti. The problem of calibration is the converse of the usual prediction prob­
lem. In its simplest form, the problem is then that of estimating the point 
-r at which the curve crosses a given level 7J, say, so that the nonlinear 
functional that we are trying to estimate is g-1 (TJ). More realistically, one 
or more observations Y' are taken on a new individual, and on the basis 
of these observations it is of interest to estimate t for that individual. A 
natural, if naive, point estimate oft is g- 1(11'), where g is some suitable 
estimate of g obtained from the data (t., Yi), and Y' is the average of the 
observations taken on the new individual. But in assessing any kind of 
variability of this estimate it is necessary to take into account two sources 
of variability, that involved in the estimation of g, and that involved in 
the observation(s) Y'. 
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3.9.1 The monotonicity constraint 

One interesting feature of the calibration problem is that it is natural to 
assume that the curve g is monotonically increasing. It is extremely easy 
to build this monotonicity requirement into the Bayesian framework. Let 
SMoN be the space of natural cubic splines with knots at the ti that are 
monotonically increasing. It is easy to check whether a particular natural 
cubic spline g is monotonically increasing. A crude check, sufficient for 
most practical purposes, is to consider whether the sequence of values 
at the knots is increasing; more sensitively, the pieces of quadratics that 
make up the curve g' can be checked to ensure that g' is strictly positive 
on every interval (t,, ti+J). 

We assume exactly the same prior log density (3.43) as before, but 
restrict to the space SMoN, setting the likelihood to be zero for non­
increasing curves g. For all gin SMoN, the posterior likelihood is (3.44) 
as before. and so the posterior is now a truncated multivariate normal 
distribution. If-as almost invariably happens in practical calibration 
contexts-the spline smoother g based on the calibration data is increas­
ing, then g will continue to be the mode of the posterior distribution, 
though it will of course no longer be the mean. Simulation from the 
posterior distribution over SMoN is, in principle, easily carried out by a 
rejection sampling approach; curves are simulated from the non-truncated 
multivariate normal posterior, but are only accepted if they fall in SMoN. 
Provided g is itself in SMoN, and the calibration data set does not display 
excessive variability, a reasonable proportion of the untruncated posterior 
normal distribution will fall in SMoN anyway, and the rejection sampling 
algorithm will be efficient enough for practical use. 

In any case, non-monotonicity of g casts some doubt on the appro­
priateness of the experiment for calibration purposes. Sometimes the 
difficulty may be caused by a single value, perhaps an outlier, or an ob­
servation at a point with a high leverage value (particularly at or near the 
end of the range of the data). Such observations may not actually cause g 
to be non-monotonic but may cause the rejection sampling algorithm to 
have low acceptance probability. In these circumstances a more sophis­
ticated simulation approach could be used, but it is probably easiest to 
use the ad hoc approach of downweighting any offending observations 
somewhat. 

3.9.2 Accounting for the error in the prediction observation 

If the calibration problem were merely that of inference for g-\1/) for 
some known 11 then we could proceed by simulating from the posterior 
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over SMoN, and evaluating g-1(71) for each posterior realization, to build 
up a sample from the posterior distribution of g-1(71). But in practice the 
observation Y' is itself subject to error. A useful model is Y' = 71 + t' 
where t' has a N(O, cr2) distribution, and 71 = g( -r) for some value -r that 
it is of interest to estimate. The value of cr2 will be the same as the error 
variance of the calibration experiment, and so can be estimated from the 
calibration data. 

A simple Bayesian approach now proceeds as follows. Suppose 71 
has a uniform prior distribution, so that the posterior distribution of 71 is 
N(Y', cr2). Realizations from the posterior distribution ofT, given the data 
in both parts of the experiment, can be obtained by repeatedly simulating 
gsim from the posterior distribution of g and 71sim from the posterior 
distribution of 71, and evaluating g;j~(71sim). It may be appropriate to 
restrict the prior for 11 to be uniform over a specified range, for example 
the image under g of a plausible range for t. The resulting truncation of 
the normal posterior distribution makes 71sim scarcely more difficult to 
obtain. 

The validity of this approach depends on the prior for Y' being inde­
pendent of that for g, rather than the more realistic approach of placing 
a prior over 't" and mapping this to a prior for 11· (Even the truncation 
approach described is not, strictly speaking, valid.) However, if (as is 
common in calibration experiments) the derivative g' varies only slowly, 
a uniform prior on 't" will map to a prior on 71 that is locally nearly uni­
form, and hence the posterior for 11 will be close to that corresponding to 
a uniform prior on 11· 

3.9.3 Considerations of efficiency 

In order to produce independent realizations of 't" it is necessary to use 
independent realizations of 71sim and of gsim· Because it may be much 
easier to generate 71sim than g sim, it may be worth sacrificing independence 
in the posterior sample by using a number of independent 71sim for each 
gsim· Osborne (1990) considers the implications of simulating M values 
71sim for each of N curves gsim• giving MN realizations from the posterior 
for 't". As long as N is large, these realizations should give good estimates 
of the quantities generally required, such as the mean, variance, and 
various quantiles of the posterior distribution. 

The aim is to obtain the most accurate estimates of these quantities in 
a given amount of computer time. It turns out (Osborne, 1990, Theorem 
3.1) that the best choice of M to do this depends not on the time available, 
but only on properties of the model, the time taken to generate single 
realizations, and on the particular posterior quantity of interest. Given 
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Figure 3.4. Intact tooth transparency measurements plotted against age of patient 
for each of 32 upper central teeth. Nonparametric regression curve oflog/ITM 
slwwn, a clwsen by GCV. 

twice as much time, one should keep M the same and double N. For 
typical problems of interest, the optimal value of M is in the range 10 to 
25. To get decent estimates of quantities such as 10% and 90% quantiles, 
it will be advisable to ensure that MN is then of the order of 10,000. 

3.9.4 An application in forensic odontology 

A specific example of a calibration problem is described in detail by 
Osborne (1990). Forensic odontologists are often called upon to infer 
the age of a victim (or sometimes a criminal) on the basis of teeth. The 
roots of all teeth contain dentine, some of which is transparent. The 
amount of transparent root dentine is known to increase with age, and is 
most conveniently quantified by the length measurement of intact tooth 
transparency (ITTM) in millimetres. 

The Glasgow Dental Hospital supplied a number of teeth extracted 
from patients of known age t,. For each of these teeth the ITTM was 
measured. Various types of tooth were considered (upper and lower; 
central, canine and lateral) and graphs of ITTM against age for all six 
possible types indicate that a logarithmic transformation is appropriate to 
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stabilize the variance. We therefore let Yi be the logarithm of the ITTM for 
tooth i. The most frequent type of tooth in the study was upper central, the 
data for which are plotted in Figure 3.4, together with the nonparametric 
regression curve with smoothing parameter chosen by GCV. It can be 
seen that the dependence of log ITTM on age is somewhat sigmoidal, as 
is typical of calibration experiments. 

The fitted curves for the other types of tooth showed a variety of 
behaviour from almost linear to curves having higher slopes in different 
parts of the range in each case. All were clearly monotonic except for 
upper lateral teeth, where the curve was virtually constant over most of 
the range, indicating the unsuitability of this type of tooth for calibration 
purposes. 

In order to validate the procedure, a further test set of teeth of various 
types from new patients (of known ages) was used. The measurements 
for the upper lateral teeth confirmed the futility of attempting to infer 
age from this type of tooth. For the other five types (44 teeth in all) the 
age of each patient was inferred by finding the median of the posterior 
distribution of -r, using the appropriate calibration sets and choosing 
the smoothing parameter by GCV. A slight modification to the fitting 
procedure was applied, as described below. The predictions were at least 
as good, and in the case of one type of tooth noticeably better, than 
those obtained by a standard parametric method. It is encouraging that 
the method works well even on such relatively small calibration data sets 
with appreciable scatter. 

Correlation between teeth from the same patient 

This data set has an interesting feature, of more general interest than its 
relevance to calibration. In some cases there are two teeth of a particular 
type from a single patient, and so the covariance structure of the cali­
bration set needs some adjustment to account for this. Suppose that the 
distinct patients have ages -rt, ... , 'rm, and write ljk for the log ITTM of 
the kth tooth contributed by the jth patient. Let }j be the average of the 
one or two observations for patientj. A reasonable model for the data is 
to assume that 

ljk = g(r,) + 9 

where the Ejk are all N(O, a2) random variables, with correlations 0 be­
tween variables with differing values of j, and p between variables with 
the same value of j but different values of k (different teeth taken from 
the same patient).lt is then easy to show that, if patientj contributes two 
teeth, then var }j = ~a2(1 + p). For any given value of p, therefore, the 
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spline smoother was constructed by minimizing 

Sw(g) = ~ Wj{YJ- g('~)}2 +a j g"2 

J 

(3.45) 

where Wj = 1 if patient j contributed one tooth to the study and 2/ ( 1 + p) 
otherwise. This is a natural extension of the technique of Section 3.5.4 
for data with tied design points. 

Both cJ2 and p were estimated from the data, by a simple iterative 
approach. Initially p was set to 0, so that Wj = 1 or 2 for eachj. The curve 
was then estimated by minimizing the weighted penalized residual sum 
of squares (3.45), choosing a by GCV, and an estimate fil was given by 
the weighted version of (3.19). For any patient contributing two teeth, 
}}1 - lj-z has variance 2(1 - p)cr, so an estimate of p was obtained by 
setting 

p = 1 - o--2(2n')-22:' (l}t - l}d 
where n' is the number of patients contributing two teeth to the study, 
and E' denotes a sum over such patients. The estimate p of p was then 
used to update the weights Wj. Iterating this process to convergence gave 
estimates of cJ2 and p. For the upper central teeth shown in Figure 3.4, 
for example, the estimate of p was 0.50, and similar values were obtained 
for most of the other types of tooth. In each case, the posterior likelihood 
was taken to be -Sw(g)l (2a2), with Sw defined as in (3.45) and the 
various parameters estimated from the data by the iterative procedure. 



CHAPTER4 

Partial splines 

4.1 Introduction 

We have so far been concerned entirely with the dependence of our ob­
servations Y on a single explanatory variable t. Whilst this is sufficient 
to deal with a number of problems of interest, there are many situations 
in practice where observed responses are influenced simultaneously by 
several variables. Statistical analysis of the dependence on explanatory 
variables then usually leads to the use of multiple regression. The ex­
planatory variables may be either quantitative (numerical) or qualitative 
(categorical) and the most well known general framework is provided by 
the linear model 

Yi = x'{" {3 + error. (4.1) 

Here xi is a vector of explanatory variables for the i1h observation, and 
{3 the corresponding vector of regression coefficients, to be estimated. 
In general, the vector x, may include a constant entry 1 for an intercept 
term, indicator variables to model categorical explanatory variables, and 
products of other components so that interactions can be assessed. The 
simple case ( 1.1) of univariate linear regression is given by setting x, = 
(1, t,l and {3 = (a, b l. It is not appropriate here to give a complete 
discussion of the linear model: the interested reader should consult one 
of the many standard textbooks on the subject. 

What we shall be concerned with is relaxing the assumptions oflinear­
ity in equation ( 4.1), in much the same way that straight line regression 
( 1.1) was generalized to curve fitting as in ( 1.2), in Chapter 2. The natural 
analogy would be to consider the model 

Yi = g(t,) + error, (4.2) 

where g is an arbitrary, but smooth, real-valued function of a vector vari­
able, but we shall not make such a complete generalization immediately. 
As we shall see in Chapter 7, nonparametric regression on several vari­
ables poses new conceptual problems, and a considerable computational 
burden. However, the machinery of penalized least squares and cubic 
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splines presented in Chapters 2 and 3 is sufficient to provide a very use­
ful generalization of ( 4.1 ), allowing just one explanatory variable to be 
treated in a nonparametric fashion. 

4.2 The semiparametric formulation 

Suppose that for each observation Yi there are p+ 1 explanatory variables: 
ap-vectorx, and a scalar ti. This chapter is concerned with models of the 
form 

(4.3) 

where /3, a p-vector of regression coefficients, and g, a smooth curve, 
are to be estimated. The model (4.3) is referred to as a semiparametric 
model, because the response Y is assumed to depend in a parametric 
(linear) fashion on some, but not all, of the explanatory variables. The 
variables x will be called the linear variables, while, for reasons that will 
become clear below, the variable t will be called the splined variable. 

Such semi parametric models may seem rather a modest generalization 
of ( 4.1 ), but they are surprisingly useful. Very often in practice, the form 
of dependence of Yi on most of the explanatory variables is known on 
grounds of theory or past experience, so there may be at most one or two 
candidates to be the splined variable, treated differently from the others. 
A particular context in which such a model arises very naturally is when 
a linear model is believed to be valid, except for possible inhomogeneity 
with respect to time. A semiparametric model (4.3) then allows the in­
tercept to vary with time in a nonparametric way. An application to the 
analysis of agricultural field trials, in which g(t) represents fertility at a 
spatial location t, will be considered in Section 4.6. 

A rather less obvious application of the model (4.3) arises when the 
dependence of Y on a single explanatory variable t is supposed smooth 
except for discontinuities at prescribed values oft, or perhaps discontinu­
ities in the first or second derivative. By introducing appropriate artificial 
variables x, such features may be modelled using (4.3). Suppose, for ex­
ample, that we wish to assume that the expected value of Y, is a function 
JL(ti) that is smooth and continuous except at 0. An artificial variable of 
the form I[ti > 0] will allow for a jump in Jl at 0, while a jump in the qth 
derivative of Jl would be allowed by including an artificial variable of the 
form {/I[ti > 0]. Note that if we allow a jump in Jl we would normally 
include artificial variables corresponding to jumps in Jl 1 and Jl 11 as well. 
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4.3 Penalized least squares for semiparametric models 

If we wished to fit a semiparametric model ( 4.3) to data, we might attempt 
to estimate {3 and g by least squares, that is by minimizing 

n 

L {Yi- xf /3- g(ti)}2. 

z=l 

However, in the absence of constraints on g, this approach will fail. 
Assume for the moment that the {ti} are distinct: whatever the value of 
{3, g can then be made sufficiently flexible to interpolate g(ti) = Yi- xf {3; 
therefore {3 is unidentifiable. In the spirit of Section 1.2.1, we circumvent 
this problem by instead choosing {3 and g to minimize the (weighted) 
penalized sum of squares 

Sw(f3,g) = t wi{Yi- xf /3- g(ti)}2 +a J g''(t)2dt. (4.4) 
i=l 

The extra generality afforded by introducing weights { w,} will not be 
needed immediately, but is obtained at no real cost in complication. 

4.3.1 Incidence matrices 

In the discussion that follows, denote by Y then-vector with i1h component 
Y,, W then x n diagonal matrix of weights w,, and X then x p model 
matrix whose ;throw is xf. In Chapter 2, we assumed that the {t;} were 
distinct and ordered: later, in Chapter 3, ties were handled in a fairly 
informal way. Now that we are dealing with multiple regression, in which 
it may be quite inconvenient to re-order all of the observed variables 
{Y,, x,, t,}, and the pattern of ties among the {t,} will not generally be 
related to that among {x,}, it is better to take a more formal approach. 
We will exclude the trivial case where all the t, are identical, since this 
reduces to a parametric linear model! 

Let the ordered, distinct, values among ft, t2, ... ,tn be denoted by 
St, s2, ... , sq. The connection between ft, ... , tn and St, ... , sq is captured 
by means of then x q incidence matrix N, with entries N,1 = 1 if ti = s1, 

and 0 otherwise. It follows that q 2: 2 from the assumption that the t, are 
not all identical. 

4.3.2 Characterizing the minimum 

Let g be the vector of values a1 = g(s1), so that Sw(/3, g) can be written as 

(Y- X/3- NglW(Y- X/3- Ng) +a J g11 (t)2dt. 
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Conceptually, the minimization of Sw(f3,g) can be considered in two 
steps, first minimizing subject to g(sj) = aj.j = 1, 2, ... , q, and then mini­
mizing the result over the choice of g and over {3. 

The problem of minimizing J g" (t)2dt subject tog interpolating given 
points g(sj) = aj where St < sz < ... < sq was encountered in Section 2.2; 
the minimizing curve g is, of course, a natural cubic spline with knots 
{sj}· Define matrices Q and R as in Section 2.1.2, but with St,Sz, ... ,sq 

replacing tt, tz, ... , tn, and define K = QR-1QT. Theorem 2.1 then shows 
that the minimized value off g"(t)2dt is gTKg. 

For this g, Sw(/3, g) takes the value 

(Y- X/3- NglW(Y- X/3- Ng) + agTKg. (4.5) 

By simple calculus or by completing the square it follows that (4.5) is 
minimized when f3 and g satisfy the block matrix equation: 

[ xTwx xTwN J ( f3 ) [ xT J 
NTWX NTWN + aK g = NT WY. (4.6) 

Notice that when the parametric part of the model involving X and f3 
is omitted, these equations reduce to 

(4.7) 

so that the smoother that has to be applied to Y to obtain the vector of 
fitted values Ng is 

S = N(NTWN + aK)-!NTW. 

Readers should reassure themselves that this agrees with the solution to 
the smoothing spline problem with weights and possibly tied observations 
derived in Section 3.5. If, in addition, the ti are distinct and already 
ordered, so that N =I, S further reduces to 

S = (W + aK)- 1W 

as in equation (3.22). 

4.3.3 Uniqueness of the solution 

We need to do a little more work than was needed in Sections 2.3 and 3.5 
to establish that our estimating equations have a unique solution. Once 
the uniqueness of g and f3 is established, the uniqueness of the curve g 
follows at once from the uniqueness of natural cubic spline interpolation. 

We shall actually show that the block matrix appearing in (4.6) is 
positive-definite for all positive a. This immediately implies that (4.6) 
has a unique solution. Estimating equations of this form will recur at 
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various points in later chapters, so it will be useful to prove this result in 
rather more generality than is needed here. 

Theorem 4.1 Suppose that W is an n x n symmetric positive-definite 
matrix, that X and N are any matrices of dimension n x p and n x q 
respectively, and that K is a q x q symmetric non-negative definite matrix. 

Let r be the rank of K, and T be any q x (q- r) matrix whose columns 
form a basis for the null space of K. If the block matrix [X NT] is offull 
column rank, then 

is positive-definite for all positive a. 

Proof For any p-vector u and q-vector v, 

= (Xu+ NvlW(Xu + Nv) + avT Kv. (4.8) 

From the assumptions on Wand K, (4.8) is clearly non-negative. It can 
only be 0 if Xu+Nv = 0 and vis in the null space of K, so that v = T8 for 

some 8. This implies that [X NT] ( : ) = 0, which forces 8 = 0, u = 0 

under the assumption that [X NT] has full rank. 0 

Note that the theorem makes no reference to W being diagonal, N 
being an incidence matrix, or K having the form derived from the penalty 
functional J g11 (t)2dt. Relaxation of each of these properties will be useful 
later. Note also that the column rank of [X NT] will not be affected by 
the precise choice ofT, as long as T satisfies the stated condition. 

In the context of the present chapter, the hypothesis of Theorem 4.1 
is quite easy to check. The only smooth curves for whichf g11(t)2dt = 0 
are the first degree polynomials g(t) = 81 + /ht, so T can be chosen to be 
the q x 2 design matrix for linear regression. Therefore [X NT] is of full 
column rank if and only if 

(i) the columns of X are linearly independent, and 

(ii) there is no linear combination x'{ {3 equal to a linear form 81 + /hti 
for all i = 1, 2, ... , n. 

These are exactly the conditions for uniqueness of the least squares 
estimates in the fully parametric linear model with explanatory variables 
(x'{, 1, t.f. 
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4.3.4 Finding the solution in practice 

Equation ( 4.6) forms a system of p + q equations: this is typically very 
large, and it may not be convenient, or even practical, to solve this system 
directly. Fortunately, this is not necessary. One approach is to re-write 
(4.6) as the pair of simultaneous matrix equations 

XTWX{3 = XTW(Y - Ng), 

(NTWN + aK)g = NTW(Y - X{3). 

(4.9) 

(4.10) 

These are intuitively interpretable: ( 4.9) says that if g were known, we 
would subtract (Ng)i = g(ti) from Yi, and estimate {3 by a weighted least 
squares regression of the differences. Conversely, if {3 were known, ( 4.1 0) 
tells us to fit a cubic smoothing spline to the differences Yi - xf {3, as in 
(4.7). 

This rather appealing interpretation can be taken further, because it 
turns out that we can use an alternation between equation (4.9) and 
(4.10), solving repeatedly for {3 and g respectively, to converge to the 
penalized least squares estimates. This procedure is sometimes known 
as backfitting, (see Breiman and Friedman (1985), Green, Jennison and 
Seheult (1985), and Buja, Hastie and Tibshirani (1989)) and in principle 
the iteration always converges, under the conditions in Theorem 4.1. 
Proof of this fact makes use of a simple result in matrix algebra, which 
we state here, as a second theorem. 

Theorem 4.2 Consider the linear equations 

and suppose that the block matrix is positive-definite, so that the equa­
tions have a unique solution. This solution is the limit of the iteration 
obtained by starting from any vectoru<0>, and repeatedly cycling between 
the two equations 

for n = 1,2, .... 

v<n) = c-1(q- BT u<n-1)) 

u<n> = A - 1 (p - Bv<n>) 

(4.11) 

(4.12) 

Proof. LetA= LLT, whereL is non-singular. From (4.11) and (4.12), 

LTu(n) = L-1(p-Bv(n)) 

= L-1(p- BC-1q +BC-1BTu(n-1)) 

= L-1(p-BC-1q)+MLTu(n-1) (4.13) 
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whereM =L-1BC-1BT(LT)- 1• Now 

I ~1 ~ I= ICI IAA- BC-1Brl = ICI ILIIAI- MIILrl. 

But clearly [ ~1 ~ ] is positive-definite for all A 2:: 1, so IAI- Ml is 

non-zero for such A. It therefore follows that all eigenvalues of M, which 
is non-negative definite, lie in the interval [0, 1). The iteration (4.13) thus 
converges, and hence so does the backfitting cycle (4.11) and (4.12). D 

In practice, the speed of convergence of this backfitting algorithm is 
governed by the size of a and how close [X NT] is to being rank-deficient. 
For values of a of real interest, convergence is usually quite rapid, so that 
cycling between ( 4.9) and ( 4.1 0) can be terminated after perhaps 5 cycles. 
The equations involved in each cycle are cheap computationally and can 
be solved by standard methods. Equations ( 4.9) are simply weighted least 
squares equations, which take O(n) time to solve, for fixed p, using rou­
tines to be found in any standard linear algebra library. As already noted, 
the equations (4.10) correspond to an application of spline smoothing, 
with smoothing parameter a, to the values Yi - x'{" {3 at the points ti with 
weights W. This can be carried out in O(n) time once the data are or­
dered, for example by using the Reinsch algorithm allowing for weights 
and ties, by the obvious extension to Section 3.5.4. The equations can be 
written as 

Ng = S(Y - Xf3), (4.14) 

where S = N(NTWN + aK)-1 NTW is the hat matrix of the spline smooth­
ing operator for weights Wand incidence matrix N. 

4.3.5 A direct method 

Although the backfitting approach set out in Section 4.3.4 yields an 
iterative scheme that always converges in theory, because the eigenvalues 
of the relevant matrix are all strictly less than one in absolute value, it 
can happen in practice that the largest eigenvalue is very near 1 and that 
the convergence is very slow. An example where this happens is given in 
Section 4.5 below. 

An alternative approach allows the equations (4.6) to be solved in O(n) 
time without any iteration. If we use ( 4.14) to eliminate g from ( 4.9), then 
we obtain the p x p linear system 

(4.15) 

for {3. These are generalized least squares normal equations, but with 
a non-diagonal weight matrix W(l - S). Their solution might seem a 
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computationally expensive problem, but once again the special structure 
of the smoothing operator S that is revealed by the Reinsch algorithm 
simplifies matters. Note that S can be applied to each column of X in 
O(n) time, so that XTW(I- S)X can be constructed in O(n) operations for 
fixedp. So can XTW(I- S)Y. The p x p linear system (4.15) can then be 
solved in O(p2) operations by a standard method, for example Cholesky 
decomposition. Finally, Ng is found from (4.14), very efficiently since 
SY and SX have already been constructed. 

A disadvantage of this direct method of solution is that it is not appar­
ently possible to combine it with orthogonal decomposition methods, to 
avoid having to form the p x p matrix XTW(I -S)X. There is consequently 
some greater risk of rounding error. 

4.4 Cross-validation for partial spline models 

In Sections 3.2 and 3.5.3, we discussed the use of cross-validation to de­
termine an appropriate value for the smoothing parameter automatically. 
The idea goes through, with appropriate modifications, in the partial 
spline case. 

The cross-validation score still has the form 

Y,- Y, ( ~ )2 
CV(a) = l:w, 1 -Au (4.16) 

where we now have 

By (4.6), A is given by 

[ 
XTWX 

[XN] NTWX 

and, using (4.14) and (4.15), this can also be written as 

S +(I- S)X{XTW(I- S)X} -IxTW(I- S), (4.17) 

where 

(4.18) 

The diagonal elements of S can be obtained via the Hutchison-de Hoog 
algorithm, exactly as in Section 3.2.2. As we have already said, finding 
(I- S)X andXTW(I- S) are both O(n) calculations. The matrix that must 
be inverted, XTW(I- S)X, is p x p and can be found in O(n) calculations. 
Finally, the matrix multiplications in (4.17) can be arranged to compute 
the diagonal elements of the result in O(n) calculations, for fixed p. 
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The generalized cross-validation score is adapted from that in Section 
3.3, and takes the form 

GCV(a) = 2:wi(Yi- f'if 
(1 - n-1 tr A)2 

with A as defined in ( 4.17). The trace of A can be written 

and of course this is also an O(n) calculation. 
As in Section 3.3.4, we define the equivalent degrees of freedom for 

noise by 

EDF= tr{I-A}=n- trA. (4.19) 

4.5 A marketing example 

We will now give an example of the use of partial spline methods, and 
take the opportunity of comparing the results of the analysis with a more 
classical approach employing blocking. 

Daniel and Wood (1980, pp. 142-145) discuss the analysis of data 
from a marketing price-volume study carried out in the petroleum dis­
tribution industry. Such a study would be used to examine the effect of 
price changes on the volume of sales, taking account of other relevant 
co variates. The conventional assumption is that the logarithm of the sales 
volume is linearly related to price. Here, the data consist of 124 obser­
vations on various days in the period February to August 1970. Data for 
only five days of the week are included (presumably for administrative 
reasons) and holiday dates were excluded. Thus the days of the year on 
which observations were taken are somewhat irregularly spaced in the 
period of interest. 

The response variable Y is the log volume of sales of gasoline, and 
the two main explanatory variables of interest are x1, the price in cents 
per gallon of gasoline, and x2. the differential price to competition (that 
is, the amount by which the price charged by the company in question 
exceeds that of the average of its competitors). It is natural to expect that 
weekly and seasonal effects would be at work, so Daniel and Wood also 
included dummy variables to indicate the day of the week and the month 
in which each observation lay. They describe a complete analysis that 
includes an informal assessment of the influence of outlying values of x1 

andx2. 
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Figure 4. 1. Partial spline decomposition of the marketing data. Upper plot.· 
parametric component of the fit; middle plot.· dependence on splined variable; 
lower plot: residuals. All three plots are drawn to the same vertical scale, but the 
upper two plots are displaced upwards. 

4.5.1 A partial spline approach 

In this situation, an attractive alternative is to model the dependence on 
time in a nonparametric fashion, so we now consider a semiparametric 
model in which the splined variable t represents the day of the year. 
Following Daniel and Wood (1980), we included weekly effects through 
dummy variables X3, X4, xs, X6, representing contrasts with the first day of 
the week. The method of Section 4.3.5 was used to fit the model, and 
the cross-validation score was found to be minimized at about a= 100. 
For this degree of smoothing, the estimates of the regression coefficients 
f3t and f32 of primary interest were -0.0121 and -0.0060, with stan­
dard errors estimated as 0.0019 and 0.0025 respectively. As one might 
expect from the definition of the variables x1 and x2 , there is a negative 
correlation, about -0. 5, between the estimates of f3t and f32. 

Aspects of this fit are displayed in Figure 4.1, in which a decomposition 
of the observed data is given. Three separate plots, all against the t,, are 
given. At the top of the figure, the fitted parametric component xf j3 is 
shown. A close inspection of this part of the fit indicates the effect of the 
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Figure 4.2. Least squares decomposition of the marketing data, using calendar 
month as a blocking variable. 

day of the week on the sales. The longer term effects in this part of the fit 
are of course due to changes in the price variables x, and xz. In the middle 
of the figure the nonparametric component g(t) is plotted as a continuous 
curve. Finally, at the bottom of the figure, the residuals Y; - xf /3 - g(t1) 

are each plotted against t,. It should be stressed that the origin on they­
axis applies to the residual plot only; the other two plots are drawn to the 
same vertical scale but are displaced vertically for clarity. The residual 
sum of squares was 0.0356; this has 99.3 equivalent degrees of freedom, 
as defined in (4.19). The difference 124- 99.3 = 24.7 in degrees of 
freedom for fitting 6 parametric covariates and the dependence on time, 
together with the appearance of the middle trace in Figure 4.1, indicate 
that the form of variation with time is quite complicated. 

4.5.2 Comparison with a parametric model 

By way of comparison, we also computed a fully parametric multiple 
regression fit to these data, treating calendar month as a factor, in place 
of the non parametric trend used above. The estimates of /31 and f3z then 
became -0.0050 and -0.0110 respectively, with estimated standard 
errors of 0.0009 and 0.0020. The residual sum of squares was 0.0523 
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on 111 degrees of freedom. Figure 4.2 displays the corresponding fit, 
for comparison with Figure 4.1. This time, the stepped function in the 
central part of the figure is of the fitted month effects. The parametric 
model implicitly makes the unrealistic assumption that changes over time 
occur in steps at the beginning of each month. 

In this example, it is the regression coefficients /31 and fh that are 
of principal interest. Both the corresponding variables x1 and x2 are 
measured in cents, so it is fair to compare the estimated values of /31 

and fh directly. There is an important difference between the two sets of 
estimates. In the fully parametric model, the coefficient /32 for differential 
price to competition is estimated as more than twice that for absolute 
price, suggesting that the volume of sales is more influenced by x2 than 
by x1. In contrast, with the partial spline, the comparison is reversed, and 
it is price (xi) that is more influential. This contrast has clear relevance 
in the substantive application. Judged on a residual mean square basis, 
the partial spline model also fits the data better. 

Another way of looking at this comparison is to consider the explana­
tory variables as being price (x1) and average price of the competing 
brands (xi - x2). Against these variables, the regression coefficients will 
be /31 + fh and -/h respectively. The semiparametric model will therefore 
give as the part of the estimated model that depends on price variables 

-0.0181 x price + 0. 0060 x average price of competition, 

while the fully parametric model with monthly blocking will give 

-0.0160 x price + 0. 0110 x average price of competition. 

In both cases, temporal effects will also have to be added to give the full 
model. From this point of view, the effect of absolute price is estimated to 
be approximately the same whichever model is fitted; it is in evaluating 
the effect of the price of the competing brands that the models really 
differ. 

A comparison between the curve g in Figure 4.1 and the corresponding 
stepped monthly effect curve in Figure 4.2 indicates why there is such 
a discrepancy between the two fits. The parametric curve peaks sharply 
around the beginning of July then falls off quite rapidly through the 
months of July and August. There is a similar, but much milder, effect near 
the beginning of April. While the monthly effects in the fully parametric 
model can be seen to correspond roughly to averages of the curve g over 
the relevant months, the blocking of the temporal effect into a function 
that is constant over months obscures the structure demonstrated in Figure 
4.1, and does not allow such a good fit to the observed data. 

We conclude this discussion with a remark about computing the partial 
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spline fit. The iterative backfitting method (Section 4.3.4) effectively 
fails on these data, because it converges so slowly. In fact, an explicit 
calculation of the eigenvalues of the matrix M, defined in the proof of 
Theorem 4.2, shows them to be 0.99919, 0.44188, 0.07421, 0.01589, 
0.01156 and 0.00467, when the smoothing parameter is set at 100. The 
closeness of the maximum eigenvalue to 1 explains the slow convergence, 
and the necessity to use the direct method set out in Section 4.3.5. 

4.6 Application to agricultural field trials 

A key idea in the design and analysis of experiments is the control 
of environmental variation so that comparison between treatments is 
not adversely affected by variability in experimental material; this is 
traditionally accomplished by appropriate blocking. In the context of 
agricultural field trials, blocks are physical areas of a field. The practical 
limitations of agricultural machinery, and other biological and statistical 
considerations, dictate a minimum plot size. Thus when the number 
of treatments is large, for example in cereal variety trials, the blocks 
needed for a randomized block design are enormous. Such blocks are 
demonstrably inhomogeneous with respect to important environmental 
factors such as soil nutrients, moisture, drainage and sunlight-in brief, 
'fertility' -so there has been considerable recent interest in methods of 
analysis for field trials that account for variation on a finer spatial scale. 
Readers are referred to the paper by Wilkinson et at. (1983), and its 
accompanying discussion. 

4.6.1 A discrete roughness penalty approach 

A number of proposals have been made which effectively use a model 
of the form (4.3), in which xf /3 represent the treatment effects, ti the 
spatial location of the i1h plot, and g(ti) the fertility effect on this plot. 
In the case of cereal trials, plots are long and thin, so that it is usually 
considered sufficient to account for smooth variation in fertility in one 
dimension only. Among approaches of this nature are those of Besag and 
Kempton ( 1986), who take g to be a realization of a spatial autoregressive 
process, and Green, Jennison and Seheult (1983, 1985) who adopted a 
nonparametric approach termed least squares smoothing that is more in 
the spirit of this book. 

Let X denote the design matrix for the treatment contrasts /3, the overall 
mean being subsumed into the fertility term. Then an appropriate model 
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for Yi, the yield on the i1h plot, is 

Yi = (Xf3)i + g(ti) +error. 

The function g is considered to be smooth, in the sense that its second 
differences {g(ti-I) - 2g(ti) + g(ti+I)} are small. In the least squares 
smoothing procedure, f3 and g are estimated by minimizing the quadratic 
penalty function 

n 

L {Yi-(Xf3)i-g(ti)}2 +a L {g(ti-I)-2g(ti)+g(ti+I)}2. (4.20) 
•=1 

The plots in large cereals trials are typically laid out in several lines, so the 
second summation in ( 4.20) runs only over plots i for which i - 1, i, i + 1 
are contiguous. The use of second differences in (4.20) is suggested by 
the discrete nature of the spatial scale in these experiments. It would be a 
modest change to replace the penalty term by an appropriate multiple of 
J g"2, to obtain the unweighted version of ( 4.4 ). Green et al. ( 1985) derive 
the estimating equations corresponding to ( 4.6), and suggest algorithms 
similar to those described in Sections 4.3.4 and 4.3.5. 

From an algorithmic point of view, the discrete version of the roughness 
penalty offers a slight simplification. The matrix K is now banded: in fact 
if we choose the scale of t so that t, = i, it is clear that QT g is the vector 
of second differences that appears in (4.20), so that K = QQT. It follows 
that the smoothing operatorS = (I+ aK)-1 is the inverse of a banded 
matrix, so may be applied to a vector in O(n) time using a Cholesky 
decomposition, without need for the indirect approach of the Reinsch 
algorithm. 

More traditional approaches to the analysis of field experiments are 
based on blocking. For the reasons mentioned earlier, a randomized com­
plete blocks design and analysis is usually invalid, so that an incomplete 
blocks analysis is used, with Yates's recovery of intra-block information. 
This method is equivalent to a generalized least squares analysis based 
on an error model with two sources of random variation: plot effects and 
block effects. Accordingly, some recent 'neighbour' methods of analy­
sis also use generalized least squares, but based instead on a covariance 
structure that allows inter-plot correlations to vary more continuously. 
The 'linear variance' model of Williams (1985) is an example. 

The treatment estimating equations that arise from the least squares 
smoothing approach, analogous to (4.15), also have the form of general­
ized least squares equations. As is suggested by the fonn of the penalty 
function ( 4.20), the corresponding model for the covariances is generated 
by assuming that plot effects are uncorrelated with variance a2, while 
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Figure 4.3. Least squares smoothing decomposition of a small variety trial. 
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the second differences of the fertility effects g(t;) are uncorrelated and 
have variances a2 I a. This is essentially the discrete analogue of the 
Bayesian justification for spline smoothing presented in Section 3.8.3, 
and closely parallels an argument proposed by Whittaker (1923) in an 
early application of roughness penalty methods in an actuarial context. 

If the cubic spline roughness penalty J g"2 is used, it turns out that the 
corresponding model for the fertility effects supposes the second differ­
ences to have first-order moving average correlation structure, in which 
the lag-1 autocorrelation is ! (to see this, note the form of R when the 
t, are equally spaced). This observation completes the connection be­
tween the neighbour methods that have been mentioned here: the linear 
variance model gives the same estimating equations as would a least 
squares smoothing method using first differences. The connections be­
tween smoothing methods and random effects linear models for spatial 
analysis of experiments are further explored by Green (1985). 

4.6.2 Two spring barley trials 

Here, we illustrate the least squares smoothing method applied to two 
cereal variety trials, using data kindly supplied by the Scottish Colleges 
of Agriculture. In Figure 4.3 is displayed the least squares smoothing 
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Figure 4.4. Least squares smoothing decomposition of a larger variety trial. 

decomposition of data from a small trial of 16 varieties of spring bar­
ley, conducted in 1977. The varieties were sown in long narrow plots, 
approximately 2 x 20 metres, arranged linearly in 3 superblocks, each 
consisting of one complete replicate of the 16 varieties. The layout of 
the experiment was generated by a generalized lattice design, compatible 
with use of the standard incomplete blocks analysis. In our semiparamet­
ric analysis, smoothing is applied within each superblock only; this is 
consistent with the standard practice of including fixed replicate effects 
in the fitted linear model. 

The decomposition in Figure 4.3 is constructed using a value of 10 
for the smoothing parameter a; this is a compromise between the values 
suggested by a broad range of criteria discussed in Green et al. (1985) and 
Green ( 1985), which as applied to this data set give values between 5.2 and 
16.9. Within this range there are only very small differences discernible 
between the different decompositions. The criteria, which include the 
two forms of cross-validation, two likelihood-based methods, and others 
based on classical variance-component methodology, are in accord with 
each other, largely because of the high degree of neighbour balance in 
the design of the experiment. 

The layout of Figure 4.3 is similar to that used before, in Section 4.5. 
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The top trace shows the fitted variety effects, and the middle one the fitted 
fertility trends. In the lower trace can be seen the residuals, which appear 
unstructured. All three traces are plotted on the same vertical scale (but 
with origins displaced vertically), and it is evident that the variability 
in fertility identified by the analysis is very marked in two of the three 
superblocks. In fact, in the central superblock, the range of fertility is 
almost as large as the difference between the best and worst varieties. 
Except in the right hand superblock, the fertility pattern is seen to be 
more complicated than could be adequately approximated by either a 
subdivision into blocks or a trend linear in space. 

In Figure 4.4, the analysis of a larger trial of 75 varieties is displayed; 
again, substantial and complicated patterns of fertility are revealed. These 
suggest that it is unduly optimistic to rely on randomization to eliminate 
bias in the standard analysis. 

4. 7 The relation between weather and electricity sales 

In this section we discuss an ingenious application of semiparametric 
modelling that also illustrates another feature of roughness penalty meth­
ods. So far, it has almost invariably been assumed that the observations Y, 
each depend on the unknown curve g at a single point t,. In the example 
we now discuss, drawn from Engle, Granger, Rice and Weiss (1986), the 
dependence is of a more general form. 

For many reasons, it is of interest to determine the relationship be­
tween temperature and the sales of electricity. In any kind of modelling 
of electricity demand-whether for economic reasons or assessing ca­
pacity requirements in the light of short-term weather forecasts-it is 
obviously important to take account of this relationship. In a country like 
the United States, where air conditioning is widely used, the consumption 
of electricity is high both on cold days and on hot days. It is common to 
assume, without any strong justification, that the demand for electricity 
is a V shaped function of temperature, with a minimum at 65°F. Engle 
et al. (1986) sought to relax this assumption by fitting an appropriate 
semiparametric model. 

4. 7.1 The observed data and the model assumed 

Several data sets were considered. In each one, data for a time period 
covering several years were available. For each month i = 1, ... , N the 
total sales in megawatt hours billed to consumers in that month are given. 
Let Y; be the sales per customer in each month i. The sales in each month 
are the sum of a number of 'billing cycles'; each consumer is billed 
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approximately on a monthly cycle, but on different days of the month. 
There are approximately 21 'billing cycles' relevant to each month. Thus 
if we are considering the March bills for example, the number of bills 
that include the consumption on February 22 will be the total number 
of customers on billing cycles ending in March that started on or before 
February 22. The exact start and end date of each cycle, and the number 
of customers in each cycle, are known. For each month i and each day j, 
let 

mij = number of bills presented in month i that cover day j 

and let 

M1 = L m!J = total number of bills presented in month i. 

The average temperature t1 on each day j in the period studied was 
given. In practice, the temperature range was divided into K small in­
tervals and each recorded temperature was rounded to the midpoint of 
the interval in which it fell. Let the midpoints of the various intervals be 
S!, ... ,SK. 

In addition to temperature, a number of other variables were taken into 
account, all as linear variables. In order to account for seasonal effects 
not related to temperature (such as the length of daylight) 11 seasonal 
dummy variables were used, one for the difference between each calendar 
month and December. In addition there were variables corresponding to 
average household income and the unit price of electricity, both relative 
to the consumer price index. 

The model then used for the data was 

(4.21) 

where g( t) is a function of temperature that gives the effect of temperature 
on consumption on a daily basis, so that after taking other variables into 
account the expected use of electricity per consumer on a day with average 
temperature t is g(t). This definition allows us to specify the quantities 
li(g) as linear functionals of g, as we now set out. 

The expected bill in month i for a particular consumer would, by 
assumption, be 

xf {3 + L g(tj). (4.22) 

days covered by bill 

For each} the overall proportion of bills in month i that include exposure 
to the temperature on day j is Mj1my. and so the contribution of the 
temperature that day to the overall average observed monthly bill would 
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be Mj1 mijg(tj)· Summing over all possible days covered gives as the 
overall effect of temperature 

li(g) = M,- 1 L mijg(tj) = L L,kg(sk) 
k 

where theN x K matrix L is given by 

Lik = Mj1 L mij. 
{i:t1=sk} 

(4.23) 

The model (4.21) differs from the usual semiparametric model in that 
each observation fi depends not on an individual value of g(t) but rather 
on the whole (or a large part) of the curve g through the linear functional 
h(g). 

4.7.2 Estimating the temperature response 

A roughness penalty approach was used for the estimation of g, using 
a simple discretization approach, based on the points to which the tem­
peratures were rounded. It can be considered as analogous to a fairly 
crude form of the basis functions approach to spline smoothing set out in 
Section 3.6 above. 

Let g be the vector of values g(sk). A matrix K based in a natural way 
on second divided differences then gives 

gTKg "'I g"2. 

In assessing the goodness-of-fit of the model to the data, a weight matrix 
W was used to allow for an autocorrelated error structure in the data, 
as will be discussed further in Section 6.3. For further details of the 
construction of Wand K, see Engle et at. ( 1986). For smoothing parameter 
a, it follows from (4.21) and (4.23) that the penalized weighted residual 
sum of squares is 

Sw(f3,g) = (Y- X{3- LglW(Y- X{3- Lg) + agTKg (4.24) 

which is easily minimized to give the estimates of the parameters {3 and 
the vector g. 

For a data set from Northeast Utilities in Hartford, Connecticut, USA, 
the estimated temperature response curve is given in Figure 4.5. The 
smoothing parameter a was chosen by generalized cross-validation. The 
values of the coefficients corresponding to the calendar month linear 
variables are given in Figure 4.6. Note that these are all relative to De­
cember, so the coefficient corresponding to December is automatically 
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Figure 4.5. Estimated temperature response function in the model for electricity 
consumption, for Northeast Utilities data. Results taken from Engle et al. ( 1986). 
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sumption, for Northeast Utilities data. Results taken from Engle et al. ( 1986). 
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zero. It should be noted from ( 4.22) that a particular customer's predicted 
bill would include a single calendar variable coefficient but the sum of 
about thirty values of the temperature response curve, so the calendar 
month dummy variables in fact contribute far less to the overall pre­
diction of electricity consumption. The analysis also gave coefficients 
showing a small positive effect due to average household income and a 
small negative effect due to price. 

Overall, this analysis, in common with that of other data sets stud­
ied, confirms a pattern of increased consumption as the temperature 
moves away from 'comfortable' in either direction, with a sharper rate 
of increase for high temperatures. Reducing the temperature by air con­
ditioning uses more electricity per degree than increasing it by heating. 
(Note that not all heating uses electricity.) The minimum consumption is 
at a temperature somewhat below 65°F. Perhaps somewhat surprisingly, 
the nonparametric response function retains the property of the V-shaped 
model of a linear increase in consumption at temperatures well away from 
the minimum point; the curve g is of course smooth near its minimum, 
and this is a much more realistic model than one with an abrupt change 
in behaviour at a particular point. Therefore the semiparametric model 
is preferable as an input into other modelling procedures. The pattern of 
monthly consumption shown in Figure 4.6 is of clear interest; all other 
things being equal, consumption is higher in the spring and lower in the 
autumn. 

4.8 Additive models 

One of our motivations in studying the semiparametric model (4.3) was 
as a first step in generalizing from the fully linear model ( 4.1) to the fully 
nonparametric regression (4.2). The semiparametric model retains the 
appealing property, important both in modelling and in computation, that 
the mean response is additive in the explanatory variables XJ, x2, ... , Xp, t, 
even though it is nonlinear in the last of these. 

In many ways, therefore, the natural next step is to consider the gen­
eralization to 

p 

Y, = Lgit,j)+ error, (4.25) 
j=l 

where tlf is the value of the fh variable for the i1h observation. In this 
specification, the component functions could all be linear in parameters 
{3, in which case this remains a linear model; if all but one of the functions 
is of this form, and the other unspecified but for the requirement of 
smoothness, this is a semiparametric model of the form that we have 
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already discussed in detail. More generally, this provides a substantial 
new class of flexible regression models, retaining the interpretability 
provided by the additive structure, without enforcing a rigid parametric 
form of dependence on explanatory variables that may not be justified in 
the application under consideration. 

Additive modelling has been pioneered and developed by Trevor Hastie 
and Robert Tibshirani, and their recent monograph (Hastie and Tibshi­
rani, 1990) provides an excellent source for the subject. It is therefore 
unnecessary for us to go into details here, in spite of the practical impor­
tance of this class of models. 

When an additive model is estimated using the penalized least squares 
approach, the functions {gj} are estimated to minimize 

n P p 

Sw(g,, ... ,gp) = L wi{Yi- Lgj(tij)}2 + L aj J gj'(t)2dt. (4.26) 
i=l j=l j=l 

Here a,, az, ... , ap are separate smoothing parameters for each of the 
component functions. Hybrid models in which some of the functions are 
specified as linear are specified in the obvious way. 

If the same line of argument is followed as that in Section 4.3, simul­
taneous estimating equations of the form 

(NJWNj + aj~)gj = NJW(Y- L Nkgk) 
kf.j 

are obtained, analogous to (4.10). As soon as there is more than one 
nonparametric component, a direct, non-iterative computational approach 
similar to that described in Section 4.3 .5 is not available, so the backfitting 
method has to be used, as in Section 4.3.4. Thus the weighted cubic spline 
smoother retains its important role as a computational tool even in this 
more complex class of models. 

Hastie and Tibshirani (1990) discuss these computational issues in 
some detail, and also cover important inferential matters, such as the 
assignment of equivalent degrees of freedom to the fitted component 
curves. 

The very nature of additive modelling perhaps discourages attention 
to possible interactions between explanatory variables. In ordinary linear 
modelling, inclusion of certain products of observed explanatory vari­
ables as terms in the regression model is often natural, but it is less clear 
how to make the analogous modification to an additive model without in­
troducing an element of arbitrariness. This issue certainly justifies further 
research activity. 
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4.9 An alternative approach to partial spline fitting 

4.9.1 Speckman'salgorithm 
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In this section, we discuss an alternative approach to partial spline fitting, 
due to Speckman (1988). In order to explain the approach, consider, for 
the moment, a framework within which the explanatory variables Xi in 
the model 

Yi = xf f3 + g(ti) + error, (4.27) 

can be thought of as themselves having a regression dependence on ti, of 
the form 

(4.28) 

where e is a vector of smooth functions of t, and the 17; are vectors of 
'errors' Tlij· Define go to be a function such that 

go(ti) = ect;l f3 + g(t;), 

so that, in a certain sense, 

Yi = go(ti) + error. 

Taking the difference between (4.27) and (4.29) then gives 

f; - go(t;) = {X; - e(t;) v {3 + error. 

(4.29) 

(4.30) 

This equation shows that the parameter vector f3 can be estimated by 
regressing the residuals of Y, on those of the explanatory variables, in 
each case taking the residuals from the 'trend' of the relevant variable 
given t, without taking any other variables into account. There is no 
(explicit) dependence on the curve g. 

For any given smoothing parameter a, letS be the hat matrix of spline 
smoothing with parameter a. As in Section 4.3.1, let X be the matrix with 
rows xf, and let 3 be the matrix with rows eCtif· The relation (4.30) then 
suggests the following procedure. 

1. Use spline smoothing to estimate {g0(t;)} and 3, yielding the estimates 
SY and SX respectively. 

2. Define Y and X to be the residuals (1- S)Y and (1- S)X respectively. 

3. Estimate f3 by solving the regression equation corresponding to ( 4.30), 
Y = X/3 + error, to yield 

(4.31) 

4. Substitute the estimate /3 back into (4.27) and obtain an estimate g by 
spline smoothing applied to the values f;- xf /3. 
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This algorithm for estimating the various parameters can of course 
be applied whether or not the regression dependence (4.28) is plausible, 
although the logic of using the same smoother S for both Y and X in step 
1 above does perhaps assume this. The method has the advantage that it 
does not involve any iteration. 

Generalized cross-validation can be used, if desired, to choose the 
smoothing parameter. To obtain the hat matrix of the procedure, note that 
the vector of predicted values is given by 

X/3 +S(Y- X/3) = SY + (/- S)X{XrX} -!XT(l- S)Y 

= [S+X{Xrx}-1Xr(/- S)]Y, 

and hence the trace of the hat matrix is the same as that of the matrix 
S + {xrx} - 1{Xr(/- S)X}, an O(n) calculation. This trace can also be 
substituted into the formula (3.19) to give an estimate of the error vari­
ance. Standard errors for {3 can then be derived from (4.31) by standard 
multivariate calculations. 

4.9.2 Application: the marketing data 

As an example, we apply the technique to the marketing data discussed 
in Section 4.5 above. The value of the smoothing parameter chosen by 
generalized cross-validation is virtually identical to that obtained previ­
ously. With this value of the smoothing parameter, the estimates of /31 
and f32 are -0.0148 and -0.0040. The estimated standard errors, 0.0019 
and 0.0025 respectively, are the same as before to two significant figures, 
and the residual sum of squares, 0.0358 on 100.1 equivalent degrees of 
freedom, is virtually identical. The fitted model is not substantially dif­
ferent, but does, if anything suggest that the price of the competition is 
less important, because it leads to the part of the estimated model that 
depends on price variables being 

-0.0188 x price + 0. 0040 x average price of competition. 

The decomposition corresponding to the estimates obtained in this way 
is shown in Figure 4.7; it can be seen that the estimate of g and the values 
fitted by the estimated parameters are virtually identical to those in Figure 
4.1. 

4.9.3 Comparison with the penalized least squares method 

In this discussion, we refer to the estimate obtained by the method of 
Section 4.3 as the penalized least squares (PLS) estimates. 
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Figure 4.7. Partial spline decomposition of the marketing data, estimated 
by Speckman's method, smoothing parameter chosen by generalized cross­
validation. 

The original motivation for Speckman's algorithm as set out in Section 
4.9.1 was a result of Rice (1986), who showed that, within a certain 
asymptotic framework, the PLS estimates of the parameters {3 could be 
susceptible to biases of the kind that are inevitable when estimating a 
curve. If the smoothing parameter is chosen to give good estimates of 
the curve g, then the biases in the estimates of {3 tend to zero, but at a 
rate that prevents the mean square error of the estimates from converging 
to zero at the usual 'parametric' O(n-1) rate. Speckman (1988) showed 
that his method does not suffer from this difficulty; again under suitable 
conditions, if the smoothing parameter is chosen to give the best possible 
rate of consistency of g then the squared bias of {3 will be of smaller 
order than its variance, and the mean square error of {3 will tend to zero 
at the O(n-1) rate. 

It is, however, instructive to compare the formula (4.31) with the for­
mula (4.15) for the PLS estimators. This comparison shows that the 
Speckman estimator for {3 (using smoothing matrix S) could be obtained 
in the same way as a PLS estimator, by replacing the smoothing matrix 
in the PLS method by S2 = I - (/ - S)2. In the terminology of Tukey 
(1977), S2 is the smoother obtained by 'twicing' S, and will correspond 
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to a less severe smoothing operation than S itself. Thus in very broad 
terms Speckman's work can be interpreted as saying that within the PLS 
setup itself the amount of smoothing appropriate for good estimation 
of f3 may be less than the amount appropriate for the estimation of g. 
Indeed, Heckman (1986) proved that the PLS estimate (3 is consistent at 
parametric rates if small values of the smoothing parameter are used, and 
more general theoretical results along these lines are provided by Cuzick 
( 1992). However the large-sample nature of all these results, and the var­
ious assumptions they depend on, suggest that more practical experience 
is required before it is possible to see whether the apparent theoretical 
advantage of the Speckman approach offsets the loss of interpretability 
and flexibility in departing from the penalized least squares paradigm. 



CHAPTERS 

Generalized linear models 

5.1 Introduction 

All the models considered in the preceding chapters can be thought of as 
ways of extending ideas from linear regression. Various nonlinear or non­
normal regression models have of course been studied on an individual 
basis for many years. However, only in 1972 did Neider and Wedderburn 
provide a unified and accessible theoretical and computational framework 
for a class of such models, called generalized linear models (GLMs), 
which have been of enormous influence in statistics. In this chapter we 
set out ways in which roughness penalty methods can be applied in the 
broader context of generalized linear models. 

5.1.1 Unifying regression models 

We begin by unifying the models considered in the preceding chapters, in 
a manner that also makes them easy to generalize, by splitting the model 
for the observed data { Yi} into a random component and a systematic 
component. The basic idea is to introduce a vector of predictors fJ;, one 
for each observation. The random component of the model specifies the 
way in which the distribution of Y; depends on fJ;, while the systematic 
component specifies the structure of the fJ; as a function of the available 
explanatory variables. 

To deal first with the random component, note that in all of our devel­
opment so far, we have been concerned with regression models with two 
key properties: 

(a) Terms involving explanatory variables influence only the systematic 
part of the model. 

(b) The models are appropriately fitted by estimating parameters using 
least squares, or penalized alternatives. 

Although we have seldom mentioned probability models, the assump­
tion in (b) is of course most strongly justified when the random component 
of the model follows a normal distribution: the maximum likelihood and 
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least squares criteria then coincide. It is also, of course, the case that 
these assumptions hold for classical linear multiple or simple regression. 
Thus, in all the cases we have considered so far, we have at least tacitly 
assumed: 

Random component: 

Y;- N(8;, ci-) fori= 1, 2, ... , n. (5.1) 

Turning now to the systematic component, the three cases of classical 
multiple regression, univariate spline smoothing as considered in Chap­
ters 2 and 3, and semiparametric models as considered in Chapter 4 can 
all be accommodated by suitable choice of model. We have the following 
possible assumptions: 

Systematic component: 

Parametric case (classical multiple regression): 

8; = xf[j fori= 1,2, ... ,n (5.2) 

Nonparametric univariate case: 

8; = g(t;) fori= 1,2, ... ,n (5.3) 

Semiparametric case: 

8; = xf {3 + g( t;) for i = 1, 2, ... , n. (5.4) 

These classes of models are of course applicable to a tremendous 
variety of problems across different disciplines. However it is obvious that 
these assumptions are restrictive, and there are many important regression 
problems in which a more general form of either the random component 
or the systematic component is appropriate. 

5.1.2 Extending the model 

The generalized linear models of Neider and Wedderburn (1972) allow 
a far more general random component than (5.1) and extend (5.2) to 
allow 9; to depend on the covariates through an arbitrary nonlinear func­
tion of the linear predictor xf {j. In the next section we review ordinary 
parametric GLMs. This is motivation for the main thread of this chapter, 
concerned with extending the scope of GLMs by introducing semipara­
metric generalized linear models, a synthesis of the ideas of GLMs and 
partial spline models. 

The reasons presented earlier in this book for treating one or more 
explanatory variables in a nonparametric fashion do not apply only to 
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linear models, and it is equally important to develop a semiparametric 
treatment of generalized linear models. As with linear models, we will 
not be concerned with relaxing the probabilistic assumptions governing 
the random component of the model, but with the linearity assumptions 
on the systematic component. 

A special case that has been discussed in the literature in a somewhat 
piecemeal fashion is nonparametric GLMs. An early paper on this theme 
was Silverman (1978), which set out a form of nonparametric logistic 
regression. In its simplest form, linear logistic regression fits a model to 
zero-one observations Yi at points ti by assuming that 

logit P(Yi = 1) = f3o + f3Iti 

for parameters f3o and {31 to be estimated. Nonparametric logistic regres­
sion replaces the straight line dependence by dependence on a smooth 
curve g, to yield 

logit P(Yi = 1) = g(ti). 

This model can be seen to generalize both (5.1) and (5.3) by replacing 
the normal random component by 

Yi- Bernoulli(Bi) 

and by introducing the logistic function to yield the nonlinear systematic 
component 

logit Bi = g(ti). 

As part of our unified treatment, we shall treat models of this kind as a 
special case of semiparametric GLMs, in Section 5.3 below, where we 
include a practical example involving binomial-logistic dependence. 

After setting out and discussing semiparametric GLMs in full detail, 
we extend the model still further in Section 6.5 to cover more general 
regression models. Problems involving smoothing with respect to more 
than one variable are not discussed in detail but can be approached using 
the techniques described in Chapter 7 below. Finally in this chapter we 
shall return to models based only on first and second moment properties, 
rather than a fully specified probability model for the random component. 

5.2 Generalized linear models 

5. 2.1 Exponential families 

In this section, we follow Neider and Wedderburn (1972) in relaxing each 
of the assumptions (5.1) and (5.2) while remaining within a parametric 
framework. We first relax the assumption of normality by supposing 
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that the responses Y; are drawn independently from a one-parameter 
exponential family of distributions, with density or probability function 

( y;B;- b(B;) ) 
p(y;; B;, tP) = exp tP + c{y;, tP) (5.5) 

Here B; is the natural parameter of the exponential family, specific to Y;, 
which will carry information from the explanatory variables, and tP is a 
nuisance or scale parameter common to all Y;, analogous to if in (5.1). 
The specific form of the distribution is determined by the functions b and 
c. We will see some examples below. 

The systematic component of the model is now defined by specifying 
the functional form of B; in terms of the explanatory variables for the 
i1h response. This is conventionally done indirectly: recall that from the 
standard theory of exponential families 

J.li = E(Y;; B;, 1/1) = b'(B;). (5.6) 

Parametric generalized linear models are constructed by assuming that 
there exists a link function G such that 

G(J.L;) = xf {3. (5.7) 

The right hand side of this expression is called the linear predictor. When 
fitting such models to data, it is usual for the form of the distribution and 
the link function to be fixed, chosen on grounds of theory or experience, 
and then several candidate sets of explanatory variables entertained, by 
considering various forms of linear predictor. 

Examples 

1. If we set b( B;) = ! B[, tP = if, and c{y;, tP) = - !(yl CJ)2 ·- log CJ../2ic in 
(5.5) and G to be the identity function in (5.7), then it is easy to see 
we recover the normal linear model (5.1) and (5.2). 

2. With b( B;) = e6•, tP set identically 1, c{y;, tP) = - log{y; !) and G as 
the logarithmic function, we obtain a model for Poisson data with a 
multiplicative structure for explanatory variables: this is the log-linear 
model that forms the basis for contingency table analysis. 

3. If we put b( B;) = m; log(l + e6• ), tP identically 1, c{y;, tP) = -log (;:) 

and G as a logit function: 

J.L• 
xf {3 = log --1-

m;-J.L; 
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or probit function: 

xf f3 = cp-t (~) 
(where CI> is the standard normal integral) then we obtain the models 
used in bioassay leading to logit and probit analysis, respectively. 
These are both examples where the functions b, c and G vary with 
i, as all involve the binomial denominator mi. This should not cause 
confusion, however, and we leave the dependence of these functions 
on i tacit in the notation. 

For each particular exponential family density (5.5), one particular 
choice of link function has particular significance mathematically, and 
to a lesser extent statistically. If G is the inverse of the function b', then 
ei coincides with the linear predictor xf {3; we call this particular G the 
canonical link function for the model. This choice slightly simplifies the 
algebra and the algorithms, and has the effect of making xry sufficient 
for {3, given q,. 

Generalized linear models form quite a general class of probabilis­
tic regression models. Some of the assumptions, the exponential family 
distributions, the independence and the linearity in combining the ex­
planatory variables, are a little more restrictive than necessary and will 
be relaxed later, but this class is very important in practice, and is cer­
tainly adequate for introducing the ideas in this chapter. A discussion 
of extensions to the class of generalized linear models, taking a geo­
metric perspective, and commenting on the implications for estimation 
algorithms, was given by Green (1989). 

5.2.2 Maximum likelihood estimation 

One advantage of the full probabilistic specification of the model is that 
a natural principle for fitting the models suggests itself: that of maximum 
likelihood estimation. We denote by {j the maximum likelihood estimate 
(m.l.e) of {3: that value obtained by maximizing the log-likelihood 

£((}, 1/>) = t ( Yiei- b(ei) + c(Yi, 1/>)) 
i=l 1/> 

derived from (5.5), with(} linked to {3 through equations (5.6) and (5.7). 
Questions of existence and uniqueness have to be answered individually 
for different special cases: see Wedderburn (1976), for example. 

There is nowadays seldom any reason to consider any other estimator 
of {3, but before the wide availability of computers made the numerical 
evaluation of the maximum likelihood estimates a triviality, a simple and 
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popular alternative was to apply the link function G from (5. 7) to the raw 
data f; and perform an ordinary linear regression of G(Y;) on X; to obtain 
estimates of {3 by least squares: see for example Finney (1947) for this 
approach to probit analysis. The least squares estimator will generally 
have inferior performance compared with /3. 

5.2.3 Fisher scoring 

Neider and Wedderburn (1972) proposed Fisher scoring as a general 
method for the numerical evaluation of /3 in generalized linear models. 
That is, given a trial estimate {3, update to 13new given by 

{ ( a2£ )}-t a£ 
/3new = /3 + E - a{3a{3T a{3 (5.8) 

where both derivatives are evaluated at {3, and the expectation is evaluated 
as if {3 were the true parameter value. Then {3 is replaced by 13new and the 
updating is repeated until convergence is obtained. 

It turns out that for a GLM, these updating equations take the explicit 
form 

{3new = (XTWX)-IXTWz 

where z is then-vector with th component 

Z; = (Y;- Jl.;)G'(JJ.;) + xf /3, 
and W the n x n diagonal matrix with 

W;; = {G'(JJ.;fb"(e;)}-1. 

(5.9) 

Notice how the nuisance parameter tP has cancelled out: its value is not 
addressed during the iterative estimation of {3. 

To see the truth of (5.9), we need to evaluate the derivatives in (5.8); 
it is convenient to introduce the notation T'/i for the linear predictor xf /3. 
Now 

a£ 

~i 
= a£ de; _ a£ + (d11; dJJ.;) 

ae; d 11; - ae; dJJ.; de; 

= (Y;; Jl.;) + {G'(JJ.;)b"(e;)}. (5.10) 

Clearly !._2l = 0 if i -F j, and while .g involves higher derivatives of G 
v•u!J) U1fj 

and b, we see that its (negative) expectation does not: 

= ddJl., +{IPG'(JJ.;)b"(e;)} 
1Ji 

= {IPG'(J1.;)2b"(e,)}-t. (5.11) 
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Let z* be then-vector with z; = (Y;- f.l;)G' (f.l;). Then, in summary, we 
have from (5.10) 

and from (5.11) 

at w * ~-= z 
d'T/ 

~E (- a:;~T) = W. 

But by the chain rule, since '11 = X/3, we have 

at =XTal 
(){3 d'T/ 

and 

E(-~) -XTE(-~)x a{3af3T - a"1a"1T · 

Thus the Fisher scoring equations (5.8) become 

f3new = /3 + (XTWX)-IXTWz* 

which we can more simply express in the required form (5.9). 

5.2.4 Iteratively reweighted least squares 

(5.12) 

(5.13) 

There are several other ways in which these calculations could have been 
arranged: the point of this representation is that it shows that each itera­
tion of the Fisher scoring method for numerical evaluation of the m.l.e. is 
a weighted least squares regression of the working response vector z on 
the model matrix X with a working weights matrix W. This is therefore 
an example of an iteratively reweighted least squares calculation. Most 
statistical packages and subroutine libraries provide the basic routines 
needed for this computation. Methods based on orthogonal decomposi­
tions are usually to be preferred to those explicitly forming the p x p 
matrix XTWX. In general, both z and W are functions of the current 
estimate /3 and need to be re-evaluated each iteration. 

In the normal linear model of Example 1, it is readily seen that z is 
the same as Y and that W is the identity matrix, so no iteration is needed 
and (5.9) merely confirms that the maximum likelihood and least squares 
coincide in this case. 

5.2.5 Inference in GLMs 

Analysis of data based on a generalized linear model means more than 
merely estimating the regression coefficients. Among other things, we 
need measures of goodness-of-fit, a definition of residual, methods for 
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model selection and other hypothesis testing, estimates of standard errors 
of estimators, and confidence intervals. Here, we briefly review some of 
the basic methods. 

The scaled deviance D* is defined as the log-likelihood-ratio statistic 
D* = 2[lmax -l{ 6({3)}] where lmax is the maximized log-likelihood for 
the saturated model allowing one parameter for each observation. If the 
model includes a nuisance parameter tP, it is usually easier to work with 
the unsealed version, the deviance D given by 

n 

D = tPD* = 2 'E {Yi(Bi- Bi)- b(Bi) + b(Bi)} 
i=l 

n 

= Ldj, say. 
i=l 

Here, 9i denotes the solution to b'(Bi) = Yi, that is the value of Bi max­
imizing the likelihood for the i1h observation alone. The contribution di 
to the deviance from the i1h observation is sometimes called the deviance 
increment. 

The deviance D is a measure of the closeness of the fit of the model 
to the data, and can be interpreted very much like the residual sum of 
squares in a linear model, which is indeed what it reduces to, for the 
normal distribution/identity link GLM. An alternative measure of the 
quality of fit of the model to the data is provided by the Pearson chi­
squared statistic 

n { }2 n 2 
2 _ '"' Yi - E(Yi) _ '"' (Yi - Jli) · 

X - tP ~ var(Y.·) - ~ b"(B·) 
i=J I i=J I 

(5.14) 

where E(Yi) and var(Yi) are evaluated at the maximum likelihood es­
timates /3. The relative merits of x2 and D are discussed in depth by 
McCullagh and Neider (1989, pp. 33-36 and 118-122). They point out 
that the commonly-held assumption that each has approximately the X~-p 
distribution, after scaling by an estimate of tP if necessary, can be seriously 
misleading. 

For model selection, a hierarchy of models can be investigated 
using deviances in a similar manner to the sums of squares in analy­
sis of variance: this procedure is known as the analysis of deviance. This 
relies on asymptotic distribution theory; it can generally be assumed 
that differences between (scaled) deviances follow x2 distributions with 
the appropriate degrees of freedom, to a reasonable approximation. The 
extent to which such results hold as good approximations with finite 
sample sizes is still being assessed. For recent results in this direction see 
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Cordeiro (1985) and Barndorff-Nielsen and Blresild (1986): the analysis 
can be alarmingly complicated. 

For a local assessment of goodness-of-fit, to be used in checking 
both model adequacy and data adequacy (e.g. absence of outliers), it is 
useful to be able to examine residuals. How should these be defined? In 
models for independent responses, we would like to assign a residual Zi 
to each observation, that measures the discrepancy between Yi and its 
value predicted by the fitted model, preferably on a standardized scale. 
Experience with residuals in multiple linear regression (see, for example, 
Cook and Weisberg, 1982) tells us that raw residuals ( Yi- Jli) have unequal 
variances and are correlated, as a consequence of fitting the model. The 
first of these difficulties can be handled quite easily by dividing each raw 
residual by an estimate of its standard deviation to give a standardized 
residual, but the second is inevitable if residuals are to retain a one-to-one 
correspondence with the responses. 

In generalized linear models there are two additional difficulties: firstly 
the model variances depend on the expectations, and secondly it is not 
obvious that data and fitted value should be compared on the original 
scale of the responses. These considerations lead to two commonly used 
definitions of residual: 

and 

yi- Jli 
Zi = .,jb"(Bi) 

Zi = sign(Yi - Jli)...j;i 

where di is the deviance increment defined above. These are known as 
Pearson and Deviance residuals respectively. Their respective merits are 
discussed by Green (1984)andMcCullaghandNelder (1989,pp. 37-40). 
Each definition may further be standardized to adjust approximately for 
additional inequalities in variance introduced by estimation. 

The asymptotic variance matrix of the maximum likelihood estimator 
13 is 

{ ( a2e ) }-1 
E --- = q,cxrwx)- 1. 

a11a11r 
Of course, in using this variance, W will be evaluated at the maximum 
likelihood estimate 13. and q, will be replaced by an estimate. McCullagh 
and Neider (1989, p. 295) advocate using the Pearson x2 statistic to 
estimate q, (at least in the context of the gamma distribution): 

~ x2 
4'= (n-p)' 

where x2 is as defined in equation (5.14). 
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5.3 A first look at nonparametric GLMs 

5.3.1 Relaxing parametric assumptions 

Before starting a more formal and comprehensive development of the 
ideas of nonparametric and semi parametric generalized linear models, it 
is helpful to present the details worked out in a rather straightforward 
special case, corresponding to the nonparametric univariate case (5.3). 
Suppose, therefore, that we observe responses Yi. i = 1, 2, ... , n, drawn 
independently from the exponential family density (5.5), where now, 
instead of the parametric assumptions 

G{b'(9i)} = xf {3 

involving the link function and linear predictor, we suppose simply that 

9i = g(ti) 

where ti are observed values of a one-dimensional explanatory variable, 
and g is an unknown but smooth function. We will assume in this section, 
as in Chapter 2, that the ti are distinct and ordered, and lie within an 
interval [a,b]: a< tt < t2 < ... < tn <b. This defines a nonparametric 
generalized linear model. By virtue of the fact that there is no additional 
level of indirection between values of 9 and the smooth function, we are 
implicitly adopting the link function that is canonical for the assumed 
density; this point will be elaborated later. 

5.3.2 Penalizing the log-likelihood 

If we attempt to maximize the log-likelihood 

i(g, tP) = t ( Yig(ti) - b{g(ti)} + c(Yi, tP )) 
i=l tP 

(5.15) 

over all smooth functions g, the result is useless. It is always possible 
to choose g sufficiently complicated that it interpolates the data, in the 
sense now that the fitted values agree with the observed responses: Yi = 
b' {g(ti)}. This is directly analogous with the similar point made about 
curve fitting in previous chapters, and and we adopt an analogous strategy 
to deal with it. Instead of maximizing the log-likelihood i(g, tP) alone, we 
choose g E S2[a, b] to maximize the penalized log-likelihood 

(5.16) 

where A. is a smoothing parameter. The function g is called the maximum 
penalized likelihood estimate (MPLE). 
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It will generally be convenient to set a = Alp and to consider a as being 
the smoothing parameter. Multiplying (5.16) by tfJ shows that the problem 
of maximizing the penalized log-likelihood is precisely equivalent to that 
of maximizing 

t[Y,g(t;)- b{g(t;)}]- &a j g"(t)2dt, 
i=l 

(5.17) 

eliminating the dependence on tfJ altogether. We shall define 

n 

i1(g) = l)Y;g(t;)- b{g(t;)}] 
i=l 

so that i 1 (g) differs from tfJl(g, tfJ ), if at all, only by a term independent of 
g. 

Motivation for the factor & in (5.16) follows by noting that in the 
normal linear case, 

1 '"' 2 i(g,t/J) =- 2cr2 L.,..{Y;- g(t;)}. 

Since tfJ = a2, tfJi(g, tfJ) = - & L: { Y; - g(t;) V, and so the maximization of 
( 5 .17) is equivalent to the minimization of 

l: {Y;- g(t;)} 2 +a j g"(tidt, 

which is exactly the penalized least squares criterion used in Chapter 2. 
Concentrating on the penalized log-likelihood (5.16) allows us to bal­

ance fidelity to the data (high values of the log-likelihood) with smooth­
ness of the fitted curve g (low values of the roughness penalty). As in 
Section 3.8.3, there is a Bayesian argument leading to this criterion: the 
MPLE of g is the posterior mode given the data where tfJ is fixed and g has 
prior density proportional to exp(- & A. J g112) over some suitable space of 
smooth functions g. 

5.3.3 Finding the solution by Fisher scoring 

By an argument now familiar, maximization of (5.17) follows a two­
step principle. The first term in (5.17) depends on g only through the 
values g(t;), so the whole expression is maximized for fixed vector g, 
with ith component g; = g(t;), by the natural cubic spline with knots 
{t;} interpolating g. We know the resulting value for the second term is 
- & agT Kg, so we have only to maximize 

(5.18) 
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over choice of the n-vector g. Here we have committed a harmless abuse 
of notation in writing £1 (g) for the corresponding (scaled) log-likelihood 
term 

(5.19) 

In general, the maximization of (5.18) will be a nonlinear optimization 
problem, and, as in the previous section, we use the approach of Fisher 
scoring to solve it. 

Theorem 5.1 The Fisher scoring algorithm for maximizing the penalized 
log-likelihood (5.18) with respect tog is given by 

where 

yi- b'(gi) 
Zi = gi + b"(g,) , 

and W is a diagonal matrix with 

Wu = b" (gi). 

(5.20) 

Proof We need the first and expected second derivatives of (5.18) with 
respect to g. Immediately from (5.18) and (5.19), we find the i'h compo­
nent of the first derivative to be 

where we have written J.1. for the vector with Jli = b'(gi), while the i1h 

diagonal element of the second derivative is 

- b"(gi)- aKu. 

The off-diagonal elements vanish, as in Section 5.2.3. Note that the 
second derivatives do not involve the responses {Yi}, effectively because 
we are using the canonical link function, so that Newton-Raphson and 
Fisher scoring coincide in this problem. The algorithm becomes 

...new { ( a2£1 ) }-
1 (a£1 ) 6 = g- E -- - aK - - aKg 

agagr ag 

= g + (W + aK)- 1{(Y- JL)- aKg} 

= (W + aK)-1{Wg + aKg + (Y- JL)- aKg} 

= (W + aK)- 1W{g+ w- 1(Y- JL)} 

and this is the same as (5.20). 0 
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Table 5.1. A mortality table (from London, 1985, Table C-1). For each age x, the 
population size is nx and the number of deaths is dx 

X nx dx X nx dx X nx dx 
55 84 l 72 20116 480 89 510 97 
56 418 2 73 18876 537 90 430 93 
57 1066 10 74 17461 566 91 362 75 
58 2483 21 75 15012 581 92 291 84 
59 3721 35 76 11871 464 93 232 31 
60 5460 62 77 10002 461 94 196 75 
61 6231 50 78 8949 433 95 147 29 
62 8061 55 79 7751 515 96 100 25 
63 9487 88 80 6140 374 97 161 20 
64 10770 132 81 4718 348 98 11 5 
65 24267 267 82 3791 304 99 10 3 
66 26791 300 83 2806 249 100 8 2 
67 29174 432 84 2240 167 101 5 0 
68 28476 491 85 1715 192 102 4 2 
69 25840 422 86 1388 171 103 2 0 
70 23916 475 87 898 126 104 2 1 
71 21412 413 88 578 86 

5.3.4 Application: estimating actuarial death rates 

One of the oldest applications of the roughness penalty idea (see Whit­
taker, 1923) is in the smoothing of tables for actuarial purposes. It is 
interesting to note that Whittaker's paper uses a roughness penalty pro­
portional to the sum of squares of third differences of the observations, 
and a weighted residual sum of squares as the measure of fit to the data. 
A Bayesian justification is used for the method. In this section, we give 
a somewhat different example of the application of penalized likelihood 
estimation to data that arise in the actuarial context. 

A key component of actuarial work is the analysis of mortality tables, 
such as the one shown in Table 5.1. This table gives, for a particular 
population of retired American white females, the age structure of the 
population and the annualized number of deaths in each age group. These 
data have also been considered by London (1985) and by Ramsay (1993). 

If we let the number of individuals in the population of age x be nx 
and the number of deaths among these individuals be dx, then a crude 
estimate of the mortality rate at age x is, of course, dxl nx. (We follow 
actuarial convention and use x as an integer suffix denoting age.) A plot of 
the crude rates derived from Table 5.1 is given in Figure 5.1. Actuaries 
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Figure 5.1. Crude death rates. 

100 

always assume that the mortality rate varies smoothly with age, and 
so these crude rates are smoothed in some way to obtain estimates of 
underlying 'true' death rates. In the actuarial literature, this smoothing 
process is called graduation. 

A reasonable model for the observed data is to work conditionally 
on the values nx and to assume that the dx are drawn from independent 
binomial distributions with parameters nx and q(x), where q(t) is a smooth 
curve giving the death rate at age t. A little care is required in the 
interpretation of q(t) for non-integer ages t; this depends on the precise 
method of construction of the mortality table. 

Clearly it is necessary to work in terms of a transform of q. We shall 
define a curve g by 

. q(t) 
g(t) = logtt q(t) = log 1 - q(t) 

By standard manipulations, the log partial likelihood of the curve g 
conditional on the values nx is then, up to a constant, 

104 

£(g)= ~)dxg(x)- nxlog{l +expg(x)}]. 
x=55 
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Figure 5.2. Penalized likelihood estiltUlte (-) of the death rate, and the crude 
death rates ( • ), both shown on a log it scale. 

The penalized likelihood estimate of g is then the curve that maximizes 
f(g) - 4 A J g112 • This is easily found using the algorithm of Theorem 
5.1. The binomial distribution is of the form (5.15) with b given by 
b( 8) = nx log(l + e8 ), and tP = 1. Differentiation of this twice shows that 
the vector z has components 

( ) dx - nxq(x) 
g X + { }' nxq(x) 1 - q(x) 

while the matrix W has diagonal elements nxq(x){ 1 - q(x)}. Theorem 5.1 
shows that the MPLE of g is obtained by repeatedly calculating the cubic 
spline smoother of the working response vector z against age x using 
weights W, followed by updating q(x) to exp{g(x)} I { 1 + exp g(x)}. For 
a value of A chosen by GCV, in the way described in Section 5.4.3, this 
yields the curve shown in Figure 5.2. This figure also shows the crude 
death rates plotted on a logistic scale; note that the two (very small) 
cohorts of ages 101 and 103 each contain zero deaths, so the logit of 
their crude death rates is -oo. It can be seen that the estimated death rate 
is approximately linear on the logistic scale between the ages of about 
65 and 92, but is flatter both for ages below 65 and those above 92. On 
the basis of these data (alone), it appears that once a member of this 
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population has reached the age of 92, her death rate would be a constant 
of about 0.25, and so her remaining life would have an exponential 
distribution with mean about 4 years. 

Actuaries would not, of course, work directly from a graph like this 
one but would use the numerical values of the estimated death rates for 
further calculations. Indeed, Whittaker (1923) wrote 

Workers in experimental science generally ... [plot the data] ... and draw a 
freehand curve as nearly as possible through them. This somewhat arbitrary 
method is insufficient for the needs of Actuarial Science, and a large number 
of "graduation formulae" are to be found in the journals of the Actuarial 
Societies. 

It is also customary for actuaries to assume that the 'true' death rates are 
even smoother than those estimated in Figure 5.2.1f, in order to achieve 
greater smoothness, a somewhat larger value of the smoothing parameter 
is used, then the overall pattern of the curve remains much the same. 

The great advantage of the penalized likelihood approach to these data 
is that it takes account automatically of the fact that the variability of crude 
death rates is very different in different parts of the age range, because 
of the variation both in the size of the cohort and in the underlying death 
rate. 

5.4 Semiparametric generalized linear models 

In this section we now move to a more general situation, the GLM 
analogue of the semi parametric models discussed in Chapter 4. Following 
the approach of Green and Yandell (1985), we consider replacing the 
linear predictor G{J11) = xf {3 from (5.7) by 

G(J.li) = xf {3 + g(tr) (5.21) 

where xi and t10 both possibly vector-valued, are two sets of explanatory 
variables for the i1h response, and the p-vector {3 and function g are to be 
estimated. 

In some applications, such a model might arise when a parametric 
model is held to be appropriate on grounds of theory or experience, but 
there are doubts about the homogeneity of the model between situations 
distributed in time or space: the simple additive predictor (5.21) allows 
the 'intercept' term in, say, a logistic regression to vary in a nonparametric 
fashion. In other circumstances, the dependence of the distribution of f 1 

on t1 is of more central interest, and indeed the parametric component 
x'[ {3 of the predictor may not be present. 
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5.4.1 Maximum penalized likelihood estimation 

As with linear models, when there is an infinite-dimensional parameter 
involved, pure maximum likelihood is not an appropriate principle for 
model-fitting: but we will be interested in fitting a smooth function g, so 
consider maximizing a penalized likelihood. In this chapter we will only 
consider one-dimensional t, and measure the roughness of a curve g(t) 
by its integrated squared second derivative. More general problems will 
be treated in Chapter 7. Here the penalized log-likelihood is: 

n = £(6, 1/l)- !A. j g''(t)2dt (5.22) 

where G(b'(Oi)) = xf {3 + g(t1), to be maximized over {3 andg, by analogy 
with the maximization of Sw(f3, g) in Section 4.3. 

Motivation for the penalized likelihood criterion is by now familiar. 
In the absence of a roughness penalty, maximization of the likelihood 
leads to over-fitting: {3 will not be identifiable and the curve g will fit 
the data exactly (apart from replicates at the same values of explanatory 
variables), thus becoming implausibly rough. 

5.4.2 Finding maximium penalized likelihood estimates by Fisher 
scoring 

We reduce the infinite-dimensional choice entailed in maximizing (5.22) 
to a finite one by using an argument that has appeared twice before. Let 
St < sz < ... < sq denote the unique values among t1, t2, ... , tn, arranged in 
increasing order. Define the incidence matrix N by N ij = 1 if ti = Sj. and 
0 otherwise. Then we first maximize TI subject to 

g(s1) = gj forj = 1, 2, ... , q, (5.23) 

and then maximize the result over g = (gt,gz, ... ,gqf· But the log­
likelihood term£ in TI depends on g only through the values of g(s1), 

so the maximizing g is that minimizing the roughness penalty subject to 
(5.23), i.e. the natural cubic spline interpolating g(sj) = aj. The resulting 
value of the penalty is gTKg, where K = QR-1QT as in (2.3), and Q 
and R are as defined in Section 2.1.2 but with (st. sz, ... , sq) replacing 
(tl, tz, .. . , tn). 

Calculation of the MPLEs of {3 and g then reduces to the requirement 
to 

(i) maximize TI = £(6, 1/J )- !A.gT Kg over {3 and g subjectto G{ b'(Oi)} = 
xf {3 + (Ng)i, and then 

(ii) find the natural cubic spline g interpolating aj = g(sj).j = 1, 2, ... , q. 
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Step (i) can be carried out using Fisher scoring in a generalization of 
the standard parametric case that was covered in Section 5.2. 

Theorem 5.2 The Fisher scoring algorithm for maximizing the penalized 
log-likelihood ( 5. 22) with respect to {3 and g for fixed cp is given by solving 

[ xTwx xTwN ] ( 13new ) ( xTwz ). 
NTWX NTWN + aK g"ew = NTWz (5.24) 

where 

a= )41, 

the working response vector z now has the form 

Zi = (Y; - Jl;)G' (J.L;) + (X{3 + Ng),, (5.25) 

and W is the diagonal matrix 

W = diag[ { G' (J.L;)2 b" ( 8;)} - 1]. (5.26) 

Proof Let TJ denote then-vector of predictors, TJ = X{3 + Ng. Then 

arr =XTae 
a{3 aTJ 

and 

Similarly 

and 

E (- 02II ) = NTE (-__!J___) N + 'AK. 
ogJgT dTJdTJT 

But the derivatives of f. with respect to TJ were found earlier ( 5 .12, 5.13 ), 
so the Fisher scoring equations for simultaneously updating {3 and g have 
the block matrix form 

( {3new ) = ( {3 ) 
gnew g 

[ XTWX XTWN ] - 1 ( XTWz* ) 
+ NTWX NTWN + aK NTWz* - aKg 

and this can be rewritten in the required form (5.24). D 
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To summarize, each iteration in the Fisher scoring procedure for eval­
uating the MPLEs of {3 and g involves solving a system of (p + q) linear 
equations. These have the same form as the partial spline estimating equa­
tions (4.6), whose solution was discussed in Sections 4.3.4 and 4.3.5. If 
the parametric part xf {3 of the model is absent, and the { t;} are distinct 
and already ordered so that q = n and N = /, then the equations reduce to 

(W + aK)g'ew = Wz. 

This is the same solution as was given in Theorem 5.1 for the case of the 
canonical link function. In particular in the normal case z = Y, so that no 
iteration is needed, and we return to the cubic smoothing spline equation 
(3.22). 

Further discussion of this method of estimation can be found in Green 
and Yandell (1985). 

Complete algorithm 

Given data Y, X, t: 

Step 1 Sort tt, .. . , tn, eliminating ties, to form St, .. . , Sq, and the incidence 
matrixN. 

Step 2 Initialize iteration: e.g. set {3 = 0, 

T -1 T T g = (N N) N (G(Yt). G(f2), ... , G(Yn)) . 

Step 3 Update model: Set 7J = X/3 + Ng. Let JL, (J satisfy G(JL;) = 1};, 

b' ( 9;) = Jli· 

Step 4 Calculate the working response vector z and weight matrix W 
from 7J using (5.25) and (5.26). 

Step 5 Use one ofthe methods of Sections 4.3.4 and 4.3.5 to solve (5.24) 
for {3new and gnew. 

Step 6 Test for convergence, and otherwise set {3 = 13new, g = gnew and 
return to Step 3. 

Step 7 Complete the smoothing of z - X/3 by obtaining all polynomial 
coefficients for g. 

5.4.3 Cross-validation for GLMs 

As each successive model has been introduced in this book, we have 
adapted the notion of cross-validation, by defining the appropriate score 
that can be used to make an automatic choice of the smoothing parameter. 
In this section, we attempt to do the same for semiparametric generalized 
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linear models. This methodology is still in its infancy, and there continues 
to be some debate about how to set up the appropriate score. We will 
describe two approaches. 

The first of these goes back to first principles. In Section 4.4, the 
cross-validation score for weighted semiparametric models was defined 
as 

(5.27) 

where }1-z) = X/3(-i) +Ng<-il. This definition encompasses all the previ­
ous cases. In a generalized linear model, to use a score based on weighted 
sums of squares seems unnatural, and it is therefore preferable to work 
in terms of the likelihood. To introduce this, note that each term of ( 5 .27) 
can be interpreted as the deviance increment d}-il of the observation Y; 
from the model fit to all observations other than Y;, under the assumption 
that the observations are generated from the model 

Y; - N(x{ f3 + g(t;), w;- 1 ). 

This is the key to definition of a score for our present, more general, 
models. Let 

~ (-!) 
= 2cp[fmax-f(8; ,t/J)]; 

where 

and 
n 

CV(a) = L d~-il. (5.28) 
z=l 

The cross-validation choice for a is that value minimizing CV(a), and 
the reasoning above ensures that it agrees with our previous definitions 
in the normally-distributed cases, except perhaps for a scale factor. 

In these earlier cases, we found that the cross-validated residuals Y; -
Yf -i) were easily related to the ordinary residuals Y; - Y, through the 
identity 

}1-zl Y;- f; 
Y, - i = 1 -A;,' 

where A is the matrix defined by Y = AY; this was used to provide a 
simpler expression for CV( a) (for example ( 4.16)) that could be evaluated 
once a single model was fit to the data, thus not requiring the multiple 
model fits apparent from the definition (5.27). This relation between 
the residuals relies on the linear nature of the model, however, and the 
connection does not carry over to arbitrary generalized linear models. 
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By making use of the usual linearizing arguments, the approximation 

d(-t)"' di 
I (1- Ai,)2 

can be justified, where di is the ordinary deviance increment. In this 
expression, the matrix A is specified in terms of the weight matrix W 
by (4.17) and (4.18); W is a function of the fitted natural parameters 
B(/3, g), and it is therefore estimated by the weight matrix used in the 
final iteration of the Fisher scoring loop. 

However, having made this approximation, it seems more logical to 
apply the linearizing argument to the deviance as well, to obtain the 
approximate cross-validation score 

Zi - (X/3 + Ng), 
( 

A )2 
CVap(a) = L wi ( 1 _Au? , (5.29) 

where Zi are the working response variables used in the final iteration 
before convergence. 

The scores defined in (5.28) and (5.29) were used by O'Sullivan, 
Yandell and Raynor (1986), and Green (1987). The latter paper sets the 
score up for the rather more general class of models we shall encounter 
in Section 6.5; for the necessary generality in that context, the concept 
of deleting observations from the fit needs delicate handling, which is 
accomplished by selectively fitting additional dummy covariates to the 
parametric part of the model. The cross-validated deviance increment 
d~-t) then arises as the predictive discrepancy, that is the increase in 
twice the log-likelihood obtained by forcing the additional coefficients 
back to zero. 

Use of either the score (5.28) or its approximation (5.29) are quite 
appealing, but there seems to be no alternative in practice to recomputing 
the entire iterative fit for each value of a on a grid, in order to carry out 
the necessary minimization over a. 

The second general approach to cross-validation in generalized linear 
models is to invert the order of (a) iteration to update parameters and 
(b) minimization of cross-validation score. That is, within each cycle of 
the Fisher scoring loop, choose a by cross-validation, as if the current 
linearized problem were the original subject of study. We have the ex­
pression (5.29) for the score at a fixed value of f3 and g, which we could 
write as 

CV( . f.l ) = """"' . z, - (X/3 + Ngnew), ( 
Anew )2 

a,,._,, g ~ w, (1 _ A,,)l , 
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not forgetting that z and W, which are given by (5.25) and (5.26), and 
hence A, depend on {3 and g. 

There is some evidence (Gu, 1992) that this second approach gives 
better results, but this is not as yet entirely conclusive. Apart from perfor­
mance comparisons, the second approach does have the computational 
advantage that the analyst can make full use of existing, often highly 
efficient, software developed for the case of linear semiparametric mod­
els, simply embedding this within the Fisher scoring loop to handle the 
nonlinearity. 

However the second method has the disadvantage that there is no sim­
ple characterization of the resulting cross-validatory choice of smoothing 
parameter, independent of the iterative method employed to linearize the 
problem. From this perspective, the first approach is much more attrac­
tive: Fisher scoring could be replaced by conjugate gradients, or some 
other more sophisticated optimization algorithm, without changing the 
meaning of cross-validation. 

5.4.4 Inference in semiparametric GLMs 

Unless a semiparametric model is being used in a purely exploratory 
fashion, it will generally be necessary to do more than simply find the 
maximum penalized likelihood estimates of {3 and g. In particular, quan­
tities corresponding to the deviance, residuals, and estimates of parameter 
estimate variances that were discussed in Section 5 .2.5 will be needed. 

The appropriate equivalent number of degrees of freedom for error 
turns out to be v, defined by 

v = n- tr(S)- tr[{XTW(I- S)X}-txrW(J- S)2X] 

calculated at convergence (Green, 1985). HereS is again 

S = N(NTWN + aK)-tNrW. 

This corresponds to the quantity that has been used informally in non­
parametric linear models (Eubank, 1984, 1985) and generalized linear 
models (O'Sullivan et al., 1986). 

In parametric models, the 'error degrees of freedom' has a number of 
uses: it gives the expectation and the shape parameter of an approximating 
x? distribution and its complement is the degree of complexity of the fitted 
model. It remains unclear whether these multiple interpretations extend to 
the semiparametric models (leaving aside their appropriateness in small 
samples), but our limited experience suggests that n- vis well calibrated 
for measuring complexity, near to the degree of smoothing chosen by 
cross-validation (see Section 5.4.3). For much further discussion of these 
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points, we refer the reader to Buja, Hastie and Tibshirani (1989), and 
Hastie and Tibshirani (1990, Appendix B). 

Use of v in conjunction with the deviance defined in Section 5.2.5 
allows the assessment of model adequacy and tests of nested models via 
the analysis of deviance. There remains the question of what degree of 
smoothing to employ in comparing the fits of two models: our preference 
is to base this on the more restricted model. Such tests concern the 
parametric part of the predictor only: tests for the significance of the 
nonparametric part have been developed by Cox and Koh (1986). See 
also Cox, Koh, Wahba and Yandell (1988). 

In semi parametric versions of GLMs, there are theoretical difficulties 
additional to those found in Section 5.2.5. Asymptotic theory even for 
purely linear models has only emerged in rather special cases (Heckman, 
1986; Rice, 1986; Speckman, 1988). Such results are at present restricted 
to the asymptotic distribution of regression estimates, and do not pro­
vide distributions for sums of squares or deviances. Recent results on 
approximation of the distribution of quadratic forms by x2 distributions 
may be useful in this regard (Buckley and Eagleson, 1988). In addi­
tion, data-dependent choice of the smoothing parameter leads to further 
mathematical difficulties. 

One possible attitude to these difficulties is to ignore them, by using 
a semiparametric or nonparametric analysis in an exploratory fashion 
to suggest a particular parametric model, perhaps involving low-order 
polynomials, which is then fitted and subject to formal inference. This 
approach seems unaesthetic, and is strictly invalid as requiring 'multiple 
looks' at the data. 

Another possible general approach would be to rely on bootstrapping 
to derive standard errors, etc., for semiparametric estimates. Such heavy 
computing takes us into a different league of computational task, and in 
any case it is not clear that the bootstrap can provide all the answers that 
we need. 

We therefore, inevitably, fall back on statistics based on normal theory 
and quadratic approximations. Many practical questions can be handled 
using the deviance, including assessment of goodness-of-fit, and selection 
among nested models. 

5.5 Application: tumour prevalence data 

Dinse and Lagakos (1983) report on a logistic regression analysis of 
some bioassay data from a U.S. National Toxicology Program study of 
flame retardants. Data on male and female rats exposed to various doses 
of a polybrominated bipheny 1 mixture known as Firemaster FF-1 consist 
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of a binary response variable, Y, indicating presence or absence of a 
particular nonlethal lesion, bile duct hyperplasia, at each animal's death. 
There are four explanatory variables: log dose, x1, initial weight, x2, cage 
position (height above the floor), X3, and age at death, t. Our choice 
of this notation reflects the fact that Dinse and Lagakos commented on 
various possible treatments of this fourth variable. As alternatives to 
the use of step functions based on age intervals, they considered both a 
straightforward linear dependence on t, and higher order polynomials. In 
all cases, they fitted a conventional logistic regression model, the GLM 
with binomial error distribution and logit link function. They kept the 
data from male and female rats separate in the final analysis, having 
observed interactions with gender in an initial examination of the data. 

Green and Yandell (1985) treated this as a semiparametric GLM re­
gression problem, regarding Xt, x2 and X3 as linear variables, and t the 
splined variable. This approach avoids the issue of selecting a particular 
parametric dependence of the response on age, by letting the data speak 
for themselves through a nonparametric smooth curve. Decompositions 
of the fitted linear predictors for the male and female rats are shown 
separately in Figures 5.3 and 5.4, based on the Dinse and Lagakos data 
sets, consisting of 207 and 112 animals respectively. Note that misprints 
in the data as originally published were subsequently corrected (Dinse 
and Lagakos, 1984); it is the corrected data that are used here. 

These figures are set out in an analogous way to the partial spline 
decompositions in Chapter 4. The top and middle plots represent xf /:J 
and g(t;), on the same scale but with the origin displaced upwards, both 
plotted against t;. In the lower part of each figure, the score residuals are 
displayed, again against t,; the unusual appearance of these plots is due 
to the binary nature of the responses. 

The semiparametric analysis gives estimates of the regression coef­
ficient for the variable of principal interest, {31, of -0.017 (0.103) and 
0.631 (0.214) for the male and female rats respectively, with estimated 
standard errors in parentheses. Dinse and Lagakos obtain 0.012 (0.10) 
and 0.554 (0.20) respectively, using models linear in t. Thus the two 
analyses broadly agree, identifying a significant dependence of response 
on dose among the female rats, but not among the male ones. 

5.6 Generalized additive models 

The ideas of additive modelling touched on in Section 4.8 apply equally 
well in the context of the non-normal regression models of this chapter. 

This leads to the generalized additive model defined by (5.5) and (5.6), 
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Figure 5.3. Semiparametric logistic regression analysis for male rats 
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Figure 5.4. Semiparametric logistic regression analysis for female rats 
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together with 
p 

G(Jl;) = L gj(tij) 
j=l 

in place of (5.7). 
Derivation of maximum penalized likelihood estimators of {gj}. to 

maximize the penalized log-likelihood 

p 

II= l(O, ip)-! L); J gj'(t)2dt, 
j=! 

proceeds much as in Section 5.4.1, and the resulting estimators can be 
computed by backfitting within a Fisher scoring outer loop. 

See Hastie and Tibshirani (1990) for a full study of these models, and 
Section 8.1.2 for more detail about computation. 



CHAPTER6 

Extending the model 

6.1 Introduction 

One of the beauties of the roughness penalty approach is its conceptual 
versatility. In previous chapters we have considered the applications of 
roughness penalties in a variety of 'standard' situations, almost all of them 
naturally arising in linear modelling or generalized linear modelling. In 
this chapter we explore a number of extensions. Some of these are to 
more general problems, while others are to specific problems not easily 
or naturally dealt with by other methods. 

The various problems discussed in this chapter are of course intended 
to be of intrinsic interest, but perhaps more importantly they provide 
'templates' for the application of the roughness penalty idea to readers' 
own smoothing problems. In the first part of the chapter, extensions of 
least squares curve fitting are considered. We then move on to sections in 
which the generalized linear model methodology of Chapter 5 is explored 
further, and finally consider cases involving more general likelihoods and 
quasi -likelihoods. 

6.2 The estimation of branching curves 

In this section, we depart from standard assumptions in a rather unusual 
way. The application and methodology described demonstrate the useful­
ness of the roughness penalty approach in a very non-standard context. 
Fuller details are given by Silverman and Wood (1987). It should be 
stressed that our purpose in presenting this example is twofold. Firstly 
it is hoped that the methodology is of interest in its own right. Secondly 
the example shows the very wide potential applicability of the roughness 
penalty idea. 
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Table 6.1. Nitrogen content ( g per plant) of Sirosun 132 H plants, after Silverman 
and Wood ( 1987). The number of the branch associated with each data point is 
indicated 

Time of Time of application of nitrogen 
reading never 38 days 56 days 63 days 70 days 

23 days 0.15 * * * * 
25 days 0.14 * * * * 
28 days 0.19 * * * * 
32 days 0.32 * * * * 
35 days 0.65 * * * * 
38 days 1.12 * * * * 
42 days 1.12 tt * * * 
60 days 1.27 2.05 tt * * 
72 days 1.84 2.33 2.73 2.11 tt 
87 days 2.61 3.40 3.74 3.41 3.15 

107 days 2.34 2.94 3.73 3.33 3.09 

Branch 0 2 3 4 

6.2.1 An experiment on sunflowers 

Steer and Hocking (1985) carried out an experiment to test the effect of 
applying nitrogen to sunflowers at different stages of growth. In one of 
the treatments, the control, no nitrogen was applied; in the other four 
a nitrogen compound was applied at a given time after sowing, 38, 56, 
63 and 70 days respectively. At various times the nitrogen content of 
plants taken from the plots was measured destructively. Up to the time of 
treatment, there is no difference between the treatment and the control. It 
is of interest to present the experiment in a way that is easily understood, 
and to explore the relation between the time of application of nitrogen 
and the overall development of the plants. 

The data collected are given in Table 6.1. A starred entry in the table 
corresponds to a reading that can be assumed to be equal to the control, 
because it is before the treatment time for its column; an entry marked 
tt corresponds to a time at which no data were collected on the relevant 
treatment. 

6.2.2 The estimation method 

An elegant way of analysing these data is to model them by a branching 
curve, in which the estimated responses for the various treatments only 
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diverge from the control at the point where the treatment is applied. Such 
a presentation immediately makes the structure of the experiment clear, 
and also indicates the relative efficacy of the treatment applied at various 
times. 

The full mathematical details of the method are given in Silverman and 
Wood (1987). To summarize, we let (j be a space of branching curves of 
a given structure with branches at the specified points. To be specific to 
our particular example, let 'l't, -r2, 'l'3, 'l'4 be the four treatment times 38, 56, 
63 and 70 respectively. A member g of (j would consist of five smooth 
curves, a 'control curve' go defined on [23, 107], and, fork = 1, 2, 3, 4, 
'treatment curves' gk defined on [-rb107] and satisfying the continuity 
conditions gk( -rk) =go( 'l'k). We shall refer to the individual gi as branches 

ofg, and to the points 'l'k as branchpoints. A branchpoint will be said to lie 
on a particular branch if it is involved in any of the continuity conditions 
referring to that branch. The roughness of the branching curve, denoted 
by J g"2, is defined to be EJ g:'2, where the integrals are taken over the 
range of definition of the various functions. 

It is also possible, if one wishes, to impose further continuity condi­
tions: for example the condition g~( 'l'k) = g0( 'l'k) for any particular k would 
yield a branching system where gk joins go smoothly at 'l'k. We shall not 
consider this possibility in any detail, but refer the reader to Silverman 
and Wood (1987) for further discussion. 

The observed data can be considered as triples (i(j), tj. lj), where tj is 
the time at which the reading is taken, lj is the value of the reading, 
and i(j) is the branch on which the reading lies, given by the label at the 
bottom of the relevant column in Table 6.1. An immediate analogue of 
the usual spline-smoothing nonparametric regression is then to estimate 
the branching curve underlying the data by the minimum g over (j of 

S(g) = ~ {lj- gi(T)(tj)} +a j g"2. 

J 

(6.1) 

Now let ~be the space of branching splines, members of (j for which 
every branch is a cubic spline with knots at its data points and branch 
points. It can be shown that the minimizer of S(g) over (j is necessarily a 
branching spline. To see this, suppose that g is any branching curve, and 
let g be the branching spline made up by replacing each branch gi by the 
interpolating natural cubic spline to the values of gi at its data points and 
branch points. Just as in Section 2.3.1, the residual sum of squares will 
not be affected by the replacement, but the roughness will in general be 
reduced. 

The minimizing branching spline is found, as in the case of ordinary 
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smoothing splines, by solving a suitable system of linear equations. Any 
member of ~ can be parametrized by specifying the value and second 
derivative of each branch at each of its branch points and data points. 
These parameters are subject to various linear constraints, as follows. At 
each interior knot of each of the branches, a linear condition of the form 
(2.27) will hold, in order to ensure continuity of the first derivative; the 
continuity conditions between branches will translate into identification 
of the values at the branch points; since each branch is a natural cubic 
spline the second derivative will be zero at the end knot of each branch 
(even if the end is an interior knot of some other branch). 

By using the obvious generalization of equation (2.5)., the roughness 
J g"2 can be expressed in terms of the parametrization, as can the residual 
sum of squares. Minimizing this quadratic form subject to the various 
linear constraints yields the branching spline that minimizes S(g). It is 
possible to arrange the calculation in such a way that ultimately one 
solves a system of linear equations none of which has more than seven 
non-zero coefficients. The use of sparse matrix methods then yields a fast 
algorithm for the solution; see Silverman and Wood (1987) for details. 

6.2.3 Some results 

Of course, the amount by which the data are smoothed out by the proce­
dure is determined by the value of a. If a = oo then we obtain a fit (Figure 
6.1) in which all the branches are straight lines, while if a = 0 we get a 
smooth branching system (Figure 6.2) that interpolates the data. It should 
be noted that for this data structure even the interpolation problem is not 
at all straightforward. A clearer picture is in any case given by choos­
ing an intermediate value of a and hence getting a smooth branching 
curve estimate, as in Figure 6.3. Just as in ordinary spline smoothing, the 
smoothing parameter could be chosen by a cross-validation approach, 
but in this case an external estimate of the error variance is available. The 
smoothing parameter value used, a = 870, was chosen by matching this 
estimate to an internal estimate, in a way described by Silverman and 
Wood (1987). It can be seen from the figure that applying nitrogen very 
early in the growth cycle provides an effect that dies away later, presum­
ably because the plants are insufficiently developed to derive full benefit. 
If the aim is to maximize the overall nitrogen content, then the best time 
to apply the treatment is at about 60 days after sowing. Perhaps an even 
more important feature of Figure 6.3 is that it gives a clear and easily 
comprehensible presentation of the overall pattern of the experiment. 
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Figure 6.1. Branching piecewise linear fit to sunflower data. Reproduced from 
Silverman and Wood ( 1987) with the permission of the American Statistical 
Association. 

40 60 80 100 120 

Time (days) 

Figure 6.2. Interpolating branching spline fit to sunflower data. Reproduced 
from Silverman and Wood ( 1987) with the permission of the American Statistical 
Association. 
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Figure 6.3. Smoothed branching spline fit to sunflower data. Reproduced from 
Silverman and Wood ( 1987) with the permission of the American Statistical 
Association. 

6.3 Correlated responses and non-diagonal weights 

In certain applications, especially where observations are taken sequen­
tially in time or space, the successive errors in our model (4.3) may be 
positively correlated. For this and other reasons, we may occasionally 
wish to allow a more general pattern of weights than that appearing in 
the penalized sum of squares (4.4). In matrix terms, the weights matrix 
W will be symmetric and positive-definite but no longer diagonal, and 
the penalized sum of squares becomes 

n n 

Sw(f3,g) = 'L'Lw,j{Yi-x;f3-g(ti)}rp~-~if3-g(tj)} 
i=! ]=! 

+a j g11(t)2dt. (6.2) 

Some caution should be shown before adopting this as a starting point 
for estimating f3 and g. It is quite well known that in fully parametric 
generalized least squares, estimates of f3 based on incorrect weights can 
be less efficient than those resulting from an unweighted analysis. This 
can apply even if the weights are estimated from the data. In addition, 
when we include a smooth curve g(t) in the model there is an obvious 
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danger that an error structure exhibiting positive autocorrelation may be 
partly confounded with a smoothly varying term in the systematic part 
of the model. 

Notwithstanding these caveats there will be an occasional need for 
procedures that estimate f3 and g by minimizing (6.2), and so these 
are briefly discussed here. All of the relevant linear algebra continues 
to hold when the matrix W is not diagonal, and both the algorithms 
described in Sections 4.3.4 and 4.3.5 are still applicable. Both will still 
be computationally efficient if S = N(NTWN +aK)-1 NTW can be applied 
to a vector, for example to form SY from Y, in O(n) time. The presence of 
the incidence matrix N adds only notational complications; we will omit it 
here, so thatS = (W +aK)-1 W = (W+aQR- 1QT)- 1 W. Now Q andR are 
banded, but QR-1 QT is not: the trick embodied in the Reinsch algorithm is 
essentially equivalentto rewriting S as I- a w-1 Q(R + aQTw-1 Qr 1 QT 
(see equations (3.23) and (3.24)). If W is diagonal, then QTw-1 Q is 
banded, and the algorithm works in O(n) time. 

Departures from the assumption of uncorrelated errors in regression 
are often handled by using the correlation structures of simple stationary 
time series models. If the errors follow a moving average process of 
low order, then w-1 is not diagonal, but is still banded. Thus QTW- 1Q 
is banded, although it now has more non-zero bands than before. The 
Reinsch algorithm is again applicable, with only modest changes. 

On the other hand, if an autoregressive structure for the errors is as­
sumed, then it is W, not its inverse, that is banded. A different approach 
is then needed, going a little further back towards first principles. Equa­
tions (3.23) and (3.24) can be re-expressed in the symmetric block matrix 
form: 

[ a;~w _QR J ( ; ) = ( a-~wv). 
Now each of the blocks in these equations is banded but not diagonal. 
If we were to permute the rows and columns of the (2n - 2) x (2n - 2) 
matrix by taking them in the order: 1, 2, (n+ 1), 3, (n+2), 4, ... , (2n- 2),n 
then it is quite easy to see that the result would be banded. The bandwidth 
is max(2b- 1, 7) where b is the bandwidth of W. The procedures using 
the Cholesky decomposition that were described in detail in Section 2.6 
can then be adapted to this new problem. 

6.4 Nonparametric link functions 

We now leave linear models, and consider a different 'semiparametric' 
version of GLMs from that of Section 5.4. This is obtained by reverting 
to the ordinary GLM of Section 5.2, but supposing that in addition to the 
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regression parameter /3, the link function G is also unknown. Of course, 
in truth, this is almost always the case, except when a very definite model 
for the mechanism generating the data is available, but the usual practice 
is to fix G nevertheless, and to concentrate on the estimation of f3. 

If estimating G is of interest, one possible approach is the parametric 
link function method of Scallan, Gilchrist and Green (1984 ). However it is 
more in the spirit of this book to assume that G is completely unknown, 
but for smoothness assumptions, and to estimate it nonparametrically 
simultaneously with /3; in this section we discuss such an approach. 

It turns out to be more straightforward to work not directly with the 
link function defined in (5.7), but with a function related to its inverse. 
This will avoid the need to impose awkward constraints to guarantee the 
existence of certain inverse functions to make our model well-defined. We 
will therefore assume that our responses are drawn independently from 
the density or probability function (5.5), where the natural parameter fJ; 
for the i1h observation is related to the linear predictor by 

e, = g(xf /3). (6.3) 

Both g and f3 are unknown, and in the spirit of our general approach, 
we could attempt to estimate them both by maximizing the penalized 
likelihood 

(6.4) 

along the lines of (5.22). Notice, however, that the integration is now 
in the space of the linear predictor 1J, not an explanatory variable t. An 
appealing property of this criterion combined with this parametrization 
of the model is that perfectly smooth g (those for which J g112 = 0) 
correspond to choice of the canonical link function. 

Inspection of (6.3) reveals a certain lack of identifiability. For example 
if f3 is replaced by (:J for some scalar c, and g is replaced by g, where 
g(1);) = g(c-11);), then() is unchanged. Similarly, if the linear predictor 
includes a constant term, there is a translation equivariance as well. A 
full analysis of such equivariances is quite complicated, and will not be 
attempted here. Instead, we will only consider models in which the linear 
predictor does include a constant term, and constrain the parameter vector 
f3 so that the linear predictor is standardized to have mean 0 and variance 
1, for the particular set of explanatory variables x, to hand. It is evident 
that this can always be imposed by an explicit scaling of (3, and a shift of 
the constant term. The rationale for this pair of constraints is that these 
are precisely the degrees of freedom absorbed by the line~ar regressions 
that form the perfectly smooth functions g. 

The estimating equations that arise from maximizing (6.4) subject to 
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the constraints 

(6.5) 

have awkward Lagrange multiplier terms. This route will not be pursued 
here. Instead we will simply alternate between maximizing (6.4) over {3 
for fixed g, and over g for fixed {3. After each update of {3, TJ and g will be 
rescaled as described above to impose (6.5), while leaving 8 unchanged. 

For fixed g, the model is an ordinary parametric GLM, so maximization 
of (6.4) is an application of the methods of Section 5.2. An updated 
estimate of {3 is given, as in (5.9) by 

{3new = (XTw<l)X)-IXTW(I)z(l)' 

where in the present notation, 

(I) - Y; - f.li T{3 
Z; - b"(B;)g'(T/;) +X; ' 

and w<1> is the diagonal matrix with 

W;)l) = b11(B;){g'(TI;)} 2. 

Conversely for {3 and hence TJ fixed, our model is a purely nonpara­
metric GLM, using the canonical link function, with T/; as the values of 
a one-dimensional working explanatory variable, so the methods of Sec­
tion 5.3 are relevant. The update is given by (5.20), which in the present 
context becomes 

with 
<2> _ B· + Y;- b'(B;) 

Z; - I b"(B;) 

and 
wf?> = b"(B;). 

Thus no really new ideas are needed to handle the nonparametric link 
function model: this is another example of the flexible, modular way in 
which computational tools arising from roughness penalty methods can 
be combined to produce new methodology. 

Before giving an example, we close this section with a word of warning. 
As with all of the iterative algorithms for nonlinear models in this book, 
there is no guarantee of convergence from all initial estimates. In most 
cases, the algorithms are well-behaved for most data sets, but it does 
seem that the algorithm above is prone to limit-cycle behaviour in some 
cases, typically when the smoothing parameter is such as to allow more 
than about 5 degrees of freedom for the nonparametric curve. In our 
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Figure 6.4. Nonparametric link function analysis, allowing 5 d.f, for the male 
rats in the Dinse and Lagakos study. Smooth curve shows nanparametric fitted 
probabilities, + signs those obtained from a standard logistic regression, and 
points the raw data. 

experience, this problem can be circumvented by adjusting the step size 
in both of the updating steps, that is, by updating to a convex combination 
of the previous value and that suggested by the algorithm as described. 
Since both {3 and g are updated twice in each cycle, because of the 
rescaling, it is of course the previous value at that point in the cycle that 
should be used here. 

6.4.1 Application to the tumour prevalence data 

As a demonstration of the methodology introduced above, we show in 
Figure 6.4 the results of applying it to the data on male rats from the tu­
mour prevalence study described in Section 5.5. The number of degrees of 
freedom for the smooth link function was fixed at 5, and the linear predic­
tor included terms corresponding to all four of the explanatory variables 
(XI, x2, X3 and t), all featuring linearly. Figure 6.4 displays the observed 
responses f,, plotted against the fitted values of the linear predictor f);, 
and the smooth fitted probability curve exp{g(rl)} I [1 + exp{g(7J)} ]. 

In order to provide a comparison with a standard analysis, the fitted 
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probabilities from a fully parametric logistic regression on Xt, x2, x3 and 
tare also displayed, plotted against the nonparametric fitted f;;. 

6.5 Composite likelihood function regression models 

We now turn to extensions of the generalized linear model structure 
discussed in Chapter 5. In this section, we relax further some of the 
specific assumptions used by Neider and Wedderburn (1972) to define 
generalized linear models. In particular, we will no longer insist on the 
exponential family of distributions, on the independence of the responses, 
or on the linearity of the regression function. What will be kept is the 
pivotal role of the predictors { 7J;} in decomposing the regression model 
into systematic and random components. Among examples that can then 
be covered that lie outside the scope of generalized linear models are 

• multiple linear regression with an arbitrary error distribution, 

• Gaussian nonlinear regression, 

• models for censored or grouped data, 

• generalizations of probit analysis to allow synergistic or antagonistic 
interaction between drugs, and 

• multinomial models for regression analysis of ordered categorical 
data. 

This framework for regression has been further developed by Green 
(1984) and Green (1987), particularly from an algorithmic perspective. 

We suppose that we are given a regression function that determines 
the predictors 11 = (1Jt, 112 .... , 1Jnl in terms of an unknown p-vector 
of parameters {3, an unknown function g of a single variable t, and 
observed explanatory variables. Suppose that 11 = 17({3, g) depends on 
g only through the values of g(tt), g(t2), ... , g(tm). where tt, t2, ... , tm are 
known. Often m will be the same as n, although this is not necessary, and 
tt, t2, ... , tn may then be observed values of an explanatory variable for 
each of n cases. 

This regression function provides the systematic component of the 
model, and the random component is provided by the log-likelihood 

f = f(Y; 17, 1/>) = £(17, 1/J), say, 

of the data Y in terms of the vector of predictors 11· As in Section 5 .4, we 
are interested in estimating {3 and g, in order to quantify the dependence 
of the responses Y on the explanatory variables x and t. We do so by 
maximizing the penalized log-likelihood 

II= f{17(.B,g),l/>}- !J..f g''(t)2dt. (6.6) 
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The extra generality actually causes very few new difficulties. Suppose 
for notational simplicity that there is no nuisance parameter tP parametriz­
ing the random component of the model or, which amounts to the same 
thing, that tP = 1. The restrictions placed on the dependence of 1J on g 
ensure that once again the estimate of g is guaranteed to be a natural 
cubic spline and we have only to solve a finite-dimensional optimiza­
tion problem. Once again we attempt an iterative solution by Fisher 
scoring, and evaluate the requisite derivatives of ll by the chain rule. 
Let g = (g(st), ... ,g(sq)l where St,S2, ... ,sq denote the ordered distinct 
values among tt. t2, ... , tm. Then define 

x = a1J N = a1J 
a[3' ag (6.7) 

and 

( a2p_ ) 
w = E - a1Ja1Jr ; (6.8) 

let 
at 

z = w-t_ +Xf3+Ng. 
a1J 

(6.9) 

With these changes of definition, all of the arguments of Section 5.4 still 
apply and we again obtain the updating equations (5.24). 

We must distinguish various cases when it comes to the practical 
implementation of these updating equations. If W is diagonal and N still 
an incidence matrix then the algorithm of Section 5 .4.2 applies with only 
trivial changes: 

Step 2' Initialize {3 and g appropriately (there is no longer a link function 
to make this explicit). 

Step 3' Calculate 1J = 1J(f3, g) using the appropriate regression function. 
Compute X and N given by (6.7). 

Step 4' Calculate Wand z from (6.8) and (6.9). 

If either W or N has sufficiently more complicated structure that NT WN 
is not diagonal, then the Reinsch algorithm is no longer applicable. One 
of the approaches outlined in Sections 6.3 or 8.2 can then be used instead. 

6.6 A varying coefficient model with censoring 

To give some of the flavour of the models of the preceding section, we 
consider here a rather contrived example in which appear the ingredients 
of semiparametric modelling, censoring, an error distribution outside the 
exponential family, and the varying coefficient models introduced and 



A VARYING COEFFICIENT MODEL WITH CENSORING 127 

studied by Hastie and Tibshirani (1993). This combination by no means 
exhausts the scope of composite likelihood regression models! 

Suppose that potential responses { f;, i = 1, 2, ... , n} are independently 
drawn from a location family 

P{ Yz :S y} = 'l'(y- 7);) (6.10) 

where 'I' is a known distribution function with density lfl, and the predictor 
7)1 is given by 

(6.11) 

Here, X;, s; and t; are observed explanatory variables (a p-vector and two 
scalars, respectively) and the parameter f3 and function g are, as usual, to 
be estimated. Note that the non parametric function g appears here as the 
slope of the regression on the variable s; its argument t is called an effect 
modifying variable by Hastie and Tibshirani. 

The potential responses are subject to censoring, and we actually ob­
serve only 

and 

o, = { 1 ~f Y; < c, 
0 If Y; = C;, 

where c; is the non-random censoring time for the i1h observation. 
The log-likelihood thus takes the form 

n 

£(17) = L::[o,log lf!(Y;- 7J;) + (1- o;) log{ I- 'I'(Y;- 7J;)}] (6.12) 
t=I 

and the maximum penalized likelihood estimates of f3 and g are those 
maximizing 

£(17)- !A. J g11 (t)2dt 

as usual. This is an example of (6.6). Construction of an algorithm to 
carry out the estimation proceeds as in Section 6.5, with one exception. 
Since it is not usually reasonable to assume that censoring times { c;} are 
known for uncensored observations, the expectation in (6.8) cannot be 
computed. We therefore take instead 

iP£ 
W=---

()11()11T 

that is, use observed rather than expected information in the scoring step. 
This substitution does not usually materially affect the convergence of 
the scoring algorithm; for further discussion of this point, see J!llrgensen 
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(1983). The matrix W is diagonal, consisting of weights that arise by 
straightforward but tedious differentiation of (6.12). 

The derivative matrices X and N are easily obtained for this model. 
The rows of X are just the vectors of explanatory variables xf, while it is 
clear from (6.11) that 

N= UN*, 

where N* is the incidence matrix describing the ordering and ties among 
{tt, tz, .. . , tn}. as in Section 4.3.1, and 

U = diag(sJ,S2, ... ,sn). 

Fitting the model can proceed by the backfitting method of Section 
4.3.4. Following (5.24), we alternate between use of the equations 

f3 = (XTWX)-!XTW(z- Ng), 

and 
g = S(z - X/3), 

where 
S = N(NTWN + aK)-!NTW. 

Since N = UN*, we can write 

S = U{N*(N*TUWUN* + aK)-1N*TUWU}U- 1 

so that the smoothing operation consists of weighted cubic spline smooth­
ing allowing for ties and using weight matrix UWU, preceded and fol­
lowed, respectively, by division and multiplication by U. 

Various adaptations of this model could be contemplated. For example, 
we might wish to replace the additive predictor (6.11) by a function 
nonlinear in f3 and g, such as 

TJi = f3t_xfz {3j1.4 >[1 - exp{ -sig(ti)}]lls ~, 
(a modification of a model that has been used to describe population 
growth). This would not change the algorithm, but merely mean that 
the matrices X and U would have more complicated forms, and values 
that changed with each iteration. Similarly, replacing the location family 
(6.10) by a more general dependence 

P{ Yi ~ Y} = \l'(y; TJi) 

would simply mean a different calculation for W and z. 
In all of these variations, the fixed point justification of the backfitting 

algorithm for maximum penalized likelihood estimation of f3 and g is 
retained. More care may be needed, however, in the more exotically 
nonlinear models, and it may also be necessary for convergence that the 
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step size is adjusted, for example by taking a fixed convex combination 
of the old and proposed new values of each parameter at each update. 

6.7 Nonparametric quantile regression 

In medical practice, a useful device for screening patients is a table or 
chart recording the distribution of a biometrical measurement, such as 
height, weight or middle-upper-arm-circumference, for various values 
of an appropriate covariate, often age. A physician can then refer a 
measurement on a current patient to this chart, in order to assess, for 
example, whether a child is unusually short or tall for his age. Naturally, 
the chart has to be constructed from data from a relevant population. 

In most cases of interest, the covariate concerned takes continuous 
values, and the distribution of the measurement can be assumed to vary 
smoothly with the covariate. Reference charts should therefore be con­
structed so as to respect this continuity, and without making use of arbi­
trary discretization or grouping. Further, although it is sometimes argued 
on general grounds that biometrical measurements are approximately 
normally distributed, it seems more appropriate not to make strong dis­
tributional assumptions, or to assume a particular parametric form for the 
dependence on the covariate. 

6. 7.1 The LMS method 

A variety of methods is available for constructing reference curves for 
populations, not all of them meeting all the criteria set out above. A 
method that does meet them was proposed by Cole (1988). In what he 
terms the LMS method, it is assumed that for each value of the covariate t, 
the measurement Y, after a Box-Cox power transformation, is normally 
distributed. It is supposed that the expectation, variance, and the power 
of the transformation, all vary smoothly with t. Thus there is flexibility 
over the way that the location, spread and shape of the distribution of 
Y given t depend on t; it is natural, and in the spirit of this monograph, 
to allow this dependence to be non parametric. Because of the flexibility 
afforded by these three varying characteristics, the normal assumption is 
not a particularly strong one. 

The methodology described here was originally developed with the 
application to reference growth curve data very much in mind, but of 
course it may have applications in other areas where it is required to 
produce, as a function of a covariate, an estimate not just of the expected 
response, but of the whole distribution. 

To define the LMS method, suppose that A.(t), JL(t) and a(t) are func-
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tions of t, with J.L(t) and cr(t) supposed strictly positive. It is the initial 
letters of A., J1 and cr that provide the acronym LMS. If a measurement Y 
is made at t, denote by Z the transformed variate 

Z={ cr(t)- 1A.(t)- 1[{Y/J.L(t)}A(t)_l] if A.(t);t'O 
cr(t)- 1 log{ Y I J.L(t)} if A.(t) == 0 

Then the conditional distribution of Z given t is assumed to be standard 
normal. If <I> denotes the normal distribution function, then the I OOa% 
quantile of Y at t will be 

J.L(t){ 1 + A.(t)cr(t)<l>- 1 (a)} VA(t) for A.(t) f:. 0 

or 

J.L(t) exp{ cr(t)<l>- 1(a)} for A.(t) = 0. 

Thus if the A., J1 and cr curves are smooth, so are all quantile curves. 
Cole's proposal is to use a plot of selected quantile curves as a summary 
of reference growth data. 

6. 7.2 Estimating the curves 

There are various ways in which the A., J1 and cr curves could be esti­
mated from data. Here, we describe the approach suggested by Cole and 
Green (1992), which is appropriate in the absence of assumptions about 
the forms of the curves other than that they are smooth. As described 
here, the method applies to data consisting of independent observations 
(t;, y;), i = 1, 2, ... , n, such as would arise in cross-sectional studies, and 
a modification to the likelihood would be needed to deal with the (more 
common) case oflongitudinal data. 

The penalized log-likelihood is 

~ ( Y; 1 2) I1 = f,:j' A.(t;) log J.!(t;) -log cr(t;) - 2z; 

- !aA j A."(t)2dt- !all j J1 11(tidt- !aa j cr"(tidt, 

where a A, all and aa are smoothing parameters, and Z; denotes Y; trans­
formed as above. A minor difficulty now is that there is a singularity 
in the likelihood as cr(t) ~ 0 for all t. This gives an infinite value for 
IT. However, there is in our experience with the model always a local 
maximum of I1 which is a stable fixed point of the algorithm about to be 
described, and to which the algorithm converges from 'sensible' initial 
estimates. 
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To locate a local maximum of ll, we now follow the familiar paradigm 
of using Fisher scoring. Let A, JL and u denote the vectors of values 
ofthe corresponding curves at the distinct ordered values of {ti}· Given 
A, JL and u at the current iteration, updated estimates are given by the 
solutions to the equations 

( 
UJ.- aJ.KA) 

= u11 - a11 KJL . 
Uu- auKU 

( 
Anew_ A ) 
J.Lnew JL 
unew _ u 

The W's and u's are first and expected second derivatives of the log­
likelihood with respect to the variables specified in the subscripts, and 
are sums of terms over observations at each distinct value of t. (In the 
case of WJ., the expectation of the second derivative is replaced by that of 
the first few terms of a Taylor approximation, as derivatives of the log­
likelihood with respect to A do not have finite expectations.) This system 
of equations, while awkward to handle directly, is very amenable to 
backfitting: each of the three block rows of the system can be rearranged 
in the form of an updating equation for A, JL and u respectively, which is 
an application of a weighted cubic spline smoother. Cole and Green find 
that this algorithm converges in typically four to eight iterations of the 
outer scoring loop. The iteration can be initialized by setting A identically 
to 1, obtaining JL by a simple smooth of Y, and u by smoothing the vector 
of values { Y11 J.L(ti) - 1 V 

Further details of the methodology can be found in Cole and Green 
(1992), which includes a discussion of the relationship between the 
smoothing parameters and the corresponding equivalent degrees of free­
dom for each curve, and illustrations of the LMS method applied to data 
on triceps skinfold in Gambian females, and on body weight in U.S. girls. 

Here, we provide some illustrations from the Gambian study, also 
including figures on males not included in Cole and Green (1992). Figure 
6.5 shows a scatter plot of triceps skinfold on age for Gambian females 
aged from about 3 to 26 years. The percentile curves shown are estimated 
by the method we have described, using smoothing parameters that allow 
6 equivalent degrees of freedom for each curve. Note the 'notch' in the 
dependence at around 9 years. Figure 6.6 displays the fitted It curve 
for these data, and superimposed the fitted a curve. The distribution of 
triceps skinfold is apparently positively skewed for ages less than 20 
years, with the skew decreasing abruptly between 20 and 25, although 
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Figure 6.5. Smoothed reference centile curves for triceps skinfold among Gam­
bian females: 51h, lrl', 25th, sri', 75th, 9rl' and 951h percentiles. 
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Figure 6.6 . .:1. (shape, solid line) and cr (spread, broken line) curves for triceps 
skinfold among Gambian females. 
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Figure 6. 7. Smoothed reference centile curves for triceps skinfold among Gam­
bian males: 51h, HI\ 25th, 5cf', 75th, 9(jh and 951h percentiles. 
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as can be seen in Figure 6.5, the data are somewhat sparse in this range. 
The relative spread, as measured by a(t), is fairly stable, but increases 
over the range 10 to 16 years. Figures 6. 7 and 6.8 give the corresponding 
information for the males in the study, and indicate some very different 
forms of dependence. 

6.8 Quasi-likelihood 

We close the chapter with an application of the roughness penalty ap­
proach to regression that goes beyond likelihood-based models. Some­
times there is insufficient information to construct a complete probability 
model for the regression responses. For an ordinary linear model, it is 
of course quite usual to make only second-moment assumptions and to 
regard least squares rather than maximum likelihood as the basic es­
timation principle: indeed that was the principle adopted for the first 
few chapters of this book. Generalized linear models can always be 
re-parametrized so that the expected responses {Jli} are treated as the 
predictors, in the sense of the previous section, and then the different 
exponential family distributions have characteristic mean/variance rela­
tionships mapping E(Y1) = Jlr = b'((}1) to var(Yi) = 1/Jb"(ei). For example, 
the Poisson distribution satisfies var(Y1) = Jl1, while the binomial has 
var(Yi) = Jlr(l - Jli)l mr. 

In this spirit, Wedderburn ( 197 4) proposed quasi-likelihood estimation 
in regression models, making use solely of the relationship between the 
mean and variance of the observations, and the prescribed regression 
function defining the mean response in terms of explanatory variables. 
Wedderburn's work was extended by McCullagh (1983) who developed 
the multivariate case we discuss here, and derived an asymptotic theory 
for the estimator. 

In this section we will describe the corresponding semiparametric 
version of such models. Suppose that the expected responses are 

E(Y;) = Jlr = 11r = 1Ji(/3, g), 

that is, we stipulate that the predictors are chosen to coincide with the 
expected responses. The regression function is subject to the same as­
sumptions as in the previous section: that is, it depends on g only through 
g(t1 ), ••• , g(tn). Now suppose that the variance matrix of the responses is 

var(Y) = 1/JV(JL) 

where V is a known matrix function of JL, and 1/J is an unknown scalar. 
Wedderburn ( 197 4) proposed estimating /3 in parametric models of this 
form by maximizing the quasi-likelihood Q, defined as any function 
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Q{p(.B)} such that 

(6.13) 

For motivation, note that this is exactly the form of ai/ a JL in a generalized 
linear model (see Section 5.2.3): thus the maximum quasi-likelihood 
estimates in a GLM coincide with the maximum likelihood estimates. 

When there is a nonparametric component to the regression function, 
it is appealing, and directly analogous to our discussion so far, to estimate 
{3 and g by maximizing the penalized quasi-likelihood 

Clearly we have 

n = Q- ~A. j g''(t)2dt. 

E (-_!!L) = q,-tv-t 
dJLdJLT 

from (6.13), so that application of Fisher scoring again leads to the 
estimating equations (5.24) with a= Atj>, where now: 

X dJL N = dJL W = v-t 
= a{3' ag' 

and 
z = (Y- JL) +X{3 +Ng. 

With a linear parametrization of the expectation, J.li = xf {3 + g(ti), so 
that z = Y, and the penalized quasi-likelihood estimates are demonstra­
bly penalized least squares estimates using the weight matrix v-t (and 
constructed iteratively if this matrix is not a constant). 

Within the exponential family, quasi-likelihood estimates coincide 
with m.l.e.'s, as we stated above: it is of interest to examine the rel­
ative efficiency of quasi-likelihood estimates under different sampling 
distributions (but obtained using the correct mean-variance relationship). 
This has been done by Firth (1987) who demonstrates that, in para­
metric regression models, quasi-likelihood estimates retain fairly high 
efficiency under moderate departures from the appropriate exponential 
family distribution. 

The concept of quasi-likelihood has been extended by Neider and 
Pregibon (1987) to allow separate modelling of the dependence of the 
variance structure of the responses on explanatory variables. 



CHAPTER? 

Thin plate splines 

7.1 Introduction 

In this chapter we shall consider the extension of the penalized least 
squares idea to regression in more than one dimension. We shall see that 
there is a natural generalization of smoothing splines to two or more 
dimensions and that some, but not all, of the attractive features of spline 
smoothing in one dimension carry over. The method we shall describe is 
called thin plate splines, and for further details the reader is referred to 
Wahba (1990, Section 2.4) and to the references cited there. 

We will mostly be concerned with two-dimensional smoothing, as­
suming that we have observations at points tt. t2, ... , tn of the height of 
a surface g, where the {ti} are points in two-dimensional space. The 
extension to more than two dimensions is discussed in Section 7.9. 

We concentrate on interpolation and on penalized least squares re­
gression without covariates, as discussed in Chapter 2. The methods we 
describe are applicable in the contexts of partial spline fitting and GLM 
dependence in the obvious way. In the partial spline context, they allow 
the single splined variable t to be replaced by a vector t of variables, so 
that the model fitted is of the form 

Yi = xf f3 + g(ti) + error, 

where g is now a smooth surface. In the GLM dependence case they 
again allow the scalar variable t to be replaced by a vector t throughout. 

7.2 Basic definitions and properties 

Suppose that we have points tt, tz, ... , tn in two-dimensional space 9t2 and 
that values g1, ... ,gn are given. As in one dimension, the interpolation 
problem will be that of finding a suitable smooth function g such that 
g(ti) = gi fori= 1, 2, ... , n. In this case g will of course be a function of 
the two-dimensional vector t for t in 9t2. The problem of estimating g is 
thus one of estimating a surface rather than a curve as in one dimension. 
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There is a growing number of fields where estimating surfaces like g 
is of interest. For example g might be the barometric pressure at a point 
on the earth's surface, to be reconstructed from observations gi taken 
at possibly irregularly spaced weather stations at points t,. There are, 
of course, numerous geostatistical problems of other kinds that involve 
spatial interpolation or smoothing. 

In one dimension we posed the problem of finding the smoothest curve 
g that interpolated a given set of data, defining smoothness in terms of 
integrated squared second derivative. With this definition of smoothness, 
the smoothest interpolant was a natural cubic spline with knots at the 
data points. In order to extend the methodology to the bivariate case, 
the extension of the definition of smoothness needs to be made, and we 
discuss this next. 

7.2.1 Quantifying the smoothness of a surface 

Let us consider a surface g to be smooth if it is twice continuously 
differentiable (though in fact the slightly weaker condition of absolutely 
continuous first derivatives will suffice). Given any smooth surface g, we 
wish to define a functional J(g) that measures the overall roughness or 
'wiggliness' of g, in an analogous way to the integrated squared second 
derivative in one dimension. Let us first set out some desiderata for the 
roughness functional J(g). 

I. In some intuitive way, J does indeed measure rapid variation in g and 
departure from local linearity or flatness. 

2. Changing the coordinates by rotation or translation in 9\2 does not 
affect the value of J(g). This requirement is a very natural one in the 
spatial context where the coordinate directions and the position of the 
origin are arbitrary. 

3. The functional J(g) is always non-negative, and the class of 'free' 
functions, those for which J(g) is zero, is a natural one. (Recall that, 
in the one-dimensional case, functions had zero roughness if and only 
if they were linear.) 

4. The problem of finding the surface g that minimizes J(g) subject to 
the constraints g(ti) = g, is a tractable one. 

In order to define a roughness penalty that satisfies these properties, write 
(x,y) for the coordinates of a typical point tin 9\2, so that the function 
can be written g(x,y). We then set 

J(g)= 112 { (~:~r +2 (:::yr + (~:~r}dx¢y. (7.1) 
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The penalty function J(g) will be finite provided the second derivatives 
of g are square-integrable over 9t2 . Just as in one dimension this penalty 
has a mechanical interpretation. Suppose that an infinite elastic flat thin 
plate is deformed to the shape of the function Eg for small f.. Then the 
bending energy of the thin plate is to first order proportional to J(g); for 
this reason the functions that are obtained below, by minimizing J(g) 
subject to certain constraints, are called thin plate splines. 

It is clear that J(g) will be large if the function g exhibits high local 
curvature because this will result in large second derivative; thus J does 
indeed-in an intuitive sense--quantify the 'wiggliness' of g. 

It can be shown, with a little tedious calculus, that if the coordinates in 
9t2 are rotated then J(g) is unaffected; the details are left as an exercise 
for the reader not prepared to take this property on trust. 

It is immediate that J(g) is always non-negative, and that J(g) is zero if 
g is linear. Suppose, conversely, that g is a smooth function with J(g) = 0; 
this implies that the second derivatives of g are all identically equal to 

zero. From ~ = 0 we have g(x,y) = a(y)x + b(y) for some functions 
2 

a(y) and b(y); now use the fact that 1;Jy = 0 to obtain a'(y) = 0, so that 

a(y) = a for some constant a; finally apply ~ = 0 to conclude that 

b"(y) = 0, so that b(y) = by+ c for constants b and c. Putting these 
calculations together shows that g(x,y) =ax+ by+ c, so that, just as in 
the one-dimensional case, the roughness penalty J(g) is zero if and only 
if g is a linear function. 

In Sections 7.5 and 7.6 below we shall consider the tractability of the 
minimization of J(g) subject to interpolation conditions, and the use of 
J(g) as a roughness penalty in a smoothing procedure. As a preliminary, 
it is helpful to recast the work on natural cubic splines into a form that is 
more easily generalized to the multivariate case. 

7.3 Natural cubic splines revisited 

We saw in Section 2.3 that the function g in S2[a, b] interpolating g(ti) = 
Zi that minimizes J g"2 is a natural cubic spline. In Section 2.1 two 
different representations of natural cubic splines were discussed. The 
most immediate was the piecewise polynomial expression (2.1), where 
all the coefficients of the various polynomial pieces were given. Of more 
practical value was the value-second derivative representation set out in 
Section 2.1.2 in terms of a vector g of values and "Y of second derivatives 
at the knots. This representation is conceptually simple, and is easily 
adapted to yield the Reinsch algorithm for the numerical computation of 
the cubic smoothing spline. However it does not readily generalize to deal 
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with the analogous functions in higher dimensions. As motivation for the 
more general material later in this chapter, in this section we derive an 
alternative representation of the natural cubic spline interpolating a given 
set of data. 

Consider the function g defined in terms of constants a1. a2. 81, (h, ... , 8n 
and t1 < t2 < ... < tn by the expression 

1 n 

g(t) = a1 +a2t+ 12 2: odt- td 3, (7.2) 
i=l 

subject to the constraints 

n n 

L:o;= L:o;t;=O. (7.3) 
i=I i=I 

By inspection, this is certainly a cubic spline, with knots at the points 
t1, t2, ... ,tn; furthermore the constraints (7.3) imply that g" and g"' are 
both zero outside [tJ, tn], so the curve g is a natural cubic spline. 

Conversely, any natural cubic spline g can be written in the form (7 .2), 
subject to (7.3), for it is clear that g can be specified uniquely by its 
intercept at t1, g(ti) = a1 +a2t1 + .&_ E 8i(t1 - t1 )3, its gradient on ( -oo, t1 ], 
g' (t) = a2 - ~ 2: 8;tl', and the increment in its third derivative at each ti, 
g"'(ti)- g"'(ti) = Oj. 

Can we find a simple characterization of the a1, a2 and 81, (h, ... , On 
that define the curve g interpolating data (ti, Zi), and can we evaluate J g112 

in terms of these coefficients? 
Let T be the 2 x n matrix 

T=(t~ t~ ::: ~) (7.4) 

with Tli = I and T2i = ti for i = I, 2, ... , n, and let E be the n x n matrix 
with E1j = .&_I ti - tj 13. Then the vector g of values taken by the curve in 
(7.2) at the points ti can be written 

g = Et5 + TT a (7 .5) 

where a and t5 are the vectors with components a1 and 81• The constraints 
(7 .3) take the form 

TO=O. (7.6) 

Thus in our new representation, the natural cubic spline interpolant to the 
data (t, z;) is found by solving the block matrix equation 

(7.7) 
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where z is the n-vector of values Zi· Just as in the algorithm set out in 
Section 2.2.1, this requires the solution of a set of linear equations to find 
the interpolating spline. However it should be noted that the coefficients 
in (7. 7) do not form a band matrix, while those in the previous algorithm 
have the tridiagonal matrix R of coefficients. Some more remarks about 
this comparison will be made below. 

This deals with the interpolation problem in our new representation, but 
of course our main interest is in smoothing. To deal with the smoothing 
problem, we first find an expression for J g"2. The expression (2.18) 
shows that, in terms of the value-second derivative representation, the 
increment in the third derivative of g at ti 

8· - 11+ 1 - 11 - 11 - /1-1 
l- h; hi-1 

for i = 2, ... , n - 1. By the definition (2. 7) of the matrix Q this yields the 
matrix equation 

(7.8) 

But 
R-y = QT g = QT(Ed + TT a) 

from (2.4) and (7.5), and since QTTT is easily seen to be 0, we find 

R-y = QTEd. (7.9) 

In Section 2.5 we showed that in terms of the value-second derivative 
representation the integralJ g"2 takes the value -·/R/, so using (7.9) and 
(7.8) we have 

(7.10) 

We can now express the penalized sum of squares S(g) in terms of our 
new representation. Given data Y, as in Section 2.3, we have 

S(g) = (Y- gl(Y- g)+ adTEd 

= (Y - Ed - TT al (Y - Ed - yT a) + adT Ed (7.11) 

where d is subject to condition (7 .6). The quadratic form (7 .11) can be 
minimized subject to the constraint (7.6) to find d and a. 

This completes our reworking of the one-dimensional cubic spline 
smoothing problem. What have we achieved? Just as in the interpolation 
problem, the numerical linear algebra required ~n the new representation 
is less amenable: the constrained minimization of (7.11) does not lead 
directly to a banded system of equations. The advantages come as we 
generalize the problem. First note that (7.2) makes no reference to the 
knots ti being in increasing numerical order. Secondly, it will be easy to 
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modify (7 .2) to represent the solution of penalized least squares problems 
arising from using different penalty functionals in place of J g"2, and 
higher-dimensional t;. 

7.4 Definition of thin plate splines 

In this section, we introduce thin plate splines, an important class of 
functions that will play the role that natural cubic splines did in one 
dimension. Suppose that tt, t2, ... , tn are points in ~2 . Before defining a 
thin plate spline, we need to make some preliminary definitions. Define 
a function 71(r) by 

1J(r) 

1}(0) 

1 = -6 ?log? for r > 0; 
1 1C 

= 0. 

(7.12) 

If a typical point t has coordinates (x,y), define the three functions !pj 
on ~2 by 

tPt (x,y) = 1 

IP2(x,y) = x 

lfl3(x,y) = y 

(7.13) 

so that any linear function can be written as a linear combination of the 
tPj· Define T to be the 3 x n matrix with elements 1jk = !pj(tk), so that 

[ 1 1 .. . 1 ] 
T = tt t2 · · · tn . (7.14) 

We can now define the two-dimensional analogue of a natural cubic 
spline. Write IJtll for the Euclidean norm of a vector t, 1Jt1J 2 = tT t. 

Definition A function g(t) is a thin plate spline on the data set tt, ... , tn 
if and only if g is of the form 

n 3 

g(t) = L 0;7J(IIt- tdD + L aj!pj(t) (7.15) 
i=l j=l 

for suitable constants 8; and aj. If the vector~ of coefficients 8; satisfies 

T~=O (7.16) 

then g is said to be a natural thin plate spline. 

It is of course immediate that the constraint (7 .16) is equivalent to 
n n 

I:o;= I:o;t;=O 
i=l i=l 
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corresponding precisely to (7.3).1t is convenient in our subsequent dis­
cussion to write a for the 3-vector of constants aj. Note that the form 
of the natural thin plate spline corresponds to the expression (7 .2) for a 
natural cubic spline, with the function ry(r) replacing fi?. Pursuing this 
correspondence, the n x n matrix E is defined by 

Eij = TICIIt; - tjll) (7.17) 

1 2 2 
= 16nllt;- t;ll log lit;- tjll 

with Eli = 0 for each i, making use of the definition of ry. 
Two important properties of natural thin plate splines are given in the 

following theorem. The proof of the theorem is left as an exercise for the 
more mathematically-inclined reader. 

Theorem 7.1 

1. If g is a thin plate spline, then J(g) is finite if and only if g is a natural 
thin plate spline. 

2. If g is a natural thin plate spline, then 

J(g) =IF Ed. (7.18) 

The first part of the theorem is an immediate generalization of the fact 
that, for cubic splines g' r:.~ g''2 will be infinite unless g is a natural 
cubic spline. The equation (7 .18) corresponds precisely to the expression 
(7 .1 0) above, and is used in an identical way, as we shall see below. 

7.5 Interpolation 

7.5.1 Constructing the interpolant 

In this section the use of thin plate splines for interpolation will be 
discussed. Our first result is an exact analogue of Theorem 2.2 in the 
one-dimensional case. 

Theorem 7.2 Suppose t1, t2, ... , tn are distinct non-collinear points in 
9\2• Given any values Z!,Z2, ... ,Zn, there is a unique natural thin plate 
spline g on the set t1, t2, ... , tn such that 

g(t;) = Z; fori= 1, ... , n. (7.19) 

Proof Suppose that g is any thin plate spline satisfying (7.15) above. 
Then, for each t,, by the definitions of the matrices E and T, 

n 3 

g(t;) = L DjTI(IIt; - tjll) + L akcflk(t;) = (E8 + TT a);, (7.20) 
;=I k=l 
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so that, exactly as in (7 .5), the vector of values taken by g at the points ti 
is £6 + TT a. Let z denote the vector of values Zi· Just as in Section 7.3, 
it follows from (7 .20) and (7 .16) that g will be a natural thin plate spline 
interpolating the values Zi if and only if 

[~ ~](!)=(~) (7.21) 

is satisfied. 

It will be shown in Lemma 7.1 below that [ ~ ~ ] is offull rank. It 

follows at once that the system of equations (7 .21) has a unique solution, 
completing the proof of the theorem. D 

The proof of the theorem also yields an algorithm for finding the natural 
thin plate spline interpolant: set up and solve the equations (7.21). 

7.5.2 An optimality property 

Just as in the one-dimensional case, the natural thin plate spline inter­
polant has an optimality property, stated in the following theorem. 

Theorem 7.3 The natural thin plate spline interpolant uniquely mini­
mizes J(g) subject to the interpolation conditions g(ti) = z;Jor all i. 

Proof. We provide a sketch of the proof, which parallels that of Theorem 
2.3. Given any smooth functions f and g, let 

!1 (rPt ;Pg iPt ;Pg rPt ;Pg) 
[f,g]= --+2--+-- dxdy 

9t2 ax2 ax2 axay axay (Jy2 (Jy2 

so that J(g) = [g, g]. It can then be shown (Meinguet, 1979) that, if g 
is a natural thin plate spline on the set tt. ... , tn, and if his any smooth 
function with J(h) finite, then 

n 

[g, h] = L Dih(ti). (7.22) 
•=1 

Now proceed exactly as in the proof of Theorem 2.3; suppose that g 
is any other interpolant to the values Zi, and seth= g- g. It follows at 
once from (7.22) that [g, g] = [g, g] + 2[g, h] + [h, h] = J(g) + J(h) 2:: J(g) 
with equality only if J(h) = 0. If J(h) = 0 then his a linear function, and 
hence necessarily zero. This completes the proof of the theorem. D 

7.5.3 An example 

In this section we present an example of thin plate spline interpolation, 
which will also be used in our subsequent development. 



INTERPOLATION 145 

Table 7.1. The positions of 38 data sites and the 'true width' of the ore-bearing 
layer measured at each site. The coordinates of the data sites are (t1, t2) and the 
corresponding measurement is z 

tJ t2 z tJ t2 z 
-16 -15 17.0 40 4 13.5 
-14 -4 18.0 40 -61 18.0 
-13 4 17.5 44 -29 19.4 
-7 5 19.0 48 -65 13.0 
-6 -43 22.0 48 -7 14.0 
-6 -36 24.0 49 -32 19.5 

-50 17.4 55 -71 16.0 
2 -39 23.0 56 -14 16.0 
2 -8 23.5 59 -38 19.0 
2 -51 15.0 62 7 19.0 
9 -16 23.5 62 -3 21.5 
9 -42 25.0 64 -29 22.0 

17 -37 16.5 69 -28 20.5 
18 -12 19.5 70 -72 11.0 
24 -57 12.0 77 -19 26.0 
25 -29 18.5 78 -53 22.0 
26 -40 18.0 79 -37 26.0 
32 -7 14.0 84 -52 16.0 
33 -35 19.0 84 -16 16.0 

O'Connor and Leach (1979) present a data set collected from a mine 
in Cobar, NSW, Australia. At each of 38 sampling points, several mea­
surements were taken. We shall focus attention on one of these, the 'true 
width' of an ore-bearing rock layer. The coordinates of the data sites, 
and the value of this observation, are listed in Table 7.1 and the positions 
of the data points are plotted in Figure 7 .1. The convex region Q shown 
in the figure has been chosen, for illustrative purposes, to include the 
data sites reasonably comfortably, without including any regions remote 
from the convex hull of the data. These data were used by Stone (1988) 
to illustrate a number of aspects of thin plate spline methods. It can be 
seen at once that the data points are not regularly spaced in the region. 
The thin plate spline interpolant to these data is plotted in Figure 7 .2. It 
should be stressed that although the function contours are only shown in 
the region n, the function minimizes the roughness integrated over the 
whole of 9\2 subject to interpolating the data. 

The ability of the method to produce a smooth surface interpolating all 
the data points is clear. We shall see below that the large-scale structure 
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Figure 7 .1. The data sites and a corwex window Q. Reproduced from Stone ( 1988) 
with the permission of the author. 

Figure 7.2. Thin plate spline interpolant. Reproduced from Stone ( 1988) with the 
permission of the author. 
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of the data becomes clearer if some smoothing is applied, but of course an 
interpolating surface, however complicated, is important for very many 
purposes. 

It should be noted that the gradient of the thin plate spline interpolant 
can be worked out explicitly. The gradient of the function g as specified 
in (7.15) is 

Vg(t) = t :~ (t- ti)(1 +log lit- till 2) + ( :: ) . (7.23) 

The contour plot in Figure 7.2 was produced by a contouring routine that 
makes explicit use of gradient information supplied by the user; because 
of the explicit formula (7.23) very high quality contour plots can be 
produced relatively quickly, without the need for an enormous number 
of evaluations of the interpolant. The contouring routine used for all the 
figures in this chapter is CONICON3 (Sibson, 1987) which is based on 
the seamed quadratic element described in Sibson and Thomson (1981 ). 

7.6 Smoothing 

7.6.1 Constructing the thin plate spline smoother 

Just as in the one-dimensional case, the quantity J(g) can be used as a 
roughness penalty. Given data values Yi at the points ti, we can define the 
penalized residual sum of squares of a surface g by 

S(g) = L {Y,- g(ti)}2 + aJ(g). (7.24) 

Exactly as in one dimension, the parameter a > 0 is a smoothing param­
eter, and the function S(g) combines a term quantifying the lack of fit of 
g to the data with a roughness penalty term. It follows from (7 .24) and 
Theorem 7.3 that the minimizer of S(g) is necessarily a natural thin plate 
spline; the argument that demonstrates this is identical with that given in 
Section 2.3.1 for the one-dimensional case. 

Suppose, therefore, that g is a natural thin plate spline. In exactly the 
same way as (7 .11), it follows from (7 .20) and from Theorem 7.1 that, 
letting Y be the vector with components Yi, 

S(g) = (Y- E8- TT al(Y- E8- TT a)+ a8TE8. 

We shall now pursue the minimization of this expression for S(g). In 
matrix form, we have 
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S(g) = ( (jT aT ) [ E2 ;EaE ~; ] ( : ) 

_ 2( (jT aT ) [ ~ ] y + yTy. (7.25) 

Define a natural thin plate spline g such that its coefficient vectors satisfy 

(7.26) 

It will be shown in Lemma 7.1 below that these equations have a unique 
solution. Premultiplying the equations (7.26) by the matrix 

yields 

[ E
2 
;EaE ~; ] ( ! ) = [ ~ ] Y, 

which demonstrates that J and a are the unconstrained minimizers of 
the expression (7.25), and hence, a fortiori, its minimizers subject to the 
constraint T (j that ensures that g is a natural thin plate spline. Hence it 
follows that g found by solving (7 .26) is the unique minimizer of the 
penalized residual sum of squares S(g). 

To sum up, the above discussion demonstrates that the smoothing 
problem as set out has a unique solution, that can be found by setting up 
and solving the system of equations (7.26). As in the spatial interpolation 
case discussed above, this is a full system of linear equations. 

7.6.2 An example 

To continue the discussion of the example described in Section 7.5.3 
above, the thin plate spline smoother g applied to the data of Table 7.1 
is shown in Figure 7.3. Of course, in principle it is possible to use cross­
validation or some other automatic method to choose the smoothing 
parameter, but for the exploratory purposes of this example the value 
a = 10 was chosen subjectively to display the broad features of the data. 
It can be seen at once that smoothing makes the overall structure of the 
data much clearer. 

7.6.3 Non-singularity of the defining linear system 

In this technical section we demonstrate that the systems of equations 
(7.21) and (7.26) are non-singular and therefore have unique solutions. 
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Figure 7.3. Thin plate spline smoother, with a = 10. Reproduced from Stone 
(1988) with the permission of the author. 

The necessary result is the following lemma. 

Lemma 7.1 Suppose that It, ... ,In are not collinear, and that a ~ 0. 

Then the matrix [ E ~a/ ~ ] is of full rank. 

Proof. Suppose that 

[ E ~a/ ~ ] ( ! ) = O, 

and that g is the thin plate spline defined by the vectors of coefficients 6 
and a. Since T6 = 0, g is a natural thin plate spline. Therefore 

J(g) + a6T6 = 6T(E + a/)6 = JT(E + al)J + (TJ)Ta 

= Jr {(E + a/)6 + Tra} = 0. 

If a > 0 this implies at once that 6 = 0 since J only takes non-negative 
values; if a = 0 we can conclude that J(g) = 0 so that g is a linear surface, 
so that J again is equal to zero. From J = 0 it follows that TTa = 0. Since 
the ti are non-collinear, the rows ofT are linearly independent and so this 
implies that a = 0, completing the proof. D 
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7.7 Finite window thin plate splines 

7.7.1 Formulation of the finite window problem 

In the one-dimensional case, it was noted in Section 2.3.4 that the choice 
of the interval [a, b] over which the roughness penalty is calculated does 
not essentially affect the interpolation or smoothing splines, as long as 
all the data points t; fall into [a, b]. The reason for this is that g"(t) = 0 
if g is a natural cubic spline and t is outside the range of the data, and 
so extending the interval does not affect the roughness once we restrict 
attention to natural cubic splines. 

In the multivariate case, this is no longer so. Focus attention on the 
two-dimensional case, and suppose that Q is a region in 9\2 containing 
all the data points t;. Given any smooth functions g and hover Q, define 

(7.27) 

where the suffices denote partial derivatives with respect to the variables 
indicated. Define Jn(g) by 

Jo.(g) = [g, g]o. = f l (g~ + 2g~ + g~) dxdy, (7.28) 

so that lo.(g) is the roughness of g restricting attention to the region n. 
If n is the whole of 9\2 then lo. is precisely the roughness penalty J as 
defined in (7.1) that forms the basis of the thin plate spline methods. 
In this section we shall consider the effect of using a finite region, or 
'window'' n instead. 

It was pointed out in Section 7.2.1 that J(g) has a physical interpreta­
tion, the first order term in the bending energy of an infinite flat thin plate 
deformed to the shape of the surface g. using a finite window n makes 
the physical analogy somewhat more realistic, since the energy calcu­
lated would be that of a finite thin plate-an object that could actually 
exist in practice! 

The finite window roughness penalty lo. can be used in the obvious 
way, both for interpolation or for smoothing. It is computationally te­
dious to find the finite window interpolant or smoother precisely, but a 
good working approximation can be obtained by solving a finite system 
of linear equations. Some of the mathematical details will be given in 
Section 7. 7.3 below, but first we discuss the effect on the Cobar mine 
data of taking account of the finite window. 
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Figure 7.4. Finite window interpolant. Reproduced from Stone ( 1988) with the 
permission of the author. 

7. 7.2 An example of finite window interpolation and smoothing 

Figure 7.4 shows an approximation to the surface that minimizes ln{g} 
subject to interpolating the given data. In order to aid understanding of 
the effect of minimizing J n (g) rather than J (g), we also present in Figure 
7.5 the difference between the two interpolants. 

It is immediate that, in contrast with the one-dimensional case, re­
stricting to a finite window does affect the interpolant. The main effect is 
near the edges, as might be expected. In particular, the thin plate spline 
interpolant tends to prefer closed contours and reduced variability along 
the edges of the window. The intuitive reason for this is that the thin plate 
interpolant is forced to tend to a flat function outside the window shown, 
and that if one drew a very large circle around the data, the values of the 
interpolant on the circle would have to approximate to those of a linear 
function in t. Thus long ridges extending outside the range of the data 
will be discouraged. The finite window interpolant indicates that (for 
example) the closure of the contour at the middle of the top of the region 
is not a feature driven by the data, but is a consequence of the tendency 
of the thin plate spline to abhor variability outside n. 
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Figure 7.5. The difference between the finite window and thin plate spline inter­
polants; the shaded region indicates where the difference is very close to zero. 
Reproduced from Stone ( 1988) with the permission of the author. 

We now turn to smoothing. The finite window smoother with smooth­
ing parameter f3 is, of course, the minimizer g of I: { z;- g(t;) J2 + f3Jn(g). 
It should be noted that it is not immediate how one should compare the 
two different smoothers. Because a different roughness penalty is used, it 
is not reasonable merely to set f3 = a. A fairer comparison is to choose f3 
so that the residual sum of squares is the same in both cases. The surface 
corresponding to Figure 7.3 obtained by this approach is shown in Figure 
7.6. The differences induced by restricting the roughness penalty to Q 
are similar in character (and in fact somewhat larger in magnitude) than 
those for the interpolation case. 

To sum up, this discussion demonstrates that some care is needed in the 
detailed interpretation of either interpolants or smoothers constructed by 
the thin plate spline method. In particular one should not place too much 
credence in the closing of contours in areas of 9t2 not well surrounded by 
data sites. On the other hand, as long as one does not extrapolate too far, 
the effect of confining the calculation of the roughness to a finite window 
is not enormous. 
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Figure 7.6. Finite window smoother, chosen to have the same residual swn of 
squares as Figure 7.3. Reproduced from Stone ( 1988) with the permission of the 
author. 

7. 7.3 Some mathematical details 

In this section, we discuss some of the details of the way in which the 
finite window interpolant and smoother can be calculated. The detailed 
description of the algorithm is beyond the scope of this text, and the 
reader is referred to Dyn and Levin (1982) and Stone (1988) for details. 

Define a smooth function q, to be biharmonic if V4 1/>( t) = 0 for all t. Let 
'13 be the space of biharmonic functions defined on n. It can be shown, 
by a variational argument, that the minimizer of [g,g]n subject to the 
interpolation conditions g(ti) = Zi for i = 1, ... , n can be written as the 
sum of a thin plate spline and a biharmonic function, 

n 

g(t) = 2: Di7J(IIt- till)+ 1/>(t), (7.29) 
i=l 

where the function 1} is as defined in (7.12) and q, is biharmonic. (Note 
that constant and linear functions are biharmonic, so there is no need to 
include the second sum in (7.15) explicitly.) 

Let '13,. be the space of biharmonic functions that are also polynomials 
of degree m or less. Let (r, e) be the polar coordinates oft. It can fairly 
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easily be shown that 1Jm is spanned by the polynomials 1, tt, tz, if, t1tz, ~. 
and, fork= 3, ... , m, 

-,1< cos k8, -,1< sin k8, -,1< cos(k - 2)8, and -,1< sin(k - 2)8. 

Denote this polynomial basis by { 1/Jt. ... , 1/JM}. For m 2: 2, we have M = 
4m-2. 

The basic idea of the algorithm for finite window interpolation and 
smoothing is to approximate the space 'B by the finite dimensional space 
1Jm, and therefore to consider functions of the form 

n M 

g(t) = L Di1Ji(t) + L ajl/lj(t). (7.30) 
i=l j=l 

where 1Ji(t) = TJ(!!t- t,!!) for each i. Note that if m = 1 then these are 
precisely thin plate splines. 

In principle it is now possible to use the basis functions approach set out 
in Section 3.6 to find suitable coefficients in (7.30) for interpolation and 
smoothing. In order to do this, one needs to find [1Ji, 711]n, [1Ji, f/l1]n, and 
[ 1/J., f/!1 ]n, for all relevanti and j. These quantities will yield the components 
of the (n + M) x (n + M) matrix K such that the roughness penalty ln(g) 
can be written in terms of the coefficient vectors 8 and a as the quadratic 
form 

The integrals involved in these calculations can be reduced to line 
integrals by using a standard Green's formula given, for example, by 
Dyn and Levin (1982). We have 

[u, v]n = { vV4u + J { (Vv) · : (Vu)- v: (V2u)}. (7.31) 
Jn hn an an 

Here -Jn is the normal derivative at the boundary. If u is a biharmonic 
function then the integral over Q of vV4u disappears, while if u = 1Ji then 
V4u is a delta function at ti so the integral is equal to v(ti). 

If n is a polygonal region then the boundary integral reduces to a sum 
of integrals along bounded intervals. For this case, Dyn and Levin (1982) 
and Stone (1988) describe ingenious computational approaches to the 
calculation of the boundary integral in the case where u is one of the basis 
biharmonic polynomials f/!1. They also set out a further approximation in 
the basis function approach that can be used to avoid calculating the 
quantities [1Ji, 1J1]n. 

Stone (1988) investigated the degree m of the biharmonic polynomials 
space 1Jm that should be used in practice. He found that setting m = 7 (so 



TENSOR PRODUCT SPLINES 155 

that there are 26 basis functions ,P;) gave very satisfactory results. In the 
examples he considered, including the one presented in Section 7.7.2, it 
was clear that most of the finite window effect was accounted for using 
this value of m. The effect of increasing m still further (to 9 or 10) was 
perceptible but unimportant. 

7.8 Tensor product splines 

Another possible approach to the problem of smoothing over a finite 
window is via the use of tensor product splines, which are a system­
atic method of using families of smooth functions in one dimension to 
generate smooth surfaces in higher dimensional spaces. They provide an 
approach rather different from thin plate splines, but we shall see that 
there are circumstances in which tensor product splines can be used to ap­
proximate thin plate spline smoothers. Tensor product splines are widely 
used in many areas of approximation theory and numerical analysis, and 
we only give a brief treatment here. As in our discussion of thin plate 
splines, we shall assume that we are fitting data by a model 

Y = g(t) +error 

where the vector t is higher-dimensional. One of our motivations for the 
discussion of tensor product splines is that they can be used as a con­
venient basis for the approximation of finite window roughness penalty 
smoothers using the basis functions approach of Section 3.6. 

7.8.1 Constructing tensor products of one-dimensional families 

For ease of exposition, we will just consider the two-dimensional case, 
and model smooth functions defined on a rectangle T x U in 9t2, where 
T and U are intervals in 9t. Given one-dimensional functions 8 : T ~ 9t 
and E : U ~ 9t, the tensor product of 8 and E is the function 8 ® E : 

T x U ~ 9t defined by (8 ® t:)(t, u) = 8(t)E(u). Suppose we have a set of 
linearly independent functions { 8h : h = 1, 2, ... , qt} defined on T that 
we wish to regard as smooth, and similarly a basis { Eh : h = 1, 2, ... , q2} 
of smooth functions on U. The tensor product of these two spaces of 
functions is the set of all linear combinations of tensor products of linear 
combinations of these basis functions, that is 
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This is the same as the set of all linear combinations of tensor products 
of basis functions 

(7.32) 

In this section, we use a subscriptj to denote the pair VI ,h), and later use 
k similarly. The q1 q2 functions 8h ® f.h are easily shown to be linearly 
independent and to form a basis for q. 

Tensor product cubic splines are an obvious example of this construc­
tion. Suppose { 1'1, 1'2, ... , 1'm1 } and { VJ, U2, ... , Vm2 } are regularly spaced 
sequences such that T = [1'J, 1'm1] and U = [VJ, Vm2 ]. Then the cubic 
splines on each of these knot sequences, restricted to the intervals T and 
U respectively, are finite-dimensional spaces of dimension q1 = m1 + 2 
and q2 = m2 + 2. A function in q can be defined by splitting T .x U 
into rectangular panels, small rectangles of the form [ 1',, 1'N 11 x [ Vs, Vs+J]. 

Over each panel the function is the product of a cubic in t and a cubic 
in u, and the functions fit together smoothly (continuous first and second 
derivatives) at the joins between the panels. The characterization (7.32) 
allows us to express a generic tensor product spline in terms of any con­
venient bases for the one-dimensional cubic splines, and we shall give a 
specific example in the next subsection. 

7.8.2 A basis function approach to finite window roughness penalties 

Given a particular tensor product space q, it is within the space q that 
we shall seek a smooth function to fit data supposed to follow the model 

Y; = g(t;, u1) +error fori= 1, 2, ... , n. 

Note that in contrast to the thin plate splines approach as described above, 
this is not an isotropic treatment of the regression problem, as the space 
q is not invariant to rotations of the (t, u) space. Nevertheless, we can 
still use isotropic roughness penalties within the space q. 

A natural example is the thin plate penalty lrxu(g) defined as in equa­
tion (7.28), the finite window roughness penalty with the range of inte­
gration restricted to the rectangle T x U. Suppose that g = .L:j gjOh ® f.h, 

and define the inner product L · ]rxu as in (7 .27). Let K be the q1 q2 x q1 q2 

matrix defined by 

(7.33) 
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where 

Then 

n}:11 = h oj~s>(t)oi:>(t)dtforjt,kt = 1,2, ... ,% 

E};k2 = l f.j;>(u)f.~j(u)du forh,k2 = 1,2, ... ,q2. 

lrxu(g) = [L8At ® €jz, L8k0kt ® €kJTxU 
j k 

= L Lgjgk[oh ® €jz, Okt ® Ekzlrxu = gTKg, 
j k 

where g is the q1q2-vector with entries 8j· 
In the present context, the penalized sum of squares Sw(g) of (3.21) 

takes the form 
n 

Sw(g) = Lwi{Yi- g(ti,ui)}2 + aJ(g) (7.34) 
i=l 

= (Y- NgfW(Y- Ng) + agrKg, (7.35) 

where N is then x q1q2 matrix with Nij = oh(ti)Ejz(ui). The value of g 
minimizing Sw(g) is therefore, once again, 

(NTWN + aK)-1NrWY. 

The key simplifying feature of these calculations is that, because of 
the expression (7.33) and the definition of N, the matrices K and N 
can be built up from properties of the one-dimensional bases considered 
separately. 

Let us now be more specific, and, following work by Inoue (1986), 
work out some details of this procedure for particular bases { ~~ } and 
{ Ejz}. Let { -r,} and { Vs} be regular sequences as above, such that if 
T = [ 't"t, 't"m1 ] and U = [ Vt, Vm2 ] then the rectangle T x U includes all 
observed (ti, ui). We will use cubic splines, with knots at the { -r,} and 
{ Vs}. Let f3 denote the cubic B-spline given by 

where 

for -3:::; x:::; -2 
for -2:::; x:::; -1 
for -1:::; x:::; 0 
for 0:::; x:::; 1 
otherwise 
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B1(X) = ~16 
B2(X) = (-3~ + 3,; + 3x + 1 )/6 

B3(X) = (3~ - 6,; + 4)/6 

B4(x) = (1- x)3 /6. 

Let o = 't'2 - 't'1 and t: = 'U2 - v1 be the knot spacings. We now define our 
basis functions by 

oh(t) = f3 C -/it) 
t:h(u) = f3 ( u ~ vh) 

forj} = 1,2, ... ,m1 + 2 andh = 1,2, ... ,m2 + 2. 
In each dimension, the basis functions are equally spaced translates 

of each other. This leads to some particularly simple expressions: for 
example any function g e (j can be written 

g(t,u) = LgA1(t)t:h(u) 
j 

= f fgjB4+r-h (t ~ 't'r) B4+s-h (~ ~ Vs) 
Jt=r ]2=S 

if (t, u) e [ -r,, 't'r+d x [ V8 , Vs+Il· The entries in the matrix N are readily 
shown to be 

Nij = 0't (t;)t:h(u;) 

= B4+r-h ( t; ~ 't'r) B4+s-h ( Uj ~ Vs) 

if(t;, u;) e [ -r,, 't'r+Il x [ Vs, Vs+d• provided r::::; h ::::; r+3 and s ::::; h ::::; s+3, 
and 0 otherwise. 

Finally, the integrated derivative matrices are 

v}:i1 = fr oj~s>(t)ok:>(t)dt 
= o1-2s ""'11 

s<s>. (x)B<s> (x)dx L...,; r-Jt r-kt 
r 0 

where the sum runs from r = max{5,j} + 1,k1 + 1} to min{m1 + 3,j} + 
4, k 1 + 4}, with a similar expression for EJ:i2 • Thus, because of the finite 
support [-3, 1] for /3, all these matrices have some banded structure. 
Specifically, K is a sum of Kronecker (or outer) products of matrices 
with bandwidth 7, and (NTWN) likewise has the property that its (j,k) 
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entry is 0 unless both U1 - k1l :S 3 and U2 - k2l :S 3. Also, except at the 
boundary, D}:k1 depends only on k1 - h, and similarly for E(s). 

7.9 Higher order roughness functionals 

Our development so far has been based on use of J g"2 to measure the 
roughness of curves gin one dimension, and the functional J(g) as de­
fined in (7.1) to quantify the roughness of a two-dimensional surface. 
These simple devices have taken us a long way. The idea of smoothness 
implicit in the use of these penalties, based on second derivatives, corre­
sponds to that appreciated visually, and the penalties lead to interpolants 
and smoothers with good properties. However, for some purposes it is 
useful to make use of higher derivatives than the second in measuring 
roughness. Further, it is certainly of interest to extend the applicability of 
the roughness functional idea to functions g of more than two variables. 

Consider a function g of a variable t in 9\d. Among the important 
properties of the penalties J g112 and J(g) were their invariance under 
translations and rotations of the coordinate system, and their quadratic 
dependence on g, which led to fitted curves and surfaces linear in the data 
values z; or Y,. A penalty in d dimensions based on mth derivatives that 
retains these properties is 

lm(g) = 1···1 L 1m! 1 ( v/rg() vd) 2 
dt1 ... dtd, 

9ld VJ .... Vd. dtl ... td 
(7.36) 

where the sum within the integral is now over all non-negative integers 
VJ, v2, ... , vd such that v1 + ... +vd = m. This most general form that we 
will consider remains non-negative and isotropic, and has the property 
that the only surfaces for which J(g) is zero are the polynomials of total 
degree less than m. 

In order to make progress, it is necessary to impose the condition 2m > 
d, so that roughness functionals lm based on integrated first derivatives 
can be used only in one dimension, those based on integrated second 
derivatives only in three or fewer dimensions, and so on. The reason 
for this restriction can be expressed technically in terms of Beppo Levi 
and Sobolev spaces; see, for example, Meinguet (1979). A relatively 
non-technical explanation can be given by considering the following 
example. Suppose thatg is a smooth unimodal radially-symmetric 'bump' 
function, with lm(g) finite, such that g(O) = 1 and g(t) is zero outside 
the unit disc. Now define gn(t) to be the function g(nt), so that as n 
increases 8n approaches a 'spike' of height 1 at the origin. Under any 
reasonable definition of roughness, we would require that the roughness 
of 8n increases as n increases. A simple argument involving the change 
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of variables s = nt in the definition of J m shows that 

lm(gn) = n2m-d lm(g), 

so that if 2m ~ d the limiting spike will have finite roughness, and indeed 
if 2m < d the roughness of the sequence gn will actually tend to zero as 
n increases! 

7. 9.1 Higher order thin plate splines 

We can now address the problem of fitting a smooth surface g to data 
from the model 

Y; = g(t;) + error, 

fori = 1, 2, ... , n, where t; is ad-vector. The estimator of g that we will 
consider is, as usual, the minimizer of a penalized sum of squares 

n 

Smd(g) = L {Y;- g(t;)}2 + alm(g), 
i=! 

where lm(g) is as defined in (7.36). 
Yet again, we can treat this problem by dealing first with interpolation 

and by restricting attention to a finite-dimensional class of functions g. 
Define a function 1Jmd by 

{ e r2m-d log r if d is even 
1Jmd(r) = 

e ,2rn-d if d is odd 

where the constant of proportionality 0 is given by 

(7.37) 

{ 
(-l)m+1+h1-2mn-~(m-1)!- 1 (m- ~)!- 1 ford even 

0= 
r(~- m)2-2mn-~(m- 1)!-1 ford odd. 

Let M = (m + ~- 1), and let { cpj.} = 1, 2, ... , M} be linearly indepen­

dent polynomials spanning the M-dimensional space of polynomials in 
9td of total degree less than m. 

Define a function g on 9td to be a natural thin plate spline of order m 
if g is of the form 

n M 

g(t) = L 8;1Jmd(llt- tdl) + L ajcpj(t), (7.38) 
i=l j=l 

and the vector of coefficients d satisfies the condition 

Td=O, (7.39) 



HIGHER ORDER ROUGHNESS FUNCTIONALS 161 

where T is the t x n matrix with 

(7.40) 

Duchon (1976) and Meinguet (1979) showed that, provided the points 
t; are distinct and sufficiently dispersed to determine a unique least 
squares polynomial surface of total degree m - 1, and that 2m > d, 
the function g minimizing lm(g) subject to g(t;) = z; is a natural thin 
plate spline of order m. By exactly the same arguments as in Section 7.5, 
the vectors~ and a of coefficients in (7.38) satisfy the matrix equation 
(7.21), defining the matrix E by 

(7.41) 

and the matrix T as in (7.40). 
The discussion of Section 7.6 carries over immediately to the mini­

mization of Smd. The minimizing function is a natural thin plate spline of 
order m, with coefficient vectors uniquely specified by 

where T and E are as defined in (7.40) and (7.41) above. 
It is easily checked from the definitions that if g is a natural thin plate 

spline of order min 9td then g will have 2m-d- 1 continuous derivatives 
everywhere, but its (2m - d)th derivative has a singularity at each data 
point t;. Thus, in one dimension for example, the use of the penalty J g'2 

leads to piecewise linear interpolants and 'smoothers', whose derivatives 
jump at each data point; more generally, in odd dimensions the use of a 
penalty with 2m = d + 1 will yield a function with a singularity resembling 
the point of a cone at each data point. If a visibly smooth function is 
required it is therefore advisable to use a penalty with 2m > d + 1. 

In the case d = 1 the discussion of this section shows that the penalty 
J g<m)(t)2dt will lead to splines that are piecewise (2m- 1)th degree poly­
nomials. There are algorithms corresponding to the Reinsch algorithm 
for finding these higher order smoothing splines in O(n) operations. For 
details, see, for example, De Boor (1978). 



CHAPTERS 

Available software 

In this chapter we give some details of software available at the time 
of writing for the techniques described in this book. There are many 
implementations other than those discussed in detail here. For example, 
a FORTRAN program for the Reinsch algorithm described in Section 
2.3.3 is given by DeBoor (1978, Chapter 14); see also the IMSL routine 
ICSSCU. 

8.1 Routines within the S language 

8.1.1 The S routine smooth. spline 

The statistical language S* and its extended version S-PLUS include a 
routine called srnoo th. spline which can be used for one-dimensional 
cubic spline smoothing as discussed in Chapters 1, 2 and 3. There is no 
requirement that the design points {ti} be distinct or ordered. 

The routine allows the use of weights, and thus implements, in addition, 
the general smoothing operation that we have denoted by 

S = N(NTWN + aK)-INTW 

where N is an incidence matrix, W a diagonal weight matrix, and K 
the kernel of the roughness penalty for cubic spline smoothing. This 
smoother was encountered first in Section 3.5, was an important building 
block in implementing the fitting of partial spline models in 4.3, and 
appeared in the algorithms involving Fisher scoring in 5.3 and 5.4. The 
routine uses the basis function algorithm (Section 3.6) with a basis of 
B-splines. 

The value of the smoothing parameter in the routine is specified with 
respect to units in which the {ti} are rescaled to have range 1 and the 
weights (if any) rescaled to sum to n, the number of data points. To 
translate to 'raw' values, the value as of the smoothing parameter within 

* Commercially available from StatSci, 1700 Westlake Ave. N., Suite 500, Seattle, WA 
98109, USA. 
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the routine corresponds to the minimization of 

n 

L wi{Yi- g(ti)}2 + a j g''2 

i=l 

(8.1) 

with 
n 

a= {(maxtj- mintj)3n-1 L Wj} as. 
i=l 

The amount of smoothing can be specified either in terms of the 
smoothing parameter as or in terms of the equivalent degrees of freedom, 
as defined in Section 3.3.4. This latter feature may well provide a more 
intuitive way of specifying the 'complexity' of the fitted curve. If desired, 
an automatic choice of smoothing can be made either by cross-validation 
or by generalized cross-validation (Section 3.3). 

If there are fewer than 50 distinct points {ti}. the routine minimizes 
(8.1) over cubic splines with knots allowed at all the data points, so 
the curve found is precisely the cubic spline smoother. For larger data 
sets, the default-which can be overridden-is only to allow knots at a 
particular subset of the {ti}· The size of this subset increases slowly as 
n increases. This feature makes for economy in time and storage while 
only having a perceptible effect on the result for very small values of the 
smoothing parameter. 

For further details of the routine, see Chambers and Hastie (1992), 
consult the S documentation, or-for online help within an S session­
type ? smooth. spline or help (smooth. spline) . The package 
also provides an auxiliary routine predict. smooth. spline, which 
allows the calculation of the estimated curve or its derivatives at any 
specified points. 

8.1.2 The newS modelling functions 

As well as the usual updates and enhancements, the 1991 release of Sin­
corporated a new system for regression model fitting, including facilities 
for linear regression, analysis of variance, generalized linear models, tree­
based models, and nonlinear regression. The functions that fit additive 
and generalized additive models are of particular interest in the context of 
this book. All the modelling routines adopt common conventions about 
data handling, and specification of models, and thus S provides a sys­
tem of considerable power for those who wish to fit regression models 
flexibly, without the labour of programming. 

Full details of the philosophy and use of these new facilities is given 
by Chambers and Hastie (1992). Here we will just give a brief taste of 
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the possibilities by noting that the model we proposed for the marketing 
example in Section 4.5 can be specified by calling the function 

gam{log{volume) -price+diffprice+day+s{date)) 

where volume, price, diffprice, day and date are variables and 
factors with the obvious interpretation. By changing the specification of 
the non parametric part of the model to s {date, df = 18 . 7 ) , the degree 
of smoothing applied would be the same as used in Figure 4.1. However, 
gam { ) uses backfitting, and as we observed in Section 4.5, this algorithm 
converges unacceptably slowly for these data. 

Similarly, the model used for the tumour data in Section 5.5 can be 
specified and fitted by 

gam{lesion-log{dose)+weight+position+s{age), 
family=binomial). 

8.2 The GCVPACK routines 

The package GCVPACK (Bates et al., 1987) is a useful set of subroutines 
written in FORTRAN 77, designed around the themes of thin plate spline 
smoothing and generalized cross-validation. They are available free of 
charge from Netlib. * The routines can be used for smoothing in any num­
ber of dimensions, including the one-dimensional case, and allow penalty 
functions involving any number of derivatives. In the one-dimensional 
case, however, they do not take advantage of the special structure that 
allows O(n) calculations, and so they run more slowly than a good im­
plementation of the Reinsch and Hutchison-de Hoog algorithms, or of a 
suitable basis function algorithm. 

Facilities are also provided for partial splines with one or more splined 
variables, and for more general linear smoothing problems. In each case 
the package allows the choice of smoothing parameter by generalized 
cross-validation or the use of a smoothing parameter value specified by 
the user. The package makes extensive use of the UNPACK linear algebra 
library (Dongarra et al., 1979). There are three main driver routines, each 
of which is a FORTRAN 77 program with a large number of arguments, 
allowing considerable flexibility. 

The GCVPACK routines can also be used as building blocks for an 
implementation of the approaches to generalized linear models set out in 
Chapter 5. For example, the package PGLMPACK (Yandell, 1988) carries 
out generalized cross-validation calculations in a range of semi parametric 

* Information about Netlib can be obtained by sending an email message to 

netlib@research.att.com with the single line send index. The routines 
are in the directory gcv. 
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generalized linear models. Models with binomial, Poisson and normal 
dependence are catered for within the package. Any number of splined 
variables can be used, with an appropriate thin plate spline roughness 
penalty. 

8.2.1 Details of the algorithm 

The key technique used by GCVPACK is the singular value decomposi­
tion, together with other, related, matrix decompositions. In this subsec­
tion, we set out the algorithm used for thin plate spline smoothing, and 
refer the reader to Bates et at. ( 1987) for details of the extensions to partial 
splines and other models. Except where otherwise stated, our notation 
will be the same as that used in Chapter 7. It will be shown that the GCV 
choice of smoothing parameter, and the calculation of the estimate itself, 
becomes very economical once certain matrix decompositions have been 
carried out. For details of the various matrix decompositions, see, for 
example the UNPACK manual (Dongarra et al., 1979.) 

As explained in Sections 7 .3, 7.6 and 7.9, the thin plate spline smoother 
can be found by solving a system of equations 

(8.2) 

where 6 and a are the coefficients of the minimizing thin plate spline 
and E and T are matrices that depend on the design points ti and on the 
roughness penalty being used. 

The first step is to perform a QR decomposition of rT, to obtain 

TT =FG 

where F is an n x n orthogonal matrix and G is n x t with zeroes below 
the main diagonal. Let F1 be the first t columns ofF and F2 the last n- t 

columns, and let Gt be the first t rows of G; since G is upper triangular, 
its remaining rows are zero and hence TT = Ft Gt. 

Assuming that the rows ofT are linearly independent, Gt will be non­
singular and hence To = 0 if and only if Ff 6 = 0. By the orthogonality 
ofF, this implies that 6 = F2(, where ( is the (n - t)-vector Ff 6. Set 
w 1 = F[Y and w2 = FfY. Then multiplying the first block of (8.2) by 
Ff and F{ respectively leads, after some manipulation, to 

Gta = Wt- F[Eo (8.3) 

and 

(8.4) 
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Now decomposeFfEF2 in the form UD2UT, where U is an orthogonal 
(n - t) x (n - t) matrix, and D is a diagonal matrix with diagonal entries 
d1 2::: d2 ;::: ... ;::: dn-t 2::: 0. In the GCVPACK package, this is done 
by Cholesky decomposition of FfEF2 as LLT, with L lower triangular, 
followed by singular value decomposition of Las L = UDVT. Bates 
and Wahba (1982) point out that the computational burden here can be 
alleviated, at the expense of approximation, by truncating the singular 
value decomposition. 

No further decompositions are needed: the entire computation of the 
smoother can now be expressed via transformation of the problem using 
F and U, and scalar operations using the eigenvalues d]. First, equation 
(8.4) is rearranged to yield 

( = U(D2 + al)-1 uT w2. (8.5) 

A convenient expression for the generalized cross-validation score can 
now be derived. The vector of predicted values is equal to 

Eo+TTa = F2FfEF2(+F1FfEo+FtG1a 

= F2(w2 - a()+ F1 W1 

= F2{l- aU(D2 + a/)-1 UT}w2 + F1w1 

= {F2UD2(D2 + ai)-1UTFf +F1Ff}Y. 

Thus the hat matrix A( a) can be written 

[ /OJ[/ 0 J[/ OJ T F 0 U 0 D2(D2+al)-1 0 UT F' (8.6) 

where I is the identity t x t matrix in each case. Since F and U are 
orthogonal, and D is diagonal, the trace of the hat matrix is t + ~j{ dJ I 
(dJ +a)} = n- a ~/dJ + a)-1. 

To write the residual sum of squares in a convenient form, set z = 
uT w2. From (8.6) and the fact that F and U are orthogonal matrices, it 
follows that I - A (a) is equal to 

F [ ~ ~ ] [ ~ a(D2 ~ a/)-1 ] [ ~ ~T ] FT, 

and hence the residual sum of squares II{/ -A(a)}YII2 is equal to lla(vl+ 
a/)-1zll2. Substituting the expressions for the residual sum of squares 
and the trace of the hat matrix into the definition (3 .13) of GCV, we obtain 
the generalized cross-validation score 

""n-t(d2 )-2 2 
LJj=1 j +a Zj 

GCV(a) = n {~}:t'<d] + a)_1 F. 
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Once the necessary decompositions have been carried out to find the 
dj and Zjo it is a very economical matter to minimize this expression 
to find the automatic choice of a. It then follows from (8.5) that 6 = 
F2U(D2 + al)-1z, again an easy calculation. Finally, (8.3) can be used to 
find a, again a straightforward calculation since Gt is a triangular matrix. 
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splines; Mechanical splines; 
Natural cubic splines; Natural thin 
plate splines; Partial splines; 
Smoothing splines; Tensor product 
splines; Thin plate splines 

Standardized residual 97 
Strain energy 4 
Sunflower data 116-120 
Surface estimation 138-161 
Synthetic data 3-7 

Teeth 60-62 
Tensor product splines 155-159 
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Thin plate splines 8 
characterization and definition 

138-139, 142-143 
finite window 150-155 
higher order 160-161 
implementation 165-168 
interpolation 143-147, 151-152, 

161 
natural142-144, 147-149, 

160-161 
smoothing 147-149, 152-153, 161 

Ties in design points 43-44, 65 
Trend vs noise 4, 5, 50 
Tridiagonal matrix 15 
Truncated multivariate normal, as 

prior 58 
Truncated singular value 

decomposition 167 
Tumour prevalence data 111-113, 

124-125 
Twicing 87 
Two-dimensional interpolation and 

smoothing 137-160 

SUBJECf INDEX 

Value-second derivative representation 
(of natural cubic splines) 

definition 12-13 
key property 13, 24 
plotting from 22-23 
roughness penalty in terms of 13, 

24-25 
Varying coefficient model12~129 

Weight function 47-48 
Weighted smoothing 

arising from correlated responses 
120-121 

arising from tied design points 
43-44 

basic discussion 40-41 
cross-validation 42-43 
Reinsch algorithm for 41-42, 121 
see also Fisher scoring algorithms 

Working response ve<:tor 95, 100, 
106, 109, 126 

Working weights matrix 95, 100, 106, 
109, 126 




