
Springer Series in Statistics

Advisors:
P. Bickel, P. Diggle, s. Fienberg, K. Krickeberg,
1. Olkin, N. Wermuth, s. Zeger

Springer Science+Business Media, LLC

Springer Series in Statistics

AndersenIBorgan/GilIlKeiding: Statistical Models Based on Counting Processes.
Andrews/Herzberg: Data: A Collection of Problems from Many Fields for the Student

and Research Worker.
Anscombe: Computing in Statistical Science through APL.
Berger: Statistical Decision Theory and Bayesian Analysis, 2nd edition.
Bolfarine/Zacks: Prediction Theory for Finite Populations.
BorglGroenen: Modern Multidimensional Scaling: Theory and Applications
Bremaud: Point Processes and Queues: Martingale Dynamics.
BrockwelllDavis: Time Series: Theory and Methods, 2nd edition.
DaleylVere-Jones: An Introduction to the Theory of Point Processes.
Dzhaparidze: Parameter Estimation and Hypothesis Testing in Spectral Analysis of

Stationary Time Series.
Fahrmeirflutz: Multivariate Statistical Modelling Based on Generalized Linear

Models.
Farebrother: Fitting Linear Relationships: A History of the Calculus of Observations

1750 - 1900.
Farrell: Multivariate Calculation.
Federer: Statistical Design and Analysis for Intercropping Experiments, Volume I:

Two Crops.
Federer: Statistical Design and Analysis for Intercropping Experiments, Volume II:

Three or More Crops.
FienberglHoaglin/Kruskal/Tanur (Eds.): A Statistical Model: Frederick Mosteller's

Contributions to Statistics, Science and Public Policy.
FisherlSen: The Collected Works ofWassily Hoeffding.
Good: Permutation Tests: A Practical Guide to Resampling Methods for Testing

Hypotheses.
Goodman/Kruskal: Measures of Association for Cross Classifications.
Gourieroux: ARCH Models and Financial Applications.
Grandell: Aspects of Risk Theory.
Haberman: Advanced Statistics, Volume I: Description of Populations.
Hall: The Bootstrap and Edgeworth Expansion.
Hardie: Smoothing Techniques: With Implementation in S.
Hart: Nonparametric Smoothing and Lack-of-Fit Tests.
Hartigan: Bayes Theory.
HedayatiSloaneiStufken: Orthogonal Arrays: Theory and Applications.
Heyde: Quasi-Likelihood and its Application: A General Approach to Optimal

Parameter Estimation.
Heyer: Theory of Statistical Experiments.
HuetIBouvierlGruetiJolivet: Statistical Tools for Nonlinear Regression: A Practical

Guide with S-PLUS Examples.
Jolliffe: Principal Component Analysis.
Kolen/Brennan: Test Equating: Methods and Practices.
Kotz/Johnson (Eds.): Breakthroughs in Statistics Volume I.

(continued after index)

Nozer D. Singpurwalla
Simon P. Wilson

Statistical Methods
in Software Engineering

Reliability and Risk

With 55 Illustrations

i Springer

Nozer D. Singpurwalla
Department of Operations Research
The George Washington University
Washington, DC 20052
USA
nozer@research.circ.gwu.edu

Simon P. Wilson
Department of Statistics
Trinity College
Dublin 2
Ireland
swilson@stats.tcd.ie

Library of Congress Cataloging-in-Publication Data
Singpurwalla, Nozer D.

Statistical methods in software engineering: reliability and risk
1N0zer D. Singpurwalla, Simon P. Wilson.

p. cm. - (Springer series in statistics)
Includes bibliographical references.
ISBN 978-1-4612-6820-8 ISBN 978-1-4612-0565-4 (eBook)
DOI 10.1007/978-1-4612-0565-4
1. Software engineering. 2. Statistical methods. 1. Wilson, Simon P.

II. Title. III. Series.
QA76.758.S535 1999
005.1-dc21 99-14737

Printed on acid-free paper.

© 1999 Springer Science+Business Media New York
Originally published by Springer-Verlag New York in1999
Softcover reprint of the hardcover 1 st edition 1999
AII rights reserved. This work may not be translated or copied in whole or in part without the written
permission ofthe publisher Springer Science+Business Media, LLC, except for brief excerpts in con
nection with reviews or scholarly analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use of general descriptive names, trade names, trademarks, etc., in this publication, even if the
former are not especially identified, is not to be taken as a sign that such names, as understood by the
Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone.

Production managed by Frank McGuckin; manufacturing supervised by Nancy Wu.
Camera-ready copy provided by the author using EXP.

987 6 5 4 3 2 1

ISBN 978-1-4612-6820-8

Preface

This preface pertains to three issues that we would like to bring to the
attention of the readers: our objectives, our intended audience, and the nature of
the material.

We have in mind several objectives. The first is to establish a
framework for dealing with uncertainties in software engineering, and for using
quantitative measures for decision making in this context. The second is to bring
into perspective the large body of work having statistical content that is relevant
to software engineering, which may not have appeared in the traditional outlets
devoted to it. Connected with this second objective is a desire to streamline and
organize our own thinking and work in this area. Our third objective is to
provide a platform that facilitates an interface between computer scientists and
statisticians to address a class of problems in computer science. It appears that
such an interface is necessary to provide the needed synergism for solving some
difficult problems that the subject poses. Our final objective is to serve as an
agent for stimulating more cross-disciplinary research in computer science and
statistics. To what extent the material here will meet our objectives can only be
assessed with the passage of time.

Our intended audience is computer scientists, software engineers, and
reliability analysts, who have some exposure to probability and statistics.
Applied statisticians interested in reliability problems are also a segment of our
intended audience. The content is pitched at a level that is appropriate for
research workers in software reliability, and for graduate-level courses in applied
statistics, computer science, operations research, and software engineering.
Industrial scientists looking for a better understanding of the ideas behind the
statistical tools that they use for addressing problems of software quality may
also find the material of value. We have deliberately steered away from

VI Preface

presenting techniques that are purely data analytic, since there are ample sources
that do this.

Recognizing the diverse nature of our audience, and in keeping with our
stated objectives, we have adopted an expository style and have striven to give
as many illustrative examples as is possible; furthermore, we have endeavored to
cast the examples in a context that may appeal to software engineers. Additional
examples have been delegated to exercises. Readers who are formally trained in
the statistical sciences will be familiar with the material of Chapter 2; they may
find little that is new here, and may therefore be tempted to skip it. The same
may also be true of the initial parts of Chapter 4. However, we urge such readers
not to do so because of two reasons. The first is that the illustrative examples
give a flavor of the nature of problems that we are trying to address. The second
reason is that our interpretation of probability is personal (subjective); it
therefore makes us look at the standard material in probability and statistics at a
different angle. Of course, not all are willing to subscribe to this perspective.
Computer scientists, operations research analysts, and software engineers should
find the material of Chapter 2 and the initial parts of Chapter 4 as a useful
review, but with a focus towards a specific application. The material in the other
chapters is self-evident and so does not deserve special comment.

By way of a final admission, we are anticipating the criticism that any
endeavor that attempts to fill a gap in the literature which is at the interface of
computer science and statistics is necessarily incomplete. If this be so, then our
hope is that the material here will stimulate the next generation of writers to
expand the frontiers of the interface and to eliminate the pockets of
incompleteness that we undoubtedly have created.

May 1999 Nozer D. Singpurwalla
Simon P. Wilson

Acknowledgments

Nozer D. Singpurwalla acknowledges the support of The George
Washington University, and the sponsorship of The Army Research Office, The
Air Force Office of Scientific Research, and The Office of Naval Research for
initiating and sustaining his research on the subject of this book. Drs. Jagdish
Chandra, Robert Launer, Charles Holland, Jon Sjogren, Seymour Selig, Julia
Abrahams, and Professors Edward Wegman, Harold Liebowitz, William
Marlow, Donald Gross, and Richard Soland are singled out with heartful thanks.
He also acknowledges the contributions to his learning of his many coauthors;
Professors Richard Barlow, Frank Proschan, Dennis Lindley, and Jayaram
Sethuraman deserve special mention. For ensuring quality during the final
stages of this work, the keen eye and the skill of Karen Brady, Yuling Cui,
Selda Kapan, Seung Byeon, Andrew Swift, and Chung-Wai Kong are
acknowledged, with Chung-Wai and Yuling deserving a very singular
recognition. Mrs. Teresita Abacan's infinite efforts to convert handwritten notes
into a masterful manuscript, often at supersonic speeds, is gratefully admired.
Professors Ingram Olkin and Stephen Feinberg cast the initial bait, a long time
ago, to suggest the writing of this book, and Dr. John Kimmel of Springer
Verlag ensured that the fish did not slip away. Finally, he acknowledges the
support of his family members, wife, children, mother, mother-in-law, and
sister, each of whom in their own subtle way contributed to his work by not
imposing any demands on him. Like the hidden parameters of probability
models, they are the invisible coauthors.

Simon P. Wilson acknowledges his parents, for all their support and
encouragement.

CONTENTS

Preface
Acknowledgments

1 Introduction and Overview
1.1 What is Software Engineering?

v

vii

1.2 Uncertainty in Software Production 2

1.2.1 The Software Development Process 2
1.2.2 Sources of Uncertainty in the Development Process 3

1.3 The Quantification of Uncertainty 4
1.3.1 Probability as an Approach for

Quantifying Uncertainty 4
1.3.2 Interpretations of Probability 6
1.3.3 Interpreting Probabilities in Software Engineering 9

1.4 The Role of Statistical Methods in Software Engineering 9

1.5 Chapter Summary 11

2 Foundational Issues: Probability and Reliability

2.0 Preamble

2.1 The Calculus of Probability
2.1.1 Notation and Preliminaries
2.1.2 Conditional Probabilities and Conditional

2.1.3
2.1.4

Independence
The Calculus of Probability
The Law of Total Probability, Bayes' Law,
and the Likelihood Function

2.1.5 The Notion of Exchangeability

2.2 Probability Models and Their Parameters
2.2.1 What is a Software Reliability Model?
2.2.2 Some Commonly Used Probability Models
2.2.3 Moments of Probability Distributions and

Expectation of Random Variables
2.2.4 Moments of Probability Models:

The Mean Time to Failure

13

13

14

14

16
17

20
25

28
28
29

39

41

x Contents

2.3 Point Processes and Counting Process Models 41

2.3.1 The Nonhomogeneous Poisson Process Model 43
2.3.2 The Homogeneous Poisson Process Model 45
2.3.3 Generalizations of the Point Process Model 46

2.4 Fundamentals of Reliability 52
2.4.1 The Notion of a Failure Rate Function 53
2.4.2 Some Commonly Used Model Failure Rates 54
2.4.3 Covariates in the Failure Rate Function 57
2.4.4 The Concatenated Failure Rate Function 58

2.5 Chapter Summary 59

Exercises for Chapter 2 61

3 Models for Measuring Software Reliability 67

3.1 Background: The Failure of Software 67

3.1.1 The Software Failure Process and Its
Associated Randomness 68

3.1.2 Classification of Software Reliability Models 70

3.2 Models Based on the Concatenated Failure Rate Function 72

3.2.1 The Failure Rate of Software 72
3.2.2 The Model of Jelinski and Moranda (1972) 72
3.2.3 Extensions and Generalizations of the Model

by Jelinski and Moranda 75
3.2.4 Hierarchical Bayesian Reliability Growth Models 76

3.3 Models Based on Failure Counts 77

3.3.1 Time Dependent Error Detection Models 77

3.4 Models Based on Times Between Failures 80

3.4.1 The Random Coefficient Autoregressive
Process Model 80

3.4.2 A Non-Gaussian Kalman Filter Model 81

3.5 Unification of Software Reliability Models 82

3.5.1 Unification via the Bayesian Paradigm 83
3.5.2 Unification via Self-Exciting Point Process Models 84
3.5.3 Other Approaches to Unification 86

3.6 An Adaptive Concatenated Failure Rate Model 91

3.6.1 The Model and Its Motivation 92

Contents Xl

3.6.2 Properties of the Model and
Interpretation of Model Parameters 94

3.7 Chapter Summary 95

Exercises for Chapter 3 97

4 Statistical Analysis of Software Failure Data

4.1 Background: The Role of Failure Data

4.2 Bayesian Inference, Predictive Distributions,
and Maximization of Likelihood
4.2.1 Bayesian Inference and Prediction
4.2.2 The Method of Maximum Likelihood
4.2.3 Application: Inference and Prediction Using

Jelinski and Moranda's Model
4.2.4 Application: Inference and Prediction

101

101

103
104
105

106

Under an Error Detection Model 110

4.3 Specification of Prior Distributions 113
4.3.1 Standard of Reference-Noninformative Priors 114
4.3.2 Subjective Priors Based on Elicitation

of Specialist Knowledge 115
4.3.3 Extensions of the Elicitation Model 117
4.3.4 Example: Eliciting Priors for the

Logarithmic-Poisson Model 118
4.3.5 Application: Failure Prediction Using

Logarithmic-Poisson Model 120

4.4 Inference and Prediction Using a Hierarchical Model 124

4.4.1 Application to NTDS Data:
Assessing Reliability Growth 126

4.5 Inference and Predictions Using Dynamic Models 129

4.5.1 Inference for the Random Coefficient
Exchangeable Model 131

4.5.2 Inference for the Adaptive Kalman Filter Model 141
4.5.3 Inference for the Non-Gaussian

Kalman Filter Model 143

4.6 Prequential Prediction, Bayes Factors,

and Model Comparison 145

xii Contents

4.6.1 Prequential Likelihoods and Prequential Prediction 146
4.6.2 Bayes' Factors and Model Averaging 148
4.6.3 Model Complexity-Occam's Razor 150
4.6.4 Application: Comparing the Exchangeable,

Adaptive, and Non-Gaussian Models 151
4.6.5 An Example of Reversals in the

Prequential Likelihood Ratio 153

4.7 Inference for the Concatenated Failure Rate Model 154

4.7.1 Specification of the Prior Distribution 155
4.7.2 Calculating Posteriors by Markov Chain

Monte Carlo 157
4.7.3 Testing Hypotheses About Reliability

Growth or Decay 159
4.7.4 Application to System 40 Data 160

4.8 Chapter Summary 164

Exercises for Chapter 4 166

5 Software Productivity and Process Management 169

5.1 Background: Producing Quality Software 169

5.2 A Growth-Curve Model for Estimating

Software Productivity 170
5.2.1 The Statistical Model 171
5.2.2 Inference and Prediction Under the

Growth-Curve Model 174
5.2.3 Application: Estimating Individual

Software Productivity 176

5.3 The Capability Maturity Model for Process
Management 180

5.3.1 The Conceptual Framework 181
5.3.2 The Probabilistic Approach for

Hierarchical Classification 183
5.3.3 Application: Classifying a Software Developer 186

5.4 Chapter Summary 188

Exercises for Chapter 5 190

Contents Xlll

6 The Optimal Testing and Release of Software

6.1 Background: Decision Making and the
Calculus of Probability

6.2 Decision Making Under Uncertainty

6.3 Utility and Choosing the Optimal Decision
6.3.1 Maximization of Expected Utility
6.3.2 The Utility of Money

6.4 Decision Trees
6.4.1 Solving Decision Trees

6.5 Software Testing Plans

6.6 Examples of Optimal Testing Plans
6.6.1 One-Stage Testing Using the Jelinski-Moranda

Model
6.6.2 One-and Two-Stage Testing Using the Model

by Goel and Okumoto
6.6.3 One-Stage Lookahead Testing Using the Model

by Goel and Okumoto
6.6.4 Fixed-Time Lookahead Testing for the

Goel-Okumoto Model
6.6.5 One-Bug Lookahead Testing Plans
6.6.6 Optimality of One-Stage Look Ahead Plans

6.7 Application: Testing the NTDS Data

6.8 Chapter Summary

Exercises for Chapter 6

7 Other Developments: Open Problems

7.0 Preamble
7.1 Dynamic Modeling and the Operational Profile

7.1.1 Martingales, Predictable Processes, and
Compensators: An Overview

7.1.2 The Doob-Meyer Decomposition of Counting

191

191

192

194

194
195

196

197

198

202

202

206

211

212
214
215

216

217

219

221

221
222

222

Processes 224
7.1.3 Incorporating the Operational Profile 227

7.2 Statistical Aspects of Software Testing: Experimental Designs 228
7.2.1 Inferential Issues in Random and Partition Testing 229

xi v Contents

7.2.2 Comparison of Random and Partition Testing 231
7.2.3 Design of Experiments in Software Testing 232
7.2.4 Design of Experiments in Multiversion Programming 236
7.2.5 Concluding Remarks 237

7.3 The Integration of Module and System Performance 238
7.3.1 The Protocols of Control Flow and Data Flow 239
7.3.2 The Structure Function of Modularized Software 242

Appendices 247

Appendix A Statistical Computations Using the Gibbs
Sampler 249

A.I An Overview of the Gibbs Sampler 250

A.2 Generating Random Variates-The Rejection Method 253
A.3 Examples: Using the Gibbs Sampler 254

A.3.1 Gibbs Sampling the Jelinski-Moranda Model 254
A.3.2 Gibbs Sampling the Hierarchical Model 255
A.3.3 Gibbs Sampling the Adaptive Kalman Filter Model 256
A.3.4 Gibbs Sampling the Non-Gaussian Kalman Filter Model 258

Appendix B The Maturity Questionnaire and Responses 261

B.I The Maturity Questionnaire 261
B.2 Binary (Yes, No) Responses to the Maturity Questionnaire 265
B.3 Prior Probabilities and Likelihoods 266

B.3.1 The Maturity Levels P(M; I M;_]) 266
B.3.2 The Key Process Areas P(Kij) and P(K;j 1M;) 266
B.3.3 The Likelihoods £(Kij; E;j) 268

References 269

Author Index 283

Subject Index 287

1
INTRODUCTION AND OVERVIEW

1.1 What is Software Engineering?

Since the dawn of the computer age, in the 1940s, we have witnessed a
prodigious increase in the performance and use of computers. Accompanying
this evolution has been a steady shift in emphasis of computer systems
development, from hardware-the physical components of the computer-to
software-the process of instructing a computer to perform its tasks.
Consequently, today only about 10% of the cost of a large computer system lies
in the hardware, compared with over 80% in the 1950s. The reasons behind this
trend are both the cause and the justification for the emergence of the field of
software engineering. In essence, as is true of all mechanical technologies, the
cost of hardware gets constantly driven down as new technologies of production
come into play, whereas the cost of producing software, which involves
harnessing the collective skills of several personnel, gets driven up. Further
contributing to these costs are the nuances of delays and budget overruns
[Charette (1989), Chapter 1].

The term software engineering was not coined until the late 1960s. At that
time concerns about the "software crisis," with software being expensive, bug
ridden, and impossible to maintain, led to the notion that a move towards greater
discipline in software development could resolve the problem. Hence "software
engineering" was born. The IEEE glossary on the subject defines software
engineering as the systematic approach to the development, operation,
maintenance, and retirement of computer software.

N. D. Singpurwalla et al., Statistical Methods in Software Engineering
© Springer-Verlag New York, Inc. 1999

2 1. Introduction and Overview

Thus, contrary to common belief, software engineering is not limited to the
efficient production of computer code. Indeed, according to Jalote (1991), only
about one fifth of the cost of producing software can be attributed to coding.
Coding is but one activity in a process that involves problem specification,
requirements analysis, installation, and maintenance. Software engineering
attempts to bring a systematic methodology to this entire four-phase process.

The definition of software engineering presumes an appreciation as to "what
software is." Here again, the IEEE glossary provides an interpretation.

Software is the collection of computer programs, procedures, rules, and their
associated documentation, and the last but not least, data.

Once again, contrary to common belief, software is not just computer
code-it encompasses all the information necessary to instruct and to manage a
computer system.

To summarize, software engineering can be viewed as the efficient
management, of a cycle of activities involving the development, operation,
maintenance, and retirement of software. By maintenance it is meant an
upgrading of the system to respond to changing needs, and the elimination of any
residual bugs. By retirement it is meant the designing of new software to replace
the existing version.

1.2 Uncertainty in Software Production

As a general rule, uncertainty arises in any actIvIty involving unknown
factors. With software, uncertainty is inevitable in all four stages of the software
engineering cycle. Despite this fact, attention to uncertainty has predominantly
been focused towards the development phase. For this reason, we find it useful
to start with a brief description of the development process; more details can be
found in Jalote (1991).

1.2.1 The Software Development Process

A broadly agreed upon sequence of stages that constitute what is
referred to as the software development process are: analysis and specification of
requirements, design of the software, and finally, coding, testing, and debugging.
There could be included a further stage, namely, installation; this stage involves
implementing the software in a client's environment, training the client's staff,
and changing the code to rectify bugs or other problems of implementation.

In the analysis and specification phase of the development process, the aim
is to precisely define, in close partnership with the user, what the software is to
accomplish. Mention of how this is to be done occurs at the next stage. From the
point of view of the user, this phase may also include the selection of an
organization to undertake the project. For small systems, the analysis and
specifications phase may be relatively straightforward, but for large projects this
phase will be difficult and prone to error. Techniques such as data flow

1.2 Uncertainty in Software Production 3

diagrams have been developed to systematize the specification of requirements
and to reduce the number of mistakes made. The aim is to produce an
unambiguous specification of what the software is required to do; details are in
Davis (1990).

In the design phase of the development process, a strategy is formulated to
solve the problem that has been specified in the previous phase. The design
phase progresses by splitting the original problem into subproblems that can be
separately worked upon, and finally integrated. The design phase concludes with
a design document that specifies how the problem is to be solved, what data
structures and formats are to be used, the nature of the modules, and for each
module its internal logic and the algorithms to be employed.

The coding and testing phase completes the development process. In coding,
emphasis is placed on producing an easily understandable code that will aid
greatly in reducing the costs of later testing and maintenance. Individual modules
may be tested during coding, but the whole program is not. In the testing part of
this phase, the modules are integrated to form the entire system which is then
tested to see if it meets specifications. With testing, proper interaction between
the modules is ensured. The purpose of testing is to detect the presence of
software faults or bugs in the software code. A software fault is an error in the
program source-text, which when the program is executed under certain
conditions can cause a software failure.

By software failure we mean the deviation of the program output from what
it should be according to our requirements. A software fault is generated the
moment a programmer or system analyst makes a mistake. Once testing is
completed, the system is demonstrated to its client. The nature of the tests given
to the software is important. This is because the set of all possible inputs to the
software is generally enormous and so is the sequence in which the inputs are
received by the software; that is, the operational profile of the software is not
unique. Therefore, exhaustive testing of the software is not possible and,
consequently, the selection of appropriate tests is a crucial matter. Also critical is
the manner in which information about the credibility of the software is assessed
from the limited tests. By many accounts, the testing phase of the development
process is viewed as being the most expensive. To date, statistical methods have
played a key role with regard to only the testing phase of the development
process.

1.2.2 Sources of Uncertainty in the Development Process

Conceptually, there are many sources of uncertainty in the analysis and
specification phase of the process. However, one source that has received much
attention pertains to the selection of the organization to be used to develop,
install, and maintain the software. Here to make sensible decisions several
factors, such as the abilities of the organizations to successfully undertake each
phase of the development process, the technical and managerial qualifications of

4 1. Introduction and Overview

its staff, its track record, its ability to control quality, its responsiveness to
changes, and the like must be considered.

Uncertainties in the design phase are those associated with the times
required to complete the coding and the testing phases, those associated with
changes in requirements, and those associated with the environment under which
the software operates. Uncertainties associated with the testing phase pertain to
the number of bugs observed, the time required to eliminate the bugs, the test
bed, the testing strategy to use, and so on. Uncertainties do not disappear after
the testing phase. Once the testing terminates and the software is released,
uncertainties about the credibility of the software continue to persist as does the
uncertainty about the time at which the software will be replaced.

Clearly, like other production processes, the software development process
is besieged with uncertainties, uncertainties which interact (and propagate) with
each other. All these impinge on the final cost of the project. For example,
uncertainties about the selection of an organization for software development
propagates to uncertainties about the quality of the code, which then affects the
time for testing, and this has an influence on the reliability of the software.
Within the code, the modules form a network of interacting programs, and the
reliabilities of the modules combine to form the reliability of the system. The
manner in which the uncertainties interact and propagate is generally
complicated.

1.3 The Quantification of Uncertainty

Uncertainty is a common phenomenon that arises in almost all aspects of our
lives. Here, we concern ourselves with ways of quantifying uncertainty and
means by which we can cope with it, especially as it pertains to the specific field
of software engineering. Two branches of mathematics playa role in approaches
for quantifying and coping with uncertainty: probability theory for quantifying
and combining uncertainties, and statistical inference for revising the
uncertainties in the light of data. In what follows, and also in Chapter 2, we
review key aspects of the former; later on, in Chapter 4, we expand the
discussion to encompass aspects of the latter.

1.3.1 Probability as an Approach for Quantifying Uncertainty

The literature in mathematics and in philosophy discusses several
approaches for quantifying uncertainty. All of these approaches, save possibility
theory and fuzzy logic, have roots in the theory of probability. However, not all
of them fully subscribe to the calculus of probability as the sole basis for treating
uncertainty. This compromise in philosophy has occurred despite arguments
which show that probability is a very defensible way for quantifying uncertainty.
It is not our intention here to debate the various approaches for describing
uncertainty. Rather, we start by stating that for our purposes, probability and its

1.3 The Quantification of Uncertainty 5

calculus are used as the sole means for quantifying the uncertainties in software
engineering.

To start our discussion on probability, let us focus attention on some
reference time, say T, which for purposes of convenience is often taken to be
zero. At time T we have at our disposal two types of quantities, those known to
us and those which are not. For example, with software, the known quantities
would be the number of lines of code, the composition of the programming team,
the amount of testing that the software has been subjected to, the cost of
producing it, and so on. The unknown quantities are conceptually many, but the
ones of greatest interest to us could be the number of bugs remaining in the
software, the running time (measured in central processing unit time increments)
of the software until failure, the ability of the software to perform a particular
operation, and so on. The collection of known quantities is denoted 1-l, for
history, and the unknowns, referred to as random quantities, are denoted by
capital letters, such as Tor X. The particular values that T and X can take, known
as their realizations, are denoted by their corresponding small letters, t and x,
respectively. If the realizations of a random quantity are numerical, that is, if t
and x are numbers, then the random quantities are known as random variables.
Of particular interest are some special random quantities, called random events.
These are often denoted by E, and their distinguishing feature is that any E can
take only two values, say e, and e2. Random events are generally propositions,
and these are either true or false. In the context of software, events could be
propositions like, "this program contains no bugs," "this program will experience
a failure when it is next used," "T will be greater than t, for some t :2: 0," and so
on. Since a proposition is either true or false, E = e, could denote its truth, and
E = e2, otherwise. Often, the eiS are assigned numerical values, like 1 and 0, and
in such cases the random events are known as binary random variables. Random
variables are classified as being either discrete or continuous. Discrete random
variables are those whose realizations are countable whereas continuous random
variables are those whose realizations are not. For example, if the random
variable N denotes the number of bugs that are remaining in the software, then N
is discrete, whereas if T denotes the time to failure of the software, then T is
continuous.

Probability theory deals with the quantification of uncertainty, at the
reference time T, our uncertain quantities being denoted by capital letters such as
T, X, E, and the like. We need to quantify uncertainty, because to quantify is to
measure, and measurement is necessary to bring to bear the full force of the
logical argument. Thus, at time T, we need to express (i.e., to assess) our
uncertainty about a random quantity, or an event E, in the light of 1-l, the
available history at time T. But measurement means assigning numerical values,
and following convention we denote this number by pr(E 11-l), the superscript T

representing the time of assessment and the symbol 1-l representing the fact that
the assessment is made in the light of the history at time T. The number
PT(E 11i.) is known as the probability of the event E (as assessed at T in the light

6 1. Introduction and Overview

of 1-i). In the interest of brevity, it has become a practice to suppress both T and
1-i and to denote probability by simply P(E). However, it is very important,
especially when describing the credibility of software, to bear in mind that at
some future time T + ,,(, the history may change (because new information
surfaces) and so PT+"f(E 11-i) will not in general be the same as PT(E 11-i).
Having laid out the preceding framework, we next address several questions
about the properties of PT(E 11-i) that naturally arise.

• What does probability mean (that is, how should we interpret it)?
• How should we assign probabilities (that is, how should we make it

operational) ?
• What rules should govern probabilities (that is, what is the calculus of

probability)?
• Who is supposed to be assessing these probabilities (that is, whose history is

being taken into account)?

These questions are at the core of the several ongoing debates about the
nature of probability. Following the attitude of Chebyshev (1821-1894), Markov
(1856-1922), and Lyapunov (1857-1918), most mathematicians concentrate
only on the calculus of probability, about which there is agreement, albeit not
complete. Generally, the mathematicians have refrained from interpreting the
remaining issues, and following the suggestion of Bernstein (1880-1968) [which
culminated in Kolmogorov's (1933) famous work; Kolmogorov (1950)], view
even the calculus of probability as being axiomatic. However, those interested in
applications must come to terms with all the preceding issues. In response to this
need, we next discuss the several interpretations of probability. The calculus of
probability, to include the fundamentals of reliability and an overview of
probability models, is reviewed later, in Chapter 2.

1.3.2 Interpretations of Probability

What does the number PT(E 11-i) mean? For example, what does it mean to
say that the probability of a coin landing heads on the next toss is 0.5, or that the
probability is 0.999 that this piece of software is bug free? It turns out that the
answer to this question is not unique, and that it depends on one's philosophical
orientation. For example, the pioneers of probability theory, Bernoulli,
DeMoivre, Bayes, Laplace, and Poisson, who like Newton were determinists,
viewed probability as a measure of partial knowledge, or a degree of certainty,
and used the "principle of indifference" (or insufficient reason) to invoke an
argument of symmetry of outcomes to arrive at a number such as 0.5 for the
probability of heads. However, for problems involving loaded coins symmetry
could not be used, and the pioneers did not hesitate to use relative frequencies.
Indeed, Bernoulli's law of large numbers describes conditions under which

l.3 The Quantification of Uncertainty 7

relative frequencies become stable, and the DeMoivre-Laplace central limit
theorem describes the pattern of fluctuations of the relative frequencies from a
central value. A relative frequency interpretation of probability may date back to
Aristotle, but its beginnings can be traced to Quetlet, John Stewart Mill, and
John Venn in 1866; its most prominent spokesperson was von Mises (1957).
Difficulties with this interpretation of probability surfaced as early as 1860 with
Maxwell's probabilistic description of the velocity of gas molecules, but the
positivist sentiment of the early 20th century did not deter its growing
importance. Consequently, much of statistical practice today is based on a
relative frequency interpretation of probability. We show later, in Section 1.3.3,
that this interpretation of probability poses difficulties in attaching meaning to a
statement like "the probability that this software contains no bugs is 0.999." The
most vigorous opponents of the frequency school have been the 20th century
subjectivists such as Ramsey, de Finetti, and Savage who have sought a
foundation for probability based on personal betting rates and personal degrees
of belief. This is in slight contrast to the pioneers who sought a foundation for
probability based on fair betting rates and warranted degrees of belief. The
subjectivist or personal interpretation of probability forms a foundation for much
of what is now practiced as subjectivist Bayesian inference. In what follows, we
summarize the key features of the frequentist and the SUbjective interpretations
of probability. In Section 1.3.3, we point out which of these two interpretations
of probability is to be preferred for describing the credibility of software, and
indicate the reasons behind our preference.

Before we close this section, it is useful to mention that there is another
interpretation of probability which is due to Keynes (1883-1946) and also to
Carnap (1891-1970). This is known as the "a priori" interpretation, and here
probability describes a logical relationship between statements; consequently,
every assigned probability is true, correct, and fixed. However, the assigned
probabilities are relative to the evidence at hand and so an a priori probability is
both objective and subjective. Harold Jeffreys was attracted to the a priori
interpretation of probability but appears to have veered away from the notion
that every assigned probability must be true, correct, and fixed.

Relative Frequency Theory of Probability

In the relative frequency theory of probability, also known as afrequentist
theory, probability is defined as the limit of a relative frequency, expressed as an
infinite series. Probability is metaphysically viewed, as something physical, and
as an objective (i.e., consistently verifiable) property of the real world, such as
weight or volume. Consequently, probabilities can only be assessed a posteriori
(that is, upon observation). This is in contrast to some other theories which view
probability as an index of human attitudes. The most important feature of the
frequentist theory is that it can only be applied to scenarios wherein one can
conceptualize indefinitely repetitive trials conducted under "almost identical

8 1. Introduction and Overview

conditions." That is, probability is a property of a collective or an ensemble.
Individual and infrequent events are excluded from consideration, because they
do not possess this repetitive character. Games of chance and social mass
phenomena, such as insurance and demography, or production mass phenomena,
such as those encountered in industrial quality control, are suitable collectives
and well within the realm of application of the theory. Also suitable as a
collective are the molecules of a gas undergoing Brownian motion; that is, the
molecules collide with each other and with the walls of the container.

To summarize, in order to invoke the relative frequency theory of
probability, we first need to establish the existence of a collective. Second, when
we speak of the probability of a certain attribute, say heads, we mean the
probability of encountering the attribute within the collective. Third, since
probability is defined as the limit of a relative frequency expressed as an infinite
series, such limits can only be proved to exist in a series that is mathematical. In
applications there can be no assurance that a limit will exist, and if it does exist,
its actual value can neither be verified nor disputed. The main virtues of this
theory are psychological (on grounds of objectivity) and practical (it works in
cases such as biased dice and loaded coins). It is appealing to physical scientists,
to whom probability, like mass and volume, is a construct that cannot be directly
observed but which serves a useful purpose.

Subjective or Personal Probability

The subjective or personal probability of an event, say E, is the degree of
belief that a person (or a committee) has about the occurrence of E. Personal
probabilities should therefore depend on 1{, the background information that the
person has about E. The probability need not be unique to all persons, and
furthermore, can be different for the same person at different points in time.
Clearly, subjective probability cannot be construed as being objective.

For example, suppose that event E denotes a coin landing heads on the next
toss. Then by the probability of E, we mean a quantification of our belief about
E. This belief could be guided by all our knowledge of the coin, such as its
country of origin, its metallic composition and the like, our experience with
tossing coins in general, and ultimately our judgment about the fairness of the
coin. Suppose that based on all of the preceding considerations we declare
peE 11{) to be 0.5. If our 1{ were to change, perhaps because we flipped the
coin several times and noted a preponderance of heads over tails, then we would
be allowed to revise P(EI1{) from 0.5 to a number larger than 0.5. Similarly, if E
denotes the event that our software has no bugs, then peE 11{) denotes our
personal belief about E based on 1{, all our knowledge about the software, to
include any testing we may have done on it. It is important to note that in order
to declare peE I 1{) we do not have to conceptualize an ensemble, nor do we
have to think in terms of indefinite trials under almost identical conditions.

1.4 The Role of Statistical Methods in Software Engineering 9

Subjective probability was made operational by de Finetti (1937) who thought of
peE 1'J-l) as a betting coefficient, that is, the amount that the person declaring it
is willing to stake in exchange of one monetary unit if E turns out to be true. If E
turns out to be false, then the person is prepared to lose peE 1'J-l). Coherence
(see Chapter 2) demands that a person willing to stake peE 1'J-l) for the
occurrence of E, should also be prepared to stake an amount 1 - peE 1'J-l) for
the nonoccurrence of E. In avoiding the requirement of ensembles and the
existence of unverifiable limits, subjective probability has a more universal
scope of applicability than frequentist probability. Its main disadvantage stems
from the thought that in actuality betting coefficients may not represent a
person's true beliefs. (An indicator of the difference between the two is that
betting coefficients are countably additive whereas SUbjective probabilities need
only be finitely additive.)

1.3.3 Interpreting Probabilities in Software Engineering

Because the relative frequency theory of probability requires the
conceptualization of a repeatable sequence of trials (or experiments) under
almost identical conditions, it is not a suitable paradigm for quantifying
uncertainty about software performance. There are several reasons for making
this claim. The first is that software is a one-of-a-kind entity for which the notion
of an infinite size ensemble is difficult to justify. Second, it is hard to foresee the
repeated testing of a single piece of software under almost identical conditions;
with computer applications, the notion of "almost identical conditions" is not
precise. Finally, and perhaps more fundamentally, the objective nature of
frequentist probability is anathema to the spirit of intuition and inspiration that is
necessary for addressing software engineering problems. In all aspects of
software development, the personal experience of the engineer or the manager is
a vital source of information. The frequentist objectivist interpretation of
probability forces us to ignore this knowledge. In contrast, the subjective
interpretation allows us to discuss the uncertainty attached to a unique object,
such as software, and also allows us to incorporate personal information and
knowledge of the software development process by conditioning on 'J-l.

The literature on statistical aspects of software engineering does not
formally recognize the difference between objective and subjective probabilities.
Consequently, the techniques used are a hybrid of those dictated by either
school. In what follows, we strive to adhere to the subjective view.

1.4 The Role of Statistical Methods in Software Engineering

By statistical methods in software engineering we mean a unified framework
for quantifying uncertainty, for updating it in the light of data, and for making
decisions in its presence. Such methods have been developed and used for a

10 1. Introduction and Overview

wide variety of problems in software engineering. We close this chapter with an
overview of the material that is described in the subsequent text.

By and large, the most widely appreciated use of statistical methods in
software engineering is that pertaining to software credibility (or reliability).
Here, the problem is to describe the quality of the software, usually in terms of
the probability of not encountering any bugs over a specified period of time. A
large number of probability models have been proposed to address this topic,
and Chapter 3 describes some of the more popular ones. Many of these models
have similar modeling strategies and assumptions, and in Section 3.5 we look at
ways in which we may view these models as special cases of a more general type
of models.

Related to the issue of software reliability are the analyses of software
failure data. Here, observations on the detection of bugs are used to update the
uncertainties about the software's credibility, and to make projections about
future failures. The analyses of failure data are performed using the techniques
of statistical inference, and an overview of one such technique is given in
Chapter 4, where we also discuss the application of these techniques to some of
the models of Chapter 3. An important purpose served by the models of Chapter
3 and their associated statistical inference is the problem of optimally testing
software. Here, one needs to make a decision as to how much testing a piece of
software must undergo before it is released for use. Such decisions are based on
both the reliability of the software and a tradeoff between the costs of testing
versus the costs of in-service failures. Optimum testing is discussed in Chapter 6.
An essential aspect of optimal testing is the design of an effective test plan, that
is, the design of the software testing experiment. Since the number of possible
inputs to a piece of software is necessarily limited, the choice of inputs that
maximize the information which can be gleamed from them is a central issue.

The material described pertains to the role played by statistical methods at
the end of the software development process, when the software has been
created. Statistical methods can also play a role at the beginning of the
development process. Often, after establishing specifications, one of the first
decisions to be made is the selection of a software house, or a programming
team, to develop the code. A deterministic scheme for classifying software
development houses into one of five classes has been developed by the Software
Engineering Institute of Carnegie Mellon University. In Chapter 5 we describe a
probabilistic version of this scheme wherein the classifications made have
associated with them a measure of uncertainty. That is, instead of classifying a
software Muse into exactly one of the five categories, as is done by the Software
Engineering Institute's procedure, we assign a weight to each category, with the
weights reflecting our strength of belief regarding a software house's
membership in each category. Chapter 5 also discusses techniques to assess the
productivity of programming teams. Such assessments are useful for project
planning, wherein it is necessary to have good estimates of the time and effort
required to complete programming and coding tasks.

1.5 Chapter Summary 11

The final chapter pertains to some recent developments on the use of statistical
methods in software engineering. We anticipate that the impact of such methods
will continue to be felt, and our aim is to give the reader a feel for the direction
in which the subject is heading. Naturally, our choice of material is highly
subjective and is limited to what we are aware of at the time of this writing.

1.5 Chapter Summary

In this chapter we have attempted to define what is software, and what is
software engineering. We have described the software engineering cycle as being
composed of the four stages of development, operation, maintenance, and
retirement, and have pointed out the nature of uncertainty that arises at each of
these stages. We have said that uncertainty arises when we have to select an
organization to develop the software, when we have to assess the times required
to code and test the software, when we have to assess the quality of software via
the number of bugs it contains, and when we have to decide on a testing strategy.

By far, the most important message of this chapter is the thesis that, for the
purposes of this book, probability and its calculus are used as the sole basis of
quantifying uncertainties in software engineering. This is followed by a brief
discussion of the different types of probability, and the position that the
subjective interpretation of probability is the one that is most suitable for
addressing the problems that are posed here. The chapter ends with a discussion
of the key role played by statistical methods in software engineering, and an
overview of the remaining chapters.

2
FOUNDATIONAL ISSUES:

PROBABILITY AND RELIABILITY

2.0 Preamble

In Chapter 1 we have drawn attention to some scenarios in software
engineering where uncertainty is encountered, and have discussed the need for
its quantification. We mentioned that there are many approaches for quantifying
uncertainty, but that in our view, probability is the most comprehensive one. We
have also discussed the notions of random quantities, random variables, random
events, and the importance of the background information ?t. The role of a
reference time T at which probabilities were assessed was mentioned, and finally,
it was argued that for any random quantity C, a subjective interpretation of its
probability PT(C l?t) was an appropriate paradigm for dealing with the kind of
problems that we are involved with here.

We start this chapter with details about the properties of PT(C l?t), that is,
about the calculus of probability, and give some reasons that justify it. We have
mentioned before that whereas the interpretation of probability is subject to
debate, its calculus is by and large universal. Possibility theory [see Zadeh
(1981)] has often been proposed as an alternate way of quantifying uncertainty;
its calculus is very different from the calculus of probability, and we have yet to
see arguments that justify it. We have singled out for mention here possibility
theory, because many engineers seem to be attracted to it and also to its
precursor, fuzzy logic.

Our discussion of the calculus of probability is followed by its
consequences, such as the law of total probability and Bayes' Law; these playa

N. D. Singpurwalla et al., Statistical Methods in Software Engineering
© Springer-Verlag New York, Inc. 1999

14 2. Foundational issues: Probability and Reliability

central role in developing probability models and incorporating the effect of new
information in our appreciation of uncertainty. The first section includes a
discussion about the notions of independence, likelihood, and exchangeability;
these are important ideas that play a key role in developing probability models
and in updating them. The next section introduces the idea of probability models
and parameters; it ends with examples of some commonly used models in
probability and statistics, models that are also of relevance to us here. Section
2.3 deals with what are known as counting process models; such models are
useful in software engineering because they are a natural vehicle for describing
events, such as failures, that occur over time. Indeed, some of the most
commonly used models for assessing the reliability of software are counting
process models, also known as point process models. The chapter ends with an
introduction to the key concepts of component reliability theory and their role in
assessing software reliability. There is a large body of literature on system
reliability theory that is discussed later in Chapter 7. This postponement is due to
the fact that the ideas of system reliability theory have not as yet permeated the
current mainstream work on software reliability. Nonetheless, we feel that its
impact is yet to come, especially in dealing with modularized software, and thus
have chosen to include it for later discussion. Readers specializing in probability
and statistics may choose to skip to Section 2.4. Others who could benefit from a
review may prefer to continue. Wherever feasible, the preliminaries introduced
here have been reinforced by describing scenarios from software engineering.

2.1 The Calculus of Probability

2.1.1 Notation and Preliminaries

In what follows, we assume T to be zero and suppress it. For a discrete
random variable X taking values x, let E denote the event that X = x, so that
P(E 11t) is P(X = x 11t); it is abbreviated as Px(x 11t). If at any value of X,
say x, Px(x 11t) > 0, then X is said to have a point mass at x. If E is the event
that X ::::: x, then P(X ::::: x 11t) is known as the distribution function of X, and is
denoted as Fx(x 11t). If X is continuous and takes all values in an interval, say
[0,00), and if Fx(x 11t) is differentiable with respect to x, for (almost) all x in
[0,00), then Fx(x 11t) is said to be absolutely continuous, and its derivative at x,
denoted by fx(x 11t), is called the probability density junction of X at x.
Irrespective of whether X is discrete or continuous, Fx(x 11t) is nondecreasing
in x, and ranges from 0 to 1. If X is continuous, Fx(x 11t) increases in x
smoothly, whereas if X is discrete, it increases as a step function taking jumps at
those values of x at which X has a point mass.

Whereas the interpretation of Px(x 11t) is clear, namely, that it is the
probability that X takes the value x, the interpretation of fx(x 11t) needs
explanation. Specifically, fx(x 11t)dx is approximately the probability that X
takes a value between x and x + dx. Since fx (x I 1t)dx 1 0, as dx 1 0, the

Fx(x 11l)

o x =2 Time x

a) Absolutely Continuous

2.1 The Calculus of Probability 15

Fx(x 11l)

o

I , , , ,

x =2

b) Discontinuous

Time x

FIGURE 2.1. DIustration of Absolutely Continuous and Discontinuous
Distribution Functions.

probability that a continuous random variable takes any particular value is zero.
Finally, suppose that X is a mixed random variable; that is, it is both discrete and
continuous, with a point mass, at say x*. Then its Fx(x I rt) increases smoothly
for all values of X at which it is continuous, and takes a jump of size Px(x' I rt)
at x*. Mixed random variables are of interest in reliability, particularly software
reliability, wherein there is a nonzero probability of failure at specified time
points. Such time points are dictated by the operational profile of the software.

To illustrate the preceding notions we consider the following idealized
scenario. Suppose that a piece of software has an operating cycle of three hours,
the first two of which are under a normal user environment and the last one
under a more demanding one. That is, the software experiences a change in the
operational profile two hours after its inception. Let X be the time, measured in
CPU units, at which the software experiences a failure, either because of the
presence of a bug or from other causes. If we assume that the transition from the
normal to the more demanding environment does not pose any instantaneous
shocks to the software, then Fx(x I rt) could be of the form shown in Figure
2.la). The main aspect of this figure is the change of shape at x = 2. Observe
that Fx(x I rt) is continuous in x but not differentiable at x = 2; it is therefore
absolutely continuous. By contrast, suppose that the transition in the operational
profile imposes a shock to the software so that there is a nonzero probability, say
p, that the software will fail at x = 2. In this case Fx(x I rt) takes an upward
jump at x = 2; see Figure 2.lb). Now Fx(x I rt) is not absolutely continuous,
and X is a mixed random variable.

The conventions mentioned before generalize when we are interested in two
(or more) random variables, say Xl and X2 ; now, Fx(x I rt) is replaced by
FxJ, X2(Xj, X2 I rt), and ix(x I rt) by ix,. X2(Xj, X2 I rt). Note that FxJ, X2(XIo X2 I rt)

16 2. Foundational issues: Probability and Reliability

abbreviates P(Xl :::; Xl and X2 :::; X2 I H), and fXl' xz(Xl> X2 I H)dxldx2

approximates P(XI :::; Xl :::; Xl + dxl and X2 :::; X2 :::; X2 + dX2 I H). When there is
no cause for ambiguity, the subscripts associated with F and f are often omitted.

2.1.2 Conditional Probabilities and Conditional Independence

Perhaps one of the more subtle notions in probability theory is that of
conditional probability. For two random variables Xl and X2, and background H,
the probability that Xl takes the value Xl, were it to be so that X2 takes the value
X2, is called the conditional probability of Xl given X2; it is denoted
P(XI = Xl I X2 = X2, H) or PxIixz (Xl I X2, H), the vertical bar representing a
separation between the event of interest Xl = Xl> and the conditioning event
X2 = X2. If the event of interest is Xl :::; Xl> and the conditioning event X2 = xz,
then P(XI :::; Xl I X2 = X2, H) is abbreviated F XlIX2 (Xl I X2, H); it is known as the
conditional distribution function of Xl given X2. If Xl is continuous, and
F XllXz (Xl I X2, H) differentiable for all values X2, then the derivative of the latter is
called the conditional probability density of Xl given X2 ; it is denoted by
fXllx2(xl I xz,H).

It is important to bear in mind that all probability statements, including those
of conditional probability, are made at the reference time 7, when both Xl and X2

are unknown. Thus conditional probability statements are in the "subjunctive."
In other words, when we are making a conditional probability assessment, we are
assuming (or pretending) that X2 = Xz; in actuality we do not know as yet if
X2 = X2. Indeed, had X2 been observed as taking the valuex2, then it would
become a part of the background history H and the notion of a conditional
probability would be moot. Conditional probabilities reflect the importance of
the reference time in making probability assessments.

From a subjective point of view, how should we interpret conditional
probabilities and how do we make its numerical value operational? From a
subjective point of view, a conditional probability represents our strength of
belief about Xl, at time 7, had the background history been expanded (but in
actuality was not) from H to (H and X2). Since numerical values of probabilities
reflect our disposition to betting in the face of uncertainty, a conditional
probability represents the amount that we are willing to stake on Xl, but now
under the provision that all bets are off if the conditioning event turns out, in the
future, to be untrue, that is, if X2 ::/= X2. A conditional probability is a useful
device for assessing probabilities, because it incorporates the notion of "what if'
in the process of interrogating personal beliefs about uncertain events.

The notion of conditional probabilities leads us to another idea in
probability, the judgment of conditional independence. Consider two discrete
random variables Xl and X2 , and suppose that

2.1 The Calculus of Probability 17

then Xl and X2 are said to be mutually independent, conditional on the
background history H.

We emphasize that like probability, independence is always conditional
because had H been different, say H*, then the preceding equality may not hold.
From a subjective point of view, the equality displayed here says that our
assessment of uncertainty about Xl = XI will not be affected by any added
(future) knowledge about X2. XI and X2 are dependent if they are not
independent. Like probability, independence and dependence are judgments, and
mayor may not be supported by the physics of the situation. The idea of
independence generalizes for a collection of uncertain quantities; it is often
assumed because it simplifies the process of probability assessments by
removing the need to think about relationships between the various random
variables. It is a strong assumption, very idealistic in software reliability
assessment.

To illustrate the ideas of conditional independence suppose that software to
perform a certain function is developed by two separate teams, A and B. Let XA

be the time, measured in CPU units, at which the software developed by team A
experiences a failure, similarly XB • An analyst studies the two codes and assesses
the reliabilities of the two codes as P(XA 2: T IH) as PA, and P(XB 2: T IH) as
po. We say that the analyst judges XA and XB independent, if the analyst is
unwilling to change po were he or she to be informed that the software developed
by team A experiences a failure at, say some time T*. That is, to this analyst,
P(XB 2: T I XA = T*,H) continues to be the previously assessed po.

Clearly, the judgment of independence assumed here is not realistic. Even
though the software has been developed by two separate teams, they have
presumably worked from a common specification; the two codes therefore are
likely to have some commonalities. Consequently, the knowledge (admittedly
conjectural) that XA = T* should cause the analyst to revise his assessment from
PA to a value smaller (larger) than PM if T* < (>) T. Indeed experiments on
software development by several teams conducted by Knight and Levenson
(1986) verify the lack of independence mentioned previously.

The literature in hardware reliability mentions several models for describing
dependent lifelengths of two-component systems; particularly discussed are the
models of Freund (1961), Marshall and Olkin (1967), and Lindley and
Singpurwalla (1986b), to name a few. Their appropriateness for describing the
failure of software codes remains to be explored.

2.1.3 The Calculus of Probability

The calculus of probability is a set of rules that tells us how uncertainties
about different events combine. For keeping the discussion general, consider two
events £1 and £2, and background H. Then, the following three rules can be
viewed as being basic to the calculus.

18 2. Foundational issues: Probability and Reliability

Convexity: For any event £,

O::S; P(E 11i) ::s; 1;

Additivity: If both £\ and £2 cannot occur simultaneously (i.e., if they are
mutually exclusive), then

Multiplicativity:

The first rule says that the probability of an event can take any value in the
convex set [0, 1]. Since probabilities are assessed only for those events whose
outcome is unknown to us, the value 1 can be meaningfully assigned only to
events (propositions) that can be logically proven to be true; such events are
called certain events. Similarly, the value 0 should be assigned only to events
that are logically false; such events are called impossible events. It does not
make sense to talk about probabilities of events whose outcomes are already
known. If £ pertains to the disposition of a continuous random variable, say X,
then the convexity rule says that the probability density function of X, say
/x(x 11i), must be nonnegative. However, the function itself /x(x 11i) may take
values greater than 1; recall that /x(x 11i) has a probabilistic interpretation only
when it is multiplied by dx.

By a repeated application of the preceding rules, both the additivity and the
multiplicativity laws can be generalized. For n events £i, i = 1, 2, ... , n, the
additivity law takes the form

n

P(EI or E2 or, ... , or En 11i) = LP(Ei 11i),
i=l

provided that the CiS are mutually exclusive; the multiplicative law takes the
form

P(EI and E2 and, ... , and En 11i) = P(EI I E2, ... , En,1i) X

P(E2 I E3, ..• , En,1i) X ... X Peen 11i)·

When n is finite, the additivity law is said to obey the property of finite
additivity; when n is infinite it is said to obey countable additivity. Subjectivists
like de Finetti claim that all that is needed is finite additivity; mathematicians
demand countable additivity for rigor and generality.

2.1 The Calculus of Probability 19

The convexity and the additivity laws ensure that the probabilities of all
mutually exclusive events should sum to 1, and if the CiS pertain to the
dispositions of a continuous random variable, then these laws ensure that the
integral of the probability density function over all possible values of the random
variable must be 1.

When C1 and C2 are not mutually exclusive, then it can be shown (see
Exercise 1) that

furthermore, if C1 and C2 are judged independent, then the preceding becomes

As an illustration as to how these rules play a useful role, consider the
hardware and software components of a typical computer system. Let CH denote
the event that the hardware experiences a failure during the next hours of
operation, and Cs the event that the software experiences a failure in the same
time interval. The computer system is therefore a series system, whose
unreliability for a mission of eight hours duration is given by the addition rule as

where P(Ci 11i) is the probability that event Ci, i = H, S, occurs, and if CH and
Cs are judged independent (this judgment being realistic for the scenario
considered) the unreliability of the computer system becomes

Suppose now that the hardware component is supported by a backup system
that operates in parallel (that is, simultaneously) with main system. If C8 denotes
the event that the backup system fails in the time interval of interest, then the
unreliability of the hardware system is

The preceding expression is not further simplified because it is generally
unrealistic to assume that a hardware system and its backup have independent
lifelengths.

Continuing with this theme, the unreliability of the computer system
becomes (upon suppressing the 1i)

20 2. Foundational issues: Probability and Reliability

upon an application of the multiplication rule. Since the software and the
hardware systems are assumed to have independent lifelengths, the preceding
simplifies to

Why should we subscribe to a calculus for uncertainty that is based on the
preceding rules? A simple answer to this question is that the laws were
enunciated and proved to be useful since the times of Cardano, and that they
were adhered to by the founders like Bernoulli, de Moivre, Bayes, and Laplace.
Indeed one of Bayes' major contributions was his discourse on conditional
probability and the multiplication rule. A more formal answer is that the
mathematical theory of probability takes these laws as axioms, although
Kolmogorov (1950) argues for them based on relative frequency considerations.
A more convincing answer would be that subjectivists, like Ramsey and Savage,
deduce the laws from primitive considerations, such as a person's ability to
compare any two events based on their likelihoods of occurrence [cf. DeGroot
(1970), p. 70], and that de Finetti (1974) uses the idea of scoring rules to claim
the inevitability of these laws [see Lindley (1982a)]. Further support for these
rules also comes from the argument that if betting coefficients do not obey the
calculus of probability, then one can be trapped into the situation of a Dutch
book [cf. Howson and Urbach (1989), p.56]. A Dutch book is a gamble in which
you lose irrespective of the outcome; a person who engages in a Dutch book is
declared to be incoherent. Because of the preceding arguments the claim is made
that using a calculus different from the calculus of probability, such as that of
possibility theory, leads to incoherence.

2.104 The Law of Total Probability, Bayes' Law, and the Likelihood
Function

A simple application of the three laws of probability yields two other
important laws. The first is the law of total probability, and the second is Bayes'
Law. The law of total probability, also known as the law of the extension of
conversation, is a useful device for developing probability models; see Section
2.2. Bayes' Law provides a vehicle for coherently revising probabilities in the

2.1 The Calculus of Probability 21

light of new information; it becomes a tool for incorporating the effect of data in
our assessment of uncertainty.

The Law of Total Probability

Suppose that Xl and X2 are two discrete random variables for which we
have assessed their joint probability P(XI = XI and X2 = X2 11i), for all possible
values XI and X2 that Xl and X2 can respectively take. Then, by the additivity
rule, our uncertainty about XI alone (known as the marginal of XI) is given by

the summation is over all possible values that X2 can take. Were XI and X2 to be
continuous, then the summation would be replaced by an integral and the
probabilities by their corresponding densities; consequently, the marginal
density of XI is:

(2.2)

The law of total probability now follows from the multiplicative rule; in the
discrete case

and mutatis mutandis, for the continuous case.
The law of total probability shows how one can coherently assess the

uncertainty about XI via its appropriate conditional assessments in the light of
X2. It illustrates the role of conditional probability as a facilitator of uncertainty
assessment. A use of this law presumes that conditional probabilities are easier
to assess than the unconditional ones, which in most cases is generally true.

Bayes'Law

Bayes' Law, also known as the law of inverse probability, has been
attributed to the Reverend Thomas Bayes (1702-1761). However, it is often
claimed that it was Laplace who was responsible for discovering its current form,
independent of Bayes, and for popularizing its use. Both Bayes and Laplace
were interested in assessing the probabilities of the causes of an event, the causes
having occurred at a time prior to the occurrence of the event; thus the term
inverse probability. For the case of discrete random variables XI and Xl> the
multiplicative rule and the marginalization rule give

22 2. Foundational issues: Probability and Reliability

An application of the multiplicative rule to the numerator and to the
denominator now gives us Bayes' Law as

(2.5)

When the random variables are continuous, the replacement of probabilities
by densities and the sum by the integral occurs, so that (2.5) becomes

As an illustration of how Bayes' Law can be used to address problems of
interest to us here, consider a computer system comprised of a hardware and a
software component. Let C = 1(0) denote the event that the computer system
experiences a failure (survival) for a specified interval of time. The failure of the
computer system can be attributed to either a hardware or a software failure, or
both. Let Cs = 1 (0) denote the event that the software experiences a failure
(survival) during the time interval specified previously. Similarly, let CH = 1(0)
denote the failure (survival) of the hardware. Note that the events Cs = 1 and
Cs = 0 are mutually exclusive so that P(cs = 1 111.) = 1 - P(cs = 0 111.), by
the convexity rule.

Bayes' Law is useful for addressing questions pertaining to the cause of
failure of the computer system. For example, we may be interested in knowing
the probability that software failure was the cause of failure of the computer
system, if the system experiences failure. That is, we may want to know
P(cs = 1 1 c = 1), which by Bayes' Law takes the form (upon suppressing 11.)

But P(c = 1 1 Cs = 1) = 1, since the computer system is a series system, and
P(C = 1 1 Cs = 0) = P(CH = 1), since the computer system can only fail if
there is either a hardware or a software failure (or both). Thus

2.1 The Calculus of Probability 23

Similarly, we can show that

is the probability that hardware was the cause of the system failure.
Since the events (£s = 1 I £ = 1) and (£s = 0 I £ = 1) are mutually

exclusive, P(£s = 1 I £ = 1) = 1 - P(£s = 0 I £ = 1), a result that can also be
verified by a direct application of Bayes' Law to P(£s = 1 I £ = 1). The same is
also true ofP(£H = 1 I £ = 1).

Clearly, for this example, all that we need to know for answering the
questions posed is to assess P(£s = 1) and P(£H = 1); the conditional
probabilities are either 1, or one of the preceding two. In many other applications
of Bayes' Law, the conditional probabilities are not that simple. For example,
suppose that the event £s is redefined, so that now £; = 1 denotes the fact that
the software has at least one bug in its code. Then, P(£ = 1 I £; = 1) need not
necessarily be 1, since the bugs could reside in a region of the code that is not
always visited during an application. Thus now P(£; = 1 I £ = 1) represents the
probability that the bugs in the software were the cause of the computer system's
failure, and to evaluate it we must assess P(£ = 1 I £; = 1) in addition to
evaluating P(£; = 1) and P(£H = 1). Recall that

P(£; = 1 I £ = 1)

The Likelihood Function

p(t'=llt';=l)P(t';=l) + p(t'=llt';=O)p(t';=O)
p(t'=llt';=l)P(t';=l)

An examination of (2.5) reveals some interesting features. First, note that
the left-hand side is a function of the realizations of Xl alone, because X2 is
assumed fixed at X2, and H is a known entity. This function, being a conditional
probability, satisfies the calculus of probability. The same is also true of the
second term of the numerator of the right-hand side of (2.5). The denominator of
the right-hand side is a constant because all the values Xl have been summed out.
Thus we may write (2.5) as

The middle term of (2.6), namely, P(X2 = X2 I Xl = xl,H), remains to be
interpreted. Why have we singled out this term? By all accounts, since it has
arisen via an application of the multiplicativity rule to (2.4), should it therefore
not be anything more than a conditional probability? This is indeed so, as long as
both Xl and X2 are uncertain quantities; recall that all conditional probability

24 2. Foundational issues: Probability and Reliability

statements are in the subjunctive, so that P(XI = Xl I X2 = X2, H) refers to our
uncertainty about XI, if X2 = X2. However, if X2 were actually observed as being
X2, then P(X2 = X2 I XI = xJ.H) cannot be interpreted as a probability;
probabilities make sense only for those events about which we are uncertain.
How then should we interprete P(X2 = X2 I Xl = xJ.H)?

When X2 is known to equal X2, P(X2 = X2 I Xl = XI ,H) is referred to as the
likelihood o/XI for X2 observed and fixed atx2, and P(X2 = X2 I XI = xJ.H) as a
function of Xl, is known as the likelihood function 0/ XI for X2 fixed at X2. The
likelihood function not being a probability need not obey the laws of probability;
that is, the function when summed (or integrated) over all values Xl need not
equal one. In fact there is a well-known example in the analysis of software
failure data [cf. Forman and Singpurwalla (1977)] wherein the likelihood
function integrates to infinity. Because of the preceding, the likelihood function
has been interpreted as one that provides a relative degree of support given by
the data (i.e., for the fixed value X2) to the various values Xl that Xl can possibly
take. When XI and X2 are continuous, (2.6) will then take the form/(xl I Xl> H)
ex: / (X2 I Xi> H) / (Xl I H), with / (X2 I Xi> H) the likelihood function, and the

other terms the probability densities.
For the situation in which X2 is known to equal X2, the term P(XI = Xl IH)

of (2.6) quantifies our uncertainty about XI based on H alone, whereas the term
P(XI = Xl I X2 = X2, H) quantifies our uncertainty about XI based on both H
and X2 = X2. Because of this, the left-hand side of (2.6) is referred to as the
posterior probability of XI, posterior to observing X2, and the second term on the
right-hand side of (2.6), the prior probability of Xl. Bayes' Law shows us how
the likelihood connects the prior and the posterior probabilities. Alternatively
viewed, Bayes' Law facilitates the incorporation of new information in our
assessments of uncertainty, and thus becomes a tool of experimental science.

To better appreciate the essential import of the notion of a likelihood, let us
revisit our example illustrating Bayes' Law and focus on the last expression
preceding (2.6), namely,

Since conditional probabilities are in the subjunctive, the left-hand side of
the preceding expression is to be interpreted as the probability that the presence
of bugs in the software is the cause of system failure were it be true that the
system has failed. When this probability is assessed, it is not known if the system
has indeed failed; that is, the true disposition of the system is unknown to the
probability assessor. For definitiveness, suppose that P(£; = 1) = 0.01,
P(£H = 1) = 0.05, and that P(£ = 1 I £; = 1) = 0.7. This implies that the
software is relatively free of bugs, that the hardware component is very reliable,
but that the computer system has a high probability of failure should the software
contain one or more bugs. When such is the case, the probability that the

2.1 The Calculus of Probability 25

software will be the cause of failure, should the system experience a failure is
«0.7) (0.01))/«0.7) (0.01) + (0.05) (0.99» = 0.12.

Now suppose that it is known for a fact-that is, it is actually observed
that the computer system has failed, but it is not known whether the software or
the hardware triggered the failure. What now is our probability that the software
is the cause of the system failure? Must it still be 0.12? To answer this question,
we formally proceed as before (according to Bayes' Law) because this is what
we said we would do should £ = 1, but now P(£ = 1 I £; = 1) cannot be
interpreted as a probability. Recall, probability is meaningful for only those
events that have yet to occur (or are unknown to us), and (£ = 1) has indeed
occurred. P(£ = 1 I £; = 1) is therefore a likelihood, more clearly written as
£(£; = 1; £ = 1), and the likelihood being the degree of support provided by
the observed data £ = 1, to the unknown event £; = 1, mayor may not be
assigned the value 0.7. What really matters now are the relative values assigned
to £(£; = 1; £ = 1) and £(£; = 0; £ = 1), although all that we need to know
for computing pee; = 1 I £ = 1) is the former. Since the likelihood is not a
probability, it is perfectly all right to have £(£; = 1; £ = 1) + £(£; = 0;
£ = 1) # 1.

Commentary

We have seen that Bayes' Law is just a theorem in probability. However,
because of its having given birth to the notion of a likelihood, it has become
associated with a set of techniques called Bayesian statistics. What does one
mean by the term Bayesian statistics? For one, Bayesian statistics is not merely a
use of Bayes' Law for making statistical inferences. To some, it also
encompasses a subjective interpretation of probability, but to all it requires a
strict adherence to what is known as the likelihood principle [cf. Berger and
Wolpert (1984)]. Loosely speaking, the likelihood principle says that the
contribution made by the data (new information) is solely embodied in the
likelihood function, and nothing more. This dictum makes many of the well
known statistical procedures such as those based on confidence limits,
significance levels, goodness of fit testing, and hypotheses tests with Type I and
Type II errors, and the method of maximum likelihood, not acceptable. These
procedures subscribe to the frequentist view of probability, and in so doing are
unable to express uncertainty solely via the calculus of probability.

2.1.5 The Notion of Exchangeability

Like independence, exchangeability helps us simplify the assessment of
probabilities. As before, consider two discrete random variables Xl and X2 ,

taking values Xl and X2, respectively. Then, Xl and X2 are said to be
exchangeable, if for all values of Xl and X2, and background 1{,

26 2. Foundational issues: Probability and Reliability

P(XI = Xl and Xz = X2 I H) = P(XI = X2 and Xz = Xl I H); (2.7)

that is, the assessed probabilities are unchanged (invariant) by switching
(permuting) the indices. Because permuting the indices does not affect the
assessed probabilities, we may think of exchangeable quantities as being similar
to each other. One can also view the judgment of exchangeability as a judgment
of indifference between the random quantities; we do not care what values each
random variable takes. All that we care about is the set of values that the two
random variables can take.

Like independence, exchangeability is a judgment about two (or more)
uncertain quantities, based on H. It is weaker than independence, because, in
general, exchangeable random variables are dependent. Independent random
variables having identical probability distributions are exchangeable (but not
vice versa). To see why, observe that if Xl and X2 are independent and
identically distributed, then suppressing H,

implying that they are exchangeable. Finally, a collection of random variables
Xl, X2, ... , Xn is said to be exchangeable, if every subset of Xl, ... , Xn is an
exchangeable collection. Exchangeability was introduced by de Finetti (1937),
(1972), on grounds that it is more meaningful in practice than independence. The
assumption of independence implies, de facto, an absence of learning.

To illustrate the nature of the roles played by the assumptions of
independence and exchangeability, suppose that software code to perform a
certain operation is developed by four different teams, all working from a
common set of specifications. Let Xi = 1 (0) denote the event that team i's code
results in a correct (erroneous) output, i = 1, ... , 4. The four codes are to be
used in a fault-tolerant system, and we are required to assess the credibility
(reliability) of the system. A fault-tolerant system will produce a response if
three or more of its outputs agree with each other, and the response is a correct
response if I:;=IXi ~ 3. Thus, we are required to assess P(I:;=IXi ~ 3 I H).
For purpose of illustration, suppose that we judge P(Xi = 1 I H) = 0.5, i = 1, ..
. ,4. Then, under the judgment of independence (of the XiS), and suppressing the
Hs,

4

p(EXi = 4) = p(X] = 1,X2 = 1,X3 = 1,X4 = 1),
]

2.1 The Calculus of Probability 27

which by the multiplication rule,

= P(X1 = 1 I X2 = X3 = X4 = 1) X P(X2 = 1 I X3 = X4 = 1) X

P(X3 = 1 I X4 = 1) X P(X4 = 1)

= p(XI = 1) X P(X2 = 1) X P(X3 = 1) X p(X4 = 1)

= (0.5)4 .

The practical importance and significance of the statement
P(X, = 1 I X2 = X3 = X4 = 1) = P(X, = 1), is that under independence, the
added knowledge that were X2 = X3 = X4 = 1, our assessment of the probability
that Xl = 1 remains unchanged from its previous value of 0.5. Surely, one would
expect that the event X2 = X3 = X4 = 1 would cause an upward revision of
P(XI = 1) from the value 0.5. Similarly, it can be easily seen that under
independence

4

P(LXi = 3) = 4(0.5)3 (0.5) = 4(0.5)4 ,
I

so that the credibility of the fault tolerant system is given by

4 4

P(LXi = 3) + P(LXi = 4) = 4(0.5)4 + (0.5)4 = 5(0.5)4 = 0.3125;
1 1

the events Et=,Xi = 3 and Et=,Xi = 4 are mutually exclusive.
Analogous calculations would show that the probability of the fault-tolerant

system producing an erroneous response is 0.3125. Thus the probability that the
fault-tolerant system produces a response (correct or erroneous) is
2(0.3125) = 0.6250, and that it produces no response (that is, the four codes do
not arrive at a consensus) is (1 - 0.6250) = 0.3750.

How do these answers compare with those obtained through the assumption
that the XiS, i = 1, ... ,4, are exchangeable? The main matter to note here is that
under exchangeability, all that we need to assume is permutation invariance.
Thus, for example, to assess P(Et=,Xi = 3) we must require that:

28 2. Foundational issues: Probability and Reliability

= P(X1 = O,X2 = 1,X3 = 1,X4 = 1),

and it does not matter how each individual probability is assessed, similarly, for
the event Ei=IXj = 1. For the event Ei=IXj = 2, we must have:

The events Ei=IXj = 4 and Ei=IXj = 0 being unique, permutation
invariance is not an issue.

In order to make our probability assessments here compatible with our
previous assumption that P(Xj = 1) = 0.5, i = 1, ... , 4, we need to have the
assumptions that P(XI = X2 = X3 = X4 = 1) = P(XI = X2 = X3 = X4 = 0)
= 0.2, P(XI = X2 = X3 = 1, X4 = 0) = 0.05. Furthermore, we must also have

P(XI = X2 = 1, X3 = X4 = 0) = 0.0333. With this assignment of probabilities,
it follows that under exchangeability the credibility of the fault-tolerant system is
0.4, and the probability that the fault tolerant system produces a response
(correct or incorrect) is 0.8. These numbers being greater than their counterparts
obtained via independence, we may conjecture that for fault-tolerant systems, the
assumption of independence tends to exaggerate the assessed probability of non
response.

2.2 Probability Models and Their Parameters

2.2.1 What is a Software Reliability Model?

We have seen that for any random quantity E, our uncertainty based on
background 7-{ is expressed by P(E I 7-{). In actuality 7-{, being everything that
we know, is large, very complex, and of high dimension. Furthermore, much of
7-{ may be irrelevant to E. What is therefore suitable is a way to abridge 7-{ so
that it is manageable.

2.2 Probability Models and Their Parameters 29

Suppose that there is a new random quantity, say e, scalar or vector. Then,
assuming e to be discrete taking values 0, we can use the law oftotal probability
to write

P(£ 11-l) = LP(£ 1 f),1-l) p(f) 11-l)· (2.8)
()

For e continuous, an integral replaces the sum, and probability density functions
replace the Ps.

Now suppose that were we to know e, we would judge £ independent of 1t,
so that for all 0, P(£ I O,1t) = P(£ I 0). Then (2.8) would become

P(£ 11-l) = LP(£ 1 f)) P(f) 11-l), (2.9)
()

suggesting that our uncertainty about £ can be expressed via two probability
distributions, P(£ I 0) and P(O 11t). The distribution P(£ I 0) is called a
probability model for £, and P(O 11t) the prior distribution of e. If £ denotes a
lifelength, then P(£ I 0) is called afailure model [cf. Singpurwalla (1988a)], and
if £ denotes the time to failure of a piece of software, then P(£ I 0) is called a
software reliability model. In making the judgment of independence between £
and 1t given e, we are interpreting e as a device for summarizing the
background infonnation 1t. e is known as the parameter of the probability
model. The manner in which we have introduced e suggests that it is an
unobservable quantity that simplifies the assessment process; to de Finetti, it
(often) is just a Greek symbol! Its role is to impart independence between £ and
1t. Because e is unknown, its uncertainty must also be expressed by probability;
thus the appearance of a prior distribution is inevitable, whenever probability
models are introduced.

A consequence of (2.9) is the appearance of probabilities that are easier to
assess than P(£ 11t). The choice of a probability model and the prior
distribution is a subjective one, although there is often a natural probability
model to choose; some examples are given in the following section. The choice
of P(O 11t) is a contentious issue. Various approaches have been proposed: the
use of "objective" priors is one [Berger (1985), Chapter 3]; another is using
"expert opinion" [Lindley and Singpurwalla (1986a)]. For a unified perspective
on statistical modeling, see Singpurwalla (1988a).

2.2.2 Some Commonly Used Probability Models

In this section we briefly present some natural probability models (or
distributions) that can be used for addressing generic problems in many
applications, including those in software engineering. The list is not complete,
and some models that appear later in the book are not described here. For a more

30 2. Foundational issues: Probability and Reliability

comprehensive list, see Bernardo and Smith (1994), or Johnson and Kotz
(1970). We attempt to motivate many of the models using software testing as the
application scenario. The others presented here are for completeness and their
usefulness in the subsequent text.

The Bernoulli Distribution

Suppose that a piece of software is subjected to a certain input. Our
uncertainty here pertains to the event C, where C is the proposition that the
software provides a correct output. Define a binary random variable X that takes
the value 1 if c is true, and zero otherwise. Such a random variable is called a
Bernoulli random variable, after James Bernoulli who gave us the famous (weak)
law of large numbers. Let '}-{ be the background information we have about the
software. Then, the input specific reliability of the software is P(X = 1 I '}-{), and
our aim is to assess this quantity. To do this, suppose we introduce (extend the
conversation to) a parameter P that takes values p, with 0 S PSI, and invoke
the law of total probability; then

P(X = 1 11i) = Jp(X = 1 I p,1i)/(P 11i)dp.
p

Now suppose that given P, we judge X to be independent of '}-{. Then, the
preceding simplifies as

p(X = 1 11i) = Jp(X = 1 I p)/(P 11i)dp,
p

where P(X = 1 I p) is the probability model and f (P I '}-{) the prior density
function of P. In what follows, we focus attention on only the probability model.
Bernoulli's proposal was to let P(X = 1 I p) = p; then the calculus of probability
requires that P(X = 0 I p) = 1 - p. Such a probability model is called the
Bernoulli distribution, and as stated before, X is a Bernoulli random variable.
The experiment (or act) of sUbjecting the software to an input and observing its
success or failure is known as a Bernoulli trial. A compact way to express a
Bernoulli distribution is

P(X = Xi I p) = r i (1 - p)(1-Xi) , for Xi = 0,1. (2.10)

Thus, when the probability model is a Bernoulli, the input-specific
reliability of the software is

P(X = 1 11i) = J p f(P 11i) dp.
p

2.2 Probability Models and Their Parameters 31

If in our judgment all the values p that P can take are equally likely, that is,
we have no basis for preferring one value of p over another, then P is said to
have a uniform distribution over the interval (0, 1) and f (p IJi) = 1, 0 < p < 1.

When such is the case, it is easy to verify that P(X = 1 IJi) = ~.

Binomial Distribution

Suppose now that the software is subjected to N distinct inputs, and our
uncertainty is about X, the number of inputs for which the software produces a
correct output. The proportion of correct outputs is a measure of the reliability of
the software. Clearly, X can take values x = 0, 1,2, ... ,N, and we need to know
P(X = x IJi). There are many ways in which one can address this problem. The
simplest is to assume that each input is a Bernoulli trial leading to a Bernoulli
random variable Xi, i = 1, 2, ... , N, with Xi = 1, if the ith input results in a
correct output, and Xi = 0, otherwise.

Since X = LXi, there are (~) mutually exclusive ways in which X = x;

one possibility is that the first x trials result in a correct output and the remaining
do not. To assess the probability of such an event, namely,

P(X1 = ... = Xx = 1, and Xx+! = ... = XN = 0 11i),

we extend the conversation to a parameter P taking values p, with 0 < p < 1,
invoke the multiplicative law, assume that given p the XiS are independent of
each other and also of Ji, and assume a Bernoulli model for each Xi. Then

P(X! = ... = Xx = 1, and Xx+! = ... = XN = 0 I p, 1i)

= J r (1 - p)N-x f(p 11i)dp,
p

where f (p IJi) is the density function of p. Since the (~) possibilities are

mutually exclusive and each has probability r(1 - p)N-x, we invoke the
additivity law of probability to obtain

P(X = x 11i)

= J p(X = x I p)f(P 11i)dp
p

= J(~) r (1 - p)N-x f(p 11i)dp. (2.11)
p

32 2. Foundational issues: Probability and Reliability

The probability model

P(X = x I p) = (~) r(l - p)N-x, X = 0, ... , N

is called the binomial distribution; the notation (~) denotes the quantity

N!/(x!(N - x)!), with xl d~f x . (x - 1) . (x - 2) ···2· 1.

Poisson's Approximation to the Binomial Distribution

In many applications involving Bernoulli trials, it can happen that N is large
and (l - p) is small, but their product N x (1 - p) is moderate. In the case of
software testing, this situation arises when software that is almost bug free is
subjected to a large number of inputs, so that (1 - p) is small and N very large so
that N x (1 - p) is moderate. When such is the case it is convenient to use an
approximation to the binomial distribution, which is due to Poisson. Specifically,
if we let oX = N x (l - p), then using a Taylor series expansion and the inductive
hypothesis, it can be shown (see Exercise 4) that

(2.12)

The probability model

P(X = x I ,\) = e-'\ ~~, x = 0, 1,2, ... ,

is known as the Poisson distribution.

The Geometric Distribution

Now suppose that a piece of software is subjected to an indefinite sequence
of distinct inputs, each resulting in a correct or an incorrect output. We are
interested in X, the number of inputs at which the software experiences its first
failure-this could be a meaningful measure of the software's reliability. We are
uncertain about X, and so need to know P(X = x 11-l), where x = 1, 2, ... , 00.

As before, we start by assuming that each input is a Bernoulli trial leading to a
Bernoulli random variable Xi, i = 1, 2, ... , with Xi = 1, if the ith input results
in a correct output, and Xi = 0, otherwise.

Clearly, P(X = x 11-l) = P(X\ = X2 = , ... ,Xx.\ = 1, Xx = ° 11-l), and to
assess this probability we introduce a parameter P, taking values ° < p < 1,
invoke the multiplicative law, assume that given p the XiS are independent of
each other and of 1-l, and assume a common Bernoulli model for each Xi. Both
here, and also in our discussion of the binomial distribution, the assumption of a

2.2 Probability Models and Their Parameters 33

Bernoulli model with a common parameter P for each Xi is idealistic. It suggests
that all the inputs have the same impact on the software. We should weaken this
assumption, but for now keep it as such to motivate a geometric distribution.
Under the preceding assumptions, it is easy to see that

p(Xl = X2 = , ... , Xx-l = 1, Xx = 0 I p, 1i)

= J r- l (1 - p)f(p 11i)dp,
p

where, as before, f (P 11t) is the probability density function of P. Thus to
conclude:

P(X = x 11i) = Jp(X = x I p)f(p 11i)dp
p

= J r- l (1 - p)f(p 11i)dp; (2.13)
p

The probability model

P(X = x I p) = r- l (1 - p), x = 1,2, ... ,

is called a geometric distribution.

Discussion

The models described thus far pertain to a discrete random variable X, and
arise in the context of evaluating P(X = x 11t) for x taking values in some
subset of {O, 1, ... , }. We have attempted to motivate each model by
considering the scenario of assessing the reliability of software by testing it
against several inputs. Our motivating arguments can be labeled idealistic, and
this is perhaps true; however, they set the stage for subsequent more realistic
developments. For example, we could expand on our setup by assuming that
each Bernoulli random variable Xi has an associated parameter Pi, and that the
sequence of PiS is exchangeable; see, for example, Chen and Singpurwalla
(1996). In all cases we focused only on probability models and left open the
question of specifying f (p 11t), the prior probability density function of P. This
is a much debated issue which can trace its origins to the work of Bayes and
Laplace; a recent reference is Geisser (1984). A natural choice is the beta density
junction

fi(P I 0:,(3) = na+/J) a-l(1 -)(3-1
na)rC/J)p p, 0< p < 1,

34 2. Foundational issues: Probability and Reliability

(xl A)

2

1.8

1.6

1.4

1.2

I

0.8

0.6

0.4

0.2

0

\

: A =2 ,
; ,
"

A =1

o 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8
x

FIGURE 2.2. Exponential Density Function.

where r(a) is the gamma function. A random variable X having a beta
distribution with parameters a and f3 is denoted "X '" B(a, f3)." The uniform
distribution is a special case of the beta distribution with a = f3 = 1.

The Exponential Distribution

We have seen by now, that with software testing we may count the number
of correct outputs in a series of N Bernoulli trials, as in the case of the binomial
distribution, or we may count X the number of inputs at which we encounter the
first incorrect output, as in the case of the geometric distribution. The
exponential distribution, introduced here, can be viewed as the continuous
analogue of the geometric distribution. Roughly speaking, suppose that the
sequence of inputs to the software occurs continuously over time; that is, the
software receives a distinct input at every instant of time. Alternatively viewed,
suppose that a Bernoulli trial (with a common Bernoulli model) is performed at
every instant of time. Then the X of our geometric distribution will be
continuous, and is to be interpreted as the time to the first occurrence of an
incorrect output; that is, the time to failure of the software. As before, we are
uncertain about X, and are interested in a measure of the reliability of the
software P(X 2: x 11i), where x 2: O. If we extend the conversation to a
parameter A, with A taking values 0 < A < 00, and invoke the assumption that X
is independent of 1i were A known, then

p(X 2: x I 1i) = J P(X 2: x I)..) j().. I 1i)d)",
oX

2.2 Probability Models and Their Parameters 35

0.8 Parameter 1,1

0.6
f (xIA)

0.4

Parameter 1,3

0.2

0~~~~~~~~~~~=T~~~
o 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3 3.3 3.6 3.9 4.2 4.5 4.8

x

FIGURE 2.3. Gamma Density Function.

where P(X ;:::: x I A) is the probability model, and f (A I 'H) the prior probability
density function of A. How do these quantities relate to their analogues in
(2.13)? After all, they have been motivated by similar considerations. What is
the relationship between the p of (2.13) and the A given previously?

Using limiting arguments, and supposing that Bernoulli trials are performed
at times lin, 21n, ... , it can be shown (See Exercise 4) that as n ---+ 00, iln ---+

x, and with p = 1 - Aln,

P(X 2:: x I A) = e-Ax , for both x, A > O. (2.14)

Since X is continuous, it has a density f (x I A) = Ae-Ax ; see Figure 2.2. The
probability model (2.14) is known as the exponential distribution with a scale
parameter A. It has found widespread applications in applied probability, notably
reliability theory and queueing theory. A random variable X having an
exponential distribution with scale parameter A is denoted "X rv £(A)."

The Gamma Distribution

The setup described previously shows how the time to first failure of the
software can be described by an exponential distribution. In many applications,
once a software failure is detected, its cause is identified and the software
debugged. The debugged software is now viewed as a new product and the cycle
of subjecting it to a sequence of distinct inputs repeats. However, there are
scenarios in which a failed piece of software is not debugged until after several
failures, say k, for k = 1, 2, ... The failed software is simply reinitialized and

36 2. Foundational issues: Probability and Reliability

I
f (x I A.) 0.81

0.6 T

0+
0.21;

O~~-+~--~~~~~~~~~--.-
o 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8

x

FIGURE 2.4. Weibull Density Function.

continued to being subjected to the sequence of distinct inputs. When such is the
case, we may be interested in X(k), the time to occurrence of the kth failure.

The gamma distribution is a generalization of the exponential, and can be
motivated as the distribution of X(k), the time to occurrence of the kth failure, in
the software testing process. If we make the kind of assumptions that resulted in
the exponential distribution for X(l), then we can show (see Section 2.3.3) that
for any specified k, X(k) has a probability density function of the form

(2.15)

see Figure 2.3. The function r(u) = fooo e-s s(u-l)ds, is known as the gamma

function; it generalizes the factorials, as for integer values of u, f(u + 1) = u!
The model (2.15) is known as a gamma distribution, with scale (shape)

parameter)"(k). A random variable X having a gamma distribution with scale
(shape) 0'.«(3) is denoted "X'" yea, (3)." When k = 1, (2.15) becomes the density
function of an exponential distribution. Even though our motivation here implies
that k should be an integer, it need not in general be so.

The Weibull Distribution

Another generalization of the exponential is the Weibull distribution,
famous for its wide range of applicability in many problems of hardware

2.2 Probability Models and Their Parameters 37

:: t
1.4 T

I

{(xl/..)

1.2 -I-

1 t
0.8

0.6

0.4 "

0.2

o 0.15 0.3 0.45 0.6 0.75 0.9 1.05 1.2 1.35 1.5 1.65 1.8 1.95

x

FIGURE 2.5. Lognormal Density Function.

reliability. A motivation for invoking this distribution in the context of assessing
software reliability is given later, once we introduce the notion of the failure rate
of a probability model; see Section 2.4.1. For now, we just introduce this
distribution.

A continuous random variable X is said to have a Weibull distribution, with
a scale parameter a > 0, and a shape parameter (3 > 0, denoted "X'" W(a,(3),"
if

P(X ~ x I 0:, {J) = e-cy'xf3, for x ~ O. (2.16)

The density function of X (Figure 2.4) is f (x I a, (3) = a (3xi3" I e-ax(3; for (3 = I, it
is an exponential.

The Lognormal Distribution

The Weibull distribution was introduced under the pretext that it was a
generalization of the exponential distribution, the latter having been motivated as
the time to first failure of software subjected to a series of instantaneous but
distinct inputs. The gamma distribution was introduced as another generalization
of the exponential, but it also had the motivation of being the time to the kth
failure of software that is initialized upon failure. Both the gamma and the
Wei bull have another common feature. Their density functions are skewed to the
right (i.e., they have long tails) suggesting that under their regimes large failure

38 2. Foundational issues: Probability and Reliability

times can occur, but rarely so, more (less) rarely under a Weibull with f3 >«) 1,
than under a gamma. Another probability distribution whose density is skewed to
the right is the lognormal distribution, sometimes used to describe the times
between software failure.

An introduction to the lognormal and the truncated normal distributions is
greatly facilitated if we start with the normal, or the Gaussian, distribution. The
Gaussian distribution, discovered by De Moivre, is one of the most frequently
encountered distributions in applied and theoretical statistics. Its popularity
sterns from the fact that it has been used, since the time of Gauss, as the
distribution of observational errors, which are both positive and negative, or in
general the distribution of symmetric fluctuations about a central tendency.
Consequently the Gaussian is useful for describing several random phenomena
such as the deviations of heights and of IQs from their central values, the
deviations of material strengths from their nominal values, the vibrations of a
rotating shaft around its axis, and so on.

A continuous random variable X, taking values x, is said to have a Gaussian
distribution with mean I-" and variance 0'2, denoted "X rv N(I-", 0'2)," if for
parameters - 00 < I-" < +00, and a > 0, the probability model for X has a
probability density function of the form

f(x Ip. 0') = ~ exp (- (X;~)2). for - 00 < x < +00. (2.17)
(271"0')2

When J.1 = 0, and 0'2 = 1, the Gaussian distribution is known as the Standard
Normal distribution. Failure times are often skewed and rarely symmetric around
a nominal value. Thus, the Gaussian has not been used as a probability model for
lifelengths. Why then our interest in the Gaussian?

For one, this distribution has properties that are attractive for modeling and
inference. The Gaussian distribution is a consequence of many limit theorems in
probability. A more pragmatic reason is that we are able to generate skewed
distributions by suitable transformations of the Gaussian. For example, if X is a
lifetime, and if it is reasonable to assume [cf. Singpurwalla and Soyer (1992)]
that the deviations of 10geX from a central value, say 1-", are symmetric, so that
10geX rv N(I-", 0'2), then X has a skewed distribution, called the lognormal
distribution, denoted "X rv A(I-", a)" (see Figure 2.5). The probability density
function of a lognormal distribution function is

1
1 (Jogx -J.L)2)

f(x p. 0') = xJ(271"O'2) exp - 20"2 • for ° < x < 00. (2.18)

2.2 Probability Models and Their Parameters 39

The Truncated Normal Distribution

Another skewed distribution, which is derived from the Gaussian and which
has applications in software quality assessment is the truncated normal
distribution. This is a normal distribution whose range is restricted, so that x
belongs to an interval [a, b]. Its density function is of the form

f(x I /-t, CT) = K.J~7l"U2 exp (- (X;~)2), for a::; x::; b, (2.19)

where the normalizing constant K is such that J:f (x I fJ., u)dx = 1. The
truncated normal distribution has been used by Campod6nico and Singpurwalla
(1994) for incorporating and modeling expert opinion in software reliability
assessment.

2.2.3 Moments of Probability Distributions and Expectation of Random
Variables

Moments and expected values are convenient ways of summarlzlOg
probability models. Indeed some of the most commonly used statistics in day-to
day operations have their genesis in the notion of moments. Examples are the
mean, the variance, the correlation, the mean time to failure, and so on. Such
statistics are often the mainstay of much of the data analyses done in software
engineering. The aim of this subsection is to put the commonly used statistics in
their proper perspective.

The notion of the first moment of a probability distribution takes its roots
from kinetics where it is used to represent any object by a point. Similarly, the
second moment of a distribution finds analogy with the moment of inertia that
describes how the mass of the object is distributed about an axis of rotation.
Thus, were we to conceptualize the probability distribution of a random variable
as an object having a unit mass that is distributed along its realization, then its
moments can be viewed as summary measures of uncertainty. Related to the idea
of moments, but finding its origin in games of chance, is the notion of an
expectation; it indicates the payoff expected in repeated plays of a game.

Following the notation of Section 2.1.1, consider a discrete random variable
X taking value x. Let Px(x I 'H.) = P(X = x I 'H.); then the kth moment of
Px (x I 'H.) about the origin 0 is defined as

00

E(Xk 11-l) = 2:(x - oi Px(x 11-l) < 00;
x=o

when k = 1, the first moment E(X I 'H.), is also known as the mean of X, or the
expected value of X with respect to Px(x I 'H.). The second moment of Px(x I 'H.)

40 2. Foundational issues: Probability and Reliability

about its mean E(X 11i) is known as the variance of X, and is denoted VeX 11i);
its square root is called the standard deviation of X. Verify that

DO 2

VeX IH) = 2: (x - E(X I H)) px(x IH) = E(X2 IH) - E2(X I H).
x=O

If X is absolutely continuous with a probability density function fx(x 11i),
then

DO

E(X k IH) = J (x - ol ix(x IH)dx < 00;

o

similarly, VeX 11i).
With two random variables Xl and X2 , taking values XI and X2, respectively,

the product moment of P(XI = XI, X2 = X2 11i), or the joint expectation of
XlX2 is defined as

DO DO

E(X j X2 IH) = 2: 2:X I X2 p(Xj = Xj, X2 = XZ IH) < 00.

x,=O X2=O

The covariance of Xl and X2, denoted Cov(Xl, X2 11i), is defined as
E(XlX2 IH) - E(XI 11i) E(X2 11i)· And finally, P(Xl' X2 11i), the correlation
between Xl and X2 , is defined as (Cov(Xl, X2 11i)) / (S(Xl) S(Xz)), where SeX)
is JV(X 11i), the standard deviation of X. The correlation p(Xl , X2 11i) is a
measure of the extent of the linear relationship between the XiS; it is zero when
they are independent. However, P(Xl ,X2 11i) = 0 does not necessarily imply the
independence; indeed when X~ + xi = R2, a constant, p(Xl , X2 11i) = o.

The kth moment (about 0) of P(XI = XI I X2 = X2, 1i), the conditional
distribution of Xl, were X2 = X2, is defined as

k DO

E(XI I X2 = X2,1i) = L (XI - O)kP(XI = XI I X2 = XZ, 1i) < 00,
x,=o

when k = 1, E(XI I X2 = X2,1i), is known as the conditional expectation, or
conditional mean of Xl, with respect to P(XI = XI I X2 = X2, 1i). Similarly, the
conditional variance V(XI I X2 = X2,1i) is seen to be

V(XI I X2 = X2,1i) = E(X~ I X2 = x2,H) - E2(XI I X2 = X2,1i)·

2.3 Point Processes and Counting Process Models 41

2.2.4 Moments of Probability Models: The Mean Time to Failure

The notion of conditional means and conditional variances enables us to
discuss the moments of probability models. Recall that probability models are
conditional probability statements, conditioned on unknown parameters, that are
usually denoted by Greek symbols. Thus, for example, it is easy to verify that
were we to suppose that P is p, then the first moment of the Bernoulli
distribution (2.10) is simply p, and the variance of a random variable having this
distribution is p(1 - p). Similarly, the first moment of the binomial distribution
is np and the variance of a binomial random variable is np(1 - p). The mean and
the variance of a random variable having the Poisson distribution (2.12) are both
A. A verification of these is left as an exercise for the reader.

The first moment of a probability model that is a failure model (see Section
2.2.1) is of particular interest. It is known as the mean time to failure,
abbreviated MTTF, and is one of the most frequently encountered terms in
reliability; in fact to many it is a measure of an item's reliability. For example, if
the failure model is the exponential (2.14), then the mean time to failure is lIA,
and the variance is lIA2. Similarly, if the failure model is a gamma (2.15), then
were we to know both k and A, then the mean time to failure is kiA, and the
variance is kI(A2). Note that in all these cases, we are supposing that the
unknown parameters are known, and thus when we talk of the mean time to
failure, we are really talking about the conditional means and variances. We later
show (see Section 2.4) that the MTBF (mean time between failures) can be used
as a proxy for the reliability of an item only when its failure model is the
exponential. When an item's failure model has two or more parameters, the
MTBF alone does not describe the item's reliability. This elementary but
important fact is often overlooked by those in practice.

2.3 Point Processes and Counting Process Models

Counting process models have played a key role in the analysis of software
failure data, and it appears that this role will continue to expand. By way of some
motivation, suppose that we are interested in observing the occurrences of a
repeatable event over a period of time. The simplest example is the arrival of
customers at a service station, such as a bank. Another example is the occurrence
of earthquakes of a specified magnitude at a particular location. An example that
is of interest to us here is the points in time at which a piece of software fails. In
all such cases, the event of interest does not occur with any regularity and is
therefore unpredictable. Consequently, we are not sure about the times at which
the event will occur, and also about the number of events that will occur in any
time interval. Such a phenomenon is called a point process, because, as its name
suggests, it can be depicted by points on a horizontal line, the line representing
time, and the points the occurrences of events over time. It is not essential that
the horizontal line denote time; it could, for example, represent the length of a

42 2. Foundational issues: Probability and Reliability

i-

•

•

N(t) •

3

2 •
•

o ~----~----~----~-----------r----~
• • • T.

1

FIGURE 2.6. The Sample Path of a Counting Process.

strand of wire, and the points, the position of defects along its length. Many
other examples are possible.

A counting process, as the name implies, is simply a count of the number of
events that have occurred in any specified interval of time. Since the horizontal
line has been designated to represent time, the vertical line is used to indicate the
number of counts over time. Specifically, if we let T\ :s:: T2 :s:: ... :s:: Ti :s:: ...
denote the points in time at which an event of interest occurs, and N(t) the
number of events that occur by time t, then a plot of the TiS versus N(t) (see
Figure 2.6) traces the evolution of the counts over time; it is known as the
sample path of the point process. It is a step function starting at zero, and taking
jumps of size one at each Ti. Since we are uncertain about both the TiS and N(t),
the sample path of the point process is not known and should therefore be
viewed as an unknown step function. Once the process is observed, the sample
path becomes known and the probabilistic aspects of the problem are not
relevant. In practical applications, we may observe both the TiS and the N(t), or
simply N(t).

Since N(t) is unknown for any value of t, t ~ 0, we are faced with the
problem of describing our uncertainty about an infinite collection of random
variables, one for each value of t. Any indexed collection of random variables is
called a stochastic process, and when interest is focused on counts, the process is
called a stochastic counting process; it is denoted by {N(t); t ~ O}. In our case
the index has been time t, but in other applications it could be length, or simply
the set of integers. For example, the collection of random variables

2.3 Point Processes and Counting Process Models 43

T) ::;; T2 ::;; ... ::;; Ti ::;; ... , or the collection of interarrival times Xi d~f Ti - Ti-) ,
i = 1, 2, . . . , are also stochastic processes, but they are indexed on the set of
integers; such processes are commonly referred to as time series processes.

The purpose of this section is expository; its aim is to introduce probability
models for the counting process {N(t); t:;::: O}, especially those models that have
proved to be of value for describing software failures. In the sequel we are also
able to deduce probability models for the sequences {Ti} and {Xi} previously
defined. Indeed, there is one commonly used model for counting software
failures. It is the nonhomogeneous Poisson process model discussed next.
However, the potential for using other models exists, and this needs to be
explored.

2.3.1 The Nonhomogeneous Poisson Process Model

The Poisson process model for describing our uncertainty about the process
{N(t); t :;::: O} is one of the simplest and perhaps the best known of all counting
process models. Experience has shown it to be a satisfactory description of
commonly occurring phenomena in an assortment of applications. However,
there are assumptions underlying this model, and these may not be realistic in
any particular application. To introduce Poisson process models, we start with
the problem of assessing P(N(t) = k I'H, 'Hr), for any fixed t, t :;::: 0; 'H denotes
any background information that we may have about the physical scenario that
generates the process, and 'Hr denotes observations on the process itself up to,
but not including, time t. That is, 'Hr = {N(u); 0::;; u::;; t-}. As before, we
extend the conversation to a parameter A*(t), which can take the value A(t) :;::: 0,
with A*(O) = 0; we next invoke an assumption of independence with respect to
'H to write

P(N(t) = kiT{, 'Hr)

= J P(N(t) = k l'Hr, A(t» f(A(t) IT{, 'Hr)dA(t),
A(r)

(2.20)

where P(N(t) = k l'Hr, A(t» is a probability model for N(t), andf(A(t) I'H, 'Hr)
is the probability density of A * (t) at A(t). In writing the preceding, we have not
followed our convention of denoting unknown quantities by capital letters and
their realized values by the corresponding small letters. The reason for this
departure is that the derivative of A * (t), assuming that it exists, is a quantity of
interest, and it is common to denote it by >. * (t). The parameters A * (t) and>' * (t)
are functions of time; the former is known as the mean value function of the
process {N(t); t :;::: O}, and N(t) is known as the intensity function (or the rate) of
the process. It can be shown that given A * (t), if N(t) is independent of 'Hr, then

44 2. Foundational issues: Probability and Reliability

E(N(t», the expected number of events by time t, is indeed A*(t). The proof is
left as an exercise for the reader; see Exercise 8.

The specification of a probability structure for the mean value function is an
active area of research. One approach is to assume a functional form for A*(t),
and then to endow its parameters with a joint distribution; see, for example,
Campod6nico and Singpurwalla (1995), who use this strategy for analyzing
some software failure data. Another approach is to assume that for t ::::: 0, N(t) is
itself a stochastic process called an intensity process; this is discussed in
Sections 2.3.3 and 7.1.2.

Suppose now that A' (•) is a finite valued, nonnegative, and nondecreasing
function of t. Then a probability model for N(t) is said to be a nonhomogeneous
Poisson process model, if for all t ::::: 0, the following "postulates" are invoked.

(i) P(N(t) = k !Hr, A*(.)) = P(N(t) = k! A*(.));

(ii) P(N(O) = 0 ! A*(•)) = 1; and

(iii) for any 0 ::::; s < t, the number of events that occur in [s,t] has a
Poisson distribution with a parameter (A *(t) - A *(s)); that is,
for k = 0, 1, 2, ... ,

P((N(t) - N(s) = k! A*(.)) = (A*(t)~t*(S»k exp(- (A*(t) - A*(s))).

The essential import of postulate (i) is that, were we to know the mean value
function A * (.), then a knowledge of the past behavior of the process is
irrelevant for our assessment of uncertainty about future occurrences. As a
consequence, given A * (.), the number of events occurring in disjoint time
intervals are independent random variables. This property is known as the
independent increments property, and is a defining characteristic of all Poisson
process models. An advantage of having such a property is the ease with which
statistical inference for Poisson process models can be done; a specification of
the likelihood function is straightforward. However, assumption (i) is very strong
and often unrealistic. Despite this, Poisson process models have been used to
describe software failures [cf. Musa and Okumoto (1984)]. Finally, since
A * (0) = 0, postulate (iii) says that N(t) has a Poisson distribution with paramter
A OCt).

It is useful to note that A * (t) need not be continuous, and even if it is
continuous, it need not be differentiable. Jump discontinuities in A*(t)
correspond to points at which events in a Poisson process occur at predetermined
times, and the number of events that occur at such points has a Poisson
distribution with a parameter equal to the size of the jump of the intensity
function.

2.3 Point Processes and Counting Process Models 45

The Distribution of Interarrival and Waiting Times

When point process models are used to describe uncertainties associated
with the number of software failures, two other quantities are also of interest.
The first is the interarrival times Xi, that is, the times between consecutive
failures, and the second is T;, the waiting time to the ith failure, for i = 1,2,
In general, it is possible to describe uncertainties about both these quantities
conditional on their previous values. Specifically, in the case of the
nonhomogeneous Poisson process, were we to know A(t), its derivative A(t), the
realizations Xi of X;, and t; of T;, i = 1,2, ... , i-I, then the density of X; at Xi is
[from postulate (iii)] of the form

f(x; I X" ... , Xi-I, A(.»

i·\ i-I i-I

=), (Xi + ~Xj) X exp (A(~Xj) - A(Xi+ ~Xj»), for Xi ~ 0, (2.21)

and the probability density function of T; at t;, for t; 2:: t;_I, is of the form

(2.22)

The preceding results are intriguing, especially in the light of postulate (i)
which says that future occurrences of N(t) are independent of its past.
Specifically, (2.22) says that the distribution of T;, the next time to failure
depends on T;_I, the last time to failure. Such a property, namely, dependence on
only the last event, is known as the Markov property. More interestingly, (2.21)
says that the distribution of X;, the ith interarrival time, depends on the entire
previous history of the process.

2.3.2 The Homogeneous Poisson Process Model

A special case of the nonhomogeneous Poisson process model is when A *(t)
[the derivative of A*(t)] is a constant, say A*, so that if A* takes a value A, then
A(t) takes the value At, and

P(N(t) = k I),) = e-A1 (~t, for k = 0,1,2, ... , (2.23)

this is called the homogeneous Poisson process model. It is perhaps the most
commonly used point process model.

The interarrival and the waiting times of a homogeneous Poisson process
take a simple and attractive form. Verify that with A(t) = At, (2.21) becomes

46 2. Foundational issues: Probability and Reliability

(2.24)

which is the density function of an exponential distribution with scale A. Since
the distribution of Xi is independent of X), ... , Xi_) , we say that the interarrival
times in a homogeneous Poisson process are independently and identically
exponentially distributed. Similarly, with A(t) = At, (2.22) becomes

(2.25)

Equation (2.25) can be used to obtain the probability density function of Ti ,

were we to know only A, that is, the unconditional density function of Ti , given

A, for i = 1,2, To do this, we first note that if to d~f 0, thenftt) I A) = A
exp(- At), and using the law of the extension of conversation, it is seen that

h ~

f(t2 I A) = ff(t21 tl. A)f(tJ I A)dtJ = fA e-A(t2-tl)A e-At1dtJ,
o 0

or that

which is a gamma density with a scale parameter A and a shape parameter 2.
Continuing in this manner, we can deduce that in general

(2.26)

which is a gamma density with a scale parameter A > 0, and a shape parameter i,
i = 1, 2, The simplicity of these results makes the homogeneous Poisson
process model attractive for use when all that one wishes to do is an expedient
data· analysis.

2.3.3 Generalizations of the Point Process Model

There are several generalizations of the preceding point process model, each
of which could be a suitable candidate for describing the points generated by
software failures. With some of these generalizations it is not possible to retain
the defining characteristic of the Poisson process models, namely, that of
independent increments.

The Compound Poisson Process

The simplest generalization is to allow the point process to take jumps
of random size; recall that the sample path shown in Figure 2.5 pertains to jumps

2.3 Point Processes and Counting Process Models 47

that are only of unit size. A point process that retains all the characteristics of a
Poisson process (homogeneous or nonhomogeneous), save the one which
restricts jumps to be of a unit size, is a compound Poisson process. In the context
of software failures, a compound Poisson process may be an appropriate model
if, upon the occurrence of failure, a random number of bugs are detected and
corrected; see, for example, Sahinoglu (1992). With such processes, we have
two sources of uncertainty: the times at which the software fails, and the number
of bugs that are identified and corrected upon each failure. As before, if we let
TJ, T2, ... , Ti , ••• , denote the times at which an event of interest (say software
failure) occurs, and if associated with each Ti there is a random variable Zi
denoting some attribute of interest (say the number of bugs that are detected, or
the time to debug the software and put it back in operation), then the process
{N(t) ; t ~ O}, where

N(t)

N'(t) d~f l: Zj,
i=l

and N(t) is the number of events that occur in time [0, t], is called a compound
Poisson process.

To describe our uncertainty about N(t) we need to know, in addition to
A' (t), the probability distributions of the ZiS. When such is the case, it is easy to
see, using the law of the extension of conversation by conditioning on k events,
that if A *(t) = A(t), and if

k

Fk(Z)d~f P(l:Zi :::; z),
I

then

00

P(N'(t) :::; v I A(t), P(v» = l:exp (- A(t» (Ai;)Y' Fk (v),
k=O

for 0 :::; v <00. (2.27)

The distribution function Fk(z) is known as the k-fold convolution of the ZiS. The
derivation of (2.27) is left as an exercise for the reader.

Simplifications occur if we assume that the ZiS are independent and
identically distributed. For example, if Zi represents the debugging time
subsequent to the ith failure, then we may assume that the ZiS are independent
and identically exponentially distributed with scale o. In this case Fk(z) is a
gamma distribution with scale 8 and shape k. With the preceding interpretation,
our uncertainty about N(t), the total debugging time, or the software's downtime
in the interval [0, tl, is described by a compound Poisson process, and the model
(2.27) is helpful for assessing the "availability" of software.

48 2. Foundational issues: Probability and Reliability

Commentary

There are other aspects of compound Poisson processes that need to be
discussed. The first is that of independent increments, and the second that of
computability. It is easy to see that the compound Poisson process model (2.27)
retains the independent increments property only if the ZiS are independent;
otherwise, N(t) inherits the dependence between the ZiS. The assumption of
independence may be unrealistic, because it implies two things: the absence of
an increase in debugging efficiency with time, and a failure to account for the
fact that typically, later failures are harder to detect and rectify than the earlier
ones. But why are independent increments important? Can we not do without
them? The answer to these questions has to do with the likelihood function
which is needed for making statistical inferences. Independence simplifies a
specification of the likelihood function; we can do without it, but only at the
price of computational difficulties. Indeed, the popularity of the Poisson process
model is largely driven by its property of independent increments. Finally, on the
matter of computability, even under the assumption of independent increments,
(2.27) is difficult to compute; it involves an infinite sum over k of the
distribution function Fk(z). One strategy would be to approximate using limiting
arguments involving t -7 00; another would be a Monte Carlo simulation.

The Doubly Stochastic Poisson Process

The notion of a doubly stochastic Poisson process or a Poisson process with
a random environment was introduced to describe those situations wherein there
is a physical motivation for supposing that the mean value function A*(t) of a
Poisson process model is itself a stochastic process. Furthermore, it is assumed
that a knowledge of the history of the process does not change the probabilistic
structure of A * (t); that is, the probability structure of A * (t) is assumed to be pre
assigned [cf. Cox and Isham (1980), p. 10]. This is a very strong assumption. Its
consequence is that in (2.20), the f(A(t) IH, HI) simplifies to f(A(t) I H), so that
under a doubly stochastic Poisson process model for P(N(t) = k IH, HI), with a
preassigned probability structure for A OCt),

P(N(t) = k I H, HI) = f P (N(t) = k I A(t») f (A(t) I H)dA(t).
A(/)

Of course, from a Bayesian point of view, all parameters are unknown, and
hence all Poisson process models should really be regarded as being doubly
stochastic. The main point of departure is the assumption of a preassigned
probability structure for A * (t). It is more realistic to suppose that a knowledge of
the past occurrence of the process influences our assessment of uncertainty about

2.3 Point Processes and Counting Process Models 49

A(t), so that under the assumption of a Poisson process model, a proper Bayesian
approach would result in (2.20) taking the form

e-A(t)(A(t)l
P(N(t) = k 111, 1-lt) = J k! f (A(t) 111, 1-lt)dA(t). (2.28)

A(t)

Observe that under (2.28) the process {N(t); t 2': O} will lose its independent
increments property.

To further appreciate the arguments that motivate a consideration of the
doubly stochastic feature of Poisson processes, we introduce an alternate, but
equivalent, specification of the postulates of a Poisson process model for N(t)
given A*(t).

Suppose that in (2.20), A*(t) takes the value A(t), and that A(t), the
derivative of A(t), exists. Then, given A(t), a probability model for N(t) is a
nonhomogeneous Poisson process model if:

(i) for any time t, and a small interval of time llt,

P(N(t + llt) - N(t) = 1 1 ACt), 1-lt)

= P(N(t + llt) - N(t) = 1 1 ACt» = ACt)llt + o(llt),

and
P(N(t + llt) - N(t) > 1 1 ACt), 1-lt)

= P(N(t + llt) - NCt) > 1 1 A(t)) = o(llt),

so that

P(N(t + llt) - N(t) = 0) = 1 - A(t)(llt) + o(llt);

Oi) P(N(O) = 0 1 A(•)) = 1.

The quantity o(h) is a correction term; it denotes a function of h such that

lim o(h) = O.
h -+ 0 h

Its role is to ensure that P(N(t + h) - N(t) = 1 I A{t» does not exceed 1
when h is large. The independent increments property of the Poisson process
model is a consequence of (i).

50 2. Foundational issues: Probability and Reliability

With the preceding specification, the intensity function A(t) of the process
can be given a physical interpretation. Specifically, since A(t)(At) approximately
equals the probability that an event will occur in a small interval of time in the
vicinity of t, we are able to relate A(t) to the actual process that generates the
events of interest, for example, the underlying stress in the case of structural
failures, or geological factors in the case of earthquakes. In the context of
software failure A(t) would be determined by the underlying operational profile
of the software. Recall that a software's operational profile is a description of
the environment under which it operates. Consequently, A(t) tends to be large
(small) when the software executes complex (simple) operations. When the
workload on the software is uncertain, or changes randomly over time, so that
the operational profile is itself a stochastic process, then so will A *(t), and a
doubly stochastic Poisson process model for P(N(t) = k 11t,1tt) will arise
naturally. Observe that given A(t), the probability model for N(t) will retain the
independent increments property, and if the probability structure of A * (t) is pre
assigned, then the process {N(t); t 2': O} itself will also possess the independent
increments property. When such is the case, the stochastic process {N(t); t 2': O}
is called a doubly stochastic Poisson process.

The Self-Exciting Point Process

A prime motivation for introducing self-exciting point processes is the need
to relax the independent increments feature of Poisson process models for {N(t);
t 2': O}. In the context of software failures, since a software code can
conceptually consist of only a finite number of bugs, the independent increments
property is not tenable. A knowledge of the past occurrences of the process must
influence our uncertainty about future occurrences. There are several strategies
for introducing dependence among the increments, one of which is via the
prescription (2.28), which de facto is a Bayesian model for a doubly stochastic
Poisson process. A closely related approach is via the mechanism of a self
exciting point process model for {N(t); t 2': O}; this is described in the following.

Suppose that 1tt comprises N(t-), and the waiting times T\, T2 , .•• , TN(t-);

that is, 1tt is the progress (or history) of the process up to but not including t. We
start by recalling (2.20); suppose that A*(t) the derivative of A*(t) exists and, that
given A(t) a model for N(t), is of the form

P (N(t + At) - N(t) = 1 l1th A(t») = P(N(t + At) - N(t) = 1 I 'x(t»

= 'x(t)(At) + o(At).

2.3 Point Processes and Counting Process Models 51

Then, it follows [see (2.20)] that

P(N(t + ~t) - N(t) = 1 IH, 'H t) = E('x OCt) IH,'Ht) + o(~t),

where E('*(t) 1'H,'Ht) is the conditional expectation of '*(t).
Motivated by the preceding line of reasoning, we say that {N(t); t 2: O} is a

self-exciting point process (SEPP) if the following postulates can be invoked.

and

(i) For any time t, and a small interval of time ~t,

P(N(t + !lot) - N(t) = 1 IH, Ht) = E('x*(t) IH,Ht) + o(!lot).

(ii) For any subset Qt of 'HI> and a function g(x) with lim g(x) = 0,
x-+O

P(N(t + !lot) - N(t) ~ 2 I H, Qt)

= P(N(t + !lot) - N(t) = 1 IH, Qt) g(!lot);

(iii) P(N(O) = 0 IHt) = 1.

Note that the conditioning on 'Ht ensures that {N(t); t 2: O} does not have
the independent increments property.

The second of the preceding properties is known as conditional orderliness.
In essence, it guarantees that the probability of the process increasing by more
than one, in a short interval of time, is small; thus N(t) is well behaved and does
not suddenly explode to infinity. If Q(t) = cp, the empty set, then the second
property reduces to what is known as unconditional orderliness, and now

P(N(t + ~t) - N(t) 2: 2) = P(N(t + ~t) - N(t) = 1) g(~t);

if Q(t) = 'H(t), then the second and third of the preceding properties lead to the
result that

P(N(t + !lot) - N(t) ~ 2 IHt)

= P(N(t + !lot) - N(t) = 1 IHt) g(!lot)

= o(!lot).

52 2. Foundational issues: Probability and Reliability

There are different degrees to which oX * (t) depends on H" and this idea is
formalized by the notion of the memory of the self-exciting Poisson process.
Specifically, a SEPP is of memory m, if

form = 0:

for m = 1:

for m 2:': 2:

m = - 00:

oX *(t) depends only on N(t); that is,
E(A *(t) 11ft) = E(A *(t) I N(t»;

oX*(t) depends only on N(t) and TN(t); that is,

E(A *(t) 11ft) = E(A *(t) I N(t), TN(t);

oX*(t) depends on N(t), TN(t). and at most the last (m - 1) inter
arrival times; and

oX *(t) is independent of the entire progress of the process.

Note that the case m = - 00 corresponds to the doubly stochastic Poisson
process (DSPP). Also, since the special case of the DSPP, when oX *(t) takes the
value oX(t) with probability 1, is the nonhomogeneous Poisson process (NHPP),
we have the following, as a chain of implications for the point process models
we have discussed,

HPP c NHPP c DSPP c SEPP,

where HPP abbreviates the homogeneous Poisson process.
In Chapter 3 we point out that almost all of the proposed models for

software reliability are special cases of the SEPP. Indeed the current research in
analyzing software failure data focuses heavily on point process models with
intensities described as stochastic processes [cf. Gokhale, Lyu, and Trivedi
(1998)].

2.4 Fundamentals of Reliability

Much of the literature on statistical aspects of software engineering has been
devoted to the topic of software credibility, or reliability. By credibility, we
mean the risk of an in-process software failure. Even though a lot has been
written about the differences between hardware and software reliability, it is
useful to bear in mind that the general principles by which reliability problems
are addressed are common to both applications. What distinguishes reliability
problems from the others in which probability and statistics are used is that here
the event of interest is failure, and the uncertain quantity the time to failure T.

Since T is continuous and takes values in [0, 00), our aim is to assess
P(T 2:': t IH) for some t 2:': O. When viewed as a function of t, the quantity
P(T 2:': t IH) is called the reliability junction, or the survival function of T; it is

2.4 Fundamentals of Reliability 53

denoted by FT(t I 'It). Note that FT(t I 'It) decreases in t, from 1 at t = 0, to ° at
t = 00. The argument t of F T(t I 'It) is called the mission time. Also, if
FT(t I 'It) = P(T:::; t I 'It), then from the laws of probability FT(t I 'It) =
1 - FT(t I 'It).

2.4.1 The Notion of a Failure Rate Function

One of the key notions in reliability theory is that of the failure rate function
of T (or of the distribution function of 1). Suppose that FT{t I 'It) is absolutely
continuous so that h{t I 'It), the density function of T at t, exists. Then the
predictive failure rate function of T, at t ~ 0, is defined as

I !T(tl7t)
rT{t 'It) = ~.

The failure rate function derives its importance because of its interpretation
as a conditional probability. Specifically, rT{t 1'It)dt approximates the
conditional probability that an item fails in the time interval [t, t + dt] were we to
suppose that it is surviving at t; that is,

rT(t 1'It)dt ~ P(t :::; T:::; t + dt I T ~ t, 'It).

Whereas a direct specification of F r{t I 'It) is often difficult, specifying
conditional probabilities, like rT(t 1'It)dt, is generally easier. There may be
physical and/or subjective features that help guide this choice. Since the failure
rate at t is the instantaneous probability of failure of an item that is assumed to
survive until t, the failure rate of items that age, such as machinery and humans,
will increase with t. Similarly, the failure rate of software, were it not to
experience failure, will decrease with time, since the absence of failure enhances
our opinion of the software's quality. Recall that, subjectively, a conditional
probability is the informed opinion of a particular individual at a particular time.

Analogous to the notion of a predictive failure rate is the notion of a model
failure rate. Specifically, suppose that to assess P(T ~ t I 'It), a parameter () is
introduced, the law of total probability with its paraphernalia of conditional
independence is invoked, and a probability model for T, P(T ~ t I ()), is
obtained. Then, assuming that fr(t I ()), the probability density of (t I ()), exists
for all t, the model failure rate of T, at t ~ 0, is defined as

r (t I ()) = lIWJ)
T F T(t18) ,

(2.29)

where F T(t I 9) is P(T ~ t I ()). As before, rT(t I 9) is interpreted as

rT(t I (})dt ~ P(t :::; T:::; t + dt I T ~ t, 9).

54 2. Foundational issues: Probability and Reliability

Since both the predictive and the model failure rates are probabilities, and
since probabilities are personal, we may state that failure rates do not exist
outside our minds [cf. Singpurwalla (1988a)]. Also, it is helpful to recall that
since all probabilities are assessed at some reference time T, and since the failure
rate is a conditional probability, it too is assessed at T. The conditioning
argument T ~ t, in P(t::; T::; t + dt I T ~ t, 1i), is to be interpreted in the
subjunctive; that is, it is the probability of failure in [t, t + dt], were the item to
survive to t. If the item is observed to actually survive to t, then this information
becomes a part of the history 1i and our uncertainty assessment process now
commences at the reference time T + t.

To see how a specification of the failure rate, predictive or model, facilitates
the assessment of reliability, we concentrate on (2.29) and start with the
observation that

I h(tIO) d - I .
Tr(t 0) = F T(tIO) = - de 10g(F r(t 0»,

integrating and exponentiating both sides of the preceding gives us the
exponentiation formula of reliability

t

Fr(t 10) = exp(- J rr(u I O)du) .
o

(2.30)

It is because of the preceding formula that the failure rate function is often
used as a proxy for the reliability of an item.

The development so far assumes that F T(t I 8) is absolutely continuous so
that fr(t I 8) exists (almost) everywhere. When such is not the case because
fr(t 18) has a jump at, say t, then rT(t 18) is given by (2.29) for all t #- to, and is

* I 0) h(t*)-h(r) * rr(t = F T(tIO) ,at t = t .

2.4.2 Some Commonly Used Model Failure Rates

The simplest failure model is the exponential, with FT = e-At , t ~ 0; see
(2.14). From (2.29) it is easy to verify that the failure rate of (t I A) is a constant,
A; furthermore, from (2.30), it is easily seen that if the failure rate of (t I A) is A,
then FT(t I A) = e-At , thus the claim that the exponential failure model is the
only one for which the model failure rate is a constant, and vice versa. Also,
recall (see Section 2.2.4) that for the exponential failure model the MTBF is lIA.
Thus a knowledge of the MTBF is sufficient for a specification of both the
failure rate function and the reliability function. The constant model failure rate

Failure Rate
4

3.5

3

2.5

2

1.5

2.4 Fundamentals of Reliability 55

k =0.5

...- -... -.......... - .. _ _- -.............. .
k -1

0.5 k =2

o
o 1.2 2.4 3.6 4.8 6 7.2 8.4 9.6

Time

FIGURE 2.7. The Failure Rate of a Gamma Distribution (A = 1).

assumption implies that were the parameter A to be known to us as >., then the
lifelength of the item does not reflect the property of aging. That is, our
assessment of failure in the vicinity of t is not influenced by the knowledge of
survival at t. This assumption, also known as lack of memory, is a strong one to
make because it implies the absence of learning.

The next failure model to consider is the gamma distribution whose
probability density is given in (2.15). Its distribution function is not in closed
form and so a closed form expression for the failure rate function is not
available. However, it can be numerically shown that the failure rate function of
(t I >., k) is a constant equal to (the scale parameter) >., when the shape parameter
k = 1; it is decreasing for k < 1, and is increasing for k > 1, asymptoting to >.
when t ---+ 00; see Figure 2.7. Similarly, when the failure model is the Weibull
distribution function (2.16), the failure rate of (t I n, (3) is the constant n when
the shape parameter (3 = 1, and increases (decreases) when (3 > (<)1; see
Figure 2.8. It is important to note that the exponential failure model is a special
case of both the gamma and the Wei bull models.

The failure rate of a lognormal distribution is also not available in closed
form. But unlike the monotone failure rates of the gamma and the Wei bull
distributions, the failure rate of the lognormal distribution can be made to
initially increase and then decrease to zero, depending on the choice of the
parameters J.L and 0"; see Figure 2.9 wherein ell- = 1000, and 0" = 1 and 3.

56 2. Foundational issues: Probability and Reliability

Failure Rate
4

3.6

3.2

2.8

2.4

2

1.6

1.2

0.8

0.4

I
I

I

J
~=3 ,

I
I

I
I

I
I

,
I

I
I

~=I

~ =0.5

O~------~--------+--------+--------~------
0.05 0.55 1.05 1.55 2.05

Time

FIGURE 2.S. The Failure Rate ofa WeibuU Distribution (a = 1).

Failure Rate (percent/lOOO hours)

150

125

100

75

50

25

o
o 500 1000

Time (hours)

0=1

0=3

1500 2000

FIGURE 2.9. The Failure Rate of a Lognormal Distribution
(el" = 1000, and u = 1 and 3).

2.4 Fundamentals of Reliability 57

2.4.3 Covariates in the Failure Rate Function

In any given scenario, there are many factors that influence our assessment
of the lifelength of an item. For example, with software it could be the known
factors such as the size of the code, the number of modules, the quality of the
programming team, the operational profile, and the like. Such factors are
referred to as covariates. Those covariates whose values are known at the time
-of assessment 7 become a part of the background history 'H.. But how should we
treat covariates, like the operational profile, whose future values are unknown at
7? Can we adopt here a strategy that parallels the one we used in the context of
doubly stochastic Poisson processes?

To address these questions, suppose that to incorporate the effect of an
uncertain covariate we introduce a parameter Z, taking values (, into the failure
rate function. The parameter Z should bear some interpretive relationship to the
covariate. For example, if the covariate pertains to an unknown presence or
absence of a certain attribute, say fault tolerance in the case of software, then Z
could take the value one; zero, otherwise. Having introduced Z we are also
required to assess P(Z S O. Thus the rr(t I B) of (2.29) is replaced by
rr(t I B,O, and the exponentiation formula now takes the form

I

Fr(t Ie, 0 = exp(- J rT(u I e,Odu).
o

(2.31)

The left-hand side of (2.31) now represents our assessment of the reliability
of the item were we to know, besides B, also (, the value taken by the parameter
Z which is our proxy for the covariate.

When the covariate of interest changes over time, it is best described by a
stochastic process {Z(t); t::::: O}, and if Z(u) takes the value (u), then (2.31)
takes the form

I

FT(t Ie, (u); 0 ~ u ~ t) = exp(- J rT(u I e, (u))du). (2.32)
o

Since we are uncertain about the progression of the covariate over time, we
must average the right-hand side of (2.32) over all the sample paths of Z(u),
o Sus t, to obtain its expectation

I

FT(t I e) = E(exp (- J rT(u I e, (u))du));
o

(2.33)

its evaluation can be a formidable task: (2.33) follows from (2.32) by the law of
total probability.

58 2. Foundational issues: Probability and Reliability

o

I
I
I
I
I
I
I • • :

I
I
I
I
I
I
I
I
I •

TiJre t

FIGURE 2.10. A Concatenated Failure Rate Function.

There are circumstances, perhaps not in software reliability, where the
exponentiation formula is invalid. This occurs with internal covariates. Internal
covariates are those whose disposition indicates the failure or the survival of the
item; for example, the blood pressure if zero is an indicator of sure failure. When
such is the case, (2.31) should not be used; see Singpurwalla and Wilson (1995).

2.4.4 The Concatenated Failure Rate Function

What has been discussed thus far pertains to the failure rate of the
distribution of a single random variable T. With software, which presumably
undergoes the constant process of testing and debugging, we are interested in the
behavior of a collection of interfailure times XI, X2 , .•• , Xi, ... , each
interfailure time representing the time to failure of a debugged version of the
software. Associated with each Xi is rxj(x IJi), the failure rate function of its
marginal distribution function. Generally, the interfailure times are not
independent; thus the individual failure rates must bear some relationship to each
other. Because the notion of the failure rate of a joint distribution function has
not been sufficiently well articulated, especially its intuitive import [see, e.g.,
Basu (1971) or Marshall (1975)], the notion of the failure rate of software is an
elusive one. However, by most accounts, when investigators refer to the term
"the failure rate of software" what they mean is a concatenation (or the side-by
side placement) of the failure rates of the conditional distribution of Xi, given X I,

... , Xi-I, for i = 2, 3, ... ; see Singpurwalla (1995). This practice, first

2.5 Chapter Summary 59

advocated by Jelinski and Moranda (1972), prompts us to introduce the notion of
a concatenated failure rate function r c (x / 'Ii) as

rc(x 11l) = rX;!xJ, ... ,Xj • l (x - T j_1 11l), for hi :::; x < T j , (2.34)

with TI :5 T2:5 ... :5 Ti :5 ... , denoting the times to failure, and Xl, X2, ...
, Xi, ... , the interfailure times; by convention, To == O.

In most cases the ith segment of rc(x / 'Ii) depends only on Ti- l , so that it
simplifies as rXilTj.l (x - Ti-I / 'Ii). An illustration of this simplified version is
shown in Figure 2.10; it consists of several constant segments, each segment
corresponding to an interfailure time.

It is important to emphasize that a concatenated failure rate function is not
the elusive failure rate function of the joint distribution function FXl X.(XI, •••

, Xn /1i). In fact, since rc(x / 'Ii) is defined in terms of the successive failure
times TI :5 T2 :5 ... :5 Ti :5 ... , it is a random function. In rc(x /1i), each
segment starts from the time of the last failure rather than the usual 0 from which
the failure rate of the marginal distribution of Xi would commence. Most
important, neither the concatenated failure rate function, nor its segments like
rX;lXIo ...• Xi.l (x - Ti_1 /1i), for Tj-l :5 x < h can be used in the exponentiation
formula (2.30) to obtain the conditional distribution of Xi given Xl, ... ,Xi-I. This
is because with the condition Tj_l :5 x < Ti, Ti becomes an internal covariate
rendering (2.30) invalid. In order to use (2.30) we must not constrain x so that it
is less than Ti . Thus a purpose served by rc(x /1i) is a graphical display of the
behavior of the successive failure rates of the conditional distributions of the
interfailure times during the test-debug phase of the software. However, and
more important, it ha~ been shown by Chen and Singpurwalla (1997) that
rc(x / 'Ii) is the intensity function of the self-exciting point process that generates
the TiS; see Section 3.5.2.

By way of a final remark, we note that it is possible [cf. AI-Mutairi, Chen,
and Singpurwalla (1998)] that the value taken by the ith segment of rc(x / 'Ii),
could depend on Xi-I> the preceding interfailure time. Consequently, the ith
segment is written as rXiITi.l. Tjx - Ti-l / 'Ii). In general, the ith segment could
depend on any function of all the preceding interfailure times. When such is the
case, the modeling effort tends to get very complicated.

2.5 Chapter Summary

We started this chapter with an overview of the calculus of probability, to
include topics such as conditional probability, conditional independence, the law
of total probability, and Bayes' Law. This was followed by an articulation of the
likelihood function and the notion of exchangeability. All these topics constitute
the foundational material for quantifying, combining, and updating uncertainties,
and are presented from the point of view of an expository overview.

60 2. Foundational issues: Probability and Reliability

We then used the law of total probability to introduce the notions of a
software reliability model and the parameters of such models. Examples of
models that can be used to address several generic problems faced by software
engineers were motivated and introduced. These include the Bernoulli, the
binomial, the geometric, the Poisson, the exponential, the Wei bull, the gamma,
and the lognormal.

This was followed by a discussion of an important class of probability
models, namely, the point process models and their role in software engineering.
Such models include the popular homogeneous, the nonhomogeneous, and the
compound Poisson process models. Independent increments, the defining
characteristic of Poisson process models, was discussed and its limitations for
modeling problems of software failure were pointed out.

In response to the preceding concern two new types of point process models
were introduced, namely, the doubly stochastic Poisson process and the self
exciting point processes. The former arises in software testing wherein the
operational profile is itself a stochastic process. The latter is natural in testing,
since the software code consists of a finite number of bugs so that the
assumption of independent increments is untenable. The hierarchical structure of
point process models was noted; specifically, it was pointed out that

HPP c NHPP c DSPP c SEPP.

In this chapter we also introduced some fundamentals of reliability theory,
namely, the survival function, and the predictive and the model failure rate
functions. This was followed by a discussion of some commonly used model
failure rates such as the exponential, the Wei bull, the gamma, and the lognormal.
The treatment of covariates by conditioning on the failure rate function was
described, and the chapter ended with the introduction of the concatenated
failure rate function as a way to model the interfailure times of software that is
evolving over time.

Exercises for Chapter 2 61

Exercises for Chapter 2

1. Verify the additivity rule for nonmutually exclusive events £1 and £2.

2. Suppose that you have three coins. Coin A has a 50% probability of
landing heads, coin B has a 25% probability of landing heads, and coin
C is two-headed. A friend picks one of the coins at random and tosses
it, telling you that it landed heads.

(a) By conditioning on which coin is picked and applying the law
of total probability, show that the probability of a head is 7112.

(b) Using Bayes' Law, calculate the probability that coin C was
picked given a head was thrown. Repeat this calculation for
coins A and B.

(c) Now, suppose the coin that was picked was thrown again. By
conditioning on which coin was picked and applying the law
of total probability, show that the probability of obtaining a
head on the second throw given that the first throw was a head
is 3/4.

3. During testing, a piece of software is subjected to a sequence of N
inputs, each judged to have the same probability of a successful output,
which we denote p; thus the probability model for the number of
successful outputs is binomial.
A prior distribution on p is assessed to be a beta distribution with
parameters a and {3; that is,

(p I fJ) - r(a+,B) a-I (1)f3-1
1r Ct, - r(a)r(,B) p - p , O<p< 1.

Note that the mean of a beta distribution is a/(a+{3) (i.e. the ratio of the
first parameter to the sum of both). We observe that x of the N inputs
resulted in a successful output.

(a) Apply Bayes' Law to show that the distribution of p in the light
of x and N, also known as the posterior distribution of p. is of
the form:

1r(p I x N) = r(a+,B+N) pa+x-l (l - p)f3+N-x-l
, r(a+x) r(,B+N-x) ,

o <p < 1,

62 2. Foundational issues: Probability and Reliability

that is, another beta distribution with parameters a + x and (3 +
N-x.

(b) What is the mean of this new distribution of p?

(c) If little is known about p a priori, a possible prior is the
uniform distribution on [0, 1], which is a special case of the
beta distribution with a = (3 = 1. Show that the posterior
mean under this prior can be written as

E(P I x, N) = 2;'N X 4 + 2~N X N
(d) Show that, for the beta prior in general, the posterior mean can

be written as a convex combination of the prior mean a/(a+{3)
and the proportion of successes in the data xIN.

(e) What happens to the posterior mean as the number of tests N
gets large?

(t) Another series of N inputs is to be tested on the software.
Assuming that the performance of the software has not
changed, we are interested in the number of successful outputs
Y in this new set. By conditioning on p, and using the law of
total probability, show that the distribution of Y given x,

P(Y _ I) - (N) r(a+{3+N)r(y+a+x)r(2N-y-x+{3)
- y x - y r(a+x)r({3+N-x)r(a+{3+2N) ,

for y = 0, 1, . . . , N. This distribution is called the beta
binomial distribution.

4. Verify Equations (2.12) and (2.14).

5. Suppose we are testing software with a large number of inputs, each
taking roughly the same short time to compute, and each judged to have
the same high probability of success. We have argued in this chapter
that the time until the first incorrect output can be modeled by a
continuous random variable X that is approximately exponentially
distributed; thus P(X ~ x I A) = e->.x, for x ~ 0 and a parameter A > 0;
the density function of X at x is

fx(x I A) = Ae->.x , x ~ O.

Exercises for Chapter 2 63

Note that the mean of X is II A.
Suppose that an exponential pnor distribution with parameter C is
assigned to A.

(a) Show that the posterior distribution of A, given an observed
time to first incorrect output x, is a gamma distribution of the
form:

(b) After observing x, and under the assumption that the software
is still performing as before the failure, you are interested in
the predictive distribution for the time to the next failure Y. By
conditioning on A and applying the law of total probability,
show that the density of Yat y, given x (and C) is

I 2(£+x?
fly x, C) = (£+x+y)3' Y:::: o.

6. New software is being tested at a telephone exchange for routing calls.
At each call, the software succeeds in routing with a probability p,
independently of other calls.

(a) Assuming p known, what is the distribution of the number of
calls taken until one fails to be routed correctly?

(b) A uniform prior distribution on [0, 1] is assessed on p. In a
test, the software first failed to route the 20th call. Calculate
the posterior distribution of p, and the mean of this
distribution.

(c) If testing continues any further, the software development firm
will incur a late delivery penalty of $50,000. However, the
developer will also pay a penalty for faulty performance of the
software. It will pay $40,000 for everyone out of a hundred
calls that is not routed successfully.

I. What is the expected penalty the company will pay,
based on the results of testing so far?

ii. Should the company release the software now or test
further? You may assume, somewhat ideally, that
further testing results in nearly faultfree software.

64 2. Foundational issues: Probability and Reliability

7. The arrival, over time, of calls to a telephone exchange is, at least for
short periods of time, well modeled by a homogeneous Poisson process.
Suppose that such an exchange is known to receive calls in a certain
part of the day according to a Poisson process with the rate of >. per
minute. As in the previous question, at each call the software succeeds
in routing the call with a probability p, independently of other calls.

(a) The distribution of the number of calls taken until one fails to
be routed correctly by the software is geometric. Use this
information to show that the form of the distribution of the
time to the first failure is exponential with parameter >'(1 - p).

Hint: Recall the distribution of time to the nth event in a
Poisson process.

(b) Now suppose that you are given the information that the first
failure occurred after T units of time, and that this was the kth
call to arrive.

(i) Write down the likelihood [of the parameter(s)] given
these data.

(ii) An exponential prior with parameter f is assessed on
>., and a uniform prior on [0, 1] is assessed on p. The
priors are assumed independent. Show that the
posterior distributions of p and>. are beta and gamma
distributions respectively, and that p and >. are a
posteriori independent.

(c) In a sequence of tests, N failures are observed. The times
between each failure are tl, t2, ... , tN, and the number of
calls between each failure is kl' k2, ... , kN • As in the last part
of the question, write down the posterior distribution of (p, >.).

8. Show that the expected number of events that occur by time r, in a
nonhomogeneous Poisson process with a mean value function A*(t), is
A*(r).

9. In the next chapter, we look at models for software failure. One such
model is that of Goel and Okumoto, which assumes that failures occur
as a nonhomogeneous Poisson process with mean value function
A(t) = 0:(1 - e-bt), for parameters 0:, b > O.

(a) Write down the probability of observing N failures by a time t.

Exercises for Chapter 2 65

(b) Suppose that b is known, and you are interested in describing
your uncertainty about a. An exponential prior with parameter
C is assessed on a. Write down the posterior distribution of a
given that N failures are observed by time t.

(c) A software company has tested software for 10 weeks, during
which time it failed 24 times. Now the company must decide
whether to release the software. If it decides to test further, it
will incur a late delivery penalty of $100,000. If it releases
now, it will incur a penalty of $5,000 for every in-service
failure. Assume that:

• at each failure, a new bug will be discovered and fixed
perfectly;

• continued testing will lead to almost failure-free software;

• and that C = 0.02.

Also note that limHoo A(t) = a, so that a can be interpreted
as the expected number of bugs to be discovered over the
entire life of the software.

(i) What is the expected number of bugs remaining in the
software, given testing to time 10 revealed 24 bugs?

(ii) Should the company release now, or test further?

10. Two software engineers, So and Sp, are contemplating the failure rate of
a piece of software. So, the optimist, is of the opinion that the software
contains no bugs-but of course is not sure of this opinion-and
conceptualizes the failure rate as an exponentially decaying function of
time of the form we-WI, for some w > 0, and t 2': o. That is, the longer the
software survives, the stronger is So's conviction of no bugs. Sp, on the
contrary, is a pessimist who feels that the software consists of residual
bugs. Like So, Sp is also not sure of Sp's conviction. Consequently, Sp
conceptualizes the failure rate as a linearly increasing function of time
of the form a + {Jt, for some a 2: 0 and {J > 0, and t 2: o. Sp's view is
that the longer you wait the larger is the possibility of encountering a
bug.

(a) Assuming that w, a, and {J are known, how do So and Sp assess
the reliability of the software for a mission of time T, for some

66 2. Foundational issues: Probability and Reliability

T > O? Verify that So's assessed reliability is greater than that
of Sp's.

(b) Let Fo(T I w) be So's assessed reliability in (a). Show that So's
mean time to software failure is given by IoooF oCT I W)dT.

Hint: Use integration by parts; Fo(T I w) is absolutely
continuous.

Using the preceding formula, find So's and Sp's mean times to
failure.

(c) How would you proceed if in (a), w, Ct, and f3 were unknown?
That is, find Fo(T I e) and Fp(T I e).

(d) Implement your proposal in (c) by making suitable choices and
describe the circumstances under which Sp's assessed
reliability is greater than So's.

Hint: An uncertain optimist can be more pessimistic than a
better informed skeptic.

(e) Suppose that after time t* > 0, the operational profile of the
software changes, so that more demands are made on the
software, and the possibilities of encountering hidden bugs (if
any) greatly increase. Describe how So and Sp will account for
this feature when addressing (a).

3
MODELS FOR MEASURING

SOFTWARE RELIABILITY

3.1 Background: The Failure of Software

In Chapter 2 we introduced the general idea of a software reliability model
and that of the failure rate of software. Over the last two decades, a considerable
amount of effort has been devoted to developing software reliability models-by
some counts, there appear to be over one hundred. The aim of this chapter is to
give an overview of a few of the most commonly used models by software
engineers, and to introduce the reader to some of the more recent developments
in the overall enterprise of model development. The issue of how to use these
models in applications involves the topic of statistical inference, and this has
been delegated to Chapter 4.

Like hardware reliability, software reliability is defined as the probability of
failure-free operation of a computer code for a specified mission time in a
specified input environment (the operational profile). With this definition, there
are two terms that need explanation. By failure-free operation, we mean that the
code is producing output which agrees with specifications. Software failure is
caused by faults or "bugs" that reside in the code; when an input to the software
activates a module where a fault is present, a failure can occur. There may be
faults in the code that are never activated and our definition says that, since these
will never manifest themselves as failure, they can be ignored. In other words, all
bugs do not necessarily cause failures, but all failures are caused by bugs. Since
we can observe failures but cannot hope to directly observe bugs, software
reliability models usually pertain to the former. Secondly, by mission time we

N. D. Singpurwalla et al., Statistical Methods in Software Engineering
© Springer-Verlag New York, Inc. 1999

68 3. Models for Measuring Software Reliability

mean computer time or CPU time, that is, time over which the software is
operational and is ready to receive, is receiving, or is active on inputs.

The causes of software failure are different from those of hardware failure.
A consequence is that it is possible to have software that is bug-free and so will
never experience failure for any mission time, whereas hardware experiences
deterioration with use and is thus prone to failure over time. Software fails
because of bugs in the logic of the code; these bugs are introduced due to human
error. Hardware fails because of material defects and/or wear, both of which
initiate and propagate microscopic cracks that lead to failure. With hardware
failures, the random element is, most often, the time for a dominant crack to
propagate beyond a threshold. Thus meaningful probability models for the time
to hardware failure take cognizance of the rates at which the cracks grow in
different media and under different loadings. With the failure of software, the
situation is different. To see this, we first need to obtain an appreciation of the
random elements in the software failure process. For this, the following
idealization, prompted by the initial work of Jelinski and Moranda (1972), has
been proposed [see Singpurwalla and Soyer (1996)].

3.1.1 The Software Failure Process and its Associated Randomness

A program is viewed as a "black box," or a "logic engine," that consists of
statements bearing a logical relationship to each other. The engine receives, over
time, different types of inputs (i.e., inputs that travel on different paths through
the code), some of which may not be compatible with its design. If each
compatible input traverses its intended path, then all its outputs are the desired
ones, and the program is said to be perfect; that is, it is 100% reliable. If there
are any errors in the logic engine, clerical or conceptual, then it is possible that a
certain (compatible) input will not traverse its designated path, and in so doing
will produce an output that is not the desired one. When this happens, the
software is declared failed. It is possible that the presence of a bug prevents the
software from producing any output. That is, the flawed logic could lead an input
through an indefinite number of loops. Thus, implicit to the notion of software
failure is that of a time interval within which an output should be produced. That
is, associated with each input, there is an allowable service time.

We have said before that with hardware failures the random element is the
time it takes for a dominant crack to propagate beyond a threshold. What are the
sources of uncertainty with software failures? One source is the uncertainty
about the presence and the location of a bug. Another is the type of input and the
possibility of it encountering a bug. In either case, with the monitoring of
software failures there are two types of random variables that can be conceived:
binary and continuous. We first discuss, albeit briefly, the nature of the binary
random variables.

Suppose that Yj , i = 1, 2, ... , k, is a binary random variable taking the
value 1 if the ith type of input to the software results in a correct output within its

3.1 Background: The Failure of Software 69

allowable service time; otherwise, Yi is O. The number of distinct input types is
assumed to be k. Let Pi be the probability that Yi = 1; thus the Yis are the
Bernoulli random variables of Section 2.2.2. If Pi = P, for all values of i, and if
given P the Yis are assumed to be independent, then EYi has a binomial
distribution, and the reliability of the software is simply p. In actuality, P is not
known and the number of input types is conceptually infinite. Consequently, the
sequence of random variables Yi, i = 1,2, ... , can be judged exchangeable (see
Section 2.1.5), and if 7r(p 11i) describes our uncertainty about P, then 7r(p 11i) is
a measure of the reliability of the software. Upon observing some of the Yi'S,
7r(p 11i) will be updated (via Bayes' Law) and this updated quantity will be a
measure of the reliability of the software. The preceding two measures of
reliability are naive; the assumption that Pi = P, for all values of i, ignores the
possibility that some input types will be encountered more often than the others
and that some may not be encountered at all. Approaches that improvise on this
theme are outlined in Singpurwalla and Soyer (1996) who, following Chen and
Singpurwalla (1996), propose a hierarchical model for the PiS.

The second type of random variable used for describing the software failure
process pertains to the time between software failures. It is motivated by the
notion that the arrival times to the software of the different input types are
random. As before, those inputs that traverse through their designated paths will
produce the desired outputs. Those that do not, due to bugs, will produce faulty
outputs. To assess the software's reliability, we observe TI, T2, ... , the times (in
CPU units) between software failures; we apologize to the reader for the change
in notation from that used in Section 2.3. With this conceptualization, even
though the failure of software is not generated stochastically, the detection of
flaws is stochastic, and the result is that there is an underlying random process
that governs the failure of software.

Most of the well-known models for software reliability are centered around
the interfailure times T1, T2, ••• , or the point processes that they generate; see
Singpurwalla and Wilson (1994). In what follows, we introduce and describe
some of these models. Whereas the monitoring of time is very conventional in
hardware reliability studies, we see several issues that arise when this convention
is applied to software reliability. For one, monitoring the times between failures
ignores the amount of time needed to process an input. Consequently, an input
that is executed successfully, but which takes a long time to process will
contribute more to the reliability than one which takes a small time to process.
Second, also ignored is the fact that between two successive failure times there
could be several successful iterations of inputs that are of the same type. In
principle, there could be an interfailure time of infinite length and still the
software could be riddled with flaws. Of course, one can argue that monitoring
the interfailure times takes into account the frequency with which the different
types of inputs occur and in so doing the assessed reliability tends to be more
realistic than the one which assumes that all the input types occur with equal
frequency. In view of these considerations, it appears that a meaningful approach

70 3. Models for Measuring Software Reliability

Software
Reliability
Models

Type I
Failure
Times

Type II
Failure
Times

Type 1-1
Failure
Rate

Type 1-2
Random
Function

FIGURE 3.1. A Classification Scheme for Software Reliability Models.

to describe the software failures is via the scheme used to study marked point
process [e.g., Arjas and Haara (1984)], wherein associated with each interarrival
time, say Wi, of inputs, there is an indicator 8;, with 8; = 1, if the ith input is
successfully processed, and 8; = 0, otherwise; i = 1, 2, Progress in this
direction has been initiated but more development is needed. The point process
approach to software reliability modeling was initiated by Goel and Okumoto
(1979), and was followed up by Musa and Okumoto (1984), Langberg and
Singpurwalla (1985), Miller (1986), Fakhre-Zakeri and Slud (1995), Kuo and
Yang (1996), Chen and Singpurwalla (1997), and Slud (1997). Many of these
authors have attempted to unify several of the existing software reliability
models so that this topic can be studied under a common structure; see Section
3.5.

3.1.2 Classification of Software Reliability Models

Since many models based on the interfailure times Tt, T2, ... , use similar
modeling principles, the differences being only in the detailed application of a
principle, it is possible to classify the models according to the principle used.
Such a scheme adds structure to the disparate set of models and provides an

3.1 Background: The Failure of Software 71

explanation as to why certain modeling strategies were predominant at certain
times. Our classification scheme (see Figure 3.1) follows that of Singpurwalla
and Wilson (1994), and divides models into two broad types:

Type I : those that model the times between successive failures;

Type II : those that model the number of failures up to a given time.

Under Type I, the random variables T1, T2 , ••• , are modeled directly. This
is often done by specifying the failure rate function for each random variable,
rT,(t 11-£), i = 1, 2, ... , and then invoking the exponentiation formula (2.30) to
obtain P(Ti ~ t 11-£).

Type I models that use the failure rate as a modeling tool are said to be of
Type I-I. Typically, rT,(O 11-£) :::; rhl (0 11-£), for i = 1, 2, ... , to reflect the
fact that as software evolves over time, more bugs are discovered and fixed, and
that each rT;(t 11-£) is a nondecreasing function of t, for t ~ 0, to reflect the fact
that between failures our opinion of the credibility of the software increases. In
actuality, the fixing of bugs may introduce new ones in the code, so that the
inequality given previously is not realistic. Nevertheless, many of the proposed
Type I-I models that we review here reflect such a feature; see Figures 3.2 to
3.4.

Another approach to modeling the times between successive failures is to
describe each Ti as a random function of the previous TiS. Models that describe
the TiS in this manner are said to be of Type 1-2. A simple example of this is a
time series model of the random coefficient autoregressive type wherein we may
postulate that Ti = pTi-1 + E, where p ~ 0 is an unknown constant, and f is a
random disturbance term having mean zero. With p > 1, the successive failure
times would tend to increase, indicating that the software is becoming more
reliable with aging, whereas with p < 1, the opposite is to be true. In general, a
Type 1-2 model will have the feature that

(3.1)

for some random function F, or a known function having random coefficients.
With Type II models, we do not propose a model for the interfailure times

T i ; rather, we propose a counting process model (see Section 2.3) for N(t), the
number of times the software fails in an interval [0, t]. The earliest and perhaps
best known models of the Type II kind are those which assume that N(t) is
described by a Poisson process whose mean value function is based on
assumptions about how the software experiences failure. The more recent
contributions to Type II models do not suffer from the independent increments
restriction (see Section 2.3.1) of Poisson process models.

72 3. Models for Measuring Software Reliability

We close this section with the remark that, in principle, a model of either
type defines a model of the other. Specifically, for a sequence of inter-failure
times T\, T2 , • . • , for which a Type I model has been proposed, there is an
implicit Type II model [cf. Kuo and Yang (1996), Chen and Singpurwalla
(1997)], because

n

N(t) = max{n I 2:Ti :::; t}, (3.2)
;=\

and conversely, for a Type II model there is a Type I model, because with
To = 0, and i = 2, 3, ... ,

Ti = inf{t I N(t) = i} - Ti-1• (3.3)

3.2 Models Based on the Concatenated Failure Rate Function

3.2.1 The Failure Rate of Software

In Section 2.4.4 we introduced the notion of a concatenated failure rate
function and have used it as a proxy for the failure rate of software. The earliest
models in software reliability were based on specific forms of the concatenated
failure rate function which, we recall from (2.34), is a side-by-side placement of
the failure rates of conditional distributions. From a subjective point of view one
is free to specify any general form for the failure rate function, and indeed this
has been the basis of many such proposals, each motivated by a view of the
software development process. We start with one of the earliest, and perhaps the
most widely discussed of such models. All the models discussed in this section
are of Type 1-1.

3.2.2 The Model of Jelinski and Moranda (1972)

According to lannino, Musa, and Okumoto (1987), a model for describing
software failures proposed by Hudson (1967), and based on the structure of
"birth and death processes," predates all known models. However, it is the model
by Jelinski and Moranda (1972) that appears to be the first one to be widely
known and used; also, it has formed the basis on which several other models
have been developed. Jelinski and Moranda assume that the software contains an
unknown number, say N, of bugs and that each time the software fails, a bug is
detected and corrected. Furthermore, the failure rate of T; is proportional to
N - i + 1, the number of bugs remaining in the code; that is, for some constant A
> 0, and software failure times ° == So ~ S\ ~ ... ~ S;, i = 1,2, ... ,

3.2 Models Based on the Concate!1ated Failure Rate Function 73

rc(t IH)

5 I
I
I • I 4 I

I
I • I 3 I

I
I

I
2 • '---

Time t

FIGURE 3.2. The Concatenated Failure Rate Function
of the Model by Jelinski and Moranda.

rT;1 5;.1 (t - Si-I I N, A) = A (N - i + 1), for t 2: Si-I. (3.4)

In Figure 3.2 we show a plot of the concatenated failure rate function for the
model of Jelinski and Moranda, with N = 5 and A = 1. Since each failure leads
to the removal of precisely one bug, the failure rate drops by a constant amount
A. Since the right-hand side of (3.4) is a constant, it follows from the
exponentiation formula that the conditional distribution of Ti given Si-I is an
exponential distribution with a mean of (A(N - i + 1))-1; that is, for t :::: Si-I,

(3.5)

The assumptions underlying the model of Jelinski-Moranda are: a perfect
detection and repair of bugs, and a type of constant relationship between the
number of bugs and the failure rate. This model is also known as a de
eutrophication model, because the process of removing bugs from software is
analogous to the removal of pollutants from rivers and lakes. Both assumptions
are unrealistic; perfect repair does not always occur, and each bug cannot be
assumed to contribute the same amount to the failure rate. Some bugs may be
benign and some may never be encountered.

Langberg and Singpurwalla (1985) provide an alternative nonbug counting
perspective of the software failure process which also results in (3.5). They
assume that there are N* distinct input types to the program of which N::::: N*
results in the inability of the program to perform its desired function.
Conceptually, N* is assumed to be infinite and N is assumed unknown. The N*
inputs arrive at the software as a homogeneous Poisson process with intensity A.

74 3. Models for Measuring Software Reliability

rc(t 111.)

I
I
I
I
I
I
I
I • I

I
I
I .. I

I ., • L

So=O S1 S2 S3 Time t

FIGURE 3.3. The Concatenated Failure Rate Function
of the Model by Moranda.

For any specified mission time, say t, there is a constant (but unknown)
probability that the software will not encounter an input type that results in its
failure; this probability depends on both N* and N. Using a shock model type
argument of reliability theory [see Barlow and Proschan (1975), p.128],
Langberg and Singpurwalla show that (3.5) holds with A = >"NIN*.

Despite its limitations, Jelinski and Moranda's bug counting model is
important in software reliability for several reasons. Historically speaking, it
established a line of thinking vis-a-vis its depiction of the concatenated failure
rate function, and, as described in the following, stimulated the development of
several other models. In fact, many subsequent models are generalizations of this
model. Secondly, it appears to be ubiquitous in the sense that no matter how we
attempt to look at the software failure process (see Section 3.5.3) the model
always reappears as a special case. Indeed, the model by Jelinski and Moranda is
as fundamental to software reliability as the exponential distribution is to
hardware reliability. In hardware reliability the exponential distribution has
served a foundational role. This is despite the fact that its practical application is
subject to questioning; however, deviations from exponentiality serve as useful
guidelines giving the distribution a benchmark status [cf. Barlow and Proschan
(1975)]. Similarly, the model by Jelinski and Moranda plays a benchmark role
with respect to software reliability.

3.2 Models Based on the Concatenated Failure Rate Function 75

Time t

FIGURE 3.4. The Concatenated Failure Rate Function of the
Model by Schick and Wolverton.

3.2.3 Extensions and Generalizations of the Model by Jelinski and
Moranda

To address the concern that in Jelinski and Moranda's model every bug
contributes equally to the failure rate, Moranda (1975) proposed a modification
in which bugs that appear early are viewed as contributing more to the failure
rate than those that appear later. Accordingly, the segments of the concatenated
failure rate form a geometrically decreasing sequence, so that for constants D >
0, and 0 < k < 1,

rTjISj.! (t - Si-l I D, k) = D ki-l, for t 2 Si-l; (3.6)

see Figure 3.3 which shows the concatenated failure rate function with D = 8
and k = 0.5.

Subsequent to Moranda's modification is the generalization of (3.5) by Goel
and Okumoto (1978), who introduced a parameter p in (3.4) to address the
criticism of perfect repair; p is the probability that a bug is successfully detected
and repaired. Accordingly, (3.4) becomes

rT;/ Sj.! (t - Si-l I N, A) = A [N - p(i - 1)], for t 2 Si-l. (3.7)

The model by Jelinski and Moranda is a special case of the preceding when
p = 1; in (3.7), the assumption that no new bugs are introduced during
debugging continues to hold.

76 3. Models for Measuring Software Reliability

A significant departure from the preceding line of thinking is due to Schick
and Wolverton (1978), who assumed that the conditional failure rate of Ti is
proportional to both the number of remaining bugs in the software and the
elapsed time since last failure. That is,

rTd Si.1 (t - S;-1 I N, A) = A (N - i-I) (t - S;-I), for t ~ S;-I. (3.8)

Figure 3.4 is a plot of the concatenated failure rate function associated with
(3.8). Note that each segment of this plot commences at zero and increases
linearly with time. From a subjective point of view, this feature can be given an
interesting interpretation. It says that every time a failure is encountered and the
bugs corrected, our opinion of the software is so greatly enhanced that its failure
rate drops to zero. However, as time elapses and we do not experience any
failure, we become apprehensive about encountering one, and so our failure rate
increases until we experience a failure at which time the failure rate drops to
zero. Verify, using the exponentiation formula, that the distribution of Ti , given
Si_l, is the Rayleigh, which is a Weibull distribution with shape 2. It is important
to bear in mind that in (3.4) through (3.8) the SiS are not the actually observed
failure times; rather, they represent supposed failure times.

3.2.4 Hierarchical Bayesian Reliability Growth Models

In the models of Sections 3.2.2 and 3.2.3, the stochastic behavior of the
times between observed failures is described in terms of the (unobservable)
number of bugs in the software. This is why such models have been referred to
as "bug counting models." Since the relationship between the number of bugs
and the frequency of failure is tenuous, models that are devoid of such
considerations have been proposed. One such model is the one due to Langberg
and Singpurwalla (1985) mentioned at the end of Section 3.2.2; another model is
due to Mazzuchi and Soyer (1988). Here the A(N - i + 1) of (3.4) and (3.5) is
replaced by an unknown parameter Ai, and a prior distribution, 7rA;(.~ I .),
assigned to Ai. Specifically, Ai is assumed to have a gamma distribution [see
(2.15)] with shape parameter a and scale parameter 'Ij;(i), where 'Ij;(i) is a
monotonically decreasing function of i. The function 'Ij;(i) is supposed to reflect
the quality of the programming effort. A particular form is 'Ij;(i) = f30 + (31 i; this
form ensures that a/('Ij;(i», the expected value of Ai, decreases in i.
Consequently, for i = 2, 3, ... , the Ais will form a stochastically decreasing
sequence; that is, for any A 2:: 0, P(Ai ~ A) 2:: P(A i-1 ~ A). Because

(3.9)

3.3 Models Based on Failure Counts 77

and since A(N - i + 1) of (3.5) is replaced by Ai, it can be verified that
subsequent to the (i - l)th failure, the reliability of the software for a mission of
duration t has a Pareto distribution of the form

(3.10)

Both a and the parameters of'ljJ(i) are treated as unknown. The prior on a is
chosen to be a uniform on [0, w], with w > 0 a constant, and the prior on (31 a
gamma independent of a; the prior on f30 (given (31) is supposed to be a shifted
gamma, with (31 being the extent of the shift. For specific details, see Section
4.4. An initial version of this model was proposed by Littlewood and Verall
(1973). The model has been extended by Kuo and Yang (1995) who take 'ljJ(i) to
be a polynomial of degree k, and by Soyer (1992) who lets Ai have expectation
aif3. Under Soyer's scheme positive (negative) values of (3 suggest an
improvement or growth (decay) of reliability from one stage of testing to the
other.

3.3 Models Based on Failure Counts

In the same paper where Moranda proposed his de-eutrophication model, he
also proposed the very first of a Type II model [cf. Moranda (1975)]. Recall that
in Type II models we look at N(t), the number of failures to time t, rather than
the interfailure times T1, T2, • • • • Under such models the reliability of the
software for a mission of duration t is simply P(N(t) = 0 I 'H). Moranda's
motivation for considering models for N(t) was that often data on software
failures did not give times between failures; rather they gave the number of
failures in fixed time intervals. For the ith interval Moranda assumed that N(t)
was a homogeneous Poisson process of intensity >..ki-1, with constants>" > 0 and
o < k < 1. This model reflects the lingering influence of the kind of thinking
used in Type I models; we have here a sequence of decreasing intensity functions
instead of a sequence of failure rates, one for each interval.

3.3.1 Time Dependent E"or Detection Models

The model by Goel and Okumoto (1979) was the first Type II model to
break free from the idea of describing N(t) by a sequence of homogeneous
Poisson processes. Instead, N(t) is described by a single nonhomogeneous
Poisson process with a mean value A(t) and intensity >"(t); see Section 2.3.1.
These authors argued that A(t) should be bounded because the expected number
of failures over the life of the software is finite. Specifically, for a constant a> 0,
A(O) = 0, and limt-+ooA(t) = a. Furthermore, the expected number of failures in
an interval of time (t. t + .6.t) is assumed proportional to the product of the

78 3. Models for Measuring Software Reliability

expected number of undetected failures times the length of the interval. That is,
for a constant b > 0, known as the fault detection rate,

A(t + llt) - A(t) = b (a - A(t»llt + o(llt). (3.11)

Dividing (3.11) by llt and letting llt -7 0, we have a differential equation
which for the boundary conditions on A{.) has the unique solution:
A{t) = a(1 - e-bt), or A{t) = ({dA{t»/dt) = abe-bl• Thus

P(N(t) = n I a, b) = (A~?)n e-A(t) ,

and the reliability of the software for a mission of duration t, starting at time 0, is

P(N(t) = 0 I a, b) = e-a(l-e-bt). (3.12)

Given Si, the time of the ith failure, we can also obtain the distribution of Ti+1 as

P(Ti+l ~ t I a, b, Si = s) = exp(- a(e-bs - e-b(s+t»). (3.13)

The model of Goel and Okumoto was the first of many nonhomogeneous
Poisson process models that have been proposed, each based on different
assumptions about the detection of failures. It has some noteworthy differences
from the Type 1-1 models that precede it. First, the total number of potential
failures is assumed to be infinite so that the number of observed failures is a
random variable having a Poisson distribution, as opposed to a fixed (but
unknown) number of bugs N that had been previously assumed. Second,
Equation (3.13) implies that the interfailure times are dependent, whereas in the
Type 1-1 models they were assumed independent. Both these differences appear
to be sensible improvements of a description of software failure.

Experience has shown that the rate at which failures in software are
observed increases initially and then decreases. To accommodate such
phenomena, Goel (1985) proposed an intensity function of the type

A(t) = a . b· c· te-Ie-bte, for positive constants a, b, and c.

However, it is the proposal by Musa and Okumoto (1984), who postulate a
relationship between the intensity function and the mean value function of a
Poisson process, that has gained popUlarity with users. Specifically, for positive
constants A and (),

(3.14)

3.3 Models Based on Failure Counts 79

o

~ Musa-Okumoto

.. _--------------

2 3 4 5 6 Tirre t

FIGURE 3.5. Intensity Functions of the Goel-Okumoto
and the Musa-Okumoto Models.

that is, the rate at which failures occur exponentially decreases with the expected
number of failures. Since A(t) is the derivative of A(t), and if A(O) == 0, then the
differential equation (3.14) is solved to obtain:

>.
A(t) = >.Bt+l' and (3.15)

(3.16)

Figure 3.5 compares the intensity functions of the models proposed by Goel
and Okumoto (1979) and by Musa and Okumoto (1984). The main difference is
in the tails, wherein the intensity function of the latter decays more slowly.
Under (3.14), the reliability for a mission of duration tis

P(N(t) = 0 I A, B) = (ABt + 1)-1111 , (3.17)

and the analogue of (3.13) is

(>'(Js+l) I/O
P(Ti+1 ?: t I A, B, Sj = s) = >'B(s+l)+l . (3.18)

In Chapter 4, we describe how expert opinion and failure data can be used
for predicting future lifetimes using the model (3.16), referred to by Musa and

80 3. Models for Measuring Software Reliability

Okumoto as the logarithmic Poisson execution time model. There we also
discuss inferential issues pertaining to the model of Jelinski and Moranda.

3.4 Models Based on Times Between Failures

3.4.1 The Random Coefficient Autoregressive Process Model

This model, introduced by Singpurwalla and Soyer (1985), describes the
relationship between the successive interfailure times TI, T2, ... , Ti, ... ,i = 1,
2, ... , via a power law of the form

T. _ ('1'.)(), .1., - .1.,-1 , (3.19)

where To is the time to first failure, and the ()is are a sequence of unknown
constants. If the TiS are scaled so that they are greater than one, then values of ()i
greater (less) than one suggest an increasing (decreasing) sequence of TiS; thus a
stage-by-stage growth or decay in reliability can be described.

To account for uncertainty about the relationship (3.19), an error term Di is
introduced so that

(3.20)

and an assumption made that the TiS and the DiS have a lognormal distribution
(see Section 2.2.2), with the latter having parameters 0 and ar; in other words,
Di rv A(O, ad. By taking logarithms in (3.20) we have what is known as a linear
model in logarithms of the interfailure times; specifically,

10gTi = (}i 10gTi_1 + log OJ,

= (}i 10gTi_1 + /OJ, (3.21)

if Ei = log Di.

The assumption that the TiS and the DiS are lognormal implies that their
logarithms Ei have a Gaussian distribution (see Section 2.2.2) with Ei having
mean zero and variance ar; recall that the TiS have been scaled so that they are
greater than 1. The linear model (3.21) is one of the most well-known time series
models; with ()i unknown, it is known as a random coefficient autoregressive
process of order 1 [henceforth RCAP(1)]. The model generalizes so that Ti
depends on k > 1 previous T;s. Also, the variance of Ei could change with i.

A final specification for this model pertains to the treatment of ()is, and the
authors propose several alternatives. One is to make the ()is exchangeable (see
Section 2.1.5); a way for doing this is to assume that each ()i has a Gaussian

3.4 Models Based on Times Between Failures 81

distribution with mean A and variance a~, with A itself having a Gaussian
distribution with mean f..L and variance a~. Under this scheme, the quantities ai,
a~, a~, and f..L need to be specified; strategies for doing this are given by
Singpurwalla and Soyer (1985). As an alternative to exchangeability, we may
describe the ()is by an autoregressive process of order 1, so that

(3.22)

where Q is a constant and Wi ,..., N(O, W?>, with wl specified. When Q is
specified, along with the Wl and ai, (3.21) and (3.22) constitute what is called a
Gaussian Kalman filter model, for which there exists extensive literature; an
expository description is in Meinhold and Singpurwalla (1983b). When Q is
unknown, its uncertainty is described by a distribution, and the preceding
equations define an adaptive Gaussian Kalman filter model; Singpurwalla and
Soyer (1992) discuss such models and their merits for analyzing software failure
data.

3.4.2 A Non-Gaussian Kalman Filter Model

A Kalman filter model is specified by two equations, an observation
equation-(3.21) in our case-which describes how the observables evolve as a
function of time, and a system equation-(3.22) in our case-which describes
how unknown coefficients in the observation equation evolve with time. The
Kalman filter models of the previous section were called Gaussian, because the
unknown quantities were assumed to have Gaussian distributions. Non-Gaussian
Kalman filter models are those in which the underlying distributions are not
Gaussian. The tradition of assuming that the error terms of linear models have
Gaussian distributions dates back to Gauss who argued that since measurement
errors tend to be symmetric about a mean the adoption of DeMoivre's
(Gaussian) distribution is reasonable. However, failure data, be they for
hardware, software, or biological entities, tend to be highly skewed;
consequently the assumption of Gaussian distributions comes into question.
Furthermore, in observing failure data it is difficult to conceptualize the notion
of observational errors caused by instrumental inaccuracies. With Kalman filter
models, or for that matter any general linear model, the main advantage of using
Gaussian distributions is computational tractability; this advantage has
diminished with modern computing. Because of these considerations, the routine
use of Gaussian Kalman filter models, even on logarithms of the observed failure
times, needs to be re-examined.

Bather (1965) introduced the idea of "invariant conditional distributions"
and discussed their properties. This work provided Chen and Singpurwalla
(1994) with the necessary framework for developing a non-Gaussian Kalman
filter model for tracking software failure data. Here, instead of assuming that the
TiS are lognormally distributed, it is assumed that they have a gamma distribution

82 3. Models for Measuring Software Reliability

with a scale parameter 0; which evolves according to a beta distribution; both the
gamma and the beta distributions were discussed in Section 2.2.2. Specifically,
for known constants C, Wi, a;, and V;, such that a;_1 + W; = a; + V;, i = 2, 3, ... ,
we have the observation equation as

(Tj I OJ, Wj) '" 9 (OJ, Wj), (3.23)

and the system equation as
O - fu j - C; Ej, (3.24)

with Ej having a beta distribution with parameters a;_1 and V;-I. The initial value
00 , required for starting the iterative process of Kalman filter models, is assumed
to have a gamma distribution with scale parameter ao + Vo and a shape parameter
Uo. Note that (3.24) is the analogue of (3.22) except that in the former the error
term Ej relating the OJ'S is multiplicative whereas in the latter it is additive.

In Section 4.5, where we discuss statistical inference using the preceding
models, more insights about their hierarchical structure are given.

3.5 Unification of Software Reliability Models

In Section 3.1 we classified software reliability models according to the
modeling strategy used to define them. The first few models were almost
exclusively of Type 1-1 (such as that of Jelinski and Moranda); then, in the late
seventies, Type II models began to gain popUlarity. More recently, Type 1-2
models appear to be coming into their own. To an outside observer, it would
appear that all of these models are motivated by seemingly unrelated arguments.
Indeed, even among software engineers, the topic of reliability modeling has
been the subject of active debates and discussion; see, for example, Tausworthe
and Lyu (1996). Software engineers have been too eager to come up with new
models and to compare the predictive performance of the various competing
models. In fact there even exist so-called "expert systems" devoted to selecting a
software reliability model. The software industry would like a universal model
that is equipped to accommodate as many nuances of the software reliability
evolution formula as is possible. Whereas the search for an ideal model
continues to be a futile exercise, at least for the immediate future, the possibility
of viewing most of the available models from a unifying perspective appears to
be at hand. The advantage of unification is the availability of a common structure
under which the problem of reliability growth or decay can be studied.

Our classification scheme can be thought of as a step towards model
unification, in the sense that a set of models becomes a special case of a more
general model. Thus, all the Type II models that we have discussed are special
cases of the nonhomogeneous Poisson process, whereas all Type 1-1 models are
special cases of a general model that models failure times as random variables
with differing failure rates. Can we take this unification further? Is there a sense

3.5 Unification of Software Reliability Models 83

in which a larger group of models can be unified as being special cases of a
general model? If so, what would this general model be?

The issue of unification has also arisen because of the contrast in the state of
the art of software reliability and classical hardware reliability where only a few
models, notably the Weibull, playa dominant role. A unifying perspective on the
many software reliability models can hopefully simplify the task of model
selection that a user faces.

3.5.1 Unification via the Bayesian Paradigm

One of the earliest attempts at unifying the then prevailing software
reliability models was by Langberg and Singpurwalla (1985). By specifying
prior distributions on the parameters N and A of the model by Jelinski and
Moranda [see (3.5)], it was shown that the models by Goel and Okumoto and by
Littlewood and Verall (1973) arise as special cases. Specifically, if

Case 1. The prior distribution on N is a Poisson with mean (), and if A is
degenerate at >. [i.e., peA = >. i'lt) = 1],

then N(t), the number of bugs discovered up to time t, is a nonhomogeneous
Poisson process with a mean value function ()(1 - e-At); see Theorem 3.3 of
Langberg and Singpurwalla. This is precisely the model of Goel and Okumoto.
Also, if

Case 2. The prior distribution of N is degenerate at some n, and if A has a
gamma distribution with a scale parameter 'l/J(i),

then T; will have the Pareto distribution (3.10). Also the sequence of TiS is
stochastically decreasing; that is, for all i = 1, 2, ... , and any a 2: 0,
P(Ti 2: a) ::::; P(Ti + 1 2: a); see Theorem 3.4 of Langberg and Singpurwalla
(1985). This is precisely the idea behind Littlewood and Verall's version of the
hierarchical Bayes reliability growth model of Mazzuchi and Soyer (1988).

The fact that the model of Goel and Okumoto and that of Mazzuchi and
Soyer can be derived as generalizations of the Jelinski and Moranda model is
interesting from several perspectives. Jelinski and Moranda's model is the most
widely known, and both the other models can be viewed as attempts to improve
on it by moving away from its assumptions. Given this, the unifying result that
has just been described is perhaps surprising. Secondly, note that the unified
models are of both Type I and Type II. That models of both types can be so
easily thought of as special cases of a more general model suggests that there is
less fundamental difference between the two types than there appears at first
sight. This is indeed the case, but to appreciate how closely the two types are
related we need to revisit our discussion of point process models.

84 3. Models for Measuring Software Reliability

3.5.2 Unification via Self-Exciting Point Process Models

In Section 2.3.3 we have argued that Type II models, being based on the
nonhomogeneous Poisson process, are special cases of the self-exciting point
process with memory m = - 00. If it can be shown that Type 1-1 models can
also be represented as self-exciting point processes, then much progress towards
unification can be made. That such is indeed the case can be seen if we regard
the concatenation points of the concatenated failure rate function of a Type 1-1
model as events in a point process. By assuming that only one failure occurs at
each failure time, the number of bugs discovered up to a time t will evolve as a
point process. But is the resulting process a Poisson process? In general, the
answer is no. First, many models make the sensible assumption of a finite, albeit
unknown, number of bugs in the software. Second, the concatenated failure rate
shows us that the evolution of the process is a function of the number of bugs
that have already been discovered. Both these features violate the independent
increments property of Poisson process models. However, they are not at
variance with the postulates of self-exciting point processes; indeed, the second
feature is a defining characteristic of the SEPP. The following theorem formally
sets this down.

Theorem 3.1 [Chen and Singpurwalla (1997)]. Under conditional orderliness,
the sequence offailure times Sj, S2, ... , generated by a concatenation of inter
failure times T;, having failure rates r;(•), i = 1, 2, ... , are described by a self
exciting point process whose intensity function is the concatenated failure rate
function

with ?-It denoting the history of the process up to time t.
Theorem 3.1 presupposes conditional orderliness. This implies that there are

sequences of failure times for which conditional orderliness fails to hold. The
following theorem gives sufficient conditions for the property to hold.

Theorem 3.2 [Chen and Sinpurwalla (1997)]. Consider the set-up of Theorem
3.1. Suppose that the probability density function of T; at t exists; let it be
denoted by fr/t I 1f.si./). Then, if there exists an h > 0 and an M, 0 < M < 00,

such that

/T;(t - Si-l I ?-lSi.) 5 M, for all t E [Si-J. Si-l + h],

and for all possible histories 1f.si./, then the counting process (N(t); t > OJ has
the conditional orderliness property. N(t) is the number offailures up to time t.

3.5 Unification of Software Reliability Models 85

Now it is always so that for any random variable Tj having a probability
density fri and failure rate rri, frJt I .)::; rr;Ct I .), for all t;::: 0. Thus a
convenient way of using Theorem 3.2 to verify conditional orderliness is to see if
rri(t - Sj_1 I1iS;.I) ::; M < 00, for all t E [Sj_l, Si-I + h], that is, to see if the
failure rate is bounded.

Clearly, all the Type 1-1 models discussed in Section 3.2 have bounded
failure rates and can therefore be viewed as self-exciting point processes. For
example, in the model of Jelinski and Moranda, if N and A are assumed finite,
then

rT;!Si.l(t - Si-I I N, A) = A(N - i + 1) ~ M,

for some M < 00, and similarly, in the model by Schick and Wolverton

Observe that the model by Jelinski and Moranda is of memory m = 0,
whereas those of Schick and Wolverton and the hierarchical Bayes model of
Mazzuchi and Soyer are of memory m = 1. Intuitively, it would appear that the
greater the memory of the process the more refined is our ability to describe the
phenomenon that generates the events under study. Consequently, in Section 3.6
we introduce a model for software failures whose underlying self-exciting point
process is of memory m > 2.

Thus far we have said nothing about the other Type I models that are not
specified via the failure rate. In Type 1-2 models, a stochastic relationship
between the consecutive failure times was given; for example, with the random
coefficient autoregressive process (see Section 3.4.1) we postulated the

relationship Tj = 0; T;~{, with Tj having a lognormal distribution, whereas in
Section 3.4.2 T; had a gamma distribution. For both these examples, we can
verify that the density functions of the interfailure times satisfy the conditions of
Theorem 3.2, and thus these models can be viewed as members of the self
exciting point process family; furthermore, they are of memory m = 2. As a
consequence of the preceding, we state the main result of this section.

All the software reliability models discussed in Sections 3.2-
3.4 are special cases of a self-exciting point process model
having memory m ::; 2.

It is important to note that not all software reliability models that have been
proposed are special cases of self-exciting point processes. Whenever failures
occur in clusters [see e.g., Crow and Singpurwalla (1984) and Sahinoglu
(1992)], the conditional orderliness property fails and the underlying models
cannot be viewed as members of the self-exciting point process family.

86 3. Models for Measuring Software Reliability

An advantage of the preceding unification is a common structure under
which the problem of software reliability can be addressed. We can now think of
other self-exciting point processes as potential models with the aim of making
the intensity function better reflect our opinion of the evolution of the software's
reliability; see Section 3.6.

3.5.3 Other Approaches to Unification

Whereas unifying software reliability models by viewing them as special
cases of self-exciting point processes appears to be broadly encompassing, it is
not the only way in which this issue has been addressed. For example, Koch and
Spreij (1983) published work that investigated unification using the martingale
theory for point processes. A contribution was subsequently made in a similar
vein by van Pul (1993). Also conceptually important is the work of Fakhre
Zakeri and Slud (1995), and of Slud (1997), who use the idea of a mixture model
in which a point process with an intensity function that depends on unobservable
variables is considered. By specifying these unobservables in different ways,
both randomly and deterministically, Fakhre-Zakeri and Slud (1995) obtain the
ubiquitous model of Jelinski and Moranda, the time dependent error detection
models of Section 3.3.1, and also a model by Dalal and Mallows (1988) that we
have not discussed here.

More recently, Kuo and Yang (1996) have presented an elegant
development on the relationship between the models in the Type 1-1 category
and those in the Type II category via the perspective of "order statistics" and
"record values." These notions have played an important role in applied statistics
and in probability theory, and it behooves us to gain an appreciation of their
essential features. We start with an introduction to the former followed by its
relevance to the models in the Type 1-1 and the Type II categories.

The General Order Statistics Models

Suppose that Xl, ... , Xn is a collection of random variables. Let F(x I fU be
a probability model for Xi, i = 1, 2, ... , n, where fl.i is a vector of parameters;
that is, F(x I fl.i) = P(Xi :::; x I fl.J Let F(x I fl.i) = 1 - F(x I fl.i)' and suppose that
F(x I fl.) is absolutely continuous so that the probability density fix I fl) exists for
all x. Suppose that given fl.i' the XiS are judged independent. Thus if fl.i = (),
i = 1, 2, ... , n, then the XiS are independent and identically distributed.

We now order the XiS from the smallest to the largest values, and denote the
ordered values via the inequalities - 00 < X(l) < X(2) < ... < X(n) < + 00. The
motivation for ordering comes from many applications; examples are hydrology,
strength of materials, reliability, and life testing. For example, if Xi denotes the
lifelength of the ith component, then X(l) is the smallest lifetime and X(n) the
largest lifetime. If the n-component system is a series (parallel redundant)

3.5 Unification of Software Reliability Models 87

system, then X(l) (X(n» would be the time to failure of the system; the reliability
of the series system would be P(X(l) 2:: x I .). In statistical terminology,
X(l){X(i)} [X(n)] is known as the smallest {ith} (largest) order statistic in a
sample of size n, and interest generally centers around the distribution of the ith
order statistic, i = 1, ... , n. Especially, we may be interested in assessing

n

= IT F(x I fl.),
i=1

since given the fl.is, the XiS are assumed to be independent. Similarly, we have

n

= IT F(x I fl.;).
;=1

For most cases of practical interest fl.; = fl., for all values of i, and now X(i) is
known as the ith order statistic in a sample of size n from F(x I fl.). When such is
the case, the preceding expressions for X(l) and X(n) simplify as (F(x I fl.»n and
(F(x I fl.»n, respectively. Furthermore, using the binomial distribution (see
Section 2.2.2) we can verify that

n

P(X(i) :::; x I fl.) = 2: (~) (F(x I fl.»} (F(x I fl.»n-),
]=1

(3.25)

and if !X(i/x I fl.) denotes the probability density of XCi) at x, were we to know fl.,
then

!X(i)(X I fl.) = (i-1)7~n-i)! (F(x I fl.)t 1 fix I fl.) (F(x I fl.»n.; . (3.26)

The preceding line of thinking can be extended in such a way so that if
!X(l),'" X(k) (XI, ... , Xk I fl., n) denotes the joint probability density of X(l), ... , X(k»
the smallest k order statistics out of a sample of size n, at XI> • • • , Xt,

respectively, then

k

ix(l) ,X(kJXI ' ••• , Xk I fl., n) = (n ~!k)! ITf(xi I fl.) (F(Xk I fl.»n-k .
;=1

(3.27)

88 3. Models for Measuring Software Reliability

The lefthand side of (3.27) gives us what is known as the joint distribution
of the first k order statistics in a sample of size n from F(x I fD. Verify that when
k = n, we get the important result

n

fx(l), ... ,X(k)(Xl, ••• , Xk I ~,n) = n! ITfi.xi I~),
;=1

whose import is that order statistics formed from independent random variables
are dependent; the act of ordering destroys independence.

Armed with these preliminaries we can now describe how order statistics
playa role with respect to software reliability models in the Type 1-1 category.
We start by noting (see Figures 3.2 to 3.4) that since the times to software failure
0== So ::; SI::; ... ::; Sj ::; . . . , are ordered, they constitute a natural
framework for an order statistics type analysis. We start by asking if there is a
common distribution that generates these order statistics and if so what would it
be? It turns out that the answer depends on the assumed probability model for
the interfailure times T1, T2, ... , that generate the ordered failure epochs Sj,
i = 1, 2, Conversely, given an F(x I fD and having specified an n, the joint
distribution of the first k out of n order statistics from F(x I ~) prescribes failure
models for the k interfailure times T1, ••• , Tk •

As an example of the preceding, suppose that F(x I~) = F(x I A) = e-Ax,

an exponential distribution with scale A. Let n be specified as N. Then, given N
and A, the joint distribution of the first k out of n order statistics from F(x I A)
is, from (3.27), of the form

k

I'. (I A) - --..!fL IT A -Axi (-Axk)N-k
JX(l)"",X(k) Xl,··. ,Xk , n - (N-k)!. e e .

1=1

But this is precisely the joint distribution of 0 == So < SI < ... < St,
when the T;s are independent and each T; has an exponential distribution with a
scale parameter A(N - i + 1), i = 1,2, ... , k, the form specified by Jelinski and
Moranda. To verify this claim we use the fact that SI == Tj, S2 = TJ + T2, ... ,
Sj = TI + T2 + ... + T;. Different forms for F(x I ~), say the Pareto, the Weibull,
the gamma, and so on, will lead to different probability models for the inter
failure times, and models constructed via the preceding mechanism have been
referred to by Raftery (1987) as the general order statistics models, abbreviated
GOS. With F(x I A) = e-Ax, the resulting model is called the exponential order
statistics model, abbreviated EOS; this terminology is due to Miller (1986),
whose work predates that of Raftery and Kuo and Yang. The EOS model has
also been considered by Ross (1985b) and by Kaufman (1996). Kaufman's work
is noteworthy because he makes some fascinating connections between software
reliability modeling and "successive sampling," that is, sampling without

3.5 Unification of Software Reliability Models 89

replacement that is proportional to size [cf. Gordon (1983), Scholz (1986), and
Andreatta and Kaufman (1986)]. Estimation (see Section 4.2.2) under successive
sampling schemes is described by Nair and Wang (1989) and by Bickel, Nair,
and Wang (1992).

Once the model by Jelinski and Moranda is interpreted in the light of an
EOS framework, the road for relating GOS models with some (but not all)
models in the Type II category is paved. The signal for this connection comes
from the work of Langberg and Singpurwalla (1985) who show that the
nonhomogeneous Poisson process model of Goel and Okumoto (1979) is a
consequence of assuming a Poisson distribution for the parameter N of the model
by Jelinski and Moranda. Specifically, one can prove the following theorem.

Theorem 3.3 [cf. Kuo and Yang (1996)]. Suppose that failure epochs are
described by a GOS model with a distribution function F(t I fl.) and a parameter
N. Let N(t), t> 0, denote the number of epochs in time [0, tl. Then (N(t); t> OJ
can be described by a nonhomogeneous Poisson process with mean value
function J.lF(t I fl.) if N has a Poisson distribution with parameter J.l.

As a special case of Theorem 3.3, if F(t I fl.) = 1 - e-At , then the resulting
Poisson process has a mean value function J.l(1 - e-At), which is the mean value
function used by Goel and Okumoto (1979); see Section 3.3.1. There is a
drawback to the limiting behavior of this mean value function and consequently
to the essence of the result of Theorem 3.3. We note that for any choice of
F(t I fl.), limt-+ooJ.lF(t I fl.) < 00, suggesting that the mean value function of the
resultant nonhomogeneous Poisson process is bounded. This means that GOS
models cannot be used in those situations wherein new faults get introduced
during the debugging process. In the model by Musa and Okumoto (1984) the
mean value function [see (3.16)] ((In(..\Ot + 1)10) ---+ 00, as t ---+ 00, and thus the
GOS model is unable to accommodate those models in the Type II category for
which the mean value function is unbounded. It is for this reason that point
process models generated by "record value statistics" have been explored, and
this matter is taken up next. But before we close our discussion of GOS models
another noteworthy feature of such models needs to be mentioned. This pertains
to the distribution of TJ, the first interfailure time, or the time to occurrence of
the first epoch in a GOS model. We note that

P(T1 > til-", F(t I fl» P(N(t) = 0 I 1-", F(t I fl» = e-JlF(tlfD.

For any J.l < 00, limt-+ooe-J.'F(tlfD is not zero; that is, the distribution function
of TJ is defective. The implication of this result is that unless J.l i 00, there is a
nonzero probability that the software will never experience any failure. The
smaller the J.l, the larger is this probability. Other special cases of Theorem 3.3

90 3. Models for Measuring Software Reliability

are a model by Goel (1983) for which F(t I fD = 1 - e-{3t:', a model by Ohba and
Yamada [see Yamada and Osaki (1984)] for which

F(t I fD = 1 - (1 + (3t)e-{3t,

and a generalized order statistics model by Achcar, Dey, and Niverthy (1998) in
which F(t I fD = hU3tCl), where h(s) is an incomplete gamma integral.

The Record Value Statistics Models

Suppose that XI, X2, ••• , Xn is a collection of independent and identically
distributed random variables, with F(x I fD as a probability model for each Xi,
i = 1, . . . , n. Suppose that F(x I ED is absolutely continuous so that the
probability density f(x I ID exists for all x. We define the sequence of record
values {Zn}, n ~ 1 and record times Rk, k ~ 1, as follows.

RJ = 1,

Rk = rnin{i : i > Rk-J. Xi> XRk_J }, for k ~ 2, and

Zk = XRk' for k ~ 1.

An example best illustrates the preceding conf.truction. Suppose that XI = 4,
X2 = 1, X3 = 7, X4 = 5, X5 = 9, X6 = 3, X7 = 13, Xg = 6, X9 = 18, XIO = 14,
and XII = 15. Then, the record pairs (Rk' Zk) are: (1, 4), (3, 7), (5, 9), (7, 13),
and (9, 18). That is, a record value is the largest value that we have observed in
the process of traversing from XI to Xn, one step at a time, and the record time is
the index associated with a record value. Even though with n ---+ 00, Rk will tend
to get rare, the sequence of record values can be shown to be infinite. Since the
record values constitute an increasing sequence, they can be viewed as epochs of
the occurrence of an event over time; that is, they can be modeled as a point
process. Thus it is meaningful to regard the epochs of software failure as record
values from some underlying distribution that we are free to specify. The
following theorem is beautiful; it gives us an interesting property of the point
process generated by record values.

Theorem 3.4 [Dwass (1964)]. Suppose that the epochs offailure are described
as the record values generated by a collection of independent and identically
distributed random variables having a common distribution F(t I fl.) = 1- F(t I
fl.). Let N(t) denote the number of epochs in time [0, t]. Then (N(t); t> OJ can be
described by a nonhomogeneous Poisson process with mean value function
In(iI(F(t I fl.))), and intensity function (f(t I fl.))I(F(t I fl.)), where fit I fl.) is the
probability density at t, if it exists.

3.6 An Adaptive Concatenated Failure Rate Model 91

Since the failure rate of F(t I fD is (f{t I ~»/(F(t I ~», the record value statistics
provide an interesting relationship between the intensity function of a point
process and the failure rate.

It is easy to see that if F(t I ~) = a/(a + t), a Pareto distribution with
parameter a = 1IA, for t 2: 0, then the mean value function of the process is
(3.16), the form specified by Musa and Okumoto (1984) with their 0 = 1.
Besides the model by Musa and Okumoto, there are other models for describing
the growth in reliability of engineering systems, all having the property that the
mean value function of the underlying point process is not bounded [cf. Duane
(1964), Cox and Lewis (1966)]. The record value statistics approach is an
elegant way oflooking at all of these in a comprehensive manner.

Before closing this section, it is important to note that both the order
statistics and the record value statistics perspectives result in Poisson processes,
which as we have said before possess the independent increments property. This
is a disadvantage, but one that can be overcome by a more general model that is
described next.

3.6 An Adaptive Concatenated Failure Rate Model

We have seen that all the models introduced in Sections 3.2 through 3.4 are
special cases of self-exciting point processes with a memory of at most two.
Specifically, all the models in the Type II category, being based on the postulates
of the Poisson process, have memory m = - 00, and possess the independent
increments property. This latter feature may not be appropriate in the context of
software testing. The models in the Type 1-1 category are of memory m = 0 (for
the model of Jelinski and Moranda) or of memory m = 1 (for the models of
Schick and Wolverton and the hierarchical Bayes model of Mazzuchi and
Soyer). The models in the Type 1-2 category are of memory m = 2, but can be
easily extended to have a memory m = k; all that we need to do is consider a kth
order autoregressive process with random coefficients. We have said before that
models with large memories tend to be more refined than those with smaller
memories vis-a-vis their predictive capabilities. Thus it is desirable to introduce
models that are conceptually of infinite memory, where the notion of infinite
memory is akin to the notion of invertibility in time series analysis; see Box and
Jenkins (1976), p. 50. One way to achieve this objective would be to extend the
random coefficient autoregressive process model to all its previous terms.
Whereas such an approach would indeed provide for good predictability, it
would suffer from the criticism of a lack of interpretive features. A model such
as that by Schick and Wolverton is attractive because it attempts to incorporate
some of the more pragmatic aspects of the software testing and the bug discovery
phenomena. Time series models, such as the random coefficient autoregressive
processes are often viewed by practicing engineers as "black-box" models; they
are purely mechanistic.

92 3. Models for Measuring Software Reliability

The concatenated failure rate model that we present in the following is
guided by the preceding considerations. It is motivated by ideas that are
analogous to those of Schick and Wolverton but has the added feature of
adaptivity. A consequence of adaptivity is improved predictivity. The model has
two parameters and possesses characteristics that are intuitively appealing and
which generalize those of other models. This model was introduced by AI
Mutairi, Chen, and Singpurwalla (1998); also see Singpurwalla (1998b).

3.6.1 The Model and Its Motivation

In keeping with the notation of Section 3.2, we let 0 == So ~ SI ~ ... ~
Si, i = 1,2, ... ,denote the software failure times (in CPU units) and TI, T2, ...
, the interfailure times; that is, Ti = Si - Si-I. Also, let rTj(t) denote the failure
rate function of the distribution function of Ti • We have stated before, in Section
3.2.3, that from a subjective point of view, the functional form of rTj(t) can be
given an interpretation that reflects a software engineer's judgments about the
stochastic behavior of each Ti • Such judgments, although personal, should
capture the engineer's knowledge about the software failure, its bug elimination
process, previous data, and the experimental control under which the software is
tested. For the model that is proposed here, we assume that for each version of
the software's code, one's intuition is that small time intervals between
successive failures should result in a judgment of poor reliability, and vice versa,
for large time intervals. However, upon the occurrence of failure any judgment
of enhanced reliability should be replaced by a judgment of enhanced
unreliability; that is, the judgment of unreliability should take a sharp upward
jump. The more frequent the failures the higher the upward jump in unreliability
should be and vice versa. These characteristics parallel the sample path of a
"shot noise process," once the failure rate is identified as being analogous to
stress. The shot noise process is a stochastic process that is popular in
engineering and physics; see, for example, Cox and Isham (1980), p. 135. The
process consists of two parts, a "shot process" and a "stress process." The shot
process is a point process that generates the epochs of events, whereas the stress
process generates a function of time that takes jumps of random size at each shot
and which decreases deterministically between the adjacent jumps. The stress
function is, like the concatenated failure rate function, a random function
because both the jump sizes and their locations are random; also, in most
applications its value at any time t depends on the history of the process to time
t. Accordingly, we propose that given the parameters k and b, and conditional on
Sn-I = Sn-l> n = 2, 3, ... ,

rT.ct I Sn-l, k, b) = 7t--,;sn-_-J!.l--"sn-_-1 '
k + (n-I)b

(3.28)

3.6 An Adaptive Concatenated Failure Rate Model 93

Failure Rate

~
I

S.
I

FIGURE 3.6. The Concatenated Failure Rate Function as a
Sample Path of a Shot Noise Process.

Verify, that for any n, rT.(t I .) is decreasing in t, and that at t = Sn-I, it is
proportional to (n - l)/Sn-t. which is a proxy for the "failure intensity" until the
(n - l)th failure. Furthermore rT.(t I .) increases as (n - l)/Sn-1 increases. See
Figure 3.6 which is a plot of the concatenated failure rate function defined by
(3.28).

Verify that the plot of Figure 3.6 displays the following characteristics that
capture our subjective views about the credibility of the software.

(a) Frequent failures should result in a judgment of poor
reliability. This suggests that the failure rate should take a
large upward jump; see Sj_1 and Sj.

(b) When the software experiences no failure, our opinion of its
reliability is enhanced. This suggests that its failure rate should
decrease.

(c) Upon the occurrence of failure, our opinion of the reliability is
on the poor side. This suggests that the failure rate should take
an upward jump.

94 3. Models for Measuring Software Reliability

(d) Large interfailure times correspond to small jump sizes and
vice versa; see S2 and S;_I .

3.6.2 Properties of the Model and Interpretation of Model Parameters

The model proposed in the previous section possesses several attractive
features. To see these, we replace (t - Sn-I) of (3.28) by T, with T ;::: 0, and then
verify, via the exponentiation formula (2.30), that

(3.29)

and that the probability density of Tn+1 at T is

(3.30)

Thus the conditional (given Sn, k, b) mean and variance of Tn+1 are

E(tn+1 I sn, b, k) = (k-~) nb Sn, and

V(tn+i I Sn, b, k) = (k-l~:(k-2) (~: r, respectively.

Clearly, we need k ;::: 2, for the predictive mean and variance to exist. Also, since
E[Tn+1 I Sn, .] = 00, Tn+1 has a decreasing failure rate.

The model construction (3.28) suggests that there is a growth in reliability in
going from stage n to stage (n + 1), if given band k,

A consequence of the preceding is that tn+l, a realization of Tn+l , should
satisfy the inequality

(3.31)

But the import of (3.31) is that the time between the nth and the (n+l)th
failure is greater than the average of all past failures. This implies that our model
reflects the feature of having a memory. Furthermore, we can show that

E[Tn+iJ > (<) 1 {:} b < (» ---L.
E[Tnl - - k-l'

3.7 Chapter Summary 95

this suggests that, on the average, there is growth in reliability if and only if
b < k/(k - 1). The preceding gives us a criterion for choosing model parameters

or for specifying prior distributions for them; see Section 4.7. Let 'fJ(n) dJl:f
«E(tn+! - Tn))/E(tn)) be the relative growth in reliability at stage n. Then we
are able to show that

k-(k-l)b 1
TJ(n) = (k-l)b n'

Now if b < k/(k - 1), then 'fJ(n) 1 n. This implies that under the assumption
of reliability growth, the bugs detected and eliminated during the early phases of
testing contribute more to reliability growth than those detected later. Thus
b < k/(k - 1) reflects the feature that the greatest improvement in a software's
reliability occurs during the early stages of testing.

Finally, suppose that Dn = nb/Sn has been recorded as dn, and we are at the
(n + l)th stage of testing. If at time w, w measured from Sn, failure has not
occurred, then we can show that

I k k
E(tn+l - w Tn+l > w) = k-l w + (k-l)dn

= mean residual life (MRL).

Thus the longer the elapsed time since last failure, the longer the expected time
to next failure. The MRL is a linear function of w with coefficient k/(k - I). This
helps us pin down the range of values for k; see Section 4.7.

3.7 Chapter Summary

The focus of this chapter is on models for software reliability, their
classification, and their unification. The models were introduced in the
chronological context in which they were developed. They were classified into
two broad types, those that model the successive times between failures, and
those that model the number of failures up to a given time. The former category
was further subdivided into two classes, those that use the concatenated failure
rate function as a modeling device, and those that model the interfailure times.
Representative members of the first of the preceding two classes are the famous
model by Jelinski and Moranda, and its extensions via a hierarchical Bayes
scheme. Representative members of the second of these classes are the random
coefficient autoregressive process and the Gaussian and the non-Gaussian
Kalman filter models. Of the models that describe the number of failures up to a
given point in time, those based on the Poisson point process, such as the models
by Goel and Okumoto, and Musa and Okumoto were discussed.

96 3. Models for Measuring Software Reliability

The search for an omnibus model to describe software failures leads us to
the topic of model unification. Unification provides a common structure under
which the general problem of assessing reliability growth or decay, and the
prediction of failure times can be accomplished. Unification was discussed from
several perspectives, such as the Bayesian paradigm which involves specifying
prior distributions for model parameters, the order statistics perspective wherein
the successive times to failure are described as order statistics from independent
but not identically distributed random variables, and from the point of view of
record values which note the times at which the successive records get broken.
Unification was also achieved via the perspective of looking at software failures
as points in a self-exciting point process. Such processes need not possess the
independent increments property of Poisson processes, and are therefore more
general than those that do. It was argued that practically all of the proposed
models for software reliability are special cases of a general point process
model, namely, the self-exciting point process.

The chapter concludes with the introduction of a new model for software
failures, a model that combines the attractive features of many of the previously
proposed models. The model is based on a concatenation of several failure rate
functions, the behavior of each function being determined by the past history.
The model embodies the defining features of a self-exciting point process and
captures a software engineer's overall judgments about the failure process.

Exercises for Chapter 3 97

Exercises for Chapter 3

1. Hierarchical Bayesian Reliability Growth Models. Consider the
Bayesian reliability growth model, with each Ti exponentially
distributed with failure rate Ai, and Ai assumed to have a gamma
distribution with shape parameter a and scale parameter 'I/J(i). Verify,
using the laws of probability, that the reliability function for Ti is given
by the Pareto distribution

Show that the probability density of the preceding Pareto distribution at
t is of the form

a('Ij;(i»'"
(t+'Ij;(i»",+1

2. Derivation of the Goel-Okumoto Model. As stated in this chapter, the
model by Goel and Okumoto is a nonhomogeneous Poisson process
with mean value function A(t), where it is assumed that

A(t + 8t) - A(t) = b(a - A(t» 8t + 0(8t) .

(a) By dividing both sides of the preceding equation by 8t and
letting 8t ---. 0, show that A(t) = b(a - A(t», where A(t) is the
derivative of A(t).

(b) Verify that A(t) = a(1 - e-bt) satisfies the preceding equation.

3. Model of Musa and Okumoto. Check that the intensity function of the
model by Musa and Okumoto,

A
>.(t) = AOt+l '

satisfies the relationship

>.(t) = >'e-8A(t) .

4. Statistical Analysis of Software Failure Data. In the random
coefficient autoregressive process model of order one each Ti depends
on its previous value Ti- 1• How would you generalize the model so that
each Ti depends on its k previous values Ti-l, Ti-2, .•• , Ti-k • Is there
more than one way to generalize the model?

98 3. Models for Measuring Software Reliability

5. General Order Statistics Models. Let 0 == 50 S 51 S 52 S'" S
5N be the failure times of a piece of software that contains N bugs.
Assume that these failure times are the order statistics from a sample of
N independent realizations of a Wei bull distribution with parameters a
and f3; that is,

P(X; ~ x I a, (3) = exp(- axiJ), i = 1, ... , N ,

and Si = X(i). Derive the joint density of (SI, ... , Sk), for k S N.

6. The Adaptive Concatenated Failure Rate Model. This model
assumes that the failure rate for the nth time to failure, given the time of
the (n - l)th failure Sn_l! is:

rTn(t I 8n-1o k, b) = 't-5-;:-n--:-_I-'+'--;;-5n-_-1 '
k (n-I)b

t ~ 8 n-l .

(a) Verify that

(i) rTn is a decreasing function of t;
(ii) at t = Sn_l, rTn is proportional to the inverse of the

average time between failures up to Sn-l, that is,
(n - l)/Sn-l.

(b) Let 7 = t - Sn be the time since the nth failure. Using the
exponentiation formula, verify that the survival function of
Tn+l, given Sn, k, and b, is

(nb)-(k+l)
P(Tn+l ~ T I Sn, k, b) = kSn T + 1

(c) The expected value of Tn+1, given Sn, is ksnl«k - l)nb). Using
the relationship between Tn and Sn, as well as the identity
E(Sn+l) = Esn (E(5n+1 I Sn», show that

7. Recent Developments. The adaptive concatenated failure rate model of
Figure 3.6 reflects the disposition of an optimist (in the sense of
Exercise 7 of Chapter 2).

Exercises for Chapter 3 99

(a) Using Figure 3.6 as a guide describe the disposition of a
pessimist, and using this analogue develop results along the
lines of those given in Section 3.6.2.

(b) In practice it is more likely that a software engineer starts off
with a pessimistic disposition but then after encountering and
correcting several initial bugs begins to become optimistic.
Thus a more realistic depiction of the concatenated failure rate
function is a combination of that given in Figure 3.6 with the
one developed in Part (a). Propose such a concatenated
function and discuss its development, delineating a mechanism
that describes the gradual evolution of the change in
disposition, from pessimism to optimism.

4
STATISTICAL ANALYSIS OF

SOFTWARE FAILURE DATA

4.1 Background: The Role of Failure Data

In Chapters 2 and 3, we introduced several models for describing our
uncertainties about the software failure process. These models involved
unknown parameters, often denoted by Greek symbols. The parameters entered
into the picture because of our invoking the law of the extension of conversation,
as a way of simplifying the probability specification process. The parameters
being unobservable, our uncertainty about them was described by a prior
distribution. The prior distribution is specific to an individual and may vary from
individual to individual.

Software failure data, if available, are assumed to provide additional
information about the failure process. That is, the data enhance our appreciation
of the underlying uncertainties. There are certain strategies through which data
can be incorporated into the assessment process. The first is to simply make the
data a part of the background ?t, and then to reassess the relevant uncertainty in
the light of this expanded ?t. There is nothing in the calculus of probability that
forbids us from using this strategy, as long as our assessments remain coherent.
However, ensuring coherence is not easy to do, and so this strategy is difficult to
implement. The second, and the more commonly used strategy, is to use the data
for an enhanced appreciation of the unknown parameters. This is done through
Bayes' Law whereby the prior distribution gets updated-via the data-to what
is known as the posterior distribution; see the exercises of Chapter 2. The
process of going from the prior distribution to the posterior distribution is known

N. D. Singpurwalla et al., Statistical Methods in Software Engineering
© Springer-Verlag New York, Inc. 1999

102 4. Statistical Analysis of Software Failure Data

as Bayesian inference. There may be, of course, broader interpretations as to
what constitutes Bayesian inference, but for the present purposes the preceding
seems adequate. Section 4.2 describes the appropriate machinery for making the
transition from the prior to the posterior, and then using the latter for assessing
uncertainties about the phenomena of interest.

At this point in time it is useful to mention the role of data in non-Bayesian,
or what is known as frequentist inference. If our interpretation of probability is a
relative frequency, then the probability model becomes an objective entity in
which the parameters take fixed (but unknown) values. Under these
circumstances a prior distribution is not assigned to the parameters, and so the
matter of updating it does not arise. When such is the case, the role of the data is
to provide a vehicle for estimating the unknown parameters; estimation involves
the tasks of obtaining a single number, called a point estimate, or an interval,
called an interval estimate, that covers the true (but unknown) value of the
parameter. An overview of one of the most commonly used frequentist
procedures, the "method of maximum likelihood" is given in Section 4.2.
Frequentist inference includes estimation as well as testing hypotheses about the
parameters. Here, notions such as "unbiasedness," "efficiency," "confidence
limits," "significance levels," "Type I and II errors," and the like, come into
play. Since our interpretation of probability is not in terms of a relative
frequency, the preceding notions are not germane to us. This does not mean to
say that frequentist inference has not been used in the context of software failure
data. On the contrary, much of the inferential work in software reliability has
been frequentist; see, for example, Musa, lannino, and Okumoto (1987) for an
overview. What distinguishes the material here from much of what has been
written is our interpretation of probability, and the ensuing Bayesian inference
which is its consequence.

Thus to summarize, irrespective of whether inference is Bayesian or
frequentist, a key role played by the data is the information that they provide
about the unknown parameters in probability models. There are of course other
roles that the data can play, a common one being model selection, but this too
stems from the theme that the data facilitate an enhanced appreciation of the
model parameters. Model selection has become a central problem in software
reliability because of the huge number of models that have been proposed-over
one hundred by the latest count. In the frequentist paradigm, model selection is
formally done via "goodness-of-fit" testing [cf. Box and Jenkins (1976), for a
general flavor of this topic], whereas in the Bayesian paradigm it is done via
Bayes factors and prequential prediction; see Section 4.6. The main idea
underlying these approaches is an investigation of how well a proposed model
describes the data. In actual practice models are often selected because of their
simplicity or their familiarity to the analyst. Often, the type of data that are
available will also help us to choose a model. For example, if the data consist of
times between software failures, then a Type I model (see Chapter 3) will be
selected; if the data consist of the number of bugs discovered at certain times,

4.1 Background: The Role of Failure Data 103

then a Type II model will be selected. Finally, a question arises as to whether
model selection should precede inference. In principle, model selection should
precede inference, because the latter is conducted within the framework of the
former. However, model evaluation requires that inference be performed first,
and thus model selection and inference are iterative procedures conducted in a
step-by-step fashion [cf. Box (1980)].

The material in this chapter pertains to a use of Bayesian approaches for
inference, prediction, and model selection. Prior distributions being central to the
Bayesian paradigm, a section has been devoted to their discussion. The general
plan of this chapter is to introduce a theme, such as Bayesian inference, and to
follow it up with an application involving one or more models of Chapter 3.
Thus a discussion on elicitation of prior distributions is followed up by an
application involving the logarithmic Poisson model of Musa and Okumoto
(1984). As a consequence inference procedures for the models of Chapter 3 are
not discussed in the same order in which the models are introduced.

4.2 Bayesian Inference, Predictive Distributions, and Maximization of
Likelihood

In this section we give an overview of Bayesian inference, and hypothesis
testing using Bayes factors. We also introduce and discuss the notion of
prequential prediction, which in the context of assessing software reliability
models plays a natural role. We start by recalling (see Section 2.2) that for any
unknown quantity X, the law of total probability and the assumption of
conditional independence result in the relationship

'P(X = x 11t) = E 'P(X = x I (}) 'P((} 11t)
()

for any parameter () taking discrete values.

(4.1)

Suppose now, that in addition to 1i, we have at our disposal the realizations
of n random quantities, XI. ... , Xn that are judged exchangeable (see Section
2.1.5) with X. Let Xi denote the realization of Xi, i = 1 , ... , n, and let! = (Xl> •

. . , xn). How should we revise P(X = X 11i) in the light of this added
information? That is, how should we update the P(X = X 11i) of Equation (4.1)
to P(X = x I !, 1i)? In the context of software failure, X could be the time to
failure of the current version of the software, and Xl, ... , Xn , the times to failure
of its n previous versions. The assumption that X, XI. ... , Xn is an exchangeable
sequence is crucial. Intuitively, it says that the XiS provide us with information
about X. As stated in Section 2.1.5, exchangeability is a subjective judgment
which to some may not be meaningful in a particular application.

104 4. Statistical Analysis of Software Failure Data

4.2.1 Bayesian Inference and Prediction

To address the question posed, we start with the proposition P(X = x I Xl, .
. . , Xn , Ji). Using the law of total probability, together with the assumption of
conditional independence, an analogue to Equation (4.1) can be written as

P(X = x I Xl, ... , Xn. H) = L P(X = x I e, Xl, ... ,Xn) x
o

p(e I Xl, ... , Xn, H). (4.2)

We then invoke Bayes' Law to obtain

p(e I Xl, ... , Xn, H) ex: P(XI' ... , Xn I e, H) p(e IH)

P(XI I X2, ... , Xn, e, H) x P(X2 I X3, ••• , Xn, e, H) x

... X P(Xn I e, H) x p(e I H). (4.3)

A consequence of the judgment of exchangeability of the sequence X, Xl, ... ,
Xn is a result, due to de Finetti (1937), which says that given (), X is independent
of Xl, ... , Xn, and that Xl is independent of X 2, •.. , Xn and Ji, and so on.
Consequently, we may write Equation (4.2) as

P(X = x I Xl, ... , Xn. H) ex: L P(X = x I e) x
o

n
. II P(Xi = Xi I e) p(e I H), (4.4)
1=1

and Equation (4.3) as

n
p(e I Xl,"" Xn, H) ex:.II P(Xi = Xi I e) p(e IH). (4.5)

1=1

Equations (4.4) and (4.5) provide the probabilistic foundations for a
Bayesian approach to prediction (about X) and inference (about ()). The logic for
this assertion is the premise that the preceding equations prescribe how we will
assess our uncertainty about X and (), in the light of Ji, and were we to know Xl, .
. . , Xn. Consequently, when Xl, ... , Xn are actually observed as Xl> ••• , Xn,
respectively, we are obliged to do what we said we would do, and thus our use of
Equations (4.4) and (4.5) as the basis for prediction and inference. However,
there is a caveat. When Xi is observed as Xi, the entity P(Xi = Xi I ()) is no longer
a probability; rather, it is a likelihood of () for a fixed value of Xi; see Section
2.1.4. Accordingly, the product D P(Xi = Xi I ()), when viewed as a function of

I

4.2 Bayesian Inference, ... , and Maximization of Likelihood 105

0, for the fixed values Xlo ••. , Xn , is a likelihood function of 0; it is denoted £(0;
!).

Thus to summarize. with X}, ... , Xn observed as XI> ••• , Xn• respectively,
the posterior distribution of 0, now denoted as P (0 I!, 'H). is obtained via
Equation (4.5) as

P(O 1 !, 11.) ex C(O;!) P(O 111.), (4.6)

and the predictive distribution of X, P(X = X I !, 'H), is obtained via Equation
(4.4) as

P(X = xl!, 11.) ex l: P(X = x 1 0) P(O 1 !, 11.) . (4.7)
()

In Equations (4.6) and (4.7), the constant of proportionality ensures that the
left-hand sides are legitimate probabilities. If 0 is assumed to be continuous, then
the summation sign on the right-hand side of Equation (4.7) will be replaced by
an integral, and now P(O I 'H) is a probability density function.

The foregoing material gives the bare essentials of Bayesian inference and
prediction. Whereas the logical underpinnings of this approach are relatively
straightforward, its implementation poses some difficulties. Besides model
specification, specification of the prior is an onerous task, and often the
computation of the posterior and the predictive distributions can be demanding.
More details on these issues plus related matters can be found in the books by
Berger (1985), Bernardo and Smith (1994), and Lee (1989), which is an
introductory, but an otherwise comprehensive treatment of the subject.

4.2.2 The Method of Maximum Likelihood

The predominant mode of inference in software engineering has been the
method of maximum likelihood and confidence interval estimation. There could
be several reasons behind this choice. One is familiarity with the method and its
widespread use; the second could be a desire for being "objective." The third
could be ease of application: one does not have to specify a prior distribution on
O. Irrespective of the reasons, the method of maximum likelihood is employed so
often by software engineers that a few words about the rationale behind this
frequentist procedure are in order.

There are many views as to what constitutes a frequentist procedure. The
one that appeals to us is based on the notion that the prior distribution of the
unknown parameters of a probability model is a degenerate one, and that
inference pertains to learning about this degenerate value using data alone. Thus
frequentist procedures mandate the availability of data for inference and
prediction. The method of maximum likelihood is one such procedure. It is
based on the premise that for any given datum,! = (Xlo .•. , xn), some values of
a parameter 0 are more likely than the others. The maximum likelihood estimate

106 4. Statistical Analysis of Software Failure Data

of (), say B, is that value of () which maximizes the likelihood function C«(}; !);
that is, 7J is the most likely value of (). Thus 7J is a point estimate of (); it is based
on the datum! alone, and is independent of the analyst's background information
1i.

Point estimates on their own give no clue about the degree of uncertainty
associated with the estimate. In order to gauge this uncertainty a subtle
philosophical principle involving the long-range performance of an estimation
procedure is invoked, and the datum ! is used to obtain an interval called a
confidence interval. Associated with a confidence interval is a number between
zero and one (both inclusive), called the confidence level, say O!. Usually, O! is
chosen to be between 0.90 and 1.0. The interpretation of a confidence interval is
tricky. Contrary to what many users believe, a confidence interval with a
confidence coefficient O! does not imply that the probability that the interval
contains the true value of the unknown parameter is O!. Rather, the coefficient O!

represents the proportion of times that intervals, such as the one based on !, the
datum at hand, would contain the unknown parameter.

Implicit in this interpretation is the recognition that data other than the
observed ! could be obtained were another sample of size n to be taken. The
idea of repeated sampling also enables one to judge the quality of point estimates
(like the maximum likelihood estimate) via notions such as unbiasedness,
efficiency, consistency, uniqueness, and the like. These notions do not appear in
the context of Bayesian inference. Once an estimate such as, say 7J is obtained
and its quality evaluated, it can be plugged into the probability model for
purposes of prediction. Hogg and Craig (1978) give a good account of
frequentist inference at an intermediate level; a gentler introduction to the topic
is Chatfield (1983). Thus to summarize, the method of maximum likelihood
mandates the availability of failure data, and the quality of the estimate is gauged
by the long-term performance of the procedure. Confidence limits that usually
accompany maximum likelihood estimates do not convey a sense of coverage
probabilities in the usual sense; they too reflect long-term performance based on
a repeated application of the confidence limit construction.

4.2.3 Application: Inference and Prediction Using Jelinski and Moranda's
Model

As an illustration of how the methodology of the previous section has been
applied for inferential problems in software reliability, we consider two sets of
data. The first set is shown in Table 4.1; it consists of 136 successive times (in
seconds) between software failure. These data are taken from Musa (1975); the
entries are to be read across rows. The second set of data is given later, in Table
4.2. Let us suppose that the failure process generating these data can be
meaningfully described by the model of Jelinski and Moranda (1972); see

4.2 Bayesian Inference, ... , and Maximization of Likelihood 107

3

138

325

36

97

148

0

44

445

724

30

729

75

Table 4.1. Successive Times Between Software Failure
[data from Musa (1975)]

30 113 81 115 9 2 91 112

50 77 24 108 88 670 120 26

55 242 68 422 180 10 1146 600

4 0 8 227 65 176 58 457

263 452 255 197 193 6 79 816

21 233 134 357 193 236 31 369

232 330 365 1222 543 10 16 529

129 810 290 300 529 281 160 828

396 1755 1064 1783 860 983 707 33

2323 2930 1461 843 12 261 1800 865

143 109 0 3110 1247 943 700 875

1897 447 386 446 122 990 948 1082

482 5509 100 10 1071 371 790 6150

1045 648 5485 1160 1864 4116

15

114

15

300

1351

748

379

1011

868

1435

245

22

3321

Section 3.2.2. We have no scientific basis for this supposition; it is made for
illustrative purposes only.

An analysis of these data has been conducted by Meinhold and Singpurwalla
(1983a). They show that under the model of Equation (3.5), N, the maximum
likelihood estimator of N, as a function of the sample size k, fails to provide
meaningful answers. For example, when k = 6, N = 11, whereas when k = 7, N
is infinite; for k = 8, N becomes finite again, as N = 27 (see Table 2 of the
preceding reference). This erratic behavior of the maximum likelihood estimator
is also true if the interfailure times were generated by a simulation of Equation
(3.5) [cf. Forman and Singpurwalla (1977)]. It may be claimed that the initial
impetus for considering Bayesian approaches in software reliability has arisen
from experiences like this; the motivation was pragmatic, rather than
philosophical.

A Bayesian analysis of the preceding data using the Jelinski-Moranda
model calls for the specification of prior distributions for Nand A. A discussion
about choosing prior distributions is given in the section that follows, but for
now we use the choices made by Meinhold and Singpurwalla (1983a).
Specifically, the prior distribution for N is a Poisson with mean (), and the prior
for A is a gamma with a scale I-L and a shape a, independent of the distribution of
N (see Section 2.2.2). With this choice of priors, and the k observed interfailure
times (t), ... , tk) = L(k), it can be shown (left as an exercise for the reader) that:

108 4. Statistical Analysis of Software Failure Data

0.08

0.04

/

rPosterior

~~rPrior
\:

" "- '-

o 12 14 ••• 26 30 38 46 50 62 66

Values of q

FIGURE 4.1a. Plot of the Prior and Posterior (k = 7) Probabilities of N.

(i) the posterior probability that N = q. q ~ k is

{
k }-(O+k)

peN = q I !(k) ex: exp(- (J) (Jq(q-k)! J.L + f;(q - j + l)tj ;

(ii) the posterior density of A, given that N = q, is a gamma
with scale parameter J.L + 2:J=1 (q - j + 1)tj. and a shape parameter (a + k);

(iii) the joint posterior distribution of N and A, at q and A,
respectively, is of the form

{
k }(Q+k)

J.L + L:(q - j + l)tj
J=l

-.!L
X (q-k)!

X 00 {k }-(a+k) ,
I;(r~~)! p,+I;(r-j+l)tj P{N=r}
r=k J=l

{p, + ~(q-j+ l)tj} - (a+k) P{N=q}

where P(N = q) = (e- IJ ()q)/q!.

4.2 Bayesian Inference, ... , and Maximization of Likelihood 109

It is useful to note that even though N and A were a priori independent, once
the data Llk) are at hand, they are a posteriori dependent, as the preceding
expression shows. This is to be expected because posterior inference for both
parameters is based on the same set of data.

Figure 4.1a) shows a plot of the posterior probability P(N = q 1 L(k») when
k = 7, for q = 8, 9, Recall that when k = 7, the maximum likelihood
estimator of N was infinite; the likelihood function was flat. The values chosen
for the parameters of the prior distributions were (J = 50, J.L = 1, and a = 2. For
purposes of comparison Figure 4.1a) also shows the prior probability of N. We
observe that the flatness of the likelihood has not interfered with our ability to
perform inference in the Bayesian framework. Rather, the paucity of information
in the sample has resulted in a posterior that does not differ dramatically from
the prior. This again points out the importance of the knowledge that the
experimenter puts into the problem. The posterior probability of N is sensitive to
the choice of the parameter (J.

The second set of data, given in Table 4.2 is taken from Jelinski and
Moranda (1972). It pertains to a large military software system, called the Naval
Tactical Data System (NTDS), which consists of 38 distinct modules. The
module selected here is Module-A, and Table 4.2 shows 34 times (in days)
between software failure, split into four phases of the development process:
production, testing, user experience, and further testing. The interfailure times
are denoted by ti, i = 1, 2, ... , 34, and the Si denote the cumulatives of the

interfailure times; that is, Si = E~=l tj . For the purposes of this section, we

assume that these data can be described by Jelinski and Moranda's model. Later
on, in Section 4.4.1, we consider alternate models.

For a Bayesian analysis of these data, the mean of the Poisson prior on N
was chosen to be 50, and the scale (shape) parameter of the gamma prior on A
was taken to be J.L = 0.5 (a = 0.01). Thus the prior mean of A is 0.02. Using this
prior, plus the first 31 interfailure times, the posterior distribution of (N - 31)
was calculated. The formula for P(N = q IL(31)), given before, was used. A plot
of this posterior distribution is shown in the top part of Figure 4.1 b). The mean
of this posterior distribution is 1.3, which accords well with the observed failures
in the "user experience phase."

To obtain the predictive distribution of the time to next failure Tk+!, with
k = 31, we use the fact that Tk+! has density at t of the form

00 00

iTk+1 (t 11. (k), 8, j.L, a) = l: J >..(j - k) e->'U-k)t x
j=k 0

(4.8)

110 4. Statistical Analysis of Software Failure Data

Table 4.2. Interfailure Times of the NTDS
[Data from Jelinski and Moranda (1972)]

Error No. (i) ti S; Error No. (i)

Production Phase Production Phase (cont'd)

1 9 9 20
2 12 21 21
3 11 32 22
4 4 36 23
5 7 43 24
6 2 45 25
7 5 50 26
8 8 58 Test Phase 1

9 5 63 27
10 7 70 28
11 1 71 29
12 6 77 30
13 1 78 31
14 9 87 User Experience Phase

15 4 91 32
16 1 92 Test Phase 2

17 3 95 33
18 3 98 34
19 6 104

t; Si

1 105
11 116
33 149
7 156

91 247
2 249
1 250

87 337
47 384
12 396
9 405

135 540

258 798

16 814
35 849

The preceding expression when solved numerically yields the predictive density
shown in the bottom part of Figure 4.1b).

The upper 95th percentile of this density is 285 days; it accords well with
the observed 258 days of Table 4.2. As an alternative, see Appendix A.3.1 on
Gibbs sampling.

4.2.4 Application: Inference and Prediction Under an Error Detection
Model

In Section 3.3.1 we introduced a Type II model by Goel and Okumoto
(1979), called a "time dependent error detection model." An attractive feature of
this model is that it lends itself nicely to a closed form Bayesian analysis, as the
following development shows.

4.2 Bayesian Inference, ... , and Maximization of Likelihood 111

Posterior Probability

0.2

0.18

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02
O~ __ ~ __ -L __ ~ ____ L-__ ~ __ -L __ -L __ ~ ____ L-~

o 23456789

No. of Remaining Bugs (N - 31)

Predictive Density

0.Dl5

0.01

0.005

O~----,-----.-----,-----~-----,----~

o 100 200 300
TiIre (Days)

400 500 600

FIGURE 4.1h. Bayesian Analysis of the NTDS Data
Using Jelinski and Moranda's Model.

112 4. Statistical Analysis of Software Failure Data

Suppose that a piece of software is tested for T units of time, and that n
failures at times 0 < S 1 < S2 < ... < Sn :::; T are observed. Recall that the mean
value of the nonhomogeneous Poisson process that supposedly generates these
failures is A(t) = a(I - e-bt), where a and b are unknown parameters. McDaid
and Wilson (1999) propose a Bayesian analysis of the foregoing process by
assuming independent gamma priors on a and b. Specifically, given the
quantities A, T, cr, and JL (see Section 6.6.2), the joint prior density at a and b is
of the form

It is easy to show (details left as an exercise for the reader) that the joint
posterior of a and b, given n, T, and SI, ... , Sn, is proportional to the quantity

the normalizing constant is (l() -I , where

00

K = f{n + r) J e-CI-L+Sn)bbn+o - 1(>, + 1 - e-bTt+rdb.
o

It is noteworthy that the posterior distribution given previously depends only
on n, T, and Sn, the last observed time of failure. The calculation of the various
other quantities of interest is also straightforward. For example, if N*(T) denotes
the number of failures that will be observed subsequent to time T, then, for i = 0,
1,2, ... ,

(ii)
* f(n+T+i)

P(N (1) = i I n, Sn, 1) ex: i! (l+/W (l-L+iT+Sn)Ma ,

where the constant of proportionality is

Finally, if ST denotes the time to next failure, as measured from T, then for
t ;::: T, the predictive distribution of ST is

4.3 Specification of Prior Distributions 113

(iii) peST ~ tin, Sm 1) = P(N(T + t) - N(1) = 0 I n, Sm 1)

r(n+T) fOO bn+a - 1 e-(/J + Sn)b
= -K- (.A+1_e-(T+r)b)n+T db;

o

this quantity will have to be numerically evaluated.

4.3 Specification of Prior Distributions

The specification of prior distributions has been a roadblock for the
application of Bayesian techniques ever since the days of Bayes and Laplace.
However, recent advances in elicitation methodologies and computational
methods have done much to ease this roadblock. When specifying a prior
distribution, certain issues need to be addressed: the first is a choice of the family
of distributions to use, and the second is a choice of the parameters of the chosen
family; such parameters are called hyper parameters.

With regards to the first issue, the choice has sometimes been guided by
mathematical tractability, under the disguise of what are known as "natural
conjugate priors." Much of the early literature on Bayesian inference subscribed
to this form of analysis [cf. Raiffa and Schlaifer (1961)]. Indeed, the priors used
in Section 4.2.3 are natural conjugate priors. With natural conjugate priors, the
choice of hyperparameters has been based on approximations like matching
moments with beliefs [cf. Martz and Waller (1982), p. 222]. Another favorite
approach for prior specification, and one that is gaining current popularity, is
based on the philosophy espoused by Jeffreys (1961). According to Jeffreys,
priors should be selected by convention, as a "standard of reference;" this is in
keeping with the use of standards in other scientific settings [cf. Kass and
Wasserman (1996)] (see Section 4.3.1 for an overview). Since the dominant
philosophical foundation for Bayesian inference is subjectivism, the use of a
natural conjugate, and standard of reference priors, is foundationally
objectionable. Priors that are induced via a subjective elicitation of future
observables, such as those discussed in Tierney and Kadane (1986), are in
keeping with the subjectivistic foundations, and are therefore worthy of serious
consideration. In Section 4.3.4 we describe an approach for constructing a
subjectively elicited prior for the parameters of the model by Musa and Okumoto
[see Equation (3.18)]. In Sections 4.3.2 and 4.3.3, we give an overview of the
ideas underlying the material of Section 4.3.4.

There are two other matters about prior distributions that need to be
mentioned: hierarchically constructed priors and sensitivity. A hierarchically
constructed prior is one wherein a prior distribution is assigned to the
hyperparameters of a prior distribution. Such priors are called hierarchical
priors, and the hierarchical construction need not be limited to a single stage.
That is, we may assign prior distributions on the hyperparameters at each stage

114 4. Statistical Analysis of Software Failure Data

of the prior construction. Probability models that involve hierarchically
constructed priors are known as hierarchical models. Such models have proved
to be very useful for addressing many problems in science and engineering, the
"Kalman Filter Model" [cf. Meinhold and Singpurwalla (1983b)] being a prime
example. In the context of software failure, the models introduced in Sections
3.2.4, 3.4.1, and 3.4.2 are examples of hierarchical models. Section 4.4 on
"Inference and Predictions Based on Hierarchical Models" shows how such
models provide meaningful descriptions of software failure data. In principle,
hierarchical models also serve as a foundation for what are known as "empirical
Bayes methods," because they are, in fact, a consequence of a repeated
application of the law of total probability [cf. Singpurwalla (1989a)].

Our final comment about prior distributions pertains to sensitivity.
Irrespective of how the prior is chosen, an investigation of the sensitivity of the
posterior distribution to changes in the prior distribution and its hyperparameters
is an important feature of any Bayesian analysis. Often, the posterior is
insensitive to small changes in the prior, especially when the amount of data is
large; in such cases we need not be too concerned about the imprecisions in our
priors, if any. On the other hand, if our investigations reveal that small variations
in a particular prior have large effects on the posteriors, then more careful
attention should be paid to assessing the prior. Alternatively we may want to
present a family of posterior distributions generated by a large class of priors so
that a potential user of the results may make decisions in cognizance of the
alternate possibilities that are revealed by the analyses.

4.3.1 Standard of Reference-Noninformative Priors

Jeffreys' notion of using priors that are a standard of reference has found
appeal with many investigators who hold the view that analysts should say as
little as possible about the parameters in question; this enables the data to speak
for themselves. Supporting this position are those who maintain that often an
analyst has no relevant experience to specify a prior, and that subjective
elicitation in multiparameter problems is next to impossible. Priors that are
developed to react to these points of view are called noninformative priors.
Bernardo (1997), who claims that "noninformative priors do not exist," touches
on these and related issues, from both a historical as well as a mathematical
perspective.

A simple strategy for constructing priors that (supposedly) convey little
information about a parameter, say (), is to let the prior density function be flat
over all allowable values of (). If () can take values only in a finite range, say [a,
b], then the obvious noninformative prior is the uniform density on [a, b]; that is,

4.3 Specification of Prior Distributions 115

{
(b-a)-l, a<.5:(}<.5:b

7r((J I a, b) =
0, otherwise.

(4.9)

When () takes values over an infinite range, then a limiting form of non
informative prior would be the uniform, with constant weight given to all
possible values. Unfortunately, this is not a probability density, as the integral is
infinite, and for this reason is known as an improper prior. Although not a
legitimate density, it turns out that the posterior distribution, calculated from
Bayes' formula, may be a proper density. So, in terms of computing posterior
distributions, it may be possible to work with this type of prior distribution.

There are, however, some objections to using improper priors. First, the
posterior distribution is not guaranteed to be proper; it may be improper, in
which case one cannot calculate posterior means or sensibly find marginal
distributions. Second, there would always appear to be at least some prior
information on (), even if it is just some fantastically large bound on its possible
values; in such cases a uniform prior density can be used. There is also a more
fundamental problem with assigning an equal weight to all values of (). For
example, suppose that our prior on () is of the form given by Equation (4.9), but
that our problem is parameterized in such a way that inference needs to be made
about 'l/J = (}2. Then, it can be shown, using the calculus of probability, that our
prior on 'l/J is of the form

7r*('ljJ I a, b) = 0.5 'ljJ-O.5 7r('ljJ I a, b). (4.10)

But Equation (4.10) suggests that a uniform prior on () (chosen to reflect an
absence of knowledge about ()) results in a prior for 'l/J that is proportional to
'l/J-O.5. This is contrary to intuition; thus we cannot choose uniform priors for
both () and 'l/J at the same time.

The preceding type of scenarios has motivated a lot of research into finding
noninformative priors that are invariant under transformations. This kind of work
was initiated by Jeffreys, and has been continued by, among others, Jaynes
(1968), Zellner (1971), (1977), and Bernardo (1979). It has also spawned a
variety of new ideas; the one that has seen many applications in physics and
engineering is the principle of "maximum entropy priors" [see Jaynes (1983),
and Good (1983)].

4.3.2 Subjective Priors Based on Elicitation of Specialist Knowledge

The subjective specification of prior distributions often entails, in addition
to the background knowledge 1i, the use of information that an analyst, say A,
elicits from users and subject matter specialists, called experts. The term expert
is generic, and could include the information provided by mathematical and

116 4. Statistical Analysis of Software Failure Data

engineering models, simulation algorithms, empirical experience, and the like.
How does an analyst incorporate expert information into the background
knowledge 'H that A has, to arrive at prior distributions for parameters? Also,
since most experts are subject matter specialists, the information they provide is
about observable entities, not parameters, which to them are Greek symbols
concocted by analysts. How should A induce prior distributions on parameters
from information about observables?

The foregoing problems have been addressed by many. The general plan
was first proposed by Morris (1974, 1977), and subsequently improved upon by
French (1980), Tversky, Lindley, and Brown (1979), and Lindley (1983).
Application to problems in reliability has been considered by Lindley and
Singpurwalla (1986a), Singpurwalla (1988b), and Singpurwalla and Song
(1988).

For purposes of discussion, suppose that interest centers around an unknown
quantity, say X, and we (the analyst A), possess background information 'H
about X. Let P(X I 'H) denote our uncertainty about X in the light of 'H. To
obtain an enhanced appreciation of X, we consult an expert, say £, who provides
us with an assessment of X in terms of two quantities m and s, where m
represents £'s best guess about X, and s a measure of £'s uncertainty about m.
Note that whereas X often denotes some observable quantity, it could in principle
also be an unknown parameter. A's problem therefore is to assess P(X I m, s,
'H); this is A's uncertainty about X in the light of m, s, and 'H. By Bayes' Law

P(X = x / m, s, 1t) ex £(X = x; m, S, 1t) P(X = x /1t),

where £(X = x; m, s, 'H) is A's likelihood that £ will declare the values m and s,
were X = x. The likelihood reflects A's opinion of the expertise of £, and may
be better expressed through additional coefficients that are introduced by A. For
example, if A is of the opinion that £ tends to overestimate or underestimate the
location of £'s distribution for X, then m is actually the location of a + {3x; the
case a = 0, {3 = 1 corresponds to A's view that £ is unbiased. If in A's view, £.
tends to underestimate the standard deviation of £'s distribution for X, then A
modulates s to 'YS, with 'Y > 1; if £ tends to overestimate the standard deviation,
then 'Y < 1. Some further simplification in the specification of the likelihood
occurs if in A's opinion, £ 's declared value s is independent of the value of X. If
such be the case, then A may reflect the expertise and the attitudes of £, via the
normal (Gaussian) form

£(X = x; m, s, 1t) ex exp [- 1 (m-(~s+(3X») 2] , (4.11)

where the tuning coefficients a, {3, and 'Yare chosen by A to reflect A's view of
the biases and the assertiveness of £. The choice a = 0, {3 = 'Y = 1, reflects A's
willingness to accept the values m and s without any modification (tuning).

4.3 Specification of Prior Distributions 117

It is often the case that analysts who consult experts are unwilling to impose
their own views about X in a manner that will greatly distort the expert's inputs
beyond that which is done through the tuning parameters. If such be the case,
then the analyst's prior P(X = x 111.) will tend to be flat over the range of values
x where the likelihood is appreciable. Consequently, A's posterior probability
density for X at the point x is of the form

fix I m, s, Ji) ex: exp [- 4 (m-(~s+f3X») 2] , (4.12)

with the constant of proportionality chosen to make the preceding quantity
integrate to one. This posterior density represents A's assessment of the
uncertainty of X in the light of £'s inputs and A's views about the expertise and
attitudes of the expert. If A chooses to incorporate A's own views about X, then
the right-hand side of Equation (4.12) must be multiplied by the probability
density of X in the light of 11. alone; the latter is a proxy for P(X = x 111.).

Thus to summarize, the crux of the plan for incorporating expert inputs into
an analysis is to view such inputs as data, and then to invoke Bayes' Law using
as the likelihood a model for the expertise of the expert. The attitudes of the
expert, as perceived by the analyst, get reflected in the likelihood via the tuning
coefficients.

4.3.3 Extensions of the Elicitation Model

There are several possible directions in which the model of Section 4.3.2
can be extended, the most natural one being the case of several experts, say £\, .
. . , £ko k ;::: 2. Now A has to contend with the quantities (mh SI), ... , (mko Sk)
and the corresponding tuning coefficients (ai, (3i, 'Yi), i = 1, ... , k. The principle
is the same except that in writing £(X = x; (mi' Si), i = 1, ... , k, 11.), the
likelihood, A has to consider possible correlations between the expert
announcements. The treatment of this possibility has been considered by Lindley
(1983) in a general context, and by Lindley and Singpurwalla (1986) in the
context of reliability.

Another generalization of the elicitation model is motivated by the difficulty
in specifying the tuning coefficients a, {3, and 'Y. One approach for easing this
difficulty is to gather information about £'s previous announcements (mi' Si),

i = 1, ... , n, and to relate them to Xi, the revealed values of X. Once the (mi' Si)

and the corresponding Xi are at hand, we may invoke Bayes' Law, with a flat
(vague) prior on a, {3, and 'Y. to obtain the posterior distribution

Pea, {3, 'Y I (mj, Si), Xi, i = 1, ... , n, 1{)

(4.13)

118 4. Statistical Analysis of Software Failure Data

The mode of this posterior provides us with suitable values of n, /3, and 'Y for use
in future elicitations.

Finally, the matter of inducing prior distributions on unknown parameters
using the elicited distribution of observables P(X = x I m, s, 11.) remains to be
settled. This is generally a straightforward matter if a simple relationship
between the observable X and a parameter e can be established. For example,
with exponentially distributed lifetimes, the mean time to failure is e, and so the
X of Section 2.2.2 is now the mean lifelength. Consequently, £ will therefore be
asked to provide assessments for the mean life length. Often there is a simple
relationship between the median and the parameters; see, for example,
Singpurwalla (1988b). In such cases expert elicitation about the median is
sought. Psychological studies have shown that experts are more at ease assessing
medians and other percentiles than the mean.

In the next section we describe an application of the foregoing general
methodology to a commonly used model for describing the software failure
process.

4.3.4 Example: Eliciting Priors for the Logarithmic-Poisson Model

Recall (see Section 2.3), that the Poisson process is completely determined
by A(t), its mean value function. The logarithmic-Poisson execution time model
for describing software failures, introduced by Musa and Okumoto (1984), takes
for A(t) the functional form In(oXet + 1)/e, where oX and e are parameters; see
Equation (3.16). In this section we describe how the elicitation techniques of the
previous two sections, plus some empirical experience reported by software
engineers, can be used to assess the priors on A and e.

Since A(t) represents the expected number of software failures encountered
by time t (see Section 2.3.1), A(t) is an observable, and thus it is meaningful to
elicit expert opinion on A(t) rather than on e and oX. The latter quantities lack an
intuitive import. Accordingly, if two time points TJ and T2, TJ ~ T2, are chosen
and expert opinion in terms of a measure of location and scale, say m; and s;,
elicited for A(Tj), i = 1,2, then a prior on oX and e can be induced from the fact
(verification left as an exercise for the reader) that:

and (4.14)

The preceding will yield a solution for e > 0, and oX > 0, if and only if
° ~ A(Td ~ A(T2) ~ T2«A(Td)ITd.

The simplifying assumptions that pertain to the joint distribution of A(TJ)

and A(T2), given (m1' S1) and (m2' S2), are in the same spirit as those given in
Section 4.3.2 with suitable modifications to account for the fact that
A(TJ) ~ A(T2). The motivation and details are in Campod6nico and
Singpurwalla (1994), (1995); the following is an overview ofthe essentials.

4.3 Specification of Prior Distributions 119

(i) The likelihood of A(T2), for fixed values of mJ, m2. S\, and S2,

is of the truncated normal shape, centered at Q + f3m2 with a
scale ,,/S2; see Equation (4.13). The left truncation point is m\ +
ks\, and the right truncation point is m\ T21TJ ; k is specified by
the analyst.

(ii) The likelihood of A(Td, for a fixed value of m\ and S\ is also
of the truncated normal shape centered at Q + f3m\ and a scale
"/h The left truncation point is zero.

(iii) The likelihood of the difference (A(T2) - A(Td) is truncated
to the left at zero, and for a fixed value of (S2 - s\), it is
proportional to the quantity

for a fixed value of s\ it is of the form (A(T2) - A(Td) x
exp(- s\(A(T2) - A(TJ))).

(iv) The joint prior on A(Td and A(T2) is a constant over the range
of values of A(TJ) and A(T2) for which the likelihood is
appreciable.

Under the preceding assumptions, the density of the joint posterior of A(TJ)

and A(T2), at the points AJ and A2, 0 < AJ < A2 < Al (T2ITd, is proportional to
(the formidable looking expression)

x

(4.15)

where q,(x) is the cumulative distribution of the standard normal distribution [so

q,(x) = f~oo (1Iy'l;) exp(- u212)du].

This prior distribution, although complex, is easily manipulated numerically.
Using the relationships given in Equation (4.13), it has been used to compute the

120 4. Statistical Analysis of Software Failure Data

joint distribution of (A, 0), posterior distributions in light of data on the Poisson
process, as well as various expectations and variances; see Campodonico and
Singpurwalla (1994) (1995). A computer code for carrying out the needed
calculations is described by Campodonico (1993).

The principal remaining issue is to discuss how the expert might in practice
specify the various values: T], T2, m], m2, Sl, and S2. First, Tl and T2 are chosen;
recommended values for T2 are the total time that testing is scheduled for, or
some proportion of the total hours worked [Myers (1978) suggests one halt].
Typically, Tl will then be some reasonably small percentage of T2 for which it is
felt that a number of bugs will have been discovered; for example, if T2 is chosen
to be the scheduled testing time, and the expert thinks that 10% of bugs will be
discovered in the first 1 % of the test, then it is reasonable to define Tl = 0.01 T2.

The expert then specifies a mean and standard deviation for A(T2), denoted
m2 and S2. If T2 is the total testing time, we might set m2 to be the total number of
bugs expected in the code; Gaffney (1984) has suggested various empirical
formulae that relate the length of code S to the number of bugs B:

• B = 0.021S;
• B = 4 + 0.OOI4S4!3;
• B = 4.2 + 0.00 15S4/3 •

Given the rather ad hoc nature of these formulae, it is wise to set the
standard deviation S2 large, to reflect large uncertainty in the estimate of m2.

Next is the specification of a mean and standard deviation on TJ • These may
be simply specified as fixed proportions of m2 and S2, or alternatively the expert
can use experience from previous tests; if m2 and S2 describe the total number of
bugs and, on average, the expert knows 10% of bugs occur up to testing time TJ ,

then ml = 0.lm2 and Sl = 0.ls2.
The final part of the specification is the tuning coefficients a, /3, 'Y, and k. If

there is no basis for assuming any bias by the analyst, we choose a = 0, /3 = 1,
'Y = 1, and k = 1.

4.3.5 Application: Failure Prediction Using Logarithmic-Poisson Model

To illustrate the workings of the procedure described in the previous
section, we consider some software failure data given by Goel (1985); these are
given in Table 4.3. The data consist of the observed number of failures of a
software system that was tested for 25 hours of CPU time. For purposes of
illustration, we choose the logarithmic-Poisson model of Musa and Okumoto
(1984) to analyze these data. The choice of this model has no basis other than
the need for exposition. The standard approach for analyzing such data has been
the method of maximum likelihood. However, as discussed by Campodonico and
Singpurwalla (1994), this approach may lead one to difficulties, the main one

4.3 Specifica~ion of Prior Distributions 121

Table 4.3. Data on Software Failures During System Test

of testing per CPU hour # of Failures of testing per CPU hour # of Failures

1 27 27 14 5 111
2 16 43 15 5 116
3 11 54 16 6 122
4 10 64 17 0 122
5 11 75 18 5 127
6 7 82 19 1 128
7 2 84 20 1 129
8 5 89 21 2 131
9 3 92 22 1 132

10 1 93 23 2 134
11 1 97 24 1 135
12 7 104 25 1 136
13 2 106

being nonunique estimators when the data are such that only the total number of
failures in the first interval of testing is available.

The data of Table 4.3 pertain to a system consisting of 21,700 object
instructions. Thus we take 21,700 as our length of code S, and using the first of
the three formulas of Gaffney (1984), choose m2 = 0.021 x (21,700) == 455.
Considering a long term for the debugging horizon, we take T2 = 250 (CPU
hours). Given the very general nature of our choices for m2 and T2 , we choose
82 = 200 to reflect a high degree of uncertainty in our specifications. Experience
of software engineers suggests that, on average, about 10% of system failures
occur during the first 1 % of debugging time. Consequently, we choose TJ = 2.5
and ml = 45.5. As a measure of uncertainty about our choice of mh we choose
SI = 4, and as an alternative, SI = 20. Since we have no basis for tuning all of
these selections, we choose Q = 0, f3 = 'Y = k = 1.

In Figure 4.2 we show plots comparing the cumulative number of failures
that are actually observed during the first five intervals of testing and those
predicted via a Bayesian analysis of the model with prior parameters ml = 45.5,
SI = 4, m2 = 455, and S2 = 200, for TJ = 2.5 and T2 = 250. The predictions
shown are one-step-ahead predictions. That is, the predicted cumulative failures
at the end of the second interval of testing incorporate the data observed at the
end of the first interval of testing, the predictions at the end of the third interval
of testing incorporate the data observed at the end of the second interval of
testing, and so on.

The plots of Figure 4.2 suggest that the approach described here provides
good predictive capability vis-a-vis the chosen parameters. When the one-step-

122 4. Statistical Analysis of Software Failure Data

Cumulative Number of Failures

80 ~----------------------------------~

60

Actual Data
40

20 +-----,------r----~----~----_,----~

o 2 3 4 5 6
Execution Time (CPU Hours)

FIGURE 4.2. Comparison of Actual Versus One-Step-Ahead Predictions.

ahead prediction is extended to a horizon covering the 25 intervals of testing, a
less promising picture appears. The predictions tend to overestimate the actual;
see Figure 4.3. Note that the predicted values for the 25-interval horizon are
based on the data up to and including the fifth interval of testing only.
Presumably, the one-step-ahead predictions would be better, but in practice, it is
the several steps ahead predictions that are useful.

In view of Figure 4.3, it appears desirable to explore the sensitivity of our
analysis to the choice of prior parameters. Table 4.4 shows our selections for
three other priors considered by us: Prior I is the selection previously described,
and Prior II is identical to Prior I except that SI = 20 instead of 4. Prior IV uses
the second formula of Gaffney (1984) to specify m2, and Prior III uses the actual
data from the first interval of testing to specify TJ and mI. Prior III is intended to
reflect the feature of maximum likelihood estimation that would necessitate the
use of some data for inference; this is in contrast to Bayesian inference which
can be based on the prior alone.

In Table 4.5 we compare the one-step-ahead predictions based on the four
priors of Table 4.4. Also given are the mean square errors (MSE) of the
predictions over the five testing intervals. A comparison of the predictions based
on the MSE suggests that Prior II appears to provide better predictivity than
Prior I. A possible reason for this is that the higher uncertainty associated with

4.3 Specification of Prior Distributions 123

180~-------------------------------------.

120

Actual Data

60

-<I
,---- ! _ ...

O+-------~------r-------r_----~------~

o 5 10 15 20 25

Execution Time (CPU Hours)

FIGURE 4.3. Comparison of Actual Versus Predicted Failures
Forecast Horizon of 25.

Table 4.4. The Class of Priors Considered

TI T2 ml m2 SI S2 a b 'Y k

Prior I 2.5 250 45.5 455 4 200 0 1 1 1

Prior II 2.5 250 45.5 455 20 200 0 1 1 1

Prior III 1 250 27 455 0.5 200 0 1 1 1

Prior IV 1 250 27 851 0.5 300 0 1 1 1

Prior II (SI = 20 instead of 4) better compensates any rnisspecifications in mi.
The MSE of Prior III is slightly smaller than that of Prior II because under Prior
III, the predicted failures for the first interval of testing equal the observed
failures.

124 4. Statistical Analysis of Software Failure Data

Table 4.5. Comparison of the One-Step-Ahead Predictions
Under Different Priors

CPU Hour Prior I Prior II Prior III Prior IV Observed

Interval Failures

1. (0, 1] 22.8 25 27 27 27

2. (1,2] 16 18.7 18.3 22.1 16

3. (2,3] 12.6 13.3 13.8 20.6 11

4. (3,4] 9.5 9.7 10.1 15.6 10

5. (4,5] 8.6 8.5 8.1 12.8 11

MSE 5.2 4.5 4.3 32.7

Based on 5 predictions

4.4 Inference and Prediction Using a Hierarchical Model

In Section 3.2.4, we introduced a model for tracking the growth in reliability
of software using a prior that was hierarchically constructed in two stages. In this
section we discuss inferential aspects of this model using actual data on software
failures. The model of Section 3.2.4 was proposed by Mazzuchi and Soyer
(1988). The first step of model construction involves the specification

peT > t I k) = e-A;l 1_ I , (4.16)

where the parameter Ai is such that the collection of AiS, i = 1, 2, ... , constitute
a decreasing sequence. The prior distribution on Ai is a gamma with a scale
parameter 1jJ(i) and a shape parameter a; see Equation(3.9). Furthermore, 'lj;(i) is
reparameterized as 'lj;(i) = (30 + (31 i, and the predictive distribution of Ti , given
'lj;(i) and a, is of the form [see Equation (3.10)]

(4.17)

For the second stage of the hierarchy, the following prior structure is assumed
for the hyperparameters

?r(a I w) = w- i , 0 < a < w;

((3 I d) de (3c-l -f3]d (3 0 d
?r I C, = r(c) Ie, 1 > ; an

4.4 Inference and Prediction Using a Hierarchical Model 125

'""(f.l I /3 a b) = ~ (f.l - /3)a-l e -b(f3o-f3I)
1\ fJO [" rea) fJO 1 , (4.18)

The shape parameter 0: is independent of both (30 and (31, but (30 and (31 are a
priori dependent. The joint prior of 0:, (30, and (31 is obtained via the relationship

7r(0:, /30, /31) = 7r(0: I w) X 7r(/31 I c, d) X 7r(/30 I /3J, a, b).

The foregoing prior distributions are more in the spirit of natural conjugate
priors than priors based on elicitation.

Given k interfailure times t l , ••• , h = L (k), the joint posterior of 0:, (30,
and (31 is of the form (details left as an exercise for the reader):

f.l /3 I (k») (f.l /3) fr a(f3o+f3li)" 7r(0:, fJO, 1 1. ex: 7r 0:, fJO, 1 i = I (t;+f30+f3l0o+l , (4.19)

where the constant of proportionality is such that the preceding integrates to one.
The posterior distribution (4.18), although not in closed form, is relatively
straightforward to numerically compute.

In practice, interest may often center around the parameters Ai, i = I, 2, ...
. This is because Ai could be regarded as a proxy for the quantity A(N - i + I) in
Jelinski and Moranda's model. Also, a decreasing sequence of AiS implies a
growth in reliability, suggesting that the debugging process which is subsequent
to every observed failure is producing desirable results.

Given L(k), and conditional on 0:, (30, and (31) we can show (details left as an
exercise for the reader) that the posterior density of Ai at Ai is:

(4.20)

Consequently, the posterior density at Ai given the data L(k) alone, is of the
form

P(A; I 1.(k») = J P(A; I 0:, /30, /31, 1.(k») 7r(0:, /30, /31 11.(k»)do:d/3od/3l.
(".130.(3,)

(4.21)

The preceding integration will have to be done numerically. Mazzuchi and
Soyer (1988) use an approximation, first suggested by Lindley (1980), valid for
large values of k, to obtain E(Ak I L(k» and E(Tk+1 I L(k»), the mean of the
posterior distribution of Ab and the predictive distribution of Tk+1, respectively.
Verify (left as an exercise for the reader) that the predictive density of Tk+1> at t,
is given by

126 4. Statistical Analysis of Software Failure Data

P(I (k» f 0:(/30 + /31 i)0 (a (3 I (k»d d a d(3 t I = (t+/30+/31i)0+1 7r a, fJO, 1 I a fJO 1 (4.22)
(0,110. ,al)

(see Exercise 1 of Chapter 3 for a hint). As an alternative, see Section A.3.2 of
Appendix A for Gibbs sampling.

4.4.1 Application to NTDS Data: Assessing Reliability Growth

In Table 4.2 of Section 4.2.3, some software failure data from the NTDS
system was analyzed using the Jelinski-Moranda model. The aim there was to
assess the remaining number of bugs in the software. In this section we describe
how the hierarchical model of Equations (4.16) and (4.18) can be used to see if
the debugging process is effective; that is, it is improving the reliability of the
software. One way of investigating this is to track the mean of the posterior
distribution of Ai, i = 1,2, Alternatively, we may also monitor the behavior
of the posterior distribution of /31, and see if it reflects either a constant or an
increasing central characteristic, such as the mean or the mode. Note that the
posterior distribution of /31 can be obtained from Equation (4.19) as

7r«(31 I I(k» = f 7r(a, (30, (31 I I(k»dad(3o .
(0,110)

(4.23)

Equation (4.23) can be used to obtain E(/31 11.(k»), the mean of 7r(/31 11.(k»), or its
mode M(/31 11. (k»). The required computations will have to be done either
numerically or by an approximation.

Mazzuchi and Soyer (1988) analyzed the data of Table 4.2, using the
following values for the hyperparameters of Equations (4.18): w = 500; a = 10;
b = 0.1; c = 2; d = 0.25. Using Equations (4.21)-(4.23) and Lindley's
approximation, they calculated E(Ai 11. (i)), E(Ti+1 11. (i)), and M(/31 11. (i)), for
i = 1, 2, ... , 26, the production phase of the data. The values of the former two
quantities are given in columns 3 and 4 of Table 4.6. A plot of E(Ai 11. (i)) and
M(/31 11. (i)) is shown in Figure 4.4.

An examination of the upper plot of Figure 4.4 suggests that there has been
an apparent growth in reliability during the initial stages of testing, followed by a
modest decay for most of the middle stages of testing, and then an increase
during the very last stages. The lower plot of Figure 4.4 suggests that the
parameter /31 is not relatively constant; rather, the downward drift in /31 during
the first 20 or so stages of testing confirms the decay in reliability during the
middle stages of testing. The sharp upward drift in /31 during the last stages of
testing is a reflection of the growth in reliability during the final stages of testing.
Our conclusion that the middle portion of the data is at odds with the structure of
the model, namely, that the sequence of AiS be decreasing, suggests that the
model should be weakened. Accordingly, Mazzuchi and Soyer do away with the

4.4 Inference and Prediction Using a Hierarchical Model 127

Table 4.6. Posterior and Predictive Means for NTDS Data

Error Actual Means of Predictive Means of the
Number Interfailure Times Interfailure Time Posterior of Ai

i ti t (k) t (k)
ECTi+ll_) ECM-)

1 9.00 - 0.2215
2 12.00 9.75 0.1389
3 1l.00 11.36 0.1197
4 4.00 1l.77 0.1331
5 7.00 10.09 0.1265
6 2.00 9.87 0.1400
7 5.00 8.74 0.1375
8 8.00 8.45 0.1290
9 5.00 8.71 0.l318

10 7.00 8.50 0.1273
11 l.00 8.61 0.l392
12 6.00 7.92 0.l340
l3 l.00 7.93 0.1449
14 9.00 7.35 0.1329
15 4.00 7.70 0.l383
16 l.00 7.50 0.1469
17 3.00 7.03 0.1488
18 3.00 6.78 0.1521
19 6.00 6.55 0.1483
20 l.00 6.61 0.1586
21 1l.00 6.23 0.1425
22 33.00 6.68 0.1061
23 7.00 8.52 0.1173
24 9l.00 8.57 0.0617
25 2.00 l3.10 0.0847
26 l.00 12.66 0.0875

128 4. Statistical Analysis of Software Failure Data

Posterior Mean E(A; 11.(1)

0.2500 -,--------------------,

O.2<XX> -

0.1500

0.1000

0.0500 -

0.0000 +---+---+---+----f----f---~

o 5 10 15 20 25 30

Tes ting Stage i

Posterior Mode M(/31 11.(1)

4.5 ,.--------------------,

4.0 ... • -

3.5

3.0

2.5

2.0

1.5-·----------------------------------

In ----------------------------------

0.5 ----------------------------------

0.0 -!---+---+----+---+---+----I
o 5 10 15 20 25 30

Testing Stage i

FIGURE 4.4. Plots of the Posterior Means and Modes of Ai and f3t.

4.5 Inference and Predictions Using Dynamic Models 129

parameter 1/;(i) and its reparameterization. Instead, they assume that the AiS have
a common gamma distribution with shape (scale) a(fJ). They next assume that a
has a uniform distribution over (0, w), and fJ a gamma distribution, independent
of the distribution of a. This scheme makes the AiS exchangeable; see Section
2.1.5. As regards inference, we note that the new model is indeed a special case
of the hierarchical model, with 7f(fJl I .) degenerate at 0, and fJ = fJo; see
Equation (4.18). Mazzuchi and Soyer have shown that the new (weaker) model
provides better predictivity of the NTDS data than the parent model, but only by
a small margin; the overall conclusions about reliability growth do not change.

4.5 Inference and Predictions Using Dynamic Models

In Section 3.4 we introduced three models for describing the times between
software failure; these models are classified in the Type 1-2 category of Section
3.1.2. Whereas the model of the previous section was based on a two-stage
hierarchical construction, the models of Section 3.4 are based on hierarchical
constructions involving several stages. This is because of two reasons: the
autoregressive construction underlying Equation (3.19) and because the
underlying parameters of these models are assumed to evolve dynamically over
time, thus the label "dynamic;" see Equation (3.22). In the control theory
literature, such models play a dominant role, and are known there as Kalman
filter models. The dynamic feature underlying the models enables them to be
more responsive to changes in the process generating the data, and in doing so
they are able to better track the data. This results in enhanced predictivity. The
purpose of this section is to discuss inferential issues pertaining to such models,
and to illustrate how they can be applied to data on software failures for
prediction and for assessing the growth (or decay) in reliability.

We start with the two models of Section 3.4.1 wherein the interfailure times
T;, i = 1, 2, ... , bear a relationship with each other via a sequence of
parameters (); as

(4.24)

see Equation (3.21).
The error terms Ei are independent and identically normally (Gaussian)

distributed, with a mean ° and variance a?; Ei "" N(O, aD. Recall, from Section
3.4.1, that the TiS are to be scaled (if necessary), so that they are all greater than
one.

For the sequence of parameters 0;, two models were proposed. The first is a
two-stage hierarchical construction that makes the ()is an exchangeable sequence.
Specifically, conditional on ..\, the OiS are assumed to be independent and
identically normally distributed with mean ..\ and variance ar Furthermore, ..\
itself is normally distributed with mean It and variance aj. Thus, for i = 1, 2, ...

130 4. Statistical Analysis of Software Failure Data

.A '" N(/-t, l1j) . (4.25)

The hyperparameters O'r, O'~, O'~, and J.-L are to be specified by the user.
Equations (4.24) and (4.25) constitute what is referred to as the exchangeable
model. It is important to note that even though the prior construction involves
only the two stages of Equation (4.25), the exchangeable model as a whole
involves multiple stages. This is so because of the "autoregressive" nature of
Equation (4.24); the multistage hierarchy is in the "observation equation" of the
model.

As an alternative to Equation (4.25), we may assume that the Bis also
constitute an autoregressive process of order one, so that for some parameter 0,

and i = 1, 2, ... ,
(4.26)

where the WiS are independent, and Wi rv N(O, W?). A uniform prior over
(a, b), with a and b specified, is then assigned to o. Equations (4.24) and (4.26)
constitute what is referred to as the adaptive Kalman filter model. Here the
hierarchical feature is inherent in both the observation equation (4.24), and the
system equation (4.26). In all the cases mentioned, the size of the hierarchy
increases with i, i = 1, 2, ... , imparting an increasing memory to the process.

The non-Gaussian Kalman filter model of Section 3.4.2 does not require a
scaling of the TiS, and assumes the following as observation and system
equations, respectively,

(T; I OJ, Wj) '" (}(OJ, 'Trj), and (4.27)

O - fu
j - Ci fj. (4.28)

The fiS are assumed independent, and each fi has a beta distribution with
parameters O'i.) and Vi.). The hyperparameters Wi, Ci , ai, and Vi are assumed
known and must satisfy the constraint O'i.) + Wi = O'i + Vi , i = 2, 3, The
initial (starting) value Bo is assumed to have a gamma distribution with scale
parameter 0'0 + vo, and shape parameter uo, also assumed known. As written
previously, the model consists of an excessive number of parameters that a user
needs to specify; this is not practical. A simplification would be to let Ci = C,
Wi = W, O'i = 0', and Vi = v. The hierarchical nature of this model is due to the
dynamic feature in the system equation (4.28).

In Sections 4.5.1 through 4.5.3 we discuss inferential aspects of the three
models described previously, and then apply our procedures to a common set of
data on software failures. This facilitates a comparison of the inferential and
predictive capabilities of the three models. The actual data are given in column 2

4.5 Inference and Predictions Using Dynamic Models 131

of Table 4.7; they have been taken from Musa (1979), who has labeled them as
"System 40 Data." The data consist of 100 interfailure times of a software
system (comprised of 180,000 object instructions) which was undergoing
conventional testing (as opposed to testing under an operational profile). There
was an overlap between integration and system testing, and the earlier stages of
testing were conducted with only a part of the system present (personal
communication with Musa). A plot of entries in column 2 of Table 4.7 is shown
in Figure 4.5. The large fluctuations towards the end of the data could be
attributed to the introduction of the missing part of the system. To gain a better
appreciation of the variability in the interfailure times, we plot their logarithms;
these are shown in Figure 4.6.

The analysis of these data has proved to be challenging because of the
absence of a discernible trend and the presence of wild fluctuations. Can we use
the data to infer whether the debugging process that is subsequent to every
failure is producing an improvement in reliability? Can we use the data to make
meaningful predictions of the next time to failure? Do the models proposed here
provide meaningful descriptions of the process that generates the data? If so,
which of these models provides the best description? We propose to address
these and related questions that may be germane to a software engineer's
interests. For a general discussion on a paradigm for modeling reliability growth,
see Singpurwalla (1998a).

4.5.1 Inference for the Random Coefficient Exchangeable Model

If we let Yi = 10geTi , i = 1, 2, ... , then Equation (4.24) can be written as
Yi = OiYi-l + Ei, i = 1,2, ... ; this is an autoregressive process of order one, with
a random coefficient Oi. As was mentioned in Section 3.4.1, Oi provides
information about the growth or decay in reliability at stage i, and since (}i '"
N(>", ai), >.. provides information about the overall growth or decay in
reliability. If Yi denotes the realization of Yi, then given the n interfailure times
YI> ... , Yn, interest centers around an assessment of (}i and >.., given in) = (Yt. ...

, Yn). Interest also centers around the predictive distribution of Yn+1•

An agreeable feature of the exchangeable model is that the relevant
posterior and predictive distributions can be obtained in closed form.
Specifically, the posterior distribution of >.., given the data in), is of the form

(,x Iln), .) rv N"(mn, s~), (4.29)

where mn and s~ can be iteratively obtained as

132 4. Statistical Analysis of Software Failure Data

2
S2 - SR.! rn and
n- 22 + ' Sn·! Yn-! rn

rn = ui Y~-l + u~ ; (4.30)

mo = "" and s5 = a~ are the starting values of the iterative process.
Analogously, the posterior distribution of Bj , given ii), i = 1,2, ... , n, is of

the fonn

(4.31)

where
2 2 e. - a1 mi + a2 YiYi-l and

,- ri '

Finally, the predictive distribution of Yn+!, given in) is specified via the

relationship
(4.33)

The details leading us to Equations (4.29) through (4.33) are relatively
straightforward; they are based on elementary properties of Gaussian
distributions. An interested reader may wish to develop them directly, or may
consult Soyer (1985) to fill in the appropriate gaps.

Column 3 of Table 4.7 shows the logarithms (to base e) of the inter-failure
times given in column 2, and column 4 gives the means of the one-step-ahead
predictive distributions, that is, the quantities miYi, i = 1, 2, ... , of Equation
(4.33). In computing the entries of column 4, the following values of the
hyperparameters were used: ar = a~ = 1, a~ = 0.25, and"" = 1. Figures 4.7
and 4.8 show plots ofBi and mi, the means of the posterior distributions of Bi and
A, respectively, for i = 1,2, ... , 100. Figure 4.7 reveals the lack of a consistent
pattern of growth in reliability from one stage of testing to the other. Figure 4.8
shows that, overall, there is a very modest growth in reliability. Will an analysis
of these data using the adaptive Kalman filter model, or the non-Gaussian model,
reveal conclusions different from the preceding? We explore this matter in the
following sections.

F
ai

lu
re

N

um
be

r

1 2 3 4 5 6 7 8 9 10

11

12

13

14

15

16

17

18

19

T
ab

le
 4

.7
. A

ct
ua

l a
n

d
 P

re
di

ct
ed

 I
nt

er
fa

il
ur

e
T

im
es

 f
o

r
S

ys
te

m
 4

0
D

at
a

[f
ro

m
 M

u
sa

 (
19

79
)]

O
bs

er
ve

d
O

ne
-S

te
p-

A
he

ad
 P

re
di

ct
ed

 T
im

es
 Y

i o
r

Ti
 U

si
ng

:
In

te
rf

ai
lu

re

Y
i =

 In
(T

i)

E
xc

ha
ng

ea
bl

e
A

da
pt

iv
e

N
on

-G
au

ss
ia

n
C

on
ca

te
na

te
d

I

T
im

es
 T

i
M

od
el

 (
Y

i)

M
od

el
 (

Y
i)

K

al
m

an
 F

il
te

r
M

od
el

 (
T

J
F

ai
lu

re
 R

at
e

M
od

el
(T

i)

14
39

0
9.

57
42

88
80

0
-

-
-

-

90
00

9.

10
49

79
85

6
10

.8
08

10

-
22

05
8.

89

12
54

4.
81

28
80

7.

96
55

45
57

3
10

.0
09

50

7.
29

85

23
92

4.
20

92

62
.6

2
57

00

8.
64

82
21

45
4

8.
50

25
0

5.
90

05

20
25

5.
50

81

30
.3

7
21

80
0

9.
98

96
65

24
9

9.
25

09
00

8.

40
24

25

63
2.

41

11
89

9.
77

26

80
0

10
.1

96
15

71
66

10

.7
79

10

10
.6

44
8

48
75

0.
13

16

95
9.

86

11
35

40

1l
.6

39
91

04
77

10

.9
43

50

9.
52

54

88
11

0.
80

54

07
5.

92

11
21

37

1l
.6

27
47

66
17

12

.5
65

30

12
.4

18
9

24
49

56
.6

3
87

61
7.

82

66
0

6.
49

22
39

83
5

12
.4

73
70

10

.7
73

7
29

00
03

.8
2

61
45

9.
67

27

00

7.
90

10
07

05
2

6.
70

74
0

3.
25

75

11
07

55
.5

3
46

41
2.

19

28
79

3
10

.2
67

88
75

81

8.
26

53
0

8.
80

24

65
88

8.
62

46

08
0.

66

21
73

7.

68
38

63
98

0
10

.9
13

80

12
.5

53
7

46
89

4.
56

37

72
8.

04

72
63

8.

89
05

48
24

6
8.

01
61

0
5.

20
74

21

38
8.

95

31
92

2.
12

10

86
5

9.
29

33
01

89
3

9.
33

40
0

9.
43

30

16
43

0.
52

29

55
7.

00

42
30

8.

34
99

57
27

2
9.

75
45

0
8.

95
03

16

06
6.

28

26
81

6.
24

84

60

9.
04

31
04

45
3

8.
69

79
0

7.
88

26

11
26

9.
56

25

00
8.

51

14
86

5
9.

60
67

64
73

5
9.

43
86

0
9.

06
24

13

72
8.

46

24
83

0.
08

11

84
4

9.
37

95
76

68
9

10
.0

31
00

9.

48
51

19

91
4.

57

23
35

3.
44

53

61

8.
58

69
05

80
4

9.
76

25
0

8.
50

66

19
62

9.
38

22

96
3.

70

-
-

-
-

-_
 .

.
-

.j:
:..

 v. S'

~

~
 ~ (1
j § 0
-

'1:
1 a ao o· ::s '" c:::

'" s· (J
Q

 t1

~

p;
; 8. ("
) s:: o 0
- !!.

'" .- w

w

T
ab

le
 4

.7
.

C
on

ti
nu

ed

F
ai

lu
re

O

bs
er

ve
d

N
um

be
r

In
te

rf
ai

lu
re

Y;

 =
 In(

T
;)

T
im

es
 T

;

20

65
53

8.

78
76

78
23

9
21

64

99

8.
77

94
03

59
8

22

31
24

8.

04
68

69
51

1
23

51

32
3

10
.8

45
89

42
74

24

17

01
0

9.
74

15
56

68
5

25

18
90

7.

54
43

32
10

8
26

54

00

8.
59

41
54

23
3

27

62
31

2
11

.0
39

90
93

03

28

24
82

6
10

.1
19

64
67

70

29

26
33

5
10

.1
78

65
41

32

30

36
3

5.
89

44
02

83
4

31

13
98

9
9.

54
60

26
58

5
32

15

05
8

9.
61

96
64

69
0

33

32
37

7
10

.3
85

20
35

73

34

41
36

2
10

.6
30

11
78

64

35

41
60

8.

33
32

70
35

3
36

82

04
0

11
.3

14
96

22
12

37

13

18
9

9.
48

71
38

42
8

O
ne

-S
te

p-
A

he
ad

 P
re

d
ic

te
d

 T
im

es
 Y

;
or

 T
;

U
si

ng
:

E
xc

h
an

ge
ab

le

A
da

pt
iv

e
N

on
-G

au
ss

ia
n

M

od
el

 (
Y

;)

M
od

el
 (

Y
i)

K

al
m

an
 F

il
te

r
M

od
el

 (
T

i)

8.
89

64
0

7.
31

07

13
66

9.
69

9.

09
98

0
8.

39
76

12

74
4.

48

9.
07

84
0

8.
21

51

11
04

3.
04

8.

28
47

0
6.

90
43

88

72
.7

3
11

.2
93

70

13
.8

50
7

51
65

2.
02

10

.0
93

90

8.
19

86

38
21

7.
43

7.

74
89

0
5.

44
73

17

36
4.

48

8.
85

92
0

9.
16

74

14
94

2.
98

11

.4
70

60

13
.4

38
9

64
36

2.
37

10

.4
75

60

8.
71

64

53
66

9.
84

10

.5
27

60

9.
62

13

45
50

8.
51

6.

01
74

0
3.

19
38

21

62
9.

86

9.
90

59
0

14
.3

89
0

22
45

3.
09

9.

97
43

0
9.

02
68

24

52
9.

41

10
.7

80
00

10

.4
12

5
42

37
3.

38

11
.0

30
20

10

.1
20

3
56

60
8.

08

8.
59

26
0

6.
05

92

31
06

2.
48

11

.7
59

20

14
.3

13
5

89
92

2.
38

C
on

ca
te

n
at

ed

F
ai

lu
re

 R
at

e
M

od
el

(T
;)

21

38
1.

85

19
91

9.
09

19

00
4.

28

21
03

4.
62

21

05
3.

48

19
83

6.
23

19

56
5.

52

21
29

6.
41

21

98
7.

84

21
91

9.
71

21

60
7.

46

21
32

7.
26

20

35
2.

53

21
32

9.
76

22

44
6.

54

21
45

7.
42

23

77
7.

19

23
50

9.
34

-w .I:>
-

f'- ~

~.

</
> g. eo.

. ~ eo.
.

'<

f!J
.

</
> o,

en

o :::P

~
 ~ 'T
l

~.
 a @

t;
) !'?
 ""

T
ab

le
 4

.7
.

C
on

ti
nu

ed

F
ai

lu
re

O

bs
er

ve
d

N
um

be
r

In
te

rf
ai

lu
re

Y

i =
 In(

T
;)

T
im

es
 T

i

38

34
26

8.

13
91

48
67

9
39

58

33

8.
67

12
86

72
7

40

64
0

6.
46

14
68

17
6

41

64
0

6.
46

14
68

17
6

42

28
80

7.

96
55

45
57

3
43

11

0
4.

70
04

80
36

6
44

22

08
0

10
.0

02
42

75
00

45

60

65
4

11
.0

12
94

08
64

46

52

16
3

10
.8

62
12

87
10

47

12

54
6

9.
43

71
57

16
9

48

78
4

6.
66

44
09

02
0

49

10
19

3
9.

22
94

56
48

9
50

78

41

8.
96

71
21

65
6

51

31
36

5
10

.3
53

44
79

01

52

24
31

3
10

.0
98

76
64

66

53

29
88

90

12
.6

07
83

08
92

54

12

80

7.
15

46
15

35
7

55

22
09

9
10

.0
03

28
76

38

O
ne

-S
te

p-
A

he
ad

 P
re

di
ct

ed
 T

im
es

 Y
i o

r
Ti

 U
si

ng
:

E
xc

ha
ng

ea
bl

e
A

da
pt

iv
e

N
on

-G
au

ss
ia

n
M

od
el

 (
Y

i)

M
od

el
 (

Y
i)

K

al
m

an
 F

il
te

r
M

od
el

 (
T

i)

9.
81

29
0

7.
37

83

52
17

7.
42

8.
38

44
0

6.
45

58

24
83

6.
98

8.

93
98

0
8.

56
47

14

45
5.

37

6.
61

96
0

4.
47

09

59
29

.4
0

6.
61

62
0

5.
96

34

32
46

.3
3

8.
19

19
0

9.
13

43

35
63

.7
7

4.
79

04
0

2.
59

15

16
99

.3
8

10
.4

17
70

19

.3
88

1
19

39
0.

86

11
.4

83
50

11

.0
90

4
59

92
4.

55

11
.3

14
00

9.

72
74

69

00
2.

42

9.
79

77
0

7.
44

02

37
76

4.
68

6.

87
64

0
4.

26
86

16

92
0.

65

9.
58

38
0

11
.5

58
9

15
40

1.
10

9.

30
04

0
7.

93
77

13

33
6.

63

10
.7

60
30

10

.8
76

2
32

76
5.

46

10
.4

85
20

8.

97
95

35

19
7.

25

13
.1

35
50

14

.3
82

1
26

75
22

.6
6

7.
39

52
0

3.
69

67

11
42

74
.1

1

C
on

ca
te

na
te

d
F

ai
lu

re
 R

at
e

M
od

el
(T

i)

22
41

9.
51

22

31
6.

72

21
38

2.
76

20

74
2.

64

19
92

8.
91

19

30
1.

98

19
49

4.
67

20

75
4.

35

21
65

6.
86

21

52
5.

54

21
06

5.
59

20

56
9.

62

20
23

7.
79

20

58
5.

99

20
75

1.
92

27

35
2.

23

26
74

1.
66

26

54
6.

88

~
 u. -::s ~ g tl § p.
. ~ a. o ::s '" c:: '" Er

O<
:l t)

~

P
' e. ("
) :: o p.
.
~

'" -\;l V
I

T
ab

le
 4

.7
.

C
on

ti
nu

ed

F
ai

lu
re

O

bs
er

ve
d

N
u

m
b

er

In
te

rf
ai

lu
re

Y;

 =
 In

(T
;)

T
im

es
 T

;

56

19
15

0
9.

86
00

57
99

5
57

26

11

7.
86

74
88

56
9

58

39
17

0
10

.5
75

66
64

27

59

55
79

4
10

.9
29

42
16

16

60

42
63

2
10

.6
60

36
04

24

61

26
76

00

12
.4

97
24

86
07

62

87

07
4

11
.3

74
51

36
11

63

14

96
06

11

.9
15

76
04

51

64

14
40

0
9.

57
49

83
48

6
65

34

56
0

10
.4

50
45

22
23

66

39

60
0

10
.5

86
58

43
97

67

33

43
95

12

.7
20

07
82

08

68

29
61

05

12
.5

98
46

94
00

69

17

73
55

12

.0
85

90
86

53

70

21
46

22

12
.2

76
63

36
20

71

15

64
00

11

.9
60

17
21

07

72

16
68

00

12
.0

24
55

07
69

73

10

80
0

9.
28

73
01

41
3

O
ne

-S
te

p-
A

he
ad

 P
re

d
ic

te
d

 T
im

es
 Y

;
o

r
T;

 U
si

ng
:

E
xc

ha
ng

ea
bl

e
A

da
pt

iv
e

N
on

-G
au

ss
ia

n
M

od
el

 (Y
;)

M
od

el
 (Y

;)
K

al
m

an
 F

il
te

r
M

od
el

 (T
;)

10
.4

01
10

12

.6
13

7
65

70
9.

57

10
.2

43
30

8.

83
70

41

15
1.

91

8.
14

21
0

5.
68

97

20
53

2.
78

10

.9
97

40

12
.8

78
3

42
02

2.
25

11

.3
64

10

10
.2

79
7

64
98

2.
47

11

.0
73

60

9.
45

02

65
46

4.
91

13

3.
00

74
0

13
.3

46
8

25
45

21
.6

8
11

.8
16

20

9.
43

37

18
21

53
.1

5
12

.3
80

10

11
.3

77
6

23
45

74
.9

5
9.

91
47

0
7.

01
59

96

36
5.

12

10
.8

29
70

10

.3
93

7
69

57
2.

82

10
.9

67
30

9.

80
73

65

52
2.

52

13
.2

07
30

14

.0
04

0
31

61
44

.1
0

13
.0

72
30

11

.4
40

8
39

08
60

.2
7

12
.5

27
70

10

.6
27

0
32

97
47

.4
5

12
.7

21
90

11

.4
42

7
33

09
65

.9
5

12
.3

84
00

10

.7
03

6
28

03
18

.5
7

12
.4

45
90

11

.1
15

1
25

48
32

.0
5

C
on

ca
te

na
te

d
F

ai
lu

re
 R

at
e

M
o

d
e

l(
T

;)

26
15

1.
42

25

62
7.

82

25
98

4.
09

27

06
1.

26

27
80

3.
60

34

39
0.

11

37
54

7.
57

41

57
1.

66

40
91

7.
79

41

99
5.

24

42
68

6.
65

53

02
5.

81

62
48

1.
41

67

67
2.

63

74
79

8.
96

83

26
6.

74

87
69

4.
62

85

74
5.

95

-W 0
\

!' tI"
:l g. '" [~ ~ '" o, tI"
:l o ~ @

'T1

el

. i:
'

@
 ~

T
ab

le
 4

.7
.

C
on

ti
nu

ed

F
ai

lu
re

O

bs
er

ve
d

N
um

be
r

In
te

rf
ai

lu
re

Y i

 =
 In

(T
i)

T
im

es
 T

i
74

26

70
00

12

.4
95

00
39

37

75

20
98

83
3

14
.5

56
89

20
34

76

69

40
80

13

.4
50

34
25

07

77

76
80

8.

94
63

74
82

6
78

62

69
66

7
15

.6
51

23
38

01

79

29
48

70
0

14
.8

96
87

49
53

80

18

72
00

12

.1
39

93
28

43

81

18
00

0
9.

79
81

27
03

7
82

17

82
00

12

.0
90

66
17

94

83

48
78

00

13
.0

97
66

07
65

84

63

92
00

13

.3
67

97
26

73

85

33
45

60

12
.7

20
57

15
15

86

14

68
80

0
14

.1
99

95
62

99

87

86
72

0
11

.3
70

43
98

17

88

19
92

00

12
.2

02
06

46
24

89

21

52
00

12

.2
79

32
31

07

90

86
40

0
11

.3
66

74
29

55

91

88
64

0
11

.3
92

33
85

02

O
ne

-S
te

p-
A

he
ad

 P
re

d
ic

te
d

 T
im

es
 Y

i o
r

Ti
 U

si
ng

:
E

xc
ha

ng
ea

bl
e

A
da

pt
iv

e
N

on
-G

au
ss

ia
n

M

od
el

 (
Y

i)

M
od

el
 (

Y
i)

K

al
m

an
 F

il
te

r
M

od
el

 (
T

i)

9.
58

09
0

6.
59

52

12
34

97
.4

0

12
.9

40
30

15

.4
49

7
29

11
72

.6
9

15
.0

99
96

15

.6
55

0
19

35
39

1.
90

13

.8
04

40

11
.2

41
9

13
51

84
9.

40

9.
22

57
0

5.
52

49

62
99

65
.6

1
15

.3
55

80

22
.4

57
2

65
91

26
0.

15

15
.4

69
20

13

.8
00

9
36

67
19

5.
44

12

.5
73

70

9.
06

74

16
77

35
2.

01

10
.1

21
80

7.

24
40

73

10
19

.8
2

12
.5

18
40

13

.6
80

3
47

78
26

.7
2

13
.5

68
30

13

.0
56

9
64

27
35

.9
8

13
.8

45
90

12

.5
52

8
81

39
90

.2
4

13
.1

63
30

11

.1
38

2
65

14
16

.1
4

14
.6

98
70

14

.5
87

5
15

55
29

5.
16

11

.7
46

90

8.
39

18

72
96

33
.9

4
12

.6
11

40

12
.0

51
9

48
26

63
.5

3
12

.6
87

60

11
.4

00
3

38
12

21
.3

5
11

.7
31

60

9.
70

78

23
51

76
.3

8

C
on

ca
te

na
te

d
F

ai
lu

re
 R

at
e

M
o

d
e

l(
T i

)
92

15
5.

66

15
88

02
.0

7
17

71
81

.6
2

17
68

51
.5

2
24

96
40

.8
9

35
13

33
.2

8
35

29
01

.7
5

33
99

66
.2

9
34

31
32

.3
7

35
88

02
.8

0
37

67
39

.6
3

38
63

30
.0

9
44

29
39

.9
1

42
78

73
.6

8
43

44
82

.2
3

43
31

68
.4

9
42

66
16

.7
8

40
81

54
.9

1

.j:
>.

 v. -::: (b>

@

:::

("
)

(1
) § 0
- l !Y o· :::
 '" c: '" Er

(J
Q

 tJ

~

~
 S. ("

) ~

o ~ '" -\.N -...
.J

T
ab

le
 4

.7
.

C
on

ti
nu

ed

F
ai

lu
re

O

bs
er

ve
d

N
u

m
b

er

In
te

rf
ai

lu
re

Y

j
=

 In
(T

j)

T
im

es
 T

j

92

18
14

40
0

14
.4

11
26

53
93

93

41

60

8.
33

32
70

35
3

94

32
00

8.

07
09

06
08

9
95

19

92
00

12

.2
02

06
46

24

96

35
61

60

12
.7

83
13

53
47

97

51

84
00

13

.1
58

50
24

24

98

34
56

00

12
.7

53
03

73
16

99

31

36
0

10
.3

53
28

84
74

10

0
26

56
00

12

.4
89

74
66

97

O
ne

-S
te

p-
A

he
ad

 P
re

di
ct

ed
 T

im
es

 Y
j
o

r
T

j
U

si
ng

:
E

xc
ha

ng
ea

bl
e

A
da

pt
iv

e
N

on
-G

au
ss

ia
n

M
od

el
 (

Y
/)

M

od
el

 (Y
j)

K

al
m

an
 F

il
te

r
M

od
el

 (
T

j)

11
.7

54
50

10

.5
37

0
18

24
81

.6
1

14
.9

04
50

16

.8
66

7
16

34
92

6.
93

8.

57
91

0
4.

45
45

67

85
84

.4
0

8.
30

40
0

7.
16

40

28
77

12
.7

2
12

.6
13

70

16
.0

11
1

29
83

91
.6

7
13

.2
16

10

12
.3

86
1

43
14

92
.4

7
13

.6
03

60

12
.5

03
3

62
68

67
.4

3
13

.1
76

30

11
.4

13
7

55
12

57
.5

8
10

.6
74

60

7.
76

09

26
67

43
.0

5
-

-
-
-
_

.
_

-
-
-

-

C
on

ca
te

na
te

d
F

ai
lu

re
 R

at
e

M
od

el
(T

j)

47
42

34
.2

2
45

69
91

.3
2

44
85

54
.7

3
43

22
61

.6
9

44
40

69
.6

6
46

26
69

.6
4

47
14

87
.6

6
46

21
08

.5
7

46
80

26
.5

8

-\.» 0
0

f'- V
l g. '" C'.

n e:.
 ~ e:.

~.

'" o,

V
l

o ::p

~
 @

'I1

e.
 [o l!?- I»

4.5 Inference and Predictions Using Dynamic Models 139

Observed Interfailure Times

3500000 -----------------------,

3()()()()oo···· - -------.

2500000 ..

2()()()()oo

1500000

1 ()()()()OO

500000 ---- -

o __ ~_,., ~_.,.~
o 20 40 60 80 100 120

Failure Number

FIGURE 4.5. Plot of Interfailure Times-System 40 Data.

In(Observed Interfailure Times)

14 ---------

12

10

8

4 ------------- --------

2

0+----4~---_+---_r---+_---~--_4

o 20 40 60 80 100 120

Failure Number

FIGURE 4.6. Plot of Interfailure Times on a Logarithmic Scale
-System 40 Data.

140 4. Statistical Analysis of Software Failure Data

Posterior Means of OJ

2.5..,..---------------------,

2

0.5 - - - - - - - - - - - - - - .. -

o 20 40 60 80 100

Failure Number

FIGURE 4.7. A Plot of the Posterior Means of 8i Versus Failure
Number for System 40 Data Using the Exchangeable Model.

E(A I y(")

1.50

1.40

1.30

1.20

1.10

1.00 -------------------------

0.90

0.80

0.70

0.60

0.50 +-~~~-~-~-~~-~-~-~~

o 10 20 30 40 50 60 70 80 90 100

Failure Number

FIGURE 4.8. A Plot of the Posterior Mean of A for System 40 Data

4.5 Inference and Predictions Using Dynamic Models 141

4.5.2 Inference for the Adaptive Kalman Filter Model

The adaptive Kalman filter model as prescribed by Equations (4.24) and
(4.26) imposes a dependence structure on the {}jS that is stronger than the one
prescribed by Equation (4.25) of the exchangeable model. This is so because a
value of a > 1 suggests an increasing sequence of (}jS, and this in turn implies a
steady growth in reliability; the opposite is true for a < 1. As to whether such a
specific structure is justified is a matter of an analyst's judgment. Following the
setup of Section 4.5.1, we let Yj = 10geTj, i = 1, 2, ... , and assume that n
interfailure times in) = (YJ. ... ,Yn) have been observed. Were a to be specified
(i.e., assumed known), then the posterior and the predictive distributions of OJ
and Yn+1, respectively, are Gaussian. Specifically, for i = 1, ... ,n

and (4.34)

where (4.35)

2 v-,2 2
ri = a 2Li_l + Wi ' (4.36)

with the starting values {}o = 00 , and t~ specified in advance.
The given closed form results are no longer valid when a cannot be

specified. When such is the case, one possibility is to run the prescribed model
for different values of n, and choose that selection which provides the best
predictivity. A formal approach, however, is to assign a prior distribution on a,
and then to approximate the ensuing results either via a simulation (see Section
A.3.3), or via a scheme such as the one suggested by Lindley (1980).
Singpurwalla and Soyer (1985) have done the latter assuming a uniform prior for
a over [-2, +2]; the details are too cumbersome to reproduce here. However,
their results on the means of the one-step-ahead predictive distributions of Yj ,

i = 3,4, ... , 100, are given in column 5 of Table 4.7, and plots ofthe means of
the posterior distributions of OJ are given in Figure 4.9. A visual comparison of
Figures 4.7 and 4.9 does not reveal any noticeable differences between the two
plots. The entries in columns 4 and 5 of Table 4.7 enable us to compare the
predictive abilities of the exchangeable model versus the adaptive Kalman filter
model. However, this can be formally done; see Section 4.6.3, where it is argued

142 4. Statistical Analysis of Software Failure Data

Posterior Mean of 6;

2.5 -r------------------------,

2

1.5

0.5 ---I
!
!
! o ... -----------.-----+-.. -.--.-----.... ---+----.. --.--------------+-···-····--····-···------+----····---------1

o W ~ ro w @

Failure Number

FIGURE 4.9. Posterior Means of (Jj Versus Failure Number for
System 40 Data Using Adaptive Model.

Posterior Mode of Q

1.50

1.40

1.30

1.20

1.10

1.00 - ----- - --- - -- -- --- -- - -----

0.90

0.80

0.70

0.60

0.50 +--.,...--.,...--.,...--.,...--.,...--.,...--,...---,...---,...------,

o 10 20 30 40 50 60 70 80 90 100

Failure Number

FIGURE 4.10. Posterior Mode of 0: Versus Failure Number
for System 40 Data Using Adaptive Model.

4.5 Inference and Predictions Using Dynamic Models 143

that the exchangeable model provides better predictivity than the adaptive
model.

The modal values of the posterior distribution of a, as a function of i, i = 1,
2, ... , 100, are shown in Figure 4.10. It suggests that the most likely value of a
is (almost) always less than one. This means that there is an absence of a steady
growth in reliability, a conclusion that is in mild contrast to that given by the
exchangeable model. Recall that the latter suggested a modest overall growth in
reliability. Could it be that the assumption of dependence in the parameters
through autoregression is too strong for these data?

4.5.3 Inference for the Non-Gaussian Kalman Filter Model

Even though the model specified by Equations (4.27) and (4.28) is non
Gaussian, closed form results for the posterior and predictive distributions can
be produced, provided that C is known. Specifically, suppose that n interfailure
times tl, ... , tn, are observed; then given 1. (n) = (tl, ... , tn), the posterior
distribution of ()i, i = 1, 2, ... , n, is of the form

(OJ I !.(i), C, .) rv g(Uj, O"j_! + Vj) , (4.37)

where Ui = CUi.1 + ti; recall that Uo is the shape parameter of the gamma
distribution of ()o. It is also shown that

1 ° (On+! !. I ,C, .) rv g(CUj, (Jj) • (4.38)

Similarly, given 1.(i), the predictive distribution of Ti+1 has a density at t of the
form

(4.39)

When Wi = 1, the observation equation is governed by an exponential
distribution, and Equation (4.39) is a Pareto density. The development of
Equations (4.37) to (4.39) are left as an exercise for the reader; they can,
however, be found in Chen and Singpurwalla (1994).

Assessing Reliability Growth

Consider a special case of the foregoing model, with Wi = IIi = (Ji = 2 for
all values of i. Verify that the mean of the predictive distribution of Ti+l,
conditional on C, is

i+1

E(Ti+! I !.(i), .) = 2 C ECjt(i+I.j) .
j=O

(4.40)

144 4. Statistical Analysis of Software Failure Data

Clearly, the value of C is crucial for determining whether the times between
failure are expected to increase or decrease. Specifically C > 1 would suggest a
strong growth in reliability, whereas C close to zero would imply the reverse.
Intermediate values of C would indicate a growth or decay, depending on the
values of t;; see Appendix B of Chen and Singpurwalla (1994). Thus to assess
whether the software is experiencing a growth or decay in reliability, it is
necessary to make inferences about C. Accordingly, we assign a uniform on (0,1)
as a prior distribution on C. If we have prior notions about growth or decay in
reliability, a prior such as a beta may be entertained. Unfortunately, allowing C
to be unknown destroys the closed form nature of the predictive and the posterior
distributions. One way to overcome this difficulty is via a Markov Chain Monte
Carlo simulation of the inferential mechanism; see Section A.3.4 of Appendix A.
Alternatively, we may discretize the uniform distribution of C at k points so that

P(C= k~l)= t, j=O,I, ... ,(k-l),

and given 1. (i), i = 1, 2, ... , n, compute its posterior distribution

p(C = k ~ 1 11.0»), where

p(c = --L 1 t(i») ex: pet 1 t(i-I) .) p(c = _J_. 1 t(i-l)).
k-l - - , k-l -

The first expression on the right-hand side of the preceding equation is the
likelihood; it is obtained by replacing the C in Equation (4.39) by j/(k - 1). The

second expression is the posterior of C at j/(k - 1) given the data 1.(;-1); for
i = 1, the quantity P(C = j/(k - 1) 11.(0» is simply the prior 11k.

Once the posterior distribution of C has been computed, by repeating the
procedure described for j = 0, 1, ... , (k - 1), the posterior distribution of B;,
and the predictive distribution of Ti+1 can be obtained by averaging out C in the
Equations (4.37) and (4.39). The averaging will be done numerically, and with
respect to the posterior distribution of C.

For an analysis of the interfailure time data given in column 2 of Table 4.7,
C was discretized at 200 points, and the hyperparameters were chosen as
Wi = V; = O'i = 2 and Uo = 500. In Figure 4.11 we show a plot of the mean of
the posterior distribution of C. It has been noted [see Chen and Singpurwalla
(1994)] that the posterior distribution is quite sharp, and has a mean of about
0.425. This value of the mean is attained after about 15 iterations, and remains
stable thereafter. With C being in the vicinity of 0.425, we cannot conclusively
claim evidence either for or against growth in reliability. Column 6 of Table 4.7
gives the mean of the one-step-ahead predictive distribution of Ti+I. i = 1,2, ...
, 100. For assessing the predictive performance of the non-Gaussian Kalman
filter model, we need to compare the entries in column 6 against those in column

4.6 Prequential Prediction, Bayes Factors, and Model Comparison 145

Posterior Mean

0.8 -r------------------........,

0.6,J

0.4 "-.r-.-~~""' .. -:-: ... ".., ... :::: .. -::-.. ::::-: ... ::-:: .. :: .. . ::-: ... :::: .. -::-.. ::: ... '::' ... -:-: .. ::-: ... =! .. ,

!

0.2 .. "' .. ~~ 0- ____ ._. ______ 0 ___ on u __________ • __ •• 00 __ n. 0 _________ ,0, _. ________ ._ •• _._ •• 0- .-. _. __ • ____ • ~

o 20 40 60 80 100

Failure Number

FIGURE 4.11. Mean of the Posterior Distribution of C for
System 40 Data Using the Non-Gaussian Model.

2. A formal comparison of the predictive performance of this model versus the
adaptive Kalman filter model of the previous section is described in Section
4.6.3; it shows a superiority of the non-Gaussian model over the adaptive model.
Thus it appears that of the three dynamic models considered here, it is the non
Gaussian Kalman filter model of this section that provides the best predictivity.
However, none of the models reveals strong evidence either for or against
growth in reliability. This type of information is useful to a manager of the
software development effort who is required to make decisions about when to
stop testing and whether to make changes in the testing and debugging
procedures. More on reliability growth for these data is discussed later, in
Section 4.7.

4.6 Prequential Prediction, Bayes Factors, and Model Comparison

In the previous sections we discussed several models for describing software
failure data. Each model provided a one-step-ahead predictive distribution for
the time to next failure. The means of these predictive distributions can be
compared with the actual data to obtain an assessment of the predictive ability of
a proposed model. This point of view stems from the "Popperian" attitude of
validating a model against data. The notion here is that any attempt at describing
reality must be measured against empirical evidence, and be discarded if it
proves inadequate [cf. Dawid (1992)]. Opposing this point of view is the
(Bayesian) position which does not support the notion of the "absolute

146 4. Statistical Analysis of Software Failure Data

assessment" of a solo model [cf. Raftery (1992), who says, "You don't abandon a
model unless you have a better one in hand"]. Also see Bernardo and Smith
(1994), p. 419, who claim that" ... from a decision-theoretic point of view, the
problem of accepting that a particular model is suitable, is ill defined unless an
alternative is formally considered." However, the tradition of checking the
adequacy of a given model without explicit consideration of an alternative is still
attractive, partly because of the heritage of significance testing. A useful strategy
is that given by Dawid (1992), who suggests testing for the goodness of fit via
the statistic

n

L (ti-J-!i)
Z .:.::i=,,;;I_-:-

n - n l'

(Lon:!
i=1

where /-Li and aT are the mean and the variance, respectively, of the predictive
distribution of the observed tiS. Were the proposed model adequate, then under
some mild conditions, the distribution of Zn, as n gets large, is a Gaussian with
mean 0 and variance 1. We do not pursue this tradition of testing for the
goodness of fit of the models described before. Rather, we address the question
of comparing the predictive performance of a proposed model versus one or
more of its competitors. The purpose of this section is to describe methods by
which models for tracking software failure data can be compared, and if
appropriate, combined, so that better predictions are obtained.

4.6.1 Prequential Likelihoods and Prequential Prediction

As mentioned before, software failure data, like data from time series, arise
sequentially. Thus, for example, if Yj represents the time to failure of the ith
version of the software, i = 1, 2, ... , and if Yi is a realization of Yi, then we
would observe y. first, Y2 next, Y3 subsequent to Yj, and so on. Given Y .. Y2, ... ,
Yn, which of the several software reliability models that are available should be
used to predict Yn+1? That is, which of the available models provides us with the
"best" prediction of Yn+lt given the data Y , Yn, where by best we mean
closest to the actual observed values? There are several formal and informal
approaches to model selection, an informal one being an examination of the
mean square errors; see, for example, Table 4.5. In the following, we describe a
formal approach.

Consider a model M that involves an unknown parameter () on which a
prior distribution P«() 11i) has been assessed; assume that () is continuous.
Suppose that the data consist of n consecutive observations, YI, ... , Yn, where Yi
represents a failure time or a failure count, that is, the number of failures in a
specified interval of time. Note that, in principle, the data need not be
consecutively observed, although in the context of software failures this will

4.6 Prequential Prediction, Bayes Factors, and Model Comparison 147

naturally be so. At any stage of the analysis, say the ith, we may use YI, ... , Yi-I,
to predict Yi via its predictive distribution [cf. Equation (4.7)], suitably annotated
to reflect dependence on M, as

frJy I YI, ... ,Yi-I, M, H) = J!Y;(Y I B, M) P(B I Yh ... ,Yi-I, H)dB;
e

note that when i = 1, P(B I Yh ... , Yi-h 'H.), the posterior distribution of B, is
simply its prior P(B I 'H.).

Once Yi gets observed as Yi, the left-hand side of the preceding expression
becomes the likelihood for M under Yi, so that the product, called the
prequentiallikelihood,

n
Ln(M; Yh'" ,Yn) d~fiIII !y;(yj I Yh' .. , Yi-I, M, H), (4.41)

is the likelihood for the model M under Yh ... , Yn' If, for each observation, our
model were able to predict the data well, then each term on the right-hand side of
Equation (4.41) would be large and so would .cn(M; YI> ... , Yn). The taking of
a product in the preceding expression is motivated by the joint predictive density
at (y~, ... , y~) of the observables

n
f(y~, ... ,y: I M, H) =i III !y;(y; I y~, ... , ll' M, H); (4.42)

it is called the prequential prediction [see Dawid (1984)].
The prequential likelihood can be used as a basis for comparing the

predictive performance of two models, say MI and M2; see Roberts (1965). For
this we need to compute the prequentiallikelihood ratio

(4.43)

If nn (M I , M 2; Yh ... , Yn) is greater than one, then the evidence at
hand, namely, Yh ... , Yn (and also 'H.), suggests that model MI performs
relatively better than model M 2 , and vice versa if the preceding ratio is less than
one. The magnitude of the value of nn(M I, M 2; Yh ... , Yn) indicates the
degree to which MI outperforms M2, and vice versa. How big should nn(.)
be in order for us to judge the superiority of MI over M2? Jeffreys (1961,
Appendix B) provides some ground rules for doing this; these are given in Table
4.8.

It is useful to note that there is no assurance that nne •) will continue to
be greater than or less than one, as a function of n, for n = 1, 2, Rather,
nne .) can fluctuate above and below one, the fluctuations reflecting the

148 4. Statistical Analysis of Software Failure Data

Table 4.8. Strength of Evidence Provided by ~,,(Mh M2;Yu'" ,y,,)

Rn(?ltt. ~; Yt. ... ,Yn) Strength of evidence

<0.01 Decisively against ?ltl

0.01 to 0.1 Strongly against ?ltl

0.1 to 0.32 Substantially against ?ltl

0.32 to 3.2 Neither for nor against ?ltl

3.2 to 10 Substantially for ?ltl

10 to 100 Strongly for?ltl

> 100 Decisively for?ltl

changing nature of evidence, for or against M I, as a function of n. Increasing
values of nn(.) suggest an accumulation of evidence in favor of MI over M z,
with YI> ... , Yn, for n = 1,2,

Model comparison based on nne •) alone, as discussed previously, can be
criticized on two grounds: it does not have a justification within the calculus of
probability, and the proposed approach offers a mechanism for comparing any
two models at a time. How should one proceed when faced with the selection of
a model among more than two models? This, after all, is the circumstance under
which software engineers often operate. These concerns can be addressed via the
notion of Bayes' factors and posterior weights. Also germane to this discussion is
the notion of model averaging; these topics are discussed next.

4.6.2 Bayes' Factors and Model Averaging

We start our discussion by considering the case oftwo models MI and Mz.
The comparing of M I and Mz can be thought of as a test between two
hypotheses as to which of the two models is the better descriptor of the data that
will be generated. Suppose that before observing the data, we assign a weight 71'

to MJ and a weight (1 - 71') to Mz, for 0 < 71' < 1. We may interpret 71' as our

4.6 Prequential Prediction, Bayes Factors, and Model Comparison 149

prior probability that M 1 is the better of the two models as a descriptor of the
data to be generated. The quantity 7r/(l - 7r) is known as the prior odds for MI.
Upon receipt of Yh we can use Bayes' Law to change 7r to 7rl, and then 7rl to 7r2

upon receipt of Y2, and so on. In general, we can show that the posterior odds for
M I, 7r/(l - 7ri), i = 1, 2, ... , is related to its prior odds via the expression

(4.44)

where Ri(M I , M 2 ; Yh ... , Yi) is the prequentiallikelihood ratio.
The ratio of the posterior odds for M I to its prior odds is called the Bayes'

factor in favor of M I; clearly, the Bayes factor is simply the prequential
likelihood ratio. When 7r = 0.5, the Bayes' factor in favor of MI is simply the
posterior odds in favor of M lover M2, and that

(4.45)

In general, it is easy to verify, using Bayes' Law, that the posterior weight 7ri

is of the form

7ri = (4.46)

The posterior weight can be considered as a measure of the relative
performance of the two models, on the basis of the first i observations. If 7ri is
greater than 0.5, then MI is judged superior to M2; vice versa, otherwise. The
connection between 7ri and R i (•) is apparent from Equation (4.46). The former,
which has a motivation within the calculus of probability, is a transformation of
the latter, and is restricted to the interval (0,1).

The preceding idea extends easily to the case of k models, M I, ... , M k •

Let 7rv) be the prior weight assigned to model Mj> with 0 < 7rv) < 1, and

2:~I7rV) = 1. Then, Equation (4.46) generalizes to give the posterior weight

7rY) = nV) x .ci(Mj ; Yt> ... , Yi)
I k

L: nV) x .ci(Mj; Yt> ... , Yi)
j=l

(4.47)

When we are faced with the task of selecting one among the k proposed models,
then we will choose that model which has the largest posterior weight. If, prior to
observing the data, we have no preference for one model over another, then our
prior weights will be 7rv) = 11k, j = 1, ... , k.

The posterior weights not only provide us with a mechanism for model
selection, but also come to playa role in the context of model averaging. To

150 4. Statistical Analysis of Software Failure Data

make the case for model averaging, suppose that in Table 4.8 we happen to
arrive upon the scenario of the category "neither for nor against M 1." That is,
for all intents and purposes, the available evidence does not favor one model
over the other vis-a-vis their predictivity. When such is the case predictions that
are a weighted average of the predictions of the individual models make intuitive
sense, and this is the idea behind model averaging. Another motivation for model
averaging stems from the notion that "all models are useful, but some are more
useful than the others," and so predictions that are a weighted average of the
individual model predictions would be more encompassing than, and therefore
superior to, the individual predictions. The weights assigned to the individual
predictions are the posterior weights 7rY) of Equation (4.47). Thus, given y ,
Yn, we can use the law of total probability to argue that the predictive distribution
of Yn+1 should be of the form

(4.48)

rather than Jr.+1 (y I Ylo ... , Yn, M;, 11.), the predictive distribution associated
with model M; alone, when 7r~) is the largest of the k posterior weights.

4.6.3 Model Complexity-Occam's Razor

Model complexity refers to how elaborate we have been in specifying a
model. Since it is generally true that a model with more parameters will have a
predictive advantage over a simpler model, particularly when the amount of data
is small, one is tempted to select the most complex model. However, in statistical
modeling, and in science as a whole, the principle of choosing a model that is as
simple as possible has a high standing. This simplicity principle is known as
"Occam's Razor," and may be stated as follows.

Model complexity must not be increased unless sufficiently justified
in terms of improved observational prediction.

In practice then, some sort of tradeoff between model complexity and
predictive power is needed. It has been shown that the Bayesian approach to
model selection that has just been described naturally incorporates Occam's
razor [cf. Tversky, Lindley, and Brown (1979)]. How it does so is outside the
scope of this book, but suffice to say that, in general, if we have two models-a
complex M 1 and a simpler M2-and both are assigned equal prior weight, then
the posterior weight of M 1 will be higher only if it shows a significant
advantage in predictive ability over M2.

4.6 Prequential Prediction, Bayes Factors, and Model Comparison 151

4.6.4 Application: Comparing the Exchangeable, Adaptive, and Non
Gaussian Models

The methodology of Sections 4.6.1 and 4.6.2 can be applied for comparing
the predictive ability of the three dynamic models discussed in Section 4.5; a
precedent here is the work of Raftery (1988). In what follows we perform a
pairwise comparison of two models at a time, starting with the exchangeable
model (henceforth, M d and the adaptive model (henceforth M2) and then a
comparison of MI with the non-Gaussian model (henceforth M3). In all cases
we assume that the prior odds is one; that is, a priori we have no preference for
one model over the other.

For a comparison of M I with M2, we first compute the prequential
likelihood ratio RlOo(M 1, M2; Yh ... , YIOO), using Equation (4.43), and the data
in column 3 of Table 4.7. Note that to compute the prequential likelihood
Cn(M I; Yl' ... , Yn), we must successively evaluate the predictive distribution,
Equation (4.33), at the observed Yl, Yz, ... ,Yn' Thus, for example, C2(M 1; Yh
yz) is the Gaussian distribution N(mlYl, y~ s~ + rz) evaluated at Yz, and so on.
Similarly, to compute the prequential likelihood Cn(M2; Yh ... , Yn) we must
use the predictive distribution of Equation (4.35). The computation of Rn(Mt.
M 2; Yl, ... , Yn), although cumbersome, is relatively straightforward. For the
data of Table 4.7, the prequentiallikelihood ratio turned out to be 490.50; this
according to Jeffreys (see Table 4.8) would suggest a decisive evidence in favor
of M I, the exchangeable model. Recall that with the prior odds of one, the
prequential likelihood ratio (or the Bayes' factor in favor of M t> is also the
posterior odds for MI.

It is interesting to monitor the behavior of Rn(MI, M 2; Yh ... , Yn) as a
function of n. This indicates how evidence in favor of, or against, M I evolves
with the accumulation of data. Figure 4.12 shows a plot of Rn(M t. M2; Yh ... ,
Yn) versus n, for the System 40 data. The predictive superiority of MI over M2
is consistent, and clearly evident starting with about the fortieth failure time. In
general, it need not be so that the plot of Rn (•) versus n is always increasing (or
decreasing) with n. It could, for example, decrease and then increase, suggesting
that the initial evidence favors model M2 over M I, but then later on, the reverse
is true; see Section 4.6.4 for an example.

When an exercise analogous to the preceding is performed to compare
models M3 and MI by computing

L n(M3; tl> ... , tn)

Ln(MI; Yh ... , Yn) ,
(4.49)

152 4. Statistical Analysis of Software Failure Data

500

450

400

350

300

250

200

150

100

50

o 10 20 30 40 50 60 70 80 90 100

FIGURE 4.12. Prequential Likelihood Ratio 'Rn(Mt. M2; .)
for System 40 Data.

50

40

30

10

............+ ············1···· ···········_··---·f······

20 40 60 80 100

Failure Number

FIGURE 4.13. Logarithm of the Prequential Likelihood Ratio
'Rn(M3, Ml; .) for System 40 Data.

4.6 Prequential Prediction, Bayes Factors, and Model Comparison 153

o 5 10 15 20 25

FIGURE 4.14. Prequential Likelihood Ratio 'Rn(M., M 2 ; .)

for the NTDS Data

it is found that the non-Gaussian model M3 clearly outperforms the
exchangeable model M I. Figure 4.13 shows a plot of the logarithm of
'Rn(M3,M I; .) versus n. Note that for computing Ln(M3; th ... , tn), the
predictive distribution of Equation (4.39) is used. Observe that in computing
(4.49) the numerator involves the actual observed data whereas the denominator
involves the logarithms of the observed data. This asymmetry does not pose any
problems because the prequential likelihoods are based on evaluations of
predictive distributions.

4.6.5 An Example of Reversals in the Prequential Likelihood Ratio.

The plots of Figures 4.12 and 4.13 show a monotonic behavior of the
prequential likelihood ratios suggesting the consistent superiority of one model
over its competitor. To illustrate that this need not always be so, consider the
NTDS data of Table 4.6, and Mazzuchi and Soyer's (1988) analysis of it using a
hierarchical model (henceforth M I), and its special case (henceforth model
M 2); see Section 4.4.1. Recall that MI is the more complex model; it involves
five hyperparameters whereas M2 requires only three. M I is specified via
Equations (4.16) and (4.18), whereas M2 is its special case. The predictive
distribution is given by Equation (4.22).

154 4. Statistical Analysis of Software Failure Data

Figure 4.14 shows a plot of 'R.n(MI, M 2 ; tl> •.• , tn), the prequential
likelihood ratio, as a function of the observed interfailure time tn, n = 1, ... ,26.
Observe that after initially favoring MI, 'R.n(MI, M2; .) becomes less than
one for most of the data, so that M2 is preferred. Both MI and M2 provide
good predictions, and so the selection procedure acts in according to Occam's
law and chooses M2, the simpler of the two models. It is only when the
surprising observation t24 (91 days) occurs that the more complex model M I

becomes favored again, presumably because of its greater flexibility. However,
since t25 and t26 are more in line with the rest of the data, support for M lover
M2 begins to diminish and 'R.n(MI, M 2; .) begins to decrease. The example
illustrates the role of 'R.n(.) for comparing models in the presence of surprising
evidence and its adherence to the principle of "Occam's Razor."

4.7 Inference for the Concatenated Failure Rate Model

In Section 3.6 we introduced a generic model for assessing software
reliability growth that is potentially useful for applications other than software.
As was pointed out in Section 3.6.2, the model is adaptive, has two parameters b
and k, and possesses features that capture a software engineer's intuition and
views about software failure and software quality. The model capitalizes upon
some of the key features of existing software reliability models that have proved
to be attractive. In particular, the model, as specified by a concatenation of
failure rate functions given by Equation (3.28) exhibits the features reviewed in
the following.

(a) For any fixed n, Tn has a decreasing failure rate.

(b) For any fixed n, rT. (0) is the proportional intensity of failures up to time
Sn-I.

(c) The failure rate takes an upward jump at Sn, if (n - 1) > kJb,
rT.+I (1 I Sn) < rT. (t I Sn-I), if and only if Tn+1 is greater than the average
of times up to the (n + l)th failure.

(d) The parameter b tunes the initial failure rate, and the parameter k the
rate at which the failure rate decreases.

(e) With b < kJ(k - 1) the model reflects grOWth in reliability and also the
feature that removal of early bugs contributes more to growth.

The aim of this section is to exploit these features for specifying prior
distributions for band k so that statistical inference based on n observed times
between software failure 1. = (tl' ... , tn) can be conducted. To do so, we need to

4.7 Inference for the Concatenated Failure Rate Model 155

have a likelihood function, and for this we may use the one-step-ahead forecast
density [Equation (3.30)]. Specifically, given 1, a likelihood for band k is

n - I..)-(k+l)
.c (b k' t) = II H!. (H!. !i±J. + 1

n , '- i = I Sj Sj k '
(4.50)

where Sj = E~=I tj.

4.7.1 Specification of the Prior Distribution

To specify 7r(b, k), a joint prior distribution for band k, it is useful to recall
the following results from Section 3.6.2.

E(Tn+l - wi Tn+l > w) = k~l w + k~l (;it;) . (C)

From (A) we see that b :2:: 0; similarly, from (B) we see that k :2:: 2, and that
large values of k do not influence the variance of Tn+l • From (A) and (B) we see
that, for any fixed n, both the mean and the variance of Tn+1 decrease in b. Thus,
to generate conservative one-step-ahead forecasts, small values of b are to be
preferred.

Prior Distribution for k

The prior distribution for k is largely dictated by (C). Because k must be
greater than or equal to 2, (C) essentially says that the mean residual life (MRL)
depends on k but is between w and 2w plus a constant. Values of k close to 2
make the MRL close to 2w and large values of k make it close to w. A
compromise is to choose k such that the MRL ~ l.5w plus a constant. That is,
to make k/(k - 1) ~ 1.5, which suggests that k ~ 3. Thus a suitable prior for k
is a gamma on [2, 00) with parameters A (scale) and B(shape) chosen such that
E(k I A, B) ~ 3; that is, 2 + (BfA) ~ 3, which suggests that B = A. Hence a
possible prior on k is a shifted (at 2) exponential density with scale A;
specifically,

7rK(k I A) = Ae-)'(k-2) , k:2:: 2, A > O. (4.51)

156 4. Statistical Analysis of Software Failure Data

FIGURE 4.15. lllustration of the "Objective" Prior for b.

In what follows, interest centers around the quantity u = k/(k - 1). With the
prior on k given by Equation (4.51), it is easy to verify (see Exercise 6), that the
prior on u is

7f(U I A) = _1_ Ae-A«lI(u-l)) - 1) 1 <_ u <_ 2.
~-l~ , (4.52)

Prior Distribution for b

For the prior on b, conditional on k, AI-Mutairi, Chen, and Singpurwalla
(1998) argue that if the software is believed to experience a growth in reliability
with a prior probability Ph a decay with a prior probability P2, and neither
growth nor decay with probability (1 - PI - P2), then an omnibus prior is a
composite distribution with components that have beta and shifted gamma
densities; specifically,

r(o+,B) b",·1(u_b)f3-1
PI r(o)r(,B) u",+(3-1 0< b < u,

7l"(b I k; .) = {
r(o+,6) bex-1 (u-b)f3-1

PI r(o)r(,6) uex+f3-1 0< b < u,

1-PI - P2 b= u,
(0 ')f3' (b-u)f3'-1 e-o·(b-u)

P2 rCB") , b> u.

(4.53)

4.7 Inference for the Concatenated Failure Rate Model 157

b

2 b =u

Stationary

o
2 u=le I(k -1)

FIGURE 4.16. Regions Where the Joint Prior is Defined.

To make this choice as "objective," or as neutral, as is possible, a should be
chosen to equal 2, and P = a* = p* = 1. Pictorially, this prior takes the form
shown in Figure 4.15.

Joint Prior for band k

Once the preceding has been done, 7r(b, k I .), a joint prior on band k, and
also the unconditional prior for b can be easily induced. Figure 4.16 shows the
regions over which the joint prior is defined; it delineates the regions of
reliability growth, decay, and stationarity (i.e., neither growth nor decay).

4.7.2 Calculating Posteriors by Markov Chain Monte Carlo

The joint prior on band k, together with the likelihood function Equation
(4.50), enables us to obtain the joint posterior distribution of b and k via the
relationship

rr(b, kif..; .) oc .cn(b, k; 1) rr(b, k I .).

Once the preceding is done, the marginal posterior distributions 7r(k I!..,.)
and 7r(b I L,.) can be obtained; these are useful for testing hypotheses about
reliability growth. The complicated nature of the likelihood and the prior makes
it difficult to obtain closed-form expressions for the posteriors. The same is also
true with numerical approximations. When such is the case simulation via the
Gibbs sampling algorithm has proven to be a useful technique. Gibbs sampling is
a Markov Chain Monte Carlo (MCMC) method, an excellent description of

158 4. Statistical Analysis of Software Failure Data

which is given by Casella and George (1992). We have given an overview ofthis
technique in Appendix A. For our particular application, a computer program
that implements the Gibbs sampling algorithm has been developed by Lynn
(1996). It obtains the posterior distributions of k and b, and also the predictive
distribution of Tn+l , the time to next failure. The program is also able to compute
Bayes factors for testing hypotheses about reliability growth, decay, or
stationarity.

To implement the Gibbs sampling algorithm (see Appendix A), we first
need to obtain the following conditional distributions.

7r(k I b,{, .) IX Ln(k; b, {) 7r(k I b, .)

ex: Ln(k; b, {) 7r(b I k, .) 7r(k I .), and

7r(b I k,{, .) IX Ln(b; k, L) 7r(b I k, .), where (4.54)

Cn(k; b,JJ is the likelihood of k for fixed values of band L; similarly Cn(b; k,JJ.
Note that the second expression of Equation (4.54) follows from the fact that
n(k I b, .) IX n(b I k, .) n(k I .). We now generate the Gibbs sequence (kh,
b~), (k~, b;), ... , (k~, b~) for some m > 0, as follows.

(i) Choose an initial value of k, say k~,

(ii) Generate a b~ via n(b I kh, L, .),

(iii) Generate a k~ via n(k I b~, L, .),

(iv) Generate a b; via n(b I k~, L, .),

(v) Generate a k~ via n(k I b;, L, .) and so on.

For large values of m, k~ is a sample observation from the posterior
distribution n(k I L, .), and b~ an observation from n(b I L, .). If we repeat the
foregoing procedure N times, choosing N different starting values k~, k5' ... ,
k~, and obtaining, at the end of each cycle, the sample points (kk, b~), j = 1, .. .
, N, then we have generated a sample of size N from the required posterior
distributions n(k I L, .) and n(b I L, .). Thus an estimate of n(k I L, .), k E [2,
(0) is

N

1i'(k I {, .) = ~ L7r(k I b{", {, .);
j=!

N

similarly, 1i'(b I {, .) = ~ L7r(b I k~, {, .),
j=!

4.7 Inference for the Concatenated Failure Rate Model 159

for b within its defined range is an estimate of n(b I 1.., .).
Finally, since

E(Tn+l I Sn, b, k) = (k-l~ nb Sn ,

E(Tn+l I£)= J E(Tn+l I Sn, b, k,!) neb, k I!, •)dbdk.
(k,hl

Thus a Gibbs sequence based estimate ofE(Tn+1 I!..) is

N .
~ -.l~ k/"
E(Tn+1 I!) - N f=;t (k/,,-l) nb!" Sn , (4.55)

and from Equation (3.30), a Gibbs sequence based estimate of the posterior
predictive density of Tn+1 at 7 2:: 0 is

~f (7 It) - .1 ~ n /J", (n b~ T) - (k~+ 1)
Tn+l - - N L...J Ii s;;- (km') + 1 .

j=l n

(4.56)

Thus the Gibbs sampling algorithm provides an easy to implement
procedure for obtaining Monte Carlo based estimates of the required posterior
and predictive distributions.

4.7.3 Testing Hypotheses About Reliability Growth or Decay

The marginal posterior distributions n(b I 1.., .) and n(k I!.., .) provide
evidence about growth, decay, or stationarity of reliability. A way to capture this
is via "Bayes factors." Suppose that HI denotes the hypothesis that there is a
growth in reliability, H2 the hypothesis that there is decay, and H3 the hypothesis
that the debugging process results in the stationarity of reliability. Then, we can
verify (see Exercise 7) that the posterior probability of Hi, i = 1,2,3, is

(4.57)

where Pi is our prior probability of Hi, and Bji is the Bayes factor in favor of Hj
against Hi. Furthermore, B;i = 1, Bji = (Bijt l and Bik = Bi/Bkj, for all i and j.
The calculation of Bij is facilitated by the fact that Bij is the "weighted" (by the
priors) likelihood ratio of Hi against Hj [cf. Lee (1989), p. 126]. For the problem
at hand, the estimation of the needed Bayes factors is accomplished via the
Gibbs sequence (b~, ki,.),j = 1, ... ,N. Specifically, B12 is estimated by

160 4. Statistical Analysis of Software Failure Data

where PI (0 is the proportion of times (out of N) that b~ is strictly less than
k~/(1 - k~) , and P2Q) is the proportion of times that b~ is strictly greater than
k~/(1 - k~). Note that PiC!..) is an estimator of P(Hi 1.0, i = 1, 2. Similarly, B13
and B23 are estimated via

(4.58)

4.7.4 Application to System 40 Data

The concatenated failure rate model of this section and its methodology for
inference has been applied to the System 40 Data of Section 4.5; see column 2,
Table 4.7. The hyperparameters of the prior distributions, Equations (4.51) and
(4.53), were chosen as: A = 1, a = 2, f3 = a* = f3* = 1, and PI = P2 = 0.25.
Details about the rationale behind this choice are given by AI-Mutairi, Chen, and
Singpurwalla (1998). In column 7 of Table 4.7 we give the means of the one
step-ahead predictive distributions of Tn+!. for n = 2, ... , 100; see Equation
(4.55). Figure 4.17 shows a superposition of a plot of these predictive means on
a plot of the observed data; the plots are on a logarithmic scale. These plots
provide an informal assessment of the ability of the proposed model to track the
data.

We note from Figure 4.17 that the adaptivity of our model reflects its ability
to track the data, and the tracking is particularly good during the latter stages of
testing. The predictive mean times to the next failure show an initial growth in
reliability followed by a period of general decay (or perhaps stationarity), which
is then followed by a slow upward trend. The growth in reliability appears to
stabilize towards the very end, but the large fluctuations in the data signal the
need for caution in making this claim.

A comparison of the entries in columns 6 and 7 of Table 4.7 via the
prequential likelihood ratio method of Section 4.6.1 demonstrates the predictive
superiority of the concatenated failure rate model over the non-Gaussian Kalman
filter model; the details are in Lynn (1996). Recall (see Section 4.6.4) that since
the non-Gaussian model outperforms its competitors in the class of dynamic
models, we claim that among the models considered here, the concatenated
failure rate model provides the best predictivity for the System 40 data.

4.7 Inference for the Concatenated Failure Rate Model 161

10000000

1000000 --- .. ~

1000

1u{"',
.,....

lr\l \I

11
~ Lit " ~ nfJr ~

Ii II T

rvv~ _1
~ I~

u

100000

10000

100

10

1

o 20 40 60 80 100 120

--Observed Values --Predicted Values I

FIGURE 4.17: A Plot of the System 40 Data and Its One-Step-Ahead
Predicted Means (on a Logarithmic Scale).

A final issue that remains to be addressed is that pertaining to reliability
growth. Our previous analysis of the System 40 Data did not lead to conclusive
results about reliability growth or decay. Will the model of this section provide
better insights? To explore this matter, let.t(j) = (tl, ... , tj),j = 1,2, Using
the approach of Section 4.7.3, we obtain an estimate of P(H; l.t (j», for i = 1, 2,
3, where P(H; I .t (j» is the posterior probability of H; given the first j inter
failure times. Figure 4.18 is interesting; it shows band plots of the estimated
posterior probabilities P(H; l.t (j», as a function of j, for j = 1, 2, ... , 101. The
bottom band of Figure 4.18 shows P(H1 I tv)' .), j = 1, ... , 101, and the
central band P(H1 I t(j), .) + P(H3 I tv)' .). From these bands we may infer
how the three posterior probabilities relate to each other over the various stages
of debugging and testing. That is, how the evidence for, say growth, fluctuates
and evolves over time. Roughly speaking, one conclusion is that the initial 70%
or so of the effort has not resulted in a growth in reliability, and the 30% effort
that has led to growth has occurred during the latter stages. Also, the absence of
reliability growth can be attributed more to the consequence of stationarity than
to decay. Observe that the top band of Figure 4.18 indicates very small values
for P(H2 I tv), .), j = 1, ... , 101. Could it be that the initial stages of

162 4. Statistical Analysis of Software Failure Data

Posterior Probabilities

0.9

0.8

0.7

0.6

0.5

OA

0.3

0.2

0.1

o

Reliability Decay

Neither Growth nor Decay

II 21 31 41 51 61 71 81

Failure Number

FIGURE 4.18. Band Plots of Estimated Posterior Probabilities
for System 40 Data.

debugging have provided a learning environment for the process with the
fortunate circumstance that there was not a preponderance of reliability decay?
One could draw several other such conclusions, but the fact remains that plots of
the posterior probability bands for testing hypotheses-like Figure 4.18-are
valuable inferential devices.

Another attractive feature of the concatenated failure rate model, as
compared to the non-Gaussian Kalman filter model, is smoothness of the
predictive means; see Figure 4.19. An appreciation of reliability growth and/or
decay can be visually better assessed via the predictive means of the former.
Thus, to conclude, the improved predictivity of the concatenated failure rate
model (for the System 40 Data), the availability of band plots of Figure 4.18,
plus the fact that the model has more structure to it compared to the "black-box
models" of Section 4.5, suggest that the model be given serious consideration for
application after validation against other sets of software failure data.

4.7 Inference for the Concatenated Failure Rate Model 163

Posterior Mean of Concatenated Model

IOCOOCO~---'

r

IOCO+---~

100+--4

10+--4

1 - -------.. ---+-------------+-.--------+----------+---------1------.--
o 20 40 60 80 100 120

Failure Number

Posterior Means of Non-Gaussian Model

IOCOOOOO.--,
IOCOOCO+-----------------------------~~~_ft--------~

lOOOO+4----~~~----4_+_--------------------------~

IOCO~---4

100+---~

10+---~

1 +-------+-------r-------~----~------~------~

o 20 40 60 80 100 120

Failure Number

FIGURE 4.19. Predictive Means of the Concatenated and the
Non-Gaussian Models for System 40 Data (on Logarithmic Scale).

164 4. Statistical Analysis of Software Failure Data

4.8 Chapter Summary

The focus of this chapter (by far the biggest) is on the incorporation of
observed failure history when assessing uncertainties. The driving theme here
was Bayes' Law and its components, the likelihood function and the prior
distribution. Thus the role of the data is to revise (or to update) prior
uncertainties in the light of the information that the data provide. For purposes of
completeness and also connections with current practice, the method of
maximum likelihood and its associated confidence interval estimation was
reviewed and illustrated.

Prediction and Bayesian inference using the models by Jelinski and
Moranda, and by Goel and Okumoto were then described by us using some real
data and proper prior distributions. In the sequel, we alluded to the
computational difficulties that the Bayesian approach generally tends to create,
and suggested approaches for overcoming these. Since proper prior distributions
having well-known mathematical forms need not reflect true beliefs, an approach
for eliciting priors based on the opinions of experts was described. The approach
boils down to treating the expert's inputs as data, and for reflecting our
assessment of the expertise of the expert through the likelihood. The case of
multiple experts entails possible correlations between the expert announcements,
and the treatment of such correlations via the likelihood function was mentioned.
The preceding approach was applied to some software failure data that were
analyzed by the nonhomogeneous Poisson process model of Musa and Okumoto.
The expert input was based on several empirically developed ground rules
suggested by software engineers with coding and testing experience.

Prediction and Bayesian inference using three dynamic models, the random
coefficient autoregressive model, the adaptive Kalman filter model, and non
Gaussian Kalman filter model were next described, and their predictive
performance on a single set of data, namely, the System 40 Data was compared.
It was found that the non-Gaussian model gave predictions having the smallest
mean squares error, but that implementing this model entailed simulation by the
Markov Chain Monte Carlo (MCMC) method; this method is described by us in
Appendix A.

An important feature of this chapter is our discussion of the topics of model
comparison, model selection, and model averaging, using Bayes' factors and
prequential likelihood ratios. Bayes' factors are weights that are assigned to a
class of plausible models. These weights are developed a posteriori; that is, after
incorporating the data. Bayes' factors can be used for the tasks of model
selection and model averaging. We also give Jeffreys' ground rules for judging
the superiority of one model over another. Prequentiallikelihood ratios compare
one model over another based on their predictivity.

The chapter concluded with inference and hypotheses testing using the
newly proposed adaptive concatenated failure rate model. The noteworthy
features of the material here are the development of suitable proper prior

4.8 Chapter Summary 165

distributions, and the MCMC computation of Bayes' factors for testing
hypotheses about reliability growth, decay, or neither. One-step-ahead
predictions provided by this model using the System 40 Data turned out to be
superior to those provided by the non-Gaussian Kalman filter model; this
comparison was made using prequential likelihood ratios. A plot of the profile of
the Bayes' factors, as a function of testing, showed that it is only during the latter
stages of testing that true growth in reliability occurred. During the bulk of the
testing effort, there was neither a growth nor a decay in reliability. A profile plot
of the Bayes' factors facilitates the preceding type of conclusions.

166 4. Statistical Analysis of Software Failure Data

Exercises for Chapter 4

1. Verify statements (i), (ii), and (iii) about the posterior distributions
given in Sections 4.2.3 and 4.2.4.

2. Verify the results given by Equations (4.10), (4.14), (4.19), (4.20), and
(4.22).

3. For the "de-eutrophication" model of Moranda (1975) [see Equation
(3.6)] show that if the prior distribution on D is a gamma with a scale
(shape) parameter b(a), and the prior distribution on k is a beta with
parameters /31 and fh, independent of the distribution of D, then, given
the interfailure times t (n) = (tl, ... , tn):

(i) the joint posterior distribution of D and k is proportional to

n

Dn+b.lkfMCCnCn.I»/2)-I(l-k),62.lexp{ - (a+ Lki.1ti) D}
1=1

(ii) the posterior distribution of k is proportional to

kf31+ «"("-1»)12) -I (l-k)i32-1

(a+",n ki-It.)n+b
L..,.1=1 I

and

(iii) the predictive density of Tn+l , the next time to failure, at the
point t, conditional on k, is proportional to

(iv) What is the predictive density of Tn+1 conditional on ten)
alone?

(v) Numerically evaluate the predictive density that you have
obtained in part (iv) using the NTDS data, for n = 1,2, ... ,
26, and show its plot for T27 • Compare the means of your
predictive densities with the entries in column 3 of Table 4.6.

(vi) Does the de-eutrophication model provide better predictivity
of the NTDS data than the hierarchical model of Section 4.4?

4. Verify Equations (4.29) through (4.33) of Section 4.5.1.

Exercises for Chapter 4 167

5. Consider the interfailure time data given in column 3 of Table 4.7.
Obtain the means of the predictive distributions of Yi , i = 3, 4, ... ,
100, using the adaptive Kalman filter model of Section 4.5.2, for a =
-1, -0.5, +0.5, and +1. Which of the preceding values of a provides the
best fit for the observed data? You may use the mean square error as a
criterion for assessing the goodness of fit.

6. Verify Equations (4.37) through (4.39) of Section 4.5.3, and Equation
(4.52) of Section 4.7.1.

7. Verify Equations (4.57) and (4.58) on Bayes' factors of Section 4.7.3.

8. Using the data of Tables 4.1 and 4.2, perform an analysis of the
Jelinski-Moranda model via the Gibbs sampling algorithm outlined in
Section A.3.1 of Appendix A. Assume the same values for the
hyperparameters as those of Section 4.2.3, and compare your answers
with those in the preceding section.

9. For the NTDS Data of Table 4.2, replicate the analysis shown in Table
4.6 and Figure 4.4 using the Gibbs sampling algorithm outlined in
Section A.3.2 of Appendix A. Assume the same values for the
hyperparameters as those in Section 4.4.1, and compare your answers
with those given in the preceding section.

5
SOFTWARE PRODUCTIVITY

AND PROCESS MANAGEMENT

5.1 Background: Producing Quality Software

In this chapter we address two topics that are of interest to managers of
software development teams. The first pertains to producing software within
reasonable cost and time constraints. The second pertains to ensuring that the
software produced is of acceptable quality. Statistical techniques have a role to
play here, and the aim of this chapter is to highlight this role.

When developing software, an issue faced by a manager is the prediction of
development time and effort. A common approach is to first estimate the size of
the program, say the number of lines of code, and then use some guidelines on
productivity rates to arrive at the time and effort needed to complete the project.
Our focus here is on the use of historical data to estimate productivity rates.
Good estimates of the number of lines of code are essential, and a plausible
approach is to elicit specialized knowledge, and then use the techniques of
Section 4.3.2 to assess the required quantity.

Typical approaches for assessing productivity rates are based on intuition
or, at best, rough averages of historical data on the design, implementation, and
unit tests of small programs. The introduction of a structured statistical
framework for collecting and analyzing such data should be an improvement
over current practice; this is what is described in Section 5.2. It is important to
bear in mind that the time required to design, code, and unit test a program is
only a modest, although important, part of the total project activity. The
remainder of a programmer's time is used for other activities such as meetings,

N. D. Singpurwalla et al., Statistical Methods in Software Engineering
© Springer-Verlag New York, Inc. 1999

170 5. Software Productivity and Process Management

negotiations, documentation, and the like. Although these actIvItIes are
necessary, a professional's time spent on them cannot be accurately measured,
nor can it be controlled. Thus what is discussed in Section 5.2 does not cover the
full spectrum of activities that go into determining productivity rates. However,
until meaningful data on these "other activities," can be collected, the best that
we can hope to do is to carefully analyze the available data on designing, coding,
and testing by an individual programmer or a group of programmers.

In Section 5.3 we address the issue of process management for software
quality. This issue is of concern not only to managers of software development
houses, but also to those charged with the task of choosing a vendor of software.
It is not uncommon for the developers of large systems to charter a software
development organization, a software house, to produce the software needed to
run the system. Vendor evaluation models have been used since the earliest days
of competitive marketing. Comparing like products by price should not be the
sole criterion for purchase. To make sound purchasing decisions myriad factors
should be considered and evaluated. To facilitate this, several models have been
proposed and used by industry, many of which result in classifying a vendor (or
a supplier) by one of several classes that constitute a hierarchy. The Capability
Maturity Model (CMM) is one such hierarchical classification scheme. It was
developed by the Software Engineering Institute (SEI) of Carnegie Mellon
University, and is specifically designed for software development. The material
of Section 5.3 is geared towards the CMM. There we describe a normative
approach for classifying a supplier by one of several categories, with the
classification being probabilistic. That is, we are able to assign a positive
probability that a supplier belongs to each of the several classes. This is in
contrast to the traditional use of the CMM wherein classification is made with
certainty. Despite criticisms, the CMM has been widely used by government and
industry. Thus what is described in Section 5.3 should be viewed as an
enhancement of the CMM, an enhancement that we hope helps overcome one of
its weaknesses.

5.2 A Growth-Curve Model for Estimating Software Productivity

Human performance indices, such as software productivity, can be assessed
by what are known as growth-curve models [ef. Rao (1987)]. Such models have
been used for describing human learning experiences and have provided suitable
fits to data on performance-based activities. A characteristic feature of learning
experience data is that the successive measurements tend to be autocorrelated
(Le., related to each other). When developing software code, there appears to be
the presence of an underlying learning process that has the tendency to improve
the successive development activities. Consequently, the development times for
individual programmers, or teams of programmers, tend to be correlated. It is
because of this dependence that the software productivity process is predictable.
If the data were not correlated, a level of stability is likely to have been reached,
and the best prediction is the arithmetic average of the data.

5.2 A Growth-Curve Model for Estimating Software Productivity 171

As a general rule, moderate to long sequences of human performance data
exhibit a degree of learning so that there is an underlying trend. Superimposed
on this trend are often unanticipated and sharp deviations from normal
expectations, followed by a reversal to the normal. Such fluctuations occur when
individuals (or groups of individuals) alternate between performing unfamiliar
tasks and familiar extensions of previously accomplished tasks. The
methodology proposed here is geared towards drawing conclusions about
productivity rates using data that consist of trends and fluctuations.

5.2.1 The Statistical Model

Consider a database of n programs, each program containing several lines of
code. The number of lines of code per program need not be the same. We
assume that each program in this database is developed by a single programmer,
or by the same team of programmers, under circumstances that are for all intents
and purposes identical. By "identical circumstances," we mean a similar working
environment, such as policies, procedures, management, and the like. Of course
each program in the database is distinct, in the sense that it is required to perform
its own specific task. The observed data consist of the minutes per line of code
needed to develop each program, and by the term "develop" we mean design,
implement, and unit test. It is important to bear in mind that since the database
pertains to an individual programmer, or to a team of programmers, all the
derived measures of software productivity, and also the projected productivity
figures, are valid for that individual or that team.

Let X(1) denote the minutes taken per line of code to develop the first
program that is written, and let Y(I) = 10geX(1). Similarly, X(2) denotes the
minutes per line of code for the second program that is developed, and so on.
Thus X(t), t = 1, ... , n, constitutes a time series that is indexed by the program
number, 1,2, ... , n, instead of the usual time. If the assumption that there is an
underlying learning phenomenon in writing the programs were to be true, then
X(t) would tend to be smaller than X(t - 1), for all values of t; it is otherwise if
there is a degradation (i.e., the opposite of learning). In what follows, we assume
that X(t) has a lognormal distribution; this implies that Y(t) = 10geX(t) has a
normal distribution. The assumption of lognormality can be justified on grounds
of a subjective choice; however, it can also be supported on the basis of
empirical evidence. It has often been claimed that time required to complete
tasks such as maintenance and repairs tends to have a lognormal distribution.
The development of software code is not unlike these tasks.

Suppose that the X(t)s are scaled so that X(t) ~ 1, for all t. Then, since X(t)
bears a relationship to X(t - 1), we propose that

X(t) = (X(t - 1»°(1) , (5.1)

where (}(t) < 1 suggests that there is a growth in productivity (or learning) in
going from program t - 1 to program t. Similarly, (}(t) > 1 suggests a

172 5. Software Productivity and Process Management

degradation of productivity. With (J(t) < I, the model of Equation (5.1) is a
growth-curve model.

The power function relationship of (5.1) was postulated based on
assumptions about the software development process mentioned previously. To
introduce a measure of uncertainty into this formulation, we suppose that the
relationship between X(t) and X(t - 1) incorporates a multiplicative random
quantity as follows,

X(t) = (X(t - l)i~(t) €(t) . (5.2)

Here €(t) is an assumed lognormal error term with parameters 0 and a 2(u). The
parameter a 2(u) is positive; its magnitude reflects the extent of our uncertainty
about the relationship (5.1).

If we let ",(t) = In(€(t)), then Y(t) can be written as a first-order
nonhomogeneous autoregressive process of the form

Y(t) = (J(t) Y(t - 1) + ",(t) . (5.3)

Since the X(t)s are assumed lognormal, it follows that the Y(t)s are normally
distributed and that ",(t) has a normal distribution with a mean 0 and variance
a 2(u). Here, for example, a large value of ",(t) would represent a high degree of
uncertainty about the appropriateness of the relationship Y(t) = (J(t)Y(t - 1). The
relationship (5.3) is an autoregressive process of order 1 [see, for example, Box
and Jenkins (1970)] except that the coefficient (J(t) is allowed to change from
stage to stage. This is the reason for using the qualifier nonhomogeneous when
describing (5.3). The model of Equation (5.3) is identical to the random
coefficient autoregressive process model of Equation (3.21), except that the
latter pertains to interfailure times, whereas the former pertains to the minutes
per line of software code.

Even though the model given previously is simple in construction, it can
incorporate a wide variety of user opinions about the growth or decay in
productivity. This is achieved by assuming that the parameters (J(t) and a 2(u)
themselves have distributions whose hyperparameters are specified. To
implement this, we first focus on the model uncertainty parameter a 2(u), and
then the growth/decay parameter (J(t).

Prior on the Model Uncertainty Parameter 0"2(U)

The parameter a 2(u) can either be specified by a user or can be estimated
from the data; here we assume that it is estimated. For this we must specify a
distribution that describes our uncertainty about a 2(u). The traditional approach
is to assume that ¢, the reciprocal of a 2(u), has a gamma distribution with a
scale hyperparameter (b l l2) and a shape hyperparameter ('·'(I12) [see West,
Harrison, and Migon (1985)]. The advantage of letting the data determine the
value of a 2(u) is flexibility in model choice and, as a consequence, greater

5.2 A Growth-Curve Model for Estimating Software Productivity 173

accuracy with respect to a given set of data. The disadvantage is that, when the
working process has productivity growth or decay characteristics, and when the
limited available data do not clearly reflect this trend, predictions of future data
would be distorted. This is always a matter of concern: the degree to which
predictions are controlled by data rather than by prior knowledge of process
fundamentals.

Prior on the GrowthlDecay Parameter (J(t)

Since (J(t) can take values in the range (-00, +00), with (J(t) < 1 implying
gains in productivity, it is reasonable to assume that the (J(t)s have a normal
distribution with a mean of .>., and a variance of (a2(v»)/¢J, where ¢J is l/a2(u).
The hyperparameter a 2(v) is specified by us and is based on our opinions about
the underlying learning process. Thus, for example, with .>. < 1, small values of
a 2(v) would suggest productivity growth, whereas with .>. > 1, they would
describe a decay in productivity. Large values of a 2(v) also suggest that
productivity fluctuates widely. Although values of.>. less than or greater than 1
would again describe productivity growth or decay, the degree of fluctuation
would generally mask this trend. Large values of a2(v) would be appropriate, for
example, with drastic changes in the nature of the programming tasks, with
significant changes in the programming methods used, or with major changes in
personnel staffing or capability.

At this point, we should note that, with the productivity of individual
programmers, a slowly evolving pattern of productivity growth or decay should
be expected with an occasional disruption due to unplanned interventions. Thus
it seems reasonable that the (J(t)s would be related, possibly in some mild form.
There are different ways of describing a mild form of dependence between the
(J(t)s. One way is to assume that the hyperparameter .>. is itself normally
distributed with a mean of ml and a variance of sll¢;. A value of ml < 1 would
suggest the user's prior belief in an overall gain in productivity, and an ml > 1
would suggest the opposite. The value SI reflects the strength of the user's belief
about the value of mI' The value ml = 1 suggests the user's prior belief in neither
a gain nor a loss in productivity. In many applications this would be a convenient
and neutral choice.

Note that when the dependence of the (J(t)s is described by a two-stage
scheme, the (J(t)s are exchangeable. The previously described model is identical
to that of Section 3.4.1 wherein the (JiS of equation (3.21) were judged
exchangeable. The main difference is that in the present case, a 2(u) is assumed
unknown and estimated from the data, whereas in Section 3.4.1, ar, the analogue
of a 2(u), was assumed known.

Some Guidelines on Specifying Hyperparameters

Hyperparameters capture a user's prior subjective opinIOns about the
software productivity process. These opinions are held before any data are

174 5. Software Productivity and Process Management

observed. For the hyperparameters of the prior distributions of a 2(u) and {}(t)
mentioned previously, Humphrey and Singpurwalla (1998) provide some
guidelines. These are summarized in the following.

The parameter II is used for calculating It, which in turn is used for
determining the prediction intervals. Furthermore, since It increases linearly
with the accumulation of data, II is only significant for determining projection
intervals of the very early programs. For all intents and purposes, therefore, the
value of II is not of much concern. However, in practice one sets 81 at 1 and tries
out a range of values of II to see which one gives better predictions.

Regarding m1, unless it is known a priori that the process has a steady trend,
m1 should be selected as 1. On the other hand, if it is known that the (logarithms
of) successive terms will generally have a ratio of, say (3, then the assumed value
for m1 should be (3.

For SI, an initial value of 0 would force all subsequent values of St to be 0
and thus restrict mt to the initial value mI. This would only be appropriate when
a constant rate of productivity change was known with certainty. Conversely, a
relatively large value of SI (i.e., 1.0) would imply relatively little confidence in
the value of m1 and would result in large initial fluctuations in the value of mt

until sufficient data had been gathered to cause it to stabilize. A compromise is
to choose SI = 0.35 or SI = 0.5.

Similarly, the value selected for a2(v) reflects the experimenter's views on
the degree of fluctuation of productivity. Small values presume relative stability
whereas large values (near 1.0) reflect wide variations. A compromise is to
choose a 2(v) = 0.35 or 0.5.

5.2.2 Inference and Prediction Under the Growth-Curve Model

Let y(t) denote the observed value of Y(t), t = 1, 2, ... , and suppose that
~(t) = (Y(l), ... , y(t)) have been observed. Let mt denote the mean of the
posterior distribution of >. given ~(t); that is, mt is the updated value of m1 in the

light of ~(t). Since m, conveys information about an overall growth or decay in
productivity, a plot of m, versus t, for t = 2, 3, ... , would suggest a steady
growth in productivity if the values of m, were to lie below one; otherwise, there
is evidence of a decay in productivity.

The determination of m, is relatively straightforward; it is left as an exercise
for the reader. Specifically, with mlo Slo and a 2(v) specified, it can be shown [see
Singpurwalla and Soyer (1992)], that for t = 2, 3, ... ,

St-! X yet-I) (y(t)-y(t-I) x m,_!)
mt = mt-l + pet) ,

where

5.2 A Growth-Curve Model for Estimating Software Productivity 175

and

St = St-l
(St-If X (y(t-I)2

P(t) (5.4)

Assessments about productivity growth or decay, from program to program, are
provided by the parameter (}(t), t = 1, 2, Let (}+(t) denote the mean of the
posterior distribution of (}(t), given ~(t). Then it can be seen that

where
(5.5)

Similarly, if Y+(t + 1) denotes the predicted value of yet + 1), given ~(t) = (y(1),

... , y(t», then

Y+(t + 1) = mt x yet), for t = 1,2, (5.6)

Note that Y+(t + 1) is a projection of productivity. It is needed to estimate
the time and effort required to complete future tasks involving design,
implementation, and unit testing. Associated with such estimates are measures of
uncertainty. The upper (lower) projection limit for Y+(t + 1), with a coverage
probability of approximately 68%, is given by the formula (mt x yet) + yiWr) x
[mt x yet) - yiWr], where

/t and 8t are the updated values of /1 and 81, respectively, in the light of ~(t).
They go to determine the degrees of freedom parameter of the Student's t
distribution that is used to obtain Wt. They are given as

It = It-l + 1,
and

_ [y(t) + mt-l x y(t-I)f .
Ot - Ot-l + [1 + (y(t-I)? (St-I + (/2(v))] , (5.7)

the details are in Singpurwalla and Soyer (1992).

176 5. Software Productivity and Process Management

5.2.3 Application: Estimating Individual Software Productivity

One problem with software productivity studies is the difficulty of gathering
sufficient data to support a credible statistical analysis. It is desirable that
programmers gather basic data on their personal performance on every program
they produce. The data described in the following have been gathered in
response to this theme. Regarding the productivity of large-scale tasks or team
activities, there are problems with gathering data. First is that team projects take
several months to complete, and so this would entail much time and effort vis-a
vis the data collection. Second, the stability of such data would depend on the
composition of the team. Thus, for example, if team members were to leave or
new members were to be added during the project, the prior data would not be
likely to be comparable to the new data.

In Table 5.1, column 2, we show the minutes taken by a highly experienced
programmer to develop a line of code, for 20 programs of varying sizes, taken
from a Pascal textbook. Development includes designing, implementation, and
unit testing. The 20 programs in question were not similar, but the environment
under which they were developed was, for all intents and purposes, identical;
that is, it was carefully controlled. Thus conclusions and projections of
productivity based on these data would be valid only for this programmer,
working under the tightly controlled environment mentioned previously.

Humphrey and Singpurwalla (1991) have analyzed these data using the
methods of classical time series analysis. Their productivity projections, based
on an exponential smoothing formula, were reasonable when compared with
actual data. However, their approach relied only on past data to make future
projections and did not take into consideration a knowledge of learning theories
and application environments. Furthermore, their approach did not provide any
insights about growth (or decay) in productivity. Specifically, was this
programmer still experiencing a learning phenomenon or did he or she reach a
point of saturation whereby learning was de facto minimal? Can the techniques
described here provide an answer to the preceding question? In what follows we
explore this and related issues.

In column 3 of Table 5.1 we show the values of Y(t) = 10geX(t), t = 1, ... ,
20, and in Figure 5.1 we show a plot of X(t) versus t. This plot shows that X(t)
fluctuates quite a bit, alternating between an up and a down, but otherwise fails
to reveal any underlying trend. A plot of Y(t) versus t is shown in Figure 5.2.

To apply the methodology of this section, we follow the guidelines for
choosing hyperparameters mentioned in Section 5.2.1, and make the following
choices: a 2(v) = 0.35, 81 = 1, /1 = 5, m1 = 1, and 81 = 0.35. These choices
reflect a strong commitment to the proposed model, and a strong a priori opinion
that there is neither growth nor decay of productivity. The latter position is
appropriate because even though the programmer is an experienced one, the
textbook exercises tend to increase in difficulty. Columns 4, 5, and 6 of Table
5.1 show the values of m" (}(t), and Y+(t); these are obtained via Equations (5.4)
to (5.6), respectively. Column 7 of Table 5.1 compares the one-step-ahead

T
ab

le
 5

.1
. M

in
u

te
s

pe
r

L
in

e
o

f
C

od
e,

 t
he

ir
 P

ro
je

ct
ed

 V
al

ue
s,

 a
nd

 E
st

im
at

es
 o

f G
ro

w
th

 P
ar

am
et

er
s

fo
r

a
Sp

ec
if

ic

P
ro

gr
am

m
er

A
bs

ol
ut

e
D

if
fe

re
nc

e
X

(I
)

E
st

im
at

e
of

B

et
w

ee
n

A
ct

ua
l

P
ro

gr
am

O

bs
er

ve
d

th
e

G
ro

w
th

P

re
di

ct
ed

an

d
P

re
di

ct
ed

 V
al

ue

68
%

 P
re

di
ct

io
n

In
te

rv
al

s
N

um
be

r
t

M
in

/L
O

C

ye
t)

: I
n

X
(t

)
m

,
P

ar
am

et
er

 e
+

(t
)

V
al

ue
s

re
t)

IY

(t
)

-
r(

t)
1

U

pp
er

L

ow
er

I

3.
61

9
1.

28
62

0
1

2
2.

46
1

0.
90

07
7

0.
91

95
98

6
0.

83
91

97
2

1.
28

61
97

0.

38
54

27

3.
36

37
00

0
0.

79
13

00
0

3
7.

57
1

2.
02

43
8

1.
10

45
47

0
1.

35
73

14
0

0.
82

83
47

1.

19
60

33

1.
85

93
54

9
0.

20
26

61
1

4
7.

63
4

2.
03

26
9

1.
07

73
63

0
1.

03
42

00
0

2.
23

60
19

0.

20
33

29

3.
88

13
68

0
0.

59
06

70
0

5
6.

15
6

1.
81

75
4

1.
03

82
37

0
0.

95
30

56
9

2.
18

99
46

0.

37
24

06

3.
53

64
39

0
0.

84
35

43
0

6
4.

21
4

1.
43

84
8

0.
99

81
90

1
0.

98
73

28
6

1.
88

70
38

0.

44
85

58

2.
97

90
12

0
0.

79
50

64
0

7
6

1.
79

17
6

1.
02

60
91

0
1.

11
82

87
0

1.
43

58
79

0.

35
58

81

2.
31

00
92

9
0.

56
16

65
1

8
4.

09
5

1.
40

98
2

0.
99

63
29

2
0.

86
54

82
6

1.
83

85
07

0.

42
86

87

2.
75

02
93

0
0.

92
67

21
0

9
7.

16
9

1.
96

97
7

1.
03

15
90

0
1.

18
15

76
0

1.
40

46
40

0.

56
51

30

2.
16

03
55

6
0.

64
89

24
4

10

4.
31

2
1.

46
15

2
0.

99
97

58
1

0.
85

12
98

1
2.

03
19

91

0.
57

04
71

2.

91
03

80
2

1.
15

36
01

8
11

5.

72
6

1.
74

50
5

1.
01

44
20

0
1.

09
12

43
0

1.
46

11
63

0.

28
38

87

2.
18

02
16

3
0.

72
41

09
0

12

9.
72

1
2.

27
43

1
1.

03
85

22
0

1.
17

51
24

0
1.

77
02

15

0.
50

40
95

2.

52
31

59
6

1.
01

72
70

2
13

4.

53
5

1.
51

19
8

1.
00

32
63

0
0.

78
52

38
9

2.
36

19
20

0.

84
99

40

3.
22

39
48

7
1.

49
98

91
3

14

6.
03

6
1.

79
77

6
1.

01
46

16
0

1.
08

21
31

0
1.

51
69

13

0.
82

08
47

2.

19
37

49
1

0.
84

00
76

9
15

4.

51
2

1.
50

69
2

1.
00

26
17

0
0.

96
88

72
4

1.
51

08
61

0.

10
75

61

2.
14

47
32

7
0.

87
69

89
3

16

4.
06

8
1.

40
33

0
0.

99
87

83
8

0.
96

88
72

4
1.

51
08

61

0.
10

75
61

2.

14
47

32
7

0.
87

69
89

3
17

11

.4
51

2.

43
89

1
1.

03
36

10
0

1.
32

07
76

0
1.

40
15

91

1.
03

65
29

1.

99
49

13
8

0.
80

82
68

2
18

5.

12
0

1.
63

31
5

1.
00

72
75

0
0.

77
93

98
3

2.
52

00
64

0.

88
66

14

3.
38

11
44

9
1.

65
89

83
1

19

3.
32

0
1.

19
99

6
0.

99
38

65
1

0.
86

87
63

6
1.

64
50

35

0.
44

50
75

2.

32
00

23
7

0.
97

00
46

3
20

 _
_

 L
_

2.

82
0

-
__

1.

03
67

4
0.

98
95

75
6

0.
94

74
86

9
1.

19
26

02

0.
15

58
62

1.

77
38

20
5

0.
61

13
83

5

V
I N
 >
 ~ ~ h $:

: ..., <:

(1
) a:: o 0.

~

0'

..., tT
l

'" S'. ~

E:j
"

(J
Q

CI
:l o ::P

:<! @

'i:
I a go ("

) ~: -<
.

-.
J

-.
J

178 5. Software Productivity and Process Management

Minutes per
Line of Code

14

12

10

8

6

4

2

0+---------,---------,---------,--------,

o 5 10 15 20
Pro gram Number t

FIGURE 5.1. A Plot of X(t) , MinuteslLine of Code
versus Program Number t.

y (t)

4 , Upper Prediction Interval
" . / . "

3.5

3 "
, .

"

2.5 '. .', : .
: \ . .

2

1.5

.\ J \
\ / -, /-'1 '/\ \.---1
',J Lower Prediction Interval 0.5

0+--------.--------,-------,--------,

o 5 10 15

Program Number t

FIGURE 5.2. A Plot of Y(t) and the Upper
and Lower Prediction Intervals.

20

5.2 A Growth-Curve Model for Estimating Software Productivity 179

I 2 3 4 5 6 7 8 9 IO II 12 I3 14 15 16 17 18 19 20

Program Number t

FIGURE 5.3. A Plot of m" an Indicator of Overall Productivity,
Versus t, the Program Number.

predictions Y+(t) versus Yet), t = 2, 3, ... , 20, via their absolute differences,
and columns 8 and 9 give the 68% prediction limits for the one-step-ahead
projections. A plot of these prediction limits is shown in Figure 5.2; the plot
indicates the extent to which the prediction limits cover the observed Y(t). Since
Y+(t + 1) = mt x yet) [see Equation (5.6)] the predicted values tend to be
relatively close to the most recent observed value; this is borne out by a
comparison of the entries in columns 3 and 6 of Table 5.1.

In Figure 5.3, we show a plot of mt versus t, for t = 1, ... , 20. Since the
values of mt tend to remain above 1, for most values of t, there does not appear
to be present any evidence of productivity growth.

Figure 5.4 shows a plot of g+(t) versus t, for t = 2, ... , 20. The uneven
nature of this plot suggests there is no steady pattern of growth or decay from
program to program. However, the number of times the plotted values exceed
one, and the magnitudes of these variations, indicate a slight decay in
productivity. This is also suggested by the plot of Figure 5.2. In this example,
this slight negative learning trend might be caused by the fact that the 20
programs from the Pascal textbook have a problem (and thus program) sequence
of progressively increasing difficulty.

Thus to conclude, we have presented a Bayesian approach for assessing and
evaluating productivity data, as with software development. Even though our
discussion was focused on a particular measure of productivity, the approach is
general and can be used to study the behavior of any data that evolve over time
and are suspected to have growth or decay characteristics. The main virtue of our

180 5. Software Productivity and Process Management

2

I.S

1.6

1.4

1.2

O.S

0.6

0.4

0.2

O+-'-'--'-'-r-'-'-'--'-'-,-'-~'--'-'-'-'

2 3 4 5 6 7 S 9 10 II 12 13 14 15 16 17 IS 19 20

Program Number t

FIGURE 5.4. A Plot of f)+(t), an Indicator of Program to Program
Productivity Change, Versus t, the Program Number.

approach is its ability to assess underlying trends in the presence of wild
fluctuations, and its ability to assess stage-by-stage growth or decay. With highly
trended and relatively stable data, this approach should lead to superior
predictions over the standard time series approaches, both because of its
underlying structure, and because it is adaptive; that is, the model parameters are
constantly updated in the light of new data.

It is easy to see that this approach can be extended so that X(t) can be made
to depend on more than one of its previous values, namely, X(t - 1), X(t - 2), X(t-
3), ... , and so on. The advantage of such a scheme would be to make the model
more robust with respect to large oscillations in the data. With the current mode,
the predictions are strongly influenced by the last observation, with the
consequence that if it is an outlier, its impact will dominate the prediction. A
model with a longer memory of the previous observations would modulate the
effect of outlying observations. However, the resulting model would be quite
complex and would require even more input parameters. Whether such an
extension would provide more useful interpretations and predictions is a
question that depends on the application.

5.3 The Capability Maturity Model for Process Management

Humphrey (1989, Chapter 1) describes the software development process as
a set of actions that efficiently transform a user's needs into an effective software
solution. The development focuses on schedules, standards, and practices rather

5.3 The Capability Maturity Model for Process Management 181

than on technologies and abilities of people. Over the last few years software
process management has been touted as the key to developing reliable software.
Documented studies by Paulk et al. (1993) have found that successful software
process improvement efforts result in a return on investment in the range of 5:1
to 8:l.

The SEI's Capability Maturity Model (CMM) is a tool for evaluating an
organization's software development process; see Humphrey and Sweet (1987).
It focuses on the establishment of a systematic process for software
development. The model identifies key software processes and skills that in the
aggregate comprise a process management approach to software. The CMM has
been used by administrators of software houses for improving practices and
processes, and by program managers in government and industry for selecting
contractors. It is therefore a tool that can provide inputs to a decision-making
scheme (see Section 6.2) that a program manager may wish to use.

5.3.1 The Conceptual Framework

Based on a framework envisioned by Crosby (1979), the CMM classifies an
organization into one of five "maturity levels," where level 1 is the lowest level
of a hierarchy, and level 5 the highest. The placement is based on responses to a
series of questions, called the maturity questionnaire, and follow-up visits to the
organization for clarifying and validating responses. Each maturity level is
defined by several attributes, called key process areas (KPA); see Figure 5.5.
The separate sections of the maturity questionnaire focus on each KP A. The
CMM requires that for an organization to be classified at a certain maturity level,
say i, all the KP As associated with level i must be satisfied. The judgment as to
whether a key process area is satisfied has been generally based on the
proportion of affirmative responses to the questions pertaining to the key process
area. In Figure 5.5, MJ through M5 denote the five maturity levels whereas Kij,
i = 1, ... , 5 and j = 1, 2, ... , ni, denote the jth key process area associated
with the ith maturity level. Finally, Rijk denotes the response to the kth question
pertaining to Kij , with Rijk = 1(0) denoting the fact that the response is in the
affirmative (negative).

The maturity levels M;, and key process areas Kij are to be viewed as
unobservable constructs, like parameters in probability models.

In what follows, we present an approach, given in Singpurwalla (1999), for
probabilistically classifying a software house into the five maturity levels. That
is, we are able to specify the probabilities with which an organization belongs to
the five levels. This is in contrast to those approaches that classify with certainty.
Our approach is based on responses to the questionnaire as well as expert
judgment about the organization that an assessor may have. This is because
Crosby (1979) conceptualizes a manufacturing organization maturing through
the five nonquantifiable stages which he labels "uncertainty," "awakening,"
"enlightenment," "wisdom," and "certainty." Indicators of these stages are

182 5. Software Productivity and Process Management

•••

• • •

yes=1 no=O yes=1 no=O yes=1 no=O

D = Maturity Level

o = Key Process Area

o = Questionnaire Responses

FIGURE 5.5. The Hierarchical Structure of the Capability Maturity Model.

attributes such as management understanding and attitude, quality organization
status, problem handling, cost of quality as a percentage of sales, quality
improvement actions, and the like.

5.3 The Capability Maturity Model for Process Management 183

5.3.2 The Probabilistic Approach for Hierarchical Classification

We begin by introducing some notation that helps us to distinguish between
two events that are of interest. Let M; = 1(0) denote the event that a software
house has (has not) attained a maturity level i or higher, and let L; = 1(0) denote
the event that the highest maturity level attained (not attained) by the software
house is i. By default, all software houses belong to levell, and so
P(MI = 1) = 1; P(E) denotes the probability of event E. Also, since the five
maturity levels form a hierarchy, P(M;.I = 1) ;::: P(M; = 1), i = 2, ... ,5. To
help the reader appreciate the difference between the events M; = 1 and L; = 1,
we consider the following simple illustration.

Level i P(Mi = 1) P(Li = 1)
1 1.00 0.40
2 0.60 0.35
3 0.25 0.20
4 0.05 0.04
5 0.01 0.01

Sum - 1

If 'R denotes the responses to the questionnaire data, then our goal is to
assess P(Li = 1 I 'R), i = 1, ... , 5. To do the preceding, we suppress 'R, and
observe that

_ _ {PCMi=IIMi+l=O)=PCMi=l) -PCMi+l=I),

P(Lj - 1)-
PCM5=1).

i = 1, ... ,4

Thus to assess P(L; = 1 I 'R) we need to assess P(M; = 1 I 'R), i = 1, ... ,
5, and the bulk of what follows is devoted to an assessment of this latter quantity.
But first we need to introduce some additional notation.

Let n; denote the number of key process areas associated with maturity
level i; by convention n. = O. Let Kij = 1 (0) denote the event that the jth key
process area associated with level i is (is not) satisfied; i = 1, ... , 5 and j = 1, .
. . , n;. Finally, let the vector Bij denote the collection of responses to the
questions associated with Kij; thus 'R = (1311' ... , Bin" ... , BSI' ... ,BSns).

To implement our approach several probabilities and likelihoods have to be
specified; this is best done by experts who are knowledgeable and experienced

184 5. Software Productivity and Process Management

about the software development process. The probabilities are P(Mi I M i_I),

P(Kij), and P(Kij I M i); the likelihoods are C(Kij; Bi)'

Model Specification and Assumptions

To assess P(M; = 1 I 'R), i = 2, ... , 5, we extend the conversation to all
events that go to define the level M;, and apply the law of total probability. Thus

P(Mi I R) = L P(Mi I M i-h K il , ... , Kin;> R) X
(Mj_\. Kil, ... ,Kjn)

P(Mi-l , Kih ... ,Kin; I R), (5.8)

where (symbolically) the summation is over all possible permutations of the
binary conditioning variables.

To evaluate the preceding expression, we need to make a series of
assumptions. These assumptions are very reasonable and form the crux of our
approach. In what follows, the notation (EI .L E2) I (E3) denotes the fact that
given event E3, the events EI and E2 are independent.

The following Assumption A 1 is prompted by the first term under the
summation sign of the preceding expression, whereas the other assumptions are
motivated by an application of the multiplication rule of probability to the
second expression under the summation sign.

• A 1. The attainment (or not) of level i is independent of the responses, given
the status regarding level (i - 1), and the status of all key process areas
associated with level i. That is, for i = 2, ... , 5,

• A2. The binary variables associated with the key process areas, within any
level, are independent of each other. Specifically, for i = 2, ... ,5,

(Kih .1 Kif'), for all h i= .e.

• A3. Given the responses to the questionnaire, the attainment (or not) of
level (i - 1) is independent of whether the key process areas for level i
are satisfied. That is, for i = 2, ... ,5,

(Mi-l .1 K il , ... , Kin) I R.

• A4. Given an organization's disposition with respect to level i, the
satisfaction (or not) of the Kijs, j = 1, ... , ni is independent of the
organization's disposition with respect to level (i - 1). That is, for i = 2,
... , 5 and j = 1, ... ni ,

5.3 The Capability Maturity Model for Process Management 185

• A5. Only those questions (and their responses) that pertain to Kij are
relevant for determining its satisfaction (or not). That is, for i = 2, ... ,
5,

(Kij ~ R,u'.) , for j f= f .

The Recursive Relationship

The hierarchical structure of the CMM enables us to develop a recursive
relationship wherein the assessment of P(Mi I 1?.) is facilitated by an assessment
of P(Mi-l I 1?.), i = 2, ... ,5 and the fact that P(Mi = 1) = 1. The assumptions
given before make this recursion possible; the recursive scheme eases the
computational burden. Because of AI, A2, and A3, Equation (5.8) becomes

ni

I1 P(Kij I R,) P(Mi-1 I R,).
j=l

To assess P(Mi I Mi-I , KiI , ... , Kin) we use Bayes'Law; consequently

where P(KiJ, ... , Kin; I Mi, Mi-d can, by virtue of A2 and the multiplication
law, be written as

ni

P(Kn , ... ,Kn; I Mi, Mi-I) = I1 P(Kij I Mi, Mi-l).
j=l

Invoking A4, and resubstituting in P(Mi I Mi-I , KiJ , ••. , Kin), gives

ni

P(Mi• Mi-I , KiI , ... , Kin) ex: I1 P(Kij I Mi) • P(Mi I Mi-I).
j=l

The final step pertains to the assessment of P(Kij I 1?.). This too is done via
Bayes'Law, as

186 5. Software Productivity and Process Management

But by virtue of A5, the likelihood CCKij; R) is CCKij; Bij)' so that

To evaluate CCKij; Bi) we need to make some assumptions about the
probabilistic structure of the collection of responses Bij = CRij!, . . . , Rijnij)'

assuming that the total number of questions pertaining to Kij. the Cij)th key
process area, is nij' A natural assumption would be conditional independence
given Kij, so that

nij

P(lJij I Kij) = IT P(Rijk I Kij) .
k=l

When such is the case

n;j

£(Kij; lJij) = IT £(Kij; Rijk) .
k=!

Instead of conditional independence mentioned previously we may consider
other possibilities, such as Markov dependence of the sequence CRij!, ... , Rijnij)

or exchangeability of this sequence. These, however, are not pursued here. Thus
to summarize, the recursive probabilistic classification scheme reduces to the
expression

ni

P(Mi I R) <X L IT P(Kij I M i) P(Mi I M i-1) X
Mi-l,Ki j=!

ni nij . P(Kij) n IT £(Kij, Rijk) P(Mi-lIR)'
J=! k=!

(5.9)

where Ki = CKii> ... , Kin). The constant of proportionality is to be numerically
evaluated; its role is to ensure that each of the PCMi I R)s, i = 2, ... , 5, is less
than one. Recall that P(M) I R) = P(Md = 1, so that the recursive scheme
begins by first evaluating P(M2 I R), and the indices pertaining to the
summation sign take binary values.

5.3.3 Application: Classifying a Software Developer

We have been fortunate in having access to a software developer's
responses to the 1987 version of the CMM questionnaire. The nature of the
questions is shown in Section B.l of Appendix B. The 1987 version ofthe CMM

5.3 The Capability Maturity Model for Process Management 187

Table 5.2. Probabilistic Classification of a Software Developer

L; the Highest Maturity Probability of
Level Attained Attaining L;

1 0.3771
2 0.4986
3 0.0979
4 0.0281
5 < 0.001

did not subdivide the questionnaire with respect to the KPAs; the 1994 version
of the CMM does. The subdivisions shown in Appendix B were performed, at
our request, by a software development analyst familiar with the various versions
of the CMM. This exercise resulted in three KPAs each for maturity levels 2 and
3, two KPAs for maturity level 4, and one KPA for maturity level 5. There are 5
questions per KPA, making the total number of questions equal 45; the others
were judged (by our analyst) to be no longer relevant, and were therefore
discarded. The software developer's binary (Y = yes, N = no) responses to each
of the 45 questions are given in Section B.2.

Recall that to implement our approach we first need to assess our
probabilities P(Mi I Mi-d, i = 2, ... ,5, and P(Kij), i = 1, ... ,5,} = 1, ... ,ni,

and P(Kij I Mi). These probabilities were elicited via experts from government,
industry, and academia. They are given in Section B.3 of Appendix B. Next, we
also need to assess the likelihoods 'c(Kij; Eij). These too were assessed by the
aforementioned experts, and are also given in Section B.3. We emphasize that
the specified values of the priors and the likelihoods are judgmental; they are
therefore subject to discussion and change. For simplicity, the likelihoods chosen
here happen to be the same across all key process areas; this could be a matter of
debate.

An application of the entries of Appendix B to the recursive classification
scheme of Section 5.3.2 results in the probabilistic classification shown in Table
5.2.

From Table 5.2 we see that our classification assigns the largest probability
at level 2, and that the probability at level 1 is not much smaller. The probability
that the highest level attained by this developer is 3 or greater is small, namely,
0.1270 (= 0.0979 + 0.0281 + 0.001).

Thus to conclude, we have described the probabilistic approach for
classification based on a hierarchical structure. The problem of classification in a
hierarchy is a generic one, and arises in the contexts of quality control (supplier

188 5. Software Productivity and Process Management

rating and defect classification), personnel management, educational placement,
and perhaps even medical diagnosis. What distinguishes our probabilistic
scheme from the prevailing (deterministic) ones, is that here there is a
probability that an item belongs to a particular class, and these probabilities are
spread out among all classes. Such probabilities reflect the inherent uncertainties
behind the underlying information that is used to make the classification. The
probabilistic approach mentioned here has the attractive feature of adaptivity.
That is, the classification can be updated in the light of new information via
Bayes' Law. The current classification serves as a prior, which with the
likelihoods and new information provides an updated (i.e., posterior)
classification. Finally, the proposed approach can be enhanced by a
consideration of multinomial (instead of the binomial) responses, and the
likelihood function can be used as a device for giving weights to those questions
that are deemed more important than the others.

5.4 Chapter Summary

The purpose of this chapter is to show how statistical techniques can be used
to manage the software development process, be it for productivity assessment or
for source selection.

When software productivity data can be indexed, as in a time series, then
growth-curve models can be used to track the data for trends, and for making
projections. There is a vast amount of literature on growth-curve models and
consequently the choice of models is large. However, for purposes of
illustration, we selected a simple power rule model, and motivated its relevance
for monitoring software productivity. The chosen model when suitably
transformed is a random coefficient autoregressive process which, we recall, is
also one of the dynamic linear models used to describe software interfailure
times. A Bayesian approach for inference and predictions using this model was
described by us, and this was illustrated via an application to real data on the
times taken to develop a line of code. The bulk of our discussion pertained to
guidelines for choosing priors for the model parameters.

The second part of this chapter focused on the Capability Maturity Model
(CMM) that is widely used in government and industry to select and to rate
software development houses. As currently practiced, the CMM requires binary
responses to a series of questions about the software development process, and
uses these to classify an organization into one of five categories. The categories
form a hierarchy, and the classification is done with certainty. The problem
described previously is quite generic; our discussion of course centered around
software development. The approach described by us enables one to classify
probabilistically, and this is the key feature of the material presented here.
Classification with certainty is a limitation. The probabilistic classification is
based on a repeated application of the law of total probability and a series of
assumptions about independence. The hierarchical structure of the problem
simplifies the computation. Bayes'Law comes into play during several phases of

5.4 Chapter Summary 189

the development and the priors and likelihoods are based on the available
experience of those who have performed such ratings over a broad spectrum of
industries. We illustrated the workings of our approach via a consideration of
data from a real scenario.

190 5. Software Productivity and Process Management

Exercises for Chapter 5

1. Verify Equations (5.4) through (5.6) of Section 5.2.2.

2. Analyze the data of Table 5.1 assuming:

(i) a strong commitment to the proposed model of Section 5.2.1, but a
strong prior opinion that there is a growth in productivity;

(ii) a weak commitment to the proposed model of Section 5.2.1, but a
strong prior opinion that there is neither growth nor decay of
productivity.

Discuss your choice of prior parameters and contrast your results with
those of Section 5.2.3. Based on your comparisons, would you judge
the approach of Sections 5.2.1 and 5.2.2 robust to prior assumptions?

3. In Section 5.3.2 we assumed that for the (ij)th key process area, the nij

responses R ijl , •.• , Rijn;i' are conditionally independent. Show how
Equation (5.9) for P(Mi I R) would change if instead of the conditional
independence mentioned previously, we assumed exchangeability of the
Rijl' . . . , Rijn;r To address this question you will need to propose a
simple model for the exchangeability of Bernoulli random variables.

4. Address Exercise 3 if instead of exchangeability you are required to
assume that the Bernoulli variables are dependent, the dependence
described by a first-order Markov chain. Propose a simple Markov
chain model, and assume any values for the underlying parameters.

5. Repeat the analysis of Section 5.3.3 by assuming the dependence
structure of Exercises 3 and 4, and the appropriate data from Appendix
B. What effect does the dependence have on the classification given in
Table 5.2?

6
THE OPTIMAL TESTING AND

RELEASE OF SOFTWARE

6.1 Background: Decision Making and the Calculus of Probability

In Chapters 3 and 4 we have described how probability models can be used
to quantify uncertainties about the software failure process, and to make
predictions about failure times. In Chapter 5 we have seen how probability
models can be used to predict productivity, and how the calculus of probability
can be used for the classification of software development houses. However, the
quantification of uncertainty, inferences from failure data, and the placement of
software houses are not necessarily the final goals of an engineering endeavor.
Rather, they are intermediate steps for taking actions or making decisions, and
these are characteristic of an engineer's activities. The consequences of such
decisions depend on the outcomes of uncertain quantities. The making of
decisions under uncertainty is the aim of statistical decision theory, be it based
on the Bayesian or the frequentist paradigm. Thus statistical decision theory has
a natural place in software engineering, and indeed in the general area of design,
engineering, and manufacturing [ef. Singpurwalla (1992), (1993), and (1998c)].
The purpose of this chapter is to give an overview of the key elements of
decision theory, and to describe how this theory can be used to address a basic
concern that software engineers face.

Decision theory is intimately associated with probability. Although
probability theory is a coherent method of quantifying uncertainties, decision
theory tries to build an analogous approach to the problem of making decisions.
Most commonly, we make decisions in an atmosphere of uncertainty, not

N. D. Singpurwalla et al., Statistical Methods in Software Engineering
© Springer-Verlag New York, Inc. 1999

192 6. The Optimal Testing and Release of Software

knowing the consequences of the decision; in software engineering, decisions
under uncertainty might include the selection of an organization to write
software, the uncertainty being the capability of the tendering companies, or
choosing when to release software, the uncertainty being the reliability of the
code. In this chapter we focus on aspects of the latter; the former needs
development and is a topic for future research; also see Exercise 1.

The testing phase of software development is central to the production of a
reliable system, and an important question for the software engineer to address,
at the start of this stage, is how much time should be devoted to this process. The
optimal testing time is a function of many variables: size of the software, level of
reliability desired, personnel available, market conditions, and penalties of in
process failure.

One purpose of the testing phase is to satisfy the development team that the
software is operating satisfactorily. This will involve subjecting the software to a
variety of inputs in order to see if it is producing the required output; during this
process, errors are observed, located, and eliminated. Due to the very large
number of possible inputs into the software, exhaustive testing is almost never
feasible, and so only a certain number of the possible inputs are tried. Even so,
debugging the software to be highly reliable could take a long time. Balancing
the desire for high reliability are criteria that favor a short testing time, such as
the cost of testing and debugging, and the risk of product obsolescence. The
testing time that is chosen should be a compromise between these two sets of
conflicting criteria.

Finding the optimal testing time is a decision problem; we must make a
decision as to the time we feel that it is best to test. Since we must make our
decision before testing begins (and so before we observe any data on software
failure), this decision-at least initially-must be made using our prior
knowledge of the performance of the software, and the costs and consequences
of the testing procedure. Also, decision theory is ideally suited to sequential
testing, where a decision is made after the first testing stage on whether to
continue further testing. This second decision should be made in light of what
has happened in the first stage, and decision theory provides a method of
incorporating this new information.

In Sections 6.2 through 6.4 we give an overview of the key elements of
decision theory, from a Bayesian point of view. This is followed by an
application of this theory to the problems of software testing mentioned
previously.

6.2 Decision Making Under Uncertainty

A piece of software has been developed and is ready to enter the testing
phase. Before testing begins, a management decision must be made as to the
length of time it should be tested. Too short a testing time will result in
unreliable software being released to the user, with the attendant costs of

6.2 Decision Making Under Uncertainty 193

postrelease fixing of bugs and loss of consumer confidence. Conversely, too long
a testing time adds to the cost of the project and risks product obsolescence. In
between these two extremes is a time that most effectively balances these
competing costs; this will be the optimal time to test.

Optimal testing is therefore a decision problem and, like most decision
problems, can be divided into three components.

Actions

There is a set of available actions or decisions that we can take. This set may
be discrete or continuous; the decision problem is to choose the "best" action
from this group. In software testing, the actions are all the times that it is
possible to test for, together with the action to release the software to the user,
without further testing.

States of Nature

These are the parts of the problem that are unknown or outside the control
of the decision maker. The state of nature will reveal itself only after a particular
action is taken, and will affect the outcome of that action. As the states of nature
are uncertain, it will be necessary to assign probabilities to them. Here, the states
of nature are the unknown quantities related to the performance of the software
and the testing phase, such as the number of bugs discovered by the testing team
and the number of bugs that remain after its release.

Consequences

Associated with every action and state of nature combination, there is an
outcome or consequence. This is the final result of a particular action and a
particular state of nature. Often, the consequences will be monetary (profit or
loss), but not necessarily. As with uncertainty, it will be necessary to somehow
quantify the consequences, especially when they are qualitative, such as
customer satisfaction. As with probability, this is done by subjectively assigning
a number to each consequence called its utility. With software testing a utility is
based on the costs of testing plus the consequences of an in-service failure or
success.

The general approach to a decision problem is to enumerate the possible
actions and states of nature, assign probabilities and utilities where needed, and
use these assignments to solve the problem by producing the "best," or optimal,
action. The assignment of probabilities has been discussed at length in previous
chapters. That leaves two more issues to address: assigning utilities, and the
definition of what constitutes the best action.

194 6. The Optimal Testing and Release of Software

6.3 Utility and Choosing the Optimal Decision

We have alluded to the need to numerically express the consequences of a
decision problem. This is done by assigning a utility to every possible outcome.
A utility describes the worth of the given consequence to the decision maker and,
together with probability, must be assessed before an optimal decision is found.
Thus, like probability, a utility must be interpreted as a subjective quantity,
depending upon the individual (or group of individuals) making the decision.
This is only natural since, in a particular decision, it is perfectly legitimate for
two people to have different priorities, and so they assess the worth of the
consequences differently. The concept of utility dates back to the times of
Nicholas Bernoulli and the St. Petersburg paradox. Its role in decision theory
was laid out by many of the people who promoted subjective probability, such as
de Finetti (1974), Ramsey (1964), and Savage (1972). Hill (1993) contains a
narrative on the development of utility theory.

6.3.1 Maximization of Expected Utility

Consider a decision problem where there are m possible actions ai, a2, ... ,
am and n possible states of nature Slo S2, ••• , Sn. If action ai is chosen, then we
denote the probability that Sj occurs by Pij. Suppose that after choosing action ai,
the state of nature Sj occurs, and consequence Cij results. We denote the utility of
that consequence by U(cij), for some utility function U that maps Cij into [0, 1]. It
is important to note that U(cij) should map into a bounded interval, say [a, b]; the
bounded interval can then be transformed to the interval [0, 1].

The optimal action is that which yields the highest utility to the decision
maker. Since it is not known which state of nature will occur when an action is
taken, this utility is unknown. However, we can calculate the expected utility of a
particular action, say ai, using the probabilities Pij as

n

E(U(ai» = L PijU(Cij) , (6.1)
j=l

for i = 1, ... , m. We choose that action for which the expected utility is a
maximum. Thinking of utility as a monetary gain, this translates to saying that
we pick the action that, in our opinion, has the greatest expected profit (or
perhaps smallest expected loss). This is called the principle of maximization of
expected utility, and is the decision criterion for choosing a decision under
uncertainty. The principle generalizes in the usual way when there are a
continuum of possible actions and possible states of nature; the Pijs are replaced

6.3 Utility and Choosing the Optimal Decision 195

Table 6.1 A Simple Decision Table

States of Nature
Action S) S2 E(U(aj»

a) $100,000 - $1,000,000 45,000

a2 $1 - $10 0.45

by densities, and one obtains expected utilities by integration. Differential
calculus can be used to find the maximum of the expected utility.

There are strong mathematical arguments that back this principle as a
decision rule. These arguments rely on the concept of coherence; roughly
speaking, any other decision rule lacks the property of coherence and leaves the
decision maker vulnerable to making decisions where loss is inevitable (a so
called Dutch book). Lindley (1982b) discusses coherent decision making in
detail, and shows that the principle of maximization of expected utility is a
consequence of the laws of probability, once utility is viewed as obeying the
calculus of probability.

6.3.2 The Utility of Money

Since we are often concerned with decisions whose outcome is measured
financially, it is important to remark that utility is not necessarily linear in
monetary value; that is, the utility of x is not necessarily x, or some linear
function of x. To see why, consider the simple decision problem described in
Table 6.1. There are two actions, al and a2, and two possible states of nature, Sl

and S2. The entries in the table enumerate the consequences of each possible
decision and state of nature. For example, if the decision maker chooses action
a2 and the state of nature turns out to be Sh then the decision maker stands to
gain $1. Suppose that we assess the probability of SI occurring to be 0.95 and of
S2 to be 0.05, regardless of which action we take. If we assume that the utility of
$x is x then, by employing the principle of maximizing expected utility, we see
that action 1 is the preferred one, it having an expected utility of 45,000,
compared to action 2 whose expected utility is only 0.45.

However, we would argue that one would not choose al because one could
not afford to lose $1,000,000, even though the chances of winning $100,000 are
high. Instead, we would "play safe" and decide on a2. Such behavior is known as
risk aversion and can be modeled by assuming a utility function that is concave;
typical examples would be U($x) = 1 - exp(- xlr), for a constant r, or
U($x) = log(x), for positive x. Risk aversion is also the reason why one buys
insurance at a premium to the expected monetary loss of the item to be insured.

196 6. The Optimal Testing and Release of Software

Other forms of behavior towards risk are possible. The opposite of risk
aversion is risk proneness, where the decision maker actively seeks out risky
situations. Buying a ticket in a lottery is an example of risk-prone behavior, since
the expected financial gain from a lottery is less than zero. Risk proneness is
modeled by a convex utility function. Finally, there is risk neutral behavior,
where one's utility of money is in fact linear. It is important to note that in the
preceding example, the states of nature are not influenced by the action taken. In
many examples, for instance, the testing of software, the action taken, such as
debugging during testing, will have an influence on the state of nature. The
attributes of risk aversion and risk proneness are apparent in the software
industry wherein some organizations tend to release software that is knowingly
not thoroughly tested.

6.4 Decision Trees

A decision table, such as Table 6.1, is a natural way of representing a
decision problem. Although the table is a useful device for laying out the various
ingredients of the problem, it does not show its evolution over time, from the
action taken to the state of nature occurring, to the final outcome. Being able to
show this progression is a valuable aid to visualizing the decision process,
particularly in more complex decision problems. This is especially so when there
may be a sequence of actions and states of nature before a final outcome is
reached.

A decision tree is one way of graphically portraying a decision problem so
that this temporal progression is captured. A decision tree is like a directed
graph, composed of nodes and branches as in Figure 6.1. This figure shows the
decision tree associated with the decision problem of Table 6.1.

Whenever a decision is to be made, there is a decision node in the tree,
denoted by a square box. Branches that sprout from this box represent the
various possible actions that can be taken. The revealing of a state of nature
pursuant to an action is represented by a random node, denoted by a circle.
Branches sprouting from a random node represent the various possible states of
nature that might occur, each with its attached probability. The terminus of a tree
denotes the utility associated with the consequence resulting from the path of
actions and the states of nature in that branch.

A probability must be assessed for each branch that emanates from a
random node. If a decision tree contains more than one random node [see, e.g.,
Figure (6.2)], then the probabilities assessed at a node should be conditional on
1£, and the path of all actions and all outcomes from the nodes that precede it.
Since the outcomes from all the nodes, the node of interest and its predecessors,
are unknown at the time a decision is made, we have to average the outcomes
with respect to their probabilities. This can be a formidable task; it is called a
preposterior analysis [cf. Lindley (1972), p. 21]; see Section 6.6.1.

6.4 Decision Trees 197

Sl • Zf($ 1 00,000)

S2 • Zf(-$l,OOO,OOO)

.01

SI • Zf($l)

S2 • Zf(-$10)

FIGURE 6.1. A Simple Decision Tree.

6.4.1 Solving Decision Trees

Once a decision tree has been constructed, the optimal decision (i.e., the
action that maximizes expected utility) can be obtained by a sequence of steps
that are akin to "pruning" the tree back to its root. Starting from the terminating
branches and working backwards, branches and the nodes of the tree are
eliminated in the following way.

• Each random node and its branches are replaced with the node's
expected utility, which is the sum of the product of the probability
and the utility of each branch emanating from the node.

• At each decision node, the action that has the maximum expected
utility is identified and all the other branches of that decision node
are removed.

This pruning continues until we have reached the leftmost node. We are left
with the optimal expected utility, and a path through the decision tree that shows
the optimal decision. This method of solving decision problems is of particular
use when the decision problem is multistage, that is, with a sequence of decision

198 6. The Optimal Testing and Release of Software

and random nodes following each other. In this more complex type of tree, we
may have a sequence of actions to take, depending on the outcome of
intermediary random nodes, so the solution is not an optimal action but a policy
of what to do at each eventuality.

Thus, for example, in the decision tree of Figure 6.1, at the random node
labeled nJ, we compute the expected utility U(nl) as 0.95 x (100,000) +
0.05 x (- 1,000,000) = 45,000; similarly, at n2 we obtain U(n2) = 0.95 x (1)
+ 0.05 x (- 10) = 0.45. At the decision node labeled VI, we choose the larger
of U(nl) and U(n2) which is 45,000, so that U(VI), the expected utility at 'OJ,
is 45,000. This corresponds to action ai, which is our optimal decision.

6.5 Software Testing Plans

Returning to the problem at hand, we first describe a variety of different
ways in which one may organize the testing phase of software. The simplest is
one-stage testing, where a decision is made that the software is to be tested for a
period of time T and then released, regardless of the results of testing. The only
decision to be made is the size of T. Most of the work on testing procedures has
addressed this form of the problem, which can be represented by the decision
tree of Figure 6.2. Here, the multiple arrows issuing from a node indicate that
more than one decision is available, or that more than one state of nature is
possible. In this tree, the first decision node VI refers to the decision on T, how
long to test, followed by the unknown consequences of testing, where N(T), an
unknown number of bugs, are discovered and corrected. Then comes '02 , the
decision to release the software, followed by the unknown results of release, with
N - N(T) bugs discovered by users. Subsequent to the preceding, a final utility
U[T, N(T), (N - N(T»)] for the testing and release of the software is realized. We
are assuming that the terminal utility depends only on (N - N(T») and not the
times at which these bugs are encountered.

An elaboration of the preceding is two-stage testing, where a second stage
of testing is conducted after the first, but only if needed. The decision is to
choose (in advance of testing) the length of the two testing periods, say TI and
T2, and a criterion for deciding whether to release after the first test, or to
proceed with the second; this criterion is influenced by N*, the number of bugs
observed in the first test period. The choices TI , T2, and N* are made prior to the
first test. Figure 6.3 is an example decision tree for a two-stage test, where the
second stage is only conducted if more than N* bugs are observed in the first
stage. One can of course extend this type of plan to three or more stages.

A common feature of both the one- and the two-stage tests is that all
decisions are made before any testing occurs, on the basis of prior information
alone. However, the decision to proceed with the second stage is based on the
information gained in the first stage. The results of testing are not incorporated
into the decision criteria. This is in contrast to sequential testing, wherein the
number of stages to test is random, and the decision on whether to test, and if so

6.5 Software Testing Plans 199

~1 Utility

Decide on
Test Time T

Bugs
Observed
During Test Release

U[T,N(1), (N - N(1)]
Bugs
Observed
After Release

FIGURE 6.2. One-Stage Testing.

for how long, is made at the completion of the previous stage. This allows the
incorporation of information that becomes available during the previous testing
stages into the decision process. A decision tree with the first two stages of a
sequential test is given in Figure 6.4. Note that the decision tree continues at the
top right to a third testing stage; indeed, the tree is actually infinite in extent, as
we do not know beforehand how many stages of testing may be required.

The sequential testing plan seems to be the most satisfactory, because it
allows for any number of stages and can adapt to experience gained from earlier
testing periods. However, the infinite nature of the sequential testing tree
presents a problem, since the solution of the tree requires us to peel back the
branches of the tree from the terminal nodes, an operation that is not possible for
a tree whose terminus is not known. Another way of thinking about this is to say
that at any stage, the decision to test and for how long must take into account the
possibility of an unknown number of further stages. Although theoretically
unsatisfactory, in practice one can impose some upper bound on the number of
testing stages allowed so that there is some stage after which release must take
place. But, for even a moderately small upper bound on the number of testing
stages, the resulting decision tree for the sequential plan can be large and
difficult to solve, because of the successive expectations and maximizations that
are required.

One proposal, that avoids the preceding computational difficulties, is to
consider each testing stage on its own, that is, a testing plan that is simply a
sequence of single-stage tests. At each stage, the decision must be made to
release or to test, and information obtained from previous tests is used. In
contrast to single-stage testing, described before, we call this one-stage look
ahead testing, to reflect the fact that decisions are made without an accounting of
all the possible future stages of testing. Such plans are a lot easier to implement,
and still have the advantage of incorporating information learned through the
testing process. One-stage lookahead plans cannot be represented as the full

.2
)1

D
ec

id
e

T
es

t
T

im
es

 T
],

T
2

,

an
d

S
ec

on
d

S
ta

ge

C
ri

te
ri

on
 N

*

n
B

ug
s

A
re

D

is
co

ve
re

d
in

 S
ta

ge
 1

N
o

.2
)2

R
el

ea
se

?

B
ug

s
A

re

D
is

co
ve

re
d

in
 S

ta
ge

 2

R
el

ea
se

F
IG

U
R

E
 6

.3
. T

w
o-

S
ta

ge
 T

es
ti

ng
.

B
ug

s
A

re

D
is

co
ve

re
d

A
ft

er
 R

el
ea

se
 U

ti
li

ty

U
ti

li
ty

N
 8 ?
' ;i

(1
) ~

§'o

a ~ ~.
 8- ~

0- ~

(1
) o,

CZ

l
o ::P

:E @

D
ec

id
e

T\

D
ec

id
e

T3

.2
)\

U
ti

li
ty

U
ti

li
ty

F
IG

U
R

E
 6

.4
. S

eq
ue

nt
ia

l
T

es
ti

ng
.

?
'

V
I

en

o :::>

~
 @

~

~

S"

(J
Q

'"0

[en

N
 o -

202 6. The Optimal Testing and Release of Software

blown decision tree of Figure 6.4, because of the lack of dependence on the
future; they are an approximation of the sequential testing plan. However, under
certain testing scenarios and conditions, it can be proved that one-stage
lookahead tests are optimal in the sense that it is sufficient to look to the next
stage and no further, in deciding whether to release; see, for example, Theorem
6.1.

Other types of one-stage lookahead plans are also possible. In the fixed-time
lookahead plan, a sequence of times is specified at which testing is to stop and,
when each time is reached, a decision is made whether to release or test until the
next time in the sequence. These times may correspond to each day or week of
testing. In one-bug lookahead plans, testing is conducted until a bug is found and
fixed, at which point it is decided whether to release or continue testing until
another bug is found.

As discussed before, there are two parts to a decision problem that must be
assessed: the utility model (to quantify the economic aspects of the situation),
and the probability model (to quantify the random aspects of the situation). The
optimal action is to take the decision that maximizes expected utility. The rest of
this chapter gives some examples of optimal testing under different probability
models and utilities, and the different testing plans that have been described. In
this way, we endeavor to give a fairly broad picture of the types of optimal
testing that might be considered. We should mention that other approaches to the
problem, that often lack the decision-theoretic character described here, have
been proposed in the literature. Some suitable references are Dalal and Mallows
(1988) (1990), Okumoto and Goel (1980), Ross (1985a), Forman and
Singpurwalla (1977), Yamada, Narihisa, and Osaki (1984), and Randolph and
Sahinoglu (1995). Clearly, this is an important issue where more research is
needed.

It is also useful to note that there exists related work, not necessarily
directed towards software testing, that is germane to the problems discussed
here. For example, the work of Benkherouf and Bather (1988) on oil exploration,
that of Ferguson and Hardwick (1989) on stopping rules for proofreading, the
work of Efron and Thisted (1976) on estimating the number of unseen species,
and the work of Andreatta and Kaufman (1986) on estimation in finite
populations.

6.6 Examples of Optimal Testing Plans

6.6.1 One-Stage Testing Using the lelinski-Moranda Model

As one of the most commonly discussed models, we now investigate the
one-stage test using the Jelinski and Moranda model of Section 3.2.2. Recall that
the ith failure time is exponentially distributed and has mean (A(N - i + 1»-1,
where N is the total number of bugs in the code and A is a constant:

6.6 Examples of Optimal Testing Plans 203

P(Ti ~ tiN, A) = e-A(N-i+l)t. (6.2)

When statistical inference for this model was discussed in Section 4.2.3, we
considered as a prior for N, a Poisson distribution with mean (), and as a prior
model for A, a gamma distribution with parameters a and /3.

The decision tree for one-stage testing under this model was given in Figure
6.2, but with the model in place we can be precise about what is observed at the
random nodes. Following a decision to test for a time T, suppose that N(T) bugs
are observed, with interfailure times ti, i = 1, ... , N(T), and a final period of

length T - L:~ t; in which no bugs occur. Thus the random quantities at node

RI are [tl' ... , tN(T) , T- L:~ti' N(T)]. There is a chance that N(T) = 0, in
which case the data consist only of N(T) = O.

After testing for time T, release occurs. The second random node Rz
generates the number of bugs, say (N - N(T», that are discovered after release.
The distribution used to describe this number must be conditional on all the
random events and decisions that have occurred prior to reaching Rz; in other
words, the distribution over all the possible outcomes at the node is the posterior
distribution for the number of remaining bugs N - N(T), given the data from the
testing phase. Using arguments similar to those used in Section 4.2.3, we can
show (see Exercise 3) that the posterior distribution of N is

peN = n I t1, ••• ,tN(t), T - ~)i' N(T»

We-BOn (a + tT + (n - N(T»T)-«(3+N(T») (6.3)
(n-N(1)! '

where W is a normalizing constant, and

t=
{

0,

+ L:~ (N(1)-j + l)tJ , otherwise.

if N(T)=O,

(6.4)

We note that only T, N(T), and t are needed from the branches of the tree to
specify the posterior distribution. Thus, from now on, we denote the data from
the testing stage as (t, N(T», where t is as previously defined.

Specification of a Utility Function

The costs and benefits of testing software fall into two groups: the cost of
testing and removing bugs during the testing phase, and the cost of leaving bugs

204 6. The Optimal Testing and Release of Software

F(T) F(T) F(T)

o T o T o

FIGURE 6.5. Candidate Shapes for Testing Cost F(T)
Versus Testing TimeT.

T

in the code that are discovered after release. As regards the testing phase, we
assume that there is a fixed cost C associated with removing each bug
encountered, so the cost of fixing bugs is C· N(T). The other costs of testing for
a time T are quantified by an increasing function of T, say F(T). This function is
supposed to account for other costs that are a function of time, such as payment
to staff, possible penalties for late release, and the "opportunity cost" of not
releasing the software. Even though this function is difficult to specify, there are
several possibilities: linear, with F(T) = f x T; a power law, with F(T) = f x Tg;
linear up to a threshold, say tmax , and infinite beyond (so that the testing period
has a deadline); or linear initially and then exponential to reflect the increasing
costs of product obsolescence. These forms are illustrated in Figure 6.5; they
have been suggested by Dalal and Mallows (1990).

After release, we assume that the costs of encountering and eliminating bugs
are on an exponential scale; that is, if N (T) is the number of bugs found after
testing to T, then the disutility of the N (T) bugs is DJ - D2exP (- D3N (T»),
where D), D2, and D3 are nonnegative constants. Thus if a large number of bugs
are discovered after release, then the cost is D), and if none are discovered the
cost is D) - D2• It is meaningful to suppose that D2 equals D), and that D) is
large.

Finally, we may also include a discounting factor e-hT to account for the
fact that these costs are incurred at a future date. Thus U[T, (t, N(T»), N (T)], the
utility of testing for a time T, during which time data (t, N(T») are observed, and
then releasing after which N (T) bugs are discovered, is

(6.5)

where CJ, DJ, D 2 , D3, h > O.
The preceding specification is for a very simple model of utilities; it can be

criticized on several grounds. For one, the model supposes that each bug is
equally costly to fix. For another, it assumes that the disutility of bugs discovered

6.6 Examples of Optimal Testing Plans 205

after release is independent of the time at which they are encountered. We would
expect that bugs discovered during the latter phases of a software's lifecycle
would have a smaller impact on customer goodwill than those discovered early
on. However, the proposed model has the advantage of tractability, and allows us
to illustrate the workings of the general principles. The model can be extended to
represent other more realistic scenarios. It is useful to note that the notion of time
does not necessarily mean clock time-the CPU time may be a better standard.
But no matter what time scale is used, the entities F(T), N(T), and IV (1) convey
the same message.

Armed with a probability model and a utility function, we can now solve the
single-stage problem. Recall that this involves peeling back the branches of the
tree, taking the expectation over random nodes, and taking the maximum utility
over decision nodes. The process starts with taking the expectation over IV (1),
the number of remaining bugs, using the posterior distribution, and continues
with taking the expectation over the distribution of N(1) and t. This gives an
expected utility for testing to any time T, denoted by U(T), and U(1) turns out to
be [see Singpurwalla (1991) for details]

t. (1. { ~U(T' (t, N(1) ~ k), N (1) ~}) W"; ",.) (<> + tT + j1)-<P>k) }

+ ({ ~U(T, (t ~ 0, N(1) ~ 0), N (1) ~}) W'j;'9i (<> + j1)-P }

{ foo -AT e-"),(aA)f3-1 })
X Jo exp(- 0(1 - e » r(,B) adA , (6.6)

where

206 6. The Optimal Testing and Release of Software

(6.7)

(6.8)

ko is the integer part of t, and the range of integration for t is ko < t < ko + 1,
for each ko = 0, 1, ... , k - 1.

Although Equation 6.6 looks formidable, its numerical evaluation is not too
difficult, and maximization with respect to T is made easier by the observation
that U(T) is generally unimodal. The complicated nature of Equation (6.6) is
brought about by the required preposterior analysis which requires us to average
out the quantity t; see Equation (6.4). An extension of this model to the two
stage testing plan is discussed in Singpurwalla (1989b).

6.6.2 One- and Two-Stage Testing Using the Model by Goel and Okumoto

Optimal testing using the model of Goel and Okumoto turns out to be
considerably more tractable than that involving the lelinski-Moranda model.
This is because here we monitor only the number of failures, and not the times of
failure. Indeed, under a simple utility function one can even obtain a closed form
solution to the one-stage test. Solutions for the two-stage and also the one-stage
lookahead tests require only a moderate amount of numerical computation.

Recall (see Section 3.3.1) that in the Goel-Okumoto model, bugs are
encountered as a Poisson process with a mean value function a(1 - e-bt).

Following the strategy of Section 4.2.4, we place independent gamma priors on
the parameters a and b; that is, given >., T, 0:, and f../" we let

7r(a b) = (L ar - 1 e-Aa) X (L bJ.£-1 e-ab) (6.9)
'r(r) f(J.£) •

In Section 4.2.4, expressions for the posterior distribution of a and b were also
given.

A simple utility function, very similar in form to that used in the previous
example, is also adopted here. Testing for time T, where N(T) bugs are
discovered and fixed, followed by release where N (T) bugs are discovered, the
utility function is

U[T, N(T),]Ii (T)] = P - ex N(T) - D x]li (T) - fx Tg, (6.10)

6.6 Examples of Optimal Testing Plans 207

where P is the profit associated with releasing a perfect code without any testing
(i.e., with T = 0), D is the cost of fixing a bug after release (typically, D > C),
and f x Tg represents, as before, the cost of lost opportunity when testing to time
T. This form of the utility function is similar to that used by Dalal and Mallows
(1988) in their famous paper on the optimal time to release software.

For the case of a one-stage test, it can be shown (see Exercise 4) that the
expected utility has the simple form:

U(T) = E[U (T, N(T), N (T»]

(6.11)

It is now easy to show that U(T) has a unique maximum at T*, and that T*
satisfies the equation

(6.12)

For g = 1 (i.e., if the cost of testing and of lost opportunity is linear in T), then
we can obtain an explicit formula for T*, namely,

* _ [(m(D-c») 11(0+1)]
T - J.L)"J.Lf - 1 ; (6.13)

the details are in McDaid and Wilson (1999).
Observe that T* is a function of the parameters of the distribution a with

only the difference (D - C), the costs of fixing a bug in the field and in the test
environment. Also, T* is a function of the parameters of the distribution only
through its prior mean r/>", and that T* increases as r/>" increases.

In the case of a two-stage test, the software is initially tested for a time T), at
the end of which N(T) bugs are encountered. Then a decision is made to release
the software if N(T) is less than N*, our predetermined decision criterion. Once
the software. is released it may experience N (T) failures in the field. This
sequence of events results in a utility U) [T), N(T), N (T)]. If N(Td is equal to
or greater than N*, the software is tested until time T2, where T2 > T), and then
released. Let N(T2) be the cumulative number of bugs encountered when testing
until T2, and N (T2) the number of bugs experienced by the software in the field.
This latter sequence of events results in a utility U2[TJ, N(T), T2, N(T2), N (T2)].

The decision at node 1)) is to choose T), T2 , and N* such that the expected
utility

N'-(00

L L U1[Tt. N(T1), N (T1)] X P(N(T1), N (T1» +
N(T,)=O N(T,)=O

208 6. The Optimal Testing and Release of Software

00 00 00

L L L U2[T1, N(T1), T2 , N(T2), N (T2)] X

is maximized.
In choosing the utility functions U\ and U2 we adopt forms that are identical

to that chosen for the one-stage case. Specifically,

- g
D x N (T1) - I X TJ '

and

= p - C x N(T2) - D x N (T2) - I x Tf.
Thus the decision at node V\ boils down to finding those values of T\, T2 , and
N* that maximize

p- Ix Tf Cr (D-C)r (p,) a
T - --A- p,+T2

over T\ > 0, T2> Tb and N* = 0, 1,2, Let us denote these optimal values
* * -* by T\ ' T2 , and N ,respectively.
The preceding maximization can be done numerically. Observe that the

foregoing expression will degenerate to a one-stage equivalent if T; turns out to
~.

be zero, or if N turns out to be infinite.

6.6 Examples of Optimal Testing Plans 209

Eliciting Parameters of the Prior Distribution and the Utility Function

It is evident from Equations (6.12) and (6.13) that decision making in a
single-stage testing environment depends solely on the prior parameters and the
constants in the utility function. Thus it is crucial that these quantities be
judiciously elicited and selected.

A simple approach for eliciting the prior parameters is as follows. To start
with, a location (mean) m], and spread (standard deviation) s], are assessed for
the total expected number of bugs that will be discovered over the lifetime of the
software. These quantities are then equated to E(a) = r/>', and Var(a) = r/>.2,
respectively. This implies that

(6.14)

To help specify ml and s], we recall that several empirical formulae for the
number of bugs per line of code, for different languages, have been proposed;
see Section 4.3.4 on the elicitation of priors for the logarithmic-Poisson model of
Musa and Okumoto (1984).

To specify a and j.L, a time T' is selected, and a location m2 and spread S2 are
elicited for A(T'), the expected number of bugs that are discovered by T'. A
good choice for T' may be the software development team's initial estimate of
the testing time, prior to any calculations. We equate m2 to E[A(T')], where

E(A(T'» = E(a(l - e-bT'»

= E(a) (1 - E(e-bT'»
(6.15)

and s~ to Var(A(T'» which, after calculations similar to those of Equation 6.15,
becomes

Var(A(T'» = (st + m!) [1 - 2(*,) 0 + (Jj~T') oJ

(6.16)

Equations 6.15 and 6.16 are then solved numerically to obtain the
parameters a and j.L. As with the elicitation for the Musa and Okumoto model,

210 6. The Optimal Testing and Release of Software

260

250

240

~ 230
w

220

210

200
0 100 200 300 400

T

FIGURE 6.6. Expected Utility for the Single-Stage Test.

the elicited values ml, Sl, m2. and S2 may be elicited from an expert and can be
modulated by the analyst.

As regards the parameters of the utility function, one might start with g, the
exponent of the opportunity cost function. A linear or quadratic cost would
suffice in most situations, restricting this to a choice of g = 1 or 2. Arbitrarily
designating the in-testing fix cost as C = 1, one can then think about how many
times more costly it would be to fix a bug after release; this is D. The profit P
associated with releasing a perfect code can also be assessed as a multiple of C.
Finally, to elicit a value off, one might look at X, the opportunity cost oftesting
to a certain time in the future, say ro; equating X to / x Tg implies that
/ = XI«ro)g). As with the prior parameter elicitation, we may take ro to be the
time until which it is thought testing might continue.

D1ustrative Example

Suppose that a software testing team is deciding on the length of time to test
a piece of software. They decide that the opportunity cost function is linear, so
g = 1. Specifying C = 1, they decide that the cost of fixing bugs after release is
10 times C, so D = 10, and that the profit of the perfect software is 500C, so
P = 500. Finally, for the value off, they look at X, the opportunity cost of testing
to a time ro = 20, and decides that it is IOC; thus/is 0.5.

As regards the parameters of the prior probability, the team decides, perhaps
with the aid of the formulae given earlier, that they expect 30 bugs in the code,
but that the uncertainty in this figure is quite large, so they set ml = 30 and
Sl = 5.5. Using the Equations (6.14) yields r = 30 and A = 1. Looking at the

6.6 Examples of Optimal Testing Plans 211

number of bugs to be discovered by time ro = 20, they decide that it will be
between 0 and 5, finally settling on mz = 2.8 and Sz = 1.3, from which solutions
of Equations (6.15) and (6.16) yield a = 5 and /-l = 1000. In Figure 6.6 we plot,
for these values of the prior parameters and the constants, E[U(T, N(D, N (D)]
as functions of T. The value of T, say T* at which the preceding expected utility
is a maximum is about 180. We emphasize that this value of T* is based on prior
information alone.

For the utility and the prior parameters that we have used in the illustrative
example discussed before, the optimal two-stage strategy turns out to be

~* T; = 116.5, T; = 188.9, and N = 8. It is instructive to note that with one-stage
testing, the optimal strategy resulted in T* = 180. Therefore, a consideration of
a two-stage strategy has resulted in the reduction of the first- stage testing time
from 180 to 116.5. This is reasonable because the anticipation of a possible
second-stage testing provides us with a cushion of a smaller first-stage testing.

6.6.3 One-Stage Lookahead Testing Using the Model by Goel and
Okumoto

The mathematical simplicity of this model allows us to design a one-stage
lookahead test quite easily. By way of notation, define Tj* to be the optimal time
as measured from 0, at which testing is to stop for the jth stage of testing. With
this notation, testing stops and the software released at the first stage j for which
Tj* :::; Tj*-l. Note that it is conceivable to obtain Tj* < Tj*-l' since this feature
implies that we may have already tested more than what is necessary.

The first stage of testing in the one-stage lookahead scheme would be to use
the prior distributions on a and b, so that T; is the solution to the single- stage
test, based on Equation (6.12). After the first stage, suppose that stage j, j ~ 2,
has been completed and a totality of nj = N(Tj*) bugs discovered by time Tj*.
Suppose that the interarrival times t" ... , tn have been observed. Then the

J

posterior distribution of a and b is given by

(6.17)

where

212 6. The Optimal Testing and Release of Software

(6.18)

Sj = L;~l ti, is the time at which the last bug is encountered. For convenience,
we have suppressed the times taken to rectify the bugs. Using this posterior
distribution, the (posterior) expectations of N(T) and N (T) are calculated to be

(6.19)

and

(6.20)

We can now obtain the expected utility of testing to time T, at stage j + 1, as

ZAj(1) = E[U(T, N(1), N (1) I ~*, nj, Sj]

(6.21)

Let ~:l be that value of T which maximizes l1j(T) given previously. Then if

~:l :s; ~* testing stops; otherwise testing continues for an additional ~:J - ~*
units of time, and the process moves to stage j + 2.

The evaluation of Equation (6.21) is not as straightforward as the equivalent
expression for the single-stage test, but it is still easy to numerically compute,
requiring nothing more complex than the one-dimension integrations of
Equations (6.19) and (6.20).

6.6.4 Fixed-Time Lookahead Testing for the Goel-Okumoto Model

In allowing the testing team to adapt testing to the software's performance,
the one-stage lookahead plan can present problems for management. This is
because at time 0, when the testing plan is designed, it is not known how long the
testing will take or even the stage at which the testing will terminate. One
solution to these problems is to propose a predefined sequence of times, TJ , T2 , •

. . , TJ, at which testing stops, and a decision is made to either release or

6.6 Examples of Optimal Testing Plans 213

continue testing to the next time. This is a one-stage lookahead policy where
each decision is binary; at Ij, one either releases or tests further to the
prespecified time Ij+l' At some stage J, release is mandatory; in practice, J can
be made large. The pre specification of the mandatory release time TJ is not
necessarily contrary to practice. We often hear managers of software
development houses say "we will release the software when we said we will do
so."

This plan has some advantages. The nature of the decision makes the plan
easy to implement. Usually, the predefined times will be a regular arithmetic
sequence, perhaps corresponding to each day or week of testing. With decisions
occurring at known times, planning for the testing phase is made easier.
Theoretical results on the optimality of the plan can be proved. However, it does
have some disadvantages. The success of the testing schedule depends on what
times are specified; too short an interval between times causes the testing to stop
too early, and too large an interval risks over-testing.

Let Nj represent the number of bugs discovered in the jth stage, that is,
Nj = N(Ij) - N(Ij-l), and let Vj denote all the information that is available up
to Ij; this consists of the prior hyperparameters, the number of failures in each
interval Nt, ... , Nj, and the last failure time Sj prior to Ij. From the previous
sections, we know that these are sufficient statistics under this model. We
emphasize that the times Tt , T2 , .•• , TJ are fixed at the start and are therefore
not optimal in any sense.

The utility associated with the release of the program at the end of a stage j
is of the same form as in earlier plans; namely,

j

lAj[Ij, (N), N2 , •.• , Nj), N (Ij)] = P - C X LNk - D x N (Ij) - F(Ij).
k=l

(6.22)

The constants are exactly as before; the 0nly change is that now we allow the
opportunity loss function to be of a more general form, say F(n, rather than the
previous f x Tg. The reason for this departure becomes clear later, when the
optimality of the plan is mentioned; see Section 6.6.6.

At the completion of a stage j, the decision to be made is to release or to
continue testing to Ij+t. The utility of releasing now is given by the expectation
of Equation (6.22), where the expectation is with respect to the only unknown
quantity in Equation (6.22), namely, N (Ij). We write this as

00

E(l1j I Vj) = L 11j[1j, (NJ, N2 , ••• ,Nj), N (1j)] x P(N (1j) I Vj).
N(1j)=O

(6.23)

214 6. The Optimal Testing and Release of Software

The utility of testing to the next stage is

(6.24)

here, Nj+1 and N (1j+d are unknown and so we must take the expectation with
respect to these two quantities. We write this expected utility as:

E(l.{;+! l'Dj) = L: l.{;+! [1j+h (N!, ... ,Nj +!), N (1j+!)] X
Nj+l. N(Tj+I)

(6.25)

For both expectations, the distributions used are the posterior distributions
conditional on Vj. Thus the decision criterion at stage j is to test to 1j+l if
E(Uj I Vj) :::; E(Uj+l I Vj); otherwise release. This reduces to a decision to test if
and only if

(D - C) [E(N (1j) l'Dj) (6.26)

Thus it is necessary, upon completion of a stage j, to evaluate the two
expectations E(N (1j) I Vj) and E(N (1j+l) I Vj) for which the appropriate
formula is that given by Equation (6.20).

6.6.5 One-Bug Lookahead Testing Plans

An alternative to the fixed-time one-stage lookahead plan is the one-bug
lookahead plan. This is the plan considered by Ozekici and Catkan (1993), and
by Morali and Soyer (1999). Here instead of testing until a pre specified time (as
was done in the fixed-time one-stage lookahead plan), we test until a bug is
encountered. When the bug is discovered and fixed, a decision has to be made
whether to release the software or to test it until we observe the next bug. For
this scheme to make sense it is assumed that testing until the next bug does not
entail testing forever. Since the uncertainty here is about the time to occurrence
of the next bug, a natural probability model to use is one that belongs to the
Type I category. Morali and Soyer consider the non-Gaussian Kalman filter
model of Section 3.4.2, and we focus upon this for purposes of discussion.
Recall [see Equations (3.23) and (3.24)] that the system equation for this model
was specified in terms of the parameter B;, i = 1, 2, ... , where B; is the scale
parameter of the gamma distribution of T;; T; is the ith interfailure time.

Recall that the utility function is made up of two cost components: the cost
of testing, and the cost of an in-service failure. The former is a function of the
amount of test time, and the latter can be based on the time to encounter an in-

6.6 Examples of Optimal Testing Plans 215

service failure, or on the failure rate of the software subsequent to its release.
Morali and Soyer do the latter by considering OJ as a proxy for the failure rate of
T j • Instead of basing the utility on the failure rate, we could also base it on the
reliability of the software, as was done in Singpurwalla (1991). The reliability
function being bounded between zero and one is a natural candidate for utilities;
recall that utilities are probabilities and obey the rules of probability.

To move along, suppose that the ith bug has been encountered and
corrected, and that the non-Gaussian Kalman filter model of Section 3.4.2 is
used. Let Ur(Tj+d denote the utility of testing to the next bug, supposing that it is
encountered at time Tj+1• Assuming, as before, a linear cost of testing, suppose
that Ur(Tj+l) = - fx Tj+l, wherefis a constant. Similarly, let UR(Oj+d denote
the utility of releasing the software subsequent to correcting the ith bug. Then a
simple model for UR(Oi+l) would be UR(Oj+l) = - D X Oi+), where D is a
constant. The subscripts T and R associated with U represent "test" and
"release," respectively. Clearly, we would stop testing after correcting the ith
bug, and release the software, if the expected value of UR(Oj+l) were greater than
the expected value of Ur(Tj+1). These expectations can be calculated (in
actuality, computed) using the approach outlined in Section 4.5.3.

6.6.6 Optimality of One-Stage Lookahead Plans

The one-stage lookahead plans described in Sections 6.6.3 to 6.6.5 are
restrictive because they do not consider future stages of testing. For this reason it
is difficult, in general, to say in what sense they might be optimal. The usual
strategy is to say that, were it decided to stop after the ith stage on the basis of
looking at testing to the (i + l)th stage, then the utility of subsequently testing to
stages (i + 2), (i + 3), ... , would be no better. Thus, it is sufficient just to look
one stage ahead when deciding on the optimal stopping time.

Such sufficiency results have been proved in a variety of settings. A general
result, when N(T) is a Markov chain is well known; see, for example, Ross
(1970). With regard to the plans described here, McDaid and Wilson (1999)
have shown, under certain conditions on the utility function and the probability
model, that the fixed-time lookahead plan is optimal in the sense given by
Theorem 6.1.

Theorem 6.1 [McDaid and Wilson (1999)]. Consider the fixed-time lookahead
testing plan with the utility function given by Equation (6.22) and with the
maximum number of testing stages J. Let F(Tj) be discrete convex in i, and let
E(N(Tj) I V) be discrete concave in i, for i = j, ... , J. Then, after the
completion of j stages of testing, the following stopping rule is optimal.

If

216 6. The Optimal Testing and Release of Software

then test to 1j+I; otherwise, release.
Morali and Soyer (1999) have proved an equivalent result for their one-bug

lookahead plan.

6.7 Application: Testing the NTDS Data

Consider the NTDS data of Table 4.2. How would the testing plans
described in Section 6.6 fare under these data, supposing that the model of Ooel
and Okumoto were to be entertained?

To start with, suppose that the necessary parameter values and the values of
the constants are those that were specified in the illustrative example of Section
6.6.2. Then, under the one-stage test, the optimal test time would be T* = 180,
and the expected utility about 260; see Figure 6.6. Note that according to the
entries in columns one and three of Table 4.2, testing until 180 units of time will
reveal nl = 23 failures, with the last failure occurring at Sl = 156.

For the case of a two-stage test, since 21 bugs were discovered by 116 units
of test time a second stage of testing is necessary. This will result in the
discovery of 26 (or possibly 27) bugs in total. By contrast a one-stage procedure
calls for a testing time of 180 and results in the discovery of 23 (or possibly 24)
bugs.

We now consider what would happen if the one-stage lookahead plan of
Section 6.6.3 were applied to the NTDS data. Using nl = 23 and Sl = 156 in
Equation (6.21), we compute T; = 218.4; the expected utility is about 288. Thus
testing for the second stage involves (218.4 - 180) = 38.4 additional units of
time; recall that under the one-stage test the optimal test time was 180. But
according to the entries of Table 4.2, no further bugs were discovered during this
additional 38.4 time units of testing, and so n2 = 23 and S2 = 156. Repeating the
calculation involving Equation (6.21) we see that T; = 201.4. Since T; < T;,
our decision would be to stop testing. To conclude, if the model by Ooel and
Okumoto and the previously specified constants were to be invoked with a
single-stage lookahead procedure on the NTDS data, then testing would have
stopped after the second stage, at 218.4 units of time, and would have yielded an
expected utility of about 289. This is larger than 260, the expected utility of the
single-stage test.

Suppose now that instead of the single-stage lookahead procedure we
considered the fixed-time lookahead procedure of Section 6.6.4, with Ti = 50i,
for i = 1, 2, The initial decision is to test until 50 units of time or to release.
The expected utilities under these two actions are 232 and 200, respectively.
Thus the decision is to test for 50 units of time. This results (see Table 4.2) in
NJ = 7 failures (bugs) with Sl = 50. Using these values of NJ and Sl to obtain
the required posterior distributions, we note that testing to T2 = 100 gives an
expected utility of 402 against a utility of release at TJ = 50 of 335. So the
decision is to test to T2. The procedure continues until T4 = 200, whereupon the
expected utility of testing to Ts is 276, against the expected utility of release at

6.8 Chapter Summary 217

T4 of 289; thus testing stops and the software is released after 200 units of
testing. Therefore, both the one-stage lookahead and the fixed-time one-stage
lookahead testing plans lead to roughly the same decision; namely, release after
about 200 units of testing time.

With the one-bug lookahead plan the first decision is to test until the first
bug is discovered or to release immediately. The expected utilities are 208 and
200, respectively, so it is decided to test until the first bug; this occurs after 9
units of time. Next, using N(9) = 1 and SI = 9 in the appropriate posterior
distribution, a decision is made again, with the expected utility of further testing
of 217 against the expected utility of release of 212. Testing continues in this
manner until the 24th bug occurs at time 247, at which the expected utility of
testing to the 25th bug is 270 against 277 for release. Thus under the one-bug
lookahead plan testing would stop at 247 time units with 24 of the 34 (recorded)
bugs discovered. Contrast this with stopping at 200 time units with 23 of the 34
bugs discovered. The expected utility in the former case is 277; in the latter case
it is 289. Thus, from a retrospective viewpoint, the one-stage lookahead plan
would have been the optimal plan to use. It would have resulted in the decision
to release the software after 200 units of test time and would have yielded an
expected utility of 289.

6.8 Chapter Summary

This chapter pertains to a fundamental problem faced by software
developers and managers, namely, how long to test a piece of software prior to
its release? This is a problem of decision making under uncertainty and involves
a tradeoff between costs and risks. Thus to facilitate such a discussion, the
chapter begins with an overview of normative decision theory and utility theory.
The theory specifies the maximization of expected utility (MEU) as a criterion
for making optimal decisions. A key consideration that drives us to the MEU
principle is that utility is a probability, and thus obeys the calculus of probability.
The MEU principle then follows via the law of total probability.

The remainder of the chapter pertains to an application of the MEU
principle for different types of software testing plans and under different models
for failure. The different types of testing plans that are mentioned are: single
stage, two-stage, sequential, one-stage lookahead, fixed-time lookahead, and
one-bug lookahead plans. The cost of testing pertains to the pre-fixing of
discovered bugs and the loss of consumer confidence resulting from the release
of unreliable code. On the other hand long test times add to the cost of the
development effort, and contribute to the risk of obsolescence. The optimal test
time balances these two competing criteria.

Sequential testing plans give rise to infinite decision trees. This problem is
overcome in practice by imposing (arbitrarily) an upper bound on the number of
testing stages that are allowed. The computational difficulties associated with
sequential plans can also be overcome by the one-stage lookahead plans. That is,

218 6. The Optimal Testing and Release of Software

we make a decision without accounting for the possible future (i.e., two, three,
four, etc.) stages of testing. However, such strategies are not optimal.

We gave a detailed example of an optimal single-stage testing plan using the
model by Jelinski and Moranda, and described the setup when the testing was to
be done for two stages. We made several assumptions about costs and utilities;
these were based on the reported experiences of industry. The optimal single
stage problem, although simplistic in nature, poses difficult computational
issues. These can only be addressed numerically. We also discussed optimal
testing for the model by Goel and Okumoto under a single-stage test, and under a
one-stage lookahead and a fixed-time one-stage look- ahead testing schemes.

The optimal testing of software is an important issue which calls for more
research, especially research that will lead to approaches that are easy to use. We
anticipate that more is going to be written on this topic. Perhaps the search for an
omnibus simple-minded model for describing software failures is strongly
justified by the need for developing an easy to use, but realistic, optimal testing
strategy.

Exercises for Chapter 6 219

Exercises for Chapter 6

1. A decision maker wishes to select one of two software development
organizations for producing software needed to run a large system. Let
Pi] be the probability that the highest level achieved by organization 1 is
i, for i = 1, ... , 5. Similarly, let Pi2 denote the corresponding
probabilities for organization 2. Let Cj , j = 1, 2, be the cost of
developing the software quoted by organization j. Let Vi be the utility
to the decision maker of software developed by an organization whose
highest maturity level is i. Assume that, in general, VI ~ Vz ~ V3
~ V4 ~ Vs.

Draw a decision tree to outline the steps that the decision maker takes to
select one of the two software houses.

2. In Exercise 1 suppose that the Pi]S are as given in Table 5.2, and the Pi2S

are as follows.

Pl2 = 0.4986,
P32 = 0.0281,

P22 = 0.3771,
P42 = 0.0979, and PS2 < 0.001.

Assume that VI = 0.2, Vz = 0.4, V3 = 0.6, V4 = 0.8, and Vs = 1.

(i) For what values of CI and Cz will the decision maker choose
organization lover organization 2?

(ii) When will the decision maker flip an unbiased coin and choose
organization 1 if the coin lands heads?

3. Verify Equation (6.3) of Section 6.6.1.

4. Consider the illustrative example of Section 6.6.2. Suppose that s] and
S2 are changed to 7 and 1, respectively. How does this change affect the
optimal testing time of 180?

What if m] and m2 are changed to 15 and 5, respectively, with s] = 5.5
and S2 = 1.3?

5. Verify Equations (6.11) through (6.13) of Section 6.6.2.

7
OTHER DEVELOPMENTS:

OPEN PROBLEMS

7.0 Preamble

The scope of applicability of probabilistic ideas to address problems in
software engineering is constantly expanding. Consequently, what has been
covered is just a sample of the ultimate possibilities. Indeed, even now, there are
several topics that are currently being researched that have not been highlighted
by us. Some of these are: the use of stochastic process models (such as birth and
death processes) for describing the evolution and maintenance of software,
software certification and insurability, the incorporation of an operational profile
for reliability assessment, embedding the CMM of Chapter 5 into a decision
theoretic framework, statistical aspects of software testing and using
experimental designs for the testing of software, reliability assessment when
testing reveals no failures, the integration of module and system testing, and so
on. The aim of this chapter is to provide a bird's-eye view of some of these
topics, and to put forth some open problems that they pose. It is hoped that this
will inspire other researchers to pursue each topic in more detail than what we
report. With this in mind, we have selected three topics for further discussion:
dynamic modeling and the operational profile, statistical aspects of software
testing and experimental designs for developing software testing strategies, and
the integration of module and system performance.

N. D. Singpurwalla et al., Statistical Methods in Software Engineering
© Springer-Verlag New York, Inc. 1999

222 7. Other Developments: Open Problems

7.1 Dynamic Modeling and the Operational Profile

Intuitively, a dynamic model is one wherein the future development of a
process is explained, among other things, in terms of its past history. We have
already encountered dynamic models in our discussion of self-exciting point
processes and the software reliability models generated by concatenating failure
rates. The model of Section 3.6 is a particularly instructive example. Dynamic
models have played a key role in the biostatistical literature vis-a-vis their
applications in survival analysis; see, for example, the survey by Andersen and
Borgan (1985). Their importance derives from the famous Doob-Meyer
decomposition which is fundamental to the development of martingale theory.
Thus to get an appreciation of the general structure of dynamic models it is
helpful to start with a brief overview of the martingale property of stochastic
processes and its associated terminology. To keep our exposition simple, we
focus attention on a discrete time stochastic process, and conclude with a passing
reference to the continuous time version.

7.1.1 Martingales, Predictable Processes, and Compensators: An Overview.

Let Xt, t = 0, 1, 2, . . . , be a discrete time stochastic process; for
convenience we suppose that Xt is the tth interfailure time of software
undergoing a test-debug cycle. Since (Xt - Xt.l) denotes the change in the {Xt;
t = 0, 1, 2, ... ,} process at time t, our "best" prediction of this change, were we
to know the past history of the process X I, ... , X/. I , could be of the form

where E denotes an expectation.

Let Ut = 2::=1 Vi; then Ut is simply the cumulative sum of our expected
changes up to time t. Indeed, Ut is our "best" prediction of Xt based on XI, X2, ••

. , Xt-I. Since Ut is merely a prediction of Xt, we define the error of prediction
via a random variable M t , where

Mt = Xt - Ut , t = 1, 2, (7.1)

The random variable Mt is an interesting quantity. It has the easily verified
property that

(7.2)

Since knowing XI, ... , Xt- I boils down to knowing M t- 1 , Equation (7.2) says that
the expected error in predicting Xt using Xl, ... , Xt_1 is the actual observed error

7.1 Dynamic Modeling and the Operational Profile 223

in predicting Xt-I (using XI. ... , Xt-2). This seemingly innocuous property is of
fundamental importance in probability theory. To appreciate why, let us rewrite
(7.2) as

(7.3)

and focus on the stochastic process M t , t = 1, 2, Equation (7.3) says that the
increments of the process Mt have expectation zero; that is, the process Mt has
orthogonal increments. Contrast this to the process of Section 2.3.1 which has
independent increments. Processes having the orthogonal increments property
are called martingales; their defining characteristics are either Equation (7.2) or,
equivalently, Equation (7.3). If we rewrite Equation (7.1) as

Xt = V t + M t , t = 1, 2, ... , (7.4)

then we can see that the stochastic process Xt can be decomposed into two parts:
a process Ut that sums up our best predictions of the changes in the Xt process,
and a process Mt that sums up the errors of the predictions. The decomposition
of Equation (7.4) is called a Doob decomposition, and the quantity (Mt - Mt-d
is called a martingale difference, or an innovation. This latter terminology
reflects the fact that it is (Mr - Mr-d that is the uncertain (or the new) part in the
development of the process. Since Ur depends on XI, ... , Xr-1 , it is known at
time t; consequently, the process Ut is known as a predictable process.
Furthermore, since Mr = Xr - Ur, Ur is called a compensator of Xt.

Because Ur is made up of a sum of the ViS, the predictability of Ur implies
the predictability of the ViS as well. Thus the process Vt is also a predictable
process.

We are now ready to introduce the concept of a dynamic statistical model as
any statistical parameterization of the predictable process Vt. A simple example
is the linear model

(7.5)

where Rt is composed of predictable and/or observable stochastic processes, and
O:'t is some unknown parameter. As an example of the preceding, suppose that
Rt = Xt-I; then, from Equations (7.4) and (7.5), we see that

Xl - Xt-! = at Xt-! + (Mt - Mr-!), or that

(7.6)

Since (Mt - M t-1) is an innovation, Equation (7.6) is an autoregressive process
of order one, with a varying coefficient (1 + O:'t). Thus we see that our dynamic

224 7. Other Developments: Open Problems

model encompasses the class of autoregressive processes; such processes were
considered by us as models for tracking software reliability (see Section 3.4.1).

Note that the process Vr. and hence the process Rt , can be any predictable
process and conceivably can be any complicated function of the past. In
particular, Rt may also include co variates (see Section 2.4.3), as long as the
covariates are a predictable process! It is this feature that will allow us to
incorporate the operational profile as a covariate of the software failure process;
more is said about this later in Section 7.1.3.

To summarize, the Doob decomposition is a way of representing almost any
stochastic process. We have made almost no probabilistic assumptions in the
kind of modeling done thus far; parameterizing the predictable part of the
process does not involve probabilistic assumptions. The innovation part of the
decomposition allows us to use martingale theory, like the martingale central
limit theorem and the law oflarge numbers for martingales [cf. Kurtz (1983)], to
write out likelihoods, and to investigate issues of estimation. This facility is of
particular value to those who subscribe to the frequentist point of view for
inference and decision making.

The Doob decomposition of Equation (7.4) generalizes to continuous time
stochastic processes as well. When such is the case, the decomposition is known
as the Doob-Meyer decomposition, and is written as

Xt = Ut + Mt , for t 2: O. (7.7)

The preceding process M t is still a martingale, and by analogy with the Ut of
Equation (7.4), the Ut here is an integral of "best" predictions; that is,

t

Ut = J Vs ds.
o

The predictability of the Vt process IS ensured by requiring that each Vt be
known just before t.

A stochastic process Xt, be it in discrete or in continuous time, having the
decomposition of Equation (7.4) or (7.7) is known as a semimartingale; the
qualifier "semi" reflects the fact that one member of the decomposition, namely,
Ut , is not a martingale. The material of this section is abstracted from Aalen's
(1987) masterful exposition on dynamic modeling and causality.

7.1.2 The Doob-Meyer Decomposition of Counting Processes

We have seen that the Doob-Meyer decomposition, being based practically
on no assumptions, is a very general construct. Thus the question arises as to
whether we can meaningfully exploit this generality for addressing issues
pertaining to the tracking of software performance. Such questions have been

7.1 Dynamic Modeling and the Operational Profile 225

addressed, in one form or another, by investigators such as Koch and Spreij
(1983), van Pul (1993), and Slud (1997). To appreciate how, we must first cast
the problem of tracking software failures in a format that lends itself to a
Doob-Meyer decomposition. This is done by looking at the software failure
process as a continuous time counting process N(t), t ~ 0. The precedent for
doing so is in survival analysis, wherein N(t) tracks the survival of a patient, with
N(t) = ° for t < T, and N(t) = 1, for t ~ T; T is, of course, the patient's
lifelength. We return to this precedent later, but for now we note that in our
context, N(t) as a function of t is an integer-valued step function that is zero at
time zero, with jumps of size +1. We suppose N(t) to be right continuous (see
Figure 2.5) so that N(t) represents the number of times that the software
experiences failure in the time interval [0, t]. In prescribing the foregoing, we are
supposing that t is either the CPU time, or that the debugging and the re
initiation process are instantaneous.

Under some regularity conditions, which need not be of concern to us here,
the process N(t) has a random intensity process)'*(t), t ~ ° (see Section 2.3.1),
whose realization)'(t) depends on :F,- , where :F,- denotes everything that has
happened until just before time t. That is, :F,- encompasses a complete
specification of the path of N(t) on [0, tl, as well as other events and factors that
have a bearing on the behavior of N(t). Specifically,

>.(t)dt = P[N(t) jumps in an interval dt I :F,-] . (7.8)

Observe that the preceding setup parallels that of the self-exciting point process
of Section 2.3.3, with :F,- being (1t U 1tt).

The implication of Equation (7.8) is that in a small interval of time dt, N(t)
either jumps or does not, and so by analogy with the expected value of a
Bernoulli random variable, the probability of a jump in dt is simply the expected
number of jumps in dt. Thus

>.(t)dt = E[dN(t) I :F,-] ,

and if we define
dM(t) = dN(t) - >.(t)dt, (7.9)

then E(dM(t) I :F,-) = 0, which is the continuous time analogue of Equation
(7.3), a defining property of martingales. It now follows from Equation (7.9),
that for t ~ 0,

I

M(t) = N(t) - J >'(u)du
o

226 7. Other Developments: Open Problems

is a martingale with J:)..(u)du as a compensator of N(t), and N(t), t 2:: 0, is a
semimartingale.

Thus to summarize, the counting process N(t), t 2:: 0, generated by software
failures admits a Doob-Meyer decomposition of the type described. Since the
compensator of N(t) must be a predictable process, we need to explore
parameterizations of)..(t) that are meaningful and ensure predictivity. For this, it
is instructive to look at a parameterization that is commonly used in survival
analysis. To start with, suppose that N(t), t 2:: 0 tracks the survival of a single
patient, so that if Y(t) is defined as

Y(t) = I, if the patient is under observation just before t, and

= 0, otherwise,

and if)..(t) is parameterized as >.(t) = >'o(t) exp (!3oz(t», t 2:: 0, then

>.(t)dt = Y(t) >'o(t) exp (!3oz(t» dt. (7.10)

The preceding reparameterization is the famous Cox regression model [cf. Gill
(1984)];)..o(t) is known as the baseline failure rate, and z(t) is a known
covariate; 130 is a constant. Thus given the past, up to (but not including) time t,
Y(t) is predictable, and since z(t) is known,)..(t) is also predictable. A
generalization of this setup is to consider the tracking of several, say n, patients
so that N(t) can take more than one jump, and to allow Y(t) to take forms
different from that given previously. Furthermore, the fixed covariate z(t) can be
replaced by a random covariate Z(t), or by a collection of several fixed and/or
random covariates. All that is required for the decomposition of N(t), t 2:: 0, is
that N(t), Y(t) , and Z(t), t 2:: 0 be observable, and that Y(t) and Z(t) be
predictable. As an illustration of these generalizations, we may parameterize)..(t)
as

>.(t)dt = (n - N(r» >'o(t) exp (~~ ~(t»dt , (7.11)

where now Y(t) is replaced by (n - N(r», the risk set at time t, and Z(t) is a
vector of random covariates; (! 0 is a vector of parameters. To see why the risk set
(n - N(r) is a meaningful choice for Y(t), we consider a special type of
counting process, namely, the "order statistics process." Specifically, suppose
that T(l> ::; T(2) ::; .•• ::; T(n) are the order statistics (see Section 3.5.3) of a
sample of size n from an absolutely continuous (predictive) distribution function
F(t 11i) and a (predictive) failure rate)..o(t); the 1i has been suppressed. We
could view the T(i)s as the survival times of n items under observation starting
from time o. Let I(A) be the indicator of a set A, and for t 2:: 0, we define the
counting process N(t) as

7.1 Dynamic Modeling and the Operational Profile 227

n

N(t) = I: I (T(i) < t);
;==1

then N(t), t ~ 0 is called the order statistics process. We next define a process
yet), t ~ 0 as

n

yet) = I: I (T(i) > t) = (n - N(r» ;
;==1

then yet) represents the number of items that are at the risk of failure just before
time t; thus the term "risk set." The intensity process A(t), t ~ 0 of the counting
process N(t) is the rate at which N(t) jumps. Clearly, this will be of the form

>,(t)dt = (n - N(r» >'o(t) dt, (7.12)

and thus yet) = (n - N(r», the risk set. Observe that A(t) is random, since it
depends on N(t); however, given N(r), A(t) is known and thus A(t) is predictable,
but N(t) itself is not.

7.1.3 Incorporating the Operational Profile

The parameterization of Equation (7.12) also appears in the tracking of
software failures by bug counting models like the model of Jelinski and
Moranda; see Section 3.2.2. There, the A of Equation (3.4) is Ao(t) of Equation
(7.12) and (n-NCr» parallels CN-i) of Equation (3.4). For the model by Goel and
Okumoto (see Section 3.3.1) AO(t) is to be identified with be-bl, n identified with
the constant a, and ACt) does not depend on NCr).

Finally, the parameterizations (7.10) and C7 .11) can be made pertinent to
tracking software failures if the fixed covariate z(t) can be identified with a
nonrandom Cor predetermined) operational profile, and the random covariate Z(t)
identified with a random operational profile. The random operational profile can
be any stochastic process that is deemed meaningful.

Thus to conclude, when software failures are tracked by a counting process
model, the Dooh-Meyer decomposition results in the integral of its intensity
process as a compensator, and if the counting process is modeled as an order
statistics process, then the bug counting models of software reliability arise as
special cases. Thus, in addition to some unification, the counting process set-up
facilitates the incorporation of an operational profile, be it fixed or random.
Finally, as mentioned before, the martingale theory facilitates asymptotic
inference for those who wish to work in the frequentist paradigm.

228 7. Other Developments: Open Problems

7.2 Statistical Aspects of Software Testing: Experimental Designs

Software testing tends to consume a significant proportion of its
development budget. It also tends to prolong the software development cycle
raising the specter of its obsolescence. Thus the need to make the testing process
more efficient and cost effective has been very germane. The literature in
software engineering draws attention to two types of testing strategies, "random
testing" and "partition testing." Both strategies raise issues of statistical
inference. Also, the statistical technique of design of experiments (henceforth
DOE) has been proposed as a way to implement partition testing. Thus the aim
of this section is to highlight the statistical issues that the problem of software
testing poses, and to place DOE in the broader context of software engineering.
To do so, we start with the following preamble which introduces some
terminology and which defines the terms mentioned previously.

The set of all possible inputs to a piece of software is known as (its) input
domain. Typically, this set tends to be very large. Testing the software against its
input domain serves two purposes: it weeds out the bugs in the software, and it
enables us to ensure the software's overall quality. But a large input domain
implies that exhaustive testing will be time consuming and expensive. Thus a
compromise has been arrived at, wherein the software is tested against only a
subset of the input domain; this subset is referred to as the set of test cases. It is
hoped that the set of test cases is efficiently chosen, in the sense that it is
representative of the inputs which the software is most likely to encounter. The
selection of test cases can be done via random testing or via partition testing,
strategies which have their underpinnings in the statistical theory of sample
surveys; see, for example, Cochran (1977).

With random sampling, the test cases are selected from the input space using
a random sampling scheme. This can be done in several ways, one of which is to
assign a number to each member of the input space, and then to select those
members whose assigned number appears in a table of random numbers. With
partition testing, the input space is subdivided into "strata," and the test cases are
selected at random from each stratum. According to Weyuker and Jeng (1991),
the strata can be defined by considerations such as statement testing, data-flow
testing, branch testing, path testing, mutation testing, and so on. The strata can
also be defined using DOE techniques, as was done by Mandl (1985), Brownlie,
Prowse, and Phadke (1992), and more recently by Cohen et al.(1994). Clearly,
the efficacy of partition testing depends on the manner in which the strata are
defined and their representativeness of the actual environment in which the
software is to operate. Nair et al.(l998) provide a good discussion and a
comprehensive treatment of the comparative advantages of partition testing over
random testing.

7.2 Statistical Aspects of Software Testing: Experimental Designs 229

7.2.1 Inferential Issues in Random and Partition Testing

In what follows, we have adopted the fonnulation of Nair et al. (1998) for
describing the inferential issues that the problem of software testing poses. We
start by supposing that the input domain consists of N members, where N is quite
large. Our aim is to make some statements about the quality of a piece of
software that will be subjected to inputs from this input domain. The metric that
we use for expressing quality is "the expected failure rate," a notion that we
make precise soon.

With random testing, we will want to select at random n inputs from the set
of N possible inputs. This can be done on the basis of any probability
distribution, say p(j), j = 1, . . . , N, where p(j) represents the probability that
input j will be selected; clearly Lj p(j) = 1. By random selection, we mean a
process of selection wherein the input to be selected is not based on what inputs
have already been selected. The distribution p(j), j = 1, ... , N, can be specified
in any manner, but for a realistic assessment of the software's quality, it is
appropriate to choose p(j) in a manner that reflects the software's operational
profile. Recall that the operational profile describes the software's usage in the
field environment. We now define a binary variable Xj , where Xj = 1 (0), if the
jth input will result in a failure (success) of the software. Then, according to Nair
et al. (1998), the software's expected/ai/ure rate under random testing is

() = L Xj p(j).
j

(7.13)

If the sampling is such that p(j) = N-! ,j = 1, ... , N (i.e., if all the N inputs have

an equal probability of being selected), then () reduces to X/N, where X = E~ Xj ,

is the total number of inputs that would lead to software failure.
Clearly, () will be known only if the disposition of each Xj is known. In

actuality this, of course, is not the case; indeed an aim of software testing is to
discover those Xjs that take the value one. Thus, if () is to be of any use, it is
important to infer its value. In the absence of any prior assumptions about the
Xjs, inference about () can only be made on the basis of the results of the n test
cases. Let Xi denote the revealed value of Xi, i = 1, ... , n, and suppose that bugs
that are the cause of an Xi taking the value one are not eliminated. We are
mimicking here the scenario of sampling with replacement. Then, if N is large,
an estimator of () could be (j = E~p(i)xi; if p(J) = N-!, for allj, then (j is simply

the sample average L~(x;ln).
There are certain aspects of Equation (7.13) that warrant some discussion.

The first is that () is a proxy for the software's quality prior to any testing, and is
meant to be the probability of the software's experiencing a failure when it is
subject to the next randomly selected input. Once the software experiences a
failure, the cause of failure will be eliminated so that the corresponding Xj will

230 7. Other Developments: Open Problems

make the transition from a one to a zero. Consequently, the X = E~xj will
decrease by one after the software experiences a failure. The second aspect of
Equation (7.13) is that 0, as defined, is really a propensity, rather than a
probability. A measure of software quality that is more in keeping with our
subjective viewpoint requires that we specify, for each input j, our personal
probability that the input will lead to a failure. That is, we are required to assess

P(Xj = 1) d~f rr(j), for j = 1, ... , N. Then, if we assume that the two events
{Xj = I} and U is the next input to the software} are independent, an analogue
for 0 based on the rr(j)s would be

N

e* = LPU) 'FrU) . (7.14)
i

Observe that 0* will reduce to 0 if every rr(j) is either a one or a zero, and
that 0* = rr, if rr(j) = rr and p(]) = lIN, for all values of j. The requirement of
event independence mentioned previously is implicit in the definition of O. In
defining 0* we have not been explicit about our assumptions about the
dependence or the independence of the sequence {Xj; j = 1, ... , N}. Such
assumptions are reflected in our choice of rr(j), the marginal distribution of Xj.
Since 0* involves a use of personal probabilities, it would be natural to conduct
inference about 0* using a normative approach wherein the rr(j)s will be updated
on the basis of XI, ••. , Xn• This is a topic that needs to be investigated and which
depends on the nature of assumptions about the sequence {Xj;j = 1, ... ,N}.

We now discuss the scenario of partition testing. Here the input domain is
decomposed into, say K, strata (or cells), with cell i consisting of Nj inputs;

i = 1, ... , K, and E7Nj = N. Suppose that n is the number of test cases that
are allocated among the K strata in such a way that stratum i receives an

allocation nj, where E7 nj = n. Within each stratum, the nj test cases are chosen
according to some distribution, say p(i), i = I, ... , K, where p(i)(j) is the
probability that the jth input of stratum i is selected; j = 1, ... , Nj • Thus within
each stratum the testing protocol parallels that of random testing. Analogous to
the 0 of Equation (7.13), we define OJ as the expected partition failure rate of
stratum i as

Ni

ej = LP(j)U) Xi), i = 1, ... ,K,
j=i

(7.15)

where Xij = 1(0) if the jth input of the ith partition will result in the software's
failure (success). Verify that when p(i) (j) = (Njyl, for j = 1, ... , Nj, and for

each i, i = 1, ... ,K, then 0 = E7«OjNj)IN). Thus the expected partition failure
rate bears a relationship to the expected failure rate when simple random

7.2 Statistical Aspects of Software Testing: Experimental Designs 231

sampling is used for each stratum. Inference for ()j follows along lines parallel to

that for (), with OJ = L;~, p(i)(j) xij, where xij is the revealed value of Xjj .

Finally, if 7r(i)(j) is our personal probability that inputj in the ith stratum will lead
to failure, then analogous to ()* of Equation (7.14) we have, for the ith stratum,

Ni

(}t = Lp(i)(j) 7r(i)(j), i = 1, ... , K. (7.16)
j='

Here again, normative inference about ();" is a topic that remains to be explored.

7.2.2 Comparison of Random and Partition Testing

There has been some debate in the software testing literature on the merits
of partition testing over random testing. The paper by Nair et al.(1998) is signal,
because it settles this debate in a formal manner using the quality metrics () and
()j, i = 1, ... , K, defined before. Their conclusion is that partition testing can
produce gains in efficiency over random testing if certain guidelines about
defining the strata, and about allocating the test cases to each stratum, are
followed. To appreciate this we consider the failure detection probability (i.e.,
the probability of observing at least one failure) as a criterion for comparing the
two strategies. Then it is easy to see that the probability of detecting at least one
failure in a sample of n test cases which are selected using the random testing
strategy, and conditional on knowing (), is

(7.17)

The corresponding detection probability under the partition testing scheme, and
conditional on ()" ... , () K, is

K

(3P.n«(}j, ... , (}K) = 1 - IT(l - (}j)ni • (7.18)
i='

If we let",p = 1 - n:,(l - ()jll.i, where Qj = n/n, i = I, ... , K, then Equation
(7.18) becomes

(3p, n «(}l, ... , (}K) = 1 - (l - TJpt

= (3R,n(TJP) ,

because of Equation (7.17). Thus partition testing will be more effective than
random testing if ",p > (), and vice versa otherwise. This conclusion is
independent of the sample size.

232 7. Other Developments: Open Problems

Since 'T}p depends on the Bis and the aiS, the effectiveness of partition testing
over random testing depends on the partitioning and the sample allocation
strategy that is used. For example, it is easy to see that since 'T}p is maximized
when all the test runs are allocated to the stratum for which Bi is the largest, a
partition testing strategy with sampling concentrated in a cell can be more
efficient than a random testing strategy. However, there is a caveat to such a
proposal. This is because the Equations (7.17) and (7.18) upon which our claims
are based require a sure knowledge of Band BJ, ••• , BK • Thus in order to select a
testing strategy (random or partition), and to implement a sample allocation
scheme, the B and the Bis should be replaced by the B* and B;s of Equations
(7.15) and (7.16), respectively. If the testing is to be done in several phases (i.e.,
the software is first tested against a run of, say n(l) inputs, and then based on the
results of this run, a second run involving, say n(2) inputs, is done, etc.), then a
preposterior analysis of the decision problem involving the selection of a testing
strategy needs to be conducted; see Section 6.4. This too is a topic that remains
to be addressed.

Finally, criteria other than the failure detection probability can also be used
to compare testing strategies. Examples of these are: the expected number of
detected failures, the precision in estimating B, the upper confidence bound for B,
the cost of testing, and so on. However, in the final analysis, what seems to
matter most appears to be the manner in which the partitions are defined. In
many cases, a knowledge about the software development process, or the logic
of the software code, will suggest partitions that are natural. Such partitionings
will also suggest those partitions that are likely to experience high failure rates
so that sample size allocations can be judiciously made. In other cases a
knowledge about the software's requirements and other features such as the
nature of the fields in its input screen can be used to define the partitions. When
such is the case, DOE techniques can be used to construct partitions that have a
good coverage of the input domain, and to ensure sample size allocations to each
partition are in some sense balanced. In what follows, we give a brief overview
of the DOE techniques and motivate their use in software testing.

7.2.3 Design of Experiments in Software Testing

Design of experiment techniques are statistical procedures that are used for
planning experiments. Such techniques endeavor to ensure that the maximum
possible information can be gleaned from as few experiments as possible. DOE
techniques have been widely used in agriculture, industry, and medicine for quite
some time. However, with the growing emphasis on quality engineering and
robust design, the DOE approach has of late received enhanced visibility [cf.
Phadke (1989)]. In the arena of software engineering, Mandl (1985) has used
DOE for compiler testing, Brownlie, Prowse, and Phadke (1992) for software
testing, and Cohen et al. (1994) for the "screen testing" of input data to an
inventory control system.

7.2 Statistical Aspects of Software Testing: Experimental Designs 233

For purposes of motivation and discussion, we focus on the screen testing
scenario of Cohen et al. (1994). By screen testing, it is meant the checking of
user inputs [to the (several) data fields of a computer screen], prior to
performing any operations on the data. This checking is often done by a piece of
software; its purpose is to ensure consistency and admissibility of the input data.
Of interest here is an assessment of the quality of this screen testing software.
Screen testing can be very time consuming since it is not uncommon for a large
system to have hundreds of screens, with each screen having as many as 100 data
fields. Even if each field can take only two possible input values, say (+) or
(-), then a typical screen could have 2100 possible combinations of inputs. Thus
exhaustive testing of all these inputs in the input domain is expensive and time
consuming, and this is so for just a single screen. An alternative to exhaustive
testing is therefore clearly in order, and one such alternative is random testing.
Another alternative is what is known as "default testing" wherein all the fields,
save one, are set at their default values and the software is tested against all the
values that the excluded field can take. The third alternative is to use DOE
techniques, and as mentioned before, this is also a strategy for implementing
partition testing.

To appreciate the value of DOE, consider a simple situation involving three
fields, with each field having two inputs, say 1 and 2. An exhaustive test set for
this scenario would have the eight possible combinations {(I, 1, 1), (1, 1, 2),
(1,2,1), (2,1,1), (1,2,2), (2,1,2), (2, 2,1), (2, 2, 2)}, where, for example, (2,
1, 2) denotes the settings of field 1 at level 2, field 2 at levell, and field 3 at
level 2. A 50% reduction of these eight test cases is provided by an orthogonal
array, in which every pair of inputs occurs exactly once. This turns out to be {(1,
1, 1), (1, 2, 2), (2, 1, 2), (2, 2, I)}. Orthogonal array designs are test sets such
that, for any pair of fields, all combinations of input values occur, and every pair
occurs the same number of times. Thus, for example, if an input screen consists
of seven fields, with each field having two inputs, an exhaustive test would entail
27 = 128 test cases, whereas an orthogonal array would entail the eight test
cases {(1, 1, 1, 1, 1, 1, 1), (1, 1, 1,2,2,2,2), (1,2,2,1,1,2,2), (1, 2, 2, 2, 2,
1,1), (2,1,2,1,2,1,2), (2,1,2,2,1,2,1), (2, 2,1,1,2,2,1), and (2, 2,1,2,1,
1, 2)}; see Phadke (1989), p. 286.

Orthogonal arrays have been used for software testing by Brownlie, Prowse,
and Phadke (1992). Whereas such arrays give test sets that cover every pair of
inputs with fewer test cases than the exhaustive test set, they do have their
limitations. As pointed out by Cohen et al. (1994), such arrays are difficult to
construct (there does not exist a unified approach for doing so), and do not
always exist. For example, there does not exist an orthogonal array when the
number of fields is six, and each field has seven possible inputs. More important,
in the context of software testing, orthogonal arrays can be wasteful. This is
because orthogonal arrays are required to be "balanced." That is, each pair of
inputs must occur exactly the same number of times. Observe, that in the seven
field example given before, for fields one and two, the pair (1, 1) occurs two

234 7. Other Developments: Open Problems

times; similarly, for fields six and seven, the pair (2,2) also occurs two times. In
industrial experimentation the replication of test cases is desirable, since
replication is the basis for learning about precision (variance), and the precisions
should be based on an equal number of replicates. But with software testing
replication is wasteful because replicated tests give identical results. In response
to such concerns about orthogonal arrays, Cohen et al. (1994) have proposed an
alternate design which they label the "AETG Design," Due to the proprietary
nature ofthis design, details are unavailable. However, the design does not suffer
from the limitations of orthogonal arrays, and in the seven-field example, the
number of test cases drops down to six. More details about the use of the AETG
design can be found in the aforementioned reference.

The screen testing scenario has also been considered by Nair et al. (1998) in
their comparison of random and partition testing. Here, based on knowledge
about the requirements of the screen field and the software development process,
four factors were identified as being relevant. These are:

A - the number of unique tasks,

B - the replicates per task,

C - the replicate type, and

D - the mode of user-input.

Each of these factors was further broken down into categories, the categories
being based on subject matter knowledge. Specifically, each of the factors A and
D had four categories, and each of the factors Band C had two. With such a
decomposition, the total number of combinations (i.e., partitions) was
4 x 2 x 2 x 4 = 64. For conducting the software test, one test case was selected
at random from each partition. Thus the total number of test cases with this type
of a partition testing strategy was 64, a significant saving as compared to the
64,746 test cases that would have resulted an exhaustive testing scheme. The
possible values that factor A alone can take is 162. A design such as the one
described, namely, partitioning the input domain into factors, and then creating
categories (or levels) within each factor is known as afactorial design. A further
reduction in the number of test cases is possible if, instead of testing at all the
combinations of a factorial design (64 in our example), we test at only a sample
from this set of combinations. Such a design is aptly termed a fractional
factorial design. That is, a fractional factorial design is a sampling scheme on
the set of all possible factor combinations. The orthogonal arrays described
before are examples of fractional factorial designs. It is important to note that
sampling on the set of all possible factor combinations is not a random sample;
for example, the orthogonal arrays are constrained in the sense that all the
pairwise combinations appear at least once.

7.2 Statistical Aspects of Software Testing: Experimental Designs 235

Levels of Factor 1

ill 112 i13 i14

C'I i21 A B C D
....
B
u

122 C D A B '" ~
0

'" i 23 D C B A "0
>
~

124 B A D C

FIGURE 7.1. An Orthogonal Latin Square Design.

Another example of a fractional factorial design is what is known as an
orthogonal Latin square. This design was used by Mandl (1985) for compiler
testing and validation of a piece of software written in Ada. To appreciate the
nature of a Latin square design, suppose that our input domain can be partitioned
into three factors, with each factor having four levels. The total number of
possible combinations is therefore 4 x 4 x 4 = 64. A Latin square design will
reduce the number of test cases to 16, and yield much of the same information as
the full set of 64 tests. To see the structure of the Latin square design, suppose
that Lij denotes the jth level of factor i, i = 1, 2, and j = 1, 2, 3, and 4. The four
levels of factor three are denoted as A, B, C, and D. This notation may seem
idiosyncratic, but it is in keeping with the DOE convention. The name Latin
square derives from the fact that the four levels of factor three are denoted by the
Latin alphabet. In Figure 7.1 we show an orthogonal Latin square design as a
balanced two-way classification scheme in which every level of every factor
appears at least once. The design is depicted by a square matrix in which each of
the four levels A, B, C, and D appears precisely once in each row and once in
each column of the matrix.

The generalization from four levels to n levels for each of the three factors
is immediate. The total number of possible combinations is now n3, whereas an
orthogonal Latin square based design would entail n2 tests.

Suppose now that it is desirable to partition the input domain into four
factors, with each factor having four levels. The total number of possible
combinations is 44 = 256. Suppose that the four levels of the (new) fourth factor
are denoted by the Greek letters, a, {3, 'Y, and D. The levels of the other three
factors are denoted, as before, by the LijS, and by Latin letters. Here, an analogue
of the Latin square design is a Latin hypercube design, known as a Greco-Latin
square. This name derives from the fact that the levels of the third and the fourth

236 7. Other Developments: Open Problems

Levels of Factor 1

ill i 12 il3 i l4

C'I
i 2l A-(J. B-~ C-y D-O

...
B
u

i22 C-O D-y A-~ B-(J. tU
\l.
0

'" i 23 D-~ C-(J. B-o A-y U
>
Q)

...:l
i24 B-y A-<> D-(J. C-~

FIGURE 7.2. An Orthogonal Greco-Latin Square Design.

factors are denoted by the Latin and Greek alphabets, respectively. In Figure 7.2
we show an orthogonal Greco-Latin square design for the case of four factors,
each at four levels. Interestingly, despite the addition of a new factor, the total
number of test cases remains at 16. Observe that each of the 16 Greek-Latin
alphabet combinations occurs exactly once, and that each level of every factor
appears exactly once in each row and in each column.

Tables of Latin square designs, such as those of Figures 7.1 and 7.2 are
given in Fisher and Yates (1953). It is important to note that Latin square
designs are only possible when the number of levels of all the factors is the
same. That is, the design in a two-way classification results in a square.
However, it can sometimes happen that an entire row, or an entire column, of a
Latin square can be missing. When such is the case, the resulting incomplete
Latin square is called a Youden square; see, for example, Hicks (1982), p. 80.

7.2.4 Design of Experiments in Multiversion Programming

The literature on DOE describes another commonly used design, namely,
the "randomized complete block design," that can be seen as a precursor to the
Latin square design. The role of this design can be appreciated via the scenario
of evaluating n-version programming by several evaluation teams, say also n. By
n-version programming, we mean n typically nonidentical copies of a program
that are developed by n separate teams using a common set of requirements and
specifications. Conceivably, such programs can be used for ensuring high
reliability through fault tolerance; see, for example, Knight and Levenson
(1986). Suppose that n is four, and let the four versions of the program be
denoted by the Latin letters, A, B, C, and D. Suppose also, that there are four
testing teams whose role is to test and to evaluate the four versions of the same
functional program. Let the testing teams be denoted by the Roman numerals, I,

7.3 The Integration of Module and System Perfonnance 237

Testin Team

I II III IV

B D A C

C C B D

A B D B

D A C A

FIGURE 7.3. A Randomized Complete Block Design.

II, III, and IV, and suppose that each team is required to conduct four tests. This
latter requirement may make sense if the input domain is partitioned into four
strata, and the test team is required to choose, at random, anyone of the four
strata for its test. The scenario described previously is for illustrative purposes
only; it is not, in any way, intended to be realistic. How should we allocate the
four versions of the program to the four testing teams, so that each team
conducts four tests?

A naive solution is to allocate a version to a team, and require that it do so
four times. For example, we may require that team I test version A four times,
team II test version B four times, team III test version C, and team IV test
version D, four times each. Such an approach is fallible since we are unable to
distinguish, in our analysis, between teams and versions. Such designs are called
completely confounded because averages for teams are also averages for the
versions.

An improvement over the completely confounded design is the completely
randomized design wherein the assignment of a version to a team is random.
However, such an assignment is also fallible, because it could result in the
situation wherein a version, say A, is never tested by a team, say III. By contrast,
in a randomized complete block design, every version is tested exactly once by
every team. Figure 7.3 shows such an assignment.

Finally, if it so happens that a particular version of the program, say B,
cannot be assigned to a particular test team, say I, then the resulting design is
known as an incomplete block design; see, for example, Hicks (1982), p. 80.

7.2.5 Concluding Remarks

The subject of experimental design is vast and specialized. We have
attempted to give merely an overview ofthis topic, keeping in mind the intended

238 7. Other Developments: Open Problems

applications. There are several excellent books on this subject, the one by Hicks
(1982) offering a relaxed introduction.

The topic of software testing offers much opportunity for using some well
known techniques of applied statistics. We have highlighted two of these,
namely, sampling and the design of experiments. Special features of the software
testing problem call for modifications of the available methodologies. In the
context of random and partition testing, we have alluded to a few open problems.
In the context of DOE, the need for new designs has been recognized, and some
work involving constrained arrays, vis-a-vis the AETG design has been reported.
However work in this arena seems to be continuing, a recent contribution being
the paper of Dalal and Mallows (1998).

7.3 The Integration of Module and System Performance

It is often the case that a large software system can be decomposed into
modules, where each module is a subset of the entire code. The modules are
designed to perform a well-defined subtask, and a part of the code may be
common to several modules. The output of a module could be an input to
another module, or the output of the entire system itself. In the interest of clarity,
we find it useful to define the input specific reliability of a module as the
probability that the module produces a correct output against a given input.
Since the number of distinct inputs to a module can be very large -
conceptually infinite - - it is useful to think in terms ofthe overall or composite
reliability of a module as the probability that the module produces a correct
output for any randomly chosen input from the input domain.

It is often the case that each module is tested individually to assess its input
specific reliability with respect to the subtask that it is required to perform.
When such is the case, the input-specific reliability will be one or zero,
depending on whether the module's observed output is correct. Typically, the
causes of an incorrect output are identified and eliminated through debugging.
However, it is not feasible to test a module against all its possible inputs. Thus
the best that one can hope for is to estimate the module's composite reliability.
This estimate will depend on the size of the sample of inputs against which it is
tested. Clearly, because of debugging (which is often assumed to be perfect), the
estimated composite reliability will increase with the number of inputs against
which the module is tested. The purpose of this section is to propose a
framework by which a software system's composite reliability can be assessed
via the (estimated) composite reliability of each module. For this, we need to
know the relationships among the various modules of the software system, that
is, the manner in which the modules are linked with each other. In what follows,
by the term reliability we mean composite reliability.

7.3 The Integration of Module and System Performance 239

FIGURE 7.4a. The "Sequence" Control Flow.

7.3.1 The Protocols of Control Flow and Data Flow

The modules of a software system mayor may not be linked with each
other. When linked, there are two protocols that describe the nature of linkage.
The first is control flow which specifies the time sequence of events and
operations. The second is data flow which describes how data (or information) is
transmitted to, from, and between modules. By convention, we use solid lines to
indicate control flow, whereas dotted lines indicate data flow; see Figures 7.4
and 7.5. There are three types of control flow that need to be considered:
"sequence," "selective," and "iteration;" we describe these later. In what follows,
we assume that these three control flows can be used to represent any software
system with any number of modules.

For purposes of exposition, consider a software system with only two
modules MI and M2 and a "condition gate," which is denoted by the letter C
inscribed within a diamond. The condition gate is a binary logic gate with two
outputs, "t" for truth, and ''/' for false. Figures 7.4a), b), and c) show how MI
and M2 are linked via the sequence, the selective, and the iteration flows,
respectively.

When the control flow is a sequence [Figure 7.4a)] the data flow can take
various possibilities. Five of these are shown in Figure 7.5. With the possibility
labeled PI, a user inputs data to MI which then processes it and delivers its
output to M2 which in turn processes this input and delivers to the user its output.
This flow of data (or information) is indicated by the dotted lines of Figure 7.5.
With the possibility labeled P2 a user may input data either to M, or to M2
directly; in the latter case MI is completely bypassed. Possibility P3 is a
combination of PI and P2. With possibility P4 a user inputs data to M" but the
output of MI consists of two parts, one part going directly to the user and the
other going to M2 as an input; M2 processes its input and delivers its output to
the user. Possibility P5 is P4 with the added feature that a user may bypass MI
and feed the data directly to M 2 . The key aspect of Figure 7.5 is that whenever
data need to go from one module to the other, it is always from MI to M2 and not
vice versa. Clearly, an erroneous output of either Ml or of M2 would result in a
failure of the software system.

When the control flow is selective [Figure 7.4b)] the data flow has only one
possibility. A user first inputs data to the condition gate C which then classifies

240 7. Other Developments: Open Problems

t (true)

f (false)

FIGURE 7.4h. The "Selective" Control Flow.

t (true)

f (false)

FIGURE 7.4c. The "Iteration" Control Flow.

7.3 The Integration of Module and System Performance 241

User

--------._� Input
MI • M2
I i
I I
~ ___ ~------------J

r-----~ User
Output

I---------------------------~
User •

P2 --------._1 MI • M2 r-----~ User
Input : Output ________________ ~------------J

-~~:.r----._II~M~I:-1----I.~--f M2
Input: : :

~ ___ ~------------J :
I

---------~---------------------~

r-----~ User
Output

I---------------------------~
User ...------1.:_-.

--------._1 MI • M2 r-----~ User
Input I 1....--':: ---I Output

L ___ ~------------J

I---------------------------~
I

-~~:.r----~.r-NMi:",,----.~_t_M..:2...._Jr-----~ User
Input i : : Output

~ ___ ~------------J :
I

---------~---------------------~

FIGURE 7.5. The Sequence Control Flow and Five Possibilities
for Its Data Flow.

242 7. Other Developments: Open Problems

them as either t (for true) or f (for false). All inputs that are classified as t
become inputs to MI which then processes them and delivers to the user its
outputs. Similarly, all inputs classified asfbecome inputs to M2. Here, the data
flow diagram mimics the control flow diagram; see Figure 7.6.

An erroneous output of either MI or of M2 or a misclassification by the
condition gate C will result in a failure of the software system. It is easy to see
that the two-module software system can be expanded to incorporate additional
modules, either in a sequence or a selective flow, by the introduction of
additional condition gates.

The third control flow protocol, namely "iteration" [see Figure 7.4c)] is de
facto a sequence flow with an intervening condition gate. Here the user inputs a
datum to the condition gate C which classifies it as either t or f If t, then the
datum becomes an input to MI which processes it and delivers the output to the
user. If a datum is classifiedf, then it becomes an input to M2 which processes it
and provides as output an input to the condition gate for reclassification as t or f
This process (referred to by programmers as a "loop") repeats itself zero or more
times, and thus the term "iteration;" see Figure 7.7. In Figure 7.7, the module M2
has an additional index j, j = 1, 2, ... , to indicate the jth iteration of M2 for a
particular input datum.

It is sometimes true that input data of a certain kind can affect M2 in such a
way that it provides correct outputs for the first k iterations, and an incorrect
output at the (k + l)th iteration. Thus M2 could, de facto, be viewed as a
collection of submodules Mz(l), M2(2), ... , M2 (j) , ... , that are linked in a
sequence flow. Often, there may be an upper limit, say J, to the number of
iterations per input that M2 is allowed to perform; in such cases, j = 1, ... , J, so
that M2 is essentially a maximum of J submodules linked in a sequence flow with
an intervening condition gate between each iteration. Clearly, an erroneous
output, be it MI or anyone of the M2(J)S, or a misclassification by the condition
gate, might result in a failure of the software system.

The reliability of a modularized software system is the probability that the
system provides a correct user output given that the user input data conform to
specifications. The following structure function calculus enables us to obtain the
reliability of the software system given the reliabilities of each of its modules
and its condition gates. That is, it facilitates an integration of module and system
performance. The reliability of a condition gate is the probability of its correct
classification.

7.3.2 The Structure Function of Modularized Software

Let II, h ... , h , ... , denote the possible distinct user inputs to the
software system. For purposes of discussion, we focus attention on a single
input, say input h. With respect to h, each module of the software, its condition
gates, and the software system itself, will be in one of two states, functioning
correctly or not. Also, each condition will make a binary classification, true or

7.3 The Integration of Module and System Performance 243

User

Input

I-------~-------
1

: t (true)
1
1
1
1
1
1

1
1
1
1
1
1

: f (false)
1
I ______ -~--------

'---_....J

---I
1
1
1

t
1
1
1

~---~
1
1
1
1 • 1
1
1 ___ J

User
Output

FIGURE 7.6. The Selective Control and Its Associated Data Flow.

User
-----~-
Input

Module
Input

1------+-------
1

: t (true)
1
1
1
1
1
1

__ + User
Output

FIGURE 7.7. The Iteration Control and Its Data Flow.

244 7. Other Developments: Open Problems

false. These binary states will be represented by indicator variables, and the
structure function is a binary function that describes the relationship between the
state of a software system and the states of its modules and its condition gates.
We next introduce some notation that helps us to describe the preceding
relationships.

For a two-module system having at most one condition gate C, let

Xi = 1(0) if module Mi, i = 1,2, functions correctly (incorrectly) for
input h;

Y = 1(0) if the condition gate C makes a correct (incorrect)
classification when the user input is h;

c = 1(0) if the condition gate C makes a correct classification and
declares t(j).

When there is an iteration flow associated with module Mi , i = 1, 2, let the
indicator variable XiV), j = 1, 2, ... , be such that

XiV) = 1(0) if the jth iteration of Mi produces a correct (incorrect)
output given that its input generated via Ik is correct.

The possibilities labeled P4 and P5 of Figure 7.5 show that module MI can
generate two types of output: one that goes directly to the user, .and another that
becomes an input to M2. To account for these types of outputs, one needs to
introduce an additional index to X, so that

Xli = 1(0) if the output of MI which goes to the user is correct
(incorrect) for input data Ik ; similarly

Xl2 = 1(0) if the output of MI which goes to M2 is correct (incorrect).

Finally, the binary state of the entire software system is described by the
indicator variable X, where X = 1(0) if the entire software system performs
correctly (incorrectly), under user input h.

Clearly, X is a function of some or all of the indicator variables previously
defined. Let K = (XI, X2, Y, C, XI V), X2V), XII, Xl2); K denotes the states of the
modules and the condition gate(s) of the software system for a user input h.
Then

x = </J(K),

where the binary function ¢ is known as the structure function of the software
system. The form of ¢ is dictated by the control and the data flow protocols of

7.3 The Integration of Module and System Performance 245

the software system. Since both K and X depend on the input data h, one may
replace K with K(h) and X with X(h), so that the preceding relationship takes
the general form

X(h) = t/J(Jf.(h».

The easiest cases to consider are those involving a sequence flow.
Specifically, under the possibilities PJ, P2, and P3 of Figure 7.5, X =
cp(XJ, X2) = Xl • X2, and under the possibilities P4 and P5 of Figure 7.5,
X = cp(Xll , X12, X2) = Xll • X12 • X2. The next case to consider is the selective
flow of Figure 7.6, for which X = cp(XJ, X2 , Y, C) = Y· [C· Xl + (l - C) • X2].
When the control flow is an iteration, Figure 7.7, then it is easy to verify that, for
j = 1, 2, ... , X = cp(XI , X2(j), Y, C) = Y· [C • Xl + (l - C) I1~X2(j)], or if
there is an upper limit of J on the number of iterations that M2 is allowed to
perform, X = Y· [C • Xl + (1 - C) I1~ X2(j)]. A special case of the preceding
arises if the internal code of M2 is not affected by the input data of each iteration;
that is, module M2 remains unchanged from iteration to iteration. In such cases
X2(j) = X2 , forj = 1,2, ... , so that

since X2 is either 0 or I.
For software systems with more than two modules, we can decompose the

system into pairs of modules (this is called modular decomposition), and view
each pair as a module. Thus, in principle, the structure function of any software
system will take a form that is a composition of one or more of the preceding
forms. Once the foregoing is done, the task of integrating module and system
performance is complete. However, there are many other issues that still remain
to be addressed. For one, how do we incorporate the effect of fault tolerance into
the structure function? For another, how do estimates of module reliabilities
propagate to estimates of system reliability, given the nature of our structure
functions? How must we incorporate dependencies between the indicator
variables that describe the performance of each module? These and other issues
are potential candidates for further research.

Appendices

A Statistical Computations using the Gibbs Sampler

Al An Overview of the Gibbs Sampler

A2 Generating Random Variates-

The Rejection Method

A.3 Examples: Using the Gibbs Sampler

A3.1 Gibbs Sampling the lelinski-Moranda

Model

A3.2 Gibbs Sampling the Hierarchical Model

A3.3 Gibbs Sampling the Adaptive Kalman

Filter Model

A3.4 Gibbs Sampling the Non-Gaussian

Kalman Filter Model

B The Maturity Questionnaire and Responses

B.l The Maturity Questionnaire

B.2 Binary (Yes, No) Responses to the

Maturity Questionnaire

B.3 Prior Probabilities and Likelihood

B.3.1

B.3.2

B.3.3

The Maturity Levels P(MiIMi.\)

The Key Process Areas P(Kij) and P(Kij I M i)

The Likelihoods .c(Kij; Bij)

249

250

253

254

254

255

256

258

261

261

265

266

266

266

268

ApPENDIX A

STATISTICAL COMPUTATIONS

USING THE GIBBS SAMPLER

Markov Chain Monte Carlo (MCMC) methods are computer-intensive
techniques that have greatly facilitated statistical computations, both Bayesian
and frequentist. As is evident from the material of Chapter 4, the role of
integration is central to Bayesian inference. However, integration is often a
difficult task, especially when one has to deal with complicated kernels involving
multiple variables. Bayesian inference for the concatenated failure rate model is
a case in point; see Section 4.7. Sometimes numerical integration or analytical
approximations can be used, but these too may pose formidable difficulties. The
MCMC method is an alternative to these. Here we are able to indirectly generate
random samples from the distributions of interest (univariate or multivariate),
and obtain sample estimates of the desired quantities. In so doing, we have
implicitly performed the required integration.

There are several MCMC methods that have been proposed in the literature,
one of which is the "Metropolis-Hastings Algorithm" [cf. Chib and Greenberg
(1995)]. A special case of this algorithm is the "Gibbs sampler," which has now
become a popular statistical tool [cf. Brooks (1998)]. The purpose of this
Appendix is to overview the Gibbs sampler, and to describe how it may be used
to address the computational issues that arise in the context of the models of
Chapter 3. Since the technique is quite general, its scope of application is wide,
and thus it behooves us to devote some effort to understand its workings. One of
the best descriptions of the Gibbs sampler (that we have encountered) is the
paper by Casella and George (1992); the material that follows is largely based on
their exposition.

250 Appendix A

A.I An Overview of the Gibbs Sampler

An archetypical problem in Bayesian inference involves a known joint
density function, say fit, {h, ... , ()p I!.., .), where 1. denotes the observed data,
()\, . . • , ()p the unknown parameters, and t an unknown observable of interest,
say the time to next failure; the • represents the specified hyperparameters of
the underlying prior distributions. Our interest is in obtaining the marginal
(predictive) density

fit I!, .) = J ... J fit, (h, ... , Op I!, •)dO j ••• dOp ,
OJ op

or its characteristics such as its mean, its variance, and so on. An example is
Equation (4.56) of Section 4.7.2. The straightforward approach would be to
perform the preceding multiple integration, and then obtain the desired
characteristics. The Gibbs sampler provides an easy alternative for obtaining
fit I!..). It does this by generating a random sample fromf(t I 1.., .). The novelty
of the approach is that the random sample can be generated without an explicit
knowledge of fit I 1., .). The random sample can be used to obtain an estimate
of fit I 1., .) itself, or to obtain estimates of its characteristics of interest. The
accuracy of our estimates would depend on m; in general, the larger the m, the
better the estimate.

To describe the workings of the Gibbs sampler, we let p = 1, and for
convenience, suppress the conditioning arguments • and 1., and also the index 1
of ()\. Thus, to obtain

fit) = J fit, O)dO,
o

using the Gibbs sampling algorithm we proceed as follows.
First, we select a starting value of (), say ()g), and then generate (i.e.,

simulate) a value fromf(t I ()g\ we denote this value as t~l). Next, we use tg) to
generate a value ()~\) from f(() I tg». We then use ()~l) to generate t~l) from
fit I 8~1), and so on, so that in general, for j = 0, 1, 2, ... ,

This procedure of iteratively generating values of 8 and t by alternating
between the conditional densities f(8 I t) and fit I 8) is called Gibbs sampling,

Appendix A.I An Overview of the Gibbs Sampler 251

. (I) (I) (I) (I) (I) (I) _ .
and the generated paIrS (00 ,to), (01 ,tl), •.. ,(Ok ,tk), k - 0, 1, 2, ... , IS

called the Gibbs sequence. It can be shown that when k is large, the value tkl) can

be regarded as a realization from the density function fit); similarly Okl) a
realization from flO), the marginal density function of O. Thus to generate a
sample of size m fromf(t) one repeats the foregoing iterative procedure m times,
starting each of the m cycles with suitable choices of initial values og), O~), ... ,
O~m). Clearly, to generate the Gibbs sequence aO knowledge of the conditionals
fit I 0) and f(O I t) is necessary. Furthermore, we should be able to generate
values fromf(t 10) andf(O I t). Since tf) and of) depend on the starting value og),
i = 1, 2, ... , m, it is important to ensure that the starting values constitute an
independent sequence.

Once the Gibbs sequence is generated, the densities fit) and f(O) can be
. db· h· f (I) (2) (m) d 0(1) 0(2) estimate y constructmg a Istogram 0 tk ' tk ' ... ,tk ,an k' k ' ••• ,

Okm), respectively, for large values of k and m. However, as was pointed out by
Gelfand and Smith (1990), better estimates of the densities can be obtained by

" averaging the conditional densities. Specifically,f(t), a Gibbs sequence estimate
off(t), is given by the average

m

I(t) = ~ L:.f(t I e~» ,
;=1

and a Gibbs sequence estimate off(O) by the average

m

1(0) = ~ L: f(O I tf» .
;=1

Similarly, estimates of the means of fit) and f(O) can be obtained by the
sample averages lImL:;:\ tf) and lImL:;:1 of), respectively.

In the case of three variables, say t, 0\, and O2 , we choose the starting values
O~~ and O~~, and then sample iteratively from the three full conditional densities
fit 101, (2),f(flt It, (2), andf(02 I t, 0\). After k iterations we produce the Gibbs
sequence (O~~, O~~, til); til) is then a realization from the marginal density fit),

similarly, oW and O~~. As before, we repeat this procedure m times to generate
samples of size m from the required densities. The procedure generalizes to
several variables.

To conclude, the Gibbs sampling algorithm can be thought of as a practical
implementation of the fact that a knowledge of the conditional distributions is
sufficient to determine a joint distribution, should the joint distribution exist.
Note that it is not always true that the existence of proper conditional
distributions ensures the existence of a proper joint distribution. If a proper joint
distribution does not exist, then a marginal distribution will not exist. When such

252 Appendix A

is the case the outputs from a Gibbs sampler will be misleading. Thus before
invoking the Gibbs sampler one should ensure the existence of a proper joint
distribution. One way to do this is to solve a certain fixed point integral equation
and see if the solution is the required marginal density. Another way is to restrict
all conditional densities to lie on compact intervals. Since the situation described
is rare, we may for all practical purposes ignore it and proceed with the iterative
scheme.

Appendix A.2 Generating Random Variates-The Rejection Method 253

A.2 Generating Random Variates-The Rejection Method

For a successful implementation of the Gibbs sampling algorithm, It IS
important that we are able to efficiently generate realizations from the full
conditional distributions. Often, these conditional distributions are not of a
standard form, being compositions of priors and likelihoods. Thus, for example,
to generate a realization from, say f(fh I OJ; t), where OJ and 02 are unknown
quantities and t are the observed data, we may find it convenient to express
f(02 I OJ; t) as

by Bayes' Law where the first term on the right-hand side of the preceding is the
likelihood and the second term is the prior of O2 conditional on OJ. If the prior
happens to be a standard (well-known) form, then generating samples from
P(02 I OJ) may be relatively straightforward. The method of rejection sampling
enables us to generate samples from f(02 I OJ; t) by modifying the samples
generated from P(02 I OJ) via the likelihood C(02 I OJ; t). The method of
rejection sampling proceeds as follows.

(a) First we generate a realization, say O~a), from the prior distribution
P(02 I OJ), with OJ specified.

(b) We then generate a realization, say u(a), from a uniform distribution on
(0,1).

(c) We then compute the rejection kernel (also known as a blanketing
function) (C(O~a) I OJ; t))/(C(02 I OJ; t)), where e 2 is that value of O2
which maximizes the likelihood function C(02 I OJ; t).

(d) If u(a) ::; (C(O~a) I OJ; t))/(C(e2 I OJ; t)), then O~a) is a realization from
P(02 I OJ; t), otherwise o(a) is discarded (rejected).

(e) We repeat the steps (a) to (d) until the desired number of O~a)s have
been obtained.

Rejection sampling is one of several approaches for generating samples
from one distribution by modifying the samples generated by another. An
overview of some of the alternatives may be found in Smith and Gelfand (1992).

254 Appendix A

A.3 Examples: Using the Gibbs Sampler

Whereas the general methodology for implementing the Gibbs sampling
algorithm is relatively straightforward, some initial preparation to get all the full
conditional densities in a workable form is necessary. This is illustrated by
Equation (4.54) of Section 4.7.2 where Bayesian inference for the concatenated
failure rate model was discussed. The purpose of this section is to show how the
Gibbs sampling algorithm can be used in place of numerical integration and
approximations that were the mainstay of many of the examples of Chapter 4.
We start with the simplest.

A.3.1 Gibbs Sampling the lelinski-Moranda Model

Recall, that for this model, the predictive density of Tn+1 at t, given the data
1. = (tl, ... , tn) and the prior parameters 8, fl" and a (henceforth.), had to be
numerically obtained; see Section 4.2.3. Thus to obtain fit I 1., .) we need to

h G 'bb «i) N(i) A(i) I)'" 1 2 F h' generate tel s sequence tk , k' k 1.,., lor 1 = , , ... , m. or t IS

we need to know the full conditionals fit I N, A, 1.), fiN I t, A, J.), and f(A I t, N,
J.); for convenience, the • has been suppressed in this and subsequent sections.

But from Equation (3.5), we know that fit I N, A, 1.) = fit I N,
A) = Aexp(- At(N - n)), an exponential distribution, so that given the starting
values No and Ao we can easily generate a to. For the full conditionalf(N I t, Ao,
J.), we use Bayes' Law whereby

fiN I t, Ao,!J = fiN I Ao,!J

where peN), our prior for N, is assumed to be independent of Ao. The likelihood
of N, for fixed values of Ao and 1., is of the form

n

Cn(N lAo; 1) =. I1 Ao exp(- Aotj(N - i + 1)) .
1=1

In writing the preceding, we have assumed that given Ao and 1., the
distribution of N does not depend on Tn+l • Thus given Ao and 1., we may
generate a realization NI from fiN lAo, J.) by using rejection sampling on
samples generated from peN), which we recall was assumed to be a Poisson
distribution. Similarly, for the full conditionalf(A I t, NI , J.), we have

Appendix A.3 Examples: Using the Gibbs Sampler 255

with Cn(A I N\; !J taking the same form as Cn(N lAo; lJ. Thus given N\ and!..
we may use rejection sampling on samples generated from P(A)-a gamma
distribution-to generate A\. The iterative scheme is now in place.

A.3.2 Gibbs Sampling the Hierarchical Model

The hierarchical model of Section 4.4 involved the parameters a, /30, (3\,
and Ai, i = 1,2, ... ,and the predictive distribution of Tn+\ given!.. = (t\, ... ,
tn); see Equations (4.21) and (4.22). Thus to Gibbs sample this model, the
number of full conditionals that we need to consider is five. As a start, consider
the full conditional fit I Ai, a, /30, (3\, 1..), which, because of the obvious
independence considerations, is in factf(t I a, /30, (3\). But from Equation (4.17),
Tn+\ has a Pareto density at t of the form (a«(30 + (3\(N + 1»O)/«t + /30 + (3\(N +
1»0+\). Thus given the starting values for a, /30, and (31o a realization t from
j(t I a, /30, (3\) can be generated using this Pareto density. Similarly, from the
same starting values, we can also generate a realization from j(Ai I a, (30, (3\, 1..),
using the density of Equation (4.20); note that to generate a realization from the
preceding density of Ai we only need to use the ti from the collection (tlo ... , ti,
. . . , tn). To generate realizations from the remaining three densities, we must
decompose them. Specifically,j(a I t, Ai, /30, (3\,!J = j(a I Ai, /30, (3\,1..), and by
Bayes'Law

where Cn(a I Ai, /30, (3\, lJ is the likelihood of a for fixed values of the other
arguments. To specify this likelihood we use Equation (4.20); accordingly,

C (a I A· a f3' t) = IT A'j(t;+!30+(3\i)Ol+\ e-A;(t;+!30+(3\i)
n /, /Jo, 1,_ i = 1 r(a+l) .

For the prior P(a I Ai, /30, (3\) we observe that, by the multiplication rule,

which because of Equation (4.18) is of the form

But by our model construction, A.i has a gamma distribution with a shape
parameter a and a scale parameter /30 + (3\ i, and 7r(a I w) is a uniform
distribution on (0, w). Generating random variates from 7r(a I w) is therefore
very straightforward. In order to generate realizations fromj(a I A.i, /30, (3\,!J we
may use rejection sampling on samples generated from 7r(a I w) using

256 Appendix A

.cn(aIAj, flo, /3,,1"> x P(Ada, flo, /3,)

.cn(aIAj , flo, /3,,1) x P(Ada, flo, /3,)

as the rejection kernel, or do rejection sampling in two stages, first using
P(Aj I a, flo, /3,)IP(Ajlfi, flo, /3,) as the rejection kernel, and then using
.cn(a I Aj , flo, /31, IJ/.cn(3.1 Aj , flo, /31, IJ as a rejection kernel on those samples
that have been accepted by the first rejection kernel. Note that a (fi) [3.] is that
value of a that maximizes the numerator terms of their respective rejection
kernels. Thus given the starting values of flo and /31, and the previously
generated value of Aj , we can generate realizations fromfta I Aj , flo, /31, IJ.

Generating samples from the full conditionals ftflo I t, a, flo, /31, lJ and ft/3tl
t, a, flo, /3t. !J proceeds along similar lines, except that now 7I"(a I w) gets
replaced by 7I"(flo I /3t. a, b) and 71"(/31 I c, cl), respectively; see Equation (4.18).

A.3.3 Gibbs Sampling the Adaptive Kalman Filter Model

In what follows we use the notation of Section 4.5. With dynamic models,
interest centers around the state of nature ()j, and predictions about future
observables Yj+t , Yj+2, .•. , given the observed data li) = (Yt, ... , Yj), for
i = 1, 2, Interest may also center around other parameters such as the a of
Equation (4.26), or the C of Equation (4.28).

Recall that for the adaptive Kalman filter model,

a rv U(- 2, +2), for i = 1,2, ... ;

U(-2, +2) denotes a uniform distribution over the interval (-2, +2).
For inference about «()j; y(i), (a; y(i», and the predictive density at y of (Yj+,;

y(i), we consider the full co~ditional; generated by the 5-tuple «()j, ()j+1, Yj+t. a,
l(i). For purposes of discussion we focus attention on the case i = 1, so that our

5-tuple is (flt, (h, Y2 , a, yt>; also note that the starting value ()o has been
specified in advance. Because of the underlying distributional assumptions given
previously, we see that the full conditionals of the 5-tuple are distributed as

Appendix A.3 Examples: Using the Gibbs Sampler 257

To generate realizations from the preceding set of conditionals we choose
010 and 020 as starting values of OJ and O2, respectively. We can then generate a
Y20 from the distribution of (Y2 I (20), which is a Gaussian with mean 020 and
variance af. To generate a realization from (a I OJ, (2), we use the multiplication
rule whereby

and observe that (02 I OJ, a) has a Gaussian distribution with mean aOJ and
variance wi, and that (OJ I a) has a Gaussian distribution with mean aOo and
variance wl. These relationships with 020 replacing O2 and 010 replacing OJ
define the rejection kernel for samples generated from the uniform (-2, +2)
distribution of a. Consequently, we are able to generate ao, a realization from
the distribution of (a I 010, (20).

Having chosen the starting values 010 and 020 (note that the starting value 00
is external to the Gibbs sampling algorithm), and having generated the values Y20
and ao, we now proceed to generate a realization from the distribution of
(Oz I 010, ao, Y20). Invoking the multiplication rule, we observe that

P(Oz I 010, ao, Yzo) ex: P(Yzo I Oz, 010, ao) P(02 I 010, ao)

= P(Y20 I (2) P«(Jz I 010, ao) ,

since Y20 is independent of 010 and ao, given O2,
But (02 I 010, ao) has a Gaussian distribution with mean aoOIO and variance

wi, and so samples from this distribution can be easily generated. Also,
(Y20 I fh) has a Gaussian distribution with mean 02 and variance af, and this
forms the basis of a rejection kernel for samples generated from (02 I 010, ao).
Consequently, we are able to update 020 to 02J.

Our final task is to generate samples from the distribution of (OJ I 021 , ao,
YI), which because of the multiplication law is

since (JZI is independent of YI given ao and (JJ.

But with 00 specified (it is the starting value for filtering), P«(JJ I ao) is
Gaussian with mean aoOo and variance wl; thus samples from this distribution
can be easily generated. To construct the rejection kernel, we first observe that
(020 lao, (1) has a Gaussian distribution with mean aoOI and variance Wi, and

258 Appendix A

that since YI has been observed as YI, P(YI I BI) is the likelihood £(BI; YI). This
likelihood can be assessed from the assumption that (YI I ed '" N(e l ; O"f).
Thus the rejection kernel for samples generated from p(el I ao) is provided by
the function £(e l ; yd x p(e21 lao, e l). We can now generate a realization Bll
from P(BI I e21 , ao; YI); ew is thus updated to ell.

The process repeats itself, so that after k iterations we are able to produce
(. B d) h 1·· B(l) B(l) y(l) d (I) b d h . gIven 0 an YI t e rea IzatlOns Ik' 2k' 2k' an a k , ase on t e startmg
values BIO and e20 . Repeating this m times, each time using a new pair of starting
values, we can produce the realizations B~~), eg;:) , yi;) , and aim). The Gibbs

sample based estimate of P(Bj ; YJ, eo), j = 1,2, is the histogram of ej!), C = 1, .

. . , m; similarly, an estimate of Pea; YJ, eo), based on its uniform (-2, +2) prior,

is the histogram of ail), and an estimate of P(Y2; YI, Bo) is the histogram ofY~~,
C = 1, ... ,m.

For the case i = 2, we need to consider the 6-tuple (e2, e3 , Y3 , a, YJ, Y2),
and the histograms mentioned above provide the starting values, and also the
sampling distributions for e2 and a.

A.3.4 Gibbs Sampling the Non-Gaussian Kalman Filter Model

The non-Gaussian Kalman filter model, defined by Equations (4.27) and
(4.28), leads to the relationships:

[lQ
C £" and

for 1"1 having a beta distribution on (0, 1) with parameters 0"0 and Vo; el is the
scale parameter of the gamma distribution of TI . The prior distribution of C was
assumed uniform on the interval (0, 1).

Suppose that TI has been observed as tJ, and that inference about (el ; td,
(e2 ; tl), (C; td, and (T2 ; td is desired. For Gibbs sampling under the preceding
setup, we need to consider the full conditionals generated by the 6-tuple (Bo, BI ,

B2 , T2 , C, TI). The incorporation of Bo in the tuple is necessary because of the
fact that unlike the fixed Bo of the adaptive Kalman filter model, the Bo here has a
gamma distribution. The full conditionals of the 6-tuple have distributions
determined by quantities such as (C I e2 , (h, Bo). Generating realizations from
such conditionals poses a difficulty. This is because the multiplicative term
eOEI/C, of the second relationship given previously, makes it difficult to obtain a
rejection kernel. Whereas such difficulties can be overcome using the
Metropolis-Hastings algorithm [cf. Chib and Greenberg (1995)], the fact that

Appendix A.3 Examples: Using the Gibbs Sampler 259

closed form inference when we condition on C is available makes a more direct
approach feasible. To see how, consider all the full conditionals of the 5-tuple
(th, th, T2, C, Td, and observe, in the light of Equations (4.37) through (4.39),
that generating realizations from these conditionals involves generating
realizations from the conditionals (0) I C, T), (02 I C, T2), (T2 I C, Td, and
(C I t), T2). For a starting value Co of C, generating the values 010, 020, and T 20,

given an observed value t) of T), follows from Equations (4.37) through (4.39).
To update Co to C), via the generation of a realization from the distribution of
(C I t), T2), it is necessary that T2 be observed. This is because T) alone does not
provide information about C. Suppose then, that T2 has been observed as t2'

Then, Equation (4.39) can be used to construct a likelihood for C, and this
likelihood facilitates the formation of a rejection kernel. Specifically,

where P(C) is our prior for C. The rest proceeds in the usual manner.

ApPENDIXB

THE MATURITY QUESTIONNAIRE

AND RESPONSES

B.t The Maturity Questionnaire

Maturity Level 2

Key Process Area 1 (K21)-Requirements Management

1. For each project involving software development, is there a designated
software manager?

2. Does the project software manager report directly to the project (or project
development) manager?

3. Does the Software Quality Assurance (SQA) function have a management
reporting channel separate from the software development project
management?

4. Is there a designated individual or team responsible for the control of
software interfaces?

5. Is there a software configuration control function for each project that
involves software development?

Key Process Area 2 (K22}-Software Quality Assurance

262 Appendix B

6. Does senior management have a mechanism for the regular review of the
status of software development projects?

7. Is a mechanism used for regular technical interchanges with the customer?

8. Do software development first-line managers sign off on their schedules and
cost estimates?

9. Is a mechanism used for controlling changes to the software requirements?

10. Is a mechanism used for controlling changes to the code? (Who can make
changes and under what circumstances?)

Key Process Area 3 (K-1.3)-Software Project Planning

11. Is there a required training program for all newly appointed development
managers designed to familiarize them with software project management?

12. Is a formal procedure used to make estimates of software size?

13. Is a formal procedure used to produce software development schedules?

14. Are formal procedures applied to estimating software development cost?

15. Is a formal procedure used in the management review of each software
development prior to making contractual commitments?

Maturity Level 3

Key Process Area 1 (K31 }-Integrated Software Management

16. Is a mechanism used for identifying and resolving system engineering issues
that affect software?

17. Is a mechanism used for independently calling integration and test issues to
the attention of the project manager?

18. Are the action items resulting from testing tracked to closure?

19. Is a mechanism used for ensuring compliance with the software engineering
standards?

20. Is a mechanism used for ensuring traceability between the software
requirements and top-level design?

Appendix B.I The Maturity Questionnaire 263

Key Process Area 2 (K32~rganization Process Definition

21. Are statistics on software design errors gathered?

22. Are the action items resulting from design reviews tracked to closure?

23. Is a mechanism used for ensuring traceability between the software top-level
and detailed designs?

24. Is a mechanism used for verifying that the samples examined by Software
Quality Assurance are representative of the work performed?

25. Is there a mechanism for ensuring the adequacy of regression testing?

Key Process Area 3 (K33}-Peer Review

26. Are internal software design reviews conducted?

27. Is a mechanism used for controlling changes to the software design?

28. Is a mechanism used for ensuring traceability between software detailed
design and the code?

29. Are software code reviews conducted?

30. Is a mechanism used for configuration management of the software tools
used in the development process?

Maturity Level 4

Key Process Area 1 (K41)-Quantitative Process Management

31. Is a mechanism used for periodically assessing the software engineering
process and implementing indicated improvements?

32. Is there a formal management process for determining if the prototyping of
software functions is an appropriate part of the design process?

33. Are design and code review coverage measured and recorded?

34. Is test coverage measured and recorded for each phase of functional testing?

264 Appendix B

35. Are internal design review standards applied?

Key Process Area 2 (K42 }-Software Quality Management

36. Has a managed and controlled process database been established for process
metrics data across all projects?

37. Are the review data gathered during design reviews analyzed?

38. Are the error data from code reviews and tests analyzed to determine the
likely distribution and characteristics of the errors remaining in the product?

39. Are analyses of errors conducted to determine their process-related causes?

40. Is review efficiency analyzed for each project?

Maturity LevelS

Key Process Area 1 (KS1 }-Defect Prevention

41. Is software system engineering represented on the system design team?

42. Is a formal procedure used to ensure periodic management review of the
status of each software development project?

43. Is a mechanism used for initiating error prevention actions?

44. Is a mechanism used for identifying and replacing obsolete technologies?

45. Is software productivity analyzed for major process steps?

Appendix B.2 Binary (Yes, No) Responses to the Maturity Questionnaire 265

B.2 Binary (Yes, No) Responses to the Maturity Questionnaire

K21 K31 K41

I.N 16. N 31. Y
2.N 17. N 32.N
3. Y 18. Y 33. Y
4. Y 19. Y 34. Y
5.N 20.N 35.N

K22 K32 K42

6. Y 21. Y 36. Y
7.N 22. Y 37. Y
8. Y 23.N 38. Y
9.Y 24. Y 39. Y
10. Y 25. Y 40. Y

K 23 K33 KSI

11. N 26. Y 41. Y
12. Y 27. Y 42. Y
13. Y 28.N 43. Y
14. Y 29. Y 44. Y
15. Y 30.N 45.N

266 Appendix B

B.3 Prior Probabilities and Likelihoods

B.3.1 The Maturity Levels P(Mj I Mj.t)

The first column is based on common knowledge of maturity levels of
U.S. companies. The second column is true by requirements of the hierarchical
model.

P(M2 = 1 I Ml = 1) = 0.50
P(M2 = 0 I Ml = 1) = 0.50

P(M3 = 1 1M2 = 1) = 0.15
P(M3 = 0 I M2 = 1) = 0.85

P(M4 = 1 1M3 = 1) = 0.05
P(M4 = 0 I M3 = 1) = 0.95

P(M5 = 1 I M4 = 1) = 0.01
P(M5 = 0 I M4 = 1) = 0.99

P(M2 = 1 I Ml = 0) = 0
P(M2 = 0 I Ml = 0) = 1

P(M3 = 1 I M2 = 0) = 0
P(M3 = 0 I M2 = 0) = 1

P(M4 = 1 I M3 = 0) = 0
P(M4 = 0 I M3 = 0) = 1

P(M5 = 11 M4 = 0) = 0
P(M5 = 0 I M4 = 0) = 1

B.3.2 The Key Process Areas P(Kij) and P(Kij I Mj)

These priors were specified according to expert opinion.

Maturity Level 2 Maturity Level 3 Maturity Level 4 Maturity LevelS

P(K21 = 1) = 0.8 P(K31 = 1) = 0.5 P(K41 = 1) = 0.2 P(Ks1 = 1) = 0.02
P(K21 = 0) = 0.2 P(K31 = 0) = 0.5 P(K41 = 0) = 0.8 P(KS1 = 0) = 0.98

P(K22 = 1) = 0.9 P(K32 = 1) = 0.6 P(K42 = 1) = 0.3
P(K22 = 0) = 0.1 P(K32 = 0) = 0.4 P(K42 = 0) = 0.7

P(K23 = 1) = 0.9 P(K33 = 1) = 0.6
P(K23 = 0) = 0.1 P(K33 = 0) = 0.4

Appendix B.3 Prior Probabilities and Likelihood 267

The entries in the following table give P(Kij I Mj).

Key Maturity Level
Process M2 M3 M4 M5

Areas 1 0 1 0 1 0 1 0
K21 1 0.95 0.30 - - - - - -

00.05 0.70 - - - - - -

K22 1 0.90 0.40 - - - - - -

00.10 0.60 - - - - - -
K 23 1 0.90 0.40 - - - - - -

o 0.10 0.60 - - - - - -
K31 1 - - 0.95 0.25 - - - -

0 - - 0.05 0.75 - - - -

K32 1 - - 0.90 0.35 - - - -

0 - - 0.10 0.65 - - - -

K33 1 - - 0.90 0.35 - - - -
0 - - 0.10 0.65 - - - -

K41 1 - - - - 0.98 0.20 - -
0 - - - - 0.02 0.80 - -

K42 1 - - - - 0.95 0.25 - -
0 - - - - 0.05 0.75 - -

K51 1 - - - - - - 1.0 0.0

0 - - - - - - 0.0 1.0

268 Appendix B

B.3.3 The Likelihoods £(Kij; -Bij)

These likelihoods are based on independence of the responses, and for
simplicity are assumed to be the same for all the key process areas.

Responses Likelihood Likelihood

R ..
-I)

L(K=l· R ..) v '-I)
L(K=O· R ..) v '-IJ

0 0.0025 0.1200

00001 0.0035 0.0820
00010 0.0035 0.0820
00100 0.0035 0.0820
01000 0.0035 0.0820
10000 0.0035 0.0820

00011 0.0100 0.0350
00101 0.0100 0.0350
01001 0.0100 0.0350
10001 0.0100 0.0350
00110 0.0100 0.0350
01010 0.0100 0.0350
10010 0.0100 0.0350
01100 0.0100 0.0350
10100 0.0100 0.0350
11000 0.0100 0.0350

00111 0.0350 0.0100
01011 0.0350 0.0100
10011 0.0350 0.0100
01101 0.0350 0.0100
10101 0.0350 0.0100
11001 0.0350 0.0100
01110 0.0350 0.0100
10110 0.0350 0.0100
11010 0.0350 0.0100
11100 0.0350 0.0100

01111 0.0820 0.0035
10111 0.0820 0.0035
11011 0.0820 0.0035
11101 0.0820 0.0035
01110 0.0820 0.0035

11111 0.1200 0.0025

References

Aalen, O. O. (1987) Dynamic Modeling and Causality. Scand. Actuarial 1., 177-
190.

Achcar, J. A., D. Dey, and M. Niverthy (1998) A Bayesian Approach Using
Nonhomogeneous Poisson Process for Software Reliability Models in
Frontiers in Reliability. Series on Quality, Reliability and Engineering
Statistics (S. K. Basu and S. Mukhopadhyay, Eds.), 4: Calcutta University,
India.

AI-Mutairi, D., Y. Chen, and N. D. Singpurwalla (1998) An Adaptive
Concatenated Failure Rate Model for Software Reliability. 1. Amer. Statist.
Assoc., 93443: 1150-1163.

Andersen, P. K. and 0. Borgan (1985) Counting Process Models for Life
History Data: A Review (with Discussion). Scand. 1. Statist., 12: 97-158.

Andreatta, G. and G. M. Kaufman (1986) Estimation of Finite Population
Properties When Sampling is Without Replacement and Proportional to
Magnitude. 1. Amer. Statist. Assoc., 81 395: 657-666.

Arjas, E. and P. Haara (1984) A Marked Point Process Approach to Censored
Failure Data with Complicated Covariates. Scand. 1. Statist., 11: 193-209.

Barlow, R. F. and F. Proschan (1975) Statistical Theory of Reliability and Life
Testing. Holt, Rinehart and Winston, New York.

Basu, A. P. (1971) Bivariate Failure Rate. 1. Amer. Statist. Assoc., 60: 103-104.

Bather, J. A. (1965) Invariant Conditional Distributions. Ann. Math. Stat., 36:
829-846.

270 References

Benkherouf, L. and J. A. Bather (1988) Oil Exploration: Sequential Decisions
in the Face of Uncertainty. J. Appl. Prob., 25: 529-543.

Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis. Second
Edition, Springer-Verlag, New York.

Berger, J. O. and R. Wolpert (1984) The Likelihood Principle. Institute of
Mathematical Statistics, Hayward, CA.

Bernardo, J. M. (1979) Reference Posterior Distributions for Bayesian Inference.
J. of the Roy. Statist. Soc., series B, 41: 113-147.

Bernardo, J. M. (1997) Non-informative Priors Do Not Exist. A Dialogue with
Jose M. Bernardo. J. of Statist. Planning and Inference, 65 1: 159-189.

Bernardo, J. M. and A. F. M. Smith (1994) Bayesian Theory. Wiley, Chichester.

Bickel, P. J., V. N. Nair, and P. C. Wang (1992) Nonparametric Inference Under
Biased Sampling from a Finite Population. The Ann. Statist., 20: 853-878.

Box, G. E. P. (1980) Sampling and Bayes Inference in Scientific Modeling and
Robustness. J. Royal Statist. Soc., Series A, 143: 383-430.

Box, G. E. P. and G. M. Jenkins (1970) Time Series Analysis: Forecasting and
Control. Revised Edition. Holden-Day, CA.

Box, G. E. P. and G. M. Jenkins (1976) Time Series Analysis: Forecasting and
Control. Holden-Day, CA.

Brooks, S. P. (1998) Markov Chain Monte Carlo Method and Its Application.
The Statistician, 47, Part I: 69-100.

Brownlie, R., J. Prowse, and M. S. Phadke (1992) Robust Testing of AT&T
PMXlStartMail Using OATS. AT&T Tech. J., 71: 41-47.

Campod6nico, S. (1993) The Signature as a Covariate in Reliability and
Biometry. PhD Thesis, School of Engineering and Applied Science, The
George Washington University, Washington, DC.

Campod6nico, S. and N. D. Singpurwalla (1994) A Bayesian Analysis of the
Logarithmic-Poisson Execution Time Model Based on Expert Opinion and
Failure Data. IEEE Trans. Soft. Eng., 20: 677-683.

References 271

Campod6nico, S. and N. D. Singpurwalla (1995) Inference and Predictions from
Poisson Point Processes Incorporating Expert Knowledge. 1. Amer. Statist.
Assoc., 90: 220-226.

Casella, G. and E. I. George (1992) Explaining the Gibbs Sampler. Amer.
Statist., 46 3: 167-174.

Charette, R. N. (1989) Software Engineering, Risk Analysis and Management.
McGraw-Hill, New York.

Chatfield, C. (1983) Statistics for Engineering. Third Edition, Chapman and
Hall, London.

Chen, J. and N. D. Singpurwalla (1996) Composite Reliability and Its
Hierarchical Bayes Estimation. 1. Amer. Statist. Assoc., 91 436: 1474-
1484.

Chen, Y. and N. D. Singpurwalla (1994) A Non-Gaussian Kalman Filter Model
for Tracking Software Reliability. Statistica Sinica, 4 2: 535-548.

Chen, Y. and N. D. Singpurwalla (1997) Unification of Software Reliability
Models Via Self-Exciting Point Processes. Advances in Applied
Probability, 29 2: 337-352.

Chib, S. and E. Greenberg (1995) Understanding the Metropolis-Hastings
Algorithm. Amer. Statist., 49 4: 327-335.

Cochran, W. G. (1977) Sampling Techniques. Wiley, New York.

Cohen, D. M., S. R. Dalal, A. Kajla, and G. C. Patton (1994) The Automatic
Efficient Test Generator (AETG) System. In Proceedings of Fifth
International Symposium on Software Reliability Engineering. IEEE
Computer Society Press, Los Alamos, CA, 303-309.

Cox, D. R. and V. Isham (1980) Point Processes. Chapman and Hall, London.

Cox, D. R. and P. A. Lewis (1966) Statistical Analysis of Series of Events.
Methuen, London.

Crosby, P. B. (1979) Quality is Free. McGraw Hill, New York.

Crow, L. H. and N. D. Singpurwalla (1984) An Empirically Developed Fourier
Series Model for describing Software Failures. IEEE Trans. Reliability, R-
33: 176-183.

272 References

Dalal, S. R. and C. L. Mallows (1988) When Should One Stop Testing
Software? J. of Amer. Statist. Assoc., 83: 872-879.

Dalal, S. R. and C. L. Mallows (1990) Some Graphical Aids for Deciding When
to Stop Testing Software. IEEE J. on Selected Areas in Communications,
8: 169-175.

Dalal, S. R. and C. L. Mallows (1998) Factor-Covering Designs for Testing
Software. Technometrics, 40 3: 234-243.

Davis, A. M. (1990) Software Requirements-Analysis and Specification.
Prentice-Hall, New York.

Dawid, A. P. (1984) The Prequential Approach. 1. of the Roy. Statist. Soc. Series
A, 147, Part 2: 278-292.

Dawid, A. P. (1992) Prequential Analysis, Stochastic Complexity and Bayesian
Inference. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P.
Dawid, and A. F. M. Smith, Eds.), Oxford University Press, New York.

de Finetti, B. (1937) La Prevision: Ses Lois Logiques, Ses Sources Subjectives.
Ann. Inst. H. Poincare (Paris), 7: 1-68 [see (1964) for English transl.],
(cited pp. 5, 27, 29, 68, 78,143,149,151,186,192-3,213,215,229).

de Finetti, B. (1964) Foresight: Its Logical Laws, Its Subjective Sources. In H. E.
Kyburg and H. E. SmokIer (Eds.), Studies in Subjective Probability. Wiley,
New York (English transl. of B. de Finetti, 1937).

de Finetti, B. (1972) Probability, Induction and Statistics. Wiley, New York.

de Finetti, B. (1974) Theory of Probability, 1. Wiley, New York.

DeGroot, M. H. (1970) Optimal Statistical Decisions. McGraw-Hill, New York.

Duane, J. T. (1964) Learning Curves Approach to Reliability Monitoring. 1EEE
Trans. on Aerospace, AS-2: 563-566.

Dwass, M. (1964) Extremal Processes. Annals of Mathematical Statistics, 35:
1718-1725.

Efron, B. and R. Thisted (1976) Estimating the Number of Unseen Species:
How Many Words Did Shakespeare Know? Biometrika, 63: 435-447.

References 273

Fakhre-Zakeri, I. and E. Slud (1995) Mixture Models for Software Reliability
with Imperfect Debugging Identifiability of Parameters. IEEE Trans. Rei.,
441: 104-113.

Ferguson, T. S. and J. P. Hardwick (1989) Stopping Rules for Proofreading. 1.
Appl. Prob., 26: 304-313.

Fisher, R. A. and F. Yates (1953) Statistical Tables for Biological, Agricultural
and Medical Research, (fourth edition.), Oliver & Boyd, Edinburg and
London.

Forman, E. H. and N. D. Singpurwalla (1977) An Empirical Stopping Rule for
Debugging and Testing Computer Software. 1. Amer. Statist. Assoc., 72
360: 750-757.

French, S. (1980) Updating of Belief in the Light of Someone Else's Opinion. 1.
of the Roy. Statist. Soc. Series A, 143: 43-48.

Freund, J. E. (1961) A Bivariate Extension of the Exponential Distribution. 1.
Amer. Statist. Assoc., 56: 971-977.

Gaffney, J. E., Jf. (1984) Estimating the Number of Faults in Code. IEEE Trans.
on Soft. Eng., SE-I0: 459-464.

Geisser, S. (1984) On Prior Distributions for Binary Trials. Amer. Statist., 384:
244-247.

Gelfand, A. E., and Smith, A. F. M. (1990) Sampling-Based Approaches to
Calculating Marginal Densities. 1. Amer. Statist. Assoc., 85: 398-409.

Gill, R. D. (1984) Understanding Cox's Regression Model: A Martingale
Approach. 1. Amer. Statist. Assoc., 79 386: 441-447.

Goel, A. L. (1983) A Guide Book for Software Reliability Assessment.
Technical Report, RADC-TR-83-176. Rome Air Development Center,
Rome, New York.

Goel, A. L. (1985) Software Reliability Models: Assumptions, Limitations and
Applicability. IEEE Trans. on Soft. Eng., SE-ll: 1411-1423.

Goel, A. L. and K. Okumoto (1978) An Analysis of Recurrent Software Failures
on a Real-Time Control System. In Proceedings of the ACM Annual
Technical Conference, 496-500.

274 References

Goel, A. L. and K. Okumoto (1979) Time-Dependent Error Detection Rate
Model for Software Reliability and Other Performance Measures. IEEE
Trans. Rei., R-28: 206-211.

Gokhale, S. S., M. R. Lyu, and K. S. Trivedi (1998) Reliability Simulation of
Component-Based Software Systems. In Proceedings of the Ninth
International Symposium on Software Engineering (ISSRE-98): 192-201.
IEEE Computer Society, Los Alamitos, CA.

Good, I. J. (1983) Good Thinking: The Foundations of Probability and Its
Applications. University of Minnesota Press, Minneapolis.

Gordon, L. (1983) Successive Sampling in Large Finite Populations. Ann.
Statist. 11: 702-706.

Hicks, C. R. (1982) Fundamental Concepts in the Design of Experiments. Holt,
Rinehart and Winston, Orlando, FL.

Hill, B. M. (1993) Dutch Books, the Jeffreys-Savage Theory of Hypothesis
Testing and Bayesian Reliability. Chapter 3 in Reliability and Decision
Making (R. E. Barlow, C. A. Clarotti, and F. Spizzichino, Eds.), Chapman
and Hall, London, 31-85.

Hogg, R. V. and A. T. Craig. (1978) Introduction to Mathematical Statistics.
Fourth edition, Macmillan, New York.

Howson, C. and P. Urbach (1989) Scientific Reasoning: The Bayesian
Approach. Open Court, II.

Hudson, A. (1967) Program Errors as a Birth and Death Process. Technical
Report SP-3011, Systems Development Corp., Santa Monica, CA.

Humphrey, W. S. (1989) Managing the Software Process. SEI (The SEI Series
in Software Engineering), Addison-Wesley, Reading, MA.

Humphrey, W. S. and N. D. Singpurwalla (1991) Predicting (Individual)
Software Productivity. IEEE Trans. Soft. Eng., 172: 196-207.

Humphrey, W. S. and N. D. Singpurwalla (1998) A Bayesian Approach for
Assessing Software Quality and Productivity. Int. 1. Reliability, Quality
and Safety Eng., 52: 195-209.

References 275

Humphrey, W. S. and W. L. Sweet (1987) A Method for Assessing the Software
Engineering Capability of Contractors. SEI Technical Report SEI-87-TR-
23.

lannino, A., J. D. Musa, and K. Okumoto (1987) Software Reliability:
Measurement, Prediction, Application. Wiley, New York.

Jalote, P. (1991) An Integrated Approach to Software Engineering. Springer
Verlag, New York.

Jaynes, E. T. (1968) Prior Probabilities. IEEE Trans. System Science and
Cybernetics, SSC-4: 227-241.

Jaynes, E. T. (1983) Papers on Probability, Statistics and Statistical Physics.
Reidal, Dordrecht.

Jeffreys, H. (1961) Theory of Probability. Third edition, OUP, Oxford.

Jelinski, Z. and P. Moranda (1972) Software Reliability Research. In W.
Freiberger, Ed., Statistical Computer Performance Evaluation, Academic
Press, New York.

Johnson, N. L. and S. Kotz (1970) Continuous Univariate Distributions, 2.
Houghton Mifflin, New York.

Kass, R. E. and L. Wasserman (1996) The Selection for Prior Distribution by
Formal Rules. J. Amer. Statist. Assoc., 91435: 1343-1370.

Kaufman, G. M. (1996) Successive Sampling and Software Reliability. J.
Statistical Planning and Inference, 49: 343-369.

Knight, J. C. and N. G. Levenson (1986) An Experimental Evaluation of the
Assumption of Independence in Multiversion Programming. IEEE Trans.
Soft. Eng., SE-12 1: 96-109.

Koch, G. and P. J. C. Spreij (1983) Software Reliability as an Application of
Martingale and Filtering Theory. IEEE Trans. ReI., R-32: 342-345.

Kolmogorov, A. N. (1950) Foundations of the Theory of Probability. Chelsea,
New York.

Kuo, L. and T. Y. Yang (1995) Bayesian Computation of Software Reliability. J.
Comput. Graphical Stat., 4: 65-82.

276 References

Kuo, L. and T. Y. Yang (1996) Bayesian Computation for Nonhomogeneous
Poisson Processes in Software Reliability. J. Amer. Statist. Assoc., 91 434:
763-773.

Kurtz, T. G. (1983) Gaussian Approximations for Markov Chains and Counting
Processes. Bulletin o/the International Statistical Institute, 50: 361-375.

Langberg, N. and N. D. Singpurwalla (1985) A Unification of Some Software
Reliability Models. SIAM J. Sci. Stat. Comput. 6: 781-790.

Lee, P. M. (1989) Bayesian Statistics: An Introduction. Oxford University Press,
New York.

Lindley, D. V. (1972) Bayesian Statistics, A Review. Regional Conference
Series in Applied Mathematics. SIAM, Philadelphia, P A.

Lindley, D. V. (1980) Approximate Bayesian Methods. Trabajos Estadistica,
31: 223-237.

Lindley, D. V. (1982a) Scoring Rules and the Inevitability of Probability. Inst.
Statist. Rev., 50: 1-26.

Lindley, D. V. (1982b) The Bayesian Approach to Statistics. In Some Recent
Advances in Statistics (T. de Oliveira and B. Esptein Eds.). 65-87,
London, Academic Press.

Lindley, D. V. (1983) Reconciliation of Probability Distributions. Operations
Research, 31: 866-880. .

Lindley, D. V. and N. D. Singpurwalla (1986a) Reliability (and Fault Tree)
Analysis Using Expert Opinion. J. Amer. Statist. Assoc., 81: 87-90.

Lindley, D. V. and N. D. Singpurwalla (1986b) Multivariate Distributions for the
Lifelengths of Components of a System Sharing a Common Environment.
J. Appl. Prob., 23: 418-431.

Littlewood, B. and J. L. Verall (1973) A Bayesian Reliability Growth Model for
Computer Software. Appl. Stat., 22: 332-346.

Lynn, N. (1996) Software for a Shot-Noise Reliability Growth Model. The
George Washington University Technical Memorandum TM-96-1.

References 277

Mandl, R. (1985) Orthogonal Latin Squares: An Application of Experimental
Design to Compiler Testing. Communications of the ACM, 28 10: 1054-
1058.

Marshall, A. W. (1975) Some Comments on Hazard Gradients. Stochastic
Processes and Their Applications., 3: 295-300.

Marshall, A. W. and I. Olkin (1967) A Multivariate Exponential Distribution. 1.
Amer. Statist. Assoc., 62: 30-44.

Martz, H. F. and R. A. Waller (1982) Bayesian Reliability Analysis. Wiley, New
York.

Mazzuchi, T. A. and R. Soyer (1988) A Bayes Empirical-Bayes Model for
Software Reliability. IEEE Trans. Rei., R-37: 248-254.

McDaid, K. and S. P. Wilson (1999) Determining An Optimal Time to Test
Software Assuming a Time-Dependent Error Detection Rate Model.
Technical Report 96/02, Department of Statistics, Trinity College, Dublin.

Meinhold, R. J. and N. D. Singpurwalla (1983a) Bayesian Analysis of a
Commonly Used Model for Describing Software Failures. The Statistician,
322: 168-173.

Meinhold, R. J. and N. D. Singpurwalla (1983b) Understanding the Kalman
Filter. Amer. Statist., 37 2: 123-127.

Miller, D. R. (1986) Exponential Order Statistic Models of Software Reliability
Growth. IEEE Trans. Soft. Eng., SE-12: 12-24.

Morali, N. and R. Soyer (1999) Optimal Stopping Rules for Software Testing.
Under review.

Moranda, P. B. (1975) Prediction of Software Reliability and Its Applications. In
Proceedings of the Annual Reliability and Maintainability Symposium,
Washington, DC, 327-332.

Morris, P. A. (1974) Decision Analysis Expert Use. Mgmt. Sci., 20: 1233-1241.

Morris, P. A. (1977) Combining Expert Judgments: A Bayesian Approach.
Mgmt. Sci., 23: 679-693.

Musa, J. D. (1975) A Theory of Software Reliability and Its Applications. IEEE
Trans. Soft. Eng., SE-l: 312-327.

278 References

Musa, J. D. (1979) Software Reliability Data. IEEE Comput. Soc. Repository,
New York.

Musa, J. D. and K. Okumoto (1984) A Logarithmic Poisson Execution Time
Model for Software Reliability Measurement. In Proceedings of the
seventh International Conference on Software Engineering., Orlando, FL,
230-237.

Musa, J. D., A. Iannino, and K. Okumoto (1987) Software Reliability. McGraw
Hill, New York.

Myers. G. J. (1978) Composite/Structured Design. Van Nostrand Reinhold, New
York.

Nair, V. J. and P. C. C. Wang (1989) Maximum Likelihood Estimation Under a
Successive Sampling Discovery Model. Technometrics 31: 423-436.

Nair, V. N., D. A. James, W. K. Ehrlich, and J. Zevallos (1998) A Statistical
Assessment of Some Software Testing Strategies and Application of
Experimental Design Techniques. Statistica Sinica, 81: 165-184.

Okumoto, K. and A. L. Goel (1980) Optimum Release Time for Software
Systems, Based on Reliability and Cost Criteria. 1. Syst. Soft., 1: 315-
318.

Ozekici, S. and N. A. Catkan (1993) A Dynamic Software Release Model.
Computational Economics 6: 77-94.

Paulk, M. c., M. B. Chrissis, B. Curtis, and C. V. Weber (1993) Capability
Maturity Model, Version 1.1. IEEE Soft., 18-27.

Phadke, M. S. (1989) Quality Engineering Using Robust Design. Prentice- Hall,
Englewood Cliffs, NJ.

Raftery, A. E. (1987) Inference and Prediction for a General Order Statistic
Model With Unknown Population Size. 1. Amer. Statist. Assoc., 82: 1163-
1168.

Raftery, A. E. (1988) Analysis of a Simple Debugging Model. Appl. Statist., 37
1: 12-22.

References 279

Raftery, A. E. (1992) Discussion of Model Determination Using Predictive
Distributions with Implementation via Sampling-Based Methods, by
Gelfand et al. In Bayesian Statistics 4 (1. M. Bernardo, J. O. Berger, A. P.
Dawid and A. F. M. Smith, Eds.), Oxford University Press, New York.

Raiffa, H. and R. Schlaifer (1961) Applied Statistical Decision Theory. Division
of Research, Harvard Business School, Boston.

Ramsey, F. P. (1964) Truth and Probability. In H. E. Kyburg Jr., and H. E.
SmokIer, Editors, Studies in Subjective Probability, Wiley, New York, 61-
92.

Randolph, P. and M. Sahinoglu (1995) A Stopping Rule for a Compound
Poisson Random Variable. Applied Stochastic Models and Data Analysis,
11: 135-143.

Rao, C. R. (1987) Prediction of Future Observations in Growth Curve Models.
Statistical Science, 24: 434-471.

Roberts, H. V. (1965) Probabilistic Prediction. 1. Amer. Statist. Assoc., 60: 50-
61.

Ross, S. M. (1970) Applied Probability Models with Optimization Applications.
Holden-Day, San Francisco.

Ross, S. M. (1985a) The Stopping Rule Problem. IEEE Trans. Soft. Eng., SE
ll: 1472-1476.

Ross, S. M. (1985b) Statistical Estimation of Software Reliability. IEEE Trans.
Soft. Eng. SE-ll: 479-483.

Sahinoglu, M. (1992) Compound-Poisson Software Reliability Model. IEEE
Trans. on Soft. Eng. 18: 624-630.

Savage, L. J. (1972) The Foundations of Statistics. Second edition, Dover, New
York.

Schick, G. J. and R. W. Wolverton (1978) Assessment of Software Reliability.
In Proceedings in Operations Research, Physica-Verlag, Vienna, 395-422.

Scholz, F. W. (1986) Software Reliability Modeling and Analysis. IEEE Trans.
Soft. Eng., SE-12: 25-31.

280 References

Singpurwalla, N. D. (1988a) Foundational Issues in Reliability and Risk
Analysis. SIAM Rev., 30: 264-282.

Singpurwalla, N. D. (1988b) An Interactive PC-Based Procedure for Reliability
Assessment Incorporating Expert Opinion and Survival Data. J. Amer.
Statist. Assoc., 83401: 43-51.

Singpurwalla, N. D. (1989a) A Unifying Perspective on Statistical Modeling.
SIAM Rev., 314: 560-564.

Singpurwalla, N. D. (1989b) Preposterior Analysis in Software Testing. In
Statistical Data Analysis and Inference (Y. Dodge, Ed.), Elsevier, North
Holland., Amsterdam, 581-595.

Singpurwalla, N. D. (1991) Determining an Optimal Time Interval for Testing
and Debugging Software. IEEE Trans Soft. Eng., 174: 313-319.

Singpurwalla, N. D. (1992) A Bayesian Perspective on Taguchi's Approach to
Quality Engineering and Tolerance Design. Institute for Industrial
Engineering Transactions, 24 5: 18-32.

Singpurwalla, N. D. (1993) Design by Decision Theory: A Unifying
Perspective on Taguchi's Approach to Quality Engineering. Chapter 14 in
Reliability and Decision Making (R. E. Barlow, C. A. Clarotti, and F.
Spizzichino, Eds.), Chapman and Hall, London, 267-272.

Singpurwalla, N. D. (1995) The Failure Rate of Software: Does It Exist? IEEE
Trans. Rei., 44 3: 463-469.

Singpurwalla, N. D. (1998a) A Paradigm for Modeling and Tracking Reliability
Growth. In Reliability Growth Modeling: Objectives, Expectations and
Approaches (Farquhar and Mosleh, Eds.), Center for Reliability
Engineering, University of Maryland, College Park, MD.

Singpurwalla, N. D. (1998b) Software Reliability Modeling by Concatenating
Failure Rates. In Proceedings of the ninth International Symposium on
Software Reliability Engineering (ISSRE-98), IEEE Computer Society, Los
Alamitos, CA, 106-110.

Singpurwalla, N. D. (1998c) The Stochastic Control of Process Capability
Indices. Sociedad Espanola de Estadistica e Investigaci6n Operativa.
TEST,7 4: 1-74.

References 281

Singpurwalla, N. D. (1999) A Probabilitistic Hierarchical Classification Model
for Rating Suppliers. J. Quality Tech. To appear.

Singpurwalla, N. D. and M. S. Song (1988) Reliability Analysis Using Weibull
Lifetime Data and Expert Opinion. IEEE Trans. Rei., 37 3: 340-347.

Singpurwalla, N. D. and R. Soyer (1985) Assessing (Software) Reliability
Growth Using a Random Coefficient Autoregressive Process and Its
Ramifications. IEEE Trans. Soft. Eng., SE-1112: 1456-1464.

Singpurwalla, N. D. and R. Soyer (1992) Nonhomogeneous Autoregressive
Processes for Tracking (Software) Reliability Growth, and Their Bayesian
Analysis. J. Roy. Statist. Soc. Series B, 54: 145-156.

Singpurwalla, N. D. and R. Soyer (1996) Assessing the Reliability of Software:
An Overview. In Reliability and Maintenance of Complex Systems, (S.
Ozekici, Ed.), NATO ASI Series, Springer Verlag, New York. 345-367.

Singpurwalla, N. D. and S. Wilson (1994) Software Reliability Modeling.
International Statist. Rev., 62 3: 289-317.

Singpurwalla, N. D. and S. P. Wilson (1995) The Exponentiation Formula of
Reliability and Survival: Does It Always Hold? Lifetime Data Analysis, 1:
187-194.

Slud, E. (1997) Testing for Imperfect Debugging in Software Reliability. Scand.
J. Statist., 24: 527-555.

Smith, A. F. M. and A. E. Gelfand (1992) Bayesian Statistics Without Tears: A
Sampling-Resampling Perspective. Amer. Statist., 46 2: 84-88.

Soyer, R. (1985) Random Coefficient Autoregressive Processes and Their
Ramifications: Applications to Reliability Growth Assessment. PhD Thesis,
School of Engineering and Applied Science, George Washington
University, Washington, DC.

Soyer, R. (1992) Monitoring Software Reliability Using Non-Gaussian Dynamic
Models. In Proceedings of the Engineering Systems Design and Analysis
Conference, 1: 419-423.

Tausworthe, R. C. and M. R. Lyu (1996) Software Reliability Simulation, in
Handbook of Software Reliability Engineering (M. R. Lyu, Ed.), McGraw
Hill, New York, 661-698.

282 References

Tierney, L. and J. B. Kadane (1986) Accurate Approximations for Posterior
Moments and Marginal Densities. 1. of Amer. Statist. Assoc., 81 393: 82-
86.

Tversky, A, D. V. Lindley and R. V. Brown (1979) On the Reconciliation of
Probability Assessments (with discussion). 1. Roy. Statist. Soc. series A,
142: 146-180.

van Pul, M. C. J. (1993) Statistical Analysis of Software Reliability Models.
Centre for Mathematics and Computer Science, Amsterdam.

von Mises, R. (1957) Probability, Statistics and Truth. Dover, New York.

West, M., P. J. Harrison, and H. S. Migon (1985) Dynamic Generalized Linear
Models and Bayesian Forecasting (with Discussion). 1. Amer. Statist.
Assoc. 80: 73-97.

Weyuker, E. J., and B. Jeng (1991) Analyzing Partition Testing Strategies. IEEE
Trans. Soft. Eng., 17: 703-711.

Yamada, S. and S. Osaki (1984) Nonhomogeneous Error Detection Rate Models
for Software Reliability Growth. In Reliability Theory (S. Osaki and Y.
Hatoyama, Eds.), Springer-Verlag, Berlin, 120-143.

Yamada, S., H. Narihisa, and S. Osaki (1984) Optimum Release Policies for a
Software System With a Scheduled Software Delivery Time. Int. 1. Syst.
Sci., 15: 905-914.

Zadeh, L. (1981) Possibility Theory and Soft Data Analysis. Mathematical
Frontiers of the Social and Policy Sciences (L. Cobb and R. M. Thrall,
Eds.), Westview Press, Boulder, CO: 69-129.

Zellner, A (1971) An Introduction to Bayesian Inference in Econometrics.
Wiley, New York.

Zellner, A (1977) Maximal Data Information Prior Distributions. In New
Methods in the Applications of Bayesian Methods (A Aykac and C.
Brumat, Eds.), North Holland, Amsterdam.

Author Index

Aalen, O. O. 224
Achcar, J. A. 90
Al-Mutairi, D. 59,92, 156, 160
Anderson, P. K. 222
Andretta, G. 89,202
Arjas, E. 70

Barlow, R. F. 74
Basu, A. P. 58
Bather, J. A. 81,202
Benkherouf, L. 202
Berger, J. O. 25, 29, 105
Bernardo, J. M. 30, 105, 114-115,

146
Bickel, P. J. 89
Borgen, 0. 222
Box,G.E.P. 91,102-103,172
Brooks, S. P. 249
Brown, R. V. 116, 150
Brownlie, R. 228, 232

Campod6nico, S. 39,44, 118, 120
Casella, G. 158, 249
Catkan, N. A. 214
Charette, R. N. 1
Chatfield, C. 106
Chen, J. 33, 69
Chen, Y. 59,70,72,81,84,92,143-

144, 156, 160
Chib, S. 249, 259
Chrissis, M. B. 181
Cochran, W. G. 228
Cohen, D. M. 228,232-234
Cox, D. R. 48,91-92
Craig, A. T. 106
Crosby, P. B. 181
Crow, L. H. 85
Curtis, B. 181

Dalal, S. R. 86,202,204,207,228,
232-234,238

Davis, A. M. 3
Dawid, A. P. 145-147
de Finetti, B. 9, 20, 26, 104, 194
DeGroot, M. H. 20
Dey, D. 90
Duane, J. T. 91
Dwass, M. 90

Efron, B. 202
Ehrlich, W. K. 228-229,231,234

Fakhre-Zaken, I. 70, 86
Ferguson, T. S. 202
Fisher, R. A. 236
Forman,E.H. 24,107,202
French, S. 116
Freund, J. E. 17

Gaffney, J. E., Jr. 120-121
Geisser, S. 33
Gelfand, A. E. 251,253
George, E. I. 158, 249
Gill, R. D. 226
Goel, A. L. 70,75,77-79,89-

90,110,120,202
Gokhale, S. S. 52
Good, I. J. 115
Gordon, L. 89
Greenberg, E. 249,259

Haara, P. 70
Hardwick, J. P. 202
Harrison, P. J. 172
Hicks, C. R. 236-238
Hill, B. M. 194
Hogg, R. V. 106
Howson, C. 20
Hudson, A. 72
Humphrey, W. S. 174,176,180-181

Iannino, A. 72, 102

284 Author Index

Isham, V. 48,92

Jalote, P. 2
James, D. A. 228-229,231,234
Jaynes, E. T. 115
Jeffreys, H. 113, 147
Jelinski, Z. 59,68,72, 106, 109-110
Jeng, B. 228
Jenkins, O. M. 91, 102, 172
Johnson, N. L. 30

Kadane, J. B. 113
Kajla, A. 228, 232-234
Kass, R. E. 113
Kaufman, O. M. 88-89, 202
Knight, 1. C. 17, 236
Koch, O. 86, 225
Kolmogorov, A. N. 6, 20
Kotz, S. 30
Kuo,L. 70,72,77,86,89
Kurtz, T. O. 224

Langberg, N. 70, 73, 76, 83, 89
Lee,P.M. 105,159
Levenson, N. O. 17,236
Lewis, P. A. 91
Lindley, D. V. 17,20,29, 116-117,

125,141,150,195-196
Littlewood, B. 77,83
Lynn,N. 158,160
Lyu, M. R. 52, 82

Mallows, C. L. 86, 202, 204, 207,
238

Mandl, R. 228, 232, 235
Marshall, A. W. 17,58
Martz, H. F. 113
Mazzuchi, T. A. 76,83, 124-126,

153
McDaid, K. 112,207,215
Meinhold, R. J. 81,107, 114
Migon, H. S. 172
Miller, D. R. 70, 88
Morali, N. 214,216
Moranda, P. B. 59,68,72,75,77,

106, 109-110, 166
Morris, P. A. 116
Musa, J. D. 44,70,72, 78-79,89,

91, 102-103, 106-107, 118, 120,
131,209

Myers, O. J. 120

Nair, V. J. 89
Nair, V. N. 228-229,231,234
Narihisa, H. 202
Niverthy, M. 90

Okumoto, K. 44,70,72,75,77-79,
89,91,102-103,110,118,120,
202,209

Olkin, I. 17
Osaki, S. 90, 202
Ozekici, S. 214

Patton, O. C. 228, 232-234
Paulk, M. C. 181
Phadke,M.S. 228,232-233
Proschan, F. 74
Prowse, J. 228, 232

Raftery, A. E. 88, 146, 151
Raiffa, H. 113
Ramsey, F. P. 194
Randolph, P. 202
Rao, C. R. 170
Roberts, H. V. 147
Ross, S.M. 88,202,215

Sahinoglu, M. 47,85,202
Savage, L. J. 194
Schick, O. J. 76
Schlaifer, R. 113
Scholz, F. W. 89
Singpurwalla, N. D. 17,24,29,33,

38-39,44,54,58-59,68-73,76,
80-81,83-85,89,92,107,114,
116-118,120,131,141,143-
144, 156, 160, 174-176, 181,
191,202,205-206,215

Slud,E. 70,86,225

Smith, A. F. M. 30, 105, 146,251,
253

Song, M. S. 116
Soyer, R. 38,68-69,76-77,80-81,

83, 124-126, 139, 141, 153, 174-
175,214,216

Spreij, P. J. C. 86, 225
Sweet, W. L. 181

Tausworthe, R. C. 82
Thisted, R. 202
Tierney, L. 113
Trivedi, K. S. 52
Tversky, A. 116, 150

Urbach, P. 20

van Pul, M. C. J. 86, 225
Verall, J. L. 77,83
von Mises, R. 7

Author Index 285

Waller, R. A. 113
Wang, P. C. C. 89
Wasserman, L. 113
Weber, C. V. 181
West, M. 172
Weyuker, E. J. 228
Wilson, S. P. 58,69,71, 112,207,

215
Wolpert, R. 25
Wolverton, R. W. 76

Yamada, S. 90, 202
Yates, F. 236
Yang, T. Y. 70,72,77,86,89

Zadeh, L. 13
Zellner, A. 115
Zevallos,J. 228-229,231,234

SUbject Index

aposteriori 7,64, 109, 164
apriori 7, 109, 125, 151
absence of knowledge 115
absolute assessment 146
absolutely continuous 14, 40
accumulation of data 151, 174
adaptive

concatenated failure rate model
91,98,99

Gaussian Kalman filter (See
Adaptive Kalman Filter) 81

Kalman filter 129,130,141,
256

model 142
adaptivity 92, 160, 188
AETG design 234, 238
allowable service time 68
autocorrelated 170
autoregressive 130, 223

band plots 161
baseline failure rate 226
Bayes factors 102, 149, 159
Bayes law 13,60, 104, 185
Bayesian

analysis 107, 114
approach to analysis (See

Bayesian inference)
approach to prediction 104
inference 7, 102, 122, 249
paradigm 83, 102
statistics 25

Bernoulli distribution (See
Distribution)

binomial
approximation to
distribution 32

biostatistical 222
birth and death processes 72,221
blanketing function 253
branch 196,205

branch testing 228
bug counting model (See model)
bugs 3

classification of models 70, 95
CMM (See Capability Maturity

Model)
coherent 20, 195
compensator 223
completely confounded 237
completely randomized design 237
component reliability theory 14
composite reliability 238
compound Poisson process (See

Process)
concatenated failure rate function

58,72,84
concatenation 58
concatenation points 84
condition gate 239
conditional

distribution 16 (See also
Distribution)

expectation 40
independence 16,54, 190
mean 40
orderliness 51, 84
probabilities 16,53
probability density (See

conditional probabilities)
variance 40

confidence interval 106
consistency 106, 233
continuous random variables 5
control flow 239
control theory 129
convex combination 62
convexity 18
correlation 40
countable additivity 18
counting process (See Process)

288 Subject Index

covariance 40
covariates 57, 224

internal 58
Cox regression model (See Model)
cumulative distribution 119
customer goodwill 205

data flow 239,244
data flow diagram 2,242
debugging 2,47,121,145
debugging efficiency 48
decision

making 191, 195,224
node 196, 198
problem 198, 199,202
table 196
theory 197,217
tree 196

one-stage 199
solving 196
sequential 199
two-stage 200

-theoretic 146
de-eutrophication model (See Model)
defect classification 188
defective 89
degenerate 83, 105, 208
dependence structure l39, 190
dependent 17,26,78
design document 3
design of experiment 228, 232, 236
developmenttime 169
discounting factor 204
distribution function 14

Bernoulli 30
beta 33,61
binomial 32,41,69
DeMoivre's 81 (See also

Gaussian distribution)
exponential 34, 35, 36, 73, 88,

254
failure rate 53, 54, 55
gamma 35,36,37,55,63,97
Gaussian 38, 81, 129
geometric 32, 33

distribution function (cont' d)
GOS 88
joint 58 (See also joint

distribution)
k-fold convolution 47
lognormal 37,38, 171
marginal 58, 59, 115,230
marginal posterior 157, 159
Normal (See Gaussian

distribution)
Pareto 77,97, 141,255
Poisson 32
posterior 61,101,114,115
prediction 105
prior 24,29, 101, 113,209,211
Rayleigh 76
Standard Normal 38, 119 (See

also Gaussian distribution)
Student'st 175
truncated normal 38,39
of time to first failure 64
uniform 31, 129
Weibull 36,37,55

dis utility 204
DOE (See design of experiment)
Doob decomposition 223
Doob-Meyer decomposition 222,

224,227
doubly stochastic Poisson process

(See process)
DSPP (See doubly stochastic Poisson

process)
Dutch book 20, 195
dynamic 129, l30, 164, 188,221,

222,245
linear model (See dynamic)
modeling (See dynamic)
statistical model 223 (See also

dynamic)

efficiency 102, 106
empirical Baye's method 114
empirical formula

length of code 120
bugs per line of code 209

enhanced predictivity 129
EOS (See model, exponential order

statistics)
error of prediction 222
estimation 106

Bayes factors 158
interval 102, 105, 106, 164
point 102, 106

evolution
of concatenated failure rate 84
of decision tree 196
of software reliability 82, 86,

221
exchangeability 14,25,81, 104, 186
exchangeable model (See model)
exhaustive testing 3, 198,228
expected

failure rate 229
number of failures 77
number of undetected failures 78
partition failure rate 230
utility 194

single-stage 207, 210
multi-stage 212
principle of maximization

194,217
value 39,225 (See also Mean)

experimental design 221,237
expert opinion 29,79,266
exponential distribution (See

distribution)
exponentail order statistics model (See

model)
exponential smoothing 176
exponentiation formula 54

factorial design 234
fractional 234

failure
detection probability 231
epochs 88, 89
intensity 93
model 29,41,88
rate

function 53, 58

Subject Index 289

failure rate (cont'd)
models

exponential 54
gamma 55
lognormal 56
Weibull 56

of marginal distribution
function 58

of software 53, 58, 72
fault detection rate 78
fault tolerance 57, 236
fault-tolerant system 26
finite additivity 18
first moment 39 (See also mean,

expected value)
of a probability model 41

first-order nonhomogeneous-
autoregressive process 172

fixed time lookahead 202,212,215
forecast density 155
fractional factorial design (See

factorial design)
frequentist inference 102, 106
frequentist theory 7

gamma distribution (See distribution)
gamma function 34, 36
Gaussian distribution (See

distribution)
Gaussian Kalman filter model (See

model)
general order statistics model (See

model)
generalization of the exponential

to gamma 36, 37
to Weibull 36,37

generic model (See model)
geometric distribution (See

distribution)
Gibbs

sampling 110, 157,249,250
sequence 158,251

goodness of fit 25, 146
GOS (See model, general order

statistics)

290 Subject Index

Greco-Latin 235
growth curve models (See model)

hierarchical
Bayes 76, 83, 85, 97
classification scheme 170
model (See model)
priors 113
structure 60, 182, 187

history 5,45,50,92,222
homogeneous Poisson process (See

process)
HPP (See homogeneous Poisson

process)
hyperparameters 113, 172, 176
hypothesis testing 103

impossible events 18
improper prior 115
incoherent 20
incomplete block design 237
incomplete gamma integral 90
incomplete Latin square 236
independence 14,17,26,40

loss of 88
independent increment 45,48,49,60
innovation 223
input domain 228
input specific reliability 30, 238
intensity function 45
intensity process (See process)
interarrival times 42, 45
interfailure times 58, 69, 70, 71
internal covariate (See covariate)
invariant conditional distributions 81
invertibility 91
iteration 239

joint
distribution 45,59, 120,251
distribution of the k-order

statistics 88
expectation 40
k out of n 88

joint (cont'd)
posterior distribution 108, 112,

157
predictive density 147
prior density 112
probability 21

judgment of indifference 26
jump discontinuities 45

Kalman filter model (See model)
Key Process Areas 181, 261
k-fold convolution 47
KPA (See Key Process Areas)
kth moment 39
kth order autoregressive process 91

lack of memory 55
Latin hypercube 235
Latin square 235
Law of

inverse probability 21
the extension of conversation 20
total probability 13,21,29,30,

184
learning

environment 162
phenomenon 171,176
process 170, 173
trend 179

lifelength 17,29,55,57
lifetimes 79
likelihood 14,24,25, 157

prequential 146, 147, 151
prequential ratio 147, 151
principle 25

logic engine 68
lognormal distribution (See

distribution)
loss of consumer confidence 193,

217

marginal 21
density 21, 251
distribution (See distribution)

marginal (cont'd)
posterior distribution (See

distribution)
marked point process 70
Markov

chain 190,215
Chain Monte Carlo simulation

142,157,249
dependence 186
property 45

martingale 223,224,225,226
Central Limit Theorem 224
difference 223
Law of Large Numbers 224
semi- 224
theory 86, 222

maturity levels 181, 183,266
maturity questionairre 181, 261, 265
maximum entropy priors 115
maximum likelihood estimate 105
MCMC (See Markov Chain Monte

Carlo simulation)
mean 39

conditional 40
of Bernoulli 41
of binomial 41
of gamma 41
of Gaussian 38
of Poisson 41
residual life 95, 155
square errors 122, 167
time between failures 39, 54
time to failure 39,41
value function 45, 83, 89, 90

median 118
memory 52,84,85, 180

lack of- 55
of the self-exciting Poisson

process 52
method of maximum likelihood 25,

102, 105, 120
Metropolis-Hastings algorithm 249,

259
MEU (See expected utility -

maximization)

Subject Index 291

minutes per line of code 171
mission time 53, 67
mixture model (See model)
mode 118, 126, 140
model

adaptive Gaussian Kalman filter
81

adaptive Kalman filter 130, 139,
145,256

averaging 148, 149, 164
bug counting 74,76,227
complexity 150
Cox regression 226
de-eutrophication 73,77, 166
EOS 88 (Also exponential order

statistics model)
exchangeable 130, 141
exponential order statistics 88
failure rate 53
Gaussian Kalman filter 81
general order statistics 88, 98
generic 154
GOS 88,98
growth-curve 170, 188
hierarchical 69, 113, 126,255
Kalman filter 129
logarithmic Poisson execution

time 80,103
mixture 86
non-Gaussian Kalman filter 81,

130,141,145,258
nonbug counting 73
of Goel and Okumoto 70, 75,

83,206,211,218,227
of Jelinski and Moranda 72, 82,

95,202,218
of Langberg and Singpurwalla

73,83
of Littlewood and Verall 77, 83
of Mazzuchi and Soyer 76, 83
ofMusa-Okumoto 79,91,96,

209
of Ohba and Yamada 90
of Schick and Wolverton 75, 76,

85,91

292 Subject Index

model (cont'd)
record value statistics 89
selection 102, 146, 149, 150
shock 74
software reliability 29,67,69,

86
Type I 71,82,86,214
Type II 71,77

time dependent error detection
77,86,110

uncertainty 172
modular decomposition 245
modules 238
Monte Carlo simulation (See MCMC)
MRL (See mean residual life)
MSE (See mean square error)
MTBF (See mean time between

failures)
MTTF (See mean time to failure)
multinomial 188
multiplication law (See

multiplicativity)
mUltiplicative 18
multistage hierarchy 130
mutually exclusive 18

natural conjugate priors 113
Naval Tactical Data Systems 109,

126, 127, 153,216 (Also NTDS)
NHPP (See nonhomogeneous Poisson

process)
non bug counting 73
noninformative priors 114
nonunique estimators 121
normalizing constant 39
normative approach 170, 230
NTDS (See Naval Tactical Data

Systems)

observation equation 81, 130
Occam's razor 150
omnibus prior 156
one-bug lookahead 202, 214
one-stage lookaheed 199,202,206,

211,215

one-stage testing 198,202,206
one-step-ahead prediction 121, 165
operational profile 3, 15,50,67,221,

227
opportunity cost 204,210
optimal testing time 192, 193
order statistics 86, 87, 98

ith 87
largest 87
process 226
smallest 87

ordering 86, 88
orthogonal array 233
orthogonal increments 223
orthogonal Latin square (See Latin

square)

parallel redundant 86
parameters 14
partition testing 228, 229, 231
penalty for late release 204
permutation invariance 28
point mass 14
point of saturation 176
point process (See process)
Poisson process (See process)
possibility theory 4
posterior

density 117
distribution (See distribution)
inference 109
mean 62
mode 140
odds 149, 151
probability 24
weight 149

power law 80, 204
predictable process 223
prediction

error 222
interval 174,178
limits 179

predictive
ability 145, 150, 151
density 110, 111, 254, 256

predictive (cont'd)
distribution (See distribution)
failure rate function (See failure

rate function)
mean 94, 160, 161
variance 94

predictivity 92, 129, 139, 141
preposterior analysis 196, 232
prequentiallikelihood (See

likelihood)
prequential prediction 102, 146, 147
principle of indifference 6
prior

distribution (See distribution)
mean 62,207
odds 149
probability (See also prior

distribution)
probability density function 14 (See

also prior probability)
probability models 14,29,39 (See

also model)
probability specification process 101
probability theory 4, 191, 223
process

counting 14,42, 84, 224, 226
intensity 225, 227
intensity function of 43
management 180, 263
point 14,41,45,46,83,86
Poisson 43, 71

compound 46,47,60
doubly stochastic 48, 50,

52,60
homogeneous 45,77
nonhomogeneous 44,45,

78, 164
self-exciting 51, 52, 60, 84,

85,222
shot 92
shot noise 92, 93
stochastic 42, 44, 48, 222, 227
stochastic counting (See process -

counting)
stress 92

Subject Index 293

product moment 40 (See also joint
expectation)

product obsolescence 192, 193,204
productivity data 179, 188
productivity rates 175
projection 10, 174, 175, 179

random
coefficient autoregressive process

71,80, 188
coefficient exchangeable model

(See model - exchangeable)
events 5
node 196
quantities 5
sampling 228
testing 228, 231
variables 5,68,69

continuous 5
discrete 5
exchangeable 26
mixed 14

randomized complete block design
236

ReAP (See random coefficient auto
regressive process)

record
pairs 90
times 90
value statistics model (See

model)
values 86, 90

recursive probabilities classifications
scheme 186

recursive relationship 185
reference

priors 113
time 5

rejection kernel 253, 256
rejection sampling 253
relative frequency 7, 102
relative growth in reliability 95
reliability 10

assessment 17
decay 82, 157, 159

294 Subject Index

reliability (cont'd)
function 52, 97

risk

growth 76, 77, 95, 154, 159
modeling 82, 88

aversion 195
neutral 196
proneness 196
set 226

robust 180,232

sample path 42
scale parameter 35
scoring rules 20
second moment 39
self-exciting Poisson process (See

process - Poisson)
SEI (See Software Engineering

Institute)
semi martingale (See martingale)
sensitivity 113, 114, 122
SEPP (See self-exciting Poisson

process)
sequential testing 192, 198,217
series system 19, 87
several steps ahead predictions 122
shape parameter 37
shifted exponential density 155
shifted gamma 77
shock model (See model)
significance testing 146
simulation (See MCMC)
single-stage testing (See one-stage

testing)
software 2

credibility (See software
reliability)

development 2
development cycle 228
downtime 47
failure 3
productivity 170, 176
reliability (See reliability)
reliability model (See model)

Software Engineering Institute 10,
170

specialist knowledge 115
stage-by-stage growth 80, 180
stages oftesting 131, 199, 218
standard deviation 40, 120, 209
Standard Normal distribution (See

distribution)
states of nature 193
stationarity 157
statistical decision theory (See

decision theory)
statistical inference 4, 67, 228
step function 14,42,225
stochastic counting process (See

counting process)
strata 228, 230
stress process 92
structure function 244
subjective interpretation of probability

8,11,25
subjectivistic Bayesian inference 7

(See also Bayesian inference)
survival analysis 222, 225
survival function 52, 98
System 40 data 131
system equation 81, 130,214

test cases 228, 231
testing phases 3, 192
testing strategies 228, 232
time dependent error detection model

(See model)
time sequence 239
time series

models 80, 91
processes 43

total debugging time 47
truncated normal distribution (See

distribution)
tuning coefficients 116
two-stage testing 198, 206

unbiasedness 102, 106

unconditional 46
unconditional orderliness 51
uniform distribution (See

distribution)
uniqueness 106
unit testing 176
universal model 82
unreliability 19,92
utilities 193, 195,206,215

assigning 193
expected 194,205,210,

principle of maximization
194

Subject Index 295

utilities (cont'd)
function 203,209,214

concave 195
convex 196
of money 195

theory 194, 217

variance 38,40
conditional 40

waiting times 45

Youden square 236

Springer Series in Statistics
(continued from p. ii)

Kotz/Johnson (Eds.): Breakthroughs in Statistics Volume II.
Kotz/Johnson (Eds.): Breakthroughs in Statistics Volume III.
Kres: Statistical Tables for Multivariate Analysis.
KuchlerlS(tJrensen: Exponential Families of Stochastic Processes.
Le Cam: Asymptotic Methods in Statistical Decision Theory.
Le CamIYang: Asymptotics in Statistics: Some Basic Concepts.
Longford: Models for Uncertainty in Educational Testing.
Manoukian: Modem Concepts and Theorems of Mathematical Statistics.
Miller, Jr.: Simultaneous Statistical Inference, 2nd edition.
MostellerlWallace: Applied Bayesian and Classical Inference: The Case of the

Federalist Papers.
Parzen/l'anabeiKitagawa: Selected Papers of Hirotugu Akaike.
Politis/RomanolW olf: Subsampling.
Pollard: Convergence of Stochastic Processes.
Pratt/Gibbons: Concepts of Nonparametric Theory.
Ramsay/Silverman: Functional Data Analysis.
Raolfoutenburg: Linear Models: Least Squares and Alternatives.
ReadiCressie: Goodness-of-Fit Statistics for Discrete Multivariate Data.
Reinsel: Elements of Multivariate Time Series Analysis, 2nd edition.
Reiss: A Course on Point Processes.
Reiss: Approximate Distributions of Order Statistics: With Applications

to Non-parametric Statistics.
Rieder: Robust Asymptotic Statistics.
Rosenbaum: Observational Studies.
Ross: Nonlinear Estimation.
Sachs: Applied Statistics: A Handbook of Techniques, 2nd edition.
SiimdallSwenssonIWretman: Model Assisted Survey Sampling.
Schervish: Theory of Statistics.
Seneta: Non-Negative Matrices and Markov Chains, 2nd edition.
Shaolfu: The Jackknife and Bootstrap.
Siegmund: Sequential Analysis: Tests and Confidence Intervals.
Simonoff: Smoothing Methods in Statistics.
Singpurwalla and Wilson: Statistical Methods in Software Engineering:

Reliability and Risk.
Small: The Statistical Theory of Shape.
Stein: Interpolation of Spatial Data: Some Theory for Kriging
Tanner: Tools for Statistical Inference: Methods for the Exploration of Posterior

Distributions and Likelihood Functions, 3rd edition.
Tong: The Multivariate Normal Distribution.
van der VaartIWellner: Weak Convergence and Empirical Processes: With

Applications to Statistics.
Vapnik: Estimation of Dependences Based on Empirical Data.
Weerahandi: Exact Statistical Methods for Data Analysis.
WestlHarrison: Bayesian Forecasting and Dynamic Models, 2nd edition.
Wolter: Introduction to Variance Estimation.
Yaglom: Correlation Theory of Stationary and Related Random Functions I:

Basic Results.
Yaglom: Correlation Theory of Stationary and Related Random Functions II:

Supplementary Notes and References.

