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Preface 

This preface pertains to three issues that we would like to bring to the 
attention of the readers: our objectives, our intended audience, and the nature of 
the material. 

We have in mind several objectives. The first is to establish a 
framework for dealing with uncertainties in software engineering, and for using 
quantitative measures for decision making in this context. The second is to bring 
into perspective the large body of work having statistical content that is relevant 
to software engineering, which may not have appeared in the traditional outlets 
devoted to it. Connected with this second objective is a desire to streamline and 
organize our own thinking and work in this area. Our third objective is to 
provide a platform that facilitates an interface between computer scientists and 
statisticians to address a class of problems in computer science. It appears that 
such an interface is necessary to provide the needed synergism for solving some 
difficult problems that the subject poses. Our final objective is to serve as an 
agent for stimulating more cross-disciplinary research in computer science and 
statistics. To what extent the material here will meet our objectives can only be 
assessed with the passage of time. 

Our intended audience is computer scientists, software engineers, and 
reliability analysts, who have some exposure to probability and statistics. 
Applied statisticians interested in reliability problems are also a segment of our 
intended audience. The content is pitched at a level that is appropriate for 
research workers in software reliability, and for graduate-level courses in applied 
statistics, computer science, operations research, and software engineering. 
Industrial scientists looking for a better understanding of the ideas behind the 
statistical tools that they use for addressing problems of software quality may 
also find the material of value. We have deliberately steered away from 
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presenting techniques that are purely data analytic, since there are ample sources 
that do this. 

Recognizing the diverse nature of our audience, and in keeping with our 
stated objectives, we have adopted an expository style and have striven to give 
as many illustrative examples as is possible; furthermore, we have endeavored to 
cast the examples in a context that may appeal to software engineers. Additional 
examples have been delegated to exercises. Readers who are formally trained in 
the statistical sciences will be familiar with the material of Chapter 2; they may 
find little that is new here, and may therefore be tempted to skip it. The same 
may also be true of the initial parts of Chapter 4. However, we urge such readers 
not to do so because of two reasons. The first is that the illustrative examples 
give a flavor of the nature of problems that we are trying to address. The second 
reason is that our interpretation of probability is personal (subjective); it 
therefore makes us look at the standard material in probability and statistics at a 
different angle. Of course, not all are willing to subscribe to this perspective. 
Computer scientists, operations research analysts, and software engineers should 
find the material of Chapter 2 and the initial parts of Chapter 4 as a useful 
review, but with a focus towards a specific application. The material in the other 
chapters is self-evident and so does not deserve special comment. 

By way of a final admission, we are anticipating the criticism that any 
endeavor that attempts to fill a gap in the literature which is at the interface of 
computer science and statistics is necessarily incomplete. If this be so, then our 
hope is that the material here will stimulate the next generation of writers to 
expand the frontiers of the interface and to eliminate the pockets of 
incompleteness that we undoubtedly have created. 

May 1999 Nozer D. Singpurwalla 
Simon P. Wilson 
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1 
INTRODUCTION AND OVERVIEW 

1.1 What is Software Engineering? 

Since the dawn of the computer age, in the 1940s, we have witnessed a 
prodigious increase in the performance and use of computers. Accompanying 
this evolution has been a steady shift in emphasis of computer systems 
development, from hardware-the physical components of the computer-to 
software-the process of instructing a computer to perform its tasks. 
Consequently, today only about 10% of the cost of a large computer system lies 
in the hardware, compared with over 80% in the 1950s. The reasons behind this 
trend are both the cause and the justification for the emergence of the field of 
software engineering. In essence, as is true of all mechanical technologies, the 
cost of hardware gets constantly driven down as new technologies of production 
come into play, whereas the cost of producing software, which involves 
harnessing the collective skills of several personnel, gets driven up. Further 
contributing to these costs are the nuances of delays and budget overruns 
[Charette (1989), Chapter 1]. 

The term software engineering was not coined until the late 1960s. At that 
time concerns about the "software crisis," with software being expensive, bug­
ridden, and impossible to maintain, led to the notion that a move towards greater 
discipline in software development could resolve the problem. Hence "software 
engineering" was born. The IEEE glossary on the subject defines software 
engineering as the systematic approach to the development, operation, 
maintenance, and retirement of computer software. 

N. D. Singpurwalla et al., Statistical Methods in Software Engineering
© Springer-Verlag New York, Inc. 1999



2 1. Introduction and Overview 

Thus, contrary to common belief, software engineering is not limited to the 
efficient production of computer code. Indeed, according to Jalote (1991), only 
about one fifth of the cost of producing software can be attributed to coding. 
Coding is but one activity in a process that involves problem specification, 
requirements analysis, installation, and maintenance. Software engineering 
attempts to bring a systematic methodology to this entire four-phase process. 

The definition of software engineering presumes an appreciation as to "what 
software is." Here again, the IEEE glossary provides an interpretation. 

Software is the collection of computer programs, procedures, rules, and their 
associated documentation, and the last but not least, data. 

Once again, contrary to common belief, software is not just computer 
code-it encompasses all the information necessary to instruct and to manage a 
computer system. 

To summarize, software engineering can be viewed as the efficient 
management, of a cycle of activities involving the development, operation, 
maintenance, and retirement of software. By maintenance it is meant an 
upgrading of the system to respond to changing needs, and the elimination of any 
residual bugs. By retirement it is meant the designing of new software to replace 
the existing version. 

1.2 Uncertainty in Software Production 

As a general rule, uncertainty arises in any actIvIty involving unknown 
factors. With software, uncertainty is inevitable in all four stages of the software 
engineering cycle. Despite this fact, attention to uncertainty has predominantly 
been focused towards the development phase. For this reason, we find it useful 
to start with a brief description of the development process; more details can be 
found in Jalote (1991). 

1.2.1 The Software Development Process 

A broadly agreed upon sequence of stages that constitute what is 
referred to as the software development process are: analysis and specification of 
requirements, design of the software, and finally, coding, testing, and debugging. 
There could be included a further stage, namely, installation; this stage involves 
implementing the software in a client's environment, training the client's staff, 
and changing the code to rectify bugs or other problems of implementation. 

In the analysis and specification phase of the development process, the aim 
is to precisely define, in close partnership with the user, what the software is to 
accomplish. Mention of how this is to be done occurs at the next stage. From the 
point of view of the user, this phase may also include the selection of an 
organization to undertake the project. For small systems, the analysis and 
specifications phase may be relatively straightforward, but for large projects this 
phase will be difficult and prone to error. Techniques such as data flow 
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diagrams have been developed to systematize the specification of requirements 
and to reduce the number of mistakes made. The aim is to produce an 
unambiguous specification of what the software is required to do; details are in 
Davis (1990). 

In the design phase of the development process, a strategy is formulated to 
solve the problem that has been specified in the previous phase. The design 
phase progresses by splitting the original problem into subproblems that can be 
separately worked upon, and finally integrated. The design phase concludes with 
a design document that specifies how the problem is to be solved, what data 
structures and formats are to be used, the nature of the modules, and for each 
module its internal logic and the algorithms to be employed. 

The coding and testing phase completes the development process. In coding, 
emphasis is placed on producing an easily understandable code that will aid 
greatly in reducing the costs of later testing and maintenance. Individual modules 
may be tested during coding, but the whole program is not. In the testing part of 
this phase, the modules are integrated to form the entire system which is then 
tested to see if it meets specifications. With testing, proper interaction between 
the modules is ensured. The purpose of testing is to detect the presence of 
software faults or bugs in the software code. A software fault is an error in the 
program source-text, which when the program is executed under certain 
conditions can cause a software failure. 

By software failure we mean the deviation of the program output from what 
it should be according to our requirements. A software fault is generated the 
moment a programmer or system analyst makes a mistake. Once testing is 
completed, the system is demonstrated to its client. The nature of the tests given 
to the software is important. This is because the set of all possible inputs to the 
software is generally enormous and so is the sequence in which the inputs are 
received by the software; that is, the operational profile of the software is not 
unique. Therefore, exhaustive testing of the software is not possible and, 
consequently, the selection of appropriate tests is a crucial matter. Also critical is 
the manner in which information about the credibility of the software is assessed 
from the limited tests. By many accounts, the testing phase of the development 
process is viewed as being the most expensive. To date, statistical methods have 
played a key role with regard to only the testing phase of the development 
process. 

1.2.2 Sources of Uncertainty in the Development Process 

Conceptually, there are many sources of uncertainty in the analysis and 
specification phase of the process. However, one source that has received much 
attention pertains to the selection of the organization to be used to develop, 
install, and maintain the software. Here to make sensible decisions several 
factors, such as the abilities of the organizations to successfully undertake each 
phase of the development process, the technical and managerial qualifications of 
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its staff, its track record, its ability to control quality, its responsiveness to 
changes, and the like must be considered. 

Uncertainties in the design phase are those associated with the times 
required to complete the coding and the testing phases, those associated with 
changes in requirements, and those associated with the environment under which 
the software operates. Uncertainties associated with the testing phase pertain to 
the number of bugs observed, the time required to eliminate the bugs, the test 
bed, the testing strategy to use, and so on. Uncertainties do not disappear after 
the testing phase. Once the testing terminates and the software is released, 
uncertainties about the credibility of the software continue to persist as does the 
uncertainty about the time at which the software will be replaced. 

Clearly, like other production processes, the software development process 
is besieged with uncertainties, uncertainties which interact (and propagate) with 
each other. All these impinge on the final cost of the project. For example, 
uncertainties about the selection of an organization for software development 
propagates to uncertainties about the quality of the code, which then affects the 
time for testing, and this has an influence on the reliability of the software. 
Within the code, the modules form a network of interacting programs, and the 
reliabilities of the modules combine to form the reliability of the system. The 
manner in which the uncertainties interact and propagate is generally 
complicated. 

1.3 The Quantification of Uncertainty 

Uncertainty is a common phenomenon that arises in almost all aspects of our 
lives. Here, we concern ourselves with ways of quantifying uncertainty and 
means by which we can cope with it, especially as it pertains to the specific field 
of software engineering. Two branches of mathematics playa role in approaches 
for quantifying and coping with uncertainty: probability theory for quantifying 
and combining uncertainties, and statistical inference for revising the 
uncertainties in the light of data. In what follows, and also in Chapter 2, we 
review key aspects of the former; later on, in Chapter 4, we expand the 
discussion to encompass aspects of the latter. 

1.3.1 Probability as an Approach for Quantifying Uncertainty 

The literature in mathematics and in philosophy discusses several 
approaches for quantifying uncertainty. All of these approaches, save possibility 
theory and fuzzy logic, have roots in the theory of probability. However, not all 
of them fully subscribe to the calculus of probability as the sole basis for treating 
uncertainty. This compromise in philosophy has occurred despite arguments 
which show that probability is a very defensible way for quantifying uncertainty. 
It is not our intention here to debate the various approaches for describing 
uncertainty. Rather, we start by stating that for our purposes, probability and its 
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calculus are used as the sole means for quantifying the uncertainties in software 
engineering. 

To start our discussion on probability, let us focus attention on some 
reference time, say T, which for purposes of convenience is often taken to be 
zero. At time T we have at our disposal two types of quantities, those known to 
us and those which are not. For example, with software, the known quantities 
would be the number of lines of code, the composition of the programming team, 
the amount of testing that the software has been subjected to, the cost of 
producing it, and so on. The unknown quantities are conceptually many, but the 
ones of greatest interest to us could be the number of bugs remaining in the 
software, the running time (measured in central processing unit time increments) 
of the software until failure, the ability of the software to perform a particular 
operation, and so on. The collection of known quantities is denoted 1-l, for 
history, and the unknowns, referred to as random quantities, are denoted by 
capital letters, such as Tor X. The particular values that T and X can take, known 
as their realizations, are denoted by their corresponding small letters, t and x, 
respectively. If the realizations of a random quantity are numerical, that is, if t 
and x are numbers, then the random quantities are known as random variables. 
Of particular interest are some special random quantities, called random events. 
These are often denoted by E, and their distinguishing feature is that any E can 
take only two values, say e, and e2. Random events are generally propositions, 
and these are either true or false. In the context of software, events could be 
propositions like, "this program contains no bugs," "this program will experience 
a failure when it is next used," "T will be greater than t, for some t :2: 0," and so 
on. Since a proposition is either true or false, E = e, could denote its truth, and 
E = e2, otherwise. Often, the eiS are assigned numerical values, like 1 and 0, and 
in such cases the random events are known as binary random variables. Random 
variables are classified as being either discrete or continuous. Discrete random 
variables are those whose realizations are countable whereas continuous random 
variables are those whose realizations are not. For example, if the random 
variable N denotes the number of bugs that are remaining in the software, then N 
is discrete, whereas if T denotes the time to failure of the software, then T is 
continuous. 

Probability theory deals with the quantification of uncertainty, at the 
reference time T, our uncertain quantities being denoted by capital letters such as 
T, X, E, and the like. We need to quantify uncertainty, because to quantify is to 
measure, and measurement is necessary to bring to bear the full force of the 
logical argument. Thus, at time T, we need to express (i.e., to assess) our 
uncertainty about a random quantity, or an event E, in the light of 1-l, the 
available history at time T. But measurement means assigning numerical values, 
and following convention we denote this number by pr(E 11-l), the superscript T 

representing the time of assessment and the symbol 1-l representing the fact that 
the assessment is made in the light of the history at time T. The number 
PT(E 11i.) is known as the probability of the event E (as assessed at T in the light 
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of 1-i). In the interest of brevity, it has become a practice to suppress both T and 
1-i and to denote probability by simply P(E). However, it is very important, 
especially when describing the credibility of software, to bear in mind that at 
some future time T + ,,(, the history may change (because new information 
surfaces) and so PT+"f(E 11-i) will not in general be the same as PT(E 11-i). 
Having laid out the preceding framework, we next address several questions 
about the properties of PT(E 11-i) that naturally arise. 

• What does probability mean (that is, how should we interpret it)? 
• How should we assign probabilities (that is, how should we make it 

operational) ? 
• What rules should govern probabilities (that is, what is the calculus of 

probability)? 
• Who is supposed to be assessing these probabilities (that is, whose history is 

being taken into account)? 

These questions are at the core of the several ongoing debates about the 
nature of probability. Following the attitude of Chebyshev (1821-1894), Markov 
(1856-1922), and Lyapunov (1857-1918), most mathematicians concentrate 
only on the calculus of probability, about which there is agreement, albeit not 
complete. Generally, the mathematicians have refrained from interpreting the 
remaining issues, and following the suggestion of Bernstein (1880-1968) [which 
culminated in Kolmogorov's (1933) famous work; Kolmogorov (1950)], view 
even the calculus of probability as being axiomatic. However, those interested in 
applications must come to terms with all the preceding issues. In response to this 
need, we next discuss the several interpretations of probability. The calculus of 
probability, to include the fundamentals of reliability and an overview of 
probability models, is reviewed later, in Chapter 2. 

1.3.2 Interpretations of Probability 

What does the number PT(E 11-i) mean? For example, what does it mean to 
say that the probability of a coin landing heads on the next toss is 0.5, or that the 
probability is 0.999 that this piece of software is bug free? It turns out that the 
answer to this question is not unique, and that it depends on one's philosophical 
orientation. For example, the pioneers of probability theory, Bernoulli, 
DeMoivre, Bayes, Laplace, and Poisson, who like Newton were determinists, 
viewed probability as a measure of partial knowledge, or a degree of certainty, 
and used the "principle of indifference" (or insufficient reason) to invoke an 
argument of symmetry of outcomes to arrive at a number such as 0.5 for the 
probability of heads. However, for problems involving loaded coins symmetry 
could not be used, and the pioneers did not hesitate to use relative frequencies. 
Indeed, Bernoulli's law of large numbers describes conditions under which 
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relative frequencies become stable, and the DeMoivre-Laplace central limit 
theorem describes the pattern of fluctuations of the relative frequencies from a 
central value. A relative frequency interpretation of probability may date back to 
Aristotle, but its beginnings can be traced to Quetlet, John Stewart Mill, and 
John Venn in 1866; its most prominent spokesperson was von Mises (1957). 
Difficulties with this interpretation of probability surfaced as early as 1860 with 
Maxwell's probabilistic description of the velocity of gas molecules, but the 
positivist sentiment of the early 20th century did not deter its growing 
importance. Consequently, much of statistical practice today is based on a 
relative frequency interpretation of probability. We show later, in Section 1.3.3, 
that this interpretation of probability poses difficulties in attaching meaning to a 
statement like "the probability that this software contains no bugs is 0.999." The 
most vigorous opponents of the frequency school have been the 20th century 
subjectivists such as Ramsey, de Finetti, and Savage who have sought a 
foundation for probability based on personal betting rates and personal degrees 
of belief. This is in slight contrast to the pioneers who sought a foundation for 
probability based on fair betting rates and warranted degrees of belief. The 
subjectivist or personal interpretation of probability forms a foundation for much 
of what is now practiced as subjectivist Bayesian inference. In what follows, we 
summarize the key features of the frequentist and the SUbjective interpretations 
of probability. In Section 1.3.3, we point out which of these two interpretations 
of probability is to be preferred for describing the credibility of software, and 
indicate the reasons behind our preference. 

Before we close this section, it is useful to mention that there is another 
interpretation of probability which is due to Keynes (1883-1946) and also to 
Carnap (1891-1970). This is known as the "a priori" interpretation, and here 
probability describes a logical relationship between statements; consequently, 
every assigned probability is true, correct, and fixed. However, the assigned 
probabilities are relative to the evidence at hand and so an a priori probability is 
both objective and subjective. Harold Jeffreys was attracted to the a priori 
interpretation of probability but appears to have veered away from the notion 
that every assigned probability must be true, correct, and fixed. 

Relative Frequency Theory of Probability 

In the relative frequency theory of probability, also known as afrequentist 
theory, probability is defined as the limit of a relative frequency, expressed as an 
infinite series. Probability is metaphysically viewed, as something physical, and 
as an objective (i.e., consistently verifiable) property of the real world, such as 
weight or volume. Consequently, probabilities can only be assessed a posteriori 
(that is, upon observation). This is in contrast to some other theories which view 
probability as an index of human attitudes. The most important feature of the 
frequentist theory is that it can only be applied to scenarios wherein one can 
conceptualize indefinitely repetitive trials conducted under "almost identical 
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conditions." That is, probability is a property of a collective or an ensemble. 
Individual and infrequent events are excluded from consideration, because they 
do not possess this repetitive character. Games of chance and social mass 
phenomena, such as insurance and demography, or production mass phenomena, 
such as those encountered in industrial quality control, are suitable collectives 
and well within the realm of application of the theory. Also suitable as a 
collective are the molecules of a gas undergoing Brownian motion; that is, the 
molecules collide with each other and with the walls of the container. 

To summarize, in order to invoke the relative frequency theory of 
probability, we first need to establish the existence of a collective. Second, when 
we speak of the probability of a certain attribute, say heads, we mean the 
probability of encountering the attribute within the collective. Third, since 
probability is defined as the limit of a relative frequency expressed as an infinite 
series, such limits can only be proved to exist in a series that is mathematical. In 
applications there can be no assurance that a limit will exist, and if it does exist, 
its actual value can neither be verified nor disputed. The main virtues of this 
theory are psychological (on grounds of objectivity) and practical (it works in 
cases such as biased dice and loaded coins). It is appealing to physical scientists, 
to whom probability, like mass and volume, is a construct that cannot be directly 
observed but which serves a useful purpose. 

Subjective or Personal Probability 

The subjective or personal probability of an event, say E, is the degree of 
belief that a person (or a committee) has about the occurrence of E. Personal 
probabilities should therefore depend on 1{, the background information that the 
person has about E. The probability need not be unique to all persons, and 
furthermore, can be different for the same person at different points in time. 
Clearly, subjective probability cannot be construed as being objective. 

For example, suppose that event E denotes a coin landing heads on the next 
toss. Then by the probability of E, we mean a quantification of our belief about 
E. This belief could be guided by all our knowledge of the coin, such as its 
country of origin, its metallic composition and the like, our experience with 
tossing coins in general, and ultimately our judgment about the fairness of the 
coin. Suppose that based on all of the preceding considerations we declare 
peE 11{) to be 0.5. If our 1{ were to change, perhaps because we flipped the 
coin several times and noted a preponderance of heads over tails, then we would 
be allowed to revise P(EI1{) from 0.5 to a number larger than 0.5. Similarly, if E 
denotes the event that our software has no bugs, then peE 11{) denotes our 
personal belief about E based on 1{, all our knowledge about the software, to 
include any testing we may have done on it. It is important to note that in order 
to declare peE I 1{) we do not have to conceptualize an ensemble, nor do we 
have to think in terms of indefinite trials under almost identical conditions. 
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Subjective probability was made operational by de Finetti (1937) who thought of 
peE 1'J-l) as a betting coefficient, that is, the amount that the person declaring it 
is willing to stake in exchange of one monetary unit if E turns out to be true. If E 
turns out to be false, then the person is prepared to lose peE 1'J-l). Coherence 
(see Chapter 2) demands that a person willing to stake peE 1'J-l) for the 
occurrence of E, should also be prepared to stake an amount 1 - peE 1'J-l) for 
the nonoccurrence of E. In avoiding the requirement of ensembles and the 
existence of unverifiable limits, subjective probability has a more universal 
scope of applicability than frequentist probability. Its main disadvantage stems 
from the thought that in actuality betting coefficients may not represent a 
person's true beliefs. (An indicator of the difference between the two is that 
betting coefficients are countably additive whereas SUbjective probabilities need 
only be finitely additive.) 

1.3.3 Interpreting Probabilities in Software Engineering 

Because the relative frequency theory of probability requires the 
conceptualization of a repeatable sequence of trials (or experiments) under 
almost identical conditions, it is not a suitable paradigm for quantifying 
uncertainty about software performance. There are several reasons for making 
this claim. The first is that software is a one-of-a-kind entity for which the notion 
of an infinite size ensemble is difficult to justify. Second, it is hard to foresee the 
repeated testing of a single piece of software under almost identical conditions; 
with computer applications, the notion of "almost identical conditions" is not 
precise. Finally, and perhaps more fundamentally, the objective nature of 
frequentist probability is anathema to the spirit of intuition and inspiration that is 
necessary for addressing software engineering problems. In all aspects of 
software development, the personal experience of the engineer or the manager is 
a vital source of information. The frequentist objectivist interpretation of 
probability forces us to ignore this knowledge. In contrast, the subjective 
interpretation allows us to discuss the uncertainty attached to a unique object, 
such as software, and also allows us to incorporate personal information and 
knowledge of the software development process by conditioning on 'J-l. 

The literature on statistical aspects of software engineering does not 
formally recognize the difference between objective and subjective probabilities. 
Consequently, the techniques used are a hybrid of those dictated by either 
school. In what follows, we strive to adhere to the subjective view. 

1.4 The Role of Statistical Methods in Software Engineering 

By statistical methods in software engineering we mean a unified framework 
for quantifying uncertainty, for updating it in the light of data, and for making 
decisions in its presence. Such methods have been developed and used for a 
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wide variety of problems in software engineering. We close this chapter with an 
overview of the material that is described in the subsequent text. 

By and large, the most widely appreciated use of statistical methods in 
software engineering is that pertaining to software credibility (or reliability). 
Here, the problem is to describe the quality of the software, usually in terms of 
the probability of not encountering any bugs over a specified period of time. A 
large number of probability models have been proposed to address this topic, 
and Chapter 3 describes some of the more popular ones. Many of these models 
have similar modeling strategies and assumptions, and in Section 3.5 we look at 
ways in which we may view these models as special cases of a more general type 
of models. 

Related to the issue of software reliability are the analyses of software 
failure data. Here, observations on the detection of bugs are used to update the 
uncertainties about the software's credibility, and to make projections about 
future failures. The analyses of failure data are performed using the techniques 
of statistical inference, and an overview of one such technique is given in 
Chapter 4, where we also discuss the application of these techniques to some of 
the models of Chapter 3. An important purpose served by the models of Chapter 
3 and their associated statistical inference is the problem of optimally testing 
software. Here, one needs to make a decision as to how much testing a piece of 
software must undergo before it is released for use. Such decisions are based on 
both the reliability of the software and a tradeoff between the costs of testing 
versus the costs of in-service failures. Optimum testing is discussed in Chapter 6. 
An essential aspect of optimal testing is the design of an effective test plan, that 
is, the design of the software testing experiment. Since the number of possible 
inputs to a piece of software is necessarily limited, the choice of inputs that 
maximize the information which can be gleamed from them is a central issue. 

The material described pertains to the role played by statistical methods at 
the end of the software development process, when the software has been 
created. Statistical methods can also play a role at the beginning of the 
development process. Often, after establishing specifications, one of the first 
decisions to be made is the selection of a software house, or a programming 
team, to develop the code. A deterministic scheme for classifying software 
development houses into one of five classes has been developed by the Software 
Engineering Institute of Carnegie Mellon University. In Chapter 5 we describe a 
probabilistic version of this scheme wherein the classifications made have 
associated with them a measure of uncertainty. That is, instead of classifying a 
software Muse into exactly one of the five categories, as is done by the Software 
Engineering Institute's procedure, we assign a weight to each category, with the 
weights reflecting our strength of belief regarding a software house's 
membership in each category. Chapter 5 also discusses techniques to assess the 
productivity of programming teams. Such assessments are useful for project 
planning, wherein it is necessary to have good estimates of the time and effort 
required to complete programming and coding tasks. 
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The final chapter pertains to some recent developments on the use of statistical 
methods in software engineering. We anticipate that the impact of such methods 
will continue to be felt, and our aim is to give the reader a feel for the direction 
in which the subject is heading. Naturally, our choice of material is highly 
subjective and is limited to what we are aware of at the time of this writing. 

1.5 Chapter Summary 

In this chapter we have attempted to define what is software, and what is 
software engineering. We have described the software engineering cycle as being 
composed of the four stages of development, operation, maintenance, and 
retirement, and have pointed out the nature of uncertainty that arises at each of 
these stages. We have said that uncertainty arises when we have to select an 
organization to develop the software, when we have to assess the times required 
to code and test the software, when we have to assess the quality of software via 
the number of bugs it contains, and when we have to decide on a testing strategy. 

By far, the most important message of this chapter is the thesis that, for the 
purposes of this book, probability and its calculus are used as the sole basis of 
quantifying uncertainties in software engineering. This is followed by a brief 
discussion of the different types of probability, and the position that the 
subjective interpretation of probability is the one that is most suitable for 
addressing the problems that are posed here. The chapter ends with a discussion 
of the key role played by statistical methods in software engineering, and an 
overview of the remaining chapters. 



2 
FOUNDATIONAL ISSUES: 

PROBABILITY AND RELIABILITY 

2.0 Preamble 

In Chapter 1 we have drawn attention to some scenarios in software 
engineering where uncertainty is encountered, and have discussed the need for 
its quantification. We mentioned that there are many approaches for quantifying 
uncertainty, but that in our view, probability is the most comprehensive one. We 
have also discussed the notions of random quantities, random variables, random 
events, and the importance of the background information ?t. The role of a 
reference time T at which probabilities were assessed was mentioned, and finally, 
it was argued that for any random quantity C, a subjective interpretation of its 
probability PT(C l?t) was an appropriate paradigm for dealing with the kind of 
problems that we are involved with here. 

We start this chapter with details about the properties of PT(C l?t), that is, 
about the calculus of probability, and give some reasons that justify it. We have 
mentioned before that whereas the interpretation of probability is subject to 
debate, its calculus is by and large universal. Possibility theory [see Zadeh 
(1981)] has often been proposed as an alternate way of quantifying uncertainty; 
its calculus is very different from the calculus of probability, and we have yet to 
see arguments that justify it. We have singled out for mention here possibility 
theory, because many engineers seem to be attracted to it and also to its 
precursor, fuzzy logic. 

Our discussion of the calculus of probability is followed by its 
consequences, such as the law of total probability and Bayes' Law; these playa 
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central role in developing probability models and incorporating the effect of new 
information in our appreciation of uncertainty. The first section includes a 
discussion about the notions of independence, likelihood, and exchangeability; 
these are important ideas that play a key role in developing probability models 
and in updating them. The next section introduces the idea of probability models 
and parameters; it ends with examples of some commonly used models in 
probability and statistics, models that are also of relevance to us here. Section 
2.3 deals with what are known as counting process models; such models are 
useful in software engineering because they are a natural vehicle for describing 
events, such as failures, that occur over time. Indeed, some of the most 
commonly used models for assessing the reliability of software are counting 
process models, also known as point process models. The chapter ends with an 
introduction to the key concepts of component reliability theory and their role in 
assessing software reliability. There is a large body of literature on system 
reliability theory that is discussed later in Chapter 7. This postponement is due to 
the fact that the ideas of system reliability theory have not as yet permeated the 
current mainstream work on software reliability. Nonetheless, we feel that its 
impact is yet to come, especially in dealing with modularized software, and thus 
have chosen to include it for later discussion. Readers specializing in probability 
and statistics may choose to skip to Section 2.4. Others who could benefit from a 
review may prefer to continue. Wherever feasible, the preliminaries introduced 
here have been reinforced by describing scenarios from software engineering. 

2.1 The Calculus of Probability 

2.1.1 Notation and Preliminaries 

In what follows, we assume T to be zero and suppress it. For a discrete 
random variable X taking values x, let E denote the event that X = x, so that 
P(E 11t) is P(X = x 11t); it is abbreviated as Px(x 11t). If at any value of X, 
say x, Px(x 11t) > 0, then X is said to have a point mass at x. If E is the event 
that X ::::: x, then P(X ::::: x 11t) is known as the distribution function of X, and is 
denoted as Fx(x 11t). If X is continuous and takes all values in an interval, say 
[0,00), and if Fx(x 11t) is differentiable with respect to x, for (almost) all x in 
[0,00), then Fx(x 11t) is said to be absolutely continuous, and its derivative at x, 
denoted by fx(x 11t), is called the probability density junction of X at x. 
Irrespective of whether X is discrete or continuous, Fx(x 11t) is nondecreasing 
in x, and ranges from 0 to 1. If X is continuous, Fx(x 11t) increases in x 
smoothly, whereas if X is discrete, it increases as a step function taking jumps at 
those values of x at which X has a point mass. 

Whereas the interpretation of Px(x 11t) is clear, namely, that it is the 
probability that X takes the value x, the interpretation of fx(x 11t) needs 
explanation. Specifically, fx(x 11t)dx is approximately the probability that X 
takes a value between x and x + dx. Since fx (x I 1t)dx 1 0, as dx 1 0, the 
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probability that a continuous random variable takes any particular value is zero. 
Finally, suppose that X is a mixed random variable; that is, it is both discrete and 
continuous, with a point mass, at say x*. Then its Fx(x I rt) increases smoothly 
for all values of X at which it is continuous, and takes a jump of size Px(x' I rt) 
at x*. Mixed random variables are of interest in reliability, particularly software 
reliability, wherein there is a nonzero probability of failure at specified time 
points. Such time points are dictated by the operational profile of the software. 

To illustrate the preceding notions we consider the following idealized 
scenario. Suppose that a piece of software has an operating cycle of three hours, 
the first two of which are under a normal user environment and the last one 
under a more demanding one. That is, the software experiences a change in the 
operational profile two hours after its inception. Let X be the time, measured in 
CPU units, at which the software experiences a failure, either because of the 
presence of a bug or from other causes. If we assume that the transition from the 
normal to the more demanding environment does not pose any instantaneous 
shocks to the software, then Fx(x I rt) could be of the form shown in Figure 
2.la). The main aspect of this figure is the change of shape at x = 2. Observe 
that Fx(x I rt) is continuous in x but not differentiable at x = 2; it is therefore 
absolutely continuous. By contrast, suppose that the transition in the operational 
profile imposes a shock to the software so that there is a nonzero probability, say 
p, that the software will fail at x = 2. In this case Fx(x I rt) takes an upward 
jump at x = 2; see Figure 2.lb). Now Fx(x I rt) is not absolutely continuous, 
and X is a mixed random variable. 

The conventions mentioned before generalize when we are interested in two 
(or more) random variables, say Xl and X2 ; now, Fx(x I rt) is replaced by 
FxJ, X2(Xj, X2 I rt), and ix(x I rt) by ix,. X2(Xj, X2 I rt). Note that FxJ, X2(XIo X2 I rt) 
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abbreviates P(Xl :::; Xl and X2 :::; X2 I H), and fXl' xz(Xl> X2 I H)dxldx2 

approximates P(XI :::; Xl :::; Xl + dxl and X2 :::; X2 :::; X2 + dX2 I H). When there is 
no cause for ambiguity, the subscripts associated with F and f are often omitted. 

2.1.2 Conditional Probabilities and Conditional Independence 

Perhaps one of the more subtle notions in probability theory is that of 
conditional probability. For two random variables Xl and X2, and background H, 
the probability that Xl takes the value Xl, were it to be so that X2 takes the value 
X2, is called the conditional probability of Xl given X2; it is denoted 
P(XI = Xl I X2 = X2, H) or PxIixz (Xl I X2, H), the vertical bar representing a 
separation between the event of interest Xl = Xl> and the conditioning event 
X2 = X2. If the event of interest is Xl :::; Xl> and the conditioning event X2 = xz, 
then P(XI :::; Xl I X2 = X2, H) is abbreviated F XlIX2 (Xl I X2, H); it is known as the 
conditional distribution function of Xl given X2. If Xl is continuous, and 
F XllXz (Xl I X2, H) differentiable for all values X2, then the derivative of the latter is 
called the conditional probability density of Xl given X2 ; it is denoted by 
fXllx2(xl I xz,H). 

It is important to bear in mind that all probability statements, including those 
of conditional probability, are made at the reference time 7, when both Xl and X2 

are unknown. Thus conditional probability statements are in the "subjunctive." 
In other words, when we are making a conditional probability assessment, we are 
assuming (or pretending) that X2 = Xz; in actuality we do not know as yet if 
X2 = X2. Indeed, had X2 been observed as taking the valuex2, then it would 
become a part of the background history H and the notion of a conditional 
probability would be moot. Conditional probabilities reflect the importance of 
the reference time in making probability assessments. 

From a subjective point of view, how should we interpret conditional 
probabilities and how do we make its numerical value operational? From a 
subjective point of view, a conditional probability represents our strength of 
belief about Xl, at time 7, had the background history been expanded (but in 
actuality was not) from H to (H and X2 ). Since numerical values of probabilities 
reflect our disposition to betting in the face of uncertainty, a conditional 
probability represents the amount that we are willing to stake on Xl, but now 
under the provision that all bets are off if the conditioning event turns out, in the 
future, to be untrue, that is, if X2 ::/= X2. A conditional probability is a useful 
device for assessing probabilities, because it incorporates the notion of "what if' 
in the process of interrogating personal beliefs about uncertain events. 

The notion of conditional probabilities leads us to another idea in 
probability, the judgment of conditional independence. Consider two discrete 
random variables Xl and X2 , and suppose that 
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then Xl and X2 are said to be mutually independent, conditional on the 
background history H. 

We emphasize that like probability, independence is always conditional 
because had H been different, say H*, then the preceding equality may not hold. 
From a subjective point of view, the equality displayed here says that our 
assessment of uncertainty about Xl = XI will not be affected by any added 
(future) knowledge about X2. XI and X2 are dependent if they are not 
independent. Like probability, independence and dependence are judgments, and 
mayor may not be supported by the physics of the situation. The idea of 
independence generalizes for a collection of uncertain quantities; it is often 
assumed because it simplifies the process of probability assessments by 
removing the need to think about relationships between the various random 
variables. It is a strong assumption, very idealistic in software reliability 
assessment. 

To illustrate the ideas of conditional independence suppose that software to 
perform a certain function is developed by two separate teams, A and B. Let XA 

be the time, measured in CPU units, at which the software developed by team A 
experiences a failure, similarly XB • An analyst studies the two codes and assesses 
the reliabilities of the two codes as P(XA 2: T IH) as PA, and P(XB 2: T IH) as 
po. We say that the analyst judges XA and XB independent, if the analyst is 
unwilling to change po were he or she to be informed that the software developed 
by team A experiences a failure at, say some time T*. That is, to this analyst, 
P(XB 2: T I XA = T*,H) continues to be the previously assessed po. 

Clearly, the judgment of independence assumed here is not realistic. Even 
though the software has been developed by two separate teams, they have 
presumably worked from a common specification; the two codes therefore are 
likely to have some commonalities. Consequently, the knowledge (admittedly 
conjectural) that XA = T* should cause the analyst to revise his assessment from 
PA to a value smaller (larger) than PM if T* < ( > ) T. Indeed experiments on 
software development by several teams conducted by Knight and Levenson 
(1986) verify the lack of independence mentioned previously. 

The literature in hardware reliability mentions several models for describing 
dependent lifelengths of two-component systems; particularly discussed are the 
models of Freund (1961), Marshall and Olkin (1967), and Lindley and 
Singpurwalla (1986b), to name a few. Their appropriateness for describing the 
failure of software codes remains to be explored. 

2.1.3 The Calculus of Probability 

The calculus of probability is a set of rules that tells us how uncertainties 
about different events combine. For keeping the discussion general, consider two 
events £1 and £2, and background H. Then, the following three rules can be 
viewed as being basic to the calculus. 
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Convexity: For any event £, 

O::S; P(E 11i) ::s; 1; 

Additivity: If both £\ and £2 cannot occur simultaneously (i.e., if they are 
mutually exclusive), then 

Multiplicativity: 

The first rule says that the probability of an event can take any value in the 
convex set [0, 1]. Since probabilities are assessed only for those events whose 
outcome is unknown to us, the value 1 can be meaningfully assigned only to 
events (propositions) that can be logically proven to be true; such events are 
called certain events. Similarly, the value 0 should be assigned only to events 
that are logically false; such events are called impossible events. It does not 
make sense to talk about probabilities of events whose outcomes are already 
known. If £ pertains to the disposition of a continuous random variable, say X, 
then the convexity rule says that the probability density function of X, say 
/x(x 11i), must be nonnegative. However, the function itself /x(x 11i) may take 
values greater than 1; recall that /x(x 11i) has a probabilistic interpretation only 
when it is multiplied by dx. 

By a repeated application of the preceding rules, both the additivity and the 
multiplicativity laws can be generalized. For n events £i, i = 1, 2, ... , n, the 
additivity law takes the form 

n 

P(EI or E2 or, ... , or En 11i) = LP(Ei 11i), 
i=l 

provided that the CiS are mutually exclusive; the multiplicative law takes the 
form 

P(EI and E2 and, ... , and En 11i) = P(EI I E2, ... , En,1i) X 

P(E2 I E3, ..• , En,1i) X ... X Peen 11i)· 

When n is finite, the additivity law is said to obey the property of finite 
additivity; when n is infinite it is said to obey countable additivity. Subjectivists 
like de Finetti claim that all that is needed is finite additivity; mathematicians 
demand countable additivity for rigor and generality. 
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The convexity and the additivity laws ensure that the probabilities of all 
mutually exclusive events should sum to 1, and if the CiS pertain to the 
dispositions of a continuous random variable, then these laws ensure that the 
integral of the probability density function over all possible values of the random 
variable must be 1. 

When C1 and C2 are not mutually exclusive, then it can be shown (see 
Exercise 1) that 

furthermore, if C1 and C2 are judged independent, then the preceding becomes 

As an illustration as to how these rules play a useful role, consider the 
hardware and software components of a typical computer system. Let CH denote 
the event that the hardware experiences a failure during the next hours of 
operation, and Cs the event that the software experiences a failure in the same 
time interval. The computer system is therefore a series system, whose 
unreliability for a mission of eight hours duration is given by the addition rule as 

where P(Ci 11i) is the probability that event Ci, i = H, S, occurs, and if CH and 
Cs are judged independent (this judgment being realistic for the scenario 
considered) the unreliability of the computer system becomes 

Suppose now that the hardware component is supported by a backup system 
that operates in parallel (that is, simultaneously) with main system. If C8 denotes 
the event that the backup system fails in the time interval of interest, then the 
unreliability of the hardware system is 

The preceding expression is not further simplified because it is generally 
unrealistic to assume that a hardware system and its backup have independent 
lifelengths. 

Continuing with this theme, the unreliability of the computer system 
becomes (upon suppressing the 1i) 



20 2. Foundational issues: Probability and Reliability 

upon an application of the multiplication rule. Since the software and the 
hardware systems are assumed to have independent lifelengths, the preceding 
simplifies to 

Why should we subscribe to a calculus for uncertainty that is based on the 
preceding rules? A simple answer to this question is that the laws were 
enunciated and proved to be useful since the times of Cardano, and that they 
were adhered to by the founders like Bernoulli, de Moivre, Bayes, and Laplace. 
Indeed one of Bayes' major contributions was his discourse on conditional 
probability and the multiplication rule. A more formal answer is that the 
mathematical theory of probability takes these laws as axioms, although 
Kolmogorov (1950) argues for them based on relative frequency considerations. 
A more convincing answer would be that subjectivists, like Ramsey and Savage, 
deduce the laws from primitive considerations, such as a person's ability to 
compare any two events based on their likelihoods of occurrence [cf. DeGroot 
(1970), p. 70], and that de Finetti (1974) uses the idea of scoring rules to claim 
the inevitability of these laws [see Lindley (1982a)]. Further support for these 
rules also comes from the argument that if betting coefficients do not obey the 
calculus of probability, then one can be trapped into the situation of a Dutch 
book [cf. Howson and Urbach (1989), p.56]. A Dutch book is a gamble in which 
you lose irrespective of the outcome; a person who engages in a Dutch book is 
declared to be incoherent. Because of the preceding arguments the claim is made 
that using a calculus different from the calculus of probability, such as that of 
possibility theory, leads to incoherence. 

2.104 The Law of Total Probability, Bayes' Law, and the Likelihood 
Function 

A simple application of the three laws of probability yields two other 
important laws. The first is the law of total probability, and the second is Bayes' 
Law. The law of total probability, also known as the law of the extension of 
conversation, is a useful device for developing probability models; see Section 
2.2. Bayes' Law provides a vehicle for coherently revising probabilities in the 
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light of new information; it becomes a tool for incorporating the effect of data in 
our assessment of uncertainty. 

The Law of Total Probability 

Suppose that Xl and X2 are two discrete random variables for which we 
have assessed their joint probability P(XI = XI and X2 = X2 11i), for all possible 
values XI and X2 that Xl and X2 can respectively take. Then, by the additivity 
rule, our uncertainty about XI alone (known as the marginal of XI) is given by 

the summation is over all possible values that X2 can take. Were XI and X2 to be 
continuous, then the summation would be replaced by an integral and the 
probabilities by their corresponding densities; consequently, the marginal 
density of XI is: 

(2.2) 

The law of total probability now follows from the multiplicative rule; in the 
discrete case 

and mutatis mutandis, for the continuous case. 
The law of total probability shows how one can coherently assess the 

uncertainty about XI via its appropriate conditional assessments in the light of 
X2. It illustrates the role of conditional probability as a facilitator of uncertainty 
assessment. A use of this law presumes that conditional probabilities are easier 
to assess than the unconditional ones, which in most cases is generally true. 

Bayes'Law 

Bayes' Law, also known as the law of inverse probability, has been 
attributed to the Reverend Thomas Bayes (1702-1761). However, it is often 
claimed that it was Laplace who was responsible for discovering its current form, 
independent of Bayes, and for popularizing its use. Both Bayes and Laplace 
were interested in assessing the probabilities of the causes of an event, the causes 
having occurred at a time prior to the occurrence of the event; thus the term 
inverse probability. For the case of discrete random variables XI and Xl> the 
multiplicative rule and the marginalization rule give 
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An application of the multiplicative rule to the numerator and to the 
denominator now gives us Bayes' Law as 

(2.5) 

When the random variables are continuous, the replacement of probabilities 
by densities and the sum by the integral occurs, so that (2.5) becomes 

As an illustration of how Bayes' Law can be used to address problems of 
interest to us here, consider a computer system comprised of a hardware and a 
software component. Let C = 1(0) denote the event that the computer system 
experiences a failure (survival) for a specified interval of time. The failure of the 
computer system can be attributed to either a hardware or a software failure, or 
both. Let Cs = 1 (0) denote the event that the software experiences a failure 
(survival) during the time interval specified previously. Similarly, let CH = 1(0) 
denote the failure (survival) of the hardware. Note that the events Cs = 1 and 
Cs = 0 are mutually exclusive so that P(cs = 1 111.) = 1 - P(cs = 0 111.), by 
the convexity rule. 

Bayes' Law is useful for addressing questions pertaining to the cause of 
failure of the computer system. For example, we may be interested in knowing 
the probability that software failure was the cause of failure of the computer 
system, if the system experiences failure. That is, we may want to know 
P(cs = 1 1 c = 1), which by Bayes' Law takes the form (upon suppressing 11.) 

But P(c = 1 1 Cs = 1) = 1, since the computer system is a series system, and 
P(C = 1 1 Cs = 0) = P(CH = 1), since the computer system can only fail if 
there is either a hardware or a software failure (or both). Thus 
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Similarly, we can show that 

is the probability that hardware was the cause of the system failure. 
Since the events (£s = 1 I £ = 1) and (£s = 0 I £ = 1) are mutually 

exclusive, P(£s = 1 I £ = 1) = 1 - P(£s = 0 I £ = 1), a result that can also be 
verified by a direct application of Bayes' Law to P(£s = 1 I £ = 1). The same is 
also true ofP(£H = 1 I £ = 1). 

Clearly, for this example, all that we need to know for answering the 
questions posed is to assess P(£s = 1) and P(£H = 1); the conditional 
probabilities are either 1, or one of the preceding two. In many other applications 
of Bayes' Law, the conditional probabilities are not that simple. For example, 
suppose that the event £s is redefined, so that now £; = 1 denotes the fact that 
the software has at least one bug in its code. Then, P(£ = 1 I £; = 1) need not 
necessarily be 1, since the bugs could reside in a region of the code that is not 
always visited during an application. Thus now P(£; = 1 I £ = 1) represents the 
probability that the bugs in the software were the cause of the computer system's 
failure, and to evaluate it we must assess P(£ = 1 I £; = 1) in addition to 
evaluating P(£; = 1) and P(£H = 1). Recall that 

P(£; = 1 I £ = 1) 

The Likelihood Function 

p(t'=llt';=l)P(t';=l) + p(t'=llt';=O)p(t';=O) 
p(t'=llt';=l)P(t';=l) 

An examination of (2.5) reveals some interesting features. First, note that 
the left-hand side is a function of the realizations of Xl alone, because X2 is 
assumed fixed at X2, and H is a known entity. This function, being a conditional 
probability, satisfies the calculus of probability. The same is also true of the 
second term of the numerator of the right-hand side of (2.5). The denominator of 
the right-hand side is a constant because all the values Xl have been summed out. 
Thus we may write (2.5) as 

The middle term of (2.6), namely, P(X2 = X2 I Xl = xl,H), remains to be 
interpreted. Why have we singled out this term? By all accounts, since it has 
arisen via an application of the multiplicativity rule to (2.4), should it therefore 
not be anything more than a conditional probability? This is indeed so, as long as 
both Xl and X2 are uncertain quantities; recall that all conditional probability 
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statements are in the subjunctive, so that P(XI = Xl I X2 = X2, H) refers to our 
uncertainty about XI, if X2 = X2. However, if X2 were actually observed as being 
X2, then P(X2 = X2 I XI = xJ.H) cannot be interpreted as a probability; 
probabilities make sense only for those events about which we are uncertain. 
How then should we interprete P(X2 = X2 I Xl = xJ.H)? 

When X2 is known to equal X2, P(X2 = X2 I Xl = XI ,H) is referred to as the 
likelihood o/XI for X2 observed and fixed atx2, and P(X2 = X2 I XI = xJ.H) as a 
function of Xl, is known as the likelihood function 0/ XI for X2 fixed at X2. The 
likelihood function not being a probability need not obey the laws of probability; 
that is, the function when summed (or integrated) over all values Xl need not 
equal one. In fact there is a well-known example in the analysis of software 
failure data [cf. Forman and Singpurwalla (1977)] wherein the likelihood 
function integrates to infinity. Because of the preceding, the likelihood function 
has been interpreted as one that provides a relative degree of support given by 
the data (i.e., for the fixed value X2) to the various values Xl that Xl can possibly 
take. When XI and X2 are continuous, (2.6) will then take the form/(xl I Xl> H) 
ex: / (X2 I Xi> H) / (Xl I H), with / (X2 I Xi> H) the likelihood function, and the 

other terms the probability densities. 
For the situation in which X2 is known to equal X2, the term P(XI = Xl IH) 

of (2.6) quantifies our uncertainty about XI based on H alone, whereas the term 
P(XI = Xl I X2 = X2, H) quantifies our uncertainty about XI based on both H 
and X2 = X2. Because of this, the left-hand side of (2.6) is referred to as the 
posterior probability of XI, posterior to observing X2, and the second term on the 
right-hand side of (2.6), the prior probability of Xl. Bayes' Law shows us how 
the likelihood connects the prior and the posterior probabilities. Alternatively 
viewed, Bayes' Law facilitates the incorporation of new information in our 
assessments of uncertainty, and thus becomes a tool of experimental science. 

To better appreciate the essential import of the notion of a likelihood, let us 
revisit our example illustrating Bayes' Law and focus on the last expression 
preceding (2.6), namely, 

Since conditional probabilities are in the subjunctive, the left-hand side of 
the preceding expression is to be interpreted as the probability that the presence 
of bugs in the software is the cause of system failure were it be true that the 
system has failed. When this probability is assessed, it is not known if the system 
has indeed failed; that is, the true disposition of the system is unknown to the 
probability assessor. For definitiveness, suppose that P(£; = 1) = 0.01, 
P(£H = 1) = 0.05, and that P(£ = 1 I £; = 1) = 0.7. This implies that the 
software is relatively free of bugs, that the hardware component is very reliable, 
but that the computer system has a high probability of failure should the software 
contain one or more bugs. When such is the case, the probability that the 
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software will be the cause of failure, should the system experience a failure is 
«0.7) (0.01))/«0.7) (0.01) + (0.05) (0.99» = 0.12. 

Now suppose that it is known for a fact-that is, it is actually observed­
that the computer system has failed, but it is not known whether the software or 
the hardware triggered the failure. What now is our probability that the software 
is the cause of the system failure? Must it still be 0.12? To answer this question, 
we formally proceed as before (according to Bayes' Law) because this is what 
we said we would do should £ = 1, but now P(£ = 1 I £; = 1) cannot be 
interpreted as a probability. Recall, probability is meaningful for only those 
events that have yet to occur (or are unknown to us), and (£ = 1) has indeed 
occurred. P(£ = 1 I £; = 1) is therefore a likelihood, more clearly written as 
£(£; = 1; £ = 1), and the likelihood being the degree of support provided by 
the observed data £ = 1, to the unknown event £; = 1, mayor may not be 
assigned the value 0.7. What really matters now are the relative values assigned 
to £(£; = 1; £ = 1) and £(£; = 0; £ = 1), although all that we need to know 
for computing pee; = 1 I £ = 1) is the former. Since the likelihood is not a 
probability, it is perfectly all right to have £(£; = 1; £ = 1) + £(£; = 0; 
£ = 1) # 1. 

Commentary 

We have seen that Bayes' Law is just a theorem in probability. However, 
because of its having given birth to the notion of a likelihood, it has become 
associated with a set of techniques called Bayesian statistics. What does one 
mean by the term Bayesian statistics? For one, Bayesian statistics is not merely a 
use of Bayes' Law for making statistical inferences. To some, it also 
encompasses a subjective interpretation of probability, but to all it requires a 
strict adherence to what is known as the likelihood principle [cf. Berger and 
Wolpert (1984)]. Loosely speaking, the likelihood principle says that the 
contribution made by the data (new information) is solely embodied in the 
likelihood function, and nothing more. This dictum makes many of the well­
known statistical procedures such as those based on confidence limits, 
significance levels, goodness of fit testing, and hypotheses tests with Type I and 
Type II errors, and the method of maximum likelihood, not acceptable. These 
procedures subscribe to the frequentist view of probability, and in so doing are 
unable to express uncertainty solely via the calculus of probability. 

2.1.5 The Notion of Exchangeability 

Like independence, exchangeability helps us simplify the assessment of 
probabilities. As before, consider two discrete random variables Xl and X2 , 

taking values Xl and X2, respectively. Then, Xl and X2 are said to be 
exchangeable, if for all values of Xl and X2, and background 1{, 
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P(XI = Xl and Xz = X2 I H) = P(XI = X2 and Xz = Xl I H); (2.7) 

that is, the assessed probabilities are unchanged (invariant) by switching 
(permuting) the indices. Because permuting the indices does not affect the 
assessed probabilities, we may think of exchangeable quantities as being similar 
to each other. One can also view the judgment of exchangeability as a judgment 
of indifference between the random quantities; we do not care what values each 
random variable takes. All that we care about is the set of values that the two 
random variables can take. 

Like independence, exchangeability is a judgment about two (or more) 
uncertain quantities, based on H. It is weaker than independence, because, in 
general, exchangeable random variables are dependent. Independent random 
variables having identical probability distributions are exchangeable (but not 
vice versa). To see why, observe that if Xl and X2 are independent and 
identically distributed, then suppressing H, 

implying that they are exchangeable. Finally, a collection of random variables 
Xl, X2, ... , Xn is said to be exchangeable, if every subset of Xl, ... , Xn is an 
exchangeable collection. Exchangeability was introduced by de Finetti (1937), 
(1972), on grounds that it is more meaningful in practice than independence. The 
assumption of independence implies, de facto, an absence of learning. 

To illustrate the nature of the roles played by the assumptions of 
independence and exchangeability, suppose that software code to perform a 
certain operation is developed by four different teams, all working from a 
common set of specifications. Let Xi = 1 (0) denote the event that team i's code 
results in a correct (erroneous) output, i = 1, ... , 4. The four codes are to be 
used in a fault-tolerant system, and we are required to assess the credibility 
(reliability) of the system. A fault-tolerant system will produce a response if 
three or more of its outputs agree with each other, and the response is a correct 
response if I:;=IXi ~ 3. Thus, we are required to assess P(I:;=IXi ~ 3 I H). 
For purpose of illustration, suppose that we judge P(Xi = 1 I H) = 0.5, i = 1, .. 
. ,4. Then, under the judgment of independence (of the XiS), and suppressing the 
Hs, 

4 

p(EXi = 4) = p(X] = 1,X2 = 1,X3 = 1,X4 = 1), 
] 
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which by the multiplication rule, 

= P(X1 = 1 I X2 = X3 = X4 = 1) X P(X2 = 1 I X3 = X4 = 1) X 

P(X3 = 1 I X4 = 1) X P(X4 = 1) 

= p(XI = 1) X P(X2 = 1) X P(X3 = 1) X p(X4 = 1) 

= (0.5)4 . 

The practical importance and significance of the statement 
P(X, = 1 I X2 = X3 = X4 = 1) = P(X, = 1), is that under independence, the 
added knowledge that were X2 = X3 = X4 = 1, our assessment of the probability 
that Xl = 1 remains unchanged from its previous value of 0.5. Surely, one would 
expect that the event X2 = X3 = X4 = 1 would cause an upward revision of 
P(XI = 1) from the value 0.5. Similarly, it can be easily seen that under 
independence 

4 

P(LXi = 3) = 4(0.5)3 (0.5) = 4(0.5)4 , 
I 

so that the credibility of the fault tolerant system is given by 

4 4 

P(LXi = 3) + P(LXi = 4) = 4(0.5)4 + (0.5)4 = 5(0.5)4 = 0.3125; 
1 1 

the events Et=,Xi = 3 and Et=,Xi = 4 are mutually exclusive. 
Analogous calculations would show that the probability of the fault-tolerant 

system producing an erroneous response is 0.3125. Thus the probability that the 
fault-tolerant system produces a response (correct or erroneous) is 
2(0.3125) = 0.6250, and that it produces no response (that is, the four codes do 
not arrive at a consensus) is (1 - 0.6250) = 0.3750. 

How do these answers compare with those obtained through the assumption 
that the XiS, i = 1, ... ,4, are exchangeable? The main matter to note here is that 
under exchangeability, all that we need to assume is permutation invariance. 
Thus, for example, to assess P(Et=,Xi = 3) we must require that: 
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= P(X1 = O,X2 = 1,X3 = 1,X4 = 1), 

and it does not matter how each individual probability is assessed, similarly, for 
the event Ei=IXj = 1. For the event Ei=IXj = 2, we must have: 

The events Ei=IXj = 4 and Ei=IXj = 0 being unique, permutation 
invariance is not an issue. 

In order to make our probability assessments here compatible with our 
previous assumption that P(Xj = 1) = 0.5, i = 1, ... , 4, we need to have the 
assumptions that P(XI = X2 = X3 = X4 = 1) = P(XI = X2 = X3 = X4 = 0) 
= 0.2, P(XI = X2 = X3 = 1, X4 = 0) = 0.05. Furthermore, we must also have 

P(XI = X2 = 1, X3 = X4 = 0) = 0.0333. With this assignment of probabilities, 
it follows that under exchangeability the credibility of the fault-tolerant system is 
0.4, and the probability that the fault tolerant system produces a response 
(correct or incorrect) is 0.8. These numbers being greater than their counterparts 
obtained via independence, we may conjecture that for fault-tolerant systems, the 
assumption of independence tends to exaggerate the assessed probability of non­
response. 

2.2 Probability Models and Their Parameters 

2.2.1 What is a Software Reliability Model? 

We have seen that for any random quantity E, our uncertainty based on 
background 7-{ is expressed by P(E I 7-{). In actuality 7-{, being everything that 
we know, is large, very complex, and of high dimension. Furthermore, much of 
7-{ may be irrelevant to E. What is therefore suitable is a way to abridge 7-{ so 
that it is manageable. 
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Suppose that there is a new random quantity, say e, scalar or vector. Then, 
assuming e to be discrete taking values 0, we can use the law oftotal probability 
to write 

P(£ 11-l) = LP(£ 1 f),1-l) p(f) 11-l)· (2.8) 
() 

For e continuous, an integral replaces the sum, and probability density functions 
replace the Ps. 

Now suppose that were we to know e, we would judge £ independent of 1t, 
so that for all 0, P(£ I O,1t) = P(£ I 0). Then (2.8) would become 

P(£ 11-l) = LP(£ 1 f)) P(f) 11-l), (2.9) 
() 

suggesting that our uncertainty about £ can be expressed via two probability 
distributions, P(£ I 0) and P(O 11t). The distribution P(£ I 0) is called a 
probability model for £, and P(O 11t) the prior distribution of e. If £ denotes a 
lifelength, then P(£ I 0) is called afailure model [cf. Singpurwalla (1988a)], and 
if £ denotes the time to failure of a piece of software, then P(£ I 0) is called a 
software reliability model. In making the judgment of independence between £ 
and 1t given e, we are interpreting e as a device for summarizing the 
background infonnation 1t. e is known as the parameter of the probability 
model. The manner in which we have introduced e suggests that it is an 
unobservable quantity that simplifies the assessment process; to de Finetti, it 
(often) is just a Greek symbol! Its role is to impart independence between £ and 
1t. Because e is unknown, its uncertainty must also be expressed by probability; 
thus the appearance of a prior distribution is inevitable, whenever probability 
models are introduced. 

A consequence of (2.9) is the appearance of probabilities that are easier to 
assess than P(£ 11t). The choice of a probability model and the prior 
distribution is a subjective one, although there is often a natural probability 
model to choose; some examples are given in the following section. The choice 
of P(O 11t) is a contentious issue. Various approaches have been proposed: the 
use of "objective" priors is one [Berger (1985), Chapter 3]; another is using 
"expert opinion" [Lindley and Singpurwalla (1986a)]. For a unified perspective 
on statistical modeling, see Singpurwalla (1988a). 

2.2.2 Some Commonly Used Probability Models 

In this section we briefly present some natural probability models (or 
distributions) that can be used for addressing generic problems in many 
applications, including those in software engineering. The list is not complete, 
and some models that appear later in the book are not described here. For a more 
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comprehensive list, see Bernardo and Smith (1994), or Johnson and Kotz 
(1970). We attempt to motivate many of the models using software testing as the 
application scenario. The others presented here are for completeness and their 
usefulness in the subsequent text. 

The Bernoulli Distribution 

Suppose that a piece of software is subjected to a certain input. Our 
uncertainty here pertains to the event C, where C is the proposition that the 
software provides a correct output. Define a binary random variable X that takes 
the value 1 if c is true, and zero otherwise. Such a random variable is called a 
Bernoulli random variable, after James Bernoulli who gave us the famous (weak) 
law of large numbers. Let '}-{ be the background information we have about the 
software. Then, the input specific reliability of the software is P(X = 1 I '}-{), and 
our aim is to assess this quantity. To do this, suppose we introduce (extend the 
conversation to) a parameter P that takes values p, with 0 S PSI, and invoke 
the law of total probability; then 

P(X = 1 11i) = Jp(X = 1 I p,1i)/(P 11i)dp. 
p 

Now suppose that given P, we judge X to be independent of '}-{. Then, the 
preceding simplifies as 

p(X = 1 11i) = Jp(X = 1 I p)/(P 11i)dp, 
p 

where P(X = 1 I p) is the probability model and f (P I '}-{) the prior density 
function of P. In what follows, we focus attention on only the probability model. 
Bernoulli's proposal was to let P(X = 1 I p) = p; then the calculus of probability 
requires that P(X = 0 I p) = 1 - p. Such a probability model is called the 
Bernoulli distribution, and as stated before, X is a Bernoulli random variable. 
The experiment (or act) of sUbjecting the software to an input and observing its 
success or failure is known as a Bernoulli trial. A compact way to express a 
Bernoulli distribution is 

P(X = Xi I p) = r i (1 - p)(1-Xi) , for Xi = 0,1. (2.10) 

Thus, when the probability model is a Bernoulli, the input-specific 
reliability of the software is 

P(X = 1 11i) = J p f(P 11i) dp. 
p 
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If in our judgment all the values p that P can take are equally likely, that is, 
we have no basis for preferring one value of p over another, then P is said to 
have a uniform distribution over the interval (0, 1) and f (p IJi) = 1, 0 < p < 1. 

When such is the case, it is easy to verify that P(X = 1 IJi) = ~. 

Binomial Distribution 

Suppose now that the software is subjected to N distinct inputs, and our 
uncertainty is about X, the number of inputs for which the software produces a 
correct output. The proportion of correct outputs is a measure of the reliability of 
the software. Clearly, X can take values x = 0, 1,2, ... ,N, and we need to know 
P(X = x IJi). There are many ways in which one can address this problem. The 
simplest is to assume that each input is a Bernoulli trial leading to a Bernoulli 
random variable Xi, i = 1, 2, ... , N, with Xi = 1, if the ith input results in a 
correct output, and Xi = 0, otherwise. 

Since X = LXi, there are (~) mutually exclusive ways in which X = x; 

one possibility is that the first x trials result in a correct output and the remaining 
do not. To assess the probability of such an event, namely, 

P(X1 = ... = Xx = 1, and Xx+! = ... = XN = 0 11i), 

we extend the conversation to a parameter P taking values p, with 0 < p < 1, 
invoke the multiplicative law, assume that given p the XiS are independent of 
each other and also of Ji, and assume a Bernoulli model for each Xi. Then 

P(X! = ... = Xx = 1, and Xx+! = ... = XN = 0 I p, 1i) 

= J r (1 - p)N-x f(p 11i)dp, 
p 

where f (p IJi) is the density function of p. Since the (~) possibilities are 

mutually exclusive and each has probability r(1 - p)N-x, we invoke the 
additivity law of probability to obtain 

P(X = x 11i) 

= J p(X = x I p)f(P 11i)dp 
p 

= J(~) r (1 - p)N-x f(p 11i)dp. (2.11) 
p 
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The probability model 

P(X = x I p) = (~) r(l - p)N-x, X = 0, ... , N 

is called the binomial distribution; the notation (~) denotes the quantity 

N!/(x!(N - x)!), with xl d~f x . (x - 1) . (x - 2) ···2· 1. 

Poisson's Approximation to the Binomial Distribution 

In many applications involving Bernoulli trials, it can happen that N is large 
and (l - p) is small, but their product N x (1 - p) is moderate. In the case of 
software testing, this situation arises when software that is almost bug free is 
subjected to a large number of inputs, so that (1 - p) is small and N very large so 
that N x (1 - p) is moderate. When such is the case it is convenient to use an 
approximation to the binomial distribution, which is due to Poisson. Specifically, 
if we let oX = N x (l - p), then using a Taylor series expansion and the inductive 
hypothesis, it can be shown (see Exercise 4) that 

(2.12) 

The probability model 

P(X = x I ,\) = e-'\ ~~, x = 0, 1,2, ... , 

is known as the Poisson distribution. 

The Geometric Distribution 

Now suppose that a piece of software is subjected to an indefinite sequence 
of distinct inputs, each resulting in a correct or an incorrect output. We are 
interested in X, the number of inputs at which the software experiences its first 
failure-this could be a meaningful measure of the software's reliability. We are 
uncertain about X, and so need to know P(X = x 11-l), where x = 1, 2, ... , 00. 

As before, we start by assuming that each input is a Bernoulli trial leading to a 
Bernoulli random variable Xi, i = 1, 2, ... , with Xi = 1, if the ith input results 
in a correct output, and Xi = 0, otherwise. 

Clearly, P(X = x 11-l) = P(X\ = X2 = , ... ,Xx.\ = 1, Xx = ° 11-l), and to 
assess this probability we introduce a parameter P, taking values ° < p < 1, 
invoke the multiplicative law, assume that given p the XiS are independent of 
each other and of 1-l, and assume a common Bernoulli model for each Xi. Both 
here, and also in our discussion of the binomial distribution, the assumption of a 
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Bernoulli model with a common parameter P for each Xi is idealistic. It suggests 
that all the inputs have the same impact on the software. We should weaken this 
assumption, but for now keep it as such to motivate a geometric distribution. 
Under the preceding assumptions, it is easy to see that 

p(Xl = X2 = , ... , Xx-l = 1, Xx = 0 I p, 1i) 

= J r- l (1 - p)f(p 11i)dp, 
p 

where, as before, f (P 11t) is the probability density function of P. Thus to 
conclude: 

P(X = x 11i) = Jp(X = x I p)f(p 11i)dp 
p 

= J r- l (1 - p)f(p 11i)dp; (2.13) 
p 

The probability model 

P(X = x I p) = r- l (1 - p), x = 1,2, ... , 

is called a geometric distribution. 

Discussion 

The models described thus far pertain to a discrete random variable X, and 
arise in the context of evaluating P(X = x 11t) for x taking values in some 
subset of {O, 1, ... , }. We have attempted to motivate each model by 
considering the scenario of assessing the reliability of software by testing it 
against several inputs. Our motivating arguments can be labeled idealistic, and 
this is perhaps true; however, they set the stage for subsequent more realistic 
developments. For example, we could expand on our setup by assuming that 
each Bernoulli random variable Xi has an associated parameter Pi, and that the 
sequence of PiS is exchangeable; see, for example, Chen and Singpurwalla 
(1996). In all cases we focused only on probability models and left open the 
question of specifying f (p 11t), the prior probability density function of P. This 
is a much debated issue which can trace its origins to the work of Bayes and 
Laplace; a recent reference is Geisser (1984). A natural choice is the beta density 
junction 

fi(P I 0:,(3) = na+/J) a-l(1 - )(3-1 
na)rC/J)p p, 0< p < 1, 
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FIGURE 2.2. Exponential Density Function. 

where r(a) is the gamma function. A random variable X having a beta 
distribution with parameters a and f3 is denoted "X '" B(a, f3)." The uniform 
distribution is a special case of the beta distribution with a = f3 = 1. 

The Exponential Distribution 

We have seen by now, that with software testing we may count the number 
of correct outputs in a series of N Bernoulli trials, as in the case of the binomial 
distribution, or we may count X the number of inputs at which we encounter the 
first incorrect output, as in the case of the geometric distribution. The 
exponential distribution, introduced here, can be viewed as the continuous 
analogue of the geometric distribution. Roughly speaking, suppose that the 
sequence of inputs to the software occurs continuously over time; that is, the 
software receives a distinct input at every instant of time. Alternatively viewed, 
suppose that a Bernoulli trial (with a common Bernoulli model) is performed at 
every instant of time. Then the X of our geometric distribution will be 
continuous, and is to be interpreted as the time to the first occurrence of an 
incorrect output; that is, the time to failure of the software. As before, we are 
uncertain about X, and are interested in a measure of the reliability of the 
software P(X 2: x 11i), where x 2: O. If we extend the conversation to a 
parameter A, with A taking values 0 < A < 00, and invoke the assumption that X 
is independent of 1i were A known, then 

p(X 2: x I 1i) = J P(X 2: x I )..) j().. I 1i)d)", 
oX 
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FIGURE 2.3. Gamma Density Function. 

where P(X ;:::: x I A) is the probability model, and f (A I 'H) the prior probability 
density function of A. How do these quantities relate to their analogues in 
(2.13)? After all, they have been motivated by similar considerations. What is 
the relationship between the p of (2.13) and the A given previously? 

Using limiting arguments, and supposing that Bernoulli trials are performed 
at times lin, 21n, ... , it can be shown (See Exercise 4) that as n ---+ 00, iln ---+ 

x, and with p = 1 - Aln, 

P(X 2:: x I A) = e-Ax , for both x, A > O. (2.14) 

Since X is continuous, it has a density f (x I A) = Ae-Ax ; see Figure 2.2. The 
probability model (2.14) is known as the exponential distribution with a scale 
parameter A. It has found widespread applications in applied probability, notably 
reliability theory and queueing theory. A random variable X having an 
exponential distribution with scale parameter A is denoted "X rv £(A)." 

The Gamma Distribution 

The setup described previously shows how the time to first failure of the 
software can be described by an exponential distribution. In many applications, 
once a software failure is detected, its cause is identified and the software 
debugged. The debugged software is now viewed as a new product and the cycle 
of subjecting it to a sequence of distinct inputs repeats. However, there are 
scenarios in which a failed piece of software is not debugged until after several 
failures, say k, for k = 1, 2, ... The failed software is simply reinitialized and 



36 2. Foundational issues: Probability and Reliability 

I 
f ( x I A.) 0.81 

0.6 T 

0+ 
0.21; 

O~~-+~--~~~~~~~~~--.-
o 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4 4.4 4.8 

x 

FIGURE 2.4. Weibull Density Function. 

continued to being subjected to the sequence of distinct inputs. When such is the 
case, we may be interested in X(k), the time to occurrence of the kth failure. 

The gamma distribution is a generalization of the exponential, and can be 
motivated as the distribution of X(k), the time to occurrence of the kth failure, in 
the software testing process. If we make the kind of assumptions that resulted in 
the exponential distribution for X(l), then we can show (see Section 2.3.3) that 
for any specified k, X(k) has a probability density function of the form 

(2.15) 

see Figure 2.3. The function r(u) = fooo e-s s(u-l)ds, is known as the gamma 

function; it generalizes the factorials, as for integer values of u, f(u + 1) = u! 
The model (2.15) is known as a gamma distribution, with scale (shape) 

parameter )"(k). A random variable X having a gamma distribution with scale 
(shape) 0'.«(3) is denoted "X'" yea, (3)." When k = 1, (2.15) becomes the density 
function of an exponential distribution. Even though our motivation here implies 
that k should be an integer, it need not in general be so. 

The Weibull Distribution 

Another generalization of the exponential is the Weibull distribution, 
famous for its wide range of applicability in many problems of hardware 
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FIGURE 2.5. Lognormal Density Function. 

reliability. A motivation for invoking this distribution in the context of assessing 
software reliability is given later, once we introduce the notion of the failure rate 
of a probability model; see Section 2.4.1. For now, we just introduce this 
distribution. 

A continuous random variable X is said to have a Weibull distribution, with 
a scale parameter a > 0, and a shape parameter (3 > 0, denoted "X'" W(a,(3)," 
if 

P(X ~ x I 0:, {J) = e-cy'xf3, for x ~ O. (2.16) 

The density function of X (Figure 2.4) is f (x I a, (3) = a (3xi3" I e-ax(3; for (3 = I, it 
is an exponential. 

The Lognormal Distribution 

The Weibull distribution was introduced under the pretext that it was a 
generalization of the exponential distribution, the latter having been motivated as 
the time to first failure of software subjected to a series of instantaneous but 
distinct inputs. The gamma distribution was introduced as another generalization 
of the exponential, but it also had the motivation of being the time to the kth 
failure of software that is initialized upon failure. Both the gamma and the 
Wei bull have another common feature. Their density functions are skewed to the 
right (i.e., they have long tails) suggesting that under their regimes large failure 
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times can occur, but rarely so, more (less) rarely under a Weibull with f3 >«) 1, 
than under a gamma. Another probability distribution whose density is skewed to 
the right is the lognormal distribution, sometimes used to describe the times 
between software failure. 

An introduction to the lognormal and the truncated normal distributions is 
greatly facilitated if we start with the normal, or the Gaussian, distribution. The 
Gaussian distribution, discovered by De Moivre, is one of the most frequently 
encountered distributions in applied and theoretical statistics. Its popularity 
sterns from the fact that it has been used, since the time of Gauss, as the 
distribution of observational errors, which are both positive and negative, or in 
general the distribution of symmetric fluctuations about a central tendency. 
Consequently the Gaussian is useful for describing several random phenomena 
such as the deviations of heights and of IQs from their central values, the 
deviations of material strengths from their nominal values, the vibrations of a 
rotating shaft around its axis, and so on. 

A continuous random variable X, taking values x, is said to have a Gaussian 
distribution with mean I-" and variance 0'2, denoted "X rv N(I-", 0'2)," if for 
parameters - 00 < I-" < +00, and a > 0, the probability model for X has a 
probability density function of the form 

f(x Ip. 0') = ~ exp ( - (X;~)2 ). for - 00 < x < +00. (2.17) 
(271"0' )2 

When J.1 = 0, and 0'2 = 1, the Gaussian distribution is known as the Standard 
Normal distribution. Failure times are often skewed and rarely symmetric around 
a nominal value. Thus, the Gaussian has not been used as a probability model for 
lifelengths. Why then our interest in the Gaussian? 

For one, this distribution has properties that are attractive for modeling and 
inference. The Gaussian distribution is a consequence of many limit theorems in 
probability. A more pragmatic reason is that we are able to generate skewed 
distributions by suitable transformations of the Gaussian. For example, if X is a 
lifetime, and if it is reasonable to assume [cf. Singpurwalla and Soyer (1992)] 
that the deviations of 10geX from a central value, say 1-", are symmetric, so that 
10geX rv N(I-", 0'2), then X has a skewed distribution, called the lognormal 
distribution, denoted "X rv A(I-", a)" (see Figure 2.5). The probability density 
function of a lognormal distribution function is 

1 
1 (Jogx -J.L)2 ) 

f(x p. 0') = xJ(271"O'2) exp - 20"2 • for ° < x < 00. (2.18) 
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The Truncated Normal Distribution 

Another skewed distribution, which is derived from the Gaussian and which 
has applications in software quality assessment is the truncated normal 
distribution. This is a normal distribution whose range is restricted, so that x 
belongs to an interval [a, b]. Its density function is of the form 

f(x I /-t, CT) = K.J~7l"U2 exp ( - (X;~)2 ), for a::; x::; b, (2.19) 

where the normalizing constant K is such that J:f (x I fJ., u)dx = 1. The 
truncated normal distribution has been used by Campod6nico and Singpurwalla 
(1994) for incorporating and modeling expert opinion in software reliability 
assessment. 

2.2.3 Moments of Probability Distributions and Expectation of Random 
Variables 

Moments and expected values are convenient ways of summarlzlOg 
probability models. Indeed some of the most commonly used statistics in day-to­
day operations have their genesis in the notion of moments. Examples are the 
mean, the variance, the correlation, the mean time to failure, and so on. Such 
statistics are often the mainstay of much of the data analyses done in software 
engineering. The aim of this subsection is to put the commonly used statistics in 
their proper perspective. 

The notion of the first moment of a probability distribution takes its roots 
from kinetics where it is used to represent any object by a point. Similarly, the 
second moment of a distribution finds analogy with the moment of inertia that 
describes how the mass of the object is distributed about an axis of rotation. 
Thus, were we to conceptualize the probability distribution of a random variable 
as an object having a unit mass that is distributed along its realization, then its 
moments can be viewed as summary measures of uncertainty. Related to the idea 
of moments, but finding its origin in games of chance, is the notion of an 
expectation; it indicates the payoff expected in repeated plays of a game. 

Following the notation of Section 2.1.1, consider a discrete random variable 
X taking value x. Let Px(x I 'H.) = P(X = x I 'H.); then the kth moment of 
Px (x I 'H.) about the origin 0 is defined as 

00 

E(Xk 11-l) = 2:(x - oi Px(x 11-l) < 00; 
x=o 

when k = 1, the first moment E(X I 'H.), is also known as the mean of X, or the 
expected value of X with respect to Px(x I 'H.). The second moment of Px(x I 'H.) 
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about its mean E(X 11i) is known as the variance of X, and is denoted VeX 11i); 
its square root is called the standard deviation of X. Verify that 

DO 2 

VeX IH) = 2: (x - E(X I H)) px(x IH) = E(X2 IH) - E2(X I H). 
x=O 

If X is absolutely continuous with a probability density function fx(x 11i), 
then 

DO 

E(X k IH) = J (x - ol ix(x IH)dx < 00; 

o 

similarly, VeX 11i). 
With two random variables Xl and X2 , taking values XI and X2, respectively, 

the product moment of P(XI = XI, X2 = X2 11i), or the joint expectation of 
XlX2 is defined as 

DO DO 

E(X j X2 IH) = 2: 2:X I X2 p(Xj = Xj, X2 = XZ IH) < 00. 

x,=O X2=O 

The covariance of Xl and X2, denoted Cov(Xl, X2 11i), is defined as 
E(XlX2 IH) - E(XI 11i) E(X2 11i)· And finally, P(Xl' X2 11i), the correlation 
between Xl and X2 , is defined as (Cov(Xl, X2 11i)) / (S(Xl) S(Xz)), where SeX) 
is JV(X 11i), the standard deviation of X. The correlation p(Xl , X2 11i) is a 
measure of the extent of the linear relationship between the XiS; it is zero when 
they are independent. However, P(Xl ,X2 11i) = 0 does not necessarily imply the 
independence; indeed when X~ + xi = R2, a constant, p(Xl , X2 11i) = o. 

The kth moment (about 0) of P(XI = XI I X2 = X2, 1i), the conditional 
distribution of Xl, were X2 = X2, is defined as 

k DO 

E(XI I X2 = X2,1i) = L (XI - O)kP(XI = XI I X2 = XZ, 1i) < 00, 
x,=o 

when k = 1, E(XI I X2 = X2,1i), is known as the conditional expectation, or 
conditional mean of Xl, with respect to P(XI = XI I X2 = X2, 1i). Similarly, the 
conditional variance V(XI I X2 = X2,1i) is seen to be 

V(XI I X2 = X2,1i) = E(X~ I X2 = x2,H) - E2(XI I X2 = X2,1i)· 
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2.2.4 Moments of Probability Models: The Mean Time to Failure 

The notion of conditional means and conditional variances enables us to 
discuss the moments of probability models. Recall that probability models are 
conditional probability statements, conditioned on unknown parameters, that are 
usually denoted by Greek symbols. Thus, for example, it is easy to verify that 
were we to suppose that P is p, then the first moment of the Bernoulli 
distribution (2.10) is simply p, and the variance of a random variable having this 
distribution is p( 1 - p). Similarly, the first moment of the binomial distribution 
is np and the variance of a binomial random variable is np(1 - p). The mean and 
the variance of a random variable having the Poisson distribution (2.12) are both 
A. A verification of these is left as an exercise for the reader. 

The first moment of a probability model that is a failure model (see Section 
2.2.1) is of particular interest. It is known as the mean time to failure, 
abbreviated MTTF, and is one of the most frequently encountered terms in 
reliability; in fact to many it is a measure of an item's reliability. For example, if 
the failure model is the exponential (2.14), then the mean time to failure is lIA, 
and the variance is lIA2. Similarly, if the failure model is a gamma (2.15), then 
were we to know both k and A, then the mean time to failure is kiA, and the 
variance is kI(A2). Note that in all these cases, we are supposing that the 
unknown parameters are known, and thus when we talk of the mean time to 
failure, we are really talking about the conditional means and variances. We later 
show (see Section 2.4) that the MTBF (mean time between failures) can be used 
as a proxy for the reliability of an item only when its failure model is the 
exponential. When an item's failure model has two or more parameters, the 
MTBF alone does not describe the item's reliability. This elementary but 
important fact is often overlooked by those in practice. 

2.3 Point Processes and Counting Process Models 

Counting process models have played a key role in the analysis of software 
failure data, and it appears that this role will continue to expand. By way of some 
motivation, suppose that we are interested in observing the occurrences of a 
repeatable event over a period of time. The simplest example is the arrival of 
customers at a service station, such as a bank. Another example is the occurrence 
of earthquakes of a specified magnitude at a particular location. An example that 
is of interest to us here is the points in time at which a piece of software fails. In 
all such cases, the event of interest does not occur with any regularity and is 
therefore unpredictable. Consequently, we are not sure about the times at which 
the event will occur, and also about the number of events that will occur in any 
time interval. Such a phenomenon is called a point process, because, as its name 
suggests, it can be depicted by points on a horizontal line, the line representing 
time, and the points the occurrences of events over time. It is not essential that 
the horizontal line denote time; it could, for example, represent the length of a 
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FIGURE 2.6. The Sample Path of a Counting Process. 

strand of wire, and the points, the position of defects along its length. Many 
other examples are possible. 

A counting process, as the name implies, is simply a count of the number of 
events that have occurred in any specified interval of time. Since the horizontal 
line has been designated to represent time, the vertical line is used to indicate the 
number of counts over time. Specifically, if we let T\ :s:: T2 :s:: ... :s:: Ti :s:: ... 
denote the points in time at which an event of interest occurs, and N(t) the 
number of events that occur by time t, then a plot of the TiS versus N(t) (see 
Figure 2.6) traces the evolution of the counts over time; it is known as the 
sample path of the point process. It is a step function starting at zero, and taking 
jumps of size one at each Ti. Since we are uncertain about both the TiS and N(t), 
the sample path of the point process is not known and should therefore be 
viewed as an unknown step function. Once the process is observed, the sample 
path becomes known and the probabilistic aspects of the problem are not 
relevant. In practical applications, we may observe both the TiS and the N(t), or 
simply N(t). 

Since N(t) is unknown for any value of t, t ~ 0, we are faced with the 
problem of describing our uncertainty about an infinite collection of random 
variables, one for each value of t. Any indexed collection of random variables is 
called a stochastic process, and when interest is focused on counts, the process is 
called a stochastic counting process; it is denoted by {N(t); t ~ O}. In our case 
the index has been time t, but in other applications it could be length, or simply 
the set of integers. For example, the collection of random variables 
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T) ::;; T2 ::;; ... ::;; Ti ::;; ... , or the collection of interarrival times Xi d~f Ti - Ti-) , 
i = 1, 2, . . . , are also stochastic processes, but they are indexed on the set of 
integers; such processes are commonly referred to as time series processes. 

The purpose of this section is expository; its aim is to introduce probability 
models for the counting process {N(t); t:;::: O}, especially those models that have 
proved to be of value for describing software failures. In the sequel we are also 
able to deduce probability models for the sequences {Ti} and {Xi} previously 
defined. Indeed, there is one commonly used model for counting software 
failures. It is the nonhomogeneous Poisson process model discussed next. 
However, the potential for using other models exists, and this needs to be 
explored. 

2.3.1 The Nonhomogeneous Poisson Process Model 

The Poisson process model for describing our uncertainty about the process 
{N(t); t :;::: O} is one of the simplest and perhaps the best known of all counting 
process models. Experience has shown it to be a satisfactory description of 
commonly occurring phenomena in an assortment of applications. However, 
there are assumptions underlying this model, and these may not be realistic in 
any particular application. To introduce Poisson process models, we start with 
the problem of assessing P(N(t) = k I'H, 'Hr), for any fixed t, t :;::: 0; 'H denotes 
any background information that we may have about the physical scenario that 
generates the process, and 'Hr denotes observations on the process itself up to, 
but not including, time t. That is, 'Hr = {N(u); 0::;; u::;; t-}. As before, we 
extend the conversation to a parameter A*(t), which can take the value A(t) :;::: 0, 
with A*(O) = 0; we next invoke an assumption of independence with respect to 
'H to write 

P(N(t) = kiT{, 'Hr) 

= J P(N(t) = k l'Hr, A(t» f(A(t) IT{, 'Hr)dA(t), 
A(r) 

(2.20) 

where P(N(t) = k l'Hr, A(t» is a probability model for N(t), andf(A(t) I'H, 'Hr) 
is the probability density of A * (t) at A(t). In writing the preceding, we have not 
followed our convention of denoting unknown quantities by capital letters and 
their realized values by the corresponding small letters. The reason for this 
departure is that the derivative of A * (t), assuming that it exists, is a quantity of 
interest, and it is common to denote it by >. * (t). The parameters A * (t) and>' * (t) 
are functions of time; the former is known as the mean value function of the 
process {N(t); t :;::: O}, and N(t) is known as the intensity function (or the rate) of 
the process. It can be shown that given A * (t), if N(t) is independent of 'Hr, then 
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E(N(t», the expected number of events by time t, is indeed A*(t). The proof is 
left as an exercise for the reader; see Exercise 8. 

The specification of a probability structure for the mean value function is an 
active area of research. One approach is to assume a functional form for A*(t), 
and then to endow its parameters with a joint distribution; see, for example, 
Campod6nico and Singpurwalla (1995), who use this strategy for analyzing 
some software failure data. Another approach is to assume that for t ::::: 0, N(t) is 
itself a stochastic process called an intensity process; this is discussed in 
Sections 2.3.3 and 7.1.2. 

Suppose now that A' ( • ) is a finite valued, nonnegative, and nondecreasing 
function of t. Then a probability model for N(t) is said to be a nonhomogeneous 
Poisson process model, if for all t ::::: 0, the following "postulates" are invoked. 

(i) P(N(t) = k !Hr, A*(.)) = P(N(t) = k! A*(. )); 

(ii) P(N(O) = 0 ! A*( • )) = 1; and 

(iii) for any 0 ::::; s < t, the number of events that occur in [s,t] has a 
Poisson distribution with a parameter (A *(t) - A *(s)); that is, 
for k = 0, 1, 2, ... , 

P((N(t) - N(s) = k! A*(.)) = (A*(t)~t*(S»k exp( - (A*(t) - A*(s))). 

The essential import of postulate (i) is that, were we to know the mean value 
function A * ( .), then a knowledge of the past behavior of the process is 
irrelevant for our assessment of uncertainty about future occurrences. As a 
consequence, given A * ( .), the number of events occurring in disjoint time 
intervals are independent random variables. This property is known as the 
independent increments property, and is a defining characteristic of all Poisson 
process models. An advantage of having such a property is the ease with which 
statistical inference for Poisson process models can be done; a specification of 
the likelihood function is straightforward. However, assumption (i) is very strong 
and often unrealistic. Despite this, Poisson process models have been used to 
describe software failures [cf. Musa and Okumoto (1984)]. Finally, since 
A * (0) = 0, postulate (iii) says that N(t) has a Poisson distribution with paramter 
A OCt). 

It is useful to note that A * (t) need not be continuous, and even if it is 
continuous, it need not be differentiable. Jump discontinuities in A*(t) 
correspond to points at which events in a Poisson process occur at predetermined 
times, and the number of events that occur at such points has a Poisson 
distribution with a parameter equal to the size of the jump of the intensity 
function. 
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The Distribution of Interarrival and Waiting Times 

When point process models are used to describe uncertainties associated 
with the number of software failures, two other quantities are also of interest. 
The first is the interarrival times Xi, that is, the times between consecutive 
failures, and the second is T;, the waiting time to the ith failure, for i = 1,2, .... 
In general, it is possible to describe uncertainties about both these quantities 
conditional on their previous values. Specifically, in the case of the 
nonhomogeneous Poisson process, were we to know A(t), its derivative A(t), the 
realizations Xi of X;, and t; of T;, i = 1,2, ... , i-I, then the density of X; at Xi is 
[from postulate (iii)] of the form 

f(x; I X" ... , Xi-I, A(.» 

i·\ i-I i-I 

= ), (Xi + ~Xj) X exp (A(~Xj) - A(Xi+ ~Xj»), for Xi ~ 0, (2.21) 

and the probability density function of T; at t;, for t; 2:: t;_I, is of the form 

(2.22) 

The preceding results are intriguing, especially in the light of postulate (i) 
which says that future occurrences of N(t) are independent of its past. 
Specifically, (2.22) says that the distribution of T;, the next time to failure 
depends on T;_I, the last time to failure. Such a property, namely, dependence on 
only the last event, is known as the Markov property. More interestingly, (2.21) 
says that the distribution of X;, the ith interarrival time, depends on the entire 
previous history of the process. 

2.3.2 The Homogeneous Poisson Process Model 

A special case of the nonhomogeneous Poisson process model is when A *(t) 
[the derivative of A*(t)] is a constant, say A*, so that if A* takes a value A, then 
A(t) takes the value At, and 

P(N(t) = k I ),) = e-A1 (~t, for k = 0,1,2, ... , (2.23) 

this is called the homogeneous Poisson process model. It is perhaps the most 
commonly used point process model. 

The interarrival and the waiting times of a homogeneous Poisson process 
take a simple and attractive form. Verify that with A(t) = At, (2.21) becomes 
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(2.24) 

which is the density function of an exponential distribution with scale A. Since 
the distribution of Xi is independent of X), ... , Xi_) , we say that the interarrival 
times in a homogeneous Poisson process are independently and identically 
exponentially distributed. Similarly, with A(t) = At, (2.22) becomes 

(2.25) 

Equation (2.25) can be used to obtain the probability density function of Ti , 

were we to know only A, that is, the unconditional density function of Ti , given 

A, for i = 1,2, .... To do this, we first note that if to d~f 0, thenftt) I A) = A 
exp( - At), and using the law of the extension of conversation, it is seen that 

h ~ 

f(t2 I A) = ff(t21 tl. A)f(tJ I A)dtJ = fA e-A(t2-tl)A e-At1dtJ, 
o 0 

or that 

which is a gamma density with a scale parameter A and a shape parameter 2. 
Continuing in this manner, we can deduce that in general 

(2.26) 

which is a gamma density with a scale parameter A > 0, and a shape parameter i, 
i = 1, 2, . . .. The simplicity of these results makes the homogeneous Poisson 
process model attractive for use when all that one wishes to do is an expedient 
data· analysis. 

2.3.3 Generalizations of the Point Process Model 

There are several generalizations of the preceding point process model, each 
of which could be a suitable candidate for describing the points generated by 
software failures. With some of these generalizations it is not possible to retain 
the defining characteristic of the Poisson process models, namely, that of 
independent increments. 

The Compound Poisson Process 

The simplest generalization is to allow the point process to take jumps 
of random size; recall that the sample path shown in Figure 2.5 pertains to jumps 
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that are only of unit size. A point process that retains all the characteristics of a 
Poisson process (homogeneous or nonhomogeneous), save the one which 
restricts jumps to be of a unit size, is a compound Poisson process. In the context 
of software failures, a compound Poisson process may be an appropriate model 
if, upon the occurrence of failure, a random number of bugs are detected and 
corrected; see, for example, Sahinoglu (1992). With such processes, we have 
two sources of uncertainty: the times at which the software fails, and the number 
of bugs that are identified and corrected upon each failure. As before, if we let 
TJ, T2, ... , Ti , ••• , denote the times at which an event of interest (say software 
failure) occurs, and if associated with each Ti there is a random variable Zi 
denoting some attribute of interest (say the number of bugs that are detected, or 
the time to debug the software and put it back in operation), then the process 
{N(t) ; t ~ O}, where 

N(t) 

N'(t) d~f l: Zj, 
i=l 

and N(t) is the number of events that occur in time [0, t], is called a compound 
Poisson process. 

To describe our uncertainty about N(t) we need to know, in addition to 
A' (t), the probability distributions of the ZiS. When such is the case, it is easy to 
see, using the law of the extension of conversation by conditioning on k events, 
that if A *(t) = A(t), and if 

k 

Fk(Z)d~f P(l:Zi :::; z), 
I 

then 

00 

P(N'(t) :::; v I A(t), P(v» = l:exp ( - A(t» (Ai;)Y' Fk (v), 
k=O 

for 0 :::; v <00. (2.27) 

The distribution function Fk(z) is known as the k-fold convolution of the ZiS. The 
derivation of (2.27) is left as an exercise for the reader. 

Simplifications occur if we assume that the ZiS are independent and 
identically distributed. For example, if Zi represents the debugging time 
subsequent to the ith failure, then we may assume that the ZiS are independent 
and identically exponentially distributed with scale o. In this case Fk(z) is a 
gamma distribution with scale 8 and shape k. With the preceding interpretation, 
our uncertainty about N(t), the total debugging time, or the software's downtime 
in the interval [0, tl, is described by a compound Poisson process, and the model 
(2.27) is helpful for assessing the "availability" of software. 
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Commentary 

There are other aspects of compound Poisson processes that need to be 
discussed. The first is that of independent increments, and the second that of 
computability. It is easy to see that the compound Poisson process model (2.27) 
retains the independent increments property only if the ZiS are independent; 
otherwise, N(t) inherits the dependence between the ZiS. The assumption of 
independence may be unrealistic, because it implies two things: the absence of 
an increase in debugging efficiency with time, and a failure to account for the 
fact that typically, later failures are harder to detect and rectify than the earlier 
ones. But why are independent increments important? Can we not do without 
them? The answer to these questions has to do with the likelihood function 
which is needed for making statistical inferences. Independence simplifies a 
specification of the likelihood function; we can do without it, but only at the 
price of computational difficulties. Indeed, the popularity of the Poisson process 
model is largely driven by its property of independent increments. Finally, on the 
matter of computability, even under the assumption of independent increments, 
(2.27) is difficult to compute; it involves an infinite sum over k of the 
distribution function Fk(z). One strategy would be to approximate using limiting 
arguments involving t -7 00; another would be a Monte Carlo simulation. 

The Doubly Stochastic Poisson Process 

The notion of a doubly stochastic Poisson process or a Poisson process with 
a random environment was introduced to describe those situations wherein there 
is a physical motivation for supposing that the mean value function A*(t) of a 
Poisson process model is itself a stochastic process. Furthermore, it is assumed 
that a knowledge of the history of the process does not change the probabilistic 
structure of A * (t); that is, the probability structure of A * (t) is assumed to be pre­
assigned [cf. Cox and Isham (1980), p. 10]. This is a very strong assumption. Its 
consequence is that in (2.20), the f(A(t) IH, HI) simplifies to f(A(t) I H), so that 
under a doubly stochastic Poisson process model for P(N(t) = k IH, HI), with a 
preassigned probability structure for A OCt), 

P(N(t) = k I H, HI) = f P (N(t) = k I A(t») f (A(t) I H)dA(t). 
A(/) 

Of course, from a Bayesian point of view, all parameters are unknown, and 
hence all Poisson process models should really be regarded as being doubly 
stochastic. The main point of departure is the assumption of a preassigned 
probability structure for A * (t). It is more realistic to suppose that a knowledge of 
the past occurrence of the process influences our assessment of uncertainty about 
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A(t), so that under the assumption of a Poisson process model, a proper Bayesian 
approach would result in (2.20) taking the form 

e-A(t)(A(t)l 
P(N(t) = k 111, 1-lt ) = J k! f (A(t) 111, 1-lt )dA(t). (2.28) 

A(t) 

Observe that under (2.28) the process {N(t); t 2': O} will lose its independent 
increments property. 

To further appreciate the arguments that motivate a consideration of the 
doubly stochastic feature of Poisson processes, we introduce an alternate, but 
equivalent, specification of the postulates of a Poisson process model for N(t) 
given A*(t). 

Suppose that in (2.20), A*(t) takes the value A(t), and that A(t), the 
derivative of A(t), exists. Then, given A(t), a probability model for N(t) is a 
nonhomogeneous Poisson process model if: 

(i) for any time t, and a small interval of time llt, 

P(N(t + llt) - N(t) = 1 1 ACt), 1-lt ) 

= P(N(t + llt) - N(t) = 1 1 ACt» = ACt)llt + o(llt), 

and 
P(N(t + llt) - N(t) > 1 1 ACt), 1-lt ) 

= P(N(t + llt) - NCt) > 1 1 A(t)) = o(llt), 

so that 

P(N(t + llt) - N(t) = 0) = 1 - A(t)(llt) + o(llt); 

Oi) P(N(O) = 0 1 A( • )) = 1. 

The quantity o(h) is a correction term; it denotes a function of h such that 

lim o(h) = O. 
h -+ 0 h 

Its role is to ensure that P(N(t + h) - N(t) = 1 I A{t» does not exceed 1 
when h is large. The independent increments property of the Poisson process 
model is a consequence of (i). 
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With the preceding specification, the intensity function A(t) of the process 
can be given a physical interpretation. Specifically, since A(t)(At) approximately 
equals the probability that an event will occur in a small interval of time in the 
vicinity of t, we are able to relate A(t) to the actual process that generates the 
events of interest, for example, the underlying stress in the case of structural 
failures, or geological factors in the case of earthquakes. In the context of 
software failure A(t) would be determined by the underlying operational profile 
of the software. Recall that a software's operational profile is a description of 
the environment under which it operates. Consequently, A(t) tends to be large 
(small) when the software executes complex (simple) operations. When the 
workload on the software is uncertain, or changes randomly over time, so that 
the operational profile is itself a stochastic process, then so will A *(t), and a 
doubly stochastic Poisson process model for P(N(t) = k 11t,1tt ) will arise 
naturally. Observe that given A(t), the probability model for N(t) will retain the 
independent increments property, and if the probability structure of A * (t) is pre­
assigned, then the process {N(t); t 2': O} itself will also possess the independent 
increments property. When such is the case, the stochastic process {N(t); t 2': O} 
is called a doubly stochastic Poisson process. 

The Self-Exciting Point Process 

A prime motivation for introducing self-exciting point processes is the need 
to relax the independent increments feature of Poisson process models for {N(t); 
t 2': O}. In the context of software failures, since a software code can 
conceptually consist of only a finite number of bugs, the independent increments 
property is not tenable. A knowledge of the past occurrences of the process must 
influence our uncertainty about future occurrences. There are several strategies 
for introducing dependence among the increments, one of which is via the 
prescription (2.28), which de facto is a Bayesian model for a doubly stochastic 
Poisson process. A closely related approach is via the mechanism of a self­
exciting point process model for {N(t); t 2': O}; this is described in the following. 

Suppose that 1tt comprises N(t-), and the waiting times T\, T2 , .•• , TN(t-); 

that is, 1tt is the progress (or history) of the process up to but not including t. We 
start by recalling (2.20); suppose that A*(t) the derivative of A*(t) exists and, that 
given A(t) a model for N(t), is of the form 

P (N(t + At) - N(t) = 1 l1th A(t») = P(N(t + At) - N(t) = 1 I 'x(t» 

= 'x(t)(At) + o(At). 
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Then, it follows [see (2.20)] that 

P(N(t + ~t) - N(t) = 1 IH, 'H t ) = E('x OCt) IH,'Ht ) + o(~t), 

where E('\*(t) 1'H,'Ht ) is the conditional expectation of '\*(t). 
Motivated by the preceding line of reasoning, we say that {N(t); t 2: O} is a 

self-exciting point process (SEPP) if the following postulates can be invoked. 

and 

(i) For any time t, and a small interval of time ~t, 

P(N(t + !lot) - N(t) = 1 IH, Ht) = E('x*(t) IH,Ht) + o(!lot). 

(ii) For any subset Qt of 'HI> and a function g(x) with lim g(x) = 0, 
x-+O 

P(N(t + !lot) - N(t) ~ 2 I H, Qt) 

= P(N(t + !lot) - N(t) = 1 IH, Qt) g(!lot); 

(iii) P(N(O) = 0 IHt ) = 1. 

Note that the conditioning on 'Ht ensures that {N(t); t 2: O} does not have 
the independent increments property. 

The second of the preceding properties is known as conditional orderliness. 
In essence, it guarantees that the probability of the process increasing by more 
than one, in a short interval of time, is small; thus N(t) is well behaved and does 
not suddenly explode to infinity. If Q(t) = cp, the empty set, then the second 
property reduces to what is known as unconditional orderliness, and now 

P(N(t + ~t) - N(t) 2: 2) = P(N(t + ~t) - N(t) = 1) g(~t); 

if Q(t) = 'H(t), then the second and third of the preceding properties lead to the 
result that 

P(N(t + !lot) - N(t) ~ 2 IHt) 

= P(N(t + !lot) - N(t) = 1 IHt) g(!lot) 

= o(!lot). 
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There are different degrees to which oX * (t) depends on H" and this idea is 
formalized by the notion of the memory of the self-exciting Poisson process. 
Specifically, a SEPP is of memory m, if 

form = 0: 

for m = 1: 

for m 2:': 2: 

m = - 00: 

oX *(t) depends only on N(t); that is, 
E(A *(t) 11ft ) = E(A *(t) I N(t»; 

oX*(t) depends only on N(t) and TN(t); that is, 

E(A *(t) 11ft ) = E(A *(t) I N(t), TN(t); 

oX*(t) depends on N(t), TN(t). and at most the last (m - 1) inter­
arrival times; and 

oX *(t) is independent of the entire progress of the process. 

Note that the case m = - 00 corresponds to the doubly stochastic Poisson 
process (DSPP). Also, since the special case of the DSPP, when oX *(t) takes the 
value oX(t) with probability 1, is the nonhomogeneous Poisson process (NHPP), 
we have the following, as a chain of implications for the point process models 
we have discussed, 

HPP c NHPP c DSPP c SEPP, 

where HPP abbreviates the homogeneous Poisson process. 
In Chapter 3 we point out that almost all of the proposed models for 

software reliability are special cases of the SEPP. Indeed the current research in 
analyzing software failure data focuses heavily on point process models with 
intensities described as stochastic processes [cf. Gokhale, Lyu, and Trivedi 
(1998)]. 

2.4 Fundamentals of Reliability 

Much of the literature on statistical aspects of software engineering has been 
devoted to the topic of software credibility, or reliability. By credibility, we 
mean the risk of an in-process software failure. Even though a lot has been 
written about the differences between hardware and software reliability, it is 
useful to bear in mind that the general principles by which reliability problems 
are addressed are common to both applications. What distinguishes reliability 
problems from the others in which probability and statistics are used is that here 
the event of interest is failure, and the uncertain quantity the time to failure T. 

Since T is continuous and takes values in [0, 00), our aim is to assess 
P(T 2:': t IH) for some t 2:': O. When viewed as a function of t, the quantity 
P(T 2:': t IH) is called the reliability junction, or the survival function of T; it is 
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denoted by FT(t I 'It). Note that FT(t I 'It) decreases in t, from 1 at t = 0, to ° at 
t = 00. The argument t of F T(t I 'It) is called the mission time. Also, if 
FT(t I 'It) = P(T:::; t I 'It), then from the laws of probability FT(t I 'It) = 
1 - FT(t I 'It). 

2.4.1 The Notion of a Failure Rate Function 

One of the key notions in reliability theory is that of the failure rate function 
of T (or of the distribution function of 1). Suppose that FT{t I 'It) is absolutely 
continuous so that h{t I 'It), the density function of T at t, exists. Then the 
predictive failure rate function of T, at t ~ 0, is defined as 

I !T(tl7t) 
rT{t 'It) = ~. 

The failure rate function derives its importance because of its interpretation 
as a conditional probability. Specifically, rT{t 1'It)dt approximates the 
conditional probability that an item fails in the time interval [t, t + dt] were we to 
suppose that it is surviving at t; that is, 

rT(t 1'It)dt ~ P(t :::; T:::; t + dt I T ~ t, 'It). 

Whereas a direct specification of F r{t I 'It) is often difficult, specifying 
conditional probabilities, like rT(t 1'It)dt, is generally easier. There may be 
physical and/or subjective features that help guide this choice. Since the failure 
rate at t is the instantaneous probability of failure of an item that is assumed to 
survive until t, the failure rate of items that age, such as machinery and humans, 
will increase with t. Similarly, the failure rate of software, were it not to 
experience failure, will decrease with time, since the absence of failure enhances 
our opinion of the software's quality. Recall that, subjectively, a conditional 
probability is the informed opinion of a particular individual at a particular time. 

Analogous to the notion of a predictive failure rate is the notion of a model 
failure rate. Specifically, suppose that to assess P(T ~ t I 'It), a parameter () is 
introduced, the law of total probability with its paraphernalia of conditional 
independence is invoked, and a probability model for T, P(T ~ t I ()), is 
obtained. Then, assuming that fr(t I ()), the probability density of (t I ()), exists 
for all t, the model failure rate of T, at t ~ 0, is defined as 

r (t I ()) = lIWJ) 
T F T(t18) , 

(2.29) 

where F T(t I 9) is P(T ~ t I ()). As before, rT(t I 9) is interpreted as 

rT(t I (})dt ~ P(t :::; T:::; t + dt I T ~ t, 9). 
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Since both the predictive and the model failure rates are probabilities, and 
since probabilities are personal, we may state that failure rates do not exist 
outside our minds [cf. Singpurwalla (1988a)]. Also, it is helpful to recall that 
since all probabilities are assessed at some reference time T, and since the failure 
rate is a conditional probability, it too is assessed at T. The conditioning 
argument T ~ t, in P(t::; T::; t + dt I T ~ t, 1i), is to be interpreted in the 
subjunctive; that is, it is the probability of failure in [t, t + dt], were the item to 
survive to t. If the item is observed to actually survive to t, then this information 
becomes a part of the history 1i and our uncertainty assessment process now 
commences at the reference time T + t. 

To see how a specification of the failure rate, predictive or model, facilitates 
the assessment of reliability, we concentrate on (2.29) and start with the 
observation that 

I h(tIO) d - I . 
Tr(t 0) = F T(tIO) = - de 10g(F r(t 0», 

integrating and exponentiating both sides of the preceding gives us the 
exponentiation formula of reliability 

t 

Fr(t 10) = exp( - J rr(u I O)du) . 
o 

(2.30) 

It is because of the preceding formula that the failure rate function is often 
used as a proxy for the reliability of an item. 

The development so far assumes that F T(t I 8) is absolutely continuous so 
that fr(t I 8) exists (almost) everywhere. When such is not the case because 
fr(t 18) has a jump at, say t, then rT(t 18) is given by (2.29) for all t #- to, and is 

* I 0) h(t*)-h(r) * rr(t = F T(tIO) ,at t = t . 

2.4.2 Some Commonly Used Model Failure Rates 

The simplest failure model is the exponential, with FT = e-At , t ~ 0; see 
(2.14). From (2.29) it is easy to verify that the failure rate of (t I A) is a constant, 
A; furthermore, from (2.30), it is easily seen that if the failure rate of (t I A) is A, 
then FT(t I A) = e-At , thus the claim that the exponential failure model is the 
only one for which the model failure rate is a constant, and vice versa. Also, 
recall (see Section 2.2.4) that for the exponential failure model the MTBF is lIA. 
Thus a knowledge of the MTBF is sufficient for a specification of both the 
failure rate function and the reliability function. The constant model failure rate 
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FIGURE 2.7. The Failure Rate of a Gamma Distribution (A = 1). 

assumption implies that were the parameter A to be known to us as >., then the 
lifelength of the item does not reflect the property of aging. That is, our 
assessment of failure in the vicinity of t is not influenced by the knowledge of 
survival at t. This assumption, also known as lack of memory, is a strong one to 
make because it implies the absence of learning. 

The next failure model to consider is the gamma distribution whose 
probability density is given in (2.15). Its distribution function is not in closed 
form and so a closed form expression for the failure rate function is not 
available. However, it can be numerically shown that the failure rate function of 
(t I >., k) is a constant equal to (the scale parameter) >., when the shape parameter 
k = 1; it is decreasing for k < 1, and is increasing for k > 1, asymptoting to >. 
when t ---+ 00; see Figure 2.7. Similarly, when the failure model is the Weibull 
distribution function (2.16), the failure rate of (t I n, (3) is the constant n when 
the shape parameter (3 = 1, and increases (decreases) when (3 > ( < )1; see 
Figure 2.8. It is important to note that the exponential failure model is a special 
case of both the gamma and the Wei bull models. 

The failure rate of a lognormal distribution is also not available in closed 
form. But unlike the monotone failure rates of the gamma and the Wei bull 
distributions, the failure rate of the lognormal distribution can be made to 
initially increase and then decrease to zero, depending on the choice of the 
parameters J.L and 0"; see Figure 2.9 wherein ell- = 1000, and 0" = 1 and 3. 
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FIGURE 2.9. The Failure Rate of a Lognormal Distribution 
(el" = 1000, and u = 1 and 3). 
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2.4.3 Covariates in the Failure Rate Function 

In any given scenario, there are many factors that influence our assessment 
of the lifelength of an item. For example, with software it could be the known 
factors such as the size of the code, the number of modules, the quality of the 
programming team, the operational profile, and the like. Such factors are 
referred to as covariates. Those covariates whose values are known at the time 
-of assessment 7 become a part of the background history 'H.. But how should we 
treat covariates, like the operational profile, whose future values are unknown at 
7? Can we adopt here a strategy that parallels the one we used in the context of 
doubly stochastic Poisson processes? 

To address these questions, suppose that to incorporate the effect of an 
uncertain covariate we introduce a parameter Z, taking values (, into the failure 
rate function. The parameter Z should bear some interpretive relationship to the 
covariate. For example, if the covariate pertains to an unknown presence or 
absence of a certain attribute, say fault tolerance in the case of software, then Z 
could take the value one; zero, otherwise. Having introduced Z we are also 
required to assess P(Z S O. Thus the rr(t I B) of (2.29) is replaced by 
rr(t I B,O, and the exponentiation formula now takes the form 

I 

Fr(t Ie, 0 = exp( - J rT(u I e,Odu). 
o 

(2.31) 

The left-hand side of (2.31) now represents our assessment of the reliability 
of the item were we to know, besides B, also (, the value taken by the parameter 
Z which is our proxy for the covariate. 

When the covariate of interest changes over time, it is best described by a 
stochastic process {Z(t); t::::: O}, and if Z(u) takes the value (u), then (2.31) 
takes the form 

I 

FT(t Ie, (u); 0 ~ u ~ t) = exp( - J rT(u I e, (u))du). (2.32) 
o 

Since we are uncertain about the progression of the covariate over time, we 
must average the right-hand side of (2.32) over all the sample paths of Z(u), 
o Sus t, to obtain its expectation 

I 

FT(t I e) = E(exp ( - J rT(u I e, (u))du)); 
o 

(2.33) 

its evaluation can be a formidable task: (2.33) follows from (2.32) by the law of 
total probability. 
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FIGURE 2.10. A Concatenated Failure Rate Function. 

There are circumstances, perhaps not in software reliability, where the 
exponentiation formula is invalid. This occurs with internal covariates. Internal 
covariates are those whose disposition indicates the failure or the survival of the 
item; for example, the blood pressure if zero is an indicator of sure failure. When 
such is the case, (2.31) should not be used; see Singpurwalla and Wilson (1995). 

2.4.4 The Concatenated Failure Rate Function 

What has been discussed thus far pertains to the failure rate of the 
distribution of a single random variable T. With software, which presumably 
undergoes the constant process of testing and debugging, we are interested in the 
behavior of a collection of interfailure times XI, X2 , .•• , Xi, ... , each 
interfailure time representing the time to failure of a debugged version of the 
software. Associated with each Xi is rxj(x IJi), the failure rate function of its 
marginal distribution function. Generally, the interfailure times are not 
independent; thus the individual failure rates must bear some relationship to each 
other. Because the notion of the failure rate of a joint distribution function has 
not been sufficiently well articulated, especially its intuitive import [see, e.g., 
Basu (1971) or Marshall (1975)], the notion of the failure rate of software is an 
elusive one. However, by most accounts, when investigators refer to the term 
"the failure rate of software" what they mean is a concatenation (or the side-by­
side placement) of the failure rates of the conditional distribution of Xi, given X I, 

... , Xi-I, for i = 2, 3, ... ; see Singpurwalla (1995). This practice, first 
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advocated by Jelinski and Moranda (1972), prompts us to introduce the notion of 
a concatenated failure rate function r c (x / 'Ii) as 

rc(x 11l) = rX;!xJ, ... ,Xj • l (x - T j_1 11l), for hi :::; x < T j , (2.34) 

with TI :5 T2:5 ... :5 Ti :5 ... , denoting the times to failure, and Xl, X2, ... 
, Xi, ... , the interfailure times; by convention, To == O. 

In most cases the ith segment of rc(x / 'Ii) depends only on Ti- l , so that it 
simplifies as rXilTj.l (x - Ti-I / 'Ii). An illustration of this simplified version is 
shown in Figure 2.10; it consists of several constant segments, each segment 
corresponding to an interfailure time. 

It is important to emphasize that a concatenated failure rate function is not 
the elusive failure rate function of the joint distribution function FXl ..... X.(XI, ••• 

, Xn /1i). In fact, since rc(x / 'Ii) is defined in terms of the successive failure 
times TI :5 T2 :5 ... :5 Ti :5 ... , it is a random function. In rc(x /1i), each 
segment starts from the time of the last failure rather than the usual 0 from which 
the failure rate of the marginal distribution of Xi would commence. Most 
important, neither the concatenated failure rate function, nor its segments like 
rX;lXIo ...• Xi.l (x - Ti_1 /1i), for Tj-l :5 x < h can be used in the exponentiation 
formula (2.30) to obtain the conditional distribution of Xi given Xl, ... ,Xi-I. This 
is because with the condition Tj_l :5 x < Ti, Ti becomes an internal covariate 
rendering (2.30) invalid. In order to use (2.30) we must not constrain x so that it 
is less than Ti . Thus a purpose served by rc(x /1i) is a graphical display of the 
behavior of the successive failure rates of the conditional distributions of the 
interfailure times during the test-debug phase of the software. However, and 
more important, it ha~ been shown by Chen and Singpurwalla (1997) that 
rc(x / 'Ii) is the intensity function of the self-exciting point process that generates 
the TiS; see Section 3.5.2. 

By way of a final remark, we note that it is possible [cf. AI-Mutairi, Chen, 
and Singpurwalla (1998)] that the value taken by the ith segment of rc(x / 'Ii), 
could depend on Xi-I> the preceding interfailure time. Consequently, the ith 
segment is written as rXiITi.l. Tjx - Ti-l / 'Ii). In general, the ith segment could 
depend on any function of all the preceding interfailure times. When such is the 
case, the modeling effort tends to get very complicated. 

2.5 Chapter Summary 

We started this chapter with an overview of the calculus of probability, to 
include topics such as conditional probability, conditional independence, the law 
of total probability, and Bayes' Law. This was followed by an articulation of the 
likelihood function and the notion of exchangeability. All these topics constitute 
the foundational material for quantifying, combining, and updating uncertainties, 
and are presented from the point of view of an expository overview. 
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We then used the law of total probability to introduce the notions of a 
software reliability model and the parameters of such models. Examples of 
models that can be used to address several generic problems faced by software 
engineers were motivated and introduced. These include the Bernoulli, the 
binomial, the geometric, the Poisson, the exponential, the Wei bull, the gamma, 
and the lognormal. 

This was followed by a discussion of an important class of probability 
models, namely, the point process models and their role in software engineering. 
Such models include the popular homogeneous, the nonhomogeneous, and the 
compound Poisson process models. Independent increments, the defining 
characteristic of Poisson process models, was discussed and its limitations for 
modeling problems of software failure were pointed out. 

In response to the preceding concern two new types of point process models 
were introduced, namely, the doubly stochastic Poisson process and the self­
exciting point processes. The former arises in software testing wherein the 
operational profile is itself a stochastic process. The latter is natural in testing, 
since the software code consists of a finite number of bugs so that the 
assumption of independent increments is untenable. The hierarchical structure of 
point process models was noted; specifically, it was pointed out that 

HPP c NHPP c DSPP c SEPP. 

In this chapter we also introduced some fundamentals of reliability theory, 
namely, the survival function, and the predictive and the model failure rate 
functions. This was followed by a discussion of some commonly used model 
failure rates such as the exponential, the Wei bull, the gamma, and the lognormal. 
The treatment of covariates by conditioning on the failure rate function was 
described, and the chapter ended with the introduction of the concatenated 
failure rate function as a way to model the interfailure times of software that is 
evolving over time. 
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Exercises for Chapter 2 

1. Verify the additivity rule for nonmutually exclusive events £1 and £2. 

2. Suppose that you have three coins. Coin A has a 50% probability of 
landing heads, coin B has a 25% probability of landing heads, and coin 
C is two-headed. A friend picks one of the coins at random and tosses 
it, telling you that it landed heads. 

(a) By conditioning on which coin is picked and applying the law 
of total probability, show that the probability of a head is 7112. 

(b) Using Bayes' Law, calculate the probability that coin C was 
picked given a head was thrown. Repeat this calculation for 
coins A and B. 

(c) Now, suppose the coin that was picked was thrown again. By 
conditioning on which coin was picked and applying the law 
of total probability, show that the probability of obtaining a 
head on the second throw given that the first throw was a head 
is 3/4. 

3. During testing, a piece of software is subjected to a sequence of N 
inputs, each judged to have the same probability of a successful output, 
which we denote p; thus the probability model for the number of 
successful outputs is binomial. 
A prior distribution on p is assessed to be a beta distribution with 
parameters a and {3; that is, 

(p I fJ) - r(a+,B) a-I (1 )f3-1 
1r Ct, - r(a)r(,B) p - p , O<p< 1. 

Note that the mean of a beta distribution is a/(a+{3) (i.e. the ratio of the 
first parameter to the sum of both). We observe that x of the N inputs 
resulted in a successful output. 

(a) Apply Bayes' Law to show that the distribution of p in the light 
of x and N, also known as the posterior distribution of p. is of 
the form: 

1r(p I x N) = r(a+,B+N) pa+x-l (l - p)f3+N-x-l 
, r(a+x) r(,B+N-x) , 

o <p < 1, 
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that is, another beta distribution with parameters a + x and (3 + 
N-x. 

(b) What is the mean of this new distribution of p? 

(c) If little is known about p a priori, a possible prior is the 
uniform distribution on [0, 1], which is a special case of the 
beta distribution with a = (3 = 1. Show that the posterior 
mean under this prior can be written as 

E(P I x, N) = 2;'N X 4 + 2~N X N 
(d) Show that, for the beta prior in general, the posterior mean can 

be written as a convex combination of the prior mean a/(a+{3) 
and the proportion of successes in the data xIN. 

(e) What happens to the posterior mean as the number of tests N 
gets large? 

(t) Another series of N inputs is to be tested on the software. 
Assuming that the performance of the software has not 
changed, we are interested in the number of successful outputs 
Y in this new set. By conditioning on p, and using the law of 
total probability, show that the distribution of Y given x, 

P(Y _ I ) - ( N ) r(a+{3+N)r(y+a+x)r(2N-y-x+{3) 
- y x - y r(a+x)r({3+N-x)r(a+{3+2N) , 

for y = 0, 1, . . . , N. This distribution is called the beta­
binomial distribution. 

4. Verify Equations (2.12) and (2.14). 

5. Suppose we are testing software with a large number of inputs, each 
taking roughly the same short time to compute, and each judged to have 
the same high probability of success. We have argued in this chapter 
that the time until the first incorrect output can be modeled by a 
continuous random variable X that is approximately exponentially 
distributed; thus P(X ~ x I A) = e->.x, for x ~ 0 and a parameter A > 0; 
the density function of X at x is 

fx(x I A) = Ae->.x , x ~ O. 
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Note that the mean of X is II A. 
Suppose that an exponential pnor distribution with parameter C is 
assigned to A. 

(a) Show that the posterior distribution of A, given an observed 
time to first incorrect output x, is a gamma distribution of the 
form: 

(b) After observing x, and under the assumption that the software 
is still performing as before the failure, you are interested in 
the predictive distribution for the time to the next failure Y. By 
conditioning on A and applying the law of total probability, 
show that the density of Yat y, given x (and C) is 

I 2(£+x? 
fly x, C) = (£+x+y)3' Y:::: o. 

6. New software is being tested at a telephone exchange for routing calls. 
At each call, the software succeeds in routing with a probability p, 
independently of other calls. 

(a) Assuming p known, what is the distribution of the number of 
calls taken until one fails to be routed correctly? 

(b) A uniform prior distribution on [0, 1] is assessed on p. In a 
test, the software first failed to route the 20th call. Calculate 
the posterior distribution of p, and the mean of this 
distribution. 

(c) If testing continues any further, the software development firm 
will incur a late delivery penalty of $50,000. However, the 
developer will also pay a penalty for faulty performance of the 
software. It will pay $40,000 for everyone out of a hundred 
calls that is not routed successfully. 

I. What is the expected penalty the company will pay, 
based on the results of testing so far? 

ii. Should the company release the software now or test 
further? You may assume, somewhat ideally, that 
further testing results in nearly faultfree software. 
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7. The arrival, over time, of calls to a telephone exchange is, at least for 
short periods of time, well modeled by a homogeneous Poisson process. 
Suppose that such an exchange is known to receive calls in a certain 
part of the day according to a Poisson process with the rate of >. per 
minute. As in the previous question, at each call the software succeeds 
in routing the call with a probability p, independently of other calls. 

(a) The distribution of the number of calls taken until one fails to 
be routed correctly by the software is geometric. Use this 
information to show that the form of the distribution of the 
time to the first failure is exponential with parameter >'(1 - p). 

Hint: Recall the distribution of time to the nth event in a 
Poisson process. 

(b) Now suppose that you are given the information that the first 
failure occurred after T units of time, and that this was the kth 
call to arrive. 

(i) Write down the likelihood [of the parameter(s)] given 
these data. 

(ii) An exponential prior with parameter f is assessed on 
>., and a uniform prior on [0, 1] is assessed on p. The 
priors are assumed independent. Show that the 
posterior distributions of p and>. are beta and gamma 
distributions respectively, and that p and >. are a 
posteriori independent. 

(c) In a sequence of tests, N failures are observed. The times 
between each failure are tl, t2, ... , tN, and the number of 
calls between each failure is kl' k2, ... , kN • As in the last part 
of the question, write down the posterior distribution of (p, >.). 

8. Show that the expected number of events that occur by time r, in a 
nonhomogeneous Poisson process with a mean value function A*(t), is 
A*(r). 

9. In the next chapter, we look at models for software failure. One such 
model is that of Goel and Okumoto, which assumes that failures occur 
as a nonhomogeneous Poisson process with mean value function 
A(t) = 0:(1 - e-bt ), for parameters 0:, b > O. 

(a) Write down the probability of observing N failures by a time t. 
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(b) Suppose that b is known, and you are interested in describing 
your uncertainty about a. An exponential prior with parameter 
C is assessed on a. Write down the posterior distribution of a 
given that N failures are observed by time t. 

(c) A software company has tested software for 10 weeks, during 
which time it failed 24 times. Now the company must decide 
whether to release the software. If it decides to test further, it 
will incur a late delivery penalty of $100,000. If it releases 
now, it will incur a penalty of $5,000 for every in-service 
failure. Assume that: 

• at each failure, a new bug will be discovered and fixed 
perfectly; 

• continued testing will lead to almost failure-free software; 

• and that C = 0.02. 

Also note that limHoo A(t) = a, so that a can be interpreted 
as the expected number of bugs to be discovered over the 
entire life of the software. 

(i) What is the expected number of bugs remaining in the 
software, given testing to time 10 revealed 24 bugs? 

(ii) Should the company release now, or test further? 

10. Two software engineers, So and Sp, are contemplating the failure rate of 
a piece of software. So, the optimist, is of the opinion that the software 
contains no bugs-but of course is not sure of this opinion-and 
conceptualizes the failure rate as an exponentially decaying function of 
time of the form we-WI, for some w > 0, and t 2': o. That is, the longer the 
software survives, the stronger is So's conviction of no bugs. Sp, on the 
contrary, is a pessimist who feels that the software consists of residual 
bugs. Like So, Sp is also not sure of Sp's conviction. Consequently, Sp 
conceptualizes the failure rate as a linearly increasing function of time 
of the form a + {Jt, for some a 2: 0 and {J > 0, and t 2: o. Sp's view is 
that the longer you wait the larger is the possibility of encountering a 
bug. 

(a) Assuming that w, a, and {J are known, how do So and Sp assess 
the reliability of the software for a mission of time T, for some 
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T > O? Verify that So's assessed reliability is greater than that 
of Sp's. 

(b) Let Fo(T I w) be So's assessed reliability in (a). Show that So's 
mean time to software failure is given by IoooF oCT I W)dT. 

Hint: Use integration by parts; Fo(T I w) is absolutely 
continuous. 

Using the preceding formula, find So's and Sp's mean times to 
failure. 

(c) How would you proceed if in (a), w, Ct, and f3 were unknown? 
That is, find Fo(T I e) and Fp(T I e). 

(d) Implement your proposal in (c) by making suitable choices and 
describe the circumstances under which Sp's assessed 
reliability is greater than So's. 

Hint: An uncertain optimist can be more pessimistic than a 
better informed skeptic. 

(e) Suppose that after time t* > 0, the operational profile of the 
software changes, so that more demands are made on the 
software, and the possibilities of encountering hidden bugs (if 
any) greatly increase. Describe how So and Sp will account for 
this feature when addressing (a). 



3 
MODELS FOR MEASURING 

SOFTWARE RELIABILITY 

3.1 Background: The Failure of Software 

In Chapter 2 we introduced the general idea of a software reliability model 
and that of the failure rate of software. Over the last two decades, a considerable 
amount of effort has been devoted to developing software reliability models-by 
some counts, there appear to be over one hundred. The aim of this chapter is to 
give an overview of a few of the most commonly used models by software 
engineers, and to introduce the reader to some of the more recent developments 
in the overall enterprise of model development. The issue of how to use these 
models in applications involves the topic of statistical inference, and this has 
been delegated to Chapter 4. 

Like hardware reliability, software reliability is defined as the probability of 
failure-free operation of a computer code for a specified mission time in a 
specified input environment (the operational profile). With this definition, there 
are two terms that need explanation. By failure-free operation, we mean that the 
code is producing output which agrees with specifications. Software failure is 
caused by faults or "bugs" that reside in the code; when an input to the software 
activates a module where a fault is present, a failure can occur. There may be 
faults in the code that are never activated and our definition says that, since these 
will never manifest themselves as failure, they can be ignored. In other words, all 
bugs do not necessarily cause failures, but all failures are caused by bugs. Since 
we can observe failures but cannot hope to directly observe bugs, software 
reliability models usually pertain to the former. Secondly, by mission time we 

N. D. Singpurwalla et al., Statistical Methods in Software Engineering
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mean computer time or CPU time, that is, time over which the software is 
operational and is ready to receive, is receiving, or is active on inputs. 

The causes of software failure are different from those of hardware failure. 
A consequence is that it is possible to have software that is bug-free and so will 
never experience failure for any mission time, whereas hardware experiences 
deterioration with use and is thus prone to failure over time. Software fails 
because of bugs in the logic of the code; these bugs are introduced due to human 
error. Hardware fails because of material defects and/or wear, both of which 
initiate and propagate microscopic cracks that lead to failure. With hardware 
failures, the random element is, most often, the time for a dominant crack to 
propagate beyond a threshold. Thus meaningful probability models for the time 
to hardware failure take cognizance of the rates at which the cracks grow in 
different media and under different loadings. With the failure of software, the 
situation is different. To see this, we first need to obtain an appreciation of the 
random elements in the software failure process. For this, the following 
idealization, prompted by the initial work of Jelinski and Moranda (1972), has 
been proposed [see Singpurwalla and Soyer (1996)]. 

3.1.1 The Software Failure Process and its Associated Randomness 

A program is viewed as a "black box," or a "logic engine," that consists of 
statements bearing a logical relationship to each other. The engine receives, over 
time, different types of inputs (i.e., inputs that travel on different paths through 
the code), some of which may not be compatible with its design. If each 
compatible input traverses its intended path, then all its outputs are the desired 
ones, and the program is said to be perfect; that is, it is 100% reliable. If there 
are any errors in the logic engine, clerical or conceptual, then it is possible that a 
certain (compatible) input will not traverse its designated path, and in so doing 
will produce an output that is not the desired one. When this happens, the 
software is declared failed. It is possible that the presence of a bug prevents the 
software from producing any output. That is, the flawed logic could lead an input 
through an indefinite number of loops. Thus, implicit to the notion of software 
failure is that of a time interval within which an output should be produced. That 
is, associated with each input, there is an allowable service time. 

We have said before that with hardware failures the random element is the 
time it takes for a dominant crack to propagate beyond a threshold. What are the 
sources of uncertainty with software failures? One source is the uncertainty 
about the presence and the location of a bug. Another is the type of input and the 
possibility of it encountering a bug. In either case, with the monitoring of 
software failures there are two types of random variables that can be conceived: 
binary and continuous. We first discuss, albeit briefly, the nature of the binary 
random variables. 

Suppose that Yj , i = 1, 2, ... , k, is a binary random variable taking the 
value 1 if the ith type of input to the software results in a correct output within its 
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allowable service time; otherwise, Yi is O. The number of distinct input types is 
assumed to be k. Let Pi be the probability that Yi = 1; thus the Yis are the 
Bernoulli random variables of Section 2.2.2. If Pi = P, for all values of i, and if 
given P the Yis are assumed to be independent, then EYi has a binomial 
distribution, and the reliability of the software is simply p. In actuality, P is not 
known and the number of input types is conceptually infinite. Consequently, the 
sequence of random variables Yi, i = 1,2, ... , can be judged exchangeable (see 
Section 2.1.5), and if 7r(p 11i) describes our uncertainty about P, then 7r(p 11i) is 
a measure of the reliability of the software. Upon observing some of the Yi'S, 
7r(p 11i) will be updated (via Bayes' Law) and this updated quantity will be a 
measure of the reliability of the software. The preceding two measures of 
reliability are naive; the assumption that Pi = P, for all values of i, ignores the 
possibility that some input types will be encountered more often than the others 
and that some may not be encountered at all. Approaches that improvise on this 
theme are outlined in Singpurwalla and Soyer (1996) who, following Chen and 
Singpurwalla (1996), propose a hierarchical model for the PiS. 

The second type of random variable used for describing the software failure 
process pertains to the time between software failures. It is motivated by the 
notion that the arrival times to the software of the different input types are 
random. As before, those inputs that traverse through their designated paths will 
produce the desired outputs. Those that do not, due to bugs, will produce faulty 
outputs. To assess the software's reliability, we observe TI, T2, ... , the times (in 
CPU units) between software failures; we apologize to the reader for the change 
in notation from that used in Section 2.3. With this conceptualization, even 
though the failure of software is not generated stochastically, the detection of 
flaws is stochastic, and the result is that there is an underlying random process 
that governs the failure of software. 

Most of the well-known models for software reliability are centered around 
the interfailure times T1, T2, ••• , or the point processes that they generate; see 
Singpurwalla and Wilson (1994). In what follows, we introduce and describe 
some of these models. Whereas the monitoring of time is very conventional in 
hardware reliability studies, we see several issues that arise when this convention 
is applied to software reliability. For one, monitoring the times between failures 
ignores the amount of time needed to process an input. Consequently, an input 
that is executed successfully, but which takes a long time to process will 
contribute more to the reliability than one which takes a small time to process. 
Second, also ignored is the fact that between two successive failure times there 
could be several successful iterations of inputs that are of the same type. In 
principle, there could be an interfailure time of infinite length and still the 
software could be riddled with flaws. Of course, one can argue that monitoring 
the interfailure times takes into account the frequency with which the different 
types of inputs occur and in so doing the assessed reliability tends to be more 
realistic than the one which assumes that all the input types occur with equal 
frequency. In view of these considerations, it appears that a meaningful approach 
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FIGURE 3.1. A Classification Scheme for Software Reliability Models. 

to describe the software failures is via the scheme used to study marked point 
process [e.g., Arjas and Haara (1984)], wherein associated with each interarrival 
time, say Wi, of inputs, there is an indicator 8;, with 8; = 1, if the ith input is 
successfully processed, and 8; = 0, otherwise; i = 1, 2, . . . . Progress in this 
direction has been initiated but more development is needed. The point process 
approach to software reliability modeling was initiated by Goel and Okumoto 
(1979), and was followed up by Musa and Okumoto (1984), Langberg and 
Singpurwalla (1985), Miller (1986), Fakhre-Zakeri and Slud (1995), Kuo and 
Yang (1996), Chen and Singpurwalla (1997), and Slud (1997). Many of these 
authors have attempted to unify several of the existing software reliability 
models so that this topic can be studied under a common structure; see Section 
3.5. 

3.1.2 Classification of Software Reliability Models 

Since many models based on the interfailure times Tt, T2, ... , use similar 
modeling principles, the differences being only in the detailed application of a 
principle, it is possible to classify the models according to the principle used. 
Such a scheme adds structure to the disparate set of models and provides an 
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explanation as to why certain modeling strategies were predominant at certain 
times. Our classification scheme (see Figure 3.1) follows that of Singpurwalla 
and Wilson (1994), and divides models into two broad types: 

Type I : those that model the times between successive failures; 

Type II : those that model the number of failures up to a given time. 

Under Type I, the random variables T1, T2 , ••• , are modeled directly. This 
is often done by specifying the failure rate function for each random variable, 
rT,(t 11-£), i = 1, 2, ... , and then invoking the exponentiation formula (2.30) to 
obtain P(Ti ~ t 11-£). 

Type I models that use the failure rate as a modeling tool are said to be of 
Type I-I. Typically, rT,(O 11-£) :::; rhl (0 11-£), for i = 1, 2, ... , to reflect the 
fact that as software evolves over time, more bugs are discovered and fixed, and 
that each rT;(t 11-£) is a nondecreasing function of t, for t ~ 0, to reflect the fact 
that between failures our opinion of the credibility of the software increases. In 
actuality, the fixing of bugs may introduce new ones in the code, so that the 
inequality given previously is not realistic. Nevertheless, many of the proposed 
Type I-I models that we review here reflect such a feature; see Figures 3.2 to 
3.4. 

Another approach to modeling the times between successive failures is to 
describe each Ti as a random function of the previous TiS. Models that describe 
the TiS in this manner are said to be of Type 1-2. A simple example of this is a 
time series model of the random coefficient autoregressive type wherein we may 
postulate that Ti = pTi-1 + E, where p ~ 0 is an unknown constant, and f is a 
random disturbance term having mean zero. With p > 1, the successive failure 
times would tend to increase, indicating that the software is becoming more 
reliable with aging, whereas with p < 1, the opposite is to be true. In general, a 
Type 1-2 model will have the feature that 

(3.1) 

for some random function F, or a known function having random coefficients. 
With Type II models, we do not propose a model for the interfailure times 

T i ; rather, we propose a counting process model (see Section 2.3) for N(t), the 
number of times the software fails in an interval [0, t]. The earliest and perhaps 
best known models of the Type II kind are those which assume that N(t) is 
described by a Poisson process whose mean value function is based on 
assumptions about how the software experiences failure. The more recent 
contributions to Type II models do not suffer from the independent increments 
restriction (see Section 2.3.1) of Poisson process models. 
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We close this section with the remark that, in principle, a model of either 
type defines a model of the other. Specifically, for a sequence of inter-failure 
times T\, T2 , • . • , for which a Type I model has been proposed, there is an 
implicit Type II model [cf. Kuo and Yang (1996), Chen and Singpurwalla 
(1997)], because 

n 

N(t) = max{n I 2:Ti :::; t}, (3.2) 
;=\ 

and conversely, for a Type II model there is a Type I model, because with 
To = 0, and i = 2, 3, ... , 

Ti = inf{t I N(t) = i} - Ti-1• (3.3) 

3.2 Models Based on the Concatenated Failure Rate Function 

3.2.1 The Failure Rate of Software 

In Section 2.4.4 we introduced the notion of a concatenated failure rate 
function and have used it as a proxy for the failure rate of software. The earliest 
models in software reliability were based on specific forms of the concatenated 
failure rate function which, we recall from (2.34), is a side-by-side placement of 
the failure rates of conditional distributions. From a subjective point of view one 
is free to specify any general form for the failure rate function, and indeed this 
has been the basis of many such proposals, each motivated by a view of the 
software development process. We start with one of the earliest, and perhaps the 
most widely discussed of such models. All the models discussed in this section 
are of Type 1-1. 

3.2.2 The Model of Jelinski and Moranda (1972) 

According to lannino, Musa, and Okumoto (1987), a model for describing 
software failures proposed by Hudson (1967), and based on the structure of 
"birth and death processes," predates all known models. However, it is the model 
by Jelinski and Moranda (1972) that appears to be the first one to be widely 
known and used; also, it has formed the basis on which several other models 
have been developed. Jelinski and Moranda assume that the software contains an 
unknown number, say N, of bugs and that each time the software fails, a bug is 
detected and corrected. Furthermore, the failure rate of T; is proportional to 
N - i + 1, the number of bugs remaining in the code; that is, for some constant A 
> 0, and software failure times ° == So ~ S\ ~ ... ~ S;, i = 1,2, ... , 
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FIGURE 3.2. The Concatenated Failure Rate Function 
of the Model by Jelinski and Moranda. 

rT;1 5;.1 (t - Si-I I N, A) = A (N - i + 1), for t 2: Si-I. (3.4) 

In Figure 3.2 we show a plot of the concatenated failure rate function for the 
model of Jelinski and Moranda, with N = 5 and A = 1. Since each failure leads 
to the removal of precisely one bug, the failure rate drops by a constant amount 
A. Since the right-hand side of (3.4) is a constant, it follows from the 
exponentiation formula that the conditional distribution of Ti given Si-I is an 
exponential distribution with a mean of (A(N - i + 1))-1; that is, for t :::: Si-I, 

(3.5) 

The assumptions underlying the model of Jelinski-Moranda are: a perfect 
detection and repair of bugs, and a type of constant relationship between the 
number of bugs and the failure rate. This model is also known as a de­
eutrophication model, because the process of removing bugs from software is 
analogous to the removal of pollutants from rivers and lakes. Both assumptions 
are unrealistic; perfect repair does not always occur, and each bug cannot be 
assumed to contribute the same amount to the failure rate. Some bugs may be 
benign and some may never be encountered. 

Langberg and Singpurwalla (1985) provide an alternative nonbug counting 
perspective of the software failure process which also results in (3.5). They 
assume that there are N* distinct input types to the program of which N::::: N* 
results in the inability of the program to perform its desired function. 
Conceptually, N* is assumed to be infinite and N is assumed unknown. The N* 
inputs arrive at the software as a homogeneous Poisson process with intensity A. 
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FIGURE 3.3. The Concatenated Failure Rate Function 
of the Model by Moranda. 

For any specified mission time, say t, there is a constant (but unknown) 
probability that the software will not encounter an input type that results in its 
failure; this probability depends on both N* and N. Using a shock model type 
argument of reliability theory [see Barlow and Proschan (1975), p.128], 
Langberg and Singpurwalla show that (3.5) holds with A = >"NIN*. 

Despite its limitations, Jelinski and Moranda's bug counting model is 
important in software reliability for several reasons. Historically speaking, it 
established a line of thinking vis-a-vis its depiction of the concatenated failure 
rate function, and, as described in the following, stimulated the development of 
several other models. In fact, many subsequent models are generalizations of this 
model. Secondly, it appears to be ubiquitous in the sense that no matter how we 
attempt to look at the software failure process (see Section 3.5.3) the model 
always reappears as a special case. Indeed, the model by Jelinski and Moranda is 
as fundamental to software reliability as the exponential distribution is to 
hardware reliability. In hardware reliability the exponential distribution has 
served a foundational role. This is despite the fact that its practical application is 
subject to questioning; however, deviations from exponentiality serve as useful 
guidelines giving the distribution a benchmark status [cf. Barlow and Proschan 
(1975)]. Similarly, the model by Jelinski and Moranda plays a benchmark role 
with respect to software reliability. 
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FIGURE 3.4. The Concatenated Failure Rate Function of the 
Model by Schick and Wolverton. 

3.2.3 Extensions and Generalizations of the Model by Jelinski and 
Moranda 

To address the concern that in Jelinski and Moranda's model every bug 
contributes equally to the failure rate, Moranda (1975) proposed a modification 
in which bugs that appear early are viewed as contributing more to the failure 
rate than those that appear later. Accordingly, the segments of the concatenated 
failure rate form a geometrically decreasing sequence, so that for constants D > 
0, and 0 < k < 1, 

rTjISj.! (t - Si-l I D, k) = D ki-l, for t 2 Si-l; (3.6) 

see Figure 3.3 which shows the concatenated failure rate function with D = 8 
and k = 0.5. 

Subsequent to Moranda's modification is the generalization of (3.5) by Goel 
and Okumoto (1978), who introduced a parameter p in (3.4) to address the 
criticism of perfect repair; p is the probability that a bug is successfully detected 
and repaired. Accordingly, (3.4) becomes 

rT;/ Sj.! (t - Si-l I N, A) = A [N - p(i - 1)], for t 2 Si-l. (3.7) 

The model by Jelinski and Moranda is a special case of the preceding when 
p = 1; in (3.7), the assumption that no new bugs are introduced during 
debugging continues to hold. 
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A significant departure from the preceding line of thinking is due to Schick 
and Wolverton (1978), who assumed that the conditional failure rate of Ti is 
proportional to both the number of remaining bugs in the software and the 
elapsed time since last failure. That is, 

rTd Si.1 (t - S;-1 I N, A) = A (N - i-I) (t - S;-I), for t ~ S;-I. (3.8) 

Figure 3.4 is a plot of the concatenated failure rate function associated with 
(3.8). Note that each segment of this plot commences at zero and increases 
linearly with time. From a subjective point of view, this feature can be given an 
interesting interpretation. It says that every time a failure is encountered and the 
bugs corrected, our opinion of the software is so greatly enhanced that its failure 
rate drops to zero. However, as time elapses and we do not experience any 
failure, we become apprehensive about encountering one, and so our failure rate 
increases until we experience a failure at which time the failure rate drops to 
zero. Verify, using the exponentiation formula, that the distribution of Ti , given 
Si_l, is the Rayleigh, which is a Weibull distribution with shape 2. It is important 
to bear in mind that in (3.4) through (3.8) the SiS are not the actually observed 
failure times; rather, they represent supposed failure times. 

3.2.4 Hierarchical Bayesian Reliability Growth Models 

In the models of Sections 3.2.2 and 3.2.3, the stochastic behavior of the 
times between observed failures is described in terms of the (unobservable) 
number of bugs in the software. This is why such models have been referred to 
as "bug counting models." Since the relationship between the number of bugs 
and the frequency of failure is tenuous, models that are devoid of such 
considerations have been proposed. One such model is the one due to Langberg 
and Singpurwalla (1985) mentioned at the end of Section 3.2.2; another model is 
due to Mazzuchi and Soyer (1988). Here the A(N - i + 1) of (3.4) and (3.5) is 
replaced by an unknown parameter Ai, and a prior distribution, 7rA;(.~ I .), 
assigned to Ai. Specifically, Ai is assumed to have a gamma distribution [see 
(2.15)] with shape parameter a and scale parameter 'Ij;(i), where 'Ij;(i) is a 
monotonically decreasing function of i. The function 'Ij;(i) is supposed to reflect 
the quality of the programming effort. A particular form is 'Ij;(i) = f30 + (31 i; this 
form ensures that a/('Ij;(i», the expected value of Ai, decreases in i. 
Consequently, for i = 2, 3, ... , the Ais will form a stochastically decreasing 
sequence; that is, for any A 2:: 0, P(Ai ~ A) 2:: P(A i-1 ~ A). Because 

(3.9) 
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and since A(N - i + 1) of (3.5) is replaced by Ai, it can be verified that 
subsequent to the (i - l)th failure, the reliability of the software for a mission of 
duration t has a Pareto distribution of the form 

(3.10) 

Both a and the parameters of'ljJ(i) are treated as unknown. The prior on a is 
chosen to be a uniform on [0, w], with w > 0 a constant, and the prior on (31 a 
gamma independent of a; the prior on f30 (given (31) is supposed to be a shifted 
gamma, with (31 being the extent of the shift. For specific details, see Section 
4.4. An initial version of this model was proposed by Littlewood and Verall 
(1973). The model has been extended by Kuo and Yang (1995) who take 'ljJ(i) to 
be a polynomial of degree k, and by Soyer (1992) who lets Ai have expectation 
aif3. Under Soyer's scheme positive (negative) values of (3 suggest an 
improvement or growth (decay) of reliability from one stage of testing to the 
other. 

3.3 Models Based on Failure Counts 

In the same paper where Moranda proposed his de-eutrophication model, he 
also proposed the very first of a Type II model [cf. Moranda (1975)]. Recall that 
in Type II models we look at N(t), the number of failures to time t, rather than 
the interfailure times T1, T2, • • • • Under such models the reliability of the 
software for a mission of duration t is simply P(N(t) = 0 I 'H). Moranda's 
motivation for considering models for N(t) was that often data on software 
failures did not give times between failures; rather they gave the number of 
failures in fixed time intervals. For the ith interval Moranda assumed that N(t) 
was a homogeneous Poisson process of intensity >..ki-1, with constants>" > 0 and 
o < k < 1. This model reflects the lingering influence of the kind of thinking 
used in Type I models; we have here a sequence of decreasing intensity functions 
instead of a sequence of failure rates, one for each interval. 

3.3.1 Time Dependent E"or Detection Models 

The model by Goel and Okumoto (1979) was the first Type II model to 
break free from the idea of describing N(t) by a sequence of homogeneous 
Poisson processes. Instead, N(t) is described by a single nonhomogeneous 
Poisson process with a mean value A(t) and intensity >"(t); see Section 2.3.1. 
These authors argued that A(t) should be bounded because the expected number 
of failures over the life of the software is finite. Specifically, for a constant a> 0, 
A(O) = 0, and limt-+ooA(t) = a. Furthermore, the expected number of failures in 
an interval of time (t. t + .6.t) is assumed proportional to the product of the 
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expected number of undetected failures times the length of the interval. That is, 
for a constant b > 0, known as the fault detection rate, 

A(t + llt) - A(t) = b (a - A(t»llt + o(llt). (3.11) 

Dividing (3.11) by llt and letting llt -7 0, we have a differential equation 
which for the boundary conditions on A{.) has the unique solution: 
A{t) = a(1 - e-bt ), or A{t) = ({dA{t»/dt) = abe-bl• Thus 

P(N(t) = n I a, b) = (A~?)n e-A(t) , 

and the reliability of the software for a mission of duration t, starting at time 0, is 

P(N(t) = 0 I a, b) = e-a(l-e-bt ). (3.12) 

Given Si, the time of the ith failure, we can also obtain the distribution of Ti+1 as 

P(Ti+l ~ t I a, b, Si = s) = exp( - a(e-bs - e-b(s+t»). (3.13) 

The model of Goel and Okumoto was the first of many nonhomogeneous 
Poisson process models that have been proposed, each based on different 
assumptions about the detection of failures. It has some noteworthy differences 
from the Type 1-1 models that precede it. First, the total number of potential 
failures is assumed to be infinite so that the number of observed failures is a 
random variable having a Poisson distribution, as opposed to a fixed (but 
unknown) number of bugs N that had been previously assumed. Second, 
Equation (3.13) implies that the interfailure times are dependent, whereas in the 
Type 1-1 models they were assumed independent. Both these differences appear 
to be sensible improvements of a description of software failure. 

Experience has shown that the rate at which failures in software are 
observed increases initially and then decreases. To accommodate such 
phenomena, Goel (1985) proposed an intensity function of the type 

A(t) = a . b· c· te-Ie-bte, for positive constants a, b, and c. 

However, it is the proposal by Musa and Okumoto (1984), who postulate a 
relationship between the intensity function and the mean value function of a 
Poisson process, that has gained popUlarity with users. Specifically, for positive 
constants A and (), 

(3.14) 
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FIGURE 3.5. Intensity Functions of the Goel-Okumoto 
and the Musa-Okumoto Models. 

that is, the rate at which failures occur exponentially decreases with the expected 
number of failures. Since A(t) is the derivative of A(t), and if A(O) == 0, then the 
differential equation (3.14) is solved to obtain: 

>. 
A(t) = >.Bt+l' and (3.15) 

(3.16) 

Figure 3.5 compares the intensity functions of the models proposed by Goel 
and Okumoto (1979) and by Musa and Okumoto (1984). The main difference is 
in the tails, wherein the intensity function of the latter decays more slowly. 
Under (3.14), the reliability for a mission of duration tis 

P(N(t) = 0 I A, B) = (ABt + 1)-1111 , (3.17) 

and the analogue of (3.13) is 

( >'(Js+l ) I/O 
P(Ti+1 ?: t I A, B, Sj = s) = >'B(s+l)+l . (3.18) 

In Chapter 4, we describe how expert opinion and failure data can be used 
for predicting future lifetimes using the model (3.16), referred to by Musa and 
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Okumoto as the logarithmic Poisson execution time model. There we also 
discuss inferential issues pertaining to the model of Jelinski and Moranda. 

3.4 Models Based on Times Between Failures 

3.4.1 The Random Coefficient Autoregressive Process Model 

This model, introduced by Singpurwalla and Soyer (1985), describes the 
relationship between the successive interfailure times TI, T2, ... , Ti, ... ,i = 1, 
2, ... , via a power law of the form 

T. _ ('1'. )(), .1., - .1.,-1 , (3.19) 

where To is the time to first failure, and the ()is are a sequence of unknown 
constants. If the TiS are scaled so that they are greater than one, then values of ()i 
greater (less) than one suggest an increasing (decreasing) sequence of TiS; thus a 
stage-by-stage growth or decay in reliability can be described. 

To account for uncertainty about the relationship (3.19), an error term Di is 
introduced so that 

(3.20) 

and an assumption made that the TiS and the DiS have a lognormal distribution 
(see Section 2.2.2), with the latter having parameters 0 and ar; in other words, 
Di rv A(O, ad. By taking logarithms in (3.20) we have what is known as a linear 
model in logarithms of the interfailure times; specifically, 

10gTi = (}i 10gTi_1 + log OJ, 

= (}i 10gTi_1 + /OJ, (3.21) 

if Ei = log Di. 

The assumption that the TiS and the DiS are lognormal implies that their 
logarithms Ei have a Gaussian distribution (see Section 2.2.2) with Ei having 
mean zero and variance ar; recall that the TiS have been scaled so that they are 
greater than 1. The linear model (3.21) is one of the most well-known time series 
models; with ()i unknown, it is known as a random coefficient autoregressive 
process of order 1 [henceforth RCAP(1)]. The model generalizes so that Ti 
depends on k > 1 previous T;s. Also, the variance of Ei could change with i. 

A final specification for this model pertains to the treatment of ()is, and the 
authors propose several alternatives. One is to make the ()is exchangeable (see 
Section 2.1.5); a way for doing this is to assume that each ()i has a Gaussian 
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distribution with mean A and variance a~, with A itself having a Gaussian 
distribution with mean f..L and variance a~. Under this scheme, the quantities ai, 
a~, a~, and f..L need to be specified; strategies for doing this are given by 
Singpurwalla and Soyer (1985). As an alternative to exchangeability, we may 
describe the ()is by an autoregressive process of order 1, so that 

(3.22) 

where Q is a constant and Wi ,..., N(O, W?>, with wl specified. When Q is 
specified, along with the Wl and ai, (3.21) and (3.22) constitute what is called a 
Gaussian Kalman filter model, for which there exists extensive literature; an 
expository description is in Meinhold and Singpurwalla (1983b). When Q is 
unknown, its uncertainty is described by a distribution, and the preceding 
equations define an adaptive Gaussian Kalman filter model; Singpurwalla and 
Soyer (1992) discuss such models and their merits for analyzing software failure 
data. 

3.4.2 A Non-Gaussian Kalman Filter Model 

A Kalman filter model is specified by two equations, an observation 
equation-(3.21) in our case-which describes how the observables evolve as a 
function of time, and a system equation-(3.22) in our case-which describes 
how unknown coefficients in the observation equation evolve with time. The 
Kalman filter models of the previous section were called Gaussian, because the 
unknown quantities were assumed to have Gaussian distributions. Non-Gaussian 
Kalman filter models are those in which the underlying distributions are not 
Gaussian. The tradition of assuming that the error terms of linear models have 
Gaussian distributions dates back to Gauss who argued that since measurement 
errors tend to be symmetric about a mean the adoption of DeMoivre's 
(Gaussian) distribution is reasonable. However, failure data, be they for 
hardware, software, or biological entities, tend to be highly skewed; 
consequently the assumption of Gaussian distributions comes into question. 
Furthermore, in observing failure data it is difficult to conceptualize the notion 
of observational errors caused by instrumental inaccuracies. With Kalman filter 
models, or for that matter any general linear model, the main advantage of using 
Gaussian distributions is computational tractability; this advantage has 
diminished with modern computing. Because of these considerations, the routine 
use of Gaussian Kalman filter models, even on logarithms of the observed failure 
times, needs to be re-examined. 

Bather (1965) introduced the idea of "invariant conditional distributions" 
and discussed their properties. This work provided Chen and Singpurwalla 
(1994) with the necessary framework for developing a non-Gaussian Kalman 
filter model for tracking software failure data. Here, instead of assuming that the 
TiS are lognormally distributed, it is assumed that they have a gamma distribution 
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with a scale parameter 0; which evolves according to a beta distribution; both the 
gamma and the beta distributions were discussed in Section 2.2.2. Specifically, 
for known constants C, Wi, a;, and V;, such that a;_1 + W; = a; + V;, i = 2, 3, ... , 
we have the observation equation as 

(Tj I OJ, Wj) '" 9 (OJ, Wj), (3.23) 

and the system equation as 
O - fu j - C; Ej, (3.24) 

with Ej having a beta distribution with parameters a;_1 and V;-I. The initial value 
00 , required for starting the iterative process of Kalman filter models, is assumed 
to have a gamma distribution with scale parameter ao + Vo and a shape parameter 
Uo. Note that (3.24) is the analogue of (3.22) except that in the former the error 
term Ej relating the OJ'S is multiplicative whereas in the latter it is additive. 

In Section 4.5, where we discuss statistical inference using the preceding 
models, more insights about their hierarchical structure are given. 

3.5 Unification of Software Reliability Models 

In Section 3.1 we classified software reliability models according to the 
modeling strategy used to define them. The first few models were almost 
exclusively of Type 1-1 (such as that of Jelinski and Moranda); then, in the late 
seventies, Type II models began to gain popUlarity. More recently, Type 1-2 
models appear to be coming into their own. To an outside observer, it would 
appear that all of these models are motivated by seemingly unrelated arguments. 
Indeed, even among software engineers, the topic of reliability modeling has 
been the subject of active debates and discussion; see, for example, Tausworthe 
and Lyu (1996). Software engineers have been too eager to come up with new 
models and to compare the predictive performance of the various competing 
models. In fact there even exist so-called "expert systems" devoted to selecting a 
software reliability model. The software industry would like a universal model 
that is equipped to accommodate as many nuances of the software reliability 
evolution formula as is possible. Whereas the search for an ideal model 
continues to be a futile exercise, at least for the immediate future, the possibility 
of viewing most of the available models from a unifying perspective appears to 
be at hand. The advantage of unification is the availability of a common structure 
under which the problem of reliability growth or decay can be studied. 

Our classification scheme can be thought of as a step towards model 
unification, in the sense that a set of models becomes a special case of a more 
general model. Thus, all the Type II models that we have discussed are special 
cases of the nonhomogeneous Poisson process, whereas all Type 1-1 models are 
special cases of a general model that models failure times as random variables 
with differing failure rates. Can we take this unification further? Is there a sense 
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in which a larger group of models can be unified as being special cases of a 
general model? If so, what would this general model be? 

The issue of unification has also arisen because of the contrast in the state of 
the art of software reliability and classical hardware reliability where only a few 
models, notably the Weibull, playa dominant role. A unifying perspective on the 
many software reliability models can hopefully simplify the task of model 
selection that a user faces. 

3.5.1 Unification via the Bayesian Paradigm 

One of the earliest attempts at unifying the then prevailing software 
reliability models was by Langberg and Singpurwalla (1985). By specifying 
prior distributions on the parameters N and A of the model by Jelinski and 
Moranda [see (3.5)], it was shown that the models by Goel and Okumoto and by 
Littlewood and Verall (1973) arise as special cases. Specifically, if 

Case 1. The prior distribution on N is a Poisson with mean (), and if A is 
degenerate at >. [i.e., peA = >. i'lt) = 1], 

then N(t), the number of bugs discovered up to time t, is a nonhomogeneous 
Poisson process with a mean value function ()(1 - e-At); see Theorem 3.3 of 
Langberg and Singpurwalla. This is precisely the model of Goel and Okumoto. 
Also, if 

Case 2. The prior distribution of N is degenerate at some n, and if A has a 
gamma distribution with a scale parameter 'l/J(i), 

then T; will have the Pareto distribution (3.10). Also the sequence of TiS is 
stochastically decreasing; that is, for all i = 1, 2, ... , and any a 2: 0, 
P(Ti 2: a) ::::; P(Ti + 1 2: a); see Theorem 3.4 of Langberg and Singpurwalla 
(1985). This is precisely the idea behind Littlewood and Verall's version of the 
hierarchical Bayes reliability growth model of Mazzuchi and Soyer (1988). 

The fact that the model of Goel and Okumoto and that of Mazzuchi and 
Soyer can be derived as generalizations of the Jelinski and Moranda model is 
interesting from several perspectives. Jelinski and Moranda's model is the most 
widely known, and both the other models can be viewed as attempts to improve 
on it by moving away from its assumptions. Given this, the unifying result that 
has just been described is perhaps surprising. Secondly, note that the unified 
models are of both Type I and Type II. That models of both types can be so 
easily thought of as special cases of a more general model suggests that there is 
less fundamental difference between the two types than there appears at first 
sight. This is indeed the case, but to appreciate how closely the two types are 
related we need to revisit our discussion of point process models. 
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3.5.2 Unification via Self-Exciting Point Process Models 

In Section 2.3.3 we have argued that Type II models, being based on the 
nonhomogeneous Poisson process, are special cases of the self-exciting point 
process with memory m = - 00. If it can be shown that Type 1-1 models can 
also be represented as self-exciting point processes, then much progress towards 
unification can be made. That such is indeed the case can be seen if we regard 
the concatenation points of the concatenated failure rate function of a Type 1-1 
model as events in a point process. By assuming that only one failure occurs at 
each failure time, the number of bugs discovered up to a time t will evolve as a 
point process. But is the resulting process a Poisson process? In general, the 
answer is no. First, many models make the sensible assumption of a finite, albeit 
unknown, number of bugs in the software. Second, the concatenated failure rate 
shows us that the evolution of the process is a function of the number of bugs 
that have already been discovered. Both these features violate the independent 
increments property of Poisson process models. However, they are not at 
variance with the postulates of self-exciting point processes; indeed, the second 
feature is a defining characteristic of the SEPP. The following theorem formally 
sets this down. 

Theorem 3.1 [Chen and Singpurwalla (1997)]. Under conditional orderliness, 
the sequence offailure times Sj, S2, ... , generated by a concatenation of inter­
failure times T;, having failure rates r;( • ), i = 1, 2, ... , are described by a self­
exciting point process whose intensity function is the concatenated failure rate 
function 

with ?-It denoting the history of the process up to time t. 
Theorem 3.1 presupposes conditional orderliness. This implies that there are 

sequences of failure times for which conditional orderliness fails to hold. The 
following theorem gives sufficient conditions for the property to hold. 

Theorem 3.2 [Chen and Sinpurwalla (1997)]. Consider the set-up of Theorem 
3.1. Suppose that the probability density function of T; at t exists; let it be 
denoted by fr/t I 1f.si./). Then, if there exists an h > 0 and an M, 0 < M < 00, 

such that 

/T;(t - Si-l I ?-lSi.) 5 M, for all t E [Si-J. Si-l + h], 

and for all possible histories 1f.si./, then the counting process (N(t); t > OJ has 
the conditional orderliness property. N(t) is the number offailures up to time t. 
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Now it is always so that for any random variable Tj having a probability 
density fri and failure rate rri, frJt I .)::; rr;Ct I .), for all t;::: 0. Thus a 
convenient way of using Theorem 3.2 to verify conditional orderliness is to see if 
rri(t - Sj_1 I1iS;.I) ::; M < 00, for all t E [Sj_l, Si-I + h], that is, to see if the 
failure rate is bounded. 

Clearly, all the Type 1-1 models discussed in Section 3.2 have bounded 
failure rates and can therefore be viewed as self-exciting point processes. For 
example, in the model of Jelinski and Moranda, if N and A are assumed finite, 
then 

rT;!Si.l(t - Si-I I N, A) = A(N - i + 1) ~ M, 

for some M < 00, and similarly, in the model by Schick and Wolverton 

Observe that the model by Jelinski and Moranda is of memory m = 0, 
whereas those of Schick and Wolverton and the hierarchical Bayes model of 
Mazzuchi and Soyer are of memory m = 1. Intuitively, it would appear that the 
greater the memory of the process the more refined is our ability to describe the 
phenomenon that generates the events under study. Consequently, in Section 3.6 
we introduce a model for software failures whose underlying self-exciting point 
process is of memory m > 2. 

Thus far we have said nothing about the other Type I models that are not 
specified via the failure rate. In Type 1-2 models, a stochastic relationship 
between the consecutive failure times was given; for example, with the random 
coefficient autoregressive process (see Section 3.4.1) we postulated the 

relationship Tj = 0; T;~{, with Tj having a lognormal distribution, whereas in 
Section 3.4.2 T; had a gamma distribution. For both these examples, we can 
verify that the density functions of the interfailure times satisfy the conditions of 
Theorem 3.2, and thus these models can be viewed as members of the self­
exciting point process family; furthermore, they are of memory m = 2. As a 
consequence of the preceding, we state the main result of this section. 

All the software reliability models discussed in Sections 3.2-
3.4 are special cases of a self-exciting point process model 
having memory m ::; 2. 

It is important to note that not all software reliability models that have been 
proposed are special cases of self-exciting point processes. Whenever failures 
occur in clusters [see e.g., Crow and Singpurwalla (1984) and Sahinoglu 
(1992)], the conditional orderliness property fails and the underlying models 
cannot be viewed as members of the self-exciting point process family. 
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An advantage of the preceding unification is a common structure under 
which the problem of software reliability can be addressed. We can now think of 
other self-exciting point processes as potential models with the aim of making 
the intensity function better reflect our opinion of the evolution of the software's 
reliability; see Section 3.6. 

3.5.3 Other Approaches to Unification 

Whereas unifying software reliability models by viewing them as special 
cases of self-exciting point processes appears to be broadly encompassing, it is 
not the only way in which this issue has been addressed. For example, Koch and 
Spreij (1983) published work that investigated unification using the martingale 
theory for point processes. A contribution was subsequently made in a similar 
vein by van Pul (1993). Also conceptually important is the work of Fakhre­
Zakeri and Slud (1995), and of Slud (1997), who use the idea of a mixture model 
in which a point process with an intensity function that depends on unobservable 
variables is considered. By specifying these unobservables in different ways, 
both randomly and deterministically, Fakhre-Zakeri and Slud (1995) obtain the 
ubiquitous model of Jelinski and Moranda, the time dependent error detection 
models of Section 3.3.1, and also a model by Dalal and Mallows (1988) that we 
have not discussed here. 

More recently, Kuo and Yang (1996) have presented an elegant 
development on the relationship between the models in the Type 1-1 category 
and those in the Type II category via the perspective of "order statistics" and 
"record values." These notions have played an important role in applied statistics 
and in probability theory, and it behooves us to gain an appreciation of their 
essential features. We start with an introduction to the former followed by its 
relevance to the models in the Type 1-1 and the Type II categories. 

The General Order Statistics Models 

Suppose that Xl, ... , Xn is a collection of random variables. Let F(x I fU be 
a probability model for Xi, i = 1, 2, ... , n, where fl.i is a vector of parameters; 
that is, F(x I fl.i) = P(Xi :::; x I fl.J Let F(x I fl.i) = 1 - F(x I fl.i)' and suppose that 
F(x I fl.) is absolutely continuous so that the probability density fix I fl) exists for 
all x. Suppose that given fl.i' the XiS are judged independent. Thus if fl.i = (), 
i = 1, 2, ... , n, then the XiS are independent and identically distributed. 

We now order the XiS from the smallest to the largest values, and denote the 
ordered values via the inequalities - 00 < X(l) < X(2) < ... < X(n) < + 00. The 
motivation for ordering comes from many applications; examples are hydrology, 
strength of materials, reliability, and life testing. For example, if Xi denotes the 
lifelength of the ith component, then X(l) is the smallest lifetime and X(n) the 
largest lifetime. If the n-component system is a series (parallel redundant) 
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system, then X(l) (X(n» would be the time to failure of the system; the reliability 
of the series system would be P(X(l) 2:: x I .). In statistical terminology, 
X(l){X(i)} [X(n)] is known as the smallest {ith} (largest) order statistic in a 
sample of size n, and interest generally centers around the distribution of the ith 
order statistic, i = 1, ... , n. Especially, we may be interested in assessing 

n 

= IT F(x I fl.), 
i=1 

since given the fl.is, the XiS are assumed to be independent. Similarly, we have 

n 

= IT F(x I fl.;). 
;=1 

For most cases of practical interest fl.; = fl., for all values of i, and now X(i) is 
known as the ith order statistic in a sample of size n from F(x I fl.). When such is 
the case, the preceding expressions for X(l) and X(n) simplify as (F(x I fl.»n and 
(F(x I fl.»n, respectively. Furthermore, using the binomial distribution (see 
Section 2.2.2) we can verify that 

n 

P(X(i) :::; x I fl.) = 2: (~) (F(x I fl.»} (F(x I fl.»n-), 
]=1 

(3.25) 

and if !X(i/x I fl.) denotes the probability density of XCi) at x, were we to know fl., 
then 

!X(i)(X I fl.) = (i-1)7~n-i)! (F(x I fl.)t 1 fix I fl.) (F(x I fl.»n.; . (3.26) 

The preceding line of thinking can be extended in such a way so that if 
!X(l),'" X(k) (XI, ... , Xk I fl., n) denotes the joint probability density of X(l), ... , X(k» 
the smallest k order statistics out of a sample of size n, at XI> • • • , Xt, 

respectively, then 

k 

ix(l) .... ,X(kJXI ' ••• , Xk I fl., n) = (n ~!k)! ITf(xi I fl.) (F(Xk I fl.»n-k . 
;=1 

(3.27) 
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The lefthand side of (3.27) gives us what is known as the joint distribution 
of the first k order statistics in a sample of size n from F(x I fD. Verify that when 
k = n, we get the important result 

n 

fx(l), ... ,X(k)(Xl, ••• , Xk I ~,n) = n! ITfi.xi I~), 
;=1 

whose import is that order statistics formed from independent random variables 
are dependent; the act of ordering destroys independence. 

Armed with these preliminaries we can now describe how order statistics 
playa role with respect to software reliability models in the Type 1-1 category. 
We start by noting (see Figures 3.2 to 3.4) that since the times to software failure 
0== So ::; SI::; ... ::; Sj ::; . . . , are ordered, they constitute a natural 
framework for an order statistics type analysis. We start by asking if there is a 
common distribution that generates these order statistics and if so what would it 
be? It turns out that the answer depends on the assumed probability model for 
the interfailure times T1, T2, ... , that generate the ordered failure epochs Sj, 
i = 1, 2, .... Conversely, given an F(x I fD and having specified an n, the joint 
distribution of the first k out of n order statistics from F(x I ~) prescribes failure 
models for the k interfailure times T1, ••• , Tk • 

As an example of the preceding, suppose that F(x I~) = F(x I A) = e-Ax, 

an exponential distribution with scale A. Let n be specified as N. Then, given N 
and A, the joint distribution of the first k out of n order statistics from F(x I A) 
is, from (3.27), of the form 

k 

I'. ( I A ) - --..!fL IT A -Axi ( -Axk)N-k 
JX(l)"",X(k) Xl,··. ,Xk , n - (N-k)!. e e . 

1=1 

But this is precisely the joint distribution of 0 == So < SI < ... < St, 
when the T;s are independent and each T; has an exponential distribution with a 
scale parameter A(N - i + 1), i = 1,2, ... , k, the form specified by Jelinski and 
Moranda. To verify this claim we use the fact that SI == Tj, S2 = TJ + T2, ... , 
Sj = TI + T2 + ... + T;. Different forms for F(x I ~), say the Pareto, the Weibull, 
the gamma, and so on, will lead to different probability models for the inter­
failure times, and models constructed via the preceding mechanism have been 
referred to by Raftery (1987) as the general order statistics models, abbreviated 
GOS. With F(x I A) = e-Ax, the resulting model is called the exponential order 
statistics model, abbreviated EOS; this terminology is due to Miller (1986), 
whose work predates that of Raftery and Kuo and Yang. The EOS model has 
also been considered by Ross (1985b) and by Kaufman (1996). Kaufman's work 
is noteworthy because he makes some fascinating connections between software 
reliability modeling and "successive sampling," that is, sampling without 
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replacement that is proportional to size [cf. Gordon (1983), Scholz (1986), and 
Andreatta and Kaufman (1986)]. Estimation (see Section 4.2.2) under successive 
sampling schemes is described by Nair and Wang (1989) and by Bickel, Nair, 
and Wang (1992). 

Once the model by Jelinski and Moranda is interpreted in the light of an 
EOS framework, the road for relating GOS models with some (but not all) 
models in the Type II category is paved. The signal for this connection comes 
from the work of Langberg and Singpurwalla (1985) who show that the 
nonhomogeneous Poisson process model of Goel and Okumoto (1979) is a 
consequence of assuming a Poisson distribution for the parameter N of the model 
by Jelinski and Moranda. Specifically, one can prove the following theorem. 

Theorem 3.3 [cf. Kuo and Yang (1996)]. Suppose that failure epochs are 
described by a GOS model with a distribution function F(t I fl.) and a parameter 
N. Let N(t), t> 0, denote the number of epochs in time [0, tl. Then (N(t); t> OJ 
can be described by a nonhomogeneous Poisson process with mean value 
function J.lF(t I fl.) if N has a Poisson distribution with parameter J.l. 

As a special case of Theorem 3.3, if F(t I fl.) = 1 - e-At , then the resulting 
Poisson process has a mean value function J.l( 1 - e-At), which is the mean value 
function used by Goel and Okumoto (1979); see Section 3.3.1. There is a 
drawback to the limiting behavior of this mean value function and consequently 
to the essence of the result of Theorem 3.3. We note that for any choice of 
F(t I fl.), limt-+ooJ.lF(t I fl.) < 00, suggesting that the mean value function of the 
resultant nonhomogeneous Poisson process is bounded. This means that GOS 
models cannot be used in those situations wherein new faults get introduced 
during the debugging process. In the model by Musa and Okumoto (1984) the 
mean value function [see (3.16)] ((In(..\Ot + 1)10) ---+ 00, as t ---+ 00, and thus the 
GOS model is unable to accommodate those models in the Type II category for 
which the mean value function is unbounded. It is for this reason that point 
process models generated by "record value statistics" have been explored, and 
this matter is taken up next. But before we close our discussion of GOS models 
another noteworthy feature of such models needs to be mentioned. This pertains 
to the distribution of TJ, the first interfailure time, or the time to occurrence of 
the first epoch in a GOS model. We note that 

P(T1 > til-", F(t I fl» P(N(t) = 0 I 1-", F(t I fl» = e-JlF(tlfD. 

For any J.l < 00, limt-+ooe-J.'F(tlfD is not zero; that is, the distribution function 
of TJ is defective. The implication of this result is that unless J.l i 00, there is a 
nonzero probability that the software will never experience any failure. The 
smaller the J.l, the larger is this probability. Other special cases of Theorem 3.3 
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are a model by Goel (1983) for which F(t I fD = 1 - e-{3t:', a model by Ohba and 
Yamada [see Yamada and Osaki (1984)] for which 

F(t I fD = 1 - (1 + (3t)e-{3t, 

and a generalized order statistics model by Achcar, Dey, and Niverthy (1998) in 
which F(t I fD = hU3tCl ), where h(s) is an incomplete gamma integral. 

The Record Value Statistics Models 

Suppose that XI, X2, ••• , Xn is a collection of independent and identically 
distributed random variables, with F(x I fD as a probability model for each Xi, 
i = 1, . . . , n. Suppose that F(x I ED is absolutely continuous so that the 
probability density f(x I ID exists for all x. We define the sequence of record 
values {Zn}, n ~ 1 and record times Rk, k ~ 1, as follows. 

RJ = 1, 

Rk = rnin{i : i > Rk-J. Xi> XRk_J }, for k ~ 2, and 

Zk = XRk' for k ~ 1. 

An example best illustrates the preceding conf.truction. Suppose that XI = 4, 
X2 = 1, X3 = 7, X4 = 5, X5 = 9, X6 = 3, X7 = 13, Xg = 6, X9 = 18, XIO = 14, 
and XII = 15. Then, the record pairs (Rk' Zk) are: (1, 4), (3, 7), (5, 9), (7, 13), 
and (9, 18). That is, a record value is the largest value that we have observed in 
the process of traversing from XI to Xn, one step at a time, and the record time is 
the index associated with a record value. Even though with n ---+ 00, Rk will tend 
to get rare, the sequence of record values can be shown to be infinite. Since the 
record values constitute an increasing sequence, they can be viewed as epochs of 
the occurrence of an event over time; that is, they can be modeled as a point 
process. Thus it is meaningful to regard the epochs of software failure as record 
values from some underlying distribution that we are free to specify. The 
following theorem is beautiful; it gives us an interesting property of the point 
process generated by record values. 

Theorem 3.4 [Dwass (1964)]. Suppose that the epochs offailure are described 
as the record values generated by a collection of independent and identically 
distributed random variables having a common distribution F(t I fl.) = 1- F(t I 
fl.). Let N(t) denote the number of epochs in time [0, t]. Then (N(t); t> OJ can be 
described by a nonhomogeneous Poisson process with mean value function 
In(iI(F(t I fl.))), and intensity function (f(t I fl.))I(F(t I fl.)), where fit I fl.) is the 
probability density at t, if it exists. 
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Since the failure rate of F(t I fD is (f{t I ~»/(F(t I ~», the record value statistics 
provide an interesting relationship between the intensity function of a point 
process and the failure rate. 

It is easy to see that if F(t I ~) = a/(a + t), a Pareto distribution with 
parameter a = 1IA, for t 2: 0, then the mean value function of the process is 
(3.16), the form specified by Musa and Okumoto (1984) with their 0 = 1. 
Besides the model by Musa and Okumoto, there are other models for describing 
the growth in reliability of engineering systems, all having the property that the 
mean value function of the underlying point process is not bounded [cf. Duane 
(1964), Cox and Lewis (1966)]. The record value statistics approach is an 
elegant way oflooking at all of these in a comprehensive manner. 

Before closing this section, it is important to note that both the order 
statistics and the record value statistics perspectives result in Poisson processes, 
which as we have said before possess the independent increments property. This 
is a disadvantage, but one that can be overcome by a more general model that is 
described next. 

3.6 An Adaptive Concatenated Failure Rate Model 

We have seen that all the models introduced in Sections 3.2 through 3.4 are 
special cases of self-exciting point processes with a memory of at most two. 
Specifically, all the models in the Type II category, being based on the postulates 
of the Poisson process, have memory m = - 00, and possess the independent 
increments property. This latter feature may not be appropriate in the context of 
software testing. The models in the Type 1-1 category are of memory m = 0 (for 
the model of Jelinski and Moranda) or of memory m = 1 (for the models of 
Schick and Wolverton and the hierarchical Bayes model of Mazzuchi and 
Soyer). The models in the Type 1-2 category are of memory m = 2, but can be 
easily extended to have a memory m = k; all that we need to do is consider a kth 
order autoregressive process with random coefficients. We have said before that 
models with large memories tend to be more refined than those with smaller 
memories vis-a-vis their predictive capabilities. Thus it is desirable to introduce 
models that are conceptually of infinite memory, where the notion of infinite 
memory is akin to the notion of invertibility in time series analysis; see Box and 
Jenkins (1976), p. 50. One way to achieve this objective would be to extend the 
random coefficient autoregressive process model to all its previous terms. 
Whereas such an approach would indeed provide for good predictability, it 
would suffer from the criticism of a lack of interpretive features. A model such 
as that by Schick and Wolverton is attractive because it attempts to incorporate 
some of the more pragmatic aspects of the software testing and the bug discovery 
phenomena. Time series models, such as the random coefficient autoregressive 
processes are often viewed by practicing engineers as "black-box" models; they 
are purely mechanistic. 



92 3. Models for Measuring Software Reliability 

The concatenated failure rate model that we present in the following is 
guided by the preceding considerations. It is motivated by ideas that are 
analogous to those of Schick and Wolverton but has the added feature of 
adaptivity. A consequence of adaptivity is improved predictivity. The model has 
two parameters and possesses characteristics that are intuitively appealing and 
which generalize those of other models. This model was introduced by AI­
Mutairi, Chen, and Singpurwalla (1998); also see Singpurwalla (1998b). 

3.6.1 The Model and Its Motivation 

In keeping with the notation of Section 3.2, we let 0 == So ~ SI ~ ... ~ 
Si, i = 1,2, ... ,denote the software failure times (in CPU units) and TI, T2, ... 
, the interfailure times; that is, Ti = Si - Si-I. Also, let rTj(t) denote the failure 
rate function of the distribution function of Ti • We have stated before, in Section 
3.2.3, that from a subjective point of view, the functional form of rTj(t) can be 
given an interpretation that reflects a software engineer's judgments about the 
stochastic behavior of each Ti • Such judgments, although personal, should 
capture the engineer's knowledge about the software failure, its bug elimination 
process, previous data, and the experimental control under which the software is 
tested. For the model that is proposed here, we assume that for each version of 
the software's code, one's intuition is that small time intervals between 
successive failures should result in a judgment of poor reliability, and vice versa, 
for large time intervals. However, upon the occurrence of failure any judgment 
of enhanced reliability should be replaced by a judgment of enhanced 
unreliability; that is, the judgment of unreliability should take a sharp upward 
jump. The more frequent the failures the higher the upward jump in unreliability 
should be and vice versa. These characteristics parallel the sample path of a 
"shot noise process," once the failure rate is identified as being analogous to 
stress. The shot noise process is a stochastic process that is popular in 
engineering and physics; see, for example, Cox and Isham (1980), p. 135. The 
process consists of two parts, a "shot process" and a "stress process." The shot 
process is a point process that generates the epochs of events, whereas the stress 
process generates a function of time that takes jumps of random size at each shot 
and which decreases deterministically between the adjacent jumps. The stress 
function is, like the concatenated failure rate function, a random function 
because both the jump sizes and their locations are random; also, in most 
applications its value at any time t depends on the history of the process to time 
t. Accordingly, we propose that given the parameters k and b, and conditional on 
Sn-I = Sn-l> n = 2, 3, ... , 

rT.ct I Sn-l, k, b) = 7t--,;sn-_-J ....!.l--"sn-_-1 ' 
k + (n-I)b 

(3.28) 
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FIGURE 3.6. The Concatenated Failure Rate Function as a 
Sample Path of a Shot Noise Process. 

Verify, that for any n, rT.(t I .) is decreasing in t, and that at t = Sn-I, it is 
proportional to (n - l)/Sn-t. which is a proxy for the "failure intensity" until the 
(n - l)th failure. Furthermore rT.(t I .) increases as (n - l)/Sn-1 increases. See 
Figure 3.6 which is a plot of the concatenated failure rate function defined by 
(3.28). 

Verify that the plot of Figure 3.6 displays the following characteristics that 
capture our subjective views about the credibility of the software. 

(a) Frequent failures should result in a judgment of poor 
reliability. This suggests that the failure rate should take a 
large upward jump; see Sj_1 and Sj. 

(b) When the software experiences no failure, our opinion of its 
reliability is enhanced. This suggests that its failure rate should 
decrease. 

(c) Upon the occurrence of failure, our opinion of the reliability is 
on the poor side. This suggests that the failure rate should take 
an upward jump. 
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(d) Large interfailure times correspond to small jump sizes and 
vice versa; see S2 and S;_I . 

3.6.2 Properties of the Model and Interpretation of Model Parameters 

The model proposed in the previous section possesses several attractive 
features. To see these, we replace (t - Sn-I) of (3.28) by T, with T ;::: 0, and then 
verify, via the exponentiation formula (2.30), that 

(3.29) 

and that the probability density of Tn+1 at T is 

(3.30) 

Thus the conditional (given Sn, k, b) mean and variance of Tn+1 are 

E(tn+1 I sn, b, k) = (k-~) nb Sn, and 

V(tn+i I Sn, b, k) = (k-l~:(k-2) (~: r, respectively. 

Clearly, we need k ;::: 2, for the predictive mean and variance to exist. Also, since 
E[Tn+1 I Sn, .] = 00, Tn+1 has a decreasing failure rate. 

The model construction (3.28) suggests that there is a growth in reliability in 
going from stage n to stage (n + 1), if given band k, 

A consequence of the preceding is that tn+l, a realization of Tn+l , should 
satisfy the inequality 

(3.31) 

But the import of (3.31) is that the time between the nth and the (n+l)th 
failure is greater than the average of all past failures. This implies that our model 
reflects the feature of having a memory. Furthermore, we can show that 

E[Tn+iJ > ( < ) 1 {:} b < (» ---L. 
E[Tnl - - k-l' 
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this suggests that, on the average, there is growth in reliability if and only if 
b < k/(k - 1). The preceding gives us a criterion for choosing model parameters 

or for specifying prior distributions for them; see Section 4.7. Let 'fJ(n) dJl:f 
«E(tn+! - Tn))/E(tn)) be the relative growth in reliability at stage n. Then we 
are able to show that 

k-(k-l)b 1 
TJ(n) = (k-l)b n' 

Now if b < k/(k - 1), then 'fJ(n) 1 n. This implies that under the assumption 
of reliability growth, the bugs detected and eliminated during the early phases of 
testing contribute more to reliability growth than those detected later. Thus 
b < k/(k - 1) reflects the feature that the greatest improvement in a software's 
reliability occurs during the early stages of testing. 

Finally, suppose that Dn = nb/Sn has been recorded as dn, and we are at the 
(n + l)th stage of testing. If at time w, w measured from Sn, failure has not 
occurred, then we can show that 

I k k 
E(tn+l - w Tn+l > w) = k-l w + (k-l)dn 

= mean residual life (MRL). 

Thus the longer the elapsed time since last failure, the longer the expected time 
to next failure. The MRL is a linear function of w with coefficient k/(k - I). This 
helps us pin down the range of values for k; see Section 4.7. 

3.7 Chapter Summary 

The focus of this chapter is on models for software reliability, their 
classification, and their unification. The models were introduced in the 
chronological context in which they were developed. They were classified into 
two broad types, those that model the successive times between failures, and 
those that model the number of failures up to a given time. The former category 
was further subdivided into two classes, those that use the concatenated failure 
rate function as a modeling device, and those that model the interfailure times. 
Representative members of the first of the preceding two classes are the famous 
model by Jelinski and Moranda, and its extensions via a hierarchical Bayes 
scheme. Representative members of the second of these classes are the random 
coefficient autoregressive process and the Gaussian and the non-Gaussian 
Kalman filter models. Of the models that describe the number of failures up to a 
given point in time, those based on the Poisson point process, such as the models 
by Goel and Okumoto, and Musa and Okumoto were discussed. 
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The search for an omnibus model to describe software failures leads us to 
the topic of model unification. Unification provides a common structure under 
which the general problem of assessing reliability growth or decay, and the 
prediction of failure times can be accomplished. Unification was discussed from 
several perspectives, such as the Bayesian paradigm which involves specifying 
prior distributions for model parameters, the order statistics perspective wherein 
the successive times to failure are described as order statistics from independent 
but not identically distributed random variables, and from the point of view of 
record values which note the times at which the successive records get broken. 
Unification was also achieved via the perspective of looking at software failures 
as points in a self-exciting point process. Such processes need not possess the 
independent increments property of Poisson processes, and are therefore more 
general than those that do. It was argued that practically all of the proposed 
models for software reliability are special cases of a general point process 
model, namely, the self-exciting point process. 

The chapter concludes with the introduction of a new model for software 
failures, a model that combines the attractive features of many of the previously 
proposed models. The model is based on a concatenation of several failure rate 
functions, the behavior of each function being determined by the past history. 
The model embodies the defining features of a self-exciting point process and 
captures a software engineer's overall judgments about the failure process. 
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Exercises for Chapter 3 

1. Hierarchical Bayesian Reliability Growth Models. Consider the 
Bayesian reliability growth model, with each Ti exponentially 
distributed with failure rate Ai, and Ai assumed to have a gamma 
distribution with shape parameter a and scale parameter 'I/J(i). Verify, 
using the laws of probability, that the reliability function for Ti is given 
by the Pareto distribution 

Show that the probability density of the preceding Pareto distribution at 
t is of the form 

a( 'Ij;(i»'" 
(t+'Ij;(i»",+1 

2. Derivation of the Goel-Okumoto Model. As stated in this chapter, the 
model by Goel and Okumoto is a nonhomogeneous Poisson process 
with mean value function A(t), where it is assumed that 

A(t + 8t) - A(t) = b(a - A(t» 8t + 0(8t) . 

(a) By dividing both sides of the preceding equation by 8t and 
letting 8t ---. 0, show that A(t) = b(a - A(t», where A(t) is the 
derivative of A(t). 

(b) Verify that A(t) = a(1 - e-bt ) satisfies the preceding equation. 

3. Model of Musa and Okumoto. Check that the intensity function of the 
model by Musa and Okumoto, 

A 
>.(t) = AOt+l ' 

satisfies the relationship 

>.(t) = >'e-8A(t) . 

4. Statistical Analysis of Software Failure Data. In the random 
coefficient autoregressive process model of order one each Ti depends 
on its previous value Ti- 1• How would you generalize the model so that 
each Ti depends on its k previous values Ti-l, Ti-2, .•• , Ti-k • Is there 
more than one way to generalize the model? 
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5. General Order Statistics Models. Let 0 == 50 S 51 S 52 S'" S 
5N be the failure times of a piece of software that contains N bugs. 
Assume that these failure times are the order statistics from a sample of 
N independent realizations of a Wei bull distribution with parameters a 
and f3; that is, 

P(X; ~ x I a, (3) = exp( - axiJ ), i = 1, ... , N , 

and Si = X(i). Derive the joint density of (SI, ... , Sk), for k S N. 

6. The Adaptive Concatenated Failure Rate Model. This model 
assumes that the failure rate for the nth time to failure, given the time of 
the (n - l)th failure Sn_l! is: 

rTn(t I 8n-1o k, b) = 't-5-;:-n--:-_I-'+'--;;-5n-_-1 ' 
k (n-I)b 

t ~ 8 n-l . 

(a) Verify that 

(i) rTn is a decreasing function of t; 
(ii) at t = Sn_l, rTn is proportional to the inverse of the 

average time between failures up to Sn-l, that is, 
(n - l)/Sn-l. 

(b) Let 7 = t - Sn be the time since the nth failure. Using the 
exponentiation formula, verify that the survival function of 
Tn+l, given Sn, k, and b, is 

( nb )-(k+l) 
P(Tn+l ~ T I Sn, k, b) = kSn T + 1 

(c) The expected value of Tn+1, given Sn, is ksnl«k - l)nb). Using 
the relationship between Tn and Sn, as well as the identity 
E(Sn+l) = Esn (E(5n+1 I Sn», show that 

7. Recent Developments. The adaptive concatenated failure rate model of 
Figure 3.6 reflects the disposition of an optimist (in the sense of 
Exercise 7 of Chapter 2). 
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(a) Using Figure 3.6 as a guide describe the disposition of a 
pessimist, and using this analogue develop results along the 
lines of those given in Section 3.6.2. 

(b) In practice it is more likely that a software engineer starts off 
with a pessimistic disposition but then after encountering and 
correcting several initial bugs begins to become optimistic. 
Thus a more realistic depiction of the concatenated failure rate 
function is a combination of that given in Figure 3.6 with the 
one developed in Part (a). Propose such a concatenated 
function and discuss its development, delineating a mechanism 
that describes the gradual evolution of the change in 
disposition, from pessimism to optimism. 



4 
STATISTICAL ANALYSIS OF 

SOFTWARE FAILURE DATA 

4.1 Background: The Role of Failure Data 

In Chapters 2 and 3, we introduced several models for describing our 
uncertainties about the software failure process. These models involved 
unknown parameters, often denoted by Greek symbols. The parameters entered 
into the picture because of our invoking the law of the extension of conversation, 
as a way of simplifying the probability specification process. The parameters 
being unobservable, our uncertainty about them was described by a prior 
distribution. The prior distribution is specific to an individual and may vary from 
individual to individual. 

Software failure data, if available, are assumed to provide additional 
information about the failure process. That is, the data enhance our appreciation 
of the underlying uncertainties. There are certain strategies through which data 
can be incorporated into the assessment process. The first is to simply make the 
data a part of the background ?t, and then to reassess the relevant uncertainty in 
the light of this expanded ?t. There is nothing in the calculus of probability that 
forbids us from using this strategy, as long as our assessments remain coherent. 
However, ensuring coherence is not easy to do, and so this strategy is difficult to 
implement. The second, and the more commonly used strategy, is to use the data 
for an enhanced appreciation of the unknown parameters. This is done through 
Bayes' Law whereby the prior distribution gets updated-via the data-to what 
is known as the posterior distribution; see the exercises of Chapter 2. The 
process of going from the prior distribution to the posterior distribution is known 

N. D. Singpurwalla et al., Statistical Methods in Software Engineering
© Springer-Verlag New York, Inc. 1999
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as Bayesian inference. There may be, of course, broader interpretations as to 
what constitutes Bayesian inference, but for the present purposes the preceding 
seems adequate. Section 4.2 describes the appropriate machinery for making the 
transition from the prior to the posterior, and then using the latter for assessing 
uncertainties about the phenomena of interest. 

At this point in time it is useful to mention the role of data in non-Bayesian, 
or what is known as frequentist inference. If our interpretation of probability is a 
relative frequency, then the probability model becomes an objective entity in 
which the parameters take fixed (but unknown) values. Under these 
circumstances a prior distribution is not assigned to the parameters, and so the 
matter of updating it does not arise. When such is the case, the role of the data is 
to provide a vehicle for estimating the unknown parameters; estimation involves 
the tasks of obtaining a single number, called a point estimate, or an interval, 
called an interval estimate, that covers the true (but unknown) value of the 
parameter. An overview of one of the most commonly used frequentist 
procedures, the "method of maximum likelihood" is given in Section 4.2. 
Frequentist inference includes estimation as well as testing hypotheses about the 
parameters. Here, notions such as "unbiasedness," "efficiency," "confidence 
limits," "significance levels," "Type I and II errors," and the like, come into 
play. Since our interpretation of probability is not in terms of a relative 
frequency, the preceding notions are not germane to us. This does not mean to 
say that frequentist inference has not been used in the context of software failure 
data. On the contrary, much of the inferential work in software reliability has 
been frequentist; see, for example, Musa, lannino, and Okumoto (1987) for an 
overview. What distinguishes the material here from much of what has been 
written is our interpretation of probability, and the ensuing Bayesian inference 
which is its consequence. 

Thus to summarize, irrespective of whether inference is Bayesian or 
frequentist, a key role played by the data is the information that they provide 
about the unknown parameters in probability models. There are of course other 
roles that the data can play, a common one being model selection, but this too 
stems from the theme that the data facilitate an enhanced appreciation of the 
model parameters. Model selection has become a central problem in software 
reliability because of the huge number of models that have been proposed-over 
one hundred by the latest count. In the frequentist paradigm, model selection is 
formally done via "goodness-of-fit" testing [cf. Box and Jenkins (1976), for a 
general flavor of this topic], whereas in the Bayesian paradigm it is done via 
Bayes factors and prequential prediction; see Section 4.6. The main idea 
underlying these approaches is an investigation of how well a proposed model 
describes the data. In actual practice models are often selected because of their 
simplicity or their familiarity to the analyst. Often, the type of data that are 
available will also help us to choose a model. For example, if the data consist of 
times between software failures, then a Type I model (see Chapter 3) will be 
selected; if the data consist of the number of bugs discovered at certain times, 
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then a Type II model will be selected. Finally, a question arises as to whether 
model selection should precede inference. In principle, model selection should 
precede inference, because the latter is conducted within the framework of the 
former. However, model evaluation requires that inference be performed first, 
and thus model selection and inference are iterative procedures conducted in a 
step-by-step fashion [cf. Box (1980)]. 

The material in this chapter pertains to a use of Bayesian approaches for 
inference, prediction, and model selection. Prior distributions being central to the 
Bayesian paradigm, a section has been devoted to their discussion. The general 
plan of this chapter is to introduce a theme, such as Bayesian inference, and to 
follow it up with an application involving one or more models of Chapter 3. 
Thus a discussion on elicitation of prior distributions is followed up by an 
application involving the logarithmic Poisson model of Musa and Okumoto 
(1984). As a consequence inference procedures for the models of Chapter 3 are 
not discussed in the same order in which the models are introduced. 

4.2 Bayesian Inference, Predictive Distributions, and Maximization of 
Likelihood 

In this section we give an overview of Bayesian inference, and hypothesis 
testing using Bayes factors. We also introduce and discuss the notion of 
prequential prediction, which in the context of assessing software reliability 
models plays a natural role. We start by recalling (see Section 2.2) that for any 
unknown quantity X, the law of total probability and the assumption of 
conditional independence result in the relationship 

'P(X = x 11t) = E 'P(X = x I (}) 'P((} 11t) 
() 

for any parameter () taking discrete values. 

(4.1) 

Suppose now, that in addition to 1i, we have at our disposal the realizations 
of n random quantities, XI. ... , Xn that are judged exchangeable (see Section 
2.1.5) with X. Let Xi denote the realization of Xi, i = 1 , ... , n, and let! = (Xl> • 

. . , xn). How should we revise P(X = X 11i) in the light of this added 
information? That is, how should we update the P(X = X 11i) of Equation (4.1) 
to P(X = x I !, 1i)? In the context of software failure, X could be the time to 
failure of the current version of the software, and Xl, ... , Xn , the times to failure 
of its n previous versions. The assumption that X, XI. ... , Xn is an exchangeable 
sequence is crucial. Intuitively, it says that the XiS provide us with information 
about X. As stated in Section 2.1.5, exchangeability is a subjective judgment 
which to some may not be meaningful in a particular application. 
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4.2.1 Bayesian Inference and Prediction 

To address the question posed, we start with the proposition P(X = x I Xl, . 
. . , Xn , Ji). Using the law of total probability, together with the assumption of 
conditional independence, an analogue to Equation (4.1) can be written as 

P(X = x I Xl, ... , Xn. H) = L P(X = x I e, Xl, ... ,Xn) x 
o 

p(e I Xl, ... , Xn, H). (4.2) 

We then invoke Bayes' Law to obtain 

p(e I Xl, ... , Xn, H) ex: P(XI' ... , Xn I e, H) p(e IH) 

P(XI I X2, ... , Xn, e, H) x P(X2 I X3, ••• , Xn, e, H) x 

... X P(Xn I e, H) x p(e I H). (4.3) 

A consequence of the judgment of exchangeability of the sequence X, Xl, ... , 
Xn is a result, due to de Finetti (1937), which says that given (), X is independent 
of Xl, ... , Xn, and that Xl is independent of X 2, •.. , Xn and Ji, and so on. 
Consequently, we may write Equation (4.2) as 

P(X = x I Xl, ... , Xn. H) ex: L P(X = x I e) x 
o 

n 
. II P(Xi = Xi I e) p(e I H), (4.4) 
1=1 

and Equation (4.3) as 

n 
p(e I Xl,"" Xn, H) ex:.II P(Xi = Xi I e) p(e IH). (4.5) 

1=1 

Equations (4.4) and (4.5) provide the probabilistic foundations for a 
Bayesian approach to prediction (about X) and inference (about ()). The logic for 
this assertion is the premise that the preceding equations prescribe how we will 
assess our uncertainty about X and (), in the light of Ji, and were we to know Xl, . 
. . , Xn. Consequently, when Xl, ... , Xn are actually observed as Xl> ••• , Xn, 
respectively, we are obliged to do what we said we would do, and thus our use of 
Equations (4.4) and (4.5) as the basis for prediction and inference. However, 
there is a caveat. When Xi is observed as Xi, the entity P(Xi = Xi I ()) is no longer 
a probability; rather, it is a likelihood of () for a fixed value of Xi; see Section 
2.1.4. Accordingly, the product D P(Xi = Xi I ()), when viewed as a function of 

I 
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0, for the fixed values Xlo ••. , Xn , is a likelihood function of 0; it is denoted £(0; 
!). 

Thus to summarize. with X}, ... , Xn observed as XI> ••• , Xn• respectively, 
the posterior distribution of 0, now denoted as P (0 I!, 'H). is obtained via 
Equation (4.5) as 

P(O 1 !, 11.) ex C(O;!) P(O 111.), (4.6) 

and the predictive distribution of X, P(X = X I !, 'H), is obtained via Equation 
(4.4) as 

P(X = xl!, 11.) ex l: P(X = x 1 0) P(O 1 !, 11.) . (4.7) 
() 

In Equations (4.6) and (4.7), the constant of proportionality ensures that the 
left-hand sides are legitimate probabilities. If 0 is assumed to be continuous, then 
the summation sign on the right-hand side of Equation (4.7) will be replaced by 
an integral, and now P(O I 'H) is a probability density function. 

The foregoing material gives the bare essentials of Bayesian inference and 
prediction. Whereas the logical underpinnings of this approach are relatively 
straightforward, its implementation poses some difficulties. Besides model 
specification, specification of the prior is an onerous task, and often the 
computation of the posterior and the predictive distributions can be demanding. 
More details on these issues plus related matters can be found in the books by 
Berger (1985), Bernardo and Smith (1994), and Lee (1989), which is an 
introductory, but an otherwise comprehensive treatment of the subject. 

4.2.2 The Method of Maximum Likelihood 

The predominant mode of inference in software engineering has been the 
method of maximum likelihood and confidence interval estimation. There could 
be several reasons behind this choice. One is familiarity with the method and its 
widespread use; the second could be a desire for being "objective." The third 
could be ease of application: one does not have to specify a prior distribution on 
O. Irrespective of the reasons, the method of maximum likelihood is employed so 
often by software engineers that a few words about the rationale behind this 
frequentist procedure are in order. 

There are many views as to what constitutes a frequentist procedure. The 
one that appeals to us is based on the notion that the prior distribution of the 
unknown parameters of a probability model is a degenerate one, and that 
inference pertains to learning about this degenerate value using data alone. Thus 
frequentist procedures mandate the availability of data for inference and 
prediction. The method of maximum likelihood is one such procedure. It is 
based on the premise that for any given datum,! = (Xlo .•. , xn), some values of 
a parameter 0 are more likely than the others. The maximum likelihood estimate 
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of (), say B, is that value of () which maximizes the likelihood function C«(}; !); 
that is, 7J is the most likely value of (). Thus 7J is a point estimate of (); it is based 
on the datum! alone, and is independent of the analyst's background information 
1i. 

Point estimates on their own give no clue about the degree of uncertainty 
associated with the estimate. In order to gauge this uncertainty a subtle 
philosophical principle involving the long-range performance of an estimation 
procedure is invoked, and the datum ! is used to obtain an interval called a 
confidence interval. Associated with a confidence interval is a number between 
zero and one (both inclusive), called the confidence level, say O!. Usually, O! is 
chosen to be between 0.90 and 1.0. The interpretation of a confidence interval is 
tricky. Contrary to what many users believe, a confidence interval with a 
confidence coefficient O! does not imply that the probability that the interval 
contains the true value of the unknown parameter is O!. Rather, the coefficient O! 

represents the proportion of times that intervals, such as the one based on !, the 
datum at hand, would contain the unknown parameter. 

Implicit in this interpretation is the recognition that data other than the 
observed ! could be obtained were another sample of size n to be taken. The 
idea of repeated sampling also enables one to judge the quality of point estimates 
(like the maximum likelihood estimate) via notions such as unbiasedness, 
efficiency, consistency, uniqueness, and the like. These notions do not appear in 
the context of Bayesian inference. Once an estimate such as, say 7J is obtained 
and its quality evaluated, it can be plugged into the probability model for 
purposes of prediction. Hogg and Craig (1978) give a good account of 
frequentist inference at an intermediate level; a gentler introduction to the topic 
is Chatfield (1983). Thus to summarize, the method of maximum likelihood 
mandates the availability of failure data, and the quality of the estimate is gauged 
by the long-term performance of the procedure. Confidence limits that usually 
accompany maximum likelihood estimates do not convey a sense of coverage 
probabilities in the usual sense; they too reflect long-term performance based on 
a repeated application of the confidence limit construction. 

4.2.3 Application: Inference and Prediction Using Jelinski and Moranda's 
Model 

As an illustration of how the methodology of the previous section has been 
applied for inferential problems in software reliability, we consider two sets of 
data. The first set is shown in Table 4.1; it consists of 136 successive times (in 
seconds) between software failure. These data are taken from Musa (1975); the 
entries are to be read across rows. The second set of data is given later, in Table 
4.2. Let us suppose that the failure process generating these data can be 
meaningfully described by the model of Jelinski and Moranda (1972); see 
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3 

138 

325 

36 

97 

148 

0 

44 

445 

724 

30 

729 

75 

Table 4.1. Successive Times Between Software Failure 
[data from Musa (1975)] 

30 113 81 115 9 2 91 112 

50 77 24 108 88 670 120 26 

55 242 68 422 180 10 1146 600 

4 0 8 227 65 176 58 457 

263 452 255 197 193 6 79 816 

21 233 134 357 193 236 31 369 

232 330 365 1222 543 10 16 529 

129 810 290 300 529 281 160 828 

396 1755 1064 1783 860 983 707 33 

2323 2930 1461 843 12 261 1800 865 

143 109 0 3110 1247 943 700 875 

1897 447 386 446 122 990 948 1082 

482 5509 100 10 1071 371 790 6150 

1045 648 5485 1160 1864 4116 

15 

114 

15 

300 

1351 

748 

379 

1011 

868 

1435 

245 

22 

3321 

Section 3.2.2. We have no scientific basis for this supposition; it is made for 
illustrative purposes only. 

An analysis of these data has been conducted by Meinhold and Singpurwalla 
(1983a). They show that under the model of Equation (3.5), N, the maximum 
likelihood estimator of N, as a function of the sample size k, fails to provide 
meaningful answers. For example, when k = 6, N = 11, whereas when k = 7, N 
is infinite; for k = 8, N becomes finite again, as N = 27 (see Table 2 of the 
preceding reference). This erratic behavior of the maximum likelihood estimator 
is also true if the interfailure times were generated by a simulation of Equation 
(3.5) [cf. Forman and Singpurwalla (1977)]. It may be claimed that the initial 
impetus for considering Bayesian approaches in software reliability has arisen 
from experiences like this; the motivation was pragmatic, rather than 
philosophical. 

A Bayesian analysis of the preceding data using the Jelinski-Moranda 
model calls for the specification of prior distributions for Nand A. A discussion 
about choosing prior distributions is given in the section that follows, but for 
now we use the choices made by Meinhold and Singpurwalla (1983a). 
Specifically, the prior distribution for N is a Poisson with mean (), and the prior 
for A is a gamma with a scale I-L and a shape a, independent of the distribution of 
N (see Section 2.2.2). With this choice of priors, and the k observed interfailure 
times (t), ... , tk) = L(k), it can be shown (left as an exercise for the reader) that: 
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FIGURE 4.1a. Plot of the Prior and Posterior (k = 7) Probabilities of N. 

(i) the posterior probability that N = q. q ~ k is 

{ 
k }-(O+k) 

peN = q I !(k) ex: exp( - (J) (Jq(q-k)! J.L + f;(q - j + l)tj ; 

(ii) the posterior density of A, given that N = q, is a gamma 
with scale parameter J.L + 2:J=1 (q - j + 1)tj. and a shape parameter (a + k); 

(iii) the joint posterior distribution of N and A, at q and A, 
respectively, is of the form 

{ 
k }(Q+k) 

J.L + L:(q - j + l)tj 
J=l 

-.!L 
X (q-k)! 

X 00 {k }-(a+k) , 
I;(r~~)! p,+I;(r-j+l)tj P{N=r} 
r=k J=l 

{p, + ~(q-j+ l)tj} - (a+k) P{N=q} 

where P(N = q) = (e- IJ ()q)/q!. 
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It is useful to note that even though N and A were a priori independent, once 
the data Llk) are at hand, they are a posteriori dependent, as the preceding 
expression shows. This is to be expected because posterior inference for both 
parameters is based on the same set of data. 

Figure 4.1a) shows a plot of the posterior probability P(N = q 1 L(k») when 
k = 7, for q = 8, 9, .... Recall that when k = 7, the maximum likelihood 
estimator of N was infinite; the likelihood function was flat. The values chosen 
for the parameters of the prior distributions were (J = 50, J.L = 1, and a = 2. For 
purposes of comparison Figure 4.1a) also shows the prior probability of N. We 
observe that the flatness of the likelihood has not interfered with our ability to 
perform inference in the Bayesian framework. Rather, the paucity of information 
in the sample has resulted in a posterior that does not differ dramatically from 
the prior. This again points out the importance of the knowledge that the 
experimenter puts into the problem. The posterior probability of N is sensitive to 
the choice of the parameter (J. 

The second set of data, given in Table 4.2 is taken from Jelinski and 
Moranda (1972). It pertains to a large military software system, called the Naval 
Tactical Data System (NTDS), which consists of 38 distinct modules. The 
module selected here is Module-A, and Table 4.2 shows 34 times (in days) 
between software failure, split into four phases of the development process: 
production, testing, user experience, and further testing. The interfailure times 
are denoted by ti, i = 1, 2, ... , 34, and the Si denote the cumulatives of the 

interfailure times; that is, Si = E~=l tj . For the purposes of this section, we 

assume that these data can be described by Jelinski and Moranda's model. Later 
on, in Section 4.4.1, we consider alternate models. 

For a Bayesian analysis of these data, the mean of the Poisson prior on N 
was chosen to be 50, and the scale (shape) parameter of the gamma prior on A 
was taken to be J.L = 0.5 (a = 0.01). Thus the prior mean of A is 0.02. Using this 
prior, plus the first 31 interfailure times, the posterior distribution of (N - 31) 
was calculated. The formula for P(N = q IL(31)), given before, was used. A plot 
of this posterior distribution is shown in the top part of Figure 4.1 b). The mean 
of this posterior distribution is 1.3, which accords well with the observed failures 
in the "user experience phase." 

To obtain the predictive distribution of the time to next failure Tk+!, with 
k = 31, we use the fact that Tk+! has density at t of the form 

00 00 

iTk+1 (t 11. (k), 8, j.L, a) = l: J >..(j - k) e->'U-k)t x 
j=k 0 

(4.8) 
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Table 4.2. Interfailure Times of the NTDS 
[Data from Jelinski and Moranda (1972)] 

Error No. (i) ti S; Error No. (i) 

Production Phase Production Phase (cont'd) 

1 9 9 20 
2 12 21 21 
3 11 32 22 
4 4 36 23 
5 7 43 24 
6 2 45 25 
7 5 50 26 
8 8 58 Test Phase 1 

9 5 63 27 
10 7 70 28 
11 1 71 29 
12 6 77 30 
13 1 78 31 
14 9 87 User Experience Phase 

15 4 91 32 
16 1 92 Test Phase 2 

17 3 95 33 
18 3 98 34 
19 6 104 

t; Si 

1 105 
11 116 
33 149 
7 156 

91 247 
2 249 
1 250 

87 337 
47 384 
12 396 
9 405 

135 540 

258 798 

16 814 
35 849 

The preceding expression when solved numerically yields the predictive density 
shown in the bottom part of Figure 4.1b). 

The upper 95th percentile of this density is 285 days; it accords well with 
the observed 258 days of Table 4.2. As an alternative, see Appendix A.3.1 on 
Gibbs sampling. 

4.2.4 Application: Inference and Prediction Under an Error Detection 
Model 

In Section 3.3.1 we introduced a Type II model by Goel and Okumoto 
(1979), called a "time dependent error detection model." An attractive feature of 
this model is that it lends itself nicely to a closed form Bayesian analysis, as the 
following development shows. 
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FIGURE 4.1h. Bayesian Analysis of the NTDS Data 
Using Jelinski and Moranda's Model. 
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Suppose that a piece of software is tested for T units of time, and that n 
failures at times 0 < S 1 < S2 < ... < Sn :::; T are observed. Recall that the mean 
value of the nonhomogeneous Poisson process that supposedly generates these 
failures is A(t) = a(I - e-bt ), where a and b are unknown parameters. McDaid 
and Wilson (1999) propose a Bayesian analysis of the foregoing process by 
assuming independent gamma priors on a and b. Specifically, given the 
quantities A, T, cr, and JL (see Section 6.6.2), the joint prior density at a and b is 
of the form 

It is easy to show (details left as an exercise for the reader) that the joint 
posterior of a and b, given n, T, and SI, ... , Sn, is proportional to the quantity 

the normalizing constant is (l() -I , where 

00 

K = f{n + r) J e-CI-L+Sn)bbn+o - 1(>, + 1 - e-bTt+rdb. 
o 

It is noteworthy that the posterior distribution given previously depends only 
on n, T, and Sn, the last observed time of failure. The calculation of the various 
other quantities of interest is also straightforward. For example, if N*(T) denotes 
the number of failures that will be observed subsequent to time T, then, for i = 0, 
1,2, ... , 

(ii) 
* f(n+T+i) 

P(N (1) = i I n, Sn, 1) ex: i! (l+/W (l-L+iT+Sn)Ma , 

where the constant of proportionality is 

Finally, if ST denotes the time to next failure, as measured from T, then for 
t ;::: T, the predictive distribution of ST is 
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(iii) peST ~ tin, Sm 1) = P(N(T + t) - N(1) = 0 I n, Sm 1) 

r(n+T) fOO bn+a - 1 e-(/J + Sn)b 
= -K- (.A+1_e-(T+r)b)n+T db; 

o 

this quantity will have to be numerically evaluated. 

4.3 Specification of Prior Distributions 

The specification of prior distributions has been a roadblock for the 
application of Bayesian techniques ever since the days of Bayes and Laplace. 
However, recent advances in elicitation methodologies and computational 
methods have done much to ease this roadblock. When specifying a prior 
distribution, certain issues need to be addressed: the first is a choice of the family 
of distributions to use, and the second is a choice of the parameters of the chosen 
family; such parameters are called hyper parameters. 

With regards to the first issue, the choice has sometimes been guided by 
mathematical tractability, under the disguise of what are known as "natural 
conjugate priors." Much of the early literature on Bayesian inference subscribed 
to this form of analysis [cf. Raiffa and Schlaifer (1961)]. Indeed, the priors used 
in Section 4.2.3 are natural conjugate priors. With natural conjugate priors, the 
choice of hyperparameters has been based on approximations like matching 
moments with beliefs [cf. Martz and Waller (1982), p. 222]. Another favorite 
approach for prior specification, and one that is gaining current popularity, is 
based on the philosophy espoused by Jeffreys (1961). According to Jeffreys, 
priors should be selected by convention, as a "standard of reference;" this is in 
keeping with the use of standards in other scientific settings [cf. Kass and 
Wasserman (1996)] (see Section 4.3.1 for an overview). Since the dominant 
philosophical foundation for Bayesian inference is subjectivism, the use of a 
natural conjugate, and standard of reference priors, is foundationally 
objectionable. Priors that are induced via a subjective elicitation of future 
observables, such as those discussed in Tierney and Kadane (1986), are in 
keeping with the subjectivistic foundations, and are therefore worthy of serious 
consideration. In Section 4.3.4 we describe an approach for constructing a 
subjectively elicited prior for the parameters of the model by Musa and Okumoto 
[see Equation (3.18)]. In Sections 4.3.2 and 4.3.3, we give an overview of the 
ideas underlying the material of Section 4.3.4. 

There are two other matters about prior distributions that need to be 
mentioned: hierarchically constructed priors and sensitivity. A hierarchically 
constructed prior is one wherein a prior distribution is assigned to the 
hyperparameters of a prior distribution. Such priors are called hierarchical 
priors, and the hierarchical construction need not be limited to a single stage. 
That is, we may assign prior distributions on the hyperparameters at each stage 
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of the prior construction. Probability models that involve hierarchically 
constructed priors are known as hierarchical models. Such models have proved 
to be very useful for addressing many problems in science and engineering, the 
"Kalman Filter Model" [cf. Meinhold and Singpurwalla (1983b)] being a prime 
example. In the context of software failure, the models introduced in Sections 
3.2.4, 3.4.1, and 3.4.2 are examples of hierarchical models. Section 4.4 on 
"Inference and Predictions Based on Hierarchical Models" shows how such 
models provide meaningful descriptions of software failure data. In principle, 
hierarchical models also serve as a foundation for what are known as "empirical 
Bayes methods," because they are, in fact, a consequence of a repeated 
application of the law of total probability [cf. Singpurwalla (1989a)]. 

Our final comment about prior distributions pertains to sensitivity. 
Irrespective of how the prior is chosen, an investigation of the sensitivity of the 
posterior distribution to changes in the prior distribution and its hyperparameters 
is an important feature of any Bayesian analysis. Often, the posterior is 
insensitive to small changes in the prior, especially when the amount of data is 
large; in such cases we need not be too concerned about the imprecisions in our 
priors, if any. On the other hand, if our investigations reveal that small variations 
in a particular prior have large effects on the posteriors, then more careful 
attention should be paid to assessing the prior. Alternatively we may want to 
present a family of posterior distributions generated by a large class of priors so 
that a potential user of the results may make decisions in cognizance of the 
alternate possibilities that are revealed by the analyses. 

4.3.1 Standard of Reference-Noninformative Priors 

Jeffreys' notion of using priors that are a standard of reference has found 
appeal with many investigators who hold the view that analysts should say as 
little as possible about the parameters in question; this enables the data to speak 
for themselves. Supporting this position are those who maintain that often an 
analyst has no relevant experience to specify a prior, and that subjective 
elicitation in multiparameter problems is next to impossible. Priors that are 
developed to react to these points of view are called noninformative priors. 
Bernardo (1997), who claims that "noninformative priors do not exist," touches 
on these and related issues, from both a historical as well as a mathematical 
perspective. 

A simple strategy for constructing priors that (supposedly) convey little 
information about a parameter, say (), is to let the prior density function be flat 
over all allowable values of (). If () can take values only in a finite range, say [a, 
b], then the obvious noninformative prior is the uniform density on [a, b]; that is, 
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{ 
(b-a)-l, a<.5:(}<.5:b 

7r((J I a, b) = 
0, otherwise. 

(4.9) 

When () takes values over an infinite range, then a limiting form of non­
informative prior would be the uniform, with constant weight given to all 
possible values. Unfortunately, this is not a probability density, as the integral is 
infinite, and for this reason is known as an improper prior. Although not a 
legitimate density, it turns out that the posterior distribution, calculated from 
Bayes' formula, may be a proper density. So, in terms of computing posterior 
distributions, it may be possible to work with this type of prior distribution. 

There are, however, some objections to using improper priors. First, the 
posterior distribution is not guaranteed to be proper; it may be improper, in 
which case one cannot calculate posterior means or sensibly find marginal 
distributions. Second, there would always appear to be at least some prior 
information on (), even if it is just some fantastically large bound on its possible 
values; in such cases a uniform prior density can be used. There is also a more 
fundamental problem with assigning an equal weight to all values of (). For 
example, suppose that our prior on () is of the form given by Equation (4.9), but 
that our problem is parameterized in such a way that inference needs to be made 
about 'l/J = (}2. Then, it can be shown, using the calculus of probability, that our 
prior on 'l/J is of the form 

7r*('ljJ I a, b) = 0.5 'ljJ-O.5 7r('ljJ I a, b). (4.10) 

But Equation (4.10) suggests that a uniform prior on () (chosen to reflect an 
absence of knowledge about ()) results in a prior for 'l/J that is proportional to 
'l/J-O.5. This is contrary to intuition; thus we cannot choose uniform priors for 
both () and 'l/J at the same time. 

The preceding type of scenarios has motivated a lot of research into finding 
noninformative priors that are invariant under transformations. This kind of work 
was initiated by Jeffreys, and has been continued by, among others, Jaynes 
(1968), Zellner (1971), (1977), and Bernardo (1979). It has also spawned a 
variety of new ideas; the one that has seen many applications in physics and 
engineering is the principle of "maximum entropy priors" [see Jaynes (1983), 
and Good (1983)]. 

4.3.2 Subjective Priors Based on Elicitation of Specialist Knowledge 

The subjective specification of prior distributions often entails, in addition 
to the background knowledge 1i, the use of information that an analyst, say A, 
elicits from users and subject matter specialists, called experts. The term expert 
is generic, and could include the information provided by mathematical and 
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engineering models, simulation algorithms, empirical experience, and the like. 
How does an analyst incorporate expert information into the background 
knowledge 'H that A has, to arrive at prior distributions for parameters? Also, 
since most experts are subject matter specialists, the information they provide is 
about observable entities, not parameters, which to them are Greek symbols 
concocted by analysts. How should A induce prior distributions on parameters 
from information about observables? 

The foregoing problems have been addressed by many. The general plan 
was first proposed by Morris (1974, 1977), and subsequently improved upon by 
French (1980), Tversky, Lindley, and Brown (1979), and Lindley (1983). 
Application to problems in reliability has been considered by Lindley and 
Singpurwalla (1986a), Singpurwalla (1988b), and Singpurwalla and Song 
(1988). 

For purposes of discussion, suppose that interest centers around an unknown 
quantity, say X, and we (the analyst A), possess background information 'H 
about X. Let P(X I 'H) denote our uncertainty about X in the light of 'H. To 
obtain an enhanced appreciation of X, we consult an expert, say £, who provides 
us with an assessment of X in terms of two quantities m and s, where m 
represents £'s best guess about X, and s a measure of £'s uncertainty about m. 
Note that whereas X often denotes some observable quantity, it could in principle 
also be an unknown parameter. A's problem therefore is to assess P(X I m, s, 
'H); this is A's uncertainty about X in the light of m, s, and 'H. By Bayes' Law 

P(X = x / m, s, 1t) ex £(X = x; m, S, 1t) P(X = x /1t), 

where £(X = x; m, s, 'H) is A's likelihood that £ will declare the values m and s, 
were X = x. The likelihood reflects A's opinion of the expertise of £, and may 
be better expressed through additional coefficients that are introduced by A. For 
example, if A is of the opinion that £ tends to overestimate or underestimate the 
location of £'s distribution for X, then m is actually the location of a + {3x; the 
case a = 0, {3 = 1 corresponds to A's view that £ is unbiased. If in A's view, £. 
tends to underestimate the standard deviation of £'s distribution for X, then A 
modulates s to 'YS, with 'Y > 1; if £ tends to overestimate the standard deviation, 
then 'Y < 1. Some further simplification in the specification of the likelihood 
occurs if in A's opinion, £ 's declared value s is independent of the value of X. If 
such be the case, then A may reflect the expertise and the attitudes of £, via the 
normal (Gaussian) form 

£(X = x; m, s, 1t) ex exp [ - 1 (m-(~s+(3X») 2] , (4.11) 

where the tuning coefficients a, {3, and 'Yare chosen by A to reflect A's view of 
the biases and the assertiveness of £. The choice a = 0, {3 = 'Y = 1, reflects A's 
willingness to accept the values m and s without any modification (tuning). 
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It is often the case that analysts who consult experts are unwilling to impose 
their own views about X in a manner that will greatly distort the expert's inputs 
beyond that which is done through the tuning parameters. If such be the case, 
then the analyst's prior P(X = x 111.) will tend to be flat over the range of values 
x where the likelihood is appreciable. Consequently, A's posterior probability 
density for X at the point x is of the form 

fix I m, s, Ji) ex: exp [ - 4 (m-(~s+f3X») 2] , (4.12) 

with the constant of proportionality chosen to make the preceding quantity 
integrate to one. This posterior density represents A's assessment of the 
uncertainty of X in the light of £'s inputs and A's views about the expertise and 
attitudes of the expert. If A chooses to incorporate A's own views about X, then 
the right-hand side of Equation (4.12) must be multiplied by the probability 
density of X in the light of 11. alone; the latter is a proxy for P(X = x 111.). 

Thus to summarize, the crux of the plan for incorporating expert inputs into 
an analysis is to view such inputs as data, and then to invoke Bayes' Law using 
as the likelihood a model for the expertise of the expert. The attitudes of the 
expert, as perceived by the analyst, get reflected in the likelihood via the tuning 
coefficients. 

4.3.3 Extensions of the Elicitation Model 

There are several possible directions in which the model of Section 4.3.2 
can be extended, the most natural one being the case of several experts, say £\, . 
. . , £ko k ;::: 2. Now A has to contend with the quantities (mh SI), ... , (mko Sk) 
and the corresponding tuning coefficients (ai, (3i, 'Yi), i = 1, ... , k. The principle 
is the same except that in writing £(X = x; (mi' Si), i = 1, ... , k, 11.), the 
likelihood, A has to consider possible correlations between the expert 
announcements. The treatment of this possibility has been considered by Lindley 
(1983) in a general context, and by Lindley and Singpurwalla (1986) in the 
context of reliability. 

Another generalization of the elicitation model is motivated by the difficulty 
in specifying the tuning coefficients a, {3, and 'Y. One approach for easing this 
difficulty is to gather information about £'s previous announcements (mi' Si), 

i = 1, ... , n, and to relate them to Xi, the revealed values of X. Once the (mi' Si) 

and the corresponding Xi are at hand, we may invoke Bayes' Law, with a flat 
(vague) prior on a, {3, and 'Y. to obtain the posterior distribution 

Pea, {3, 'Y I (mj, Si), Xi, i = 1, ... , n, 1{) 

(4.13) 
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The mode of this posterior provides us with suitable values of n, /3, and 'Y for use 
in future elicitations. 

Finally, the matter of inducing prior distributions on unknown parameters 
using the elicited distribution of observables P(X = x I m, s, 11.) remains to be 
settled. This is generally a straightforward matter if a simple relationship 
between the observable X and a parameter e can be established. For example, 
with exponentially distributed lifetimes, the mean time to failure is e, and so the 
X of Section 2.2.2 is now the mean lifelength. Consequently, £ will therefore be 
asked to provide assessments for the mean life length. Often there is a simple 
relationship between the median and the parameters; see, for example, 
Singpurwalla (1988b). In such cases expert elicitation about the median is 
sought. Psychological studies have shown that experts are more at ease assessing 
medians and other percentiles than the mean. 

In the next section we describe an application of the foregoing general 
methodology to a commonly used model for describing the software failure 
process. 

4.3.4 Example: Eliciting Priors for the Logarithmic-Poisson Model 

Recall (see Section 2.3), that the Poisson process is completely determined 
by A(t), its mean value function. The logarithmic-Poisson execution time model 
for describing software failures, introduced by Musa and Okumoto (1984), takes 
for A(t) the functional form In(oXet + 1)/e, where oX and e are parameters; see 
Equation (3.16). In this section we describe how the elicitation techniques of the 
previous two sections, plus some empirical experience reported by software 
engineers, can be used to assess the priors on A and e. 

Since A(t) represents the expected number of software failures encountered 
by time t (see Section 2.3.1), A(t) is an observable, and thus it is meaningful to 
elicit expert opinion on A(t) rather than on e and oX. The latter quantities lack an 
intuitive import. Accordingly, if two time points TJ and T2, TJ ~ T2, are chosen 
and expert opinion in terms of a measure of location and scale, say m; and s;, 
elicited for A(Tj ), i = 1,2, then a prior on oX and e can be induced from the fact 
(verification left as an exercise for the reader) that: 

and (4.14) 

The preceding will yield a solution for e > 0, and oX > 0, if and only if 
° ~ A(Td ~ A(T2) ~ T2«A(Td)ITd. 

The simplifying assumptions that pertain to the joint distribution of A(TJ) 

and A(T2), given (m1' S1) and (m2' S2), are in the same spirit as those given in 
Section 4.3.2 with suitable modifications to account for the fact that 
A(TJ) ~ A(T2). The motivation and details are in Campod6nico and 
Singpurwalla (1994), (1995); the following is an overview ofthe essentials. 
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(i) The likelihood of A(T2), for fixed values of mJ, m2. S\, and S2, 

is of the truncated normal shape, centered at Q + f3m2 with a 
scale ,,/S2; see Equation (4.13). The left truncation point is m\ + 
ks\, and the right truncation point is m\ T21TJ ; k is specified by 
the analyst. 

(ii) The likelihood of A(Td, for a fixed value of m\ and S\ is also 
of the truncated normal shape centered at Q + f3m\ and a scale 
"/h The left truncation point is zero. 

(iii) The likelihood of the difference (A(T2) - A(Td) is truncated 
to the left at zero, and for a fixed value of (S2 - s\), it is 
proportional to the quantity 

for a fixed value of s\ it is of the form (A(T2) - A(Td) x 
exp( - s\(A(T2) - A(TJ))). 

(iv) The joint prior on A(Td and A(T2) is a constant over the range 
of values of A(TJ) and A(T2) for which the likelihood is 
appreciable. 

Under the preceding assumptions, the density of the joint posterior of A(TJ) 

and A(T2), at the points AJ and A2, 0 < AJ < A2 < Al (T2ITd, is proportional to 
(the formidable looking expression) 

x 

(4.15) 

where q,(x) is the cumulative distribution of the standard normal distribution [so 

q,(x) = f~oo (1Iy'l;) exp( - u212)du]. 

This prior distribution, although complex, is easily manipulated numerically. 
Using the relationships given in Equation (4.13), it has been used to compute the 
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joint distribution of (A, 0), posterior distributions in light of data on the Poisson 
process, as well as various expectations and variances; see Campodonico and 
Singpurwalla (1994) (1995). A computer code for carrying out the needed 
calculations is described by Campodonico (1993). 

The principal remaining issue is to discuss how the expert might in practice 
specify the various values: T], T2, m], m2, Sl, and S2. First, Tl and T2 are chosen; 
recommended values for T2 are the total time that testing is scheduled for, or 
some proportion of the total hours worked [Myers (1978) suggests one halt]. 
Typically, Tl will then be some reasonably small percentage of T2 for which it is 
felt that a number of bugs will have been discovered; for example, if T2 is chosen 
to be the scheduled testing time, and the expert thinks that 10% of bugs will be 
discovered in the first 1 % of the test, then it is reasonable to define Tl = 0.01 T2. 

The expert then specifies a mean and standard deviation for A(T2), denoted 
m2 and S2. If T2 is the total testing time, we might set m2 to be the total number of 
bugs expected in the code; Gaffney (1984) has suggested various empirical 
formulae that relate the length of code S to the number of bugs B: 

• B = 0.021S; 
• B = 4 + 0.OOI4S4!3; 
• B = 4.2 + 0.00 15S4/3 • 

Given the rather ad hoc nature of these formulae, it is wise to set the 
standard deviation S2 large, to reflect large uncertainty in the estimate of m2. 

Next is the specification of a mean and standard deviation on TJ • These may 
be simply specified as fixed proportions of m2 and S2, or alternatively the expert 
can use experience from previous tests; if m2 and S2 describe the total number of 
bugs and, on average, the expert knows 10% of bugs occur up to testing time TJ , 

then ml = 0.lm2 and Sl = 0.ls2. 
The final part of the specification is the tuning coefficients a, /3, 'Y, and k. If 

there is no basis for assuming any bias by the analyst, we choose a = 0, /3 = 1, 
'Y = 1, and k = 1. 

4.3.5 Application: Failure Prediction Using Logarithmic-Poisson Model 

To illustrate the workings of the procedure described in the previous 
section, we consider some software failure data given by Goel (1985); these are 
given in Table 4.3. The data consist of the observed number of failures of a 
software system that was tested for 25 hours of CPU time. For purposes of 
illustration, we choose the logarithmic-Poisson model of Musa and Okumoto 
(1984) to analyze these data. The choice of this model has no basis other than 
the need for exposition. The standard approach for analyzing such data has been 
the method of maximum likelihood. However, as discussed by Campodonico and 
Singpurwalla (1994), this approach may lead one to difficulties, the main one 
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Table 4.3. Data on Software Failures During System Test 

of testing per CPU hour # of Failures of testing per CPU hour # of Failures 

1 27 27 14 5 111 
2 16 43 15 5 116 
3 11 54 16 6 122 
4 10 64 17 0 122 
5 11 75 18 5 127 
6 7 82 19 1 128 
7 2 84 20 1 129 
8 5 89 21 2 131 
9 3 92 22 1 132 

10 1 93 23 2 134 
11 1 97 24 1 135 
12 7 104 25 1 136 
13 2 106 

being nonunique estimators when the data are such that only the total number of 
failures in the first interval of testing is available. 

The data of Table 4.3 pertain to a system consisting of 21,700 object 
instructions. Thus we take 21,700 as our length of code S, and using the first of 
the three formulas of Gaffney (1984), choose m2 = 0.021 x (21,700) == 455. 
Considering a long term for the debugging horizon, we take T2 = 250 (CPU 
hours). Given the very general nature of our choices for m2 and T2 , we choose 
82 = 200 to reflect a high degree of uncertainty in our specifications. Experience 
of software engineers suggests that, on average, about 10% of system failures 
occur during the first 1 % of debugging time. Consequently, we choose TJ = 2.5 
and ml = 45.5. As a measure of uncertainty about our choice of mh we choose 
SI = 4, and as an alternative, SI = 20. Since we have no basis for tuning all of 
these selections, we choose Q = 0, f3 = 'Y = k = 1. 

In Figure 4.2 we show plots comparing the cumulative number of failures 
that are actually observed during the first five intervals of testing and those 
predicted via a Bayesian analysis of the model with prior parameters ml = 45.5, 
SI = 4, m2 = 455, and S2 = 200, for TJ = 2.5 and T2 = 250. The predictions 
shown are one-step-ahead predictions. That is, the predicted cumulative failures 
at the end of the second interval of testing incorporate the data observed at the 
end of the first interval of testing, the predictions at the end of the third interval 
of testing incorporate the data observed at the end of the second interval of 
testing, and so on. 

The plots of Figure 4.2 suggest that the approach described here provides 
good predictive capability vis-a-vis the chosen parameters. When the one-step-
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FIGURE 4.2. Comparison of Actual Versus One-Step-Ahead Predictions. 

ahead prediction is extended to a horizon covering the 25 intervals of testing, a 
less promising picture appears. The predictions tend to overestimate the actual; 
see Figure 4.3. Note that the predicted values for the 25-interval horizon are 
based on the data up to and including the fifth interval of testing only. 
Presumably, the one-step-ahead predictions would be better, but in practice, it is 
the several steps ahead predictions that are useful. 

In view of Figure 4.3, it appears desirable to explore the sensitivity of our 
analysis to the choice of prior parameters. Table 4.4 shows our selections for 
three other priors considered by us: Prior I is the selection previously described, 
and Prior II is identical to Prior I except that SI = 20 instead of 4. Prior IV uses 
the second formula of Gaffney (1984) to specify m2, and Prior III uses the actual 
data from the first interval of testing to specify TJ and mI. Prior III is intended to 
reflect the feature of maximum likelihood estimation that would necessitate the 
use of some data for inference; this is in contrast to Bayesian inference which 
can be based on the prior alone. 

In Table 4.5 we compare the one-step-ahead predictions based on the four 
priors of Table 4.4. Also given are the mean square errors (MSE) of the 
predictions over the five testing intervals. A comparison of the predictions based 
on the MSE suggests that Prior II appears to provide better predictivity than 
Prior I. A possible reason for this is that the higher uncertainty associated with 
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FIGURE 4.3. Comparison of Actual Versus Predicted Failures­
Forecast Horizon of 25. 

Table 4.4. The Class of Priors Considered 

TI T2 ml m2 SI S2 a b 'Y k 

Prior I 2.5 250 45.5 455 4 200 0 1 1 1 

Prior II 2.5 250 45.5 455 20 200 0 1 1 1 

Prior III 1 250 27 455 0.5 200 0 1 1 1 

Prior IV 1 250 27 851 0.5 300 0 1 1 1 

Prior II (SI = 20 instead of 4) better compensates any rnisspecifications in mi. 
The MSE of Prior III is slightly smaller than that of Prior II because under Prior 
III, the predicted failures for the first interval of testing equal the observed 
failures. 
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Table 4.5. Comparison of the One-Step-Ahead Predictions 
Under Different Priors 

CPU Hour Prior I Prior II Prior III Prior IV Observed 

Interval Failures 

1. (0, 1] 22.8 25 27 27 27 

2. (1,2] 16 18.7 18.3 22.1 16 

3. (2,3] 12.6 13.3 13.8 20.6 11 

4. (3,4] 9.5 9.7 10.1 15.6 10 

5. (4,5] 8.6 8.5 8.1 12.8 11 

MSE 5.2 4.5 4.3 32.7 

Based on 5 predictions 

4.4 Inference and Prediction Using a Hierarchical Model 

In Section 3.2.4, we introduced a model for tracking the growth in reliability 
of software using a prior that was hierarchically constructed in two stages. In this 
section we discuss inferential aspects of this model using actual data on software 
failures. The model of Section 3.2.4 was proposed by Mazzuchi and Soyer 
(1988). The first step of model construction involves the specification 

peT > t I k) = e-A;l 1_ I , (4.16) 

where the parameter Ai is such that the collection of AiS, i = 1, 2, ... , constitute 
a decreasing sequence. The prior distribution on Ai is a gamma with a scale 
parameter 1jJ(i) and a shape parameter a; see Equation(3.9). Furthermore, 'lj;(i) is 
reparameterized as 'lj;(i) = (30 + (31 i, and the predictive distribution of Ti , given 
'lj;(i) and a, is of the form [see Equation (3.10)] 

(4.17) 

For the second stage of the hierarchy, the following prior structure is assumed 
for the hyperparameters 

?r(a I w) = w- i , 0 < a < w; 

((3 I d) de (3c-l -f3]d (3 0 d 
?r I C, = r(c) Ie, 1 > ; an 
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'""( f.l I /3 a b) = ~ (f.l - /3 )a-l e -b(f3o-f3I) 
1\ fJO [" rea) fJO 1 , (4.18) 

The shape parameter 0: is independent of both (30 and (31, but (30 and (31 are a 
priori dependent. The joint prior of 0:, (30, and (31 is obtained via the relationship 

7r(0:, /30, /31) = 7r(0: I w) X 7r(/31 I c, d) X 7r(/30 I /3J, a, b). 

The foregoing prior distributions are more in the spirit of natural conjugate 
priors than priors based on elicitation. 

Given k interfailure times t l , ••• , h = L (k), the joint posterior of 0:, (30, 
and (31 is of the form (details left as an exercise for the reader): 

f.l /3 I (k») (f.l /3) fr a(f3o+f3li)" 7r( 0:, fJO, 1 1. ex: 7r 0:, fJO, 1 i = I (t;+f30+f3l0o+l , (4.19) 

where the constant of proportionality is such that the preceding integrates to one. 
The posterior distribution (4.18), although not in closed form, is relatively 
straightforward to numerically compute. 

In practice, interest may often center around the parameters Ai, i = I, 2, ... 
. This is because Ai could be regarded as a proxy for the quantity A(N - i + I) in 
Jelinski and Moranda's model. Also, a decreasing sequence of AiS implies a 
growth in reliability, suggesting that the debugging process which is subsequent 
to every observed failure is producing desirable results. 

Given L(k), and conditional on 0:, (30, and (31) we can show (details left as an 
exercise for the reader) that the posterior density of Ai at Ai is: 

(4.20) 

Consequently, the posterior density at Ai given the data L(k) alone, is of the 
form 

P(A; I 1.(k») = J P(A; I 0:, /30, /31, 1.(k») 7r(0:, /30, /31 11.(k»)do:d/3od/3l. 
(".130.(3,) 

(4.21) 

The preceding integration will have to be done numerically. Mazzuchi and 
Soyer (1988) use an approximation, first suggested by Lindley (1980), valid for 
large values of k, to obtain E(Ak I L(k» and E(Tk+1 I L(k»), the mean of the 
posterior distribution of Ab and the predictive distribution of Tk+1, respectively. 
Verify (left as an exercise for the reader) that the predictive density of Tk+1> at t, 
is given by 
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P( I (k» f 0:(/30 + /31 i)0 ( a (3 I (k»d d a d(3 t I = (t+/30+/31i)0+1 7r a, fJO, 1 I a fJO 1 (4.22) 
(0,110. ,al) 

(see Exercise 1 of Chapter 3 for a hint). As an alternative, see Section A.3.2 of 
Appendix A for Gibbs sampling. 

4.4.1 Application to NTDS Data: Assessing Reliability Growth 

In Table 4.2 of Section 4.2.3, some software failure data from the NTDS 
system was analyzed using the Jelinski-Moranda model. The aim there was to 
assess the remaining number of bugs in the software. In this section we describe 
how the hierarchical model of Equations (4.16) and (4.18) can be used to see if 
the debugging process is effective; that is, it is improving the reliability of the 
software. One way of investigating this is to track the mean of the posterior 
distribution of Ai, i = 1,2, .... Alternatively, we may also monitor the behavior 
of the posterior distribution of /31, and see if it reflects either a constant or an 
increasing central characteristic, such as the mean or the mode. Note that the 
posterior distribution of /31 can be obtained from Equation (4.19) as 

7r«(31 I I(k» = f 7r(a, (30, (31 I I(k»dad(3o . 
(0,110) 

(4.23) 

Equation (4.23) can be used to obtain E(/31 11.(k»), the mean of 7r(/31 11.(k»), or its 
mode M(/31 11. (k»). The required computations will have to be done either 
numerically or by an approximation. 

Mazzuchi and Soyer (1988) analyzed the data of Table 4.2, using the 
following values for the hyperparameters of Equations (4.18): w = 500; a = 10; 
b = 0.1; c = 2; d = 0.25. Using Equations (4.21)-(4.23) and Lindley's 
approximation, they calculated E(Ai 11. (i)), E(Ti+1 11. (i)), and M(/31 11. (i)), for 
i = 1, 2, ... , 26, the production phase of the data. The values of the former two 
quantities are given in columns 3 and 4 of Table 4.6. A plot of E(Ai 11. (i)) and 
M(/31 11. (i)) is shown in Figure 4.4. 

An examination of the upper plot of Figure 4.4 suggests that there has been 
an apparent growth in reliability during the initial stages of testing, followed by a 
modest decay for most of the middle stages of testing, and then an increase 
during the very last stages. The lower plot of Figure 4.4 suggests that the 
parameter /31 is not relatively constant; rather, the downward drift in /31 during 
the first 20 or so stages of testing confirms the decay in reliability during the 
middle stages of testing. The sharp upward drift in /31 during the last stages of 
testing is a reflection of the growth in reliability during the final stages of testing. 
Our conclusion that the middle portion of the data is at odds with the structure of 
the model, namely, that the sequence of AiS be decreasing, suggests that the 
model should be weakened. Accordingly, Mazzuchi and Soyer do away with the 
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Table 4.6. Posterior and Predictive Means for NTDS Data 

Error Actual Means of Predictive Means of the 
Number Interfailure Times Interfailure Time Posterior of Ai 

i ti t ( k ) t ( k) 
ECTi+ll_ ) ECM- ) 

1 9.00 - 0.2215 
2 12.00 9.75 0.1389 
3 1l.00 11.36 0.1197 
4 4.00 1l.77 0.1331 
5 7.00 10.09 0.1265 
6 2.00 9.87 0.1400 
7 5.00 8.74 0.1375 
8 8.00 8.45 0.1290 
9 5.00 8.71 0.l318 

10 7.00 8.50 0.1273 
11 l.00 8.61 0.l392 
12 6.00 7.92 0.l340 
l3 l.00 7.93 0.1449 
14 9.00 7.35 0.1329 
15 4.00 7.70 0.l383 
16 l.00 7.50 0.1469 
17 3.00 7.03 0.1488 
18 3.00 6.78 0.1521 
19 6.00 6.55 0.1483 
20 l.00 6.61 0.1586 
21 1l.00 6.23 0.1425 
22 33.00 6.68 0.1061 
23 7.00 8.52 0.1173 
24 9l.00 8.57 0.0617 
25 2.00 l3.10 0.0847 
26 l.00 12.66 0.0875 
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Posterior Mean E(A; 11.(1) 

0.2500 -,--------------------, 

O.2<XX> - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.1500 

0.1000 

0.0500 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

0.0000 +---+---+---+----f----f---~ 

o 5 10 15 20 25 30 

Tes ting Stage i 

Posterior Mode M(/31 11.(1) 

4.5 ,.--------------------, 

4.0 ... • ...... -

3.5 

3.0 

2.5 

2.0 

1.5-·----------------------------------

In ----------------------------------

0.5 ----------------------------------

0.0 -!---+---+----+---+---+----I 
o 5 10 15 20 25 30 

Testing Stage i 

FIGURE 4.4. Plots of the Posterior Means and Modes of Ai and f3t. 
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parameter 1/;(i) and its reparameterization. Instead, they assume that the AiS have 
a common gamma distribution with shape (scale) a(fJ). They next assume that a 
has a uniform distribution over (0, w), and fJ a gamma distribution, independent 
of the distribution of a. This scheme makes the AiS exchangeable; see Section 
2.1.5. As regards inference, we note that the new model is indeed a special case 
of the hierarchical model, with 7f(fJl I .) degenerate at 0, and fJ = fJo; see 
Equation (4.18). Mazzuchi and Soyer have shown that the new (weaker) model 
provides better predictivity of the NTDS data than the parent model, but only by 
a small margin; the overall conclusions about reliability growth do not change. 

4.5 Inference and Predictions Using Dynamic Models 

In Section 3.4 we introduced three models for describing the times between 
software failure; these models are classified in the Type 1-2 category of Section 
3.1.2. Whereas the model of the previous section was based on a two-stage 
hierarchical construction, the models of Section 3.4 are based on hierarchical 
constructions involving several stages. This is because of two reasons: the 
autoregressive construction underlying Equation (3.19) and because the 
underlying parameters of these models are assumed to evolve dynamically over 
time, thus the label "dynamic;" see Equation (3.22). In the control theory 
literature, such models play a dominant role, and are known there as Kalman 
filter models. The dynamic feature underlying the models enables them to be 
more responsive to changes in the process generating the data, and in doing so 
they are able to better track the data. This results in enhanced predictivity. The 
purpose of this section is to discuss inferential issues pertaining to such models, 
and to illustrate how they can be applied to data on software failures for 
prediction and for assessing the growth (or decay) in reliability. 

We start with the two models of Section 3.4.1 wherein the interfailure times 
T;, i = 1, 2, ... , bear a relationship with each other via a sequence of 
parameters (); as 

(4.24) 

see Equation (3.21). 
The error terms Ei are independent and identically normally (Gaussian) 

distributed, with a mean ° and variance a?; Ei "" N(O, aD. Recall, from Section 
3.4.1, that the TiS are to be scaled (if necessary), so that they are all greater than 
one. 

For the sequence of parameters 0;, two models were proposed. The first is a 
two-stage hierarchical construction that makes the ()is an exchangeable sequence. 
Specifically, conditional on ..\, the OiS are assumed to be independent and 
identically normally distributed with mean ..\ and variance ar Furthermore, ..\ 
itself is normally distributed with mean It and variance aj. Thus, for i = 1, 2, ... 
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.A '" N(/-t, l1j) . (4.25) 

The hyperparameters O'r, O'~, O'~, and J.-L are to be specified by the user. 
Equations (4.24) and (4.25) constitute what is referred to as the exchangeable 
model. It is important to note that even though the prior construction involves 
only the two stages of Equation (4.25), the exchangeable model as a whole 
involves multiple stages. This is so because of the "autoregressive" nature of 
Equation (4.24); the multistage hierarchy is in the "observation equation" of the 
model. 

As an alternative to Equation (4.25), we may assume that the Bis also 
constitute an autoregressive process of order one, so that for some parameter 0, 

and i = 1, 2, ... , 
(4.26) 

where the WiS are independent, and Wi rv N(O, W?). A uniform prior over 
(a, b), with a and b specified, is then assigned to o. Equations (4.24) and (4.26) 
constitute what is referred to as the adaptive Kalman filter model. Here the 
hierarchical feature is inherent in both the observation equation (4.24), and the 
system equation (4.26). In all the cases mentioned, the size of the hierarchy 
increases with i, i = 1, 2, ... , imparting an increasing memory to the process. 

The non-Gaussian Kalman filter model of Section 3.4.2 does not require a 
scaling of the TiS, and assumes the following as observation and system 
equations, respectively, 

(T; I OJ, Wj) '" (}(OJ, 'Trj), and (4.27) 

O - fu 
j - Ci fj. (4.28) 

The fiS are assumed independent, and each fi has a beta distribution with 
parameters O'i.) and Vi.). The hyperparameters Wi, Ci , ai, and Vi are assumed 
known and must satisfy the constraint O'i.) + Wi = O'i + Vi , i = 2, 3, .... The 
initial (starting) value Bo is assumed to have a gamma distribution with scale 
parameter 0'0 + vo, and shape parameter uo, also assumed known. As written 
previously, the model consists of an excessive number of parameters that a user 
needs to specify; this is not practical. A simplification would be to let Ci = C, 
Wi = W, O'i = 0', and Vi = v. The hierarchical nature of this model is due to the 
dynamic feature in the system equation (4.28). 

In Sections 4.5.1 through 4.5.3 we discuss inferential aspects of the three 
models described previously, and then apply our procedures to a common set of 
data on software failures. This facilitates a comparison of the inferential and 
predictive capabilities of the three models. The actual data are given in column 2 
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of Table 4.7; they have been taken from Musa (1979), who has labeled them as 
"System 40 Data." The data consist of 100 interfailure times of a software 
system (comprised of 180,000 object instructions) which was undergoing 
conventional testing (as opposed to testing under an operational profile). There 
was an overlap between integration and system testing, and the earlier stages of 
testing were conducted with only a part of the system present (personal 
communication with Musa). A plot of entries in column 2 of Table 4.7 is shown 
in Figure 4.5. The large fluctuations towards the end of the data could be 
attributed to the introduction of the missing part of the system. To gain a better 
appreciation of the variability in the interfailure times, we plot their logarithms; 
these are shown in Figure 4.6. 

The analysis of these data has proved to be challenging because of the 
absence of a discernible trend and the presence of wild fluctuations. Can we use 
the data to infer whether the debugging process that is subsequent to every 
failure is producing an improvement in reliability? Can we use the data to make 
meaningful predictions of the next time to failure? Do the models proposed here 
provide meaningful descriptions of the process that generates the data? If so, 
which of these models provides the best description? We propose to address 
these and related questions that may be germane to a software engineer's 
interests. For a general discussion on a paradigm for modeling reliability growth, 
see Singpurwalla (1998a). 

4.5.1 Inference for the Random Coefficient Exchangeable Model 

If we let Yi = 10geTi , i = 1, 2, ... , then Equation (4.24) can be written as 
Yi = OiYi-l + Ei, i = 1,2, ... ; this is an autoregressive process of order one, with 
a random coefficient Oi. As was mentioned in Section 3.4.1, Oi provides 
information about the growth or decay in reliability at stage i, and since (}i '" 
N(>", ai), >.. provides information about the overall growth or decay in 
reliability. If Yi denotes the realization of Yi, then given the n interfailure times 
YI> ... , Yn, interest centers around an assessment of (}i and >.., given in) = (Yt. ... 

, Yn). Interest also centers around the predictive distribution of Yn+1• 

An agreeable feature of the exchangeable model is that the relevant 
posterior and predictive distributions can be obtained in closed form. 
Specifically, the posterior distribution of >.., given the data in), is of the form 

(,x Iln), .) rv N"(mn, s~), (4.29) 

where mn and s~ can be iteratively obtained as 
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2 
S2 - SR.! rn and 
n- 22 + ' Sn·! Yn-! rn 

rn = ui Y~-l + u~ ; (4.30) 

mo = "" and s5 = a~ are the starting values of the iterative process. 
Analogously, the posterior distribution of Bj , given ii), i = 1,2, ... , n, is of 

the fonn 

(4.31) 

where 
2 2 e. - a1 mi + a2 YiYi-l and 

,- ri ' 

Finally, the predictive distribution of Yn+!, given in) is specified via the 

relationship 
(4.33) 

The details leading us to Equations (4.29) through (4.33) are relatively 
straightforward; they are based on elementary properties of Gaussian 
distributions. An interested reader may wish to develop them directly, or may 
consult Soyer (1985) to fill in the appropriate gaps. 

Column 3 of Table 4.7 shows the logarithms (to base e) of the inter-failure 
times given in column 2, and column 4 gives the means of the one-step-ahead 
predictive distributions, that is, the quantities miYi, i = 1, 2, ... , of Equation 
(4.33). In computing the entries of column 4, the following values of the 
hyperparameters were used: ar = a~ = 1, a~ = 0.25, and"" = 1. Figures 4.7 
and 4.8 show plots ofBi and mi, the means of the posterior distributions of Bi and 
A, respectively, for i = 1,2, ... , 100. Figure 4.7 reveals the lack of a consistent 
pattern of growth in reliability from one stage of testing to the other. Figure 4.8 
shows that, overall, there is a very modest growth in reliability. Will an analysis 
of these data using the adaptive Kalman filter model, or the non-Gaussian model, 
reveal conclusions different from the preceding? We explore this matter in the 
following sections. 
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Observed Interfailure Times 

3500000 -----------------------, 
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FIGURE 4.5. Plot of Interfailure Times-System 40 Data. 
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FIGURE 4.6. Plot of Interfailure Times on a Logarithmic Scale 
-System 40 Data. 
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Posterior Means of OJ 
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FIGURE 4.7. A Plot of the Posterior Means of 8i Versus Failure 
Number for System 40 Data Using the Exchangeable Model. 
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FIGURE 4.8. A Plot of the Posterior Mean of A for System 40 Data 
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4.5.2 Inference for the Adaptive Kalman Filter Model 

The adaptive Kalman filter model as prescribed by Equations (4.24) and 
(4.26) imposes a dependence structure on the {}jS that is stronger than the one 
prescribed by Equation (4.25) of the exchangeable model. This is so because a 
value of a > 1 suggests an increasing sequence of (}jS, and this in turn implies a 
steady growth in reliability; the opposite is true for a < 1. As to whether such a 
specific structure is justified is a matter of an analyst's judgment. Following the 
setup of Section 4.5.1, we let Yj = 10geTj, i = 1, 2, ... , and assume that n 
interfailure times in) = (YJ. ... ,Yn) have been observed. Were a to be specified 
(i.e., assumed known), then the posterior and the predictive distributions of OJ 
and Yn+1, respectively, are Gaussian. Specifically, for i = 1, ... ,n 

and (4.34) 

where (4.35) 

2 v-,2 2 
ri = a 2Li_l + Wi ' (4.36) 

with the starting values {}o = 00 , and t~ specified in advance. 
The given closed form results are no longer valid when a cannot be 

specified. When such is the case, one possibility is to run the prescribed model 
for different values of n, and choose that selection which provides the best 
predictivity. A formal approach, however, is to assign a prior distribution on a, 
and then to approximate the ensuing results either via a simulation (see Section 
A.3.3), or via a scheme such as the one suggested by Lindley (1980). 
Singpurwalla and Soyer (1985) have done the latter assuming a uniform prior for 
a over [ -2, +2]; the details are too cumbersome to reproduce here. However, 
their results on the means of the one-step-ahead predictive distributions of Yj , 

i = 3,4, ... , 100, are given in column 5 of Table 4.7, and plots ofthe means of 
the posterior distributions of OJ are given in Figure 4.9. A visual comparison of 
Figures 4.7 and 4.9 does not reveal any noticeable differences between the two 
plots. The entries in columns 4 and 5 of Table 4.7 enable us to compare the 
predictive abilities of the exchangeable model versus the adaptive Kalman filter 
model. However, this can be formally done; see Section 4.6.3, where it is argued 
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Posterior Mean of 6; 
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FIGURE 4.9. Posterior Means of (Jj Versus Failure Number for 
System 40 Data Using Adaptive Model. 
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FIGURE 4.10. Posterior Mode of 0: Versus Failure Number 
for System 40 Data Using Adaptive Model. 
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that the exchangeable model provides better predictivity than the adaptive 
model. 

The modal values of the posterior distribution of a, as a function of i, i = 1, 
2, ... , 100, are shown in Figure 4.10. It suggests that the most likely value of a 
is (almost) always less than one. This means that there is an absence of a steady 
growth in reliability, a conclusion that is in mild contrast to that given by the 
exchangeable model. Recall that the latter suggested a modest overall growth in 
reliability. Could it be that the assumption of dependence in the parameters 
through autoregression is too strong for these data? 

4.5.3 Inference for the Non-Gaussian Kalman Filter Model 

Even though the model specified by Equations (4.27) and (4.28) is non­
Gaussian, closed form results for the posterior and predictive distributions can 
be produced, provided that C is known. Specifically, suppose that n interfailure 
times tl, ... , tn, are observed; then given 1. (n) = (tl, ... , tn), the posterior 
distribution of ()i, i = 1, 2, ... , n, is of the form 

(OJ I !.(i), C, .) rv g(Uj, O"j_! + Vj) , (4.37) 

where Ui = CUi.1 + ti; recall that Uo is the shape parameter of the gamma 
distribution of ()o. It is also shown that 

1 ° (On+! !. I ,C, .) rv g( CUj, (Jj) • (4.38) 

Similarly, given 1.(i), the predictive distribution of Ti+1 has a density at t of the 
form 

(4.39) 

When Wi = 1, the observation equation is governed by an exponential 
distribution, and Equation (4.39) is a Pareto density. The development of 
Equations (4.37) to (4.39) are left as an exercise for the reader; they can, 
however, be found in Chen and Singpurwalla (1994). 

Assessing Reliability Growth 

Consider a special case of the foregoing model, with Wi = IIi = (Ji = 2 for 
all values of i. Verify that the mean of the predictive distribution of Ti+l, 
conditional on C, is 

i+1 

E(Ti+! I !.(i), .) = 2 C ECjt(i+I.j) . 
j=O 

(4.40) 



144 4. Statistical Analysis of Software Failure Data 

Clearly, the value of C is crucial for determining whether the times between 
failure are expected to increase or decrease. Specifically C > 1 would suggest a 
strong growth in reliability, whereas C close to zero would imply the reverse. 
Intermediate values of C would indicate a growth or decay, depending on the 
values of t;; see Appendix B of Chen and Singpurwalla (1994). Thus to assess 
whether the software is experiencing a growth or decay in reliability, it is 
necessary to make inferences about C. Accordingly, we assign a uniform on (0,1) 
as a prior distribution on C. If we have prior notions about growth or decay in 
reliability, a prior such as a beta may be entertained. Unfortunately, allowing C 
to be unknown destroys the closed form nature of the predictive and the posterior 
distributions. One way to overcome this difficulty is via a Markov Chain Monte 
Carlo simulation of the inferential mechanism; see Section A.3.4 of Appendix A. 
Alternatively, we may discretize the uniform distribution of C at k points so that 

P(C= k~l)= t, j=O,I, ... ,(k-l), 

and given 1. (i), i = 1, 2, ... , n, compute its posterior distribution 

p( C = k ~ 1 11.0»), where 

p(c = --L 1 t(i») ex: pet 1 t(i-I) .) p(c = _J_. 1 t(i-l)). 
k-l - - , k-l -

The first expression on the right-hand side of the preceding equation is the 
likelihood; it is obtained by replacing the C in Equation (4.39) by j/(k - 1). The 

second expression is the posterior of C at j/(k - 1) given the data 1.(;-1); for 
i = 1, the quantity P(C = j/(k - 1) 11.(0» is simply the prior 11k. 

Once the posterior distribution of C has been computed, by repeating the 
procedure described for j = 0, 1, ... , (k - 1), the posterior distribution of B;, 
and the predictive distribution of Ti+1 can be obtained by averaging out C in the 
Equations (4.37) and (4.39). The averaging will be done numerically, and with 
respect to the posterior distribution of C. 

For an analysis of the interfailure time data given in column 2 of Table 4.7, 
C was discretized at 200 points, and the hyperparameters were chosen as 
Wi = V; = O'i = 2 and Uo = 500. In Figure 4.11 we show a plot of the mean of 
the posterior distribution of C. It has been noted [see Chen and Singpurwalla 
(1994)] that the posterior distribution is quite sharp, and has a mean of about 
0.425. This value of the mean is attained after about 15 iterations, and remains 
stable thereafter. With C being in the vicinity of 0.425, we cannot conclusively 
claim evidence either for or against growth in reliability. Column 6 of Table 4.7 
gives the mean of the one-step-ahead predictive distribution of Ti+I. i = 1,2, ... 
, 100. For assessing the predictive performance of the non-Gaussian Kalman 
filter model, we need to compare the entries in column 6 against those in column 
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FIGURE 4.11. Mean of the Posterior Distribution of C for 
System 40 Data Using the Non-Gaussian Model. 

2. A formal comparison of the predictive performance of this model versus the 
adaptive Kalman filter model of the previous section is described in Section 
4.6.3; it shows a superiority of the non-Gaussian model over the adaptive model. 
Thus it appears that of the three dynamic models considered here, it is the non­
Gaussian Kalman filter model of this section that provides the best predictivity. 
However, none of the models reveals strong evidence either for or against 
growth in reliability. This type of information is useful to a manager of the 
software development effort who is required to make decisions about when to 
stop testing and whether to make changes in the testing and debugging 
procedures. More on reliability growth for these data is discussed later, in 
Section 4.7. 

4.6 Prequential Prediction, Bayes Factors, and Model Comparison 

In the previous sections we discussed several models for describing software 
failure data. Each model provided a one-step-ahead predictive distribution for 
the time to next failure. The means of these predictive distributions can be 
compared with the actual data to obtain an assessment of the predictive ability of 
a proposed model. This point of view stems from the "Popperian" attitude of 
validating a model against data. The notion here is that any attempt at describing 
reality must be measured against empirical evidence, and be discarded if it 
proves inadequate [cf. Dawid (1992)]. Opposing this point of view is the 
(Bayesian) position which does not support the notion of the "absolute 
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assessment" of a solo model [cf. Raftery (1992), who says, "You don't abandon a 
model unless you have a better one in hand"]. Also see Bernardo and Smith 
(1994), p. 419, who claim that" ... from a decision-theoretic point of view, the 
problem of accepting that a particular model is suitable, is ill defined unless an 
alternative is formally considered." However, the tradition of checking the 
adequacy of a given model without explicit consideration of an alternative is still 
attractive, partly because of the heritage of significance testing. A useful strategy 
is that given by Dawid (1992), who suggests testing for the goodness of fit via 
the statistic 

n 

L (ti-J-!i) 
Z .:.::i=,,;;I_-:-

n - n l' 

(Lon:! 
i=1 

where /-Li and aT are the mean and the variance, respectively, of the predictive 
distribution of the observed tiS. Were the proposed model adequate, then under 
some mild conditions, the distribution of Zn, as n gets large, is a Gaussian with 
mean 0 and variance 1. We do not pursue this tradition of testing for the 
goodness of fit of the models described before. Rather, we address the question 
of comparing the predictive performance of a proposed model versus one or 
more of its competitors. The purpose of this section is to describe methods by 
which models for tracking software failure data can be compared, and if 
appropriate, combined, so that better predictions are obtained. 

4.6.1 Prequential Likelihoods and Prequential Prediction 

As mentioned before, software failure data, like data from time series, arise 
sequentially. Thus, for example, if Yj represents the time to failure of the ith 
version of the software, i = 1, 2, ... , and if Yi is a realization of Yi, then we 
would observe y. first, Y2 next, Y3 subsequent to Yj, and so on. Given Y .. Y2, ... , 
Yn, which of the several software reliability models that are available should be 
used to predict Yn+1? That is, which of the available models provides us with the 
"best" prediction of Yn+lt given the data Y .. ... , Yn, where by best we mean 
closest to the actual observed values? There are several formal and informal 
approaches to model selection, an informal one being an examination of the 
mean square errors; see, for example, Table 4.5. In the following, we describe a 
formal approach. 

Consider a model M that involves an unknown parameter () on which a 
prior distribution P«() 11i) has been assessed; assume that () is continuous. 
Suppose that the data consist of n consecutive observations, YI, ... , Yn, where Yi 
represents a failure time or a failure count, that is, the number of failures in a 
specified interval of time. Note that, in principle, the data need not be 
consecutively observed, although in the context of software failures this will 
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naturally be so. At any stage of the analysis, say the ith, we may use YI, ... , Yi-I, 
to predict Yi via its predictive distribution [cf. Equation (4.7)], suitably annotated 
to reflect dependence on M, as 

frJy I YI, ... ,Yi-I, M, H) = J!Y;(Y I B, M) P(B I Yh ... ,Yi-I, H)dB; 
e 

note that when i = 1, P(B I Yh ... , Yi-h 'H.), the posterior distribution of B, is 
simply its prior P(B I 'H.). 

Once Yi gets observed as Yi, the left-hand side of the preceding expression 
becomes the likelihood for M under Yi, so that the product, called the 
prequentiallikelihood, 

n 
Ln(M; Yh'" ,Yn) d~fiIII !y;(yj I Yh' .. , Yi-I, M, H), (4.41) 

is the likelihood for the model M under Yh ... , Yn' If, for each observation, our 
model were able to predict the data well, then each term on the right-hand side of 
Equation (4.41) would be large and so would .cn(M; YI> ... , Yn). The taking of 
a product in the preceding expression is motivated by the joint predictive density 
at (y~, ... , y~) of the observables 

n 
f(y~, ... ,y: I M, H) =i III !y;(y; I y~, ... , ll' M, H); (4.42) 

it is called the prequential prediction [see Dawid (1984)]. 
The prequential likelihood can be used as a basis for comparing the 

predictive performance of two models, say MI and M2; see Roberts (1965). For 
this we need to compute the prequentiallikelihood ratio 

(4.43) 

If nn (M I , M 2; Yh ... , Yn) is greater than one, then the evidence at 
hand, namely, Yh ... , Yn (and also 'H.), suggests that model MI performs 
relatively better than model M 2 , and vice versa if the preceding ratio is less than 
one. The magnitude of the value of nn(M I, M 2; Yh ... , Yn) indicates the 
degree to which MI outperforms M2, and vice versa. How big should nn(.) 
be in order for us to judge the superiority of MI over M2? Jeffreys (1961, 
Appendix B) provides some ground rules for doing this; these are given in Table 
4.8. 

It is useful to note that there is no assurance that nne • ) will continue to 
be greater than or less than one, as a function of n, for n = 1, 2, .... Rather, 
nne .) can fluctuate above and below one, the fluctuations reflecting the 
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Table 4.8. Strength of Evidence Provided by ~,,(Mh M2;Yu'" ,y,,) 

Rn(?ltt. ~; Yt. ... ,Yn) Strength of evidence 

<0.01 Decisively against ?ltl 

0.01 to 0.1 Strongly against ?ltl 

0.1 to 0.32 Substantially against ?ltl 

0.32 to 3.2 Neither for nor against ?ltl 

3.2 to 10 Substantially for ?ltl 

10 to 100 Strongly for?ltl 

> 100 Decisively for?ltl 

changing nature of evidence, for or against M I, as a function of n. Increasing 
values of nn(. ) suggest an accumulation of evidence in favor of MI over M z, 
with YI> ... , Yn, for n = 1,2, .... 

Model comparison based on nne • ) alone, as discussed previously, can be 
criticized on two grounds: it does not have a justification within the calculus of 
probability, and the proposed approach offers a mechanism for comparing any 
two models at a time. How should one proceed when faced with the selection of 
a model among more than two models? This, after all, is the circumstance under 
which software engineers often operate. These concerns can be addressed via the 
notion of Bayes' factors and posterior weights. Also germane to this discussion is 
the notion of model averaging; these topics are discussed next. 

4.6.2 Bayes' Factors and Model Averaging 

We start our discussion by considering the case oftwo models MI and Mz. 
The comparing of M I and Mz can be thought of as a test between two 
hypotheses as to which of the two models is the better descriptor of the data that 
will be generated. Suppose that before observing the data, we assign a weight 71' 

to MJ and a weight (1 - 71') to Mz, for 0 < 71' < 1. We may interpret 71' as our 
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prior probability that M 1 is the better of the two models as a descriptor of the 
data to be generated. The quantity 7r/(l - 7r) is known as the prior odds for MI. 
Upon receipt of Yh we can use Bayes' Law to change 7r to 7rl, and then 7rl to 7r2 

upon receipt of Y2, and so on. In general, we can show that the posterior odds for 
M I, 7r/(l - 7ri), i = 1, 2, ... , is related to its prior odds via the expression 

(4.44) 

where Ri(M I , M 2 ; Yh ... , Yi) is the prequentiallikelihood ratio. 
The ratio of the posterior odds for M I to its prior odds is called the Bayes' 

factor in favor of M I; clearly, the Bayes factor is simply the prequential 
likelihood ratio. When 7r = 0.5, the Bayes' factor in favor of MI is simply the 
posterior odds in favor of M lover M2, and that 

(4.45) 

In general, it is easy to verify, using Bayes' Law, that the posterior weight 7ri 

is of the form 

7ri = (4.46) 

The posterior weight can be considered as a measure of the relative 
performance of the two models, on the basis of the first i observations. If 7ri is 
greater than 0.5, then MI is judged superior to M2; vice versa, otherwise. The 
connection between 7ri and R i ( • ) is apparent from Equation (4.46). The former, 
which has a motivation within the calculus of probability, is a transformation of 
the latter, and is restricted to the interval (0,1). 

The preceding idea extends easily to the case of k models, M I, ... , M k • 

Let 7rv) be the prior weight assigned to model Mj> with 0 < 7rv) < 1, and 

2:~I7rV) = 1. Then, Equation (4.46) generalizes to give the posterior weight 

7rY) = nV) x .ci(Mj ; Yt> ... , Yi) 
I k 

L: nV) x .ci(Mj; Yt> ... , Yi) 
j=l 

(4.47) 

When we are faced with the task of selecting one among the k proposed models, 
then we will choose that model which has the largest posterior weight. If, prior to 
observing the data, we have no preference for one model over another, then our 
prior weights will be 7rv) = 11k, j = 1, ... , k. 

The posterior weights not only provide us with a mechanism for model 
selection, but also come to playa role in the context of model averaging. To 
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make the case for model averaging, suppose that in Table 4.8 we happen to 
arrive upon the scenario of the category "neither for nor against M 1." That is, 
for all intents and purposes, the available evidence does not favor one model 
over the other vis-a-vis their predictivity. When such is the case predictions that 
are a weighted average of the predictions of the individual models make intuitive 
sense, and this is the idea behind model averaging. Another motivation for model 
averaging stems from the notion that "all models are useful, but some are more 
useful than the others," and so predictions that are a weighted average of the 
individual model predictions would be more encompassing than, and therefore 
superior to, the individual predictions. The weights assigned to the individual 
predictions are the posterior weights 7rY) of Equation (4.47). Thus, given y .. ... , 
Yn, we can use the law of total probability to argue that the predictive distribution 
of Yn+1 should be of the form 

(4.48) 

rather than Jr.+1 (y I Ylo ... , Yn, M;, 11.), the predictive distribution associated 
with model M; alone, when 7r~) is the largest of the k posterior weights. 

4.6.3 Model Complexity-Occam's Razor 

Model complexity refers to how elaborate we have been in specifying a 
model. Since it is generally true that a model with more parameters will have a 
predictive advantage over a simpler model, particularly when the amount of data 
is small, one is tempted to select the most complex model. However, in statistical 
modeling, and in science as a whole, the principle of choosing a model that is as 
simple as possible has a high standing. This simplicity principle is known as 
"Occam's Razor," and may be stated as follows. 

Model complexity must not be increased unless sufficiently justified 
in terms of improved observational prediction. 

In practice then, some sort of tradeoff between model complexity and 
predictive power is needed. It has been shown that the Bayesian approach to 
model selection that has just been described naturally incorporates Occam's 
razor [cf. Tversky, Lindley, and Brown (1979)]. How it does so is outside the 
scope of this book, but suffice to say that, in general, if we have two models-a 
complex M 1 and a simpler M2-and both are assigned equal prior weight, then 
the posterior weight of M 1 will be higher only if it shows a significant 
advantage in predictive ability over M2. 
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4.6.4 Application: Comparing the Exchangeable, Adaptive, and Non­
Gaussian Models 

The methodology of Sections 4.6.1 and 4.6.2 can be applied for comparing 
the predictive ability of the three dynamic models discussed in Section 4.5; a 
precedent here is the work of Raftery (1988). In what follows we perform a 
pairwise comparison of two models at a time, starting with the exchangeable 
model (henceforth, M d and the adaptive model (henceforth M2) and then a 
comparison of MI with the non-Gaussian model (henceforth M3). In all cases 
we assume that the prior odds is one; that is, a priori we have no preference for 
one model over the other. 

For a comparison of M I with M2, we first compute the prequential 
likelihood ratio RlOo(M 1, M2; Yh ... , YIOO), using Equation (4.43), and the data 
in column 3 of Table 4.7. Note that to compute the prequential likelihood 
Cn(M I; Yl' ... , Yn), we must successively evaluate the predictive distribution, 
Equation (4.33), at the observed Yl, Yz, ... ,Yn' Thus, for example, C2(M 1; Yh 
yz) is the Gaussian distribution N(mlYl, y~ s~ + rz) evaluated at Yz, and so on. 
Similarly, to compute the prequential likelihood Cn(M2; Yh ... , Yn) we must 
use the predictive distribution of Equation (4.35). The computation of Rn(Mt. 
M 2; Yl, ... , Yn), although cumbersome, is relatively straightforward. For the 
data of Table 4.7, the prequentiallikelihood ratio turned out to be 490.50; this 
according to Jeffreys (see Table 4.8) would suggest a decisive evidence in favor 
of M I, the exchangeable model. Recall that with the prior odds of one, the 
prequential likelihood ratio (or the Bayes' factor in favor of M t> is also the 
posterior odds for MI. 

It is interesting to monitor the behavior of Rn(MI, M 2; Yh ... , Yn) as a 
function of n. This indicates how evidence in favor of, or against, M I evolves 
with the accumulation of data. Figure 4.12 shows a plot of Rn(M t. M2; Yh ... , 
Yn) versus n, for the System 40 data. The predictive superiority of MI over M2 
is consistent, and clearly evident starting with about the fortieth failure time. In 
general, it need not be so that the plot of Rn ( • ) versus n is always increasing (or 
decreasing) with n. It could, for example, decrease and then increase, suggesting 
that the initial evidence favors model M2 over M I, but then later on, the reverse 
is true; see Section 4.6.4 for an example. 

When an exercise analogous to the preceding is performed to compare 
models M3 and MI by computing 

L n(M3; tl> ... , tn ) 

Ln(MI; Yh ... , Yn) , 
(4.49) 
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FIGURE 4.12. Prequential Likelihood Ratio 'Rn(Mt. M2; .) 
for System 40 Data. 
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FIGURE 4.13. Logarithm of the Prequential Likelihood Ratio 
'Rn(M3, Ml; .) for System 40 Data. 
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FIGURE 4.14. Prequential Likelihood Ratio 'Rn(M., M 2 ; .) 

for the NTDS Data 

it is found that the non-Gaussian model M3 clearly outperforms the 
exchangeable model M I. Figure 4.13 shows a plot of the logarithm of 
'Rn(M3,M I; .) versus n. Note that for computing Ln(M3; th ... , tn), the 
predictive distribution of Equation (4.39) is used. Observe that in computing 
(4.49) the numerator involves the actual observed data whereas the denominator 
involves the logarithms of the observed data. This asymmetry does not pose any 
problems because the prequential likelihoods are based on evaluations of 
predictive distributions. 

4.6.5 An Example of Reversals in the Prequential Likelihood Ratio. 

The plots of Figures 4.12 and 4.13 show a monotonic behavior of the 
prequential likelihood ratios suggesting the consistent superiority of one model 
over its competitor. To illustrate that this need not always be so, consider the 
NTDS data of Table 4.6, and Mazzuchi and Soyer's (1988) analysis of it using a 
hierarchical model (henceforth M I), and its special case (henceforth model 
M 2 ); see Section 4.4.1. Recall that MI is the more complex model; it involves 
five hyperparameters whereas M2 requires only three. M I is specified via 
Equations (4.16) and (4.18), whereas M2 is its special case. The predictive 
distribution is given by Equation (4.22). 
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Figure 4.14 shows a plot of 'R.n(MI, M 2 ; tl> •.• , tn), the prequential 
likelihood ratio, as a function of the observed interfailure time tn, n = 1, ... ,26. 
Observe that after initially favoring MI, 'R.n(MI, M2; .) becomes less than 
one for most of the data, so that M2 is preferred. Both MI and M2 provide 
good predictions, and so the selection procedure acts in according to Occam's 
law and chooses M2, the simpler of the two models. It is only when the 
surprising observation t24 (91 days) occurs that the more complex model M I 

becomes favored again, presumably because of its greater flexibility. However, 
since t25 and t26 are more in line with the rest of the data, support for M lover 
M2 begins to diminish and 'R.n(MI, M 2; .) begins to decrease. The example 
illustrates the role of 'R.n(. ) for comparing models in the presence of surprising 
evidence and its adherence to the principle of "Occam's Razor." 

4.7 Inference for the Concatenated Failure Rate Model 

In Section 3.6 we introduced a generic model for assessing software 
reliability growth that is potentially useful for applications other than software. 
As was pointed out in Section 3.6.2, the model is adaptive, has two parameters b 
and k, and possesses features that capture a software engineer's intuition and 
views about software failure and software quality. The model capitalizes upon 
some of the key features of existing software reliability models that have proved 
to be attractive. In particular, the model, as specified by a concatenation of 
failure rate functions given by Equation (3.28) exhibits the features reviewed in 
the following. 

(a) For any fixed n, Tn has a decreasing failure rate. 

(b) For any fixed n, rT. (0) is the proportional intensity of failures up to time 
Sn-I. 

(c) The failure rate takes an upward jump at Sn, if (n - 1) > kJb, 
rT.+I (1 I Sn) < rT. (t I Sn-I), if and only if Tn+1 is greater than the average 
of times up to the (n + l)th failure. 

(d) The parameter b tunes the initial failure rate, and the parameter k the 
rate at which the failure rate decreases. 

(e) With b < kJ(k - 1) the model reflects grOWth in reliability and also the 
feature that removal of early bugs contributes more to growth. 

The aim of this section is to exploit these features for specifying prior 
distributions for band k so that statistical inference based on n observed times 
between software failure 1. = (tl' ... , tn ) can be conducted. To do so, we need to 
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have a likelihood function, and for this we may use the one-step-ahead forecast 
density [Equation (3.30)]. Specifically, given 1, a likelihood for band k is 

n - I.. )-(k+l) 
.c (b k' t) = II H!. (H!. !i±J. + 1 

n , '- i = I Sj Sj k ' 
(4.50) 

where Sj = E~=I tj. 

4.7.1 Specification of the Prior Distribution 

To specify 7r(b, k), a joint prior distribution for band k, it is useful to recall 
the following results from Section 3.6.2. 

E(Tn+l - wi Tn+l > w) = k~l w + k~l (;it;) . (C) 

From (A) we see that b :2:: 0; similarly, from (B) we see that k :2:: 2, and that 
large values of k do not influence the variance of Tn+l • From (A) and (B) we see 
that, for any fixed n, both the mean and the variance of Tn+1 decrease in b. Thus, 
to generate conservative one-step-ahead forecasts, small values of b are to be 
preferred. 

Prior Distribution for k 

The prior distribution for k is largely dictated by (C). Because k must be 
greater than or equal to 2, (C) essentially says that the mean residual life (MRL) 
depends on k but is between w and 2w plus a constant. Values of k close to 2 
make the MRL close to 2w and large values of k make it close to w. A 
compromise is to choose k such that the MRL ~ l.5w plus a constant. That is, 
to make k/(k - 1) ~ 1.5, which suggests that k ~ 3. Thus a suitable prior for k 
is a gamma on [2, 00) with parameters A (scale) and B(shape) chosen such that 
E(k I A, B) ~ 3; that is, 2 + (BfA) ~ 3, which suggests that B = A. Hence a 
possible prior on k is a shifted (at 2) exponential density with scale A; 
specifically, 

7rK(k I A) = Ae-)'(k-2) , k:2:: 2, A > O. (4.51) 



156 4. Statistical Analysis of Software Failure Data 

FIGURE 4.15. lllustration of the "Objective" Prior for b. 

In what follows, interest centers around the quantity u = k/(k - 1). With the 
prior on k given by Equation (4.51), it is easy to verify (see Exercise 6), that the 
prior on u is 

7f(U I A) = _1_ Ae-A«lI(u-l)) - 1) 1 <_ u <_ 2. 
~-l~ , (4.52) 

Prior Distribution for b 

For the prior on b, conditional on k, AI-Mutairi, Chen, and Singpurwalla 
(1998) argue that if the software is believed to experience a growth in reliability 
with a prior probability Ph a decay with a prior probability P2, and neither 
growth nor decay with probability (1 - PI - P2), then an omnibus prior is a 
composite distribution with components that have beta and shifted gamma 
densities; specifically, 

r(o+,B) b",·1(u_b)f3-1 
PI r(o)r(,B) u",+(3-1 0< b < u, 

7l"(b I k; .) = { 
r(o+,6) bex-1 (u-b)f3-1 

PI r(o)r(,6) uex+f3-1 0< b < u, 

1-PI - P2 b= u, 
(0 ')f3' (b-u)f3'-1 e-o·(b-u) 

P2 rCB") , b> u. 

(4.53) 
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FIGURE 4.16. Regions Where the Joint Prior is Defined. 

To make this choice as "objective," or as neutral, as is possible, a should be 
chosen to equal 2, and P = a* = p* = 1. Pictorially, this prior takes the form 
shown in Figure 4.15. 

Joint Prior for band k 

Once the preceding has been done, 7r(b, k I .), a joint prior on band k, and 
also the unconditional prior for b can be easily induced. Figure 4.16 shows the 
regions over which the joint prior is defined; it delineates the regions of 
reliability growth, decay, and stationarity (i.e., neither growth nor decay). 

4.7.2 Calculating Posteriors by Markov Chain Monte Carlo 

The joint prior on band k, together with the likelihood function Equation 
(4.50), enables us to obtain the joint posterior distribution of b and k via the 
relationship 

rr(b, kif..; .) oc .cn(b, k; 1) rr(b, k I .). 

Once the preceding is done, the marginal posterior distributions 7r(k I!..,. ) 
and 7r(b I L,. ) can be obtained; these are useful for testing hypotheses about 
reliability growth. The complicated nature of the likelihood and the prior makes 
it difficult to obtain closed-form expressions for the posteriors. The same is also 
true with numerical approximations. When such is the case simulation via the 
Gibbs sampling algorithm has proven to be a useful technique. Gibbs sampling is 
a Markov Chain Monte Carlo (MCMC) method, an excellent description of 
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which is given by Casella and George (1992). We have given an overview ofthis 
technique in Appendix A. For our particular application, a computer program 
that implements the Gibbs sampling algorithm has been developed by Lynn 
(1996). It obtains the posterior distributions of k and b, and also the predictive 
distribution of Tn+l , the time to next failure. The program is also able to compute 
Bayes factors for testing hypotheses about reliability growth, decay, or 
stationarity. 

To implement the Gibbs sampling algorithm (see Appendix A), we first 
need to obtain the following conditional distributions. 

7r(k I b,{, .) IX Ln(k; b, {) 7r(k I b, .) 

ex: Ln(k; b, {) 7r(b I k, .) 7r(k I .), and 

7r(b I k,{, .) IX Ln(b; k, L) 7r(b I k, .), where (4.54) 

Cn(k; b,JJ is the likelihood of k for fixed values of band L; similarly Cn(b; k,JJ. 
Note that the second expression of Equation (4.54) follows from the fact that 
n(k I b, .) IX n(b I k, .) n(k I .). We now generate the Gibbs sequence (kh, 
b~), (k~, b;), ... , (k~, b~) for some m > 0, as follows. 

(i) Choose an initial value of k, say k~, 

(ii) Generate a b~ via n(b I kh, L, .), 

(iii) Generate a k~ via n(k I b~, L, .), 

(iv) Generate a b; via n(b I k~, L, .), 

(v) Generate a k~ via n(k I b;, L, .) and so on. 

For large values of m, k~ is a sample observation from the posterior 
distribution n(k I L, .), and b~ an observation from n(b I L, .). If we repeat the 
foregoing procedure N times, choosing N different starting values k~, k5' ... , 
k~, and obtaining, at the end of each cycle, the sample points (kk, b~), j = 1, .. . 
, N, then we have generated a sample of size N from the required posterior 
distributions n(k I L, .) and n(b I L, .). Thus an estimate of n(k I L, .), k E [2, 
(0) is 

N 

1i'(k I {, .) = ~ L7r(k I b{", {, .); 
j=! 

N 

similarly, 1i'(b I {, .) = ~ L7r(b I k~, {, .), 
j=! 
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for b within its defined range is an estimate of n(b I 1.., .). 
Finally, since 

E(Tn+l I Sn, b, k) = (k-l~ nb Sn , 

E(Tn+l I£)= J E(Tn+l I Sn, b, k,!) neb, k I!, • )dbdk. 
(k,hl 

Thus a Gibbs sequence based estimate ofE(Tn+1 I!..) is 

N . 
~ -.l~ k/" 
E(Tn+1 I!) - N f=;t (k/,,-l) nb!" Sn , (4.55) 

and from Equation (3.30), a Gibbs sequence based estimate of the posterior 
predictive density of Tn+1 at 7 2:: 0 is 

~f (7 It) - .1 ~ n /J", (n b~ T ) - (k~+ 1) 
Tn+l - - N L...J Ii s;;- (km') + 1 . 

j=l n 

(4.56) 

Thus the Gibbs sampling algorithm provides an easy to implement 
procedure for obtaining Monte Carlo based estimates of the required posterior 
and predictive distributions. 

4.7.3 Testing Hypotheses About Reliability Growth or Decay 

The marginal posterior distributions n(b I 1.., .) and n(k I!.., .) provide 
evidence about growth, decay, or stationarity of reliability. A way to capture this 
is via "Bayes factors." Suppose that HI denotes the hypothesis that there is a 
growth in reliability, H2 the hypothesis that there is decay, and H3 the hypothesis 
that the debugging process results in the stationarity of reliability. Then, we can 
verify (see Exercise 7) that the posterior probability of Hi, i = 1,2,3, is 

(4.57) 

where Pi is our prior probability of Hi, and Bji is the Bayes factor in favor of Hj 
against Hi. Furthermore, B;i = 1, Bji = (Bijt l and Bik = Bi/Bkj, for all i and j. 
The calculation of Bij is facilitated by the fact that Bij is the "weighted" (by the 
priors) likelihood ratio of Hi against Hj [cf. Lee (1989), p. 126]. For the problem 
at hand, the estimation of the needed Bayes factors is accomplished via the 
Gibbs sequence (b~, ki,.),j = 1, ... ,N. Specifically, B12 is estimated by 
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where PI (0 is the proportion of times (out of N) that b~ is strictly less than 
k~/(1 - k~) , and P2Q) is the proportion of times that b~ is strictly greater than 
k~/(1 - k~). Note that PiC!..) is an estimator of P(Hi 1.0, i = 1, 2. Similarly, B13 
and B23 are estimated via 

(4.58) 

4.7.4 Application to System 40 Data 

The concatenated failure rate model of this section and its methodology for 
inference has been applied to the System 40 Data of Section 4.5; see column 2, 
Table 4.7. The hyperparameters of the prior distributions, Equations (4.51) and 
(4.53), were chosen as: A = 1, a = 2, f3 = a* = f3* = 1, and PI = P2 = 0.25. 
Details about the rationale behind this choice are given by AI-Mutairi, Chen, and 
Singpurwalla (1998). In column 7 of Table 4.7 we give the means of the one­
step-ahead predictive distributions of Tn+!. for n = 2, ... , 100; see Equation 
(4.55). Figure 4.17 shows a superposition of a plot of these predictive means on 
a plot of the observed data; the plots are on a logarithmic scale. These plots 
provide an informal assessment of the ability of the proposed model to track the 
data. 

We note from Figure 4.17 that the adaptivity of our model reflects its ability 
to track the data, and the tracking is particularly good during the latter stages of 
testing. The predictive mean times to the next failure show an initial growth in 
reliability followed by a period of general decay (or perhaps stationarity), which 
is then followed by a slow upward trend. The growth in reliability appears to 
stabilize towards the very end, but the large fluctuations in the data signal the 
need for caution in making this claim. 

A comparison of the entries in columns 6 and 7 of Table 4.7 via the 
prequential likelihood ratio method of Section 4.6.1 demonstrates the predictive 
superiority of the concatenated failure rate model over the non-Gaussian Kalman 
filter model; the details are in Lynn (1996). Recall (see Section 4.6.4) that since 
the non-Gaussian model outperforms its competitors in the class of dynamic 
models, we claim that among the models considered here, the concatenated 
failure rate model provides the best predictivity for the System 40 data. 
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FIGURE 4.17: A Plot of the System 40 Data and Its One-Step-Ahead 
Predicted Means (on a Logarithmic Scale). 

A final issue that remains to be addressed is that pertaining to reliability 
growth. Our previous analysis of the System 40 Data did not lead to conclusive 
results about reliability growth or decay. Will the model of this section provide 
better insights? To explore this matter, let.t(j) = (tl, ... , tj),j = 1,2, .... Using 
the approach of Section 4.7.3, we obtain an estimate of P(H; l.t (j», for i = 1, 2, 
3, where P(H; I .t (j» is the posterior probability of H; given the first j inter­
failure times. Figure 4.18 is interesting; it shows band plots of the estimated 
posterior probabilities P(H; l.t (j», as a function of j, for j = 1, 2, ... , 101. The 
bottom band of Figure 4.18 shows P(H1 I tv)' .), j = 1, ... , 101, and the 
central band P(H1 I t(j), .) + P(H3 I tv)' .). From these bands we may infer 
how the three posterior probabilities relate to each other over the various stages 
of debugging and testing. That is, how the evidence for, say growth, fluctuates 
and evolves over time. Roughly speaking, one conclusion is that the initial 70% 
or so of the effort has not resulted in a growth in reliability, and the 30% effort 
that has led to growth has occurred during the latter stages. Also, the absence of 
reliability growth can be attributed more to the consequence of stationarity than 
to decay. Observe that the top band of Figure 4.18 indicates very small values 
for P(H2 I tv), .), j = 1, ... , 101. Could it be that the initial stages of 
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FIGURE 4.18. Band Plots of Estimated Posterior Probabilities 
for System 40 Data. 

debugging have provided a learning environment for the process with the 
fortunate circumstance that there was not a preponderance of reliability decay? 
One could draw several other such conclusions, but the fact remains that plots of 
the posterior probability bands for testing hypotheses-like Figure 4.18-are 
valuable inferential devices. 

Another attractive feature of the concatenated failure rate model, as 
compared to the non-Gaussian Kalman filter model, is smoothness of the 
predictive means; see Figure 4.19. An appreciation of reliability growth and/or 
decay can be visually better assessed via the predictive means of the former. 
Thus, to conclude, the improved predictivity of the concatenated failure rate 
model (for the System 40 Data), the availability of band plots of Figure 4.18, 
plus the fact that the model has more structure to it compared to the "black-box 
models" of Section 4.5, suggest that the model be given serious consideration for 
application after validation against other sets of software failure data. 
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Non-Gaussian Models for System 40 Data (on Logarithmic Scale). 
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4.8 Chapter Summary 

The focus of this chapter (by far the biggest) is on the incorporation of 
observed failure history when assessing uncertainties. The driving theme here 
was Bayes' Law and its components, the likelihood function and the prior 
distribution. Thus the role of the data is to revise (or to update) prior 
uncertainties in the light of the information that the data provide. For purposes of 
completeness and also connections with current practice, the method of 
maximum likelihood and its associated confidence interval estimation was 
reviewed and illustrated. 

Prediction and Bayesian inference using the models by Jelinski and 
Moranda, and by Goel and Okumoto were then described by us using some real 
data and proper prior distributions. In the sequel, we alluded to the 
computational difficulties that the Bayesian approach generally tends to create, 
and suggested approaches for overcoming these. Since proper prior distributions 
having well-known mathematical forms need not reflect true beliefs, an approach 
for eliciting priors based on the opinions of experts was described. The approach 
boils down to treating the expert's inputs as data, and for reflecting our 
assessment of the expertise of the expert through the likelihood. The case of 
multiple experts entails possible correlations between the expert announcements, 
and the treatment of such correlations via the likelihood function was mentioned. 
The preceding approach was applied to some software failure data that were 
analyzed by the nonhomogeneous Poisson process model of Musa and Okumoto. 
The expert input was based on several empirically developed ground rules 
suggested by software engineers with coding and testing experience. 

Prediction and Bayesian inference using three dynamic models, the random 
coefficient autoregressive model, the adaptive Kalman filter model, and non­
Gaussian Kalman filter model were next described, and their predictive 
performance on a single set of data, namely, the System 40 Data was compared. 
It was found that the non-Gaussian model gave predictions having the smallest 
mean squares error, but that implementing this model entailed simulation by the 
Markov Chain Monte Carlo (MCMC) method; this method is described by us in 
Appendix A. 

An important feature of this chapter is our discussion of the topics of model 
comparison, model selection, and model averaging, using Bayes' factors and 
prequential likelihood ratios. Bayes' factors are weights that are assigned to a 
class of plausible models. These weights are developed a posteriori; that is, after 
incorporating the data. Bayes' factors can be used for the tasks of model 
selection and model averaging. We also give Jeffreys' ground rules for judging 
the superiority of one model over another. Prequentiallikelihood ratios compare 
one model over another based on their predictivity. 

The chapter concluded with inference and hypotheses testing using the 
newly proposed adaptive concatenated failure rate model. The noteworthy 
features of the material here are the development of suitable proper prior 



4.8 Chapter Summary 165 

distributions, and the MCMC computation of Bayes' factors for testing 
hypotheses about reliability growth, decay, or neither. One-step-ahead 
predictions provided by this model using the System 40 Data turned out to be 
superior to those provided by the non-Gaussian Kalman filter model; this 
comparison was made using prequential likelihood ratios. A plot of the profile of 
the Bayes' factors, as a function of testing, showed that it is only during the latter 
stages of testing that true growth in reliability occurred. During the bulk of the 
testing effort, there was neither a growth nor a decay in reliability. A profile plot 
of the Bayes' factors facilitates the preceding type of conclusions. 
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Exercises for Chapter 4 

1. Verify statements (i), (ii), and (iii) about the posterior distributions 
given in Sections 4.2.3 and 4.2.4. 

2. Verify the results given by Equations (4.10), (4.14), (4.19), (4.20), and 
(4.22). 

3. For the "de-eutrophication" model of Moranda (1975) [see Equation 
(3.6)] show that if the prior distribution on D is a gamma with a scale 
(shape) parameter b(a), and the prior distribution on k is a beta with 
parameters /31 and fh, independent of the distribution of D, then, given 
the interfailure times t (n) = (tl, ... , tn ): 

(i) the joint posterior distribution of D and k is proportional to 

n 

Dn+b.lkfMCCnCn.I»/2)-I(l-k),62.lexp{ - (a+ Lki.1ti ) D} 
1=1 

(ii) the posterior distribution of k is proportional to 

kf31+ «"("-1»)12) -I (l-k)i32-1 

(a+",n ki-It.)n+b 
L..,.1=1 I 

and 

(iii) the predictive density of Tn+l , the next time to failure, at the 
point t, conditional on k, is proportional to 

(iv) What is the predictive density of Tn+1 conditional on ten) 
alone? 

(v) Numerically evaluate the predictive density that you have 
obtained in part (iv) using the NTDS data, for n = 1,2, ... , 
26, and show its plot for T27 • Compare the means of your 
predictive densities with the entries in column 3 of Table 4.6. 

(vi) Does the de-eutrophication model provide better predictivity 
of the NTDS data than the hierarchical model of Section 4.4? 

4. Verify Equations (4.29) through (4.33) of Section 4.5.1. 
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5. Consider the interfailure time data given in column 3 of Table 4.7. 
Obtain the means of the predictive distributions of Yi , i = 3, 4, ... , 
100, using the adaptive Kalman filter model of Section 4.5.2, for a = 
-1, -0.5, +0.5, and +1. Which of the preceding values of a provides the 
best fit for the observed data? You may use the mean square error as a 
criterion for assessing the goodness of fit. 

6. Verify Equations (4.37) through (4.39) of Section 4.5.3, and Equation 
(4.52) of Section 4.7.1. 

7. Verify Equations (4.57) and (4.58) on Bayes' factors of Section 4.7.3. 

8. Using the data of Tables 4.1 and 4.2, perform an analysis of the 
Jelinski-Moranda model via the Gibbs sampling algorithm outlined in 
Section A.3.1 of Appendix A. Assume the same values for the 
hyperparameters as those of Section 4.2.3, and compare your answers 
with those in the preceding section. 

9. For the NTDS Data of Table 4.2, replicate the analysis shown in Table 
4.6 and Figure 4.4 using the Gibbs sampling algorithm outlined in 
Section A.3.2 of Appendix A. Assume the same values for the 
hyperparameters as those in Section 4.4.1, and compare your answers 
with those given in the preceding section. 



5 
SOFTWARE PRODUCTIVITY 

AND PROCESS MANAGEMENT 

5.1 Background: Producing Quality Software 

In this chapter we address two topics that are of interest to managers of 
software development teams. The first pertains to producing software within 
reasonable cost and time constraints. The second pertains to ensuring that the 
software produced is of acceptable quality. Statistical techniques have a role to 
play here, and the aim of this chapter is to highlight this role. 

When developing software, an issue faced by a manager is the prediction of 
development time and effort. A common approach is to first estimate the size of 
the program, say the number of lines of code, and then use some guidelines on 
productivity rates to arrive at the time and effort needed to complete the project. 
Our focus here is on the use of historical data to estimate productivity rates. 
Good estimates of the number of lines of code are essential, and a plausible 
approach is to elicit specialized knowledge, and then use the techniques of 
Section 4.3.2 to assess the required quantity. 

Typical approaches for assessing productivity rates are based on intuition 
or, at best, rough averages of historical data on the design, implementation, and 
unit tests of small programs. The introduction of a structured statistical 
framework for collecting and analyzing such data should be an improvement 
over current practice; this is what is described in Section 5.2. It is important to 
bear in mind that the time required to design, code, and unit test a program is 
only a modest, although important, part of the total project activity. The 
remainder of a programmer's time is used for other activities such as meetings, 
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negotiations, documentation, and the like. Although these actIvItIes are 
necessary, a professional's time spent on them cannot be accurately measured, 
nor can it be controlled. Thus what is discussed in Section 5.2 does not cover the 
full spectrum of activities that go into determining productivity rates. However, 
until meaningful data on these "other activities," can be collected, the best that 
we can hope to do is to carefully analyze the available data on designing, coding, 
and testing by an individual programmer or a group of programmers. 

In Section 5.3 we address the issue of process management for software 
quality. This issue is of concern not only to managers of software development 
houses, but also to those charged with the task of choosing a vendor of software. 
It is not uncommon for the developers of large systems to charter a software 
development organization, a software house, to produce the software needed to 
run the system. Vendor evaluation models have been used since the earliest days 
of competitive marketing. Comparing like products by price should not be the 
sole criterion for purchase. To make sound purchasing decisions myriad factors 
should be considered and evaluated. To facilitate this, several models have been 
proposed and used by industry, many of which result in classifying a vendor (or 
a supplier) by one of several classes that constitute a hierarchy. The Capability 
Maturity Model (CMM) is one such hierarchical classification scheme. It was 
developed by the Software Engineering Institute (SEI) of Carnegie Mellon 
University, and is specifically designed for software development. The material 
of Section 5.3 is geared towards the CMM. There we describe a normative 
approach for classifying a supplier by one of several categories, with the 
classification being probabilistic. That is, we are able to assign a positive 
probability that a supplier belongs to each of the several classes. This is in 
contrast to the traditional use of the CMM wherein classification is made with 
certainty. Despite criticisms, the CMM has been widely used by government and 
industry. Thus what is described in Section 5.3 should be viewed as an 
enhancement of the CMM, an enhancement that we hope helps overcome one of 
its weaknesses. 

5.2 A Growth-Curve Model for Estimating Software Productivity 

Human performance indices, such as software productivity, can be assessed 
by what are known as growth-curve models [ef. Rao (1987)]. Such models have 
been used for describing human learning experiences and have provided suitable 
fits to data on performance-based activities. A characteristic feature of learning 
experience data is that the successive measurements tend to be autocorrelated 
(Le., related to each other). When developing software code, there appears to be 
the presence of an underlying learning process that has the tendency to improve 
the successive development activities. Consequently, the development times for 
individual programmers, or teams of programmers, tend to be correlated. It is 
because of this dependence that the software productivity process is predictable. 
If the data were not correlated, a level of stability is likely to have been reached, 
and the best prediction is the arithmetic average of the data. 
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As a general rule, moderate to long sequences of human performance data 
exhibit a degree of learning so that there is an underlying trend. Superimposed 
on this trend are often unanticipated and sharp deviations from normal 
expectations, followed by a reversal to the normal. Such fluctuations occur when 
individuals (or groups of individuals) alternate between performing unfamiliar 
tasks and familiar extensions of previously accomplished tasks. The 
methodology proposed here is geared towards drawing conclusions about 
productivity rates using data that consist of trends and fluctuations. 

5.2.1 The Statistical Model 

Consider a database of n programs, each program containing several lines of 
code. The number of lines of code per program need not be the same. We 
assume that each program in this database is developed by a single programmer, 
or by the same team of programmers, under circumstances that are for all intents 
and purposes identical. By "identical circumstances," we mean a similar working 
environment, such as policies, procedures, management, and the like. Of course 
each program in the database is distinct, in the sense that it is required to perform 
its own specific task. The observed data consist of the minutes per line of code 
needed to develop each program, and by the term "develop" we mean design, 
implement, and unit test. It is important to bear in mind that since the database 
pertains to an individual programmer, or to a team of programmers, all the 
derived measures of software productivity, and also the projected productivity 
figures, are valid for that individual or that team. 

Let X(1) denote the minutes taken per line of code to develop the first 
program that is written, and let Y(I) = 10geX(1). Similarly, X(2) denotes the 
minutes per line of code for the second program that is developed, and so on. 
Thus X(t), t = 1, ... , n, constitutes a time series that is indexed by the program 
number, 1,2, ... , n, instead of the usual time. If the assumption that there is an 
underlying learning phenomenon in writing the programs were to be true, then 
X(t) would tend to be smaller than X(t - 1), for all values of t; it is otherwise if 
there is a degradation (i.e., the opposite of learning). In what follows, we assume 
that X(t) has a lognormal distribution; this implies that Y(t) = 10geX(t) has a 
normal distribution. The assumption of lognormality can be justified on grounds 
of a subjective choice; however, it can also be supported on the basis of 
empirical evidence. It has often been claimed that time required to complete 
tasks such as maintenance and repairs tends to have a lognormal distribution. 
The development of software code is not unlike these tasks. 

Suppose that the X(t)s are scaled so that X(t) ~ 1, for all t. Then, since X(t) 
bears a relationship to X(t - 1), we propose that 

X(t) = (X(t - 1»°(1) , (5.1) 

where (}(t) < 1 suggests that there is a growth in productivity (or learning) in 
going from program t - 1 to program t. Similarly, (}(t) > 1 suggests a 
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degradation of productivity. With (J(t) < I, the model of Equation (5.1) is a 
growth-curve model. 

The power function relationship of (5.1) was postulated based on 
assumptions about the software development process mentioned previously. To 
introduce a measure of uncertainty into this formulation, we suppose that the 
relationship between X(t) and X(t - 1) incorporates a multiplicative random 
quantity as follows, 

X(t) = (X(t - l)i~(t) €(t) . (5.2) 

Here €(t) is an assumed lognormal error term with parameters 0 and a 2(u). The 
parameter a 2(u) is positive; its magnitude reflects the extent of our uncertainty 
about the relationship (5.1). 

If we let ",(t) = In(€(t)), then Y(t) can be written as a first-order 
nonhomogeneous autoregressive process of the form 

Y(t) = (J(t) Y(t - 1) + ",(t) . (5.3) 

Since the X(t)s are assumed lognormal, it follows that the Y(t)s are normally 
distributed and that ",(t) has a normal distribution with a mean 0 and variance 
a 2(u). Here, for example, a large value of ",(t) would represent a high degree of 
uncertainty about the appropriateness of the relationship Y(t) = (J(t)Y(t - 1). The 
relationship (5.3) is an autoregressive process of order 1 [see, for example, Box 
and Jenkins (1970)] except that the coefficient (J(t) is allowed to change from 
stage to stage. This is the reason for using the qualifier nonhomogeneous when 
describing (5.3). The model of Equation (5.3) is identical to the random 
coefficient autoregressive process model of Equation (3.21), except that the 
latter pertains to interfailure times, whereas the former pertains to the minutes 
per line of software code. 

Even though the model given previously is simple in construction, it can 
incorporate a wide variety of user opinions about the growth or decay in 
productivity. This is achieved by assuming that the parameters (J(t) and a 2(u) 
themselves have distributions whose hyperparameters are specified. To 
implement this, we first focus on the model uncertainty parameter a 2(u), and 
then the growth/decay parameter (J(t). 

Prior on the Model Uncertainty Parameter 0"2(U) 

The parameter a 2(u) can either be specified by a user or can be estimated 
from the data; here we assume that it is estimated. For this we must specify a 
distribution that describes our uncertainty about a 2(u). The traditional approach 
is to assume that ¢, the reciprocal of a 2(u), has a gamma distribution with a 
scale hyperparameter (b l l2) and a shape hyperparameter ('·'(I12) [see West, 
Harrison, and Migon (1985)]. The advantage of letting the data determine the 
value of a 2(u) is flexibility in model choice and, as a consequence, greater 
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accuracy with respect to a given set of data. The disadvantage is that, when the 
working process has productivity growth or decay characteristics, and when the 
limited available data do not clearly reflect this trend, predictions of future data 
would be distorted. This is always a matter of concern: the degree to which 
predictions are controlled by data rather than by prior knowledge of process 
fundamentals. 

Prior on the GrowthlDecay Parameter (J(t) 

Since (J(t) can take values in the range (-00, +00), with (J(t) < 1 implying 
gains in productivity, it is reasonable to assume that the (J(t)s have a normal 
distribution with a mean of .>., and a variance of (a2(v»)/¢J, where ¢J is l/a2(u). 
The hyperparameter a 2(v) is specified by us and is based on our opinions about 
the underlying learning process. Thus, for example, with .>. < 1, small values of 
a 2(v) would suggest productivity growth, whereas with .>. > 1, they would 
describe a decay in productivity. Large values of a 2(v) also suggest that 
productivity fluctuates widely. Although values of.>. less than or greater than 1 
would again describe productivity growth or decay, the degree of fluctuation 
would generally mask this trend. Large values of a2(v) would be appropriate, for 
example, with drastic changes in the nature of the programming tasks, with 
significant changes in the programming methods used, or with major changes in 
personnel staffing or capability. 

At this point, we should note that, with the productivity of individual 
programmers, a slowly evolving pattern of productivity growth or decay should 
be expected with an occasional disruption due to unplanned interventions. Thus 
it seems reasonable that the (J(t)s would be related, possibly in some mild form. 
There are different ways of describing a mild form of dependence between the 
(J(t)s. One way is to assume that the hyperparameter .>. is itself normally 
distributed with a mean of ml and a variance of sll¢;. A value of ml < 1 would 
suggest the user's prior belief in an overall gain in productivity, and an ml > 1 
would suggest the opposite. The value SI reflects the strength of the user's belief 
about the value of mI' The value ml = 1 suggests the user's prior belief in neither 
a gain nor a loss in productivity. In many applications this would be a convenient 
and neutral choice. 

Note that when the dependence of the (J(t)s is described by a two-stage 
scheme, the (J(t)s are exchangeable. The previously described model is identical 
to that of Section 3.4.1 wherein the (JiS of equation (3.21) were judged 
exchangeable. The main difference is that in the present case, a 2(u) is assumed 
unknown and estimated from the data, whereas in Section 3.4.1, ar, the analogue 
of a 2(u), was assumed known. 

Some Guidelines on Specifying Hyperparameters 

Hyperparameters capture a user's prior subjective opinIOns about the 
software productivity process. These opinions are held before any data are 
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observed. For the hyperparameters of the prior distributions of a 2(u) and {}(t) 
mentioned previously, Humphrey and Singpurwalla (1998) provide some 
guidelines. These are summarized in the following. 

The parameter II is used for calculating It, which in turn is used for 
determining the prediction intervals. Furthermore, since It increases linearly 
with the accumulation of data, II is only significant for determining projection 
intervals of the very early programs. For all intents and purposes, therefore, the 
value of II is not of much concern. However, in practice one sets 81 at 1 and tries 
out a range of values of II to see which one gives better predictions. 

Regarding m1, unless it is known a priori that the process has a steady trend, 
m1 should be selected as 1. On the other hand, if it is known that the (logarithms 
of) successive terms will generally have a ratio of, say (3, then the assumed value 
for m1 should be (3. 

For SI, an initial value of 0 would force all subsequent values of St to be 0 
and thus restrict mt to the initial value mI. This would only be appropriate when 
a constant rate of productivity change was known with certainty. Conversely, a 
relatively large value of SI (i.e., 1.0) would imply relatively little confidence in 
the value of m1 and would result in large initial fluctuations in the value of mt 

until sufficient data had been gathered to cause it to stabilize. A compromise is 
to choose SI = 0.35 or SI = 0.5. 

Similarly, the value selected for a2(v) reflects the experimenter's views on 
the degree of fluctuation of productivity. Small values presume relative stability 
whereas large values (near 1.0) reflect wide variations. A compromise is to 
choose a 2(v) = 0.35 or 0.5. 

5.2.2 Inference and Prediction Under the Growth-Curve Model 

Let y(t) denote the observed value of Y(t), t = 1, 2, ... , and suppose that 
~(t) = (Y(l), ... , y(t)) have been observed. Let mt denote the mean of the 
posterior distribution of >. given ~(t); that is, mt is the updated value of m1 in the 

light of ~(t). Since m, conveys information about an overall growth or decay in 
productivity, a plot of m, versus t, for t = 2, 3, ... , would suggest a steady 
growth in productivity if the values of m, were to lie below one; otherwise, there 
is evidence of a decay in productivity. 

The determination of m, is relatively straightforward; it is left as an exercise 
for the reader. Specifically, with mlo Slo and a 2(v) specified, it can be shown [see 
Singpurwalla and Soyer (1992)], that for t = 2, 3, ... , 

St-! X yet-I) (y(t)-y(t-I) x m,_!) 
mt = mt-l + pet) , 

where 
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and 

St = St-l 
(St-If X (y(t-I)2 

P(t) (5.4) 

Assessments about productivity growth or decay, from program to program, are 
provided by the parameter (}(t), t = 1, 2, .... Let (}+(t) denote the mean of the 
posterior distribution of (}(t), given ~(t). Then it can be seen that 

where 
(5.5) 

Similarly, if Y+(t + 1) denotes the predicted value of yet + 1), given ~(t) = (y(1), 

... , y(t», then 

Y+(t + 1) = mt x yet), for t = 1,2, .... (5.6) 

Note that Y+(t + 1) is a projection of productivity. It is needed to estimate 
the time and effort required to complete future tasks involving design, 
implementation, and unit testing. Associated with such estimates are measures of 
uncertainty. The upper (lower) projection limit for Y+(t + 1), with a coverage 
probability of approximately 68%, is given by the formula (mt x yet) + yiWr) x 
[mt x yet) - yiWr], where 

/t and 8t are the updated values of /1 and 81, respectively, in the light of ~(t). 
They go to determine the degrees of freedom parameter of the Student's t­
distribution that is used to obtain Wt. They are given as 

It = It-l + 1, 
and 

_ [y(t) + mt-l x y(t-I)f . 
Ot - Ot-l + [1 + (y(t-I)? (St-I + (/2(v))] , (5.7) 

the details are in Singpurwalla and Soyer (1992). 
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5.2.3 Application: Estimating Individual Software Productivity 

One problem with software productivity studies is the difficulty of gathering 
sufficient data to support a credible statistical analysis. It is desirable that 
programmers gather basic data on their personal performance on every program 
they produce. The data described in the following have been gathered in 
response to this theme. Regarding the productivity of large-scale tasks or team 
activities, there are problems with gathering data. First is that team projects take 
several months to complete, and so this would entail much time and effort vis-a­
vis the data collection. Second, the stability of such data would depend on the 
composition of the team. Thus, for example, if team members were to leave or 
new members were to be added during the project, the prior data would not be 
likely to be comparable to the new data. 

In Table 5.1, column 2, we show the minutes taken by a highly experienced 
programmer to develop a line of code, for 20 programs of varying sizes, taken 
from a Pascal textbook. Development includes designing, implementation, and 
unit testing. The 20 programs in question were not similar, but the environment 
under which they were developed was, for all intents and purposes, identical; 
that is, it was carefully controlled. Thus conclusions and projections of 
productivity based on these data would be valid only for this programmer, 
working under the tightly controlled environment mentioned previously. 

Humphrey and Singpurwalla (1991) have analyzed these data using the 
methods of classical time series analysis. Their productivity projections, based 
on an exponential smoothing formula, were reasonable when compared with 
actual data. However, their approach relied only on past data to make future 
projections and did not take into consideration a knowledge of learning theories 
and application environments. Furthermore, their approach did not provide any 
insights about growth (or decay) in productivity. Specifically, was this 
programmer still experiencing a learning phenomenon or did he or she reach a 
point of saturation whereby learning was de facto minimal? Can the techniques 
described here provide an answer to the preceding question? In what follows we 
explore this and related issues. 

In column 3 of Table 5.1 we show the values of Y(t) = 10geX(t), t = 1, ... , 
20, and in Figure 5.1 we show a plot of X(t) versus t. This plot shows that X(t) 
fluctuates quite a bit, alternating between an up and a down, but otherwise fails 
to reveal any underlying trend. A plot of Y(t) versus t is shown in Figure 5.2. 

To apply the methodology of this section, we follow the guidelines for 
choosing hyperparameters mentioned in Section 5.2.1, and make the following 
choices: a 2(v) = 0.35, 81 = 1, /1 = 5, m1 = 1, and 81 = 0.35. These choices 
reflect a strong commitment to the proposed model, and a strong a priori opinion 
that there is neither growth nor decay of productivity. The latter position is 
appropriate because even though the programmer is an experienced one, the 
textbook exercises tend to increase in difficulty. Columns 4, 5, and 6 of Table 
5.1 show the values of m" (}(t), and Y+(t); these are obtained via Equations (5.4) 
to (5.6), respectively. Column 7 of Table 5.1 compares the one-step-ahead 
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FIGURE 5.1. A Plot of X(t) , MinuteslLine of Code 
versus Program Number t. 
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I 2 3 4 5 6 7 8 9 IO II 12 I3 14 15 16 17 18 19 20 

Program Number t 

FIGURE 5.3. A Plot of m" an Indicator of Overall Productivity, 
Versus t, the Program Number. 

predictions Y+(t) versus Yet), t = 2, 3, ... , 20, via their absolute differences, 
and columns 8 and 9 give the 68% prediction limits for the one-step-ahead 
projections. A plot of these prediction limits is shown in Figure 5.2; the plot 
indicates the extent to which the prediction limits cover the observed Y(t). Since 
Y+(t + 1) = mt x yet) [see Equation (5.6)] the predicted values tend to be 
relatively close to the most recent observed value; this is borne out by a 
comparison of the entries in columns 3 and 6 of Table 5.1. 

In Figure 5.3, we show a plot of mt versus t, for t = 1, ... , 20. Since the 
values of mt tend to remain above 1, for most values of t, there does not appear 
to be present any evidence of productivity growth. 

Figure 5.4 shows a plot of g+(t) versus t, for t = 2, ... , 20. The uneven 
nature of this plot suggests there is no steady pattern of growth or decay from 
program to program. However, the number of times the plotted values exceed 
one, and the magnitudes of these variations, indicate a slight decay in 
productivity. This is also suggested by the plot of Figure 5.2. In this example, 
this slight negative learning trend might be caused by the fact that the 20 
programs from the Pascal textbook have a problem (and thus program) sequence 
of progressively increasing difficulty. 

Thus to conclude, we have presented a Bayesian approach for assessing and 
evaluating productivity data, as with software development. Even though our 
discussion was focused on a particular measure of productivity, the approach is 
general and can be used to study the behavior of any data that evolve over time 
and are suspected to have growth or decay characteristics. The main virtue of our 
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FIGURE 5.4. A Plot of f)+(t), an Indicator of Program to Program 
Productivity Change, Versus t, the Program Number. 

approach is its ability to assess underlying trends in the presence of wild 
fluctuations, and its ability to assess stage-by-stage growth or decay. With highly 
trended and relatively stable data, this approach should lead to superior 
predictions over the standard time series approaches, both because of its 
underlying structure, and because it is adaptive; that is, the model parameters are 
constantly updated in the light of new data. 

It is easy to see that this approach can be extended so that X(t) can be made 
to depend on more than one of its previous values, namely, X(t - 1), X(t - 2), X(t-
3), ... , and so on. The advantage of such a scheme would be to make the model 
more robust with respect to large oscillations in the data. With the current mode, 
the predictions are strongly influenced by the last observation, with the 
consequence that if it is an outlier, its impact will dominate the prediction. A 
model with a longer memory of the previous observations would modulate the 
effect of outlying observations. However, the resulting model would be quite 
complex and would require even more input parameters. Whether such an 
extension would provide more useful interpretations and predictions is a 
question that depends on the application. 

5.3 The Capability Maturity Model for Process Management 

Humphrey (1989, Chapter 1) describes the software development process as 
a set of actions that efficiently transform a user's needs into an effective software 
solution. The development focuses on schedules, standards, and practices rather 
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than on technologies and abilities of people. Over the last few years software 
process management has been touted as the key to developing reliable software. 
Documented studies by Paulk et al. (1993) have found that successful software 
process improvement efforts result in a return on investment in the range of 5:1 
to 8:l. 

The SEI's Capability Maturity Model (CMM) is a tool for evaluating an 
organization's software development process; see Humphrey and Sweet (1987). 
It focuses on the establishment of a systematic process for software 
development. The model identifies key software processes and skills that in the 
aggregate comprise a process management approach to software. The CMM has 
been used by administrators of software houses for improving practices and 
processes, and by program managers in government and industry for selecting 
contractors. It is therefore a tool that can provide inputs to a decision-making 
scheme (see Section 6.2) that a program manager may wish to use. 

5.3.1 The Conceptual Framework 

Based on a framework envisioned by Crosby (1979), the CMM classifies an 
organization into one of five "maturity levels," where level 1 is the lowest level 
of a hierarchy, and level 5 the highest. The placement is based on responses to a 
series of questions, called the maturity questionnaire, and follow-up visits to the 
organization for clarifying and validating responses. Each maturity level is 
defined by several attributes, called key process areas (KPA); see Figure 5.5. 
The separate sections of the maturity questionnaire focus on each KP A. The 
CMM requires that for an organization to be classified at a certain maturity level, 
say i, all the KP As associated with level i must be satisfied. The judgment as to 
whether a key process area is satisfied has been generally based on the 
proportion of affirmative responses to the questions pertaining to the key process 
area. In Figure 5.5, MJ through M5 denote the five maturity levels whereas Kij, 
i = 1, ... , 5 and j = 1, 2, ... , ni, denote the jth key process area associated 
with the ith maturity level. Finally, Rijk denotes the response to the kth question 
pertaining to Kij , with Rijk = 1(0) denoting the fact that the response is in the 
affirmative (negative). 

The maturity levels M;, and key process areas Kij are to be viewed as 
unobservable constructs, like parameters in probability models. 

In what follows, we present an approach, given in Singpurwalla (1999), for 
probabilistically classifying a software house into the five maturity levels. That 
is, we are able to specify the probabilities with which an organization belongs to 
the five levels. This is in contrast to those approaches that classify with certainty. 
Our approach is based on responses to the questionnaire as well as expert 
judgment about the organization that an assessor may have. This is because 
Crosby (1979) conceptualizes a manufacturing organization maturing through 
the five nonquantifiable stages which he labels "uncertainty," "awakening," 
"enlightenment," "wisdom," and "certainty." Indicators of these stages are 
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••• 

• • • 

yes=1 no=O yes=1 no=O yes=1 no=O 

D = Maturity Level 

o = Key Process Area 

o = Questionnaire Responses 

FIGURE 5.5. The Hierarchical Structure of the Capability Maturity Model. 

attributes such as management understanding and attitude, quality organization 
status, problem handling, cost of quality as a percentage of sales, quality 
improvement actions, and the like. 



5.3 The Capability Maturity Model for Process Management 183 

5.3.2 The Probabilistic Approach for Hierarchical Classification 

We begin by introducing some notation that helps us to distinguish between 
two events that are of interest. Let M; = 1(0) denote the event that a software 
house has (has not) attained a maturity level i or higher, and let L; = 1(0) denote 
the event that the highest maturity level attained (not attained) by the software 
house is i. By default, all software houses belong to levell, and so 
P(MI = 1) = 1; P(E) denotes the probability of event E. Also, since the five 
maturity levels form a hierarchy, P(M;.I = 1) ;::: P(M; = 1), i = 2, ... ,5. To 
help the reader appreciate the difference between the events M; = 1 and L; = 1, 
we consider the following simple illustration. 

Level i P( Mi = 1) P( Li = 1) 
1 1.00 0.40 
2 0.60 0.35 
3 0.25 0.20 
4 0.05 0.04 
5 0.01 0.01 

Sum - 1 

If 'R denotes the responses to the questionnaire data, then our goal is to 
assess P(Li = 1 I 'R), i = 1, ... , 5. To do the preceding, we suppress 'R, and 
observe that 

_ _ {PCMi=IIMi+l=O)=PCMi=l) -PCMi+l=I), 

P(Lj - 1)-
PCM5=1). 

i = 1, ... ,4 

Thus to assess P(L; = 1 I 'R) we need to assess P(M; = 1 I 'R), i = 1, ... , 
5, and the bulk of what follows is devoted to an assessment of this latter quantity. 
But first we need to introduce some additional notation. 

Let n; denote the number of key process areas associated with maturity 
level i; by convention n. = O. Let Kij = 1 (0) denote the event that the jth key 
process area associated with level i is (is not) satisfied; i = 1, ... , 5 and j = 1, . 
. . , n;. Finally, let the vector Bij denote the collection of responses to the 
questions associated with Kij; thus 'R = (1311' ... , Bin" ... , BSI' ... ,BSns). 

To implement our approach several probabilities and likelihoods have to be 
specified; this is best done by experts who are knowledgeable and experienced 
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about the software development process. The probabilities are P(Mi I M i_I ), 

P(Kij), and P(Kij I M i); the likelihoods are C(Kij; Bi)' 

Model Specification and Assumptions 

To assess P(M; = 1 I 'R), i = 2, ... , 5, we extend the conversation to all 
events that go to define the level M;, and apply the law of total probability. Thus 

P(Mi I R) = L P(Mi I M i-h K il , ... , Kin;> R) X 
(Mj_\. Kil, ... ,Kjn ) 

P(Mi-l , Kih ... ,Kin; I R), (5.8) 

where (symbolically) the summation is over all possible permutations of the 
binary conditioning variables. 

To evaluate the preceding expression, we need to make a series of 
assumptions. These assumptions are very reasonable and form the crux of our 
approach. In what follows, the notation (EI .L E2) I (E3) denotes the fact that 
given event E3, the events EI and E2 are independent. 

The following Assumption A 1 is prompted by the first term under the 
summation sign of the preceding expression, whereas the other assumptions are 
motivated by an application of the multiplication rule of probability to the 
second expression under the summation sign. 

• A 1. The attainment (or not) of level i is independent of the responses, given 
the status regarding level (i - 1), and the status of all key process areas 
associated with level i. That is, for i = 2, ... , 5, 

• A2. The binary variables associated with the key process areas, within any 
level, are independent of each other. Specifically, for i = 2, ... ,5, 

(Kih .1 Kif'), for all h i= .e. 

• A3. Given the responses to the questionnaire, the attainment (or not) of 
level (i - 1) is independent of whether the key process areas for level i 
are satisfied. That is, for i = 2, ... ,5, 

(Mi-l .1 K il , ... , Kin) I R. 

• A4. Given an organization's disposition with respect to level i, the 
satisfaction (or not) of the Kijs, j = 1, ... , ni is independent of the 
organization's disposition with respect to level (i - 1). That is, for i = 2, 
... , 5 and j = 1, ... ni , 
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• A5. Only those questions (and their responses) that pertain to Kij are 
relevant for determining its satisfaction (or not). That is, for i = 2, ... , 
5, 

(Kij ~ R,u'.) , for j f= f . 

The Recursive Relationship 

The hierarchical structure of the CMM enables us to develop a recursive 
relationship wherein the assessment of P(Mi I 1?.) is facilitated by an assessment 
of P(Mi-l I 1?.), i = 2, ... ,5 and the fact that P(Mi = 1) = 1. The assumptions 
given before make this recursion possible; the recursive scheme eases the 
computational burden. Because of AI, A2, and A3, Equation (5.8) becomes 

ni 

I1 P(Kij I R,) P(Mi-1 I R,). 
j=l 

To assess P(Mi I Mi-I , KiI , ... , Kin) we use Bayes'Law; consequently 

where P(KiJ, ... , Kin; I Mi, Mi-d can, by virtue of A2 and the multiplication 
law, be written as 

ni 

P(Kn , ... ,Kn; I Mi, Mi-I ) = I1 P(Kij I Mi, Mi-l ). 
j=l 

Invoking A4, and resubstituting in P(Mi I Mi-I , KiJ , ••. , Kin), gives 

ni 

P(Mi• Mi-I , KiI , ... , Kin) ex: I1 P(Kij I Mi) • P(Mi I Mi-I ). 
j=l 

The final step pertains to the assessment of P(Kij I 1?.). This too is done via 
Bayes'Law, as 
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But by virtue of A5, the likelihood CCKij; R) is CCKij; Bij)' so that 

To evaluate CCKij; Bi) we need to make some assumptions about the 
probabilistic structure of the collection of responses Bij = CRij!, . . . , Rijnij)' 

assuming that the total number of questions pertaining to Kij. the Cij)th key 
process area, is nij' A natural assumption would be conditional independence 
given Kij, so that 

nij 

P(lJij I Kij) = IT P(Rijk I Kij) . 
k=l 

When such is the case 

n;j 

£(Kij; lJij) = IT £(Kij; Rijk) . 
k=! 

Instead of conditional independence mentioned previously we may consider 
other possibilities, such as Markov dependence of the sequence CRij!, ... , Rijnij) 

or exchangeability of this sequence. These, however, are not pursued here. Thus 
to summarize, the recursive probabilistic classification scheme reduces to the 
expression 

ni 

P(Mi I R) <X L IT P(Kij I M i) P(Mi I M i-1) X 
Mi-l,Ki j=! 

ni nij . P(Kij) n IT £(Kij, Rijk) P(Mi-lIR)' 
J=! k=! 

(5.9) 

where Ki = CKii> ... , Kin). The constant of proportionality is to be numerically 
evaluated; its role is to ensure that each of the PCMi I R)s, i = 2, ... , 5, is less 
than one. Recall that P(M) I R) = P(Md = 1, so that the recursive scheme 
begins by first evaluating P(M2 I R), and the indices pertaining to the 
summation sign take binary values. 

5.3.3 Application: Classifying a Software Developer 

We have been fortunate in having access to a software developer's 
responses to the 1987 version of the CMM questionnaire. The nature of the 
questions is shown in Section B.l of Appendix B. The 1987 version ofthe CMM 
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Table 5.2. Probabilistic Classification of a Software Developer 

L; the Highest Maturity Probability of 
Level Attained Attaining L; 

1 0.3771 
2 0.4986 
3 0.0979 
4 0.0281 
5 < 0.001 

did not subdivide the questionnaire with respect to the KPAs; the 1994 version 
of the CMM does. The subdivisions shown in Appendix B were performed, at 
our request, by a software development analyst familiar with the various versions 
of the CMM. This exercise resulted in three KPAs each for maturity levels 2 and 
3, two KPAs for maturity level 4, and one KPA for maturity level 5. There are 5 
questions per KPA, making the total number of questions equal 45; the others 
were judged (by our analyst) to be no longer relevant, and were therefore 
discarded. The software developer's binary (Y = yes, N = no) responses to each 
of the 45 questions are given in Section B.2. 

Recall that to implement our approach we first need to assess our 
probabilities P(Mi I Mi-d, i = 2, ... ,5, and P(Kij), i = 1, ... ,5,} = 1, ... ,ni, 

and P(Kij I Mi). These probabilities were elicited via experts from government, 
industry, and academia. They are given in Section B.3 of Appendix B. Next, we 
also need to assess the likelihoods 'c(Kij; Eij). These too were assessed by the 
aforementioned experts, and are also given in Section B.3. We emphasize that 
the specified values of the priors and the likelihoods are judgmental; they are 
therefore subject to discussion and change. For simplicity, the likelihoods chosen 
here happen to be the same across all key process areas; this could be a matter of 
debate. 

An application of the entries of Appendix B to the recursive classification 
scheme of Section 5.3.2 results in the probabilistic classification shown in Table 
5.2. 

From Table 5.2 we see that our classification assigns the largest probability 
at level 2, and that the probability at level 1 is not much smaller. The probability 
that the highest level attained by this developer is 3 or greater is small, namely, 
0.1270 ( = 0.0979 + 0.0281 + 0.001). 

Thus to conclude, we have described the probabilistic approach for 
classification based on a hierarchical structure. The problem of classification in a 
hierarchy is a generic one, and arises in the contexts of quality control (supplier 
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rating and defect classification), personnel management, educational placement, 
and perhaps even medical diagnosis. What distinguishes our probabilistic 
scheme from the prevailing (deterministic) ones, is that here there is a 
probability that an item belongs to a particular class, and these probabilities are 
spread out among all classes. Such probabilities reflect the inherent uncertainties 
behind the underlying information that is used to make the classification. The 
probabilistic approach mentioned here has the attractive feature of adaptivity. 
That is, the classification can be updated in the light of new information via 
Bayes' Law. The current classification serves as a prior, which with the 
likelihoods and new information provides an updated (i.e., posterior) 
classification. Finally, the proposed approach can be enhanced by a 
consideration of multinomial (instead of the binomial) responses, and the 
likelihood function can be used as a device for giving weights to those questions 
that are deemed more important than the others. 

5.4 Chapter Summary 

The purpose of this chapter is to show how statistical techniques can be used 
to manage the software development process, be it for productivity assessment or 
for source selection. 

When software productivity data can be indexed, as in a time series, then 
growth-curve models can be used to track the data for trends, and for making 
projections. There is a vast amount of literature on growth-curve models and 
consequently the choice of models is large. However, for purposes of 
illustration, we selected a simple power rule model, and motivated its relevance 
for monitoring software productivity. The chosen model when suitably 
transformed is a random coefficient autoregressive process which, we recall, is 
also one of the dynamic linear models used to describe software interfailure 
times. A Bayesian approach for inference and predictions using this model was 
described by us, and this was illustrated via an application to real data on the 
times taken to develop a line of code. The bulk of our discussion pertained to 
guidelines for choosing priors for the model parameters. 

The second part of this chapter focused on the Capability Maturity Model 
(CMM) that is widely used in government and industry to select and to rate 
software development houses. As currently practiced, the CMM requires binary 
responses to a series of questions about the software development process, and 
uses these to classify an organization into one of five categories. The categories 
form a hierarchy, and the classification is done with certainty. The problem 
described previously is quite generic; our discussion of course centered around 
software development. The approach described by us enables one to classify 
probabilistically, and this is the key feature of the material presented here. 
Classification with certainty is a limitation. The probabilistic classification is 
based on a repeated application of the law of total probability and a series of 
assumptions about independence. The hierarchical structure of the problem 
simplifies the computation. Bayes'Law comes into play during several phases of 
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the development and the priors and likelihoods are based on the available 
experience of those who have performed such ratings over a broad spectrum of 
industries. We illustrated the workings of our approach via a consideration of 
data from a real scenario. 
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Exercises for Chapter 5 

1. Verify Equations (5.4) through (5.6) of Section 5.2.2. 

2. Analyze the data of Table 5.1 assuming: 

(i) a strong commitment to the proposed model of Section 5.2.1, but a 
strong prior opinion that there is a growth in productivity; 

(ii) a weak commitment to the proposed model of Section 5.2.1, but a 
strong prior opinion that there is neither growth nor decay of 
productivity. 

Discuss your choice of prior parameters and contrast your results with 
those of Section 5.2.3. Based on your comparisons, would you judge 
the approach of Sections 5.2.1 and 5.2.2 robust to prior assumptions? 

3. In Section 5.3.2 we assumed that for the (ij)th key process area, the nij 

responses R ijl , •.• , Rijn;i' are conditionally independent. Show how 
Equation (5.9) for P(Mi I R) would change if instead of the conditional 
independence mentioned previously, we assumed exchangeability of the 
Rijl' . . . , Rijn;r To address this question you will need to propose a 
simple model for the exchangeability of Bernoulli random variables. 

4. Address Exercise 3 if instead of exchangeability you are required to 
assume that the Bernoulli variables are dependent, the dependence 
described by a first-order Markov chain. Propose a simple Markov 
chain model, and assume any values for the underlying parameters. 

5. Repeat the analysis of Section 5.3.3 by assuming the dependence 
structure of Exercises 3 and 4, and the appropriate data from Appendix 
B. What effect does the dependence have on the classification given in 
Table 5.2? 



6 
THE OPTIMAL TESTING AND 

RELEASE OF SOFTWARE 

6.1 Background: Decision Making and the Calculus of Probability 

In Chapters 3 and 4 we have described how probability models can be used 
to quantify uncertainties about the software failure process, and to make 
predictions about failure times. In Chapter 5 we have seen how probability 
models can be used to predict productivity, and how the calculus of probability 
can be used for the classification of software development houses. However, the 
quantification of uncertainty, inferences from failure data, and the placement of 
software houses are not necessarily the final goals of an engineering endeavor. 
Rather, they are intermediate steps for taking actions or making decisions, and 
these are characteristic of an engineer's activities. The consequences of such 
decisions depend on the outcomes of uncertain quantities. The making of 
decisions under uncertainty is the aim of statistical decision theory, be it based 
on the Bayesian or the frequentist paradigm. Thus statistical decision theory has 
a natural place in software engineering, and indeed in the general area of design, 
engineering, and manufacturing [ef. Singpurwalla (1992), (1993), and (1998c)]. 
The purpose of this chapter is to give an overview of the key elements of 
decision theory, and to describe how this theory can be used to address a basic 
concern that software engineers face. 

Decision theory is intimately associated with probability. Although 
probability theory is a coherent method of quantifying uncertainties, decision 
theory tries to build an analogous approach to the problem of making decisions. 
Most commonly, we make decisions in an atmosphere of uncertainty, not 

N. D. Singpurwalla et al., Statistical Methods in Software Engineering
© Springer-Verlag New York, Inc. 1999
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knowing the consequences of the decision; in software engineering, decisions 
under uncertainty might include the selection of an organization to write 
software, the uncertainty being the capability of the tendering companies, or 
choosing when to release software, the uncertainty being the reliability of the 
code. In this chapter we focus on aspects of the latter; the former needs 
development and is a topic for future research; also see Exercise 1. 

The testing phase of software development is central to the production of a 
reliable system, and an important question for the software engineer to address, 
at the start of this stage, is how much time should be devoted to this process. The 
optimal testing time is a function of many variables: size of the software, level of 
reliability desired, personnel available, market conditions, and penalties of in­
process failure. 

One purpose of the testing phase is to satisfy the development team that the 
software is operating satisfactorily. This will involve subjecting the software to a 
variety of inputs in order to see if it is producing the required output; during this 
process, errors are observed, located, and eliminated. Due to the very large 
number of possible inputs into the software, exhaustive testing is almost never 
feasible, and so only a certain number of the possible inputs are tried. Even so, 
debugging the software to be highly reliable could take a long time. Balancing 
the desire for high reliability are criteria that favor a short testing time, such as 
the cost of testing and debugging, and the risk of product obsolescence. The 
testing time that is chosen should be a compromise between these two sets of 
conflicting criteria. 

Finding the optimal testing time is a decision problem; we must make a 
decision as to the time we feel that it is best to test. Since we must make our 
decision before testing begins (and so before we observe any data on software 
failure), this decision-at least initially-must be made using our prior 
knowledge of the performance of the software, and the costs and consequences 
of the testing procedure. Also, decision theory is ideally suited to sequential 
testing, where a decision is made after the first testing stage on whether to 
continue further testing. This second decision should be made in light of what 
has happened in the first stage, and decision theory provides a method of 
incorporating this new information. 

In Sections 6.2 through 6.4 we give an overview of the key elements of 
decision theory, from a Bayesian point of view. This is followed by an 
application of this theory to the problems of software testing mentioned 
previously. 

6.2 Decision Making Under Uncertainty 

A piece of software has been developed and is ready to enter the testing 
phase. Before testing begins, a management decision must be made as to the 
length of time it should be tested. Too short a testing time will result in 
unreliable software being released to the user, with the attendant costs of 
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postrelease fixing of bugs and loss of consumer confidence. Conversely, too long 
a testing time adds to the cost of the project and risks product obsolescence. In 
between these two extremes is a time that most effectively balances these 
competing costs; this will be the optimal time to test. 

Optimal testing is therefore a decision problem and, like most decision 
problems, can be divided into three components. 

Actions 

There is a set of available actions or decisions that we can take. This set may 
be discrete or continuous; the decision problem is to choose the "best" action 
from this group. In software testing, the actions are all the times that it is 
possible to test for, together with the action to release the software to the user, 
without further testing. 

States of Nature 

These are the parts of the problem that are unknown or outside the control 
of the decision maker. The state of nature will reveal itself only after a particular 
action is taken, and will affect the outcome of that action. As the states of nature 
are uncertain, it will be necessary to assign probabilities to them. Here, the states 
of nature are the unknown quantities related to the performance of the software 
and the testing phase, such as the number of bugs discovered by the testing team 
and the number of bugs that remain after its release. 

Consequences 

Associated with every action and state of nature combination, there is an 
outcome or consequence. This is the final result of a particular action and a 
particular state of nature. Often, the consequences will be monetary (profit or 
loss), but not necessarily. As with uncertainty, it will be necessary to somehow 
quantify the consequences, especially when they are qualitative, such as 
customer satisfaction. As with probability, this is done by subjectively assigning 
a number to each consequence called its utility. With software testing a utility is 
based on the costs of testing plus the consequences of an in-service failure or 
success. 

The general approach to a decision problem is to enumerate the possible 
actions and states of nature, assign probabilities and utilities where needed, and 
use these assignments to solve the problem by producing the "best," or optimal, 
action. The assignment of probabilities has been discussed at length in previous 
chapters. That leaves two more issues to address: assigning utilities, and the 
definition of what constitutes the best action. 
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6.3 Utility and Choosing the Optimal Decision 

We have alluded to the need to numerically express the consequences of a 
decision problem. This is done by assigning a utility to every possible outcome. 
A utility describes the worth of the given consequence to the decision maker and, 
together with probability, must be assessed before an optimal decision is found. 
Thus, like probability, a utility must be interpreted as a subjective quantity, 
depending upon the individual (or group of individuals) making the decision. 
This is only natural since, in a particular decision, it is perfectly legitimate for 
two people to have different priorities, and so they assess the worth of the 
consequences differently. The concept of utility dates back to the times of 
Nicholas Bernoulli and the St. Petersburg paradox. Its role in decision theory 
was laid out by many of the people who promoted subjective probability, such as 
de Finetti (1974), Ramsey (1964), and Savage (1972). Hill (1993) contains a 
narrative on the development of utility theory. 

6.3.1 Maximization of Expected Utility 

Consider a decision problem where there are m possible actions ai, a2, ... , 
am and n possible states of nature Slo S2, ••• , Sn. If action ai is chosen, then we 
denote the probability that Sj occurs by Pij. Suppose that after choosing action ai, 
the state of nature Sj occurs, and consequence Cij results. We denote the utility of 
that consequence by U(cij), for some utility function U that maps Cij into [0, 1]. It 
is important to note that U(cij) should map into a bounded interval, say [a, b]; the 
bounded interval can then be transformed to the interval [0, 1]. 

The optimal action is that which yields the highest utility to the decision 
maker. Since it is not known which state of nature will occur when an action is 
taken, this utility is unknown. However, we can calculate the expected utility of a 
particular action, say ai, using the probabilities Pij as 

n 

E(U(ai» = L PijU(Cij) , (6.1) 
j=l 

for i = 1, ... , m. We choose that action for which the expected utility is a 
maximum. Thinking of utility as a monetary gain, this translates to saying that 
we pick the action that, in our opinion, has the greatest expected profit (or 
perhaps smallest expected loss). This is called the principle of maximization of 
expected utility, and is the decision criterion for choosing a decision under 
uncertainty. The principle generalizes in the usual way when there are a 
continuum of possible actions and possible states of nature; the Pijs are replaced 
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Table 6.1 A Simple Decision Table 

States of Nature 
Action S) S2 E(U(aj» 

a) $100,000 - $1,000,000 45,000 

a2 $1 - $10 0.45 

by densities, and one obtains expected utilities by integration. Differential 
calculus can be used to find the maximum of the expected utility. 

There are strong mathematical arguments that back this principle as a 
decision rule. These arguments rely on the concept of coherence; roughly 
speaking, any other decision rule lacks the property of coherence and leaves the 
decision maker vulnerable to making decisions where loss is inevitable (a so­
called Dutch book). Lindley (1982b) discusses coherent decision making in 
detail, and shows that the principle of maximization of expected utility is a 
consequence of the laws of probability, once utility is viewed as obeying the 
calculus of probability. 

6.3.2 The Utility of Money 

Since we are often concerned with decisions whose outcome is measured 
financially, it is important to remark that utility is not necessarily linear in 
monetary value; that is, the utility of x is not necessarily x, or some linear 
function of x. To see why, consider the simple decision problem described in 
Table 6.1. There are two actions, al and a2, and two possible states of nature, Sl 

and S2. The entries in the table enumerate the consequences of each possible 
decision and state of nature. For example, if the decision maker chooses action 
a2 and the state of nature turns out to be Sh then the decision maker stands to 
gain $1. Suppose that we assess the probability of SI occurring to be 0.95 and of 
S2 to be 0.05, regardless of which action we take. If we assume that the utility of 
$x is x then, by employing the principle of maximizing expected utility, we see 
that action 1 is the preferred one, it having an expected utility of 45,000, 
compared to action 2 whose expected utility is only 0.45. 

However, we would argue that one would not choose al because one could 
not afford to lose $1,000,000, even though the chances of winning $100,000 are 
high. Instead, we would "play safe" and decide on a2. Such behavior is known as 
risk aversion and can be modeled by assuming a utility function that is concave; 
typical examples would be U($x) = 1 - exp( - xlr), for a constant r, or 
U($x) = log(x), for positive x. Risk aversion is also the reason why one buys 
insurance at a premium to the expected monetary loss of the item to be insured. 
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Other forms of behavior towards risk are possible. The opposite of risk 
aversion is risk proneness, where the decision maker actively seeks out risky 
situations. Buying a ticket in a lottery is an example of risk-prone behavior, since 
the expected financial gain from a lottery is less than zero. Risk proneness is 
modeled by a convex utility function. Finally, there is risk neutral behavior, 
where one's utility of money is in fact linear. It is important to note that in the 
preceding example, the states of nature are not influenced by the action taken. In 
many examples, for instance, the testing of software, the action taken, such as 
debugging during testing, will have an influence on the state of nature. The 
attributes of risk aversion and risk proneness are apparent in the software 
industry wherein some organizations tend to release software that is knowingly 
not thoroughly tested. 

6.4 Decision Trees 

A decision table, such as Table 6.1, is a natural way of representing a 
decision problem. Although the table is a useful device for laying out the various 
ingredients of the problem, it does not show its evolution over time, from the 
action taken to the state of nature occurring, to the final outcome. Being able to 
show this progression is a valuable aid to visualizing the decision process, 
particularly in more complex decision problems. This is especially so when there 
may be a sequence of actions and states of nature before a final outcome is 
reached. 

A decision tree is one way of graphically portraying a decision problem so 
that this temporal progression is captured. A decision tree is like a directed 
graph, composed of nodes and branches as in Figure 6.1. This figure shows the 
decision tree associated with the decision problem of Table 6.1. 

Whenever a decision is to be made, there is a decision node in the tree, 
denoted by a square box. Branches that sprout from this box represent the 
various possible actions that can be taken. The revealing of a state of nature 
pursuant to an action is represented by a random node, denoted by a circle. 
Branches sprouting from a random node represent the various possible states of 
nature that might occur, each with its attached probability. The terminus of a tree 
denotes the utility associated with the consequence resulting from the path of 
actions and the states of nature in that branch. 

A probability must be assessed for each branch that emanates from a 
random node. If a decision tree contains more than one random node [see, e.g., 
Figure (6.2)], then the probabilities assessed at a node should be conditional on 
1£, and the path of all actions and all outcomes from the nodes that precede it. 
Since the outcomes from all the nodes, the node of interest and its predecessors, 
are unknown at the time a decision is made, we have to average the outcomes 
with respect to their probabilities. This can be a formidable task; it is called a 
preposterior analysis [cf. Lindley (1972), p. 21]; see Section 6.6.1. 
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Sl • Zf($ 1 00,000) 

S2 • Zf(-$l,OOO,OOO) 

.01 

SI • Zf($l) 

S2 • Zf( -$10) 

FIGURE 6.1. A Simple Decision Tree. 

6.4.1 Solving Decision Trees 

Once a decision tree has been constructed, the optimal decision (i.e., the 
action that maximizes expected utility) can be obtained by a sequence of steps 
that are akin to "pruning" the tree back to its root. Starting from the terminating 
branches and working backwards, branches and the nodes of the tree are 
eliminated in the following way. 

• Each random node and its branches are replaced with the node's 
expected utility, which is the sum of the product of the probability 
and the utility of each branch emanating from the node. 

• At each decision node, the action that has the maximum expected 
utility is identified and all the other branches of that decision node 
are removed. 

This pruning continues until we have reached the leftmost node. We are left 
with the optimal expected utility, and a path through the decision tree that shows 
the optimal decision. This method of solving decision problems is of particular 
use when the decision problem is multistage, that is, with a sequence of decision 
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and random nodes following each other. In this more complex type of tree, we 
may have a sequence of actions to take, depending on the outcome of 
intermediary random nodes, so the solution is not an optimal action but a policy 
of what to do at each eventuality. 

Thus, for example, in the decision tree of Figure 6.1, at the random node 
labeled nJ, we compute the expected utility U(nl ) as 0.95 x (100,000) + 
0.05 x (- 1,000,000) = 45,000; similarly, at n2 we obtain U(n2) = 0.95 x (1) 
+ 0.05 x (- 10) = 0.45. At the decision node labeled VI, we choose the larger 
of U(nl ) and U(n2) which is 45,000, so that U(VI ), the expected utility at 'OJ, 
is 45,000. This corresponds to action ai, which is our optimal decision. 

6.5 Software Testing Plans 

Returning to the problem at hand, we first describe a variety of different 
ways in which one may organize the testing phase of software. The simplest is 
one-stage testing, where a decision is made that the software is to be tested for a 
period of time T and then released, regardless of the results of testing. The only 
decision to be made is the size of T. Most of the work on testing procedures has 
addressed this form of the problem, which can be represented by the decision 
tree of Figure 6.2. Here, the multiple arrows issuing from a node indicate that 
more than one decision is available, or that more than one state of nature is 
possible. In this tree, the first decision node VI refers to the decision on T, how 
long to test, followed by the unknown consequences of testing, where N(T), an 
unknown number of bugs, are discovered and corrected. Then comes '02 , the 
decision to release the software, followed by the unknown results of release, with 
N - N(T) bugs discovered by users. Subsequent to the preceding, a final utility 
U[T, N(T), (N - N(T»)] for the testing and release of the software is realized. We 
are assuming that the terminal utility depends only on (N - N(T») and not the 
times at which these bugs are encountered. 

An elaboration of the preceding is two-stage testing, where a second stage 
of testing is conducted after the first, but only if needed. The decision is to 
choose (in advance of testing) the length of the two testing periods, say TI and 
T2, and a criterion for deciding whether to release after the first test, or to 
proceed with the second; this criterion is influenced by N*, the number of bugs 
observed in the first test period. The choices TI , T2, and N* are made prior to the 
first test. Figure 6.3 is an example decision tree for a two-stage test, where the 
second stage is only conducted if more than N* bugs are observed in the first 
stage. One can of course extend this type of plan to three or more stages. 

A common feature of both the one- and the two-stage tests is that all 
decisions are made before any testing occurs, on the basis of prior information 
alone. However, the decision to proceed with the second stage is based on the 
information gained in the first stage. The results of testing are not incorporated 
into the decision criteria. This is in contrast to sequential testing, wherein the 
number of stages to test is random, and the decision on whether to test, and if so 
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~1 Utility 

Decide on 
Test Time T 

Bugs 
Observed 
During Test Release 

U[T,N(1), (N - N(1)] 
Bugs 
Observed 
After Release 

FIGURE 6.2. One-Stage Testing. 

for how long, is made at the completion of the previous stage. This allows the 
incorporation of information that becomes available during the previous testing 
stages into the decision process. A decision tree with the first two stages of a 
sequential test is given in Figure 6.4. Note that the decision tree continues at the 
top right to a third testing stage; indeed, the tree is actually infinite in extent, as 
we do not know beforehand how many stages of testing may be required. 

The sequential testing plan seems to be the most satisfactory, because it 
allows for any number of stages and can adapt to experience gained from earlier 
testing periods. However, the infinite nature of the sequential testing tree 
presents a problem, since the solution of the tree requires us to peel back the 
branches of the tree from the terminal nodes, an operation that is not possible for 
a tree whose terminus is not known. Another way of thinking about this is to say 
that at any stage, the decision to test and for how long must take into account the 
possibility of an unknown number of further stages. Although theoretically 
unsatisfactory, in practice one can impose some upper bound on the number of 
testing stages allowed so that there is some stage after which release must take 
place. But, for even a moderately small upper bound on the number of testing 
stages, the resulting decision tree for the sequential plan can be large and 
difficult to solve, because of the successive expectations and maximizations that 
are required. 

One proposal, that avoids the preceding computational difficulties, is to 
consider each testing stage on its own, that is, a testing plan that is simply a 
sequence of single-stage tests. At each stage, the decision must be made to 
release or to test, and information obtained from previous tests is used. In 
contrast to single-stage testing, described before, we call this one-stage look­
ahead testing, to reflect the fact that decisions are made without an accounting of 
all the possible future stages of testing. Such plans are a lot easier to implement, 
and still have the advantage of incorporating information learned through the 
testing process. One-stage lookahead plans cannot be represented as the full 
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blown decision tree of Figure 6.4, because of the lack of dependence on the 
future; they are an approximation of the sequential testing plan. However, under 
certain testing scenarios and conditions, it can be proved that one-stage 
lookahead tests are optimal in the sense that it is sufficient to look to the next 
stage and no further, in deciding whether to release; see, for example, Theorem 
6.1. 

Other types of one-stage lookahead plans are also possible. In the fixed-time 
lookahead plan, a sequence of times is specified at which testing is to stop and, 
when each time is reached, a decision is made whether to release or test until the 
next time in the sequence. These times may correspond to each day or week of 
testing. In one-bug lookahead plans, testing is conducted until a bug is found and 
fixed, at which point it is decided whether to release or continue testing until 
another bug is found. 

As discussed before, there are two parts to a decision problem that must be 
assessed: the utility model (to quantify the economic aspects of the situation), 
and the probability model (to quantify the random aspects of the situation). The 
optimal action is to take the decision that maximizes expected utility. The rest of 
this chapter gives some examples of optimal testing under different probability 
models and utilities, and the different testing plans that have been described. In 
this way, we endeavor to give a fairly broad picture of the types of optimal 
testing that might be considered. We should mention that other approaches to the 
problem, that often lack the decision-theoretic character described here, have 
been proposed in the literature. Some suitable references are Dalal and Mallows 
(1988) (1990), Okumoto and Goel (1980), Ross (1985a), Forman and 
Singpurwalla (1977), Yamada, Narihisa, and Osaki (1984), and Randolph and 
Sahinoglu (1995). Clearly, this is an important issue where more research is 
needed. 

It is also useful to note that there exists related work, not necessarily 
directed towards software testing, that is germane to the problems discussed 
here. For example, the work of Benkherouf and Bather (1988) on oil exploration, 
that of Ferguson and Hardwick (1989) on stopping rules for proofreading, the 
work of Efron and Thisted (1976) on estimating the number of unseen species, 
and the work of Andreatta and Kaufman (1986) on estimation in finite 
populations. 

6.6 Examples of Optimal Testing Plans 

6.6.1 One-Stage Testing Using the lelinski-Moranda Model 

As one of the most commonly discussed models, we now investigate the 
one-stage test using the Jelinski and Moranda model of Section 3.2.2. Recall that 
the ith failure time is exponentially distributed and has mean (A(N - i + 1»-1, 
where N is the total number of bugs in the code and A is a constant: 
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P(Ti ~ tiN, A) = e-A(N-i+l)t. (6.2) 

When statistical inference for this model was discussed in Section 4.2.3, we 
considered as a prior for N, a Poisson distribution with mean (), and as a prior 
model for A, a gamma distribution with parameters a and /3. 

The decision tree for one-stage testing under this model was given in Figure 
6.2, but with the model in place we can be precise about what is observed at the 
random nodes. Following a decision to test for a time T, suppose that N(T) bugs 
are observed, with interfailure times ti, i = 1, ... , N(T), and a final period of 

length T - L:~ t; in which no bugs occur. Thus the random quantities at node 

RI are [tl' ... , tN(T) , T- L:~ti' N(T)]. There is a chance that N(T) = 0, in 
which case the data consist only of N(T) = O. 

After testing for time T, release occurs. The second random node Rz 
generates the number of bugs, say (N - N(T», that are discovered after release. 
The distribution used to describe this number must be conditional on all the 
random events and decisions that have occurred prior to reaching Rz; in other 
words, the distribution over all the possible outcomes at the node is the posterior 
distribution for the number of remaining bugs N - N(T), given the data from the 
testing phase. Using arguments similar to those used in Section 4.2.3, we can 
show (see Exercise 3) that the posterior distribution of N is 

peN = n I t1, ••• ,tN(t), T - ~)i' N(T» 

We-BOn (a + tT + (n - N(T»T)-«(3+N(T») (6.3) 
(n-N(1)! ' 

where W is a normalizing constant, and 

t= 
{ 

0, 

+ L:~ (N(1)-j + l)tJ , otherwise. 

if N(T)=O, 

(6.4) 

We note that only T, N(T), and t are needed from the branches of the tree to 
specify the posterior distribution. Thus, from now on, we denote the data from 
the testing stage as (t, N(T», where t is as previously defined. 

Specification of a Utility Function 

The costs and benefits of testing software fall into two groups: the cost of 
testing and removing bugs during the testing phase, and the cost of leaving bugs 



204 6. The Optimal Testing and Release of Software 

F(T) F(T) F(T) 
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FIGURE 6.5. Candidate Shapes for Testing Cost F(T) 
Versus Testing TimeT. 

T 

in the code that are discovered after release. As regards the testing phase, we 
assume that there is a fixed cost C associated with removing each bug 
encountered, so the cost of fixing bugs is C· N(T). The other costs of testing for 
a time T are quantified by an increasing function of T, say F(T). This function is 
supposed to account for other costs that are a function of time, such as payment 
to staff, possible penalties for late release, and the "opportunity cost" of not 
releasing the software. Even though this function is difficult to specify, there are 
several possibilities: linear, with F(T) = f x T; a power law, with F(T) = f x Tg; 
linear up to a threshold, say tmax , and infinite beyond (so that the testing period 
has a deadline); or linear initially and then exponential to reflect the increasing 
costs of product obsolescence. These forms are illustrated in Figure 6.5; they 
have been suggested by Dalal and Mallows (1990). 

After release, we assume that the costs of encountering and eliminating bugs 
are on an exponential scale; that is, if N (T) is the number of bugs found after 
testing to T, then the disutility of the N (T) bugs is DJ - D2exP ( - D3N (T»), 
where D), D2, and D3 are nonnegative constants. Thus if a large number of bugs 
are discovered after release, then the cost is D), and if none are discovered the 
cost is D) - D2• It is meaningful to suppose that D2 equals D), and that D) is 
large. 

Finally, we may also include a discounting factor e-hT to account for the 
fact that these costs are incurred at a future date. Thus U[T, (t, N(T»), N (T)], the 
utility of testing for a time T, during which time data (t, N(T») are observed, and 
then releasing after which N (T) bugs are discovered, is 

(6.5) 

where CJ, DJ, D 2 , D3, h > O. 
The preceding specification is for a very simple model of utilities; it can be 

criticized on several grounds. For one, the model supposes that each bug is 
equally costly to fix. For another, it assumes that the disutility of bugs discovered 
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after release is independent of the time at which they are encountered. We would 
expect that bugs discovered during the latter phases of a software's lifecycle 
would have a smaller impact on customer goodwill than those discovered early 
on. However, the proposed model has the advantage of tractability, and allows us 
to illustrate the workings of the general principles. The model can be extended to 
represent other more realistic scenarios. It is useful to note that the notion of time 
does not necessarily mean clock time-the CPU time may be a better standard. 
But no matter what time scale is used, the entities F(T), N(T), and IV (1) convey 
the same message. 

Armed with a probability model and a utility function, we can now solve the 
single-stage problem. Recall that this involves peeling back the branches of the 
tree, taking the expectation over random nodes, and taking the maximum utility 
over decision nodes. The process starts with taking the expectation over IV (1), 
the number of remaining bugs, using the posterior distribution, and continues 
with taking the expectation over the distribution of N(1) and t. This gives an 
expected utility for testing to any time T, denoted by U(T), and U(1) turns out to 
be [see Singpurwalla (1991) for details] 

t. (1. { ~U(T' (t, N(1) ~ k), N (1) ~}) W"; ",.) (<> + tT + j1)-<P>k) } 

+ ({ ~U(T, (t ~ 0, N(1) ~ 0), N (1) ~}) W'j;'9i (<> + j1)-P } 

{ foo -AT e-"),(aA)f3-1 }) 
X Jo exp( - 0(1 - e » r(,B) adA , (6.6) 

where 
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(6.7) 

(6.8) 

ko is the integer part of t, and the range of integration for t is ko < t < ko + 1, 
for each ko = 0, 1, ... , k - 1. 

Although Equation 6.6 looks formidable, its numerical evaluation is not too 
difficult, and maximization with respect to T is made easier by the observation 
that U(T) is generally unimodal. The complicated nature of Equation (6.6) is 
brought about by the required preposterior analysis which requires us to average 
out the quantity t; see Equation (6.4). An extension of this model to the two­
stage testing plan is discussed in Singpurwalla (1989b). 

6.6.2 One- and Two-Stage Testing Using the Model by Goel and Okumoto 

Optimal testing using the model of Goel and Okumoto turns out to be 
considerably more tractable than that involving the lelinski-Moranda model. 
This is because here we monitor only the number of failures, and not the times of 
failure. Indeed, under a simple utility function one can even obtain a closed form 
solution to the one-stage test. Solutions for the two-stage and also the one-stage 
lookahead tests require only a moderate amount of numerical computation. 

Recall (see Section 3.3.1) that in the Goel-Okumoto model, bugs are 
encountered as a Poisson process with a mean value function a(1 - e-bt). 

Following the strategy of Section 4.2.4, we place independent gamma priors on 
the parameters a and b; that is, given >., T, 0:, and f../" we let 

7r(a b) = (L ar - 1 e-Aa ) X (L bJ.£-1 e-ab ) (6.9) 
'r(r) f(J.£) • 

In Section 4.2.4, expressions for the posterior distribution of a and b were also 
given. 

A simple utility function, very similar in form to that used in the previous 
example, is also adopted here. Testing for time T, where N(T) bugs are 
discovered and fixed, followed by release where N (T) bugs are discovered, the 
utility function is 

U[T, N(T),]Ii (T)] = P - ex N(T) - D x]li (T) - fx Tg, (6.10) 
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where P is the profit associated with releasing a perfect code without any testing 
(i.e., with T = 0), D is the cost of fixing a bug after release (typically, D > C), 
and f x Tg represents, as before, the cost of lost opportunity when testing to time 
T. This form of the utility function is similar to that used by Dalal and Mallows 
(1988) in their famous paper on the optimal time to release software. 

For the case of a one-stage test, it can be shown (see Exercise 4) that the 
expected utility has the simple form: 

U(T) = E[U (T, N(T), N (T»] 

(6.11) 

It is now easy to show that U(T) has a unique maximum at T*, and that T* 
satisfies the equation 

(6.12) 

For g = 1 (i.e., if the cost of testing and of lost opportunity is linear in T), then 
we can obtain an explicit formula for T*, namely, 

* _ [(m(D-c») 11(0+1) ] 
T - J.L )"J.Lf - 1 ; (6.13) 

the details are in McDaid and Wilson (1999). 
Observe that T* is a function of the parameters of the distribution a with 

only the difference (D - C), the costs of fixing a bug in the field and in the test 
environment. Also, T* is a function of the parameters of the distribution only 
through its prior mean r/>", and that T* increases as r/>" increases. 

In the case of a two-stage test, the software is initially tested for a time T), at 
the end of which N(T) bugs are encountered. Then a decision is made to release 
the software if N(T) is less than N*, our predetermined decision criterion. Once 
the software. is released it may experience N (T) failures in the field. This 
sequence of events results in a utility U) [T), N(T), N (T)]. If N(Td is equal to 
or greater than N*, the software is tested until time T2, where T2 > T), and then 
released. Let N(T2) be the cumulative number of bugs encountered when testing 
until T2, and N (T2) the number of bugs experienced by the software in the field. 
This latter sequence of events results in a utility U2[TJ, N(T), T2, N(T2), N (T2)]. 

The decision at node 1)) is to choose T), T2 , and N* such that the expected 
utility 

N'-( 00 

L L U1[Tt. N(T1), N (T1)] X P(N(T1), N (T1» + 
N(T,)=O N(T,)=O 
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00 00 00 

L L L U2[T1, N(T1), T2 , N(T2), N (T2)] X 

is maximized. 
In choosing the utility functions U\ and U2 we adopt forms that are identical 

to that chosen for the one-stage case. Specifically, 

- g 
D x N (T1) - I X TJ ' 

and 

= p - C x N(T2) - D x N (T2 ) - I x Tf. 
Thus the decision at node V\ boils down to finding those values of T\, T2 , and 
N* that maximize 

p- Ix Tf Cr (D-C)r ( p, ) a 
T - --A- p,+T2 

over T\ > 0, T2> Tb and N* = 0, 1,2, .... Let us denote these optimal values 
* * -* by T\ ' T2 , and N ,respectively. 
The preceding maximization can be done numerically. Observe that the 

foregoing expression will degenerate to a one-stage equivalent if T; turns out to 
~. 

be zero, or if N turns out to be infinite. 
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Eliciting Parameters of the Prior Distribution and the Utility Function 

It is evident from Equations (6.12) and (6.13) that decision making in a 
single-stage testing environment depends solely on the prior parameters and the 
constants in the utility function. Thus it is crucial that these quantities be 
judiciously elicited and selected. 

A simple approach for eliciting the prior parameters is as follows. To start 
with, a location (mean) m], and spread (standard deviation) s], are assessed for 
the total expected number of bugs that will be discovered over the lifetime of the 
software. These quantities are then equated to E(a) = r/>', and Var(a) = r/>.2, 
respectively. This implies that 

(6.14) 

To help specify ml and s], we recall that several empirical formulae for the 
number of bugs per line of code, for different languages, have been proposed; 
see Section 4.3.4 on the elicitation of priors for the logarithmic-Poisson model of 
Musa and Okumoto (1984). 

To specify a and j.L, a time T' is selected, and a location m2 and spread S2 are 
elicited for A(T'), the expected number of bugs that are discovered by T'. A 
good choice for T' may be the software development team's initial estimate of 
the testing time, prior to any calculations. We equate m2 to E[A(T')], where 

E(A(T'» = E(a(l - e-bT'» 

= E(a) (1 - E(e-bT'» 
(6.15) 

and s~ to Var(A(T'» which, after calculations similar to those of Equation 6.15, 
becomes 

Var(A(T'» = (st + m!) [1 - 2(*, ) 0 + (Jj~T') oJ 

(6.16) 

Equations 6.15 and 6.16 are then solved numerically to obtain the 
parameters a and j.L. As with the elicitation for the Musa and Okumoto model, 
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FIGURE 6.6. Expected Utility for the Single-Stage Test. 

the elicited values ml, Sl, m2. and S2 may be elicited from an expert and can be 
modulated by the analyst. 

As regards the parameters of the utility function, one might start with g, the 
exponent of the opportunity cost function. A linear or quadratic cost would 
suffice in most situations, restricting this to a choice of g = 1 or 2. Arbitrarily 
designating the in-testing fix cost as C = 1, one can then think about how many 
times more costly it would be to fix a bug after release; this is D. The profit P 
associated with releasing a perfect code can also be assessed as a multiple of C. 
Finally, to elicit a value off, one might look at X, the opportunity cost oftesting 
to a certain time in the future, say ro; equating X to / x Tg implies that 
/ = XI«ro)g). As with the prior parameter elicitation, we may take ro to be the 
time until which it is thought testing might continue. 

D1ustrative Example 

Suppose that a software testing team is deciding on the length of time to test 
a piece of software. They decide that the opportunity cost function is linear, so 
g = 1. Specifying C = 1, they decide that the cost of fixing bugs after release is 
10 times C, so D = 10, and that the profit of the perfect software is 500C, so 
P = 500. Finally, for the value off, they look at X, the opportunity cost of testing 
to a time ro = 20, and decides that it is IOC; thus/is 0.5. 

As regards the parameters of the prior probability, the team decides, perhaps 
with the aid of the formulae given earlier, that they expect 30 bugs in the code, 
but that the uncertainty in this figure is quite large, so they set ml = 30 and 
Sl = 5.5. Using the Equations (6.14) yields r = 30 and A = 1. Looking at the 
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number of bugs to be discovered by time ro = 20, they decide that it will be 
between 0 and 5, finally settling on mz = 2.8 and Sz = 1.3, from which solutions 
of Equations (6.15) and (6.16) yield a = 5 and /-l = 1000. In Figure 6.6 we plot, 
for these values of the prior parameters and the constants, E[U(T, N(D, N (D)] 
as functions of T. The value of T, say T* at which the preceding expected utility 
is a maximum is about 180. We emphasize that this value of T* is based on prior 
information alone. 

For the utility and the prior parameters that we have used in the illustrative 
example discussed before, the optimal two-stage strategy turns out to be 

~* T; = 116.5, T; = 188.9, and N = 8. It is instructive to note that with one-stage 
testing, the optimal strategy resulted in T* = 180. Therefore, a consideration of 
a two-stage strategy has resulted in the reduction of the first- stage testing time 
from 180 to 116.5. This is reasonable because the anticipation of a possible 
second-stage testing provides us with a cushion of a smaller first-stage testing. 

6.6.3 One-Stage Lookahead Testing Using the Model by Goel and 
Okumoto 

The mathematical simplicity of this model allows us to design a one-stage 
lookahead test quite easily. By way of notation, define Tj* to be the optimal time 
as measured from 0, at which testing is to stop for the jth stage of testing. With 
this notation, testing stops and the software released at the first stage j for which 
Tj* :::; Tj*-l. Note that it is conceivable to obtain Tj* < Tj*-l' since this feature 
implies that we may have already tested more than what is necessary. 

The first stage of testing in the one-stage lookahead scheme would be to use 
the prior distributions on a and b, so that T; is the solution to the single- stage 
test, based on Equation (6.12). After the first stage, suppose that stage j, j ~ 2, 
has been completed and a totality of nj = N(Tj*) bugs discovered by time Tj*. 
Suppose that the interarrival times t" ... , tn have been observed. Then the 

J 

posterior distribution of a and b is given by 

(6.17) 

where 



212 6. The Optimal Testing and Release of Software 

(6.18) 

Sj = L;~l ti, is the time at which the last bug is encountered. For convenience, 
we have suppressed the times taken to rectify the bugs. Using this posterior 
distribution, the (posterior) expectations of N(T) and N (T) are calculated to be 

(6.19) 

and 

(6.20) 

We can now obtain the expected utility of testing to time T, at stage j + 1, as 

ZAj(1) = E[U(T, N(1), N (1) I ~*, nj, Sj] 

(6.21) 

Let ~:l be that value of T which maximizes l1j(T) given previously. Then if 

~:l :s; ~* testing stops; otherwise testing continues for an additional ~:J - ~* 
units of time, and the process moves to stage j + 2. 

The evaluation of Equation (6.21) is not as straightforward as the equivalent 
expression for the single-stage test, but it is still easy to numerically compute, 
requiring nothing more complex than the one-dimension integrations of 
Equations (6.19) and (6.20). 

6.6.4 Fixed-Time Lookahead Testing for the Goel-Okumoto Model 

In allowing the testing team to adapt testing to the software's performance, 
the one-stage lookahead plan can present problems for management. This is 
because at time 0, when the testing plan is designed, it is not known how long the 
testing will take or even the stage at which the testing will terminate. One 
solution to these problems is to propose a predefined sequence of times, TJ , T2 , • 

. . , TJ, at which testing stops, and a decision is made to either release or 
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continue testing to the next time. This is a one-stage lookahead policy where 
each decision is binary; at Ij, one either releases or tests further to the 
prespecified time Ij+l' At some stage J, release is mandatory; in practice, J can 
be made large. The pre specification of the mandatory release time TJ is not 
necessarily contrary to practice. We often hear managers of software 
development houses say "we will release the software when we said we will do 
so." 

This plan has some advantages. The nature of the decision makes the plan 
easy to implement. Usually, the predefined times will be a regular arithmetic 
sequence, perhaps corresponding to each day or week of testing. With decisions 
occurring at known times, planning for the testing phase is made easier. 
Theoretical results on the optimality of the plan can be proved. However, it does 
have some disadvantages. The success of the testing schedule depends on what 
times are specified; too short an interval between times causes the testing to stop 
too early, and too large an interval risks over-testing. 

Let Nj represent the number of bugs discovered in the jth stage, that is, 
Nj = N(Ij) - N(Ij-l), and let Vj denote all the information that is available up 
to Ij; this consists of the prior hyperparameters, the number of failures in each 
interval Nt, ... , Nj, and the last failure time Sj prior to Ij. From the previous 
sections, we know that these are sufficient statistics under this model. We 
emphasize that the times Tt , T2 , .•• , TJ are fixed at the start and are therefore 
not optimal in any sense. 

The utility associated with the release of the program at the end of a stage j 
is of the same form as in earlier plans; namely, 

j 

lAj[Ij, (N), N2 , •.• , Nj ), N (Ij)] = P - C X LNk - D x N (Ij) - F(Ij). 
k=l 

(6.22) 

The constants are exactly as before; the 0nly change is that now we allow the 
opportunity loss function to be of a more general form, say F(n, rather than the 
previous f x Tg. The reason for this departure becomes clear later, when the 
optimality of the plan is mentioned; see Section 6.6.6. 

At the completion of a stage j, the decision to be made is to release or to 
continue testing to Ij+t. The utility of releasing now is given by the expectation 
of Equation (6.22), where the expectation is with respect to the only unknown 
quantity in Equation (6.22), namely, N (Ij). We write this as 

00 

E(l1j I Vj) = L 11j[1j, (NJ, N2 , ••• ,Nj ), N (1j)] x P(N (1j) I Vj). 
N(1j)=O 

(6.23) 
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The utility of testing to the next stage is 

(6.24) 

here, Nj+1 and N (1j+d are unknown and so we must take the expectation with 
respect to these two quantities. We write this expected utility as: 

E(l.{;+! l'Dj) = L: l.{;+! [1j+h (N!, ... ,Nj +!), N (1j+!)] X 
Nj+l. N(Tj+I) 

(6.25) 

For both expectations, the distributions used are the posterior distributions 
conditional on Vj. Thus the decision criterion at stage j is to test to 1j+l if 
E(Uj I Vj) :::; E(Uj+l I Vj); otherwise release. This reduces to a decision to test if 
and only if 

(D - C) [E(N (1j) l'Dj) (6.26) 

Thus it is necessary, upon completion of a stage j, to evaluate the two 
expectations E(N (1j) I Vj) and E(N (1j+l) I Vj) for which the appropriate 
formula is that given by Equation (6.20). 

6.6.5 One-Bug Lookahead Testing Plans 

An alternative to the fixed-time one-stage lookahead plan is the one-bug 
lookahead plan. This is the plan considered by Ozekici and Catkan (1993), and 
by Morali and Soyer (1999). Here instead of testing until a pre specified time (as 
was done in the fixed-time one-stage lookahead plan), we test until a bug is 
encountered. When the bug is discovered and fixed, a decision has to be made 
whether to release the software or to test it until we observe the next bug. For 
this scheme to make sense it is assumed that testing until the next bug does not 
entail testing forever. Since the uncertainty here is about the time to occurrence 
of the next bug, a natural probability model to use is one that belongs to the 
Type I category. Morali and Soyer consider the non-Gaussian Kalman filter 
model of Section 3.4.2, and we focus upon this for purposes of discussion. 
Recall [see Equations (3.23) and (3.24)] that the system equation for this model 
was specified in terms of the parameter B;, i = 1, 2, ... , where B; is the scale 
parameter of the gamma distribution of T;; T; is the ith interfailure time. 

Recall that the utility function is made up of two cost components: the cost 
of testing, and the cost of an in-service failure. The former is a function of the 
amount of test time, and the latter can be based on the time to encounter an in-
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service failure, or on the failure rate of the software subsequent to its release. 
Morali and Soyer do the latter by considering OJ as a proxy for the failure rate of 
T j • Instead of basing the utility on the failure rate, we could also base it on the 
reliability of the software, as was done in Singpurwalla (1991). The reliability 
function being bounded between zero and one is a natural candidate for utilities; 
recall that utilities are probabilities and obey the rules of probability. 

To move along, suppose that the ith bug has been encountered and 
corrected, and that the non-Gaussian Kalman filter model of Section 3.4.2 is 
used. Let Ur(Tj+d denote the utility of testing to the next bug, supposing that it is 
encountered at time Tj+1• Assuming, as before, a linear cost of testing, suppose 
that Ur(Tj+l) = - fx Tj+l, wherefis a constant. Similarly, let UR(Oj+d denote 
the utility of releasing the software subsequent to correcting the ith bug. Then a 
simple model for UR(Oi+l) would be UR(Oj+l) = - D X Oi+), where D is a 
constant. The subscripts T and R associated with U represent "test" and 
"release," respectively. Clearly, we would stop testing after correcting the ith 
bug, and release the software, if the expected value of UR(Oj+l) were greater than 
the expected value of Ur(Tj+1). These expectations can be calculated (in 
actuality, computed) using the approach outlined in Section 4.5.3. 

6.6.6 Optimality of One-Stage Lookahead Plans 

The one-stage lookahead plans described in Sections 6.6.3 to 6.6.5 are 
restrictive because they do not consider future stages of testing. For this reason it 
is difficult, in general, to say in what sense they might be optimal. The usual 
strategy is to say that, were it decided to stop after the ith stage on the basis of 
looking at testing to the (i + l)th stage, then the utility of subsequently testing to 
stages (i + 2), (i + 3), ... , would be no better. Thus, it is sufficient just to look 
one stage ahead when deciding on the optimal stopping time. 

Such sufficiency results have been proved in a variety of settings. A general 
result, when N(T) is a Markov chain is well known; see, for example, Ross 
(1970). With regard to the plans described here, McDaid and Wilson (1999) 
have shown, under certain conditions on the utility function and the probability 
model, that the fixed-time lookahead plan is optimal in the sense given by 
Theorem 6.1. 

Theorem 6.1 [McDaid and Wilson (1999)]. Consider the fixed-time lookahead 
testing plan with the utility function given by Equation (6.22) and with the 
maximum number of testing stages J. Let F(Tj ) be discrete convex in i, and let 
E(N(Tj ) I V) be discrete concave in i, for i = j, ... , J. Then, after the 
completion of j stages of testing, the following stopping rule is optimal. 

If 
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then test to 1j+I; otherwise, release. 
Morali and Soyer (1999) have proved an equivalent result for their one-bug 

lookahead plan. 

6.7 Application: Testing the NTDS Data 

Consider the NTDS data of Table 4.2. How would the testing plans 
described in Section 6.6 fare under these data, supposing that the model of Ooel 
and Okumoto were to be entertained? 

To start with, suppose that the necessary parameter values and the values of 
the constants are those that were specified in the illustrative example of Section 
6.6.2. Then, under the one-stage test, the optimal test time would be T* = 180, 
and the expected utility about 260; see Figure 6.6. Note that according to the 
entries in columns one and three of Table 4.2, testing until 180 units of time will 
reveal nl = 23 failures, with the last failure occurring at Sl = 156. 

For the case of a two-stage test, since 21 bugs were discovered by 116 units 
of test time a second stage of testing is necessary. This will result in the 
discovery of 26 (or possibly 27) bugs in total. By contrast a one-stage procedure 
calls for a testing time of 180 and results in the discovery of 23 (or possibly 24) 
bugs. 

We now consider what would happen if the one-stage lookahead plan of 
Section 6.6.3 were applied to the NTDS data. Using nl = 23 and Sl = 156 in 
Equation (6.21), we compute T; = 218.4; the expected utility is about 288. Thus 
testing for the second stage involves (218.4 - 180) = 38.4 additional units of 
time; recall that under the one-stage test the optimal test time was 180. But 
according to the entries of Table 4.2, no further bugs were discovered during this 
additional 38.4 time units of testing, and so n2 = 23 and S2 = 156. Repeating the 
calculation involving Equation (6.21) we see that T; = 201.4. Since T; < T;, 
our decision would be to stop testing. To conclude, if the model by Ooel and 
Okumoto and the previously specified constants were to be invoked with a 
single-stage lookahead procedure on the NTDS data, then testing would have 
stopped after the second stage, at 218.4 units of time, and would have yielded an 
expected utility of about 289. This is larger than 260, the expected utility of the 
single-stage test. 

Suppose now that instead of the single-stage lookahead procedure we 
considered the fixed-time lookahead procedure of Section 6.6.4, with Ti = 50i, 
for i = 1, 2, .... The initial decision is to test until 50 units of time or to release. 
The expected utilities under these two actions are 232 and 200, respectively. 
Thus the decision is to test for 50 units of time. This results (see Table 4.2) in 
NJ = 7 failures (bugs) with Sl = 50. Using these values of NJ and Sl to obtain 
the required posterior distributions, we note that testing to T2 = 100 gives an 
expected utility of 402 against a utility of release at TJ = 50 of 335. So the 
decision is to test to T2. The procedure continues until T4 = 200, whereupon the 
expected utility of testing to Ts is 276, against the expected utility of release at 
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T4 of 289; thus testing stops and the software is released after 200 units of 
testing. Therefore, both the one-stage lookahead and the fixed-time one-stage 
lookahead testing plans lead to roughly the same decision; namely, release after 
about 200 units of testing time. 

With the one-bug lookahead plan the first decision is to test until the first 
bug is discovered or to release immediately. The expected utilities are 208 and 
200, respectively, so it is decided to test until the first bug; this occurs after 9 
units of time. Next, using N(9) = 1 and SI = 9 in the appropriate posterior 
distribution, a decision is made again, with the expected utility of further testing 
of 217 against the expected utility of release of 212. Testing continues in this 
manner until the 24th bug occurs at time 247, at which the expected utility of 
testing to the 25th bug is 270 against 277 for release. Thus under the one-bug 
lookahead plan testing would stop at 247 time units with 24 of the 34 (recorded) 
bugs discovered. Contrast this with stopping at 200 time units with 23 of the 34 
bugs discovered. The expected utility in the former case is 277; in the latter case 
it is 289. Thus, from a retrospective viewpoint, the one-stage lookahead plan 
would have been the optimal plan to use. It would have resulted in the decision 
to release the software after 200 units of test time and would have yielded an 
expected utility of 289. 

6.8 Chapter Summary 

This chapter pertains to a fundamental problem faced by software 
developers and managers, namely, how long to test a piece of software prior to 
its release? This is a problem of decision making under uncertainty and involves 
a tradeoff between costs and risks. Thus to facilitate such a discussion, the 
chapter begins with an overview of normative decision theory and utility theory. 
The theory specifies the maximization of expected utility (MEU) as a criterion 
for making optimal decisions. A key consideration that drives us to the MEU 
principle is that utility is a probability, and thus obeys the calculus of probability. 
The MEU principle then follows via the law of total probability. 

The remainder of the chapter pertains to an application of the MEU 
principle for different types of software testing plans and under different models 
for failure. The different types of testing plans that are mentioned are: single­
stage, two-stage, sequential, one-stage lookahead, fixed-time lookahead, and 
one-bug lookahead plans. The cost of testing pertains to the pre-fixing of 
discovered bugs and the loss of consumer confidence resulting from the release 
of unreliable code. On the other hand long test times add to the cost of the 
development effort, and contribute to the risk of obsolescence. The optimal test 
time balances these two competing criteria. 

Sequential testing plans give rise to infinite decision trees. This problem is 
overcome in practice by imposing (arbitrarily) an upper bound on the number of 
testing stages that are allowed. The computational difficulties associated with 
sequential plans can also be overcome by the one-stage lookahead plans. That is, 
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we make a decision without accounting for the possible future (i.e., two, three, 
four, etc.) stages of testing. However, such strategies are not optimal. 

We gave a detailed example of an optimal single-stage testing plan using the 
model by Jelinski and Moranda, and described the setup when the testing was to 
be done for two stages. We made several assumptions about costs and utilities; 
these were based on the reported experiences of industry. The optimal single­
stage problem, although simplistic in nature, poses difficult computational 
issues. These can only be addressed numerically. We also discussed optimal 
testing for the model by Goel and Okumoto under a single-stage test, and under a 
one-stage lookahead and a fixed-time one-stage look- ahead testing schemes. 

The optimal testing of software is an important issue which calls for more 
research, especially research that will lead to approaches that are easy to use. We 
anticipate that more is going to be written on this topic. Perhaps the search for an 
omnibus simple-minded model for describing software failures is strongly 
justified by the need for developing an easy to use, but realistic, optimal testing 
strategy. 
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Exercises for Chapter 6 

1. A decision maker wishes to select one of two software development 
organizations for producing software needed to run a large system. Let 
Pi] be the probability that the highest level achieved by organization 1 is 
i, for i = 1, ... , 5. Similarly, let Pi2 denote the corresponding 
probabilities for organization 2. Let Cj , j = 1, 2, be the cost of 
developing the software quoted by organization j. Let Vi be the utility 
to the decision maker of software developed by an organization whose 
highest maturity level is i. Assume that, in general, VI ~ Vz ~ V3 
~ V4 ~ Vs. 

Draw a decision tree to outline the steps that the decision maker takes to 
select one of the two software houses. 

2. In Exercise 1 suppose that the Pi]S are as given in Table 5.2, and the Pi2S 

are as follows. 

Pl2 = 0.4986, 
P32 = 0.0281, 

P22 = 0.3771, 
P42 = 0.0979, and PS2 < 0.001. 

Assume that VI = 0.2, Vz = 0.4, V3 = 0.6, V4 = 0.8, and Vs = 1. 

(i) For what values of CI and Cz will the decision maker choose 
organization lover organization 2? 

(ii) When will the decision maker flip an unbiased coin and choose 
organization 1 if the coin lands heads? 

3. Verify Equation (6.3) of Section 6.6.1. 

4. Consider the illustrative example of Section 6.6.2. Suppose that s] and 
S2 are changed to 7 and 1, respectively. How does this change affect the 
optimal testing time of 180? 

What if m] and m2 are changed to 15 and 5, respectively, with s] = 5.5 
and S2 = 1.3? 

5. Verify Equations (6.11) through (6.13) of Section 6.6.2. 



7 
OTHER DEVELOPMENTS: 

OPEN PROBLEMS 

7.0 Preamble 

The scope of applicability of probabilistic ideas to address problems in 
software engineering is constantly expanding. Consequently, what has been 
covered is just a sample of the ultimate possibilities. Indeed, even now, there are 
several topics that are currently being researched that have not been highlighted 
by us. Some of these are: the use of stochastic process models (such as birth and 
death processes) for describing the evolution and maintenance of software, 
software certification and insurability, the incorporation of an operational profile 
for reliability assessment, embedding the CMM of Chapter 5 into a decision­
theoretic framework, statistical aspects of software testing and using 
experimental designs for the testing of software, reliability assessment when 
testing reveals no failures, the integration of module and system testing, and so 
on. The aim of this chapter is to provide a bird's-eye view of some of these 
topics, and to put forth some open problems that they pose. It is hoped that this 
will inspire other researchers to pursue each topic in more detail than what we 
report. With this in mind, we have selected three topics for further discussion: 
dynamic modeling and the operational profile, statistical aspects of software 
testing and experimental designs for developing software testing strategies, and 
the integration of module and system performance. 

N. D. Singpurwalla et al., Statistical Methods in Software Engineering
© Springer-Verlag New York, Inc. 1999
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7.1 Dynamic Modeling and the Operational Profile 

Intuitively, a dynamic model is one wherein the future development of a 
process is explained, among other things, in terms of its past history. We have 
already encountered dynamic models in our discussion of self-exciting point 
processes and the software reliability models generated by concatenating failure 
rates. The model of Section 3.6 is a particularly instructive example. Dynamic 
models have played a key role in the biostatistical literature vis-a-vis their 
applications in survival analysis; see, for example, the survey by Andersen and 
Borgan (1985). Their importance derives from the famous Doob-Meyer 
decomposition which is fundamental to the development of martingale theory. 
Thus to get an appreciation of the general structure of dynamic models it is 
helpful to start with a brief overview of the martingale property of stochastic 
processes and its associated terminology. To keep our exposition simple, we 
focus attention on a discrete time stochastic process, and conclude with a passing 
reference to the continuous time version. 

7.1.1 Martingales, Predictable Processes, and Compensators: An Overview. 

Let Xt, t = 0, 1, 2, . . . , be a discrete time stochastic process; for 
convenience we suppose that Xt is the tth interfailure time of software 
undergoing a test-debug cycle. Since (Xt - Xt.l) denotes the change in the {Xt; 
t = 0, 1, 2, ... ,} process at time t, our "best" prediction of this change, were we 
to know the past history of the process X I, ... , X/. I , could be of the form 

where E denotes an expectation. 

Let Ut = 2::=1 Vi; then Ut is simply the cumulative sum of our expected 
changes up to time t. Indeed, Ut is our "best" prediction of Xt based on XI, X2, •• 

. , Xt-I. Since Ut is merely a prediction of Xt, we define the error of prediction 
via a random variable M t , where 

Mt = Xt - Ut , t = 1, 2, .... (7.1) 

The random variable Mt is an interesting quantity. It has the easily verified 
property that 

(7.2) 

Since knowing XI, ... , Xt- I boils down to knowing M t- 1 , Equation (7.2) says that 
the expected error in predicting Xt using Xl, ... , Xt_1 is the actual observed error 
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in predicting Xt-I (using XI. ... , Xt-2). This seemingly innocuous property is of 
fundamental importance in probability theory. To appreciate why, let us rewrite 
(7.2) as 

(7.3) 

and focus on the stochastic process M t , t = 1, 2, .... Equation (7.3) says that the 
increments of the process Mt have expectation zero; that is, the process Mt has 
orthogonal increments. Contrast this to the process of Section 2.3.1 which has 
independent increments. Processes having the orthogonal increments property 
are called martingales; their defining characteristics are either Equation (7.2) or, 
equivalently, Equation (7.3). If we rewrite Equation (7.1) as 

Xt = V t + M t , t = 1, 2, ... , (7.4) 

then we can see that the stochastic process Xt can be decomposed into two parts: 
a process Ut that sums up our best predictions of the changes in the Xt process, 
and a process Mt that sums up the errors of the predictions. The decomposition 
of Equation (7.4) is called a Doob decomposition, and the quantity (Mt - Mt-d 
is called a martingale difference, or an innovation. This latter terminology 
reflects the fact that it is (Mr - Mr-d that is the uncertain (or the new) part in the 
development of the process. Since Ur depends on XI, ... , Xr-1 , it is known at 
time t; consequently, the process Ut is known as a predictable process. 
Furthermore, since Mr = Xr - Ur, Ur is called a compensator of Xt. 

Because Ur is made up of a sum of the ViS, the predictability of Ur implies 
the predictability of the ViS as well. Thus the process Vt is also a predictable 
process. 

We are now ready to introduce the concept of a dynamic statistical model as 
any statistical parameterization of the predictable process Vt. A simple example 
is the linear model 

(7.5) 

where Rt is composed of predictable and/or observable stochastic processes, and 
O:'t is some unknown parameter. As an example of the preceding, suppose that 
Rt = Xt-I; then, from Equations (7.4) and (7.5), we see that 

Xl - Xt-! = at Xt-! + (Mt - Mr-!), or that 

(7.6) 

Since (Mt - M t-1) is an innovation, Equation (7.6) is an autoregressive process 
of order one, with a varying coefficient (1 + O:'t). Thus we see that our dynamic 
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model encompasses the class of autoregressive processes; such processes were 
considered by us as models for tracking software reliability (see Section 3.4.1). 

Note that the process Vr. and hence the process Rt , can be any predictable 
process and conceivably can be any complicated function of the past. In 
particular, Rt may also include co variates (see Section 2.4.3), as long as the 
covariates are a predictable process! It is this feature that will allow us to 
incorporate the operational profile as a covariate of the software failure process; 
more is said about this later in Section 7.1.3. 

To summarize, the Doob decomposition is a way of representing almost any 
stochastic process. We have made almost no probabilistic assumptions in the 
kind of modeling done thus far; parameterizing the predictable part of the 
process does not involve probabilistic assumptions. The innovation part of the 
decomposition allows us to use martingale theory, like the martingale central 
limit theorem and the law oflarge numbers for martingales [cf. Kurtz (1983)], to 
write out likelihoods, and to investigate issues of estimation. This facility is of 
particular value to those who subscribe to the frequentist point of view for 
inference and decision making. 

The Doob decomposition of Equation (7.4) generalizes to continuous time 
stochastic processes as well. When such is the case, the decomposition is known 
as the Doob-Meyer decomposition, and is written as 

Xt = Ut + Mt , for t 2: O. (7.7) 

The preceding process M t is still a martingale, and by analogy with the Ut of 
Equation (7.4), the Ut here is an integral of "best" predictions; that is, 

t 

Ut = J Vs ds. 
o 

The predictability of the Vt process IS ensured by requiring that each Vt be 
known just before t. 

A stochastic process Xt, be it in discrete or in continuous time, having the 
decomposition of Equation (7.4) or (7.7) is known as a semimartingale; the 
qualifier "semi" reflects the fact that one member of the decomposition, namely, 
Ut , is not a martingale. The material of this section is abstracted from Aalen's 
(1987) masterful exposition on dynamic modeling and causality. 

7.1.2 The Doob-Meyer Decomposition of Counting Processes 

We have seen that the Doob-Meyer decomposition, being based practically 
on no assumptions, is a very general construct. Thus the question arises as to 
whether we can meaningfully exploit this generality for addressing issues 
pertaining to the tracking of software performance. Such questions have been 
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addressed, in one form or another, by investigators such as Koch and Spreij 
(1983), van Pul (1993), and Slud (1997). To appreciate how, we must first cast 
the problem of tracking software failures in a format that lends itself to a 
Doob-Meyer decomposition. This is done by looking at the software failure 
process as a continuous time counting process N(t), t ~ 0. The precedent for 
doing so is in survival analysis, wherein N(t) tracks the survival of a patient, with 
N(t) = ° for t < T, and N(t) = 1, for t ~ T; T is, of course, the patient's 
lifelength. We return to this precedent later, but for now we note that in our 
context, N(t) as a function of t is an integer-valued step function that is zero at 
time zero, with jumps of size +1. We suppose N(t) to be right continuous (see 
Figure 2.5) so that N(t) represents the number of times that the software 
experiences failure in the time interval [0, t]. In prescribing the foregoing, we are 
supposing that t is either the CPU time, or that the debugging and the re­
initiation process are instantaneous. 

Under some regularity conditions, which need not be of concern to us here, 
the process N(t) has a random intensity process )'*(t), t ~ ° (see Section 2.3.1), 
whose realization )'(t) depends on :F,- , where :F,- denotes everything that has 
happened until just before time t. That is, :F,- encompasses a complete 
specification of the path of N(t) on [0, tl, as well as other events and factors that 
have a bearing on the behavior of N(t). Specifically, 

>.(t)dt = P[N(t) jumps in an interval dt I :F,-] . (7.8) 

Observe that the preceding setup parallels that of the self-exciting point process 
of Section 2.3.3, with :F,- being (1t U 1tt ). 

The implication of Equation (7.8) is that in a small interval of time dt, N(t) 
either jumps or does not, and so by analogy with the expected value of a 
Bernoulli random variable, the probability of a jump in dt is simply the expected 
number of jumps in dt. Thus 

>.(t)dt = E[dN(t) I :F,-] , 

and if we define 
dM(t) = dN(t) - >.(t)dt, (7.9) 

then E(dM(t) I :F,-) = 0, which is the continuous time analogue of Equation 
(7.3), a defining property of martingales. It now follows from Equation (7.9), 
that for t ~ 0, 

I 

M(t) = N(t) - J >'(u)du 
o 
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is a martingale with J: )..(u)du as a compensator of N(t), and N(t), t 2:: 0, is a 
semimartingale. 

Thus to summarize, the counting process N(t), t 2:: 0, generated by software 
failures admits a Doob-Meyer decomposition of the type described. Since the 
compensator of N(t) must be a predictable process, we need to explore 
parameterizations of )..(t) that are meaningful and ensure predictivity. For this, it 
is instructive to look at a parameterization that is commonly used in survival 
analysis. To start with, suppose that N(t), t 2:: 0 tracks the survival of a single 
patient, so that if Y(t) is defined as 

Y(t) = I, if the patient is under observation just before t, and 

= 0, otherwise, 

and if )..(t) is parameterized as >.(t) = >'o(t) exp (!3oz(t», t 2:: 0, then 

>.(t)dt = Y(t) >'o(t) exp (!3oz(t» dt. (7.10) 

The preceding reparameterization is the famous Cox regression model [cf. Gill 
(1984)]; )..o(t) is known as the baseline failure rate, and z(t) is a known 
covariate; 130 is a constant. Thus given the past, up to (but not including) time t, 
Y(t) is predictable, and since z(t) is known, )..(t) is also predictable. A 
generalization of this setup is to consider the tracking of several, say n, patients 
so that N(t) can take more than one jump, and to allow Y(t) to take forms 
different from that given previously. Furthermore, the fixed covariate z(t) can be 
replaced by a random covariate Z(t), or by a collection of several fixed and/or 
random covariates. All that is required for the decomposition of N(t), t 2:: 0, is 
that N(t), Y(t) , and Z(t), t 2:: 0 be observable, and that Y(t) and Z(t) be 
predictable. As an illustration of these generalizations, we may parameterize )..(t) 
as 

>.(t)dt = (n - N(r» >'o(t) exp (~~ ~(t»dt , (7.11) 

where now Y(t) is replaced by (n - N(r», the risk set at time t, and Z(t) is a 
vector of random covariates; (! 0 is a vector of parameters. To see why the risk set 
(n - N(r) is a meaningful choice for Y(t), we consider a special type of 
counting process, namely, the "order statistics process." Specifically, suppose 
that T(l> ::; T(2) ::; .•• ::; T(n) are the order statistics (see Section 3.5.3) of a 
sample of size n from an absolutely continuous (predictive) distribution function 
F(t 11i) and a (predictive) failure rate )..o(t); the 1i has been suppressed. We 
could view the T(i)s as the survival times of n items under observation starting 
from time o. Let I(A) be the indicator of a set A, and for t 2:: 0, we define the 
counting process N(t) as 
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n 

N(t) = I: I (T(i) < t); 
;==1 

then N(t), t ~ 0 is called the order statistics process. We next define a process 
yet), t ~ 0 as 

n 

yet) = I: I (T(i) > t) = (n - N(r» ; 
;==1 

then yet) represents the number of items that are at the risk of failure just before 
time t; thus the term "risk set." The intensity process A(t), t ~ 0 of the counting 
process N(t) is the rate at which N(t) jumps. Clearly, this will be of the form 

>,(t)dt = (n - N(r» >'o(t) dt, (7.12) 

and thus yet) = (n - N(r», the risk set. Observe that A(t) is random, since it 
depends on N(t); however, given N(r), A(t) is known and thus A(t) is predictable, 
but N(t) itself is not. 

7.1.3 Incorporating the Operational Profile 

The parameterization of Equation (7.12) also appears in the tracking of 
software failures by bug counting models like the model of Jelinski and 
Moranda; see Section 3.2.2. There, the A of Equation (3.4) is Ao(t) of Equation 
(7.12) and (n-NCr» parallels CN-i) of Equation (3.4). For the model by Goel and 
Okumoto (see Section 3.3.1) AO(t) is to be identified with be-bl, n identified with 
the constant a, and ACt) does not depend on NCr). 

Finally, the parameterizations (7.10) and C7 .11) can be made pertinent to 
tracking software failures if the fixed covariate z(t) can be identified with a 
nonrandom Cor predetermined) operational profile, and the random covariate Z(t) 
identified with a random operational profile. The random operational profile can 
be any stochastic process that is deemed meaningful. 

Thus to conclude, when software failures are tracked by a counting process 
model, the Dooh-Meyer decomposition results in the integral of its intensity 
process as a compensator, and if the counting process is modeled as an order 
statistics process, then the bug counting models of software reliability arise as 
special cases. Thus, in addition to some unification, the counting process set-up 
facilitates the incorporation of an operational profile, be it fixed or random. 
Finally, as mentioned before, the martingale theory facilitates asymptotic 
inference for those who wish to work in the frequentist paradigm. 
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7.2 Statistical Aspects of Software Testing: Experimental Designs 

Software testing tends to consume a significant proportion of its 
development budget. It also tends to prolong the software development cycle 
raising the specter of its obsolescence. Thus the need to make the testing process 
more efficient and cost effective has been very germane. The literature in 
software engineering draws attention to two types of testing strategies, "random 
testing" and "partition testing." Both strategies raise issues of statistical 
inference. Also, the statistical technique of design of experiments (henceforth 
DOE) has been proposed as a way to implement partition testing. Thus the aim 
of this section is to highlight the statistical issues that the problem of software 
testing poses, and to place DOE in the broader context of software engineering. 
To do so, we start with the following preamble which introduces some 
terminology and which defines the terms mentioned previously. 

The set of all possible inputs to a piece of software is known as (its) input 
domain. Typically, this set tends to be very large. Testing the software against its 
input domain serves two purposes: it weeds out the bugs in the software, and it 
enables us to ensure the software's overall quality. But a large input domain 
implies that exhaustive testing will be time consuming and expensive. Thus a 
compromise has been arrived at, wherein the software is tested against only a 
subset of the input domain; this subset is referred to as the set of test cases. It is 
hoped that the set of test cases is efficiently chosen, in the sense that it is 
representative of the inputs which the software is most likely to encounter. The 
selection of test cases can be done via random testing or via partition testing, 
strategies which have their underpinnings in the statistical theory of sample 
surveys; see, for example, Cochran (1977). 

With random sampling, the test cases are selected from the input space using 
a random sampling scheme. This can be done in several ways, one of which is to 
assign a number to each member of the input space, and then to select those 
members whose assigned number appears in a table of random numbers. With 
partition testing, the input space is subdivided into "strata," and the test cases are 
selected at random from each stratum. According to Weyuker and Jeng (1991), 
the strata can be defined by considerations such as statement testing, data-flow 
testing, branch testing, path testing, mutation testing, and so on. The strata can 
also be defined using DOE techniques, as was done by Mandl (1985), Brownlie, 
Prowse, and Phadke (1992), and more recently by Cohen et al.(1994). Clearly, 
the efficacy of partition testing depends on the manner in which the strata are 
defined and their representativeness of the actual environment in which the 
software is to operate. Nair et al.(l998) provide a good discussion and a 
comprehensive treatment of the comparative advantages of partition testing over 
random testing. 
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7.2.1 Inferential Issues in Random and Partition Testing 

In what follows, we have adopted the fonnulation of Nair et al. (1998) for 
describing the inferential issues that the problem of software testing poses. We 
start by supposing that the input domain consists of N members, where N is quite 
large. Our aim is to make some statements about the quality of a piece of 
software that will be subjected to inputs from this input domain. The metric that 
we use for expressing quality is "the expected failure rate," a notion that we 
make precise soon. 

With random testing, we will want to select at random n inputs from the set 
of N possible inputs. This can be done on the basis of any probability 
distribution, say p(j), j = 1, . . . , N, where p(j) represents the probability that 
input j will be selected; clearly Lj p(j) = 1. By random selection, we mean a 
process of selection wherein the input to be selected is not based on what inputs 
have already been selected. The distribution p(j), j = 1, ... , N, can be specified 
in any manner, but for a realistic assessment of the software's quality, it is 
appropriate to choose p(j) in a manner that reflects the software's operational 
profile. Recall that the operational profile describes the software's usage in the 
field environment. We now define a binary variable Xj , where Xj = 1 (0), if the 
jth input will result in a failure (success) of the software. Then, according to Nair 
et al. (1998), the software's expected/ai/ure rate under random testing is 

() = L Xj p(j). 
j 

(7.13) 

If the sampling is such that p(j) = N-! ,j = 1, ... , N (i.e., if all the N inputs have 

an equal probability of being selected), then () reduces to X/N, where X = E~ Xj , 

is the total number of inputs that would lead to software failure. 
Clearly, () will be known only if the disposition of each Xj is known. In 

actuality this, of course, is not the case; indeed an aim of software testing is to 
discover those Xjs that take the value one. Thus, if () is to be of any use, it is 
important to infer its value. In the absence of any prior assumptions about the 
Xjs, inference about () can only be made on the basis of the results of the n test 
cases. Let Xi denote the revealed value of Xi, i = 1, ... , n, and suppose that bugs 
that are the cause of an Xi taking the value one are not eliminated. We are 
mimicking here the scenario of sampling with replacement. Then, if N is large, 
an estimator of () could be (j = E~p(i)xi; if p(J) = N-!, for allj, then (j is simply 

the sample average L~(x;ln). 
There are certain aspects of Equation (7.13) that warrant some discussion. 

The first is that () is a proxy for the software's quality prior to any testing, and is 
meant to be the probability of the software's experiencing a failure when it is 
subject to the next randomly selected input. Once the software experiences a 
failure, the cause of failure will be eliminated so that the corresponding Xj will 
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make the transition from a one to a zero. Consequently, the X = E~xj will 
decrease by one after the software experiences a failure. The second aspect of 
Equation (7.13) is that 0, as defined, is really a propensity, rather than a 
probability. A measure of software quality that is more in keeping with our 
subjective viewpoint requires that we specify, for each input j, our personal 
probability that the input will lead to a failure. That is, we are required to assess 

P(Xj = 1) d~f rr(j), for j = 1, ... , N. Then, if we assume that the two events 
{Xj = I} and U is the next input to the software} are independent, an analogue 
for 0 based on the rr(j)s would be 

N 

e* = LPU) 'FrU) . (7.14) 
i 

Observe that 0* will reduce to 0 if every rr(j) is either a one or a zero, and 
that 0* = rr, if rr(j) = rr and p(]) = lIN, for all values of j. The requirement of 
event independence mentioned previously is implicit in the definition of O. In 
defining 0* we have not been explicit about our assumptions about the 
dependence or the independence of the sequence {Xj; j = 1, ... , N}. Such 
assumptions are reflected in our choice of rr(j), the marginal distribution of Xj. 
Since 0* involves a use of personal probabilities, it would be natural to conduct 
inference about 0* using a normative approach wherein the rr(j)s will be updated 
on the basis of XI, ••. , Xn• This is a topic that needs to be investigated and which 
depends on the nature of assumptions about the sequence {Xj;j = 1, ... ,N}. 

We now discuss the scenario of partition testing. Here the input domain is 
decomposed into, say K, strata (or cells), with cell i consisting of Nj inputs; 

i = 1, ... , K, and E7Nj = N. Suppose that n is the number of test cases that 
are allocated among the K strata in such a way that stratum i receives an 

allocation nj, where E7 nj = n. Within each stratum, the nj test cases are chosen 
according to some distribution, say p(i), i = I, ... , K, where p(i)(j) is the 
probability that the jth input of stratum i is selected; j = 1, ... , Nj • Thus within 
each stratum the testing protocol parallels that of random testing. Analogous to 
the 0 of Equation (7.13), we define OJ as the expected partition failure rate of 
stratum i as 

Ni 

ej = LP(j)U) Xi), i = 1, ... ,K, 
j=i 

(7.15) 

where Xij = 1(0) if the jth input of the ith partition will result in the software's 
failure (success). Verify that when p(i) (j) = (Njyl, for j = 1, ... , Nj, and for 

each i, i = 1, ... ,K, then 0 = E7«OjNj)IN). Thus the expected partition failure 
rate bears a relationship to the expected failure rate when simple random 
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sampling is used for each stratum. Inference for ()j follows along lines parallel to 

that for (), with OJ = L;~, p(i)(j) xij, where xij is the revealed value of Xjj . 

Finally, if 7r(i)(j) is our personal probability that inputj in the ith stratum will lead 
to failure, then analogous to ()* of Equation (7.14) we have, for the ith stratum, 

Ni 

(}t = Lp(i)(j) 7r(i)(j), i = 1, ... , K. (7.16) 
j=' 

Here again, normative inference about ();" is a topic that remains to be explored. 

7.2.2 Comparison of Random and Partition Testing 

There has been some debate in the software testing literature on the merits 
of partition testing over random testing. The paper by Nair et al.( 1998) is signal, 
because it settles this debate in a formal manner using the quality metrics () and 
()j, i = 1, ... , K, defined before. Their conclusion is that partition testing can 
produce gains in efficiency over random testing if certain guidelines about 
defining the strata, and about allocating the test cases to each stratum, are 
followed. To appreciate this we consider the failure detection probability (i.e., 
the probability of observing at least one failure) as a criterion for comparing the 
two strategies. Then it is easy to see that the probability of detecting at least one 
failure in a sample of n test cases which are selected using the random testing 
strategy, and conditional on knowing (), is 

(7.17) 

The corresponding detection probability under the partition testing scheme, and 
conditional on ()" ... , () K, is 

K 

(3P.n«(}j, ... , (}K) = 1 - IT(l - (}j)ni • (7.18) 
i=' 

If we let",p = 1 - n:,(l - ()jll.i, where Qj = n/n, i = I, ... , K, then Equation 
(7.18) becomes 

(3p, n «(}l, ... , (}K) = 1 - (l - TJpt 

= (3R,n(TJP) , 

because of Equation (7.17). Thus partition testing will be more effective than 
random testing if ",p > (), and vice versa otherwise. This conclusion is 
independent of the sample size. 
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Since 'T}p depends on the Bis and the aiS, the effectiveness of partition testing 
over random testing depends on the partitioning and the sample allocation 
strategy that is used. For example, it is easy to see that since 'T}p is maximized 
when all the test runs are allocated to the stratum for which Bi is the largest, a 
partition testing strategy with sampling concentrated in a cell can be more 
efficient than a random testing strategy. However, there is a caveat to such a 
proposal. This is because the Equations (7.17) and (7.18) upon which our claims 
are based require a sure knowledge of Band BJ, ••• , BK • Thus in order to select a 
testing strategy (random or partition), and to implement a sample allocation 
scheme, the B and the Bis should be replaced by the B* and B;s of Equations 
(7.15) and (7.16), respectively. If the testing is to be done in several phases (i.e., 
the software is first tested against a run of, say n(l) inputs, and then based on the 
results of this run, a second run involving, say n(2) inputs, is done, etc.), then a 
preposterior analysis of the decision problem involving the selection of a testing 
strategy needs to be conducted; see Section 6.4. This too is a topic that remains 
to be addressed. 

Finally, criteria other than the failure detection probability can also be used 
to compare testing strategies. Examples of these are: the expected number of 
detected failures, the precision in estimating B, the upper confidence bound for B, 
the cost of testing, and so on. However, in the final analysis, what seems to 
matter most appears to be the manner in which the partitions are defined. In 
many cases, a knowledge about the software development process, or the logic 
of the software code, will suggest partitions that are natural. Such partitionings 
will also suggest those partitions that are likely to experience high failure rates 
so that sample size allocations can be judiciously made. In other cases a 
knowledge about the software's requirements and other features such as the 
nature of the fields in its input screen can be used to define the partitions. When 
such is the case, DOE techniques can be used to construct partitions that have a 
good coverage of the input domain, and to ensure sample size allocations to each 
partition are in some sense balanced. In what follows, we give a brief overview 
of the DOE techniques and motivate their use in software testing. 

7.2.3 Design of Experiments in Software Testing 

Design of experiment techniques are statistical procedures that are used for 
planning experiments. Such techniques endeavor to ensure that the maximum 
possible information can be gleaned from as few experiments as possible. DOE 
techniques have been widely used in agriculture, industry, and medicine for quite 
some time. However, with the growing emphasis on quality engineering and 
robust design, the DOE approach has of late received enhanced visibility [cf. 
Phadke (1989)]. In the arena of software engineering, Mandl (1985) has used 
DOE for compiler testing, Brownlie, Prowse, and Phadke (1992) for software 
testing, and Cohen et al. (1994) for the "screen testing" of input data to an 
inventory control system. 
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For purposes of motivation and discussion, we focus on the screen testing 
scenario of Cohen et al. (1994). By screen testing, it is meant the checking of 
user inputs [to the (several) data fields of a computer screen], prior to 
performing any operations on the data. This checking is often done by a piece of 
software; its purpose is to ensure consistency and admissibility of the input data. 
Of interest here is an assessment of the quality of this screen testing software. 
Screen testing can be very time consuming since it is not uncommon for a large 
system to have hundreds of screens, with each screen having as many as 100 data 
fields. Even if each field can take only two possible input values, say ( + ) or 
( - ), then a typical screen could have 2100 possible combinations of inputs. Thus 
exhaustive testing of all these inputs in the input domain is expensive and time 
consuming, and this is so for just a single screen. An alternative to exhaustive 
testing is therefore clearly in order, and one such alternative is random testing. 
Another alternative is what is known as "default testing" wherein all the fields, 
save one, are set at their default values and the software is tested against all the 
values that the excluded field can take. The third alternative is to use DOE 
techniques, and as mentioned before, this is also a strategy for implementing 
partition testing. 

To appreciate the value of DOE, consider a simple situation involving three 
fields, with each field having two inputs, say 1 and 2. An exhaustive test set for 
this scenario would have the eight possible combinations {(I, 1, 1), (1, 1, 2), 
(1,2,1), (2,1,1), (1,2,2), (2,1,2), (2, 2,1), (2, 2, 2)}, where, for example, (2, 
1, 2) denotes the settings of field 1 at level 2, field 2 at levell, and field 3 at 
level 2. A 50% reduction of these eight test cases is provided by an orthogonal 
array, in which every pair of inputs occurs exactly once. This turns out to be {(1, 
1, 1), (1, 2, 2), (2, 1, 2), (2, 2, I)}. Orthogonal array designs are test sets such 
that, for any pair of fields, all combinations of input values occur, and every pair 
occurs the same number of times. Thus, for example, if an input screen consists 
of seven fields, with each field having two inputs, an exhaustive test would entail 
27 = 128 test cases, whereas an orthogonal array would entail the eight test 
cases {(1, 1, 1, 1, 1, 1, 1), (1, 1, 1,2,2,2,2), (1,2,2,1,1,2,2), (1, 2, 2, 2, 2, 
1,1), (2,1,2,1,2,1,2), (2,1,2,2,1,2,1), (2, 2,1,1,2,2,1), and (2, 2,1,2,1, 
1, 2)}; see Phadke (1989), p. 286. 

Orthogonal arrays have been used for software testing by Brownlie, Prowse, 
and Phadke (1992). Whereas such arrays give test sets that cover every pair of 
inputs with fewer test cases than the exhaustive test set, they do have their 
limitations. As pointed out by Cohen et al. (1994), such arrays are difficult to 
construct (there does not exist a unified approach for doing so), and do not 
always exist. For example, there does not exist an orthogonal array when the 
number of fields is six, and each field has seven possible inputs. More important, 
in the context of software testing, orthogonal arrays can be wasteful. This is 
because orthogonal arrays are required to be "balanced." That is, each pair of 
inputs must occur exactly the same number of times. Observe, that in the seven­
field example given before, for fields one and two, the pair (1, 1) occurs two 
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times; similarly, for fields six and seven, the pair (2,2) also occurs two times. In 
industrial experimentation the replication of test cases is desirable, since 
replication is the basis for learning about precision (variance), and the precisions 
should be based on an equal number of replicates. But with software testing 
replication is wasteful because replicated tests give identical results. In response 
to such concerns about orthogonal arrays, Cohen et al. (1994) have proposed an 
alternate design which they label the "AETG Design," Due to the proprietary 
nature ofthis design, details are unavailable. However, the design does not suffer 
from the limitations of orthogonal arrays, and in the seven-field example, the 
number of test cases drops down to six. More details about the use of the AETG 
design can be found in the aforementioned reference. 

The screen testing scenario has also been considered by Nair et al. (1998) in 
their comparison of random and partition testing. Here, based on knowledge 
about the requirements of the screen field and the software development process, 
four factors were identified as being relevant. These are: 

A - the number of unique tasks, 

B - the replicates per task, 

C - the replicate type, and 

D - the mode of user-input. 

Each of these factors was further broken down into categories, the categories 
being based on subject matter knowledge. Specifically, each of the factors A and 
D had four categories, and each of the factors Band C had two. With such a 
decomposition, the total number of combinations (i.e., partitions) was 
4 x 2 x 2 x 4 = 64. For conducting the software test, one test case was selected 
at random from each partition. Thus the total number of test cases with this type 
of a partition testing strategy was 64, a significant saving as compared to the 
64,746 test cases that would have resulted an exhaustive testing scheme. The 
possible values that factor A alone can take is 162. A design such as the one 
described, namely, partitioning the input domain into factors, and then creating 
categories (or levels) within each factor is known as afactorial design. A further 
reduction in the number of test cases is possible if, instead of testing at all the 
combinations of a factorial design (64 in our example), we test at only a sample 
from this set of combinations. Such a design is aptly termed a fractional 
factorial design. That is, a fractional factorial design is a sampling scheme on 
the set of all possible factor combinations. The orthogonal arrays described 
before are examples of fractional factorial designs. It is important to note that 
sampling on the set of all possible factor combinations is not a random sample; 
for example, the orthogonal arrays are constrained in the sense that all the 
pairwise combinations appear at least once. 
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FIGURE 7.1. An Orthogonal Latin Square Design. 

Another example of a fractional factorial design is what is known as an 
orthogonal Latin square. This design was used by Mandl (1985) for compiler 
testing and validation of a piece of software written in Ada. To appreciate the 
nature of a Latin square design, suppose that our input domain can be partitioned 
into three factors, with each factor having four levels. The total number of 
possible combinations is therefore 4 x 4 x 4 = 64. A Latin square design will 
reduce the number of test cases to 16, and yield much of the same information as 
the full set of 64 tests. To see the structure of the Latin square design, suppose 
that Lij denotes the jth level of factor i, i = 1, 2, and j = 1, 2, 3, and 4. The four 
levels of factor three are denoted as A, B, C, and D. This notation may seem 
idiosyncratic, but it is in keeping with the DOE convention. The name Latin 
square derives from the fact that the four levels of factor three are denoted by the 
Latin alphabet. In Figure 7.1 we show an orthogonal Latin square design as a 
balanced two-way classification scheme in which every level of every factor 
appears at least once. The design is depicted by a square matrix in which each of 
the four levels A, B, C, and D appears precisely once in each row and once in 
each column of the matrix. 

The generalization from four levels to n levels for each of the three factors 
is immediate. The total number of possible combinations is now n3, whereas an 
orthogonal Latin square based design would entail n2 tests. 

Suppose now that it is desirable to partition the input domain into four 
factors, with each factor having four levels. The total number of possible 
combinations is 44 = 256. Suppose that the four levels of the (new) fourth factor 
are denoted by the Greek letters, a, {3, 'Y, and D. The levels of the other three 
factors are denoted, as before, by the LijS, and by Latin letters. Here, an analogue 
of the Latin square design is a Latin hypercube design, known as a Greco-Latin 
square. This name derives from the fact that the levels of the third and the fourth 
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FIGURE 7.2. An Orthogonal Greco-Latin Square Design. 

factors are denoted by the Latin and Greek alphabets, respectively. In Figure 7.2 
we show an orthogonal Greco-Latin square design for the case of four factors, 
each at four levels. Interestingly, despite the addition of a new factor, the total 
number of test cases remains at 16. Observe that each of the 16 Greek-Latin 
alphabet combinations occurs exactly once, and that each level of every factor 
appears exactly once in each row and in each column. 

Tables of Latin square designs, such as those of Figures 7.1 and 7.2 are 
given in Fisher and Yates (1953). It is important to note that Latin square 
designs are only possible when the number of levels of all the factors is the 
same. That is, the design in a two-way classification results in a square. 
However, it can sometimes happen that an entire row, or an entire column, of a 
Latin square can be missing. When such is the case, the resulting incomplete 
Latin square is called a Youden square; see, for example, Hicks (1982), p. 80. 

7.2.4 Design of Experiments in Multiversion Programming 

The literature on DOE describes another commonly used design, namely, 
the "randomized complete block design," that can be seen as a precursor to the 
Latin square design. The role of this design can be appreciated via the scenario 
of evaluating n-version programming by several evaluation teams, say also n. By 
n-version programming, we mean n typically nonidentical copies of a program 
that are developed by n separate teams using a common set of requirements and 
specifications. Conceivably, such programs can be used for ensuring high 
reliability through fault tolerance; see, for example, Knight and Levenson 
(1986). Suppose that n is four, and let the four versions of the program be 
denoted by the Latin letters, A, B, C, and D. Suppose also, that there are four 
testing teams whose role is to test and to evaluate the four versions of the same 
functional program. Let the testing teams be denoted by the Roman numerals, I, 
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FIGURE 7.3. A Randomized Complete Block Design. 

II, III, and IV, and suppose that each team is required to conduct four tests. This 
latter requirement may make sense if the input domain is partitioned into four 
strata, and the test team is required to choose, at random, anyone of the four 
strata for its test. The scenario described previously is for illustrative purposes 
only; it is not, in any way, intended to be realistic. How should we allocate the 
four versions of the program to the four testing teams, so that each team 
conducts four tests? 

A naive solution is to allocate a version to a team, and require that it do so 
four times. For example, we may require that team I test version A four times, 
team II test version B four times, team III test version C, and team IV test 
version D, four times each. Such an approach is fallible since we are unable to 
distinguish, in our analysis, between teams and versions. Such designs are called 
completely confounded because averages for teams are also averages for the 
versions. 

An improvement over the completely confounded design is the completely 
randomized design wherein the assignment of a version to a team is random. 
However, such an assignment is also fallible, because it could result in the 
situation wherein a version, say A, is never tested by a team, say III. By contrast, 
in a randomized complete block design, every version is tested exactly once by 
every team. Figure 7.3 shows such an assignment. 

Finally, if it so happens that a particular version of the program, say B, 
cannot be assigned to a particular test team, say I, then the resulting design is 
known as an incomplete block design; see, for example, Hicks (1982), p. 80. 

7.2.5 Concluding Remarks 

The subject of experimental design is vast and specialized. We have 
attempted to give merely an overview ofthis topic, keeping in mind the intended 
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applications. There are several excellent books on this subject, the one by Hicks 
(1982) offering a relaxed introduction. 

The topic of software testing offers much opportunity for using some well­
known techniques of applied statistics. We have highlighted two of these, 
namely, sampling and the design of experiments. Special features of the software 
testing problem call for modifications of the available methodologies. In the 
context of random and partition testing, we have alluded to a few open problems. 
In the context of DOE, the need for new designs has been recognized, and some 
work involving constrained arrays, vis-a-vis the AETG design has been reported. 
However work in this arena seems to be continuing, a recent contribution being 
the paper of Dalal and Mallows (1998). 

7.3 The Integration of Module and System Performance 

It is often the case that a large software system can be decomposed into 
modules, where each module is a subset of the entire code. The modules are 
designed to perform a well-defined subtask, and a part of the code may be 
common to several modules. The output of a module could be an input to 
another module, or the output of the entire system itself. In the interest of clarity, 
we find it useful to define the input specific reliability of a module as the 
probability that the module produces a correct output against a given input. 
Since the number of distinct inputs to a module can be very large -­
conceptually infinite - - it is useful to think in terms ofthe overall or composite 
reliability of a module as the probability that the module produces a correct 
output for any randomly chosen input from the input domain. 

It is often the case that each module is tested individually to assess its input­
specific reliability with respect to the subtask that it is required to perform. 
When such is the case, the input-specific reliability will be one or zero, 
depending on whether the module's observed output is correct. Typically, the 
causes of an incorrect output are identified and eliminated through debugging. 
However, it is not feasible to test a module against all its possible inputs. Thus 
the best that one can hope for is to estimate the module's composite reliability. 
This estimate will depend on the size of the sample of inputs against which it is 
tested. Clearly, because of debugging (which is often assumed to be perfect), the 
estimated composite reliability will increase with the number of inputs against 
which the module is tested. The purpose of this section is to propose a 
framework by which a software system's composite reliability can be assessed 
via the (estimated) composite reliability of each module. For this, we need to 
know the relationships among the various modules of the software system, that 
is, the manner in which the modules are linked with each other. In what follows, 
by the term reliability we mean composite reliability. 
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FIGURE 7.4a. The "Sequence" Control Flow. 

7.3.1 The Protocols of Control Flow and Data Flow 

The modules of a software system mayor may not be linked with each 
other. When linked, there are two protocols that describe the nature of linkage. 
The first is control flow which specifies the time sequence of events and 
operations. The second is data flow which describes how data (or information) is 
transmitted to, from, and between modules. By convention, we use solid lines to 
indicate control flow, whereas dotted lines indicate data flow; see Figures 7.4 
and 7.5. There are three types of control flow that need to be considered: 
"sequence," "selective," and "iteration;" we describe these later. In what follows, 
we assume that these three control flows can be used to represent any software 
system with any number of modules. 

For purposes of exposition, consider a software system with only two 
modules MI and M2 and a "condition gate," which is denoted by the letter C 
inscribed within a diamond. The condition gate is a binary logic gate with two 
outputs, "t" for truth, and ''/' for false. Figures 7.4a), b), and c) show how MI 
and M2 are linked via the sequence, the selective, and the iteration flows, 
respectively. 

When the control flow is a sequence [Figure 7.4a)] the data flow can take 
various possibilities. Five of these are shown in Figure 7.5. With the possibility 
labeled PI, a user inputs data to MI which then processes it and delivers its 
output to M2 which in turn processes this input and delivers to the user its output. 
This flow of data (or information) is indicated by the dotted lines of Figure 7.5. 
With the possibility labeled P2 a user may input data either to M, or to M2 
directly; in the latter case MI is completely bypassed. Possibility P3 is a 
combination of PI and P2. With possibility P4 a user inputs data to M" but the 
output of MI consists of two parts, one part going directly to the user and the 
other going to M2 as an input; M2 processes its input and delivers its output to 
the user. Possibility P5 is P4 with the added feature that a user may bypass MI 
and feed the data directly to M 2 . The key aspect of Figure 7.5 is that whenever 
data need to go from one module to the other, it is always from MI to M2 and not 
vice versa. Clearly, an erroneous output of either Ml or of M2 would result in a 
failure of the software system. 

When the control flow is selective [Figure 7.4b)] the data flow has only one 
possibility. A user first inputs data to the condition gate C which then classifies 
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t (true) 

f (false) 

FIGURE 7.4h. The "Selective" Control Flow. 

t (true) 

f (false) 

FIGURE 7.4c. The "Iteration" Control Flow. 
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for Its Data Flow. 
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them as either t (for true) or f (for false). All inputs that are classified as t 
become inputs to MI which then processes them and delivers to the user its 
outputs. Similarly, all inputs classified asfbecome inputs to M2. Here, the data 
flow diagram mimics the control flow diagram; see Figure 7.6. 

An erroneous output of either MI or of M2 or a misclassification by the 
condition gate C will result in a failure of the software system. It is easy to see 
that the two-module software system can be expanded to incorporate additional 
modules, either in a sequence or a selective flow, by the introduction of 
additional condition gates. 

The third control flow protocol, namely "iteration" [see Figure 7.4c)] is de 
facto a sequence flow with an intervening condition gate. Here the user inputs a 
datum to the condition gate C which classifies it as either t or f If t, then the 
datum becomes an input to MI which processes it and delivers the output to the 
user. If a datum is classifiedf, then it becomes an input to M2 which processes it 
and provides as output an input to the condition gate for reclassification as t or f 
This process (referred to by programmers as a "loop") repeats itself zero or more 
times, and thus the term "iteration;" see Figure 7.7. In Figure 7.7, the module M2 
has an additional index j, j = 1, 2, ... , to indicate the jth iteration of M2 for a 
particular input datum. 

It is sometimes true that input data of a certain kind can affect M2 in such a 
way that it provides correct outputs for the first k iterations, and an incorrect 
output at the (k + l)th iteration. Thus M2 could, de facto, be viewed as a 
collection of submodules Mz(l), M2(2), ... , M2 (j) , ... , that are linked in a 
sequence flow. Often, there may be an upper limit, say J, to the number of 
iterations per input that M2 is allowed to perform; in such cases, j = 1, ... , J, so 
that M2 is essentially a maximum of J submodules linked in a sequence flow with 
an intervening condition gate between each iteration. Clearly, an erroneous 
output, be it MI or anyone of the M2(J)S, or a misclassification by the condition 
gate, might result in a failure of the software system. 

The reliability of a modularized software system is the probability that the 
system provides a correct user output given that the user input data conform to 
specifications. The following structure function calculus enables us to obtain the 
reliability of the software system given the reliabilities of each of its modules 
and its condition gates. That is, it facilitates an integration of module and system 
performance. The reliability of a condition gate is the probability of its correct 
classification. 

7.3.2 The Structure Function of Modularized Software 

Let II, h ... , h , ... , denote the possible distinct user inputs to the 
software system. For purposes of discussion, we focus attention on a single 
input, say input h. With respect to h, each module of the software, its condition 
gates, and the software system itself, will be in one of two states, functioning 
correctly or not. Also, each condition will make a binary classification, true or 
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false. These binary states will be represented by indicator variables, and the 
structure function is a binary function that describes the relationship between the 
state of a software system and the states of its modules and its condition gates. 
We next introduce some notation that helps us to describe the preceding 
relationships. 

For a two-module system having at most one condition gate C, let 

Xi = 1(0) if module Mi, i = 1,2, functions correctly (incorrectly) for 
input h; 

Y = 1(0) if the condition gate C makes a correct (incorrect) 
classification when the user input is h; 

c = 1(0) if the condition gate C makes a correct classification and 
declares t(j). 

When there is an iteration flow associated with module Mi , i = 1, 2, let the 
indicator variable XiV), j = 1, 2, ... , be such that 

XiV) = 1(0) if the jth iteration of Mi produces a correct (incorrect) 
output given that its input generated via Ik is correct. 

The possibilities labeled P4 and P5 of Figure 7.5 show that module MI can 
generate two types of output: one that goes directly to the user, .and another that 
becomes an input to M2. To account for these types of outputs, one needs to 
introduce an additional index to X, so that 

Xli = 1(0) if the output of MI which goes to the user is correct 
(incorrect) for input data Ik ; similarly 

Xl2 = 1(0) if the output of MI which goes to M2 is correct (incorrect). 

Finally, the binary state of the entire software system is described by the 
indicator variable X, where X = 1(0) if the entire software system performs 
correctly (incorrectly), under user input h. 

Clearly, X is a function of some or all of the indicator variables previously 
defined. Let K = (XI, X2, Y, C, XI V), X2V), XII, Xl2); K denotes the states of the 
modules and the condition gate(s) of the software system for a user input h. 
Then 

x = </J(K), 

where the binary function ¢ is known as the structure function of the software 
system. The form of ¢ is dictated by the control and the data flow protocols of 
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the software system. Since both K and X depend on the input data h, one may 
replace K with K(h) and X with X(h), so that the preceding relationship takes 
the general form 

X(h) = t/J(Jf.(h». 

The easiest cases to consider are those involving a sequence flow. 
Specifically, under the possibilities PJ, P2, and P3 of Figure 7.5, X = 
cp(XJ, X2) = Xl • X2, and under the possibilities P4 and P5 of Figure 7.5, 
X = cp(Xll , X12, X2) = Xll • X12 • X2. The next case to consider is the selective 
flow of Figure 7.6, for which X = cp(XJ, X2 , Y, C) = Y· [C· Xl + (l - C) • X2]. 
When the control flow is an iteration, Figure 7.7, then it is easy to verify that, for 
j = 1, 2, ... , X = cp(XI , X2(j), Y, C) = Y· [C • Xl + (l - C) I1~X2(j)], or if 
there is an upper limit of J on the number of iterations that M2 is allowed to 
perform, X = Y· [C • Xl + (1 - C) I1~ X2(j)]. A special case of the preceding 
arises if the internal code of M2 is not affected by the input data of each iteration; 
that is, module M2 remains unchanged from iteration to iteration. In such cases 
X2(j) = X2 , forj = 1,2, ... , so that 

since X2 is either 0 or I. 
For software systems with more than two modules, we can decompose the 

system into pairs of modules (this is called modular decomposition), and view 
each pair as a module. Thus, in principle, the structure function of any software 
system will take a form that is a composition of one or more of the preceding 
forms. Once the foregoing is done, the task of integrating module and system 
performance is complete. However, there are many other issues that still remain 
to be addressed. For one, how do we incorporate the effect of fault tolerance into 
the structure function? For another, how do estimates of module reliabilities 
propagate to estimates of system reliability, given the nature of our structure 
functions? How must we incorporate dependencies between the indicator 
variables that describe the performance of each module? These and other issues 
are potential candidates for further research. 
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ApPENDIX A 

STATISTICAL COMPUTATIONS 

USING THE GIBBS SAMPLER 

Markov Chain Monte Carlo (MCMC) methods are computer-intensive 
techniques that have greatly facilitated statistical computations, both Bayesian 
and frequentist. As is evident from the material of Chapter 4, the role of 
integration is central to Bayesian inference. However, integration is often a 
difficult task, especially when one has to deal with complicated kernels involving 
multiple variables. Bayesian inference for the concatenated failure rate model is 
a case in point; see Section 4.7. Sometimes numerical integration or analytical 
approximations can be used, but these too may pose formidable difficulties. The 
MCMC method is an alternative to these. Here we are able to indirectly generate 
random samples from the distributions of interest (univariate or multivariate), 
and obtain sample estimates of the desired quantities. In so doing, we have 
implicitly performed the required integration. 

There are several MCMC methods that have been proposed in the literature, 
one of which is the "Metropolis-Hastings Algorithm" [cf. Chib and Greenberg 
(1995)]. A special case of this algorithm is the "Gibbs sampler," which has now 
become a popular statistical tool [cf. Brooks (1998)]. The purpose of this 
Appendix is to overview the Gibbs sampler, and to describe how it may be used 
to address the computational issues that arise in the context of the models of 
Chapter 3. Since the technique is quite general, its scope of application is wide, 
and thus it behooves us to devote some effort to understand its workings. One of 
the best descriptions of the Gibbs sampler (that we have encountered) is the 
paper by Casella and George (1992); the material that follows is largely based on 
their exposition. 
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A.I An Overview of the Gibbs Sampler 

An archetypical problem in Bayesian inference involves a known joint 
density function, say fit, {h, ... , ()p I!.., .), where 1. denotes the observed data, 
()\, . . • , ()p the unknown parameters, and t an unknown observable of interest, 
say the time to next failure; the • represents the specified hyperparameters of 
the underlying prior distributions. Our interest is in obtaining the marginal 
(predictive) density 

fit I!, .) = J ... J fit, (h, ... , Op I!, • )dO j ••• dOp , 
OJ op 

or its characteristics such as its mean, its variance, and so on. An example is 
Equation (4.56) of Section 4.7.2. The straightforward approach would be to 
perform the preceding multiple integration, and then obtain the desired 
characteristics. The Gibbs sampler provides an easy alternative for obtaining 
fit I!..). It does this by generating a random sample fromf(t I 1.., .). The novelty 
of the approach is that the random sample can be generated without an explicit 
knowledge of fit I 1., .). The random sample can be used to obtain an estimate 
of fit I 1., .) itself, or to obtain estimates of its characteristics of interest. The 
accuracy of our estimates would depend on m; in general, the larger the m, the 
better the estimate. 

To describe the workings of the Gibbs sampler, we let p = 1, and for 
convenience, suppress the conditioning arguments • and 1., and also the index 1 
of ()\. Thus, to obtain 

fit) = J fit, O)dO, 
o 

using the Gibbs sampling algorithm we proceed as follows. 
First, we select a starting value of (), say ()g), and then generate (i.e., 

simulate) a value fromf(t I ()g\ we denote this value as t~l). Next, we use tg) to 
generate a value ()~\) from f(() I tg». We then use ()~l) to generate t~l) from 
fit I 8~1), and so on, so that in general, for j = 0, 1, 2, ... , 

This procedure of iteratively generating values of 8 and t by alternating 
between the conditional densities f(8 I t) and fit I 8) is called Gibbs sampling, 
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. (I) (I) (I) (I) (I) (I) _ . 
and the generated paIrS (00 ,to ), (01 ,tl ), •.. ,(Ok ,tk ), k - 0, 1, 2, ... , IS 

called the Gibbs sequence. It can be shown that when k is large, the value tkl ) can 

be regarded as a realization from the density function fit); similarly Okl ) a 
realization from flO), the marginal density function of O. Thus to generate a 
sample of size m fromf(t) one repeats the foregoing iterative procedure m times, 
starting each of the m cycles with suitable choices of initial values og), O~), ... , 
O~m). Clearly, to generate the Gibbs sequence aO knowledge of the conditionals 
fit I 0) and f(O I t) is necessary. Furthermore, we should be able to generate 
values fromf(t 10) andf(O I t). Since tf) and of) depend on the starting value og), 
i = 1, 2, ... , m, it is important to ensure that the starting values constitute an 
independent sequence. 

Once the Gibbs sequence is generated, the densities fit) and f(O) can be 
. db· h· f (I) (2) (m) d 0(1) 0(2) estimate y constructmg a Istogram 0 tk ' tk ' ... ,tk ,an k' k ' ••• , 

Okm), respectively, for large values of k and m. However, as was pointed out by 
Gelfand and Smith (1990), better estimates of the densities can be obtained by 

" averaging the conditional densities. Specifically,f(t), a Gibbs sequence estimate 
off(t), is given by the average 

m 

I(t) = ~ L:.f(t I e~» , 
;=1 

and a Gibbs sequence estimate off(O) by the average 

m 

1(0) = ~ L: f(O I tf» . 
;=1 

Similarly, estimates of the means of fit) and f(O) can be obtained by the 
sample averages lImL:;:\ tf) and lImL:;:1 of), respectively. 

In the case of three variables, say t, 0\, and O2 , we choose the starting values 
O~~ and O~~, and then sample iteratively from the three full conditional densities 
fit 101, (2),f(flt It, ( 2), andf(02 I t, 0\). After k iterations we produce the Gibbs 
sequence (O~~, O~~, til); til) is then a realization from the marginal density fit), 

similarly, oW and O~~. As before, we repeat this procedure m times to generate 
samples of size m from the required densities. The procedure generalizes to 
several variables. 

To conclude, the Gibbs sampling algorithm can be thought of as a practical 
implementation of the fact that a knowledge of the conditional distributions is 
sufficient to determine a joint distribution, should the joint distribution exist. 
Note that it is not always true that the existence of proper conditional 
distributions ensures the existence of a proper joint distribution. If a proper joint 
distribution does not exist, then a marginal distribution will not exist. When such 
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is the case the outputs from a Gibbs sampler will be misleading. Thus before 
invoking the Gibbs sampler one should ensure the existence of a proper joint 
distribution. One way to do this is to solve a certain fixed point integral equation 
and see if the solution is the required marginal density. Another way is to restrict 
all conditional densities to lie on compact intervals. Since the situation described 
is rare, we may for all practical purposes ignore it and proceed with the iterative 
scheme. 
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A.2 Generating Random Variates-The Rejection Method 

For a successful implementation of the Gibbs sampling algorithm, It IS 
important that we are able to efficiently generate realizations from the full 
conditional distributions. Often, these conditional distributions are not of a 
standard form, being compositions of priors and likelihoods. Thus, for example, 
to generate a realization from, say f(fh I OJ; t), where OJ and 02 are unknown 
quantities and t are the observed data, we may find it convenient to express 
f(02 I OJ; t) as 

by Bayes' Law where the first term on the right-hand side of the preceding is the 
likelihood and the second term is the prior of O2 conditional on OJ. If the prior 
happens to be a standard (well-known) form, then generating samples from 
P(02 I OJ) may be relatively straightforward. The method of rejection sampling 
enables us to generate samples from f(02 I OJ; t) by modifying the samples 
generated from P(02 I OJ) via the likelihood C(02 I OJ; t). The method of 
rejection sampling proceeds as follows. 

(a) First we generate a realization, say O~a), from the prior distribution 
P(02 I OJ), with OJ specified. 

(b) We then generate a realization, say u(a), from a uniform distribution on 
(0,1). 

(c) We then compute the rejection kernel (also known as a blanketing 
function) (C(O~a) I OJ; t))/(C(02 I OJ; t)), where e 2 is that value of O2 
which maximizes the likelihood function C(02 I OJ; t). 

(d) If u(a) ::; (C( O~a) I OJ; t) )/(C(e2 I OJ; t)), then O~a) is a realization from 
P(02 I OJ; t), otherwise o(a) is discarded (rejected). 

(e) We repeat the steps (a) to (d) until the desired number of O~a)s have 
been obtained. 

Rejection sampling is one of several approaches for generating samples 
from one distribution by modifying the samples generated by another. An 
overview of some of the alternatives may be found in Smith and Gelfand (1992). 
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A.3 Examples: Using the Gibbs Sampler 

Whereas the general methodology for implementing the Gibbs sampling 
algorithm is relatively straightforward, some initial preparation to get all the full 
conditional densities in a workable form is necessary. This is illustrated by 
Equation (4.54) of Section 4.7.2 where Bayesian inference for the concatenated 
failure rate model was discussed. The purpose of this section is to show how the 
Gibbs sampling algorithm can be used in place of numerical integration and 
approximations that were the mainstay of many of the examples of Chapter 4. 
We start with the simplest. 

A.3.1 Gibbs Sampling the lelinski-Moranda Model 

Recall, that for this model, the predictive density of Tn+1 at t, given the data 
1. = (tl, ... , tn ) and the prior parameters 8, fl" and a (henceforth.), had to be 
numerically obtained; see Section 4.2.3. Thus to obtain fit I 1., .) we need to 

h G 'bb «i) N(i) A(i) I )'" 1 2 F h' generate tel s sequence tk , k' k 1.,., lor 1 = , , ... , m. or t IS 

we need to know the full conditionals fit I N, A, 1.), fiN I t, A, J.), and f(A I t, N, 
J.); for convenience, the • has been suppressed in this and subsequent sections. 

But from Equation (3.5), we know that fit I N, A, 1.) = fit I N, 
A) = Aexp( - At(N - n)), an exponential distribution, so that given the starting 
values No and Ao we can easily generate a to. For the full conditionalf(N I t, Ao, 
J.), we use Bayes' Law whereby 

fiN I t, Ao,!J = fiN I Ao,!J 

where peN), our prior for N, is assumed to be independent of Ao. The likelihood 
of N, for fixed values of Ao and 1., is of the form 

n 

Cn(N lAo; 1) =. I1 Ao exp( - Aotj(N - i + 1)) . 
1=1 

In writing the preceding, we have assumed that given Ao and 1., the 
distribution of N does not depend on Tn+l • Thus given Ao and 1., we may 
generate a realization NI from fiN lAo, J.) by using rejection sampling on 
samples generated from peN), which we recall was assumed to be a Poisson 
distribution. Similarly, for the full conditionalf(A I t, NI , J.), we have 
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with Cn(A I N\; !J taking the same form as Cn(N lAo; lJ. Thus given N\ and!.. 
we may use rejection sampling on samples generated from P(A)-a gamma 
distribution-to generate A\. The iterative scheme is now in place. 

A.3.2 Gibbs Sampling the Hierarchical Model 

The hierarchical model of Section 4.4 involved the parameters a, /30, (3\, 
and Ai, i = 1,2, ... ,and the predictive distribution of Tn+\ given!.. = (t\, ... , 
tn); see Equations (4.21) and (4.22). Thus to Gibbs sample this model, the 
number of full conditionals that we need to consider is five. As a start, consider 
the full conditional fit I Ai, a, /30, (3\, 1..), which, because of the obvious 
independence considerations, is in factf(t I a, /30, (3\). But from Equation (4.17), 
Tn+\ has a Pareto density at t of the form (a«(30 + (3\(N + 1»O)/«t + /30 + (3\(N + 
1»0+\). Thus given the starting values for a, /30, and (31o a realization t from 
j(t I a, /30, (3\) can be generated using this Pareto density. Similarly, from the 
same starting values, we can also generate a realization from j(Ai I a, (30, (3\, 1..), 
using the density of Equation (4.20); note that to generate a realization from the 
preceding density of Ai we only need to use the ti from the collection (tlo ... , ti, 
. . . , tn ). To generate realizations from the remaining three densities, we must 
decompose them. Specifically,j(a I t, Ai, /30, (3\,!J = j(a I Ai, /30, (3\,1..), and by 
Bayes'Law 

where Cn(a I Ai, /30, (3\, lJ is the likelihood of a for fixed values of the other 
arguments. To specify this likelihood we use Equation (4.20); accordingly, 

C (a I A· a f3' t) = IT A'j(t;+!30+(3\i)Ol+\ e-A;(t;+!30+(3\i) 
n /, /Jo, 1,_ i = 1 r(a+l) . 

For the prior P(a I Ai, /30, (3\) we observe that, by the multiplication rule, 

which because of Equation (4.18) is of the form 

But by our model construction, A.i has a gamma distribution with a shape 
parameter a and a scale parameter /30 + (3\ i, and 7r(a I w) is a uniform 
distribution on (0, w). Generating random variates from 7r(a I w) is therefore 
very straightforward. In order to generate realizations fromj(a I A.i, /30, (3\,!J we 
may use rejection sampling on samples generated from 7r(a I w) using 
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.cn(aIAj, flo, /3,,1"> x P(Ada, flo, /3,) 

.cn(aIAj , flo, /3,,1) x P(Ada, flo, /3,) 

as the rejection kernel, or do rejection sampling in two stages, first using 
P(Aj I a, flo, /3, )IP(Ajlfi, flo, /3,) as the rejection kernel, and then using 
.cn(a I Aj , flo, /31, IJ/.cn(3.1 Aj , flo, /31, IJ as a rejection kernel on those samples 
that have been accepted by the first rejection kernel. Note that a (fi) [3.] is that 
value of a that maximizes the numerator terms of their respective rejection 
kernels. Thus given the starting values of flo and /31, and the previously 
generated value of Aj , we can generate realizations fromfta I Aj , flo, /31, IJ. 

Generating samples from the full conditionals ftflo I t, a, flo, /31, lJ and ft/3tl 
t, a, flo, /3t. !J proceeds along similar lines, except that now 7I"(a I w) gets 
replaced by 7I"(flo I /3t. a, b) and 71"(/31 I c, cl), respectively; see Equation (4.18). 

A.3.3 Gibbs Sampling the Adaptive Kalman Filter Model 

In what follows we use the notation of Section 4.5. With dynamic models, 
interest centers around the state of nature ()j, and predictions about future 
observables Yj+t , Yj+2, .•. , given the observed data li) = (Yt, ... , Yj), for 
i = 1, 2, . . . . Interest may also center around other parameters such as the a of 
Equation (4.26), or the C of Equation (4.28). 

Recall that for the adaptive Kalman filter model, 

a rv U( - 2, +2), for i = 1,2, ... ; 

U(-2, +2) denotes a uniform distribution over the interval (-2, +2). 
For inference about «()j; y(i), (a; y(i», and the predictive density at y of (Yj+,; 

y(i), we consider the full co~ditional; generated by the 5-tuple «()j, ()j+1, Yj+t. a, 
l(i). For purposes of discussion we focus attention on the case i = 1, so that our 

5-tuple is (flt, (h, Y2 , a, yt>; also note that the starting value ()o has been 
specified in advance. Because of the underlying distributional assumptions given 
previously, we see that the full conditionals of the 5-tuple are distributed as 
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To generate realizations from the preceding set of conditionals we choose 
010 and 020 as starting values of OJ and O2, respectively. We can then generate a 
Y20 from the distribution of (Y2 I (20 ), which is a Gaussian with mean 020 and 
variance af. To generate a realization from (a I OJ, ( 2), we use the multiplication 
rule whereby 

and observe that (02 I OJ, a) has a Gaussian distribution with mean aOJ and 
variance wi, and that (OJ I a) has a Gaussian distribution with mean aOo and 
variance wl. These relationships with 020 replacing O2 and 010 replacing OJ 
define the rejection kernel for samples generated from the uniform (-2, +2) 
distribution of a. Consequently, we are able to generate ao, a realization from 
the distribution of (a I 010, ( 20 ). 

Having chosen the starting values 010 and 020 (note that the starting value 00 
is external to the Gibbs sampling algorithm), and having generated the values Y20 
and ao, we now proceed to generate a realization from the distribution of 
(Oz I 010, ao, Y20). Invoking the multiplication rule, we observe that 

P(Oz I 010, ao, Yzo) ex: P(Yzo I Oz, 010, ao) P(02 I 010, ao) 

= P(Y20 I (2) P«(Jz I 010, ao) , 

since Y20 is independent of 010 and ao, given O2, 
But (02 I 010, ao) has a Gaussian distribution with mean aoOIO and variance 

wi, and so samples from this distribution can be easily generated. Also, 
(Y20 I fh) has a Gaussian distribution with mean 02 and variance af, and this 
forms the basis of a rejection kernel for samples generated from (02 I 010, ao). 
Consequently, we are able to update 020 to 02J. 

Our final task is to generate samples from the distribution of (OJ I 021 , ao, 
YI), which because of the multiplication law is 

since (JZI is independent of YI given ao and (JJ. 

But with 00 specified (it is the starting value for filtering), P«(JJ I ao) is 
Gaussian with mean aoOo and variance wl; thus samples from this distribution 
can be easily generated. To construct the rejection kernel, we first observe that 
(020 lao, ( 1) has a Gaussian distribution with mean aoOI and variance Wi, and 
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that since YI has been observed as YI, P(YI I BI) is the likelihood £(BI; YI). This 
likelihood can be assessed from the assumption that (YI I ed '" N(e l ; O"f). 
Thus the rejection kernel for samples generated from p(el I ao) is provided by 
the function £(e l ; yd x p(e21 lao, e l ). We can now generate a realization Bll 
from P(BI I e21 , ao; YI); ew is thus updated to ell. 

The process repeats itself, so that after k iterations we are able to produce 
( . B d ) h 1·· B(l) B(l) y(l) d (I) b d h . gIven 0 an YI t e rea IzatlOns Ik' 2k' 2k' an a k , ase on t e startmg 
values BIO and e20 . Repeating this m times, each time using a new pair of starting 
values, we can produce the realizations B~~), eg;:) , yi;) , and aim). The Gibbs 

sample based estimate of P(Bj ; YJ, eo), j = 1,2, is the histogram of ej!), C = 1, . 

. . , m; similarly, an estimate of Pea; YJ, eo), based on its uniform (-2, +2) prior, 

is the histogram of ail), and an estimate of P(Y2; YI, Bo) is the histogram ofY~~, 
C = 1, ... ,m. 

For the case i = 2, we need to consider the 6-tuple (e2, e3 , Y3 , a, YJ, Y2), 
and the histograms mentioned above provide the starting values, and also the 
sampling distributions for e2 and a. 

A.3.4 Gibbs Sampling the Non-Gaussian Kalman Filter Model 

The non-Gaussian Kalman filter model, defined by Equations (4.27) and 
(4.28), leads to the relationships: 

[lQ 
C £" and 

for 1"1 having a beta distribution on (0, 1) with parameters 0"0 and Vo; el is the 
scale parameter of the gamma distribution of TI . The prior distribution of C was 
assumed uniform on the interval (0, 1). 

Suppose that TI has been observed as tJ, and that inference about (el ; td, 
(e2 ; tl), (C; td, and (T2 ; td is desired. For Gibbs sampling under the preceding 
setup, we need to consider the full conditionals generated by the 6-tuple (Bo, BI , 

B2 , T2 , C, TI). The incorporation of Bo in the tuple is necessary because of the 
fact that unlike the fixed Bo of the adaptive Kalman filter model, the Bo here has a 
gamma distribution. The full conditionals of the 6-tuple have distributions 
determined by quantities such as (C I e2 , (h, Bo). Generating realizations from 
such conditionals poses a difficulty. This is because the multiplicative term 
eOEI/C, of the second relationship given previously, makes it difficult to obtain a 
rejection kernel. Whereas such difficulties can be overcome using the 
Metropolis-Hastings algorithm [cf. Chib and Greenberg (1995)], the fact that 
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closed form inference when we condition on C is available makes a more direct 
approach feasible. To see how, consider all the full conditionals of the 5-tuple 
(th, th, T2, C, Td, and observe, in the light of Equations (4.37) through (4.39), 
that generating realizations from these conditionals involves generating 
realizations from the conditionals (0) I C, T), (02 I C, T2), (T2 I C, Td, and 
(C I t), T2). For a starting value Co of C, generating the values 010, 020, and T 20, 

given an observed value t) of T), follows from Equations (4.37) through (4.39). 
To update Co to C), via the generation of a realization from the distribution of 
(C I t), T2), it is necessary that T2 be observed. This is because T) alone does not 
provide information about C. Suppose then, that T2 has been observed as t2' 

Then, Equation (4.39) can be used to construct a likelihood for C, and this 
likelihood facilitates the formation of a rejection kernel. Specifically, 

where P( C) is our prior for C. The rest proceeds in the usual manner. 
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THE MATURITY QUESTIONNAIRE 

AND RESPONSES 

B.t The Maturity Questionnaire 

Maturity Level 2 

Key Process Area 1 (K21)-Requirements Management 

1. For each project involving software development, is there a designated 
software manager? 

2. Does the project software manager report directly to the project (or project 
development) manager? 

3. Does the Software Quality Assurance (SQA) function have a management 
reporting channel separate from the software development project 
management? 

4. Is there a designated individual or team responsible for the control of 
software interfaces? 

5. Is there a software configuration control function for each project that 
involves software development? 

Key Process Area 2 (K22}-Software Quality Assurance 
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6. Does senior management have a mechanism for the regular review of the 
status of software development projects? 

7. Is a mechanism used for regular technical interchanges with the customer? 

8. Do software development first-line managers sign off on their schedules and 
cost estimates? 

9. Is a mechanism used for controlling changes to the software requirements? 

10. Is a mechanism used for controlling changes to the code? (Who can make 
changes and under what circumstances?) 

Key Process Area 3 (K-1.3)-Software Project Planning 

11. Is there a required training program for all newly appointed development 
managers designed to familiarize them with software project management? 

12. Is a formal procedure used to make estimates of software size? 

13. Is a formal procedure used to produce software development schedules? 

14. Are formal procedures applied to estimating software development cost? 

15. Is a formal procedure used in the management review of each software 
development prior to making contractual commitments? 

Maturity Level 3 

Key Process Area 1 (K31 }-Integrated Software Management 

16. Is a mechanism used for identifying and resolving system engineering issues 
that affect software? 

17. Is a mechanism used for independently calling integration and test issues to 
the attention of the project manager? 

18. Are the action items resulting from testing tracked to closure? 

19. Is a mechanism used for ensuring compliance with the software engineering 
standards? 

20. Is a mechanism used for ensuring traceability between the software 
requirements and top-level design? 
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Key Process Area 2 (K32~rganization Process Definition 

21. Are statistics on software design errors gathered? 

22. Are the action items resulting from design reviews tracked to closure? 

23. Is a mechanism used for ensuring traceability between the software top-level 
and detailed designs? 

24. Is a mechanism used for verifying that the samples examined by Software 
Quality Assurance are representative of the work performed? 

25. Is there a mechanism for ensuring the adequacy of regression testing? 

Key Process Area 3 (K33}-Peer Review 

26. Are internal software design reviews conducted? 

27. Is a mechanism used for controlling changes to the software design? 

28. Is a mechanism used for ensuring traceability between software detailed 
design and the code? 

29. Are software code reviews conducted? 

30. Is a mechanism used for configuration management of the software tools 
used in the development process? 

Maturity Level 4 

Key Process Area 1 (K41 )-Quantitative Process Management 

31. Is a mechanism used for periodically assessing the software engineering 
process and implementing indicated improvements? 

32. Is there a formal management process for determining if the prototyping of 
software functions is an appropriate part of the design process? 

33. Are design and code review coverage measured and recorded? 

34. Is test coverage measured and recorded for each phase of functional testing? 
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35. Are internal design review standards applied? 

Key Process Area 2 (K42 }-Software Quality Management 

36. Has a managed and controlled process database been established for process 
metrics data across all projects? 

37. Are the review data gathered during design reviews analyzed? 

38. Are the error data from code reviews and tests analyzed to determine the 
likely distribution and characteristics of the errors remaining in the product? 

39. Are analyses of errors conducted to determine their process-related causes? 

40. Is review efficiency analyzed for each project? 

Maturity LevelS 

Key Process Area 1 (KS1 }-Defect Prevention 

41. Is software system engineering represented on the system design team? 

42. Is a formal procedure used to ensure periodic management review of the 
status of each software development project? 

43. Is a mechanism used for initiating error prevention actions? 

44. Is a mechanism used for identifying and replacing obsolete technologies? 

45. Is software productivity analyzed for major process steps? 
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B.2 Binary (Yes, No) Responses to the Maturity Questionnaire 

K21 K31 K41 

I.N 16. N 31. Y 
2.N 17. N 32.N 
3. Y 18. Y 33. Y 
4. Y 19. Y 34. Y 
5.N 20.N 35.N 

K22 K32 K42 

6. Y 21. Y 36. Y 
7.N 22. Y 37. Y 
8. Y 23.N 38. Y 
9.Y 24. Y 39. Y 
10. Y 25. Y 40. Y 

K 23 K33 KSI 

11. N 26. Y 41. Y 
12. Y 27. Y 42. Y 
13. Y 28.N 43. Y 
14. Y 29. Y 44. Y 
15. Y 30.N 45.N 
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B.3 Prior Probabilities and Likelihoods 

B.3.1 The Maturity Levels P(Mj I Mj.t) 

The first column is based on common knowledge of maturity levels of 
U.S. companies. The second column is true by requirements of the hierarchical 
model. 

P(M2 = 1 I Ml = 1) = 0.50 
P(M2 = 0 I Ml = 1) = 0.50 

P(M3 = 1 1M2 = 1) = 0.15 
P(M3 = 0 I M2 = 1) = 0.85 

P(M4 = 1 1M3 = 1) = 0.05 
P(M4 = 0 I M3 = 1) = 0.95 

P(M5 = 1 I M4 = 1) = 0.01 
P(M5 = 0 I M4 = 1) = 0.99 

P(M2 = 1 I Ml = 0) = 0 
P(M2 = 0 I Ml = 0) = 1 

P(M3 = 1 I M2 = 0) = 0 
P(M3 = 0 I M2 = 0) = 1 

P(M4 = 1 I M3 = 0) = 0 
P(M4 = 0 I M3 = 0) = 1 

P(M5 = 11 M4 = 0) = 0 
P(M5 = 0 I M4 = 0) = 1 

B.3.2 The Key Process Areas P(Kij) and P(Kij I Mj) 

These priors were specified according to expert opinion. 

Maturity Level 2 Maturity Level 3 Maturity Level 4 Maturity LevelS 

P(K21 = 1) = 0.8 P(K31 = 1) = 0.5 P(K41 = 1) = 0.2 P(Ks1 = 1) = 0.02 
P(K21 = 0) = 0.2 P(K31 = 0) = 0.5 P(K41 = 0) = 0.8 P(KS1 = 0) = 0.98 

P(K22 = 1) = 0.9 P(K32 = 1) = 0.6 P(K42 = 1) = 0.3 
P(K22 = 0) = 0.1 P(K32 = 0) = 0.4 P(K42 = 0) = 0.7 

P(K23 = 1) = 0.9 P(K33 = 1) = 0.6 
P(K23 = 0) = 0.1 P(K33 = 0) = 0.4 
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The entries in the following table give P(Kij I Mj). 

Key Maturity Level 
Process M2 M3 M4 M5 

Areas 1 0 1 0 1 0 1 0 
K21 1 0.95 0.30 - - - - - -

00.05 0.70 - - - - - -

K22 1 0.90 0.40 - - - - - -

00.10 0.60 - - - - - -
K 23 1 0.90 0.40 - - - - - -

o 0.10 0.60 - - - - - -
K31 1 - - 0.95 0.25 - - - -

0 - - 0.05 0.75 - - - -

K32 1 - - 0.90 0.35 - - - -

0 - - 0.10 0.65 - - - -

K33 1 - - 0.90 0.35 - - - -
0 - - 0.10 0.65 - - - -

K41 1 - - - - 0.98 0.20 - -
0 - - - - 0.02 0.80 - -

K42 1 - - - - 0.95 0.25 - -
0 - - - - 0.05 0.75 - -

K51 1 - - - - - - 1.0 0.0 

0 - - - - - - 0.0 1.0 
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B.3.3 The Likelihoods £(Kij; -Bij) 

These likelihoods are based on independence of the responses, and for 
simplicity are assumed to be the same for all the key process areas. 

Responses Likelihood Likelihood 

R .. 
-I) 

L(K=l· R .. ) v '-I) 
L(K=O· R .. ) v '-IJ 

0 0.0025 0.1200 

00001 0.0035 0.0820 
00010 0.0035 0.0820 
00100 0.0035 0.0820 
01000 0.0035 0.0820 
10000 0.0035 0.0820 

00011 0.0100 0.0350 
00101 0.0100 0.0350 
01001 0.0100 0.0350 
10001 0.0100 0.0350 
00110 0.0100 0.0350 
01010 0.0100 0.0350 
10010 0.0100 0.0350 
01100 0.0100 0.0350 
10100 0.0100 0.0350 
11000 0.0100 0.0350 

00111 0.0350 0.0100 
01011 0.0350 0.0100 
10011 0.0350 0.0100 
01101 0.0350 0.0100 
10101 0.0350 0.0100 
11001 0.0350 0.0100 
01110 0.0350 0.0100 
10110 0.0350 0.0100 
11010 0.0350 0.0100 
11100 0.0350 0.0100 

01111 0.0820 0.0035 
10111 0.0820 0.0035 
11011 0.0820 0.0035 
11101 0.0820 0.0035 
01110 0.0820 0.0035 

11111 0.1200 0.0025 



References 

Aalen, O. O. (1987) Dynamic Modeling and Causality. Scand. Actuarial 1., 177-
190. 

Achcar, J. A., D. Dey, and M. Niverthy (1998) A Bayesian Approach Using 
Nonhomogeneous Poisson Process for Software Reliability Models in 
Frontiers in Reliability. Series on Quality, Reliability and Engineering 
Statistics (S. K. Basu and S. Mukhopadhyay, Eds.), 4: Calcutta University, 
India. 

AI-Mutairi, D., Y. Chen, and N. D. Singpurwalla (1998) An Adaptive 
Concatenated Failure Rate Model for Software Reliability. 1. Amer. Statist. 
Assoc., 93443: 1150-1163. 

Andersen, P. K. and 0. Borgan (1985) Counting Process Models for Life 
History Data: A Review (with Discussion). Scand. 1. Statist., 12: 97-158. 

Andreatta, G. and G. M. Kaufman (1986) Estimation of Finite Population 
Properties When Sampling is Without Replacement and Proportional to 
Magnitude. 1. Amer. Statist. Assoc., 81 395: 657-666. 

Arjas, E. and P. Haara (1984) A Marked Point Process Approach to Censored 
Failure Data with Complicated Covariates. Scand. 1. Statist., 11: 193-209. 

Barlow, R. F. and F. Proschan (1975) Statistical Theory of Reliability and Life 
Testing. Holt, Rinehart and Winston, New York. 

Basu, A. P. (1971) Bivariate Failure Rate. 1. Amer. Statist. Assoc., 60: 103-104. 

Bather, J. A. (1965) Invariant Conditional Distributions. Ann. Math. Stat., 36: 
829-846. 



270 References 

Benkherouf, L. and J. A. Bather (1988) Oil Exploration: Sequential Decisions 
in the Face of Uncertainty. J. Appl. Prob., 25: 529-543. 

Berger, J. O. (1985) Statistical Decision Theory and Bayesian Analysis. Second 
Edition, Springer-Verlag, New York. 

Berger, J. O. and R. Wolpert (1984) The Likelihood Principle. Institute of 
Mathematical Statistics, Hayward, CA. 

Bernardo, J. M. (1979) Reference Posterior Distributions for Bayesian Inference. 
J. of the Roy. Statist. Soc., series B, 41: 113-147. 

Bernardo, J. M. (1997) Non-informative Priors Do Not Exist. A Dialogue with 
Jose M. Bernardo. J. of Statist. Planning and Inference, 65 1: 159-189. 

Bernardo, J. M. and A. F. M. Smith (1994) Bayesian Theory. Wiley, Chichester. 

Bickel, P. J., V. N. Nair, and P. C. Wang (1992) Nonparametric Inference Under 
Biased Sampling from a Finite Population. The Ann. Statist., 20: 853-878. 

Box, G. E. P. (1980) Sampling and Bayes Inference in Scientific Modeling and 
Robustness. J. Royal Statist. Soc., Series A, 143: 383-430. 

Box, G. E. P. and G. M. Jenkins (1970) Time Series Analysis: Forecasting and 
Control. Revised Edition. Holden-Day, CA. 

Box, G. E. P. and G. M. Jenkins (1976) Time Series Analysis: Forecasting and 
Control. Holden-Day, CA. 

Brooks, S. P. (1998) Markov Chain Monte Carlo Method and Its Application. 
The Statistician, 47, Part I: 69-100. 

Brownlie, R., J. Prowse, and M. S. Phadke (1992) Robust Testing of AT&T 
PMXlStartMail Using OATS. AT&T Tech. J., 71: 41-47. 

Campod6nico, S. (1993) The Signature as a Covariate in Reliability and 
Biometry. PhD Thesis, School of Engineering and Applied Science, The 
George Washington University, Washington, DC. 

Campod6nico, S. and N. D. Singpurwalla (1994) A Bayesian Analysis of the 
Logarithmic-Poisson Execution Time Model Based on Expert Opinion and 
Failure Data. IEEE Trans. Soft. Eng., 20: 677-683. 



References 271 

Campod6nico, S. and N. D. Singpurwalla (1995) Inference and Predictions from 
Poisson Point Processes Incorporating Expert Knowledge. 1. Amer. Statist. 
Assoc., 90: 220-226. 

Casella, G. and E. I. George (1992) Explaining the Gibbs Sampler. Amer. 
Statist., 46 3: 167-174. 

Charette, R. N. (1989) Software Engineering, Risk Analysis and Management. 
McGraw-Hill, New York. 

Chatfield, C. (1983) Statistics for Engineering. Third Edition, Chapman and 
Hall, London. 

Chen, J. and N. D. Singpurwalla (1996) Composite Reliability and Its 
Hierarchical Bayes Estimation. 1. Amer. Statist. Assoc., 91 436: 1474-
1484. 

Chen, Y. and N. D. Singpurwalla (1994) A Non-Gaussian Kalman Filter Model 
for Tracking Software Reliability. Statistica Sinica, 4 2: 535-548. 

Chen, Y. and N. D. Singpurwalla (1997) Unification of Software Reliability 
Models Via Self-Exciting Point Processes. Advances in Applied 
Probability, 29 2: 337-352. 

Chib, S. and E. Greenberg (1995) Understanding the Metropolis-Hastings 
Algorithm. Amer. Statist., 49 4: 327-335. 

Cochran, W. G. (1977) Sampling Techniques. Wiley, New York. 

Cohen, D. M., S. R. Dalal, A. Kajla, and G. C. Patton (1994) The Automatic 
Efficient Test Generator (AETG) System. In Proceedings of Fifth 
International Symposium on Software Reliability Engineering. IEEE 
Computer Society Press, Los Alamos, CA, 303-309. 

Cox, D. R. and V. Isham (1980) Point Processes. Chapman and Hall, London. 

Cox, D. R. and P. A. Lewis (1966) Statistical Analysis of Series of Events. 
Methuen, London. 

Crosby, P. B. (1979) Quality is Free. McGraw Hill, New York. 

Crow, L. H. and N. D. Singpurwalla (1984) An Empirically Developed Fourier 
Series Model for describing Software Failures. IEEE Trans. Reliability, R-
33: 176-183. 



272 References 

Dalal, S. R. and C. L. Mallows (1988) When Should One Stop Testing 
Software? J. of Amer. Statist. Assoc., 83: 872-879. 

Dalal, S. R. and C. L. Mallows (1990) Some Graphical Aids for Deciding When 
to Stop Testing Software. IEEE J. on Selected Areas in Communications, 
8: 169-175. 

Dalal, S. R. and C. L. Mallows (1998) Factor-Covering Designs for Testing 
Software. Technometrics, 40 3: 234-243. 

Davis, A. M. (1990) Software Requirements-Analysis and Specification. 
Prentice-Hall, New York. 

Dawid, A. P. (1984) The Prequential Approach. 1. of the Roy. Statist. Soc. Series 
A, 147, Part 2: 278-292. 

Dawid, A. P. (1992) Prequential Analysis, Stochastic Complexity and Bayesian 
Inference. In Bayesian Statistics 4 (J. M. Bernardo, J. O. Berger, A. P. 
Dawid, and A. F. M. Smith, Eds.), Oxford University Press, New York. 

de Finetti, B. (1937) La Prevision: Ses Lois Logiques, Ses Sources Subjectives. 
Ann. Inst. H. Poincare (Paris), 7: 1-68 [see (1964) for English transl.], 
(cited pp. 5, 27, 29, 68, 78,143,149,151,186,192-3,213,215,229). 

de Finetti, B. (1964) Foresight: Its Logical Laws, Its Subjective Sources. In H. E. 
Kyburg and H. E. SmokIer (Eds.), Studies in Subjective Probability. Wiley, 
New York (English transl. of B. de Finetti, 1937). 

de Finetti, B. (1972) Probability, Induction and Statistics. Wiley, New York. 

de Finetti, B. (1974) Theory of Probability, 1. Wiley, New York. 

DeGroot, M. H. (1970) Optimal Statistical Decisions. McGraw-Hill, New York. 

Duane, J. T. (1964) Learning Curves Approach to Reliability Monitoring. 1EEE 
Trans. on Aerospace, AS-2: 563-566. 

Dwass, M. (1964) Extremal Processes. Annals of Mathematical Statistics, 35: 
1718-1725. 

Efron, B. and R. Thisted (1976) Estimating the Number of Unseen Species: 
How Many Words Did Shakespeare Know? Biometrika, 63: 435-447. 



References 273 

Fakhre-Zakeri, I. and E. Slud (1995) Mixture Models for Software Reliability 
with Imperfect Debugging Identifiability of Parameters. IEEE Trans. Rei., 
441: 104-113. 

Ferguson, T. S. and J. P. Hardwick (1989) Stopping Rules for Proofreading. 1. 
Appl. Prob., 26: 304-313. 

Fisher, R. A. and F. Yates (1953) Statistical Tables for Biological, Agricultural 
and Medical Research, (fourth edition.), Oliver & Boyd, Edinburg and 
London. 

Forman, E. H. and N. D. Singpurwalla (1977) An Empirical Stopping Rule for 
Debugging and Testing Computer Software. 1. Amer. Statist. Assoc., 72 
360: 750-757. 

French, S. (1980) Updating of Belief in the Light of Someone Else's Opinion. 1. 
of the Roy. Statist. Soc. Series A, 143: 43-48. 

Freund, J. E. (1961) A Bivariate Extension of the Exponential Distribution. 1. 
Amer. Statist. Assoc., 56: 971-977. 

Gaffney, J. E., Jf. (1984) Estimating the Number of Faults in Code. IEEE Trans. 
on Soft. Eng., SE-I0: 459-464. 

Geisser, S. (1984) On Prior Distributions for Binary Trials. Amer. Statist., 384: 
244-247. 

Gelfand, A. E., and Smith, A. F. M. (1990) Sampling-Based Approaches to 
Calculating Marginal Densities. 1. Amer. Statist. Assoc., 85: 398-409. 

Gill, R. D. (1984) Understanding Cox's Regression Model: A Martingale 
Approach. 1. Amer. Statist. Assoc., 79 386: 441-447. 

Goel, A. L. (1983) A Guide Book for Software Reliability Assessment. 
Technical Report, RADC-TR-83-176. Rome Air Development Center, 
Rome, New York. 

Goel, A. L. (1985) Software Reliability Models: Assumptions, Limitations and 
Applicability. IEEE Trans. on Soft. Eng., SE-ll: 1411-1423. 

Goel, A. L. and K. Okumoto (1978) An Analysis of Recurrent Software Failures 
on a Real-Time Control System. In Proceedings of the ACM Annual 
Technical Conference, 496-500. 



274 References 

Goel, A. L. and K. Okumoto (1979) Time-Dependent Error Detection Rate 
Model for Software Reliability and Other Performance Measures. IEEE 
Trans. Rei., R-28: 206-211. 

Gokhale, S. S., M. R. Lyu, and K. S. Trivedi (1998) Reliability Simulation of 
Component-Based Software Systems. In Proceedings of the Ninth 
International Symposium on Software Engineering (ISSRE-98): 192-201. 
IEEE Computer Society, Los Alamitos, CA. 

Good, I. J. (1983) Good Thinking: The Foundations of Probability and Its 
Applications. University of Minnesota Press, Minneapolis. 

Gordon, L. (1983) Successive Sampling in Large Finite Populations. Ann. 
Statist. 11: 702-706. 

Hicks, C. R. (1982) Fundamental Concepts in the Design of Experiments. Holt, 
Rinehart and Winston, Orlando, FL. 

Hill, B. M. (1993) Dutch Books, the Jeffreys-Savage Theory of Hypothesis 
Testing and Bayesian Reliability. Chapter 3 in Reliability and Decision 
Making (R. E. Barlow, C. A. Clarotti, and F. Spizzichino, Eds.), Chapman 
and Hall, London, 31-85. 

Hogg, R. V. and A. T. Craig. (1978) Introduction to Mathematical Statistics. 
Fourth edition, Macmillan, New York. 

Howson, C. and P. Urbach (1989) Scientific Reasoning: The Bayesian 
Approach. Open Court, II. 

Hudson, A. (1967) Program Errors as a Birth and Death Process. Technical 
Report SP-3011, Systems Development Corp., Santa Monica, CA. 

Humphrey, W. S. (1989) Managing the Software Process. SEI (The SEI Series 
in Software Engineering), Addison-Wesley, Reading, MA. 

Humphrey, W. S. and N. D. Singpurwalla (1991) Predicting (Individual) 
Software Productivity. IEEE Trans. Soft. Eng., 172: 196-207. 

Humphrey, W. S. and N. D. Singpurwalla (1998) A Bayesian Approach for 
Assessing Software Quality and Productivity. Int. 1. Reliability, Quality 
and Safety Eng., 52: 195-209. 



References 275 

Humphrey, W. S. and W. L. Sweet (1987) A Method for Assessing the Software 
Engineering Capability of Contractors. SEI Technical Report SEI-87-TR-
23. 

lannino, A., J. D. Musa, and K. Okumoto (1987) Software Reliability: 
Measurement, Prediction, Application. Wiley, New York. 

Jalote, P. (1991) An Integrated Approach to Software Engineering. Springer­
Verlag, New York. 

Jaynes, E. T. (1968) Prior Probabilities. IEEE Trans. System Science and 
Cybernetics, SSC-4: 227-241. 

Jaynes, E. T. (1983) Papers on Probability, Statistics and Statistical Physics. 
Reidal, Dordrecht. 

Jeffreys, H. (1961) Theory of Probability. Third edition, OUP, Oxford. 

Jelinski, Z. and P. Moranda (1972) Software Reliability Research. In W. 
Freiberger, Ed., Statistical Computer Performance Evaluation, Academic 
Press, New York. 

Johnson, N. L. and S. Kotz (1970) Continuous Univariate Distributions, 2. 
Houghton Mifflin, New York. 

Kass, R. E. and L. Wasserman (1996) The Selection for Prior Distribution by 
Formal Rules. J. Amer. Statist. Assoc., 91435: 1343-1370. 

Kaufman, G. M. (1996) Successive Sampling and Software Reliability. J. 
Statistical Planning and Inference, 49: 343-369. 

Knight, J. C. and N. G. Levenson (1986) An Experimental Evaluation of the 
Assumption of Independence in Multiversion Programming. IEEE Trans. 
Soft. Eng., SE-12 1: 96-109. 

Koch, G. and P. J. C. Spreij (1983) Software Reliability as an Application of 
Martingale and Filtering Theory. IEEE Trans. ReI., R-32: 342-345. 

Kolmogorov, A. N. (1950) Foundations of the Theory of Probability. Chelsea, 
New York. 

Kuo, L. and T. Y. Yang (1995) Bayesian Computation of Software Reliability. J. 
Comput. Graphical Stat., 4: 65-82. 



276 References 

Kuo, L. and T. Y. Yang (1996) Bayesian Computation for Nonhomogeneous 
Poisson Processes in Software Reliability. J. Amer. Statist. Assoc., 91 434: 
763-773. 

Kurtz, T. G. (1983) Gaussian Approximations for Markov Chains and Counting 
Processes. Bulletin o/the International Statistical Institute, 50: 361-375. 

Langberg, N. and N. D. Singpurwalla (1985) A Unification of Some Software 
Reliability Models. SIAM J. Sci. Stat. Comput. 6: 781-790. 

Lee, P. M. (1989) Bayesian Statistics: An Introduction. Oxford University Press, 
New York. 

Lindley, D. V. (1972) Bayesian Statistics, A Review. Regional Conference 
Series in Applied Mathematics. SIAM, Philadelphia, P A. 

Lindley, D. V. (1980) Approximate Bayesian Methods. Trabajos Estadistica, 
31: 223-237. 

Lindley, D. V. (1982a) Scoring Rules and the Inevitability of Probability. Inst. 
Statist. Rev., 50: 1-26. 

Lindley, D. V. (1982b) The Bayesian Approach to Statistics. In Some Recent 
Advances in Statistics (T. de Oliveira and B. Esptein Eds.). 65-87, 
London, Academic Press. 

Lindley, D. V. (1983) Reconciliation of Probability Distributions. Operations 
Research, 31: 866-880. . 

Lindley, D. V. and N. D. Singpurwalla (1986a) Reliability (and Fault Tree) 
Analysis Using Expert Opinion. J. Amer. Statist. Assoc., 81: 87-90. 

Lindley, D. V. and N. D. Singpurwalla (1986b) Multivariate Distributions for the 
Lifelengths of Components of a System Sharing a Common Environment. 
J. Appl. Prob., 23: 418-431. 

Littlewood, B. and J. L. Verall (1973) A Bayesian Reliability Growth Model for 
Computer Software. Appl. Stat., 22: 332-346. 

Lynn, N. (1996) Software for a Shot-Noise Reliability Growth Model. The 
George Washington University Technical Memorandum TM-96-1. 



References 277 

Mandl, R. (1985) Orthogonal Latin Squares: An Application of Experimental 
Design to Compiler Testing. Communications of the ACM, 28 10: 1054-
1058. 

Marshall, A. W. (1975) Some Comments on Hazard Gradients. Stochastic 
Processes and Their Applications., 3: 295-300. 

Marshall, A. W. and I. Olkin (1967) A Multivariate Exponential Distribution. 1. 
Amer. Statist. Assoc., 62: 30-44. 

Martz, H. F. and R. A. Waller (1982) Bayesian Reliability Analysis. Wiley, New 
York. 

Mazzuchi, T. A. and R. Soyer (1988) A Bayes Empirical-Bayes Model for 
Software Reliability. IEEE Trans. Rei., R-37: 248-254. 

McDaid, K. and S. P. Wilson (1999) Determining An Optimal Time to Test 
Software Assuming a Time-Dependent Error Detection Rate Model. 
Technical Report 96/02, Department of Statistics, Trinity College, Dublin. 

Meinhold, R. J. and N. D. Singpurwalla (1983a) Bayesian Analysis of a 
Commonly Used Model for Describing Software Failures. The Statistician, 
322: 168-173. 

Meinhold, R. J. and N. D. Singpurwalla (1983b) Understanding the Kalman 
Filter. Amer. Statist., 37 2: 123-127. 

Miller, D. R. (1986) Exponential Order Statistic Models of Software Reliability 
Growth. IEEE Trans. Soft. Eng., SE-12: 12-24. 

Morali, N. and R. Soyer (1999) Optimal Stopping Rules for Software Testing. 
Under review. 

Moranda, P. B. (1975) Prediction of Software Reliability and Its Applications. In 
Proceedings of the Annual Reliability and Maintainability Symposium, 
Washington, DC, 327-332. 

Morris, P. A. (1974) Decision Analysis Expert Use. Mgmt. Sci., 20: 1233-1241. 

Morris, P. A. (1977) Combining Expert Judgments: A Bayesian Approach. 
Mgmt. Sci., 23: 679-693. 

Musa, J. D. (1975) A Theory of Software Reliability and Its Applications. IEEE 
Trans. Soft. Eng., SE-l: 312-327. 



278 References 

Musa, J. D. (1979) Software Reliability Data. IEEE Comput. Soc. Repository, 
New York. 

Musa, J. D. and K. Okumoto (1984) A Logarithmic Poisson Execution Time 
Model for Software Reliability Measurement. In Proceedings of the 
seventh International Conference on Software Engineering., Orlando, FL, 
230-237. 

Musa, J. D., A. Iannino, and K. Okumoto (1987) Software Reliability. McGraw­
Hill, New York. 

Myers. G. J. (1978) Composite/Structured Design. Van Nostrand Reinhold, New 
York. 

Nair, V. J. and P. C. C. Wang (1989) Maximum Likelihood Estimation Under a 
Successive Sampling Discovery Model. Technometrics 31: 423-436. 

Nair, V. N., D. A. James, W. K. Ehrlich, and J. Zevallos (1998) A Statistical 
Assessment of Some Software Testing Strategies and Application of 
Experimental Design Techniques. Statistica Sinica, 81: 165-184. 

Okumoto, K. and A. L. Goel (1980) Optimum Release Time for Software 
Systems, Based on Reliability and Cost Criteria. 1. Syst. Soft., 1: 315-
318. 

Ozekici, S. and N. A. Catkan (1993) A Dynamic Software Release Model. 
Computational Economics 6: 77-94. 

Paulk, M. c., M. B. Chrissis, B. Curtis, and C. V. Weber (1993) Capability 
Maturity Model, Version 1.1. IEEE Soft., 18-27. 

Phadke, M. S. (1989) Quality Engineering Using Robust Design. Prentice- Hall, 
Englewood Cliffs, NJ. 

Raftery, A. E. (1987) Inference and Prediction for a General Order Statistic 
Model With Unknown Population Size. 1. Amer. Statist. Assoc., 82: 1163-
1168. 

Raftery, A. E. (1988) Analysis of a Simple Debugging Model. Appl. Statist., 37 
1: 12-22. 



References 279 

Raftery, A. E. (1992) Discussion of Model Determination Using Predictive 
Distributions with Implementation via Sampling-Based Methods, by 
Gelfand et al. In Bayesian Statistics 4 (1. M. Bernardo, J. O. Berger, A. P. 
Dawid and A. F. M. Smith, Eds.), Oxford University Press, New York. 

Raiffa, H. and R. Schlaifer (1961) Applied Statistical Decision Theory. Division 
of Research, Harvard Business School, Boston. 

Ramsey, F. P. (1964) Truth and Probability. In H. E. Kyburg Jr., and H. E. 
SmokIer, Editors, Studies in Subjective Probability, Wiley, New York, 61-
92. 

Randolph, P. and M. Sahinoglu (1995) A Stopping Rule for a Compound 
Poisson Random Variable. Applied Stochastic Models and Data Analysis, 
11: 135-143. 

Rao, C. R. (1987) Prediction of Future Observations in Growth Curve Models. 
Statistical Science, 24: 434-471. 

Roberts, H. V. (1965) Probabilistic Prediction. 1. Amer. Statist. Assoc., 60: 50-
61. 

Ross, S. M. (1970) Applied Probability Models with Optimization Applications. 
Holden-Day, San Francisco. 

Ross, S. M. (1985a) The Stopping Rule Problem. IEEE Trans. Soft. Eng., SE­
ll: 1472-1476. 

Ross, S. M. (1985b) Statistical Estimation of Software Reliability. IEEE Trans. 
Soft. Eng. SE-ll: 479-483. 

Sahinoglu, M. (1992) Compound-Poisson Software Reliability Model. IEEE 
Trans. on Soft. Eng. 18: 624-630. 

Savage, L. J. (1972) The Foundations of Statistics. Second edition, Dover, New 
York. 

Schick, G. J. and R. W. Wolverton (1978) Assessment of Software Reliability. 
In Proceedings in Operations Research, Physica-Verlag, Vienna, 395-422. 

Scholz, F. W. (1986) Software Reliability Modeling and Analysis. IEEE Trans. 
Soft. Eng., SE-12: 25-31. 



280 References 

Singpurwalla, N. D. (1988a) Foundational Issues in Reliability and Risk 
Analysis. SIAM Rev., 30: 264-282. 

Singpurwalla, N. D. (1988b) An Interactive PC-Based Procedure for Reliability 
Assessment Incorporating Expert Opinion and Survival Data. J. Amer. 
Statist. Assoc., 83401: 43-51. 

Singpurwalla, N. D. (1989a) A Unifying Perspective on Statistical Modeling. 
SIAM Rev., 314: 560-564. 

Singpurwalla, N. D. (1989b) Preposterior Analysis in Software Testing. In 
Statistical Data Analysis and Inference (Y. Dodge, Ed.), Elsevier, North­
Holland., Amsterdam, 581-595. 

Singpurwalla, N. D. (1991) Determining an Optimal Time Interval for Testing 
and Debugging Software. IEEE Trans Soft. Eng., 174: 313-319. 

Singpurwalla, N. D. (1992) A Bayesian Perspective on Taguchi's Approach to 
Quality Engineering and Tolerance Design. Institute for Industrial 
Engineering Transactions, 24 5: 18-32. 

Singpurwalla, N. D. (1993) Design by Decision Theory: A Unifying 
Perspective on Taguchi's Approach to Quality Engineering. Chapter 14 in 
Reliability and Decision Making (R. E. Barlow, C. A. Clarotti, and F. 
Spizzichino, Eds.), Chapman and Hall, London, 267-272. 

Singpurwalla, N. D. (1995) The Failure Rate of Software: Does It Exist? IEEE 
Trans. Rei., 44 3: 463-469. 

Singpurwalla, N. D. (1998a) A Paradigm for Modeling and Tracking Reliability 
Growth. In Reliability Growth Modeling: Objectives, Expectations and 
Approaches (Farquhar and Mosleh, Eds.), Center for Reliability 
Engineering, University of Maryland, College Park, MD. 

Singpurwalla, N. D. (1998b) Software Reliability Modeling by Concatenating 
Failure Rates. In Proceedings of the ninth International Symposium on 
Software Reliability Engineering (ISSRE-98), IEEE Computer Society, Los 
Alamitos, CA, 106-110. 

Singpurwalla, N. D. (1998c) The Stochastic Control of Process Capability 
Indices. Sociedad Espanola de Estadistica e Investigaci6n Operativa. 
TEST,7 4: 1-74. 



References 281 

Singpurwalla, N. D. (1999) A Probabilitistic Hierarchical Classification Model 
for Rating Suppliers. J. Quality Tech. To appear. 

Singpurwalla, N. D. and M. S. Song (1988) Reliability Analysis Using Weibull 
Lifetime Data and Expert Opinion. IEEE Trans. Rei., 37 3: 340-347. 

Singpurwalla, N. D. and R. Soyer (1985) Assessing (Software) Reliability 
Growth Using a Random Coefficient Autoregressive Process and Its 
Ramifications. IEEE Trans. Soft. Eng., SE-1112: 1456-1464. 

Singpurwalla, N. D. and R. Soyer (1992) Nonhomogeneous Autoregressive 
Processes for Tracking (Software) Reliability Growth, and Their Bayesian 
Analysis. J. Roy. Statist. Soc. Series B, 54: 145-156. 

Singpurwalla, N. D. and R. Soyer (1996) Assessing the Reliability of Software: 
An Overview. In Reliability and Maintenance of Complex Systems, (S. 
Ozekici, Ed.), NATO ASI Series, Springer Verlag, New York. 345-367. 

Singpurwalla, N. D. and S. Wilson (1994) Software Reliability Modeling. 
International Statist. Rev., 62 3: 289-317. 

Singpurwalla, N. D. and S. P. Wilson (1995) The Exponentiation Formula of 
Reliability and Survival: Does It Always Hold? Lifetime Data Analysis, 1: 
187-194. 

Slud, E. (1997) Testing for Imperfect Debugging in Software Reliability. Scand. 
J. Statist., 24: 527-555. 

Smith, A. F. M. and A. E. Gelfand (1992) Bayesian Statistics Without Tears: A 
Sampling-Resampling Perspective. Amer. Statist., 46 2: 84-88. 

Soyer, R. (1985) Random Coefficient Autoregressive Processes and Their 
Ramifications: Applications to Reliability Growth Assessment. PhD Thesis, 
School of Engineering and Applied Science, George Washington 
University, Washington, DC. 

Soyer, R. (1992) Monitoring Software Reliability Using Non-Gaussian Dynamic 
Models. In Proceedings of the Engineering Systems Design and Analysis 
Conference, 1: 419-423. 

Tausworthe, R. C. and M. R. Lyu (1996) Software Reliability Simulation, in 
Handbook of Software Reliability Engineering (M. R. Lyu, Ed.), McGraw­
Hill, New York, 661-698. 



282 References 

Tierney, L. and J. B. Kadane (1986) Accurate Approximations for Posterior 
Moments and Marginal Densities. 1. of Amer. Statist. Assoc., 81 393: 82-
86. 

Tversky, A, D. V. Lindley and R. V. Brown (1979) On the Reconciliation of 
Probability Assessments (with discussion). 1. Roy. Statist. Soc. series A, 
142: 146-180. 

van Pul, M. C. J. (1993) Statistical Analysis of Software Reliability Models. 
Centre for Mathematics and Computer Science, Amsterdam. 

von Mises, R. (1957) Probability, Statistics and Truth. Dover, New York. 

West, M., P. J. Harrison, and H. S. Migon (1985) Dynamic Generalized Linear 
Models and Bayesian Forecasting (with Discussion). 1. Amer. Statist. 
Assoc. 80: 73-97. 

Weyuker, E. J., and B. Jeng (1991) Analyzing Partition Testing Strategies. IEEE 
Trans. Soft. Eng., 17: 703-711. 

Yamada, S. and S. Osaki (1984) Nonhomogeneous Error Detection Rate Models 
for Software Reliability Growth. In Reliability Theory (S. Osaki and Y. 
Hatoyama, Eds.), Springer-Verlag, Berlin, 120-143. 

Yamada, S., H. Narihisa, and S. Osaki (1984) Optimum Release Policies for a 
Software System With a Scheduled Software Delivery Time. Int. 1. Syst. 
Sci., 15: 905-914. 

Zadeh, L. (1981) Possibility Theory and Soft Data Analysis. Mathematical 
Frontiers of the Social and Policy Sciences (L. Cobb and R. M. Thrall, 
Eds.), Westview Press, Boulder, CO: 69-129. 

Zellner, A (1971) An Introduction to Bayesian Inference in Econometrics. 
Wiley, New York. 

Zellner, A (1977) Maximal Data Information Prior Distributions. In New 
Methods in the Applications of Bayesian Methods (A Aykac and C. 
Brumat, Eds.), North Holland, Amsterdam. 



Author Index 

Aalen, O. O. 224 
Achcar, J. A. 90 
Al-Mutairi, D. 59,92, 156, 160 
Anderson, P. K. 222 
Andretta, G. 89,202 
Arjas, E. 70 

Barlow, R. F. 74 
Basu, A. P. 58 
Bather, J. A. 81,202 
Benkherouf, L. 202 
Berger, J. O. 25, 29, 105 
Bernardo, J. M. 30, 105, 114-115, 

146 
Bickel, P. J. 89 
Borgen, 0. 222 
Box,G.E.P. 91,102-103,172 
Brooks, S. P. 249 
Brown, R. V. 116, 150 
Brownlie, R. 228, 232 

Campod6nico, S. 39,44, 118, 120 
Casella, G. 158, 249 
Catkan, N. A. 214 
Charette, R. N. 1 
Chatfield, C. 106 
Chen, J. 33, 69 
Chen, Y. 59,70,72,81,84,92,143-

144, 156, 160 
Chib, S. 249, 259 
Chrissis, M. B. 181 
Cochran, W. G. 228 
Cohen, D. M. 228,232-234 
Cox, D. R. 48,91-92 
Craig, A. T. 106 
Crosby, P. B. 181 
Crow, L. H. 85 
Curtis, B. 181 

Dalal, S. R. 86,202,204,207,228, 
232-234,238 

Davis, A. M. 3 
Dawid, A. P. 145-147 
de Finetti, B. 9, 20, 26, 104, 194 
DeGroot, M. H. 20 
Dey, D. 90 
Duane, J. T. 91 
Dwass, M. 90 

Efron, B. 202 
Ehrlich, W. K. 228-229,231,234 

Fakhre-Zaken, I. 70, 86 
Ferguson, T. S. 202 
Fisher, R. A. 236 
Forman,E.H. 24,107,202 
French, S. 116 
Freund, J. E. 17 

Gaffney, J. E., Jr. 120-121 
Geisser, S. 33 
Gelfand, A. E. 251,253 
George, E. I. 158, 249 
Gill, R. D. 226 
Goel, A. L. 70,75,77-79,89-

90,110,120,202 
Gokhale, S. S. 52 
Good, I. J. 115 
Gordon, L. 89 
Greenberg, E. 249,259 

Haara, P. 70 
Hardwick, J. P. 202 
Harrison, P. J. 172 
Hicks, C. R. 236-238 
Hill, B. M. 194 
Hogg, R. V. 106 
Howson, C. 20 
Hudson, A. 72 
Humphrey, W. S. 174,176,180-181 

Iannino, A. 72, 102 



284 Author Index 

Isham, V. 48,92 

Jalote, P. 2 
James, D. A. 228-229,231,234 
Jaynes, E. T. 115 
Jeffreys, H. 113, 147 
Jelinski, Z. 59,68,72, 106, 109-110 
Jeng, B. 228 
Jenkins, O. M. 91, 102, 172 
Johnson, N. L. 30 

Kadane, J. B. 113 
Kajla, A. 228, 232-234 
Kass, R. E. 113 
Kaufman, O. M. 88-89, 202 
Knight, 1. C. 17, 236 
Koch, O. 86, 225 
Kolmogorov, A. N. 6, 20 
Kotz, S. 30 
Kuo,L. 70,72,77,86,89 
Kurtz, T. O. 224 

Langberg, N. 70, 73, 76, 83, 89 
Lee,P.M. 105,159 
Levenson, N. O. 17,236 
Lewis, P. A. 91 
Lindley, D. V. 17,20,29, 116-117, 

125,141,150,195-196 
Littlewood, B. 77,83 
Lynn,N. 158,160 
Lyu, M. R. 52, 82 

Mallows, C. L. 86, 202, 204, 207, 
238 

Mandl, R. 228, 232, 235 
Marshall, A. W. 17,58 
Martz, H. F. 113 
Mazzuchi, T. A. 76,83, 124-126, 

153 
McDaid, K. 112,207,215 
Meinhold, R. J. 81,107, 114 
Migon, H. S. 172 
Miller, D. R. 70, 88 
Morali, N. 214,216 
Moranda, P. B. 59,68,72,75,77, 

106, 109-110, 166 
Morris, P. A. 116 
Musa, J. D. 44,70,72, 78-79,89, 

91, 102-103, 106-107, 118, 120, 
131,209 

Myers, O. J. 120 

Nair, V. J. 89 
Nair, V. N. 228-229,231,234 
Narihisa, H. 202 
Niverthy, M. 90 

Okumoto, K. 44,70,72,75,77-79, 
89,91,102-103,110,118,120, 
202,209 

Olkin, I. 17 
Osaki, S. 90, 202 
Ozekici, S. 214 

Patton, O. C. 228, 232-234 
Paulk, M. C. 181 
Phadke,M.S. 228,232-233 
Proschan, F. 74 
Prowse, J. 228, 232 

Raftery, A. E. 88, 146, 151 
Raiffa, H. 113 
Ramsey, F. P. 194 
Randolph, P. 202 
Rao, C. R. 170 
Roberts, H. V. 147 
Ross, S.M. 88,202,215 

Sahinoglu, M. 47,85,202 
Savage, L. J. 194 
Schick, O. J. 76 
Schlaifer, R. 113 
Scholz, F. W. 89 
Singpurwalla, N. D. 17,24,29,33, 

38-39,44,54,58-59,68-73,76, 
80-81,83-85,89,92,107,114, 
116-118,120,131,141,143-
144, 156, 160, 174-176, 181, 
191,202,205-206,215 

Slud,E. 70,86,225 



Smith, A. F. M. 30, 105, 146,251, 
253 

Song, M. S. 116 
Soyer, R. 38,68-69,76-77,80-81, 

83, 124-126, 139, 141, 153, 174-
175,214,216 

Spreij, P. J. C. 86, 225 
Sweet, W. L. 181 

Tausworthe, R. C. 82 
Thisted, R. 202 
Tierney, L. 113 
Trivedi, K. S. 52 
Tversky, A. 116, 150 

Urbach, P. 20 

van Pul, M. C. J. 86, 225 
Verall, J. L. 77,83 
von Mises, R. 7 

Author Index 285 

Waller, R. A. 113 
Wang, P. C. C. 89 
Wasserman, L. 113 
Weber, C. V. 181 
West, M. 172 
Weyuker, E. J. 228 
Wilson, S. P. 58,69,71, 112,207, 

215 
Wolpert, R. 25 
Wolverton, R. W. 76 

Yamada, S. 90, 202 
Yates, F. 236 
Yang, T. Y. 70,72,77,86,89 

Zadeh, L. 13 
Zellner, A. 115 
Zevallos,J. 228-229,231,234 



SUbject Index 

aposteriori 7,64, 109, 164 
apriori 7, 109, 125, 151 
absence of knowledge 115 
absolute assessment 146 
absolutely continuous 14, 40 
accumulation of data 151, 174 
adaptive 

concatenated failure rate model 
91,98,99 

Gaussian Kalman filter (See 
Adaptive Kalman Filter) 81 

Kalman filter 129,130,141, 
256 

model 142 
adaptivity 92, 160, 188 
AETG design 234, 238 
allowable service time 68 
autocorrelated 170 
autoregressive 130, 223 

band plots 161 
baseline failure rate 226 
Bayes factors 102, 149, 159 
Bayes law 13,60, 104, 185 
Bayesian 

analysis 107, 114 
approach to analysis (See 

Bayesian inference) 
approach to prediction 104 
inference 7, 102, 122, 249 
paradigm 83, 102 
statistics 25 

Bernoulli distribution (See 
Distribution) 

binomial 
approximation to 
distribution 32 

biostatistical 222 
birth and death processes 72,221 
blanketing function 253 
branch 196,205 

branch testing 228 
bug counting model (See model) 
bugs 3 

classification of models 70, 95 
CMM (See Capability Maturity 

Model) 
coherent 20, 195 
compensator 223 
completely confounded 237 
completely randomized design 237 
component reliability theory 14 
composite reliability 238 
compound Poisson process (See 

Process) 
concatenated failure rate function 

58,72,84 
concatenation 58 
concatenation points 84 
condition gate 239 
conditional 

distribution 16 (See also 
Distribution) 

expectation 40 
independence 16,54, 190 
mean 40 
orderliness 51, 84 
probabilities 16,53 
probability density (See 

conditional probabilities) 
variance 40 

confidence interval 106 
consistency 106, 233 
continuous random variables 5 
control flow 239 
control theory 129 
convex combination 62 
convexity 18 
correlation 40 
countable additivity 18 
counting process (See Process) 



288 Subject Index 

covariance 40 
covariates 57, 224 

internal 58 
Cox regression model (See Model) 
cumulative distribution 119 
customer goodwill 205 

data flow 239,244 
data flow diagram 2,242 
debugging 2,47,121,145 
debugging efficiency 48 
decision 

making 191, 195,224 
node 196, 198 
problem 198, 199,202 
table 196 
theory 197,217 
tree 196 

one-stage 199 
solving 196 
sequential 199 
two-stage 200 

-theoretic 146 
de-eutrophication model (See Model) 
defect classification 188 
defective 89 
degenerate 83, 105, 208 
dependence structure l39, 190 
dependent 17,26,78 
design document 3 
design of experiment 228, 232, 236 
developmenttime 169 
discounting factor 204 
distribution function 14 

Bernoulli 30 
beta 33,61 
binomial 32,41,69 
DeMoivre's 81 (See also 

Gaussian distribution) 
exponential 34, 35, 36, 73, 88, 

254 
failure rate 53, 54, 55 
gamma 35,36,37,55,63,97 
Gaussian 38, 81, 129 
geometric 32, 33 

distribution function (cont' d) 
GOS 88 
joint 58 (See also joint 

distribution) 
k-fold convolution 47 
lognormal 37,38, 171 
marginal 58, 59, 115,230 
marginal posterior 157, 159 
Normal (See Gaussian 

distribution) 
Pareto 77,97, 141,255 
Poisson 32 
posterior 61,101,114,115 
prediction 105 
prior 24,29, 101, 113,209,211 
Rayleigh 76 
Standard Normal 38, 119 (See 

also Gaussian distribution) 
Student'st 175 
truncated normal 38,39 
of time to first failure 64 
uniform 31, 129 
Weibull 36,37,55 

dis utility 204 
DOE (See design of experiment) 
Doob decomposition 223 
Doob-Meyer decomposition 222, 

224,227 
doubly stochastic Poisson process 

(See process) 
DSPP (See doubly stochastic Poisson 

process) 
Dutch book 20, 195 
dynamic 129, l30, 164, 188,221, 

222,245 
linear model (See dynamic) 
modeling (See dynamic) 
statistical model 223 (See also 

dynamic) 

efficiency 102, 106 
empirical Baye's method 114 
empirical formula 

length of code 120 
bugs per line of code 209 



enhanced predictivity 129 
EOS (See model, exponential order 

statistics) 
error of prediction 222 
estimation 106 

Bayes factors 158 
interval 102, 105, 106, 164 
point 102, 106 

evolution 
of concatenated failure rate 84 
of decision tree 196 
of software reliability 82, 86, 

221 
exchangeability 14,25,81, 104, 186 
exchangeable model (See model) 
exhaustive testing 3, 198,228 
expected 

failure rate 229 
number of failures 77 
number of undetected failures 78 
partition failure rate 230 
utility 194 

single-stage 207, 210 
multi-stage 212 
principle of maximization 

194,217 
value 39,225 (See also Mean) 

experimental design 221,237 
expert opinion 29,79,266 
exponential distribution (See 

distribution) 
exponentail order statistics model (See 

model) 
exponential smoothing 176 
exponentiation formula 54 

factorial design 234 
fractional 234 

failure 
detection probability 231 
epochs 88, 89 
intensity 93 
model 29,41,88 
rate 

function 53, 58 

Subject Index 289 

failure rate (cont'd) 
models 

exponential 54 
gamma 55 
lognormal 56 
Weibull 56 

of marginal distribution­
function 58 

of software 53, 58, 72 
fault detection rate 78 
fault tolerance 57, 236 
fault-tolerant system 26 
finite additivity 18 
first moment 39 (See also mean, 

expected value) 
of a probability model 41 

first-order nonhomogeneous-
autoregressive process 172 

fixed time lookahead 202,212,215 
forecast density 155 
fractional factorial design (See 

factorial design) 
frequentist inference 102, 106 
frequentist theory 7 

gamma distribution (See distribution) 
gamma function 34, 36 
Gaussian distribution (See 

distribution) 
Gaussian Kalman filter model (See 

model) 
general order statistics model (See 

model) 
generalization of the exponential 

to gamma 36, 37 
to Weibull 36,37 

generic model (See model) 
geometric distribution (See 

distribution) 
Gibbs 

sampling 110, 157,249,250 
sequence 158,251 

goodness of fit 25, 146 
GOS (See model, general order 

statistics) 



290 Subject Index 

Greco-Latin 235 
growth curve models (See model) 

hierarchical 
Bayes 76, 83, 85, 97 
classification scheme 170 
model (See model) 
priors 113 
structure 60, 182, 187 

history 5,45,50,92,222 
homogeneous Poisson process (See 

process) 
HPP (See homogeneous Poisson 

process) 
hyperparameters 113, 172, 176 
hypothesis testing 103 

impossible events 18 
improper prior 115 
incoherent 20 
incomplete block design 237 
incomplete gamma integral 90 
incomplete Latin square 236 
independence 14,17,26,40 

loss of 88 
independent increment 45,48,49,60 
innovation 223 
input domain 228 
input specific reliability 30, 238 
intensity function 45 
intensity process (See process) 
interarrival times 42, 45 
interfailure times 58, 69, 70, 71 
internal covariate (See covariate) 
invariant conditional distributions 81 
invertibility 91 
iteration 239 

joint 
distribution 45,59, 120,251 
distribution of the k-order 

statistics 88 
expectation 40 
k out of n 88 

joint (cont'd) 
posterior distribution 108, 112, 

157 
predictive density 147 
prior density 112 
probability 21 

judgment of indifference 26 
jump discontinuities 45 

Kalman filter model (See model) 
Key Process Areas 181, 261 
k-fold convolution 47 
KPA (See Key Process Areas) 
kth moment 39 
kth order autoregressive process 91 

lack of memory 55 
Latin hypercube 235 
Latin square 235 
Law of 

inverse probability 21 
the extension of conversation 20 
total probability 13,21,29,30, 

184 
learning 

environment 162 
phenomenon 171,176 
process 170, 173 
trend 179 

lifelength 17,29,55,57 
lifetimes 79 
likelihood 14,24,25, 157 

prequential 146, 147, 151 
prequential ratio 147, 151 
principle 25 

logic engine 68 
lognormal distribution (See 

distribution) 
loss of consumer confidence 193, 

217 

marginal 21 
density 21, 251 
distribution (See distribution) 



marginal (cont'd) 
posterior distribution (See 

distribution) 
marked point process 70 
Markov 

chain 190,215 
Chain Monte Carlo simulation 

142,157,249 
dependence 186 
property 45 

martingale 223,224,225,226 
Central Limit Theorem 224 
difference 223 
Law of Large Numbers 224 
semi- 224 
theory 86, 222 

maturity levels 181, 183,266 
maturity questionairre 181, 261, 265 
maximum entropy priors 115 
maximum likelihood estimate 105 
MCMC (See Markov Chain Monte 

Carlo simulation) 
mean 39 

conditional 40 
of Bernoulli 41 
of binomial 41 
of gamma 41 
of Gaussian 38 
of Poisson 41 
residual life 95, 155 
square errors 122, 167 
time between failures 39, 54 
time to failure 39,41 
value function 45, 83, 89, 90 

median 118 
memory 52,84,85, 180 

lack of- 55 
of the self-exciting Poisson 

process 52 
method of maximum likelihood 25, 

102, 105, 120 
Metropolis-Hastings algorithm 249, 

259 
MEU (See expected utility -

maximization) 

Subject Index 291 

minutes per line of code 171 
mission time 53, 67 
mixture model (See model) 
mode 118, 126, 140 
model 

adaptive Gaussian Kalman filter 
81 

adaptive Kalman filter 130, 139, 
145,256 

averaging 148, 149, 164 
bug counting 74,76,227 
complexity 150 
Cox regression 226 
de-eutrophication 73,77, 166 
EOS 88 (Also exponential order 

statistics model) 
exchangeable 130, 141 
exponential order statistics 88 
failure rate 53 
Gaussian Kalman filter 81 
general order statistics 88, 98 
generic 154 
GOS 88,98 
growth-curve 170, 188 
hierarchical 69, 113, 126,255 
Kalman filter 129 
logarithmic Poisson execution 

time 80,103 
mixture 86 
non-Gaussian Kalman filter 81, 

130,141,145,258 
nonbug counting 73 
of Goel and Okumoto 70, 75, 

83,206,211,218,227 
of Jelinski and Moranda 72, 82, 

95,202,218 
of Langberg and Singpurwalla 

73,83 
of Littlewood and Verall 77, 83 
of Mazzuchi and Soyer 76, 83 
ofMusa-Okumoto 79,91,96, 

209 
of Ohba and Yamada 90 
of Schick and Wolverton 75, 76, 

85,91 



292 Subject Index 

model (cont'd) 
record value statistics 89 
selection 102, 146, 149, 150 
shock 74 
software reliability 29,67,69, 

86 
Type I 71,82,86,214 
Type II 71,77 

time dependent error detection 
77,86,110 

uncertainty 172 
modular decomposition 245 
modules 238 
Monte Carlo simulation (See MCMC) 
MRL (See mean residual life) 
MSE (See mean square error) 
MTBF (See mean time between 

failures) 
MTTF (See mean time to failure) 
multinomial 188 
multiplication law (See 

multiplicativity) 
mUltiplicative 18 
multistage hierarchy 130 
mutually exclusive 18 

natural conjugate priors 113 
Naval Tactical Data Systems 109, 

126, 127, 153,216 (Also NTDS) 
NHPP (See nonhomogeneous Poisson 

process) 
non bug counting 73 
noninformative priors 114 
nonunique estimators 121 
normalizing constant 39 
normative approach 170, 230 
NTDS (See Naval Tactical Data 

Systems) 

observation equation 81, 130 
Occam's razor 150 
omnibus prior 156 
one-bug lookahead 202, 214 
one-stage lookaheed 199,202,206, 

211,215 

one-stage testing 198,202,206 
one-step-ahead prediction 121, 165 
operational profile 3, 15,50,67,221, 

227 
opportunity cost 204,210 
optimal testing time 192, 193 
order statistics 86, 87, 98 

ith 87 
largest 87 
process 226 
smallest 87 

ordering 86, 88 
orthogonal array 233 
orthogonal increments 223 
orthogonal Latin square (See Latin 

square) 

parallel redundant 86 
parameters 14 
partition testing 228, 229, 231 
penalty for late release 204 
permutation invariance 28 
point mass 14 
point of saturation 176 
point process (See process) 
Poisson process (See process) 
possibility theory 4 
posterior 

density 117 
distribution (See distribution) 
inference 109 
mean 62 
mode 140 
odds 149, 151 
probability 24 
weight 149 

power law 80, 204 
predictable process 223 
prediction 

error 222 
interval 174,178 
limits 179 

predictive 
ability 145, 150, 151 
density 110, 111, 254, 256 



predictive (cont'd) 
distribution (See distribution) 
failure rate function (See failure 

rate function) 
mean 94, 160, 161 
variance 94 

predictivity 92, 129, 139, 141 
preposterior analysis 196, 232 
prequentiallikelihood (See 

likelihood) 
prequential prediction 102, 146, 147 
principle of indifference 6 
prior 

distribution (See distribution) 
mean 62,207 
odds 149 
probability (See also prior 

distribution) 
probability density function 14 (See 

also prior probability) 
probability models 14,29,39 (See 

also model) 
probability specification process 101 
probability theory 4, 191, 223 
process 

counting 14,42, 84, 224, 226 
intensity 225, 227 
intensity function of 43 
management 180, 263 
point 14,41,45,46,83,86 
Poisson 43, 71 

compound 46,47,60 
doubly stochastic 48, 50, 

52,60 
homogeneous 45,77 
nonhomogeneous 44,45, 

78, 164 
self-exciting 51, 52, 60, 84, 

85,222 
shot 92 
shot noise 92, 93 
stochastic 42, 44, 48, 222, 227 
stochastic counting (See process -

counting) 
stress 92 

Subject Index 293 

product moment 40 (See also joint 
expectation) 

product obsolescence 192, 193,204 
productivity data 179, 188 
productivity rates 175 
projection 10, 174, 175, 179 

random 
coefficient autoregressive process 

71,80, 188 
coefficient exchangeable model 

(See model - exchangeable) 
events 5 
node 196 
quantities 5 
sampling 228 
testing 228, 231 
variables 5,68,69 

continuous 5 
discrete 5 
exchangeable 26 
mixed 14 

randomized complete block design 
236 

ReAP (See random coefficient auto­
regressive process) 

record 
pairs 90 
times 90 
value statistics model (See 

model) 
values 86, 90 

recursive probabilities classifications 
scheme 186 

recursive relationship 185 
reference 

priors 113 
time 5 

rejection kernel 253, 256 
rejection sampling 253 
relative frequency 7, 102 
relative growth in reliability 95 
reliability 10 

assessment 17 
decay 82, 157, 159 



294 Subject Index 

reliability (cont'd) 
function 52, 97 

risk 

growth 76, 77, 95, 154, 159 
modeling 82, 88 

aversion 195 
neutral 196 
proneness 196 
set 226 

robust 180,232 

sample path 42 
scale parameter 35 
scoring rules 20 
second moment 39 
self-exciting Poisson process (See 

process - Poisson) 
SEI (See Software Engineering 

Institute) 
semi martingale (See martingale) 
sensitivity 113, 114, 122 
SEPP (See self-exciting Poisson 

process) 
sequential testing 192, 198,217 
series system 19, 87 
several steps ahead predictions 122 
shape parameter 37 
shifted exponential density 155 
shifted gamma 77 
shock model (See model) 
significance testing 146 
simulation (See MCMC) 
single-stage testing (See one-stage 

testing) 
software 2 

credibility (See software 
reliability) 

development 2 
development cycle 228 
downtime 47 
failure 3 
productivity 170, 176 
reliability (See reliability) 
reliability model (See model) 

Software Engineering Institute 10, 
170 

specialist knowledge 115 
stage-by-stage growth 80, 180 
stages oftesting 131, 199, 218 
standard deviation 40, 120, 209 
Standard Normal distribution (See 

distribution) 
states of nature 193 
stationarity 157 
statistical decision theory (See 

decision theory) 
statistical inference 4, 67, 228 
step function 14,42,225 
stochastic counting process (See 

counting process) 
strata 228, 230 
stress process 92 
structure function 244 
subjective interpretation of probability 

8,11,25 
subjectivistic Bayesian inference 7 

(See also Bayesian inference) 
survival analysis 222, 225 
survival function 52, 98 
System 40 data 131 
system equation 81, 130,214 

test cases 228, 231 
testing phases 3, 192 
testing strategies 228, 232 
time dependent error detection model 

(See model) 
time sequence 239 
time series 

models 80, 91 
processes 43 

total debugging time 47 
truncated normal distribution (See 

distribution) 
tuning coefficients 116 
two-stage testing 198, 206 

unbiasedness 102, 106 



unconditional 46 
unconditional orderliness 51 
uniform distribution (See 

distribution) 
uniqueness 106 
unit testing 176 
universal model 82 
unreliability 19,92 
utilities 193, 195,206,215 

assigning 193 
expected 194,205,210, 

principle of maximization 
194 

Subject Index 295 

utilities (cont'd) 
function 203,209,214 

concave 195 
convex 196 
of money 195 

theory 194, 217 

variance 38,40 
conditional 40 

waiting times 45 

Youden square 236 



Springer Series in Statistics 
(continued from p. ii) 

Kotz/Johnson (Eds.): Breakthroughs in Statistics Volume II. 
Kotz/Johnson (Eds.): Breakthroughs in Statistics Volume III. 
Kres: Statistical Tables for Multivariate Analysis. 
KuchlerlS(tJrensen: Exponential Families of Stochastic Processes. 
Le Cam: Asymptotic Methods in Statistical Decision Theory. 
Le CamIYang: Asymptotics in Statistics: Some Basic Concepts. 
Longford: Models for Uncertainty in Educational Testing. 
Manoukian: Modem Concepts and Theorems of Mathematical Statistics. 
Miller, Jr.: Simultaneous Statistical Inference, 2nd edition. 
MostellerlWallace: Applied Bayesian and Classical Inference: The Case of the 

Federalist Papers. 
Parzen/l'anabeiKitagawa: Selected Papers of Hirotugu Akaike. 
Politis/RomanolW olf: Subsampling. 
Pollard: Convergence of Stochastic Processes. 
Pratt/Gibbons: Concepts of Nonparametric Theory. 
Ramsay/Silverman: Functional Data Analysis. 
Raolfoutenburg: Linear Models: Least Squares and Alternatives. 
ReadiCressie: Goodness-of-Fit Statistics for Discrete Multivariate Data. 
Reinsel: Elements of Multivariate Time Series Analysis, 2nd edition. 
Reiss: A Course on Point Processes. 
Reiss: Approximate Distributions of Order Statistics: With Applications 

to Non-parametric Statistics. 
Rieder: Robust Asymptotic Statistics. 
Rosenbaum: Observational Studies. 
Ross: Nonlinear Estimation. 
Sachs: Applied Statistics: A Handbook of Techniques, 2nd edition. 
SiimdallSwenssonIWretman: Model Assisted Survey Sampling. 
Schervish: Theory of Statistics. 
Seneta: Non-Negative Matrices and Markov Chains, 2nd edition. 
Shaolfu: The Jackknife and Bootstrap. 
Siegmund: Sequential Analysis: Tests and Confidence Intervals. 
Simonoff: Smoothing Methods in Statistics. 
Singpurwalla and Wilson: Statistical Methods in Software Engineering: 

Reliability and Risk. 
Small: The Statistical Theory of Shape. 
Stein: Interpolation of Spatial Data: Some Theory for Kriging 
Tanner: Tools for Statistical Inference: Methods for the Exploration of Posterior 

Distributions and Likelihood Functions, 3rd edition. 
Tong: The Multivariate Normal Distribution. 
van der VaartIWellner: Weak Convergence and Empirical Processes: With 

Applications to Statistics. 
Vapnik: Estimation of Dependences Based on Empirical Data. 
Weerahandi: Exact Statistical Methods for Data Analysis. 
WestlHarrison: Bayesian Forecasting and Dynamic Models, 2nd edition. 
Wolter: Introduction to Variance Estimation. 
Yaglom: Correlation Theory of Stationary and Related Random Functions I: 

Basic Results. 
Yaglom: Correlation Theory of Stationary and Related Random Functions II: 

Supplementary Notes and References. 


